Skip to content

Latest commit

 

History

History
167 lines (128 loc) · 3.94 KB

lists.md

File metadata and controls

167 lines (128 loc) · 3.94 KB

Multi-task and Streaming

A common use case of structured extraction is defining a single schema class and then making another schema to create a list to do multiple extraction

from typing import List
from pydantic import BaseModel


class User(BaseModel):
    name: str
    age: int


class Users(BaseModel):
    users: List[User]


print(Users.model_json_schema())
"""
{
    '$defs': {
        'User': {
            'properties': {
                'name': {'title': 'Name', 'type': 'string'},
                'age': {'title': 'Age', 'type': 'integer'},
            },
            'required': ['name', 'age'],
            'title': 'User',
            'type': 'object',
        }
    },
    'properties': {
        'users': {'items': {'$ref': '#/$defs/User'}, 'title': 'Users', 'type': 'array'}
    },
    'required': ['users'],
    'title': 'Users',
    'type': 'object',
}
"""

Defining a task and creating a list of classes is a common enough pattern that we make this convenient by making use of Iterable[T]. This lets us dynamically create a new class that:

  1. Has dynamic docstrings and class name based on the task
  2. Support streaming by collecting tokens until a task is received back out.

Extracting Tasks using Iterable

By using Iterable you get a very convenient class with prompts and names automatically defined:

import instructor
from openai import OpenAI
from typing import Iterable
from pydantic import BaseModel

client = instructor.patch(OpenAI(), mode=instructor.function_calls.Mode.JSON)


class User(BaseModel):
    name: str
    age: int


users = client.chat.completions.create(
    model="gpt-3.5-turbo-1106",
    temperature=0.1,
    response_model=Iterable[User],
    stream=False,
    messages=[
        {
            "role": "user",
            "content": "Consider this data: Jason is 10 and John is 30.\
                         Correctly segment it into entitites\
                        Make sure the JSON is correct",
        },
    ],
)
for user in users:
    print(user)
    #> name='Jason' age=10
    #> name='John' age=30

Streaming Tasks

We can also generate tasks as the tokens are streamed in by defining an Iterable[T] type.

Lets look at an example in action with the same class

import instructor
import openai
from typing import Iterable
from pydantic import BaseModel

client = instructor.patch(openai.OpenAI(), mode=instructor.Mode.TOOLS)


class User(BaseModel):
    name: str
    age: int


users = client.chat.completions.create(
    model="gpt-4",
    temperature=0.1,
    stream=True,
    response_model=Iterable[User],
    messages=[
        {
            "role": "system",
            "content": "You are a perfect entity extraction system",
        },
        {
            "role": "user",
            "content": (f"Extract `Jason is 10 and John is 10`"),
        },
    ],
    max_tokens=1000,
)

for user in users:
    print(user)
    #> name='Jason' age=10
    #> name='John' age=10

Asynchronous Streaming

I also just want to call out in this example that instructor also supports asynchronous streaming. This is useful when you want to stream a response model and process the results as they come in, but you'll need to use the async for syntax to iterate over the results.

import instructor
import openai
from typing import Iterable
from pydantic import BaseModel

client = instructor.patch(openai.AsyncOpenAI(), mode=instructor.Mode.TOOLS)


class UserExtract(BaseModel):
    name: str
    age: int


async def print_iterable_results():
    model = await client.chat.completions.create(
        model="gpt-4",
        response_model=Iterable[UserExtract],
        max_retries=2,
        stream=True,
        messages=[
            {"role": "user", "content": "Make two up people"},
        ],
    )
    async for m in model:
        print(m)
        #> name='John Doe' age=30
        #> name='Jane Doe' age=28


import asyncio

asyncio.run(print_iterable_results())