-
Notifications
You must be signed in to change notification settings - Fork 44
/
Copy patheval_zeroshot.py
60 lines (49 loc) · 1.92 KB
/
eval_zeroshot.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
import os
import json
import argparse
import torch
import datasets
from transformers import AutoTokenizer
import random
import glog
from lib.utils import LMEvalAdaptor
from lib.utils.unsafe_import import model_from_hf_path
from lm_eval import evaluator, tasks
parser = argparse.ArgumentParser()
parser.add_argument('--seed', default=0, type=int)
parser.add_argument('--hf_path', default='hfized/quantized_hada_70b', type=str)
parser.add_argument('--batch_size', type=int, default=1, help='batch size')
parser.add_argument("--tasks", type=str)
parser.add_argument("--output_path", default=None, type=str)
parser.add_argument('--num_fewshot', type=int, default=0)
parser.add_argument('--no_use_cuda_graph', action='store_true')
parser.add_argument('--no_use_flash_attn', action='store_true')
def main(args):
model, model_str = model_from_hf_path(args.hf_path,
use_cuda_graph=False,
use_flash_attn=not args.no_use_flash_attn)
tokenizer = AutoTokenizer.from_pretrained(model_str)
glog.info('loaded model!')
tokenizer.pad_token = tokenizer.eos_token
task_names = args.tasks.split(",")
lm_eval_model = LMEvalAdaptor(model_str, model, tokenizer, args.batch_size)
results = evaluator.simple_evaluate(
model=lm_eval_model,
tasks=task_names,
batch_size=args.batch_size,
no_cache=True,
num_fewshot=args.num_fewshot,
)
print(evaluator.make_table(results))
if args.output_path is not None:
os.makedirs(os.path.dirname(args.output_path), exist_ok=True)
# otherwise cannot save
results["config"]["model"] = args.hf_path
with open(args.output_path, "w") as f:
json.dump(results, f, indent=2)
if __name__ == '__main__':
torch.set_grad_enabled(False)
args = parser.parse_args()
random.seed(args.seed)
torch.random.manual_seed(args.seed)
main(args)