-
Notifications
You must be signed in to change notification settings - Fork 23
/
evaluate.py
153 lines (122 loc) · 4.98 KB
/
evaluate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
import argparse
import torch
from pytorch_lightning import Trainer
from pytorch_lightning.callbacks import ModelCheckpoint
from tqdm.auto import tqdm
from dataset.celebv_hq import CelebvHqDataModule
from marlin_pytorch.config import resolve_config
from marlin_pytorch.util import read_yaml
from model.classifier import Classifier
from util.earlystop_lr import EarlyStoppingLR
from util.lr_logger import LrLogger
from util.seed import Seed
from util.system_stats_logger import SystemStatsLogger
def train_celebvhq(args, config):
data_path = args.data_path
resume_ckpt = args.resume
n_gpus = args.n_gpus
max_epochs = args.epochs
finetune = config["finetune"]
learning_rate = config["learning_rate"]
task = config["task"]
if task == "appearance":
num_classes = 40
elif task == "action":
num_classes = 35
else:
raise ValueError(f"Unknown task {task}")
if finetune:
backbone_config = resolve_config(config["backbone"])
model = Classifier(
num_classes, config["backbone"], True, args.marlin_ckpt, "multilabel", config["learning_rate"],
args.n_gpus > 1,
)
dm = CelebvHqDataModule(
data_path, finetune, task,
batch_size=args.batch_size,
num_workers=args.num_workers,
clip_frames=backbone_config.n_frames,
temporal_sample_rate=2
)
else:
model = Classifier(
num_classes, config["backbone"], False,
None, "multilabel", config["learning_rate"], args.n_gpus > 1,
)
dm = CelebvHqDataModule(
data_path, finetune, task,
batch_size=args.batch_size,
num_workers=args.num_workers,
feature_dir=config["backbone"],
temporal_reduction=config["temporal_reduction"]
)
if args.skip_train:
dm.setup()
return resume_ckpt, dm
strategy = None if n_gpus <= 1 else "ddp"
accelerator = "cpu" if n_gpus == 0 else "gpu"
ckpt_filename = config["model_name"] + "-{epoch}-{val_auc:.3f}"
ckpt_monitor = "val_auc"
try:
precision = int(args.precision)
except ValueError:
precision = args.precision
ckpt_callback = ModelCheckpoint(dirpath=f"ckpt/{config['model_name']}", save_last=True,
filename=ckpt_filename,
monitor=ckpt_monitor,
mode="max")
trainer = Trainer(log_every_n_steps=1, devices=n_gpus, accelerator=accelerator, benchmark=True,
logger=True, precision=precision, max_epochs=max_epochs,
strategy=strategy, resume_from_checkpoint=resume_ckpt,
callbacks=[ckpt_callback, LrLogger(), EarlyStoppingLR(1e-6), SystemStatsLogger()])
trainer.fit(model, dm)
return ckpt_callback.best_model_path, dm
def evaluate_celebvhq(args, ckpt, dm):
print("Load checkpoint", ckpt)
model = Classifier.load_from_checkpoint(ckpt)
accelerator = "cpu" if args.n_gpus == 0 else "gpu"
trainer = Trainer(log_every_n_steps=1, devices=1 if args.n_gpus > 0 else 0, accelerator=accelerator, benchmark=True,
logger=False, enable_checkpointing=False)
Seed.set(42)
model.eval()
# collect predictions
preds = trainer.predict(model, dm.test_dataloader())
preds = torch.cat(preds)
# collect ground truth
ys = torch.zeros_like(preds, dtype=torch.bool)
for i, (_, y) in enumerate(tqdm(dm.test_dataloader())):
ys[i * args.batch_size: (i + 1) * args.batch_size] = y
preds = preds.sigmoid()
acc = ((preds > 0.5) == ys).float().mean()
auc = model.auc_fn(preds, ys)
results = {
"acc": acc,
"auc": auc
}
print(results)
def evaluate(args):
config = read_yaml(args.config)
dataset_name = config["dataset"]
if dataset_name == "celebvhq":
ckpt, dm = train_celebvhq(args, config)
evaluate_celebvhq(args, ckpt, dm)
else:
raise NotImplementedError(f"Dataset {dataset_name} not implemented")
if __name__ == '__main__':
parser = argparse.ArgumentParser("CelebV-HQ evaluation")
parser.add_argument("--config", type=str, help="Path to CelebV-HQ evaluation config file.")
parser.add_argument("--data_path", type=str, help="Path to CelebV-HQ dataset.")
parser.add_argument("--marlin_ckpt", type=str, default=None,
help="Path to MARLIN checkpoint. Default: None, load from online.")
parser.add_argument("--n_gpus", type=int, default=1)
parser.add_argument("--precision", type=str, default="32")
parser.add_argument("--num_workers", type=int, default=8)
parser.add_argument("--batch_size", type=int, default=32)
parser.add_argument("--epochs", type=int, default=2000, help="Max epochs to train.")
parser.add_argument("--resume", type=str, default=None, help="Path to checkpoint to resume training.")
parser.add_argument("--skip_train", action="store_true", default=False,
help="Skip training and evaluate only.")
args = parser.parse_args()
if args.skip_train:
assert args.resume is not None
evaluate(args)