-
Notifications
You must be signed in to change notification settings - Fork 13
/
Copy pathTrain_webvision_parallel.py
327 lines (249 loc) · 12.2 KB
/
Train_webvision_parallel.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
from __future__ import print_function
import argparse
import os
import random
import sys
import numpy as np
import torch.backends.cudnn as cudnn
import torch.multiprocessing as mp
import torch.nn.functional as F
import torch.optim as optim
import torchnet
from sklearn.mixture import GaussianMixture
from dataloaders import dataloader_webvision as dataloader
from models.InceptionResNetV2 import *
parser = argparse.ArgumentParser(description='PyTorch WebVision Parallel Training')
parser.add_argument('--batch_size', default=32, type=int, help='train batchsize')
parser.add_argument('--lr', '--learning_rate', default=0.01, type=float, help='initial learning rate')
parser.add_argument('--alpha', default=0.5, type=float, help='parameter for Beta')
parser.add_argument('--lambda_u', default=0, type=float, help='weight for unsupervised loss')
parser.add_argument('--p_threshold', default=0.5, type=float, help='clean probability threshold')
parser.add_argument('--T', default=0.5, type=float, help='sharpening temperature')
parser.add_argument('--num_epochs', default=100, type=int)
parser.add_argument('--id', default='', type=str)
parser.add_argument('--seed', default=123)
parser.add_argument('--gpuid1', default=1, type=int)
parser.add_argument('--gpuid2', default=2, type=int)
parser.add_argument('--num_class', default=50, type=int)
parser.add_argument('--data_path', default='./dataset/', type=str, help='path to dataset')
args = parser.parse_args()
os.environ["CUDA_VISIBLE_DEVICES"] = '%s,%s' % (args.gpuid1, args.gpuid2)
random.seed(args.seed)
cuda1 = torch.device('cuda:0')
cuda2 = torch.device('cuda:1')
# Training
def train(epoch, net, net2, optimizer, labeled_trainloader, unlabeled_trainloader, device, whichnet):
criterion = SemiLoss()
net.train()
net2.eval() # fix one network and train the other
unlabeled_train_iter = iter(unlabeled_trainloader)
num_iter = (len(labeled_trainloader.dataset) // args.batch_size) + 1
for batch_idx, (inputs_x, inputs_x2, labels_x, w_x) in enumerate(labeled_trainloader):
try:
inputs_u, inputs_u2 = unlabeled_train_iter.next()
except:
unlabeled_train_iter = iter(unlabeled_trainloader)
inputs_u, inputs_u2 = unlabeled_train_iter.next()
batch_size = inputs_x.size(0)
# Transform label to one-hot
labels_x = torch.zeros(batch_size, args.num_class).scatter_(1, labels_x.view(-1, 1), 1)
w_x = w_x.view(-1, 1).type(torch.FloatTensor)
inputs_x, inputs_x2, labels_x, w_x = inputs_x.to(device, non_blocking=True), inputs_x2.to(device,
non_blocking=True), labels_x.to(
device, non_blocking=True), w_x.to(device, non_blocking=True)
inputs_u, inputs_u2 = inputs_u.to(device), inputs_u2.to(device)
with torch.no_grad():
# label co-guessing of unlabeled samples
outputs_u11 = net(inputs_u)
outputs_u12 = net(inputs_u2)
outputs_u21 = net2(inputs_u)
outputs_u22 = net2(inputs_u2)
pu = (torch.softmax(outputs_u11, dim=1) +
torch.softmax(outputs_u12, dim=1) +
torch.softmax(outputs_u21, outputs_u22, dim=1)) / 4
ptu = pu ** (1 / args.T) # temparature sharpening
targets_u = ptu / ptu.sum(dim=1, keepdim=True) # normalize
targets_u = targets_u.detach()
# label refinement of labeled samples
outputs_x = net(inputs_x)
outputs_x2 = net(inputs_x2)
px = (torch.softmax(outputs_x, dim=1) + torch.softmax(outputs_x2, dim=1)) / 2
px = w_x * labels_x + (1 - w_x) * px
ptx = px ** (1 / args.T) # temparature sharpening
targets_x = ptx / ptx.sum(dim=1, keepdim=True) # normalize
targets_x = targets_x.detach()
# mixmatch
l = np.random.beta(args.alpha, args.alpha)
l = max(l, 1 - l)
all_inputs = torch.cat([inputs_x, inputs_x2, inputs_u, inputs_u2], dim=0)
all_targets = torch.cat([targets_x, targets_x, targets_u, targets_u], dim=0)
idx = torch.randperm(all_inputs.size(0))
input_a, input_b = all_inputs, all_inputs[idx]
target_a, target_b = all_targets, all_targets[idx]
mixed_input = l * input_a[:batch_size * 2] + (1 - l) * input_b[:batch_size * 2]
mixed_target = l * target_a[:batch_size * 2] + (1 - l) * target_b[:batch_size * 2]
logits = net(mixed_input)
Lx = -torch.mean(torch.sum(F.log_softmax(logits, dim=1) * mixed_target, dim=1))
prior = torch.ones(args.num_class) / args.num_class
prior = prior.to(device)
pred_mean = torch.softmax(logits, dim=1).mean(0)
penalty = torch.sum(prior * torch.log(prior / pred_mean))
loss = Lx + penalty
# compute gradient and do SGD step
optimizer.zero_grad()
loss.backward()
optimizer.step()
sys.stdout.write('\n')
sys.stdout.write('%s |%s Epoch [%3d/%3d] Iter[%4d/%4d]\t Labeled loss: %.2f'
% (args.id, whichnet, epoch, args.num_epochs, batch_idx + 1, num_iter, Lx.item()))
sys.stdout.flush()
def warmup(epoch, net, optimizer, dataloader, device, whichnet):
CEloss = nn.CrossEntropyLoss()
acc_meter = torchnet.meter.ClassErrorMeter(topk=[1, 5], accuracy=True)
net.train()
num_iter = (len(dataloader.dataset) // dataloader.batch_size) + 1
for batch_idx, (inputs, labels, path) in enumerate(dataloader):
inputs, labels = inputs.to(device), labels.to(device, non_blocking=True)
optimizer.zero_grad()
outputs = net(inputs)
loss = CEloss(outputs, labels)
# penalty = conf_penalty(outputs)
L = loss # + penalty
L.backward()
optimizer.step()
sys.stdout.write('\n')
sys.stdout.write('%s |%s Epoch [%3d/%3d] Iter[%4d/%4d]\t CE-loss: %.4f'
% (args.id, whichnet, epoch, args.num_epochs, batch_idx + 1, num_iter, loss.item()))
sys.stdout.flush()
def run_test(epoch, net1, net2, test_loader, device, queue):
acc_meter = torchnet.meter.ClassErrorMeter(topk=[1, 5], accuracy=True)
acc_meter.reset()
net1.eval()
net2.eval()
with torch.no_grad():
for batch_idx, (inputs, targets) in enumerate(test_loader):
inputs, targets = inputs.to(device), targets.to(device, non_blocking=True)
outputs1 = net1(inputs)
outputs2 = net2(inputs)
outputs = outputs1 + outputs2
_, predicted = torch.max(outputs, 1)
acc_meter.add(outputs, targets)
accs = acc_meter.value()
queue.put(accs)
def eval_train(eval_loader, model, device, whichnet, queue):
CE = nn.CrossEntropyLoss(reduction='none')
model.eval()
num_iter = (len(eval_loader.dataset) // eval_loader.batch_size) + 1
losses = torch.zeros(len(eval_loader.dataset))
with torch.no_grad():
for batch_idx, (inputs, targets, index) in enumerate(eval_loader):
inputs, targets = inputs.to(device), targets.to(device, non_blocking=True)
outputs = model(inputs)
loss = CE(outputs, targets)
for b in range(inputs.size(0)):
losses[index[b]] = loss[b]
sys.stdout.write('\n')
sys.stdout.write('|%s Evaluating loss Iter[%3d/%3d]\t' % (whichnet, batch_idx, num_iter))
sys.stdout.flush()
losses = (losses - losses.min()) / (losses.max() - losses.min())
# fit a two-component GMM to the loss
input_loss = losses.reshape(-1, 1)
gmm = GaussianMixture(n_components=2, max_iter=10, tol=1e-2, reg_covar=1e-3)
gmm.fit(input_loss)
prob = gmm.predict_proba(input_loss)
prob = prob[:, gmm.means_.argmin()]
queue.put(prob)
def linear_rampup(current, warm_up, rampup_length=16):
current = np.clip((current - warm_up) / rampup_length, 0.0, 1.0)
return args.lambda_u * float(current)
class SemiLoss(object):
def __call__(self, outputs_x, targets_x, outputs_u, targets_u, epoch, warm_up):
probs_u = torch.softmax(outputs_u, dim=1)
Lx = -torch.mean(torch.sum(F.log_softmax(outputs_x, dim=1) * targets_x, dim=1))
Lu = torch.mean((probs_u - targets_u) ** 2)
return Lx, Lu, linear_rampup(epoch, warm_up)
class NegEntropy(object):
def __call__(self, outputs):
probs = torch.softmax(outputs, dim=1)
return torch.mean(torch.sum(probs.log() * probs, dim=1))
def create_model(device):
model = InceptionResNetV2(num_classes=args.num_class)
model = model.to(device)
return model
if __name__ == "__main__":
mp.set_start_method('spawn')
torch.manual_seed(args.seed)
torch.cuda.manual_seed_all(args.seed)
stats_log = open('./checkpoint/%s' % (args.id) + '_stats.txt', 'w')
test_log = open('./checkpoint/%s' % (args.id) + '_acc.txt', 'w')
warm_up = 1
loader = dataloader.webvision_dataloader(batch_size=args.batch_size, num_class=args.num_class, num_workers=8,
root_dir=args.data_path, log=stats_log)
print('| Building net')
net1 = create_model(cuda1)
net2 = create_model(cuda2)
net1_clone = create_model(cuda2)
net2_clone = create_model(cuda1)
cudnn.benchmark = True
optimizer1 = optim.SGD(net1.parameters(), lr=args.lr, momentum=0.9, weight_decay=5e-4)
optimizer2 = optim.SGD(net2.parameters(), lr=args.lr, momentum=0.9, weight_decay=5e-4)
# conf_penalty = NegEntropy()
web_valloader = loader.run('test')
imagenet_valloader = loader.run('imagenet')
for epoch in range(args.num_epochs + 1):
lr = args.lr
if epoch >= 50:
lr /= 10
for param_group in optimizer1.param_groups:
param_group['lr'] = lr
for param_group in optimizer2.param_groups:
param_group['lr'] = lr
if epoch < warm_up:
warmup_trainloader1 = loader.run('warmup')
warmup_trainloader2 = loader.run('warmup')
p1 = mp.Process(target=warmup, args=(epoch, net1, optimizer1, warmup_trainloader1, cuda1, 'net1'))
p2 = mp.Process(target=warmup, args=(epoch, net2, optimizer2, warmup_trainloader2, cuda2, 'net2'))
p1.start()
p2.start()
else:
pred1 = (prob1 > args.p_threshold)
pred2 = (prob2 > args.p_threshold)
labeled_trainloader1, unlabeled_trainloader1 = loader.run('train', pred2, prob2) # co-divide
labeled_trainloader2, unlabeled_trainloader2 = loader.run('train', pred1, prob1) # co-divide
p1 = mp.Process(target=train, args=(
epoch, net1, net2_clone, optimizer1, labeled_trainloader1, unlabeled_trainloader1, cuda1, 'net1'))
p2 = mp.Process(target=train, args=(
epoch, net2, net1_clone, optimizer2, labeled_trainloader2, unlabeled_trainloader2, cuda2, 'net2'))
p1.start()
p2.start()
p1.join()
p2.join()
net1_clone.load_state_dict(net1.state_dict())
net2_clone.load_state_dict(net2.state_dict())
q1 = mp.Queue()
q2 = mp.Queue()
p1 = mp.Process(target=run_test, args=(epoch, net1, net2_clone, web_valloader, cuda1, q1))
p2 = mp.Process(target=run_test, args=(epoch, net1_clone, net2, imagenet_valloader, cuda2, q2))
p1.start()
p2.start()
web_acc = q1.get()
imagenet_acc = q2.get()
p1.join()
p2.join()
print("\n| Test Epoch #%d\t WebVision Acc: %.2f%% (%.2f%%) \t ImageNet Acc: %.2f%% (%.2f%%)\n" % (
epoch, web_acc[0], web_acc[1], imagenet_acc[0], imagenet_acc[1]))
test_log.write('Epoch:%d \t WebVision Acc: %.2f%% (%.2f%%) \t ImageNet Acc: %.2f%% (%.2f%%)\n' % (
epoch, web_acc[0], web_acc[1], imagenet_acc[0], imagenet_acc[1]))
test_log.flush()
eval_loader1 = loader.run('eval_train')
eval_loader2 = loader.run('eval_train')
q1 = mp.Queue()
q2 = mp.Queue()
p1 = mp.Process(target=eval_train, args=(eval_loader1, net1, cuda1, 'net1', q1))
p2 = mp.Process(target=eval_train, args=(eval_loader2, net2, cuda2, 'net2', q2))
p1.start()
p2.start()
prob1 = q1.get()
prob2 = q2.get()
p1.join()
p2.join()