forked from mommermi/photometrypipeline
-
Notifications
You must be signed in to change notification settings - Fork 0
/
pp_stackedphotometry.py
executable file
·318 lines (262 loc) · 11.9 KB
/
pp_stackedphotometry.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
#!/usr/bin/env python
""" PP_STACKEDPHOTOMETRY - wrapper to perform photometry on stacked images
v1.0: 2017-10-19, [email protected]
"""
from __future__ import print_function
# Photometry Pipeline
# Copyright (C) 2016 Michael Mommert, [email protected]
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
# You should have received a copy of the GNU General Public License
# along with this program. If not, see
# <http://www.gnu.org/licenses/>.
import re
import os
import gc
import sys
try:
import numpy as np
except ImportError:
print('Module numpy not found. Please install with: pip install numpy')
sys.exit()
import shutil
import logging
import subprocess
import argparse, shlex
import time
try:
from astropy.io import fits
except ImportError:
print('Module astropy not found. Please install with: pip install astropy')
sys.exit()
# only import if Python3 is used
if sys.version_info > (3,0):
from builtins import str
from builtins import range
### pipeline-specific modules
import _pp_conf
from catalog import *
import pp_prepare
import pp_extract
import pp_register
import pp_photometry
import pp_calibrate
import pp_distill
import pp_combine
import diagnostics as diag
# setup logging
logging.basicConfig(filename = _pp_conf.log_filename,
level = _pp_conf.log_level,
format = _pp_conf.log_formatline,
datefmt = _pp_conf.log_datefmt)
if __name__ == '__main__':
# command line arguments
parser = argparse.ArgumentParser(description='stacked photometry')
parser.add_argument('-comoving', help='stack in moving target frame',
action='store_true')
parser.add_argument('-filter', help='filter name override',
default=None)
parser.add_argument('-method',
help='combination method',
choices=['average', 'median', 'clipped'],
default='clipped')
parser.add_argument('-fixed_aprad', help='fixed aperture radius (px)',
default=0)
parser.add_argument('-snr',
help='SNR limit for detected sources',
default=3)
parser.add_argument('-solar',
help='restrict to solar-color stars',
action="store_true", default=False)
parser.add_argument('images', help='images to process',
nargs='+')
args = parser.parse_args()
comoving = args.comoving
man_filtername = args.filter
combinemethod = args.method
fixed_aprad = float(args.fixed_aprad)
snr = args.snr
solar = args.solar
filenames = args.images
# use current directory as root directory
rootdir = os.getcwd()
# check if input filenames is actually a list
if len(filenames) == 1:
if filenames[0].find('.lst') > -1 or filenames[0].find('.list') > -1:
filenames = [filename[:-1] for filename in open(filenames[0], 'r')\
.readlines()]
### read telescope and filter information from fits headers
# check that they are the same for all images
instruments = []
for filename in filenames:
hdulist = fits.open(filename, ignore_missing_end=True,
verify='silentfix')
header = hdulist[0].header
for key in _pp_conf.instrument_keys:
if key in header:
instruments.append(header[key])
if len(instruments) == 0:
raise KeyError('cannot identify telescope/instrument; please update'
'_pp_conf.instrument_keys accordingly')
# assign telescope parameters (telescopes.py)
telescope = _pp_conf.instrument_identifiers[instruments[0]]
obsparam = _pp_conf.telescope_parameters[telescope]
# ------------------- SKYCOADD
# create skycoadd in current directory
ppcombine_comoving = False
targetname = None
manual_rates = None
keep_files = False
combination = pp_combine.combine(filenames, obsparam, ppcombine_comoving,
targetname, manual_rates,
combinemethod, keep_files,
display=True, diagnostics=True)
# create separate directory to analyze skycoadd data
if os.path.exists('skycoadd/'):
shutil.rmtree('skycoadd/')
os.mkdir('skycoadd/')
os.rename('skycoadd.fits', 'skycoadd/skycoadd.fits')
os.chdir('skycoadd/')
# diagnostics and logging for skycoadd and comove go into respective dirs
_pp_conf.dataroot, _pp_conf.diagroot, \
_pp_conf.index_filename, _pp_conf.reg_filename, _pp_conf.cal_filename, \
_pp_conf.res_filename = _pp_conf.setup_diagnostics()
# setup logging again
logging.basicConfig(filename = _pp_conf.log_filename,
level = _pp_conf.log_level,
format = _pp_conf.log_formatline,
datefmt = _pp_conf.log_datefmt)
logging.info('create skycoadd.fits from images: %s' % ','.join(filenames))
logging.info('move skycoadd.fits into skycoadd/ directory')
# prepare image
preparation = pp_prepare.prepare(['skycoadd.fits'], obsparam,
{}, keep_wcs=True,
diagnostics=True, display=True)
### run photometry (curve-of-growth analysis)
source_minarea = obsparam['source_minarea']
background_only = True
target_only = False
if fixed_aprad == 0:
aprad = None # force curve-of-growth analysis
print('\n----- derive optimum photometry aperture\n')
logging.info('----- derive optimum photometry aperture')
else:
aprad = fixed_aprad # skip curve_of_growth analysis
print('\n----- use fixed aperture radius (%5.2f)\n' % fixed_aprad)
logging.info('----- use fixed aperture radius (%5.2f)' % fixed_aprad)
phot = pp_photometry.photometry(['skycoadd.fits'], snr, source_minarea,
aprad,
None, background_only,
target_only,
telescope, obsparam, display=True,
diagnostics=True)
# data went through curve-of-growth analysis
if phot is not None:
aprad = phot['optimum_aprad']
# a fixed aperture radius has been used
else:
aprad = fixed_aprad
### run photometric calibration
minstars = _pp_conf.minstars
manualcatalog = None
if man_filtername is None:
man_filtername = False
print('\n----- run photometric calibration\n')
calibration = pp_calibrate.calibrate(['skycoadd.fits'], minstars,
man_filtername,
manualcatalog, obsparam, solar=solar,
display=True,
diagnostics=True)
zp = calibration['zeropoints'][0]['zp']
zp_err = calibration['zeropoints'][0]['zp_sig']
logging.info('zeropoint derived from skycoadd.fits: %5.2f+-%4.2f' %
(zp, zp_err))
os.chdir(rootdir)
# ------------------- COMOVE
hdulist = fits.open(filenames[0])
targetname = hdulist[0].header[obsparam['object']]
if comoving:
# create comove in current directory
ppcombine_comoving = True
manual_rates = None
keep_files = False
combination = pp_combine.combine(filenames, obsparam,
ppcombine_comoving,
targetname, manual_rates,
combinemethod, keep_files,
display=True, diagnostics=True)
# create separate directory to analyze skycoadd data
if os.path.exists('comove/'):
shutil.rmtree('comove/')
os.mkdir('comove/')
os.rename('comove.fits', 'comove/comove.fits')
os.chdir('comove/')
# diagnostics + logging for skycoadd and comove go into respective dirs
_pp_conf.dataroot, _pp_conf.diagroot, \
_pp_conf.index_filename, _pp_conf.reg_filename, \
_pp_conf.cal_filename, \
_pp_conf.res_filename = _pp_conf.setup_diagnostics()
# setup logging again
logging.basicConfig(filename = _pp_conf.log_filename,
level = _pp_conf.log_level,
format = _pp_conf.log_formatline,
datefmt = _pp_conf.log_datefmt)
logging.info('create comove.fits from images: %s' % ','.join(filenames))
logging.info('move comove.fits into comove/ directory')
# prepare image
preparation = pp_prepare.prepare(['comove.fits'], obsparam,
{}, keep_wcs=True,
diagnostics=True, display=True)
### run photometry (curve-of-growth analysis)
source_minarea = obsparam['source_minarea']
background_only = False
target_only = False
print('\n----- use skycoadd optimum photometry aperture (%4.2f)\n' %
aprad)
phot = pp_photometry.photometry(['comove.fits'], snr, source_minarea,
aprad,
None, background_only,
target_only,
telescope, obsparam, display=True,
diagnostics=True)
### run photometric calibration (instrumental)
minstars = _pp_conf.minstars
man_filtername = obsparam['filter_translations']\
[hdulist[0].header['filter']]
manualcatalog = None
print('\n----- run photometric calibration\n')
logging.info('use skycoadd.fits magnitude zeropoint: %5.2f+-%4.2f' %
(zp, zp_err))
calibration = pp_calibrate.calibrate(['comove.fits'], minstars,
man_filtername,
manualcatalog, obsparam,
magzp=(zp, zp_err), solar=solar,
display=True,
diagnostics=True)
### distill target brightness from database
man_targetname = None
man_offset = [0, 0]
fixed_targets_file = None
posfile = None
distillate = pp_distill.distill(calibration['catalogs'],
man_targetname, man_offset,
fixed_targets_file, posfile,
display=True, diagnostics=True)
os.chdir(rootdir)
logging.info('move comove/photometry*.dat to root directory')
targets = numpy.array(list(distillate['targetnames'].keys()))
target = targets[targets != 'control_star'][0]
shutil.copyfile(('comove/photometry_%s.dat' %
target.translate(_pp_conf.target2filename)),
('photometry_%s.dat' %
target.translate(_pp_conf.target2filename)))
logging.info('move skycoadd.fits into skycoadd/ directory')
print('\nDone!\n')
logging.info('----- successfully done with this process ----')
gc.collect() # collect garbage; just in case, you never know...