forked from sachuverma/DataStructures-Algorithms
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Implement Queue using Stacks.cpp
126 lines (114 loc) · 2.98 KB
/
Implement Queue using Stacks.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
/*
Implement Queue using Stacks
============================
Implement a first in first out (FIFO) queue using only two stacks. The implemented queue should support all the functions of a normal queue (push, peek, pop, and empty).
Implement the MyQueue class:
void push(int x) Pushes element x to the back of the queue.
int pop() Removes the element from the front of the queue and returns it.
int peek() Returns the element at the front of the queue.
boolean empty() Returns true if the queue is empty, false otherwise.
Notes:
You must use only standard operations of a stack, which means only push to top, peek/pop from top, size, and is empty operations are valid.
Depending on your language, the stack may not be supported natively. You may simulate a stack using a list or deque (double-ended queue) as long as you use only a stack's standard operations.
Follow-up: Can you implement the queue such that each operation is amortized O(1) time complexity? In other words, performing n operations will take overall O(n) time even if one of those operations may take longer.
Example 1:
Input
["MyQueue", "push", "push", "peek", "pop", "empty"]
[[], [1], [2], [], [], []]
Output
[null, null, null, 1, 1, false]
Explanation
MyQueue myQueue = new MyQueue();
myQueue.push(1); // queue is: [1]
myQueue.push(2); // queue is: [1, 2] (leftmost is front of the queue)
myQueue.peek(); // return 1
myQueue.pop(); // return 1, queue is [2]
myQueue.empty(); // return false
Constraints:
1 <= x <= 9
At most 100 calls will be made to push, pop, peek, and empty.
All the calls to pop and peek are valid.
*/
class MyQueue
{
public:
/** Initialize your data structure here. */
stack<int> s1, s2;
MyQueue()
{
}
/** Push element x to the back of queue. */
void push(int x)
{
s1.push(x);
}
/** Removes the element from in front of queue and returns that element. */
int pop()
{
if (!s1.size())
return -1;
if (s1.size() == 1)
{
int ans = s1.top();
s1.pop();
return ans;
}
else
{
while (s1.size() > 1)
{
s2.push(s1.top());
s1.pop();
}
int ans = s1.top();
s1.pop();
while (s2.size())
{
s1.push(s2.top());
s2.pop();
}
return ans;
}
}
/** Get the front element. */
int peek()
{
if (!s1.size())
return -1;
if (s1.size() == 1)
{
int ans = s1.top();
return ans;
}
else
{
while (s1.size() > 1)
{
s2.push(s1.top());
s1.pop();
}
int ans = s1.top();
s2.push(s1.top());
s1.pop();
while (s2.size())
{
s1.push(s2.top());
s2.pop();
}
return ans;
}
}
/** Returns whether the queue is empty. */
bool empty()
{
return s1.size() == 0;
}
};
/**
* Your MyQueue object will be instantiated and called as such:
* MyQueue* obj = new MyQueue();
* obj->push(x);
* int param_2 = obj->pop();
* int param_3 = obj->peek();
* bool param_4 = obj->empty();
*/