forked from sachuverma/DataStructures-Algorithms
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Search in Rotated Sorted Array.cpp
62 lines (52 loc) · 1.54 KB
/
Search in Rotated Sorted Array.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
/*
Search in Rotated Sorted Array
==============================
There is an integer array nums sorted in ascending order (with distinct values).
Prior to being passed to your function, nums is rotated at an unknown pivot index k (0 <= k < nums.length) such that the resulting array is [nums[k], nums[k+1], ..., nums[n-1], nums[0], nums[1], ..., nums[k-1]] (0-indexed). For example, [0,1,2,4,5,6,7] might be rotated at pivot index 3 and become [4,5,6,7,0,1,2].
Given the array nums after the rotation and an integer target, return the index of target if it is in nums, or -1 if it is not in nums.
Example 1:
Input: nums = [4,5,6,7,0,1,2], target = 0
Output: 4
Example 2:
Input: nums = [4,5,6,7,0,1,2], target = 3
Output: -1
Example 3:
Input: nums = [1], target = 0
Output: -1
Constraints:
1 <= nums.length <= 5000
-104 <= nums[i] <= 104
All values of nums are unique.
nums is guaranteed to be rotated at some pivot.
-104 <= target <= 104
Follow up: Can you achieve this in O(log n) time complexity?
*/
class Solution
{
public:
int search(vector<int> &nums, int target)
{
int i = 0, j = nums.size() - 1, n = nums.size();
while (i <= j)
{
int mid = (i + j) / 2;
if (nums[mid] == target)
return mid;
if (nums[i] <= nums[mid])
{
if (nums[i] <= target && nums[mid] >= target)
j = mid - 1;
else
i = mid + 1;
}
else
{
if (nums[mid] <= target && nums[j] >= target)
i = mid + 1;
else
j = mid - 1;
}
}
return -1;
}
};