-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathCustomObjectDetectionImage.py
64 lines (63 loc) · 2.67 KB
/
CustomObjectDetectionImage.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
import cv2
import numpy as np
from PIL import ImageTk, Image
class Custom_Object_Detection_Image():
def __init__(self,fd,lmain):
self.fd = fd
self.lmain = lmain
self.net = cv2.dnn.readNet("tiny/yolov4-tiny.weights", "tiny/yolov4-tiny.cfg")
self.classes = []
with open("tiny/coco.names", "r") as f:
self.classes = [line.strip() for line in f.readlines()]
self.layer_names = self.net.getLayerNames()
self.output_layers = [self.layer_names[i[0] - 1] for i in self.net.getUnconnectedOutLayers()]
self.colors = np.random.uniform(0, 255, size=(len(self.classes), 3))
def Open_File(self):
filetypes=(('image files', '.jpeg'),('image files', '.png'),('image files', '.jpg'),)
return self.fd.askopenfilename(title='Open a file',initialdir='/',filetypes=filetypes)
def fun(self,img,outs,width,height,channels):
class_ids = []
confidences = []
boxes = []
for out in outs:
for detection in out:
scores = detection[5:]
class_id = np.argmax(scores)
confidence = scores[class_id]
if confidence > 0:
center_x = int(detection[0] * width)
center_y = int(detection[1] * height)
w = int(detection[2] * width)
h = int(detection[3] * height)
x = int(center_x - w / 2)
y = int(center_y - h / 2)
boxes.append([x, y, w, h])
confidences.append(float(confidence))
class_ids.append(class_id)
indexes = cv2.dnn.NMSBoxes(boxes, confidences, 0.4, 0.5)
font = cv2.FONT_HERSHEY_PLAIN
for i in range(len(boxes)):
if i in indexes:
x, y, w, h = boxes[i]
label = str(self.classes[class_ids[i]])
color = self.colors[i]
cv2.rectangle(img, (x, y), (x + w, y + h), color, 2)
cv2.putText(img, label, (x, y - 10), font, 3, color, 3)
return img
def Process(self):
image = cv2.imread(self.Open_File())
height, width, channels = image.shape
blob = cv2.dnn.blobFromImage(image, 0.00392, (640, 480), (0, 0, 0), True, crop=False)
self.net.setInput(blob)
outs = self.net.forward(self.output_layers)
result = self.fun(image.copy(),outs,width,height,channels)
img1 = cv2.resize(image,(250,290))
img2 = cv2.resize(result,(250,290))
divider = np.zeros((290, 250, 3), np.uint8)
divider[:] =(200,200,200)
image =np.concatenate((img1,img2),axis=0)
cv2image = cv2.cvtColor(image, cv2.COLOR_BGR2RGBA)
img = Image.fromarray(cv2image)
imgtk = ImageTk.PhotoImage(image=img)
self.lmain.imgtk = imgtk
self.lmain.configure(image=imgtk)