-
Notifications
You must be signed in to change notification settings - Fork 0
/
ll2utm.m
225 lines (198 loc) · 7.09 KB
/
ll2utm.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
function [x,y,f]=ll2utm(varargin)
%LL2UTM Lat/Lon to UTM coordinates precise conversion.
% [X,Y]=LL2UTM2(LAT,LON) or LL2UTM([LAT,LON]) converts coordinates
% LAT,LON (in degrees) to UTM X and Y (in meters). Default datum is WGS84.
%
% LAT and LON can be scalars, vectors or matrix. Outputs X and Y will
% have the same size as inputs.
%
% LL2UTM(...,DATUM) uses specific DATUM for conversion. DATUM can be one
% of the following char strings:
% 'wgs84': World Geodetic System 1984 (default)
% 'nad27': North American Datum 1927
% 'clk66': Clarke 1866
% 'nad83': North American Datum 1983
% 'grs80': Geodetic Reference System 1980
% 'int24': International 1924 / Hayford 1909
% or DATUM can be a 2-element vector [A,F] where A is semimajor axis (in
% meters) and F is flattening of the user-defined ellipsoid.
%
% LL2UTM(...,ZONE) forces the UTM ZONE (scalar integer or same size as
% LAT and LON) instead of automatic set.
%
% [X,Y,ZONE]=LL2UTM(...) returns also the computed UTM ZONE (negative
% value for southern hemisphere points).
%
%
% XY=LL2UTM(...) or without any output argument returns a 2-column
% matrix [X,Y].
%
% Note:
% - LL2UTM does not perform cross-datum conversion.
% - precision is near a millimeter.
%
%
% Reference:
% I.G.N., Projection cartographique Mercator Transverse: Algorithmes,
% Notes Techniques NT/G 76, janvier 1995.
%
% Acknowledgments: Mathieu, Frederic Christen.
%
%
% Author: Francois Beauducel, <[email protected]>
% Created: 2003-12-02
% Updated: 2015-01-29
% Copyright (c) 2001-2015, François Beauducel, covered by BSD License.
% All rights reserved.
%
% Redistribution and use in source and binary forms, with or without
% modification, are permitted provided that the following conditions are
% met:
%
% * Redistributions of source code must retain the above copyright
% notice, this list of conditions and the following disclaimer.
% * Redistributions in binary form must reproduce the above copyright
% notice, this list of conditions and the following disclaimer in
% the documentation and/or other materials provided with the distribution
%
% THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
% AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
% IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
% ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
% LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
% CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
% SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
% INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
% CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
% ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
% POSSIBILITY OF SUCH DAMAGE.
% Available datums
datums = [ ...
{ 'wgs84', 6378137.0, 298.257223563 };
{ 'nad83', 6378137.0, 298.257222101 };
{ 'grs80', 6378137.0, 298.257222101 };
{ 'nad27', 6378206.4, 294.978698214 };
{ 'int24', 6378388.0, 297.000000000 };
{ 'clk66', 6378206.4, 294.978698214 };
];
% constants
D0 = 180/pi; % conversion rad to deg
K0 = 0.9996; % UTM scale factor
X0 = 500000; % UTM false East (m)
% defaults
datum = 'wgs84';
zone = [];
if nargin < 1
error('Not enough input arguments.')
end
if nargin > 1 && isnumeric(varargin{1}) && isnumeric(varargin{2}) && all(size(varargin{1})==size(varargin{2}))
lat = varargin{1};
lon = varargin{2};
v = 2;
elseif isnumeric(varargin{1}) && size(varargin{1},2) == 2
lat = varargin{1}(:,1);
lon = varargin{1}(:,2);
v = 1;
else
error('Single input argument must be a 2-column matrix [LAT,LON].')
end
if all([numel(lat),numel(lon)] > 1) && any(size(lat) ~= size(lon))
error('LAT and LON must be the same size or scalars.')
end
for n = (v+1):nargin
% LL2UTM(...,DATUM)
if ischar(varargin{n}) || (isnumeric(varargin{n}) && numel(varargin{n})==2)
datum = varargin{n};
% LL2UTM(...,ZONE)
elseif isnumeric(varargin{n}) && (isscalar(varargin{n}) || all(size(varargin{n})==size(lat)))
zone = round(varargin{n});
else
error('Unknown argument #%d. See documentation.',n)
end
end
if ischar(datum)
% LL2UTM(...,DATUM) with DATUM as char
if ~any(strcmpi(datum,datums(:,1)))
error('Unkown DATUM name "%s"',datum);
end
k = find(strcmpi(datum,datums(:,1)));
A1 = datums{k,2};
F1 = datums{k,3};
else
% LL2UTM(...,DATUM) with DATUM as [A,F] user-defined
A1 = datum(1);
F1 = datum(2);
end
p1 = lat/D0; % Phi = Latitude (rad)
l1 = lon/D0; % Lambda = Longitude (rad)
% UTM zone automatic setting
if isempty(zone)
F0 = round((l1*D0 + 183)/6);
else
F0 = zone;
end
B1 = A1*(1 - 1/F1);
E1 = sqrt((A1*A1 - B1*B1)/(A1*A1));
P0 = 0/D0;
L0 = (6*F0 - 183)/D0; % UTM origin longitude (rad)
Y0 = 1e7*(p1 < 0); % UTM false northern (m)
N = K0*A1;
C = coef(E1,0);
B = C(1)*P0 + C(2)*sin(2*P0) + C(3)*sin(4*P0) + C(4)*sin(6*P0) + C(5)*sin(8*P0);
YS = Y0 - N*B;
C = coef(E1,2);
L = log(tan(pi/4 + p1/2).*(((1 - E1*sin(p1))./(1 + E1*sin(p1))).^(E1/2)));
z = complex(atan(sinh(L)./cos(l1 - L0)),log(tan(pi/4 + asin(sin(l1 - L0)./cosh(L))/2)));
Z = N.*C(1).*z + N.*(C(2)*sin(2*z) + C(3)*sin(4*z) + C(4)*sin(6*z) + C(5)*sin(8*z));
xs = imag(Z) + X0;
ys = real(Z) + YS;
% outputs zone if needed: scalar value if unique, or vector/matrix of the
% same size as x/y in case of crossed zones
if nargout > 2
f = F0.*sign(lat);
fu = unique(f);
if isscalar(fu)
f = fu;
end
end
if nargout < 2
x = [xs(:),ys(:)];
else
x = xs;
y = ys;
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function c = coef(e,m)
%COEF Projection coefficients
% COEF(E,M) returns a vector of 5 coefficients from:
% E = first ellipsoid excentricity
% M = 0 for transverse mercator
% M = 1 for transverse mercator reverse coefficients
% M = 2 for merdian arc
if nargin < 2
m = 0;
end
switch m
case 0
c0 = [-175/16384, 0, -5/256, 0, -3/64, 0, -1/4, 0, 1;
-105/4096, 0, -45/1024, 0, -3/32, 0, -3/8, 0, 0;
525/16384, 0, 45/1024, 0, 15/256, 0, 0, 0, 0;
-175/12288, 0, -35/3072, 0, 0, 0, 0, 0, 0;
315/131072, 0, 0, 0, 0, 0, 0, 0, 0];
case 1
c0 = [-175/16384, 0, -5/256, 0, -3/64, 0, -1/4, 0, 1;
1/61440, 0, 7/2048, 0, 1/48, 0, 1/8, 0, 0;
559/368640, 0, 3/1280, 0, 1/768, 0, 0, 0, 0;
283/430080, 0, 17/30720, 0, 0, 0, 0, 0, 0;
4397/41287680, 0, 0, 0, 0, 0, 0, 0, 0];
case 2
c0 = [-175/16384, 0, -5/256, 0, -3/64, 0, -1/4, 0, 1;
-901/184320, 0, -9/1024, 0, -1/96, 0, 1/8, 0, 0;
-311/737280, 0, 17/5120, 0, 13/768, 0, 0, 0, 0;
899/430080, 0, 61/15360, 0, 0, 0, 0, 0, 0;
49561/41287680, 0, 0, 0, 0, 0, 0, 0, 0];
end
c = zeros(size(c0,1),1);
for i = 1:size(c0,1)
c(i) = polyval(c0(i,:),e);
end