From 267a4382ba793a508c953e4374bdfb13a7b082b6 Mon Sep 17 00:00:00 2001 From: Charles Kawczynski Date: Mon, 16 Aug 2021 07:44:06 -0700 Subject: [PATCH] Merge mse tables->1 file, print mse table post run --- .buildkite/pipeline.yml | 12 ++ integration_tests/ARM_SGP.jl | 19 +-- integration_tests/Bomex.jl | 20 +-- integration_tests/DYCOMS_RF01.jl | 20 +-- integration_tests/DryBubble.jl | 15 +-- integration_tests/GABLS.jl | 16 +-- integration_tests/Nieuwstadt.jl | 15 +-- integration_tests/Rico.jl | 20 +-- integration_tests/SP.jl | 19 +-- integration_tests/Soares.jl | 17 +-- integration_tests/TRMM_LBA.jl | 20 +-- integration_tests/life_cycle_Tan2018.jl | 20 +-- integration_tests/utils/compute_mse.jl | 3 +- integration_tests/utils/mse_tables.jl | 154 ++++++++++++++++++++++++ utils/print_new_mse.jl | 47 ++++++++ 15 files changed, 281 insertions(+), 136 deletions(-) create mode 100644 integration_tests/utils/mse_tables.jl create mode 100644 utils/print_new_mse.jl diff --git a/.buildkite/pipeline.yml b/.buildkite/pipeline.yml index 13ba3a59b..87a62ab0b 100644 --- a/.buildkite/pipeline.yml +++ b/.buildkite/pipeline.yml @@ -154,6 +154,18 @@ steps: queue: central slurm_ntasks: 1 + - wait: ~ + continue_on_failure: true + + - label: ":robot_face: Print new mse tables" + key: "cpu_print_new_mse" + command: + - "julia --color=yes --project utils/print_new_mse.jl" + agents: + config: cpu + queue: central + slurm_ntasks: 1 + - wait - label: ":robot_face: Move main results" diff --git a/integration_tests/ARM_SGP.jl b/integration_tests/ARM_SGP.jl index a7ea6ed85..bb6c0dbda 100644 --- a/integration_tests/ARM_SGP.jl +++ b/integration_tests/ARM_SGP.jl @@ -8,21 +8,10 @@ using Test include(joinpath("utils", "main.jl")) include(joinpath("utils", "generate_namelist.jl")) include(joinpath("utils", "compute_mse.jl")) +include(joinpath("utils", "mse_tables.jl")) using .NameList -best_mse = OrderedDict() -best_mse["qt_mean"] = 3.7029179410890994e-01 -best_mse["updraft_area"] = 2.0066768291734027e+03 -best_mse["updraft_w"] = 3.3021026158842852e+02 -best_mse["updraft_qt"] = 1.3362770693863471e+01 -best_mse["updraft_thetal"] = 2.7682689602916721e+01 -best_mse["u_mean"] = 8.7998547277817892e+01 -best_mse["tke_mean"] = 6.5902888656341383e+02 -best_mse["temperature_mean"] = 1.4835874987504939e-04 -best_mse["ql_mean"] = 2.5289195067821601e+02 -best_mse["thetal_mean"] = 1.5194012840291993e-04 -best_mse["Hvar_mean"] = 3.6200709711739819e+03 -best_mse["QTvar_mean"] = 2.5763919693088642e+03 +best_mse = all_best_mse["ARM_SGP"] @testset "ARM_SGP" begin case_name = "ARM_SGP" @@ -40,6 +29,10 @@ best_mse["QTvar_mean"] = 2.5763919693088642e+03 t_stop = 11 * 3600, ) + open("computed_mse_$case_name.json", "w") do io + JSON.print(io, computed_mse) + end + for k in keys(best_mse) test_mse(computed_mse, best_mse, k) end diff --git a/integration_tests/Bomex.jl b/integration_tests/Bomex.jl index 6c9fdfc48..512057382 100644 --- a/integration_tests/Bomex.jl +++ b/integration_tests/Bomex.jl @@ -8,22 +8,10 @@ using Test include(joinpath("utils", "main.jl")) include(joinpath("utils", "generate_namelist.jl")) include(joinpath("utils", "compute_mse.jl")) +include(joinpath("utils", "mse_tables.jl")) using .NameList -best_mse = OrderedDict() -best_mse["qt_mean"] = 9.7923185944396543e-02 -best_mse["updraft_area"] = 6.9825342418932712e+02 -best_mse["updraft_w"] = 3.2817058320329416e+01 -best_mse["updraft_qt"] = 4.2756945036338720e+00 -best_mse["updraft_thetal"] = 2.1546731002204076e+01 -best_mse["v_mean"] = 6.8320914112603603e+01 -best_mse["u_mean"] = 5.3308019185027945e+01 -best_mse["tke_mean"] = 4.2619460317296351e+01 -best_mse["temperature_mean"] = 4.2264960813453363e-05 -best_mse["ql_mean"] = 6.1078690857394591e+00 -best_mse["thetal_mean"] = 4.3075669150884208e-05 -best_mse["Hvar_mean"] = 1.4320193838595969e+03 -best_mse["QTvar_mean"] = 7.4620132655591669e+02 +best_mse = all_best_mse["Bomex"] @testset "Bomex" begin case_name = "Bomex" @@ -41,6 +29,10 @@ best_mse["QTvar_mean"] = 7.4620132655591669e+02 t_stop = 6 * 3600, ) + open("computed_mse_$case_name.json", "w") do io + JSON.print(io, computed_mse) + end + for k in keys(best_mse) test_mse(computed_mse, best_mse, k) end diff --git a/integration_tests/DYCOMS_RF01.jl b/integration_tests/DYCOMS_RF01.jl index aef1dcc5c..2a43ed75f 100644 --- a/integration_tests/DYCOMS_RF01.jl +++ b/integration_tests/DYCOMS_RF01.jl @@ -8,22 +8,10 @@ using Test include(joinpath("utils", "main.jl")) include(joinpath("utils", "generate_namelist.jl")) include(joinpath("utils", "compute_mse.jl")) +include(joinpath("utils", "mse_tables.jl")) using .NameList -best_mse = OrderedDict() -best_mse["qt_mean"] = 1.6511493474924487e-02 -best_mse["ql_mean"] = 5.2388152463600228e+00 -best_mse["updraft_area"] = 2.3937655332711191e+02 -best_mse["updraft_w"] = 4.2950818025166271e+00 -best_mse["updraft_qt"] = 1.1670622064912242e+00 -best_mse["updraft_thetal"] = 1.2740701334370282e+01 -best_mse["v_mean"] = 3.9746921720562241e+01 -best_mse["u_mean"] = 3.7046560343565211e+01 -best_mse["tke_mean"] = 1.4700070268008988e+01 -best_mse["temperature_mean"] = 2.1532443073348772e-05 -best_mse["thetal_mean"] = 2.2397858591617206e-05 -best_mse["Hvar_mean"] = 8.2677316059854074e+03 -best_mse["QTvar_mean"] = 6.0266525107346490e+02 +best_mse = all_best_mse["DYCOMS_RF01"] key = "Hvar_mean" @testset "DYCOMS_RF01" begin @@ -42,6 +30,10 @@ key = "Hvar_mean" t_stop = 4 * 3600, ) + open("computed_mse_$case_name.json", "w") do io + JSON.print(io, computed_mse) + end + for k in keys(best_mse) test_mse(computed_mse, best_mse, k) end diff --git a/integration_tests/DryBubble.jl b/integration_tests/DryBubble.jl index a6944a0a1..e0b23416d 100644 --- a/integration_tests/DryBubble.jl +++ b/integration_tests/DryBubble.jl @@ -8,17 +8,10 @@ using Test include(joinpath("utils", "main.jl")) include(joinpath("utils", "generate_namelist.jl")) include(joinpath("utils", "compute_mse.jl")) +include(joinpath("utils", "mse_tables.jl")) using .NameList -best_mse = OrderedDict() -best_mse["updraft_area"] = 6.8552893703976156e+02 -best_mse["updraft_w"] = 1.6342412689086376e+02 -best_mse["updraft_thetal"] = 3.9780037295736014e-05 -best_mse["u_mean"] = 1.9502448099351233e-27 -best_mse["tke_mean"] = 1.9987696066076023e+05 -best_mse["temperature_mean"] = 3.2539779149902821e-05 -best_mse["thetal_mean"] = 2.5848228458179228e-05 -best_mse["Hvar_mean"] = 7.3771757968047757e+02 +best_mse = all_best_mse["DryBubble"] @testset "DryBubble" begin case_name = "DryBubble" @@ -30,6 +23,10 @@ best_mse["Hvar_mean"] = 7.3771757968047757e+02 computed_mse = compute_mse_wrapper(case_name, best_mse, ds_tc_filename; plot_comparison = true, t_start = 900, t_stop = 1000) + open("computed_mse_$case_name.json", "w") do io + JSON.print(io, computed_mse) + end + for k in keys(best_mse) test_mse(computed_mse, best_mse, k) end diff --git a/integration_tests/GABLS.jl b/integration_tests/GABLS.jl index 22652532c..3afa20411 100644 --- a/integration_tests/GABLS.jl +++ b/integration_tests/GABLS.jl @@ -8,18 +8,10 @@ using Test include(joinpath("utils", "main.jl")) include(joinpath("utils", "generate_namelist.jl")) include(joinpath("utils", "compute_mse.jl")) +include(joinpath("utils", "mse_tables.jl")) using .NameList -best_mse = OrderedDict() - -best_mse["updraft_thetal"] = 5.0248696023347037e+00 -best_mse["v_mean"] = 4.4593534457868529e+00 -best_mse["u_mean"] = 9.6414943665200035e+00 -best_mse["tke_mean"] = 2.4674095133951375e+00 -best_mse["temperature_mean"] = 8.8584843672667532e-06 -best_mse["thetal_mean"] = 8.7856734759460943e-06 -best_mse["Hvar_mean"] = 1.2892749042279126e+01 -best_mse["QTvar_mean"] = 4.4456710317999498e-01 +best_mse = all_best_mse["GABLS"] @testset "GABLS" begin case_name = "GABLS" @@ -37,6 +29,10 @@ best_mse["QTvar_mean"] = 4.4456710317999498e-01 t_stop = 9 * 3600, ) + open("computed_mse_$case_name.json", "w") do io + JSON.print(io, computed_mse) + end + for k in keys(best_mse) test_mse(computed_mse, best_mse, k) end diff --git a/integration_tests/Nieuwstadt.jl b/integration_tests/Nieuwstadt.jl index 3812a64d0..54797bdc8 100644 --- a/integration_tests/Nieuwstadt.jl +++ b/integration_tests/Nieuwstadt.jl @@ -8,17 +8,10 @@ using Test include(joinpath("utils", "main.jl")) include(joinpath("utils", "generate_namelist.jl")) include(joinpath("utils", "compute_mse.jl")) +include(joinpath("utils", "mse_tables.jl")) using .NameList -best_mse = OrderedDict() -best_mse["updraft_area"] = 5.9567286602931904e+02 -best_mse["updraft_w"] = 2.6450205443296568e+01 -best_mse["updraft_thetal"] = 3.0475209174359087e+01 -best_mse["u_mean"] = 1.5244498152508007e+02 -best_mse["tke_mean"] = 7.3585026092564277e+01 -best_mse["temperature_mean"] = 1.1872218655217143e-05 -best_mse["thetal_mean"] = 1.2035241147904184e-05 -best_mse["Hvar_mean"] = 1.8640506843913366e+02 +best_mse = all_best_mse["Nieuwstadt"] @testset "Nieuwstadt" begin case_name = "Nieuwstadt" @@ -36,6 +29,10 @@ best_mse["Hvar_mean"] = 1.8640506843913366e+02 t_stop = 8 * 3600, ) + open("computed_mse_$case_name.json", "w") do io + JSON.print(io, computed_mse) + end + for k in keys(best_mse) test_mse(computed_mse, best_mse, k) end diff --git a/integration_tests/Rico.jl b/integration_tests/Rico.jl index 28409e6a1..246594d3a 100644 --- a/integration_tests/Rico.jl +++ b/integration_tests/Rico.jl @@ -8,22 +8,10 @@ using Test include(joinpath("utils", "main.jl")) include(joinpath("utils", "generate_namelist.jl")) include(joinpath("utils", "compute_mse.jl")) +include(joinpath("utils", "mse_tables.jl")) using .NameList -best_mse = OrderedDict() -best_mse["qt_mean"] = 3.6183738581707564e-01 -best_mse["updraft_area"] = 1.9158389580482219e+03 -best_mse["updraft_w"] = 1.7058718197542106e+02 -best_mse["updraft_qt"] = 1.5449827839901584e+01 -best_mse["updraft_thetal"] = 6.3602297256853468e+01 -best_mse["v_mean"] = 1.0630514621668171e+02 -best_mse["u_mean"] = 1.1443613156137732e+02 -best_mse["tke_mean"] = 3.1910880264617197e+02 -best_mse["temperature_mean"] = 1.8245777363727451e-04 -best_mse["ql_mean"] = 2.2808514972615623e+02 -best_mse["thetal_mean"] = 1.5458919462734390e-04 -best_mse["Hvar_mean"] = 1.0744099006973258e+04 -best_mse["QTvar_mean"] = 4.7454844707739849e+03 +best_mse = all_best_mse["Rico"] @testset "Rico" begin case_name = "Rico" @@ -41,6 +29,10 @@ best_mse["QTvar_mean"] = 4.7454844707739849e+03 t_stop = 24 * 3600, ) + open("computed_mse_$case_name.json", "w") do io + JSON.print(io, computed_mse) + end + for k in keys(best_mse) test_mse(computed_mse, best_mse, k) end diff --git a/integration_tests/SP.jl b/integration_tests/SP.jl index 640bc006d..c96c6a2d0 100644 --- a/integration_tests/SP.jl +++ b/integration_tests/SP.jl @@ -8,21 +8,10 @@ using Test include(joinpath("utils", "main.jl")) include(joinpath("utils", "generate_namelist.jl")) include(joinpath("utils", "compute_mse.jl")) +include(joinpath("utils", "mse_tables.jl")) using .NameList -best_mse = OrderedDict() -best_mse["qt_mean"] = 3.5073036121827599e+00 -best_mse["updraft_area"] = 3.9071034998892715e+00 -best_mse["updraft_w"] = 9.3648209541424188e-01 -best_mse["updraft_qt"] = 1.3868858637940826e+00 -best_mse["updraft_thetal"] = 1.0515272505644156e-01 -best_mse["v_mean"] = 4.6000262200176228e-01 -best_mse["u_mean"] = 7.3724093159961937e-05 -best_mse["tke_mean"] = 4.7833665685836724e-01 -best_mse["temperature_mean"] = 6.8550010657332516e-07 -best_mse["thetal_mean"] = 5.1299556226337377e-07 -best_mse["Hvar_mean"] = 3.1719859098824500e+01 -best_mse["QTvar_mean"] = 3.9762684439302052e+00 +best_mse = all_best_mse["SP"] @testset "SP" begin case_name = "SP" @@ -34,6 +23,10 @@ best_mse["QTvar_mean"] = 3.9762684439302052e+00 computed_mse = compute_mse_wrapper(case_name, best_mse, ds_tc_filename; plot_comparison = true, t_start = 0, t_stop = 2 * 3600) + open("computed_mse_$case_name.json", "w") do io + JSON.print(io, computed_mse) + end + for k in keys(best_mse) test_mse(computed_mse, best_mse, k) end diff --git a/integration_tests/Soares.jl b/integration_tests/Soares.jl index a9143d550..543d3faed 100644 --- a/integration_tests/Soares.jl +++ b/integration_tests/Soares.jl @@ -8,19 +8,10 @@ using Test include(joinpath("utils", "main.jl")) include(joinpath("utils", "generate_namelist.jl")) include(joinpath("utils", "compute_mse.jl")) +include(joinpath("utils", "mse_tables.jl")) using .NameList -best_mse = OrderedDict() -best_mse["qt_mean"] = 1.4966760733610701e-01 -best_mse["updraft_area"] = 4.4752734228297282e+02 -best_mse["updraft_w"] = 2.1338748581172648e+01 -best_mse["updraft_qt"] = 1.1050242532811241e+01 -best_mse["updraft_thetal"] = 2.2394553996747693e+01 -best_mse["u_mean"] = 7.3068371493591656e+02 -best_mse["tke_mean"] = 5.9234734475094214e+01 -best_mse["temperature_mean"] = 1.1583915526092593e-05 -best_mse["thetal_mean"] = 1.2172922371309679e-05 -best_mse["Hvar_mean"] = 2.2601616515636465e+02 +best_mse = all_best_mse["Soares"] @testset "Soares" begin case_name = "Soares" @@ -38,6 +29,10 @@ best_mse["Hvar_mean"] = 2.2601616515636465e+02 t_stop = 8 * 3600, ) + open("computed_mse_$case_name.json", "w") do io + JSON.print(io, computed_mse) + end + for k in keys(best_mse) test_mse(computed_mse, best_mse, k) end diff --git a/integration_tests/TRMM_LBA.jl b/integration_tests/TRMM_LBA.jl index 6afea4c17..58d763ff0 100644 --- a/integration_tests/TRMM_LBA.jl +++ b/integration_tests/TRMM_LBA.jl @@ -8,25 +8,13 @@ using Test include(joinpath("utils", "main.jl")) include(joinpath("utils", "generate_namelist.jl")) include(joinpath("utils", "compute_mse.jl")) +include(joinpath("utils", "mse_tables.jl")) using .NameList # Note: temperatures in this case become extremely low. CLIMAParameters.Planet.T_freeze(::EarthParameterSet) = 100.0 -best_mse = OrderedDict() -best_mse["qt_mean"] = 2.1180570149373197e+00 -best_mse["updraft_area"] = 2.2911123097125790e+04 -best_mse["updraft_w"] = 9.9122631422628353e+02 -best_mse["updraft_qt"] = 3.0750107437154107e+01 -best_mse["updraft_thetal"] = 1.1001770046016014e+02 -best_mse["v_mean"] = 2.9250578870751696e+02 -best_mse["u_mean"] = 1.6873177041648653e+03 -best_mse["tke_mean"] = 9.3810901861977175e+02 -best_mse["temperature_mean"] = 8.1897112533893871e-04 -best_mse["ql_mean"] = 7.3150520783875129e+02 -best_mse["thetal_mean"] = 8.2746696205323478e-03 -best_mse["Hvar_mean"] = 3.5185010182273427e+03 -best_mse["QTvar_mean"] = 1.7745546315637387e+03 +best_mse = all_best_mse["TRMM_LBA"] @testset "TRMM_LBA" begin case_name = "TRMM_LBA" @@ -44,6 +32,10 @@ best_mse["QTvar_mean"] = 1.7745546315637387e+03 t_stop = 6 * 3600, ) + open("computed_mse_$case_name.json", "w") do io + JSON.print(io, computed_mse) + end + for k in keys(best_mse) test_mse(computed_mse, best_mse, k) end diff --git a/integration_tests/life_cycle_Tan2018.jl b/integration_tests/life_cycle_Tan2018.jl index 0b8aad1d8..35fdf0c03 100644 --- a/integration_tests/life_cycle_Tan2018.jl +++ b/integration_tests/life_cycle_Tan2018.jl @@ -8,22 +8,10 @@ using Test include(joinpath("utils", "main.jl")) include(joinpath("utils", "generate_namelist.jl")) include(joinpath("utils", "compute_mse.jl")) +include(joinpath("utils", "mse_tables.jl")) using .NameList -best_mse = OrderedDict() -best_mse["qt_mean"] = 5.2649429859732335e-03 -best_mse["ql_mean"] = 8.3701130817214975e-01 -best_mse["updraft_area"] = 7.0432677991444692e-01 -best_mse["updraft_w"] = 5.8558890484998805e-01 -best_mse["updraft_qt"] = 1.1615774284759468e-01 -best_mse["updraft_thetal"] = 6.2885863821116435e-05 -best_mse["v_mean"] = 2.4748668316753225e-01 -best_mse["u_mean"] = 7.1361729071471190e-04 -best_mse["tke_mean"] = 2.0664613818639557e-01 -best_mse["temperature_mean"] = 2.5719773912461363e-06 -best_mse["thetal_mean"] = 2.4566431564965449e-06 -best_mse["Hvar_mean"] = 2.1515252048343000e+03 -best_mse["QTvar_mean"] = 1.1458013034475746e+03 +best_mse = all_best_mse["life_cycle_Tan2018"] @testset "life_cycle_Tan2018" begin case_name = "life_cycle_Tan2018" @@ -41,6 +29,10 @@ best_mse["QTvar_mean"] = 1.1458013034475746e+03 t_stop = 6 * 3600, ) + open("computed_mse_$case_name.json", "w") do io + JSON.print(io, computed_mse) + end + for k in keys(best_mse) test_mse(computed_mse, best_mse, k) end diff --git a/integration_tests/utils/compute_mse.jl b/integration_tests/utils/compute_mse.jl index 7ace67395..6313dd3d7 100644 --- a/integration_tests/utils/compute_mse.jl +++ b/integration_tests/utils/compute_mse.jl @@ -2,6 +2,7 @@ import Plots using OrderedCollections using Test import Dates +import JSON using NCDatasets import StatsBase using Dierckx @@ -148,7 +149,7 @@ function compute_mse(case_name, best_mse, plot_dir; ds_dict, plot_comparison = t if !have_tc_main ds_tc_main = ds_tc end - mse = Dict() + mse = OrderedDict() time_tcc = get_time(ds_tc, "t") time_les = get_time(ds_pycles, "t") time_tcm = get_time(ds_tc_main, "t") diff --git a/integration_tests/utils/mse_tables.jl b/integration_tests/utils/mse_tables.jl new file mode 100644 index 000000000..374a6da12 --- /dev/null +++ b/integration_tests/utils/mse_tables.jl @@ -0,0 +1,154 @@ +################################# +################################# MSE tables +################################# + +all_best_mse = OrderedDict() + +all_best_mse["ARM_SGP"] = OrderedDict() +all_best_mse["ARM_SGP"]["qt_mean"] = 0.37029179410890994 +all_best_mse["ARM_SGP"]["updraft_area"] = 2006.6768291734027 +all_best_mse["ARM_SGP"]["updraft_w"] = 330.2102615884285 +all_best_mse["ARM_SGP"]["updraft_qt"] = 13.362770693863471 +all_best_mse["ARM_SGP"]["updraft_thetal"] = 27.68268960291672 +all_best_mse["ARM_SGP"]["u_mean"] = 87.99854727781789 +all_best_mse["ARM_SGP"]["tke_mean"] = 659.0288865634138 +all_best_mse["ARM_SGP"]["temperature_mean"] = 0.0001483587498750494 +all_best_mse["ARM_SGP"]["ql_mean"] = 252.891950678216 +all_best_mse["ARM_SGP"]["thetal_mean"] = 0.00015194012840291993 +all_best_mse["ARM_SGP"]["Hvar_mean"] = 3620.070971173982 +all_best_mse["ARM_SGP"]["QTvar_mean"] = 2576.391969308864 + +all_best_mse["Bomex"] = OrderedDict() +all_best_mse["Bomex"]["qt_mean"] = 0.09792318594439654 +all_best_mse["Bomex"]["updraft_area"] = 698.2534241893271 +all_best_mse["Bomex"]["updraft_w"] = 32.817058320329416 +all_best_mse["Bomex"]["updraft_qt"] = 4.275694503633872 +all_best_mse["Bomex"]["updraft_thetal"] = 21.546731002204076 +all_best_mse["Bomex"]["v_mean"] = 68.3209141126036 +all_best_mse["Bomex"]["u_mean"] = 53.308019185027945 +all_best_mse["Bomex"]["tke_mean"] = 42.61946031729635 +all_best_mse["Bomex"]["temperature_mean"] = 4.226496081345336e-5 +all_best_mse["Bomex"]["ql_mean"] = 6.107869085739459 +all_best_mse["Bomex"]["thetal_mean"] = 4.307566915088421e-5 +all_best_mse["Bomex"]["Hvar_mean"] = 1432.019383859597 +all_best_mse["Bomex"]["QTvar_mean"] = 746.2013265559167 + +all_best_mse["DryBubble"] = OrderedDict() +all_best_mse["DryBubble"]["updraft_area"] = 685.5289370393416 +all_best_mse["DryBubble"]["updraft_w"] = 163.42412689071813 +all_best_mse["DryBubble"]["updraft_thetal"] = 3.978003729572793e-5 +all_best_mse["DryBubble"]["u_mean"] = 2.0014926020490524e-27 +all_best_mse["DryBubble"]["tke_mean"] = 199876.96066069463 +all_best_mse["DryBubble"]["temperature_mean"] = 3.2539779149875255e-5 +all_best_mse["DryBubble"]["thetal_mean"] = 2.5848228458152736e-5 +all_best_mse["DryBubble"]["Hvar_mean"] = 737.7175796791064 + +all_best_mse["DYCOMS_RF01"] = OrderedDict() +all_best_mse["DYCOMS_RF01"]["qt_mean"] = 0.016511493474924487 +all_best_mse["DYCOMS_RF01"]["ql_mean"] = 5.238815246360023 +all_best_mse["DYCOMS_RF01"]["updraft_area"] = 239.3765533271119 +all_best_mse["DYCOMS_RF01"]["updraft_w"] = 4.295081802516627 +all_best_mse["DYCOMS_RF01"]["updraft_qt"] = 1.1670622064912242 +all_best_mse["DYCOMS_RF01"]["updraft_thetal"] = 12.740701334370282 +all_best_mse["DYCOMS_RF01"]["v_mean"] = 39.74692172056224 +all_best_mse["DYCOMS_RF01"]["u_mean"] = 37.04656034356521 +all_best_mse["DYCOMS_RF01"]["tke_mean"] = 14.700070268008988 +all_best_mse["DYCOMS_RF01"]["temperature_mean"] = 2.1532443073348772e-5 +all_best_mse["DYCOMS_RF01"]["thetal_mean"] = 2.2397858591617206e-5 +all_best_mse["DYCOMS_RF01"]["Hvar_mean"] = 8267.731605985407 +all_best_mse["DYCOMS_RF01"]["QTvar_mean"] = 602.6652510734649 + +all_best_mse["GABLS"] = OrderedDict() +all_best_mse["GABLS"]["updraft_thetal"] = 4.658934473257884e-12 +all_best_mse["GABLS"]["v_mean"] = 1.104476424258302e-6 +all_best_mse["GABLS"]["u_mean"] = 1.4520606470173556e-8 +all_best_mse["GABLS"]["tke_mean"] = 7.921385441931473e-7 +all_best_mse["GABLS"]["temperature_mean"] = 2.4270857956397693e-10 +all_best_mse["GABLS"]["thetal_mean"] = 2.3645009185696995e-12 +all_best_mse["GABLS"]["Hvar_mean"] = 5.76870006248545e-7 +all_best_mse["GABLS"]["QTvar_mean"] = 2.5431241306612773e-7 + +all_best_mse["life_cycle_Tan2018"] = OrderedDict() +all_best_mse["life_cycle_Tan2018"]["qt_mean"] = 0.0052649429859732335 +all_best_mse["life_cycle_Tan2018"]["ql_mean"] = 0.8370113081721497 +all_best_mse["life_cycle_Tan2018"]["updraft_area"] = 0.7043267799144469 +all_best_mse["life_cycle_Tan2018"]["updraft_w"] = 0.585588904849988 +all_best_mse["life_cycle_Tan2018"]["updraft_qt"] = 0.11615774284759468 +all_best_mse["life_cycle_Tan2018"]["updraft_thetal"] = 6.288586382111644e-5 +all_best_mse["life_cycle_Tan2018"]["v_mean"] = 0.24748668316753225 +all_best_mse["life_cycle_Tan2018"]["u_mean"] = 0.0007136172907147119 +all_best_mse["life_cycle_Tan2018"]["tke_mean"] = 0.20664613818639557 +all_best_mse["life_cycle_Tan2018"]["temperature_mean"] = 2.5719773912461363e-6 +all_best_mse["life_cycle_Tan2018"]["thetal_mean"] = 2.456643156496545e-6 +all_best_mse["life_cycle_Tan2018"]["Hvar_mean"] = 2151.5252048343 +all_best_mse["life_cycle_Tan2018"]["QTvar_mean"] = 1145.8013034475746 + +all_best_mse["Nieuwstadt"] = OrderedDict() +all_best_mse["Nieuwstadt"]["updraft_area"] = 595.672866029319 +all_best_mse["Nieuwstadt"]["updraft_w"] = 26.450205443296568 +all_best_mse["Nieuwstadt"]["updraft_thetal"] = 30.475209174359087 +all_best_mse["Nieuwstadt"]["u_mean"] = 152.44498152508007 +all_best_mse["Nieuwstadt"]["tke_mean"] = 73.58502609256428 +all_best_mse["Nieuwstadt"]["temperature_mean"] = 1.1872218655217143e-5 +all_best_mse["Nieuwstadt"]["thetal_mean"] = 1.2035241147904184e-5 +all_best_mse["Nieuwstadt"]["Hvar_mean"] = 186.40506843913366 + +all_best_mse["Rico"] = OrderedDict() +all_best_mse["Rico"]["qt_mean"] = 0.36183738581707564 +all_best_mse["Rico"]["updraft_area"] = 1915.838958048222 +all_best_mse["Rico"]["updraft_w"] = 170.58718197542106 +all_best_mse["Rico"]["updraft_qt"] = 15.449827839901584 +all_best_mse["Rico"]["updraft_thetal"] = 63.60229725685347 +all_best_mse["Rico"]["v_mean"] = 106.3051462166817 +all_best_mse["Rico"]["u_mean"] = 114.43613156137732 +all_best_mse["Rico"]["tke_mean"] = 319.10880264617197 +all_best_mse["Rico"]["temperature_mean"] = 0.00018245777363727451 +all_best_mse["Rico"]["ql_mean"] = 228.08514972615623 +all_best_mse["Rico"]["thetal_mean"] = 0.0001545891946273439 +all_best_mse["Rico"]["Hvar_mean"] = 10744.099006973258 +all_best_mse["Rico"]["QTvar_mean"] = 4745.484470773985 + +all_best_mse["Soares"] = OrderedDict() +all_best_mse["Soares"]["qt_mean"] = 0.1496676073332159 +all_best_mse["Soares"]["updraft_area"] = 447.52734228539 +all_best_mse["Soares"]["updraft_w"] = 21.33874858102771 +all_best_mse["Soares"]["updraft_qt"] = 11.050242532807314 +all_best_mse["Soares"]["updraft_thetal"] = 22.394553996747703 +all_best_mse["Soares"]["u_mean"] = 730.6837149360526 +all_best_mse["Soares"]["tke_mean"] = 59.234734474825885 +all_best_mse["Soares"]["temperature_mean"] = 1.158391552593335e-5 +all_best_mse["Soares"]["thetal_mean"] = 1.2172922371148021e-5 +all_best_mse["Soares"]["Hvar_mean"] = 226.01616516403885 + +all_best_mse["SP"] = OrderedDict() +all_best_mse["SP"]["qt_mean"] = 3.50730361218276 +all_best_mse["SP"]["updraft_area"] = 3.9071034998892715 +all_best_mse["SP"]["updraft_w"] = 0.9364820954142419 +all_best_mse["SP"]["updraft_qt"] = 1.3868858637940826 +all_best_mse["SP"]["updraft_thetal"] = 0.10515272505644156 +all_best_mse["SP"]["v_mean"] = 0.4600026220017623 +all_best_mse["SP"]["u_mean"] = 7.372409315996194e-5 +all_best_mse["SP"]["tke_mean"] = 0.47833665685836724 +all_best_mse["SP"]["temperature_mean"] = 6.855001065733252e-7 +all_best_mse["SP"]["thetal_mean"] = 5.129955622633738e-7 +all_best_mse["SP"]["Hvar_mean"] = 31.7198590988245 +all_best_mse["SP"]["QTvar_mean"] = 3.976268443930205 + +all_best_mse["TRMM_LBA"] = OrderedDict() +all_best_mse["TRMM_LBA"]["qt_mean"] = 2.1180570149373197 +all_best_mse["TRMM_LBA"]["updraft_area"] = 22911.12309712579 +all_best_mse["TRMM_LBA"]["updraft_w"] = 991.2263142262835 +all_best_mse["TRMM_LBA"]["updraft_qt"] = 30.750107437154107 +all_best_mse["TRMM_LBA"]["updraft_thetal"] = 110.01770046016014 +all_best_mse["TRMM_LBA"]["v_mean"] = 292.50578870751696 +all_best_mse["TRMM_LBA"]["u_mean"] = 1687.3177041648653 +all_best_mse["TRMM_LBA"]["tke_mean"] = 938.1090186197717 +all_best_mse["TRMM_LBA"]["temperature_mean"] = 0.0008189711253389387 +all_best_mse["TRMM_LBA"]["ql_mean"] = 731.5052078387513 +all_best_mse["TRMM_LBA"]["thetal_mean"] = 0.008274669620532348 +all_best_mse["TRMM_LBA"]["Hvar_mean"] = 3518.5010182273427 +all_best_mse["TRMM_LBA"]["QTvar_mean"] = 1774.5546315637387 + +################################# +################################# +################################# diff --git a/utils/print_new_mse.jl b/utils/print_new_mse.jl new file mode 100644 index 000000000..f4825bb48 --- /dev/null +++ b/utils/print_new_mse.jl @@ -0,0 +1,47 @@ +using OrderedCollections +import JSON + +all_cases = [ + "ARM_SGP", + "Bomex", + "DryBubble", + "DYCOMS_RF01", + "GABLS", + "GATE_III", + "life_cycle_Tan2018", + "Nieuwstadt", + "Rico", + "Soares", + "SP", + "TRMM_LBA", +] + +filter!(x -> x ≠ "GATE_III", all_cases) # no mse tables for GATE_III + +dict = OrderedDict() +for case in all_cases + dict[case] = JSON.parsefile("computed_mse_$case.json"; dicttype = OrderedCollections.OrderedDict) +end + +println("#################################") +println("################################# MSE tables") +println("#################################") +println() + +println("all_best_mse = OrderedDict()\n") +for case in keys(dict) + println("all_best_mse[\"$case\"] = OrderedDict()") + for var in keys(dict[case]) + println("all_best_mse[\"$case\"][\"$var\"] = $(dict[case][var])") + end + println() +end + +println("#################################") +println("#################################") +println("#################################") + +# Cleanup +for case in all_cases + rm("computed_mse_$case.json"; force = true) +end