-
Notifications
You must be signed in to change notification settings - Fork 195
/
seawater_buoyancy.jl
243 lines (187 loc) · 10.3 KB
/
seawater_buoyancy.jl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
using Oceananigans.BoundaryConditions: NoFluxBoundaryCondition
using Oceananigans.Utils: prettysummary
"""
SeawaterBuoyancy{FT, EOS, T, S} <: AbstractBuoyancyModel{EOS}
BuoyancyModels model for seawater. `T` and `S` are either `nothing` if both
temperature and salinity are active, or of type `FT` if temperature
or salinity are constant, respectively.
"""
struct SeawaterBuoyancy{FT, EOS, T, S} <: AbstractBuoyancyModel{EOS}
equation_of_state :: EOS
gravitational_acceleration :: FT
constant_temperature :: T
constant_salinity :: S
end
required_tracers(::SeawaterBuoyancy) = (:T, :S)
required_tracers(::SeawaterBuoyancy{FT, EOS, <:Nothing, <:Number}) where {FT, EOS} = (:T,) # active temperature only
required_tracers(::SeawaterBuoyancy{FT, EOS, <:Number, <:Nothing}) where {FT, EOS} = (:S,) # active salinity only
Base.nameof(::Type{SeawaterBuoyancy}) = "SeawaterBuoyancy"
Base.summary(b::SeawaterBuoyancy) = string(nameof(typeof(b)), " with g=", prettysummary(b.gravitational_acceleration),
" and ", summary(b.equation_of_state))
function Base.show(io::IO, b::SeawaterBuoyancy{FT}) where FT
print(io, nameof(typeof(b)), "{$FT}:", "\n",
"├── gravitational_acceleration: ", b.gravitational_acceleration, "\n")
if !isnothing(b.constant_temperature)
print(io, "├── constant_temperature: ", b.constant_temperature, "\n")
end
if !isnothing(b.constant_salinity)
print(io, "├── constant_salinity: ", b.constant_salinity, "\n")
end
print(io, "└── equation_of_state: ", summary(b.equation_of_state))
end
"""
SeawaterBuoyancy([FT = Float64;]
gravitational_acceleration = g_Earth,
equation_of_state = LinearEquationOfState(FT),
constant_temperature = nothing,
constant_salinity = nothing)
Return parameters for a temperature- and salt-stratified seawater buoyancy model
with a `gravitational_acceleration` constant (typically called ``g``), and an
`equation_of_state` that related temperature and salinity (or conservative temperature
and absolute salinity) to density anomalies and buoyancy.
Setting `constant_temperature` to something that is not `nothing` indicates that buoyancy depends only on salinity.
For a nonlinear equation of state, the value provided `constant_temperature` is used as the temperature of the system.
Vice versa, setting `constant_salinity` indicates that buoyancy depends only on temperature.
For a linear equation of state, the values of `constant_temperature` or `constant_salinity`
are irrelevant.
Examples
========
The "TEOS10" equation of state, see https://www.teos-10.org
```jldoctest seawaterbuoyancy
julia> using SeawaterPolynomials.TEOS10: TEOS10EquationOfState
julia> teos10 = TEOS10EquationOfState()
BoussinesqEquationOfState{Float64}:
├── seawater_polynomial: TEOS10SeawaterPolynomial{Float64}
└── reference_density: 1020.0
```
Buoyancy that depends on both temperature and salinity
```jldoctest seawaterbuoyancy
julia> using Oceananigans
julia> buoyancy = SeawaterBuoyancy(equation_of_state=teos10)
SeawaterBuoyancy{Float64}:
├── gravitational_acceleration: 9.80665
└── equation_of_state: BoussinesqEquationOfState{Float64}
```
Buoyancy that depends only on salinity with temperature held at 20 degrees Celsius
```jldoctest seawaterbuoyancy
julia> salinity_dependent_buoyancy = SeawaterBuoyancy(equation_of_state=teos10, constant_temperature=20)
SeawaterBuoyancy{Float64}:
├── gravitational_acceleration: 9.80665
├── constant_temperature: 20
└── equation_of_state: BoussinesqEquationOfState{Float64}
```
Buoyancy that depends only on temperature with salinity held at 35 psu
```jldoctest seawaterbuoyancy
julia> temperature_dependent_buoyancy = SeawaterBuoyancy(equation_of_state=teos10, constant_salinity=35)
SeawaterBuoyancy{Float64}:
├── gravitational_acceleration: 9.80665
├── constant_salinity: 35
└── equation_of_state: BoussinesqEquationOfState{Float64}
```
"""
function SeawaterBuoyancy(FT = Float64;
gravitational_acceleration = g_Earth,
equation_of_state = LinearEquationOfState(FT),
constant_temperature = nothing,
constant_salinity = nothing)
# Input validation: convert constant_temperature or constant_salinity = true to zero(FT).
# This method of specifying constant temperature or salinity in a SeawaterBuoyancy model
# should only be used with a LinearEquationOfState where the constant value of either temperature
# or sailnity is irrelevant.
constant_temperature = constant_temperature === true ? zero(FT) : constant_temperature
constant_salinity = constant_salinity === true ? zero(FT) : constant_salinity
return SeawaterBuoyancy{FT, typeof(equation_of_state), typeof(constant_temperature), typeof(constant_salinity)}(
equation_of_state, gravitational_acceleration, constant_temperature, constant_salinity)
end
const TemperatureSeawaterBuoyancy = SeawaterBuoyancy{FT, EOS, <:Nothing, <:Number} where {FT, EOS}
const SalinitySeawaterBuoyancy = SeawaterBuoyancy{FT, EOS, <:Number, <:Nothing} where {FT, EOS}
Base.nameof(::Type{TemperatureSeawaterBuoyancy}) = "TemperatureSeawaterBuoyancy"
Base.nameof(::Type{SalinitySeawaterBuoyancy}) = "SalinitySeawaterBuoyancy"
@inline get_temperature_and_salinity(::SeawaterBuoyancy, C) = C.T, C.S
@inline get_temperature_and_salinity(b::TemperatureSeawaterBuoyancy, C) = C.T, b.constant_salinity
@inline get_temperature_and_salinity(b::SalinitySeawaterBuoyancy, C) = b.constant_temperature, C.S
@inline function buoyancy_perturbationᶜᶜᶜ(i, j, k, grid, b::SeawaterBuoyancy, C)
T, S = get_temperature_and_salinity(b, C)
return - (b.gravitational_acceleration * ρ′(i, j, k, grid, b.equation_of_state, T, S)
/ b.equation_of_state.reference_density)
end
#####
##### Buoyancy gradient components
#####
"""
∂x_b(i, j, k, grid, b::SeawaterBuoyancy, C)
Returns the ``x``-derivative of buoyancy for temperature and salt-stratified water,
```math
∂_x b = g ( α ∂_x T - β ∂_x S ) ,
```
where ``g`` is gravitational acceleration, ``α`` is the thermal expansion
coefficient, ``β`` is the haline contraction coefficient, ``T`` is
conservative temperature, and ``S`` is absolute salinity.
Note: In Oceananigans, `model.tracers.T` is conservative temperature and
`model.tracers.S` is absolute salinity.
Note that ``∂_x T`` (`∂x_T`), ``∂_x S`` (`∂x_S`), ``α``, and ``β`` are all evaluated at cell
interfaces in `x` and cell centers in `y` and `z`.
"""
@inline function ∂x_b(i, j, k, grid, b::SeawaterBuoyancy, C)
T, S = get_temperature_and_salinity(b, C)
return b.gravitational_acceleration * (
thermal_expansionᶠᶜᶜ(i, j, k, grid, b.equation_of_state, T, S) * ∂xᶠᶜᶜ(i, j, k, grid, T)
- haline_contractionᶠᶜᶜ(i, j, k, grid, b.equation_of_state, T, S) * ∂xᶠᶜᶜ(i, j, k, grid, S) )
end
"""
∂y_b(i, j, k, grid, b::SeawaterBuoyancy, C)
Returns the ``y``-derivative of buoyancy for temperature and salt-stratified water,
```math
∂_y b = g ( α ∂_y T - β ∂_y S ) ,
```
where ``g`` is gravitational acceleration, ``α`` is the thermal expansion
coefficient, ``β`` is the haline contraction coefficient, ``T`` is
conservative temperature, and ``S`` is absolute salinity.
Note: In Oceananigans, `model.tracers.T` is conservative temperature and
`model.tracers.S` is absolute salinity.
Note that ``∂_y T`` (`∂y_T`), ``∂_y S`` (`∂y_S`), ``α``, and ``β`` are all evaluated at cell
interfaces in `y` and cell centers in `x` and `z`.
"""
@inline function ∂y_b(i, j, k, grid, b::SeawaterBuoyancy, C)
T, S = get_temperature_and_salinity(b, C)
return b.gravitational_acceleration * (
thermal_expansionᶜᶠᶜ(i, j, k, grid, b.equation_of_state, T, S) * ∂yᶜᶠᶜ(i, j, k, grid, T)
- haline_contractionᶜᶠᶜ(i, j, k, grid, b.equation_of_state, T, S) * ∂yᶜᶠᶜ(i, j, k, grid, S) )
end
"""
∂z_b(i, j, k, grid, b::SeawaterBuoyancy, C)
Returns the vertical derivative of buoyancy for temperature and salt-stratified water,
```math
∂_z b = N^2 = g ( α ∂_z T - β ∂_z S ) ,
```
where ``g`` is gravitational acceleration, ``α`` is the thermal expansion
coefficient, ``β`` is the haline contraction coefficient, ``T`` is
conservative temperature, and ``S`` is absolute salinity.
Note: In Oceananigans, `model.tracers.T` is conservative temperature and
`model.tracers.S` is absolute salinity.
Note that ``∂_z T`` (`∂z_T`), ``∂_z S`` (`∂z_S`), ``α``, and ``β`` are all evaluated at cell
interfaces in `z` and cell centers in `x` and `y`.
"""
@inline function ∂z_b(i, j, k, grid, b::SeawaterBuoyancy, C)
T, S = get_temperature_and_salinity(b, C)
return b.gravitational_acceleration * (
thermal_expansionᶜᶜᶠ(i, j, k, grid, b.equation_of_state, T, S) * ∂zᶜᶜᶠ(i, j, k, grid, T)
- haline_contractionᶜᶜᶠ(i, j, k, grid, b.equation_of_state, T, S) * ∂zᶜᶜᶠ(i, j, k, grid, S) )
end
#####
##### top buoyancy flux
#####
@inline get_temperature_and_salinity_flux(::SeawaterBuoyancy, bcs) = bcs.T, bcs.S
@inline get_temperature_and_salinity_flux(::TemperatureSeawaterBuoyancy, bcs) = bcs.T, NoFluxBoundaryCondition()
@inline get_temperature_and_salinity_flux(::SalinitySeawaterBuoyancy, bcs) = NoFluxBoundaryCondition(), bcs.S
@inline function top_bottom_buoyancy_flux(i, j, k, grid, b::SeawaterBuoyancy, top_bottom_tracer_bcs, clock, fields)
T, S = get_temperature_and_salinity(b, fields)
T_flux_bc, S_flux_bc = get_temperature_and_salinity_flux(b, top_bottom_tracer_bcs)
T_flux = getbc(T_flux_bc, i, j, grid, clock, fields)
S_flux = getbc(S_flux_bc, i, j, grid, clock, fields)
return b.gravitational_acceleration * (
thermal_expansionᶜᶜᶠ(i, j, k, grid, b.equation_of_state, T, S) * T_flux
- haline_contractionᶜᶜᶠ(i, j, k, grid, b.equation_of_state, T, S) * S_flux)
end
@inline top_buoyancy_flux(i, j, grid, b::SeawaterBuoyancy, args...) = top_bottom_buoyancy_flux(i, j, grid.Nz+1, grid, b, args...)
@inline bottom_buoyancy_flux(i, j, grid, b::SeawaterBuoyancy, args...) = top_bottom_buoyancy_flux(i, j, 1, grid, b, args...)