-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsupercluster_creation.py
146 lines (127 loc) · 6.2 KB
/
supercluster_creation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
##################################################################################
### transform PCA into meanbrain space so we can symmetrize across the midline ###
##################################################################################
### load eigenvectors ###
main_dir = "/oak/stanford/groups/trc/data/Brezovec/2P_Imaging/20210130_superv_depth_correction/"
file = os.path.join(main_dir,'20210214_eigen_vectors_ztrim.npy')
vectors = np.load(file).real
print(f'vectors are {vectors.shape} voxel by PC')
### load PCA labels ###
labels_file = '/oak/stanford/groups/trc/data/Brezovec/2P_Imaging/20210130_superv_depth_correction/labels.pickle'
with open(labels_file, 'rb') as handle:
cluster_model_labels = pickle.load(handle)
### convert to image ###
running_sum = 0
new = []
for z in range(9,49-9):
num_clusters = len(np.unique(cluster_model_labels[z]))
new.append(vectors[running_sum:num_clusters+running_sum,:])
running_sum += num_clusters
maps = []
for pc in range(100):
all_ = []
for z in range(9,49-9):
colored_by_betas = np.zeros((256*128))
for cluster_num in range(len(np.unique(cluster_model_labels[z]))):
cluster_indicies = np.where(cluster_model_labels[z][:]==cluster_num)[0]
colored_by_betas[cluster_indicies] = new[z-9][cluster_num,pc]
colored_by_betas = colored_by_betas.reshape(256,128)
all_.append(colored_by_betas)
all_ = np.asarray(all_)
maps.append(all_)
maps = np.asarray(maps)
maps = np.moveaxis(maps,1,-1)
maps = np.moveaxis(maps,0,-1)
pad = np.zeros((256,128,9,100))
out = np.concatenate((pad,maps,pad),axis=2)
### Load Luke Mean ###
luke_path = "/oak/stanford/groups/trc/data/Brezovec/2P_Imaging/anat_templates/20210310_luke_exp_thresh.nii"
res_luke_mean = (0.65,0.65,1)
luke_mean = np.asarray(nib.load(luke_path).get_data().squeeze(), dtype='float32')
luke_mean = luke_mean[:,:,::-1] #flipz
luke_mean = ants.from_numpy(luke_mean)
luke_mean.set_spacing(res_luke_mean)
luke_mean_lowres = ants.resample_image(luke_mean,(256,128,49),use_voxels=True)
### Load JFRC2018 ###
fixed_path = "/oak/stanford/groups/trc/data/Brezovec/2P_Imaging/anat_templates/JRC2018_FEMALE_38um_iso_16bit.nii"
res_JRC2018 = (0.38, 0.38, 0.38)
fixed = np.asarray(nib.load(fixed_path).get_data().squeeze(), dtype='float32')
fixed = ants.from_numpy(fixed)
fixed.set_spacing(res_JRC2018)
fixed_lowres = ants.resample_image(fixed,(2,2,2),use_voxels=False)
### Load Atlas ###
atlas_path = "/oak/stanford/groups/trc/data/Brezovec/2P_Imaging/anat_templates/jfrc_2018_rois_improve_reorient_transformed.nii"
atlas = np.asarray(nib.load(atlas_path).get_data().squeeze(), dtype='float32')
atlas = ants.from_numpy(atlas)
atlas.set_spacing((.76,.76,.76))
atlas = ants.resample_image(atlas,(2,2,2),use_voxels=False)
moving = ants.from_numpy(out[:,:,::-1,:])
moving.set_spacing((2.6076, 2.6154, 5.3125,1))
### warp! ###
out = ants.registration(fixed_lowres, luke_mean_lowres, type_of_transform='Affine')
maps_voxel_res = ants.apply_transforms(fixed_lowres,
moving,
out['fwdtransforms'][0],
interpolator='nearestNeighbor',
imagetype=3)
pca_in_FDA = maps_voxel_res.numpy()
### symmetrize
pca_in_FDA_sym = (np.abs(pca_in_FDA) + np.abs(pca_in_FDA[::-1,...])) / 2
pca_in_FDA_hemi = pca_in_FDA_sym[:157,...]
#################################################
### now warp the supervoxel labels themselves ###
#################################################
all_ = []
running_sum = 0
for z in range(9,49-9):
colored_by_betas = np.zeros((256*128))
running_sum_temp = 0
for cluster_num in np.unique(cluster_model_labels[z]):
cluster_indicies = np.where(cluster_model_labels[z][:]==cluster_num)[0]
colored_by_betas[cluster_indicies] = cluster_num+1 # need to not have any 0 clusters because using 0 for padding
running_sum_temp += 1
colored_by_betas = colored_by_betas.reshape(256,128)
all_.append(colored_by_betas+running_sum)
running_sum += running_sum_temp
all_ = np.asarray(all_)
pad = np.zeros((9,256,128))
supervoxels = np.concatenate((pad,all_,pad),axis=0)
supervoxels = np.moveaxis(supervoxels,0,2)
supervoxels = ants.from_numpy(supervoxels[:,:,::-1])
supervoxels.set_spacing((2.6076, 2.6154, 5.3125)) ### matching this to the slightly off luke mean
supervoxels_in_FDA = ants.apply_transforms(fixed_lowres,
supervoxels,
out['fwdtransforms'][0],
interpolator='nearestNeighbor')
supervoxels_in_FDA_hemi = supervoxels_in_FDA[:157,...]
####################################################
### convert the warped PCA back into supervoxels ###
####################################################
pca_in_FDA_hemi_supervoxels = []
for super_id in tqdm.tqdm(np.unique(supervoxels_in_FDA_hemi)):
ind = np.where(supervoxels_in_FDA_hemi==super_id)
pca_in_FDA_hemi_supervoxels.append(np.mean(pca_in_FDA_hemi[ind[0],ind[1],ind[2],:],axis=0))
pca_in_FDA_hemi_supervoxels = np.asarray(pca_in_FDA_hemi_supervoxels)
###########################
### FINALLY can cluster ###
###########################
t0 = time.time()
print('clustering.........')
all_labels = []
for n_clusters in range(1,500): # trying anywhere between 1 and 500 clusters
model = AgglomerativeClustering(distance_threshold=None, #first run with =0
n_clusters=n_clusters, #and with n_clusters =None
memory=main_dir,
linkage='ward')
model = model.fit(pca_in_FDA_hemi_supervoxels)
all_labels.append(model.labels_)
all_labels = np.asarray(all_labels)
super_clusters = np.zeros((157, 146, 91, 499))
for i,super_id in enumerate(tqdm.tqdm(np.unique(supervoxels_in_FDA_hemi))):
ind = np.where(supervoxels_in_FDA_hemi==super_id)
super_clusters[ind[0],ind[1],ind[2],:] = all_labels[:,int(i)] + 1
#convert back from hemi
super_clusters_full = np.concatenate((super_clusters,super_clusters[::-1,...]),axis=0)
#save
save_file = "/oak/stanford/groups/trc/data/Brezovec/2P_Imaging/20221109_cluster_pca/superclusters_more"
np.save(save_file, super_clusters_full)