-
Notifications
You must be signed in to change notification settings - Fork 1
/
run_localGPT_API.py
291 lines (231 loc) · 9.35 KB
/
run_localGPT_API.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
import logging
import os
import shutil
import subprocess
import argparse
import torch
from flask import Flask, jsonify, request, render_template
from langchain.chains import RetrievalQA
from langchain.embeddings import HuggingFaceInstructEmbeddings
from langchain_community.llms import VLLMOpenAI
# from langchain.embeddings import HuggingFaceEmbeddings
from run_localGPT import load_model
from prompt_template_utils import get_prompt_template
# from langchain.callbacks.streaming_stdout import StreamingStdOutCallbackHandler
from langchain.vectorstores import Chroma
from langchain.docstore.document import Document
from langchain_community.retrievers import BM25Retriever
from utils import clean_text
from werkzeug.utils import secure_filename
from constants import CHROMA_SETTINGS, EMBEDDING_MODEL_NAME, PERSIST_DIRECTORY, PARSED_DIRECTORY, MODEL_ID, MODEL_BASENAME
from db_mng import DB_Management
# API queue addition
from threading import Lock
request_lock = Lock()
if torch.backends.mps.is_available():
DEVICE_TYPE = "mps"
elif torch.cuda.is_available():
DEVICE_TYPE = "cuda"
else:
DEVICE_TYPE = "cpu"
print(DEVICE_TYPE)
SHOW_SOURCES = True
logging.info(f"Running on: {DEVICE_TYPE}")
logging.info(f"Display Source Documents set to: {SHOW_SOURCES}")
EMBEDDINGS = HuggingFaceInstructEmbeddings(model_name=EMBEDDING_MODEL_NAME, model_kwargs={"device": DEVICE_TYPE})
# uncomment the following line if you used HuggingFaceEmbeddings in the ingest.py
# EMBEDDINGS = HuggingFaceEmbeddings(model_name=EMBEDDING_MODEL_NAME)
# if os.path.exists(PERSIST_DIRECTORY):
# try:
# shutil.rmtree(PERSIST_DIRECTORY)
# except OSError as e:
# print(f"Error: {e.filename} - {e.strerror}.")
# else:
# print("The directory does not exist")
# run_langest_commands = ["python", "ingest.py"]
# if DEVICE_TYPE == "cpu":
# run_langest_commands.append("--device_type")
# run_langest_commands.append(DEVICE_TYPE)
# result = subprocess.run(run_langest_commands, capture_output=True)
# if result.returncode != 0:
# raise FileNotFoundError(
# "No files were found inside SOURCE_DOCUMENTS, please put a starter file inside before starting the API!"
# )
# load the vectorstore
LLM = VLLMOpenAI(
openai_api_key="EMPTY",
openai_api_base="http://172.17.0.7:5000/v1",
model_name="test",
max_tokens=512,
temperature=0,
model_kwargs={
"stop": [],
},
)
DB = None
RETRIEVER = None
RETRIEVER_BM25 = None
QA = None
db_manager = None
def load_DB():
global DB
global RETRIEVER
global RETRIEVER_BM25
global QA
global app
global db_manager
# load the vectorstore
# Return document size
k = 4
DB = Chroma(
persist_directory=PERSIST_DIRECTORY,
embedding_function=EMBEDDINGS,
client_settings=CHROMA_SETTINGS,
)
app.logger.info(f'DB size: {DB._collection.count()}')
RETRIEVER = DB.as_retriever(search_kwargs={"k": k * 2})
collections = DB.get()
documents = [Document(page_content=c, metadata=m) for m, c in zip(collections['metadatas'], collections['documents'])]
RETRIEVER_BM25 = BM25Retriever.from_documents(documents=documents, preprocess_func=clean_text, k=k)
prompt, memory = get_prompt_template(promptTemplate_type="llama3", history=False)
QA = RetrievalQA.from_chain_type(
llm=LLM,
chain_type="stuff",
retriever=RETRIEVER,
retriever_bm25=RETRIEVER_BM25,
return_source_documents=SHOW_SOURCES,
chain_type_kwargs={
"prompt": prompt,
},
)
db_manager = DB_Management(f'{PERSIST_DIRECTORY}/mapping.json', PERSIST_DIRECTORY)
app = Flask(__name__)
app.logger.setLevel(logging.INFO)
load_DB()
@app.route("/api/delete_source", methods=["DELETE"])
def delete_source_route():
folder_name = "SOURCE_DOCUMENTS"
if os.path.exists(folder_name):
shutil.rmtree(folder_name)
os.makedirs(folder_name)
return jsonify({"message": f"Folder '{folder_name}' successfully deleted and recreated."})
@app.route("/api/save_document", methods=["GET", "POST"])
def save_document_route():
if "document" not in request.files:
return "No document part", 400
file = request.files["document"]
if file.filename == "":
return "No selected file", 400
if file:
filename = secure_filename(file.filename)
folder_path = "SOURCE_TMP"
if not os.path.exists(folder_path):
os.makedirs(folder_path)
file_path = os.path.join(folder_path, filename)
file.save(file_path)
return "File saved successfully", 200
@app.route("/api/run_add", methods=["POST"])
def run_add():
try:
run_langest_commands = ["python", "pipeline.py", "--source_dir", "SOURCE_TMP", "--parse_dir", "PARSED_TMP"]
if DEVICE_TYPE == "cpu":
run_langest_commands.append("--device_type")
run_langest_commands.append(DEVICE_TYPE)
result = subprocess.run(run_langest_commands, capture_output=True)
if result.returncode != 0:
return "Script execution failed: {}".format(result.stderr.decode("utf-8")), 500
shutil.copytree("SOURCE_TMP", "SOURCE_DOCUMENTS", dirs_exist_ok=True)
shutil.copytree("PARSED_TMP", "PARSED_DOCUMENTS", dirs_exist_ok=True)
shutil.rmtree("SOURCE_TMP")
shutil.rmtree("PARSED_TMP")
load_DB()
return "Script executed successfully: {}".format(result.stdout.decode("utf-8")), 200
except Exception as e:
return f"Error occurred: {str(e)}", 500
@app.route("/api/run_delete", methods=["DELETE"])
def run_delete():
try:
# Cheng-Ping Love you very much.
global request_lock # Make sure to use the global lock instance
_id = request.form.get("id")
app.logger.info(_id)
with request_lock:
db_manager.delete_text(_id)
load_DB()
return "Script executed successfully", 200
except Exception as e:
return f"Error occurred: {str(e)}", 500
@app.route("/api/run_update", methods=["PUT"])
def run_update():
try:
global request_lock # Make sure to use the global lock instance
# original_result is a jsonify dict
_id, revise_result = request.form.get("id"), request.form.get("revise_result")
app.logger.info(_id)
app.logger.info(revise_result)
with request_lock:
db_manager.update_text(_id, revise_result.strip())
load_DB()
return "Script executed successfully", 200
except Exception as e:
return f"Error occurred: {str(e)}", 500
@app.route("/api/run_reset", methods=["POST", "DELETE"])
def run_reset():
try:
db_manager.delete_db()
# result = subprocess.run(["python", "db_management.py", "--delete_db"], capture_output=True)
run_langest_commands = ["python", "pipeline.py", "--source_dir", "SOURCE_TMP", "--parse_dir", "PARSED_TMP"]
if DEVICE_TYPE == "cpu":
run_langest_commands.append("--device_type")
run_langest_commands.append(DEVICE_TYPE)
result = subprocess.run(run_langest_commands, capture_output=True)
if result.returncode != 0:
return "Script execution failed: {}".format(result.stderr.decode("utf-8")), 500
shutil.rmtree("SOURCE_DOCUMENTS")
shutil.rmtree("PARSED_DOCUMENTS")
shutil.move("SOURCE_TMP", "SOURCE_DOCUMENTS")
shutil.move("PARSED_TMP", "PARSED_DOCUMENTS")
load_DB()
return "Script executed successfully: {}".format(result.stdout.decode("utf-8")), 200
except Exception as e:
return f"Error occurred: {str(e)}", 500
@app.route("/api/prompt_route", methods=["GET", "POST"])
def prompt_route():
global QA
global request_lock # Make sure to use the global lock instance
user_prompt = request.form.get("user_prompt")
if user_prompt:
# Acquire the lock before processing the prompt
with request_lock:
# print(f'User Prompt: {user_prompt}')
# Get the answer from the chain
res = QA(user_prompt)
answer, docs = res["result"], res["source_documents"]
prompt_response_dict = {
"Prompt": user_prompt,
"Answer": answer,
}
prompt_response_dict["Sources"] = []
for document in docs:
_id = document.metadata["id"]
source = "/".join(str(document.metadata["source"]).split("/")[-3:])
prompt_response_dict["Sources"].append((_id, source, str(document.page_content)))
return jsonify(prompt_response_dict), 200
else:
return "No user prompt received", 400
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--port", type=int, default=5110, help="Port to run the API on. Defaults to 5110.")
parser.add_argument(
"--host",
type=str,
default="127.0.0.1",
help="Host to run the UI on. Defaults to 127.0.0.1. "
"Set to 0.0.0.0 to make the UI externally "
"accessible from other devices.",
)
args = parser.parse_args()
logging.basicConfig(
format="%(asctime)s - %(levelname)s - %(filename)s:%(lineno)s - %(message)s", level=logging.INFO
)
app.run(debug=False, host=args.host, port=args.port)