-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathgpvit_l2.py
61 lines (57 loc) · 1.91 KB
/
gpvit_l2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
_base_ = [
'../_base_/datasets/imagenet_bs64_swin_224_lmdb.py',
'../_base_/schedules/imagenet_bs1024_adamw_swin.py',
'../_base_/default_runtime.py'
]
# model settings
model = dict(
type='ImageClassifier',
backbone=dict(
type='GPViT',
arch='L2',
img_size=224,
drop_path_rate=-1, # dpr is in arch config
att_with_cp=False,
group_with_cp=False),
neck=dict(type='GroupNeck', embed_dims=348),
head=dict(
type='LinearClsHead',
num_classes=1000,
in_channels=348,
loss=dict(
type='LabelSmoothLoss', label_smooth_val=0.1, mode='original'),
topk=(1, 5)),
init_cfg=[
dict(type='TruncNormal', layer='Linear', std=0.02, bias=0.),
dict(type='Constant', layer='LayerNorm', val=1., bias=0.)
],
train_cfg=dict(augments=[
dict(type='BatchMixup', alpha=0.8, num_classes=1000, prob=0.5),
dict(type='BatchCutMix', alpha=1.0, num_classes=1000, prob=0.5)
]))
# data settings
samples_per_gpu=128
data = dict(samples_per_gpu=samples_per_gpu, workers_per_gpu=4)
# opt settings
paramwise_cfg = dict(
norm_decay_mult=0.0,
bias_decay_mult=0.0,
custom_keys={
'.absolute_pos_embed': dict(decay_mult=0.0),
'.relative_position_bias_table': dict(decay_mult=0.0),
'.pos_embed': dict(decay_mult=0.0),
'.group_token': dict(decay_mult=0.0),
'.dw_norm': dict(decay_mult=0.0)
})
world_size = 16
optimizer = dict(
lr=5e-4 * samples_per_gpu * world_size / 512,
paramwise_cfg=paramwise_cfg)
lr_config = dict(warmup_iters=15)
optimizer_config = dict(grad_clip=dict(max_norm=1.0))
# other running settings
checkpoint_config = dict(interval=5, max_keep_ckpts=5)
evaluation = dict(interval=5, metric='accuracy')
fp16 = None # make sure fp16 (mm version) is None when using AMP optimizer
runner = dict(type='AmpEpochBasedRunner')
work_dir = 'work_dirs/gpvit_l2'