Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

concat之后再输出,在计算结果上,和论文中 sigmoid(y_FM+y_DNN) 单独计算再加和是一样的。 #62

Open
van19 opened this issue Jan 25, 2020 · 0 comments

Comments

@van19
Copy link

van19 commented Jan 25, 2020

我也有此疑问,
按论文中的意思,y_FM= reduce_sum(first_order,1) + reduce_sum(second_order,1)
y_DNN = reduce_sum(y_deep,1),这个和
concat([first_order, second_order, y_deep]) X weights["concat_projection"])是不等价的吧,毕竟weights["concat_projection"]是不全为1的向量(变量),而且只有wx和DNN最后一层需要乘,second_order的<vi,vj>xixj项不需要乘weight
不知道是不是我理解不对?

concat之后再输出,在计算结果上,和论文中 sigmoid(y_FM+y_DNN) 单独计算再加和是一样的。

我觉得first order乘以feature_bias是多余的。因为embedding的结果与deep、second order拼接最后接一个projection layer,只看feat_value-projection这一块就已经是等价LR <w, x>的形式(论文中的公式2),在前面乘以一个feature_bias又不加非线性激活函数完全没必要。

PS:在gayhub上讨论,是不是还是用英语更合适?

Originally posted by @futureer in #32 (comment)

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

1 participant