forked from moocfi/haskell-mooc
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathSet5bTest.hs
262 lines (214 loc) · 9.61 KB
/
Set5bTest.hs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
{-# LANGUAGE TemplateHaskell, ScopedTypeVariables #-}
module Set5bTest where
import Data.List
import Data.Maybe
import Test.QuickCheck
import Mooc.Th
import Mooc.Test
import Set5b
main = score tests
tests = [(1,"valAtRoot",[ex1_valAtRoot_Nothing, ex1_valAtRoot_Just])
,(2,"treeSize",[ex2_treeSize])
,(3,"treeMax",[ex3_small, ex3_large])
,(4,"allValues",[ex4_small, ex4_large])
,(5,"mapTree",[ex5_small, ex5_large])
,(6,"cull",[ex6_small, ex6_large])
,(7,"isOrdered",[ex7_small, ex7_large])
,(8,"walk",[ex8_small, ex8_large])
,(9,"set",[ex9_small, ex9_medium, ex9_large])
,(10,"search",[ex10_small, ex10_large])
]
-- -- -- -- -- -- -- --
treeOfSize :: Arbitrary a => Int -> Gen (Tree a)
treeOfSize 0 = return Empty
treeOfSize siz = do
let siz' = siz-1
sizl <- choose (0,siz')
let sizr = siz'-sizl
l <- treeOfSize sizl
r <- treeOfSize sizr
v <- arbitrary
return $ Node v l r
ex1_valAtRoot_Nothing = $(testing [|valAtRoot (Empty :: Tree Bool)|]) (?== (Nothing :: Maybe Bool))
ex1_valAtRoot_Just = property $ do
l <- treeOfSize 2 :: Gen (Tree Integer)
r <- treeOfSize 2 :: Gen (Tree Integer)
v <- choose (0,10 :: Integer)
let t = Node v l r
return $ $(testing [|valAtRoot t|]) (?== Just v)
ex2_treeSize =
forAllShrink_ (choose (0,50)) $ \s ->
forAllBlind (treeOfSize s :: Gen (Tree Integer)) $ \t ->
$(testing [|treeSize t|]) (?==s)
treeAndMax :: Int -> Gen (Int, Tree Int)
treeAndMax 0 = return (0,Empty)
treeAndMax d = do
(lmax,l) <- treeAndMax (d-1)
(rmax,r) <- treeAndMax (d-1)
v <- choose (0,20)
return (maximum [lmax,rmax,v], (Node v l r))
m_ex3 depth = forAllBlind (treeAndMax depth) $ \(m,tree) ->
$(testing [|treeMax tree|]) (?==m)
ex3_small = conjoin [m_ex3 0
,m_ex3 1
,m_ex3 2]
ex3_large = conjoin [m_ex3 3
,m_ex3 4]
tree3 a b c = Node b (Node a Empty Empty) (Node c Empty Empty)
tree7 [a,b,c,d,e,f,g] = Node d (tree3 a b c) (tree3 e f g)
ex4_small = property $ do
~[a,b,c] <- vectorOf 3 (choose (0,4::Int))
let input = tree3 a b c
out = all (>0) [a,b,c]
return $ counterexample ("allValues (>0) "++show' input) $ allValues (>0) input ?== out
ex4_large = property $ do
vals <- vectorOf 7 (choose (0,8::Int))
let input = tree7 vals
out = all (>1) vals
return $ counterexample ("allValues (>0) "++show' input) $ allValues (>1) input ?== out
ex5_small = property $ do
~[a,b,c] <- vectorOf 3 (choose (0,4::Int))
let input = tree3 a b c
output = tree3 (a+1) (b+1) (c+1)
return $ counterexample ("mapTree (+1) "++show' input) $ mapTree (+1) input ?== output
linearLeft [] = Empty
linearLeft (x:xs) = Node x (linearLeft xs) Empty
linearRight [] = Empty
linearRight (x:xs) = Node x Empty (linearRight xs)
ex5_large = property $ do
cs <- listOf1 (choose ('a','c'))
ds <- listOf1 (choose ('a','c'))
e <- choose ('a','c')
let input = Node e (linearRight cs) (linearLeft ds)
f = (=='a')
output = Node (f e) (linearRight $ map f cs) (linearLeft $ map f ds)
return $ counterexample ("mapTree (=='a') "++show' input) $ mapTree (=='a') input ?== output
treeWithout :: (Eq a, Arbitrary a) => Int -> a -> Gen (Tree a)
treeWithout 0 _ = return Empty
treeWithout depth v = oneof [return Empty
,do l <- treeWithout (depth-1) v
r <- treeWithout (depth-1) v
v' <- arbitrary `suchThat` (/=v)
return $ Node v' l r]
ex6_small = conjoin [$(testing [|cull 2 (Node 1 (Node 2 Empty Empty) (Node 0 Empty Empty))|])
(?==Node 1 Empty (Node 0 Empty Empty))
,$(testing [|cull 3 (Node 1 (Node 2 Empty Empty) (Node 0 Empty Empty))|])
(?==Node 1 (Node 2 Empty Empty) (Node 0 Empty Empty))
,$(testing [|cull 0 (Node 1 (Node 0 Empty (Node 2 Empty Empty)) (Node 3 Empty (Node 0 Empty Empty)))|])
(?==Node 1 Empty (Node 3 Empty Empty))]
replaceLeaf :: Tree a -> Tree a -> Gen (Tree a)
replaceLeaf t Empty = return t
replaceLeaf t (Node val l r) = oneof [fmap (\l' -> Node val l' r) (replaceLeaf t l)
,fmap (\r' -> Node val l r') (replaceLeaf t r)]
ex6_large = property $ do
v <- arbitrary :: Gen Int
output <- treeWithout 3 v
~(Node _ l r) <- treeOfSize 3
let addition = Node v l r
input <- replaceLeaf addition output
input2 <- replaceLeaf addition input
return $ conjoin [$(testing [|cull v input|]) (?==output)
,$(testing [|cull v input2|]) (?==output)]
orderedTree :: Int -> (Int,Int) -> Gen (Tree Int)
orderedTree 0 _ = return Empty
orderedTree depth (min,max)
| min<max = frequency [(1, return Empty)
,(4, do v <- choose (min,max-1)
l <- orderedTree (depth-1) (min,v)
r <- orderedTree (depth-1) (v+1,max)
return $ Node v l r)]
orderedTree _ _ = return Empty
try :: [Gen (Maybe a)] -> Gen (Maybe a)
try [] = return $ Nothing
try (g:gs) = do m <- g
if isJust m then return m else try gs
breakOrder :: Tree Int -> Gen (Maybe (Tree Int))
breakOrder Empty = return Nothing
breakOrder (Node v Empty Empty) = return Nothing
breakOrder (Node v l r) = try [do ml <- breakOrder l
case ml of Nothing -> return Nothing
Just l' -> return $ Just $ Node v l' r
,do mr <- breakOrder r
case mr of Nothing -> return Nothing
Just r' -> return $ Just $ Node v l r'
,return (Just (Node v r l))]
m_ex7 depth = forAllBlind (orderedTree depth (0,100)) $ \t ->
forAllBlind (breakOrder t) $ \b ->
conjoin [$(testing [|isOrdered t|]) (?==True)
,isJust b ==> $(testing [|isOrdered (fromJust b)|]) (?==False)]
ex7_small = conjoin [$(testing [|isOrdered (Empty::Tree Int)|]) (?==True)
,forAllBlind (choose (0,10::Int)) $ \i -> $(testing [|isOrdered (Node i Empty Empty)|]) (?==True)
,m_ex7 2]
ex7_large = conjoin [m_ex7 3
,m_ex7 4
,m_ex7 5]
pathAndTree :: (Eq a, Arbitrary a) => Int -> a -> Gen ([Step],Tree a)
pathAndTree 0 v = return ([],Node v Empty Empty)
pathAndTree depth v = oneof [do l <- treeWithout (depth-1) v
v' <- arbitrary `suchThat` (/=v)
(p,r) <- pathAndTree (depth-1) v
return (StepR:p,Node v' l r)
,do r <- treeWithout (depth-1) v
v' <- arbitrary `suchThat` (/=v)
(p,l) <- pathAndTree (depth-1) v
return (StepL:p,Node v' l r)
,do l <- treeWithout (depth-1) v
r <- treeWithout (depth-1) v
return ([],Node v l r)]
m_ex8 d = forAll_ $ \(v::Int) ->
forAllBlind (pathAndTree d v) $ \(p,t) ->
$(testing [|walk p t|]) (?==Just v)
ex8_small = conjoin [$(testing [|walk [StepL] (Empty :: Tree Char)|]) (?==Nothing)
,forAll_ $ \(a::Int,b::Int,c::Int) ->
$(testing [|walk [StepL,StepR] (Node a (Node b Empty Empty) (Node c Empty Empty))|]) (?==Nothing)
,m_ex8 0
,m_ex8 1
,m_ex8 2]
ex8_large = conjoin [m_ex8 3
,m_ex8 4
,m_ex8 5]
ex9_small = conjoin [$(testing [|set ([]::[Step]) 'a' (Empty::Tree Char)|]) (?==Empty)
,$(testing [|set ([]::[Step]) True (Node False Empty Empty)|]) (?==Node True Empty Empty)
,$(testing [|set [StepL] True (Node False Empty Empty)|]) (?==Node False Empty Empty)
,$(testing [|set [StepL] True (Node False (Node False Empty Empty) Empty)|]) (?==Node False (Node True Empty Empty) Empty)]
setList xs i v = before ++ v:after
where (before,_:after) = splitAt i xs
ex9_medium = property $ do
vals <- vectorOf 7 (choose (0,10::Int))
(i,path) <- elements [(0,[StepL,StepL])
,(1,[StepL])
,(2,[StepL,StepR])
,(3,[])
,(4,[StepR,StepL])
,(5,[StepR])
,(6,[StepR,StepR])]
new <- choose (11,20::Int)
let inp = tree7 vals
vals' = setList vals i new
out = tree7 vals'
return $ $(testing [|set path new inp|]) (?==out)
ex9_large = forAllShrink (choose (1,10)) shrinkPositive $ \len -> property $ do
(dir,mk) <- elements [(StepL,linearLeft)
,(StepR,linearRight)]
cs <- vectorOf len (choose ('a','z'))
i <- choose (0,len - 2)
new <- choose ('a','z')
return $ $(testing [|set (replicate i dir) new (mk cs)|]) (?==mk (setList cs i new))
m_ex10_yes depth = forAll_ $ \(val::Int) ->
forAllBlind (pathAndTree depth val) $ \(path,tree) ->
$(testing [|search val tree|]) (?==Just path)
m_ex10_no depth = forAll_ $ \(val::Int) ->
forAllBlind (treeWithout depth val) $ \tree ->
$(testing [|search val tree|]) (?==Nothing)
ex10_small = conjoin [m_ex10_yes 0
,m_ex10_no 0
,m_ex10_yes 1
,m_ex10_no 1
,m_ex10_yes 2
,m_ex10_no 2]
ex10_large = conjoin [m_ex10_yes 3
,m_ex10_no 3
,m_ex10_yes 4
,m_ex10_no 4
,m_ex10_yes 5
,m_ex10_no 5]