forked from SoumyadeepMukherjee/Matrix_Manipulation
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathMatrix_Determinant.java
88 lines (74 loc) · 2.25 KB
/
Matrix_Determinant.java
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
import java.util.*;
class determinant
{
// Dimension of input square matrix
static final int N = 4;
// Function to get determinant of matrix
static int determinantOfMatrix(int mat[][], int n)
{
int num1, num2, det = 1, index, total = 1;
// temporary array for storing row
int[] temp = new int[n + 1];
// loop for traversing the diagonal elements
for (int i = 0; i < n; i++)
{
index = i;
// finding the index which has non zero value
while (mat[index][i] == 0 && index < n)
{
index++;
}
if (index == n) // if there is non zero element the determinant of matrix is zero
{
continue;
}
if (index != i)
{
// loop for swaping the diagonal element row and index row
for (int j = 0; j < n; j++)
{
swap(mat, index, j, i, j);
}
det = (int)(det * Math.pow(-1, index - i));
}
for (int j = 0; j < n; j++)
{
temp[j] = mat[i][j];
}
for (int j = i + 1; j < n; j++)
{
num1 = temp[i];
num2 = mat[j][i];
for (int k = 0; k < n; k++)
{
mat[j][k] = (num1 * mat[j][k])- (num2 * temp[k]);
}
total = total * num1;
}
}
// multiplying the diagonal elements to get
// determinant
for (int i = 0; i < n; i++)
{
det = det * mat[i][i];
}
return (det / total);
}
static int[][] swap(int[][] arr, int i1, int j1, int i2, int j2)
{
int temp = arr[i1][j1];
arr[i1][j1] = arr[i2][j2];
arr[i2][j2] = temp;
return arr;
}
public static void main(String[] args)
{
int mat[][] = { { 1, 0, 2, -1 },
{ 3, 0, 0, 5 },
{ 2, 1, 4, -3 },
{ 1, 0, 5, 0 } };
System.out.printf(
"Determinant of the matrix is : %d",
determinantOfMatrix(mat, N));
}
}