Skip to content

Latest commit

 

History

History
41 lines (27 loc) · 1.88 KB

README.md

File metadata and controls

41 lines (27 loc) · 1.88 KB

QuasiVD

code for paper "QuasiVSD: Efficient Dual-Frame Smoke Detection"

The code will be available soon.

Environment

Python 3.6

Pytorch 1.3+

Experiments

Comparison with other methods on our dataset.

Model Backbone Input Params Flops Latency fps Hardware mAP50
Yolov4 Darknet Single-frame 64.3M 45.7G 15.5ms 64.5 RTX2080Ti 69.70
EfficientDet-D0 EfficientNet-B0 Single-frame 3.9M 2.58G 5.3ms 188.2 RTX2080Ti 62.73
EfficientDet-D1 EfficientNet-B1 Single-frame 6.6M 3.96G 7.4ms 134.7 RTX2080Ti 66.59
EfficientDet-D2 EfficientNet-B2 Single-frame 8.1M 4.95G 8.6ms 116.2 RTX2080Ti 81.29
EfficientDet-D3 EfficientNet-B3 Single-frame 12.0M 8.21G 12.3ms 81.2 RTX2080Ti 84.32
EfficientDet-D4 EfficientNet-B4 Single-frame 20.7M 13.9G 17.2ms 58.2 RTX2080Ti 85.16
EfficientDet-D5 EfficientNet-B5 Single-frame 33.7M 21.8G 22.7ms 44.0 RTX2080Ti 86.26
EfficientDet-D6 EfficientNet-B6 Single-frame 51.9M 36.3G 30.6ms 32.7 RTX2080Ti 86.92
CenterNet Mobilenetv3 Single-frame 1.48M 3.96G 3.4ms 296.9 RTX2080Ti 85.64
QuasiVSD (Proposed) Mobilenetv3 Dual-frame 1.48M 3.96G 3.4ms 291.6 RTX2080Ti 90.35
QuasiVSD (Proposed) Mobilenetv3 Dual-frame 1.48M 3.96G 312.5ms 3.2 Jetson Nano
QuasiVSD (Proposed) Mobilenetv3 Dual-frame - - 277.8ms 3.6 Jetson Nano

Visualization

Some cases and QuasiVD middle terms visualization: (a) input images, (b) frame difference, (c) motion-aware mask , (d) weakly guided attention , and (e) detection results. Among these cases, “positive” cases containing smoke targets

Contact

If you have any question, please feel free to contact me (Yichao Cao, [email protected]). Thanks :-)