layout | title | permalink |
---|---|---|
page |
Machine Learning |
/ml/ |
{% include paper-card.html title="Probability Basics for ML" subtitle="Definitions, MLE, Information theory, Statistical distances" url="/ml/prob_modelling"%}
{% include paper-card.html
title="Probability Distributions"
subtitle="Bernoulli, Categorical, Binomial, Multinomial, Geometric, Poison, Uniform, Gaussian, Exponential,
{% include paper-card.html title="ML Essentials" subtitle="Basics, Regularization, Ensemble Methods, Error measures" url="/ml/ml_concepts"%}
{% include paper-card.html title="Simple ML models" subtitle="kNN, Decision Trees, Naive Bayes, SVM, Logistic Regression, Linear Regression, Hierarchical Clustering, k-means, EM, Spectral Clustering" url="/ml/simple_models"%}
{% include paper-card.html title="Why generative models?" subtitle="Basics, Discriminative vs Generative, Use-cases, Types" url="/ml/generative_models"%}
{% include paper-card.html title="From Expectation Maximization to Variational Inference" subtitle="Latent Variable Models, EM, VI, Amortized VI, Reparametrization Trick, Mean Field VI" url="/ml/variational_inference" star="no"%}
{% include paper-card.html title="Autoregressive models (AR)" subtitle="Basics, Simplification methods, Pro/Cons, Relevant Papers" url="/ml/autoregressive_models"%}
{% include paper-card.html title="Normalizing flows" subtitle="Basics, Pro/Cons, Relevant Papers" url="/ml/flow_models"%}
{% include paper-card.html title="Variational Inference Annex" subtitle="" url="/lectures/variational_inference_annex" %}