-
Notifications
You must be signed in to change notification settings - Fork 10
/
Copy pathDay23.cs
232 lines (190 loc) · 9.08 KB
/
Day23.cs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
using AdventOfCode.CSharp.Common;
using System;
using System.Collections.Generic;
using System.Runtime.CompilerServices;
namespace AdventOfCode.CSharp.Y2021.Solvers;
public class Day23 : ISolver
{
const byte AmphipodA = 0;
const byte AmphipodB = 1;
const byte AmphipodC = 2;
const byte AmphipodD = 3;
public static void Solve(ReadOnlySpan<byte> input, Solution solution)
{
static byte CharToAmphipodType(byte c) => (byte)(c - 'A');
const int InputRowWidth = 14;
byte slotA1 = CharToAmphipodType(input[InputRowWidth * 2 + 3]);
byte slotB1 = CharToAmphipodType(input[InputRowWidth * 2 + 5]);
byte slotC1 = CharToAmphipodType(input[InputRowWidth * 2 + 7]);
byte slotD1 = CharToAmphipodType(input[InputRowWidth * 2 + 9]);
byte slotA2 = CharToAmphipodType(input[InputRowWidth * 3 + 3]);
byte slotB2 = CharToAmphipodType(input[InputRowWidth * 3 + 5]);
byte slotC2 = CharToAmphipodType(input[InputRowWidth * 3 + 7]);
byte slotD2 = CharToAmphipodType(input[InputRowWidth * 3 + 9]);
// Part 1 is simulated by assuming the bottom two slots are already filled with the correct amphipods
ulong part1InitialState =
CreateSlot(AmphipodA, slotA1, slotA2, AmphipodA, AmphipodA) |
((uint)CreateSlot(AmphipodB, slotB1, slotB2, AmphipodB, AmphipodB) << 8) |
((uint)CreateSlot(AmphipodC, slotC1, slotC2, AmphipodC, AmphipodC) << 16) |
((uint)CreateSlot(AmphipodD, slotD1, slotD2, AmphipodD, AmphipodD) << 24);
ulong part2InitialState =
CreateSlot(AmphipodA, slotA1, AmphipodD, AmphipodD, slotA2) |
((uint)CreateSlot(AmphipodB, slotB1, AmphipodC, AmphipodB, slotB2) << 8) |
((uint)CreateSlot(AmphipodC, slotC1, AmphipodB, AmphipodA, slotC2) << 16) |
((uint)CreateSlot(AmphipodD, slotD1, AmphipodA, AmphipodC, slotD2) << 24);
uint part1 = Solve(part1InitialState);
uint part2 = Solve(part2InitialState);
solution.SubmitPart1(part1);
solution.SubmitPart2(part2);
}
private static uint Solve(ulong initialState)
{
uint minimumCost = MinimumCost(initialState);
var seen = new HashSet<ulong>(8192);
var pq = new PriorityQueue<ulong, uint>(8192);
pq.Enqueue(initialState, minimumCost * 16 + 16);
while (pq.TryDequeue(out ulong state, out uint distance))
{
if (seen.Contains(state))
continue;
seen.Add(state);
uint slots = (uint)(state & 0xFFFFFFFFU);
uint topRow = (uint)(state >> 32);
// Try see if any amphipods in the top row can go straight to their slot
if (TryMoveAmphipodFromTopRowToSlot(slots, topRow, out ulong newState))
{
// If any amphipods moved into their slot, then there is no point considering further moves as it is an
// optimal decision to make
pq.Enqueue(newState, distance - 1);
continue;
}
bool isFinalState = true;
for (byte amph = AmphipodA; amph <= AmphipodD; amph++)
{
if (!CanMoveToSlot(amph, slots))
{
isFinalState = false;
uint newSlots = PopFromSlot(amph, slots, out byte newAmphipod);
if (CanMoveToSlot(newAmphipod, newSlots) && IsPathFromSlotToSlotClear(topRow, amph, newAmphipod))
{
pq.Enqueue((ulong)topRow << 32 | newSlots, distance - 1);
break;
}
uint moveCost = 16 * GetMoveCost(newAmphipod);
// We know that an amphipod can't stop directly outside it's spot, so we have already added moveCost * 2
// when determining the minimum distance, so we subtract it here to counteract that.
uint newDistanceStart = (uint)(distance + (amph == newAmphipod ? -moveCost * 2 : 0));
// Try move left
uint newDistance = newDistanceStart;
for (int i = amph + 1; i >= 0 && ((topRow & (0xFU << (4 * i))) == 0); i--)
{
if (i < (newAmphipod + 2))
newDistance += (i != amph + 1 && i != newAmphipod + 1 && i > 0 ? 4U : 2U) * moveCost;
uint newTopRow = topRow | ((8U + newAmphipod) << (4 * i));
pq.Enqueue((ulong)newTopRow << 32 | newSlots, newDistance);
}
// Try move right
newDistance = newDistanceStart;
for (int i = amph + 2; i < 7 && ((topRow & (0xFU << (4 * i))) == 0); i++)
{
if (i > (newAmphipod + 1))
newDistance += (i != amph + 2 && i != newAmphipod + 2 && i < 6 ? 4U : 2U) * moveCost;
uint newTopRow = topRow | ((8U + newAmphipod) << (4 * i));
pq.Enqueue((ulong)newTopRow << 32 | newSlots, newDistance);
}
}
}
if (isFinalState)
return distance / 16;
}
return 0;
}
private static byte CreateSlot(byte expectedAmphipod, byte a1, byte a2, byte a3, byte a4)
{
a1 = (byte)((a1 + 4 - expectedAmphipod) & 3);
a2 = (byte)((a2 + 4 - expectedAmphipod) & 3);
a3 = (byte)((a3 + 4 - expectedAmphipod) & 3);
a4 = (byte)((a4 + 4 - expectedAmphipod) & 3);
return (byte)(a1 | (a2 << 2) | (a3 << 4) | (a4 << 6));
}
private static uint MinimumCost(ulong state)
{
int totalCost = 0;
uint slots = (uint)(state & 0xFFFFFFFFU);
for (byte expectedAmphipod = 0; expectedAmphipod < 4; expectedAmphipod++)
{
byte slot = (byte)(slots & 0xFFU);
for (int j = 0; j < 4; j++)
{
if (slot == 0)
break;
byte amphipod = (byte)((slot + expectedAmphipod) & 3);
int distanceBetweenSlots =
amphipod == expectedAmphipod
? 2 // We must move twice even if the slot is the same
: Math.Abs(amphipod - expectedAmphipod) * 2;
// Cost to move incorrect amphipod to space above its correct slot
totalCost += (j + 1 + distanceBetweenSlots) * (int)GetMoveCost(amphipod);
// Cost to move amphipod from above its slot into this position
totalCost += (j + 1) * (int)GetMoveCost(expectedAmphipod);
slot >>= 2;
}
slots >>= 8;
}
return (uint)totalCost;
}
[MethodImpl(MethodImplOptions.AggressiveInlining)]
private static bool CanMoveToSlot(byte amphipod, uint slots) => (slots & (0xFFU << (8 * amphipod))) == 0;
[MethodImpl(MethodImplOptions.AggressiveInlining)]
private static uint PopFromSlot(byte amphipod, uint slots, out byte newAmphipod)
{
int slotStart = 8 * amphipod;
uint slot = (slots >> slotStart) & 0xFFU;
newAmphipod = (byte)((slot + amphipod) & 3);
uint slotMask = 0xFFU << slotStart;
return ((slot >> 2) << slotStart) | (slots & ~slotMask);
}
[MethodImpl(MethodImplOptions.AggressiveInlining)]
static uint GetMoveCost(byte amph) => (uint)(((1UL | (10UL << 16) | (100UL << 32) | (1000UL << 48)) >> (amph * 16)) & 0xFFFF);
[MethodImpl(MethodImplOptions.AggressiveInlining)]
static uint GetTopRowMask(int length, int start) => ((1U << (4 * length)) - 1) << (4 * start);
[MethodImpl(MethodImplOptions.AggressiveInlining)]
static bool IsPathFromTopToSlotClear(uint topRow, int start, byte slot)
{
int leftOfSlot = slot + 1;
int diff = start - leftOfSlot;
uint pathMask = diff <= 0 ? GetTopRowMask(-diff, start + 1) : GetTopRowMask(diff - 1, leftOfSlot + 1);
return (pathMask & topRow) == 0;
}
[MethodImpl(MethodImplOptions.AggressiveInlining)]
static bool IsPathFromSlotToSlotClear(uint topRow, byte slot1, byte slot2)
{
int diff = slot1 - slot2;
uint pathMask = diff < 0 ? GetTopRowMask(-diff, slot1 + 2) : GetTopRowMask(diff, slot2 + 2);
return (pathMask & topRow) == 0;
}
[MethodImpl(MethodImplOptions.AggressiveInlining)]
private static bool TryMoveAmphipodFromTopRowToSlot(uint slots, uint topRow, out ulong newState)
{
uint t = topRow;
int rowIndex = 0;
while (t != 0)
{
uint cell = t & 0xF;
if (cell != 0)
{
byte amph = (byte)(cell & 3);
if (CanMoveToSlot(amph, slots) && IsPathFromTopToSlotClear(topRow, rowIndex, amph))
{
uint newTopRow = topRow ^ (cell << (rowIndex * 4));
newState = ((ulong)newTopRow) << 32 | slots;
return true;
}
}
t >>= 4;
rowIndex++;
}
newState = default;
return false;
}
}