Skip to content

Commit

Permalink
Fix rebinds
Browse files Browse the repository at this point in the history
  • Loading branch information
myreen committed Oct 17, 2023
1 parent c9a59de commit 4d4db90
Show file tree
Hide file tree
Showing 3 changed files with 5 additions and 16 deletions.
6 changes: 3 additions & 3 deletions compiler/backend/languages/relations/pure_presScript.sml
Original file line number Diff line number Diff line change
Expand Up @@ -231,9 +231,9 @@ End
Overload "<-->" = “bidir”
val _ = set_fixity "<-->" (Infixl 480);

Theorem bidir_refl[simp] = bidir_refl;
Theorem bidir_refl[allow_rebind,simp] = bidir_refl;

Theorem bidir_sym:
Theorem bidir_sym[allow_rebind]:
∀x y. (x <--> y) ⇔ (y <--> x)
Proof
metis_tac [bidir_sym]
Expand Down Expand Up @@ -300,7 +300,7 @@ End
Overload "~~>" = “pres”
val _ = set_fixity "~~>" (Infixl 480);

Theorem pres_refl[simp] = pres_refl;
Theorem pres_refl[simp,allow_rebind] = pres_refl;

(*----------------------------------------------------------------------------*
Proof of preservation of well-formedness
Expand Down
3 changes: 2 additions & 1 deletion compiler/backend/passes/proofs/thunk_case_d2bProofScript.sml
Original file line number Diff line number Diff line change
Expand Up @@ -1482,7 +1482,8 @@ Proof
>- (strip_tac >> rw[Once exp_rel_cases] >> gvs[eval_to_def])
QED

Theorem exp_rel_eval_to = REWRITE_RULE [d2b_goal_def] exp_rel_eval_to;
Theorem exp_rel_eval_to[allow_rebind] =
REWRITE_RULE [d2b_goal_def] exp_rel_eval_to;

Theorem exp_rel_eval:
exp_rel x y ∧
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -516,12 +516,6 @@ Proof
Induct >> gvs [combine_rel_def]
QED

Theorem combine_rel_Apps:
∀l1 l2 x y. combine_rel x y ∧ LIST_REL combine_rel l1 l2 ⇒ combine_rel (Apps x l1) (Apps y l2)
Proof
Induct >> gvs [combine_rel_def, PULL_EXISTS]
QED

Theorem combine_rel_freevars:
∀x y. combine_rel x y ⇒ freevars x = freevars y
Proof
Expand Down Expand Up @@ -1280,12 +1274,6 @@ Proof
\\ CASE_TAC \\ gs []
QED

Theorem combine_rel_Lams:
∀vL x y. combine_rel x y ⇒ combine_rel (Lams vL x) (Lams vL y)
Proof
Induct \\ gs [combine_rel_def]
QED

Theorem combine_rel_Apps:
∀eL1 eL2 x y. LIST_REL combine_rel eL1 eL2 ∧ combine_rel x y ⇒ combine_rel (Apps x eL1) (Apps y eL2)
Proof
Expand Down

0 comments on commit 4d4db90

Please sign in to comment.