-
Notifications
You must be signed in to change notification settings - Fork 1
/
agnosticCellNet_example.R
246 lines (206 loc) · 11 KB
/
agnosticCellNet_example.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
# Installation
install.packages("devtools")
library(devtools)
install_github("pcahan1/CellNet", ref="master")
install_github("pcahan1/[email protected]", ref="master")
# Load libraries
library(CellNet)
library(cancerCellNet)
library(plyr)
library(ggplot2)
library(RColorBrewer)
library(pheatmap)
library(plotly)
library(igraph)
source("pacnet_utils.R")
# Load training data:
expTrain <- utils_loadObject("Hs_expTrain_Jun-20-2017.rda")
stTrain <- utils_loadObject("Hs_stTrain_Jun-20-2017.rda")
# Load engineered reference data and query data.
# We need to load these at this point to identify genes found in across all datasets.
liverRefExpDat <- utils_loadObject("liver_engineeredRef_normalized_expDat_all.rda")
liverRefSampTab <- utils_loadObject("liver_engineeredRef_sampTab_all.rda")
queryExpDat <- read.csv("example_data/example_counts_matrix.csv", row.names=1)
querySampTab <- read.csv("example_data/example_sample_metadata_table.csv")
rownames(querySampTab) <- querySampTab$sample_name
study_name <- "liver_example"
# Identify intersecting genes
iGenes <- intersect(rownames(expTrain), rownames(liverRefExpDat))
iGenes <- intersect(iGenes, rownames(queryExpDat))
expTrain <- expTrain[iGenes,]
# Split the training data into a training subset and a validation subset:
set.seed(99) # Setting a seed for the random number generator allows us to reproduce the same split in the future
stList <- splitCommon_proportion(sampTab = stTrain, proportion = 0.66, dLevel = "description1") # Use 2/3 of training data for training and 1/3 for validation
stTrainSubset <- stList$trainingSet
expTrainSubset <- expTrain[,rownames(stTrainSubset)]
# See number of samples of each unique type in description1 in training subset
table(stTrainSubset$description1)
stValSubset <- stList$validationSet
expValSubset <- expTrain[,rownames(stValSubset)]
# See number of samples of each unique type in description1 in validation subset
table(stValSubset$description1)
# Train the random forest classifier, takes 3-10 minutes depending on memory availability:
system.time(my_classifier <- broadClass_train(stTrain = stTrainSubset,
expTrain = expTrainSubset,
colName_cat = "description1",
colName_samp = "sra_id",
nRand = 70,
nTopGenes = 100,
nTopGenePairs = 100,
nTrees = 2000,
stratify=TRUE,
sampsize=25, # Must be less than the smallest n in table(stTrainSubset$description1)
quickPairs=TRUE)) # Increasing the number of top genes and top gene pairs increases the resolution of the classifier but increases the computing time
save(my_classifier, file="example_outputs/cellnet_classifier_100topGenes_100genePairs.rda")
# Classifier Validation
stValSubsetOrdered <- stValSubset[order(stValSubset$description1), ] #order samples by classification name
expValSubset <- expValSubset[,rownames(stValSubsetOrdered)]
cnProc <- my_classifier$cnProc #select the cnProc from the earlier class training
classMatrix <- broadClass_predict(cnProc, expValSubset, nrand = 60)
stValRand <- addRandToSampTab(classMatrix, stValSubsetOrdered, desc="description1", id="sra_id")
grps <- as.vector(stValRand$description1)
names(grps)<-rownames(stValRand)
# Create validation heatmap
png(file="classification_validation_hm.png", height=6, width=10, units="in", res=300)
ccn_hmClass(classMatrix, grps=grps, fontsize_row=10)
dev.off()
# Plot validation precision-recall curves:
assessmentDat <- ccn_classAssess(classMatrix, stValRand, classLevels="description1", dLevelSID="sra_id")
png(file="example_outputs/classifier_assessment_PR.png", height=8, width=10, units="in", res=300)
plot_class_PRs(assessmentDat)
dev.off()
# Gene pair validation
genePairs <- cnProc$xpairs
# Get gene to gene comparison of each gene pair in the expression table
expTransform <- query_transform(expTrainSubset, genePairs)
avgGenePair_train <- avgGeneCat(expDat = expTransform, sampTab = stTrainSubset,
dLevel = "description1", sampID = "sra_id")
genePairs_val <- query_transform(expValSubset, genePairs)
geneCompareMatrix <- makeGeneCompareTab(queryExpTab = genePairs_val,
avgGeneTab = avgGenePair_train, geneSamples = genePairs)
val_grps <- stValSubset[,"description1"]
val_grps <- c(val_grps, colnames(avgGenePair_train))
names(val_grps) <- c(rownames(stValSubset), colnames(avgGenePair_train))
png(file="example_outputs/validation_gene-pair_comparison.png", width=10, height=80, units="in", res=300)
plotGeneComparison(geneCompareMatrix, grps = val_grps, fontsize_row = 6)
dev.off()
# Create and save xpairs_list object
xpairs_list <- vector("list", 14)
for (pair in rownames(avgGenePair_train)) {
for (j in 1:ncol(avgGenePair_train)) {
if (avgGenePair_train[pair,j] >= 0.5) {
if (is.null(xpairs_list[[j]])) {
xpairs_list[[j]] <- c(pair)
} else {
xpairs_list[[j]] <- c(xpairs_list[[j]], pair)
}
}
}
}
xpair_names <- colnames(avgGenePair_train)
xpair_names <- sub(pattern="_Avg", replacement="", x=xpair_names)
names(xpairs_list) <- xpair_names
for (type in names(xpairs_list)) {
names(xpairs_list[[type]]) <- xpairs_list[[type]]
}
save(xpairs_list, file="example_outputs/Hs_xpairs_list.rda")
################################################
# Querying the classifier
# Classify engineered reference panel samples
classMatrixLiverRef <- broadClass_predict(cnProc = cnProc, expDat = liverRefExpDat, nrand = 10)
grp_names1 <- c(as.character(liverRefSampTab$description1), rep("random", 10))
names(grp_names1) <- c(as.character(rownames(liverRefSampTab)), paste0("rand_", c(1:10)))
# Re-order classMatrixQuery to match order of rows in querySampTab
classMatrixLiverRef <- classMatrixLiverRef[,names(grp_names1)]
png(file="example_outputs/heatmapLiverRef.png", height=12, width=9, units="in", res=300)
heatmapRef(classMatrixLiverRef, liverRefSampTab) # This function can be found in pacnet_utils.R
dev.off()
# Alternatively, for an interactive plotly version:
heatmapPlotlyRef(classMatrixLiverRef, liverRefSampTab)
# Classify query samples
# Perform log transform:
queryExpDat <- log(1+queryExpDat)
classMatrixQuery <- broadClass_predict(cnProc = cnProc, expDat = queryExpDat, nrand = 3)
grp_names <- c(as.character(querySampTab$description1), rep("random", 3))
names(grp_names) <- c(as.character(rownames(querySampTab)), paste0("rand_", c(1:3)))
# Re-order classMatrixQuery to match order of rows in querySampTab
classMatrixQuery <- classMatrixQuery[,names(grp_names)]
save(classMatrixQuery, file="example_outputs/example_classificationMatrix.rda")
#Plot classification heatmap:
png(file="example_outputs/query_classification_heatmap.png", height=4, width=8, units="in", res=300)
# This function can be found in pacnet_utils.R
acn_queryClassHm(classMatrixQuery, main = paste0("Classification Heatmap, ", study_name),
grps = grp_names,
fontsize_row=10, fontsize_col = 10, isBig = FALSE)
dev.off()
# Compute GRN Status
#Subset `grnAll` and `trainNormParam` objects based on intersecting genes.
grnAll <- utils_loadObject("liver_grnAll.rda")
trainNormParam <- utils_loadObject("liver_trainNormParam.rda")
# These two functions can be found in pacnet_utils.R
grnAll <- subsetGRNall(grnAll, iGenes)
trainNormParam <- subsetTrainNormParam(trainNormParam, grnAll, iGenes)
#Compute GRN statuses and save:
queryExpDat_ranked <- logRank(queryExpDat, base = 0)
queryExpDat_ranked <- as.data.frame(queryExpDat_ranked)
system.time(GRN_statusQuery <- ccn_queryGRNstatus(expQuery = queryExpDat_ranked, grn_return = grnAll,
trainNorm = trainNormParam, classifier_return = my_classifier, prune = TRUE))
save(GRN_statusQuery, file="example_outputs/my_study_GRN_status.rda")
# Plot GRN status bar plots:
cell_types <- rownames(GRN_statusQuery)
# GRN_statusQuery <- GRN_statusQuery[,rownames(querySampTab)]
GRN_statusQuery <- GRN_statusQuery[,querySampTab$sample_name]
pdf_width <- ceiling(ncol(queryExpDat)/3) + 1
pdf(file="example_outputs/my_study_GRN_status_plots.pdf", height=8, width=pdf_width)
plot_list <- list()
i <- 1
for(type in cell_types) {
plot_df <- data.frame("SampleNames" = paste(colnames(GRN_statusQuery), querySampTab$description1),
"GRN_Status" = as.vector(GRN_statusQuery[type, ]))
plot_df$SampleNames <- factor(plot_df$SampleNames, levels=plot_df$SampleNames)
type_plot <- ggplot(plot_df) + geom_bar(stat="identity", data = plot_df,
aes(x=SampleNames, y=GRN_Status), width = 0.7) +
ggtitle(paste0(type, " Network GRN Status")) +
xlab("Samples") + ylab("GRN Status") + theme_bw() +
theme(text = element_text(size=10),
legend.position="none",
axis.text.x = element_text(angle = 90, vjust=0.5, hjust=1)) +
geom_hline(yintercept=1, linetype="dashed", color = "steelblue")
print(type_plot)
}
dev.off()
# Compute Network Influence Score (NIS) for transcriptional regulators
target_cell_type <- "liver" # CHANGE FOR SPECIFIC CONTEXT
system.time(TF_scores <- pacnet_nis(expDat = queryExpDat_ranked, stQuery=querySampTab, iGenes=iGenes,
grnAll = grnAll, trainNorm = trainNormParam,
subnet = target_cell_type, ctt=target_cell_type,
colname_sid="sample_name", relaWeight=0))
save(TF_scores, file="example_outputs/my_study_TF_scores.rda")
# Choose top-scoring 25 TFs for plotting:
TFsums <- rowSums(abs(TF_scores))
ordered_TFsums <- TFsums[order(TFsums, decreasing = TRUE)]
if(length(TFsums) > 25) {
top_display_TFs <- names(ordered_TFsums)[1:25]
} else {
top_display_TFs <- names(ordered_TFsums)
}
TF_scores <- TF_scores[top_display_TFs,]
#Plot TF scores:
sample_names <- rownames(querySampTab)
pdf(file="example_outputs/my_study_TF_scores_my_cell_type.pdf", height=6, width=8)
for(sample in sample_names) {
descript <- querySampTab$description1[which(rownames(querySampTab) == sample)]
plot_df <- data.frame("TFs" = rownames(TF_scores),
"Scores" = as.vector(TF_scores[,sample]))
sample_TFplot <- ggplot(plot_df, aes(x = reorder(TFs,Scores,mean) , y = Scores)) +
geom_bar(stat="identity") + #aes(fill = medVal)) +
theme_bw() +
ggtitle(paste0(sample, ", ", descript, ", ", target_cell_type, " transcription factor scores")) +
ylab("Network influence score") + xlab("Transcriptional regulator") +
theme(legend.position = "none", axis.text = element_text(size = 8)) +
theme(text = element_text(size=10),
legend.position="none",
axis.text.x = element_text(angle = 45, vjust=0.5))
print(sample_TFplot)
}
dev.off()