-
Notifications
You must be signed in to change notification settings - Fork 29
/
test.py
176 lines (152 loc) · 6.03 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
import datetime
import logging
import lpips
import numpy as np
import torch
import argparse
import cv2
import torch.utils.data as data
import torchvision
import random
import torch.nn.functional as F
import torch.nn as nn
from tensorboardX import SummaryWriter
import torch.optim as optim
import os
from model.model import model_fn_decorator
from model.nets import my_model
from dataset.load_data import *
from tqdm import tqdm
from utils.loss_util import *
from utils.common import *
from config.config import args
import logging
def test(args, TestImgLoader, model, model_fn_test, save_path, compute_metrics):
tbar = tqdm(TestImgLoader)
total_psnr = 0
total_ssim = 0
total_lpips = 0
total_time = 0
avg_val_time = 0
for batch_idx, data in enumerate(tbar):
model.eval()
cur_psnr, cur_ssim, cur_lpips, cur_time = model_fn_test(args, data, model, save_path, compute_metrics)
number = data['number']
if args.EVALUATION_METRIC:
logging.info('%s: LPIPS is %.4f, PSNR is %.4f and SSIM is %.4f' % (number[0], cur_lpips, cur_psnr, cur_ssim))
if args.EVALUATION_TIME:
logging.info('%s: TIME is %.4f' % (number[0], cur_time))
total_psnr += cur_psnr
avg_val_psnr = total_psnr / (batch_idx+1)
total_ssim += cur_ssim
avg_val_ssim = total_ssim / (batch_idx+1)
total_lpips += cur_lpips
avg_val_lpips = total_lpips / (batch_idx+1)
# skip calculation for first five samples to avoid warming-up cost
if batch_idx > 5:
total_time += cur_time
avg_val_time = total_time / (batch_idx-5)
if args.EVALUATION_METRIC:
desc = 'Test: Avg. LPIPS = %.4f, Avg. PSNR = %.4f and SSIM = %.4f' % (avg_val_lpips, avg_val_psnr, avg_val_ssim)
elif args.EVALUATION_TIME:
desc = 'Avg. TIME is %.4f' % avg_val_time
else:
desc = 'Test without any evaluation'
tbar.set_description(desc)
tbar.update()
if args.EVALUATION_METRIC:
logging.warning('Avg. LPIPS is %.4f, PSNR is %.4f and SSIM is %.4f' % (avg_val_lpips, avg_val_psnr, avg_val_ssim))
if args.EVALUATION_TIME:
logging.warning('Avg. TIME is %.4f' % avg_val_time)
def init():
# Make dirs
args.TEST_RESULT_DIR = os.path.join(args.SAVE_PREFIX, args.EXP_NAME, 'test_result')
mkdir(args.TEST_RESULT_DIR)
args.NETS_DIR = os.path.join(args.SAVE_PREFIX, args.EXP_NAME, 'net_checkpoints')
os.environ["CUDA_VISIBLE_DEVICES"] = "%d" % args.GPU_ID
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
# random seed
random.seed(args.SEED)
np.random.seed(args.SEED)
torch.manual_seed(args.SEED)
torch.cuda.manual_seed_all(args.SEED)
if args.SEED == 0:
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
else:
torch.backends.cudnn.deterministic = False
torch.backends.cudnn.benchmark = True
return device
def load_checkpoint(model):
if args.LOAD_PATH:
load_path = args.LOAD_PATH
save_path = args.TEST_RESULT_DIR + '/customer'
log_path = args.TEST_RESULT_DIR + '/customer_result.log'
else:
load_epoch = args.TEST_EPOCH
if load_epoch == 'auto':
load_path = args.NETS_DIR + '/checkpoint_latest.tar'
save_path = args.TEST_RESULT_DIR + '/latest'
log_path = args.TEST_RESULT_DIR + '/latest_result.log'
else:
load_path = args.NETS_DIR + '/checkpoint' + '_' + '%06d' % load_epoch + '.tar'
save_path = args.TEST_RESULT_DIR + '/' + '%04d' % load_epoch
log_path = args.TEST_RESULT_DIR + '/%04d_' % load_epoch + 'result.log'
mkdir(save_path)
if load_path.endswith('.pth'):
model_state_dict = torch.load(load_path)
else:
model_state_dict = torch.load(load_path)['state_dict']
model.load_state_dict(model_state_dict)
return load_path, save_path, log_path
def set_logging(log_path):
logger = logging.getLogger()
logger.setLevel(level=logging.DEBUG)
formatter = logging.Formatter('%(message)s')
file_handler = logging.FileHandler(log_path, mode='w')
file_handler.setLevel(level=logging.INFO)
file_handler.setFormatter(formatter)
stream_handler = logging.StreamHandler()
stream_handler.setLevel(logging.WARNING)
stream_handler.setFormatter(formatter)
logger.addHandler(file_handler)
logger.addHandler(stream_handler)
def main():
device = init()
# load model
model = my_model(en_feature_num=args.EN_FEATURE_NUM,
en_inter_num=args.EN_INTER_NUM,
de_feature_num=args.DE_FEATURE_NUM,
de_inter_num=args.DE_INTER_NUM,
sam_number=args.SAM_NUMBER,
).to(device)
# load checkpoint
load_path, save_path, log_path = load_checkpoint(model)
# set logging for recording information or metrics
set_logging(log_path)
logging.warning(datetime.now())
# computational cost for the model
if args.EVALUATION_COST:
calculate_cost(model, input_size=(1, 3, 2176, 3840))
logging.warning('load model from %s' % load_path)
logging.warning('save image results to %s' % save_path)
logging.warning('save logger to %s' % log_path)
compute_metrics = None
if args.EVALUATION_TIME:
# metric calculation may have negative impact on inference speed
args.EVALUATION_METRIC = False
if args.EVALUATION_METRIC:
# load LPIPS metric
from utils.metric import create_metrics
compute_metrics = create_metrics(args, device=device)
loss_fn = None
model_fn_test = model_fn_decorator(loss_fn=loss_fn, device=device, mode='test')
# Create dataset
test_path = args.TEST_DATASET
# Set test batch size to 1 for avoiding OOM
args.BATCH_SIZE = 1
TestImgLoader = create_dataset(args, data_path=test_path, mode='test')
# test
test(args, TestImgLoader, model, model_fn_test, save_path, compute_metrics)
if __name__ == '__main__':
main()