-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathinference.py
executable file
·181 lines (151 loc) · 6.96 KB
/
inference.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
import os, sys
from pickle import TRUE
# sys.path.append(os.path.abspath("../../../"))
# sys.path.insert(0, './flow_tool/')
# sys.path.append(os.path.abspath("../../../flow_tool"))
import flowlib as fl
import argparse
import torch
import torch.nn as nn
import torch.nn.functional as F
from tqdm import tqdm, trange
import re
import cv2
import timeit
from src import config
from src.face_simple.models import TalkingFace
from src.checkpoints import CheckpointIO
from src.face_simple.rendering import density2outputs, get_coords
from src.data.someones_lip_dataset import SomeonesLipDataset
from src.face_simple.models.utils import *
import math
import numpy as np
import matplotlib
matplotlib.use('Agg')
import matplotlib.pyplot as plt
def psnr(original, contrast):
mse = np.mean((original - contrast) ** 2)
if mse == 0:
return 100
PIXEL_MAX = 255.0
PSNR = 20 * math.log10(PIXEL_MAX / math.sqrt(mse))
return PSNR
def tryint(s):
try:
return int(s)
except ValueError:
return s
def str2int(v_str):
return [tryint(sub_str) for sub_str in re.split('([0-9]+)', v_str)]
def sorted_by_number(v_list):
return sorted(v_list, key=str2int)
def parse_args():
parser = argparse.ArgumentParser(
description='Train a 3D reconstruction model.'
)
parser.add_argument('config', type=str, help='Path to config file.')
parser.add_argument('--output_dir', type=str, help='output dir name', default="test")
parser.add_argument('--change_pose', default=-1, type=int, help='controllable')
parser.add_argument('--no-cuda', action='store_true', help='Do not use cuda.')
parser.add_argument('--local_rank', default=0, type=int, help='node rank for distributed training ')
parser.add_argument('--model_iter', default=None, type=str)
parser.add_argument('--model_path', default=None, type=str)
parser.add_argument('--use_new_audio', action='store_true')
args = parser.parse_args()
return args
def inference():
torch.set_default_tensor_type('torch.cuda.FloatTensor')
args = parse_args()
abs_path = os.path.abspath("./")
# config module mainly to load config, dataset, network
cfg = config.load_config(args.config, 'configs/default.yaml', abs_path=abs_path)
is_cuda = (torch.cuda.is_available() and not args.no_cuda)
device = torch.device("cuda" if is_cuda else "cpu", args.local_rank)
height = cfg['data']['height']
width = cfg['data']['width']
out_dir = os.path.join(abs_path, cfg['training']['out_dir'])
batch_size = cfg['training']['batch_rays']
use_coords2audio = cfg['model']['use_coords2audio']
use_delta_uv = cfg['model']['use_delta_uv']
use_head_pose = cfg['model']['use_head_pose']
use_head_pose_net = cfg['model']['use_head_pose_net']
use_audio = cfg['model']['use_audio']
use_coords_mapping = cfg['training']['use_coords_mapping']
use_time = cfg['model']['use_time']
use_post_fusion = cfg['model']['use_post_fusion']
use_post_fusion_wface = cfg['model']['use_post_fusion_wface']
# eval
fusion_lip_only = cfg['training']['fusion_lip_only']
model = TalkingFace(device=device, cfg=cfg, mode='eval')
model = model.eval()
audio_dims = model.audio_dims
checkpoint_io = CheckpointIO(out_dir, model=model)
# load model
if args.model_path is not None:
load_dict = checkpoint_io.load(args.model_path, device=device)
else:
model_list = os.listdir(out_dir)
model_list = [model for model in model_list if '.pt' in model and 'model_' in model and 'model_0.pt' not in model]
model_list = sorted_by_number(model_list)
try:
if args.model_iter is not None:
key = 'model_'+args.model_iter+'.pt'
load_dict = checkpoint_io.load(key, device=device)
else:
key = model_list[-1]
load_dict = checkpoint_io.load(key, device=device)
print('load '+key+'...')
except:
load_dict = checkpoint_io.load('model.pt', device=device)
print('load model.pt...')
print("Successfully load model!")
# load data
dataset_folder = os.path.join(abs_path, cfg['data']['path'])
if args.use_new_audio:
test_set = 'test'
else:
test_set = 'val'
dataset = SomeonesLipDataset(dataset_folder, test_set, cfg=cfg, img_ext='.jpg', change_pose=args.change_pose)
test_loader = torch.utils.data.DataLoader(dataset, batch_size=1, shuffle=False)
# define output path
test_output_dir = os.path.join("rendering_result", args.output_dir)
os.makedirs(test_output_dir, exist_ok=True)
if use_post_fusion:
test_output_post_dir = os.path.join(test_output_dir, "postfusion")
os.makedirs(test_output_post_dir, exist_ok=True)
seed = 0
for data, index in tqdm(test_loader):
for key, value in data.items():
data[key] = value.to(device)
audio = data['audio'].tile(batch_size, 1, 1) # [b, 16, 29]
pose = None
coords = get_coords(int(width), int(height), device)
rgb_zero = data['rgb_zero'].reshape(-1, 3)
with torch.no_grad():
coords_batch = coords
audio_batch = model.audio_merge_forward(audio)
uv_audio_rays = torch.cat([coords_batch[:, None, :], audio_batch[:, None, :]], -1) # [N, 1, 64*2]
feature_length = audio_dims + 2
time_pts = data['index'] + seed # add noise
lms = None
text_pts = None
outputs = model.rgb_forward(uv_audio_rays.view(-1, feature_length), time_pts=time_pts, rgb_pts=rgb_zero, lms_pts=lms, text_pts=text_pts)
rgb_map = outputs[:, :3]
if use_post_fusion:
rgb_lip = rgb_map.reshape((1, height, width, 3))
rgb_face_canonical = data['rgb_face_zero']
# in canonical space
rgb_face_gt = data['rgb_face_ori']
rgb_face_recon, rgb_face_recon_before, rgb_merged_canonical = model.post_fusion2_onlylip(rgb_lip, rgb_face_canonical, rgb_face_gt, data['mask_lip_canonical'],
data['lip_lefttop_x'], data['lip_lefttop_y'], data['coord'],
use_canonical_space=True, change_pose=args.change_pose,
mask_face_canonical=None) # , wav2lip=data['wav2lip'] for wav2lip's lip, use_canonical_space == True results are better
rgb_img = rgb_map.reshape(1, height, width, 3)
rgb_img = rgb_img.cpu().numpy()[0]
if use_post_fusion:
rgb_face_recon = rgb_face_recon[0].cpu().numpy()
rgb_face_recon = cv2.cvtColor(rgb_face_recon, cv2.COLOR_RGB2BGR)
output_path = test_output_post_dir + "/{:05d}.jpg".format(int(index.data)+1)
cv2.imwrite(output_path, rgb_face_recon * 255)
if __name__ == "__main__":
inference()