forked from KIT-CMS/MSSMvsSMRun2Legacy
-
Notifications
You must be signed in to change notification settings - Fork 0
/
plotSMlikeHiggsPredictions.py
executable file
·414 lines (345 loc) · 18 KB
/
plotSMlikeHiggsPredictions.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
#!/usr/bin/env python
# -*- coding: utf-8 -*-
import ROOT as R
#import CombineHarvester.CombineTools.plotting as plot
import plotting as plot
import numpy as np
import json
import argparse
import os
from array import array
R.gROOT.SetBatch()
plot.ModTDRStyle()
R.TColor.CreateGradientColorTable(3,
array("d",[0. ,0.5, 1.]),
array("d",[0. , 1., 1.]),
array("d",[0.35, 1.,0.65]),
array("d",[1. , 1., 0.]),
1000, 1.0)
parser = argparse.ArgumentParser(description="Derive comparisons for predictions for SM-like Higgs boson")
parser.add_argument('--mssm-benchmark', required=True, help="Path to the MSSM ROOT file for the benchmark scenario to be tested")
parser.add_argument('--bsm-sm-like', required=True, choices=["h", "H", "H1"], help="Name of the Higgs boson in the MSSM, which is supposed to be SM-like.")
parser.add_argument('--sm-predictions', required=True, help="Path to the .json file containing SM predictions for the SM-like Higgs boson.")
parser.add_argument('--plots', default="plots", help="Output directory for plots. Default: %(default)s")
args = parser.parse_args()
bsm_model = R.TFile.Open(args.mssm_benchmark, "read")
bsm_name = os.path.basename(args.mssm_benchmark.strip(".root"))
print("MODEL:",bsm_name)
sm_predictions = {}
with open(args.sm_predictions, "r") as smf:
sm_predictions = json.load(smf)
C = R.TCanvas()
C.SetLeftMargin(1.3)
C.SetRightMargin(0.2)
C.cd()
bsm_predictions = {}
contour_graphs = {}
shift = 1e-7
mass_borders = [122.0,128.0]
bsm_model_names = {
"mh125_13" : "M_{h}^{125}",
"mh125EFT_13" : "M_{h,EFT}^{125}",
"mh125_lc_13" : "M_{h}^{125}(#tilde{#chi})",
"mh125EFT_lc_13" : "M_{h,EFT}^{125}(#tilde{#chi})",
"mh125_ls_13" : "M_{h}^{125}(#tilde{#tau})",
"mh125_align_13" : "M_{h}^{125}(alignment)",
"mHH125_13" : "M_{H}^{125}(alignment)",
"mh1125_CPV_13" : "M_{h_{1}}^{125}(CPV)",
"mh125_muneg_1_13" : "M_{h}^{125}(#mu = #minus1 TeV)",
"mh125_muneg_2_13" : "M_{h}^{125}(#mu = #minus2 TeV)",
"mh125_muneg_3_13" : "M_{h}^{125}(#mu = #minus3 TeV)",
}
sf_range = [0.9, 1.1]
sf_contours = {0.9 : R.kBlue, 0.95 : R.kViolet-6, 0.99 : R.kCyan+1, 1.0 : R.kGreen+2, 1.02 : R.kRed+1, 1.1 : R.kMagenta, 1.3 : R.kBlack}
r_sf_contours = {0.98 : R.kBlue, 1.0 : R.kViolet-6, 1.02 : R.kCyan+1, 1.05 : R.kGreen+2, 1.1 : R.kRed+1, 1.3 : R.kMagenta, 1.5 : R.kBlack}
quantity_settings = {
"sf_gg_{PHI}" : {
"range" : sf_range,
"contours" : sf_contours,
"name" : "SF(gg#rightarrow{PHI}#rightarrow#tau#tau)".format(PHI="h_{1}" if args.bsm_sm_like == "H1" else args.bsm_sm_like),
},
"sf_bb_{PHI}" : {
"range" : sf_range,
"contours" : sf_contours,
"name" : "SF(bb#rightarrow{PHI}#rightarrow#tau#tau)".format(PHI="h_{1}" if args.bsm_sm_like == "H1" else args.bsm_sm_like),
},
"sf_qq_{PHI}" : {
"range" : sf_range,
"contours" : sf_contours,
"name" : "SF(qq#rightarrow{PHI}#rightarrow#tau#tau)".format(PHI="h_{1}" if args.bsm_sm_like == "H1" else args.bsm_sm_like),
},
"sf_gg_{PHI}_mass-corr" : {
"range" : sf_range,
"contours" : sf_contours,
"name" : "mass-corrected SF(gg#rightarrow{PHI}#rightarrow#tau#tau)".format(PHI="h_{1}" if args.bsm_sm_like == "H1" else args.bsm_sm_like),
},
"sf_qq_{PHI}_mass-corr" : {
"range" : sf_range,
"contours" : sf_contours,
"name" : "mass-corrected SF(qq#rightarrow{PHI}#rightarrow#tau#tau)".format(PHI="h_{1}" if args.bsm_sm_like == "H1" else args.bsm_sm_like),
},
"sf_bb_{PHI}_mass-corr" : {
"range" : sf_range,
"contours" : sf_contours,
"name" : "mass-corrected SF(bb#rightarrow{PHI}#rightarrow#tau#tau)".format(PHI="h_{1}" if args.bsm_sm_like == "H1" else args.bsm_sm_like),
},
"r_sf_gg_{PHI}" : {
"range" : sf_range,
"contours" : r_sf_contours,
"name" : "SF ratio for gg#rightarrow{PHI}#rightarrow#tau#tau".format(PHI="h_{1}" if args.bsm_sm_like == "H1" else args.bsm_sm_like),
},
"r_sf_qq_{PHI}" : {
"range" : sf_range,
"contours" : r_sf_contours,
"name" : "SF ratio for qq#rightarrow{PHI}#rightarrow#tau#tau".format(PHI="h_{1}" if args.bsm_sm_like == "H1" else args.bsm_sm_like),
},
"r_sf_bb_{PHI}" : {
"range" : sf_range,
"contours" : r_sf_contours,
"name" : "SF ratio for bb#rightarrow{PHI}#rightarrow#tau#tau".format(PHI="h_{1}" if args.bsm_sm_like == "H1" else args.bsm_sm_like),
},
}
quantities = ['br_{PHI}_tautau', 'width_{PHI}', 'xs_gg_{PHI}', 'xs_bb_{PHI}']
quantities_for_plotting = []
quantity_range = [0.7, 1.3]
quantity_contours = {0.7 : R.kBlue, 0.8 : R.kViolet-6, 0.9 : R.kCyan+1, 1.0 : R.kGreen+2, 1.1 : R.kRed+1, 1.2 : R.kMagenta, 1.3 : R.kBlack}
quantity_settings['br_{PHI}_tautau_non-mass'] = {
"range" : quantity_range,
"contours" : quantity_contours,
"name" : "BSM contributions to BR({PHI}#rightarrow#tau#tau)".replace("{PHI}","h_{1}" if args.bsm_sm_like == "H1" else args.bsm_sm_like),
}
quantity_settings['br_{PHI}_tautau_mass-only'] = {
"range" : quantity_range,
"contours" : quantity_contours,
"name" : "Mass effects on BR({PHI}#rightarrow#tau#tau)".replace("{PHI}","h_{1}" if args.bsm_sm_like == "H1" else args.bsm_sm_like),
}
quantity_settings['xs_gg_{PHI}_non-mass'] = {
"range" : quantity_range,
"contours" : quantity_contours,
"name" : "BSM contributions to #sigma(gg#rightarrow{PHI})".replace("{PHI}","h_{1}" if args.bsm_sm_like == "H1" else args.bsm_sm_like),
}
quantity_settings['xs_gg_{PHI}_mass-only'] = {
"range" : quantity_range,
"contours" : quantity_contours,
"name" : "Mass effects on #sigma(gg#rightarrow{PHI})".replace("{PHI}","h_{1}" if args.bsm_sm_like == "H1" else args.bsm_sm_like),
}
quantity_settings['xs_bb_{PHI}_non-mass'] = {
"range" : quantity_range,
"contours" : quantity_contours,
"name" : "BSM contributions to #sigma(bb#rightarrow{PHI})".replace("{PHI}","h_{1}" if args.bsm_sm_like == "H1" else args.bsm_sm_like),
}
quantity_settings['xs_bb_{PHI}_mass-only'] = {
"range" : quantity_range,
"contours" : quantity_contours,
"name" : "Mass effects on #sigma(bb#rightarrow{PHI})".replace("{PHI}","h_{1}" if args.bsm_sm_like == "H1" else args.bsm_sm_like),
}
quantity_settings['width_{PHI}_non-mass'] = {
"range" : quantity_range,
"contours" : quantity_contours,
"name" : "BSM contributions to #Gamma_{{PHI}}^{tot}".replace("{PHI}","h_{1}" if args.bsm_sm_like == "H1" else args.bsm_sm_like),
}
quantity_settings['width_{PHI}_mass-only'] = {
"range" : quantity_range,
"contours" : quantity_contours,
"name" : "Mass effects on #Gamma_{{PHI}}^{tot}".replace("{PHI}","h_{1}" if args.bsm_sm_like == "H1" else args.bsm_sm_like),
}
quantity_settings['m_{PHI}'] = {
"range" : mass_borders,
"contours" : {110.0 : R.kBlue, 120.5 : R.kViolet-6, 122.0 : R.kCyan+1, 125.0 : R.kGreen+2, 128.0 : R.kRed+1, 129.5 : R.kMagenta, 140.0 : R.kBlack},
"name" : "m_{{PHI}}".replace("{PHI}","h_{1}" if args.bsm_sm_like == "H1" else args.bsm_sm_like),
}
if args.bsm_sm_like in ['h']:
quantity_settings['gsq_{PHI}_VV'] = {
"range" : [0.99, 1.01],
"contours" : {0.97 : R.kBlue, 0.98 : R.kViolet-6, 0.99 : R.kCyan+1, 1.0 : R.kGreen+2, 1.01 : R.kRed+1, 1.02 : R.kMagenta, 1.04 : R.kBlack},
"name" : "sin^{2}(#beta #minus #alpha)",
}
if args.bsm_sm_like in ['H']:
quantity_settings['gsq_{PHI}_VV'] = {
"range" : [0.9, 0.92],
"contours" : {0.88 : R.kBlue, 0.89 : R.kViolet-6, 0.90 : R.kCyan+1, 0.91 : R.kGreen+2, 0.92 : R.kRed+1, 0.93 : R.kMagenta, 0.94 : R.kBlack},
"name" : "cos^{2}(#beta #minus #alpha)",
}
for quantity in quantities:
for postfix in "", "_SM":
bsm_predictions[quantity + postfix] = bsm_model.Get((quantity + postfix).format(PHI=args.bsm_sm_like))
# Currently, these entries not available in the input file
if "EFT" in bsm_name or "mHH" in bsm_name:
bsm_predictions['br_{PHI}_tautau_SM'] = bsm_predictions['br_{PHI}_tautau'].Clone('br_{PHI}_tautau_SM'.format(PHI=args.bsm_sm_like))
bsm_predictions['width_{PHI}_SM'] = bsm_predictions['width_{PHI}'].Clone('width_{PHI}_SM'.format(PHI=args.bsm_sm_like))
# Currently, this entry is buggy in the input file
if "h1125" in bsm_name:
bsm_predictions['xs_gg_{PHI}_SM'] = bsm_predictions['xs_gg_{PHI}'].Clone('xs_gg_{PHI}_SM'.format(PHI=args.bsm_sm_like))
bsm_predictions["m_{PHI}"] = bsm_model.Get("m_{PHI}".format(PHI=args.bsm_sm_like))
bsm_predictions["m_{PHI}_inverted"] = bsm_predictions["m_{PHI}"].Clone("m_{PHI}_inverted".format(PHI=args.bsm_sm_like))
if args.bsm_sm_like in ['h', 'H']:
bsm_predictions["rescale_gt_H"] = bsm_model.Get("rescale_gt_H")
for bsm_pred in bsm_predictions.values():
bsm_pred.SetContour(1000)
NXBins = bsm_predictions["m_{PHI}"].GetNbinsX() # mA or mHp
NYBins = bsm_predictions["m_{PHI}"].GetNbinsY() # tanb
# Transform m_{PHI} inverted histogram
for i_X in range(1, NXBins+1):
for i_Y in range(1,NYBins+1):
value = 0
if bsm_predictions["m_{PHI}_inverted"].GetBinContent(i_X,i_Y) != 0:
value = 1.-(1./bsm_predictions["m_{PHI}_inverted"].GetBinContent(i_X,i_Y))
bsm_predictions["m_{PHI}_inverted"].SetBinContent(i_X,i_Y,value)
# Computing weight for VV coupling of SM-like Higgs (for CP conserving scenarios)
if args.bsm_sm_like in ['h', 'H']:
bsm_predictions["gsq_{PHI}_VV"] = bsm_predictions["rescale_gt_H"].Clone("gsq_{PHI}_VV".format(PHI=args.bsm_sm_like))
for i_X in range(1, NXBins+1):
for i_Y in range(1,NYBins+1):
tanb = bsm_predictions["gsq_{PHI}_VV"].GetYaxis().GetBinLowEdge(i_Y)
yt_H = bsm_predictions["rescale_gt_H"].GetBinContent(i_X, i_Y)
beta = np.arctan(tanb)
alpha = np.arcsin(min(1.,max(-1.,yt_H*np.sin(beta))))
if args.bsm_sm_like == "h":
bsm_predictions["gsq_{PHI}_VV"].SetBinContent(i_X,i_Y,np.sin(beta - alpha)**2)
elif args.bsm_sm_like == "H":
bsm_predictions["gsq_{PHI}_VV"].SetBinContent(i_X,i_Y,np.cos(beta - alpha)**2)
# Compute non-mass contributions to quantities by dividing their SM-like equivalents at correct mass
for quantity in quantities:
keyname = quantity + "_non-mass"
bsm_predictions[keyname] = bsm_predictions[quantity].Clone(keyname.format(PHI=args.bsm_sm_like))
bsm_predictions[keyname].Divide(bsm_predictions[quantity + "_SM"])
# Compute mass-only contributions to quantities by dividing SM-like quantities by the ones for SMH125
for quantity in quantities:
keyname = quantity + "_mass-only"
bsm_predictions[keyname] = bsm_predictions[quantity + "_SM"].Clone(keyname.format(PHI=args.bsm_sm_like))
bsm_predictions[keyname].Scale(1. / sm_predictions[quantity.format(PHI="SMH125")])
# Compute total scale factors for ggPHI and qqPHI without mass correction (assuming signal templates are scaled to SMH125)
sfname = "sf_gg_{PHI}"
bsm_predictions[sfname] = bsm_predictions["br_{PHI}_tautau"].Clone(sfname.format(PHI=args.bsm_sm_like))
bsm_predictions[sfname].Multiply(bsm_predictions["xs_gg_{PHI}"])
bsm_predictions[sfname].Scale(1. / (sm_predictions["br_{PHI}_tautau".format(PHI="SMH125")] * sm_predictions["xs_gg_{PHI}".format(PHI="SMH125")]) )
sfname = "sf_bb_{PHI}"
bsm_predictions[sfname] = bsm_predictions["br_{PHI}_tautau"].Clone(sfname.format(PHI=args.bsm_sm_like))
bsm_predictions[sfname].Multiply(bsm_predictions["xs_bb_{PHI}"])
bsm_predictions[sfname].Scale(1. / (sm_predictions["br_{PHI}_tautau".format(PHI="SMH125")] * sm_predictions["xs_bb_{PHI}".format(PHI="SMH125")]) )
sfname = "sf_qq_{PHI}"
bsm_predictions[sfname] = bsm_predictions["br_{PHI}_tautau"].Clone(sfname.format(PHI=args.bsm_sm_like))
if args.bsm_sm_like in ['h', 'H']:
bsm_predictions[sfname].Multiply(bsm_predictions["gsq_{PHI}_VV"])
bsm_predictions[sfname].Scale(1. / sm_predictions["br_{PHI}_tautau".format(PHI="SMH125")])
# Compute total scale factors for ggPHI and qqPHI with mass correction (assuming signal templates are scaled to SMH125)
sfname = "sf_gg_{PHI}_mass-corr"
bsm_predictions[sfname] = bsm_predictions["br_{PHI}_tautau_non-mass"].Clone(sfname.format(PHI=args.bsm_sm_like))
bsm_predictions[sfname].Multiply(bsm_predictions["xs_gg_{PHI}_non-mass"])
sfname = "sf_bb_{PHI}_mass-corr"
bsm_predictions[sfname] = bsm_predictions["br_{PHI}_tautau_non-mass"].Clone(sfname.format(PHI=args.bsm_sm_like))
bsm_predictions[sfname].Multiply(bsm_predictions["xs_bb_{PHI}_non-mass"])
sfname = "sf_qq_{PHI}_mass-corr"
bsm_predictions[sfname] = bsm_predictions["br_{PHI}_tautau_non-mass"].Clone(sfname.format(PHI=args.bsm_sm_like))
if args.bsm_sm_like in ['h', 'H']:
bsm_predictions[sfname].Multiply(bsm_predictions["gsq_{PHI}_VV"])
# Ratio of the two types of scale factors for ggPHI and qqPHI
sfname = "r_sf_gg_{PHI}"
bsm_predictions[sfname] = bsm_predictions["sf_gg_{PHI}"].Clone(sfname.format(PHI=args.bsm_sm_like))
bsm_predictions[sfname].Divide(bsm_predictions["sf_gg_{PHI}_mass-corr"])
sfname = "r_sf_bb_{PHI}"
bsm_predictions[sfname] = bsm_predictions["sf_bb_{PHI}"].Clone(sfname.format(PHI=args.bsm_sm_like))
bsm_predictions[sfname].Divide(bsm_predictions["sf_bb_{PHI}_mass-corr"])
sfname = "r_sf_qq_{PHI}"
bsm_predictions[sfname] = bsm_predictions["sf_qq_{PHI}"].Clone(sfname.format(PHI=args.bsm_sm_like))
bsm_predictions[sfname].Divide(bsm_predictions["sf_qq_{PHI}_mass-corr"])
# Compute the contours for invalid mass values of SM-like Higgs boson
mh122_contours = plot.contourFromTH2(bsm_predictions["m_{PHI}_inverted"], (1-1./mass_borders[0]), 5, frameValue=1)
mh128_contours = plot.contourFromTH2(bsm_predictions["m_{PHI}"], mass_borders[1], 5, frameValue=1)
for graph in mh122_contours:
if graph.GetN() > 5:
graph.SetLineColor(R.kRed)
graph.SetLineWidth(3)
graph.SetFillColor(R.kRed)
graph.SetFillStyle(3004)
contour_graphs.setdefault("m_{PHI}_border", []).append((mass_borders[0], graph.Clone()))
for graph in mh128_contours:
if graph.GetN() > 5:
graph.SetLineColor(R.kRed)
graph.SetLineWidth(3)
graph.SetFillColor(R.kRed)
graph.SetFillStyle(3004)
contour_graphs.setdefault("m_{PHI}_border", []).append((mass_borders[1], graph.Clone()))
legend_mphi = R.TLegend(0.08,0.95,0.6,0.99)
legend_mphi.SetFillStyle(0)
legend_mphi.SetTextSize(0.03)
legend_mphi.AddEntry(contour_graphs["m_{PHI}_border"][0][1],"m_{PHI} #notin [122,128] GeV".replace("PHI","h_{1}" if args.bsm_sm_like == "H1" else args.bsm_sm_like),"F")
C.Clear()
out = R.TFile.Open(bsm_name + "_debug.root", "recreate")
for bsm_pred in bsm_predictions.values():
print(bsm_pred)
bsm_pred.Write()
out.Close()
# Compute the contours for required quantities
contour_quantities = []
for key in bsm_predictions.keys():
if "sf_" in key or "mass-only" in key or "non-mass" in key or key == "m_{PHI}" or "gsq_" in key:
contour_quantities.append(key)
for key in contour_quantities:
bsm_pred = bsm_predictions[key]
contours = np.array(list(quantity_settings[key]["contours"].keys()))
contour_graphs.setdefault(key, [])
for cval in contours:
contour_hist = bsm_predictions[key].Clone("conthist")
contour_hist.SetContour(1, np.array([cval]))
contour_hist.Draw('cont z list')
C.Update()
conts = R.gROOT.GetListOfSpecials().FindObject('contours')
for cont in conts:
for graph in cont:
if graph.GetN() > 30:
graph.SetLineWidth(3)
contour_graphs[key].append((cval, graph.Clone()))
C.Clear()
# Resetting values to range borders, if magnitude too big
for i_X in range(1, NXBins+1):
for i_Y in range(1,NYBins+1):
value = bsm_pred.GetBinContent(i_X, i_Y)
if value <= quantity_settings[key]["range"][0]:
bsm_pred.SetBinContent(i_X, i_Y, quantity_settings[key]["range"][0] + shift)
if value >= quantity_settings[key]["range"][1]:
bsm_pred.SetBinContent(i_X, i_Y, quantity_settings[key]["range"][1] - shift)
# Prepare plotting
haxis = bsm_predictions["m_{PHI}"].Clone("axis")
xtitle = "m_{A} [GeV]" if args.bsm_sm_like == "h" else "m_{H^{+}} [GeV]"
haxis.GetYaxis().SetTitleOffset(0.95)
latex = R.TLatex()
latex.SetTextFont(42)
latex.SetTextAlign(31)
latex.SetTextSize(0.04)
if not os.path.isdir(os.path.join(args.plots, bsm_name)):
os.makedirs(os.path.join(args.plots, bsm_name))
for key in contour_quantities:
C.Clear()
contour_legend = R.TLegend(0.6, 0.6, 0.9, 0.9)
contour_legend.SetFillStyle(0)
contour_legend.SetTextSize(0.04)
haxis.SetMinimum(quantity_settings[key]["range"][0])
haxis.SetMaximum(quantity_settings[key]["range"][1])
haxis.SetTitle(";".join(["",xtitle,"tan#beta"]))
if "EFT" in bsm_name:
haxis.GetXaxis().SetRangeUser(91.5, haxis.GetXaxis().GetXmax())
haxis.Draw("axis")
bsm_predictions[key].GetZaxis().SetTitle(quantity_settings[key]["name"])
bsm_predictions[key].GetZaxis().SetTitleOffset(1.4)
bsm_predictions[key].Draw("colz same")
current_level = None
for level,graph in contour_graphs[key]:
graph.SetLineColor(quantity_settings[key]["contours"][level])
if current_level != level:
current_level = level
contour_legend.AddEntry(graph, str(current_level), "l")
graph.Draw("C same")
if key != "m_{PHI}":
for level,graph in contour_graphs["m_{PHI}_border"]:
graph.Draw("C same")
graph.Draw("F same")
contour_legend.Draw()
if key != "m_{PHI}":
legend_mphi.Draw()
latex.DrawLatex(haxis.GetXaxis().GetXmax(), haxis.GetYaxis().GetXmax()+(haxis.GetYaxis().GetXmax()-haxis.GetYaxis().GetXmin())*0.02, bsm_model_names[bsm_name])
C.Update()
C.RedrawAxis()
plotname = os.path.join(args.plots, bsm_name, key.format(PHI=args.bsm_sm_like))
C.SaveAs(plotname + ".pdf")
C.SaveAs(plotname + ".png")