forked from LIMO-EEG-Toolbox/limo_tools
-
Notifications
You must be signed in to change notification settings - Fork 1
/
limo_glm1_boot.m
552 lines (468 loc) · 19.4 KB
/
limo_glm1_boot.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
function model = limo_glm1_boot(varargin)
% Boostrapped version of limo_glm1
% Importantly it also runs per electrodes - but do N bootstraps to obtain
% the distributon of F (and associated p values) under H0
% H0 is obtained by either by resampling from centered data (categorical designs)
% or sampling Y but leaving X intact, i.e. breaking the link between Y and X
%
% FORMAT:
% model = limo_glm1_boot(Y,LIMO,boot_table)
% model = limo_glm1_boot(Y,X,nb_conditions,nb_interactions,nb_continuous,zscore,method,analysis type,n_freqs,n_times,boot_table)
%
% INPUTS
% Y = 2D matrix of EEG data with format trials x frames
% LIMO is a structure that contains information below
% X = 2 dimensional design matrix
% nb_conditions = a vector indicating the number of conditions per factor
% nb_interactions = a vector indicating number of columns per interactions
% nb_continuous = number of covariates
% method = 'OLS', 'WLS', 'IRLS' (bisquare)
% analysis type = 'Time', 'Frequency' or 'Time-Frequency'
% n_freqs is the nb of frequency bins
% n_times is the nb of time bins
% boot_table is an optional argument - this is the resampling table
% if one calls limo_glm1_boot to loop throughout channels,
% this might a good idea to provide such table so that
% the same resampling applies to each channel
%
% See also
% LIMO_DESIGN_MATRIX, LIMO_WLS, LIMO_IRLS, LIMO_EEG(4)
%
% Cyril Pernet v1 18-07-2012
% Cyril Pernet v2 07-07-2015 (methods and analysis type)
% --------------------------------------------------------
% Copyright (C) LIMO Team 2015
%% varagin
nboot = 599; %
if nargin == 2 || nargin == 3
y = varargin{1};
X = varargin{2}.design.X;
nb_conditions = varargin{2}.design.nb_conditions;
nb_interactions = varargin{2}.design.nb_interactions;
nb_continuous = varargin{2}.design.nb_continuous;
z = varargin{2}.design.zscore;
method = varargin{2}.design.method;
Analysis = varargin{2}.Analysis;
if strcmp(Analysis,'Time-Frequency')
if strcmp(method,'WLS')
method = 'WLS-TF'; % run weights per freq band
end
n_freqs = varargin{2}.data.size4D(2);
n_times = varargin{2}.data.size4D(3);
else
n_freqs = []; n_times =[];
end
if nargin == 2
boot_table = randi(size(Y,1),size(Y,1),nboot);
elseif nargin == 3
boot_table = varargin{3};
nboot = size(boot_table,2);
end
elseif nargin == 10 || nargin == 11
y = varargin{1};
X = varargin{2};
nb_conditions = varargin{3};
nb_interactions = varargin{4};
nb_continuous = varargin{5};
z = varargin{6};
method = varargin{7};
Analysis = varargin{8};
n_freqs = varargin{9};
n_times = varargin{10};
if nargin == 10
boot_table = randi(size(y,1),size(y,1),nboot);
elseif nargin == 11
boot_table = varargin{11};
nboot = size(boot_table,2);
end
else
error('varargin error in limo_glm1_boot')
end
clear varargin
nb_factors = numel(nb_conditions);
if nb_factors == 1 && nb_conditions == 0
nb_factors = 0;
end
% -----------
%% Data check
% -----------
if size(y,1)~=size(X,1)
error('The number of events in Y and the design matrix are different')
end
if nb_interactions == 0
nb_interactions = [];
end
% ----------
%% Bootstrap
% -----------
design = X;
% if categorical design, center data 1st
% ---------------------------------------
if nb_continuous == 0
centered_y = NaN(size(y,1),size(y,2));
if ~isempty(nb_interactions)
% look up the last interaction to get unique groups
if length(nb_interactions) == 1
start_at = sum(nb_conditions);
else
start_at = sum(nb_conditions)+sum(nb_interactions(1:end-1));
end
for cel=(start_at+1):(start_at+nb_interactions(end))
index = find(X(:,cel));
centered_y(index,:) = y(index,:) - repmat(mean(y(index,:),1),length(index),1);
end
elseif size(nb_conditions,2) == 1
% no interactions because just 1 factor
for cel=1:nb_conditions
index = find(X(:,cel));
centered_y(index,:) = y(index,:) - repmat(mean(y(index,:),1),length(index),1);
end
else
% create fake interaction to get groups
[tmpX interactions] = limo_make_interactions(X(:,1:(end-1)), nb_conditions);
if length(interactions) == 1
start_at = sum(nb_conditions);
else
start_at = sum(nb_conditions)+sum(interactions(1:end-1));
end
for cel=(start_at+1):(start_at+interactions(end))
index = find(tmpX(:,cel));
centered_y(index,:) = y(index,:) - repmat(mean(y(index,:),1),[size(y(index,:),1)],1);
end
end
clear y
else
centered_y = y;
design = X;
end
% workout the interaction increment (blocks on interactions terms to add-up)
if nb_factors > 1 && ~isempty(nb_interactions) % N-ways ANOVA with interactions
for n=2:nb_factors
increment(n-1) = size(nchoosek([1:nb_factors],n),1);
end
else
increment = [];
end
% compute for each bootstrap
% ---------------------------
parfor B = 1:nboot
% fprintf('boot n %g\n',B)
% create data under H0
if nb_continuous == 0
% if just categorical variables, sample from the centered data and
% the design simultaneously - rezscore if needed
Y = centered_y(boot_table(:,B),:); % resample Y
X = design(boot_table(:,B),:); % resample X
if z == 1 % rezscore the covariates
N = nb_conditions + nb_interactions;
if N==0 || isempty(N)
if sum(mean(X(:,1:end-1),1)) > 10e-15
X(:,1:end-1) = zscore(X(:,1:end-1));
end
else
if sum(mean(X(:,N+1:end-1),1)) > 10e-15
X(:,N+1:end-1) = zscore(X(:,N+1:end-1));
end
end
end
else
% sample and break the link between Y and X (regression and AnCOVA designs)
Y = y(boot_table(:,B),:); % resample
X = design; % stays the same
end
% ------------------------------
% Compute model parameters
% ------------------------------
% total sum of squares, projection matrix for errors, residuals and betas
% -----------------------------------------------------------------------
T = (Y-repmat(mean(Y),size(Y,1),1))'*(Y-repmat(mean(Y),size(Y,1),1)); % SS Total
R = eye(size(Y,1)) - (X*pinv(X)); % Projection on E
E = (Y'*R*Y); % SS Error
% compute Beta parameters
if strcmp(method,'OLS')
if strcmp(Analysis,'Time-Frequency')
W = ones(n_freqs,size(X,1));
else
W = ones(size(Y,1),1);
end
if nb_continuous ~=0 && nb_factors == 0
Betas = X\Y; % numerically more stable than pinv
else
Betas = pinv(X)*Y;
end
elseif strcmp(method,'WLS')
[Betas,W] = limo_WLS(X,Y);
elseif strcmp(method,'WLS-TF')
% unpack the data
[n_freq_times, N] = size(Y');
if n_freq_times ~= n_freqs*n_times
error('dimensions disagreement to reshape freq*time')
else
reshaped = nan(n_freqs, n_times, N);
end
for tr = 1:N
eft_3d = nan(n_freqs,n_times);
for tm = 1:n_times
this_freq_start_index = tm*n_freqs - n_freqs + 1; % Set index in the long 2D tf
eft_3d(:,tm) =Y(tr,this_freq_start_index:(this_freq_start_index+n_freqs-1))';
end
reshaped(:,:,tr) = eft_3d;
end
% get estimates per freq band
Betas = NaN(size(X,2),n_freqs*n_times);
W = NaN(n_freqs,size(X,1));
index1 = 1;
for f=1:n_freqs
[Betas(:,index1:6:(n_freqs*n_times)),W(f,:)] = limo_WLS(X,squeeze(reshaped(f,:,:))');
index1=index1+1;
end
clear reshaped
elseif strcmp(method,'IRLS')
[Betas,W] = limo_IRLS(X,Y);
end
BETASB(:,:,B) = Betas';
% compute model R^2
% -----------------
C = eye(size(X,2));
C(:,size(X,2)) = 0;
C0 = eye(size(X,2)) - C*pinv(C);
X0 = X*C0; % Reduced model
R0 = eye(size(Y,1)) - (X0*pinv(X0));
M = R0 - R; % Projection matrix onto Xc
H = (Betas'*X'*M*X*Betas); % SS Effect
Rsquare = diag(H)./diag(T); % Variances explained
F_Rsquare = (diag(H)./(rank(X)-1)) ./ (diag(E)/(size(Y,1)-rank(X)));
p_Rsquare = 1 - fcdf(F_Rsquare, (rank(X)-1), (size(Y,1)-rank(X)));
% ------------------------------
% Compute F for dummy variables
% ------------------------------
% -------------------------
if nb_factors == 1 % 1-way ANOVA
% -------------------------
% compute F for categorical variables
% -----------------------------------
if nb_conditions ~= 0 && nb_continuous == 0
df_conditions = rank(C)-1;
F_conditions = F_Rsquare;
pval_conditions = p_Rsquare;
elseif nb_conditions ~= 0 && nb_continuous ~= 0
C = eye(size(X,2));
C(:,(nb_conditions+1):size(X,2)) = 0;
C0 = eye(size(X,2)) - C*pinv(C);
X0 = X*C0; % Here the reduced model includes the covariates
R0 = eye(size(Y,1)) - (X0*pinv(X0));
M = R0 - R;
H = (Betas'*X'*M*X*Betas);
df_conditions = rank(C)-1;
F_conditions = (diag(H)/(rank(C)-1)) ./ (diag(E)/(size(Y,1)-rank(X)));
pval_conditions = 1 - fcdf(F_conditions(:), df_conditions, (size(Y,1)-rank(X)));
end
F_CONDVALUES{B} = F_conditions;
p_CONDVALUES{B} = pval_conditions;
% ------------------------------------------------
elseif nb_factors > 1 && isempty(nb_interactions) % N-ways ANOVA without interactions
% ------------------------------------------------
% --------------------------------------
% compute F and p values of each factor
% --------------------------------------
df_conditions = zeros(1,length(nb_conditions));
F_conditions = zeros(length(nb_conditions),size(Y,2));
pval_conditions = zeros(length(nb_conditions),size(Y,2));
eoi = zeros(1,size(X,2));
eoi(1:nb_conditions(1)) = 1:nb_conditions(1);
eoni = [1:size(X,2)];
eoni = find(eoni - eoi);
for f = 1:length(nb_conditions)
C = eye(size(X,2));
C(:,eoni) = 0;
C0 = eye(size(X,2)) - C*pinv(C);
X0 = X*C0;
R0 = eye(size(Y,1)) - (X0*pinv(X0));
M = R0 - R;
H = (Betas'*X'*M*X*Betas);
df_conditions(f) = rank(C)-1;
F_conditions(f,:) = (diag(H)/df_conditions(f)) ./ (diag(E)/(size(Y,1)-rank(X)));
pval_conditions(f,:) = 1 - fcdf(F_conditions(f,:), df_conditions(f), (size(Y,1)-rank(X)));
% update factors
if f<length(nb_conditions)
update = max(find(eoi));
eoi = zeros(1,size(X,2));
eoi((update+1):(update+nb_conditions(f+1))) = update + (1:nb_conditions(f+1));
eoni = [1:size(X,2)];
eoni = find(eoni - eoi);
end
end
F_CONDVALUES{B} = F_conditions;
p_CONDVALUES{B} = pval_conditions;
% ------------------------------------------------
elseif nb_factors > 1 && ~isempty(nb_interactions) % N-ways ANOVA with interactions
% ------------------------------------------------
% ---------------------------------------------------
% start by ANOVA without interaction for main effects
% ---------------------------------------------------
df_conditions = zeros(1,length(nb_conditions));
F_conditions = zeros(length(nb_conditions),size(Y,2));
pval_conditions = zeros(length(nb_conditions),size(Y,2));
% covariates
covariate_columns = [(sum(nb_conditions)+sum(nb_interactions)+1):(size(X,2)-1)];
% main effects
dummy_columns = 1:sum(nb_conditions);
% re-define X
x = [X(:,dummy_columns) X(:,covariate_columns) ones(size(X,1),1)];
% run same model as above
R = eye(size(Y,1)) - (x*pinv(x));
% compute Beta parameters using previsouly found weights from the whole model
if strcmp(method,'IRLS')
betas = pinv(W*x)*(W*Y);
else
betas = pinv(repmat(W,1,size(x,2)).*x)*(repmat(W,1,size(Y,2)).*Y);
end
eoi = zeros(1,size(x,2));
eoi(1:nb_conditions(1)) = 1:nb_conditions(1);
eoni = [1:size(x,2)];
eoni = find(eoni - eoi);
for f = 1:length(nb_conditions)
C = eye(size(x,2));
C(:,eoni) = 0;
C0 = eye(size(x,2)) - C*pinv(C);
X0 = x*C0;
R0 = eye(size(Y,1)) - (X0*pinv(X0));
M = R0 - R;
H(f,:) = diag((betas'*x'*M*x*betas));
df_conditions(f) = rank(C)-1;
F_conditions(f,:) = (H(f,:)./df_conditions(f)) ./ (diag(E)./(size(Y,1)-rank(X)))';
pval_conditions(f,:) = 1 - fcdf(F_conditions(f,:), df_conditions(f), (size(Y,1)-rank(X)));
% update factors
if f<length(nb_conditions)
update = max(find(eoi));
eoi = zeros(1,size(x,2));
eoi((update+1):(update+nb_conditions(f+1))) = update + (1:nb_conditions(f+1));
eoni = [1:size(x,2)];
eoni = find(eoni - eoi);
end
end
F_CONDVALUES{B} = F_conditions;
p_CONDVALUES{B} = pval_conditions;
% ---------------------------
% now deal with interactions
% ---------------------------
if nb_factors == 2 && nb_continuous == 0 % the quick way with only one interaction
HI = diag(T)' - H(1,:) - H(2,:) - diag(E)';
df_interactions = prod(df_conditions);
F_interactions = (HI./df_interactions) ./ (diag(E)/(size(Y,1)-rank(X)))';
pval_interactions = 1 - fcdf(F_interactions, df_interactions, (size(Y,1)-rank(X)));
else % run through each interaction
% part of X unchanged
Main_effects = [X(:,dummy_columns)];
Cov_and_Mean = [X(:,covariate_columns) ones(size(Y,1),1)];
% check interaction levels
increment_count = 1; % where are we in the I increment
I_block = 1; % use to count how many I to add togeher
start = sum(nb_conditions)+1;
for n=1:length(nb_interactions)
stop = start+nb_interactions(n)-1;
I = X(:,start:stop);
% re-define X with interactions
x = [Main_effects I Cov_and_Mean];
SS = size(Main_effects,2);
EE = size(I,2);
eoi = zeros(1,size(x,2));
eoi((SS+1):(SS+EE)) = [(SS+1):(SS+EE)];
eoni = [1:size(x,2)];
eoni = find(eoni - eoi);
start = stop+1; % update for the next round
%figure; imagesc(x);
I_block = I_block+1;
if I_block == sum(increment(1:increment_count))
add_columns_up_to = sum(nb_conditions)+sum(nb_interactions(1:I_block));
elseif I_block > sum(increment(1:increment_count))
increment_count = increment_count+1;
Main_effects = [Main_effects X(:,(sum(nb_conditions)+1):add_columns_up_to)]
end
% run same model as above
R = eye(size(Y,1)) - (x*pinv(x));
if strcmp(method,'IRLS')
betas = pinv(Wx)*WY;
else
betas = pinv(repmat(W,1,size(x,2)).*x)*(repmat(W,1,size(Y,2)).*Y);
end
C = eye(size(x,2));
C(:,eoni) = 0;
C0 = eye(size(x,2)) - C*pinv(C);
X0 = x*C0;
R0 = eye(size(Y,1)) - (X0*pinv(X0));
M = R0 - R;
HI(n,:) = diag((betas'*x'*M*x*betas))';
end
end
% get appropriate df and F/p values
df_interactions = zeros(1,length(nb_interactions));
F_interactions = zeros(length(nb_interactions),size(Y,2));
pval_interactions = zeros(length(nb_interactions),size(Y,2));
I_index = 1;
for n=2:nb_factors
combinations = nchoosek([1:nb_factors],n);
for c = 1:size(combinations,1)
df_interactions(I_index) = prod(df_conditions(combinations(c,:)));
F_interactions(I_index,:) = (HI(I_index,:)./df_interactions(I_index)) ./ (diag(E)/(size(Y,1)-rank(X)))';
pval_interactions(I_index,:) = 1 - fcdf(F_interactions(I_index,:), df_interactions(I_index), (size(Y,1)-rank(X)));
I_index = I_index +1;
end
end
if nb_factors ~= 0
F_INTERVALUES{B} = F_interactions;
p_INTERVALUES{B} = pval_interactions;
end
end
% -----------------------------------
%% compute F for continuous variables
% -----------------------------------
if nb_continuous ~=0
if nb_factors == 0 && nb_continuous == 1 % simple regression
F_CONTVALUES{B} = F_Rsquare;
p_CONTVALUES{B} = p_Rsquare;
else % ANCOVA
% pre-allocate space
F_continuous = zeros(nb_continuous,size(Y,2));
pval_continuous = zeros(nb_continuous,size(Y,2));
% compute
N_conditions = sum(nb_conditions) + sum(nb_interactions);
for n = 1:nb_continuous
C = zeros(size(X,2));
C(N_conditions+n,N_conditions+n) = 1;
C0 = eye(size(X,2)) - C*pinv(C);
X0 = X*C0;
R0 = eye(size(Y,1)) - (X0*pinv(X0));
M = R0 - R;
H = Betas'*X'*M*X*Betas;
F_continuous(n,:) = (diag(H)./(rank(C))) ./ (diag(E)/(size(Y,1)-rank(X)));
pval_continuous(n,:) = 1 - fcdf(F_continuous(n,:), 1, (size(Y,1)-rank(X)));
end
F_CONTVALUES{B} = F_continuous';
p_CONTVALUES{B} = pval_continuous';
end
end
% ----------------------------
%% update the model structure
% ----------------------------
MODELR2{B} = Rsquare;
MODELF{B} = F_Rsquare;
MODELp{B} = p_Rsquare;
end
model.R2 = MODELR2;
model.F = MODELF;
model.p = MODELp;
model.Betas = BETASB;
try
model.conditions.F = F_CONDVALUES;
model.conditions.p = p_CONDVALUES;
end
try
model.interactions.F = F_INTERVALUES;
model.interactions.p = p_INTERVALUES;
end
try
model.continuous.F = F_CONTVALUES;
model.continuous.p = p_CONTVALUES;
end
end