forked from Cyanogenoid/pytorch-vqa
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpreprocess-images.py
74 lines (58 loc) · 2.02 KB
/
preprocess-images.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
import h5py
from torch.autograd import Variable
import torch.nn as nn
import torch.backends.cudnn as cudnn
import torch.utils.data
import torchvision.models as models
from tqdm import tqdm
import config
import data
import utils
from resnet import resnet as caffe_resnet
class Net(nn.Module):
def __init__(self):
super(Net, self).__init__()
self.model = caffe_resnet.resnet152(pretrained=True)
def save_output(module, input, output):
self.buffer = output
self.model.layer4.register_forward_hook(save_output)
def forward(self, x):
self.model(x)
return self.buffer
def create_coco_loader(*paths):
transform = utils.get_transform(config.image_size, config.central_fraction)
datasets = [data.CocoImages(path, transform=transform) for path in paths]
dataset = data.Composite(*datasets)
data_loader = torch.utils.data.DataLoader(
dataset,
batch_size=config.preprocess_batch_size,
num_workers=config.data_workers,
shuffle=False,
pin_memory=True,
)
return data_loader
def main():
cudnn.benchmark = True
net = Net().cuda()
net.eval()
loader = create_coco_loader(config.train_path, config.val_path)
features_shape = (
len(loader.dataset),
config.output_features,
config.output_size,
config.output_size
)
with h5py.File(config.preprocessed_path, 'w', libver='latest') as fd:
features = fd.create_dataset('features', shape=features_shape, dtype='float16')
coco_ids = fd.create_dataset('ids', shape=(len(loader.dataset),), dtype='int32')
i = j = 0
with torch.no_grad():
for ids, imgs in tqdm(loader):
imgs = Variable(imgs.cuda(non_blocking=True))
out = net(imgs)
j = i + imgs.size(0)
features[i:j, :, :] = out.data.cpu().numpy().astype('float16')
coco_ids[i:j] = ids.numpy().astype('int32')
i = j
if __name__ == '__main__':
main()