Skip to content

Latest commit

 

History

History
90 lines (74 loc) · 4.13 KB

README.md

File metadata and controls

90 lines (74 loc) · 4.13 KB

AutoDrive-ObjectDetection

Running detection for AutoDrive

  1. Import run_detection() function from group5_detection.py
from group5_detection import run_detection

Call function

generated_3d_bb_list, detection_info, detection_metrics = run_detection(calib, image, pcd, bb_list, None, use_vis=False, use_mask=False)
run_detection inputs
  • calib: Python dictionary containing the calibration matrices

    • calib['ad_transform_mat'] = <Loaded tformM.dd.mat file>
      • Example: [[ 0.99949539 0.01640254 0.02720155 0. ] [-0.02679296 -0.02463567 0.99933739 0. ] [ 0.0170618 -0.99956192 -0.02418377 0. ] [ 0.08124735 0.0277852 -0.21577977 1. ]]
    • calib['ad_projection_mat'] = <Loaded intrinsics_zed.mat file>
      • Example: [[1.01722412e+03 0.00000000e+00 0.00000000e+00] [0.00000000e+00 1.01930326e+03 0.00000000e+00] [9.64567972e+02 5.49720343e+02 1.00000000e+00]]
  • image: Image of the scene as a NumPy array

  • pcd: (Nx3) PointCloud of the scene as NumPy array

  • bb_list: List of 2D detections from 2D detector backbone

    • Each detection in the list is of the format [x1, y1, x2, y2, class, confidence]
    • Example of scene with 7 detections:
      • [['1494' '241' '1534' '328' 'traffic light' '0.59765625'] ['691' '539' '715' '562' 'traffic sign' '0.4794921875'] ['1012' '553' '1032' '577' 'traffic sign' '0.46044921875'] ['816' '483' '831' '508' 'traffic light' '0.436279296875'] ['503' '589' '818' '691' 'car' '0.41015625'] ['1559' '531' '1586' '561' 'traffic sign' '0.409423828125'] ['817' '422' '838' '449' 'traffic sign' '0.40283203125']]
run_detection outputs
  • generated_3d_bb_list: List of Open3D Bounding Boxes (Can be AxisAlignedBoundingBox or OrientedBoundingBox)
  • detection_info: List of Dictionaries containing comprehensive detection results for each detection in bb_list
    • Each dictionary within the list is of the following format:
      • detection_info['bb']: 2D bounding box
      • detection_info['class']: Detection class
      • detection_info['confidence']: 2D detection confidence
      • detection_info['frustum_pcd']: PointCloud as np array, contains all points within the detections frustum
      • detection_info['object_candidate_cluster']: PointCloud as np array, contains all points that belong to the 3D object
      • detection_info['generated_3d_bb']: Open3D 3D bounding box
      • detection_info['closest_face_center']: The closest face center of the 3D bounding box
      • detection_info['closest_face_center_distance']: The distance to the closest face center of the 3D bounding box
  • detection_metrics: Dictionary containing inference speed metrics
Example of running detection
from group5_detection import run_detection
from utils import load_ad_files, load_ad_projection_mats
import open3d
import numpy as np

# Load project mat
intrinsics_path = 'autodrive/intrinsics_zed.mat'
extrinsics_path = 'autodrive/tform5.24.mat'

calib = dict()
calib['ad_transform_mat'], calib['ad_projection_mat'] = load_ad_projection_mats(intrinsics_path, extrinsics_path)

# Load AD files
image_path = 'autodrive/sensor_data/image/image231.npy'
bb_path = 'autodrive/sensor_data/bb/image231_obj.npy'
pcd_path = 'autodrive/sensor_data/pcd/pcd231.npy'
image, bb_list, pcd = load_ad_files(image_path, bb_path, pcd_path)

pcd = np.array(pcd)

start = time.perf_counter()
generated_3d_bb_list, detection_info, detection_metrics = run_detection(calib, image, pcd, bb_list, None, use_vis=False, use_mask=False)
print('TOTAL RUN_DETECTION TIME: ', time.perf_counter() - start)
    
object_candidate_clusters = [detection['object_candidate_cluster'] for detection in detection_info if detection['object_candidate_cluster'] is not None]
    
if True:
    mesh_frame = open3d.geometry.TriangleMesh.create_coordinate_frame(size=2, origin=[0, 0, 0])
    open3d.visualization.draw_geometries(object_candidate_clusters + generated_3d_bb_list + [mesh_frame])

pass