forked from princeton-nlp/PURE
-
Notifications
You must be signed in to change notification settings - Fork 0
/
run_entity.py
260 lines (221 loc) · 11.1 KB
/
run_entity.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
import json
import argparse
import os
import sys
import random
import logging
import time
from tqdm import tqdm
import numpy as np
from shared.data_structures import Dataset
from shared.const import task_ner_labels, get_labelmap
from entity.utils import convert_dataset_to_samples, batchify, NpEncoder
from entity.models import EntityModel
from transformers import AdamW, get_linear_schedule_with_warmup
import torch
logging.basicConfig(format='%(asctime)s - %(levelname)s - %(name)s - %(message)s',
datefmt='%m/%d/%Y %H:%M:%S',
level=logging.INFO)
logger = logging.getLogger('root')
def save_model(model, args):
"""
Save the model to the output directory
"""
logger.info('Saving model to %s...'%(args.output_dir))
model_to_save = model.bert_model.module if hasattr(model.bert_model, 'module') else model.bert_model
model_to_save.save_pretrained(args.output_dir)
model.tokenizer.save_pretrained(args.output_dir)
def output_ner_predictions(model, batches, dataset, output_file):
"""
Save the prediction as a json file
"""
ner_result = {}
span_hidden_table = {}
tot_pred_ett = 0
for i in range(len(batches)):
output_dict = model.run_batch(batches[i], training=False)
pred_ner = output_dict['pred_ner']
for sample, preds in zip(batches[i], pred_ner):
off = sample['sent_start_in_doc'] - sample['sent_start']
k = sample['doc_key'] + '-' + str(sample['sentence_ix'])
ner_result[k] = []
for span, pred in zip(sample['spans'], preds):
span_id = '%s::%d::(%d,%d)'%(sample['doc_key'], sample['sentence_ix'], span[0]+off, span[1]+off)
if pred == 0:
continue
ner_result[k].append([span[0]+off, span[1]+off, ner_id2label[pred]])
tot_pred_ett += len(ner_result[k])
logger.info('Total pred entities: %d'%tot_pred_ett)
js = dataset.js
for i, doc in enumerate(js):
doc["predicted_ner"] = []
doc["predicted_relations"] = []
for j in range(len(doc["sentences"])):
k = doc['doc_key'] + '-' + str(j)
if k in ner_result:
doc["predicted_ner"].append(ner_result[k])
else:
logger.info('%s not in NER results!'%k)
doc["predicted_ner"].append([])
doc["predicted_relations"].append([])
js[i] = doc
logger.info('Output predictions to %s..'%(output_file))
with open(output_file, 'w') as f:
f.write('\n'.join(json.dumps(doc, cls=NpEncoder) for doc in js))
def evaluate(model, batches, tot_gold):
"""
Evaluate the entity model
"""
logger.info('Evaluating...')
c_time = time.time()
cor = 0
tot_pred = 0
l_cor = 0
l_tot = 0
for i in range(len(batches)):
output_dict = model.run_batch(batches[i], training=False)
pred_ner = output_dict['pred_ner']
for sample, preds in zip(batches[i], pred_ner):
for gold, pred in zip(sample['spans_label'], preds):
l_tot += 1
if pred == gold:
l_cor += 1
if pred != 0 and gold != 0 and pred == gold:
cor += 1
if pred != 0:
tot_pred += 1
acc = l_cor / l_tot
logger.info('Accuracy: %5f'%acc)
logger.info('Cor: %d, Pred TOT: %d, Gold TOT: %d'%(cor, tot_pred, tot_gold))
p = cor / tot_pred if cor > 0 else 0.0
r = cor / tot_gold if cor > 0 else 0.0
f1 = 2 * (p * r) / (p + r) if cor > 0 else 0.0
logger.info('P: %.5f, R: %.5f, F1: %.5f'%(p, r, f1))
logger.info('Used time: %f'%(time.time()-c_time))
return f1
def setseed(seed):
random.seed(seed)
torch.manual_seed(seed)
if torch.cuda.is_available():
torch.cuda.manual_seed_all(seed)
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--task', type=str, default=None, required=True, choices=['ace04', 'ace05', 'scierc'])
parser.add_argument('--data_dir', type=str, default=None, required=True,
help="path to the preprocessed dataset")
parser.add_argument('--output_dir', type=str, default='entity_output',
help="output directory of the entity model")
parser.add_argument('--max_span_length', type=int, default=8,
help="spans w/ length up to max_span_length are considered as candidates")
parser.add_argument('--train_batch_size', type=int, default=32,
help="batch size during training")
parser.add_argument('--eval_batch_size', type=int, default=32,
help="batch size during inference")
parser.add_argument('--learning_rate', type=float, default=1e-5,
help="learning rate for the BERT encoder")
parser.add_argument('--task_learning_rate', type=float, default=1e-4,
help="learning rate for task-specific parameters, i.e., classification head")
parser.add_argument('--warmup_proportion', type=float, default=0.1,
help="the ratio of the warmup steps to the total steps")
parser.add_argument('--num_epoch', type=int, default=100,
help="number of the training epochs")
parser.add_argument('--print_loss_step', type=int, default=100,
help="how often logging the loss value during training")
parser.add_argument('--eval_per_epoch', type=int, default=1,
help="how often evaluating the trained model on dev set during training")
parser.add_argument("--bertadam", action="store_true", help="If bertadam, then set correct_bias = False")
parser.add_argument('--do_train', action='store_true',
help="whether to run training")
parser.add_argument('--train_shuffle', action='store_true',
help="whether to train with randomly shuffled data")
parser.add_argument('--do_eval', action='store_true',
help="whether to run evaluation")
parser.add_argument('--eval_test', action='store_true',
help="whether to evaluate on test set")
parser.add_argument('--dev_pred_filename', type=str, default="ent_pred_dev.json", help="the prediction filename for the dev set")
parser.add_argument('--test_pred_filename', type=str, default="ent_pred_test.json", help="the prediction filename for the test set")
parser.add_argument('--use_albert', action='store_true',
help="whether to use ALBERT model")
parser.add_argument('--model', type=str, default='bert-base-uncased',
help="the base model name (a huggingface model)")
parser.add_argument('--bert_model_dir', type=str, default=None,
help="the base model directory")
parser.add_argument('--seed', type=int, default=0)
parser.add_argument('--context_window', type=int, required=True, default=None,
help="the context window size W for the entity model")
args = parser.parse_args()
args.train_data = os.path.join(args.data_dir, 'train.json')
args.dev_data = os.path.join(args.data_dir, 'dev.json')
args.test_data = os.path.join(args.data_dir, 'test.json')
if 'albert' in args.model:
logger.info('Use Albert: %s'%args.model)
args.use_albert = True
setseed(args.seed)
if not os.path.exists(args.output_dir):
os.makedirs(args.output_dir)
if args.do_train:
logger.addHandler(logging.FileHandler(os.path.join(args.output_dir, "train.log"), 'w'))
else:
logger.addHandler(logging.FileHandler(os.path.join(args.output_dir, "eval.log"), 'w'))
logger.info(sys.argv)
logger.info(args)
ner_label2id, ner_id2label = get_labelmap(task_ner_labels[args.task])
num_ner_labels = len(task_ner_labels[args.task]) + 1
model = EntityModel(args, num_ner_labels=num_ner_labels)
dev_data = Dataset(args.dev_data)
dev_samples, dev_ner = convert_dataset_to_samples(dev_data, args.max_span_length, ner_label2id=ner_label2id, context_window=args.context_window)
dev_batches = batchify(dev_samples, args.eval_batch_size)
if args.do_train:
train_data = Dataset(args.train_data)
train_samples, train_ner = convert_dataset_to_samples(train_data, args.max_span_length, ner_label2id=ner_label2id, context_window=args.context_window)
train_batches = batchify(train_samples, args.train_batch_size)
best_result = 0.0
param_optimizer = list(model.bert_model.named_parameters())
optimizer_grouped_parameters = [
{'params': [p for n, p in param_optimizer
if 'bert' in n]},
{'params': [p for n, p in param_optimizer
if 'bert' not in n], 'lr': args.task_learning_rate}]
optimizer = AdamW(optimizer_grouped_parameters, lr=args.learning_rate, correct_bias=not(args.bertadam))
t_total = len(train_batches) * args.num_epoch
scheduler = get_linear_schedule_with_warmup(optimizer, int(t_total*args.warmup_proportion), t_total)
tr_loss = 0
tr_examples = 0
global_step = 0
eval_step = len(train_batches) // args.eval_per_epoch
for _ in tqdm(range(args.num_epoch)):
if args.train_shuffle:
random.shuffle(train_batches)
for i in tqdm(range(len(train_batches))):
output_dict = model.run_batch(train_batches[i], training=True)
loss = output_dict['ner_loss']
loss.backward()
tr_loss += loss.item()
tr_examples += len(train_batches[i])
global_step += 1
optimizer.step()
scheduler.step()
optimizer.zero_grad()
if global_step % args.print_loss_step == 0:
logger.info('Epoch=%d, iter=%d, loss=%.5f'%(_, i, tr_loss / tr_examples))
tr_loss = 0
tr_examples = 0
if global_step % eval_step == 0:
f1 = evaluate(model, dev_batches, dev_ner)
if f1 > best_result:
best_result = f1
logger.info('!!! Best valid (epoch=%d): %.2f' % (_, f1*100))
save_model(model, args)
if args.do_eval:
args.bert_model_dir = args.output_dir
model = EntityModel(args, num_ner_labels=num_ner_labels)
if args.eval_test:
test_data = Dataset(args.test_data)
prediction_file = os.path.join(args.output_dir, args.test_pred_filename)
else:
test_data = Dataset(args.dev_data)
prediction_file = os.path.join(args.output_dir, args.dev_pred_filename)
test_samples, test_ner = convert_dataset_to_samples(test_data, args.max_span_length, ner_label2id=ner_label2id, context_window=args.context_window)
test_batches = batchify(test_samples, args.eval_batch_size)
evaluate(model, test_batches, test_ner)
output_ner_predictions(model, test_batches, test_data, output_file=prediction_file)