-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathoptim_axis_convex.m
183 lines (159 loc) · 5.1 KB
/
optim_axis_convex.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
function [out]=optim_axis_convex(W,epsilon,n_iter,Minit,ind1,ind2,name)
% Articulated motion recovery using Metric Projection
%
% Ref: "Metric Projections for Deformable and Articulated Structure-From-Motion"
% Marco Paladini, Alessio Del Bue, Marko Stošić, Marija Dodig, João Xavier, Lourdes Agapito
% Journal paper in preparation
%
% Authors: Marco Paladini ([email protected]), Alessio Del Bue, Marko Stošić, Marija Dodig, João Xavier, Lourdes Agapito
% Last Modified: 6/10/2009
% License: GPLv2
%
% Reference for Articulated motion model:
% "Articulated Structure from Motion by Factorization"
% Tresadern, P. and Reid, I.
% CVPR '05: Proceedings of the 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition
%
% Input:
%
% W: Measurement matrix of size 2F by P where F is # of frames and P # of feature points
% epsilon: Stopping parameter, iterations will end if ||R-Rprev|| is smaller than epsilon (R being the new estimate of motion matrix)
% n_iter: Maximum number of iterations
% Minit: Initial estimate of the motion matrix
% ind1: Array of the indexes for the points in W belonging to the first object
% ind2: Array of the indexes for the points in W belonging to the second object
% name: (for debugging) if specified, save all intermediate results in mat-files with prefix 'name'
%
% Output:
%
% out.Motion: Motion matrix of size 2*F by 5
% out.Shape: Rank 5 shape matrix for the two objects, size 5 by P, where P is the total # of points
% out.t1: Centroid coordinates for first object
% out.t2: Centroid coordinates for second object
% out.scale: Scale factor used to normalise input for numerical stability
% out.err_1: Vector of stopping condition values
% out.timing: Vector of time elapsed for each iteration (in seconds)
W1 = W(:,ind1);
W2 = W(:,ind2);
[U,D,V]=svd(W1);
U=U(:,1:4);
D=D(1:4,1:4);
V=V(:,1:4)';
W1=U*D*V;
[U,D,V]=svd(W2);
U=U(:,1:4);
D=D(1:4,1:4);
V=V(:,1:4)';
W2=U*D*V;
[W1,t1]=register(W1);
[W2,t2]=register(W2);
W=[W1 W2];
scale=max(max(abs(W)));
W=W/scale;
[U,D,V]=svd(W);
D = D(1:5,1:5);
U = U(:,1:5);
V = V(:,1:5)';
W = U*D*V;
W1 = W(:,ind1);
W2 = W(:,ind2);
F2 = size(W,1);
k=1;
err_1=[inf];
Rprev=Minit;
d=[]; for f=1:2:F2 d=[d norm(Rprev(f:f+1,1))]; end
d = max(d);
Rprev = Rprev / d;
scale = d*scale;
vals=[]; maxval=[];
timing=[];
%% Starting of the powerfactorization cycle
while err_1(k)>epsilon && k<n_iter
%--- the projection step
tic();
Motion=zeros(F2,5); %this will satisfy motion constraints
num_frames = F2/2; % number of frames
% now project the motion estimate
progress=0; % percentage
for i = 1:num_frames
% print periodically the current problem number
if rem(i,floor(num_frames/5)) == 0; progress=progress+20; fprintf('%d%%... ',progress); end;
% retrieve problem instance from the stack
x = Rprev((i-1)*2+1:i*2,1);
Y = Rprev((i-1)*2+1:i*2,2:3);
Z = Rprev((i-1)*2+1:i*2,4:5);
[u,f]=relaxation_articulated(x,Y,Z);
A = get_a(u,Y);
B = get_a(u,Z);
% end of the projection
Motion((i-1)*2+1:i*2,:)=[u A B];
end;
timing=[timing toc()];
%% powerfactorization step
% Shape = pinv(Motion)*W;
% R = W*pinv(Shape);
% Pseudo-inversion of the two objects is done separately
S1=pinv(Motion(:,[1 2 3]))*W(:,ind1);
S2=pinv(Motion(:,[1 4 5]))*W(:,ind2);
Shape=[S1(1,:) S2(1,:);
S1(2,:) zeros(size(ind2));
S1(3,:) zeros(size(ind2));
zeros(size(ind1)) S2(2,:);
zeros(size(ind1)) S2(3,:)];
R = W*pinv(Shape);
disp([num2str(k) ' iterations done.'])
k=k+1;
err_1(k)=norm(R-Rprev,'fro')/numel(R);
Rprev=R;
if exist('name','var')
matname = [name '_' num2str(n_iter) 'iter_step_' num2str(k) '_axis.mat'];
save(matname,'Motion','Shape','t1','t2','scale','W');
end
end
out.Motion = Motion;
out.Shape = Shape;
out.t1 = t1;
out.t2 = t2;
out.scale = scale;
out.err_1 = err_1;
out.timing = timing;
end
function A=get_a(u,Y)
% returns A such that ||A-Y|| is minimized and u|A is stiefel
% find optimal A
P = sqrtm(eye(2)-u*u');
if ~ isreal(P) disp(u);error('p has imaginary');end
[U,D,V] = svd(P*Y);
Q = U*V';
A = P*Q;
end
function [u_relaxation,objective_score] = relaxation_articulated(x,Y,Z)
cvx_quiet(true);
% compute constants
R1 = Y*Y';
n1 = trace(R1);
d1 = abs(det(Y));
R2 = Z*Z';
n2 = trace(R2);
d2 = abs(det(Z));
I2 = eye(2);
aux = pinv([ I2(:) R1(:) R2(:) ])*kron(x,x);
alfa = aux(1);
beta = aux(2);
gamma = aux(3);
% solve convex relaxation
cvx_begin
variable U(2,2) symmetric;
maximize(trace(U)+2*sqrt(alfa*trace(U)+beta*trace(R1*U)+gamma*trace(R2*U))+2*sqrt(n1-trace(R1*U)+2*d1*sqrt(1-trace(U)))+2*sqrt(n2-trace(R2*U)+2*d2*sqrt(1-trace(U))));
U == semidefinite(2);
trace(U) <= 1;
cvx_end;
[Uaux,Saux,Vaux] = svd(U);
u_relaxation = Uaux(:,1)*sqrt(Saux(1,1));
if x'*u_relaxation < 0
u_relaxation = -u_relaxation;
end;
% extract solution
U = u_relaxation*u_relaxation';
objective_score = trace(U)+2*sqrt(alfa*trace(U)+beta*trace(R1*U)+gamma*trace(R2*U))+2*sqrt(n1-trace(R1*U)+2*d1*sqrt(1-trace(U)))+2*sqrt(n2-trace(R2*U)+2*d2*sqrt(1-trace(U)));
end