forked from epfl-lasa/icra-lfd-tutorial
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathexercise_1.m
109 lines (100 loc) · 3.91 KB
/
exercise_1.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
function exercise_1()
close all
% set up a simple robot and a figure that plots it
robot = create_simple_robot();
fig = initialize_robot_figure(robot);
%fig = figure(1);clf;
%robot.plot([0,1])
disp('In this exercise you will peroform very simple record and replay of a demonstrated trajectory.')
disp('You can see the robot in the figure. Give a demonstration of a trajectory in its workspace')
% get a demonstration
data = get_demonstration(fig);
disp('Its convenient to represent the collected data with interpolating polynomials, e.g. splines. This allows limit the complexity as well as guarantee smooth trajectories.')
nb_knots = 10;
disp(sprintf('you now see a spline with %d knots in the figure.', nb_knots));
% fit a spline to the demonstration
nb_data = size(data,2);
skip = floor(nb_data/nb_knots);
knots = data(:,1:skip:end);
ppx = interp1(knots(3,:)',knots(1:2,:)','spline','pp');
% and get first and second derivative
ppxd = differentiate_spline(ppx);
ppxdd = differentiate_spline(ppxd);
% lets plot the demonstrated trajectory
plot(knots(1,:), knots(2,:), 'b+');
ref_traj = ppval(ppx,linspace(knots(3,1),knots(3,end),1000))';
plot(ref_traj(1,:),ref_traj(2,:),'k-');
% find an initial joint configuration for the start point
%qi = robot.ikine(transl(knots(1,1), knots(2,1),0.0),[0.2,0.2],[1,1,0,0,0,0]);
qi = simple_robot_ikin(robot, knots(1:2,1));
robot.animate(qi);
% simulate tracking of the trajectory in the absence of perturbations
% We will use a cartesian impedance controller to track the motion
% we need to define stiffness and damping values for our controller
K = eye(2)*1000;
D = eye(2)*5;
% start simulation
dt = 0.005;
% simulation from same start point
disp('The robot will be able to perform the task when starting from the same starting location as the demonstration.')
disp('press enter to continure..')
pause
simulation(qi);
% simulation from different starting point
while 1
disp('Now we imagine the robot starts the task from a different location. click on a departure point in the robot workspace.')
try
xs = get_point(fig);
qs = simple_robot_ikin(robot,xs);
robot.animate(qs)
disp('The simple time-dependent reference trajectory approach cannot deal with this situation. Press enter to see what happens..')
pause
simulation(qs);
catch
disp('could not find joint space configuration. Please choose another point in the workspace.')
end
end
%simulation(qi,1);
function simulation(q)
t = knots(3,1);
qd = [0,0];
x_ref = ppval(ppx, t);
h = plot(x_ref(1),x_ref(2),'go');
ht = [];
while(1)
% compute state of end-effector
x = robot.fkine(q);
x = x(1:2,4);
xd = robot.jacob0(q)*qd';
xd = xd(1:2);
%eig(cart_inertia(robot, q))
% compute our time-dependent refernce trajectory
x_ref = ppval(ppx, t);%reference_pos(t);
xd_ref = ppval(ppxd, t);%reference_vel(t);
xdd_ref = ppval(ppxdd, t);%reference_acc(t);
xdd_ref = xdd_ref-0.5*(xd-xd_ref);
% compute cartesian control
u_cart = -K*(x-x_ref) - D*(xd-xd_ref);
% feedforward term
u_cart = u_cart + simple_robot_cart_inertia(robot,q)*xdd_ref;
% compute joint space control
u_joint = robot.jacob0(q)'*[u_cart;zeros(4,1)];
% apply control to the robot
qdd = robot.accel(q,qd,u_joint')';
% integrate one time step
qd = qd+dt*qdd;
q = q+qd*dt+qdd/2*dt^2;
t = t+dt;
if (norm(x_ref - knots(1:2,end))<0.01)
break
end
robot.delay = dt;
robot.animate(q);
set(h,'XData',x_ref(1));
set(h,'YData',x_ref(2));
ht = [ht, plot(x(1), x(2), 'm.','markersize',10)];
end
delete(h);
delete(ht);
end
end