-
Notifications
You must be signed in to change notification settings - Fork 18
/
Copy pathmain.py
66 lines (56 loc) · 2.64 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
# Copyright (c) 2018-present, Royal Bank of Canada.
# All rights reserved.
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
#
import argparse
from dataset import Dataset
from trainer import Trainer
from tester import Tester
from params import Params
desc = 'Temporal KG Completion methods'
parser = argparse.ArgumentParser(description=desc)
parser.add_argument('-dataset', help='Dataset', type=str, default='icews14', choices = ['icews14', 'icews05-15', 'gdelt'])
parser.add_argument('-model', help='Model', type=str, default='DE_DistMult', choices = ['DE_DistMult', 'DE_TransE', 'DE_SimplE'])
parser.add_argument('-ne', help='Number of epochs', type=int, default=500, choices = [500])
parser.add_argument('-bsize', help='Batch size', type=int, default=512, choices = [512])
parser.add_argument('-lr', help='Learning rate', type=float, default=0.001, choices = [0.001])
parser.add_argument('-reg_lambda', help='L2 regularization parameter', type=float, default=0.0, choices = [0.0])
parser.add_argument('-emb_dim', help='Embedding dimension', type=int, default=100, choices = [100])
parser.add_argument('-neg_ratio', help='Negative ratio', type=int, default=500, choices = [500])
parser.add_argument('-dropout', help='Dropout probability', type=float, default=0.4, choices = [0.0, 0.2, 0.4])
parser.add_argument('-save_each', help='Save model and validate each K epochs', type=int, default=20, choices = [20])
parser.add_argument('-se_prop', help='Static embedding proportion', type=float, default=0.36)
args = parser.parse_args()
dataset = Dataset(args.dataset)
params = Params(
ne=args.ne,
bsize=args.bsize,
lr=args.lr,
reg_lambda=args.reg_lambda,
emb_dim=args.emb_dim,
neg_ratio=args.neg_ratio,
dropout=args.dropout,
save_each=args.save_each,
se_prop=args.se_prop
)
trainer = Trainer(dataset, params, args.model)
trainer.train()
# validating the trained models. we seect the model that has the best validation performance as the fina model
validation_idx = [str(int(args.save_each * (i + 1))) for i in range(args.ne // args.save_each)]
best_mrr = -1.0
best_index = '0'
model_prefix = "models/" + args.model + "/" + args.dataset + "/" + params.str_() + "_"
for idx in validation_idx:
model_path = model_prefix + idx + ".chkpnt"
tester = Tester(dataset, model_path, "valid")
mrr = tester.test()
if mrr > best_mrr:
best_mrr = mrr
best_index = idx
# testing the best chosen model on the test set
print("Best epoch: " + best_index)
model_path = model_prefix + best_index + ".chkpnt"
tester = Tester(dataset, model_path, "test")
tester.test()