Skip to content
/ GR-GAN Public

GRADUAL REFINEMENT TEXT-TO-IMAGE GENERATION

Notifications You must be signed in to change notification settings

BoO-18/GR-GAN

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

21 Commits
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

GR-GAN

Pytorch implementation for reproducing GR-GAN results in the paper GRADUAL REFINEMENT TEXT-TO-IMAGE GENERATION

Usage

Get the code from github:git clone https://github.com/BoO-18/GR-GAN.git

Create a new conda env:conda create -n grgan python=3.7 and conda activate grgan

Install torch==1.7.1: conda install pytorch==1.7.1 torchvision==0.8.2 torchaudio==0.7.2 cudatoolkit=11.0

Folder CLIP is code from OPENAI with some changes to the output of the image encoder and text encoder. You should run:pip install CLIPto install it.

Data

  1. Download our preprocessed metadata for coco and save them to data/
  2. Download coco dataset and extract the images to data/coco/

Training

  • Pre-train ITM models: python pretrain_ITM.py --cfg cfg/ITM/coco.yml --gpu 0

  • Train GR-GAN models: python main.py --cfg cfg/coco_GRAGN.yml --gpu 1

  • *.yml files are example configuration files for training/evaluation our models.

Pretrained Model

Demo

  • File code/demo.ipynb is a detailed usage example for GR-GAN.

Validation

  • Generate images for GR-GAN models on MS-COCO: python main.py --cfg cfg/eval_coco.yml --gpu 2
  • We compute inception score for models trained on coco: python CMD_score.py --path1 image_feature.npz --path2 sent_feature.npz --path3 (your image path) --gpu 3

About

GRADUAL REFINEMENT TEXT-TO-IMAGE GENERATION

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published