diff --git a/paper.crossref b/paper.crossref new file mode 100644 index 0000000..e9c98c2 --- /dev/null +++ b/paper.crossref @@ -0,0 +1,306 @@ + + + + 20241125125224-dee07d7649bec92603cda195631ac3575ef9e248 + 20241125125224 + + JOSS Admin + admin@theoj.org + + The Open Journal + + + + + Journal of Open Source Software + JOSS + 2475-9066 + + 10.21105/joss + https://joss.theoj.org + + + + + 01 + 1970 + + + ¿VOL? + + ¿ISSUE? + + + + RNMC: kinetic Monte Carlo implementations for complex +reaction networks + + + + Laura + Zichi + https://orcid.org/0000-0003-3897-3097 + + + Daniel + Barter + https://orcid.org/0000-0002-6408-1255 + + + Eric + Sivonxay + https://orcid.org/0000-0002-6408-1255 + + + Evan Walter Clark + Spotte-Smith + https://orcid.org/0000-0003-1554-197X + + + Rohith Srinivaas + Mohanakrishnan + + + Emory M. + Chan + + + Kristin Aslaug + Persson + + + Samuel M. + Blau + + + + 01 + 01 + 1970 + + + ¿PAGE? + + + N/A + + + http://creativecommons.org/licenses/by/4.0/ + http://creativecommons.org/licenses/by/4.0/ + http://creativecommons.org/licenses/by/4.0/ + + + + Software archive + 10.5281 + + + GitHub review issue + https://github.com/openjournals + + + + N/A + https://joss.theoj.org/papers/N/A + + + https://joss.theoj.org/papers/N/A.pdf + + + + + + On the theory of electron-transfer reactions. +VI. Unified treatment for homogeneous and electrode +reactions + Marcus + The Journal of Chemical +Physics + 2 + 43 + 10.1063/1.1696792 + 1965 + Marcus, R. A. (1965). On the theory +of electron-transfer reactions. VI. Unified treatment for homogeneous +and electrode reactions. The Journal of Chemical Physics, 43(2), +679–701. https://doi.org/10.1063/1.1696792 + + + Exact stochastic simulation of coupled +chemical reactions + Gillespie + The Journal of Physical +Chemistry + 25 + 81 + 1977 + Gillespie, D. T. (1977). Exact +stochastic simulation of coupled chemical reactions. The Journal of +Physical Chemistry, 81(25), 2340–2361. + + + Crossing the mesoscale no-mans land via +parallel kinetic monte carlo + Garcia Cardona + 2009 + Garcia Cardona, C., Wagner, G. J., +Tikare, V., Holm, E. A., Plimpton, S. J., Thompson, A. P., Slepoy, A., +Zhou, X. W., Battaile, C. C., & Chandross, M. E. (2009). Crossing +the mesoscale no-mans land via parallel kinetic monte carlo. Sandia +National Laboratories (SNL), Albuquerque, NM,; Livermore, +CA. + + + Kmos: A lattice kinetic monte carlo +framework + Hoffmann + Computer Physics +Communications + 7 + 185 + 10.1016/j.cpc.2014.04.003 + 2014 + Hoffmann, M. J., Matera, S., & +Reuter, K. (2014). Kmos: A lattice kinetic monte carlo framework. +Computer Physics Communications, 185(7), 2138–2150. +https://doi.org/10.1016/j.cpc.2014.04.003 + + + Electrochemical systems + Newman + 2021 + Newman, J., & Balsara, N. P. +(2021). Electrochemical systems. John Wiley & +Sons. + + + Toward a mechanistic model of +solid–electrolyte interphase formation and evolution in lithium-ion +batteries + Spotte-Smith + ACS Energy Letters + 4 + 7 + 10.1021/acsenergylett.2c00517 + 2022 + Spotte-Smith, E. W. C., Kam, R. L., +Barter, D., Xie, X., Hou, T., Dwaraknath, S., Blau, S. M., & +Persson, K. A. (2022). Toward a mechanistic model of solid–electrolyte +interphase formation and evolution in lithium-ion batteries. ACS Energy +Letters, 7(4), 1446–1453. +https://doi.org/10.1021/acsenergylett.2c00517 + + + Predictive stochastic analysis of massive +filter-based electrochemical reaction networks + Barter + Digital Discovery + 1 + 2 + 10.1039/D2DD00117A + 2023 + Barter, D., Spotte-Smith, E. W. C., +Redkar, N. S., Khanwale, A., Dwaraknath, S., Persson, K. A., & Blau, +S. M. (2023). Predictive stochastic analysis of massive filter-based +electrochemical reaction networks. Digital Discovery, 2(1), 123–137. +https://doi.org/10.1039/D2DD00117A + + + Chemical reaction networks explain gas +evolution mechanisms in Mg-ion batteries + Spotte-Smith + Journal of the American Chemical +Society + 22 + 145 + 10.1021/jacs.3c02222 + 2023 + Spotte-Smith, E. W. C., Blau, S. M., +Barter, D., Leon, N. J., Hahn, N. T., Redkar, N. S., Zavadil, K. R., +Liao, C., & Persson, K. A. (2023). Chemical reaction networks +explain gas evolution mechanisms in Mg-ion batteries. Journal of the +American Chemical Society, 145(22), 12181–12192. +https://doi.org/10.1021/jacs.3c02222 + + + Accelerating the design of multishell +upconverting nanoparticles through bayesian optimization + Xia + Nano Letters + 23 + 23 + 10.1021/acs.nanolett.3c03568 + 2023 + Xia, X., Sivonxay, E., Helms, B. A., +Blau, S. M., & Chan, E. M. (2023). Accelerating the design of +multishell upconverting nanoparticles through bayesian optimization. +Nano Letters, 23(23), 11129–11136. +https://doi.org/10.1021/acs.nanolett.3c03568 + + + Combinatorial approaches for developing +upconverting nanomaterials: High-throughput screening, modeling, and +applications + Chan + Chemical Society Reviews + 6 + 44 + 10.1039/C4CS00205A + 2015 + Chan, E. M. (2015). Combinatorial +approaches for developing upconverting nanomaterials: High-throughput +screening, modeling, and applications. Chemical Society Reviews, 44(6), +1653–1679. https://doi.org/10.1039/C4CS00205A + + + A generalized approach to photon avalanche +upconversion in luminescent nanocrystals + Skripka + Nano Letters + 15 + 23 + 10.1021/acs.nanolett.3c01955 + 2023 + Skripka, A., Lee, M., Qi, X., Pan, +J.-A., Yang, H., Lee, C., Schuck, P. J., Cohen, B. E., Jaque, D., & +Chan, E. M. (2023). A generalized approach to photon avalanche +upconversion in luminescent nanocrystals. Nano Letters, 23(15), +7100–7106. +https://doi.org/10.1021/acs.nanolett.3c01955 + + + Energy transfer networks within upconverting +nanoparticles are complex systems with collective, robust, and +history-dependent dynamics + Teitelboim + The Journal of Physical Chemistry +C + 4 + 123 + 10.1021/acs.jpcc.9b00161 + 2019 + Teitelboim, A., Tian, B., Garfield, +D. J., Fernandez-Bravo, A., Gotlin, A. C., Schuck, P. J., Cohen, B. E., +& Chan, E. M. (2019). Energy transfer networks within upconverting +nanoparticles are complex systems with collective, robust, and +history-dependent dynamics. The Journal of Physical Chemistry C, 123(4), +2678–2689. +https://doi.org/10.1021/acs.jpcc.9b00161 + + + + + + diff --git a/paper.pdf b/paper.pdf index a9d1286..ae825a3 100644 Binary files a/paper.pdf and b/paper.pdf differ