-
Notifications
You must be signed in to change notification settings - Fork 2
/
run_transformer.py
239 lines (218 loc) · 8.4 KB
/
run_transformer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
import argparse
import os
import torch
import random
import numpy as np
from train_eval_transformer import train, eval
import torchvision.transforms as transforms
from torch.utils.data import DataLoader, Dataset, random_split
from dataset import BabyBeatDataset
import os
import torch
import random
import numpy as np
import argparse
from select_model import select_model
from typing import Literal
if __name__ == "__main__":
fix_seed = 2024
random.seed(fix_seed)
torch.manual_seed(fix_seed)
np.random.seed(fix_seed)
parser = argparse.ArgumentParser(description="TimesNet")
# basic config
parser.add_argument(
"--task_name",
type=str,
# required=True,
default="classification",
help="task name, options:[long_term_forecast, short_term_forecast, imputation, classification, anomaly_detection]",
)
# parser.add_argument(
# "--is_training", type=int, required=True, default=1, help="status"
# )
# parser.add_argument(
# "--model_id", type=str, required=True, default="test", help="model id"
# )
parser.add_argument(
"--model",
type=str,
default="TimesNet",
help="model name, options: [Autoformer, Transformer, TimesNet]",
)
parser.add_argument(
"--root_path",
type=str,
default="./data/ETT/",
help="root path of the data file",
)
parser.add_argument("--data_path", type=str, default="ETTh1.csv", help="data file")
parser.add_argument(
"--features",
type=str,
default="M",
help="forecasting task, options:[M, S, MS]; M:multivariate predict multivariate, S:univariate predict univariate, MS:multivariate predict univariate",
)
parser.add_argument(
"--target", type=str, default="OT", help="target feature in S or MS task"
)
parser.add_argument(
"--freq",
type=str,
default="h",
help="freq for time features encoding, options:[s:secondly, t:minutely, h:hourly, d:daily, b:business days, w:weekly, m:monthly], you can also use more detailed freq like 15min or 3h",
)
parser.add_argument(
"--checkpoints",
type=str,
default="./checkpoints/",
help="location of model checkpoints",
)
# forecasting task
parser.add_argument(
"--seq_len", type=int, default=4800, help="input sequence length"
)
parser.add_argument("--label_len", type=int, default=48, help="start token length")
parser.add_argument(
"--pred_len", type=int, default=0, help="prediction sequence length"
)
parser.add_argument(
"--seasonal_patterns", type=str, default="Monthly", help="subset for M4"
)
# inputation task
parser.add_argument("--mask_rate", type=float, default=0.25, help="mask ratio")
# anomaly detection task
parser.add_argument(
"--anomaly_ratio", type=float, default=0.25, help="prior anomaly ratio (%)"
)
# model define
parser.add_argument("--num_class", type=int, default=2, help="number of classes")
parser.add_argument("--top_k", type=int, default=1, help="for TimesBlock")
parser.add_argument("--num_kernels", type=int, default=6, help="for Inception")
parser.add_argument("--enc_in", type=int, default=2, help="encoder input size")
parser.add_argument("--dec_in", type=int, default=7, help="decoder input size")
parser.add_argument("--c_out", type=int, default=7, help="output size")
parser.add_argument("--d_model", type=int, default=64, help="dimension of model")
parser.add_argument("--n_heads", type=int, default=8, help="num of heads")
parser.add_argument("--e_layers", type=int, default=2, help="num of encoder layers")
parser.add_argument("--d_layers", type=int, default=1, help="num of decoder layers")
parser.add_argument("--d_ff", type=int, default=2048, help="dimension of fcn")
parser.add_argument(
"--moving_avg", type=int, default=25, help="window size of moving average"
)
parser.add_argument("--factor", type=int, default=1, help="attn factor")
parser.add_argument(
"--distil",
action="store_false",
help="whether to use distilling in encoder, using this argument means not using distilling",
default=True,
)
parser.add_argument("--dropout", type=float, default=0.1, help="dropout")
parser.add_argument(
"--embed",
type=str,
default="timeF",
help="time features encoding, options:[timeF, fixed, learned]",
)
parser.add_argument("--activation", type=str, default="gelu", help="activation")
parser.add_argument(
"--output_attention",
action="store_true",
help="whether to output attention in ecoder",
)
parser.add_argument(
"--input_feature",
type=str,
default="fhr",
help="Input feature (fhr, ucp, or both)",
)
# optimization
parser.add_argument(
"--num_workers", type=int, default=10, help="data loader num workers"
)
parser.add_argument("--itr", type=int, default=1, help="experiments times")
parser.add_argument("--num_epochs", type=int, default=100, help="num_epochs")
parser.add_argument(
"--batch_size", type=int, default=8, help="batch size of train input data"
)
parser.add_argument(
"--patience", type=int, default=15, help="early stopping patience"
)
parser.add_argument(
"--learning_rate", type=float, default=0.0001, help="optimizer learning rate"
)
parser.add_argument("--des", type=str, default="test", help="exp description")
parser.add_argument("--loss", type=str, default="MSE", help="loss function")
parser.add_argument(
"--lradj", type=str, default="type1", help="adjust learning rate"
)
parser.add_argument(
"--use_amp",
action="store_true",
help="use automatic mixed precision training",
default=False,
)
# gpu
parser.add_argument("--use_gpu", type=bool, default=True, help="use gpu or not")
parser.add_argument("--gpu", type=str, default="0", help="gpu id")
# de-stationary projector params
parser.add_argument(
"--p_hidden_dims",
type=int,
nargs="+",
default=[128, 128],
help="hidden layer dimensions of projector (List)",
)
parser.add_argument(
"--p_hidden_layers",
type=int,
default=2,
help="number of hidden layers in projector",
)
args = parser.parse_args()
# 2. select gpu
if args.use_gpu:
gpu = "cuda:" + args.gpu
device = torch.device(gpu if torch.cuda.is_available() else "cpu")
print(">>> use ", device)
# 3. select model
model = select_model(args, device)
# model_class_name = model.__class__.__name__
# model_save_name = f"{model_class_name}.pth"
model_save_name = f"{args.model}_{args.batch_size}bs_{args.num_epochs}epoc_{args.input_feature}.pth"
print(">>> model: ", model_save_name)
# 1. get dataloader
path = r"./dataset/BabyBeatAnalyzer.ts"
dataset = BabyBeatDataset(path)
# 划分训练集和测试集
train_size = int(0.9 * len(dataset))
test_size = len(dataset) - train_size
_train_dataset, test_dataset = random_split(dataset, [train_size, test_size])
# 从训练集中划分出一部分作为验证集
train_size = int(0.9 * len(_train_dataset))
val_size = len(_train_dataset) - train_size
train_dataset, val_dataset = random_split(_train_dataset, [train_size, val_size])
# 创建数据加载器
train_loader = DataLoader(train_dataset, batch_size=args.batch_size, shuffle=True)
val_loader = DataLoader(val_dataset, batch_size=1, shuffle=False)
test_loader = DataLoader(test_dataset, batch_size=1, shuffle=False)
all_loader = DataLoader(dataset, batch_size=args.batch_size, shuffle=True)
model = train(
model=model,
train_loader=train_loader,
val_loader=val_loader,
num_epochs=args.num_epochs,
patience=args.patience,
device=device,
model_save_name=model_save_name,
)
eval(model=model, val_loader=test_loader, device=device)
# model = Model(args)
# # 创建测试输入
# test_input = torch.randn(16, 4800, 2) # 随机生成符合输入形状的数据
# # 全部是1
# test_mark_input = torch.ones(16, 4800)
# # 进行预测
# output = model(test_input, test_mark_input)
# # 检查输出形状
# print("Output Shape:", output.shape)