-
Notifications
You must be signed in to change notification settings - Fork 0
/
efficientnet.py
759 lines (643 loc) · 29 KB
/
efficientnet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""EfficientNet model definition"""
import logging
import math
import re
from copy import deepcopy
import mindspore as ms
from mindspore import nn,ops
from mindspore.common.initializer import (Normal, One, Uniform, Zero)
from mindspore.ops import operations as P
from mindspore.ops.composite import clip_by_value
relu = P.ReLU()
sigmoid = P.Sigmoid()
IMAGENET_DEFAULT_MEAN = (0.485, 0.456, 0.406)
IMAGENET_DEFAULT_STD = (0.229, 0.224, 0.225)
IMAGENET_INCEPTION_MEAN = (0.5, 0.5, 0.5)
IMAGENET_INCEPTION_STD = (0.5, 0.5, 0.5)
IMAGENET_DPN_MEAN = (124 / 255, 117 / 255, 104 / 255)
IMAGENET_DPN_STD = tuple([1 / (.0167 * 255)] * 3)
class Roi_pooling(nn.Cell):
def __init__(self,in_channel,out_channel,k_size = 3):
super(Roi_pooling, self).__init__()
#self.conv = nn.Conv2d(in_channels = in_channel, out_channels = out_channel, kernel_size=k_size,stride = 1, padding=1, bias=False)
self.pool = ops.AdaptiveAvgPool2D((112,112))
self.k_size = k_size
self.unsqueeze = ops.ExpandDims()
self.cat = ops.Concat()
self.cast = P.Cast()
def construct(self,x,w,h): # pytorch version use for loop !!!
y = x#self.conv(x)
z = []
if(len(y)==1):
for i in range(len(y)):
a = h.numpy()/2
b = w.numpy()/2
z.append(self.unsqueeze(self.pool(y[:,:,:b,:a]),0))
else:
for i in range(len(y)):
#print(i,y[i].shape,h[i],w[i])
a = h[i].numpy()/2
#print(a)
b = w[i].numpy()/2
#print(b)
print(y[:,:,:b,:a])
z.append(self.unsqueeze(self.pool(y[:,:,:b,:a]),0))
z = self.cat(z).squeeze(0)
z = self.cast(z,ms.float32)
return z
def _cfg(url='', **kwargs):
return {
'url': url, 'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': (7, 7),
'crop_pct': 0.875, 'interpolation': 'bicubic',
'mean': IMAGENET_DEFAULT_MEAN, 'std': IMAGENET_DEFAULT_STD,
'first_conv': 'conv_stem', 'classifier': 'classifier',
**kwargs
}
default_cfgs = {
'efficientnet_b0': _cfg(
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/efficientnet_b0-d6904d92.pth'),
'efficientnet_b1': _cfg(
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/efficientnet_b1-533bc792.pth',
input_size=(3, 240, 240), pool_size=(8, 8), crop_pct=0.882),
'efficientnet_b2': _cfg(
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/efficientnet_b2-cf78dc4d.pth',
input_size=(3, 260, 260), pool_size=(9, 9), crop_pct=0.890),
'efficientnet_b3': _cfg(
url='', input_size=(3, 300, 300), pool_size=(10, 10), crop_pct=0.904),
'efficientnet_b4': _cfg(
url='', input_size=(3, 380, 380), pool_size=(12, 12), crop_pct=0.922),
}
_DEBUG = False
_BN_MOMENTUM_PT_DEFAULT = 0.1
_BN_EPS_PT_DEFAULT = 1e-5
_BN_ARGS_PT = dict(momentum=_BN_MOMENTUM_PT_DEFAULT, eps=_BN_EPS_PT_DEFAULT)
_BN_MOMENTUM_TF_DEFAULT = 1 - 0.99
_BN_EPS_TF_DEFAULT = 1e-3
_BN_ARGS_TF = dict(momentum=_BN_MOMENTUM_TF_DEFAULT, eps=_BN_EPS_TF_DEFAULT)
def _initialize_weight_goog(shape=None, layer_type='conv', bias=False):
if layer_type not in ('conv', 'bn', 'fc'):
raise ValueError('The layer type is not known, the supported are conv, bn and fc')
if bias:
return Zero()
if layer_type == 'conv':
assert isinstance(shape, (tuple, list)) and len(
shape) == 3, 'The shape must be 3 scalars, and are in_chs, ks, out_chs respectively'
n = shape[1] * shape[1] * shape[2]
return Normal(math.sqrt(2.0 / n))
if layer_type == 'bn':
return One()
assert isinstance(shape, (tuple, list)) and len(
shape) == 2, 'The shape must be 2 scalars, and are in_chs, out_chs respectively'
n = shape[1]
init_range = 1.0 / math.sqrt(n)
return Uniform(init_range)
def _initialize_weight_default(shape=None, layer_type='conv', bias=False):
if layer_type not in ('conv', 'bn', 'fc'):
raise ValueError('The layer type is not known, the supported are conv, bn and fc')
if bias and layer_type == 'bn':
return Zero()
if layer_type == 'conv':
return One()
if layer_type == 'bn':
return One()
return One()
def _conv(in_channels, out_channels, kernel_size=3, stride=1, padding=0, pad_mode='same', bias=False):
weight_init_value = _initialize_weight_goog(shape=(in_channels, kernel_size, out_channels))
bias_init_value = _initialize_weight_goog(bias=True) if bias else None
if bias:
return nn.Conv2d(in_channels, out_channels, kernel_size=kernel_size, stride=stride,
padding=padding, pad_mode=pad_mode, weight_init=weight_init_value,
has_bias=bias, bias_init=bias_init_value)
return nn.Conv2d(in_channels, out_channels, kernel_size=kernel_size, stride=stride,
padding=padding, pad_mode=pad_mode, weight_init=weight_init_value,
has_bias=bias)
def _conv1x1(in_channels, out_channels, stride=1, padding=0, pad_mode='same', bias=False):
weight_init_value = _initialize_weight_goog(shape=(in_channels, 1, out_channels))
bias_init_value = _initialize_weight_goog(bias=True) if bias else None
if bias:
return nn.Conv2d(in_channels, out_channels, kernel_size=1, stride=stride,
padding=padding, pad_mode=pad_mode, weight_init=weight_init_value,
has_bias=bias, bias_init=bias_init_value)
return nn.Conv2d(in_channels, out_channels, kernel_size=1, stride=stride,
padding=padding, pad_mode=pad_mode, weight_init=weight_init_value,
has_bias=bias)
def _conv_group(in_channels, out_channels, group, kernel_size=3, stride=1, padding=0, pad_mode='same', bias=False):
weight_init_value = _initialize_weight_goog(shape=(in_channels, kernel_size, out_channels))
bias_init_value = _initialize_weight_goog(bias=True) if bias else None
if bias:
return nn.Conv2d(in_channels, out_channels, kernel_size=kernel_size, stride=stride,
padding=padding, pad_mode=pad_mode, weight_init=weight_init_value,
group=group, has_bias=bias, bias_init=bias_init_value)
return nn.Conv2d(in_channels, out_channels, kernel_size=kernel_size, stride=stride,
padding=padding, pad_mode=pad_mode, weight_init=weight_init_value,
group=group, has_bias=bias)
def _fused_bn(channels, momentum=0.1, eps=1e-4, gamma_init=1, beta_init=0):
return nn.BatchNorm2d(channels, eps=eps, momentum=1 - momentum, gamma_init=gamma_init, beta_init=beta_init)
def _dense(in_channels, output_channels, bias=True, activation=None):
weight_init_value = _initialize_weight_goog(shape=(in_channels, output_channels), layer_type='fc')
bias_init_value = _initialize_weight_goog(bias=True) if bias else None
if bias:
return nn.Dense(in_channels, output_channels, weight_init=weight_init_value, bias_init=bias_init_value,
has_bias=bias, activation=activation)
return nn.Dense(in_channels, output_channels, weight_init=weight_init_value, has_bias=bias,
activation=activation)
def _resolve_bn_args(kwargs):
bn_args = _BN_ARGS_TF.copy() if kwargs.pop('bn_tf', False) else _BN_ARGS_PT.copy()
bn_momentum = kwargs.pop('bn_momentum', None)
if bn_momentum is not None:
bn_args['momentum'] = bn_momentum
bn_eps = kwargs.pop('bn_eps', None)
if bn_eps is not None:
bn_args['eps'] = bn_eps
return bn_args
def _round_channels(channels, multiplier=1.0, divisor=8, channel_min=None):
"""Round number of filters based on depth multiplier."""
if not multiplier:
return channels
channels *= multiplier
channel_min = channel_min or divisor
new_channels = max(
int(channels + divisor / 2) // divisor * divisor,
channel_min)
if new_channels < 0.9 * channels:
new_channels += divisor
return new_channels
def _parse_ksize(ss):
if ss.isdigit():
return int(ss)
return [int(k) for k in ss.split('.')]
def _decode_block_str(block_str, depth_multiplier=1.0):
""" Decode block definition string
Gets a list of block arg (dicts) through a string notation of arguments.
E.g. ir_r2_k3_s2_e1_i32_o16_se0.25_noskip
All args can exist in any order with the exception of the leading string which
is assumed to indicate the block type.
leading string - block type (
ir = InvertedResidual, ds = DepthwiseSep, dsa = DeptwhiseSep with pw act, cn = ConvBnAct)
r - number of repeat blocks,
k - kernel size,
s - strides (1-9),
e - expansion ratio,
c - output channels,
se - squeeze/excitation ratio
n - activation fn ('re', 'r6', 'hs', or 'sw')
Args:
block_str: a string representation of block arguments.
Returns:
A list of block args (dicts)
Raises:
ValueError: if the string def not properly specified (TODO)
"""
assert isinstance(block_str, str)
ops = block_str.split('_')
block_type = ops[0]
ops = ops[1:]
options = {}
noskip = False
for op in ops:
if op == 'noskip':
noskip = True
elif op.startswith('n'):
# activation fn
key = op[0]
v = op[1:]
if v in ('re', 'r6', 'hs', 'sw'):
print('not support')
else:
continue
options[key] = value
else:
# all numeric options
splits = re.split(r'(\d.*)', op)
if len(splits) >= 2:
key, value = splits[:2]
options[key] = value
act_fn = options['n'] if 'n' in options else None
exp_kernel_size = _parse_ksize(options['a']) if 'a' in options else 1
pw_kernel_size = _parse_ksize(options['p']) if 'p' in options else 1
fake_in_chs = int(options['fc']) if 'fc' in options else 0
num_repeat = int(options['r'])
# each type of block has different valid arguments, fill accordingly
if block_type == 'ir':
block_args = dict(
block_type=block_type,
dw_kernel_size=_parse_ksize(options['k']),
exp_kernel_size=exp_kernel_size,
pw_kernel_size=pw_kernel_size,
out_chs=int(options['c']),
exp_ratio=float(options['e']),
se_ratio=float(options['se']) if 'se' in options else None,
stride=int(options['s']),
act_fn=act_fn,
noskip=noskip,
)
elif block_type in ('ds', 'dsa'):
block_args = dict(
block_type=block_type,
dw_kernel_size=_parse_ksize(options['k']),
pw_kernel_size=pw_kernel_size,
out_chs=int(options['c']),
se_ratio=float(options['se']) if 'se' in options else None,
stride=int(options['s']),
act_fn=act_fn,
pw_act=block_type == 'dsa',
noskip=block_type == 'dsa' or noskip,
)
elif block_type == 'er':
block_args = dict(
block_type=block_type,
exp_kernel_size=_parse_ksize(options['k']),
pw_kernel_size=pw_kernel_size,
out_chs=int(options['c']),
exp_ratio=float(options['e']),
fake_in_chs=fake_in_chs,
se_ratio=float(options['se']) if 'se' in options else None,
stride=int(options['s']),
act_fn=act_fn,
noskip=noskip,
)
elif block_type == 'cn':
block_args = dict(
block_type=block_type,
kernel_size=int(options['k']),
out_chs=int(options['c']),
stride=int(options['s']),
act_fn=act_fn,
)
else:
assert False, 'Unknown block type (%s)' % block_type
return block_args, num_repeat
def _scale_stage_depth(stack_args, repeats, depth_multiplier=1.0, depth_trunc='ceil'):
""" Per-stage depth scaling
Scales the block repeats in each stage. This depth scaling impl maintains
compatibility with the EfficientNet scaling method, while allowing sensible
scaling for other models that may have multiple block arg definitions in each stage.
"""
# We scale the total repeat count for each stage, there may be multiple
# block arg defs per stage so we need to sum.
num_repeat = sum(repeats)
if depth_trunc == 'round':
# Truncating to int by rounding allows stages with few repeats to remain
# proportionally smaller for longer. This is a good choice when stage definitions
# include single repeat stages that we'd prefer to keep that way as long as possible
num_repeat_scaled = max(1, round(num_repeat * depth_multiplier))
else:
# The default for EfficientNet truncates repeats to int via 'ceil'.
# Any multiplier > 1.0 will result in an increased depth for every stage.
num_repeat_scaled = int(math.ceil(num_repeat * depth_multiplier))
# Proportionally distribute repeat count scaling to each block definition in the stage.
# Allocation is done in reverse as it results in the first block being less likely to be scaled.
# The first block makes less sense to repeat in most of the arch definitions.
repeats_scaled = []
for r in repeats[::-1]:
rs = max(1, round((r / num_repeat * num_repeat_scaled)))
repeats_scaled.append(rs)
num_repeat -= r
num_repeat_scaled -= rs
repeats_scaled = repeats_scaled[::-1]
# Apply the calculated scaling to each block arg in the stage
sa_scaled = []
for ba, rep in zip(stack_args, repeats_scaled):
sa_scaled.extend([deepcopy(ba) for _ in range(rep)])
return sa_scaled
def _decode_arch_def(arch_def, depth_multiplier=1.0, depth_trunc='ceil'):
arch_args = []
for _, block_strings in enumerate(arch_def):
assert isinstance(block_strings, list)
stack_args = []
repeats = []
for block_str in block_strings:
assert isinstance(block_str, str)
ba, rep = _decode_block_str(block_str)
stack_args.append(ba)
repeats.append(rep)
arch_args.append(_scale_stage_depth(stack_args, repeats, depth_multiplier, depth_trunc))
return arch_args
def hard_swish(x):
x = P.Cast()(x, ms.float32)
y = x + 3.0
y = clip_by_value(y, 0.0, 6.0)
y = y / 6.0
return x * y
class BlockBuilder(nn.Cell):
def __init__(self, builder_in_channels, builder_block_args, channel_multiplier=1.0, channel_divisor=8,
channel_min=None, pad_type='', act_fn=None, se_gate_fn=sigmoid, se_reduce_mid=False,
bn_args=None, drop_connect_rate=0., verbose=False):
super(BlockBuilder, self).__init__()
bn_args = _BN_ARGS_PT if bn_args is None else bn_args
self.channel_multiplier = channel_multiplier
self.channel_divisor = channel_divisor
self.channel_min = channel_min
self.pad_type = pad_type
self.act_fn = act_fn
self.se_gate_fn = se_gate_fn
self.se_reduce_mid = se_reduce_mid
self.bn_args = bn_args
self.drop_connect_rate = drop_connect_rate
self.verbose = verbose
self.in_chs = None
self.block_idx = 0
self.block_count = 0
self.layer = self._make_layer(builder_in_channels, builder_block_args)
def _round_channels(self, chs):
return _round_channels(chs, self.channel_multiplier, self.channel_divisor, self.channel_min)
def _make_block(self, ba):
bt = ba.pop('block_type')
ba['in_chs'] = self.in_chs
ba['out_chs'] = self._round_channels(ba['out_chs'])
if 'fake_in_chs' in ba and ba['fake_in_chs']:
ba['fake_in_chs'] = self._round_channels(ba['fake_in_chs'])
ba['bn_args'] = self.bn_args
ba['pad_type'] = self.pad_type
ba['act_fn'] = ba['act_fn'] if ba['act_fn'] is not None else self.act_fn
assert ba['act_fn'] is not None
if bt == 'ir':
ba['drop_connect_rate'] = self.drop_connect_rate * self.block_idx / self.block_count
ba['se_gate_fn'] = self.se_gate_fn
ba['se_reduce_mid'] = self.se_reduce_mid
if self.verbose:
logging.info(' InvertedResidual %d, Args: %s', self.block_idx, str(ba))
block = InvertedResidual(**ba)
elif bt in ('ds', 'dsa'):
ba['drop_connect_rate'] = self.drop_connect_rate * self.block_idx / self.block_count
if self.verbose:
logging.info(' DepthwiseSeparable %d, Args: %s', self.block_idx, str(ba))
block = DepthwiseSeparableConv(**ba)
else:
assert False, 'Uknkown block type (%s) while building model.' % bt
self.in_chs = ba['out_chs']
return block
def _make_stack(self, stack_args):
blocks = []
# each stack (stage) contains a list of block arguments
for i, ba in enumerate(stack_args):
if self.verbose:
logging.info(' Block: %d', i)
if i >= 1:
# only the first block in any stack can have a stride > 1
ba['stride'] = 1
block = self._make_block(ba)
blocks.append(block)
self.block_idx += 1
return nn.SequentialCell(blocks)
def _make_layer(self, in_chs, block_args):
""" Build the blocks
Args:
in_chs: Number of input-channels passed to first block
block_args: A list of lists, outer list defines stages, inner
list contains strings defining block configuration(s)
Return:
List of block stacks (each stack wrapped in nn.Sequential)
"""
if self.verbose:
logging.info('Building model trunk with %d stages...', len(block_args))
self.in_chs = in_chs
self.block_count = sum([len(x) for x in block_args])
self.block_idx = 0
blocks = []
for stack_idx, stack in enumerate(block_args):
if self.verbose:
logging.info('Stack: %d', stack_idx)
assert isinstance(stack, list)
stack = self._make_stack(stack)
blocks.append(stack)
return nn.SequentialCell(blocks)
def construct(self, x):
return self.layer(x)
class DropConnect(nn.Cell):
def __init__(self, drop_connect_rate=0., seed0=0, seed1=0):
super(DropConnect, self).__init__()
self.shape = P.Shape()
self.dtype = P.DType()
self.keep_prob = 1 - drop_connect_rate
self.dropout = P.Dropout(keep_prob=self.keep_prob)
def construct(self, x):
shape = self.shape(x)
dtype = self.dtype(x)
ones_tensor = P.Fill()(dtype, (shape[0], 1, 1, 1), 1)
_, mask_ = self.dropout(ones_tensor)
x = x * mask_
return x
def drop_connect(inputs, training=False, drop_connect_rate=0.):
if not training:
return inputs
return DropConnect(drop_connect_rate)(inputs)
class SqueezeExcite(nn.Cell):
def __init__(self, in_chs, reduce_chs=None, act_fn=relu, gate_fn=sigmoid):
super(SqueezeExcite, self).__init__()
self.act_fn = act_fn
self.gate_fn = gate_fn
reduce_chs = reduce_chs or in_chs
self.conv_reduce = _dense(in_chs, reduce_chs, bias=True)
self.conv_expand = _dense(reduce_chs, in_chs, bias=True)
self.avg_global_pool = P.ReduceMean(keep_dims=False)
def construct(self, x):
x_se = self.avg_global_pool(x, (2, 3))
x_se = self.conv_reduce(x_se)
x_se = self.act_fn(x_se)
x_se = self.conv_expand(x_se)
x_se = self.gate_fn(x_se)
x_se = P.ExpandDims()(x_se, 2)
x_se = P.ExpandDims()(x_se, 3)
x = x * x_se
return x
class DepthwiseSeparableConv(nn.Cell):
def __init__(self, in_chs, out_chs, dw_kernel_size=3,
stride=1, pad_type='', act_fn=relu, noskip=False,
pw_kernel_size=1, pw_act=False, se_ratio=0., se_gate_fn=sigmoid,
bn_args=None, drop_connect_rate=0.):
super(DepthwiseSeparableConv, self).__init__()
bn_args = _BN_ARGS_PT if bn_args is None else bn_args
assert stride in [1, 2], 'stride must be 1 or 2'
self.has_se = se_ratio is not None and se_ratio > 0.
self.has_residual = (stride == 1 and in_chs == out_chs) and not noskip
self.has_pw_act = pw_act
self.act_fn = act_fn
self.drop_connect_rate = drop_connect_rate
self.conv_dw = nn.Conv2d(in_chs, in_chs, dw_kernel_size, stride, pad_mode="same",
has_bias=False, group=in_chs,
weight_init=_initialize_weight_goog(shape=[1, dw_kernel_size, in_chs]))
self.bn1 = _fused_bn(in_chs, **bn_args)
#
if self.has_se:
self.se = SqueezeExcite(in_chs, reduce_chs=max(1, int(in_chs * se_ratio)),
act_fn=act_fn, gate_fn=se_gate_fn)
self.conv_pw = _conv1x1(in_chs, out_chs)
self.bn2 = _fused_bn(out_chs, **bn_args)
def construct(self, x):
identity = x
x = self.conv_dw(x)
x = self.bn1(x)
x = self.act_fn(x)
if self.has_se:
x = self.se(x)
x = self.conv_pw(x)
x = self.bn2(x)
if self.has_pw_act:
x = self.act_fn(x)
if self.has_residual:
if self.drop_connect_rate > 0.:
x = drop_connect(x, self.training, self.drop_connect_rate)
x = x + identity
return x
class InvertedResidual(nn.Cell):
def __init__(self, in_chs, out_chs, dw_kernel_size=3, stride=1,
pad_type='', act_fn=relu, pw_kernel_size=1,
noskip=False, exp_ratio=1., exp_kernel_size=1, se_ratio=0.,
se_reduce_mid=False, se_gate_fn=sigmoid, shuffle_type=None,
bn_args=None, drop_connect_rate=0.):
super(InvertedResidual, self).__init__()
bn_args = _BN_ARGS_PT if bn_args is None else bn_args
mid_chs = int(in_chs * exp_ratio)
self.has_se = se_ratio is not None and se_ratio > 0.
self.has_residual = (in_chs == out_chs and stride == 1) and not noskip
self.act_fn = act_fn
self.drop_connect_rate = drop_connect_rate
self.conv_pw = _conv(in_chs, mid_chs, exp_kernel_size)
self.bn1 = _fused_bn(mid_chs, **bn_args)
self.shuffle_type = shuffle_type
if self.shuffle_type is not None and isinstance(exp_kernel_size, list):
self.shuffle = None
self.conv_dw = nn.Conv2d(mid_chs, mid_chs, dw_kernel_size, stride, pad_mode="same",
has_bias=False, group=mid_chs,
weight_init=_initialize_weight_goog(shape=[1, dw_kernel_size, mid_chs]))
self.bn2 = _fused_bn(mid_chs, **bn_args)
if self.has_se:
se_base_chs = mid_chs if se_reduce_mid else in_chs
self.se = SqueezeExcite(mid_chs, reduce_chs=max(1, int(se_base_chs * se_ratio)),
act_fn=act_fn, gate_fn=se_gate_fn)
self.conv_pwl = _conv(mid_chs, out_chs, pw_kernel_size)
self.bn3 = _fused_bn(out_chs, **bn_args)
def construct(self, x):
identity = x
x = self.conv_pw(x)
x = self.bn1(x)
x = self.act_fn(x)
x = self.conv_dw(x)
x = self.bn2(x)
x = self.act_fn(x)
if self.has_se:
x = self.se(x)
x = self.conv_pwl(x)
x = self.bn3(x)
if self.has_residual:
if self.drop_connect_rate > 0:
x = drop_connect(x, self.training, self.drop_connect_rate)
x = x + identity
return x
class GenEfficientNet(nn.Cell):
def __init__(self, block_args, num_classes=1000, in_chans=3, stem_size=32, num_features=1280,
channel_multiplier=1.0, channel_divisor=8, channel_min=None,
pad_type='', act_fn=relu, drop_rate=0., drop_connect_rate=0.,
se_gate_fn=sigmoid, se_reduce_mid=False, bn_args=None,
global_pool='avg', head_conv='default', weight_init='goog'):
super(GenEfficientNet, self).__init__()
bn_args = _BN_ARGS_PT if bn_args is None else bn_args
self.num_classes = num_classes
self.drop_rate = drop_rate
self.act_fn = act_fn
self.num_features = num_features
stem_size = _round_channels(stem_size, channel_multiplier, channel_divisor, channel_min)
self.conv_stem = _conv(in_chans, stem_size, 3, stride=2)
self.bn1 = _fused_bn(stem_size, **bn_args)
in_chans = stem_size
self.blocks = BlockBuilder(in_chans, block_args, channel_multiplier, channel_divisor, channel_min,
pad_type, act_fn, se_gate_fn, se_reduce_mid,
bn_args, drop_connect_rate, verbose=_DEBUG)
in_chs = self.blocks.in_chs
if not head_conv or head_conv == 'none':
self.efficient_head = False
self.conv_head = None
assert in_chs == self.num_features
else:
self.efficient_head = head_conv == 'efficient'
self.conv_head = _conv1x1(in_chs, self.num_features)
self.bn2 = None if self.efficient_head else _fused_bn(self.num_features, **bn_args)
self.global_pool = P.ReduceMean(keep_dims=True)
self.classifier = _dense(self.num_features, self.num_classes)
self.reshape = P.Reshape()
self.shape = P.Shape()
self.drop_out = nn.Dropout(keep_prob=1 - self.drop_rate)
self._roi = Roi_pooling(in_channel = stem_size, out_channel = stem_size,k_size = 3) # self._roi = Roi_pooling(in_channel = out_channels,out_channel = out_channels,k_size = 3)
self.unsqueeze= P.ExpandDims()
self.cast = P.Cast()
def construct(self,x):
x = self.conv_stem(x)
x = self.bn1(x)
x = self.act_fn(x)
x = self.blocks(x)
x = self.conv_head(x)
x = self.bn2(x)
x = self.act_fn(x)
return x
def _gen_efficientnet(channel_multiplier=1.0, depth_multiplier=1.0, num_classes=1000, **kwargs):
"""Creates an EfficientNet model.
Ref impl: https://github.com/tensorflow/tpu/blob/master/models/official/efficientnet/efficientnet_model.py
Paper: https://arxiv.org/abs/1905.11946
EfficientNet params
name: (channel_multiplier, depth_multiplier, resolution, dropout_rate)
'efficientnet-b0': (1.0, 1.0, 224, 0.2),
'efficientnet-b1': (1.0, 1.1, 240, 0.2),
'efficientnet-b2': (1.1, 1.2, 260, 0.3),
'efficientnet-b3': (1.2, 1.4, 300, 0.3),
'efficientnet-b4': (1.4, 1.8, 380, 0.4),
'efficientnet-b5': (1.6, 2.2, 456, 0.4),
'efficientnet-b6': (1.8, 2.6, 528, 0.5),
'efficientnet-b7': (2.0, 3.1, 600, 0.5),
Args:
channel_multiplier: multiplier to number of channels per layer
depth_multiplier: multiplier to number of repeats per stage
"""
arch_def = [
['ds_r1_k3_s1_e1_c16_se0.25'],
['ir_r2_k3_s2_e6_c24_se0.25'],
['ir_r2_k5_s2_e6_c40_se0.25'],
['ir_r3_k3_s2_e6_c80_se0.25'],
['ir_r3_k5_s1_e6_c112_se0.25'],
['ir_r4_k5_s2_e6_c192_se0.25'],
['ir_r1_k3_s1_e6_c320_se0.25'],
]
num_features = _round_channels(1280, channel_multiplier, 8, None)
model = GenEfficientNet(
_decode_arch_def(arch_def, depth_multiplier),
num_classes=num_classes,
stem_size=32,
channel_multiplier=channel_multiplier,
num_features=num_features,
bn_args=_resolve_bn_args(kwargs),
act_fn=hard_swish,
**kwargs
)
return model
def efficientnet_b0(num_classes=1000, in_chans=3, cfg=None, **kwargs):
""" EfficientNet-B0 """
model = _gen_efficientnet(
channel_multiplier=1.0, depth_multiplier=1.0,
num_classes=num_classes, in_chans=in_chans, **kwargs)
return model
def efficientnet_b1(num_classes=1000, in_chans=3, cfg=None, **kwargs):
""" EfficientNet-B1 """
model = _gen_efficientnet(
channel_multiplier=1.0, depth_multiplier=1.1,
num_classes=num_classes, in_chans=in_chans, **kwargs)
return model
def efficientnet_b4(num_classes=1000, in_chans=3, cfg=None, **kwargs):
""" EfficientNet-B4 """
model = _gen_efficientnet(
channel_multiplier=1.4, depth_multiplier=1.8,
num_classes=num_classes, in_chans=in_chans, **kwargs)
return model