forked from airgradienthq/arduino
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathAirGradient.cpp
843 lines (705 loc) · 20.1 KB
/
AirGradient.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
/*
Test.h - Test library for Wiring - implementation
Copyright (c) 2006 John Doe. All right reserved.
*/
// include this library's description file
#include "AirGradient.h"
// include description files for other libraries used (if any)
#include <SoftwareSerial.h>
#include "Arduino.h"
#include <Wire.h>
#include <math.h>
// Constructor /////////////////////////////////////////////////////////////////
// Function that handles the creation and setup of instances
const int MHZ14A = 14;
const int MHZ19B = 19; // this one we use for AQI whatever
const int MHZ14A_PREHEATING_TIME = 3 * 60 * 1000;
const int MHZ19B_PREHEATING_TIME = 3 * 60 * 1000;
const int MHZ14A_RESPONSE_TIME = 60 * 1000;
const int MHZ19B_RESPONSE_TIME = 120 * 1000;
const int STATUS_NO_RESPONSE = -2;
const int STATUS_CHECKSUM_MISMATCH = -3;
const int STATUS_INCOMPLETE = -4;
const int STATUS_NOT_READY = -5;
const int STATUS_PWM_NOT_CONFIGURED = -6;
const int STATUS_serial_MHZ19_NOT_CONFIGURED = -7;
unsigned long lastRequest = 0;
bool SerialConfigured = true;
bool PwmConfigured = true;
AirGradient::AirGradient(bool displayMsg,int baudRate)
{
_debugMsg = displayMsg;
Wire.begin();
Serial.begin(baudRate);
if (_debugMsg) {
Serial.println("AirGradiant Library instantiated successfully.");
}
}
// Public Methods //////////////////////////////////////////////////////////////
// Functions available in Wiring sketches, this library, and other libraries
void AirGradient::PMS_Init(){
if (_debugMsg) {
Serial.println("Initializing PMS...");
}
PMS_Init(D5,D6);
}
void AirGradient::PMS_Init(int rx_pin,int tx_pin){
PMS_Init(rx_pin,tx_pin,9600);
}
void AirGradient::PMS_Init(int rx_pin,int tx_pin,int baudRate){
_SoftSerial_PMS = new SoftwareSerial(rx_pin,tx_pin);
PMS(*_SoftSerial_PMS);
_SoftSerial_PMS->begin(baudRate);
if(getPM2() <= 0){
if (_debugMsg) {
Serial.println("PMS Sensor Failed to Initialize ");
}
else{
Serial.println("PMS Successfully Initialized. Heating up for 10s");
delay(10000);
}
}
}
const char* AirGradient::getPM2(){
if (getPM2_Raw()) {
int result_raw = getPM2_Raw();
sprintf(Char_PM2,"%d", result_raw);
return Char_PM2;
} else {
//Serial.println("no PMS data");
Char_PM2[0] = 'N';
Char_PM2[1] = 'U';
Char_PM2[2] = 'L';
Char_PM2[3] = 'L';
return Char_PM2;
}
}
int AirGradient::getPM2_Raw(){
int pm02;
DATA data;
requestRead();
if (readUntil(data)) {
pm02 = data.PM_AE_UG_2_5;
return pm02;
} else {
return 0;
}
}
// Private Methods /////////////////////////////////////////////////////////////
// Functions only available to other functions in this library
//START PMS FUNCTIONS //
void AirGradient::PMS(Stream& stream)
{
this->_stream = &stream;
}
// Standby mode. For low power consumption and prolong the life of the sensor.
void AirGradient::sleep()
{
uint8_t command[] = { 0x42, 0x4D, 0xE4, 0x00, 0x00, 0x01, 0x73 };
_stream->write(command, sizeof(command));
}
// Operating mode. Stable data should be got at least 30 seconds after the sensor wakeup from the sleep mode because of the fan's performance.
void AirGradient::wakeUp()
{
uint8_t command[] = { 0x42, 0x4D, 0xE4, 0x00, 0x01, 0x01, 0x74 };
_stream->write(command, sizeof(command));
}
// Active mode. Default mode after power up. In this mode sensor would send serial data to the host automatically.
void AirGradient::activeMode()
{
uint8_t command[] = { 0x42, 0x4D, 0xE1, 0x00, 0x01, 0x01, 0x71 };
_stream->write(command, sizeof(command));
_mode = MODE_ACTIVE;
}
// Passive mode. In this mode sensor would send serial data to the host only for request.
void AirGradient::passiveMode()
{
uint8_t command[] = { 0x42, 0x4D, 0xE1, 0x00, 0x00, 0x01, 0x70 };
_stream->write(command, sizeof(command));
_mode = MODE_PASSIVE;
}
// Request read in Passive Mode.
void AirGradient::requestRead()
{
if (_mode == MODE_PASSIVE)
{
uint8_t command[] = { 0x42, 0x4D, 0xE2, 0x00, 0x00, 0x01, 0x71 };
_stream->write(command, sizeof(command));
}
}
// Non-blocking function for parse response.
bool AirGradient::read_PMS(DATA& data)
{
_data = &data;
loop();
return _PMSstatus == STATUS_OK;
}
// Blocking function for parse response. Default timeout is 1s.
bool AirGradient::readUntil(DATA& data, uint16_t timeout)
{
_data = &data;
uint32_t start = millis();
do
{
loop();
if (_PMSstatus == STATUS_OK) break;
} while (millis() - start < timeout);
return _PMSstatus == STATUS_OK;
}
void AirGradient::loop()
{
_PMSstatus = STATUS_WAITING;
if (_stream->available())
{
uint8_t ch = _stream->read();
switch (_index)
{
case 0:
if (ch != 0x42)
{
return;
}
_calculatedChecksum = ch;
break;
case 1:
if (ch != 0x4D)
{
_index = 0;
return;
}
_calculatedChecksum += ch;
break;
case 2:
_calculatedChecksum += ch;
_frameLen = ch << 8;
break;
case 3:
_frameLen |= ch;
// Unsupported sensor, different frame length, transmission error e.t.c.
if (_frameLen != 2 * 9 + 2 && _frameLen != 2 * 13 + 2)
{
_index = 0;
return;
}
_calculatedChecksum += ch;
break;
default:
if (_index == _frameLen + 2)
{
_checksum = ch << 8;
}
else if (_index == _frameLen + 2 + 1)
{
_checksum |= ch;
if (_calculatedChecksum == _checksum)
{
_PMSstatus = STATUS_OK;
// Standard Particles, CF=1.
_data->PM_SP_UG_1_0 = makeWord(_payload[0], _payload[1]);
_data->PM_SP_UG_2_5 = makeWord(_payload[2], _payload[3]);
_data->PM_SP_UG_10_0 = makeWord(_payload[4], _payload[5]);
// Atmospheric Environment.
_data->PM_AE_UG_1_0 = makeWord(_payload[6], _payload[7]);
_data->PM_AE_UG_2_5 = makeWord(_payload[8], _payload[9]);
_data->PM_AE_UG_10_0 = makeWord(_payload[10], _payload[11]);
}
_index = 0;
return;
}
else
{
_calculatedChecksum += ch;
uint8_t payloadIndex = _index - 4;
// Payload is common to all sensors (first 2x6 bytes).
if (payloadIndex < sizeof(_payload))
{
_payload[payloadIndex] = ch;
}
}
break;
}
_index++;
}
}
//END PMS FUNCTIONS //
//START TMP_RH FUNCTIONS//
TMP_RH_ErrorCode AirGradient::TMP_RH_Init(uint8_t address) {
if (_debugMsg) {
Serial.println("Initializing TMP_RH...");
}
TMP_RH_ErrorCode error = SHT3XD_NO_ERROR;
_address = address;
periodicStart(SHT3XD_REPEATABILITY_HIGH, SHT3XD_FREQUENCY_10HZ);
return error;
}
TMP_RH_ErrorCode AirGradient::reset()
{
return softReset();
}
TMP_RH AirGradient::periodicFetchData() //
{
TMP_RH result;
TMP_RH_ErrorCode error = writeCommand(SHT3XD_CMD_FETCH_DATA);
if (error == SHT3XD_NO_ERROR){
result = readTemperatureAndHumidity();
sprintf(result.t_char,"%d", result.t);
sprintf(result.rh_char,"%f", result.rh);
return result;
}
else
return returnError(error);
}
TMP_RH_ErrorCode AirGradient::periodicStop() {
return writeCommand(SHT3XD_CMD_STOP_PERIODIC);
}
TMP_RH_ErrorCode AirGradient::periodicStart(TMP_RH_Repeatability repeatability, TMP_RH_Frequency frequency) //
{
TMP_RH_ErrorCode error;
switch (repeatability)
{
case SHT3XD_REPEATABILITY_LOW:
switch (frequency)
{
case SHT3XD_FREQUENCY_HZ5:
error = writeCommand(SHT3XD_CMD_PERIODIC_HALF_L);
break;
case SHT3XD_FREQUENCY_1HZ:
error = writeCommand(SHT3XD_CMD_PERIODIC_1_L);
break;
case SHT3XD_FREQUENCY_2HZ:
error = writeCommand(SHT3XD_CMD_PERIODIC_2_L);
break;
case SHT3XD_FREQUENCY_4HZ:
error = writeCommand(SHT3XD_CMD_PERIODIC_4_L);
break;
case SHT3XD_FREQUENCY_10HZ:
error = writeCommand(SHT3XD_CMD_PERIODIC_10_L);
break;
default:
error = SHT3XD_PARAM_WRONG_FREQUENCY;
break;
}
break;
case SHT3XD_REPEATABILITY_MEDIUM:
switch (frequency)
{
case SHT3XD_FREQUENCY_HZ5:
error = writeCommand(SHT3XD_CMD_PERIODIC_HALF_M);
break;
case SHT3XD_FREQUENCY_1HZ:
error = writeCommand(SHT3XD_CMD_PERIODIC_1_M);
break;
case SHT3XD_FREQUENCY_2HZ:
error = writeCommand(SHT3XD_CMD_PERIODIC_2_M);
break;
case SHT3XD_FREQUENCY_4HZ:
error = writeCommand(SHT3XD_CMD_PERIODIC_4_M);
break;
case SHT3XD_FREQUENCY_10HZ:
error = writeCommand(SHT3XD_CMD_PERIODIC_10_M);
break;
default:
error = SHT3XD_PARAM_WRONG_FREQUENCY;
break;
}
break;
case SHT3XD_REPEATABILITY_HIGH:
switch (frequency)
{
case SHT3XD_FREQUENCY_HZ5:
error = writeCommand(SHT3XD_CMD_PERIODIC_HALF_H);
break;
case SHT3XD_FREQUENCY_1HZ:
error = writeCommand(SHT3XD_CMD_PERIODIC_1_H);
break;
case SHT3XD_FREQUENCY_2HZ:
error = writeCommand(SHT3XD_CMD_PERIODIC_2_H);
break;
case SHT3XD_FREQUENCY_4HZ:
error = writeCommand(SHT3XD_CMD_PERIODIC_4_H);
break;
case SHT3XD_FREQUENCY_10HZ:
error = writeCommand(SHT3XD_CMD_PERIODIC_10_H);
break;
default:
error = SHT3XD_PARAM_WRONG_FREQUENCY;
break;
}
break;
default:
error = SHT3XD_PARAM_WRONG_REPEATABILITY;
break;
}
delay(100);
return error;
}
TMP_RH_ErrorCode AirGradient::writeCommand(TMP_RH_Commands command)
{
Wire.beginTransmission(_address);
Wire.write(command >> 8);
Wire.write(command & 0xFF);
return (TMP_RH_ErrorCode)(-10 * Wire.endTransmission());
}
TMP_RH_ErrorCode AirGradient::softReset() {
return writeCommand(SHT3XD_CMD_SOFT_RESET);
}
uint32_t AirGradient::readSerialNumber()
{
uint32_t result = SHT3XD_NO_ERROR;
uint16_t buf[2];
if (writeCommand(SHT3XD_CMD_READ_SERIAL_NUMBER) == SHT3XD_NO_ERROR) {
if (read_TMP_RH(buf, 2) == SHT3XD_NO_ERROR) {
result = (buf[0] << 16) | buf[1];
}
}
else if(writeCommand(SHT3XD_CMD_READ_SERIAL_NUMBER) != SHT3XD_NO_ERROR){
if (_debugMsg) {
Serial.println("TMP_RH Failed to Initialize.");
}
}
return result;
}
uint32_t AirGradient::testTMP_RH()
{
uint32_t result = SHT3XD_NO_ERROR;
uint16_t buf[2];
if (writeCommand(SHT3XD_CMD_READ_SERIAL_NUMBER) == SHT3XD_NO_ERROR) {
if (read_TMP_RH(buf, 2) == SHT3XD_NO_ERROR) {
result = (buf[0] << 16) | buf[1];
}
if (_debugMsg) {
Serial.print("TMP_RH successfully initialized with serial number: ");
Serial.println(result);
}
}
else if(writeCommand(SHT3XD_CMD_READ_SERIAL_NUMBER) != SHT3XD_NO_ERROR){
if (_debugMsg) {
Serial.println("TMP_RH Failed to Initialize.");
}
}
return result;
}
TMP_RH_ErrorCode AirGradient::clearAll() {
return writeCommand(SHT3XD_CMD_CLEAR_STATUS);
}
TMP_RH AirGradient::readTemperatureAndHumidity()//
{
TMP_RH result;
result.t = 0;
result.rh = 0;
TMP_RH_ErrorCode error;
uint16_t buf[2];
if (error == SHT3XD_NO_ERROR)
error = read_TMP_RH(buf, 2);
if (error == SHT3XD_NO_ERROR) {
result.t = calculateTemperature(buf[0]);
result.rh = calculateHumidity(buf[1]);
}
result.error = error;
return result;
}
TMP_RH_ErrorCode AirGradient::read_TMP_RH(uint16_t* data, uint8_t numOfPair)//
{
uint8_t buf[2];
uint8_t checksum;
const uint8_t numOfBytes = numOfPair * 3;
Wire.requestFrom(_address, numOfBytes);
int counter = 0;
for (counter = 0; counter < numOfPair; counter++) {
Wire.readBytes(buf, (uint8_t)2);
checksum = Wire.read();
if (checkCrc(buf, checksum) != 0)
return SHT3XD_CRC_ERROR;
data[counter] = (buf[0] << 8) | buf[1];
}
return SHT3XD_NO_ERROR;
}
uint8_t AirGradient::checkCrc(uint8_t data[], uint8_t checksum)//
{
return calculateCrc(data) != checksum;
}
float AirGradient::calculateTemperature(uint16_t rawValue)//
{
float value = 175.0f * (float)rawValue / 65535.0f - 45.0f;
return round(value*10)/10;
}
float AirGradient::calculateHumidity(uint16_t rawValue)//
{
return 100.0f * rawValue / 65535.0f;
}
uint8_t AirGradient::calculateCrc(uint8_t data[])
{
uint8_t bit;
uint8_t crc = 0xFF;
uint8_t dataCounter = 0;
for (; dataCounter < 2; dataCounter++)
{
crc ^= (data[dataCounter]);
for (bit = 8; bit > 0; --bit)
{
if (crc & 0x80)
crc = (crc << 1) ^ 0x131;
else
crc = (crc << 1);
}
}
return crc;
}
TMP_RH AirGradient::returnError(TMP_RH_ErrorCode error) {
TMP_RH result;
result.t = NULL;
result.rh = NULL;
result.t_char[0] = 'N';
result.t_char[1] = 'U';
result.t_char[2] = 'L';
result.t_char[3] = 'L';
result.rh_char[0] = 'N';
result.rh_char[1] = 'U';
result.rh_char[2] = 'L';
result.rh_char[3] = 'L';
result.error = error;
return result;
}
//END TMP_RH FUNCTIONS //
//START CO2 FUNCTIONS //
void AirGradient::CO2_Init(){
CO2_Init(D4,D3);
}
void AirGradient::CO2_Init(int rx_pin,int tx_pin){
CO2_Init(rx_pin,tx_pin,9600);
}
void AirGradient::CO2_Init(int rx_pin,int tx_pin,int baudRate){
if (_debugMsg) {
Serial.println("Initializing CO2...");
}
_SoftSerial_CO2 = new SoftwareSerial(rx_pin,tx_pin);
_SoftSerial_CO2->begin(baudRate);
if(getCO2_Raw() == -1){
if (_debugMsg) {
Serial.println("CO2 Sensor Failed to Initialize ");
}
}
else{
Serial.println("CO2 Successfully Initialized. Heating up for 10s");
delay(10000);
}
}
const char* AirGradient::getCO2(int retryLimit) {
int ctr = 0;
int result_CO2 = getCO2_Raw();
while(result_CO2 == -1){
result_CO2 = getCO2_Raw();
if((ctr == retryLimit) || (result_CO2 == -1)){
Char_CO2[0] = 'N';
Char_CO2[1] = 'U';
Char_CO2[2] = 'L';
Char_CO2[3] = 'L';
return Char_CO2;
}
ctr++;
}
sprintf(Char_CO2,"%d", result_CO2);
return Char_CO2;
}
int AirGradient::getCO2_Raw(){
const byte CO2Command[] = {0xFE, 0X44, 0X00, 0X08, 0X02, 0X9F, 0X25};
byte CO2Response[] = {0,0,0,0,0,0,0};
_SoftSerial_CO2->write(CO2Command, 7);
delay(100); //give the sensor a bit of time to respond
if (_SoftSerial_CO2->available()){
for (int i=0; i < 7; i++) {
int byte = _SoftSerial_CO2->read();
CO2Response[i] = byte;
if (CO2Response[0] != 254) {
return -1; //error code for debugging
}
}
unsigned long val = CO2Response[3]*256 + CO2Response[4];
return val;
}
else
{
return -2; //error code for debugging
}
}
//END CO2 FUNCTIONS //
//START MHZ19 FUNCTIONS //
void AirGradient::MHZ19_Init(uint8_t type) {
MHZ19_Init(9,10,type);
}
void AirGradient::MHZ19_Init(int rx_pin,int tx_pin, uint8_t type) {
MHZ19_Init(rx_pin,tx_pin,9600,type);
}
void AirGradient::MHZ19_Init(int rx_pin,int tx_pin, int baudRate, uint8_t type) {
if (_debugMsg) {
Serial.println("Initializing MHZ19...");
}
_SoftSerial_MHZ19 = new SoftwareSerial(rx_pin,tx_pin);
_SoftSerial_MHZ19->begin(baudRate);
if(readMHZ19() == -1){
if (_debugMsg) {
Serial.println("MHZ19 Sensor Failed to Initialize ");
}
}
else{
Serial.println("MHZ19 Successfully Initialized. Heating up for 10s");
delay(10000);
}
_type_MHZ19 = type;
PwmConfigured = false;
}
/**
* Enables or disables the debug mode (more logging).
*/
void AirGradient::setDebug_MHZ19(bool enable) {
debug_MHZ19 = enable;
if (debug_MHZ19) {
Serial.println(F("MHZ: debug mode ENABLED"));
} else {
Serial.println(F("MHZ: debug mode DISABLED"));
}
}
bool AirGradient::isPreHeating_MHZ19() {
if (_type_MHZ19 == MHZ14A) {
return millis() < (MHZ14A_PREHEATING_TIME);
} else if (_type_MHZ19 == MHZ19B) {
return millis() < (MHZ19B_PREHEATING_TIME);
} else {
Serial.println(F("MHZ::isPreheating_MHZ19() => UNKNOWN SENSOR"));
return false;
}//
}
bool AirGradient::isReady_MHZ19() {
if (isPreHeating_MHZ19()) return false;
if (_type_MHZ19 == MHZ14A)
return lastRequest < millis() - MHZ14A_RESPONSE_TIME;
else if (_type_MHZ19 == MHZ19B)
return lastRequest < millis() - MHZ19B_RESPONSE_TIME;
else {
Serial.print(F("MHZ::isReady_MHZ19() => UNKNOWN SENSOR \""));
Serial.print(_type_MHZ19);
Serial.println(F("\""));
return true;
}
}
int AirGradient::readMHZ19() {
int firstRead = readInternal_MHZ19();
int secondRead = readInternal_MHZ19();
if (abs(secondRead - firstRead) > 50) {
// we arrive here sometimes when the CO2 sensor is not connected
// could possibly also be fixed with a pull-up resistor on Rx but if we forget this then ...
Serial.println("MHZ::read() inconsistent values");
return -1;
}
Serial.println("MHZ::read(1) " + String(firstRead));
Serial.println("MHZ::read(2) " + String(secondRead));
// TODO: return average?
return secondRead;
}
int AirGradient::readInternal_MHZ19() {
if (!SerialConfigured) {
if (debug_MHZ19) Serial.println(F("-- serial is not configured"));
return STATUS_serial_MHZ19_NOT_CONFIGURED;
}
// if (!isReady_MHZ19()) return STATUS_NOT_READY;
if (debug_MHZ19) Serial.println(F("-- read CO2 uart ---"));
byte cmd[9] = {0xFF, 0x01, 0x86, 0x00, 0x00, 0x00, 0x00, 0x00, 0x79};
unsigned char response[9]; // for answer
if (debug_MHZ19) Serial.print(F(" >> Sending CO2 request"));
_SoftSerial_MHZ19->write(cmd, 9); // request PPM CO2
lastRequest = millis();
// clear the buffer
memset(response, 0, 9);
int waited = 0;
while (_SoftSerial_MHZ19->available() == 0) {
if (debug_MHZ19) Serial.print(".");
delay(100); // wait a short moment to avoid false reading
if (waited++ > 10) {
if (debug_MHZ19) Serial.println(F("No response after 10 seconds"));
_SoftSerial_MHZ19->flush();
return STATUS_NO_RESPONSE;
}
}
if (debug_MHZ19) Serial.println();
// The serial stream can get out of sync. The response starts with 0xff, try
// to resync.
// TODO: I think this might be wrong any only happens during initialization?
boolean skip = false;
while (_SoftSerial_MHZ19->available() > 0 && (unsigned char)_SoftSerial_MHZ19->peek() != 0xFF) {
if (!skip) {
Serial.print(F("MHZ: - skipping unexpected readings:"));
skip = true;
}
Serial.print(" ");
Serial.print(_SoftSerial_MHZ19->peek(), HEX);
_SoftSerial_MHZ19->read();
}
if (skip) Serial.println();
if (_SoftSerial_MHZ19->available() > 0) {
int count = _SoftSerial_MHZ19->readBytes(response, 9);
if (count < 9) {
_SoftSerial_MHZ19->flush();
return STATUS_INCOMPLETE;
}
} else {
_SoftSerial_MHZ19->flush();
return STATUS_INCOMPLETE;
}
if (debug_MHZ19) {
// print out the response in hexa
Serial.print(F(" << "));
for (int i = 0; i < 9; i++) {
Serial.print(response[i], HEX);
Serial.print(F(" "));
}
Serial.println(F(""));
}
// checksum
byte check = getCheckSum_MHZ19(response);
if (response[8] != check) {
Serial.println(F("MHZ: Checksum not OK!"));
Serial.print(F("MHZ: Received: "));
Serial.println(response[8], HEX);
Serial.print(F("MHZ: Should be: "));
Serial.println(check, HEX);
temperature_MHZ19 = STATUS_CHECKSUM_MISMATCH;
_SoftSerial_MHZ19->flush();
return STATUS_CHECKSUM_MISMATCH;
}
int ppm_uart = 256 * (unsigned int)response[2] + (unsigned int)response[3];
temperature_MHZ19 = response[4] - 44; // - 40;
byte status = response[5];
if (debug_MHZ19) {
Serial.print(F(" # PPM UART: "));
Serial.println(ppm_uart);
Serial.print(F(" # temperature_MHZ19? "));
Serial.println(temperature_MHZ19);
}
// Is always 0 for version 14a and 19b
// Version 19a?: status != 0x40
if (debug_MHZ19 && status != 0) {
Serial.print(F(" ! Status maybe not OK ! "));
Serial.println(status, HEX);
} else if (debug_MHZ19) {
Serial.print(F(" Status OK: "));
Serial.println(status, HEX);
}
_SoftSerial_MHZ19->flush();
return ppm_uart;
}
uint8_t AirGradient::getCheckSum_MHZ19(unsigned char* packet) {
if (!SerialConfigured) {
if (debug_MHZ19) Serial.println(F("-- serial is not configured"));
return STATUS_serial_MHZ19_NOT_CONFIGURED;
}
if (debug_MHZ19) Serial.println(F(" getCheckSum_MHZ19()"));
byte i;
unsigned char checksum = 0;
for (i = 1; i < 8; i++) {
checksum += packet[i];
}
checksum = 0xff - checksum;
checksum += 1;
return checksum;
}
//END MHZ19 FUNCTIONS //