-
Notifications
You must be signed in to change notification settings - Fork 29
/
Copy pathevaluate.py
346 lines (290 loc) · 15.5 KB
/
evaluate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
import argparse
import json
import os
from collections import defaultdict
import chainer
import chainer.functions as F
import matplotlib
from PIL import Image
from chainer.dataset import concat_examples
from common.datasets.text_recognition_eval_dataset import TextRecognitionEvaluationDataset
from evaluation.text_recognition_evaluator import TextRecognitionEvaluator, \
TextRecognitionTestFunction
from insights.text_recognition_bbox_plotter import TextRecognitionBBoxPlotter
from train_utils.backup import restore_backup
matplotlib.use('Agg')
import matplotlib.pyplot as plt
import numpy as np
import re
from chainer import configuration
from chainer import reporter as reporter_module
from chainer.backends import cuda
from tqdm import tqdm
from insights.bbox_plotter import get_next_color
from train_utils.datatypes import Size
class Evaluator:
def __init__(self, args):
self.args = args
with open(os.path.join(args.model_dir, args.log_name)) as the_log_file:
log_data = json.load(the_log_file)[0]
self.image_size = Size(*log_data['image_size'])
self.target_size = Size(*log_data['target_size'])
if self.args.char_map is None:
self.args.char_map = log_data['char_map']
# Step 0 Build Dataset
self.data_loader = TextRecognitionEvaluationDataset(
self.image_size,
npz_file=args.eval_gt,
char_map=self.args.char_map,
root=os.path.dirname(args.eval_gt),
dtype=chainer.get_dtype(),
transform_probability=0,
keep_aspect_ratio=log_data.get('keep_aspect_ratio', True),
image_mode=log_data.get('image_mode', 'RGB')
)
if hasattr(self.data_loader, 'num_chars'):
self.data_loader.num_chars = log_data['num_words']
self.data_loader.num_words = log_data['num_chars']
else:
self.data_loader.metadata['num_chars'] = log_data['num_words']
self.data_loader.metadata['num_words'] = log_data['num_chars']
if args.num_samples is not None:
self.data_loader.shrink_dataset(args.num_samples)
self.data_iterator = chainer.iterators.MultiprocessIterator(
self.data_loader,
args.batchsize,
repeat=False,
shuffle=False
)
# step 1 build network
localizer_class = restore_backup(log_data['localizer'], args.model_dir)
log_keys = ['use_group_norm', 'rotation_ratio', 'num_bboxes_to_localize', 'num_layers', 'rotation_dropout_ratio']
localizer_args = {key: log_data[key] for key in log_keys if key in log_data}
if 'num_bboxes_to_localize' not in localizer_args:
localizer_args['num_bboxes_to_localize'] = self.data_loader.num_chars_per_word
if 'rotation_dropout_ratio' in localizer_args:
localizer_args['dropout_ratio'] = localizer_args['rotation_dropout_ratio']
try:
self.localizer = localizer_class(
self.target_size,
**localizer_args
)
except (ValueError, KeyError) as e:
print(e)
print("Can not create localizer with standard args, falling back")
self.localizer = localizer_class(self.target_size)
recognizer_class = restore_backup(log_data['recognizer'], args.model_dir)
log_keys = ['use_group_norm', 'num_layers', 'rotation_dropout_ratio', 'bos_token']
recognizer_args = {key: log_data[key] for key in log_keys if key in log_data}
self.recognizer = recognizer_class(
self.data_loader.num_chars_per_word,
self.data_loader.num_words_per_image,
self.data_loader.num_classes,
**recognizer_args,
)
if args.gpu is not None:
self.localizer.to_device(args.gpu)
if self.recognizer is not None:
self.recognizer.to_device(args.gpu)
self.evaluator = TextRecognitionTestFunction(
self.localizer,
self.recognizer,
args.gpu,
self.data_loader.blank_label,
self.data_loader.char_map,
return_best_result=args.return_only_best_result,
strip_non_alpha_numeric_predictions=args.strip_non_alpha,
)
self.evaluator.xp = self.localizer.xp
self.mean_calculator = TextRecognitionEvaluator(self.data_iterator, self.evaluator)
self.bbox_plotter = TextRecognitionBBoxPlotter(
self.data_loader.get_example(0)['image'][:, 0, ...],
os.path.join(args.model_dir, 'eval_bboxes'),
self.target_size,
render_extracted_rois=False,
device=args.gpu,
num_rois_to_render=4,
show_visual_backprop_overlay=False,
show_backprop_and_feature_vis=False,
visualization_anchors=[
["visual_backprop_anchors"],
],
char_map=self.data_loader.char_map,
blank_label=self.data_loader.blank_label,
predictors={
"localizer": self.localizer,
"recognizer": self.recognizer,
},
)
self.bbox_plotter.xp = self.localizer.xp
self.results_path = os.path.join(self.args.model_dir, args.results_path)
def load_weights(self, snapshot_name, model, dataset_name=''):
with np.load(os.path.join(self.args.model_dir, snapshot_name)) as f:
chainer.serializers.NpzDeserializer(f, strict=True).load(model)
if self.args.save_predictions and hasattr(self, 'bbox_plotter'):
new_out_dir = os.path.join(
self.bbox_plotter.out_dir,
dataset_name,
os.path.splitext(snapshot_name)[0].split('_')[-1]
)
os.makedirs(new_out_dir, exist_ok=True)
self.bbox_plotter.out_dir = new_out_dir
def reset(self):
self.data_iterator.reset()
def evaluate(self, snapshot_name=''):
reporter = reporter_module.Reporter()
current_device = chainer.get_device(self.args.gpu)
summary = reporter_module.DictSummary()
with chainer.using_device(current_device), reporter, configuration.using_config('train', False):
for i, batch in enumerate(tqdm(self.data_iterator, total=len(self.data_loader) // self.args.batchsize)):
observation = {}
batch = concat_examples(batch, self.args.gpu)
image_size = Size._make(batch['image'].shape[-2:])
with reporter_module.report_scope(observation):
rois, bboxes, text_predictions, best_indices, chosen_prediction, scores = self.evaluator(return_predictions=True, **batch)
summary.add(observation)
if self.args.save_predictions:
assert self.args.batchsize == 1, "if you want to save predictions, batchsize must be 1!"
batch_size, num_predictions, num_bboxes, num_channels, height, width = rois.shape
base_image = self.bbox_plotter.array_to_image(batch['image'][0, 0])
chosen_word = self.data_loader.decode_chars(cuda.to_cpu(text_predictions[0, chosen_prediction[0]].squeeze()))
base_image = self.bbox_plotter.render_text(base_image, base_image, chosen_word, 0, bottom=True)
rendered_images = [base_image]
iterator = zip(
F.separate(self.localizer.xp.stack(
[batch['image'][i, best_indices[i]] for i in range(self.args.batchsize)]), axis=1),
F.separate(rois, axis=1), F.separate(bboxes, axis=1), F.separate(text_predictions, axis=1),
F.separate(scores, axis=1)
)
for image, roi, bbox, prediction, score in iterator:
image = image.array
roi = roi.array
bbox = bbox.array
prediction = prediction.array
score = score.array
bbox = self.localizer.xp.reshape(bbox, (-1, 2, height, width))
predicted_words = self.data_loader.decode_chars(cuda.to_cpu(prediction.squeeze()))
predicted_words = f"{predicted_words} {format(float(score[0]), '.4f')}"
if args.cut_bboxes:
cut_length = batch['num_words'][0] if 'num_words' in batch else len(predicted_words)
bbox = bbox[:cut_length, ...]
roi = roi[:cut_length, ...]
if args.render_no_boxes:
bbox = bbox[:1]
roi = roi[:1]
rendered_images.append(
self.render_roi(
[],
bbox,
None,
i,
image,
roi,
predicted_words
)
)
self.save_rois(rendered_images, i)
self.save_eval_results(snapshot_name, summary)
def render_roi(self, backprop_visualizations, bboxes, class_predictions, index, image, rois, predicted_word):
dest_image = self.bbox_plotter.render_rois(
rois,
bboxes.copy(),
index,
image[0],
backprop_vis=backprop_visualizations,
)
if class_predictions is not None:
dest_image = self.bbox_plotter.render_discriminator_result(
dest_image,
self.bbox_plotter.array_to_image(image[0].copy()),
self.bbox_plotter.get_discriminator_output_function(chainer.Variable(class_predictions.transpose()))
)
if predicted_word is not None:
dest_image = self.bbox_plotter.render_text(dest_image, dest_image, predicted_word, 0, bottom=True)
return dest_image
def save_rois(self, images, index):
dest_image_width = max(images, key=lambda x: x.width).width
dest_image_height = sum([image.height for image in images])
dest_image = Image.new("RGB", (dest_image_width, dest_image_height))
current_start_height = 0
for image in images:
dest_image.paste(image, (0, current_start_height))
current_start_height += image.height
self.bbox_plotter.save_image(dest_image, index)
def save_eval_results(self, snapshot_name, summary):
# calculate map for our detection
eval_result = self.mean_calculator.calculate_mean_of_summary(summary)
eval_result["snapshot_name"] = snapshot_name
if os.path.exists(self.results_path):
with open(self.results_path) as eval_file:
json_data = json.load(eval_file)
else:
json_data = []
json_data.append(eval_result)
with open(self.results_path, 'w') as eval_file:
json.dump(json_data, eval_file, indent=4)
def plot_eval_results(data, model_dir, dataset_name):
values_per_key = defaultdict(list)
for element in data:
for key, value in element.items():
values_per_key[key] += [value]
for (key, value), color in zip(values_per_key.items(), get_next_color()):
if key == 'snapshot_name':
continue
plt.plot(value, label=key)
plt.legend()
plt.savefig(os.path.join(model_dir, f"plot_{dataset_name}.png"))
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="evaluates trained localizer")
parser.add_argument("eval_gt", help="path to gt file with all images to test")
parser.add_argument("model_dir", help="path to directory containing train results")
parser.add_argument("snapshot_prefix", help="prefix of snapshots to evaluate")
parser.add_argument("--log-name", default="log", help="name of the log file [default: log]")
parser.add_argument("--gpu", "-g", help="gpu to use [default: use cpu]")
parser.add_argument("--num-samples", "-n", type=int, help="max number of samples to test [default: test all]")
parser.add_argument("--batchsize", "-b", type=int, default=1, help="number of images to evaluate at once [default: 1]")
parser.add_argument("--save-predictions", action='store_true', default=False, help="use bbox plotter to store the predicted bboxes for every test sample")
parser.add_argument("--recognizer-name", required=True, help="name of recognizer to use")
parser.add_argument("--force-reset", action='store_true', default=False, help="force a reset of eval results file")
parser.add_argument("--char-map", help="path to a char map [default: get char map path from log file (does only work if evaluating on the same pc as training happened)]")
parser.add_argument("--results-path", default="eval_results.json", help="path to file where eval results shall be saved")
parser.add_argument("--do-not-cut-bboxes", dest="cut_bboxes", action='store_false', default=True, help="show all bboxes in plotted images")
parser.add_argument("--render-no-boxes", action='store_true', default=False, help="indicate that no bboxes shall be shown while saving predictions")
parser.add_argument("--dataset-name", "--dn", default='', help="name of dataset for saved predictions (makes it easier to have multiple evaluated datasets per model)")
parser.add_argument("--render-all-results", action='store_false', dest='return_only_best_result', default=True, help="show the result of all three images")
parser.add_argument("--strip-non-alpha", action='store_true', default=False, help="Strip all predicted non alpha numeric characters, as the dataset does not include any of those anyway")
args = parser.parse_args()
evaluator = Evaluator(args)
if os.path.exists(evaluator.results_path) and not args.save_predictions:
if args.force_reset:
os.unlink(evaluator.results_path)
evaluated_snapshots = []
else:
# we already evaluated some snapshots, so we do not need to do that again
with open(evaluator.results_path) as already_evaluated_model_results:
json_data = json.load(already_evaluated_model_results)
evaluated_snapshots = [item['snapshot_name'] for item in json_data]
else:
evaluated_snapshots = []
localizer_snapshots = list(
sorted(
filter(lambda x: x not in evaluated_snapshots and args.snapshot_prefix in x, os.listdir(args.model_dir)),
key=lambda x: int(getattr(re.search(r"(\d+).npz", x), 'group', lambda: 0)(1))
)
)
recognizer_snapshots = list(
sorted(
filter(lambda x: x not in evaluated_snapshots and args.recognizer_name in x, os.listdir(args.model_dir)),
key=lambda x: int(getattr(re.search(r"(\d+).npz", x), 'group', lambda: 0)(1))
)
)
for localizer_snapshot, recognizer_snapshot in tqdm(zip(localizer_snapshots, recognizer_snapshots),
total=len(localizer_snapshots)):
evaluator.load_weights(localizer_snapshot, evaluator.localizer, args.dataset_name)
evaluator.load_weights(recognizer_snapshot, evaluator.recognizer, args.dataset_name)
evaluator.reset()
evaluator.evaluate(localizer_snapshot)
if os.path.exists(evaluator.results_path):
with open(evaluator.results_path) as evaluated_model_results:
json_data = json.load(evaluated_model_results)
plot_eval_results(json_data, args.model_dir, args.dataset_name)