diff --git a/tedana/decomposition/ica.py b/tedana/decomposition/ica.py index ff69626a7..5a233b42e 100644 --- a/tedana/decomposition/ica.py +++ b/tedana/decomposition/ica.py @@ -4,15 +4,18 @@ import logging import warnings +import sys + import numpy as np from scipy import stats from sklearn.decomposition import FastICA +from robustica import RobustICA ####BTBTBT LGR = logging.getLogger("GENERAL") RepLGR = logging.getLogger("REPORT") -def tedica(data, n_components, fixed_seed, maxit=500, maxrestart=10): +def tedica(data, n_components, fixed_seed, ica_method="robustica", n_robust_runs=30, maxit=500, maxrestart=10): ####BTBTBTB """ Perform ICA on `data` and returns mixing matrix @@ -50,6 +53,51 @@ def tedica(data, n_components, fixed_seed, maxit=500, maxrestart=10): "decompose the dimensionally reduced dataset." ) + if ica_method=='robustica': + mmix, Iq = r_ica(data, n_components, n_robust_runs, maxit) + fixed_seed=-99999 + elif ica_method=='fastica': + mmix, fixed_seed=f_ica(data, n_components, fixed_seed, maxit=500, maxrestart=10) + Iq = 0 + else: + LGR.warning("The selected ICA method is invalid!") + sys.exit() + + + + + return mmix, fixed_seed + + +def r_ica(data, n_components, n_robust_runs, max_it): ####BTBTBTB: + + if n_robust_runs>100: + LGR.warning("The selected n_robust_runs is a very big number!") + + + RepLGR.info( + "RobustICA package was used for ICA decomposition \\citep{Anglada2022}." + ) + rica0 = RobustICA(n_components=n_components, robust_runs=n_robust_runs, whiten='arbitrary-variance',max_iter= max_it, + robust_dimreduce=False, fun='logcosh') + S0, mmix = rica0.fit_transform(data) + + q0 = rica0.evaluate_clustering(rica0.S_all, rica0.clustering.labels_, rica0.signs_, rica0.orientation_) + + + Iq0 = np.array(np.mean(q0.iq)) + + + mmix = stats.zscore(mmix, axis=0) + + LGR.info( + "RobustICA with {0} robust runs was used \n" + "The mean index quality is {1}".format(n_robust_runs, Iq0) + ) + return mmix, Iq0 + + +def f_ica(data, n_components, fixed_seed, maxit, maxrestart): if fixed_seed == -1: fixed_seed = np.random.randint(low=1, high=1000) diff --git a/tedana/workflows/tedana.py b/tedana/workflows/tedana.py index 4d443033d..ee567dfef 100644 --- a/tedana/workflows/tedana.py +++ b/tedana/workflows/tedana.py @@ -150,6 +150,7 @@ def _get_parser(): "in which case the specificed number of components will be " "selected." ), + choices=["mdl", "kic", "aic"], default="aic", ) optional.add_argument( @@ -164,19 +165,46 @@ def _get_parser(): ), default="kundu", ) + optional.add_argument(#####BTBTBT + "--ica_method", + dest="ica_method", + help=( + "The applied ICA method. If set to fastica the FastICA " + "from sklearn library will be run once with the seed value. " + "robustica will run FastICA n_robust_runs times and and uses " + "clustering methods to overcome the randomness of the FastICA " + "algorithm. If set to robustica the seed value will be ignored." + "If set to fastica n_robust_runs will not be effective." + ), + choices=["robustica", "fastica"], + default="robustica", + ) optional.add_argument( "--seed", dest="fixed_seed", metavar="INT", type=int, - help=( + help=( ##BTBTBT "Value used for random initialization of ICA " - "algorithm. Set to an integer value for " - "reproducible ICA results. Set to -1 for " + "algorithm when ica_mthods is set to fastica. Set to an integer value for " + "reproducible ICA results with fastica. Set to -1 for " "varying results across ICA calls. " ), default=42, ) + optional.add_argument(#####BTBTBT + "--n_robust_runs", + dest="n_robust_runs", + type=int, + help=( + "The number of times robustica will run." + "This is only effective when ica_mthods is " + "set to robustica." + + ), + ##choices=range(2,100), + default=30, + ) optional.add_argument( "--maxit", dest="maxit", @@ -323,6 +351,8 @@ def tedana_workflow( fittype="loglin", combmode="t2s", tree="kundu", + ica_method="robustica", ########BTBTAdded + n_robust_runs=30, tedpca="aic", fixed_seed=42, maxit=500, @@ -385,9 +415,7 @@ def tedana_workflow( tedpca : {'mdl', 'aic', 'kic', 'kundu', 'kundu-stabilize', float, int}, optional Method with which to select components in TEDPCA. If a float is provided, then it is assumed to represent percentage of variance - explained (0-1) to retain from PCA. If an int is provided, it will output - a fixed number of components defined by the integer between 1 and the - number of time points. + explained (0-1) to retain from PCA. Default is 'aic'. fixed_seed : :obj:`int`, optional Value passed to ``mdp.numx_rand.seed()``. @@ -639,11 +667,12 @@ def tedana_workflow( # Perform ICA, calculate metrics, and apply decision tree # Restart when ICA fails to converge or too few BOLD components found keep_restarting = True + n_restarts = 0 seed = fixed_seed while keep_restarting: mmix, seed = decomposition.tedica( - dd, n_components, seed, maxit, maxrestart=(maxrestart - n_restarts) + dd, n_components, seed, ica_method, n_robust_runs, maxit, maxrestart=(maxrestart - n_restarts) ) seed += 1 n_restarts = seed - fixed_seed @@ -677,13 +706,17 @@ def tedana_workflow( ) ica_selector = selection.automatic_selection(comptable, n_echos, n_vols, tree=tree) n_likely_bold_comps = ica_selector.n_likely_bold_comps - if (n_restarts < maxrestart) and (n_likely_bold_comps == 0): - LGR.warning("No BOLD components found. Re-attempting ICA.") - elif n_likely_bold_comps == 0: - LGR.warning("No BOLD components found, but maximum number of restarts reached.") - keep_restarting = False - else: + + if ica_method=='robustica': #########BTBTBT keep_restarting = False + else: + if (n_restarts < maxrestart) and (n_likely_bold_comps == 0): + LGR.warning("No BOLD components found. Re-attempting ICA.") + elif n_likely_bold_comps == 0: + LGR.warning("No BOLD components found, but maximum number of restarts reached.") + keep_restarting = False + else: + keep_restarting = False # If we're going to restart, temporarily allow force overwrite if keep_restarting: @@ -893,3 +926,4 @@ def _main(argv=None): if __name__ == "__main__": _main() +