-
Notifications
You must be signed in to change notification settings - Fork 18.7k
/
net_spec.py
230 lines (184 loc) · 8.08 KB
/
net_spec.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
"""Python net specification.
This module provides a way to write nets directly in Python, using a natural,
functional style. See examples/pycaffe/caffenet.py for an example.
Currently this works as a thin wrapper around the Python protobuf interface,
with layers and parameters automatically generated for the "layers" and
"params" pseudo-modules, which are actually objects using __getattr__ magic
to generate protobuf messages.
Note that when using to_proto or Top.to_proto, names of intermediate blobs will
be automatically generated. To explicitly specify blob names, use the NetSpec
class -- assign to its attributes directly to name layers, and call
NetSpec.to_proto to serialize all assigned layers.
This interface is expected to continue to evolve as Caffe gains new capabilities
for specifying nets. In particular, the automatically generated layer names
are not guaranteed to be forward-compatible.
"""
from collections import OrderedDict, Counter
from .proto import caffe_pb2
from google import protobuf
import six
def param_name_dict():
"""Find out the correspondence between layer names and parameter names."""
layer = caffe_pb2.LayerParameter()
# get all parameter names (typically underscore case) and corresponding
# type names (typically camel case), which contain the layer names
# (note that not all parameters correspond to layers, but we'll ignore that)
param_names = [f.name for f in layer.DESCRIPTOR.fields if f.name.endswith('_param')]
param_type_names = [type(getattr(layer, s)).__name__ for s in param_names]
# strip the final '_param' or 'Parameter'
param_names = [s[:-len('_param')] for s in param_names]
param_type_names = [s[:-len('Parameter')] for s in param_type_names]
return dict(zip(param_type_names, param_names))
def to_proto(*tops):
"""Generate a NetParameter that contains all layers needed to compute
all arguments."""
layers = OrderedDict()
autonames = Counter()
for top in tops:
top.fn._to_proto(layers, {}, autonames)
net = caffe_pb2.NetParameter()
net.layer.extend(layers.values())
return net
def assign_proto(proto, name, val):
"""Assign a Python object to a protobuf message, based on the Python
type (in recursive fashion). Lists become repeated fields/messages, dicts
become messages, and other types are assigned directly. For convenience,
repeated fields whose values are not lists are converted to single-element
lists; e.g., `my_repeated_int_field=3` is converted to
`my_repeated_int_field=[3]`."""
is_repeated_field = hasattr(getattr(proto, name), 'extend')
if is_repeated_field and not isinstance(val, list):
val = [val]
if isinstance(val, list):
if isinstance(val[0], dict):
for item in val:
proto_item = getattr(proto, name).add()
for k, v in six.iteritems(item):
assign_proto(proto_item, k, v)
else:
getattr(proto, name).extend(val)
elif isinstance(val, dict):
for k, v in six.iteritems(val):
assign_proto(getattr(proto, name), k, v)
else:
setattr(proto, name, val)
class Top(object):
"""A Top specifies a single output blob (which could be one of several
produced by a layer.)"""
def __init__(self, fn, n):
self.fn = fn
self.n = n
def to_proto(self):
"""Generate a NetParameter that contains all layers needed to compute
this top."""
return to_proto(self)
def _to_proto(self, layers, names, autonames):
return self.fn._to_proto(layers, names, autonames)
class Function(object):
"""A Function specifies a layer, its parameters, and its inputs (which
are Tops from other layers)."""
def __init__(self, type_name, inputs, params):
self.type_name = type_name
for index, input in enumerate(inputs):
if not isinstance(input, Top):
raise TypeError('%s input %d is not a Top (type is %s)' %
(type_name, index, type(input)))
self.inputs = inputs
self.params = params
self.ntop = self.params.get('ntop', 1)
# use del to make sure kwargs are not double-processed as layer params
if 'ntop' in self.params:
del self.params['ntop']
self.in_place = self.params.get('in_place', False)
if 'in_place' in self.params:
del self.params['in_place']
self.tops = tuple(Top(self, n) for n in range(self.ntop))
def _get_name(self, names, autonames):
if self not in names and self.ntop > 0:
names[self] = self._get_top_name(self.tops[0], names, autonames)
elif self not in names:
autonames[self.type_name] += 1
names[self] = self.type_name + str(autonames[self.type_name])
return names[self]
def _get_top_name(self, top, names, autonames):
if top not in names:
autonames[top.fn.type_name] += 1
names[top] = top.fn.type_name + str(autonames[top.fn.type_name])
return names[top]
def _to_proto(self, layers, names, autonames):
if self in layers:
return
bottom_names = []
for inp in self.inputs:
inp._to_proto(layers, names, autonames)
bottom_names.append(layers[inp.fn].top[inp.n])
layer = caffe_pb2.LayerParameter()
layer.type = self.type_name
layer.bottom.extend(bottom_names)
if self.in_place:
layer.top.extend(layer.bottom)
else:
for top in self.tops:
layer.top.append(self._get_top_name(top, names, autonames))
layer.name = self._get_name(names, autonames)
for k, v in six.iteritems(self.params):
# special case to handle generic *params
if k.endswith('param'):
assign_proto(layer, k, v)
else:
try:
assign_proto(getattr(layer,
_param_names[self.type_name] + '_param'), k, v)
except (AttributeError, KeyError):
assign_proto(layer, k, v)
layers[self] = layer
class NetSpec(object):
"""A NetSpec contains a set of Tops (assigned directly as attributes).
Calling NetSpec.to_proto generates a NetParameter containing all of the
layers needed to produce all of the assigned Tops, using the assigned
names."""
def __init__(self):
super(NetSpec, self).__setattr__('tops', OrderedDict())
def __setattr__(self, name, value):
self.tops[name] = value
def __getattr__(self, name):
return self.tops[name]
def __setitem__(self, key, value):
self.__setattr__(key, value)
def __getitem__(self, item):
return self.__getattr__(item)
def to_proto(self):
names = {v: k for k, v in six.iteritems(self.tops)}
autonames = Counter()
layers = OrderedDict()
for name, top in six.iteritems(self.tops):
top._to_proto(layers, names, autonames)
net = caffe_pb2.NetParameter()
net.layer.extend(layers.values())
return net
class Layers(object):
"""A Layers object is a pseudo-module which generates functions that specify
layers; e.g., Layers().Convolution(bottom, kernel_size=3) will produce a Top
specifying a 3x3 convolution applied to bottom."""
def __getattr__(self, name):
def layer_fn(*args, **kwargs):
fn = Function(name, args, kwargs)
if fn.ntop == 0:
return fn
elif fn.ntop == 1:
return fn.tops[0]
else:
return fn.tops
return layer_fn
class Parameters(object):
"""A Parameters object is a pseudo-module which generates constants used
in layer parameters; e.g., Parameters().Pooling.MAX is the value used
to specify max pooling."""
def __getattr__(self, name):
class Param:
def __getattr__(self, param_name):
return getattr(getattr(caffe_pb2, name + 'Parameter'), param_name)
return Param()
_param_names = param_name_dict()
layers = Layers()
params = Parameters()