From 25a83468806531cfa5a81734583cd374d4d1eb01 Mon Sep 17 00:00:00 2001
From: xperzy
Date: Wed, 26 Jan 2022 18:25:29 +0800
Subject: [PATCH 01/12] update MAE using new impl
---
image_classification/MAE/config.py | 54 +-
.../vit_base_patch16_224_finetune.yaml | 26 +-
.../vit_base_patch16_224_linearprobe.yaml | 44 +
.../vit_base_patch16_224_pretrain.yaml | 14 +-
.../vit_base_patch16_224_pretrain_dec1.yaml | 7 +-
.../vit_huge_patch14_224_finetune.yaml | 44 +
.../vit_huge_patch14_224_linearprobe.yaml | 44 +
.../vit_huge_patch14_224_pretrain.yaml | 32 +
.../vit_large_patch16_224_finetune.yaml | 30 +-
.../vit_large_patch16_224_linearprobe.yaml | 44 +
.../vit_large_patch16_224_pretrain.yaml | 22 +-
image_classification/MAE/datasets.py | 109 +-
image_classification/MAE/losses.py | 2 +
image_classification/MAE/lr_decay.py | 66 +
.../MAE/main_multi_gpu_finetune.py | 514 +-
.../MAE/main_multi_gpu_linearprobe.py | 562 +
.../MAE/main_multi_gpu_pretrain.py | 289 +-
.../MAE/main_single_gpu_finetune.py | 403 -
.../MAE/main_single_gpu_pretrain.py | 308 -
image_classification/MAE/masking_generator.py | 50 -
image_classification/MAE/nohup.out | 9507 -----------------
image_classification/MAE/random_erasing.py | 118 +
image_classification/MAE/run_finetune.sh | 8 -
.../MAE/run_finetune_multi.sh | 3 +-
.../MAE/run_linear_probe_multi.sh | 8 +
image_classification/MAE/run_pretrain.sh | 8 -
.../MAE/run_pretrain_multi.sh | 9 +-
.../MAE/run_pretrain_multi_resume.sh | 10 -
image_classification/MAE/stat_define.py | 61 -
image_classification/MAE/tests/__init__.py | 1 -
image_classification/MAE/tests/test_config.py | 72 -
.../MAE/tests/test_config.yaml | 14 -
.../MAE/tests/test_datasets.py | 147 -
.../MAE/tests/test_transformer.py | 115 -
image_classification/MAE/tests/test_utils.py | 90 -
image_classification/MAE/transformer.py | 474 +-
image_classification/MAE/utils.py | 87 +
37 files changed, 1850 insertions(+), 11546 deletions(-)
create mode 100644 image_classification/MAE/configs/vit_base_patch16_224_linearprobe.yaml
create mode 100644 image_classification/MAE/configs/vit_huge_patch14_224_finetune.yaml
create mode 100644 image_classification/MAE/configs/vit_huge_patch14_224_linearprobe.yaml
create mode 100644 image_classification/MAE/configs/vit_huge_patch14_224_pretrain.yaml
create mode 100644 image_classification/MAE/configs/vit_large_patch16_224_linearprobe.yaml
create mode 100644 image_classification/MAE/lr_decay.py
create mode 100644 image_classification/MAE/main_multi_gpu_linearprobe.py
delete mode 100644 image_classification/MAE/main_single_gpu_finetune.py
delete mode 100644 image_classification/MAE/main_single_gpu_pretrain.py
delete mode 100644 image_classification/MAE/masking_generator.py
delete mode 100644 image_classification/MAE/nohup.out
create mode 100644 image_classification/MAE/random_erasing.py
delete mode 100644 image_classification/MAE/run_finetune.sh
create mode 100644 image_classification/MAE/run_linear_probe_multi.sh
delete mode 100644 image_classification/MAE/run_pretrain.sh
delete mode 100644 image_classification/MAE/run_pretrain_multi_resume.sh
delete mode 100644 image_classification/MAE/stat_define.py
delete mode 100644 image_classification/MAE/tests/__init__.py
delete mode 100644 image_classification/MAE/tests/test_config.py
delete mode 100644 image_classification/MAE/tests/test_config.yaml
delete mode 100644 image_classification/MAE/tests/test_datasets.py
delete mode 100644 image_classification/MAE/tests/test_transformer.py
delete mode 100644 image_classification/MAE/tests/test_utils.py
diff --git a/image_classification/MAE/config.py b/image_classification/MAE/config.py
index 7a2cf65b..c066d9d5 100644
--- a/image_classification/MAE/config.py
+++ b/image_classification/MAE/config.py
@@ -1,4 +1,4 @@
-# Copyright (c) 2021 PPViT Authors. All Rights Reserved.
+# Copyright (c) 2021 PPViT Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
@@ -41,15 +41,15 @@
# model settings
_C.MODEL = CN()
-_C.MODEL.TYPE = 'MAE'
+_C.MODEL.TYPE = 'PRETRAIN' # [PRETRAIN, FINETUNE, LINEARPROBE]
_C.MODEL.NAME = 'MAE'
_C.MODEL.RESUME = None
_C.MODEL.PRETRAINED = None
_C.MODEL.NUM_CLASSES = 1000
-_C.MODEL.DROPOUT = 0.0
-_C.MODEL.DROPPATH = 0.0
-_C.MODEL.ATTENTION_DROPOUT = 0.0
-_C.MODEL.MAE_PRETRAIN = True
+_C.MODEL.DROPOUT = 0.1
+_C.MODEL.DROPPATH = 0.1
+_C.MODEL.ATTENTION_DROPOUT = 0.1
+_C.MODEL.GLOBAL_POOL = False # use for finetune only
# transformer settings
_C.MODEL.TRANS = CN()
@@ -57,6 +57,7 @@
_C.MODEL.TRANS.MLP_RATIO = 4.0
_C.MODEL.TRANS.QKV_BIAS = True
_C.MODEL.TRANS.MASK_RATIO = 0.75
+_C.MODEL.TRANS.NORM_PIX_LOSS = True
_C.MODEL.TRANS.ENCODER = CN()
_C.MODEL.TRANS.ENCODER.DEPTH = 12
_C.MODEL.TRANS.ENCODER.EMBED_DIM = 768
@@ -71,27 +72,35 @@
_C.TRAIN = CN()
_C.TRAIN.LAST_EPOCH = 0
_C.TRAIN.NUM_EPOCHS = 800
-_C.TRAIN.WARMUP_EPOCHS = 40
-_C.TRAIN.WEIGHT_DECAY = 0.05
-_C.TRAIN.BASE_LR = 1.5e-4
+_C.TRAIN.WARMUP_EPOCHS = 40 # 34 # ~ 10k steps for 4096 batch size
+_C.TRAIN.WEIGHT_DECAY = 0.05 # 0.3 # 0.0 for finetune
+_C.TRAIN.BASE_LR = 1.5e-4 # 0.003 for pretrain # 0.03 for finetune
_C.TRAIN.WARMUP_START_LR = 1e-6 # 0.0
-_C.TRAIN.END_LR = 0.0
+_C.TRAIN.END_LR = 5e-4
_C.TRAIN.GRAD_CLIP = None
-_C.TRAIN.ACCUM_ITER = 1
-_C.TRAIN.LINEAR_SCALED_LR = 256
-_C.TRAIN.NORMALIZE_TARGET = True
+_C.TRAIN.ACCUM_ITER = 2 # 1
+_C.TRAIN.LINEAR_SCALED_LR = None
+_C.TRAIN.LAYER_DECAY = None # used for finetuning only
# train augmentation (only for finetune)
_C.TRAIN.SMOOTHING = 0.1
-_C.TRAIN.RAND_AUGMENT = False
+_C.TRAIN.COLOR_JITTER = 0.4
+_C.TRAIN.RAND_AUGMENT = True
_C.TRAIN.RAND_AUGMENT_LAYERS = 9
_C.TRAIN.RAND_AUGMENT_MAGNITUDE = 5 # scale from 0 to 10
-_C.TRAIN.MIXUP_ALPHA = 0.8
+# mixup params
+_C.TRAIN.MIXUP_ALPHA = 0.0
_C.TRAIN.MIXUP_PROB = 1.0
_C.TRAIN.MIXUP_SWITCH_PROB = 0.5
_C.TRAIN.MIXUP_MODE = 'batch'
-_C.TRAIN.CUTMIX_ALPHA = 1.0
+_C.TRAIN.CUTMIX_ALPHA = 0.0
_C.TRAIN.CUTMIX_MINMAX = None
+# random erase parameters
+_C.TRAIN.RANDOM_ERASE_PROB = 0.25
+_C.TRAIN.RANDOM_ERASE_MODE = 'pixel'
+_C.TRAIN.RANDOM_ERASE_COUNT = 1
+_C.TRAIN.RANDOM_ERASE_SPLIT = False
+
_C.TRAIN.LR_SCHEDULER = CN()
_C.TRAIN.LR_SCHEDULER.NAME = 'warmupcosine'
@@ -102,7 +111,7 @@
_C.TRAIN.OPTIMIZER = CN()
_C.TRAIN.OPTIMIZER.NAME = 'AdamW'
_C.TRAIN.OPTIMIZER.EPS = 1e-8
-_C.TRAIN.OPTIMIZER.BETAS = (0.9, 0.95) # same as MAE paper, for adamW
+_C.TRAIN.OPTIMIZER.BETAS = (0.9, 0.95) # for adamW same as pytorch MAE
_C.TRAIN.OPTIMIZER.MOMENTUM = 0.9
@@ -145,24 +154,19 @@ def update_config(config, args):
config.defrost()
if args.dataset:
config.DATA.DATASET = args.dataset
- if args.eval:
- config.EVAL = True
if args.batch_size:
config.DATA.BATCH_SIZE = args.batch_size
- if config.EVAL:
- config.DATA.BATCH_SIZE_EVAL = args.batch_size
if args.image_size:
config.DATA.IMAGE_SIZE = args.image_size
if args.data_path:
config.DATA.DATA_PATH = args.data_path
- if args.output is not None:
- config.SAVE = args.output
if args.ngpus:
config.NGPUS = args.ngpus
+ if args.eval:
+ config.EVAL = True
+ config.DATA.BATCH_SIZE_EVAL = args.batch_size
if args.pretrained:
config.MODEL.PRETRAINED = args.pretrained
- if args.mae_pretrain:
- config.MODEL.MAE_PRETRAIN = args.mae_pretrain
if args.resume:
config.MODEL.RESUME = args.resume
if args.last_epoch:
diff --git a/image_classification/MAE/configs/vit_base_patch16_224_finetune.yaml b/image_classification/MAE/configs/vit_base_patch16_224_finetune.yaml
index 9cee1446..eb666192 100644
--- a/image_classification/MAE/configs/vit_base_patch16_224_finetune.yaml
+++ b/image_classification/MAE/configs/vit_base_patch16_224_finetune.yaml
@@ -2,34 +2,31 @@ DATA:
IMAGE_SIZE: 224
CROP_PCT: 0.875
MODEL:
- TYPE: MAE
+ TYPE: FINETUNE
NAME: vit_base_patch16_224
DROPPATH: 0.1
+ GLOBAL_POOL: True
TRANS:
PATCH_SIZE: 16
MLP_RATIO: 4.0
QKV_BIAS: true
- MASK_RATIO: 0.75
ENCODER:
EMBED_DIM: 768
DEPTH: 12
NUM_HEADS: 12
-
TRAIN:
- NUM_EPOCHS: 100
+ NUM_EPOCHS: 50
WARMUP_EPOCHS: 5
WEIGHT_DECAY: 0.05
BASE_LR: 1e-3
- WARMUP_START_LR: 1e-6
- ACCUM_ITER: 2 # the total batch size should be 1024
-
- LR_SCHEDULER:
- NAME: 'warmupcosine'
-
+ WARMUP_START_LR: 0.0
+ LINEAR_SCALED_LR: 256
+ END_LR: 1e-6
+ ACCUM_ITER: 1
OPTIMIZER:
NAME: 'AdamW'
BETAS: (0.9, 0.999)
-
+ LAYER_DECAY: 0.65
SMOOTHING: 0.1
RAND_AUGMENT: True
RAND_AUGMENT_LAYERS: 9
@@ -39,4 +36,9 @@ TRAIN:
MIXUP_SWITCH_PROB: 0.5
MIXUP_MODE: 'batch'
CUTMIX_ALPHA: 1.0
- CUTMIX_MINMAX: None
\ No newline at end of file
+ CUTMIX_MINMAX: None
+ RANDOM_ERASE_PROB: 0.25
+ RANDOM_ERASE_MODE: 'pixel'
+ RANDOM_ERASE_COUNT: 1
+ RANDOM_ERASE_SPLIT: False
+
diff --git a/image_classification/MAE/configs/vit_base_patch16_224_linearprobe.yaml b/image_classification/MAE/configs/vit_base_patch16_224_linearprobe.yaml
new file mode 100644
index 00000000..4a3d039d
--- /dev/null
+++ b/image_classification/MAE/configs/vit_base_patch16_224_linearprobe.yaml
@@ -0,0 +1,44 @@
+DATA:
+ IMAGE_SIZE: 224
+ CROP_PCT: 0.875
+MODEL:
+ TYPE: LINEARPROBE
+ NAME: vit_base_patch16_224
+ DROPPATH: 0.1
+ GLOBAL_POOL: False
+ TRANS:
+ PATCH_SIZE: 16
+ MLP_RATIO: 4.0
+ QKV_BIAS: true
+ ENCODER:
+ EMBED_DIM: 768
+ DEPTH: 12
+ NUM_HEADS: 12
+TRAIN:
+ NUM_EPOCHS: 90
+ WARMUP_EPOCHS: 10
+ WEIGHT_DECAY: 0.0
+ BASE_LR: 0.1
+ WARMUP_START_LR: 0.0
+ LINEAR_SCALED_LR: 256
+ END_LR: 0.0
+ ACCUM_ITER: 1
+ OPTIMIZER:
+ NAME: 'AdamW'
+ BETAS: (0.9, 0.999)
+ #LAYER_DECAY: 0.75
+ #SMOOTHING: 0.1
+ #RAND_AUGMENT: True
+ #RAND_AUGMENT_LAYERS: 9
+ #RAND_AUGMENT_MAGNITUDE: 5
+ #MIXUP_ALPHA: 0.0
+ #MIXUP_PROB: 1.0
+ #MIXUP_SWITCH_PROB: 0.5
+ #MIXUP_MODE: 'batch'
+ #CUTMIX_ALPHA: 0.0
+ #CUTMIX_MINMAX: None
+ #RANDOM_ERASE_PROB: 0.25
+ #RANDOM_ERASE_MODE: 'pixel'
+ #RANDOM_ERASE_COUNT: 1
+ #RANDOM_ERASE_SPLIT: False
+
diff --git a/image_classification/MAE/configs/vit_base_patch16_224_pretrain.yaml b/image_classification/MAE/configs/vit_base_patch16_224_pretrain.yaml
index 5eb52f39..e43573dc 100644
--- a/image_classification/MAE/configs/vit_base_patch16_224_pretrain.yaml
+++ b/image_classification/MAE/configs/vit_base_patch16_224_pretrain.yaml
@@ -2,10 +2,9 @@ DATA:
IMAGE_SIZE: 224
CROP_PCT: 0.875
MODEL:
- TYPE: MAE
+ TYPE: PRETRAIN
NAME: vit_base_patch16_224
DROPPATH: 0.0
- MAE_PRETRAIN: True
TRANS:
PATCH_SIZE: 16
MLP_RATIO: 4.0
@@ -18,19 +17,16 @@ MODEL:
DECODER:
EMBED_DIM: 512
DEPTH: 8
- NUM_HEADS: 8
+ NUM_HEADS: 16
TRAIN:
NUM_EPOCHS: 800
WARMUP_EPOCHS: 40
WEIGHT_DECAY: 0.05
BASE_LR: 1.5e-4
- WARMUP_START_LR: 1e-6
+ WARMUP_START_LR: 0.0
+ LINEAR_SCALED_LR: 256
GRAD_CLIP: None
- ACCUM_ITER: 2 # the total batch size should be 4096
-
- LR_SCHEDULER:
- NAME: 'warmupcosine'
-
+ ACCUM_ITER: 1
OPTIMIZER:
NAME: 'AdamW'
BETAS: (0.9, 0.95)
diff --git a/image_classification/MAE/configs/vit_base_patch16_224_pretrain_dec1.yaml b/image_classification/MAE/configs/vit_base_patch16_224_pretrain_dec1.yaml
index c4284444..43f1fa73 100644
--- a/image_classification/MAE/configs/vit_base_patch16_224_pretrain_dec1.yaml
+++ b/image_classification/MAE/configs/vit_base_patch16_224_pretrain_dec1.yaml
@@ -2,10 +2,9 @@ DATA:
IMAGE_SIZE: 224
CROP_PCT: 0.875
MODEL:
- TYPE: MAE
+ TYPE: PRETRAIN
NAME: vit_base_patch16_224_dec1
DROPPATH: 0.0
- MAE_PRETRAIN: True
TRANS:
PATCH_SIZE: 16
MLP_RATIO: 4.0
@@ -25,8 +24,8 @@ TRAIN:
WEIGHT_DECAY: 0.05
BASE_LR: 1.5e-4
WARMUP_START_LR: 1e-6
- GRAD_CLIP: None
- ACCUM_ITER: 2 # 8gpus only have 2048 batch size, the total batch size should be 4096
+ GRAD_CLIP: 1
+ ACCUM_ITER: 1 # the total batch size should be 4096
LINEAR_SCALED_LR: None
LR_SCHEDULER:
diff --git a/image_classification/MAE/configs/vit_huge_patch14_224_finetune.yaml b/image_classification/MAE/configs/vit_huge_patch14_224_finetune.yaml
new file mode 100644
index 00000000..0c15171b
--- /dev/null
+++ b/image_classification/MAE/configs/vit_huge_patch14_224_finetune.yaml
@@ -0,0 +1,44 @@
+DATA:
+ IMAGE_SIZE: 224
+ CROP_PCT: 0.875
+MODEL:
+ TYPE: FINETUNE
+ NAME: vit_huge_patch14_224
+ DROPPATH: 0.3
+ GLOBAL_POOL: True
+ TRANS:
+ PATCH_SIZE: 16
+ MLP_RATIO: 4.0
+ QKV_BIAS: true
+ ENCODER:
+ EMBED_DIM: 1280
+ DEPTH: 32
+ NUM_HEADS: 16
+TRAIN:
+ NUM_EPOCHS: 50
+ WARMUP_EPOCHS: 5
+ WEIGHT_DECAY: 0.05
+ BASE_LR: 1e-3
+ WARMUP_START_LR: 0.0
+ LINEAR_SCALED_LR: 256
+ END_LR: 1e-6
+ ACCUM_ITER: 1
+ OPTIMIZER:
+ NAME: 'AdamW'
+ BETAS: (0.9, 0.999)
+ LAYER_DECAY: 0.75
+ SMOOTHING: 0.1
+ RAND_AUGMENT: True
+ RAND_AUGMENT_LAYERS: 9
+ RAND_AUGMENT_MAGNITUDE: 5
+ MIXUP_ALPHA: 0.8
+ MIXUP_PROB: 1.0
+ MIXUP_SWITCH_PROB: 0.5
+ MIXUP_MODE: 'batch'
+ CUTMIX_ALPHA: 1.0
+ CUTMIX_MINMAX: None
+ RANDOM_ERASE_PROB: 0.25
+ RANDOM_ERASE_MODE: 'pixel'
+ RANDOM_ERASE_COUNT: 1
+ RANDOM_ERASE_SPLIT: False
+
diff --git a/image_classification/MAE/configs/vit_huge_patch14_224_linearprobe.yaml b/image_classification/MAE/configs/vit_huge_patch14_224_linearprobe.yaml
new file mode 100644
index 00000000..e753155f
--- /dev/null
+++ b/image_classification/MAE/configs/vit_huge_patch14_224_linearprobe.yaml
@@ -0,0 +1,44 @@
+DATA:
+ IMAGE_SIZE: 224
+ CROP_PCT: 0.875
+MODEL:
+ TYPE: LINEARPROBE
+ NAME: vit_huge_patch14_224
+ DROPPATH: 0.1
+ GLOBAL_POOL: False
+ TRANS:
+ PATCH_SIZE: 16
+ MLP_RATIO: 4.0
+ QKV_BIAS: true
+ ENCODER:
+ EMBED_DIM: 1280
+ DEPTH: 32
+ NUM_HEADS: 16
+TRAIN:
+ NUM_EPOCHS: 90
+ WARMUP_EPOCHS: 10
+ WEIGHT_DECAY: 0.0
+ BASE_LR: 0.1
+ WARMUP_START_LR: 0.0
+ LINEAR_SCALED_LR: 256
+ END_LR: 0.0
+ ACCUM_ITER: 1
+ OPTIMIZER:
+ NAME: 'AdamW'
+ BETAS: (0.9, 0.999)
+ #LAYER_DECAY: 0.75
+ #SMOOTHING: 0.1
+ #RAND_AUGMENT: True
+ #RAND_AUGMENT_LAYERS: 9
+ #RAND_AUGMENT_MAGNITUDE: 5
+ #MIXUP_ALPHA: 0.8
+ #MIXUP_PROB: 1.0
+ #MIXUP_SWITCH_PROB: 0.5
+ #MIXUP_MODE: 'batch'
+ #CUTMIX_ALPHA: 1.0
+ #CUTMIX_MINMAX: None
+ #RANDOM_ERASE_PROB: 0.25
+ #RANDOM_ERASE_MODE: 'pixel'
+ #RANDOM_ERASE_COUNT: 1
+ #RANDOM_ERASE_SPLIT: False
+
diff --git a/image_classification/MAE/configs/vit_huge_patch14_224_pretrain.yaml b/image_classification/MAE/configs/vit_huge_patch14_224_pretrain.yaml
new file mode 100644
index 00000000..ccb6bfef
--- /dev/null
+++ b/image_classification/MAE/configs/vit_huge_patch14_224_pretrain.yaml
@@ -0,0 +1,32 @@
+DATA:
+ IMAGE_SIZE: 224
+ CROP_PCT: 0.875
+MODEL:
+ TYPE: PRETRAIN
+ NAME: vit_huge_patch14_224
+ DROPPATH: 0.0
+ TRANS:
+ PATCH_SIZE: 14
+ MLP_RATIO: 4.0
+ QKV_BIAS: true
+ MASK_RATIO: 0.75
+ ENCODER:
+ EMBED_DIM: 1280
+ DEPTH: 32
+ NUM_HEADS: 16
+ DECODER:
+ EMBED_DIM: 512
+ DEPTH: 8
+ NUM_HEADS: 16
+TRAIN:
+ NUM_EPOCHS: 800
+ WARMUP_EPOCHS: 40
+ WEIGHT_DECAY: 0.05
+ BASE_LR: 1.5e-4
+ WARMUP_START_LR: 0.0
+ LINEAR_SCALED_LR: 256
+ GRAD_CLIP: None
+ ACCUM_ITER: 1
+ OPTIMIZER:
+ NAME: 'AdamW'
+ BETAS: (0.9, 0.95)
diff --git a/image_classification/MAE/configs/vit_large_patch16_224_finetune.yaml b/image_classification/MAE/configs/vit_large_patch16_224_finetune.yaml
index 11136830..050ec685 100644
--- a/image_classification/MAE/configs/vit_large_patch16_224_finetune.yaml
+++ b/image_classification/MAE/configs/vit_large_patch16_224_finetune.yaml
@@ -2,34 +2,31 @@ DATA:
IMAGE_SIZE: 224
CROP_PCT: 0.875
MODEL:
- TYPE: MAE
+ TYPE: FINETUNE
NAME: vit_large_patch16_224
DROPPATH: 0.1
+ GLOBAL_POOL: True
TRANS:
PATCH_SIZE: 16
MLP_RATIO: 4.0
QKV_BIAS: true
- MASK_RATIO: 0.75
ENCODER:
- EMBED_DIM: 768
- DEPTH: 12
- NUM_HEADS: 12
-
+ EMBED_DIM: 1024
+ DEPTH: 24
+ NUM_HEADS: 16
TRAIN:
NUM_EPOCHS: 50
WARMUP_EPOCHS: 5
WEIGHT_DECAY: 0.05
BASE_LR: 1e-3
- WARMUP_START_LR: 1e-6
- ACCUM_ITER: 2 # the total batch size should be 1024
-
- LR_SCHEDULER:
- NAME: 'warmupcosine'
-
+ WARMUP_START_LR: 0.0
+ LINEAR_SCALED_LR: 256
+ END_LR: 1e-6
+ ACCUM_ITER: 1
OPTIMIZER:
NAME: 'AdamW'
BETAS: (0.9, 0.999)
-
+ LAYER_DECAY: 0.65
SMOOTHING: 0.1
RAND_AUGMENT: True
RAND_AUGMENT_LAYERS: 9
@@ -39,4 +36,9 @@ TRAIN:
MIXUP_SWITCH_PROB: 0.5
MIXUP_MODE: 'batch'
CUTMIX_ALPHA: 1.0
- CUTMIX_MINMAX: None
\ No newline at end of file
+ CUTMIX_MINMAX: None
+ RANDOM_ERASE_PROB: 0.25
+ RANDOM_ERASE_MODE: 'pixel'
+ RANDOM_ERASE_COUNT: 1
+ RANDOM_ERASE_SPLIT: False
+
diff --git a/image_classification/MAE/configs/vit_large_patch16_224_linearprobe.yaml b/image_classification/MAE/configs/vit_large_patch16_224_linearprobe.yaml
new file mode 100644
index 00000000..e91bc21d
--- /dev/null
+++ b/image_classification/MAE/configs/vit_large_patch16_224_linearprobe.yaml
@@ -0,0 +1,44 @@
+DATA:
+ IMAGE_SIZE: 224
+ CROP_PCT: 0.875
+MODEL:
+ TYPE: LINEARPROBE
+ NAME: vit_large_patch16_224
+ DROPPATH: 0.1
+ GLOBAL_POOL: False
+ TRANS:
+ PATCH_SIZE: 16
+ MLP_RATIO: 4.0
+ QKV_BIAS: true
+ ENCODER:
+ EMBED_DIM: 1024
+ DEPTH: 24
+ NUM_HEADS: 16
+TRAIN:
+ NUM_EPOCHS: 90
+ WARMUP_EPOCHS: 10
+ WEIGHT_DECAY: 0.0
+ BASE_LR: 0.1
+ WARMUP_START_LR: 0.0
+ LINEAR_SCALED_LR: 256
+ END_LR: 0.0
+ ACCUM_ITER: 1
+ OPTIMIZER:
+ NAME: 'AdamW'
+ BETAS: (0.9, 0.999)
+ #LAYER_DECAY: 0.75
+ #SMOOTHING: 0.1
+ #RAND_AUGMENT: True
+ #RAND_AUGMENT_LAYERS: 9
+ #RAND_AUGMENT_MAGNITUDE: 5
+ #MIXUP_ALPHA: 0.8
+ #MIXUP_PROB: 1.0
+ #MIXUP_SWITCH_PROB: 0.5
+ #MIXUP_MODE: 'batch'
+ #CUTMIX_ALPHA: 1.0
+ #CUTMIX_MINMAX: None
+ #RANDOM_ERASE_PROB: 0.25
+ #RANDOM_ERASE_MODE: 'pixel'
+ #RANDOM_ERASE_COUNT: 1
+ #RANDOM_ERASE_SPLIT: False
+
diff --git a/image_classification/MAE/configs/vit_large_patch16_224_pretrain.yaml b/image_classification/MAE/configs/vit_large_patch16_224_pretrain.yaml
index 04b5e086..15eec2a1 100644
--- a/image_classification/MAE/configs/vit_large_patch16_224_pretrain.yaml
+++ b/image_classification/MAE/configs/vit_large_patch16_224_pretrain.yaml
@@ -2,35 +2,31 @@ DATA:
IMAGE_SIZE: 224
CROP_PCT: 0.875
MODEL:
- TYPE: MAE
+ TYPE: PRETRAIN
NAME: vit_large_patch16_224
DROPPATH: 0.0
- MAE_PRETRAIN: True
TRANS:
PATCH_SIZE: 16
MLP_RATIO: 4.0
QKV_BIAS: true
MASK_RATIO: 0.75
ENCODER:
- EMBED_DIM: 768
- DEPTH: 12
- NUM_HEADS: 12
+ EMBED_DIM: 1024
+ DEPTH: 24
+ NUM_HEADS: 16
DECODER:
EMBED_DIM: 512
DEPTH: 8
- NUM_HEADS: 8
+ NUM_HEADS: 16
TRAIN:
NUM_EPOCHS: 800
WARMUP_EPOCHS: 40
WEIGHT_DECAY: 0.05
BASE_LR: 1.5e-4
- WARMUP_START_LR: 1e-6
+ WARMUP_START_LR: 0.0
+ LINEAR_SCALED_LR: 256
GRAD_CLIP: None
- ACCUM_ITER: 2 # the total batch size should be 4096
-
- LR_SCHEDULER:
- NAME: 'warmupcosine'
-
+ ACCUM_ITER: 1
OPTIMIZER:
NAME: 'AdamW'
- BETAS: (0.9, 0.95)
\ No newline at end of file
+ BETAS: (0.9, 0.95)
diff --git a/image_classification/MAE/datasets.py b/image_classification/MAE/datasets.py
index 1d6c17d3..c90330d8 100644
--- a/image_classification/MAE/datasets.py
+++ b/image_classification/MAE/datasets.py
@@ -30,10 +30,9 @@
from augment import AutoAugment
from augment import rand_augment_policy_original
from augment import RandAugment
-from masking_generator import RandomMaskingGenerator
-from transforms import RandomHorizontalFlip
from random_erasing import RandomErasing
+
class ImageNet2012Dataset(Dataset):
"""Build ImageNet2012 dataset
@@ -51,15 +50,7 @@ def __init__(self, file_folder, mode="train", transform=None):
super(ImageNet2012Dataset, self).__init__()
assert mode in ["train", "val"]
self.file_folder = file_folder
-
- if isinstance(transform, tuple):
- # training: transform = [transform, mask_generator]
- self.transform = transform[0]
- self.mask_generator = transform[1] # if mae finetune, mask_generator is None
- else:
- # val: transform = transform
- self.transform = transform
- self.mask_generator = None
+ self.transform = transform
self.img_path_list = []
self.label_list = []
@@ -82,46 +73,53 @@ def __len__(self):
def __getitem__(self, index):
data = image_load(self.img_path_list[index]).convert('RGB')
data = self.transform(data)
- if self.mask_generator is not None:
- mask = self.mask_generator()
- else:
- mask = None
+ label = self.label_list[index]
- if mask is None:
- label = self.label_list[index]
- return data, label
+ return data, label
- return data, mask
+def get_train_transforms_pretrain(config):
+ """Simple augmentation for pretraining"""
+ aug_op_list = [transforms.RandomResizedCrop(size=(config.DATA.IMAGE_SIZE, config.DATA.IMAGE_SIZE),
+ scale=(0.2, 1.0),
+ interpolation='bicubic'), # same as MAE pytorch
+ transforms.RandomHorizontalFlip(),
+ transforms.ToTensor(),
+ transforms.Normalize(mean=config.DATA.IMAGENET_MEAN, std=config.DATA.IMAGENET_STD)]
+ transforms_train = transforms.Compose(aug_op_list)
+ return transforms_train
-def get_train_transforms(config):
- """ Get training transforms
- For training, a RandomResizedCrop is applied, then normalization is applied with
- [0.5, 0.5, 0.5] mean and std. The input pixel values must be rescaled to [0, 1.]
- Outputs is converted to tensor
+def get_train_transforms_linearprobe(config):
+ """Weak augmentation for linear probing"""
+ aug_op_list = [transforms.RandomResizedCrop(size=(config.DATA.IMAGE_SIZE, config.DATA.IMAGE_SIZE),
+ interpolation='bicubic'), # same as MAE pytorch
+ transforms.RandomHorizontalFlip(),
+ transforms.ToTensor(),
+ transforms.Normalize(mean=config.DATA.IMAGENET_MEAN, std=config.DATA.IMAGENET_STD)]
+ transforms_train = transforms.Compose(aug_op_list)
+ return transforms_train
- Args:
- config: configs contains IMAGE_SIZE, see config.py for details
- Returns:
- transforms_train: training transforms
- """
+def get_train_transforms_finetune(config):
+ """Full augmentation for finetuning"""
aug_op_list = []
# STEP1: random crop and resize
aug_op_list.append(
transforms.RandomResizedCrop((config.DATA.IMAGE_SIZE, config.DATA.IMAGE_SIZE),
- scale=(0.05, 1.0), interpolation='bicubic'))
- # STEP2: auto_augment or color jitter
- if config.TRAIN.AUTO_AUGMENT:
- policy = auto_augment_policy_original()
- auto_augment = AutoAugment(policy)
- aug_op_list.append(auto_augment)
- elif config.TRAIN.RAND_AUGMENT:
+ scale=(0.2, 1.0), interpolation='bicubic'))# Same as MAE pytorch
+ # STEP2: random horizontalflip
+ aug_op_list.append(transforms.RandomHorizontalFlip())
+ # STEP3: rand_augment or auto_augment or color jitter
+ if config.TRAIN.RAND_AUGMENT: # MAE: True
policy = rand_augment_policy_original()
rand_augment = RandAugment(policy)
aug_op_list.append(rand_augment)
- else:
+ elif config.TRAIN.AUTO_AUGMENT: # MAE: None
+ policy = auto_augment_policy_original()
+ auto_augment = AutoAugment(policy)
+ aug_op_list.append(auto_augment)
+ else: # MAE: None
jitter = (float(config.TRAIN.COLOR_JITTER), ) * 3
aug_op_list.append(transforms.ColorJitter(*jitter))
# STEP3: other ops
@@ -138,17 +136,35 @@ def get_train_transforms(config):
# Final: compose transforms and return
transforms_train = transforms.Compose(aug_op_list)
- if config.MODEL.MAE_PRETRAIN:
- # for MAE pretraining
- mask_generator = RandomMaskingGenerator(
- input_size=config.DATA.IMAGE_SIZE // config.MODEL.TRANS.PATCH_SIZE,
- mask_ratio=config.MODEL.TRANS.MASK_RATIO)
- else:
- mask_generator = None
+ return transforms_train
+
+
+def get_train_transforms(config):
+ """ Get training transforms
- return (transforms_train, mask_generator)
+ For training, a RandomResizedCrop is applied, then normalization is applied with
+ mean and std. The input pixel values must be rescaled to [0, 1.]
+ Outputs is converted to tensor
+
+ Args:
+ config: configs contains IMAGE_SIZE, see config.py for details
+ Returns:
+ transforms_train: training transforms
+ """
+ assert config.MODEL.TYPE in ["PRETRAIN", "FINETUNE", "LINEARPROBE"]
+ if config.MODEL.TYPE == "PRETRAIN":
+ transforms_train = get_train_transforms_pretrain
+ elif config.MODEL.TYPE == "FINETUNE":
+ transforms_train = get_train_transforms_finetune
+ elif config.MODEL.TYPE == "LINEARPROBE":
+ transforms_train = get_train_transforms_linearprobe
+ else:
+ raise ValueError('config.MODEL.TYPE not supported!')
+
+ return transforms_train(config)
+# val transform is for MAE finetune and line probing
def get_val_transforms(config):
""" Get training transforms
@@ -168,8 +184,7 @@ def get_val_transforms(config):
transforms.Resize(scale_size, 'bicubic'), # single int for resize shorter side of image
transforms.CenterCrop((config.DATA.IMAGE_SIZE, config.DATA.IMAGE_SIZE)),
transforms.ToTensor(),
- transforms.Normalize(mean=config.DATA.IMAGENET_MEAN, std=config.DATA.IMAGENET_STD),
- ])
+ transforms.Normalize(mean=config.DATA.IMAGENET_MEAN, std=config.DATA.IMAGENET_STD)])
return transforms_val
diff --git a/image_classification/MAE/losses.py b/image_classification/MAE/losses.py
index f67780a2..082467a3 100644
--- a/image_classification/MAE/losses.py
+++ b/image_classification/MAE/losses.py
@@ -119,3 +119,5 @@ def forward(self, inputs, outputs, targets):
loss = base_loss * (1 - self.alpha) + distillation_loss * self.alpha
return loss
+
+
diff --git a/image_classification/MAE/lr_decay.py b/image_classification/MAE/lr_decay.py
new file mode 100644
index 00000000..482eca45
--- /dev/null
+++ b/image_classification/MAE/lr_decay.py
@@ -0,0 +1,66 @@
+# Copyright (c) 2021 PPViT Authors. All Rights Reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+
+"""parameters groups for layer-wise lr decay, used in BeiT and MAE"""
+
+def param_groups_lrd(model, weight_decay=0.05, no_weight_decay_list=[], layer_decay=0.75):
+ param_group_names = {}
+ param_groups = {}
+ num_layers = len(model.encoder.layers) + 1
+ layer_scales = list(layer_decay ** (num_layers - i) for i in range(num_layers + 1))
+
+ for n, p in model.named_parameters():
+ if p.stop_gradient is True:
+ continue
+
+ # no decay
+ if p.ndim == 1 or n in no_weight_decay_list:
+ g_decay = 'no_decay'
+ this_decay = 0.
+ else:
+ g_decay = 'decay'
+ this_decay = weight_decay
+
+ layer_id = get_layer_id_for_vit(n, num_layers)
+ group_name = f"layer_{layer_id}_{g_decay}"
+
+ if group_name not in param_group_names:
+ this_scale = layer_scales[layer_id]
+ param_group_names[group_name] = {
+ "learning_rate": this_scale, # TODO: check correctness
+ "weight_decay": this_decay,
+ "params": [],
+ }
+ param_groups[group_name] = {
+ "learning_rate": this_scale,
+ "weight_decay": this_decay,
+ "params": [],
+ }
+
+ param_group_names[group_name]["params"].append(n)
+ param_groups[group_name]["params"].append(p)
+ return list(param_groups.values())
+
+
+def get_layer_id_for_vit(name, num_layers):
+ """assign a parameter with its layer id"""
+ if name in ['cls_token', 'position_embedding']:
+ return 0
+ elif name.startswith('patch_embedding'):
+ return 0
+ elif name.startswith('encoder.layers'):
+ return int(name.split('.')[2]) + 1
+ else:
+ return num_layers
+
diff --git a/image_classification/MAE/main_multi_gpu_finetune.py b/image_classification/MAE/main_multi_gpu_finetune.py
index a6ace004..2eab37fd 100644
--- a/image_classification/MAE/main_multi_gpu_finetune.py
+++ b/image_classification/MAE/main_multi_gpu_finetune.py
@@ -1,4 +1,4 @@
-# Copyright (c) 2021 PPViT Authors. All Rights Reserved.
+# Copyright (c) 2021 PPViT Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
@@ -12,7 +12,7 @@
# See the License for the specific language governing permissions and
# limitations under the License.
-"""MAE finetuning/validation using multiple GPU """
+"""MAE finetuning using multiple GPU """
import sys
import os
@@ -27,20 +27,24 @@
import paddle.distributed as dist
from datasets import get_dataloader
from datasets import get_dataset
-from transformer import build_mae_finetune as build_model
+from mixup import Mixup
from losses import LabelSmoothingCrossEntropyLoss
from losses import SoftTargetCrossEntropyLoss
+from transformer import build_transformer as build_model
from utils import AverageMeter
from utils import WarmupCosineScheduler
from utils import get_exclude_from_weight_decay_fn
+from utils import get_params_groups
+from utils import cosine_scheduler
+from utils import interpolate_pos_embed
+import lr_decay
from config import get_config
from config import update_config
-from mixup import Mixup
def get_arguments():
"""return argumeents, this will overwrite the config after loading yaml file"""
- parser = argparse.ArgumentParser('ViT')
+ parser = argparse.ArgumentParser('MAE')
parser.add_argument('-cfg', type=str, default=None)
parser.add_argument('-dataset', type=str, default=None)
parser.add_argument('-batch_size', type=int, default=None)
@@ -52,7 +56,6 @@ def get_arguments():
parser.add_argument('-resume', type=str, default=None)
parser.add_argument('-last_epoch', type=int, default=None)
parser.add_argument('-eval', action='store_true')
- parser.add_argument('-mae_pretrain', action='store_true')
parser.add_argument('-amp', action='store_true')
arguments = parser.parse_args()
return arguments
@@ -77,10 +80,30 @@ def get_logger(filename, logger_name=None):
return logger
+def write_log(local_logger, master_logger, msg_local, msg_master=None, level='info'):
+ if local_logger:
+ if level == 'info':
+ local_logger.info(msg_local)
+ elif level == 'fatal':
+ local_logger.fatal(msg_local)
+ else:
+ raise ValueError("level must in ['info', 'fatal']")
+ if master_logger and dist.get_rank() == 0:
+ if msg_master is None:
+ msg_master = msg_local
+ if level == 'info':
+ master_logger.info("MASTER_LOG " + msg_master)
+ elif level == 'fatal':
+ master_logger.fatal("MASTER_LOG " + msg_master)
+ else:
+ raise ValueError("level must in ['info', 'fatal']")
+
+
def train(dataloader,
model,
- criterion,
optimizer,
+ criterion,
+ lr_schedule,
epoch,
total_epochs,
total_batch,
@@ -94,7 +117,9 @@ def train(dataloader,
Args:
dataloader: paddle.io.DataLoader, dataloader instance
model: nn.Layer, a ViT model
- criterion: nn.criterion
+ optimizer: nn.optimizer
+ criterion: nn.XXLoss
+ lr_schedule: list of float, lr schdeule
epoch: int, current epoch
total_epochs: int, total num of epochs
total_batch: int, total num of batches for one epoch
@@ -106,50 +131,52 @@ def train(dataloader,
master_logger: logger for main process, default: None
Returns:
train_loss_meter.avg: float, average loss on current process/gpu
- train_acc_meter.avg: float, average top1 accuracy on current process/gpu
- master_train_loss_meter.avg: float, average loss on all processes/gpus
- master_train_acc_meter.avg: float, average top1 accuracy on all processes/gpus
+ train_acc_meter.avg: float, average acc@1 on current process/gpu
+ master_loss_meter.avg: float, average loss on all processes/gpus
+ master_acc_meter.avg: float, average acc@1 on all processes/gpus
train_time: float, training time
"""
model.train()
train_loss_meter = AverageMeter()
train_acc_meter = AverageMeter()
- master_train_loss_meter = AverageMeter()
- master_train_acc_meter = AverageMeter()
+ master_loss_meter = AverageMeter()
+ master_acc_meter = AverageMeter()
if amp is True:
- scaler = paddle.amp.GradScaler(init_loss_scaling=1024)
+ scaler = paddle.amp.GradScaler() # default init_loss_scaling = 32768
time_st = time.time()
for batch_id, data in enumerate(dataloader):
- image = data[0]
+ # get data
+ images = data[0]
label = data[1]
label_orig = label.clone()
if mixup_fn is not None:
- image, label = mixup_fn(image, label_orig)
-
- if amp is True: # mixed precision training
- with paddle.amp.auto_cast():
- output = model(image)
- loss = criterion(output, label)
- scaled = scaler.scale(loss)
- scaled.backward()
- if ((batch_id +1) % accum_iter == 0) or (batch_id + 1 == len(dataloader)):
- scaler.minimize(optimizer, scaled)
- optimizer.clear_grad()
- else: # full precision training
- output = model(image)
+ images, label = mixup_fn(images, label_orig)
+
+ # set per iteration lr using scheduler
+ global_train_iter = total_batch * (epoch - 1) + batch_id # epoch starts from 1
+ optimizer.set_lr(lr_schedule[global_train_iter])
+ # forward
+ with paddle.amp.auto_cast(amp is True):
+ output = model(images)
loss = criterion(output, label)
- # NOTE: division may be needed depending on the loss function
- # Here no division is needed:
- # default 'reduction' param in nn.CrossEntropyLoss is set to 'mean'
- # loss = loss / accum_iter
- loss.backward()
+ if not amp: # fp32
+ loss.backward()
if ((batch_id + 1) % accum_iter == 0) or (batch_id + 1 == len(dataloader)):
optimizer.step()
optimizer.clear_grad()
+ else:
+ scaled = scaler.scale(loss)
+ scaled.backward()
+ # TODO: check if manually unscale and clip grad is required here
+ if ((batch_id + 1) % accum_iter == 0) or (batch_id + 1 == len(dataloader)):
+ # amp for param group refer here: https://github.com/PaddlePaddle/Paddle/issues/37188
+ scaler.step(optimizer)
+ scaler.update()
+ optimizer.clear_grad()
pred = F.softmax(output)
if mixup_fn:
@@ -157,144 +184,139 @@ def train(dataloader,
else:
acc = paddle.metric.accuracy(pred, label_orig.unsqueeze(1))
- batch_size = paddle.to_tensor(image.shape[0])
-
# sync from other gpus for overall loss and acc
- master_loss = loss.clone()
- master_acc = acc.clone()
- master_batch_size = batch_size.clone()
+ batch_size = paddle.to_tensor(images.shape[0])
+ master_loss = paddle.to_tensor(loss.numpy())
+ master_acc = paddle.to_tensor(acc.numpy())
+ master_batch_size = paddle.to_tensor(batch_size.numpy())
dist.all_reduce(master_loss)
dist.all_reduce(master_acc)
dist.all_reduce(master_batch_size)
master_loss = master_loss / dist.get_world_size()
master_acc = master_acc / dist.get_world_size()
- master_train_loss_meter.update(master_loss.numpy()[0], master_batch_size.numpy()[0])
- master_train_acc_meter.update(master_acc.numpy()[0], master_batch_size.numpy()[0])
+
+ master_loss_meter.update(master_loss.numpy()[0], master_batch_size.numpy()[0])
+ master_acc_meter.update(master_acc.numpy()[0], master_batch_size.numpy()[0])
train_loss_meter.update(loss.numpy()[0], batch_size.numpy()[0])
train_acc_meter.update(acc.numpy()[0], batch_size.numpy()[0])
if batch_id % debug_steps == 0:
- if local_logger:
- local_logger.info(
- f"Epoch[{epoch:03d}/{total_epochs:03d}], " +
- f"Step[{batch_id:04d}/{total_batch:04d}], " +
- f"Avg Loss: {train_loss_meter.avg:.4f}, " +
- f"Avg Acc: {train_acc_meter.avg:.4f}")
- if master_logger and dist.get_rank() == 0:
- master_logger.info(
- f"Epoch[{epoch:03d}/{total_epochs:03d}], " +
- f"Step[{batch_id:04d}/{total_batch:04d}], " +
- f"Avg Loss: {master_train_loss_meter.avg:.4f}, " +
- f"Avg Acc: {master_train_acc_meter.avg:.4f}")
+ local_message = (f"Epoch[{epoch:03d}/{total_epochs:03d}], " +
+ f"Step[{batch_id:04d}/{total_batch:04d}], " +
+ f"Avg Loss: {train_loss_meter.avg:.4f}, " +
+ f"Avg Acc: {train_acc_meter.avg:.4f}")
+ master_message = (f"Epoch[{epoch:03d}/{total_epochs:03d}], " +
+ f"Step[{batch_id:04d}/{total_batch:04d}], " +
+ f"Avg Loss: {master_loss_meter.avg:.4f}, " +
+ f"Avg Acc: {master_acc_meter.avg:.4f}")
+ write_log(local_logger, master_logger, local_message, master_message)
train_time = time.time() - time_st
return (train_loss_meter.avg,
train_acc_meter.avg,
- master_train_loss_meter.avg,
- master_train_acc_meter.avg,
+ master_loss_meter.avg,
+ master_acc_meter.avg,
train_time)
+@paddle.no_grad()
def validate(dataloader,
model,
- criterion,
+ optimizer,
total_batch,
debug_steps=100,
local_logger=None,
master_logger=None):
- """Validation for whole dataset
+ """Validation for the whole dataset
Args:
dataloader: paddle.io.DataLoader, dataloader instance
model: nn.Layer, a ViT model
- criterion: nn.criterion
- total_epoch: int, total num of epoch, for logging
+ total_batch: int, total num of batches for one epoch
debug_steps: int, num of iters to log info, default: 100
local_logger: logger for local process/gpu, default: None
master_logger: logger for main process, default: None
Returns:
val_loss_meter.avg: float, average loss on current process/gpu
- val_acc1_meter.avg: float, average top1 accuracy on current process/gpu
- val_acc5_meter.avg: float, average top5 accuracy on current process/gpu
- master_val_loss_meter.avg: float, average loss on all processes/gpus
- master_val_acc1_meter.avg: float, average top1 accuracy on all processes/gpus
- master_val_acc5_meter.avg: float, average top5 accuracy on all processes/gpus
+ val_acc1_meter.avg: float, average top1 accuracy on current processes/gpus
+ val_acc5_meter.avg: float, average top5 accuracy on current processes/gpus
+ master_loss_meter.avg: float, average loss on all processes/gpus
+ master_acc1_meter.avg: float, average top1 accuracy on all processes/gpus
+ master_acc5_meter.avg: float, average top5 accuracy on all processes/gpus
val_time: float, validation time
"""
model.eval()
val_loss_meter = AverageMeter()
val_acc1_meter = AverageMeter()
val_acc5_meter = AverageMeter()
- master_val_loss_meter = AverageMeter()
- master_val_acc1_meter = AverageMeter()
- master_val_acc5_meter = AverageMeter()
+ master_loss_meter = AverageMeter()
+ master_acc1_meter = AverageMeter()
+ master_acc5_meter = AverageMeter()
+
+ if amp is True:
+ scaler = paddle.amp.GradScaler() # default init_loss_scaling = 32768
time_st = time.time()
- with paddle.no_grad():
- for batch_id, data in enumerate(dataloader):
- image = data[0]
- label = data[1]
+ for batch_id, data in enumerate(dataloader):
+ # get data
+ images = data[0]
+ label = data[1]
+
+ output = model(image)
+ loss = criterion(output, label)
- output = model(image)
- loss = criterion(output, label)
+ pred = F.softmax(output)
+ acc1 = paddle.metric.accuracy(pred, label.unsqueeze(1))
+ acc5 = paddle.metric.accuracy(pred, label.unsqueeze(1), k=5)
+
+ # sync from other gpus for overall loss and acc
+ batch_size = paddle.to_tensor(images.shape[0])
+ master_loss = paddle.to_tensor(loss.numpy())
+ master_acc1 = paddle.to_tensor(acc1.numpy())
+ master_acc5 = paddle.to_tensor(acc5.numpy())
+ master_batch_size = paddle.to_tensor(batch_size.numpy())
+ dist.all_reduce(master_loss)
+ dist.all_reduce(master_batch_size)
+ dist.all_reduce(master_acc1)
+ dist.all_reduce(master_acc5)
+ master_loss = master_loss / dist.get_world_size()
+ master_acc1 = master_acc1 / dist.get_world_size()
+ master_acc5 = master_acc5 / dist.get_world_size()
+ master_loss_meter.update(master_loss.numpy()[0], master_batch_size.numpy()[0])
+ master_acc1_meter.update(master_acc1.numpy()[0], master_batch_size.numpy()[0])
+ master_acc5_meter.update(master_acc5.numpy()[0], master_batch_size.numpy()[0])
+ val_loss_meter.update(loss.numpy()[0], batch_size.numpy()[0])
+ val_acc1_meter.update(acc1.numpy()[0], batch_size.numpy()[0])
+ val_acc5_meter.update(acc5.numpy()[0], batch_size.numpy()[0])
+
+ if batch_id % debug_steps == 0:
+ local_message = (f"Step[{batch_id:04d}/{total_batch:04d}], " +
+ f"Avg Loss: {val_loss_meter.avg:.4f}, " +
+ f"Avg Acc@1: {val_acc1_meter.avg:.4f}, " +
+ f"Avg Acc@5: {val_acc5_meter.avg:.4f}")
+ master_message = (f"Step[{batch_id:04d}/{total_batch:04d}], " +
+ f"Avg Loss: {master_loss_meter.avg:.4f}, " +
+ f"Avg Acc@1: {master_acc1_meter.avg:.4f}, " +
+ f"Avg Acc@5: {master_acc5_meter.avg:.4f}")
+ write_log(local_logger, master_logger, local_message, master_message)
- pred = F.softmax(output)
- acc1 = paddle.metric.accuracy(pred, label.unsqueeze(1))
- acc5 = paddle.metric.accuracy(pred, label.unsqueeze(1), k=5)
-
- batch_size = paddle.to_tensor(image.shape[0])
-
- master_loss = loss.clone()
- master_acc1 = acc1.clone()
- master_acc5 = acc5.clone()
- master_batch_size = batch_size.clone()
-
- dist.all_reduce(master_loss)
- dist.all_reduce(master_acc1)
- dist.all_reduce(master_acc5)
- dist.all_reduce(master_batch_size)
- master_loss = master_loss / dist.get_world_size()
- master_acc1 = master_acc1 / dist.get_world_size()
- master_acc5 = master_acc5 / dist.get_world_size()
-
- master_val_loss_meter.update(master_loss.numpy()[0], master_batch_size.numpy()[0])
- master_val_acc1_meter.update(master_acc1.numpy()[0], master_batch_size.numpy()[0])
- master_val_acc5_meter.update(master_acc5.numpy()[0], master_batch_size.numpy()[0])
-
- val_loss_meter.update(loss.numpy()[0], batch_size.numpy()[0])
- val_acc1_meter.update(acc1.numpy()[0], batch_size.numpy()[0])
- val_acc5_meter.update(acc5.numpy()[0], batch_size.numpy()[0])
-
- if batch_id % debug_steps == 0:
- if local_logger:
- local_logger.info(
- f"Val Step[{batch_id:04d}/{total_batch:04d}], " +
- f"Avg Loss: {val_loss_meter.avg:.4f}, " +
- f"Avg Acc@1: {val_acc1_meter.avg:.4f}, " +
- f"Avg Acc@5: {val_acc5_meter.avg:.4f}")
- if master_logger and dist.get_rank() == 0:
- master_logger.info(
- f"Val Step[{batch_id:04d}/{total_batch:04d}], " +
- f"Avg Loss: {master_val_loss_meter.avg:.4f}, " +
- f"Avg Acc@1: {master_val_acc1_meter.avg:.4f}, " +
- f"Avg Acc@5: {master_val_acc5_meter.avg:.4f}")
val_time = time.time() - time_st
return (val_loss_meter.avg,
val_acc1_meter.avg,
val_acc5_meter.avg,
- master_val_loss_meter.avg,
- master_val_acc1_meter.avg,
- master_val_acc5_meter.avg,
+ master_loss_meter.avg,
+ master_acc1_meter.avg,
+ master_acc5_meter.avg,
val_time)
def main_worker(*args):
# STEP 0: Preparation
- config = args[0]
dist.init_parallel_env()
- last_epoch = config.TRAIN.LAST_EPOCH
world_size = dist.get_world_size()
local_rank = dist.get_rank()
+ config = args[0]
+ last_epoch = config.TRAIN.LAST_EPOCH
seed = config.SEED + local_rank
paddle.seed(seed)
np.random.seed(seed)
@@ -311,25 +333,27 @@ def main_worker(*args):
master_logger.info(f'\n{config}')
else:
master_logger = None
- local_logger.info(f'----- world_size = {world_size}, local_rank = {local_rank}')
- if local_rank == 0:
- master_logger.info(f'----- world_size = {world_size}, local_rank = {local_rank}')
+
+ message = f'----- world_size = {world_size}, local_rank = {local_rank}'
+ write_log(local_logger, master_logger, message)
# STEP 1: Create model
model = build_model(config)
model = paddle.DataParallel(model)
# STEP 2: Create train and val dataloader
- dataset_train, dataset_val = args[1], args[2]
- dataloader_train = get_dataloader(config, dataset_train, 'train', True)
- dataloader_val = get_dataloader(config, dataset_val, 'test', True)
- total_batch_train = len(dataloader_train)
+ if not config.EVAL:
+ dataset_train = args[1]
+ dataloader_train = get_dataloader(config, dataset_train, 'train', True)
+ total_batch_train = len(dataloader_train)
+ message = f'----- Total # of train batch (single gpu): {total_batch_train}'
+ write_log(local_logger, master_logger, message)
+
+ dataset_val = args[2]
+ dataloader_val = get_dataloader(config, dataset_val, 'val', True)
total_batch_val = len(dataloader_val)
- local_logger.info(f'----- Total # of train batch (single gpu): {total_batch_train}')
- local_logger.info(f'----- Total # of val batch (single gpu): {total_batch_val}')
- if local_rank == 0:
- master_logger.info(f'----- Total # of train batch (single gpu): {total_batch_train}')
- master_logger.info(f'----- Total # of val batch (single gpu): {total_batch_val}')
+ message = f'----- Total # of val batch (single gpu): {total_batch_val}'
+ write_log(local_logger, master_logger, message)
# STEP 3: Define Mixup function
mixup_fn = None
@@ -352,7 +376,7 @@ def main_worker(*args):
# only use cross entropy for val
criterion_val = nn.CrossEntropyLoss()
- # STEP 5: Define optimizer and lr_scheduler
+ # STEP 4: Define optimizer and lr_scheduler
# set lr according to batch size and world size (hacked from Swin official code and modified for CSwin)
if config.TRAIN.LINEAR_SCALED_LR is not None:
linear_scaled_lr = (
@@ -371,129 +395,112 @@ def main_worker(*args):
config.TRAIN.WARMUP_START_LR = linear_scaled_warmup_start_lr
config.TRAIN.END_LR = linear_scaled_end_lr
- scheduler = None
- if config.TRAIN.LR_SCHEDULER.NAME == "warmupcosine":
- scheduler = WarmupCosineScheduler(learning_rate=config.TRAIN.BASE_LR,
- warmup_start_lr=config.TRAIN.WARMUP_START_LR,
- start_lr=config.TRAIN.BASE_LR,
- end_lr=config.TRAIN.END_LR,
- warmup_epochs=config.TRAIN.WARMUP_EPOCHS,
- total_epochs=config.TRAIN.NUM_EPOCHS,
- last_epoch=config.TRAIN.LAST_EPOCH,
- )
- elif config.TRAIN.LR_SCHEDULER.NAME == "cosine":
- scheduler = paddle.optimizer.lr.CosineAnnealingDecay(learning_rate=config.TRAIN.BASE_LR,
- T_max=config.TRAIN.NUM_EPOCHS,
- last_epoch=last_epoch)
- elif config.scheduler == "multi-step":
- milestones = [int(v.strip())
- for v in config.TRAIN.LR_SCHEDULER.MILESTONES.split(",")]
- scheduler = paddle.optimizer.lr.MultiStepDecay(learning_rate=config.TRAIN.BASE_LR,
- milestones=milestones,
- gamma=config.TRAIN.LR_SCHEDULER.DECAY_RATE,
- last_epoch=last_epoch)
+ lr_schedule = cosine_scheduler(config.TRAIN.BASE_LR, # add linear scale
+ config.TRAIN.END_LR,
+ config.TRAIN.NUM_EPOCHS,
+ len(dataloader_train),
+ warmup_epochs=config.TRAIN.WARMUP_EPOCHS)
+
+ #params_groups = get_params_groups(model)
+ params_groups = lr_decay.param_groups_lrd(
+ model=model._layers, # TODO: check correctness
+ weight_decay=config.TRAIN.WEIGHT_DECAY,
+ layer_decay=config.TRAIN.LAYER_DECAY)
+
+ if config.TRAIN.GRAD_CLIP:
+ clip = paddle.nn.ClipGradByGlobalNorm(config.TRAIN.GRAD_CLIP)
else:
- local_logger.fatal(f"Unsupported Scheduler: {config.TRAIN.LR_SCHEDULER}.")
- if local_rank == 0:
- master_logger.fatal(f"Unsupported Scheduler: {config.TRAIN.LR_SCHEDULER}.")
- raise NotImplementedError(f"Unsupported Scheduler: {config.TRAIN.LR_SCHEDULER}.")
+ clip = None
if config.TRAIN.OPTIMIZER.NAME == "SGD":
- if config.TRAIN.GRAD_CLIP:
- clip = paddle.nn.ClipGradByGlobalNorm(config.TRAIN.GRAD_CLIP)
- else:
- clip = None
optimizer = paddle.optimizer.Momentum(
- parameters=model.parameters(),
+ parameters=params_groups,
learning_rate=scheduler if scheduler is not None else config.TRAIN.BASE_LR,
weight_decay=config.TRAIN.WEIGHT_DECAY,
momentum=config.TRAIN.OPTIMIZER.MOMENTUM,
grad_clip=clip)
elif config.TRAIN.OPTIMIZER.NAME == "AdamW":
- if config.TRAIN.GRAD_CLIP:
- clip = paddle.nn.ClipGradByGlobalNorm(config.TRAIN.GRAD_CLIP)
- else:
- clip = None
optimizer = paddle.optimizer.AdamW(
- parameters=model.parameters(),
- learning_rate=scheduler if scheduler is not None else config.TRAIN.BASE_LR,
+ parameters=params_groups,
+ learning_rate=0.0, #scheduler if scheduler is not None else config.TRAIN.BASE_LR,
beta1=config.TRAIN.OPTIMIZER.BETAS[0],
beta2=config.TRAIN.OPTIMIZER.BETAS[1],
- weight_decay=config.TRAIN.WEIGHT_DECAY,
+ weight_decay=1.0, #config.TRAIN.WEIGHT_DECAY,
epsilon=config.TRAIN.OPTIMIZER.EPS,
- grad_clip=clip,
- #apply_decay_param_fun=get_exclude_from_weight_decay_fn(['pos_embed', 'cls_token']),
- )
+ grad_clip=clip)
else:
- local_logger.fatal(f"Unsupported Optimizer: {config.TRAIN.OPTIMIZER.NAME}.")
- if local_rank == 0:
- master_logger.fatal(f"Unsupported Optimizer: {config.TRAIN.OPTIMIZER.NAME}.")
- raise NotImplementedError(f"Unsupported Optimizer: {config.TRAIN.OPTIMIZER.NAME}.")
+ message = f"Unsupported Optimizer: {config.TRAIN.OPTIMIZER.NAME}."
+ write_log(local_logger, master_logger, message, None, 'fatal')
+ raise NotImplementedError(message)
- # STEP 6: Load pretrained model / load resumt model and optimizer states
+ # STEP 5: Load pretrained model / load resumt model and optimizer states
if config.MODEL.PRETRAINED:
- if (config.MODEL.PRETRAINED).endswith('.pdparams'):
- raise ValueError(
- f'{config.MODEL.PRETRAINED} should not contain .pdparams')
assert os.path.isfile(config.MODEL.PRETRAINED + '.pdparams') is True
- model_state = paddle.load(config.MODEL.PRETRAINED+'.pdparams')
+ model_state = paddle.load(config.MODEL.PRETRAINED + '.pdparams')
+
+ if not config.EVAL:
+ keys = ['encoder.norm.weight', 'encoder.norm.bias',
+ 'classfier.weight', 'classifier.bias']
+ if config.MODEL.GLOBAL_POOL:
+ del model_state[keys[0]]
+ del model_state[keys[1]]
+
+ # interpolate position embedding
+ interpolate_pos_embed(model, model_state)
+
+
model.set_dict(model_state)
- local_logger.info(f"----- Pretrained: Load model state from {config.MODEL.PRETRAINED}")
- if local_rank == 0:
- master_logger.info(
- f"----- Pretrained: Load model state from {config.MODEL.PRETRAINED}")
+ message = f"----- Pretrained: Load model state from {config.MODEL.PRETRAINED}"
+ write_log(local_logger, master_logger, message)
if config.MODEL.RESUME:
- assert os.path.isfile(config.MODEL.RESUME + '.pdparams') is True
- assert os.path.isfile(config.MODEL.RESUME + '.pdopt') is True
- model_state = paddle.load(config.MODEL.RESUME + '.pdparams')
+ assert os.path.isfile(config.MODEL.RESUME+'.pdparams') is True
+ assert os.path.isfile(config.MODEL.RESUME+'.pdopt') is True
+ model_state = paddle.load(config.MODEL.RESUME+'.pdparams')
model.set_dict(model_state)
opt_state = paddle.load(config.MODEL.RESUME+'.pdopt')
optimizer.set_state_dict(opt_state)
- local_logger.info(
- f"----- Resume Training: Load model and optmizer from {config.MODEL.RESUME}")
- if local_rank == 0:
- master_logger.info(
- f"----- Resume Training: Load model and optmizer from {config.MODEL.RESUME}")
-
- # STEP 7: Validation (eval mode)
+ message = f"----- Resume Training: Load model and optmizer from {config.MODEL.RESUME}"
+ write_log(local_logger, master_logger, message)
+
+ # STEP 6: Validation (eval mode)
if config.EVAL:
- local_logger.info('----- Start Validating')
- if local_rank == 0:
- master_logger.info('----- Start Validating')
+ write_log(local_logger, master_logger, f"----- Start Validation")
val_loss, val_acc1, val_acc5, avg_loss, avg_acc1, avg_acc5, val_time = validate(
dataloader=dataloader_val,
model=model,
criterion=criterion_val,
- total_batch=total_batch_val,
+ total_batch=total_batch_train,
debug_steps=config.REPORT_FREQ,
local_logger=local_logger,
master_logger=master_logger)
- local_logger.info(f"Validation Loss: {val_loss:.4f}, " +
- f"Validation Acc@1: {val_acc1:.4f}, " +
- f"Validation Acc@5: {val_acc5:.4f}, " +
- f"time: {val_time:.2f}")
- if local_rank == 0:
- master_logger.info(f"Validation Loss: {avg_loss:.4f}, " +
- f"Validation Acc@1: {avg_acc1:.4f}, " +
- f"Validation Acc@5: {avg_acc5:.4f}, " +
- f"time: {val_time:.2f}")
- return
-
- # STEP 8: Start training and validation (train mode)
- local_logger.info(f"Start training from epoch {last_epoch+1}.")
- if local_rank == 0:
- master_logger.info(f"Start training from epoch {last_epoch+1}.")
- for epoch in range(last_epoch+1, config.TRAIN.NUM_EPOCHS+1):
+
+ local_message = (f"----- Epoch[{epoch:03d}/{config.TRAIN.NUM_EPOCHS:03d}], " +
+ f"Validation Loss: {val_loss:.4f}, " +
+ f"Validation Acc@1: {val_acc1:.4f}, " +
+ f"Validation Acc@1: {val_acc5:.4f}, " +
+ f"time: {val_time:.2f}")
+
+ local_message = (f"----- Epoch[{epoch:03d}/{config.TRAIN.NUM_EPOCHS:03d}], " +
+ f"Validation Loss: {avg_loss:.4f}, " +
+ f"Validation Acc@1: {avg_acc1:.4f}, " +
+ f"Validation Acc@1: {avg_acc5:.4f}, " +
+ f"time: {val_time:.2f}")
+
+
+
+ # STEP 7: Start training (train mode)
+ write_log(local_logger, master_logger, f"----- Start training from epoch {last_epoch+1}.")
+ for epoch in range(last_epoch + 1, config.TRAIN.NUM_EPOCHS + 1):
# train
- local_logger.info(f"Now training epoch {epoch}. LR={optimizer.get_lr():.6f}")
- if local_rank == 0:
- master_logger.info(f"Now training epoch {epoch}. LR={optimizer.get_lr():.6f}")
+ write_log(local_logger, master_logger, f"Train epoch {epoch}. LR={optimizer.get_lr():.6e}")
+
train_loss, train_acc, avg_loss, avg_acc, train_time = train(
dataloader=dataloader_train,
model=model,
- criterion=criterion,
optimizer=optimizer,
+ criterion=criterion,
+ lr_schedule=lr_schedule,
epoch=epoch,
total_epochs=config.TRAIN.NUM_EPOCHS,
total_batch=total_batch_train,
@@ -504,42 +511,42 @@ def main_worker(*args):
local_logger=local_logger,
master_logger=master_logger)
- scheduler.step()
+ local_message = (f"----- Epoch[{epoch:03d}/{config.TRAIN.NUM_EPOCHS:03d}], " +
+ f"Train Loss: {train_loss:.4f}, " +
+ f"Train Acc: {train_acc:.4f}, " +
+ f"time: {train_time:.2f}")
- local_logger.info(f"----- Epoch[{epoch:03d}/{config.TRAIN.NUM_EPOCHS:03d}], " +
- f"Train Loss: {train_loss:.4f}, " +
- f"Train Acc: {train_acc:.4f}, " +
+ master_message = (f"----- Epoch[{epoch:03d}/{config.TRAIN.NUM_EPOCHS:03d}], " +
+ f"Train Loss: {avg_loss:.4f}, " +
+ f"Train Acc: {avg_acc:.4f}, " +
f"time: {train_time:.2f}")
- if local_rank == 0:
- master_logger.info(f"----- Epoch[{epoch:03d}/{config.TRAIN.NUM_EPOCHS:03d}], " +
- f"Train Loss: {avg_loss:.4f}, " +
- f"Train Acc: {avg_acc:.4f}, " +
- f"time: {train_time:.2f}")
+ write_log(local_logger, master_logger, local_message, master_message)
# validation
- if epoch % config.VALIDATE_FREQ == 0 or epoch == config.TRAIN.NUM_EPOCHS:
- local_logger.info(f'----- Validation after Epoch: {epoch}')
- if local_rank == 0:
- master_logger.info(f'----- Validation after Epoch: {epoch}')
+ if epoch % config.VALIDATION_FREQ == 0 or epoch == config.TRAIN.NUM_EPOCHS:
+ write_log(local_logger, master_logger, f'----- Validation after Epoch: {epoch}')
val_loss, val_acc1, val_acc5, avg_loss, avg_acc1, avg_acc5, val_time = validate(
dataloader=dataloader_val,
model=model,
criterion=criterion_val,
- total_batch=total_batch_val,
+ total_batch=total_batch_train,
debug_steps=config.REPORT_FREQ,
local_logger=local_logger,
master_logger=master_logger)
- local_logger.info(f"----- Epoch[{epoch:03d}/{config.TRAIN.NUM_EPOCHS:03d}], " +
- f"Validation Loss: {val_loss:.4f}, " +
- f"Validation Acc@1: {val_acc1:.4f}, " +
- f"Validation Acc@5: {val_acc5:.4f}, " +
- f"time: {val_time:.2f}")
- if local_rank == 0:
- master_logger.info(f"----- Epoch[{epoch:03d}/{config.TRAIN.NUM_EPOCHS:03d}], " +
- f"Validation Loss: {avg_loss:.4f}, " +
- f"Validation Acc@1: {avg_acc1:.4f}, " +
- f"Validation Acc@5: {avg_acc5:.4f}, " +
- f"time: {val_time:.2f}")
+
+ local_message = (f"----- Epoch[{epoch:03d}/{config.TRAIN.NUM_EPOCHS:03d}], " +
+ f"Validation Loss: {val_loss:.4f}, " +
+ f"Validation Acc@1: {val_acc1:.4f}, " +
+ f"Validation Acc@1: {val_acc5:.4f}, " +
+ f"time: {val_time:.2f}")
+
+ local_message = (f"----- Epoch[{epoch:03d}/{config.TRAIN.NUM_EPOCHS:03d}], " +
+ f"Validation Loss: {avg_loss:.4f}, " +
+ f"Validation Acc@1: {avg_acc1:.4f}, " +
+ f"Validation Acc@1: {avg_acc5:.4f}, " +
+ f"time: {val_time:.2f}")
+ write_log(local_logger, master_logger, local_message, master_message)
+
# model save
if local_rank == 0:
if epoch % config.SAVE_FREQ == 0 or epoch == config.TRAIN.NUM_EPOCHS:
@@ -547,11 +554,9 @@ def main_worker(*args):
config.SAVE, f"{config.MODEL.TYPE}-Epoch-{epoch}-Loss-{train_loss}")
paddle.save(model.state_dict(), model_path + '.pdparams')
paddle.save(optimizer.state_dict(), model_path + '.pdopt')
- local_logger.info(f"----- Save model: {model_path}.pdparams")
- local_logger.info(f"----- Save optim: {model_path}.pdopt")
- if local_rank == 0:
- master_logger.info(f"----- Save model: {model_path}.pdparams")
- master_logger.info(f"----- Save optim: {model_path}.pdopt")
+ message = (f"----- Save model: {model_path}.pdparams \n" +
+ f"----- Save optim: {model_path}.pdopt")
+ write_log(local_logger, master_logger, message)
def main():
@@ -559,21 +564,22 @@ def main():
arguments = get_arguments()
config = get_config()
config = update_config(config, arguments)
-
# set output folder
if not config.EVAL:
- config.SAVE = '{}/train-{}'.format(config.SAVE, time.strftime('%Y%m%d-%H-%M-%S'))
+ config.SAVE = '{}/finetuning-{}'.format(config.SAVE, time.strftime('%Y%m%d-%H-%M-%S'))
else:
config.SAVE = '{}/eval-{}'.format(config.SAVE, time.strftime('%Y%m%d-%H-%M-%S'))
-
if not os.path.exists(config.SAVE):
os.makedirs(config.SAVE, exist_ok=True)
-
- # get dataset and start DDP
- dataset_train = get_dataset(config, mode='train')
+ # get dataset
+ if not config.EVAL:
+ dataset_train = get_dataset(config, mode='train')
+ else:
+ dataset_train = None
dataset_val = get_dataset(config, mode='val')
+ # start training
config.NGPUS = len(paddle.static.cuda_places()) if config.NGPUS == -1 else config.NGPUS
- dist.spawn(main_worker, args=(config, dataset_train, dataset_val, ), nprocs=config.NGPUS)
+ dist.spawn(main_worker, args=(config, dataset_train, dataset_val), nprocs=config.NGPUS)
if __name__ == "__main__":
diff --git a/image_classification/MAE/main_multi_gpu_linearprobe.py b/image_classification/MAE/main_multi_gpu_linearprobe.py
new file mode 100644
index 00000000..96fb8283
--- /dev/null
+++ b/image_classification/MAE/main_multi_gpu_linearprobe.py
@@ -0,0 +1,562 @@
+# Copyright (c) 2021 PPViT Authors. All Rights Reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+
+"""MAE linear probing using multiple GPU """
+
+import sys
+import os
+import time
+import logging
+import argparse
+import random
+import numpy as np
+import paddle
+import paddle.nn as nn
+import paddle.nn.functional as F
+import paddle.distributed as dist
+from datasets import get_dataloader
+from datasets import get_dataset
+from losses import LabelSmoothingCrossEntropyLoss
+from losses import SoftTargetCrossEntropyLoss
+from transformer import build_transformer as build_model
+from utils import AverageMeter
+from utils import WarmupCosineScheduler
+from utils import get_exclude_from_weight_decay_fn
+from utils import get_params_groups
+from utils import cosine_scheduler
+from utils import interpolate_pos_embed
+from config import get_config
+from config import update_config
+
+
+def get_arguments():
+ """return argumeents, this will overwrite the config after loading yaml file"""
+ parser = argparse.ArgumentParser('MAE')
+ parser.add_argument('-cfg', type=str, default=None)
+ parser.add_argument('-dataset', type=str, default=None)
+ parser.add_argument('-batch_size', type=int, default=None)
+ parser.add_argument('-image_size', type=int, default=None)
+ parser.add_argument('-data_path', type=str, default=None)
+ parser.add_argument('-output', type=str, default=None)
+ parser.add_argument('-ngpus', type=int, default=None)
+ parser.add_argument('-pretrained', type=str, default=None)
+ parser.add_argument('-resume', type=str, default=None)
+ parser.add_argument('-last_epoch', type=int, default=None)
+ parser.add_argument('-eval', action='store_true')
+ parser.add_argument('-amp', action='store_true')
+ arguments = parser.parse_args()
+ return arguments
+
+
+def get_logger(filename, logger_name=None):
+ """set logging file and format
+ Args:
+ filename: str, full path of the logger file to write
+ logger_name: str, the logger name, e.g., 'master_logger', 'local_logger'
+ Return:
+ logger: python logger
+ """
+ log_format = "%(asctime)s %(message)s"
+ logging.basicConfig(stream=sys.stdout, level=logging.INFO,
+ format=log_format, datefmt="%m%d %I:%M:%S %p")
+ # different name is needed when creating multiple logger in one process
+ logger = logging.getLogger(logger_name)
+ fh = logging.FileHandler(os.path.join(filename))
+ fh.setFormatter(logging.Formatter(log_format))
+ logger.addHandler(fh)
+ return logger
+
+
+def write_log(local_logger, master_logger, msg_local, msg_master=None, level='info'):
+ if local_logger:
+ if level == 'info':
+ local_logger.info(msg_local)
+ elif level == 'fatal':
+ local_logger.fatal(msg_local)
+ else:
+ raise ValueError("level must in ['info', 'fatal']")
+ if master_logger and dist.get_rank() == 0:
+ if msg_master is None:
+ msg_master = msg_local
+ if level == 'info':
+ master_logger.info("MASTER_LOG " + msg_master)
+ elif level == 'fatal':
+ master_logger.fatal("MASTER_LOG " + msg_master)
+ else:
+ raise ValueError("level must in ['info', 'fatal']")
+
+
+def train(dataloader,
+ model,
+ optimizer,
+ criterion,
+ lr_schedule,
+ epoch,
+ total_epochs,
+ total_batch,
+ debug_steps=100,
+ accum_iter=1,
+ amp=False,
+ local_logger=None,
+ master_logger=None):
+ """Training for one epoch
+ Args:
+ dataloader: paddle.io.DataLoader, dataloader instance
+ model: nn.Layer, a ViT model
+ optimizer: nn.optimizer
+ criterion: nn.XXLoss
+ lr_schedule: list of float, lr schdeule
+ epoch: int, current epoch
+ total_epochs: int, total num of epochs
+ total_batch: int, total num of batches for one epoch
+ debug_steps: int, num of iters to log info, default: 100
+ accum_iter: int, num of iters for accumulating gradients, default: 1
+ amp: bool, if True, use mix precision training, default: False
+ local_logger: logger for local process/gpu, default: None
+ master_logger: logger for main process, default: None
+ Returns:
+ train_loss_meter.avg: float, average loss on current process/gpu
+ train_acc_meter.avg: float, average acc@1 on current process/gpu
+ master_loss_meter.avg: float, average loss on all processes/gpus
+ master_acc_meter.avg: float, average acc@1 on all processes/gpus
+ train_time: float, training time
+ """
+ model.train()
+ train_loss_meter = AverageMeter()
+ train_acc_meter = AverageMeter()
+ master_loss_meter = AverageMeter()
+ master_acc_meter = AverageMeter()
+
+ if amp is True:
+ scaler = paddle.amp.GradScaler() # default init_loss_scaling = 32768
+ time_st = time.time()
+
+ for batch_id, data in enumerate(dataloader):
+ # get data
+ images = data[0]
+ label = data[1]
+
+ # set per iteration lr using scheduler
+ global_train_iter = total_batch * (epoch - 1) + batch_id # epoch starts from 1
+ optimizer.set_lr(lr_schedule[global_train_iter])
+ # forward
+ with paddle.amp.auto_cast(amp is True):
+ output = model(images)
+ loss = criterion(output, label)
+
+ if not amp: # fp32
+ loss.backward()
+ if ((batch_id + 1) % accum_iter == 0) or (batch_id + 1 == len(dataloader)):
+ optimizer.step()
+ optimizer.clear_grad()
+ else:
+ scaled = scaler.scale(loss)
+ scaled.backward()
+ # TODO: check if manually unscale and clip grad is required here
+ if ((batch_id + 1) % accum_iter == 0) or (batch_id + 1 == len(dataloader)):
+ # amp for param group refer here: https://github.com/PaddlePaddle/Paddle/issues/37188
+ scaler.step(optimizer)
+ scaler.update()
+ optimizer.clear_grad()
+
+ pred = F.softmax(output)
+ acc = paddle.metric.accuracy(pred, label.unsqueeze(1))
+
+ # sync from other gpus for overall loss and acc
+ batch_size = paddle.to_tensor(images.shape[0])
+ master_loss = paddle.to_tensor(loss.numpy())
+ master_acc = paddle.to_tensor(acc.numpy())
+ master_batch_size = paddle.to_tensor(batch_size.numpy())
+ dist.all_reduce(master_loss)
+ dist.all_reduce(master_acc)
+ dist.all_reduce(master_batch_size)
+ master_loss = master_loss / dist.get_world_size()
+ master_acc = master_acc / dist.get_world_size()
+ master_loss_meter.update(master_loss.numpy()[0], master_batch_size.numpy()[0])
+ master_acc_meter.update(master_acc.numpy()[0], master_batch_size.numpy()[0])
+
+ train_loss_meter.update(loss.numpy()[0], batch_size.numpy()[0])
+ train_acc_meter.update(acc.numpy()[0], batch_size.numpy()[0])
+
+ if batch_id % debug_steps == 0:
+ local_message = (f"Epoch[{epoch:03d}/{total_epochs:03d}], " +
+ f"Step[{batch_id:04d}/{total_batch:04d}], " +
+ f"Avg Loss: {train_loss_meter.avg:.4f}, " +
+ f"Avg Acc: {train_acc_meter.avg:.4f}")
+ master_message = (f"Epoch[{epoch:03d}/{total_epochs:03d}], " +
+ f"Step[{batch_id:04d}/{total_batch:04d}], " +
+ f"Avg Loss: {master_loss_meter.avg:.4f}, " +
+ f"Avg Acc: {master_acc_meter.avg:.4f}")
+ write_log(local_logger, master_logger, local_message, master_message)
+
+ train_time = time.time() - time_st
+ return (train_loss_meter.avg,
+ train_acc_meter.avg,
+ master_loss_meter.avg,
+ master_acc_meter.avg,
+ train_time)
+
+
+@paddle.no_grad()
+def validate(dataloader,
+ model,
+ optimizer,
+ total_batch,
+ debug_steps=100,
+ local_logger=None,
+ master_logger=None):
+ """Validation for the whole dataset
+ Args:
+ dataloader: paddle.io.DataLoader, dataloader instance
+ model: nn.Layer, a ViT model
+ total_batch: int, total num of batches for one epoch
+ debug_steps: int, num of iters to log info, default: 100
+ local_logger: logger for local process/gpu, default: None
+ master_logger: logger for main process, default: None
+ Returns:
+ val_loss_meter.avg: float, average loss on current process/gpu
+ val_acc1_meter.avg: float, average top1 accuracy on current processes/gpus
+ val_acc5_meter.avg: float, average top5 accuracy on current processes/gpus
+ master_loss_meter.avg: float, average loss on all processes/gpus
+ master_acc1_meter.avg: float, average top1 accuracy on all processes/gpus
+ master_acc5_meter.avg: float, average top5 accuracy on all processes/gpus
+ val_time: float, validation time
+ """
+ model.eval()
+ val_loss_meter = AverageMeter()
+ val_acc1_meter = AverageMeter()
+ val_acc5_meter = AverageMeter()
+ master_loss_meter = AverageMeter()
+ master_acc1_meter = AverageMeter()
+ master_acc5_meter = AverageMeter()
+
+ if amp is True:
+ scaler = paddle.amp.GradScaler() # default init_loss_scaling = 32768
+ time_st = time.time()
+
+ for batch_id, data in enumerate(dataloader):
+ # get data
+ images = data[0]
+ label = data[1]
+
+ output = model(image)
+ loss = criterion(output, label)
+
+ pred = F.softmax(output)
+ acc1 = paddle.metric.accuracy(pred, label.unsqueeze(1))
+ acc5 = paddle.metric.accuracy(pred, label.unsqueeze(1), k=5)
+
+ # sync from other gpus for overall loss and acc
+ batch_size = paddle.to_tensor(images.shape[0])
+ master_loss = paddle.to_tensor(loss.numpy())
+ master_acc1 = paddle.to_tensor(acc1.numpy())
+ master_acc5 = paddle.to_tensor(acc5.numpy())
+ master_batch_size = paddle.to_tensor(batch_size.numpy())
+ dist.all_reduce(master_loss)
+ dist.all_reduce(master_batch_size)
+ dist.all_reduce(master_acc1)
+ dist.all_reduce(master_acc5)
+ master_loss = master_loss / dist.get_world_size()
+ master_acc1 = master_acc1 / dist.get_world_size()
+ master_acc5 = master_acc5 / dist.get_world_size()
+ master_loss_meter.update(master_loss.numpy()[0], master_batch_size.numpy()[0])
+ master_acc1_meter.update(master_acc1.numpy()[0], master_batch_size.numpy()[0])
+ master_acc5_meter.update(master_acc5.numpy()[0], master_batch_size.numpy()[0])
+ val_loss_meter.update(loss.numpy()[0], batch_size.numpy()[0])
+ val_acc1_meter.update(acc1.numpy()[0], batch_size.numpy()[0])
+ val_acc5_meter.update(acc5.numpy()[0], batch_size.numpy()[0])
+
+ if batch_id % debug_steps == 0:
+ local_message = (f"Step[{batch_id:04d}/{total_batch:04d}], " +
+ f"Avg Loss: {val_loss_meter.avg:.4f}, " +
+ f"Avg Acc@1: {val_acc1_meter.avg:.4f}, " +
+ f"Avg Acc@5: {val_acc5_meter.avg:.4f}")
+ master_message = (f"Step[{batch_id:04d}/{total_batch:04d}], " +
+ f"Avg Loss: {master_loss_meter.avg:.4f}, " +
+ f"Avg Acc@1: {master_acc1_meter.avg:.4f}, " +
+ f"Avg Acc@5: {master_acc5_meter.avg:.4f}")
+ write_log(local_logger, master_logger, local_message, master_message)
+
+ val_time = time.time() - time_st
+ return (val_loss_meter.avg,
+ val_acc1_meter.avg,
+ val_acc5_meter.avg,
+ master_loss_meter.avg,
+ master_acc1_meter.avg,
+ master_acc5_meter.avg,
+ val_time)
+
+
+def main_worker(*args):
+ # STEP 0: Preparation
+ dist.init_parallel_env()
+ world_size = dist.get_world_size()
+ local_rank = dist.get_rank()
+ config = args[0]
+ last_epoch = config.TRAIN.LAST_EPOCH
+ seed = config.SEED + local_rank
+ paddle.seed(seed)
+ np.random.seed(seed)
+ random.seed(seed)
+ # logger for each process/gpu
+ local_logger = get_logger(
+ filename=os.path.join(config.SAVE, 'log_{}.txt'.format(local_rank)),
+ logger_name='local_logger')
+ # overall logger
+ if local_rank == 0:
+ master_logger = get_logger(
+ filename=os.path.join(config.SAVE, 'log.txt'),
+ logger_name='master_logger')
+ master_logger.info(f'\n{config}')
+ else:
+ master_logger = None
+
+ message = f'----- world_size = {world_size}, local_rank = {local_rank}'
+ write_log(local_logger, master_logger, message)
+
+ # STEP 1: Create model
+ model = build_model(config)
+ model = paddle.DataParallel(model)
+
+ # STEP 2: Create train and val dataloader
+ if not config.EVAL:
+ dataset_train = args[1]
+ dataloader_train = get_dataloader(config, dataset_train, 'train', True)
+ total_batch_train = len(dataloader_train)
+ message = f'----- Total # of train batch (single gpu): {total_batch_train}'
+ write_log(local_logger, master_logger, message)
+
+ dataset_val = args[2]
+ dataloader_val = get_dataloader(config, dataset_val, 'val', True)
+ total_batch_val = len(dataloader_val)
+ message = f'----- Total # of val batch (single gpu): {total_batch_val}'
+ write_log(local_logger, master_logger, message)
+
+ # STEP 4: Define criterion
+ criterion = nn.CrossEntropyLoss()
+ # only use cross entropy for val
+ criterion_val = nn.CrossEntropyLoss()
+
+ # STEP 4: Define optimizer and lr_scheduler
+ # set lr according to batch size and world size (hacked from Swin official code and modified for CSwin)
+ if config.TRAIN.LINEAR_SCALED_LR is not None:
+ linear_scaled_lr = (
+ config.TRAIN.BASE_LR * config.DATA.BATCH_SIZE * world_size) / config.TRAIN.LINEAR_SCALED_LR
+ linear_scaled_warmup_start_lr = (
+ config.TRAIN.WARMUP_START_LR * config.DATA.BATCH_SIZE * world_size) / config.TRAIN.LINEAR_SCALED_LR
+ linear_scaled_end_lr = (
+ config.TRAIN.END_LR * config.DATA.BATCH_SIZE * world_size) / config.TRAIN.LINEAR_SCALED_LR
+
+ if config.TRAIN.ACCUM_ITER > 1:
+ linear_scaled_lr = linear_scaled_lr * config.TRAIN.ACCUM_ITER
+ linear_scaled_warmup_start_lr = linear_scaled_warmup_start_lr * config.TRAIN.ACCUM_ITER
+ linear_scaled_end_lr = linear_scaled_end_lr * config.TRAIN.ACCUM_ITER
+
+ config.TRAIN.BASE_LR = linear_scaled_lr
+ config.TRAIN.WARMUP_START_LR = linear_scaled_warmup_start_lr
+ config.TRAIN.END_LR = linear_scaled_end_lr
+
+ lr_schedule = cosine_scheduler(config.TRAIN.BASE_LR, # add linear scale
+ config.TRAIN.END_LR,
+ config.TRAIN.NUM_EPOCHS,
+ len(dataloader_train),
+ warmup_epochs=config.TRAIN.WARMUP_EPOCHS)
+
+ params_groups = get_params_groups(model)
+
+ if config.TRAIN.GRAD_CLIP:
+ clip = paddle.nn.ClipGradByGlobalNorm(config.TRAIN.GRAD_CLIP)
+ else:
+ clip = None
+
+ if config.TRAIN.OPTIMIZER.NAME == "SGD":
+ optimizer = paddle.optimizer.Momentum(
+ parameters=params_groups,
+ learning_rate=scheduler if scheduler is not None else config.TRAIN.BASE_LR,
+ weight_decay=config.TRAIN.WEIGHT_DECAY,
+ momentum=config.TRAIN.OPTIMIZER.MOMENTUM,
+ grad_clip=clip)
+ elif config.TRAIN.OPTIMIZER.NAME == "AdamW":
+ optimizer = paddle.optimizer.AdamW(
+ parameters=params_groups,
+ learning_rate=0.0, #scheduler if scheduler is not None else config.TRAIN.BASE_LR,
+ beta1=config.TRAIN.OPTIMIZER.BETAS[0],
+ beta2=config.TRAIN.OPTIMIZER.BETAS[1],
+ weight_decay=config.TRAIN.WEIGHT_DECAY,
+ epsilon=config.TRAIN.OPTIMIZER.EPS,
+ grad_clip=clip)
+ else:
+ message = f"Unsupported Optimizer: {config.TRAIN.OPTIMIZER.NAME}."
+ write_log(local_logger, master_logger, message, None, 'fatal')
+ raise NotImplementedError(message)
+
+ # STEP 5: Load pretrained model / load resumt model and optimizer states
+ if config.MODEL.PRETRAINED:
+ assert os.path.isfile(config.MODEL.PRETRAINED + '.pdparams') is True
+ model_state = paddle.load(config.MODEL.PRETRAINED + '.pdparams')
+
+ if not config.EVAL:
+ keys = ['encoder.norm.weight', 'encoder.norm.bias',
+ 'classfier.weight', 'classifier.bias']
+ if config.MODEL.GLOBAL_POOL:
+ del model_state[keys[0]]
+ del model_state[keys[1]]
+
+ # interpolate position embedding
+ interpolate_pos_embed(model, model_state)
+
+ model.set_dict(model_state)
+ message = f"----- Pretrained: Load model state from {config.MODEL.PRETRAINED}"
+ write_log(local_logger, master_logger, message)
+
+ # for linearprobing
+ model._layers.classifier = nn.Sequential(
+ nn.BatchNorm1D(model._layers.classifier.weight.shape[0], weight_attr=False, epsilon=1e-6),
+ model._layers.classifier)
+ # freeze all but the classifier
+ for _, p in model.named_parameters():
+ p.stop_gradient = True
+ for _, p in model._layers.classifier.named_parameters():
+ p.stop_gradient = False
+
+ if config.MODEL.RESUME:
+ assert os.path.isfile(config.MODEL.RESUME+'.pdparams') is True
+ assert os.path.isfile(config.MODEL.RESUME+'.pdopt') is True
+ model_state = paddle.load(config.MODEL.RESUME+'.pdparams')
+ model.set_dict(model_state)
+ opt_state = paddle.load(config.MODEL.RESUME+'.pdopt')
+ optimizer.set_state_dict(opt_state)
+ message = f"----- Resume Training: Load model and optmizer from {config.MODEL.RESUME}"
+ write_log(local_logger, master_logger, message)
+
+ # STEP 6: Validation (eval mode)
+ if config.EVAL:
+ write_log(local_logger, master_logger, f"----- Start Validation")
+ val_loss, val_acc1, val_acc5, avg_loss, avg_acc1, avg_acc5, val_time = validate(
+ dataloader=dataloader_val,
+ model=model,
+ criterion=criterion_val,
+ total_batch=total_batch_train,
+ debug_steps=config.REPORT_FREQ,
+ local_logger=local_logger,
+ master_logger=master_logger)
+
+ local_message = (f"----- Epoch[{epoch:03d}/{config.TRAIN.NUM_EPOCHS:03d}], " +
+ f"Validation Loss: {val_loss:.4f}, " +
+ f"Validation Acc@1: {val_acc1:.4f}, " +
+ f"Validation Acc@1: {val_acc5:.4f}, " +
+ f"time: {val_time:.2f}")
+
+ local_message = (f"----- Epoch[{epoch:03d}/{config.TRAIN.NUM_EPOCHS:03d}], " +
+ f"Validation Loss: {avg_loss:.4f}, " +
+ f"Validation Acc@1: {avg_acc1:.4f}, " +
+ f"Validation Acc@1: {avg_acc5:.4f}, " +
+ f"time: {val_time:.2f}")
+
+
+
+ # STEP 7: Start training (train mode)
+ write_log(local_logger, master_logger, f"----- Start training from epoch {last_epoch+1}.")
+ for epoch in range(last_epoch + 1, config.TRAIN.NUM_EPOCHS + 1):
+ # train
+ write_log(local_logger, master_logger, f"Train epoch {epoch}. LR={optimizer.get_lr():.6e}")
+
+ train_loss, train_acc, avg_loss, avg_acc, train_time = train(
+ dataloader=dataloader_train,
+ model=model,
+ optimizer=optimizer,
+ criterion=criterion,
+ lr_schedule=lr_schedule,
+ epoch=epoch,
+ total_epochs=config.TRAIN.NUM_EPOCHS,
+ total_batch=total_batch_train,
+ debug_steps=config.REPORT_FREQ,
+ accum_iter=config.TRAIN.ACCUM_ITER,
+ amp=config.AMP,
+ local_logger=local_logger,
+ master_logger=master_logger)
+
+ local_message = (f"----- Epoch[{epoch:03d}/{config.TRAIN.NUM_EPOCHS:03d}], " +
+ f"Train Loss: {train_loss:.4f}, " +
+ f"Train Acc: {train_acc:.4f}, " +
+ f"time: {train_time:.2f}")
+
+ master_message = (f"----- Epoch[{epoch:03d}/{config.TRAIN.NUM_EPOCHS:03d}], " +
+ f"Train Loss: {avg_loss:.4f}, " +
+ f"Train Acc: {avg_acc:.4f}, " +
+ f"time: {train_time:.2f}")
+ write_log(local_logger, master_logger, local_message, master_message)
+
+ # validation
+ if epoch % config.VALIDATION_FREQ == 0 or epoch == config.TRAIN.NUM_EPOCHS:
+ write_log(local_logger, master_logger, f'----- Validation after Epoch: {epoch}')
+ val_loss, val_acc1, val_acc5, avg_loss, avg_acc1, avg_acc5, val_time = validate(
+ dataloader=dataloader_val,
+ model=model,
+ criterion=criterion_val,
+ total_batch=total_batch_train,
+ debug_steps=config.REPORT_FREQ,
+ local_logger=local_logger,
+ master_logger=master_logger)
+
+ local_message = (f"----- Epoch[{epoch:03d}/{config.TRAIN.NUM_EPOCHS:03d}], " +
+ f"Validation Loss: {val_loss:.4f}, " +
+ f"Validation Acc@1: {val_acc1:.4f}, " +
+ f"Validation Acc@1: {val_acc5:.4f}, " +
+ f"time: {val_time:.2f}")
+
+ local_message = (f"----- Epoch[{epoch:03d}/{config.TRAIN.NUM_EPOCHS:03d}], " +
+ f"Validation Loss: {avg_loss:.4f}, " +
+ f"Validation Acc@1: {avg_acc1:.4f}, " +
+ f"Validation Acc@1: {avg_acc5:.4f}, " +
+ f"time: {val_time:.2f}")
+ write_log(local_logger, master_logger, local_message, master_message)
+
+ # model save
+ if local_rank == 0:
+ if epoch % config.SAVE_FREQ == 0 or epoch == config.TRAIN.NUM_EPOCHS:
+ model_path = os.path.join(
+ config.SAVE, f"{config.MODEL.TYPE}-Epoch-{epoch}-Loss-{train_loss}")
+ paddle.save(model.state_dict(), model_path + '.pdparams')
+ paddle.save(optimizer.state_dict(), model_path + '.pdopt')
+ message = (f"----- Save model: {model_path}.pdparams \n" +
+ f"----- Save optim: {model_path}.pdopt")
+ write_log(local_logger, master_logger, message)
+
+
+def main():
+ # config is updated by: (1) config.py, (2) yaml file, (3) arguments
+ arguments = get_arguments()
+ config = get_config()
+ config = update_config(config, arguments)
+ # set output folder
+ if not config.EVAL:
+ config.SAVE = '{}/linearprobe-{}'.format(config.SAVE, time.strftime('%Y%m%d-%H-%M-%S'))
+ else:
+ config.SAVE = '{}/eval-{}'.format(config.SAVE, time.strftime('%Y%m%d-%H-%M-%S'))
+ if not os.path.exists(config.SAVE):
+ os.makedirs(config.SAVE, exist_ok=True)
+ # get dataset
+ if not config.EVAL:
+ dataset_train = get_dataset(config, mode='train')
+ else:
+ dataset_train = None
+ dataset_val = get_dataset(config, mode='val')
+ # start training
+ config.NGPUS = len(paddle.static.cuda_places()) if config.NGPUS == -1 else config.NGPUS
+ dist.spawn(main_worker, args=(config, dataset_train, dataset_val), nprocs=config.NGPUS)
+
+
+if __name__ == "__main__":
+ main()
diff --git a/image_classification/MAE/main_multi_gpu_pretrain.py b/image_classification/MAE/main_multi_gpu_pretrain.py
index d1789ddf..e70af1d0 100644
--- a/image_classification/MAE/main_multi_gpu_pretrain.py
+++ b/image_classification/MAE/main_multi_gpu_pretrain.py
@@ -12,7 +12,7 @@
# See the License for the specific language governing permissions and
# limitations under the License.
-"""MEA pre-training using multiple GPU """
+"""MAE pre-training using multiple GPU """
import sys
import os
@@ -31,6 +31,8 @@
from utils import AverageMeter
from utils import WarmupCosineScheduler
from utils import get_exclude_from_weight_decay_fn
+from utils import get_params_groups
+from utils import cosine_scheduler
from config import get_config
from config import update_config
@@ -49,7 +51,6 @@ def get_arguments():
parser.add_argument('-resume', type=str, default=None)
parser.add_argument('-last_epoch', type=int, default=None)
parser.add_argument('-eval', action='store_true')
- parser.add_argument('-mae_pretrain', action='store_true')
parser.add_argument('-amp', action='store_true')
arguments = parser.parse_args()
return arguments
@@ -74,15 +75,33 @@ def get_logger(filename, logger_name=None):
return logger
+def write_log(local_logger, master_logger, msg_local, msg_master=None, level='info'):
+ if local_logger:
+ if level == 'info':
+ local_logger.info(msg_local)
+ elif level == 'fatal':
+ local_logger.fatal(msg_local)
+ else:
+ raise ValueError("level must in ['info', 'fatal']")
+ if master_logger and dist.get_rank() == 0:
+ if msg_master is None:
+ msg_master = msg_local
+ if level == 'info':
+ master_logger.info("MASTER_LOG " + msg_master)
+ elif level == 'fatal':
+ master_logger.fatal("MASTER_LOG " + msg_master)
+ else:
+ raise ValueError("level must in ['info', 'fatal']")
+
+
def train(dataloader,
- patch_size,
model,
- criterion,
+ mask_ratio,
optimizer,
+ lr_schedule,
epoch,
total_epochs,
total_batch,
- normalize_target=True,
debug_steps=100,
accum_iter=1,
amp=False,
@@ -91,119 +110,88 @@ def train(dataloader,
"""Training for one epoch
Args:
dataloader: paddle.io.DataLoader, dataloader instance
- patch_size: int/tuple, image patch size
model: nn.Layer, a ViT model
- criterion: nn.criterion
+ mask_ratio: float, percentage of masking patches
+ optimizer: nn.optimizer
+ lr_schedule: list of float, lr schdeule
epoch: int, current epoch
total_epochs: int, total num of epochs
- normalize_target: bool, if True, tokens are normalized by itself, default: True
total_batch: int, total num of batches for one epoch
debug_steps: int, num of iters to log info, default: 100
accum_iter: int, num of iters for accumulating gradients, default: 1
- mixup_fn: Mixup, mixup instance, default: None
amp: bool, if True, use mix precision training, default: False
local_logger: logger for local process/gpu, default: None
master_logger: logger for main process, default: None
Returns:
train_loss_meter.avg: float, average loss on current process/gpu
- train_acc_meter.avg: float, average top1 accuracy on current process/gpu
- master_train_loss_meter.avg: float, average loss on all processes/gpus
- master_train_acc_meter.avg: float, average top1 accuracy on all processes/gpus
+ master_loss_meter.avg: float, average loss on all processes/gpus
train_time: float, training time
"""
model.train()
train_loss_meter = AverageMeter()
- master_train_loss_meter = AverageMeter()
+ master_loss_meter = AverageMeter()
if amp is True:
- scaler = paddle.amp.GradScaler(init_loss_scaling=1024)
+ scaler = paddle.amp.GradScaler() # default init_loss_scaling = 32768
time_st = time.time()
for batch_id, data in enumerate(dataloader):
+ # get data
images = data[0]
- masks = paddle.to_tensor(data[1], dtype='bool')
-
- with paddle.no_grad():
- mean = paddle.to_tensor([0.485, 0.456, 0.406]).reshape([1, 3, 1, 1])
- std = paddle.to_tensor([0.229, 0.224, 0.225]).reshape([1, 3, 1, 1])
- unnorm_images = images * std + mean
- B, C, H, W = images.shape
- if normalize_target:
- images_patch = unnorm_images.reshape([B, C, H//patch_size, patch_size, W//patch_size, patch_size])
- images_patch = images_patch.transpose([0, 2, 4, 3, 5, 1])
- images_patch = unnorm_images.reshape([B, -1, patch_size * patch_size, C])
- images_patch = (images_patch - images_patch.mean(axis=-2, keepdim=True)) / (
- images_patch.var(axis=-2, keepdim=True).sqrt() + 1e-6)
- images_patch = images_patch.flatten(-2)
- else:
- images_patch = unnorm_images.reshape([B, C, H//patch_size, patch_size, W//patch_size, patch_size])
- images_patch = images_patch.transpose([0, 2, 4, 3, 5, 1])
- images_patch = unnorm_images.reshape([B, -1, patch_size * patch_size, C])
- images_patch = images_patch.flatten(-2)
-
- B, _, C = images_patch.shape
- labels = images_patch[masks[:, 1:]].reshape([B, -1, C])
-
- if amp is True:
- with paddle.amp.auto_cast():
- reconstructed_patches = model(images, masks)
- loss = criterion(reconstructed_patches, labels)
- scaled = scaler.scale(loss)
- scaled.backward()
-
+ # set per iteration lr using scheduler
+ global_train_iter = total_batch * (epoch - 1) + batch_id # epoch starts from 1
+ optimizer.set_lr(lr_schedule[global_train_iter])
+ # forward
+ with paddle.amp.auto_cast(amp is True):
+ loss, _, _ = model(images, mask_ratio)
+
+ if not amp: # fp32
+ loss.backward()
if ((batch_id + 1) % accum_iter == 0) or (batch_id + 1 == len(dataloader)):
- scaler.minimize(optimizer, scaled)
+ optimizer.step()
optimizer.clear_grad()
else:
- reconstructed_patches = model(images, masks)
- loss = criterion(reconstructed_patches, labels)
- # NOTE: division may be needed depending on the loss function
- # Here no division is needed:
- # default 'reduction' param in nn.CrossEntropyLoss is set to 'mean'
- # loss = loss / accum_iter
- loss.backward()
-
+ scaled = scaler.scale(loss)
+ scaled.backward()
+ # TODO: check if manually unscale and clip grad is required here
if ((batch_id + 1) % accum_iter == 0) or (batch_id + 1 == len(dataloader)):
- optimizer.step()
+ # amp for param group refer here: https://github.com/PaddlePaddle/Paddle/issues/37188
+ scaler.step(optimizer)
+ scaler.update()
optimizer.clear_grad()
- batch_size = paddle.to_tensor(images.shape[0])
-
# sync from other gpus for overall loss and acc
- master_loss = loss.clone()
- master_batch_size = batch_size.clone()
+ batch_size = paddle.to_tensor(images.shape[0])
+ master_loss = paddle.to_tensor(loss.numpy())
+ master_batch_size = paddle.to_tensor(batch_size.numpy())
dist.all_reduce(master_loss)
dist.all_reduce(master_batch_size)
master_loss = master_loss / dist.get_world_size()
- master_train_loss_meter.update(master_loss.numpy()[0], master_batch_size.numpy()[0])
-
+ master_loss_meter.update(master_loss.numpy()[0], master_batch_size.numpy()[0])
train_loss_meter.update(loss.numpy()[0], batch_size.numpy()[0])
if batch_id % debug_steps == 0:
- if local_logger:
- local_logger.info(
- f"Epoch[{epoch:03d}/{total_epochs:03d}], " +
- f"Step[{batch_id:04d}/{total_batch:04d}], " +
- f"Avg Loss: {train_loss_meter.avg:.4f}")
- if master_logger and dist.get_rank() == 0:
- master_logger.info(
- f"Epoch[{epoch:03d}/{total_epochs:03d}], " +
- f"Step[{batch_id:04d}/{total_batch:04d}], " +
- f"Avg Loss: {master_train_loss_meter.avg:.4f}")
+ local_message = (f"Epoch[{epoch:03d}/{total_epochs:03d}], " +
+ f"Step[{batch_id:04d}/{total_batch:04d}], " +
+ f"LR: {optimizer.get_lr():.6e}, " +
+ f"Avg Loss: {train_loss_meter.avg:.4f}")
+ master_message = (f"Epoch[{epoch:03d}/{total_epochs:03d}], " +
+ f"Step[{batch_id:04d}/{total_batch:04d}], " +
+ f"LR: {optimizer.get_lr():.6e}, " +
+ f"Avg Loss: {master_loss_meter.avg:.4f}")
+ write_log(local_logger, master_logger, local_message, master_message)
train_time = time.time() - time_st
- return (train_loss_meter.avg,
- master_train_loss_meter.avg,
- train_time)
+ return train_loss_meter.avg, master_loss_meter.avg, train_time
def main_worker(*args):
# STEP 0: Preparation
- config = args[0]
dist.init_parallel_env()
- last_epoch = config.TRAIN.LAST_EPOCH
world_size = dist.get_world_size()
local_rank = dist.get_rank()
+ config = args[0]
+ last_epoch = config.TRAIN.LAST_EPOCH
seed = config.SEED + local_rank
paddle.seed(seed)
np.random.seed(seed)
@@ -220,9 +208,9 @@ def main_worker(*args):
master_logger.info(f'\n{config}')
else:
master_logger = None
- local_logger.info(f'----- world_size = {world_size}, local_rank = {local_rank}')
- if local_rank == 0:
- master_logger.info(f'----- world_size = {world_size}, local_rank = {local_rank}')
+
+ message = f'----- world_size = {world_size}, local_rank = {local_rank}'
+ write_log(local_logger, master_logger, message)
# STEP 1: Create model
model = build_model(config)
@@ -232,12 +220,11 @@ def main_worker(*args):
dataset_train = args[1]
dataloader_train = get_dataloader(config, dataset_train, 'train', True)
total_batch_train = len(dataloader_train)
- local_logger.info(f'----- Total # of train batch (single gpu): {total_batch_train}')
- if local_rank == 0:
- master_logger.info(f'----- Total # of train batch (single gpu): {total_batch_train}')
+ message = f'----- Total # of train batch (single gpu): {total_batch_train}'
+ write_log(local_logger, master_logger, message)
- # STEP 3: Define criterion
- criterion = nn.MSELoss()
+ # STEP 3: Define criterion: loss is defined in model
+ #criterion = nn.MSELoss()
# STEP 4: Define optimizer and lr_scheduler
# set lr according to batch size and world size (hacked from Swin official code and modified for CSwin)
@@ -258,107 +245,73 @@ def main_worker(*args):
config.TRAIN.WARMUP_START_LR = linear_scaled_warmup_start_lr
config.TRAIN.END_LR = linear_scaled_end_lr
- scheduler = None
- if config.TRAIN.LR_SCHEDULER.NAME == "warmupcosine":
- scheduler = WarmupCosineScheduler(learning_rate=config.TRAIN.BASE_LR,
- warmup_start_lr=config.TRAIN.WARMUP_START_LR,
- start_lr=config.TRAIN.BASE_LR,
- end_lr=config.TRAIN.END_LR,
- warmup_epochs=config.TRAIN.WARMUP_EPOCHS,
- total_epochs=config.TRAIN.NUM_EPOCHS,
- last_epoch=config.TRAIN.LAST_EPOCH,
- )
- elif config.TRAIN.LR_SCHEDULER.NAME == "cosine":
- scheduler = paddle.optimizer.lr.CosineAnnealingDecay(learning_rate=config.TRAIN.BASE_LR,
- T_max=config.TRAIN.NUM_EPOCHS,
- last_epoch=last_epoch)
- elif config.scheduler == "multi-step":
- milestones = [int(v.strip())
- for v in config.TRAIN.LR_SCHEDULER.MILESTONES.split(",")]
- scheduler = paddle.optimizer.lr.MultiStepDecay(learning_rate=config.TRAIN.BASE_LR,
- milestones=milestones,
- gamma=config.TRAIN.LR_SCHEDULER.DECAY_RATE,
- last_epoch=last_epoch)
+ lr_schedule = cosine_scheduler(config.TRAIN.BASE_LR, # add linear scale
+ config.TRAIN.END_LR,
+ config.TRAIN.NUM_EPOCHS,
+ len(dataloader_train),
+ warmup_epochs=config.TRAIN.WARMUP_EPOCHS)
+
+ params_groups = get_params_groups(model)
+
+ if config.TRAIN.GRAD_CLIP:
+ clip = paddle.nn.ClipGradByGlobalNorm(config.TRAIN.GRAD_CLIP)
else:
- local_logger.fatal(f"Unsupported Scheduler: {config.TRAIN.LR_SCHEDULER}.")
- if local_rank == 0:
- master_logger.fatal(f"Unsupported Scheduler: {config.TRAIN.LR_SCHEDULER}.")
- raise NotImplementedError(f"Unsupported Scheduler: {config.TRAIN.LR_SCHEDULER}.")
+ clip = None
if config.TRAIN.OPTIMIZER.NAME == "SGD":
- if config.TRAIN.GRAD_CLIP:
- clip = paddle.nn.ClipGradByGlobalNorm(config.TRAIN.GRAD_CLIP)
- else:
- clip = None
optimizer = paddle.optimizer.Momentum(
- parameters=model.parameters(),
+ parameters=params_groups,
learning_rate=scheduler if scheduler is not None else config.TRAIN.BASE_LR,
weight_decay=config.TRAIN.WEIGHT_DECAY,
momentum=config.TRAIN.OPTIMIZER.MOMENTUM,
grad_clip=clip)
elif config.TRAIN.OPTIMIZER.NAME == "AdamW":
- if config.TRAIN.GRAD_CLIP:
- clip = paddle.nn.ClipGradByGlobalNorm(config.TRAIN.GRAD_CLIP)
- else:
- clip = None
optimizer = paddle.optimizer.AdamW(
- parameters=model.parameters(),
- learning_rate=scheduler if scheduler is not None else config.TRAIN.BASE_LR,
+ parameters=params_groups,
+ learning_rate=0.0, #scheduler if scheduler is not None else config.TRAIN.BASE_LR,
beta1=config.TRAIN.OPTIMIZER.BETAS[0],
beta2=config.TRAIN.OPTIMIZER.BETAS[1],
weight_decay=config.TRAIN.WEIGHT_DECAY,
epsilon=config.TRAIN.OPTIMIZER.EPS,
- grad_clip=clip,
- #apply_decay_param_fun=get_exclude_from_weight_decay_fn(['pos_embed', 'cls_token']),
- )
+ grad_clip=clip)
else:
- local_logger.fatal(f"Unsupported Optimizer: {config.TRAIN.OPTIMIZER.NAME}.")
- if local_rank == 0:
- master_logger.fatal(f"Unsupported Optimizer: {config.TRAIN.OPTIMIZER.NAME}.")
- raise NotImplementedError(f"Unsupported Optimizer: {config.TRAIN.OPTIMIZER.NAME}.")
+ message = f"Unsupported Optimizer: {config.TRAIN.OPTIMIZER.NAME}."
+ write_log(local_logger, master_logger, message, None, 'fatal')
+ raise NotImplementedError(message)
# STEP 5: Load pretrained model / load resumt model and optimizer states
if config.MODEL.PRETRAINED:
- if (config.MODEL.PRETRAINED).endswith('.pdparams'):
- raise ValueError(
- f'{config.MODEL.PRETRAINED} should not contain .pdparams')
assert os.path.isfile(config.MODEL.PRETRAINED + '.pdparams') is True
model_state = paddle.load(config.MODEL.PRETRAINED+'.pdparams')
model.set_dict(model_state)
- local_logger.info(f"----- Pretrained: Load model state from {config.MODEL.PRETRAINED}")
- if local_rank == 0:
- master_logger.info(
- f"----- Pretrained: Load model state from {config.MODEL.PRETRAINED}")
+ message = f"----- Pretrained: Load model state from {config.MODEL.PRETRAINED}"
+ write_log(local_logger, master_logger, message)
if config.MODEL.RESUME:
- assert os.path.isfile(config.MODEL.RESUME + '.pdparams') is True
- assert os.path.isfile(config.MODEL.RESUME + '.pdopt') is True
- model_state = paddle.load(config.MODEL.RESUME + '.pdparams')
+ assert os.path.isfile(config.MODEL.RESUME+'.pdparams') is True
+ assert os.path.isfile(config.MODEL.RESUME+'.pdopt') is True
+ model_state = paddle.load(config.MODEL.RESUME+'.pdparams')
model.set_dict(model_state)
- opt_state = paddle.load(config.MODEL.RESUME + '.pdopt')
+ opt_state = paddle.load(config.MODEL.RESUME+'.pdopt')
optimizer.set_state_dict(opt_state)
- local_logger.info(
- f"----- Resume: Load model and optmizer from {config.MODEL.RESUME}")
- if local_rank == 0:
- master_logger.info(
- f"----- Resume Training: Load model and optmizer from {config.MODEL.RESUME}")
+ message = f"----- Resume Training: Load model and optmizer from {config.MODEL.RESUME}"
+ write_log(local_logger, master_logger, message)
+ if config.TRAIN.LAST_EPOCH == -1:
+ message = f"----- Resume Training: LAST_EPOCH should not be [-1]"
+ write_log(local_logger, master_logger, message, None, 'fatal')
# STEP 6: Start training (train mode)
- local_logger.info(f"Start training from epoch {last_epoch+1}.")
- if local_rank == 0:
- master_logger.info(f"Start training from epoch {last_epoch+1}.")
- for epoch in range(last_epoch+1, config.TRAIN.NUM_EPOCHS+1):
+ write_log(local_logger, master_logger, f"----- Start training from epoch {last_epoch+1}.")
+ for epoch in range(last_epoch + 1, config.TRAIN.NUM_EPOCHS + 1):
# train
- local_logger.info(f"Now training epoch {epoch}. LR={optimizer.get_lr():.6f}")
- if local_rank == 0:
- master_logger.info(f"Now training epoch {epoch}. LR={optimizer.get_lr():.6f}")
+ write_log(local_logger, master_logger, f"Train epoch {epoch}. LR={optimizer.get_lr():.6e}")
- train_loss,avg_loss, train_time = train(
+ train_loss, avg_loss, train_time = train(
dataloader=dataloader_train,
- patch_size=config.MODEL.TRANS.PATCH_SIZE,
model=model,
- criterion=criterion,
+ mask_ratio=config.MODEL.TRANS.MASK_RATIO,
optimizer=optimizer,
+ lr_schedule=lr_schedule,
epoch=epoch,
total_epochs=config.TRAIN.NUM_EPOCHS,
total_batch=total_batch_train,
@@ -368,15 +321,14 @@ def main_worker(*args):
local_logger=local_logger,
master_logger=master_logger)
- scheduler.step()
+ local_message = (f"----- Epoch[{epoch:03d}/{config.TRAIN.NUM_EPOCHS:03d}], " +
+ f"Train Loss: {train_loss:.4f}, " +
+ f"time: {train_time:.2f}")
- local_logger.info(f"----- Epoch[{epoch:03d}/{config.TRAIN.NUM_EPOCHS:03d}], " +
- f"Train Loss: {train_loss:.4f}, " +
+ master_message = (f"----- Epoch[{epoch:03d}/{config.TRAIN.NUM_EPOCHS:03d}], " +
+ f"Train Loss: {avg_loss:.4f}, " +
f"time: {train_time:.2f}")
- if local_rank == 0:
- master_logger.info(f"----- Epoch[{epoch:03d}/{config.TRAIN.NUM_EPOCHS:03d}], " +
- f"Train Loss: {avg_loss:.4f}, " +
- f"time: {train_time:.2f}")
+ write_log(local_logger, master_logger, local_message, master_message)
# model save
if local_rank == 0:
@@ -385,11 +337,9 @@ def main_worker(*args):
config.SAVE, f"{config.MODEL.TYPE}-Epoch-{epoch}-Loss-{train_loss}")
paddle.save(model.state_dict(), model_path + '.pdparams')
paddle.save(optimizer.state_dict(), model_path + '.pdopt')
- local_logger.info(f"----- Save model: {model_path}.pdparams")
- local_logger.info(f"----- Save optim: {model_path}.pdopt")
- if local_rank == 0:
- master_logger.info(f"----- Save model: {model_path}.pdparams")
- master_logger.info(f"----- Save optim: {model_path}.pdopt")
+ message = (f"----- Save model: {model_path}.pdparams \n" +
+ f"----- Save optim: {model_path}.pdopt")
+ write_log(local_logger, master_logger, message)
def main():
@@ -397,18 +347,13 @@ def main():
arguments = get_arguments()
config = get_config()
config = update_config(config, arguments)
-
# set output folder
- if not config.EVAL:
- config.SAVE = '{}/train-{}'.format(config.SAVE, time.strftime('%Y%m%d-%H-%M-%S'))
- else:
- config.SAVE = '{}/eval-{}'.format(config.SAVE, time.strftime('%Y%m%d-%H-%M-%S'))
-
+ config.SAVE = '{}/train-{}'.format(config.SAVE, time.strftime('%Y%m%d-%H-%M-%S'))
if not os.path.exists(config.SAVE):
os.makedirs(config.SAVE, exist_ok=True)
-
- # get dataset and start DDP
+ # get dataset
dataset_train = get_dataset(config, mode='train')
+ # start training
config.NGPUS = len(paddle.static.cuda_places()) if config.NGPUS == -1 else config.NGPUS
dist.spawn(main_worker, args=(config, dataset_train, ), nprocs=config.NGPUS)
diff --git a/image_classification/MAE/main_single_gpu_finetune.py b/image_classification/MAE/main_single_gpu_finetune.py
deleted file mode 100644
index ea267943..00000000
--- a/image_classification/MAE/main_single_gpu_finetune.py
+++ /dev/null
@@ -1,403 +0,0 @@
-# Copyright (c) 2021 PPViT Authors. All Rights Reserved.
-#
-# Licensed under the Apache License, Version 2.0 (the "License");
-# you may not use this file except in compliance with the License.
-# You may obtain a copy of the License at
-#
-# http://www.apache.org/licenses/LICENSE-2.0
-#
-# Unless required by applicable law or agreed to in writing, software
-# distributed under the License is distributed on an "AS IS" BASIS,
-# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
-# See the License for the specific language governing permissions and
-# limitations under the License.
-
-"""ViT finetuning/validation using single GPU """
-
-import sys
-import os
-import time
-import logging
-import argparse
-import random
-import numpy as np
-import paddle
-import paddle.nn as nn
-import paddle.nn.functional as F
-from datasets import get_dataloader
-from datasets import get_dataset
-from transformer import build_mae_finetune as build_model
-from utils import AverageMeter
-from utils import WarmupCosineScheduler
-from config import get_config
-from config import update_config
-from mixup import Mixup
-from losses import LabelSmoothingCrossEntropyLoss
-from losses import SoftTargetCrossEntropyLoss
-
-
-def get_arguments():
- """return argumeents, this will overwrite the config after loading yaml file"""
- parser = argparse.ArgumentParser('ViT')
- parser.add_argument('-cfg', type=str, default=None)
- parser.add_argument('-dataset', type=str, default=None)
- parser.add_argument('-batch_size', type=int, default=None)
- parser.add_argument('-image_size', type=int, default=None)
- parser.add_argument('-data_path', type=str, default=None)
- parser.add_argument('-output', type=str, default=None)
- parser.add_argument('-ngpus', type=int, default=None)
- parser.add_argument('-pretrained', type=str, default=None)
- parser.add_argument('-resume', type=str, default=None)
- parser.add_argument('-last_epoch', type=int, default=None)
- parser.add_argument('-eval', action='store_true')
- parser.add_argument('-mae_pretrain', action='store_true')
- parser.add_argument('-amp', action='store_true')
- arguments = parser.parse_args()
- return arguments
-
-
-def get_logger(filename, logger_name=None):
- """set logging file and format
- Args:
- filename: str, full path of the logger file to write
- logger_name: str, the logger name, e.g., 'master_logger', 'local_logger'
- Return:
- logger: python logger
- """
- log_format = "%(asctime)s %(message)s"
- logging.basicConfig(stream=sys.stdout, level=logging.INFO,
- format=log_format, datefmt="%m%d %I:%M:%S %p")
- # different name is needed when creating multiple logger in one process
- logger = logging.getLogger(logger_name)
- fh = logging.FileHandler(os.path.join(filename))
- fh.setFormatter(logging.Formatter(log_format))
- logger.addHandler(fh)
- return logger
-
-
-def train(dataloader,
- model,
- criterion,
- optimizer,
- epoch,
- total_epochs,
- total_batch,
- debug_steps=100,
- accum_iter=1,
- mixup_fn=None,
- amp=False,
- logger=None):
- """Training for one epoch
- Args:
- dataloader: paddle.io.DataLoader, dataloader instance
- model: nn.Layer, a ViT model
- criterion: nn.criterion
- epoch: int, current epoch
- total_epochs: int, total num of epochs
- total_batch: int, total num of batches for one epoch
- debug_steps: int, num of iters to log info, default: 100
- accum_iter: int, num of iters for accumulating gradients, default: 1
- mixup_fn: Mixup, mixup instance, default: None
- amp: bool, if True, use mix precision training, default: False
- logger: logger for logging, default: None
- Returns:
- train_loss_meter.avg: float, average loss on current process/gpu
- train_acc_meter.avg: float, average top1 accuracy on current process/gpu
- train_time: float, training time
- """
- model.train()
- train_loss_meter = AverageMeter()
- train_acc_meter = AverageMeter()
-
- if amp is True:
- scaler = paddle.amp.GradScaler(init_loss_scaling=1024)
- time_st = time.time()
-
-
- for batch_id, data in enumerate(dataloader):
- image = data[0]
- label = data[1]
- label_orig = label.clone()
-
- if mixup_fn is not None:
- image, label = mixup_fn(image, label_orig)
-
- if amp is True: # mixed precision training
- with paddle.amp.auto_cast():
- output = model(image)
- loss = criterion(output, label)
- scaled = scaler.scale(loss)
- scaled.backward()
-
- if ((batch_id + 1) % accum_iter == 0) or (batch_id + 1 == len(dataloader)):
- scaler.minimize(optimizer, scaled)
- optimizer.clear_grad()
-
- else:
- output = model(image)
- loss = criterion(output, label)
- # NOTE: division may be needed depending on the loss function
- # Here no division is needed:
- # default 'reduction' param in nn.CrossEntropyLoss is set to 'mean'
- # loss = loss / accum_iter
- loss.backward()
-
- if ((batch_id +1) % accum_iter == 0) or (batch_id + 1 == len(dataloader)):
- optimizer.step()
- optimizer.clear_grad()
-
- pred = F.softmax(output)
- if mixup_fn:
- acc = paddle.metric.accuracy(pred, label_orig)
- else:
- acc = paddle.metric.accuracy(pred, label_orig.unsqueeze(1))
-
- batch_size = image.shape[0]
- train_loss_meter.update(loss.numpy()[0], batch_size)
- train_acc_meter.update(acc.numpy()[0], batch_size)
-
- if logger and batch_id % debug_steps == 0:
- logger.info(
- f"Epoch[{epoch:03d}/{total_epochs:03d}], " +
- f"Step[{batch_id:04d}/{total_batch:04d}], " +
- f"Avg Loss: {train_loss_meter.avg:.4f}, " +
- f"Avg Acc: {train_acc_meter.avg:.4f}")
-
- train_time = time.time() - time_st
- return train_loss_meter.avg, train_acc_meter.avg, train_time
-
-
-def validate(dataloader, model, criterion, total_batch, debug_steps=100, logger=None):
- """Validation for whole dataset
- Args:
- dataloader: paddle.io.DataLoader, dataloader instance
- model: nn.Layer, a ViT model
- criterion: nn.criterion
- total_batch: int, total num of batches for one epoch
- debug_steps: int, num of iters to log info, default: 100
- logger: logger for logging, default: None
- Returns:
- val_loss_meter.avg: float, average loss on current process/gpu
- val_acc1_meter.avg: float, average top1 accuracy on current process/gpu
- val_acc5_meter.avg: float, average top5 accuracy on current process/gpu
- val_time: float, valitaion time
- """
- model.eval()
- val_loss_meter = AverageMeter()
- val_acc1_meter = AverageMeter()
- val_acc5_meter = AverageMeter()
- time_st = time.time()
-
- with paddle.no_grad():
- for batch_id, data in enumerate(dataloader):
- image = data[0]
- label = data[1]
-
- output = model(image)
- loss = criterion(output, label)
-
- pred = F.softmax(output)
- acc1 = paddle.metric.accuracy(pred, label.unsqueeze(1))
- acc5 = paddle.metric.accuracy(pred, label.unsqueeze(1), k=5)
-
- batch_size = image.shape[0]
- val_loss_meter.update(loss.numpy()[0], batch_size)
- val_acc1_meter.update(acc1.numpy()[0], batch_size)
- val_acc5_meter.update(acc5.numpy()[0], batch_size)
-
- if logger and batch_id % debug_steps == 0:
- logger.info(
- f"Val Step[{batch_id:04d}/{total_batch:04d}], " +
- f"Avg Loss: {val_loss_meter.avg:.4f}, " +
- f"Avg Acc@1: {val_acc1_meter.avg:.4f}, " +
- f"Avg Acc@5: {val_acc5_meter.avg:.4f}")
-
- val_time = time.time() - time_st
- return val_loss_meter.avg, val_acc1_meter.avg, val_acc5_meter.avg, val_time
-
-
-def main():
- # 0. Preparation
- # config is updated by: (1) config.py, (2) yaml file, (3) arguments
- arguments = get_arguments()
- config = get_config()
- config = update_config(config, arguments)
- # set output folder
- if not config.EVAL:
- config.SAVE = '{}/train-{}'.format(config.SAVE, time.strftime('%Y%m%d-%H-%M-%S'))
- else:
- config.SAVE = '{}/eval-{}'.format(config.SAVE, time.strftime('%Y%m%d-%H-%M-%S'))
- if not os.path.exists(config.SAVE):
- os.makedirs(config.SAVE, exist_ok=True)
- last_epoch = config.TRAIN.LAST_EPOCH
- seed = config.SEED
- paddle.seed(seed)
- np.random.seed(seed)
- random.seed(seed)
- logger = get_logger(filename=os.path.join(config.SAVE, 'log.txt'))
- logger.info(f'\n{config}')
-
- # 1. Create model
- model = build_model(config)
- # 2. Create train dataloader
- dataset_train = get_dataset(config, mode='train')
- dataset_val = get_dataset(config, mode='val')
- dataloader_train = get_dataloader(config, dataset_train, 'train', False)
- dataloader_val = get_dataloader(config, dataset_val, 'val', False)
- # 3. Define Mixup function and criterion
- mixup_fn = None
- if config.TRAIN.MIXUP_PROB > 0 or config.TRAIN.CUTMIX_ALPHA > 0 or config.TRAIN.CUTMIX_MINMAX is not None:
- mixup_fn = Mixup(mixup_alpha=config.TRAIN.MIXUP_ALPHA,
- cutmix_alpha=config.TRAIN.CUTMIX_ALPHA,
- cutmix_minmax=config.TRAIN.CUTMIX_MINMAX,
- prob=config.TRAIN.MIXUP_PROB,
- switch_prob=config.TRAIN.MIXUP_SWITCH_PROB,
- mode=config.TRAIN.MIXUP_MODE,
- label_smoothing=config.TRAIN.SMOOTHING,
- num_classes=config.MODEL.NUM_CLASSES)
-
- if config.TRAIN.MIXUP_PROB > 0.:
- criterion = SoftTargetCrossEntropyLoss()
- elif config.TRAIN.SMOOTHING:
- criterion = LabelSmoothingCrossEntropyLoss()
- else:
- criterion = nn.CrossEntropyLoss()
- # only use cross entropy for val
- criterion_val = nn.CrossEntropyLoss()
- # 4. Define lr_scheduler
- scheduler = None
- if config.TRAIN.LR_SCHEDULER.NAME == "warmupcosine":
- scheduler = WarmupCosineScheduler(learning_rate=config.TRAIN.BASE_LR,
- warmup_start_lr=config.TRAIN.WARMUP_START_LR,
- start_lr=config.TRAIN.BASE_LR,
- end_lr=config.TRAIN.END_LR,
- warmup_epochs=config.TRAIN.WARMUP_EPOCHS,
- total_epochs=config.TRAIN.NUM_EPOCHS,
- last_epoch=config.TRAIN.LAST_EPOCH,
- )
- elif config.TRAIN.LR_SCHEDULER.NAME == "cosine":
- scheduler = paddle.optimizer.lr.CosineAnnealingDecay(learning_rate=config.TRAIN.BASE_LR,
- T_max=config.TRAIN.NUM_EPOCHS,
- last_epoch=last_epoch)
- elif config.scheduler == "multi-step":
- milestones = [int(v.strip()) for v in config.TRAIN.LR_SCHEDULER.MILESTONES.split(",")]
- scheduler = paddle.optimizer.lr.MultiStepDecay(learning_rate=config.TRAIN.BASE_LR,
- milestones=milestones,
- gamma=config.TRAIN.LR_SCHEDULER.DECAY_RATE,
- last_epoch=last_epoch)
- else:
- logger.fatal(f"Unsupported Scheduler: {config.TRAIN.LR_SCHEDULER}.")
- raise NotImplementedError(f"Unsupported Scheduler: {config.TRAIN.LR_SCHEDULER}.")
- # 5. Define optimizer
- if config.TRAIN.OPTIMIZER.NAME == "SGD":
- if config.TRAIN.GRAD_CLIP:
- clip = paddle.nn.ClipGradByGlobalNorm(config.TRAIN.GRAD_CLIP)
- else:
- clip = None
- optimizer = paddle.optimizer.Momentum(
- parameters=model.parameters(),
- learning_rate=scheduler if scheduler is not None else config.TRAIN.BASE_LR,
- weight_decay=config.TRAIN.WEIGHT_DECAY,
- momentum=config.TRAIN.OPTIMIZER.MOMENTUM,
- grad_clip=clip)
- elif config.TRAIN.OPTIMIZER.NAME == "AdamW":
- if config.TRAIN.GRAD_CLIP:
- clip = paddle.nn.ClipGradByGlobalNorm(config.TRAIN.GRAD_CLIP)
- else:
- clip = None
- optimizer = paddle.optimizer.AdamW(
- parameters=model.parameters(),
- learning_rate=scheduler if scheduler is not None else config.TRAIN.BASE_LR,
- weight_decay=config.TRAIN.WEIGHT_DECAY,
- beta1=config.TRAIN.OPTIMIZER.BETAS[0],
- beta2=config.TRAIN.OPTIMIZER.BETAS[1],
- epsilon=config.TRAIN.OPTIMIZER.EPS,
- grad_clip=clip)
- else:
- logger.fatal(f"Unsupported Optimizer: {config.TRAIN.OPTIMIZER.NAME}.")
- raise NotImplementedError(f"Unsupported Optimizer: {config.TRAIN.OPTIMIZER.NAME}.")
- # 6. Load pretrained model or load resume model and optimizer states
- if config.MODEL.PRETRAINED:
- if (config.MODEL.PRETRAINED).endswith('.pdparams'):
- raise ValueError(f'{config.MODEL.PRETRAINED} should not contain .pdparams')
- assert os.path.isfile(config.MODEL.PRETRAINED + '.pdparams') is True
- model_state = paddle.load(config.MODEL.PRETRAINED+'.pdparams')
- model.set_dict(model_state)
- logger.info(f"----- Pretrained: Load model state from {config.MODEL.PRETRAINED}")
-
- if config.MODEL.RESUME:
- assert os.path.isfile(config.MODEL.RESUME + '.pdparams') is True
- assert os.path.isfile(config.MODEL.RESUME + '.pdopt') is True
- model_state = paddle.load(config.MODEL.RESUME + '.pdparams')
- model.set_dict(model_state)
- opt_state = paddle.load(config.MODEL.RESUME + '.pdopt')
- optimizer.set_state_dict(opt_state)
- logger.info(
- f"----- Resume: Load model and optmizer from {config.MODEL.RESUME}")
-
- # STEP 7: Validation (eval mode)
- if config.EVAL:
- logger.info('----- Start Validating')
- val_loss, val_acc1, val_acc5, val_time = validate(
- dataloader=dataloader_val,
- model=model,
- criterion=criterion_val,
- total_batch=len(dataloader_val),
- debug_steps=config.REPORT_FREQ,
- logger=logger)
- logger.info(f"Validation Loss: {val_loss:.4f}, " +
- f"Validation Acc@1: {val_acc1:.4f}, " +
- f"Validation Acc@5: {val_acc5:.4f}, " +
- f"time: {val_time:.2f}")
- return
-
- # STEP 8: Start training and validation (train mode)
- logger.info(f"Start training from epoch {last_epoch+1}.")
- for epoch in range(last_epoch+1, config.TRAIN.NUM_EPOCHS+1):
- # train
- logger.info(f"Now training epoch {epoch}. LR={optimizer.get_lr():.6f}")
- train_loss, train_acc, train_time = train(dataloader=dataloader_train,
- model=model,
- criterion=criterion,
- optimizer=optimizer,
- epoch=epoch,
- total_epochs=config.TRAIN.NUM_EPOCHS,
- total_batch=len(dataloader_train),
- debug_steps=config.REPORT_FREQ,
- accum_iter=config.TRAIN.ACCUM_ITER,
- mixup_fn=mixup_fn,
- amp=config.AMP,
- logger=logger)
- scheduler.step()
-
- logger.info(f"----- Epoch[{epoch:03d}/{config.TRAIN.NUM_EPOCHS:03d}], " +
- f"Train Loss: {train_loss:.4f}, " +
- f"Train Acc: {train_acc:.4f}, " +
- f"time: {train_time:.2f}")
- # validation
- if epoch % config.VALIDATE_FREQ == 0 or epoch == config.TRAIN.NUM_EPOCHS:
- logger.info(f'----- Validation after Epoch: {epoch}')
- val_loss, val_acc1, val_acc5, val_time = validate(
- dataloader=dataloader_val,
- model=model,
- criterion=criterion_val,
- total_batch=len(dataloader_val),
- debug_steps=config.REPORT_FREQ,
- logger=logger)
- logger.info(f"----- Epoch[{epoch:03d}/{config.TRAIN.NUM_EPOCHS:03d}], " +
- f"Validation Loss: {val_loss:.4f}, " +
- f"Validation Acc@1: {val_acc1:.4f}, " +
- f"Validation Acc@5: {val_acc5:.4f}, " +
- f"time: {val_time:.2f}")
- # model save
- if epoch % config.SAVE_FREQ == 0 or epoch == config.TRAIN.NUM_EPOCHS:
- model_path = os.path.join(
- config.SAVE, f"{config.MODEL.TYPE}-Epoch-{epoch}-Loss-{train_loss}")
- paddle.save(model.state_dict(), model_path + '.pdparams')
- paddle.save(optimizer.state_dict(), model_path + '.pdopt')
- logger.info(f"----- Save model: {model_path}.pdparams")
- logger.info(f"----- Save optim: {model_path}.pdopt")
-
-
-if __name__ == "__main__":
- main()
diff --git a/image_classification/MAE/main_single_gpu_pretrain.py b/image_classification/MAE/main_single_gpu_pretrain.py
deleted file mode 100644
index cf315a42..00000000
--- a/image_classification/MAE/main_single_gpu_pretrain.py
+++ /dev/null
@@ -1,308 +0,0 @@
-# Copyright (c) 2021 PPViT Authors. All Rights Reserved.
-#
-# Licensed under the Apache License, Version 2.0 (the "License");
-# you may not use this file except in compliance with the License.
-# You may obtain a copy of the License at
-#
-# http://www.apache.org/licenses/LICENSE-2.0
-#
-# Unless required by applicable law or agreed to in writing, software
-# distributed under the License is distributed on an "AS IS" BASIS,
-# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
-# See the License for the specific language governing permissions and
-# limitations under the License.
-
-"""MAE pre-training using single GPU, this is just a demo, we recommand using multi-gpu version"""
-
-import sys
-import os
-import time
-import logging
-import argparse
-import random
-import numpy as np
-import paddle
-import paddle.nn as nn
-import paddle.nn.functional as F
-from datasets import get_dataloader
-from datasets import get_dataset
-from transformer import build_mae_pretrain as build_model
-from utils import AverageMeter
-from utils import WarmupCosineScheduler
-from config import get_config
-from config import update_config
-
-
-def get_arguments():
- """return argumeents, this will overwrite the config after loading yaml file"""
- parser = argparse.ArgumentParser('MAE')
- parser.add_argument('-cfg', type=str, default=None)
- parser.add_argument('-dataset', type=str, default=None)
- parser.add_argument('-batch_size', type=int, default=None)
- parser.add_argument('-image_size', type=int, default=None)
- parser.add_argument('-data_path', type=str, default=None)
- parser.add_argument('-output', type=str, default=None)
- parser.add_argument('-ngpus', type=int, default=None)
- parser.add_argument('-pretrained', type=str, default=None)
- parser.add_argument('-resume', type=str, default=None)
- parser.add_argument('-last_epoch', type=int, default=None)
- parser.add_argument('-eval', action='store_true')
- parser.add_argument('-mae_pretrain', action='store_true')
- parser.add_argument('-amp', action='store_true')
- arguments = parser.parse_args()
- return arguments
-
-
-def get_logger(filename, logger_name=None):
- """set logging file and format
- Args:
- filename: str, full path of the logger file to write
- logger_name: str, the logger name, e.g., 'master_logger', 'local_logger'
- Return:
- logger: python logger
- """
- log_format = "%(asctime)s %(message)s"
- logging.basicConfig(stream=sys.stdout, level=logging.INFO,
- format=log_format, datefmt="%m%d %I:%M:%S %p")
- # different name is needed when creating multiple logger in one process
- logger = logging.getLogger(logger_name)
- fh = logging.FileHandler(os.path.join(filename))
- fh.setFormatter(logging.Formatter(log_format))
- logger.addHandler(fh)
- return logger
-
-
-def train(dataloader,
- patch_size,
- model,
- criterion,
- optimizer,
- epoch,
- total_epochs,
- total_batch,
- normalize_target=True,
- debug_steps=100,
- accum_iter=1,
- amp=False,
- logger=None):
- """Training for one epoch
- Args:
- dataloader: paddle.io.DataLoader, dataloader instance
- model: nn.Layer, a ViT model
- criterion: nn.criterion
- epoch: int, current epoch
- total_epochs: int, total num of epochs
- total_batch: int, total num of batches for one epoch
- debug_steps: int, num of iters to log info, default: 100
- accum_iter: int, num of iters for accumulating gradients, default: 1
- amp: bool, if True, use mix precision training, default: False
- logger: logger for logging, default: None
- Returns:
- train_loss_meter.avg: float, average loss on current process/gpu
- train_time: float, training time
- """
- model.train()
- train_loss_meter = AverageMeter()
-
- if amp is True:
- scaler = paddle.amp.GradScaler(init_loss_scaling=1024)
- time_st = time.time()
-
- for batch_id, data in enumerate(dataloader):
- images = data[0]
- masks = paddle.to_tensor(data[1], dtype='bool')
-
- with paddle.no_grad():
- mean = paddle.to_tensor([0.485, 0.456, 0.406]).reshape([1, 3, 1, 1])
- std = paddle.to_tensor([0.229, 0.224, 0.225]).reshape([1, 3, 1, 1])
- unnorm_images = images * std + mean
- B, C, H, W = images.shape
- if normalize_target:
- images_patch = unnorm_images.reshape([B, C, H // patch_size, patch_size, W // patch_size, patch_size])
- images_patch = images_patch.transpose([0, 2, 4, 3, 5, 1])
- images_patch = images_patch.reshape([B, -1, patch_size * patch_size, C])
- images_patch = (images_patch - images_patch.mean(axis=-2, keepdim=True)) / (
- images_patch.var(axis=-2, keepdim=True).sqrt() + 1e-6)
- images_patch = images_patch.flatten(-2)
- else:
- images_patch = unnorm_images.reshape([B, C, H//patch_size, patch_size, W//patch_size, patch_size])
- images_patch = images_patch.transpose([0, 2, 4, 3, 5, 1])
- images_patch = images_patch.reshape([B, -1, patch_size * patch_size, C])
- images_patch = images_patch.flatten(-2)
-
- B, _, C = images_patch.shape
- labels = images_patch[masks[:, 1:]].reshape([B, -1, C])
-
- if amp is True:
- with paddle.amp.auto_cast():
- reconstructed_patches = model(images, masks)
- loss = criterion(reconstructed_patches, labels)
- scaled = scaler.scale(loss)
- scaled.backward()
-
- if ((batch_id + 1) % accum_iter == 0) or (batch_id + 1 == len(dataloader)):
- scaler.minimize(optimizer, scaled)
- optimizer.clear_grad()
- else:
- reconstructed_patches = model(images, masks)
- loss = criterion(reconstructed_patches, labels)
- # NOTE: division may be needed depending on the loss function
- # Here no division is needed:
- # default 'reduction' param in nn.CrossEntropyLoss is set to 'mean'
- # loss = loss / accum_iter
- loss.backward()
-
- if ((batch_id + 1) % accum_iter == 0) or (batch_id + 1 == len(dataloader)):
- optimizer.step()
- optimizer.clear_grad()
-
- batch_size = images.shape[0]
- train_loss_meter.update(loss.numpy()[0], batch_size)
-
- if logger and batch_id % debug_steps == 0:
- logger.info(
- f"Epoch[{epoch:03d}/{total_epochs:03d}], " +
- f"Step[{batch_id:04d}/{total_batch:04d}], " +
- f"Avg Loss: {train_loss_meter.avg:.4f}")
-
- train_time = time.time() - time_st
- return train_loss_meter.avg, train_time
-
-
-def main():
- # 0. Preparation
- # config is updated by: (1) config.py, (2) yaml file, (3) arguments
- arguments = get_arguments()
- config = get_config()
- config = update_config(config, arguments)
- # set output folder
- if not config.EVAL:
- config.SAVE = '{}/train-{}'.format(config.SAVE, time.strftime('%Y%m%d-%H-%M-%S'))
- else:
- config.SAVE = '{}/eval-{}'.format(config.SAVE, time.strftime('%Y%m%d-%H-%M-%S'))
- if not os.path.exists(config.SAVE):
- os.makedirs(config.SAVE, exist_ok=True)
- last_epoch = config.TRAIN.LAST_EPOCH
- seed = config.SEED
- paddle.seed(seed)
- np.random.seed(seed)
- random.seed(seed)
- logger = get_logger(filename=os.path.join(config.SAVE, 'log.txt'))
- logger.info(f'\n{config}')
-
- # 1. Create model
- model = build_model(config)
- # 2. Create train dataloader
- dataset_train = get_dataset(config, mode='train')
- dataloader_train = get_dataloader(config, dataset_train, 'train', False)
- # 3. Define criterion
- criterion = nn.MSELoss()
- # 4. Define lr_scheduler
- scheduler = None
- if config.TRAIN.LR_SCHEDULER.NAME == "warmupcosine":
- scheduler = WarmupCosineScheduler(learning_rate=config.TRAIN.BASE_LR,
- warmup_start_lr=config.TRAIN.WARMUP_START_LR,
- start_lr=config.TRAIN.BASE_LR,
- end_lr=config.TRAIN.END_LR,
- warmup_epochs=config.TRAIN.WARMUP_EPOCHS,
- total_epochs=config.TRAIN.NUM_EPOCHS,
- last_epoch=config.TRAIN.LAST_EPOCH,
- )
- elif config.TRAIN.LR_SCHEDULER.NAME == "cosine":
- scheduler = paddle.optimizer.lr.CosineAnnealingDecay(learning_rate=config.TRAIN.BASE_LR,
- T_max=config.TRAIN.NUM_EPOCHS,
- last_epoch=last_epoch)
- elif config.scheduler == "multi-step":
- milestones = [int(v.strip()) for v in config.TRAIN.LR_SCHEDULER.MILESTONES.split(",")]
- scheduler = paddle.optimizer.lr.MultiStepDecay(learning_rate=config.TRAIN.BASE_LR,
- milestones=milestones,
- gamma=config.TRAIN.LR_SCHEDULER.DECAY_RATE,
- last_epoch=last_epoch)
- else:
- logger.fatal(f"Unsupported Scheduler: {config.TRAIN.LR_SCHEDULER}.")
- raise NotImplementedError(f"Unsupported Scheduler: {config.TRAIN.LR_SCHEDULER}.")
- # 5. Define optimizer
- if config.TRAIN.OPTIMIZER.NAME == "SGD":
- if config.TRAIN.GRAD_CLIP:
- clip = paddle.nn.ClipGradByGlobalNorm(config.TRAIN.GRAD_CLIP)
- else:
- clip = None
- optimizer = paddle.optimizer.Momentum(
- parameters=model.parameters(),
- learning_rate=scheduler if scheduler is not None else config.TRAIN.BASE_LR,
- weight_decay=config.TRAIN.WEIGHT_DECAY,
- momentum=config.TRAIN.OPTIMIZER.MOMENTUM,
- grad_clip=clip)
- elif config.TRAIN.OPTIMIZER.NAME == "AdamW":
- if config.TRAIN.GRAD_CLIP:
- clip = paddle.nn.ClipGradByGlobalNorm(config.TRAIN.GRAD_CLIP)
- else:
- clip = None
- optimizer = paddle.optimizer.AdamW(
- parameters=model.parameters(),
- learning_rate=scheduler if scheduler is not None else config.TRAIN.BASE_LR,
- weight_decay=config.TRAIN.WEIGHT_DECAY,
- beta1=config.TRAIN.OPTIMIZER.BETAS[0],
- beta2=config.TRAIN.OPTIMIZER.BETAS[1],
- epsilon=config.TRAIN.OPTIMIZER.EPS,
- grad_clip=clip)
- else:
- logger.fatal(f"Unsupported Optimizer: {config.TRAIN.OPTIMIZER.NAME}.")
- raise NotImplementedError(f"Unsupported Optimizer: {config.TRAIN.OPTIMIZER.NAME}.")
- # 6. Load pretrained model or load resume model and optimizer states
- if config.MODEL.PRETRAINED:
- if (config.MODEL.PRETRAINED).endswith('.pdparams'):
- raise ValueError(f'{config.MODEL.PRETRAINED} should not contain .pdparams')
- assert os.path.isfile(config.MODEL.PRETRAINED + '.pdparams') is True
- model_state = paddle.load(config.MODEL.PRETRAINED+'.pdparams')
- model.set_dict(model_state)
- logger.info(f"----- Pretrained: Load model state from {config.MODEL.PRETRAINED}")
-
- if config.MODEL.RESUME:
- assert os.path.isfile(config.MODEL.RESUME + '.pdparams') is True
- assert os.path.isfile(config.MODEL.RESUME + '.pdopt') is True
- model_state = paddle.load(config.MODEL.RESUME + '.pdparams')
- model.set_dict(model_state)
- opt_state = paddle.load(config.MODEL.RESUME + '.pdopt')
- optimizer.set_state_dict(opt_state)
- logger.info(
- f"----- Resume: Load model and optmizer from {config.MODEL.RESUME}")
-
- # 7. Start training and validation
- logging.info(f"Start training from epoch {last_epoch + 1}.")
- for epoch in range(last_epoch + 1, config.TRAIN.NUM_EPOCHS + 1):
- # train
- logging.info(f"Now training epoch {epoch}. LR={optimizer.get_lr():.6f}")
- train_loss, train_time = train(dataloader=dataloader_train,
- patch_size=config.MODEL.TRANS.PATCH_SIZE,
- model=model,
- criterion=criterion,
- optimizer=optimizer,
- epoch=epoch,
- total_epochs=config.TRAIN.NUM_EPOCHS,
- total_batch=len(dataloader_train),
- normalize_target=config.TRAIN.NORMALIZE_TARGET,
- debug_steps=config.REPORT_FREQ,
- accum_iter=config.TRAIN.ACCUM_ITER,
- amp=config.AMP,
- logger=logger)
- scheduler.step()
-
- logger.info(f"----- Epoch[{epoch:03d}/{config.TRAIN.NUM_EPOCHS:03d}], " +
- f"Train Loss: {train_loss:.4f}, " +
- f"time: {train_time:.2f}")
- # validation
- # No need to do validation during pretraining
-
- # model save
- if epoch % config.SAVE_FREQ == 0 or epoch == config.TRAIN.NUM_EPOCHS:
- model_path = os.path.join(
- config.SAVE, f"{config.MODEL.TYPE}-Epoch-{epoch}-Loss-{train_loss}")
- paddle.save(model.state_dict(), model_path + '.pdparams')
- paddle.save(optimizer.state_dict(), model_path + '.pdopt')
- logger.info(f"----- Save model: {model_path}.pdparams")
- logger.info(f"----- Save optim: {model_path}.pdopt")
-
-
-if __name__ == "__main__":
- main()
diff --git a/image_classification/MAE/masking_generator.py b/image_classification/MAE/masking_generator.py
deleted file mode 100644
index 9271dd4e..00000000
--- a/image_classification/MAE/masking_generator.py
+++ /dev/null
@@ -1,50 +0,0 @@
-# Copyright (c) 2021 PPViT Authors. All Rights Reserved.
-#
-# Licensed under the Apache License, Version 2.0 (the "License");
-# you may not use this file except in compliance with the License.
-# You may obtain a copy of the License at
-#
-# http://www.apache.org/licenses/LICENSE-2.0
-#
-# Unless required by applicable law or agreed to in writing, software
-# distributed under the License is distributed on an "AS IS" BASIS,
-# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
-# See the License for the specific language governing permissions and
-# limitations under the License.
-
-"""
-random mask generator for MAE pretraining
-"""
-
-import random
-import math
-import numpy as np
-
-class RandomMaskingGenerator:
- def __init__(self, input_size, mask_ratio, with_cls_token=True):
- if not isinstance(input_size, tuple):
- input_size = (input_size, ) * 2
-
- self.height = input_size[0]
- self.width = input_size[1]
- self.num_patches = self.height * self.width
- self.num_mask = int(mask_ratio * self.num_patches)
- self.with_cls_token = with_cls_token
-
- def __call__(self):
- mask = np.hstack([np.zeros(self.num_patches - self.num_mask),
- np.ones(self.num_mask)])
- np.random.shuffle(mask)
- if self.with_cls_token:
- mask = np.insert(mask, 0, 0)
- return mask
-
-
-#def main():
-# rmg = RandomMaskingGenerator(input_size=32, mask_ratio=0.75)
-# mask = rmg()
-# for v in mask:
-# print(v, end=', ')
-#
-#if __name__ == "__main__":
-# main()
diff --git a/image_classification/MAE/nohup.out b/image_classification/MAE/nohup.out
deleted file mode 100644
index 6e00dda7..00000000
--- a/image_classification/MAE/nohup.out
+++ /dev/null
@@ -1,9507 +0,0 @@
-Traceback (most recent call last):
- File "main_multi_gpu_pretrain.py", line 24, in
- import paddle
- File "/opt/conda/envs/py36/lib/python3.6/site-packages/paddle/__init__.py", line 25, in
- from .fluid import monkey_patch_variable
- File "/opt/conda/envs/py36/lib/python3.6/site-packages/paddle/fluid/__init__.py", line 45, in
- from . import dataset
- File "/opt/conda/envs/py36/lib/python3.6/site-packages/paddle/fluid/dataset.py", line 19, in
- from ..utils import deprecated
- File "/opt/conda/envs/py36/lib/python3.6/site-packages/paddle/utils/__init__.py", line 26, in
- from . import download # noqa: F401
- File "/opt/conda/envs/py36/lib/python3.6/site-packages/paddle/utils/download.py", line 23, in
- import requests
- File "/opt/conda/envs/py36/lib/python3.6/site-packages/requests/__init__.py", line 112, in
- from . import utils
- File "/opt/conda/envs/py36/lib/python3.6/site-packages/requests/utils.py", line 24, in
- from . import certs
- File "", line 971, in _find_and_load
- File "", line 955, in _find_and_load_unlocked
- File "", line 665, in _load_unlocked
- File "", line 674, in exec_module
- File "", line 764, in get_code
- File "", line 833, in get_data
-KeyboardInterrupt
-merging config from ./configs/vit_base_patch16_224_pretrain_dec1.yaml
------ Imagenet2012 image train list len = 1281167
-server not ready, wait 3 sec to retry...
-not ready endpoints:['127.0.0.1:30053', '127.0.0.1:54949', '127.0.0.1:41862', '127.0.0.1:28777', '127.0.0.1:55177', '127.0.0.1:18423', '127.0.0.1:46681']
-I1219 16:59:41.631045 23562 gen_comm_id_helper.cc:190] Server listening on: 127.0.0.1:30053 successful.
-server not ready, wait 3 sec to retry...
-not ready endpoints:['127.0.0.1:54949', '127.0.0.1:41862', '127.0.0.1:28777', '127.0.0.1:55177', '127.0.0.1:18423', '127.0.0.1:46681']
-I1219 16:59:44.247634 23580 gen_comm_id_helper.cc:190] Server listening on: 127.0.0.1:54949 successful.
-server not ready, wait 3 sec to retry...
-not ready endpoints:['127.0.0.1:41862', '127.0.0.1:28777', '127.0.0.1:55177', '127.0.0.1:18423', '127.0.0.1:46681']
-I1219 16:59:46.636570 23595 gen_comm_id_helper.cc:190] Server listening on: 127.0.0.1:41862 successful.
-server not ready, wait 3 sec to retry...
-not ready endpoints:['127.0.0.1:28777', '127.0.0.1:55177', '127.0.0.1:18423', '127.0.0.1:46681']
-I1219 16:59:48.816335 23610 gen_comm_id_helper.cc:190] Server listening on: 127.0.0.1:28777 successful.
-server not ready, wait 3 sec to retry...
-not ready endpoints:['127.0.0.1:55177', '127.0.0.1:18423', '127.0.0.1:46681']
-I1219 16:59:51.517431 23627 gen_comm_id_helper.cc:190] Server listening on: 127.0.0.1:55177 successful.
-I1219 16:59:53.801396 23642 gen_comm_id_helper.cc:190] Server listening on: 127.0.0.1:18423 successful.
-server not ready, wait 3 sec to retry...
-not ready endpoints:['127.0.0.1:46681']
-I1219 16:59:56.182962 23659 gen_comm_id_helper.cc:190] Server listening on: 127.0.0.1:46681 successful.
-I1219 16:59:56.935767 23580 nccl_context.cc:74] init nccl context nranks: 8 local rank: 2 gpu id: 2 ring id: 0
-I1219 16:59:56.935765 23562 nccl_context.cc:74] init nccl context nranks: 8 local rank: 1 gpu id: 1 ring id: 0
-I1219 16:59:56.935781 23627 nccl_context.cc:74] init nccl context nranks: 8 local rank: 5 gpu id: 5 ring id: 0
-I1219 16:59:56.935775 23595 nccl_context.cc:74] init nccl context nranks: 8 local rank: 3 gpu id: 3 ring id: 0
-I1219 16:59:56.935791 23642 nccl_context.cc:74] init nccl context nranks: 8 local rank: 6 gpu id: 6 ring id: 0
-I1219 16:59:56.935806 23610 nccl_context.cc:74] init nccl context nranks: 8 local rank: 4 gpu id: 4 ring id: 0
-I1219 16:59:56.935818 23659 nccl_context.cc:74] init nccl context nranks: 8 local rank: 7 gpu id: 7 ring id: 0
-I1219 16:59:56.935837 23545 nccl_context.cc:74] init nccl context nranks: 8 local rank: 0 gpu id: 0 ring id: 0
-W1219 17:00:00.904070 23545 device_context.cc:447] Please NOTE: device: 0, GPU Compute Capability: 7.0, Driver API Version: 10.2, Runtime API Version: 10.2
-W1219 17:00:00.904078 23562 device_context.cc:447] Please NOTE: device: 1, GPU Compute Capability: 7.0, Driver API Version: 10.2, Runtime API Version: 10.2
-W1219 17:00:00.904153 23595 device_context.cc:447] Please NOTE: device: 3, GPU Compute Capability: 7.0, Driver API Version: 10.2, Runtime API Version: 10.2
-W1219 17:00:00.904173 23610 device_context.cc:447] Please NOTE: device: 4, GPU Compute Capability: 7.0, Driver API Version: 10.2, Runtime API Version: 10.2
-W1219 17:00:00.904186 23659 device_context.cc:447] Please NOTE: device: 7, GPU Compute Capability: 7.0, Driver API Version: 10.2, Runtime API Version: 10.2
-W1219 17:00:00.904246 23642 device_context.cc:447] Please NOTE: device: 6, GPU Compute Capability: 7.0, Driver API Version: 10.2, Runtime API Version: 10.2
-W1219 17:00:00.904264 23627 device_context.cc:447] Please NOTE: device: 5, GPU Compute Capability: 7.0, Driver API Version: 10.2, Runtime API Version: 10.2
-W1219 17:00:00.906248 23580 device_context.cc:447] Please NOTE: device: 2, GPU Compute Capability: 7.0, Driver API Version: 10.2, Runtime API Version: 10.2
-W1219 17:00:00.957355 23562 device_context.cc:465] device: 1, cuDNN Version: 7.6.
-W1219 17:00:00.957355 23659 device_context.cc:465] device: 7, cuDNN Version: 7.6.
-W1219 17:00:00.957358 23595 device_context.cc:465] device: 3, cuDNN Version: 7.6.
-W1219 17:00:00.957360 23545 device_context.cc:465] device: 0, cuDNN Version: 7.6.
-W1219 17:00:00.957374 23610 device_context.cc:465] device: 4, cuDNN Version: 7.6.
-W1219 17:00:00.957383 23642 device_context.cc:465] device: 6, cuDNN Version: 7.6.
-W1219 17:00:00.957394 23580 device_context.cc:465] device: 2, cuDNN Version: 7.6.
-W1219 17:00:00.957394 23627 device_context.cc:465] device: 5, cuDNN Version: 7.6.
-INFO:local_logger:----- world_size = 8, local_rank = 6
-INFO:local_logger:----- world_size = 8, local_rank = 3
-INFO:master_logger:
-AMP: False
-BASE: ['']
-DATA:
- BATCH_SIZE: 256
- BATCH_SIZE_EVAL: 8
- CROP_PCT: 0.875
- DATASET: imagenet2012
- DATA_PATH: /dataset/imagenet
- IMAGE_SIZE: 224
- NUM_WORKERS: 4
-EVAL: False
-LOCAL_RANK: 0
-MODEL:
- ATTENTION_DROPOUT: 0.1
- DROPOUT: 0.1
- DROPPATH: 0.0
- MAE_PRETRAIN: True
- NAME: vit_base_patch16_224_dec1
- NUM_CLASSES: 1000
- PRETRAINED: None
- RESUME: None
- TRANS:
- DECODER:
- DEPTH: 1
- EMBED_DIM: 512
- NUM_HEADS: 8
- ENCODER:
- DEPTH: 12
- EMBED_DIM: 768
- NUM_HEADS: 12
- MASK_RATIO: 0.75
- MLP_RATIO: 4.0
- PATCH_SIZE: 16
- QKV_BIAS: True
- TYPE: MAE
-NGPUS: 8
-REPORT_FREQ: 100
-SAVE: ./output/train-20211219-16-59-32
-SAVE_FREQ: 1
-SEED: 0
-TAG: default
-TRAIN:
- ACCUM_ITER: 2
- BASE_LR: 0.00015
- CUTMIX_ALPHA: 1.0
- CUTMIX_MINMAX: None
- END_LR: 0.0005
- GRAD_CLIP: 1
- LAST_EPOCH: 0
- LINEAR_SCALED_LR: None
- LR_SCHEDULER:
- DECAY_EPOCHS: 30
- DECAY_RATE: 0.1
- MILESTONES: 30, 60, 90
- NAME: warmupcosine
- MIXUP_ALPHA: 0.8
- MIXUP_MODE: batch
- MIXUP_PROB: 1.0
- MIXUP_SWITCH_PROB: 0.5
- NORMALIZE_TARGET: True
- NUM_EPOCHS: 800
- OPTIMIZER:
- BETAS: (0.9, 0.95)
- EPS: 1e-08
- MOMENTUM: 0.9
- NAME: AdamW
- RAND_AUGMENT: False
- RAND_AUGMENT_LAYERS: 9
- RAND_AUGMENT_MAGNITUDE: 5
- SMOOTHING: 0.1
- WARMUP_EPOCHS: 40
- WARMUP_START_LR: 1e-06
- WEIGHT_DECAY: 0.05
-VALIDATE_FREQ: 100
-INFO:local_logger:----- world_size = 8, local_rank = 0
-INFO:master_logger:----- world_size = 8, local_rank = 0
-INFO:local_logger:----- world_size = 8, local_rank = 7
-INFO:local_logger:----- world_size = 8, local_rank = 5
-INFO:local_logger:----- world_size = 8, local_rank = 1
-INFO:local_logger:----- world_size = 8, local_rank = 2
-INFO:local_logger:----- world_size = 8, local_rank = 4
-INFO:local_logger:----- Total # of train batch (single gpu): 626
-INFO:master_logger:----- Total # of train batch (single gpu): 626
-INFO:local_logger:----- Total # of train batch (single gpu): 626
-INFO:local_logger:----- Total # of train batch (single gpu): 626
-INFO:local_logger:Start training from epoch 1.
-INFO:master_logger:Start training from epoch 1.
-INFO:local_logger:Now training epoch 1. LR=0.000005
-INFO:master_logger:Now training epoch 1. LR=0.000005
-INFO:local_logger:Start training from epoch 1.
-INFO:local_logger:Now training epoch 1. LR=0.000005
-INFO:local_logger:Start training from epoch 1.
-INFO:local_logger:----- Total # of train batch (single gpu): 626
-INFO:local_logger:Now training epoch 1. LR=0.000005
-INFO:local_logger:----- Total # of train batch (single gpu): 626
-INFO:local_logger:----- Total # of train batch (single gpu): 626
-INFO:local_logger:Start training from epoch 1.
-INFO:local_logger:Now training epoch 1. LR=0.000005
-INFO:local_logger:----- Total # of train batch (single gpu): 626
-INFO:local_logger:Start training from epoch 1.
-INFO:local_logger:Start training from epoch 1.
-INFO:local_logger:Now training epoch 1. LR=0.000005
-INFO:local_logger:----- Total # of train batch (single gpu): 626
-INFO:local_logger:Now training epoch 1. LR=0.000005
-INFO:local_logger:Start training from epoch 1.
-INFO:local_logger:Now training epoch 1. LR=0.000005
-INFO:local_logger:Start training from epoch 1.
-INFO:local_logger:Now training epoch 1. LR=0.000005
-ERROR: Unexpected BUS error encountered in DataLoader worker. This might be caused by insufficient shared memory (shm), please check whether use_shared_memory is set and storage space in /dev/shm is enough
- ERROR: Unexpected BUS error encountered in DataLoader worker. This might be caused by insufficient shared memory (shm), please check whether use_shared_memory is set and storage space in /dev/shm is enough
- ERROR: Unexpected BUS error encountered in DataLoader worker. This might be caused by insufficient shared memory (shm), please check whether use_shared_memory is set and storage space in /dev/shm is enough
- ERROR: Unexpected BUS error encountered in DataLoader worker. This might be caused by insufficient shared memory (shm), please check whether use_shared_memory is set and storage space in /dev/shm is enough
- ERROR: Unexpected BUS error encountered in DataLoader worker. This might be caused by insufficient shared memory (shm), please check whether use_shared_memory is set and storage space in /dev/shm is enough
- ERROR: Unexpected BUS error encountered in DataLoader worker. This might be caused by insufficient shared memory (shm), please check whether use_shared_memory is set and storage space in /dev/shm is enough
- ERROR: Unexpected BUS error encountered in DataLoader worker. This might be caused by insufficient shared memory (shm), please check whether use_shared_memory is set and storage space in /dev/shm is enough
- ERROR: Unexpected BUS error encountered in DataLoader worker. This might be caused by insufficient shared memory (shm), please check whether use_shared_memory is set and storage space in /dev/shm is enough
- ERROR: Unexpected BUS error encountered in DataLoader worker. This might be caused by insufficient shared memory (shm), please check whether use_shared_memory is set and storage space in /dev/shm is enough
- ERROR: Unexpected BUS error encountered in DataLoader worker. This might be caused by insufficient shared memory (shm), please check whether use_shared_memory is set and storage space in /dev/shm is enough
- ERROR: Unexpected BUS error encountered in DataLoader worker. This might be caused by insufficient shared memory (shm), please check whether use_shared_memory is set and storage space in /dev/shm is enough
- ERROR: Unexpected BUS error encountered in DataLoader worker. This might be caused by insufficient shared memory (shm), please check whether use_shared_memory is set and storage space in /dev/shm is enough
- ERROR: Unexpected BUS error encountered in DataLoader worker. This might be caused by insufficient shared memory (shm), please check whether use_shared_memory is set and storage space in /dev/shm is enough
- ERROR: Unexpected BUS error encountered in DataLoader worker. This might be caused by insufficient shared memory (shm), please check whether use_shared_memory is set and storage space in /dev/shm is enough
- ERROR: Unexpected BUS error encountered in DataLoader worker. This might be caused by insufficient shared memory (shm), please check whether use_shared_memory is set and storage space in /dev/shm is enough
- ERROR: Unexpected BUS error encountered in DataLoader worker. This might be caused by insufficient shared memory (shm), please check whether use_shared_memory is set and storage space in /dev/shm is enough
- ERROR: Unexpected BUS error encountered in DataLoader worker. This might be caused by insufficient shared memory (shm), please check whether use_shared_memory is set and storage space in /dev/shm is enough
- ERROR: Unexpected BUS error encountered in DataLoader worker. This might be caused by insufficient shared memory (shm), please check whether use_shared_memory is set and storage space in /dev/shm is enough
- ERROR: Unexpected BUS error encountered in DataLoader worker. This might be caused by insufficient shared memory (shm), please check whether use_shared_memory is set and storage space in /dev/shm is enough
- ERROR: Unexpected BUS error encountered in DataLoader worker. This might be caused by insufficient shared memory (shm), please check whether use_shared_memory is set and storage space in /dev/shm is enough
- ERROR: Unexpected BUS error encountered in DataLoader worker. This might be caused by insufficient shared memory (shm), please check whether use_shared_memory is set and storage space in /dev/shm is enough
- ERROR: Unexpected BUS error encountered in DataLoader worker. This might be caused by insufficient shared memory (shm), please check whether use_shared_memory is set and storage space in /dev/shm is enough
- Exception in thread Thread-1:
-Traceback (most recent call last):
- File "/opt/conda/envs/py36/lib/python3.6/site-packages/paddle/fluid/dataloader/dataloader_iter.py", line 583, in _get_data
- data = self._data_queue.get(timeout=self._timeout)
- File "/opt/conda/envs/py36/lib/python3.6/multiprocessing/queues.py", line 105, in get
- raise Empty
-queue.Empty
-
-During handling of the above exception, another exception occurred:
-
-Traceback (most recent call last):
- File "/opt/conda/envs/py36/lib/python3.6/threading.py", line 916, in _bootstrap_inner
- self.run()
- File "/opt/conda/envs/py36/lib/python3.6/threading.py", line 864, in run
- self._target(*self._args, **self._kwargs)
- File "/opt/conda/envs/py36/lib/python3.6/site-packages/paddle/fluid/dataloader/dataloader_iter.py", line 505, in _thread_loop
- batch = self._get_data()
- File "/opt/conda/envs/py36/lib/python3.6/site-packages/paddle/fluid/dataloader/dataloader_iter.py", line 599, in _get_data
- "pids: {}".format(len(failed_workers), pids))
-RuntimeError: DataLoader 1 workers exit unexpectedly, pids: 23832
-
-
-
---------------------------------------
-C++ Traceback (most recent call last):
---------------------------------------
-No stack trace in paddle, may be caused by external reasons.
-
-----------------------
-Error Message Summary:
-----------------------
-FatalError: `Termination signal` is detected by the operating system.
- [TimeInfo: *** Aborted at 1639904442 (unix time) try "date -d @1639904442" if you are using GNU date ***]
- [SignalInfo: *** SIGTERM (@0x5be5) received by PID 23545 (TID 0x7f5dda7df700) from PID 23525 ***]
-
-/opt/conda/envs/py36/lib/python3.6/multiprocessing/semaphore_tracker.py:143: UserWarning: semaphore_tracker: There appear to be 20 leaked semaphores to clean up at shutdown
- len(cache))
-Traceback (most recent call last):
- File "main_multi_gpu_pretrain.py", line 416, in
- main()
- File "main_multi_gpu_pretrain.py", line 412, in main
- dist.spawn(main_worker, args=(config, dataset_train, ), nprocs=config.NGPUS)
- File "/opt/conda/envs/py36/lib/python3.6/site-packages/paddle/distributed/spawn.py", line 502, in spawn
- while not context.join():
- File "/opt/conda/envs/py36/lib/python3.6/site-packages/paddle/distributed/spawn.py", line 312, in join
- self._throw_exception(error_index)
- File "/opt/conda/envs/py36/lib/python3.6/site-packages/paddle/distributed/spawn.py", line 330, in _throw_exception
- raise Exception(msg)
-Exception:
-
-----------------------------------------------
-Process 3 terminated with the following error:
-----------------------------------------------
-
-Traceback (most recent call last):
- File "/opt/conda/envs/py36/lib/python3.6/site-packages/paddle/distributed/spawn.py", line 261, in _func_wrapper
- result = func(*args)
- File "/workspace/ppvit_github/PaddleViT_raw/PaddleViT/image_classification/MAE/main_multi_gpu_pretrain.py", line 368, in main_worker
- master_logger=master_logger)
- File "/workspace/ppvit_github/PaddleViT_raw/PaddleViT/image_classification/MAE/main_multi_gpu_pretrain.py", line 157, in train
- reconstructed_patches = model(images, masks)
- File "/opt/conda/envs/py36/lib/python3.6/site-packages/paddle/fluid/dygraph/layers.py", line 914, in __call__
- outputs = self.forward(*inputs, **kwargs)
- File "/opt/conda/envs/py36/lib/python3.6/site-packages/paddle/fluid/dygraph/parallel.py", line 695, in forward
- outputs = self._layers(*inputs, **kwargs)
- File "/opt/conda/envs/py36/lib/python3.6/site-packages/paddle/fluid/dygraph/layers.py", line 914, in __call__
- outputs = self.forward(*inputs, **kwargs)
- File "/workspace/ppvit_github/PaddleViT_raw/PaddleViT/image_classification/MAE/transformer.py", line 537, in forward
- enc_out = self.encoder(no_mask_x)
- File "/opt/conda/envs/py36/lib/python3.6/site-packages/paddle/fluid/dygraph/layers.py", line 914, in __call__
- outputs = self.forward(*inputs, **kwargs)
- File "/workspace/ppvit_github/PaddleViT_raw/PaddleViT/image_classification/MAE/transformer.py", line 364, in forward
- x = layer(x)
- File "/opt/conda/envs/py36/lib/python3.6/site-packages/paddle/fluid/dygraph/layers.py", line 914, in __call__
- outputs = self.forward(*inputs, **kwargs)
- File "/workspace/ppvit_github/PaddleViT_raw/PaddleViT/image_classification/MAE/transformer.py", line 310, in forward
- x = self.mlp(x)
- File "/opt/conda/envs/py36/lib/python3.6/site-packages/paddle/fluid/dygraph/layers.py", line 914, in __call__
- outputs = self.forward(*inputs, **kwargs)
- File "/workspace/ppvit_github/PaddleViT_raw/PaddleViT/image_classification/MAE/transformer.py", line 245, in forward
- x = self.fc1(x)
- File "/opt/conda/envs/py36/lib/python3.6/site-packages/paddle/fluid/dygraph/layers.py", line 914, in __call__
- outputs = self.forward(*inputs, **kwargs)
- File "/opt/conda/envs/py36/lib/python3.6/site-packages/paddle/nn/layer/common.py", line 172, in forward
- x=input, weight=self.weight, bias=self.bias, name=self.name)
- File "/opt/conda/envs/py36/lib/python3.6/site-packages/paddle/nn/functional/common.py", line 1474, in linear
- False)
- File "/opt/conda/envs/py36/lib/python3.6/site-packages/paddle/fluid/multiprocess_utils.py", line 134, in __handler__
- core._throw_error_if_process_failed()
-SystemError: (Fatal) DataLoader process (pid 1. If run DataLoader by DataLoader.from_generator(...), queue capacity is set by from_generator(..., capacity=xx, ...).
- 2. If run DataLoader by DataLoader(dataset, ...), queue capacity is set as 2 times of the max value of num_workers and len(places).
- 3. If run by DataLoader(dataset, ..., use_shared_memory=True), set use_shared_memory=False for not using shared memory.) exited is killed by signal: 23723.
- It may be caused by insufficient shared storage space. This problem usually occurs when using docker as a development environment.
- Please use command `df -h` to check the storage space of `/dev/shm`. Shared storage space needs to be greater than (DataLoader Num * DataLoader queue capacity * 1 batch data size).
- You can solve this problem by increasing the shared storage space or reducing the queue capacity appropriately.
-Bus error (at /paddle/paddle/fluid/imperative/data_loader.cc:177)
-
-
-merging config from ./configs/vit_base_patch16_224_pretrain_dec1.yaml
------ Imagenet2012 image train list len = 1281167
-server not ready, wait 3 sec to retry...
-not ready endpoints:['127.0.0.1:58819', '127.0.0.1:34756', '127.0.0.1:44071', '127.0.0.1:12661', '127.0.0.1:44311', '127.0.0.1:14139', '127.0.0.1:51679']
-I1219 17:02:09.309500 24382 gen_comm_id_helper.cc:190] Server listening on: 127.0.0.1:58819 successful.
-server not ready, wait 3 sec to retry...
-not ready endpoints:['127.0.0.1:34756', '127.0.0.1:44071', '127.0.0.1:12661', '127.0.0.1:44311', '127.0.0.1:14139', '127.0.0.1:51679']
-I1219 17:02:11.901250 24397 gen_comm_id_helper.cc:190] Server listening on: 127.0.0.1:34756 successful.
-server not ready, wait 3 sec to retry...
-not ready endpoints:['127.0.0.1:44071', '127.0.0.1:12661', '127.0.0.1:44311', '127.0.0.1:14139', '127.0.0.1:51679']
-I1219 17:02:14.341609 24414 gen_comm_id_helper.cc:190] Server listening on: 127.0.0.1:44071 successful.
-server not ready, wait 3 sec to retry...
-not ready endpoints:['127.0.0.1:12661', '127.0.0.1:44311', '127.0.0.1:14139', '127.0.0.1:51679']
-I1219 17:02:17.001890 24429 gen_comm_id_helper.cc:190] Server listening on: 127.0.0.1:12661 successful.
-server not ready, wait 3 sec to retry...
-not ready endpoints:['127.0.0.1:44311', '127.0.0.1:14139', '127.0.0.1:51679']
-I1219 17:02:19.379423 24447 gen_comm_id_helper.cc:190] Server listening on: 127.0.0.1:44311 successful.
-server not ready, wait 3 sec to retry...
-not ready endpoints:['127.0.0.1:14139', '127.0.0.1:51679']
-I1219 17:02:22.029084 24463 gen_comm_id_helper.cc:190] Server listening on: 127.0.0.1:14139 successful.
-I1219 17:02:24.569348 24481 gen_comm_id_helper.cc:190] Server listening on: 127.0.0.1:51679 successful.
-I1219 17:02:24.931157 24382 nccl_context.cc:74] init nccl context nranks: 8 local rank: 1 gpu id: 1 ring id: 0
-I1219 17:02:24.931161 24397 nccl_context.cc:74] init nccl context nranks: 8 local rank: 2 gpu id: 2 ring id: 0
-I1219 17:02:24.931192 24414 nccl_context.cc:74] init nccl context nranks: 8 local rank: 3 gpu id: 3 ring id: 0
-I1219 17:02:24.931200 24429 nccl_context.cc:74] init nccl context nranks: 8 local rank: 4 gpu id: 4 ring id: 0
-I1219 17:02:24.931208 24447 nccl_context.cc:74] init nccl context nranks: 8 local rank: 5 gpu id: 5 ring id: 0
-I1219 17:02:24.931213 24463 nccl_context.cc:74] init nccl context nranks: 8 local rank: 6 gpu id: 6 ring id: 0
-I1219 17:02:24.931216 24481 nccl_context.cc:74] init nccl context nranks: 8 local rank: 7 gpu id: 7 ring id: 0
-I1219 17:02:24.931238 24365 nccl_context.cc:74] init nccl context nranks: 8 local rank: 0 gpu id: 0 ring id: 0
-W1219 17:02:28.374552 24365 device_context.cc:447] Please NOTE: device: 0, GPU Compute Capability: 7.0, Driver API Version: 10.2, Runtime API Version: 10.2
-W1219 17:02:28.374681 24397 device_context.cc:447] Please NOTE: device: 2, GPU Compute Capability: 7.0, Driver API Version: 10.2, Runtime API Version: 10.2
-W1219 17:02:28.374711 24414 device_context.cc:447] Please NOTE: device: 3, GPU Compute Capability: 7.0, Driver API Version: 10.2, Runtime API Version: 10.2
-W1219 17:02:28.374712 24429 device_context.cc:447] Please NOTE: device: 4, GPU Compute Capability: 7.0, Driver API Version: 10.2, Runtime API Version: 10.2
-W1219 17:02:28.374729 24447 device_context.cc:447] Please NOTE: device: 5, GPU Compute Capability: 7.0, Driver API Version: 10.2, Runtime API Version: 10.2
-W1219 17:02:28.374773 24382 device_context.cc:447] Please NOTE: device: 1, GPU Compute Capability: 7.0, Driver API Version: 10.2, Runtime API Version: 10.2
-W1219 17:02:28.374810 24463 device_context.cc:447] Please NOTE: device: 6, GPU Compute Capability: 7.0, Driver API Version: 10.2, Runtime API Version: 10.2
-W1219 17:02:28.376953 24481 device_context.cc:447] Please NOTE: device: 7, GPU Compute Capability: 7.0, Driver API Version: 10.2, Runtime API Version: 10.2
-W1219 17:02:28.382552 24414 device_context.cc:465] device: 3, cuDNN Version: 7.6.
-W1219 17:02:28.382556 24365 device_context.cc:465] device: 0, cuDNN Version: 7.6.
-W1219 17:02:28.382561 24447 device_context.cc:465] device: 5, cuDNN Version: 7.6.
-W1219 17:02:28.382565 24397 device_context.cc:465] device: 2, cuDNN Version: 7.6.
-W1219 17:02:28.382582 24463 device_context.cc:465] device: 6, cuDNN Version: 7.6.
-W1219 17:02:28.382568 24429 device_context.cc:465] device: 4, cuDNN Version: 7.6.
-W1219 17:02:28.382580 24382 device_context.cc:465] device: 1, cuDNN Version: 7.6.
-W1219 17:02:28.382681 24481 device_context.cc:465] device: 7, cuDNN Version: 7.6.
-INFO:local_logger:----- world_size = 8, local_rank = 1
-INFO:local_logger:----- world_size = 8, local_rank = 5
-INFO:local_logger:----- world_size = 8, local_rank = 3
-INFO:local_logger:----- world_size = 8, local_rank = 2
-INFO:local_logger:----- world_size = 8, local_rank = 7
-INFO:local_logger:----- world_size = 8, local_rank = 6
-INFO:master_logger:
-AMP: False
-BASE: ['']
-DATA:
- BATCH_SIZE: 256
- BATCH_SIZE_EVAL: 8
- CROP_PCT: 0.875
- DATASET: imagenet2012
- DATA_PATH: /dataset/imagenet
- IMAGE_SIZE: 224
- NUM_WORKERS: 4
-EVAL: False
-LOCAL_RANK: 0
-MODEL:
- ATTENTION_DROPOUT: 0.1
- DROPOUT: 0.1
- DROPPATH: 0.0
- MAE_PRETRAIN: True
- NAME: vit_base_patch16_224_dec1
- NUM_CLASSES: 1000
- PRETRAINED: None
- RESUME: None
- TRANS:
- DECODER:
- DEPTH: 1
- EMBED_DIM: 512
- NUM_HEADS: 8
- ENCODER:
- DEPTH: 12
- EMBED_DIM: 768
- NUM_HEADS: 12
- MASK_RATIO: 0.75
- MLP_RATIO: 4.0
- PATCH_SIZE: 16
- QKV_BIAS: True
- TYPE: MAE
-NGPUS: 8
-REPORT_FREQ: 100
-SAVE: ./output/train-20211219-17-02-00
-SAVE_FREQ: 1
-SEED: 0
-TAG: default
-TRAIN:
- ACCUM_ITER: 2
- BASE_LR: 0.00015
- CUTMIX_ALPHA: 1.0
- CUTMIX_MINMAX: None
- END_LR: 0.0005
- GRAD_CLIP: 1
- LAST_EPOCH: 0
- LINEAR_SCALED_LR: None
- LR_SCHEDULER:
- DECAY_EPOCHS: 30
- DECAY_RATE: 0.1
- MILESTONES: 30, 60, 90
- NAME: warmupcosine
- MIXUP_ALPHA: 0.8
- MIXUP_MODE: batch
- MIXUP_PROB: 1.0
- MIXUP_SWITCH_PROB: 0.5
- NORMALIZE_TARGET: True
- NUM_EPOCHS: 800
- OPTIMIZER:
- BETAS: (0.9, 0.95)
- EPS: 1e-08
- MOMENTUM: 0.9
- NAME: AdamW
- RAND_AUGMENT: False
- RAND_AUGMENT_LAYERS: 9
- RAND_AUGMENT_MAGNITUDE: 5
- SMOOTHING: 0.1
- WARMUP_EPOCHS: 40
- WARMUP_START_LR: 1e-06
- WEIGHT_DECAY: 0.05
-VALIDATE_FREQ: 100
-INFO:local_logger:----- world_size = 8, local_rank = 0
-INFO:master_logger:----- world_size = 8, local_rank = 0
-INFO:local_logger:----- world_size = 8, local_rank = 4
-INFO:local_logger:----- Total # of train batch (single gpu): 626
-INFO:local_logger:Start training from epoch 1.
-INFO:local_logger:Now training epoch 1. LR=0.000005
-INFO:local_logger:----- Total # of train batch (single gpu): 626
-INFO:local_logger:Start training from epoch 1.
-INFO:local_logger:Now training epoch 1. LR=0.000005
-INFO:local_logger:----- Total # of train batch (single gpu): 626
-INFO:master_logger:----- Total # of train batch (single gpu): 626
-INFO:local_logger:Start training from epoch 1.
-INFO:master_logger:Start training from epoch 1.
-INFO:local_logger:Now training epoch 1. LR=0.000005
-INFO:master_logger:Now training epoch 1. LR=0.000005
-INFO:local_logger:----- Total # of train batch (single gpu): 626
-INFO:local_logger:Start training from epoch 1.
-INFO:local_logger:Now training epoch 1. LR=0.000005
-INFO:local_logger:----- Total # of train batch (single gpu): 626
-INFO:local_logger:----- Total # of train batch (single gpu): 626
-INFO:local_logger:Start training from epoch 1.
-INFO:local_logger:Now training epoch 1. LR=0.000005
-INFO:local_logger:Start training from epoch 1.
-INFO:local_logger:Now training epoch 1. LR=0.000005
-INFO:local_logger:----- Total # of train batch (single gpu): 626
-INFO:local_logger:Start training from epoch 1.
-INFO:local_logger:Now training epoch 1. LR=0.000005
-INFO:local_logger:----- Total # of train batch (single gpu): 626
-INFO:local_logger:Start training from epoch 1.
-INFO:local_logger:Now training epoch 1. LR=0.000005
-INFO:local_logger:Epoch[001/800], Step[0000/0626], Avg Loss: 1.1452
-INFO:local_logger:Epoch[001/800], Step[0000/0626], Avg Loss: 1.1431
-INFO:local_logger:Epoch[001/800], Step[0000/0626], Avg Loss: 1.1469
-INFO:local_logger:Epoch[001/800], Step[0000/0626], Avg Loss: 1.1481
-INFO:local_logger:Epoch[001/800], Step[0000/0626], Avg Loss: 1.1408
-INFO:local_logger:Epoch[001/800], Step[0000/0626], Avg Loss: 1.1501
-INFO:local_logger:Epoch[001/800], Step[0000/0626], Avg Loss: 1.1475
-INFO:local_logger:Epoch[001/800], Step[0000/0626], Avg Loss: 1.1440
-INFO:master_logger:Epoch[001/800], Step[0000/0626], Avg Loss: 1.1457
-
-
---------------------------------------
-C++ Traceback (most recent call last):
---------------------------------------
-No stack trace in paddle, may be caused by external reasons.
-
-----------------------
-Error Message Summary:
-----------------------
-FatalError: `Termination signal` is detected by the operating system.
- [TimeInfo: *** Aborted at 1639904603 (unix time) try "date -d @1639904603" if you are using GNU date ***]
- [SignalInfo: *** SIGTERM (@0x5f17) received by PID 24365 (TID 0x7f5d5ca46700) from PID 24343 ***]
-
-Traceback (most recent call last):
- File "main_multi_gpu_pretrain.py", line 416, in
- main()
- File "main_multi_gpu_pretrain.py", line 412, in main
- dist.spawn(main_worker, args=(config, dataset_train, ), nprocs=config.NGPUS)
- File "/opt/conda/envs/py36/lib/python3.6/site-packages/paddle/distributed/spawn.py", line 502, in spawn
- while not context.join():
- File "/opt/conda/envs/py36/lib/python3.6/site-packages/paddle/distributed/spawn.py", line 312, in join
- self._throw_exception(error_index)
- File "/opt/conda/envs/py36/lib/python3.6/site-packages/paddle/distributed/spawn.py", line 330, in _throw_exception
- raise Exception(msg)
-Exception:
-
-----------------------------------------------
-Process 1 terminated with the following error:
-----------------------------------------------
-
-Traceback (most recent call last):
- File "/opt/conda/envs/py36/lib/python3.6/site-packages/paddle/distributed/spawn.py", line 261, in _func_wrapper
- result = func(*args)
- File "/workspace/ppvit_github/PaddleViT_raw/PaddleViT/image_classification/MAE/main_multi_gpu_pretrain.py", line 368, in main_worker
- master_logger=master_logger)
- File "/workspace/ppvit_github/PaddleViT_raw/PaddleViT/image_classification/MAE/main_multi_gpu_pretrain.py", line 163, in train
- loss.backward()
- File "/opt/conda/envs/py36/lib/python3.6/site-packages/decorator.py", line 232, in fun
- return caller(func, *(extras + args), **kw)
- File "/opt/conda/envs/py36/lib/python3.6/site-packages/paddle/fluid/wrapped_decorator.py", line 25, in __impl__
- return wrapped_func(*args, **kwargs)
- File "/opt/conda/envs/py36/lib/python3.6/site-packages/paddle/fluid/framework.py", line 229, in __impl__
- return func(*args, **kwargs)
- File "/opt/conda/envs/py36/lib/python3.6/site-packages/paddle/fluid/dygraph/varbase_patch_methods.py", line 239, in backward
- framework._dygraph_tracer())
-OSError: (External) ResourceExhaustedError:
-
-Out of memory error on GPU 1. Cannot allocate 394.000244MB memory on GPU 1, 15.719788GB memory has been allocated and available memory is only 63.437500MB.
-
-Please check whether there is any other process using GPU 1.
-1. If yes, please stop them, or start PaddlePaddle on another GPU.
-2. If no, please decrease the batch size of your model.
-
- (at /paddle/paddle/fluid/memory/allocation/cuda_allocator.cc:79)
- (at /paddle/paddle/fluid/imperative/basic_engine.cc:568)
-
-
-merging config from ./configs/vit_base_patch16_224_pretrain_dec1.yaml
------ Imagenet2012 image train list len = 1281167
-server not ready, wait 3 sec to retry...
-not ready endpoints:['127.0.0.1:45480', '127.0.0.1:58605', '127.0.0.1:23406', '127.0.0.1:16014', '127.0.0.1:60086', '127.0.0.1:60603', '127.0.0.1:46782']
-I1219 17:07:49.286090 25456 gen_comm_id_helper.cc:190] Server listening on: 127.0.0.1:45480 successful.
-server not ready, wait 3 sec to retry...
-not ready endpoints:['127.0.0.1:58605', '127.0.0.1:23406', '127.0.0.1:16014', '127.0.0.1:60086', '127.0.0.1:60603', '127.0.0.1:46782']
-I1219 17:07:51.690086 25473 gen_comm_id_helper.cc:190] Server listening on: 127.0.0.1:58605 successful.
-server not ready, wait 3 sec to retry...
-not ready endpoints:['127.0.0.1:23406', '127.0.0.1:16014', '127.0.0.1:60086', '127.0.0.1:60603', '127.0.0.1:46782']
-I1219 17:07:54.058967 25488 gen_comm_id_helper.cc:190] Server listening on: 127.0.0.1:23406 successful.
-server not ready, wait 3 sec to retry...
-not ready endpoints:['127.0.0.1:16014', '127.0.0.1:60086', '127.0.0.1:60603', '127.0.0.1:46782']
-I1219 17:07:57.064612 25503 gen_comm_id_helper.cc:190] Server listening on: 127.0.0.1:16014 successful.
-server not ready, wait 3 sec to retry...
-not ready endpoints:['127.0.0.1:60086', '127.0.0.1:60603', '127.0.0.1:46782']
-I1219 17:07:59.496040 25520 gen_comm_id_helper.cc:190] Server listening on: 127.0.0.1:60086 successful.
-server not ready, wait 3 sec to retry...
-not ready endpoints:['127.0.0.1:60603', '127.0.0.1:46782']
-I1219 17:08:02.203279 25537 gen_comm_id_helper.cc:190] Server listening on: 127.0.0.1:60603 successful.
-I1219 17:08:04.597697 25554 gen_comm_id_helper.cc:190] Server listening on: 127.0.0.1:46782 successful.
-I1219 17:08:05.017540 25473 nccl_context.cc:74] init nccl context nranks: 8 local rank: 2 gpu id: 2 ring id: 0
-I1219 17:08:05.017537 25456 nccl_context.cc:74] init nccl context nranks: 8 local rank: 1 gpu id: 1 ring id: 0
-I1219 17:08:05.017560 25488 nccl_context.cc:74] init nccl context nranks: 8 local rank: 3 gpu id: 3 ring id: 0
-I1219 17:08:05.017565 25537 nccl_context.cc:74] init nccl context nranks: 8 local rank: 6 gpu id: 6 ring id: 0
-I1219 17:08:05.017578 25503 nccl_context.cc:74] init nccl context nranks: 8 local rank: 4 gpu id: 4 ring id: 0
-I1219 17:08:05.017585 25520 nccl_context.cc:74] init nccl context nranks: 8 local rank: 5 gpu id: 5 ring id: 0
-I1219 17:08:05.017601 25554 nccl_context.cc:74] init nccl context nranks: 8 local rank: 7 gpu id: 7 ring id: 0
-I1219 17:08:05.017613 25441 nccl_context.cc:74] init nccl context nranks: 8 local rank: 0 gpu id: 0 ring id: 0
-W1219 17:08:09.206136 25441 device_context.cc:447] Please NOTE: device: 0, GPU Compute Capability: 7.0, Driver API Version: 10.2, Runtime API Version: 10.2
-W1219 17:08:09.206564 25456 device_context.cc:447] Please NOTE: device: 1, GPU Compute Capability: 7.0, Driver API Version: 10.2, Runtime API Version: 10.2
-W1219 17:08:09.206579 25554 device_context.cc:447] Please NOTE: device: 7, GPU Compute Capability: 7.0, Driver API Version: 10.2, Runtime API Version: 10.2
-W1219 17:08:09.206670 25488 device_context.cc:447] Please NOTE: device: 3, GPU Compute Capability: 7.0, Driver API Version: 10.2, Runtime API Version: 10.2
-W1219 17:08:09.206694 25520 device_context.cc:447] Please NOTE: device: 5, GPU Compute Capability: 7.0, Driver API Version: 10.2, Runtime API Version: 10.2
-W1219 17:08:09.206728 25503 device_context.cc:447] Please NOTE: device: 4, GPU Compute Capability: 7.0, Driver API Version: 10.2, Runtime API Version: 10.2
-W1219 17:08:09.209081 25537 device_context.cc:447] Please NOTE: device: 6, GPU Compute Capability: 7.0, Driver API Version: 10.2, Runtime API Version: 10.2
-W1219 17:08:09.209785 25473 device_context.cc:447] Please NOTE: device: 2, GPU Compute Capability: 7.0, Driver API Version: 10.2, Runtime API Version: 10.2
-W1219 17:08:09.212059 25456 device_context.cc:465] device: 1, cuDNN Version: 7.6.
-W1219 17:08:09.212066 25554 device_context.cc:465] device: 7, cuDNN Version: 7.6.
-W1219 17:08:09.212080 25503 device_context.cc:465] device: 4, cuDNN Version: 7.6.
-W1219 17:08:09.212086 25520 device_context.cc:465] device: 5, cuDNN Version: 7.6.
-W1219 17:08:09.212086 25488 device_context.cc:465] device: 3, cuDNN Version: 7.6.
-W1219 17:08:09.212239 25441 device_context.cc:465] device: 0, cuDNN Version: 7.6.
-W1219 17:08:09.213409 25537 device_context.cc:465] device: 6, cuDNN Version: 7.6.
-W1219 17:08:09.214195 25473 device_context.cc:465] device: 2, cuDNN Version: 7.6.
-INFO:local_logger:----- world_size = 8, local_rank = 4
-INFO:local_logger:----- world_size = 8, local_rank = 1
-INFO:local_logger:----- world_size = 8, local_rank = 2
-INFO:master_logger:
-AMP: True
-BASE: ['']
-DATA:
- BATCH_SIZE: 256
- BATCH_SIZE_EVAL: 8
- CROP_PCT: 0.875
- DATASET: imagenet2012
- DATA_PATH: /dataset/imagenet
- IMAGE_SIZE: 224
- NUM_WORKERS: 2
-EVAL: False
-LOCAL_RANK: 0
-MODEL:
- ATTENTION_DROPOUT: 0.0
- DROPOUT: 0.0
- DROPPATH: 0.0
- MAE_PRETRAIN: True
- NAME: vit_base_patch16_224_dec1
- NUM_CLASSES: 1000
- PRETRAINED: None
- RESUME: None
- TRANS:
- DECODER:
- DEPTH: 1
- EMBED_DIM: 512
- NUM_HEADS: 8
- ENCODER:
- DEPTH: 12
- EMBED_DIM: 768
- NUM_HEADS: 12
- MASK_RATIO: 0.75
- MLP_RATIO: 4.0
- PATCH_SIZE: 16
- QKV_BIAS: True
- TYPE: MAE
-NGPUS: 8
-REPORT_FREQ: 100
-SAVE: ./output/train-20211219-17-07-40
-SAVE_FREQ: 1
-SEED: 0
-TAG: default
-TRAIN:
- ACCUM_ITER: 2
- BASE_LR: 0.00015
- CUTMIX_ALPHA: 1.0
- CUTMIX_MINMAX: None
- END_LR: 0.0005
- GRAD_CLIP: 1
- LAST_EPOCH: 0
- LINEAR_SCALED_LR: None
- LR_SCHEDULER:
- DECAY_EPOCHS: 30
- DECAY_RATE: 0.1
- MILESTONES: 30, 60, 90
- NAME: warmupcosine
- MIXUP_ALPHA: 0.8
- MIXUP_MODE: batch
- MIXUP_PROB: 1.0
- MIXUP_SWITCH_PROB: 0.5
- NORMALIZE_TARGET: True
- NUM_EPOCHS: 800
- OPTIMIZER:
- BETAS: (0.9, 0.95)
- EPS: 1e-08
- MOMENTUM: 0.9
- NAME: AdamW
- RAND_AUGMENT: False
- RAND_AUGMENT_LAYERS: 9
- RAND_AUGMENT_MAGNITUDE: 5
- SMOOTHING: 0.1
- WARMUP_EPOCHS: 40
- WARMUP_START_LR: 1e-06
- WEIGHT_DECAY: 0.05
-VALIDATE_FREQ: 100
-INFO:local_logger:----- world_size = 8, local_rank = 0
-INFO:master_logger:----- world_size = 8, local_rank = 0
-INFO:local_logger:----- world_size = 8, local_rank = 6
-INFO:local_logger:----- world_size = 8, local_rank = 5
-INFO:local_logger:----- world_size = 8, local_rank = 7
-INFO:local_logger:----- world_size = 8, local_rank = 3
-INFO:local_logger:----- Total # of train batch (single gpu): 626
-INFO:local_logger:Start training from epoch 1.
-INFO:local_logger:Now training epoch 1. LR=0.000005
-INFO:local_logger:----- Total # of train batch (single gpu): 626
-INFO:local_logger:Start training from epoch 1.
-INFO:local_logger:Now training epoch 1. LR=0.000005
-INFO:local_logger:----- Total # of train batch (single gpu): 626
-INFO:local_logger:Start training from epoch 1.
-INFO:local_logger:Now training epoch 1. LR=0.000005
-INFO:local_logger:----- Total # of train batch (single gpu): 626
-INFO:master_logger:----- Total # of train batch (single gpu): 626
-INFO:local_logger:Start training from epoch 1.
-INFO:master_logger:Start training from epoch 1.
-INFO:local_logger:Now training epoch 1. LR=0.000005
-INFO:master_logger:Now training epoch 1. LR=0.000005
-INFO:local_logger:----- Total # of train batch (single gpu): 626
-INFO:local_logger:Start training from epoch 1.
-INFO:local_logger:Now training epoch 1. LR=0.000005
-INFO:local_logger:----- Total # of train batch (single gpu): 626
-INFO:local_logger:Start training from epoch 1.
-INFO:local_logger:Now training epoch 1. LR=0.000005
-INFO:local_logger:----- Total # of train batch (single gpu): 626
-INFO:local_logger:Start training from epoch 1.
-INFO:local_logger:Now training epoch 1. LR=0.000005
-INFO:local_logger:----- Total # of train batch (single gpu): 626
-INFO:local_logger:Start training from epoch 1.
-INFO:local_logger:Now training epoch 1. LR=0.000005
-INFO:local_logger:Epoch[001/800], Step[0000/0626], Avg Loss: 1.1468
-INFO:local_logger:Epoch[001/800], Step[0000/0626], Avg Loss: 1.1446
-INFO:local_logger:Epoch[001/800], Step[0000/0626], Avg Loss: 1.1495
-INFO:local_logger:Epoch[001/800], Step[0000/0626], Avg Loss: 1.1428
-INFO:local_logger:Epoch[001/800], Step[0000/0626], Avg Loss: 1.1450
-INFO:local_logger:Epoch[001/800], Step[0000/0626], Avg Loss: 1.1461
-INFO:master_logger:Epoch[001/800], Step[0000/0626], Avg Loss: 1.1454
-INFO:local_logger:Epoch[001/800], Step[0000/0626], Avg Loss: 1.1459
-INFO:local_logger:Epoch[001/800], Step[0000/0626], Avg Loss: 1.1427
-INFO:local_logger:Epoch[001/800], Step[0100/0626], Avg Loss: 1.1136
-INFO:local_logger:Epoch[001/800], Step[0100/0626], Avg Loss: 1.1140
-INFO:local_logger:Epoch[001/800], Step[0100/0626], Avg Loss: 1.1137
-INFO:local_logger:Epoch[001/800], Step[0100/0626], Avg Loss: 1.1132
-INFO:local_logger:Epoch[001/800], Step[0100/0626], Avg Loss: 1.1132
-INFO:master_logger:Epoch[001/800], Step[0100/0626], Avg Loss: 1.1136
-INFO:local_logger:Epoch[001/800], Step[0100/0626], Avg Loss: 1.1135
-INFO:local_logger:Epoch[001/800], Step[0100/0626], Avg Loss: 1.1138
-INFO:local_logger:Epoch[001/800], Step[0100/0626], Avg Loss: 1.1139
-INFO:local_logger:Epoch[001/800], Step[0200/0626], Avg Loss: 1.0903
-INFO:local_logger:Epoch[001/800], Step[0200/0626], Avg Loss: 1.0904
-INFO:local_logger:Epoch[001/800], Step[0200/0626], Avg Loss: 1.0904
-INFO:local_logger:Epoch[001/800], Step[0200/0626], Avg Loss: 1.0908
-INFO:local_logger:Epoch[001/800], Step[0200/0626], Avg Loss: 1.0903
-INFO:local_logger:Epoch[001/800], Step[0200/0626], Avg Loss: 1.0900
-INFO:local_logger:Epoch[001/800], Step[0200/0626], Avg Loss: 1.0904
-INFO:local_logger:Epoch[001/800], Step[0200/0626], Avg Loss: 1.0902
-INFO:master_logger:Epoch[001/800], Step[0200/0626], Avg Loss: 1.0904
-INFO:local_logger:Epoch[001/800], Step[0300/0626], Avg Loss: 1.0723
-INFO:local_logger:Epoch[001/800], Step[0300/0626], Avg Loss: 1.0717
-INFO:local_logger:Epoch[001/800], Step[0300/0626], Avg Loss: 1.0718
-INFO:local_logger:Epoch[001/800], Step[0300/0626], Avg Loss: 1.0716
-INFO:local_logger:Epoch[001/800], Step[0300/0626], Avg Loss: 1.0719
-INFO:master_logger:Epoch[001/800], Step[0300/0626], Avg Loss: 1.0719
-INFO:local_logger:Epoch[001/800], Step[0300/0626], Avg Loss: 1.0718
-INFO:local_logger:Epoch[001/800], Step[0300/0626], Avg Loss: 1.0720
-INFO:local_logger:Epoch[001/800], Step[0300/0626], Avg Loss: 1.0720
-INFO:local_logger:Epoch[001/800], Step[0400/0626], Avg Loss: 1.0576
-INFO:local_logger:Epoch[001/800], Step[0400/0626], Avg Loss: 1.0572
-INFO:local_logger:Epoch[001/800], Step[0400/0626], Avg Loss: 1.0572
-INFO:local_logger:Epoch[001/800], Step[0400/0626], Avg Loss: 1.0570
-INFO:local_logger:Epoch[001/800], Step[0400/0626], Avg Loss: 1.0573
-INFO:local_logger:Epoch[001/800], Step[0400/0626], Avg Loss: 1.0570
-INFO:local_logger:Epoch[001/800], Step[0400/0626], Avg Loss: 1.0573
-INFO:master_logger:Epoch[001/800], Step[0400/0626], Avg Loss: 1.0572
-INFO:local_logger:Epoch[001/800], Step[0400/0626], Avg Loss: 1.0574
-INFO:local_logger:Epoch[001/800], Step[0500/0626], Avg Loss: 1.0461
-INFO:local_logger:Epoch[001/800], Step[0500/0626], Avg Loss: 1.0459
-INFO:local_logger:Epoch[001/800], Step[0500/0626], Avg Loss: 1.0459
-INFO:local_logger:Epoch[001/800], Step[0500/0626], Avg Loss: 1.0461
-INFO:local_logger:Epoch[001/800], Step[0500/0626], Avg Loss: 1.0457
-INFO:local_logger:Epoch[001/800], Step[0500/0626], Avg Loss: 1.0461
-INFO:master_logger:Epoch[001/800], Step[0500/0626], Avg Loss: 1.0460
-INFO:local_logger:Epoch[001/800], Step[0500/0626], Avg Loss: 1.0463
-INFO:local_logger:Epoch[001/800], Step[0500/0626], Avg Loss: 1.0461
-INFO:local_logger:Epoch[001/800], Step[0600/0626], Avg Loss: 1.0374
-INFO:local_logger:Epoch[001/800], Step[0600/0626], Avg Loss: 1.0374
-INFO:local_logger:Epoch[001/800], Step[0600/0626], Avg Loss: 1.0375
-INFO:local_logger:Epoch[001/800], Step[0600/0626], Avg Loss: 1.0375
-INFO:master_logger:Epoch[001/800], Step[0600/0626], Avg Loss: 1.0375
-INFO:local_logger:Epoch[001/800], Step[0600/0626], Avg Loss: 1.0372
-INFO:local_logger:Epoch[001/800], Step[0600/0626], Avg Loss: 1.0377
-INFO:local_logger:Epoch[001/800], Step[0600/0626], Avg Loss: 1.0379
-INFO:local_logger:Epoch[001/800], Step[0600/0626], Avg Loss: 1.0374
-INFO:local_logger:----- Epoch[001/800], Train Loss: 1.0359, time: 934.80
-INFO:local_logger:Now training epoch 2. LR=0.000008
-INFO:local_logger:----- Epoch[001/800], Train Loss: 1.0356, time: 934.81
-INFO:local_logger:Now training epoch 2. LR=0.000008
-INFO:local_logger:----- Epoch[001/800], Train Loss: 1.0354, time: 934.86
-INFO:local_logger:Now training epoch 2. LR=0.000008
-INFO:local_logger:----- Epoch[001/800], Train Loss: 1.0361, time: 934.98
-INFO:local_logger:Now training epoch 2. LR=0.000008
-INFO:local_logger:----- Epoch[001/800], Train Loss: 1.0358, time: 935.03
-INFO:master_logger:----- Epoch[001/800], Train Loss: 1.0357, time: 935.03
-INFO:local_logger:----- Epoch[001/800], Train Loss: 1.0358, time: 935.07
-INFO:local_logger:Now training epoch 2. LR=0.000008
-INFO:local_logger:----- Epoch[001/800], Train Loss: 1.0356, time: 935.07
-INFO:local_logger:Now training epoch 2. LR=0.000008
-INFO:local_logger:----- Epoch[001/800], Train Loss: 1.0357, time: 935.09
-INFO:local_logger:Now training epoch 2. LR=0.000008
-INFO:local_logger:----- Save model: ./output/train-20211219-17-07-40/MAE-Epoch-1-Loss-1.0357822933105671.pdparams
-INFO:local_logger:----- Save optim: ./output/train-20211219-17-07-40/MAE-Epoch-1-Loss-1.0357822933105671.pdopt
-INFO:master_logger:----- Save model: ./output/train-20211219-17-07-40/MAE-Epoch-1-Loss-1.0357822933105671.pdparams
-INFO:master_logger:----- Save optim: ./output/train-20211219-17-07-40/MAE-Epoch-1-Loss-1.0357822933105671.pdopt
-INFO:local_logger:Now training epoch 2. LR=0.000008
-INFO:master_logger:Now training epoch 2. LR=0.000008
-INFO:local_logger:Epoch[002/800], Step[0000/0626], Avg Loss: 0.9953
-INFO:master_logger:Epoch[002/800], Step[0000/0626], Avg Loss: 0.9905
-INFO:local_logger:Epoch[002/800], Step[0000/0626], Avg Loss: 0.9836
-INFO:local_logger:Epoch[002/800], Step[0000/0626], Avg Loss: 0.9941
-INFO:local_logger:Epoch[002/800], Step[0000/0626], Avg Loss: 0.9887
-INFO:local_logger:Epoch[002/800], Step[0000/0626], Avg Loss: 0.9872
-INFO:local_logger:Epoch[002/800], Step[0000/0626], Avg Loss: 0.9919
-INFO:local_logger:Epoch[002/800], Step[0000/0626], Avg Loss: 0.9949
-INFO:local_logger:Epoch[002/800], Step[0000/0626], Avg Loss: 0.9885
-INFO:local_logger:Epoch[002/800], Step[0100/0626], Avg Loss: 0.9896
-INFO:local_logger:Epoch[002/800], Step[0100/0626], Avg Loss: 0.9894
-INFO:local_logger:Epoch[002/800], Step[0100/0626], Avg Loss: 0.9900
-INFO:local_logger:Epoch[002/800], Step[0100/0626], Avg Loss: 0.9895
-INFO:local_logger:Epoch[002/800], Step[0100/0626], Avg Loss: 0.9901
-INFO:local_logger:Epoch[002/800], Step[0100/0626], Avg Loss: 0.9887
-INFO:local_logger:Epoch[002/800], Step[0100/0626], Avg Loss: 0.9897
-INFO:master_logger:Epoch[002/800], Step[0100/0626], Avg Loss: 0.9896
-INFO:local_logger:Epoch[002/800], Step[0100/0626], Avg Loss: 0.9900
-INFO:local_logger:Epoch[002/800], Step[0200/0626], Avg Loss: 0.9880
-INFO:local_logger:Epoch[002/800], Step[0200/0626], Avg Loss: 0.9889
-INFO:local_logger:Epoch[002/800], Step[0200/0626], Avg Loss: 0.9887
-INFO:local_logger:Epoch[002/800], Step[0200/0626], Avg Loss: 0.9883
-INFO:local_logger:Epoch[002/800], Step[0200/0626], Avg Loss: 0.9887
-INFO:local_logger:Epoch[002/800], Step[0200/0626], Avg Loss: 0.9887
-INFO:local_logger:Epoch[002/800], Step[0200/0626], Avg Loss: 0.9883
-INFO:master_logger:Epoch[002/800], Step[0200/0626], Avg Loss: 0.9885
-INFO:local_logger:Epoch[002/800], Step[0200/0626], Avg Loss: 0.9883
-INFO:local_logger:Epoch[002/800], Step[0300/0626], Avg Loss: 0.9878
-INFO:local_logger:Epoch[002/800], Step[0300/0626], Avg Loss: 0.9874
-INFO:local_logger:Epoch[002/800], Step[0300/0626], Avg Loss: 0.9873
-INFO:local_logger:Epoch[002/800], Step[0300/0626], Avg Loss: 0.9875
-INFO:master_logger:Epoch[002/800], Step[0300/0626], Avg Loss: 0.9876
-INFO:local_logger:Epoch[002/800], Step[0300/0626], Avg Loss: 0.9877
-INFO:local_logger:Epoch[002/800], Step[0300/0626], Avg Loss: 0.9880
-INFO:local_logger:Epoch[002/800], Step[0300/0626], Avg Loss: 0.9878
-INFO:local_logger:Epoch[002/800], Step[0300/0626], Avg Loss: 0.9872
-INFO:local_logger:Epoch[002/800], Step[0400/0626], Avg Loss: 0.9872
-INFO:local_logger:Epoch[002/800], Step[0400/0626], Avg Loss: 0.9870
-INFO:local_logger:Epoch[002/800], Step[0400/0626], Avg Loss: 0.9867
-INFO:local_logger:Epoch[002/800], Step[0400/0626], Avg Loss: 0.9867
-INFO:local_logger:Epoch[002/800], Step[0400/0626], Avg Loss: 0.9870
-INFO:local_logger:Epoch[002/800], Step[0400/0626], Avg Loss: 0.9871
-INFO:local_logger:Epoch[002/800], Step[0400/0626], Avg Loss: 0.9870
-INFO:local_logger:Epoch[002/800], Step[0400/0626], Avg Loss: 0.9868
-INFO:master_logger:Epoch[002/800], Step[0400/0626], Avg Loss: 0.9869
-INFO:local_logger:Epoch[002/800], Step[0500/0626], Avg Loss: 0.9862
-INFO:local_logger:Epoch[002/800], Step[0500/0626], Avg Loss: 0.9865
-INFO:local_logger:Epoch[002/800], Step[0500/0626], Avg Loss: 0.9861
-INFO:local_logger:Epoch[002/800], Step[0500/0626], Avg Loss: 0.9864
-INFO:local_logger:Epoch[002/800], Step[0500/0626], Avg Loss: 0.9863
-INFO:local_logger:Epoch[002/800], Step[0500/0626], Avg Loss: 0.9861
-INFO:local_logger:Epoch[002/800], Step[0500/0626], Avg Loss: 0.9862
-INFO:local_logger:Epoch[002/800], Step[0500/0626], Avg Loss: 0.9863
-INFO:master_logger:Epoch[002/800], Step[0500/0626], Avg Loss: 0.9863
-INFO:local_logger:Epoch[002/800], Step[0600/0626], Avg Loss: 0.9856
-INFO:local_logger:Epoch[002/800], Step[0600/0626], Avg Loss: 0.9858
-INFO:local_logger:Epoch[002/800], Step[0600/0626], Avg Loss: 0.9858
-INFO:local_logger:Epoch[002/800], Step[0600/0626], Avg Loss: 0.9855
-INFO:local_logger:Epoch[002/800], Step[0600/0626], Avg Loss: 0.9855
-INFO:local_logger:Epoch[002/800], Step[0600/0626], Avg Loss: 0.9856
-INFO:master_logger:Epoch[002/800], Step[0600/0626], Avg Loss: 0.9856
-INFO:local_logger:Epoch[002/800], Step[0600/0626], Avg Loss: 0.9856
-INFO:local_logger:Epoch[002/800], Step[0600/0626], Avg Loss: 0.9856
-INFO:local_logger:----- Epoch[002/800], Train Loss: 0.9857, time: 891.36
-INFO:local_logger:Now training epoch 3. LR=0.000012
-INFO:local_logger:----- Epoch[002/800], Train Loss: 0.9855, time: 891.28
-INFO:local_logger:Now training epoch 3. LR=0.000012
-INFO:local_logger:----- Epoch[002/800], Train Loss: 0.9853, time: 891.70
-INFO:local_logger:Now training epoch 3. LR=0.000012
-INFO:local_logger:----- Epoch[002/800], Train Loss: 0.9855, time: 891.46
-INFO:local_logger:Now training epoch 3. LR=0.000012
-INFO:local_logger:----- Epoch[002/800], Train Loss: 0.9853, time: 891.66
-INFO:local_logger:Now training epoch 3. LR=0.000012
-INFO:local_logger:----- Epoch[002/800], Train Loss: 0.9855, time: 891.47
-INFO:local_logger:Now training epoch 3. LR=0.000012
-INFO:local_logger:----- Epoch[002/800], Train Loss: 0.9857, time: 891.56
-INFO:local_logger:Now training epoch 3. LR=0.000012
-INFO:local_logger:----- Epoch[002/800], Train Loss: 0.9854, time: 887.62
-INFO:master_logger:----- Epoch[002/800], Train Loss: 0.9855, time: 887.62
-INFO:local_logger:----- Save model: ./output/train-20211219-17-07-40/MAE-Epoch-2-Loss-0.9854484576284688.pdparams
-INFO:local_logger:----- Save optim: ./output/train-20211219-17-07-40/MAE-Epoch-2-Loss-0.9854484576284688.pdopt
-INFO:master_logger:----- Save model: ./output/train-20211219-17-07-40/MAE-Epoch-2-Loss-0.9854484576284688.pdparams
-INFO:master_logger:----- Save optim: ./output/train-20211219-17-07-40/MAE-Epoch-2-Loss-0.9854484576284688.pdopt
-INFO:local_logger:Now training epoch 3. LR=0.000012
-INFO:master_logger:Now training epoch 3. LR=0.000012
-INFO:local_logger:Epoch[003/800], Step[0000/0626], Avg Loss: 0.9859
-INFO:local_logger:Epoch[003/800], Step[0000/0626], Avg Loss: 0.9784
-INFO:local_logger:Epoch[003/800], Step[0000/0626], Avg Loss: 0.9751
-INFO:master_logger:Epoch[003/800], Step[0000/0626], Avg Loss: 0.9809
-INFO:local_logger:Epoch[003/800], Step[0000/0626], Avg Loss: 0.9834
-INFO:local_logger:Epoch[003/800], Step[0000/0626], Avg Loss: 0.9795
-INFO:local_logger:Epoch[003/800], Step[0000/0626], Avg Loss: 0.9809
-INFO:local_logger:Epoch[003/800], Step[0000/0626], Avg Loss: 0.9833
-INFO:local_logger:Epoch[003/800], Step[0000/0626], Avg Loss: 0.9810
-INFO:local_logger:Epoch[003/800], Step[0100/0626], Avg Loss: 0.9816
-INFO:local_logger:Epoch[003/800], Step[0100/0626], Avg Loss: 0.9810
-INFO:local_logger:Epoch[003/800], Step[0100/0626], Avg Loss: 0.9814
-INFO:local_logger:Epoch[003/800], Step[0100/0626], Avg Loss: 0.9810
-INFO:master_logger:Epoch[003/800], Step[0100/0626], Avg Loss: 0.9813
-INFO:local_logger:Epoch[003/800], Step[0100/0626], Avg Loss: 0.9813
-INFO:local_logger:Epoch[003/800], Step[0100/0626], Avg Loss: 0.9814
-INFO:local_logger:Epoch[003/800], Step[0100/0626], Avg Loss: 0.9813
-INFO:local_logger:Epoch[003/800], Step[0100/0626], Avg Loss: 0.9814
-INFO:local_logger:Epoch[003/800], Step[0200/0626], Avg Loss: 0.9807
-INFO:local_logger:Epoch[003/800], Step[0200/0626], Avg Loss: 0.9808
-INFO:local_logger:Epoch[003/800], Step[0200/0626], Avg Loss: 0.9808
-INFO:local_logger:Epoch[003/800], Step[0200/0626], Avg Loss: 0.9806
-INFO:local_logger:Epoch[003/800], Step[0200/0626], Avg Loss: 0.9806
-INFO:local_logger:Epoch[003/800], Step[0200/0626], Avg Loss: 0.9804
-INFO:local_logger:Epoch[003/800], Step[0200/0626], Avg Loss: 0.9804
-INFO:local_logger:Epoch[003/800], Step[0200/0626], Avg Loss: 0.9804
-INFO:master_logger:Epoch[003/800], Step[0200/0626], Avg Loss: 0.9806
-INFO:local_logger:Epoch[003/800], Step[0300/0626], Avg Loss: 0.9797
-INFO:local_logger:Epoch[003/800], Step[0300/0626], Avg Loss: 0.9799
-INFO:local_logger:Epoch[003/800], Step[0300/0626], Avg Loss: 0.9799
-INFO:local_logger:Epoch[003/800], Step[0300/0626], Avg Loss: 0.9802
-INFO:local_logger:Epoch[003/800], Step[0300/0626], Avg Loss: 0.9797
-INFO:master_logger:Epoch[003/800], Step[0300/0626], Avg Loss: 0.9799
-INFO:local_logger:Epoch[003/800], Step[0300/0626], Avg Loss: 0.9798
-INFO:local_logger:Epoch[003/800], Step[0300/0626], Avg Loss: 0.9799
-INFO:local_logger:Epoch[003/800], Step[0300/0626], Avg Loss: 0.9798
-INFO:local_logger:Epoch[003/800], Step[0400/0626], Avg Loss: 0.9791
-INFO:local_logger:Epoch[003/800], Step[0400/0626], Avg Loss: 0.9790
-INFO:local_logger:Epoch[003/800], Step[0400/0626], Avg Loss: 0.9793
-INFO:local_logger:Epoch[003/800], Step[0400/0626], Avg Loss: 0.9789
-INFO:local_logger:Epoch[003/800], Step[0400/0626], Avg Loss: 0.9789
-INFO:master_logger:Epoch[003/800], Step[0400/0626], Avg Loss: 0.9790
-INFO:local_logger:Epoch[003/800], Step[0400/0626], Avg Loss: 0.9789
-INFO:local_logger:Epoch[003/800], Step[0400/0626], Avg Loss: 0.9789
-INFO:local_logger:Epoch[003/800], Step[0400/0626], Avg Loss: 0.9791
-INFO:local_logger:Epoch[003/800], Step[0500/0626], Avg Loss: 0.9780
-INFO:local_logger:Epoch[003/800], Step[0500/0626], Avg Loss: 0.9782
-INFO:local_logger:Epoch[003/800], Step[0500/0626], Avg Loss: 0.9782
-INFO:local_logger:Epoch[003/800], Step[0500/0626], Avg Loss: 0.9783
-INFO:master_logger:Epoch[003/800], Step[0500/0626], Avg Loss: 0.9782
-INFO:local_logger:Epoch[003/800], Step[0500/0626], Avg Loss: 0.9781
-INFO:local_logger:Epoch[003/800], Step[0500/0626], Avg Loss: 0.9786
-INFO:local_logger:Epoch[003/800], Step[0500/0626], Avg Loss: 0.9783
-INFO:local_logger:Epoch[003/800], Step[0500/0626], Avg Loss: 0.9781
-INFO:local_logger:Epoch[003/800], Step[0600/0626], Avg Loss: 0.9776
-INFO:local_logger:Epoch[003/800], Step[0600/0626], Avg Loss: 0.9776
-INFO:local_logger:Epoch[003/800], Step[0600/0626], Avg Loss: 0.9774
-INFO:local_logger:Epoch[003/800], Step[0600/0626], Avg Loss: 0.9774
-INFO:local_logger:Epoch[003/800], Step[0600/0626], Avg Loss: 0.9778
-INFO:master_logger:Epoch[003/800], Step[0600/0626], Avg Loss: 0.9775
-INFO:local_logger:Epoch[003/800], Step[0600/0626], Avg Loss: 0.9774
-INFO:local_logger:Epoch[003/800], Step[0600/0626], Avg Loss: 0.9773
-INFO:local_logger:Epoch[003/800], Step[0600/0626], Avg Loss: 0.9773
-INFO:local_logger:----- Epoch[003/800], Train Loss: 0.9774, time: 893.09
-INFO:local_logger:Now training epoch 4. LR=0.000016
-INFO:local_logger:----- Epoch[003/800], Train Loss: 0.9772, time: 893.23
-INFO:local_logger:Now training epoch 4. LR=0.000016
-INFO:local_logger:----- Epoch[003/800], Train Loss: 0.9776, time: 893.27
-INFO:local_logger:Now training epoch 4. LR=0.000016
-INFO:local_logger:----- Epoch[003/800], Train Loss: 0.9771, time: 893.31
-INFO:local_logger:Now training epoch 4. LR=0.000016
-INFO:local_logger:----- Epoch[003/800], Train Loss: 0.9772, time: 893.74
-INFO:local_logger:Now training epoch 4. LR=0.000016
-INFO:local_logger:----- Epoch[003/800], Train Loss: 0.9772, time: 889.63
-INFO:master_logger:----- Epoch[003/800], Train Loss: 0.9773, time: 889.63
-INFO:local_logger:----- Epoch[003/800], Train Loss: 0.9773, time: 893.40
-INFO:local_logger:Now training epoch 4. LR=0.000016
-INFO:local_logger:----- Epoch[003/800], Train Loss: 0.9775, time: 893.56
-INFO:local_logger:Now training epoch 4. LR=0.000016
-INFO:local_logger:----- Save model: ./output/train-20211219-17-07-40/MAE-Epoch-3-Loss-0.9772286424963117.pdparams
-INFO:local_logger:----- Save optim: ./output/train-20211219-17-07-40/MAE-Epoch-3-Loss-0.9772286424963117.pdopt
-INFO:master_logger:----- Save model: ./output/train-20211219-17-07-40/MAE-Epoch-3-Loss-0.9772286424963117.pdparams
-INFO:master_logger:----- Save optim: ./output/train-20211219-17-07-40/MAE-Epoch-3-Loss-0.9772286424963117.pdopt
-INFO:local_logger:Now training epoch 4. LR=0.000016
-INFO:master_logger:Now training epoch 4. LR=0.000016
-INFO:local_logger:Epoch[004/800], Step[0000/0626], Avg Loss: 0.9778
-INFO:local_logger:Epoch[004/800], Step[0000/0626], Avg Loss: 0.9751
-INFO:local_logger:Epoch[004/800], Step[0000/0626], Avg Loss: 0.9713
-INFO:master_logger:Epoch[004/800], Step[0000/0626], Avg Loss: 0.9734
-INFO:local_logger:Epoch[004/800], Step[0000/0626], Avg Loss: 0.9753
-INFO:local_logger:Epoch[004/800], Step[0000/0626], Avg Loss: 0.9753
-INFO:local_logger:Epoch[004/800], Step[0000/0626], Avg Loss: 0.9704
-INFO:local_logger:Epoch[004/800], Step[0000/0626], Avg Loss: 0.9683
-INFO:local_logger:Epoch[004/800], Step[0000/0626], Avg Loss: 0.9740
-INFO:local_logger:Epoch[004/800], Step[0100/0626], Avg Loss: 0.9727
-INFO:local_logger:Epoch[004/800], Step[0100/0626], Avg Loss: 0.9724
-INFO:local_logger:Epoch[004/800], Step[0100/0626], Avg Loss: 0.9730
-INFO:master_logger:Epoch[004/800], Step[0100/0626], Avg Loss: 0.9728
-INFO:local_logger:Epoch[004/800], Step[0100/0626], Avg Loss: 0.9731
-INFO:local_logger:Epoch[004/800], Step[0100/0626], Avg Loss: 0.9730
-INFO:local_logger:Epoch[004/800], Step[0100/0626], Avg Loss: 0.9729
-INFO:local_logger:Epoch[004/800], Step[0100/0626], Avg Loss: 0.9730
-INFO:local_logger:Epoch[004/800], Step[0100/0626], Avg Loss: 0.9726
-INFO:local_logger:Epoch[004/800], Step[0200/0626], Avg Loss: 0.9724
-INFO:local_logger:Epoch[004/800], Step[0200/0626], Avg Loss: 0.9725
-INFO:local_logger:Epoch[004/800], Step[0200/0626], Avg Loss: 0.9721
-INFO:local_logger:Epoch[004/800], Step[0200/0626], Avg Loss: 0.9721
-INFO:local_logger:Epoch[004/800], Step[0200/0626], Avg Loss: 0.9721
-INFO:local_logger:Epoch[004/800], Step[0200/0626], Avg Loss: 0.9720
-INFO:local_logger:Epoch[004/800], Step[0200/0626], Avg Loss: 0.9722
-INFO:local_logger:Epoch[004/800], Step[0200/0626], Avg Loss: 0.9724
-INFO:master_logger:Epoch[004/800], Step[0200/0626], Avg Loss: 0.9722
-INFO:local_logger:Epoch[004/800], Step[0300/0626], Avg Loss: 0.9715
-INFO:local_logger:Epoch[004/800], Step[0300/0626], Avg Loss: 0.9717
-INFO:local_logger:Epoch[004/800], Step[0300/0626], Avg Loss: 0.9717
-INFO:local_logger:Epoch[004/800], Step[0300/0626], Avg Loss: 0.9720
-INFO:master_logger:Epoch[004/800], Step[0300/0626], Avg Loss: 0.9717
-INFO:local_logger:Epoch[004/800], Step[0300/0626], Avg Loss: 0.9712
-INFO:local_logger:Epoch[004/800], Step[0300/0626], Avg Loss: 0.9718
-INFO:local_logger:Epoch[004/800], Step[0300/0626], Avg Loss: 0.9718
-INFO:local_logger:Epoch[004/800], Step[0300/0626], Avg Loss: 0.9716
-INFO:local_logger:Epoch[004/800], Step[0400/0626], Avg Loss: 0.9712
-INFO:local_logger:Epoch[004/800], Step[0400/0626], Avg Loss: 0.9711
-INFO:local_logger:Epoch[004/800], Step[0400/0626], Avg Loss: 0.9711
-INFO:local_logger:Epoch[004/800], Step[0400/0626], Avg Loss: 0.9715
-INFO:local_logger:Epoch[004/800], Step[0400/0626], Avg Loss: 0.9712
-INFO:local_logger:Epoch[004/800], Step[0400/0626], Avg Loss: 0.9709
-INFO:master_logger:Epoch[004/800], Step[0400/0626], Avg Loss: 0.9712
-INFO:local_logger:Epoch[004/800], Step[0400/0626], Avg Loss: 0.9714
-INFO:local_logger:Epoch[004/800], Step[0400/0626], Avg Loss: 0.9714
-INFO:local_logger:Epoch[004/800], Step[0500/0626], Avg Loss: 0.9707
-INFO:local_logger:Epoch[004/800], Step[0500/0626], Avg Loss: 0.9706
-INFO:local_logger:Epoch[004/800], Step[0500/0626], Avg Loss: 0.9709
-INFO:local_logger:Epoch[004/800], Step[0500/0626], Avg Loss: 0.9709
-INFO:local_logger:Epoch[004/800], Step[0500/0626], Avg Loss: 0.9707
-INFO:local_logger:Epoch[004/800], Step[0500/0626], Avg Loss: 0.9708
-INFO:local_logger:Epoch[004/800], Step[0500/0626], Avg Loss: 0.9705
-INFO:master_logger:Epoch[004/800], Step[0500/0626], Avg Loss: 0.9707
-INFO:local_logger:Epoch[004/800], Step[0500/0626], Avg Loss: 0.9706
-INFO:local_logger:Epoch[004/800], Step[0600/0626], Avg Loss: 0.9701
-INFO:local_logger:Epoch[004/800], Step[0600/0626], Avg Loss: 0.9704
-INFO:local_logger:Epoch[004/800], Step[0600/0626], Avg Loss: 0.9703
-INFO:local_logger:Epoch[004/800], Step[0600/0626], Avg Loss: 0.9701
-INFO:local_logger:Epoch[004/800], Step[0600/0626], Avg Loss: 0.9703
-INFO:local_logger:Epoch[004/800], Step[0600/0626], Avg Loss: 0.9701
-INFO:local_logger:Epoch[004/800], Step[0600/0626], Avg Loss: 0.9704
-INFO:master_logger:Epoch[004/800], Step[0600/0626], Avg Loss: 0.9703
-INFO:local_logger:Epoch[004/800], Step[0600/0626], Avg Loss: 0.9704
-INFO:local_logger:----- Epoch[004/800], Train Loss: 0.9702, time: 854.73
-INFO:local_logger:Now training epoch 5. LR=0.000020
-INFO:local_logger:----- Epoch[004/800], Train Loss: 0.9703, time: 851.06
-INFO:master_logger:----- Epoch[004/800], Train Loss: 0.9702, time: 851.06
-INFO:local_logger:----- Epoch[004/800], Train Loss: 0.9703, time: 854.82
-INFO:local_logger:Now training epoch 5. LR=0.000020
-INFO:local_logger:----- Epoch[004/800], Train Loss: 0.9700, time: 855.11
-INFO:local_logger:Now training epoch 5. LR=0.000020
-INFO:local_logger:----- Epoch[004/800], Train Loss: 0.9700, time: 855.36
-INFO:local_logger:Now training epoch 5. LR=0.000020
-INFO:local_logger:----- Epoch[004/800], Train Loss: 0.9703, time: 855.48
-INFO:local_logger:----- Epoch[004/800], Train Loss: 0.9700, time: 855.31
-INFO:local_logger:Now training epoch 5. LR=0.000020
-INFO:local_logger:Now training epoch 5. LR=0.000020
-INFO:local_logger:----- Epoch[004/800], Train Loss: 0.9702, time: 855.19
-INFO:local_logger:Now training epoch 5. LR=0.000020
-INFO:local_logger:----- Save model: ./output/train-20211219-17-07-40/MAE-Epoch-4-Loss-0.97028241060033.pdparams
-INFO:local_logger:----- Save optim: ./output/train-20211219-17-07-40/MAE-Epoch-4-Loss-0.97028241060033.pdopt
-INFO:master_logger:----- Save model: ./output/train-20211219-17-07-40/MAE-Epoch-4-Loss-0.97028241060033.pdparams
-INFO:master_logger:----- Save optim: ./output/train-20211219-17-07-40/MAE-Epoch-4-Loss-0.97028241060033.pdopt
-INFO:local_logger:Now training epoch 5. LR=0.000020
-INFO:master_logger:Now training epoch 5. LR=0.000020
-INFO:local_logger:Epoch[005/800], Step[0000/0626], Avg Loss: 0.9655
-INFO:local_logger:Epoch[005/800], Step[0000/0626], Avg Loss: 0.9667
-INFO:local_logger:Epoch[005/800], Step[0000/0626], Avg Loss: 0.9651
-INFO:master_logger:Epoch[005/800], Step[0000/0626], Avg Loss: 0.9667
-INFO:local_logger:Epoch[005/800], Step[0000/0626], Avg Loss: 0.9671
-INFO:local_logger:Epoch[005/800], Step[0000/0626], Avg Loss: 0.9619
-INFO:local_logger:Epoch[005/800], Step[0000/0626], Avg Loss: 0.9712
-INFO:local_logger:Epoch[005/800], Step[0000/0626], Avg Loss: 0.9685
-INFO:local_logger:Epoch[005/800], Step[0000/0626], Avg Loss: 0.9674
-INFO:local_logger:Epoch[005/800], Step[0100/0626], Avg Loss: 0.9675
-INFO:local_logger:Epoch[005/800], Step[0100/0626], Avg Loss: 0.9674
-INFO:local_logger:Epoch[005/800], Step[0100/0626], Avg Loss: 0.9672
-INFO:local_logger:Epoch[005/800], Step[0100/0626], Avg Loss: 0.9682
-INFO:local_logger:Epoch[005/800], Step[0100/0626], Avg Loss: 0.9673
-INFO:local_logger:Epoch[005/800], Step[0100/0626], Avg Loss: 0.9671
-INFO:local_logger:Epoch[005/800], Step[0100/0626], Avg Loss: 0.9679
-INFO:master_logger:Epoch[005/800], Step[0100/0626], Avg Loss: 0.9675
-INFO:local_logger:Epoch[005/800], Step[0100/0626], Avg Loss: 0.9672
-INFO:local_logger:Epoch[005/800], Step[0200/0626], Avg Loss: 0.9670
-INFO:local_logger:Epoch[005/800], Step[0200/0626], Avg Loss: 0.9665
-INFO:local_logger:Epoch[005/800], Step[0200/0626], Avg Loss: 0.9669
-INFO:local_logger:Epoch[005/800], Step[0200/0626], Avg Loss: 0.9669
-INFO:local_logger:Epoch[005/800], Step[0200/0626], Avg Loss: 0.9666
-INFO:local_logger:Epoch[005/800], Step[0200/0626], Avg Loss: 0.9673
-INFO:local_logger:Epoch[005/800], Step[0200/0626], Avg Loss: 0.9672
-INFO:local_logger:Epoch[005/800], Step[0200/0626], Avg Loss: 0.9671
-INFO:master_logger:Epoch[005/800], Step[0200/0626], Avg Loss: 0.9669
-INFO:local_logger:Epoch[005/800], Step[0300/0626], Avg Loss: 0.9661
-INFO:local_logger:Epoch[005/800], Step[0300/0626], Avg Loss: 0.9663
-INFO:local_logger:Epoch[005/800], Step[0300/0626], Avg Loss: 0.9665
-INFO:local_logger:Epoch[005/800], Step[0300/0626], Avg Loss: 0.9665
-INFO:local_logger:Epoch[005/800], Step[0300/0626], Avg Loss: 0.9664
-INFO:local_logger:Epoch[005/800], Step[0300/0626], Avg Loss: 0.9667
-INFO:master_logger:Epoch[005/800], Step[0300/0626], Avg Loss: 0.9665
-INFO:local_logger:Epoch[005/800], Step[0300/0626], Avg Loss: 0.9668
-INFO:local_logger:Epoch[005/800], Step[0300/0626], Avg Loss: 0.9665
-INFO:local_logger:Epoch[005/800], Step[0400/0626], Avg Loss: 0.9661
-INFO:master_logger:Epoch[005/800], Step[0400/0626], Avg Loss: 0.9660
-INFO:local_logger:Epoch[005/800], Step[0400/0626], Avg Loss: 0.9662
-INFO:local_logger:Epoch[005/800], Step[0400/0626], Avg Loss: 0.9660
-INFO:local_logger:Epoch[005/800], Step[0400/0626], Avg Loss: 0.9661
-INFO:local_logger:Epoch[005/800], Step[0400/0626], Avg Loss: 0.9658
-INFO:local_logger:Epoch[005/800], Step[0400/0626], Avg Loss: 0.9660
-INFO:local_logger:Epoch[005/800], Step[0400/0626], Avg Loss: 0.9658
-INFO:local_logger:Epoch[005/800], Step[0400/0626], Avg Loss: 0.9660
-INFO:local_logger:Epoch[005/800], Step[0500/0626], Avg Loss: 0.9655
-INFO:local_logger:Epoch[005/800], Step[0500/0626], Avg Loss: 0.9655
-INFO:local_logger:Epoch[005/800], Step[0500/0626], Avg Loss: 0.9657
-INFO:local_logger:Epoch[005/800], Step[0500/0626], Avg Loss: 0.9657
-INFO:local_logger:Epoch[005/800], Step[0500/0626], Avg Loss: 0.9656
-INFO:local_logger:Epoch[005/800], Step[0500/0626], Avg Loss: 0.9656
-INFO:local_logger:Epoch[005/800], Step[0500/0626], Avg Loss: 0.9657
-INFO:master_logger:Epoch[005/800], Step[0500/0626], Avg Loss: 0.9656
-INFO:local_logger:Epoch[005/800], Step[0500/0626], Avg Loss: 0.9654
-INFO:local_logger:Epoch[005/800], Step[0600/0626], Avg Loss: 0.9651
-INFO:local_logger:Epoch[005/800], Step[0600/0626], Avg Loss: 0.9653
-INFO:local_logger:Epoch[005/800], Step[0600/0626], Avg Loss: 0.9653
-INFO:local_logger:Epoch[005/800], Step[0600/0626], Avg Loss: 0.9654
-INFO:local_logger:Epoch[005/800], Step[0600/0626], Avg Loss: 0.9652
-INFO:local_logger:Epoch[005/800], Step[0600/0626], Avg Loss: 0.9652
-INFO:local_logger:Epoch[005/800], Step[0600/0626], Avg Loss: 0.9649
-INFO:master_logger:Epoch[005/800], Step[0600/0626], Avg Loss: 0.9652
-INFO:local_logger:Epoch[005/800], Step[0600/0626], Avg Loss: 0.9651
-INFO:local_logger:----- Epoch[005/800], Train Loss: 0.9648, time: 889.02
-INFO:local_logger:Now training epoch 6. LR=0.000023
-INFO:local_logger:----- Epoch[005/800], Train Loss: 0.9651, time: 889.10
-INFO:local_logger:Now training epoch 6. LR=0.000023
-INFO:local_logger:----- Epoch[005/800], Train Loss: 0.9652, time: 889.53
-INFO:local_logger:Now training epoch 6. LR=0.000023
-INFO:local_logger:----- Epoch[005/800], Train Loss: 0.9652, time: 885.85
-INFO:master_logger:----- Epoch[005/800], Train Loss: 0.9651, time: 885.85
-INFO:local_logger:----- Epoch[005/800], Train Loss: 0.9651, time: 889.20
-INFO:local_logger:Now training epoch 6. LR=0.000023
-INFO:local_logger:----- Epoch[005/800], Train Loss: 0.9650, time: 889.56
-INFO:local_logger:Now training epoch 6. LR=0.000023
-INFO:local_logger:----- Epoch[005/800], Train Loss: 0.9650, time: 889.67
-INFO:local_logger:Now training epoch 6. LR=0.000023
-INFO:local_logger:----- Epoch[005/800], Train Loss: 0.9653, time: 890.15
-INFO:local_logger:Now training epoch 6. LR=0.000023
-INFO:local_logger:----- Save model: ./output/train-20211219-17-07-40/MAE-Epoch-5-Loss-0.9652042168475674.pdparams
-INFO:local_logger:----- Save optim: ./output/train-20211219-17-07-40/MAE-Epoch-5-Loss-0.9652042168475674.pdopt
-INFO:master_logger:----- Save model: ./output/train-20211219-17-07-40/MAE-Epoch-5-Loss-0.9652042168475674.pdparams
-INFO:master_logger:----- Save optim: ./output/train-20211219-17-07-40/MAE-Epoch-5-Loss-0.9652042168475674.pdopt
-INFO:local_logger:Now training epoch 6. LR=0.000023
-INFO:master_logger:Now training epoch 6. LR=0.000023
-INFO:local_logger:Epoch[006/800], Step[0000/0626], Avg Loss: 0.9660
-INFO:local_logger:Epoch[006/800], Step[0000/0626], Avg Loss: 0.9643
-INFO:master_logger:Epoch[006/800], Step[0000/0626], Avg Loss: 0.9604
-INFO:local_logger:Epoch[006/800], Step[0000/0626], Avg Loss: 0.9476
-INFO:local_logger:Epoch[006/800], Step[0000/0626], Avg Loss: 0.9637
-INFO:local_logger:Epoch[006/800], Step[0000/0626], Avg Loss: 0.9585
-INFO:local_logger:Epoch[006/800], Step[0000/0626], Avg Loss: 0.9542
-INFO:local_logger:Epoch[006/800], Step[0000/0626], Avg Loss: 0.9641
-INFO:local_logger:Epoch[006/800], Step[0000/0626], Avg Loss: 0.9651
-INFO:local_logger:Epoch[006/800], Step[0100/0626], Avg Loss: 0.9622
-INFO:local_logger:Epoch[006/800], Step[0100/0626], Avg Loss: 0.9624
-INFO:local_logger:Epoch[006/800], Step[0100/0626], Avg Loss: 0.9627
-INFO:local_logger:Epoch[006/800], Step[0100/0626], Avg Loss: 0.9625
-INFO:local_logger:Epoch[006/800], Step[0100/0626], Avg Loss: 0.9626
-INFO:local_logger:Epoch[006/800], Step[0100/0626], Avg Loss: 0.9626
-INFO:master_logger:Epoch[006/800], Step[0100/0626], Avg Loss: 0.9626
-INFO:local_logger:Epoch[006/800], Step[0100/0626], Avg Loss: 0.9627
-INFO:local_logger:Epoch[006/800], Step[0100/0626], Avg Loss: 0.9632
-INFO:local_logger:Epoch[006/800], Step[0200/0626], Avg Loss: 0.9624
-INFO:local_logger:Epoch[006/800], Step[0200/0626], Avg Loss: 0.9619
-INFO:local_logger:Epoch[006/800], Step[0200/0626], Avg Loss: 0.9619
-INFO:local_logger:Epoch[006/800], Step[0200/0626], Avg Loss: 0.9624
-INFO:master_logger:Epoch[006/800], Step[0200/0626], Avg Loss: 0.9622
-INFO:local_logger:Epoch[006/800], Step[0200/0626], Avg Loss: 0.9620
-INFO:local_logger:Epoch[006/800], Step[0200/0626], Avg Loss: 0.9622
-INFO:local_logger:Epoch[006/800], Step[0200/0626], Avg Loss: 0.9624
-INFO:local_logger:Epoch[006/800], Step[0200/0626], Avg Loss: 0.9620
-INFO:local_logger:Epoch[006/800], Step[0300/0626], Avg Loss: 0.9613
-INFO:local_logger:Epoch[006/800], Step[0300/0626], Avg Loss: 0.9620
-INFO:local_logger:Epoch[006/800], Step[0300/0626], Avg Loss: 0.9620
-INFO:local_logger:Epoch[006/800], Step[0300/0626], Avg Loss: 0.9620
-INFO:local_logger:Epoch[006/800], Step[0300/0626], Avg Loss: 0.9615
-INFO:local_logger:Epoch[006/800], Step[0300/0626], Avg Loss: 0.9618
-INFO:local_logger:Epoch[006/800], Step[0300/0626], Avg Loss: 0.9621
-INFO:master_logger:Epoch[006/800], Step[0300/0626], Avg Loss: 0.9618
-INFO:local_logger:Epoch[006/800], Step[0300/0626], Avg Loss: 0.9617
-INFO:local_logger:Epoch[006/800], Step[0400/0626], Avg Loss: 0.9610
-INFO:local_logger:Epoch[006/800], Step[0400/0626], Avg Loss: 0.9615
-INFO:local_logger:Epoch[006/800], Step[0400/0626], Avg Loss: 0.9612
-INFO:local_logger:Epoch[006/800], Step[0400/0626], Avg Loss: 0.9614
-INFO:local_logger:Epoch[006/800], Step[0400/0626], Avg Loss: 0.9614
-INFO:local_logger:Epoch[006/800], Step[0400/0626], Avg Loss: 0.9612
-INFO:local_logger:Epoch[006/800], Step[0400/0626], Avg Loss: 0.9616
-INFO:master_logger:Epoch[006/800], Step[0400/0626], Avg Loss: 0.9613
-INFO:local_logger:Epoch[006/800], Step[0400/0626], Avg Loss: 0.9614
-INFO:local_logger:Epoch[006/800], Step[0500/0626], Avg Loss: 0.9609
-INFO:local_logger:Epoch[006/800], Step[0500/0626], Avg Loss: 0.9609
-INFO:local_logger:Epoch[006/800], Step[0500/0626], Avg Loss: 0.9612
-INFO:local_logger:Epoch[006/800], Step[0500/0626], Avg Loss: 0.9608
-INFO:local_logger:Epoch[006/800], Step[0500/0626], Avg Loss: 0.9611
-INFO:local_logger:Epoch[006/800], Step[0500/0626], Avg Loss: 0.9608
-INFO:local_logger:Epoch[006/800], Step[0500/0626], Avg Loss: 0.9610
-INFO:master_logger:Epoch[006/800], Step[0500/0626], Avg Loss: 0.9610
-INFO:local_logger:Epoch[006/800], Step[0500/0626], Avg Loss: 0.9612
-INFO:local_logger:Epoch[006/800], Step[0600/0626], Avg Loss: 0.9604
-INFO:local_logger:Epoch[006/800], Step[0600/0626], Avg Loss: 0.9608
-INFO:local_logger:Epoch[006/800], Step[0600/0626], Avg Loss: 0.9606
-INFO:local_logger:Epoch[006/800], Step[0600/0626], Avg Loss: 0.9607
-INFO:local_logger:Epoch[006/800], Step[0600/0626], Avg Loss: 0.9605
-INFO:local_logger:Epoch[006/800], Step[0600/0626], Avg Loss: 0.9606
-INFO:local_logger:Epoch[006/800], Step[0600/0626], Avg Loss: 0.9603
-INFO:local_logger:Epoch[006/800], Step[0600/0626], Avg Loss: 0.9609
-INFO:master_logger:Epoch[006/800], Step[0600/0626], Avg Loss: 0.9606
-INFO:local_logger:----- Epoch[006/800], Train Loss: 0.9605, time: 860.53
-INFO:local_logger:Now training epoch 7. LR=0.000027
-INFO:local_logger:----- Epoch[006/800], Train Loss: 0.9607, time: 860.72
-INFO:local_logger:Now training epoch 7. LR=0.000027
-INFO:local_logger:----- Epoch[006/800], Train Loss: 0.9604, time: 857.72
-INFO:master_logger:----- Epoch[006/800], Train Loss: 0.9605, time: 857.72
-INFO:local_logger:----- Epoch[006/800], Train Loss: 0.9607, time: 861.65
-INFO:local_logger:Now training epoch 7. LR=0.000027
-INFO:local_logger:----- Epoch[006/800], Train Loss: 0.9602, time: 861.47
-INFO:local_logger:Now training epoch 7. LR=0.000027
-INFO:local_logger:----- Epoch[006/800], Train Loss: 0.9603, time: 861.13
-INFO:local_logger:----- Epoch[006/800], Train Loss: 0.9608, time: 861.53
-INFO:local_logger:Now training epoch 7. LR=0.000027
-INFO:local_logger:Now training epoch 7. LR=0.000027
-INFO:local_logger:----- Epoch[006/800], Train Loss: 0.9603, time: 861.59
-INFO:local_logger:Now training epoch 7. LR=0.000027
-INFO:local_logger:----- Save model: ./output/train-20211219-17-07-40/MAE-Epoch-6-Loss-0.9604088297024008.pdparams
-INFO:local_logger:----- Save optim: ./output/train-20211219-17-07-40/MAE-Epoch-6-Loss-0.9604088297024008.pdopt
-INFO:master_logger:----- Save model: ./output/train-20211219-17-07-40/MAE-Epoch-6-Loss-0.9604088297024008.pdparams
-INFO:master_logger:----- Save optim: ./output/train-20211219-17-07-40/MAE-Epoch-6-Loss-0.9604088297024008.pdopt
-INFO:local_logger:Now training epoch 7. LR=0.000027
-INFO:master_logger:Now training epoch 7. LR=0.000027
-INFO:local_logger:Epoch[007/800], Step[0000/0626], Avg Loss: 0.9534
-INFO:local_logger:Epoch[007/800], Step[0000/0626], Avg Loss: 0.9591
-INFO:local_logger:Epoch[007/800], Step[0000/0626], Avg Loss: 0.9552
-INFO:master_logger:Epoch[007/800], Step[0000/0626], Avg Loss: 0.9581
-INFO:local_logger:Epoch[007/800], Step[0000/0626], Avg Loss: 0.9540
-INFO:local_logger:Epoch[007/800], Step[0000/0626], Avg Loss: 0.9572
-INFO:local_logger:Epoch[007/800], Step[0000/0626], Avg Loss: 0.9591
-INFO:local_logger:Epoch[007/800], Step[0000/0626], Avg Loss: 0.9645
-INFO:local_logger:Epoch[007/800], Step[0000/0626], Avg Loss: 0.9624
-INFO:local_logger:Epoch[007/800], Step[0100/0626], Avg Loss: 0.9583
-INFO:local_logger:Epoch[007/800], Step[0100/0626], Avg Loss: 0.9576
-INFO:local_logger:Epoch[007/800], Step[0100/0626], Avg Loss: 0.9586
-INFO:local_logger:Epoch[007/800], Step[0100/0626], Avg Loss: 0.9575
-INFO:local_logger:Epoch[007/800], Step[0100/0626], Avg Loss: 0.9582
-INFO:local_logger:Epoch[007/800], Step[0100/0626], Avg Loss: 0.9584
-INFO:local_logger:Epoch[007/800], Step[0100/0626], Avg Loss: 0.9589
-INFO:master_logger:Epoch[007/800], Step[0100/0626], Avg Loss: 0.9582
-INFO:local_logger:Epoch[007/800], Step[0100/0626], Avg Loss: 0.9584
-INFO:local_logger:Epoch[007/800], Step[0200/0626], Avg Loss: 0.9580
-INFO:local_logger:Epoch[007/800], Step[0200/0626], Avg Loss: 0.9575
-INFO:local_logger:Epoch[007/800], Step[0200/0626], Avg Loss: 0.9573
-INFO:master_logger:Epoch[007/800], Step[0200/0626], Avg Loss: 0.9578
-INFO:local_logger:Epoch[007/800], Step[0200/0626], Avg Loss: 0.9580
-INFO:local_logger:Epoch[007/800], Step[0200/0626], Avg Loss: 0.9581
-INFO:local_logger:Epoch[007/800], Step[0200/0626], Avg Loss: 0.9578
-INFO:local_logger:Epoch[007/800], Step[0200/0626], Avg Loss: 0.9578
-INFO:local_logger:Epoch[007/800], Step[0200/0626], Avg Loss: 0.9577
-INFO:local_logger:Epoch[007/800], Step[0300/0626], Avg Loss: 0.9571
-INFO:local_logger:Epoch[007/800], Step[0300/0626], Avg Loss: 0.9570
-INFO:local_logger:Epoch[007/800], Step[0300/0626], Avg Loss: 0.9575
-INFO:local_logger:Epoch[007/800], Step[0300/0626], Avg Loss: 0.9573
-INFO:local_logger:Epoch[007/800], Step[0300/0626], Avg Loss: 0.9570
-INFO:local_logger:Epoch[007/800], Step[0300/0626], Avg Loss: 0.9574
-INFO:master_logger:Epoch[007/800], Step[0300/0626], Avg Loss: 0.9573
-INFO:local_logger:Epoch[007/800], Step[0300/0626], Avg Loss: 0.9574
-INFO:local_logger:Epoch[007/800], Step[0300/0626], Avg Loss: 0.9577
-INFO:local_logger:Epoch[007/800], Step[0400/0626], Avg Loss: 0.9566
-INFO:local_logger:Epoch[007/800], Step[0400/0626], Avg Loss: 0.9566
-INFO:local_logger:Epoch[007/800], Step[0400/0626], Avg Loss: 0.9567
-INFO:local_logger:Epoch[007/800], Step[0400/0626], Avg Loss: 0.9572
-INFO:local_logger:Epoch[007/800], Step[0400/0626], Avg Loss: 0.9568
-INFO:master_logger:Epoch[007/800], Step[0400/0626], Avg Loss: 0.9568
-INFO:local_logger:Epoch[007/800], Step[0400/0626], Avg Loss: 0.9568
-INFO:local_logger:Epoch[007/800], Step[0400/0626], Avg Loss: 0.9570
-INFO:local_logger:Epoch[007/800], Step[0400/0626], Avg Loss: 0.9568
-INFO:local_logger:Epoch[007/800], Step[0500/0626], Avg Loss: 0.9563
-INFO:local_logger:Epoch[007/800], Step[0500/0626], Avg Loss: 0.9568
-INFO:local_logger:Epoch[007/800], Step[0500/0626], Avg Loss: 0.9561
-INFO:local_logger:Epoch[007/800], Step[0500/0626], Avg Loss: 0.9565
-INFO:local_logger:Epoch[007/800], Step[0500/0626], Avg Loss: 0.9565
-INFO:local_logger:Epoch[007/800], Step[0500/0626], Avg Loss: 0.9563
-INFO:master_logger:Epoch[007/800], Step[0500/0626], Avg Loss: 0.9564
-INFO:local_logger:Epoch[007/800], Step[0500/0626], Avg Loss: 0.9565
-INFO:local_logger:Epoch[007/800], Step[0500/0626], Avg Loss: 0.9563
-INFO:local_logger:Epoch[007/800], Step[0600/0626], Avg Loss: 0.9564
-INFO:local_logger:Epoch[007/800], Step[0600/0626], Avg Loss: 0.9561
-INFO:local_logger:Epoch[007/800], Step[0600/0626], Avg Loss: 0.9561
-INFO:local_logger:Epoch[007/800], Step[0600/0626], Avg Loss: 0.9559
-INFO:local_logger:Epoch[007/800], Step[0600/0626], Avg Loss: 0.9559
-INFO:local_logger:Epoch[007/800], Step[0600/0626], Avg Loss: 0.9558
-INFO:local_logger:Epoch[007/800], Step[0600/0626], Avg Loss: 0.9558
-INFO:master_logger:Epoch[007/800], Step[0600/0626], Avg Loss: 0.9560
-INFO:local_logger:Epoch[007/800], Step[0600/0626], Avg Loss: 0.9561
-INFO:local_logger:----- Epoch[007/800], Train Loss: 0.9560, time: 889.20
-INFO:local_logger:Now training epoch 8. LR=0.000031
-INFO:local_logger:----- Epoch[007/800], Train Loss: 0.9558, time: 888.65
-INFO:local_logger:Now training epoch 8. LR=0.000031
-INFO:local_logger:----- Epoch[007/800], Train Loss: 0.9557, time: 889.07
-INFO:local_logger:Now training epoch 8. LR=0.000031
-INFO:local_logger:----- Epoch[007/800], Train Loss: 0.9563, time: 888.69
-INFO:local_logger:Now training epoch 8. LR=0.000031
-INFO:local_logger:----- Epoch[007/800], Train Loss: 0.9559, time: 888.70
-INFO:local_logger:Now training epoch 8. LR=0.000031
-INFO:local_logger:----- Epoch[007/800], Train Loss: 0.9558, time: 888.74
-INFO:local_logger:Now training epoch 8. LR=0.000031
-INFO:local_logger:----- Epoch[007/800], Train Loss: 0.9557, time: 885.04
-INFO:local_logger:----- Epoch[007/800], Train Loss: 0.9560, time: 888.76
-INFO:master_logger:----- Epoch[007/800], Train Loss: 0.9559, time: 885.04
-INFO:local_logger:Now training epoch 8. LR=0.000031
-INFO:local_logger:----- Save model: ./output/train-20211219-17-07-40/MAE-Epoch-7-Loss-0.9557424400537671.pdparams
-INFO:local_logger:----- Save optim: ./output/train-20211219-17-07-40/MAE-Epoch-7-Loss-0.9557424400537671.pdopt
-INFO:master_logger:----- Save model: ./output/train-20211219-17-07-40/MAE-Epoch-7-Loss-0.9557424400537671.pdparams
-INFO:master_logger:----- Save optim: ./output/train-20211219-17-07-40/MAE-Epoch-7-Loss-0.9557424400537671.pdopt
-INFO:local_logger:Now training epoch 8. LR=0.000031
-INFO:master_logger:Now training epoch 8. LR=0.000031
-INFO:local_logger:Epoch[008/800], Step[0000/0626], Avg Loss: 0.9562
-INFO:master_logger:Epoch[008/800], Step[0000/0626], Avg Loss: 0.9506
-INFO:local_logger:Epoch[008/800], Step[0000/0626], Avg Loss: 0.9529
-INFO:local_logger:Epoch[008/800], Step[0000/0626], Avg Loss: 0.9443
-INFO:local_logger:Epoch[008/800], Step[0000/0626], Avg Loss: 0.9491
-INFO:local_logger:Epoch[008/800], Step[0000/0626], Avg Loss: 0.9499
-INFO:local_logger:Epoch[008/800], Step[0000/0626], Avg Loss: 0.9539
-INFO:local_logger:Epoch[008/800], Step[0000/0626], Avg Loss: 0.9524
-INFO:local_logger:Epoch[008/800], Step[0000/0626], Avg Loss: 0.9463
-INFO:local_logger:Epoch[008/800], Step[0100/0626], Avg Loss: 0.9530
-INFO:local_logger:Epoch[008/800], Step[0100/0626], Avg Loss: 0.9530
-INFO:local_logger:Epoch[008/800], Step[0100/0626], Avg Loss: 0.9531
-INFO:local_logger:Epoch[008/800], Step[0100/0626], Avg Loss: 0.9531
-INFO:master_logger:Epoch[008/800], Step[0100/0626], Avg Loss: 0.9532
-INFO:local_logger:Epoch[008/800], Step[0100/0626], Avg Loss: 0.9528
-INFO:local_logger:Epoch[008/800], Step[0100/0626], Avg Loss: 0.9532
-INFO:local_logger:Epoch[008/800], Step[0100/0626], Avg Loss: 0.9535
-INFO:local_logger:Epoch[008/800], Step[0100/0626], Avg Loss: 0.9540
-INFO:local_logger:Epoch[008/800], Step[0200/0626], Avg Loss: 0.9527
-INFO:local_logger:Epoch[008/800], Step[0200/0626], Avg Loss: 0.9531
-INFO:local_logger:Epoch[008/800], Step[0200/0626], Avg Loss: 0.9526
-INFO:local_logger:Epoch[008/800], Step[0200/0626], Avg Loss: 0.9526
-INFO:local_logger:Epoch[008/800], Step[0200/0626], Avg Loss: 0.9525
-INFO:master_logger:Epoch[008/800], Step[0200/0626], Avg Loss: 0.9527
-INFO:local_logger:Epoch[008/800], Step[0200/0626], Avg Loss: 0.9528
-INFO:local_logger:Epoch[008/800], Step[0200/0626], Avg Loss: 0.9529
-INFO:local_logger:Epoch[008/800], Step[0200/0626], Avg Loss: 0.9524
-INFO:local_logger:Epoch[008/800], Step[0300/0626], Avg Loss: 0.9524
-INFO:local_logger:Epoch[008/800], Step[0300/0626], Avg Loss: 0.9520
-INFO:local_logger:Epoch[008/800], Step[0300/0626], Avg Loss: 0.9521
-INFO:master_logger:Epoch[008/800], Step[0300/0626], Avg Loss: 0.9523
-INFO:local_logger:Epoch[008/800], Step[0300/0626], Avg Loss: 0.9524
-INFO:local_logger:Epoch[008/800], Step[0300/0626], Avg Loss: 0.9526
-INFO:local_logger:Epoch[008/800], Step[0300/0626], Avg Loss: 0.9520
-INFO:local_logger:Epoch[008/800], Step[0300/0626], Avg Loss: 0.9521
-INFO:local_logger:Epoch[008/800], Step[0300/0626], Avg Loss: 0.9525
-INFO:local_logger:Epoch[008/800], Step[0400/0626], Avg Loss: 0.9517
-INFO:local_logger:Epoch[008/800], Step[0400/0626], Avg Loss: 0.9518
-INFO:local_logger:Epoch[008/800], Step[0400/0626], Avg Loss: 0.9516
-INFO:local_logger:Epoch[008/800], Step[0400/0626], Avg Loss: 0.9519
-INFO:local_logger:Epoch[008/800], Step[0400/0626], Avg Loss: 0.9516
-INFO:local_logger:Epoch[008/800], Step[0400/0626], Avg Loss: 0.9515
-INFO:local_logger:Epoch[008/800], Step[0400/0626], Avg Loss: 0.9518
-INFO:master_logger:Epoch[008/800], Step[0400/0626], Avg Loss: 0.9517
-INFO:local_logger:Epoch[008/800], Step[0400/0626], Avg Loss: 0.9518
-INFO:local_logger:Epoch[008/800], Step[0500/0626], Avg Loss: 0.9511
-INFO:local_logger:Epoch[008/800], Step[0500/0626], Avg Loss: 0.9511
-INFO:local_logger:Epoch[008/800], Step[0500/0626], Avg Loss: 0.9513
-INFO:local_logger:Epoch[008/800], Step[0500/0626], Avg Loss: 0.9511
-INFO:master_logger:Epoch[008/800], Step[0500/0626], Avg Loss: 0.9512
-INFO:local_logger:Epoch[008/800], Step[0500/0626], Avg Loss: 0.9512
-INFO:local_logger:Epoch[008/800], Step[0500/0626], Avg Loss: 0.9513
-INFO:local_logger:Epoch[008/800], Step[0500/0626], Avg Loss: 0.9511
-INFO:local_logger:Epoch[008/800], Step[0500/0626], Avg Loss: 0.9512
-INFO:local_logger:Epoch[008/800], Step[0600/0626], Avg Loss: 0.9506
-INFO:local_logger:Epoch[008/800], Step[0600/0626], Avg Loss: 0.9506
-INFO:local_logger:Epoch[008/800], Step[0600/0626], Avg Loss: 0.9506
-INFO:local_logger:Epoch[008/800], Step[0600/0626], Avg Loss: 0.9508
-INFO:local_logger:Epoch[008/800], Step[0600/0626], Avg Loss: 0.9505
-INFO:local_logger:Epoch[008/800], Step[0600/0626], Avg Loss: 0.9506
-INFO:local_logger:Epoch[008/800], Step[0600/0626], Avg Loss: 0.9509
-INFO:master_logger:Epoch[008/800], Step[0600/0626], Avg Loss: 0.9506
-INFO:local_logger:Epoch[008/800], Step[0600/0626], Avg Loss: 0.9506
-INFO:local_logger:----- Epoch[008/800], Train Loss: 0.9505, time: 854.97
-INFO:local_logger:Now training epoch 9. LR=0.000035
-INFO:local_logger:----- Epoch[008/800], Train Loss: 0.9507, time: 855.87
-INFO:local_logger:Now training epoch 9. LR=0.000035
-INFO:local_logger:----- Epoch[008/800], Train Loss: 0.9506, time: 855.95
-INFO:local_logger:Now training epoch 9. LR=0.000035
-INFO:local_logger:----- Epoch[008/800], Train Loss: 0.9504, time: 855.93
-INFO:local_logger:Now training epoch 9. LR=0.000035
-INFO:local_logger:----- Epoch[008/800], Train Loss: 0.9504, time: 852.20
-INFO:master_logger:----- Epoch[008/800], Train Loss: 0.9505, time: 852.20
-INFO:local_logger:----- Epoch[008/800], Train Loss: 0.9504, time: 855.94
-INFO:local_logger:----- Epoch[008/800], Train Loss: 0.9504, time: 855.86
-INFO:local_logger:Now training epoch 9. LR=0.000035
-INFO:local_logger:Now training epoch 9. LR=0.000035
-INFO:local_logger:----- Epoch[008/800], Train Loss: 0.9506, time: 855.86
-INFO:local_logger:Now training epoch 9. LR=0.000035
-INFO:local_logger:----- Save model: ./output/train-20211219-17-07-40/MAE-Epoch-8-Loss-0.950418085337367.pdparams
-INFO:local_logger:----- Save optim: ./output/train-20211219-17-07-40/MAE-Epoch-8-Loss-0.950418085337367.pdopt
-INFO:master_logger:----- Save model: ./output/train-20211219-17-07-40/MAE-Epoch-8-Loss-0.950418085337367.pdparams
-INFO:master_logger:----- Save optim: ./output/train-20211219-17-07-40/MAE-Epoch-8-Loss-0.950418085337367.pdopt
-INFO:local_logger:Now training epoch 9. LR=0.000035
-INFO:master_logger:Now training epoch 9. LR=0.000035
-INFO:local_logger:Epoch[009/800], Step[0000/0626], Avg Loss: 0.9532
-INFO:master_logger:Epoch[009/800], Step[0000/0626], Avg Loss: 0.9494
-INFO:local_logger:Epoch[009/800], Step[0000/0626], Avg Loss: 0.9472
-INFO:local_logger:Epoch[009/800], Step[0000/0626], Avg Loss: 0.9535
-INFO:local_logger:Epoch[009/800], Step[0000/0626], Avg Loss: 0.9457
-INFO:local_logger:Epoch[009/800], Step[0000/0626], Avg Loss: 0.9521
-INFO:local_logger:Epoch[009/800], Step[0000/0626], Avg Loss: 0.9484
-INFO:local_logger:Epoch[009/800], Step[0000/0626], Avg Loss: 0.9460
-INFO:local_logger:Epoch[009/800], Step[0000/0626], Avg Loss: 0.9495
-INFO:local_logger:Epoch[009/800], Step[0100/0626], Avg Loss: 0.9469
-INFO:local_logger:Epoch[009/800], Step[0100/0626], Avg Loss: 0.9469
-INFO:local_logger:Epoch[009/800], Step[0100/0626], Avg Loss: 0.9473
-INFO:local_logger:Epoch[009/800], Step[0100/0626], Avg Loss: 0.9469
-INFO:local_logger:Epoch[009/800], Step[0100/0626], Avg Loss: 0.9459
-INFO:master_logger:Epoch[009/800], Step[0100/0626], Avg Loss: 0.9466
-INFO:local_logger:Epoch[009/800], Step[0100/0626], Avg Loss: 0.9459
-INFO:local_logger:Epoch[009/800], Step[0100/0626], Avg Loss: 0.9465
-INFO:local_logger:Epoch[009/800], Step[0100/0626], Avg Loss: 0.9465
-INFO:local_logger:Epoch[009/800], Step[0200/0626], Avg Loss: 0.9466
-INFO:local_logger:Epoch[009/800], Step[0200/0626], Avg Loss: 0.9460
-INFO:local_logger:Epoch[009/800], Step[0200/0626], Avg Loss: 0.9461
-INFO:local_logger:Epoch[009/800], Step[0200/0626], Avg Loss: 0.9462
-INFO:local_logger:Epoch[009/800], Step[0200/0626], Avg Loss: 0.9455
-INFO:local_logger:Epoch[009/800], Step[0200/0626], Avg Loss: 0.9466
-INFO:local_logger:Epoch[009/800], Step[0200/0626], Avg Loss: 0.9460
-INFO:local_logger:Epoch[009/800], Step[0200/0626], Avg Loss: 0.9465
-INFO:master_logger:Epoch[009/800], Step[0200/0626], Avg Loss: 0.9462
-INFO:local_logger:Epoch[009/800], Step[0300/0626], Avg Loss: 0.9455
-INFO:local_logger:Epoch[009/800], Step[0300/0626], Avg Loss: 0.9455
-INFO:local_logger:Epoch[009/800], Step[0300/0626], Avg Loss: 0.9450
-INFO:local_logger:Epoch[009/800], Step[0300/0626], Avg Loss: 0.9451
-INFO:local_logger:Epoch[009/800], Step[0300/0626], Avg Loss: 0.9449
-INFO:local_logger:Epoch[009/800], Step[0300/0626], Avg Loss: 0.9455
-INFO:local_logger:Epoch[009/800], Step[0300/0626], Avg Loss: 0.9452
-INFO:local_logger:Epoch[009/800], Step[0300/0626], Avg Loss: 0.9448
-INFO:master_logger:Epoch[009/800], Step[0300/0626], Avg Loss: 0.9452
-INFO:local_logger:Epoch[009/800], Step[0400/0626], Avg Loss: 0.9441
-INFO:local_logger:Epoch[009/800], Step[0400/0626], Avg Loss: 0.9447
-INFO:local_logger:Epoch[009/800], Step[0400/0626], Avg Loss: 0.9441
-INFO:local_logger:Epoch[009/800], Step[0400/0626], Avg Loss: 0.9444
-INFO:local_logger:Epoch[009/800], Step[0400/0626], Avg Loss: 0.9444
-INFO:master_logger:Epoch[009/800], Step[0400/0626], Avg Loss: 0.9444
-INFO:local_logger:Epoch[009/800], Step[0400/0626], Avg Loss: 0.9445
-INFO:local_logger:Epoch[009/800], Step[0400/0626], Avg Loss: 0.9446
-INFO:local_logger:Epoch[009/800], Step[0400/0626], Avg Loss: 0.9442
-INFO:local_logger:Epoch[009/800], Step[0500/0626], Avg Loss: 0.9437
-INFO:local_logger:Epoch[009/800], Step[0500/0626], Avg Loss: 0.9432
-INFO:local_logger:Epoch[009/800], Step[0500/0626], Avg Loss: 0.9436
-INFO:local_logger:Epoch[009/800], Step[0500/0626], Avg Loss: 0.9435
-INFO:local_logger:Epoch[009/800], Step[0500/0626], Avg Loss: 0.9434
-INFO:local_logger:Epoch[009/800], Step[0500/0626], Avg Loss: 0.9434
-INFO:local_logger:Epoch[009/800], Step[0500/0626], Avg Loss: 0.9434
-INFO:master_logger:Epoch[009/800], Step[0500/0626], Avg Loss: 0.9435
-INFO:local_logger:Epoch[009/800], Step[0500/0626], Avg Loss: 0.9437
-INFO:local_logger:Epoch[009/800], Step[0600/0626], Avg Loss: 0.9426
-INFO:local_logger:Epoch[009/800], Step[0600/0626], Avg Loss: 0.9427
-INFO:local_logger:Epoch[009/800], Step[0600/0626], Avg Loss: 0.9428
-INFO:local_logger:Epoch[009/800], Step[0600/0626], Avg Loss: 0.9423
-INFO:local_logger:Epoch[009/800], Step[0600/0626], Avg Loss: 0.9427
-INFO:local_logger:Epoch[009/800], Step[0600/0626], Avg Loss: 0.9421
-INFO:local_logger:Epoch[009/800], Step[0600/0626], Avg Loss: 0.9426
-INFO:local_logger:Epoch[009/800], Step[0600/0626], Avg Loss: 0.9427
-INFO:master_logger:Epoch[009/800], Step[0600/0626], Avg Loss: 0.9426
-INFO:local_logger:----- Epoch[009/800], Train Loss: 0.9425, time: 891.29
-INFO:local_logger:Now training epoch 10. LR=0.000038
-INFO:local_logger:----- Epoch[009/800], Train Loss: 0.9425, time: 886.67
-INFO:master_logger:----- Epoch[009/800], Train Loss: 0.9424, time: 886.67
-INFO:local_logger:----- Epoch[009/800], Train Loss: 0.9420, time: 891.03
-INFO:local_logger:Now training epoch 10. LR=0.000038
-INFO:local_logger:----- Epoch[009/800], Train Loss: 0.9425, time: 891.03
-INFO:local_logger:Now training epoch 10. LR=0.000038
-INFO:local_logger:----- Epoch[009/800], Train Loss: 0.9421, time: 891.05
-INFO:local_logger:Now training epoch 10. LR=0.000038
-INFO:local_logger:----- Epoch[009/800], Train Loss: 0.9424, time: 891.03
-INFO:local_logger:Now training epoch 10. LR=0.000038
-INFO:local_logger:----- Epoch[009/800], Train Loss: 0.9426, time: 891.05
-INFO:local_logger:Now training epoch 10. LR=0.000038
-INFO:local_logger:----- Epoch[009/800], Train Loss: 0.9425, time: 891.04
-INFO:local_logger:Now training epoch 10. LR=0.000038
-INFO:local_logger:----- Save model: ./output/train-20211219-17-07-40/MAE-Epoch-9-Loss-0.9425096387053156.pdparams
-INFO:local_logger:----- Save optim: ./output/train-20211219-17-07-40/MAE-Epoch-9-Loss-0.9425096387053156.pdopt
-INFO:master_logger:----- Save model: ./output/train-20211219-17-07-40/MAE-Epoch-9-Loss-0.9425096387053156.pdparams
-INFO:master_logger:----- Save optim: ./output/train-20211219-17-07-40/MAE-Epoch-9-Loss-0.9425096387053156.pdopt
-INFO:local_logger:Now training epoch 10. LR=0.000038
-INFO:master_logger:Now training epoch 10. LR=0.000038
-INFO:local_logger:Epoch[010/800], Step[0000/0626], Avg Loss: 0.9389
-INFO:local_logger:Epoch[010/800], Step[0000/0626], Avg Loss: 0.9403
-INFO:master_logger:Epoch[010/800], Step[0000/0626], Avg Loss: 0.9385
-INFO:local_logger:Epoch[010/800], Step[0000/0626], Avg Loss: 0.9304
-INFO:local_logger:Epoch[010/800], Step[0000/0626], Avg Loss: 0.9343
-INFO:local_logger:Epoch[010/800], Step[0000/0626], Avg Loss: 0.9450
-INFO:local_logger:Epoch[010/800], Step[0000/0626], Avg Loss: 0.9331
-INFO:local_logger:Epoch[010/800], Step[0000/0626], Avg Loss: 0.9421
-INFO:local_logger:Epoch[010/800], Step[0000/0626], Avg Loss: 0.9438
-INFO:local_logger:Epoch[010/800], Step[0100/0626], Avg Loss: 0.9362
-INFO:local_logger:Epoch[010/800], Step[0100/0626], Avg Loss: 0.9361
-INFO:local_logger:Epoch[010/800], Step[0100/0626], Avg Loss: 0.9356
-INFO:local_logger:Epoch[010/800], Step[0100/0626], Avg Loss: 0.9360
-INFO:master_logger:Epoch[010/800], Step[0100/0626], Avg Loss: 0.9362
-INFO:local_logger:Epoch[010/800], Step[0100/0626], Avg Loss: 0.9362
-INFO:local_logger:Epoch[010/800], Step[0100/0626], Avg Loss: 0.9361
-INFO:local_logger:Epoch[010/800], Step[0100/0626], Avg Loss: 0.9361
-INFO:local_logger:Epoch[010/800], Step[0100/0626], Avg Loss: 0.9371
-INFO:local_logger:Epoch[010/800], Step[0200/0626], Avg Loss: 0.9354
-INFO:local_logger:Epoch[010/800], Step[0200/0626], Avg Loss: 0.9358
-INFO:local_logger:Epoch[010/800], Step[0200/0626], Avg Loss: 0.9355
-INFO:local_logger:Epoch[010/800], Step[0200/0626], Avg Loss: 0.9355
-INFO:master_logger:Epoch[010/800], Step[0200/0626], Avg Loss: 0.9357
-INFO:local_logger:Epoch[010/800], Step[0200/0626], Avg Loss: 0.9360
-INFO:local_logger:Epoch[010/800], Step[0200/0626], Avg Loss: 0.9355
-INFO:local_logger:Epoch[010/800], Step[0200/0626], Avg Loss: 0.9359
-INFO:local_logger:Epoch[010/800], Step[0200/0626], Avg Loss: 0.9358
-INFO:local_logger:Epoch[010/800], Step[0300/0626], Avg Loss: 0.9345
-INFO:local_logger:Epoch[010/800], Step[0300/0626], Avg Loss: 0.9350
-INFO:local_logger:Epoch[010/800], Step[0300/0626], Avg Loss: 0.9346
-INFO:local_logger:Epoch[010/800], Step[0300/0626], Avg Loss: 0.9345
-INFO:local_logger:Epoch[010/800], Step[0300/0626], Avg Loss: 0.9348
-INFO:local_logger:Epoch[010/800], Step[0300/0626], Avg Loss: 0.9348
-INFO:master_logger:Epoch[010/800], Step[0300/0626], Avg Loss: 0.9348
-INFO:local_logger:Epoch[010/800], Step[0300/0626], Avg Loss: 0.9348
-INFO:local_logger:Epoch[010/800], Step[0300/0626], Avg Loss: 0.9350
-INFO:local_logger:Epoch[010/800], Step[0400/0626], Avg Loss: 0.9337
-INFO:local_logger:Epoch[010/800], Step[0400/0626], Avg Loss: 0.9337
-INFO:local_logger:Epoch[010/800], Step[0400/0626], Avg Loss: 0.9336
-INFO:local_logger:Epoch[010/800], Step[0400/0626], Avg Loss: 0.9339
-INFO:local_logger:Epoch[010/800], Step[0400/0626], Avg Loss: 0.9340
-INFO:local_logger:Epoch[010/800], Step[0400/0626], Avg Loss: 0.9340
-INFO:local_logger:Epoch[010/800], Step[0400/0626], Avg Loss: 0.9340
-INFO:master_logger:Epoch[010/800], Step[0400/0626], Avg Loss: 0.9338
-INFO:local_logger:Epoch[010/800], Step[0400/0626], Avg Loss: 0.9337
-INFO:local_logger:Epoch[010/800], Step[0500/0626], Avg Loss: 0.9330
-INFO:local_logger:Epoch[010/800], Step[0500/0626], Avg Loss: 0.9327
-INFO:local_logger:Epoch[010/800], Step[0500/0626], Avg Loss: 0.9328
-INFO:local_logger:Epoch[010/800], Step[0500/0626], Avg Loss: 0.9328
-INFO:local_logger:Epoch[010/800], Step[0500/0626], Avg Loss: 0.9330
-INFO:master_logger:Epoch[010/800], Step[0500/0626], Avg Loss: 0.9329
-INFO:local_logger:Epoch[010/800], Step[0500/0626], Avg Loss: 0.9326
-INFO:local_logger:Epoch[010/800], Step[0500/0626], Avg Loss: 0.9329
-INFO:local_logger:Epoch[010/800], Step[0500/0626], Avg Loss: 0.9330
-INFO:local_logger:Epoch[010/800], Step[0600/0626], Avg Loss: 0.9320
-INFO:local_logger:Epoch[010/800], Step[0600/0626], Avg Loss: 0.9320
-INFO:local_logger:Epoch[010/800], Step[0600/0626], Avg Loss: 0.9323
-INFO:local_logger:Epoch[010/800], Step[0600/0626], Avg Loss: 0.9321
-INFO:local_logger:Epoch[010/800], Step[0600/0626], Avg Loss: 0.9322
-INFO:local_logger:Epoch[010/800], Step[0600/0626], Avg Loss: 0.9321
-INFO:local_logger:Epoch[010/800], Step[0600/0626], Avg Loss: 0.9320
-INFO:local_logger:Epoch[010/800], Step[0600/0626], Avg Loss: 0.9321
-INFO:master_logger:Epoch[010/800], Step[0600/0626], Avg Loss: 0.9321
-INFO:local_logger:----- Epoch[010/800], Train Loss: 0.9317, time: 857.40
-INFO:local_logger:Now training epoch 11. LR=0.000042
-INFO:local_logger:----- Epoch[010/800], Train Loss: 0.9320, time: 857.41
-INFO:local_logger:Now training epoch 11. LR=0.000042
-INFO:local_logger:----- Epoch[010/800], Train Loss: 0.9318, time: 854.67
-INFO:master_logger:----- Epoch[010/800], Train Loss: 0.9318, time: 854.67
-INFO:local_logger:----- Epoch[010/800], Train Loss: 0.9318, time: 858.49
-INFO:local_logger:Now training epoch 11. LR=0.000042
-INFO:local_logger:----- Epoch[010/800], Train Loss: 0.9319, time: 857.80
-INFO:local_logger:Now training epoch 11. LR=0.000042
-INFO:local_logger:----- Epoch[010/800], Train Loss: 0.9319, time: 857.83
-INFO:local_logger:Now training epoch 11. LR=0.000042
-INFO:local_logger:----- Epoch[010/800], Train Loss: 0.9319, time: 857.81
-INFO:local_logger:Now training epoch 11. LR=0.000042
-INFO:local_logger:----- Epoch[010/800], Train Loss: 0.9318, time: 857.82
-INFO:local_logger:Now training epoch 11. LR=0.000042
-INFO:local_logger:----- Save model: ./output/train-20211219-17-07-40/MAE-Epoch-10-Loss-0.9318290638491608.pdparams
-INFO:local_logger:----- Save optim: ./output/train-20211219-17-07-40/MAE-Epoch-10-Loss-0.9318290638491608.pdopt
-INFO:master_logger:----- Save model: ./output/train-20211219-17-07-40/MAE-Epoch-10-Loss-0.9318290638491608.pdparams
-INFO:master_logger:----- Save optim: ./output/train-20211219-17-07-40/MAE-Epoch-10-Loss-0.9318290638491608.pdopt
-INFO:local_logger:Now training epoch 11. LR=0.000042
-INFO:master_logger:Now training epoch 11. LR=0.000042
-INFO:local_logger:Epoch[011/800], Step[0000/0626], Avg Loss: 0.9246
-INFO:local_logger:Epoch[011/800], Step[0000/0626], Avg Loss: 0.9293
-INFO:master_logger:Epoch[011/800], Step[0000/0626], Avg Loss: 0.9253
-INFO:local_logger:Epoch[011/800], Step[0000/0626], Avg Loss: 0.9166
-INFO:local_logger:Epoch[011/800], Step[0000/0626], Avg Loss: 0.9227
-INFO:local_logger:Epoch[011/800], Step[0000/0626], Avg Loss: 0.9325
-INFO:local_logger:Epoch[011/800], Step[0000/0626], Avg Loss: 0.9194
-INFO:local_logger:Epoch[011/800], Step[0000/0626], Avg Loss: 0.9280
-INFO:local_logger:Epoch[011/800], Step[0000/0626], Avg Loss: 0.9296
-INFO:local_logger:Epoch[011/800], Step[0100/0626], Avg Loss: 0.9257
-INFO:local_logger:Epoch[011/800], Step[0100/0626], Avg Loss: 0.9242
-INFO:local_logger:Epoch[011/800], Step[0100/0626], Avg Loss: 0.9247
-INFO:local_logger:Epoch[011/800], Step[0100/0626], Avg Loss: 0.9260
-INFO:local_logger:Epoch[011/800], Step[0100/0626], Avg Loss: 0.9256
-INFO:master_logger:Epoch[011/800], Step[0100/0626], Avg Loss: 0.9254
-INFO:local_logger:Epoch[011/800], Step[0100/0626], Avg Loss: 0.9255
-INFO:local_logger:Epoch[011/800], Step[0100/0626], Avg Loss: 0.9251
-INFO:local_logger:Epoch[011/800], Step[0100/0626], Avg Loss: 0.9261
-INFO:local_logger:Epoch[011/800], Step[0200/0626], Avg Loss: 0.9257
-INFO:local_logger:Epoch[011/800], Step[0200/0626], Avg Loss: 0.9247
-INFO:local_logger:Epoch[011/800], Step[0200/0626], Avg Loss: 0.9255
-INFO:local_logger:Epoch[011/800], Step[0200/0626], Avg Loss: 0.9252
-INFO:local_logger:Epoch[011/800], Step[0200/0626], Avg Loss: 0.9255
-INFO:master_logger:Epoch[011/800], Step[0200/0626], Avg Loss: 0.9252
-INFO:local_logger:Epoch[011/800], Step[0200/0626], Avg Loss: 0.9245
-INFO:local_logger:Epoch[011/800], Step[0200/0626], Avg Loss: 0.9253
-INFO:local_logger:Epoch[011/800], Step[0200/0626], Avg Loss: 0.9256
-INFO:local_logger:Epoch[011/800], Step[0300/0626], Avg Loss: 0.9241
-INFO:local_logger:Epoch[011/800], Step[0300/0626], Avg Loss: 0.9237
-INFO:local_logger:Epoch[011/800], Step[0300/0626], Avg Loss: 0.9244
-INFO:local_logger:Epoch[011/800], Step[0300/0626], Avg Loss: 0.9244
-INFO:local_logger:Epoch[011/800], Step[0300/0626], Avg Loss: 0.9246
-INFO:local_logger:Epoch[011/800], Step[0300/0626], Avg Loss: 0.9238
-INFO:local_logger:Epoch[011/800], Step[0300/0626], Avg Loss: 0.9242
-INFO:local_logger:Epoch[011/800], Step[0300/0626], Avg Loss: 0.9241
-INFO:master_logger:Epoch[011/800], Step[0300/0626], Avg Loss: 0.9242
-INFO:local_logger:Epoch[011/800], Step[0400/0626], Avg Loss: 0.9234
-INFO:local_logger:Epoch[011/800], Step[0400/0626], Avg Loss: 0.9229
-INFO:local_logger:Epoch[011/800], Step[0400/0626], Avg Loss: 0.9234
-INFO:local_logger:Epoch[011/800], Step[0400/0626], Avg Loss: 0.9229
-INFO:local_logger:Epoch[011/800], Step[0400/0626], Avg Loss: 0.9234
-INFO:local_logger:Epoch[011/800], Step[0400/0626], Avg Loss: 0.9233
-INFO:local_logger:Epoch[011/800], Step[0400/0626], Avg Loss: 0.9233
-INFO:master_logger:Epoch[011/800], Step[0400/0626], Avg Loss: 0.9232
-INFO:local_logger:Epoch[011/800], Step[0400/0626], Avg Loss: 0.9235
-INFO:local_logger:Epoch[011/800], Step[0500/0626], Avg Loss: 0.9224
-INFO:local_logger:Epoch[011/800], Step[0500/0626], Avg Loss: 0.9222
-INFO:local_logger:Epoch[011/800], Step[0500/0626], Avg Loss: 0.9225
-INFO:local_logger:Epoch[011/800], Step[0500/0626], Avg Loss: 0.9217
-INFO:local_logger:Epoch[011/800], Step[0500/0626], Avg Loss: 0.9223
-INFO:local_logger:Epoch[011/800], Step[0500/0626], Avg Loss: 0.9222
-INFO:local_logger:Epoch[011/800], Step[0500/0626], Avg Loss: 0.9219
-INFO:master_logger:Epoch[011/800], Step[0500/0626], Avg Loss: 0.9222
-INFO:local_logger:Epoch[011/800], Step[0500/0626], Avg Loss: 0.9223
-INFO:local_logger:Epoch[011/800], Step[0600/0626], Avg Loss: 0.9214
-INFO:local_logger:Epoch[011/800], Step[0600/0626], Avg Loss: 0.9207
-INFO:local_logger:Epoch[011/800], Step[0600/0626], Avg Loss: 0.9211
-INFO:local_logger:Epoch[011/800], Step[0600/0626], Avg Loss: 0.9211
-INFO:local_logger:Epoch[011/800], Step[0600/0626], Avg Loss: 0.9210
-INFO:local_logger:Epoch[011/800], Step[0600/0626], Avg Loss: 0.9212
-INFO:master_logger:Epoch[011/800], Step[0600/0626], Avg Loss: 0.9211
-INFO:local_logger:Epoch[011/800], Step[0600/0626], Avg Loss: 0.9212
-INFO:local_logger:Epoch[011/800], Step[0600/0626], Avg Loss: 0.9213
-INFO:local_logger:----- Epoch[011/800], Train Loss: 0.9209, time: 888.60
-INFO:local_logger:----- Epoch[011/800], Train Loss: 0.9210, time: 888.60
-INFO:local_logger:----- Epoch[011/800], Train Loss: 0.9208, time: 889.00
-INFO:local_logger:Now training epoch 12. LR=0.000046
-INFO:local_logger:Now training epoch 12. LR=0.000046
-INFO:local_logger:Now training epoch 12. LR=0.000046
-INFO:local_logger:----- Epoch[011/800], Train Loss: 0.9209, time: 888.65
-INFO:local_logger:Now training epoch 12. LR=0.000046
-INFO:local_logger:----- Epoch[011/800], Train Loss: 0.9209, time: 884.67
-INFO:master_logger:----- Epoch[011/800], Train Loss: 0.9209, time: 884.67
-INFO:local_logger:----- Epoch[011/800], Train Loss: 0.9205, time: 888.70
-INFO:local_logger:----- Epoch[011/800], Train Loss: 0.9211, time: 889.09
-INFO:local_logger:Now training epoch 12. LR=0.000046
-INFO:local_logger:Now training epoch 12. LR=0.000046
-INFO:local_logger:----- Epoch[011/800], Train Loss: 0.9209, time: 888.68
-INFO:local_logger:Now training epoch 12. LR=0.000046
-INFO:local_logger:----- Save model: ./output/train-20211219-17-07-40/MAE-Epoch-11-Loss-0.9209032249693648.pdparams
-INFO:local_logger:----- Save optim: ./output/train-20211219-17-07-40/MAE-Epoch-11-Loss-0.9209032249693648.pdopt
-INFO:master_logger:----- Save model: ./output/train-20211219-17-07-40/MAE-Epoch-11-Loss-0.9209032249693648.pdparams
-INFO:master_logger:----- Save optim: ./output/train-20211219-17-07-40/MAE-Epoch-11-Loss-0.9209032249693648.pdopt
-INFO:local_logger:Now training epoch 12. LR=0.000046
-INFO:master_logger:Now training epoch 12. LR=0.000046
-INFO:local_logger:Epoch[012/800], Step[0000/0626], Avg Loss: 0.9086
-INFO:local_logger:Epoch[012/800], Step[0000/0626], Avg Loss: 0.9130
-INFO:master_logger:Epoch[012/800], Step[0000/0626], Avg Loss: 0.9125
-INFO:local_logger:Epoch[012/800], Step[0000/0626], Avg Loss: 0.9171
-INFO:local_logger:Epoch[012/800], Step[0000/0626], Avg Loss: 0.9156
-INFO:local_logger:Epoch[012/800], Step[0000/0626], Avg Loss: 0.9156
-INFO:local_logger:Epoch[012/800], Step[0000/0626], Avg Loss: 0.9171
-INFO:local_logger:Epoch[012/800], Step[0000/0626], Avg Loss: 0.9090
-INFO:local_logger:Epoch[012/800], Step[0000/0626], Avg Loss: 0.9038
-INFO:local_logger:Epoch[012/800], Step[0100/0626], Avg Loss: 0.9149
-INFO:local_logger:Epoch[012/800], Step[0100/0626], Avg Loss: 0.9150
-INFO:local_logger:Epoch[012/800], Step[0100/0626], Avg Loss: 0.9146
-INFO:local_logger:Epoch[012/800], Step[0100/0626], Avg Loss: 0.9152
-INFO:local_logger:Epoch[012/800], Step[0100/0626], Avg Loss: 0.9145
-INFO:local_logger:Epoch[012/800], Step[0100/0626], Avg Loss: 0.9153
-INFO:master_logger:Epoch[012/800], Step[0100/0626], Avg Loss: 0.9149
-INFO:local_logger:Epoch[012/800], Step[0100/0626], Avg Loss: 0.9149
-INFO:local_logger:Epoch[012/800], Step[0100/0626], Avg Loss: 0.9149
-INFO:local_logger:Epoch[012/800], Step[0200/0626], Avg Loss: 0.9144
-INFO:local_logger:Epoch[012/800], Step[0200/0626], Avg Loss: 0.9141
-INFO:local_logger:Epoch[012/800], Step[0200/0626], Avg Loss: 0.9138
-INFO:local_logger:Epoch[012/800], Step[0200/0626], Avg Loss: 0.9139
-INFO:local_logger:Epoch[012/800], Step[0200/0626], Avg Loss: 0.9143
-INFO:local_logger:Epoch[012/800], Step[0200/0626], Avg Loss: 0.9141
-INFO:local_logger:Epoch[012/800], Step[0200/0626], Avg Loss: 0.9142
-INFO:master_logger:Epoch[012/800], Step[0200/0626], Avg Loss: 0.9142
-INFO:local_logger:Epoch[012/800], Step[0200/0626], Avg Loss: 0.9145
-INFO:local_logger:Epoch[012/800], Step[0300/0626], Avg Loss: 0.9128
-INFO:local_logger:Epoch[012/800], Step[0300/0626], Avg Loss: 0.9132
-INFO:local_logger:Epoch[012/800], Step[0300/0626], Avg Loss: 0.9126
-INFO:local_logger:Epoch[012/800], Step[0300/0626], Avg Loss: 0.9129
-INFO:local_logger:Epoch[012/800], Step[0300/0626], Avg Loss: 0.9133
-INFO:local_logger:Epoch[012/800], Step[0300/0626], Avg Loss: 0.9131
-INFO:master_logger:Epoch[012/800], Step[0300/0626], Avg Loss: 0.9130
-INFO:local_logger:Epoch[012/800], Step[0300/0626], Avg Loss: 0.9127
-INFO:local_logger:Epoch[012/800], Step[0300/0626], Avg Loss: 0.9132
-INFO:local_logger:Epoch[012/800], Step[0400/0626], Avg Loss: 0.9121
-INFO:local_logger:Epoch[012/800], Step[0400/0626], Avg Loss: 0.9115
-INFO:local_logger:Epoch[012/800], Step[0400/0626], Avg Loss: 0.9118
-INFO:local_logger:Epoch[012/800], Step[0400/0626], Avg Loss: 0.9120
-INFO:master_logger:Epoch[012/800], Step[0400/0626], Avg Loss: 0.9119
-INFO:local_logger:Epoch[012/800], Step[0400/0626], Avg Loss: 0.9117
-INFO:local_logger:Epoch[012/800], Step[0400/0626], Avg Loss: 0.9118
-INFO:local_logger:Epoch[012/800], Step[0400/0626], Avg Loss: 0.9119
-INFO:local_logger:Epoch[012/800], Step[0400/0626], Avg Loss: 0.9121
-INFO:local_logger:Epoch[012/800], Step[0500/0626], Avg Loss: 0.9113
-INFO:local_logger:Epoch[012/800], Step[0500/0626], Avg Loss: 0.9111
-INFO:local_logger:Epoch[012/800], Step[0500/0626], Avg Loss: 0.9111
-INFO:local_logger:Epoch[012/800], Step[0500/0626], Avg Loss: 0.9108
-INFO:local_logger:Epoch[012/800], Step[0500/0626], Avg Loss: 0.9108
-INFO:master_logger:Epoch[012/800], Step[0500/0626], Avg Loss: 0.9111
-INFO:local_logger:Epoch[012/800], Step[0500/0626], Avg Loss: 0.9111
-INFO:local_logger:Epoch[012/800], Step[0500/0626], Avg Loss: 0.9113
-INFO:local_logger:Epoch[012/800], Step[0500/0626], Avg Loss: 0.9112
-INFO:local_logger:Epoch[012/800], Step[0600/0626], Avg Loss: 0.9103
-INFO:local_logger:Epoch[012/800], Step[0600/0626], Avg Loss: 0.9101
-INFO:local_logger:Epoch[012/800], Step[0600/0626], Avg Loss: 0.9102
-INFO:local_logger:Epoch[012/800], Step[0600/0626], Avg Loss: 0.9105
-INFO:local_logger:Epoch[012/800], Step[0600/0626], Avg Loss: 0.9103
-INFO:local_logger:Epoch[012/800], Step[0600/0626], Avg Loss: 0.9103
-INFO:local_logger:Epoch[012/800], Step[0600/0626], Avg Loss: 0.9101
-INFO:local_logger:Epoch[012/800], Step[0600/0626], Avg Loss: 0.9099
-INFO:master_logger:Epoch[012/800], Step[0600/0626], Avg Loss: 0.9102
-INFO:local_logger:----- Epoch[012/800], Train Loss: 0.9102, time: 850.59
-INFO:local_logger:Now training epoch 13. LR=0.000049
-INFO:local_logger:----- Epoch[012/800], Train Loss: 0.9099, time: 850.55
-INFO:local_logger:Now training epoch 13. LR=0.000049
-INFO:local_logger:----- Epoch[012/800], Train Loss: 0.9104, time: 851.02
-INFO:local_logger:Now training epoch 13. LR=0.000049
-INFO:local_logger:----- Epoch[012/800], Train Loss: 0.9099, time: 851.10
-INFO:local_logger:Now training epoch 13. LR=0.000049
-INFO:local_logger:----- Epoch[012/800], Train Loss: 0.9100, time: 851.10
-INFO:local_logger:Now training epoch 13. LR=0.000049
-INFO:local_logger:----- Epoch[012/800], Train Loss: 0.9097, time: 847.34
-INFO:master_logger:----- Epoch[012/800], Train Loss: 0.9101, time: 847.34
-INFO:local_logger:----- Epoch[012/800], Train Loss: 0.9101, time: 851.03
-INFO:local_logger:----- Epoch[012/800], Train Loss: 0.9101, time: 851.05
-INFO:local_logger:Now training epoch 13. LR=0.000049
-INFO:local_logger:Now training epoch 13. LR=0.000049
-INFO:local_logger:----- Save model: ./output/train-20211219-17-07-40/MAE-Epoch-12-Loss-0.9097320030754859.pdparams
-INFO:local_logger:----- Save optim: ./output/train-20211219-17-07-40/MAE-Epoch-12-Loss-0.9097320030754859.pdopt
-INFO:master_logger:----- Save model: ./output/train-20211219-17-07-40/MAE-Epoch-12-Loss-0.9097320030754859.pdparams
-INFO:master_logger:----- Save optim: ./output/train-20211219-17-07-40/MAE-Epoch-12-Loss-0.9097320030754859.pdopt
-INFO:local_logger:Now training epoch 13. LR=0.000049
-INFO:master_logger:Now training epoch 13. LR=0.000049
-INFO:local_logger:Epoch[013/800], Step[0000/0626], Avg Loss: 0.9093
-INFO:local_logger:Epoch[013/800], Step[0000/0626], Avg Loss: 0.9118
-INFO:master_logger:Epoch[013/800], Step[0000/0626], Avg Loss: 0.9072
-INFO:local_logger:Epoch[013/800], Step[0000/0626], Avg Loss: 0.9034
-INFO:local_logger:Epoch[013/800], Step[0000/0626], Avg Loss: 0.9130
-INFO:local_logger:Epoch[013/800], Step[0000/0626], Avg Loss: 0.9112
-INFO:local_logger:Epoch[013/800], Step[0000/0626], Avg Loss: 0.9077
-INFO:local_logger:Epoch[013/800], Step[0000/0626], Avg Loss: 0.9036
-INFO:local_logger:Epoch[013/800], Step[0000/0626], Avg Loss: 0.8972
-INFO:local_logger:Epoch[013/800], Step[0100/0626], Avg Loss: 0.9039
-INFO:local_logger:Epoch[013/800], Step[0100/0626], Avg Loss: 0.9045
-INFO:local_logger:Epoch[013/800], Step[0100/0626], Avg Loss: 0.9040
-INFO:local_logger:Epoch[013/800], Step[0100/0626], Avg Loss: 0.9050
-INFO:local_logger:Epoch[013/800], Step[0100/0626], Avg Loss: 0.9046
-INFO:master_logger:Epoch[013/800], Step[0100/0626], Avg Loss: 0.9044
-INFO:local_logger:Epoch[013/800], Step[0100/0626], Avg Loss: 0.9047
-INFO:local_logger:Epoch[013/800], Step[0100/0626], Avg Loss: 0.9041
-INFO:local_logger:Epoch[013/800], Step[0100/0626], Avg Loss: 0.9043
-INFO:local_logger:Epoch[013/800], Step[0200/0626], Avg Loss: 0.9035
-INFO:local_logger:Epoch[013/800], Step[0200/0626], Avg Loss: 0.9038
-INFO:local_logger:Epoch[013/800], Step[0200/0626], Avg Loss: 0.9041
-INFO:local_logger:Epoch[013/800], Step[0200/0626], Avg Loss: 0.9039
-INFO:local_logger:Epoch[013/800], Step[0200/0626], Avg Loss: 0.9040
-INFO:master_logger:Epoch[013/800], Step[0200/0626], Avg Loss: 0.9039
-INFO:local_logger:Epoch[013/800], Step[0200/0626], Avg Loss: 0.9040
-INFO:local_logger:Epoch[013/800], Step[0200/0626], Avg Loss: 0.9039
-INFO:local_logger:Epoch[013/800], Step[0200/0626], Avg Loss: 0.9040
-INFO:local_logger:Epoch[013/800], Step[0300/0626], Avg Loss: 0.9027
-INFO:local_logger:Epoch[013/800], Step[0300/0626], Avg Loss: 0.9024
-INFO:local_logger:Epoch[013/800], Step[0300/0626], Avg Loss: 0.9030
-INFO:local_logger:Epoch[013/800], Step[0300/0626], Avg Loss: 0.9027
-INFO:local_logger:Epoch[013/800], Step[0300/0626], Avg Loss: 0.9029
-INFO:local_logger:Epoch[013/800], Step[0300/0626], Avg Loss: 0.9032
-INFO:local_logger:Epoch[013/800], Step[0300/0626], Avg Loss: 0.9029
-INFO:master_logger:Epoch[013/800], Step[0300/0626], Avg Loss: 0.9028
-INFO:local_logger:Epoch[013/800], Step[0300/0626], Avg Loss: 0.9029
-INFO:local_logger:Epoch[013/800], Step[0400/0626], Avg Loss: 0.9021
-INFO:local_logger:Epoch[013/800], Step[0400/0626], Avg Loss: 0.9018
-INFO:local_logger:Epoch[013/800], Step[0400/0626], Avg Loss: 0.9023
-INFO:local_logger:Epoch[013/800], Step[0400/0626], Avg Loss: 0.9018
-INFO:local_logger:Epoch[013/800], Step[0400/0626], Avg Loss: 0.9019
-INFO:master_logger:Epoch[013/800], Step[0400/0626], Avg Loss: 0.9019
-INFO:local_logger:Epoch[013/800], Step[0400/0626], Avg Loss: 0.9015
-INFO:local_logger:Epoch[013/800], Step[0400/0626], Avg Loss: 0.9020
-INFO:local_logger:Epoch[013/800], Step[0400/0626], Avg Loss: 0.9016
-INFO:local_logger:Epoch[013/800], Step[0500/0626], Avg Loss: 0.9012
-INFO:local_logger:Epoch[013/800], Step[0500/0626], Avg Loss: 0.9014
-INFO:local_logger:Epoch[013/800], Step[0500/0626], Avg Loss: 0.9018
-INFO:local_logger:Epoch[013/800], Step[0500/0626], Avg Loss: 0.9013
-INFO:master_logger:Epoch[013/800], Step[0500/0626], Avg Loss: 0.9013
-INFO:local_logger:Epoch[013/800], Step[0500/0626], Avg Loss: 0.9014
-INFO:local_logger:Epoch[013/800], Step[0500/0626], Avg Loss: 0.9011
-INFO:local_logger:Epoch[013/800], Step[0500/0626], Avg Loss: 0.9008
-INFO:local_logger:Epoch[013/800], Step[0500/0626], Avg Loss: 0.9010
-INFO:local_logger:Epoch[013/800], Step[0600/0626], Avg Loss: 0.9002
-INFO:local_logger:Epoch[013/800], Step[0600/0626], Avg Loss: 0.9003
-INFO:local_logger:Epoch[013/800], Step[0600/0626], Avg Loss: 0.9009
-INFO:master_logger:Epoch[013/800], Step[0600/0626], Avg Loss: 0.9003
-INFO:local_logger:Epoch[013/800], Step[0600/0626], Avg Loss: 0.8999
-INFO:local_logger:Epoch[013/800], Step[0600/0626], Avg Loss: 0.9002
-INFO:local_logger:Epoch[013/800], Step[0600/0626], Avg Loss: 0.9001
-INFO:local_logger:Epoch[013/800], Step[0600/0626], Avg Loss: 0.9003
-INFO:local_logger:Epoch[013/800], Step[0600/0626], Avg Loss: 0.9006
-INFO:local_logger:----- Epoch[013/800], Train Loss: 0.9000, time: 883.21
-INFO:local_logger:Now training epoch 14. LR=0.000053
-INFO:local_logger:----- Epoch[013/800], Train Loss: 0.8998, time: 883.55
-INFO:local_logger:Now training epoch 14. LR=0.000053
-INFO:local_logger:----- Epoch[013/800], Train Loss: 0.9000, time: 879.83
-INFO:master_logger:----- Epoch[013/800], Train Loss: 0.9000, time: 879.83
-INFO:local_logger:----- Epoch[013/800], Train Loss: 0.8996, time: 883.81
-INFO:local_logger:Now training epoch 14. LR=0.000053
-INFO:local_logger:----- Epoch[013/800], Train Loss: 0.9003, time: 884.67
-INFO:local_logger:Now training epoch 14. LR=0.000053
-INFO:local_logger:----- Epoch[013/800], Train Loss: 0.8999, time: 884.16
-INFO:local_logger:Now training epoch 14. LR=0.000053
-INFO:local_logger:----- Epoch[013/800], Train Loss: 0.9005, time: 884.17
-INFO:local_logger:Now training epoch 14. LR=0.000053
-INFO:local_logger:----- Epoch[013/800], Train Loss: 0.8999, time: 884.64
-INFO:local_logger:Now training epoch 14. LR=0.000053
-INFO:local_logger:----- Save model: ./output/train-20211219-17-07-40/MAE-Epoch-13-Loss-0.9000374903566999.pdparams
-INFO:local_logger:----- Save optim: ./output/train-20211219-17-07-40/MAE-Epoch-13-Loss-0.9000374903566999.pdopt
-INFO:master_logger:----- Save model: ./output/train-20211219-17-07-40/MAE-Epoch-13-Loss-0.9000374903566999.pdparams
-INFO:master_logger:----- Save optim: ./output/train-20211219-17-07-40/MAE-Epoch-13-Loss-0.9000374903566999.pdopt
-INFO:local_logger:Now training epoch 14. LR=0.000053
-INFO:master_logger:Now training epoch 14. LR=0.000053
-INFO:local_logger:Epoch[014/800], Step[0000/0626], Avg Loss: 0.8904
-INFO:master_logger:Epoch[014/800], Step[0000/0626], Avg Loss: 0.8921
-INFO:local_logger:Epoch[014/800], Step[0000/0626], Avg Loss: 0.8961
-INFO:local_logger:Epoch[014/800], Step[0000/0626], Avg Loss: 0.8964
-INFO:local_logger:Epoch[014/800], Step[0000/0626], Avg Loss: 0.8893
-INFO:local_logger:Epoch[014/800], Step[0000/0626], Avg Loss: 0.8854
-INFO:local_logger:Epoch[014/800], Step[0000/0626], Avg Loss: 0.8944
-INFO:local_logger:Epoch[014/800], Step[0000/0626], Avg Loss: 0.8877
-INFO:local_logger:Epoch[014/800], Step[0000/0626], Avg Loss: 0.8971
-INFO:local_logger:Epoch[014/800], Step[0100/0626], Avg Loss: 0.8953
-INFO:local_logger:Epoch[014/800], Step[0100/0626], Avg Loss: 0.8955
-INFO:local_logger:Epoch[014/800], Step[0100/0626], Avg Loss: 0.8938
-INFO:local_logger:Epoch[014/800], Step[0100/0626], Avg Loss: 0.8954
-INFO:master_logger:Epoch[014/800], Step[0100/0626], Avg Loss: 0.8951
-INFO:local_logger:Epoch[014/800], Step[0100/0626], Avg Loss: 0.8947
-INFO:local_logger:Epoch[014/800], Step[0100/0626], Avg Loss: 0.8947
-INFO:local_logger:Epoch[014/800], Step[0100/0626], Avg Loss: 0.8950
-INFO:local_logger:Epoch[014/800], Step[0100/0626], Avg Loss: 0.8962
-INFO:local_logger:Epoch[014/800], Step[0200/0626], Avg Loss: 0.8930
-INFO:local_logger:Epoch[014/800], Step[0200/0626], Avg Loss: 0.8934
-INFO:local_logger:Epoch[014/800], Step[0200/0626], Avg Loss: 0.8928
-INFO:local_logger:Epoch[014/800], Step[0200/0626], Avg Loss: 0.8927
-INFO:local_logger:Epoch[014/800], Step[0200/0626], Avg Loss: 0.8928
-INFO:local_logger:Epoch[014/800], Step[0200/0626], Avg Loss: 0.8934
-INFO:master_logger:Epoch[014/800], Step[0200/0626], Avg Loss: 0.8931
-INFO:local_logger:Epoch[014/800], Step[0200/0626], Avg Loss: 0.8934
-INFO:local_logger:Epoch[014/800], Step[0200/0626], Avg Loss: 0.8931
-INFO:local_logger:Epoch[014/800], Step[0300/0626], Avg Loss: 0.8927
-INFO:local_logger:Epoch[014/800], Step[0300/0626], Avg Loss: 0.8919
-INFO:local_logger:Epoch[014/800], Step[0300/0626], Avg Loss: 0.8921
-INFO:local_logger:Epoch[014/800], Step[0300/0626], Avg Loss: 0.8920
-INFO:local_logger:Epoch[014/800], Step[0300/0626], Avg Loss: 0.8926
-INFO:local_logger:Epoch[014/800], Step[0300/0626], Avg Loss: 0.8924
-INFO:local_logger:Epoch[014/800], Step[0300/0626], Avg Loss: 0.8919
-INFO:master_logger:Epoch[014/800], Step[0300/0626], Avg Loss: 0.8922
-INFO:local_logger:Epoch[014/800], Step[0300/0626], Avg Loss: 0.8920
-INFO:local_logger:Epoch[014/800], Step[0400/0626], Avg Loss: 0.8909
-INFO:local_logger:Epoch[014/800], Step[0400/0626], Avg Loss: 0.8914
-INFO:local_logger:Epoch[014/800], Step[0400/0626], Avg Loss: 0.8908
-INFO:local_logger:Epoch[014/800], Step[0400/0626], Avg Loss: 0.8909
-INFO:local_logger:Epoch[014/800], Step[0400/0626], Avg Loss: 0.8912
-INFO:local_logger:Epoch[014/800], Step[0400/0626], Avg Loss: 0.8910
-INFO:master_logger:Epoch[014/800], Step[0400/0626], Avg Loss: 0.8910
-INFO:local_logger:Epoch[014/800], Step[0400/0626], Avg Loss: 0.8906
-INFO:local_logger:Epoch[014/800], Step[0400/0626], Avg Loss: 0.8914
-INFO:local_logger:Epoch[014/800], Step[0500/0626], Avg Loss: 0.8903
-INFO:local_logger:Epoch[014/800], Step[0500/0626], Avg Loss: 0.8904
-INFO:local_logger:Epoch[014/800], Step[0500/0626], Avg Loss: 0.8906
-INFO:local_logger:Epoch[014/800], Step[0500/0626], Avg Loss: 0.8900
-INFO:local_logger:Epoch[014/800], Step[0500/0626], Avg Loss: 0.8906
-INFO:local_logger:Epoch[014/800], Step[0500/0626], Avg Loss: 0.8902
-INFO:local_logger:Epoch[014/800], Step[0500/0626], Avg Loss: 0.8901
-INFO:local_logger:Epoch[014/800], Step[0500/0626], Avg Loss: 0.8902
-INFO:master_logger:Epoch[014/800], Step[0500/0626], Avg Loss: 0.8903
-INFO:local_logger:Epoch[014/800], Step[0600/0626], Avg Loss: 0.8896
-INFO:local_logger:Epoch[014/800], Step[0600/0626], Avg Loss: 0.8898
-INFO:local_logger:Epoch[014/800], Step[0600/0626], Avg Loss: 0.8896
-INFO:master_logger:Epoch[014/800], Step[0600/0626], Avg Loss: 0.8896
-INFO:local_logger:Epoch[014/800], Step[0600/0626], Avg Loss: 0.8897
-INFO:local_logger:Epoch[014/800], Step[0600/0626], Avg Loss: 0.8893
-INFO:local_logger:Epoch[014/800], Step[0600/0626], Avg Loss: 0.8897
-INFO:local_logger:Epoch[014/800], Step[0600/0626], Avg Loss: 0.8893
-INFO:local_logger:Epoch[014/800], Step[0600/0626], Avg Loss: 0.8894
-INFO:local_logger:----- Epoch[014/800], Train Loss: 0.8895, time: 845.39
-INFO:local_logger:Now training epoch 15. LR=0.000057
-INFO:local_logger:----- Epoch[014/800], Train Loss: 0.8895, time: 845.75
-INFO:local_logger:Now training epoch 15. LR=0.000057
-INFO:local_logger:----- Epoch[014/800], Train Loss: 0.8892, time: 846.69
-INFO:local_logger:----- Epoch[014/800], Train Loss: 0.8894, time: 846.08
-INFO:local_logger:Now training epoch 15. LR=0.000057
-INFO:local_logger:----- Epoch[014/800], Train Loss: 0.8891, time: 847.03
-INFO:local_logger:Now training epoch 15. LR=0.000057
-INFO:local_logger:Now training epoch 15. LR=0.000057
-INFO:local_logger:----- Epoch[014/800], Train Loss: 0.8890, time: 846.07
-INFO:local_logger:Now training epoch 15. LR=0.000057
-INFO:local_logger:----- Epoch[014/800], Train Loss: 0.8893, time: 842.90
-INFO:master_logger:----- Epoch[014/800], Train Loss: 0.8893, time: 842.90
-INFO:local_logger:----- Epoch[014/800], Train Loss: 0.8894, time: 846.07
-INFO:local_logger:Now training epoch 15. LR=0.000057
-INFO:local_logger:----- Save model: ./output/train-20211219-17-07-40/MAE-Epoch-14-Loss-0.8892871914493445.pdparams
-INFO:local_logger:----- Save optim: ./output/train-20211219-17-07-40/MAE-Epoch-14-Loss-0.8892871914493445.pdopt
-INFO:master_logger:----- Save model: ./output/train-20211219-17-07-40/MAE-Epoch-14-Loss-0.8892871914493445.pdparams
-INFO:master_logger:----- Save optim: ./output/train-20211219-17-07-40/MAE-Epoch-14-Loss-0.8892871914493445.pdopt
-INFO:local_logger:Now training epoch 15. LR=0.000057
-INFO:master_logger:Now training epoch 15. LR=0.000057
-INFO:local_logger:Epoch[015/800], Step[0000/0626], Avg Loss: 0.8662
-INFO:local_logger:Epoch[015/800], Step[0000/0626], Avg Loss: 0.8831
-INFO:local_logger:Epoch[015/800], Step[0000/0626], Avg Loss: 0.8842
-INFO:local_logger:Epoch[015/800], Step[0000/0626], Avg Loss: 0.8880
-INFO:local_logger:Epoch[015/800], Step[0000/0626], Avg Loss: 0.8864
-INFO:local_logger:Epoch[015/800], Step[0000/0626], Avg Loss: 0.8846
-INFO:master_logger:Epoch[015/800], Step[0000/0626], Avg Loss: 0.8812
-INFO:local_logger:Epoch[015/800], Step[0000/0626], Avg Loss: 0.8773
-INFO:local_logger:Epoch[015/800], Step[0000/0626], Avg Loss: 0.8795
-INFO:local_logger:Epoch[015/800], Step[0100/0626], Avg Loss: 0.8853
-INFO:local_logger:Epoch[015/800], Step[0100/0626], Avg Loss: 0.8863
-INFO:local_logger:Epoch[015/800], Step[0100/0626], Avg Loss: 0.8867
-INFO:local_logger:Epoch[015/800], Step[0100/0626], Avg Loss: 0.8861
-INFO:local_logger:Epoch[015/800], Step[0100/0626], Avg Loss: 0.8861
-INFO:local_logger:Epoch[015/800], Step[0100/0626], Avg Loss: 0.8862
-INFO:local_logger:Epoch[015/800], Step[0100/0626], Avg Loss: 0.8860
-INFO:master_logger:Epoch[015/800], Step[0100/0626], Avg Loss: 0.8860
-INFO:local_logger:Epoch[015/800], Step[0100/0626], Avg Loss: 0.8851
-INFO:local_logger:Epoch[015/800], Step[0200/0626], Avg Loss: 0.8851
-INFO:local_logger:Epoch[015/800], Step[0200/0626], Avg Loss: 0.8849
-INFO:local_logger:Epoch[015/800], Step[0200/0626], Avg Loss: 0.8845
-INFO:local_logger:Epoch[015/800], Step[0200/0626], Avg Loss: 0.8847
-INFO:master_logger:Epoch[015/800], Step[0200/0626], Avg Loss: 0.8846
-INFO:local_logger:Epoch[015/800], Step[0200/0626], Avg Loss: 0.8841
-INFO:local_logger:Epoch[015/800], Step[0200/0626], Avg Loss: 0.8841
-INFO:local_logger:Epoch[015/800], Step[0200/0626], Avg Loss: 0.8847
-INFO:local_logger:Epoch[015/800], Step[0200/0626], Avg Loss: 0.8845
-INFO:local_logger:Epoch[015/800], Step[0300/0626], Avg Loss: 0.8832
-INFO:local_logger:Epoch[015/800], Step[0300/0626], Avg Loss: 0.8831
-INFO:local_logger:Epoch[015/800], Step[0300/0626], Avg Loss: 0.8833
-INFO:local_logger:Epoch[015/800], Step[0300/0626], Avg Loss: 0.8827
-INFO:local_logger:Epoch[015/800], Step[0300/0626], Avg Loss: 0.8833
-INFO:local_logger:Epoch[015/800], Step[0300/0626], Avg Loss: 0.8833
-INFO:local_logger:Epoch[015/800], Step[0300/0626], Avg Loss: 0.8830
-INFO:master_logger:Epoch[015/800], Step[0300/0626], Avg Loss: 0.8831
-INFO:local_logger:Epoch[015/800], Step[0300/0626], Avg Loss: 0.8826
-INFO:local_logger:Epoch[015/800], Step[0400/0626], Avg Loss: 0.8827
-INFO:local_logger:Epoch[015/800], Step[0400/0626], Avg Loss: 0.8824
-INFO:local_logger:Epoch[015/800], Step[0400/0626], Avg Loss: 0.8825
-INFO:local_logger:Epoch[015/800], Step[0400/0626], Avg Loss: 0.8824
-INFO:local_logger:Epoch[015/800], Step[0400/0626], Avg Loss: 0.8827
-INFO:local_logger:Epoch[015/800], Step[0400/0626], Avg Loss: 0.8820
-INFO:local_logger:Epoch[015/800], Step[0400/0626], Avg Loss: 0.8828
-INFO:local_logger:Epoch[015/800], Step[0400/0626], Avg Loss: 0.8819
-INFO:master_logger:Epoch[015/800], Step[0400/0626], Avg Loss: 0.8824
-INFO:local_logger:Epoch[015/800], Step[0500/0626], Avg Loss: 0.8819
-INFO:local_logger:Epoch[015/800], Step[0500/0626], Avg Loss: 0.8813
-INFO:local_logger:Epoch[015/800], Step[0500/0626], Avg Loss: 0.8812
-INFO:local_logger:Epoch[015/800], Step[0500/0626], Avg Loss: 0.8818
-INFO:local_logger:Epoch[015/800], Step[0500/0626], Avg Loss: 0.8816
-INFO:local_logger:Epoch[015/800], Step[0500/0626], Avg Loss: 0.8820
-INFO:local_logger:Epoch[015/800], Step[0500/0626], Avg Loss: 0.8815
-INFO:master_logger:Epoch[015/800], Step[0500/0626], Avg Loss: 0.8816
-INFO:local_logger:Epoch[015/800], Step[0500/0626], Avg Loss: 0.8818
-INFO:local_logger:Epoch[015/800], Step[0600/0626], Avg Loss: 0.8808
-INFO:local_logger:Epoch[015/800], Step[0600/0626], Avg Loss: 0.8805
-INFO:local_logger:Epoch[015/800], Step[0600/0626], Avg Loss: 0.8807
-INFO:local_logger:Epoch[015/800], Step[0600/0626], Avg Loss: 0.8807
-INFO:local_logger:Epoch[015/800], Step[0600/0626], Avg Loss: 0.8804
-INFO:master_logger:Epoch[015/800], Step[0600/0626], Avg Loss: 0.8806
-INFO:local_logger:Epoch[015/800], Step[0600/0626], Avg Loss: 0.8808
-INFO:local_logger:Epoch[015/800], Step[0600/0626], Avg Loss: 0.8804
-INFO:local_logger:Epoch[015/800], Step[0600/0626], Avg Loss: 0.8809
-INFO:local_logger:----- Epoch[015/800], Train Loss: 0.8805, time: 897.37
-INFO:local_logger:Now training epoch 16. LR=0.000061
-INFO:local_logger:----- Epoch[015/800], Train Loss: 0.8805, time: 893.90
-INFO:master_logger:----- Epoch[015/800], Train Loss: 0.8804, time: 893.90
-INFO:local_logger:----- Epoch[015/800], Train Loss: 0.8805, time: 898.09
-INFO:local_logger:----- Epoch[015/800], Train Loss: 0.8803, time: 898.09
-INFO:local_logger:Now training epoch 16. LR=0.000061
-INFO:local_logger:Now training epoch 16. LR=0.000061
-INFO:local_logger:----- Epoch[015/800], Train Loss: 0.8802, time: 898.08
-INFO:local_logger:Now training epoch 16. LR=0.000061
-INFO:local_logger:----- Epoch[015/800], Train Loss: 0.8802, time: 898.09
-INFO:local_logger:Now training epoch 16. LR=0.000061
-INFO:local_logger:----- Epoch[015/800], Train Loss: 0.8807, time: 898.77
-INFO:local_logger:Now training epoch 16. LR=0.000061
-INFO:local_logger:----- Epoch[015/800], Train Loss: 0.8806, time: 898.79
-INFO:local_logger:Now training epoch 16. LR=0.000061
-INFO:local_logger:----- Save model: ./output/train-20211219-17-07-40/MAE-Epoch-15-Loss-0.8804958925234925.pdparams
-INFO:local_logger:----- Save optim: ./output/train-20211219-17-07-40/MAE-Epoch-15-Loss-0.8804958925234925.pdopt
-INFO:master_logger:----- Save model: ./output/train-20211219-17-07-40/MAE-Epoch-15-Loss-0.8804958925234925.pdparams
-INFO:master_logger:----- Save optim: ./output/train-20211219-17-07-40/MAE-Epoch-15-Loss-0.8804958925234925.pdopt
-INFO:local_logger:Now training epoch 16. LR=0.000061
-INFO:master_logger:Now training epoch 16. LR=0.000061
-INFO:local_logger:Epoch[016/800], Step[0000/0626], Avg Loss: 0.8772
-INFO:local_logger:Epoch[016/800], Step[0000/0626], Avg Loss: 0.8776
-INFO:local_logger:Epoch[016/800], Step[0000/0626], Avg Loss: 0.8818
-INFO:local_logger:Epoch[016/800], Step[0000/0626], Avg Loss: 0.8756
-INFO:master_logger:Epoch[016/800], Step[0000/0626], Avg Loss: 0.8774
-INFO:local_logger:Epoch[016/800], Step[0000/0626], Avg Loss: 0.8834
-INFO:local_logger:Epoch[016/800], Step[0000/0626], Avg Loss: 0.8802
-INFO:local_logger:Epoch[016/800], Step[0000/0626], Avg Loss: 0.8772
-INFO:local_logger:Epoch[016/800], Step[0000/0626], Avg Loss: 0.8659
-INFO:local_logger:Epoch[016/800], Step[0100/0626], Avg Loss: 0.8729
-INFO:local_logger:Epoch[016/800], Step[0100/0626], Avg Loss: 0.8735
-INFO:local_logger:Epoch[016/800], Step[0100/0626], Avg Loss: 0.8742
-INFO:local_logger:Epoch[016/800], Step[0100/0626], Avg Loss: 0.8743
-INFO:local_logger:Epoch[016/800], Step[0100/0626], Avg Loss: 0.8738
-INFO:master_logger:Epoch[016/800], Step[0100/0626], Avg Loss: 0.8738
-INFO:local_logger:Epoch[016/800], Step[0100/0626], Avg Loss: 0.8741
-INFO:local_logger:Epoch[016/800], Step[0100/0626], Avg Loss: 0.8747
-INFO:local_logger:Epoch[016/800], Step[0100/0626], Avg Loss: 0.8731
-INFO:local_logger:Epoch[016/800], Step[0200/0626], Avg Loss: 0.8724
-INFO:local_logger:Epoch[016/800], Step[0200/0626], Avg Loss: 0.8723
-INFO:local_logger:Epoch[016/800], Step[0200/0626], Avg Loss: 0.8727
-INFO:local_logger:Epoch[016/800], Step[0200/0626], Avg Loss: 0.8726
-INFO:local_logger:Epoch[016/800], Step[0200/0626], Avg Loss: 0.8731
-INFO:local_logger:Epoch[016/800], Step[0200/0626], Avg Loss: 0.8732
-INFO:local_logger:Epoch[016/800], Step[0200/0626], Avg Loss: 0.8728
-INFO:master_logger:Epoch[016/800], Step[0200/0626], Avg Loss: 0.8728
-INFO:local_logger:Epoch[016/800], Step[0200/0626], Avg Loss: 0.8732
-INFO:local_logger:Epoch[016/800], Step[0300/0626], Avg Loss: 0.8718
-INFO:local_logger:Epoch[016/800], Step[0300/0626], Avg Loss: 0.8723
-INFO:local_logger:Epoch[016/800], Step[0300/0626], Avg Loss: 0.8717
-INFO:local_logger:Epoch[016/800], Step[0300/0626], Avg Loss: 0.8718
-INFO:local_logger:Epoch[016/800], Step[0300/0626], Avg Loss: 0.8718
-INFO:local_logger:Epoch[016/800], Step[0300/0626], Avg Loss: 0.8720
-INFO:master_logger:Epoch[016/800], Step[0300/0626], Avg Loss: 0.8719
-INFO:local_logger:Epoch[016/800], Step[0300/0626], Avg Loss: 0.8722
-INFO:local_logger:Epoch[016/800], Step[0300/0626], Avg Loss: 0.8717
-INFO:local_logger:Epoch[016/800], Step[0400/0626], Avg Loss: 0.8710
-INFO:local_logger:Epoch[016/800], Step[0400/0626], Avg Loss: 0.8710
-INFO:local_logger:Epoch[016/800], Step[0400/0626], Avg Loss: 0.8710
-INFO:local_logger:Epoch[016/800], Step[0400/0626], Avg Loss: 0.8713
-INFO:local_logger:Epoch[016/800], Step[0400/0626], Avg Loss: 0.8712
-INFO:local_logger:Epoch[016/800], Step[0400/0626], Avg Loss: 0.8717
-INFO:master_logger:Epoch[016/800], Step[0400/0626], Avg Loss: 0.8712
-INFO:local_logger:Epoch[016/800], Step[0400/0626], Avg Loss: 0.8713
-INFO:local_logger:Epoch[016/800], Step[0400/0626], Avg Loss: 0.8713
-INFO:local_logger:Epoch[016/800], Step[0500/0626], Avg Loss: 0.8707
-INFO:local_logger:Epoch[016/800], Step[0500/0626], Avg Loss: 0.8706
-INFO:local_logger:Epoch[016/800], Step[0500/0626], Avg Loss: 0.8710
-INFO:local_logger:Epoch[016/800], Step[0500/0626], Avg Loss: 0.8707
-INFO:local_logger:Epoch[016/800], Step[0500/0626], Avg Loss: 0.8709
-INFO:local_logger:Epoch[016/800], Step[0500/0626], Avg Loss: 0.8706
-INFO:master_logger:Epoch[016/800], Step[0500/0626], Avg Loss: 0.8707
-INFO:local_logger:Epoch[016/800], Step[0500/0626], Avg Loss: 0.8705
-INFO:local_logger:Epoch[016/800], Step[0500/0626], Avg Loss: 0.8709
-INFO:local_logger:Epoch[016/800], Step[0600/0626], Avg Loss: 0.8696
-INFO:local_logger:Epoch[016/800], Step[0600/0626], Avg Loss: 0.8697
-INFO:local_logger:Epoch[016/800], Step[0600/0626], Avg Loss: 0.8697
-INFO:local_logger:Epoch[016/800], Step[0600/0626], Avg Loss: 0.8697
-INFO:local_logger:Epoch[016/800], Step[0600/0626], Avg Loss: 0.8696
-INFO:local_logger:Epoch[016/800], Step[0600/0626], Avg Loss: 0.8700
-INFO:local_logger:Epoch[016/800], Step[0600/0626], Avg Loss: 0.8701
-INFO:master_logger:Epoch[016/800], Step[0600/0626], Avg Loss: 0.8698
-INFO:local_logger:Epoch[016/800], Step[0600/0626], Avg Loss: 0.8700
-INFO:local_logger:----- Epoch[016/800], Train Loss: 0.8695, time: 861.71
-INFO:local_logger:Now training epoch 17. LR=0.000064
-INFO:local_logger:----- Epoch[016/800], Train Loss: 0.8693, time: 862.54
-INFO:local_logger:Now training epoch 17. LR=0.000064
-INFO:local_logger:----- Epoch[016/800], Train Loss: 0.8699, time: 862.86
-INFO:local_logger:Now training epoch 17. LR=0.000064
-INFO:local_logger:----- Epoch[016/800], Train Loss: 0.8695, time: 863.58
-INFO:local_logger:Now training epoch 17. LR=0.000064
-INFO:local_logger:----- Epoch[016/800], Train Loss: 0.8695, time: 862.86
-INFO:local_logger:----- Epoch[016/800], Train Loss: 0.8698, time: 862.85
-INFO:local_logger:Now training epoch 17. LR=0.000064
-INFO:local_logger:Now training epoch 17. LR=0.000064
-INFO:local_logger:----- Epoch[016/800], Train Loss: 0.8698, time: 862.87
-INFO:local_logger:Now training epoch 17. LR=0.000064
-INFO:local_logger:----- Epoch[016/800], Train Loss: 0.8694, time: 859.59
-INFO:master_logger:----- Epoch[016/800], Train Loss: 0.8696, time: 859.59
-INFO:local_logger:----- Save model: ./output/train-20211219-17-07-40/MAE-Epoch-16-Loss-0.8694310493630203.pdparams
-INFO:local_logger:----- Save optim: ./output/train-20211219-17-07-40/MAE-Epoch-16-Loss-0.8694310493630203.pdopt
-INFO:master_logger:----- Save model: ./output/train-20211219-17-07-40/MAE-Epoch-16-Loss-0.8694310493630203.pdparams
-INFO:master_logger:----- Save optim: ./output/train-20211219-17-07-40/MAE-Epoch-16-Loss-0.8694310493630203.pdopt
-INFO:local_logger:Now training epoch 17. LR=0.000064
-INFO:master_logger:Now training epoch 17. LR=0.000064
-INFO:local_logger:Epoch[017/800], Step[0000/0626], Avg Loss: 0.8663
-INFO:local_logger:Epoch[017/800], Step[0000/0626], Avg Loss: 0.8709
-INFO:local_logger:Epoch[017/800], Step[0000/0626], Avg Loss: 0.8677
-INFO:local_logger:Epoch[017/800], Step[0000/0626], Avg Loss: 0.8526
-INFO:local_logger:Epoch[017/800], Step[0000/0626], Avg Loss: 0.8679
-INFO:local_logger:Epoch[017/800], Step[0000/0626], Avg Loss: 0.8632
-INFO:master_logger:Epoch[017/800], Step[0000/0626], Avg Loss: 0.8658
-INFO:local_logger:Epoch[017/800], Step[0000/0626], Avg Loss: 0.8670
-INFO:local_logger:Epoch[017/800], Step[0000/0626], Avg Loss: 0.8705
-INFO:local_logger:Epoch[017/800], Step[0100/0626], Avg Loss: 0.8666
-INFO:local_logger:Epoch[017/800], Step[0100/0626], Avg Loss: 0.8669
-INFO:local_logger:Epoch[017/800], Step[0100/0626], Avg Loss: 0.8674
-INFO:local_logger:Epoch[017/800], Step[0100/0626], Avg Loss: 0.8667
-INFO:master_logger:Epoch[017/800], Step[0100/0626], Avg Loss: 0.8668
-INFO:local_logger:Epoch[017/800], Step[0100/0626], Avg Loss: 0.8662
-INFO:local_logger:Epoch[017/800], Step[0100/0626], Avg Loss: 0.8672
-INFO:local_logger:Epoch[017/800], Step[0100/0626], Avg Loss: 0.8665
-INFO:local_logger:Epoch[017/800], Step[0100/0626], Avg Loss: 0.8673
-INFO:local_logger:Epoch[017/800], Step[0200/0626], Avg Loss: 0.8654
-INFO:local_logger:Epoch[017/800], Step[0200/0626], Avg Loss: 0.8660
-INFO:local_logger:Epoch[017/800], Step[0200/0626], Avg Loss: 0.8658
-INFO:local_logger:Epoch[017/800], Step[0200/0626], Avg Loss: 0.8659
-INFO:local_logger:Epoch[017/800], Step[0200/0626], Avg Loss: 0.8654
-INFO:local_logger:Epoch[017/800], Step[0200/0626], Avg Loss: 0.8658
-INFO:master_logger:Epoch[017/800], Step[0200/0626], Avg Loss: 0.8657
-INFO:local_logger:Epoch[017/800], Step[0200/0626], Avg Loss: 0.8656
-INFO:local_logger:Epoch[017/800], Step[0200/0626], Avg Loss: 0.8654
-INFO:local_logger:Epoch[017/800], Step[0300/0626], Avg Loss: 0.8647
-INFO:local_logger:Epoch[017/800], Step[0300/0626], Avg Loss: 0.8648
-INFO:local_logger:Epoch[017/800], Step[0300/0626], Avg Loss: 0.8646
-INFO:local_logger:Epoch[017/800], Step[0300/0626], Avg Loss: 0.8649
-INFO:master_logger:Epoch[017/800], Step[0300/0626], Avg Loss: 0.8647
-INFO:local_logger:Epoch[017/800], Step[0300/0626], Avg Loss: 0.8652
-INFO:local_logger:Epoch[017/800], Step[0300/0626], Avg Loss: 0.8646
-INFO:local_logger:Epoch[017/800], Step[0300/0626], Avg Loss: 0.8642
-INFO:local_logger:Epoch[017/800], Step[0300/0626], Avg Loss: 0.8648
-INFO:local_logger:Epoch[017/800], Step[0400/0626], Avg Loss: 0.8629
-INFO:local_logger:Epoch[017/800], Step[0400/0626], Avg Loss: 0.8639
-INFO:local_logger:Epoch[017/800], Step[0400/0626], Avg Loss: 0.8636
-INFO:local_logger:Epoch[017/800], Step[0400/0626], Avg Loss: 0.8635
-INFO:local_logger:Epoch[017/800], Step[0400/0626], Avg Loss: 0.8634
-INFO:local_logger:Epoch[017/800], Step[0400/0626], Avg Loss: 0.8634
-INFO:local_logger:Epoch[017/800], Step[0400/0626], Avg Loss: 0.8635
-INFO:local_logger:Epoch[017/800], Step[0400/0626], Avg Loss: 0.8633
-INFO:master_logger:Epoch[017/800], Step[0400/0626], Avg Loss: 0.8634
-INFO:local_logger:Epoch[017/800], Step[0500/0626], Avg Loss: 0.8619
-INFO:local_logger:Epoch[017/800], Step[0500/0626], Avg Loss: 0.8628
-INFO:local_logger:Epoch[017/800], Step[0500/0626], Avg Loss: 0.8626
-INFO:local_logger:Epoch[017/800], Step[0500/0626], Avg Loss: 0.8624
-INFO:local_logger:Epoch[017/800], Step[0500/0626], Avg Loss: 0.8622
-INFO:local_logger:Epoch[017/800], Step[0500/0626], Avg Loss: 0.8624
-INFO:master_logger:Epoch[017/800], Step[0500/0626], Avg Loss: 0.8624
-INFO:local_logger:Epoch[017/800], Step[0500/0626], Avg Loss: 0.8625
-INFO:local_logger:Epoch[017/800], Step[0500/0626], Avg Loss: 0.8625
-INFO:local_logger:Epoch[017/800], Step[0600/0626], Avg Loss: 0.8615
-INFO:local_logger:Epoch[017/800], Step[0600/0626], Avg Loss: 0.8619
-INFO:local_logger:Epoch[017/800], Step[0600/0626], Avg Loss: 0.8620
-INFO:local_logger:Epoch[017/800], Step[0600/0626], Avg Loss: 0.8613
-INFO:local_logger:Epoch[017/800], Step[0600/0626], Avg Loss: 0.8618
-INFO:local_logger:Epoch[017/800], Step[0600/0626], Avg Loss: 0.8618
-INFO:local_logger:Epoch[017/800], Step[0600/0626], Avg Loss: 0.8616
-INFO:master_logger:Epoch[017/800], Step[0600/0626], Avg Loss: 0.8617
-INFO:local_logger:Epoch[017/800], Step[0600/0626], Avg Loss: 0.8619
-INFO:local_logger:----- Epoch[017/800], Train Loss: 0.8617, time: 890.30
-INFO:local_logger:Now training epoch 18. LR=0.000068
-INFO:local_logger:----- Epoch[017/800], Train Loss: 0.8616, time: 890.30
-INFO:local_logger:Now training epoch 18. LR=0.000068
-INFO:local_logger:----- Epoch[017/800], Train Loss: 0.8617, time: 890.31
-INFO:local_logger:Now training epoch 18. LR=0.000068
-INFO:local_logger:----- Epoch[017/800], Train Loss: 0.8610, time: 890.96
-INFO:local_logger:Now training epoch 18. LR=0.000068
-INFO:local_logger:----- Epoch[017/800], Train Loss: 0.8614, time: 887.14
-INFO:master_logger:----- Epoch[017/800], Train Loss: 0.8615, time: 887.14
-INFO:local_logger:----- Epoch[017/800], Train Loss: 0.8616, time: 891.29
-INFO:local_logger:Now training epoch 18. LR=0.000068
-INFO:local_logger:----- Epoch[017/800], Train Loss: 0.8617, time: 890.99
-INFO:local_logger:Now training epoch 18. LR=0.000068
-INFO:local_logger:----- Epoch[017/800], Train Loss: 0.8614, time: 892.15
-INFO:local_logger:Now training epoch 18. LR=0.000068
-INFO:local_logger:----- Save model: ./output/train-20211219-17-07-40/MAE-Epoch-17-Loss-0.8613511298173326.pdparams
-INFO:local_logger:----- Save optim: ./output/train-20211219-17-07-40/MAE-Epoch-17-Loss-0.8613511298173326.pdopt
-INFO:master_logger:----- Save model: ./output/train-20211219-17-07-40/MAE-Epoch-17-Loss-0.8613511298173326.pdparams
-INFO:master_logger:----- Save optim: ./output/train-20211219-17-07-40/MAE-Epoch-17-Loss-0.8613511298173326.pdopt
-INFO:local_logger:Now training epoch 18. LR=0.000068
-INFO:master_logger:Now training epoch 18. LR=0.000068
-INFO:local_logger:Epoch[018/800], Step[0000/0626], Avg Loss: 0.8610
-INFO:master_logger:Epoch[018/800], Step[0000/0626], Avg Loss: 0.8573
-INFO:local_logger:Epoch[018/800], Step[0000/0626], Avg Loss: 0.8499
-INFO:local_logger:Epoch[018/800], Step[0000/0626], Avg Loss: 0.8529
-INFO:local_logger:Epoch[018/800], Step[0000/0626], Avg Loss: 0.8567
-INFO:local_logger:Epoch[018/800], Step[0000/0626], Avg Loss: 0.8551
-INFO:local_logger:Epoch[018/800], Step[0000/0626], Avg Loss: 0.8589
-INFO:local_logger:Epoch[018/800], Step[0000/0626], Avg Loss: 0.8601
-INFO:local_logger:Epoch[018/800], Step[0000/0626], Avg Loss: 0.8641
-INFO:local_logger:Epoch[018/800], Step[0100/0626], Avg Loss: 0.8555
-INFO:local_logger:Epoch[018/800], Step[0100/0626], Avg Loss: 0.8553
-INFO:local_logger:Epoch[018/800], Step[0100/0626], Avg Loss: 0.8547
-INFO:local_logger:Epoch[018/800], Step[0100/0626], Avg Loss: 0.8552
-INFO:local_logger:Epoch[018/800], Step[0100/0626], Avg Loss: 0.8543
-INFO:local_logger:Epoch[018/800], Step[0100/0626], Avg Loss: 0.8543
-INFO:master_logger:Epoch[018/800], Step[0100/0626], Avg Loss: 0.8547
-INFO:local_logger:Epoch[018/800], Step[0100/0626], Avg Loss: 0.8542
-INFO:local_logger:Epoch[018/800], Step[0100/0626], Avg Loss: 0.8543
-INFO:local_logger:Epoch[018/800], Step[0200/0626], Avg Loss: 0.8544
-INFO:local_logger:Epoch[018/800], Step[0200/0626], Avg Loss: 0.8543
-INFO:local_logger:Epoch[018/800], Step[0200/0626], Avg Loss: 0.8543
-INFO:local_logger:Epoch[018/800], Step[0200/0626], Avg Loss: 0.8541
-INFO:local_logger:Epoch[018/800], Step[0200/0626], Avg Loss: 0.8537
-INFO:master_logger:Epoch[018/800], Step[0200/0626], Avg Loss: 0.8541
-INFO:local_logger:Epoch[018/800], Step[0200/0626], Avg Loss: 0.8544
-INFO:local_logger:Epoch[018/800], Step[0200/0626], Avg Loss: 0.8539
-INFO:local_logger:Epoch[018/800], Step[0200/0626], Avg Loss: 0.8541
-INFO:local_logger:Epoch[018/800], Step[0300/0626], Avg Loss: 0.8534
-INFO:local_logger:Epoch[018/800], Step[0300/0626], Avg Loss: 0.8534
-INFO:local_logger:Epoch[018/800], Step[0300/0626], Avg Loss: 0.8536
-INFO:local_logger:Epoch[018/800], Step[0300/0626], Avg Loss: 0.8535
-INFO:local_logger:Epoch[018/800], Step[0300/0626], Avg Loss: 0.8540
-INFO:local_logger:Epoch[018/800], Step[0300/0626], Avg Loss: 0.8535
-INFO:master_logger:Epoch[018/800], Step[0300/0626], Avg Loss: 0.8537
-INFO:local_logger:Epoch[018/800], Step[0300/0626], Avg Loss: 0.8544
-INFO:local_logger:Epoch[018/800], Step[0300/0626], Avg Loss: 0.8538
-INFO:local_logger:Epoch[018/800], Step[0400/0626], Avg Loss: 0.8536
-INFO:local_logger:Epoch[018/800], Step[0400/0626], Avg Loss: 0.8534
-INFO:local_logger:Epoch[018/800], Step[0400/0626], Avg Loss: 0.8534
-INFO:local_logger:Epoch[018/800], Step[0400/0626], Avg Loss: 0.8532
-INFO:local_logger:Epoch[018/800], Step[0400/0626], Avg Loss: 0.8542
-INFO:local_logger:Epoch[018/800], Step[0400/0626], Avg Loss: 0.8532
-INFO:local_logger:Epoch[018/800], Step[0400/0626], Avg Loss: 0.8537
-INFO:master_logger:Epoch[018/800], Step[0400/0626], Avg Loss: 0.8535
-INFO:local_logger:Epoch[018/800], Step[0400/0626], Avg Loss: 0.8530
-INFO:local_logger:Epoch[018/800], Step[0500/0626], Avg Loss: 0.8533
-INFO:local_logger:Epoch[018/800], Step[0500/0626], Avg Loss: 0.8536
-INFO:local_logger:Epoch[018/800], Step[0500/0626], Avg Loss: 0.8529
-INFO:local_logger:Epoch[018/800], Step[0500/0626], Avg Loss: 0.8531
-INFO:local_logger:Epoch[018/800], Step[0500/0626], Avg Loss: 0.8534
-INFO:local_logger:Epoch[018/800], Step[0500/0626], Avg Loss: 0.8529
-INFO:local_logger:Epoch[018/800], Step[0500/0626], Avg Loss: 0.8534
-INFO:master_logger:Epoch[018/800], Step[0500/0626], Avg Loss: 0.8533
-INFO:local_logger:Epoch[018/800], Step[0500/0626], Avg Loss: 0.8541
-INFO:local_logger:Epoch[018/800], Step[0600/0626], Avg Loss: 0.8533
-INFO:local_logger:Epoch[018/800], Step[0600/0626], Avg Loss: 0.8525
-INFO:local_logger:Epoch[018/800], Step[0600/0626], Avg Loss: 0.8531
-INFO:local_logger:Epoch[018/800], Step[0600/0626], Avg Loss: 0.8529
-INFO:local_logger:Epoch[018/800], Step[0600/0626], Avg Loss: 0.8528
-INFO:local_logger:Epoch[018/800], Step[0600/0626], Avg Loss: 0.8525
-INFO:local_logger:Epoch[018/800], Step[0600/0626], Avg Loss: 0.8536
-INFO:local_logger:Epoch[018/800], Step[0600/0626], Avg Loss: 0.8528
-INFO:master_logger:Epoch[018/800], Step[0600/0626], Avg Loss: 0.8529
-INFO:local_logger:----- Epoch[018/800], Train Loss: 0.8532, time: 859.28
-INFO:local_logger:Now training epoch 19. LR=0.000072
-INFO:local_logger:----- Epoch[018/800], Train Loss: 0.8524, time: 859.95
-INFO:local_logger:Now training epoch 19. LR=0.000072
-INFO:local_logger:----- Epoch[018/800], Train Loss: 0.8527, time: 855.56
-INFO:local_logger:----- Epoch[018/800], Train Loss: 0.8523, time: 859.27
-INFO:local_logger:----- Epoch[018/800], Train Loss: 0.8527, time: 859.94
-INFO:master_logger:----- Epoch[018/800], Train Loss: 0.8528, time: 855.56
-INFO:local_logger:Now training epoch 19. LR=0.000072
-INFO:local_logger:Now training epoch 19. LR=0.000072
-INFO:local_logger:----- Epoch[018/800], Train Loss: 0.8530, time: 859.29
-INFO:local_logger:Now training epoch 19. LR=0.000072
-INFO:local_logger:----- Epoch[018/800], Train Loss: 0.8528, time: 859.96
-INFO:local_logger:Now training epoch 19. LR=0.000072
-INFO:local_logger:----- Epoch[018/800], Train Loss: 0.8534, time: 859.27
-INFO:local_logger:Now training epoch 19. LR=0.000072
-INFO:local_logger:----- Save model: ./output/train-20211219-17-07-40/MAE-Epoch-18-Loss-0.8526818839083388.pdparams
-INFO:local_logger:----- Save optim: ./output/train-20211219-17-07-40/MAE-Epoch-18-Loss-0.8526818839083388.pdopt
-INFO:master_logger:----- Save model: ./output/train-20211219-17-07-40/MAE-Epoch-18-Loss-0.8526818839083388.pdparams
-INFO:master_logger:----- Save optim: ./output/train-20211219-17-07-40/MAE-Epoch-18-Loss-0.8526818839083388.pdopt
-INFO:local_logger:Now training epoch 19. LR=0.000072
-INFO:master_logger:Now training epoch 19. LR=0.000072
-INFO:local_logger:Epoch[019/800], Step[0000/0626], Avg Loss: 0.8466
-INFO:local_logger:Epoch[019/800], Step[0000/0626], Avg Loss: 0.8442
-INFO:local_logger:Epoch[019/800], Step[0000/0626], Avg Loss: 0.8470
-INFO:local_logger:Epoch[019/800], Step[0000/0626], Avg Loss: 0.8424
-INFO:local_logger:Epoch[019/800], Step[0000/0626], Avg Loss: 0.8531
-INFO:local_logger:Epoch[019/800], Step[0000/0626], Avg Loss: 0.8522
-INFO:master_logger:Epoch[019/800], Step[0000/0626], Avg Loss: 0.8474
-INFO:local_logger:Epoch[019/800], Step[0000/0626], Avg Loss: 0.8452
-INFO:local_logger:Epoch[019/800], Step[0000/0626], Avg Loss: 0.8487
-INFO:local_logger:Epoch[019/800], Step[0100/0626], Avg Loss: 0.8481
-INFO:local_logger:Epoch[019/800], Step[0100/0626], Avg Loss: 0.8485
-INFO:local_logger:Epoch[019/800], Step[0100/0626], Avg Loss: 0.8477
-INFO:local_logger:Epoch[019/800], Step[0100/0626], Avg Loss: 0.8475
-INFO:local_logger:Epoch[019/800], Step[0100/0626], Avg Loss: 0.8477
-INFO:local_logger:Epoch[019/800], Step[0100/0626], Avg Loss: 0.8473
-INFO:local_logger:Epoch[019/800], Step[0100/0626], Avg Loss: 0.8491
-INFO:master_logger:Epoch[019/800], Step[0100/0626], Avg Loss: 0.8480
-INFO:local_logger:Epoch[019/800], Step[0100/0626], Avg Loss: 0.8481
-INFO:local_logger:Epoch[019/800], Step[0200/0626], Avg Loss: 0.8476
-INFO:local_logger:Epoch[019/800], Step[0200/0626], Avg Loss: 0.8477
-INFO:local_logger:Epoch[019/800], Step[0200/0626], Avg Loss: 0.8476
-INFO:local_logger:Epoch[019/800], Step[0200/0626], Avg Loss: 0.8481
-INFO:local_logger:Epoch[019/800], Step[0200/0626], Avg Loss: 0.8480
-INFO:master_logger:Epoch[019/800], Step[0200/0626], Avg Loss: 0.8478
-INFO:local_logger:Epoch[019/800], Step[0200/0626], Avg Loss: 0.8483
-INFO:local_logger:Epoch[019/800], Step[0200/0626], Avg Loss: 0.8476
-INFO:local_logger:Epoch[019/800], Step[0200/0626], Avg Loss: 0.8478
-INFO:local_logger:Epoch[019/800], Step[0300/0626], Avg Loss: 0.8470
-INFO:local_logger:Epoch[019/800], Step[0300/0626], Avg Loss: 0.8465
-INFO:master_logger:Epoch[019/800], Step[0300/0626], Avg Loss: 0.8468
-INFO:local_logger:Epoch[019/800], Step[0300/0626], Avg Loss: 0.8469
-INFO:local_logger:Epoch[019/800], Step[0300/0626], Avg Loss: 0.8470
-INFO:local_logger:Epoch[019/800], Step[0300/0626], Avg Loss: 0.8470
-INFO:local_logger:Epoch[019/800], Step[0300/0626], Avg Loss: 0.8465
-INFO:local_logger:Epoch[019/800], Step[0300/0626], Avg Loss: 0.8468
-INFO:local_logger:Epoch[019/800], Step[0300/0626], Avg Loss: 0.8467
-INFO:local_logger:Epoch[019/800], Step[0400/0626], Avg Loss: 0.8458
-INFO:local_logger:Epoch[019/800], Step[0400/0626], Avg Loss: 0.8460
-INFO:local_logger:Epoch[019/800], Step[0400/0626], Avg Loss: 0.8460
-INFO:local_logger:Epoch[019/800], Step[0400/0626], Avg Loss: 0.8464
-INFO:local_logger:Epoch[019/800], Step[0400/0626], Avg Loss: 0.8461
-INFO:local_logger:Epoch[019/800], Step[0400/0626], Avg Loss: 0.8460
-INFO:local_logger:Epoch[019/800], Step[0400/0626], Avg Loss: 0.8465
-INFO:local_logger:Epoch[019/800], Step[0400/0626], Avg Loss: 0.8463
-INFO:master_logger:Epoch[019/800], Step[0400/0626], Avg Loss: 0.8461
-INFO:local_logger:Epoch[019/800], Step[0500/0626], Avg Loss: 0.8452
-INFO:local_logger:Epoch[019/800], Step[0500/0626], Avg Loss: 0.8454
-INFO:local_logger:Epoch[019/800], Step[0500/0626], Avg Loss: 0.8450
-INFO:local_logger:Epoch[019/800], Step[0500/0626], Avg Loss: 0.8455
-INFO:local_logger:Epoch[019/800], Step[0500/0626], Avg Loss: 0.8451
-INFO:local_logger:Epoch[019/800], Step[0500/0626], Avg Loss: 0.8452
-INFO:local_logger:Epoch[019/800], Step[0500/0626], Avg Loss: 0.8452
-INFO:local_logger:Epoch[019/800], Step[0500/0626], Avg Loss: 0.8455
-INFO:master_logger:Epoch[019/800], Step[0500/0626], Avg Loss: 0.8452
-INFO:local_logger:Epoch[019/800], Step[0600/0626], Avg Loss: 0.8445
-INFO:local_logger:Epoch[019/800], Step[0600/0626], Avg Loss: 0.8442
-INFO:local_logger:Epoch[019/800], Step[0600/0626], Avg Loss: 0.8446
-INFO:local_logger:Epoch[019/800], Step[0600/0626], Avg Loss: 0.8445
-INFO:local_logger:Epoch[019/800], Step[0600/0626], Avg Loss: 0.8447
-INFO:local_logger:Epoch[019/800], Step[0600/0626], Avg Loss: 0.8445
-INFO:master_logger:Epoch[019/800], Step[0600/0626], Avg Loss: 0.8445
-INFO:local_logger:Epoch[019/800], Step[0600/0626], Avg Loss: 0.8443
-INFO:local_logger:Epoch[019/800], Step[0600/0626], Avg Loss: 0.8445
-INFO:local_logger:----- Epoch[019/800], Train Loss: 0.8446, time: 880.98
-INFO:master_logger:----- Epoch[019/800], Train Loss: 0.8443, time: 880.98
-INFO:local_logger:----- Epoch[019/800], Train Loss: 0.8443, time: 885.40
-INFO:local_logger:Now training epoch 20. LR=0.000075
-INFO:local_logger:----- Epoch[019/800], Train Loss: 0.8443, time: 885.43
-INFO:local_logger:Now training epoch 20. LR=0.000075
-INFO:local_logger:----- Epoch[019/800], Train Loss: 0.8444, time: 885.46
-INFO:local_logger:Now training epoch 20. LR=0.000075
-INFO:local_logger:----- Epoch[019/800], Train Loss: 0.8441, time: 885.49
-INFO:local_logger:Now training epoch 20. LR=0.000075
-INFO:local_logger:----- Epoch[019/800], Train Loss: 0.8441, time: 885.53
-INFO:local_logger:Now training epoch 20. LR=0.000075
-INFO:local_logger:----- Epoch[019/800], Train Loss: 0.8443, time: 885.54
-INFO:local_logger:Now training epoch 20. LR=0.000075
-INFO:local_logger:----- Epoch[019/800], Train Loss: 0.8446, time: 885.53
-INFO:local_logger:Now training epoch 20. LR=0.000075
-INFO:local_logger:----- Save model: ./output/train-20211219-17-07-40/MAE-Epoch-19-Loss-0.8445631699389794.pdparams
-INFO:local_logger:----- Save optim: ./output/train-20211219-17-07-40/MAE-Epoch-19-Loss-0.8445631699389794.pdopt
-INFO:master_logger:----- Save model: ./output/train-20211219-17-07-40/MAE-Epoch-19-Loss-0.8445631699389794.pdparams
-INFO:master_logger:----- Save optim: ./output/train-20211219-17-07-40/MAE-Epoch-19-Loss-0.8445631699389794.pdopt
-INFO:local_logger:Now training epoch 20. LR=0.000075
-INFO:master_logger:Now training epoch 20. LR=0.000075
-INFO:local_logger:Epoch[020/800], Step[0000/0626], Avg Loss: 0.8395
-INFO:local_logger:Epoch[020/800], Step[0000/0626], Avg Loss: 0.8579
-INFO:local_logger:Epoch[020/800], Step[0000/0626], Avg Loss: 0.8337
-INFO:master_logger:Epoch[020/800], Step[0000/0626], Avg Loss: 0.8394
-INFO:local_logger:Epoch[020/800], Step[0000/0626], Avg Loss: 0.8377
-INFO:local_logger:Epoch[020/800], Step[0000/0626], Avg Loss: 0.8425
-INFO:local_logger:Epoch[020/800], Step[0000/0626], Avg Loss: 0.8297
-INFO:local_logger:Epoch[020/800], Step[0000/0626], Avg Loss: 0.8371
-INFO:local_logger:Epoch[020/800], Step[0000/0626], Avg Loss: 0.8374
-INFO:local_logger:Epoch[020/800], Step[0100/0626], Avg Loss: 0.8389
-INFO:local_logger:Epoch[020/800], Step[0100/0626], Avg Loss: 0.8399
-INFO:local_logger:Epoch[020/800], Step[0100/0626], Avg Loss: 0.8385
-INFO:local_logger:Epoch[020/800], Step[0100/0626], Avg Loss: 0.8402
-INFO:local_logger:Epoch[020/800], Step[0100/0626], Avg Loss: 0.8398
-INFO:local_logger:Epoch[020/800], Step[0100/0626], Avg Loss: 0.8399
-INFO:master_logger:Epoch[020/800], Step[0100/0626], Avg Loss: 0.8396
-INFO:local_logger:Epoch[020/800], Step[0100/0626], Avg Loss: 0.8398
-INFO:local_logger:Epoch[020/800], Step[0100/0626], Avg Loss: 0.8400
-INFO:local_logger:Epoch[020/800], Step[0200/0626], Avg Loss: 0.8402
-INFO:local_logger:Epoch[020/800], Step[0200/0626], Avg Loss: 0.8410
-INFO:local_logger:Epoch[020/800], Step[0200/0626], Avg Loss: 0.8400
-INFO:local_logger:Epoch[020/800], Step[0200/0626], Avg Loss: 0.8406
-INFO:local_logger:Epoch[020/800], Step[0200/0626], Avg Loss: 0.8409
-INFO:master_logger:Epoch[020/800], Step[0200/0626], Avg Loss: 0.8408
-INFO:local_logger:Epoch[020/800], Step[0200/0626], Avg Loss: 0.8403
-INFO:local_logger:Epoch[020/800], Step[0200/0626], Avg Loss: 0.8416
-INFO:local_logger:Epoch[020/800], Step[0200/0626], Avg Loss: 0.8415
-INFO:local_logger:Epoch[020/800], Step[0300/0626], Avg Loss: 0.8399
-INFO:local_logger:Epoch[020/800], Step[0300/0626], Avg Loss: 0.8411
-INFO:local_logger:Epoch[020/800], Step[0300/0626], Avg Loss: 0.8404
-INFO:local_logger:Epoch[020/800], Step[0300/0626], Avg Loss: 0.8406
-INFO:local_logger:Epoch[020/800], Step[0300/0626], Avg Loss: 0.8406
-INFO:master_logger:Epoch[020/800], Step[0300/0626], Avg Loss: 0.8406
-INFO:local_logger:Epoch[020/800], Step[0300/0626], Avg Loss: 0.8403
-INFO:local_logger:Epoch[020/800], Step[0300/0626], Avg Loss: 0.8415
-INFO:local_logger:Epoch[020/800], Step[0300/0626], Avg Loss: 0.8403
-INFO:local_logger:Epoch[020/800], Step[0400/0626], Avg Loss: 0.8397
-INFO:local_logger:Epoch[020/800], Step[0400/0626], Avg Loss: 0.8397
-INFO:local_logger:Epoch[020/800], Step[0400/0626], Avg Loss: 0.8393
-INFO:local_logger:Epoch[020/800], Step[0400/0626], Avg Loss: 0.8400
-INFO:local_logger:Epoch[020/800], Step[0400/0626], Avg Loss: 0.8395
-INFO:local_logger:Epoch[020/800], Step[0400/0626], Avg Loss: 0.8400
-INFO:local_logger:Epoch[020/800], Step[0400/0626], Avg Loss: 0.8397
-INFO:master_logger:Epoch[020/800], Step[0400/0626], Avg Loss: 0.8398
-INFO:local_logger:Epoch[020/800], Step[0400/0626], Avg Loss: 0.8404
-INFO:local_logger:Epoch[020/800], Step[0500/0626], Avg Loss: 0.8384
-INFO:local_logger:Epoch[020/800], Step[0500/0626], Avg Loss: 0.8386
-INFO:local_logger:Epoch[020/800], Step[0500/0626], Avg Loss: 0.8384
-INFO:local_logger:Epoch[020/800], Step[0500/0626], Avg Loss: 0.8388
-INFO:local_logger:Epoch[020/800], Step[0500/0626], Avg Loss: 0.8383
-INFO:local_logger:Epoch[020/800], Step[0500/0626], Avg Loss: 0.8387
-INFO:local_logger:Epoch[020/800], Step[0500/0626], Avg Loss: 0.8384
-INFO:master_logger:Epoch[020/800], Step[0500/0626], Avg Loss: 0.8386
-INFO:local_logger:Epoch[020/800], Step[0500/0626], Avg Loss: 0.8391
-INFO:local_logger:Epoch[020/800], Step[0600/0626], Avg Loss: 0.8387
-INFO:local_logger:Epoch[020/800], Step[0600/0626], Avg Loss: 0.8378
-INFO:local_logger:Epoch[020/800], Step[0600/0626], Avg Loss: 0.8380
-INFO:local_logger:Epoch[020/800], Step[0600/0626], Avg Loss: 0.8382
-INFO:local_logger:Epoch[020/800], Step[0600/0626], Avg Loss: 0.8383
-INFO:local_logger:Epoch[020/800], Step[0600/0626], Avg Loss: 0.8381
-INFO:master_logger:Epoch[020/800], Step[0600/0626], Avg Loss: 0.8382
-INFO:local_logger:Epoch[020/800], Step[0600/0626], Avg Loss: 0.8380
-INFO:local_logger:Epoch[020/800], Step[0600/0626], Avg Loss: 0.8383
-INFO:local_logger:----- Epoch[020/800], Train Loss: 0.8379, time: 856.21
-INFO:local_logger:Now training epoch 21. LR=0.000079
-INFO:local_logger:----- Epoch[020/800], Train Loss: 0.8378, time: 856.64
-INFO:local_logger:----- Epoch[020/800], Train Loss: 0.8381, time: 856.54
-INFO:local_logger:Now training epoch 21. LR=0.000079
-INFO:local_logger:Now training epoch 21. LR=0.000079
-INFO:local_logger:----- Epoch[020/800], Train Loss: 0.8378, time: 856.55
-INFO:local_logger:Now training epoch 21. LR=0.000079
-INFO:local_logger:----- Epoch[020/800], Train Loss: 0.8378, time: 856.54
-INFO:local_logger:Now training epoch 21. LR=0.000079
-INFO:local_logger:----- Epoch[020/800], Train Loss: 0.8385, time: 856.62
-INFO:local_logger:----- Epoch[020/800], Train Loss: 0.8379, time: 856.58
-INFO:local_logger:Now training epoch 21. LR=0.000079
-INFO:local_logger:Now training epoch 21. LR=0.000079
-INFO:local_logger:----- Epoch[020/800], Train Loss: 0.8377, time: 853.74
-INFO:master_logger:----- Epoch[020/800], Train Loss: 0.8379, time: 853.74
-INFO:local_logger:----- Save model: ./output/train-20211219-17-07-40/MAE-Epoch-20-Loss-0.837697342612629.pdparams
-INFO:local_logger:----- Save optim: ./output/train-20211219-17-07-40/MAE-Epoch-20-Loss-0.837697342612629.pdopt
-INFO:master_logger:----- Save model: ./output/train-20211219-17-07-40/MAE-Epoch-20-Loss-0.837697342612629.pdparams
-INFO:master_logger:----- Save optim: ./output/train-20211219-17-07-40/MAE-Epoch-20-Loss-0.837697342612629.pdopt
-INFO:local_logger:Now training epoch 21. LR=0.000079
-INFO:master_logger:Now training epoch 21. LR=0.000079
-INFO:local_logger:Epoch[021/800], Step[0000/0626], Avg Loss: 0.8247
-INFO:local_logger:Epoch[021/800], Step[0000/0626], Avg Loss: 0.8468
-INFO:master_logger:Epoch[021/800], Step[0000/0626], Avg Loss: 0.8311
-INFO:local_logger:Epoch[021/800], Step[0000/0626], Avg Loss: 0.8307
-INFO:local_logger:Epoch[021/800], Step[0000/0626], Avg Loss: 0.8301
-INFO:local_logger:Epoch[021/800], Step[0000/0626], Avg Loss: 0.8220
-INFO:local_logger:Epoch[021/800], Step[0000/0626], Avg Loss: 0.8352
-INFO:local_logger:Epoch[021/800], Step[0000/0626], Avg Loss: 0.8284
-INFO:local_logger:Epoch[021/800], Step[0000/0626], Avg Loss: 0.8313
-INFO:local_logger:Epoch[021/800], Step[0100/0626], Avg Loss: 0.8345
-INFO:local_logger:Epoch[021/800], Step[0100/0626], Avg Loss: 0.8327
-INFO:local_logger:Epoch[021/800], Step[0100/0626], Avg Loss: 0.8336
-INFO:local_logger:Epoch[021/800], Step[0100/0626], Avg Loss: 0.8344
-INFO:local_logger:Epoch[021/800], Step[0100/0626], Avg Loss: 0.8331
-INFO:local_logger:Epoch[021/800], Step[0100/0626], Avg Loss: 0.8343
-INFO:master_logger:Epoch[021/800], Step[0100/0626], Avg Loss: 0.8338
-INFO:local_logger:Epoch[021/800], Step[0100/0626], Avg Loss: 0.8339
-INFO:local_logger:Epoch[021/800], Step[0100/0626], Avg Loss: 0.8339
-INFO:local_logger:Epoch[021/800], Step[0200/0626], Avg Loss: 0.8343
-INFO:local_logger:Epoch[021/800], Step[0200/0626], Avg Loss: 0.8340
-INFO:local_logger:Epoch[021/800], Step[0200/0626], Avg Loss: 0.8344
-INFO:local_logger:Epoch[021/800], Step[0200/0626], Avg Loss: 0.8339
-INFO:master_logger:Epoch[021/800], Step[0200/0626], Avg Loss: 0.8338
-INFO:local_logger:Epoch[021/800], Step[0200/0626], Avg Loss: 0.8333
-INFO:local_logger:Epoch[021/800], Step[0200/0626], Avg Loss: 0.8332
-INFO:local_logger:Epoch[021/800], Step[0200/0626], Avg Loss: 0.8337
-INFO:local_logger:Epoch[021/800], Step[0200/0626], Avg Loss: 0.8335
-INFO:local_logger:Epoch[021/800], Step[0300/0626], Avg Loss: 0.8328
-INFO:local_logger:Epoch[021/800], Step[0300/0626], Avg Loss: 0.8336
-INFO:local_logger:Epoch[021/800], Step[0300/0626], Avg Loss: 0.8330
-INFO:local_logger:Epoch[021/800], Step[0300/0626], Avg Loss: 0.8331
-INFO:local_logger:Epoch[021/800], Step[0300/0626], Avg Loss: 0.8331
-INFO:local_logger:Epoch[021/800], Step[0300/0626], Avg Loss: 0.8337
-INFO:local_logger:Epoch[021/800], Step[0300/0626], Avg Loss: 0.8328
-INFO:local_logger:Epoch[021/800], Step[0300/0626], Avg Loss: 0.8336
-INFO:master_logger:Epoch[021/800], Step[0300/0626], Avg Loss: 0.8332
-INFO:local_logger:Epoch[021/800], Step[0400/0626], Avg Loss: 0.8324
-INFO:local_logger:Epoch[021/800], Step[0400/0626], Avg Loss: 0.8322
-INFO:local_logger:Epoch[021/800], Step[0400/0626], Avg Loss: 0.8329
-INFO:local_logger:Epoch[021/800], Step[0400/0626], Avg Loss: 0.8326
-INFO:local_logger:Epoch[021/800], Step[0400/0626], Avg Loss: 0.8333
-INFO:local_logger:Epoch[021/800], Step[0400/0626], Avg Loss: 0.8324
-INFO:local_logger:Epoch[021/800], Step[0400/0626], Avg Loss: 0.8332
-INFO:master_logger:Epoch[021/800], Step[0400/0626], Avg Loss: 0.8327
-INFO:local_logger:Epoch[021/800], Step[0400/0626], Avg Loss: 0.8328
-INFO:local_logger:Epoch[021/800], Step[0500/0626], Avg Loss: 0.8323
-INFO:local_logger:Epoch[021/800], Step[0500/0626], Avg Loss: 0.8322
-INFO:master_logger:Epoch[021/800], Step[0500/0626], Avg Loss: 0.8321
-INFO:local_logger:Epoch[021/800], Step[0500/0626], Avg Loss: 0.8325
-INFO:local_logger:Epoch[021/800], Step[0500/0626], Avg Loss: 0.8319
-INFO:local_logger:Epoch[021/800], Step[0500/0626], Avg Loss: 0.8317
-INFO:local_logger:Epoch[021/800], Step[0500/0626], Avg Loss: 0.8323
-INFO:local_logger:Epoch[021/800], Step[0500/0626], Avg Loss: 0.8319
-INFO:local_logger:Epoch[021/800], Step[0500/0626], Avg Loss: 0.8320
-INFO:local_logger:Epoch[021/800], Step[0600/0626], Avg Loss: 0.8319
-INFO:local_logger:Epoch[021/800], Step[0600/0626], Avg Loss: 0.8316
-INFO:local_logger:Epoch[021/800], Step[0600/0626], Avg Loss: 0.8318
-INFO:local_logger:Epoch[021/800], Step[0600/0626], Avg Loss: 0.8314
-INFO:local_logger:Epoch[021/800], Step[0600/0626], Avg Loss: 0.8317
-INFO:local_logger:Epoch[021/800], Step[0600/0626], Avg Loss: 0.8314
-INFO:local_logger:Epoch[021/800], Step[0600/0626], Avg Loss: 0.8315
-INFO:master_logger:Epoch[021/800], Step[0600/0626], Avg Loss: 0.8316
-INFO:local_logger:Epoch[021/800], Step[0600/0626], Avg Loss: 0.8317
-INFO:local_logger:----- Epoch[021/800], Train Loss: 0.8314, time: 903.73
-INFO:master_logger:----- Epoch[021/800], Train Loss: 0.8313, time: 903.73
-INFO:local_logger:----- Epoch[021/800], Train Loss: 0.8311, time: 908.09
-INFO:local_logger:Now training epoch 22. LR=0.000083
-INFO:local_logger:----- Epoch[021/800], Train Loss: 0.8312, time: 908.50
-INFO:local_logger:Now training epoch 22. LR=0.000083
-INFO:local_logger:----- Epoch[021/800], Train Loss: 0.8312, time: 908.98
-INFO:local_logger:Now training epoch 22. LR=0.000083
-INFO:local_logger:----- Epoch[021/800], Train Loss: 0.8314, time: 908.52
-INFO:local_logger:Now training epoch 22. LR=0.000083
-INFO:local_logger:----- Epoch[021/800], Train Loss: 0.8314, time: 908.52
-INFO:local_logger:Now training epoch 22. LR=0.000083
-INFO:local_logger:----- Epoch[021/800], Train Loss: 0.8311, time: 908.52
-INFO:local_logger:Now training epoch 22. LR=0.000083
-INFO:local_logger:----- Epoch[021/800], Train Loss: 0.8317, time: 908.52
-INFO:local_logger:Now training epoch 22. LR=0.000083
-INFO:local_logger:----- Save model: ./output/train-20211219-17-07-40/MAE-Epoch-21-Loss-0.8314437446567381.pdparams
-INFO:local_logger:----- Save optim: ./output/train-20211219-17-07-40/MAE-Epoch-21-Loss-0.8314437446567381.pdopt
-INFO:master_logger:----- Save model: ./output/train-20211219-17-07-40/MAE-Epoch-21-Loss-0.8314437446567381.pdparams
-INFO:master_logger:----- Save optim: ./output/train-20211219-17-07-40/MAE-Epoch-21-Loss-0.8314437446567381.pdopt
-INFO:local_logger:Now training epoch 22. LR=0.000083
-INFO:master_logger:Now training epoch 22. LR=0.000083
-INFO:local_logger:Epoch[022/800], Step[0000/0626], Avg Loss: 0.8238
-INFO:local_logger:Epoch[022/800], Step[0000/0626], Avg Loss: 0.8287
-INFO:master_logger:Epoch[022/800], Step[0000/0626], Avg Loss: 0.8236
-INFO:local_logger:Epoch[022/800], Step[0000/0626], Avg Loss: 0.8314
-INFO:local_logger:Epoch[022/800], Step[0000/0626], Avg Loss: 0.8120
-INFO:local_logger:Epoch[022/800], Step[0000/0626], Avg Loss: 0.8206
-INFO:local_logger:Epoch[022/800], Step[0000/0626], Avg Loss: 0.8245
-INFO:local_logger:Epoch[022/800], Step[0000/0626], Avg Loss: 0.8214
-INFO:local_logger:Epoch[022/800], Step[0000/0626], Avg Loss: 0.8266
-INFO:local_logger:Epoch[022/800], Step[0100/0626], Avg Loss: 0.8256
-INFO:local_logger:Epoch[022/800], Step[0100/0626], Avg Loss: 0.8255
-INFO:local_logger:Epoch[022/800], Step[0100/0626], Avg Loss: 0.8256
-INFO:local_logger:Epoch[022/800], Step[0100/0626], Avg Loss: 0.8256
-INFO:local_logger:Epoch[022/800], Step[0100/0626], Avg Loss: 0.8274
-INFO:local_logger:Epoch[022/800], Step[0100/0626], Avg Loss: 0.8262
-INFO:local_logger:Epoch[022/800], Step[0100/0626], Avg Loss: 0.8270
-INFO:master_logger:Epoch[022/800], Step[0100/0626], Avg Loss: 0.8262
-INFO:local_logger:Epoch[022/800], Step[0100/0626], Avg Loss: 0.8269
-INFO:local_logger:Epoch[022/800], Step[0200/0626], Avg Loss: 0.8246
-INFO:local_logger:Epoch[022/800], Step[0200/0626], Avg Loss: 0.8258
-INFO:local_logger:Epoch[022/800], Step[0200/0626], Avg Loss: 0.8262
-INFO:local_logger:Epoch[022/800], Step[0200/0626], Avg Loss: 0.8250
-INFO:master_logger:Epoch[022/800], Step[0200/0626], Avg Loss: 0.8252
-INFO:local_logger:Epoch[022/800], Step[0200/0626], Avg Loss: 0.8250
-INFO:local_logger:Epoch[022/800], Step[0200/0626], Avg Loss: 0.8256
-INFO:local_logger:Epoch[022/800], Step[0200/0626], Avg Loss: 0.8245
-INFO:local_logger:Epoch[022/800], Step[0200/0626], Avg Loss: 0.8253
-INFO:local_logger:Epoch[022/800], Step[0300/0626], Avg Loss: 0.8236
-INFO:local_logger:Epoch[022/800], Step[0300/0626], Avg Loss: 0.8237
-INFO:local_logger:Epoch[022/800], Step[0300/0626], Avg Loss: 0.8235
-INFO:local_logger:Epoch[022/800], Step[0300/0626], Avg Loss: 0.8239
-INFO:local_logger:Epoch[022/800], Step[0300/0626], Avg Loss: 0.8245
-INFO:local_logger:Epoch[022/800], Step[0300/0626], Avg Loss: 0.8242
-INFO:local_logger:Epoch[022/800], Step[0300/0626], Avg Loss: 0.8232
-INFO:local_logger:Epoch[022/800], Step[0300/0626], Avg Loss: 0.8245
-INFO:master_logger:Epoch[022/800], Step[0300/0626], Avg Loss: 0.8239
-INFO:local_logger:Epoch[022/800], Step[0400/0626], Avg Loss: 0.8234
-INFO:local_logger:Epoch[022/800], Step[0400/0626], Avg Loss: 0.8226
-INFO:local_logger:Epoch[022/800], Step[0400/0626], Avg Loss: 0.8230
-INFO:local_logger:Epoch[022/800], Step[0400/0626], Avg Loss: 0.8239
-INFO:local_logger:Epoch[022/800], Step[0400/0626], Avg Loss: 0.8240
-INFO:local_logger:Epoch[022/800], Step[0400/0626], Avg Loss: 0.8231
-INFO:local_logger:Epoch[022/800], Step[0400/0626], Avg Loss: 0.8231
-INFO:local_logger:Epoch[022/800], Step[0400/0626], Avg Loss: 0.8235
-INFO:master_logger:Epoch[022/800], Step[0400/0626], Avg Loss: 0.8233
-INFO:local_logger:Epoch[022/800], Step[0500/0626], Avg Loss: 0.8231
-INFO:local_logger:Epoch[022/800], Step[0500/0626], Avg Loss: 0.8231
-INFO:local_logger:Epoch[022/800], Step[0500/0626], Avg Loss: 0.8222
-INFO:local_logger:Epoch[022/800], Step[0500/0626], Avg Loss: 0.8226
-INFO:master_logger:Epoch[022/800], Step[0500/0626], Avg Loss: 0.8225
-INFO:local_logger:Epoch[022/800], Step[0500/0626], Avg Loss: 0.8222
-INFO:local_logger:Epoch[022/800], Step[0500/0626], Avg Loss: 0.8223
-INFO:local_logger:Epoch[022/800], Step[0500/0626], Avg Loss: 0.8226
-INFO:local_logger:Epoch[022/800], Step[0500/0626], Avg Loss: 0.8222
-INFO:local_logger:Epoch[022/800], Step[0600/0626], Avg Loss: 0.8221
-INFO:local_logger:Epoch[022/800], Step[0600/0626], Avg Loss: 0.8219
-INFO:local_logger:Epoch[022/800], Step[0600/0626], Avg Loss: 0.8219
-INFO:local_logger:Epoch[022/800], Step[0600/0626], Avg Loss: 0.8220
-INFO:local_logger:Epoch[022/800], Step[0600/0626], Avg Loss: 0.8223
-INFO:local_logger:Epoch[022/800], Step[0600/0626], Avg Loss: 0.8226
-INFO:master_logger:Epoch[022/800], Step[0600/0626], Avg Loss: 0.8222
-INFO:local_logger:Epoch[022/800], Step[0600/0626], Avg Loss: 0.8228
-INFO:local_logger:Epoch[022/800], Step[0600/0626], Avg Loss: 0.8222
-INFO:local_logger:----- Epoch[022/800], Train Loss: 0.8221, time: 859.97
-INFO:master_logger:----- Epoch[022/800], Train Loss: 0.8221, time: 859.97
-INFO:local_logger:----- Epoch[022/800], Train Loss: 0.8221, time: 863.27
-INFO:local_logger:Now training epoch 23. LR=0.000087
-INFO:local_logger:----- Epoch[022/800], Train Loss: 0.8219, time: 864.02
-INFO:local_logger:Now training epoch 23. LR=0.000087
-INFO:local_logger:----- Epoch[022/800], Train Loss: 0.8219, time: 863.88
-INFO:local_logger:Now training epoch 23. LR=0.000087
-INFO:local_logger:----- Epoch[022/800], Train Loss: 0.8227, time: 863.94
-INFO:local_logger:Now training epoch 23. LR=0.000087
-INFO:local_logger:----- Epoch[022/800], Train Loss: 0.8220, time: 863.94
-INFO:local_logger:Now training epoch 23. LR=0.000087
-INFO:local_logger:----- Epoch[022/800], Train Loss: 0.8223, time: 863.94
-INFO:local_logger:Now training epoch 23. LR=0.000087
-INFO:local_logger:----- Epoch[022/800], Train Loss: 0.8219, time: 863.94
-INFO:local_logger:Now training epoch 23. LR=0.000087
-INFO:local_logger:----- Save model: ./output/train-20211219-17-07-40/MAE-Epoch-22-Loss-0.8221496500572387.pdparams
-INFO:local_logger:----- Save optim: ./output/train-20211219-17-07-40/MAE-Epoch-22-Loss-0.8221496500572387.pdopt
-INFO:master_logger:----- Save model: ./output/train-20211219-17-07-40/MAE-Epoch-22-Loss-0.8221496500572387.pdparams
-INFO:master_logger:----- Save optim: ./output/train-20211219-17-07-40/MAE-Epoch-22-Loss-0.8221496500572387.pdopt
-INFO:local_logger:Now training epoch 23. LR=0.000087
-INFO:master_logger:Now training epoch 23. LR=0.000087
-INFO:local_logger:Epoch[023/800], Step[0000/0626], Avg Loss: 0.8185
-INFO:local_logger:Epoch[023/800], Step[0000/0626], Avg Loss: 0.8079
-INFO:local_logger:Epoch[023/800], Step[0000/0626], Avg Loss: 0.8203
-INFO:local_logger:Epoch[023/800], Step[0000/0626], Avg Loss: 0.8216
-INFO:master_logger:Epoch[023/800], Step[0000/0626], Avg Loss: 0.8178
-INFO:local_logger:Epoch[023/800], Step[0000/0626], Avg Loss: 0.8182
-INFO:local_logger:Epoch[023/800], Step[0000/0626], Avg Loss: 0.8154
-INFO:local_logger:Epoch[023/800], Step[0000/0626], Avg Loss: 0.8235
-INFO:local_logger:Epoch[023/800], Step[0000/0626], Avg Loss: 0.8168
-INFO:local_logger:Epoch[023/800], Step[0100/0626], Avg Loss: 0.8184
-INFO:local_logger:Epoch[023/800], Step[0100/0626], Avg Loss: 0.8174
-INFO:local_logger:Epoch[023/800], Step[0100/0626], Avg Loss: 0.8173
-INFO:local_logger:Epoch[023/800], Step[0100/0626], Avg Loss: 0.8176
-INFO:local_logger:Epoch[023/800], Step[0100/0626], Avg Loss: 0.8182
-INFO:master_logger:Epoch[023/800], Step[0100/0626], Avg Loss: 0.8177
-INFO:local_logger:Epoch[023/800], Step[0100/0626], Avg Loss: 0.8171
-INFO:local_logger:Epoch[023/800], Step[0100/0626], Avg Loss: 0.8178
-INFO:local_logger:Epoch[023/800], Step[0100/0626], Avg Loss: 0.8173
-INFO:local_logger:Epoch[023/800], Step[0200/0626], Avg Loss: 0.8173
-INFO:local_logger:Epoch[023/800], Step[0200/0626], Avg Loss: 0.8172
-INFO:local_logger:Epoch[023/800], Step[0200/0626], Avg Loss: 0.8169
-INFO:local_logger:Epoch[023/800], Step[0200/0626], Avg Loss: 0.8168
-INFO:local_logger:Epoch[023/800], Step[0200/0626], Avg Loss: 0.8171
-INFO:local_logger:Epoch[023/800], Step[0200/0626], Avg Loss: 0.8171
-INFO:local_logger:Epoch[023/800], Step[0200/0626], Avg Loss: 0.8172
-INFO:local_logger:Epoch[023/800], Step[0200/0626], Avg Loss: 0.8171
-INFO:master_logger:Epoch[023/800], Step[0200/0626], Avg Loss: 0.8171
-INFO:local_logger:Epoch[023/800], Step[0300/0626], Avg Loss: 0.8166
-INFO:local_logger:Epoch[023/800], Step[0300/0626], Avg Loss: 0.8163
-INFO:local_logger:Epoch[023/800], Step[0300/0626], Avg Loss: 0.8166
-INFO:local_logger:Epoch[023/800], Step[0300/0626], Avg Loss: 0.8167
-INFO:local_logger:Epoch[023/800], Step[0300/0626], Avg Loss: 0.8164
-INFO:master_logger:Epoch[023/800], Step[0300/0626], Avg Loss: 0.8166
-INFO:local_logger:Epoch[023/800], Step[0300/0626], Avg Loss: 0.8170
-INFO:local_logger:Epoch[023/800], Step[0300/0626], Avg Loss: 0.8170
-INFO:local_logger:Epoch[023/800], Step[0300/0626], Avg Loss: 0.8166
-INFO:local_logger:Epoch[023/800], Step[0400/0626], Avg Loss: 0.8161
-INFO:local_logger:Epoch[023/800], Step[0400/0626], Avg Loss: 0.8159
-INFO:local_logger:Epoch[023/800], Step[0400/0626], Avg Loss: 0.8161
-INFO:local_logger:Epoch[023/800], Step[0400/0626], Avg Loss: 0.8159
-INFO:local_logger:Epoch[023/800], Step[0400/0626], Avg Loss: 0.8158
-INFO:local_logger:Epoch[023/800], Step[0400/0626], Avg Loss: 0.8165
-INFO:master_logger:Epoch[023/800], Step[0400/0626], Avg Loss: 0.8161
-INFO:local_logger:Epoch[023/800], Step[0400/0626], Avg Loss: 0.8163
-INFO:local_logger:Epoch[023/800], Step[0400/0626], Avg Loss: 0.8165
-INFO:local_logger:Epoch[023/800], Step[0500/0626], Avg Loss: 0.8157
-INFO:local_logger:Epoch[023/800], Step[0500/0626], Avg Loss: 0.8160
-INFO:local_logger:Epoch[023/800], Step[0500/0626], Avg Loss: 0.8161
-INFO:local_logger:Epoch[023/800], Step[0500/0626], Avg Loss: 0.8155
-INFO:master_logger:Epoch[023/800], Step[0500/0626], Avg Loss: 0.8157
-INFO:local_logger:Epoch[023/800], Step[0500/0626], Avg Loss: 0.8154
-INFO:local_logger:Epoch[023/800], Step[0500/0626], Avg Loss: 0.8155
-INFO:local_logger:Epoch[023/800], Step[0500/0626], Avg Loss: 0.8156
-INFO:local_logger:Epoch[023/800], Step[0500/0626], Avg Loss: 0.8155
-INFO:local_logger:Epoch[023/800], Step[0600/0626], Avg Loss: 0.8151
-INFO:local_logger:Epoch[023/800], Step[0600/0626], Avg Loss: 0.8149
-INFO:local_logger:Epoch[023/800], Step[0600/0626], Avg Loss: 0.8154
-INFO:local_logger:Epoch[023/800], Step[0600/0626], Avg Loss: 0.8151
-INFO:local_logger:Epoch[023/800], Step[0600/0626], Avg Loss: 0.8152
-INFO:local_logger:Epoch[023/800], Step[0600/0626], Avg Loss: 0.8149
-INFO:master_logger:Epoch[023/800], Step[0600/0626], Avg Loss: 0.8151
-INFO:local_logger:Epoch[023/800], Step[0600/0626], Avg Loss: 0.8151
-INFO:local_logger:Epoch[023/800], Step[0600/0626], Avg Loss: 0.8153
-INFO:local_logger:----- Epoch[023/800], Train Loss: 0.8150, time: 884.65
-INFO:master_logger:----- Epoch[023/800], Train Loss: 0.8150, time: 884.65
-INFO:local_logger:----- Epoch[023/800], Train Loss: 0.8151, time: 888.50
-INFO:local_logger:Now training epoch 24. LR=0.000090
-INFO:local_logger:----- Epoch[023/800], Train Loss: 0.8152, time: 889.17
-INFO:local_logger:Now training epoch 24. LR=0.000090
-INFO:local_logger:----- Epoch[023/800], Train Loss: 0.8152, time: 888.59
-INFO:local_logger:Now training epoch 24. LR=0.000090
-INFO:local_logger:----- Epoch[023/800], Train Loss: 0.8148, time: 888.85
-INFO:local_logger:Now training epoch 24. LR=0.000090
-INFO:local_logger:----- Epoch[023/800], Train Loss: 0.8149, time: 888.51
-INFO:local_logger:Now training epoch 24. LR=0.000090
-INFO:local_logger:----- Epoch[023/800], Train Loss: 0.8149, time: 888.52
-INFO:local_logger:Now training epoch 24. LR=0.000090
-INFO:local_logger:----- Epoch[023/800], Train Loss: 0.8146, time: 888.53
-INFO:local_logger:Now training epoch 24. LR=0.000090
-INFO:local_logger:----- Save model: ./output/train-20211219-17-07-40/MAE-Epoch-23-Loss-0.8150022067021212.pdparams
-INFO:local_logger:----- Save optim: ./output/train-20211219-17-07-40/MAE-Epoch-23-Loss-0.8150022067021212.pdopt
-INFO:master_logger:----- Save model: ./output/train-20211219-17-07-40/MAE-Epoch-23-Loss-0.8150022067021212.pdparams
-INFO:master_logger:----- Save optim: ./output/train-20211219-17-07-40/MAE-Epoch-23-Loss-0.8150022067021212.pdopt
-INFO:local_logger:Now training epoch 24. LR=0.000090
-INFO:master_logger:Now training epoch 24. LR=0.000090
-INFO:local_logger:Epoch[024/800], Step[0000/0626], Avg Loss: 0.8150
-INFO:local_logger:Epoch[024/800], Step[0000/0626], Avg Loss: 0.8170
-INFO:local_logger:Epoch[024/800], Step[0000/0626], Avg Loss: 0.8108
-INFO:local_logger:Epoch[024/800], Step[0000/0626], Avg Loss: 0.8043
-INFO:local_logger:Epoch[024/800], Step[0000/0626], Avg Loss: 0.8090
-INFO:local_logger:Epoch[024/800], Step[0000/0626], Avg Loss: 0.8224
-INFO:local_logger:Epoch[024/800], Step[0000/0626], Avg Loss: 0.8215
-INFO:master_logger:Epoch[024/800], Step[0000/0626], Avg Loss: 0.8135
-INFO:local_logger:Epoch[024/800], Step[0000/0626], Avg Loss: 0.8082
-INFO:local_logger:Epoch[024/800], Step[0100/0626], Avg Loss: 0.8115
-INFO:local_logger:Epoch[024/800], Step[0100/0626], Avg Loss: 0.8115
-INFO:local_logger:Epoch[024/800], Step[0100/0626], Avg Loss: 0.8110
-INFO:local_logger:Epoch[024/800], Step[0100/0626], Avg Loss: 0.8112
-INFO:local_logger:Epoch[024/800], Step[0100/0626], Avg Loss: 0.8117
-INFO:local_logger:Epoch[024/800], Step[0100/0626], Avg Loss: 0.8124
-INFO:local_logger:Epoch[024/800], Step[0100/0626], Avg Loss: 0.8113
-INFO:master_logger:Epoch[024/800], Step[0100/0626], Avg Loss: 0.8114
-INFO:local_logger:Epoch[024/800], Step[0100/0626], Avg Loss: 0.8105
-INFO:local_logger:Epoch[024/800], Step[0200/0626], Avg Loss: 0.8104
-INFO:local_logger:Epoch[024/800], Step[0200/0626], Avg Loss: 0.8110
-INFO:local_logger:Epoch[024/800], Step[0200/0626], Avg Loss: 0.8111
-INFO:local_logger:Epoch[024/800], Step[0200/0626], Avg Loss: 0.8115
-INFO:local_logger:Epoch[024/800], Step[0200/0626], Avg Loss: 0.8114
-INFO:local_logger:Epoch[024/800], Step[0200/0626], Avg Loss: 0.8115
-INFO:local_logger:Epoch[024/800], Step[0200/0626], Avg Loss: 0.8108
-INFO:local_logger:Epoch[024/800], Step[0200/0626], Avg Loss: 0.8112
-INFO:master_logger:Epoch[024/800], Step[0200/0626], Avg Loss: 0.8111
-INFO:local_logger:Epoch[024/800], Step[0300/0626], Avg Loss: 0.8101
-INFO:local_logger:Epoch[024/800], Step[0300/0626], Avg Loss: 0.8100
-INFO:local_logger:Epoch[024/800], Step[0300/0626], Avg Loss: 0.8106
-INFO:local_logger:Epoch[024/800], Step[0300/0626], Avg Loss: 0.8106
-INFO:local_logger:Epoch[024/800], Step[0300/0626], Avg Loss: 0.8099
-INFO:local_logger:Epoch[024/800], Step[0300/0626], Avg Loss: 0.8100
-INFO:local_logger:Epoch[024/800], Step[0300/0626], Avg Loss: 0.8101
-INFO:local_logger:Epoch[024/800], Step[0300/0626], Avg Loss: 0.8107
-INFO:master_logger:Epoch[024/800], Step[0300/0626], Avg Loss: 0.8103
-INFO:local_logger:Epoch[024/800], Step[0400/0626], Avg Loss: 0.8096
-INFO:local_logger:Epoch[024/800], Step[0400/0626], Avg Loss: 0.8096
-INFO:local_logger:Epoch[024/800], Step[0400/0626], Avg Loss: 0.8096
-INFO:local_logger:Epoch[024/800], Step[0400/0626], Avg Loss: 0.8099
-INFO:local_logger:Epoch[024/800], Step[0400/0626], Avg Loss: 0.8098
-INFO:local_logger:Epoch[024/800], Step[0400/0626], Avg Loss: 0.8097
-INFO:local_logger:Epoch[024/800], Step[0400/0626], Avg Loss: 0.8101
-INFO:master_logger:Epoch[024/800], Step[0400/0626], Avg Loss: 0.8098
-INFO:local_logger:Epoch[024/800], Step[0400/0626], Avg Loss: 0.8103
-INFO:local_logger:Epoch[024/800], Step[0500/0626], Avg Loss: 0.8089
-INFO:local_logger:Epoch[024/800], Step[0500/0626], Avg Loss: 0.8095
-INFO:local_logger:Epoch[024/800], Step[0500/0626], Avg Loss: 0.8094
-INFO:local_logger:Epoch[024/800], Step[0500/0626], Avg Loss: 0.8090
-INFO:local_logger:Epoch[024/800], Step[0500/0626], Avg Loss: 0.8094
-INFO:local_logger:Epoch[024/800], Step[0500/0626], Avg Loss: 0.8090
-INFO:local_logger:Epoch[024/800], Step[0500/0626], Avg Loss: 0.8091
-INFO:master_logger:Epoch[024/800], Step[0500/0626], Avg Loss: 0.8092
-INFO:local_logger:Epoch[024/800], Step[0500/0626], Avg Loss: 0.8090
-INFO:local_logger:Epoch[024/800], Step[0600/0626], Avg Loss: 0.8088
-INFO:local_logger:Epoch[024/800], Step[0600/0626], Avg Loss: 0.8088
-INFO:local_logger:Epoch[024/800], Step[0600/0626], Avg Loss: 0.8093
-INFO:local_logger:Epoch[024/800], Step[0600/0626], Avg Loss: 0.8088
-INFO:local_logger:Epoch[024/800], Step[0600/0626], Avg Loss: 0.8087
-INFO:local_logger:Epoch[024/800], Step[0600/0626], Avg Loss: 0.8091
-INFO:local_logger:Epoch[024/800], Step[0600/0626], Avg Loss: 0.8091
-INFO:master_logger:Epoch[024/800], Step[0600/0626], Avg Loss: 0.8089
-INFO:local_logger:Epoch[024/800], Step[0600/0626], Avg Loss: 0.8088
-INFO:local_logger:----- Epoch[024/800], Train Loss: 0.8087, time: 870.26
-INFO:local_logger:Now training epoch 25. LR=0.000094
-INFO:local_logger:----- Epoch[024/800], Train Loss: 0.8084, time: 870.28
-INFO:local_logger:Now training epoch 25. LR=0.000094
-INFO:local_logger:----- Epoch[024/800], Train Loss: 0.8092, time: 867.64
-INFO:master_logger:----- Epoch[024/800], Train Loss: 0.8088, time: 867.64
-INFO:local_logger:----- Epoch[024/800], Train Loss: 0.8090, time: 870.78
-INFO:local_logger:Now training epoch 25. LR=0.000094
-INFO:local_logger:----- Epoch[024/800], Train Loss: 0.8089, time: 870.77
-INFO:local_logger:Now training epoch 25. LR=0.000094
-INFO:local_logger:----- Epoch[024/800], Train Loss: 0.8086, time: 870.75
-INFO:local_logger:Now training epoch 25. LR=0.000094
-INFO:local_logger:----- Epoch[024/800], Train Loss: 0.8086, time: 870.78
-INFO:local_logger:----- Epoch[024/800], Train Loss: 0.8087, time: 870.75
-INFO:local_logger:Now training epoch 25. LR=0.000094
-INFO:local_logger:Now training epoch 25. LR=0.000094
-INFO:local_logger:----- Save model: ./output/train-20211219-17-07-40/MAE-Epoch-24-Loss-0.8091736378081739.pdparams
-INFO:local_logger:----- Save optim: ./output/train-20211219-17-07-40/MAE-Epoch-24-Loss-0.8091736378081739.pdopt
-INFO:master_logger:----- Save model: ./output/train-20211219-17-07-40/MAE-Epoch-24-Loss-0.8091736378081739.pdparams
-INFO:master_logger:----- Save optim: ./output/train-20211219-17-07-40/MAE-Epoch-24-Loss-0.8091736378081739.pdopt
-INFO:local_logger:Now training epoch 25. LR=0.000094
-INFO:master_logger:Now training epoch 25. LR=0.000094
-INFO:local_logger:Epoch[025/800], Step[0000/0626], Avg Loss: 0.8030
-INFO:local_logger:Epoch[025/800], Step[0000/0626], Avg Loss: 0.8073
-INFO:local_logger:Epoch[025/800], Step[0000/0626], Avg Loss: 0.7969
-INFO:master_logger:Epoch[025/800], Step[0000/0626], Avg Loss: 0.8051
-INFO:local_logger:Epoch[025/800], Step[0000/0626], Avg Loss: 0.8085
-INFO:local_logger:Epoch[025/800], Step[0000/0626], Avg Loss: 0.8000
-INFO:local_logger:Epoch[025/800], Step[0000/0626], Avg Loss: 0.8034
-INFO:local_logger:Epoch[025/800], Step[0000/0626], Avg Loss: 0.8158
-INFO:local_logger:Epoch[025/800], Step[0000/0626], Avg Loss: 0.8061
-INFO:local_logger:Epoch[025/800], Step[0100/0626], Avg Loss: 0.8055
-INFO:local_logger:Epoch[025/800], Step[0100/0626], Avg Loss: 0.8046
-INFO:local_logger:Epoch[025/800], Step[0100/0626], Avg Loss: 0.8059
-INFO:local_logger:Epoch[025/800], Step[0100/0626], Avg Loss: 0.8052
-INFO:local_logger:Epoch[025/800], Step[0100/0626], Avg Loss: 0.8053
-INFO:local_logger:Epoch[025/800], Step[0100/0626], Avg Loss: 0.8054
-INFO:local_logger:Epoch[025/800], Step[0100/0626], Avg Loss: 0.8052
-INFO:local_logger:Epoch[025/800], Step[0100/0626], Avg Loss: 0.8057
-INFO:master_logger:Epoch[025/800], Step[0100/0626], Avg Loss: 0.8053
-INFO:local_logger:Epoch[025/800], Step[0200/0626], Avg Loss: 0.8049
-INFO:local_logger:Epoch[025/800], Step[0200/0626], Avg Loss: 0.8050
-INFO:local_logger:Epoch[025/800], Step[0200/0626], Avg Loss: 0.8051
-INFO:local_logger:Epoch[025/800], Step[0200/0626], Avg Loss: 0.8047
-INFO:local_logger:Epoch[025/800], Step[0200/0626], Avg Loss: 0.8054
-INFO:local_logger:Epoch[025/800], Step[0200/0626], Avg Loss: 0.8050
-INFO:local_logger:Epoch[025/800], Step[0200/0626], Avg Loss: 0.8057
-INFO:master_logger:Epoch[025/800], Step[0200/0626], Avg Loss: 0.8051
-INFO:local_logger:Epoch[025/800], Step[0200/0626], Avg Loss: 0.8051
-INFO:local_logger:Epoch[025/800], Step[0300/0626], Avg Loss: 0.8052
-INFO:local_logger:Epoch[025/800], Step[0300/0626], Avg Loss: 0.8049
-INFO:local_logger:Epoch[025/800], Step[0300/0626], Avg Loss: 0.8046
-INFO:local_logger:Epoch[025/800], Step[0300/0626], Avg Loss: 0.8044
-INFO:local_logger:Epoch[025/800], Step[0300/0626], Avg Loss: 0.8048
-INFO:local_logger:Epoch[025/800], Step[0300/0626], Avg Loss: 0.8046
-INFO:master_logger:Epoch[025/800], Step[0300/0626], Avg Loss: 0.8047
-INFO:local_logger:Epoch[025/800], Step[0300/0626], Avg Loss: 0.8044
-INFO:local_logger:Epoch[025/800], Step[0300/0626], Avg Loss: 0.8044
-INFO:local_logger:Epoch[025/800], Step[0400/0626], Avg Loss: 0.8043
-INFO:master_logger:Epoch[025/800], Step[0400/0626], Avg Loss: 0.8042
-INFO:local_logger:Epoch[025/800], Step[0400/0626], Avg Loss: 0.8042
-INFO:local_logger:Epoch[025/800], Step[0400/0626], Avg Loss: 0.8043
-INFO:local_logger:Epoch[025/800], Step[0400/0626], Avg Loss: 0.8040
-INFO:local_logger:Epoch[025/800], Step[0400/0626], Avg Loss: 0.8045
-INFO:local_logger:Epoch[025/800], Step[0400/0626], Avg Loss: 0.8038
-INFO:local_logger:Epoch[025/800], Step[0400/0626], Avg Loss: 0.8043
-INFO:local_logger:Epoch[025/800], Step[0400/0626], Avg Loss: 0.8043
-INFO:local_logger:Epoch[025/800], Step[0500/0626], Avg Loss: 0.8040
-INFO:local_logger:Epoch[025/800], Step[0500/0626], Avg Loss: 0.8039
-INFO:local_logger:Epoch[025/800], Step[0500/0626], Avg Loss: 0.8032
-INFO:local_logger:Epoch[025/800], Step[0500/0626], Avg Loss: 0.8034
-INFO:master_logger:Epoch[025/800], Step[0500/0626], Avg Loss: 0.8036
-INFO:local_logger:Epoch[025/800], Step[0500/0626], Avg Loss: 0.8037
-INFO:local_logger:Epoch[025/800], Step[0500/0626], Avg Loss: 0.8037
-INFO:local_logger:Epoch[025/800], Step[0500/0626], Avg Loss: 0.8037
-INFO:local_logger:Epoch[025/800], Step[0500/0626], Avg Loss: 0.8035
-INFO:local_logger:Epoch[025/800], Step[0600/0626], Avg Loss: 0.8036
-INFO:local_logger:Epoch[025/800], Step[0600/0626], Avg Loss: 0.8029
-INFO:master_logger:Epoch[025/800], Step[0600/0626], Avg Loss: 0.8033
-INFO:local_logger:Epoch[025/800], Step[0600/0626], Avg Loss: 0.8032
-INFO:local_logger:Epoch[025/800], Step[0600/0626], Avg Loss: 0.8032
-INFO:local_logger:Epoch[025/800], Step[0600/0626], Avg Loss: 0.8030
-INFO:local_logger:Epoch[025/800], Step[0600/0626], Avg Loss: 0.8035
-INFO:local_logger:Epoch[025/800], Step[0600/0626], Avg Loss: 0.8036
-INFO:local_logger:Epoch[025/800], Step[0600/0626], Avg Loss: 0.8035
-INFO:local_logger:----- Epoch[025/800], Train Loss: 0.8033, time: 888.93
-INFO:local_logger:Now training epoch 26. LR=0.000098
-INFO:local_logger:----- Epoch[025/800], Train Loss: 0.8035, time: 885.88
-INFO:master_logger:----- Epoch[025/800], Train Loss: 0.8032, time: 885.88
-INFO:local_logger:----- Epoch[025/800], Train Loss: 0.8029, time: 889.72
-INFO:local_logger:Now training epoch 26. LR=0.000098
-INFO:local_logger:----- Epoch[025/800], Train Loss: 0.8033, time: 889.81
-INFO:local_logger:Now training epoch 26. LR=0.000098
-INFO:local_logger:----- Epoch[025/800], Train Loss: 0.8031, time: 889.83
-INFO:local_logger:Now training epoch 26. LR=0.000098
-INFO:local_logger:----- Epoch[025/800], Train Loss: 0.8031, time: 890.36
-INFO:local_logger:Now training epoch 26. LR=0.000098
-INFO:local_logger:----- Epoch[025/800], Train Loss: 0.8035, time: 890.36
-INFO:local_logger:Now training epoch 26. LR=0.000098
-INFO:local_logger:----- Epoch[025/800], Train Loss: 0.8028, time: 889.87
-INFO:local_logger:Now training epoch 26. LR=0.000098
-INFO:local_logger:----- Save model: ./output/train-20211219-17-07-40/MAE-Epoch-25-Loss-0.8034991228641365.pdparams
-INFO:local_logger:----- Save optim: ./output/train-20211219-17-07-40/MAE-Epoch-25-Loss-0.8034991228641365.pdopt
-INFO:master_logger:----- Save model: ./output/train-20211219-17-07-40/MAE-Epoch-25-Loss-0.8034991228641365.pdparams
-INFO:master_logger:----- Save optim: ./output/train-20211219-17-07-40/MAE-Epoch-25-Loss-0.8034991228641365.pdopt
-INFO:local_logger:Now training epoch 26. LR=0.000098
-INFO:master_logger:Now training epoch 26. LR=0.000098
-INFO:local_logger:Epoch[026/800], Step[0000/0626], Avg Loss: 0.7943
-INFO:local_logger:Epoch[026/800], Step[0000/0626], Avg Loss: 0.7989
-INFO:master_logger:Epoch[026/800], Step[0000/0626], Avg Loss: 0.7988
-INFO:local_logger:Epoch[026/800], Step[0000/0626], Avg Loss: 0.7899
-INFO:local_logger:Epoch[026/800], Step[0000/0626], Avg Loss: 0.7949
-INFO:local_logger:Epoch[026/800], Step[0000/0626], Avg Loss: 0.7996
-INFO:local_logger:Epoch[026/800], Step[0000/0626], Avg Loss: 0.8022
-INFO:local_logger:Epoch[026/800], Step[0000/0626], Avg Loss: 0.8063
-INFO:local_logger:Epoch[026/800], Step[0000/0626], Avg Loss: 0.8043
-INFO:local_logger:Epoch[026/800], Step[0100/0626], Avg Loss: 0.7989
-INFO:local_logger:Epoch[026/800], Step[0100/0626], Avg Loss: 0.7997
-INFO:local_logger:Epoch[026/800], Step[0100/0626], Avg Loss: 0.7993
-INFO:local_logger:Epoch[026/800], Step[0100/0626], Avg Loss: 0.7994
-INFO:local_logger:Epoch[026/800], Step[0100/0626], Avg Loss: 0.7998
-INFO:local_logger:Epoch[026/800], Step[0100/0626], Avg Loss: 0.7976
-INFO:master_logger:Epoch[026/800], Step[0100/0626], Avg Loss: 0.7992
-INFO:local_logger:Epoch[026/800], Step[0100/0626], Avg Loss: 0.7992
-INFO:local_logger:Epoch[026/800], Step[0100/0626], Avg Loss: 0.7992
-INFO:local_logger:Epoch[026/800], Step[0200/0626], Avg Loss: 0.7993
-INFO:local_logger:Epoch[026/800], Step[0200/0626], Avg Loss: 0.7986
-INFO:local_logger:Epoch[026/800], Step[0200/0626], Avg Loss: 0.7985
-INFO:local_logger:Epoch[026/800], Step[0200/0626], Avg Loss: 0.7986
-INFO:local_logger:Epoch[026/800], Step[0200/0626], Avg Loss: 0.7987
-INFO:local_logger:Epoch[026/800], Step[0200/0626], Avg Loss: 0.7988
-INFO:local_logger:Epoch[026/800], Step[0200/0626], Avg Loss: 0.7980
-INFO:master_logger:Epoch[026/800], Step[0200/0626], Avg Loss: 0.7988
-INFO:local_logger:Epoch[026/800], Step[0200/0626], Avg Loss: 0.7999
-INFO:local_logger:Epoch[026/800], Step[0300/0626], Avg Loss: 0.7980
-INFO:local_logger:Epoch[026/800], Step[0300/0626], Avg Loss: 0.7983
-INFO:local_logger:Epoch[026/800], Step[0300/0626], Avg Loss: 0.7983
-INFO:local_logger:Epoch[026/800], Step[0300/0626], Avg Loss: 0.7992
-INFO:local_logger:Epoch[026/800], Step[0300/0626], Avg Loss: 0.7980
-INFO:local_logger:Epoch[026/800], Step[0300/0626], Avg Loss: 0.7983
-INFO:local_logger:Epoch[026/800], Step[0300/0626], Avg Loss: 0.7985
-INFO:master_logger:Epoch[026/800], Step[0300/0626], Avg Loss: 0.7983
-INFO:local_logger:Epoch[026/800], Step[0300/0626], Avg Loss: 0.7979
-INFO:local_logger:Epoch[026/800], Step[0400/0626], Avg Loss: 0.7977
-INFO:local_logger:Epoch[026/800], Step[0400/0626], Avg Loss: 0.7973
-INFO:local_logger:Epoch[026/800], Step[0400/0626], Avg Loss: 0.7976
-INFO:local_logger:Epoch[026/800], Step[0400/0626], Avg Loss: 0.7977
-INFO:local_logger:Epoch[026/800], Step[0400/0626], Avg Loss: 0.7975
-INFO:local_logger:Epoch[026/800], Step[0400/0626], Avg Loss: 0.7976
-INFO:local_logger:Epoch[026/800], Step[0400/0626], Avg Loss: 0.7979
-INFO:master_logger:Epoch[026/800], Step[0400/0626], Avg Loss: 0.7977
-INFO:local_logger:Epoch[026/800], Step[0400/0626], Avg Loss: 0.7984
-INFO:local_logger:Epoch[026/800], Step[0500/0626], Avg Loss: 0.7970
-INFO:local_logger:Epoch[026/800], Step[0500/0626], Avg Loss: 0.7967
-INFO:local_logger:Epoch[026/800], Step[0500/0626], Avg Loss: 0.7967
-INFO:local_logger:Epoch[026/800], Step[0500/0626], Avg Loss: 0.7976
-INFO:local_logger:Epoch[026/800], Step[0500/0626], Avg Loss: 0.7970
-INFO:local_logger:Epoch[026/800], Step[0500/0626], Avg Loss: 0.7965
-INFO:master_logger:Epoch[026/800], Step[0500/0626], Avg Loss: 0.7969
-INFO:local_logger:Epoch[026/800], Step[0500/0626], Avg Loss: 0.7968
-INFO:local_logger:Epoch[026/800], Step[0500/0626], Avg Loss: 0.7969
-INFO:local_logger:Epoch[026/800], Step[0600/0626], Avg Loss: 0.7961
-INFO:local_logger:Epoch[026/800], Step[0600/0626], Avg Loss: 0.7961
-INFO:local_logger:Epoch[026/800], Step[0600/0626], Avg Loss: 0.7959
-INFO:local_logger:Epoch[026/800], Step[0600/0626], Avg Loss: 0.7961
-INFO:local_logger:Epoch[026/800], Step[0600/0626], Avg Loss: 0.7969
-INFO:local_logger:Epoch[026/800], Step[0600/0626], Avg Loss: 0.7961
-INFO:master_logger:Epoch[026/800], Step[0600/0626], Avg Loss: 0.7962
-INFO:local_logger:Epoch[026/800], Step[0600/0626], Avg Loss: 0.7963
-INFO:local_logger:Epoch[026/800], Step[0600/0626], Avg Loss: 0.7964
-INFO:local_logger:----- Epoch[026/800], Train Loss: 0.7968, time: 871.34
-INFO:local_logger:Now training epoch 27. LR=0.000102
-INFO:local_logger:----- Epoch[026/800], Train Loss: 0.7961, time: 867.96
-INFO:master_logger:----- Epoch[026/800], Train Loss: 0.7962, time: 867.96
-INFO:local_logger:----- Epoch[026/800], Train Loss: 0.7959, time: 871.51
-INFO:local_logger:Now training epoch 27. LR=0.000102
-INFO:local_logger:----- Epoch[026/800], Train Loss: 0.7960, time: 871.97
-INFO:local_logger:Now training epoch 27. LR=0.000102
-INFO:local_logger:----- Epoch[026/800], Train Loss: 0.7960, time: 871.99
-INFO:local_logger:Now training epoch 27. LR=0.000102
-INFO:local_logger:----- Epoch[026/800], Train Loss: 0.7963, time: 872.03
-INFO:local_logger:Now training epoch 27. LR=0.000102
-INFO:local_logger:----- Epoch[026/800], Train Loss: 0.7962, time: 872.93
-INFO:local_logger:Now training epoch 27. LR=0.000102
-INFO:local_logger:----- Epoch[026/800], Train Loss: 0.7961, time: 872.05
-INFO:local_logger:Now training epoch 27. LR=0.000102
-INFO:local_logger:----- Save model: ./output/train-20211219-17-07-40/MAE-Epoch-26-Loss-0.796081899062454.pdparams
-INFO:local_logger:----- Save optim: ./output/train-20211219-17-07-40/MAE-Epoch-26-Loss-0.796081899062454.pdopt
-INFO:master_logger:----- Save model: ./output/train-20211219-17-07-40/MAE-Epoch-26-Loss-0.796081899062454.pdparams
-INFO:master_logger:----- Save optim: ./output/train-20211219-17-07-40/MAE-Epoch-26-Loss-0.796081899062454.pdopt
-INFO:local_logger:Now training epoch 27. LR=0.000102
-INFO:master_logger:Now training epoch 27. LR=0.000102
-INFO:local_logger:Epoch[027/800], Step[0000/0626], Avg Loss: 0.7991
-INFO:local_logger:Epoch[027/800], Step[0000/0626], Avg Loss: 0.8009
-INFO:local_logger:Epoch[027/800], Step[0000/0626], Avg Loss: 0.7909
-INFO:master_logger:Epoch[027/800], Step[0000/0626], Avg Loss: 0.7963
-INFO:local_logger:Epoch[027/800], Step[0000/0626], Avg Loss: 0.8054
-INFO:local_logger:Epoch[027/800], Step[0000/0626], Avg Loss: 0.7875
-INFO:local_logger:Epoch[027/800], Step[0000/0626], Avg Loss: 0.7990
-INFO:local_logger:Epoch[027/800], Step[0000/0626], Avg Loss: 0.7946
-INFO:local_logger:Epoch[027/800], Step[0000/0626], Avg Loss: 0.7932
-INFO:local_logger:Epoch[027/800], Step[0100/0626], Avg Loss: 0.7923
-INFO:local_logger:Epoch[027/800], Step[0100/0626], Avg Loss: 0.7922
-INFO:local_logger:Epoch[027/800], Step[0100/0626], Avg Loss: 0.7923
-INFO:master_logger:Epoch[027/800], Step[0100/0626], Avg Loss: 0.7920
-INFO:local_logger:Epoch[027/800], Step[0100/0626], Avg Loss: 0.7924
-INFO:local_logger:Epoch[027/800], Step[0100/0626], Avg Loss: 0.7913
-INFO:local_logger:Epoch[027/800], Step[0100/0626], Avg Loss: 0.7925
-INFO:local_logger:Epoch[027/800], Step[0100/0626], Avg Loss: 0.7917
-INFO:local_logger:Epoch[027/800], Step[0100/0626], Avg Loss: 0.7914
-INFO:local_logger:Epoch[027/800], Step[0200/0626], Avg Loss: 0.7922
-INFO:local_logger:Epoch[027/800], Step[0200/0626], Avg Loss: 0.7922
-INFO:local_logger:Epoch[027/800], Step[0200/0626], Avg Loss: 0.7924
-INFO:local_logger:Epoch[027/800], Step[0200/0626], Avg Loss: 0.7924
-INFO:local_logger:Epoch[027/800], Step[0200/0626], Avg Loss: 0.7915
-INFO:local_logger:Epoch[027/800], Step[0200/0626], Avg Loss: 0.7919
-INFO:master_logger:Epoch[027/800], Step[0200/0626], Avg Loss: 0.7920
-INFO:local_logger:Epoch[027/800], Step[0200/0626], Avg Loss: 0.7914
-INFO:local_logger:Epoch[027/800], Step[0200/0626], Avg Loss: 0.7921
-INFO:local_logger:Epoch[027/800], Step[0300/0626], Avg Loss: 0.7914
-INFO:local_logger:Epoch[027/800], Step[0300/0626], Avg Loss: 0.7917
-INFO:local_logger:Epoch[027/800], Step[0300/0626], Avg Loss: 0.7905
-INFO:local_logger:Epoch[027/800], Step[0300/0626], Avg Loss: 0.7909
-INFO:master_logger:Epoch[027/800], Step[0300/0626], Avg Loss: 0.7911
-INFO:local_logger:Epoch[027/800], Step[0300/0626], Avg Loss: 0.7907
-INFO:local_logger:Epoch[027/800], Step[0300/0626], Avg Loss: 0.7915
-INFO:local_logger:Epoch[027/800], Step[0300/0626], Avg Loss: 0.7912
-INFO:local_logger:Epoch[027/800], Step[0300/0626], Avg Loss: 0.7909
-INFO:local_logger:Epoch[027/800], Step[0400/0626], Avg Loss: 0.7909
-INFO:local_logger:Epoch[027/800], Step[0400/0626], Avg Loss: 0.7900
-INFO:local_logger:Epoch[027/800], Step[0400/0626], Avg Loss: 0.7909
-INFO:local_logger:Epoch[027/800], Step[0400/0626], Avg Loss: 0.7902
-INFO:local_logger:Epoch[027/800], Step[0400/0626], Avg Loss: 0.7904
-INFO:master_logger:Epoch[027/800], Step[0400/0626], Avg Loss: 0.7906
-INFO:local_logger:Epoch[027/800], Step[0400/0626], Avg Loss: 0.7907
-INFO:local_logger:Epoch[027/800], Step[0400/0626], Avg Loss: 0.7903
-INFO:local_logger:Epoch[027/800], Step[0400/0626], Avg Loss: 0.7911
-INFO:local_logger:Epoch[027/800], Step[0500/0626], Avg Loss: 0.7902
-INFO:local_logger:Epoch[027/800], Step[0500/0626], Avg Loss: 0.7899
-INFO:local_logger:Epoch[027/800], Step[0500/0626], Avg Loss: 0.7898
-INFO:local_logger:Epoch[027/800], Step[0500/0626], Avg Loss: 0.7903
-INFO:local_logger:Epoch[027/800], Step[0500/0626], Avg Loss: 0.7903
-INFO:master_logger:Epoch[027/800], Step[0500/0626], Avg Loss: 0.7900
-INFO:local_logger:Epoch[027/800], Step[0500/0626], Avg Loss: 0.7904
-INFO:local_logger:Epoch[027/800], Step[0500/0626], Avg Loss: 0.7895
-INFO:local_logger:Epoch[027/800], Step[0500/0626], Avg Loss: 0.7898
-INFO:local_logger:Epoch[027/800], Step[0600/0626], Avg Loss: 0.7896
-INFO:local_logger:Epoch[027/800], Step[0600/0626], Avg Loss: 0.7893
-INFO:local_logger:Epoch[027/800], Step[0600/0626], Avg Loss: 0.7898
-INFO:local_logger:Epoch[027/800], Step[0600/0626], Avg Loss: 0.7894
-INFO:local_logger:Epoch[027/800], Step[0600/0626], Avg Loss: 0.7893
-INFO:local_logger:Epoch[027/800], Step[0600/0626], Avg Loss: 0.7899
-INFO:local_logger:Epoch[027/800], Step[0600/0626], Avg Loss: 0.7891
-INFO:local_logger:Epoch[027/800], Step[0600/0626], Avg Loss: 0.7894
-INFO:master_logger:Epoch[027/800], Step[0600/0626], Avg Loss: 0.7895
-INFO:local_logger:----- Epoch[027/800], Train Loss: 0.7892, time: 878.78
-INFO:local_logger:Now training epoch 28. LR=0.000105
-INFO:local_logger:----- Epoch[027/800], Train Loss: 0.7897, time: 878.81
-INFO:local_logger:Now training epoch 28. LR=0.000105
-INFO:local_logger:----- Epoch[027/800], Train Loss: 0.7894, time: 875.73
-INFO:master_logger:----- Epoch[027/800], Train Loss: 0.7893, time: 875.73
-INFO:local_logger:----- Epoch[027/800], Train Loss: 0.7890, time: 878.88
-INFO:local_logger:Now training epoch 28. LR=0.000105
-INFO:local_logger:----- Epoch[027/800], Train Loss: 0.7892, time: 878.97
-INFO:local_logger:Now training epoch 28. LR=0.000105
-INFO:local_logger:----- Epoch[027/800], Train Loss: 0.7891, time: 879.29
-INFO:local_logger:Now training epoch 28. LR=0.000105
-INFO:local_logger:----- Epoch[027/800], Train Loss: 0.7895, time: 879.32
-INFO:local_logger:Now training epoch 28. LR=0.000105
-INFO:local_logger:----- Epoch[027/800], Train Loss: 0.7895, time: 879.32
-INFO:local_logger:Now training epoch 28. LR=0.000105
-INFO:local_logger:----- Save model: ./output/train-20211219-17-07-40/MAE-Epoch-27-Loss-0.7894227700390196.pdparams
-INFO:local_logger:----- Save optim: ./output/train-20211219-17-07-40/MAE-Epoch-27-Loss-0.7894227700390196.pdopt
-INFO:master_logger:----- Save model: ./output/train-20211219-17-07-40/MAE-Epoch-27-Loss-0.7894227700390196.pdparams
-INFO:master_logger:----- Save optim: ./output/train-20211219-17-07-40/MAE-Epoch-27-Loss-0.7894227700390196.pdopt
-INFO:local_logger:Now training epoch 28. LR=0.000105
-INFO:master_logger:Now training epoch 28. LR=0.000105
-INFO:local_logger:Epoch[028/800], Step[0000/0626], Avg Loss: 0.7943
-INFO:master_logger:Epoch[028/800], Step[0000/0626], Avg Loss: 0.7880
-INFO:local_logger:Epoch[028/800], Step[0000/0626], Avg Loss: 0.7931
-INFO:local_logger:Epoch[028/800], Step[0000/0626], Avg Loss: 0.7814
-INFO:local_logger:Epoch[028/800], Step[0000/0626], Avg Loss: 0.7872
-INFO:local_logger:Epoch[028/800], Step[0000/0626], Avg Loss: 0.7910
-INFO:local_logger:Epoch[028/800], Step[0000/0626], Avg Loss: 0.7793
-INFO:local_logger:Epoch[028/800], Step[0000/0626], Avg Loss: 0.7897
-INFO:local_logger:Epoch[028/800], Step[0000/0626], Avg Loss: 0.7883
-INFO:local_logger:Epoch[028/800], Step[0100/0626], Avg Loss: 0.7855
-INFO:local_logger:Epoch[028/800], Step[0100/0626], Avg Loss: 0.7868
-INFO:local_logger:Epoch[028/800], Step[0100/0626], Avg Loss: 0.7873
-INFO:local_logger:Epoch[028/800], Step[0100/0626], Avg Loss: 0.7853
-INFO:local_logger:Epoch[028/800], Step[0100/0626], Avg Loss: 0.7862
-INFO:local_logger:Epoch[028/800], Step[0100/0626], Avg Loss: 0.7875
-INFO:master_logger:Epoch[028/800], Step[0100/0626], Avg Loss: 0.7866
-INFO:local_logger:Epoch[028/800], Step[0100/0626], Avg Loss: 0.7874
-INFO:local_logger:Epoch[028/800], Step[0100/0626], Avg Loss: 0.7871
-INFO:local_logger:Epoch[028/800], Step[0200/0626], Avg Loss: 0.7865
-INFO:local_logger:Epoch[028/800], Step[0200/0626], Avg Loss: 0.7866
-INFO:local_logger:Epoch[028/800], Step[0200/0626], Avg Loss: 0.7859
-INFO:local_logger:Epoch[028/800], Step[0200/0626], Avg Loss: 0.7855
-INFO:local_logger:Epoch[028/800], Step[0200/0626], Avg Loss: 0.7855
-INFO:local_logger:Epoch[028/800], Step[0200/0626], Avg Loss: 0.7858
-INFO:local_logger:Epoch[028/800], Step[0200/0626], Avg Loss: 0.7860
-INFO:master_logger:Epoch[028/800], Step[0200/0626], Avg Loss: 0.7861
-INFO:local_logger:Epoch[028/800], Step[0200/0626], Avg Loss: 0.7865
-INFO:local_logger:Epoch[028/800], Step[0300/0626], Avg Loss: 0.7850
-INFO:local_logger:Epoch[028/800], Step[0300/0626], Avg Loss: 0.7850
-INFO:local_logger:Epoch[028/800], Step[0300/0626], Avg Loss: 0.7851
-INFO:local_logger:Epoch[028/800], Step[0300/0626], Avg Loss: 0.7845
-INFO:master_logger:Epoch[028/800], Step[0300/0626], Avg Loss: 0.7851
-INFO:local_logger:Epoch[028/800], Step[0300/0626], Avg Loss: 0.7851
-INFO:local_logger:Epoch[028/800], Step[0300/0626], Avg Loss: 0.7855
-INFO:local_logger:Epoch[028/800], Step[0300/0626], Avg Loss: 0.7846
-INFO:local_logger:Epoch[028/800], Step[0300/0626], Avg Loss: 0.7860
-INFO:local_logger:Epoch[028/800], Step[0400/0626], Avg Loss: 0.7841
-INFO:local_logger:Epoch[028/800], Step[0400/0626], Avg Loss: 0.7844
-INFO:local_logger:Epoch[028/800], Step[0400/0626], Avg Loss: 0.7839
-INFO:local_logger:Epoch[028/800], Step[0400/0626], Avg Loss: 0.7850
-INFO:master_logger:Epoch[028/800], Step[0400/0626], Avg Loss: 0.7843
-INFO:local_logger:Epoch[028/800], Step[0400/0626], Avg Loss: 0.7837
-INFO:local_logger:Epoch[028/800], Step[0400/0626], Avg Loss: 0.7843
-INFO:local_logger:Epoch[028/800], Step[0400/0626], Avg Loss: 0.7843
-INFO:local_logger:Epoch[028/800], Step[0400/0626], Avg Loss: 0.7845
-INFO:local_logger:Epoch[028/800], Step[0500/0626], Avg Loss: 0.7842
-INFO:local_logger:Epoch[028/800], Step[0500/0626], Avg Loss: 0.7838
-INFO:local_logger:Epoch[028/800], Step[0500/0626], Avg Loss: 0.7835
-INFO:local_logger:Epoch[028/800], Step[0500/0626], Avg Loss: 0.7841
-INFO:local_logger:Epoch[028/800], Step[0500/0626], Avg Loss: 0.7840
-INFO:local_logger:Epoch[028/800], Step[0500/0626], Avg Loss: 0.7839
-INFO:master_logger:Epoch[028/800], Step[0500/0626], Avg Loss: 0.7840
-INFO:local_logger:Epoch[028/800], Step[0500/0626], Avg Loss: 0.7846
-INFO:local_logger:Epoch[028/800], Step[0500/0626], Avg Loss: 0.7837
-INFO:local_logger:Epoch[028/800], Step[0600/0626], Avg Loss: 0.7838
-INFO:local_logger:Epoch[028/800], Step[0600/0626], Avg Loss: 0.7831
-INFO:local_logger:Epoch[028/800], Step[0600/0626], Avg Loss: 0.7837
-INFO:local_logger:Epoch[028/800], Step[0600/0626], Avg Loss: 0.7836
-INFO:local_logger:Epoch[028/800], Step[0600/0626], Avg Loss: 0.7836
-INFO:local_logger:Epoch[028/800], Step[0600/0626], Avg Loss: 0.7840
-INFO:local_logger:Epoch[028/800], Step[0600/0626], Avg Loss: 0.7839
-INFO:local_logger:Epoch[028/800], Step[0600/0626], Avg Loss: 0.7833
-INFO:master_logger:Epoch[028/800], Step[0600/0626], Avg Loss: 0.7836
-INFO:local_logger:----- Epoch[028/800], Train Loss: 0.7837, time: 871.38
-INFO:local_logger:Now training epoch 29. LR=0.000109
-INFO:local_logger:----- Epoch[028/800], Train Loss: 0.7835, time: 868.22
-INFO:master_logger:----- Epoch[028/800], Train Loss: 0.7835, time: 868.22
-INFO:local_logger:----- Epoch[028/800], Train Loss: 0.7831, time: 872.18
-INFO:local_logger:Now training epoch 29. LR=0.000109
-INFO:local_logger:----- Epoch[028/800], Train Loss: 0.7830, time: 873.00
-INFO:local_logger:----- Epoch[028/800], Train Loss: 0.7835, time: 871.85
-INFO:local_logger:Now training epoch 29. LR=0.000109
-INFO:local_logger:Now training epoch 29. LR=0.000109
-INFO:local_logger:----- Epoch[028/800], Train Loss: 0.7834, time: 871.89
-INFO:local_logger:Now training epoch 29. LR=0.000109
-INFO:local_logger:----- Epoch[028/800], Train Loss: 0.7837, time: 873.03
-INFO:local_logger:----- Epoch[028/800], Train Loss: 0.7838, time: 872.29
-INFO:local_logger:Now training epoch 29. LR=0.000109
-INFO:local_logger:Now training epoch 29. LR=0.000109
-INFO:local_logger:----- Save model: ./output/train-20211219-17-07-40/MAE-Epoch-28-Loss-0.783455797444855.pdparams
-INFO:local_logger:----- Save optim: ./output/train-20211219-17-07-40/MAE-Epoch-28-Loss-0.783455797444855.pdopt
-INFO:master_logger:----- Save model: ./output/train-20211219-17-07-40/MAE-Epoch-28-Loss-0.783455797444855.pdparams
-INFO:master_logger:----- Save optim: ./output/train-20211219-17-07-40/MAE-Epoch-28-Loss-0.783455797444855.pdopt
-INFO:local_logger:Now training epoch 29. LR=0.000109
-INFO:master_logger:Now training epoch 29. LR=0.000109
-INFO:local_logger:Epoch[029/800], Step[0000/0626], Avg Loss: 0.7766
-INFO:local_logger:Epoch[029/800], Step[0000/0626], Avg Loss: 0.7720
-INFO:master_logger:Epoch[029/800], Step[0000/0626], Avg Loss: 0.7785
-INFO:local_logger:Epoch[029/800], Step[0000/0626], Avg Loss: 0.7816
-INFO:local_logger:Epoch[029/800], Step[0000/0626], Avg Loss: 0.7862
-INFO:local_logger:Epoch[029/800], Step[0000/0626], Avg Loss: 0.7662
-INFO:local_logger:Epoch[029/800], Step[0000/0626], Avg Loss: 0.7767
-INFO:local_logger:Epoch[029/800], Step[0000/0626], Avg Loss: 0.7916
-INFO:local_logger:Epoch[029/800], Step[0000/0626], Avg Loss: 0.7771
-INFO:local_logger:Epoch[029/800], Step[0100/0626], Avg Loss: 0.7823
-INFO:local_logger:Epoch[029/800], Step[0100/0626], Avg Loss: 0.7822
-INFO:local_logger:Epoch[029/800], Step[0100/0626], Avg Loss: 0.7822
-INFO:local_logger:Epoch[029/800], Step[0100/0626], Avg Loss: 0.7816
-INFO:local_logger:Epoch[029/800], Step[0100/0626], Avg Loss: 0.7818
-INFO:local_logger:Epoch[029/800], Step[0100/0626], Avg Loss: 0.7815
-INFO:local_logger:Epoch[029/800], Step[0100/0626], Avg Loss: 0.7809
-INFO:master_logger:Epoch[029/800], Step[0100/0626], Avg Loss: 0.7818
-INFO:local_logger:Epoch[029/800], Step[0100/0626], Avg Loss: 0.7822
-INFO:local_logger:Epoch[029/800], Step[0200/0626], Avg Loss: 0.7802
-INFO:local_logger:Epoch[029/800], Step[0200/0626], Avg Loss: 0.7802
-INFO:local_logger:Epoch[029/800], Step[0200/0626], Avg Loss: 0.7795
-INFO:local_logger:Epoch[029/800], Step[0200/0626], Avg Loss: 0.7806
-INFO:local_logger:Epoch[029/800], Step[0200/0626], Avg Loss: 0.7806
-INFO:local_logger:Epoch[029/800], Step[0200/0626], Avg Loss: 0.7807
-INFO:local_logger:Epoch[029/800], Step[0200/0626], Avg Loss: 0.7800
-INFO:local_logger:Epoch[029/800], Step[0200/0626], Avg Loss: 0.7800
-INFO:master_logger:Epoch[029/800], Step[0200/0626], Avg Loss: 0.7802
-INFO:local_logger:Epoch[029/800], Step[0300/0626], Avg Loss: 0.7794
-INFO:local_logger:Epoch[029/800], Step[0300/0626], Avg Loss: 0.7794
-INFO:local_logger:Epoch[029/800], Step[0300/0626], Avg Loss: 0.7796
-INFO:local_logger:Epoch[029/800], Step[0300/0626], Avg Loss: 0.7798
-INFO:master_logger:Epoch[029/800], Step[0300/0626], Avg Loss: 0.7795
-INFO:local_logger:Epoch[029/800], Step[0300/0626], Avg Loss: 0.7797
-INFO:local_logger:Epoch[029/800], Step[0300/0626], Avg Loss: 0.7796
-INFO:local_logger:Epoch[029/800], Step[0300/0626], Avg Loss: 0.7797
-INFO:local_logger:Epoch[029/800], Step[0300/0626], Avg Loss: 0.7789
-INFO:local_logger:Epoch[029/800], Step[0400/0626], Avg Loss: 0.7788
-INFO:local_logger:Epoch[029/800], Step[0400/0626], Avg Loss: 0.7781
-INFO:local_logger:Epoch[029/800], Step[0400/0626], Avg Loss: 0.7786
-INFO:local_logger:Epoch[029/800], Step[0400/0626], Avg Loss: 0.7787
-INFO:local_logger:Epoch[029/800], Step[0400/0626], Avg Loss: 0.7785
-INFO:local_logger:Epoch[029/800], Step[0400/0626], Avg Loss: 0.7787
-INFO:local_logger:Epoch[029/800], Step[0400/0626], Avg Loss: 0.7786
-INFO:master_logger:Epoch[029/800], Step[0400/0626], Avg Loss: 0.7786
-INFO:local_logger:Epoch[029/800], Step[0400/0626], Avg Loss: 0.7788
-INFO:local_logger:Epoch[029/800], Step[0500/0626], Avg Loss: 0.7782
-INFO:local_logger:Epoch[029/800], Step[0500/0626], Avg Loss: 0.7776
-INFO:local_logger:Epoch[029/800], Step[0500/0626], Avg Loss: 0.7779
-INFO:local_logger:Epoch[029/800], Step[0500/0626], Avg Loss: 0.7781
-INFO:local_logger:Epoch[029/800], Step[0500/0626], Avg Loss: 0.7782
-INFO:local_logger:Epoch[029/800], Step[0500/0626], Avg Loss: 0.7780
-INFO:master_logger:Epoch[029/800], Step[0500/0626], Avg Loss: 0.7781
-INFO:local_logger:Epoch[029/800], Step[0500/0626], Avg Loss: 0.7781
-INFO:local_logger:Epoch[029/800], Step[0500/0626], Avg Loss: 0.7782
-INFO:local_logger:Epoch[029/800], Step[0600/0626], Avg Loss: 0.7776
-INFO:local_logger:Epoch[029/800], Step[0600/0626], Avg Loss: 0.7777
-INFO:local_logger:Epoch[029/800], Step[0600/0626], Avg Loss: 0.7777
-INFO:local_logger:Epoch[029/800], Step[0600/0626], Avg Loss: 0.7778
-INFO:local_logger:Epoch[029/800], Step[0600/0626], Avg Loss: 0.7776
-INFO:local_logger:Epoch[029/800], Step[0600/0626], Avg Loss: 0.7776
-INFO:master_logger:Epoch[029/800], Step[0600/0626], Avg Loss: 0.7776
-INFO:local_logger:Epoch[029/800], Step[0600/0626], Avg Loss: 0.7772
-INFO:local_logger:Epoch[029/800], Step[0600/0626], Avg Loss: 0.7776
-INFO:local_logger:----- Epoch[029/800], Train Loss: 0.7778, time: 869.47
-INFO:local_logger:Now training epoch 30. LR=0.000113
-INFO:local_logger:----- Epoch[029/800], Train Loss: 0.7776, time: 865.73
-INFO:local_logger:----- Epoch[029/800], Train Loss: 0.7773, time: 868.98
-INFO:master_logger:----- Epoch[029/800], Train Loss: 0.7776, time: 865.73
-INFO:local_logger:Now training epoch 30. LR=0.000113
-INFO:local_logger:----- Epoch[029/800], Train Loss: 0.7777, time: 869.01
-INFO:local_logger:Now training epoch 30. LR=0.000113
-INFO:local_logger:----- Epoch[029/800], Train Loss: 0.7777, time: 869.04
-INFO:local_logger:Now training epoch 30. LR=0.000113
-INFO:local_logger:----- Epoch[029/800], Train Loss: 0.7774, time: 869.04
-INFO:local_logger:Now training epoch 30. LR=0.000113
-INFO:local_logger:----- Epoch[029/800], Train Loss: 0.7776, time: 869.04
-INFO:local_logger:Now training epoch 30. LR=0.000113
-INFO:local_logger:----- Epoch[029/800], Train Loss: 0.7776, time: 869.04
-INFO:local_logger:Now training epoch 30. LR=0.000113
-INFO:local_logger:----- Save model: ./output/train-20211219-17-07-40/MAE-Epoch-29-Loss-0.77762673581754.pdparams
-INFO:local_logger:----- Save optim: ./output/train-20211219-17-07-40/MAE-Epoch-29-Loss-0.77762673581754.pdopt
-INFO:master_logger:----- Save model: ./output/train-20211219-17-07-40/MAE-Epoch-29-Loss-0.77762673581754.pdparams
-INFO:master_logger:----- Save optim: ./output/train-20211219-17-07-40/MAE-Epoch-29-Loss-0.77762673581754.pdopt
-INFO:local_logger:Now training epoch 30. LR=0.000113
-INFO:master_logger:Now training epoch 30. LR=0.000113
-INFO:local_logger:Epoch[030/800], Step[0000/0626], Avg Loss: 0.7671
-INFO:master_logger:Epoch[030/800], Step[0000/0626], Avg Loss: 0.7736
-INFO:local_logger:Epoch[030/800], Step[0000/0626], Avg Loss: 0.7764
-INFO:local_logger:Epoch[030/800], Step[0000/0626], Avg Loss: 0.7666
-INFO:local_logger:Epoch[030/800], Step[0000/0626], Avg Loss: 0.7815
-INFO:local_logger:Epoch[030/800], Step[0000/0626], Avg Loss: 0.7786
-INFO:local_logger:Epoch[030/800], Step[0000/0626], Avg Loss: 0.7819
-INFO:local_logger:Epoch[030/800], Step[0000/0626], Avg Loss: 0.7683
-INFO:local_logger:Epoch[030/800], Step[0000/0626], Avg Loss: 0.7686
-INFO:local_logger:Epoch[030/800], Step[0100/0626], Avg Loss: 0.7759
-INFO:local_logger:Epoch[030/800], Step[0100/0626], Avg Loss: 0.7765
-INFO:local_logger:Epoch[030/800], Step[0100/0626], Avg Loss: 0.7745
-INFO:local_logger:Epoch[030/800], Step[0100/0626], Avg Loss: 0.7773
-INFO:local_logger:Epoch[030/800], Step[0100/0626], Avg Loss: 0.7759
-INFO:local_logger:Epoch[030/800], Step[0100/0626], Avg Loss: 0.7772
-INFO:local_logger:Epoch[030/800], Step[0100/0626], Avg Loss: 0.7763
-INFO:master_logger:Epoch[030/800], Step[0100/0626], Avg Loss: 0.7762
-INFO:local_logger:Epoch[030/800], Step[0100/0626], Avg Loss: 0.7756
-INFO:local_logger:Epoch[030/800], Step[0200/0626], Avg Loss: 0.7744
-INFO:local_logger:Epoch[030/800], Step[0200/0626], Avg Loss: 0.7748
-INFO:local_logger:Epoch[030/800], Step[0200/0626], Avg Loss: 0.7754
-INFO:local_logger:Epoch[030/800], Step[0200/0626], Avg Loss: 0.7743
-INFO:local_logger:Epoch[030/800], Step[0200/0626], Avg Loss: 0.7742
-INFO:local_logger:Epoch[030/800], Step[0200/0626], Avg Loss: 0.7749
-INFO:master_logger:Epoch[030/800], Step[0200/0626], Avg Loss: 0.7747
-INFO:local_logger:Epoch[030/800], Step[0200/0626], Avg Loss: 0.7747
-INFO:local_logger:Epoch[030/800], Step[0200/0626], Avg Loss: 0.7747
-INFO:local_logger:Epoch[030/800], Step[0300/0626], Avg Loss: 0.7740
-INFO:local_logger:Epoch[030/800], Step[0300/0626], Avg Loss: 0.7748
-INFO:local_logger:Epoch[030/800], Step[0300/0626], Avg Loss: 0.7739
-INFO:local_logger:Epoch[030/800], Step[0300/0626], Avg Loss: 0.7744
-INFO:local_logger:Epoch[030/800], Step[0300/0626], Avg Loss: 0.7741
-INFO:local_logger:Epoch[030/800], Step[0300/0626], Avg Loss: 0.7739
-INFO:master_logger:Epoch[030/800], Step[0300/0626], Avg Loss: 0.7741
-INFO:local_logger:Epoch[030/800], Step[0300/0626], Avg Loss: 0.7744
-INFO:local_logger:Epoch[030/800], Step[0300/0626], Avg Loss: 0.7736
-INFO:local_logger:Epoch[030/800], Step[0400/0626], Avg Loss: 0.7737
-INFO:local_logger:Epoch[030/800], Step[0400/0626], Avg Loss: 0.7736
-INFO:local_logger:Epoch[030/800], Step[0400/0626], Avg Loss: 0.7732
-INFO:local_logger:Epoch[030/800], Step[0400/0626], Avg Loss: 0.7735
-INFO:local_logger:Epoch[030/800], Step[0400/0626], Avg Loss: 0.7740
-INFO:local_logger:Epoch[030/800], Step[0400/0626], Avg Loss: 0.7732
-INFO:local_logger:Epoch[030/800], Step[0400/0626], Avg Loss: 0.7734
-INFO:local_logger:Epoch[030/800], Step[0400/0626], Avg Loss: 0.7732
-INFO:master_logger:Epoch[030/800], Step[0400/0626], Avg Loss: 0.7735
-INFO:local_logger:Epoch[030/800], Step[0500/0626], Avg Loss: 0.7730
-INFO:local_logger:Epoch[030/800], Step[0500/0626], Avg Loss: 0.7729
-INFO:local_logger:Epoch[030/800], Step[0500/0626], Avg Loss: 0.7729
-INFO:local_logger:Epoch[030/800], Step[0500/0626], Avg Loss: 0.7732
-INFO:local_logger:Epoch[030/800], Step[0500/0626], Avg Loss: 0.7731
-INFO:local_logger:Epoch[030/800], Step[0500/0626], Avg Loss: 0.7727
-INFO:local_logger:Epoch[030/800], Step[0500/0626], Avg Loss: 0.7729
-INFO:local_logger:Epoch[030/800], Step[0500/0626], Avg Loss: 0.7725
-INFO:master_logger:Epoch[030/800], Step[0500/0626], Avg Loss: 0.7729
-INFO:local_logger:Epoch[030/800], Step[0600/0626], Avg Loss: 0.7723
-INFO:local_logger:Epoch[030/800], Step[0600/0626], Avg Loss: 0.7723
-INFO:local_logger:Epoch[030/800], Step[0600/0626], Avg Loss: 0.7722
-INFO:local_logger:Epoch[030/800], Step[0600/0626], Avg Loss: 0.7720
-INFO:local_logger:Epoch[030/800], Step[0600/0626], Avg Loss: 0.7726
-INFO:local_logger:Epoch[030/800], Step[0600/0626], Avg Loss: 0.7724
-INFO:master_logger:Epoch[030/800], Step[0600/0626], Avg Loss: 0.7722
-INFO:local_logger:Epoch[030/800], Step[0600/0626], Avg Loss: 0.7723
-INFO:local_logger:Epoch[030/800], Step[0600/0626], Avg Loss: 0.7719
-INFO:local_logger:----- Epoch[030/800], Train Loss: 0.7722, time: 884.56
-INFO:local_logger:Now training epoch 31. LR=0.000116
-INFO:local_logger:----- Epoch[030/800], Train Loss: 0.7718, time: 884.68
-INFO:local_logger:Now training epoch 31. LR=0.000116
-INFO:local_logger:----- Epoch[030/800], Train Loss: 0.7719, time: 881.45
-INFO:master_logger:----- Epoch[030/800], Train Loss: 0.7721, time: 881.45
-INFO:local_logger:----- Epoch[030/800], Train Loss: 0.7721, time: 885.20
-INFO:local_logger:Now training epoch 31. LR=0.000116
-INFO:local_logger:----- Epoch[030/800], Train Loss: 0.7721, time: 885.20
-INFO:local_logger:----- Epoch[030/800], Train Loss: 0.7722, time: 885.14
-INFO:local_logger:Now training epoch 31. LR=0.000116
-INFO:local_logger:Now training epoch 31. LR=0.000116
-INFO:local_logger:----- Epoch[030/800], Train Loss: 0.7724, time: 885.17
-INFO:local_logger:Now training epoch 31. LR=0.000116
-INFO:local_logger:----- Epoch[030/800], Train Loss: 0.7723, time: 885.20
-INFO:local_logger:Now training epoch 31. LR=0.000116
-INFO:local_logger:----- Save model: ./output/train-20211219-17-07-40/MAE-Epoch-30-Loss-0.7718740027551073.pdparams
-INFO:local_logger:----- Save optim: ./output/train-20211219-17-07-40/MAE-Epoch-30-Loss-0.7718740027551073.pdopt
-INFO:master_logger:----- Save model: ./output/train-20211219-17-07-40/MAE-Epoch-30-Loss-0.7718740027551073.pdparams
-INFO:master_logger:----- Save optim: ./output/train-20211219-17-07-40/MAE-Epoch-30-Loss-0.7718740027551073.pdopt
-INFO:local_logger:Now training epoch 31. LR=0.000116
-INFO:master_logger:Now training epoch 31. LR=0.000116
-INFO:local_logger:Epoch[031/800], Step[0000/0626], Avg Loss: 0.7753
-INFO:local_logger:Epoch[031/800], Step[0000/0626], Avg Loss: 0.7631
-INFO:local_logger:Epoch[031/800], Step[0000/0626], Avg Loss: 0.7707
-INFO:local_logger:Epoch[031/800], Step[0000/0626], Avg Loss: 0.7713
-INFO:local_logger:Epoch[031/800], Step[0000/0626], Avg Loss: 0.7666
-INFO:local_logger:Epoch[031/800], Step[0000/0626], Avg Loss: 0.7545
-INFO:master_logger:Epoch[031/800], Step[0000/0626], Avg Loss: 0.7651
-INFO:local_logger:Epoch[031/800], Step[0000/0626], Avg Loss: 0.7590
-INFO:local_logger:Epoch[031/800], Step[0000/0626], Avg Loss: 0.7607
-INFO:local_logger:Epoch[031/800], Step[0100/0626], Avg Loss: 0.7683
-INFO:master_logger:Epoch[031/800], Step[0100/0626], Avg Loss: 0.7684
-INFO:local_logger:Epoch[031/800], Step[0100/0626], Avg Loss: 0.7667
-INFO:local_logger:Epoch[031/800], Step[0100/0626], Avg Loss: 0.7685
-INFO:local_logger:Epoch[031/800], Step[0100/0626], Avg Loss: 0.7688
-INFO:local_logger:Epoch[031/800], Step[0100/0626], Avg Loss: 0.7677
-INFO:local_logger:Epoch[031/800], Step[0100/0626], Avg Loss: 0.7694
-INFO:local_logger:Epoch[031/800], Step[0100/0626], Avg Loss: 0.7688
-INFO:local_logger:Epoch[031/800], Step[0100/0626], Avg Loss: 0.7686
-INFO:local_logger:Epoch[031/800], Step[0200/0626], Avg Loss: 0.7679
-INFO:local_logger:Epoch[031/800], Step[0200/0626], Avg Loss: 0.7681
-INFO:local_logger:Epoch[031/800], Step[0200/0626], Avg Loss: 0.7678
-INFO:local_logger:Epoch[031/800], Step[0200/0626], Avg Loss: 0.7680
-INFO:master_logger:Epoch[031/800], Step[0200/0626], Avg Loss: 0.7680
-INFO:local_logger:Epoch[031/800], Step[0200/0626], Avg Loss: 0.7683
-INFO:local_logger:Epoch[031/800], Step[0200/0626], Avg Loss: 0.7685
-INFO:local_logger:Epoch[031/800], Step[0200/0626], Avg Loss: 0.7681
-INFO:local_logger:Epoch[031/800], Step[0200/0626], Avg Loss: 0.7672
-INFO:local_logger:Epoch[031/800], Step[0300/0626], Avg Loss: 0.7678
-INFO:local_logger:Epoch[031/800], Step[0300/0626], Avg Loss: 0.7684
-INFO:local_logger:Epoch[031/800], Step[0300/0626], Avg Loss: 0.7676
-INFO:local_logger:Epoch[031/800], Step[0300/0626], Avg Loss: 0.7680
-INFO:local_logger:Epoch[031/800], Step[0300/0626], Avg Loss: 0.7676
-INFO:master_logger:Epoch[031/800], Step[0300/0626], Avg Loss: 0.7677
-INFO:local_logger:Epoch[031/800], Step[0300/0626], Avg Loss: 0.7668
-INFO:local_logger:Epoch[031/800], Step[0300/0626], Avg Loss: 0.7674
-INFO:local_logger:Epoch[031/800], Step[0300/0626], Avg Loss: 0.7679
-INFO:local_logger:Epoch[031/800], Step[0400/0626], Avg Loss: 0.7667
-INFO:local_logger:Epoch[031/800], Step[0400/0626], Avg Loss: 0.7676
-INFO:local_logger:Epoch[031/800], Step[0400/0626], Avg Loss: 0.7674
-INFO:local_logger:Epoch[031/800], Step[0400/0626], Avg Loss: 0.7676
-INFO:local_logger:Epoch[031/800], Step[0400/0626], Avg Loss: 0.7675
-INFO:local_logger:Epoch[031/800], Step[0400/0626], Avg Loss: 0.7678
-INFO:local_logger:Epoch[031/800], Step[0400/0626], Avg Loss: 0.7683
-INFO:local_logger:Epoch[031/800], Step[0400/0626], Avg Loss: 0.7678
-INFO:master_logger:Epoch[031/800], Step[0400/0626], Avg Loss: 0.7676
-INFO:local_logger:Epoch[031/800], Step[0500/0626], Avg Loss: 0.7669
-INFO:local_logger:Epoch[031/800], Step[0500/0626], Avg Loss: 0.7673
-INFO:local_logger:Epoch[031/800], Step[0500/0626], Avg Loss: 0.7674
-INFO:local_logger:Epoch[031/800], Step[0500/0626], Avg Loss: 0.7670
-INFO:local_logger:Epoch[031/800], Step[0500/0626], Avg Loss: 0.7672
-INFO:master_logger:Epoch[031/800], Step[0500/0626], Avg Loss: 0.7671
-INFO:local_logger:Epoch[031/800], Step[0500/0626], Avg Loss: 0.7663
-INFO:local_logger:Epoch[031/800], Step[0500/0626], Avg Loss: 0.7671
-INFO:local_logger:Epoch[031/800], Step[0500/0626], Avg Loss: 0.7676
-INFO:local_logger:Epoch[031/800], Step[0600/0626], Avg Loss: 0.7669
-INFO:local_logger:Epoch[031/800], Step[0600/0626], Avg Loss: 0.7668
-INFO:local_logger:Epoch[031/800], Step[0600/0626], Avg Loss: 0.7664
-INFO:local_logger:Epoch[031/800], Step[0600/0626], Avg Loss: 0.7667
-INFO:local_logger:Epoch[031/800], Step[0600/0626], Avg Loss: 0.7661
-INFO:local_logger:Epoch[031/800], Step[0600/0626], Avg Loss: 0.7667
-INFO:master_logger:Epoch[031/800], Step[0600/0626], Avg Loss: 0.7667
-INFO:local_logger:Epoch[031/800], Step[0600/0626], Avg Loss: 0.7670
-INFO:local_logger:Epoch[031/800], Step[0600/0626], Avg Loss: 0.7669
-INFO:local_logger:----- Epoch[031/800], Train Loss: 0.7663, time: 868.34
-INFO:local_logger:Now training epoch 32. LR=0.000120
-INFO:local_logger:----- Epoch[031/800], Train Loss: 0.7660, time: 868.35
-INFO:local_logger:Now training epoch 32. LR=0.000120
-INFO:local_logger:----- Epoch[031/800], Train Loss: 0.7666, time: 868.93
-INFO:local_logger:Now training epoch 32. LR=0.000120
-INFO:local_logger:----- Epoch[031/800], Train Loss: 0.7667, time: 868.45
-INFO:local_logger:Now training epoch 32. LR=0.000120
-INFO:local_logger:----- Epoch[031/800], Train Loss: 0.7668, time: 868.50
-INFO:local_logger:Now training epoch 32. LR=0.000120
-INFO:local_logger:----- Epoch[031/800], Train Loss: 0.7666, time: 864.87
-INFO:master_logger:----- Epoch[031/800], Train Loss: 0.7665, time: 864.87
-INFO:local_logger:----- Epoch[031/800], Train Loss: 0.7668, time: 869.11
-INFO:local_logger:Now training epoch 32. LR=0.000120
-INFO:local_logger:----- Epoch[031/800], Train Loss: 0.7665, time: 868.66
-INFO:local_logger:Now training epoch 32. LR=0.000120
-INFO:local_logger:----- Save model: ./output/train-20211219-17-07-40/MAE-Epoch-31-Loss-0.7666413477179265.pdparams
-INFO:local_logger:----- Save optim: ./output/train-20211219-17-07-40/MAE-Epoch-31-Loss-0.7666413477179265.pdopt
-INFO:master_logger:----- Save model: ./output/train-20211219-17-07-40/MAE-Epoch-31-Loss-0.7666413477179265.pdparams
-INFO:master_logger:----- Save optim: ./output/train-20211219-17-07-40/MAE-Epoch-31-Loss-0.7666413477179265.pdopt
-INFO:local_logger:Now training epoch 32. LR=0.000120
-INFO:master_logger:Now training epoch 32. LR=0.000120
-INFO:local_logger:Epoch[032/800], Step[0000/0626], Avg Loss: 0.7643
-INFO:local_logger:Epoch[032/800], Step[0000/0626], Avg Loss: 0.7629
-INFO:local_logger:Epoch[032/800], Step[0000/0626], Avg Loss: 0.7742
-INFO:master_logger:Epoch[032/800], Step[0000/0626], Avg Loss: 0.7666
-INFO:local_logger:Epoch[032/800], Step[0000/0626], Avg Loss: 0.7638
-INFO:local_logger:Epoch[032/800], Step[0000/0626], Avg Loss: 0.7575
-INFO:local_logger:Epoch[032/800], Step[0000/0626], Avg Loss: 0.7728
-INFO:local_logger:Epoch[032/800], Step[0000/0626], Avg Loss: 0.7710
-INFO:local_logger:Epoch[032/800], Step[0000/0626], Avg Loss: 0.7662
-INFO:local_logger:Epoch[032/800], Step[0100/0626], Avg Loss: 0.7641
-INFO:local_logger:Epoch[032/800], Step[0100/0626], Avg Loss: 0.7647
-INFO:local_logger:Epoch[032/800], Step[0100/0626], Avg Loss: 0.7646
-INFO:master_logger:Epoch[032/800], Step[0100/0626], Avg Loss: 0.7645
-INFO:local_logger:Epoch[032/800], Step[0100/0626], Avg Loss: 0.7645
-INFO:local_logger:Epoch[032/800], Step[0100/0626], Avg Loss: 0.7638
-INFO:local_logger:Epoch[032/800], Step[0100/0626], Avg Loss: 0.7636
-INFO:local_logger:Epoch[032/800], Step[0100/0626], Avg Loss: 0.7646
-INFO:local_logger:Epoch[032/800], Step[0100/0626], Avg Loss: 0.7657
-INFO:local_logger:Epoch[032/800], Step[0200/0626], Avg Loss: 0.7632
-INFO:local_logger:Epoch[032/800], Step[0200/0626], Avg Loss: 0.7627
-INFO:local_logger:Epoch[032/800], Step[0200/0626], Avg Loss: 0.7635
-INFO:local_logger:Epoch[032/800], Step[0200/0626], Avg Loss: 0.7633
-INFO:local_logger:Epoch[032/800], Step[0200/0626], Avg Loss: 0.7638
-INFO:master_logger:Epoch[032/800], Step[0200/0626], Avg Loss: 0.7635
-INFO:local_logger:Epoch[032/800], Step[0200/0626], Avg Loss: 0.7637
-INFO:local_logger:Epoch[032/800], Step[0200/0626], Avg Loss: 0.7629
-INFO:local_logger:Epoch[032/800], Step[0200/0626], Avg Loss: 0.7644
-INFO:local_logger:Epoch[032/800], Step[0300/0626], Avg Loss: 0.7629
-INFO:local_logger:Epoch[032/800], Step[0300/0626], Avg Loss: 0.7628
-INFO:local_logger:Epoch[032/800], Step[0300/0626], Avg Loss: 0.7626
-INFO:local_logger:Epoch[032/800], Step[0300/0626], Avg Loss: 0.7631
-INFO:local_logger:Epoch[032/800], Step[0300/0626], Avg Loss: 0.7633
-INFO:local_logger:Epoch[032/800], Step[0300/0626], Avg Loss: 0.7634
-INFO:master_logger:Epoch[032/800], Step[0300/0626], Avg Loss: 0.7629
-INFO:local_logger:Epoch[032/800], Step[0300/0626], Avg Loss: 0.7626
-INFO:local_logger:Epoch[032/800], Step[0300/0626], Avg Loss: 0.7628
-INFO:local_logger:Epoch[032/800], Step[0400/0626], Avg Loss: 0.7623
-INFO:local_logger:Epoch[032/800], Step[0400/0626], Avg Loss: 0.7625
-INFO:local_logger:Epoch[032/800], Step[0400/0626], Avg Loss: 0.7620
-INFO:local_logger:Epoch[032/800], Step[0400/0626], Avg Loss: 0.7630
-INFO:local_logger:Epoch[032/800], Step[0400/0626], Avg Loss: 0.7621
-INFO:local_logger:Epoch[032/800], Step[0400/0626], Avg Loss: 0.7628
-INFO:master_logger:Epoch[032/800], Step[0400/0626], Avg Loss: 0.7624
-INFO:local_logger:Epoch[032/800], Step[0400/0626], Avg Loss: 0.7622
-INFO:local_logger:Epoch[032/800], Step[0400/0626], Avg Loss: 0.7621
-INFO:local_logger:Epoch[032/800], Step[0500/0626], Avg Loss: 0.7617
-INFO:local_logger:Epoch[032/800], Step[0500/0626], Avg Loss: 0.7623
-INFO:local_logger:Epoch[032/800], Step[0500/0626], Avg Loss: 0.7623
-INFO:master_logger:Epoch[032/800], Step[0500/0626], Avg Loss: 0.7619
-INFO:local_logger:Epoch[032/800], Step[0500/0626], Avg Loss: 0.7618
-INFO:local_logger:Epoch[032/800], Step[0500/0626], Avg Loss: 0.7617
-INFO:local_logger:Epoch[032/800], Step[0500/0626], Avg Loss: 0.7619
-INFO:local_logger:Epoch[032/800], Step[0500/0626], Avg Loss: 0.7617
-INFO:local_logger:Epoch[032/800], Step[0500/0626], Avg Loss: 0.7617
-INFO:local_logger:Epoch[032/800], Step[0600/0626], Avg Loss: 0.7613
-INFO:local_logger:Epoch[032/800], Step[0600/0626], Avg Loss: 0.7613
-INFO:local_logger:Epoch[032/800], Step[0600/0626], Avg Loss: 0.7616
-INFO:local_logger:Epoch[032/800], Step[0600/0626], Avg Loss: 0.7612
-INFO:local_logger:Epoch[032/800], Step[0600/0626], Avg Loss: 0.7615
-INFO:local_logger:Epoch[032/800], Step[0600/0626], Avg Loss: 0.7612
-INFO:master_logger:Epoch[032/800], Step[0600/0626], Avg Loss: 0.7614
-INFO:local_logger:Epoch[032/800], Step[0600/0626], Avg Loss: 0.7616
-INFO:local_logger:Epoch[032/800], Step[0600/0626], Avg Loss: 0.7611
-INFO:local_logger:----- Epoch[032/800], Train Loss: 0.7611, time: 877.39
-INFO:local_logger:Now training epoch 33. LR=0.000124
-INFO:local_logger:----- Epoch[032/800], Train Loss: 0.7610, time: 878.25
-INFO:local_logger:Now training epoch 33. LR=0.000124
-INFO:local_logger:----- Epoch[032/800], Train Loss: 0.7609, time: 878.35
-INFO:local_logger:Now training epoch 33. LR=0.000124
-INFO:local_logger:----- Epoch[032/800], Train Loss: 0.7615, time: 874.33
-INFO:master_logger:----- Epoch[032/800], Train Loss: 0.7612, time: 874.33
-INFO:local_logger:----- Epoch[032/800], Train Loss: 0.7612, time: 878.35
-INFO:local_logger:Now training epoch 33. LR=0.000124
-INFO:local_logger:----- Epoch[032/800], Train Loss: 0.7612, time: 878.38
-INFO:local_logger:Now training epoch 33. LR=0.000124
-INFO:local_logger:----- Epoch[032/800], Train Loss: 0.7612, time: 878.23
-INFO:local_logger:Now training epoch 33. LR=0.000124
-INFO:local_logger:----- Epoch[032/800], Train Loss: 0.7615, time: 878.10
-INFO:local_logger:Now training epoch 33. LR=0.000124
-INFO:local_logger:----- Save model: ./output/train-20211219-17-07-40/MAE-Epoch-32-Loss-0.761453199911086.pdparams
-INFO:local_logger:----- Save optim: ./output/train-20211219-17-07-40/MAE-Epoch-32-Loss-0.761453199911086.pdopt
-INFO:master_logger:----- Save model: ./output/train-20211219-17-07-40/MAE-Epoch-32-Loss-0.761453199911086.pdparams
-INFO:master_logger:----- Save optim: ./output/train-20211219-17-07-40/MAE-Epoch-32-Loss-0.761453199911086.pdopt
-INFO:local_logger:Now training epoch 33. LR=0.000124
-INFO:master_logger:Now training epoch 33. LR=0.000124
-INFO:local_logger:Epoch[033/800], Step[0000/0626], Avg Loss: 0.7557
-INFO:local_logger:Epoch[033/800], Step[0000/0626], Avg Loss: 0.7650
-INFO:local_logger:Epoch[033/800], Step[0000/0626], Avg Loss: 0.7551
-INFO:master_logger:Epoch[033/800], Step[0000/0626], Avg Loss: 0.7556
-INFO:local_logger:Epoch[033/800], Step[0000/0626], Avg Loss: 0.7455
-INFO:local_logger:Epoch[033/800], Step[0000/0626], Avg Loss: 0.7599
-INFO:local_logger:Epoch[033/800], Step[0000/0626], Avg Loss: 0.7565
-INFO:local_logger:Epoch[033/800], Step[0000/0626], Avg Loss: 0.7625
-INFO:local_logger:Epoch[033/800], Step[0000/0626], Avg Loss: 0.7448
-INFO:local_logger:Epoch[033/800], Step[0100/0626], Avg Loss: 0.7586
-INFO:local_logger:Epoch[033/800], Step[0100/0626], Avg Loss: 0.7590
-INFO:local_logger:Epoch[033/800], Step[0100/0626], Avg Loss: 0.7584
-INFO:local_logger:Epoch[033/800], Step[0100/0626], Avg Loss: 0.7588
-INFO:local_logger:Epoch[033/800], Step[0100/0626], Avg Loss: 0.7580
-INFO:local_logger:Epoch[033/800], Step[0100/0626], Avg Loss: 0.7570
-INFO:local_logger:Epoch[033/800], Step[0100/0626], Avg Loss: 0.7575
-INFO:local_logger:Epoch[033/800], Step[0100/0626], Avg Loss: 0.7570
-INFO:master_logger:Epoch[033/800], Step[0100/0626], Avg Loss: 0.7580
-INFO:local_logger:Epoch[033/800], Step[0200/0626], Avg Loss: 0.7577
-INFO:local_logger:Epoch[033/800], Step[0200/0626], Avg Loss: 0.7575
-INFO:local_logger:Epoch[033/800], Step[0200/0626], Avg Loss: 0.7584
-INFO:local_logger:Epoch[033/800], Step[0200/0626], Avg Loss: 0.7580
-INFO:local_logger:Epoch[033/800], Step[0200/0626], Avg Loss: 0.7584
-INFO:local_logger:Epoch[033/800], Step[0200/0626], Avg Loss: 0.7571
-INFO:local_logger:Epoch[033/800], Step[0200/0626], Avg Loss: 0.7574
-INFO:master_logger:Epoch[033/800], Step[0200/0626], Avg Loss: 0.7578
-INFO:local_logger:Epoch[033/800], Step[0200/0626], Avg Loss: 0.7576
-INFO:local_logger:Epoch[033/800], Step[0300/0626], Avg Loss: 0.7572
-INFO:local_logger:Epoch[033/800], Step[0300/0626], Avg Loss: 0.7579
-INFO:local_logger:Epoch[033/800], Step[0300/0626], Avg Loss: 0.7576
-INFO:local_logger:Epoch[033/800], Step[0300/0626], Avg Loss: 0.7568
-INFO:local_logger:Epoch[033/800], Step[0300/0626], Avg Loss: 0.7577
-INFO:local_logger:Epoch[033/800], Step[0300/0626], Avg Loss: 0.7579
-INFO:master_logger:Epoch[033/800], Step[0300/0626], Avg Loss: 0.7575
-INFO:local_logger:Epoch[033/800], Step[0300/0626], Avg Loss: 0.7579
-INFO:local_logger:Epoch[033/800], Step[0300/0626], Avg Loss: 0.7572
-INFO:local_logger:Epoch[033/800], Step[0400/0626], Avg Loss: 0.7574
-INFO:local_logger:Epoch[033/800], Step[0400/0626], Avg Loss: 0.7571
-INFO:local_logger:Epoch[033/800], Step[0400/0626], Avg Loss: 0.7568
-INFO:local_logger:Epoch[033/800], Step[0400/0626], Avg Loss: 0.7573
-INFO:local_logger:Epoch[033/800], Step[0400/0626], Avg Loss: 0.7571
-INFO:local_logger:Epoch[033/800], Step[0400/0626], Avg Loss: 0.7573
-INFO:local_logger:Epoch[033/800], Step[0400/0626], Avg Loss: 0.7572
-INFO:local_logger:Epoch[033/800], Step[0400/0626], Avg Loss: 0.7565
-INFO:master_logger:Epoch[033/800], Step[0400/0626], Avg Loss: 0.7571
-INFO:local_logger:Epoch[033/800], Step[0500/0626], Avg Loss: 0.7565
-INFO:local_logger:Epoch[033/800], Step[0500/0626], Avg Loss: 0.7567
-INFO:local_logger:Epoch[033/800], Step[0500/0626], Avg Loss: 0.7570
-INFO:local_logger:Epoch[033/800], Step[0500/0626], Avg Loss: 0.7569
-INFO:local_logger:Epoch[033/800], Step[0500/0626], Avg Loss: 0.7564
-INFO:local_logger:Epoch[033/800], Step[0500/0626], Avg Loss: 0.7570
-INFO:local_logger:Epoch[033/800], Step[0500/0626], Avg Loss: 0.7569
-INFO:master_logger:Epoch[033/800], Step[0500/0626], Avg Loss: 0.7568
-INFO:local_logger:Epoch[033/800], Step[0500/0626], Avg Loss: 0.7569
-INFO:local_logger:Epoch[033/800], Step[0600/0626], Avg Loss: 0.7564
-INFO:local_logger:Epoch[033/800], Step[0600/0626], Avg Loss: 0.7561
-INFO:local_logger:Epoch[033/800], Step[0600/0626], Avg Loss: 0.7567
-INFO:local_logger:Epoch[033/800], Step[0600/0626], Avg Loss: 0.7561
-INFO:local_logger:Epoch[033/800], Step[0600/0626], Avg Loss: 0.7566
-INFO:local_logger:Epoch[033/800], Step[0600/0626], Avg Loss: 0.7567
-INFO:master_logger:Epoch[033/800], Step[0600/0626], Avg Loss: 0.7564
-INFO:local_logger:Epoch[033/800], Step[0600/0626], Avg Loss: 0.7563
-INFO:local_logger:Epoch[033/800], Step[0600/0626], Avg Loss: 0.7566
-INFO:local_logger:----- Epoch[033/800], Train Loss: 0.7561, time: 852.50
-INFO:master_logger:----- Epoch[033/800], Train Loss: 0.7564, time: 852.50
-INFO:local_logger:----- Epoch[033/800], Train Loss: 0.7566, time: 856.70
-INFO:local_logger:Now training epoch 34. LR=0.000128
-INFO:local_logger:----- Epoch[033/800], Train Loss: 0.7566, time: 856.72
-INFO:local_logger:Now training epoch 34. LR=0.000128
-INFO:local_logger:----- Epoch[033/800], Train Loss: 0.7560, time: 856.75
-INFO:local_logger:Now training epoch 34. LR=0.000128
-INFO:local_logger:----- Epoch[033/800], Train Loss: 0.7566, time: 857.55
-INFO:local_logger:Now training epoch 34. LR=0.000128
-INFO:local_logger:----- Epoch[033/800], Train Loss: 0.7562, time: 856.91
-INFO:local_logger:Now training epoch 34. LR=0.000128
-INFO:local_logger:----- Epoch[033/800], Train Loss: 0.7565, time: 856.90
-INFO:local_logger:Now training epoch 34. LR=0.000128
-INFO:local_logger:----- Epoch[033/800], Train Loss: 0.7563, time: 856.92
-INFO:local_logger:Now training epoch 34. LR=0.000128
-INFO:local_logger:----- Save model: ./output/train-20211219-17-07-40/MAE-Epoch-33-Loss-0.7561021761674307.pdparams
-INFO:local_logger:----- Save optim: ./output/train-20211219-17-07-40/MAE-Epoch-33-Loss-0.7561021761674307.pdopt
-INFO:master_logger:----- Save model: ./output/train-20211219-17-07-40/MAE-Epoch-33-Loss-0.7561021761674307.pdparams
-INFO:master_logger:----- Save optim: ./output/train-20211219-17-07-40/MAE-Epoch-33-Loss-0.7561021761674307.pdopt
-INFO:local_logger:Now training epoch 34. LR=0.000128
-INFO:master_logger:Now training epoch 34. LR=0.000128
-INFO:local_logger:Epoch[034/800], Step[0000/0626], Avg Loss: 0.7407
-INFO:master_logger:Epoch[034/800], Step[0000/0626], Avg Loss: 0.7518
-INFO:local_logger:Epoch[034/800], Step[0000/0626], Avg Loss: 0.7494
-INFO:local_logger:Epoch[034/800], Step[0000/0626], Avg Loss: 0.7433
-INFO:local_logger:Epoch[034/800], Step[0000/0626], Avg Loss: 0.7598
-INFO:local_logger:Epoch[034/800], Step[0000/0626], Avg Loss: 0.7563
-INFO:local_logger:Epoch[034/800], Step[0000/0626], Avg Loss: 0.7612
-INFO:local_logger:Epoch[034/800], Step[0000/0626], Avg Loss: 0.7477
-INFO:local_logger:Epoch[034/800], Step[0000/0626], Avg Loss: 0.7559
-INFO:local_logger:Epoch[034/800], Step[0100/0626], Avg Loss: 0.7547
-INFO:local_logger:Epoch[034/800], Step[0100/0626], Avg Loss: 0.7548
-INFO:local_logger:Epoch[034/800], Step[0100/0626], Avg Loss: 0.7543
-INFO:local_logger:Epoch[034/800], Step[0100/0626], Avg Loss: 0.7539
-INFO:local_logger:Epoch[034/800], Step[0100/0626], Avg Loss: 0.7534
-INFO:local_logger:Epoch[034/800], Step[0100/0626], Avg Loss: 0.7536
-INFO:master_logger:Epoch[034/800], Step[0100/0626], Avg Loss: 0.7540
-INFO:local_logger:Epoch[034/800], Step[0100/0626], Avg Loss: 0.7534
-INFO:local_logger:Epoch[034/800], Step[0100/0626], Avg Loss: 0.7540
-INFO:local_logger:Epoch[034/800], Step[0200/0626], Avg Loss: 0.7539
-INFO:local_logger:Epoch[034/800], Step[0200/0626], Avg Loss: 0.7529
-INFO:local_logger:Epoch[034/800], Step[0200/0626], Avg Loss: 0.7541
-INFO:local_logger:Epoch[034/800], Step[0200/0626], Avg Loss: 0.7541
-INFO:local_logger:Epoch[034/800], Step[0200/0626], Avg Loss: 0.7531
-INFO:master_logger:Epoch[034/800], Step[0200/0626], Avg Loss: 0.7536
-INFO:local_logger:Epoch[034/800], Step[0200/0626], Avg Loss: 0.7536
-INFO:local_logger:Epoch[034/800], Step[0200/0626], Avg Loss: 0.7534
-INFO:local_logger:Epoch[034/800], Step[0200/0626], Avg Loss: 0.7533
-INFO:local_logger:Epoch[034/800], Step[0300/0626], Avg Loss: 0.7529
-INFO:local_logger:Epoch[034/800], Step[0300/0626], Avg Loss: 0.7533
-INFO:local_logger:Epoch[034/800], Step[0300/0626], Avg Loss: 0.7532
-INFO:local_logger:Epoch[034/800], Step[0300/0626], Avg Loss: 0.7531
-INFO:local_logger:Epoch[034/800], Step[0300/0626], Avg Loss: 0.7528
-INFO:local_logger:Epoch[034/800], Step[0300/0626], Avg Loss: 0.7534
-INFO:master_logger:Epoch[034/800], Step[0300/0626], Avg Loss: 0.7531
-INFO:local_logger:Epoch[034/800], Step[0300/0626], Avg Loss: 0.7539
-INFO:local_logger:Epoch[034/800], Step[0300/0626], Avg Loss: 0.7523
-INFO:local_logger:Epoch[034/800], Step[0400/0626], Avg Loss: 0.7527
-INFO:local_logger:Epoch[034/800], Step[0400/0626], Avg Loss: 0.7527
-INFO:local_logger:Epoch[034/800], Step[0400/0626], Avg Loss: 0.7526
-INFO:local_logger:Epoch[034/800], Step[0400/0626], Avg Loss: 0.7520
-INFO:local_logger:Epoch[034/800], Step[0400/0626], Avg Loss: 0.7536
-INFO:local_logger:Epoch[034/800], Step[0400/0626], Avg Loss: 0.7525
-INFO:local_logger:Epoch[034/800], Step[0400/0626], Avg Loss: 0.7525
-INFO:local_logger:Epoch[034/800], Step[0400/0626], Avg Loss: 0.7528
-INFO:master_logger:Epoch[034/800], Step[0400/0626], Avg Loss: 0.7527
-INFO:local_logger:Epoch[034/800], Step[0500/0626], Avg Loss: 0.7526
-INFO:local_logger:Epoch[034/800], Step[0500/0626], Avg Loss: 0.7520
-INFO:local_logger:Epoch[034/800], Step[0500/0626], Avg Loss: 0.7518
-INFO:local_logger:Epoch[034/800], Step[0500/0626], Avg Loss: 0.7523
-INFO:local_logger:Epoch[034/800], Step[0500/0626], Avg Loss: 0.7525
-INFO:local_logger:Epoch[034/800], Step[0500/0626], Avg Loss: 0.7524
-INFO:local_logger:Epoch[034/800], Step[0500/0626], Avg Loss: 0.7522
-INFO:local_logger:Epoch[034/800], Step[0500/0626], Avg Loss: 0.7532
-INFO:master_logger:Epoch[034/800], Step[0500/0626], Avg Loss: 0.7524
-INFO:local_logger:Epoch[034/800], Step[0600/0626], Avg Loss: 0.7520
-INFO:local_logger:Epoch[034/800], Step[0600/0626], Avg Loss: 0.7521
-INFO:local_logger:Epoch[034/800], Step[0600/0626], Avg Loss: 0.7516
-INFO:local_logger:Epoch[034/800], Step[0600/0626], Avg Loss: 0.7522
-INFO:local_logger:Epoch[034/800], Step[0600/0626], Avg Loss: 0.7516
-INFO:master_logger:Epoch[034/800], Step[0600/0626], Avg Loss: 0.7520
-INFO:local_logger:Epoch[034/800], Step[0600/0626], Avg Loss: 0.7521
-INFO:local_logger:Epoch[034/800], Step[0600/0626], Avg Loss: 0.7526
-INFO:local_logger:Epoch[034/800], Step[0600/0626], Avg Loss: 0.7516
-INFO:local_logger:----- Epoch[034/800], Train Loss: 0.7519, time: 885.18
-INFO:local_logger:Now training epoch 35. LR=0.000131
-INFO:local_logger:----- Epoch[034/800], Train Loss: 0.7520, time: 885.17
-INFO:local_logger:Now training epoch 35. LR=0.000131
-INFO:local_logger:----- Epoch[034/800], Train Loss: 0.7519, time: 885.32
-INFO:local_logger:Now training epoch 35. LR=0.000131
-INFO:local_logger:----- Epoch[034/800], Train Loss: 0.7516, time: 882.34
-INFO:master_logger:----- Epoch[034/800], Train Loss: 0.7519, time: 882.34
-INFO:local_logger:----- Epoch[034/800], Train Loss: 0.7522, time: 885.50
-INFO:local_logger:Now training epoch 35. LR=0.000131
-INFO:local_logger:----- Epoch[034/800], Train Loss: 0.7516, time: 885.48
-INFO:local_logger:Now training epoch 35. LR=0.000131
-INFO:local_logger:----- Epoch[034/800], Train Loss: 0.7516, time: 885.48
-INFO:local_logger:Now training epoch 35. LR=0.000131
-INFO:local_logger:----- Epoch[034/800], Train Loss: 0.7524, time: 885.48
-INFO:local_logger:Now training epoch 35. LR=0.000131
-INFO:local_logger:----- Save model: ./output/train-20211219-17-07-40/MAE-Epoch-34-Loss-0.7516406552539668.pdparams
-INFO:local_logger:----- Save optim: ./output/train-20211219-17-07-40/MAE-Epoch-34-Loss-0.7516406552539668.pdopt
-INFO:master_logger:----- Save model: ./output/train-20211219-17-07-40/MAE-Epoch-34-Loss-0.7516406552539668.pdparams
-INFO:master_logger:----- Save optim: ./output/train-20211219-17-07-40/MAE-Epoch-34-Loss-0.7516406552539668.pdopt
-INFO:local_logger:Now training epoch 35. LR=0.000131
-INFO:master_logger:Now training epoch 35. LR=0.000131
-INFO:local_logger:Epoch[035/800], Step[0000/0626], Avg Loss: 0.7487
-INFO:local_logger:Epoch[035/800], Step[0000/0626], Avg Loss: 0.7414
-INFO:local_logger:Epoch[035/800], Step[0000/0626], Avg Loss: 0.7520
-INFO:master_logger:Epoch[035/800], Step[0000/0626], Avg Loss: 0.7511
-INFO:local_logger:Epoch[035/800], Step[0000/0626], Avg Loss: 0.7453
-INFO:local_logger:Epoch[035/800], Step[0000/0626], Avg Loss: 0.7505
-INFO:local_logger:Epoch[035/800], Step[0000/0626], Avg Loss: 0.7633
-INFO:local_logger:Epoch[035/800], Step[0000/0626], Avg Loss: 0.7544
-INFO:local_logger:Epoch[035/800], Step[0000/0626], Avg Loss: 0.7535
-INFO:local_logger:Epoch[035/800], Step[0100/0626], Avg Loss: 0.7500
-INFO:local_logger:Epoch[035/800], Step[0100/0626], Avg Loss: 0.7504
-INFO:local_logger:Epoch[035/800], Step[0100/0626], Avg Loss: 0.7496
-INFO:local_logger:Epoch[035/800], Step[0100/0626], Avg Loss: 0.7499
-INFO:local_logger:Epoch[035/800], Step[0100/0626], Avg Loss: 0.7493
-INFO:local_logger:Epoch[035/800], Step[0100/0626], Avg Loss: 0.7492
-INFO:local_logger:Epoch[035/800], Step[0100/0626], Avg Loss: 0.7490
-INFO:master_logger:Epoch[035/800], Step[0100/0626], Avg Loss: 0.7494
-INFO:local_logger:Epoch[035/800], Step[0100/0626], Avg Loss: 0.7481
-INFO:local_logger:Epoch[035/800], Step[0200/0626], Avg Loss: 0.7496
-INFO:local_logger:Epoch[035/800], Step[0200/0626], Avg Loss: 0.7496
-INFO:local_logger:Epoch[035/800], Step[0200/0626], Avg Loss: 0.7495
-INFO:local_logger:Epoch[035/800], Step[0200/0626], Avg Loss: 0.7485
-INFO:local_logger:Epoch[035/800], Step[0200/0626], Avg Loss: 0.7487
-INFO:master_logger:Epoch[035/800], Step[0200/0626], Avg Loss: 0.7493
-INFO:local_logger:Epoch[035/800], Step[0200/0626], Avg Loss: 0.7490
-INFO:local_logger:Epoch[035/800], Step[0200/0626], Avg Loss: 0.7498
-INFO:local_logger:Epoch[035/800], Step[0200/0626], Avg Loss: 0.7493
-INFO:local_logger:Epoch[035/800], Step[0300/0626], Avg Loss: 0.7484
-INFO:local_logger:Epoch[035/800], Step[0300/0626], Avg Loss: 0.7486
-INFO:local_logger:Epoch[035/800], Step[0300/0626], Avg Loss: 0.7491
-INFO:local_logger:Epoch[035/800], Step[0300/0626], Avg Loss: 0.7494
-INFO:local_logger:Epoch[035/800], Step[0300/0626], Avg Loss: 0.7494
-INFO:master_logger:Epoch[035/800], Step[0300/0626], Avg Loss: 0.7490
-INFO:local_logger:Epoch[035/800], Step[0300/0626], Avg Loss: 0.7491
-INFO:local_logger:Epoch[035/800], Step[0300/0626], Avg Loss: 0.7488
-INFO:local_logger:Epoch[035/800], Step[0300/0626], Avg Loss: 0.7495
-INFO:local_logger:Epoch[035/800], Step[0400/0626], Avg Loss: 0.7488
-INFO:local_logger:Epoch[035/800], Step[0400/0626], Avg Loss: 0.7490
-INFO:local_logger:Epoch[035/800], Step[0400/0626], Avg Loss: 0.7483
-INFO:local_logger:Epoch[035/800], Step[0400/0626], Avg Loss: 0.7490
-INFO:local_logger:Epoch[035/800], Step[0400/0626], Avg Loss: 0.7484
-INFO:local_logger:Epoch[035/800], Step[0400/0626], Avg Loss: 0.7489
-INFO:local_logger:Epoch[035/800], Step[0400/0626], Avg Loss: 0.7480
-INFO:master_logger:Epoch[035/800], Step[0400/0626], Avg Loss: 0.7486
-INFO:local_logger:Epoch[035/800], Step[0400/0626], Avg Loss: 0.7484
-INFO:local_logger:Epoch[035/800], Step[0500/0626], Avg Loss: 0.7485
-INFO:local_logger:Epoch[035/800], Step[0500/0626], Avg Loss: 0.7488
-INFO:local_logger:Epoch[035/800], Step[0500/0626], Avg Loss: 0.7483
-INFO:local_logger:Epoch[035/800], Step[0500/0626], Avg Loss: 0.7482
-INFO:local_logger:Epoch[035/800], Step[0500/0626], Avg Loss: 0.7479
-INFO:local_logger:Epoch[035/800], Step[0500/0626], Avg Loss: 0.7482
-INFO:local_logger:Epoch[035/800], Step[0500/0626], Avg Loss: 0.7491
-INFO:master_logger:Epoch[035/800], Step[0500/0626], Avg Loss: 0.7484
-INFO:local_logger:Epoch[035/800], Step[0500/0626], Avg Loss: 0.7484
-INFO:local_logger:Epoch[035/800], Step[0600/0626], Avg Loss: 0.7482
-INFO:local_logger:Epoch[035/800], Step[0600/0626], Avg Loss: 0.7485
-INFO:local_logger:Epoch[035/800], Step[0600/0626], Avg Loss: 0.7478
-INFO:local_logger:Epoch[035/800], Step[0600/0626], Avg Loss: 0.7480
-INFO:local_logger:Epoch[035/800], Step[0600/0626], Avg Loss: 0.7480
-INFO:local_logger:Epoch[035/800], Step[0600/0626], Avg Loss: 0.7481
-INFO:local_logger:Epoch[035/800], Step[0600/0626], Avg Loss: 0.7478
-INFO:local_logger:Epoch[035/800], Step[0600/0626], Avg Loss: 0.7485
-INFO:master_logger:Epoch[035/800], Step[0600/0626], Avg Loss: 0.7481
-INFO:local_logger:----- Epoch[035/800], Train Loss: 0.7484, time: 858.24
-INFO:local_logger:Now training epoch 36. LR=0.000135
-INFO:local_logger:----- Epoch[035/800], Train Loss: 0.7479, time: 859.58
-INFO:local_logger:Now training epoch 36. LR=0.000135
-INFO:local_logger:----- Epoch[035/800], Train Loss: 0.7481, time: 859.55
-INFO:local_logger:Now training epoch 36. LR=0.000135
-INFO:local_logger:----- Epoch[035/800], Train Loss: 0.7480, time: 859.83
-INFO:local_logger:Now training epoch 36. LR=0.000135
-INFO:local_logger:----- Epoch[035/800], Train Loss: 0.7480, time: 859.45
-INFO:local_logger:Now training epoch 36. LR=0.000135
-INFO:local_logger:----- Epoch[035/800], Train Loss: 0.7484, time: 859.45
-INFO:local_logger:Now training epoch 36. LR=0.000135
-INFO:local_logger:----- Epoch[035/800], Train Loss: 0.7477, time: 855.75
-INFO:master_logger:----- Epoch[035/800], Train Loss: 0.7480, time: 855.75
-INFO:local_logger:----- Epoch[035/800], Train Loss: 0.7478, time: 859.47
-INFO:local_logger:Now training epoch 36. LR=0.000135
-INFO:local_logger:----- Save model: ./output/train-20211219-17-07-40/MAE-Epoch-35-Loss-0.7477136553201034.pdparams
-INFO:local_logger:----- Save optim: ./output/train-20211219-17-07-40/MAE-Epoch-35-Loss-0.7477136553201034.pdopt
-INFO:master_logger:----- Save model: ./output/train-20211219-17-07-40/MAE-Epoch-35-Loss-0.7477136553201034.pdparams
-INFO:master_logger:----- Save optim: ./output/train-20211219-17-07-40/MAE-Epoch-35-Loss-0.7477136553201034.pdopt
-INFO:local_logger:Now training epoch 36. LR=0.000135
-INFO:master_logger:Now training epoch 36. LR=0.000135
-INFO:local_logger:Epoch[036/800], Step[0000/0626], Avg Loss: 0.7546
-INFO:local_logger:Epoch[036/800], Step[0000/0626], Avg Loss: 0.7470
-INFO:local_logger:Epoch[036/800], Step[0000/0626], Avg Loss: 0.7469
-INFO:master_logger:Epoch[036/800], Step[0000/0626], Avg Loss: 0.7497
-INFO:local_logger:Epoch[036/800], Step[0000/0626], Avg Loss: 0.7536
-INFO:local_logger:Epoch[036/800], Step[0000/0626], Avg Loss: 0.7544
-INFO:local_logger:Epoch[036/800], Step[0000/0626], Avg Loss: 0.7537
-INFO:local_logger:Epoch[036/800], Step[0000/0626], Avg Loss: 0.7427
-INFO:local_logger:Epoch[036/800], Step[0000/0626], Avg Loss: 0.7446
-INFO:local_logger:Epoch[036/800], Step[0100/0626], Avg Loss: 0.7474
-INFO:local_logger:Epoch[036/800], Step[0100/0626], Avg Loss: 0.7461
-INFO:local_logger:Epoch[036/800], Step[0100/0626], Avg Loss: 0.7458
-INFO:local_logger:Epoch[036/800], Step[0100/0626], Avg Loss: 0.7467
-INFO:local_logger:Epoch[036/800], Step[0100/0626], Avg Loss: 0.7456
-INFO:local_logger:Epoch[036/800], Step[0100/0626], Avg Loss: 0.7469
-INFO:local_logger:Epoch[036/800], Step[0100/0626], Avg Loss: 0.7457
-INFO:master_logger:Epoch[036/800], Step[0100/0626], Avg Loss: 0.7463
-INFO:local_logger:Epoch[036/800], Step[0100/0626], Avg Loss: 0.7461
-INFO:local_logger:Epoch[036/800], Step[0200/0626], Avg Loss: 0.7459
-INFO:local_logger:Epoch[036/800], Step[0200/0626], Avg Loss: 0.7473
-INFO:local_logger:Epoch[036/800], Step[0200/0626], Avg Loss: 0.7459
-INFO:local_logger:Epoch[036/800], Step[0200/0626], Avg Loss: 0.7461
-INFO:local_logger:Epoch[036/800], Step[0200/0626], Avg Loss: 0.7460
-INFO:local_logger:Epoch[036/800], Step[0200/0626], Avg Loss: 0.7450
-INFO:master_logger:Epoch[036/800], Step[0200/0626], Avg Loss: 0.7460
-INFO:local_logger:Epoch[036/800], Step[0200/0626], Avg Loss: 0.7464
-INFO:local_logger:Epoch[036/800], Step[0200/0626], Avg Loss: 0.7453
-INFO:local_logger:Epoch[036/800], Step[0300/0626], Avg Loss: 0.7464
-INFO:local_logger:Epoch[036/800], Step[0300/0626], Avg Loss: 0.7457
-INFO:local_logger:Epoch[036/800], Step[0300/0626], Avg Loss: 0.7456
-INFO:local_logger:Epoch[036/800], Step[0300/0626], Avg Loss: 0.7461
-INFO:local_logger:Epoch[036/800], Step[0300/0626], Avg Loss: 0.7456
-INFO:master_logger:Epoch[036/800], Step[0300/0626], Avg Loss: 0.7456
-INFO:local_logger:Epoch[036/800], Step[0300/0626], Avg Loss: 0.7451
-INFO:local_logger:Epoch[036/800], Step[0300/0626], Avg Loss: 0.7456
-INFO:local_logger:Epoch[036/800], Step[0300/0626], Avg Loss: 0.7450
-INFO:local_logger:Epoch[036/800], Step[0400/0626], Avg Loss: 0.7453
-INFO:local_logger:Epoch[036/800], Step[0400/0626], Avg Loss: 0.7449
-INFO:local_logger:Epoch[036/800], Step[0400/0626], Avg Loss: 0.7457
-INFO:local_logger:Epoch[036/800], Step[0400/0626], Avg Loss: 0.7456
-INFO:local_logger:Epoch[036/800], Step[0400/0626], Avg Loss: 0.7456
-INFO:local_logger:Epoch[036/800], Step[0400/0626], Avg Loss: 0.7450
-INFO:master_logger:Epoch[036/800], Step[0400/0626], Avg Loss: 0.7453
-INFO:local_logger:Epoch[036/800], Step[0400/0626], Avg Loss: 0.7452
-INFO:local_logger:Epoch[036/800], Step[0400/0626], Avg Loss: 0.7449
-INFO:local_logger:Epoch[036/800], Step[0500/0626], Avg Loss: 0.7452
-INFO:local_logger:Epoch[036/800], Step[0500/0626], Avg Loss: 0.7450
-INFO:local_logger:Epoch[036/800], Step[0500/0626], Avg Loss: 0.7453
-INFO:local_logger:Epoch[036/800], Step[0500/0626], Avg Loss: 0.7449
-INFO:local_logger:Epoch[036/800], Step[0500/0626], Avg Loss: 0.7449
-INFO:local_logger:Epoch[036/800], Step[0500/0626], Avg Loss: 0.7452
-INFO:local_logger:Epoch[036/800], Step[0500/0626], Avg Loss: 0.7448
-INFO:local_logger:Epoch[036/800], Step[0500/0626], Avg Loss: 0.7451
-INFO:master_logger:Epoch[036/800], Step[0500/0626], Avg Loss: 0.7451
-INFO:local_logger:Epoch[036/800], Step[0600/0626], Avg Loss: 0.7446
-INFO:local_logger:Epoch[036/800], Step[0600/0626], Avg Loss: 0.7446
-INFO:local_logger:Epoch[036/800], Step[0600/0626], Avg Loss: 0.7446
-INFO:local_logger:Epoch[036/800], Step[0600/0626], Avg Loss: 0.7449
-INFO:local_logger:Epoch[036/800], Step[0600/0626], Avg Loss: 0.7446
-INFO:local_logger:Epoch[036/800], Step[0600/0626], Avg Loss: 0.7444
-INFO:local_logger:Epoch[036/800], Step[0600/0626], Avg Loss: 0.7450
-INFO:local_logger:Epoch[036/800], Step[0600/0626], Avg Loss: 0.7450
-INFO:master_logger:Epoch[036/800], Step[0600/0626], Avg Loss: 0.7447
-INFO:local_logger:----- Epoch[036/800], Train Loss: 0.7449, time: 890.54
-INFO:local_logger:Now training epoch 37. LR=0.000139
-INFO:local_logger:----- Epoch[036/800], Train Loss: 0.7445, time: 891.48
-INFO:local_logger:----- Epoch[036/800], Train Loss: 0.7445, time: 891.09
-INFO:local_logger:Now training epoch 37. LR=0.000139
-INFO:local_logger:Now training epoch 37. LR=0.000139
-INFO:local_logger:----- Epoch[036/800], Train Loss: 0.7446, time: 887.41
-INFO:master_logger:----- Epoch[036/800], Train Loss: 0.7447, time: 887.41
-INFO:local_logger:----- Epoch[036/800], Train Loss: 0.7448, time: 891.48
-INFO:local_logger:Now training epoch 37. LR=0.000139
-INFO:local_logger:----- Epoch[036/800], Train Loss: 0.7449, time: 891.12
-INFO:local_logger:Now training epoch 37. LR=0.000139
-INFO:local_logger:----- Epoch[036/800], Train Loss: 0.7446, time: 892.33
-INFO:local_logger:Now training epoch 37. LR=0.000139
-INFO:local_logger:----- Epoch[036/800], Train Loss: 0.7444, time: 891.12
-INFO:local_logger:Now training epoch 37. LR=0.000139
-INFO:local_logger:----- Save model: ./output/train-20211219-17-07-40/MAE-Epoch-36-Loss-0.7446498155174043.pdparams
-INFO:local_logger:----- Save optim: ./output/train-20211219-17-07-40/MAE-Epoch-36-Loss-0.7446498155174043.pdopt
-INFO:master_logger:----- Save model: ./output/train-20211219-17-07-40/MAE-Epoch-36-Loss-0.7446498155174043.pdparams
-INFO:master_logger:----- Save optim: ./output/train-20211219-17-07-40/MAE-Epoch-36-Loss-0.7446498155174043.pdopt
-INFO:local_logger:Now training epoch 37. LR=0.000139
-INFO:master_logger:Now training epoch 37. LR=0.000139
-INFO:local_logger:Epoch[037/800], Step[0000/0626], Avg Loss: 0.7435
-INFO:local_logger:Epoch[037/800], Step[0000/0626], Avg Loss: 0.7441
-INFO:local_logger:Epoch[037/800], Step[0000/0626], Avg Loss: 0.7454
-INFO:local_logger:Epoch[037/800], Step[0000/0626], Avg Loss: 0.7397
-INFO:master_logger:Epoch[037/800], Step[0000/0626], Avg Loss: 0.7456
-INFO:local_logger:Epoch[037/800], Step[0000/0626], Avg Loss: 0.7399
-INFO:local_logger:Epoch[037/800], Step[0000/0626], Avg Loss: 0.7476
-INFO:local_logger:Epoch[037/800], Step[0000/0626], Avg Loss: 0.7504
-INFO:local_logger:Epoch[037/800], Step[0000/0626], Avg Loss: 0.7542
-INFO:local_logger:Epoch[037/800], Step[0100/0626], Avg Loss: 0.7433
-INFO:local_logger:Epoch[037/800], Step[0100/0626], Avg Loss: 0.7414
-INFO:local_logger:Epoch[037/800], Step[0100/0626], Avg Loss: 0.7429
-INFO:local_logger:Epoch[037/800], Step[0100/0626], Avg Loss: 0.7416
-INFO:local_logger:Epoch[037/800], Step[0100/0626], Avg Loss: 0.7421
-INFO:master_logger:Epoch[037/800], Step[0100/0626], Avg Loss: 0.7426
-INFO:local_logger:Epoch[037/800], Step[0100/0626], Avg Loss: 0.7423
-INFO:local_logger:Epoch[037/800], Step[0100/0626], Avg Loss: 0.7431
-INFO:local_logger:Epoch[037/800], Step[0100/0626], Avg Loss: 0.7438
-INFO:local_logger:Epoch[037/800], Step[0200/0626], Avg Loss: 0.7429
-INFO:local_logger:Epoch[037/800], Step[0200/0626], Avg Loss: 0.7434
-INFO:local_logger:Epoch[037/800], Step[0200/0626], Avg Loss: 0.7425
-INFO:local_logger:Epoch[037/800], Step[0200/0626], Avg Loss: 0.7427
-INFO:local_logger:Epoch[037/800], Step[0200/0626], Avg Loss: 0.7427
-INFO:local_logger:Epoch[037/800], Step[0200/0626], Avg Loss: 0.7428
-INFO:local_logger:Epoch[037/800], Step[0200/0626], Avg Loss: 0.7429
-INFO:local_logger:Epoch[037/800], Step[0200/0626], Avg Loss: 0.7424
-INFO:master_logger:Epoch[037/800], Step[0200/0626], Avg Loss: 0.7428
-INFO:local_logger:Epoch[037/800], Step[0300/0626], Avg Loss: 0.7422
-INFO:local_logger:Epoch[037/800], Step[0300/0626], Avg Loss: 0.7425
-INFO:local_logger:Epoch[037/800], Step[0300/0626], Avg Loss: 0.7417
-INFO:local_logger:Epoch[037/800], Step[0300/0626], Avg Loss: 0.7424
-INFO:local_logger:Epoch[037/800], Step[0300/0626], Avg Loss: 0.7423
-INFO:local_logger:Epoch[037/800], Step[0300/0626], Avg Loss: 0.7424
-INFO:local_logger:Epoch[037/800], Step[0300/0626], Avg Loss: 0.7427
-INFO:local_logger:Epoch[037/800], Step[0300/0626], Avg Loss: 0.7425
-INFO:master_logger:Epoch[037/800], Step[0300/0626], Avg Loss: 0.7423
-INFO:local_logger:Epoch[037/800], Step[0400/0626], Avg Loss: 0.7423
-INFO:local_logger:Epoch[037/800], Step[0400/0626], Avg Loss: 0.7419
-INFO:local_logger:Epoch[037/800], Step[0400/0626], Avg Loss: 0.7416
-INFO:local_logger:Epoch[037/800], Step[0400/0626], Avg Loss: 0.7420
-INFO:local_logger:Epoch[037/800], Step[0400/0626], Avg Loss: 0.7422
-INFO:local_logger:Epoch[037/800], Step[0400/0626], Avg Loss: 0.7414
-INFO:local_logger:Epoch[037/800], Step[0400/0626], Avg Loss: 0.7420
-INFO:local_logger:Epoch[037/800], Step[0400/0626], Avg Loss: 0.7419
-INFO:master_logger:Epoch[037/800], Step[0400/0626], Avg Loss: 0.7419
-INFO:local_logger:Epoch[037/800], Step[0500/0626], Avg Loss: 0.7414
-INFO:local_logger:Epoch[037/800], Step[0500/0626], Avg Loss: 0.7414
-INFO:local_logger:Epoch[037/800], Step[0500/0626], Avg Loss: 0.7416
-INFO:local_logger:Epoch[037/800], Step[0500/0626], Avg Loss: 0.7419
-INFO:local_logger:Epoch[037/800], Step[0500/0626], Avg Loss: 0.7417
-INFO:local_logger:Epoch[037/800], Step[0500/0626], Avg Loss: 0.7419
-INFO:local_logger:Epoch[037/800], Step[0500/0626], Avg Loss: 0.7415
-INFO:local_logger:Epoch[037/800], Step[0500/0626], Avg Loss: 0.7418
-INFO:master_logger:Epoch[037/800], Step[0500/0626], Avg Loss: 0.7417
-INFO:local_logger:Epoch[037/800], Step[0600/0626], Avg Loss: 0.7410
-INFO:local_logger:Epoch[037/800], Step[0600/0626], Avg Loss: 0.7416
-INFO:local_logger:Epoch[037/800], Step[0600/0626], Avg Loss: 0.7416
-INFO:local_logger:Epoch[037/800], Step[0600/0626], Avg Loss: 0.7417
-INFO:local_logger:Epoch[037/800], Step[0600/0626], Avg Loss: 0.7413
-INFO:local_logger:Epoch[037/800], Step[0600/0626], Avg Loss: 0.7413
-INFO:local_logger:Epoch[037/800], Step[0600/0626], Avg Loss: 0.7412
-INFO:master_logger:Epoch[037/800], Step[0600/0626], Avg Loss: 0.7414
-INFO:local_logger:Epoch[037/800], Step[0600/0626], Avg Loss: 0.7414
-INFO:local_logger:----- Epoch[037/800], Train Loss: 0.7415, time: 861.30
-INFO:local_logger:Now training epoch 38. LR=0.000143
-INFO:local_logger:----- Epoch[037/800], Train Loss: 0.7415, time: 861.30
-INFO:local_logger:Now training epoch 38. LR=0.000143
-INFO:local_logger:----- Epoch[037/800], Train Loss: 0.7414, time: 861.29
-INFO:local_logger:Now training epoch 38. LR=0.000143
-INFO:local_logger:----- Epoch[037/800], Train Loss: 0.7412, time: 861.53
-INFO:local_logger:Now training epoch 38. LR=0.000143
-INFO:local_logger:----- Epoch[037/800], Train Loss: 0.7412, time: 862.22
-INFO:local_logger:Now training epoch 38. LR=0.000143
-INFO:local_logger:----- Epoch[037/800], Train Loss: 0.7411, time: 861.67
-INFO:local_logger:Now training epoch 38. LR=0.000143
-INFO:local_logger:----- Epoch[037/800], Train Loss: 0.7410, time: 861.66
-INFO:local_logger:Now training epoch 38. LR=0.000143
-INFO:local_logger:----- Epoch[037/800], Train Loss: 0.7415, time: 858.01
-INFO:master_logger:----- Epoch[037/800], Train Loss: 0.7413, time: 858.01
-INFO:local_logger:----- Save model: ./output/train-20211219-17-07-40/MAE-Epoch-37-Loss-0.7415279359559235.pdparams
-INFO:local_logger:----- Save optim: ./output/train-20211219-17-07-40/MAE-Epoch-37-Loss-0.7415279359559235.pdopt
-INFO:master_logger:----- Save model: ./output/train-20211219-17-07-40/MAE-Epoch-37-Loss-0.7415279359559235.pdparams
-INFO:master_logger:----- Save optim: ./output/train-20211219-17-07-40/MAE-Epoch-37-Loss-0.7415279359559235.pdopt
-INFO:local_logger:Now training epoch 38. LR=0.000143
-INFO:master_logger:Now training epoch 38. LR=0.000143
-INFO:local_logger:Epoch[038/800], Step[0000/0626], Avg Loss: 0.7326
-INFO:local_logger:Epoch[038/800], Step[0000/0626], Avg Loss: 0.7470
-INFO:master_logger:Epoch[038/800], Step[0000/0626], Avg Loss: 0.7394
-INFO:local_logger:Epoch[038/800], Step[0000/0626], Avg Loss: 0.7295
-INFO:local_logger:Epoch[038/800], Step[0000/0626], Avg Loss: 0.7452
-INFO:local_logger:Epoch[038/800], Step[0000/0626], Avg Loss: 0.7429
-INFO:local_logger:Epoch[038/800], Step[0000/0626], Avg Loss: 0.7354
-INFO:local_logger:Epoch[038/800], Step[0000/0626], Avg Loss: 0.7382
-INFO:local_logger:Epoch[038/800], Step[0000/0626], Avg Loss: 0.7443
-INFO:local_logger:Epoch[038/800], Step[0100/0626], Avg Loss: 0.7383
-INFO:local_logger:Epoch[038/800], Step[0100/0626], Avg Loss: 0.7398
-INFO:local_logger:Epoch[038/800], Step[0100/0626], Avg Loss: 0.7393
-INFO:local_logger:Epoch[038/800], Step[0100/0626], Avg Loss: 0.7389
-INFO:local_logger:Epoch[038/800], Step[0100/0626], Avg Loss: 0.7386
-INFO:local_logger:Epoch[038/800], Step[0100/0626], Avg Loss: 0.7387
-INFO:master_logger:Epoch[038/800], Step[0100/0626], Avg Loss: 0.7392
-INFO:local_logger:Epoch[038/800], Step[0100/0626], Avg Loss: 0.7411
-INFO:local_logger:Epoch[038/800], Step[0100/0626], Avg Loss: 0.7392
-INFO:local_logger:Epoch[038/800], Step[0200/0626], Avg Loss: 0.7388
-INFO:local_logger:Epoch[038/800], Step[0200/0626], Avg Loss: 0.7388
-INFO:local_logger:Epoch[038/800], Step[0200/0626], Avg Loss: 0.7386
-INFO:local_logger:Epoch[038/800], Step[0200/0626], Avg Loss: 0.7386
-INFO:local_logger:Epoch[038/800], Step[0200/0626], Avg Loss: 0.7399
-INFO:local_logger:Epoch[038/800], Step[0200/0626], Avg Loss: 0.7386
-INFO:local_logger:Epoch[038/800], Step[0200/0626], Avg Loss: 0.7391
-INFO:master_logger:Epoch[038/800], Step[0200/0626], Avg Loss: 0.7389
-INFO:local_logger:Epoch[038/800], Step[0200/0626], Avg Loss: 0.7389
-INFO:local_logger:Epoch[038/800], Step[0300/0626], Avg Loss: 0.7388
-INFO:local_logger:Epoch[038/800], Step[0300/0626], Avg Loss: 0.7390
-INFO:local_logger:Epoch[038/800], Step[0300/0626], Avg Loss: 0.7388
-INFO:local_logger:Epoch[038/800], Step[0300/0626], Avg Loss: 0.7386
-INFO:local_logger:Epoch[038/800], Step[0300/0626], Avg Loss: 0.7388
-INFO:local_logger:Epoch[038/800], Step[0300/0626], Avg Loss: 0.7384
-INFO:local_logger:Epoch[038/800], Step[0300/0626], Avg Loss: 0.7385
-INFO:master_logger:Epoch[038/800], Step[0300/0626], Avg Loss: 0.7387
-INFO:local_logger:Epoch[038/800], Step[0300/0626], Avg Loss: 0.7389
-INFO:local_logger:Epoch[038/800], Step[0400/0626], Avg Loss: 0.7382
-INFO:local_logger:Epoch[038/800], Step[0400/0626], Avg Loss: 0.7388
-INFO:local_logger:Epoch[038/800], Step[0400/0626], Avg Loss: 0.7390
-INFO:local_logger:Epoch[038/800], Step[0400/0626], Avg Loss: 0.7387
-INFO:local_logger:Epoch[038/800], Step[0400/0626], Avg Loss: 0.7388
-INFO:master_logger:Epoch[038/800], Step[0400/0626], Avg Loss: 0.7387
-INFO:local_logger:Epoch[038/800], Step[0400/0626], Avg Loss: 0.7384
-INFO:local_logger:Epoch[038/800], Step[0400/0626], Avg Loss: 0.7386
-INFO:local_logger:Epoch[038/800], Step[0400/0626], Avg Loss: 0.7388
-INFO:local_logger:Epoch[038/800], Step[0500/0626], Avg Loss: 0.7383
-INFO:local_logger:Epoch[038/800], Step[0500/0626], Avg Loss: 0.7385
-INFO:local_logger:Epoch[038/800], Step[0500/0626], Avg Loss: 0.7385
-INFO:local_logger:Epoch[038/800], Step[0500/0626], Avg Loss: 0.7385
-INFO:local_logger:Epoch[038/800], Step[0500/0626], Avg Loss: 0.7390
-INFO:local_logger:Epoch[038/800], Step[0500/0626], Avg Loss: 0.7377
-INFO:local_logger:Epoch[038/800], Step[0500/0626], Avg Loss: 0.7385
-INFO:master_logger:Epoch[038/800], Step[0500/0626], Avg Loss: 0.7385
-INFO:local_logger:Epoch[038/800], Step[0500/0626], Avg Loss: 0.7387
-INFO:local_logger:Epoch[038/800], Step[0600/0626], Avg Loss: 0.7378
-INFO:local_logger:Epoch[038/800], Step[0600/0626], Avg Loss: 0.7382
-INFO:local_logger:Epoch[038/800], Step[0600/0626], Avg Loss: 0.7389
-INFO:local_logger:Epoch[038/800], Step[0600/0626], Avg Loss: 0.7381
-INFO:local_logger:Epoch[038/800], Step[0600/0626], Avg Loss: 0.7381
-INFO:local_logger:Epoch[038/800], Step[0600/0626], Avg Loss: 0.7381
-INFO:master_logger:Epoch[038/800], Step[0600/0626], Avg Loss: 0.7383
-INFO:local_logger:Epoch[038/800], Step[0600/0626], Avg Loss: 0.7381
-INFO:local_logger:Epoch[038/800], Step[0600/0626], Avg Loss: 0.7386
-INFO:local_logger:----- Epoch[038/800], Train Loss: 0.7381, time: 895.61
-INFO:local_logger:Now training epoch 39. LR=0.000146
-INFO:local_logger:----- Epoch[038/800], Train Loss: 0.7378, time: 895.58
-INFO:local_logger:Now training epoch 39. LR=0.000146
-INFO:local_logger:----- Epoch[038/800], Train Loss: 0.7380, time: 895.99
-INFO:local_logger:Now training epoch 39. LR=0.000146
-INFO:local_logger:----- Epoch[038/800], Train Loss: 0.7381, time: 896.21
-INFO:local_logger:Now training epoch 39. LR=0.000146
-INFO:local_logger:----- Epoch[038/800], Train Loss: 0.7381, time: 892.19
-INFO:master_logger:----- Epoch[038/800], Train Loss: 0.7382, time: 892.19
-INFO:local_logger:----- Epoch[038/800], Train Loss: 0.7385, time: 895.95
-INFO:local_logger:Now training epoch 39. LR=0.000146
-INFO:local_logger:----- Epoch[038/800], Train Loss: 0.7388, time: 896.06
-INFO:local_logger:Now training epoch 39. LR=0.000146
-INFO:local_logger:----- Epoch[038/800], Train Loss: 0.7381, time: 895.94
-INFO:local_logger:Now training epoch 39. LR=0.000146
-INFO:local_logger:----- Save model: ./output/train-20211219-17-07-40/MAE-Epoch-38-Loss-0.7380608445157859.pdparams
-INFO:local_logger:----- Save optim: ./output/train-20211219-17-07-40/MAE-Epoch-38-Loss-0.7380608445157859.pdopt
-INFO:master_logger:----- Save model: ./output/train-20211219-17-07-40/MAE-Epoch-38-Loss-0.7380608445157859.pdparams
-INFO:master_logger:----- Save optim: ./output/train-20211219-17-07-40/MAE-Epoch-38-Loss-0.7380608445157859.pdopt
-INFO:local_logger:Now training epoch 39. LR=0.000146
-INFO:master_logger:Now training epoch 39. LR=0.000146
-INFO:local_logger:Epoch[039/800], Step[0000/0626], Avg Loss: 0.7392
-INFO:master_logger:Epoch[039/800], Step[0000/0626], Avg Loss: 0.7382
-INFO:local_logger:Epoch[039/800], Step[0000/0626], Avg Loss: 0.7373
-INFO:local_logger:Epoch[039/800], Step[0000/0626], Avg Loss: 0.7385
-INFO:local_logger:Epoch[039/800], Step[0000/0626], Avg Loss: 0.7375
-INFO:local_logger:Epoch[039/800], Step[0000/0626], Avg Loss: 0.7414
-INFO:local_logger:Epoch[039/800], Step[0000/0626], Avg Loss: 0.7378
-INFO:local_logger:Epoch[039/800], Step[0000/0626], Avg Loss: 0.7312
-INFO:local_logger:Epoch[039/800], Step[0000/0626], Avg Loss: 0.7426
-INFO:local_logger:Epoch[039/800], Step[0100/0626], Avg Loss: 0.7358
-INFO:local_logger:Epoch[039/800], Step[0100/0626], Avg Loss: 0.7363
-INFO:local_logger:Epoch[039/800], Step[0100/0626], Avg Loss: 0.7362
-INFO:local_logger:Epoch[039/800], Step[0100/0626], Avg Loss: 0.7361
-INFO:local_logger:Epoch[039/800], Step[0100/0626], Avg Loss: 0.7359
-INFO:local_logger:Epoch[039/800], Step[0100/0626], Avg Loss: 0.7369
-INFO:local_logger:Epoch[039/800], Step[0100/0626], Avg Loss: 0.7365
-INFO:master_logger:Epoch[039/800], Step[0100/0626], Avg Loss: 0.7363
-INFO:local_logger:Epoch[039/800], Step[0100/0626], Avg Loss: 0.7366
-INFO:local_logger:Epoch[039/800], Step[0200/0626], Avg Loss: 0.7366
-INFO:local_logger:Epoch[039/800], Step[0200/0626], Avg Loss: 0.7359
-INFO:local_logger:Epoch[039/800], Step[0200/0626], Avg Loss: 0.7371
-INFO:local_logger:Epoch[039/800], Step[0200/0626], Avg Loss: 0.7356
-INFO:local_logger:Epoch[039/800], Step[0200/0626], Avg Loss: 0.7361
-INFO:master_logger:Epoch[039/800], Step[0200/0626], Avg Loss: 0.7362
-INFO:local_logger:Epoch[039/800], Step[0200/0626], Avg Loss: 0.7363
-INFO:local_logger:Epoch[039/800], Step[0200/0626], Avg Loss: 0.7364
-INFO:local_logger:Epoch[039/800], Step[0200/0626], Avg Loss: 0.7360
-INFO:local_logger:Epoch[039/800], Step[0300/0626], Avg Loss: 0.7354
-INFO:local_logger:Epoch[039/800], Step[0300/0626], Avg Loss: 0.7356
-INFO:local_logger:Epoch[039/800], Step[0300/0626], Avg Loss: 0.7368
-INFO:local_logger:Epoch[039/800], Step[0300/0626], Avg Loss: 0.7364
-INFO:local_logger:Epoch[039/800], Step[0300/0626], Avg Loss: 0.7363
-INFO:master_logger:Epoch[039/800], Step[0300/0626], Avg Loss: 0.7360
-INFO:local_logger:Epoch[039/800], Step[0300/0626], Avg Loss: 0.7357
-INFO:local_logger:Epoch[039/800], Step[0300/0626], Avg Loss: 0.7359
-INFO:local_logger:Epoch[039/800], Step[0300/0626], Avg Loss: 0.7360
-INFO:local_logger:Epoch[039/800], Step[0400/0626], Avg Loss: 0.7359
-INFO:local_logger:Epoch[039/800], Step[0400/0626], Avg Loss: 0.7357
-INFO:local_logger:Epoch[039/800], Step[0400/0626], Avg Loss: 0.7355
-INFO:local_logger:Epoch[039/800], Step[0400/0626], Avg Loss: 0.7359
-INFO:local_logger:Epoch[039/800], Step[0400/0626], Avg Loss: 0.7359
-INFO:master_logger:Epoch[039/800], Step[0400/0626], Avg Loss: 0.7358
-INFO:local_logger:Epoch[039/800], Step[0400/0626], Avg Loss: 0.7365
-INFO:local_logger:Epoch[039/800], Step[0400/0626], Avg Loss: 0.7355
-INFO:local_logger:Epoch[039/800], Step[0400/0626], Avg Loss: 0.7356
-INFO:local_logger:Epoch[039/800], Step[0500/0626], Avg Loss: 0.7352
-INFO:local_logger:Epoch[039/800], Step[0500/0626], Avg Loss: 0.7352
-INFO:local_logger:Epoch[039/800], Step[0500/0626], Avg Loss: 0.7356
-INFO:local_logger:Epoch[039/800], Step[0500/0626], Avg Loss: 0.7355
-INFO:local_logger:Epoch[039/800], Step[0500/0626], Avg Loss: 0.7358
-INFO:local_logger:Epoch[039/800], Step[0500/0626], Avg Loss: 0.7352
-INFO:local_logger:Epoch[039/800], Step[0500/0626], Avg Loss: 0.7356
-INFO:master_logger:Epoch[039/800], Step[0500/0626], Avg Loss: 0.7354
-INFO:local_logger:Epoch[039/800], Step[0500/0626], Avg Loss: 0.7353
-INFO:local_logger:Epoch[039/800], Step[0600/0626], Avg Loss: 0.7351
-INFO:local_logger:Epoch[039/800], Step[0600/0626], Avg Loss: 0.7351
-INFO:local_logger:Epoch[039/800], Step[0600/0626], Avg Loss: 0.7354
-INFO:local_logger:Epoch[039/800], Step[0600/0626], Avg Loss: 0.7353
-INFO:local_logger:Epoch[039/800], Step[0600/0626], Avg Loss: 0.7351
-INFO:local_logger:Epoch[039/800], Step[0600/0626], Avg Loss: 0.7356
-INFO:local_logger:Epoch[039/800], Step[0600/0626], Avg Loss: 0.7356
-INFO:master_logger:Epoch[039/800], Step[0600/0626], Avg Loss: 0.7354
-INFO:local_logger:Epoch[039/800], Step[0600/0626], Avg Loss: 0.7355
-INFO:local_logger:----- Epoch[039/800], Train Loss: 0.7351, time: 865.25
-INFO:local_logger:----- Epoch[039/800], Train Loss: 0.7350, time: 864.90
-INFO:local_logger:Now training epoch 40. LR=0.000150
-INFO:local_logger:Now training epoch 40. LR=0.000150
-INFO:local_logger:----- Epoch[039/800], Train Loss: 0.7353, time: 860.87
-INFO:master_logger:----- Epoch[039/800], Train Loss: 0.7353, time: 860.87
-INFO:local_logger:----- Epoch[039/800], Train Loss: 0.7352, time: 864.70
-INFO:local_logger:Now training epoch 40. LR=0.000150
-INFO:local_logger:----- Epoch[039/800], Train Loss: 0.7355, time: 864.66
-INFO:local_logger:Now training epoch 40. LR=0.000150
-INFO:local_logger:----- Epoch[039/800], Train Loss: 0.7355, time: 864.70
-INFO:local_logger:Now training epoch 40. LR=0.000150
-INFO:local_logger:----- Epoch[039/800], Train Loss: 0.7356, time: 864.70
-INFO:local_logger:Now training epoch 40. LR=0.000150
-INFO:local_logger:----- Epoch[039/800], Train Loss: 0.7351, time: 865.02
-INFO:local_logger:Now training epoch 40. LR=0.000150
-INFO:local_logger:----- Save model: ./output/train-20211219-17-07-40/MAE-Epoch-39-Loss-0.7353187804344304.pdparams
-INFO:local_logger:----- Save optim: ./output/train-20211219-17-07-40/MAE-Epoch-39-Loss-0.7353187804344304.pdopt
-INFO:master_logger:----- Save model: ./output/train-20211219-17-07-40/MAE-Epoch-39-Loss-0.7353187804344304.pdparams
-INFO:master_logger:----- Save optim: ./output/train-20211219-17-07-40/MAE-Epoch-39-Loss-0.7353187804344304.pdopt
-INFO:local_logger:Now training epoch 40. LR=0.000150
-INFO:master_logger:Now training epoch 40. LR=0.000150
-INFO:local_logger:Epoch[040/800], Step[0000/0626], Avg Loss: 0.7343
-INFO:local_logger:Epoch[040/800], Step[0000/0626], Avg Loss: 0.7310
-INFO:local_logger:Epoch[040/800], Step[0000/0626], Avg Loss: 0.7444
-INFO:local_logger:Epoch[040/800], Step[0000/0626], Avg Loss: 0.7305
-INFO:master_logger:Epoch[040/800], Step[0000/0626], Avg Loss: 0.7355
-INFO:local_logger:Epoch[040/800], Step[0000/0626], Avg Loss: 0.7357
-INFO:local_logger:Epoch[040/800], Step[0000/0626], Avg Loss: 0.7310
-INFO:local_logger:Epoch[040/800], Step[0000/0626], Avg Loss: 0.7439
-INFO:local_logger:Epoch[040/800], Step[0000/0626], Avg Loss: 0.7330
-INFO:local_logger:Epoch[040/800], Step[0100/0626], Avg Loss: 0.7348
-INFO:local_logger:Epoch[040/800], Step[0100/0626], Avg Loss: 0.7344
-INFO:local_logger:Epoch[040/800], Step[0100/0626], Avg Loss: 0.7346
-INFO:local_logger:Epoch[040/800], Step[0100/0626], Avg Loss: 0.7348
-INFO:master_logger:Epoch[040/800], Step[0100/0626], Avg Loss: 0.7341
-INFO:local_logger:Epoch[040/800], Step[0100/0626], Avg Loss: 0.7345
-INFO:local_logger:Epoch[040/800], Step[0100/0626], Avg Loss: 0.7336
-INFO:local_logger:Epoch[040/800], Step[0100/0626], Avg Loss: 0.7331
-INFO:local_logger:Epoch[040/800], Step[0100/0626], Avg Loss: 0.7333
-INFO:local_logger:Epoch[040/800], Step[0200/0626], Avg Loss: 0.7340
-INFO:local_logger:Epoch[040/800], Step[0200/0626], Avg Loss: 0.7343
-INFO:local_logger:Epoch[040/800], Step[0200/0626], Avg Loss: 0.7335
-INFO:local_logger:Epoch[040/800], Step[0200/0626], Avg Loss: 0.7340
-INFO:local_logger:Epoch[040/800], Step[0200/0626], Avg Loss: 0.7335
-INFO:local_logger:Epoch[040/800], Step[0200/0626], Avg Loss: 0.7334
-INFO:local_logger:Epoch[040/800], Step[0200/0626], Avg Loss: 0.7326
-INFO:master_logger:Epoch[040/800], Step[0200/0626], Avg Loss: 0.7336
-INFO:local_logger:Epoch[040/800], Step[0200/0626], Avg Loss: 0.7339
-INFO:local_logger:Epoch[040/800], Step[0300/0626], Avg Loss: 0.7338
-INFO:local_logger:Epoch[040/800], Step[0300/0626], Avg Loss: 0.7336
-INFO:local_logger:Epoch[040/800], Step[0300/0626], Avg Loss: 0.7331
-INFO:local_logger:Epoch[040/800], Step[0300/0626], Avg Loss: 0.7338
-INFO:local_logger:Epoch[040/800], Step[0300/0626], Avg Loss: 0.7332
-INFO:master_logger:Epoch[040/800], Step[0300/0626], Avg Loss: 0.7334
-INFO:local_logger:Epoch[040/800], Step[0300/0626], Avg Loss: 0.7329
-INFO:local_logger:Epoch[040/800], Step[0300/0626], Avg Loss: 0.7334
-INFO:local_logger:Epoch[040/800], Step[0300/0626], Avg Loss: 0.7338
-INFO:local_logger:Epoch[040/800], Step[0400/0626], Avg Loss: 0.7335
-INFO:local_logger:Epoch[040/800], Step[0400/0626], Avg Loss: 0.7335
-INFO:local_logger:Epoch[040/800], Step[0400/0626], Avg Loss: 0.7336
-INFO:local_logger:Epoch[040/800], Step[0400/0626], Avg Loss: 0.7334
-INFO:local_logger:Epoch[040/800], Step[0400/0626], Avg Loss: 0.7328
-INFO:local_logger:Epoch[040/800], Step[0400/0626], Avg Loss: 0.7332
-INFO:master_logger:Epoch[040/800], Step[0400/0626], Avg Loss: 0.7333
-INFO:local_logger:Epoch[040/800], Step[0400/0626], Avg Loss: 0.7332
-INFO:local_logger:Epoch[040/800], Step[0400/0626], Avg Loss: 0.7330
-INFO:local_logger:Epoch[040/800], Step[0500/0626], Avg Loss: 0.7330
-INFO:local_logger:Epoch[040/800], Step[0500/0626], Avg Loss: 0.7323
-INFO:local_logger:Epoch[040/800], Step[0500/0626], Avg Loss: 0.7333
-INFO:local_logger:Epoch[040/800], Step[0500/0626], Avg Loss: 0.7333
-INFO:local_logger:Epoch[040/800], Step[0500/0626], Avg Loss: 0.7329
-INFO:local_logger:Epoch[040/800], Step[0500/0626], Avg Loss: 0.7334
-INFO:local_logger:Epoch[040/800], Step[0500/0626], Avg Loss: 0.7330
-INFO:local_logger:Epoch[040/800], Step[0500/0626], Avg Loss: 0.7329
-INFO:master_logger:Epoch[040/800], Step[0500/0626], Avg Loss: 0.7330
-INFO:local_logger:Epoch[040/800], Step[0600/0626], Avg Loss: 0.7329
-INFO:local_logger:Epoch[040/800], Step[0600/0626], Avg Loss: 0.7329
-INFO:local_logger:Epoch[040/800], Step[0600/0626], Avg Loss: 0.7328
-INFO:local_logger:Epoch[040/800], Step[0600/0626], Avg Loss: 0.7329
-INFO:local_logger:Epoch[040/800], Step[0600/0626], Avg Loss: 0.7328
-INFO:local_logger:Epoch[040/800], Step[0600/0626], Avg Loss: 0.7329
-INFO:local_logger:Epoch[040/800], Step[0600/0626], Avg Loss: 0.7322
-INFO:master_logger:Epoch[040/800], Step[0600/0626], Avg Loss: 0.7328
-INFO:local_logger:Epoch[040/800], Step[0600/0626], Avg Loss: 0.7328
-INFO:local_logger:----- Epoch[040/800], Train Loss: 0.7328, time: 895.01
-INFO:local_logger:Now training epoch 41. LR=0.000150
-INFO:local_logger:----- Epoch[040/800], Train Loss: 0.7328, time: 890.99
-INFO:local_logger:----- Epoch[040/800], Train Loss: 0.7328, time: 895.12
-INFO:master_logger:----- Epoch[040/800], Train Loss: 0.7327, time: 890.99
-INFO:local_logger:Now training epoch 41. LR=0.000150
-INFO:local_logger:----- Epoch[040/800], Train Loss: 0.7328, time: 895.13
-INFO:local_logger:Now training epoch 41. LR=0.000150
-INFO:local_logger:----- Epoch[040/800], Train Loss: 0.7328, time: 894.99
-INFO:local_logger:Now training epoch 41. LR=0.000150
-INFO:local_logger:----- Epoch[040/800], Train Loss: 0.7328, time: 894.98
-INFO:local_logger:Now training epoch 41. LR=0.000150
-INFO:local_logger:----- Epoch[040/800], Train Loss: 0.7321, time: 894.99
-INFO:local_logger:Now training epoch 41. LR=0.000150
-INFO:local_logger:----- Epoch[040/800], Train Loss: 0.7327, time: 895.07
-INFO:local_logger:Now training epoch 41. LR=0.000150
-INFO:local_logger:----- Save model: ./output/train-20211219-17-07-40/MAE-Epoch-40-Loss-0.7327702230552797.pdparams
-INFO:local_logger:----- Save optim: ./output/train-20211219-17-07-40/MAE-Epoch-40-Loss-0.7327702230552797.pdopt
-INFO:master_logger:----- Save model: ./output/train-20211219-17-07-40/MAE-Epoch-40-Loss-0.7327702230552797.pdparams
-INFO:master_logger:----- Save optim: ./output/train-20211219-17-07-40/MAE-Epoch-40-Loss-0.7327702230552797.pdopt
-INFO:local_logger:Now training epoch 41. LR=0.000150
-INFO:master_logger:Now training epoch 41. LR=0.000150
-INFO:local_logger:Epoch[041/800], Step[0000/0626], Avg Loss: 0.7292
-INFO:master_logger:Epoch[041/800], Step[0000/0626], Avg Loss: 0.7311
-INFO:local_logger:Epoch[041/800], Step[0000/0626], Avg Loss: 0.7233
-INFO:local_logger:Epoch[041/800], Step[0000/0626], Avg Loss: 0.7219
-INFO:local_logger:Epoch[041/800], Step[0000/0626], Avg Loss: 0.7395
-INFO:local_logger:Epoch[041/800], Step[0000/0626], Avg Loss: 0.7295
-INFO:local_logger:Epoch[041/800], Step[0000/0626], Avg Loss: 0.7279
-INFO:local_logger:Epoch[041/800], Step[0000/0626], Avg Loss: 0.7431
-INFO:local_logger:Epoch[041/800], Step[0000/0626], Avg Loss: 0.7341
-INFO:local_logger:Epoch[041/800], Step[0100/0626], Avg Loss: 0.7312
-INFO:local_logger:Epoch[041/800], Step[0100/0626], Avg Loss: 0.7315
-INFO:local_logger:Epoch[041/800], Step[0100/0626], Avg Loss: 0.7304
-INFO:local_logger:Epoch[041/800], Step[0100/0626], Avg Loss: 0.7317
-INFO:local_logger:Epoch[041/800], Step[0100/0626], Avg Loss: 0.7307
-INFO:master_logger:Epoch[041/800], Step[0100/0626], Avg Loss: 0.7311
-INFO:local_logger:Epoch[041/800], Step[0100/0626], Avg Loss: 0.7308
-INFO:local_logger:Epoch[041/800], Step[0100/0626], Avg Loss: 0.7302
-INFO:local_logger:Epoch[041/800], Step[0100/0626], Avg Loss: 0.7321
-INFO:local_logger:Epoch[041/800], Step[0200/0626], Avg Loss: 0.7308
-INFO:local_logger:Epoch[041/800], Step[0200/0626], Avg Loss: 0.7315
-INFO:local_logger:Epoch[041/800], Step[0200/0626], Avg Loss: 0.7308
-INFO:local_logger:Epoch[041/800], Step[0200/0626], Avg Loss: 0.7317
-INFO:local_logger:Epoch[041/800], Step[0200/0626], Avg Loss: 0.7303
-INFO:local_logger:Epoch[041/800], Step[0200/0626], Avg Loss: 0.7313
-INFO:master_logger:Epoch[041/800], Step[0200/0626], Avg Loss: 0.7310
-INFO:local_logger:Epoch[041/800], Step[0200/0626], Avg Loss: 0.7309
-INFO:local_logger:Epoch[041/800], Step[0200/0626], Avg Loss: 0.7308
-INFO:local_logger:Epoch[041/800], Step[0300/0626], Avg Loss: 0.7310
-INFO:local_logger:Epoch[041/800], Step[0300/0626], Avg Loss: 0.7307
-INFO:local_logger:Epoch[041/800], Step[0300/0626], Avg Loss: 0.7304
-INFO:local_logger:Epoch[041/800], Step[0300/0626], Avg Loss: 0.7307
-INFO:master_logger:Epoch[041/800], Step[0300/0626], Avg Loss: 0.7308
-INFO:local_logger:Epoch[041/800], Step[0300/0626], Avg Loss: 0.7310
-INFO:local_logger:Epoch[041/800], Step[0300/0626], Avg Loss: 0.7308
-INFO:local_logger:Epoch[041/800], Step[0300/0626], Avg Loss: 0.7312
-INFO:local_logger:Epoch[041/800], Step[0300/0626], Avg Loss: 0.7304
-INFO:local_logger:Epoch[041/800], Step[0400/0626], Avg Loss: 0.7312
-INFO:local_logger:Epoch[041/800], Step[0400/0626], Avg Loss: 0.7309
-INFO:local_logger:Epoch[041/800], Step[0400/0626], Avg Loss: 0.7301
-INFO:local_logger:Epoch[041/800], Step[0400/0626], Avg Loss: 0.7305
-INFO:local_logger:Epoch[041/800], Step[0400/0626], Avg Loss: 0.7305
-INFO:master_logger:Epoch[041/800], Step[0400/0626], Avg Loss: 0.7306
-INFO:local_logger:Epoch[041/800], Step[0400/0626], Avg Loss: 0.7307
-INFO:local_logger:Epoch[041/800], Step[0400/0626], Avg Loss: 0.7303
-INFO:local_logger:Epoch[041/800], Step[0400/0626], Avg Loss: 0.7307
-INFO:local_logger:Epoch[041/800], Step[0500/0626], Avg Loss: 0.7303
-INFO:local_logger:Epoch[041/800], Step[0500/0626], Avg Loss: 0.7302
-INFO:local_logger:Epoch[041/800], Step[0500/0626], Avg Loss: 0.7306
-INFO:local_logger:Epoch[041/800], Step[0500/0626], Avg Loss: 0.7305
-INFO:local_logger:Epoch[041/800], Step[0500/0626], Avg Loss: 0.7300
-INFO:local_logger:Epoch[041/800], Step[0500/0626], Avg Loss: 0.7306
-INFO:local_logger:Epoch[041/800], Step[0500/0626], Avg Loss: 0.7304
-INFO:local_logger:Epoch[041/800], Step[0500/0626], Avg Loss: 0.7304
-INFO:master_logger:Epoch[041/800], Step[0500/0626], Avg Loss: 0.7304
-INFO:local_logger:Epoch[041/800], Step[0600/0626], Avg Loss: 0.7303
-INFO:local_logger:Epoch[041/800], Step[0600/0626], Avg Loss: 0.7304
-INFO:local_logger:Epoch[041/800], Step[0600/0626], Avg Loss: 0.7301
-INFO:local_logger:Epoch[041/800], Step[0600/0626], Avg Loss: 0.7299
-INFO:local_logger:Epoch[041/800], Step[0600/0626], Avg Loss: 0.7302
-INFO:master_logger:Epoch[041/800], Step[0600/0626], Avg Loss: 0.7301
-INFO:local_logger:Epoch[041/800], Step[0600/0626], Avg Loss: 0.7299
-INFO:local_logger:Epoch[041/800], Step[0600/0626], Avg Loss: 0.7302
-INFO:local_logger:Epoch[041/800], Step[0600/0626], Avg Loss: 0.7301
-INFO:local_logger:----- Epoch[041/800], Train Loss: 0.7305, time: 866.86
-INFO:local_logger:Now training epoch 42. LR=0.000150
-INFO:local_logger:----- Epoch[041/800], Train Loss: 0.7300, time: 866.90
-INFO:local_logger:Now training epoch 42. LR=0.000150
-INFO:local_logger:----- Epoch[041/800], Train Loss: 0.7304, time: 867.40
-INFO:local_logger:Now training epoch 42. LR=0.000150
-INFO:local_logger:----- Epoch[041/800], Train Loss: 0.7303, time: 863.76
-INFO:master_logger:----- Epoch[041/800], Train Loss: 0.7302, time: 863.76
-INFO:local_logger:----- Epoch[041/800], Train Loss: 0.7301, time: 867.52
-INFO:local_logger:Now training epoch 42. LR=0.000150
-INFO:local_logger:----- Epoch[041/800], Train Loss: 0.7303, time: 867.54
-INFO:local_logger:Now training epoch 42. LR=0.000150
-INFO:local_logger:----- Epoch[041/800], Train Loss: 0.7302, time: 867.65
-INFO:local_logger:Now training epoch 42. LR=0.000150
-INFO:local_logger:----- Epoch[041/800], Train Loss: 0.7300, time: 867.66
-INFO:local_logger:Now training epoch 42. LR=0.000150
-INFO:local_logger:----- Save model: ./output/train-20211219-17-07-40/MAE-Epoch-41-Loss-0.7302703064055491.pdparams
-INFO:local_logger:----- Save optim: ./output/train-20211219-17-07-40/MAE-Epoch-41-Loss-0.7302703064055491.pdopt
-INFO:master_logger:----- Save model: ./output/train-20211219-17-07-40/MAE-Epoch-41-Loss-0.7302703064055491.pdparams
-INFO:master_logger:----- Save optim: ./output/train-20211219-17-07-40/MAE-Epoch-41-Loss-0.7302703064055491.pdopt
-INFO:local_logger:Now training epoch 42. LR=0.000150
-INFO:master_logger:Now training epoch 42. LR=0.000150
-INFO:local_logger:Epoch[042/800], Step[0000/0626], Avg Loss: 0.7300
-INFO:local_logger:Epoch[042/800], Step[0000/0626], Avg Loss: 0.7398
-INFO:master_logger:Epoch[042/800], Step[0000/0626], Avg Loss: 0.7281
-INFO:local_logger:Epoch[042/800], Step[0000/0626], Avg Loss: 0.7322
-INFO:local_logger:Epoch[042/800], Step[0000/0626], Avg Loss: 0.7185
-INFO:local_logger:Epoch[042/800], Step[0000/0626], Avg Loss: 0.7206
-INFO:local_logger:Epoch[042/800], Step[0000/0626], Avg Loss: 0.7231
-INFO:local_logger:Epoch[042/800], Step[0000/0626], Avg Loss: 0.7259
-INFO:local_logger:Epoch[042/800], Step[0000/0626], Avg Loss: 0.7347
-INFO:local_logger:Epoch[042/800], Step[0100/0626], Avg Loss: 0.7299
-INFO:local_logger:Epoch[042/800], Step[0100/0626], Avg Loss: 0.7279
-INFO:local_logger:Epoch[042/800], Step[0100/0626], Avg Loss: 0.7292
-INFO:local_logger:Epoch[042/800], Step[0100/0626], Avg Loss: 0.7300
-INFO:local_logger:Epoch[042/800], Step[0100/0626], Avg Loss: 0.7287
-INFO:local_logger:Epoch[042/800], Step[0100/0626], Avg Loss: 0.7292
-INFO:master_logger:Epoch[042/800], Step[0100/0626], Avg Loss: 0.7291
-INFO:local_logger:Epoch[042/800], Step[0100/0626], Avg Loss: 0.7283
-INFO:local_logger:Epoch[042/800], Step[0100/0626], Avg Loss: 0.7297
-INFO:local_logger:Epoch[042/800], Step[0200/0626], Avg Loss: 0.7285
-INFO:local_logger:Epoch[042/800], Step[0200/0626], Avg Loss: 0.7286
-INFO:local_logger:Epoch[042/800], Step[0200/0626], Avg Loss: 0.7290
-INFO:local_logger:Epoch[042/800], Step[0200/0626], Avg Loss: 0.7289
-INFO:local_logger:Epoch[042/800], Step[0200/0626], Avg Loss: 0.7292
-INFO:local_logger:Epoch[042/800], Step[0200/0626], Avg Loss: 0.7282
-INFO:master_logger:Epoch[042/800], Step[0200/0626], Avg Loss: 0.7286
-INFO:local_logger:Epoch[042/800], Step[0200/0626], Avg Loss: 0.7284
-INFO:local_logger:Epoch[042/800], Step[0200/0626], Avg Loss: 0.7283
-INFO:local_logger:Epoch[042/800], Step[0300/0626], Avg Loss: 0.7283
-INFO:local_logger:Epoch[042/800], Step[0300/0626], Avg Loss: 0.7288
-INFO:local_logger:Epoch[042/800], Step[0300/0626], Avg Loss: 0.7283
-INFO:local_logger:Epoch[042/800], Step[0300/0626], Avg Loss: 0.7277
-INFO:local_logger:Epoch[042/800], Step[0300/0626], Avg Loss: 0.7284
-INFO:local_logger:Epoch[042/800], Step[0300/0626], Avg Loss: 0.7286
-INFO:master_logger:Epoch[042/800], Step[0300/0626], Avg Loss: 0.7285
-INFO:local_logger:Epoch[042/800], Step[0300/0626], Avg Loss: 0.7287
-INFO:local_logger:Epoch[042/800], Step[0300/0626], Avg Loss: 0.7288
-INFO:local_logger:Epoch[042/800], Step[0400/0626], Avg Loss: 0.7279
-INFO:local_logger:Epoch[042/800], Step[0400/0626], Avg Loss: 0.7285
-INFO:local_logger:Epoch[042/800], Step[0400/0626], Avg Loss: 0.7287
-INFO:local_logger:Epoch[042/800], Step[0400/0626], Avg Loss: 0.7288
-INFO:local_logger:Epoch[042/800], Step[0400/0626], Avg Loss: 0.7283
-INFO:local_logger:Epoch[042/800], Step[0400/0626], Avg Loss: 0.7275
-INFO:local_logger:Epoch[042/800], Step[0400/0626], Avg Loss: 0.7284
-INFO:master_logger:Epoch[042/800], Step[0400/0626], Avg Loss: 0.7283
-INFO:local_logger:Epoch[042/800], Step[0400/0626], Avg Loss: 0.7279
-INFO:local_logger:Epoch[042/800], Step[0500/0626], Avg Loss: 0.7278
-INFO:local_logger:Epoch[042/800], Step[0500/0626], Avg Loss: 0.7284
-INFO:local_logger:Epoch[042/800], Step[0500/0626], Avg Loss: 0.7285
-INFO:local_logger:Epoch[042/800], Step[0500/0626], Avg Loss: 0.7284
-INFO:local_logger:Epoch[042/800], Step[0500/0626], Avg Loss: 0.7277
-INFO:local_logger:Epoch[042/800], Step[0500/0626], Avg Loss: 0.7279
-INFO:local_logger:Epoch[042/800], Step[0500/0626], Avg Loss: 0.7278
-INFO:local_logger:Epoch[042/800], Step[0500/0626], Avg Loss: 0.7285
-INFO:master_logger:Epoch[042/800], Step[0500/0626], Avg Loss: 0.7281
-INFO:local_logger:Epoch[042/800], Step[0600/0626], Avg Loss: 0.7278
-INFO:local_logger:Epoch[042/800], Step[0600/0626], Avg Loss: 0.7276
-INFO:local_logger:Epoch[042/800], Step[0600/0626], Avg Loss: 0.7285
-INFO:local_logger:Epoch[042/800], Step[0600/0626], Avg Loss: 0.7278
-INFO:local_logger:Epoch[042/800], Step[0600/0626], Avg Loss: 0.7277
-INFO:local_logger:Epoch[042/800], Step[0600/0626], Avg Loss: 0.7283
-INFO:local_logger:Epoch[042/800], Step[0600/0626], Avg Loss: 0.7282
-INFO:master_logger:Epoch[042/800], Step[0600/0626], Avg Loss: 0.7280
-INFO:local_logger:Epoch[042/800], Step[0600/0626], Avg Loss: 0.7280
-INFO:local_logger:----- Epoch[042/800], Train Loss: 0.7281, time: 892.19
-INFO:local_logger:Now training epoch 43. LR=0.000150
-INFO:local_logger:----- Epoch[042/800], Train Loss: 0.7280, time: 892.20
-INFO:local_logger:Now training epoch 43. LR=0.000150
-INFO:local_logger:----- Epoch[042/800], Train Loss: 0.7277, time: 892.57
-INFO:local_logger:Now training epoch 43. LR=0.000150
-INFO:local_logger:----- Epoch[042/800], Train Loss: 0.7276, time: 893.34
-INFO:local_logger:Now training epoch 43. LR=0.000150
-INFO:local_logger:----- Epoch[042/800], Train Loss: 0.7275, time: 892.63
-INFO:local_logger:Now training epoch 43. LR=0.000150
-INFO:local_logger:----- Epoch[042/800], Train Loss: 0.7283, time: 889.09
-INFO:master_logger:----- Epoch[042/800], Train Loss: 0.7279, time: 889.09
-INFO:local_logger:----- Epoch[042/800], Train Loss: 0.7282, time: 893.43
-INFO:local_logger:Now training epoch 43. LR=0.000150
-INFO:local_logger:----- Epoch[042/800], Train Loss: 0.7279, time: 892.89
-INFO:local_logger:Now training epoch 43. LR=0.000150
-INFO:local_logger:----- Save model: ./output/train-20211219-17-07-40/MAE-Epoch-42-Loss-0.728333370828915.pdparams
-INFO:local_logger:----- Save optim: ./output/train-20211219-17-07-40/MAE-Epoch-42-Loss-0.728333370828915.pdopt
-INFO:master_logger:----- Save model: ./output/train-20211219-17-07-40/MAE-Epoch-42-Loss-0.728333370828915.pdparams
-INFO:master_logger:----- Save optim: ./output/train-20211219-17-07-40/MAE-Epoch-42-Loss-0.728333370828915.pdopt
-INFO:local_logger:Now training epoch 43. LR=0.000150
-INFO:master_logger:Now training epoch 43. LR=0.000150
-INFO:local_logger:Epoch[043/800], Step[0000/0626], Avg Loss: 0.7259
-INFO:local_logger:Epoch[043/800], Step[0000/0626], Avg Loss: 0.7157
-INFO:master_logger:Epoch[043/800], Step[0000/0626], Avg Loss: 0.7299
-INFO:local_logger:Epoch[043/800], Step[0000/0626], Avg Loss: 0.7296
-INFO:local_logger:Epoch[043/800], Step[0000/0626], Avg Loss: 0.7389
-INFO:local_logger:Epoch[043/800], Step[0000/0626], Avg Loss: 0.7312
-INFO:local_logger:Epoch[043/800], Step[0000/0626], Avg Loss: 0.7351
-INFO:local_logger:Epoch[043/800], Step[0000/0626], Avg Loss: 0.7178
-INFO:local_logger:Epoch[043/800], Step[0000/0626], Avg Loss: 0.7452
-INFO:local_logger:Epoch[043/800], Step[0100/0626], Avg Loss: 0.7266
-INFO:local_logger:Epoch[043/800], Step[0100/0626], Avg Loss: 0.7263
-INFO:local_logger:Epoch[043/800], Step[0100/0626], Avg Loss: 0.7264
-INFO:local_logger:Epoch[043/800], Step[0100/0626], Avg Loss: 0.7253
-INFO:master_logger:Epoch[043/800], Step[0100/0626], Avg Loss: 0.7262
-INFO:local_logger:Epoch[043/800], Step[0100/0626], Avg Loss: 0.7269
-INFO:local_logger:Epoch[043/800], Step[0100/0626], Avg Loss: 0.7261
-INFO:local_logger:Epoch[043/800], Step[0100/0626], Avg Loss: 0.7256
-INFO:local_logger:Epoch[043/800], Step[0100/0626], Avg Loss: 0.7263
-INFO:local_logger:Epoch[043/800], Step[0200/0626], Avg Loss: 0.7260
-INFO:local_logger:Epoch[043/800], Step[0200/0626], Avg Loss: 0.7257
-INFO:local_logger:Epoch[043/800], Step[0200/0626], Avg Loss: 0.7268
-INFO:local_logger:Epoch[043/800], Step[0200/0626], Avg Loss: 0.7256
-INFO:local_logger:Epoch[043/800], Step[0200/0626], Avg Loss: 0.7263
-INFO:local_logger:Epoch[043/800], Step[0200/0626], Avg Loss: 0.7260
-INFO:master_logger:Epoch[043/800], Step[0200/0626], Avg Loss: 0.7260
-INFO:local_logger:Epoch[043/800], Step[0200/0626], Avg Loss: 0.7257
-INFO:local_logger:Epoch[043/800], Step[0200/0626], Avg Loss: 0.7258
-INFO:local_logger:Epoch[043/800], Step[0300/0626], Avg Loss: 0.7257
-INFO:local_logger:Epoch[043/800], Step[0300/0626], Avg Loss: 0.7262
-INFO:master_logger:Epoch[043/800], Step[0300/0626], Avg Loss: 0.7259
-INFO:local_logger:Epoch[043/800], Step[0300/0626], Avg Loss: 0.7260
-INFO:local_logger:Epoch[043/800], Step[0300/0626], Avg Loss: 0.7256
-INFO:local_logger:Epoch[043/800], Step[0300/0626], Avg Loss: 0.7264
-INFO:local_logger:Epoch[043/800], Step[0300/0626], Avg Loss: 0.7262
-INFO:local_logger:Epoch[043/800], Step[0300/0626], Avg Loss: 0.7257
-INFO:local_logger:Epoch[043/800], Step[0300/0626], Avg Loss: 0.7256
-INFO:local_logger:Epoch[043/800], Step[0400/0626], Avg Loss: 0.7257
-INFO:local_logger:Epoch[043/800], Step[0400/0626], Avg Loss: 0.7261
-INFO:local_logger:Epoch[043/800], Step[0400/0626], Avg Loss: 0.7257
-INFO:master_logger:Epoch[043/800], Step[0400/0626], Avg Loss: 0.7258
-INFO:local_logger:Epoch[043/800], Step[0400/0626], Avg Loss: 0.7257
-INFO:local_logger:Epoch[043/800], Step[0400/0626], Avg Loss: 0.7254
-INFO:local_logger:Epoch[043/800], Step[0400/0626], Avg Loss: 0.7253
-INFO:local_logger:Epoch[043/800], Step[0400/0626], Avg Loss: 0.7260
-INFO:local_logger:Epoch[043/800], Step[0400/0626], Avg Loss: 0.7263
-INFO:local_logger:Epoch[043/800], Step[0500/0626], Avg Loss: 0.7253
-INFO:local_logger:Epoch[043/800], Step[0500/0626], Avg Loss: 0.7257
-INFO:local_logger:Epoch[043/800], Step[0500/0626], Avg Loss: 0.7255
-INFO:local_logger:Epoch[043/800], Step[0500/0626], Avg Loss: 0.7258
-INFO:local_logger:Epoch[043/800], Step[0500/0626], Avg Loss: 0.7260
-INFO:master_logger:Epoch[043/800], Step[0500/0626], Avg Loss: 0.7256
-INFO:local_logger:Epoch[043/800], Step[0500/0626], Avg Loss: 0.7253
-INFO:local_logger:Epoch[043/800], Step[0500/0626], Avg Loss: 0.7255
-INFO:local_logger:Epoch[043/800], Step[0500/0626], Avg Loss: 0.7259
-INFO:local_logger:Epoch[043/800], Step[0600/0626], Avg Loss: 0.7256
-INFO:local_logger:Epoch[043/800], Step[0600/0626], Avg Loss: 0.7255
-INFO:local_logger:Epoch[043/800], Step[0600/0626], Avg Loss: 0.7258
-INFO:local_logger:Epoch[043/800], Step[0600/0626], Avg Loss: 0.7258
-INFO:local_logger:Epoch[043/800], Step[0600/0626], Avg Loss: 0.7253
-INFO:master_logger:Epoch[043/800], Step[0600/0626], Avg Loss: 0.7256
-INFO:local_logger:Epoch[043/800], Step[0600/0626], Avg Loss: 0.7254
-INFO:local_logger:Epoch[043/800], Step[0600/0626], Avg Loss: 0.7252
-INFO:local_logger:Epoch[043/800], Step[0600/0626], Avg Loss: 0.7258
-INFO:local_logger:----- Epoch[043/800], Train Loss: 0.7254, time: 856.34
-INFO:local_logger:Now training epoch 44. LR=0.000150
-INFO:local_logger:----- Epoch[043/800], Train Loss: 0.7256, time: 855.79
-INFO:local_logger:Now training epoch 44. LR=0.000150
-INFO:local_logger:----- Epoch[043/800], Train Loss: 0.7253, time: 856.30
-INFO:local_logger:Now training epoch 44. LR=0.000150
-INFO:local_logger:----- Epoch[043/800], Train Loss: 0.7258, time: 856.24
-INFO:local_logger:Now training epoch 44. LR=0.000150
-INFO:local_logger:----- Epoch[043/800], Train Loss: 0.7256, time: 852.55
-INFO:master_logger:----- Epoch[043/800], Train Loss: 0.7255, time: 852.55
-INFO:local_logger:----- Epoch[043/800], Train Loss: 0.7252, time: 856.26
-INFO:local_logger:Now training epoch 44. LR=0.000150
-INFO:local_logger:----- Epoch[043/800], Train Loss: 0.7258, time: 856.83
-INFO:local_logger:Now training epoch 44. LR=0.000150
-INFO:local_logger:----- Epoch[043/800], Train Loss: 0.7257, time: 856.33
-INFO:local_logger:Now training epoch 44. LR=0.000150
-INFO:local_logger:----- Save model: ./output/train-20211219-17-07-40/MAE-Epoch-43-Loss-0.7255999422779928.pdparams
-INFO:local_logger:----- Save optim: ./output/train-20211219-17-07-40/MAE-Epoch-43-Loss-0.7255999422779928.pdopt
-INFO:master_logger:----- Save model: ./output/train-20211219-17-07-40/MAE-Epoch-43-Loss-0.7255999422779928.pdparams
-INFO:master_logger:----- Save optim: ./output/train-20211219-17-07-40/MAE-Epoch-43-Loss-0.7255999422779928.pdopt
-INFO:local_logger:Now training epoch 44. LR=0.000150
-INFO:master_logger:Now training epoch 44. LR=0.000150
-INFO:local_logger:Epoch[044/800], Step[0000/0626], Avg Loss: 0.7265
-INFO:local_logger:Epoch[044/800], Step[0000/0626], Avg Loss: 0.7228
-INFO:master_logger:Epoch[044/800], Step[0000/0626], Avg Loss: 0.7233
-INFO:local_logger:Epoch[044/800], Step[0000/0626], Avg Loss: 0.7197
-INFO:local_logger:Epoch[044/800], Step[0000/0626], Avg Loss: 0.7206
-INFO:local_logger:Epoch[044/800], Step[0000/0626], Avg Loss: 0.7307
-INFO:local_logger:Epoch[044/800], Step[0000/0626], Avg Loss: 0.7300
-INFO:local_logger:Epoch[044/800], Step[0000/0626], Avg Loss: 0.7199
-INFO:local_logger:Epoch[044/800], Step[0000/0626], Avg Loss: 0.7161
-INFO:local_logger:Epoch[044/800], Step[0100/0626], Avg Loss: 0.7253
-INFO:local_logger:Epoch[044/800], Step[0100/0626], Avg Loss: 0.7241
-INFO:local_logger:Epoch[044/800], Step[0100/0626], Avg Loss: 0.7232
-INFO:local_logger:Epoch[044/800], Step[0100/0626], Avg Loss: 0.7238
-INFO:local_logger:Epoch[044/800], Step[0100/0626], Avg Loss: 0.7251
-INFO:local_logger:Epoch[044/800], Step[0100/0626], Avg Loss: 0.7248
-INFO:local_logger:Epoch[044/800], Step[0100/0626], Avg Loss: 0.7246
-INFO:local_logger:Epoch[044/800], Step[0100/0626], Avg Loss: 0.7250
-INFO:master_logger:Epoch[044/800], Step[0100/0626], Avg Loss: 0.7245
-INFO:local_logger:Epoch[044/800], Step[0200/0626], Avg Loss: 0.7238
-INFO:local_logger:Epoch[044/800], Step[0200/0626], Avg Loss: 0.7246
-INFO:local_logger:Epoch[044/800], Step[0200/0626], Avg Loss: 0.7237
-INFO:local_logger:Epoch[044/800], Step[0200/0626], Avg Loss: 0.7243
-INFO:local_logger:Epoch[044/800], Step[0200/0626], Avg Loss: 0.7241
-INFO:local_logger:Epoch[044/800], Step[0200/0626], Avg Loss: 0.7251
-INFO:master_logger:Epoch[044/800], Step[0200/0626], Avg Loss: 0.7243
-INFO:local_logger:Epoch[044/800], Step[0200/0626], Avg Loss: 0.7249
-INFO:local_logger:Epoch[044/800], Step[0200/0626], Avg Loss: 0.7239
-INFO:local_logger:Epoch[044/800], Step[0300/0626], Avg Loss: 0.7239
-INFO:local_logger:Epoch[044/800], Step[0300/0626], Avg Loss: 0.7241
-INFO:master_logger:Epoch[044/800], Step[0300/0626], Avg Loss: 0.7240
-INFO:local_logger:Epoch[044/800], Step[0300/0626], Avg Loss: 0.7239
-INFO:local_logger:Epoch[044/800], Step[0300/0626], Avg Loss: 0.7241
-INFO:local_logger:Epoch[044/800], Step[0300/0626], Avg Loss: 0.7235
-INFO:local_logger:Epoch[044/800], Step[0300/0626], Avg Loss: 0.7242
-INFO:local_logger:Epoch[044/800], Step[0300/0626], Avg Loss: 0.7247
-INFO:local_logger:Epoch[044/800], Step[0300/0626], Avg Loss: 0.7236
-INFO:local_logger:Epoch[044/800], Step[0400/0626], Avg Loss: 0.7238
-INFO:local_logger:Epoch[044/800], Step[0400/0626], Avg Loss: 0.7236
-INFO:local_logger:Epoch[044/800], Step[0400/0626], Avg Loss: 0.7241
-INFO:master_logger:Epoch[044/800], Step[0400/0626], Avg Loss: 0.7238
-INFO:local_logger:Epoch[044/800], Step[0400/0626], Avg Loss: 0.7236
-INFO:local_logger:Epoch[044/800], Step[0400/0626], Avg Loss: 0.7233
-INFO:local_logger:Epoch[044/800], Step[0400/0626], Avg Loss: 0.7243
-INFO:local_logger:Epoch[044/800], Step[0400/0626], Avg Loss: 0.7240
-INFO:local_logger:Epoch[044/800], Step[0400/0626], Avg Loss: 0.7239
-INFO:local_logger:Epoch[044/800], Step[0500/0626], Avg Loss: 0.7237
-INFO:local_logger:Epoch[044/800], Step[0500/0626], Avg Loss: 0.7240
-INFO:local_logger:Epoch[044/800], Step[0500/0626], Avg Loss: 0.7234
-INFO:master_logger:Epoch[044/800], Step[0500/0626], Avg Loss: 0.7236
-INFO:local_logger:Epoch[044/800], Step[0500/0626], Avg Loss: 0.7238
-INFO:local_logger:Epoch[044/800], Step[0500/0626], Avg Loss: 0.7231
-INFO:local_logger:Epoch[044/800], Step[0500/0626], Avg Loss: 0.7238
-INFO:local_logger:Epoch[044/800], Step[0500/0626], Avg Loss: 0.7237
-INFO:local_logger:Epoch[044/800], Step[0500/0626], Avg Loss: 0.7235
-INFO:local_logger:Epoch[044/800], Step[0600/0626], Avg Loss: 0.7236
-INFO:local_logger:Epoch[044/800], Step[0600/0626], Avg Loss: 0.7237
-INFO:local_logger:Epoch[044/800], Step[0600/0626], Avg Loss: 0.7235
-INFO:local_logger:Epoch[044/800], Step[0600/0626], Avg Loss: 0.7235
-INFO:local_logger:Epoch[044/800], Step[0600/0626], Avg Loss: 0.7231
-INFO:master_logger:Epoch[044/800], Step[0600/0626], Avg Loss: 0.7235
-INFO:local_logger:Epoch[044/800], Step[0600/0626], Avg Loss: 0.7237
-INFO:local_logger:Epoch[044/800], Step[0600/0626], Avg Loss: 0.7235
-INFO:local_logger:Epoch[044/800], Step[0600/0626], Avg Loss: 0.7233
-INFO:local_logger:----- Epoch[044/800], Train Loss: 0.7236, time: 893.49
-INFO:local_logger:Now training epoch 45. LR=0.000150
-INFO:local_logger:----- Epoch[044/800], Train Loss: 0.7231, time: 893.57
-INFO:local_logger:Now training epoch 45. LR=0.000150
-INFO:local_logger:----- Epoch[044/800], Train Loss: 0.7234, time: 893.55
-INFO:local_logger:Now training epoch 45. LR=0.000150
-INFO:local_logger:----- Epoch[044/800], Train Loss: 0.7234, time: 893.57
-INFO:local_logger:Now training epoch 45. LR=0.000150
-INFO:local_logger:----- Epoch[044/800], Train Loss: 0.7235, time: 889.85
-INFO:master_logger:----- Epoch[044/800], Train Loss: 0.7235, time: 889.85
-INFO:local_logger:----- Epoch[044/800], Train Loss: 0.7237, time: 894.16
-INFO:local_logger:Now training epoch 45. LR=0.000150
-INFO:local_logger:----- Epoch[044/800], Train Loss: 0.7238, time: 894.14
-INFO:local_logger:Now training epoch 45. LR=0.000150
-INFO:local_logger:----- Epoch[044/800], Train Loss: 0.7235, time: 893.86
-INFO:local_logger:Now training epoch 45. LR=0.000150
-INFO:local_logger:----- Save model: ./output/train-20211219-17-07-40/MAE-Epoch-44-Loss-0.723522978396613.pdparams
-INFO:local_logger:----- Save optim: ./output/train-20211219-17-07-40/MAE-Epoch-44-Loss-0.723522978396613.pdopt
-INFO:master_logger:----- Save model: ./output/train-20211219-17-07-40/MAE-Epoch-44-Loss-0.723522978396613.pdparams
-INFO:master_logger:----- Save optim: ./output/train-20211219-17-07-40/MAE-Epoch-44-Loss-0.723522978396613.pdopt
-INFO:local_logger:Now training epoch 45. LR=0.000150
-INFO:master_logger:Now training epoch 45. LR=0.000150
-INFO:local_logger:Epoch[045/800], Step[0000/0626], Avg Loss: 0.7270
-INFO:local_logger:Epoch[045/800], Step[0000/0626], Avg Loss: 0.7223
-INFO:local_logger:Epoch[045/800], Step[0000/0626], Avg Loss: 0.7158
-INFO:master_logger:Epoch[045/800], Step[0000/0626], Avg Loss: 0.7205
-INFO:local_logger:Epoch[045/800], Step[0000/0626], Avg Loss: 0.7192
-INFO:local_logger:Epoch[045/800], Step[0000/0626], Avg Loss: 0.7172
-INFO:local_logger:Epoch[045/800], Step[0000/0626], Avg Loss: 0.7222
-INFO:local_logger:Epoch[045/800], Step[0000/0626], Avg Loss: 0.7194
-INFO:local_logger:Epoch[045/800], Step[0000/0626], Avg Loss: 0.7208
-INFO:local_logger:Epoch[045/800], Step[0100/0626], Avg Loss: 0.7217
-INFO:local_logger:Epoch[045/800], Step[0100/0626], Avg Loss: 0.7221
-INFO:local_logger:Epoch[045/800], Step[0100/0626], Avg Loss: 0.7229
-INFO:local_logger:Epoch[045/800], Step[0100/0626], Avg Loss: 0.7221
-INFO:local_logger:Epoch[045/800], Step[0100/0626], Avg Loss: 0.7228
-INFO:local_logger:Epoch[045/800], Step[0100/0626], Avg Loss: 0.7213
-INFO:master_logger:Epoch[045/800], Step[0100/0626], Avg Loss: 0.7223
-INFO:local_logger:Epoch[045/800], Step[0100/0626], Avg Loss: 0.7222
-INFO:local_logger:Epoch[045/800], Step[0100/0626], Avg Loss: 0.7230
-INFO:local_logger:Epoch[045/800], Step[0200/0626], Avg Loss: 0.7218
-INFO:local_logger:Epoch[045/800], Step[0200/0626], Avg Loss: 0.7221
-INFO:local_logger:Epoch[045/800], Step[0200/0626], Avg Loss: 0.7231
-INFO:local_logger:Epoch[045/800], Step[0200/0626], Avg Loss: 0.7222
-INFO:local_logger:Epoch[045/800], Step[0200/0626], Avg Loss: 0.7228
-INFO:local_logger:Epoch[045/800], Step[0200/0626], Avg Loss: 0.7222
-INFO:local_logger:Epoch[045/800], Step[0200/0626], Avg Loss: 0.7222
-INFO:master_logger:Epoch[045/800], Step[0200/0626], Avg Loss: 0.7223
-INFO:local_logger:Epoch[045/800], Step[0200/0626], Avg Loss: 0.7219
-INFO:local_logger:Epoch[045/800], Step[0300/0626], Avg Loss: 0.7219
-INFO:local_logger:Epoch[045/800], Step[0300/0626], Avg Loss: 0.7220
-INFO:local_logger:Epoch[045/800], Step[0300/0626], Avg Loss: 0.7218
-INFO:local_logger:Epoch[045/800], Step[0300/0626], Avg Loss: 0.7219
-INFO:local_logger:Epoch[045/800], Step[0300/0626], Avg Loss: 0.7220
-INFO:master_logger:Epoch[045/800], Step[0300/0626], Avg Loss: 0.7219
-INFO:local_logger:Epoch[045/800], Step[0300/0626], Avg Loss: 0.7227
-INFO:local_logger:Epoch[045/800], Step[0300/0626], Avg Loss: 0.7213
-INFO:local_logger:Epoch[045/800], Step[0300/0626], Avg Loss: 0.7219
-INFO:local_logger:Epoch[045/800], Step[0400/0626], Avg Loss: 0.7217
-INFO:local_logger:Epoch[045/800], Step[0400/0626], Avg Loss: 0.7217
-INFO:local_logger:Epoch[045/800], Step[0400/0626], Avg Loss: 0.7217
-INFO:master_logger:Epoch[045/800], Step[0400/0626], Avg Loss: 0.7218
-INFO:local_logger:Epoch[045/800], Step[0400/0626], Avg Loss: 0.7212
-INFO:local_logger:Epoch[045/800], Step[0400/0626], Avg Loss: 0.7219
-INFO:local_logger:Epoch[045/800], Step[0400/0626], Avg Loss: 0.7220
-INFO:local_logger:Epoch[045/800], Step[0400/0626], Avg Loss: 0.7217
-INFO:local_logger:Epoch[045/800], Step[0400/0626], Avg Loss: 0.7224
-INFO:local_logger:Epoch[045/800], Step[0500/0626], Avg Loss: 0.7217
-INFO:local_logger:Epoch[045/800], Step[0500/0626], Avg Loss: 0.7217
-INFO:local_logger:Epoch[045/800], Step[0500/0626], Avg Loss: 0.7220
-INFO:master_logger:Epoch[045/800], Step[0500/0626], Avg Loss: 0.7218
-INFO:local_logger:Epoch[045/800], Step[0500/0626], Avg Loss: 0.7216
-INFO:local_logger:Epoch[045/800], Step[0500/0626], Avg Loss: 0.7218
-INFO:local_logger:Epoch[045/800], Step[0500/0626], Avg Loss: 0.7213
-INFO:local_logger:Epoch[045/800], Step[0500/0626], Avg Loss: 0.7217
-INFO:local_logger:Epoch[045/800], Step[0500/0626], Avg Loss: 0.7223
-INFO:local_logger:Epoch[045/800], Step[0600/0626], Avg Loss: 0.7212
-INFO:master_logger:Epoch[045/800], Step[0600/0626], Avg Loss: 0.7216
-INFO:local_logger:Epoch[045/800], Step[0600/0626], Avg Loss: 0.7216
-INFO:local_logger:Epoch[045/800], Step[0600/0626], Avg Loss: 0.7216
-INFO:local_logger:Epoch[045/800], Step[0600/0626], Avg Loss: 0.7220
-INFO:local_logger:Epoch[045/800], Step[0600/0626], Avg Loss: 0.7217
-INFO:local_logger:Epoch[045/800], Step[0600/0626], Avg Loss: 0.7219
-INFO:local_logger:Epoch[045/800], Step[0600/0626], Avg Loss: 0.7214
-INFO:local_logger:Epoch[045/800], Step[0600/0626], Avg Loss: 0.7213
-INFO:local_logger:----- Epoch[045/800], Train Loss: 0.7212, time: 859.11
-INFO:local_logger:Now training epoch 46. LR=0.000150
-INFO:local_logger:----- Epoch[045/800], Train Loss: 0.7212, time: 855.42
-INFO:master_logger:----- Epoch[045/800], Train Loss: 0.7216, time: 855.42
-INFO:local_logger:----- Epoch[045/800], Train Loss: 0.7216, time: 859.01
-INFO:local_logger:Now training epoch 46. LR=0.000150
-INFO:local_logger:----- Epoch[045/800], Train Loss: 0.7216, time: 859.54
-INFO:local_logger:Now training epoch 46. LR=0.000150
-INFO:local_logger:----- Epoch[045/800], Train Loss: 0.7219, time: 859.82
-INFO:local_logger:Now training epoch 46. LR=0.000150
-INFO:local_logger:----- Epoch[045/800], Train Loss: 0.7218, time: 859.92
-INFO:local_logger:----- Epoch[045/800], Train Loss: 0.7214, time: 859.73
-INFO:local_logger:Now training epoch 46. LR=0.000150
-INFO:local_logger:Now training epoch 46. LR=0.000150
-INFO:local_logger:----- Epoch[045/800], Train Loss: 0.7217, time: 859.75
-INFO:local_logger:Now training epoch 46. LR=0.000150
-INFO:local_logger:----- Save model: ./output/train-20211219-17-07-40/MAE-Epoch-45-Loss-0.7212178304741391.pdparams
-INFO:local_logger:----- Save optim: ./output/train-20211219-17-07-40/MAE-Epoch-45-Loss-0.7212178304741391.pdopt
-INFO:master_logger:----- Save model: ./output/train-20211219-17-07-40/MAE-Epoch-45-Loss-0.7212178304741391.pdparams
-INFO:master_logger:----- Save optim: ./output/train-20211219-17-07-40/MAE-Epoch-45-Loss-0.7212178304741391.pdopt
-INFO:local_logger:Now training epoch 46. LR=0.000150
-INFO:master_logger:Now training epoch 46. LR=0.000150
-INFO:local_logger:Epoch[046/800], Step[0000/0626], Avg Loss: 0.7165
-INFO:local_logger:Epoch[046/800], Step[0000/0626], Avg Loss: 0.7255
-INFO:local_logger:Epoch[046/800], Step[0000/0626], Avg Loss: 0.7341
-INFO:master_logger:Epoch[046/800], Step[0000/0626], Avg Loss: 0.7218
-INFO:local_logger:Epoch[046/800], Step[0000/0626], Avg Loss: 0.7214
-INFO:local_logger:Epoch[046/800], Step[0000/0626], Avg Loss: 0.7314
-INFO:local_logger:Epoch[046/800], Step[0000/0626], Avg Loss: 0.7055
-INFO:local_logger:Epoch[046/800], Step[0000/0626], Avg Loss: 0.7244
-INFO:local_logger:Epoch[046/800], Step[0000/0626], Avg Loss: 0.7156
-INFO:local_logger:Epoch[046/800], Step[0100/0626], Avg Loss: 0.7201
-INFO:local_logger:Epoch[046/800], Step[0100/0626], Avg Loss: 0.7210
-INFO:local_logger:Epoch[046/800], Step[0100/0626], Avg Loss: 0.7219
-INFO:master_logger:Epoch[046/800], Step[0100/0626], Avg Loss: 0.7206
-INFO:local_logger:Epoch[046/800], Step[0100/0626], Avg Loss: 0.7207
-INFO:local_logger:Epoch[046/800], Step[0100/0626], Avg Loss: 0.7203
-INFO:local_logger:Epoch[046/800], Step[0100/0626], Avg Loss: 0.7207
-INFO:local_logger:Epoch[046/800], Step[0100/0626], Avg Loss: 0.7196
-INFO:local_logger:Epoch[046/800], Step[0100/0626], Avg Loss: 0.7207
-INFO:local_logger:Epoch[046/800], Step[0200/0626], Avg Loss: 0.7191
-INFO:local_logger:Epoch[046/800], Step[0200/0626], Avg Loss: 0.7207
-INFO:local_logger:Epoch[046/800], Step[0200/0626], Avg Loss: 0.7206
-INFO:local_logger:Epoch[046/800], Step[0200/0626], Avg Loss: 0.7199
-INFO:local_logger:Epoch[046/800], Step[0200/0626], Avg Loss: 0.7209
-INFO:local_logger:Epoch[046/800], Step[0200/0626], Avg Loss: 0.7203
-INFO:local_logger:Epoch[046/800], Step[0200/0626], Avg Loss: 0.7207
-INFO:master_logger:Epoch[046/800], Step[0200/0626], Avg Loss: 0.7204
-INFO:local_logger:Epoch[046/800], Step[0200/0626], Avg Loss: 0.7208
-INFO:local_logger:Epoch[046/800], Step[0300/0626], Avg Loss: 0.7199
-INFO:local_logger:Epoch[046/800], Step[0300/0626], Avg Loss: 0.7205
-INFO:local_logger:Epoch[046/800], Step[0300/0626], Avg Loss: 0.7204
-INFO:local_logger:Epoch[046/800], Step[0300/0626], Avg Loss: 0.7199
-INFO:local_logger:Epoch[046/800], Step[0300/0626], Avg Loss: 0.7201
-INFO:local_logger:Epoch[046/800], Step[0300/0626], Avg Loss: 0.7202
-INFO:local_logger:Epoch[046/800], Step[0300/0626], Avg Loss: 0.7202
-INFO:local_logger:Epoch[046/800], Step[0300/0626], Avg Loss: 0.7202
-INFO:master_logger:Epoch[046/800], Step[0300/0626], Avg Loss: 0.7202
-INFO:local_logger:Epoch[046/800], Step[0400/0626], Avg Loss: 0.7200
-INFO:local_logger:Epoch[046/800], Step[0400/0626], Avg Loss: 0.7198
-INFO:local_logger:Epoch[046/800], Step[0400/0626], Avg Loss: 0.7205
-INFO:local_logger:Epoch[046/800], Step[0400/0626], Avg Loss: 0.7202
-INFO:master_logger:Epoch[046/800], Step[0400/0626], Avg Loss: 0.7200
-INFO:local_logger:Epoch[046/800], Step[0400/0626], Avg Loss: 0.7199
-INFO:local_logger:Epoch[046/800], Step[0400/0626], Avg Loss: 0.7201
-INFO:local_logger:Epoch[046/800], Step[0400/0626], Avg Loss: 0.7198
-INFO:local_logger:Epoch[046/800], Step[0400/0626], Avg Loss: 0.7200
-INFO:local_logger:Epoch[046/800], Step[0500/0626], Avg Loss: 0.7197
-INFO:local_logger:Epoch[046/800], Step[0500/0626], Avg Loss: 0.7200
-INFO:local_logger:Epoch[046/800], Step[0500/0626], Avg Loss: 0.7201
-INFO:local_logger:Epoch[046/800], Step[0500/0626], Avg Loss: 0.7198
-INFO:local_logger:Epoch[046/800], Step[0500/0626], Avg Loss: 0.7198
-INFO:local_logger:Epoch[046/800], Step[0500/0626], Avg Loss: 0.7198
-INFO:master_logger:Epoch[046/800], Step[0500/0626], Avg Loss: 0.7199
-INFO:local_logger:Epoch[046/800], Step[0500/0626], Avg Loss: 0.7199
-INFO:local_logger:Epoch[046/800], Step[0500/0626], Avg Loss: 0.7204
-INFO:local_logger:Epoch[046/800], Step[0600/0626], Avg Loss: 0.7197
-INFO:local_logger:Epoch[046/800], Step[0600/0626], Avg Loss: 0.7198
-INFO:local_logger:Epoch[046/800], Step[0600/0626], Avg Loss: 0.7203
-INFO:local_logger:Epoch[046/800], Step[0600/0626], Avg Loss: 0.7197
-INFO:local_logger:Epoch[046/800], Step[0600/0626], Avg Loss: 0.7198
-INFO:local_logger:Epoch[046/800], Step[0600/0626], Avg Loss: 0.7198
-INFO:local_logger:Epoch[046/800], Step[0600/0626], Avg Loss: 0.7199
-INFO:master_logger:Epoch[046/800], Step[0600/0626], Avg Loss: 0.7198
-INFO:local_logger:Epoch[046/800], Step[0600/0626], Avg Loss: 0.7197
-INFO:local_logger:----- Epoch[046/800], Train Loss: 0.7199, time: 894.85
-INFO:local_logger:Now training epoch 47. LR=0.000150
-INFO:local_logger:----- Epoch[046/800], Train Loss: 0.7197, time: 894.90
-INFO:local_logger:Now training epoch 47. LR=0.000150
-INFO:local_logger:----- Epoch[046/800], Train Loss: 0.7198, time: 895.63
-INFO:local_logger:Now training epoch 47. LR=0.000150
-INFO:local_logger:----- Epoch[046/800], Train Loss: 0.7197, time: 895.84
-INFO:local_logger:Now training epoch 47. LR=0.000150
-INFO:local_logger:----- Epoch[046/800], Train Loss: 0.7197, time: 895.79
-INFO:local_logger:Now training epoch 47. LR=0.000150
-INFO:local_logger:----- Epoch[046/800], Train Loss: 0.7198, time: 892.44
-INFO:master_logger:----- Epoch[046/800], Train Loss: 0.7198, time: 892.44
-INFO:local_logger:----- Epoch[046/800], Train Loss: 0.7198, time: 895.48
-INFO:local_logger:Now training epoch 47. LR=0.000150
-INFO:local_logger:----- Epoch[046/800], Train Loss: 0.7204, time: 895.48
-INFO:local_logger:Now training epoch 47. LR=0.000150
-INFO:local_logger:----- Save model: ./output/train-20211219-17-07-40/MAE-Epoch-46-Loss-0.7197591380592546.pdparams
-INFO:local_logger:----- Save optim: ./output/train-20211219-17-07-40/MAE-Epoch-46-Loss-0.7197591380592546.pdopt
-INFO:master_logger:----- Save model: ./output/train-20211219-17-07-40/MAE-Epoch-46-Loss-0.7197591380592546.pdparams
-INFO:master_logger:----- Save optim: ./output/train-20211219-17-07-40/MAE-Epoch-46-Loss-0.7197591380592546.pdopt
-INFO:local_logger:Now training epoch 47. LR=0.000150
-INFO:master_logger:Now training epoch 47. LR=0.000150
-INFO:local_logger:Epoch[047/800], Step[0000/0626], Avg Loss: 0.7141
-INFO:local_logger:Epoch[047/800], Step[0000/0626], Avg Loss: 0.7210
-INFO:local_logger:Epoch[047/800], Step[0000/0626], Avg Loss: 0.7275
-INFO:local_logger:Epoch[047/800], Step[0000/0626], Avg Loss: 0.7216
-INFO:local_logger:Epoch[047/800], Step[0000/0626], Avg Loss: 0.7156
-INFO:local_logger:Epoch[047/800], Step[0000/0626], Avg Loss: 0.7147
-INFO:local_logger:Epoch[047/800], Step[0000/0626], Avg Loss: 0.7261
-INFO:local_logger:Epoch[047/800], Step[0000/0626], Avg Loss: 0.7192
-INFO:master_logger:Epoch[047/800], Step[0000/0626], Avg Loss: 0.7199
-INFO:local_logger:Epoch[047/800], Step[0100/0626], Avg Loss: 0.7184
-INFO:local_logger:Epoch[047/800], Step[0100/0626], Avg Loss: 0.7187
-INFO:master_logger:Epoch[047/800], Step[0100/0626], Avg Loss: 0.7189
-INFO:local_logger:Epoch[047/800], Step[0100/0626], Avg Loss: 0.7194
-INFO:local_logger:Epoch[047/800], Step[0100/0626], Avg Loss: 0.7188
-INFO:local_logger:Epoch[047/800], Step[0100/0626], Avg Loss: 0.7183
-INFO:local_logger:Epoch[047/800], Step[0100/0626], Avg Loss: 0.7188
-INFO:local_logger:Epoch[047/800], Step[0100/0626], Avg Loss: 0.7189
-INFO:local_logger:Epoch[047/800], Step[0100/0626], Avg Loss: 0.7196
-INFO:local_logger:Epoch[047/800], Step[0200/0626], Avg Loss: 0.7184
-INFO:local_logger:Epoch[047/800], Step[0200/0626], Avg Loss: 0.7190
-INFO:local_logger:Epoch[047/800], Step[0200/0626], Avg Loss: 0.7188
-INFO:local_logger:Epoch[047/800], Step[0200/0626], Avg Loss: 0.7180
-INFO:master_logger:Epoch[047/800], Step[0200/0626], Avg Loss: 0.7188
-INFO:local_logger:Epoch[047/800], Step[0200/0626], Avg Loss: 0.7185
-INFO:local_logger:Epoch[047/800], Step[0200/0626], Avg Loss: 0.7195
-INFO:local_logger:Epoch[047/800], Step[0200/0626], Avg Loss: 0.7186
-INFO:local_logger:Epoch[047/800], Step[0200/0626], Avg Loss: 0.7192
-INFO:local_logger:Epoch[047/800], Step[0300/0626], Avg Loss: 0.7188
-INFO:local_logger:Epoch[047/800], Step[0300/0626], Avg Loss: 0.7188
-INFO:local_logger:Epoch[047/800], Step[0300/0626], Avg Loss: 0.7182
-INFO:local_logger:Epoch[047/800], Step[0300/0626], Avg Loss: 0.7187
-INFO:local_logger:Epoch[047/800], Step[0300/0626], Avg Loss: 0.7182
-INFO:local_logger:Epoch[047/800], Step[0300/0626], Avg Loss: 0.7179
-INFO:local_logger:Epoch[047/800], Step[0300/0626], Avg Loss: 0.7184
-INFO:master_logger:Epoch[047/800], Step[0300/0626], Avg Loss: 0.7184
-INFO:local_logger:Epoch[047/800], Step[0300/0626], Avg Loss: 0.7184
-INFO:local_logger:Epoch[047/800], Step[0400/0626], Avg Loss: 0.7188
-INFO:local_logger:Epoch[047/800], Step[0400/0626], Avg Loss: 0.7183
-INFO:local_logger:Epoch[047/800], Step[0400/0626], Avg Loss: 0.7180
-INFO:local_logger:Epoch[047/800], Step[0400/0626], Avg Loss: 0.7188
-INFO:master_logger:Epoch[047/800], Step[0400/0626], Avg Loss: 0.7184
-INFO:local_logger:Epoch[047/800], Step[0400/0626], Avg Loss: 0.7183
-INFO:local_logger:Epoch[047/800], Step[0400/0626], Avg Loss: 0.7185
-INFO:local_logger:Epoch[047/800], Step[0400/0626], Avg Loss: 0.7188
-INFO:local_logger:Epoch[047/800], Step[0400/0626], Avg Loss: 0.7178
-INFO:local_logger:Epoch[047/800], Step[0500/0626], Avg Loss: 0.7187
-INFO:local_logger:Epoch[047/800], Step[0500/0626], Avg Loss: 0.7189
-INFO:local_logger:Epoch[047/800], Step[0500/0626], Avg Loss: 0.7179
-INFO:local_logger:Epoch[047/800], Step[0500/0626], Avg Loss: 0.7187
-INFO:local_logger:Epoch[047/800], Step[0500/0626], Avg Loss: 0.7182
-INFO:master_logger:Epoch[047/800], Step[0500/0626], Avg Loss: 0.7183
-INFO:local_logger:Epoch[047/800], Step[0500/0626], Avg Loss: 0.7179
-INFO:local_logger:Epoch[047/800], Step[0500/0626], Avg Loss: 0.7183
-INFO:local_logger:Epoch[047/800], Step[0500/0626], Avg Loss: 0.7180
-INFO:local_logger:Epoch[047/800], Step[0600/0626], Avg Loss: 0.7181
-INFO:local_logger:Epoch[047/800], Step[0600/0626], Avg Loss: 0.7185
-INFO:local_logger:Epoch[047/800], Step[0600/0626], Avg Loss: 0.7185
-INFO:local_logger:Epoch[047/800], Step[0600/0626], Avg Loss: 0.7188
-INFO:local_logger:Epoch[047/800], Step[0600/0626], Avg Loss: 0.7180
-INFO:local_logger:Epoch[047/800], Step[0600/0626], Avg Loss: 0.7179
-INFO:local_logger:Epoch[047/800], Step[0600/0626], Avg Loss: 0.7177
-INFO:local_logger:Epoch[047/800], Step[0600/0626], Avg Loss: 0.7181
-INFO:master_logger:Epoch[047/800], Step[0600/0626], Avg Loss: 0.7182
-INFO:local_logger:----- Epoch[047/800], Train Loss: 0.7188, time: 864.28
-INFO:local_logger:Now training epoch 48. LR=0.000150
-INFO:local_logger:----- Epoch[047/800], Train Loss: 0.7180, time: 863.82
-INFO:local_logger:Now training epoch 48. LR=0.000150
-INFO:local_logger:----- Epoch[047/800], Train Loss: 0.7183, time: 863.91
-INFO:local_logger:Now training epoch 48. LR=0.000150
-INFO:local_logger:----- Epoch[047/800], Train Loss: 0.7185, time: 864.34
-INFO:local_logger:Now training epoch 48. LR=0.000150
-INFO:local_logger:----- Epoch[047/800], Train Loss: 0.7177, time: 864.67
-INFO:local_logger:Now training epoch 48. LR=0.000150
-INFO:local_logger:----- Epoch[047/800], Train Loss: 0.7179, time: 864.05
-INFO:local_logger:Now training epoch 48. LR=0.000150
-INFO:local_logger:----- Epoch[047/800], Train Loss: 0.7182, time: 864.42
-INFO:local_logger:Now training epoch 48. LR=0.000150
-INFO:local_logger:----- Epoch[047/800], Train Loss: 0.7181, time: 860.27
-INFO:master_logger:----- Epoch[047/800], Train Loss: 0.7182, time: 860.27
-INFO:local_logger:----- Save model: ./output/train-20211219-17-07-40/MAE-Epoch-47-Loss-0.7181137765215982.pdparams
-INFO:local_logger:----- Save optim: ./output/train-20211219-17-07-40/MAE-Epoch-47-Loss-0.7181137765215982.pdopt
-INFO:master_logger:----- Save model: ./output/train-20211219-17-07-40/MAE-Epoch-47-Loss-0.7181137765215982.pdparams
-INFO:master_logger:----- Save optim: ./output/train-20211219-17-07-40/MAE-Epoch-47-Loss-0.7181137765215982.pdopt
-INFO:local_logger:Now training epoch 48. LR=0.000150
-INFO:master_logger:Now training epoch 48. LR=0.000150
-INFO:local_logger:Epoch[048/800], Step[0000/0626], Avg Loss: 0.7296
-INFO:local_logger:Epoch[048/800], Step[0000/0626], Avg Loss: 0.7261
-INFO:local_logger:Epoch[048/800], Step[0000/0626], Avg Loss: 0.7148
-INFO:local_logger:Epoch[048/800], Step[0000/0626], Avg Loss: 0.7056
-INFO:local_logger:Epoch[048/800], Step[0000/0626], Avg Loss: 0.7238
-INFO:master_logger:Epoch[048/800], Step[0000/0626], Avg Loss: 0.7205
-INFO:local_logger:Epoch[048/800], Step[0000/0626], Avg Loss: 0.7255
-INFO:local_logger:Epoch[048/800], Step[0000/0626], Avg Loss: 0.7134
-INFO:local_logger:Epoch[048/800], Step[0000/0626], Avg Loss: 0.7255
-INFO:local_logger:Epoch[048/800], Step[0100/0626], Avg Loss: 0.7177
-INFO:local_logger:Epoch[048/800], Step[0100/0626], Avg Loss: 0.7189
-INFO:local_logger:Epoch[048/800], Step[0100/0626], Avg Loss: 0.7174
-INFO:local_logger:Epoch[048/800], Step[0100/0626], Avg Loss: 0.7174
-INFO:local_logger:Epoch[048/800], Step[0100/0626], Avg Loss: 0.7175
-INFO:master_logger:Epoch[048/800], Step[0100/0626], Avg Loss: 0.7177
-INFO:local_logger:Epoch[048/800], Step[0100/0626], Avg Loss: 0.7172
-INFO:local_logger:Epoch[048/800], Step[0100/0626], Avg Loss: 0.7192
-INFO:local_logger:Epoch[048/800], Step[0100/0626], Avg Loss: 0.7164
-INFO:local_logger:Epoch[048/800], Step[0200/0626], Avg Loss: 0.7168
-INFO:local_logger:Epoch[048/800], Step[0200/0626], Avg Loss: 0.7174
-INFO:local_logger:Epoch[048/800], Step[0200/0626], Avg Loss: 0.7176
-INFO:local_logger:Epoch[048/800], Step[0200/0626], Avg Loss: 0.7172
-INFO:local_logger:Epoch[048/800], Step[0200/0626], Avg Loss: 0.7181
-INFO:local_logger:Epoch[048/800], Step[0200/0626], Avg Loss: 0.7168
-INFO:local_logger:Epoch[048/800], Step[0200/0626], Avg Loss: 0.7172
-INFO:master_logger:Epoch[048/800], Step[0200/0626], Avg Loss: 0.7174
-INFO:local_logger:Epoch[048/800], Step[0200/0626], Avg Loss: 0.7183
-INFO:local_logger:Epoch[048/800], Step[0300/0626], Avg Loss: 0.7169
-INFO:local_logger:Epoch[048/800], Step[0300/0626], Avg Loss: 0.7173
-INFO:local_logger:Epoch[048/800], Step[0300/0626], Avg Loss: 0.7171
-INFO:local_logger:Epoch[048/800], Step[0300/0626], Avg Loss: 0.7171
-INFO:local_logger:Epoch[048/800], Step[0300/0626], Avg Loss: 0.7168
-INFO:master_logger:Epoch[048/800], Step[0300/0626], Avg Loss: 0.7170
-INFO:local_logger:Epoch[048/800], Step[0300/0626], Avg Loss: 0.7172
-INFO:local_logger:Epoch[048/800], Step[0300/0626], Avg Loss: 0.7164
-INFO:local_logger:Epoch[048/800], Step[0300/0626], Avg Loss: 0.7176
-INFO:local_logger:Epoch[048/800], Step[0400/0626], Avg Loss: 0.7168
-INFO:local_logger:Epoch[048/800], Step[0400/0626], Avg Loss: 0.7168
-INFO:local_logger:Epoch[048/800], Step[0400/0626], Avg Loss: 0.7171
-INFO:local_logger:Epoch[048/800], Step[0400/0626], Avg Loss: 0.7171
-INFO:local_logger:Epoch[048/800], Step[0400/0626], Avg Loss: 0.7168
-INFO:local_logger:Epoch[048/800], Step[0400/0626], Avg Loss: 0.7172
-INFO:master_logger:Epoch[048/800], Step[0400/0626], Avg Loss: 0.7170
-INFO:local_logger:Epoch[048/800], Step[0400/0626], Avg Loss: 0.7173
-INFO:local_logger:Epoch[048/800], Step[0400/0626], Avg Loss: 0.7170
-INFO:local_logger:Epoch[048/800], Step[0500/0626], Avg Loss: 0.7171
-INFO:local_logger:Epoch[048/800], Step[0500/0626], Avg Loss: 0.7168
-INFO:local_logger:Epoch[048/800], Step[0500/0626], Avg Loss: 0.7169
-INFO:local_logger:Epoch[048/800], Step[0500/0626], Avg Loss: 0.7167
-INFO:local_logger:Epoch[048/800], Step[0500/0626], Avg Loss: 0.7169
-INFO:master_logger:Epoch[048/800], Step[0500/0626], Avg Loss: 0.7168
-INFO:local_logger:Epoch[048/800], Step[0500/0626], Avg Loss: 0.7168
-INFO:local_logger:Epoch[048/800], Step[0500/0626], Avg Loss: 0.7164
-INFO:local_logger:Epoch[048/800], Step[0500/0626], Avg Loss: 0.7170
-INFO:local_logger:Epoch[048/800], Step[0600/0626], Avg Loss: 0.7165
-INFO:local_logger:Epoch[048/800], Step[0600/0626], Avg Loss: 0.7168
-INFO:local_logger:Epoch[048/800], Step[0600/0626], Avg Loss: 0.7168
-INFO:local_logger:Epoch[048/800], Step[0600/0626], Avg Loss: 0.7162
-INFO:local_logger:Epoch[048/800], Step[0600/0626], Avg Loss: 0.7166
-INFO:local_logger:Epoch[048/800], Step[0600/0626], Avg Loss: 0.7168
-INFO:master_logger:Epoch[048/800], Step[0600/0626], Avg Loss: 0.7166
-INFO:local_logger:Epoch[048/800], Step[0600/0626], Avg Loss: 0.7166
-INFO:local_logger:Epoch[048/800], Step[0600/0626], Avg Loss: 0.7168
-INFO:local_logger:----- Epoch[048/800], Train Loss: 0.7162, time: 894.29
-INFO:local_logger:Now training epoch 49. LR=0.000150
-INFO:local_logger:----- Epoch[048/800], Train Loss: 0.7165, time: 894.54
-INFO:local_logger:Now training epoch 49. LR=0.000150
-INFO:local_logger:----- Epoch[048/800], Train Loss: 0.7169, time: 894.25
-INFO:local_logger:Now training epoch 49. LR=0.000150
-INFO:local_logger:----- Epoch[048/800], Train Loss: 0.7165, time: 894.58
-INFO:local_logger:Now training epoch 49. LR=0.000150
-INFO:local_logger:----- Epoch[048/800], Train Loss: 0.7168, time: 894.96
-INFO:local_logger:Now training epoch 49. LR=0.000150
-INFO:local_logger:----- Epoch[048/800], Train Loss: 0.7165, time: 891.19
-INFO:local_logger:----- Epoch[048/800], Train Loss: 0.7169, time: 894.94
-INFO:master_logger:----- Epoch[048/800], Train Loss: 0.7166, time: 891.19
-INFO:local_logger:Now training epoch 49. LR=0.000150
-INFO:local_logger:----- Epoch[048/800], Train Loss: 0.7167, time: 895.17
-INFO:local_logger:Now training epoch 49. LR=0.000150
-INFO:local_logger:----- Save model: ./output/train-20211219-17-07-40/MAE-Epoch-48-Loss-0.7164831838117034.pdparams
-INFO:local_logger:----- Save optim: ./output/train-20211219-17-07-40/MAE-Epoch-48-Loss-0.7164831838117034.pdopt
-INFO:master_logger:----- Save model: ./output/train-20211219-17-07-40/MAE-Epoch-48-Loss-0.7164831838117034.pdparams
-INFO:master_logger:----- Save optim: ./output/train-20211219-17-07-40/MAE-Epoch-48-Loss-0.7164831838117034.pdopt
-INFO:local_logger:Now training epoch 49. LR=0.000150
-INFO:master_logger:Now training epoch 49. LR=0.000150
-INFO:local_logger:Epoch[049/800], Step[0000/0626], Avg Loss: 0.7106
-INFO:local_logger:Epoch[049/800], Step[0000/0626], Avg Loss: 0.7079
-INFO:local_logger:Epoch[049/800], Step[0000/0626], Avg Loss: 0.7136
-INFO:master_logger:Epoch[049/800], Step[0000/0626], Avg Loss: 0.7139
-INFO:local_logger:Epoch[049/800], Step[0000/0626], Avg Loss: 0.7094
-INFO:local_logger:Epoch[049/800], Step[0000/0626], Avg Loss: 0.7180
-INFO:local_logger:Epoch[049/800], Step[0000/0626], Avg Loss: 0.7324
-INFO:local_logger:Epoch[049/800], Step[0000/0626], Avg Loss: 0.7095
-INFO:local_logger:Epoch[049/800], Step[0000/0626], Avg Loss: 0.7095
-INFO:local_logger:Epoch[049/800], Step[0100/0626], Avg Loss: 0.7149
-INFO:local_logger:Epoch[049/800], Step[0100/0626], Avg Loss: 0.7149
-INFO:local_logger:Epoch[049/800], Step[0100/0626], Avg Loss: 0.7153
-INFO:local_logger:Epoch[049/800], Step[0100/0626], Avg Loss: 0.7157
-INFO:local_logger:Epoch[049/800], Step[0100/0626], Avg Loss: 0.7161
-INFO:local_logger:Epoch[049/800], Step[0100/0626], Avg Loss: 0.7156
-INFO:master_logger:Epoch[049/800], Step[0100/0626], Avg Loss: 0.7153
-INFO:local_logger:Epoch[049/800], Step[0100/0626], Avg Loss: 0.7150
-INFO:local_logger:Epoch[049/800], Step[0100/0626], Avg Loss: 0.7151
-INFO:local_logger:Epoch[049/800], Step[0200/0626], Avg Loss: 0.7156
-INFO:local_logger:Epoch[049/800], Step[0200/0626], Avg Loss: 0.7158
-INFO:local_logger:Epoch[049/800], Step[0200/0626], Avg Loss: 0.7151
-INFO:local_logger:Epoch[049/800], Step[0200/0626], Avg Loss: 0.7161
-INFO:local_logger:Epoch[049/800], Step[0200/0626], Avg Loss: 0.7155
-INFO:local_logger:Epoch[049/800], Step[0200/0626], Avg Loss: 0.7153
-INFO:local_logger:Epoch[049/800], Step[0200/0626], Avg Loss: 0.7156
-INFO:local_logger:Epoch[049/800], Step[0200/0626], Avg Loss: 0.7152
-INFO:master_logger:Epoch[049/800], Step[0200/0626], Avg Loss: 0.7155
-INFO:local_logger:Epoch[049/800], Step[0300/0626], Avg Loss: 0.7154
-INFO:local_logger:Epoch[049/800], Step[0300/0626], Avg Loss: 0.7155
-INFO:local_logger:Epoch[049/800], Step[0300/0626], Avg Loss: 0.7153
-INFO:local_logger:Epoch[049/800], Step[0300/0626], Avg Loss: 0.7159
-INFO:local_logger:Epoch[049/800], Step[0300/0626], Avg Loss: 0.7162
-INFO:master_logger:Epoch[049/800], Step[0300/0626], Avg Loss: 0.7156
-INFO:local_logger:Epoch[049/800], Step[0300/0626], Avg Loss: 0.7157
-INFO:local_logger:Epoch[049/800], Step[0300/0626], Avg Loss: 0.7152
-INFO:local_logger:Epoch[049/800], Step[0300/0626], Avg Loss: 0.7156
-INFO:local_logger:Epoch[049/800], Step[0400/0626], Avg Loss: 0.7154
-INFO:local_logger:Epoch[049/800], Step[0400/0626], Avg Loss: 0.7155
-INFO:local_logger:Epoch[049/800], Step[0400/0626], Avg Loss: 0.7150
-INFO:local_logger:Epoch[049/800], Step[0400/0626], Avg Loss: 0.7154
-INFO:local_logger:Epoch[049/800], Step[0400/0626], Avg Loss: 0.7154
-INFO:local_logger:Epoch[049/800], Step[0400/0626], Avg Loss: 0.7160
-INFO:local_logger:Epoch[049/800], Step[0400/0626], Avg Loss: 0.7154
-INFO:local_logger:Epoch[049/800], Step[0400/0626], Avg Loss: 0.7158
-INFO:master_logger:Epoch[049/800], Step[0400/0626], Avg Loss: 0.7155
-INFO:local_logger:Epoch[049/800], Step[0500/0626], Avg Loss: 0.7151
-INFO:local_logger:Epoch[049/800], Step[0500/0626], Avg Loss: 0.7156
-INFO:local_logger:Epoch[049/800], Step[0500/0626], Avg Loss: 0.7154
-INFO:local_logger:Epoch[049/800], Step[0500/0626], Avg Loss: 0.7154
-INFO:local_logger:Epoch[049/800], Step[0500/0626], Avg Loss: 0.7155
-INFO:local_logger:Epoch[049/800], Step[0500/0626], Avg Loss: 0.7156
-INFO:master_logger:Epoch[049/800], Step[0500/0626], Avg Loss: 0.7154
-INFO:local_logger:Epoch[049/800], Step[0500/0626], Avg Loss: 0.7153
-INFO:local_logger:Epoch[049/800], Step[0500/0626], Avg Loss: 0.7154
-INFO:local_logger:Epoch[049/800], Step[0600/0626], Avg Loss: 0.7151
-INFO:local_logger:Epoch[049/800], Step[0600/0626], Avg Loss: 0.7151
-INFO:local_logger:Epoch[049/800], Step[0600/0626], Avg Loss: 0.7153
-INFO:local_logger:Epoch[049/800], Step[0600/0626], Avg Loss: 0.7154
-INFO:local_logger:Epoch[049/800], Step[0600/0626], Avg Loss: 0.7152
-INFO:local_logger:Epoch[049/800], Step[0600/0626], Avg Loss: 0.7151
-INFO:local_logger:Epoch[049/800], Step[0600/0626], Avg Loss: 0.7150
-INFO:master_logger:Epoch[049/800], Step[0600/0626], Avg Loss: 0.7152
-INFO:local_logger:Epoch[049/800], Step[0600/0626], Avg Loss: 0.7153
-INFO:local_logger:----- Epoch[049/800], Train Loss: 0.7150, time: 858.69
-INFO:local_logger:Now training epoch 50. LR=0.000150
-INFO:local_logger:----- Epoch[049/800], Train Loss: 0.7151, time: 857.91
-INFO:local_logger:Now training epoch 50. LR=0.000150
-INFO:local_logger:----- Epoch[049/800], Train Loss: 0.7152, time: 858.69
-INFO:local_logger:Now training epoch 50. LR=0.000150
-INFO:local_logger:----- Epoch[049/800], Train Loss: 0.7152, time: 857.99
-INFO:local_logger:Now training epoch 50. LR=0.000150
-INFO:local_logger:----- Epoch[049/800], Train Loss: 0.7151, time: 858.78
-INFO:local_logger:Now training epoch 50. LR=0.000150
-INFO:local_logger:----- Epoch[049/800], Train Loss: 0.7151, time: 858.00
-INFO:local_logger:Now training epoch 50. LR=0.000150
-INFO:local_logger:----- Epoch[049/800], Train Loss: 0.7154, time: 858.39
-INFO:local_logger:Now training epoch 50. LR=0.000150
-INFO:local_logger:----- Epoch[049/800], Train Loss: 0.7153, time: 854.33
-INFO:master_logger:----- Epoch[049/800], Train Loss: 0.7152, time: 854.33
-INFO:local_logger:----- Save model: ./output/train-20211219-17-07-40/MAE-Epoch-49-Loss-0.715259619077928.pdparams
-INFO:local_logger:----- Save optim: ./output/train-20211219-17-07-40/MAE-Epoch-49-Loss-0.715259619077928.pdopt
-INFO:master_logger:----- Save model: ./output/train-20211219-17-07-40/MAE-Epoch-49-Loss-0.715259619077928.pdparams
-INFO:master_logger:----- Save optim: ./output/train-20211219-17-07-40/MAE-Epoch-49-Loss-0.715259619077928.pdopt
-INFO:local_logger:Now training epoch 50. LR=0.000150
-INFO:master_logger:Now training epoch 50. LR=0.000150
-INFO:local_logger:Epoch[050/800], Step[0000/0626], Avg Loss: 0.7160
-INFO:local_logger:Epoch[050/800], Step[0000/0626], Avg Loss: 0.7233
-INFO:master_logger:Epoch[050/800], Step[0000/0626], Avg Loss: 0.7153
-INFO:local_logger:Epoch[050/800], Step[0000/0626], Avg Loss: 0.7204
-INFO:local_logger:Epoch[050/800], Step[0000/0626], Avg Loss: 0.7224
-INFO:local_logger:Epoch[050/800], Step[0000/0626], Avg Loss: 0.7126
-INFO:local_logger:Epoch[050/800], Step[0000/0626], Avg Loss: 0.7130
-INFO:local_logger:Epoch[050/800], Step[0000/0626], Avg Loss: 0.7084
-INFO:local_logger:Epoch[050/800], Step[0000/0626], Avg Loss: 0.7066
-INFO:local_logger:Epoch[050/800], Step[0100/0626], Avg Loss: 0.7145
-INFO:local_logger:Epoch[050/800], Step[0100/0626], Avg Loss: 0.7148
-INFO:local_logger:Epoch[050/800], Step[0100/0626], Avg Loss: 0.7134
-INFO:local_logger:Epoch[050/800], Step[0100/0626], Avg Loss: 0.7152
-INFO:local_logger:Epoch[050/800], Step[0100/0626], Avg Loss: 0.7152
-INFO:local_logger:Epoch[050/800], Step[0100/0626], Avg Loss: 0.7142
-INFO:master_logger:Epoch[050/800], Step[0100/0626], Avg Loss: 0.7145
-INFO:local_logger:Epoch[050/800], Step[0100/0626], Avg Loss: 0.7144
-INFO:local_logger:Epoch[050/800], Step[0100/0626], Avg Loss: 0.7141
-INFO:local_logger:Epoch[050/800], Step[0200/0626], Avg Loss: 0.7140
-INFO:local_logger:Epoch[050/800], Step[0200/0626], Avg Loss: 0.7143
-INFO:local_logger:Epoch[050/800], Step[0200/0626], Avg Loss: 0.7138
-INFO:local_logger:Epoch[050/800], Step[0200/0626], Avg Loss: 0.7142
-INFO:local_logger:Epoch[050/800], Step[0200/0626], Avg Loss: 0.7137
-INFO:local_logger:Epoch[050/800], Step[0200/0626], Avg Loss: 0.7148
-INFO:master_logger:Epoch[050/800], Step[0200/0626], Avg Loss: 0.7142
-INFO:local_logger:Epoch[050/800], Step[0200/0626], Avg Loss: 0.7145
-INFO:local_logger:Epoch[050/800], Step[0200/0626], Avg Loss: 0.7143
-INFO:local_logger:Epoch[050/800], Step[0300/0626], Avg Loss: 0.7144
-INFO:local_logger:Epoch[050/800], Step[0300/0626], Avg Loss: 0.7141
-INFO:local_logger:Epoch[050/800], Step[0300/0626], Avg Loss: 0.7143
-INFO:local_logger:Epoch[050/800], Step[0300/0626], Avg Loss: 0.7141
-INFO:local_logger:Epoch[050/800], Step[0300/0626], Avg Loss: 0.7143
-INFO:local_logger:Epoch[050/800], Step[0300/0626], Avg Loss: 0.7140
-INFO:local_logger:Epoch[050/800], Step[0300/0626], Avg Loss: 0.7137
-INFO:local_logger:Epoch[050/800], Step[0300/0626], Avg Loss: 0.7137
-INFO:master_logger:Epoch[050/800], Step[0300/0626], Avg Loss: 0.7141
-INFO:local_logger:Epoch[050/800], Step[0400/0626], Avg Loss: 0.7140
-INFO:local_logger:Epoch[050/800], Step[0400/0626], Avg Loss: 0.7139
-INFO:local_logger:Epoch[050/800], Step[0400/0626], Avg Loss: 0.7143
-INFO:local_logger:Epoch[050/800], Step[0400/0626], Avg Loss: 0.7136
-INFO:local_logger:Epoch[050/800], Step[0400/0626], Avg Loss: 0.7137
-INFO:local_logger:Epoch[050/800], Step[0400/0626], Avg Loss: 0.7139
-INFO:local_logger:Epoch[050/800], Step[0400/0626], Avg Loss: 0.7139
-INFO:local_logger:Epoch[050/800], Step[0400/0626], Avg Loss: 0.7142
-INFO:master_logger:Epoch[050/800], Step[0400/0626], Avg Loss: 0.7139
-INFO:local_logger:Epoch[050/800], Step[0500/0626], Avg Loss: 0.7137
-INFO:local_logger:Epoch[050/800], Step[0500/0626], Avg Loss: 0.7140
-INFO:local_logger:Epoch[050/800], Step[0500/0626], Avg Loss: 0.7142
-INFO:local_logger:Epoch[050/800], Step[0500/0626], Avg Loss: 0.7140
-INFO:local_logger:Epoch[050/800], Step[0500/0626], Avg Loss: 0.7140
-INFO:local_logger:Epoch[050/800], Step[0500/0626], Avg Loss: 0.7137
-INFO:master_logger:Epoch[050/800], Step[0500/0626], Avg Loss: 0.7139
-INFO:local_logger:Epoch[050/800], Step[0500/0626], Avg Loss: 0.7136
-INFO:local_logger:Epoch[050/800], Step[0500/0626], Avg Loss: 0.7140
-INFO:local_logger:Epoch[050/800], Step[0600/0626], Avg Loss: 0.7140
-INFO:local_logger:Epoch[050/800], Step[0600/0626], Avg Loss: 0.7139
-INFO:local_logger:Epoch[050/800], Step[0600/0626], Avg Loss: 0.7142
-INFO:local_logger:Epoch[050/800], Step[0600/0626], Avg Loss: 0.7138
-INFO:local_logger:Epoch[050/800], Step[0600/0626], Avg Loss: 0.7141
-INFO:local_logger:Epoch[050/800], Step[0600/0626], Avg Loss: 0.7141
-INFO:local_logger:Epoch[050/800], Step[0600/0626], Avg Loss: 0.7141
-INFO:master_logger:Epoch[050/800], Step[0600/0626], Avg Loss: 0.7140
-INFO:local_logger:Epoch[050/800], Step[0600/0626], Avg Loss: 0.7141
-INFO:local_logger:----- Epoch[050/800], Train Loss: 0.7141, time: 882.33
-INFO:local_logger:Now training epoch 51. LR=0.000150
-INFO:local_logger:----- Epoch[050/800], Train Loss: 0.7141, time: 882.32
-INFO:local_logger:Now training epoch 51. LR=0.000150
-INFO:local_logger:----- Epoch[050/800], Train Loss: 0.7139, time: 878.40
-INFO:master_logger:----- Epoch[050/800], Train Loss: 0.7140, time: 878.40
-INFO:local_logger:----- Epoch[050/800], Train Loss: 0.7144, time: 882.28
-INFO:local_logger:Now training epoch 51. LR=0.000150
-INFO:local_logger:----- Epoch[050/800], Train Loss: 0.7139, time: 882.66
-INFO:local_logger:Now training epoch 51. LR=0.000150
-INFO:local_logger:----- Epoch[050/800], Train Loss: 0.7140, time: 882.66
-INFO:local_logger:Now training epoch 51. LR=0.000150
-INFO:local_logger:----- Epoch[050/800], Train Loss: 0.7138, time: 882.67
-INFO:local_logger:Now training epoch 51. LR=0.000150
-INFO:local_logger:----- Epoch[050/800], Train Loss: 0.7140, time: 882.77
-INFO:local_logger:Now training epoch 51. LR=0.000150
-INFO:local_logger:----- Save model: ./output/train-20211219-17-07-40/MAE-Epoch-50-Loss-0.7138677369669435.pdparams
-INFO:local_logger:----- Save optim: ./output/train-20211219-17-07-40/MAE-Epoch-50-Loss-0.7138677369669435.pdopt
-INFO:master_logger:----- Save model: ./output/train-20211219-17-07-40/MAE-Epoch-50-Loss-0.7138677369669435.pdparams
-INFO:master_logger:----- Save optim: ./output/train-20211219-17-07-40/MAE-Epoch-50-Loss-0.7138677369669435.pdopt
-INFO:local_logger:Now training epoch 51. LR=0.000150
-INFO:master_logger:Now training epoch 51. LR=0.000150
-INFO:local_logger:Epoch[051/800], Step[0000/0626], Avg Loss: 0.7092
-INFO:local_logger:Epoch[051/800], Step[0000/0626], Avg Loss: 0.7069
-INFO:local_logger:Epoch[051/800], Step[0000/0626], Avg Loss: 0.7248
-INFO:local_logger:Epoch[051/800], Step[0000/0626], Avg Loss: 0.7198
-INFO:local_logger:Epoch[051/800], Step[0000/0626], Avg Loss: 0.7048
-INFO:master_logger:Epoch[051/800], Step[0000/0626], Avg Loss: 0.7142
-INFO:local_logger:Epoch[051/800], Step[0000/0626], Avg Loss: 0.7200
-INFO:local_logger:Epoch[051/800], Step[0000/0626], Avg Loss: 0.7138
-INFO:local_logger:Epoch[051/800], Step[0000/0626], Avg Loss: 0.7145
-INFO:local_logger:Epoch[051/800], Step[0100/0626], Avg Loss: 0.7135
-INFO:local_logger:Epoch[051/800], Step[0100/0626], Avg Loss: 0.7127
-INFO:local_logger:Epoch[051/800], Step[0100/0626], Avg Loss: 0.7135
-INFO:local_logger:Epoch[051/800], Step[0100/0626], Avg Loss: 0.7137
-INFO:local_logger:Epoch[051/800], Step[0100/0626], Avg Loss: 0.7118
-INFO:local_logger:Epoch[051/800], Step[0100/0626], Avg Loss: 0.7132
-INFO:master_logger:Epoch[051/800], Step[0100/0626], Avg Loss: 0.7129
-INFO:local_logger:Epoch[051/800], Step[0100/0626], Avg Loss: 0.7122
-INFO:local_logger:Epoch[051/800], Step[0100/0626], Avg Loss: 0.7129
-INFO:local_logger:Epoch[051/800], Step[0200/0626], Avg Loss: 0.7131
-INFO:local_logger:Epoch[051/800], Step[0200/0626], Avg Loss: 0.7137
-INFO:local_logger:Epoch[051/800], Step[0200/0626], Avg Loss: 0.7133
-INFO:local_logger:Epoch[051/800], Step[0200/0626], Avg Loss: 0.7130
-INFO:local_logger:Epoch[051/800], Step[0200/0626], Avg Loss: 0.7130
-INFO:local_logger:Epoch[051/800], Step[0200/0626], Avg Loss: 0.7133
-INFO:local_logger:Epoch[051/800], Step[0200/0626], Avg Loss: 0.7129
-INFO:master_logger:Epoch[051/800], Step[0200/0626], Avg Loss: 0.7130
-INFO:local_logger:Epoch[051/800], Step[0200/0626], Avg Loss: 0.7120
-INFO:local_logger:Epoch[051/800], Step[0300/0626], Avg Loss: 0.7131
-INFO:local_logger:Epoch[051/800], Step[0300/0626], Avg Loss: 0.7130
-INFO:local_logger:Epoch[051/800], Step[0300/0626], Avg Loss: 0.7125
-INFO:master_logger:Epoch[051/800], Step[0300/0626], Avg Loss: 0.7129
-INFO:local_logger:Epoch[051/800], Step[0300/0626], Avg Loss: 0.7131
-INFO:local_logger:Epoch[051/800], Step[0300/0626], Avg Loss: 0.7127
-INFO:local_logger:Epoch[051/800], Step[0300/0626], Avg Loss: 0.7129
-INFO:local_logger:Epoch[051/800], Step[0300/0626], Avg Loss: 0.7128
-INFO:local_logger:Epoch[051/800], Step[0300/0626], Avg Loss: 0.7129
-INFO:local_logger:Epoch[051/800], Step[0400/0626], Avg Loss: 0.7126
-INFO:local_logger:Epoch[051/800], Step[0400/0626], Avg Loss: 0.7126
-INFO:local_logger:Epoch[051/800], Step[0400/0626], Avg Loss: 0.7130
-INFO:local_logger:Epoch[051/800], Step[0400/0626], Avg Loss: 0.7130
-INFO:local_logger:Epoch[051/800], Step[0400/0626], Avg Loss: 0.7128
-INFO:local_logger:Epoch[051/800], Step[0400/0626], Avg Loss: 0.7122
-INFO:master_logger:Epoch[051/800], Step[0400/0626], Avg Loss: 0.7128
-INFO:local_logger:Epoch[051/800], Step[0400/0626], Avg Loss: 0.7131
-INFO:local_logger:Epoch[051/800], Step[0400/0626], Avg Loss: 0.7127
-INFO:local_logger:Epoch[051/800], Step[0500/0626], Avg Loss: 0.7124
-INFO:local_logger:Epoch[051/800], Step[0500/0626], Avg Loss: 0.7128
-INFO:local_logger:Epoch[051/800], Step[0500/0626], Avg Loss: 0.7127
-INFO:local_logger:Epoch[051/800], Step[0500/0626], Avg Loss: 0.7122
-INFO:local_logger:Epoch[051/800], Step[0500/0626], Avg Loss: 0.7129
-INFO:local_logger:Epoch[051/800], Step[0500/0626], Avg Loss: 0.7129
-INFO:master_logger:Epoch[051/800], Step[0500/0626], Avg Loss: 0.7126
-INFO:local_logger:Epoch[051/800], Step[0500/0626], Avg Loss: 0.7126
-INFO:local_logger:Epoch[051/800], Step[0500/0626], Avg Loss: 0.7126
-INFO:local_logger:Epoch[051/800], Step[0600/0626], Avg Loss: 0.7126
-INFO:local_logger:Epoch[051/800], Step[0600/0626], Avg Loss: 0.7128
-INFO:local_logger:Epoch[051/800], Step[0600/0626], Avg Loss: 0.7125
-INFO:local_logger:Epoch[051/800], Step[0600/0626], Avg Loss: 0.7128
-INFO:local_logger:Epoch[051/800], Step[0600/0626], Avg Loss: 0.7128
-INFO:local_logger:Epoch[051/800], Step[0600/0626], Avg Loss: 0.7122
-INFO:local_logger:Epoch[051/800], Step[0600/0626], Avg Loss: 0.7120
-INFO:master_logger:Epoch[051/800], Step[0600/0626], Avg Loss: 0.7125
-INFO:local_logger:Epoch[051/800], Step[0600/0626], Avg Loss: 0.7125
-INFO:local_logger:----- Epoch[051/800], Train Loss: 0.7127, time: 848.53
-INFO:local_logger:Now training epoch 52. LR=0.000150
-INFO:local_logger:----- Epoch[051/800], Train Loss: 0.7120, time: 845.42
-INFO:master_logger:----- Epoch[051/800], Train Loss: 0.7125, time: 845.42
-INFO:local_logger:----- Epoch[051/800], Train Loss: 0.7125, time: 849.57
-INFO:local_logger:Now training epoch 52. LR=0.000150
-INFO:local_logger:----- Epoch[051/800], Train Loss: 0.7126, time: 849.50
-INFO:local_logger:Now training epoch 52. LR=0.000150
-INFO:local_logger:----- Epoch[051/800], Train Loss: 0.7127, time: 849.57
-INFO:local_logger:Now training epoch 52. LR=0.000150
-INFO:local_logger:----- Epoch[051/800], Train Loss: 0.7126, time: 849.14
-INFO:local_logger:Now training epoch 52. LR=0.000150
-INFO:local_logger:----- Epoch[051/800], Train Loss: 0.7122, time: 849.16
-INFO:local_logger:Now training epoch 52. LR=0.000150
-INFO:local_logger:----- Epoch[051/800], Train Loss: 0.7126, time: 849.16
-INFO:local_logger:Now training epoch 52. LR=0.000150
-INFO:local_logger:----- Save model: ./output/train-20211219-17-07-40/MAE-Epoch-51-Loss-0.7120018708518765.pdparams
-INFO:local_logger:----- Save optim: ./output/train-20211219-17-07-40/MAE-Epoch-51-Loss-0.7120018708518765.pdopt
-INFO:master_logger:----- Save model: ./output/train-20211219-17-07-40/MAE-Epoch-51-Loss-0.7120018708518765.pdparams
-INFO:master_logger:----- Save optim: ./output/train-20211219-17-07-40/MAE-Epoch-51-Loss-0.7120018708518765.pdopt
-INFO:local_logger:Now training epoch 52. LR=0.000150
-INFO:master_logger:Now training epoch 52. LR=0.000150
-INFO:local_logger:Epoch[052/800], Step[0000/0626], Avg Loss: 0.7075
-INFO:local_logger:Epoch[052/800], Step[0000/0626], Avg Loss: 0.7092
-INFO:local_logger:Epoch[052/800], Step[0000/0626], Avg Loss: 0.7105
-INFO:master_logger:Epoch[052/800], Step[0000/0626], Avg Loss: 0.7076
-INFO:local_logger:Epoch[052/800], Step[0000/0626], Avg Loss: 0.6988
-INFO:local_logger:Epoch[052/800], Step[0000/0626], Avg Loss: 0.7034
-INFO:local_logger:Epoch[052/800], Step[0000/0626], Avg Loss: 0.7050
-INFO:local_logger:Epoch[052/800], Step[0000/0626], Avg Loss: 0.7185
-INFO:local_logger:Epoch[052/800], Step[0000/0626], Avg Loss: 0.7081
-INFO:local_logger:Epoch[052/800], Step[0100/0626], Avg Loss: 0.7119
-INFO:local_logger:Epoch[052/800], Step[0100/0626], Avg Loss: 0.7123
-INFO:local_logger:Epoch[052/800], Step[0100/0626], Avg Loss: 0.7110
-INFO:local_logger:Epoch[052/800], Step[0100/0626], Avg Loss: 0.7121
-INFO:local_logger:Epoch[052/800], Step[0100/0626], Avg Loss: 0.7118
-INFO:local_logger:Epoch[052/800], Step[0100/0626], Avg Loss: 0.7113
-INFO:local_logger:Epoch[052/800], Step[0100/0626], Avg Loss: 0.7116
-INFO:master_logger:Epoch[052/800], Step[0100/0626], Avg Loss: 0.7117
-INFO:local_logger:Epoch[052/800], Step[0100/0626], Avg Loss: 0.7119
-INFO:local_logger:Epoch[052/800], Step[0200/0626], Avg Loss: 0.7110
-INFO:local_logger:Epoch[052/800], Step[0200/0626], Avg Loss: 0.7116
-INFO:local_logger:Epoch[052/800], Step[0200/0626], Avg Loss: 0.7112
-INFO:local_logger:Epoch[052/800], Step[0200/0626], Avg Loss: 0.7122
-INFO:local_logger:Epoch[052/800], Step[0200/0626], Avg Loss: 0.7114
-INFO:local_logger:Epoch[052/800], Step[0200/0626], Avg Loss: 0.7115
-INFO:local_logger:Epoch[052/800], Step[0200/0626], Avg Loss: 0.7111
-INFO:master_logger:Epoch[052/800], Step[0200/0626], Avg Loss: 0.7115
-INFO:local_logger:Epoch[052/800], Step[0200/0626], Avg Loss: 0.7123
-INFO:local_logger:Epoch[052/800], Step[0300/0626], Avg Loss: 0.7116
-INFO:local_logger:Epoch[052/800], Step[0300/0626], Avg Loss: 0.7112
-INFO:local_logger:Epoch[052/800], Step[0300/0626], Avg Loss: 0.7117
-INFO:local_logger:Epoch[052/800], Step[0300/0626], Avg Loss: 0.7109
-INFO:local_logger:Epoch[052/800], Step[0300/0626], Avg Loss: 0.7114
-INFO:master_logger:Epoch[052/800], Step[0300/0626], Avg Loss: 0.7113
-INFO:local_logger:Epoch[052/800], Step[0300/0626], Avg Loss: 0.7111
-INFO:local_logger:Epoch[052/800], Step[0300/0626], Avg Loss: 0.7113
-INFO:local_logger:Epoch[052/800], Step[0300/0626], Avg Loss: 0.7116
-INFO:local_logger:Epoch[052/800], Step[0400/0626], Avg Loss: 0.7117
-INFO:local_logger:Epoch[052/800], Step[0400/0626], Avg Loss: 0.7112
-INFO:local_logger:Epoch[052/800], Step[0400/0626], Avg Loss: 0.7113
-INFO:local_logger:Epoch[052/800], Step[0400/0626], Avg Loss: 0.7110
-INFO:master_logger:Epoch[052/800], Step[0400/0626], Avg Loss: 0.7112
-INFO:local_logger:Epoch[052/800], Step[0400/0626], Avg Loss: 0.7111
-INFO:local_logger:Epoch[052/800], Step[0400/0626], Avg Loss: 0.7107
-INFO:local_logger:Epoch[052/800], Step[0400/0626], Avg Loss: 0.7117
-INFO:local_logger:Epoch[052/800], Step[0400/0626], Avg Loss: 0.7111
-INFO:local_logger:Epoch[052/800], Step[0500/0626], Avg Loss: 0.7107
-INFO:local_logger:Epoch[052/800], Step[0500/0626], Avg Loss: 0.7112
-INFO:local_logger:Epoch[052/800], Step[0500/0626], Avg Loss: 0.7115
-INFO:local_logger:Epoch[052/800], Step[0500/0626], Avg Loss: 0.7114
-INFO:local_logger:Epoch[052/800], Step[0500/0626], Avg Loss: 0.7107
-INFO:master_logger:Epoch[052/800], Step[0500/0626], Avg Loss: 0.7111
-INFO:local_logger:Epoch[052/800], Step[0500/0626], Avg Loss: 0.7109
-INFO:local_logger:Epoch[052/800], Step[0500/0626], Avg Loss: 0.7116
-INFO:local_logger:Epoch[052/800], Step[0500/0626], Avg Loss: 0.7112
-INFO:local_logger:Epoch[052/800], Step[0600/0626], Avg Loss: 0.7106
-INFO:local_logger:Epoch[052/800], Step[0600/0626], Avg Loss: 0.7113
-INFO:local_logger:Epoch[052/800], Step[0600/0626], Avg Loss: 0.7114
-INFO:local_logger:Epoch[052/800], Step[0600/0626], Avg Loss: 0.7109
-INFO:local_logger:Epoch[052/800], Step[0600/0626], Avg Loss: 0.7113
-INFO:local_logger:Epoch[052/800], Step[0600/0626], Avg Loss: 0.7110
-INFO:local_logger:Epoch[052/800], Step[0600/0626], Avg Loss: 0.7113
-INFO:master_logger:Epoch[052/800], Step[0600/0626], Avg Loss: 0.7111
-INFO:local_logger:Epoch[052/800], Step[0600/0626], Avg Loss: 0.7107
-INFO:local_logger:----- Epoch[052/800], Train Loss: 0.7107, time: 899.12
-INFO:local_logger:Now training epoch 53. LR=0.000150
-INFO:local_logger:----- Epoch[052/800], Train Loss: 0.7109, time: 899.76
-INFO:local_logger:Now training epoch 53. LR=0.000150
-INFO:local_logger:----- Epoch[052/800], Train Loss: 0.7113, time: 899.78
-INFO:local_logger:Now training epoch 53. LR=0.000150
-INFO:local_logger:----- Epoch[052/800], Train Loss: 0.7113, time: 900.39
-INFO:local_logger:----- Epoch[052/800], Train Loss: 0.7114, time: 896.39
-INFO:local_logger:Now training epoch 53. LR=0.000150
-INFO:master_logger:----- Epoch[052/800], Train Loss: 0.7110, time: 896.39
-INFO:local_logger:----- Epoch[052/800], Train Loss: 0.7109, time: 899.78
-INFO:local_logger:Now training epoch 53. LR=0.000150
-INFO:local_logger:----- Epoch[052/800], Train Loss: 0.7105, time: 899.79
-INFO:local_logger:Now training epoch 53. LR=0.000150
-INFO:local_logger:----- Epoch[052/800], Train Loss: 0.7112, time: 899.77
-INFO:local_logger:Now training epoch 53. LR=0.000150
-INFO:local_logger:----- Save model: ./output/train-20211219-17-07-40/MAE-Epoch-52-Loss-0.7113885321068728.pdparams
-INFO:local_logger:----- Save optim: ./output/train-20211219-17-07-40/MAE-Epoch-52-Loss-0.7113885321068728.pdopt
-INFO:master_logger:----- Save model: ./output/train-20211219-17-07-40/MAE-Epoch-52-Loss-0.7113885321068728.pdparams
-INFO:master_logger:----- Save optim: ./output/train-20211219-17-07-40/MAE-Epoch-52-Loss-0.7113885321068728.pdopt
-INFO:local_logger:Now training epoch 53. LR=0.000150
-INFO:master_logger:Now training epoch 53. LR=0.000150
-INFO:local_logger:Epoch[053/800], Step[0000/0626], Avg Loss: 0.7064
-INFO:master_logger:Epoch[053/800], Step[0000/0626], Avg Loss: 0.7112
-INFO:local_logger:Epoch[053/800], Step[0000/0626], Avg Loss: 0.7098
-INFO:local_logger:Epoch[053/800], Step[0000/0626], Avg Loss: 0.7075
-INFO:local_logger:Epoch[053/800], Step[0000/0626], Avg Loss: 0.7109
-INFO:local_logger:Epoch[053/800], Step[0000/0626], Avg Loss: 0.7036
-INFO:local_logger:Epoch[053/800], Step[0000/0626], Avg Loss: 0.7135
-INFO:local_logger:Epoch[053/800], Step[0000/0626], Avg Loss: 0.7272
-INFO:local_logger:Epoch[053/800], Step[0000/0626], Avg Loss: 0.7107
-INFO:local_logger:Epoch[053/800], Step[0100/0626], Avg Loss: 0.7100
-INFO:master_logger:Epoch[053/800], Step[0100/0626], Avg Loss: 0.7105
-INFO:local_logger:Epoch[053/800], Step[0100/0626], Avg Loss: 0.7112
-INFO:local_logger:Epoch[053/800], Step[0100/0626], Avg Loss: 0.7106
-INFO:local_logger:Epoch[053/800], Step[0100/0626], Avg Loss: 0.7117
-INFO:local_logger:Epoch[053/800], Step[0100/0626], Avg Loss: 0.7093
-INFO:local_logger:Epoch[053/800], Step[0100/0626], Avg Loss: 0.7106
-INFO:local_logger:Epoch[053/800], Step[0100/0626], Avg Loss: 0.7110
-INFO:local_logger:Epoch[053/800], Step[0100/0626], Avg Loss: 0.7096
-INFO:local_logger:Epoch[053/800], Step[0200/0626], Avg Loss: 0.7102
-INFO:local_logger:Epoch[053/800], Step[0200/0626], Avg Loss: 0.7106
-INFO:local_logger:Epoch[053/800], Step[0200/0626], Avg Loss: 0.7117
-INFO:local_logger:Epoch[053/800], Step[0200/0626], Avg Loss: 0.7098
-INFO:local_logger:Epoch[053/800], Step[0200/0626], Avg Loss: 0.7102
-INFO:local_logger:Epoch[053/800], Step[0200/0626], Avg Loss: 0.7105
-INFO:master_logger:Epoch[053/800], Step[0200/0626], Avg Loss: 0.7103
-INFO:local_logger:Epoch[053/800], Step[0200/0626], Avg Loss: 0.7102
-INFO:local_logger:Epoch[053/800], Step[0200/0626], Avg Loss: 0.7094
-INFO:local_logger:Epoch[053/800], Step[0300/0626], Avg Loss: 0.7105
-INFO:local_logger:Epoch[053/800], Step[0300/0626], Avg Loss: 0.7101
-INFO:local_logger:Epoch[053/800], Step[0300/0626], Avg Loss: 0.7099
-INFO:local_logger:Epoch[053/800], Step[0300/0626], Avg Loss: 0.7094
-INFO:local_logger:Epoch[053/800], Step[0300/0626], Avg Loss: 0.7103
-INFO:local_logger:Epoch[053/800], Step[0300/0626], Avg Loss: 0.7107
-INFO:master_logger:Epoch[053/800], Step[0300/0626], Avg Loss: 0.7101
-INFO:local_logger:Epoch[053/800], Step[0300/0626], Avg Loss: 0.7099
-INFO:local_logger:Epoch[053/800], Step[0300/0626], Avg Loss: 0.7101
-INFO:local_logger:Epoch[053/800], Step[0400/0626], Avg Loss: 0.7103
-INFO:local_logger:Epoch[053/800], Step[0400/0626], Avg Loss: 0.7096
-INFO:local_logger:Epoch[053/800], Step[0400/0626], Avg Loss: 0.7104
-INFO:local_logger:Epoch[053/800], Step[0400/0626], Avg Loss: 0.7103
-INFO:local_logger:Epoch[053/800], Step[0400/0626], Avg Loss: 0.7102
-INFO:master_logger:Epoch[053/800], Step[0400/0626], Avg Loss: 0.7102
-INFO:local_logger:Epoch[053/800], Step[0400/0626], Avg Loss: 0.7104
-INFO:local_logger:Epoch[053/800], Step[0400/0626], Avg Loss: 0.7101
-INFO:local_logger:Epoch[053/800], Step[0400/0626], Avg Loss: 0.7103
-INFO:local_logger:Epoch[053/800], Step[0500/0626], Avg Loss: 0.7105
-INFO:local_logger:Epoch[053/800], Step[0500/0626], Avg Loss: 0.7104
-INFO:local_logger:Epoch[053/800], Step[0500/0626], Avg Loss: 0.7103
-INFO:local_logger:Epoch[053/800], Step[0500/0626], Avg Loss: 0.7101
-INFO:local_logger:Epoch[053/800], Step[0500/0626], Avg Loss: 0.7096
-INFO:local_logger:Epoch[053/800], Step[0500/0626], Avg Loss: 0.7102
-INFO:local_logger:Epoch[053/800], Step[0500/0626], Avg Loss: 0.7102
-INFO:master_logger:Epoch[053/800], Step[0500/0626], Avg Loss: 0.7102
-INFO:local_logger:Epoch[053/800], Step[0500/0626], Avg Loss: 0.7103
-INFO:local_logger:Epoch[053/800], Step[0600/0626], Avg Loss: 0.7094
-INFO:local_logger:Epoch[053/800], Step[0600/0626], Avg Loss: 0.7102
-INFO:local_logger:Epoch[053/800], Step[0600/0626], Avg Loss: 0.7101
-INFO:local_logger:Epoch[053/800], Step[0600/0626], Avg Loss: 0.7100
-INFO:local_logger:Epoch[053/800], Step[0600/0626], Avg Loss: 0.7102
-INFO:local_logger:Epoch[053/800], Step[0600/0626], Avg Loss: 0.7101
-INFO:master_logger:Epoch[053/800], Step[0600/0626], Avg Loss: 0.7100
-INFO:local_logger:Epoch[053/800], Step[0600/0626], Avg Loss: 0.7101
-INFO:local_logger:Epoch[053/800], Step[0600/0626], Avg Loss: 0.7098
-INFO:local_logger:----- Epoch[053/800], Train Loss: 0.7102, time: 889.34
-INFO:master_logger:----- Epoch[053/800], Train Loss: 0.7100, time: 889.34
-INFO:local_logger:----- Epoch[053/800], Train Loss: 0.7102, time: 893.08
-INFO:local_logger:Now training epoch 54. LR=0.000150
-INFO:local_logger:----- Epoch[053/800], Train Loss: 0.7100, time: 893.08
-INFO:local_logger:Now training epoch 54. LR=0.000150
-INFO:local_logger:----- Epoch[053/800], Train Loss: 0.7094, time: 893.08
-INFO:local_logger:Now training epoch 54. LR=0.000150
-INFO:local_logger:----- Epoch[053/800], Train Loss: 0.7100, time: 893.10
-INFO:local_logger:Now training epoch 54. LR=0.000150
-INFO:local_logger:----- Epoch[053/800], Train Loss: 0.7100, time: 893.10
-INFO:local_logger:Now training epoch 54. LR=0.000150
-INFO:local_logger:----- Epoch[053/800], Train Loss: 0.7100, time: 893.75
-INFO:local_logger:Now training epoch 54. LR=0.000150
-INFO:local_logger:----- Epoch[053/800], Train Loss: 0.7098, time: 893.11
-INFO:local_logger:Now training epoch 54. LR=0.000150
-INFO:local_logger:----- Save model: ./output/train-20211219-17-07-40/MAE-Epoch-53-Loss-0.7102464560284915.pdparams
-INFO:local_logger:----- Save optim: ./output/train-20211219-17-07-40/MAE-Epoch-53-Loss-0.7102464560284915.pdopt
-INFO:master_logger:----- Save model: ./output/train-20211219-17-07-40/MAE-Epoch-53-Loss-0.7102464560284915.pdparams
-INFO:master_logger:----- Save optim: ./output/train-20211219-17-07-40/MAE-Epoch-53-Loss-0.7102464560284915.pdopt
-INFO:local_logger:Now training epoch 54. LR=0.000150
-INFO:master_logger:Now training epoch 54. LR=0.000150
-INFO:local_logger:Epoch[054/800], Step[0000/0626], Avg Loss: 0.7001
-INFO:local_logger:Epoch[054/800], Step[0000/0626], Avg Loss: 0.7124
-INFO:local_logger:Epoch[054/800], Step[0000/0626], Avg Loss: 0.7103
-INFO:local_logger:Epoch[054/800], Step[0000/0626], Avg Loss: 0.7021
-INFO:master_logger:Epoch[054/800], Step[0000/0626], Avg Loss: 0.7094
-INFO:local_logger:Epoch[054/800], Step[0000/0626], Avg Loss: 0.7254
-INFO:local_logger:Epoch[054/800], Step[0000/0626], Avg Loss: 0.7077
-INFO:local_logger:Epoch[054/800], Step[0000/0626], Avg Loss: 0.7109
-INFO:local_logger:Epoch[054/800], Step[0000/0626], Avg Loss: 0.7063
-INFO:local_logger:Epoch[054/800], Step[0100/0626], Avg Loss: 0.7094
-INFO:local_logger:Epoch[054/800], Step[0100/0626], Avg Loss: 0.7105
-INFO:local_logger:Epoch[054/800], Step[0100/0626], Avg Loss: 0.7093
-INFO:master_logger:Epoch[054/800], Step[0100/0626], Avg Loss: 0.7094
-INFO:local_logger:Epoch[054/800], Step[0100/0626], Avg Loss: 0.7095
-INFO:local_logger:Epoch[054/800], Step[0100/0626], Avg Loss: 0.7089
-INFO:local_logger:Epoch[054/800], Step[0100/0626], Avg Loss: 0.7095
-INFO:local_logger:Epoch[054/800], Step[0100/0626], Avg Loss: 0.7097
-INFO:local_logger:Epoch[054/800], Step[0100/0626], Avg Loss: 0.7087
-INFO:local_logger:Epoch[054/800], Step[0200/0626], Avg Loss: 0.7082
-INFO:local_logger:Epoch[054/800], Step[0200/0626], Avg Loss: 0.7086
-INFO:local_logger:Epoch[054/800], Step[0200/0626], Avg Loss: 0.7092
-INFO:local_logger:Epoch[054/800], Step[0200/0626], Avg Loss: 0.7092
-INFO:local_logger:Epoch[054/800], Step[0200/0626], Avg Loss: 0.7087
-INFO:local_logger:Epoch[054/800], Step[0200/0626], Avg Loss: 0.7088
-INFO:local_logger:Epoch[054/800], Step[0200/0626], Avg Loss: 0.7085
-INFO:master_logger:Epoch[054/800], Step[0200/0626], Avg Loss: 0.7088
-INFO:local_logger:Epoch[054/800], Step[0200/0626], Avg Loss: 0.7093
-INFO:local_logger:Epoch[054/800], Step[0300/0626], Avg Loss: 0.7083
-INFO:local_logger:Epoch[054/800], Step[0300/0626], Avg Loss: 0.7089
-INFO:local_logger:Epoch[054/800], Step[0300/0626], Avg Loss: 0.7089
-INFO:local_logger:Epoch[054/800], Step[0300/0626], Avg Loss: 0.7089
-INFO:local_logger:Epoch[054/800], Step[0300/0626], Avg Loss: 0.7088
-INFO:local_logger:Epoch[054/800], Step[0300/0626], Avg Loss: 0.7085
-INFO:master_logger:Epoch[054/800], Step[0300/0626], Avg Loss: 0.7088
-INFO:local_logger:Epoch[054/800], Step[0300/0626], Avg Loss: 0.7088
-INFO:local_logger:Epoch[054/800], Step[0300/0626], Avg Loss: 0.7092
-INFO:local_logger:Epoch[054/800], Step[0400/0626], Avg Loss: 0.7089
-INFO:local_logger:Epoch[054/800], Step[0400/0626], Avg Loss: 0.7088
-INFO:local_logger:Epoch[054/800], Step[0400/0626], Avg Loss: 0.7090
-INFO:local_logger:Epoch[054/800], Step[0400/0626], Avg Loss: 0.7088
-INFO:local_logger:Epoch[054/800], Step[0400/0626], Avg Loss: 0.7083
-INFO:master_logger:Epoch[054/800], Step[0400/0626], Avg Loss: 0.7088
-INFO:local_logger:Epoch[054/800], Step[0400/0626], Avg Loss: 0.7090
-INFO:local_logger:Epoch[054/800], Step[0400/0626], Avg Loss: 0.7091
-INFO:local_logger:Epoch[054/800], Step[0400/0626], Avg Loss: 0.7083
-INFO:local_logger:Epoch[054/800], Step[0500/0626], Avg Loss: 0.7087
-INFO:local_logger:Epoch[054/800], Step[0500/0626], Avg Loss: 0.7083
-INFO:local_logger:Epoch[054/800], Step[0500/0626], Avg Loss: 0.7084
-INFO:local_logger:Epoch[054/800], Step[0500/0626], Avg Loss: 0.7085
-INFO:local_logger:Epoch[054/800], Step[0500/0626], Avg Loss: 0.7087
-INFO:local_logger:Epoch[054/800], Step[0500/0626], Avg Loss: 0.7090
-INFO:local_logger:Epoch[054/800], Step[0500/0626], Avg Loss: 0.7090
-INFO:master_logger:Epoch[054/800], Step[0500/0626], Avg Loss: 0.7086
-INFO:local_logger:Epoch[054/800], Step[0500/0626], Avg Loss: 0.7083
-INFO:local_logger:Epoch[054/800], Step[0600/0626], Avg Loss: 0.7083
-INFO:local_logger:Epoch[054/800], Step[0600/0626], Avg Loss: 0.7088
-INFO:local_logger:Epoch[054/800], Step[0600/0626], Avg Loss: 0.7088
-INFO:local_logger:Epoch[054/800], Step[0600/0626], Avg Loss: 0.7085
-INFO:local_logger:Epoch[054/800], Step[0600/0626], Avg Loss: 0.7087
-INFO:master_logger:Epoch[054/800], Step[0600/0626], Avg Loss: 0.7085
-INFO:local_logger:Epoch[054/800], Step[0600/0626], Avg Loss: 0.7088
-INFO:local_logger:Epoch[054/800], Step[0600/0626], Avg Loss: 0.7081
-INFO:local_logger:Epoch[054/800], Step[0600/0626], Avg Loss: 0.7081
-INFO:local_logger:----- Epoch[054/800], Train Loss: 0.7087, time: 903.80
-INFO:local_logger:Now training epoch 55. LR=0.000150
-INFO:local_logger:----- Epoch[054/800], Train Loss: 0.7082, time: 903.85
-INFO:local_logger:Now training epoch 55. LR=0.000150
-INFO:local_logger:----- Epoch[054/800], Train Loss: 0.7083, time: 904.37
-INFO:local_logger:Now training epoch 55. LR=0.000150
-INFO:local_logger:----- Epoch[054/800], Train Loss: 0.7081, time: 904.37
-INFO:local_logger:Now training epoch 55. LR=0.000150
-INFO:local_logger:----- Epoch[054/800], Train Loss: 0.7085, time: 904.35
-INFO:local_logger:Now training epoch 55. LR=0.000150
-INFO:local_logger:----- Epoch[054/800], Train Loss: 0.7087, time: 904.43
-INFO:local_logger:Now training epoch 55. LR=0.000150
-INFO:local_logger:----- Epoch[054/800], Train Loss: 0.7088, time: 900.86
-INFO:master_logger:----- Epoch[054/800], Train Loss: 0.7085, time: 900.86
-INFO:local_logger:----- Epoch[054/800], Train Loss: 0.7087, time: 904.47
-INFO:local_logger:Now training epoch 55. LR=0.000150
-INFO:local_logger:----- Save model: ./output/train-20211219-17-07-40/MAE-Epoch-54-Loss-0.7087632936406654.pdparams
-INFO:local_logger:----- Save optim: ./output/train-20211219-17-07-40/MAE-Epoch-54-Loss-0.7087632936406654.pdopt
-INFO:master_logger:----- Save model: ./output/train-20211219-17-07-40/MAE-Epoch-54-Loss-0.7087632936406654.pdparams
-INFO:master_logger:----- Save optim: ./output/train-20211219-17-07-40/MAE-Epoch-54-Loss-0.7087632936406654.pdopt
-INFO:local_logger:Now training epoch 55. LR=0.000150
-INFO:master_logger:Now training epoch 55. LR=0.000150
-INFO:local_logger:Epoch[055/800], Step[0000/0626], Avg Loss: 0.6897
-INFO:master_logger:Epoch[055/800], Step[0000/0626], Avg Loss: 0.7057
-INFO:local_logger:Epoch[055/800], Step[0000/0626], Avg Loss: 0.7023
-INFO:local_logger:Epoch[055/800], Step[0000/0626], Avg Loss: 0.6937
-INFO:local_logger:Epoch[055/800], Step[0000/0626], Avg Loss: 0.7040
-INFO:local_logger:Epoch[055/800], Step[0000/0626], Avg Loss: 0.7203
-INFO:local_logger:Epoch[055/800], Step[0000/0626], Avg Loss: 0.7165
-INFO:local_logger:Epoch[055/800], Step[0000/0626], Avg Loss: 0.7079
-INFO:local_logger:Epoch[055/800], Step[0000/0626], Avg Loss: 0.7108
-INFO:local_logger:Epoch[055/800], Step[0100/0626], Avg Loss: 0.7093
-INFO:local_logger:Epoch[055/800], Step[0100/0626], Avg Loss: 0.7084
-INFO:local_logger:Epoch[055/800], Step[0100/0626], Avg Loss: 0.7081
-INFO:local_logger:Epoch[055/800], Step[0100/0626], Avg Loss: 0.7084
-INFO:master_logger:Epoch[055/800], Step[0100/0626], Avg Loss: 0.7083
-INFO:local_logger:Epoch[055/800], Step[0100/0626], Avg Loss: 0.7082
-INFO:local_logger:Epoch[055/800], Step[0100/0626], Avg Loss: 0.7082
-INFO:local_logger:Epoch[055/800], Step[0100/0626], Avg Loss: 0.7078
-INFO:local_logger:Epoch[055/800], Step[0100/0626], Avg Loss: 0.7078
-INFO:local_logger:Epoch[055/800], Step[0200/0626], Avg Loss: 0.7074
-INFO:local_logger:Epoch[055/800], Step[0200/0626], Avg Loss: 0.7086
-INFO:local_logger:Epoch[055/800], Step[0200/0626], Avg Loss: 0.7080
-INFO:local_logger:Epoch[055/800], Step[0200/0626], Avg Loss: 0.7086
-INFO:master_logger:Epoch[055/800], Step[0200/0626], Avg Loss: 0.7081
-INFO:local_logger:Epoch[055/800], Step[0200/0626], Avg Loss: 0.7088
-INFO:local_logger:Epoch[055/800], Step[0200/0626], Avg Loss: 0.7078
-INFO:local_logger:Epoch[055/800], Step[0200/0626], Avg Loss: 0.7078
-INFO:local_logger:Epoch[055/800], Step[0200/0626], Avg Loss: 0.7077
-INFO:local_logger:Epoch[055/800], Step[0300/0626], Avg Loss: 0.7071
-INFO:local_logger:Epoch[055/800], Step[0300/0626], Avg Loss: 0.7086
-INFO:local_logger:Epoch[055/800], Step[0300/0626], Avg Loss: 0.7076
-INFO:master_logger:Epoch[055/800], Step[0300/0626], Avg Loss: 0.7080
-INFO:local_logger:Epoch[055/800], Step[0300/0626], Avg Loss: 0.7086
-INFO:local_logger:Epoch[055/800], Step[0300/0626], Avg Loss: 0.7078
-INFO:local_logger:Epoch[055/800], Step[0300/0626], Avg Loss: 0.7079
-INFO:local_logger:Epoch[055/800], Step[0300/0626], Avg Loss: 0.7079
-INFO:local_logger:Epoch[055/800], Step[0300/0626], Avg Loss: 0.7083
-INFO:local_logger:Epoch[055/800], Step[0400/0626], Avg Loss: 0.7073
-INFO:local_logger:Epoch[055/800], Step[0400/0626], Avg Loss: 0.7081
-INFO:local_logger:Epoch[055/800], Step[0400/0626], Avg Loss: 0.7079
-INFO:local_logger:Epoch[055/800], Step[0400/0626], Avg Loss: 0.7076
-INFO:local_logger:Epoch[055/800], Step[0400/0626], Avg Loss: 0.7074
-INFO:local_logger:Epoch[055/800], Step[0400/0626], Avg Loss: 0.7078
-INFO:local_logger:Epoch[055/800], Step[0400/0626], Avg Loss: 0.7087
-INFO:master_logger:Epoch[055/800], Step[0400/0626], Avg Loss: 0.7079
-INFO:local_logger:Epoch[055/800], Step[0400/0626], Avg Loss: 0.7081
-INFO:local_logger:Epoch[055/800], Step[0500/0626], Avg Loss: 0.7087
-INFO:local_logger:Epoch[055/800], Step[0500/0626], Avg Loss: 0.7074
-INFO:local_logger:Epoch[055/800], Step[0500/0626], Avg Loss: 0.7077
-INFO:local_logger:Epoch[055/800], Step[0500/0626], Avg Loss: 0.7082
-INFO:local_logger:Epoch[055/800], Step[0500/0626], Avg Loss: 0.7076
-INFO:local_logger:Epoch[055/800], Step[0500/0626], Avg Loss: 0.7073
-INFO:master_logger:Epoch[055/800], Step[0500/0626], Avg Loss: 0.7078
-INFO:local_logger:Epoch[055/800], Step[0500/0626], Avg Loss: 0.7079
-INFO:local_logger:Epoch[055/800], Step[0500/0626], Avg Loss: 0.7074
-INFO:local_logger:Epoch[055/800], Step[0600/0626], Avg Loss: 0.7073
-INFO:local_logger:Epoch[055/800], Step[0600/0626], Avg Loss: 0.7074
-INFO:local_logger:Epoch[055/800], Step[0600/0626], Avg Loss: 0.7081
-INFO:local_logger:Epoch[055/800], Step[0600/0626], Avg Loss: 0.7074
-INFO:local_logger:Epoch[055/800], Step[0600/0626], Avg Loss: 0.7072
-INFO:local_logger:Epoch[055/800], Step[0600/0626], Avg Loss: 0.7084
-INFO:master_logger:Epoch[055/800], Step[0600/0626], Avg Loss: 0.7076
-INFO:local_logger:Epoch[055/800], Step[0600/0626], Avg Loss: 0.7077
-INFO:local_logger:Epoch[055/800], Step[0600/0626], Avg Loss: 0.7074
-INFO:local_logger:----- Epoch[055/800], Train Loss: 0.7081, time: 859.40
-INFO:local_logger:Now training epoch 56. LR=0.000150
-INFO:local_logger:----- Epoch[055/800], Train Loss: 0.7074, time: 855.79
-INFO:master_logger:----- Epoch[055/800], Train Loss: 0.7076, time: 855.79
-INFO:local_logger:----- Epoch[055/800], Train Loss: 0.7073, time: 859.94
-INFO:local_logger:Now training epoch 56. LR=0.000150
-INFO:local_logger:----- Epoch[055/800], Train Loss: 0.7073, time: 859.85
-INFO:local_logger:Now training epoch 56. LR=0.000150
-INFO:local_logger:----- Epoch[055/800], Train Loss: 0.7072, time: 860.45
-INFO:local_logger:Now training epoch 56. LR=0.000150
-INFO:local_logger:----- Epoch[055/800], Train Loss: 0.7074, time: 859.97
-INFO:local_logger:Now training epoch 56. LR=0.000150
-INFO:local_logger:----- Epoch[055/800], Train Loss: 0.7077, time: 859.89
-INFO:local_logger:Now training epoch 56. LR=0.000150
-INFO:local_logger:----- Epoch[055/800], Train Loss: 0.7083, time: 860.52
-INFO:local_logger:Now training epoch 56. LR=0.000150
-INFO:local_logger:----- Save model: ./output/train-20211219-17-07-40/MAE-Epoch-55-Loss-0.7074442110429905.pdparams
-INFO:local_logger:----- Save optim: ./output/train-20211219-17-07-40/MAE-Epoch-55-Loss-0.7074442110429905.pdopt
-INFO:master_logger:----- Save model: ./output/train-20211219-17-07-40/MAE-Epoch-55-Loss-0.7074442110429905.pdparams
-INFO:master_logger:----- Save optim: ./output/train-20211219-17-07-40/MAE-Epoch-55-Loss-0.7074442110429905.pdopt
-INFO:local_logger:Now training epoch 56. LR=0.000150
-INFO:master_logger:Now training epoch 56. LR=0.000150
-INFO:local_logger:Epoch[056/800], Step[0000/0626], Avg Loss: 0.6969
-INFO:local_logger:Epoch[056/800], Step[0000/0626], Avg Loss: 0.7058
-INFO:local_logger:Epoch[056/800], Step[0000/0626], Avg Loss: 0.7068
-INFO:master_logger:Epoch[056/800], Step[0000/0626], Avg Loss: 0.7070
-INFO:local_logger:Epoch[056/800], Step[0000/0626], Avg Loss: 0.7114
-INFO:local_logger:Epoch[056/800], Step[0000/0626], Avg Loss: 0.7124
-INFO:local_logger:Epoch[056/800], Step[0000/0626], Avg Loss: 0.6985
-INFO:local_logger:Epoch[056/800], Step[0000/0626], Avg Loss: 0.7150
-INFO:local_logger:Epoch[056/800], Step[0000/0626], Avg Loss: 0.7089
-INFO:local_logger:Epoch[056/800], Step[0100/0626], Avg Loss: 0.7066
-INFO:local_logger:Epoch[056/800], Step[0100/0626], Avg Loss: 0.7074
-INFO:local_logger:Epoch[056/800], Step[0100/0626], Avg Loss: 0.7062
-INFO:local_logger:Epoch[056/800], Step[0100/0626], Avg Loss: 0.7079
-INFO:local_logger:Epoch[056/800], Step[0100/0626], Avg Loss: 0.7056
-INFO:master_logger:Epoch[056/800], Step[0100/0626], Avg Loss: 0.7068
-INFO:local_logger:Epoch[056/800], Step[0100/0626], Avg Loss: 0.7069
-INFO:local_logger:Epoch[056/800], Step[0100/0626], Avg Loss: 0.7066
-INFO:local_logger:Epoch[056/800], Step[0100/0626], Avg Loss: 0.7070
-INFO:local_logger:Epoch[056/800], Step[0200/0626], Avg Loss: 0.7071
-INFO:local_logger:Epoch[056/800], Step[0200/0626], Avg Loss: 0.7066
-INFO:local_logger:Epoch[056/800], Step[0200/0626], Avg Loss: 0.7069
-INFO:local_logger:Epoch[056/800], Step[0200/0626], Avg Loss: 0.7075
-INFO:local_logger:Epoch[056/800], Step[0200/0626], Avg Loss: 0.7069
-INFO:local_logger:Epoch[056/800], Step[0200/0626], Avg Loss: 0.7069
-INFO:local_logger:Epoch[056/800], Step[0200/0626], Avg Loss: 0.7069
-INFO:local_logger:Epoch[056/800], Step[0200/0626], Avg Loss: 0.7059
-INFO:master_logger:Epoch[056/800], Step[0200/0626], Avg Loss: 0.7068
-INFO:local_logger:Epoch[056/800], Step[0300/0626], Avg Loss: 0.7077
-INFO:local_logger:Epoch[056/800], Step[0300/0626], Avg Loss: 0.7064
-INFO:local_logger:Epoch[056/800], Step[0300/0626], Avg Loss: 0.7068
-INFO:local_logger:Epoch[056/800], Step[0300/0626], Avg Loss: 0.7067
-INFO:local_logger:Epoch[056/800], Step[0300/0626], Avg Loss: 0.7067
-INFO:local_logger:Epoch[056/800], Step[0300/0626], Avg Loss: 0.7074
-INFO:local_logger:Epoch[056/800], Step[0300/0626], Avg Loss: 0.7059
-INFO:local_logger:Epoch[056/800], Step[0300/0626], Avg Loss: 0.7065
-INFO:master_logger:Epoch[056/800], Step[0300/0626], Avg Loss: 0.7068
-INFO:local_logger:Epoch[056/800], Step[0400/0626], Avg Loss: 0.7060
-INFO:local_logger:Epoch[056/800], Step[0400/0626], Avg Loss: 0.7065
-INFO:local_logger:Epoch[056/800], Step[0400/0626], Avg Loss: 0.7066
-INFO:local_logger:Epoch[056/800], Step[0400/0626], Avg Loss: 0.7069
-INFO:local_logger:Epoch[056/800], Step[0400/0626], Avg Loss: 0.7073
-INFO:local_logger:Epoch[056/800], Step[0400/0626], Avg Loss: 0.7072
-INFO:master_logger:Epoch[056/800], Step[0400/0626], Avg Loss: 0.7067
-INFO:local_logger:Epoch[056/800], Step[0400/0626], Avg Loss: 0.7063
-INFO:local_logger:Epoch[056/800], Step[0400/0626], Avg Loss: 0.7067
-INFO:local_logger:Epoch[056/800], Step[0500/0626], Avg Loss: 0.7062
-INFO:local_logger:Epoch[056/800], Step[0500/0626], Avg Loss: 0.7063
-INFO:local_logger:Epoch[056/800], Step[0500/0626], Avg Loss: 0.7069
-INFO:local_logger:Epoch[056/800], Step[0500/0626], Avg Loss: 0.7069
-INFO:master_logger:Epoch[056/800], Step[0500/0626], Avg Loss: 0.7066
-INFO:local_logger:Epoch[056/800], Step[0500/0626], Avg Loss: 0.7067
-INFO:local_logger:Epoch[056/800], Step[0500/0626], Avg Loss: 0.7062
-INFO:local_logger:Epoch[056/800], Step[0500/0626], Avg Loss: 0.7068
-INFO:local_logger:Epoch[056/800], Step[0500/0626], Avg Loss: 0.7066
-INFO:local_logger:Epoch[056/800], Step[0600/0626], Avg Loss: 0.7062
-INFO:local_logger:Epoch[056/800], Step[0600/0626], Avg Loss: 0.7066
-INFO:local_logger:Epoch[056/800], Step[0600/0626], Avg Loss: 0.7068
-INFO:local_logger:Epoch[056/800], Step[0600/0626], Avg Loss: 0.7069
-INFO:local_logger:Epoch[056/800], Step[0600/0626], Avg Loss: 0.7063
-INFO:local_logger:Epoch[056/800], Step[0600/0626], Avg Loss: 0.7068
-INFO:local_logger:Epoch[056/800], Step[0600/0626], Avg Loss: 0.7061
-INFO:master_logger:Epoch[056/800], Step[0600/0626], Avg Loss: 0.7065
-INFO:local_logger:Epoch[056/800], Step[0600/0626], Avg Loss: 0.7065
-INFO:local_logger:----- Epoch[056/800], Train Loss: 0.7067, time: 890.40
-INFO:local_logger:Now training epoch 57. LR=0.000150
-INFO:local_logger:----- Epoch[056/800], Train Loss: 0.7065, time: 890.61
-INFO:local_logger:Now training epoch 57. LR=0.000150
-INFO:local_logger:----- Epoch[056/800], Train Loss: 0.7066, time: 890.94
-INFO:local_logger:Now training epoch 57. LR=0.000150
-INFO:local_logger:----- Epoch[056/800], Train Loss: 0.7068, time: 891.55
-INFO:local_logger:----- Epoch[056/800], Train Loss: 0.7063, time: 890.99
-INFO:local_logger:Now training epoch 57. LR=0.000150
-INFO:local_logger:----- Epoch[056/800], Train Loss: 0.7060, time: 891.01
-INFO:local_logger:Now training epoch 57. LR=0.000150
-INFO:local_logger:Now training epoch 57. LR=0.000150
-INFO:local_logger:----- Epoch[056/800], Train Loss: 0.7063, time: 887.67
-INFO:master_logger:----- Epoch[056/800], Train Loss: 0.7065, time: 887.67
-INFO:local_logger:----- Epoch[056/800], Train Loss: 0.7069, time: 890.98
-INFO:local_logger:Now training epoch 57. LR=0.000150
-INFO:local_logger:----- Save model: ./output/train-20211219-17-07-40/MAE-Epoch-56-Loss-0.7062517588045653.pdparams
-INFO:local_logger:----- Save optim: ./output/train-20211219-17-07-40/MAE-Epoch-56-Loss-0.7062517588045653.pdopt
-INFO:master_logger:----- Save model: ./output/train-20211219-17-07-40/MAE-Epoch-56-Loss-0.7062517588045653.pdparams
-INFO:master_logger:----- Save optim: ./output/train-20211219-17-07-40/MAE-Epoch-56-Loss-0.7062517588045653.pdopt
-INFO:local_logger:Now training epoch 57. LR=0.000150
-INFO:master_logger:Now training epoch 57. LR=0.000150
-INFO:local_logger:Epoch[057/800], Step[0000/0626], Avg Loss: 0.7140
-INFO:local_logger:Epoch[057/800], Step[0000/0626], Avg Loss: 0.6994
-INFO:local_logger:Epoch[057/800], Step[0000/0626], Avg Loss: 0.7131
-INFO:master_logger:Epoch[057/800], Step[0000/0626], Avg Loss: 0.7096
-INFO:local_logger:Epoch[057/800], Step[0000/0626], Avg Loss: 0.7112
-INFO:local_logger:Epoch[057/800], Step[0000/0626], Avg Loss: 0.7165
-INFO:local_logger:Epoch[057/800], Step[0000/0626], Avg Loss: 0.7022
-INFO:local_logger:Epoch[057/800], Step[0000/0626], Avg Loss: 0.7034
-INFO:local_logger:Epoch[057/800], Step[0000/0626], Avg Loss: 0.7171
-INFO:local_logger:Epoch[057/800], Step[0100/0626], Avg Loss: 0.7063
-INFO:local_logger:Epoch[057/800], Step[0100/0626], Avg Loss: 0.7057
-INFO:local_logger:Epoch[057/800], Step[0100/0626], Avg Loss: 0.7054
-INFO:local_logger:Epoch[057/800], Step[0100/0626], Avg Loss: 0.7062
-INFO:local_logger:Epoch[057/800], Step[0100/0626], Avg Loss: 0.7068
-INFO:local_logger:Epoch[057/800], Step[0100/0626], Avg Loss: 0.7067
-INFO:local_logger:Epoch[057/800], Step[0100/0626], Avg Loss: 0.7053
-INFO:local_logger:Epoch[057/800], Step[0100/0626], Avg Loss: 0.7065
-INFO:master_logger:Epoch[057/800], Step[0100/0626], Avg Loss: 0.7061
-INFO:local_logger:Epoch[057/800], Step[0200/0626], Avg Loss: 0.7062
-INFO:local_logger:Epoch[057/800], Step[0200/0626], Avg Loss: 0.7056
-INFO:local_logger:Epoch[057/800], Step[0200/0626], Avg Loss: 0.7062
-INFO:local_logger:Epoch[057/800], Step[0200/0626], Avg Loss: 0.7067
-INFO:local_logger:Epoch[057/800], Step[0200/0626], Avg Loss: 0.7058
-INFO:local_logger:Epoch[057/800], Step[0200/0626], Avg Loss: 0.7057
-INFO:local_logger:Epoch[057/800], Step[0200/0626], Avg Loss: 0.7051
-INFO:master_logger:Epoch[057/800], Step[0200/0626], Avg Loss: 0.7059
-INFO:local_logger:Epoch[057/800], Step[0200/0626], Avg Loss: 0.7061
-INFO:local_logger:Epoch[057/800], Step[0300/0626], Avg Loss: 0.7056
-INFO:local_logger:Epoch[057/800], Step[0300/0626], Avg Loss: 0.7059
-INFO:local_logger:Epoch[057/800], Step[0300/0626], Avg Loss: 0.7052
-INFO:local_logger:Epoch[057/800], Step[0300/0626], Avg Loss: 0.7058
-INFO:local_logger:Epoch[057/800], Step[0300/0626], Avg Loss: 0.7054
-INFO:master_logger:Epoch[057/800], Step[0300/0626], Avg Loss: 0.7057
-INFO:local_logger:Epoch[057/800], Step[0300/0626], Avg Loss: 0.7054
-INFO:local_logger:Epoch[057/800], Step[0300/0626], Avg Loss: 0.7063
-INFO:local_logger:Epoch[057/800], Step[0300/0626], Avg Loss: 0.7061
-INFO:local_logger:Epoch[057/800], Step[0400/0626], Avg Loss: 0.7058
-INFO:local_logger:Epoch[057/800], Step[0400/0626], Avg Loss: 0.7060
-INFO:local_logger:Epoch[057/800], Step[0400/0626], Avg Loss: 0.7052
-INFO:local_logger:Epoch[057/800], Step[0400/0626], Avg Loss: 0.7059
-INFO:local_logger:Epoch[057/800], Step[0400/0626], Avg Loss: 0.7056
-INFO:local_logger:Epoch[057/800], Step[0400/0626], Avg Loss: 0.7063
-INFO:local_logger:Epoch[057/800], Step[0400/0626], Avg Loss: 0.7062
-INFO:local_logger:Epoch[057/800], Step[0400/0626], Avg Loss: 0.7055
-INFO:master_logger:Epoch[057/800], Step[0400/0626], Avg Loss: 0.7058
-INFO:local_logger:Epoch[057/800], Step[0500/0626], Avg Loss: 0.7054
-INFO:local_logger:Epoch[057/800], Step[0500/0626], Avg Loss: 0.7062
-INFO:local_logger:Epoch[057/800], Step[0500/0626], Avg Loss: 0.7050
-INFO:local_logger:Epoch[057/800], Step[0500/0626], Avg Loss: 0.7059
-INFO:local_logger:Epoch[057/800], Step[0500/0626], Avg Loss: 0.7055
-INFO:local_logger:Epoch[057/800], Step[0500/0626], Avg Loss: 0.7061
-INFO:local_logger:Epoch[057/800], Step[0500/0626], Avg Loss: 0.7057
-INFO:local_logger:Epoch[057/800], Step[0500/0626], Avg Loss: 0.7059
-INFO:master_logger:Epoch[057/800], Step[0500/0626], Avg Loss: 0.7057
-INFO:local_logger:Epoch[057/800], Step[0600/0626], Avg Loss: 0.7051
-INFO:local_logger:Epoch[057/800], Step[0600/0626], Avg Loss: 0.7058
-INFO:local_logger:Epoch[057/800], Step[0600/0626], Avg Loss: 0.7054
-INFO:local_logger:Epoch[057/800], Step[0600/0626], Avg Loss: 0.7054
-INFO:local_logger:Epoch[057/800], Step[0600/0626], Avg Loss: 0.7057
-INFO:local_logger:Epoch[057/800], Step[0600/0626], Avg Loss: 0.7062
-INFO:local_logger:Epoch[057/800], Step[0600/0626], Avg Loss: 0.7062
-INFO:local_logger:Epoch[057/800], Step[0600/0626], Avg Loss: 0.7056
-INFO:master_logger:Epoch[057/800], Step[0600/0626], Avg Loss: 0.7057
-INFO:local_logger:----- Epoch[057/800], Train Loss: 0.7060, time: 853.51
-INFO:local_logger:Now training epoch 58. LR=0.000150
-INFO:local_logger:----- Epoch[057/800], Train Loss: 0.7053, time: 853.54
-INFO:local_logger:Now training epoch 58. LR=0.000150
-INFO:local_logger:----- Epoch[057/800], Train Loss: 0.7057, time: 854.16
-INFO:local_logger:Now training epoch 58. LR=0.000150
-INFO:local_logger:----- Epoch[057/800], Train Loss: 0.7050, time: 854.00
-INFO:local_logger:----- Epoch[057/800], Train Loss: 0.7061, time: 854.36
-INFO:local_logger:Now training epoch 58. LR=0.000150
-INFO:local_logger:Now training epoch 58. LR=0.000150
-INFO:local_logger:----- Epoch[057/800], Train Loss: 0.7056, time: 849.91
-INFO:local_logger:----- Epoch[057/800], Train Loss: 0.7054, time: 853.96
-INFO:master_logger:----- Epoch[057/800], Train Loss: 0.7056, time: 849.91
-INFO:local_logger:Now training epoch 58. LR=0.000150
-INFO:local_logger:----- Epoch[057/800], Train Loss: 0.7056, time: 853.96
-INFO:local_logger:Now training epoch 58. LR=0.000150
-INFO:local_logger:----- Save model: ./output/train-20211219-17-07-40/MAE-Epoch-57-Loss-0.70561545900947.pdparams
-INFO:local_logger:----- Save optim: ./output/train-20211219-17-07-40/MAE-Epoch-57-Loss-0.70561545900947.pdopt
-INFO:master_logger:----- Save model: ./output/train-20211219-17-07-40/MAE-Epoch-57-Loss-0.70561545900947.pdparams
-INFO:master_logger:----- Save optim: ./output/train-20211219-17-07-40/MAE-Epoch-57-Loss-0.70561545900947.pdopt
-INFO:local_logger:Now training epoch 58. LR=0.000150
-INFO:master_logger:Now training epoch 58. LR=0.000150
-INFO:local_logger:Epoch[058/800], Step[0000/0626], Avg Loss: 0.7087
-INFO:local_logger:Epoch[058/800], Step[0000/0626], Avg Loss: 0.6950
-INFO:master_logger:Epoch[058/800], Step[0000/0626], Avg Loss: 0.7032
-INFO:local_logger:Epoch[058/800], Step[0000/0626], Avg Loss: 0.7035
-INFO:local_logger:Epoch[058/800], Step[0000/0626], Avg Loss: 0.7008
-INFO:local_logger:Epoch[058/800], Step[0000/0626], Avg Loss: 0.6990
-INFO:local_logger:Epoch[058/800], Step[0000/0626], Avg Loss: 0.7091
-INFO:local_logger:Epoch[058/800], Step[0000/0626], Avg Loss: 0.7010
-INFO:local_logger:Epoch[058/800], Step[0000/0626], Avg Loss: 0.7083
-INFO:local_logger:Epoch[058/800], Step[0100/0626], Avg Loss: 0.7057
-INFO:local_logger:Epoch[058/800], Step[0100/0626], Avg Loss: 0.7047
-INFO:local_logger:Epoch[058/800], Step[0100/0626], Avg Loss: 0.7033
-INFO:local_logger:Epoch[058/800], Step[0100/0626], Avg Loss: 0.7035
-INFO:local_logger:Epoch[058/800], Step[0100/0626], Avg Loss: 0.7044
-INFO:local_logger:Epoch[058/800], Step[0100/0626], Avg Loss: 0.7042
-INFO:local_logger:Epoch[058/800], Step[0100/0626], Avg Loss: 0.7048
-INFO:local_logger:Epoch[058/800], Step[0100/0626], Avg Loss: 0.7051
-INFO:master_logger:Epoch[058/800], Step[0100/0626], Avg Loss: 0.7045
-INFO:local_logger:Epoch[058/800], Step[0200/0626], Avg Loss: 0.7056
-INFO:local_logger:Epoch[058/800], Step[0200/0626], Avg Loss: 0.7048
-INFO:local_logger:Epoch[058/800], Step[0200/0626], Avg Loss: 0.7050
-INFO:local_logger:Epoch[058/800], Step[0200/0626], Avg Loss: 0.7052
-INFO:local_logger:Epoch[058/800], Step[0200/0626], Avg Loss: 0.7048
-INFO:master_logger:Epoch[058/800], Step[0200/0626], Avg Loss: 0.7048
-INFO:local_logger:Epoch[058/800], Step[0200/0626], Avg Loss: 0.7046
-INFO:local_logger:Epoch[058/800], Step[0200/0626], Avg Loss: 0.7051
-INFO:local_logger:Epoch[058/800], Step[0200/0626], Avg Loss: 0.7032
-INFO:local_logger:Epoch[058/800], Step[0300/0626], Avg Loss: 0.7048
-INFO:local_logger:Epoch[058/800], Step[0300/0626], Avg Loss: 0.7052
-INFO:local_logger:Epoch[058/800], Step[0300/0626], Avg Loss: 0.7046
-INFO:local_logger:Epoch[058/800], Step[0300/0626], Avg Loss: 0.7046
-INFO:local_logger:Epoch[058/800], Step[0300/0626], Avg Loss: 0.7051
-INFO:local_logger:Epoch[058/800], Step[0300/0626], Avg Loss: 0.7046
-INFO:master_logger:Epoch[058/800], Step[0300/0626], Avg Loss: 0.7047
-INFO:local_logger:Epoch[058/800], Step[0300/0626], Avg Loss: 0.7049
-INFO:local_logger:Epoch[058/800], Step[0300/0626], Avg Loss: 0.7035
-INFO:local_logger:Epoch[058/800], Step[0400/0626], Avg Loss: 0.7047
-INFO:local_logger:Epoch[058/800], Step[0400/0626], Avg Loss: 0.7047
-INFO:local_logger:Epoch[058/800], Step[0400/0626], Avg Loss: 0.7048
-INFO:local_logger:Epoch[058/800], Step[0400/0626], Avg Loss: 0.7035
-INFO:local_logger:Epoch[058/800], Step[0400/0626], Avg Loss: 0.7048
-INFO:master_logger:Epoch[058/800], Step[0400/0626], Avg Loss: 0.7046
-INFO:local_logger:Epoch[058/800], Step[0400/0626], Avg Loss: 0.7047
-INFO:local_logger:Epoch[058/800], Step[0400/0626], Avg Loss: 0.7046
-INFO:local_logger:Epoch[058/800], Step[0400/0626], Avg Loss: 0.7047
-INFO:local_logger:Epoch[058/800], Step[0500/0626], Avg Loss: 0.7048
-INFO:local_logger:Epoch[058/800], Step[0500/0626], Avg Loss: 0.7046
-INFO:local_logger:Epoch[058/800], Step[0500/0626], Avg Loss: 0.7046
-INFO:local_logger:Epoch[058/800], Step[0500/0626], Avg Loss: 0.7046
-INFO:local_logger:Epoch[058/800], Step[0500/0626], Avg Loss: 0.7046
-INFO:local_logger:Epoch[058/800], Step[0500/0626], Avg Loss: 0.7043
-INFO:local_logger:Epoch[058/800], Step[0500/0626], Avg Loss: 0.7034
-INFO:master_logger:Epoch[058/800], Step[0500/0626], Avg Loss: 0.7044
-INFO:local_logger:Epoch[058/800], Step[0500/0626], Avg Loss: 0.7046
-INFO:local_logger:Epoch[058/800], Step[0600/0626], Avg Loss: 0.7046
-INFO:local_logger:Epoch[058/800], Step[0600/0626], Avg Loss: 0.7046
-INFO:local_logger:Epoch[058/800], Step[0600/0626], Avg Loss: 0.7045
-INFO:local_logger:Epoch[058/800], Step[0600/0626], Avg Loss: 0.7036
-INFO:local_logger:Epoch[058/800], Step[0600/0626], Avg Loss: 0.7045
-INFO:local_logger:Epoch[058/800], Step[0600/0626], Avg Loss: 0.7046
-INFO:master_logger:Epoch[058/800], Step[0600/0626], Avg Loss: 0.7044
-INFO:local_logger:Epoch[058/800], Step[0600/0626], Avg Loss: 0.7045
-INFO:local_logger:Epoch[058/800], Step[0600/0626], Avg Loss: 0.7042
-INFO:local_logger:----- Epoch[058/800], Train Loss: 0.7045, time: 883.86
-INFO:master_logger:----- Epoch[058/800], Train Loss: 0.7044, time: 883.86
-INFO:local_logger:----- Epoch[058/800], Train Loss: 0.7044, time: 888.09
-INFO:local_logger:Now training epoch 59. LR=0.000151
-INFO:local_logger:----- Epoch[058/800], Train Loss: 0.7043, time: 888.09
-INFO:local_logger:Now training epoch 59. LR=0.000151
-INFO:local_logger:----- Epoch[058/800], Train Loss: 0.7045, time: 887.67
-INFO:local_logger:Now training epoch 59. LR=0.000151
-INFO:local_logger:----- Epoch[058/800], Train Loss: 0.7036, time: 887.78
-INFO:local_logger:Now training epoch 59. LR=0.000151
-INFO:local_logger:----- Epoch[058/800], Train Loss: 0.7046, time: 888.37
-INFO:local_logger:Now training epoch 59. LR=0.000151
-INFO:local_logger:----- Epoch[058/800], Train Loss: 0.7045, time: 887.96
-INFO:local_logger:Now training epoch 59. LR=0.000151
-INFO:local_logger:----- Epoch[058/800], Train Loss: 0.7046, time: 887.96
-INFO:local_logger:Now training epoch 59. LR=0.000151
-INFO:local_logger:----- Save model: ./output/train-20211219-17-07-40/MAE-Epoch-58-Loss-0.704508643255555.pdparams
-INFO:local_logger:----- Save optim: ./output/train-20211219-17-07-40/MAE-Epoch-58-Loss-0.704508643255555.pdopt
-INFO:master_logger:----- Save model: ./output/train-20211219-17-07-40/MAE-Epoch-58-Loss-0.704508643255555.pdparams
-INFO:master_logger:----- Save optim: ./output/train-20211219-17-07-40/MAE-Epoch-58-Loss-0.704508643255555.pdopt
-INFO:local_logger:Now training epoch 59. LR=0.000151
-INFO:master_logger:Now training epoch 59. LR=0.000151
-INFO:local_logger:Epoch[059/800], Step[0000/0626], Avg Loss: 0.6945
-INFO:master_logger:Epoch[059/800], Step[0000/0626], Avg Loss: 0.7041
-INFO:local_logger:Epoch[059/800], Step[0000/0626], Avg Loss: 0.7028
-INFO:local_logger:Epoch[059/800], Step[0000/0626], Avg Loss: 0.7075
-INFO:local_logger:Epoch[059/800], Step[0000/0626], Avg Loss: 0.7132
-INFO:local_logger:Epoch[059/800], Step[0000/0626], Avg Loss: 0.7134
-INFO:local_logger:Epoch[059/800], Step[0000/0626], Avg Loss: 0.7138
-INFO:local_logger:Epoch[059/800], Step[0000/0626], Avg Loss: 0.6925
-INFO:local_logger:Epoch[059/800], Step[0000/0626], Avg Loss: 0.6949
-INFO:local_logger:Epoch[059/800], Step[0100/0626], Avg Loss: 0.7022
-INFO:local_logger:Epoch[059/800], Step[0100/0626], Avg Loss: 0.7047
-INFO:local_logger:Epoch[059/800], Step[0100/0626], Avg Loss: 0.7039
-INFO:local_logger:Epoch[059/800], Step[0100/0626], Avg Loss: 0.7043
-INFO:master_logger:Epoch[059/800], Step[0100/0626], Avg Loss: 0.7041
-INFO:local_logger:Epoch[059/800], Step[0100/0626], Avg Loss: 0.7048
-INFO:local_logger:Epoch[059/800], Step[0100/0626], Avg Loss: 0.7046
-INFO:local_logger:Epoch[059/800], Step[0100/0626], Avg Loss: 0.7044
-INFO:local_logger:Epoch[059/800], Step[0100/0626], Avg Loss: 0.7034
-INFO:local_logger:Epoch[059/800], Step[0200/0626], Avg Loss: 0.7040
-INFO:local_logger:Epoch[059/800], Step[0200/0626], Avg Loss: 0.7040
-INFO:local_logger:Epoch[059/800], Step[0200/0626], Avg Loss: 0.7041
-INFO:local_logger:Epoch[059/800], Step[0200/0626], Avg Loss: 0.7032
-INFO:local_logger:Epoch[059/800], Step[0200/0626], Avg Loss: 0.7036
-INFO:local_logger:Epoch[059/800], Step[0200/0626], Avg Loss: 0.7039
-INFO:master_logger:Epoch[059/800], Step[0200/0626], Avg Loss: 0.7037
-INFO:local_logger:Epoch[059/800], Step[0200/0626], Avg Loss: 0.7021
-INFO:local_logger:Epoch[059/800], Step[0200/0626], Avg Loss: 0.7043
-INFO:local_logger:Epoch[059/800], Step[0300/0626], Avg Loss: 0.7041
-INFO:local_logger:Epoch[059/800], Step[0300/0626], Avg Loss: 0.7036
-INFO:local_logger:Epoch[059/800], Step[0300/0626], Avg Loss: 0.7036
-INFO:local_logger:Epoch[059/800], Step[0300/0626], Avg Loss: 0.7040
-INFO:master_logger:Epoch[059/800], Step[0300/0626], Avg Loss: 0.7036
-INFO:local_logger:Epoch[059/800], Step[0300/0626], Avg Loss: 0.7033
-INFO:local_logger:Epoch[059/800], Step[0300/0626], Avg Loss: 0.7027
-INFO:local_logger:Epoch[059/800], Step[0300/0626], Avg Loss: 0.7040
-INFO:local_logger:Epoch[059/800], Step[0300/0626], Avg Loss: 0.7034
-INFO:local_logger:Epoch[059/800], Step[0400/0626], Avg Loss: 0.7037
-INFO:local_logger:Epoch[059/800], Step[0400/0626], Avg Loss: 0.7040
-INFO:local_logger:Epoch[059/800], Step[0400/0626], Avg Loss: 0.7029
-INFO:local_logger:Epoch[059/800], Step[0400/0626], Avg Loss: 0.7037
-INFO:local_logger:Epoch[059/800], Step[0400/0626], Avg Loss: 0.7035
-INFO:local_logger:Epoch[059/800], Step[0400/0626], Avg Loss: 0.7033
-INFO:local_logger:Epoch[059/800], Step[0400/0626], Avg Loss: 0.7036
-INFO:local_logger:Epoch[059/800], Step[0400/0626], Avg Loss: 0.7039
-INFO:master_logger:Epoch[059/800], Step[0400/0626], Avg Loss: 0.7036
-INFO:local_logger:Epoch[059/800], Step[0500/0626], Avg Loss: 0.7036
-INFO:local_logger:Epoch[059/800], Step[0500/0626], Avg Loss: 0.7037
-INFO:local_logger:Epoch[059/800], Step[0500/0626], Avg Loss: 0.7034
-INFO:local_logger:Epoch[059/800], Step[0500/0626], Avg Loss: 0.7039
-INFO:local_logger:Epoch[059/800], Step[0500/0626], Avg Loss: 0.7031
-INFO:local_logger:Epoch[059/800], Step[0500/0626], Avg Loss: 0.7037
-INFO:master_logger:Epoch[059/800], Step[0500/0626], Avg Loss: 0.7035
-INFO:local_logger:Epoch[059/800], Step[0500/0626], Avg Loss: 0.7031
-INFO:local_logger:Epoch[059/800], Step[0500/0626], Avg Loss: 0.7036
-INFO:local_logger:Epoch[059/800], Step[0600/0626], Avg Loss: 0.7035
-INFO:local_logger:Epoch[059/800], Step[0600/0626], Avg Loss: 0.7037
-INFO:local_logger:Epoch[059/800], Step[0600/0626], Avg Loss: 0.7035
-INFO:local_logger:Epoch[059/800], Step[0600/0626], Avg Loss: 0.7034
-INFO:master_logger:Epoch[059/800], Step[0600/0626], Avg Loss: 0.7034
-INFO:local_logger:Epoch[059/800], Step[0600/0626], Avg Loss: 0.7037
-INFO:local_logger:Epoch[059/800], Step[0600/0626], Avg Loss: 0.7034
-INFO:local_logger:Epoch[059/800], Step[0600/0626], Avg Loss: 0.7032
-INFO:local_logger:Epoch[059/800], Step[0600/0626], Avg Loss: 0.7030
-INFO:local_logger:----- Epoch[059/800], Train Loss: 0.7034, time: 855.63
-INFO:master_logger:----- Epoch[059/800], Train Loss: 0.7034, time: 855.63
-INFO:local_logger:----- Epoch[059/800], Train Loss: 0.7034, time: 859.41
-INFO:local_logger:Now training epoch 60. LR=0.000151
-INFO:local_logger:----- Epoch[059/800], Train Loss: 0.7035, time: 859.16
-INFO:local_logger:Now training epoch 60. LR=0.000151
-INFO:local_logger:----- Epoch[059/800], Train Loss: 0.7030, time: 859.83
-INFO:local_logger:Now training epoch 60. LR=0.000151
-INFO:local_logger:----- Epoch[059/800], Train Loss: 0.7033, time: 859.66
-INFO:local_logger:Now training epoch 60. LR=0.000151
-INFO:local_logger:----- Epoch[059/800], Train Loss: 0.7036, time: 859.94
-INFO:local_logger:Now training epoch 60. LR=0.000151
-INFO:local_logger:----- Epoch[059/800], Train Loss: 0.7037, time: 859.65
-INFO:local_logger:Now training epoch 60. LR=0.000151
-INFO:local_logger:----- Epoch[059/800], Train Loss: 0.7032, time: 859.97
-INFO:local_logger:Now training epoch 60. LR=0.000151
-INFO:local_logger:----- Save model: ./output/train-20211219-17-07-40/MAE-Epoch-59-Loss-0.7033895635093321.pdparams
-INFO:local_logger:----- Save optim: ./output/train-20211219-17-07-40/MAE-Epoch-59-Loss-0.7033895635093321.pdopt
-INFO:master_logger:----- Save model: ./output/train-20211219-17-07-40/MAE-Epoch-59-Loss-0.7033895635093321.pdparams
-INFO:master_logger:----- Save optim: ./output/train-20211219-17-07-40/MAE-Epoch-59-Loss-0.7033895635093321.pdopt
-INFO:local_logger:Now training epoch 60. LR=0.000151
-INFO:master_logger:Now training epoch 60. LR=0.000151
-INFO:local_logger:Epoch[060/800], Step[0000/0626], Avg Loss: 0.7205
-INFO:local_logger:Epoch[060/800], Step[0000/0626], Avg Loss: 0.7122
-INFO:local_logger:Epoch[060/800], Step[0000/0626], Avg Loss: 0.7150
-INFO:master_logger:Epoch[060/800], Step[0000/0626], Avg Loss: 0.7093
-INFO:local_logger:Epoch[060/800], Step[0000/0626], Avg Loss: 0.7005
-INFO:local_logger:Epoch[060/800], Step[0000/0626], Avg Loss: 0.6991
-INFO:local_logger:Epoch[060/800], Step[0000/0626], Avg Loss: 0.7068
-INFO:local_logger:Epoch[060/800], Step[0000/0626], Avg Loss: 0.7212
-INFO:local_logger:Epoch[060/800], Step[0000/0626], Avg Loss: 0.6992
-INFO:local_logger:Epoch[060/800], Step[0100/0626], Avg Loss: 0.7019
-INFO:local_logger:Epoch[060/800], Step[0100/0626], Avg Loss: 0.7031
-INFO:local_logger:Epoch[060/800], Step[0100/0626], Avg Loss: 0.7024
-INFO:local_logger:Epoch[060/800], Step[0100/0626], Avg Loss: 0.7027
-INFO:local_logger:Epoch[060/800], Step[0100/0626], Avg Loss: 0.7024
-INFO:local_logger:Epoch[060/800], Step[0100/0626], Avg Loss: 0.7041
-INFO:master_logger:Epoch[060/800], Step[0100/0626], Avg Loss: 0.7029
-INFO:local_logger:Epoch[060/800], Step[0100/0626], Avg Loss: 0.7026
-INFO:local_logger:Epoch[060/800], Step[0100/0626], Avg Loss: 0.7037
-INFO:local_logger:Epoch[060/800], Step[0200/0626], Avg Loss: 0.7033
-INFO:local_logger:Epoch[060/800], Step[0200/0626], Avg Loss: 0.7022
-INFO:local_logger:Epoch[060/800], Step[0200/0626], Avg Loss: 0.7043
-INFO:local_logger:Epoch[060/800], Step[0200/0626], Avg Loss: 0.7025
-INFO:local_logger:Epoch[060/800], Step[0200/0626], Avg Loss: 0.7025
-INFO:local_logger:Epoch[060/800], Step[0200/0626], Avg Loss: 0.7030
-INFO:master_logger:Epoch[060/800], Step[0200/0626], Avg Loss: 0.7029
-INFO:local_logger:Epoch[060/800], Step[0200/0626], Avg Loss: 0.7025
-INFO:local_logger:Epoch[060/800], Step[0200/0626], Avg Loss: 0.7033
-INFO:local_logger:Epoch[060/800], Step[0300/0626], Avg Loss: 0.7030
-INFO:local_logger:Epoch[060/800], Step[0300/0626], Avg Loss: 0.7022
-INFO:local_logger:Epoch[060/800], Step[0300/0626], Avg Loss: 0.7026
-INFO:local_logger:Epoch[060/800], Step[0300/0626], Avg Loss: 0.7029
-INFO:local_logger:Epoch[060/800], Step[0300/0626], Avg Loss: 0.7034
-INFO:master_logger:Epoch[060/800], Step[0300/0626], Avg Loss: 0.7028
-INFO:local_logger:Epoch[060/800], Step[0300/0626], Avg Loss: 0.7027
-INFO:local_logger:Epoch[060/800], Step[0300/0626], Avg Loss: 0.7025
-INFO:local_logger:Epoch[060/800], Step[0300/0626], Avg Loss: 0.7030
-INFO:local_logger:Epoch[060/800], Step[0400/0626], Avg Loss: 0.7024
-INFO:local_logger:Epoch[060/800], Step[0400/0626], Avg Loss: 0.7024
-INFO:local_logger:Epoch[060/800], Step[0400/0626], Avg Loss: 0.7025
-INFO:local_logger:Epoch[060/800], Step[0400/0626], Avg Loss: 0.7026
-INFO:local_logger:Epoch[060/800], Step[0400/0626], Avg Loss: 0.7031
-INFO:local_logger:Epoch[060/800], Step[0400/0626], Avg Loss: 0.7029
-INFO:master_logger:Epoch[060/800], Step[0400/0626], Avg Loss: 0.7026
-INFO:local_logger:Epoch[060/800], Step[0400/0626], Avg Loss: 0.7028
-INFO:local_logger:Epoch[060/800], Step[0400/0626], Avg Loss: 0.7023
-INFO:local_logger:Epoch[060/800], Step[0500/0626], Avg Loss: 0.7026
-INFO:local_logger:Epoch[060/800], Step[0500/0626], Avg Loss: 0.7023
-INFO:local_logger:Epoch[060/800], Step[0500/0626], Avg Loss: 0.7029
-INFO:local_logger:Epoch[060/800], Step[0500/0626], Avg Loss: 0.7024
-INFO:local_logger:Epoch[060/800], Step[0500/0626], Avg Loss: 0.7029
-INFO:local_logger:Epoch[060/800], Step[0500/0626], Avg Loss: 0.7025
-INFO:local_logger:Epoch[060/800], Step[0500/0626], Avg Loss: 0.7028
-INFO:local_logger:Epoch[060/800], Step[0500/0626], Avg Loss: 0.7022
-INFO:master_logger:Epoch[060/800], Step[0500/0626], Avg Loss: 0.7026
-INFO:local_logger:Epoch[060/800], Step[0600/0626], Avg Loss: 0.7026
-INFO:local_logger:Epoch[060/800], Step[0600/0626], Avg Loss: 0.7029
-INFO:local_logger:Epoch[060/800], Step[0600/0626], Avg Loss: 0.7025
-INFO:master_logger:Epoch[060/800], Step[0600/0626], Avg Loss: 0.7025
-INFO:local_logger:Epoch[060/800], Step[0600/0626], Avg Loss: 0.7023
-INFO:local_logger:Epoch[060/800], Step[0600/0626], Avg Loss: 0.7021
-INFO:local_logger:Epoch[060/800], Step[0600/0626], Avg Loss: 0.7023
-INFO:local_logger:Epoch[060/800], Step[0600/0626], Avg Loss: 0.7024
-INFO:local_logger:Epoch[060/800], Step[0600/0626], Avg Loss: 0.7028
-INFO:local_logger:----- Epoch[060/800], Train Loss: 0.7020, time: 883.22
-INFO:local_logger:Now training epoch 61. LR=0.000151
-INFO:local_logger:----- Epoch[060/800], Train Loss: 0.7027, time: 884.34
-INFO:local_logger:Now training epoch 61. LR=0.000151
-INFO:local_logger:----- Epoch[060/800], Train Loss: 0.7025, time: 883.83
-INFO:local_logger:Now training epoch 61. LR=0.000151
-INFO:local_logger:----- Epoch[060/800], Train Loss: 0.7022, time: 883.86
-INFO:local_logger:Now training epoch 61. LR=0.000151
-INFO:local_logger:----- Epoch[060/800], Train Loss: 0.7030, time: 883.87
-INFO:local_logger:Now training epoch 61. LR=0.000151
-INFO:local_logger:----- Epoch[060/800], Train Loss: 0.7023, time: 883.92
-INFO:local_logger:Now training epoch 61. LR=0.000151
-INFO:local_logger:----- Epoch[060/800], Train Loss: 0.7024, time: 883.95
-INFO:local_logger:Now training epoch 61. LR=0.000151
-INFO:local_logger:----- Epoch[060/800], Train Loss: 0.7025, time: 880.74
-INFO:master_logger:----- Epoch[060/800], Train Loss: 0.7024, time: 880.74
-INFO:local_logger:----- Save model: ./output/train-20211219-17-07-40/MAE-Epoch-60-Loss-0.7024735177213701.pdparams
-INFO:local_logger:----- Save optim: ./output/train-20211219-17-07-40/MAE-Epoch-60-Loss-0.7024735177213701.pdopt
-INFO:master_logger:----- Save model: ./output/train-20211219-17-07-40/MAE-Epoch-60-Loss-0.7024735177213701.pdparams
-INFO:master_logger:----- Save optim: ./output/train-20211219-17-07-40/MAE-Epoch-60-Loss-0.7024735177213701.pdopt
-INFO:local_logger:Now training epoch 61. LR=0.000151
-INFO:master_logger:Now training epoch 61. LR=0.000151
-INFO:local_logger:Epoch[061/800], Step[0000/0626], Avg Loss: 0.6994
-INFO:local_logger:Epoch[061/800], Step[0000/0626], Avg Loss: 0.6940
-INFO:master_logger:Epoch[061/800], Step[0000/0626], Avg Loss: 0.6945
-INFO:local_logger:Epoch[061/800], Step[0000/0626], Avg Loss: 0.6854
-INFO:local_logger:Epoch[061/800], Step[0000/0626], Avg Loss: 0.6741
-INFO:local_logger:Epoch[061/800], Step[0000/0626], Avg Loss: 0.7025
-INFO:local_logger:Epoch[061/800], Step[0000/0626], Avg Loss: 0.7017
-INFO:local_logger:Epoch[061/800], Step[0000/0626], Avg Loss: 0.6991
-INFO:local_logger:Epoch[061/800], Step[0000/0626], Avg Loss: 0.7000
-INFO:local_logger:Epoch[061/800], Step[0100/0626], Avg Loss: 0.7019
-INFO:local_logger:Epoch[061/800], Step[0100/0626], Avg Loss: 0.7020
-INFO:local_logger:Epoch[061/800], Step[0100/0626], Avg Loss: 0.7019
-INFO:local_logger:Epoch[061/800], Step[0100/0626], Avg Loss: 0.7011
-INFO:local_logger:Epoch[061/800], Step[0100/0626], Avg Loss: 0.7002
-INFO:local_logger:Epoch[061/800], Step[0100/0626], Avg Loss: 0.7016
-INFO:master_logger:Epoch[061/800], Step[0100/0626], Avg Loss: 0.7018
-INFO:local_logger:Epoch[061/800], Step[0100/0626], Avg Loss: 0.7024
-INFO:local_logger:Epoch[061/800], Step[0100/0626], Avg Loss: 0.7036
-INFO:local_logger:Epoch[061/800], Step[0200/0626], Avg Loss: 0.7020
-INFO:local_logger:Epoch[061/800], Step[0200/0626], Avg Loss: 0.7028
-INFO:local_logger:Epoch[061/800], Step[0200/0626], Avg Loss: 0.7020
-INFO:local_logger:Epoch[061/800], Step[0200/0626], Avg Loss: 0.7015
-INFO:local_logger:Epoch[061/800], Step[0200/0626], Avg Loss: 0.7027
-INFO:local_logger:Epoch[061/800], Step[0200/0626], Avg Loss: 0.7022
-INFO:local_logger:Epoch[061/800], Step[0200/0626], Avg Loss: 0.7017
-INFO:local_logger:Epoch[061/800], Step[0200/0626], Avg Loss: 0.7011
-INFO:master_logger:Epoch[061/800], Step[0200/0626], Avg Loss: 0.7020
-INFO:local_logger:Epoch[061/800], Step[0300/0626], Avg Loss: 0.7016
-INFO:local_logger:Epoch[061/800], Step[0300/0626], Avg Loss: 0.7010
-INFO:local_logger:Epoch[061/800], Step[0300/0626], Avg Loss: 0.7024
-INFO:local_logger:Epoch[061/800], Step[0300/0626], Avg Loss: 0.7012
-INFO:local_logger:Epoch[061/800], Step[0300/0626], Avg Loss: 0.7020
-INFO:local_logger:Epoch[061/800], Step[0300/0626], Avg Loss: 0.7020
-INFO:master_logger:Epoch[061/800], Step[0300/0626], Avg Loss: 0.7018
-INFO:local_logger:Epoch[061/800], Step[0300/0626], Avg Loss: 0.7017
-INFO:local_logger:Epoch[061/800], Step[0300/0626], Avg Loss: 0.7026
-INFO:local_logger:Epoch[061/800], Step[0400/0626], Avg Loss: 0.7012
-INFO:local_logger:Epoch[061/800], Step[0400/0626], Avg Loss: 0.7012
-INFO:master_logger:Epoch[061/800], Step[0400/0626], Avg Loss: 0.7018
-INFO:local_logger:Epoch[061/800], Step[0400/0626], Avg Loss: 0.7019
-INFO:local_logger:Epoch[061/800], Step[0400/0626], Avg Loss: 0.7021
-INFO:local_logger:Epoch[061/800], Step[0400/0626], Avg Loss: 0.7020
-INFO:local_logger:Epoch[061/800], Step[0400/0626], Avg Loss: 0.7022
-INFO:local_logger:Epoch[061/800], Step[0400/0626], Avg Loss: 0.7016
-INFO:local_logger:Epoch[061/800], Step[0400/0626], Avg Loss: 0.7019
-INFO:local_logger:Epoch[061/800], Step[0500/0626], Avg Loss: 0.7012
-INFO:local_logger:Epoch[061/800], Step[0500/0626], Avg Loss: 0.7013
-INFO:local_logger:Epoch[061/800], Step[0500/0626], Avg Loss: 0.7017
-INFO:local_logger:Epoch[061/800], Step[0500/0626], Avg Loss: 0.7019
-INFO:local_logger:Epoch[061/800], Step[0500/0626], Avg Loss: 0.7022
-INFO:local_logger:Epoch[061/800], Step[0500/0626], Avg Loss: 0.7022
-INFO:master_logger:Epoch[061/800], Step[0500/0626], Avg Loss: 0.7017
-INFO:local_logger:Epoch[061/800], Step[0500/0626], Avg Loss: 0.7018
-INFO:local_logger:Epoch[061/800], Step[0500/0626], Avg Loss: 0.7015
-INFO:local_logger:Epoch[061/800], Step[0600/0626], Avg Loss: 0.7021
-INFO:local_logger:Epoch[061/800], Step[0600/0626], Avg Loss: 0.7013
-INFO:local_logger:Epoch[061/800], Step[0600/0626], Avg Loss: 0.7018
-INFO:local_logger:Epoch[061/800], Step[0600/0626], Avg Loss: 0.7013
-INFO:local_logger:Epoch[061/800], Step[0600/0626], Avg Loss: 0.7012
-INFO:local_logger:Epoch[061/800], Step[0600/0626], Avg Loss: 0.7015
-INFO:local_logger:Epoch[061/800], Step[0600/0626], Avg Loss: 0.7014
-INFO:master_logger:Epoch[061/800], Step[0600/0626], Avg Loss: 0.7016
-INFO:local_logger:Epoch[061/800], Step[0600/0626], Avg Loss: 0.7019
-INFO:local_logger:----- Epoch[061/800], Train Loss: 0.7015, time: 862.93
-INFO:local_logger:Now training epoch 62. LR=0.000151
-INFO:local_logger:----- Epoch[061/800], Train Loss: 0.7014, time: 863.80
-INFO:local_logger:Now training epoch 62. LR=0.000151
-INFO:local_logger:----- Epoch[061/800], Train Loss: 0.7013, time: 863.80
-INFO:local_logger:Now training epoch 62. LR=0.000151
-INFO:local_logger:----- Epoch[061/800], Train Loss: 0.7012, time: 860.38
-INFO:master_logger:----- Epoch[061/800], Train Loss: 0.7015, time: 860.38
-INFO:local_logger:----- Epoch[061/800], Train Loss: 0.7017, time: 864.16
-INFO:local_logger:Now training epoch 62. LR=0.000151
-INFO:local_logger:----- Epoch[061/800], Train Loss: 0.7012, time: 864.25
-INFO:local_logger:Now training epoch 62. LR=0.000151
-INFO:local_logger:----- Epoch[061/800], Train Loss: 0.7019, time: 865.44
-INFO:local_logger:Now training epoch 62. LR=0.000151
-INFO:local_logger:----- Epoch[061/800], Train Loss: 0.7021, time: 864.25
-INFO:local_logger:Now training epoch 62. LR=0.000151
-INFO:local_logger:----- Save model: ./output/train-20211219-17-07-40/MAE-Epoch-61-Loss-0.7012385332086987.pdparams
-INFO:local_logger:----- Save optim: ./output/train-20211219-17-07-40/MAE-Epoch-61-Loss-0.7012385332086987.pdopt
-INFO:master_logger:----- Save model: ./output/train-20211219-17-07-40/MAE-Epoch-61-Loss-0.7012385332086987.pdparams
-INFO:master_logger:----- Save optim: ./output/train-20211219-17-07-40/MAE-Epoch-61-Loss-0.7012385332086987.pdopt
-INFO:local_logger:Now training epoch 62. LR=0.000151
-INFO:master_logger:Now training epoch 62. LR=0.000151
-INFO:local_logger:Epoch[062/800], Step[0000/0626], Avg Loss: 0.6976
-INFO:local_logger:Epoch[062/800], Step[0000/0626], Avg Loss: 0.6886
-INFO:local_logger:Epoch[062/800], Step[0000/0626], Avg Loss: 0.7062
-INFO:master_logger:Epoch[062/800], Step[0000/0626], Avg Loss: 0.7003
-INFO:local_logger:Epoch[062/800], Step[0000/0626], Avg Loss: 0.6922
-INFO:local_logger:Epoch[062/800], Step[0000/0626], Avg Loss: 0.7018
-INFO:local_logger:Epoch[062/800], Step[0000/0626], Avg Loss: 0.7010
-INFO:local_logger:Epoch[062/800], Step[0000/0626], Avg Loss: 0.7098
-INFO:local_logger:Epoch[062/800], Step[0000/0626], Avg Loss: 0.7053
-INFO:local_logger:Epoch[062/800], Step[0100/0626], Avg Loss: 0.7008
-INFO:local_logger:Epoch[062/800], Step[0100/0626], Avg Loss: 0.7009
-INFO:local_logger:Epoch[062/800], Step[0100/0626], Avg Loss: 0.7013
-INFO:local_logger:Epoch[062/800], Step[0100/0626], Avg Loss: 0.7006
-INFO:local_logger:Epoch[062/800], Step[0100/0626], Avg Loss: 0.7017
-INFO:local_logger:Epoch[062/800], Step[0100/0626], Avg Loss: 0.6986
-INFO:master_logger:Epoch[062/800], Step[0100/0626], Avg Loss: 0.7006
-INFO:local_logger:Epoch[062/800], Step[0100/0626], Avg Loss: 0.7006
-INFO:local_logger:Epoch[062/800], Step[0100/0626], Avg Loss: 0.7000
-INFO:local_logger:Epoch[062/800], Step[0200/0626], Avg Loss: 0.7008
-INFO:local_logger:Epoch[062/800], Step[0200/0626], Avg Loss: 0.7005
-INFO:local_logger:Epoch[062/800], Step[0200/0626], Avg Loss: 0.7011
-INFO:local_logger:Epoch[062/800], Step[0200/0626], Avg Loss: 0.6999
-INFO:local_logger:Epoch[062/800], Step[0200/0626], Avg Loss: 0.6996
-INFO:local_logger:Epoch[062/800], Step[0200/0626], Avg Loss: 0.7010
-INFO:local_logger:Epoch[062/800], Step[0200/0626], Avg Loss: 0.7009
-INFO:master_logger:Epoch[062/800], Step[0200/0626], Avg Loss: 0.7006
-INFO:local_logger:Epoch[062/800], Step[0200/0626], Avg Loss: 0.7012
-INFO:local_logger:Epoch[062/800], Step[0300/0626], Avg Loss: 0.6999
-INFO:local_logger:Epoch[062/800], Step[0300/0626], Avg Loss: 0.7012
-INFO:local_logger:Epoch[062/800], Step[0300/0626], Avg Loss: 0.7001
-INFO:local_logger:Epoch[062/800], Step[0300/0626], Avg Loss: 0.7006
-INFO:local_logger:Epoch[062/800], Step[0300/0626], Avg Loss: 0.7012
-INFO:local_logger:Epoch[062/800], Step[0300/0626], Avg Loss: 0.7011
-INFO:master_logger:Epoch[062/800], Step[0300/0626], Avg Loss: 0.7007
-INFO:local_logger:Epoch[062/800], Step[0300/0626], Avg Loss: 0.7008
-INFO:local_logger:Epoch[062/800], Step[0300/0626], Avg Loss: 0.7007
-INFO:local_logger:Epoch[062/800], Step[0400/0626], Avg Loss: 0.7004
-INFO:local_logger:Epoch[062/800], Step[0400/0626], Avg Loss: 0.7012
-INFO:local_logger:Epoch[062/800], Step[0400/0626], Avg Loss: 0.7005
-INFO:local_logger:Epoch[062/800], Step[0400/0626], Avg Loss: 0.7000
-INFO:master_logger:Epoch[062/800], Step[0400/0626], Avg Loss: 0.7006
-INFO:local_logger:Epoch[062/800], Step[0400/0626], Avg Loss: 0.7005
-INFO:local_logger:Epoch[062/800], Step[0400/0626], Avg Loss: 0.7008
-INFO:local_logger:Epoch[062/800], Step[0400/0626], Avg Loss: 0.7005
-INFO:local_logger:Epoch[062/800], Step[0400/0626], Avg Loss: 0.7011
-INFO:local_logger:Epoch[062/800], Step[0500/0626], Avg Loss: 0.7002
-INFO:local_logger:Epoch[062/800], Step[0500/0626], Avg Loss: 0.7014
-INFO:local_logger:Epoch[062/800], Step[0500/0626], Avg Loss: 0.7009
-INFO:local_logger:Epoch[062/800], Step[0500/0626], Avg Loss: 0.7009
-INFO:local_logger:Epoch[062/800], Step[0500/0626], Avg Loss: 0.7005
-INFO:local_logger:Epoch[062/800], Step[0500/0626], Avg Loss: 0.7006
-INFO:local_logger:Epoch[062/800], Step[0500/0626], Avg Loss: 0.7002
-INFO:master_logger:Epoch[062/800], Step[0500/0626], Avg Loss: 0.7006
-INFO:local_logger:Epoch[062/800], Step[0500/0626], Avg Loss: 0.7005
-INFO:local_logger:Epoch[062/800], Step[0600/0626], Avg Loss: 0.7014
-INFO:local_logger:Epoch[062/800], Step[0600/0626], Avg Loss: 0.7008
-INFO:local_logger:Epoch[062/800], Step[0600/0626], Avg Loss: 0.7001
-INFO:local_logger:Epoch[062/800], Step[0600/0626], Avg Loss: 0.7008
-INFO:local_logger:Epoch[062/800], Step[0600/0626], Avg Loss: 0.7000
-INFO:local_logger:Epoch[062/800], Step[0600/0626], Avg Loss: 0.7006
-INFO:master_logger:Epoch[062/800], Step[0600/0626], Avg Loss: 0.7006
-INFO:local_logger:Epoch[062/800], Step[0600/0626], Avg Loss: 0.7002
-INFO:local_logger:Epoch[062/800], Step[0600/0626], Avg Loss: 0.7006
-INFO:local_logger:----- Epoch[062/800], Train Loss: 0.7001, time: 880.83
-INFO:local_logger:Now training epoch 63. LR=0.000151
-INFO:local_logger:----- Epoch[062/800], Train Loss: 0.7001, time: 877.21
-INFO:master_logger:----- Epoch[062/800], Train Loss: 0.7005, time: 877.21
-INFO:local_logger:----- Epoch[062/800], Train Loss: 0.7008, time: 880.96
-INFO:local_logger:Now training epoch 63. LR=0.000151
-INFO:local_logger:----- Epoch[062/800], Train Loss: 0.7008, time: 881.01
-INFO:local_logger:Now training epoch 63. LR=0.000151
-INFO:local_logger:----- Epoch[062/800], Train Loss: 0.7006, time: 881.03
-INFO:local_logger:Now training epoch 63. LR=0.000151
-INFO:local_logger:----- Epoch[062/800], Train Loss: 0.7005, time: 881.40
-INFO:local_logger:Now training epoch 63. LR=0.000151
-INFO:local_logger:----- Epoch[062/800], Train Loss: 0.7001, time: 881.51
-INFO:local_logger:Now training epoch 63. LR=0.000151
-INFO:local_logger:----- Epoch[062/800], Train Loss: 0.7013, time: 882.39
-INFO:local_logger:Now training epoch 63. LR=0.000151
-INFO:local_logger:----- Save model: ./output/train-20211219-17-07-40/MAE-Epoch-62-Loss-0.7001281701651857.pdparams
-INFO:local_logger:----- Save optim: ./output/train-20211219-17-07-40/MAE-Epoch-62-Loss-0.7001281701651857.pdopt
-INFO:master_logger:----- Save model: ./output/train-20211219-17-07-40/MAE-Epoch-62-Loss-0.7001281701651857.pdparams
-INFO:master_logger:----- Save optim: ./output/train-20211219-17-07-40/MAE-Epoch-62-Loss-0.7001281701651857.pdopt
-INFO:local_logger:Now training epoch 63. LR=0.000151
-INFO:master_logger:Now training epoch 63. LR=0.000151
-INFO:local_logger:Epoch[063/800], Step[0000/0626], Avg Loss: 0.7051
-INFO:local_logger:Epoch[063/800], Step[0000/0626], Avg Loss: 0.7172
-INFO:local_logger:Epoch[063/800], Step[0000/0626], Avg Loss: 0.6949
-INFO:master_logger:Epoch[063/800], Step[0000/0626], Avg Loss: 0.6984
-INFO:local_logger:Epoch[063/800], Step[0000/0626], Avg Loss: 0.7023
-INFO:local_logger:Epoch[063/800], Step[0000/0626], Avg Loss: 0.7033
-INFO:local_logger:Epoch[063/800], Step[0000/0626], Avg Loss: 0.6961
-INFO:local_logger:Epoch[063/800], Step[0000/0626], Avg Loss: 0.6916
-INFO:local_logger:Epoch[063/800], Step[0000/0626], Avg Loss: 0.6763
-INFO:local_logger:Epoch[063/800], Step[0100/0626], Avg Loss: 0.6997
-INFO:local_logger:Epoch[063/800], Step[0100/0626], Avg Loss: 0.7004
-INFO:local_logger:Epoch[063/800], Step[0100/0626], Avg Loss: 0.7001
-INFO:master_logger:Epoch[063/800], Step[0100/0626], Avg Loss: 0.7000
-INFO:local_logger:Epoch[063/800], Step[0100/0626], Avg Loss: 0.7002
-INFO:local_logger:Epoch[063/800], Step[0100/0626], Avg Loss: 0.7000
-INFO:local_logger:Epoch[063/800], Step[0100/0626], Avg Loss: 0.6995
-INFO:local_logger:Epoch[063/800], Step[0100/0626], Avg Loss: 0.7000
-INFO:local_logger:Epoch[063/800], Step[0100/0626], Avg Loss: 0.7001
-INFO:local_logger:Epoch[063/800], Step[0200/0626], Avg Loss: 0.7000
-INFO:local_logger:Epoch[063/800], Step[0200/0626], Avg Loss: 0.6995
-INFO:local_logger:Epoch[063/800], Step[0200/0626], Avg Loss: 0.7004
-INFO:local_logger:Epoch[063/800], Step[0200/0626], Avg Loss: 0.6985
-INFO:local_logger:Epoch[063/800], Step[0200/0626], Avg Loss: 0.7006
-INFO:local_logger:Epoch[063/800], Step[0200/0626], Avg Loss: 0.6999
-INFO:master_logger:Epoch[063/800], Step[0200/0626], Avg Loss: 0.6998
-INFO:local_logger:Epoch[063/800], Step[0200/0626], Avg Loss: 0.6997
-INFO:local_logger:Epoch[063/800], Step[0200/0626], Avg Loss: 0.7001
-INFO:local_logger:Epoch[063/800], Step[0300/0626], Avg Loss: 0.6999
-INFO:local_logger:Epoch[063/800], Step[0300/0626], Avg Loss: 0.7002
-INFO:local_logger:Epoch[063/800], Step[0300/0626], Avg Loss: 0.6997
-INFO:local_logger:Epoch[063/800], Step[0300/0626], Avg Loss: 0.7005
-INFO:local_logger:Epoch[063/800], Step[0300/0626], Avg Loss: 0.7013
-INFO:master_logger:Epoch[063/800], Step[0300/0626], Avg Loss: 0.7001
-INFO:local_logger:Epoch[063/800], Step[0300/0626], Avg Loss: 0.7002
-INFO:local_logger:Epoch[063/800], Step[0300/0626], Avg Loss: 0.6989
-INFO:local_logger:Epoch[063/800], Step[0300/0626], Avg Loss: 0.6998
-INFO:local_logger:Epoch[063/800], Step[0400/0626], Avg Loss: 0.6996
-INFO:local_logger:Epoch[063/800], Step[0400/0626], Avg Loss: 0.6997
-INFO:local_logger:Epoch[063/800], Step[0400/0626], Avg Loss: 0.6995
-INFO:local_logger:Epoch[063/800], Step[0400/0626], Avg Loss: 0.6991
-INFO:local_logger:Epoch[063/800], Step[0400/0626], Avg Loss: 0.7004
-INFO:local_logger:Epoch[063/800], Step[0400/0626], Avg Loss: 0.7011
-INFO:local_logger:Epoch[063/800], Step[0400/0626], Avg Loss: 0.7001
-INFO:master_logger:Epoch[063/800], Step[0400/0626], Avg Loss: 0.6999
-INFO:local_logger:Epoch[063/800], Step[0400/0626], Avg Loss: 0.7000
-INFO:local_logger:Epoch[063/800], Step[0500/0626], Avg Loss: 0.6998
-INFO:local_logger:Epoch[063/800], Step[0500/0626], Avg Loss: 0.7001
-INFO:local_logger:Epoch[063/800], Step[0500/0626], Avg Loss: 0.7000
-INFO:local_logger:Epoch[063/800], Step[0500/0626], Avg Loss: 0.6995
-INFO:local_logger:Epoch[063/800], Step[0500/0626], Avg Loss: 0.7001
-INFO:local_logger:Epoch[063/800], Step[0500/0626], Avg Loss: 0.7000
-INFO:local_logger:Epoch[063/800], Step[0500/0626], Avg Loss: 0.7008
-INFO:master_logger:Epoch[063/800], Step[0500/0626], Avg Loss: 0.7000
-INFO:local_logger:Epoch[063/800], Step[0500/0626], Avg Loss: 0.6994
-INFO:local_logger:Epoch[063/800], Step[0600/0626], Avg Loss: 0.6997
-INFO:local_logger:Epoch[063/800], Step[0600/0626], Avg Loss: 0.6993
-INFO:local_logger:Epoch[063/800], Step[0600/0626], Avg Loss: 0.6993
-INFO:local_logger:Epoch[063/800], Step[0600/0626], Avg Loss: 0.6997
-INFO:local_logger:Epoch[063/800], Step[0600/0626], Avg Loss: 0.6998
-INFO:local_logger:Epoch[063/800], Step[0600/0626], Avg Loss: 0.7005
-INFO:local_logger:Epoch[063/800], Step[0600/0626], Avg Loss: 0.6997
-INFO:master_logger:Epoch[063/800], Step[0600/0626], Avg Loss: 0.6997
-INFO:local_logger:Epoch[063/800], Step[0600/0626], Avg Loss: 0.6998
-INFO:local_logger:----- Epoch[063/800], Train Loss: 0.6997, time: 870.66
-INFO:master_logger:----- Epoch[063/800], Train Loss: 0.6997, time: 870.66
-INFO:local_logger:----- Epoch[063/800], Train Loss: 0.6998, time: 874.64
-INFO:local_logger:Now training epoch 64. LR=0.000151
-INFO:local_logger:----- Epoch[063/800], Train Loss: 0.6993, time: 874.57
-INFO:local_logger:Now training epoch 64. LR=0.000151
-INFO:local_logger:----- Epoch[063/800], Train Loss: 0.6998, time: 874.56
-INFO:local_logger:Now training epoch 64. LR=0.000151
-INFO:local_logger:----- Epoch[063/800], Train Loss: 0.6997, time: 874.53
-INFO:local_logger:Now training epoch 64. LR=0.000151
-INFO:local_logger:----- Epoch[063/800], Train Loss: 0.6993, time: 874.53
-INFO:local_logger:Now training epoch 64. LR=0.000151
-INFO:local_logger:----- Epoch[063/800], Train Loss: 0.6998, time: 874.79
-INFO:local_logger:Now training epoch 64. LR=0.000151
-INFO:local_logger:----- Epoch[063/800], Train Loss: 0.7004, time: 874.66
-INFO:local_logger:Now training epoch 64. LR=0.000151
-INFO:local_logger:----- Save model: ./output/train-20211219-17-07-40/MAE-Epoch-63-Loss-0.6997380468063858.pdparams
-INFO:local_logger:----- Save optim: ./output/train-20211219-17-07-40/MAE-Epoch-63-Loss-0.6997380468063858.pdopt
-INFO:master_logger:----- Save model: ./output/train-20211219-17-07-40/MAE-Epoch-63-Loss-0.6997380468063858.pdparams
-INFO:master_logger:----- Save optim: ./output/train-20211219-17-07-40/MAE-Epoch-63-Loss-0.6997380468063858.pdopt
-INFO:local_logger:Now training epoch 64. LR=0.000151
-INFO:master_logger:Now training epoch 64. LR=0.000151
-INFO:local_logger:Epoch[064/800], Step[0000/0626], Avg Loss: 0.7015
-INFO:local_logger:Epoch[064/800], Step[0000/0626], Avg Loss: 0.6893
-INFO:master_logger:Epoch[064/800], Step[0000/0626], Avg Loss: 0.7009
-INFO:local_logger:Epoch[064/800], Step[0000/0626], Avg Loss: 0.7021
-INFO:local_logger:Epoch[064/800], Step[0000/0626], Avg Loss: 0.6949
-INFO:local_logger:Epoch[064/800], Step[0000/0626], Avg Loss: 0.7124
-INFO:local_logger:Epoch[064/800], Step[0000/0626], Avg Loss: 0.7052
-INFO:local_logger:Epoch[064/800], Step[0000/0626], Avg Loss: 0.7017
-INFO:local_logger:Epoch[064/800], Step[0000/0626], Avg Loss: 0.6999
-INFO:local_logger:Epoch[064/800], Step[0100/0626], Avg Loss: 0.7004
-INFO:local_logger:Epoch[064/800], Step[0100/0626], Avg Loss: 0.6997
-INFO:local_logger:Epoch[064/800], Step[0100/0626], Avg Loss: 0.6991
-INFO:local_logger:Epoch[064/800], Step[0100/0626], Avg Loss: 0.6999
-INFO:local_logger:Epoch[064/800], Step[0100/0626], Avg Loss: 0.6988
-INFO:local_logger:Epoch[064/800], Step[0100/0626], Avg Loss: 0.6993
-INFO:master_logger:Epoch[064/800], Step[0100/0626], Avg Loss: 0.6995
-INFO:local_logger:Epoch[064/800], Step[0100/0626], Avg Loss: 0.6986
-INFO:local_logger:Epoch[064/800], Step[0100/0626], Avg Loss: 0.6997
-INFO:local_logger:Epoch[064/800], Step[0200/0626], Avg Loss: 0.6995
-INFO:local_logger:Epoch[064/800], Step[0200/0626], Avg Loss: 0.6994
-INFO:local_logger:Epoch[064/800], Step[0200/0626], Avg Loss: 0.6987
-INFO:local_logger:Epoch[064/800], Step[0200/0626], Avg Loss: 0.7007
-INFO:local_logger:Epoch[064/800], Step[0200/0626], Avg Loss: 0.6995
-INFO:local_logger:Epoch[064/800], Step[0200/0626], Avg Loss: 0.6998
-INFO:master_logger:Epoch[064/800], Step[0200/0626], Avg Loss: 0.6997
-INFO:local_logger:Epoch[064/800], Step[0200/0626], Avg Loss: 0.6999
-INFO:local_logger:Epoch[064/800], Step[0200/0626], Avg Loss: 0.7003
-INFO:local_logger:Epoch[064/800], Step[0300/0626], Avg Loss: 0.6992
-INFO:local_logger:Epoch[064/800], Step[0300/0626], Avg Loss: 0.6998
-INFO:local_logger:Epoch[064/800], Step[0300/0626], Avg Loss: 0.6999
-INFO:local_logger:Epoch[064/800], Step[0300/0626], Avg Loss: 0.6997
-INFO:local_logger:Epoch[064/800], Step[0300/0626], Avg Loss: 0.6986
-INFO:master_logger:Epoch[064/800], Step[0300/0626], Avg Loss: 0.6994
-INFO:local_logger:Epoch[064/800], Step[0300/0626], Avg Loss: 0.6991
-INFO:local_logger:Epoch[064/800], Step[0300/0626], Avg Loss: 0.6993
-INFO:local_logger:Epoch[064/800], Step[0300/0626], Avg Loss: 0.6998
-INFO:local_logger:Epoch[064/800], Step[0400/0626], Avg Loss: 0.6996
-INFO:local_logger:Epoch[064/800], Step[0400/0626], Avg Loss: 0.6997
-INFO:local_logger:Epoch[064/800], Step[0400/0626], Avg Loss: 0.6995
-INFO:local_logger:Epoch[064/800], Step[0400/0626], Avg Loss: 0.6996
-INFO:local_logger:Epoch[064/800], Step[0400/0626], Avg Loss: 0.6992
-INFO:master_logger:Epoch[064/800], Step[0400/0626], Avg Loss: 0.6993
-INFO:local_logger:Epoch[064/800], Step[0400/0626], Avg Loss: 0.6992
-INFO:local_logger:Epoch[064/800], Step[0400/0626], Avg Loss: 0.6992
-INFO:local_logger:Epoch[064/800], Step[0400/0626], Avg Loss: 0.6984
-INFO:local_logger:Epoch[064/800], Step[0500/0626], Avg Loss: 0.6989
-INFO:local_logger:Epoch[064/800], Step[0500/0626], Avg Loss: 0.6983
-INFO:local_logger:Epoch[064/800], Step[0500/0626], Avg Loss: 0.6994
-INFO:local_logger:Epoch[064/800], Step[0500/0626], Avg Loss: 0.6992
-INFO:local_logger:Epoch[064/800], Step[0500/0626], Avg Loss: 0.6996
-INFO:local_logger:Epoch[064/800], Step[0500/0626], Avg Loss: 0.6991
-INFO:local_logger:Epoch[064/800], Step[0500/0626], Avg Loss: 0.6988
-INFO:master_logger:Epoch[064/800], Step[0500/0626], Avg Loss: 0.6991
-INFO:local_logger:Epoch[064/800], Step[0500/0626], Avg Loss: 0.6994
-INFO:local_logger:Epoch[064/800], Step[0600/0626], Avg Loss: 0.6991
-INFO:local_logger:Epoch[064/800], Step[0600/0626], Avg Loss: 0.6992
-INFO:local_logger:Epoch[064/800], Step[0600/0626], Avg Loss: 0.6987
-INFO:local_logger:Epoch[064/800], Step[0600/0626], Avg Loss: 0.6993
-INFO:local_logger:Epoch[064/800], Step[0600/0626], Avg Loss: 0.6989
-INFO:master_logger:Epoch[064/800], Step[0600/0626], Avg Loss: 0.6990
-INFO:local_logger:Epoch[064/800], Step[0600/0626], Avg Loss: 0.6988
-INFO:local_logger:Epoch[064/800], Step[0600/0626], Avg Loss: 0.6993
-INFO:local_logger:Epoch[064/800], Step[0600/0626], Avg Loss: 0.6984
-INFO:local_logger:----- Epoch[064/800], Train Loss: 0.6992, time: 883.12
-INFO:local_logger:Now training epoch 65. LR=0.000151
-INFO:local_logger:----- Epoch[064/800], Train Loss: 0.6983, time: 883.49
-INFO:local_logger:Now training epoch 65. LR=0.000151
-INFO:local_logger:----- Epoch[064/800], Train Loss: 0.6991, time: 883.58
-INFO:local_logger:Now training epoch 65. LR=0.000151
-INFO:local_logger:----- Epoch[064/800], Train Loss: 0.6987, time: 883.60
-INFO:local_logger:Now training epoch 65. LR=0.000151
-INFO:local_logger:----- Epoch[064/800], Train Loss: 0.6992, time: 880.22
-INFO:master_logger:----- Epoch[064/800], Train Loss: 0.6990, time: 880.22
-INFO:local_logger:----- Epoch[064/800], Train Loss: 0.6988, time: 883.73
-INFO:local_logger:Now training epoch 65. LR=0.000151
-INFO:local_logger:----- Epoch[064/800], Train Loss: 0.6989, time: 883.71
-INFO:local_logger:Now training epoch 65. LR=0.000151
-INFO:local_logger:----- Epoch[064/800], Train Loss: 0.6993, time: 883.76
-INFO:local_logger:Now training epoch 65. LR=0.000151
-INFO:local_logger:----- Save model: ./output/train-20211219-17-07-40/MAE-Epoch-64-Loss-0.6992388257000982.pdparams
-INFO:local_logger:----- Save optim: ./output/train-20211219-17-07-40/MAE-Epoch-64-Loss-0.6992388257000982.pdopt
-INFO:master_logger:----- Save model: ./output/train-20211219-17-07-40/MAE-Epoch-64-Loss-0.6992388257000982.pdparams
-INFO:master_logger:----- Save optim: ./output/train-20211219-17-07-40/MAE-Epoch-64-Loss-0.6992388257000982.pdopt
-INFO:local_logger:Now training epoch 65. LR=0.000151
-INFO:master_logger:Now training epoch 65. LR=0.000151
-INFO:local_logger:Epoch[065/800], Step[0000/0626], Avg Loss: 0.7020
-INFO:local_logger:Epoch[065/800], Step[0000/0626], Avg Loss: 0.7021
-INFO:local_logger:Epoch[065/800], Step[0000/0626], Avg Loss: 0.7097
-INFO:master_logger:Epoch[065/800], Step[0000/0626], Avg Loss: 0.6995
-INFO:local_logger:Epoch[065/800], Step[0000/0626], Avg Loss: 0.7040
-INFO:local_logger:Epoch[065/800], Step[0000/0626], Avg Loss: 0.6936
-INFO:local_logger:Epoch[065/800], Step[0000/0626], Avg Loss: 0.6956
-INFO:local_logger:Epoch[065/800], Step[0000/0626], Avg Loss: 0.6907
-INFO:local_logger:Epoch[065/800], Step[0000/0626], Avg Loss: 0.6983
-INFO:local_logger:Epoch[065/800], Step[0100/0626], Avg Loss: 0.6981
-INFO:local_logger:Epoch[065/800], Step[0100/0626], Avg Loss: 0.6980
-INFO:local_logger:Epoch[065/800], Step[0100/0626], Avg Loss: 0.6977
-INFO:local_logger:Epoch[065/800], Step[0100/0626], Avg Loss: 0.6977
-INFO:local_logger:Epoch[065/800], Step[0100/0626], Avg Loss: 0.6990
-INFO:local_logger:Epoch[065/800], Step[0100/0626], Avg Loss: 0.6990
-INFO:local_logger:Epoch[065/800], Step[0100/0626], Avg Loss: 0.6972
-INFO:local_logger:Epoch[065/800], Step[0100/0626], Avg Loss: 0.6976
-INFO:master_logger:Epoch[065/800], Step[0100/0626], Avg Loss: 0.6980
-INFO:local_logger:Epoch[065/800], Step[0200/0626], Avg Loss: 0.6989
-INFO:local_logger:Epoch[065/800], Step[0200/0626], Avg Loss: 0.6979
-INFO:local_logger:Epoch[065/800], Step[0200/0626], Avg Loss: 0.6986
-INFO:local_logger:Epoch[065/800], Step[0200/0626], Avg Loss: 0.6989
-INFO:local_logger:Epoch[065/800], Step[0200/0626], Avg Loss: 0.6983
-INFO:master_logger:Epoch[065/800], Step[0200/0626], Avg Loss: 0.6984
-INFO:local_logger:Epoch[065/800], Step[0200/0626], Avg Loss: 0.6981
-INFO:local_logger:Epoch[065/800], Step[0200/0626], Avg Loss: 0.6985
-INFO:local_logger:Epoch[065/800], Step[0200/0626], Avg Loss: 0.6981
-INFO:local_logger:Epoch[065/800], Step[0300/0626], Avg Loss: 0.6983
-INFO:local_logger:Epoch[065/800], Step[0300/0626], Avg Loss: 0.6990
-INFO:local_logger:Epoch[065/800], Step[0300/0626], Avg Loss: 0.6980
-INFO:local_logger:Epoch[065/800], Step[0300/0626], Avg Loss: 0.6984
-INFO:local_logger:Epoch[065/800], Step[0300/0626], Avg Loss: 0.6986
-INFO:local_logger:Epoch[065/800], Step[0300/0626], Avg Loss: 0.6982
-INFO:master_logger:Epoch[065/800], Step[0300/0626], Avg Loss: 0.6984
-INFO:local_logger:Epoch[065/800], Step[0300/0626], Avg Loss: 0.6984
-INFO:local_logger:Epoch[065/800], Step[0300/0626], Avg Loss: 0.6979
-INFO:local_logger:Epoch[065/800], Step[0400/0626], Avg Loss: 0.6985
-INFO:local_logger:Epoch[065/800], Step[0400/0626], Avg Loss: 0.6980
-INFO:local_logger:Epoch[065/800], Step[0400/0626], Avg Loss: 0.6981
-INFO:local_logger:Epoch[065/800], Step[0400/0626], Avg Loss: 0.6990
-INFO:master_logger:Epoch[065/800], Step[0400/0626], Avg Loss: 0.6982
-INFO:local_logger:Epoch[065/800], Step[0400/0626], Avg Loss: 0.6980
-INFO:local_logger:Epoch[065/800], Step[0400/0626], Avg Loss: 0.6978
-INFO:local_logger:Epoch[065/800], Step[0400/0626], Avg Loss: 0.6981
-INFO:local_logger:Epoch[065/800], Step[0400/0626], Avg Loss: 0.6982
-INFO:local_logger:Epoch[065/800], Step[0500/0626], Avg Loss: 0.6984
-INFO:local_logger:Epoch[065/800], Step[0500/0626], Avg Loss: 0.6983
-INFO:local_logger:Epoch[065/800], Step[0500/0626], Avg Loss: 0.6990
-INFO:local_logger:Epoch[065/800], Step[0500/0626], Avg Loss: 0.6981
-INFO:local_logger:Epoch[065/800], Step[0500/0626], Avg Loss: 0.6976
-INFO:local_logger:Epoch[065/800], Step[0500/0626], Avg Loss: 0.6980
-INFO:master_logger:Epoch[065/800], Step[0500/0626], Avg Loss: 0.6981
-INFO:local_logger:Epoch[065/800], Step[0500/0626], Avg Loss: 0.6981
-INFO:local_logger:Epoch[065/800], Step[0500/0626], Avg Loss: 0.6977
-INFO:local_logger:Epoch[065/800], Step[0600/0626], Avg Loss: 0.6982
-INFO:local_logger:Epoch[065/800], Step[0600/0626], Avg Loss: 0.6982
-INFO:local_logger:Epoch[065/800], Step[0600/0626], Avg Loss: 0.6981
-INFO:local_logger:Epoch[065/800], Step[0600/0626], Avg Loss: 0.6977
-INFO:local_logger:Epoch[065/800], Step[0600/0626], Avg Loss: 0.6988
-INFO:master_logger:Epoch[065/800], Step[0600/0626], Avg Loss: 0.6981
-INFO:local_logger:Epoch[065/800], Step[0600/0626], Avg Loss: 0.6978
-INFO:local_logger:Epoch[065/800], Step[0600/0626], Avg Loss: 0.6975
-INFO:local_logger:Epoch[065/800], Step[0600/0626], Avg Loss: 0.6981
-INFO:local_logger:----- Epoch[065/800], Train Loss: 0.6981, time: 871.05
-INFO:local_logger:Now training epoch 66. LR=0.000151
-INFO:local_logger:----- Epoch[065/800], Train Loss: 0.6988, time: 867.64
-INFO:master_logger:----- Epoch[065/800], Train Loss: 0.6980, time: 867.64
-INFO:local_logger:----- Epoch[065/800], Train Loss: 0.6977, time: 871.33
-INFO:local_logger:Now training epoch 66. LR=0.000151
-INFO:local_logger:----- Epoch[065/800], Train Loss: 0.6980, time: 872.01
-INFO:local_logger:Now training epoch 66. LR=0.000151
-INFO:local_logger:----- Epoch[065/800], Train Loss: 0.6975, time: 871.43
-INFO:local_logger:Now training epoch 66. LR=0.000151
-INFO:local_logger:----- Epoch[065/800], Train Loss: 0.6982, time: 871.92
-INFO:local_logger:Now training epoch 66. LR=0.000151
-INFO:local_logger:----- Epoch[065/800], Train Loss: 0.6981, time: 871.81
-INFO:local_logger:Now training epoch 66. LR=0.000151
-INFO:local_logger:----- Epoch[065/800], Train Loss: 0.6978, time: 871.98
-INFO:local_logger:Now training epoch 66. LR=0.000151
-INFO:local_logger:----- Save model: ./output/train-20211219-17-07-40/MAE-Epoch-65-Loss-0.6988199688404415.pdparams
-INFO:local_logger:----- Save optim: ./output/train-20211219-17-07-40/MAE-Epoch-65-Loss-0.6988199688404415.pdopt
-INFO:master_logger:----- Save model: ./output/train-20211219-17-07-40/MAE-Epoch-65-Loss-0.6988199688404415.pdparams
-INFO:master_logger:----- Save optim: ./output/train-20211219-17-07-40/MAE-Epoch-65-Loss-0.6988199688404415.pdopt
-INFO:local_logger:Now training epoch 66. LR=0.000151
-INFO:master_logger:Now training epoch 66. LR=0.000151
-INFO:local_logger:Epoch[066/800], Step[0000/0626], Avg Loss: 0.6946
-INFO:local_logger:Epoch[066/800], Step[0000/0626], Avg Loss: 0.6997
-INFO:master_logger:Epoch[066/800], Step[0000/0626], Avg Loss: 0.6995
-INFO:local_logger:Epoch[066/800], Step[0000/0626], Avg Loss: 0.6986
-INFO:local_logger:Epoch[066/800], Step[0000/0626], Avg Loss: 0.7179
-INFO:local_logger:Epoch[066/800], Step[0000/0626], Avg Loss: 0.6919
-INFO:local_logger:Epoch[066/800], Step[0000/0626], Avg Loss: 0.6927
-INFO:local_logger:Epoch[066/800], Step[0000/0626], Avg Loss: 0.7034
-INFO:local_logger:Epoch[066/800], Step[0000/0626], Avg Loss: 0.6970
-INFO:local_logger:Epoch[066/800], Step[0100/0626], Avg Loss: 0.6978
-INFO:local_logger:Epoch[066/800], Step[0100/0626], Avg Loss: 0.6981
-INFO:local_logger:Epoch[066/800], Step[0100/0626], Avg Loss: 0.6987
-INFO:master_logger:Epoch[066/800], Step[0100/0626], Avg Loss: 0.6977
-INFO:local_logger:Epoch[066/800], Step[0100/0626], Avg Loss: 0.6980
-INFO:local_logger:Epoch[066/800], Step[0100/0626], Avg Loss: 0.6973
-INFO:local_logger:Epoch[066/800], Step[0100/0626], Avg Loss: 0.6973
-INFO:local_logger:Epoch[066/800], Step[0100/0626], Avg Loss: 0.6979
-INFO:local_logger:Epoch[066/800], Step[0100/0626], Avg Loss: 0.6965
-INFO:local_logger:Epoch[066/800], Step[0200/0626], Avg Loss: 0.6971
-INFO:local_logger:Epoch[066/800], Step[0200/0626], Avg Loss: 0.6974
-INFO:local_logger:Epoch[066/800], Step[0200/0626], Avg Loss: 0.6972
-INFO:local_logger:Epoch[066/800], Step[0200/0626], Avg Loss: 0.6980
-INFO:local_logger:Epoch[066/800], Step[0200/0626], Avg Loss: 0.6976
-INFO:local_logger:Epoch[066/800], Step[0200/0626], Avg Loss: 0.6988
-INFO:local_logger:Epoch[066/800], Step[0200/0626], Avg Loss: 0.6973
-INFO:local_logger:Epoch[066/800], Step[0200/0626], Avg Loss: 0.6983
-INFO:master_logger:Epoch[066/800], Step[0200/0626], Avg Loss: 0.6977
-INFO:local_logger:Epoch[066/800], Step[0300/0626], Avg Loss: 0.6977
-INFO:local_logger:Epoch[066/800], Step[0300/0626], Avg Loss: 0.6978
-INFO:local_logger:Epoch[066/800], Step[0300/0626], Avg Loss: 0.6973
-INFO:local_logger:Epoch[066/800], Step[0300/0626], Avg Loss: 0.6976
-INFO:local_logger:Epoch[066/800], Step[0300/0626], Avg Loss: 0.6971
-INFO:local_logger:Epoch[066/800], Step[0300/0626], Avg Loss: 0.6975
-INFO:local_logger:Epoch[066/800], Step[0300/0626], Avg Loss: 0.6984
-INFO:master_logger:Epoch[066/800], Step[0300/0626], Avg Loss: 0.6977
-INFO:local_logger:Epoch[066/800], Step[0300/0626], Avg Loss: 0.6984
-INFO:local_logger:Epoch[066/800], Step[0400/0626], Avg Loss: 0.6972
-INFO:local_logger:Epoch[066/800], Step[0400/0626], Avg Loss: 0.6973
-INFO:local_logger:Epoch[066/800], Step[0400/0626], Avg Loss: 0.6975
-INFO:local_logger:Epoch[066/800], Step[0400/0626], Avg Loss: 0.6974
-INFO:local_logger:Epoch[066/800], Step[0400/0626], Avg Loss: 0.6981
-INFO:local_logger:Epoch[066/800], Step[0400/0626], Avg Loss: 0.6970
-INFO:master_logger:Epoch[066/800], Step[0400/0626], Avg Loss: 0.6976
-INFO:local_logger:Epoch[066/800], Step[0400/0626], Avg Loss: 0.6980
-INFO:local_logger:Epoch[066/800], Step[0400/0626], Avg Loss: 0.6979
-INFO:local_logger:Epoch[066/800], Step[0500/0626], Avg Loss: 0.6972
-INFO:local_logger:Epoch[066/800], Step[0500/0626], Avg Loss: 0.6978
-INFO:local_logger:Epoch[066/800], Step[0500/0626], Avg Loss: 0.6972
-INFO:local_logger:Epoch[066/800], Step[0500/0626], Avg Loss: 0.6971
-INFO:local_logger:Epoch[066/800], Step[0500/0626], Avg Loss: 0.6970
-INFO:master_logger:Epoch[066/800], Step[0500/0626], Avg Loss: 0.6974
-INFO:local_logger:Epoch[066/800], Step[0500/0626], Avg Loss: 0.6977
-INFO:local_logger:Epoch[066/800], Step[0500/0626], Avg Loss: 0.6975
-INFO:local_logger:Epoch[066/800], Step[0500/0626], Avg Loss: 0.6977
-INFO:local_logger:Epoch[066/800], Step[0600/0626], Avg Loss: 0.6971
-INFO:local_logger:Epoch[066/800], Step[0600/0626], Avg Loss: 0.6977
-INFO:local_logger:Epoch[066/800], Step[0600/0626], Avg Loss: 0.6976
-INFO:local_logger:Epoch[066/800], Step[0600/0626], Avg Loss: 0.6970
-INFO:local_logger:Epoch[066/800], Step[0600/0626], Avg Loss: 0.6976
-INFO:local_logger:Epoch[066/800], Step[0600/0626], Avg Loss: 0.6972
-INFO:local_logger:Epoch[066/800], Step[0600/0626], Avg Loss: 0.6970
-INFO:local_logger:Epoch[066/800], Step[0600/0626], Avg Loss: 0.6975
-INFO:master_logger:Epoch[066/800], Step[0600/0626], Avg Loss: 0.6973
-INFO:local_logger:----- Epoch[066/800], Train Loss: 0.6970, time: 874.18
-INFO:master_logger:----- Epoch[066/800], Train Loss: 0.6973, time: 874.18
-INFO:local_logger:----- Epoch[066/800], Train Loss: 0.6976, time: 878.36
-INFO:local_logger:Now training epoch 67. LR=0.000151
-INFO:local_logger:----- Epoch[066/800], Train Loss: 0.6969, time: 877.55
-INFO:local_logger:Now training epoch 67. LR=0.000151
-INFO:local_logger:----- Epoch[066/800], Train Loss: 0.6971, time: 878.04
-INFO:local_logger:Now training epoch 67. LR=0.000151
-INFO:local_logger:----- Epoch[066/800], Train Loss: 0.6977, time: 877.55
-INFO:local_logger:Now training epoch 67. LR=0.000151
-INFO:local_logger:----- Epoch[066/800], Train Loss: 0.6970, time: 878.01
-INFO:local_logger:Now training epoch 67. LR=0.000151
-INFO:local_logger:----- Epoch[066/800], Train Loss: 0.6975, time: 878.03
-INFO:local_logger:Now training epoch 67. LR=0.000151
-INFO:local_logger:----- Epoch[066/800], Train Loss: 0.6975, time: 878.01
-INFO:local_logger:Now training epoch 67. LR=0.000151
-INFO:local_logger:----- Save model: ./output/train-20211219-17-07-40/MAE-Epoch-66-Loss-0.6970274622691075.pdparams
-INFO:local_logger:----- Save optim: ./output/train-20211219-17-07-40/MAE-Epoch-66-Loss-0.6970274622691075.pdopt
-INFO:master_logger:----- Save model: ./output/train-20211219-17-07-40/MAE-Epoch-66-Loss-0.6970274622691075.pdparams
-INFO:master_logger:----- Save optim: ./output/train-20211219-17-07-40/MAE-Epoch-66-Loss-0.6970274622691075.pdopt
-INFO:local_logger:Now training epoch 67. LR=0.000151
-INFO:master_logger:Now training epoch 67. LR=0.000151
-INFO:local_logger:Epoch[067/800], Step[0000/0626], Avg Loss: 0.6978
-INFO:master_logger:Epoch[067/800], Step[0000/0626], Avg Loss: 0.6958
-INFO:local_logger:Epoch[067/800], Step[0000/0626], Avg Loss: 0.6925
-INFO:local_logger:Epoch[067/800], Step[0000/0626], Avg Loss: 0.6998
-INFO:local_logger:Epoch[067/800], Step[0000/0626], Avg Loss: 0.7094
-INFO:local_logger:Epoch[067/800], Step[0000/0626], Avg Loss: 0.6842
-INFO:local_logger:Epoch[067/800], Step[0000/0626], Avg Loss: 0.6943
-INFO:local_logger:Epoch[067/800], Step[0000/0626], Avg Loss: 0.6945
-INFO:local_logger:Epoch[067/800], Step[0000/0626], Avg Loss: 0.6944
-INFO:local_logger:Epoch[067/800], Step[0100/0626], Avg Loss: 0.6961
-INFO:local_logger:Epoch[067/800], Step[0100/0626], Avg Loss: 0.6981
-INFO:local_logger:Epoch[067/800], Step[0100/0626], Avg Loss: 0.6961
-INFO:local_logger:Epoch[067/800], Step[0100/0626], Avg Loss: 0.6969
-INFO:local_logger:Epoch[067/800], Step[0100/0626], Avg Loss: 0.6956
-INFO:local_logger:Epoch[067/800], Step[0100/0626], Avg Loss: 0.6968
-INFO:local_logger:Epoch[067/800], Step[0100/0626], Avg Loss: 0.6962
-INFO:master_logger:Epoch[067/800], Step[0100/0626], Avg Loss: 0.6966
-INFO:local_logger:Epoch[067/800], Step[0100/0626], Avg Loss: 0.6968
-INFO:local_logger:Epoch[067/800], Step[0200/0626], Avg Loss: 0.6973
-INFO:local_logger:Epoch[067/800], Step[0200/0626], Avg Loss: 0.6961
-INFO:local_logger:Epoch[067/800], Step[0200/0626], Avg Loss: 0.6968
-INFO:local_logger:Epoch[067/800], Step[0200/0626], Avg Loss: 0.6974
-INFO:local_logger:Epoch[067/800], Step[0200/0626], Avg Loss: 0.6961
-INFO:local_logger:Epoch[067/800], Step[0200/0626], Avg Loss: 0.6971
-INFO:master_logger:Epoch[067/800], Step[0200/0626], Avg Loss: 0.6968
-INFO:local_logger:Epoch[067/800], Step[0200/0626], Avg Loss: 0.6974
-INFO:local_logger:Epoch[067/800], Step[0200/0626], Avg Loss: 0.6966
-INFO:local_logger:Epoch[067/800], Step[0300/0626], Avg Loss: 0.6969
-INFO:local_logger:Epoch[067/800], Step[0300/0626], Avg Loss: 0.6967
-INFO:local_logger:Epoch[067/800], Step[0300/0626], Avg Loss: 0.6966
-INFO:local_logger:Epoch[067/800], Step[0300/0626], Avg Loss: 0.6961
-INFO:local_logger:Epoch[067/800], Step[0300/0626], Avg Loss: 0.6973
-INFO:local_logger:Epoch[067/800], Step[0300/0626], Avg Loss: 0.6958
-INFO:local_logger:Epoch[067/800], Step[0300/0626], Avg Loss: 0.6972
-INFO:local_logger:Epoch[067/800], Step[0300/0626], Avg Loss: 0.6964
-INFO:master_logger:Epoch[067/800], Step[0300/0626], Avg Loss: 0.6966
-INFO:local_logger:Epoch[067/800], Step[0400/0626], Avg Loss: 0.6960
-INFO:local_logger:Epoch[067/800], Step[0400/0626], Avg Loss: 0.6972
-INFO:local_logger:Epoch[067/800], Step[0400/0626], Avg Loss: 0.6964
-INFO:local_logger:Epoch[067/800], Step[0400/0626], Avg Loss: 0.6971
-INFO:local_logger:Epoch[067/800], Step[0400/0626], Avg Loss: 0.6967
-INFO:local_logger:Epoch[067/800], Step[0400/0626], Avg Loss: 0.6966
-INFO:master_logger:Epoch[067/800], Step[0400/0626], Avg Loss: 0.6966
-INFO:local_logger:Epoch[067/800], Step[0400/0626], Avg Loss: 0.6968
-INFO:local_logger:Epoch[067/800], Step[0400/0626], Avg Loss: 0.6958
-INFO:local_logger:Epoch[067/800], Step[0500/0626], Avg Loss: 0.6959
-INFO:local_logger:Epoch[067/800], Step[0500/0626], Avg Loss: 0.6968
-INFO:local_logger:Epoch[067/800], Step[0500/0626], Avg Loss: 0.6965
-INFO:local_logger:Epoch[067/800], Step[0500/0626], Avg Loss: 0.6960
-INFO:local_logger:Epoch[067/800], Step[0500/0626], Avg Loss: 0.6964
-INFO:local_logger:Epoch[067/800], Step[0500/0626], Avg Loss: 0.6968
-INFO:master_logger:Epoch[067/800], Step[0500/0626], Avg Loss: 0.6966
-INFO:local_logger:Epoch[067/800], Step[0500/0626], Avg Loss: 0.6972
-INFO:local_logger:Epoch[067/800], Step[0500/0626], Avg Loss: 0.6971
-INFO:local_logger:Epoch[067/800], Step[0600/0626], Avg Loss: 0.6960
-INFO:local_logger:Epoch[067/800], Step[0600/0626], Avg Loss: 0.6965
-INFO:local_logger:Epoch[067/800], Step[0600/0626], Avg Loss: 0.6968
-INFO:local_logger:Epoch[067/800], Step[0600/0626], Avg Loss: 0.6970
-INFO:local_logger:Epoch[067/800], Step[0600/0626], Avg Loss: 0.6965
-INFO:local_logger:Epoch[067/800], Step[0600/0626], Avg Loss: 0.6965
-INFO:local_logger:Epoch[067/800], Step[0600/0626], Avg Loss: 0.6970
-INFO:master_logger:Epoch[067/800], Step[0600/0626], Avg Loss: 0.6965
-INFO:local_logger:Epoch[067/800], Step[0600/0626], Avg Loss: 0.6961
-INFO:local_logger:----- Epoch[067/800], Train Loss: 0.6970, time: 875.35
-INFO:local_logger:Now training epoch 68. LR=0.000151
-INFO:local_logger:----- Epoch[067/800], Train Loss: 0.6968, time: 872.12
-INFO:master_logger:----- Epoch[067/800], Train Loss: 0.6965, time: 872.12
-INFO:local_logger:----- Epoch[067/800], Train Loss: 0.6965, time: 876.01
-INFO:local_logger:Now training epoch 68. LR=0.000151
-INFO:local_logger:----- Epoch[067/800], Train Loss: 0.6965, time: 875.96
-INFO:local_logger:Now training epoch 68. LR=0.000151
-INFO:local_logger:----- Epoch[067/800], Train Loss: 0.6970, time: 875.59
-INFO:local_logger:Now training epoch 68. LR=0.000151
-INFO:local_logger:----- Epoch[067/800], Train Loss: 0.6961, time: 876.05
-INFO:local_logger:Now training epoch 68. LR=0.000151
-INFO:local_logger:----- Epoch[067/800], Train Loss: 0.6965, time: 875.92
-INFO:local_logger:Now training epoch 68. LR=0.000151
-INFO:local_logger:----- Epoch[067/800], Train Loss: 0.6960, time: 876.13
-INFO:local_logger:Now training epoch 68. LR=0.000151
-INFO:local_logger:----- Save model: ./output/train-20211219-17-07-40/MAE-Epoch-67-Loss-0.696807305239932.pdparams
-INFO:local_logger:----- Save optim: ./output/train-20211219-17-07-40/MAE-Epoch-67-Loss-0.696807305239932.pdopt
-INFO:master_logger:----- Save model: ./output/train-20211219-17-07-40/MAE-Epoch-67-Loss-0.696807305239932.pdparams
-INFO:master_logger:----- Save optim: ./output/train-20211219-17-07-40/MAE-Epoch-67-Loss-0.696807305239932.pdopt
-INFO:local_logger:Now training epoch 68. LR=0.000151
-INFO:master_logger:Now training epoch 68. LR=0.000151
-INFO:local_logger:Epoch[068/800], Step[0000/0626], Avg Loss: 0.6982
-INFO:local_logger:Epoch[068/800], Step[0000/0626], Avg Loss: 0.6938
-INFO:local_logger:Epoch[068/800], Step[0000/0626], Avg Loss: 0.6916
-INFO:local_logger:Epoch[068/800], Step[0000/0626], Avg Loss: 0.7004
-INFO:master_logger:Epoch[068/800], Step[0000/0626], Avg Loss: 0.6972
-INFO:local_logger:Epoch[068/800], Step[0000/0626], Avg Loss: 0.7004
-INFO:local_logger:Epoch[068/800], Step[0000/0626], Avg Loss: 0.7004
-INFO:local_logger:Epoch[068/800], Step[0000/0626], Avg Loss: 0.7036
-INFO:local_logger:Epoch[068/800], Step[0000/0626], Avg Loss: 0.6894
-INFO:local_logger:Epoch[068/800], Step[0100/0626], Avg Loss: 0.6947
-INFO:local_logger:Epoch[068/800], Step[0100/0626], Avg Loss: 0.6969
-INFO:master_logger:Epoch[068/800], Step[0100/0626], Avg Loss: 0.6961
-INFO:local_logger:Epoch[068/800], Step[0100/0626], Avg Loss: 0.6964
-INFO:local_logger:Epoch[068/800], Step[0100/0626], Avg Loss: 0.6949
-INFO:local_logger:Epoch[068/800], Step[0100/0626], Avg Loss: 0.6950
-INFO:local_logger:Epoch[068/800], Step[0100/0626], Avg Loss: 0.6970
-INFO:local_logger:Epoch[068/800], Step[0100/0626], Avg Loss: 0.6966
-INFO:local_logger:Epoch[068/800], Step[0100/0626], Avg Loss: 0.6976
-INFO:local_logger:Epoch[068/800], Step[0200/0626], Avg Loss: 0.6962
-INFO:local_logger:Epoch[068/800], Step[0200/0626], Avg Loss: 0.6954
-INFO:local_logger:Epoch[068/800], Step[0200/0626], Avg Loss: 0.6952
-INFO:local_logger:Epoch[068/800], Step[0200/0626], Avg Loss: 0.6968
-INFO:local_logger:Epoch[068/800], Step[0200/0626], Avg Loss: 0.6961
-INFO:local_logger:Epoch[068/800], Step[0200/0626], Avg Loss: 0.6969
-INFO:local_logger:Epoch[068/800], Step[0200/0626], Avg Loss: 0.6966
-INFO:local_logger:Epoch[068/800], Step[0200/0626], Avg Loss: 0.6954
-INFO:master_logger:Epoch[068/800], Step[0200/0626], Avg Loss: 0.6961
-INFO:local_logger:Epoch[068/800], Step[0300/0626], Avg Loss: 0.6949
-INFO:local_logger:Epoch[068/800], Step[0300/0626], Avg Loss: 0.6958
-INFO:local_logger:Epoch[068/800], Step[0300/0626], Avg Loss: 0.6964
-INFO:local_logger:Epoch[068/800], Step[0300/0626], Avg Loss: 0.6963
-INFO:local_logger:Epoch[068/800], Step[0300/0626], Avg Loss: 0.6960
-INFO:local_logger:Epoch[068/800], Step[0300/0626], Avg Loss: 0.6950
-INFO:local_logger:Epoch[068/800], Step[0300/0626], Avg Loss: 0.6970
-INFO:local_logger:Epoch[068/800], Step[0300/0626], Avg Loss: 0.6958
-INFO:master_logger:Epoch[068/800], Step[0300/0626], Avg Loss: 0.6959
-INFO:local_logger:Epoch[068/800], Step[0400/0626], Avg Loss: 0.6961
-INFO:local_logger:Epoch[068/800], Step[0400/0626], Avg Loss: 0.6963
-INFO:local_logger:Epoch[068/800], Step[0400/0626], Avg Loss: 0.6962
-INFO:local_logger:Epoch[068/800], Step[0400/0626], Avg Loss: 0.6956
-INFO:local_logger:Epoch[068/800], Step[0400/0626], Avg Loss: 0.6965
-INFO:local_logger:Epoch[068/800], Step[0400/0626], Avg Loss: 0.6959
-INFO:master_logger:Epoch[068/800], Step[0400/0626], Avg Loss: 0.6959
-INFO:local_logger:Epoch[068/800], Step[0400/0626], Avg Loss: 0.6948
-INFO:local_logger:Epoch[068/800], Step[0400/0626], Avg Loss: 0.6955
-INFO:local_logger:Epoch[068/800], Step[0500/0626], Avg Loss: 0.6962
-INFO:local_logger:Epoch[068/800], Step[0500/0626], Avg Loss: 0.6954
-INFO:local_logger:Epoch[068/800], Step[0500/0626], Avg Loss: 0.6946
-INFO:local_logger:Epoch[068/800], Step[0500/0626], Avg Loss: 0.6965
-INFO:local_logger:Epoch[068/800], Step[0500/0626], Avg Loss: 0.6961
-INFO:local_logger:Epoch[068/800], Step[0500/0626], Avg Loss: 0.6959
-INFO:local_logger:Epoch[068/800], Step[0500/0626], Avg Loss: 0.6957
-INFO:master_logger:Epoch[068/800], Step[0500/0626], Avg Loss: 0.6958
-INFO:local_logger:Epoch[068/800], Step[0500/0626], Avg Loss: 0.6958
-INFO:local_logger:Epoch[068/800], Step[0600/0626], Avg Loss: 0.6946
-INFO:local_logger:Epoch[068/800], Step[0600/0626], Avg Loss: 0.6960
-INFO:local_logger:Epoch[068/800], Step[0600/0626], Avg Loss: 0.6958
-INFO:local_logger:Epoch[068/800], Step[0600/0626], Avg Loss: 0.6957
-INFO:local_logger:Epoch[068/800], Step[0600/0626], Avg Loss: 0.6957
-INFO:local_logger:Epoch[068/800], Step[0600/0626], Avg Loss: 0.6958
-INFO:local_logger:Epoch[068/800], Step[0600/0626], Avg Loss: 0.6962
-INFO:local_logger:Epoch[068/800], Step[0600/0626], Avg Loss: 0.6960
-INFO:master_logger:Epoch[068/800], Step[0600/0626], Avg Loss: 0.6957
-INFO:local_logger:----- Epoch[068/800], Train Loss: 0.6946, time: 870.06
-INFO:local_logger:Now training epoch 69. LR=0.000151
-INFO:local_logger:----- Epoch[068/800], Train Loss: 0.6959, time: 870.67
-INFO:local_logger:----- Epoch[068/800], Train Loss: 0.6958, time: 871.34
-INFO:local_logger:Now training epoch 69. LR=0.000151
-INFO:local_logger:Now training epoch 69. LR=0.000151
-INFO:local_logger:----- Epoch[068/800], Train Loss: 0.6961, time: 870.65
-INFO:local_logger:Now training epoch 69. LR=0.000151
-INFO:local_logger:----- Epoch[068/800], Train Loss: 0.6958, time: 870.67
-INFO:local_logger:Now training epoch 69. LR=0.000151
-INFO:local_logger:----- Epoch[068/800], Train Loss: 0.6961, time: 870.74
-INFO:local_logger:Now training epoch 69. LR=0.000151
-INFO:local_logger:----- Epoch[068/800], Train Loss: 0.6960, time: 870.73
-INFO:local_logger:Now training epoch 69. LR=0.000151
-INFO:local_logger:----- Epoch[068/800], Train Loss: 0.6957, time: 867.42
-INFO:master_logger:----- Epoch[068/800], Train Loss: 0.6957, time: 867.42
-INFO:local_logger:----- Save model: ./output/train-20211219-17-07-40/MAE-Epoch-68-Loss-0.6956601794348751.pdparams
-INFO:local_logger:----- Save optim: ./output/train-20211219-17-07-40/MAE-Epoch-68-Loss-0.6956601794348751.pdopt
-INFO:master_logger:----- Save model: ./output/train-20211219-17-07-40/MAE-Epoch-68-Loss-0.6956601794348751.pdparams
-INFO:master_logger:----- Save optim: ./output/train-20211219-17-07-40/MAE-Epoch-68-Loss-0.6956601794348751.pdopt
-INFO:local_logger:Now training epoch 69. LR=0.000151
-INFO:master_logger:Now training epoch 69. LR=0.000151
-INFO:local_logger:Epoch[069/800], Step[0000/0626], Avg Loss: 0.6915
-INFO:local_logger:Epoch[069/800], Step[0000/0626], Avg Loss: 0.6951
-INFO:local_logger:Epoch[069/800], Step[0000/0626], Avg Loss: 0.6895
-INFO:local_logger:Epoch[069/800], Step[0000/0626], Avg Loss: 0.6998
-INFO:local_logger:Epoch[069/800], Step[0000/0626], Avg Loss: 0.6966
-INFO:local_logger:Epoch[069/800], Step[0000/0626], Avg Loss: 0.6932
-INFO:master_logger:Epoch[069/800], Step[0000/0626], Avg Loss: 0.6968
-INFO:local_logger:Epoch[069/800], Step[0000/0626], Avg Loss: 0.7177
-INFO:local_logger:Epoch[069/800], Step[0000/0626], Avg Loss: 0.6914
-INFO:local_logger:Epoch[069/800], Step[0100/0626], Avg Loss: 0.6957
-INFO:local_logger:Epoch[069/800], Step[0100/0626], Avg Loss: 0.6964
-INFO:local_logger:Epoch[069/800], Step[0100/0626], Avg Loss: 0.6955
-INFO:local_logger:Epoch[069/800], Step[0100/0626], Avg Loss: 0.6955
-INFO:local_logger:Epoch[069/800], Step[0100/0626], Avg Loss: 0.6945
-INFO:local_logger:Epoch[069/800], Step[0100/0626], Avg Loss: 0.6961
-INFO:local_logger:Epoch[069/800], Step[0100/0626], Avg Loss: 0.6959
-INFO:master_logger:Epoch[069/800], Step[0100/0626], Avg Loss: 0.6956
-INFO:local_logger:Epoch[069/800], Step[0100/0626], Avg Loss: 0.6950
-INFO:local_logger:Epoch[069/800], Step[0200/0626], Avg Loss: 0.6950
-INFO:local_logger:Epoch[069/800], Step[0200/0626], Avg Loss: 0.6948
-INFO:local_logger:Epoch[069/800], Step[0200/0626], Avg Loss: 0.6954
-INFO:local_logger:Epoch[069/800], Step[0200/0626], Avg Loss: 0.6948
-INFO:local_logger:Epoch[069/800], Step[0200/0626], Avg Loss: 0.6947
-INFO:local_logger:Epoch[069/800], Step[0200/0626], Avg Loss: 0.6960
-INFO:local_logger:Epoch[069/800], Step[0200/0626], Avg Loss: 0.6949
-INFO:master_logger:Epoch[069/800], Step[0200/0626], Avg Loss: 0.6950
-INFO:local_logger:Epoch[069/800], Step[0200/0626], Avg Loss: 0.6945
-INFO:local_logger:Epoch[069/800], Step[0300/0626], Avg Loss: 0.6958
-INFO:local_logger:Epoch[069/800], Step[0300/0626], Avg Loss: 0.6949
-INFO:local_logger:Epoch[069/800], Step[0300/0626], Avg Loss: 0.6953
-INFO:local_logger:Epoch[069/800], Step[0300/0626], Avg Loss: 0.6950
-INFO:local_logger:Epoch[069/800], Step[0300/0626], Avg Loss: 0.6944
-INFO:master_logger:Epoch[069/800], Step[0300/0626], Avg Loss: 0.6951
-INFO:local_logger:Epoch[069/800], Step[0300/0626], Avg Loss: 0.6958
-INFO:local_logger:Epoch[069/800], Step[0300/0626], Avg Loss: 0.6947
-INFO:local_logger:Epoch[069/800], Step[0300/0626], Avg Loss: 0.6946
-INFO:local_logger:Epoch[069/800], Step[0400/0626], Avg Loss: 0.6947
-INFO:local_logger:Epoch[069/800], Step[0400/0626], Avg Loss: 0.6952
-INFO:local_logger:Epoch[069/800], Step[0400/0626], Avg Loss: 0.6960
-INFO:local_logger:Epoch[069/800], Step[0400/0626], Avg Loss: 0.6947
-INFO:local_logger:Epoch[069/800], Step[0400/0626], Avg Loss: 0.6953
-INFO:master_logger:Epoch[069/800], Step[0400/0626], Avg Loss: 0.6952
-INFO:local_logger:Epoch[069/800], Step[0400/0626], Avg Loss: 0.6960
-INFO:local_logger:Epoch[069/800], Step[0400/0626], Avg Loss: 0.6948
-INFO:local_logger:Epoch[069/800], Step[0400/0626], Avg Loss: 0.6950
-INFO:local_logger:Epoch[069/800], Step[0500/0626], Avg Loss: 0.6956
-INFO:local_logger:Epoch[069/800], Step[0500/0626], Avg Loss: 0.6949
-INFO:local_logger:Epoch[069/800], Step[0500/0626], Avg Loss: 0.6947
-INFO:local_logger:Epoch[069/800], Step[0500/0626], Avg Loss: 0.6949
-INFO:local_logger:Epoch[069/800], Step[0500/0626], Avg Loss: 0.6954
-INFO:local_logger:Epoch[069/800], Step[0500/0626], Avg Loss: 0.6955
-INFO:local_logger:Epoch[069/800], Step[0500/0626], Avg Loss: 0.6947
-INFO:local_logger:Epoch[069/800], Step[0500/0626], Avg Loss: 0.6950
-INFO:master_logger:Epoch[069/800], Step[0500/0626], Avg Loss: 0.6951
-INFO:local_logger:Epoch[069/800], Step[0600/0626], Avg Loss: 0.6946
-INFO:local_logger:Epoch[069/800], Step[0600/0626], Avg Loss: 0.6948
-INFO:local_logger:Epoch[069/800], Step[0600/0626], Avg Loss: 0.6948
-INFO:local_logger:Epoch[069/800], Step[0600/0626], Avg Loss: 0.6957
-INFO:local_logger:Epoch[069/800], Step[0600/0626], Avg Loss: 0.6949
-INFO:local_logger:Epoch[069/800], Step[0600/0626], Avg Loss: 0.6947
-INFO:master_logger:Epoch[069/800], Step[0600/0626], Avg Loss: 0.6950
-INFO:local_logger:Epoch[069/800], Step[0600/0626], Avg Loss: 0.6953
-INFO:local_logger:Epoch[069/800], Step[0600/0626], Avg Loss: 0.6953
-INFO:local_logger:----- Epoch[069/800], Train Loss: 0.6957, time: 877.32
-INFO:local_logger:Now training epoch 70. LR=0.000151
-INFO:local_logger:----- Epoch[069/800], Train Loss: 0.6947, time: 876.82
-INFO:local_logger:Now training epoch 70. LR=0.000151
-INFO:local_logger:----- Epoch[069/800], Train Loss: 0.6954, time: 877.40
-INFO:local_logger:Now training epoch 70. LR=0.000151
-INFO:local_logger:----- Epoch[069/800], Train Loss: 0.6947, time: 877.36
-INFO:local_logger:Now training epoch 70. LR=0.000151
-INFO:local_logger:----- Epoch[069/800], Train Loss: 0.6953, time: 877.48
-INFO:local_logger:Now training epoch 70. LR=0.000151
-INFO:local_logger:----- Epoch[069/800], Train Loss: 0.6948, time: 877.49
-INFO:local_logger:Now training epoch 70. LR=0.000151
-INFO:local_logger:----- Epoch[069/800], Train Loss: 0.6945, time: 877.44
-INFO:local_logger:Now training epoch 70. LR=0.000151
-INFO:local_logger:----- Epoch[069/800], Train Loss: 0.6950, time: 873.74
-INFO:master_logger:----- Epoch[069/800], Train Loss: 0.6950, time: 873.74
-INFO:local_logger:----- Save model: ./output/train-20211219-17-07-40/MAE-Epoch-69-Loss-0.6949500013049544.pdparams
-INFO:local_logger:----- Save optim: ./output/train-20211219-17-07-40/MAE-Epoch-69-Loss-0.6949500013049544.pdopt
-INFO:master_logger:----- Save model: ./output/train-20211219-17-07-40/MAE-Epoch-69-Loss-0.6949500013049544.pdparams
-INFO:master_logger:----- Save optim: ./output/train-20211219-17-07-40/MAE-Epoch-69-Loss-0.6949500013049544.pdopt
-INFO:local_logger:Now training epoch 70. LR=0.000151
-INFO:master_logger:Now training epoch 70. LR=0.000151
-INFO:local_logger:Epoch[070/800], Step[0000/0626], Avg Loss: 0.6925
-INFO:local_logger:Epoch[070/800], Step[0000/0626], Avg Loss: 0.6983
-INFO:master_logger:Epoch[070/800], Step[0000/0626], Avg Loss: 0.6937
-INFO:local_logger:Epoch[070/800], Step[0000/0626], Avg Loss: 0.6927
-INFO:local_logger:Epoch[070/800], Step[0000/0626], Avg Loss: 0.7030
-INFO:local_logger:Epoch[070/800], Step[0000/0626], Avg Loss: 0.7050
-INFO:local_logger:Epoch[070/800], Step[0000/0626], Avg Loss: 0.6782
-INFO:local_logger:Epoch[070/800], Step[0000/0626], Avg Loss: 0.6987
-INFO:local_logger:Epoch[070/800], Step[0000/0626], Avg Loss: 0.6814
-INFO:local_logger:Epoch[070/800], Step[0100/0626], Avg Loss: 0.6955
-INFO:local_logger:Epoch[070/800], Step[0100/0626], Avg Loss: 0.6950
-INFO:local_logger:Epoch[070/800], Step[0100/0626], Avg Loss: 0.6950
-INFO:local_logger:Epoch[070/800], Step[0100/0626], Avg Loss: 0.6946
-INFO:master_logger:Epoch[070/800], Step[0100/0626], Avg Loss: 0.6949
-INFO:local_logger:Epoch[070/800], Step[0100/0626], Avg Loss: 0.6943
-INFO:local_logger:Epoch[070/800], Step[0100/0626], Avg Loss: 0.6958
-INFO:local_logger:Epoch[070/800], Step[0100/0626], Avg Loss: 0.6940
-INFO:local_logger:Epoch[070/800], Step[0100/0626], Avg Loss: 0.6951
-INFO:local_logger:Epoch[070/800], Step[0200/0626], Avg Loss: 0.6956
-INFO:local_logger:Epoch[070/800], Step[0200/0626], Avg Loss: 0.6947
-INFO:local_logger:Epoch[070/800], Step[0200/0626], Avg Loss: 0.6949
-INFO:local_logger:Epoch[070/800], Step[0200/0626], Avg Loss: 0.6952
-INFO:local_logger:Epoch[070/800], Step[0200/0626], Avg Loss: 0.6948
-INFO:local_logger:Epoch[070/800], Step[0200/0626], Avg Loss: 0.6944
-INFO:master_logger:Epoch[070/800], Step[0200/0626], Avg Loss: 0.6950
-INFO:local_logger:Epoch[070/800], Step[0200/0626], Avg Loss: 0.6951
-INFO:local_logger:Epoch[070/800], Step[0200/0626], Avg Loss: 0.6958
-INFO:local_logger:Epoch[070/800], Step[0300/0626], Avg Loss: 0.6945
-INFO:local_logger:Epoch[070/800], Step[0300/0626], Avg Loss: 0.6952
-INFO:local_logger:Epoch[070/800], Step[0300/0626], Avg Loss: 0.6946
-INFO:master_logger:Epoch[070/800], Step[0300/0626], Avg Loss: 0.6949
-INFO:local_logger:Epoch[070/800], Step[0300/0626], Avg Loss: 0.6959
-INFO:local_logger:Epoch[070/800], Step[0300/0626], Avg Loss: 0.6953
-INFO:local_logger:Epoch[070/800], Step[0300/0626], Avg Loss: 0.6949
-INFO:local_logger:Epoch[070/800], Step[0300/0626], Avg Loss: 0.6944
-INFO:local_logger:Epoch[070/800], Step[0300/0626], Avg Loss: 0.6944
-INFO:local_logger:Epoch[070/800], Step[0400/0626], Avg Loss: 0.6945
-INFO:local_logger:Epoch[070/800], Step[0400/0626], Avg Loss: 0.6946
-INFO:local_logger:Epoch[070/800], Step[0400/0626], Avg Loss: 0.6944
-INFO:local_logger:Epoch[070/800], Step[0400/0626], Avg Loss: 0.6954
-INFO:local_logger:Epoch[070/800], Step[0400/0626], Avg Loss: 0.6943
-INFO:local_logger:Epoch[070/800], Step[0400/0626], Avg Loss: 0.6951
-INFO:local_logger:Epoch[070/800], Step[0400/0626], Avg Loss: 0.6942
-INFO:local_logger:Epoch[070/800], Step[0400/0626], Avg Loss: 0.6949
-INFO:master_logger:Epoch[070/800], Step[0400/0626], Avg Loss: 0.6947
-INFO:local_logger:Epoch[070/800], Step[0500/0626], Avg Loss: 0.6947
-INFO:local_logger:Epoch[070/800], Step[0500/0626], Avg Loss: 0.6942
-INFO:local_logger:Epoch[070/800], Step[0500/0626], Avg Loss: 0.6944
-INFO:local_logger:Epoch[070/800], Step[0500/0626], Avg Loss: 0.6947
-INFO:local_logger:Epoch[070/800], Step[0500/0626], Avg Loss: 0.6954
-INFO:local_logger:Epoch[070/800], Step[0500/0626], Avg Loss: 0.6949
-INFO:local_logger:Epoch[070/800], Step[0500/0626], Avg Loss: 0.6941
-INFO:master_logger:Epoch[070/800], Step[0500/0626], Avg Loss: 0.6946
-INFO:local_logger:Epoch[070/800], Step[0500/0626], Avg Loss: 0.6944
-INFO:local_logger:Epoch[070/800], Step[0600/0626], Avg Loss: 0.6947
-INFO:local_logger:Epoch[070/800], Step[0600/0626], Avg Loss: 0.6948
-INFO:local_logger:Epoch[070/800], Step[0600/0626], Avg Loss: 0.6942
-INFO:local_logger:Epoch[070/800], Step[0600/0626], Avg Loss: 0.6944
-INFO:local_logger:Epoch[070/800], Step[0600/0626], Avg Loss: 0.6947
-INFO:local_logger:Epoch[070/800], Step[0600/0626], Avg Loss: 0.6941
-INFO:local_logger:Epoch[070/800], Step[0600/0626], Avg Loss: 0.6950
-INFO:local_logger:Epoch[070/800], Step[0600/0626], Avg Loss: 0.6941
-INFO:master_logger:Epoch[070/800], Step[0600/0626], Avg Loss: 0.6945
-INFO:local_logger:----- Epoch[070/800], Train Loss: 0.6942, time: 864.91
-INFO:local_logger:Now training epoch 71. LR=0.000151
-INFO:local_logger:----- Epoch[070/800], Train Loss: 0.6942, time: 865.61
-INFO:local_logger:Now training epoch 71. LR=0.000151
-INFO:local_logger:----- Epoch[070/800], Train Loss: 0.6941, time: 865.52
-INFO:local_logger:Now training epoch 71. LR=0.000151
-INFO:local_logger:----- Epoch[070/800], Train Loss: 0.6949, time: 864.93
-INFO:local_logger:Now training epoch 71. LR=0.000151
-INFO:local_logger:----- Epoch[070/800], Train Loss: 0.6946, time: 861.12
-INFO:master_logger:----- Epoch[070/800], Train Loss: 0.6945, time: 861.12
-INFO:local_logger:----- Epoch[070/800], Train Loss: 0.6945, time: 864.92
-INFO:local_logger:Now training epoch 71. LR=0.000151
-INFO:local_logger:----- Epoch[070/800], Train Loss: 0.6947, time: 864.88
-INFO:local_logger:Now training epoch 71. LR=0.000151
-INFO:local_logger:----- Epoch[070/800], Train Loss: 0.6948, time: 864.89
-INFO:local_logger:Now training epoch 71. LR=0.000151
-INFO:local_logger:----- Save model: ./output/train-20211219-17-07-40/MAE-Epoch-70-Loss-0.6946037372341894.pdparams
-INFO:local_logger:----- Save optim: ./output/train-20211219-17-07-40/MAE-Epoch-70-Loss-0.6946037372341894.pdopt
-INFO:master_logger:----- Save model: ./output/train-20211219-17-07-40/MAE-Epoch-70-Loss-0.6946037372341894.pdparams
-INFO:master_logger:----- Save optim: ./output/train-20211219-17-07-40/MAE-Epoch-70-Loss-0.6946037372341894.pdopt
-INFO:local_logger:Now training epoch 71. LR=0.000151
-INFO:master_logger:Now training epoch 71. LR=0.000151
-INFO:local_logger:Epoch[071/800], Step[0000/0626], Avg Loss: 0.6850
-INFO:master_logger:Epoch[071/800], Step[0000/0626], Avg Loss: 0.6913
-INFO:local_logger:Epoch[071/800], Step[0000/0626], Avg Loss: 0.6913
-INFO:local_logger:Epoch[071/800], Step[0000/0626], Avg Loss: 0.6757
-INFO:local_logger:Epoch[071/800], Step[0000/0626], Avg Loss: 0.6944
-INFO:local_logger:Epoch[071/800], Step[0000/0626], Avg Loss: 0.7043
-INFO:local_logger:Epoch[071/800], Step[0000/0626], Avg Loss: 0.7002
-INFO:local_logger:Epoch[071/800], Step[0000/0626], Avg Loss: 0.6977
-INFO:local_logger:Epoch[071/800], Step[0000/0626], Avg Loss: 0.6818
-INFO:local_logger:Epoch[071/800], Step[0100/0626], Avg Loss: 0.6936
-INFO:local_logger:Epoch[071/800], Step[0100/0626], Avg Loss: 0.6939
-INFO:local_logger:Epoch[071/800], Step[0100/0626], Avg Loss: 0.6950
-INFO:local_logger:Epoch[071/800], Step[0100/0626], Avg Loss: 0.6947
-INFO:local_logger:Epoch[071/800], Step[0100/0626], Avg Loss: 0.6932
-INFO:local_logger:Epoch[071/800], Step[0100/0626], Avg Loss: 0.6924
-INFO:local_logger:Epoch[071/800], Step[0100/0626], Avg Loss: 0.6937
-INFO:master_logger:Epoch[071/800], Step[0100/0626], Avg Loss: 0.6939
-INFO:local_logger:Epoch[071/800], Step[0100/0626], Avg Loss: 0.6949
-INFO:local_logger:Epoch[071/800], Step[0200/0626], Avg Loss: 0.6943
-INFO:local_logger:Epoch[071/800], Step[0200/0626], Avg Loss: 0.6941
-INFO:local_logger:Epoch[071/800], Step[0200/0626], Avg Loss: 0.6942
-INFO:local_logger:Epoch[071/800], Step[0200/0626], Avg Loss: 0.6935
-INFO:local_logger:Epoch[071/800], Step[0200/0626], Avg Loss: 0.6942
-INFO:local_logger:Epoch[071/800], Step[0200/0626], Avg Loss: 0.6931
-INFO:local_logger:Epoch[071/800], Step[0200/0626], Avg Loss: 0.6936
-INFO:master_logger:Epoch[071/800], Step[0200/0626], Avg Loss: 0.6938
-INFO:local_logger:Epoch[071/800], Step[0200/0626], Avg Loss: 0.6930
-INFO:local_logger:Epoch[071/800], Step[0300/0626], Avg Loss: 0.6929
-INFO:local_logger:Epoch[071/800], Step[0300/0626], Avg Loss: 0.6938
-INFO:local_logger:Epoch[071/800], Step[0300/0626], Avg Loss: 0.6945
-INFO:local_logger:Epoch[071/800], Step[0300/0626], Avg Loss: 0.6937
-INFO:local_logger:Epoch[071/800], Step[0300/0626], Avg Loss: 0.6939
-INFO:local_logger:Epoch[071/800], Step[0300/0626], Avg Loss: 0.6944
-INFO:master_logger:Epoch[071/800], Step[0300/0626], Avg Loss: 0.6937
-INFO:local_logger:Epoch[071/800], Step[0300/0626], Avg Loss: 0.6928
-INFO:local_logger:Epoch[071/800], Step[0300/0626], Avg Loss: 0.6939
-INFO:local_logger:Epoch[071/800], Step[0400/0626], Avg Loss: 0.6946
-INFO:local_logger:Epoch[071/800], Step[0400/0626], Avg Loss: 0.6938
-INFO:local_logger:Epoch[071/800], Step[0400/0626], Avg Loss: 0.6931
-INFO:local_logger:Epoch[071/800], Step[0400/0626], Avg Loss: 0.6944
-INFO:local_logger:Epoch[071/800], Step[0400/0626], Avg Loss: 0.6940
-INFO:local_logger:Epoch[071/800], Step[0400/0626], Avg Loss: 0.6931
-INFO:local_logger:Epoch[071/800], Step[0400/0626], Avg Loss: 0.6940
-INFO:master_logger:Epoch[071/800], Step[0400/0626], Avg Loss: 0.6938
-INFO:local_logger:Epoch[071/800], Step[0400/0626], Avg Loss: 0.6938
-INFO:local_logger:Epoch[071/800], Step[0500/0626], Avg Loss: 0.6938
-INFO:local_logger:Epoch[071/800], Step[0500/0626], Avg Loss: 0.6934
-INFO:local_logger:Epoch[071/800], Step[0500/0626], Avg Loss: 0.6945
-INFO:local_logger:Epoch[071/800], Step[0500/0626], Avg Loss: 0.6939
-INFO:local_logger:Epoch[071/800], Step[0500/0626], Avg Loss: 0.6937
-INFO:local_logger:Epoch[071/800], Step[0500/0626], Avg Loss: 0.6941
-INFO:local_logger:Epoch[071/800], Step[0500/0626], Avg Loss: 0.6944
-INFO:master_logger:Epoch[071/800], Step[0500/0626], Avg Loss: 0.6939
-INFO:local_logger:Epoch[071/800], Step[0500/0626], Avg Loss: 0.6932
-INFO:local_logger:Epoch[071/800], Step[0600/0626], Avg Loss: 0.6939
-INFO:local_logger:Epoch[071/800], Step[0600/0626], Avg Loss: 0.6933
-INFO:local_logger:Epoch[071/800], Step[0600/0626], Avg Loss: 0.6944
-INFO:local_logger:Epoch[071/800], Step[0600/0626], Avg Loss: 0.6941
-INFO:local_logger:Epoch[071/800], Step[0600/0626], Avg Loss: 0.6938
-INFO:local_logger:Epoch[071/800], Step[0600/0626], Avg Loss: 0.6937
-INFO:master_logger:Epoch[071/800], Step[0600/0626], Avg Loss: 0.6938
-INFO:local_logger:Epoch[071/800], Step[0600/0626], Avg Loss: 0.6934
-INFO:local_logger:Epoch[071/800], Step[0600/0626], Avg Loss: 0.6943
-INFO:local_logger:----- Epoch[071/800], Train Loss: 0.6943, time: 885.74
-INFO:local_logger:Now training epoch 72. LR=0.000152
-INFO:local_logger:----- Epoch[071/800], Train Loss: 0.6939, time: 886.70
-INFO:local_logger:Now training epoch 72. LR=0.000152
-INFO:local_logger:----- Epoch[071/800], Train Loss: 0.6940, time: 886.74
-INFO:local_logger:----- Epoch[071/800], Train Loss: 0.6935, time: 886.79
-INFO:local_logger:Now training epoch 72. LR=0.000152
-INFO:local_logger:Now training epoch 72. LR=0.000152
-INFO:local_logger:----- Epoch[071/800], Train Loss: 0.6938, time: 886.70
-INFO:local_logger:Now training epoch 72. LR=0.000152
-INFO:local_logger:----- Epoch[071/800], Train Loss: 0.6934, time: 886.76
-INFO:local_logger:Now training epoch 72. LR=0.000152
-INFO:local_logger:----- Epoch[071/800], Train Loss: 0.6937, time: 882.95
-INFO:master_logger:----- Epoch[071/800], Train Loss: 0.6939, time: 882.95
-INFO:local_logger:----- Epoch[071/800], Train Loss: 0.6945, time: 886.78
-INFO:local_logger:Now training epoch 72. LR=0.000152
-INFO:local_logger:----- Save model: ./output/train-20211219-17-07-40/MAE-Epoch-71-Loss-0.6937192819392223.pdparams
-INFO:local_logger:----- Save optim: ./output/train-20211219-17-07-40/MAE-Epoch-71-Loss-0.6937192819392223.pdopt
-INFO:master_logger:----- Save model: ./output/train-20211219-17-07-40/MAE-Epoch-71-Loss-0.6937192819392223.pdparams
-INFO:master_logger:----- Save optim: ./output/train-20211219-17-07-40/MAE-Epoch-71-Loss-0.6937192819392223.pdopt
-INFO:local_logger:Now training epoch 72. LR=0.000152
-INFO:master_logger:Now training epoch 72. LR=0.000152
-INFO:local_logger:Epoch[072/800], Step[0000/0626], Avg Loss: 0.6943
-INFO:master_logger:Epoch[072/800], Step[0000/0626], Avg Loss: 0.6974
-INFO:local_logger:Epoch[072/800], Step[0000/0626], Avg Loss: 0.6913
-INFO:local_logger:Epoch[072/800], Step[0000/0626], Avg Loss: 0.7013
-INFO:local_logger:Epoch[072/800], Step[0000/0626], Avg Loss: 0.6924
-INFO:local_logger:Epoch[072/800], Step[0000/0626], Avg Loss: 0.7045
-INFO:local_logger:Epoch[072/800], Step[0000/0626], Avg Loss: 0.6941
-INFO:local_logger:Epoch[072/800], Step[0000/0626], Avg Loss: 0.6954
-INFO:local_logger:Epoch[072/800], Step[0000/0626], Avg Loss: 0.7056
-INFO:local_logger:Epoch[072/800], Step[0100/0626], Avg Loss: 0.6924
-INFO:local_logger:Epoch[072/800], Step[0100/0626], Avg Loss: 0.6941
-INFO:local_logger:Epoch[072/800], Step[0100/0626], Avg Loss: 0.6941
-INFO:local_logger:Epoch[072/800], Step[0100/0626], Avg Loss: 0.6947
-INFO:local_logger:Epoch[072/800], Step[0100/0626], Avg Loss: 0.6934
-INFO:local_logger:Epoch[072/800], Step[0100/0626], Avg Loss: 0.6944
-INFO:master_logger:Epoch[072/800], Step[0100/0626], Avg Loss: 0.6939
-INFO:local_logger:Epoch[072/800], Step[0100/0626], Avg Loss: 0.6948
-INFO:local_logger:Epoch[072/800], Step[0100/0626], Avg Loss: 0.6936
-INFO:local_logger:Epoch[072/800], Step[0200/0626], Avg Loss: 0.6930
-INFO:local_logger:Epoch[072/800], Step[0200/0626], Avg Loss: 0.6933
-INFO:local_logger:Epoch[072/800], Step[0200/0626], Avg Loss: 0.6936
-INFO:local_logger:Epoch[072/800], Step[0200/0626], Avg Loss: 0.6929
-INFO:local_logger:Epoch[072/800], Step[0200/0626], Avg Loss: 0.6944
-INFO:local_logger:Epoch[072/800], Step[0200/0626], Avg Loss: 0.6937
-INFO:master_logger:Epoch[072/800], Step[0200/0626], Avg Loss: 0.6935
-INFO:local_logger:Epoch[072/800], Step[0200/0626], Avg Loss: 0.6929
-INFO:local_logger:Epoch[072/800], Step[0200/0626], Avg Loss: 0.6941
-INFO:local_logger:Epoch[072/800], Step[0300/0626], Avg Loss: 0.6932
-INFO:local_logger:Epoch[072/800], Step[0300/0626], Avg Loss: 0.6936
-INFO:local_logger:Epoch[072/800], Step[0300/0626], Avg Loss: 0.6939
-INFO:local_logger:Epoch[072/800], Step[0300/0626], Avg Loss: 0.6930
-INFO:local_logger:Epoch[072/800], Step[0300/0626], Avg Loss: 0.6935
-INFO:master_logger:Epoch[072/800], Step[0300/0626], Avg Loss: 0.6934
-INFO:local_logger:Epoch[072/800], Step[0300/0626], Avg Loss: 0.6942
-INFO:local_logger:Epoch[072/800], Step[0300/0626], Avg Loss: 0.6931
-INFO:local_logger:Epoch[072/800], Step[0300/0626], Avg Loss: 0.6928
-INFO:local_logger:Epoch[072/800], Step[0400/0626], Avg Loss: 0.6931
-INFO:local_logger:Epoch[072/800], Step[0400/0626], Avg Loss: 0.6927
-INFO:local_logger:Epoch[072/800], Step[0400/0626], Avg Loss: 0.6934
-INFO:local_logger:Epoch[072/800], Step[0400/0626], Avg Loss: 0.6939
-INFO:local_logger:Epoch[072/800], Step[0400/0626], Avg Loss: 0.6938
-INFO:local_logger:Epoch[072/800], Step[0400/0626], Avg Loss: 0.6936
-INFO:local_logger:Epoch[072/800], Step[0400/0626], Avg Loss: 0.6930
-INFO:master_logger:Epoch[072/800], Step[0400/0626], Avg Loss: 0.6933
-INFO:local_logger:Epoch[072/800], Step[0400/0626], Avg Loss: 0.6926
-INFO:local_logger:Epoch[072/800], Step[0500/0626], Avg Loss: 0.6938
-INFO:local_logger:Epoch[072/800], Step[0500/0626], Avg Loss: 0.6934
-INFO:local_logger:Epoch[072/800], Step[0500/0626], Avg Loss: 0.6938
-INFO:local_logger:Epoch[072/800], Step[0500/0626], Avg Loss: 0.6937
-INFO:master_logger:Epoch[072/800], Step[0500/0626], Avg Loss: 0.6933
-INFO:local_logger:Epoch[072/800], Step[0500/0626], Avg Loss: 0.6928
-INFO:local_logger:Epoch[072/800], Step[0500/0626], Avg Loss: 0.6930
-INFO:local_logger:Epoch[072/800], Step[0500/0626], Avg Loss: 0.6929
-INFO:local_logger:Epoch[072/800], Step[0500/0626], Avg Loss: 0.6929
-INFO:local_logger:Epoch[072/800], Step[0600/0626], Avg Loss: 0.6936
-INFO:local_logger:Epoch[072/800], Step[0600/0626], Avg Loss: 0.6934
-INFO:local_logger:Epoch[072/800], Step[0600/0626], Avg Loss: 0.6929
-INFO:local_logger:Epoch[072/800], Step[0600/0626], Avg Loss: 0.6930
-INFO:local_logger:Epoch[072/800], Step[0600/0626], Avg Loss: 0.6930
-INFO:local_logger:Epoch[072/800], Step[0600/0626], Avg Loss: 0.6937
-INFO:master_logger:Epoch[072/800], Step[0600/0626], Avg Loss: 0.6933
-INFO:local_logger:Epoch[072/800], Step[0600/0626], Avg Loss: 0.6929
-INFO:local_logger:Epoch[072/800], Step[0600/0626], Avg Loss: 0.6937
-INFO:local_logger:----- Epoch[072/800], Train Loss: 0.6928, time: 870.67
-INFO:local_logger:Now training epoch 73. LR=0.000152
-INFO:local_logger:----- Epoch[072/800], Train Loss: 0.6930, time: 869.72
-INFO:local_logger:Now training epoch 73. LR=0.000152
-INFO:local_logger:----- Epoch[072/800], Train Loss: 0.6936, time: 869.72
-INFO:local_logger:Now training epoch 73. LR=0.000152
-INFO:local_logger:----- Epoch[072/800], Train Loss: 0.6930, time: 869.77
-INFO:local_logger:Now training epoch 73. LR=0.000152
-INFO:local_logger:----- Epoch[072/800], Train Loss: 0.6934, time: 870.14
-INFO:local_logger:Now training epoch 73. LR=0.000152
-INFO:local_logger:----- Epoch[072/800], Train Loss: 0.6936, time: 870.14
-INFO:local_logger:Now training epoch 73. LR=0.000152
-INFO:local_logger:----- Epoch[072/800], Train Loss: 0.6936, time: 866.43
-INFO:local_logger:----- Epoch[072/800], Train Loss: 0.6929, time: 870.14
-INFO:master_logger:----- Epoch[072/800], Train Loss: 0.6932, time: 866.43
-INFO:local_logger:Now training epoch 73. LR=0.000152
-INFO:local_logger:----- Save model: ./output/train-20211219-17-07-40/MAE-Epoch-72-Loss-0.693554089917601.pdparams
-INFO:local_logger:----- Save optim: ./output/train-20211219-17-07-40/MAE-Epoch-72-Loss-0.693554089917601.pdopt
-INFO:master_logger:----- Save model: ./output/train-20211219-17-07-40/MAE-Epoch-72-Loss-0.693554089917601.pdparams
-INFO:master_logger:----- Save optim: ./output/train-20211219-17-07-40/MAE-Epoch-72-Loss-0.693554089917601.pdopt
-INFO:local_logger:Now training epoch 73. LR=0.000152
-INFO:master_logger:Now training epoch 73. LR=0.000152
-INFO:local_logger:Epoch[073/800], Step[0000/0626], Avg Loss: 0.6893
-INFO:local_logger:Epoch[073/800], Step[0000/0626], Avg Loss: 0.6943
-INFO:master_logger:Epoch[073/800], Step[0000/0626], Avg Loss: 0.6940
-INFO:local_logger:Epoch[073/800], Step[0000/0626], Avg Loss: 0.6961
-INFO:local_logger:Epoch[073/800], Step[0000/0626], Avg Loss: 0.6941
-INFO:local_logger:Epoch[073/800], Step[0000/0626], Avg Loss: 0.6980
-INFO:local_logger:Epoch[073/800], Step[0000/0626], Avg Loss: 0.6944
-INFO:local_logger:Epoch[073/800], Step[0000/0626], Avg Loss: 0.6816
-INFO:local_logger:Epoch[073/800], Step[0000/0626], Avg Loss: 0.7038
-INFO:local_logger:Epoch[073/800], Step[0100/0626], Avg Loss: 0.6919
-INFO:local_logger:Epoch[073/800], Step[0100/0626], Avg Loss: 0.6915
-INFO:local_logger:Epoch[073/800], Step[0100/0626], Avg Loss: 0.6929
-INFO:local_logger:Epoch[073/800], Step[0100/0626], Avg Loss: 0.6938
-INFO:local_logger:Epoch[073/800], Step[0100/0626], Avg Loss: 0.6935
-INFO:local_logger:Epoch[073/800], Step[0100/0626], Avg Loss: 0.6940
-INFO:master_logger:Epoch[073/800], Step[0100/0626], Avg Loss: 0.6928
-INFO:local_logger:Epoch[073/800], Step[0100/0626], Avg Loss: 0.6929
-INFO:local_logger:Epoch[073/800], Step[0100/0626], Avg Loss: 0.6922
-INFO:local_logger:Epoch[073/800], Step[0200/0626], Avg Loss: 0.6924
-INFO:local_logger:Epoch[073/800], Step[0200/0626], Avg Loss: 0.6928
-INFO:local_logger:Epoch[073/800], Step[0200/0626], Avg Loss: 0.6930
-INFO:local_logger:Epoch[073/800], Step[0200/0626], Avg Loss: 0.6925
-INFO:master_logger:Epoch[073/800], Step[0200/0626], Avg Loss: 0.6927
-INFO:local_logger:Epoch[073/800], Step[0200/0626], Avg Loss: 0.6925
-INFO:local_logger:Epoch[073/800], Step[0200/0626], Avg Loss: 0.6916
-INFO:local_logger:Epoch[073/800], Step[0200/0626], Avg Loss: 0.6939
-INFO:local_logger:Epoch[073/800], Step[0200/0626], Avg Loss: 0.6934
-INFO:local_logger:Epoch[073/800], Step[0300/0626], Avg Loss: 0.6928
-INFO:local_logger:Epoch[073/800], Step[0300/0626], Avg Loss: 0.6932
-INFO:local_logger:Epoch[073/800], Step[0300/0626], Avg Loss: 0.6930
-INFO:local_logger:Epoch[073/800], Step[0300/0626], Avg Loss: 0.6922
-INFO:local_logger:Epoch[073/800], Step[0300/0626], Avg Loss: 0.6937
-INFO:master_logger:Epoch[073/800], Step[0300/0626], Avg Loss: 0.6928
-INFO:local_logger:Epoch[073/800], Step[0300/0626], Avg Loss: 0.6919
-INFO:local_logger:Epoch[073/800], Step[0300/0626], Avg Loss: 0.6928
-INFO:local_logger:Epoch[073/800], Step[0300/0626], Avg Loss: 0.6926
-INFO:local_logger:Epoch[073/800], Step[0400/0626], Avg Loss: 0.6923
-INFO:local_logger:Epoch[073/800], Step[0400/0626], Avg Loss: 0.6929
-INFO:local_logger:Epoch[073/800], Step[0400/0626], Avg Loss: 0.6917
-INFO:local_logger:Epoch[073/800], Step[0400/0626], Avg Loss: 0.6933
-INFO:local_logger:Epoch[073/800], Step[0400/0626], Avg Loss: 0.6930
-INFO:local_logger:Epoch[073/800], Step[0400/0626], Avg Loss: 0.6928
-INFO:local_logger:Epoch[073/800], Step[0400/0626], Avg Loss: 0.6933
-INFO:master_logger:Epoch[073/800], Step[0400/0626], Avg Loss: 0.6927
-INFO:local_logger:Epoch[073/800], Step[0400/0626], Avg Loss: 0.6926
-INFO:local_logger:Epoch[073/800], Step[0500/0626], Avg Loss: 0.6920
-INFO:local_logger:Epoch[073/800], Step[0500/0626], Avg Loss: 0.6916
-INFO:local_logger:Epoch[073/800], Step[0500/0626], Avg Loss: 0.6923
-INFO:local_logger:Epoch[073/800], Step[0500/0626], Avg Loss: 0.6931
-INFO:local_logger:Epoch[073/800], Step[0500/0626], Avg Loss: 0.6928
-INFO:local_logger:Epoch[073/800], Step[0500/0626], Avg Loss: 0.6927
-INFO:local_logger:Epoch[073/800], Step[0500/0626], Avg Loss: 0.6929
-INFO:master_logger:Epoch[073/800], Step[0500/0626], Avg Loss: 0.6926
-INFO:local_logger:Epoch[073/800], Step[0500/0626], Avg Loss: 0.6933
-INFO:local_logger:Epoch[073/800], Step[0600/0626], Avg Loss: 0.6921
-INFO:local_logger:Epoch[073/800], Step[0600/0626], Avg Loss: 0.6927
-INFO:local_logger:Epoch[073/800], Step[0600/0626], Avg Loss: 0.6927
-INFO:local_logger:Epoch[073/800], Step[0600/0626], Avg Loss: 0.6928
-INFO:master_logger:Epoch[073/800], Step[0600/0626], Avg Loss: 0.6925
-INFO:local_logger:Epoch[073/800], Step[0600/0626], Avg Loss: 0.6921
-INFO:local_logger:Epoch[073/800], Step[0600/0626], Avg Loss: 0.6918
-INFO:local_logger:Epoch[073/800], Step[0600/0626], Avg Loss: 0.6930
-INFO:local_logger:Epoch[073/800], Step[0600/0626], Avg Loss: 0.6929
-INFO:local_logger:----- Epoch[073/800], Train Loss: 0.6926, time: 884.48
-INFO:local_logger:Now training epoch 74. LR=0.000152
-INFO:local_logger:----- Epoch[073/800], Train Loss: 0.6921, time: 884.48
-INFO:local_logger:Now training epoch 74. LR=0.000152
-INFO:local_logger:----- Epoch[073/800], Train Loss: 0.6928, time: 884.08
-INFO:local_logger:Now training epoch 74. LR=0.000152
-INFO:local_logger:----- Epoch[073/800], Train Loss: 0.6926, time: 880.49
-INFO:master_logger:----- Epoch[073/800], Train Loss: 0.6925, time: 880.49
-INFO:local_logger:----- Epoch[073/800], Train Loss: 0.6917, time: 884.29
-INFO:local_logger:Now training epoch 74. LR=0.000152
-INFO:local_logger:----- Epoch[073/800], Train Loss: 0.6920, time: 884.32
-INFO:local_logger:Now training epoch 74. LR=0.000152
-INFO:local_logger:----- Epoch[073/800], Train Loss: 0.6929, time: 884.79
-INFO:local_logger:Now training epoch 74. LR=0.000152
-INFO:local_logger:----- Epoch[073/800], Train Loss: 0.6930, time: 884.73
-INFO:local_logger:Now training epoch 74. LR=0.000152
-INFO:local_logger:----- Save model: ./output/train-20211219-17-07-40/MAE-Epoch-73-Loss-0.6925669066549239.pdparams
-INFO:local_logger:----- Save optim: ./output/train-20211219-17-07-40/MAE-Epoch-73-Loss-0.6925669066549239.pdopt
-INFO:master_logger:----- Save model: ./output/train-20211219-17-07-40/MAE-Epoch-73-Loss-0.6925669066549239.pdparams
-INFO:master_logger:----- Save optim: ./output/train-20211219-17-07-40/MAE-Epoch-73-Loss-0.6925669066549239.pdopt
-INFO:local_logger:Now training epoch 74. LR=0.000152
-INFO:master_logger:Now training epoch 74. LR=0.000152
-INFO:local_logger:Epoch[074/800], Step[0000/0626], Avg Loss: 0.6904
-INFO:local_logger:Epoch[074/800], Step[0000/0626], Avg Loss: 0.6894
-INFO:master_logger:Epoch[074/800], Step[0000/0626], Avg Loss: 0.6933
-INFO:local_logger:Epoch[074/800], Step[0000/0626], Avg Loss: 0.7013
-INFO:local_logger:Epoch[074/800], Step[0000/0626], Avg Loss: 0.6897
-INFO:local_logger:Epoch[074/800], Step[0000/0626], Avg Loss: 0.6899
-INFO:local_logger:Epoch[074/800], Step[0000/0626], Avg Loss: 0.6870
-INFO:local_logger:Epoch[074/800], Step[0000/0626], Avg Loss: 0.6982
-INFO:local_logger:Epoch[074/800], Step[0000/0626], Avg Loss: 0.7004
-INFO:local_logger:Epoch[074/800], Step[0100/0626], Avg Loss: 0.6923
-INFO:local_logger:Epoch[074/800], Step[0100/0626], Avg Loss: 0.6921
-INFO:local_logger:Epoch[074/800], Step[0100/0626], Avg Loss: 0.6912
-INFO:local_logger:Epoch[074/800], Step[0100/0626], Avg Loss: 0.6908
-INFO:local_logger:Epoch[074/800], Step[0100/0626], Avg Loss: 0.6927
-INFO:master_logger:Epoch[074/800], Step[0100/0626], Avg Loss: 0.6920
-INFO:local_logger:Epoch[074/800], Step[0100/0626], Avg Loss: 0.6914
-INFO:local_logger:Epoch[074/800], Step[0100/0626], Avg Loss: 0.6919
-INFO:local_logger:Epoch[074/800], Step[0100/0626], Avg Loss: 0.6938
-INFO:local_logger:Epoch[074/800], Step[0200/0626], Avg Loss: 0.6919
-INFO:local_logger:Epoch[074/800], Step[0200/0626], Avg Loss: 0.6924
-INFO:local_logger:Epoch[074/800], Step[0200/0626], Avg Loss: 0.6925
-INFO:local_logger:Epoch[074/800], Step[0200/0626], Avg Loss: 0.6917
-INFO:local_logger:Epoch[074/800], Step[0200/0626], Avg Loss: 0.6913
-INFO:local_logger:Epoch[074/800], Step[0200/0626], Avg Loss: 0.6916
-INFO:master_logger:Epoch[074/800], Step[0200/0626], Avg Loss: 0.6919
-INFO:local_logger:Epoch[074/800], Step[0200/0626], Avg Loss: 0.6908
-INFO:local_logger:Epoch[074/800], Step[0200/0626], Avg Loss: 0.6927
-INFO:local_logger:Epoch[074/800], Step[0300/0626], Avg Loss: 0.6916
-INFO:local_logger:Epoch[074/800], Step[0300/0626], Avg Loss: 0.6912
-INFO:local_logger:Epoch[074/800], Step[0300/0626], Avg Loss: 0.6920
-INFO:local_logger:Epoch[074/800], Step[0300/0626], Avg Loss: 0.6929
-INFO:master_logger:Epoch[074/800], Step[0300/0626], Avg Loss: 0.6920
-INFO:local_logger:Epoch[074/800], Step[0300/0626], Avg Loss: 0.6923
-INFO:local_logger:Epoch[074/800], Step[0300/0626], Avg Loss: 0.6919
-INFO:local_logger:Epoch[074/800], Step[0300/0626], Avg Loss: 0.6924
-INFO:local_logger:Epoch[074/800], Step[0300/0626], Avg Loss: 0.6921
-INFO:local_logger:Epoch[074/800], Step[0400/0626], Avg Loss: 0.6919
-INFO:local_logger:Epoch[074/800], Step[0400/0626], Avg Loss: 0.6925
-INFO:local_logger:Epoch[074/800], Step[0400/0626], Avg Loss: 0.6921
-INFO:local_logger:Epoch[074/800], Step[0400/0626], Avg Loss: 0.6918
-INFO:local_logger:Epoch[074/800], Step[0400/0626], Avg Loss: 0.6913
-INFO:local_logger:Epoch[074/800], Step[0400/0626], Avg Loss: 0.6926
-INFO:local_logger:Epoch[074/800], Step[0400/0626], Avg Loss: 0.6920
-INFO:master_logger:Epoch[074/800], Step[0400/0626], Avg Loss: 0.6920
-INFO:local_logger:Epoch[074/800], Step[0400/0626], Avg Loss: 0.6918
-INFO:local_logger:Epoch[074/800], Step[0500/0626], Avg Loss: 0.6919
-INFO:local_logger:Epoch[074/800], Step[0500/0626], Avg Loss: 0.6919
-INFO:local_logger:Epoch[074/800], Step[0500/0626], Avg Loss: 0.6922
-INFO:local_logger:Epoch[074/800], Step[0500/0626], Avg Loss: 0.6923
-INFO:local_logger:Epoch[074/800], Step[0500/0626], Avg Loss: 0.6922
-INFO:local_logger:Epoch[074/800], Step[0500/0626], Avg Loss: 0.6918
-INFO:local_logger:Epoch[074/800], Step[0500/0626], Avg Loss: 0.6920
-INFO:master_logger:Epoch[074/800], Step[0500/0626], Avg Loss: 0.6920
-INFO:local_logger:Epoch[074/800], Step[0500/0626], Avg Loss: 0.6915
-INFO:local_logger:Epoch[074/800], Step[0600/0626], Avg Loss: 0.6923
-INFO:local_logger:Epoch[074/800], Step[0600/0626], Avg Loss: 0.6919
-INFO:local_logger:Epoch[074/800], Step[0600/0626], Avg Loss: 0.6918
-INFO:local_logger:Epoch[074/800], Step[0600/0626], Avg Loss: 0.6917
-INFO:local_logger:Epoch[074/800], Step[0600/0626], Avg Loss: 0.6917
-INFO:local_logger:Epoch[074/800], Step[0600/0626], Avg Loss: 0.6921
-INFO:local_logger:Epoch[074/800], Step[0600/0626], Avg Loss: 0.6922
-INFO:master_logger:Epoch[074/800], Step[0600/0626], Avg Loss: 0.6920
-INFO:local_logger:Epoch[074/800], Step[0600/0626], Avg Loss: 0.6922
-INFO:local_logger:----- Epoch[074/800], Train Loss: 0.6922, time: 868.83
-INFO:local_logger:Now training epoch 75. LR=0.000152
-INFO:local_logger:----- Epoch[074/800], Train Loss: 0.6922, time: 869.13
-INFO:local_logger:Now training epoch 75. LR=0.000152
-INFO:local_logger:----- Epoch[074/800], Train Loss: 0.6916, time: 868.88
-INFO:local_logger:Now training epoch 75. LR=0.000152
-INFO:local_logger:----- Epoch[074/800], Train Loss: 0.6920, time: 868.87
-INFO:local_logger:Now training epoch 75. LR=0.000152
-INFO:local_logger:----- Epoch[074/800], Train Loss: 0.6917, time: 869.16
-INFO:local_logger:Now training epoch 75. LR=0.000152
-INFO:local_logger:----- Epoch[074/800], Train Loss: 0.6917, time: 868.97
-INFO:local_logger:Now training epoch 75. LR=0.000152
-INFO:local_logger:----- Epoch[074/800], Train Loss: 0.6918, time: 865.36
-INFO:master_logger:----- Epoch[074/800], Train Loss: 0.6919, time: 865.36
-INFO:local_logger:----- Epoch[074/800], Train Loss: 0.6922, time: 869.28
-INFO:local_logger:Now training epoch 75. LR=0.000152
-INFO:local_logger:----- Save model: ./output/train-20211219-17-07-40/MAE-Epoch-74-Loss-0.6918195025700205.pdparams
-INFO:local_logger:----- Save optim: ./output/train-20211219-17-07-40/MAE-Epoch-74-Loss-0.6918195025700205.pdopt
-INFO:master_logger:----- Save model: ./output/train-20211219-17-07-40/MAE-Epoch-74-Loss-0.6918195025700205.pdparams
-INFO:master_logger:----- Save optim: ./output/train-20211219-17-07-40/MAE-Epoch-74-Loss-0.6918195025700205.pdopt
-INFO:local_logger:Now training epoch 75. LR=0.000152
-INFO:master_logger:Now training epoch 75. LR=0.000152
-INFO:local_logger:Epoch[075/800], Step[0000/0626], Avg Loss: 0.6855
-INFO:master_logger:Epoch[075/800], Step[0000/0626], Avg Loss: 0.6909
-INFO:local_logger:Epoch[075/800], Step[0000/0626], Avg Loss: 0.6841
-INFO:local_logger:Epoch[075/800], Step[0000/0626], Avg Loss: 0.6902
-INFO:local_logger:Epoch[075/800], Step[0000/0626], Avg Loss: 0.6874
-INFO:local_logger:Epoch[075/800], Step[0000/0626], Avg Loss: 0.6973
-INFO:local_logger:Epoch[075/800], Step[0000/0626], Avg Loss: 0.6886
-INFO:local_logger:Epoch[075/800], Step[0000/0626], Avg Loss: 0.6943
-INFO:local_logger:Epoch[075/800], Step[0000/0626], Avg Loss: 0.6994
-INFO:local_logger:Epoch[075/800], Step[0100/0626], Avg Loss: 0.6908
-INFO:local_logger:Epoch[075/800], Step[0100/0626], Avg Loss: 0.6913
-INFO:local_logger:Epoch[075/800], Step[0100/0626], Avg Loss: 0.6910
-INFO:local_logger:Epoch[075/800], Step[0100/0626], Avg Loss: 0.6919
-INFO:local_logger:Epoch[075/800], Step[0100/0626], Avg Loss: 0.6908
-INFO:local_logger:Epoch[075/800], Step[0100/0626], Avg Loss: 0.6928
-INFO:master_logger:Epoch[075/800], Step[0100/0626], Avg Loss: 0.6914
-INFO:local_logger:Epoch[075/800], Step[0100/0626], Avg Loss: 0.6907
-INFO:local_logger:Epoch[075/800], Step[0100/0626], Avg Loss: 0.6915
-INFO:local_logger:Epoch[075/800], Step[0200/0626], Avg Loss: 0.6921
-INFO:local_logger:Epoch[075/800], Step[0200/0626], Avg Loss: 0.6912
-INFO:local_logger:Epoch[075/800], Step[0200/0626], Avg Loss: 0.6916
-INFO:local_logger:Epoch[075/800], Step[0200/0626], Avg Loss: 0.6914
-INFO:local_logger:Epoch[075/800], Step[0200/0626], Avg Loss: 0.6906
-INFO:local_logger:Epoch[075/800], Step[0200/0626], Avg Loss: 0.6921
-INFO:local_logger:Epoch[075/800], Step[0200/0626], Avg Loss: 0.6911
-INFO:master_logger:Epoch[075/800], Step[0200/0626], Avg Loss: 0.6913
-INFO:local_logger:Epoch[075/800], Step[0200/0626], Avg Loss: 0.6904
-INFO:local_logger:Epoch[075/800], Step[0300/0626], Avg Loss: 0.6908
-INFO:local_logger:Epoch[075/800], Step[0300/0626], Avg Loss: 0.6915
-INFO:local_logger:Epoch[075/800], Step[0300/0626], Avg Loss: 0.6911
-INFO:local_logger:Epoch[075/800], Step[0300/0626], Avg Loss: 0.6906
-INFO:local_logger:Epoch[075/800], Step[0300/0626], Avg Loss: 0.6916
-INFO:local_logger:Epoch[075/800], Step[0300/0626], Avg Loss: 0.6913
-INFO:master_logger:Epoch[075/800], Step[0300/0626], Avg Loss: 0.6912
-INFO:local_logger:Epoch[075/800], Step[0300/0626], Avg Loss: 0.6916
-INFO:local_logger:Epoch[075/800], Step[0300/0626], Avg Loss: 0.6915
-INFO:local_logger:Epoch[075/800], Step[0400/0626], Avg Loss: 0.6906
-INFO:local_logger:Epoch[075/800], Step[0400/0626], Avg Loss: 0.6910
-INFO:local_logger:Epoch[075/800], Step[0400/0626], Avg Loss: 0.6917
-INFO:local_logger:Epoch[075/800], Step[0400/0626], Avg Loss: 0.6910
-INFO:local_logger:Epoch[075/800], Step[0400/0626], Avg Loss: 0.6919
-INFO:master_logger:Epoch[075/800], Step[0400/0626], Avg Loss: 0.6913
-INFO:local_logger:Epoch[075/800], Step[0400/0626], Avg Loss: 0.6915
-INFO:local_logger:Epoch[075/800], Step[0400/0626], Avg Loss: 0.6914
-INFO:local_logger:Epoch[075/800], Step[0400/0626], Avg Loss: 0.6913
-INFO:local_logger:Epoch[075/800], Step[0500/0626], Avg Loss: 0.6918
-INFO:local_logger:Epoch[075/800], Step[0500/0626], Avg Loss: 0.6911
-INFO:local_logger:Epoch[075/800], Step[0500/0626], Avg Loss: 0.6917
-INFO:local_logger:Epoch[075/800], Step[0500/0626], Avg Loss: 0.6911
-INFO:local_logger:Epoch[075/800], Step[0500/0626], Avg Loss: 0.6911
-INFO:local_logger:Epoch[075/800], Step[0500/0626], Avg Loss: 0.6918
-INFO:local_logger:Epoch[075/800], Step[0500/0626], Avg Loss: 0.6913
-INFO:master_logger:Epoch[075/800], Step[0500/0626], Avg Loss: 0.6913
-INFO:local_logger:Epoch[075/800], Step[0500/0626], Avg Loss: 0.6904
-INFO:local_logger:Epoch[075/800], Step[0600/0626], Avg Loss: 0.6908
-INFO:local_logger:Epoch[075/800], Step[0600/0626], Avg Loss: 0.6906
-INFO:local_logger:Epoch[075/800], Step[0600/0626], Avg Loss: 0.6916
-INFO:local_logger:Epoch[075/800], Step[0600/0626], Avg Loss: 0.6910
-INFO:master_logger:Epoch[075/800], Step[0600/0626], Avg Loss: 0.6912
-INFO:local_logger:Epoch[075/800], Step[0600/0626], Avg Loss: 0.6915
-INFO:local_logger:Epoch[075/800], Step[0600/0626], Avg Loss: 0.6918
-INFO:local_logger:Epoch[075/800], Step[0600/0626], Avg Loss: 0.6912
-INFO:local_logger:Epoch[075/800], Step[0600/0626], Avg Loss: 0.6913
-INFO:local_logger:----- Epoch[075/800], Train Loss: 0.6918, time: 889.31
-INFO:local_logger:Now training epoch 76. LR=0.000152
-INFO:local_logger:----- Epoch[075/800], Train Loss: 0.6917, time: 889.53
-INFO:local_logger:Now training epoch 76. LR=0.000152
-INFO:local_logger:----- Epoch[075/800], Train Loss: 0.6907, time: 889.63
-INFO:local_logger:Now training epoch 76. LR=0.000152
-INFO:local_logger:----- Epoch[075/800], Train Loss: 0.6910, time: 885.80
-INFO:master_logger:----- Epoch[075/800], Train Loss: 0.6913, time: 885.80
-INFO:local_logger:----- Epoch[075/800], Train Loss: 0.6913, time: 889.63
-INFO:local_logger:Now training epoch 76. LR=0.000152
-INFO:local_logger:----- Epoch[075/800], Train Loss: 0.6912, time: 890.10
-INFO:local_logger:Now training epoch 76. LR=0.000152
-INFO:local_logger:----- Epoch[075/800], Train Loss: 0.6916, time: 890.11
-INFO:local_logger:Now training epoch 76. LR=0.000152
-INFO:local_logger:----- Epoch[075/800], Train Loss: 0.6911, time: 890.09
-INFO:local_logger:Now training epoch 76. LR=0.000152
-INFO:local_logger:----- Save model: ./output/train-20211219-17-07-40/MAE-Epoch-75-Loss-0.6910110246189355.pdparams
-INFO:local_logger:----- Save optim: ./output/train-20211219-17-07-40/MAE-Epoch-75-Loss-0.6910110246189355.pdopt
-INFO:master_logger:----- Save model: ./output/train-20211219-17-07-40/MAE-Epoch-75-Loss-0.6910110246189355.pdparams
-INFO:master_logger:----- Save optim: ./output/train-20211219-17-07-40/MAE-Epoch-75-Loss-0.6910110246189355.pdopt
-INFO:local_logger:Now training epoch 76. LR=0.000152
-INFO:master_logger:Now training epoch 76. LR=0.000152
-INFO:local_logger:Epoch[076/800], Step[0000/0626], Avg Loss: 0.6949
-INFO:local_logger:Epoch[076/800], Step[0000/0626], Avg Loss: 0.6849
-INFO:local_logger:Epoch[076/800], Step[0000/0626], Avg Loss: 0.6967
-INFO:master_logger:Epoch[076/800], Step[0000/0626], Avg Loss: 0.6895
-INFO:local_logger:Epoch[076/800], Step[0000/0626], Avg Loss: 0.6921
-INFO:local_logger:Epoch[076/800], Step[0000/0626], Avg Loss: 0.6831
-INFO:local_logger:Epoch[076/800], Step[0000/0626], Avg Loss: 0.6918
-INFO:local_logger:Epoch[076/800], Step[0000/0626], Avg Loss: 0.6833
-INFO:local_logger:Epoch[076/800], Step[0000/0626], Avg Loss: 0.6889
-INFO:local_logger:Epoch[076/800], Step[0100/0626], Avg Loss: 0.6898
-INFO:local_logger:Epoch[076/800], Step[0100/0626], Avg Loss: 0.6908
-INFO:local_logger:Epoch[076/800], Step[0100/0626], Avg Loss: 0.6890
-INFO:local_logger:Epoch[076/800], Step[0100/0626], Avg Loss: 0.6912
-INFO:local_logger:Epoch[076/800], Step[0100/0626], Avg Loss: 0.6900
-INFO:local_logger:Epoch[076/800], Step[0100/0626], Avg Loss: 0.6912
-INFO:master_logger:Epoch[076/800], Step[0100/0626], Avg Loss: 0.6906
-INFO:local_logger:Epoch[076/800], Step[0100/0626], Avg Loss: 0.6907
-INFO:local_logger:Epoch[076/800], Step[0100/0626], Avg Loss: 0.6922
-INFO:local_logger:Epoch[076/800], Step[0200/0626], Avg Loss: 0.6914
-INFO:local_logger:Epoch[076/800], Step[0200/0626], Avg Loss: 0.6904
-INFO:local_logger:Epoch[076/800], Step[0200/0626], Avg Loss: 0.6908
-INFO:local_logger:Epoch[076/800], Step[0200/0626], Avg Loss: 0.6907
-INFO:local_logger:Epoch[076/800], Step[0200/0626], Avg Loss: 0.6911
-INFO:local_logger:Epoch[076/800], Step[0200/0626], Avg Loss: 0.6909
-INFO:local_logger:Epoch[076/800], Step[0200/0626], Avg Loss: 0.6909
-INFO:local_logger:Epoch[076/800], Step[0200/0626], Avg Loss: 0.6905
-INFO:master_logger:Epoch[076/800], Step[0200/0626], Avg Loss: 0.6909
-INFO:local_logger:Epoch[076/800], Step[0300/0626], Avg Loss: 0.6911
-INFO:local_logger:Epoch[076/800], Step[0300/0626], Avg Loss: 0.6907
-INFO:local_logger:Epoch[076/800], Step[0300/0626], Avg Loss: 0.6903
-INFO:local_logger:Epoch[076/800], Step[0300/0626], Avg Loss: 0.6903
-INFO:local_logger:Epoch[076/800], Step[0300/0626], Avg Loss: 0.6906
-INFO:master_logger:Epoch[076/800], Step[0300/0626], Avg Loss: 0.6907
-INFO:local_logger:Epoch[076/800], Step[0300/0626], Avg Loss: 0.6906
-INFO:local_logger:Epoch[076/800], Step[0300/0626], Avg Loss: 0.6905
-INFO:local_logger:Epoch[076/800], Step[0300/0626], Avg Loss: 0.6910
-INFO:local_logger:Epoch[076/800], Step[0400/0626], Avg Loss: 0.6901
-INFO:local_logger:Epoch[076/800], Step[0400/0626], Avg Loss: 0.6907
-INFO:local_logger:Epoch[076/800], Step[0400/0626], Avg Loss: 0.6905
-INFO:local_logger:Epoch[076/800], Step[0400/0626], Avg Loss: 0.6902
-INFO:local_logger:Epoch[076/800], Step[0400/0626], Avg Loss: 0.6907
-INFO:local_logger:Epoch[076/800], Step[0400/0626], Avg Loss: 0.6907
-INFO:local_logger:Epoch[076/800], Step[0400/0626], Avg Loss: 0.6908
-INFO:master_logger:Epoch[076/800], Step[0400/0626], Avg Loss: 0.6905
-INFO:local_logger:Epoch[076/800], Step[0400/0626], Avg Loss: 0.6907
-INFO:local_logger:Epoch[076/800], Step[0500/0626], Avg Loss: 0.6908
-INFO:local_logger:Epoch[076/800], Step[0500/0626], Avg Loss: 0.6902
-INFO:local_logger:Epoch[076/800], Step[0500/0626], Avg Loss: 0.6905
-INFO:local_logger:Epoch[076/800], Step[0500/0626], Avg Loss: 0.6906
-INFO:local_logger:Epoch[076/800], Step[0500/0626], Avg Loss: 0.6908
-INFO:local_logger:Epoch[076/800], Step[0500/0626], Avg Loss: 0.6911
-INFO:local_logger:Epoch[076/800], Step[0500/0626], Avg Loss: 0.6903
-INFO:master_logger:Epoch[076/800], Step[0500/0626], Avg Loss: 0.6907
-INFO:local_logger:Epoch[076/800], Step[0500/0626], Avg Loss: 0.6910
-INFO:local_logger:Epoch[076/800], Step[0600/0626], Avg Loss: 0.6906
-INFO:local_logger:Epoch[076/800], Step[0600/0626], Avg Loss: 0.6904
-INFO:local_logger:Epoch[076/800], Step[0600/0626], Avg Loss: 0.6907
-INFO:local_logger:Epoch[076/800], Step[0600/0626], Avg Loss: 0.6906
-INFO:local_logger:Epoch[076/800], Step[0600/0626], Avg Loss: 0.6902
-INFO:master_logger:Epoch[076/800], Step[0600/0626], Avg Loss: 0.6906
-INFO:local_logger:Epoch[076/800], Step[0600/0626], Avg Loss: 0.6912
-INFO:local_logger:Epoch[076/800], Step[0600/0626], Avg Loss: 0.6910
-INFO:local_logger:Epoch[076/800], Step[0600/0626], Avg Loss: 0.6903
-INFO:local_logger:----- Epoch[076/800], Train Loss: 0.6911, time: 859.45
-INFO:local_logger:Now training epoch 77. LR=0.000152
-INFO:local_logger:----- Epoch[076/800], Train Loss: 0.6906, time: 855.76
-INFO:master_logger:----- Epoch[076/800], Train Loss: 0.6906, time: 855.76
-INFO:local_logger:----- Epoch[076/800], Train Loss: 0.6910, time: 859.92
-INFO:local_logger:Now training epoch 77. LR=0.000152
-INFO:local_logger:----- Epoch[076/800], Train Loss: 0.6907, time: 859.58
-INFO:local_logger:Now training epoch 77. LR=0.000152
-INFO:local_logger:----- Epoch[076/800], Train Loss: 0.6906, time: 859.59
-INFO:local_logger:Now training epoch 77. LR=0.000152
-INFO:local_logger:----- Epoch[076/800], Train Loss: 0.6903, time: 860.18
-INFO:local_logger:Now training epoch 77. LR=0.000152
-INFO:local_logger:----- Epoch[076/800], Train Loss: 0.6903, time: 860.24
-INFO:local_logger:Now training epoch 77. LR=0.000152
-INFO:local_logger:----- Epoch[076/800], Train Loss: 0.6904, time: 859.60
-INFO:local_logger:Now training epoch 77. LR=0.000152
-INFO:local_logger:----- Save model: ./output/train-20211219-17-07-40/MAE-Epoch-76-Loss-0.6905609986769955.pdparams
-INFO:local_logger:----- Save optim: ./output/train-20211219-17-07-40/MAE-Epoch-76-Loss-0.6905609986769955.pdopt
-INFO:master_logger:----- Save model: ./output/train-20211219-17-07-40/MAE-Epoch-76-Loss-0.6905609986769955.pdparams
-INFO:master_logger:----- Save optim: ./output/train-20211219-17-07-40/MAE-Epoch-76-Loss-0.6905609986769955.pdopt
-INFO:local_logger:Now training epoch 77. LR=0.000152
-INFO:master_logger:Now training epoch 77. LR=0.000152
-INFO:local_logger:Epoch[077/800], Step[0000/0626], Avg Loss: 0.6953
-INFO:local_logger:Epoch[077/800], Step[0000/0626], Avg Loss: 0.6740
-INFO:local_logger:Epoch[077/800], Step[0000/0626], Avg Loss: 0.6827
-INFO:master_logger:Epoch[077/800], Step[0000/0626], Avg Loss: 0.6898
-INFO:local_logger:Epoch[077/800], Step[0000/0626], Avg Loss: 0.6811
-INFO:local_logger:Epoch[077/800], Step[0000/0626], Avg Loss: 0.7074
-INFO:local_logger:Epoch[077/800], Step[0000/0626], Avg Loss: 0.7042
-INFO:local_logger:Epoch[077/800], Step[0000/0626], Avg Loss: 0.6947
-INFO:local_logger:Epoch[077/800], Step[0000/0626], Avg Loss: 0.6790
-INFO:local_logger:Epoch[077/800], Step[0100/0626], Avg Loss: 0.6899
-INFO:local_logger:Epoch[077/800], Step[0100/0626], Avg Loss: 0.6911
-INFO:local_logger:Epoch[077/800], Step[0100/0626], Avg Loss: 0.6890
-INFO:local_logger:Epoch[077/800], Step[0100/0626], Avg Loss: 0.6909
-INFO:local_logger:Epoch[077/800], Step[0100/0626], Avg Loss: 0.6900
-INFO:local_logger:Epoch[077/800], Step[0100/0626], Avg Loss: 0.6900
-INFO:master_logger:Epoch[077/800], Step[0100/0626], Avg Loss: 0.6902
-INFO:local_logger:Epoch[077/800], Step[0100/0626], Avg Loss: 0.6907
-INFO:local_logger:Epoch[077/800], Step[0100/0626], Avg Loss: 0.6898
-INFO:local_logger:Epoch[077/800], Step[0200/0626], Avg Loss: 0.6901
-INFO:local_logger:Epoch[077/800], Step[0200/0626], Avg Loss: 0.6903
-INFO:local_logger:Epoch[077/800], Step[0200/0626], Avg Loss: 0.6897
-INFO:local_logger:Epoch[077/800], Step[0200/0626], Avg Loss: 0.6905
-INFO:local_logger:Epoch[077/800], Step[0200/0626], Avg Loss: 0.6907
-INFO:local_logger:Epoch[077/800], Step[0200/0626], Avg Loss: 0.6893
-INFO:local_logger:Epoch[077/800], Step[0200/0626], Avg Loss: 0.6892
-INFO:master_logger:Epoch[077/800], Step[0200/0626], Avg Loss: 0.6900
-INFO:local_logger:Epoch[077/800], Step[0200/0626], Avg Loss: 0.6902
-INFO:local_logger:Epoch[077/800], Step[0300/0626], Avg Loss: 0.6902
-INFO:local_logger:Epoch[077/800], Step[0300/0626], Avg Loss: 0.6896
-INFO:local_logger:Epoch[077/800], Step[0300/0626], Avg Loss: 0.6900
-INFO:local_logger:Epoch[077/800], Step[0300/0626], Avg Loss: 0.6904
-INFO:local_logger:Epoch[077/800], Step[0300/0626], Avg Loss: 0.6905
-INFO:local_logger:Epoch[077/800], Step[0300/0626], Avg Loss: 0.6893
-INFO:local_logger:Epoch[077/800], Step[0300/0626], Avg Loss: 0.6900
-INFO:local_logger:Epoch[077/800], Step[0300/0626], Avg Loss: 0.6908
-INFO:master_logger:Epoch[077/800], Step[0300/0626], Avg Loss: 0.6901
-INFO:local_logger:Epoch[077/800], Step[0400/0626], Avg Loss: 0.6906
-INFO:local_logger:Epoch[077/800], Step[0400/0626], Avg Loss: 0.6906
-INFO:local_logger:Epoch[077/800], Step[0400/0626], Avg Loss: 0.6898
-INFO:local_logger:Epoch[077/800], Step[0400/0626], Avg Loss: 0.6903
-INFO:local_logger:Epoch[077/800], Step[0400/0626], Avg Loss: 0.6906
-INFO:local_logger:Epoch[077/800], Step[0400/0626], Avg Loss: 0.6896
-INFO:local_logger:Epoch[077/800], Step[0400/0626], Avg Loss: 0.6902
-INFO:master_logger:Epoch[077/800], Step[0400/0626], Avg Loss: 0.6902
-INFO:local_logger:Epoch[077/800], Step[0400/0626], Avg Loss: 0.6900
-INFO:local_logger:Epoch[077/800], Step[0500/0626], Avg Loss: 0.6906
-INFO:local_logger:Epoch[077/800], Step[0500/0626], Avg Loss: 0.6905
-INFO:local_logger:Epoch[077/800], Step[0500/0626], Avg Loss: 0.6900
-INFO:local_logger:Epoch[077/800], Step[0500/0626], Avg Loss: 0.6903
-INFO:local_logger:Epoch[077/800], Step[0500/0626], Avg Loss: 0.6906
-INFO:local_logger:Epoch[077/800], Step[0500/0626], Avg Loss: 0.6899
-INFO:local_logger:Epoch[077/800], Step[0500/0626], Avg Loss: 0.6900
-INFO:local_logger:Epoch[077/800], Step[0500/0626], Avg Loss: 0.6896
-INFO:master_logger:Epoch[077/800], Step[0500/0626], Avg Loss: 0.6902
-INFO:local_logger:Epoch[077/800], Step[0600/0626], Avg Loss: 0.6902
-INFO:local_logger:Epoch[077/800], Step[0600/0626], Avg Loss: 0.6900
-INFO:local_logger:Epoch[077/800], Step[0600/0626], Avg Loss: 0.6906
-INFO:local_logger:Epoch[077/800], Step[0600/0626], Avg Loss: 0.6899
-INFO:local_logger:Epoch[077/800], Step[0600/0626], Avg Loss: 0.6905
-INFO:local_logger:Epoch[077/800], Step[0600/0626], Avg Loss: 0.6898
-INFO:local_logger:Epoch[077/800], Step[0600/0626], Avg Loss: 0.6898
-INFO:master_logger:Epoch[077/800], Step[0600/0626], Avg Loss: 0.6902
-INFO:local_logger:Epoch[077/800], Step[0600/0626], Avg Loss: 0.6904
-INFO:local_logger:----- Epoch[077/800], Train Loss: 0.6899, time: 882.70
-INFO:local_logger:Now training epoch 78. LR=0.000152
-INFO:local_logger:----- Epoch[077/800], Train Loss: 0.6898, time: 884.37
-INFO:local_logger:Now training epoch 78. LR=0.000152
-INFO:local_logger:----- Epoch[077/800], Train Loss: 0.6901, time: 883.82
-INFO:local_logger:Now training epoch 78. LR=0.000152
-INFO:local_logger:----- Epoch[077/800], Train Loss: 0.6906, time: 883.80
-INFO:local_logger:----- Epoch[077/800], Train Loss: 0.6902, time: 883.80
-INFO:local_logger:Now training epoch 78. LR=0.000152
-INFO:local_logger:Now training epoch 78. LR=0.000152
-INFO:local_logger:----- Epoch[077/800], Train Loss: 0.6905, time: 883.93
-INFO:local_logger:Now training epoch 78. LR=0.000152
-INFO:local_logger:----- Epoch[077/800], Train Loss: 0.6898, time: 880.45
-INFO:master_logger:----- Epoch[077/800], Train Loss: 0.6902, time: 880.45
-INFO:local_logger:----- Epoch[077/800], Train Loss: 0.6905, time: 883.84
-INFO:local_logger:Now training epoch 78. LR=0.000152
-INFO:local_logger:----- Save model: ./output/train-20211219-17-07-40/MAE-Epoch-77-Loss-0.6897522572932259.pdparams
-INFO:local_logger:----- Save optim: ./output/train-20211219-17-07-40/MAE-Epoch-77-Loss-0.6897522572932259.pdopt
-INFO:master_logger:----- Save model: ./output/train-20211219-17-07-40/MAE-Epoch-77-Loss-0.6897522572932259.pdparams
-INFO:master_logger:----- Save optim: ./output/train-20211219-17-07-40/MAE-Epoch-77-Loss-0.6897522572932259.pdopt
-INFO:local_logger:Now training epoch 78. LR=0.000152
-INFO:master_logger:Now training epoch 78. LR=0.000152
-INFO:local_logger:Epoch[078/800], Step[0000/0626], Avg Loss: 0.6849
-INFO:local_logger:Epoch[078/800], Step[0000/0626], Avg Loss: 0.6877
-INFO:master_logger:Epoch[078/800], Step[0000/0626], Avg Loss: 0.6888
-INFO:local_logger:Epoch[078/800], Step[0000/0626], Avg Loss: 0.6933
-INFO:local_logger:Epoch[078/800], Step[0000/0626], Avg Loss: 0.6900
-INFO:local_logger:Epoch[078/800], Step[0000/0626], Avg Loss: 0.6979
-INFO:local_logger:Epoch[078/800], Step[0000/0626], Avg Loss: 0.6883
-INFO:local_logger:Epoch[078/800], Step[0000/0626], Avg Loss: 0.6939
-INFO:local_logger:Epoch[078/800], Step[0000/0626], Avg Loss: 0.6743
-INFO:local_logger:Epoch[078/800], Step[0100/0626], Avg Loss: 0.6903
-INFO:local_logger:Epoch[078/800], Step[0100/0626], Avg Loss: 0.6884
-INFO:local_logger:Epoch[078/800], Step[0100/0626], Avg Loss: 0.6900
-INFO:local_logger:Epoch[078/800], Step[0100/0626], Avg Loss: 0.6884
-INFO:local_logger:Epoch[078/800], Step[0100/0626], Avg Loss: 0.6897
-INFO:local_logger:Epoch[078/800], Step[0100/0626], Avg Loss: 0.6902
-INFO:master_logger:Epoch[078/800], Step[0100/0626], Avg Loss: 0.6896
-INFO:local_logger:Epoch[078/800], Step[0100/0626], Avg Loss: 0.6896
-INFO:local_logger:Epoch[078/800], Step[0100/0626], Avg Loss: 0.6903
-INFO:local_logger:Epoch[078/800], Step[0200/0626], Avg Loss: 0.6898
-INFO:local_logger:Epoch[078/800], Step[0200/0626], Avg Loss: 0.6900
-INFO:local_logger:Epoch[078/800], Step[0200/0626], Avg Loss: 0.6893
-INFO:local_logger:Epoch[078/800], Step[0200/0626], Avg Loss: 0.6892
-INFO:local_logger:Epoch[078/800], Step[0200/0626], Avg Loss: 0.6895
-INFO:master_logger:Epoch[078/800], Step[0200/0626], Avg Loss: 0.6897
-INFO:local_logger:Epoch[078/800], Step[0200/0626], Avg Loss: 0.6899
-INFO:local_logger:Epoch[078/800], Step[0200/0626], Avg Loss: 0.6898
-INFO:local_logger:Epoch[078/800], Step[0200/0626], Avg Loss: 0.6898
-INFO:local_logger:Epoch[078/800], Step[0300/0626], Avg Loss: 0.6896
-INFO:master_logger:Epoch[078/800], Step[0300/0626], Avg Loss: 0.6898
-INFO:local_logger:Epoch[078/800], Step[0300/0626], Avg Loss: 0.6895
-INFO:local_logger:Epoch[078/800], Step[0300/0626], Avg Loss: 0.6898
-INFO:local_logger:Epoch[078/800], Step[0300/0626], Avg Loss: 0.6900
-INFO:local_logger:Epoch[078/800], Step[0300/0626], Avg Loss: 0.6896
-INFO:local_logger:Epoch[078/800], Step[0300/0626], Avg Loss: 0.6895
-INFO:local_logger:Epoch[078/800], Step[0300/0626], Avg Loss: 0.6903
-INFO:local_logger:Epoch[078/800], Step[0300/0626], Avg Loss: 0.6897
-INFO:local_logger:Epoch[078/800], Step[0400/0626], Avg Loss: 0.6896
-INFO:local_logger:Epoch[078/800], Step[0400/0626], Avg Loss: 0.6896
-INFO:local_logger:Epoch[078/800], Step[0400/0626], Avg Loss: 0.6896
-INFO:local_logger:Epoch[078/800], Step[0400/0626], Avg Loss: 0.6900
-INFO:local_logger:Epoch[078/800], Step[0400/0626], Avg Loss: 0.6901
-INFO:master_logger:Epoch[078/800], Step[0400/0626], Avg Loss: 0.6897
-INFO:local_logger:Epoch[078/800], Step[0400/0626], Avg Loss: 0.6897
-INFO:local_logger:Epoch[078/800], Step[0400/0626], Avg Loss: 0.6894
-INFO:local_logger:Epoch[078/800], Step[0400/0626], Avg Loss: 0.6896
-INFO:local_logger:Epoch[078/800], Step[0500/0626], Avg Loss: 0.6896
-INFO:local_logger:Epoch[078/800], Step[0500/0626], Avg Loss: 0.6897
-INFO:local_logger:Epoch[078/800], Step[0500/0626], Avg Loss: 0.6894
-INFO:local_logger:Epoch[078/800], Step[0500/0626], Avg Loss: 0.6898
-INFO:local_logger:Epoch[078/800], Step[0500/0626], Avg Loss: 0.6896
-INFO:local_logger:Epoch[078/800], Step[0500/0626], Avg Loss: 0.6898
-INFO:master_logger:Epoch[078/800], Step[0500/0626], Avg Loss: 0.6897
-INFO:local_logger:Epoch[078/800], Step[0500/0626], Avg Loss: 0.6897
-INFO:local_logger:Epoch[078/800], Step[0500/0626], Avg Loss: 0.6897
-INFO:local_logger:Epoch[078/800], Step[0600/0626], Avg Loss: 0.6895
-INFO:local_logger:Epoch[078/800], Step[0600/0626], Avg Loss: 0.6898
-INFO:local_logger:Epoch[078/800], Step[0600/0626], Avg Loss: 0.6895
-INFO:local_logger:Epoch[078/800], Step[0600/0626], Avg Loss: 0.6893
-INFO:local_logger:Epoch[078/800], Step[0600/0626], Avg Loss: 0.6895
-INFO:local_logger:Epoch[078/800], Step[0600/0626], Avg Loss: 0.6898
-INFO:local_logger:Epoch[078/800], Step[0600/0626], Avg Loss: 0.6896
-INFO:local_logger:Epoch[078/800], Step[0600/0626], Avg Loss: 0.6897
-INFO:master_logger:Epoch[078/800], Step[0600/0626], Avg Loss: 0.6896
-INFO:local_logger:----- Epoch[078/800], Train Loss: 0.6895, time: 850.97
-INFO:local_logger:Now training epoch 79. LR=0.000152
-INFO:local_logger:----- Epoch[078/800], Train Loss: 0.6897, time: 849.85
-INFO:local_logger:Now training epoch 79. LR=0.000152
-INFO:local_logger:----- Epoch[078/800], Train Loss: 0.6897, time: 850.45
-INFO:local_logger:Now training epoch 79. LR=0.000152
-INFO:local_logger:----- Epoch[078/800], Train Loss: 0.6894, time: 850.45
-INFO:local_logger:Now training epoch 79. LR=0.000152
-INFO:local_logger:----- Epoch[078/800], Train Loss: 0.6895, time: 846.72
-INFO:master_logger:----- Epoch[078/800], Train Loss: 0.6896, time: 846.72
-INFO:local_logger:----- Epoch[078/800], Train Loss: 0.6897, time: 850.44
-INFO:local_logger:Now training epoch 79. LR=0.000152
-INFO:local_logger:----- Epoch[078/800], Train Loss: 0.6894, time: 850.46
-INFO:local_logger:Now training epoch 79. LR=0.000152
-INFO:local_logger:----- Epoch[078/800], Train Loss: 0.6898, time: 850.47
-INFO:local_logger:Now training epoch 79. LR=0.000152
-INFO:local_logger:----- Save model: ./output/train-20211219-17-07-40/MAE-Epoch-78-Loss-0.6895287958086865.pdparams
-INFO:local_logger:----- Save optim: ./output/train-20211219-17-07-40/MAE-Epoch-78-Loss-0.6895287958086865.pdopt
-INFO:master_logger:----- Save model: ./output/train-20211219-17-07-40/MAE-Epoch-78-Loss-0.6895287958086865.pdparams
-INFO:master_logger:----- Save optim: ./output/train-20211219-17-07-40/MAE-Epoch-78-Loss-0.6895287958086865.pdopt
-INFO:local_logger:Now training epoch 79. LR=0.000152
-INFO:master_logger:Now training epoch 79. LR=0.000152
-INFO:local_logger:Epoch[079/800], Step[0000/0626], Avg Loss: 0.6853
-INFO:local_logger:Epoch[079/800], Step[0000/0626], Avg Loss: 0.6870
-INFO:master_logger:Epoch[079/800], Step[0000/0626], Avg Loss: 0.6882
-INFO:local_logger:Epoch[079/800], Step[0000/0626], Avg Loss: 0.7025
-INFO:local_logger:Epoch[079/800], Step[0000/0626], Avg Loss: 0.6862
-INFO:local_logger:Epoch[079/800], Step[0000/0626], Avg Loss: 0.6839
-INFO:local_logger:Epoch[079/800], Step[0000/0626], Avg Loss: 0.6843
-INFO:local_logger:Epoch[079/800], Step[0000/0626], Avg Loss: 0.6939
-INFO:local_logger:Epoch[079/800], Step[0000/0626], Avg Loss: 0.6823
-INFO:local_logger:Epoch[079/800], Step[0100/0626], Avg Loss: 0.6890
-INFO:local_logger:Epoch[079/800], Step[0100/0626], Avg Loss: 0.6901
-INFO:local_logger:Epoch[079/800], Step[0100/0626], Avg Loss: 0.6892
-INFO:master_logger:Epoch[079/800], Step[0100/0626], Avg Loss: 0.6891
-INFO:local_logger:Epoch[079/800], Step[0100/0626], Avg Loss: 0.6881
-INFO:local_logger:Epoch[079/800], Step[0100/0626], Avg Loss: 0.6902
-INFO:local_logger:Epoch[079/800], Step[0100/0626], Avg Loss: 0.6893
-INFO:local_logger:Epoch[079/800], Step[0100/0626], Avg Loss: 0.6887
-INFO:local_logger:Epoch[079/800], Step[0100/0626], Avg Loss: 0.6882
-INFO:local_logger:Epoch[079/800], Step[0200/0626], Avg Loss: 0.6896
-INFO:local_logger:Epoch[079/800], Step[0200/0626], Avg Loss: 0.6886
-INFO:local_logger:Epoch[079/800], Step[0200/0626], Avg Loss: 0.6892
-INFO:local_logger:Epoch[079/800], Step[0200/0626], Avg Loss: 0.6893
-INFO:local_logger:Epoch[079/800], Step[0200/0626], Avg Loss: 0.6888
-INFO:local_logger:Epoch[079/800], Step[0200/0626], Avg Loss: 0.6898
-INFO:local_logger:Epoch[079/800], Step[0200/0626], Avg Loss: 0.6890
-INFO:local_logger:Epoch[079/800], Step[0200/0626], Avg Loss: 0.6900
-INFO:master_logger:Epoch[079/800], Step[0200/0626], Avg Loss: 0.6893
-INFO:local_logger:Epoch[079/800], Step[0300/0626], Avg Loss: 0.6891
-INFO:local_logger:Epoch[079/800], Step[0300/0626], Avg Loss: 0.6892
-INFO:local_logger:Epoch[079/800], Step[0300/0626], Avg Loss: 0.6894
-INFO:master_logger:Epoch[079/800], Step[0300/0626], Avg Loss: 0.6894
-INFO:local_logger:Epoch[079/800], Step[0300/0626], Avg Loss: 0.6893
-INFO:local_logger:Epoch[079/800], Step[0300/0626], Avg Loss: 0.6889
-INFO:local_logger:Epoch[079/800], Step[0300/0626], Avg Loss: 0.6897
-INFO:local_logger:Epoch[079/800], Step[0300/0626], Avg Loss: 0.6897
-INFO:local_logger:Epoch[079/800], Step[0300/0626], Avg Loss: 0.6897
-INFO:local_logger:Epoch[079/800], Step[0400/0626], Avg Loss: 0.6893
-INFO:local_logger:Epoch[079/800], Step[0400/0626], Avg Loss: 0.6891
-INFO:local_logger:Epoch[079/800], Step[0400/0626], Avg Loss: 0.6894
-INFO:local_logger:Epoch[079/800], Step[0400/0626], Avg Loss: 0.6888
-INFO:local_logger:Epoch[079/800], Step[0400/0626], Avg Loss: 0.6891
-INFO:master_logger:Epoch[079/800], Step[0400/0626], Avg Loss: 0.6892
-INFO:local_logger:Epoch[079/800], Step[0400/0626], Avg Loss: 0.6891
-INFO:local_logger:Epoch[079/800], Step[0400/0626], Avg Loss: 0.6896
-INFO:local_logger:Epoch[079/800], Step[0400/0626], Avg Loss: 0.6894
-INFO:local_logger:Epoch[079/800], Step[0500/0626], Avg Loss: 0.6888
-INFO:local_logger:Epoch[079/800], Step[0500/0626], Avg Loss: 0.6892
-INFO:local_logger:Epoch[079/800], Step[0500/0626], Avg Loss: 0.6895
-INFO:local_logger:Epoch[079/800], Step[0500/0626], Avg Loss: 0.6893
-INFO:local_logger:Epoch[079/800], Step[0500/0626], Avg Loss: 0.6897
-INFO:local_logger:Epoch[079/800], Step[0500/0626], Avg Loss: 0.6892
-INFO:local_logger:Epoch[079/800], Step[0500/0626], Avg Loss: 0.6895
-INFO:local_logger:Epoch[079/800], Step[0500/0626], Avg Loss: 0.6888
-INFO:master_logger:Epoch[079/800], Step[0500/0626], Avg Loss: 0.6892
-INFO:local_logger:Epoch[079/800], Step[0600/0626], Avg Loss: 0.6887
-INFO:local_logger:Epoch[079/800], Step[0600/0626], Avg Loss: 0.6894
-INFO:local_logger:Epoch[079/800], Step[0600/0626], Avg Loss: 0.6892
-INFO:master_logger:Epoch[079/800], Step[0600/0626], Avg Loss: 0.6892
-INFO:local_logger:Epoch[079/800], Step[0600/0626], Avg Loss: 0.6897
-INFO:local_logger:Epoch[079/800], Step[0600/0626], Avg Loss: 0.6889
-INFO:local_logger:Epoch[079/800], Step[0600/0626], Avg Loss: 0.6894
-INFO:local_logger:Epoch[079/800], Step[0600/0626], Avg Loss: 0.6896
-INFO:local_logger:Epoch[079/800], Step[0600/0626], Avg Loss: 0.6891
-INFO:local_logger:----- Epoch[079/800], Train Loss: 0.6892, time: 888.30
-INFO:local_logger:Now training epoch 80. LR=0.000152
-INFO:local_logger:----- Epoch[079/800], Train Loss: 0.6889, time: 888.13
-INFO:local_logger:----- Epoch[079/800], Train Loss: 0.6891, time: 888.74
-INFO:local_logger:Now training epoch 80. LR=0.000152
-INFO:local_logger:Now training epoch 80. LR=0.000152
-INFO:local_logger:----- Epoch[079/800], Train Loss: 0.6896, time: 888.14
-INFO:local_logger:Now training epoch 80. LR=0.000152
-INFO:local_logger:----- Epoch[079/800], Train Loss: 0.6886, time: 884.16
-INFO:master_logger:----- Epoch[079/800], Train Loss: 0.6892, time: 884.16
-INFO:local_logger:----- Epoch[079/800], Train Loss: 0.6893, time: 888.24
-INFO:local_logger:Now training epoch 80. LR=0.000152
-INFO:local_logger:----- Epoch[079/800], Train Loss: 0.6896, time: 888.24
-INFO:local_logger:Now training epoch 80. LR=0.000152
-INFO:local_logger:----- Epoch[079/800], Train Loss: 0.6893, time: 888.26
-INFO:local_logger:Now training epoch 80. LR=0.000152
-INFO:local_logger:----- Save model: ./output/train-20211219-17-07-40/MAE-Epoch-79-Loss-0.6886302635034396.pdparams
-INFO:local_logger:----- Save optim: ./output/train-20211219-17-07-40/MAE-Epoch-79-Loss-0.6886302635034396.pdopt
-INFO:master_logger:----- Save model: ./output/train-20211219-17-07-40/MAE-Epoch-79-Loss-0.6886302635034396.pdparams
-INFO:master_logger:----- Save optim: ./output/train-20211219-17-07-40/MAE-Epoch-79-Loss-0.6886302635034396.pdopt
-INFO:local_logger:Now training epoch 80. LR=0.000152
-INFO:master_logger:Now training epoch 80. LR=0.000152
-INFO:local_logger:Epoch[080/800], Step[0000/0626], Avg Loss: 0.6883
-INFO:local_logger:Epoch[080/800], Step[0000/0626], Avg Loss: 0.6859
-INFO:master_logger:Epoch[080/800], Step[0000/0626], Avg Loss: 0.6877
-INFO:local_logger:Epoch[080/800], Step[0000/0626], Avg Loss: 0.6806
-INFO:local_logger:Epoch[080/800], Step[0000/0626], Avg Loss: 0.6838
-INFO:local_logger:Epoch[080/800], Step[0000/0626], Avg Loss: 0.6866
-INFO:local_logger:Epoch[080/800], Step[0000/0626], Avg Loss: 0.6898
-INFO:local_logger:Epoch[080/800], Step[0000/0626], Avg Loss: 0.7038
-INFO:local_logger:Epoch[080/800], Step[0000/0626], Avg Loss: 0.6829
-INFO:local_logger:Epoch[080/800], Step[0100/0626], Avg Loss: 0.6905
-INFO:local_logger:Epoch[080/800], Step[0100/0626], Avg Loss: 0.6889
-INFO:local_logger:Epoch[080/800], Step[0100/0626], Avg Loss: 0.6877
-INFO:master_logger:Epoch[080/800], Step[0100/0626], Avg Loss: 0.6887
-INFO:local_logger:Epoch[080/800], Step[0100/0626], Avg Loss: 0.6869
-INFO:local_logger:Epoch[080/800], Step[0100/0626], Avg Loss: 0.6883
-INFO:local_logger:Epoch[080/800], Step[0100/0626], Avg Loss: 0.6890
-INFO:local_logger:Epoch[080/800], Step[0100/0626], Avg Loss: 0.6887
-INFO:local_logger:Epoch[080/800], Step[0100/0626], Avg Loss: 0.6898
-INFO:local_logger:Epoch[080/800], Step[0200/0626], Avg Loss: 0.6885
-INFO:local_logger:Epoch[080/800], Step[0200/0626], Avg Loss: 0.6883
-INFO:local_logger:Epoch[080/800], Step[0200/0626], Avg Loss: 0.6886
-INFO:local_logger:Epoch[080/800], Step[0200/0626], Avg Loss: 0.6886
-INFO:master_logger:Epoch[080/800], Step[0200/0626], Avg Loss: 0.6887
-INFO:local_logger:Epoch[080/800], Step[0200/0626], Avg Loss: 0.6890
-INFO:local_logger:Epoch[080/800], Step[0200/0626], Avg Loss: 0.6891
-INFO:local_logger:Epoch[080/800], Step[0200/0626], Avg Loss: 0.6893
-INFO:local_logger:Epoch[080/800], Step[0200/0626], Avg Loss: 0.6880
-INFO:local_logger:Epoch[080/800], Step[0300/0626], Avg Loss: 0.6883
-INFO:local_logger:Epoch[080/800], Step[0300/0626], Avg Loss: 0.6889
-INFO:local_logger:Epoch[080/800], Step[0300/0626], Avg Loss: 0.6888
-INFO:local_logger:Epoch[080/800], Step[0300/0626], Avg Loss: 0.6886
-INFO:local_logger:Epoch[080/800], Step[0300/0626], Avg Loss: 0.6891
-INFO:local_logger:Epoch[080/800], Step[0300/0626], Avg Loss: 0.6881
-INFO:local_logger:Epoch[080/800], Step[0300/0626], Avg Loss: 0.6885
-INFO:local_logger:Epoch[080/800], Step[0300/0626], Avg Loss: 0.6887
-INFO:master_logger:Epoch[080/800], Step[0300/0626], Avg Loss: 0.6886
-INFO:local_logger:Epoch[080/800], Step[0400/0626], Avg Loss: 0.6888
-INFO:local_logger:Epoch[080/800], Step[0400/0626], Avg Loss: 0.6887
-INFO:local_logger:Epoch[080/800], Step[0400/0626], Avg Loss: 0.6886
-INFO:local_logger:Epoch[080/800], Step[0400/0626], Avg Loss: 0.6891
-INFO:local_logger:Epoch[080/800], Step[0400/0626], Avg Loss: 0.6886
-INFO:local_logger:Epoch[080/800], Step[0400/0626], Avg Loss: 0.6886
-INFO:master_logger:Epoch[080/800], Step[0400/0626], Avg Loss: 0.6888
-INFO:local_logger:Epoch[080/800], Step[0400/0626], Avg Loss: 0.6890
-INFO:local_logger:Epoch[080/800], Step[0400/0626], Avg Loss: 0.6891
-INFO:local_logger:Epoch[080/800], Step[0500/0626], Avg Loss: 0.6890
-INFO:local_logger:Epoch[080/800], Step[0500/0626], Avg Loss: 0.6886
-INFO:local_logger:Epoch[080/800], Step[0500/0626], Avg Loss: 0.6891
-INFO:local_logger:Epoch[080/800], Step[0500/0626], Avg Loss: 0.6888
-INFO:local_logger:Epoch[080/800], Step[0500/0626], Avg Loss: 0.6888
-INFO:local_logger:Epoch[080/800], Step[0500/0626], Avg Loss: 0.6891
-INFO:local_logger:Epoch[080/800], Step[0500/0626], Avg Loss: 0.6888
-INFO:master_logger:Epoch[080/800], Step[0500/0626], Avg Loss: 0.6889
-INFO:local_logger:Epoch[080/800], Step[0500/0626], Avg Loss: 0.6889
-INFO:local_logger:Epoch[080/800], Step[0600/0626], Avg Loss: 0.6890
-INFO:local_logger:Epoch[080/800], Step[0600/0626], Avg Loss: 0.6886
-INFO:local_logger:Epoch[080/800], Step[0600/0626], Avg Loss: 0.6888
-INFO:local_logger:Epoch[080/800], Step[0600/0626], Avg Loss: 0.6888
-INFO:local_logger:Epoch[080/800], Step[0600/0626], Avg Loss: 0.6887
-INFO:local_logger:Epoch[080/800], Step[0600/0626], Avg Loss: 0.6888
-INFO:master_logger:Epoch[080/800], Step[0600/0626], Avg Loss: 0.6888
-INFO:local_logger:Epoch[080/800], Step[0600/0626], Avg Loss: 0.6889
-INFO:local_logger:Epoch[080/800], Step[0600/0626], Avg Loss: 0.6890
-INFO:local_logger:----- Epoch[080/800], Train Loss: 0.6890, time: 849.18
-INFO:local_logger:Now training epoch 81. LR=0.000153
-INFO:local_logger:----- Epoch[080/800], Train Loss: 0.6888, time: 849.16
-INFO:local_logger:Now training epoch 81. LR=0.000153
-INFO:local_logger:----- Epoch[080/800], Train Loss: 0.6890, time: 849.36
-INFO:local_logger:Now training epoch 81. LR=0.000153
-INFO:local_logger:----- Epoch[080/800], Train Loss: 0.6887, time: 849.41
-INFO:local_logger:Now training epoch 81. LR=0.000153
-INFO:local_logger:----- Epoch[080/800], Train Loss: 0.6888, time: 849.87
-INFO:local_logger:Now training epoch 81. LR=0.000153
-INFO:local_logger:----- Epoch[080/800], Train Loss: 0.6889, time: 849.31
-INFO:local_logger:Now training epoch 81. LR=0.000153
-INFO:local_logger:----- Epoch[080/800], Train Loss: 0.6888, time: 845.47
-INFO:master_logger:----- Epoch[080/800], Train Loss: 0.6889, time: 845.47
-INFO:local_logger:----- Epoch[080/800], Train Loss: 0.6891, time: 849.50
-INFO:local_logger:Now training epoch 81. LR=0.000153
-INFO:local_logger:----- Save model: ./output/train-20211219-17-07-40/MAE-Epoch-80-Loss-0.6887507163269282.pdparams
-INFO:local_logger:----- Save optim: ./output/train-20211219-17-07-40/MAE-Epoch-80-Loss-0.6887507163269282.pdopt
-INFO:master_logger:----- Save model: ./output/train-20211219-17-07-40/MAE-Epoch-80-Loss-0.6887507163269282.pdparams
-INFO:master_logger:----- Save optim: ./output/train-20211219-17-07-40/MAE-Epoch-80-Loss-0.6887507163269282.pdopt
-INFO:local_logger:Now training epoch 81. LR=0.000153
-INFO:master_logger:Now training epoch 81. LR=0.000153
-INFO:local_logger:Epoch[081/800], Step[0000/0626], Avg Loss: 0.6842
-INFO:local_logger:Epoch[081/800], Step[0000/0626], Avg Loss: 0.6873
-INFO:local_logger:Epoch[081/800], Step[0000/0626], Avg Loss: 0.6831
-INFO:local_logger:Epoch[081/800], Step[0000/0626], Avg Loss: 0.6999
-INFO:master_logger:Epoch[081/800], Step[0000/0626], Avg Loss: 0.6908
-INFO:local_logger:Epoch[081/800], Step[0000/0626], Avg Loss: 0.6984
-INFO:local_logger:Epoch[081/800], Step[0000/0626], Avg Loss: 0.7003
-INFO:local_logger:Epoch[081/800], Step[0000/0626], Avg Loss: 0.6882
-INFO:local_logger:Epoch[081/800], Step[0000/0626], Avg Loss: 0.6847
-INFO:local_logger:Epoch[081/800], Step[0100/0626], Avg Loss: 0.6876
-INFO:local_logger:Epoch[081/800], Step[0100/0626], Avg Loss: 0.6888
-INFO:local_logger:Epoch[081/800], Step[0100/0626], Avg Loss: 0.6887
-INFO:local_logger:Epoch[081/800], Step[0100/0626], Avg Loss: 0.6887
-INFO:local_logger:Epoch[081/800], Step[0100/0626], Avg Loss: 0.6877
-INFO:local_logger:Epoch[081/800], Step[0100/0626], Avg Loss: 0.6890
-INFO:local_logger:Epoch[081/800], Step[0100/0626], Avg Loss: 0.6882
-INFO:master_logger:Epoch[081/800], Step[0100/0626], Avg Loss: 0.6883
-INFO:local_logger:Epoch[081/800], Step[0100/0626], Avg Loss: 0.6874
-INFO:local_logger:Epoch[081/800], Step[0200/0626], Avg Loss: 0.6877
-INFO:local_logger:Epoch[081/800], Step[0200/0626], Avg Loss: 0.6888
-INFO:local_logger:Epoch[081/800], Step[0200/0626], Avg Loss: 0.6876
-INFO:local_logger:Epoch[081/800], Step[0200/0626], Avg Loss: 0.6877
-INFO:local_logger:Epoch[081/800], Step[0200/0626], Avg Loss: 0.6885
-INFO:local_logger:Epoch[081/800], Step[0200/0626], Avg Loss: 0.6892
-INFO:local_logger:Epoch[081/800], Step[0200/0626], Avg Loss: 0.6885
-INFO:local_logger:Epoch[081/800], Step[0200/0626], Avg Loss: 0.6886
-INFO:master_logger:Epoch[081/800], Step[0200/0626], Avg Loss: 0.6883
-INFO:local_logger:Epoch[081/800], Step[0300/0626], Avg Loss: 0.6881
-INFO:local_logger:Epoch[081/800], Step[0300/0626], Avg Loss: 0.6888
-INFO:local_logger:Epoch[081/800], Step[0300/0626], Avg Loss: 0.6883
-INFO:local_logger:Epoch[081/800], Step[0300/0626], Avg Loss: 0.6881
-INFO:master_logger:Epoch[081/800], Step[0300/0626], Avg Loss: 0.6882
-INFO:local_logger:Epoch[081/800], Step[0300/0626], Avg Loss: 0.6878
-INFO:local_logger:Epoch[081/800], Step[0300/0626], Avg Loss: 0.6887
-INFO:local_logger:Epoch[081/800], Step[0300/0626], Avg Loss: 0.6876
-INFO:local_logger:Epoch[081/800], Step[0300/0626], Avg Loss: 0.6885
-INFO:local_logger:Epoch[081/800], Step[0400/0626], Avg Loss: 0.6879
-INFO:local_logger:Epoch[081/800], Step[0400/0626], Avg Loss: 0.6878
-INFO:local_logger:Epoch[081/800], Step[0400/0626], Avg Loss: 0.6885
-INFO:local_logger:Epoch[081/800], Step[0400/0626], Avg Loss: 0.6879
-INFO:local_logger:Epoch[081/800], Step[0400/0626], Avg Loss: 0.6881
-INFO:local_logger:Epoch[081/800], Step[0400/0626], Avg Loss: 0.6880
-INFO:local_logger:Epoch[081/800], Step[0400/0626], Avg Loss: 0.6886
-INFO:master_logger:Epoch[081/800], Step[0400/0626], Avg Loss: 0.6882
-INFO:local_logger:Epoch[081/800], Step[0400/0626], Avg Loss: 0.6888
-INFO:local_logger:Epoch[081/800], Step[0500/0626], Avg Loss: 0.6881
-INFO:local_logger:Epoch[081/800], Step[0500/0626], Avg Loss: 0.6884
-INFO:local_logger:Epoch[081/800], Step[0500/0626], Avg Loss: 0.6881
-INFO:local_logger:Epoch[081/800], Step[0500/0626], Avg Loss: 0.6885
-INFO:local_logger:Epoch[081/800], Step[0500/0626], Avg Loss: 0.6879
-INFO:local_logger:Epoch[081/800], Step[0500/0626], Avg Loss: 0.6878
-INFO:master_logger:Epoch[081/800], Step[0500/0626], Avg Loss: 0.6882
-INFO:local_logger:Epoch[081/800], Step[0500/0626], Avg Loss: 0.6881
-INFO:local_logger:Epoch[081/800], Step[0500/0626], Avg Loss: 0.6885
-INFO:local_logger:Epoch[081/800], Step[0600/0626], Avg Loss: 0.6880
-INFO:local_logger:Epoch[081/800], Step[0600/0626], Avg Loss: 0.6880
-INFO:local_logger:Epoch[081/800], Step[0600/0626], Avg Loss: 0.6882
-INFO:local_logger:Epoch[081/800], Step[0600/0626], Avg Loss: 0.6878
-INFO:local_logger:Epoch[081/800], Step[0600/0626], Avg Loss: 0.6883
-INFO:local_logger:Epoch[081/800], Step[0600/0626], Avg Loss: 0.6877
-INFO:local_logger:Epoch[081/800], Step[0600/0626], Avg Loss: 0.6886
-INFO:master_logger:Epoch[081/800], Step[0600/0626], Avg Loss: 0.6881
-INFO:local_logger:Epoch[081/800], Step[0600/0626], Avg Loss: 0.6885
-INFO:local_logger:----- Epoch[081/800], Train Loss: 0.6878, time: 886.96
-INFO:local_logger:Now training epoch 82. LR=0.000153
-INFO:local_logger:----- Epoch[081/800], Train Loss: 0.6882, time: 887.25
-INFO:local_logger:Now training epoch 82. LR=0.000153
-INFO:local_logger:----- Epoch[081/800], Train Loss: 0.6882, time: 887.32
-INFO:local_logger:Now training epoch 82. LR=0.000153
-INFO:local_logger:----- Epoch[081/800], Train Loss: 0.6883, time: 887.55
-INFO:local_logger:Now training epoch 82. LR=0.000153
-INFO:local_logger:----- Epoch[081/800], Train Loss: 0.6878, time: 887.45
-INFO:local_logger:Now training epoch 82. LR=0.000153
-INFO:local_logger:----- Epoch[081/800], Train Loss: 0.6883, time: 887.60
-INFO:local_logger:Now training epoch 82. LR=0.000153
-INFO:local_logger:----- Epoch[081/800], Train Loss: 0.6880, time: 887.62
-INFO:local_logger:Now training epoch 82. LR=0.000153
-INFO:local_logger:----- Epoch[081/800], Train Loss: 0.6885, time: 883.70
-INFO:master_logger:----- Epoch[081/800], Train Loss: 0.6882, time: 883.70
-INFO:local_logger:----- Save model: ./output/train-20211219-17-07-40/MAE-Epoch-81-Loss-0.6885438528329545.pdparams
-INFO:local_logger:----- Save optim: ./output/train-20211219-17-07-40/MAE-Epoch-81-Loss-0.6885438528329545.pdopt
-INFO:master_logger:----- Save model: ./output/train-20211219-17-07-40/MAE-Epoch-81-Loss-0.6885438528329545.pdparams
-INFO:master_logger:----- Save optim: ./output/train-20211219-17-07-40/MAE-Epoch-81-Loss-0.6885438528329545.pdopt
-INFO:local_logger:Now training epoch 82. LR=0.000153
-INFO:master_logger:Now training epoch 82. LR=0.000153
-INFO:local_logger:Epoch[082/800], Step[0000/0626], Avg Loss: 0.6723
-INFO:local_logger:Epoch[082/800], Step[0000/0626], Avg Loss: 0.6813
-INFO:master_logger:Epoch[082/800], Step[0000/0626], Avg Loss: 0.6842
-INFO:local_logger:Epoch[082/800], Step[0000/0626], Avg Loss: 0.6948
-INFO:local_logger:Epoch[082/800], Step[0000/0626], Avg Loss: 0.6790
-INFO:local_logger:Epoch[082/800], Step[0000/0626], Avg Loss: 0.6783
-INFO:local_logger:Epoch[082/800], Step[0000/0626], Avg Loss: 0.6882
-INFO:local_logger:Epoch[082/800], Step[0000/0626], Avg Loss: 0.7052
-INFO:local_logger:Epoch[082/800], Step[0000/0626], Avg Loss: 0.6743
-INFO:local_logger:Epoch[082/800], Step[0100/0626], Avg Loss: 0.6875
-INFO:local_logger:Epoch[082/800], Step[0100/0626], Avg Loss: 0.6885
-INFO:local_logger:Epoch[082/800], Step[0100/0626], Avg Loss: 0.6874
-INFO:master_logger:Epoch[082/800], Step[0100/0626], Avg Loss: 0.6877
-INFO:local_logger:Epoch[082/800], Step[0100/0626], Avg Loss: 0.6864
-INFO:local_logger:Epoch[082/800], Step[0100/0626], Avg Loss: 0.6886
-INFO:local_logger:Epoch[082/800], Step[0100/0626], Avg Loss: 0.6871
-INFO:local_logger:Epoch[082/800], Step[0100/0626], Avg Loss: 0.6881
-INFO:local_logger:Epoch[082/800], Step[0100/0626], Avg Loss: 0.6882
-INFO:local_logger:Epoch[082/800], Step[0200/0626], Avg Loss: 0.6878
-INFO:local_logger:Epoch[082/800], Step[0200/0626], Avg Loss: 0.6880
-INFO:local_logger:Epoch[082/800], Step[0200/0626], Avg Loss: 0.6877
-INFO:local_logger:Epoch[082/800], Step[0200/0626], Avg Loss: 0.6878
-INFO:local_logger:Epoch[082/800], Step[0200/0626], Avg Loss: 0.6875
-INFO:master_logger:Epoch[082/800], Step[0200/0626], Avg Loss: 0.6879
-INFO:local_logger:Epoch[082/800], Step[0200/0626], Avg Loss: 0.6881
-INFO:local_logger:Epoch[082/800], Step[0200/0626], Avg Loss: 0.6877
-INFO:local_logger:Epoch[082/800], Step[0200/0626], Avg Loss: 0.6884
-INFO:local_logger:Epoch[082/800], Step[0300/0626], Avg Loss: 0.6874
-INFO:local_logger:Epoch[082/800], Step[0300/0626], Avg Loss: 0.6878
-INFO:local_logger:Epoch[082/800], Step[0300/0626], Avg Loss: 0.6881
-INFO:local_logger:Epoch[082/800], Step[0300/0626], Avg Loss: 0.6873
-INFO:local_logger:Epoch[082/800], Step[0300/0626], Avg Loss: 0.6882
-INFO:master_logger:Epoch[082/800], Step[0300/0626], Avg Loss: 0.6878
-INFO:local_logger:Epoch[082/800], Step[0300/0626], Avg Loss: 0.6881
-INFO:local_logger:Epoch[082/800], Step[0300/0626], Avg Loss: 0.6876
-INFO:local_logger:Epoch[082/800], Step[0300/0626], Avg Loss: 0.6883
-INFO:local_logger:Epoch[082/800], Step[0400/0626], Avg Loss: 0.6880
-INFO:local_logger:Epoch[082/800], Step[0400/0626], Avg Loss: 0.6877
-INFO:local_logger:Epoch[082/800], Step[0400/0626], Avg Loss: 0.6878
-INFO:local_logger:Epoch[082/800], Step[0400/0626], Avg Loss: 0.6879
-INFO:local_logger:Epoch[082/800], Step[0400/0626], Avg Loss: 0.6871
-INFO:local_logger:Epoch[082/800], Step[0400/0626], Avg Loss: 0.6876
-INFO:local_logger:Epoch[082/800], Step[0400/0626], Avg Loss: 0.6879
-INFO:master_logger:Epoch[082/800], Step[0400/0626], Avg Loss: 0.6877
-INFO:local_logger:Epoch[082/800], Step[0400/0626], Avg Loss: 0.6878
-INFO:local_logger:Epoch[082/800], Step[0500/0626], Avg Loss: 0.6879
-INFO:local_logger:Epoch[082/800], Step[0500/0626], Avg Loss: 0.6872
-INFO:local_logger:Epoch[082/800], Step[0500/0626], Avg Loss: 0.6878
-INFO:local_logger:Epoch[082/800], Step[0500/0626], Avg Loss: 0.6881
-INFO:local_logger:Epoch[082/800], Step[0500/0626], Avg Loss: 0.6874
-INFO:master_logger:Epoch[082/800], Step[0500/0626], Avg Loss: 0.6878
-INFO:local_logger:Epoch[082/800], Step[0500/0626], Avg Loss: 0.6879
-INFO:local_logger:Epoch[082/800], Step[0500/0626], Avg Loss: 0.6880
-INFO:local_logger:Epoch[082/800], Step[0500/0626], Avg Loss: 0.6878
-INFO:local_logger:Epoch[082/800], Step[0600/0626], Avg Loss: 0.6877
-INFO:local_logger:Epoch[082/800], Step[0600/0626], Avg Loss: 0.6880
-INFO:local_logger:Epoch[082/800], Step[0600/0626], Avg Loss: 0.6879
-INFO:local_logger:Epoch[082/800], Step[0600/0626], Avg Loss: 0.6873
-INFO:master_logger:Epoch[082/800], Step[0600/0626], Avg Loss: 0.6877
-INFO:local_logger:Epoch[082/800], Step[0600/0626], Avg Loss: 0.6871
-INFO:local_logger:Epoch[082/800], Step[0600/0626], Avg Loss: 0.6877
-INFO:local_logger:Epoch[082/800], Step[0600/0626], Avg Loss: 0.6876
-INFO:local_logger:Epoch[082/800], Step[0600/0626], Avg Loss: 0.6880
-INFO:local_logger:----- Epoch[082/800], Train Loss: 0.6876, time: 851.19
-INFO:local_logger:Now training epoch 83. LR=0.000153
-INFO:local_logger:----- Epoch[082/800], Train Loss: 0.6870, time: 851.29
-INFO:local_logger:Now training epoch 83. LR=0.000153
-INFO:local_logger:----- Epoch[082/800], Train Loss: 0.6876, time: 851.29
-INFO:local_logger:Now training epoch 83. LR=0.000153
-INFO:local_logger:----- Epoch[082/800], Train Loss: 0.6881, time: 851.15
-INFO:local_logger:Now training epoch 83. LR=0.000153
-INFO:local_logger:----- Epoch[082/800], Train Loss: 0.6881, time: 851.69
-INFO:local_logger:Now training epoch 83. LR=0.000153
-INFO:local_logger:----- Epoch[082/800], Train Loss: 0.6873, time: 851.08
-INFO:local_logger:Now training epoch 83. LR=0.000153
-INFO:local_logger:----- Epoch[082/800], Train Loss: 0.6877, time: 847.31
-INFO:master_logger:----- Epoch[082/800], Train Loss: 0.6876, time: 847.31
-INFO:local_logger:----- Epoch[082/800], Train Loss: 0.6879, time: 851.21
-INFO:local_logger:Now training epoch 83. LR=0.000153
-INFO:local_logger:----- Save model: ./output/train-20211219-17-07-40/MAE-Epoch-82-Loss-0.687688001142508.pdparams
-INFO:local_logger:----- Save optim: ./output/train-20211219-17-07-40/MAE-Epoch-82-Loss-0.687688001142508.pdopt
-INFO:master_logger:----- Save model: ./output/train-20211219-17-07-40/MAE-Epoch-82-Loss-0.687688001142508.pdparams
-INFO:master_logger:----- Save optim: ./output/train-20211219-17-07-40/MAE-Epoch-82-Loss-0.687688001142508.pdopt
-INFO:local_logger:Now training epoch 83. LR=0.000153
-INFO:master_logger:Now training epoch 83. LR=0.000153
-INFO:local_logger:Epoch[083/800], Step[0000/0626], Avg Loss: 0.6878
-INFO:master_logger:Epoch[083/800], Step[0000/0626], Avg Loss: 0.6887
-INFO:local_logger:Epoch[083/800], Step[0000/0626], Avg Loss: 0.6966
-INFO:local_logger:Epoch[083/800], Step[0000/0626], Avg Loss: 0.6793
-INFO:local_logger:Epoch[083/800], Step[0000/0626], Avg Loss: 0.6913
-INFO:local_logger:Epoch[083/800], Step[0000/0626], Avg Loss: 0.6781
-INFO:local_logger:Epoch[083/800], Step[0000/0626], Avg Loss: 0.7000
-INFO:local_logger:Epoch[083/800], Step[0000/0626], Avg Loss: 0.6871
-INFO:local_logger:Epoch[083/800], Step[0000/0626], Avg Loss: 0.6893
-INFO:local_logger:Epoch[083/800], Step[0100/0626], Avg Loss: 0.6891
-INFO:local_logger:Epoch[083/800], Step[0100/0626], Avg Loss: 0.6878
-INFO:local_logger:Epoch[083/800], Step[0100/0626], Avg Loss: 0.6873
-INFO:local_logger:Epoch[083/800], Step[0100/0626], Avg Loss: 0.6875
-INFO:local_logger:Epoch[083/800], Step[0100/0626], Avg Loss: 0.6881
-INFO:local_logger:Epoch[083/800], Step[0100/0626], Avg Loss: 0.6882
-INFO:master_logger:Epoch[083/800], Step[0100/0626], Avg Loss: 0.6877
-INFO:local_logger:Epoch[083/800], Step[0100/0626], Avg Loss: 0.6864
-INFO:local_logger:Epoch[083/800], Step[0100/0626], Avg Loss: 0.6872
-INFO:local_logger:Epoch[083/800], Step[0200/0626], Avg Loss: 0.6878
-INFO:local_logger:Epoch[083/800], Step[0200/0626], Avg Loss: 0.6871
-INFO:local_logger:Epoch[083/800], Step[0200/0626], Avg Loss: 0.6860
-INFO:local_logger:Epoch[083/800], Step[0200/0626], Avg Loss: 0.6881
-INFO:local_logger:Epoch[083/800], Step[0200/0626], Avg Loss: 0.6880
-INFO:local_logger:Epoch[083/800], Step[0200/0626], Avg Loss: 0.6869
-INFO:local_logger:Epoch[083/800], Step[0200/0626], Avg Loss: 0.6890
-INFO:master_logger:Epoch[083/800], Step[0200/0626], Avg Loss: 0.6876
-INFO:local_logger:Epoch[083/800], Step[0200/0626], Avg Loss: 0.6878
-INFO:local_logger:Epoch[083/800], Step[0300/0626], Avg Loss: 0.6877
-INFO:local_logger:Epoch[083/800], Step[0300/0626], Avg Loss: 0.6871
-INFO:local_logger:Epoch[083/800], Step[0300/0626], Avg Loss: 0.6868
-INFO:local_logger:Epoch[083/800], Step[0300/0626], Avg Loss: 0.6872
-INFO:master_logger:Epoch[083/800], Step[0300/0626], Avg Loss: 0.6873
-INFO:local_logger:Epoch[083/800], Step[0300/0626], Avg Loss: 0.6883
-INFO:local_logger:Epoch[083/800], Step[0300/0626], Avg Loss: 0.6863
-INFO:local_logger:Epoch[083/800], Step[0300/0626], Avg Loss: 0.6878
-INFO:local_logger:Epoch[083/800], Step[0300/0626], Avg Loss: 0.6876
-INFO:local_logger:Epoch[083/800], Step[0400/0626], Avg Loss: 0.6878
-INFO:local_logger:Epoch[083/800], Step[0400/0626], Avg Loss: 0.6874
-INFO:local_logger:Epoch[083/800], Step[0400/0626], Avg Loss: 0.6879
-INFO:local_logger:Epoch[083/800], Step[0400/0626], Avg Loss: 0.6873
-INFO:master_logger:Epoch[083/800], Step[0400/0626], Avg Loss: 0.6873
-INFO:local_logger:Epoch[083/800], Step[0400/0626], Avg Loss: 0.6873
-INFO:local_logger:Epoch[083/800], Step[0400/0626], Avg Loss: 0.6867
-INFO:local_logger:Epoch[083/800], Step[0400/0626], Avg Loss: 0.6865
-INFO:local_logger:Epoch[083/800], Step[0400/0626], Avg Loss: 0.6876
-INFO:local_logger:Epoch[083/800], Step[0500/0626], Avg Loss: 0.6874
-INFO:local_logger:Epoch[083/800], Step[0500/0626], Avg Loss: 0.6874
-INFO:local_logger:Epoch[083/800], Step[0500/0626], Avg Loss: 0.6875
-INFO:local_logger:Epoch[083/800], Step[0500/0626], Avg Loss: 0.6866
-INFO:master_logger:Epoch[083/800], Step[0500/0626], Avg Loss: 0.6872
-INFO:local_logger:Epoch[083/800], Step[0500/0626], Avg Loss: 0.6876
-INFO:local_logger:Epoch[083/800], Step[0500/0626], Avg Loss: 0.6874
-INFO:local_logger:Epoch[083/800], Step[0500/0626], Avg Loss: 0.6873
-INFO:local_logger:Epoch[083/800], Step[0500/0626], Avg Loss: 0.6868
-INFO:local_logger:Epoch[083/800], Step[0600/0626], Avg Loss: 0.6872
-INFO:local_logger:Epoch[083/800], Step[0600/0626], Avg Loss: 0.6876
-INFO:local_logger:Epoch[083/800], Step[0600/0626], Avg Loss: 0.6871
-INFO:local_logger:Epoch[083/800], Step[0600/0626], Avg Loss: 0.6874
-INFO:local_logger:Epoch[083/800], Step[0600/0626], Avg Loss: 0.6875
-INFO:local_logger:Epoch[083/800], Step[0600/0626], Avg Loss: 0.6866
-INFO:master_logger:Epoch[083/800], Step[0600/0626], Avg Loss: 0.6872
-INFO:local_logger:Epoch[083/800], Step[0600/0626], Avg Loss: 0.6874
-INFO:local_logger:Epoch[083/800], Step[0600/0626], Avg Loss: 0.6867
-INFO:local_logger:----- Epoch[083/800], Train Loss: 0.6872, time: 894.39
-INFO:local_logger:----- Epoch[083/800], Train Loss: 0.6868, time: 894.42
-INFO:local_logger:Now training epoch 84. LR=0.000153
-INFO:local_logger:Now training epoch 84. LR=0.000153
-INFO:local_logger:----- Epoch[083/800], Train Loss: 0.6876, time: 894.42
-INFO:local_logger:Now training epoch 84. LR=0.000153
-INFO:local_logger:----- Epoch[083/800], Train Loss: 0.6871, time: 890.84
-INFO:master_logger:----- Epoch[083/800], Train Loss: 0.6872, time: 890.84
-INFO:local_logger:----- Epoch[083/800], Train Loss: 0.6876, time: 894.60
-INFO:local_logger:Now training epoch 84. LR=0.000153
-INFO:local_logger:----- Epoch[083/800], Train Loss: 0.6873, time: 894.67
-INFO:local_logger:Now training epoch 84. LR=0.000153
-INFO:local_logger:----- Epoch[083/800], Train Loss: 0.6875, time: 894.68
-INFO:local_logger:Now training epoch 84. LR=0.000153
-INFO:local_logger:----- Epoch[083/800], Train Loss: 0.6866, time: 894.74
-INFO:local_logger:Now training epoch 84. LR=0.000153
-INFO:local_logger:----- Save model: ./output/train-20211219-17-07-40/MAE-Epoch-83-Loss-0.6870564654976226.pdparams
-INFO:local_logger:----- Save optim: ./output/train-20211219-17-07-40/MAE-Epoch-83-Loss-0.6870564654976226.pdopt
-INFO:master_logger:----- Save model: ./output/train-20211219-17-07-40/MAE-Epoch-83-Loss-0.6870564654976226.pdparams
-INFO:master_logger:----- Save optim: ./output/train-20211219-17-07-40/MAE-Epoch-83-Loss-0.6870564654976226.pdopt
-INFO:local_logger:Now training epoch 84. LR=0.000153
-INFO:master_logger:Now training epoch 84. LR=0.000153
-INFO:local_logger:Epoch[084/800], Step[0000/0626], Avg Loss: 0.6927
-INFO:master_logger:Epoch[084/800], Step[0000/0626], Avg Loss: 0.6881
-INFO:local_logger:Epoch[084/800], Step[0000/0626], Avg Loss: 0.6853
-INFO:local_logger:Epoch[084/800], Step[0000/0626], Avg Loss: 0.6905
-INFO:local_logger:Epoch[084/800], Step[0000/0626], Avg Loss: 0.6929
-INFO:local_logger:Epoch[084/800], Step[0000/0626], Avg Loss: 0.6876
-INFO:local_logger:Epoch[084/800], Step[0000/0626], Avg Loss: 0.6900
-INFO:local_logger:Epoch[084/800], Step[0000/0626], Avg Loss: 0.6745
-INFO:local_logger:Epoch[084/800], Step[0000/0626], Avg Loss: 0.6914
-INFO:local_logger:Epoch[084/800], Step[0100/0626], Avg Loss: 0.6875
-INFO:local_logger:Epoch[084/800], Step[0100/0626], Avg Loss: 0.6866
-INFO:local_logger:Epoch[084/800], Step[0100/0626], Avg Loss: 0.6880
-INFO:master_logger:Epoch[084/800], Step[0100/0626], Avg Loss: 0.6870
-INFO:local_logger:Epoch[084/800], Step[0100/0626], Avg Loss: 0.6867
-INFO:local_logger:Epoch[084/800], Step[0100/0626], Avg Loss: 0.6870
-INFO:local_logger:Epoch[084/800], Step[0100/0626], Avg Loss: 0.6861
-INFO:local_logger:Epoch[084/800], Step[0100/0626], Avg Loss: 0.6883
-INFO:local_logger:Epoch[084/800], Step[0100/0626], Avg Loss: 0.6858
-INFO:local_logger:Epoch[084/800], Step[0200/0626], Avg Loss: 0.6862
-INFO:local_logger:Epoch[084/800], Step[0200/0626], Avg Loss: 0.6865
-INFO:local_logger:Epoch[084/800], Step[0200/0626], Avg Loss: 0.6867
-INFO:master_logger:Epoch[084/800], Step[0200/0626], Avg Loss: 0.6869
-INFO:local_logger:Epoch[084/800], Step[0200/0626], Avg Loss: 0.6874
-INFO:local_logger:Epoch[084/800], Step[0200/0626], Avg Loss: 0.6873
-INFO:local_logger:Epoch[084/800], Step[0200/0626], Avg Loss: 0.6884
-INFO:local_logger:Epoch[084/800], Step[0200/0626], Avg Loss: 0.6866
-INFO:local_logger:Epoch[084/800], Step[0200/0626], Avg Loss: 0.6864
-INFO:local_logger:Epoch[084/800], Step[0300/0626], Avg Loss: 0.6867
-INFO:local_logger:Epoch[084/800], Step[0300/0626], Avg Loss: 0.6873
-INFO:local_logger:Epoch[084/800], Step[0300/0626], Avg Loss: 0.6878
-INFO:local_logger:Epoch[084/800], Step[0300/0626], Avg Loss: 0.6865
-INFO:local_logger:Epoch[084/800], Step[0300/0626], Avg Loss: 0.6867
-INFO:local_logger:Epoch[084/800], Step[0300/0626], Avg Loss: 0.6868
-INFO:local_logger:Epoch[084/800], Step[0300/0626], Avg Loss: 0.6864
-INFO:local_logger:Epoch[084/800], Step[0300/0626], Avg Loss: 0.6868
-INFO:master_logger:Epoch[084/800], Step[0300/0626], Avg Loss: 0.6869
-INFO:local_logger:Epoch[084/800], Step[0400/0626], Avg Loss: 0.6867
-INFO:local_logger:Epoch[084/800], Step[0400/0626], Avg Loss: 0.6866
-INFO:local_logger:Epoch[084/800], Step[0400/0626], Avg Loss: 0.6869
-INFO:local_logger:Epoch[084/800], Step[0400/0626], Avg Loss: 0.6875
-INFO:local_logger:Epoch[084/800], Step[0400/0626], Avg Loss: 0.6870
-INFO:local_logger:Epoch[084/800], Step[0400/0626], Avg Loss: 0.6864
-INFO:local_logger:Epoch[084/800], Step[0400/0626], Avg Loss: 0.6876
-INFO:master_logger:Epoch[084/800], Step[0400/0626], Avg Loss: 0.6869
-INFO:local_logger:Epoch[084/800], Step[0400/0626], Avg Loss: 0.6866
-INFO:local_logger:Epoch[084/800], Step[0500/0626], Avg Loss: 0.6865
-INFO:local_logger:Epoch[084/800], Step[0500/0626], Avg Loss: 0.6865
-INFO:local_logger:Epoch[084/800], Step[0500/0626], Avg Loss: 0.6870
-INFO:local_logger:Epoch[084/800], Step[0500/0626], Avg Loss: 0.6876
-INFO:local_logger:Epoch[084/800], Step[0500/0626], Avg Loss: 0.6876
-INFO:local_logger:Epoch[084/800], Step[0500/0626], Avg Loss: 0.6866
-INFO:master_logger:Epoch[084/800], Step[0500/0626], Avg Loss: 0.6869
-INFO:local_logger:Epoch[084/800], Step[0500/0626], Avg Loss: 0.6868
-INFO:local_logger:Epoch[084/800], Step[0500/0626], Avg Loss: 0.6867
-INFO:local_logger:Epoch[084/800], Step[0600/0626], Avg Loss: 0.6874
-INFO:local_logger:Epoch[084/800], Step[0600/0626], Avg Loss: 0.6865
-INFO:local_logger:Epoch[084/800], Step[0600/0626], Avg Loss: 0.6870
-INFO:local_logger:Epoch[084/800], Step[0600/0626], Avg Loss: 0.6869
-INFO:local_logger:Epoch[084/800], Step[0600/0626], Avg Loss: 0.6875
-INFO:local_logger:Epoch[084/800], Step[0600/0626], Avg Loss: 0.6867
-INFO:master_logger:Epoch[084/800], Step[0600/0626], Avg Loss: 0.6869
-INFO:local_logger:Epoch[084/800], Step[0600/0626], Avg Loss: 0.6865
-INFO:local_logger:Epoch[084/800], Step[0600/0626], Avg Loss: 0.6865
-INFO:local_logger:----- Epoch[084/800], Train Loss: 0.6870, time: 854.61
-INFO:master_logger:----- Epoch[084/800], Train Loss: 0.6869, time: 854.61
-INFO:local_logger:----- Epoch[084/800], Train Loss: 0.6868, time: 858.62
-INFO:local_logger:Now training epoch 85. LR=0.000153
-INFO:local_logger:----- Epoch[084/800], Train Loss: 0.6865, time: 858.88
-INFO:local_logger:Now training epoch 85. LR=0.000153
-INFO:local_logger:----- Epoch[084/800], Train Loss: 0.6866, time: 858.64
-INFO:local_logger:Now training epoch 85. LR=0.000153
-INFO:local_logger:----- Epoch[084/800], Train Loss: 0.6874, time: 858.90
-INFO:local_logger:Now training epoch 85. LR=0.000153
-INFO:local_logger:----- Epoch[084/800], Train Loss: 0.6868, time: 858.67
-INFO:local_logger:Now training epoch 85. LR=0.000153
-INFO:local_logger:----- Epoch[084/800], Train Loss: 0.6875, time: 858.57
-INFO:local_logger:Now training epoch 85. LR=0.000153
-INFO:local_logger:----- Epoch[084/800], Train Loss: 0.6864, time: 858.93
-INFO:local_logger:Now training epoch 85. LR=0.000153
-INFO:local_logger:----- Save model: ./output/train-20211219-17-07-40/MAE-Epoch-84-Loss-0.6870198997374206.pdparams
-INFO:local_logger:----- Save optim: ./output/train-20211219-17-07-40/MAE-Epoch-84-Loss-0.6870198997374206.pdopt
-INFO:master_logger:----- Save model: ./output/train-20211219-17-07-40/MAE-Epoch-84-Loss-0.6870198997374206.pdparams
-INFO:master_logger:----- Save optim: ./output/train-20211219-17-07-40/MAE-Epoch-84-Loss-0.6870198997374206.pdopt
-INFO:local_logger:Now training epoch 85. LR=0.000153
-INFO:master_logger:Now training epoch 85. LR=0.000153
-INFO:local_logger:Epoch[085/800], Step[0000/0626], Avg Loss: 0.6915
-INFO:local_logger:Epoch[085/800], Step[0000/0626], Avg Loss: 0.6830
-INFO:master_logger:Epoch[085/800], Step[0000/0626], Avg Loss: 0.6870
-INFO:local_logger:Epoch[085/800], Step[0000/0626], Avg Loss: 0.6898
-INFO:local_logger:Epoch[085/800], Step[0000/0626], Avg Loss: 0.6817
-INFO:local_logger:Epoch[085/800], Step[0000/0626], Avg Loss: 0.6935
-INFO:local_logger:Epoch[085/800], Step[0000/0626], Avg Loss: 0.6929
-INFO:local_logger:Epoch[085/800], Step[0000/0626], Avg Loss: 0.6837
-INFO:local_logger:Epoch[085/800], Step[0000/0626], Avg Loss: 0.6803
-INFO:local_logger:Epoch[085/800], Step[0100/0626], Avg Loss: 0.6864
-INFO:local_logger:Epoch[085/800], Step[0100/0626], Avg Loss: 0.6854
-INFO:local_logger:Epoch[085/800], Step[0100/0626], Avg Loss: 0.6868
-INFO:local_logger:Epoch[085/800], Step[0100/0626], Avg Loss: 0.6860
-INFO:local_logger:Epoch[085/800], Step[0100/0626], Avg Loss: 0.6860
-INFO:local_logger:Epoch[085/800], Step[0100/0626], Avg Loss: 0.6853
-INFO:local_logger:Epoch[085/800], Step[0100/0626], Avg Loss: 0.6843
-INFO:master_logger:Epoch[085/800], Step[0100/0626], Avg Loss: 0.6859
-INFO:local_logger:Epoch[085/800], Step[0100/0626], Avg Loss: 0.6870
-INFO:local_logger:Epoch[085/800], Step[0200/0626], Avg Loss: 0.6864
-INFO:local_logger:Epoch[085/800], Step[0200/0626], Avg Loss: 0.6855
-INFO:local_logger:Epoch[085/800], Step[0200/0626], Avg Loss: 0.6866
-INFO:local_logger:Epoch[085/800], Step[0200/0626], Avg Loss: 0.6854
-INFO:local_logger:Epoch[085/800], Step[0200/0626], Avg Loss: 0.6868
-INFO:local_logger:Epoch[085/800], Step[0200/0626], Avg Loss: 0.6860
-INFO:local_logger:Epoch[085/800], Step[0200/0626], Avg Loss: 0.6865
-INFO:master_logger:Epoch[085/800], Step[0200/0626], Avg Loss: 0.6861
-INFO:local_logger:Epoch[085/800], Step[0200/0626], Avg Loss: 0.6856
-INFO:local_logger:Epoch[085/800], Step[0300/0626], Avg Loss: 0.6873
-INFO:local_logger:Epoch[085/800], Step[0300/0626], Avg Loss: 0.6867
-INFO:local_logger:Epoch[085/800], Step[0300/0626], Avg Loss: 0.6861
-INFO:local_logger:Epoch[085/800], Step[0300/0626], Avg Loss: 0.6860
-INFO:local_logger:Epoch[085/800], Step[0300/0626], Avg Loss: 0.6858
-INFO:local_logger:Epoch[085/800], Step[0300/0626], Avg Loss: 0.6860
-INFO:local_logger:Epoch[085/800], Step[0300/0626], Avg Loss: 0.6866
-INFO:master_logger:Epoch[085/800], Step[0300/0626], Avg Loss: 0.6864
-INFO:local_logger:Epoch[085/800], Step[0300/0626], Avg Loss: 0.6865
-INFO:local_logger:Epoch[085/800], Step[0400/0626], Avg Loss: 0.6859
-INFO:local_logger:Epoch[085/800], Step[0400/0626], Avg Loss: 0.6856
-INFO:local_logger:Epoch[085/800], Step[0400/0626], Avg Loss: 0.6863
-INFO:local_logger:Epoch[085/800], Step[0400/0626], Avg Loss: 0.6869
-INFO:local_logger:Epoch[085/800], Step[0400/0626], Avg Loss: 0.6866
-INFO:local_logger:Epoch[085/800], Step[0400/0626], Avg Loss: 0.6866
-INFO:master_logger:Epoch[085/800], Step[0400/0626], Avg Loss: 0.6864
-INFO:local_logger:Epoch[085/800], Step[0400/0626], Avg Loss: 0.6865
-INFO:local_logger:Epoch[085/800], Step[0400/0626], Avg Loss: 0.6863
-INFO:local_logger:Epoch[085/800], Step[0500/0626], Avg Loss: 0.6857
-INFO:local_logger:Epoch[085/800], Step[0500/0626], Avg Loss: 0.6862
-INFO:local_logger:Epoch[085/800], Step[0500/0626], Avg Loss: 0.6866
-INFO:local_logger:Epoch[085/800], Step[0500/0626], Avg Loss: 0.6868
-INFO:local_logger:Epoch[085/800], Step[0500/0626], Avg Loss: 0.6865
-INFO:local_logger:Epoch[085/800], Step[0500/0626], Avg Loss: 0.6862
-INFO:local_logger:Epoch[085/800], Step[0500/0626], Avg Loss: 0.6860
-INFO:master_logger:Epoch[085/800], Step[0500/0626], Avg Loss: 0.6863
-INFO:local_logger:Epoch[085/800], Step[0500/0626], Avg Loss: 0.6863
-INFO:local_logger:Epoch[085/800], Step[0600/0626], Avg Loss: 0.6864
-INFO:local_logger:Epoch[085/800], Step[0600/0626], Avg Loss: 0.6858
-INFO:local_logger:Epoch[085/800], Step[0600/0626], Avg Loss: 0.6865
-INFO:local_logger:Epoch[085/800], Step[0600/0626], Avg Loss: 0.6866
-INFO:local_logger:Epoch[085/800], Step[0600/0626], Avg Loss: 0.6859
-INFO:master_logger:Epoch[085/800], Step[0600/0626], Avg Loss: 0.6862
-INFO:local_logger:Epoch[085/800], Step[0600/0626], Avg Loss: 0.6863
-INFO:local_logger:Epoch[085/800], Step[0600/0626], Avg Loss: 0.6862
-INFO:local_logger:Epoch[085/800], Step[0600/0626], Avg Loss: 0.6862
-INFO:local_logger:----- Epoch[085/800], Train Loss: 0.6862, time: 892.65
-INFO:local_logger:Now training epoch 86. LR=0.000153
-INFO:local_logger:----- Epoch[085/800], Train Loss: 0.6862, time: 893.08
-INFO:local_logger:Now training epoch 86. LR=0.000153
-INFO:local_logger:----- Epoch[085/800], Train Loss: 0.6859, time: 890.01
-INFO:master_logger:----- Epoch[085/800], Train Loss: 0.6862, time: 890.01
-INFO:local_logger:----- Epoch[085/800], Train Loss: 0.6864, time: 893.68
-INFO:local_logger:Now training epoch 86. LR=0.000153
-INFO:local_logger:----- Epoch[085/800], Train Loss: 0.6857, time: 893.70
-INFO:local_logger:Now training epoch 86. LR=0.000153
-INFO:local_logger:----- Epoch[085/800], Train Loss: 0.6863, time: 893.73
-INFO:local_logger:Now training epoch 86. LR=0.000153
-INFO:local_logger:----- Epoch[085/800], Train Loss: 0.6867, time: 893.72
-INFO:local_logger:Now training epoch 86. LR=0.000153
-INFO:local_logger:----- Epoch[085/800], Train Loss: 0.6864, time: 893.76
-INFO:local_logger:Now training epoch 86. LR=0.000153
-INFO:local_logger:----- Save model: ./output/train-20211219-17-07-40/MAE-Epoch-85-Loss-0.6859439270970955.pdparams
-INFO:local_logger:----- Save optim: ./output/train-20211219-17-07-40/MAE-Epoch-85-Loss-0.6859439270970955.pdopt
-INFO:master_logger:----- Save model: ./output/train-20211219-17-07-40/MAE-Epoch-85-Loss-0.6859439270970955.pdparams
-INFO:master_logger:----- Save optim: ./output/train-20211219-17-07-40/MAE-Epoch-85-Loss-0.6859439270970955.pdopt
-INFO:local_logger:Now training epoch 86. LR=0.000153
-INFO:master_logger:Now training epoch 86. LR=0.000153
-INFO:local_logger:Epoch[086/800], Step[0000/0626], Avg Loss: 0.6904
-INFO:local_logger:Epoch[086/800], Step[0000/0626], Avg Loss: 0.6818
-INFO:local_logger:Epoch[086/800], Step[0000/0626], Avg Loss: 0.6812
-INFO:local_logger:Epoch[086/800], Step[0000/0626], Avg Loss: 0.7015
-INFO:local_logger:Epoch[086/800], Step[0000/0626], Avg Loss: 0.7112
-INFO:local_logger:Epoch[086/800], Step[0000/0626], Avg Loss: 0.6865
-INFO:local_logger:Epoch[086/800], Step[0000/0626], Avg Loss: 0.6773
-INFO:master_logger:Epoch[086/800], Step[0000/0626], Avg Loss: 0.6887
-INFO:local_logger:Epoch[086/800], Step[0000/0626], Avg Loss: 0.6796
-INFO:local_logger:Epoch[086/800], Step[0100/0626], Avg Loss: 0.6860
-INFO:local_logger:Epoch[086/800], Step[0100/0626], Avg Loss: 0.6860
-INFO:local_logger:Epoch[086/800], Step[0100/0626], Avg Loss: 0.6864
-INFO:local_logger:Epoch[086/800], Step[0100/0626], Avg Loss: 0.6858
-INFO:local_logger:Epoch[086/800], Step[0100/0626], Avg Loss: 0.6876
-INFO:master_logger:Epoch[086/800], Step[0100/0626], Avg Loss: 0.6864
-INFO:local_logger:Epoch[086/800], Step[0100/0626], Avg Loss: 0.6859
-INFO:local_logger:Epoch[086/800], Step[0100/0626], Avg Loss: 0.6873
-INFO:local_logger:Epoch[086/800], Step[0100/0626], Avg Loss: 0.6861
-INFO:local_logger:Epoch[086/800], Step[0200/0626], Avg Loss: 0.6860
-INFO:local_logger:Epoch[086/800], Step[0200/0626], Avg Loss: 0.6855
-INFO:local_logger:Epoch[086/800], Step[0200/0626], Avg Loss: 0.6861
-INFO:local_logger:Epoch[086/800], Step[0200/0626], Avg Loss: 0.6864
-INFO:local_logger:Epoch[086/800], Step[0200/0626], Avg Loss: 0.6863
-INFO:local_logger:Epoch[086/800], Step[0200/0626], Avg Loss: 0.6858
-INFO:local_logger:Epoch[086/800], Step[0200/0626], Avg Loss: 0.6862
-INFO:master_logger:Epoch[086/800], Step[0200/0626], Avg Loss: 0.6860
-INFO:local_logger:Epoch[086/800], Step[0200/0626], Avg Loss: 0.6857
-INFO:local_logger:Epoch[086/800], Step[0300/0626], Avg Loss: 0.6859
-INFO:local_logger:Epoch[086/800], Step[0300/0626], Avg Loss: 0.6860
-INFO:local_logger:Epoch[086/800], Step[0300/0626], Avg Loss: 0.6857
-INFO:local_logger:Epoch[086/800], Step[0300/0626], Avg Loss: 0.6861
-INFO:local_logger:Epoch[086/800], Step[0300/0626], Avg Loss: 0.6863
-INFO:local_logger:Epoch[086/800], Step[0300/0626], Avg Loss: 0.6862
-INFO:local_logger:Epoch[086/800], Step[0300/0626], Avg Loss: 0.6859
-INFO:local_logger:Epoch[086/800], Step[0300/0626], Avg Loss: 0.6860
-INFO:master_logger:Epoch[086/800], Step[0300/0626], Avg Loss: 0.6860
-INFO:local_logger:Epoch[086/800], Step[0400/0626], Avg Loss: 0.6861
-INFO:local_logger:Epoch[086/800], Step[0400/0626], Avg Loss: 0.6859
-INFO:local_logger:Epoch[086/800], Step[0400/0626], Avg Loss: 0.6859
-INFO:local_logger:Epoch[086/800], Step[0400/0626], Avg Loss: 0.6857
-INFO:local_logger:Epoch[086/800], Step[0400/0626], Avg Loss: 0.6855
-INFO:local_logger:Epoch[086/800], Step[0400/0626], Avg Loss: 0.6862
-INFO:master_logger:Epoch[086/800], Step[0400/0626], Avg Loss: 0.6859
-INFO:local_logger:Epoch[086/800], Step[0400/0626], Avg Loss: 0.6861
-INFO:local_logger:Epoch[086/800], Step[0400/0626], Avg Loss: 0.6859
-INFO:local_logger:Epoch[086/800], Step[0500/0626], Avg Loss: 0.6859
-INFO:local_logger:Epoch[086/800], Step[0500/0626], Avg Loss: 0.6861
-INFO:local_logger:Epoch[086/800], Step[0500/0626], Avg Loss: 0.6860
-INFO:local_logger:Epoch[086/800], Step[0500/0626], Avg Loss: 0.6855
-INFO:local_logger:Epoch[086/800], Step[0500/0626], Avg Loss: 0.6863
-INFO:local_logger:Epoch[086/800], Step[0500/0626], Avg Loss: 0.6862
-INFO:master_logger:Epoch[086/800], Step[0500/0626], Avg Loss: 0.6859
-INFO:local_logger:Epoch[086/800], Step[0500/0626], Avg Loss: 0.6858
-INFO:local_logger:Epoch[086/800], Step[0500/0626], Avg Loss: 0.6859
-INFO:local_logger:Epoch[086/800], Step[0600/0626], Avg Loss: 0.6861
-INFO:local_logger:Epoch[086/800], Step[0600/0626], Avg Loss: 0.6862
-INFO:local_logger:Epoch[086/800], Step[0600/0626], Avg Loss: 0.6857
-INFO:local_logger:Epoch[086/800], Step[0600/0626], Avg Loss: 0.6858
-INFO:master_logger:Epoch[086/800], Step[0600/0626], Avg Loss: 0.6859
-INFO:local_logger:Epoch[086/800], Step[0600/0626], Avg Loss: 0.6858
-INFO:local_logger:Epoch[086/800], Step[0600/0626], Avg Loss: 0.6859
-INFO:local_logger:Epoch[086/800], Step[0600/0626], Avg Loss: 0.6862
-INFO:local_logger:Epoch[086/800], Step[0600/0626], Avg Loss: 0.6858
-INFO:local_logger:----- Epoch[086/800], Train Loss: 0.6860, time: 859.95
-INFO:local_logger:Now training epoch 87. LR=0.000153
-INFO:local_logger:----- Epoch[086/800], Train Loss: 0.6859, time: 860.07
-INFO:local_logger:Now training epoch 87. LR=0.000153
-INFO:local_logger:----- Epoch[086/800], Train Loss: 0.6862, time: 856.92
-INFO:master_logger:----- Epoch[086/800], Train Loss: 0.6860, time: 856.92
-INFO:local_logger:----- Epoch[086/800], Train Loss: 0.6860, time: 861.39
-INFO:local_logger:Now training epoch 87. LR=0.000153
-INFO:local_logger:----- Epoch[086/800], Train Loss: 0.6862, time: 860.97
-INFO:local_logger:Now training epoch 87. LR=0.000153
-INFO:local_logger:----- Epoch[086/800], Train Loss: 0.6857, time: 860.38
-INFO:local_logger:Now training epoch 87. LR=0.000153
-INFO:local_logger:----- Epoch[086/800], Train Loss: 0.6858, time: 860.35
-INFO:local_logger:Now training epoch 87. LR=0.000153
-INFO:local_logger:----- Epoch[086/800], Train Loss: 0.6859, time: 860.35
-INFO:local_logger:Now training epoch 87. LR=0.000153
-INFO:local_logger:----- Save model: ./output/train-20211219-17-07-40/MAE-Epoch-86-Loss-0.6862062182739747.pdparams
-INFO:local_logger:----- Save optim: ./output/train-20211219-17-07-40/MAE-Epoch-86-Loss-0.6862062182739747.pdopt
-INFO:master_logger:----- Save model: ./output/train-20211219-17-07-40/MAE-Epoch-86-Loss-0.6862062182739747.pdparams
-INFO:master_logger:----- Save optim: ./output/train-20211219-17-07-40/MAE-Epoch-86-Loss-0.6862062182739747.pdopt
-INFO:local_logger:Now training epoch 87. LR=0.000153
-INFO:master_logger:Now training epoch 87. LR=0.000153
-INFO:local_logger:Epoch[087/800], Step[0000/0626], Avg Loss: 0.6924
-INFO:local_logger:Epoch[087/800], Step[0000/0626], Avg Loss: 0.6883
-INFO:master_logger:Epoch[087/800], Step[0000/0626], Avg Loss: 0.6858
-INFO:local_logger:Epoch[087/800], Step[0000/0626], Avg Loss: 0.6722
-INFO:local_logger:Epoch[087/800], Step[0000/0626], Avg Loss: 0.6880
-INFO:local_logger:Epoch[087/800], Step[0000/0626], Avg Loss: 0.6993
-INFO:local_logger:Epoch[087/800], Step[0000/0626], Avg Loss: 0.6908
-INFO:local_logger:Epoch[087/800], Step[0000/0626], Avg Loss: 0.6840
-INFO:local_logger:Epoch[087/800], Step[0000/0626], Avg Loss: 0.6712
-INFO:local_logger:Epoch[087/800], Step[0100/0626], Avg Loss: 0.6852
-INFO:local_logger:Epoch[087/800], Step[0100/0626], Avg Loss: 0.6858
-INFO:local_logger:Epoch[087/800], Step[0100/0626], Avg Loss: 0.6860
-INFO:local_logger:Epoch[087/800], Step[0100/0626], Avg Loss: 0.6868
-INFO:local_logger:Epoch[087/800], Step[0100/0626], Avg Loss: 0.6870
-INFO:local_logger:Epoch[087/800], Step[0100/0626], Avg Loss: 0.6862
-INFO:master_logger:Epoch[087/800], Step[0100/0626], Avg Loss: 0.6861
-INFO:local_logger:Epoch[087/800], Step[0100/0626], Avg Loss: 0.6858
-INFO:local_logger:Epoch[087/800], Step[0100/0626], Avg Loss: 0.6862
-INFO:local_logger:Epoch[087/800], Step[0200/0626], Avg Loss: 0.6863
-INFO:local_logger:Epoch[087/800], Step[0200/0626], Avg Loss: 0.6858
-INFO:local_logger:Epoch[087/800], Step[0200/0626], Avg Loss: 0.6861
-INFO:local_logger:Epoch[087/800], Step[0200/0626], Avg Loss: 0.6856
-INFO:local_logger:Epoch[087/800], Step[0200/0626], Avg Loss: 0.6853
-INFO:local_logger:Epoch[087/800], Step[0200/0626], Avg Loss: 0.6860
-INFO:local_logger:Epoch[087/800], Step[0200/0626], Avg Loss: 0.6864
-INFO:master_logger:Epoch[087/800], Step[0200/0626], Avg Loss: 0.6859
-INFO:local_logger:Epoch[087/800], Step[0200/0626], Avg Loss: 0.6858
-INFO:local_logger:Epoch[087/800], Step[0300/0626], Avg Loss: 0.6858
-INFO:local_logger:Epoch[087/800], Step[0300/0626], Avg Loss: 0.6856
-INFO:local_logger:Epoch[087/800], Step[0300/0626], Avg Loss: 0.6863
-INFO:local_logger:Epoch[087/800], Step[0300/0626], Avg Loss: 0.6861
-INFO:local_logger:Epoch[087/800], Step[0300/0626], Avg Loss: 0.6853
-INFO:local_logger:Epoch[087/800], Step[0300/0626], Avg Loss: 0.6860
-INFO:master_logger:Epoch[087/800], Step[0300/0626], Avg Loss: 0.6859
-INFO:local_logger:Epoch[087/800], Step[0300/0626], Avg Loss: 0.6858
-INFO:local_logger:Epoch[087/800], Step[0300/0626], Avg Loss: 0.6864
-INFO:local_logger:Epoch[087/800], Step[0400/0626], Avg Loss: 0.6860
-INFO:local_logger:Epoch[087/800], Step[0400/0626], Avg Loss: 0.6860
-INFO:local_logger:Epoch[087/800], Step[0400/0626], Avg Loss: 0.6858
-INFO:local_logger:Epoch[087/800], Step[0400/0626], Avg Loss: 0.6852
-INFO:local_logger:Epoch[087/800], Step[0400/0626], Avg Loss: 0.6862
-INFO:local_logger:Epoch[087/800], Step[0400/0626], Avg Loss: 0.6855
-INFO:local_logger:Epoch[087/800], Step[0400/0626], Avg Loss: 0.6857
-INFO:local_logger:Epoch[087/800], Step[0400/0626], Avg Loss: 0.6858
-INFO:master_logger:Epoch[087/800], Step[0400/0626], Avg Loss: 0.6858
-INFO:local_logger:Epoch[087/800], Step[0500/0626], Avg Loss: 0.6858
-INFO:local_logger:Epoch[087/800], Step[0500/0626], Avg Loss: 0.6858
-INFO:local_logger:Epoch[087/800], Step[0500/0626], Avg Loss: 0.6859
-INFO:local_logger:Epoch[087/800], Step[0500/0626], Avg Loss: 0.6857
-INFO:local_logger:Epoch[087/800], Step[0500/0626], Avg Loss: 0.6857
-INFO:local_logger:Epoch[087/800], Step[0500/0626], Avg Loss: 0.6852
-INFO:master_logger:Epoch[087/800], Step[0500/0626], Avg Loss: 0.6857
-INFO:local_logger:Epoch[087/800], Step[0500/0626], Avg Loss: 0.6859
-INFO:local_logger:Epoch[087/800], Step[0500/0626], Avg Loss: 0.6853
-INFO:local_logger:Epoch[087/800], Step[0600/0626], Avg Loss: 0.6857
-INFO:local_logger:Epoch[087/800], Step[0600/0626], Avg Loss: 0.6857
-INFO:local_logger:Epoch[087/800], Step[0600/0626], Avg Loss: 0.6855
-INFO:local_logger:Epoch[087/800], Step[0600/0626], Avg Loss: 0.6860
-INFO:local_logger:Epoch[087/800], Step[0600/0626], Avg Loss: 0.6853
-INFO:local_logger:Epoch[087/800], Step[0600/0626], Avg Loss: 0.6855
-INFO:local_logger:Epoch[087/800], Step[0600/0626], Avg Loss: 0.6858
-INFO:master_logger:Epoch[087/800], Step[0600/0626], Avg Loss: 0.6856
-INFO:local_logger:Epoch[087/800], Step[0600/0626], Avg Loss: 0.6852
-INFO:local_logger:----- Epoch[087/800], Train Loss: 0.6853, time: 895.08
-INFO:local_logger:Now training epoch 88. LR=0.000153
-INFO:local_logger:----- Epoch[087/800], Train Loss: 0.6855, time: 895.09
-INFO:local_logger:Now training epoch 88. LR=0.000153
-INFO:local_logger:----- Epoch[087/800], Train Loss: 0.6860, time: 895.73
-INFO:local_logger:Now training epoch 88. LR=0.000153
-INFO:local_logger:----- Epoch[087/800], Train Loss: 0.6852, time: 896.01
-INFO:local_logger:Now training epoch 88. LR=0.000153
-INFO:local_logger:----- Epoch[087/800], Train Loss: 0.6856, time: 895.77
-INFO:local_logger:----- Epoch[087/800], Train Loss: 0.6857, time: 896.11
-INFO:local_logger:Now training epoch 88. LR=0.000153
-INFO:local_logger:Now training epoch 88. LR=0.000153
-INFO:local_logger:----- Epoch[087/800], Train Loss: 0.6857, time: 892.15
-INFO:master_logger:----- Epoch[087/800], Train Loss: 0.6856, time: 892.15
-INFO:local_logger:----- Epoch[087/800], Train Loss: 0.6855, time: 895.77
-INFO:local_logger:Now training epoch 88. LR=0.000153
-INFO:local_logger:----- Save model: ./output/train-20211219-17-07-40/MAE-Epoch-87-Loss-0.6857299549603768.pdparams
-INFO:local_logger:----- Save optim: ./output/train-20211219-17-07-40/MAE-Epoch-87-Loss-0.6857299549603768.pdopt
-INFO:master_logger:----- Save model: ./output/train-20211219-17-07-40/MAE-Epoch-87-Loss-0.6857299549603768.pdparams
-INFO:master_logger:----- Save optim: ./output/train-20211219-17-07-40/MAE-Epoch-87-Loss-0.6857299549603768.pdopt
-INFO:local_logger:Now training epoch 88. LR=0.000153
-INFO:master_logger:Now training epoch 88. LR=0.000153
-INFO:local_logger:Epoch[088/800], Step[0000/0626], Avg Loss: 0.6931
-INFO:local_logger:Epoch[088/800], Step[0000/0626], Avg Loss: 0.6886
-INFO:local_logger:Epoch[088/800], Step[0000/0626], Avg Loss: 0.6873
-INFO:local_logger:Epoch[088/800], Step[0000/0626], Avg Loss: 0.6866
-INFO:local_logger:Epoch[088/800], Step[0000/0626], Avg Loss: 0.6765
-INFO:local_logger:Epoch[088/800], Step[0000/0626], Avg Loss: 0.6795
-INFO:local_logger:Epoch[088/800], Step[0000/0626], Avg Loss: 0.6839
-INFO:master_logger:Epoch[088/800], Step[0000/0626], Avg Loss: 0.6844
-INFO:local_logger:Epoch[088/800], Step[0000/0626], Avg Loss: 0.6800
-INFO:local_logger:Epoch[088/800], Step[0100/0626], Avg Loss: 0.6870
-INFO:local_logger:Epoch[088/800], Step[0100/0626], Avg Loss: 0.6861
-INFO:local_logger:Epoch[088/800], Step[0100/0626], Avg Loss: 0.6876
-INFO:local_logger:Epoch[088/800], Step[0100/0626], Avg Loss: 0.6861
-INFO:local_logger:Epoch[088/800], Step[0100/0626], Avg Loss: 0.6868
-INFO:master_logger:Epoch[088/800], Step[0100/0626], Avg Loss: 0.6863
-INFO:local_logger:Epoch[088/800], Step[0100/0626], Avg Loss: 0.6847
-INFO:local_logger:Epoch[088/800], Step[0100/0626], Avg Loss: 0.6859
-INFO:local_logger:Epoch[088/800], Step[0100/0626], Avg Loss: 0.6861
-INFO:local_logger:Epoch[088/800], Step[0200/0626], Avg Loss: 0.6857
-INFO:local_logger:Epoch[088/800], Step[0200/0626], Avg Loss: 0.6861
-INFO:local_logger:Epoch[088/800], Step[0200/0626], Avg Loss: 0.6863
-INFO:local_logger:Epoch[088/800], Step[0200/0626], Avg Loss: 0.6859
-INFO:local_logger:Epoch[088/800], Step[0200/0626], Avg Loss: 0.6852
-INFO:local_logger:Epoch[088/800], Step[0200/0626], Avg Loss: 0.6860
-INFO:master_logger:Epoch[088/800], Step[0200/0626], Avg Loss: 0.6858
-INFO:local_logger:Epoch[088/800], Step[0200/0626], Avg Loss: 0.6858
-INFO:local_logger:Epoch[088/800], Step[0200/0626], Avg Loss: 0.6855
-INFO:local_logger:Epoch[088/800], Step[0300/0626], Avg Loss: 0.6854
-INFO:local_logger:Epoch[088/800], Step[0300/0626], Avg Loss: 0.6859
-INFO:local_logger:Epoch[088/800], Step[0300/0626], Avg Loss: 0.6857
-INFO:local_logger:Epoch[088/800], Step[0300/0626], Avg Loss: 0.6861
-INFO:local_logger:Epoch[088/800], Step[0300/0626], Avg Loss: 0.6860
-INFO:local_logger:Epoch[088/800], Step[0300/0626], Avg Loss: 0.6859
-INFO:master_logger:Epoch[088/800], Step[0300/0626], Avg Loss: 0.6858
-INFO:local_logger:Epoch[088/800], Step[0300/0626], Avg Loss: 0.6855
-INFO:local_logger:Epoch[088/800], Step[0300/0626], Avg Loss: 0.6855
-INFO:local_logger:Epoch[088/800], Step[0400/0626], Avg Loss: 0.6858
-INFO:local_logger:Epoch[088/800], Step[0400/0626], Avg Loss: 0.6855
-INFO:local_logger:Epoch[088/800], Step[0400/0626], Avg Loss: 0.6860
-INFO:local_logger:Epoch[088/800], Step[0400/0626], Avg Loss: 0.6853
-INFO:local_logger:Epoch[088/800], Step[0400/0626], Avg Loss: 0.6857
-INFO:local_logger:Epoch[088/800], Step[0400/0626], Avg Loss: 0.6854
-INFO:local_logger:Epoch[088/800], Step[0400/0626], Avg Loss: 0.6859
-INFO:master_logger:Epoch[088/800], Step[0400/0626], Avg Loss: 0.6856
-INFO:local_logger:Epoch[088/800], Step[0400/0626], Avg Loss: 0.6854
-INFO:local_logger:Epoch[088/800], Step[0500/0626], Avg Loss: 0.6855
-INFO:local_logger:Epoch[088/800], Step[0500/0626], Avg Loss: 0.6859
-INFO:local_logger:Epoch[088/800], Step[0500/0626], Avg Loss: 0.6854
-INFO:local_logger:Epoch[088/800], Step[0500/0626], Avg Loss: 0.6854
-INFO:local_logger:Epoch[088/800], Step[0500/0626], Avg Loss: 0.6857
-INFO:master_logger:Epoch[088/800], Step[0500/0626], Avg Loss: 0.6855
-INFO:local_logger:Epoch[088/800], Step[0500/0626], Avg Loss: 0.6853
-INFO:local_logger:Epoch[088/800], Step[0500/0626], Avg Loss: 0.6853
-INFO:local_logger:Epoch[088/800], Step[0500/0626], Avg Loss: 0.6857
-INFO:local_logger:Epoch[088/800], Step[0600/0626], Avg Loss: 0.6853
-INFO:local_logger:Epoch[088/800], Step[0600/0626], Avg Loss: 0.6854
-INFO:local_logger:Epoch[088/800], Step[0600/0626], Avg Loss: 0.6855
-INFO:local_logger:Epoch[088/800], Step[0600/0626], Avg Loss: 0.6854
-INFO:local_logger:Epoch[088/800], Step[0600/0626], Avg Loss: 0.6855
-INFO:local_logger:Epoch[088/800], Step[0600/0626], Avg Loss: 0.6854
-INFO:master_logger:Epoch[088/800], Step[0600/0626], Avg Loss: 0.6853
-INFO:local_logger:Epoch[088/800], Step[0600/0626], Avg Loss: 0.6850
-INFO:local_logger:Epoch[088/800], Step[0600/0626], Avg Loss: 0.6853
-INFO:local_logger:----- Epoch[088/800], Train Loss: 0.6855, time: 854.47
-INFO:master_logger:----- Epoch[088/800], Train Loss: 0.6853, time: 854.47
-INFO:local_logger:----- Epoch[088/800], Train Loss: 0.6854, time: 859.85
-INFO:local_logger:Now training epoch 89. LR=0.000154
-INFO:local_logger:----- Epoch[088/800], Train Loss: 0.6849, time: 859.24
-INFO:local_logger:Now training epoch 89. LR=0.000154
-INFO:local_logger:----- Epoch[088/800], Train Loss: 0.6852, time: 859.32
-INFO:local_logger:Now training epoch 89. LR=0.000154
-INFO:local_logger:----- Epoch[088/800], Train Loss: 0.6854, time: 859.33
-INFO:local_logger:Now training epoch 89. LR=0.000154
-INFO:local_logger:----- Epoch[088/800], Train Loss: 0.6853, time: 859.35
-INFO:local_logger:----- Epoch[088/800], Train Loss: 0.6853, time: 859.33
-INFO:local_logger:Now training epoch 89. LR=0.000154
-INFO:local_logger:Now training epoch 89. LR=0.000154
-INFO:local_logger:----- Epoch[088/800], Train Loss: 0.6856, time: 860.00
-INFO:local_logger:Now training epoch 89. LR=0.000154
-INFO:local_logger:----- Save model: ./output/train-20211219-17-07-40/MAE-Epoch-88-Loss-0.6854734038612285.pdparams
-INFO:local_logger:----- Save optim: ./output/train-20211219-17-07-40/MAE-Epoch-88-Loss-0.6854734038612285.pdopt
-INFO:master_logger:----- Save model: ./output/train-20211219-17-07-40/MAE-Epoch-88-Loss-0.6854734038612285.pdparams
-INFO:master_logger:----- Save optim: ./output/train-20211219-17-07-40/MAE-Epoch-88-Loss-0.6854734038612285.pdopt
-INFO:local_logger:Now training epoch 89. LR=0.000154
-INFO:master_logger:Now training epoch 89. LR=0.000154
-INFO:local_logger:Epoch[089/800], Step[0000/0626], Avg Loss: 0.6780
-INFO:local_logger:Epoch[089/800], Step[0000/0626], Avg Loss: 0.6912
-INFO:local_logger:Epoch[089/800], Step[0000/0626], Avg Loss: 0.6884
-INFO:local_logger:Epoch[089/800], Step[0000/0626], Avg Loss: 0.6960
-INFO:local_logger:Epoch[089/800], Step[0000/0626], Avg Loss: 0.6791
-INFO:local_logger:Epoch[089/800], Step[0000/0626], Avg Loss: 0.6747
-INFO:local_logger:Epoch[089/800], Step[0000/0626], Avg Loss: 0.6772
-INFO:local_logger:Epoch[089/800], Step[0000/0626], Avg Loss: 0.6825
-INFO:master_logger:Epoch[089/800], Step[0000/0626], Avg Loss: 0.6834
-INFO:local_logger:Epoch[089/800], Step[0100/0626], Avg Loss: 0.6853
-INFO:local_logger:Epoch[089/800], Step[0100/0626], Avg Loss: 0.6840
-INFO:local_logger:Epoch[089/800], Step[0100/0626], Avg Loss: 0.6856
-INFO:local_logger:Epoch[089/800], Step[0100/0626], Avg Loss: 0.6847
-INFO:local_logger:Epoch[089/800], Step[0100/0626], Avg Loss: 0.6850
-INFO:master_logger:Epoch[089/800], Step[0100/0626], Avg Loss: 0.6849
-INFO:local_logger:Epoch[089/800], Step[0100/0626], Avg Loss: 0.6843
-INFO:local_logger:Epoch[089/800], Step[0100/0626], Avg Loss: 0.6848
-INFO:local_logger:Epoch[089/800], Step[0100/0626], Avg Loss: 0.6858
-INFO:local_logger:Epoch[089/800], Step[0200/0626], Avg Loss: 0.6851
-INFO:local_logger:Epoch[089/800], Step[0200/0626], Avg Loss: 0.6844
-INFO:local_logger:Epoch[089/800], Step[0200/0626], Avg Loss: 0.6846
-INFO:local_logger:Epoch[089/800], Step[0200/0626], Avg Loss: 0.6852
-INFO:local_logger:Epoch[089/800], Step[0200/0626], Avg Loss: 0.6844
-INFO:master_logger:Epoch[089/800], Step[0200/0626], Avg Loss: 0.6849
-INFO:local_logger:Epoch[089/800], Step[0200/0626], Avg Loss: 0.6853
-INFO:local_logger:Epoch[089/800], Step[0200/0626], Avg Loss: 0.6852
-INFO:local_logger:Epoch[089/800], Step[0200/0626], Avg Loss: 0.6854
-INFO:local_logger:Epoch[089/800], Step[0300/0626], Avg Loss: 0.6854
-INFO:local_logger:Epoch[089/800], Step[0300/0626], Avg Loss: 0.6853
-INFO:local_logger:Epoch[089/800], Step[0300/0626], Avg Loss: 0.6841
-INFO:local_logger:Epoch[089/800], Step[0300/0626], Avg Loss: 0.6845
-INFO:local_logger:Epoch[089/800], Step[0300/0626], Avg Loss: 0.6847
-INFO:local_logger:Epoch[089/800], Step[0300/0626], Avg Loss: 0.6853
-INFO:local_logger:Epoch[089/800], Step[0300/0626], Avg Loss: 0.6852
-INFO:local_logger:Epoch[089/800], Step[0300/0626], Avg Loss: 0.6847
-INFO:master_logger:Epoch[089/800], Step[0300/0626], Avg Loss: 0.6849
-INFO:local_logger:Epoch[089/800], Step[0400/0626], Avg Loss: 0.6845
-INFO:local_logger:Epoch[089/800], Step[0400/0626], Avg Loss: 0.6845
-INFO:local_logger:Epoch[089/800], Step[0400/0626], Avg Loss: 0.6849
-INFO:local_logger:Epoch[089/800], Step[0400/0626], Avg Loss: 0.6850
-INFO:local_logger:Epoch[089/800], Step[0400/0626], Avg Loss: 0.6854
-INFO:master_logger:Epoch[089/800], Step[0400/0626], Avg Loss: 0.6850
-INFO:local_logger:Epoch[089/800], Step[0400/0626], Avg Loss: 0.6851
-INFO:local_logger:Epoch[089/800], Step[0400/0626], Avg Loss: 0.6856
-INFO:local_logger:Epoch[089/800], Step[0400/0626], Avg Loss: 0.6849
-INFO:local_logger:Epoch[089/800], Step[0500/0626], Avg Loss: 0.6849
-INFO:local_logger:Epoch[089/800], Step[0500/0626], Avg Loss: 0.6845
-INFO:local_logger:Epoch[089/800], Step[0500/0626], Avg Loss: 0.6851
-INFO:local_logger:Epoch[089/800], Step[0500/0626], Avg Loss: 0.6848
-INFO:local_logger:Epoch[089/800], Step[0500/0626], Avg Loss: 0.6853
-INFO:local_logger:Epoch[089/800], Step[0500/0626], Avg Loss: 0.6847
-INFO:local_logger:Epoch[089/800], Step[0500/0626], Avg Loss: 0.6849
-INFO:master_logger:Epoch[089/800], Step[0500/0626], Avg Loss: 0.6849
-INFO:local_logger:Epoch[089/800], Step[0500/0626], Avg Loss: 0.6850
-INFO:local_logger:Epoch[089/800], Step[0600/0626], Avg Loss: 0.6847
-INFO:local_logger:Epoch[089/800], Step[0600/0626], Avg Loss: 0.6850
-INFO:local_logger:Epoch[089/800], Step[0600/0626], Avg Loss: 0.6845
-INFO:local_logger:Epoch[089/800], Step[0600/0626], Avg Loss: 0.6849
-INFO:local_logger:Epoch[089/800], Step[0600/0626], Avg Loss: 0.6845
-INFO:master_logger:Epoch[089/800], Step[0600/0626], Avg Loss: 0.6847
-INFO:local_logger:Epoch[089/800], Step[0600/0626], Avg Loss: 0.6849
-INFO:local_logger:Epoch[089/800], Step[0600/0626], Avg Loss: 0.6848
-INFO:local_logger:Epoch[089/800], Step[0600/0626], Avg Loss: 0.6849
-INFO:local_logger:----- Epoch[089/800], Train Loss: 0.6845, time: 884.60
-INFO:local_logger:Now training epoch 90. LR=0.000154
-INFO:local_logger:----- Epoch[089/800], Train Loss: 0.6849, time: 885.46
-INFO:local_logger:Now training epoch 90. LR=0.000154
-INFO:local_logger:----- Epoch[089/800], Train Loss: 0.6846, time: 882.71
-INFO:master_logger:----- Epoch[089/800], Train Loss: 0.6848, time: 882.71
-INFO:local_logger:----- Epoch[089/800], Train Loss: 0.6850, time: 885.49
-INFO:local_logger:Now training epoch 90. LR=0.000154
-INFO:local_logger:----- Epoch[089/800], Train Loss: 0.6845, time: 885.58
-INFO:local_logger:Now training epoch 90. LR=0.000154
-INFO:local_logger:----- Epoch[089/800], Train Loss: 0.6848, time: 885.61
-INFO:local_logger:Now training epoch 90. LR=0.000154
-INFO:local_logger:----- Epoch[089/800], Train Loss: 0.6849, time: 885.54
-INFO:local_logger:Now training epoch 90. LR=0.000154
-INFO:local_logger:----- Epoch[089/800], Train Loss: 0.6849, time: 885.50
-INFO:local_logger:Now training epoch 90. LR=0.000154
-INFO:local_logger:----- Save model: ./output/train-20211219-17-07-40/MAE-Epoch-89-Loss-0.6845652029200572.pdparams
-INFO:local_logger:----- Save optim: ./output/train-20211219-17-07-40/MAE-Epoch-89-Loss-0.6845652029200572.pdopt
-INFO:master_logger:----- Save model: ./output/train-20211219-17-07-40/MAE-Epoch-89-Loss-0.6845652029200572.pdparams
-INFO:master_logger:----- Save optim: ./output/train-20211219-17-07-40/MAE-Epoch-89-Loss-0.6845652029200572.pdopt
-INFO:local_logger:Now training epoch 90. LR=0.000154
-INFO:master_logger:Now training epoch 90. LR=0.000154
-INFO:local_logger:Epoch[090/800], Step[0000/0626], Avg Loss: 0.6924
-INFO:local_logger:Epoch[090/800], Step[0000/0626], Avg Loss: 0.6899
-INFO:local_logger:Epoch[090/800], Step[0000/0626], Avg Loss: 0.6905
-INFO:local_logger:Epoch[090/800], Step[0000/0626], Avg Loss: 0.6763
-INFO:local_logger:Epoch[090/800], Step[0000/0626], Avg Loss: 0.6748
-INFO:master_logger:Epoch[090/800], Step[0000/0626], Avg Loss: 0.6842
-INFO:local_logger:Epoch[090/800], Step[0000/0626], Avg Loss: 0.6827
-INFO:local_logger:Epoch[090/800], Step[0000/0626], Avg Loss: 0.6787
-INFO:local_logger:Epoch[090/800], Step[0000/0626], Avg Loss: 0.6883
-INFO:local_logger:Epoch[090/800], Step[0100/0626], Avg Loss: 0.6841
-INFO:local_logger:Epoch[090/800], Step[0100/0626], Avg Loss: 0.6851
-INFO:local_logger:Epoch[090/800], Step[0100/0626], Avg Loss: 0.6853
-INFO:master_logger:Epoch[090/800], Step[0100/0626], Avg Loss: 0.6846
-INFO:local_logger:Epoch[090/800], Step[0100/0626], Avg Loss: 0.6853
-INFO:local_logger:Epoch[090/800], Step[0100/0626], Avg Loss: 0.6835
-INFO:local_logger:Epoch[090/800], Step[0100/0626], Avg Loss: 0.6841
-INFO:local_logger:Epoch[090/800], Step[0100/0626], Avg Loss: 0.6847
-INFO:local_logger:Epoch[090/800], Step[0100/0626], Avg Loss: 0.6849
-INFO:local_logger:Epoch[090/800], Step[0200/0626], Avg Loss: 0.6839
-INFO:local_logger:Epoch[090/800], Step[0200/0626], Avg Loss: 0.6842
-INFO:local_logger:Epoch[090/800], Step[0200/0626], Avg Loss: 0.6840
-INFO:local_logger:Epoch[090/800], Step[0200/0626], Avg Loss: 0.6839
-INFO:local_logger:Epoch[090/800], Step[0200/0626], Avg Loss: 0.6850
-INFO:master_logger:Epoch[090/800], Step[0200/0626], Avg Loss: 0.6844
-INFO:local_logger:Epoch[090/800], Step[0200/0626], Avg Loss: 0.6843
-INFO:local_logger:Epoch[090/800], Step[0200/0626], Avg Loss: 0.6853
-INFO:local_logger:Epoch[090/800], Step[0200/0626], Avg Loss: 0.6845
-INFO:local_logger:Epoch[090/800], Step[0300/0626], Avg Loss: 0.6851
-INFO:local_logger:Epoch[090/800], Step[0300/0626], Avg Loss: 0.6842
-INFO:local_logger:Epoch[090/800], Step[0300/0626], Avg Loss: 0.6842
-INFO:local_logger:Epoch[090/800], Step[0300/0626], Avg Loss: 0.6838
-INFO:local_logger:Epoch[090/800], Step[0300/0626], Avg Loss: 0.6843
-INFO:local_logger:Epoch[090/800], Step[0300/0626], Avg Loss: 0.6848
-INFO:local_logger:Epoch[090/800], Step[0300/0626], Avg Loss: 0.6841
-INFO:master_logger:Epoch[090/800], Step[0300/0626], Avg Loss: 0.6843
-INFO:local_logger:Epoch[090/800], Step[0300/0626], Avg Loss: 0.6841
-INFO:local_logger:Epoch[090/800], Step[0400/0626], Avg Loss: 0.6844
-INFO:local_logger:Epoch[090/800], Step[0400/0626], Avg Loss: 0.6842
-INFO:local_logger:Epoch[090/800], Step[0400/0626], Avg Loss: 0.6843
-INFO:local_logger:Epoch[090/800], Step[0400/0626], Avg Loss: 0.6845
-INFO:local_logger:Epoch[090/800], Step[0400/0626], Avg Loss: 0.6845
-INFO:local_logger:Epoch[090/800], Step[0400/0626], Avg Loss: 0.6845
-INFO:master_logger:Epoch[090/800], Step[0400/0626], Avg Loss: 0.6844
-INFO:local_logger:Epoch[090/800], Step[0400/0626], Avg Loss: 0.6845
-INFO:local_logger:Epoch[090/800], Step[0400/0626], Avg Loss: 0.6840
-INFO:local_logger:Epoch[090/800], Step[0500/0626], Avg Loss: 0.6842
-INFO:local_logger:Epoch[090/800], Step[0500/0626], Avg Loss: 0.6846
-INFO:local_logger:Epoch[090/800], Step[0500/0626], Avg Loss: 0.6845
-INFO:local_logger:Epoch[090/800], Step[0500/0626], Avg Loss: 0.6840
-INFO:local_logger:Epoch[090/800], Step[0500/0626], Avg Loss: 0.6842
-INFO:master_logger:Epoch[090/800], Step[0500/0626], Avg Loss: 0.6843
-INFO:local_logger:Epoch[090/800], Step[0500/0626], Avg Loss: 0.6841
-INFO:local_logger:Epoch[090/800], Step[0500/0626], Avg Loss: 0.6844
-INFO:local_logger:Epoch[090/800], Step[0500/0626], Avg Loss: 0.6846
-INFO:local_logger:Epoch[090/800], Step[0600/0626], Avg Loss: 0.6844
-INFO:local_logger:Epoch[090/800], Step[0600/0626], Avg Loss: 0.6844
-INFO:local_logger:Epoch[090/800], Step[0600/0626], Avg Loss: 0.6842
-INFO:master_logger:Epoch[090/800], Step[0600/0626], Avg Loss: 0.6843
-INFO:local_logger:Epoch[090/800], Step[0600/0626], Avg Loss: 0.6840
-INFO:local_logger:Epoch[090/800], Step[0600/0626], Avg Loss: 0.6839
-INFO:local_logger:Epoch[090/800], Step[0600/0626], Avg Loss: 0.6846
-INFO:local_logger:Epoch[090/800], Step[0600/0626], Avg Loss: 0.6843
-INFO:local_logger:Epoch[090/800], Step[0600/0626], Avg Loss: 0.6845
-INFO:local_logger:----- Epoch[090/800], Train Loss: 0.6845, time: 851.60
-INFO:local_logger:Now training epoch 91. LR=0.000154
-INFO:local_logger:----- Epoch[090/800], Train Loss: 0.6839, time: 851.05
-INFO:local_logger:Now training epoch 91. LR=0.000154
-INFO:local_logger:----- Epoch[090/800], Train Loss: 0.6844, time: 851.17
-INFO:local_logger:Now training epoch 91. LR=0.000154
-INFO:local_logger:----- Epoch[090/800], Train Loss: 0.6844, time: 851.26
-INFO:local_logger:Now training epoch 91. LR=0.000154
-INFO:local_logger:----- Epoch[090/800], Train Loss: 0.6847, time: 851.26
-INFO:local_logger:Now training epoch 91. LR=0.000154
-INFO:local_logger:----- Epoch[090/800], Train Loss: 0.6844, time: 851.23
-INFO:local_logger:----- Epoch[090/800], Train Loss: 0.6841, time: 847.55
-INFO:local_logger:Now training epoch 91. LR=0.000154
-INFO:master_logger:----- Epoch[090/800], Train Loss: 0.6843, time: 847.55
-INFO:local_logger:----- Epoch[090/800], Train Loss: 0.6840, time: 851.24
-INFO:local_logger:Now training epoch 91. LR=0.000154
-INFO:local_logger:----- Save model: ./output/train-20211219-17-07-40/MAE-Epoch-90-Loss-0.6841203801495528.pdparams
-INFO:local_logger:----- Save optim: ./output/train-20211219-17-07-40/MAE-Epoch-90-Loss-0.6841203801495528.pdopt
-INFO:master_logger:----- Save model: ./output/train-20211219-17-07-40/MAE-Epoch-90-Loss-0.6841203801495528.pdparams
-INFO:master_logger:----- Save optim: ./output/train-20211219-17-07-40/MAE-Epoch-90-Loss-0.6841203801495528.pdopt
-INFO:local_logger:Now training epoch 91. LR=0.000154
-INFO:master_logger:Now training epoch 91. LR=0.000154
-INFO:local_logger:Epoch[091/800], Step[0000/0626], Avg Loss: 0.6826
-INFO:local_logger:Epoch[091/800], Step[0000/0626], Avg Loss: 0.6872
-INFO:local_logger:Epoch[091/800], Step[0000/0626], Avg Loss: 0.6756
-INFO:master_logger:Epoch[091/800], Step[0000/0626], Avg Loss: 0.6839
-INFO:local_logger:Epoch[091/800], Step[0000/0626], Avg Loss: 0.6859
-INFO:local_logger:Epoch[091/800], Step[0000/0626], Avg Loss: 0.6748
-INFO:local_logger:Epoch[091/800], Step[0000/0626], Avg Loss: 0.6793
-INFO:local_logger:Epoch[091/800], Step[0000/0626], Avg Loss: 0.6961
-INFO:local_logger:Epoch[091/800], Step[0000/0626], Avg Loss: 0.6897
-INFO:local_logger:Epoch[091/800], Step[0100/0626], Avg Loss: 0.6846
-INFO:local_logger:Epoch[091/800], Step[0100/0626], Avg Loss: 0.6830
-INFO:local_logger:Epoch[091/800], Step[0100/0626], Avg Loss: 0.6833
-INFO:local_logger:Epoch[091/800], Step[0100/0626], Avg Loss: 0.6830
-INFO:local_logger:Epoch[091/800], Step[0100/0626], Avg Loss: 0.6842
-INFO:local_logger:Epoch[091/800], Step[0100/0626], Avg Loss: 0.6833
-INFO:master_logger:Epoch[091/800], Step[0100/0626], Avg Loss: 0.6836
-INFO:local_logger:Epoch[091/800], Step[0100/0626], Avg Loss: 0.6840
-INFO:local_logger:Epoch[091/800], Step[0100/0626], Avg Loss: 0.6836
-INFO:local_logger:Epoch[091/800], Step[0200/0626], Avg Loss: 0.6834
-INFO:local_logger:Epoch[091/800], Step[0200/0626], Avg Loss: 0.6840
-INFO:local_logger:Epoch[091/800], Step[0200/0626], Avg Loss: 0.6842
-INFO:local_logger:Epoch[091/800], Step[0200/0626], Avg Loss: 0.6833
-INFO:local_logger:Epoch[091/800], Step[0200/0626], Avg Loss: 0.6843
-INFO:local_logger:Epoch[091/800], Step[0200/0626], Avg Loss: 0.6846
-INFO:local_logger:Epoch[091/800], Step[0200/0626], Avg Loss: 0.6844
-INFO:local_logger:Epoch[091/800], Step[0200/0626], Avg Loss: 0.6837
-INFO:master_logger:Epoch[091/800], Step[0200/0626], Avg Loss: 0.6840
-INFO:local_logger:Epoch[091/800], Step[0300/0626], Avg Loss: 0.6839
-INFO:local_logger:Epoch[091/800], Step[0300/0626], Avg Loss: 0.6850
-INFO:local_logger:Epoch[091/800], Step[0300/0626], Avg Loss: 0.6842
-INFO:local_logger:Epoch[091/800], Step[0300/0626], Avg Loss: 0.6845
-INFO:local_logger:Epoch[091/800], Step[0300/0626], Avg Loss: 0.6834
-INFO:master_logger:Epoch[091/800], Step[0300/0626], Avg Loss: 0.6843
-INFO:local_logger:Epoch[091/800], Step[0300/0626], Avg Loss: 0.6849
-INFO:local_logger:Epoch[091/800], Step[0300/0626], Avg Loss: 0.6847
-INFO:local_logger:Epoch[091/800], Step[0300/0626], Avg Loss: 0.6839
-INFO:local_logger:Epoch[091/800], Step[0400/0626], Avg Loss: 0.6839
-INFO:local_logger:Epoch[091/800], Step[0400/0626], Avg Loss: 0.6838
-INFO:local_logger:Epoch[091/800], Step[0400/0626], Avg Loss: 0.6847
-INFO:local_logger:Epoch[091/800], Step[0400/0626], Avg Loss: 0.6847
-INFO:master_logger:Epoch[091/800], Step[0400/0626], Avg Loss: 0.6842
-INFO:local_logger:Epoch[091/800], Step[0400/0626], Avg Loss: 0.6841
-INFO:local_logger:Epoch[091/800], Step[0400/0626], Avg Loss: 0.6835
-INFO:local_logger:Epoch[091/800], Step[0400/0626], Avg Loss: 0.6838
-INFO:local_logger:Epoch[091/800], Step[0400/0626], Avg Loss: 0.6848
-INFO:local_logger:Epoch[091/800], Step[0500/0626], Avg Loss: 0.6846
-INFO:local_logger:Epoch[091/800], Step[0500/0626], Avg Loss: 0.6837
-INFO:local_logger:Epoch[091/800], Step[0500/0626], Avg Loss: 0.6841
-INFO:local_logger:Epoch[091/800], Step[0500/0626], Avg Loss: 0.6849
-INFO:local_logger:Epoch[091/800], Step[0500/0626], Avg Loss: 0.6838
-INFO:local_logger:Epoch[091/800], Step[0500/0626], Avg Loss: 0.6840
-INFO:master_logger:Epoch[091/800], Step[0500/0626], Avg Loss: 0.6842
-INFO:local_logger:Epoch[091/800], Step[0500/0626], Avg Loss: 0.6846
-INFO:local_logger:Epoch[091/800], Step[0500/0626], Avg Loss: 0.6838
-INFO:local_logger:Epoch[091/800], Step[0600/0626], Avg Loss: 0.6849
-INFO:local_logger:Epoch[091/800], Step[0600/0626], Avg Loss: 0.6845
-INFO:local_logger:Epoch[091/800], Step[0600/0626], Avg Loss: 0.6840
-INFO:local_logger:Epoch[091/800], Step[0600/0626], Avg Loss: 0.6839
-INFO:local_logger:Epoch[091/800], Step[0600/0626], Avg Loss: 0.6845
-INFO:local_logger:Epoch[091/800], Step[0600/0626], Avg Loss: 0.6838
-INFO:local_logger:Epoch[091/800], Step[0600/0626], Avg Loss: 0.6838
-INFO:local_logger:Epoch[091/800], Step[0600/0626], Avg Loss: 0.6842
-INFO:master_logger:Epoch[091/800], Step[0600/0626], Avg Loss: 0.6842
-INFO:local_logger:----- Epoch[091/800], Train Loss: 0.6843, time: 886.91
-INFO:local_logger:Now training epoch 92. LR=0.000154
-INFO:local_logger:----- Epoch[091/800], Train Loss: 0.6838, time: 886.90
-INFO:local_logger:Now training epoch 92. LR=0.000154
-INFO:local_logger:----- Epoch[091/800], Train Loss: 0.6848, time: 887.37
-INFO:local_logger:Now training epoch 92. LR=0.000154
-INFO:local_logger:----- Epoch[091/800], Train Loss: 0.6844, time: 887.49
-INFO:local_logger:Now training epoch 92. LR=0.000154
-INFO:local_logger:----- Epoch[091/800], Train Loss: 0.6842, time: 887.83
-INFO:local_logger:Now training epoch 92. LR=0.000154
-INFO:local_logger:----- Epoch[091/800], Train Loss: 0.6839, time: 887.30
-INFO:local_logger:Now training epoch 92. LR=0.000154
-INFO:local_logger:----- Epoch[091/800], Train Loss: 0.6839, time: 883.60
-INFO:master_logger:----- Epoch[091/800], Train Loss: 0.6841, time: 883.60
-INFO:local_logger:----- Epoch[091/800], Train Loss: 0.6838, time: 887.32
-INFO:local_logger:Now training epoch 92. LR=0.000154
-INFO:local_logger:----- Save model: ./output/train-20211219-17-07-40/MAE-Epoch-91-Loss-0.6838902651592956.pdparams
-INFO:local_logger:----- Save optim: ./output/train-20211219-17-07-40/MAE-Epoch-91-Loss-0.6838902651592956.pdopt
-INFO:master_logger:----- Save model: ./output/train-20211219-17-07-40/MAE-Epoch-91-Loss-0.6838902651592956.pdparams
-INFO:master_logger:----- Save optim: ./output/train-20211219-17-07-40/MAE-Epoch-91-Loss-0.6838902651592956.pdopt
-INFO:local_logger:Now training epoch 92. LR=0.000154
-INFO:master_logger:Now training epoch 92. LR=0.000154
-INFO:local_logger:Epoch[092/800], Step[0000/0626], Avg Loss: 0.6957
-INFO:local_logger:Epoch[092/800], Step[0000/0626], Avg Loss: 0.6676
-INFO:local_logger:Epoch[092/800], Step[0000/0626], Avg Loss: 0.6676
-INFO:local_logger:Epoch[092/800], Step[0000/0626], Avg Loss: 0.6866
-INFO:master_logger:Epoch[092/800], Step[0000/0626], Avg Loss: 0.6845
-INFO:local_logger:Epoch[092/800], Step[0000/0626], Avg Loss: 0.6922
-INFO:local_logger:Epoch[092/800], Step[0000/0626], Avg Loss: 0.6936
-INFO:local_logger:Epoch[092/800], Step[0000/0626], Avg Loss: 0.6858
-INFO:local_logger:Epoch[092/800], Step[0000/0626], Avg Loss: 0.6874
-INFO:local_logger:Epoch[092/800], Step[0100/0626], Avg Loss: 0.6844
-INFO:local_logger:Epoch[092/800], Step[0100/0626], Avg Loss: 0.6836
-INFO:local_logger:Epoch[092/800], Step[0100/0626], Avg Loss: 0.6841
-INFO:local_logger:Epoch[092/800], Step[0100/0626], Avg Loss: 0.6830
-INFO:local_logger:Epoch[092/800], Step[0100/0626], Avg Loss: 0.6834
-INFO:local_logger:Epoch[092/800], Step[0100/0626], Avg Loss: 0.6840
-INFO:master_logger:Epoch[092/800], Step[0100/0626], Avg Loss: 0.6839
-INFO:local_logger:Epoch[092/800], Step[0100/0626], Avg Loss: 0.6850
-INFO:local_logger:Epoch[092/800], Step[0100/0626], Avg Loss: 0.6836
-INFO:local_logger:Epoch[092/800], Step[0200/0626], Avg Loss: 0.6837
-INFO:local_logger:Epoch[092/800], Step[0200/0626], Avg Loss: 0.6834
-INFO:local_logger:Epoch[092/800], Step[0200/0626], Avg Loss: 0.6831
-INFO:master_logger:Epoch[092/800], Step[0200/0626], Avg Loss: 0.6836
-INFO:local_logger:Epoch[092/800], Step[0200/0626], Avg Loss: 0.6844
-INFO:local_logger:Epoch[092/800], Step[0200/0626], Avg Loss: 0.6832
-INFO:local_logger:Epoch[092/800], Step[0200/0626], Avg Loss: 0.6836
-INFO:local_logger:Epoch[092/800], Step[0200/0626], Avg Loss: 0.6829
-INFO:local_logger:Epoch[092/800], Step[0200/0626], Avg Loss: 0.6842
-INFO:local_logger:Epoch[092/800], Step[0300/0626], Avg Loss: 0.6832
-INFO:local_logger:Epoch[092/800], Step[0300/0626], Avg Loss: 0.6835
-INFO:local_logger:Epoch[092/800], Step[0300/0626], Avg Loss: 0.6831
-INFO:local_logger:Epoch[092/800], Step[0300/0626], Avg Loss: 0.6843
-INFO:local_logger:Epoch[092/800], Step[0300/0626], Avg Loss: 0.6841
-INFO:local_logger:Epoch[092/800], Step[0300/0626], Avg Loss: 0.6836
-INFO:local_logger:Epoch[092/800], Step[0300/0626], Avg Loss: 0.6835
-INFO:local_logger:Epoch[092/800], Step[0300/0626], Avg Loss: 0.6839
-INFO:master_logger:Epoch[092/800], Step[0300/0626], Avg Loss: 0.6836
-INFO:local_logger:Epoch[092/800], Step[0400/0626], Avg Loss: 0.6834
-INFO:local_logger:Epoch[092/800], Step[0400/0626], Avg Loss: 0.6836
-INFO:local_logger:Epoch[092/800], Step[0400/0626], Avg Loss: 0.6841
-INFO:local_logger:Epoch[092/800], Step[0400/0626], Avg Loss: 0.6841
-INFO:master_logger:Epoch[092/800], Step[0400/0626], Avg Loss: 0.6838
-INFO:local_logger:Epoch[092/800], Step[0400/0626], Avg Loss: 0.6839
-INFO:local_logger:Epoch[092/800], Step[0400/0626], Avg Loss: 0.6834
-INFO:local_logger:Epoch[092/800], Step[0400/0626], Avg Loss: 0.6836
-INFO:local_logger:Epoch[092/800], Step[0400/0626], Avg Loss: 0.6840
-INFO:local_logger:Epoch[092/800], Step[0500/0626], Avg Loss: 0.6837
-INFO:local_logger:Epoch[092/800], Step[0500/0626], Avg Loss: 0.6839
-INFO:local_logger:Epoch[092/800], Step[0500/0626], Avg Loss: 0.6835
-INFO:local_logger:Epoch[092/800], Step[0500/0626], Avg Loss: 0.6834
-INFO:local_logger:Epoch[092/800], Step[0500/0626], Avg Loss: 0.6834
-INFO:local_logger:Epoch[092/800], Step[0500/0626], Avg Loss: 0.6840
-INFO:local_logger:Epoch[092/800], Step[0500/0626], Avg Loss: 0.6840
-INFO:master_logger:Epoch[092/800], Step[0500/0626], Avg Loss: 0.6838
-INFO:local_logger:Epoch[092/800], Step[0500/0626], Avg Loss: 0.6842
-INFO:local_logger:Epoch[092/800], Step[0600/0626], Avg Loss: 0.6834
-INFO:local_logger:Epoch[092/800], Step[0600/0626], Avg Loss: 0.6834
-INFO:local_logger:Epoch[092/800], Step[0600/0626], Avg Loss: 0.6840
-INFO:local_logger:Epoch[092/800], Step[0600/0626], Avg Loss: 0.6839
-INFO:master_logger:Epoch[092/800], Step[0600/0626], Avg Loss: 0.6837
-INFO:local_logger:Epoch[092/800], Step[0600/0626], Avg Loss: 0.6840
-INFO:local_logger:Epoch[092/800], Step[0600/0626], Avg Loss: 0.6838
-INFO:local_logger:Epoch[092/800], Step[0600/0626], Avg Loss: 0.6836
-INFO:local_logger:Epoch[092/800], Step[0600/0626], Avg Loss: 0.6836
-INFO:local_logger:----- Epoch[092/800], Train Loss: 0.6839, time: 858.55
-INFO:local_logger:Now training epoch 93. LR=0.000154
-INFO:local_logger:----- Epoch[092/800], Train Loss: 0.6839, time: 858.56
-INFO:local_logger:Now training epoch 93. LR=0.000154
-INFO:local_logger:----- Epoch[092/800], Train Loss: 0.6836, time: 858.97
-INFO:local_logger:Now training epoch 93. LR=0.000154
-INFO:local_logger:----- Epoch[092/800], Train Loss: 0.6833, time: 858.75
-INFO:local_logger:Now training epoch 93. LR=0.000154
-INFO:local_logger:----- Epoch[092/800], Train Loss: 0.6837, time: 858.76
-INFO:local_logger:Now training epoch 93. LR=0.000154
-INFO:local_logger:----- Epoch[092/800], Train Loss: 0.6835, time: 858.85
-INFO:local_logger:Now training epoch 93. LR=0.000154
-INFO:local_logger:----- Epoch[092/800], Train Loss: 0.6841, time: 855.23
-INFO:master_logger:----- Epoch[092/800], Train Loss: 0.6837, time: 855.23
-INFO:local_logger:----- Epoch[092/800], Train Loss: 0.6836, time: 859.34
-INFO:local_logger:Now training epoch 93. LR=0.000154
-INFO:local_logger:----- Save model: ./output/train-20211219-17-07-40/MAE-Epoch-92-Loss-0.6840875268930822.pdparams
-INFO:local_logger:----- Save optim: ./output/train-20211219-17-07-40/MAE-Epoch-92-Loss-0.6840875268930822.pdopt
-INFO:master_logger:----- Save model: ./output/train-20211219-17-07-40/MAE-Epoch-92-Loss-0.6840875268930822.pdparams
-INFO:master_logger:----- Save optim: ./output/train-20211219-17-07-40/MAE-Epoch-92-Loss-0.6840875268930822.pdopt
-INFO:local_logger:Now training epoch 93. LR=0.000154
-INFO:master_logger:Now training epoch 93. LR=0.000154
-INFO:local_logger:Epoch[093/800], Step[0000/0626], Avg Loss: 0.6662
-INFO:local_logger:Epoch[093/800], Step[0000/0626], Avg Loss: 0.6933
-INFO:local_logger:Epoch[093/800], Step[0000/0626], Avg Loss: 0.6938
-INFO:local_logger:Epoch[093/800], Step[0000/0626], Avg Loss: 0.6859
-INFO:master_logger:Epoch[093/800], Step[0000/0626], Avg Loss: 0.6846
-INFO:local_logger:Epoch[093/800], Step[0000/0626], Avg Loss: 0.6770
-INFO:local_logger:Epoch[093/800], Step[0000/0626], Avg Loss: 0.6934
-INFO:local_logger:Epoch[093/800], Step[0000/0626], Avg Loss: 0.6802
-INFO:local_logger:Epoch[093/800], Step[0000/0626], Avg Loss: 0.6873
-INFO:local_logger:Epoch[093/800], Step[0100/0626], Avg Loss: 0.6837
-INFO:local_logger:Epoch[093/800], Step[0100/0626], Avg Loss: 0.6839
-INFO:local_logger:Epoch[093/800], Step[0100/0626], Avg Loss: 0.6828
-INFO:local_logger:Epoch[093/800], Step[0100/0626], Avg Loss: 0.6824
-INFO:local_logger:Epoch[093/800], Step[0100/0626], Avg Loss: 0.6837
-INFO:local_logger:Epoch[093/800], Step[0100/0626], Avg Loss: 0.6848
-INFO:local_logger:Epoch[093/800], Step[0100/0626], Avg Loss: 0.6832
-INFO:master_logger:Epoch[093/800], Step[0100/0626], Avg Loss: 0.6835
-INFO:local_logger:Epoch[093/800], Step[0100/0626], Avg Loss: 0.6834
-INFO:local_logger:Epoch[093/800], Step[0200/0626], Avg Loss: 0.6835
-INFO:local_logger:Epoch[093/800], Step[0200/0626], Avg Loss: 0.6838
-INFO:local_logger:Epoch[093/800], Step[0200/0626], Avg Loss: 0.6828
-INFO:local_logger:Epoch[093/800], Step[0200/0626], Avg Loss: 0.6835
-INFO:local_logger:Epoch[093/800], Step[0200/0626], Avg Loss: 0.6844
-INFO:local_logger:Epoch[093/800], Step[0200/0626], Avg Loss: 0.6835
-INFO:master_logger:Epoch[093/800], Step[0200/0626], Avg Loss: 0.6836
-INFO:local_logger:Epoch[093/800], Step[0200/0626], Avg Loss: 0.6837
-INFO:local_logger:Epoch[093/800], Step[0200/0626], Avg Loss: 0.6838
-INFO:local_logger:Epoch[093/800], Step[0300/0626], Avg Loss: 0.6830
-INFO:local_logger:Epoch[093/800], Step[0300/0626], Avg Loss: 0.6832
-INFO:local_logger:Epoch[093/800], Step[0300/0626], Avg Loss: 0.6836
-INFO:local_logger:Epoch[093/800], Step[0300/0626], Avg Loss: 0.6834
-INFO:local_logger:Epoch[093/800], Step[0300/0626], Avg Loss: 0.6840
-INFO:local_logger:Epoch[093/800], Step[0300/0626], Avg Loss: 0.6838
-INFO:local_logger:Epoch[093/800], Step[0300/0626], Avg Loss: 0.6835
-INFO:local_logger:Epoch[093/800], Step[0300/0626], Avg Loss: 0.6831
-INFO:master_logger:Epoch[093/800], Step[0300/0626], Avg Loss: 0.6835
-INFO:local_logger:Epoch[093/800], Step[0400/0626], Avg Loss: 0.6832
-INFO:local_logger:Epoch[093/800], Step[0400/0626], Avg Loss: 0.6839
-INFO:local_logger:Epoch[093/800], Step[0400/0626], Avg Loss: 0.6835
-INFO:local_logger:Epoch[093/800], Step[0400/0626], Avg Loss: 0.6834
-INFO:local_logger:Epoch[093/800], Step[0400/0626], Avg Loss: 0.6834
-INFO:local_logger:Epoch[093/800], Step[0400/0626], Avg Loss: 0.6829
-INFO:local_logger:Epoch[093/800], Step[0400/0626], Avg Loss: 0.6840
-INFO:local_logger:Epoch[093/800], Step[0400/0626], Avg Loss: 0.6830
-INFO:master_logger:Epoch[093/800], Step[0400/0626], Avg Loss: 0.6834
-INFO:local_logger:Epoch[093/800], Step[0500/0626], Avg Loss: 0.6839
-INFO:local_logger:Epoch[093/800], Step[0500/0626], Avg Loss: 0.6836
-INFO:local_logger:Epoch[093/800], Step[0500/0626], Avg Loss: 0.6835
-INFO:local_logger:Epoch[093/800], Step[0500/0626], Avg Loss: 0.6832
-INFO:local_logger:Epoch[093/800], Step[0500/0626], Avg Loss: 0.6834
-INFO:local_logger:Epoch[093/800], Step[0500/0626], Avg Loss: 0.6831
-INFO:local_logger:Epoch[093/800], Step[0500/0626], Avg Loss: 0.6837
-INFO:local_logger:Epoch[093/800], Step[0500/0626], Avg Loss: 0.6830
-INFO:master_logger:Epoch[093/800], Step[0500/0626], Avg Loss: 0.6834
-INFO:local_logger:Epoch[093/800], Step[0600/0626], Avg Loss: 0.6832
-INFO:local_logger:Epoch[093/800], Step[0600/0626], Avg Loss: 0.6836
-INFO:local_logger:Epoch[093/800], Step[0600/0626], Avg Loss: 0.6833
-INFO:local_logger:Epoch[093/800], Step[0600/0626], Avg Loss: 0.6831
-INFO:local_logger:Epoch[093/800], Step[0600/0626], Avg Loss: 0.6835
-INFO:local_logger:Epoch[093/800], Step[0600/0626], Avg Loss: 0.6827
-INFO:master_logger:Epoch[093/800], Step[0600/0626], Avg Loss: 0.6833
-INFO:local_logger:Epoch[093/800], Step[0600/0626], Avg Loss: 0.6836
-INFO:local_logger:Epoch[093/800], Step[0600/0626], Avg Loss: 0.6835
-INFO:local_logger:----- Epoch[093/800], Train Loss: 0.6837, time: 883.02
-INFO:local_logger:Now training epoch 94. LR=0.000154
-INFO:local_logger:----- Epoch[093/800], Train Loss: 0.6832, time: 882.93
-INFO:local_logger:Now training epoch 94. LR=0.000154
-INFO:local_logger:----- Epoch[093/800], Train Loss: 0.6827, time: 879.60
-INFO:master_logger:----- Epoch[093/800], Train Loss: 0.6834, time: 879.60
-INFO:local_logger:----- Epoch[093/800], Train Loss: 0.6832, time: 883.71
-INFO:local_logger:Now training epoch 94. LR=0.000154
-INFO:local_logger:----- Epoch[093/800], Train Loss: 0.6834, time: 883.93
-INFO:local_logger:Now training epoch 94. LR=0.000154
-INFO:local_logger:----- Epoch[093/800], Train Loss: 0.6837, time: 883.92
-INFO:local_logger:Now training epoch 94. LR=0.000154
-INFO:local_logger:----- Epoch[093/800], Train Loss: 0.6836, time: 884.00
-INFO:local_logger:Now training epoch 94. LR=0.000154
-INFO:local_logger:----- Epoch[093/800], Train Loss: 0.6834, time: 883.71
-INFO:local_logger:Now training epoch 94. LR=0.000154
-INFO:local_logger:----- Save model: ./output/train-20211219-17-07-40/MAE-Epoch-93-Loss-0.6827037774682657.pdparams
-INFO:local_logger:----- Save optim: ./output/train-20211219-17-07-40/MAE-Epoch-93-Loss-0.6827037774682657.pdopt
-INFO:master_logger:----- Save model: ./output/train-20211219-17-07-40/MAE-Epoch-93-Loss-0.6827037774682657.pdparams
-INFO:master_logger:----- Save optim: ./output/train-20211219-17-07-40/MAE-Epoch-93-Loss-0.6827037774682657.pdopt
-INFO:local_logger:Now training epoch 94. LR=0.000154
-INFO:master_logger:Now training epoch 94. LR=0.000154
-INFO:local_logger:Epoch[094/800], Step[0000/0626], Avg Loss: 0.6799
-INFO:local_logger:Epoch[094/800], Step[0000/0626], Avg Loss: 0.6772
-INFO:local_logger:Epoch[094/800], Step[0000/0626], Avg Loss: 0.6722
-INFO:master_logger:Epoch[094/800], Step[0000/0626], Avg Loss: 0.6832
-INFO:local_logger:Epoch[094/800], Step[0000/0626], Avg Loss: 0.6904
-INFO:local_logger:Epoch[094/800], Step[0000/0626], Avg Loss: 0.6963
-INFO:local_logger:Epoch[094/800], Step[0000/0626], Avg Loss: 0.6866
-INFO:local_logger:Epoch[094/800], Step[0000/0626], Avg Loss: 0.6815
-INFO:local_logger:Epoch[094/800], Step[0000/0626], Avg Loss: 0.6810
-INFO:local_logger:Epoch[094/800], Step[0100/0626], Avg Loss: 0.6826
-INFO:local_logger:Epoch[094/800], Step[0100/0626], Avg Loss: 0.6834
-INFO:master_logger:Epoch[094/800], Step[0100/0626], Avg Loss: 0.6831
-INFO:local_logger:Epoch[094/800], Step[0100/0626], Avg Loss: 0.6831
-INFO:local_logger:Epoch[094/800], Step[0100/0626], Avg Loss: 0.6840
-INFO:local_logger:Epoch[094/800], Step[0100/0626], Avg Loss: 0.6837
-INFO:local_logger:Epoch[094/800], Step[0100/0626], Avg Loss: 0.6828
-INFO:local_logger:Epoch[094/800], Step[0100/0626], Avg Loss: 0.6823
-INFO:local_logger:Epoch[094/800], Step[0100/0626], Avg Loss: 0.6828
-INFO:local_logger:Epoch[094/800], Step[0200/0626], Avg Loss: 0.6837
-INFO:local_logger:Epoch[094/800], Step[0200/0626], Avg Loss: 0.6834
-INFO:local_logger:Epoch[094/800], Step[0200/0626], Avg Loss: 0.6847
-INFO:local_logger:Epoch[094/800], Step[0200/0626], Avg Loss: 0.6837
-INFO:local_logger:Epoch[094/800], Step[0200/0626], Avg Loss: 0.6821
-INFO:local_logger:Epoch[094/800], Step[0200/0626], Avg Loss: 0.6828
-INFO:master_logger:Epoch[094/800], Step[0200/0626], Avg Loss: 0.6831
-INFO:local_logger:Epoch[094/800], Step[0200/0626], Avg Loss: 0.6820
-INFO:local_logger:Epoch[094/800], Step[0200/0626], Avg Loss: 0.6825
-INFO:local_logger:Epoch[094/800], Step[0300/0626], Avg Loss: 0.6824
-INFO:local_logger:Epoch[094/800], Step[0300/0626], Avg Loss: 0.6849
-INFO:local_logger:Epoch[094/800], Step[0300/0626], Avg Loss: 0.6830
-INFO:local_logger:Epoch[094/800], Step[0300/0626], Avg Loss: 0.6835
-INFO:local_logger:Epoch[094/800], Step[0300/0626], Avg Loss: 0.6825
-INFO:local_logger:Epoch[094/800], Step[0300/0626], Avg Loss: 0.6831
-INFO:local_logger:Epoch[094/800], Step[0300/0626], Avg Loss: 0.6828
-INFO:master_logger:Epoch[094/800], Step[0300/0626], Avg Loss: 0.6832
-INFO:local_logger:Epoch[094/800], Step[0300/0626], Avg Loss: 0.6832
-INFO:local_logger:Epoch[094/800], Step[0400/0626], Avg Loss: 0.6825
-INFO:local_logger:Epoch[094/800], Step[0400/0626], Avg Loss: 0.6830
-INFO:local_logger:Epoch[094/800], Step[0400/0626], Avg Loss: 0.6824
-INFO:local_logger:Epoch[094/800], Step[0400/0626], Avg Loss: 0.6845
-INFO:local_logger:Epoch[094/800], Step[0400/0626], Avg Loss: 0.6825
-INFO:local_logger:Epoch[094/800], Step[0400/0626], Avg Loss: 0.6834
-INFO:local_logger:Epoch[094/800], Step[0400/0626], Avg Loss: 0.6836
-INFO:local_logger:Epoch[094/800], Step[0400/0626], Avg Loss: 0.6831
-INFO:master_logger:Epoch[094/800], Step[0400/0626], Avg Loss: 0.6831
-INFO:local_logger:Epoch[094/800], Step[0500/0626], Avg Loss: 0.6833
-INFO:local_logger:Epoch[094/800], Step[0500/0626], Avg Loss: 0.6826
-INFO:local_logger:Epoch[094/800], Step[0500/0626], Avg Loss: 0.6825
-INFO:local_logger:Epoch[094/800], Step[0500/0626], Avg Loss: 0.6835
-INFO:local_logger:Epoch[094/800], Step[0500/0626], Avg Loss: 0.6841
-INFO:local_logger:Epoch[094/800], Step[0500/0626], Avg Loss: 0.6826
-INFO:local_logger:Epoch[094/800], Step[0500/0626], Avg Loss: 0.6829
-INFO:local_logger:Epoch[094/800], Step[0500/0626], Avg Loss: 0.6832
-INFO:master_logger:Epoch[094/800], Step[0500/0626], Avg Loss: 0.6831
-INFO:local_logger:Epoch[094/800], Step[0600/0626], Avg Loss: 0.6835
-INFO:local_logger:Epoch[094/800], Step[0600/0626], Avg Loss: 0.6834
-INFO:local_logger:Epoch[094/800], Step[0600/0626], Avg Loss: 0.6840
-INFO:local_logger:Epoch[094/800], Step[0600/0626], Avg Loss: 0.6830
-INFO:local_logger:Epoch[094/800], Step[0600/0626], Avg Loss: 0.6830
-INFO:local_logger:Epoch[094/800], Step[0600/0626], Avg Loss: 0.6828
-INFO:master_logger:Epoch[094/800], Step[0600/0626], Avg Loss: 0.6831
-INFO:local_logger:Epoch[094/800], Step[0600/0626], Avg Loss: 0.6827
-INFO:local_logger:Epoch[094/800], Step[0600/0626], Avg Loss: 0.6825
-INFO:local_logger:----- Epoch[094/800], Train Loss: 0.6835, time: 860.64
-INFO:local_logger:Now training epoch 95. LR=0.000155
-INFO:local_logger:----- Epoch[094/800], Train Loss: 0.6829, time: 861.10
-INFO:local_logger:Now training epoch 95. LR=0.000155
-INFO:local_logger:----- Epoch[094/800], Train Loss: 0.6834, time: 861.04
-INFO:local_logger:Now training epoch 95. LR=0.000155
-INFO:local_logger:----- Epoch[094/800], Train Loss: 0.6827, time: 861.88
-INFO:local_logger:Now training epoch 95. LR=0.000155
-INFO:local_logger:----- Epoch[094/800], Train Loss: 0.6838, time: 861.14
-INFO:local_logger:Now training epoch 95. LR=0.000155
-INFO:local_logger:----- Epoch[094/800], Train Loss: 0.6830, time: 857.69
-INFO:master_logger:----- Epoch[094/800], Train Loss: 0.6831, time: 857.69
-INFO:local_logger:----- Epoch[094/800], Train Loss: 0.6825, time: 861.06
-INFO:local_logger:Now training epoch 95. LR=0.000155
-INFO:local_logger:----- Epoch[094/800], Train Loss: 0.6830, time: 861.17
-INFO:local_logger:Now training epoch 95. LR=0.000155
-INFO:local_logger:----- Save model: ./output/train-20211219-17-07-40/MAE-Epoch-94-Loss-0.6830039001247509.pdparams
-INFO:local_logger:----- Save optim: ./output/train-20211219-17-07-40/MAE-Epoch-94-Loss-0.6830039001247509.pdopt
-INFO:master_logger:----- Save model: ./output/train-20211219-17-07-40/MAE-Epoch-94-Loss-0.6830039001247509.pdparams
-INFO:master_logger:----- Save optim: ./output/train-20211219-17-07-40/MAE-Epoch-94-Loss-0.6830039001247509.pdopt
-INFO:local_logger:Now training epoch 95. LR=0.000155
-INFO:master_logger:Now training epoch 95. LR=0.000155
-INFO:local_logger:Epoch[095/800], Step[0000/0626], Avg Loss: 0.6832
-INFO:master_logger:Epoch[095/800], Step[0000/0626], Avg Loss: 0.6819
-INFO:local_logger:Epoch[095/800], Step[0000/0626], Avg Loss: 0.6771
-INFO:local_logger:Epoch[095/800], Step[0000/0626], Avg Loss: 0.6843
-INFO:local_logger:Epoch[095/800], Step[0000/0626], Avg Loss: 0.6798
-INFO:local_logger:Epoch[095/800], Step[0000/0626], Avg Loss: 0.6706
-INFO:local_logger:Epoch[095/800], Step[0000/0626], Avg Loss: 0.6905
-INFO:local_logger:Epoch[095/800], Step[0000/0626], Avg Loss: 0.6843
-INFO:local_logger:Epoch[095/800], Step[0000/0626], Avg Loss: 0.6855
-INFO:local_logger:Epoch[095/800], Step[0100/0626], Avg Loss: 0.6831
-INFO:local_logger:Epoch[095/800], Step[0100/0626], Avg Loss: 0.6835
-INFO:local_logger:Epoch[095/800], Step[0100/0626], Avg Loss: 0.6823
-INFO:local_logger:Epoch[095/800], Step[0100/0626], Avg Loss: 0.6826
-INFO:master_logger:Epoch[095/800], Step[0100/0626], Avg Loss: 0.6829
-INFO:local_logger:Epoch[095/800], Step[0100/0626], Avg Loss: 0.6827
-INFO:local_logger:Epoch[095/800], Step[0100/0626], Avg Loss: 0.6827
-INFO:local_logger:Epoch[095/800], Step[0100/0626], Avg Loss: 0.6826
-INFO:local_logger:Epoch[095/800], Step[0100/0626], Avg Loss: 0.6835
-INFO:local_logger:Epoch[095/800], Step[0200/0626], Avg Loss: 0.6833
-INFO:local_logger:Epoch[095/800], Step[0200/0626], Avg Loss: 0.6826
-INFO:local_logger:Epoch[095/800], Step[0200/0626], Avg Loss: 0.6821
-INFO:local_logger:Epoch[095/800], Step[0200/0626], Avg Loss: 0.6829
-INFO:local_logger:Epoch[095/800], Step[0200/0626], Avg Loss: 0.6836
-INFO:local_logger:Epoch[095/800], Step[0200/0626], Avg Loss: 0.6828
-INFO:local_logger:Epoch[095/800], Step[0200/0626], Avg Loss: 0.6829
-INFO:master_logger:Epoch[095/800], Step[0200/0626], Avg Loss: 0.6828
-INFO:local_logger:Epoch[095/800], Step[0200/0626], Avg Loss: 0.6825
-INFO:local_logger:Epoch[095/800], Step[0300/0626], Avg Loss: 0.6830
-INFO:local_logger:Epoch[095/800], Step[0300/0626], Avg Loss: 0.6826
-INFO:local_logger:Epoch[095/800], Step[0300/0626], Avg Loss: 0.6825
-INFO:local_logger:Epoch[095/800], Step[0300/0626], Avg Loss: 0.6827
-INFO:local_logger:Epoch[095/800], Step[0300/0626], Avg Loss: 0.6830
-INFO:local_logger:Epoch[095/800], Step[0300/0626], Avg Loss: 0.6833
-INFO:local_logger:Epoch[095/800], Step[0300/0626], Avg Loss: 0.6820
-INFO:master_logger:Epoch[095/800], Step[0300/0626], Avg Loss: 0.6828
-INFO:local_logger:Epoch[095/800], Step[0300/0626], Avg Loss: 0.6835
-INFO:local_logger:Epoch[095/800], Step[0400/0626], Avg Loss: 0.6825
-INFO:local_logger:Epoch[095/800], Step[0400/0626], Avg Loss: 0.6832
-INFO:local_logger:Epoch[095/800], Step[0400/0626], Avg Loss: 0.6828
-INFO:local_logger:Epoch[095/800], Step[0400/0626], Avg Loss: 0.6829
-INFO:local_logger:Epoch[095/800], Step[0400/0626], Avg Loss: 0.6832
-INFO:local_logger:Epoch[095/800], Step[0400/0626], Avg Loss: 0.6825
-INFO:local_logger:Epoch[095/800], Step[0400/0626], Avg Loss: 0.6830
-INFO:local_logger:Epoch[095/800], Step[0400/0626], Avg Loss: 0.6826
-INFO:master_logger:Epoch[095/800], Step[0400/0626], Avg Loss: 0.6828
-INFO:local_logger:Epoch[095/800], Step[0500/0626], Avg Loss: 0.6832
-INFO:local_logger:Epoch[095/800], Step[0500/0626], Avg Loss: 0.6825
-INFO:local_logger:Epoch[095/800], Step[0500/0626], Avg Loss: 0.6826
-INFO:local_logger:Epoch[095/800], Step[0500/0626], Avg Loss: 0.6828
-INFO:master_logger:Epoch[095/800], Step[0500/0626], Avg Loss: 0.6828
-INFO:local_logger:Epoch[095/800], Step[0500/0626], Avg Loss: 0.6827
-INFO:local_logger:Epoch[095/800], Step[0500/0626], Avg Loss: 0.6829
-INFO:local_logger:Epoch[095/800], Step[0500/0626], Avg Loss: 0.6823
-INFO:local_logger:Epoch[095/800], Step[0500/0626], Avg Loss: 0.6830
-INFO:local_logger:Epoch[095/800], Step[0600/0626], Avg Loss: 0.6831
-INFO:local_logger:Epoch[095/800], Step[0600/0626], Avg Loss: 0.6828
-INFO:local_logger:Epoch[095/800], Step[0600/0626], Avg Loss: 0.6831
-INFO:local_logger:Epoch[095/800], Step[0600/0626], Avg Loss: 0.6827
-INFO:local_logger:Epoch[095/800], Step[0600/0626], Avg Loss: 0.6825
-INFO:local_logger:Epoch[095/800], Step[0600/0626], Avg Loss: 0.6828
-INFO:local_logger:Epoch[095/800], Step[0600/0626], Avg Loss: 0.6825
-INFO:master_logger:Epoch[095/800], Step[0600/0626], Avg Loss: 0.6828
-INFO:local_logger:Epoch[095/800], Step[0600/0626], Avg Loss: 0.6826
-INFO:local_logger:----- Epoch[095/800], Train Loss: 0.6831, time: 887.46
-INFO:local_logger:Now training epoch 96. LR=0.000155
-INFO:local_logger:----- Epoch[095/800], Train Loss: 0.6830, time: 886.49
-INFO:local_logger:Now training epoch 96. LR=0.000155
-INFO:local_logger:----- Epoch[095/800], Train Loss: 0.6825, time: 886.66
-INFO:local_logger:Now training epoch 96. LR=0.000155
-INFO:local_logger:----- Epoch[095/800], Train Loss: 0.6825, time: 886.64
-INFO:local_logger:Now training epoch 96. LR=0.000155
-INFO:local_logger:----- Epoch[095/800], Train Loss: 0.6829, time: 886.77
-INFO:local_logger:Now training epoch 96. LR=0.000155
-INFO:local_logger:----- Epoch[095/800], Train Loss: 0.6826, time: 886.77
-INFO:local_logger:Now training epoch 96. LR=0.000155
-INFO:local_logger:----- Epoch[095/800], Train Loss: 0.6826, time: 883.07
-INFO:master_logger:----- Epoch[095/800], Train Loss: 0.6827, time: 883.07
-INFO:local_logger:----- Epoch[095/800], Train Loss: 0.6827, time: 886.80
-INFO:local_logger:Now training epoch 96. LR=0.000155
-INFO:local_logger:----- Save model: ./output/train-20211219-17-07-40/MAE-Epoch-95-Loss-0.6825694100624208.pdparams
-INFO:local_logger:----- Save optim: ./output/train-20211219-17-07-40/MAE-Epoch-95-Loss-0.6825694100624208.pdopt
-INFO:master_logger:----- Save model: ./output/train-20211219-17-07-40/MAE-Epoch-95-Loss-0.6825694100624208.pdparams
-INFO:master_logger:----- Save optim: ./output/train-20211219-17-07-40/MAE-Epoch-95-Loss-0.6825694100624208.pdopt
-INFO:local_logger:Now training epoch 96. LR=0.000155
-INFO:master_logger:Now training epoch 96. LR=0.000155
-INFO:local_logger:Epoch[096/800], Step[0000/0626], Avg Loss: 0.6925
-INFO:local_logger:Epoch[096/800], Step[0000/0626], Avg Loss: 0.6757
-INFO:local_logger:Epoch[096/800], Step[0000/0626], Avg Loss: 0.6684
-INFO:master_logger:Epoch[096/800], Step[0000/0626], Avg Loss: 0.6799
-INFO:local_logger:Epoch[096/800], Step[0000/0626], Avg Loss: 0.6804
-INFO:local_logger:Epoch[096/800], Step[0000/0626], Avg Loss: 0.6683
-INFO:local_logger:Epoch[096/800], Step[0000/0626], Avg Loss: 0.6801
-INFO:local_logger:Epoch[096/800], Step[0000/0626], Avg Loss: 0.6900
-INFO:local_logger:Epoch[096/800], Step[0000/0626], Avg Loss: 0.6837
-INFO:local_logger:Epoch[096/800], Step[0100/0626], Avg Loss: 0.6819
-INFO:local_logger:Epoch[096/800], Step[0100/0626], Avg Loss: 0.6818
-INFO:local_logger:Epoch[096/800], Step[0100/0626], Avg Loss: 0.6836
-INFO:master_logger:Epoch[096/800], Step[0100/0626], Avg Loss: 0.6825
-INFO:local_logger:Epoch[096/800], Step[0100/0626], Avg Loss: 0.6825
-INFO:local_logger:Epoch[096/800], Step[0100/0626], Avg Loss: 0.6819
-INFO:local_logger:Epoch[096/800], Step[0100/0626], Avg Loss: 0.6841
-INFO:local_logger:Epoch[096/800], Step[0100/0626], Avg Loss: 0.6827
-INFO:local_logger:Epoch[096/800], Step[0100/0626], Avg Loss: 0.6813
-INFO:local_logger:Epoch[096/800], Step[0200/0626], Avg Loss: 0.6822
-INFO:local_logger:Epoch[096/800], Step[0200/0626], Avg Loss: 0.6816
-INFO:local_logger:Epoch[096/800], Step[0200/0626], Avg Loss: 0.6816
-INFO:local_logger:Epoch[096/800], Step[0200/0626], Avg Loss: 0.6831
-INFO:local_logger:Epoch[096/800], Step[0200/0626], Avg Loss: 0.6830
-INFO:local_logger:Epoch[096/800], Step[0200/0626], Avg Loss: 0.6825
-INFO:master_logger:Epoch[096/800], Step[0200/0626], Avg Loss: 0.6823
-INFO:local_logger:Epoch[096/800], Step[0200/0626], Avg Loss: 0.6822
-INFO:local_logger:Epoch[096/800], Step[0200/0626], Avg Loss: 0.6821
-INFO:local_logger:Epoch[096/800], Step[0300/0626], Avg Loss: 0.6829
-INFO:local_logger:Epoch[096/800], Step[0300/0626], Avg Loss: 0.6821
-INFO:local_logger:Epoch[096/800], Step[0300/0626], Avg Loss: 0.6823
-INFO:local_logger:Epoch[096/800], Step[0300/0626], Avg Loss: 0.6830
-INFO:local_logger:Epoch[096/800], Step[0300/0626], Avg Loss: 0.6819
-INFO:master_logger:Epoch[096/800], Step[0300/0626], Avg Loss: 0.6824
-INFO:local_logger:Epoch[096/800], Step[0300/0626], Avg Loss: 0.6824
-INFO:local_logger:Epoch[096/800], Step[0300/0626], Avg Loss: 0.6827
-INFO:local_logger:Epoch[096/800], Step[0300/0626], Avg Loss: 0.6819
-INFO:local_logger:Epoch[096/800], Step[0400/0626], Avg Loss: 0.6827
-INFO:local_logger:Epoch[096/800], Step[0400/0626], Avg Loss: 0.6825
-INFO:local_logger:Epoch[096/800], Step[0400/0626], Avg Loss: 0.6819
-INFO:local_logger:Epoch[096/800], Step[0400/0626], Avg Loss: 0.6822
-INFO:local_logger:Epoch[096/800], Step[0400/0626], Avg Loss: 0.6829
-INFO:local_logger:Epoch[096/800], Step[0400/0626], Avg Loss: 0.6825
-INFO:local_logger:Epoch[096/800], Step[0400/0626], Avg Loss: 0.6822
-INFO:master_logger:Epoch[096/800], Step[0400/0626], Avg Loss: 0.6824
-INFO:local_logger:Epoch[096/800], Step[0400/0626], Avg Loss: 0.6820
-INFO:local_logger:Epoch[096/800], Step[0500/0626], Avg Loss: 0.6823
-INFO:local_logger:Epoch[096/800], Step[0500/0626], Avg Loss: 0.6828
-INFO:local_logger:Epoch[096/800], Step[0500/0626], Avg Loss: 0.6826
-INFO:local_logger:Epoch[096/800], Step[0500/0626], Avg Loss: 0.6822
-INFO:local_logger:Epoch[096/800], Step[0500/0626], Avg Loss: 0.6822
-INFO:local_logger:Epoch[096/800], Step[0500/0626], Avg Loss: 0.6821
-INFO:master_logger:Epoch[096/800], Step[0500/0626], Avg Loss: 0.6823
-INFO:local_logger:Epoch[096/800], Step[0500/0626], Avg Loss: 0.6825
-INFO:local_logger:Epoch[096/800], Step[0500/0626], Avg Loss: 0.6819
-INFO:local_logger:Epoch[096/800], Step[0600/0626], Avg Loss: 0.6826
-INFO:local_logger:Epoch[096/800], Step[0600/0626], Avg Loss: 0.6822
-INFO:local_logger:Epoch[096/800], Step[0600/0626], Avg Loss: 0.6821
-INFO:local_logger:Epoch[096/800], Step[0600/0626], Avg Loss: 0.6826
-INFO:local_logger:Epoch[096/800], Step[0600/0626], Avg Loss: 0.6820
-INFO:local_logger:Epoch[096/800], Step[0600/0626], Avg Loss: 0.6823
-INFO:local_logger:Epoch[096/800], Step[0600/0626], Avg Loss: 0.6825
-INFO:local_logger:Epoch[096/800], Step[0600/0626], Avg Loss: 0.6827
-INFO:master_logger:Epoch[096/800], Step[0600/0626], Avg Loss: 0.6824
-INFO:local_logger:----- Epoch[096/800], Train Loss: 0.6821, time: 868.69
-INFO:local_logger:Now training epoch 97. LR=0.000155
-INFO:local_logger:----- Epoch[096/800], Train Loss: 0.6821, time: 869.09
-INFO:local_logger:Now training epoch 97. LR=0.000155
-INFO:local_logger:----- Epoch[096/800], Train Loss: 0.6823, time: 868.99
-INFO:local_logger:Now training epoch 97. LR=0.000155
-INFO:local_logger:----- Epoch[096/800], Train Loss: 0.6826, time: 868.81
-INFO:local_logger:Now training epoch 97. LR=0.000155
-INFO:local_logger:----- Epoch[096/800], Train Loss: 0.6824, time: 868.69
-INFO:local_logger:----- Epoch[096/800], Train Loss: 0.6827, time: 864.96
-INFO:local_logger:Now training epoch 97. LR=0.000155
-INFO:master_logger:----- Epoch[096/800], Train Loss: 0.6824, time: 864.96
-INFO:local_logger:----- Epoch[096/800], Train Loss: 0.6828, time: 868.82
-INFO:local_logger:Now training epoch 97. LR=0.000155
-INFO:local_logger:----- Epoch[096/800], Train Loss: 0.6826, time: 868.66
-INFO:local_logger:Now training epoch 97. LR=0.000155
-INFO:local_logger:----- Save model: ./output/train-20211219-17-07-40/MAE-Epoch-96-Loss-0.6826821214191926.pdparams
-INFO:local_logger:----- Save optim: ./output/train-20211219-17-07-40/MAE-Epoch-96-Loss-0.6826821214191926.pdopt
-INFO:master_logger:----- Save model: ./output/train-20211219-17-07-40/MAE-Epoch-96-Loss-0.6826821214191926.pdparams
-INFO:master_logger:----- Save optim: ./output/train-20211219-17-07-40/MAE-Epoch-96-Loss-0.6826821214191926.pdopt
-INFO:local_logger:Now training epoch 97. LR=0.000155
-INFO:master_logger:Now training epoch 97. LR=0.000155
-INFO:local_logger:Epoch[097/800], Step[0000/0626], Avg Loss: 0.6880
-INFO:master_logger:Epoch[097/800], Step[0000/0626], Avg Loss: 0.6850
-INFO:local_logger:Epoch[097/800], Step[0000/0626], Avg Loss: 0.6818
-INFO:local_logger:Epoch[097/800], Step[0000/0626], Avg Loss: 0.6940
-INFO:local_logger:Epoch[097/800], Step[0000/0626], Avg Loss: 0.6844
-INFO:local_logger:Epoch[097/800], Step[0000/0626], Avg Loss: 0.6810
-INFO:local_logger:Epoch[097/800], Step[0000/0626], Avg Loss: 0.6829
-INFO:local_logger:Epoch[097/800], Step[0000/0626], Avg Loss: 0.6755
-INFO:local_logger:Epoch[097/800], Step[0000/0626], Avg Loss: 0.6928
-INFO:local_logger:Epoch[097/800], Step[0100/0626], Avg Loss: 0.6828
-INFO:local_logger:Epoch[097/800], Step[0100/0626], Avg Loss: 0.6817
-INFO:local_logger:Epoch[097/800], Step[0100/0626], Avg Loss: 0.6830
-INFO:local_logger:Epoch[097/800], Step[0100/0626], Avg Loss: 0.6825
-INFO:local_logger:Epoch[097/800], Step[0100/0626], Avg Loss: 0.6822
-INFO:master_logger:Epoch[097/800], Step[0100/0626], Avg Loss: 0.6825
-INFO:local_logger:Epoch[097/800], Step[0100/0626], Avg Loss: 0.6829
-INFO:local_logger:Epoch[097/800], Step[0100/0626], Avg Loss: 0.6831
-INFO:local_logger:Epoch[097/800], Step[0100/0626], Avg Loss: 0.6820
-INFO:local_logger:Epoch[097/800], Step[0200/0626], Avg Loss: 0.6825
-INFO:local_logger:Epoch[097/800], Step[0200/0626], Avg Loss: 0.6826
-INFO:local_logger:Epoch[097/800], Step[0200/0626], Avg Loss: 0.6822
-INFO:local_logger:Epoch[097/800], Step[0200/0626], Avg Loss: 0.6823
-INFO:local_logger:Epoch[097/800], Step[0200/0626], Avg Loss: 0.6823
-INFO:local_logger:Epoch[097/800], Step[0200/0626], Avg Loss: 0.6821
-INFO:local_logger:Epoch[097/800], Step[0200/0626], Avg Loss: 0.6823
-INFO:master_logger:Epoch[097/800], Step[0200/0626], Avg Loss: 0.6823
-INFO:local_logger:Epoch[097/800], Step[0200/0626], Avg Loss: 0.6824
-INFO:local_logger:Epoch[097/800], Step[0300/0626], Avg Loss: 0.6826
-INFO:local_logger:Epoch[097/800], Step[0300/0626], Avg Loss: 0.6826
-INFO:local_logger:Epoch[097/800], Step[0300/0626], Avg Loss: 0.6826
-INFO:local_logger:Epoch[097/800], Step[0300/0626], Avg Loss: 0.6819
-INFO:local_logger:Epoch[097/800], Step[0300/0626], Avg Loss: 0.6822
-INFO:master_logger:Epoch[097/800], Step[0300/0626], Avg Loss: 0.6823
-INFO:local_logger:Epoch[097/800], Step[0300/0626], Avg Loss: 0.6821
-INFO:local_logger:Epoch[097/800], Step[0300/0626], Avg Loss: 0.6825
-INFO:local_logger:Epoch[097/800], Step[0300/0626], Avg Loss: 0.6821
-INFO:local_logger:Epoch[097/800], Step[0400/0626], Avg Loss: 0.6821
-INFO:local_logger:Epoch[097/800], Step[0400/0626], Avg Loss: 0.6821
-INFO:local_logger:Epoch[097/800], Step[0400/0626], Avg Loss: 0.6818
-INFO:local_logger:Epoch[097/800], Step[0400/0626], Avg Loss: 0.6825
-INFO:local_logger:Epoch[097/800], Step[0400/0626], Avg Loss: 0.6820
-INFO:local_logger:Epoch[097/800], Step[0400/0626], Avg Loss: 0.6825
-INFO:local_logger:Epoch[097/800], Step[0400/0626], Avg Loss: 0.6824
-INFO:local_logger:Epoch[097/800], Step[0400/0626], Avg Loss: 0.6818
-INFO:master_logger:Epoch[097/800], Step[0400/0626], Avg Loss: 0.6821
-INFO:local_logger:Epoch[097/800], Step[0500/0626], Avg Loss: 0.6823
-INFO:local_logger:Epoch[097/800], Step[0500/0626], Avg Loss: 0.6815
-INFO:local_logger:Epoch[097/800], Step[0500/0626], Avg Loss: 0.6818
-INFO:local_logger:Epoch[097/800], Step[0500/0626], Avg Loss: 0.6826
-INFO:master_logger:Epoch[097/800], Step[0500/0626], Avg Loss: 0.6821
-INFO:local_logger:Epoch[097/800], Step[0500/0626], Avg Loss: 0.6826
-INFO:local_logger:Epoch[097/800], Step[0500/0626], Avg Loss: 0.6820
-INFO:local_logger:Epoch[097/800], Step[0500/0626], Avg Loss: 0.6820
-INFO:local_logger:Epoch[097/800], Step[0500/0626], Avg Loss: 0.6822
-INFO:local_logger:Epoch[097/800], Step[0600/0626], Avg Loss: 0.6820
-INFO:local_logger:Epoch[097/800], Step[0600/0626], Avg Loss: 0.6822
-INFO:local_logger:Epoch[097/800], Step[0600/0626], Avg Loss: 0.6822
-INFO:local_logger:Epoch[097/800], Step[0600/0626], Avg Loss: 0.6822
-INFO:local_logger:Epoch[097/800], Step[0600/0626], Avg Loss: 0.6818
-INFO:local_logger:Epoch[097/800], Step[0600/0626], Avg Loss: 0.6821
-INFO:local_logger:Epoch[097/800], Step[0600/0626], Avg Loss: 0.6825
-INFO:master_logger:Epoch[097/800], Step[0600/0626], Avg Loss: 0.6820
-INFO:local_logger:Epoch[097/800], Step[0600/0626], Avg Loss: 0.6814
-INFO:local_logger:----- Epoch[097/800], Train Loss: 0.6822, time: 881.18
-INFO:local_logger:Now training epoch 98. LR=0.000155
-INFO:local_logger:----- Epoch[097/800], Train Loss: 0.6818, time: 882.30
-INFO:local_logger:Now training epoch 98. LR=0.000155
-INFO:local_logger:----- Epoch[097/800], Train Loss: 0.6822, time: 882.31
-INFO:local_logger:Now training epoch 98. LR=0.000155
-INFO:local_logger:----- Epoch[097/800], Train Loss: 0.6826, time: 882.32
-INFO:local_logger:Now training epoch 98. LR=0.000155
-INFO:local_logger:----- Epoch[097/800], Train Loss: 0.6813, time: 882.38
-INFO:local_logger:Now training epoch 98. LR=0.000155
-INFO:local_logger:----- Epoch[097/800], Train Loss: 0.6820, time: 882.40
-INFO:local_logger:Now training epoch 98. LR=0.000155
-INFO:local_logger:----- Epoch[097/800], Train Loss: 0.6818, time: 878.64
-INFO:master_logger:----- Epoch[097/800], Train Loss: 0.6820, time: 878.64
-INFO:local_logger:----- Epoch[097/800], Train Loss: 0.6823, time: 882.40
-INFO:local_logger:Now training epoch 98. LR=0.000155
-INFO:local_logger:----- Save model: ./output/train-20211219-17-07-40/MAE-Epoch-97-Loss-0.6818455600972856.pdparams
-INFO:local_logger:----- Save optim: ./output/train-20211219-17-07-40/MAE-Epoch-97-Loss-0.6818455600972856.pdopt
-INFO:master_logger:----- Save model: ./output/train-20211219-17-07-40/MAE-Epoch-97-Loss-0.6818455600972856.pdparams
-INFO:master_logger:----- Save optim: ./output/train-20211219-17-07-40/MAE-Epoch-97-Loss-0.6818455600972856.pdopt
-INFO:local_logger:Now training epoch 98. LR=0.000155
-INFO:master_logger:Now training epoch 98. LR=0.000155
-INFO:local_logger:Epoch[098/800], Step[0000/0626], Avg Loss: 0.6930
-INFO:local_logger:Epoch[098/800], Step[0000/0626], Avg Loss: 0.6810
-INFO:local_logger:Epoch[098/800], Step[0000/0626], Avg Loss: 0.6821
-INFO:master_logger:Epoch[098/800], Step[0000/0626], Avg Loss: 0.6860
-INFO:local_logger:Epoch[098/800], Step[0000/0626], Avg Loss: 0.6802
-INFO:local_logger:Epoch[098/800], Step[0000/0626], Avg Loss: 0.6848
-INFO:local_logger:Epoch[098/800], Step[0000/0626], Avg Loss: 0.6756
-INFO:local_logger:Epoch[098/800], Step[0000/0626], Avg Loss: 0.7011
-INFO:local_logger:Epoch[098/800], Step[0000/0626], Avg Loss: 0.6899
-INFO:local_logger:Epoch[098/800], Step[0100/0626], Avg Loss: 0.6826
-INFO:local_logger:Epoch[098/800], Step[0100/0626], Avg Loss: 0.6824
-INFO:master_logger:Epoch[098/800], Step[0100/0626], Avg Loss: 0.6823
-INFO:local_logger:Epoch[098/800], Step[0100/0626], Avg Loss: 0.6826
-INFO:local_logger:Epoch[098/800], Step[0100/0626], Avg Loss: 0.6824
-INFO:local_logger:Epoch[098/800], Step[0100/0626], Avg Loss: 0.6819
-INFO:local_logger:Epoch[098/800], Step[0100/0626], Avg Loss: 0.6820
-INFO:local_logger:Epoch[098/800], Step[0100/0626], Avg Loss: 0.6814
-INFO:local_logger:Epoch[098/800], Step[0100/0626], Avg Loss: 0.6829
-INFO:local_logger:Epoch[098/800], Step[0200/0626], Avg Loss: 0.6824
-INFO:local_logger:Epoch[098/800], Step[0200/0626], Avg Loss: 0.6826
-INFO:local_logger:Epoch[098/800], Step[0200/0626], Avg Loss: 0.6830
-INFO:local_logger:Epoch[098/800], Step[0200/0626], Avg Loss: 0.6826
-INFO:local_logger:Epoch[098/800], Step[0200/0626], Avg Loss: 0.6826
-INFO:master_logger:Epoch[098/800], Step[0200/0626], Avg Loss: 0.6827
-INFO:local_logger:Epoch[098/800], Step[0200/0626], Avg Loss: 0.6829
-INFO:local_logger:Epoch[098/800], Step[0200/0626], Avg Loss: 0.6823
-INFO:local_logger:Epoch[098/800], Step[0200/0626], Avg Loss: 0.6830
-INFO:local_logger:Epoch[098/800], Step[0300/0626], Avg Loss: 0.6821
-INFO:local_logger:Epoch[098/800], Step[0300/0626], Avg Loss: 0.6821
-INFO:local_logger:Epoch[098/800], Step[0300/0626], Avg Loss: 0.6829
-INFO:local_logger:Epoch[098/800], Step[0300/0626], Avg Loss: 0.6823
-INFO:local_logger:Epoch[098/800], Step[0300/0626], Avg Loss: 0.6824
-INFO:local_logger:Epoch[098/800], Step[0300/0626], Avg Loss: 0.6822
-INFO:master_logger:Epoch[098/800], Step[0300/0626], Avg Loss: 0.6822
-INFO:local_logger:Epoch[098/800], Step[0300/0626], Avg Loss: 0.6818
-INFO:local_logger:Epoch[098/800], Step[0300/0626], Avg Loss: 0.6819
-INFO:local_logger:Epoch[098/800], Step[0400/0626], Avg Loss: 0.6817
-INFO:local_logger:Epoch[098/800], Step[0400/0626], Avg Loss: 0.6822
-INFO:local_logger:Epoch[098/800], Step[0400/0626], Avg Loss: 0.6827
-INFO:local_logger:Epoch[098/800], Step[0400/0626], Avg Loss: 0.6823
-INFO:local_logger:Epoch[098/800], Step[0400/0626], Avg Loss: 0.6824
-INFO:local_logger:Epoch[098/800], Step[0400/0626], Avg Loss: 0.6823
-INFO:local_logger:Epoch[098/800], Step[0400/0626], Avg Loss: 0.6818
-INFO:local_logger:Epoch[098/800], Step[0400/0626], Avg Loss: 0.6817
-INFO:master_logger:Epoch[098/800], Step[0400/0626], Avg Loss: 0.6821
-INFO:local_logger:Epoch[098/800], Step[0500/0626], Avg Loss: 0.6817
-INFO:local_logger:Epoch[098/800], Step[0500/0626], Avg Loss: 0.6823
-INFO:local_logger:Epoch[098/800], Step[0500/0626], Avg Loss: 0.6817
-INFO:local_logger:Epoch[098/800], Step[0500/0626], Avg Loss: 0.6824
-INFO:local_logger:Epoch[098/800], Step[0500/0626], Avg Loss: 0.6820
-INFO:local_logger:Epoch[098/800], Step[0500/0626], Avg Loss: 0.6823
-INFO:master_logger:Epoch[098/800], Step[0500/0626], Avg Loss: 0.6820
-INFO:local_logger:Epoch[098/800], Step[0500/0626], Avg Loss: 0.6816
-INFO:local_logger:Epoch[098/800], Step[0500/0626], Avg Loss: 0.6821
-INFO:local_logger:Epoch[098/800], Step[0600/0626], Avg Loss: 0.6824
-INFO:local_logger:Epoch[098/800], Step[0600/0626], Avg Loss: 0.6820
-INFO:local_logger:Epoch[098/800], Step[0600/0626], Avg Loss: 0.6815
-INFO:local_logger:Epoch[098/800], Step[0600/0626], Avg Loss: 0.6823
-INFO:local_logger:Epoch[098/800], Step[0600/0626], Avg Loss: 0.6819
-INFO:local_logger:Epoch[098/800], Step[0600/0626], Avg Loss: 0.6816
-INFO:master_logger:Epoch[098/800], Step[0600/0626], Avg Loss: 0.6819
-INFO:local_logger:Epoch[098/800], Step[0600/0626], Avg Loss: 0.6817
-INFO:local_logger:Epoch[098/800], Step[0600/0626], Avg Loss: 0.6820
-INFO:local_logger:----- Epoch[098/800], Train Loss: 0.6819, time: 870.20
-INFO:master_logger:----- Epoch[098/800], Train Loss: 0.6820, time: 870.20
-INFO:local_logger:----- Epoch[098/800], Train Loss: 0.6823, time: 875.16
-INFO:local_logger:Now training epoch 99. LR=0.000155
-INFO:local_logger:----- Epoch[098/800], Train Loss: 0.6820, time: 874.01
-INFO:local_logger:Now training epoch 99. LR=0.000155
-INFO:local_logger:----- Epoch[098/800], Train Loss: 0.6825, time: 874.00
-INFO:local_logger:Now training epoch 99. LR=0.000155
-INFO:local_logger:----- Epoch[098/800], Train Loss: 0.6817, time: 874.10
-INFO:local_logger:Now training epoch 99. LR=0.000155
-INFO:local_logger:----- Epoch[098/800], Train Loss: 0.6822, time: 874.02
-INFO:local_logger:Now training epoch 99. LR=0.000155
-INFO:local_logger:----- Epoch[098/800], Train Loss: 0.6815, time: 874.10
-INFO:local_logger:Now training epoch 99. LR=0.000155
-INFO:local_logger:----- Epoch[098/800], Train Loss: 0.6816, time: 874.02
-INFO:local_logger:Now training epoch 99. LR=0.000155
-INFO:local_logger:----- Save model: ./output/train-20211219-17-07-40/MAE-Epoch-98-Loss-0.681889634827903.pdparams
-INFO:local_logger:----- Save optim: ./output/train-20211219-17-07-40/MAE-Epoch-98-Loss-0.681889634827903.pdopt
-INFO:master_logger:----- Save model: ./output/train-20211219-17-07-40/MAE-Epoch-98-Loss-0.681889634827903.pdparams
-INFO:master_logger:----- Save optim: ./output/train-20211219-17-07-40/MAE-Epoch-98-Loss-0.681889634827903.pdopt
-INFO:local_logger:Now training epoch 99. LR=0.000155
-INFO:master_logger:Now training epoch 99. LR=0.000155
-INFO:local_logger:Epoch[099/800], Step[0000/0626], Avg Loss: 0.6968
-INFO:local_logger:Epoch[099/800], Step[0000/0626], Avg Loss: 0.6870
-INFO:local_logger:Epoch[099/800], Step[0000/0626], Avg Loss: 0.6865
-INFO:master_logger:Epoch[099/800], Step[0000/0626], Avg Loss: 0.6826
-INFO:local_logger:Epoch[099/800], Step[0000/0626], Avg Loss: 0.6853
-INFO:local_logger:Epoch[099/800], Step[0000/0626], Avg Loss: 0.6660
-INFO:local_logger:Epoch[099/800], Step[0000/0626], Avg Loss: 0.6719
-INFO:local_logger:Epoch[099/800], Step[0000/0626], Avg Loss: 0.6836
-INFO:local_logger:Epoch[099/800], Step[0000/0626], Avg Loss: 0.6839
-INFO:local_logger:Epoch[099/800], Step[0100/0626], Avg Loss: 0.6821
-INFO:local_logger:Epoch[099/800], Step[0100/0626], Avg Loss: 0.6825
-INFO:local_logger:Epoch[099/800], Step[0100/0626], Avg Loss: 0.6834
-INFO:local_logger:Epoch[099/800], Step[0100/0626], Avg Loss: 0.6824
-INFO:local_logger:Epoch[099/800], Step[0100/0626], Avg Loss: 0.6826
-INFO:master_logger:Epoch[099/800], Step[0100/0626], Avg Loss: 0.6825
-INFO:local_logger:Epoch[099/800], Step[0100/0626], Avg Loss: 0.6824
-INFO:local_logger:Epoch[099/800], Step[0100/0626], Avg Loss: 0.6817
-INFO:local_logger:Epoch[099/800], Step[0100/0626], Avg Loss: 0.6826
-INFO:local_logger:Epoch[099/800], Step[0200/0626], Avg Loss: 0.6825
-INFO:local_logger:Epoch[099/800], Step[0200/0626], Avg Loss: 0.6814
-INFO:local_logger:Epoch[099/800], Step[0200/0626], Avg Loss: 0.6823
-INFO:local_logger:Epoch[099/800], Step[0200/0626], Avg Loss: 0.6828
-INFO:local_logger:Epoch[099/800], Step[0200/0626], Avg Loss: 0.6817
-INFO:local_logger:Epoch[099/800], Step[0200/0626], Avg Loss: 0.6821
-INFO:local_logger:Epoch[099/800], Step[0200/0626], Avg Loss: 0.6830
-INFO:local_logger:Epoch[099/800], Step[0200/0626], Avg Loss: 0.6822
-INFO:master_logger:Epoch[099/800], Step[0200/0626], Avg Loss: 0.6823
-INFO:local_logger:Epoch[099/800], Step[0300/0626], Avg Loss: 0.6817
-INFO:local_logger:Epoch[099/800], Step[0300/0626], Avg Loss: 0.6825
-INFO:local_logger:Epoch[099/800], Step[0300/0626], Avg Loss: 0.6821
-INFO:local_logger:Epoch[099/800], Step[0300/0626], Avg Loss: 0.6824
-INFO:local_logger:Epoch[099/800], Step[0300/0626], Avg Loss: 0.6811
-INFO:master_logger:Epoch[099/800], Step[0300/0626], Avg Loss: 0.6819
-INFO:local_logger:Epoch[099/800], Step[0300/0626], Avg Loss: 0.6823
-INFO:local_logger:Epoch[099/800], Step[0300/0626], Avg Loss: 0.6815
-INFO:local_logger:Epoch[099/800], Step[0300/0626], Avg Loss: 0.6819
-INFO:local_logger:Epoch[099/800], Step[0400/0626], Avg Loss: 0.6814
-INFO:local_logger:Epoch[099/800], Step[0400/0626], Avg Loss: 0.6821
-INFO:local_logger:Epoch[099/800], Step[0400/0626], Avg Loss: 0.6812
-INFO:local_logger:Epoch[099/800], Step[0400/0626], Avg Loss: 0.6818
-INFO:local_logger:Epoch[099/800], Step[0400/0626], Avg Loss: 0.6820
-INFO:local_logger:Epoch[099/800], Step[0400/0626], Avg Loss: 0.6825
-INFO:local_logger:Epoch[099/800], Step[0400/0626], Avg Loss: 0.6816
-INFO:master_logger:Epoch[099/800], Step[0400/0626], Avg Loss: 0.6818
-INFO:local_logger:Epoch[099/800], Step[0400/0626], Avg Loss: 0.6818
-INFO:local_logger:Epoch[099/800], Step[0500/0626], Avg Loss: 0.6821
-INFO:local_logger:Epoch[099/800], Step[0500/0626], Avg Loss: 0.6818
-INFO:local_logger:Epoch[099/800], Step[0500/0626], Avg Loss: 0.6819
-INFO:local_logger:Epoch[099/800], Step[0500/0626], Avg Loss: 0.6822
-INFO:local_logger:Epoch[099/800], Step[0500/0626], Avg Loss: 0.6815
-INFO:local_logger:Epoch[099/800], Step[0500/0626], Avg Loss: 0.6815
-INFO:master_logger:Epoch[099/800], Step[0500/0626], Avg Loss: 0.6817
-INFO:local_logger:Epoch[099/800], Step[0500/0626], Avg Loss: 0.6811
-INFO:local_logger:Epoch[099/800], Step[0500/0626], Avg Loss: 0.6818
-INFO:local_logger:Epoch[099/800], Step[0600/0626], Avg Loss: 0.6815
-INFO:local_logger:Epoch[099/800], Step[0600/0626], Avg Loss: 0.6817
-INFO:local_logger:Epoch[099/800], Step[0600/0626], Avg Loss: 0.6820
-INFO:local_logger:Epoch[099/800], Step[0600/0626], Avg Loss: 0.6820
-INFO:local_logger:Epoch[099/800], Step[0600/0626], Avg Loss: 0.6811
-INFO:local_logger:Epoch[099/800], Step[0600/0626], Avg Loss: 0.6814
-INFO:local_logger:Epoch[099/800], Step[0600/0626], Avg Loss: 0.6817
-INFO:master_logger:Epoch[099/800], Step[0600/0626], Avg Loss: 0.6816
-INFO:local_logger:Epoch[099/800], Step[0600/0626], Avg Loss: 0.6817
-INFO:local_logger:----- Epoch[099/800], Train Loss: 0.6811, time: 873.44
-INFO:local_logger:Now training epoch 100. LR=0.000155
-INFO:local_logger:----- Epoch[099/800], Train Loss: 0.6817, time: 874.12
-INFO:local_logger:Now training epoch 100. LR=0.000155
-INFO:local_logger:----- Epoch[099/800], Train Loss: 0.6814, time: 874.14
-INFO:local_logger:Now training epoch 100. LR=0.000155
-INFO:local_logger:----- Epoch[099/800], Train Loss: 0.6815, time: 874.31
-INFO:local_logger:Now training epoch 100. LR=0.000155
-INFO:local_logger:----- Epoch[099/800], Train Loss: 0.6816, time: 874.69
-INFO:local_logger:Now training epoch 100. LR=0.000155
-INFO:local_logger:----- Epoch[099/800], Train Loss: 0.6820, time: 874.75
-INFO:local_logger:Now training epoch 100. LR=0.000155
-INFO:local_logger:----- Epoch[099/800], Train Loss: 0.6814, time: 871.01
-INFO:master_logger:----- Epoch[099/800], Train Loss: 0.6816, time: 871.01
-INFO:local_logger:----- Epoch[099/800], Train Loss: 0.6820, time: 874.69
-INFO:local_logger:Now training epoch 100. LR=0.000155
-INFO:local_logger:----- Save model: ./output/train-20211219-17-07-40/MAE-Epoch-99-Loss-0.6813920508235197.pdparams
-INFO:local_logger:----- Save optim: ./output/train-20211219-17-07-40/MAE-Epoch-99-Loss-0.6813920508235197.pdopt
-INFO:master_logger:----- Save model: ./output/train-20211219-17-07-40/MAE-Epoch-99-Loss-0.6813920508235197.pdparams
-INFO:master_logger:----- Save optim: ./output/train-20211219-17-07-40/MAE-Epoch-99-Loss-0.6813920508235197.pdopt
-INFO:local_logger:Now training epoch 100. LR=0.000155
-INFO:master_logger:Now training epoch 100. LR=0.000155
-INFO:local_logger:Epoch[100/800], Step[0000/0626], Avg Loss: 0.6874
-INFO:local_logger:Epoch[100/800], Step[0000/0626], Avg Loss: 0.6858
-INFO:local_logger:Epoch[100/800], Step[0000/0626], Avg Loss: 0.6763
-INFO:master_logger:Epoch[100/800], Step[0000/0626], Avg Loss: 0.6815
-INFO:local_logger:Epoch[100/800], Step[0000/0626], Avg Loss: 0.6794
-INFO:local_logger:Epoch[100/800], Step[0000/0626], Avg Loss: 0.6727
-INFO:local_logger:Epoch[100/800], Step[0000/0626], Avg Loss: 0.6920
-INFO:local_logger:Epoch[100/800], Step[0000/0626], Avg Loss: 0.6764
-INFO:local_logger:Epoch[100/800], Step[0000/0626], Avg Loss: 0.6822
-INFO:local_logger:Epoch[100/800], Step[0100/0626], Avg Loss: 0.6806
-INFO:local_logger:Epoch[100/800], Step[0100/0626], Avg Loss: 0.6824
-INFO:local_logger:Epoch[100/800], Step[0100/0626], Avg Loss: 0.6801
-INFO:local_logger:Epoch[100/800], Step[0100/0626], Avg Loss: 0.6821
-INFO:local_logger:Epoch[100/800], Step[0100/0626], Avg Loss: 0.6810
-INFO:local_logger:Epoch[100/800], Step[0100/0626], Avg Loss: 0.6821
-INFO:master_logger:Epoch[100/800], Step[0100/0626], Avg Loss: 0.6812
-INFO:local_logger:Epoch[100/800], Step[0100/0626], Avg Loss: 0.6807
-INFO:local_logger:Epoch[100/800], Step[0100/0626], Avg Loss: 0.6809
-INFO:local_logger:Epoch[100/800], Step[0200/0626], Avg Loss: 0.6815
-INFO:local_logger:Epoch[100/800], Step[0200/0626], Avg Loss: 0.6804
-INFO:local_logger:Epoch[100/800], Step[0200/0626], Avg Loss: 0.6816
-INFO:local_logger:Epoch[100/800], Step[0200/0626], Avg Loss: 0.6816
-INFO:local_logger:Epoch[100/800], Step[0200/0626], Avg Loss: 0.6810
-INFO:local_logger:Epoch[100/800], Step[0200/0626], Avg Loss: 0.6812
-INFO:master_logger:Epoch[100/800], Step[0200/0626], Avg Loss: 0.6813
-INFO:local_logger:Epoch[100/800], Step[0200/0626], Avg Loss: 0.6814
-INFO:local_logger:Epoch[100/800], Step[0200/0626], Avg Loss: 0.6817
-INFO:local_logger:Epoch[100/800], Step[0300/0626], Avg Loss: 0.6816
-INFO:local_logger:Epoch[100/800], Step[0300/0626], Avg Loss: 0.6814
-INFO:local_logger:Epoch[100/800], Step[0300/0626], Avg Loss: 0.6817
-INFO:local_logger:Epoch[100/800], Step[0300/0626], Avg Loss: 0.6821
-INFO:local_logger:Epoch[100/800], Step[0300/0626], Avg Loss: 0.6812
-INFO:local_logger:Epoch[100/800], Step[0300/0626], Avg Loss: 0.6818
-INFO:local_logger:Epoch[100/800], Step[0300/0626], Avg Loss: 0.6812
-INFO:master_logger:Epoch[100/800], Step[0300/0626], Avg Loss: 0.6815
-INFO:local_logger:Epoch[100/800], Step[0300/0626], Avg Loss: 0.6807
-INFO:local_logger:Epoch[100/800], Step[0400/0626], Avg Loss: 0.6811
-INFO:local_logger:Epoch[100/800], Step[0400/0626], Avg Loss: 0.6810
-INFO:local_logger:Epoch[100/800], Step[0400/0626], Avg Loss: 0.6814
-INFO:local_logger:Epoch[100/800], Step[0400/0626], Avg Loss: 0.6808
-INFO:local_logger:Epoch[100/800], Step[0400/0626], Avg Loss: 0.6815
-INFO:master_logger:Epoch[100/800], Step[0400/0626], Avg Loss: 0.6814
-INFO:local_logger:Epoch[100/800], Step[0400/0626], Avg Loss: 0.6819
-INFO:local_logger:Epoch[100/800], Step[0400/0626], Avg Loss: 0.6813
-INFO:local_logger:Epoch[100/800], Step[0400/0626], Avg Loss: 0.6818
-INFO:local_logger:Epoch[100/800], Step[0500/0626], Avg Loss: 0.6815
-INFO:local_logger:Epoch[100/800], Step[0500/0626], Avg Loss: 0.6818
-INFO:local_logger:Epoch[100/800], Step[0500/0626], Avg Loss: 0.6808
-INFO:local_logger:Epoch[100/800], Step[0500/0626], Avg Loss: 0.6815
-INFO:local_logger:Epoch[100/800], Step[0500/0626], Avg Loss: 0.6812
-INFO:master_logger:Epoch[100/800], Step[0500/0626], Avg Loss: 0.6814
-INFO:local_logger:Epoch[100/800], Step[0500/0626], Avg Loss: 0.6815
-INFO:local_logger:Epoch[100/800], Step[0500/0626], Avg Loss: 0.6816
-INFO:local_logger:Epoch[100/800], Step[0500/0626], Avg Loss: 0.6813
-INFO:local_logger:Epoch[100/800], Step[0600/0626], Avg Loss: 0.6814
-INFO:local_logger:Epoch[100/800], Step[0600/0626], Avg Loss: 0.6817
-INFO:local_logger:Epoch[100/800], Step[0600/0626], Avg Loss: 0.6812
-INFO:local_logger:Epoch[100/800], Step[0600/0626], Avg Loss: 0.6812
-INFO:local_logger:Epoch[100/800], Step[0600/0626], Avg Loss: 0.6813
-INFO:local_logger:Epoch[100/800], Step[0600/0626], Avg Loss: 0.6810
-INFO:local_logger:Epoch[100/800], Step[0600/0626], Avg Loss: 0.6814
-INFO:master_logger:Epoch[100/800], Step[0600/0626], Avg Loss: 0.6813
-INFO:local_logger:Epoch[100/800], Step[0600/0626], Avg Loss: 0.6814
-INFO:local_logger:----- Epoch[100/800], Train Loss: 0.6815, time: 871.01
-INFO:local_logger:Now training epoch 101. LR=0.000156
-INFO:local_logger:----- Epoch[100/800], Train Loss: 0.6814, time: 870.82
-INFO:local_logger:Now training epoch 101. LR=0.000156
-INFO:local_logger:----- Epoch[100/800], Train Loss: 0.6814, time: 871.44
-INFO:local_logger:Now training epoch 101. LR=0.000156
-INFO:local_logger:----- Epoch[100/800], Train Loss: 0.6812, time: 871.50
-INFO:local_logger:Now training epoch 101. LR=0.000156
-INFO:local_logger:----- Epoch[100/800], Train Loss: 0.6812, time: 867.05
-INFO:master_logger:----- Epoch[100/800], Train Loss: 0.6813, time: 867.05
-INFO:local_logger:----- Epoch[100/800], Train Loss: 0.6811, time: 872.20
-INFO:local_logger:Now training epoch 101. LR=0.000156
-INFO:local_logger:----- Epoch[100/800], Train Loss: 0.6814, time: 870.95
-INFO:local_logger:Now training epoch 101. LR=0.000156
-INFO:local_logger:----- Epoch[100/800], Train Loss: 0.6814, time: 871.00
-INFO:local_logger:Now training epoch 101. LR=0.000156
-INFO:local_logger:----- Save model: ./output/train-20211219-17-07-40/MAE-Epoch-100-Loss-0.6812047341083004.pdparams
-INFO:local_logger:----- Save optim: ./output/train-20211219-17-07-40/MAE-Epoch-100-Loss-0.6812047341083004.pdopt
-INFO:master_logger:----- Save model: ./output/train-20211219-17-07-40/MAE-Epoch-100-Loss-0.6812047341083004.pdparams
-INFO:master_logger:----- Save optim: ./output/train-20211219-17-07-40/MAE-Epoch-100-Loss-0.6812047341083004.pdopt
-INFO:local_logger:Now training epoch 101. LR=0.000156
-INFO:master_logger:Now training epoch 101. LR=0.000156
-INFO:local_logger:Epoch[101/800], Step[0000/0626], Avg Loss: 0.6922
-INFO:local_logger:Epoch[101/800], Step[0000/0626], Avg Loss: 0.6755
-INFO:local_logger:Epoch[101/800], Step[0000/0626], Avg Loss: 0.6834
-INFO:master_logger:Epoch[101/800], Step[0000/0626], Avg Loss: 0.6808
-INFO:local_logger:Epoch[101/800], Step[0000/0626], Avg Loss: 0.6807
-INFO:local_logger:Epoch[101/800], Step[0000/0626], Avg Loss: 0.6772
-INFO:local_logger:Epoch[101/800], Step[0000/0626], Avg Loss: 0.6966
-INFO:local_logger:Epoch[101/800], Step[0000/0626], Avg Loss: 0.6690
-INFO:local_logger:Epoch[101/800], Step[0000/0626], Avg Loss: 0.6717
-INFO:local_logger:Epoch[101/800], Step[0100/0626], Avg Loss: 0.6810
-INFO:local_logger:Epoch[101/800], Step[0100/0626], Avg Loss: 0.6798
-INFO:local_logger:Epoch[101/800], Step[0100/0626], Avg Loss: 0.6819
-INFO:master_logger:Epoch[101/800], Step[0100/0626], Avg Loss: 0.6809
-INFO:local_logger:Epoch[101/800], Step[0100/0626], Avg Loss: 0.6809
-INFO:local_logger:Epoch[101/800], Step[0100/0626], Avg Loss: 0.6810
-INFO:local_logger:Epoch[101/800], Step[0100/0626], Avg Loss: 0.6805
-INFO:local_logger:Epoch[101/800], Step[0100/0626], Avg Loss: 0.6806
-INFO:local_logger:Epoch[101/800], Step[0100/0626], Avg Loss: 0.6813
-INFO:local_logger:Epoch[101/800], Step[0200/0626], Avg Loss: 0.6815
-INFO:local_logger:Epoch[101/800], Step[0200/0626], Avg Loss: 0.6813
-INFO:master_logger:Epoch[101/800], Step[0200/0626], Avg Loss: 0.6811
-INFO:local_logger:Epoch[101/800], Step[0200/0626], Avg Loss: 0.6817
-INFO:local_logger:Epoch[101/800], Step[0200/0626], Avg Loss: 0.6805
-INFO:local_logger:Epoch[101/800], Step[0200/0626], Avg Loss: 0.6808
-INFO:local_logger:Epoch[101/800], Step[0200/0626], Avg Loss: 0.6811
-INFO:local_logger:Epoch[101/800], Step[0200/0626], Avg Loss: 0.6806
-INFO:local_logger:Epoch[101/800], Step[0200/0626], Avg Loss: 0.6814
-INFO:local_logger:Epoch[101/800], Step[0300/0626], Avg Loss: 0.6809
-INFO:local_logger:Epoch[101/800], Step[0300/0626], Avg Loss: 0.6808
-INFO:local_logger:Epoch[101/800], Step[0300/0626], Avg Loss: 0.6812
-INFO:local_logger:Epoch[101/800], Step[0300/0626], Avg Loss: 0.6813
-INFO:local_logger:Epoch[101/800], Step[0300/0626], Avg Loss: 0.6807
-INFO:master_logger:Epoch[101/800], Step[0300/0626], Avg Loss: 0.6809
-INFO:local_logger:Epoch[101/800], Step[0300/0626], Avg Loss: 0.6807
-INFO:local_logger:Epoch[101/800], Step[0300/0626], Avg Loss: 0.6805
-INFO:local_logger:Epoch[101/800], Step[0300/0626], Avg Loss: 0.6812
-INFO:local_logger:Epoch[101/800], Step[0400/0626], Avg Loss: 0.6811
-INFO:local_logger:Epoch[101/800], Step[0400/0626], Avg Loss: 0.6804
-INFO:local_logger:Epoch[101/800], Step[0400/0626], Avg Loss: 0.6810
-INFO:local_logger:Epoch[101/800], Step[0400/0626], Avg Loss: 0.6806
-INFO:local_logger:Epoch[101/800], Step[0400/0626], Avg Loss: 0.6806
-INFO:local_logger:Epoch[101/800], Step[0400/0626], Avg Loss: 0.6810
-INFO:local_logger:Epoch[101/800], Step[0400/0626], Avg Loss: 0.6810
-INFO:local_logger:Epoch[101/800], Step[0400/0626], Avg Loss: 0.6810
-INFO:master_logger:Epoch[101/800], Step[0400/0626], Avg Loss: 0.6808
-INFO:local_logger:Epoch[101/800], Step[0500/0626], Avg Loss: 0.6808
-INFO:local_logger:Epoch[101/800], Step[0500/0626], Avg Loss: 0.6811
-INFO:local_logger:Epoch[101/800], Step[0500/0626], Avg Loss: 0.6805
-INFO:local_logger:Epoch[101/800], Step[0500/0626], Avg Loss: 0.6807
-INFO:local_logger:Epoch[101/800], Step[0500/0626], Avg Loss: 0.6808
-INFO:local_logger:Epoch[101/800], Step[0500/0626], Avg Loss: 0.6811
-INFO:local_logger:Epoch[101/800], Step[0500/0626], Avg Loss: 0.6810
-INFO:master_logger:Epoch[101/800], Step[0500/0626], Avg Loss: 0.6808
-INFO:local_logger:Epoch[101/800], Step[0500/0626], Avg Loss: 0.6805
-INFO:local_logger:Epoch[101/800], Step[0600/0626], Avg Loss: 0.6811
-INFO:local_logger:Epoch[101/800], Step[0600/0626], Avg Loss: 0.6805
-INFO:local_logger:Epoch[101/800], Step[0600/0626], Avg Loss: 0.6807
-INFO:local_logger:Epoch[101/800], Step[0600/0626], Avg Loss: 0.6806
-INFO:local_logger:Epoch[101/800], Step[0600/0626], Avg Loss: 0.6811
-INFO:local_logger:Epoch[101/800], Step[0600/0626], Avg Loss: 0.6806
-INFO:local_logger:Epoch[101/800], Step[0600/0626], Avg Loss: 0.6808
-INFO:master_logger:Epoch[101/800], Step[0600/0626], Avg Loss: 0.6808
-INFO:local_logger:Epoch[101/800], Step[0600/0626], Avg Loss: 0.6809
-INFO:local_logger:----- Epoch[101/800], Train Loss: 0.6805, time: 867.69
-INFO:local_logger:Now training epoch 102. LR=0.000156
-INFO:local_logger:----- Epoch[101/800], Train Loss: 0.6806, time: 868.18
-INFO:local_logger:Now training epoch 102. LR=0.000156
-INFO:local_logger:----- Epoch[101/800], Train Loss: 0.6806, time: 868.58
-INFO:local_logger:Now training epoch 102. LR=0.000156
-INFO:local_logger:----- Epoch[101/800], Train Loss: 0.6808, time: 864.53
-INFO:master_logger:----- Epoch[101/800], Train Loss: 0.6808, time: 864.53
-INFO:local_logger:----- Epoch[101/800], Train Loss: 0.6807, time: 868.26
-INFO:local_logger:Now training epoch 102. LR=0.000156
-INFO:local_logger:----- Epoch[101/800], Train Loss: 0.6810, time: 868.29
-INFO:local_logger:Now training epoch 102. LR=0.000156
-INFO:local_logger:----- Epoch[101/800], Train Loss: 0.6811, time: 868.42
-INFO:local_logger:Now training epoch 102. LR=0.000156
-INFO:local_logger:----- Epoch[101/800], Train Loss: 0.6812, time: 868.25
-INFO:local_logger:Now training epoch 102. LR=0.000156
-INFO:local_logger:----- Save model: ./output/train-20211219-17-07-40/MAE-Epoch-101-Loss-0.6808065795139766.pdparams
-INFO:local_logger:----- Save optim: ./output/train-20211219-17-07-40/MAE-Epoch-101-Loss-0.6808065795139766.pdopt
-INFO:master_logger:----- Save model: ./output/train-20211219-17-07-40/MAE-Epoch-101-Loss-0.6808065795139766.pdparams
-INFO:master_logger:----- Save optim: ./output/train-20211219-17-07-40/MAE-Epoch-101-Loss-0.6808065795139766.pdopt
-INFO:local_logger:Now training epoch 102. LR=0.000156
-INFO:master_logger:Now training epoch 102. LR=0.000156
-INFO:local_logger:Epoch[102/800], Step[0000/0626], Avg Loss: 0.6861
-INFO:master_logger:Epoch[102/800], Step[0000/0626], Avg Loss: 0.6794
-INFO:local_logger:Epoch[102/800], Step[0000/0626], Avg Loss: 0.6910
-INFO:local_logger:Epoch[102/800], Step[0000/0626], Avg Loss: 0.6753
-INFO:local_logger:Epoch[102/800], Step[0000/0626], Avg Loss: 0.6669
-INFO:local_logger:Epoch[102/800], Step[0000/0626], Avg Loss: 0.6722
-INFO:local_logger:Epoch[102/800], Step[0000/0626], Avg Loss: 0.6901
-INFO:local_logger:Epoch[102/800], Step[0000/0626], Avg Loss: 0.6797
-INFO:local_logger:Epoch[102/800], Step[0000/0626], Avg Loss: 0.6743
-INFO:local_logger:Epoch[102/800], Step[0100/0626], Avg Loss: 0.6830
-INFO:local_logger:Epoch[102/800], Step[0100/0626], Avg Loss: 0.6810
-INFO:local_logger:Epoch[102/800], Step[0100/0626], Avg Loss: 0.6822
-INFO:local_logger:Epoch[102/800], Step[0100/0626], Avg Loss: 0.6813
-INFO:local_logger:Epoch[102/800], Step[0100/0626], Avg Loss: 0.6817
-INFO:master_logger:Epoch[102/800], Step[0100/0626], Avg Loss: 0.6815
-INFO:local_logger:Epoch[102/800], Step[0100/0626], Avg Loss: 0.6808
-INFO:local_logger:Epoch[102/800], Step[0100/0626], Avg Loss: 0.6815
-INFO:local_logger:Epoch[102/800], Step[0100/0626], Avg Loss: 0.6804
-INFO:local_logger:Epoch[102/800], Step[0200/0626], Avg Loss: 0.6814
-INFO:local_logger:Epoch[102/800], Step[0200/0626], Avg Loss: 0.6806
-INFO:local_logger:Epoch[102/800], Step[0200/0626], Avg Loss: 0.6807
-INFO:master_logger:Epoch[102/800], Step[0200/0626], Avg Loss: 0.6811
-INFO:local_logger:Epoch[102/800], Step[0200/0626], Avg Loss: 0.6808
-INFO:local_logger:Epoch[102/800], Step[0200/0626], Avg Loss: 0.6819
-INFO:local_logger:Epoch[102/800], Step[0200/0626], Avg Loss: 0.6817
-INFO:local_logger:Epoch[102/800], Step[0200/0626], Avg Loss: 0.6815
-INFO:local_logger:Epoch[102/800], Step[0200/0626], Avg Loss: 0.6803
-INFO:local_logger:Epoch[102/800], Step[0300/0626], Avg Loss: 0.6811
-INFO:local_logger:Epoch[102/800], Step[0300/0626], Avg Loss: 0.6806
-INFO:local_logger:Epoch[102/800], Step[0300/0626], Avg Loss: 0.6815
-INFO:local_logger:Epoch[102/800], Step[0300/0626], Avg Loss: 0.6808
-INFO:local_logger:Epoch[102/800], Step[0300/0626], Avg Loss: 0.6812
-INFO:local_logger:Epoch[102/800], Step[0300/0626], Avg Loss: 0.6814
-INFO:master_logger:Epoch[102/800], Step[0300/0626], Avg Loss: 0.6812
-INFO:local_logger:Epoch[102/800], Step[0300/0626], Avg Loss: 0.6821
-INFO:local_logger:Epoch[102/800], Step[0300/0626], Avg Loss: 0.6806
-INFO:local_logger:Epoch[102/800], Step[0400/0626], Avg Loss: 0.6816
-INFO:local_logger:Epoch[102/800], Step[0400/0626], Avg Loss: 0.6811
-INFO:local_logger:Epoch[102/800], Step[0400/0626], Avg Loss: 0.6804
-INFO:local_logger:Epoch[102/800], Step[0400/0626], Avg Loss: 0.6812
-INFO:local_logger:Epoch[102/800], Step[0400/0626], Avg Loss: 0.6812
-INFO:local_logger:Epoch[102/800], Step[0400/0626], Avg Loss: 0.6805
-INFO:local_logger:Epoch[102/800], Step[0400/0626], Avg Loss: 0.6805
-INFO:local_logger:Epoch[102/800], Step[0400/0626], Avg Loss: 0.6810
-INFO:master_logger:Epoch[102/800], Step[0400/0626], Avg Loss: 0.6809
-INFO:local_logger:Epoch[102/800], Step[0500/0626], Avg Loss: 0.6810
-INFO:local_logger:Epoch[102/800], Step[0500/0626], Avg Loss: 0.6815
-INFO:local_logger:Epoch[102/800], Step[0500/0626], Avg Loss: 0.6812
-INFO:local_logger:Epoch[102/800], Step[0500/0626], Avg Loss: 0.6809
-INFO:local_logger:Epoch[102/800], Step[0500/0626], Avg Loss: 0.6810
-INFO:local_logger:Epoch[102/800], Step[0500/0626], Avg Loss: 0.6807
-INFO:local_logger:Epoch[102/800], Step[0500/0626], Avg Loss: 0.6820
-INFO:local_logger:Epoch[102/800], Step[0500/0626], Avg Loss: 0.6811
-INFO:master_logger:Epoch[102/800], Step[0500/0626], Avg Loss: 0.6812
-INFO:local_logger:Epoch[102/800], Step[0600/0626], Avg Loss: 0.6808
-INFO:local_logger:Epoch[102/800], Step[0600/0626], Avg Loss: 0.6811
-INFO:local_logger:Epoch[102/800], Step[0600/0626], Avg Loss: 0.6817
-INFO:local_logger:Epoch[102/800], Step[0600/0626], Avg Loss: 0.6805
-INFO:local_logger:Epoch[102/800], Step[0600/0626], Avg Loss: 0.6815
-INFO:local_logger:Epoch[102/800], Step[0600/0626], Avg Loss: 0.6810
-INFO:master_logger:Epoch[102/800], Step[0600/0626], Avg Loss: 0.6811
-INFO:local_logger:Epoch[102/800], Step[0600/0626], Avg Loss: 0.6809
-INFO:local_logger:Epoch[102/800], Step[0600/0626], Avg Loss: 0.6813
-INFO:local_logger:----- Epoch[102/800], Train Loss: 0.6812, time: 872.04
-INFO:local_logger:Now training epoch 103. LR=0.000156
-INFO:local_logger:----- Epoch[102/800], Train Loss: 0.6812, time: 868.78
-INFO:master_logger:----- Epoch[102/800], Train Loss: 0.6811, time: 868.78
-INFO:local_logger:----- Epoch[102/800], Train Loss: 0.6809, time: 872.56
-INFO:local_logger:Now training epoch 103. LR=0.000156
-INFO:local_logger:----- Epoch[102/800], Train Loss: 0.6805, time: 872.77
-INFO:local_logger:Now training epoch 103. LR=0.000156
-INFO:local_logger:----- Epoch[102/800], Train Loss: 0.6808, time: 873.71
-INFO:local_logger:Now training epoch 103. LR=0.000156
-INFO:local_logger:----- Epoch[102/800], Train Loss: 0.6809, time: 873.10
-INFO:local_logger:Now training epoch 103. LR=0.000156
-INFO:local_logger:----- Epoch[102/800], Train Loss: 0.6815, time: 873.19
-INFO:local_logger:Now training epoch 103. LR=0.000156
-INFO:local_logger:----- Epoch[102/800], Train Loss: 0.6815, time: 873.09
-INFO:local_logger:Now training epoch 103. LR=0.000156
-INFO:local_logger:----- Save model: ./output/train-20211219-17-07-40/MAE-Epoch-102-Loss-0.681159841605351.pdparams
-INFO:local_logger:----- Save optim: ./output/train-20211219-17-07-40/MAE-Epoch-102-Loss-0.681159841605351.pdopt
-INFO:master_logger:----- Save model: ./output/train-20211219-17-07-40/MAE-Epoch-102-Loss-0.681159841605351.pdparams
-INFO:master_logger:----- Save optim: ./output/train-20211219-17-07-40/MAE-Epoch-102-Loss-0.681159841605351.pdopt
-INFO:local_logger:Now training epoch 103. LR=0.000156
-INFO:master_logger:Now training epoch 103. LR=0.000156
-INFO:local_logger:Epoch[103/800], Step[0000/0626], Avg Loss: 0.6787
-INFO:master_logger:Epoch[103/800], Step[0000/0626], Avg Loss: 0.6808
-INFO:local_logger:Epoch[103/800], Step[0000/0626], Avg Loss: 0.6646
-INFO:local_logger:Epoch[103/800], Step[0000/0626], Avg Loss: 0.6794
-INFO:local_logger:Epoch[103/800], Step[0000/0626], Avg Loss: 0.6850
-INFO:local_logger:Epoch[103/800], Step[0000/0626], Avg Loss: 0.6838
-INFO:local_logger:Epoch[103/800], Step[0000/0626], Avg Loss: 0.6909
-INFO:local_logger:Epoch[103/800], Step[0000/0626], Avg Loss: 0.6721
-INFO:local_logger:Epoch[103/800], Step[0000/0626], Avg Loss: 0.6917
-INFO:local_logger:Epoch[103/800], Step[0100/0626], Avg Loss: 0.6806
-INFO:local_logger:Epoch[103/800], Step[0100/0626], Avg Loss: 0.6811
-INFO:master_logger:Epoch[103/800], Step[0100/0626], Avg Loss: 0.6812
-INFO:local_logger:Epoch[103/800], Step[0100/0626], Avg Loss: 0.6829
-INFO:local_logger:Epoch[103/800], Step[0100/0626], Avg Loss: 0.6810
-INFO:local_logger:Epoch[103/800], Step[0100/0626], Avg Loss: 0.6795
-INFO:local_logger:Epoch[103/800], Step[0100/0626], Avg Loss: 0.6823
-INFO:local_logger:Epoch[103/800], Step[0100/0626], Avg Loss: 0.6818
-INFO:local_logger:Epoch[103/800], Step[0100/0626], Avg Loss: 0.6802
-INFO:local_logger:Epoch[103/800], Step[0200/0626], Avg Loss: 0.6799
-INFO:local_logger:Epoch[103/800], Step[0200/0626], Avg Loss: 0.6806
-INFO:local_logger:Epoch[103/800], Step[0200/0626], Avg Loss: 0.6805
-INFO:local_logger:Epoch[103/800], Step[0200/0626], Avg Loss: 0.6810
-INFO:master_logger:Epoch[103/800], Step[0200/0626], Avg Loss: 0.6805
-INFO:local_logger:Epoch[103/800], Step[0200/0626], Avg Loss: 0.6815
-INFO:local_logger:Epoch[103/800], Step[0200/0626], Avg Loss: 0.6804
-INFO:local_logger:Epoch[103/800], Step[0200/0626], Avg Loss: 0.6797
-INFO:local_logger:Epoch[103/800], Step[0200/0626], Avg Loss: 0.6806
-INFO:local_logger:Epoch[103/800], Step[0300/0626], Avg Loss: 0.6807
-INFO:local_logger:Epoch[103/800], Step[0300/0626], Avg Loss: 0.6803
-INFO:local_logger:Epoch[103/800], Step[0300/0626], Avg Loss: 0.6814
-INFO:local_logger:Epoch[103/800], Step[0300/0626], Avg Loss: 0.6799
-INFO:local_logger:Epoch[103/800], Step[0300/0626], Avg Loss: 0.6803
-INFO:local_logger:Epoch[103/800], Step[0300/0626], Avg Loss: 0.6801
-INFO:local_logger:Epoch[103/800], Step[0300/0626], Avg Loss: 0.6806
-INFO:master_logger:Epoch[103/800], Step[0300/0626], Avg Loss: 0.6805
-INFO:local_logger:Epoch[103/800], Step[0300/0626], Avg Loss: 0.6805
-INFO:local_logger:Epoch[103/800], Step[0400/0626], Avg Loss: 0.6807
-INFO:local_logger:Epoch[103/800], Step[0400/0626], Avg Loss: 0.6809
-INFO:local_logger:Epoch[103/800], Step[0400/0626], Avg Loss: 0.6802
-INFO:local_logger:Epoch[103/800], Step[0400/0626], Avg Loss: 0.6800
-INFO:local_logger:Epoch[103/800], Step[0400/0626], Avg Loss: 0.6805
-INFO:local_logger:Epoch[103/800], Step[0400/0626], Avg Loss: 0.6805
-INFO:master_logger:Epoch[103/800], Step[0400/0626], Avg Loss: 0.6806
-INFO:local_logger:Epoch[103/800], Step[0400/0626], Avg Loss: 0.6814
-INFO:local_logger:Epoch[103/800], Step[0400/0626], Avg Loss: 0.6803
-INFO:local_logger:Epoch[103/800], Step[0500/0626], Avg Loss: 0.6802
-INFO:local_logger:Epoch[103/800], Step[0500/0626], Avg Loss: 0.6812
-INFO:local_logger:Epoch[103/800], Step[0500/0626], Avg Loss: 0.6802
-INFO:local_logger:Epoch[103/800], Step[0500/0626], Avg Loss: 0.6807
-INFO:local_logger:Epoch[103/800], Step[0500/0626], Avg Loss: 0.6808
-INFO:local_logger:Epoch[103/800], Step[0500/0626], Avg Loss: 0.6809
-INFO:local_logger:Epoch[103/800], Step[0500/0626], Avg Loss: 0.6804
-INFO:master_logger:Epoch[103/800], Step[0500/0626], Avg Loss: 0.6806
-INFO:local_logger:Epoch[103/800], Step[0500/0626], Avg Loss: 0.6804
-INFO:local_logger:Epoch[103/800], Step[0600/0626], Avg Loss: 0.6806
-INFO:local_logger:Epoch[103/800], Step[0600/0626], Avg Loss: 0.6809
-INFO:local_logger:Epoch[103/800], Step[0600/0626], Avg Loss: 0.6801
-INFO:local_logger:Epoch[103/800], Step[0600/0626], Avg Loss: 0.6802
-INFO:master_logger:Epoch[103/800], Step[0600/0626], Avg Loss: 0.6805
-INFO:local_logger:Epoch[103/800], Step[0600/0626], Avg Loss: 0.6802
-INFO:local_logger:Epoch[103/800], Step[0600/0626], Avg Loss: 0.6809
-INFO:local_logger:Epoch[103/800], Step[0600/0626], Avg Loss: 0.6802
-INFO:local_logger:Epoch[103/800], Step[0600/0626], Avg Loss: 0.6806
-INFO:local_logger:----- Epoch[103/800], Train Loss: 0.6801, time: 859.70
-INFO:local_logger:Now training epoch 104. LR=0.000156
-INFO:local_logger:----- Epoch[103/800], Train Loss: 0.6803, time: 859.89
-INFO:local_logger:Now training epoch 104. LR=0.000156
-INFO:local_logger:----- Epoch[103/800], Train Loss: 0.6805, time: 859.89
-INFO:local_logger:Now training epoch 104. LR=0.000156
-INFO:local_logger:----- Epoch[103/800], Train Loss: 0.6809, time: 856.80
-INFO:master_logger:----- Epoch[103/800], Train Loss: 0.6805, time: 856.80
-INFO:local_logger:----- Epoch[103/800], Train Loss: 0.6806, time: 860.28
-INFO:local_logger:Now training epoch 104. LR=0.000156
-INFO:local_logger:----- Epoch[103/800], Train Loss: 0.6801, time: 859.89
-INFO:local_logger:Now training epoch 104. LR=0.000156
-INFO:local_logger:----- Epoch[103/800], Train Loss: 0.6802, time: 859.91
-INFO:local_logger:Now training epoch 104. LR=0.000156
-INFO:local_logger:----- Epoch[103/800], Train Loss: 0.6809, time: 860.42
-INFO:local_logger:Now training epoch 104. LR=0.000156
-INFO:local_logger:----- Save model: ./output/train-20211219-17-07-40/MAE-Epoch-103-Loss-0.6808819352382769.pdparams
-INFO:local_logger:----- Save optim: ./output/train-20211219-17-07-40/MAE-Epoch-103-Loss-0.6808819352382769.pdopt
-INFO:master_logger:----- Save model: ./output/train-20211219-17-07-40/MAE-Epoch-103-Loss-0.6808819352382769.pdparams
-INFO:master_logger:----- Save optim: ./output/train-20211219-17-07-40/MAE-Epoch-103-Loss-0.6808819352382769.pdopt
-INFO:local_logger:Now training epoch 104. LR=0.000156
-INFO:master_logger:Now training epoch 104. LR=0.000156
-INFO:local_logger:Epoch[104/800], Step[0000/0626], Avg Loss: 0.6583
-INFO:local_logger:Epoch[104/800], Step[0000/0626], Avg Loss: 0.6660
-INFO:local_logger:Epoch[104/800], Step[0000/0626], Avg Loss: 0.6799
-INFO:master_logger:Epoch[104/800], Step[0000/0626], Avg Loss: 0.6722
-INFO:local_logger:Epoch[104/800], Step[0000/0626], Avg Loss: 0.6668
-INFO:local_logger:Epoch[104/800], Step[0000/0626], Avg Loss: 0.6885
-INFO:local_logger:Epoch[104/800], Step[0000/0626], Avg Loss: 0.6790
-INFO:local_logger:Epoch[104/800], Step[0000/0626], Avg Loss: 0.6707
-INFO:local_logger:Epoch[104/800], Step[0000/0626], Avg Loss: 0.6680
-
-
---------------------------------------
-C++ Traceback (most recent call last):
---------------------------------------
-0 paddle::platform::GpuMemcpySync(void*, void const*, unsigned long, cudaMemcpyKind)
-
-----------------------
-Error Message Summary:
-----------------------
-FatalError: `Termination signal` is detected by the operating system.
- [TimeInfo: *** Aborted at 1639995159 (unix time) try "date -d @1639995159" if you are using GNU date ***]
- [SignalInfo: *** SIGTERM (@0x84e5) received by PID 25456 (TID 0x7f771efbe700) from PID 34021 ***]
-
-
-
---------------------------------------
-C++ Traceback (most recent call last):
---------------------------------------
-0 paddle::platform::GpuMemcpySync(void*, void const*, unsigned long, cudaMemcpyKind)
-
-----------------------
-Error Message Summary:
-----------------------
-FatalError: `Termination signal` is detected by the operating system.
- [TimeInfo: *** Aborted at 1639995171 (unix time) try "date -d @1639995171" if you are using GNU date ***]
- [SignalInfo: *** SIGTERM (@0x84e5) received by PID 25537 (TID 0x7fcf37fc6700) from PID 34021 ***]
-
-Traceback (most recent call last):
- File "main_multi_gpu_pretrain.py", line 416, in
- main()
- File "main_multi_gpu_pretrain.py", line 412, in main
- dist.spawn(main_worker, args=(config, dataset_train, ), nprocs=config.NGPUS)
- File "/opt/conda/envs/py36/lib/python3.6/site-packages/paddle/distributed/spawn.py", line 502, in spawn
- while not context.join():
- File "/opt/conda/envs/py36/lib/python3.6/site-packages/paddle/distributed/spawn.py", line 312, in join
- self._throw_exception(error_index)
- File "/opt/conda/envs/py36/lib/python3.6/site-packages/paddle/distributed/spawn.py", line 320, in _throw_exception
- (error_index, name))
-Exception: Process 7 terminated with signal SIGTERM.
-/opt/conda/envs/py36/lib/python3.6/multiprocessing/semaphore_tracker.py:143: UserWarning: semaphore_tracker: There appear to be 14 leaked semaphores to clean up at shutdown
- len(cache))
-/opt/conda/envs/py36/lib/python3.6/multiprocessing/semaphore_tracker.py:143: UserWarning: semaphore_tracker: There appear to be 14 leaked semaphores to clean up at shutdown
- len(cache))
-/opt/conda/envs/py36/lib/python3.6/multiprocessing/semaphore_tracker.py:143: UserWarning: semaphore_tracker: There appear to be 14 leaked semaphores to clean up at shutdown
- len(cache))
-/opt/conda/envs/py36/lib/python3.6/multiprocessing/semaphore_tracker.py:143: UserWarning: semaphore_tracker: There appear to be 14 leaked semaphores to clean up at shutdown
- len(cache))
-/opt/conda/envs/py36/lib/python3.6/multiprocessing/semaphore_tracker.py:143: UserWarning: semaphore_tracker: There appear to be 14 leaked semaphores to clean up at shutdown
- len(cache))
-/opt/conda/envs/py36/lib/python3.6/multiprocessing/semaphore_tracker.py:143: UserWarning: semaphore_tracker: There appear to be 14 leaked semaphores to clean up at shutdown
- len(cache))
-/opt/conda/envs/py36/lib/python3.6/multiprocessing/semaphore_tracker.py:143: UserWarning: semaphore_tracker: There appear to be 14 leaked semaphores to clean up at shutdown
- len(cache))
-/opt/conda/envs/py36/lib/python3.6/multiprocessing/semaphore_tracker.py:143: UserWarning: semaphore_tracker: There appear to be 14 leaked semaphores to clean up at shutdown
- len(cache))
-/opt/conda/envs/py36/lib/python3.6/multiprocessing/semaphore_tracker.py:143: UserWarning: semaphore_tracker: There appear to be 20 leaked semaphores to clean up at shutdown
- len(cache))
-/opt/conda/envs/py36/lib/python3.6/multiprocessing/semaphore_tracker.py:143: UserWarning: semaphore_tracker: There appear to be 20 leaked semaphores to clean up at shutdown
- len(cache))
-/opt/conda/envs/py36/lib/python3.6/multiprocessing/semaphore_tracker.py:143: UserWarning: semaphore_tracker: There appear to be 20 leaked semaphores to clean up at shutdown
- len(cache))
-/opt/conda/envs/py36/lib/python3.6/multiprocessing/semaphore_tracker.py:143: UserWarning: semaphore_tracker: There appear to be 20 leaked semaphores to clean up at shutdown
- len(cache))
diff --git a/image_classification/MAE/random_erasing.py b/image_classification/MAE/random_erasing.py
new file mode 100644
index 00000000..31eea465
--- /dev/null
+++ b/image_classification/MAE/random_erasing.py
@@ -0,0 +1,118 @@
+# Copyright (c) 2021 PPViT Authors. All Rights Reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+
+"""Random Erasing for image tensor"""
+
+import random
+import math
+import paddle
+
+
+def _get_pixels(per_pixel, rand_color, patch_size, dtype="float32"):
+ if per_pixel:
+ return paddle.normal(shape=patch_size).astype(dtype)
+ if rand_color:
+ return paddle.normal(shape=(patch_size[0], 1, 1)).astype(dtype)
+ return paddle.zeros((patch_size[0], 1, 1)).astype(dtype)
+
+
+class RandomErasing(object):
+ """
+ Args:
+ prob: probability of performing random erasing
+ min_area: Minimum percentage of erased area wrt input image area
+ max_area: Maximum percentage of erased area wrt input image area
+ min_aspect: Minimum aspect ratio of earsed area
+ max_aspect: Maximum aspect ratio of earsed area
+ mode: pixel color mode, in ['const', 'rand', 'pixel']
+ 'const' - erase block is constant valued 0 for all channels
+ 'rand' - erase block is valued random color (same per-channel)
+ 'pixel' - erase block is vauled random color per pixel
+ min_count: Minimum # of ereasing blocks per image.
+ max_count: Maximum # of ereasing blocks per image. Area per box is scaled by count
+ per-image count is randomly chosen between min_count to max_count
+ """
+ def __init__(self, prob=0.5, min_area=0.02, max_area=1/3, min_aspect=0.3, max_aspect=None,
+ mode='const', min_count=1, max_count=None, num_splits=0):
+ self.prob = prob
+ self.min_area = min_area
+ self.max_area = max_area
+ max_aspect = max_aspect or 1 / min_aspect
+ self.log_aspect_ratio = (math.log(min_aspect), math.log(max_aspect))
+ self.min_count = min_count
+ self.max_count = max_count or min_count
+ self.num_splits = num_splits
+ mode = mode.lower()
+ self.rand_color = False
+ self.per_pixel = False
+ if mode == "rand":
+ self.rand_color = True
+ elif mode == "pixel":
+ self.per_pixel = True
+ else:
+ assert not mode or mode == "const"
+
+ def _erase(self, img, chan, img_h, img_w, dtype):
+ if random.random() > self.prob:
+ return
+ area = img_h * img_w
+ count = self.min_count if self.min_count == self.max_count else \
+ random.randint(self.min_count, self.max_count)
+ for _ in range(count):
+ for attempt in range(10):
+ target_area = random.uniform(self.min_area, self.max_area) * area / count
+ aspect_ratio = math.exp(random.uniform(*self.log_aspect_ratio))
+ h = int(round(math.sqrt(target_area * aspect_ratio)))
+ w = int(round(math.sqrt(target_area / aspect_ratio)))
+ if w < img_w and h < img_h:
+ top = random.randint(0, img_h - h)
+ left = random.randint(0, img_w - w)
+ img[:, top:top+h, left:left+w] = _get_pixels(
+ self.per_pixel, self.rand_color, (chan, h, w),
+ dtype=dtype)
+ break
+
+ def __call__(self, input):
+ if len(input.shape) == 3:
+ self._erase(input, *input.shape, input.dtype)
+ else:
+ batch_size, chan, img_h, img_w = input.shape
+ batch_start = batch_size // self.num_splits if self.num_splits > 1 else 0
+ for i in range(batch_start, batch_size):
+ self._erase(input[i], chan, img_h, img_w, input.dtype)
+ return input
+
+
+
+#def main():
+# re = RandomErasing(prob=1.0, min_area=0.2, max_area=0.6, mode='rand')
+# #re = RandomErasing(prob=1.0, min_area=0.2, max_area=0.6, mode='const')
+# #re = RandomErasing(prob=1.0, min_area=0.2, max_area=0.6, mode='pixel')
+# import PIL.Image as Image
+# import numpy as np
+# paddle.set_device('cpu')
+# img = paddle.to_tensor(np.asarray(Image.open('./lenna.png'))).astype('float32')
+# img = img / 255.0
+# img = paddle.transpose(img, [2, 0, 1])
+# new_img = re(img)
+# new_img = new_img * 255.0
+# new_img = paddle.transpose(new_img, [1, 2, 0])
+# new_img = new_img.cpu().numpy()
+# new_img = Image.fromarray(new_img.astype('uint8'))
+# new_img.save('./res.png')
+#
+#
+#
+#if __name__ == "__main__":
+# main()
diff --git a/image_classification/MAE/run_finetune.sh b/image_classification/MAE/run_finetune.sh
deleted file mode 100644
index c4d60575..00000000
--- a/image_classification/MAE/run_finetune.sh
+++ /dev/null
@@ -1,8 +0,0 @@
-CUDA_VISIBLE_DEVICES=0 \
-python main_single_gpu_finetune.py \
--cfg='./configs/vit_base_patch16_224_finetune.yaml' \
--dataset='imagenet2012' \
--batch_size=8 \
--data_path='/dataset/imagenet' \
--amp \
--pretrained='./output/train-20211203-14-42-46/MAE-Epoch-10-Loss-0'
diff --git a/image_classification/MAE/run_finetune_multi.sh b/image_classification/MAE/run_finetune_multi.sh
index 719a5cd1..7d369a54 100644
--- a/image_classification/MAE/run_finetune_multi.sh
+++ b/image_classification/MAE/run_finetune_multi.sh
@@ -2,6 +2,7 @@ CUDA_VISIBLE_DEVICES=0,1 \
python main_multi_gpu_finetune.py \
-cfg='./configs/vit_base_patch16_224_finetune.yaml' \
-dataset='imagenet2012' \
--batch_size=8 \
+-batch_size=2 \
-data_path='/dataset/imagenet' \
-amp \
+-pretrained='./output/train-20220125-17-48-06/PRETRAIN-Epoch-99-Loss-0.5566961133140487'
diff --git a/image_classification/MAE/run_linear_probe_multi.sh b/image_classification/MAE/run_linear_probe_multi.sh
new file mode 100644
index 00000000..5d8ffd72
--- /dev/null
+++ b/image_classification/MAE/run_linear_probe_multi.sh
@@ -0,0 +1,8 @@
+CUDA_VISIBLE_DEVICES=0,1 \
+python main_multi_gpu_linearprobe.py \
+-cfg='./configs/vit_base_patch16_224_linearprobe.yaml' \
+-dataset='imagenet2012' \
+-batch_size=2 \
+-data_path='/dataset/imagenet' \
+-amp \
+-pretrained='./output/train-20220125-17-48-06/PRETRAIN-Epoch-99-Loss-0.5566961133140487'
diff --git a/image_classification/MAE/run_pretrain.sh b/image_classification/MAE/run_pretrain.sh
deleted file mode 100644
index 8c5b1b7b..00000000
--- a/image_classification/MAE/run_pretrain.sh
+++ /dev/null
@@ -1,8 +0,0 @@
-CUDA_VISIBLE_DEVICES=0 \
-python main_single_gpu_pretrain.py \
--cfg='./configs/vit_base_patch16_224_pretrain.yaml' \
--dataset='imagenet2012' \
--batch_size=8 \
--data_path='/dataset/imagenet' \
--mae_pretrain \
-#-amp
diff --git a/image_classification/MAE/run_pretrain_multi.sh b/image_classification/MAE/run_pretrain_multi.sh
index 6fb6b864..940fa6dd 100644
--- a/image_classification/MAE/run_pretrain_multi.sh
+++ b/image_classification/MAE/run_pretrain_multi.sh
@@ -1,8 +1,7 @@
-CUDA_VISIBLE_DEVICES=0,1,2,3,4 \
+CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 \
python main_multi_gpu_pretrain.py \
--cfg='./configs/vit_base_patch16_224_pretrain_dec1.yaml' \
+-cfg='./configs/vit_base_patch16_224_pretrain.yaml' \
-dataset='imagenet2012' \
--batch_size=8 \
+-batch_size=256 \
-data_path='/dataset/imagenet' \
--mae_pretrain \
-#-amp
+-amp
diff --git a/image_classification/MAE/run_pretrain_multi_resume.sh b/image_classification/MAE/run_pretrain_multi_resume.sh
deleted file mode 100644
index 1ff2fd94..00000000
--- a/image_classification/MAE/run_pretrain_multi_resume.sh
+++ /dev/null
@@ -1,10 +0,0 @@
-CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 \
-python main_multi_gpu_pretrain.py \
--cfg='./configs/vit_base_patch16_224_pretrain.yaml' \
--dataset='imagenet2012' \
--batch_size=256 \
--data_path='/dataset/imagenet' \
--resume='./output/train-20211210-08-41-14/MAE-Epoch-12-Loss-0.9377176860235059' \
--last_epoch=12 \
--mae_pretrain \
--amp
diff --git a/image_classification/MAE/stat_define.py b/image_classification/MAE/stat_define.py
deleted file mode 100644
index 963482d7..00000000
--- a/image_classification/MAE/stat_define.py
+++ /dev/null
@@ -1,61 +0,0 @@
-import os
-import glob
-import paddle
-from config import get_config
-from transformer import build_mae_pretrain as build_model
-
-def count_gelu(layer, inputs, output):
- activation_flops = 8
- x = inputs[0]
- num = x.numel()
- layer.total_ops += num * activation_flops
-
-
-def count_softmax(layer, inputs, output):
- softmax_flops = 5 # max/substract, exp, sum, divide
- x = inputs[0]
- num = x.numel()
- layer.total_ops += num * softmax_flops
-
-
-def count_layernorm(layer, inputs, output):
- layer_norm_flops = 5 # get mean (sum), get variance (square and sum), scale(multiply)
- x = inputs[0]
- num = x.numel()
- layer.total_ops += num * layer_norm_flops
-
-
-cfg = './configs/vit_large_patch32_384.yaml'
-#input_size = (1, 3, 224, 224)
-input_size = (1, 3, 384, 384)
-config = get_config(cfg)
-model = build_model(config)
-
-custom_ops = {paddle.nn.GELU: count_gelu,
- paddle.nn.LayerNorm: count_layernorm,
- paddle.nn.Softmax: count_softmax,
- }
-print(os.path.basename(cfg))
-paddle.flops(model,
- input_size=input_size,
- custom_ops=custom_ops,
- print_detail=False)
-
-
-#for cfg in glob.glob('./configs/*.yaml'):
-# #cfg = './configs/swin_base_patch4_window7_224.yaml'
-# input_size = (1, 3, int(cfg[-8:-5]), int(cfg[-8:-5]))
-# config = get_config(cfg)
-# model = build_model(config)
-#
-#
-# custom_ops = {paddle.nn.GELU: count_gelu,
-# paddle.nn.LayerNorm: count_layernorm,
-# paddle.nn.Softmax: count_softmax,
-# }
-# print(os.path.basename(cfg))
-# paddle.flops(model,
-# input_size=input_size,
-# custom_ops=custom_ops,
-# print_detail=False)
-# print('-----------')
diff --git a/image_classification/MAE/tests/__init__.py b/image_classification/MAE/tests/__init__.py
deleted file mode 100644
index 84952a81..00000000
--- a/image_classification/MAE/tests/__init__.py
+++ /dev/null
@@ -1 +0,0 @@
-# init
\ No newline at end of file
diff --git a/image_classification/MAE/tests/test_config.py b/image_classification/MAE/tests/test_config.py
deleted file mode 100644
index 6806e8a1..00000000
--- a/image_classification/MAE/tests/test_config.py
+++ /dev/null
@@ -1,72 +0,0 @@
-# Copyright (c) 2021 PPViT Authors. All Rights Reserved.
-#
-# Licensed under the Apache License, Version 2.0 (the "License");
-# you may not use this file except in compliance with the License.
-# You may obtain a copy of the License at
-#
-# http://www.apache.org/licenses/LICENSE-2.0
-#
-# Unless required by applicable law or agreed to in writing, software
-# distributed under the License is distributed on an "AS IS" BASIS,
-# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
-# See the License for the specific language governing permissions and
-# limitations under the License.
-
-import unittest
-import argparse
-from config import update_config, get_config
-
-class ConfigTest(unittest.TestCase):
- def setUp(self):
- parser = argparse.ArgumentParser('')
- parser.add_argument('-cfg', type=str, default=None)
- parser.add_argument('-dataset', type=str, default="cifar10")
- parser.add_argument('-batch_size', type=int, default=128)
- parser.add_argument('-image_size', type=int, default=256)
- parser.add_argument('-ngpus', type=int, default=None)
- parser.add_argument('-data_path', type=str, default='/cifar10/')
- parser.add_argument('-eval', action='store_false') # enable eval
- parser.add_argument('-pretrained', type=str, default='pretrained')
- parser.add_argument('-resume', type=str, default=None)
- parser.add_argument('-last_epoch', type=int, default=None)
- self.args = parser.parse_args()
-
- def tearDown(self):
- pass
-
- def test_update_config(self):
- config = get_config()
- config = update_config(config, self.args)
-
- self.assertEqual(config.DATA.DATASET, 'cifar10')
- self.assertEqual(config.DATA.BATCH_SIZE, 128)
- self.assertEqual(config.DATA.IMAGE_SIZE, 256)
- self.assertEqual(config.DATA.DATA_PATH, '/cifar10/')
- self.assertEqual(config.EVAL, True)
- self.assertEqual(config.DATA.BATCH_SIZE_EVAL, 128)
- self.assertEqual(config.MODEL.PRETRAINED, 'pretrained')
-
- def test_update_config_from_file(self):
- config = get_config()
- self.args.cfg = './tests/test_config.yaml'
- self.args.image_size = None
- self.args.ngpus = None
- config = update_config(config, self.args)
-
- self.assertEqual(config.DATA.IMAGE_SIZE, 384)
- self.assertEqual(config.DATA.CROP_PCT, 1.0)
-
- self.assertEqual(config.MODEL.TRANS.PATCH_SIZE, 16)
- self.assertEqual(config.MODEL.TRANS.EMBED_DIM, 768)
- self.assertEqual(config.MODEL.TRANS.MLP_RATIO, 4.0)
- self.assertEqual(config.MODEL.TRANS.DEPTH, 12)
- self.assertEqual(config.MODEL.TRANS.NUM_HEADS, 12)
- self.assertEqual(config.MODEL.TRANS.QKV_BIAS, True)
-
- self.assertEqual(config.MODEL.NAME, 'vit_base_patch16_224')
- self.assertEqual(config.MODEL.TYPE, 'ViT')
-
- def test_get_config(self):
- config1 = get_config()
- config2 = get_config()
- self.assertEqual(config1, config2)
diff --git a/image_classification/MAE/tests/test_config.yaml b/image_classification/MAE/tests/test_config.yaml
deleted file mode 100644
index 19709906..00000000
--- a/image_classification/MAE/tests/test_config.yaml
+++ /dev/null
@@ -1,14 +0,0 @@
-DATA:
- IMAGE_SIZE: 384
- CROP_PCT: 1.0
-MODEL:
- TYPE: ViT
- NAME: vit_base_patch16_224
- TRANS:
- PATCH_SIZE: 16
- EMBED_DIM: 768
- MLP_RATIO: 4.0
- DEPTH: 12
- NUM_HEADS: 12
- QKV_BIAS: true
-
diff --git a/image_classification/MAE/tests/test_datasets.py b/image_classification/MAE/tests/test_datasets.py
deleted file mode 100644
index 79952137..00000000
--- a/image_classification/MAE/tests/test_datasets.py
+++ /dev/null
@@ -1,147 +0,0 @@
-# Copyright (c) 2021 PPViT Authors. All Rights Reserved.
-#
-# Licensed under the Apache License, Version 2.0 (the "License");
-# you may not use this file except in compliance with the License.
-# You may obtain a copy of the License at
-#
-# http://www.apache.org/licenses/LICENSE-2.0
-#
-# Unless required by applicable law or agreed to in writing, software
-# distributed under the License is distributed on an "AS IS" BASIS,
-# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
-# See the License for the specific language governing permissions and
-# limitations under the License.
-
-import unittest
-import argparse
-from config import *
-from datasets import *
-from paddle.io import DataLoader
-#from multiprocessing import SimpleQueue
-
-#paddle.set_device('cpu')
-
-class DatasetTest(unittest.TestCase):
- @classmethod
- def setUpClass(cls):
- parser = argparse.ArgumentParser('')
- parser.add_argument('-cfg', type=str, default=None)
- parser.add_argument('-dataset', type=str, default='imagenet2012')
- parser.add_argument('-batch_size', type=int, default=4)
- parser.add_argument('-image_size', type=int, default=224)
- parser.add_argument('-ngpus', type=int, default=None)
- parser.add_argument('-data_path', type=str, default='/dataset/imagenet')
- parser.add_argument('-eval', action='store_true')
- parser.add_argument('-pretrained', type=str, default=None)
- parser.add_argument('-resume', type=str, default=None)
- parser.add_argument('-last_epoch', type=int, default=None)
- cls.args = parser.parse_args()
- cls.config = get_config()
- cls.config = update_config(cls.config, cls.args)
-
- cls.dataset_train = get_dataset(DatasetTest.config, mode='train')
- cls.dataset_test = get_dataset(DatasetTest.config, mode='val')
-
- @classmethod
- def tearDown(cls):
- pass
-
- @unittest.skip('skip for debug')
- def test_shape(self):
- sample = next(iter(DatasetTest.dataset_train))
- self.assertEqual([3, 224, 224], sample[0].shape)
-
- sample = next(iter(DatasetTest.dataset_test))
- self.assertEqual([3, 224, 224], sample[0].shape)
-
- @unittest.skip('skip for debug')
- def test_scaling(self):
- sample = next(iter(DatasetTest.dataset_train))[0]
- self.assertTrue(paddle.any(sample < 0))
- self.assertTrue(paddle.any(sample > 0))
- self.assertGreaterEqual(1, sample.max().cpu().numpy())
- self.assertLessEqual(-1, sample.min().cpu().numpy())
-
- sample = next(iter(DatasetTest.dataset_test))[0]
- self.assertGreaterEqual(1, sample.max().cpu().numpy())
- self.assertLessEqual(-1, sample.min().cpu().numpy())
- self.assertTrue(paddle.any(sample < 0))
- self.assertTrue(paddle.any(sample > 0))
-
- @unittest.skip('skip for debug')
- def test_single_process_dataloader(self):
- self._test_loader(DatasetTest.dataset_train, 'train', False)
- self._test_loader(DatasetTest.dataset_test, 'test', False)
-
- def _test_loader(self, dataset, mode, multi_process):
- dataloader = get_dataloader(DatasetTest.config,
- dataset,
- mode=mode,
- multi_process=multi_process)
- for idx, _ in enumerate(dataloader):
- if idx > 0 and idx % 1 == 0:
- print(f'----- test single process dataloader: {idx}/{len(dataloader)}')
- if idx == 10:
- return
-
- @unittest.skip('skip for debug')
- def test_multi_process_dataloader(self):
- tester = Tester()
- tester.run()
- self.assertEqual(tester.n_samples, 50000)
-
-
-
-
-class Tester:
- def __init__(self):
- parser = argparse.ArgumentParser('')
- parser.add_argument('-cfg', type=str, default=None)
- parser.add_argument('-dataset', type=str, default='imagenet2012')
- parser.add_argument('-batch_size', type=int, default=256)
- parser.add_argument('-image_size', type=int, default=224)
- parser.add_argument('-data_path', type=str, default='/dataset/imagenet/')
- parser.add_argument('-eval', action='store_false') # set test batch size
- parser.add_argument('-pretrained', type=str, default=None)
- args = parser.parse_args()
- self.config = get_config()
- self.config = update_config(self.config, args)
- self.dataset_train = get_dataset(self.config, mode='train')
- self.dataset_test = get_dataset(self.config, mode='val')
- self.n_samples = 0
-
- def run(self, mode='test'):
- # https://github.com/PaddlePaddle/Paddle/blob/5d8e4395b61929627151f6fd4a607589288a78bf/python/paddle/distributed/spawn.py#L272
- context = dist.spawn(self.main_worker, args=(mode,))
- self.n_samples = context.return_queues[0].get()
- print(f'----- total samples: {self.n_samples}')
-
- def main_worker(self, *args):
- mode = args[0]
- dist.init_parallel_env()
- local_rank = dist.get_rank()
- if mode == 'train':
- n_samples = self._test_loader(self.config, self.dataset_train, 'train', True)
- else:
- n_samples = self._test_loader(self.config, self.dataset_test, 'test', True)
-
- n_samples = paddle.to_tensor(np.array([n_samples]))
- dist.reduce(n_samples, 0)
- if local_rank == 0:
- return n_samples.cpu().numpy()
-
-
- def _test_loader(self, config, dataset, mode, multi_process):
- n_samples = 0
- dataloader = get_dataloader(config,
- dataset,
- mode=mode,
- multi_process=multi_process)
- local_rank = dist.get_rank()
- for idx, data in enumerate(dataloader):
- if idx > 0 and idx % 1 == 0:
- print(f'----- test single process({local_rank}) dataloader: {idx}/{len(dataloader)}')
- #print(local_rank, data[1])
- n_samples += data[0].shape[0]
-
- return n_samples
diff --git a/image_classification/MAE/tests/test_transformer.py b/image_classification/MAE/tests/test_transformer.py
deleted file mode 100644
index bbfefc49..00000000
--- a/image_classification/MAE/tests/test_transformer.py
+++ /dev/null
@@ -1,115 +0,0 @@
-# Copyright (c) 2021 PPViT Authors. All Rights Reserved.
-#
-# Licensed under the Apache License, Version 2.0 (the "License");
-# you may not use this file except in compliance with the License.
-# You may obtain a copy of the License at
-#
-# http://www.apache.org/licenses/LICENSE-2.0
-#
-# Unless required by applicable law or agreed to in writing, software
-# distributed under the License is distributed on an "AS IS" BASIS,
-# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
-# See the License for the specific language governing permissions and
-# limitations under the License.
-
-import unittest
-import numpy as np
-import paddle
-import paddle.nn as nn
-import paddle.nn.functional as F
-from config import *
-from transformer import build_mae_pretrain
-from transformer import PatchEmbedding
-from transformer import Attention
-from transformer import Mlp
-from transformer import Encoder
-
-
-class TransformerTest(unittest.TestCase):
- @classmethod
- def setUpClass(cls):
- paddle.set_device('cpu')
- cls.config = get_config()
- cls.dummy_img = np.random.randn(4, 3, 224, 224).astype('float32')
- cls.dummy_tensor = paddle.to_tensor(cls.dummy_img)
- cls.mae = build_mae_pretrain(cls.config)
- cls.mae.train()
-
- @classmethod
- def tearDown(cls):
- pass
-
- # @unittest.skip('skip for debug')
- def test_out_shape(self):
- reconstruct, mask = TransformerTest.mae(TransformerTest.dummy_tensor)
- self.assertEqual(reconstruct.shape, [4, 49, 768])
- self.assertEqual(mask.shape, [4, 49, 768])
-
- @unittest.skip('skip for debug')
- def test_all_parameters_updated(self):
- optim = paddle.optimizer.SGD(parameters=TransformerTest.mae.parameters(), learning_rate=0.1)
- reconstruct, masked_image = TransformerTest.mae(TransformerTest.dummy_tensor)
- loss = F.mse_loss(reconstruct, masked_image)
- loss.backward()
-
- for name, param in TransformerTest.mae.named_parameters():
- if not param.stop_gradient:
- self.assertIsNotNone(param.gradient())
- # self.assertNotEqual(0, np.sum(param.gradient() ** 2))
-
- # @unittest.skip('skip for debug')
- def test_embeddings(self):
- embed = PatchEmbedding()
- dummy_img = np.random.randn(4, 3, 224, 224).astype('float32')
- dummy_tensor = paddle.to_tensor(dummy_img)
-
- patch_out = embed.patch_embedding(dummy_tensor)
- embed_out = embed(dummy_tensor)
- self.assertEqual(patch_out.shape, [4, 768, 14, 14])
- self.assertEqual(embed.cls_token.shape, [1, 1, 768])
- self.assertEqual(embed_out.shape, [4, 14 * 14 + 1, 768])
-
- # @unittest.skip('skip for debug')
- def test_attention(self):
- attn_op = Attention(
- TransformerTest.config.MODEL.TRANS.ENCODER.EMBED_DIM,
- TransformerTest.config.MODEL.TRANS.ENCODER.NUM_HEADS,
- TransformerTest.config.MODEL.TRANS.QKV_BIAS)
- dummy_img = np.random.randn(4, 50, 768).astype('float32')
- dummy_tensor = paddle.to_tensor(dummy_img)
-
- out, attn = attn_op(dummy_tensor)
- self.assertEqual(attn.shape, [4, 12, 50, 50])
- self.assertEqual(out.shape, [4, 50, 768])
-
- def test_mlp(self):
- mlp_op = Mlp(
- TransformerTest.config.MODEL.TRANS.ENCODER.EMBED_DIM,
- TransformerTest.config.MODEL.TRANS.MLP_RATIO)
- dummy_img = np.random.randn(4, 50, 768).astype('float32')
- dummy_tensor = paddle.to_tensor(dummy_img)
-
- out = mlp_op(dummy_tensor)
- self.assertEqual(out.shape, [4, 50, 768])
-
- def test_position_embedding_not_update(self):
- origin = TransformerTest.mae.position_embedding.get_encoder_embedding().clone()
- optim = paddle.optimizer.SGD(parameters=TransformerTest.mae.parameters(), learning_rate=0.1)
- reconstruct, masked_image = TransformerTest.mae(TransformerTest.dummy_tensor)
- loss = F.mse_loss(reconstruct, masked_image)
- loss.backward()
- optim.step()
- update = TransformerTest.mae.position_embedding.get_encoder_embedding().clone()
- self.assertTrue((origin.numpy() == update.numpy()).all())
-
- def test_encoder(self):
- encoder_op = Encoder(
- TransformerTest.config.MODEL.TRANS.ENCODER.EMBED_DIM,
- TransformerTest.config.MODEL.TRANS.ENCODER.NUM_HEADS,
- TransformerTest.config.MODEL.TRANS.ENCODER.DEPTH,
- )
- dummy_img = np.random.randn(4, 50, 768).astype('float32')
- dummy_tensor = paddle.to_tensor(dummy_img)
-
- out, _ = encoder_op(dummy_tensor)
- self.assertEqual(out.shape, [4, 50, 768])
diff --git a/image_classification/MAE/tests/test_utils.py b/image_classification/MAE/tests/test_utils.py
deleted file mode 100644
index 49366af4..00000000
--- a/image_classification/MAE/tests/test_utils.py
+++ /dev/null
@@ -1,90 +0,0 @@
-# Copyright (c) 2021 PPViT Authors. All Rights Reserved.
-#
-# Licensed under the Apache License, Version 2.0 (the "License");
-# you may not use this file except in compliance with the License.
-# You may obtain a copy of the License at
-#
-# http://www.apache.org/licenses/LICENSE-2.0
-#
-# Unless required by applicable law or agreed to in writing, software
-# distributed under the License is distributed on an "AS IS" BASIS,
-# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
-# See the License for the specific language governing permissions and
-# limitations under the License.
-
-import unittest
-import paddle
-import paddle.nn as nn
-from utils import AverageMeter
-from utils import WarmupCosineScheduler
-from utils import get_exclude_from_weight_decay_fn
-
-
-class UtilTest(unittest.TestCase):
- @classmethod
- def setUpClass(cls):
- pass
-
- @classmethod
- def tearDown(cls):
- pass
-
- def test_average_meter(self):
- meter = AverageMeter()
- for i in range(1, 101):
- meter.update(i, 1)
- self.assertEqual(meter.avg, 50.5)
-
- def test_warmup_cosine_scheduler(self):
- sch = WarmupCosineScheduler(learning_rate=0.1,
- warmup_start_lr=1e-5,
- start_lr=0.1,
- end_lr=0.0,
- warmup_epochs=10,
- total_epochs=100,
- last_epoch=-1)
- lrs = []
- for epoch in range(100):
- lr = sch.get_lr()
- lrs.append(lr)
- sch.step()
- lrs.append(sch.get_lr())
-
- self.assertEqual(lrs[0], 1e-5)
- self.assertEqual(lrs[10], 0.1)
- self.assertEqual(lrs[-1], 0.0)
- self.assertGreaterEqual(min(lrs[0:10]), 1e-5)
- self.assertLessEqual(max(lrs[0:10]), 0.1)
- self.assertGreaterEqual(min(lrs[10::]), 0.0)
- self.assertLessEqual(max(lrs[10::]), 0.1)
-
- def test_warmup_cosine_scheduler_last_epoch(self):
- sch = WarmupCosineScheduler(learning_rate=0.1,
- warmup_start_lr=1e-5,
- start_lr=0.1,
- end_lr=0.0,
- warmup_epochs=10,
- total_epochs=100,
- last_epoch=9)
- lrs = []
- for epoch in range(10, 100):
- lr = sch.get_lr()
- lrs.append(lr)
- sch.step()
- lrs.append(sch.get_lr())
-
- self.assertEqual(lrs[0], 0.1)
- self.assertEqual(lrs[-1], 0.0)
- self.assertGreaterEqual(min(lrs[::]), 0.0)
- self.assertLessEqual(max(lrs[::]), 0.1)
-
- def test_get_exclude_from_weight_decay_fn(self):
- model = nn.Linear(10, 100, bias_attr=True)
- exclude_list = ['bias']
- fn = get_exclude_from_weight_decay_fn(exclude_list)
- # should return false if name in exclude_list
- for name, param in model.named_parameters():
- if name.endswith('weight'):
- self.assertTrue(fn(name))
- elif name.endswith('bias'):
- self.assertFalse(fn(name))
diff --git a/image_classification/MAE/transformer.py b/image_classification/MAE/transformer.py
index 62704ed8..0fadf67f 100644
--- a/image_classification/MAE/transformer.py
+++ b/image_classification/MAE/transformer.py
@@ -26,59 +26,28 @@
from config import get_config
-def get_position_encoding(seq_len, embed_dim):
- """ sinusoid position encoding table"""
- def get_position_angle_vec(embed_dim, position):
- return [position / np.power(10000, 2 * (hid_j // 2) / embed_dim) for hid_j in range(embed_dim)]
-
- sinusoid_table = np.array([get_position_angle_vec(embed_dim, pos_i) for pos_i in range(seq_len)])
- sinusoid_table[:, 0::2] = np.sin(sinusoid_table[:, 0::2]) # dim 2i
- sinusoid_table[:, 1::2] = np.cos(sinusoid_table[:, 1::2]) # dim 2i+1
- position_embedding = paddle.to_tensor([sinusoid_table])
- return position_embedding
-
-
class Identity(nn.Layer):
""" Identity layer
The output of this layer is the input without any change.
Use this layer to avoid using 'if' condition in forward methods
"""
def __init__(self):
- super().__init__()
+ super(Identity, self).__init__()
def forward(self, x):
return x
-class PositionalEmbedding(nn.Layer):
- """Position Embedding
-
- Apply positional embedding on input images.
-
- Attributes:
- position_embedding: sine-cosine version positional embedding
- """
- def __init__(self, embed_dim, seq_len=197):
- """ Sinusoid position encoding table """
- super().__init__()
- self.seq_len = seq_len
-
- def get_position_angle_vec(embed_dim, position):
- return [position / np.power(10000, 2 * (hid_j // 2) / embed_dim) for hid_j in range(embed_dim)]
-
- sinusoid_table = np.array([get_position_angle_vec(
- embed_dim, pos_i) for pos_i in range(seq_len)])
- sinusoid_table[:, 0::2] = np.sin(sinusoid_table[:, 0::2]) # dim 2i
- sinusoid_table[:, 1::2] = np.cos(sinusoid_table[:, 1::2]) # dim 2i+1
- position_embedding = paddle.to_tensor([sinusoid_table])
-
- self.register_buffer('position_embedding',
- position_embedding)
+def get_position_encoding(seq_len, embed_dim):
+ """ sinusoid position encoding table"""
+ def get_position_angle_vec(embed_dim, position):
+ return [position / np.power(10000, 2 * (hid_j // 2) / embed_dim) for hid_j in range(embed_dim)]
- def get_positional_embedding(self, seq_length=None):
- if seq_length is None:
- seq_length = self.seq_len
- return self.position_embedding[:, :seq_length, :]
+ sinusoid_table = np.array([get_position_angle_vec(embed_dim, pos_i) for pos_i in range(seq_len)])
+ sinusoid_table[:, 0::2] = np.sin(sinusoid_table[:, 0::2]) # dim 2i
+ sinusoid_table[:, 1::2] = np.cos(sinusoid_table[:, 1::2]) # dim 2i+1
+ position_embedding = paddle.to_tensor([sinusoid_table])
+ return position_embedding
class PatchEmbedding(nn.Layer):
@@ -98,29 +67,19 @@ def __init__(self,
embed_dim=768,
dropout=0.):
super().__init__()
- n_patches = (image_size // patch_size) * (image_size // patch_size)
-
+ self.n_patches = (image_size // patch_size) * (image_size // patch_size)
self.patch_embedding = nn.Conv2D(in_channels=in_channels,
out_channels=embed_dim,
kernel_size=patch_size,
stride=patch_size)
-
- self.cls_token = paddle.create_parameter(
- shape=[1, 1, embed_dim],
- dtype='float32',
- default_initializer=paddle.nn.initializer.Constant(0))
-
self.dropout = nn.Dropout(dropout)
def forward(self, x):
- cls_tokens = self.cls_token.expand(
- (x.shape[0], -1, -1))
x = self.patch_embedding(x)
x = x.flatten(2)
x = x.transpose([0, 2, 1])
- x = paddle.concat((cls_tokens, x), axis=1)
- embeddings = self.dropout(x)
- return embeddings
+ x = self.dropout(x)
+ return x
class Attention(nn.Layer):
@@ -140,6 +99,7 @@ class Attention(nn.Layer):
proj_dropout: final dropout before output
softmax: softmax op for attention
"""
+
def __init__(self,
embed_dim,
num_heads,
@@ -211,9 +171,9 @@ class Mlp(nn.Layer):
fc1: nn.Linear
fc2: nn.Linear
act: GELU
- dropout1: dropout after fc1
- dropout2: dropout after fc2
+ dropout: dropout after fc
"""
+
def __init__(self,
embed_dim,
mlp_ratio,
@@ -231,8 +191,7 @@ def __init__(self,
weight_attr=w_attr_2,
bias_attr=b_attr_2)
self.act = nn.GELU()
- self.dropout1 = nn.Dropout(dropout)
- self.dropout2 = nn.Dropout(dropout)
+ self.dropout = nn.Dropout(dropout)
def _init_weights(self):
weight_attr = paddle.ParamAttr(
@@ -244,9 +203,9 @@ def _init_weights(self):
def forward(self, x):
x = self.fc1(x)
x = self.act(x)
- x = self.dropout1(x)
+ x = self.dropout(x)
x = self.fc2(x)
- x = self.dropout2(x)
+ x = self.dropout(x)
return x
@@ -262,6 +221,7 @@ class TransformerLayer(nn.Layer):
mlp: mlp modual
attn: attention modual
"""
+
def __init__(self,
embed_dim,
num_heads,
@@ -271,26 +231,22 @@ def __init__(self,
attention_dropout=0.,
droppath=0.):
super().__init__()
-
w_attr_1, b_attr_1 = self._init_weights()
self.attn_norm = nn.LayerNorm(embed_dim,
weight_attr=w_attr_1,
bias_attr=b_attr_1,
epsilon=1e-6)
-
self.attn = Attention(embed_dim,
num_heads,
qkv_bias,
dropout,
attention_dropout)
self.drop_path = DropPath(droppath) if droppath > 0. else Identity()
-
w_attr_2, b_attr_2 = self._init_weights()
self.mlp_norm = nn.LayerNorm(embed_dim,
weight_attr=w_attr_2,
bias_attr=b_attr_2,
epsilon=1e-6)
-
self.mlp = Mlp(embed_dim, mlp_ratio, dropout)
def _init_weights(self):
@@ -321,8 +277,9 @@ class Encoder(nn.Layer):
Attributes:
layers: nn.LayerList contains multiple TransformerLayers
- encoder_norm: nn.LayerNorm which is applied after last encoder layer
+ norm: nn.LayerNorm which is applied after last encoder layer
"""
+
def __init__(self,
embed_dim,
num_heads,
@@ -331,28 +288,30 @@ def __init__(self,
mlp_ratio=4.0,
dropout=0.,
attention_dropout=0.,
- droppath=0.):
- super().__init__()
+ droppath=0.,
+ has_norm=True):
+ super(Encoder, self).__init__()
# stochatic depth decay
depth_decay = [x.item() for x in paddle.linspace(0, droppath, depth)]
layer_list = []
for i in range(depth):
layer_list.append(TransformerLayer(embed_dim,
- num_heads,
- qkv_bias,
- mlp_ratio,
- dropout,
- attention_dropout,
- droppath=depth_decay[i]))
- # new paddle version fix this, deepcopy is no longer needed
- # layer_list.append(copy.deepcopy(encoder_layer))
+ num_heads,
+ qkv_bias,
+ mlp_ratio,
+ dropout,
+ attention_dropout,
+ droppath=depth_decay[i]))
self.layers = nn.LayerList(layer_list)
- w_attr, b_attr = self._init_weights()
- self.encoder_norm = nn.LayerNorm(embed_dim,
- weight_attr=w_attr,
- bias_attr=b_attr,
- epsilon=1e-6)
+ # move this norm out to upper level for global_pool (no cls_token settings)
+ self.has_norm = has_norm
+ if has_norm:
+ w_attr, b_attr = self._init_weights()
+ self.norm = nn.LayerNorm(embed_dim,
+ weight_attr=w_attr,
+ bias_attr=b_attr,
+ epsilon=1e-6)
def _init_weights(self):
weight_attr = paddle.ParamAttr(initializer=paddle.nn.initializer.Constant(1.0))
@@ -362,8 +321,10 @@ def _init_weights(self):
def forward(self, x):
for layer in self.layers:
x = layer(x)
- out = self.encoder_norm(x)
- return out
+
+ if self.has_norm:
+ x = self.norm(x)
+ return x
class Decoder(nn.Layer):
@@ -373,7 +334,7 @@ class Decoder(nn.Layer):
Attributes:
layers: nn.LayerList contains multiple TransformerLayers
- decoder_norm: nn.LayerNorm which is applied after last encoder layer
+ norm: nn.LayerNorm which is applied after last encoder layer
"""
def __init__(self,
@@ -385,7 +346,7 @@ def __init__(self,
dropout=0.,
attention_dropout=0.,
droppath=0.):
- super().__init__()
+ super(Decoder, self).__init__()
# stochatic depth decay
depth_decay = [x.item() for x in paddle.linspace(0, droppath, depth)]
@@ -398,29 +359,23 @@ def __init__(self,
dropout,
attention_dropout,
droppath=depth_decay[i]))
- # new paddle version fix this, deepcopy is no longer needed
- # layer_list.append(copy.deepcopy(encoder_layer))
self.layers = nn.LayerList(layer_list)
w_attr, b_attr = self._init_weights()
- self.decoder_norm = nn.LayerNorm(embed_dim,
- weight_attr=w_attr,
- bias_attr=b_attr,
- epsilon=1e-6)
+ self.norm = nn.LayerNorm(embed_dim,
+ weight_attr=w_attr,
+ bias_attr=b_attr,
+ epsilon=1e-6)
def _init_weights(self):
weight_attr = paddle.ParamAttr(initializer=paddle.nn.initializer.Constant(1.0))
bias_attr = paddle.ParamAttr(initializer=paddle.nn.initializer.Constant(0.0))
return weight_attr, bias_attr
- def forward(self, x, mask_len=0):
+ def forward(self, x):
for layer in self.layers:
x = layer(x)
- if mask_len > 0:
- # only sustain masked patches
- out = self.decoder_norm(x[:, -mask_len:])
- else:
- out = self.decoder_norm(x)
+ out = self.norm(x)
return out
@@ -461,57 +416,75 @@ def __init__(self,
qkv_bias=True,
dropout=0.,
attention_dropout=0.,
- droppath=0.):
+ droppath=0.,
+ norm_pix_loss=False):
super().__init__()
- self.patch_size = patch_size
self.num_patches = (image_size // patch_size) * (image_size // patch_size)
- self.mask_token = paddle.create_parameter(
- shape=[1, 1, decoder_embed_dim],
+ self.patch_size = patch_size
+ # -------------------- Encoder --------------------
+ self.patch_embedding = PatchEmbedding(
+ image_size,
+ patch_size,
+ in_channels,
+ encoder_embed_dim,
+ dropout)
+
+ self.cls_token = paddle.create_parameter(
+ shape=[1, 1, encoder_embed_dim],
dtype='float32',
- default_initializer=paddle.nn.initializer.TruncatedNormal(std=.02))
- self.perm = None
- self.mask_num = None
- # create positional embedding
- self.encoder_position_embedding = get_position_encoding(seq_len=1 + self.num_patches,
- embed_dim=encoder_embed_dim)
- self.decoder_position_embedding = get_position_encoding(seq_len=1 + self.num_patches,
- embed_dim=decoder_embed_dim)
- # create patch embedding with positional embedding
- self.patch_embedding = PatchEmbedding(image_size,
- patch_size,
- in_channels,
- encoder_embed_dim,
- dropout)
- # create multi head self-attention encoder
- self.encoder = Encoder(encoder_embed_dim,
- encoder_num_heads,
- encoder_depth,
- qkv_bias,
- mlp_ratio,
- dropout,
- attention_dropout,
- droppath)
+ default_initializer=paddle.nn.initializer.Constant(0))
+
+ self.encoder_position_embedding = get_position_encoding(
+ seq_len=1 + self.num_patches,
+ embed_dim=encoder_embed_dim)
+
+ self.encoder = Encoder(
+ encoder_embed_dim,
+ encoder_num_heads,
+ encoder_depth,
+ qkv_bias,
+ mlp_ratio,
+ dropout,
+ attention_dropout,
+ droppath)
+
+ # -------------------- Decoder --------------------
# the embed_dim is different in encoder and decoder, so add a linear layer
w_attr_1, b_attr_1 = self._init_weights()
- self.linear_projection = nn.Linear(encoder_embed_dim,
- decoder_embed_dim,
- weight_attr=w_attr_1,
- bias_attr=b_attr_1)
- # create multi head self-attention decoder
- self.decoder = Decoder(decoder_embed_dim,
- decoder_num_heads,
- decoder_depth,
- qkv_bias,
- mlp_ratio,
- dropout,
- attention_dropout,
- droppath)
+ self.linear_projection = nn.Linear(
+ encoder_embed_dim,
+ decoder_embed_dim,
+ weight_attr=w_attr_1,
+ bias_attr=b_attr_1)
+
+ self.mask_token = paddle.create_parameter(
+ shape=[1, 1, decoder_embed_dim],
+ dtype='float32',
+ default_initializer=paddle.nn.initializer.Constant(0))
+
+ self.decoder_position_embedding = get_position_encoding(
+ seq_len=1 + self.num_patches,
+ embed_dim=decoder_embed_dim)
+
+ self.decoder = Decoder(
+ decoder_embed_dim,
+ decoder_num_heads,
+ decoder_depth,
+ qkv_bias,
+ mlp_ratio,
+ dropout,
+ attention_dropout,
+ droppath)
+
# create reconstruction layer
w_attr_2, b_attr_2 = self._init_weights()
- self.reconstruction_layer = nn.Linear(decoder_embed_dim,
- in_channels * patch_size * patch_size,
- weight_attr=w_attr_2,
- bias_attr=b_attr_2)
+ self.decoder_pred = nn.Linear(
+ decoder_embed_dim,
+ in_channels * patch_size * patch_size,
+ weight_attr=w_attr_2,
+ bias_attr=b_attr_2)
+
+ self.norm_pix_loss = norm_pix_loss
def _init_weights(self):
weight_attr = paddle.ParamAttr(
@@ -520,38 +493,109 @@ def _init_weights(self):
initializer=paddle.nn.initializer.Constant(0.0))
return weight_attr, bias_attr
- def forward(self, x, masks):
- # x: [B, C, H, W]
- x = self.patch_embedding(x)
- # x: [B, num_patches, embed_dim]
- B, N, C = x.shape # B: batch_size, N: num_patches, C: embed_dim
- # mask: [B, num_patches], visible set to 0, masked set to 1
-
- # add pos embed
- x += self.encoder_position_embedding.clone().detach()
- # get no mask patches
- no_mask_x = x[~masks] # [B*0.25*L, embed_dim]
- # index slicing needs reshape back in paddle: [B, 0.25L, embed_dim]
- no_mask_x = no_mask_x.reshape([B, -1, C])
- # encoder
- enc_out = self.encoder(no_mask_x)
- # encoder to decoder linear proj
- enc_out = self.linear_projection(enc_out)
- # shuffle the position embedding is equivalent to unshuffling tokens
- expand_pos_embed = self.decoder_position_embedding.expand([B, -1, -1]).clone().detach()
- pos_embed_no_mask = expand_pos_embed[~masks].reshape([B, -1, enc_out.shape[-1]])
- pos_embed_mask = expand_pos_embed[masks].reshape([B, -1, enc_out.shape[-1]])
- # dec in put, here use broadcasting for mask_token
- dec_in = paddle.concat([enc_out + pos_embed_no_mask, self.mask_token + pos_embed_mask], axis=1)
- # decoder
- mask_len = pos_embed_mask.shape[1]
- dec_out = self.decoder(dec_in, mask_len)
- # reconstruct patches
- output = self.reconstruction_layer(dec_out)
- return output
-
-
-class MAEFinetuneTransformer(nn.Layer):
+ def patchify(self, images):
+ n_patches = images.shape[2] // self.patch_size
+ x = images.reshape([images.shape[0], # N
+ images.shape[1], # C
+ n_patches, # h
+ self.patch_size, # p
+ n_patches, # w
+ self.patch_size]) # p
+ x = x.transpose([0, 2, 4, 3, 5, 1])
+ x = x.reshape([images.shape[0], n_patches * n_patches, -1])
+ return x
+
+ def unpatchify(self, x):
+ n_patches = int(x.shape[1]**.5)
+
+ x = x.reshape([x.shape[0], # N
+ n_patches, # h
+ n_patches, # w
+ self.patch_size, # p
+ self.patch_size, # p
+ -1]) # C
+ x = x.transpose([0, 5, 1, 3, 2, 4])
+ x = x.reshape([images.shape[0], -1, n_patches * self.patch_size, n_patches * self.patch_size])
+ return x
+
+ def random_masking(self, x, mask_ratio):
+ """
+ Shuffle x then mask the last few tokens according to mask ratio.
+ Args:
+ x: tensor of [batch, seq_len, encoder_embed_dim]
+ mask_ratio: float, masking ratio
+ Returns:
+ masked_x: tensor of [batch, seq_len - mask_num, encoder_embed_dim]
+ """
+ batch_size, seq_len, embed_dim = x.shape
+ keep_len = int(seq_len * (1 - mask_ratio))
+ rand_probs = paddle.rand([batch_size, seq_len])
+ shuffle_ids = paddle.argsort(rand_probs, axis=-1)
+ restore_ids = paddle.argsort(shuffle_ids, axis=-1)
+
+ keep_ids = shuffle_ids[:, :keep_len]
+
+ ids = keep_ids + (paddle.arange(batch_size) * seq_len).unsqueeze(-1).expand([batch_size, -1])
+ x_masked = paddle.gather(x.flatten(0, 1), index=ids.flatten(), axis=0).reshape([batch_size, keep_len, -1])
+
+ mask = paddle.ones([batch_size, seq_len])
+ mask[:, :keep_len] = 0
+
+ restore_ids_expand = restore_ids + (paddle.arange(batch_size) * seq_len).unsqueeze(-1).expand([batch_size, -1])
+ mask = paddle.gather(mask.flatten(), index=restore_ids_expand.flatten()).reshape([batch_size, seq_len])
+ return x_masked, mask, restore_ids
+
+ def forward_encoder(self, images, mask_ratio):
+ x = self.patch_embedding(images)
+ # add pos embed w/o cls token
+ x = x + self.encoder_position_embedding[:, 1:, :]
+ # masking
+ x, mask, ids_restore = self.random_masking(x, mask_ratio)
+ # append cls token
+ cls_token = self.cls_token + self.encoder_position_embedding[:, :1, :]
+ cls_tokens = cls_token.expand((x.shape[0], -1, -1))
+ x = paddle.concat((cls_tokens, x), axis=1)
+ x = self.encoder(x)
+ return x, mask, ids_restore
+
+ def forward_decoder(self, x, ids_restore):
+ x = self.linear_projection(x) # [batch, keep_len+1(cls_token), decoder_embed_dim]
+ # self.mask_token: [1, 1, decoder_embed_dim]
+ # ids_store: [batch, num_patches]
+ # mask_tokens: [batch, masked_len, decoder_embed_dim]
+ mask_tokens = self.mask_token.expand([x.shape[0], ids_restore.shape[1] + 1 - x.shape[1], -1])
+ # x_: [batch, num_patches, decoder_embed_dim]
+ x_ = paddle.concat([x[:, 1:, :], mask_tokens], axis=1) # no cls token
+ x_shape = x_.shape
+ x_ = paddle.gather(x_.flatten(0, 1), index=ids_restore.flatten()).reshape(x_shape)
+ x = paddle.concat([x[:, :1, :], x_], axis=1) # append cls token
+
+ x = x + self.decoder_position_embedding
+ x = self.decoder(x)
+ x = self.decoder_pred(x)
+ x = x[:, 1:, :]
+
+ return x
+
+ def forward_loss(self, images, pred, mask):
+ target = self.patchify(images)
+ if self.norm_pix_loss:
+ mean = target.mean(axis=-1, keepdim=True)
+ var = target.var(axis=-1, keepdim=True)
+ target = (target - mean) / (var + 1.e-6) ** 0.5
+ loss = (pred - target) ** 2
+ loss = loss.mean(axis=-1) # mean loss per patch
+ loss = (loss * mask).sum() / mask.sum() # mean loss on removed patches
+ return loss
+
+ def forward(self, images, mask_ratio=0.75):
+ encoder_out, mask, restore_ids = self.forward_encoder(images, mask_ratio)
+ decoder_out = self.forward_decoder(encoder_out, restore_ids)
+ loss = self.forward_loss(images, decoder_out, mask)
+ return loss, decoder_out, mask
+
+
+class MAETransformer(nn.Layer):
"""ViT transformer
ViT Transformer, classifier is a single Linear layer for finetune,
@@ -583,20 +627,27 @@ def __init__(self,
num_heads=12,
mlp_ratio=4,
qkv_bias=True,
+ global_pool=False,
dropout=0.,
attention_dropout=0.,
droppath=0.):
super().__init__()
- self.num_patches = (image_size // patch_size) * (image_size // patch_size)
- # create positional embedding
- self.encoder_position_embedding = get_position_encoding(seq_len=1 + self.num_patches,
- embed_dim=embed_dim)
+ self.global_pool = global_pool
# create patch embedding with positional embedding
self.patch_embedding = PatchEmbedding(image_size,
patch_size,
in_channels,
embed_dim,
dropout)
+ # create positional embedding
+ self.position_embedding = get_position_encoding(
+ seq_len=1 + self.patch_embedding.n_patches,
+ embed_dim=embed_dim)
+ # create class token
+ self.cls_token = paddle.create_parameter(
+ shape=[1, 1, embed_dim],
+ dtype='float32',
+ default_initializer=paddle.nn.initializer.Constant(0))
# create multi head self-attention encoder
self.encoder = Encoder(embed_dim,
num_heads,
@@ -605,30 +656,58 @@ def __init__(self,
mlp_ratio,
dropout,
attention_dropout,
- droppath)
+ droppath,
+ has_norm=False)
+ # define encoder norm here to aviod cls_token (when global_pool is True)
+ w_attr, b_attr = self._init_weights_norm()
+ self.encoder_norm = nn.LayerNorm(embed_dim,
+ weight_attr=w_attr,
+ bias_attr=b_attr,
+ epsilon=1e-6)
# classifier head (for finetuning)
- w_attr_1, b_attr_1 = self._init_weights()
+ w_attr_1, b_attr_1 = self._init_weights_linear()
self.classifier = nn.Linear(embed_dim,
num_classes,
weight_attr=w_attr_1,
bias_attr=b_attr_1)
- def forward(self, x):
+
+ def forward_features(self, x):
x = self.patch_embedding(x)
- # add pos embed
- x += self.encoder_position_embedding.clone().detach()
+ cls_tokens = self.cls_token.expand((x.shape[0], -1, -1))
+ x = paddle.concat((cls_tokens, x), axis=1)
+ x = x + self.position_embedding
x = self.encoder(x)
- logits = self.classifier(x[:, 0]) # take only cls_token as classifier
+
+ if self.global_pool:
+ x = x[:, 1:, :].mean(axis=1) # global poll w/o cls_token
+ out = self.encoder_norm(x)
+ else:
+ x = self.encoder_norm(x)
+ out = x[:, 0] # return cls_token only
+
+ return out
+
+ def forward(self, x):
+ x = self.forward_features(x)
+ logits = self.classifier(x)
+
return logits
- def _init_weights(self):
+ def _init_weights_norm(self):
+ weight_attr = paddle.ParamAttr(initializer=paddle.nn.initializer.Constant(1.0))
+ bias_attr = paddle.ParamAttr(initializer=paddle.nn.initializer.Constant(0.0))
+ return weight_attr, bias_attr
+
+ def _init_weights_linear(self):
weight_attr = paddle.ParamAttr(initializer=paddle.nn.initializer.TruncatedNormal(std=.02))
bias_attr = paddle.ParamAttr(initializer=paddle.nn.initializer.Constant(0))
return weight_attr, bias_attr
def build_mae_pretrain(config):
+ """ build MAE vit model for pretraining"""
model = MAEPretrainTransformer(image_size=config.DATA.IMAGE_SIZE,
patch_size=config.MODEL.TRANS.PATCH_SIZE,
in_channels=3,
@@ -642,20 +721,23 @@ def build_mae_pretrain(config):
qkv_bias=config.MODEL.TRANS.QKV_BIAS,
dropout=config.MODEL.DROPOUT,
attention_dropout=config.MODEL.ATTENTION_DROPOUT,
- droppath=config.MODEL.DROPPATH)
+ droppath=config.MODEL.DROPPATH,
+ norm_pix_loss=config.MODEL.TRANS.NORM_PIX_LOSS)
return model
-def build_mae_finetune(config):
- model = MAEFinetuneTransformer(image_size=config.DATA.IMAGE_SIZE,
- patch_size=config.MODEL.TRANS.PATCH_SIZE,
- in_channels=3,
- embed_dim=config.MODEL.TRANS.ENCODER.EMBED_DIM,
- depth=config.MODEL.TRANS.ENCODER.DEPTH,
- num_heads=config.MODEL.TRANS.ENCODER.NUM_HEADS,
- mlp_ratio=config.MODEL.TRANS.MLP_RATIO,
- qkv_bias=config.MODEL.TRANS.QKV_BIAS,
- dropout=config.MODEL.DROPOUT,
- attention_dropout=config.MODEL.ATTENTION_DROPOUT,
- droppath=config.MODEL.DROPPATH)
+def build_transformer(config):
+ """ build vit model for finetuning and linear probing"""
+ model = MAETransformer(image_size=config.DATA.IMAGE_SIZE,
+ patch_size=config.MODEL.TRANS.PATCH_SIZE,
+ in_channels=3,
+ embed_dim=config.MODEL.TRANS.ENCODER.EMBED_DIM,
+ depth=config.MODEL.TRANS.ENCODER.DEPTH,
+ num_heads=config.MODEL.TRANS.ENCODER.NUM_HEADS,
+ mlp_ratio=config.MODEL.TRANS.MLP_RATIO,
+ qkv_bias=config.MODEL.TRANS.QKV_BIAS,
+ global_pool=config.MODEL.GLOBAL_POOL,
+ dropout=config.MODEL.DROPOUT,
+ attention_dropout=config.MODEL.ATTENTION_DROPOUT,
+ droppath=config.MODEL.DROPPATH)
return model
diff --git a/image_classification/MAE/utils.py b/image_classification/MAE/utils.py
index 44800527..eae144dc 100644
--- a/image_classification/MAE/utils.py
+++ b/image_classification/MAE/utils.py
@@ -20,8 +20,95 @@
"""
import math
+import numpy as np
+import paddle
from paddle.optimizer.lr import LRScheduler
+def get_params_groups(model):
+ regularized = []
+ not_regularized = []
+ for name, param in model.named_parameters():
+ if param.stop_gradient:
+ continue
+ # do not regularize biases and norm params
+ if name.endswith(".bias") or len(param.shape) == 1:
+ not_regularized.append(param)
+ else:
+ regularized.append(param)
+ return [{'params': regularized}, {'params': not_regularized, 'weight_decay': 0.}]
+
+
+def cosine_scheduler(base_value,
+ final_value,
+ epochs,
+ num_iters_per_epoch,
+ warmup_epochs=0,
+ start_warmup_value=0):
+ warmup_schedule = np.array([])
+ warmup_iters = warmup_epochs * num_iters_per_epoch
+ if warmup_epochs > 0:
+ # linear schedule for warmup epochs
+ warmup_schedule = np.linspace(start_warmup_value, base_value, warmup_iters)
+
+ iters = np.arange(epochs * num_iters_per_epoch - warmup_iters)
+ schedule = final_value + 0.5 * (base_value - final_value) * (1 + np.cos(np.pi * iters / len(iters)))
+ schedule = np.concatenate((warmup_schedule, schedule))
+ assert len(schedule) == epochs * num_iters_per_epoch
+ return schedule
+
+
+def interpolate_pos_embed(model, state_dict):
+ if 'position_embedding' in state_dict:
+ pos_embed_w = state_dict['position_embedding']
+ embed_dim = pos_embed_w.shape[-1]
+ n_patches = model.patch_embedding.n_patches
+ n_extra_tokens = model.position_embedding.shape[-2] - n_patches # seq_l - n_patches
+ orig_size = int((pos_embed_w.shape[-2] - n_extra_tokens) ** 0.5)
+ new_size = int(n_patches ** 0.5)
+ if orig_size != new_size:
+ extra_tokens = pos_embed_w[:, :n_extra_tokens]
+ pos_tokens = pos_embed_w[:, n_extra_tokens:]
+ pos_tokens = pos_tokens.reshape([-1, orig_size, orig_size, embed_dim])
+ pos_tokens = pos_tokens.transpose([0, 3, 1, 2])
+ pos_tokens = paddle.nn.functional.interpolate(
+ pos_token, size=(new_size, new_size), mode='bicubic', align_corners=False)
+ pos_tokens = pos_tokens.transpose([0, 2, 3, 1])
+ pos_tokens = pos_tokens.flatten(1, 2)
+ new_pos_embed = paddle.concat([extra_tokens, pos_tokens], axis=1)
+ state_dict['position_embedding'] = new_pos_embed
+
+
+#TODO: check correctness
+class LARS(paddle.optimizer.Optimizer):
+ """LARS optmizer"""
+ def __init__(self, params, learning_rate=0., weight_decay=0., momentum=0., trust_coefficient=0.001):
+ super().__init__(params, learning_rate=learning_rate, weight_decay=weight_decay)
+
+ @paddle.no_grad()
+ def step(self):
+ for g in self.param_groups:
+ for p in g['params']:
+ dp = p.grad
+ if dp is None:
+ continue
+ if p.ndim > 1:
+ dp = dp.add(p, alpha=g['weight_decay'])
+ param_norm = paddle.norm(p)
+ update_norm = paddle.norm(dp)
+ one = paddle.ones_list(param_norm)
+ q = paddle.where(param_norm >0.,
+ paddle.where(update_norm > 0,
+ (g['trust_coefficient'] * param_norm / update_norm),
+ one),
+ one)
+ dp = dp.mul(q)
+ param_state = self.state[p]
+ if 'mu' not in param_state:
+ param_state['mu'] = paddle.zeros_like(p)
+ mu = param_state['mu']
+ mu.mul_(g['momentum']).add_(dp)
+ p.add_(mu, alpha=-g['lr'])
+
class AverageMeter():
""" Meter for monitoring losses"""
From a84c9946f6e030c3efa50517e9067cd8439cba3d Mon Sep 17 00:00:00 2001
From: xperzy
Date: Fri, 11 Feb 2022 09:15:03 +0800
Subject: [PATCH 02/12] fix bug
---
image_classification/MAE/main_multi_gpu_finetune.py | 2 +-
1 file changed, 1 insertion(+), 1 deletion(-)
diff --git a/image_classification/MAE/main_multi_gpu_finetune.py b/image_classification/MAE/main_multi_gpu_finetune.py
index 2eab37fd..446834c4 100644
--- a/image_classification/MAE/main_multi_gpu_finetune.py
+++ b/image_classification/MAE/main_multi_gpu_finetune.py
@@ -523,7 +523,7 @@ def main_worker(*args):
write_log(local_logger, master_logger, local_message, master_message)
# validation
- if epoch % config.VALIDATION_FREQ == 0 or epoch == config.TRAIN.NUM_EPOCHS:
+ if epoch % config.VALIDATE_FREQ == 0 or epoch == config.TRAIN.NUM_EPOCHS:
write_log(local_logger, master_logger, f'----- Validation after Epoch: {epoch}')
val_loss, val_acc1, val_acc5, avg_loss, avg_acc1, avg_acc5, val_time = validate(
dataloader=dataloader_val,
From e98593270a818bd4a7fea4f98a5800dffc0a89e8 Mon Sep 17 00:00:00 2001
From: xperzy
Date: Mon, 14 Feb 2022 11:16:28 +0800
Subject: [PATCH 03/12] Update README.md
---
image_classification/README.md | 7 +++++++
1 file changed, 7 insertions(+)
diff --git a/image_classification/README.md b/image_classification/README.md
index 025a21f3..2d23bfe5 100644
--- a/image_classification/README.md
+++ b/image_classification/README.md
@@ -6,6 +6,7 @@ PaddlePaddle training/validation code and pretrained models for **Image Classifi
This implementation is part of [PaddleViT](https://github.com/BR-IDL/PaddleViT.git) project.
## Update
+* Update (2022-02-14): Add imagenet train_list.txt and val_list.txt links.
* Update (2021-12-30): Add MobileViT model and multi scale sampler.
* Update (2021-12-28): Add HvT model.
* Update (2021-12-24): Add CvT model.
@@ -78,6 +79,8 @@ cd PaddleViT/image_classification
ImageNet2012 dataset is used in the following folder structure:
```
│imagenet/
+├──train_list.txt
+├──val_list.txt
├──train/
│ ├── n01440764
│ │ ├── n01440764_10026.JPEG
@@ -91,6 +94,10 @@ ImageNet2012 dataset is used in the following folder structure:
│ │ ├── ......
│ ├── ......
```
+- `train_list.txt`: list of relative paths and labels of training images. You can download it from: [google](https://drive.google.com/file/d/10YGzx_aO3IYjBOhInKT_gY6p0mC3beaC/view?usp=sharing)/[baidu](https://pan.baidu.com/s/1G5xYPczfs9koDb7rM4c0lA?pwd=a4vm)(a4vm)
+- `val_list.txt`: list of relative paths and labels of validation images. You can download it from: [google](https://drive.google.com/file/d/1aXHu0svock6MJSur4-FKjW0nyjiJaWHE/view?usp=sharing)/[baidu](https://pan.baidu.com/s/1TFGda7uBZjR7g-A6YjQo-g?pwd=kdga)(kdga)
+
+
### Demo Example
To use the model with pretrained weights, go to the specific subfolder, then download the `.pdparam` weight file and change related file paths in the following python scripts. The model config files are located in `./configs/`.
From a585ed1f62b5859c17f9178fae343dd310a89a44 Mon Sep 17 00:00:00 2001
From: xperzy
Date: Mon, 14 Feb 2022 11:18:34 +0800
Subject: [PATCH 04/12] Update README_cn.md
---
image_classification/README_cn.md | 8 +++++++-
1 file changed, 7 insertions(+), 1 deletion(-)
diff --git a/image_classification/README_cn.md b/image_classification/README_cn.md
index 4bf06982..6711855d 100644
--- a/image_classification/README_cn.md
+++ b/image_classification/README_cn.md
@@ -6,6 +6,7 @@ PaddlePaddle用于图像分类的训练/评估代码和预训练模型。
此实现是 [PaddleViT](https://github.com/BR-IDL/PaddleViT.git) 项目的一部分.
## 更新
+* 更新 (2021-02-14): 添加 imagenet1k 的 train_list.txt 和 val_list.txt
* 更新 (2021-12-30): 添加 MobileViT 模型和 multi scale sampler.
* 更新 (2021-12-28): 添加 HvT 模型.
* 更新 (2021-12-24): 添加 CvT 模型.
@@ -74,9 +75,11 @@ cd PaddleViT/image_classification
## 基本用法
### 数据准备
-ImageNet2012 数据集用于以下文件结构:
+ImageNet2012 数据集使用以下的格式存储:
```
│imagenet/
+├──train_list.txt
+├──val_list.txt
├──train/
│ ├── n01440764
│ │ ├── n01440764_10026.JPEG
@@ -90,6 +93,9 @@ ImageNet2012 数据集用于以下文件结构:
│ │ ├── ......
│ ├── ......
```
+- `train_list.txt`: 训练集图片的路径和标签。下载链接: [google](https://drive.google.com/file/d/10YGzx_aO3IYjBOhInKT_gY6p0mC3beaC/view?usp=sharing)/[baidu](https://pan.baidu.com/s/1G5xYPczfs9koDb7rM4c0lA?pwd=a4vm)(a4vm)
+- `val_list.txt`: 验证集图片的相对路径和标签。下载链接: [google](https://drive.google.com/file/d/1aXHu0svock6MJSur4-FKjW0nyjiJaWHE/view?usp=sharing)/[baidu](https://pan.baidu.com/s/1TFGda7uBZjR7g-A6YjQo-g?pwd=kdga)(kdga)
+
### Demo 示例
如果需要使用具有预训练权重的模型,请转到特定子文件夹,然后下载 `.pdparam` 权重文件,并在以下python脚本中更改相关文件路径,模型配置文件位于 `./configs/`.
From d229dde63b1093fd2a13df453f8564f875084ab7 Mon Sep 17 00:00:00 2001
From: xperzy
Date: Tue, 15 Feb 2022 17:52:35 +0800
Subject: [PATCH 05/12] fix bugs in model, configs, pretrain, and finetune
scripts
---
image_classification/MAE/README.md | 142 +++++++++---------
image_classification/MAE/config.py | 4 +-
.../vit_base_patch16_224_finetune.yaml | 6 +-
...base_patch16_224_finetune_single_node.yaml | 45 ++++++
.../vit_base_patch16_224_linearprobe.yaml | 2 +-
.../vit_base_patch16_224_pretrain.yaml | 2 +-
.../vit_huge_patch14_224_finetune.yaml | 4 +-
.../vit_huge_patch14_224_linearprobe.yaml | 2 +-
.../vit_huge_patch14_224_pretrain.yaml | 2 +-
.../vit_large_patch16_224_finetune.yaml | 8 +-
.../vit_large_patch16_224_pretrain.yaml | 3 +-
image_classification/MAE/mae.png | Bin 0 -> 390302 bytes
.../MAE/main_multi_gpu_finetune.py | 131 ++++++++--------
.../MAE/main_multi_gpu_linearprobe.py | 126 ++++++++--------
.../MAE/main_multi_gpu_pretrain.py | 16 +-
image_classification/MAE/run.sh | 26 ++++
.../MAE/run_finetune_multi.sh | 7 +-
.../MAE/run_pretrain_multi.sh | 4 +-
.../MAE/run_pretrain_multi_resume.sh | 9 ++
image_classification/MAE/stat_define.py | 61 ++++++++
image_classification/MAE/transformer.py | 51 +++++--
21 files changed, 407 insertions(+), 244 deletions(-)
create mode 100644 image_classification/MAE/configs/vit_base_patch16_224_finetune_single_node.yaml
create mode 100644 image_classification/MAE/mae.png
create mode 100644 image_classification/MAE/run.sh
create mode 100644 image_classification/MAE/run_pretrain_multi_resume.sh
create mode 100644 image_classification/MAE/stat_define.py
diff --git a/image_classification/MAE/README.md b/image_classification/MAE/README.md
index 8db9f25b..98bf486a 100644
--- a/image_classification/MAE/README.md
+++ b/image_classification/MAE/README.md
@@ -1,37 +1,38 @@
-# TODO: This README should be modified
-# An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale, [arxiv](https://arxiv.org/abs/2010.11929)
+# Masked Autoencoders Are Scalable Vision Learners, [arxiv](https://arxiv.org/abs/2111.06377)
-PaddlePaddle training/validation code and pretrained models for **ViT**.
+PaddlePaddle training/validation code and pretrained models for **MAE**.
-The official TF implementation is [here](https://github.com/google-research/vision_transformer).
+The official pytorch implementation is [here](https://github.com/facebookresearch/mae).
This implementation is developed by [PaddleViT](https://github.com/BR-IDL/PaddleViT.git).
-
-
ViT Model Overview
+
+MAE Model Overview
### Update
-- Update (2021-09-27): More weights are uploaded.
-- Update (2021-08-11): Code is released and ported weights are uploaded.
+- Update (2022-02-15): Code is refactored and ported weights are uploaded.
+- Update (2021-12-13): Code is released.
## Models Zoo
-| Model | Acc@1 | Acc@5 | #Params | FLOPs | Image Size | Crop_pct | Interpolation | Link |
+| Finetuned Model | Acc@1 | Acc@5 | #Params | FLOPs | Image Size | Crop_pct | Interpolation | Link |
|-------------------------------|-------|-------|---------|--------|------------|----------|---------------|--------------|
-| vit_base_patch32_224 | 80.68 | 95.61 | 88.2M | 4.4G | 224 | 0.875 | bicubic | [google](https://drive.google.com/file/d/1DPEhEuu9sDdcmOPukQbR7ZcHq2bxx9cr/view?usp=sharing)/[baidu](https://pan.baidu.com/s/1ppOLj5SWlJmA-NjoLCoYIw)(ubyr) |
-| vit_base_patch32_384 | 83.35 | 96.84 | 88.2M | 12.7G | 384 | 1.0 | bicubic | [google](https://drive.google.com/file/d/1nCOSwrDiFBFmTkLEThYwjL9SfyzkKoaf/view?usp=sharing)/[baidu](https://pan.baidu.com/s/1jxnL00ocpmdiPM4fOu4lpg)(3c2f) |
-| vit_base_patch16_224 | 84.58 | 97.30 | 86.4M | 17.0G | 224 | 0.875 | bicubic | [google](https://drive.google.com/file/d/13D9FqU4ISsGxWXURgKW9eLOBV-pYPr-L/view?usp=sharing)/[baidu](https://pan.baidu.com/s/1ms3o2fHMQpIoVqnEHitRtA)(qv4n) |
-| vit_base_patch16_384 | 85.99 | 98.00 | 86.4M | 49.8G | 384 | 1.0 | bicubic | [google](https://drive.google.com/file/d/1kWKaAgneDx0QsECxtf7EnUdUZej6vSFT/view?usp=sharing)/[baidu](https://pan.baidu.com/s/15ggLdiL98RPcz__SXorrXA)(wsum) |
-| vit_large_patch16_224 | 85.81 | 97.82 | 304.1M | 59.9G | 224 | 0.875 | bicubic | [google](https://drive.google.com/file/d/1jgwtmtp_cDWEhZE-FuWhs7lCdpqhAMft/view?usp=sharing)/[baidu](https://pan.baidu.com/s/1HRxUJAwEiKgrWnJSjHyU0A)(1bgk) |
-| vit_large_patch16_384 | 87.08 | 98.30 | 304.1M | 175.9G | 384 | 1.0 | bicubic | [google](https://drive.google.com/file/d/1zfw5mdiIm-mPxxQddBFxt0xX-IR-PF2U/view?usp=sharing)/[baidu](https://pan.baidu.com/s/1KvxfIpMeitgXAUZGr5HV8A)(5t91) |
-| vit_large_patch32_384 | 81.51 | 96.09 | 306.5M | 44.4G | 384 | 1.0 | bicubic | [google](https://drive.google.com/file/d/1Py1EX3E35jL7DComW-29Usg9788BB26j/view?usp=sharing)/[baidu](https://pan.baidu.com/s/1W8sUs0pObOGpohP4vsT05w)(ieg3) |
-| | | | | | | | | |
-
+| mae_finetuned_vit_base | 83.72 | 96.54 | 86.4M | 17.0G | 224 | 0.875 | bicubic | [google](https://drive.google.com/file/d/1txV3fWnu_Jr17tCCqk9e_pFeuh7GkmvU/view?usp=sharing)/[baidu](https://pan.baidu.com/s/1cqed6Omp8GeNVaa3-W82GA?pwd=i71u)(i71u) |
+| mae_finetuned_vit_large | 85.95 | 97.57 | 304.1M | 59.9G | 224 | 0.875 | bicubic | [google](https://drive.google.com/file/d/1dzVWxQ0_XTKqKKpA3pSSVU57rT_g8nOe/view?usp=sharing)/[baidu](https://pan.baidu.com/s/17cG1UC3gX4dAXdGDTv_BBw?pwd=v2zk)(v2zk) |
+| mae_finetuned_vit_huge | 86.90 | 98.07 | 631.7M | 162.5G | 224 | 0.875 | bicubic | [google](https://drive.google.com/file/d/1xqjdPez4uG495w3akVbHbn4YqUB1Nmmk/view?usp=sharing)/[baidu](https://pan.baidu.com/s/1N1t-dsNZpwXSKeVOTkz3IQ?pwd=gs6c)(gs6c) |
> *The results are evaluated on ImageNet2012 validation set.
+| Pretrained Model | Link |
+|-------------------------------|--------------|
+| mae_pretrain_vit_base | [google](https://drive.google.com/file/d/1K7ZEaDj1D56i7uTX46hSelf0Ydbpmtie/view?usp=sharing)/[baidu](https://pan.baidu.com/s/1kBn-ad2xyCar4xt-k_oYaA?pwd=rmsi)(rmsi) |
+| mae_pretrain_vit_large | [google](https://drive.google.com/file/d/1UagT3mz_cLHcjyIQfyyLOkXtJXda3UbS/view?usp=sharing)/[baidu](https://pan.baidu.com/s/1IcdX_rDdl9vLyI7rD1I8HQ?pwd=r77v)(r77v) |
+| mae_pretrain_vit_huge | [google](https://drive.google.com/file/d/1Y1lIO_COL2vkz2YvrmYt2yI8iAiRNiPh/view?usp=sharing)/[baidu](https://pan.baidu.com/s/1Wk_tp8De4AYNFBGnIgl5fg?pwd=mthi)(mthi) |
+
+
+
## Notebooks
We provide a few notebooks in aistudio to help you get started:
@@ -41,13 +42,15 @@ We provide a few notebooks in aistudio to help you get started:
## Requirements
- Python>=3.6
- yaml>=0.2.5
-- [PaddlePaddle](https://www.paddlepaddle.org.cn/documentation/docs/en/install/index_en.html)>=2.1.0
+- [PaddlePaddle](https://www.paddlepaddle.org.cn/documentation/docs/en/install/index_en.html)>=2.2.0
- [yacs](https://github.com/rbgirshick/yacs)>=0.1.8
## Data
ImageNet2012 dataset is used in the following folder structure:
```
│imagenet/
+├──train_list.txt
+├──val_list.txt
├──train/
│ ├── n01440764
│ │ ├── n01440764_10026.JPEG
@@ -61,6 +64,8 @@ ImageNet2012 dataset is used in the following folder structure:
│ │ ├── ......
│ ├── ......
```
+- `train_list.txt`: list of relative paths and labels of training images. You can download it from: [google](https://drive.google.com/file/d/10YGzx_aO3IYjBOhInKT_gY6p0mC3beaC/view?usp=sharing)/[baidu](https://pan.baidu.com/s/1G5xYPczfs9koDb7rM4c0lA?pwd=a4vm)(a4vm)
+- `val_list.txt`: list of relative paths and labels of validation images. You can download it from: [google](https://drive.google.com/file/d/1aXHu0svock6MJSur4-FKjW0nyjiJaWHE/view?usp=sharing)/[baidu](https://pan.baidu.com/s/1TFGda7uBZjR7g-A6YjQo-g?pwd=kdga)(kdga)
## Usage
To use the model with pretrained weights, download the `.pdparam` weight file and change related file paths in the following python scripts. The model config files are located in `./configs/`.
@@ -68,107 +73,98 @@ To use the model with pretrained weights, download the `.pdparam` weight file an
For example, assume the downloaded weight file is stored in `./vit_base_patch16_224.pdparams`, to use the `vit_base_patch16_224` model in python:
```python
from config import get_config
-from transformer import build_vit as build_model
+from transformer import build_transformer as build_model
# config files in ./configs/
config = get_config('./configs/vit_base_patch16_224.yaml')
# build model
model = build_model(config)
# load pretrained weights, .pdparams is NOT needed
model_state_dict = paddle.load('./vit_base_patch16_224.pdparams')
-model.set_dict(model_state_dict)
+model.set_state_dict(model_state_dict)
```
## Evaluation
-To evaluate ViT model performance on ImageNet2012 with a single GPU, run the following script using command line:
+To evaluate ViT model performance on ImageNet2012, run the following script using command line:
```shell
-sh run_eval.sh
+sh run_eval_multi.sh
```
or
```shell
-CUDA_VISIBLE_DEVICES=0 \
-python main_single_gpu.py \
- -cfg='./configs/vit_base_patch16_224.yaml' \
+CUDA_VISIBLE_DEVICES=0,1,2,3 \
+python main_multi_gpu_finetune.py \
+ -cfg='./configs/vit_base_patch16_224_finetune.yaml' \
-dataset='imagenet2012' \
- -batch_size=16 \
+ -batch_size=32 \
-data_path='/dataset/imagenet' \
-eval \
- -pretrained='./vit_base_patch16_224.pdparams'
+ -pretrained='./mae_finetuned_vit_base'
```
-
-
-
-Run evaluation using multi-GPUs:
-
+## Finetuning
+To finetune the ViT model on ImageNet2012, run the following script using command line:
```shell
-sh run_eval_multi.sh
+sh run_finetune_multi.sh
```
or
```shell
-CUDA_VISIBLE_DEVICES=0,1,2,3 \
-python main_multi_gpu.py \
- -cfg='./configs/vit_base_patch16_224.yaml' \
+CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 \
+python main_multi_gpu_finetune.py \
+ -cfg='./configs/vit_base_patch16_224_finetune.yaml' \
-dataset='imagenet2012' \
- -batch_size=16 \
+ -batch_size=32 \
-data_path='/dataset/imagenet' \
- -eval \
- -pretrained='./vit_base_patch16_224.pdparams'
+ -pretrained='./mae_pretrain_vit_base'
+ -amp
```
-
-
+## Linear probing
+To finetune(linear probe) the ViT model on ImageNet2012, run the following script using command line:
-## Training
-To train the ViT model on ImageNet2012 with single GPU, run the following script using command line:
```shell
-sh run_train.sh
+sh run_linear_probe_multi.sh
```
or
```shell
-CUDA_VISIBLE_DEVICES=0 \
-python main_single_gpu.py \
- -cfg='./configs/vit_base_patch16_224.yaml' \
- -dataset='imagenet2012' \
- -batch_size=32 \
- -data_path='/dataset/imagenet' \
+CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 \
+python main_multi_gpu_linearprobe.py \
+ -cfg='./configs/vit_base_patch16_224_linearprobe.yaml' \
+ -dataset='imagenet2012' \
+ -batch_size=32 \
+ -data_path='/dataset/imagenet' \
+ -pretrained='./mae_pretrain_vit_base'
+ -amp
```
-
-
-
-
-Run training using multi-GPUs:
-
-
+## Pretraining
+To pretrain the ViT model on ImageNet2012, run the following script using command line:
```shell
-sh run_train_multi.sh
+sh run_pretrain_multi.sh
```
or
```shell
-CUDA_VISIBLE_DEVICES=0,1,2,3 \
-python main_multi_gpu.py \
- -cfg='./configs/vit_base_patch16_224.yaml' \
- -dataset='imagenet2012' \
- -batch_size=16 \
- -data_path='/dataset/imagenet' \
+CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 \
+python main_multi_gpu_pretrain.py \
+-cfg='./configs/vit_base_patch16_224_pretrain.yaml' \
+-dataset='imagenet2012' \
+-batch_size=32 \
+-data_path='/dataset/imagenet' \
+-amp
```
-
-
-
+> Note: it is recommended to train the MAE model on multi-node GPUs.
## Visualization Attention Map
**(coming soon)**
## Reference
```
-@article{dosovitskiy2020image,
- title={An image is worth 16x16 words: Transformers for image recognition at scale},
- author={Dosovitskiy, Alexey and Beyer, Lucas and Kolesnikov, Alexander and Weissenborn, Dirk and Zhai, Xiaohua and Unterthiner, Thomas and Dehghani, Mostafa and Minderer, Matthias and Heigold, Georg and Gelly, Sylvain and others},
- journal={arXiv preprint arXiv:2010.11929},
- year={2020}
+@Article{MaskedAutoencoders2021,
+ author = {Kaiming He and Xinlei Chen and Saining Xie and Yanghao Li and Piotr Doll{\'a}r and Ross Girshick},
+ journal = {arXiv:2111.06377},
+ title = {Masked Autoencoders Are Scalable Vision Learners},
+ year = {2021},
}
```
diff --git a/image_classification/MAE/config.py b/image_classification/MAE/config.py
index c066d9d5..c3a4a787 100644
--- a/image_classification/MAE/config.py
+++ b/image_classification/MAE/config.py
@@ -78,7 +78,7 @@
_C.TRAIN.WARMUP_START_LR = 1e-6 # 0.0
_C.TRAIN.END_LR = 5e-4
_C.TRAIN.GRAD_CLIP = None
-_C.TRAIN.ACCUM_ITER = 2 # 1
+_C.TRAIN.ACCUM_ITER = 1
_C.TRAIN.LINEAR_SCALED_LR = None
_C.TRAIN.LAYER_DECAY = None # used for finetuning only
@@ -118,7 +118,7 @@
# misc
_C.SAVE = "./output"
_C.TAG = "default"
-_C.SAVE_FREQ = 1 # freq to save chpt
+_C.SAVE_FREQ = 20 # freq to save chpt
_C.REPORT_FREQ = 100 # freq to logging info
_C.VALIDATE_FREQ = 100 # freq to do validation
_C.SEED = 0
diff --git a/image_classification/MAE/configs/vit_base_patch16_224_finetune.yaml b/image_classification/MAE/configs/vit_base_patch16_224_finetune.yaml
index eb666192..106ddd1e 100644
--- a/image_classification/MAE/configs/vit_base_patch16_224_finetune.yaml
+++ b/image_classification/MAE/configs/vit_base_patch16_224_finetune.yaml
@@ -15,11 +15,11 @@ MODEL:
DEPTH: 12
NUM_HEADS: 12
TRAIN:
- NUM_EPOCHS: 50
+ NUM_EPOCHS: 100 # same as MAE official readme
WARMUP_EPOCHS: 5
WEIGHT_DECAY: 0.05
- BASE_LR: 1e-3
- WARMUP_START_LR: 0.0
+ BASE_LR: 5e-4
+ WARMUP_START_LR: 1e-7
LINEAR_SCALED_LR: 256
END_LR: 1e-6
ACCUM_ITER: 1
diff --git a/image_classification/MAE/configs/vit_base_patch16_224_finetune_single_node.yaml b/image_classification/MAE/configs/vit_base_patch16_224_finetune_single_node.yaml
new file mode 100644
index 00000000..e3dbb6c7
--- /dev/null
+++ b/image_classification/MAE/configs/vit_base_patch16_224_finetune_single_node.yaml
@@ -0,0 +1,45 @@
+DATA:
+ IMAGE_SIZE: 224
+ CROP_PCT: 0.875
+MODEL:
+ TYPE: FINETUNE
+ NAME: vit_base_patch16_224
+ DROPPATH: 0.1
+ GLOBAL_POOL: True
+ TRANS:
+ PATCH_SIZE: 16
+ MLP_RATIO: 4.0
+ QKV_BIAS: true
+ ENCODER:
+ EMBED_DIM: 768
+ DEPTH: 12
+ NUM_HEADS: 12
+TRAIN:
+ ACCUM_ITER: 4 # set batch size to 32
+ NUM_EPOCHS: 100 # same as MAE official readme
+ WARMUP_EPOCHS: 5
+ WEIGHT_DECAY: 0.05
+ BASE_LR: 5e-4
+ WARMUP_START_LR: 1e-7
+ LINEAR_SCALED_LR: 256
+ END_LR: 1e-6
+ ACCUM_ITER: 1
+ OPTIMIZER:
+ NAME: 'AdamW'
+ BETAS: (0.9, 0.999)
+ LAYER_DECAY: 0.65
+ SMOOTHING: 0.1
+ RAND_AUGMENT: True
+ RAND_AUGMENT_LAYERS: 9
+ RAND_AUGMENT_MAGNITUDE: 5
+ MIXUP_ALPHA: 0.8
+ MIXUP_PROB: 1.0
+ MIXUP_SWITCH_PROB: 0.5
+ MIXUP_MODE: 'batch'
+ CUTMIX_ALPHA: 1.0
+ CUTMIX_MINMAX: None
+ RANDOM_ERASE_PROB: 0.25
+ RANDOM_ERASE_MODE: 'pixel'
+ RANDOM_ERASE_COUNT: 1
+ RANDOM_ERASE_SPLIT: False
+
diff --git a/image_classification/MAE/configs/vit_base_patch16_224_linearprobe.yaml b/image_classification/MAE/configs/vit_base_patch16_224_linearprobe.yaml
index 4a3d039d..3620ae6f 100644
--- a/image_classification/MAE/configs/vit_base_patch16_224_linearprobe.yaml
+++ b/image_classification/MAE/configs/vit_base_patch16_224_linearprobe.yaml
@@ -5,7 +5,7 @@ MODEL:
TYPE: LINEARPROBE
NAME: vit_base_patch16_224
DROPPATH: 0.1
- GLOBAL_POOL: False
+ GLOBAL_POOL: False # enable cls_token
TRANS:
PATCH_SIZE: 16
MLP_RATIO: 4.0
diff --git a/image_classification/MAE/configs/vit_base_patch16_224_pretrain.yaml b/image_classification/MAE/configs/vit_base_patch16_224_pretrain.yaml
index e43573dc..2badb0a3 100644
--- a/image_classification/MAE/configs/vit_base_patch16_224_pretrain.yaml
+++ b/image_classification/MAE/configs/vit_base_patch16_224_pretrain.yaml
@@ -23,7 +23,7 @@ TRAIN:
WARMUP_EPOCHS: 40
WEIGHT_DECAY: 0.05
BASE_LR: 1.5e-4
- WARMUP_START_LR: 0.0
+ WARMUP_START_LR: 1e-7
LINEAR_SCALED_LR: 256
GRAD_CLIP: None
ACCUM_ITER: 1
diff --git a/image_classification/MAE/configs/vit_huge_patch14_224_finetune.yaml b/image_classification/MAE/configs/vit_huge_patch14_224_finetune.yaml
index 0c15171b..0ddf9d4b 100644
--- a/image_classification/MAE/configs/vit_huge_patch14_224_finetune.yaml
+++ b/image_classification/MAE/configs/vit_huge_patch14_224_finetune.yaml
@@ -7,7 +7,7 @@ MODEL:
DROPPATH: 0.3
GLOBAL_POOL: True
TRANS:
- PATCH_SIZE: 16
+ PATCH_SIZE: 14
MLP_RATIO: 4.0
QKV_BIAS: true
ENCODER:
@@ -19,7 +19,7 @@ TRAIN:
WARMUP_EPOCHS: 5
WEIGHT_DECAY: 0.05
BASE_LR: 1e-3
- WARMUP_START_LR: 0.0
+ WARMUP_START_LR: 1e-7
LINEAR_SCALED_LR: 256
END_LR: 1e-6
ACCUM_ITER: 1
diff --git a/image_classification/MAE/configs/vit_huge_patch14_224_linearprobe.yaml b/image_classification/MAE/configs/vit_huge_patch14_224_linearprobe.yaml
index e753155f..b47763e7 100644
--- a/image_classification/MAE/configs/vit_huge_patch14_224_linearprobe.yaml
+++ b/image_classification/MAE/configs/vit_huge_patch14_224_linearprobe.yaml
@@ -7,7 +7,7 @@ MODEL:
DROPPATH: 0.1
GLOBAL_POOL: False
TRANS:
- PATCH_SIZE: 16
+ PATCH_SIZE: 14
MLP_RATIO: 4.0
QKV_BIAS: true
ENCODER:
diff --git a/image_classification/MAE/configs/vit_huge_patch14_224_pretrain.yaml b/image_classification/MAE/configs/vit_huge_patch14_224_pretrain.yaml
index ccb6bfef..f791594d 100644
--- a/image_classification/MAE/configs/vit_huge_patch14_224_pretrain.yaml
+++ b/image_classification/MAE/configs/vit_huge_patch14_224_pretrain.yaml
@@ -23,7 +23,7 @@ TRAIN:
WARMUP_EPOCHS: 40
WEIGHT_DECAY: 0.05
BASE_LR: 1.5e-4
- WARMUP_START_LR: 0.0
+ WARMUP_START_LR: 1e-7
LINEAR_SCALED_LR: 256
GRAD_CLIP: None
ACCUM_ITER: 1
diff --git a/image_classification/MAE/configs/vit_large_patch16_224_finetune.yaml b/image_classification/MAE/configs/vit_large_patch16_224_finetune.yaml
index 050ec685..e2a86bac 100644
--- a/image_classification/MAE/configs/vit_large_patch16_224_finetune.yaml
+++ b/image_classification/MAE/configs/vit_large_patch16_224_finetune.yaml
@@ -4,7 +4,7 @@ DATA:
MODEL:
TYPE: FINETUNE
NAME: vit_large_patch16_224
- DROPPATH: 0.1
+ DROPPATH: 0.2 # same as MAE official readme
GLOBAL_POOL: True
TRANS:
PATCH_SIZE: 16
@@ -18,15 +18,15 @@ TRAIN:
NUM_EPOCHS: 50
WARMUP_EPOCHS: 5
WEIGHT_DECAY: 0.05
- BASE_LR: 1e-3
- WARMUP_START_LR: 0.0
+ BASE_LR: 1e-3 # absolute_lr = base_lr * total_batch_size / 256
+ WARMUP_START_LR: 1e-7
LINEAR_SCALED_LR: 256
END_LR: 1e-6
ACCUM_ITER: 1
OPTIMIZER:
NAME: 'AdamW'
BETAS: (0.9, 0.999)
- LAYER_DECAY: 0.65
+ LAYER_DECAY: 0.75 # same as MAE official readme
SMOOTHING: 0.1
RAND_AUGMENT: True
RAND_AUGMENT_LAYERS: 9
diff --git a/image_classification/MAE/configs/vit_large_patch16_224_pretrain.yaml b/image_classification/MAE/configs/vit_large_patch16_224_pretrain.yaml
index 15eec2a1..a90c4aa6 100644
--- a/image_classification/MAE/configs/vit_large_patch16_224_pretrain.yaml
+++ b/image_classification/MAE/configs/vit_large_patch16_224_pretrain.yaml
@@ -10,6 +10,7 @@ MODEL:
MLP_RATIO: 4.0
QKV_BIAS: true
MASK_RATIO: 0.75
+ NORM_PIX_LOSS: True
ENCODER:
EMBED_DIM: 1024
DEPTH: 24
@@ -23,7 +24,7 @@ TRAIN:
WARMUP_EPOCHS: 40
WEIGHT_DECAY: 0.05
BASE_LR: 1.5e-4
- WARMUP_START_LR: 0.0
+ WARMUP_START_LR: 1e-7
LINEAR_SCALED_LR: 256
GRAD_CLIP: None
ACCUM_ITER: 1
diff --git a/image_classification/MAE/mae.png b/image_classification/MAE/mae.png
new file mode 100644
index 0000000000000000000000000000000000000000..6ca07defcee1b64a20015b960aa044d7c10870e5
GIT binary patch
literal 390302
zcmeFZcUV(t_cjU$BIt;NgI&QI1raQ$v;=h!u@DO(0zyzkq$5aA5iF>v*eEI_Dk_oy
zQE5_=fR3VoM8yy(At;alfdmL4q@M?onfEu}nQuPd^T#>Yx#S{bv$OZkUh7%UTKBrw
zdiI6AP7c55&eK&>Q~Skn$M5^q)U-KjYMSS!Oa^;?>#aVarlx+tZ`-!Lj@z~w?F|b#
z<`?Lrrnd5$x0l!c9jjNqIegg5>&-ipRk~qO`_G@hwBHL?Q~9#8y7JZCH_iu6Z
zx7RrzS#S1ubOBw(Ijh*_SV2Fwv$e~
zPrbT!>f&R^swIo5lX)B24GPfAPHn?G@q
zsZ`;cCrv6}G3h0nr&6iflqwb5XWF#7l2frXb+uHyH?OGigEi3dMW2I?$M)<|GX~pJ
z)HK!SscC^Nb?}0!&;N6KyZTDCN#FKssHr9TscC*c#tFQS{agjFv2(`XCtW|MrVakn
z2e0V68WTrrbM8)>*w#D;K2zIrV4I^Oct7AB=Hn9_emvwP3Eh1e?9d6_;To={Hf#CV
zOWkq*vH@`Y&wkDaPafQ}+sZp6XwBiHAxC`HL89BvhD
zyX4yuR$zN2N
zvt4rhM>=+B?=`}B$S`|F#6!@r9K1T-7_#BA*vbF)9M
z4NkQg+iSJgFWM*2^>@D@pfm6t(6wtVHrsqV;eYw)udn=%QxE=i>N@jv>;Ci9|M=+d
zry|0A!nTD3fiFD?{cFI!pZuR6em~L1Y)tn5(8ai-zwHH@hU(gw{W)q--JQ9yzk-2W
z;P*S+8N35C8~f4N2L7xZe+S!>Of0enb<)+;?9?28-{Kst-p8s_UB
zO>s>QPRDEO-)21FTg;zvUdvx+ZNjgnWwUdSZ#*Bh^y&yot3=rev>bdET
z%Q5{?{3`q6`t7IG)HO7x%rLV1r;Wbf+wIJ0Gm)3||M{42r^l}_N*8bWmxI(btbdzP
zCzye3_}_jhxS*Z6VEsSd)WrQpt~5$#FV26YGqK|zBst~P=KD_q{&{NOULfeULwjca
zn+#PI^ncUZjL-K@d0`Wu-(K-=G9<(h{$&Ja7(LmhUL~J?!eY*4
z?`m!bpo$uVarJNJ6yHB(3a6ywv4Mu>2)HPXAiR$pM=F)(;5%PtAhVYIrRZF8DQeAxxB(zF$lK?C{x5*`
z?UOmTL6UKNy}ym-ltUn8Krsd;2*@X6=sp-zpcg7vgO^Aa?C;V6*7==@Y65
z+ylnQV&^a4^MOA{YTHbZ;RJ2JoTwI00=Ge$=Q%;Nn=dbLqH?d6SZ
z9=I)V2rc!E`uD5F=jniqWqZ!zzvn*3!Ikg5dptP9C=_95jzhc*_{2&YDrj{_?gV0^HWvAnxi^n~=Q`Sh;)F
zrx|~f-FySM^7~_-qNmJwZVdEG{9^I_2(J>LN0!t-^KXXo{3Y0LZ4*=GbgHrlYzACd
zFd^#aF&hfFIq&b8;yECoVe_SVdg>ZTpkJg##RTo%=K>7H9hEm>1{3l`9Rwqn2!S(o
zW;_Rn;7qSgn)t{a*igvj{oDR7`+FeZwmbVe7TdKGfqseSm=lJ=8l$awB%qXuYkb>i
zpFVX8M=;RY1MGo0Hi*l^CPel6IZ1v_k_l%v!|3NE`8i2`Mv|YAB>rb4`TsB6`WrB^
zJ5|X8=!UtcZ}9}Y`70p&&prQuNG8C)n>2>F`pNn)K0V%7?D@ReBw1XOG-Vjyt~8N(uV5i6DJiE
z7VSVCODeqO&3jBJ@z~hX+}}d%AhF&)sO`9G4ZR)N5W5>vdZgH@*!>fufvn6p^vr$r
znzF92#&^ere4FHHtF#+sF`dt|3J2R1aje7h@~b;To9j`RbKQd7=O4&d4JIp(P-@qY
z8(iqFF*{3$as_twJFv5*b!#SQ0FXw;7;1jE(=`3j`8phv-M9nhwCO!2b~H3gV?cR*
zwqQ=3VX>F;$ou?813&^DAzp%Xg-GMxb2f5dz4cXtFiqQH0)EZ^p^{qrw7v)x4b8X`&6=aTW94^V5Zh
zV8i;7Ni8s);sRXE)7>f3iaTbrS%J_H139eZ2(?UD6KRo7JI=&E&=d0)7I|TB8&S3j
zFRk!p$apI$2D}no3DcP4E@SWyldi+8cA68O(6&nb$p||6w4@MeI@0fAuA)R1
z5vM9NbE~AoxelJ~fI+#PrX4qDo5i83lt-J*F5^BKb4~6FaMACv=dT`D`k1Q}C6TQ8
znp37By{0X0530kr4{rRFc;ek!Gz0@XH|T1it8oW-piTS2r%$BM>w&XB7F_>57k1IW
zDahD@;$l+omfyhxHi)~dgSZ^G3pC!po0k@;WsG&El?Ha|CGVB@j<
z1JUz)Uq0u2a}6&?bLVNr?*UZEoyV4m6RzPF5On<}-|ykgB%U@Bz>a;jn__r*n6ydWzdJf~PwH|;r(&A2F`5-HdX
zp%EnIr|6bs4UXvLDfvnxX1<};O$S^5-6+aYL=BU|Yq9N{SuaKi70*Tp@=gb&*%%qM
z^w&AtrbN#_uqwLZ7t!HE;nUcT?Bv5}m&*y2D}X=P^C@H7_sISkAO+g3I|bu#C_beU
zr7*#mqtqjVA`*w2u~>6LS8vPH{`Z~jh_W^T=_u9s^#K#M84o`xV3o{qQAz`s9l3wq
zfXNqhrUy*(aVYi0VE!HMIYCkq(Txzr9tD6QF$+~(O=Zd$ZXN!kOp-*5R@N9
z^|b0R-x8L&2z5>vBySS;z;PdAy9~iFEgv5y=l^1uhUmjU#c_Ehd#UuU1GlKebb2`A
zC6mp|OC^O=$-68SaSEz(5g!wQW*>A(7EFiea7_wP2%^}aH>HPbcsCXvgYkZG@=F{
zKV9VHpCj+E*>8b@?S6BDfE(%YfmImUdD&=qPf-u?-l&yaau0eb;K~>49@*MUbmG1l
zpFtR@Y6xf5Ag6eIki?SqVsD+Y
z-SvWdCgLuN+t?#&MZOkai;`KpMk4B%*GDksxc8|KLV$7P^&o3MlT!=m5hiEIvf2_a
zsQ3=pFGRrB$ZpMcoke3C7orq)UX%a^p;f9F@*Lnj>|<8Rdpn1-rOwREqUC*bq&QuW
z_Dqo6ds;#r^ucZ(=yd^C#`KwF0OdI7(V|5&aK9Rv>&CA=bE;(RwS?-Hy@szXss}QM
z6?0zuGFDCrTmm@T-``n&2cq%s#-?1UWzzVRJE$Y?Euno#>@ju4-8zoSCBEQEmh7sb
zwd&V#pOC8L(zZbbr3B>Cm*-m7hK&?ZrgH);PC3_dk!lVO4mv#$R)?7(<*4wYTKtD8mlkVQTz>nTP1`xC
zdA{X2!2?0HIh3@0i`PsLi&ps8Ph>KIV}x_vJJ<1>uiV*=q!s0-lc!Nwnp8^o2foO2
z*JnsN%4K&O@&U5ZQ+x@fEex6~mU|qIo5~44L|RQhQRI(V2-{->yXB&V!5wOGuaaA3
zgwTQ0PklnSL7Os?}Sdp{)Is?gW(`>C93yJ9d7V9ClimuY%)e*a}I8L
z8XKG>^?1lo(ZXK
zhNzR{YLVus!=pB;x&vEacL>@3R2m&^8bR>ndnB^wmxwGAaT5`-I=rw2;#T^!(d
z>@`M+So%}PcD6-2IkZAU?q8OP_<~jjEJho*%O3WT!l&BK07L%)3Yt8uhE^;gc*BrpfexDUDh!f52Z$
z&>hxomdR?7MVPN6a@(BsEj&aQ+9T`5pl%m$G}6fX~gN7bVL?!b3FU&s^7!N_mARb4bdYB&=wb9;8U$3m)@!XWxiSmX%e@kKT@}L#l=%
z&kpuiYe~vqyD;m|w_E@NcFj=zlb-sq{^kfu)~HThjK9=_L;AuWh8tT#(7;P;(Oy(n>hhrEu@Yet3e
z=Ac;$-7k;^Kld8!Z7-}bP>miDY_I
z@KM}Mtie$j`U-_DC)r(u79Gyy7#1_s!}=GXn5fy$#Z_pSqtx4If|B5p%Inhst97c5NjBU^kQkV(yGuzI_U_NWexojIknZKm0TC6
z$Pk)L3c089d4*P#daj|Zx#}-M7`mGT=K;!KrCjm=B%9d5ckZ&W+F@4
zV;5v_9$8+rXN5LvUuqk{=}OBSnXYQY#i{`&-qpl>rckgW{4-Io$?5Ovo5MyTSi}L9
z{l+S}+5N7A8ZXBIYr*m#2CQ}@e>yJ~zuVtc7U70TIlfO4JC%|AtW&X}_9b$LXDt&x
zwB4{_NOjo6bkI#P-On?k5b4yiwM2EBKQnYj(9Frw}S_7RP9HDXt3*
z?vnL~{RhHGBeH-`vb-AF$WbKA7kgV)3tvyIH8jkvCzZ*S$`P}cpnyq*8;#QmMMOy%
zSz*;jtLU^aYip$kI1O!7*NF1`mJ;s1{^Kbj&q!IsHQCB*sYlMid6=V`qNj4hmBuUR
zxdX3!ipjy+_ifR&NJ5y8$3X=Arjwb
zx*T4$w!&Claf>&Drl)8zaO=X*Q06!W6IA-!_Ke+SxnrPsWmQL{ZS|+-Z;6q&^!NED
z@nh9za_s1LlxFl~7r;epB8tXq_uGvI7vWRZf7ZPH6NH!uauV2~fa*bwH
ze1*J8win9v>5(KQQ9si7>tUHkEoH-T*O>?lc8Ec{xOz=^Uzf#4CwC`W>N^0@8yX6n
zUdb=k%^WLAj{&+_hqbk*EQ&g1b$!J+{(PI*WUf=O1u(Ufe=DDW+1C1?BVdY4!8b_f
zwOS)&Do3V9L8gDYE;2oYtM-Csi`K@e?kC7xwxd$|(t4uKN+hVMZ+YFyOS+$BS1EcN
z(shb4nXgK6G}AYYmel*XPFCb~|hzUa@&>L^}-M&vS|4WxvZ9Jf_1Gp5f)h})FM`$fz*
z*0s(LOKcHOsZc);N}IOGpdDH6*mvVSWDY#EEkQD?+xMw-1Pcf(Z?`y1I-7k5S`A4j
zS1OipnS%ze;SFzzz+F>|2v?kMMC`_0&S=Qrr^w&8tPpN3j6to1-2nrCv3X4Y-=O9>
zFG$GLMNu!TE^Z&!|0{yokSx9w$)ywK#RfYc?6t6|3Lyb+GrYYp&B$+EjJy5IA#A)m7n
z*JHq#M3Gm;ZZweoizb~SW}rS<7{38|LIk=9Su0>-IN3VgGA~+L!+uHRWw$jnEr}(S
ze}LB3dt3Ob!rIol=a_Gj=BSzM36#UNW$Mc}f@~Bro{b`Y92Z3Caby>Tx}4->foL#7
zWAq|}31IReYvZfRohv==#VkUemNcFPGnYZo{Q!&vQHXLD#SsU{#hJY$(|^USYI
zi#Gi_CZLv~X9_
zH%{o
z)i%LfuJMehhhV&9EW%bCx&77Tk|N;
zHK=M1&yJG$Oqso~v84QvbA%$+RVvyq%Soq4Og~`B4#60)o87dA%>>?rNSCxcD4moV%az-N_aTOJHBK@l+-b3_Pz3n!L4XBhM1j`dP`FItM
z!tyLEFf-{uUc(9fp~E%7YxGCRON6PYlZJFnjv$l4fIJOn#)4D5(f$^^@I$8rLQv
z%yE%;FRUl#U=S&otU@;cEV9RV`~pQ=rTDjFpR)1@+0GAIO9_SHvLM4lge!~L5$Mj
z=(!POUf5KkL>Ro0K(;~!QP7fNWP+sR?Ps{x=W&oV`M-dYX|h+y&y*d}p6-ZTWF^KT
zgM3lwH&=6^xbe5<2*|A^@{I=je+
z{a~wP*%0P{nP3xJdh;&TnBVej6x?*npdX2h1(P2`Vg$w=`jiwHf!);^o>GRs!dC@i
zat4uJsO0B`7bSo|;3mab7h4QXS2?2s0h0?KXL5-@9=7!s*&H|MH`vN-MCKtkx54~T
zs8^n~O};v^)S!|b6g_r}CF!E5&yUN!3)LY1Zc|%@G$%MreFsorQF92!ylr}b^>j#S
za4M5546u~-RxiVqJb}XI9CwX!BKmN6)B#?eo_tm+%^9E=Gf4iFkAoE@`G*9g#(*aA0^IU9!HHd+
zvH9UL6(U?=JzHnA#g-H9>HZP=1#REU_`L{W!7pNbNKA}i^}YloM{`a9ax?o1@x2WM
z+3uNKjIc(?0rJgYC?_3N$6@8ZkgN_MG^>z$9+}EV
z5CdVz{-?>617ohd?e*&aBB2)PfiR&AtYt#3l4TX*FK9zQq&_tF}Vq4uCcIt4XN!b68~Eo)G@%KYpFPq5{l2p{D-m=WMiTsM(Iv3Mo(
zx*X{wi!sv@!r;|$n&(W$!zld6J-Qx@=tX5WD_Rdc^)wi|VKW`+GlOY1>Z$?rJ#Ej34vXJtu0o|U18KWO(O&Ni;vi9+Q1I?Cj%!~vZyy|ldj
z*y}PH5W$Xos!X|KfCcF^of2}H(JV4uE=YR<%h)YM8rEfdK@nWUQnohF0E^s(Y0ZQ>
z`=Ak=5+9y>KtJoy3e!)tetX_FYcjF3;b2^6UhgiRQ;|D{gi);089{Q9))F$AhY|#o
zhaIJfcJZ^fQn9~3*-<3FugBpQP_rXOBJOx8triPr&UrK*xGaA>a8V`ilAB4y>-4Yv
zn9YQh<$9cOoFw?eo*S>3LnGA=4VqsupF9luO@AkFhWp&uY|1!k0ovX#Z1k_1iog!4mqh56Jo9hF$!Nq-PXHgHzs9#l)aIp8vk(OzrZE1irZ&$v_@F4R#}^y9M>rFg>UwrLNE
zA64so5k#QkLRCY9*sT&Wu78X8vL0JNRlL)47s-2i{4@q)qBhv}E$aN-(b19WPkXG;
zA)EY0J9uc>c^D6G3+r)mI>u_SfuZHOaYKEDani53)|r{h@4^w71PSpGxr>_?gI}<)
z#ETjx@M%8SI8WsG!DP1}t%S~t3_L54sM{^?M8p%aW2SbIcG5IN^60zufs5r2K!ICQ
zY-I;($RU)YN`@CzUrP0-YN%fMFyuDgq>B=lE<&(~r1|NhT1Z~`s?+>ChS)sW$R=nXR^-m^rbru|pk{ErM2$LvSdK;Y
zcy0?kj82{OxWv5@1vl*`8)!TWRQ6JZfS~)etMX9UbU&Ex!AE*U3vg3qGwbLd>Gm#a
z#}ShL#7VBlV5+!=M(l=xN1OTpr}%yx2x|N|5FE8ueTA`&ztS?zl}M=cv8>U-aK%lP
zn^+_^JSl)&f=_4f*`MM`7xM(gftb`s@W-BChQAzbUbxV(s7C0DsD%6$QiXmo1bD|7
z88MX1h0r~hT_x{Tx{~lX{1fG}E#jCfaVM~CFQnXTZcwT0^y+Nf?S}&dLPm)iE;Y2m
zGzMoLM7Q*bAV{&Ul3AA_&Sb-1oDFC7giq~ofA3j^p1ju&Kh8QZ{Zum*ekjyT+qC^(^
zbJ3B?6pC`0o!7K+%USeaSPo8EqB2Su6qo5iNAFtisI1sM#g^n{BY+!MFVMoYDo@PZjpMZV;%|(8Vy%GCJ$it(z*@mdnwpd!b?s{5Uo}w=^}199JW*tw4Uxm|?9V8KGSO%di7-2JdubX1-xW
zgXXZoXC~&e83-%yXQ64)BZclq*@~=*K7DFY1t
zX)@-$G0zYh^HI?S2TdqVGM}v@X8JX%4Pv6I3POmY!+lF(iY1H@Na?Zs^2c7v`|ciP
zdYvRUsDk*OB5md$V84*`iuXkpX;M9CdW`kW&CE!^N+Hz!SIOL7K*=UI$yl=kjJ$u1BGh*75@52^~C4O5)g_+GFxtiDY
z@aYHQp}WdUj~Dy#A*jQV)+Kx+0xdZV%or;e{Jp9ttGZMhL*xlN;voUNDtW2fjs*301Cl>gkHg&6gmQTYISBV9
zx|^N~+0~gXNa_M{e$woo1Bw;*Mi_HEbvO;dQ#r!$a}FqIaQ`Tvj85o$D}K*4`0?U*
zqN*DADPh!&XzSB%dNTiDdFs88o)JJu6v^Xixb7fe!C|&{ioB?NGu+L+)YM#5o$(*=
zBbg3bk|00%8Nguo&K%8F_+7cPESk(zq;?Sd%MNXopC-PCpZ65Fd`2x+Bx%aBbDonQ
z@_b$Mm8+RCw=qCrQaCNT6{G4PM8KqdC&X`Ga#=#5eUuffR>3+DLpViAErZo1Ya2fx
zM}|K|3@H80QQrL>qZu~>nBFn_FixrlrjNqwFk&IfJGVxj}m@lPyO-1{Mr_}CWx
zV5Gh5%Z8{-coABQYhXiwEFg!L5nt*R{Dwu~&3GAS8V#J0Pf&v=&kBn!DZ;K9!M@LP+On9cpfC%|Qw>S`wQpb1{Xh?_iSpiU{|Ln)q
z{QHt#ciZOcBAt!^pHpsSR8%pQ%|_NRslAfgJe$T}RWBXjp42Y}>Ka*NJnb=}mazN;
z!}vRgIMEn95Dd7)sPM4g#`h1*iZ@gWR9Mnv@_;1FRlJ}DbeFw8#OTL##qzfhbcd|+
z?{`NaMxU8Ru@jpS7N{!p+0V7DLfc=XqnsB$m>F!%19
ztc(TUTP-W>+v8L`8uLY$i=>VDykwvpaohK;)RE7_raR~l*S@bfGV16)i>mjO2klFf
z4SBlv+8&l1*5LbHAuaE1!8Dniq+femII|A<*n=U~QG$M}j7@L^T5Hsx9w~}lL#S=U
z^d$58o!cPK$wZl^tXdqd8tuz19-4oO-_!Ig?xu{68|;h`cMvd*7;z%37b|ai$@fi0
zoy@lEURK*e=)w=w@;6t>DVI!w8WA5|WY@M>IJ?_+xryLs`Jj1Hl!MEpnLHyaEUC&G
z!-xU@07&u1UIaqe0y}5lwl#wt-udrz#B<-Q%0W+=rQcS);m~fL~9|`oOK2c0Y)8l?E5J
z;OT~dVbiUi2}mWdVsbqTtp9xOpYpwnaAL7Q^d{go$}KG~j_;37s*F-{*?rptZoLX4
z^$5g8F8gRJ>lp|R;?wZ=o;or8pqdu@$wgfxE!E@PxDN`=#VsB8XBE&-AhZZ-XK01L9(@=zW^YjeO`&B;Tf!F7jKvvC!JmoX7NJtt;Vr(lTGg+aAA7yPD)-
z*9M@qUkML~lploItTc#kOhyzOR7we|(FQ(2+1l9p)W
zbo!iiuK}vl958qR`gP*m>y@_w-8I^mWY!X+1P@p`1Y7{Ct_0XazT5H%k-t~3+Q6b;
zRj|{Q?=8LH5l?U>pO$Gnx*7sfPvdHny<~J5zm}RCCaORh2(`a;Ly>i5#YINt8ZxY-
z#6_RL1ZC=^k3#I(&jz88y{Kyb4PBYZO#)XbbiI$=mogCJF&M>mvSrwI3vYV#U-JN^
z>5oH+Jq?AaO?35aUv8d;%4=Wtf|EHHLQ)264|%6P9D)l?PUEC62`5$Eaj-t+*KE{D
z0!TYOKMf5x#PvI9=g?3^sE!(M(Wlru(8lB`jqau`xVd$x(rPqr=WEZP6n9UIa<4fp
zQn=e|_c!s2{}087s1&rO1W8uUzDYXz-CKG0gxJc1jVFAql%xBVk-{a7}=!93HvX&tkDT`qFq`rc|?_$$?C60UuY>%2Mi-7r{xRDI&
zQ4S_U`P4gcU}lUSE=g|{%+hw~IgmH&s^N;l6Px1%=*nHtLTAS^0(C4Tz0`4k>4-(kDl=?l<
zo>lU`zCv3j`-b#aJH<+)E!ZH_$K=_P@{xC8w9zs_oX5iiu~lSodIZex%Pd1_a-y2#5^V(x$N7_I;}riuNn<03N0mv!lw}K
zmTUFvP~2A%mh*2ML~g}e^4(mh#gR^J)`yVIplI^+z*Bt0fC)aNnqm9J8;01AiuNxB{4a0)qMEUjLT}bS
zya@Al1pZfPbsmlro{qPFp^A|{53E8zlMX+e7xD$oW?&2N^*UhRXMQ428mmq?jVWZ+
z>>pDIUo|W!d|#neS9_+*pc45R@AH+nZ;Qy@xKbt+Rb+lJ%qMXRXj>(YTjhR>47wpN
zoz7?ChTPlnp~v
z)QLI!wWuo=aSwa#33?+eBspu?`+AMIHJ)k>H^;7}bw9Fvlv)DYH9wh7FEg}_X~w7u
z99Sw4e8TV+Ew-FYM7#3x)#
zZppj|TaE}1(CCM6QKf4vs$98;sFKe))-*@w5)wQ~p{;aN*f<^8&H*hNn?m>($E&-0
zHQ0)B9At4cv2kW3@;UlFe-+`0Vl#-L^^op-(2ZFE-A3PHV1?{FR9goKF=#qr+4KCp
zwgQ)x1c!z0DSe<4j(P+QV!TDfP^WWD&ck+`XYm)J6vr{H9&4+e!ko0kdA-mt(TMhv
z?sBZr-r2{O%Mld3g5i>X=T+y-2ifm5Ret8;dw|9iIyZ6$9JmGiY&hy9ZshID))3`B
zaYrJ&+ze0a#uHWy)Ax_EmNA5Warkg<&P^2PC@9FgPJR8Mcv@BvBV``H_i1xW83Gph
z1hf`IK@<(<95ScPXRa+YPB(nHdj8V*LGT!YYHRWK?~mH}Yl+$zBAvFg-CD(B2P3}l
zdigIMiLa9%u}-Ao2n({0VBHo+?C*{}8gMTrL0FR&P(H6N8%@;`BK$lLM<8g-XM8g!
z&t-E65!Ka*cb<#mOc8`r<)G7BUA~3*F-?cn@@%9Dbr0vmM|c1fyPS>4Y-4jNA?3-G
zaBONJVfXYhzeU_qI=U!)A53=#151jf7dbi6%Wt&$QnAqkOJs(S43Mb``DQTON5v~R
zOn@EkjuF3V$Y#al$9;H>Zq0mHhQ(vej9cL?rnzJ&(}+h^asZGvQN-Ltj&bI1UlRfLChes`DDy=tVa%h+1Y=eF*6@#4f~wXHdsI5hh*2
z08I5tF)1WIuAb!cg-0DSs5j&QFoV5SGb}Ma2n$qK8n>e;`2i()TUD#!>>*W#b)FZr
zmWkX9q9}9Skc5o)x0DK3$K!50EbomFh|N$Lop_;#xG70^MwnbCzzsgo5*2+?_|3yF
zuOK|EQQBYvQ{;ZKCEhs#o_n!EI>s#&x~%pe4D8Mfe=DCU#LtmByLk6DMIYLhCK
zge4nQB#gfOK+zN`){Ou{D9J|Z1&xX&GfmHUvf?mB55^)-79iS9V6fdjv09P_8{!c9
z*77ecl%8-W5*n`C)ovZ4(bR-Cdgu+i4h9G9w~KWkO^Lb6#XD7sP6e)z1AUS_
z2bR;)>H3xA7emf1B^PC91VL{lnw%z3s0Hf+ywgkrL*k=ej1sSqHi!#?p12!tgz
zwC$k^Z_vx(i(vhWpm87GtqHqa=sua-<9&IPSpj7l2Q{^e*RQi0x1?6iWwOPa62191!mt@AC%^VLux2)1`NMcIGzq~fx!h?3-mU_W^2^9X5iyW}G{8q4@`w;=#0t-M
zg->j`je2U+_4Yp{s4}xJ`)rjco9AwuZUt|OE8p&PJ2P8igRE42?aPhBcfj@E!`=!e
zQ#aoNf#vH7v4Uex{3IbcSbRc0M7sC0T&{ZVs$s4zD)JF#SC=L#PVjwcZX03ZGlU0(ltIFZ&=Bv<
zoBKR7IMr%BFNcrcR%EjpZrtFz;^}59SdNV(RiDIF%mQT++GyWCu_P%LmnzF{7+s!pobNs{KSdmostf1@c|1QjpYm0J`!{XH9sKKQD0=8qbql{v3aw&V@qM_
z`T~R9AUQ#lw($*7h!KO^T$=7Hpg1-+KWF`Zrsg{!Mv|`48;qL
zhdn!~1Ey!liqh>KCgm+uw;C#YdRd&fjn{@#oz@iUG_{0{`jynv$y4i{d`S;QGhb)N
zQu)?|70t<$@Q|B0d7o=JK^}wMF>oa2Gv<1zG7*lCf}w{CWg7&T!Oqo;p&q!x+{imu
z_73@#rUXRwNM1=&A9=Yrz@0|J(gEMq0hWjhj^TgIttgc^r5Wg9ho7f!FnA(CmZizj;mj;%hK(4c8m`z7B2J(Wnx@x>8>B(-{OL2>Ad3O;
z_i1)TL3h>ou9E9=Nkp4|XEhio1}Ze~&Uy%|DFUkppHNe?$mUeOH{gs9k?xCP&W`A`
znHOo4*M@-y(J6h@axp-Qr6WzCG~%
zS`voed_a}~?n7{_=7;sBUlP}vcysoyv
zOn)nF8fRubBq!f^FiH23$xS*hbuZu+K?h3*X$gou2hL(syZUCnM<$@uV_7uYs3gH7
zzvH(bb_Afby8EluFH}K#xS((*z2o9$j*7=>^$Q*fP^#C7K^GJ^W^-9dzGnJTq&WH3^1%qYM9_s5vfn80SI{;@W_XYNG5Pm=hR7kYJTBAfA5?C;#
zx1#6}265SNS$ckD1?rg6Jf-u78=tzLuiGU&&KS}m1~BdU4zwNJ9^zY|MIT`bvxd*l
zIYK$lhHJGQZI-#}
z4
z{pjl(sp0`Yu`ev{6Xsf1KWbS8{c@kX59W4oZ3i>)o^f}Jf^%R6Dm9N*1cS}_uK}*%
zqa)PRM6k9|Tdyq384q_c5cYfa>D-mI+otsD6zl2Npq6=%yPDG?U?N?%2?@S3Q{{bq
z-AG?R71|TBmyC%plyogoN8k?%9QShkOp(W#@_L
zi@59vI;DuJ#|aY6VbRife^SDz)gxk$fOV(XP_r%^E@|L$OOJVkwb{m8yErOec{i1&
zl4=W>QlaS?9L$?Sc)DmsAo(dCpBbfR2ul4K84+}P8Y`>7UVOURtW2;hU3G$QsT%EZ
zOnW8^_N@KFZFY$9pv_J92~>p1)~+N}q^X{fQ-2v#)>w;I@Ub7v1`HL|s{N$xgaw8X
z)j6AC^_1ppfzK-0gIb}D+e&QuMX6>--V$h4co)Z@26?q@Yj@JJc2U&Up(M@z+SV)z
zg_)WUpRZGG1}adR-C(uL!64AtSB%CqKVD(-Hn?hRXKKwYDfLzA6T3G7Ych9e=v@9|N4Vkj?cu}2
zt|_;!o#+Fo#1*r<#5s@urmrqK%i4JT(xu93vz@WhTc`@Q>TFhZpQfh#ZRC-KHcJLx
z-B>7V-R00fxD?X&Fe`iYFN1qEq?ey=nzyIU5OZQpH*-_n*$|22!@jA@q^mR#OO4i|
z>KCS^n2Z~T{;SJMrl;i8oqON_>TXWE}S
z0zDP2w~E8nK0@ue-}K7nnEOld?%df&7HMz%1HCwF{q}}cZL2to*`@h$^=^XQmk#jP
z=Uwrh`@8iGkqy4xmYG3c{KnOoy(w+@APN7%)`tkS|GMx(?9F2GVn$p0?SVs(MMv-#
zVwCsN1zRqyzea~1f3^Mrt0Usk=c#LP_gji?WM0`7dr{(depHS3;=p@{&uh1k=T#PU
zBxfEfxWV%Xh~
z!l^&x1Gh*H-?fy!QiC8Z*V|IK6mw;0AW!RjjF}Jn_p*u|bq7qDTc-q0Ie{`?bS-ML
zU!eTa=Ta!Ten_->4|}%od`m~b#h9DL+0W0}`1<27MDlgcSiiD)g*jhnwMiGdGAt)NEk|UQZ+Ro%A;i{6|>-{b^8r!CcMQOPF8uCTH}W
z%sVZdwKpH9%lp8bf4qTv=GpK9ZM;=wPVqTWkM+vKZ2LUv0v?_4M}_A>R7v)=blk}3
zZAdpfxB6frv|w`jiMwk#_H*glv$tMKx{lwEHR55yq>D9{?47HjFYIasZN6d8UG5<+
zNQ_&3-tE&Q?y>`q(GYvCpFM6d>c7r`0zH0Nk4zr7m?h@>G@&9k?5O3d&DT2`rmhrD
zKk;t=i0u@=6`Vn4?dS48Ue^_<-Op@Xpg*rPazT|PKHco&(C)gpp4c{+c!DEg>-CK88>^C5_-(VqvFcJ`q-abdBR+=T~9VM*LDG>g(5yv=ix@Kg#{dD4IPK5B+Zuq1elXY`u}CS+d60uEJlDrQ{kLF4l^j(v
zDJ({Jn%}S^&A(la+CFhT>Y5z&y>HrCg9C4sfeHCJhUv8BJ+J$pKaQ)wMvErfBI5p6
zOf{T8u=areMA
zuOI#wo6x+MRz;m9PSjePfs6h3-W_l^>!hVn60e3v~MV#iZ(actK`&;khx(j?53pHP_RS&6?!sBL)XcAw
zgz+4`ePD_H@Vf|3D`^Z8M$Orpq(w79}eF)mz(Lq`qoaG+eb1R
z`po)JX#ivF-lbt*bd$5`oWc3He@*0TJb#R?+<)Tawv#h@S_OafS1B{T&zn*VfVHeQ2iZ9JbogoB3}#HW7_T+G^NT9(#V#
zr|VotTCm#ZAk0Ohx_rC@
z9cn9LFWhTL>lhcCJc43BQPyY}Tr
zSUN3eL0FehV6)tmtd~xn!tg!^PdeRGOSEht8P3VyzDMF|4KiAOKw2YxeXHtJk3G|1
zaBs_>mBfL3#3Dh`+pWeVsTs4uMYW;x6j3HO80>iU-u@CDX`Y=V^6WoJMCp%`NK!o;
zoYr&TAX6}gbK)Q~FfRx1lpkcp0V4+p`_pkt_ElNL*yWlK+rDvZHED>cI_
zB>dPZpM#fC&UKTy>{IV1%bo0&hv%I$Ft)9HLJFPGbttPkTX+Qk9tYPVCy|QFSM?ZLqdF>Wv3s9jjhV_a*?_ZaI8k;_>4090b|EugT
zm_t-eo@ShGpnzeA6?@Es`fs6?+SMp81=GP&f13YWXimg681OlR^{SD*WqX3+&?g$9
zG?9V%^gam&Ps~h6ol^p}Y@h#LzrC}#**4Ow!qxi3oA73==UH*DxZvac)h+P;w48Le
z>fi^9b_JFdVtT|??9ivor?ThF!OdKQ16kSuT((3>#XGPb$Om=0Gt1v?#?9CDE`SLkN`ZIQJsht)Wdspfcl=3
z&52+@Lvk!SYE9By+0*52f`)P=?!)irB~DhXe3(rQ=$E2u8@9+RQ~e8QLg%_pvzmoq
zAg2t~e4)6=vs4?SG1sbL)-DwZltTyGlBxXlz>^$v+C%a@Fj3?RoJ5Vf?VJz8au@
z(j2`7S~P{3+{Z&>UlLiJl${tb|Mo)b9CS_i{+fsFyE!UejX3q?s+%>Ox=L`x?1|hzuxvC9YdKSONx1
zj9+KgA|sO7
z$Exf{hiSK#%cOw8d;iHxIz>L*3^(dm
zg_09o>A+H`vn0KaQ@;wXNBhz=6c{2gp>doX(?ELeWDdPr%%S241qNeigW==V0);&%
z04%QgA1r?NkFfZXUFEsI^{e`;-@pSj$5f#@2z9p=_blq{1x?I54wo}=>^4W7`DIzT
z9onbukz?ECwt1GywD&xabp|-Xl%brbo_sFZ&DH@t6S#Kg#5CGVSB&frEiJ}mnhuZ^
ztS1-#`Gy$XY)L%?;#)ZV=9^6yvGF_-eAqE}O$fZ_HVHZf?@x3alAJ*!kKbd=uHs`^
z`%mK!A|?YRj;IxaxfZ(;DARP&?u<)o5+a7utllkDC(cr^a{<3d&PH>_}!;n&K%!52|k53AnzUf2~n_f257fN=ga
z*d2X>TFlhwe?d-m27uOMdlV@YD5-5=S^A$OIX%!$UYZ@S>BehM!|iR$nAwI?E{KpJmyK+bfLwmGnLBwa
z7%Z|3$FDSF`JA_yb9e-r{s6(r7L%fyYeD>tWKv5EVzB|IXJR?tl^$d`GY^rlSxv*2
zW*Q_7#Xil+>zPT;Q#&vqbqay-+Q;;-@ETSduJq|;BWh6V`lpV`U;c7zXY$_sNk7ck
zX1z=X7rugr3d$Vyej!u42UdT^M=7Rk=u8yCsDS{b=G>Bg=aD>Zn5_SxFhgtJ8F^k{
z-BXHMhYfW`KiX`ML2tOUwD*Wj(;wSYVywgj0>zk8NCgzb8UF?=MP0-T1il&fk6{WO
zT>2qIkab`KrKSJWL*@R5(TZj;s$Q3i5_;oR5W5N9a*jtwc!A#EpUy~%p6xbBX5}y)~>2Z|DyGm0UPs;R4^J~Ef1b`ZH|D)8C2F3rFX2uJuG2k=ND>axq>-{gQ5
zkhvy9XlJ~CQB2$is`LclE6Y7BB70K|^Zm0tS^LwRwLF%MKQw&tXnk2$022+J8Bdc<
zUJkJjotRFuuW%!**Ji-cOILFY%x|iX`bO3*CO9PV>7?4P)Cuj7G!3@^Y~+)g(j@}$
z5e7RS8Qg#7)~}C@@B=sjHG3opupq@XuHr@i_HDpA*&gM^8w@Ulvl-!|
z#N|)%Zh}7=A~u6&mDEp4haWx^dSrKmWsd0}3AqOQ`>w{_YwUhIOhVm?N_c!{M;AWO
z7P7;qjAMaOkqs`8fPb8b0_Hbss%wo$P-
zXn{$Ji!w6%%bg>td@o<;tF?KfLSk2Z&G|2;x1++xdytbS7fGsQq{lX?aN}KI&1k{|
zECEZ)C@i+C3G$NYId}
z*?Q-qsJ8z?iNnQ)$j7Y|L{Mt
z4n)zU$+#zs{9N=dUJq}vfptc{uETdrzvNkr&(WkEwfC4qs7@
z@Qf()$ER%gG&Xg&?^^PlMtZ{+%P+Lmk;a!`ok_&U1@4E!ky%X)Cr`;3H2&$UQ7#KS
zWjg^BcI(v4$)77&i?F~z6{CL2t%NsykLzE1r|u~|H$D~nl=U?!>|0{(-GIq~XMfS;
zsOsKdT|;GI;WmEP-oauyMx)-Bukrq60Q4PqD{V!7=ZYiJKqMddWYz!gE;=Q^yT_Rr
z6CtJpC1u7uk>L2&THIzLnl;tqIJ`3Ox%gRC%`fQskdp*i`GBvcNupO81r^(zzi9?S@#|WB!dvzS)T)M_W;v!XT+`3
z;@93AZ<`=~xpC1HA{ub}I45O?^l!F3ik>Pt~@2W_9d?
zk?*fX;YhMv!t|p?Eqr~SkV$QeD9H8Vnt~zMO1eV}EG6GeD>YLB!zB$dZ^A&=zt7xj
zs6!g{P1Zjc|i4u
ze`=nYWy)6)Dp-x{XfR!rIbdnM>Ma(FE`TNZz?G72eF%k-jku43B^-NZl_%n#uoQ2Q
zkB5RBmZdfay%N#EuH3a-Kja~krwU>&TWrNu35qwl9`}`NN5^v7gEPsujhwgk9|^&j
z1KC$)Z<;BvJ&vdX<8}#ZJY)O2(iWcpDs5k-S>(U+K*U#(0pa=Vcy!01k{1@p`x%A$
zZ9aft;$#+OYS(48@c_pzVcR&DOI6INmIn1MJsHK!y&L`D6Fv9BLt2hfQMM08i7#d=
zCRE>o&jl|&;GRbA`>uKvV5UrZ#4d4O%b%b>$C+WO1O1eCWAH!^E1C5JI`jM<8A>hQ
zf{QTi;;{7Fhh+$$zkD;$F`?;n0SrO!_BPWEzfk=MAgBO-lD0KSzLC>2cqH!0(lLeQ
zTaN_NPts6IjI!-{zVL>$7e}Vc0J!%`9$pbiEW__@<|T|Kqvl*ex9VDDzXykkBH4`(k9;zlaH
z@4Xd${yj@Zss5(Ff(zu09Y30WY5%z-SfGpH-GRHfyNQvX!y)R(tRo7ROgzp&N1DjK
zN{2=B?jjCH;TV3W0lu69lcYS%qe%!_Ao=#iafF(%d=|)y7xybbuSxl^6FU+<_vA{PKe^4dG+gzWEv5(VId`cFQ|59R-TWTh3sKU-UxzFwV8
zpS9i2aHVIKHe=gvYBa&+0(QA~mT9P?z6NJ!jScK25f>l3(q~s*q!qJ+7ORD~LL~uJ
zty%sA)w~7l9Co6O{?1ODUak%)yTO_(2{l$d9ME^A4eZe_Yi_1V_$NJdZ*`aa?z{Wr
z!p3SCNfFa@f2>tXiNUahJjoPB7KQiYATel(9311+1v9naV6Kw`>*9bgMLNX}yHhW~
znx3X}igrbeV_91wgwTV9nWM;skD$St@L9yM$f}jT8}x;V_v*;m1b&lU5uor@S=NX@
zft|Y$kq%iUGKzb9>ttWP0Gg{GeSyLFyoUY$Jk24`Y3y!enp>RulyIyIf*t(36HS`98Q(nQSjl`qAl(H
zS_N*GIAOVHIJ9B0^aosqu_e5#A4dbIucOB?pLpSYI2EHov0eD@b&)Ius_G;8=0r;%
zjr2?`@0$emGu$@{jL}0|uXRprQCO`avYU2j&UBjjr!9x^h)8^r3yC$yddO!_p~1Re
z<@z6}%HwtZyFHk}Ao{peKb#w`7zAz3)lYAS``c&_-E=v~e90U5IOkG_!|_uY#B)H{
z@I;LPfYC$>s4)Vyxi6ml0+9`e00D9S2wlaQdvk(i!(t_NZch@W$Q
zZ|onmezk_~Ax*U^s@T9jXj;n^IeZ+ErwTfnR1U}h$fYtZW4fF2km|DJ>-}|Z1JJ?I
zEPaB0t3P5*RQt`}d9b8%>R@GBiQC{>n0v@7CTps=0Dc_X@c?lg5xFRF+L*?+ZW)8{
z{*z)5f$eyz%K3aC4t;u?5$fA1
z^@PlAvIlQ$eNy+vf~h;L`fcNmw8rwi`9>X96UrWmGFR+?blh9Veo_5u^5LM?*p&$XmIQGr7(gksFHr*v9mo%t62A!-4JxYGEDcKsHwj|8n
zP>vXP8y4NZphals_C*Hs-s5SQ9X3#)ZjXbuTEo`s>Wzztqkg2hpoQ^|9}Vi_8qObF
z9UvjS%@8ZgEh9uWX6u6_+}ClESu_SHvijHmL{wtNqEicVaO}S^P-miFA}%L6r#5FJ
zr&q}QE?CF>UD#hHbF9ddLEC{fbApxju7NSDT8VtgOP7HA$SU_u2tgC?&LQ$(l!gK5
zhNVO%E=QxVH+jQ=P6)U7_LdwhaThtS+fjN8vDFfsAU$ijOfFebyh>@-v};A}T?;hA
z)`C0)vuGj?;rJ!OQH(Jt1CNI7|bl5+STpKu#wempEQ
z6B^_U_UNbydw9PqS=T@damzxoe>^`eU1xIXoNANpU88}xjY9@^Mmhj9iI
z6-io)e^1bdGt>&&9~=7UeN(9rXMLDu4~#}z(JLa`4+m%;K9RgAyzHLi0c`>*HMH-!
z+b$xvfSCa4=*q(LT$WZ6>~msdWZ*QE+TU;f1Oi3t53Yfcjs3Dp6tkwu5pW{uhyke?
zOONHey~ZxX_V=t>y}^a|*MzkrS0|EI>l_2`tJlrUdfmCxrZXGOZ=w|;W*_`id6B=bVVsEe3172^i{>tp;23czjfU*&MQfbZTX$ID?^d
zaQ95}wY+juPUxF-;6lYY2#~#77Z3Bon&Ed7m6_v`W+yntkNmCakGC0i-=+SljW(<7HB*9
zB-N?yInK>Or`0@6@-;HjlTuye7;TkG_wcD3@*XK|4l+HLQdoH7;Wt3M5`qydiTW=}
z;h{pg4*JKGHvj>QBs&nk8klEbh7s}*D#f3xEiA_DIPxKPnp2szMVcDe1jnJPygfykQ7Jh$RVsR%@g8K*
z{bfZPKx&$IFU%~Of34Mi(CoW<@{1&yw;o0TWf!0f?Sm^$-4)`z8}PL{_rT`)I;Z;4
zGStgCT!D@3#}^A3iE`FD2z?IVy1RENh<{ZgBl<_YOSUL2xW=%_&9K_QS`4p$=|DKm
zqvZj7TKi5PDW;L6VG6AWaJU6AGRUS2e&`eT!{K&a88`Lw7A~IO9PleE0icrWU_v
zNpEiSZZk7jv?OdFX1F3SKD1NcK{X5Co4{|2<~^v0TAZhZfWYFPo~jRwZM-Qg<%0w_
zP|`N_fvWxqm@nU}@BfF-{6$OwPhJAnfqG3-E#u#O#4cWCz%X{Ruvdn%@2g2}26_px
z{DSEz>^dr4fDv{~aR~LP|JtM55q+-nLSW*`q>W7d;2rVdg&=9_(HHDpi>t^sZ8aYE
zdQ4cKw|3d^e6=@WZuqnd^T1SSr63gIBCvL(5V7y8G@Dm$)@i&h1wjxP$E{YA&i-)f
z^)OGskGaBmwns3@^L9q)`65Ph$daNTM7PbdLpFn4;fJ{1GA+smT!S5%==qU7v1sJp
zQ^8UZg^h=qq$EO7<@PtS=OY@vhEdWR`W|_4Q#j(?!POp}%?F6BVDoBccfYS&W815;
z`saYHB6Mpf7r(pus}cXjzyAmIbsk8@Q6%IuHr881=xB`>n|2eKGei1FMW59D`6-ok*x|w?F~Ip^J5-D?-7PAl~QBJ
zI`_1-yNm)k_JXl=6V?$ijMR3uVq7mPtY0aztMMNT>iVW+bE91*_9jBvjQtu1<3K6^)auARCV%9Nf
z`)2a1BCT;b925#V9||*gG)k~?e6{}F%rEE_9cWIUiv1JD0d4n$vzV-ATK$wD1>18u
zXfCkdcFXkJYv8Wz2vFF#J}XKk?5jbS9GEz*vf142wzH}J+gTEmrSi!Q)$wjxNmFg^
z5CuL{Zp%b5oQW!{k3WDSM`V61_U8KsiL?#q1TeXW>or{Co$l1FsC6&dT^uV8fCpvu
z@euWhsxSvq}VVf>6lCXYVy;$vhDCjgXdFfU2
zsYOLEh~FDi&+ZJB^~U
zsL~bBAvzw7nx6X(Ef%+6Zw40FL5kBu6Y6yFZpzeSML(iZUgg6=io-npbH&e|x4uyY
za$uU!E}2+JQ*eFnEk5?Cnpbb?LFPCWXcf95#+9gcyZv$wd%?r=S~(
z;h68S@^fP09IIN{F@g`rnDR)Dzi8wh@J>H&%uIIL96Nj)l+L@&UaSaT1ubmrzkO}~
z{R9v!w*TdpdMU;{o7R~oL!DU7=XNrILD0_l9lw<2``x*hqo0o!p$6w`?^KSWdQ0YR
zfB(pp2i!8`lD25lP8t<@!VqY=U$P>+_*NZI$UWNGS4=5&8j+J&N3QOSLctio;Fsaf
zkyy%j&H`Mj!N9G`S@QrczI?7#^(yEysF<81uop17v`y9)Dp36dE2ZN(IvbhnVGPh~
zkFBI;%dHO;Vp=Ic*A&AAZu;1$y*;5r^vHbO#13ar$^hW^Ebbyujca$RalYRB?KLZk
z=3>u=&(aV>?uIWV+j(mr2(t9M?jmQ*mN=2fbB9#ffc25vmi_`<~pHIyp#
zoO~SH8dhYGJg2$lmK$P?T28vl3ezHz9Nw%yp8~vZK-`REd;
z++mOSTcI;@U4i#%>|&tFjDew{7fBo1^^^HQv-y=NTKj;ASupw&5~l*E(pEvxJZJPn
zD+`-2O)ExXTX{A+DSEmXEy>sL2%MWHT5KxPU#h@{m2nqu)hGS^n1YjokCYPm&aCYX
zWP;c1a+zJJf0sRG^Bku0)uG{QWW~6CrN|g|_nIj46jd?~y{v!9!QeS3Iiaz{@`LJG
zGb>XV0ho|3v7n5tF&)d+MyBj-a`{xJR#ic?$nzA&cSJoYeqV5HRTJ$bY20<)eT{Q8
z{9wug3I-8uYgs?PIL=Lt<`dr9$^kF>w{I?8VOsEQ2ujgqvxnMyp?N=%T;!{
zTo?zUj6Ii~mb8kipE*YHEDRs@FqW(bN_z005E%otfN{S=Rx*qmX66@)1b!fdnE^v*
zW3UClX|@=U^fVJ*k*iRSh~F0^-bJ
z`?UsCTy>cg{h7kV=P~x7C62WQj}?htLRX<2TmX+4#f6@aWV!%)wQFK;8th@;!c0UgXBB
zqyc}zc5Qg@=Inf>&svL*!l4~h^Ji0#j*Cu-HYx12ISg*5^WDWW5PS|Xvt?;gF!EiN
z$rJy`cP*M%e&RJ~2Sf|lXDM#Ca+F?AnQB*@LAdtow&?gyo~vL0hyu_M$%~5al*utM
zW>k?I6cZCx5gCS{CHcP{2gDm2S;(;iMP-N@x51Dw@V8@cUy16*G;JgyHf(e%>5%PJ
zx9$FfGYfSJF7<#tXvYzmeq!OX8MYf7O83+8UH7USLSfe{Gqy?|pbj$SbT2&pH!B@v
zUae|>k;(se8lYU20`R}s(D60Dr(qDGS67LEmx=Pvu-Gzzfo3`c
z9lQ)f_WH$fz)e^&O!1+E1ZTVjrl|Pa`UpMc0@~TUyBsl`N>2@KXSEC$7H`I@R$MXm
z+8j7wY}diIC6*c_Dkqx7qm9DmMVU7DC0Uy%0X0sRaHXjR2a+C#(&AU90U0hTg{EnH
z4lfYQ!dBpDwLo4T&*etu3HzaBG>%QL@w9TBVmXAhnQ+fS2}Dc8&?bA-qlQgqvHx>Q
zM|kxcA+!y-UTv`1sH9Hu3}4Z%ulxH9Fa_h!{-mueiQ}9p=e0o2v*2E)S3C)`#g-kQ
zZ}8pg0kS36a5wg~Y`%ErS~K~@8}p;$y_ZL0-m`!_|L?f8V)fQAJfOKEfHLL#7%&q<
zr+H!muQSu{ZtaILX4^CMiFnhF(y7q!P;?B+h_kE+1I*UuU0|2d6ddUYE*m&qQxavi
z%Rlo&A}|4IA?VP=_d?2w?&QxfcLH};lFkP2*t7b&O-UU=SokOHCpZ;CWyleoU2bul
zV?I@5TSKVLUJLmh)M~#2ME=_&TguV6oPTm+a?;Hn-)1=5t?s{wm7D0z3OM@vPdwex;c*C4(E>7OTMZT=!V|Mm|~7mPdjr%(yA+
zso*F@l4c5%co+9V0yrMv!T6LP*0a@a57(W1ltJ<>
z`@x@49Dr=b@;DP8B6dGI!klx;^9f&d$69UyC=2Pba%ybH)wI4Pcu@tWBlW639x!)>
z7dHhE0UMGA(CI>QYO;%e!`4UIfP&;#A1Pk{OD@7SoNC5$m3FOAC-S_+by%J^%8p4-
zGHPxS?CMKyYUdOiVQRf?qMeERV1z1MPCH1t2KvL&$Ug@C26)*EGkGp$2`hf@Af6)F
z1TSTUNhVr$kd97i4*mGP31rih4XLvXSNfn>koTC715DV54TOIim{$I}6#$*Wrnh1P
zeZP|tOA;z7p-*utlEqp_{DEZT62`OMn1&-fTGxoP0Srv{Kdb?o&5^^vmv?%6P3M33
zj(e+zEv|2F-&B{yvk{~ocCQ)nU*PdMxYD7?}=f)ZIh2D&tw0Nlp+=LKMXCt
zTKYc7yA%VWmuL&km+;)U=@$MqXr
zgY(1yDrM`^A6?g0>|aOWEP0JU`tD9|1JBq;*Nf79bptvi(F$fe_psxB}fJb4qci%*f=2{cp^J
zvwc0!@0Ck4950DQKayqN(>}4VLSM=|y3{fB1TCQmvT-~o4vl0-vG$ws;e`TJPhPlZ6p
zkQQEi_0!r1$=DiJ0U5Fb)_}C4=2WgTzq9i;g$_^t-$beutdQ~x?gL)RSiZ6B
z5WBhn{kEvfmB?9J;(;ZJe7I!Z6(%)p^Kh&%5V}1LScRiF-(Dw=zVb>f@o|K|%J^hW
z&_s9J(}U>s*cn{70}B+(DG_+T>9=#tW*${^r2bEWwlkK~`dXpnqDbLOQKrCQublm~
zRB0o~IFIpw`U2W7Y{(l?Mw+j_lQ!yqJ4fjO0x-!XFUc!0Rus?YA?}?q13KjUY((A-
zvjb+EkWVrGw2QG_2?XGMA(r9SJNywLKR5I`atu5D?KtP0iIK3N;>`C6<8Wa
z)T0@9A7$80bJLpCV9MCxy#7JhgYa7k*GEqur<$Ex)d^b0h5F6mLN{(FHJ<#Vg!F$d
zv#?&7rJC5wlk=+A6%+f-L&7Yb!6&r!P3odg&qv`@3fw9X=ik9Uk&b3jQHouIq3YnW
znnL@JT1?|UdcMv0Z2RP)(|BiO{5~kbq9e020!O>PbRY|DUO^OIR)m`Qcb(>pSU<$m
zEZZ=bFk$lyW$L;fF;YZf=4cB|i;2DbMc8kZdJ=q(BSI~e$iuUYXx(Rq4f&8oRC%gD$JVyeGPAQH~FI3m#
z|Iw<49Xr(*Txs4$RH2GwjXe)Cb8mi*h_1c0xXv$w4g0I8&N!a+#iO878?eI!q5GbQ
z7$`E*?=L16>nEVhh3X?sw6fs+xjG(RDBMEAH+X)P&z0@uNg@%Bq!BCN#)C`^In0mO
zlE^WjmQFfa;GZBr23~LmV5`|<^5aq%gG*;YU^MFOXTrh+Pb<0$lbo0I`bD7Aa#Fwt
zR#R-?diSCTtGb|R;~w7rf@2D>tqm@1FRduS!a3I0^5tSV??(MPt$5!71|H&d_Kng*
zzc%s_CGNkYMq{cHf{y>R`^B?6Dhlk^@36dO+0idGTd8zr?%iBGi;D3sz5${aA((+4
z5cJ0#7pOfnGmvBY7Yw90bl!1lXH~=Y
zDYtV0hP{0)Mrr`>`+2zFQoOD!P-(5G*F0YTE<{#4W%=aziQD|Y#^1$D{0o+}@{K%V
z{SF*5R2R5M1n+7KK{jeJ6^se;$+ORU$4ieb3`Jk77@Fg&7}l?}cUiAA9sYZ)d_LFZ
zu=RsijO!89p+nNK^!#HXtO=YyWI&r%n~
zGbL4Ak_Ir+)c7gDh_ZTPnRIEX(a|LY66yFXLO~CW-8lCQOMjd+aeky+tiO-WZ*P{3
zSkFwm@*t-OVZ>K`7vAp)%|HndPdmI>7Jnx$xpwVlI14v8jQDwnvzvH%J
zXVp1^-xhxLf!}!5WU2Zo?n%jeeNMp~3Z)Sgg@<#G13^h*yIx)jjPWQad+Hk+e4N&!
zsN6Q7@2kGJDY%XrsEbaU8=GYf7Yu$l8$NfEo)1{Ysm~zCNWjJ
zfV_a$a`fbJ5Gm;8}dqB3UL7On|nxURr-t_jBoPn%VB!RLw+YZEne9CY?EmlrpmqhLy5PpqbJ8O<|qAfbm70UVei;SEeM$Ki~Di)sJ*H
zt3x$ws^^Gy7TiSp2`hOlSb;0?SZu&5$|nsBhSUP@_T%i{a?Yuup|_4&5Ckyu0+x%w
z^?tzFv($WpL2SC&IWpk%LuAAIU$ReVfJ_r1YsY9UC0y7m_s(qr7Z8w7T9=wvR?ob-
zeEF=>&D?No;sRIWjctOCgzfd8@0+l>!M&@zJDL05%NQtN%xwvkXjTLQ|D0VY&;#s`
z2iCmE@IB-gQO$ioS66U5V)fCst>W?D;V*N+rIIs
z=^PqB^wTS&z2Uc`)5JXS9%ZP0B~l3ea|lUm)+_I1lEq@#gfLTd>9JToO(&$*Mn%VA
z1Grmrx9{22EwyA8cE!KG7H0H@**OZymU5>Q?Rn;jBG0B?`y2i
z`N8v0vUo-KV1`FqO`(d=p%97afxsAuHPFCzu$$q#)|G!)N|-s0xSXE|C9zGuSZ<>h
z()V;PoAe8J!}hv|m^RQ8
z9fFhUQ~!U#){goGK4q4M)8A!H&Zx!t#Br`mdJz2+(0RG`wpQudw
zk%yTvG-BH$r0i47=RM?BSRY34ia+f!UbEjBIV)w8R6ac!)NkCAsRiG9#^aLs&>D|C
zj~Vg%((lJU57&8>4kxvorA)Lb8B6s;seaHXY}{<|R83l5(xRPM-)R3cTD4{~b`iKe
z$LJeo5Q8NZtom}lP(ZF4o9pUKqPH&ZIs8h;_mui@iC6McyuYPd^j#K|6p_eS@2@8v
zHliG-8XM#ZwWI^ljH5JcEyz*jCy|NHhk*k3PXQ9hUJrpv9cG=?oAj%q-2-y`Eb7-C
z3g^cU3hd8XOY@+9awb;Y`Ddvy*%=)514@*xvy4GI=m7TF_V15I0~~V@!9CnH>;>>k
z(>|r^+OC7prx=a@5?u-I?OOkOz3Cc<-YNy(;#F0W9Go~YoKzgCHF
z06)$y82QPH-4Tv5(QPIqwb($p-l2_1zyVTePOjNvbmX109%`yrD`#>acItPLzlUZf
z2Ehoto14v)jUQ=^A%jG~PVA}B`{e;}x`^=T*vUVEV?a|WH9QC>`)NX=gvruRn1S08
zz7r_^J7#SdKTLrTXh!gH;(ICDtD?!kebU2~DxHIKR*aH<`%3csKz-wz4<3gr`a6fb
zfKf-`$RR~Pl4m^AFb@Z`MHU_vVYY?0H(IHx=`@colLkBjTj`%ho8bkG0>S&vLDHY4
z0t)ux$9a#AOhhootlv$Tg(X)keh>9KF%l=MvG4~>YLDQ{C>-JbKR##f
zgn1=a5GS_RcbKoiJP9@ve!;1c+w$c_B{w5i6rqh3+zjBY!p!!Q|7cjxD
z(Z!E_-MaC^&jW2F)qKuvPQ(}4uJ
zco5*Oh?HW6w2edb22GslNoj^3*Ypa$cXvfGlYDT62!>|?40pdY)qPUr2+H9GKASGx
zqA7G{#vNTC$B+T{v%eUsU$Pr2eS|oxoej8m@FKU^65My_%*Q;$Mzi`)5R37(CI3=O
zHGp1ruQdg(>+!m?7o>8AP9$*HVPS(h0Ihc-k44G=!oQ00(Rt$_^Qj-i00!tM=2xr;
zKpJn90Xj6r?w`OZyk8-IoVud@+Z^H>%WEA%EX3Dk6T@}hUrl4DOlxQfGo=gmNlm{h
zmF|``E6Xv=SM>_3z&Vtj=o+p*U#4X5U{C^%MX$~~E1?a2
z%dT#m%Sm3cH9$I_1|vdrG@ids|GcIJ-U|q!ytA#PDF~5S0TJfy(tYcu=g6m7Chavi
zz;!gy*c{Js{#$yF76RcKzpu0+u>F3gQ&=feRqd?09iVmh6s$!Mknt`y5Mb0Y?}Oxb
zj=0?%xfIL!T$PlGi)z|Xc>CTA@bWtCa9xMpSALu8r2tgBCi(A8UcfQS^SijSLI5;%
zW|i~8C1ezZ9n?L#e(gOs6mYwL!(OkArsP;dj(0>BC9>pns`x|r@
zF6{Y=1e_%G?AjE>lcnSpQD(|gaD2bS45v&Zk!>4~B!5+}Z%nK|#vI2`7Pz?Toeps!
z_X|5Iahjuc4-;Kp&Rw^8h;t}&H(aB3q(pVTxsdQ-ZtY}vPPkvS3P5QuU7elWxeaE6
zA?*e%_LHs=YFjZ$_H2BD4bC4vN2$
z(I8~RwO_@j*mpB4+hfE`S~96*x$2bOUY&?@Iq8K4CKH)n4E`73!VN<-enQ}$gtmkG
z7k|3+d3ZhG^K@_^IAw&?n-0hD8RZSlW4P`;0IXK6WqI
zyZpK^S(xU_;C`?=Ui+~e-sG`#=Avz#i>mMTd*d7Q74`Yb;cKXYSJ_9~O~I9-cai!~
z%;C35zOeS6Imy$afB_2iLsC{QsREb4hOHfo31(CXGs{*?elm{(XW(Mj&Ir~$3I!1+
zZ(eBuyDs>FT>+{FwHFh9d?LLG4&icqdhD3Rwv9tav@j!o#vL$I4qpRF6op0$*@T9)
z+z$~9&G~Um^7}~S_8iE^)_%wBetPEJ+$G?6nT`O;+&S#@{P)|pq+vS1)#O)!BUu_i
zu8eN9srz5LYVHQz!&}o+oqoOK5N>UC;ACoH=A+O;kF)8f
zU%SG4i%bwb3l|6%j$*c4qAk*A`%91Anw)4cUj-jaEM7(!57SZr>WOf!!`}{F)}M{b
z$%}q~f+l$=FhWTf7F7o9HF@g8kMLXTn@T$RK=(YJp5lWk2JVY^vYNrt
z0xQQXUeUXwzR{|^CoOFaxDe(q`?E-HV9@g8C!F^h{a>Ko{}UMUlZBaX>Vb(kw#sAA
z=z9gdKd(in3+cb1n%@HJ4JBxX9o|Kd*GIV_;-#ooR2qG4beR5XxUf7D(75E<@AdbAU=NX{!7ZDsf0@S|Hs-}M@9LrZNq{n7)S~tT_RGBbPSzR3eqVl
zEiu5r08#=1lETmiA=2HU4k0NuG$=7N0}L<>`QEel{>AgG@7v%0_Im%CwXT`P&2`!hO(@=Dd
z(rF3YNI!^mC}s|f#SFkV#p5jZr?Y!g#g+WU@sl$)QSmH`LN2a$Q5I#9cT+}+M1}fnNFd3c%IGaP8)?24jR-s#GZZ&;^*hb
z6(C?gUX7hj;QO#oOjd!9{~(ue@upbk@L2dSl|fBtI({ZUy|#JGLPiE6jboHcQF+d~
z;-vah*M-)&NdRS*TcEGd1H1d^r1o-=_uyC&&<}CqLcqCqxtMQW+MCFB)4E8(tI7*J
zZWs5|U-}JO(Q~X~vkXx?LQ1rnbh6*8xeK+M_&YsD4Qi^w8fQfQ1I{0-v6Ps+4|?CJH3Y(|lH-h499
zZ;cyVmP6JYsOUr-cbK@3^nF?GL49~OcKFCS>Fi@pZ0k?Xad&O1?f9*Dv_?OzQ=dY$
zJunR^9SCQl?=J#{UO{|cCmQ4THM%fQ37hNTSRI^ikTgCIBL}C?xAvsQRPmXlXI0YW
zu9yhleEWzg@5J9BB!cJ-$3^G`y1;_8HjEvg5Z6okMIgts8(jR8Yq@J#eU?3aQ&DU)SiI{<0SM2i_s7yB!nYM0woI8VZu;ZBm$164ug(7ix5vR}C
ztAW9wxU~F!kqz>L&rGj&RgU-<>OrLXT`Q63i@Koo@&C@3ymS$32&8JR{uv@jm48*Z
zFIXq9fQ|e4u+7mrk&%$`k@OpRr_l-;sTPT6Ko{-6AS=hg&BSGs{QRx{ItwQ(vw4k~
zX7XorsmW`|1UoR^mUlO+Fu!+Y^NK+vcZ#)`7WS3_nw91(4K^h0Y`)dCJf7c(WpC8TM{NXpx!38@?F{KBfG
zP~{ItUS+x&hH{>PCK(nNFJI@2Jl3yzPGEiTwBHq%+7^NA0X)fG`(mcf48W-Lop1XJ
zG$Rso?E6&!x-r>SCs#l$m{vR=u;D6;mo-F>+)Js8S*^@Ed{#92iXO5o*
zmF675fUU%kuNE&cS%IO-<4)vb$$PxYGBP8T@4}7zM_k6Iz{K8@Y`QC8j^)MDE0;lJ
zSG2Ba|6rE4!yZUZz1p#td_h0Ou>6~<+b8n$4!3{)66>U=D&Rf}08`9TiUHdXM7h69
z=fT7@7kWs&3)q$W;!`Ut@aSQ|_3b#?n>OIiaO>h*?Zc;`h*O~Wff{oIZt}?}G(IB6
zO}O|L>%6mwi({kh^OEQKMU!I}J6Q!!Q;xK(S{3UZ{n!9Cp^b16`cDk(BQ)Z1-^TbK
zK8E5i9g@*wtGT2Fdl4^bF7!O+hGLgdYj#-xlu@paII>jb=PJ-jVLN|$`Z{;ei>{D>
zElq>TEq|X0-dtE1WI0r*_NMSkno!rb-Io)p!`5W-rm=@dFJ;LU^*NQzJOKRJ~C
znhi;)MuXVmSf3!O!oY`2b0>E({HTi8QoZ9CF`1Jo04M>h+T4RRsG)0#dv=T|qbhB%
zpRXdQ^4Hv5iFo1^e(u3`E-fOw3QRt{zj!G3$1DK8e$C00a5|@2W06=0s=(g97zw~f
z$ZTNcdA~>B^3RK%L3djmkR8FrjD7dTD;D&L=$#fIX%J>EfS>x(K{A^&y%jEVI*lOm*AiR!J$r|xlQ
zdn+b=reQ{_R^kt6$QtWGT6)*^9^+wFA<)Waf0U&LjAjx=G#4!IGV;R8+Av@xDXlIX
z`Pn9wq{lx0vS1{RjeC&&4toz$^l5J(jZ?4N{3AEXI)TZ)Q-<8rYR&$B!ppwpT9<5O
zPWsyyr`otcWcU9sMAjYoKM^~9@fT@^Yh5w|Py8Ch#Y#eDltFQjQTLK7|Pv+?Y6y1Fr(?59oDpN+;zU?`z>A#6UL2RU_ez1(~_vISb#{+m?+EdidL9m*R8Mp
z)lyE~RUFd({j9sXrb+ux2y+~uo4nS8!v`((0n8Rb*VK6v&BB#z!y{|~Iv_MicMZvV5pf7CD?ab&--8@
zb1N5yE^e~KK056CqT915e-8y%v!AXif|sNoPY4E>`$F@7CzKb!yQcP8hqnlbd=pZ%
zfr5R|;BSe2pm!$5Cn(PEfY&zX*Sn1#;O1^JGSb``5XC_F6&&~PGuF#Fw(gnpdG~7o
zIb$a+W|a|@ahmpat~2x3cOEab%}7t*%ME(HLQE;;MeZX><5TW4EsZ=0Je>bEwI>>d
z+oLOr*u{@Vn8Ug~^ozm~Tx&7s#iu4X^D+3;L=+%RVzYd)fHU(?Zn6AVRl(@dAE^lh
zQONr_W`dD5d)ILI%Fx#VH||QKrIz@;v%M`b9R;hv2dhSx(I({EJk$A`DQCTh!gXf$
zlItJ%WDybM;|?*91=ePTl(${Gp9w1BD0iPLezl0mjL5Y&@-@U|x_c*w`2hG^d&)l7
z0VAonHL|_Dkp@T0_jSz@m0jx@W|u<)qr_Q(qtA(IN&Zh^$GF;h1K8aU8-hp
z)~p$QlU8p8oEHSlksw@Lebkx{d&f$8TfUE-jrsdGPZwxP1(18z=w9>^a6qTNZy^d0
z+x&+WlM_eF}YTYqWvi%lJ+r5U|OxvGaO7`(h;xV=VB#@8W&D?|XfHT^I0j4Dr6N
zlJVJ}G8B2~Jfi~997y_SD2zW`)-Y$=!hGo$(8C_qe#^*p?f}AC0JXXl%=nVg_kt=_mi7?^5xsq+55UTM~3A7K`HuspI@W?1PxY&ldxBZ+j5IC{&n&>-SJ
zD!=AO;s+GHs!!6c;o>WZf|wuU?#O39%67orA!8{At&O|O2Mr|SVw*D3uv{)yl$
zb?=veOE&k&X}Z9q_OK_KCP#um@>bznr~9Z-<55}+DaXo&uSKzd#o}E|cD70)v+brJ
z$FOzre73A_0r?z(jqhBC9{?JkV-H|T>G#?ym+L?kU^eF_=mxB-W|JP^fB1C(Mb
zRG)N4N+6nV;AjvqD*u*Xh4{UR(DJMF=2Z-NOS&A(R6y6BY5{(RaR=-%208sDzv63lq!qc(YpA%2TUzaaBv?x(m}(yue@RFBYje;}-Nh>J8{2?*xIlFA
zR2KC=4vFi(Iiyih#3>8oAVO?RNYUq2z1XQ+?o*5Ez+M@Uj47e+=X#mSD8=RZ?ep
zK;_~x`!nLtx_yHKA7N)S)2+?Zj{PaAT{3|S@Mx%ZcT;kgFDRZV7Zy@L5O}JPQ;%q>
zY5>OCi*~8m>jBl%K>XSNzmcj~6t$F;uoT2MA=5sIdr3ST2m{VpYT_93HUt&M{4%n>
z8Si;wYUwwApyx&Gc`zfjPVRGuuJa3=TPE?F;tMMvq^aAdumB`DJS-rU6&mRZj66~<
zCx&dA+Gl$(ZS;C>`7vMPltg&Bt;
z>>`e8KiC{cB8SL2RVW4{NaAkAa`hDNYU7cm4X4mJ)DrNStxQH;7$zw}kT;|>1>6a>}1##rl
zbm{=L2=W1uqL%Z!7`ohMG*D%Ukh&uEWgWO?VR=)Me>wVK$>>{lA#}UrE++nrdUrJn
zLU8{lu~T0JjGQ0@7^}5glUnX(2?M5T>wgL-zJB)w@%XNv(6?NvJeU?;PJ!z0#K0ZlH+k$1qR(IAs^%wO&@$uD82xJo?N;UzgzZ^HcPzetD9C>tHwQT2AQ
zKP968x*p1B$q!5on7#oiox5m;N=YS&x$#uAS4GNcW7+R)%$>x&YwDAqMgz#u+^FB^
zmTK4(FtZ>qVzHP2h~sqKGX18I$@L;f%@4JZ=DK380jGYMdA4ZMiez2RxMM;^b}P
zxVF(0%XH>DJV%8+)u0&MIClBKNQ;S+`t9=HMI~haSM{jn7x4(nP1OJeG2Q18J0s6V
zS&{m2JEeBujI6@R+BFBsa_fOoqdBYb66dOts*(E+^ObiKmr9T^K(5Ecu#Bmwi(Tg}
z<^I+uKzCgi4;tn4r?w$Kf@IF`19DR~XxPXkIqpst|C7w4+pXJG`Il$)S1+LW%-^bY
zT24~qXTj0kM-2XPYe#{T$3&IQsaHGf6@g-|i;K;cYxOP$dMlDX{*BZ5Eo%;h*Aiu4
z5Ng8?PQPT!-shH+O~*QyD=1Zr>Nv=&(aX#8u;?A^SEVXbs7ojCdGX!
z%N)seP0iJRVDjwbqSMebr)97KyOixYICrug(An&>Rf9D3>_@c?+;tk*&9T;C|K$)H
z>6KPlcY=@_m9&u{3ZPKU|2dLNsCrm>sHb`NRc2XlPn%+ZQoA*@EQ{(`$yhb$KJK}r
zISnS~!oSyZR7S2Z?(XmIpeYIxtH7z8_v12=xJlo)NiUShF-fxEo|{C3!S1Z&Kpryw
ztp{PSEDJdau!8@vl0Lus*TS!x6ccUe_q@X{L@WFFItTK1GK-Stk^ym*fXWso?Z6W!Gv|=
zY#S`L?4_h~$sb0bsbtqd)e_XTSUMU5Jv7t59>8KW&l==>)n+r4H
z-|7!&DPEqgj6}orn!BNCZPvo`>&db3x`SomAHd`o60aP)R~^kF6x)V%(@gs2TfJd^
zKi0oW92oXWipRZ^O1k&;8b9I;vJ>Smdn!<4SLZ!$+;BZETW%%Jv!
zvr%^7SVm>!on*-|Rl5vaLvL76T)}?HbifHM%Ckh`+*uiy|8-dZ{6N4?N&i}Cr(-Lx
zFIQ2lGwq7*EA5dm71>}zm^eJ8**>XBIn5)+7DQP1vVivzJ#9ci53{POMfv2*$7ywy
zuqi3Pj9>7{aAqVFh7i?eQ0xDM%{|-=Qj4{oS1sbY)qCB-sW08Ya7ax`9SRuAY*OvrI|i?bR1od>LC@HemojC8Ez7FE}tHmGAfRNCNQgiB-u
zXpfdV0tzcvERAP)tXf4<{VJU;#9=@Nga(0(*=oRH+rF(3{PMtYtwAA0i-x90W0$%wxiyu>sIEuup}7E
z04Tcd_O|<|1v%zH(I;<5*H;~Kr3&q-N{9?Pu%tZ-BHMmjdVA~LWvpRqrf2`+R{Tit
z4vGau{4?^qtfdDD5lBXS)2DI?$Ual{&%QGt$24s~Rh%vd&%OqL)U*|);(z&1IkQY8
z=^o+z@|)z(72w>Q$$~i>KA;_Ap(2|-MeD|+)n*TPpva`4(|4(P5jjCDW{pA8@02nP
zoY+vbgKBwKC@|{8I(mrH(}nD3R28%0-io=WG6l9Sv&(L|$i1_|3fQyUI@52oPBqr=
zEWSj}rd*Sx!SER&GV+?cas2w*R+Fr2>Jkx;BXT3Ii4L2083GeWtSQh$;O(_{smKEK
zmn)=ZZWF?qBEJGBu!+dZx|x|QFo%EB3IeR?f6I;$5UKzKgi}Usrd&^@^1qGD>(R}
z)bi(1RS^XTRCs?Q#hXqs!;2hSAPMVZ
z9m(q_y3pUUUw*^}xHwpR`Aulyx-zY@)Ofzrmivy~r`PZNrDGYBX8+hCin7%dX}ne0
zZU6ltM2AN!@9-n9$1%fh#-9p
zJ3Iv7@;qu$*3t?O7tpFt^)CP})C1kTf70*&I+5B)06Zo{yotnra&r4aLjS`}wOKpC
zcQy@ymLIbDXX?1XhBSL|&8Hu|4gexnADqrP9PKIO=fO74O!yS37n&u8Hy1B&7+beW
zw^^nf&UQX_1kOicqgOO;jwc$sJnEXQ+K;NF*o~ik^kuwa)m>DMmOy~^fE>fNz`9hC
z*=5XR)jAZ<*>cAfSr7s4+G9+VGU>6t?bgNi8?x%~?CM5;9b%#GT~3LGTc2bSf#M9$
zJAS9ozIoL?PsWWvRp`39getUnSrDi7bTsbLN
zl>zk=D8gj(590lF`|rZ>*SWM;vjJeLmTvg$^9R|yOksIKLjmT>hdxzaPR;aTF@w&1
z_3FRPwp;^V{TAv_#=Goq9LMM#AV;$|+hgUpPczc|b_Ip9rUwglqcgp>PfJZA}%#Pnf&P2Xc#l9Y1yTyfC
z&NoL$J!>@i9$ilxH6I2W2OIWbg~0C%LRc234Hp##HsB|S+6}FQlg3+xb0Xi&8q#W{
zkh@ydo_ti8c+AoWC-a!7NjJ|YHfBeaXlh<&Mt^D$4R(M9#Tb1=N^~y<0033sCCO(n
za*QOAjSbcRi|i0i<8_nER~pePe?mo8*-|U_V6LOVYkOGUFASL+w3J7is{&qK@cMxx
z9%&%9p%WO#7=EaF?GFibTi2u2DQk{Lt3n{c4_qL(hfLalp+i2*fx_b-JT$|s0
zn3AwJRb(EI-tIB)kSi}THJz~D+D1q%K>-(fz{H&VP^(6v{d=Fnmc2Q+tLB*ufE09t
z-Dy*x*nmSsoM$oR{pOQsi-S;#i`N~ekpyoy3z+acaZX`;`M=>4&XTjhmltzhKfZ$3
zcF7v=gHdu3!@?fcK`$?Kj1A$m^k!PIx59im-#KE8tdl!TbYi#%|YBe{W7?EM{s7b5$G>njIpFdA}l*jZRaNR3wC@9Cl*KGDrD{pZ9q~p?-2$CENW-k^{i=n
zpJ}4g=XzB7|KxdD%Y6JJ@|o;~?*07{C3tHL35u5Vro}&^bcL~mln9Am^iy1r0)A<{pZObKH6
z_hEz=NF%@Wp_IS=me@4@0nS14Puu=lBq379OF8>hvC14j{IiZ#?vRoY4Uhmk8zgD1
z7YDXE;DP@)dzqg+6Zq?R?5^YYzV5DU{r7E7NC4Y(W2~wNnjC?1+V-0pnv%5y1B+!U
z90S0K|3ALX0dM>RrgNT*{`mmlG>)R@FA&D0>Jq%~PF7mX$KU$5m|L+Ql_o#ti;NBvs%Fx>%7Tv~)g_8kmD`2Mx(%k9dDq>!Yo(+Qpo`ROl3BhpFVqtKgdh?Q@zw&FZ|az5(e|(bqWnZ^wM8C=V45{Mc^it
za*jzc#g^7H&szkpum)8WP`I$0)~tUw%SWj^sg_+Q+d7VuxoNr-SE1?xcZ>8a-Ibv_
zpecYwRW)Z`s;ef)Tu)(#42!7t34&f#vaSyP~E
zZ`*OAg+v)VWg4F6~$zZqxhrQ+}M9^z2c}$5#8`9
zwTALOWM@;DT_C`Nbtc$n8>m){JGiEIxe26#!X}5W5b?i*(K&vEj4-)H#=BW&nIm#y{U-a628#4sFm*m$F>63(cf6
zuaHJH#o&_>t{V%@d_X%)eL}>|6^6P!BK9gi+DPcK{gBrB#%S4UJGblZ#N_d8aX;%$
z4IM$wHNU~S2$K`GR_%r8Tv4mm@>(A&bJs1UJ)VkpUx_ZQKTFoQT{5er>&2(7`kq0g
z)HjV&Z?1S#sV9|3SpA0l?FBt%WQM2}Q!jK{aa5si-nVM+P5{8L`*&2Xjl=@b8#z1m
z*b0RYsv-i5@C>PkU<&|Lf(8|UU+s~RH;sS8YBiqRt7X1^4*J8qd-$B_eCa!L)!ilG
zQ69D&kbA^u{-(kvGlBb#jJ*}jT4JKN%w-rUe#QSLa$ofBH*KM((2^HXh2F}%8^O_4
z15@H(xTd_xLuSHd?jK#_zr=685*j9j+*4kPMnu54Ozshtx3(ngJ&x-LxVJsq$jIZ*
z)AL35S;yOe6xn+yaIAh3?Nxnuv(7B(s%uvxp<@=k1HGE9rG?UuQbp?y>nqURR;^r>
z=SDIYcL$vjZU0lpd=Lgu{2zs0;{C*UQHz6r>>AHiM8R?MyH6>8vi<0IRQ1*`FQmzv
zYuSBT>;BQERa~rOQ7aij;XQ4!Pk!a^>JxXXul;&p2i5nMwpPKeODz@=&m!Ph$TI6r
z^hr6)e&o#VN|26~d2@a7!pTPOv`sLK8PRI8-=rtgrGKOB?b!2pIF<&8ytH<<*ztaz
ztAwxQ+~a!&QJ*YcV@1_epkQQH*^S;KfE2@mcI0{?#}UNbJrOZ5C*aRNU-qW_x_E2#L3%=M(a+m51-?FWyZ%R9#}cg5o%
z^>F*X{@XD=$W|f;0d;JMg#nRJO=;3+=Icd%>+i_RE{QdA
z?K_wFOI9;K#?~wWGcv5^hRZvfsW7)WAEf$MW)?gdej?CwfU!Sa8Z5RI`}T3K^!2=zyKl{Y`SySavF~^H=KlLySr%YXbf9i~(nBxxb|4QN+$Y
zSy2Ujg)F^`AFH`N;RQyI*3VpNlV{|6xr_1zFB1fuyz|^>sjj^6B=cxhMTH*=lz@EBmDKx-
zTFk822vabo#G(yV_U9p#_2Dg)lbf%STNk;^7t&&nL?dw&ml-Ct@z#U(8GH3rVB7yu
z>}QyO7{nZO^)Ge$@*c_QZ~yK0D$n_s`@?}qo_cW}|L|0|_Z>%yp_lzH=al<;zho~m
zWWs4BV})D#y43{Xmpm9Lv-}&C%TKbN>@lfJA;30`Xf@DkN?E4UaoKY;G0es
zBhHYsctL9iVC<&TY>NFapY=G(G_@H$J7%BD=%1w!MZQ@o-(l(!&i&J+&NQac=PmukqWfd1MGISJl0
z`=6pp5-fARHLVm!TRIi{nWm|)AuUw$GU0k$75kiYmqewf
zO2$qQ;`zUi-Dog@KuFQa4{7JKHw||%3x#)efH#IyZJ(mI=eAI-KK^CqK^@+`)2h(K
zNo8q?C6%uv-V`gvf`fj0$gSTDgyzTt!}b$*ldO-mkpgH#%%C-=n*KhoH<)uUD_E&IoJbAVCW%^R8NJ)7E$r8UhzxUEm^zi{U|g
zO0lVWB?LZCamUB@9$+o?bTP%=BJw81TTbaJjHG{adaC|m8iquW>-|Yj`Eh21p08rnw4rAqzb%FCG}*RGnDv&An;={%>24Q)OPOs~OIn^&f_tg7m{$kcff
z+f*b@JErF-Cn`9RaS6Nezl`0ot$9~iM`E9hR~WTMCu`59Q2M}YUesCn#6|lR!Qv#=
zC;CuI&ApDS!)a=85h
zp$nPS-1|2YR@zl5XTJ?VR>gAWT^gWkd6@l$B*-U(@p{*Z2_p12FK~bmZyDcU
zl7GhfhcOJdBLX62r!x8h?ClUDPR*Br{#$oGP7T(h^p})XqjRw>vvy%Z98G!Q)wS(&
zBMlubyz3PYMK}Bt=DkhHXFP5TBzf8zksm7Ef)cyCa_yj)J2j;piwE0kJ@y
z!I_chmp=05xnSguOTv*0*OLF19y=;4*MLcR*gC4rpgZ5WJBE*;5OClgGGUXF{U+X)5$pMxo+51yog?9`j`#?+gYkh4KKcG@0o1z
z;#-gZ&Qw)J{O{tcO3KgahfE-5`un0Y@UBk>FSvDg6|lD;Ae+0b%6+u_n|w7?XoVIE
zit$OhW*?pFI!qEK5%Cl8(?_rfxWEr#sgzY^XR0!5cHlxxzwKic%Q)MXh7VmI&2pP5
zFqQcc%IL~lV1!hk6kj3)21M+&6=7s-(rA;|WMj6a8c5B7*8rq=MU6~+{zHr5fx(Jm
zUvy?!e-u0-x6C1q$6u4Fys>A&;$Z8k0R^`4g$wuZVG9?3JD~riktDbsf%jt<;w)7j
z06Tx%Ue6f-Iw+(8w
z&rlN+ahVvh}Rs{k7jAJ#1gsfhldikafE
z2Me#N^Q#h`EZG?u8#PF8(IDOxt3$4h_l!9T>p4Lf6~Y=0?APSV&YV7q
zgvFiCxvaJNw^gtPrm**X!x_yV%sK=HK35QII~=so4B97Vo+Fpppdf45`?8;Vakdo1
zUNv`UPC16+XbLyBkm?^$b;81-pSD7qxI)YQv`EUMd3@=Gl+C+nS94~A8lYU(d0W*4iYj?GKgmFlrmniM-)ojw_C
z3-rCM!f_|&ORy**!`=vp8bZEE?XwfYwxR8BR)N(=%G)Dxcw716ri0wS@pv{l2=Oz76QyxK+BWUE
zU0%g5N6Gd_wT^gQ8m@C(b@L-pKEHX9mOfa)ueP!#VU)SJ{K_%d((`DN=d#c>@f@wD
zB;zSw8Opc!;d9n3ZZRb0hn1-XPGv3LEJ(6ACUBzp`EX7GI9TfRsfpg(J~Y#73RsOw{~(gjZ(70_^5&;7Bq*O
zI9i?;MRjSmX!_BDk^He+D;GydH%)=_3TAo}=+mFd0L#rs{&46xJuJIe*&n~K-dYSY
z7VVe)NZYowGNKn(Z>OOCmQga@9EeZdX1*XzwHH|!?&a5(!S0RcR0p8_x~7Lq>Sj2K
z)F@U+jPpF)i`mc6cj>|}A+Maghb+;hdD3SawIixu;W>QeCxE%<5Xo_<^SxE>Bnkn-EQ
zhMXKbw-q><+)vCAYp@I&=`Yi;IO{4iJf7XVJW$rUw&j4H3!qOw4Id2RZ#l`TbB)Y7
zh}_88$=#n7I2|%_LzOzttIXpLgAZv!6hYk;t%_`oBy&+%eg~$P6?ML|zfR7xI?S>K
zDr)cfvp$V&A1K|3h0{JA%w%b|p&6XW65pd}Yeo<^tx)y0|qHF%$YpEox
zjs$m`0%O?WG%xmH%Xht)L3_5dV$?)Dy|IXGC8M|Sn=vN-m~tI;kGbx|`HQ-MT(yBt
z9g%n&%LWcy$m`L{!E>B=m1Maw(hs=MY_GMTM4ihV5_G5@RQh@Lg%995(ad)T9OG&2
zIER%F_z=ln?$0+NuP7)@
z)FiaVMOQ=C=!Lw-S=SBjgHk?tR!%`E^5=!F6qYKayT_e3oVR0M2xmAz^^!2!y2M3I
z-W=~2>o*3PhDWjwt4VRQ0od`8MJ7!5sAElT>dWD*bt6gA%L#jYYfwnb6{t3S^zjHP
zeLvN6Snc75uc5|#Cz6SBJ)YXS5|kk|CpV`D1iuu5SG}gbQ2D(GIg^&1)3;cI(V!gH
zrc^94q<3j^s{O|=!dwHvY}~+q4_T|qIV*0VqA$yqx(dEa#Y)mlW%mMeX>fH(T=Smy
zQ>o6>*8M!M)t?_oZy$B5NGG