-
Notifications
You must be signed in to change notification settings - Fork 323
/
Copy pathmixup.py
225 lines (198 loc) · 8.92 KB
/
mixup.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
# Copyright (c) 2021 PPViT Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""mixup and cutmix for batch data"""
import numpy as np
import paddle
def rand_bbox(image_shape, lam, count=None):
""" CutMix bbox by lam value
Generate 1 random bbox by value lam. lam is the cut size rate.
The cut_size is computed by sqrt(1-lam) * image_size.
Args:
image_shape: tuple/list, image height and width
lam: float, cutmix lambda value
count: int, number of bbox to generate
"""
image_h, image_w = image_shape[-2:]
cut_rate = np.sqrt(1. - lam)
cut_h = int(cut_rate * image_h)
cut_w = int(cut_rate * image_w)
# get random bbox center
cy = np.random.randint(0, image_h, size=count)
cx = np.random.randint(0, image_w, size=count)
# get bbox coords
bbox_x1 = np.clip(cx - cut_w // 2, 0, image_w)
bbox_y1 = np.clip(cy - cut_h // 2, 0, image_h)
bbox_x2 = np.clip(cx + cut_w // 2, 0, image_w)
bbox_y2 = np.clip(cy + cut_h // 2, 0, image_h)
# NOTE: in paddle, tensor indexing e.g., a[x1:x2],
# if x1 == x2, paddle will raise ValueErros,
# while in pytorch, it will return [] tensor
return bbox_x1, bbox_y1, bbox_x2, bbox_y2
def rand_bbox_minmax(image_shape, minmax, count=None):
""" CutMix bbox by min and max value
Generate 1 random bbox by min and max percentage values.
Minmax is a tuple/list of min and max percentage vlaues
applied to the image width and height.
Args:
image_shape: tuple/list, image height and width
minmax: tuple/list, min and max percentage values of image size
count: int, number of bbox to generate
"""
assert len(minmax) == 2
image_h, image_w = image_shape[-2:]
min_ratio = minmax[0]
max_ratio = minmax[1]
cut_h = np.random.randint(int(image_h * min_ratio), int(image_h * max_ratio), size=count)
cut_w = np.random.randint(int(image_w * min_ratio), int(image_w * max_ratio), size=count)
bbox_x1 = np.random.randint(0, image_w - cut_w, size=count)
bbox_y1 = np.random.randint(0, image_h - cut_h, size=count)
bbox_x2 = bbox_x1 + cut_w
bbox_y2 = bbox_y1 + cut_h
return bbox_x1, bbox_y1, bbox_x2, bbox_y2
def cutmix_generate_bbox_adjust_lam(image_shape, lam, minmax=None, correct_lam=True, count=None):
"""Generate bbox and apply correction for lambda
If the mimmax is None, apply the standard cutmix by lam value,
If the minmax is set, apply the cutmix by min and max percentage values.
Args:
image_shape: tuple/list, image height and width
lam: float, cutmix lambda value
minmax: tuple/list, min and max percentage values of image size
correct_lam: bool, if True, correct the lam value by the generated bbox
count: int, number of bbox to generate
"""
if minmax is not None:
bbox_x1, bbox_y1, bbox_x2, bbox_y2 = rand_bbox_minmax(image_shape, minmax, count)
else:
bbox_x1, bbox_y1, bbox_x2, bbox_y2 = rand_bbox(image_shape, lam, count)
if correct_lam or minmax is not None:
image_h, image_w = image_shape[-2:]
bbox_area = (bbox_y2 - bbox_y1) * (bbox_x2 - bbox_x1)
lam = 1. - bbox_area / float(image_h * image_w)
return (bbox_x1, bbox_y1, bbox_x2, bbox_y2), lam
def one_hot(x, num_classes, on_value=1., off_value=0.):
""" Generate one-hot vector for label smoothing
Args:
x: tensor, contains label/class indices
num_classes: int, num of classes (len of the one-hot vector)
on_value: float, the vector value at label index, default=1.
off_value: float, the vector value at non-label indices, default=0.
Returns:
one_hot: tensor, tensor with on value at label index and off value
at non-label indices.
"""
x = x.reshape_([-1, 1])
x_smoothed = paddle.full((x.shape[0], num_classes), fill_value=off_value)
for i in range(x.shape[0]):
x_smoothed[i, x[i]] = on_value
return x_smoothed
def mixup_one_hot(label, num_classes, lam=1., smoothing=0.):
""" mixup and label smoothing in batch
label smoothing is firstly applied, then
mixup is applied by mixing the bacth and its flip,
with a mixup rate.
Args:
label: tensor, label tensor with shape [N], contains the class indices
num_classes: int, num of all classes
lam: float, mixup rate, default=1.0
smoothing: float, label smoothing rate
"""
off_value = smoothing / num_classes
on_value = 1. - smoothing + off_value
y1 = one_hot(label, num_classes, on_value, off_value)
y2 = one_hot(label.flip(axis=[0]), num_classes, on_value, off_value)
return y2 * (1 - lam) + y1 * lam
class Mixup:
"""Mixup class
Args:
mixup_alpha: float, mixup alpha for beta distribution, default=1.0,
cutmix_alpha: float, cutmix alpha for beta distribution, default=0.0,
cutmix_minmax: list/tuple, min and max value for cutmix ratio, default=None,
prob: float, if random prob < prob, do not use mixup, default=1.0,
switch_prob: float, prob of switching mixup and cutmix, default=0.5,
mode: string, mixup up, now only 'batch' is supported, default='batch',
correct_lam: bool, if True, apply correction of lam, default=True,
label_smoothing: float, label smoothing rate, default=0.1,
num_classes: int, num of classes, default=1000
"""
def __init__(self,
mixup_alpha=1.0,
cutmix_alpha=0.0,
cutmix_minmax=None,
prob=1.0,
switch_prob=0.5,
mode='batch',
correct_lam=True,
label_smoothing=0.1,
num_classes=1000):
self.mixup_alpha = mixup_alpha
self.cutmix_alpha = cutmix_alpha
self.cutmix_minmax = cutmix_minmax
if cutmix_minmax is not None:
assert len(cutmix_minmax) == 2
self.cutmix_alpha = 1.0
self.mix_prob = prob
self.switch_prob = switch_prob
self.label_smoothing = label_smoothing
self.num_classes = num_classes
self.mode = mode
self.correct_lam = correct_lam
assert mode == 'batch', 'Now only batch mode is supported!'
def __call__(self, x, target):
assert x.shape[0] % 2 == 0, "Batch size should be even"
lam = self._mix_batch(x)
target = mixup_one_hot(target, self.num_classes, lam, self.label_smoothing)
return x, target
def get_params(self):
"""Decide to use cutmix or regular mixup by sampling and
sample lambda for mixup
"""
lam = 1.
use_cutmix = False
use_mixup = np.random.rand() < self.mix_prob
if use_mixup:
if self.mixup_alpha > 0. and self.cutmix_alpha > 0.:
use_cutmix = np.random.rand() < self.switch_prob
alpha = self.cutmix_alpha if use_cutmix else self.mixup_alpha
lam_mix = np.random.beta(alpha, alpha)
elif self.mixup_alpha == 0. and self.cutmix_alpha > 0.:
use_cutmix=True
lam_mix = np.random.beta(self.cutmix_alpha, self.cutmix_alpha)
elif self.mixup_alpha > 0. and self.cutmix_alpha == 0.:
lam_mix = np.random.beta(self.mixup_alpha, self.mixup_alpha)
else:
raise ValueError('mixup_alpha and cutmix_alpha cannot be all 0')
lam = float(lam_mix)
return lam, use_cutmix
def _mix_batch(self, x):
"""mixup/cutmix by adding batch data and its flipped version"""
lam, use_cutmix = self.get_params()
if lam == 1.:
return lam
if use_cutmix:
(bbox_x1, bbox_y1, bbox_x2, bbox_y2), lam = cutmix_generate_bbox_adjust_lam(
x.shape,
lam,
minmax=self.cutmix_minmax,
correct_lam=self.correct_lam)
# NOTE: in paddle, tensor indexing e.g., a[x1:x2],
# if x1 == x2, paddle will raise ValueErros,
# but in pytorch, it will return [] tensor without errors
if int(bbox_x1) != int(bbox_x2) and int(bbox_y1) != int(bbox_y2):
x[:, :, int(bbox_x1): int(bbox_x2), int(bbox_y1): int(bbox_y2)] = x.flip(axis=[0])[
:, :, int(bbox_x1): int(bbox_x2), int(bbox_y1): int(bbox_y2)]
else:
x_flipped = x.flip(axis=[0])
x_flipped = x_flipped * (1 - lam)
x.set_value(x * (lam) + x_flipped)
return lam