-
Notifications
You must be signed in to change notification settings - Fork 323
/
Copy pathlosses.py
120 lines (106 loc) · 4.49 KB
/
losses.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
# Copyright (c) 2021 PPViT Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Implement Loss functions """
import paddle
import paddle.nn as nn
import paddle.nn.functional as F
class LabelSmoothingCrossEntropyLoss(nn.Layer):
""" cross entropy loss for label smoothing
Args:
smoothing: float, smoothing rate
x: tensor, predictions (before softmax) with shape [N, num_classes]
target: tensor, target label with shape [N]
Return:
loss: float, cross entropy loss value
"""
def __init__(self, smoothing=0.1):
super().__init__()
assert 0 <= smoothing < 1.0
self.smoothing = smoothing
self.confidence = 1 - smoothing
def forward(self, x, target):
log_probs = F.log_softmax(x) # [N, num_classes]
# target_index is used to get prob for each of the N samples
target_index = paddle.zeros([x.shape[0], 2], dtype='int64') # [N, 2]
target_index[:, 0] = paddle.arange(x.shape[0])
target_index[:, 1] = target
nll_loss = -log_probs.gather_nd(index=target_index) # index: [N]
smooth_loss = -log_probs.mean(axis=-1)
loss = self.confidence * nll_loss + self.smoothing * smooth_loss
return loss.mean()
class SoftTargetCrossEntropyLoss(nn.Layer):
""" cross entropy loss for soft target
Args:
x: tensor, predictions (before softmax) with shape [N, num_classes]
target: tensor, soft target with shape [N, num_classes]
Returns:
loss: float, the mean loss value
"""
def forward(self, x, target):
loss = paddle.sum(-target * F.log_softmax(x, axis=-1), axis=-1)
return loss.mean()
class DistillationLoss(nn.Layer):
"""Distillation loss function
This layer includes the orginal loss (criterion) and a extra
distillation loss (criterion), which computes the loss with
different type options, between current model and
a teacher model as its supervision.
Args:
base_criterion: nn.Layer, the original criterion
teacher_model: nn.Layer, the teacher model as supervision
distillation_type: str, one of ['none', 'soft', 'hard']
alpha: float, ratio of base loss (* (1-alpha))
and distillation loss( * alpha)
tao: float, temperature in distillation
"""
def __init__(self,
base_criterion,
teacher_model,
distillation_type,
alpha,
tau):
super().__init__()
assert distillation_type in ['none', 'soft', 'hard']
self.base_criterion = base_criterion
self.teacher_model = teacher_model
self.type = distillation_type
self.alpha = alpha
self.tau = tau
def forward(self, inputs, outputs, targets):
"""
Args:
inputs: tensor, the orginal model inputs
outputs: tensor, the outputs of the model
outputds_kd: tensor, the distillation outputs of the model,
this is usually obtained by a separate branch
in the last layer of the model
targets: tensor, the labels for the base criterion
"""
outputs_kd = None
if not isinstance(outputs, paddle.Tensor):
outputs, outputs_kd = outputs[0], outputs[1]
base_loss = self.base_criterion(outputs, targets)
if self.type == 'none':
return base_loss
with paddle.no_grad():
teacher_outputs = self.teacher_model(inputs)
if self.type == 'soft':
distillation_loss = F.kl_div(
F.log_softmax(outputs_kd / self.tau, axis=1),
F.log_softmax(teacher_outputs / self.tau, axis=1),
reduction='sum') * (self.tau * self.tau) / outputs_kd.numel()
elif self.type == 'hard':
distillation_loss = F.cross_entropy(outputs_kd, teacher_outputs.argmax(axis=1))
loss = base_loss * (1 - self.alpha) + distillation_loss * self.alpha
return loss