-
Notifications
You must be signed in to change notification settings - Fork 323
/
Copy patht2t.py
executable file
·335 lines (271 loc) · 14.7 KB
/
t2t.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
# Copyright (c) 2021 PPViT Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import math
import numpy as np
import paddle
import paddle.nn as nn
from crossvit_utils import DropPath, Identity, to_2tuple
def get_sinusoid_encoding(n_position, d_hid):
''' Sinusoid position encoding table '''
def get_position_angle_vec(position):
return [position / np.power(10000, 2 * (hid_j // 2) / d_hid) for hid_j in range(d_hid)]
sinusoid_table = np.array([get_position_angle_vec(pos_i) for pos_i in range(n_position)])
sinusoid_table[:, 0::2] = np.sin(sinusoid_table[:, 0::2]) # dim 2i
sinusoid_table[:, 1::2] = np.cos(sinusoid_table[:, 1::2]) # dim 2i+1
return paddle.to_tensor(sinusoid_table).unsqueeze(0)
class Token_performer(nn.Layer):
def __init__(self, dim, in_dim, head_cnt=1, kernel_ratio=0.5, dp1=0.1, dp2=0.1):
# def __init__(self, dim, in_dim, head_cnt=1, kernel_ratio=0.5, dp1=0.0, dp2=0.0):
super().__init__()
self.emb = in_dim * head_cnt # we use 1, so it is no need here
w_attr_1, b_attr_1 = self._init_weights()
self.kqv = nn.Linear(dim, 3 * self.emb, weight_attr=w_attr_1, bias_attr=b_attr_1)
self.dp = nn.Dropout(dp1)
w_attr_2, b_attr_2 = self._init_weights()
self.proj = nn.Linear(self.emb, self.emb, weight_attr=w_attr_2, bias_attr=b_attr_2)
self.head_cnt = head_cnt
w_attr_3, b_attr_3 = self._init_weights_norm()
w_attr_4, b_attr_4 = self._init_weights_norm()
self.norm1 = nn.LayerNorm(dim, weight_attr=w_attr_3, bias_attr=b_attr_3)
self.norm2 = nn.LayerNorm(self.emb, weight_attr=w_attr_4, bias_attr=b_attr_4)
self.epsilon = 1e-8 # for stable in division
w_attr_5, b_attr_5 = self._init_weights()
w_attr_6, b_attr_6 = self._init_weights()
self.mlp = nn.Sequential(
nn.Linear(self.emb, 1 * self.emb, weight_attr=w_attr_5, bias_attr=b_attr_5),
nn.GELU(),
nn.Linear(1 * self.emb, self.emb, weight_attr=w_attr_6, bias_attr=b_attr_6),
nn.Dropout(dp2),
)
self.m = int(self.emb * kernel_ratio)
self.w = paddle.randn(self.m, self.emb)
# todo wait implement
# self.w = nn.Parameter(nn.init.orthogonal_(self.w) * math.sqrt(self.m), requires_grad=False)
def _init_weights(self):
weight_attr = paddle.ParamAttr(initializer=paddle.nn.initializer.TruncatedNormal(std=.02))
bias_attr = paddle.ParamAttr(initializer=paddle.nn.initializer.Constant(0.0))
return weight_attr, bias_attr
def _init_weights_norm(self):
weight_attr = paddle.ParamAttr(initializer=paddle.nn.initializer.Constant(1.0))
bias_attr = paddle.ParamAttr(initializer=paddle.nn.initializer.Constant(0.0))
return weight_attr, bias_attr
def prm_exp(self, x):
xd = ((x * x).sum(dim=-1, keepdim=True)).repeat(1, 1, self.m) / 2
wtx = paddle.matmul(x.float(), self.w, transpose_y=True)
#wtx = paddlenlp.ops.einsum('bti,mi->btm', x.float(), self.w)
return paddle.exp(wtx - xd) / math.sqrt(self.m)
def single_attn(self, x):
k, q, v = paddle.split(self.kqv(x), self.emb, axis=-1)
kp, qp = self.prm_exp(k), self.prm_exp(q)
D = paddle.matmul(qp, kp.sum(dim=1)).unsqueeze(dim=2)
#D = paddlenlp.ops.einsum('bti,bi->bt', qp, kp.sum(dim=1)).unsqueeze(dim=2)
kptv = paddle.matmul(v.float(), kp, transpose_x=True)
#kptv = paddlenlp.ops.einsum('bin,bim->bnm', v.float(), kp) # (B, emb, m)
y = paddle.matmul(qp, kptv, transpose_y=True) / (D.repeat(1, 1, self.emb) + self.epsilon)
#y = paddlenlp.ops.einsum('bti,bni->btn', qp, kptv) / (D.repeat(1, 1, self.emb) + self.epsilon)
# skip connection
y = v + self.dp(self.proj(y))
return y
def forward(self, x):
x = self.single_attn(self.norm1(x))
x = x + self.mlp(self.norm2(x))
return x
class Mlp(nn.Layer):
def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.):
super().__init__()
out_features = out_features or in_features
hidden_features = hidden_features or in_features
w_attr_1, b_attr_1 = self._init_weights()
self.fc1 = nn.Linear(in_features, hidden_features, weight_attr=w_attr_1, bias_attr=b_attr_1)
self.act = act_layer()
w_attr_2, b_attr_2 = self._init_weights()
self.fc2 = nn.Linear(hidden_features, out_features, weight_attr=w_attr_2, bias_attr=b_attr_2)
self.drop = nn.Dropout(drop)
def _init_weights(self):
weight_attr = paddle.ParamAttr(initializer=paddle.nn.initializer.TruncatedNormal(std=.02))
bias_attr = paddle.ParamAttr(initializer=paddle.nn.initializer.Constant(0.0))
return weight_attr, bias_attr
def forward(self, x):
x = self.fc1(x)
x = self.act(x)
x = self.drop(x)
x = self.fc2(x)
x = self.drop(x)
return x
class Attention(nn.Layer):
def __init__(self, dim, num_heads=8, in_dim=None, qkv_bias=False, qk_scale=None, attn_drop=0., proj_drop=0.):
super().__init__()
self.num_heads = num_heads
self.in_dim = in_dim
head_dim = dim // num_heads
self.scale = qk_scale or head_dim ** -0.5
w_attr_1, b_attr_1 = self._init_weights()
self.qkv = nn.Linear(dim, in_dim * 3, weight_attr=w_attr_1, bias_attr=b_attr_1)
self.attn_drop = nn.Dropout(attn_drop)
w_attr_2, b_attr_2 = self._init_weights()
self.proj = nn.Linear(in_dim, in_dim, weight_attr=w_attr_2, bias_attr=b_attr_2)
self.proj_drop = nn.Dropout(proj_drop)
def _init_weights(self):
weight_attr = paddle.ParamAttr(initializer=paddle.nn.initializer.TruncatedNormal(std=.02))
bias_attr = paddle.ParamAttr(initializer=paddle.nn.initializer.Constant(0.0))
return weight_attr, bias_attr
def forward(self, x):
B, N, C = x.shape
qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, self.in_dim).permute(2, 0, 3, 1, 4)
q, k, v = qkv[0], qkv[1], qkv[2]
attn = (q @ k.transpose(-2, -1)) * self.scale
attn = attn.softmax(dim=-1)
attn = self.attn_drop(attn)
x = (attn @ v).transpose(1, 2).reshape(B, N, self.in_dim)
x = self.proj(x)
x = self.proj_drop(x)
# skip connection
x = v.squeeze(1) + x
return x
class Token_transformer(nn.Layer):
def __init__(self, dim, in_dim, num_heads, mlp_ratio=1., qkv_bias=False, qk_scale=None, drop=0., attn_drop=0.,
drop_path=0., act_layer=nn.GELU, norm_layer=nn.LayerNorm):
super().__init__()
w_attr_1, b_attr_1 = self._init_weights_norm()
self.norm1 = norm_layer(dim, weight_attr=w_attr_1, bias_attr=b_attr_1)
self.attn = Attention(dim, in_dim=in_dim, num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale,
attn_drop=attn_drop, proj_drop=drop)
self.drop_path = DropPath(drop_path) if drop_path > 0. else Identity()
self.norm2 = norm_layer(in_dim)
self.mlp = Mlp(in_features=in_dim, hidden_features=int(in_dim * mlp_ratio), out_features=in_dim,
act_layer=act_layer, drop=drop)
def _init_weights_norm(self):
weight_attr = paddle.ParamAttr(initializer=paddle.nn.initializer.Constant(1.0))
bias_attr = paddle.ParamAttr(initializer=paddle.nn.initializer.Constant(0.0))
return weight_attr, bias_attr
def forward(self, x):
x = self.attn(self.norm1(x))
x = x + self.drop_path(self.mlp(self.norm2(x)))
return x
class T2T(nn.Layer):
"""
Tokens-to-Token encoding module
"""
def __init__(self, img_size=224, patch_size=16, tokens_type='transformer', in_chans=3, embed_dim=768, token_dim=64):
super().__init__()
if patch_size == 12:
kernel_size = ((7, 4, 2), (3, 3, 1), (3, 1, 1))
elif patch_size == 16:
kernel_size = ((7, 4, 2), (3, 2, 1), (3, 2, 1))
else:
raise ValueError(f"Unknown patch size {patch_size}")
self.soft_split0 = nn.Unfold(kernel_sizes=to_2tuple(kernel_size[0][0]), strides=to_2tuple(kernel_size[0][1]),
paddings=to_2tuple(kernel_size[0][2]))
self.soft_split1 = nn.Unfold(kernel_sizes=to_2tuple(kernel_size[1][0]), strides=to_2tuple(kernel_size[1][1]),
paddings=to_2tuple(kernel_size[1][2]))
self.soft_split2 = nn.Unfold(kernel_sizes=to_2tuple(kernel_size[2][0]), strides=to_2tuple(kernel_size[2][1]),
paddings=to_2tuple(kernel_size[2][2]))
if tokens_type == 'transformer':
self.attention1 = Token_transformer(dim=in_chans * (kernel_size[0][0] ** 2), in_dim=token_dim, num_heads=1,
mlp_ratio=1.0)
self.attention2 = Token_transformer(dim=token_dim * (kernel_size[1][0] ** 2), in_dim=token_dim, num_heads=1,
mlp_ratio=1.0)
w_attr_1, b_attr_1 = self._init_weights()
self.project = nn.Linear(token_dim * (kernel_size[2][0] ** 2),
embed_dim,
weight_attr=w_attr_1,
bias_attr=b_attr_1)
elif tokens_type == 'performer':
self.attention1 = Token_performer(dim=in_chans * (kernel_size[0][0] ** 2), in_dim=token_dim,
kernel_ratio=0.5)
self.attention2 = Token_performer(dim=token_dim * (kernel_size[1][0] ** 2), in_dim=token_dim,
kernel_ratio=0.5)
w_attr_1, b_attr_1 = self._init_weights()
self.project = nn.Linear(token_dim * (kernel_size[2][0] ** 2),
embed_dim,
weight_attr=w_attr_1,
bias_attr=b_attr_1)
self.num_patches = (img_size // (kernel_size[0][1] * kernel_size[1][1] * kernel_size[2][1])) * (img_size // (
kernel_size[0][1] * kernel_size[1][1] * kernel_size[2][
1])) # there are 3 sfot split, stride are 4,2,2 seperately
def _init_weights(self):
weight_attr = paddle.ParamAttr(initializer=paddle.nn.initializer.TruncatedNormal(std=.02))
bias_attr = paddle.ParamAttr(initializer=paddle.nn.initializer.Constant(0.0))
return weight_attr, bias_attr
def forward(self, x):
# step0: soft split
x = self.soft_split0(x).transpose(1, 2)
# iteration1: re-structurization/reconstruction
x = self.attention1(x)
B, new_HW, C = x.shape
x = x.transpose(1, 2).reshape(B, C, int(np.sqrt(new_HW)), int(np.sqrt(new_HW)))
# iteration1: soft split
x = self.soft_split1(x).transpose(1, 2)
# iteration2: re-structurization/reconstruction
x = self.attention2(x)
B, new_HW, C = x.shape
x = x.transpose(1, 2).reshape(B, C, int(np.sqrt(new_HW)), int(np.sqrt(new_HW)))
# iteration2: soft split
x = self.soft_split2(x).transpose(1, 2)
# final tokens
x = self.project(x)
return x
class SharedT2T(nn.Layer):
"""
Tokens-to-Token encoding module
"""
def __init__(self, img_size=224, patch_size=16, tokens_type='transformer', in_chans=3, embed_dim=768, token_dim=64):
super().__init__()
if patch_size == 12:
kernel_size = ((7, 4, 2), (3, 3, 1), (3, 1, 1))
elif patch_size == 16:
kernel_size = ((7, 4, 2), (3, 2, 1), (3, 2, 1))
else:
raise ValueError(f"Unknown patch size {patch_size}")
if tokens_type == 'transformer':
# print('adopt transformer encoder for tokens-to-token')
self.soft_split0 = nn.Unfold(kernel_sizes=to_2tuple(kernel_size[0][0]),
strides=to_2tuple(kernel_size[0][1]), paddings=to_2tuple(kernel_size[0][2]))
self.soft_split1 = nn.Unfold(kernel_sizes=to_2tuple(kernel_size[1][0]),
strides=to_2tuple(kernel_size[1][1]), paddings=to_2tuple(kernel_size[1][2]))
self.soft_split2 = nn.Unfold(kernel_sizes=to_2tuple(kernel_size[2][0]),
strides=to_2tuple(kernel_size[2][1]), paddings=to_2tuple(kernel_size[2][2]))
self.attention1 = Token_transformer(dim=in_chans * (kernel_size[0][0] ** 2), in_dim=token_dim, num_heads=1,
mlp_ratio=1.0)
self.attention2 = Token_transformer(dim=token_dim * (kernel_size[1][0] ** 2), in_dim=token_dim, num_heads=1,
mlp_ratio=1.0)
w_attr_1, b_attr_1 = self._init_weights()
self.project = nn.Linear(token_dim * (kernel_size[2][0] ** 2),
embed_dim,
weight_attr=w_attr_1,
bias_attr=b_attr_1)
self.num_patches = (img_size // (kernel_size[0][1] * kernel_size[1][1] * kernel_size[2][1])) * (img_size // (
kernel_size[0][1] * kernel_size[1][1] * kernel_size[2][1]))
def _init_weights(self):
weight_attr = paddle.ParamAttr(initializer=paddle.nn.initializer.TruncatedNormal(std=.02))
bias_attr = paddle.ParamAttr(initializer=paddle.nn.initializer.Constant(0.0))
return weight_attr, bias_attr
def forward(self, x):
# step0: soft split
x = self.soft_split0(x).transpose(1, 2)
# iteration1: re-structurization/reconstruction
x = self.attention1(x)
B, new_HW, C = x.shape
x = x.transpose(1, 2).reshape(B, C, int(np.sqrt(new_HW)), int(np.sqrt(new_HW)))
# iteration1: soft split
x = self.soft_split1(x).transpose(1, 2)
# iteration2: re-structurization/reconstruction
x = self.attention2(x)
B, new_HW, C = x.shape
x = x.transpose(1, 2).reshape(B, C, int(np.sqrt(new_HW)), int(np.sqrt(new_HW)))
# iteration2: soft split
x = self.soft_split2(x).transpose(1, 2)
# final tokens
x = self.project(x)
return x