-
Notifications
You must be signed in to change notification settings - Fork 321
/
crossvit.py
447 lines (397 loc) · 19.1 KB
/
crossvit.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
# Copyright (c) 2021 PPViT Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
CrossViT in Paddle
A Paddle Implementation of Cross-Attention Multi-Scale Vision Transformer (CrossViT) as described in:
"CrossViT: Cross-Attention Multi-Scale Vision Transformer for Image Classification"
- Paper Link: https://arxiv.org/abs/2103.14899
"""
import paddle
import paddle.nn as nn
import paddle.nn.functional as F
from functools import partial
from t2t import T2T, get_sinusoid_encoding
from crossvit_utils import *
class PatchEmbed(nn.Layer):
def __init__(self, img_size=224, patch_size=16, in_chans=3, embed_dim=768, multi_conv=False):
super().__init__()
img_size = to_2tuple(img_size)
patch_size = to_2tuple(patch_size)
num_patches = (img_size[1] // patch_size[1]) * (img_size[0] // patch_size[0])
self.img_size = img_size
self.patch_size = patch_size
self.num_patches = num_patches
if multi_conv:
if patch_size[0] == 12:
self.proj = nn.Sequential(
nn.Conv2D(in_chans, embed_dim // 4, kernel_size=7, stride=4, padding=3),
nn.ReLU(),
nn.Conv2D(embed_dim // 4, embed_dim // 2, kernel_size=3, stride=3, padding=0),
nn.ReLU(),
nn.Conv2D(embed_dim // 2, embed_dim, kernel_size=3, stride=1, padding=1),
)
elif patch_size[0] == 16:
self.proj = nn.Sequential(
nn.Conv2D(in_chans, embed_dim // 4, kernel_size=7, stride=4, padding=3),
nn.ReLU(),
nn.Conv2D(embed_dim // 4, embed_dim // 2, kernel_size=3, stride=2, padding=1),
nn.ReLU(),
nn.Conv2D(embed_dim // 2, embed_dim, kernel_size=3, stride=2, padding=1),
)
else:
self.proj = nn.Conv2D(in_chans, embed_dim, kernel_size=patch_size, stride=patch_size)
def forward(self, x):
B, C, H, W = x.shape
# FIXME look at relaxing size constraints
assert H == self.img_size[0] and W == self.img_size[1], \
f"Input image size ({H}*{W}) doesn't match ({self.img_size[0]}*{self.img_size[1]})."
x = self.proj(x).flatten(2).transpose((0, 2, 1))
return x
class CrossAttention(nn.Layer):
def __init__(self, dim, num_heads=8, qkv_bias=False, qk_scale=None, attn_drop=0., proj_drop=0.):
super().__init__()
self.num_heads = num_heads
head_dim = dim // num_heads
self.scale = qk_scale or head_dim ** -0.5
w_attr_1, b_attr_1 = self._init_weights()
self.wq = nn.Linear(dim, dim, weight_attr=w_attr_1, bias_attr=b_attr_1)
w_attr_2, b_attr_2 = self._init_weights()
self.wk = nn.Linear(dim, dim, weight_attr=w_attr_2, bias_attr=b_attr_2)
w_attr_3, b_attr_3 = self._init_weights()
self.wv = nn.Linear(dim, dim, weight_attr=w_attr_3, bias_attr=b_attr_3)
self.attn_drop = nn.Dropout(attn_drop)
w_attr_4, b_attr_4 = self._init_weights()
self.proj = nn.Linear(dim, dim, weight_attr=w_attr_4, bias_attr=b_attr_4)
self.proj_drop = nn.Dropout(proj_drop)
def _init_weights(self):
weight_attr = paddle.ParamAttr(initializer=paddle.nn.initializer.TruncatedNormal(std=.02))
bias_attr = paddle.ParamAttr(initializer=paddle.nn.initializer.Constant(0.0))
return weight_attr, bias_attr
def forward(self, x):
B, N, C = x.shape
q = self.wq(x[:, 0:1, :]).reshape([B, 1, self.num_heads, C // self.num_heads]).transpose(
(0, 2, 1, 3)) # B1C -> B1H(C/H) -> BH1(C/H)
k = self.wk(x).reshape([B, N, self.num_heads, C // self.num_heads]).transpose(
(0, 2, 1, 3)) # BNC -> BNH(C/H) -> BHN(C/H)
v = self.wv(x).reshape([B, N, self.num_heads, C // self.num_heads]).transpose(
(0, 2, 1, 3)) # BNC -> BNH(C/H) -> BHN(C/H)
attn = (q @ k.transpose((0, 1, 3, 2))) * self.scale # BH1(C/H) @ BH(C/H)N -> BH1N
attn = F.softmax(attn, axis=-1)
attn = self.attn_drop(attn)
# (BH1N @ BHN(C/H)) -> BH1(C/H) -> B1H(C/H) -> B1C
x = (attn @ v).transpose((0, 2, 1, 3)).reshape([B, 1, C])
x = self.proj(x)
x = self.proj_drop(x)
return x
class CrossAttentionBlock(nn.Layer):
def __init__(self,
dim,
num_heads,
mlp_ratio=4.,
qkv_bias=False,
qk_scale=None,
drop=0.,
attn_drop=0.,
drop_path=0.,
has_mlp=True):
super(CrossAttentionBlock, self).__init__()
w_attr_1, b_attr_1 = self._init_weights()
self.norm1 = nn.LayerNorm(dim, weight_attr=w_attr_1, bias_attr=b_attr_1, epsilon=1e-6)
self.attn = CrossAttention(dim,
num_heads=num_heads,
qkv_bias=qkv_bias,
qk_scale=qk_scale,
attn_drop=attn_drop,
proj_drop=drop)
self.drop_path = DropPath(drop_path) if drop_path > 0. else Identity()
self.has_mlp = has_mlp
if has_mlp:
self.norm2 = norm_layer(dim)
mlp_hidden_dim = int(dim * mlp_ratio)
self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, dropout=drop)
def _init_weights(self):
weight_attr = paddle.ParamAttr(initializer=paddle.nn.initializer.Constant(1.0))
bias_attr = paddle.ParamAttr(initializer=paddle.nn.initializer.Constant(0.0))
return weight_attr, bias_attr
def forward(self, x):
x = x[:, 0:1, :] + self.drop_path(self.attn(self.norm1(x)))
if self.has_mlp:
x = x + self.drop_path(self.mlp(self.norm2(x)))
return x
class MultiScaleBlock(nn.Layer):
def __init__(self,
dim,
patches,
depth,
num_heads,
mlp_ratio,
qkv_bias=False,
qk_scale=None,
drop=0.,
attn_drop=0.,
drop_path=[]):
super().__init__()
num_branches = len(dim)
self.num_branches = num_branches
# different branch could have different embedding size, the first one is the base
self.blocks = nn.LayerList()
for d in range(num_branches):
tmp = []
for i in range(depth[d]):
tmp.append(
Block(dim=dim[d],
num_heads=num_heads[d],
mlp_ratio=mlp_ratio[d],
qkv_bias=qkv_bias,
qk_scale=qk_scale,
dropout=drop,
attention_dropout=attn_drop,
droppath=drop_path[i]))
if len(tmp) != 0:
self.blocks.append(nn.Sequential(*tmp))
if len(self.blocks) == 0:
self.blocks = None
self.projs = nn.LayerList()
for d in range(num_branches):
if dim[d] == dim[(d + 1) % num_branches] and False:
tmp = [Identity()]
else:
w_attr_1, b_attr_1 = self._init_weights_norm()
w_attr_2, b_attr_2 = self._init_weights_linear()
tmp = [nn.LayerNorm(dim[d], weight_attr=w_attr_1, bias_attr=b_attr_1, epsilon=1e-6),
nn.GELU(),
nn.Linear(dim[d],
dim[(d + 1) % num_branches],
weight_attr=w_attr_2,
bias_attr=b_attr_2)]
self.projs.append(nn.Sequential(*tmp))
self.fusion = nn.LayerList()
for d in range(num_branches):
d_ = (d + 1) % num_branches
nh = num_heads[d_]
if depth[-1] == 0: # backward capability:
self.fusion.append(
CrossAttentionBlock(dim=dim[d_],
num_heads=nh,
mlp_ratio=mlp_ratio[d],
qkv_bias=qkv_bias,
qk_scale=qk_scale,
drop=drop,
attn_drop=attn_drop,
drop_path=drop_path[-1],
has_mlp=False))
else:
tmp = []
for _ in range(depth[-1]):
tmp.append(CrossAttentionBlock(dim=dim[d_],
num_heads=nh,
mlp_ratio=mlp_ratio[d],
qkv_bias=qkv_bias,
qk_scale=qk_scale,
drop=drop,
attn_drop=attn_drop,
drop_path=drop_path[-1],
has_mlp=False))
self.fusion.append(nn.Sequential(*tmp))
self.revert_projs = nn.LayerList()
for d in range(num_branches):
if dim[(d + 1) % num_branches] == dim[d] and False:
tmp = [Identity()]
else:
w_attr_1, b_attr_1 = self._init_weights_norm()
w_attr_2, b_attr_2 = self._init_weights_linear()
tmp = [nn.LayerNorm(dim[(d + 1) % num_branches],
weight_attr=w_attr_1,
bias_attr=w_attr_1),
nn.GELU(),
nn.Linear(dim[(d + 1) % num_branches],
dim[d],
weight_attr=w_attr_2,
bias_attr=b_attr_2)]
self.revert_projs.append(nn.Sequential(*tmp))
def _init_weights_norm(self):
weight_attr = paddle.ParamAttr(initializer=paddle.nn.initializer.Constant(1.0))
bias_attr = paddle.ParamAttr(initializer=paddle.nn.initializer.Constant(0.0))
return weight_attr, bias_attr
def _init_weights_linear(self):
weight_attr = paddle.ParamAttr(initializer=paddle.nn.initializer.TruncatedNormal(std=.02))
bias_attr = paddle.ParamAttr(initializer=paddle.nn.initializer.Constant(0.0))
return weight_attr, bias_attr
def forward(self, x):
outs_b = [block(x_) for x_, block in zip(x, self.blocks)]
# only take the cls token out
proj_cls_token = [proj(x[:, 0:1]) for x, proj in zip(outs_b, self.projs)]
# cross attention
outs = []
for i in range(self.num_branches):
tmp = paddle.concat((proj_cls_token[i], outs_b[(i + 1) % self.num_branches][:, 1:, :]), axis=1)
tmp = self.fusion[i](tmp)
reverted_proj_cls_token = self.revert_projs[i](tmp[:, 0:1, :])
tmp = paddle.concat((reverted_proj_cls_token, outs_b[i][:, 1:, :]), axis=1)
outs.append(tmp)
return outs
def _compute_num_patches(img_size, patches):
return [i // p * i // p for i, p in zip(img_size, patches)]
class VisionTransformer(nn.Layer):
""" Vision Transformer with support for patch or hybrid CNN input stage
"""
def __init__(self,
img_size=(224, 224),
patch_size=(8, 16),
in_chans=3,
num_classes=1000,
embed_dim=(192, 384),
depth=([1, 3, 1], [1, 3, 1], [1, 3, 1]),
num_heads=(6, 12),
mlp_ratio=(2., 2., 4.),
qkv_bias=False,
qk_scale=None,
dropout=0.,
attention_dropout=0.,
droppath=0.,
hybrid_backbone=None,
multi_conv=False):
super().__init__()
self.num_classes = num_classes
if not isinstance(img_size, list):
img_size = to_2tuple(img_size)
self.img_size = img_size
num_patches = _compute_num_patches(img_size, patch_size)
self.num_branches = len(patch_size)
self.patch_embed = nn.LayerList()
if hybrid_backbone is None:
self.pos_embed = nn.ParameterList(
[paddle.create_parameter(
shape=[1, 1 + num_patches[i], embed_dim[i]],
dtype='float32',
default_initializer=nn.initializer.Constant(
0.0)) for i in range(self.num_branches)])
for im_s, p, d in zip(img_size, patch_size, embed_dim):
self.patch_embed.append(
PatchEmbed(img_size=im_s,
patch_size=p,
in_chans=in_chans,
embed_dim=d,
multi_conv=multi_conv))
else:
self.pos_embed = nn.ParameterList()
tokens_type = 'transformer' if hybrid_backbone == 't2t' else 'performer'
for idx, (im_s, p, d) in enumerate(zip(img_size, patch_size, embed_dim)):
self.patch_embed.append(
T2T(im_s, tokens_type=tokens_type, patch_size=p, embed_dim=d))
self.pos_embed.append(
paddle.to_tensor(data=get_sinusoid_encoding(n_position=1 + num_patches[idx],
d_hid=embed_dim[idx]),
dtype='flaot32',
stop_gradient=False))
del self.pos_embed
self.pos_embed = nn.ParameterList(
[paddle.to_tensor(
paddle.zeros(1, 1 + num_patches[i], embed_dim[i]),
dtype='float32',
stop_gradient=False) for i in range(self.num_branches)])
self.cls_token = nn.ParameterList(
[paddle.create_parameter(
shape=[1, 1, embed_dim[i]], dtype='float32') for i in range(self.num_branches)])
self.pos_drop = nn.Dropout(p=dropout)
total_depth = sum([sum(x[-2:]) for x in depth])
dpr = [x.item() for x in paddle.linspace(0, droppath, total_depth)]
dpr_ptr = 0
self.blocks = nn.LayerList()
for idx, block_cfg in enumerate(depth):
curr_depth = max(block_cfg[:-1]) + block_cfg[-1]
dpr_ = dpr[dpr_ptr:dpr_ptr + curr_depth]
blk = MultiScaleBlock(embed_dim,
num_patches,
block_cfg,
num_heads=num_heads,
mlp_ratio=mlp_ratio,
qkv_bias=qkv_bias,
qk_scale=qk_scale,
drop=dropout,
attn_drop=attention_dropout,
drop_path=dpr_)
dpr_ptr += curr_depth
self.blocks.append(blk)
w_attr_1, b_attr_1 = self._init_weights_norm()
w_attr_2, b_attr_2 = self._init_weights_linear()
self.norm = nn.LayerList([nn.LayerNorm(embed_dim[i],
weight_attr=w_attr_1, bias_attr=b_attr_1, epsilon=1e-6) for i in range(self.num_branches)])
self.head = nn.LayerList(
[nn.Linear(embed_dim[i],
num_classes,
weight_attr=w_attr_2,
bias_attr=b_attr_2) if num_classes > 0 else Identity() for i in range(self.num_branches)])
def _init_weights_norm(self):
weight_attr = paddle.ParamAttr(initializer=paddle.nn.initializer.Constant(1.0))
bias_attr = paddle.ParamAttr(initializer=paddle.nn.initializer.Constant(0.0))
return weight_attr, bias_attr
def _init_weights_linear(self):
weight_attr = paddle.ParamAttr(initializer=paddle.nn.initializer.TruncatedNormal(std=.02))
bias_attr = paddle.ParamAttr(initializer=paddle.nn.initializer.Constant(0.0))
return weight_attr, bias_attr
def no_weight_decay(self):
out = {'cls_token'}
if self.pos_embed[0].requires_grad:
out.add('pos_embed')
return out
def get_classifier(self):
return self.head
def reset_classifier(self, num_classes, global_pool=''):
self.num_classes = num_classes
self.head = nn.Linear(self.embed_dim, num_classes) if num_classes > 0 else Identity()
def forward_features(self, x):
B, C, H, W = x.shape
xs = []
for i in range(self.num_branches):
x_ = paddle.nn.functional.interpolate(
x, size=(self.img_size[i],
self.img_size[i]),
mode='bicubic') if H != self.img_size[i] else x
tmp = self.patch_embed[i](x_)
cls_tokens = self.cls_token[i].expand([B, -1, -1]) # stole cls_tokens impl from Phil Wang, thanks
# print(cls_tokens.shape,tmp.shape)
tmp = paddle.concat((cls_tokens, tmp), axis=1)
# print(tmp.shape,self.pos_embed[i].shape)
tmp = tmp+self.pos_embed[i]
tmp = self.pos_drop(tmp)
xs.append(tmp)
for blk in self.blocks:
xs = blk(xs)
# print(xs.shape)
# NOTE: was before branch token section, move to here to assure all branch token are before layer norm
xs = [self.norm[i](x) for i, x in enumerate(xs)]
out = [x[:, 0] for x in xs]
return out
def forward(self, x):
xs = self.forward_features(x)
ce_logits = [self.head[i](x) for i, x in enumerate(xs)]
ce_logits = paddle.mean(paddle.stack(ce_logits, axis=0), axis=0)
return ce_logits
def build_crossvit(config):
"""build corssvit model using config"""
model = VisionTransformer(img_size=config.MODEL.IMG_SIZE,
num_classes=config.MODEL.NUM_CLASSES,
patch_size=config.MODEL.PATCH_SIZE,
embed_dim=config.MODEL.EMBED_DIM,
depth=config.MODEL.DEPTH,
num_heads=config.MODEL.NUM_HEADS,
mlp_ratio=config.MODEL.MLP_RATIO,
qkv_bias=config.MODEL.QKV_BIAS,
multi_conv=config.MODEL.MULTI_CONV,
hybrid_backbone=config.MODEL.HYBRID_BACKBONE,
dropout=config.MODEL.DROPOUT,
attention_dropout=config.MODEL.ATTENTION_DROPOUT,
droppath=config.MODEL.DROPPATH)
return model