Explore the latent space by checking components that affect a specific part through PCA
We used GANSpace!
Original Code
eyes |
ears |
mouth |
face features |
Prepare models learned from freezeD experience.
Convert this pkl model to pt. (Converter)
Open models/wrappers.py,
and edit the stylegan2 configs dict on line 110 to include your model and its corresponding resolution.
I.E from
# Image widths
configs = {
'ffhq': 1024,
'car': 512,
'cat': 256,
...
}
to
# Image widths
configs = {
'anti-cat': 256,
'ffhq': 1024,
'car': 512,
'cat': 256,
...
}
Then copy your pytorch model over to your drive account or any other hosting platform, and add the direct download link to the checkpoints dict in the download_checkpoint function on line 136.
def download_checkpoint(self, outfile):
checkpoints = {
'anti-cat': 'https://drive.google.com/uc?export=download&id=1JxgW_zoVww4hXO0G4PO7e_w3rFtI7jsG',
'ffhq': 'https://drive.google.com/uc?id=12yYXZymadSIj74Yue1Q7RrlbIqrXggo3',
'car': 'https://drive.google.com/uc?export=download&id=1iRoWclWVbDBAy5iXYZrQnKYSbZUqXI6y',
'cat': 'https://drive.google.com/uc?export=download&id=15vJP8GDr0FlRYpE8gD7CdeEz2mXrQMgN',
...
}
PCA Options |
---|
├ --model='StyleGAN2' |
├ --class='anti-cat' |
├ --layer='style' |
├ --use_w |
├ --components=32 |
We extracted 32 principal components and checked the effect of each component.
eyes |
ears |
mouth |
face features |
We have identified Principal components that affect certain areas of the face!