-
Notifications
You must be signed in to change notification settings - Fork 5.1k
/
openapi.json
1624 lines (1624 loc) · 55.4 KB
/
openapi.json
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
{
"swagger": "2.0",
"info": {
"title": "Anomaly Detector",
"version": "v1.1",
"description": "The Anomaly Detector API detects anomalies automatically in time series data.\nIt supports both a stateless detection mode and a\nstateful detection mode. In stateless mode, there are three functionalities. Entire\nDetect is for detecting the whole series, with the model trained by the time series.\nLast Detect is for detecting the last point, with the model trained by points before.\nChangePoint Detect is for detecting trend changes in the time series. In stateful\nmode, the user can store time series. The stored time series will be used for\ndetection anomalies. In this mode, the user can still use the preceding three\nfunctionalities by only giving a time range without preparing time series on the\nclient side. Besides the preceding three functionalities, the stateful model\nprovides group-based detection and labeling services. By using the labeling\nservice, the user can provide labels for each detection result. These labels will be\nused for retuning or regenerating detection models. Inconsistency detection is\na kind of group-based detection that finds inconsistencies in\na set of time series. By using the anomaly detector service, business customers can\ndiscover incidents and establish a logic flow for root cause analysis.",
"x-typespec-generated": [
{
"emitter": "@azure-tools/typespec-autorest"
}
]
},
"schemes": [
"https"
],
"x-ms-parameterized-host": {
"hostTemplate": "{Endpoint}/anomalydetector/{ApiVersion}",
"useSchemePrefix": false,
"parameters": [
{
"name": "Endpoint",
"in": "path",
"required": true,
"description": "Supported Azure Cognitive Services endpoints (protocol and host name, such as\nhttps://westus2.api.cognitive.microsoft.com).",
"type": "string"
},
{
"name": "ApiVersion",
"in": "path",
"required": true,
"description": "Api Version",
"type": "string",
"enum": [
"v1.1"
],
"x-ms-enum": {
"name": "APIVersion",
"modelAsString": true,
"values": [
{
"name": "v1_1",
"value": "v1.1"
}
]
}
}
]
},
"produces": [
"application/json"
],
"consumes": [
"application/json"
],
"security": [
{
"AnomalyDetectorApiKeyAuth": []
}
],
"securityDefinitions": {
"AnomalyDetectorApiKeyAuth": {
"type": "apiKey",
"description": "The secret key for your Azure Cognitive Services subscription.",
"in": "header",
"name": "Ocp-Apim-Subscription-Key"
}
},
"tags": [],
"paths": {
"/multivariate/detect-batch/{resultId}": {
"get": {
"operationId": "Multivariate_GetMultivariateBatchDetectionResult",
"summary": "Get Multivariate Anomaly Detection Result",
"description": "For asynchronous inference, get a multivariate anomaly detection result based on the\nresultId value that the BatchDetectAnomaly API returns.",
"parameters": [
{
"name": "resultId",
"in": "path",
"required": true,
"description": "ID of a batch detection result.",
"type": "string",
"format": "uuid"
}
],
"responses": {
"200": {
"description": "The request has succeeded.",
"schema": {
"$ref": "#/definitions/Multivariate.MultivariateDetectionResult"
}
},
"default": {
"description": "An unexpected error response.",
"headers": {
"x-ms-error-code": {
"description": "Error code.",
"type": "string"
}
},
"schema": {
"$ref": "#/definitions/Multivariate.ResponseError"
}
}
},
"x-ms-examples": {
"Get multivariate batch detection result": {
"$ref": "./examples/GetResult.json"
}
}
}
},
"/multivariate/models": {
"post": {
"operationId": "Multivariate_TrainMultivariateModel",
"summary": "Train a Multivariate Anomaly Detection Model",
"description": "Create and train a multivariate anomaly detection model. The request must\ninclude a source parameter to indicate an Azure Blob\nStorage URI that's accessible to the service. There are two types of data input. The Blob Storage URI can point to an Azure Blob\nStorage folder that contains multiple CSV files, where each CSV file has\ntwo columns, time stamp and variable. Or the Blob Storage URI can point to a single blob that contains a CSV file that has all the variables and a\ntime stamp column.\nThe model object will be created and returned in the response, but the\ntraining process happens asynchronously. To check the training status, call\nGetMultivariateModel with the modelId value and check the status field in the\nmodelInfo object.",
"parameters": [
{
"name": "modelInfo",
"in": "body",
"required": true,
"description": "Model information.",
"schema": {
"$ref": "#/definitions/Multivariate.ModelInfo"
}
}
],
"responses": {
"201": {
"description": "The request has succeeded and a new resource has been created as a result.",
"headers": {
"location": {
"description": "Location and ID of the model.",
"type": "string"
}
},
"schema": {
"$ref": "#/definitions/Multivariate.AnomalyDetectionModel"
}
},
"default": {
"description": "An unexpected error response.",
"headers": {
"x-ms-error-code": {
"description": "Error code.",
"type": "string"
}
},
"schema": {
"$ref": "#/definitions/Multivariate.ResponseError"
}
}
},
"x-ms-examples": {
"Create and train multivariate model": {
"$ref": "./examples/TrainModel.json"
}
}
},
"get": {
"operationId": "Multivariate_ListMultivariateModels",
"summary": "List Multivariate Models",
"description": "List models of a resource.",
"parameters": [
{
"$ref": "#/parameters/Azure.Core.SkipQueryParameter"
},
{
"$ref": "#/parameters/Azure.Core.TopQueryParameter"
}
],
"responses": {
"200": {
"description": "The request has succeeded.",
"schema": {
"$ref": "#/definitions/Multivariate.ModelList"
}
},
"default": {
"description": "An unexpected error response.",
"headers": {
"x-ms-error-code": {
"description": "Error code.",
"type": "string"
}
},
"schema": {
"$ref": "#/definitions/Multivariate.ResponseError"
}
}
},
"x-ms-pageable": {
"nextLinkName": "nextLink"
},
"x-ms-examples": {
"List multivariate models": {
"$ref": "./examples/ListModel.json"
}
}
}
},
"/multivariate/models/{modelId}": {
"delete": {
"operationId": "Multivariate_DeleteMultivariateModel",
"summary": "Delete Multivariate Model",
"description": "Delete an existing multivariate model according to the modelId value.",
"parameters": [
{
"name": "modelId",
"in": "path",
"required": true,
"description": "Model identifier.",
"type": "string"
}
],
"responses": {
"204": {
"description": "There is no content to send for this request, but the headers may be useful. "
},
"default": {
"description": "An unexpected error response.",
"headers": {
"x-ms-error-code": {
"description": "Error code.",
"type": "string"
}
},
"schema": {
"$ref": "#/definitions/Multivariate.ResponseError"
}
}
},
"x-ms-examples": {
"Delete multivariate model": {
"$ref": "./examples/DeleteModel.json"
}
}
},
"get": {
"operationId": "Multivariate_GetMultivariateModel",
"summary": "Get Multivariate Model",
"description": "Get detailed information about the multivariate model, including the training status\nand variables used in the model.",
"parameters": [
{
"name": "modelId",
"in": "path",
"required": true,
"description": "Model identifier.",
"type": "string"
}
],
"responses": {
"200": {
"description": "The request has succeeded.",
"schema": {
"$ref": "#/definitions/Multivariate.AnomalyDetectionModel"
}
},
"default": {
"description": "An unexpected error response.",
"headers": {
"x-ms-error-code": {
"description": "Error code.",
"type": "string"
}
},
"schema": {
"$ref": "#/definitions/Multivariate.ResponseError"
}
}
},
"x-ms-examples": {
"Get a multivariate model": {
"$ref": "./examples/GetModel.json"
}
}
}
},
"/multivariate/models/{modelId}:detect-batch": {
"post": {
"operationId": "Multivariate_DetectMultivariateBatchAnomaly",
"summary": "Detect Multivariate Anomaly",
"description": "Submit a multivariate anomaly detection task with the modelId value of a trained model\nand inference data. The input schema should be the same with the training\nrequest. The request will finish asynchronously and return a resultId value to\nquery the detection result. The request should be a source link to indicate an\nexternally accessible Azure Storage URI that either points to an Azure Blob\nStorage folder or points to a CSV file in Azure Blob Storage.",
"parameters": [
{
"name": "modelId",
"in": "path",
"required": true,
"description": "Model identifier.",
"type": "string"
},
{
"name": "options",
"in": "body",
"required": true,
"description": "Request of multivariate anomaly detection.",
"schema": {
"$ref": "#/definitions/Multivariate.MultivariateBatchDetectionOptions"
}
}
],
"responses": {
"202": {
"description": "The request has been accepted for processing, but processing has not yet completed.",
"headers": {
"Operation-Id": {
"description": "ID of the detection result.",
"type": "string"
},
"Operation-Location": {
"description": "Location of the detection result.",
"type": "string"
}
},
"schema": {
"$ref": "#/definitions/Multivariate.MultivariateDetectionResult"
}
},
"default": {
"description": "An unexpected error response.",
"headers": {
"x-ms-error-code": {
"description": "Error code.",
"type": "string"
}
},
"schema": {
"$ref": "#/definitions/Multivariate.ResponseError"
}
}
},
"x-ms-examples": {
"Detect multivariate batch anomaly": {
"$ref": "./examples/DetectAnomaly.json"
}
}
}
},
"/multivariate/models/{modelId}:detect-last": {
"post": {
"operationId": "Multivariate_DetectMultivariateLastAnomaly",
"summary": "Detect anomalies in the last point of the request body",
"description": "Submit a multivariate anomaly detection task with the modelId value of a trained model\nand inference data. The inference data should be put into the request body in\nJSON format. The request will finish synchronously and return the detection\nimmediately in the response body.",
"parameters": [
{
"name": "modelId",
"in": "path",
"required": true,
"description": "Model identifier.",
"type": "string"
},
{
"name": "options",
"in": "body",
"required": true,
"description": "Request of the last detection.",
"schema": {
"$ref": "#/definitions/Multivariate.MultivariateLastDetectionOptions"
}
}
],
"responses": {
"200": {
"description": "The request has succeeded.",
"schema": {
"$ref": "#/definitions/Multivariate.MultivariateLastDetectionResult"
}
},
"default": {
"description": "An unexpected error response.",
"headers": {
"x-ms-error-code": {
"description": "Error code.",
"type": "string"
}
},
"schema": {
"$ref": "#/definitions/Multivariate.ResponseError"
}
}
},
"x-ms-examples": {
"Detect multivariate last anomaly": {
"$ref": "./examples/LastDetectAnomaly.json"
}
}
}
},
"/timeseries/changepoint/detect": {
"post": {
"operationId": "Univariate_DetectUnivariateChangePoint",
"summary": "Detect change point for the entire series",
"description": "Evaluate the change point score of every series point.",
"parameters": [
{
"name": "options",
"in": "body",
"required": true,
"description": "Method of univariate anomaly detection.",
"schema": {
"$ref": "#/definitions/Univariate.UnivariateChangePointDetectionOptions"
}
}
],
"responses": {
"200": {
"description": "The request has succeeded.",
"schema": {
"$ref": "#/definitions/Univariate.UnivariateChangePointDetectionResult"
}
},
"default": {
"description": "An unexpected error response.",
"headers": {
"x-ms-error-code": {
"description": "Error code.",
"type": "string"
}
},
"schema": {
"$ref": "#/definitions/Univariate.AnomalyDetectorError"
}
}
},
"x-ms-examples": {
"Univariate detection of a change point": {
"$ref": "./examples/ChangePointDetect.json"
}
}
}
},
"/timeseries/entire/detect": {
"post": {
"operationId": "Univariate_DetectUnivariateEntireSeries",
"summary": "Detect anomalies for the entire series in batch.",
"description": "This operation generates a model with an entire series. Each point is detected\nwith the same model. With this method, points before and after a certain point\nare used to determine whether it's an anomaly. The entire detection can give the\nuser an overall status of the time series.",
"parameters": [
{
"name": "options",
"in": "body",
"required": true,
"description": "Method of univariate anomaly detection.",
"schema": {
"$ref": "#/definitions/Univariate.UnivariateDetectionOptions"
}
}
],
"responses": {
"200": {
"description": "The request has succeeded.",
"schema": {
"$ref": "#/definitions/Univariate.UnivariateEntireDetectionResult"
}
},
"default": {
"description": "An unexpected error response.",
"headers": {
"x-ms-error-code": {
"description": "Error code.",
"type": "string"
}
},
"schema": {
"$ref": "#/definitions/Univariate.AnomalyDetectorError"
}
}
},
"x-ms-examples": {
"Univariate detect entire series": {
"$ref": "./examples/EntireDetect.json"
}
}
}
},
"/timeseries/last/detect": {
"post": {
"operationId": "Univariate_DetectUnivariateLastPoint",
"summary": "Detect anomaly status of the latest point in time series.",
"description": "This operation generates a model by using the points that you sent in to the API\nand based on all data to determine whether the last point is anomalous.",
"parameters": [
{
"name": "options",
"in": "body",
"required": true,
"description": "Method of univariate anomaly detection.",
"schema": {
"$ref": "#/definitions/Univariate.UnivariateDetectionOptions"
}
}
],
"responses": {
"200": {
"description": "The request has succeeded.",
"schema": {
"$ref": "#/definitions/Univariate.UnivariateLastDetectionResult"
}
},
"default": {
"description": "An unexpected error response.",
"headers": {
"x-ms-error-code": {
"description": "Error code.",
"type": "string"
}
},
"schema": {
"$ref": "#/definitions/Univariate.AnomalyDetectorError"
}
}
},
"x-ms-examples": {
"Detect univariate last point": {
"$ref": "./examples/LastDetect.json"
}
}
}
}
},
"definitions": {
"Multivariate.AlignMode": {
"type": "string",
"enum": [
"Inner",
"Outer"
],
"x-ms-enum": {
"name": "AlignMode",
"modelAsString": true
}
},
"Multivariate.AlignPolicy": {
"type": "object",
"properties": {
"alignMode": {
"$ref": "#/definitions/Multivariate.AlignMode",
"description": "Field that indicates how to align different variables to the same\ntime range."
},
"fillNAMethod": {
"$ref": "#/definitions/Multivariate.FillNAMethod",
"description": "Field that indicates how missing values will be filled."
},
"paddingValue": {
"type": "number",
"format": "float",
"description": "Field that's required when fillNAMethod is Fixed."
}
},
"description": "Manner of aligning multiple variables."
},
"Multivariate.AnomalyDetectionModel": {
"type": "object",
"properties": {
"modelId": {
"type": "string",
"description": "Model identifier.",
"format": "uuid"
},
"createdTime": {
"type": "string",
"format": "date-time",
"description": "Date and time (UTC) when the model was created."
},
"lastUpdatedTime": {
"type": "string",
"format": "date-time",
"description": "Date and time (UTC) when the model was last updated."
},
"modelInfo": {
"$ref": "#/definitions/Multivariate.ModelInfo",
"description": "Training result of a model, including its status, errors, and diagnostics\ninformation."
}
},
"description": "Response of getting a model.",
"required": [
"modelId",
"createdTime",
"lastUpdatedTime"
]
},
"Multivariate.AnomalyInterpretation": {
"type": "object",
"properties": {
"variable": {
"type": "string",
"description": "Variable."
},
"contributionScore": {
"type": "number",
"format": "float",
"description": "This score shows the percentage that contributes to the anomalous time stamp. It's a\nnumber between 0 and 1."
},
"correlationChanges": {
"$ref": "#/definitions/Multivariate.CorrelationChanges",
"description": "Correlation changes among the anomalous variables."
}
},
"description": "Interpretation of the anomalous time stamp."
},
"Multivariate.AnomalyState": {
"type": "object",
"properties": {
"timestamp": {
"type": "string",
"format": "date-time",
"description": "Time stamp for this anomaly."
},
"value": {
"$ref": "#/definitions/Multivariate.AnomalyValue",
"description": "Detailed value of this anomalous time stamp."
},
"errors": {
"type": "array",
"items": {
"$ref": "#/definitions/Multivariate.ErrorResponse"
},
"x-ms-identifiers": [],
"description": "Error message for the current time stamp.",
"x-typespec-name": "Multivariate.ErrorResponse[]"
}
},
"description": "Anomaly status and information.",
"required": [
"timestamp"
]
},
"Multivariate.AnomalyValue": {
"type": "object",
"properties": {
"isAnomaly": {
"type": "boolean",
"description": "True if an anomaly is detected at the current time stamp."
},
"severity": {
"type": "number",
"format": "float",
"description": "Indicates the significance of the anomaly. The higher the severity, the more\nsignificant the anomaly is.",
"minimum": 0,
"maximum": 1
},
"score": {
"type": "number",
"format": "float",
"description": "Raw anomaly score of severity, to help indicate the degree of abnormality.",
"minimum": 0,
"maximum": 2
},
"interpretation": {
"type": "array",
"items": {
"$ref": "#/definitions/Multivariate.AnomalyInterpretation"
},
"x-ms-identifiers": [],
"description": "Interpretation of this anomalous time stamp.",
"x-typespec-name": "Multivariate.AnomalyInterpretation[]"
}
},
"description": "Detailed information of the anomalous time stamp.",
"required": [
"isAnomaly",
"severity",
"score"
]
},
"Multivariate.CorrelationChanges": {
"type": "object",
"properties": {
"changedVariables": {
"type": "array",
"items": {
"type": "string"
},
"description": "Correlated variables that have correlation changes under an anomaly.",
"x-typespec-name": "string[]"
}
},
"description": "Correlation changes among the anomalous variables."
},
"Multivariate.DataSchema": {
"type": "string",
"description": "Data schema of the input data source. The default is OneTable.",
"enum": [
"OneTable",
"MultiTable"
],
"x-ms-enum": {
"name": "DataSchema",
"modelAsString": true,
"values": [
{
"name": "OneTable",
"value": "OneTable",
"description": "OneTable means that your input data is in one CSV file, which contains one time stamp column and several variable columns. The default DataSchema value is OneTable."
},
{
"name": "MultiTable",
"value": "MultiTable",
"description": "MultiTable means that your input data is separated in multiple CSV files. Each file contains one time stamp column and one variable column, and the CSV file name should indicate the name of the variable. The default DataSchema value is OneTable."
}
]
}
},
"Multivariate.DiagnosticsInfo": {
"type": "object",
"properties": {
"modelState": {
"$ref": "#/definitions/Multivariate.ModelState",
"description": "Model status."
},
"variableStates": {
"type": "array",
"items": {
"$ref": "#/definitions/Multivariate.VariableState"
},
"x-ms-identifiers": [],
"description": "Variable status.",
"x-typespec-name": "Multivariate.VariableState[]"
}
},
"description": "Diagnostics information to help inspect the states of a model or variable."
},
"Multivariate.ErrorResponse": {
"type": "object",
"properties": {
"code": {
"type": "string",
"description": "Error code."
},
"message": {
"type": "string",
"description": "Message that explains the error that the service reported."
}
},
"description": "Error information that the API returned.",
"required": [
"code",
"message"
]
},
"Multivariate.FillNAMethod": {
"type": "string",
"description": "Field that indicates how missing values will be filled.",
"enum": [
"Previous",
"Subsequent",
"Linear",
"Zero",
"Fixed"
],
"x-ms-enum": {
"name": "FillNAMethod",
"modelAsString": true
}
},
"Multivariate.ModelInfo": {
"type": "object",
"properties": {
"dataSource": {
"type": "string",
"format": "uri",
"description": "Source link to the input data to indicate an accessible Azure Storage URI.\nIt either points to an Azure Blob Storage folder or points to a CSV file in\nAzure Blob Storage, based on your data schema selection."
},
"dataSchema": {
"$ref": "#/definitions/Multivariate.DataSchema",
"description": "Data schema of the input data source. The default\nis OneTable."
},
"startTime": {
"type": "string",
"format": "date-time",
"description": "Start date/time of training data, which should be\nin ISO 8601 format."
},
"endTime": {
"type": "string",
"format": "date-time",
"description": "End date/time of training data, which should be\nin ISO 8601 format."
},
"displayName": {
"type": "string",
"description": "Display name of the model. Maximum length is 24\ncharacters.",
"maxLength": 24
},
"slidingWindow": {
"type": "integer",
"format": "int32",
"description": "Number of previous time stamps that will be used to\ndetect whether the time stamp is an anomaly or not."
},
"alignPolicy": {
"$ref": "#/definitions/Multivariate.AlignPolicy",
"description": "Manner of aligning multiple variables."
},
"status": {
"$ref": "#/definitions/Multivariate.ModelStatus",
"description": "Model status.",
"readOnly": true
},
"errors": {
"type": "array",
"items": {
"$ref": "#/definitions/Multivariate.ErrorResponse"
},
"x-ms-identifiers": [],
"description": "Error messages after failure to create a model.",
"x-typespec-name": "Multivariate.ErrorResponse[]",
"readOnly": true
},
"diagnosticsInfo": {
"$ref": "#/definitions/Multivariate.DiagnosticsInfo",
"description": "Diagnostics information to help inspect the states of a model or variable.",
"readOnly": true
}
},
"description": "Training result of a model, including its status, errors, and diagnostics\ninformation.",
"required": [
"dataSource",
"startTime",
"endTime"
]
},
"Multivariate.ModelList": {
"type": "object",
"properties": {
"models": {
"type": "array",
"items": {
"$ref": "#/definitions/Multivariate.AnomalyDetectionModel"
},
"x-ms-identifiers": [],
"description": "List of models.",
"x-typespec-name": "Multivariate.AnomalyDetectionModel[]"
},
"currentCount": {
"type": "integer",
"format": "int32",
"description": "Number of trained multivariate models."
},
"maxCount": {
"type": "integer",
"format": "int32",
"description": "Maximum number of models that can be trained for this Anomaly Detector resource."
},
"nextLink": {
"type": "string",
"description": "Link to fetch more models."
}
},
"description": "Response of listing models.",
"required": [
"models",
"currentCount",
"maxCount"
]
},
"Multivariate.ModelState": {
"type": "object",
"properties": {
"epochIds": {
"type": "array",
"items": {
"type": "integer",
"format": "int32"
},
"description": "Number of passes of the entire training dataset that the\nalgorithm has completed.",
"x-typespec-name": "int32[]"
},
"trainLosses": {
"type": "array",
"items": {
"type": "number",
"format": "float"
},
"description": "List of metrics used to assess how the model fits the training data for each\nepoch.",
"x-typespec-name": "float32[]"
},
"validationLosses": {
"type": "array",
"items": {
"type": "number",
"format": "float"
},
"description": "List of metrics used to assess how the model fits the validation set for each\nepoch.",
"x-typespec-name": "float32[]"
},
"latenciesInSeconds": {
"type": "array",
"items": {
"type": "number",
"format": "float"
},
"description": "Latency for each epoch.",
"x-typespec-name": "float32[]"
}
},
"description": "Model status."
},
"Multivariate.ModelStatus": {
"type": "string",
"enum": [
"CREATED",
"RUNNING",
"READY",
"FAILED"
],
"x-ms-enum": {
"name": "ModelStatus",
"modelAsString": true,
"values": [
{
"name": "Created",
"value": "CREATED",
"description": "The model has been created. Training has been scheduled but not yet started."
},
{
"name": "Running",
"value": "RUNNING",
"description": "The model is being trained."
},
{
"name": "Ready",
"value": "READY",
"description": "The model has been trained and is ready to be used for anomaly detection."
},
{
"name": "Failed",
"value": "FAILED",
"description": "The model training failed."
}
]
}
},
"Multivariate.MultivariateBatchDetectionOptions": {
"type": "object",
"properties": {
"dataSource": {
"type": "string",
"format": "uri",
"description": "Source link to the input data to indicate an accessible Azure Storage URI.\nIt either points to an Azure Blob Storage folder or points to a CSV file in\nAzure Blob Storage, based on your data schema selection. The data schema should\nbe exactly the same as those used in the training phase. The input data must\ncontain at least slidingWindow entries preceding the start time of the data\nto be detected."
},
"topContributorCount": {
"type": "integer",
"format": "int32",
"description": "Number of top contributed variables for one anomalous time stamp in the response.",
"default": 10
},
"startTime": {
"type": "string",
"format": "date-time",
"description": "Start date/time of data for detection, which should\nbe in ISO 8601 format."
},
"endTime": {
"type": "string",
"format": "date-time",
"description": "End date/time of data for detection, which should\nbe in ISO 8601 format."
}
},
"description": "Detection request for batch inference. This is an asynchronous inference that\nwill need another API to get detection results.",
"required": [
"dataSource",
"startTime",
"endTime"
]
},
"Multivariate.MultivariateBatchDetectionResultSummary": {
"type": "object",
"properties": {
"status": {
"$ref": "#/definitions/Multivariate.MultivariateBatchDetectionStatus",
"description": "Status of detection results."
},
"errors": {
"type": "array",
"items": {
"$ref": "#/definitions/Multivariate.ErrorResponse"
},
"x-ms-identifiers": [],
"description": "Error message when detection fails.",
"x-typespec-name": "Multivariate.ErrorResponse[]"
},
"variableStates": {
"type": "array",
"items": {
"$ref": "#/definitions/Multivariate.VariableState"
},
"x-ms-identifiers": [],
"description": "Variable status.",
"x-typespec-name": "Multivariate.VariableState[]"
},
"setupInfo": {
"$ref": "#/definitions/Multivariate.MultivariateBatchDetectionOptions",
"description": "Detection request for batch inference. This is an asynchronous inference that\nwill need another API to get detection results."
}
},
"description": "Multivariate anomaly detection status.",
"required": [
"status",
"setupInfo"
]
},
"Multivariate.MultivariateBatchDetectionStatus": {
"type": "string",
"enum": [
"CREATED",