From 600f1f4d8aff4a188dbdd36e82714595a388cfd1 Mon Sep 17 00:00:00 2001 From: John Gerrard Holland Date: Thu, 6 Apr 2023 11:08:47 -0400 Subject: [PATCH 001/130] chore: remove code --- autora/__init__.py | 6 - autora/cycle/__init__.py | 8 - autora/cycle/plot_utils.py | 616 ------- autora/cycle/simple.py | 527 ------ autora/experimentalist/__init__.py | 0 autora/experimentalist/filter.py | 128 -- autora/experimentalist/pipeline.py | 495 ------ autora/experimentalist/pooler/__init__.py | 2 - autora/experimentalist/pooler/general_pool.py | 56 - autora/experimentalist/pooler/poppernet.py | 369 ---- autora/experimentalist/sampler/__init__.py | 5 - autora/experimentalist/sampler/assumption.py | 67 - .../experimentalist/sampler/dissimilarity.py | 96 - .../sampler/model_disagreement.py | 66 - .../experimentalist/sampler/nearest_value.py | 60 - autora/experimentalist/sampler/random.py | 21 - autora/experimentalist/sampler/uncertainty.py | 61 - autora/experimentalist/utils/__init__.py | 133 -- autora/skl/__init__.py | 0 autora/skl/bms.py | 180 -- autora/skl/bsr.py | 357 ---- autora/skl/darts.py | 871 --------- autora/synthetic/__init__.py | 77 - autora/synthetic/data/__init__.py | 2 - autora/synthetic/data/expected_value.py | 184 -- autora/synthetic/data/prospect_theory.py | 198 --- autora/synthetic/data/weber_fechner.py | 158 -- autora/synthetic/inventory.py | 205 --- autora/theorist/__init__.py | 0 autora/theorist/bms/__init__.py | 3 - ..._equations.wiki.parsed__num_operations.dat | 30 - ..._equations.wiki.parsed__operation_type.dat | 18 - ...uations.wiki.parsed__operation_type_sq.dat | 18 - autora/theorist/bms/fit_prior.py | 278 --- autora/theorist/bms/mcmc.py | 1582 ----------------- autora/theorist/bms/parallel.py | 171 -- autora/theorist/bms/prior.py | 90 - autora/theorist/bms/utils.py | 89 - autora/theorist/bsr/__init__.py | 0 autora/theorist/bsr/funcs.py | 927 ---------- autora/theorist/bsr/misc.py | 48 - autora/theorist/bsr/node.py | 178 -- autora/theorist/bsr/operation.py | 70 - autora/theorist/bsr/prior.py | 175 -- autora/theorist/darts/__init__.py | 12 - autora/theorist/darts/architect.py | 337 ---- autora/theorist/darts/dataset.py | 72 - autora/theorist/darts/fan_out.py | 42 - autora/theorist/darts/model_search.py | 796 --------- autora/theorist/darts/operations.py | 665 ------- autora/theorist/darts/utils.py | 491 ----- autora/theorist/darts/visualize.py | 201 --- autora/utils/__init__.py | 1 - autora/utils/dictionary.py | 18 - autora/variable/__init__.py | 70 - autora/variable/time.py | 103 -- autora/variable/tinkerforge.py | 347 ---- mkdocs.yml | 4 +- tests/README.md | 34 - tests/__init__.py | 0 tests/test_bms_1d_primitive_recovery.py | 265 --- tests/test_bms_2d_primitive_recovery.py | 107 -- tests/test_bms_custom_primitives.py | 129 -- tests/test_bms_enforce_root.py | 52 - tests/test_bms_mcmc.py | 61 - tests/test_bms_multi_model_output.py | 25 - tests/test_bsr_1d_recovery.py | 179 -- tests/test_bsr_2d_recovery.py | 105 -- tests/test_bsr_mcmc_actions.py | 174 -- tests/test_bsr_node_and_operator.py | 118 -- tests/test_bsr_tree_operation.py | 17 - tests/test_cycle_plots.py | 492 ----- tests/test_darts_1d_primitive_recovery.py | 287 --- tests/test_experimentalist_assumption.py | 74 - tests/test_experimentalist_pipeline.py | 350 ---- tests/test_experimentalist_random.py | 132 -- tests/test_experimentalist_uncertainty.py | 99 -- tests/test_model_disagreement_sampler.py | 131 -- tests/test_poppernet_pooler.py | 202 --- tests/test_sklearn_bms.py | 266 --- tests/test_sklearn_darts.py | 315 ---- tests/test_sklearn_pipeline.py | 56 - tests/test_summed_dissimilarity_sampler.py | 32 - tests/test_synthetic_inventory.py | 22 - tests/test_system.py | 13 - tests/test_uncertainty_sampler.py | 128 -- 86 files changed, 1 insertion(+), 15648 deletions(-) delete mode 100644 autora/__init__.py delete mode 100644 autora/cycle/__init__.py delete mode 100644 autora/cycle/plot_utils.py delete mode 100644 autora/cycle/simple.py delete mode 100644 autora/experimentalist/__init__.py delete mode 100644 autora/experimentalist/filter.py delete mode 100644 autora/experimentalist/pipeline.py delete mode 100644 autora/experimentalist/pooler/__init__.py delete mode 100644 autora/experimentalist/pooler/general_pool.py delete mode 100644 autora/experimentalist/pooler/poppernet.py delete mode 100644 autora/experimentalist/sampler/__init__.py delete mode 100644 autora/experimentalist/sampler/assumption.py delete mode 100644 autora/experimentalist/sampler/dissimilarity.py delete mode 100644 autora/experimentalist/sampler/model_disagreement.py delete mode 100644 autora/experimentalist/sampler/nearest_value.py delete mode 100644 autora/experimentalist/sampler/random.py delete mode 100644 autora/experimentalist/sampler/uncertainty.py delete mode 100644 autora/experimentalist/utils/__init__.py delete mode 100644 autora/skl/__init__.py delete mode 100644 autora/skl/bms.py delete mode 100644 autora/skl/bsr.py delete mode 100644 autora/skl/darts.py delete mode 100644 autora/synthetic/__init__.py delete mode 100644 autora/synthetic/data/__init__.py delete mode 100644 autora/synthetic/data/expected_value.py delete mode 100644 autora/synthetic/data/prospect_theory.py delete mode 100644 autora/synthetic/data/weber_fechner.py delete mode 100644 autora/synthetic/inventory.py delete mode 100644 autora/theorist/__init__.py delete mode 100644 autora/theorist/bms/__init__.py delete mode 100644 autora/theorist/bms/data/named_equations.wiki.parsed__num_operations.dat delete mode 100644 autora/theorist/bms/data/named_equations.wiki.parsed__operation_type.dat delete mode 100644 autora/theorist/bms/data/named_equations.wiki.parsed__operation_type_sq.dat delete mode 100644 autora/theorist/bms/fit_prior.py delete mode 100644 autora/theorist/bms/mcmc.py delete mode 100644 autora/theorist/bms/parallel.py delete mode 100644 autora/theorist/bms/prior.py delete mode 100755 autora/theorist/bms/utils.py delete mode 100644 autora/theorist/bsr/__init__.py delete mode 100644 autora/theorist/bsr/funcs.py delete mode 100644 autora/theorist/bsr/misc.py delete mode 100644 autora/theorist/bsr/node.py delete mode 100644 autora/theorist/bsr/operation.py delete mode 100644 autora/theorist/bsr/prior.py delete mode 100644 autora/theorist/darts/__init__.py delete mode 100755 autora/theorist/darts/architect.py delete mode 100644 autora/theorist/darts/dataset.py delete mode 100644 autora/theorist/darts/fan_out.py delete mode 100755 autora/theorist/darts/model_search.py delete mode 100755 autora/theorist/darts/operations.py delete mode 100755 autora/theorist/darts/utils.py delete mode 100755 autora/theorist/darts/visualize.py delete mode 100644 autora/utils/__init__.py delete mode 100644 autora/utils/dictionary.py delete mode 100644 autora/variable/__init__.py delete mode 100644 autora/variable/time.py delete mode 100644 autora/variable/tinkerforge.py delete mode 100644 tests/README.md delete mode 100644 tests/__init__.py delete mode 100644 tests/test_bms_1d_primitive_recovery.py delete mode 100644 tests/test_bms_2d_primitive_recovery.py delete mode 100644 tests/test_bms_custom_primitives.py delete mode 100644 tests/test_bms_enforce_root.py delete mode 100644 tests/test_bms_mcmc.py delete mode 100644 tests/test_bms_multi_model_output.py delete mode 100644 tests/test_bsr_1d_recovery.py delete mode 100644 tests/test_bsr_2d_recovery.py delete mode 100644 tests/test_bsr_mcmc_actions.py delete mode 100644 tests/test_bsr_node_and_operator.py delete mode 100644 tests/test_bsr_tree_operation.py delete mode 100644 tests/test_cycle_plots.py delete mode 100644 tests/test_darts_1d_primitive_recovery.py delete mode 100644 tests/test_experimentalist_assumption.py delete mode 100644 tests/test_experimentalist_pipeline.py delete mode 100644 tests/test_experimentalist_random.py delete mode 100644 tests/test_experimentalist_uncertainty.py delete mode 100644 tests/test_model_disagreement_sampler.py delete mode 100644 tests/test_poppernet_pooler.py delete mode 100644 tests/test_sklearn_bms.py delete mode 100644 tests/test_sklearn_darts.py delete mode 100644 tests/test_sklearn_pipeline.py delete mode 100644 tests/test_summed_dissimilarity_sampler.py delete mode 100644 tests/test_synthetic_inventory.py delete mode 100644 tests/test_system.py delete mode 100644 tests/test_uncertainty_sampler.py diff --git a/autora/__init__.py b/autora/__init__.py deleted file mode 100644 index 0adc79c15..000000000 --- a/autora/__init__.py +++ /dev/null @@ -1,6 +0,0 @@ -import importlib.metadata - -try: - __version__ = importlib.metadata.version("autora") -except importlib.metadata.PackageNotFoundError: - __version__ = "source_repository" diff --git a/autora/cycle/__init__.py b/autora/cycle/__init__.py deleted file mode 100644 index f7682c7e4..000000000 --- a/autora/cycle/__init__.py +++ /dev/null @@ -1,8 +0,0 @@ -from .plot_utils import ( - cycle_default_score, - cycle_specified_score, - plot_cycle_score, - plot_results_panel_2d, - plot_results_panel_3d, -) -from .simple import SimpleCycle as Cycle diff --git a/autora/cycle/plot_utils.py b/autora/cycle/plot_utils.py deleted file mode 100644 index 0c6b88a9a..000000000 --- a/autora/cycle/plot_utils.py +++ /dev/null @@ -1,616 +0,0 @@ -import inspect -from itertools import product -from typing import Callable, List, Optional, Sequence, Tuple, Union - -import matplotlib.pyplot as plt -import numpy as np -import pandas as pd -from matplotlib import rcParams -from matplotlib.patches import Patch -from matplotlib.ticker import MaxNLocator - -from .simple import SimpleCycle as Cycle - -# Change default plot styles -controller_plotting_rc_context = { - "axes.spines.top": False, - "axes.spines.right": False, - "legend.frameon": False, -} - - -def _get_variable_index( - cycle: Cycle, -) -> Tuple[List[Tuple[int, str, str]], List[Tuple[int, str, str]]]: - """ - Extracts information about independent and dependent variables from the cycle object. - Returns a list of tuples of (index, name, units). The index is in reference to the column number - in the observed value arrays. - Args: - cycle: AER Cycle object that has been run - - Returns: Tuple of 2 lists of tuples - - """ - l_iv = [ - (i, s.name, s.units) - for i, s in enumerate(cycle.data.metadata.independent_variables) - ] - n_iv = len(l_iv) - l_dv = [ - (i + n_iv, s.name, s.units) - for i, s in enumerate(cycle.data.metadata.dependent_variables) - ] - return l_iv, l_dv - - -def _observed_to_df(cycle: Cycle) -> pd.DataFrame: - """ - Concatenates observation data of cycles into a single dataframe with a field "cycle" with the - cycle index. - Args: - cycle: AER Cycle object that has been run - - Returns: Dataframe - - """ - l_observations = cycle.data.observations - l_agg = [] - - for i, data in enumerate(l_observations): - l_agg.append(pd.DataFrame(data).assign(cycle=i)) - - df_return = pd.concat(l_agg) - - return df_return - - -def _min_max_observations(cycle: Cycle) -> List[Tuple[float, float]]: - """ - Returns minimum and maximum of observed values for each independent variable. - Args: - cycle: AER Cycle object that has been run - - Returns: List of tuples - - """ - l_return = [] - iv_index = range(len(cycle.data.metadata.independent_variables)) - l_observations = cycle.data.observations - # Get min and max of observation data - # Min and max by cycle - All IVs - l_mins = [np.min(s, axis=0) for s in l_observations] # Arrays by columns - l_maxs = [np.max(s, axis=0) for s in l_observations] - # Min and max for all cycles by IVs - for idx in iv_index: - glob_min = np.min([s[idx] for s in l_mins]) - glob_max = np.max([s[idx] for s in l_maxs]) - l_return.append((glob_min, glob_max)) - - return l_return - - -def _generate_condition_space(cycle: Cycle, steps: int = 50) -> np.array: - """ - Generates condition space based on the minimum and maximum of all observed data in AER Cycle. - Args: - cycle: AER Cycle object that has been run - steps: Number of steps to define the condition space - - Returns: np.array - - """ - l_min_max = _min_max_observations(cycle) - l_space = [] - - for min_max in l_min_max: - l_space.append(np.linspace(min_max[0], min_max[1], steps)) - - if len(l_space) > 1: - return np.array(list(product(*l_space))) - else: - return l_space[0].reshape(-1, 1) - - -def _generate_mesh_grid(cycle: Cycle, steps: int = 50) -> np.ndarray: - """ - Generates a mesh grid based on the minimum and maximum of all observed data in AER Cycle. - Args: - cycle: AER Cycle object that has been run - steps: Number of steps to define the condition space - - Returns: np.ndarray - - """ - l_min_max = _min_max_observations(cycle) - l_space = [] - - for min_max in l_min_max: - l_space.append(np.linspace(min_max[0], min_max[1], steps)) - - return np.meshgrid(*l_space) - - -def _theory_predict( - cycle: Cycle, conditions: Sequence, predict_proba: bool = False -) -> list: - """ - Gets theory predictions over conditions space and saves results of each cycle to a list. - Args: - cycle: AER Cycle object that has been run - conditions: Condition space. Should be an array of grouped conditions. - predict_proba: Use estimator.predict_proba method instead of estimator.predict. - - Returns: list - - """ - l_predictions = [] - for i, theory in enumerate(cycle.data.theories): - if not predict_proba: - l_predictions.append(theory.predict(conditions)) - else: - l_predictions.append(theory.predict_proba(conditions)) - - return l_predictions - - -def _check_replace_default_kw(default: dict, user: dict) -> dict: - """ - Combines the key/value pairs of two dictionaries, a default and user dictionary. Unique pairs - are selected and user pairs take precedent over default pairs if matching keywords. Also works - with nested dictionaries. - - Returns: dict - """ - # Copy dict 1 to return dict - d_return = default.copy() - # Loop by keys in dict 2 - for key in user.keys(): - # If not in dict 1 add to the return dict - if key not in default.keys(): - d_return.update({key: user[key]}) - else: - # If value is a dict, recurse to check nested dict - if isinstance(user[key], dict): - d_return.update( - {key: _check_replace_default_kw(default[key], user[key])} - ) - # If not a dict update the default value with the value from dict 2 - else: - d_return.update({key: user[key]}) - - return d_return - - -def plot_results_panel_2d( - cycle: Cycle, - iv_name: Optional[str] = None, - dv_name: Optional[str] = None, - steps: int = 50, - wrap: int = 4, - query: Optional[Union[List, slice]] = None, - subplot_kw: dict = {}, - scatter_previous_kw: dict = {}, - scatter_current_kw: dict = {}, - plot_theory_kw: dict = {}, -) -> plt.figure: - """ - Generates a multi-panel figure with 2D plots showing results of one AER cycle. - - Observed data is plotted as a scatter plot with the current cycle colored differently than - observed data from previous cycles. The current cycle's theory is plotted as a line over the - range of the observed data. - - Args: - cycle: AER Cycle object that has been run - iv_name: Independent variable name. Name should match the name instantiated in the cycle - object. Default will select the first. - dv_name: Single dependent variable name. Name should match the names instantiated in the - cycle object. Default will select the first DV. - steps: Number of steps to define the condition space to plot the theory. - wrap: Number of panels to appear in a row. Example: 9 panels with wrap=3 results in a - 3x3 grid. - query: Query which cycles to plot with either a List of indexes or a slice. The slice must - be constructed with the `slice()` function or `np.s_[]` index expression. - subplot_kw: Dictionary of keywords to pass to matplotlib 'subplot' function - scatter_previous_kw: Dictionary of keywords to pass to matplotlib 'scatter' function that - plots the data points from previous cycles. - scatter_current_kw: Dictionary of keywords to pass to matplotlib 'scatter' function that - plots the data points from the current cycle. - plot_theory_kw: Dictionary of keywords to pass to matplotlib 'plot' function that plots the - theory line. - - Returns: matplotlib figure - - """ - - # ---Figure and plot params--- - # Set defaults, check and add user supplied keywords - # Default keywords - subplot_kw_defaults = { - "gridspec_kw": {"bottom": 0.16}, - "sharex": True, - "sharey": True, - } - scatter_previous_defaults = { - "color": "black", - "s": 2, - "alpha": 0.6, - "label": "Previous Data", - } - scatter_current_defaults = { - "color": "tab:orange", - "s": 2, - "alpha": 0.6, - "label": "New Data", - } - line_kw_defaults = {"label": "Theory"} - # Combine default and user supplied keywords - d_kw = {} - for d1, d2, key in zip( - [ - subplot_kw_defaults, - scatter_previous_defaults, - scatter_current_defaults, - line_kw_defaults, - ], - [subplot_kw, scatter_previous_kw, scatter_current_kw, plot_theory_kw], - ["subplot_kw", "scatter_previous_kw", "scatter_current_kw", "plot_theory_kw"], - ): - assert isinstance(d1, dict) - assert isinstance(d2, dict) - d_kw[key] = _check_replace_default_kw(d1, d2) - - # ---Extract IVs and DV metadata and indexes--- - ivs, dvs = _get_variable_index(cycle) - if iv_name: - iv = [s for s in ivs if s[1] == iv_name][0] - else: - iv = [ivs[0]][0] - if dv_name: - dv = [s for s in dvs if s[1] == dv_name][0] - else: - dv = [dvs[0]][0] - iv_label = f"{iv[1]} {iv[2]}" - dv_label = f"{dv[1]} {dv[2]}" - - # Create a dataframe of observed data from cycle - df_observed = _observed_to_df(cycle) - - # Generate IV space - condition_space = _generate_condition_space(cycle, steps=steps) - - # Get theory predictions over space - l_predictions = _theory_predict(cycle, condition_space) - - # Cycle Indexing - cycle_idx = list(range(len(cycle.data.theories))) - if query: - if isinstance(query, list): - cycle_idx = [cycle_idx[s] for s in query] - elif isinstance(query, slice): - cycle_idx = cycle_idx[query] - - # Subplot configurations - n_cycles_to_plot = len(cycle_idx) - if n_cycles_to_plot < wrap: - shape = (1, n_cycles_to_plot) - else: - shape = (int(np.ceil(n_cycles_to_plot / wrap)), wrap) - - with plt.rc_context(controller_plotting_rc_context): - fig, axs = plt.subplots(*shape, **d_kw["subplot_kw"]) - # Place axis object in an array if plotting single panel - if shape == (1, 1): - axs = np.array([axs]) - - # Loop by panel - for i, ax in enumerate(axs.flat): - if i + 1 <= n_cycles_to_plot: - # Get index of cycle to plot - i_cycle = cycle_idx[i] - - # ---Plot observed data--- - # Independent variable values - x_vals = df_observed.loc[:, iv[0]] - # Dependent values masked by current cycle vs previous data - dv_previous = np.ma.masked_where( - df_observed["cycle"] >= i_cycle, df_observed[dv[0]] - ) - dv_current = np.ma.masked_where( - df_observed["cycle"] != i_cycle, df_observed[dv[0]] - ) - # Plotting scatter - ax.scatter(x_vals, dv_previous, **d_kw["scatter_previous_kw"]) - ax.scatter(x_vals, dv_current, **d_kw["scatter_current_kw"]) - - # ---Plot Theory--- - conditions = condition_space[:, iv[0]] - ax.plot(conditions, l_predictions[i_cycle], **d_kw["plot_theory_kw"]) - - # Label Panels - ax.text( - 0.05, - 1, - f"Cycle {i_cycle}", - ha="left", - va="top", - transform=ax.transAxes, - ) - - else: - ax.axis("off") - - # Super Labels - fig.supxlabel(iv_label, y=0.07) - fig.supylabel(dv_label) - - # Legend - fig.legend( - ["Previous Data", "New Data", "Theory"], - ncols=3, - bbox_to_anchor=(0.5, 0), - loc="lower center", - ) - - return fig - - -def plot_results_panel_3d( - cycle: Cycle, - iv_names: Optional[List[str]] = None, - dv_name: Optional[str] = None, - steps: int = 50, - wrap: int = 4, - view: Optional[Tuple[float, float]] = None, - subplot_kw: dict = {}, - scatter_previous_kw: dict = {}, - scatter_current_kw: dict = {}, - surface_kw: dict = {}, -) -> plt.figure: - """ - Generates a multi-panel figure with 3D plots showing results of one AER cycle. - - Observed data is plotted as a scatter plot with the current cycle colored differently than - observed data from previous cycles. The current cycle's theory is plotted as a line over the - range of the observed data. - - Args: - - cycle: AER Cycle object that has been run - iv_names: List of up to 2 independent variable names. Names should match the names - instantiated in the cycle object. Default will select up to the first two. - dv_name: Single DV name. Name should match the names instantiated in the cycle object. - Default will select the first DV - steps: Number of steps to define the condition space to plot the theory. - wrap: Number of panels to appear in a row. Example: 9 panels with wrap=3 results in a - 3x3 grid. - view: Tuple of elevation angle and azimuth to change the viewing angle of the plot. - subplot_kw: Dictionary of keywords to pass to matplotlib 'subplot' function - scatter_previous_kw: Dictionary of keywords to pass to matplotlib 'scatter' function that - plots the data points from previous cycles. - scatter_current_kw: Dictionary of keywords to pass to matplotlib 'scatter' function that - plots the data points from the current cycle. - surface_kw: Dictionary of keywords to pass to matplotlib 'plot_surface' function that plots - the theory plane. - - Returns: matplotlib figure - - """ - n_cycles = len(cycle.data.theories) - - # ---Figure and plot params--- - # Set defaults, check and add user supplied keywords - # Default keywords - subplot_kw_defaults = { - "subplot_kw": {"projection": "3d"}, - } - scatter_previous_defaults = {"color": "black", "s": 2, "label": "Previous Data"} - scatter_current_defaults = {"color": "tab:orange", "s": 2, "label": "New Data"} - surface_kw_defaults = {"alpha": 0.5, "label": "Theory"} - # Combine default and user supplied keywords - d_kw = {} - for d1, d2, key in zip( - [ - subplot_kw_defaults, - scatter_previous_defaults, - scatter_current_defaults, - surface_kw_defaults, - ], - [subplot_kw, scatter_previous_kw, scatter_current_kw, surface_kw], - ["subplot_kw", "scatter_previous_kw", "scatter_current_kw", "surface_kw"], - ): - assert isinstance(d1, dict) - assert isinstance(d2, dict) - d_kw[key] = _check_replace_default_kw(d1, d2) - - # ---Extract IVs and DV metadata and indexes--- - ivs, dvs = _get_variable_index(cycle) - if iv_names: - iv = [s for s in ivs if s[1] == iv_names] - else: - iv = ivs[:2] - if dv_name: - dv = [s for s in dvs if s[1] == dv_name][0] - else: - dv = [dvs[0]][0] - iv_labels = [f"{s[1]} {s[2]}" for s in iv] - dv_label = f"{dv[1]} {dv[2]}" - - # Create a dataframe of observed data from cycle - df_observed = _observed_to_df(cycle) - - # Generate IV Mesh Grid - x1, x2 = _generate_mesh_grid(cycle, steps=steps) - - # Get theory predictions over space - l_predictions = _theory_predict(cycle, np.column_stack((x1.ravel(), x2.ravel()))) - - # Subplot configurations - if n_cycles < wrap: - shape = (1, n_cycles) - else: - shape = (int(np.ceil(n_cycles / wrap)), wrap) - with plt.rc_context(controller_plotting_rc_context): - fig, axs = plt.subplots(*shape, **d_kw["subplot_kw"]) - - # Loop by panel - for i, ax in enumerate(axs.flat): - if i + 1 <= n_cycles: - - # ---Plot observed data--- - # Independent variable values - l_x = [df_observed.loc[:, s[0]] for s in iv] - # Dependent values masked by current cycle vs previous data - dv_previous = np.ma.masked_where( - df_observed["cycle"] >= i, df_observed[dv[0]] - ) - dv_current = np.ma.masked_where( - df_observed["cycle"] != i, df_observed[dv[0]] - ) - # Plotting scatter - ax.scatter(*l_x, dv_previous, **d_kw["scatter_previous_kw"]) - ax.scatter(*l_x, dv_current, **d_kw["scatter_current_kw"]) - - # ---Plot Theory--- - ax.plot_surface( - x1, x2, l_predictions[i].reshape(x1.shape), **d_kw["surface_kw"] - ) - # ---Labels--- - # Title - ax.set_title(f"Cycle {i}") - - # Axis - ax.set_xlabel(iv_labels[0]) - ax.set_ylabel(iv_labels[1]) - ax.set_zlabel(dv_label) - - # Viewing angle - if view: - ax.view_init(*view) - - else: - ax.axis("off") - - # Legend - handles, labels = axs.flatten()[0].get_legend_handles_labels() - legend_elements = [ - handles[0], - handles[1], - Patch(facecolor=handles[2].get_facecolors()[0]), - ] - fig.legend( - handles=legend_elements, - labels=labels, - ncols=3, - bbox_to_anchor=(0.5, 0), - loc="lower center", - ) - - return fig - - -def cycle_default_score(cycle: Cycle, x_vals: np.ndarray, y_true: np.ndarray): - """ - Calculates score for each cycle using the estimator's default scorer. - Args: - cycle: AER Cycle object that has been run - x_vals: Test dataset independent values - y_true: Test dataset dependent values - - Returns: - List of scores by cycle - """ - l_scores = [s.score(x_vals, y_true) for s in cycle.data.theories] - return l_scores - - -def cycle_specified_score( - scorer: Callable, cycle: Cycle, x_vals: np.ndarray, y_true: np.ndarray, **kwargs -): - """ - Calculates score for each cycle using specified sklearn scoring function. - Args: - scorer: sklearn scoring function - cycle: AER Cycle object that has been run - x_vals: Test dataset independent values - y_true: Test dataset dependent values - **kwargs: Keyword arguments to send to scoring function - - Returns: - - """ - # Get predictions - if "y_pred" in inspect.signature(scorer).parameters.keys(): - l_y_pred = _theory_predict(cycle, x_vals, predict_proba=False) - elif "y_score" in inspect.signature(scorer).parameters.keys(): - l_y_pred = _theory_predict(cycle, x_vals, predict_proba=True) - - # Score each cycle - l_scores = [] - for y_pred in l_y_pred: - l_scores.append(scorer(y_true, y_pred, **kwargs)) - - return l_scores - - -def plot_cycle_score( - cycle: Cycle, - X: np.ndarray, - y_true: np.ndarray, - scorer: Optional[Callable] = None, - x_label: str = "Cycle", - y_label: Optional[str] = None, - figsize: Tuple[float, float] = rcParams["figure.figsize"], - ylim: Optional[Tuple[float, float]] = None, - xlim: Optional[Tuple[float, float]] = None, - scorer_kw: dict = {}, - plot_kw: dict = {}, -) -> plt.Figure: - """ - Plots scoring metrics of cycle's theories given test data. - Args: - cycle: AER Cycle object that has been run - X: Test dataset independent values - y_true: Test dataset dependent values - scorer: sklearn scoring function (optional) - x_label: Label for x-axis - y_label: Label for y-axis - figsize: Optional figure size tuple in inches - ylim: Optional limits for the y-axis as a tuple (lower, upper) - xlim: Optional limits for the x-axis as a tuple (lower, upper) - scorer_kw: Dictionary of keywords for scoring function if scorer is supplied. - plot_kw: Dictionary of keywords to pass to matplotlib 'plot' function. - - Returns: - matplotlib.figure.Figure - """ - - # Use estimator's default scoring method if specific scorer is not supplied - if scorer is None: - l_scores = cycle_default_score(cycle, X, y_true) - else: - l_scores = cycle_specified_score(scorer, cycle, X, y_true, **scorer_kw) - - with plt.rc_context(controller_plotting_rc_context): - # Plotting - fig, ax = plt.subplots(figsize=figsize) - ax.plot(np.arange(len(cycle.data.theories)), l_scores, **plot_kw) - - # Adjusting axis limits - if ylim: - ax.set_ylim(*ylim) - if xlim: - ax.set_xlim(*xlim) - - # Labeling - ax.set_xlabel(x_label) - if y_label is None: - if scorer is not None: - y_label = scorer.__name__ - else: - y_label = "Score" - ax.set_ylabel(y_label) - ax.xaxis.set_major_locator(MaxNLocator(integer=True)) - - return fig diff --git a/autora/cycle/simple.py b/autora/cycle/simple.py deleted file mode 100644 index fb311b2e8..000000000 --- a/autora/cycle/simple.py +++ /dev/null @@ -1,527 +0,0 @@ -import copy -from collections.abc import Mapping -from dataclasses import dataclass, replace -from typing import Callable, Dict, Iterable, List, Optional - -import numpy as np -from sklearn.base import BaseEstimator - -from autora.experimentalist.pipeline import Pipeline -from autora.utils.dictionary import LazyDict -from autora.variable import VariableCollection - - -@dataclass(frozen=True) -class SimpleCycleData: - """An object passed between and updated by processing steps in the SimpleCycle.""" - - # Static - metadata: VariableCollection - - # Aggregates each cycle from the: - # ... Experimentalist - conditions: List[np.ndarray] - # ... Experiment Runner - observations: List[np.ndarray] - # ... Theorist - theories: List[BaseEstimator] - - -def _get_cycle_properties(data: SimpleCycleData): - """ - Examples: - Even with an empty data object, we can initialize the dictionary, - >>> cycle_properties = _get_cycle_properties(SimpleCycleData(metadata=VariableCollection(), - ... conditions=[], observations=[], theories=[])) - - ... but it will raise an exception if a value isn't yet available when we try to use it - >>> cycle_properties["%theories[-1]%"] # doctest: +ELLIPSIS - Traceback (most recent call last): - ... - IndexError: list index out of range - - Nevertheless, we can iterate through its keys no problem: - >>> [key for key in cycle_properties.keys()] # doctest: +NORMALIZE_WHITESPACE - ['%observations.ivs[-1]%', '%observations.dvs[-1]%', '%observations.ivs%', - '%observations.dvs%', '%theories[-1]%', '%theories%'] - - """ - - n_ivs = len(data.metadata.independent_variables) - n_dvs = len(data.metadata.dependent_variables) - cycle_property_dict = LazyDict( - { - "%observations.ivs[-1]%": lambda: data.observations[-1][:, 0:n_ivs], - "%observations.dvs[-1]%": lambda: data.observations[-1][:, n_ivs:], - "%observations.ivs%": lambda: np.row_stack( - [np.empty([0, n_ivs + n_dvs])] + data.observations - )[:, 0:n_ivs], - "%observations.dvs%": lambda: np.row_stack(data.observations)[:, n_ivs:], - "%theories[-1]%": lambda: data.theories[-1], - "%theories%": lambda: data.theories, - } - ) - return cycle_property_dict - - -class SimpleCycle: - """ - Runs an experimentalist, theorist and experiment runner in a loop. - - Once initialized, the `cycle` can be started using the `cycle.run` method - or by calling `next(cycle)`. - - The `.data` attribute is updated with the results. - - Attributes: - data (dataclass): an object which is updated during the cycle and has the following - properties: - - - `metadata` - - `conditions`: a list of np.ndarrays representing all of the IVs proposed by the - experimentalist - - `observations`: a list of np.ndarrays representing all of the IVs and DVs returned by - the experiment runner - - `theories`: a list of all the fitted theories (scikit-learn compatible estimators) - - params (dict): a nested dictionary with parameters for the cycle parts. - - `{ - "experimentalist": {}, - "theorist": {}, - "experiment_runner": {} - }` - - - Examples: - - ### Basic Usage - - Aim: Use the SimpleCycle to recover a simple ground truth theory from noisy data. - - >>> def ground_truth(x): - ... return x + 1 - - The space of allowed x values is the integers between 0 and 10 inclusive, - and we record the allowed output values as well. - >>> from autora.variable import VariableCollection, Variable - >>> metadata_0 = VariableCollection( - ... independent_variables=[Variable(name="x1", allowed_values=range(11))], - ... dependent_variables=[Variable(name="y", value_range=(-20, 20))], - ... ) - - The experimentalist is used to propose experiments. - Since the space of values is so restricted, we can just sample them all each time. - >>> from autora.experimentalist.pipeline import make_pipeline - >>> example_experimentalist = make_pipeline( - ... [metadata_0.independent_variables[0].allowed_values]) - - When we run a synthetic experiment, we get a reproducible noisy result: - >>> import numpy as np - >>> def get_example_synthetic_experiment_runner(): - ... rng = np.random.default_rng(seed=180) - ... def runner(x): - ... return ground_truth(x) + rng.normal(0, 0.1, x.shape) - ... return runner - >>> example_synthetic_experiment_runner = get_example_synthetic_experiment_runner() - >>> example_synthetic_experiment_runner(np.ndarray([1])) - array([2.04339546]) - - The theorist "tries" to work out the best theory. - We use a trivial scikit-learn regressor. - >>> from sklearn.linear_model import LinearRegression - >>> example_theorist = LinearRegression() - - We initialize the SimpleCycle with the metadata describing the domain of the theory, - the theorist, experimentalist and experiment runner, - as well as a monitor which will let us know which cycle we're currently on. - >>> cycle = SimpleCycle( - ... metadata=metadata_0, - ... theorist=example_theorist, - ... experimentalist=example_experimentalist, - ... experiment_runner=example_synthetic_experiment_runner, - ... monitor=lambda data: print(f"Generated {len(data.theories)} theories"), - ... ) - >>> cycle # doctest: +ELLIPSIS - - - We can run the cycle by calling the run method: - >>> cycle.run(num_cycles=3) # doctest: +ELLIPSIS - Generated 1 theories - Generated 2 theories - Generated 3 theories - - - We can now interrogate the results. The first set of conditions which went into the - experiment runner were: - >>> cycle.data.conditions[0] - array([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10]) - - The observations include the conditions and the results: - >>> cycle.data.observations[0] - array([[ 0. , 0.92675345], - [ 1. , 1.89519928], - [ 2. , 3.08746571], - [ 3. , 3.93023943], - [ 4. , 4.95429102], - [ 5. , 6.04763988], - [ 6. , 7.20770574], - [ 7. , 7.85681519], - [ 8. , 9.05735823], - [ 9. , 10.18713406], - [10. , 10.88517906]]) - - In the third cycle (index = 2) the first and last values are different again: - >>> cycle.data.observations[2][[0,-1]] - array([[ 0. , 1.08559827], - [10. , 11.08179553]]) - - The best fit theory after the first cycle is: - >>> cycle.data.theories[0] - LinearRegression() - - >>> def report_linear_fit(m: LinearRegression, precision=4): - ... s = f"y = {np.round(m.coef_[0].item(), precision)} x " \\ - ... f"+ {np.round(m.intercept_.item(), 4)}" - ... return s - >>> report_linear_fit(cycle.data.theories[0]) - 'y = 1.0089 x + 0.9589' - - The best fit theory after all the cycles, including all the data, is: - >>> report_linear_fit(cycle.data.theories[-1]) - 'y = 0.9989 x + 1.0292' - - This is close to the ground truth theory of x -> (x + 1) - - We can also run the cycle with more control over the execution flow: - >>> next(cycle) # doctest: +ELLIPSIS - Generated 4 theories - - - >>> next(cycle) # doctest: +ELLIPSIS - Generated 5 theories - - - >>> next(cycle) # doctest: +ELLIPSIS - Generated 6 theories - - - We can continue to run the cycle as long as we like, - with a simple arbitrary stopping condition like the number of theories generated: - >>> from itertools import takewhile - >>> _ = list(takewhile(lambda c: len(c.data.theories) < 9, cycle)) - Generated 7 theories - Generated 8 theories - Generated 9 theories - - ... or the precision (here we keep iterating while the difference between the gradients - of the second-last and last cycle is larger than 1x10^-3). - >>> _ = list( - ... takewhile( - ... lambda c: np.abs(c.data.theories[-1].coef_.item() - - ... c.data.theories[-2].coef_.item()) > 1e-3, - ... cycle - ... ) - ... ) - Generated 10 theories - Generated 11 theories - - ... or continue to run as long as we like: - >>> _ = cycle.run(num_cycles=100) # doctest: +ELLIPSIS - Generated 12 theories - ... - Generated 111 theories - - ### Passing Static Parameters - - It's easy to pass parameters to the cycle components, if there are any needed. - Here we have an experimentalist which takes a parameter: - >>> uniform_random_rng = np.random.default_rng(180) - >>> def uniform_random_sampler(n): - ... return uniform_random_rng.uniform(low=0, high=11, size=n) - >>> example_experimentalist_with_parameters = make_pipeline([uniform_random_sampler]) - - The cycle can handle that using the `params` keyword: - >>> cycle_with_parameters = SimpleCycle( - ... metadata=metadata_0, - ... theorist=example_theorist, - ... experimentalist=example_experimentalist_with_parameters, - ... experiment_runner=example_synthetic_experiment_runner, - ... params={"experimentalist": {"uniform_random_sampler": {"n": 7}}} - ... ) - >>> _ = cycle_with_parameters.run() - >>> cycle_with_parameters.data.conditions[-1].flatten() - array([6.33661987, 7.34916618, 6.08596494, 2.28566582, 1.9553974 , - 5.80023149, 3.27007909]) - - For the next cycle, if we wish, we can change the parameter value: - >>> cycle_with_parameters.params["experimentalist"]["uniform_random_sampler"]\\ - ... ["n"] = 2 - >>> _ = cycle_with_parameters.run() - >>> cycle_with_parameters.data.conditions[-1].flatten() - array([10.5838232 , 9.45666031]) - - ### Accessing "Cycle Properties" - - Some experimentalists, experiment runners and theorists require access to the values - created during the cycle execution, e.g. experimentalists which require access - to the current best theory or the observed data. These data update each cycle, and - so cannot easily be set using simple `params`. - - For this case, it is possible to use "cycle properties" in the `params` dictionary. These - are the following strings, which will be replaced during execution by their respective - current values: - - - `"%observations.ivs[-1]%"`: the last observed independent variables - - `"%observations.dvs[-1]%"`: the last observed dependent variables - - `"%observations.ivs%"`: all the observed independent variables, - concatenated into a single array - - `"%observations.dvs%"`: all the observed dependent variables, - concatenated into a single array - - `"%theories[-1]%"`: the last fitted theorist - - `"%theories%"`: all the fitted theorists - - In the following example, we use the `"observations.ivs"` cycle property for an - experimentalist which excludes those conditions which have - already been seen. - - >>> metadata_1 = VariableCollection( - ... independent_variables=[Variable(name="x1", allowed_values=range(10))], - ... dependent_variables=[Variable(name="y")], - ... ) - >>> random_sampler_rng = np.random.default_rng(seed=180) - >>> def custom_random_sampler(conditions, n): - ... sampled_conditions = random_sampler_rng.choice(conditions, size=n, replace=False) - ... return sampled_conditions - >>> def exclude_conditions(conditions, excluded_conditions): - ... remaining_conditions = list(set(conditions) - set(excluded_conditions.flatten())) - ... return remaining_conditions - >>> unobserved_data_experimentalist = make_pipeline([ - ... metadata_1.independent_variables[0].allowed_values, - ... exclude_conditions, - ... custom_random_sampler - ... ] - ... ) - >>> cycle_with_cycle_properties = SimpleCycle( - ... metadata=metadata_1, - ... theorist=example_theorist, - ... experimentalist=unobserved_data_experimentalist, - ... experiment_runner=example_synthetic_experiment_runner, - ... params={ - ... "experimentalist": { - ... "exclude_conditions": {"excluded_conditions": "%observations.ivs%"}, - ... "custom_random_sampler": {"n": 1} - ... } - ... } - ... ) - - Now we can run the cycler to generate conditions and run experiments. The first time round, - we have the full set of 10 possible conditions to select from, and we select "2" at random: - >>> _ = cycle_with_cycle_properties.run() - >>> cycle_with_cycle_properties.data.conditions[-1] - array([2]) - - We can continue to run the cycler, each time we add more to the list of "excluded" options: - >>> _ = cycle_with_cycle_properties.run(num_cycles=5) - >>> cycle_with_cycle_properties.data.conditions - [array([2]), array([6]), array([5]), array([7]), array([3]), array([4])] - - By using the monitor callback, we can investigate what's going on with the cycle properties: - >>> cycle_with_cycle_properties.monitor = lambda data: print( - ... _get_cycle_properties(data)["%observations.ivs%"].flatten() - ... ) - - The monitor evaluates at the end of each cycle - and shows that we've added a new observed IV each step - >>> _ = cycle_with_cycle_properties.run() - [2. 6. 5. 7. 3. 4. 9.] - >>> _ = cycle_with_cycle_properties.run() - [2. 6. 5. 7. 3. 4. 9. 0.] - - We deactivate the monitor by making it "None" again. - >>> cycle_with_cycle_properties.monitor = None - - We can continue until we've sampled all of the options: - >>> _ = cycle_with_cycle_properties.run(num_cycles=2) - >>> cycle_with_cycle_properties.data.conditions # doctest: +NORMALIZE_WHITESPACE - [array([2]), array([6]), array([5]), array([7]), array([3]), \ - array([4]), array([9]), array([0]), array([8]), array([1])] - - If we try to evaluate it again, the experimentalist fails, as there aren't any more - conditions which are available: - >>> cycle_with_cycle_properties.run() # doctest: +ELLIPSIS - Traceback (most recent call last): - ... - ValueError: a cannot be empty unless no samples are taken - - """ - - def __init__( - self, - metadata: VariableCollection, - theorist, - experimentalist, - experiment_runner, - monitor: Optional[Callable[[SimpleCycleData], None]] = None, - params: Optional[Dict] = None, - ): - """ - Args: - metadata: a description of the dependent and independent variables - theorist: a scikit-learn-compatible estimator - experimentalist: an autora.experimentalist.Pipeline - experiment_runner: a function to map independent variables onto observed dependent - variables - monitor: a function which gets read-only access to the `data` attribute at the end of - each cycle. - params: a nested dictionary with parameters to be passed to the parts of the cycle. - E.g. if the experimentalist had a step named "pool" which took an argument "n", - which you wanted to set to the value 30, then params would be set to this: - `{"experimentalist": {"pool": {"n": 30}}}` - """ - - self.theorist = theorist - self.experimentalist = experimentalist - self.experiment_runner = experiment_runner - self.monitor = monitor - if params is None: - params = dict() - self.params = params - - self.data = SimpleCycleData( - metadata=metadata, - conditions=[], - observations=[], - theories=[], - ) - - def run(self, num_cycles: int = 1): - for i in range(num_cycles): - next(self) - return self - - def __next__(self): - assert ( - "experiment_runner" not in self.params - ), "experiment_runner cannot yet accept cycle properties" - assert ( - "theorist" not in self.params - ), "theorist cannot yet accept cycle properties" - - data = self.data - params_with_cycle_properties = _resolve_cycle_properties( - self.params, _get_cycle_properties(self.data) - ) - - data = self._experimentalist_callback( - self.experimentalist, - data, - params_with_cycle_properties.get("experimentalist", dict()), - ) - data = self._experiment_runner_callback(self.experiment_runner, data) - data = self._theorist_callback(self.theorist, data) - self._monitor_callback(data) - self.data = data - - return self - - def __iter__(self): - return self - - @staticmethod - def _experimentalist_callback( - experimentalist: Pipeline, data_in: SimpleCycleData, params: dict - ): - new_conditions = experimentalist(**params) - if isinstance(new_conditions, Iterable): - # If the pipeline gives us an iterable, we need to make it into a concrete array. - # We can't move this logic to the Pipeline, because the pipeline doesn't know whether - # it's within another pipeline and whether it should convert the iterable to a - # concrete array. - new_conditions_values = list(new_conditions) - new_conditions_array = np.array(new_conditions_values) - else: - raise NotImplementedError(f"Object {new_conditions} can't be handled yet.") - - assert isinstance( - new_conditions_array, np.ndarray - ) # Check the object is bounded - data_out = replace( - data_in, - conditions=data_in.conditions + [new_conditions_array], - ) - return data_out - - @staticmethod - def _experiment_runner_callback( - experiment_runner: Callable, data_in: SimpleCycleData - ): - x = data_in.conditions[-1] - y = experiment_runner(x) - new_observations = np.column_stack([x, y]) - data_out = replace( - data_in, observations=data_in.observations + [new_observations] - ) - return data_out - - @staticmethod - def _theorist_callback(theorist, data_in: SimpleCycleData): - all_observations = np.row_stack(data_in.observations) - n_xs = len( - data_in.metadata.independent_variables - ) # The number of independent variables - x, y = all_observations[:, :n_xs], all_observations[:, n_xs:] - if y.shape[1] == 1: - y = y.ravel() - new_theorist = copy.deepcopy(theorist) - new_theorist.fit(x, y) - data_out = replace( - data_in, - theories=data_in.theories + [new_theorist], - ) - return data_out - - def _monitor_callback(self, data: SimpleCycleData): - if self.monitor is not None: - self.monitor(data) - - -def _resolve_cycle_properties(params: Dict, cycle_properties: Mapping): - """ - Resolve "cycle properties" inside a nested dictionary. - - In this context, a "cycle property" is a string which is meant to be replaced by a - different value before the dictionary is used. - - Args: - params: a (nested) dictionary of keys and values, where some values might be - "cycle property names" - cycle_properties: a dictionary of "cycle property names" and their "real values" - - Returns: a (nested) dictionary where "cycle property names" are replaced by the "real values" - - Examples: - - >>> params_0 = {"key": "%foo%"} - >>> cycle_properties_0 = {"%foo%": 180} - >>> _resolve_cycle_properties(params_0, cycle_properties_0) - {'key': 180} - - >>> params_1 = {"key": "%bar%", "nested_dict": {"inner_key": "%foobar%"}} - >>> cycle_properties_1 = {"%bar%": 1, "%foobar%": 2} - >>> _resolve_cycle_properties(params_1, cycle_properties_1) - {'key': 1, 'nested_dict': {'inner_key': 2}} - - """ - params_ = copy.copy(params) - for key, value in params_.items(): - if isinstance(value, dict): - params_[key] = _resolve_cycle_properties(value, cycle_properties) - elif ( - isinstance(value, str) and value in cycle_properties - ): # value is a key in the cycle_properties dictionary - params_[key] = cycle_properties[value] - else: - pass # no change needed - - return params_ diff --git a/autora/experimentalist/__init__.py b/autora/experimentalist/__init__.py deleted file mode 100644 index e69de29bb..000000000 diff --git a/autora/experimentalist/filter.py b/autora/experimentalist/filter.py deleted file mode 100644 index 58a9139cd..000000000 --- a/autora/experimentalist/filter.py +++ /dev/null @@ -1,128 +0,0 @@ -from enum import Enum -from typing import Callable, Iterable, Tuple - -import numpy as np - - -def weber_filter(values): - return filter(lambda s: s[0] <= s[1], values) - - -def train_test_filter( - seed: int = 180, train_p: float = 0.5 -) -> Tuple[Callable[[Iterable], Iterable], Callable[[Iterable], Iterable]]: - """ - A pipeline filter which pseudorandomly assigns values from the input into "train" or "test" - groups. This is particularly useful when working with streams of data of potentially - unbounded length. - - This isn't a great method for small datasets, as it doesn't guarantee producing training - and test sets which are as close as possible to the specified desired proportions. - Consider using the scikit-learn `train_test_split` for cases where it's practical to - enumerate the full dataset in advance. - - Args: - seed: random number generator seeding value - train_p: proportion of data which go into the training set. A float between 0 and 1. - - Returns: - a tuple of callables `(train_filter, test_filter)` which split the input data - into two complementary streams. - - - Examples: - We can create complementary train and test filters using the function: - >>> train_filter, test_filter = train_test_filter(train_p=0.6, seed=180) - - The `train_filter` generates a sequence of ~60% of the input list – - in this case, 15 of 20 datapoints. - Note that the correct split would be 12 of 20 data points. - Again, for data with bounded length it is advisable - to use scikit-learn `train_test_split` instead. - >>> list(train_filter(range(20))) - [0, 2, 3, 4, 5, 6, 9, 10, 11, 12, 15, 16, 17, 18, 19] - - When we run the `test_filter`, it fills in the gaps, giving us the remaining 5 values: - >>> list(test_filter(range(20))) - [1, 7, 8, 13, 14] - - We can continue to generate new values for as long as we like using the same filter and the - continuation of the input range: - >>> list(train_filter(range(20, 40))) - [20, 22, 23, 27, 28, 29, 30, 31, 32, 33, 34, 36, 37, 38, 39] - - ... and some more. - >>> list(train_filter(range(40, 50))) - [41, 42, 44, 45, 46, 49] - - As the number of samples grows, the fraction in the train and test sets - will approach `train_p` and `1 - train_p`. - - The test_filter fills in the gaps again. - >>> list(test_filter(range(20, 30))) - [21, 24, 25, 26] - - If you rerun the *same* test_filter on a fresh range, then the results will be different - to the first time around: - >>> list(test_filter(range(20))) - [5, 10, 13, 17, 18] - - ... but if you regenerate the test_filter, it'll reproduce the original sequence - >>> _, test_filter_regenerated = train_test_filter(train_p=0.6, seed=180) - >>> list(test_filter_regenerated(range(20))) - [1, 7, 8, 13, 14] - - It also works on tuple-valued lists: - >>> from itertools import product - >>> train_filter_tuple, test_filter_tuple = train_test_filter(train_p=0.3, seed=42) - >>> list(test_filter_tuple(product(["a", "b"], [1, 2, 3]))) - [('a', 1), ('a', 2), ('a', 3), ('b', 1), ('b', 3)] - - >>> list(train_filter_tuple(product(["a","b"], [1,2,3]))) - [('b', 2)] - - >>> from itertools import count, takewhile - >>> train_filter_unbounded, test_filter_unbounded = train_test_filter(train_p=0.5, seed=21) - - >>> list(takewhile(lambda s: s < 90, count(79))) - [79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89] - - >>> train_pool = train_filter_unbounded(count(79)) - >>> list(takewhile(lambda s: s < 90, train_pool)) - [82, 85, 86, 89] - - >>> test_pool = test_filter_unbounded(count(79)) - >>> list(takewhile(lambda s: s < 90, test_pool)) - [79, 80, 81, 83, 84, 87, 88] - - >>> list(takewhile(lambda s: s < 110, test_pool)) - [91, 93, 94, 97, 100, 105, 106, 109] - - """ - - test_p = 1 - train_p - - _TrainTest = Enum("_TrainTest", ["train", "test"]) - - def train_test_stream(): - """Generates a pseudorandom stream of _TrainTest.train and _TrainTest.test.""" - rng = np.random.default_rng(seed) - while True: - yield rng.choice([_TrainTest.train, _TrainTest.test], p=(train_p, test_p)) - - def _factory(allow): - """Factory to make complementary generators which split their input - corresponding to the values of the pseudorandom train_test_stream.""" - _stream = train_test_stream() - - def _generator(values): - """Generator which yields items from the `values` depending on - whether the corresponding item from the `_stream` - matches the `allow` parameter.""" - for v, train_test in zip(values, _stream): - if train_test == allow: - yield v - - return _generator - - return _factory(_TrainTest.train), _factory(_TrainTest.test) diff --git a/autora/experimentalist/pipeline.py b/autora/experimentalist/pipeline.py deleted file mode 100644 index de76c450e..000000000 --- a/autora/experimentalist/pipeline.py +++ /dev/null @@ -1,495 +0,0 @@ -""" -Provides tools to chain functions used to create experiment sequences. -""" -from __future__ import annotations - -import copy -from itertools import chain -from typing import ( - Any, - Dict, - Iterable, - List, - Literal, - Optional, - Protocol, - Sequence, - Tuple, - Union, - get_args, - runtime_checkable, -) - - -@runtime_checkable -class Pool(Protocol): - """Creates an experimental sequence from scratch.""" - - def __call__(self) -> _ExperimentalSequence: - ... - - -@runtime_checkable -class Pipe(Protocol): - """Takes in an _ExperimentalSequence and modifies it before returning it.""" - - def __call__(self, ex: _ExperimentalSequence) -> _ExperimentalSequence: - ... - - -_StepType = Tuple[str, Union[Pool, Pipe, Iterable]] -_StepType.__doc__ = ( - "A Pipeline step's name and generating object, as tuple(name, pipeline_piece)." -) - -PARAM_DIVIDER = "__" - - -class Pipeline: - """ - Processes ("pipelines") a series of ExperimentalSequences through a pipeline. - - Examples: - A pipeline which filters even values 0 to 9: - >>> p = Pipeline( - ... [("is_even", lambda values: filter(lambda i: i % 2 == 0, values))] # a "pipe" function - ... ) - >>> list(p(range(10))) - [0, 2, 4, 6, 8] - - A pipeline which filters for square, odd numbers: - >>> from math import sqrt - >>> p = Pipeline([ - ... ("is_odd", lambda values: filter(lambda i: i % 2 != 0, values)), - ... ("is_sqrt", lambda values: filter(lambda i: sqrt(i) % 1 == 0., values)) - ... ]) - >>> list(p(range(100))) - [1, 9, 25, 49, 81] - - - >>> from itertools import product - >>> Pipeline([("pool", lambda: product(range(5), ["a", "b"]))]) # doctest: +ELLIPSIS - Pipeline(steps=[('pool', at 0x...>)], params={}) - - >>> Pipeline([ - ... ("pool", lambda: product(range(5), ["a", "b"])), - ... ("filter", lambda values: filter(lambda i: i[0] % 2 == 0, values)) - ... ]) # doctest: +ELLIPSIS +NORMALIZE_WHITESPACE - Pipeline(steps=[('pool', at 0x...>), \ - ('filter', at 0x...>)], \ - params={}) - - >>> pipeline = Pipeline([ - ... ("pool", lambda maximum: product(range(maximum), ["a", "b"])), - ... ("filter", lambda values, divisor: filter(lambda i: i[0] % divisor == 0, values)) - ... ] , - ... params = {"pool": {"maximum":5}, "filter": {"divisor": 2}}) - >>> pipeline # doctest: +ELLIPSIS +NORMALIZE_WHITESPACE - Pipeline(steps=[('pool', at 0x...>), \ - ('filter', at 0x...>)], \ - params={'pool': {'maximum': 5}, 'filter': {'divisor': 2}}) - >>> list(pipeline.run()) - [(0, 'a'), (0, 'b'), (2, 'a'), (2, 'b'), (4, 'a'), (4, 'b')] - - >>> pipeline.params = {"pool": {"maximum":7}, "filter": {"divisor": 3}} - >>> list(pipeline()) - [(0, 'a'), (0, 'b'), (3, 'a'), (3, 'b'), (6, 'a'), (6, 'b')] - - >>> pipeline.params = {"pool": {"maximum":7}} - >>> list(pipeline()) # doctest: +ELLIPSIS - Traceback (most recent call last): - ... - TypeError: () missing 1 required positional argument: 'divisor' - - - """ - - def __init__( - self, - steps: Optional[Sequence[_StepType]] = None, - params: Optional[Dict[str, Any]] = None, - ): - """Initialize the pipeline with a series of Pipe objects.""" - if steps is None: - steps = list() - self.steps = steps - - if params is None: - params = dict() - self.params = params - - def __repr__(self): - return f"{self.__class__.__name__}(steps={self.steps}, params={self.params})" - - def __call__( - self, - ex: Optional[_ExperimentalSequence] = None, - **params, - ) -> _ExperimentalSequence: - """Successively pass the input values through the Pipe.""" - - # Initialize the parameters objects. - merged_params = self._merge_params_with_self_params(params) - - try: - # Check we have steps to use - assert len(self.steps) > 0 - except AssertionError: - # If the pipeline doesn't have any steps... - if ex is not None: - # ...the output is the input - return ex - elif ex is None: - # ... unless the input was None, in which case it's an emtpy list - return [] - - # Make an iterator from the steps, so that we can be sure to only go through them once - # (Otherwise if we handle the "pool" as a special case, we have to track our starting point) - pipes_iterator = iter(self.steps) - - # Initialize our results object - if ex is None: - # ... there's no input, so presumably the first element in the steps is a pool - # which should generate our initial values. - name, pool = next(pipes_iterator) - if isinstance(pool, Pool): - # Here, the pool is a Pool callable, which we can pass parameters. - all_params_for_pool = merged_params.get(name, dict()) - results = [pool(**all_params_for_pool)] - elif isinstance(pool, Iterable): - # Otherwise, the pool should be an iterable which we can just use as is. - results = [pool] - - else: - # ... there's some input, so we can use that as the initial value - results = [ex] - - # Run the successive steps over the last result - for name, pipe in pipes_iterator: - assert isinstance(pipe, Pipe) - all_params_for_pipe = merged_params.get(name, dict()) - results.append(pipe(results[-1], **all_params_for_pipe)) - - return results[-1] - - def _merge_params_with_self_params(self, params): - pipeline_params = _parse_params_to_nested_dict( - self.params, divider=PARAM_DIVIDER - ) - call_params = _parse_params_to_nested_dict(params, divider=PARAM_DIVIDER) - merged_params = _merge_dicts(pipeline_params, call_params) - return merged_params - - run = __call__ - - -def _merge_dicts(a: dict, b: dict): - """ - merges b into a. - - Args: - a: the "base" dictionary - b: the "update" dictionary which takes precendence - - Returns: - - Originally from https://stackoverflow.com/a/7205107, modified for AER to allow overwriting. - - Examples: - Non-conflicting dictionaries are merged "side-by-side" - >>> _merge_dicts({1:{"a":"A"},2:{"b":"B"}}, {2:{"c":"C"},3:{"d":"D"}}) - {1: {'a': 'A'}, 2: {'b': 'B', 'c': 'C'}, 3: {'d': 'D'}} - - With conflicting dictionaries, the second dictionary takes precedence - >>> _merge_dicts( - ... {"l1_a": {"l2_1": {"l3_alpha": "from_first"}}}, - ... {"l1_a": {"l2_1": {"l3_alpha": "from_second"}}}) - {'l1_a': {'l2_1': {'l3_alpha': 'from_second'}}} - - Again, with non-conflicting dictionaries at the lower level - >>> _merge_dicts( - ... {"l1_a": {"l2_1": {"l3_alpha": "from_first"}}}, - ... {"l1_a": {"l2_1": {"l3_beta": "from_second"}}}) - {'l1_a': {'l2_1': {'l3_alpha': 'from_first', 'l3_beta': 'from_second'}}} - - >>> _merge_dicts( - ... {"l1_a": {"l2_1": {"l3_alpha": "from_first", "l3_beta": "from_first"}}}, - ... {"l1_a": {"l2_1": { "l3_beta": "from_second"}}}) - {'l1_a': {'l2_1': {'l3_alpha': 'from_first', 'l3_beta': 'from_second'}}} - - """ - a_, b_ = dict(a), dict(b) - - for key in b_: - if key in a_: - if isinstance(a_[key], dict) and isinstance(b_[key], dict): - a_[key] = _merge_dicts(a_[key], b_[key]) - elif a_[key] != b_[key]: - a_[key] = b_[key] - else: - pass - else: - a_[key] = b_[key] - return a_ - - -class PipelineUnion(Pipeline): - """ - Run several Pipes in parallel and concatenate all their results. - - Examples: - You can use the ParallelPipeline to parallelize a group of poolers: - >>> union_pipeline_0 = PipelineUnion([ - ... ("pool_1", make_pipeline([range(5)])), - ... ("pool_2", make_pipeline([range(25, 30)])), - ... ] - ... ) - >>> list(union_pipeline_0.run()) - [0, 1, 2, 3, 4, 25, 26, 27, 28, 29] - - >>> union_pipeline_1 = PipelineUnion([ - ... ("pool_1", range(5)), - ... ("pool_2", range(25, 30)), - ... ] - ... ) - >>> list(union_pipeline_1.run()) - [0, 1, 2, 3, 4, 25, 26, 27, 28, 29] - - You can use the ParallelPipeline to parallelize a group of pipes – each of which gets - the same input. - >>> pipeline_with_embedded_union = Pipeline([ - ... ("pool", range(22)), - ... ("filters", PipelineUnion([ - ... ("div_5_filter", lambda x: filter(lambda i: i % 5 == 0, x)), - ... ("div_7_filter", lambda x: filter(lambda i: i % 7 == 0, x)) - ... ])) - ... ]) - >>> list(pipeline_with_embedded_union.run()) - [0, 5, 10, 15, 20, 0, 7, 14, 21] - - """ - - def __call__( - self, - ex: Optional[_ExperimentalSequence] = None, - **params, - ) -> _ExperimentalSequence: - """Pass the input values in parallel through the steps.""" - - # Initialize the parameters objects. - merged_params = self._merge_params_with_self_params(params) - - results = [] - - # Run the parallel steps over the input - for name, pipe in self.steps: - all_params_for_step = merged_params.get(name, dict()) - if ex is None: - if isinstance(pipe, Pool): - results.append(pipe(**all_params_for_step)) - elif isinstance(pipe, Iterable): - results.append(pipe) - else: - raise NotImplementedError( - f"{pipe=} cannot be used in the PipelineUnion" - ) - else: - assert isinstance( - pipe, Pipe - ), f"{pipe=} is incompatible with the Pipe interface" - results.append(pipe(ex, **all_params_for_step)) - - union_results = chain.from_iterable(results) - - return union_results - - run = __call__ - - -def _parse_params_to_nested_dict(params_dict: Dict, divider: str): - """ - Converts a dictionary with a single level to a multi-level nested dictionary. - - Examples: - >>> _parse_params_to_nested_dict({"a": 1}, divider="__") - {'a': 1} - >>> _parse_params_to_nested_dict({"a__b": 1, "a__c": 2}, divider="__") - {'a': {'b': 1, 'c': 2}} - >>> _parse_params_to_nested_dict( - ... {"a__b__alpha": 1, "a__b__beta": 2, "a__c__gamma": 3}, - ... divider="__") - {'a': {'b': {'alpha': 1, 'beta': 2}, 'c': {'gamma': 3}}} - - >>> _parse_params_to_nested_dict( - ... {"a:b:alpha": 1, "a:b:beta": 2, "a:c:gamma": 3}, - ... divider=":") - {'a': {'b': {'alpha': 1, 'beta': 2}, 'c': {'gamma': 3}}} - """ - nested_dictionary: dict = copy.copy(params_dict) - for key in params_dict.keys(): - if divider in key: - value = nested_dictionary.pop(key) - new_key, new_subkey = key.split(divider, 1) - subdictionary = nested_dictionary.get(new_key, {}) - subdictionary.update({new_subkey: value}) - nested_dictionary[new_key] = subdictionary - - for key, value in nested_dictionary.items(): - if isinstance(value, dict): - nested_dictionary[key] = _parse_params_to_nested_dict( - value, divider=divider - ) - - return nested_dictionary - - -def make_pipeline( - steps: Optional[Sequence[Union[Pool, Pipe]]] = None, - params: Optional[Dict[str, Any]] = None, - kind: Literal["serial", "union"] = "serial", -) -> Pipeline: - """ - A factory function to make pipeline objects. - - The pipe objects' names will be set to the lowercase of their types, plus an index - starting from 0 for non-unique names. - - Args: - steps: a sequence of Pipe-compatible objects - params: a dictionary of parameters passed to each Pipe by its inferred name - kind: whether the steps should run in "serial", passing data from one to the next, - or in "union", where all the steps get the same data and the output is the union - of all the results. - - Returns: - A pipeline object - - Examples: - - You can create pipelines using purely anonymous functions: - >>> from itertools import product - >>> make_pipeline([lambda: product(range(5), ["a", "b"])]) # doctest: +ELLIPSIS - Pipeline(steps=[('', at 0x...>)], params={}) - - You can create pipelines with normal functions. - >>> def ab_pool(maximum=5): return product(range(maximum), ["a", "b"]) - >>> def even_filter(values): return filter(lambda i: i[0] % 2 == 0, values) - >>> make_pipeline([ab_pool, even_filter]) # doctest: +ELLIPSIS +NORMALIZE_WHITESPACE - Pipeline(steps=[('ab_pool', ), \ - ('even_filter', )], params={}) - - You can create pipelines with generators as their first elements functions. - >>> ab_pool_gen = product(range(3), ["a", "b"]) - >>> pl = make_pipeline([ab_pool_gen, even_filter]) - >>> pl # doctest: +ELLIPSIS +NORMALIZE_WHITESPACE - Pipeline(steps=[('step', ), - ('even_filter', )], params={}) - >>> list(pl.run()) - [(0, 'a'), (0, 'b'), (2, 'a'), (2, 'b')] - - You can pass parameters into the different steps of the pl using the "params" - argument: - >>> def divisor_filter(x, divisor): return filter(lambda i: i[0] % divisor == 0, x) - >>> pl = make_pipeline([ab_pool, divisor_filter], - ... params = {"ab_pool": {"maximum":5}, "divisor_filter": {"divisor": 2}}) - >>> pl # doctest: +ELLIPSIS +NORMALIZE_WHITESPACE - Pipeline(steps=[('ab_pool', ), \ - ('divisor_filter', )], \ - params={'ab_pool': {'maximum': 5}, 'divisor_filter': {'divisor': 2}}) - - You can evaluate the pipeline means calling its `run` method: - >>> list(pl.run()) - [(0, 'a'), (0, 'b'), (2, 'a'), (2, 'b'), (4, 'a'), (4, 'b')] - - ... or calling it directly: - >>> list(pl()) - [(0, 'a'), (0, 'b'), (2, 'a'), (2, 'b'), (4, 'a'), (4, 'b')] - - You can update the parameters and evaluate again, giving different results: - >>> pl.params = {"ab_pool": {"maximum": 7}, "divisor_filter": {"divisor": 3}} - >>> list(pl()) - [(0, 'a'), (0, 'b'), (3, 'a'), (3, 'b'), (6, 'a'), (6, 'b')] - - If the pipeline needs parameters, then removing them will break the pipeline: - >>> pl.params = {} - >>> list(pl()) # doctest: +ELLIPSIS - Traceback (most recent call last): - ... - TypeError: divisor_filter() missing 1 required positional argument: 'divisor' - - If multiple steps have the same inferred name, then they are given a suffix automatically, - which has to be reflected in the params if used: - >>> pl = make_pipeline([ab_pool, divisor_filter, divisor_filter]) - >>> pl.params = { - ... "ab_pool": {"maximum": 22}, - ... "divisor_filter_0": {"divisor": 3}, - ... "divisor_filter_1": {"divisor": 7} - ... } - >>> list(pl()) - [(0, 'a'), (0, 'b'), (21, 'a'), (21, 'b')] - - You can also use "partial" functions to include Pipes with defaults in the pipeline. - Because the `partial` function doesn't inherit the __name__ of the original function, - these steps are renamed to "step". - >>> from functools import partial - >>> pl = make_pipeline([partial(ab_pool, maximum=100)]) - >>> pl # doctest: +ELLIPSIS +NORMALIZE_WHITESPACE - Pipeline(steps=[('step', functools.partial(, maximum=100))], \ - params={}) - - If there are multiple steps with the same name, they get suffixes as usual: - >>> pl = make_pipeline([partial(range, stop=10), partial(divisor_filter, divisor=3)]) - >>> pl # doctest: +ELLIPSIS +NORMALIZE_WHITESPACE - Pipeline(steps=[('step_0', functools.partial(, stop=10)), \ - ('step_1', functools.partial(, divisor=3))], \ - params={}) - - It is possible to create parallel pipelines too: - >>> pl = make_pipeline([range(5), range(10,15)], kind="union") - >>> pl - PipelineUnion(steps=[('step_0', range(0, 5)), ('step_1', range(10, 15))], params={}) - - >>> list(pl.run()) - [0, 1, 2, 3, 4, 10, 11, 12, 13, 14] - - """ - - if steps is None: - steps = [] - steps_: List[_StepType] = [] - raw_names_ = [getattr(pipe, "__name__", "step").lower() for pipe in steps] - names_tally_ = dict([(name, raw_names_.count(name)) for name in set(raw_names_)]) - names_index_ = dict([(name, 0) for name in set(raw_names_)]) - - for name, pipe in zip(raw_names_, steps): - assert isinstance(pipe, get_args(Union[Pipe, Pool, Iterable])) - - if names_tally_[name] > 1: - current_index_for_this_name = names_index_.get(name, 0) - name_in_pipeline = f"{name}_{current_index_for_this_name}" - names_index_[name] += 1 - else: - name_in_pipeline = name - - steps_.append((name_in_pipeline, pipe)) - - if kind == "serial": - pipeline = Pipeline(steps_, params=params) - elif kind == "union": - pipeline = PipelineUnion(steps_, params=params) - else: - raise NotImplementedError(f"{kind=} is not implemented") - - return pipeline - - -class _ExperimentalCondition: - """An _ExperimentalCondition represents a trial.""" - - pass - - -_ExperimentalSequence = Iterable[_ExperimentalCondition] -_ExperimentalSequence.__doc__ = """ -An _ExperimentalSequence represents a series of trials. -""" diff --git a/autora/experimentalist/pooler/__init__.py b/autora/experimentalist/pooler/__init__.py deleted file mode 100644 index 54d836a1d..000000000 --- a/autora/experimentalist/pooler/__init__.py +++ /dev/null @@ -1,2 +0,0 @@ -from .general_pool import grid_pool, random_pool -from .poppernet import poppernet_pool diff --git a/autora/experimentalist/pooler/general_pool.py b/autora/experimentalist/pooler/general_pool.py deleted file mode 100644 index e0c85068c..000000000 --- a/autora/experimentalist/pooler/general_pool.py +++ /dev/null @@ -1,56 +0,0 @@ -import random -from itertools import product -from typing import List - -import numpy as np - -from autora.variable import IV - - -def grid_pool(ivs: List[IV]): - """Creates exhaustive pool from discrete values using a Cartesian product of sets""" - # Get allowed values for each IV - l_iv_values = [] - for iv in ivs: - assert iv.allowed_values is not None, ( - f"gridsearch_pool only supports independent variables with discrete allowed values, " - f"but allowed_values is None on {iv=} " - ) - l_iv_values.append(iv.allowed_values) - - # Return Cartesian product of all IV values - return product(*l_iv_values) - - -def random_pool(*args, n=1, duplicates=True): - """ - Creates combinations from lists of discrete values using random selection. - Args: - *args: m lists of discrete values. One value will be sampled from each list. - n: Number of samples to sample - duplicates: Boolean if duplicate value are allowed. - - """ - l_samples = [] - # Create list of pools of values sample from - pools = [tuple(pool) for pool in args] - - # Check to ensure infinite search won't occur if duplicates not allowed - if not duplicates: - l_pool_len = [len(set(s)) for s in pools] - n_combinations = np.product(l_pool_len) - try: - assert n <= n_combinations - except AssertionError: - raise AssertionError( - f"Number to sample n({n}) is larger than the number " - f"of unique combinations({n_combinations})." - ) - - # Random sample from the pools until n is met - while len(l_samples) < n: - l_samples.append(tuple(map(random.choice, pools))) - if not duplicates: - l_samples = [*set(l_samples)] - - return iter(l_samples) diff --git a/autora/experimentalist/pooler/poppernet.py b/autora/experimentalist/pooler/poppernet.py deleted file mode 100644 index 2995405ce..000000000 --- a/autora/experimentalist/pooler/poppernet.py +++ /dev/null @@ -1,369 +0,0 @@ -from typing import Optional, Tuple, cast - -import numpy as np -import torch -from sklearn.preprocessing import StandardScaler -from torch import nn -from torch.autograd import Variable - -from autora.variable import ValueType, VariableCollection - - -def poppernet_pool( - model, - x_train: np.ndarray, - y_train: np.ndarray, - metadata: VariableCollection, - n: int = 100, - training_epochs: int = 1000, - optimization_epochs: int = 1000, - training_lr: float = 1e-3, - optimization_lr: float = 1e-3, - mse_scale: float = 1, - limit_offset: float = 0, # 10**-10, - limit_repulsion: float = 0, - plot: bool = False, -): - """ - A pooler that generates samples for independent variables with the objective of maximizing the - (approximated) loss of the model. The samples are generated by first training a neural network - to approximate the loss of a model for all patterns in the training data. Once trained, the - network is then inverted to generate samples that maximize the approximated loss of the model. - - Note: If the pooler returns samples that are close to the boundaries of the variable space, - then it is advisable to increase the limit_repulsion parameter (e.g., to 0.000001). - - Args: - model: Scikit-learn model, could be either a classification or regression model - x_train: data that the model was trained on - y_train: labels that the model was trained on - metadata: Meta-data about the dependent and independent variables - n: number of samples to return - training_epochs: number of epochs to train the popper network for approximating the - error fo the model - optimization_epochs: number of epochs to optimize the samples based on the trained - popper network - training_lr: learning rate for training the popper network - optimization_lr: learning rate for optimizing the samples - mse_scale: scale factor for the MSE loss - limit_offset: a limited offset to prevent the samples from being too close to the value - boundaries - limit_repulsion: a limited repulsion to prevent the samples from being too close to the - allowed value boundaries - plot: print out the prediction of the popper network as well as its training loss - - Returns: Sampled pool - - """ - - # format input - - x_train = np.array(x_train) - if len(x_train.shape) == 1: - x_train = x_train.reshape(-1, 1) - - x = np.empty([n, x_train.shape[1]]) - - y_train = np.array(y_train) - if len(y_train.shape) == 1: - y_train = y_train.reshape(-1, 1) - - if metadata.dependent_variables[0].type == ValueType.CLASS: - # find all unique values in y_train - num_classes = len(np.unique(y_train)) - y_train = class_to_onehot(y_train, n_classes=num_classes) - - x_train_tensor = torch.from_numpy(x_train).float() - - # create list of IV limits - ivs = metadata.independent_variables - iv_limit_list = list() - for iv in ivs: - if hasattr(iv, "value_range"): - value_range = cast(Tuple, iv.value_range) - lower_bound = value_range[0] - upper_bound = value_range[1] - iv_limit_list.append(([lower_bound, upper_bound])) - - # get dimensions of input and output - n_input = len(metadata.independent_variables) - n_output = len(metadata.dependent_variables) - - # get input pattern for popper net - popper_input = Variable(torch.from_numpy(x_train), requires_grad=False).float() - - # get target pattern for popper net - model_predict = getattr(model, "predict_proba", None) - if callable(model_predict) is False: - model_predict = getattr(model, "predict", None) - - if callable(model_predict) is False or model_predict is None: - raise Exception("Model must have `predict` or `predict_proba` method.") - - model_prediction = model_predict(x_train) - if isinstance(model_prediction, np.ndarray) is False: - try: - model_prediction = np.array(model_prediction) - except Exception: - raise Exception("Model prediction must be convertable to numpy array.") - if model_prediction.ndim == 1: - model_prediction = model_prediction.reshape(-1, 1) - - criterion = nn.MSELoss() - model_loss = (model_prediction - y_train) ** 2 * mse_scale - model_loss = np.mean(model_loss, axis=1) - - # standardize the loss - scaler = StandardScaler() - model_loss = scaler.fit_transform(model_loss.reshape(-1, 1)).flatten() - - model_loss = torch.from_numpy(model_loss).float() - popper_target = Variable(model_loss, requires_grad=False) - - # create the network - popper_net = PopperNet(n_input, n_output) - - # reformat input in case it is 1D - if len(popper_input.shape) == 1: - popper_input = popper_input.flatten() - popper_input = popper_input.reshape(-1, 1) - - # define the optimizer - popper_optimizer = torch.optim.Adam(popper_net.parameters(), lr=training_lr) - - # train the network - losses = [] - for epoch in range(training_epochs): - popper_prediction = popper_net(popper_input) - loss = criterion(popper_prediction, popper_target.reshape(-1, 1)) - popper_optimizer.zero_grad() - loss.backward() - popper_optimizer.step() - losses.append(loss.item()) - - if plot: - popper_input_full = np.linspace( - iv_limit_list[0][0], iv_limit_list[0][1], 1000 - ).reshape(-1, 1) - popper_input_full = Variable( - torch.from_numpy(popper_input_full), requires_grad=False - ).float() - popper_prediction = popper_net(popper_input_full) - plot_popper_diagnostics( - losses, - popper_input, - popper_input_full, - popper_prediction, - popper_target, - model_prediction, - y_train, - ) - - # now that the popper network is trained we can sample new data points - # to sample data points we need to provide the popper network with an initial condition - # we will sample those initial conditions proportional to the loss of the current model - - # feed average model losses through softmax - # model_loss_avg= torch.from_numpy(np.mean(model_loss.detach().numpy(), axis=1)).float() - softmax_func = torch.nn.Softmax(dim=0) - probabilities = softmax_func(model_loss) - # sample data point in proportion to model loss - transform_category = torch.distributions.categorical.Categorical(probabilities) - - popper_net.freeze_weights() - - for condition in range(n): - - index = transform_category.sample() - input_sample = torch.flatten(x_train_tensor[index, :]) - popper_input = Variable(input_sample, requires_grad=True) - - # invert the popper network to determine optimal experiment conditions - for optimization_epoch in range(optimization_epochs): - # feedforward pass on popper network - popper_prediction = popper_net(popper_input) - # compute gradient that maximizes output of popper network - # (i.e. predicted loss of original model) - popper_loss_optim = -popper_prediction - popper_loss_optim.backward() - # compute new input - # with torch.no_grad(): - # delta = -optimization_lr * popper_input.grad - # popper_input += -optimization_lr * popper_input.grad - # print(delta) - # popper_input.grad.zero_() - - with torch.no_grad(): - - # first add repulsion from variable limits - for idx in range(len(input_sample)): - iv_value = popper_input[idx] - iv_limits = iv_limit_list[idx] - dist_to_min = np.abs(iv_value - np.min(iv_limits)) - dist_to_max = np.abs(iv_value - np.max(iv_limits)) - # deal with boundary case where distance is 0 or very small - dist_to_min = np.max([dist_to_min, 0.00000001]) - dist_to_max = np.max([dist_to_max, 0.00000001]) - repulsion_from_min = limit_repulsion / (dist_to_min**2) - repulsion_from_max = limit_repulsion / (dist_to_max**2) - iv_value_repulsed = ( - iv_value + repulsion_from_min - repulsion_from_max - ) - popper_input[idx] = iv_value_repulsed - - # now add gradient for theory loss maximization - delta = -optimization_lr * popper_input.grad - popper_input += delta - - # finally, clip input variable from its limits - for idx in range(len(input_sample)): - iv_raw_value = input_sample[idx] - iv_limits = iv_limit_list[idx] - iv_clipped_value = np.min( - [iv_raw_value, np.max(iv_limits) - limit_offset] - ) - iv_clipped_value = np.max( - [ - iv_clipped_value, - np.min(iv_limits) + limit_offset, - ] - ) - popper_input[idx] = iv_clipped_value - popper_input.grad.zero_() - - # add condition to new experiment sequence - for idx in range(len(input_sample)): - iv_limits = iv_limit_list[idx] - - # first clip value - iv_clipped_value = np.min([iv_raw_value, np.max(iv_limits) - limit_offset]) - iv_clipped_value = np.max( - [iv_clipped_value, np.min(iv_limits) + limit_offset] - ) - # make sure to convert variable to original scale - iv_clipped_scaled_value = iv_clipped_value - - x[condition, idx] = iv_clipped_scaled_value - - return iter(x) - - -def plot_popper_diagnostics( - losses, - popper_input, - popper_input_full, - popper_prediction, - popper_target, - model_prediction, - target, -): - print("Finished training Popper Network...") - import matplotlib.pyplot as plt - - if popper_input.shape[1] > 1: - plot_input = popper_input[:, 0] - else: - plot_input = popper_input - - if model_prediction.ndim > 1: - if model_prediction.shape[1] > 1: - model_prediction = model_prediction[:, 0] - target = target[:, 0] - - # PREDICTED MODEL ERROR PLOT - plot_input_order = np.argsort(np.array(plot_input).flatten()) - plot_input = plot_input[plot_input_order] - popper_target = popper_target[plot_input_order] - # popper_prediction = popper_prediction[plot_input_order] - plt.plot(popper_input_full, popper_prediction.detach().numpy(), label="prediction") - plt.scatter( - plot_input, popper_target.detach().numpy(), s=20, c="red", label="target" - ) - plt.xlabel("x") - plt.ylabel("model MSE") - plt.title("popper network prediction") - plt.legend() - plt.show() - - # CONVERGENCE PLOT - plt.plot(losses) - plt.xlabel("epoch") - plt.ylabel("loss") - plt.title("loss for popper network") - plt.show() - - # MODEL PREDICTION PLOT - model_prediction = model_prediction[plot_input_order] - target = target[plot_input_order] - plt.plot(plot_input, model_prediction, label="model prediction") - plt.scatter(plot_input, target, s=20, c="red", label="target") - plt.xlabel("x") - plt.ylabel("y") - plt.title("model prediction vs. target") - plt.legend() - plt.show() - - -# define the network -class PopperNet(nn.Module): - def __init__(self, n_input: torch.Tensor, n_output: torch.Tensor): - # Perform initialization of the pytorch superclass - super(PopperNet, self).__init__() - - # Define network layer dimensions - D_in, H1, H2, H3, D_out = [n_input, 64, 64, 64, n_output] - - # Define layer types - self.linear1 = nn.Linear(D_in, H1) - self.linear2 = nn.Linear(H1, H2) - self.linear3 = nn.Linear(H2, H3) - self.linear4 = nn.Linear(H3, D_out) - - def forward(self, x: torch.Tensor): - """ - This method defines the network layering and activation functions - """ - x = self.linear1(x) # hidden layer - x = torch.tanh(x) # activation function - - x = self.linear2(x) # hidden layer - x = torch.tanh(x) # activation function - - x = self.linear3(x) # hidden layer - x = torch.tanh(x) # activation function - - x = self.linear4(x) # output layer - - return x - - def freeze_weights(self): - for param in self.parameters(): - param.requires_grad = False - - -def class_to_onehot(y: np.array, n_classes: Optional[int] = None): - """Converts a class vector (integers) to binary class matrix. - - E.g. for use with categorical_crossentropy. - - # Arguments - y: class vector to be converted into a matrix - (integers from 0 to num_classes). - n_classes: total number of classes. - - # Returns - A binary matrix representation of the input. - """ - y = np.array(y, dtype="int") - input_shape = y.shape - if input_shape and input_shape[-1] == 1 and len(input_shape) > 1: - input_shape = tuple(input_shape[:-1]) - y = y.ravel() - if not n_classes: - n_classes = np.max(y) + 1 - n = y.shape[0] - categorical = np.zeros((n, n_classes)) - categorical[np.arange(n), y] = 1 - output_shape = input_shape + (n_classes,) - categorical = np.reshape(categorical, output_shape) - return categorical diff --git a/autora/experimentalist/sampler/__init__.py b/autora/experimentalist/sampler/__init__.py deleted file mode 100644 index 215afeb19..000000000 --- a/autora/experimentalist/sampler/__init__.py +++ /dev/null @@ -1,5 +0,0 @@ -from .assumption import assumption_sampler -from .model_disagreement import model_disagreement_sampler -from .nearest_value import nearest_values_sampler -from .random import random_sampler -from .uncertainty import uncertainty_sampler diff --git a/autora/experimentalist/sampler/assumption.py b/autora/experimentalist/sampler/assumption.py deleted file mode 100644 index b46a9220a..000000000 --- a/autora/experimentalist/sampler/assumption.py +++ /dev/null @@ -1,67 +0,0 @@ -from typing import Iterable - -import numpy as np -from sklearn.metrics import mean_absolute_error as mae -from sklearn.metrics import mean_squared_error as mse - - -def assumption_sampler( - X, y, model, n, loss=True, theorist=None, confirmation_bias=False -): - """ - Assumption Sampler challenges assumptions made by the Theorist. - It identifies points whose error are most dependent on the assumption made. - Assumptions take the form of hard-coding, which may be hyperparameters or arbitrarily chosen - sub-algorithms e.g. loss function - Because it samples with respect to a Theorist, this sampler cannot be used on the first cycle - - Args: - X: pool of IV conditions to sample from - y: experimental results from most recent iteration - model: Scikit-learn model, must have `predict` method. - n: number of samples to select - loss: assumption to test: identify points that are most affected by choice of loss function - theorist: the Theorist, which employs the theory it has been hard-coded to demonstrate - confirmation_bias: whether to find evidence to support or oppose the theory - - Returns: Sampled pool - - """ - - if isinstance(X, Iterable): - X = np.array(list(X)) - current = None - if theorist: - pass # add code to extract loss function from theorist object - idx = range(len(X)) - - if y is not None: - if loss: - if current is None: - current = mse - print( - Warning( - "Knowledge of Theorist Loss Function needed. MSE has been assumed." - ) - ) - y_pred = model.predict(X) - current_loss = current( - y_true=y.reshape(1, -1), - y_pred=y_pred.reshape(1, -1), - multioutput="raw_values", - ) - print(current_loss) - alternative = mae - alternative_loss = alternative( - y_true=y.reshape(1, -1), - y_pred=y_pred.reshape(1, -1), - multioutput="raw_values", - ) - loss_delta = alternative_loss - current_loss - idx = np.flip(loss_delta.argsort()[:n]) - else: - raise TypeError( - "Experiment results are required to run the assumption experimentalist" - ) - - return X[idx] diff --git a/autora/experimentalist/sampler/dissimilarity.py b/autora/experimentalist/sampler/dissimilarity.py deleted file mode 100644 index 8b8b112ac..000000000 --- a/autora/experimentalist/sampler/dissimilarity.py +++ /dev/null @@ -1,96 +0,0 @@ -from typing import Iterable, Literal - -import numpy as np -from sklearn.metrics import DistanceMetric - -AllowedMetrics = Literal[ - "euclidean", - "manhattan", - "chebyshev", - "minkowski", - "wminkowski", - "seuclidean", - "mahalanobis", - "haversine", - "hamming", - "canberra", - "braycurtis", - "matching", - "jaccard", - "dice", - "kulsinski", - "rogerstanimoto", - "russellrao", - "sokalmichener", - "sokalsneath", - "yule", -] - - -def summed_dissimilarity_sampler( - X: np.ndarray, X_ref: np.ndarray, n: int = 1, metric: AllowedMetrics = "euclidean" -) -> np.ndarray: - """ - This dissimilarity samples re-arranges the pool of IV conditions according to their - dissimilarity with respect to a reference pool X_ref. The default dissimilarity is calculated - as the average of the pairwise distances between the conditions in X and X_ref. - - Args: - X: pool of IV conditions to evaluate dissimilarity - X_ref: reference pool of IV conditions - n: number of samples to select - metric (str): dissimilarity measure. Options: 'euclidean', 'manhattan', 'chebyshev', - 'minkowski', 'wminkowski', 'seuclidean', 'mahalanobis', 'haversine', - 'hamming', 'canberra', 'braycurtis', 'matching', 'jaccard', 'dice', - 'kulsinski', 'rogerstanimoto', 'russellrao', 'sokalmichener', - 'sokalsneath', 'yule'. See [sklearn.metrics.DistanceMetric][] for more details. - - Returns: - Sampled pool - """ - - if isinstance(X, Iterable): - X = np.array(list(X)) - - if isinstance(X_ref, Iterable): - X_ref = np.array(list(X_ref)) - - if X.ndim == 1: - X = X.reshape(-1, 1) - - if X_ref.ndim == 1: - X_ref = X_ref.reshape(-1, 1) - - if X.shape[1] != X_ref.shape[1]: - raise ValueError( - f"X and X_ref must have the same number of columns.\n" - f"X has {X.shape[1]} columns, while X_ref has {X_ref.shape[1]} columns." - ) - - if X.shape[0] < n: - raise ValueError( - f"X must have at least {n} rows matching the number of requested samples." - ) - - dist = DistanceMetric.get_metric(metric) - - # create a list to store the summed distances for each row in matrix1 - summed_distances = [] - - # loop over each row in first matrix - for row in X: - # calculate the distances between the current row in matrix1 and all other rows in matrix2 - summed_distance = 0 - - for X_ref_row in X_ref: - - distance = dist.pairwise([row, X_ref_row])[0, 1] - summed_distance += distance - - # store the summed distance for the current row - summed_distances.append(summed_distance) - - # sort the rows in matrix1 by their summed distances - sorted_X = X[np.argsort(summed_distances)[::-1]] - - return sorted_X[:n] diff --git a/autora/experimentalist/sampler/model_disagreement.py b/autora/experimentalist/sampler/model_disagreement.py deleted file mode 100644 index 20a9b805f..000000000 --- a/autora/experimentalist/sampler/model_disagreement.py +++ /dev/null @@ -1,66 +0,0 @@ -import itertools -from typing import Iterable, List - -import numpy as np - - -def model_disagreement_sampler(X: np.array, models: List, num_samples: int = 1): - """ - A sampler that returns selected samples for independent variables - for which the models disagree the most in terms of their predictions. - - Args: - X: pool of IV conditions to evaluate in terms of model disagreement - models: List of Scikit-learn (regression or classification) models to compare - num_samples: number of samples to select - - Returns: Sampled pool - """ - - if isinstance(X, Iterable): - X = np.array(list(X)) - - X_predict = np.array(X) - if len(X_predict.shape) == 1: - X_predict = X_predict.reshape(-1, 1) - - model_disagreement = list() - - # collect diagreements for each model pair - for model_a, model_b in itertools.combinations(models, 2): - - # determine the prediction method - if hasattr(model_a, "predict_proba") and hasattr(model_b, "predict_proba"): - model_a_predict = model_a.predict_proba - model_b_predict = model_b.predict_proba - elif hasattr(model_a, "predict") and hasattr(model_b, "predict"): - model_a_predict = model_a.predict - model_b_predict = model_b.predict - else: - raise AttributeError( - "Models must both have `predict_proba` or `predict` method." - ) - - # get predictions from both models - y_a = model_a_predict(X_predict) - y_b = model_b_predict(X_predict) - - assert y_a.shape == y_b.shape, "Models must have same output shape." - - # determine the disagreement between the two models in terms of mean-squared error - if len(y_a.shape) == 1: - disagreement = (y_a - y_b) ** 2 - else: - disagreement = np.mean((y_a - y_b) ** 2, axis=1) - - model_disagreement.append(disagreement) - - assert len(model_disagreement) >= 1, "No disagreements to compare." - - # sum up all model disagreements - summed_disagreement = np.sum(model_disagreement, axis=0) - - # sort the summed disagreements and select the top n - idx = (-summed_disagreement).argsort()[:num_samples] - - return X[idx] diff --git a/autora/experimentalist/sampler/nearest_value.py b/autora/experimentalist/sampler/nearest_value.py deleted file mode 100644 index 61f2713d7..000000000 --- a/autora/experimentalist/sampler/nearest_value.py +++ /dev/null @@ -1,60 +0,0 @@ -from typing import Iterable, Sequence, Union - -import numpy as np - - -def nearest_values_sampler( - samples: Union[Iterable, Sequence], - allowed_values: np.ndarray, - n: int, -): - """ - A sampler which returns the nearest values between the input samples and the allowed values, - without replacement. - - Args: - samples: input conditions - allowed_samples: allowed conditions to sample from - - Returns: - the nearest values from `allowed_samples` to the `samples` - - """ - - if isinstance(allowed_values, Iterable): - allowed_values = np.array(list(allowed_values)) - - if len(allowed_values.shape) == 1: - allowed_values = allowed_values.reshape(-1, 1) - - if isinstance(samples, Iterable): - samples = np.array(list(samples)) - - if allowed_values.shape[0] < n: - raise Exception( - "More samples requested than samples available in the set allowed of values." - ) - - if isinstance(samples, Iterable) or isinstance(samples, Sequence): - samples = np.array(list(samples)) - - if hasattr(samples, "shape"): - if samples.shape[0] < n: - raise Exception( - "More samples requested than samples available in the pool." - ) - - x_new = np.empty((n, allowed_values.shape[1])) - - # get index of row in x that is closest to each sample - for row, sample in enumerate(samples): - - if row >= n: - break - - dist = np.linalg.norm(allowed_values - sample, axis=1) - idx = np.argmin(dist) - x_new[row, :] = allowed_values[idx, :] - allowed_values = np.delete(allowed_values, idx, axis=0) - - return x_new diff --git a/autora/experimentalist/sampler/random.py b/autora/experimentalist/sampler/random.py deleted file mode 100644 index 03246032a..000000000 --- a/autora/experimentalist/sampler/random.py +++ /dev/null @@ -1,21 +0,0 @@ -import random -from typing import Iterable, Sequence, Union - - -def random_sampler(conditions: Union[Iterable, Sequence], n: int): - """ - Uniform random sampling without replacement from a pool of conditions. - Args: - conditions: Pool of conditions - n: number of samples to collect - - Returns: Sampled pool - - """ - - if isinstance(conditions, Iterable): - conditions = list(conditions) - random.shuffle(conditions) - samples = conditions[0:n] - - return samples diff --git a/autora/experimentalist/sampler/uncertainty.py b/autora/experimentalist/sampler/uncertainty.py deleted file mode 100644 index 5cf3da0b7..000000000 --- a/autora/experimentalist/sampler/uncertainty.py +++ /dev/null @@ -1,61 +0,0 @@ -from typing import Iterable - -import numpy as np -from scipy.stats import entropy - - -def uncertainty_sampler(X, model, n, measure="least_confident"): - """ - - Args: - X: pool of IV conditions to evaluate uncertainty - model: Scikit-learn model, must have `predict_proba` method. - n: number of samples to select - measure: method to evaluate uncertainty. Options: - - - `'least_confident'`: $x* = \\operatorname{argmax} \\left( 1-P(\\hat{y}|x) \\right)$, - where $\\hat{y} = \\operatorname{argmax} P(y_i|x)$ - - `'margin'`: - $x* = \\operatorname{argmax} \\left( P(\\hat{y}_1|x) - P(\\hat{y}_2|x) \\right)$, - where $\\hat{y}_1$ and $\\hat{y}_2$ are the first and second most probable - class labels under the model, respectively. - - `'entropy'`: - $x* = \\operatorname{argmax} \\left( - \\sum P(y_i|x) - \\operatorname{log} P(y_i|x) \\right)$ - - Returns: Sampled pool - - """ - - if isinstance(X, Iterable): - X = np.array(list(X)) - - a_prob = model.predict_proba(X) - - if measure == "least_confident": - # Calculate uncertainty of max probability class - a_uncertainty = 1 - a_prob.max(axis=1) - # Get index of largest uncertainties - idx = np.flip(a_uncertainty.argsort()[-n:]) - - elif measure == "margin": - # Sort values by row descending - a_part = np.partition(-a_prob, 1, axis=1) - # Calculate difference between 2 largest probabilities - a_margin = -a_part[:, 0] + a_part[:, 1] - # Determine index of smallest margins - idx = a_margin.argsort()[:n] - - elif measure == "entropy": - # Calculate entropy - a_entropy = entropy(a_prob.T) - # Get index of largest entropies - idx = np.flip(a_entropy.argsort()[-n:]) - - else: - raise ValueError( - f"Unsupported uncertainty measure: '{measure}'\n" - f"Only 'least_confident', 'margin', or 'entropy' is supported." - ) - - return X[idx] diff --git a/autora/experimentalist/utils/__init__.py b/autora/experimentalist/utils/__init__.py deleted file mode 100644 index d4e204653..000000000 --- a/autora/experimentalist/utils/__init__.py +++ /dev/null @@ -1,133 +0,0 @@ -from __future__ import annotations - -import collections -from typing import Union - -import numpy as np - - -def sequence_to_array(iterable): - """ - Converts a finite sequence of experimental conditions into a 2D numpy.array. - - See also: [array_to_sequence][autora.experimentalist.utils.array_to_sequence] - - Examples: - - A simple range object can be converted into an array of dimension 2: - >>> _sequence_to_array(range(5)) # doctest: +NORMALIZE_WHITESPACE - array([[0], [1], [2], [3], [4]]) - - For mixed datatypes, the highest-level type common to all the inputs will be used, so - consider using [_sequence_to_recarray][autora.experimentalist.utils._sequence_to_recarray] - instead. - >>> _sequence_to_array(zip(range(5), "abcde")) # doctest: +NORMALIZE_WHITESPACE - array([['0', 'a'], ['1', 'b'], ['2', 'c'], ['3', 'd'], ['4', 'e']], dtype='>> sequence_to_array("abcde",array_type="numpy.array") # doctest: +NORMALIZE_WHITESPACE - array([['a'], ['b'], ['c'], ['d'], ['e']], dtype='>> sequence_to_array(["abc", "de"],array_type="numpy.array" - ... ) # doctest: +NORMALIZE_WHITESPACE - array([['abc'], ['de']], dtype='>> _sequence_to_recarray(range(5)) # doctest: +NORMALIZE_WHITESPACE - rec.array([(0,), (1,), (2,), (3,), (4,)], dtype=[('f0', '>> _sequence_to_recarray(zip(range(5), "abcde")) # doctest: +NORMALIZE_WHITESPACE - rec.array([(0, 'a'), (1, 'b'), (2, 'c'), (3, 'd'), (4, 'e')], - dtype=[('f0', '>> _sequence_to_recarray("abcde") # doctest: +NORMALIZE_WHITESPACE - rec.array([('a',), ('b',), ('c',), ('d',), ('e',)], dtype=[('f0', '>> _sequence_to_recarray(["abc", "de"]) # doctest: +NORMALIZE_WHITESPACE - rec.array([('abc',), ('de',)], dtype=[('f0', '>> a0 = np.arange(10).reshape(-1,2) - >>> a0 - array([[0, 1], - [2, 3], - [4, 5], - [6, 7], - [8, 9]]) - - The sequence is created as a generator object - >>> array_to_sequence(a0) # doctest: +ELLIPSIS - - - To see the sequence, we can convert it into a list: - >>> l0 = list(array_to_sequence(a0)) - >>> l0 - [array([0, 1]), array([2, 3]), array([4, 5]), array([6, 7]), array([8, 9])] - - The individual rows are themselves 1-dimensional arrays: - >>> l0[0] - array([0, 1]) - - The rows can be subscripted as usual: - >>> l0[2][1] - 5 - - We can also use a record array: - >>> a1 = np.rec.fromarrays([range(5), list("abcde")]) - >>> a1 - rec.array([(0, 'a'), (1, 'b'), (2, 'c'), (3, 'd'), (4, 'e')], - dtype=[('f0', '>> l1 = list(array_to_sequence(a1)) - >>> l1 - [(0, 'a'), (1, 'b'), (2, 'c'), (3, 'd'), (4, 'e')] - - The elements of the list are numpy.records - >>> type(l1[0]) - - - """ - assert isinstance(input, (np.ndarray, np.recarray)) - - for a in input: - yield a diff --git a/autora/skl/__init__.py b/autora/skl/__init__.py deleted file mode 100644 index e69de29bb..000000000 diff --git a/autora/skl/bms.py b/autora/skl/bms.py deleted file mode 100644 index b7ca02d67..000000000 --- a/autora/skl/bms.py +++ /dev/null @@ -1,180 +0,0 @@ -from __future__ import annotations - -import logging -from inspect import signature -from typing import Callable, Dict, List, Optional - -import numpy as np -import pandas as pd -from sklearn.base import BaseEstimator, RegressorMixin -from sklearn.utils.validation import check_array, check_is_fitted, check_X_y - -from autora.theorist.bms import Parallel, Tree, get_priors, utils - -_logger = logging.getLogger(__name__) - -# hyperparameters for BMS -# 1) Priors for MCMC -PRIORS, _ = get_priors() - -# 2) Temperatures for parallel tempering -TEMPERATURES = [1.0] + [1.04**k for k in range(1, 20)] - - -class BMSRegressor(BaseEstimator, RegressorMixin): - """ - Bayesian Machine Scientist. - - BMS finds an optimal function to explain a dataset, given a set of variables, - and a pre-defined number of parameters - - This class is intended to be compatible with the - [Scikit-Learn Estimator API](https://scikit-learn.org/stable/developers/develop.html). - - Examples: - - >>> from autora.theorist.bms import Parallel, utils - >>> import numpy as np - >>> num_samples = 1000 - >>> X = np.linspace(start=0, stop=1, num=num_samples).reshape(-1, 1) - >>> y = 15. * np.ones(num_samples) - >>> estimator = BMSRegressor() - >>> estimator = estimator.fit(X, y) - >>> estimator.predict([[15.]]) - array([[15.]]) - - - Attributes: - pms: the bayesian (parallel) machine scientist model - model_: represents the best-fit model - loss_: represents loss associated with best-fit model - cache_: record of loss_ over model fitting epochs - """ - - def __init__( - self, - prior_par: dict = PRIORS, - ts: List[float] = TEMPERATURES, - epochs: int = 1500, - ): - """ - Arguments: - prior_par: a dictionary of the prior probabilities of different functions based on - wikipedia data scraping - ts: contains a list of the temperatures that the parallel ms works at - """ - self.ts = ts - self.prior_par = prior_par - self.epochs = epochs - self.pms: Parallel = Parallel(Ts=ts) - self.ops = get_priors()[1] - self.custom_ops: Dict[str, Callable] = dict() - self.X_: Optional[np.ndarray] = None - self.y_: Optional[np.ndarray] = None - self.model_: Tree = Tree() - self.models_: List[Tree] = [Tree()] - self.loss_: float = np.inf - self.cache_: List = [] - self.variables: List = [] - - def fit( - self, - X: np.ndarray, - y: np.ndarray, - num_param: int = 1, - root=None, - custom_ops=None, - seed=None, - ) -> BMSRegressor: - """ - Runs the optimization for a given set of `X`s and `y`s. - - Arguments: - X: independent variables in an n-dimensional array - y: dependent variables in an n-dimensional array - num_param: number of parameters - root: fixed root of the tree - custom_ops: user-defined functions to additionally treated as primitives - - Returns: - self (BMS): the fitted estimator - """ - # firstly, store the column names of X since checking will - # cast the type of X to np.ndarray - if hasattr(X, "columns"): - self.variables = list(X.columns) - else: - # create variables X_1 to X_n where n is the number of columns in X - self.variables = ["X%d" % i for i in range(X.shape[1])] - - X, y = check_X_y(X, y) - - # cast X into pd.Pandas again to fit the need in mcmc.py - X = pd.DataFrame(X, columns=self.variables) - y = pd.Series(y) - _logger.info("BMS fitting started") - if custom_ops is not None: - for op in custom_ops: - self.add_primitive(op) - if (root is not None) and (root not in self.ops.keys()): - self.add_primitive(root) - self.pms = Parallel( - Ts=self.ts, - variables=self.variables, - parameters=["a%d" % i for i in range(num_param)], - x=X, - y=y, - prior_par=self.prior_par, - ops=self.ops, - custom_ops=self.custom_ops, - root=root, - seed=seed, - ) - self.model_, self.loss_, self.cache_ = utils.run(self.pms, self.epochs) - self.models_ = list(self.pms.trees.values()) - - _logger.info("BMS fitting finished") - self.X_, self.y_ = X, y - return self - - def predict(self, X: np.ndarray) -> np.ndarray: - """ - Applies the fitted model to a set of independent variables `X`, - to give predictions for the dependent variable `y`. - - Arguments: - X: independent variables in an n-dimensional array - - Returns: - y: predicted dependent variable values - """ - # this validation step will cast X into np.ndarray format - X = check_array(X) - - check_is_fitted(self, attributes=["model_"]) - - assert self.model_ is not None - # we need to cast it back into pd.DataFrame with the original - # column names (generated in `fit`). - # in the future, we might need to look into mcmc.py to remove - # these redundant type castings. - X = pd.DataFrame(X, columns=self.variables) - - return np.expand_dims(self.model_.predict(X).to_numpy(), axis=1) - - def present_results(self): - """ - Prints out the best equation, its description length, - along with a plot of how this has progressed over the course of the search tasks. - """ - check_is_fitted(self, attributes=["model_", "loss_", "cache_"]) - assert self.model_ is not None - assert self.loss_ is not None - assert self.cache_ is not None - - utils.present_results(self.model_, self.loss_, self.cache_) - - def add_primitive(self, op: Callable): - self.custom_ops.update({op.__name__: op}) - self.ops.update({op.__name__: len(signature(op).parameters)}) - self.prior_par.update({"Nopi_" + op.__name__: 1}) diff --git a/autora/skl/bsr.py b/autora/skl/bsr.py deleted file mode 100644 index 2abda3161..000000000 --- a/autora/skl/bsr.py +++ /dev/null @@ -1,357 +0,0 @@ -import copy -import logging -import time -from typing import List, Optional, Union - -import numpy as np -import pandas as pd -from scipy.stats import invgamma -from sklearn.base import BaseEstimator, RegressorMixin -from sklearn.utils.validation import check_is_fitted - -from autora.theorist.bsr.funcs import get_all_nodes, grow, prop_new -from autora.theorist.bsr.node import Node -from autora.theorist.bsr.prior import get_prior_dict - -_logger = logging.getLogger(__name__) - - -class BSRRegressor(BaseEstimator, RegressorMixin): - """ - Bayesian Symbolic Regression (BSR) - - A MCMC-sampling-based Bayesian approach to symbolic regression -- a machine learning method - that bridges `X` and `y` by automatically building up mathematical expressions of basic - functions. Performance and speed of `BSR` depends on pre-defined parameters. - - This class is intended to be compatible with the - [Scikit-Learn Estimator API](https://scikit-learn.org/stable/developers/develop.html). - - Examples: - - >>> import numpy as np - >>> num_samples = 1000 - >>> X = np.linspace(start=0, stop=1, num=num_samples).reshape(-1, 1) - >>> y = np.sqrt(X) - >>> estimator = BSRRegressor() - >>> estimator = estimator.fit(X, y) - >>> estimator.predict([[1.5]]) - - Attributes: - roots_: the root(s) of the best-fit symbolic regression (SR) tree(s) - betas_: the beta parameters of the best-fit model - train_errs_: the training losses associated with the best-fit model - """ - - def __init__( - self, - tree_num: int = 3, - itr_num: int = 5000, - alpha1: float = 0.4, - alpha2: float = 0.4, - beta: float = -1, - show_log: bool = False, - val: int = 100, - last_idx: int = -1, - prior_name: str = "Uniform", - ): - """ - Arguments: - tree_num: pre-specified number of SR trees to fit in the model - itr_num: number of iterations steps to run for the model fitting process - alpha1, alpha2, beta: the hyper-parameters of priors - show_log: whether to output certain logging info - val: number of validation steps to run for each iteration step - last_idx: the index of which latest (most best-fit) model to use - (-1 means the latest one) - """ - self.tree_num = tree_num - self.itr_num = itr_num - self.alpha1 = alpha1 - self.alpha2 = alpha2 - self.beta = beta - self.show_log = show_log - self.val = val - self.last_idx = last_idx - self.prior_name = prior_name - - # attributes that are not set until `fit` - self.roots_: Optional[List[List[Node]]] = None - self.betas_: Optional[List[List[float]]] = None - self.train_errs_: Optional[List[List[float]]] = None - - self.X_: Optional[Union[np.ndarray, pd.DataFrame]] = None - self.y_: Optional[Union[np.ndarray, pd.DataFrame]] = None - - def predict(self, X: Union[np.ndarray, pd.DataFrame]) -> np.ndarray: - """ - Applies the fitted model to a set of independent variables `X`, - to give predictions for the dependent variable `y`. - - Arguments: - X: independent variables in an n-dimensional array - Returns: - y: predicted dependent variable values - """ - if isinstance(X, np.ndarray): - X = pd.DataFrame(X) - - check_is_fitted(self, attributes=["roots_"]) - - k = self.tree_num - n_test = X.shape[0] - tree_outs = np.zeros((n_test, k)) - - assert self.roots_ and self.betas_ - for i in np.arange(k): - tree_out = self.roots_[-self.last_idx][i].evaluate(X) - tree_out.shape = tree_out.shape[0] - tree_outs[:, i] = tree_out - - ones = np.ones((n_test, 1)) - tree_outs = np.concatenate((ones, tree_outs), axis=1) - _beta = self.betas_[-self.last_idx] - output = np.matmul(tree_outs, _beta) - - return output - - def fit( - self, X: Union[np.ndarray, pd.DataFrame], y: Union[np.ndarray, pd.DataFrame] - ): - """ - Runs the optimization for a given set of `X`s and `y`s. - - Arguments: - X: independent variables in an n-dimensional array - y: dependent variables in an n-dimensional array - Returns: - self (BSR): the fitted estimator - """ - # train_data must be a dataframe - if isinstance(X, np.ndarray): - X = pd.DataFrame(X) - train_errs: List[List[float]] = [] - roots: List[List[Node]] = [] - betas: List[List[float]] = [] - itr_num = self.itr_num - k = self.tree_num - beta = self.beta - - if self.show_log: - _logger.info("Starting training") - while len(train_errs) < itr_num: - n_feature = X.shape[1] - n_train = X.shape[0] - - ops_name_lst, ops_weight_lst, ops_priors = get_prior_dict( - prior_name=self.prior_name - ) - - # List of tree samples - root_lists: List[List[Node]] = [[] for _ in range(k)] - - sigma_a_list = [] # List of sigma_a, for each component tree - sigma_b_list = [] # List of sigma_b, for each component tree - - sigma_y = invgamma.rvs(1) # for output y - - # Initialization - for count in np.arange(k): - # create a new root node - root = Node(0) - sigma_a = invgamma.rvs(1) - sigma_b = invgamma.rvs(1) - - # grow a tree from the root node - if self.show_log: - _logger.info("Grow a tree from the root node") - - grow( - root, - ops_name_lst, - ops_weight_lst, - ops_priors, - n_feature, - sigma_a=sigma_a, - sigma_b=sigma_b, - ) - - # put the root into list - root_lists[count].append(root) - sigma_a_list.append(sigma_a) - sigma_b_list.append(sigma_b) - - # calculate beta - if self.show_log: - _logger.info("Calculate beta") - # added a constant in the regression by fwl - tree_outputs = np.zeros((n_train, k)) - - for count in np.arange(k): - temp = root_lists[count][-1].evaluate(X) - temp.shape = temp.shape[0] - tree_outputs[:, count] = temp - - constant = np.ones((n_train, 1)) # added a constant - tree_outputs = np.concatenate((constant, tree_outputs), axis=1) - scale = np.max(np.abs(tree_outputs)) - tree_outputs = tree_outputs / scale - epsilon = ( - np.eye(tree_outputs.shape[1]) * 1e-6 - ) # add to the matrix to prevent singular matrrix - yy = np.array(y) - yy.shape = (yy.shape[0], 1) - _beta = np.linalg.inv( - np.matmul(tree_outputs.transpose(), tree_outputs) + epsilon - ) - _beta = np.matmul(_beta, np.matmul(tree_outputs.transpose(), yy)) - output = np.matmul(tree_outputs, _beta) - # rescale the beta, above we scale tree_outputs for calculation by fwl - _beta /= scale - - total = 0 - accepted = 0 - errs = [] - total_list = [] - - tic = time.time() - - if self.show_log: - _logger.info("While total < ", self.val) - while total < self.val: - switch_label = False - for count in range(k): - curr_roots = [] # list of current components - for i in np.arange(k): - curr_roots.append(root_lists[i][-1]) - # pick the root to be changed - sigma_a = sigma_a_list[count] - sigma_b = sigma_b_list[count] - - # the returned root is a new copy - if self.show_log: - _logger.info("new_prop...") - res, root, sigma_y, sigma_a, sigma_b = prop_new( - curr_roots, - count, - sigma_y, - beta, - sigma_a, - sigma_b, - X, - y, - ops_name_lst, - ops_weight_lst, - ops_priors, - ) - if self.show_log: - _logger.info("res:", res) - print(root) - - total += 1 - # update sigma_a and sigma_b - sigma_a_list[count] = sigma_a - sigma_b_list[count] = sigma_b - - if res: - # flag = False - accepted += 1 - # record newly accepted root - root_lists[count].append(copy.deepcopy(root)) - - tree_outputs = np.zeros((n_train, k)) - - for i in np.arange(k): - temp = root_lists[count][-1].evaluate(X) - temp.shape = temp.shape[0] - tree_outputs[:, i] = temp - - constant = np.ones((n_train, 1)) - tree_outputs = np.concatenate((constant, tree_outputs), axis=1) - scale = np.max(np.abs(tree_outputs)) - tree_outputs = tree_outputs / scale - epsilon = ( - np.eye(tree_outputs.shape[1]) * 1e-6 - ) # add to prevent singular matrix - yy = np.array(y) - yy.shape = (yy.shape[0], 1) - _beta = np.linalg.inv( - np.matmul(tree_outputs.transpose(), tree_outputs) + epsilon - ) - _beta = np.matmul( - _beta, np.matmul(tree_outputs.transpose(), yy) - ) - - output = np.matmul(tree_outputs, _beta) - # rescale the beta, above we scale tree_outputs for calculation - _beta /= scale - - error = 0 - for i in np.arange(n_train): - error += (output[i, 0] - y[i]) * (output[i, 0] - y[i]) - - rmse = np.sqrt(error / n_train) - errs.append(rmse) - - total_list.append(total) - total = 0 - - if len(errs) > 100: - lapses = min(10, len(errs)) - converge_ratio = 1 - np.min(errs[-lapses:]) / np.mean( - errs[-lapses:] - ) - if converge_ratio < 0.05: - # converged - switch_label = True - break - if switch_label: - break - - if self.show_log: - for i in np.arange(0, len(y)): - _logger.info(output[i, 0], y[i]) - - toc = time.time() - tictoc = toc - tic - if self.show_log: - _logger.info("Run time: {:.2f}s".format(tictoc)) - - _logger.info("------") - _logger.info( - "Mean rmse of last 5 accepts: {}".format(np.mean(errs[-6:-1])) - ) - - train_errs.append(errs) - roots.append(curr_roots) - betas.append(_beta) - - self.roots_ = roots - self.train_errs_ = train_errs - self.betas_ = betas - self.X_, self.y_ = X, y - return self - - def _model(self, last_ind: int = 1) -> List[str]: - """ - Return the models in the last-i-th iteration, default `last_ind = 1` refers to the - last (final) iteration. - """ - models = [] - assert self.roots_ - for i in range(self.tree_num): - models.append(self.roots_[-last_ind][i].get_expression()) - return models - - def _complexity(self) -> int: - """ - Return the complexity of the final models, which equals to the sum of nodes in all - expression trees. - """ - cp = 0 - assert self.roots_ - for i in range(self.tree_num): - root_node = self.roots_[-1][i] - num = len(get_all_nodes(root_node)) - cp = cp + num - return cp diff --git a/autora/skl/darts.py b/autora/skl/darts.py deleted file mode 100644 index c22f1c60f..000000000 --- a/autora/skl/darts.py +++ /dev/null @@ -1,871 +0,0 @@ -import copy -import logging -from dataclasses import dataclass -from itertools import cycle -from types import SimpleNamespace -from typing import Any, Callable, Iterator, Literal, Optional, Sequence, Tuple - -import numpy as np -import torch -import torch.nn -import torch.nn.utils -import torch.utils.data -from matplotlib import pyplot as plt -from sklearn.base import BaseEstimator, RegressorMixin -from sklearn.utils.validation import check_array, check_is_fitted, check_X_y -from tqdm.auto import tqdm - -from autora.theorist.darts import ( - PRIMITIVES, - Architect, - AvgrageMeter, - DARTSType, - Network, - darts_dataset_from_ndarray, - darts_model_plot, - format_input_target, - get_loss_function, - get_output_format, - get_output_str, -) -from autora.variable import ValueType - -_logger = logging.getLogger(__name__) - -_progress_indicator = tqdm - -SAMPLING_STRATEGIES = Literal["max", "sample"] -IMPLEMENTED_DARTS_TYPES = Literal["original", "fair"] -IMPLEMENTED_OUTPUT_TYPES = Literal[ - "real", - "sigmoid", - "probability", - "probability_sample", - "probability_distribution", -] - - -@dataclass(frozen=True) -class _DARTSResult: - """A container for passing fitted DARTS results around.""" - - network: Network - model: torch.nn.Module - - -def _general_darts( - X: np.ndarray, - y: np.ndarray, - network: Optional[Network] = None, - batch_size: int = 20, - num_graph_nodes: int = 2, - output_type: IMPLEMENTED_OUTPUT_TYPES = "real", - classifier_weight_decay: float = 1e-2, - darts_type: IMPLEMENTED_DARTS_TYPES = "original", - init_weights_function: Optional[Callable] = None, - param_updates_per_epoch: int = 20, - param_updates_for_sampled_model: int = 100, - param_learning_rate_max: float = 2.5e-2, - param_learning_rate_min: float = 0.01, - param_momentum: float = 9e-1, - param_weight_decay: float = 3e-4, - arch_learning_rate_max: float = 3e-3, - arch_updates_per_epoch: int = 20, - arch_weight_decay: float = 1e-4, - arch_weight_decay_df: float = 3e-4, - arch_weight_decay_base: float = 0.0, - arch_momentum: float = 9e-1, - fair_darts_loss_weight: int = 1, - max_epochs: int = 100, - grad_clip: float = 5, - primitives: Sequence[str] = PRIMITIVES, - train_classifier_coefficients: bool = False, - train_classifier_bias: bool = False, - execution_monitor: Callable = (lambda *args, **kwargs: None), - sampling_strategy: SAMPLING_STRATEGIES = "max", -) -> _DARTSResult: - """ - Function to implement the DARTS optimization, given a fixed architecture and input data. - - Arguments: - X: Input data. - y: Target data. - batch_size: Batch size for the data loader. - num_graph_nodes: Number of nodes in the desired computation graph. - output_type: Type of output function to use. This function is applied to transform - the output of the mixture architecture. - classifier_weight_decay: Weight decay for the classifier. - darts_type: Type of DARTS to use ('original' or 'fair'). - init_weights_function: Function to initialize the parameters of each operation. - param_learning_rate_max: Initial (maximum) learning rate for the operation parameters. - param_learning_rate_min: Final (minimum) learning rate for the operation parameters. - param_momentum: Momentum for the operation parameters. - param_weight_decay: Weight decay for the operation parameters. - param_updates_per_epoch: Number of updates to perform per epoch. - for the operation parameters. - arch_learning_rate_max: Initial (maximum) learning rate for the architecture. - arch_updates_per_epoch: Number of architecture weight updates to perform per epoch. - arch_weight_decay: Weight decay for the architecture weights. - arch_weight_decay_df: An additional weight decay that scales with the number of parameters - (degrees of freedom) in the operation. The higher this weight decay, the more DARTS will - prefer simple operations. - arch_weight_decay_base: A base weight decay that is added to the scaled weight decay. - arch_momentum: Momentum for the architecture weights. - fair_darts_loss_weight: Weight of the loss in fair darts which forces architecture weights - to become either 0 or 1. - max_epochs: Maximum number of epochs to train for. - grad_clip: Gradient clipping value for updating the parameters of the operations. - primitives: List of primitives (operations) to use. - train_classifier_coefficients: Whether to train the coefficients of the classifier. - train_classifier_bias: Whether to train the bias of the classifier. - execution_monitor: Function to monitor the execution of the model. - - Returns: - A _DARTSResult object containing the fitted model and the network architecture. - """ - - _logger.info("Starting fit initialization") - - data_loader, input_dimensions, output_dimensions = _get_data_loader( - X=X, - y=y, - batch_size=batch_size, - ) - - criterion = get_loss_function(ValueType(output_type)) - output_function = get_output_format(ValueType(output_type)) - - if network is None: - network = Network( - num_classes=output_dimensions, - criterion=criterion, - steps=num_graph_nodes, - n_input_states=input_dimensions, - classifier_weight_decay=classifier_weight_decay, - darts_type=DARTSType(darts_type), - primitives=primitives, - train_classifier_coefficients=train_classifier_coefficients, - train_classifier_bias=train_classifier_bias, - ) - - if init_weights_function is not None: - network.apply(init_weights_function) - - # Generate the architecture of the model - architect = Architect( - network, - arch_momentum=arch_momentum, - arch_weight_decay=arch_weight_decay, - arch_weight_decay_df=arch_weight_decay_df, - arch_weight_decay_base=arch_weight_decay_base, - fair_darts_loss_weight=fair_darts_loss_weight, - arch_learning_rate_max=arch_learning_rate_max, - ) - - _logger.info("Starting fit.") - network.train() - - for epoch in _progress_indicator(range(max_epochs)): - - _logger.debug(f"Running fit, epoch {epoch}") - - data_iterator = _get_data_iterator(data_loader) - - # Do the Architecture update - for arch_step in range(arch_updates_per_epoch): - _logger.debug( - f"Running architecture update, " - f"epoch: {epoch}, architecture: {arch_step}" - ) - - X_batch, y_batch = _get_next_input_target( - data_iterator, criterion=criterion - ) - - architect.step( - input_valid=X_batch, - target_valid=y_batch, - network_optimizer=architect.optimizer, - unrolled=False, - ) - - # Then run the param optimization - _optimize_coefficients( - network=network, - criterion=criterion, - data_loader=data_loader, - grad_clip=grad_clip, - param_learning_rate_max=param_learning_rate_max, - param_learning_rate_min=param_learning_rate_min, - param_momentum=param_momentum, - param_update_steps=param_updates_per_epoch, - param_weight_decay=param_weight_decay, - ) - - execution_monitor(**locals()) - - model = _generate_model( - network_=network, - output_type=output_type, - sampling_strategy=sampling_strategy, - data_loader=data_loader, - param_update_steps=param_updates_for_sampled_model, - param_learning_rate_max=param_learning_rate_max, - param_learning_rate_min=param_learning_rate_min, - param_momentum=param_momentum, - param_weight_decay=param_weight_decay, - grad_clip=grad_clip, - ) - - results = _DARTSResult(model=model, network=network) - - return results - - -def _optimize_coefficients( - network: Network, - criterion: torch.nn.Module, - data_loader: torch.utils.data.DataLoader, - grad_clip: float, - param_learning_rate_max: float, - param_learning_rate_min: float, - param_momentum: float, - param_update_steps: int, - param_weight_decay: float, -): - """ - Function to optimize the coefficients of a DARTS Network. - - Warning: This modifies the coefficients of the Network in place. - - Arguments: - network: The DARTS Network to optimize the coefficients of. - criterion: The loss function to use. - data_loader: The data loader to use for the optimization. - grad_clip: Whether to clip the gradients. - param_update_steps: The number of parameter update steps to perform. - param_learning_rate_max: Initial (maximum) learning rate for the operation parameters. - param_learning_rate_min: Final (minimum) learning rate for the operation parameters. - param_momentum: Momentum for the operation parameters. - param_weight_decay: Weight decay for the operation parameters. - """ - optimizer = torch.optim.SGD( - params=network.parameters(), - lr=param_learning_rate_max, - momentum=param_momentum, - weight_decay=param_weight_decay, - ) - scheduler = torch.optim.lr_scheduler.CosineAnnealingLR( - optimizer=optimizer, - T_max=param_update_steps, - eta_min=param_learning_rate_min, - ) - - data_iterator = _get_data_iterator(data_loader) - - objs = AvgrageMeter() - - if network.count_parameters()[0] == 0: - return - - for param_step in range(param_update_steps): - _logger.debug(f"Running parameter update, " f"param: {param_step}") - - lr = scheduler.get_last_lr()[0] - X_batch, y_batch = _get_next_input_target(data_iterator, criterion=criterion) - optimizer.zero_grad() - - # compute loss for the model - logits = network(X_batch) - loss = criterion(logits, y_batch) - - # update gradients for model - loss.backward() - - # clips the gradient norm - torch.nn.utils.clip_grad_norm_(network.parameters(), grad_clip) - - # moves optimizer one step (applies gradients to weights) - optimizer.step() - - # applies weight decay to classifier weights - network.apply_weight_decay_to_classifier(lr) - - # moves the annealing scheduler forward to determine new learning rate - scheduler.step() - - # compute accuracy metrics - n = X_batch.size(0) - objs.update(loss.data, n) - - -def _get_data_loader( - X: np.ndarray, - y: np.ndarray, - batch_size: int, -) -> torch.utils.data.DataLoader: - """Construct a minimal torch.utils.data.DataLoader for the input data. - - Arguments: - X: The input data. - y: The target data. - batch_size: The batch size to use. - - Returns: - A torch.utils.data.DataLoader for the input data. - """ - - X_, y_ = check_X_y(X, y, ensure_2d=True, multi_output=True) - - if y_.ndim == 1: - y_ = y_.reshape((y_.size, 1)) - - input_dimensions = X_.shape[1] - output_dimensions = y_.shape[1] - - experimental_data = darts_dataset_from_ndarray(X_, y_) - - data_loader = torch.utils.data.DataLoader( - experimental_data, - batch_size=batch_size, - shuffle=True, - pin_memory=True, - num_workers=0, - ) - return data_loader, input_dimensions, output_dimensions - - -def _get_data_iterator(data_loader: torch.utils.data.DataLoader) -> Iterator: - """Get an iterator for the data loader. - - Arguments: - data_loader: The data loader to get the iterator for. - - Returns: - An iterator for the data loader. - """ - data_iterator = cycle(iter(data_loader)) - return data_iterator - - -def _get_next_input_target( - data_iterator: Iterator, criterion: torch.nn.Module -) -> Tuple[torch.Tensor, torch.Tensor]: - """ - Get the next input and target from the data iterator. - Args: - data_iterator: The data iterator to get the next input and target from. - criterion: The loss function to use. - - Returns: - The next input and target from the data iterator. - - """ - input_search, target_search = next(data_iterator) - - input_var = torch.autograd.Variable(input_search, requires_grad=False) - target_var = torch.autograd.Variable(target_search, requires_grad=False) - - input_fmt, target_fmt = format_input_target( - input_var, target_var, criterion=criterion - ) - return input_fmt, target_fmt - - -def _generate_model( - network_: Network, - output_type: IMPLEMENTED_OUTPUT_TYPES, - sampling_strategy: SAMPLING_STRATEGIES, - data_loader: torch.utils.data.DataLoader, - param_update_steps: int, - param_learning_rate_max: float, - param_learning_rate_min: float, - param_momentum: float, - param_weight_decay: float, - grad_clip: float, -) -> Network: - """ - Generate a model architecture from mixed DARTS model. - - Arguments: - sampling_strategy: The sampling strategy used to pick the operations - based on the trained architecture weights (e.g. "max", "sample"). - network: The mixed DARTS model. - coefficient_optimizer: The function to optimize the coefficients of the trained model - output_type: The output value type that is used for the output of the sampled model. - param_update_steps: The number of parameter update steps to perform. - param_learning_rate_max: Initial (maximum) learning rate for the operation parameters. - param_learning_rate_min: Final (minimum) learning rate for the operation parameters. - param_momentum: Momentum for the operation parameters. - param_weight_decay: Weight decay for the operation parameters. - - Returns: - A model architecture that is a combination of the trained model and the output function. - """ - criterion = get_loss_function(ValueType(output_type)) - output_function = get_output_format(ValueType(output_type)) - - # Set edges in the network with the highest weights to 1, others to 0 - model_without_output_function = copy.deepcopy(network_) - - if sampling_strategy == "max": - new_weights = model_without_output_function.max_alphas_normal() - elif sampling_strategy == "sample": - new_weights = model_without_output_function.sample_alphas_normal() - - model_without_output_function.fix_architecture(True, new_weights=new_weights) - - # Re-optimize the parameters - - _optimize_coefficients( - model_without_output_function, - criterion=criterion, - data_loader=data_loader, - grad_clip=grad_clip, - param_learning_rate_max=param_learning_rate_max, - param_learning_rate_min=param_learning_rate_min, - param_momentum=param_momentum, - param_update_steps=param_update_steps, - param_weight_decay=param_weight_decay, - ) - - # Include the output function - model = torch.nn.Sequential(model_without_output_function, output_function) - - return model - - -class DARTSRegressor(BaseEstimator, RegressorMixin): - """ - Differentiable ARchiTecture Search Regressor. - - DARTS finds a composition of functions and coefficients to minimize a loss function suitable for - the dependent variable. - - This class is intended to be compatible with the - [Scikit-Learn Estimator API](https://scikit-learn.org/stable/developers/develop.html). - - Examples: - - >>> import numpy as np - >>> num_samples = 1000 - >>> X = np.linspace(start=0, stop=1, num=num_samples).reshape(-1, 1) - >>> y = 15. * np.ones(num_samples) - >>> estimator = DARTSRegressor(num_graph_nodes=1) - >>> estimator = estimator.fit(X, y) - >>> estimator.predict([[0.5]]) - array([[15.051043]], dtype=float32) - - - Attributes: - network_: represents the optimized network for the architecture search, without the - output function - model_: represents the best-fit model including the output function - after sampling of the network to pick a single computation graph. - By default, this is the computation graph with the maximum weights, - but can be set to a graph based on a sample on the edge weights - by running the `resample_model(sample_strategy="sample")` method. - It can be reset by running the `resample_model(sample_strategy="max")` method. - - - - """ - - def __init__( - self, - batch_size: int = 64, - num_graph_nodes: int = 2, - output_type: IMPLEMENTED_OUTPUT_TYPES = "real", - classifier_weight_decay: float = 1e-2, - darts_type: IMPLEMENTED_DARTS_TYPES = "original", - init_weights_function: Optional[Callable] = None, - param_updates_per_epoch: int = 10, - param_updates_for_sampled_model: int = 100, - param_learning_rate_max: float = 2.5e-2, - param_learning_rate_min: float = 0.01, - param_momentum: float = 9e-1, - param_weight_decay: float = 3e-4, - arch_updates_per_epoch: int = 1, - arch_learning_rate_max: float = 3e-3, - arch_weight_decay: float = 1e-4, - arch_weight_decay_df: float = 3e-4, - arch_weight_decay_base: float = 0.0, - arch_momentum: float = 9e-1, - fair_darts_loss_weight: int = 1, - max_epochs: int = 10, - grad_clip: float = 5, - primitives: Sequence[str] = PRIMITIVES, - train_classifier_coefficients: bool = False, - train_classifier_bias: bool = False, - execution_monitor: Callable = (lambda *args, **kwargs: None), - sampling_strategy: SAMPLING_STRATEGIES = "max", - ) -> None: - """ - Initializes the DARTSRegressor. - - Arguments: - batch_size: Batch size for the data loader. - num_graph_nodes: Number of nodes in the desired computation graph. - output_type: Type of output function to use. This function is applied to transform - the output of the mixture architecture. - classifier_weight_decay: Weight decay for the classifier. - darts_type: Type of DARTS to use ('original' or 'fair'). - init_weights_function: Function to initialize the parameters of each operation. - param_updates_per_epoch: Number of updates to perform per epoch. - for the operation parameters. - param_learning_rate_max: Initial (maximum) learning rate for the operation parameters. - param_learning_rate_min: Final (minimum) learning rate for the operation parameters. - param_momentum: Momentum for the operation parameters. - param_weight_decay: Weight decay for the operation parameters. - arch_updates_per_epoch: Number of architecture weight updates to perform per epoch. - arch_learning_rate_max: Initial (maximum) learning rate for the architecture. - arch_weight_decay: Weight decay for the architecture weights. - arch_weight_decay_df: An additional weight decay that scales with the number of - parameters (degrees of freedom) in the operation. The higher this weight decay, - the more DARTS will prefer simple operations. - arch_weight_decay_base: A base weight decay that is added to the scaled weight decay. - arch_momentum: Momentum for the architecture weights. - fair_darts_loss_weight: Weight of the loss in fair darts which forces architecture - weights to become either 0 or 1. - max_epochs: Maximum number of epochs to train for. - grad_clip: Gradient clipping value for updating the parameters of the operations. - primitives: List of primitives (operations) to use. - train_classifier_coefficients: Whether to train the coefficients of the classifier. - train_classifier_bias: Whether to train the bias of the classifier. - execution_monitor: Function to monitor the execution of the model. - primitives: list of primitive operations used in the DARTS network, - e.g., 'add', 'subtract', 'none'. For details, see - [`autora.theorist.darts.operations`][autora.theorist.darts.operations] - """ - - self.batch_size = batch_size - - self.num_graph_nodes = num_graph_nodes - self.classifier_weight_decay = classifier_weight_decay - self.darts_type = darts_type - self.init_weights_function = init_weights_function - - self.param_updates_per_epoch = param_updates_per_epoch - self.param_updates_for_sampled_model = param_updates_for_sampled_model - - self.param_learning_rate_max = param_learning_rate_max - self.param_learning_rate_min = param_learning_rate_min - self.param_momentum = param_momentum - self.arch_momentum = arch_momentum - self.param_weight_decay = param_weight_decay - - self.arch_updates_per_epoch = arch_updates_per_epoch - self.arch_weight_decay = arch_weight_decay - self.arch_weight_decay_df = arch_weight_decay_df - self.arch_weight_decay_base = arch_weight_decay_base - self.arch_learning_rate_max = arch_learning_rate_max - self.fair_darts_loss_weight = fair_darts_loss_weight - - self.max_epochs = max_epochs - self.grad_clip = grad_clip - - self.primitives = primitives - - self.output_type = output_type - self.darts_type = darts_type - - self.X_: Optional[np.ndarray] = None - self.y_: Optional[np.ndarray] = None - self.network_: Optional[Network] = None - self.model_: Optional[Network] = None - - self.train_classifier_coefficients = train_classifier_coefficients - self.train_classifier_bias = train_classifier_bias - - self.execution_monitor = execution_monitor - - self.sampling_strategy = sampling_strategy - - def fit(self, X: np.ndarray, y: np.ndarray): - """ - Runs the optimization for a given set of `X`s and `y`s. - - Arguments: - X: independent variables in an n-dimensional array - y: dependent variables in an n-dimensional array - - Returns: - self (DARTSRegressor): the fitted estimator - """ - - if self.output_type == "class": - raise NotImplementedError( - "Classification not implemented for DARTSRegressor." - ) - - params = self.get_params() - - fit_results = _general_darts(X=X, y=y, network=self.network_, **params) - self.X_ = X - self.y_ = y - self.network_ = fit_results.network - self.model_ = fit_results.model - return self - - def predict(self, X: np.ndarray) -> np.ndarray: - """ - Applies the fitted model to a set of independent variables `X`, - to give predictions for the dependent variable `y`. - - Arguments: - X: independent variables in an n-dimensional array - - Returns: - y: predicted dependent variable values - """ - X_ = check_array(X) - - # First run the checks using the scikit-learn API, listing the key parameters - check_is_fitted(self, attributes=["model_"]) - - # Since self.model_ is initialized as None, mypy throws an error if we - # just call self.model_(X) in the predict method, as it could still be none. - # MyPy doesn't understand that the sklearn check_is_fitted function - # ensures the self.model_ parameter is initialized and otherwise throws an error, - # so we check that explicitly here and pass the model which can't be None. - assert self.model_ is not None - - y_ = self.model_(torch.as_tensor(X_).float()) - y = y_.detach().numpy() - - return y - - def visualize_model( - self, - input_labels: Optional[Sequence[str]] = None, - ): - """ - Visualizes the model architecture as a graph. - - Arguments: - input_labels: labels for the input nodes - - """ - - check_is_fitted(self, attributes=["model_"]) - assert self.model_ is not None - fitted_sampled_network = self.model_[0] - - genotype = Network.genotype(fitted_sampled_network).normal - ( - _, - _, - param_list, - ) = fitted_sampled_network.count_parameters() - - if input_labels is not None: - input_labels_ = tuple(input_labels) - else: - input_labels_ = self._get_input_labels() - - assert self.y_ is not None - out_dim = 1 if self.y_.ndim == 1 else self.y_.shape[1] - - out_func = get_output_str(ValueType(self.output_type)) - - # call to plot function - graph = darts_model_plot( - genotype=genotype, - input_labels=input_labels_, - param_list=param_list, - full_label=True, - out_dim=out_dim, - out_fnc=out_func, - ) - - return graph - - def _get_input_labels(self): - """ - Returns the input labels for the model. - - Returns: - input_labels: labels for the input nodes - - """ - return self._get_labels(self.X_, "x") - - def _get_output_labels(self): - """ - Returns the output labels for the model. - - Returns: - output_labels: labels for the output nodes - - """ - return self._get_labels(self.y_, "y") - - def _get_labels( - self, data: Optional[np.ndarray], default_label: str - ) -> Sequence[str]: - """ - Returns the labels for the model. - - Arguments: - data: data to get labels for - default_label: default label to use if no labels are provided - - Returns: - labels: labels for the model - - """ - assert data is not None - - if hasattr(data, "columns"): # it's a dataframe with column names - labels_ = tuple(data.columns) - elif ( - hasattr(data, "name") and len(data.shape) == 1 - ): # it's a single series with a single name - labels_ = (data.name,) - - else: - dim = 1 if data.ndim == 1 else data.shape[1] - labels_ = tuple(f"{default_label}{i+1}" for i in range(dim)) - return labels_ - - def model_repr( - self, - input_labels: Optional[Sequence[str]] = None, - output_labels: Optional[Sequence[str]] = None, - output_function_label: str = "", - decimals_to_display: int = 2, - output_format: Literal["latex", "console"] = "console", - ) -> str: - """ - Prints the equations of the model architecture. - - Args: - input_labels: which names to use for the independent variables (X) - output_labels: which names to use for the dependent variables (y) - output_function_label: name to use for the output transformation - decimals_to_display: amount of rounding for the coefficient values - output_format: whether the output should be formatted for - the command line (`console`) or as equations in a latex file (`latex`) - - Returns: - The equations of the model architecture - - """ - assert self.model_ is not None - fitted_sampled_network: Network = self.model_[0] - - if input_labels is None: - input_labels_ = self._get_input_labels() - else: - input_labels_ = input_labels - - if output_labels is None: - output_labels_ = self._get_output_labels() - else: - output_labels_ = output_labels - - edge_list = fitted_sampled_network.architecture_to_str_list( - input_labels=input_labels_, - output_labels=output_labels_, - output_function_label=output_function_label, - decimals_to_display=decimals_to_display, - output_format=output_format, - ) - - model_repr_ = "\n".join(["Model:"] + edge_list) - return model_repr_ - - -class DARTSExecutionMonitor: - """ - A monitor of the execution of the DARTS algorithm. - """ - - def __init__(self): - """ - Initializes the execution monitor. - """ - self.arch_weight_history = list() - self.loss_history = list() - self.epoch_history = list() - self.primitives = list() - - def execution_monitor( - self, - network: Network, - architect: Architect, - epoch: int, - **kwargs: Any, - ): - """ - A function to monitor the execution of the DARTS algorithm. - - Arguments: - network: The DARTS network containing the weights each operation - in the mixture architecture - architect: The architect object used to construct the mixture architecture. - epoch: The current epoch of the training. - **kwargs: other parameters which may be passed from the DARTS optimizer - """ - - # collect data for visualization - self.epoch_history.append(epoch) - self.arch_weight_history.append( - network.arch_parameters()[0].detach().numpy().copy()[np.newaxis, :] - ) - self.loss_history.append(architect.current_loss) - self.primitives = network.primitives - - def display(self): - """ - A function to display the execution monitor. This function will generate two plots: - (1) A plot of the training loss vs. epoch, - (2) a plot of the architecture weights vs. epoch, divided into subplots by each edge - in the mixture architecture. - """ - - loss_fig, loss_ax = plt.subplots(1, 1) - loss_ax.plot(self.loss_history) - - loss_ax.set_ylabel("Loss", fontsize=14) - loss_ax.set_xlabel("Epoch", fontsize=14) - loss_ax.set_title("Training Loss") - - arch_weight_history_array = np.vstack(self.arch_weight_history) - num_epochs, num_edges, num_primitives = arch_weight_history_array.shape - - subplots_per_side = int(np.ceil(np.sqrt(num_edges))) - - arch_fig, arch_axes = plt.subplots( - subplots_per_side, - subplots_per_side, - sharex=True, - sharey=True, - figsize=(10, 10), - squeeze=False, - ) - - arch_fig.suptitle("Architecture Weights", fontsize=10) - - for (edge_i, ax) in zip(range(num_edges), arch_axes.flat): - for primitive_i in range(num_primitives): - print(f"{edge_i}, {primitive_i}, {ax}") - ax.plot( - arch_weight_history_array[:, edge_i, primitive_i], - label=f"{self.primitives[primitive_i]}", - ) - - ax.set_title("k{}".format(edge_i), fontsize=8) - - # there is no need to have the legend for each subplot - if edge_i == 0: - ax.legend(loc="upper center") - ax.set_ylabel("Edge Weights", fontsize=8) - ax.set_xlabel("Epoch", fontsize=8) - - return SimpleNamespace( - loss_fig=loss_fig, - loss_ax=loss_ax, - arch_fig=arch_fig, - arch_axes=arch_axes, - ) diff --git a/autora/synthetic/__init__.py b/autora/synthetic/__init__.py deleted file mode 100644 index e2d0b94aa..000000000 --- a/autora/synthetic/__init__.py +++ /dev/null @@ -1,77 +0,0 @@ -""" -Provides an interface for loading and saving synthetic experiments. - -Examples: - The registry is accessed using the `retrieve` function, optionally setting parameters: - >>> from autora.synthetic import retrieve, describe - >>> import numpy as np - >>> s = retrieve("weber_fechner",rng=np.random.default_rng(seed=180)) # the Weber-Fechner Law - - Use the describe function to give information about the synthetic experiment: - >>> describe(s) # doctest: +ELLIPSIS +NORMALIZE_WHITESPACE - Weber-Fechner Law... - - The synthetic experiement `s` has properties like the name of the experiment: - >>> s.name - 'Weber-Fechner Law' - - ... a valid metadata description: - >>> s.metadata # doctest: +ELLIPSIS - VariableCollection(...) - - ... a function to generate the full domain of the data (if possible) - >>> x = s.domain() - >>> x # doctest: +ELLIPSIS - array([[0...]]) - - ... the experiment_runner runner which can be called to generate experimental results: - >>> import numpy as np - >>> y = s.experiment_runner(x) # doctest: +ELLIPSIS - >>> y - array([[ 0.00433955], - [ 1.79114625], - [ 2.39473454], - ..., - [ 0.00397802], - [ 0.01922405], - [-0.00612883]]) - - ... a function to plot the ground truth: - >>> s.plotter() - - ... against a fitted model if it exists: - >>> from sklearn.linear_model import LinearRegression - >>> model = LinearRegression().fit(x, y) - >>> s.plotter(model) - - These can be used to run a full experimental cycle - >>> from autora.experimentalist.pipeline import make_pipeline - >>> from autora.experimentalist.pooler.general_pool import grid_pool - >>> from autora.experimentalist.sampler.random import random_sampler - >>> from functools import partial - >>> import random - >>> metadata = s.metadata - >>> pool = partial(grid_pool, ivs=metadata.independent_variables) - >>> random.seed(181) # set the seed for the random sampler - >>> sampler = partial(random_sampler, n=20) - >>> experimentalist_pipeline = make_pipeline([pool, sampler]) - - >>> from autora.cycle import Cycle - >>> theorist = LinearRegression() - - >>> cycle = Cycle(metadata=metadata, experimentalist=experimentalist_pipeline, - ... experiment_runner=s.experiment_runner, theorist=theorist) - - >>> c = cycle.run(10) - >>> c.data.theories[-1].coef_ # doctest: +ELLIPSIS - array([-0.53610647, 0.58457307]) -""" - -from autora.synthetic import data -from autora.synthetic.inventory import ( - Inventory, - SyntheticExperimentCollection, - describe, - register, - retrieve, -) diff --git a/autora/synthetic/data/__init__.py b/autora/synthetic/data/__init__.py deleted file mode 100644 index 394d81233..000000000 --- a/autora/synthetic/data/__init__.py +++ /dev/null @@ -1,2 +0,0 @@ -""" Models bundled with AutoRA. """ -from . import expected_value, prospect_theory, weber_fechner diff --git a/autora/synthetic/data/expected_value.py b/autora/synthetic/data/expected_value.py deleted file mode 100644 index a5c86f937..000000000 --- a/autora/synthetic/data/expected_value.py +++ /dev/null @@ -1,184 +0,0 @@ -from functools import partial - -import numpy as np - -from autora.variable import DV, IV, ValueType, VariableCollection - -from ..inventory import SyntheticExperimentCollection, register - - -def get_metadata(minimum_value, maximum_value, resolution): - v_a = IV( - name="V_A", - allowed_values=np.linspace( - minimum_value, - maximum_value, - resolution, - ), - value_range=(minimum_value, maximum_value), - units="dollar", - variable_label="Value of Option A", - type=ValueType.REAL, - ) - - v_b = IV( - name="V_B", - allowed_values=np.linspace( - minimum_value, - maximum_value, - resolution, - ), - value_range=(minimum_value, maximum_value), - units="dollar", - variable_label="Value of Option B", - type=ValueType.REAL, - ) - - p_a = IV( - name="P_A", - allowed_values=np.linspace(0, 1, resolution), - value_range=(0, 1), - units="probability", - variable_label="Probability of Option A", - type=ValueType.REAL, - ) - - p_b = IV( - name="P_B", - allowed_values=np.linspace(0, 1, resolution), - value_range=(0, 1), - units="probability", - variable_label="Probability of Option B", - type=ValueType.REAL, - ) - - dv1 = DV( - name="choose_A", - value_range=(0, 1), - units="probability", - variable_label="Probability of Choosing Option A", - type=ValueType.PROBABILITY, - ) - - metadata_ = VariableCollection( - independent_variables=[v_a, p_a, v_b, p_b], - dependent_variables=[dv1], - ) - return metadata_ - - -def expected_value_theory( - name="Expected Value Theory", - choice_temperature: float = 0.1, - value_lambda: float = 0.5, - resolution=10, - minimum_value=-1, - maximum_value=1, - added_noise: float = 0.01, - rng=np.random.default_rng(), -): - - params = dict( - name=name, - minimum_value=minimum_value, - maximum_value=maximum_value, - resolution=resolution, - choice_temperature=choice_temperature, - value_lambda=value_lambda, - added_noise=added_noise, - random_number_generator=rng, - ) - - metadata = get_metadata( - minimum_value=minimum_value, maximum_value=maximum_value, resolution=resolution - ) - - def experiment_runner(X: np.ndarray, added_noise_=added_noise): - - Y = np.zeros((X.shape[0], 1)) - for idx, x in enumerate(X): - value_A = value_lambda * x[0] - value_B = value_lambda * x[2] - - probability_a = x[1] - probability_b = x[3] - - expected_value_A = value_A * probability_a + rng.normal(0, added_noise_) - expected_value_B = value_B * probability_b + rng.normal(0, added_noise_) - - # compute probability of choosing option A - p_choose_A = np.exp(expected_value_A / choice_temperature) / ( - np.exp(expected_value_A / choice_temperature) - + np.exp(expected_value_B / choice_temperature) - ) - - Y[idx] = p_choose_A - - return Y - - ground_truth = partial(experiment_runner, added_noise_=0.0) - - def domain(): - X = np.array( - np.meshgrid([x.allowed_values for x in metadata.independent_variables]) - ).T.reshape(-1, 4) - return X - - def plotter(model=None): - import matplotlib.colors as mcolors - import matplotlib.pyplot as plt - - v_a_list = [-1, 0.5, 1] - v_b = 0.5 - p_b = 0.5 - p_a = np.linspace(0, 1, 100) - - for idx, v_a in enumerate(v_a_list): - X = np.zeros((len(p_a), 4)) - X[:, 0] = v_a - X[:, 1] = p_a - X[:, 2] = v_b - X[:, 3] = p_b - - y = ground_truth(X) - colors = mcolors.TABLEAU_COLORS - col_keys = list(colors.keys()) - plt.plot( - p_a, y, label=f"$V(A) = {v_a}$ (Original)", c=colors[col_keys[idx]] - ) - if model is not None: - y = model.predict(X) - plt.plot( - p_a, - y, - label=f"$V(A) = {v_a}$ (Recovered)", - c=colors[col_keys[idx]], - linestyle="--", - ) - - x_limit = [0, metadata.independent_variables[1].value_range[1]] - y_limit = [0, 1] - x_label = "Probability of Choosing Option A" - y_label = "Probability of Obtaining V(A)" - - plt.xlim(x_limit) - plt.ylim(y_limit) - plt.xlabel(x_label, fontsize="large") - plt.ylabel(y_label, fontsize="large") - plt.legend(loc=2, fontsize="medium") - plt.title(name, fontsize="x-large") - plt.show() - - collection = SyntheticExperimentCollection( - name=name, - metadata=metadata, - experiment_runner=experiment_runner, - ground_truth=ground_truth, - domain=domain, - plotter=plotter, - params=params, - ) - return collection - - -register("expected_value", expected_value_theory) diff --git a/autora/synthetic/data/prospect_theory.py b/autora/synthetic/data/prospect_theory.py deleted file mode 100644 index 2344e790b..000000000 --- a/autora/synthetic/data/prospect_theory.py +++ /dev/null @@ -1,198 +0,0 @@ -from functools import partial - -import numpy as np - -from ..inventory import SyntheticExperimentCollection, register -from .expected_value import get_metadata - - -def prospect_theory( - name="Prospect Theory", - added_noise=0.01, - choice_temperature=0.1, - value_alpha=0.88, - value_beta=0.88, - value_lambda=2.25, - probability_alpha=0.61, - probability_beta=0.69, - resolution=10, - minimum_value=-1, - maximum_value=1, - rng=np.random.default_rng(), -): - """ - Parameters from - D. Kahneman, A. Tversky, Prospect theory: An analysis of decision under risk. - Econometrica 47, 263–292 (1979). doi:10.2307/1914185 - - Power value function according to: - - A. Tversky, D. Kahneman, Advances in prospect theory: Cumulative representation of - uncertainty. J. Risk Uncertain. 5, 297–323 (1992). doi:10.1007/BF00122574 - - - I. Gilboa, Expected utility with purely subjective non-additive probabilities. - J. Math. Econ. 16, 65–88 (1987). doi:10.1016/0304-4068(87)90022-X - - - D. Schmeidler, Subjective probability and expected utility without additivity. - Econometrica 57, 571 (1989). doi:10.2307/1911053 - - Probability function according to: - A. Tversky, D. Kahneman, Advances in prospect theory: Cumulative representation of - uncertainty. J. Risk Uncertain. 5, 297–323 (1992). doi:10.1007/BF00122574 - - """ - - params = dict( - added_noise=added_noise, - choice_temperature=choice_temperature, - value_alpha=value_alpha, - value_beta=value_beta, - value_lambda=value_lambda, - probability_alpha=probability_alpha, - probability_beta=probability_beta, - resolution=resolution, - minimum_value=minimum_value, - maximum_value=maximum_value, - rng=rng, - name=name, - ) - - metadata = get_metadata( - minimum_value=minimum_value, maximum_value=maximum_value, resolution=resolution - ) - - def experiment_runner(X: np.ndarray, added_noise_=added_noise): - - Y = np.zeros((X.shape[0], 1)) - for idx, x in enumerate(X): - - # power value function according to: - - # A. Tversky, D. Kahneman, Advances in prospect theory: Cumulative representation of - # uncertainty. J. Risk Uncertain. 5, 297–323 (1992). doi:10.1007/BF00122574 - - # I. Gilboa, Expected utility with purely subjective non-additive probabilities. - # J. Math. Econ. 16, 65–88 (1987). doi:10.1016/0304-4068(87)90022-X - - # D. Schmeidler, Subjective probability and expected utility without additivity. - # Econometrica 57, 571 (1989). doi:10.2307/1911053 - - # compute value of option A - if x[0] > 0: - value_A = x[0] ** value_alpha - else: - value_A = -value_lambda * (-x[0]) ** (value_beta) - - # compute value of option B - if x[2] > 0: - value_B = x[2] ** value_alpha - else: - value_B = -value_lambda * (-x[2]) ** (value_beta) - - # probability function according to: - - # A. Tversky, D. Kahneman, Advances in prospect theory: Cumulative representation of - # uncertainty. J. Risk Uncertain. 5, 297–323 (1992). doi:10.1007/BF00122574 - - # compute probability of option A - if x[0] >= 0: - coefficient = probability_alpha - else: - coefficient = probability_beta - - probability_a = x[1] ** coefficient / ( - x[1] ** coefficient + (1 - x[1]) ** coefficient - ) ** (1 / coefficient) - - # compute probability of option B - if x[2] >= 0: - coefficient = probability_alpha - else: - coefficient = probability_beta - - probability_b = x[3] ** coefficient / ( - x[3] ** coefficient + (1 - x[3]) ** coefficient - ) ** (1 / coefficient) - - expected_value_A = value_A * probability_a + rng.normal(0, added_noise_) - expected_value_B = value_B * probability_b + rng.normal(0, added_noise_) - - # compute probability of choosing option A - p_choose_A = np.exp(expected_value_A / choice_temperature) / ( - np.exp(expected_value_A / choice_temperature) - + np.exp(expected_value_B / choice_temperature) - ) - - Y[idx] = p_choose_A - - return Y - - ground_truth = partial(experiment_runner, added_noise_=0.0) - - def domain(): - v_a = metadata.independent_variables[0].allowed_values - p_a = metadata.independent_variables[1].allowed_values - v_b = metadata.independent_variables[2].allowed_values - p_b = metadata.independent_variables[3].allowed_values - - X = np.array(np.meshgrid(v_a, p_a, v_b, p_b)).T.reshape(-1, 4) - return X - - def plotter(model=None): - import matplotlib.colors as mcolors - import matplotlib.pyplot as plt - - v_a_list = [-0.5, 0.5, 1] - p_a = np.linspace(0, 1, 100) - - v_b = 0.5 - p_b = 0.5 - - for idx, v_a in enumerate(v_a_list): - X = np.zeros((len(p_a), 4)) - X[:, 0] = v_a - X[:, 1] = p_a - X[:, 2] = v_b - X[:, 3] = p_b - - y = ground_truth(X) - colors = mcolors.TABLEAU_COLORS - col_keys = list(colors.keys()) - plt.plot( - p_a, y, label=f"$V(A) = {v_a}$ (Original)", c=colors[col_keys[idx]] - ) - if model is not None: - y = model.predict(X) - plt.plot( - p_a, - y, - label=f"$V(A) = {v_a}$ (Recovered)", - c=colors[col_keys[idx]], - linestyle="--", - ) - - x_limit = [0, metadata.independent_variables[1].value_range[1]] - y_limit = [0, 1] - x_label = "Probability of Choosing Option A" - y_label = "Probability of Obtaining V(A)" - - plt.xlim(x_limit) - plt.ylim(y_limit) - plt.xlabel(x_label, fontsize="large") - plt.ylabel(y_label, fontsize="large") - plt.legend(loc=2, fontsize="medium") - plt.title(name, fontsize="x-large") - plt.show() - - collection = SyntheticExperimentCollection( - name=name, - params=params, - metadata=metadata, - domain=domain, - experiment_runner=experiment_runner, - ground_truth=ground_truth, - plotter=plotter, - ) - return collection - - -register("prospect_theory", prospect_theory) diff --git a/autora/synthetic/data/weber_fechner.py b/autora/synthetic/data/weber_fechner.py deleted file mode 100644 index ac5e56ab4..000000000 --- a/autora/synthetic/data/weber_fechner.py +++ /dev/null @@ -1,158 +0,0 @@ -from functools import partial - -import numpy as np - -from autora.variable import DV, IV, ValueType, VariableCollection - -from ..inventory import SyntheticExperimentCollection, register - - -def weber_fechner_law( - name="Weber-Fechner Law", - resolution=100, - constant=1.0, - maximum_stimulus_intensity=5.0, - added_noise=0.01, - rng=np.random.default_rng(), -): - """Weber-Fechner Law. - - Args: - name: name of the experiment - resolution: number of allowed values for stimulus 1 and 2 - constant: constant multiplier - maximum_stimulus_intensity: maximum value for stimulus 1 and 2 - added_noise: standard deviation of normally distributed noise added to y-values - rng: `np.random` random number generator to use for generating noise - - Returns: - - """ - - params = dict( - added_noise=added_noise, - name=name, - resolution=resolution, - constant=constant, - maximum_stimulus_intensity=maximum_stimulus_intensity, - rng=rng, - ) - - iv1 = IV( - name="S1", - allowed_values=np.linspace( - 1 / resolution, maximum_stimulus_intensity, resolution - ), - value_range=(1 / resolution, maximum_stimulus_intensity), - units="intensity", - variable_label="Stimulus 1 Intensity", - type=ValueType.REAL, - ) - - iv2 = IV( - name="S2", - allowed_values=np.linspace( - 1 / resolution, maximum_stimulus_intensity, resolution - ), - value_range=(1 / resolution, maximum_stimulus_intensity), - units="intensity", - variable_label="Stimulus 2 Intensity", - type=ValueType.REAL, - ) - - dv1 = DV( - name="difference_detected", - value_range=(0, maximum_stimulus_intensity), - units="sensation", - variable_label="Sensation", - type=ValueType.REAL, - ) - - metadata = VariableCollection( - independent_variables=[iv1, iv2], - dependent_variables=[dv1], - ) - - def experiment_runner( - X: np.ndarray, - std: float = 0.01, - ): - Y = np.zeros((X.shape[0], 1)) - for idx, x in enumerate(X): - # jnd = np.min(x) * weber_constant - # response = (x[1]-x[0]) - jnd - # y = 1/(1+np.exp(-response)) + np.random.normal(0, std) - y = constant * np.log(x[1] / x[0]) + rng.normal(0, std) - Y[idx] = y - - return Y - - ground_truth = partial(experiment_runner, std=0.0) - - def domain(): - s1_values = metadata.independent_variables[0].allowed_values - s2_values = metadata.independent_variables[1].allowed_values - X = np.array(np.meshgrid(s1_values, s2_values)).T.reshape(-1, 2) - # remove all combinations where s1 > s2 - X = X[X[:, 0] <= X[:, 1]] - return X - - def plotter( - model=None, - ): - import matplotlib.colors as mcolors - import matplotlib.pyplot as plt - - colors = mcolors.TABLEAU_COLORS - col_keys = list(colors.keys()) - - S0_list = [1, 2, 4] - delta_S = np.linspace(0, 5, 100) - - for idx, S0_value in enumerate(S0_list): - S0 = S0_value + np.zeros(delta_S.shape) - S1 = S0 + delta_S - X = np.array([S0, S1]).T - y = ground_truth(X) - plt.plot( - delta_S, - y, - label=f"$S_0 = {S0_value}$ (Original)", - c=colors[col_keys[idx]], - ) - if model is not None: - y = model.predict(X) - plt.plot( - delta_S, - y, - label=f"$S_0 = {S0_value}$ (Recovered)", - c=colors[col_keys[idx]], - linestyle="--", - ) - - x_limit = [0, metadata.independent_variables[0].value_range[1]] - y_limit = [0, 2] - x_label = r"Stimulus Intensity Difference $\Delta S = S_1 - S_0$" - y_label = "Perceived Intensity of Stimulus $S_1$" - - plt.xlim(x_limit) - plt.ylim(y_limit) - plt.xlabel(x_label, fontsize="large") - plt.ylabel(y_label, fontsize="large") - plt.legend(loc=2, fontsize="medium") - plt.title("Weber-Fechner Law", fontsize="x-large") - plt.show() - - collection = SyntheticExperimentCollection( - name=name, - metadata=metadata, - experiment_runner=experiment_runner, - ground_truth=ground_truth, - domain=domain, - plotter=plotter, - params=params, - ) - return collection - - -register("weber_fechner", weber_fechner_law) diff --git a/autora/synthetic/inventory.py b/autora/synthetic/inventory.py deleted file mode 100644 index 4d75be832..000000000 --- a/autora/synthetic/inventory.py +++ /dev/null @@ -1,205 +0,0 @@ -""" -Module for registering and retrieving synthetic models from an inventory. - -Examples: - To add and recover a new model from the inventory, we need to define it using a function - (closure). - We start by importing the modules we'll need: - >>> from functools import partial - >>> import matplotlib.pyplot as plt - >>> import numpy as np - >>> from autora.synthetic import register, retrieve, describe, SyntheticExperimentCollection - >>> from autora.variable import IV, DV, VariableCollection - - Then we can define the function. We define all the arguments we want and add them to a - dictionary. The closure – in this case `sinusoid_experiment` – is the scope for all - the parameters we need. - >>> def sinusoid_experiment(omega=np.pi/3, delta=np.pi/2., m=0.3, resolution=1000, - ... rng=np.random.default_rng()): - ... \"\"\"Shifted sinusoid experiment, combining a sinusoid and a gradient drift. - ... Ground truth: y = sin((x - delta) * omega) + (x * m) - ... Parameters: - ... omega: angular speed in radians - ... delta: offset in radians - ... m: drift gradient in [radians ^ -1] - ... resolution: number of x values - ... \"\"\" - ... - ... name = "Shifted Sinusoid" - ... - ... params = dict(omega=omega, delta=delta, resolution=resolution, m=m, rng=rng) - ... - ... x = IV(name="x", value_range=(-6 * np.pi, 6 * np.pi)) - ... y = DV(name="y", value_range=(-1, 1)) - ... metadata = VariableCollection(independent_variables=[x], dependent_variables=[y]) - ... - ... def domain(): - ... return np.linspace(*x.value_range, resolution).reshape(-1, 1) - ... - ... def experiment_runner(X, std=0.1): - ... return np.sin((X - delta) * omega) + (X * m) + rng.normal(0, std, X.shape) - ... - ... def ground_truth(X): - ... return experiment_runner(X, std=0.) - ... - ... def plotter(model=None): - ... plt.plot(domain(), ground_truth(domain()), label="Ground Truth") - ... if model is not None: - ... plt.plot(domain(), model.predict(domain()), label="Model") - ... plt.title(name) - ... - ... collection = SyntheticExperimentCollection( - ... name=name, - ... params=params, - ... metadata=metadata, - ... domain=domain, - ... experiment_runner=experiment_runner, - ... ground_truth=ground_truth, - ... plotter=plotter, - ... ) - ... - ... return collection - - Then we can register the experiment. We register the function, rather than evaluating it. - >>> register("sinusoid_experiment", sinusoid_experiment) - - When we want to retrieve the experiment, we can just use the default values if we like: - >>> s = retrieve("sinusoid_experiment") - - We can retrieve the docstring of the model using the `describe` function - >>> describe(s) # doctest: +ELLIPSIS - Shifted sinusoid experiment, combining a sinusoid and a gradient drift. - Ground truth: y = sin((x - delta) * omega) + (x * m) - ... - - ... or using its id: - >>> describe("sinusoid_experiment") # doctest: +ELLIPSIS - Shifted sinusoid experiment, combining a sinusoid and a gradient drift. - Ground truth: y = sin((x - delta) * omega) + (x * m) - ... - - ... or we can look at the closure function directly: - >>> describe(sinusoid_experiment) # doctest: +ELLIPSIS - Shifted sinusoid experiment, combining a sinusoid and a gradient drift. - Ground truth: y = sin((x - delta) * omega) + (x * m) - ... - - The object returned includes all the used parameters as a dictionary - >>> s.params # doctest: +ELLIPSIS - {'omega': 1.0..., 'delta': 1.5..., 'resolution': 1000, 'm': 0.3, ...} - - If we need to modify the parameter values, we can pass them as arguments to the retrieve - function: - >>> t = retrieve("sinusoid_experiment",delta=0.2) - >>> t.params # doctest: +ELLIPSIS - {..., 'delta': 0.2, ...} -""" - - -from __future__ import annotations - -from dataclasses import dataclass -from functools import singledispatch -from typing import Any, Callable, Dict, Optional, Protocol, runtime_checkable - -from autora.variable import VariableCollection - - -@runtime_checkable -class _SyntheticExperimentClosure(Protocol): - """A function which returns a SyntheticExperimentCollection.""" - - def __call__(self, *args, **kwargs) -> SyntheticExperimentCollection: - ... - - -class _SupportsPredict(Protocol): - def predict(self, X) -> Any: - ... - - -@dataclass -class SyntheticExperimentCollection: - """ - Represents a synthetic experiment. - - Attributes: - name: the name of the theory - params: a dictionary with the settable parameters of the model and their respective values - metadata: a VariableCollection describing the variables of the model - domain: a function which returns all the available X values for the model - experiment_runner: a function which takes X values and returns simulated y values **with - statistical noise** - ground_truth: a function which takes X values and returns simulated y values **without any - statistical noise** - plotter: a function which plots the ground truth and, optionally, a model with a - `predict` method (e.g. scikit-learn estimators) - """ - - name: Optional[str] = None - params: Optional[Dict] = None - metadata: Optional[VariableCollection] = None - domain: Optional[Callable] = None - experiment_runner: Optional[Callable] = None - ground_truth: Optional[Callable] = None - plotter: Optional[Callable[[Optional[_SupportsPredict]], None]] = None - closure: Optional[Callable] = None - - -Inventory: Dict[str, _SyntheticExperimentClosure] = dict() -""" The dictionary of `SyntheticExperimentCollection`. """ - - -def register(id_: str, closure: _SyntheticExperimentClosure) -> None: - """ - Add a new synthetic experiment to the Inventory. - - Parameters: - id_: the unique id for the model. - closure: a function which returns a SyntheticExperimentCollection - - """ - Inventory[id_] = closure - - -def retrieve(id_: str, **kwargs) -> SyntheticExperimentCollection: - """ - Retrieve a synthetic experiment from the Inventory. - - Parameters: - id_: the unique id for the model - **kwargs: keyword arguments for the synthetic experiment (metadata, coefficients etc.) - Returns: - the synthetic experiment - """ - closure: _SyntheticExperimentClosure = Inventory[id_] - evaluated_closure = closure(**kwargs) - evaluated_closure.closure = closure - return evaluated_closure - - -@singledispatch -def describe(arg): - """ - Print the docstring for a synthetic experiment. - - Args: - arg: the experiment's ID, an object returned from the `retrieve` function, or a closure - which creates a new experiment. - """ - raise NotImplementedError(f"{arg=} not yet supported") - - -@describe.register -def _(closure: _SyntheticExperimentClosure): - print(closure.__doc__) - - -@describe.register -def _(collection: SyntheticExperimentCollection): - describe(collection.closure) - - -@describe.register -def _(id_: str): - describe(retrieve(id_)) diff --git a/autora/theorist/__init__.py b/autora/theorist/__init__.py deleted file mode 100644 index e69de29bb..000000000 diff --git a/autora/theorist/bms/__init__.py b/autora/theorist/bms/__init__.py deleted file mode 100644 index ce93fbce6..000000000 --- a/autora/theorist/bms/__init__.py +++ /dev/null @@ -1,3 +0,0 @@ -from .mcmc import Tree # noqa: F401 -from .parallel import Parallel # noqa: F401 -from .prior import get_priors # noqa: F401 diff --git a/autora/theorist/bms/data/named_equations.wiki.parsed__num_operations.dat b/autora/theorist/bms/data/named_equations.wiki.parsed__num_operations.dat deleted file mode 100644 index 37fbb6085..000000000 --- a/autora/theorist/bms/data/named_equations.wiki.parsed__num_operations.dat +++ /dev/null @@ -1,30 +0,0 @@ -0 2213 -1 572 -2 296 -3 242 -4 168 -5 136 -6 111 -7 83 -8 60 -9 45 -10 26 -11 38 -12 20 -13 20 -14 11 -15 10 -16 6 -17 3 -18 6 -19 2 -20 2 -21 1 -24 1 -26 2 -27 1 -28 1 -31 1 -34 1 -38 1 -52 1 diff --git a/autora/theorist/bms/data/named_equations.wiki.parsed__operation_type.dat b/autora/theorist/bms/data/named_equations.wiki.parsed__operation_type.dat deleted file mode 100644 index 7d25e54f1..000000000 --- a/autora/theorist/bms/data/named_equations.wiki.parsed__operation_type.dat +++ /dev/null @@ -1,18 +0,0 @@ -sinh 5 -cos 65 -log 132 -tanh 6 -pow2 547 -- 520 -abs 27 -sqrt 130 -cosh 4 -fac 7 -+ 1271 -** 652 -exp 129 -pow3 38 -* 2774 -/ 1146 -sin 39 -tan 4 diff --git a/autora/theorist/bms/data/named_equations.wiki.parsed__operation_type_sq.dat b/autora/theorist/bms/data/named_equations.wiki.parsed__operation_type_sq.dat deleted file mode 100644 index 32397b302..000000000 --- a/autora/theorist/bms/data/named_equations.wiki.parsed__operation_type_sq.dat +++ /dev/null @@ -1,18 +0,0 @@ -sinh 5 -cos 113 -log 156 -tanh 6 -pow2 1193 -- 738 -abs 31 -sqrt 266 -cosh 4 -fac 9 -+ 2981 -** 1328 -exp 163 -pow3 50 -* 9374 -/ 2260 -sin 41 -tan 4 diff --git a/autora/theorist/bms/fit_prior.py b/autora/theorist/bms/fit_prior.py deleted file mode 100644 index abe7ca512..000000000 --- a/autora/theorist/bms/fit_prior.py +++ /dev/null @@ -1,278 +0,0 @@ -from datetime import datetime -from optparse import OptionParser -from random import choice, random - -from .mcmc import Tree -from .prior import get_priors - - -# ----------------------------------------------------------------------------- -def parse_options(): - """Parse command-line arguments.""" - parser = OptionParser() - parser.add_option( - "-s", - "--source", - dest="source", - default="named_equations", - help="formula dataset to use ('full' or 'named_equations' (default))", - ) - parser.add_option( - "-n", - "--nvar", - dest="nvar", - type="int", - default=5, - help="number of variables to include (default 5)", - ) - parser.add_option( - "-m", - "--npar", - dest="npar", - type="int", - default=None, - help="number of parameters to include (default: 2*NVAR)", - ) - parser.add_option( - "-f", - "--factor", - dest="fact", - type="float", - default=0.05, - help="factor for the parameter adjustment (default 0.05)", - ) - parser.add_option( - "-r", - "--repetitions", - type="int", - default=1000000, - dest="nrep", - help="formulas to generate between parameter updates", - ) - parser.add_option( - "-M", - "--maxsize", - type="int", - default=50, - dest="max_size", - help="maximum tree (formula) size", - ) - parser.add_option( - "-c", - "--continue", - dest="contfile", - default=None, - help="continue from parameter values in CONTFILE (default: start from scratch)", - ) - parser.add_option( - "-q", - "--quadratic", - action="store_true", - dest="quadratic", - default=False, - help="fit parameters for quadratic terms (default: False)", - ) - return parser - - -# ----------------------------------------------------------------------------- -def read_target_values(source, quadratic=False): - """Read the target proportions for each type of operation.""" - # Number of formulas - infn1 = "./data/%s.wiki.parsed__num_operations.dat" % source - with open(infn1) as inf1: - lines = inf1.readlines() - nform = sum([int(line.strip().split()[1]) for line in lines]) - # Fraction of each of the operations - infn2 = "./data/%s.wiki.parsed__operation_type.dat" % source - with open(infn2) as inf2: - lines = inf2.readlines() - target = dict( - [ - ( - "Nopi_%s" % line.strip().split()[0], - float(line.strip().split()[1]) / nform, - ) - for line in lines - ] - ) - # Fraction of each of the operations squared - if quadratic: - infn3 = "./data/%s.wiki.parsed__operation_type_sq.dat" % (source) - with open(infn3) as inf3: - lines = inf3.readlines() - target2 = dict( - [ - ( - "Nopi2_%s" % line.strip().split()[0], - float(line.strip().split()[1]) / nform, - ) - for line in lines - ] - ) - for k, v in list(target2.items()): - target[k] = v - # Done - return target, nform - - -# ----------------------------------------------------------------------------- -def update_ppar(tree, current, target, terms=None, step=0.05): - """Update the prior parameters using a gradient descend of sorts.""" - - # Which terms should we update? (Default: all) - if terms is None: - terms = list(current.keys()) - # Update - for t in terms: - if current[t] > target[t]: - tree.prior_par[t] += min( - 0.5, - random() * step * float(current[t] - target[t]) / (target[t] + 1e-10), - ) - elif current[t] < target[t]: - tree.prior_par[t] -= min( - 0.5, - random() * step * float(target[t] - current[t]) / (target[t] + 1e-10), - ) - else: - pass - # Make sure quadratic terms are not below the minimum allowed - for t in [t for t in terms if t.startswith("Nopi2_")]: - """ - lint = t.replace('Nopi2_', 'Nopi_') - op = t[6:] - nopmax = float(tree.max_size) / tree.ops[op] - 1. - minval = - tree.prior_par[lint] / nopmax - """ - minval = 0.0 - if tree.prior_par[t] < minval: - tree.prior_par[t] = minval - - return - - -# ----------------------------------------------------------------------------- -def read_prior_par(inFileName): - with open(inFileName) as inf: - lines = inf.readlines() - ppar = dict( - list( - zip( - lines[0].strip().split()[1:], - [float(x) for x in lines[-1].strip().split()[1:]], - ) - ) - ) - return ppar - - -# ----------------------------------------------------------------------------- -# ----------------------------------------------------------------------------- -if __name__ == "__main__": - MAX_SIZE = 50 - parser = parse_options() - opt, args = parser.parse_args() - if opt.npar is None: - opt.npar = 2 * opt.nvar - target, nform = read_target_values(opt.source, quadratic=opt.quadratic) - print(opt.contfile) - print("\n>> TARGET:", target) - - # Create prior parameter dictionary from scratch or load it from file - if opt.contfile is not None: - ppar = read_prior_par(opt.contfile) - # Add values to parameters for the quadratic terms (and modify - # those of the linear terms accordingly) if you loaded ppar - # from a file without quadratic terms - if opt.quadratic: - for t in [ - t - for t in target - if t.startswith("Nopi2_") and t not in list(ppar.keys()) - ]: - ppar[t] = 0.0 - else: - ppar = dict( - [(k, 10.0) for k in target if k.startswith("Nopi_")] - + [(k, 0.0) for k in target if not k.startswith("Nopi_")] - ) - print("\n>> PRIOR_PAR:", ppar) - - # Preliminaries - if opt.quadratic: - outFileName = "prior_param_sq.%s.nv%d.np%d.maxs%d.%s.dat" % ( - opt.source, - opt.nvar, - opt.npar, - opt.max_size, - datetime.now(), - ) - else: - outFileName = "prior_param.%s.nv%d.np%d.maxs%d.%s.dat" % ( - opt.source, - opt.nvar, - opt.npar, - opt.max_size, - datetime.now(), - ) - with open(outFileName, "w") as outf: - print("#", " ".join([o for o in ppar]), file=outf) - iteration = 0 - - # Do the loop! - while True: - # Create new seed formula - tree = Tree( - ops=dict( - [(o[5:], get_priors()[1][o[5:]]) for o in ppar if o.startswith("Nopi_")] - ), - variables=["x%d" % (i + 1) for i in range(opt.nvar)], - parameters=["a%d" % (i + 1) for i in range(opt.npar)], - max_size=opt.max_size, - prior_par=ppar, - ) - - # Generate the formulas and compute the features - current = dict([(t, 0) for t in ppar]) - for rep in range(opt.nrep): - tree.mcmc_step() - for o, nopi in list(tree.nops.items()): - current["Nopi_%s" % o] += nopi - try: - current["Nopi2_%s" % o] += nopi * nopi - except KeyError: - pass - - # Normalize the current counts - current = dict([(t, float(v) / opt.nrep) for t, v in list(current.items())]) - - # Output some info to stdout and to output file - print(40 * "-") - print(tree.prior_par) - with open(outFileName, "a") as outf: - print(iteration, " ".join([str(v) for v in list(ppar.values())]), file=outf) - for t in ppar: - print( - t, - current[t], - target[t], - "%.1f" % (float(current[t] - target[t]) * 100.0 / target[t]), - ) - iteration += 1 - - # Update parameters - dice = random() - # all terms - if dice < 0.8: - update_ppar(tree, current, target, step=opt.fact) - # a single randomly chosen term - else: - update_ppar( - tree, - current, - target, - step=opt.fact, - terms=[choice(list(current.keys()))], - ) - ppar = tree.prior_par diff --git a/autora/theorist/bms/mcmc.py b/autora/theorist/bms/mcmc.py deleted file mode 100644 index afbd71129..000000000 --- a/autora/theorist/bms/mcmc.py +++ /dev/null @@ -1,1582 +0,0 @@ -""" -A Markov-Chain Monte-Carlo module. - -Module constants: - `get_ops()`: - A dictionary of accepted operations: `{operation_name: offspring}` - - `operation_name`: the operation name, e.g. 'sin' for the sinusoid function - - `offspring`: the number of arguments the function requires. - - For instance, `get_ops() = {"sin": 1, "**": 2 }` means for - `sin` the function call looks like `sin(x1)` whereas for - the exponentiation operator `**`, the function call looks like `x1 ** x2` -""" - -import json -import logging -import sys -from copy import deepcopy -from inspect import signature -from itertools import permutations, product -from random import choice, random, seed -from typing import List - -import matplotlib.pyplot as plt -import numpy as np -import pandas as pd -import scipy -from scipy.optimize import curve_fit -from sympy import lambdify, latex, log, sympify - -from .prior import get_priors, relu - -_logger = logging.getLogger(__name__) - - -class Node: - """ - Object that holds algebraic term. This could be a function, variable, or parameter. - - Attributes: - order: number of children nodes this term has - e.g. cos(x) has one child, whereas add(x,y) has two children - """ - - def __init__(self, value, parent=None, offspring=[]): - """ - Initialises the node object. - - Arguments: - parent: parent node - unless this node is the root, this will be whichever node contains - the function this node's term is most immediately nested within - e.g. f(x) is the parent of g(x) in f(g(x)) - offspring: list of child nodes - value: the specific term held by this node - """ - self.parent: Node = parent - self.offspring: List[Node] = offspring - self.value: str = value - self.order: int = len(self.offspring) - - def pr(self, custom_ops, show_pow=False): - """ - Converts expression in readable form - - Returns: String - """ - if self.offspring == []: - return "%s" % self.value - elif len(self.offspring) == 2 and self.value not in custom_ops: - return "(%s %s %s)" % ( - self.offspring[0].pr(custom_ops=custom_ops, show_pow=show_pow), - self.value, - self.offspring[1].pr(custom_ops=custom_ops, show_pow=show_pow), - ) - else: - if show_pow: - return "%s(%s)" % ( - self.value, - ",".join( - [ - o.pr(custom_ops=custom_ops, show_pow=show_pow) - for o in self.offspring - ] - ), - ) - else: - if self.value == "pow2": - return "(%s ** 2)" % ( - self.offspring[0].pr(custom_ops=custom_ops, show_pow=show_pow) - ) - elif self.value == "pow3": - return "(%s ** 3)" % ( - self.offspring[0].pr(custom_ops=custom_ops, show_pow=show_pow) - ) - else: - return "%s(%s)" % ( - self.value, - ",".join( - [ - o.pr(custom_ops=custom_ops, show_pow=show_pow) - for o in self.offspring - ] - ), - ) - - -class Tree: - """ - Object that manages the model equation. It contains the root node, which in turn iteratively - holds children nodes. Collectively this represents the model equation tree - - Attributes: - root: the root node of the equation tree - parameters: the settable parameters for this trees model search - op_orders: order of each function within the ops - nops: number of operations of each type - move_types: possible combinations of function nesting - ets: possible elementary equation trees - dist_par: distinct parameters used - nodes: nodes of the tree (operations and leaves) - et_space: space of all possible leaves and elementary trees - rr_space: space of all possible root replacement trees - num_rr: number of possible root replacement trees - x: independent variable data - y: depedent variable data - par_values: The values of the model parameters (one set of values for each dataset) - fit_par: past successful parameter fittings - sse: sum of squared errors (measure of goodness of fit) - bic: bayesian information criterion (measure of goodness of fit) - E: total energy of model - EB: fraction of energy derived from bic score of model - EP: fraction of energy derived from model given prior - representative: representative tree for each canonical formula - """ - - prior, ops = get_priors() - - def __init__( - self, - ops=ops, - variables=["x"], - parameters=["a"], - prior_par=prior, - x=None, - y=None, - BT=1.0, - PT=1.0, - max_size=50, - root_value=None, - fixed_root=False, - custom_ops={}, - seed_value=None, - ): - """ - Initialises the tree object - - Args: - ops: allowed operations to compose equation - variables: dependent variable names - parameters: parameters that can be used to better fit the equation to the data - prior_par: hyperparameter values over operations within ops - x: dependent variables - y: independent variables - BT: BIC value corresponding to equation - PT: prior temperature - max_size: maximum size of tree (maximum number of nodes) - root_value: algebraic term held at root of equation - """ - if seed_value is not None: - seed(seed_value) - # The variables and parameters - if custom_ops is None: - custom_ops = dict() - self.variables = variables - self.parameters = [ - p if p.startswith("_") and p.endswith("_") else "_%s_" % p - for p in parameters - ] - # The root - self.fixed_root = fixed_root - if root_value is None: - self.root = Node( - choice(self.variables + self.parameters), offspring=[], parent=None - ) - else: - self.root = Node(root_value, offspring=[], parent=None) - root_order = len(signature(custom_ops[root_value]).parameters) - self.root.order = root_order - for _ in range(root_order): - self.root.offspring.append( - Node( - choice(self.variables + self.parameters), - offspring=[], - parent=self.root, - ) - ) - - # The possible operations - self.ops = ops - self.custom_ops = custom_ops - # The possible orders of the operations, move types, and move - # type probabilities - self.op_orders = list(set([0] + [n for n in list(ops.values())])) - self.move_types = [p for p in permutations(self.op_orders, 2)] - # Elementary trees (including leaves), indexed by order - self.ets = dict([(o, []) for o in self.op_orders]) - self.ets[0] = [x for x in self.root.offspring] - self.ets[self.root.order] = [self.root] - # Distinct parameters used - self.dist_par = list( - set([n.value for n in self.ets[0] if n.value in self.parameters]) - ) - self.n_dist_par = len(self.dist_par) - # Nodes of the tree (operations + leaves) - self.nodes = [self.root] - # Tree size and other properties of the model - self.size = 1 - self.max_size = max_size - # Space of all possible leaves and elementary trees - # (dict. indexed by order) - self.et_space = self.build_et_space() - # Space of all possible root replacement trees - self.rr_space = self.build_rr_space() - self.num_rr = len(self.rr_space) - # Number of operations of each type - self.nops = dict([[o, 0] for o in ops]) - if root_value is not None: - self.nops[self.root.value] += 1 - # The parameters of the prior probability (default: 5 everywhere) - if prior_par == {}: - self.prior_par = dict([("Nopi_%s" % t, 10.0) for t in self.ops]) - else: - self.prior_par = prior_par - # The datasets - if x is None: - self.x = {"d0": pd.DataFrame()} - self.y = {"d0": pd.Series(dtype=float)} - elif isinstance(x, pd.DataFrame): - self.x = {"d0": x} - self.y = {"d0": y} - elif isinstance(x, dict): - self.x = x - if y is None: - self.y = dict([(ds, pd.Series(dtype=float)) for ds in self.x]) - else: - self.y = y - else: - raise TypeError("x must be either a dict or a pandas.DataFrame") - # The values of the model parameters (one set of values for each dataset) - self.par_values = dict( - [(ds, deepcopy(dict([(p, 1.0) for p in self.parameters]))) for ds in self.x] - ) - # BIC and prior temperature - self.BT = float(BT) - self.PT = float(PT) - # For fast fitting, we save past successful fits to this formula - self.fit_par = {} - # Goodness of fit measures - self.sse = self.get_sse() - self.bic = self.get_bic() - self.E, self.EB, self.EP = self.get_energy() - # To control formula degeneracy (i.e. different trees that - # correspond to the same canonical formula), we store the - # representative tree for each canonical formula - self.representative = {} - self.representative[self.canonical()] = ( - str(self), - self.E, - deepcopy(self.par_values), - ) - # Done - return - - # ------------------------------------------------------------------------- - def __repr__(self): - """ - Updates tree's internal representation - - Returns: root node representation - - """ - return self.root.pr(custom_ops=self.custom_ops) - - # ------------------------------------------------------------------------- - def pr(self, show_pow=True): - """ - Returns readable representation of tree's root node - - Returns: root node representation - - """ - return self.root.pr(custom_ops=self.custom_ops, show_pow=show_pow) - - # ------------------------------------------------------------------------- - def canonical(self, verbose=False): - """ - Provides canonical form of tree's equation so that functionally equivalent trees - are made into structurally equivalent trees - - Return: canonical form of a tree - """ - try: - cansp = sympify(str(self).replace(" ", "")) - can = str(cansp) - ps = list([str(s) for s in cansp.free_symbols]) - positions = [] - for p in ps: - if p.startswith("_") and p.endswith("_"): - positions.append((can.find(p), p)) - positions.sort() - pcount = 1 - for pos, p in positions: - can = can.replace(p, "c%d" % pcount) - pcount += 1 - except SyntaxError: - if verbose: - print( - "WARNING: Could not get canonical form for", - str(self), - "(using full form!)", - file=sys.stderr, - ) - can = str(self) - return can.replace(" ", "") - - # ------------------------------------------------------------------------- - def latex(self): - """ - translate equation into latex - - Returns: canonical latex form of equation - """ - return latex(sympify(self.canonical())) - - # ------------------------------------------------------------------------- - def build_et_space(self): - """ - Build the space of possible elementary trees, - which is a dictionary indexed by the order of the elementary tree - - Returns: space of elementary trees - """ - et_space = dict([(o, []) for o in self.op_orders]) - et_space[0] = [[x, []] for x in self.variables + self.parameters] - for op, noff in list(self.ops.items()): - for vs in product(et_space[0], repeat=noff): - et_space[noff].append([op, [v[0] for v in vs]]) - return et_space - - # ------------------------------------------------------------------------- - def build_rr_space(self): - """ - Build the space of possible trees for the root replacement move - - Returns: space of possible root replacements - """ - rr_space = [] - for op, noff in list(self.ops.items()): - if noff == 1: - rr_space.append([op, []]) - else: - for vs in product(self.et_space[0], repeat=(noff - 1)): - rr_space.append([op, [v[0] for v in vs]]) - return rr_space - - # ------------------------------------------------------------------------- - def replace_root(self, rr=None, update_gof=True, verbose=False): - """ - Replace the root with a "root replacement" rr (if provided; - otherwise choose one at random from self.rr_space) - - Returns: new root (if move was possible) or None (otherwise) - """ - # If no RR is provided, randomly choose one - if rr is None: - rr = choice(self.rr_space) - # Return None if the replacement is too big - if (self.size + self.ops[rr[0]]) > self.max_size: - return None - # Create the new root and replace existing root - newRoot = Node(rr[0], offspring=[], parent=None) - newRoot.order = 1 + len(rr[1]) - if newRoot.order != self.ops[rr[0]]: - raise - newRoot.offspring.append(self.root) - self.root.parent = newRoot - self.root = newRoot - self.nops[self.root.value] += 1 - self.nodes.append(self.root) - self.size += 1 - oldRoot = self.root.offspring[0] - for leaf in rr[1]: - self.root.offspring.append(Node(leaf, offspring=[], parent=self.root)) - self.nodes.append(self.root.offspring[-1]) - self.ets[0].append(self.root.offspring[-1]) - self.size += 1 - # Add new root to elementary trees if necessary (that is, iff - # the old root was a leaf) - if oldRoot.offspring is []: - self.ets[self.root.order].append(self.root) - # Update list of distinct parameters - self.dist_par = list( - set([n.value for n in self.ets[0] if n.value in self.parameters]) - ) - self.n_dist_par = len(self.dist_par) - # Update goodness of fit measures, if necessary - if update_gof: - self.sse = self.get_sse(verbose=verbose) - self.bic = self.get_bic(verbose=verbose) - self.E = self.get_energy(verbose=verbose) - return self.root - - # ------------------------------------------------------------------------- - def is_root_prunable(self): - """ - Check if the root is "prunable" - - Returns: boolean of root "prunability" - """ - if self.size == 1: - isPrunable = False - elif self.size == 2: - isPrunable = True - else: - isPrunable = True - for o in self.root.offspring[1:]: - if o.offspring != []: - isPrunable = False - break - return isPrunable - - # ------------------------------------------------------------------------- - def prune_root(self, update_gof=True, verbose=False): - """ - Cut the root and its rightmost leaves (provided they are, indeed, leaves), - leaving the leftmost branch as the new tree. Returns the pruned root with the same format - as the replacement roots in self.rr_space (or None if pruning was impossible) - - Returns: the replacement root - """ - # Check if the root is "prunable" (and return None if not) - if not self.is_root_prunable(): - return None - # Let's do it! - rr = [self.root.value, []] - self.nodes.remove(self.root) - try: - self.ets[len(self.root.offspring)].remove(self.root) - except ValueError: - pass - self.nops[self.root.value] -= 1 - self.size -= 1 - for o in self.root.offspring[1:]: - rr[1].append(o.value) - self.nodes.remove(o) - self.size -= 1 - self.ets[0].remove(o) - self.root = self.root.offspring[0] - self.root.parent = None - # Update list of distinct parameters - self.dist_par = list( - set([n.value for n in self.ets[0] if n.value in self.parameters]) - ) - self.n_dist_par = len(self.dist_par) - # Update goodness of fit measures, if necessary - if update_gof: - self.sse = self.get_sse(verbose=verbose) - self.bic = self.get_bic(verbose=verbose) - self.E = self.get_energy(verbose=verbose) - # Done - return rr - - # ------------------------------------------------------------------------- - def _add_et(self, node, et_order=None, et=None, update_gof=True, verbose=False): - """ - Add an elementary tree replacing the node, which must be a leaf - - Returns: the input node - """ - if node.offspring != []: - raise - # If no ET is provided, randomly choose one (of the specified - # order if given, or totally at random otherwise) - if et is None: - if et_order is not None: - et = choice(self.et_space[et_order]) - else: - all_ets = [] - for o in [o for o in self.op_orders if o > 0]: - all_ets += self.et_space[o] - et = choice(all_ets) - et_order = len(et[1]) - else: - et_order = len(et[1]) - # Update the node and its offspring - node.value = et[0] - try: - self.nops[node.value] += 1 - except KeyError: - pass - node.offspring = [Node(v, parent=node, offspring=[]) for v in et[1]] - self.ets[et_order].append(node) - try: - self.ets[len(node.parent.offspring)].remove(node.parent) - except ValueError: - pass - except AttributeError: - pass - # Add the offspring to the list of nodes - for n in node.offspring: - self.nodes.append(n) - # Remove the node from the list of leaves and add its offspring - self.ets[0].remove(node) - for o in node.offspring: - self.ets[0].append(o) - self.size += 1 - # Update list of distinct parameters - self.dist_par = list( - set([n.value for n in self.ets[0] if n.value in self.parameters]) - ) - self.n_dist_par = len(self.dist_par) - # Update goodness of fit measures, if necessary - if update_gof: - self.sse = self.get_sse(verbose=verbose) - self.bic = self.get_bic(verbose=verbose) - self.E = self.get_energy(verbose=verbose) - return node - - # ------------------------------------------------------------------------- - def _del_et(self, node, leaf=None, update_gof=True, verbose=False): - """ - Remove an elementary tree, replacing it by a leaf - - Returns: input node - """ - if self.size == 1: - return None - if leaf is None: - leaf = choice(self.et_space[0])[0] - self.nops[node.value] -= 1 - node.value = leaf - self.ets[len(node.offspring)].remove(node) - self.ets[0].append(node) - for o in node.offspring: - self.ets[0].remove(o) - self.nodes.remove(o) - self.size -= 1 - node.offspring = [] - if node.parent is not None: - is_parent_et = True - for o in node.parent.offspring: - if o not in self.ets[0]: - is_parent_et = False - break - if is_parent_et: - self.ets[len(node.parent.offspring)].append(node.parent) - # Update list of distinct parameters - self.dist_par = list( - set([n.value for n in self.ets[0] if n.value in self.parameters]) - ) - self.n_dist_par = len(self.dist_par) - # Update goodness of fit measures, if necessary - if update_gof: - self.sse = self.get_sse(verbose=verbose) - self.bic = self.get_bic(verbose=verbose) - self.E = self.get_energy(verbose=verbose) - return node - - # ------------------------------------------------------------------------- - def et_replace(self, target, new, update_gof=True, verbose=False): - """ - Replace one elementary tree with another one, both of arbitrary order. target is a - Node and new is a tuple [node_value, [list, of, offspring, values]] - - Returns: target - """ - oini, ofin = len(target.offspring), len(new[1]) - if oini == 0: - added = self._add_et(target, et=new, update_gof=False, verbose=verbose) - else: - if ofin == 0: - added = self._del_et( - target, leaf=new[0], update_gof=False, verbose=verbose - ) - else: - self._del_et(target, update_gof=False, verbose=verbose) - added = self._add_et(target, et=new, update_gof=False, verbose=verbose) - # Update goodness of fit measures, if necessary - if update_gof: - self.sse = self.get_sse(verbose=verbose) - self.bic = self.get_bic(verbose=verbose) - # Done - return added - - # ------------------------------------------------------------------------- - def get_sse(self, fit=True, verbose=False): - """ - Get the sum of squared errors, fitting the expression represented by the Tree - to the existing data, if specified (by default, yes) - - Returns: sum of square errors (sse) - """ - # Return 0 if there is no data - if list(self.x.values())[0].empty or list(self.y.values())[0].empty: - self.sse = 0 - return 0 - # Convert the Tree into a SymPy expression - ex = sympify(str(self)) - # Convert the expression to a function that can be used by - # curve_fit, i.e. that takes as arguments (x, a0, a1, ..., an) - atomd = dict([(a.name, a) for a in ex.atoms() if a.is_Symbol]) - variables = [atomd[v] for v in self.variables if v in list(atomd.keys())] - parameters = [atomd[p] for p in self.parameters if p in list(atomd.keys())] - dic: dict = dict( - { - "fac": scipy.special.factorial, - "sig": scipy.special.expit, - "relu": relu, - }, - **self.custom_ops - ) - try: - flam = lambdify( - variables + parameters, - ex, - [ - "numpy", - dic, - ], - ) - except (SyntaxError, KeyError): - self.sse = dict([(ds, np.inf) for ds in self.x]) - return self.sse - if fit: - if len(parameters) == 0: # Nothing to fit - for ds in self.x: - for p in self.parameters: - self.par_values[ds][p] = 1.0 - elif str(self) in self.fit_par: # Recover previously fit parameters - self.par_values = self.fit_par[str(self)] - else: # Do the fit for all datasets - self.fit_par[str(self)] = {} - for ds in self.x: - this_x, this_y = self.x[ds], self.y[ds] - xmat = [this_x[v.name] for v in variables] - - def feval(x, *params): - args = [xi for xi in x] + [p for p in params] - return flam(*args) - - try: - # Fit the parameters - res = curve_fit( - feval, - xmat, - this_y, - p0=[self.par_values[ds][p.name] for p in parameters], - maxfev=10000, - ) - # Reassign the values of the parameters - self.par_values[ds] = dict( - [ - (parameters[i].name, res[0][i]) - for i in range(len(res[0])) - ] - ) - for p in self.parameters: - if p not in self.par_values[ds]: - self.par_values[ds][p] = 1.0 - # Save this fit - self.fit_par[str(self)][ds] = deepcopy(self.par_values[ds]) - except RuntimeError: - # Save this (unsuccessful) fit and print warning - self.fit_par[str(self)][ds] = deepcopy(self.par_values[ds]) - if verbose: - print( - "#Cannot_fit:%s # # # # #" % str(self).replace(" ", ""), - file=sys.stderr, - ) - - # Sum of squared errors - self.sse = {} - for ds in self.x: - this_x, this_y = self.x[ds], self.y[ds] - xmat = [this_x[v.name] for v in variables] - ar = [np.array(xi) for xi in xmat] + [ - self.par_values[ds][p.name] for p in parameters - ] - try: - se = np.square(this_y - flam(*ar)) - if sum(np.isnan(se)) > 0: - raise ValueError - else: - self.sse[ds] = np.sum(se) - except ValueError: - if verbose: - print("> Cannot calculate SSE for %s: inf" % self, file=sys.stderr) - self.sse[ds] = np.inf - - # Done - return self.sse - - # ------------------------------------------------------------------------- - def get_bic(self, reset=True, fit=False, verbose=False): - """ - Calculate the Bayesian information criterion (BIC) of the current expression, - given the data. If reset==False, the value of self.bic will not be updated - (by default, it will) - - Returns: Bayesian information criterion (BIC) - """ - if list(self.x.values())[0].empty or list(self.y.values())[0].empty: - if reset: - self.bic = 0 - return 0 - # Get the sum of squared errors (fitting, if required) - sse = self.get_sse(fit=fit, verbose=verbose) - # Calculate the BIC - parameters = set([p.value for p in self.ets[0] if p.value in self.parameters]) - k = 1 + len(parameters) - BIC = 0.0 - for ds in self.y: - n = len(self.y[ds]) - BIC += (k - n) * np.log(n) + n * (np.log(2.0 * np.pi) + log(sse[ds]) + 1) - for ds in self.y: - if sse[ds] == 0.0: - BIC = -np.inf - if reset: - self.bic = BIC - return BIC - - # ------------------------------------------------------------------------- - def get_energy(self, bic=False, reset=False, verbose=False): - """ - Calculate the "energy" of a given formula, that is, approximate minus log-posterior - of the formula given the data (the approximation coming from the use of the BIC - instead of the exactly integrated likelihood) - - Returns: Energy of formula (as E, EB, and EP) - """ - # Contribution of the data (recalculating BIC if necessary) - if bic: - EB = self.get_bic(reset=reset, verbose=verbose) / 2.0 - else: - EB = self.bic / 2.0 - # Contribution from the prior - EP = 0.0 - for op, nop in list(self.nops.items()): - try: - EP += self.prior_par["Nopi_%s" % op] * nop - except KeyError: - pass - try: - EP += self.prior_par["Nopi2_%s" % op] * nop**2 - except KeyError: - pass - # Reset the value, if necessary - if reset: - self.EB = EB - self.EP = EP - self.E = EB + EP - # Done - return EB + EP, EB, EP - - # ------------------------------------------------------------------------- - def update_representative(self, verbose=False): - """Check if we've seen this formula before, either in its current form - or in another form. - - *If we haven't seen it, save it and return 1. - - *If we have seen it and this IS the representative, just return 0. - - *If we have seen it and the representative has smaller energy, just return -1. - - *If we have seen it and the representative has higher energy, update - the representatitve and return -2. - - Returns: Integer value (0, 1, or -1) corresponding to: - 0: we have seen this canonical form before - 1: we haven't seen this canonical form before - -1: we have seen this equation's canonical form before but it isn't in that form yet - """ - # Check for canonical representative - canonical = self.canonical(verbose=verbose) - try: # We've seen this canonical before! - rep, rep_energy, rep_par_values = self.representative[canonical] - except KeyError: # Never seen this canonical formula before: - # save it and return 1 - self.get_bic(reset=True, fit=True, verbose=verbose) - new_energy = self.get_energy(bic=False, verbose=verbose) - self.representative[canonical] = ( - str(self), - new_energy, - deepcopy(self.par_values), - ) - return 1 - - # If we've seen this canonical before, check if the - # representative needs to be updated - if rep == str(self): # This IS the representative: return 0 - return 0 - else: - return -1 - - # ------------------------------------------------------------------------- - def dE_et(self, target, new, verbose=False): - """ - Calculate the energy change associated to the replacement of one elementary tree - with another, both of arbitrary order. "target" is a Node() and "new" is - a tuple [node_value, [list, of, offspring, values]]. - - Returns: change in energy associated with an elementary tree replacement move - """ - dEB, dEP = 0.0, 0.0 - - # Some terms of the acceptance (number of possible move types - # from initial and final configurations), as well as checking - # if the tree is canonically acceptable. - - # number of possible move types from initial - nif = sum( - [ - int(len(self.ets[oi]) > 0 and (self.size + of - oi) <= self.max_size) - for oi, of in self.move_types - ] - ) - # replace - old = [target.value, [o.value for o in target.offspring]] - old_bic, old_sse, old_energy = self.bic, deepcopy(self.sse), self.E - old_par_values = deepcopy(self.par_values) - added = self.et_replace(target, new, update_gof=False, verbose=verbose) - # number of possible move types from final - nfi = sum( - [ - int(len(self.ets[oi]) > 0 and (self.size + of - oi) <= self.max_size) - for oi, of in self.move_types - ] - ) - # check/update canonical representative - rep_res = self.update_representative(verbose=verbose) - if rep_res == -1: - # this formula is forbidden - self.et_replace(added, old, update_gof=False, verbose=verbose) - self.bic, self.sse, self.E = old_bic, deepcopy(old_sse), old_energy - self.par_values = old_par_values - return np.inf, np.inf, np.inf, deepcopy(self.par_values), nif, nfi - # leave the whole thing as it was before the back & fore - self.et_replace(added, old, update_gof=False, verbose=verbose) - self.bic, self.sse, self.E = old_bic, deepcopy(old_sse), old_energy - self.par_values = old_par_values - # Prior: change due to the numbers of each operation - try: - dEP -= self.prior_par["Nopi_%s" % target.value] - except KeyError: - pass - try: - dEP += self.prior_par["Nopi_%s" % new[0]] - except KeyError: - pass - try: - dEP += self.prior_par["Nopi2_%s" % target.value] * ( - (self.nops[target.value] - 1) ** 2 - (self.nops[target.value]) ** 2 - ) - except KeyError: - pass - try: - dEP += self.prior_par["Nopi2_%s" % new[0]] * ( - (self.nops[new[0]] + 1) ** 2 - (self.nops[new[0]]) ** 2 - ) - except KeyError: - pass - - # Data - if not list(self.x.values())[0].empty: - bicOld = self.bic - sseOld = deepcopy(self.sse) - par_valuesOld = deepcopy(self.par_values) - old = [target.value, [o.value for o in target.offspring]] - # replace - added = self.et_replace(target, new, update_gof=True, verbose=verbose) - bicNew = self.bic - par_valuesNew = deepcopy(self.par_values) - # leave the whole thing as it was before the back & fore - self.et_replace(added, old, update_gof=False, verbose=verbose) - self.bic = bicOld - self.sse = deepcopy(sseOld) - self.par_values = par_valuesOld - dEB += (bicNew - bicOld) / 2.0 - else: - par_valuesNew = deepcopy(self.par_values) - # Done - try: - dEB = float(dEB) - dEP = float(dEP) - dE = dEB + dEP - except (ValueError, TypeError): - dEB, dEP, dE = np.inf, np.inf, np.inf - return dE, dEB, dEP, par_valuesNew, nif, nfi - - # ------------------------------------------------------------------------- - def dE_lr(self, target, new, verbose=False): - """ - Calculate the energy change associated to a long-range move - (the replacement of the value of a node. "target" is a Node() and "new" is a node_value - - Returns: energy change associated with a long-range move - """ - dEB, dEP = 0.0, 0.0 - par_valuesNew = deepcopy(self.par_values) - - if target.value != new: - - # Check if the new tree is canonically acceptable. - old = target.value - old_bic, old_sse, old_energy = self.bic, deepcopy(self.sse), self.E - old_par_values = deepcopy(self.par_values) - target.value = new - try: - self.nops[old] -= 1 - self.nops[new] += 1 - except KeyError: - pass - # check/update canonical representative - rep_res = self.update_representative(verbose=verbose) - if rep_res == -1: - # this formula is forbidden - target.value = old - try: - self.nops[old] += 1 - self.nops[new] -= 1 - except KeyError: - pass - self.bic, self.sse, self.E = old_bic, deepcopy(old_sse), old_energy - self.par_values = old_par_values - return np.inf, np.inf, np.inf, None - # leave the whole thing as it was before the back & fore - target.value = old - try: - self.nops[old] += 1 - self.nops[new] -= 1 - except KeyError: - pass - self.bic, self.sse, self.E = old_bic, deepcopy(old_sse), old_energy - self.par_values = old_par_values - - # Prior: change due to the numbers of each operation - try: - dEP -= self.prior_par["Nopi_%s" % target.value] - except KeyError: - pass - try: - dEP += self.prior_par["Nopi_%s" % new] - except KeyError: - pass - try: - dEP += self.prior_par["Nopi2_%s" % target.value] * ( - (self.nops[target.value] - 1) ** 2 - (self.nops[target.value]) ** 2 - ) - except KeyError: - pass - try: - dEP += self.prior_par["Nopi2_%s" % new] * ( - (self.nops[new] + 1) ** 2 - (self.nops[new]) ** 2 - ) - except KeyError: - pass - - # Data - if not list(self.x.values())[0].empty: - bicOld = self.bic - sseOld = deepcopy(self.sse) - par_valuesOld = deepcopy(self.par_values) - old = target.value - target.value = new - bicNew = self.get_bic(reset=True, fit=True, verbose=verbose) - par_valuesNew = deepcopy(self.par_values) - # leave the whole thing as it was before the back & fore - target.value = old - self.bic = bicOld - self.sse = deepcopy(sseOld) - self.par_values = par_valuesOld - dEB += (bicNew - bicOld) / 2.0 - else: - par_valuesNew = deepcopy(self.par_values) - - # Done - try: - dEB = float(dEB) - dEP = float(dEP) - dE = dEB + dEP - return dE, dEB, dEP, par_valuesNew - except (ValueError, TypeError): - return np.inf, np.inf, np.inf, None - - # ------------------------------------------------------------------------- - def dE_rr(self, rr=None, verbose=False): - """ - Calculate the energy change associated to a root replacement move. - If rr==None, then it returns the energy change associated to pruning the root; otherwise, - it returns the energy change associated to adding the root replacement "rr" - - Returns: energy change associated with a root replacement move - """ - dEB, dEP = 0.0, 0.0 - - # Root pruning - if rr is None: - if not self.is_root_prunable(): - return np.inf, np.inf, np.inf, self.par_values - - # Check if the new tree is canonically acceptable. - # replace - old_bic, old_sse, old_energy = self.bic, deepcopy(self.sse), self.E - old_par_values = deepcopy(self.par_values) - oldrr = [self.root.value, [o.value for o in self.root.offspring[1:]]] - self.prune_root(update_gof=False, verbose=verbose) - # check/update canonical representative - rep_res = self.update_representative(verbose=verbose) - if rep_res == -1: - # this formula is forbidden - self.replace_root(rr=oldrr, update_gof=False, verbose=verbose) - self.bic, self.sse, self.E = old_bic, deepcopy(old_sse), old_energy - self.par_values = old_par_values - return np.inf, np.inf, np.inf, deepcopy(self.par_values) - # leave the whole thing as it was before the back & fore - self.replace_root(rr=oldrr, update_gof=False, verbose=verbose) - self.bic, self.sse, self.E = old_bic, deepcopy(old_sse), old_energy - self.par_values = old_par_values - - # Prior: change due to the numbers of each operation - dEP -= self.prior_par["Nopi_%s" % self.root.value] - try: - dEP += self.prior_par["Nopi2_%s" % self.root.value] * ( - (self.nops[self.root.value] - 1) ** 2 - - (self.nops[self.root.value]) ** 2 - ) - except KeyError: - pass - - # Data correction - if not list(self.x.values())[0].empty: - bicOld = self.bic - sseOld = deepcopy(self.sse) - par_valuesOld = deepcopy(self.par_values) - oldrr = [self.root.value, [o.value for o in self.root.offspring[1:]]] - # replace - self.prune_root(update_gof=False, verbose=verbose) - bicNew = self.get_bic(reset=True, fit=True, verbose=verbose) - par_valuesNew = deepcopy(self.par_values) - # leave the whole thing as it was before the back & fore - self.replace_root(rr=oldrr, update_gof=False, verbose=verbose) - self.bic = bicOld - self.sse = deepcopy(sseOld) - self.par_values = par_valuesOld - dEB += (bicNew - bicOld) / 2.0 - else: - par_valuesNew = deepcopy(self.par_values) - # Done - try: - dEB = float(dEB) - dEP = float(dEP) - dE = dEB + dEP - except (ValueError, TypeError): - dEB, dEP, dE = np.inf, np.inf, np.inf - return dE, dEB, dEP, par_valuesNew - - # Root replacement - else: - # Check if the new tree is canonically acceptable. - # replace - old_bic, old_sse, old_energy = self.bic, deepcopy(self.sse), self.E - old_par_values = deepcopy(self.par_values) - newroot = self.replace_root(rr=rr, update_gof=False, verbose=verbose) - if newroot is None: # Root cannot be replaced (due to max_size) - return np.inf, np.inf, np.inf, deepcopy(self.par_values) - # check/update canonical representative - rep_res = self.update_representative(verbose=verbose) - if rep_res == -1: - # this formula is forbidden - self.prune_root(update_gof=False, verbose=verbose) - self.bic, self.sse, self.E = old_bic, deepcopy(old_sse), old_energy - self.par_values = old_par_values - return np.inf, np.inf, np.inf, deepcopy(self.par_values) - # leave the whole thing as it was before the back & fore - self.prune_root(update_gof=False, verbose=verbose) - self.bic, self.sse, self.E = old_bic, deepcopy(old_sse), old_energy - self.par_values = old_par_values - - # Prior: change due to the numbers of each operation - dEP += self.prior_par["Nopi_%s" % rr[0]] - try: - dEP += self.prior_par["Nopi2_%s" % rr[0]] * ( - (self.nops[rr[0]] + 1) ** 2 - (self.nops[rr[0]]) ** 2 - ) - except KeyError: - pass - - # Data - if not list(self.x.values())[0].empty: - bicOld = self.bic - sseOld = deepcopy(self.sse) - par_valuesOld = deepcopy(self.par_values) - # replace - newroot = self.replace_root(rr=rr, update_gof=False, verbose=verbose) - if newroot is None: - return np.inf, np.inf, np.inf, self.par_values - bicNew = self.get_bic(reset=True, fit=True, verbose=verbose) - par_valuesNew = deepcopy(self.par_values) - # leave the whole thing as it was before the back & fore - self.prune_root(update_gof=False, verbose=verbose) - self.bic = bicOld - self.sse = deepcopy(sseOld) - self.par_values = par_valuesOld - dEB += (bicNew - bicOld) / 2.0 - else: - par_valuesNew = deepcopy(self.par_values) - # Done - try: - dEB = float(dEB) - dEP = float(dEP) - dE = dEB + dEP - except (ValueError, TypeError): - dEB, dEP, dE = np.inf, np.inf, np.inf - return dE, dEB, dEP, par_valuesNew - - # ------------------------------------------------------------------------- - def mcmc_step(self, verbose=False, p_rr=0.05, p_long=0.45): - """ - Make a single MCMC step - - Returns: None or expression list - """ - topDice = random() - # Root replacement move - if topDice < p_rr: - if random() < 0.5: - # Try to prune the root - dE, dEB, dEP, par_valuesNew = self.dE_rr(rr=None, verbose=verbose) - if -dEB / self.BT - dEP / self.PT > 300: - paccept = 1 - else: - paccept = np.exp(-dEB / self.BT - dEP / self.PT) / float( - self.num_rr - ) - dice = random() - if dice < paccept: - # Accept move - self.prune_root(update_gof=False, verbose=verbose) - self.par_values = par_valuesNew - self.get_bic(reset=True, fit=False, verbose=verbose) - self.E += dE - self.EB += dEB - self.EP += dEP - else: - # Try to replace the root - newrr = choice(self.rr_space) - dE, dEB, dEP, par_valuesNew = self.dE_rr(rr=newrr, verbose=verbose) - if self.num_rr > 0 and -dEB / self.BT - dEP / self.PT > 0: - paccept = 1.0 - elif self.num_rr == 0: - paccept = 0.0 - else: - paccept = self.num_rr * np.exp(-dEB / self.BT - dEP / self.PT) - dice = random() - if dice < paccept: - # Accept move - self.replace_root(rr=newrr, update_gof=False, verbose=verbose) - self.par_values = par_valuesNew - self.get_bic(reset=True, fit=False, verbose=verbose) - self.E += dE - self.EB += dEB - self.EP += dEP - - # Long-range move - elif topDice < (p_rr + p_long) and not ( - self.fixed_root and len(self.nodes) == 1 - ): - # Choose a random node in the tree, and a random new operation - target = choice(self.nodes) - if self.fixed_root: - while target is self.root: - target = choice(self.nodes) - nready = False - while not nready: - if len(target.offspring) == 0: - new = choice(self.variables + self.parameters) - nready = True - else: - new = choice(list(self.ops.keys())) - if self.ops[new] == self.ops[target.value]: - nready = True - dE, dEB, dEP, par_valuesNew = self.dE_lr(target, new, verbose=verbose) - try: - paccept = np.exp(-dEB / self.BT - dEP / self.PT) - except ValueError: - _logger.warning("Potentially failing to set paccept properly") - if (dEB / self.BT + dEP / self.PT) < 0: - paccept = 1.0 - # Accept move, if necessary - dice = random() - if dice < paccept: - # update number of operations - if target.offspring != []: - self.nops[target.value] -= 1 - self.nops[new] += 1 - # move - target.value = new - # recalculate distinct parameters - self.dist_par = list( - set([n.value for n in self.ets[0] if n.value in self.parameters]) - ) - self.n_dist_par = len(self.dist_par) - # update others - self.par_values = deepcopy(par_valuesNew) - self.get_bic(reset=True, fit=False, verbose=verbose) - self.E += dE - self.EB += dEB - self.EP += dEP - - # Elementary tree (short-range) move - else: - target = None - while target is None or self.fixed_root and target is self.root: - # Choose a feasible move (doable and keeping size<=max_size) - while True: - oini, ofin = choice(self.move_types) - if len(self.ets[oini]) > 0 and ( - self.size - oini + ofin <= self.max_size - ): - break - # target and new ETs - target = choice(self.ets[oini]) - new = choice(self.et_space[ofin]) - # omegai and omegaf - omegai = len(self.ets[oini]) - omegaf = len(self.ets[ofin]) + 1 - if ofin == 0: - omegaf -= oini - if oini == 0 and target.parent in self.ets[ofin]: - omegaf -= 1 - # size of et_space of each type - si = len(self.et_space[oini]) - sf = len(self.et_space[ofin]) - # Probability of acceptance - dE, dEB, dEP, par_valuesNew, nif, nfi = self.dE_et( - target, new, verbose=verbose - ) - try: - paccept = ( - float(nif) * omegai * sf * np.exp(-dEB / self.BT - dEP / self.PT) - ) / (float(nfi) * omegaf * si) - except ValueError: - if (dEB / self.BT + dEP / self.PT) < -200: - paccept = 1.0 - # Accept / reject - dice = random() - if dice < paccept: - # Accept move - self.et_replace(target, new, verbose=verbose) - self.par_values = par_valuesNew - self.get_bic(verbose=verbose) - self.E += dE - self.EB += dEB - self.EP += dEP - - # Done - return - - # ------------------------------------------------------------------------- - def mcmc( - self, - tracefn="trace.dat", - progressfn="progress.dat", - write_files=True, - reset_files=True, - burnin=2000, - thin=10, - samples=10000, - verbose=False, - progress=True, - ): - """ - Sample the space of formula trees using MCMC, and write the trace and some progress - information to files (unless write_files is False) - - Returns: None or expression list - """ - self.get_energy(reset=True, verbose=verbose) - - # Burning - if progress: - sys.stdout.write("# Burning in\t") - sys.stdout.write("[%s]" % (" " * 50)) - sys.stdout.flush() - sys.stdout.write("\b" * (50 + 1)) - for i in range(burnin): - self.mcmc_step(verbose=verbose) - if progress and (i % (burnin / 50) == 0): - sys.stdout.write("=") - sys.stdout.flush() - # Sample - if write_files: - if reset_files: - tracef = open(tracefn, "w") - progressf = open(progressfn, "w") - else: - tracef = open(tracefn, "a") - progressf = open(progressfn, "a") - if progress: - sys.stdout.write("\n# Sampling\t") - sys.stdout.write("[%s]" % (" " * 50)) - sys.stdout.flush() - sys.stdout.write("\b" * (50 + 1)) - for s in range(samples): - for i in range(thin): - self.mcmc_step(verbose=verbose) - if progress and (s % (samples / 50) == 0): - sys.stdout.write("=") - sys.stdout.flush() - if write_files: - json.dump( - [ - s, - float(self.bic), - float(self.E), - str(self.get_energy(verbose=verbose)), - str(self), - self.par_values, - ], - tracef, - ) - tracef.write("\n") - tracef.flush() - progressf.write("%d %lf %lf\n" % (s, self.E, self.bic)) - progressf.flush() - # Done - if progress: - sys.stdout.write("\n") - return - - # ------------------------------------------------------------------------- - def predict(self, x): - """ - Calculate the value of the formula at the given data x. The data x - must have the same format as the training data and, in particular, it - it must specify to which dataset the example data belongs, if multiple - datasets where used for training. - - Returns: predicted y values - """ - if isinstance(x, np.ndarray): - columns = list() - for col in range(x.shape[1]): - columns.append("X" + str(col)) - x = pd.DataFrame(x, columns=columns) - - if isinstance(x, pd.DataFrame): - this_x = {"d0": x} - input_type = "df" - elif isinstance(x, dict): - this_x = x - input_type = "dict" - else: - raise TypeError("x must be either a dict or a pandas.DataFrame") - - # Convert the Tree into a SymPy expression - ex = sympify(str(self)) - # Convert the expression to a function - atomd = dict([(a.name, a) for a in ex.atoms() if a.is_Symbol]) - variables = [atomd[v] for v in self.variables if v in list(atomd.keys())] - parameters = [atomd[p] for p in self.parameters if p in list(atomd.keys())] - flam = lambdify( - variables + parameters, - ex, - [ - "numpy", - dict( - { - "fac": scipy.special.factorial, - "sig": scipy.special.expit, - "relu": relu, - }, - **self.custom_ops - ), - ], - ) - # Loop over datasets - predictions = {} - for ds in this_x: - # Prepare variables and parameters - xmat = [this_x[ds][v.name] for v in variables] - params = [self.par_values[ds][p.name] for p in parameters] - args = [xi for xi in xmat] + [p for p in params] - # Predict - try: - prediction = flam(*args) - except SyntaxError: - # Do it point by point - prediction = [np.nan for i in range(len(this_x[ds]))] - predictions[ds] = pd.Series(prediction, index=list(this_x[ds].index)) - - if input_type == "df": - return predictions["d0"] - else: - return predictions - - # ------------------------------------------------------------------------- - def trace_predict( - self, - x, - burnin=1000, - thin=2000, - samples=1000, - tracefn="trace.dat", - progressfn="progress.dat", - write_files=False, - reset_files=True, - verbose=False, - progress=True, - ): - """ - Sample the space of formula trees using MCMC, - and predict y(x) for each of the sampled formula trees - - Returns: predicted y values for each of the sampled formula trees - """ - ypred = {} - # Burning - if progress: - sys.stdout.write("# Burning in\t") - sys.stdout.write("[%s]" % (" " * 50)) - sys.stdout.flush() - sys.stdout.write("\b" * (50 + 1)) - for i in range(burnin): - self.mcmc_step(verbose=verbose) - if progress and (i % (burnin / 50) == 0): - sys.stdout.write("=") - sys.stdout.flush() - # Sample - if write_files: - if reset_files: - tracef = open(tracefn, "w") - progressf = open(progressfn, "w") - else: - tracef = open(tracefn, "a") - progressf = open(progressfn, "a") - if progress: - sys.stdout.write("\n# Sampling\t") - sys.stdout.write("[%s]" % (" " * 50)) - sys.stdout.flush() - sys.stdout.write("\b" * (50 + 1)) - - for s in range(samples): - for kk in range(thin): - self.mcmc_step(verbose=verbose) - # Make prediction - ypred[s] = self.predict(x) - # Output - if progress and (s % (samples / 50) == 0): - sys.stdout.write("=") - sys.stdout.flush() - if write_files: - json.dump( - [ - s, - float(self.bic), - float(self.E), - float(self.get_energy(verbose=verbose)), - str(self), - self.par_values, - ], - tracef, - ) - tracef.write("\n") - tracef.flush() - progressf.write("%d %lf %lf\n" % (s, self.E, self.bic)) - progressf.flush() - # Done - if progress: - sys.stdout.write("\n") - return pd.DataFrame.from_dict(ypred) - - -# ----------------------------------------------------------------------------- -# ----------------------------------------------------------------------------- -# MAIN -# ----------------------------------------------------------------------------- -# ----------------------------------------------------------------------------- - - -def test3(num_points=10, samples=100000): - # Create the data - x = pd.DataFrame( - dict([("x%d" % i, np.random.uniform(0, 10, num_points)) for i in range(5)]) - ) - eps = np.random.normal(0.0, 5, num_points) - y = 50.0 * np.sin(x["x0"]) / x["x2"] - 4.0 * x["x1"] + 3 + eps - x.to_csv("data_x.csv", index=False) - y.to_csv("data_y.csv", index=False, header=["y"]) - - # Create the formula - prior_par, _ = get_priors() - t = Tree( - variables=["x%d" % i for i in range(5)], - parameters=["a%d" % i for i in range(10)], - x=x, - y=y, - prior_par=prior_par, - BT=1.0, - ) - # MCMC - t.mcmc(burnin=2000, thin=10, samples=samples, verbose=True) - - # Predict - print(t.predict(x)) - print(y) - print(50.0 * np.sin(x["x0"]) / x["x2"] - 4.0 * x["x1"] + 3) - - plt.plot(t.predict(x), 50.0 * np.sin(x["x0"]) / x["x2"] - 4.0 * x["x1"] + 3) - plt.show() - - return t - - -def test4(num_points=10, samples=1000): - # Create the data - x = pd.DataFrame( - dict([("x%d" % i, np.random.uniform(0, 10, num_points)) for i in range(5)]) - ) - eps = np.random.normal(0.0, 5, num_points) - y = 50.0 * np.sin(x["x0"]) / x["x2"] - 4.0 * x["x1"] + 3 + eps - x.to_csv("data_x.csv", index=False) - y.to_csv("data_y.csv", index=False, header=["y"]) - - xtrain, ytrain = x.iloc[5:], y.iloc[5:] - xtest, ytest = x.iloc[:5], y.iloc[:5] - - # Create the formula - prior_par, _ = get_priors() - t = Tree( - variables=["x%d" % i for i in range(5)], - parameters=["a%d" % i for i in range(10)], - x=xtrain, - y=ytrain, - prior_par=prior_par, - ) - print(xtest) - - # Predict - ypred = t.trace_predict(xtest, samples=samples, burnin=10000) - - print(ypred) - print(ytest) - print(50.0 * np.sin(xtest["x0"]) / xtest["x2"] - 4.0 * xtest["x1"] + 3) - - # Done - return t - - -def test5(string="(P120 + (((ALPHACAT / _a2) + (_a2 * CDH3)) + _a0))"): - # Create the formula - prior_par, _ = get_priors("GuimeraTest2020") - - t = Tree(prior_par=prior_par, from_string=string) - for i in range(1000000): - t.mcmc_step(verbose=True) - print("-" * 150) - t2 = Tree(from_string=str(t)) - print(t) - print(t2) - if str(t2) != str(t): - raise - - return t - - -if __name__ == "__main__": - NP, NS = 100, 1000 - test5() diff --git a/autora/theorist/bms/parallel.py b/autora/theorist/bms/parallel.py deleted file mode 100644 index 6956304f5..000000000 --- a/autora/theorist/bms/parallel.py +++ /dev/null @@ -1,171 +0,0 @@ -import sys -from copy import deepcopy -from random import randint, random -from typing import Optional, Tuple - -from numpy import exp - -from .mcmc import Tree -from .prior import get_priors - - -class Parallel: - """ - The Parallel Machine Scientist Object, equipped with parallel tempering - - Attributes: - Ts: list of parallel temperatures - trees: list of parallel trees, corresponding to each parallel temperature - t1: equation tree which best describes the data - """ - - # ------------------------------------------------------------------------- - def __init__( - self, - Ts: list, - ops=get_priors()[1], - custom_ops={}, - variables=["x"], - parameters=["a"], - max_size=50, - prior_par=get_priors()[0], - x=None, - y=None, - root=None, - seed=None, - ) -> None: - """ - Initialises Parallel Machine Scientist - - Args: - Ts: list of temperature values - ops: allowed operations for the search task - variables: independent variables from data - parameters: settable values to improve model fit - max_size: maximum size (number of nodes) in a tree - prior_par: prior values over ops - x: independent variables of dataset - y: dependent variable of dataset - root: fixed root of the tree - """ - self.root = root - # All trees are initialized to the same tree but with different BT - Ts.sort() - self.Ts = [str(T) for T in Ts] - self.trees = { - "1.0": Tree( - ops=ops, - variables=deepcopy(variables), - parameters=deepcopy(parameters), - prior_par=deepcopy(prior_par), - x=x, - y=y, - max_size=max_size, - BT=1, - root_value=root.__name__ if root is not None else None, - fixed_root=True if root is not None else False, - custom_ops=custom_ops, - seed_value=seed, - ) - } - self.t1 = self.trees["1.0"] - for BT in [T for T in self.Ts if T != 1]: - treetmp = Tree( - ops=ops, - variables=deepcopy(variables), - parameters=deepcopy(parameters), - prior_par=deepcopy(prior_par), - x=x, - y=y, - root_value=root.__name__ if root is not None else None, - fixed_root=self.t1.fixed_root, - custom_ops=custom_ops, - max_size=max_size, - BT=float(BT), - seed_value=seed, - ) - self.trees[BT] = treetmp - # Share fitted parameters and representative with other trees - self.trees[BT].fit_par = self.t1.fit_par - self.trees[BT].representative = self.t1.representative - - # ------------------------------------------------------------------------- - def mcmc_step(self, verbose=False, p_rr=0.05, p_long=0.45) -> None: - """ - Perform a MCMC step in each of the trees - """ - # Loop over all trees - if self.root is not None: - p_rr = 0.0 - for T, tree in list(self.trees.items()): - # MCMC step - tree.mcmc_step(verbose=verbose, p_rr=p_rr, p_long=p_long) - self.t1 = self.trees["1.0"] - - # ------------------------------------------------------------------------- - def tree_swap(self) -> Tuple[Optional[str], Optional[str]]: - """ - Choose a pair of trees of adjacent temperatures and attempt to swap their temperatures - based on the resultant energy change - - Returns: new temperature values for the pair of trees - """ - # Choose Ts to swap - nT1 = randint(0, len(self.Ts) - 2) - nT2 = nT1 + 1 - t1 = self.trees[self.Ts[nT1]] - t2 = self.trees[self.Ts[nT2]] - # The temperatures and energies - BT1, BT2 = t1.BT, t2.BT - EB1, EB2 = t1.EB, t2.EB - # The energy change - DeltaE = float(EB1) * (1.0 / BT2 - 1.0 / BT1) + float(EB2) * ( - 1.0 / BT1 - 1.0 / BT2 - ) - if DeltaE > 0: - paccept = exp(-DeltaE) - else: - paccept = 1.0 - # Accept/reject change - if random() < paccept: - self.trees[self.Ts[nT1]] = t2 - self.trees[self.Ts[nT2]] = t1 - t1.BT = BT2 - t2.BT = BT1 - self.t1 = self.trees["1.0"] - return self.Ts[nT1], self.Ts[nT2] - else: - return None, None - - # ------------------------------------------------------------------------- - def anneal(self, n=1000, factor=5) -> None: - """ - Annealing function for the Machine Scientist - - Args: - n: number of mcmc step & tree swap iterations - factor: degree of annealing - how much the temperatures are raised - - Returns: Nothing - - """ - for t in list(self.trees.values()): - t.BT *= factor - for kk in range(n): - print( - "# Annealing heating at %g: %d / %d" % (self.trees["1.0"].BT, kk, n), - file=sys.stderr, - ) - self.mcmc_step() - self.tree_swap() - # Cool down (return to original temperatures) - for BT, t in list(self.trees.items()): - t.BT = float(BT) - for kk in range(2 * n): - print( - "# Annealing cooling at %g: %d / %d" - % (self.trees["1.0"].BT, kk, 2 * n), - file=sys.stderr, - ) - self.mcmc_step() - self.tree_swap() diff --git a/autora/theorist/bms/prior.py b/autora/theorist/bms/prior.py deleted file mode 100644 index 973d9bdd2..000000000 --- a/autora/theorist/bms/prior.py +++ /dev/null @@ -1,90 +0,0 @@ -import numpy as np - - -def __get_prior(prior_name): - prior_dict = { - "GuimeraTest2020": { - "Nopi_/": 0, - "Nopi_cosh": 0, - "Nopi_-": 0, - "Nopi_sin": 0, - "Nopi_tan": 0, - "Nopi_tanh": 0, - "Nopi_**": 0, - "Nopi_pow2": 0, - "Nopi_pow3": 0, - "Nopi_exp": 0, - "Nopi_log": 0, - "Nopi_sqrt": 0, - "Nopi_cos": 0, - "Nopi_sinh": 0, - "Nopi_abs": 0, - "Nopi_+": 0, - "Nopi_*": 0, - "Nopi_fac": 0, - "Nopi_sig": 0, - "Nopi_relu": 0, - }, - "Guimera2020": { - "Nopi_/": 5.912205942815285, - "Nopi_cosh": 8.12720511103694, - "Nopi_-": 3.350846072163632, - "Nopi_sin": 5.965917796154835, - "Nopi_tan": 8.127427922862411, - "Nopi_tanh": 7.799259068142255, - "Nopi_**": 6.4734429542245495, - "Nopi_pow2": 3.3017352779079734, - "Nopi_pow3": 5.9907496760026175, - "Nopi_exp": 4.768665265735502, - "Nopi_log": 4.745957377206544, - "Nopi_sqrt": 4.760686909134266, - "Nopi_cos": 5.452564657261127, - "Nopi_sinh": 7.955723540761046, - "Nopi_abs": 6.333544134938385, - "Nopi_+": 5.808163661224514, - "Nopi_*": 5.002213595420244, - "Nopi_fac": 10.0, - "Nopi2_*": 1.0, - "Nopi_sig": 1.0, # arbitrarily set for now - "Nopi_relu": 1.0, # arbitrarily set for now - }, - } - assert prior_dict[prior_name] is not None, "prior key not recognized" - return prior_dict[prior_name] - - -def __get_ops(): - ops = { - "sin": 1, - "cos": 1, - "tan": 1, - "exp": 1, - "log": 1, - "sinh": 1, - "cosh": 1, - "tanh": 1, - "pow2": 1, - "pow3": 1, - "abs": 1, - "sqrt": 1, - "fac": 1, - "-": 1, - "+": 2, - "*": 2, - "/": 2, - "**": 2, - "sig": 1, - "relu": 1, - } - return ops - - -def get_priors(prior="Guimera2020"): - priors = __get_prior(prior) - all_ops = __get_ops() - ops = {k: v for k, v in all_ops.items() if "Nopi_" + k in priors} - return priors, ops - - -def relu(x): - return np.maximum(x, 0) diff --git a/autora/theorist/bms/utils.py b/autora/theorist/bms/utils.py deleted file mode 100755 index d9f047f85..000000000 --- a/autora/theorist/bms/utils.py +++ /dev/null @@ -1,89 +0,0 @@ -import logging -from copy import deepcopy -from typing import List, Tuple - -import matplotlib.pyplot as plt -import numpy as np -import pandas as pd -from tqdm import tqdm - -from .mcmc import Tree -from .parallel import Parallel - -logging.basicConfig(level=logging.INFO) -_logger = logging.getLogger(__name__) - - -def run( - pms: Parallel, num_steps: int, thinning: int = 100 -) -> Tuple[Tree, float, List[float]]: - """ - - Args: - pms: Parallel Machine Scientist (BMS is essentially a wrapper for pms) - num_steps: number of epochs / mcmc step & tree swap iterations - thinning: number of epochs between recording model loss to the trace - - Returns: - model: The equation which best describes the data - model_len: (defined as description length) loss function score - desc_len: Record of loss function score over time - - """ - desc_len, model, model_len = [], pms.t1, np.inf - for n in tqdm(range(num_steps)): - pms.mcmc_step() - pms.tree_swap() - if num_steps % thinning == 0: # sample less often if we thin more - desc_len.append(pms.t1.E) # Add the description length to the trace - if pms.t1.E < model_len: # Check if this is the MDL expression so far - model, model_len = deepcopy(pms.t1), pms.t1.E - _logger.debug("Finish iteration {}".format(n)) - return model, model_len, desc_len - - -def present_results(model: Tree, model_len: float, desc_len: List[float]) -> None: - """ - Prints out the best equation, its description length, - along with a plot of how this has progressed over the course of the search tasks - - Args: - model: The equation which best describes the data - model_len: The equation loss (defined as description length) - desc_len: Record of equation loss over time - - Returns: Nothing - - """ - print("Best model:\t", model) - print("Desc. length:\t", model_len) - plt.figure(figsize=(15, 5)) - plt.plot(desc_len) - plt.xlabel("MCMC step", fontsize=14) - plt.ylabel("Description length", fontsize=14) - plt.title("MDL model: $%s$" % model.latex()) - plt.show() - - -def predict(model: Tree, x: pd.DataFrame, y: pd.DataFrame) -> dict: - """ - Maps independent variable data onto expected dependent variable data - - Args: - model: The equation / function that best maps x onto y - x: The independent variables of the data - y: The dependent variable of the data - - Returns: Predicted values for y given x and the model as trained - """ - plt.figure(figsize=(6, 6)) - plt.scatter(model.predict(x), y) - - all_y = np.append(y, model.predict(x)) - y_range = all_y.min().item(), all_y.max().item() - plt.plot(y_range, y_range) - - plt.xlabel("MDL model predictions", fontsize=14) - plt.ylabel("Actual values", fontsize=14) - plt.show() - return model.predict(x) diff --git a/autora/theorist/bsr/__init__.py b/autora/theorist/bsr/__init__.py deleted file mode 100644 index e69de29bb..000000000 diff --git a/autora/theorist/bsr/funcs.py b/autora/theorist/bsr/funcs.py deleted file mode 100644 index 15c728777..000000000 --- a/autora/theorist/bsr/funcs.py +++ /dev/null @@ -1,927 +0,0 @@ -import copy -from enum import Enum -from functools import wraps -from typing import Callable, Dict, List, Optional, Tuple, Union, cast - -import numpy as np -import pandas as pd -from scipy.stats import invgamma, norm - -from .node import Node, NodeType - - -def check_empty(func: Callable): - """ - A decorator that, if applied to `func`, checks whether an argument in `func` is an - un-initialized node (i.e. node.node_type == NodeType.Empty). If so, an error is raised. - """ - - @wraps(func) - def func_wrapper(*args, **kwargs): - for arg in args: - if isinstance(arg, Node): - if arg.node_type == NodeType.EMPTY: - raise TypeError( - "uninitialized node found in {}".format(func.__name__) - ) - break - return func(*args, **kwargs) - - return func_wrapper - - -@check_empty -def get_height(node: Node) -> int: - """ - Get the height of a tree starting from `node` as root. The height of a leaf is defined as 0. - - Arguments: - node: the Node that we hope to calculate `height` for - Returns: - height: the height of `node` - """ - if node.node_type == NodeType.LEAF: - return 0 - elif node.node_type == NodeType.UNARY: - return 1 + get_height(node.left) - else: # binary node - return 1 + max(get_height(node.left), get_height(node.right)) - - -@check_empty -def update_depth(node: Node, depth: int): - """ - Update the depth information of all nodes starting from root `node`, whose depth - is set equal to the given `depth`. - """ - node.depth = depth - if node.node_type == NodeType.UNARY: - update_depth(node.left, depth + 1) - elif node.node_type == NodeType.BINARY: - update_depth(node.left, depth + 1) - update_depth(node.right, depth + 1) - - -@check_empty -def get_all_nodes(node: Node) -> List[Node]: - """ - Get all the nodes below (and including) the given `node` via pre-order traversal - - Return: - a list with all the nodes below (and including) the given `node` - """ - nodes = [node] - if node.node_type == NodeType.UNARY: - nodes.extend(get_all_nodes(node.left)) - elif node.node_type == NodeType.BINARY: - nodes.extend(get_all_nodes(node.left)) - nodes.extend(get_all_nodes(node.right)) - return nodes - - -@check_empty -def get_num_lt_nodes(node: Node) -> int: - """ - Get the number of nodes with `lt` operation in a tree starting from `node` - """ - if node.node_type == NodeType.LEAF: - return 0 - else: - base = 1 if node.op_name == "ln" else 0 - if node.node_type == NodeType.UNARY: - return base + get_num_lt_nodes(node.left) - else: - return base + get_num_lt_nodes(node.left) + get_num_lt_nodes(node.right) - - -@check_empty -def calc_tree_ll( - node: Node, ops_priors: Dict[str, Dict], n_feature: int = 1, **hyper_params -): - """ - Calculate the likelihood-related quantities of the given tree `node`. - - Arguments: - node: the tree node for which the calculations are done - ops_priors: the dictionary that maps operation names to their prior info - n_feature: number of features in the input data - hyperparams: hyperparameters for initialization - - Returns: - struct_ll: tree structure-related likelihood - params_ll: tree parameters-related likelihood - """ - struct_ll = 0 # log likelihood of tree structure S = (T,M) - params_ll = 0 # log likelihood of linear params - depth = node.depth - beta = hyper_params.get("beta", -1) - sigma_a, sigma_b = hyper_params.get("sigma_a", 1), hyper_params.get("sigma_b", 1) - - # contribution of hyperparameter sigma_theta - if not depth: # root node - struct_ll += np.log(invgamma.pdf(sigma_a, 1)) - struct_ll += np.log(invgamma.pdf(sigma_b, 1)) - - # contribution of splitting the node or becoming leaf node - if node.node_type == NodeType.LEAF: - # contribution of choosing terminal - struct_ll += np.log(1 - 1 / np.power((1 + depth), -beta)) - # contribution of feature selection - struct_ll -= np.log(n_feature) - return struct_ll, params_ll - elif node.node_type == NodeType.UNARY: # unitary operator - # contribution of child nodes are added since the log likelihood is additive - # if we assume the parameters are independent. - left = cast(Node, node.left) - struct_ll_left, params_ll_left = calc_tree_ll( - left, ops_priors, n_feature, **hyper_params - ) - struct_ll += struct_ll_left - params_ll += params_ll_left - # contribution of parameters of linear nodes - # make sure the below parameter ll calculation is extendable - if node.op_name == "ln": - params_ll -= np.power((node.params["a"] - 1), 2) / (2 * sigma_a) - params_ll -= np.power(node.params["b"], 2) / (2 * sigma_b) - params_ll -= 0.5 * np.log(4 * np.pi**2 * sigma_a * sigma_b) - else: # binary operator - left = cast(Node, node.left) - right = cast(Node, node.right) - struct_ll_left, params_ll_left = calc_tree_ll( - left, ops_priors, n_feature, **hyper_params - ) - struct_ll_right, params_ll_right = calc_tree_ll( - right, ops_priors, n_feature, **hyper_params - ) - struct_ll += struct_ll_left + struct_ll_right - params_ll += params_ll_left + params_ll_right - - op_weight = ops_priors[node.op_name]["weight"] - # for unary & binary nodes, additionally consider the contribution of splitting - if not depth: # root node - struct_ll += np.log(op_weight) - else: - struct_ll += np.log((1 + depth)) * beta + np.log(op_weight) - - return struct_ll, params_ll - - -def calc_y_ll(y: np.ndarray, outputs: Union[np.ndarray, pd.DataFrame], sigma_y: float): - """ - Calculate the log likelihood f(y|S,Theta,x) where (S,Theta) is represented by the - node prior is y ~ N(output,sigma) and output is the matrix of outputs corresponding to - different roots. - - Returns: - log_sum: the data log likelihood - """ - outputs = copy.deepcopy(outputs) - scale = np.max(np.abs(outputs)) - outputs = outputs / scale - epsilon = np.eye(outputs.shape[1]) * 1e-6 - beta = np.linalg.inv(np.matmul(outputs.transpose(), outputs) + epsilon) - beta = np.matmul(beta, np.matmul(outputs.transpose(), y)) - # perform the linear combination - output = np.matmul(outputs, beta) - # calculate the squared error - error = np.sum(np.square(y - output[:, 0])) - - log_sum = error - var = 2 * sigma_y * sigma_y - log_sum = -log_sum / var - log_sum -= 0.5 * len(y) * np.log(np.pi * var) - return log_sum - - -def stay(lt_nodes: List[Node], **hyper_params: Dict): - """ - ACTION 1: Stay represents the action of doing nothing but to update the parameters for `ln` - operators. - - Arguments: - lt_nodes: the list of nodes with `ln` operator - hyper_params: hyperparameters for re-initialization - """ - for lt_node in lt_nodes: - lt_node._init_param(**hyper_params) - - -def grow( - node: Node, - ops_name_lst: List[str], - ops_weight_lst: List[float], - ops_priors: Dict[str, Dict], - n_feature: int = 1, - **hyper_params -): - """ - ACTION 2: Grow represents the action of growing a subtree from a given `node` - - Arguments: - node: the tree node from where the subtree starts to grow - ops_name_lst: list of operation names - ops_weight_lst: list of operation prior weights - ops_priors: the dictionary of operation prior properties - n_feature: the number of features in input data - hyper_params: hyperparameters for re-initialization - """ - depth = node.depth - p = 1 / np.power((1 + depth), -hyper_params.get("beta", -1)) - - if depth > 0 and p < np.random.uniform(0, 1, 1): # create leaf node - node.setup(feature=np.random.randint(0, n_feature, 1)) - else: - ops_name = np.random.choice(ops_name_lst, p=ops_weight_lst) - ops_prior = ops_priors[ops_name] - node.setup(ops_name, ops_prior, hyper_params=hyper_params) - - # recursively set up downstream nodes - grow( - cast(Node, node.left), - ops_name_lst, - ops_weight_lst, - ops_priors, - n_feature, - **hyper_params - ) - if node.node_type == NodeType.BINARY: - grow( - cast(Node, node.right), - ops_name_lst, - ops_weight_lst, - ops_priors, - n_feature, - **hyper_params - ) - - -@check_empty -def prune(node: Node, n_feature: int = 1): - """ - ACTION 3: Prune a non-terminal node into a terminal node and assign it a feature - - Arguments: - node: the tree node to be pruned - n_feature: the number of features in input data - """ - node.setup(feature=np.random.randint(0, n_feature, 1)) - - -@check_empty -def de_transform(node: Node) -> Tuple[Node, Optional[Node]]: - """ - ACTION 4: De-transform deletes the current `node` and replaces it with children - according to the following rule: if the `node` is unary, simply replace with its - child; if `node` is binary and root, choose any children that's not leaf; if `node` - is binary and not root, pick any children. - - Arguments: - node: the tree node that gets de-transformed - - Returns: - first node is the replaced node when `node` has been de-transformed - second node is the discarded node - """ - left = cast(Node, node.left) - if node.node_type == NodeType.UNARY: - return left, None - - r = np.random.random() - right = cast(Node, node.right) - # picked node is root - if not node.depth: - if left.node_type == NodeType.LEAF: - return right, left - elif right.node_type == NodeType.LEAF: - return left, right - else: - return (left, right) if r < 0.5 else (right, left) - elif r < 0.5: - return left, right - else: - return right, left - - -@check_empty -def transform( - node: Node, - ops_name_lst: List[str], - ops_weight_lst: List[float], - ops_priors: Dict[str, Dict], - n_feature: int = 1, - **hyper_params: Dict -) -> Node: - """ - ACTION 5: Transform inserts a middle node between the picked `node` and its - parent. Assign an operation to this middle node using the priors. If the middle - node is binary, `grow` its right child. The left child of the middle node is - set to `node` and its parent becomes `node.parent`. - - Arguments: - node: the tree node that gets transformed - ops_name_lst: list of operation names - ops_weight_lst: list of operation prior weights - ops_priors: the dictionary of operation prior properties - n_feature: the number of features in input data - hyper_params: hyperparameters for re-initialization - - Return: - the middle node that gets inserted - """ - parent = node.parent - - insert_node = Node(depth=node.depth, parent=parent) - insert_op = np.random.choice(ops_name_lst, 1, ops_weight_lst)[0] - insert_node.setup(insert_op, ops_priors[insert_op], hyper_params=hyper_params) - - if parent: - is_left = node is parent.left - if is_left: - parent.left = insert_node - else: - parent.right = insert_node - - # set the left child as `node` and grow the right child if needed (binary case) - insert_node.left = node - node.parent = insert_node - if insert_node.node_type == NodeType.BINARY: - grow( - cast(Node, insert_node.right), - ops_name_lst, - ops_weight_lst, - ops_priors, - n_feature, - **hyper_params - ) - - # make sure the depth property is updated correctly - update_depth(node, node.depth + 1) - return insert_node - - -@check_empty -def reassign_op( - node: Node, - ops_name_lst: List[str], - ops_weight_lst: List[float], - ops_priors: Dict[str, Dict], - n_feature: int = 1, - **hyper_params: Dict -): - """ - ACTION 6: Re-assign action uniformly picks a non-terminal node, and assign a new operator. - If the node changes from unary to binary, its original child is taken as the left child, - and we grow a new subtree as right child. If the node changes from binary to unary, we - preserve the left subtree (this is to make the transition reversible). - - Arguments: - node: the tree node that gets re-assigned an operator - ops_name_lst: list of operation names - ops_weight_lst: list of operation prior weights - ops_priors: the dictionary of operation prior properties - n_feature: the number of features in input data - hyper_params: hyperparameters for re-initialization - """ - # make sure `node` is non-terminal - old_type = node.node_type - assert old_type != NodeType.LEAF - - # store the original children and re-setup the `node` - old_left, old_right = node.left, node.right - new_op = np.random.choice(ops_name_lst, 1, ops_weight_lst)[0] - node.setup(new_op, ops_priors[new_op], hyper_params=hyper_params) - - new_type = node.node_type - - node.left = old_left - if old_type == new_type: # binary -> binary & unary -> unary - node.right = old_right - elif new_type == NodeType.BINARY: # unary -> binary - grow( - cast(Node, node.right), - ops_name_lst, - ops_weight_lst, - ops_priors, - n_feature, - **hyper_params - ) - else: - node.right = None - - -@check_empty -def reassign_feat(node: Node, n_feature: int = 1): - """ - ACTION 7: Re-assign feature randomly picks a feature and assign it to `node`. - - Arguments: - node: the tree node that gets re-assigned a feature - n_feature: the number of features in input data - """ - # make sure we have a leaf node - assert node.node_type == NodeType.LEAF - node.setup(feature=np.random.randint(0, n_feature, 1)) - - -class Action(int, Enum): - """ - Enum class that represents a MCMC step with a certain action - """ - - STAY = 0 - GROW = 1 - PRUNE = 2 - DE_TRANSFORM = 3 - TRANSFORM = 4 - REASSIGN_OP = 5 - REASSIGN_FEAT = 6 - - @classmethod - def rand_action( - cls, lt_num: int, term_num: int, de_trans_num: int - ) -> Tuple[int, List[float]]: - """ - Draw a random action for MCMC algorithm to take a step - - Arguments: - lt_num: the number of linear (`lt`) nodes in the tree - term_num: the number of terminal nodes in the tree - de_trans_num: the number of de-trans qualified nodes in the tree - (see `propose` for details) - - Returns: - action: the MCMC action to perform - weights: the probabilities for each action - """ - # from the BSR paper - weights = [] - weights.append(0.25 * lt_num / (lt_num + 3)) # p_stay - weights.append((1 - weights[0]) * min(1, 4 / (term_num + 2)) / 3) # p_grow - weights.append((1 - weights[0]) / 3 - weights[1]) # p_prune - weights.append( - ((1 - weights[0]) * (1 / 3) * de_trans_num / (3 + de_trans_num)) - ) # p_detrans - weights.append((1 - weights[0]) / 3 - weights[3]) # p_trans - weights.append((1 - weights[0]) / 6) # p_reassign_op - weights.append(1 - sum(weights)) # p_reassign_feat - assert weights[-1] >= 0 - - action = np.random.choice(np.arange(7), p=weights) - return action, weights - - -def _get_tree_classified_nodes( - root: Node, -) -> Tuple[List[Node], List[Node], List[Node], List[Node]]: - """ - calculate the classified lists of nodes from a tree - - Argument: - root: the root node where the calculation starts from - Returns: - term_nodes: the list of terminal nodes (or the count of this list, same below) - nterm_nodes: the list of non-terminal nodes - lt_nodes: the list of nodes with linear operator - de_trans_nodes: the list of nodes that can be de-transformed - """ - term_nodes: List[Node] = [] - nterm_nodes: List[Node] = [] - lt_nodes: List[Node] = [] - de_trans_nodes: List[Node] = [] - for node in get_all_nodes(root): - if node.node_type == NodeType.LEAF: - term_nodes.append(node) - else: - nterm_nodes.append(node) - # rules for deciding whether a non-terminal node is de-transformable - # 1. node is not root OR 2. children are not both terminal nodes - if node.depth or (node.left or node.right): - de_trans_nodes.append(node) - if node.op_name == "ln": - lt_nodes.append(node) - - return term_nodes, nterm_nodes, lt_nodes, de_trans_nodes - - -def _get_tree_classified_counts(root: Node) -> Tuple[int, int, int, int]: - """ - Helper function that returns the counts (lengths) of the classified node lists from - `_get_tree_classified_nodes`, instead of the lists themselves. - """ - term_nodes, nterm_nodes, lt_nodes, de_trans_nodes = _get_tree_classified_nodes(root) - return len(term_nodes), len(nterm_nodes), len(lt_nodes), len(de_trans_nodes) - - -@check_empty -def prop( - node: Node, - ops_name_lst: List[str], - ops_weight_lst: List[float], - ops_priors: Dict[str, Dict], - n_feature: int = 1, - **hyper_params -): - """ - Propose a new tree from an existing tree with root `node`. - - Arguments: - node: the existing tree node - ops_name_lst: the list of operator names - ops_weight_lst: the list of operator weights - ops_priors: the dictionary of operator prior information - n_feature: the number of features in input data - hyper_params: hyperparameters for initialization - - Return: - new_node: the new node after some action is applied - expand_node: whether the node has been expanded - shrink_node: whether the node has been shrunk - q: quantities for calculating acceptance prob - q_inv: quantities for calculating acceptance prob - """ - # PART 1: collect necessary information - new_node = copy.deepcopy(node) - term_nodes, nterm_nodes, lt_nodes, de_trans_nodes = _get_tree_classified_nodes( - new_node - ) - - # PART 2: sample random action and perform the action - # this step also calculates q and q_inv, quantities necessary for calculating - # the acceptance probability in MCMC algorithm - action, probs = Action.rand_action( - len(lt_nodes), len(term_nodes), len(de_trans_nodes) - ) - # flags indicating potential dimensionality change (expand or shrink) in node - expand_node, shrink_node = False, False - - # ACTION 1: STAY - # q and q_inv simply equal the probability of choosing this action - if action == Action.STAY: - q = probs[Action.STAY] - q_inv = probs[Action.STAY] - stay(lt_nodes, **hyper_params) - # ACTION 2: GROW - # q and q_inv simply equal the probability if the grown node is a leaf node - # otherwise, we calculate new information of the `new_node` after the action is applied - elif action == Action.GROW: - i = np.random.randint(0, len(term_nodes), 1)[0] - grown_node: Node = term_nodes[i] - grow( - grown_node, - ops_name_lst, - ops_weight_lst, - ops_priors, - n_feature, - **hyper_params - ) - if grown_node.node_type == NodeType.LEAF: - q = q_inv = 1 - else: - tree_ll, param_ll = calc_tree_ll( - grown_node, ops_priors, n_feature, **hyper_params - ) - # calculate q - q = probs[Action.GROW] * np.exp(tree_ll) / len(term_nodes) - # calculate q_inv by using updated information of `new_node` - ( - new_term_count, - new_nterm_count, - new_lt_count, - _, - ) = _get_tree_classified_counts(new_node) - new_prob = ( - (1 - 0.25 * new_lt_count / (new_lt_count + 3)) - * (1 - min(1, 4 / (new_nterm_count + 2))) - / 3 - ) - q_inv = new_prob / max(1, new_nterm_count - 1) # except the root - if new_lt_count > len(lt_nodes): - expand_node = True - # ACTION 3: PRUNE - elif action == Action.PRUNE: - i = np.random.randint(0, len(nterm_nodes), 1)[0] - pruned_node: Node = nterm_nodes[i] - prune(pruned_node, n_feature) - tree_ll, param_ll = calc_tree_ll( - pruned_node, ops_priors, n_feature, **hyper_params - ) - - new_term_count, new_nterm_count, new_lt_count, _ = _get_tree_classified_counts( - new_node - ) - # pruning any tree with `ln` operator will result in shrinkage - if new_lt_count < len(lt_nodes): - shrink_node = True - - # calculate q - q = probs[Action.PRUNE] / ((len(nterm_nodes) - 1) * n_feature) - pg = 1 - 0.25 * new_lt_count / (new_lt_count + 3) * 0.75 * min( - 1, 4 / (new_nterm_count + 2) - ) - # calculate q_inv - q_inv = pg * np.exp(tree_ll) / new_term_count - # ACTION 4: DE_TRANSFORM - elif action == Action.DE_TRANSFORM: - num_de_trans = len(de_trans_nodes) - i = np.random.randint(0, num_de_trans, 1)[0] - de_trans_node: Node = de_trans_nodes[i] - replaced_node, discarded_node = de_transform(de_trans_node) - par_node = de_trans_node.parent - - q = probs[Action.DE_TRANSFORM] / num_de_trans - if ( - not par_node - and de_trans_node.left - and de_trans_node.right - and de_trans_node.left.node_type != NodeType.LEAF - and de_trans_node.right.node_type != NodeType.LEAF - ): - q = q / 2 - elif de_trans_node.node_type == NodeType.BINARY: - q = q / 2 - - if not par_node: # de-transformed the root - new_node = replaced_node - new_node.parent = None - update_depth(new_node, 0) - elif par_node.left is de_trans_node: - par_node.left = replaced_node - replaced_node.parent = par_node - update_depth(replaced_node, par_node.depth + 1) - else: - par_node.right = replaced_node - replaced_node.parent = par_node - update_depth(replaced_node, par_node.depth + 1) - - ( - new_term_count, - new_nterm_count, - new_lt_count, - new_det_count, - ) = _get_tree_classified_counts(new_node) - - if new_lt_count < len(lt_nodes): - shrink_node = True - - new_prob = 0.25 * new_lt_count / (new_lt_count + 3) - # calculate q_inv - new_pdetr = (1 - new_prob) * (1 / 3) * new_det_count / (new_det_count + 3) - new_ptr = (1 - new_prob) / 3 - new_pdetr - q_inv = ( - new_ptr - * ops_priors[de_trans_node.op_name]["weight"] - / (new_term_count + new_nterm_count) - ) - if discarded_node: - tree_ll, _ = calc_tree_ll( - discarded_node, ops_priors, n_feature, **hyper_params - ) - q_inv = q_inv * np.exp(tree_ll) - # ACTION 5: TRANSFORM - elif action == Action.TRANSFORM: - all_nodes = get_all_nodes(new_node) - i = np.random.randint(0, len(all_nodes), 1)[0] - trans_node: Node = all_nodes[i] - inserted_node: Node = transform( - trans_node, - ops_name_lst, - ops_weight_lst, - ops_priors, - n_feature, - **hyper_params - ) - - if inserted_node.right: - ll_right, _ = calc_tree_ll( - inserted_node.right, ops_priors, n_feature, **hyper_params - ) - else: - ll_right = 0 - # calculate q - q = ( - probs[Action.TRANSFORM] - * ops_priors[inserted_node.op_name]["weight"] - * np.exp(ll_right) - / len(all_nodes) - ) - - ( - new_term_count, - new_nterm_count, - new_lt_count, - new_det_count, - ) = _get_tree_classified_counts(new_node) - if new_lt_count > len(lt_nodes): - expand_node = True - - new_prob = 0.25 * new_lt_count / (new_lt_count + 3) - # calculate q_inv - new_pdetr = (1 - new_prob) * (1 / 3) * new_det_count / (new_det_count + 3) - q_inv = new_pdetr / new_det_count - if ( - inserted_node.left - and inserted_node.right - and inserted_node.left.node_type != NodeType.LEAF - and inserted_node.right.node_type != NodeType.LEAF - ): - q_inv = q_inv / 2 - # ACTION 6: REASSIGN OPERATION - elif action == Action.REASSIGN_OP: - i = np.random.randint(0, len(nterm_nodes), 1)[0] - reassign_node: Node = nterm_nodes[i] - old_right = reassign_node.right - old_op_name, old_type = reassign_node.op_name, reassign_node.node_type - reassign_op( - reassign_node, - ops_name_lst, - ops_weight_lst, - ops_priors, - n_feature, - **hyper_params - ) - new_type = reassign_node.node_type - _, new_nterm_count, new_lt_count, _ = _get_tree_classified_counts(new_node) - - if old_type == new_type: # binary -> binary & unary -> unary - q = ops_priors[reassign_node.op_name]["weight"] - q_inv = ops_priors[old_op_name]["weight"] - else: - op_weight = ops_priors[reassign_node.op_name]["weight"] - if old_type == NodeType.UNARY: # unary -> binary - tree_ll, _ = calc_tree_ll( - reassign_node.right, ops_priors, n_feature, **hyper_params - ) - q = ( - probs[Action.REASSIGN_OP] - * np.exp(tree_ll) - * op_weight - / len(nterm_nodes) - ) - ll_factor = 1 - else: # binary -> unary - tree_ll, _ = calc_tree_ll( - old_right, ops_priors, n_feature, **hyper_params - ) - q = probs[Action.REASSIGN_OP] * op_weight / len(nterm_nodes) - ll_factor = tree_ll - # calculate q_inv - new_prob = new_lt_count / (4 * (new_lt_count + 3)) - q_inv = ( - 0.125 - * (1 - new_prob) - * ll_factor - * ops_priors[old_op_name]["weight"] - / new_nterm_count - ) - if new_lt_count > len(lt_nodes): - expand_node = True - elif new_lt_count < len(lt_nodes): - shrink_node = True - # ACTION 7: REASSIGN FEATURE - else: - i = np.random.randint(0, len(term_nodes), 1)[0] - reassign_node = term_nodes[i] - reassign_feat(reassign_node, n_feature) - q = q_inv = 1 - - return new_node, expand_node, shrink_node, q, q_inv - - -def calc_aux_ll(node: Node, **hyper_params) -> Tuple[float, int]: - """ - Calculate the likelihood of generating auxiliary parameters - - Arguments: - node: the node from which the auxiliary params are generated - hyper_params: hyperparameters for generating auxiliary params - - Returns: - log_aux: log likelihood of auxiliary params - lt_count: number of nodes with `lt` operator in the tree with - `node` as its root - """ - sigma_a, sigma_b = hyper_params["sigma_a"], hyper_params["sigma_b"] - log_aux = np.log(invgamma.pdf(sigma_a, 1)) + np.log(invgamma.pdf(sigma_b, 1)) - - all_nodes = get_all_nodes(node) - lt_count = 0 - for i in range(all_nodes): - if all_nodes[i].op_name == "ln": - lt_count += 1 - a, b = all_nodes[i].params["a"], all_nodes[i].params["b"] - log_aux += np.log(norm.pdf(a, 1, np.sqrt(sigma_a))) - log_aux += np.log(norm.pdf(b, 0, np.sqrt(sigma_b))) - - return log_aux, lt_count - - -def prop_new( - roots: List[Node], - index: int, - sigma_y: float, - beta: float, - sigma_a: float, - sigma_b: float, - X: Union[np.ndarray, pd.DataFrame], - y: Union[np.ndarray, pd.DataFrame], - ops_name_lst: List[str], - ops_weight_lst: List[float], - ops_priors: Dict[str, Dict], -) -> Tuple[bool, Node, float, float, float]: - """ - Propose new structure, sample new parameters and decide whether to accept the new tree. - - Arguments: - roots: the list of root nodes - index: the index of the root node to update - sigma_y: scale hyperparameter for linear mixture of expression trees - beta: hyperparameter for growing an uninitialized expression tree - sigma_a: hyperparameters for `lt` operator initialization - sigma_b: hyperparameters for `lt` operator initialization - X: input data (independent variable) matrix - y: dependent variable vector - ops_name_lst: the list of operator names - ops_weight_lst: the list of operator weights - ops_priors: the dictionary of operator prior information - - Returns: - accept: whether to accept or reject the new expression tree - root: the old or new expression tree, determined by whether to accept the new tree - sigma_y: the old or new sigma_y - sigma_a: the old or new sigma_a - sigma_b: the old or new sigma_b - """ - # the hyper-param for linear combination, i.e. for `sigma_y` - sig = 4 - K = len(roots) - root = roots[index] - use_aux_ll = True - - # sample new sigma_a and sigma_b - new_sigma_a = invgamma.rvs(1) - new_sigma_b = invgamma.rvs(1) - - hyper_params = {"sigma_a": sigma_a, "sigma_b": sigma_b, "beta": beta} - new_hyper_params = {"sigma_a": new_sigma_a, "sigma_b": new_sigma_b, "beta": beta} - # propose a new tree `node` - new_root, expand_node, shrink_node, q, q_inv = prop( - root, ops_name_lst, ops_weight_lst, ops_priors, X.shape[1], **new_hyper_params - ) - - n_feature = X.shape[0] - new_outputs = np.zeros((len(y), K)) - old_outputs = np.zeros((len(y), K)) - - for i in np.arange(K): - tmp_old = root.evaluate(X) - old_outputs[:, i] = tmp_old - if i == index: - new_outputs[:, i] = new_root.evaluate(X) - else: - new_outputs[:, i] = tmp_old - - if np.linalg.matrix_rank(new_outputs) < K: # rejection due to insufficient rank - return False, root, sigma_y, sigma_a, sigma_b - - y_ll_old = calc_y_ll(y, old_outputs, sigma_y) - # a magic number here as the parameter for generating new sigma_y - new_sigma_y = invgamma.rvs(sig) - y_ll_new = calc_y_ll(y, new_outputs, new_sigma_y) - - log_y_ratio = y_ll_new - y_ll_old - # contribution of f(Theta, S) - if shrink_node or expand_node: - struct_ll_old = sum(calc_tree_ll(root, ops_priors, n_feature, **hyper_params)) - struct_ll_new = sum( - calc_tree_ll(new_root, ops_priors, n_feature, **hyper_params) - ) - log_struct_ratio = struct_ll_new - struct_ll_old - else: - log_struct_ratio = calc_tree_ll( - new_root, ops_priors, n_feature, **hyper_params - )[0] - calc_tree_ll(root, ops_priors, n_feature, **hyper_params) - - # contribution of proposal Q and Qinv - log_q_ratio = np.log(max(1e-5, q_inv / q)) - - log_r = ( - log_y_ratio - + log_struct_ratio - + log_q_ratio - + np.log(invgamma.pdf(new_sigma_y, sig)) - - np.log(invgamma.pdf(sigma_y, sig)) - ) - - if use_aux_ll and (expand_node or shrink_node): - old_aux_ll, old_lt_count = calc_aux_ll(root, **hyper_params) - new_aux_ll, _ = calc_aux_ll(new_root, **new_hyper_params) - log_r += old_aux_ll - new_aux_ll - # log for the Jacobian matrix - log_r += np.log(max(1e-5, 1 / np.power(2, 2 * old_lt_count))) - - alpha = min(log_r, 0) - test = np.random.uniform(0, 1, 0)[0] - if np.log(test) >= alpha: # no accept - return False, root, sigma_y, sigma_a, sigma_b - else: # accept - return True, new_root, new_sigma_y, new_sigma_a, new_sigma_b diff --git a/autora/theorist/bsr/misc.py b/autora/theorist/bsr/misc.py deleted file mode 100644 index 9470d71db..000000000 --- a/autora/theorist/bsr/misc.py +++ /dev/null @@ -1,48 +0,0 @@ -from typing import Dict - -""" -a file for all miscellaneous functions that are used in BSR. -""" - - -def normalize_prior_dict(prior_dict: Dict[str, float]): - """ - Normalize the prior weights for the operators so that the weights sum to - 1 and thus can be directly interpreted/used as probabilities. - """ - prior_sum = 0.0 - for k in prior_dict: - prior_sum += prior_dict[k] - if prior_sum > 0: - for k in prior_dict: - prior_dict[k] = prior_dict[k] / prior_sum - else: - for k in prior_dict: - prior_dict[k] = 1 / len(prior_dict) - - -def get_ops_expr() -> Dict[str, str]: - """ - Get the literal expression for the operation, the `{}` placeholder represents - an expression that is recursively evaluated from downstream operations. If an - operator's expression contains additional parameters (e.g. slope/intercept in - linear operator), write the parameter like `{param}` - the param will be passed - in using `expr.format(xxx, **params)` format. - - Return: - A dictionary that maps operator name to its literal expression. - """ - ops_expr = { - "neg": "-({})", - "sin": "sin({})", - "pow2": "({})^2", - "pow3": "({})^3", - "exp": "exp({})", - "cos": "cos({})", - "+": "{}+{}", - "*": "({})*({})", - "-": "{}-{}", - "inv": "1/[{}]", - "linear": "{a}*({})+{b}", - } - return ops_expr diff --git a/autora/theorist/bsr/node.py b/autora/theorist/bsr/node.py deleted file mode 100644 index 1f0072d5a..000000000 --- a/autora/theorist/bsr/node.py +++ /dev/null @@ -1,178 +0,0 @@ -from enum import Enum -from typing import Callable, Dict, List, Optional, Union - -import numpy as np -import pandas as pd - -from .misc import get_ops_expr - - -class NodeType(Enum): - """ - -1 represents newly grown node (not decided yet) - 0 represents no child, as a terminal node - 1 represents one child, - 2 represents 2 children - """ - - EMPTY = -1 - LEAF = 0 - UNARY = 1 - BINARY = 2 - - -class Node: - def __init__( - self, - depth: int = 0, - node_type: NodeType = NodeType.EMPTY, - left: Optional["Node"] = None, - right: Optional["Node"] = None, - parent: Optional["Node"] = None, - operator: Optional[Callable] = None, - op_name: str = "", - op_arity: int = 0, - op_init: Optional[Callable] = None, - ): - # tree structure attributes - self.depth = depth - self.node_type = node_type - self.left = left - self.right = right - self.parent = parent - - # a function that does the actual calculation, see definitions below - self.operator = operator - self.op_name = op_name - self.op_arity = op_arity - self.op_init = op_init - - # holding temporary calculation result, see `evaluate()` - self.result = None - # params for additional inputs into `operator` - self.params: Dict = {} - - def _init_param(self, **hyper_params): - # init is a function randomized by some hyper-params - if callable(self.op_init): - self.params = self.op_init(**hyper_params) - else: # init is deterministic dict - self.params = self.op_init - - def setup( - self, op_name: str = "", ops_prior: Dict = {}, feature: int = 0, **hyper_params - ): - """ - Initialize an uninitialized node with given feature, in the case of a leaf node, or some - given operator information, in the case of unary or binary node. The type of the node is - determined by the feature/operator assigned to it. - - Arguments: - op_name: the operator name, if given - ops_prior: the prior dictionary of the given operator - feature: the index of the assigned feature, if given - hyper_params: hyperparameters for initializing the node - """ - self.op_name = op_name - self.operator = ops_prior.get("fn", None) - self.op_arity = ops_prior.get("arity", 0) - self.op_init = ops_prior.get("init", {}) - self._init_param(**hyper_params) - - if self.op_arity == 0: - self.params["feature"] = feature - self.node_type = NodeType.LEAF - elif self.op_arity == 1: - self.left = Node(depth=self.depth + 1, parent=self) - self.node_type = NodeType.UNARY - elif self.op_arity == 2: - self.left = Node(depth=self.depth + 1, parent=self) - self.right = Node(depth=self.depth + 1, parent=self) - self.node_type = NodeType.BINARY - else: - raise ValueError( - "operation arity should be either 0, 1, 2; get {} instead".format( - self.op_arity - ) - ) - - def evaluate( - self, X: Union[np.ndarray, pd.DataFrame], store_result: bool = False - ) -> np.array: - """ - Evaluate the expression, as represented by an expression tree with `self` as the root, - using the given data matrix `X`. - - Arguments: - X: the data matrix with each row being a data point and each column a feature - store_result: whether to store the result of this calculation - - Return: - result: the result of this calculation - """ - if X is None: - raise TypeError("input data X is non-existing") - if isinstance(X, np.ndarray): - X = pd.DataFrame(X) - if self.node_type == NodeType.LEAF: - result = np.array(X.iloc[:, self.params["feature"]]).flatten() - elif self.node_type == NodeType.UNARY: - assert self.left and self.operator - result = self.operator(self.left.evaluate(X), **self.params) - elif self.node_type == NodeType.BINARY: - assert self.left and self.right and self.operator - result = self.operator( - self.left.evaluate(X), self.right.evaluate(X), **self.params - ) - else: - raise NotImplementedError("node evaluated before being setup") - if store_result: - self.result = result - return result - - def get_expression( - self, - ops_expr: Optional[Dict[str, str]] = None, - feature_names: Optional[List[str]] = None, - ) -> str: - """ - Get a literal (string) expression of the expression tree - - Arguments: - ops_expr: the dictionary that maps an operation name to its literal format; if not - offered, use the default one in `get_ops_expr()` - feature_names: the list of names for the data features - Return: - a literal expression of the tree - """ - if not ops_expr: - ops_expr = get_ops_expr() - if self.node_type == NodeType.LEAF: - if feature_names: - return feature_names[self.params["feature"]] - else: - return f"x{self.params['feature']}" - elif self.node_type == NodeType.UNARY: - # if the expr for an operator is not defined, use placeholder - # e.g. operator `cosh` -> `cosh(xxx)` - assert self.left - place_holder = self.op_name + "({})" - left_expr = self.left.get_expression(ops_expr, feature_names) - expr_fmt = ops_expr.get(self.op_name, place_holder) - return expr_fmt.format(left_expr, **self.params) - elif self.node_type == NodeType.BINARY: - assert self.left and self.right - place_holder = self.op_name + "({})" - left_expr = self.left.get_expression(ops_expr, feature_names) - right_expr = self.right.get_expression(ops_expr, feature_names) - expr_fmt = ops_expr.get(self.op_name, place_holder) - return expr_fmt.format(left_expr, right_expr, **self.params) - else: # empty node - return "(empty node)" - - def __str__(self) -> str: - """ - Get a literal (string) representation of a tree `node` data structure. - See `get_expression` for more information. - """ - return self.get_expression() diff --git a/autora/theorist/bsr/operation.py b/autora/theorist/bsr/operation.py deleted file mode 100644 index 2d43b12a5..000000000 --- a/autora/theorist/bsr/operation.py +++ /dev/null @@ -1,70 +0,0 @@ -from typing import Callable, Dict - -import numpy as np - -""" -this file contains functions (operators) for actually carrying out the computations -in our expression tree model. An operator can take in either 1 (unary) or 2 (binary) -operands - corresponding to being used in a unary or binary node (see `node.py`). The -operand(s) are recursively evaluated `np.array` from an operation or literal (in the -case of a leaf node) in downstream node(s). - -For certain operator, e.g. a linear operator, auxiliary parameters (slope/intercept) -are needed and can be passed in through `params` dictionary. These parameters are -initialized in `prior.py` by their specified initialization functions. -""" - - -# a linear operator with default `a` = 1 and `b` = 0 (i.e. identity operation) -def linear_op(operand: np.array, **params: Dict) -> np.array: - a, b = params.get("a", 1), params.get("b", 0) - return a * operand + b - - -# a safe `exp` operation that has a cutoff (default = 1e-10) and avoids overflow -def exp_op(operand: np.array, **params: Dict) -> np.array: - cutoff = params.get("cutoff", 1e-10) - return 1 / (cutoff + np.exp(-operand)) - - -# a safe `inv` operation that has a cutoff (default = 1e-10) and avoids overflow -def inv_op(operand: np.array, **params: Dict) -> np.array: - cutoff = params.get("cutoff", 1e-10) - return 1 / (cutoff + operand) - - -def neg_op(operand: np.array) -> np.array: - return -operand - - -def sin_op(operand: np.array) -> np.array: - return np.sin(operand) - - -def cos_op(operand: np.array) -> np.array: - return np.cos(operand) - - -# high-level func that produces power funcs such as `square`, `cubic`, etc. -def make_pow_op(power: int) -> Callable[[np.array], np.array]: - def pow_op(operand: np.array) -> np.array: - return np.power(operand, power) - - return pow_op - - -""" -a list of binary operators -""" - - -def plus_op(operand_a: np.array, operand_b: np.array): - return operand_a + operand_b - - -def minus_op(operand_a: np.array, operand_b: np.array): - return operand_a - operand_b - - -def multiply_op(operand_a: np.array, operand_b: np.array): - return operand_a * operand_b diff --git a/autora/theorist/bsr/prior.py b/autora/theorist/bsr/prior.py deleted file mode 100644 index 30649d370..000000000 --- a/autora/theorist/bsr/prior.py +++ /dev/null @@ -1,175 +0,0 @@ -from typing import Callable, Dict, Union - -import numpy as np -from scipy.stats import norm - -from .misc import normalize_prior_dict -from .operation import ( - cos_op, - exp_op, - inv_op, - linear_op, - make_pow_op, - minus_op, - multiply_op, - neg_op, - plus_op, - sin_op, -) - - -def _get_ops_with_arity(): - """ - Get the operator function and arity (number of operands) of each operator. - - Returns: - ops_fn_and_arity: a dictionary that maps operator name to a list, where - the first item is the operator function and the second is the number of - operands that it takes. - """ - ops_fn_and_arity = { - "ln": [linear_op, 1], - "exp": [exp_op, 1], - "inv": [inv_op, 1], - "neg": [neg_op, 1], - "sin": [sin_op, 1], - "cos": [cos_op, 1], - "pow2": [make_pow_op(2), 1], - "pow3": [make_pow_op(3), 1], - "+": [plus_op, 2], - "*": [multiply_op, 2], - "-": [minus_op, 2], - } - return ops_fn_and_arity - - -def linear_init(**hyper_params) -> Dict: - """ - Initialization function for the linear operator. Two parameters, slope - (a) and intercept (b) are initialized. - - Arguments: - hyper_params: the dictionary for hyperparameters. Specifically, this - function requires `sigma_a` and `sigma_b` to be present. - Returns: - a dictionary with initialized `a` and `b` parameters. - """ - sigma_a, sigma_b = hyper_params.get("sigma_a", 1), hyper_params.get("sigma_b", 1) - return { - "a": norm.rvs(loc=1, scale=np.sqrt(sigma_a)), - "b": norm.rvs(loc=0, scale=np.sqrt(sigma_b)), - } - - -def _get_ops_init() -> Dict[str, Union[Callable, object]]: - """ - Get the initialization functions for operators that require additional - parameters. - - Returns: - ops_init: a dictionary that maps operator name to either a parameter - dict (in the case that the initialization is hard-coded) or an - initialization function (when it is randomized). The dictionary - value will be used in growing the `node` (see `funcs_legacy.py`). - """ - ops_init = { - "ln": linear_init, - "inv": {"cutoff": 1e-10}, - "exp": {"cutoff": 1e-10}, - } - return ops_init - - -def _get_prior(prior_name: str, prob: bool = True) -> Dict[str, float]: - prior_dict = { - "Uniform": { - "neg": 1.0, - "sin": 1.0, - "pow2": 1.0, - "pow3": 1.0, - "exp": 1.0, - "cos": 1.0, - "+": 1.0, - "*": 1.0, - "-": 1.0, - "inv": 1.0, - "ln": 1.0, - }, - "Guimera2020": { - "neg": 3.350846072163632, - "sin": 5.965917796154835, - "pow2": 3.3017352779079734, - "pow3": 5.9907496760026175, - "exp": 4.768665265735502, - "cos": 5.452564657261127, - "+": 5.808163661224514, - "*": 5.002213595420244, - "-": 1.0, # set arbitrarily now, - "inv": 1.0, # set arbitrarily now, - "ln": 1.0, # set arbitrarily now, - }, - } - assert prior_dict[prior_name] is not None, "prior key not recognized" - if prob: - normalize_prior_dict(prior_dict[prior_name]) - return prior_dict[prior_name] - - -def get_prior_dict(prior_name="Uniform"): - """ - Get the dictionary of prior information as well as several list of key operator properties - - Argument: - prior_name: the name of the prior dictionary to use - - Returns: - ops_name_lst: the list of operator names - ops_weight_lst: the list of operator weights - prior_dict: the dictionary of operator prior information - """ - ops_prior = _get_prior(prior_name) - ops_init = _get_ops_init() - ops_fn_and_arity = _get_ops_with_arity() - - ops_name_lst = list(ops_prior.keys()) - ops_weight_lst = list(ops_prior.values()) - prior_dict = { - k: { - "init": ops_init.get(k, {}), - "fn": ops_fn_and_arity[k][0], - "arity": ops_fn_and_arity[k][1], - "weight": ops_prior[k], - } - for k in ops_prior - } - - return ops_name_lst, ops_weight_lst, prior_dict - - -def get_prior_list(prior_name="Uniform"): - """ - Get a dictionary of key prior properties - - Argument: - prior_name: the name of the prior dictionary to use - - Returns: - a dictionary that maps a prior property (e.g. `name`) to the list of such properties - for each operator. - """ - ops_prior = _get_prior(prior_name) - ops_init = _get_ops_init() - ops_fn_and_arity = _get_ops_with_arity() - - ops_name_lst = list(ops_prior.keys()) - ops_weight_lst = list(ops_prior.values()) - ops_init_lst = [ops_init.get(k, None) for k in ops_name_lst] - ops_fn_lst = [ops_fn_and_arity[k][0] for k in ops_name_lst] - ops_arity_lst = [ops_fn_and_arity[k][1] for k in ops_name_lst] - return { - "name": ops_name_lst, - "weight": ops_weight_lst, - "init": ops_init_lst, - "fn": ops_fn_lst, - "arity": ops_arity_lst, - } diff --git a/autora/theorist/darts/__init__.py b/autora/theorist/darts/__init__.py deleted file mode 100644 index 6c7d2f2a4..000000000 --- a/autora/theorist/darts/__init__.py +++ /dev/null @@ -1,12 +0,0 @@ -from .architect import Architect -from .dataset import DARTSDataset, darts_dataset_from_ndarray -from .model_search import DARTSType, Network -from .operations import PRIMITIVES -from .utils import ( - AvgrageMeter, - format_input_target, - get_loss_function, - get_output_format, - get_output_str, -) -from .visualize import darts_model_plot diff --git a/autora/theorist/darts/architect.py b/autora/theorist/darts/architect.py deleted file mode 100755 index c7d723e29..000000000 --- a/autora/theorist/darts/architect.py +++ /dev/null @@ -1,337 +0,0 @@ -from typing import Optional - -import numpy as np -import torch -import torch.nn.functional as F -from torch.autograd import Variable - -from autora.theorist.darts.model_search import DARTSType, Network -from autora.theorist.darts.operations import isiterable - - -def _concat(xs) -> torch.Tensor: - """ - A function to concatenate a list of tensors. - Args: - xs: The list of tensors to concatenate. - - Returns: - The concatenated tensor. - """ - return torch.cat([x.view(-1) for x in xs]) - - -class Architect(object): - """ - A learner operating on the architecture weights of a DARTS model. - This learner handles training the weights associated with mixture operations - (architecture weights). - """ - - def __init__( - self, - model: Network, - arch_learning_rate_max: float, - arch_momentum: float, - arch_weight_decay: float, - arch_weight_decay_df: float = 0, - arch_weight_decay_base: float = 0, - fair_darts_loss_weight: float = 1, - ): - """ - Initializes the architecture learner. - - Arguments: - model: a network model implementing the full DARTS model. - arch_learning_rate_max: learning rate for the architecture weights - arch_momentum: arch_momentum used in the Adam optimizer for architecture weights - arch_weight_decay: general weight decay for the architecture weights - arch_weight_decay_df: (weight decay applied to architecture weights in proportion - to the number of parameters of an operation) - arch_weight_decay_base: (a constant weight decay applied to architecture weights) - fair_darts_loss_weight: (a regularizer that pushes architecture weights more toward - zero or one in the fair DARTS variant) - """ - # set parameters for architecture learning - self.network_arch_momentum = arch_momentum - self.network_weight_decay = arch_weight_decay - self.network_weight_decay_df = arch_weight_decay_df - self.arch_weight_decay_base = arch_weight_decay_base * model._steps - self.fair_darts_loss_weight = fair_darts_loss_weight - - self.model = model - self.lr = arch_learning_rate_max - # architecture is optimized using Adam - self.optimizer = torch.optim.Adam( - self.model.arch_parameters(), - lr=arch_learning_rate_max, - betas=(0.5, 0.999), - weight_decay=arch_weight_decay, - ) - - # initialize weight decay matrix - self._init_decay_weights() - - # initialize the logged loss - self.current_loss = 0 - - def _init_decay_weights(self): - """ - This function initializes the weight decay matrix. The weight decay matrix - is subtracted from the architecture weight matrix on every learning step. The matrix - specifies a weight decay which is proportional to the number of parameters used in an - operation. - """ - n_params = list() - for operation in self.model.cells._ops[0]._ops: - if isiterable(operation): - n_params_total = ( - 1 # any non-zero operation is counted as an additional parameter - ) - for subop in operation: - for parameter in subop.parameters(): - if parameter.requires_grad is True: - n_params_total += parameter.data.numel() - else: - n_params_total = 0 # no operation gets zero parameters - n_params.append(n_params_total) - - self.decay_weights = Variable( - torch.zeros(self.model.arch_parameters()[0].data.shape) - ) - for idx, param in enumerate(n_params): - if param > 0: - self.decay_weights[:, idx] = ( - param * self.network_weight_decay_df + self.arch_weight_decay_base - ) - else: - self.decay_weights[:, idx] = param - self.decay_weights = self.decay_weights - self.decay_weights = self.decay_weights.data - - def _compute_unrolled_model( - self, - input: torch.Tensor, - target: torch.Tensor, - eta: float, - network_optimizer: torch.optim.Optimizer, - ): - """ - Helper function used to compute the approximate architecture gradient. - - Arguments: - input: input patterns - target: target patterns - eta: learning rate - network_optimizer: optimizer used to updating the architecture weights - - Returns: - unrolled_model: the unrolled architecture - """ - loss = self.model._loss(input, target) - theta = _concat(self.model.parameters()).data - try: - moment = _concat( - network_optimizer.state[v]["momentum_buffer"] - for v in self.model.parameters() - ).mul_(self.network_arch_momentum) - except Exception: - moment = torch.zeros_like(theta) - dtheta = ( - _concat(torch.autograd.grad(loss, self.model.parameters())).data - + self.network_weight_decay * theta - ) - unrolled_model = self._construct_model_from_theta( - theta.sub(eta, moment + dtheta) - ) - return unrolled_model - - def step( - self, - input_valid: torch.Tensor, - target_valid: torch.Tensor, - network_optimizer: torch.optim.Optimizer, - unrolled: bool, - input_train: Optional[torch.Tensor] = None, - target_train: Optional[torch.Tensor] = None, - eta: float = 1, - ): - """ - Updates the architecture parameters for one training iteration - - Arguments: - input_valid: input patterns for validation set - target_valid: target patterns for validation set - network_optimizer: optimizer used to updating the architecture weights - unrolled: whether to use the unrolled architecture or not (i.e., whether to use - the approximate architecture gradient or not) - input_train: input patterns for training set - target_train: target patterns for training set - eta: learning rate for the architecture weights - """ - - # input_train, target_train only needed for approximation (unrolled=True) - # of architecture gradient - # when performing a single weigh update - - # initialize gradients to be zero - self.optimizer.zero_grad() - # use different backward step depending on whether to use - # 2nd order approximation for gradient update - if unrolled: # probably using eta of parameter update here - self._backward_step_unrolled( - input_train, - target_train, - input_valid, - target_valid, - eta, - network_optimizer, - ) - else: - self._backward_step(input_valid, target_valid) - # move Adam one step - self.optimizer.step() - - # backward step (using non-approximate architecture gradient, i.e., full training) - def _backward_step(self, input_valid: torch.Tensor, target_valid: torch.Tensor): - """ - Computes the loss and updates the architecture weights assuming full optimization - of coefficients for the current architecture. - - Arguments: - input_valid: input patterns for validation set - target_valid: target patterns for validation set - """ - if self.model.DARTS_type == DARTSType.ORIGINAL: - loss = self.model._loss(input_valid, target_valid) - elif self.model.DARTS_type == DARTSType.FAIR: - loss1 = self.model._loss(input_valid, target_valid) - loss2 = -F.mse_loss( - torch.sigmoid(self.model.alphas_normal), - 0.5 * torch.ones(self.model.alphas_normal.shape, requires_grad=False), - ) # torch.tensor(0.5, requires_grad=False) - loss = loss1 + self.fair_darts_loss_weight * loss2 - else: - raise Exception( - "DARTS Type " + str(self.model.DARTS_type) + " not implemented" - ) - - loss.backward() - self.current_loss = loss.item() - - # weight decay proportional to degrees of freedom - for p in self.model.arch_parameters(): - p.data.sub_((self.decay_weights * self.lr)) # weight decay - - # backward pass using second order approximation - def _backward_step_unrolled( - self, - input_train: torch.Tensor, - target_train: torch.Tensor, - input_valid: torch.Tensor, - target_valid: torch.Tensor, - eta: float, - network_optimizer: torch.optim.Optimizer, - ): - """ - Computes the loss and updates the architecture weights using the approximate architecture - gradient. - - Arguments: - input_train: input patterns for training set - target_train: target patterns for training set - input_valid: input patterns for validation set - target_valid: target patterns for validation set - eta: learning rate - network_optimizer: optimizer used to updating the architecture weights - - """ - - # gets the model - unrolled_model = self._compute_unrolled_model( - input_train, target_train, eta, network_optimizer - ) - - if self.model.DARTS_type == DARTSType.ORIGINAL: - unrolled_loss = unrolled_model._loss(input_valid, target_valid) - elif self.model.DARTS_type == DARTSType.FAIR: - loss1 = self.model._loss(input_valid, target_valid) - loss2 = -F.mse_loss( - torch.sigmoid(self.model.alphas_normal), - torch.tensor(0.5, requires_grad=False), - ) - unrolled_loss = loss1 + self.fair_darts_loss_weight * loss2 - else: - raise Exception( - "DARTS Type " + str(self.model.DARTS_type) + " not implemented" - ) - - unrolled_loss.backward() - dalpha = [v.grad for v in unrolled_model.arch_parameters()] - vector = [v.grad.data for v in unrolled_model.parameters()] - implicit_grads = self._hessian_vector_product(vector, input_train, target_train) - - for g, ig in zip(dalpha, implicit_grads): - g.data.sub_(eta, ig.data) - - for v, g in zip(self.model.arch_parameters(), dalpha): - if v.grad is None: - v.grad = Variable(g.data) - else: - v.grad.data.copy_(g.data) - - def _construct_model_from_theta(self, theta: torch.Tensor): - """ - Helper function used to compute the approximate gradient update - for the architecture weights. - - Arguments: - theta: term used to compute approximate gradient update - - """ - model_new = self.model.new() - model_dict = self.model.state_dict() - - params, offset = {}, 0 - for k, v in self.model.named_parameters(): - v_length = np.prod(v.size()) - params[k] = theta[offset : (offset + v_length)].view(v.size()) - offset += v_length - - assert offset == len(theta) - model_dict.update(params) - model_new.load_state_dict(model_dict) - return model_new # .cuda() # Edit SM 10/26/19: uncommented for cuda - - # second order approximation of architecture gradient (see Eqn. 8 from Liu et al, 2019) - def _hessian_vector_product( - self, vector: torch.Tensor, input: torch.Tensor, target: torch.Tensor, r=1e-2 - ): - """ - Helper function used to compute the approximate gradient update - for the architecture weights. It computes the hessian vector product outlined in Eqn. 8 - from Liu et al, 2019. - - Arguments: - vector: input vector - input: input patterns - target: target patterns - r: coefficient used to compute the hessian vector product - - """ - R = r / _concat(vector).norm() - for p, v in zip(self.model.parameters(), vector): - p.data.add_(R, v) - loss = self.model._loss(input, target) - grads_p = torch.autograd.grad(loss, self.model.arch_parameters()) - - for p, v in zip(self.model.parameters(), vector): - p.data.sub_(2 * R, v) - loss = self.model._loss(input, target) - grads_n = torch.autograd.grad(loss, self.model.arch_parameters()) - - for p, v in zip(self.model.parameters(), vector): - p.data.add_(R, v) - - # this implements Eqn. 8 from Liu et al. (2019) - return [(x - y).div_(2 * R) for x, y in zip(grads_p, grads_n)] diff --git a/autora/theorist/darts/dataset.py b/autora/theorist/darts/dataset.py deleted file mode 100644 index d9ae8690d..000000000 --- a/autora/theorist/darts/dataset.py +++ /dev/null @@ -1,72 +0,0 @@ -from typing import Optional, Tuple - -import numpy as np -import torch -from torch.utils.data import Dataset - - -class DARTSDataset(Dataset): - """ - A dataset for the DARTS algorithm. - """ - - def __init__(self, input_data: torch.tensor, output_data: torch.tensor): - """ - Initializes the dataset. - - Arguments: - input_data: The input data to the dataset. - output_data: The output data to the dataset. - """ - assert input_data.shape[0] == output_data.shape[0] - self.input_data = input_data - self.output_data = output_data - - def __len__(self, experiment_id: Optional[int] = None) -> int: - """ - Returns the length of the dataset. - - Arguments: - experiment_id: - - Returns: - The length of the dataset. - """ - return self.input_data.shape[0] - - def __getitem__(self, idx: int) -> Tuple[torch.tensor, torch.tensor]: - """ - Returns the item at the given index. - - Arguments: - idx: The index of the item to return. - - Returns: - The item at the given index. - - """ - input_tensor = self.input_data[idx] - output_tensor = self.output_data[idx] - return input_tensor, output_tensor - - -def darts_dataset_from_ndarray( - input_data: np.ndarray, output_data: np.ndarray -) -> DARTSDataset: - """ - A function to create a dataset from numpy arrays. - - Arguments: - input_data: The input data to the dataset. - output_data: The output data to the dataset. - - Returns: - The dataset. - - """ - - obj = DARTSDataset( - torch.tensor(input_data, dtype=torch.get_default_dtype()), - torch.tensor(output_data, dtype=torch.get_default_dtype()), - ) - return obj diff --git a/autora/theorist/darts/fan_out.py b/autora/theorist/darts/fan_out.py deleted file mode 100644 index 54fbcc404..000000000 --- a/autora/theorist/darts/fan_out.py +++ /dev/null @@ -1,42 +0,0 @@ -import torch -import torch.nn as nn - - -class Fan_Out(nn.Module): - """ - A neural network class that splits a given input vector into separate nodes. Each element of - the original input vector is allocated a separate node in a computation graph. - """ - - def __init__(self, num_inputs: int): - """ - Initialize the Fan Out operation. - - Arguments: - num_inputs (int): The number of distinct input nodes to generate - """ - super(Fan_Out, self).__init__() - - self._num_inputs = num_inputs - - self.input_output = list() - for i in range(num_inputs): - linearConnection = nn.Linear(num_inputs, 1, bias=False) - linearConnection.weight.data = torch.zeros(1, num_inputs) - linearConnection.weight.data[0, i] = 1 - linearConnection.weight.requires_grad = False - self.input_output.append(linearConnection) - - def forward(self, input: torch.Tensor) -> torch.Tensor: - """ - Forward pass of the Fan Out operation. - - Arguments: - input: input vector whose elements are split into separate input nodes - """ - - output = list() - for i in range(self._num_inputs): - output.append(self.input_output[i](input)) - - return output diff --git a/autora/theorist/darts/model_search.py b/autora/theorist/darts/model_search.py deleted file mode 100755 index 738c39dc2..000000000 --- a/autora/theorist/darts/model_search.py +++ /dev/null @@ -1,796 +0,0 @@ -import random -import warnings -from enum import Enum -from typing import Callable, List, Literal, Optional, Sequence, Tuple - -import numpy as np -import torch -import torch.nn as nn -import torch.nn.functional as F -from torch.autograd import Variable - -from autora.theorist.darts.fan_out import Fan_Out -from autora.theorist.darts.operations import ( - PRIMITIVES, - Genotype, - get_operation_label, - isiterable, - operation_factory, -) - - -class DARTSType(str, Enum): - """ - Enumerator that indexes different variants of DARTS. - """ - - # Liu, Simonyan & Yang (2018). Darts: Differentiable architecture search - ORIGINAL = "original" - - # Chu, Zhou, Zhang & Li (2020). Fair darts: Eliminating unfair advantages - # in differentiable architecture search - FAIR = "fair" - - -# for 2 input nodes, 1 output node and 4 intermediate nodes, -# there are 14 possible edges (x 8 operations) -# Let input nodes be 1, 2 intermediate nodes 3, 4, 5, 6, and output node 7 -# The edges are 3-1, 3-2; 4-1, 4-2, 4-3; 5-1, 5-2, 5-3, 5-4; 6-1, 6-2, -# 6-3, 6-4, 6-5; 2 + 3 + 4 + 5 = 14 edges - - -class MixedOp(nn.Module): - """ - Mixture operation as applied in Differentiable Architecture Search (DARTS). - A mixture operation amounts to a weighted mixture of a pre-defined set of operations - that is applied to an input variable. - """ - - def __init__(self, primitives: Sequence[str] = PRIMITIVES): - """ - Initializes a mixture operation based on a pre-specified set of primitive operations. - - Arguments: - primitives: list of primitives to be used in the mixture operation - """ - super(MixedOp, self).__init__() - self._ops = nn.ModuleList() - # loop through all the 8 primitive operations - for primitive in primitives: - # OPS returns an nn module for a given primitive (defines as a string) - op = operation_factory(primitive) - - # add the operation - self._ops.append(op) - - def forward(self, x: torch.Tensor, weights: torch.Tensor) -> float: - """ - Computes a mixture operation as a weighted sum of all primitive operations. - - Arguments: - x: input to the mixture operations - weights: weight vector containing the weights associated with each operation - - Returns: - y: result of the weighted mixture operation - """ - # there are 8 weights for all the eight primitives. then it returns the - # weighted sum of all operations performed on a given input - return sum(w * op(x) for w, op in zip(weights, self._ops)) - - -# Let a cell be a DAG(directed acyclic graph) containing N nodes (2 input -# nodes 1 output node?) -class Cell(nn.Module): - """ - A cell as defined in differentiable architecture search. A single cell corresponds - to a computation graph with the number of input nodes defined by n_input_states and - the number of hidden nodes defined by steps. Input nodes only project to hidden nodes and hidden - nodes project to each other with an acyclic connectivity pattern. The output of a cell - corresponds to the concatenation of all hidden nodes. Hidden nodes are computed by integrating - transformed outputs from sending nodes. Outputs from sending nodes correspond to - mixture operations, i.e. a weighted combination of pre-specified operations applied to the - variable specified by the sending node (see MixedOp). - - Attributes: - _steps: number of hidden nodes - _n_input_states: number of input nodes - _ops: list of mixture operations (amounts to the list of edges in the cell) - """ - - def __init__( - self, - steps: int = 2, - n_input_states: int = 1, - primitives: Sequence[str] = PRIMITIVES, - ): - """ - Initializes a cell based on the number of hidden nodes (steps) - and the number of input nodes (n_input_states). - - Arguments: - steps: number of hidden nodes - n_input_states: number of input nodes - """ - # The first and second nodes of cell k are set equal to the outputs of - # cell k − 2 and cell k − 1, respectively, and 1 × 1 convolutions - # (ReLUConvBN) are inserted as necessary - super(Cell, self).__init__() - - # set parameters - self._steps = steps # hidden nodes - self._n_input_states = n_input_states # input nodes - - # EDIT 11/04/19 SM: adapting to new SimpleNet data (changed from - # multiplier to steps) - self._multiplier = steps - - # set operations according to number of modules (empty) - self._ops = nn.ModuleList() - # iterate over edges: edges between each hidden node and input nodes + - # prev hidden nodes - for i in range(self._steps): # hidden nodes - for j in range(self._n_input_states + i): # 2 refers to the 2 input nodes - # defines the stride for link between cells - # adds a mixed operation (derived from architecture parameters alpha) - # for 4 intermediate nodes, a total of 14 connections - # (MixedOps) is added - op = MixedOp(primitives) - # appends cell with mixed operation - self._ops.append(op) - - def forward(self, input_states: List, weights: torch.Tensor): - """ - Computes the output of a cell given a list of input states - (variables represented in input nodes) and a weight matrix specifying the weights of each - operation for each edge. - - Arguments: - input_states: list of input nodes - weights: matrix specifying architecture weights, i.e. the weights associated - with each operation for each edge - """ - # initialize states (activities of each node in the cell) - states = list() - - # add each input node to the number of states - for input in input_states: - states.append(input) - - offset = 0 - # this computes the states from intermediate nodes and adds them to the list of states - # (values of nodes) - # for each hidden node, compute edge between existing states (input - # nodes / previous hidden) nodes and current node - for i in range( - self._steps - ): # compute the state for each hidden node, first hidden node is - # sum of input nodes, second is sum of input and first hidden - s = sum( - self._ops[offset + j](h, weights[offset + j]) - for j, h in enumerate(states) - ) - offset += len(states) - states.append(s) - - # concatenates the states of the last n (self._multiplier) intermediate - # nodes to get the output of a cell - result = torch.cat(states[-self._multiplier :], dim=1) - return result - - -class Network(nn.Module): - """ - A PyTorch computation graph according to DARTS. - It consists of a single computation cell which transforms an - input vector (containing all input variable) into an output vector, by applying a set of - mixture operations which are defined by the architecture weights (labeled "alphas" of the - network). - - The network flow looks as follows: An input vector (with _n_input_states elements) is split into - _n_input_states separate input nodes (one node per element). The input nodes are then passed - through a computation cell with _steps hidden nodes (see Cell). The output of the computation - cell corresponds to the concatenation of its hidden nodes (a single vector). The final output - corresponds to a (trained) affine transformation of this concatenation (labeled "classifier"). - - Attributes: - _n_input_states: length of input vector (translates to number of input nodes) - _num_classes: length of output vector - _criterion: optimization criterion used to define the loss - _steps: number of hidden nodes in the cell - _architecture_fixed: specifies whether the architecture weights shall remain fixed - (not trained) - _classifier_weight_decay: a weight decay applied to the classifier - - """ - - def __init__( - self, - num_classes: int, - criterion: Callable, - steps: int = 2, - n_input_states: int = 2, - architecture_fixed: bool = False, - train_classifier_coefficients: bool = False, - train_classifier_bias: bool = False, - classifier_weight_decay: float = 0, - darts_type: DARTSType = DARTSType.ORIGINAL, - primitives: Sequence[str] = PRIMITIVES, - ): - """ - Initializes the network. - - Arguments: - num_classes: length of output vector - criterion: optimization criterion used to define the loss - steps: number of hidden nodes in the cell - n_input_states: length of input vector (translates to number of input nodes) - architecture_fixed: specifies whether the architecture weights shall remain fixed - train_classifier_coefficients: specifies whether the classifier coefficients shall be - trained - train_classifier_bias: specifies whether the classifier bias shall be trained - classifier_weight_decay: a weight decay applied to the classifier - darts_type: variant of DARTS (regular or fair) that is applied for training - """ - super(Network, self).__init__() - - # set parameters - self._num_classes = num_classes # number of output classes - self._criterion = criterion # optimization criterion (e.g., softmax) - self._steps = steps # the number of intermediate nodes (e.g., 2) - self._n_input_states = n_input_states # number of input nodes - self.DARTS_type = darts_type # darts variant - self._multiplier = ( - 1 # the number of internal nodes that get concatenated to the output - ) - self.primitives = primitives - - # set parameters - self._dim_output = self._steps - self._architecture_fixed = architecture_fixed - self._classifier_weight_decay = classifier_weight_decay - - # input nodes - self.stem = nn.Sequential(Fan_Out(self._n_input_states)) - - self.cells = ( - nn.ModuleList() - ) # get list of all current modules (should be empty) - - # generate a cell that undergoes architecture search - self.cells = Cell(steps, self._n_input_states, self.primitives) - - # last layer is a linear classifier (e.g. with 10 CIFAR classes) - self.classifier = nn.Linear( - self._dim_output, num_classes - ) # make this the number of input states - - # initialize classifier weights - if train_classifier_coefficients is False: - self.classifier.weight.data.fill_(1) - self.classifier.weight.requires_grad = False - - if train_classifier_bias is False: - self.classifier.bias.data.fill_(0) - self.classifier.bias.requires_grad = False - - # initializes weights of the architecture - self._initialize_alphas() - - # function for copying the network - def new(self) -> nn.Module: - """ - Returns a copy of the network. - - Returns: - a copy of the network - - """ - - model_new = Network( - # self._C, self._num_classes, self._criterion, steps=self._steps - num_classes=self._num_classes, - criterion=self._criterion, - steps=self._steps, - n_input_states=self._n_input_states, - architecture_fixed=self._architecture_fixed, - classifier_weight_decay=self._classifier_weight_decay, - darts_type=self.DARTS_type, - primitives=self.primitives, - ) - - for x, y in zip(model_new.arch_parameters(), self.arch_parameters()): - x.data.copy_(y.data) - return model_new - - # computes forward pass for full network - def forward(self, x: torch.Tensor): - """ - Computes output of the network. - - Arguments: - x: input to the network - """ - - # compute stem first - input_states = self.stem(x) - - # get architecture weights - if self._architecture_fixed: - weights = self.alphas_normal - else: - if self.DARTS_type == DARTSType.ORIGINAL: - weights = F.softmax(self.alphas_normal, dim=-1) - elif self.DARTS_type == DARTSType.FAIR: - weights = torch.sigmoid(self.alphas_normal) - else: - raise Exception( - "DARTS Type " + str(self.DARTS_type) + " not implemented" - ) - - # then apply cell with weights - cell_output = self.cells(input_states, weights) - - # compute logits - logits = self.classifier(cell_output.view(cell_output.size(0), -1)) - # just gets output to have only 2 dimensions (batch_size x num units in - # output layer) - - return logits - - def _loss(self, input: torch.Tensor, target: torch.Tensor) -> torch.Tensor: - """ - Computes the loss of the network for the specified criterion. - - Arguments: - input: input patterns - target: target patterns - - Returns: - loss - """ - logits = self(input) - return self._criterion(logits, target) # returns cross entropy by default - - # regularization - def apply_weight_decay_to_classifier(self, lr: float): - """ - Applies a weight decay to the weights projecting from the cell to the final output layer. - - Arguments: - lr: learning rate - """ - # weight decay proportional to degrees of freedom - for p in self.classifier.parameters(): - if p.requires_grad is False: - continue - p.data.sub_( - self._classifier_weight_decay - * lr - * torch.sign(p.data) - * (torch.abs(p.data)) - ) # weight decay - - def _initialize_alphas(self): - """ - Initializes the architecture weights. - """ - # compute the number of possible connections between nodes - k = sum(1 for i in range(self._steps) for n in range(self._n_input_states + i)) - # number of available primitive operations (8 different types for a - # conv net) - num_ops = len(self.primitives) - - # e.g., generate 14 (number of available edges) by 8 (operations) - # weight matrix for normal alphas of the architecture - self.alphas_normal = Variable( - 1e-3 * torch.randn(k, num_ops), requires_grad=True - ) - # those are all the parameters of the architecture - self._arch_parameters = [self.alphas_normal] - - # provide back the architecture as a parameter - def arch_parameters(self) -> List: - """ - Returns architecture weights. - - Returns: - _arch_parameters: architecture weights. - """ - return self._arch_parameters - - # fixes architecture - def fix_architecture( - self, switch: bool, new_weights: Optional[torch.Tensor] = None - ): - """ - Freezes or unfreezes the architecture weights. - - Arguments: - switch: set true to freeze architecture weights or false unfreeze - new_weights: new set of architecture weights - """ - self._architecture_fixed = switch - if new_weights is not None: - self.alphas_normal = new_weights - return - - def sample_alphas_normal( - self, sample_amp: float = 1, fair_darts_weight_threshold: float = 0 - ) -> torch.Tensor: - """ - Samples an architecture from the mixed operations from a probability distribution that is - defined by the (softmaxed) architecture weights. - This amounts to selecting one operation per edge (i.e., setting the architecture - weight of that operation to one while setting the others to zero). - - Arguments: - sample_amp: temperature that is applied before passing the weights through a softmax - fair_darts_weight_threshold: used in fair DARTS. If an architecture weight is below - this value then it is set to zero. - - Returns: - alphas_normal_sample: sampled architecture weights. - """ - - alphas_normal = self.alphas_normal.clone() - alphas_normal_sample = Variable(torch.zeros(alphas_normal.data.shape)) - - for edge in range(alphas_normal.data.shape[0]): - if self.DARTS_type == DARTSType.ORIGINAL: - W_soft = F.softmax(alphas_normal[edge] * sample_amp, dim=0) - elif self.DARTS_type == DARTSType.FAIR: - transformed_alphas_normal = alphas_normal[edge] - above_threshold = False - for idx in range(len(transformed_alphas_normal.data)): - if ( - torch.sigmoid(transformed_alphas_normal).data[idx] - > fair_darts_weight_threshold - ): - above_threshold = True - break - if above_threshold: - W_soft = F.softmax(transformed_alphas_normal * sample_amp, dim=0) - else: - W_soft = Variable(torch.zeros(alphas_normal[edge].shape)) - W_soft[self.primitives.index("none")] = 1 - - else: - raise Exception( - "DARTS Type " + str(self.DARTS_type) + " not implemented" - ) - - if torch.any(W_soft != W_soft): - warnings.warn( - "Cannot properly sample from architecture weights due to nan entries." - ) - k_sample = random.randrange(len(W_soft)) - else: - k_sample = np.random.choice(range(len(W_soft)), p=W_soft.data.numpy()) - alphas_normal_sample[edge, k_sample] = 1 - - return alphas_normal_sample - - def max_alphas_normal(self) -> torch.Tensor: - """ - Samples an architecture from the mixed operations by selecting, for each edge, - the operation with the largest architecture weight. - - Returns: - alphas_normal_sample: sampled architecture weights. - """ - alphas_normal = self.alphas_normal.clone() - alphas_normal_sample = Variable(torch.zeros(alphas_normal.data.shape)) - - for edge in range(alphas_normal.data.shape[0]): - row = alphas_normal[edge] - max_idx = np.argmax(row.data) - alphas_normal_sample[edge, max_idx] = 1 - - return alphas_normal_sample - - # returns the genotype of the model - def genotype(self, sample: bool = False) -> Genotype: - """ - Computes a genotype of the model which specifies the current computation graph based on - the largest architecture weight for each edge, or based on a sample. - The genotype can be used for parsing or plotting the computation graph. - - Arguments: - sample: if set to true, the architecture will be determined by sampling - from a probability distribution that is determined by the - softmaxed architecture weights. If set to false (default), the architecture will be - determined based on the largest architecture weight per edge. - - Returns: - genotype: genotype describing the current (sampled) architecture - """ - # this function uses the architecture weights to retrieve the - # operations with the highest weights - def _parse(weights): - gene = [] - n = ( - self._n_input_states - ) # 2 ... changed this to adapt to number of input states - start = 0 - for i in range(self._steps): - end = start + n - W = weights[start:end].copy() - # first get all the edges for a given node, edges are sorted according to their - # highest (non-none) weight, starting from the edge with the smallest heighest - # weight - - if "none" in self.primitives: - none_index = self.primitives.index("none") - else: - none_index = -1 - - edges = sorted( - range(n), - key=lambda x: -max( - W[x][k] for k in range(len(W[x])) if k != none_index - ), - ) - # for each edge, figure out which is the primitive with the - # highest - for ( - j - ) in edges: # looping through all the edges for the current node (i) - if sample: - W_soft = F.softmax(Variable(torch.from_numpy(W[j]))) - k_best = np.random.choice( - range(len(W[j])), p=W_soft.data.numpy() - ) - else: - k_best = None - # looping through all the primitives - for k in range(len(W[j])): - # choose the primitive with the highest weight - # if k != self.primitives.index('none'): - # EDIT SM 01/13: commented to include "none" - # weights in genotype - if k_best is None or W[j][k] > W[j][k_best]: - k_best = k - # add gene (primitive, edge number) - gene.append((self.primitives[k_best], j)) - start = end - n += 1 - return gene - - if self._architecture_fixed: - gene_normal = _parse(self.alphas_normal.data.cpu().numpy()) - else: - gene_normal = _parse( - F.softmax(self.alphas_normal, dim=-1).data.cpu().numpy() - ) - - concat = range(2 + self._steps - self._multiplier, self._steps + 2) - genotype = Genotype( - normal=gene_normal, - normal_concat=concat, - ) - return genotype - - def count_parameters(self, print_parameters: bool = False) -> Tuple[int, int, list]: - """ - Counts and returns the parameters (coefficients) of the architecture defined by the - highest architecture weights. - - Arguments: - print_parameters: if set to true, the function will print all parameters. - - Returns: - n_params_total: total number of parameters - n_params_base: number of parameters determined by the classifier - param_list: list of parameters specifying the corresponding edge (operation) - and value - """ - - # counts only parameters of operations with the highest architecture weight - n_params_total = 0 - - # count classifier - for parameter in self.classifier.parameters(): - if parameter.requires_grad is True: - n_params_total += parameter.data.numel() - - # count stem - for parameter in self.stem.parameters(): - if parameter.requires_grad is True: - n_params_total += parameter.data.numel() - - n_params_base = ( - n_params_total # number of parameters, excluding individual cells - ) - - param_list = list() - # now count number of parameters for cells that have highest - # probability - for idx, op in enumerate(self.cells._ops): - # pick most operation with highest likelihood - values = self.alphas_normal[idx, :].data.numpy() - maxIdx = np.where(values == max(values)) - - tmp_param_list = list() - if isiterable(op._ops[maxIdx[0].item(0)]): # Zero is not iterable - - for subop in op._ops[maxIdx[0].item(0)]: - - for parameter in subop.parameters(): - tmp_param_list.append(parameter.data.numpy().squeeze()) - if parameter.requires_grad is True: - n_params_total += parameter.data.numel() - - if print_parameters: - print( - "Edge (" - + str(idx) - + "): " - + get_operation_label( - self.primitives[maxIdx[0].item(0)], tmp_param_list - ) - ) - param_list.append(tmp_param_list) - - # # get parameters from final linear classifier - # tmp_param_list = list() - # for parameter in self.classifier.parameters(): - # for subparameter in parameter: - # tmp_param_list.append(subparameter.data.numpy().squeeze()) - - # get parameters from final linear for each edge - for edge in range(self._steps): - tmp_param_list = list() - # add weight - tmp_param_list.append( - self.classifier._parameters["weight"].data[:, edge].numpy() - ) - # add partial bias (bias of classifier units will be divided by - # number of edges) - if "bias" in self.classifier._parameters.keys() and edge == 0: - tmp_param_list.append(self.classifier._parameters["bias"].data.numpy()) - param_list.append(tmp_param_list) - - if print_parameters: - print( - "Classifier from Node " - + str(edge) - + ": " - + get_operation_label("classifier_concat", tmp_param_list) - ) - - return (n_params_total, n_params_base, param_list) - - def architecture_to_str_list( - self, - input_labels: Sequence[str], - output_labels: Sequence[str], - output_function_label: str = "", - decimals_to_display: int = 2, - output_format: Literal["latex", "console"] = "console", - ) -> List: - """ - Returns a list of strings representing the model. - - Arguments: - input_labels: list of strings representing the input states. - output_labels: list of strings representing the output states. - output_function_label: string representing the output function. - decimals_to_display: number of decimals to display. - output_format: if set to `"console"`, returns equations formatted for the command line, - if set to `"latex"`, returns equations in latex format - - - Returns: - list of strings representing the model - """ - (n_params_total, n_params_base, param_list) = self.count_parameters( - print_parameters=False - ) - genotype = self.genotype().normal - steps = self._steps - edge_list = list() - - n = len(input_labels) - start = 0 - for i in range(steps): # for every node - end = start + n - # for k in [2*i, 2*i + 1]: - - edge_operations_list = list() - op_list = list() - - for k in range(start, end): - if ( - output_format == "latex" - ): # for every edge projecting to current node - v = "k_" + str(i + 1) - else: - v = "k" + str(i + 1) - op, j = genotype[k] - if j < len(input_labels): - u = input_labels[j] - else: - if output_format == "latex": - u = "k_" + str(j - len(input_labels) + 1) - else: - u = "k" + str(j - len(input_labels) + 1) - if op != "none": - op_label = op - params = param_list[ - start + j - ] # note: genotype order and param list order don't align - op_label = get_operation_label( - op, - params, - decimals=decimals_to_display, - input_var=u, - output_format=output_format, - ) - op_list.append(op) - edge_operations_list.append(op_label) - - if len(edge_operations_list) == 0: - edge_str = v + " = 0" - else: - edge_str = "" - for i, edge_operation in enumerate(edge_operations_list): - if i == 0: - edge_str += v + " = " + edge_operation - if i > 0: - if ( - op_list[i] != "add" - and op_list[i] != "subtract" - and op_list[i] != "none" - ): - edge_str += " +" - edge_str += " " + edge_operation - - edge_list.append(edge_str) - start = end - n += 1 - - # TODO: extend to multiple outputs - if output_format == "latex": - classifier_str = output_labels[0] + " = " + output_function_label - if output_function_label != "": - classifier_str += "\\left(" - else: - classifier_str = output_labels[0] + " = " + output_function_label - if output_function_label != "": - classifier_str += "(" - - bias = None - for i in range(steps): - param_idx = len(param_list) - steps + i - tmp_param_list = param_list[param_idx] - if i == 0 and len(tmp_param_list) == 2: - bias = tmp_param_list[1] - if i > 0: - classifier_str += " + " - - if output_format == "latex": - input_var = "k_" + str(i + 1) - else: - input_var = "k" + str(i + 1) - - classifier_str += get_operation_label( - "classifier", - tmp_param_list[0], - decimals=decimals_to_display, - input_var=input_var, - ) - - if i == steps - 1 and bias is not None: - classifier_str += " + " + str(bias[0]) - - if i == steps - 1: - if output_function_label != "": - if output_format == "latex": - classifier_str += "\\right)" - else: - classifier_str += ")" - - edge_list.append(classifier_str) - - return edge_list diff --git a/autora/theorist/darts/operations.py b/autora/theorist/darts/operations.py deleted file mode 100755 index 05603b04b..000000000 --- a/autora/theorist/darts/operations.py +++ /dev/null @@ -1,665 +0,0 @@ -import typing -from collections import namedtuple - -import torch -import torch.nn as nn - -Genotype = namedtuple("Genotype", "normal normal_concat") - - -def isiterable(p_object: typing.Any) -> bool: - """ - Checks if an object is iterable. - - Arguments: - p_object: object to be checked - """ - try: - iter(p_object) - except TypeError: - return False - return True - - -def get_operation_label( - op_name: str, - params_org: typing.List, - decimals: int = 4, - input_var: str = "x", - output_format: typing.Literal["latex", "console"] = "console", -) -> str: - r""" - Returns a complete string describing a DARTS operation. - - Arguments: - op_name: name of the operation - params_org: original parameters of the operation - decimals: number of decimals to be used for converting the parameters into string format - input_var: name of the input variable - output_format: format of the output string (either "latex" or "console") - - Examples: - >>> get_operation_label("classifier", [1], decimals=2) - '1.00 * x' - >>> import numpy as np - >>> print(get_operation_label("classifier_concat", np.array([1, 2, 3]), - ... decimals=2, output_format="latex")) - x \circ \left(1.00\right) + \left(2.00\right) + \left(3.00\right) - >>> get_operation_label("classifier_concat", np.array([1, 2, 3]), - ... decimals=2, output_format="console") - 'x .* (1.00) .+ (2.00) .+ (3.00)' - >>> get_operation_label("linear_exp", [1,2], decimals=2) - 'exp(1.00 * x + 2.00)' - >>> get_operation_label("none", []) - '' - >>> get_operation_label("reciprocal", [1], decimals=0) - '1 / x' - >>> get_operation_label("linear_reciprocal", [1, 2], decimals=0) - '1 / (1 * x + 2)' - >>> get_operation_label("linear_relu", [1], decimals=0) - 'ReLU(1 * x)' - >>> print(get_operation_label("linear_relu", [1], decimals=0, output_format="latex")) - \operatorname{ReLU}\left(1x\right) - >>> get_operation_label("linear", [1, 2], decimals=0) - '1 * x + 2' - >>> get_operation_label("linear", [1, 2], decimals=0, output_format="latex") - '1 x + 2' - >>> get_operation_label("linrelu", [1], decimals=0) # Mistyped operation name - Traceback (most recent call last): - ... - NotImplementedError: operation 'linrelu' is not defined for output_format 'console' - """ - if output_format != "latex" and output_format != "console": - raise ValueError("output_format must be either 'latex' or 'console'") - - params = params_org.copy() - - format_string = "{:." + "{:.0f}".format(decimals) + "f}" - - classifier_str = "" - if op_name == "classifier": - value = params[0] - classifier_str = f"{format_string.format(value)} * {input_var}" - return classifier_str - - if op_name == "classifier_concat": - if output_format == "latex": - classifier_str = input_var + " \\circ \\left(" - else: - classifier_str = input_var + " .* (" - for param_idx, param in enumerate(params): - - if param_idx > 0: - if output_format == "latex": - classifier_str += " + \\left(" - else: - classifier_str += " .+ (" - - if isiterable(param.tolist()): - - param_formatted = list() - for value in param.tolist(): - param_formatted.append(format_string.format(value)) - - for value_idx, value in enumerate(param_formatted): - if value_idx < len(param) - 1: - classifier_str += value + " + " - else: - if output_format == "latex": - classifier_str += value + "\\right)" - else: - classifier_str += value + ")" - - else: - value = format_string.format(param) - - if output_format == "latex": - classifier_str += value + "\\right)" - else: - classifier_str += value + ")" - - return classifier_str - - num_params = len(params) - - c = [str(format_string.format(p)) for p in params_org] - c.extend(["", "", ""]) - - if num_params == 1: # without bias - if output_format == "console": - labels = { - "none": "", - "add": f"+ {input_var}", - "subtract": f"- {input_var}", - "mult": f"{c[0]} * {input_var}", - "linear": f"{c[0]} * {input_var}", - "relu": f"ReLU({input_var})", - "linear_relu": f"ReLU({c[0]} * {input_var})", - "logistic": f"logistic({input_var})", - "linear_logistic": f"logistic({c[0]} * {input_var})", - "exp": f"exp({input_var})", - "linear_exp": f"exp({c[0]} * {input_var})", - "reciprocal": f"1 / {input_var}", - "linear_reciprocal": f"1 / ({c[0]} * {input_var})", - "ln": f"ln({input_var})", - "linear_ln": f"ln({c[0]} * {input_var})", - "cos": f"cos({input_var})", - "linear_cos": f"cos({c[0]} * {input_var})", - "sin": f"sin({input_var})", - "linear_sin": f"sin({c[0]} * {input_var})", - "tanh": f"tanh({input_var})", - "linear_tanh": f"tanh({c[0]} * {input_var})", - "classifier": classifier_str, - } - elif output_format == "latex": - labels = { - "none": "", - "add": f"+ {input_var}", - "subtract": f"- {input_var}", - "mult": f"{c[0]} {input_var}", - "linear": c[0] + "" + input_var, - "relu": f"\\operatorname{{ReLU}}\\left({input_var}\\right)", - "linear_relu": f"\\operatorname{{ReLU}}\\left({c[0]}{input_var}\\right)", - "logistic": f"\\sigma\\left({input_var}\\right)", - "linear_logistic": f"\\sigma\\left({c[0]} {input_var} \\right)", - "exp": f"+ e^{input_var}", - "linear_exp": f"e^{{{c[0]} {input_var} }}", - "reciprocal": f"\\frac{{1}}{{{input_var}}}", - "linear_reciprocal": f"\\frac{{1}}{{{c[0]} {input_var} }}", - "ln": f"\\ln\\left({input_var}\\right)", - "linear_ln": f"\\ln\\left({c[0]} {input_var} \\right)", - "cos": f"\\cos\\left({input_var}\\right)", - "linear_cos": f"\\cos\\left({c[0]} {input_var} \\right)", - "sin": f"\\sin\\left({input_var}\\right)", - "linear_sin": f"\\sin\\left({c[0]} {input_var} \\right)", - "tanh": f"\\tanh\\left({input_var}\\right)", - "linear_tanh": f"\\tanh\\left({c[0]} {input_var} \\right)", - "classifier": classifier_str, - } - else: # with bias - if output_format == "console": - labels = { - "none": "", - "add": f"+ {input_var}", - "subtract": f"- {input_var}", - "mult": f"{c[0]} * {input_var}", - "linear": f"{c[0]} * {input_var} + {c[1]}", - "relu": f"ReLU({input_var})", - "linear_relu": f"ReLU({c[0]} * {input_var} + {c[1]} )", - "logistic": f"logistic({input_var})", - "linear_logistic": f"logistic({c[0]} * {input_var} + {c[1]})", - "exp": f"exp({input_var})", - "linear_exp": f"exp({c[0]} * {input_var} + {c[1]})", - "reciprocal": f"1 / {input_var}", - "linear_reciprocal": f"1 / ({c[0]} * {input_var} + {c[1]})", - "ln": f"ln({input_var})", - "linear_ln": f"ln({c[0]} * {input_var} + {c[1]})", - "cos": f"cos({input_var})", - "linear_cos": f"cos({c[0]} * {input_var} + {c[1]})", - "sin": f"sin({input_var})", - "linear_sin": f"sin({c[0]} * {input_var} + {c[1]})", - "tanh": f"tanh({input_var})", - "linear_tanh": f"tanh({c[0]} * {input_var} + {c[1]})", - "classifier": classifier_str, - } - elif output_format == "latex": - labels = { - "none": "", - "add": f"+ {input_var}", - "subtract": f"- {input_var}", - "mult": f"{c[0]} * {input_var}", - "linear": f"{c[0]} {input_var} + {c[1]}", - "relu": f"\\operatorname{{ReLU}}\\left( {input_var}\\right)", - "linear_relu": f"\\operatorname{{ReLU}}\\left({c[0]}{input_var} + {c[1]} \\right)", - "logistic": f"\\sigma\\left( {input_var} \\right)", - "linear_logistic": f"\\sigma\\left( {c[0]} {input_var} + {c[1]} \\right)", - "exp": f"e^{input_var}", - "linear_exp": f"e^{{ {c[0]} {input_var} + {c[1]} }}", - "reciprocal": f"\\frac{{1}}{{{input_var}}}", - "linear_reciprocal": f"\\frac{{1}} {{ {c[0]}{input_var} + {c[1]} }}", - "ln": f"\\ln\\left({input_var}\\right)", - "linear_ln": f"\\ln\\left({c[0]} {input_var} + {c[1]} \\right)", - "cos": f"\\cos\\left({input_var}\\right)", - "linear_cos": f"\\cos\\left({c[0]} {input_var} + {c[1]} \\right)", - "sin": f"\\sin\\left({input_var}\\right)", - "linear_sin": f"\\sin\\left({c[0]} {input_var} + {c[1]} \\right)", - "tanh": f"\\tanh\\left({input_var}\\right)", - "linear_tanh": f"\\tanh\\left({c[0]} {input_var} + {c[1]} \\right)", - "classifier": classifier_str, - } - - if op_name not in labels: - raise NotImplementedError( - f"operation '{op_name}' is not defined for output_format '{output_format}'" - ) - - return labels[op_name] - - -class Identity(nn.Module): - """ - A pytorch module implementing the identity function. - - $$ - x = x - $$ - """ - - def __init__(self): - """ - Initializes the identify function. - """ - super(Identity, self).__init__() - - def forward(self, x: torch.Tensor) -> torch.Tensor: - """ - Forward pass of the identity function. - - Arguments: - x: input tensor - """ - return x - - -class NegIdentity(nn.Module): - """ - A pytorch module implementing the inverse of an identity function. - - $$ - x = -x - $$ - """ - - def __init__(self): - """ - Initializes the inverse of an identity function. - """ - super(NegIdentity, self).__init__() - - def forward(self, x: torch.Tensor) -> torch.Tensor: - """ - Forward pass of the inverse of an identity function. - - Arguments: - x: input tensor - """ - return -x - - -class Exponential(nn.Module): - """ - A pytorch module implementing the exponential function. - - $$ - x = e^x - $$ - """ - - def __init__(self): - """ - Initializes the exponential function. - """ - super(Exponential, self).__init__() - - def forward(self, x: torch.Tensor) -> torch.Tensor: - """ - Forward pass of the exponential function. - - Arguments: - x: input tensor - """ - return torch.exp(x) - - -class Cosine(nn.Module): - r""" - A pytorch module implementing the cosine function. - - $$ - x = \cos(x) - $$ - """ - - def __init__(self): - """ - Initializes the cosine function. - """ - super(Cosine, self).__init__() - - def forward(self, x: torch.Tensor) -> torch.Tensor: - """ - Forward pass of the cosine function. - - Arguments: - x: input tensor - """ - return torch.cos(x) - - -class Sine(nn.Module): - r""" - A pytorch module implementing the sine function. - - $$ - x = \sin(x) - $$ - """ - - def __init__(self): - """ - Initializes the sine function. - """ - super(Sine, self).__init__() - - def forward(self, x: torch.Tensor) -> torch.Tensor: - """ - Forward pass of the sine function. - - Arguments: - x: input tensor - """ - return torch.sin(x) - - -class Tangens_Hyperbolicus(nn.Module): - r""" - A pytorch module implementing the tangens hyperbolicus function. - - $$ - x = \tanh(x) - $$ - """ - - def __init__(self): - """ - Initializes the tangens hyperbolicus function. - """ - super(Tangens_Hyperbolicus, self).__init__() - - def forward(self, x: torch.Tensor) -> torch.Tensor: - """ - Forward pass of the tangens hyperbolicus function. - - Arguments: - x: input tensor - """ - return torch.tanh(x) - - -class NatLogarithm(nn.Module): - r""" - A pytorch module implementing the natural logarithm function. - - $$ - x = \ln(x) - $$ - - """ - - def __init__(self): - """ - Initializes the natural logarithm function. - """ - super(NatLogarithm, self).__init__() - - def forward(self, x: torch.Tensor) -> torch.Tensor: - """ - Forward pass of the natural logarithm function. - - Arguments: - x: input tensor - """ - # make sure x is in domain of natural logarithm - mask = x.clone() - mask[(x <= 0.0).detach()] = 0 - mask[(x > 0.0).detach()] = 1 - - epsilon = 1e-10 - result = torch.log(nn.functional.relu(x) + epsilon) * mask - - return result - - -class MultInverse(nn.Module): - r""" - A pytorch module implementing the multiplicative inverse. - - $$ - x = \frac{1}{x} - $$ - """ - - def __init__(self): - """ - Initializes the multiplicative inverse. - """ - super(MultInverse, self).__init__() - - def forward(self, x: torch.Tensor) -> torch.Tensor: - """ - Forward pass of the multiplicative inverse. - - Arguments: - x: input tensor - """ - return torch.pow(x, -1) - - -class Zero(nn.Module): - """ - A pytorch module implementing the zero operation (i.e., a null operation). A zero operation - presumes that there is no relationship between the input and output. - - $$ - x = 0 - $$ - """ - - def __init__(self, stride): - """ - Initializes the zero operation. - """ - super(Zero, self).__init__() - self.stride = stride - - def forward(self, x: torch.Tensor) -> torch.Tensor: - """ - Forward pass of the zero operation. - - Arguments: - x: input tensor - """ - if self.stride == 1: - return x.mul(0.0) - return x[:, :, :: self.stride, :: self.stride].mul(0.0) - - -class Softplus(nn.Module): - r""" - A pytorch module implementing the softplus function: - - $$ - \operatorname{Softplus}(x) = \frac{1}{β} \operatorname{log} \left( 1 + e^{β x} \right) - $$ - """ - - # This docstring is a raw-string (it starts `r"""` rather than `"""`) - # so backslashes need not be escaped - - def __init__(self): - """ - Initializes the softplus function. - """ - super(Softplus, self).__init__() - # self.beta = nn.Linear(1, 1, bias=False) - self.beta = nn.Parameter(torch.ones(1)) - # elf.softplus = nn.Softplus(beta=self.beta) - - def forward(self, x: torch.Tensor) -> torch.Tensor: - """ - Forward pass of the softplus function. - - Arguments: - x: input tensor - """ - y = torch.log(1 + torch.exp(self.beta * x)) / self.beta - # y = self.softplus(x) - return y - - -class Softminus(nn.Module): - """ - A pytorch module implementing the softminus function: - - $$ - \\operatorname{Softminus}(x) = x - \\operatorname{log} \\left( 1 + e^{β x} \\right) - $$ - """ - - # This docstring is a normal string, so backslashes need to be escaped - - def __init__(self): - """ - Initializes the softminus function. - """ - super(Softminus, self).__init__() - # self.beta = nn.Linear(1, 1, bias=False) - self.beta = nn.Parameter(torch.ones(1)) - - def forward(self, x: torch.Tensor) -> torch.Tensor: - """ - Forward pass of the softminus function. - - Arguments: - x: input tensor - """ - y = x - torch.log(1 + torch.exp(self.beta * x)) / self.beta - return y - - -# defines all the operations. affine is turned off for cuda (optimization prposes) - - -def operation_factory(name): - - if name == "none": - return Zero(1) - elif name == "add": - return nn.Sequential(Identity()) - elif name == "subtract": - return nn.Sequential(NegIdentity()) - elif name == "mult": - return nn.Sequential( - nn.Linear(1, 1, bias=False), - ) - elif name == "linear": - return nn.Sequential(nn.Linear(1, 1, bias=True)) - elif name == "relu": - return nn.Sequential( - nn.ReLU(inplace=False), - ) - elif name == "linear_relu": - return nn.Sequential( - nn.Linear(1, 1, bias=True), - nn.ReLU(inplace=False), - ) - elif name == "logistic": - return nn.Sequential( - nn.Sigmoid(), - ) - elif name == "linear_logistic": - return nn.Sequential( - nn.Linear(1, 1, bias=True), - nn.Sigmoid(), - ) - elif name == "exp": - return nn.Sequential( - Exponential(), - ) - elif name == "linear_exp": - return nn.Sequential( - nn.Linear(1, 1, bias=True), - Exponential(), - ) - elif name == "cos": - return nn.Sequential( - Cosine(), - ) - elif name == "linear_cos": - return nn.Sequential( - nn.Linear(1, 1, bias=True), - Cosine(), - ) - elif name == "sin": - return nn.Sequential( - Sine(), - ) - elif name == "linear_sin": - return nn.Sequential( - nn.Linear(1, 1, bias=True), - Sine(), - ) - elif name == "tanh": - return nn.Sequential( - Tangens_Hyperbolicus(), - ) - elif name == "linear_tanh": - return nn.Sequential( - nn.Linear(1, 1, bias=True), - Tangens_Hyperbolicus(), - ) - elif name == "reciprocal": - return nn.Sequential( - MultInverse(), - ) - elif name == "linear_reciprocal": - return nn.Sequential( - nn.Linear(1, 1, bias=False), - MultInverse(), - ) - elif name == "ln": - return nn.Sequential( - NatLogarithm(), - ) - elif name == "linear_ln": - return nn.Sequential( - nn.Linear(1, 1, bias=False), - NatLogarithm(), - ) - elif name == "softplus": - return nn.Sequential( - Softplus(), - ) - elif name == "linear_softplus": - return nn.Sequential( - nn.Linear(1, 1, bias=False), - Softplus(), - ) - elif name == "softminus": - return nn.Sequential( - Softminus(), - ) - elif name == "linear_softminus": - return nn.Sequential( - nn.Linear(1, 1, bias=False), - Softminus(), - ) - else: - raise NotImplementedError(f"operation {name=} it not implemented") - - -# this is the list of primitives actually used, -# and it should be a set of names contained in the OPS dictionary -PRIMITIVES = ( - "none", - "add", - "subtract", - "linear", - "linear_logistic", - "mult", - "linear_relu", -) - -# make sure that every primitive is in the OPS dictionary -for name in PRIMITIVES: - assert operation_factory(name) is not None diff --git a/autora/theorist/darts/utils.py b/autora/theorist/darts/utils.py deleted file mode 100755 index 79d6affbc..000000000 --- a/autora/theorist/darts/utils.py +++ /dev/null @@ -1,491 +0,0 @@ -import csv -import glob -import os -import shutil -from typing import Callable, List, Optional, Tuple - -import numpy as np -import torch -from torch import nn as nn - -from autora.theorist.darts.model_search import Network -from autora.variable import ValueType - - -def create_output_file_name( - file_prefix: str, - log_version: Optional[int] = None, - weight_decay: Optional[float] = None, - k: Optional[int] = None, - seed: Optional[int] = None, - theorist: Optional[str] = None, -) -> str: - """ - Creates a file name for the output file of a theorist study. - - Arguments: - file_prefix: prefix of the file name - log_version: log version of the theorist run - weight_decay: weight decay of the model - k: number of nodes in the model - seed: seed of the model - theorist: name of the DARTS variant - """ - - output_str = file_prefix - - if theorist is not None: - output_str += "_" + str(theorist) - - if log_version is not None: - output_str += "_v_" + str(log_version) - - if weight_decay is not None: - output_str += "_wd_" + str(weight_decay) - - if k is not None: - output_str += "_k_" + str(k) - - if k is not None: - output_str += "_s_" + str(seed) - - return output_str - - -def assign_slurm_instance( - slurm_id: int, - arch_weight_decay_list: List, - num_node_list: List, - seed_list: List, -) -> Tuple: - """ - Determines the meta-search parameters based on the slum job id. - - Arguments: - slurm_id: slurm job id - arch_weight_decay_list: list of weight decay values - num_node_list: list of number of nodes - seed_list: list of seeds - """ - - seed_id = np.floor( - slurm_id / (len(num_node_list) * len(arch_weight_decay_list)) - ) % len(seed_list) - k_id = np.floor(slurm_id / (len(arch_weight_decay_list))) % len(num_node_list) - weight_decay_id = slurm_id % len(arch_weight_decay_list) - - return ( - arch_weight_decay_list[int(weight_decay_id)], - int(num_node_list[int(k_id)]), - int(seed_list[int(seed_id)]), - ) - - -def sigmid_mse(output: torch.Tensor, target: torch.Tensor) -> torch.Tensor: - """ - Returns the MSE loss for a sigmoid output. - - Arguments: - output: output of the model - target: target of the model - """ - m = nn.Sigmoid() - output = m(output) - loss = torch.mean((output - target) ** 2) - return loss - - -def compute_BIC( - output_type: ValueType, - model: torch.nn.Module, - input: torch.Tensor, - target: torch.Tensor, -) -> float: - """ - Returns the Bayesian information criterion for a DARTS model. - - Arguments: - output_type: output type of the dependent variable - model: model to compute the BIC for - input: input of the model - target: target of the model - """ - - # compute raw model output - classifier_output = model(input) - - # compute associated probability - m = get_output_format(output_type) - prediction = m(classifier_output).detach() - - k, _, _ = model.countParameters() # for most likely architecture - - if output_type == ValueType.CLASS: - target_flattened = torch.flatten(target.long()) - llik = 0 - for idx in range(len(target_flattened)): - lik = prediction[idx, target_flattened[idx]] - llik += np.log(lik) - n = len(target_flattened) # number of data points - - BIC = np.log(n) * k - 2 * llik - BIC = BIC - - elif output_type == ValueType.PROBABILITY_SAMPLE: - llik = 0 - for idx in range(len(target)): - - # fail safe if model doesn't produce probabilities - if prediction[idx] > 1: - prediction[idx] = 1 - elif prediction[idx] < 0: - prediction[idx] = 0 - - if target[idx] == 1: - lik = prediction[idx] - elif target[idx] == 0: - lik = 1 - prediction[idx] - else: - raise Exception("Target must contain either zeros or ones.") - llik += np.log(lik) - n = len(target) # number of data points - - BIC = np.log(n) * k - 2 * llik - BIC = BIC[0] - - else: - raise Exception( - "BIC computation not implemented for output type " - + str(ValueType.PROBABILITY) - + "." - ) - - return BIC - - # old - - -def compute_BIC_AIC( - soft_targets: np.array, soft_prediction: np.array, model: Network -) -> Tuple: - """ - Returns the Bayesian information criterion (BIC) as well as the - Aikaike information criterion (AIC) for a DARTS model. - - Arguments: - soft_targets: soft target of the model - soft_prediction: soft prediction of the model - model: model to compute the BIC and AIC for - """ - - lik = np.sum( - np.multiply(soft_prediction, soft_targets), axis=1 - ) # likelihood of data given model - llik = np.sum(np.log(lik)) # log likelihood - n = len(lik) # number of data points - k, _, _ = model.count_parameters() # for most likely architecture - - BIC = np.log(n) * k - 2 * llik - - AIC = 2 * k - 2 * llik - - return BIC, AIC - - -def cross_entropy(pred: torch.Tensor, soft_targets: torch.Tensor) -> torch.Tensor: - """ - Returns the cross entropy loss for a soft target. - - Arguments: - pred: prediction of the model - soft_targets: soft target of the model - """ - # assuming pred and soft_targets are both Variables with shape (batchsize, num_of_classes), - # each row of pred is predicted logits and each row of soft_targets is a discrete distribution. - logsoftmax = nn.LogSoftmax(dim=1) - return torch.mean(torch.sum(-soft_targets * logsoftmax(pred), 1)) - - -class AvgrageMeter(object): - """ - Computes and stores the average and current value. - """ - - def __init__(self): - """ - Initializes the average meter. - """ - self.reset() - - def reset(self): - """ - Resets the average meter. - """ - self.avg = 0 - self.sum = 0 - self.cnt = 0 - - def update(self, val: float, n: int = 1): - """ - Updates the average meter. - - Arguments: - val: value to update the average meter with - n: number of times to update the average meter - """ - self.sum += val * n - self.cnt += n - self.avg = self.sum / self.cnt - - -def accuracy(output: torch.Tensor, target: torch.Tensor, topk: Tuple = (1,)) -> List: - """ - Computes the accuracy over the k top predictions for the specified values of k. - - Arguments: - output: output of the model - target: target of the model - topk: values of k to compute the accuracy at - """ - maxk = max(topk) - batch_size = target.size(0) - - _, pred = output.topk(maxk, 1, True, True) - pred = pred.t() - correct = pred.eq(target.view(1, -1).expand_as(pred)) - - res = [] - for k in topk: - correct_k = correct[:k].view(-1).float().sum(0) - res.append(correct_k.mul_(100.0 / batch_size)) - return res - - -def count_parameters_in_MB(model: Network) -> int: - """ - Returns the number of parameters for a model. - - Arguments: - model: model to count the parameters for - """ - return ( - np.sum( - np.prod(v.size()) - for name, v in model.named_parameters() - if "auxiliary" not in name - ) - / 1e6 - ) - - -def save(model: torch.nn.Module, model_path: str, exp_folder: Optional[str] = None): - """ - Saves a model to a file. - - Arguments: - model: model to save - model_path: path to save the model to - exp_folder: general experiment directory to save the model to - """ - if exp_folder is not None: - os.chdir("exps") # Edit SM 10/23/19: use local experiment directory - torch.save(model.state_dict(), model_path) - if exp_folder is not None: - os.chdir("..") # Edit SM 10/23/19: use local experiment directory - - -def load(model: torch.nn.Module, model_path: str): - """ - Loads a model from a file. - """ - model.load_state_dict(torch.load(model_path)) - - -def create_exp_dir( - path: str, - scripts_to_save: Optional[List] = None, - parent_folder: str = "exps", - results_folder: Optional[str] = None, -): - """ - Creates an experiment directory and saves all necessary scripts and files. - - Arguments: - path: path to save the experiment directory to - scripts_to_save: list of scripts to save - parent_folder: parent folder for the experiment directory - results_folder: folder for the results of the experiment - """ - os.chdir(parent_folder) # Edit SM 10/23/19: use local experiment directory - if not os.path.exists(path): - os.mkdir(path) - print("Experiment dir : {}".format(path)) - - if results_folder is not None: - try: - os.mkdir(os.path.join(path, results_folder)) - except OSError: - pass - - if scripts_to_save is not None: - try: - os.mkdir(os.path.join(path, "scripts")) - except OSError: - pass - os.chdir("..") # Edit SM 10/23/19: use local experiment directory - for script in scripts_to_save: - dst_file = os.path.join( - parent_folder, path, "scripts", os.path.basename(script) - ) - shutil.copyfile(script, dst_file) - - -def read_log_files(results_path: str, winning_architecture_only: bool = False) -> Tuple: - """ - Reads the log files from an experiment directory and returns the results. - - Arguments: - results_path: path to the experiment results directory - winning_architecture_only: if True, only the winning architecture is returned - """ - - current_wd = os.getcwd() - - os.chdir(results_path) - filelist = glob.glob("*.{}".format("csv")) - - model_name_list = list() - loss_list = list() - BIC_list = list() - AIC_list = list() - - # READ LOG FILES - - print("Reading log files... ") - for file in filelist: - - with open(file) as csvfile: - readCSV = csv.reader(csvfile, delimiter=",") - for row in readCSV: - if winning_architecture_only is False or "sample0" in row[0]: - model_name_list.append(row[0]) - loss_list.append(float(row[1])) - BIC_list.append(float(row[2].replace("[", "").replace("]", ""))) - AIC_list.append(float(row[3].replace("[", "").replace("]", ""))) - - os.chdir(current_wd) - - return (model_name_list, loss_list, BIC_list, AIC_list) - - -def get_best_fitting_models( - model_name_list: List, - loss_list: List, - BIC_list: List, - topk: int, -) -> Tuple: - """ - Returns the topk best fitting models. - - Arguments: - model_name_list: list of model names - loss_list: list of loss values - BIC_list: list of BIC values - topk: number of topk models to return - """ - - topk_losses = sorted(zip(loss_list, model_name_list), reverse=False)[:topk] - res = list(zip(*topk_losses)) - topk_losses_names = res[1] - - topk_BICs = sorted(zip(BIC_list, model_name_list), reverse=False)[:topk] - res = list(zip(*topk_BICs)) - topk_BICs_names = res[1] - - return (topk_losses_names, topk_BICs_names) - - -def format_input_target( - input: torch.tensor, target: torch.tensor, criterion: Callable -) -> Tuple[torch.tensor, torch.tensor]: - """ - Formats the input and target for the model. - - Args: - input: input to the model - target: target of the model - criterion: criterion to use for the model - - Returns: - input: formatted input and target for the model - - """ - - if isinstance(criterion, nn.CrossEntropyLoss): - target = target.squeeze() - - return (input, target) - - -LOSS_FUNCTION_MAPPING = { - ValueType.REAL: nn.MSELoss(), - ValueType.PROBABILITY: sigmid_mse, - ValueType.PROBABILITY_SAMPLE: sigmid_mse, - ValueType.PROBABILITY_DISTRIBUTION: cross_entropy, - ValueType.CLASS: nn.CrossEntropyLoss(), - ValueType.SIGMOID: sigmid_mse, -} - - -def get_loss_function(outputType: ValueType): - """ - Returns the loss function for the given output type of a dependent variable. - - Arguments: - outputType: output type of the dependent variable - """ - - return LOSS_FUNCTION_MAPPING.get(outputType, nn.MSELoss()) - - -OUTPUT_FORMAT_MAPPING = { - ValueType.REAL: nn.Identity(), - ValueType.PROBABILITY: nn.Sigmoid(), - ValueType.PROBABILITY_SAMPLE: nn.Sigmoid(), - ValueType.PROBABILITY_DISTRIBUTION: nn.Softmax(dim=1), - ValueType.CLASS: nn.Softmax(dim=1), - ValueType.SIGMOID: nn.Sigmoid(), -} - - -def get_output_format(outputType: ValueType): - """ - Returns the output format (activation function of the final output layer) - for the given output type of a dependent variable. - - Arguments: - outputType: output type of the dependent variable - """ - - return OUTPUT_FORMAT_MAPPING.get(outputType, nn.MSELoss()) - - -OUTPUT_STR_MAPPING = { - ValueType.REAL: "", - ValueType.PROBABILITY: "Sigmoid", - ValueType.PROBABILITY_SAMPLE: "Sigmoid", - ValueType.PROBABILITY_DISTRIBUTION: "Softmax", - ValueType.CLASS: "Softmax", - ValueType.SIGMOID: "Sigmoid", -} - - -def get_output_str(outputType: ValueType) -> str: - """ - Returns the output string for the given output type of a dependent variable. - - Arguments: - outputType: output type of the dependent variable - """ - - return OUTPUT_STR_MAPPING.get(outputType, "") diff --git a/autora/theorist/darts/visualize.py b/autora/theorist/darts/visualize.py deleted file mode 100755 index bf3055332..000000000 --- a/autora/theorist/darts/visualize.py +++ /dev/null @@ -1,201 +0,0 @@ -import logging -import typing -from typing import Optional - -from graphviz import Digraph - -from autora.theorist.darts.operations import Genotype, get_operation_label - -_logger = logging.getLogger(__name__) - - -def plot( - genotype: Genotype, - filename: str, - file_format: str = "pdf", - view_file: Optional[bool] = None, - full_label: bool = False, - param_list: typing.Tuple = (), - input_labels: typing.Tuple = (), - out_dim: Optional[int] = None, - out_fnc: Optional[str] = None, -): - """ - Generates a graphviz plot for a DARTS model based on the genotype of the model. - - Arguments: - genotype: the genotype of the model - filename: the filename of the output file - file_format: the format of the output file - view_file: if True, the plot will be displayed in a window - full_label: if True, the labels of the nodes will be the full name of the operation - (including the coefficients) - param_list: a list of parameters to be included in the labels of the nodes - input_labels: a list of labels to be included in the input nodes - out_dim: the number of output nodes of the model - out_fnc: the (activation) function to be used for the output nodes - """ - - g = darts_model_plot( - genotype=genotype, - full_label=full_label, - param_list=param_list, - input_labels=input_labels, - out_dim=out_dim, - out_fnc=out_fnc, - ) - - if view_file is None: - if file_format == "pdf": - view_file = True - else: - view_file = False - - g.render(filename, view=view_file, format=file_format) - - -def darts_model_plot( - genotype: Genotype, - full_label: bool = False, - param_list: typing.Sequence = (), - input_labels: typing.Sequence = (), - out_dim: Optional[int] = None, - out_fnc: Optional[str] = None, - decimals_to_display: int = 2, -) -> Digraph: - """ - Generates a graphviz plot for a DARTS model based on the genotype of the model. - - Arguments: - genotype: the genotype of the model - full_label: if True, the labels of the nodes will be the full name of the operation - (including the coefficients) - param_list: a list of parameters to be included in the labels of the nodes - input_labels: a list of labels to be included in the input nodes - out_dim: the number of output nodes of the model - out_fnc: the (activation) function to be used for the output nodes - decimals_to_display: number of decimals to include in parameter values on plot - """ - - format_string = "{:." + "{:.0f}".format(decimals_to_display) + "f}" - - graph = Digraph( - edge_attr=dict(fontsize="20", fontname="times"), - node_attr=dict( - style="filled", - shape="rect", - align="center", - fontsize="20", - height="0.5", - width="0.5", - penwidth="2", - fontname="times", - ), - engine="dot", - ) - graph.body.extend(["rankdir=LR"]) - - for input_node in input_labels: - graph.node(input_node, fillcolor="#F1EDB9") # fillcolor='darkseagreen2' - # assert len(genotype) % 2 == 0 - - # determine number of steps (intermediate nodes) - steps = 0 - for op, j in genotype: - if j == 0: - steps += 1 - - for i in range(steps): - graph.node("k" + str(i + 1), fillcolor="#BBCCF9") # fillcolor='lightblue' - - params_counter = 0 - n = len(input_labels) - start = 0 - for i in range(steps): - end = start + n - _logger.debug(start, end) - # for k in [2*i, 2*i + 1]: - for k in range( - start, end - ): # adapted this iteration from get_genotype() in model_search.py - _logger.debug(genotype, k) - op, j = genotype[k] - if j < len(input_labels): - u = input_labels[j] - else: - u = "k" + str(j - len(input_labels) + 1) - v = "k" + str(i + 1) - params_counter = k - if op != "none": - op_label = op - if full_label: - params = param_list[ - start + j - ] # note: genotype order and param list order don't align - op_label = get_operation_label( - op, params, decimals=decimals_to_display - ) - graph.edge(u, v, label=op_label, fillcolor="gray") - else: - graph.edge( - u, - v, - label="(" + str(j + start) + ") " + op_label, - fillcolor="gray", - ) # '(' + str(k) + ') ' - start = end - n += 1 - - # determine output nodes - - out_nodes = list() - if out_dim is None: - out_nodes.append("out") - else: - biases = None - if full_label: - params = param_list[params_counter + 1] - if len(params) > 1: - biases = params[1] # first node contains biases - - for idx in range(out_dim): - out_str = "" - # specify node ID - if out_fnc is not None: - out_str = out_str + out_fnc + "(r_" + str(idx) - else: - out_str = "(r_" + str(idx) - - if out_dim == 1: - if out_fnc is not None: - out_str = "P(detected) = " + out_fnc + "(x" - else: - # out_str = 'dx_1 = (x' - out_str = "P_n = (x" - - # if available, add bias - if biases is not None: - out_str = out_str + " + " + format_string.format(biases[idx]) + ")" - else: - out_str = out_str + ")" - - # add node - graph.node(out_str, fillcolor="#CBE7C7") # fillcolor='palegoldenrod' - out_nodes.append(out_str) - - for i in range(steps): - u = "k" + str(i + 1) - if full_label: - params_org = param_list[params_counter + 1 + i] # count from k - for out_idx, out_str in enumerate(out_nodes): - params = list() - params.append(params_org[0][out_idx]) - op_label = get_operation_label( - "classifier", params, decimals=decimals_to_display - ) - graph.edge(u, out_str, label=op_label, fillcolor="gray") - else: - for out_idx, out_str in enumerate(out_nodes): - graph.edge(u, out_str, label="linear", fillcolor="gray") - - return graph diff --git a/autora/utils/__init__.py b/autora/utils/__init__.py deleted file mode 100644 index 6fda29471..000000000 --- a/autora/utils/__init__.py +++ /dev/null @@ -1 +0,0 @@ -from . import dictionary diff --git a/autora/utils/dictionary.py b/autora/utils/dictionary.py deleted file mode 100644 index b45b5b927..000000000 --- a/autora/utils/dictionary.py +++ /dev/null @@ -1,18 +0,0 @@ -from typing import Mapping - - -class LazyDict(Mapping): - """Inspired by https://gist.github.com/gyli/9b50bb8537069b4e154fec41a4b5995a""" - - def __init__(self, *args, **kw): - self._raw_dict = dict(*args, **kw) - - def __getitem__(self, key): - func = self._raw_dict.__getitem__(key) - return func() - - def __iter__(self): - return iter(self._raw_dict) - - def __len__(self): - return len(self._raw_dict) diff --git a/autora/variable/__init__.py b/autora/variable/__init__.py deleted file mode 100644 index 4cdd8ff99..000000000 --- a/autora/variable/__init__.py +++ /dev/null @@ -1,70 +0,0 @@ -from dataclasses import dataclass, field -from enum import Enum -from typing import Any, Optional, Sequence, Tuple - - -class ValueType(str, Enum): - """Specifies supported value types supported by Variables.""" - - REAL = "real" - SIGMOID = "sigmoid" - PROBABILITY = "probability" # single probability - PROBABILITY_SAMPLE = "probability_sample" # sample from single probability - PROBABILITY_DISTRIBUTION = ( - "probability_distribution" # probability distribution over classes - ) - CLASS = "class" # sample from probability distribution over classes - - -@dataclass -class Variable: - """Describes an experimental variable: name, type, range, units, and value of a variable.""" - - name: str = "" - value_range: Optional[Tuple[Any, Any]] = None - allowed_values: Optional[Sequence] = None - units: str = "" - type: ValueType = ValueType.REAL - variable_label: str = "" - rescale: float = 1 - is_covariate: bool = False - - -@dataclass -class IV(Variable): - """Independent variable.""" - - name: str = "IV" - variable_label: str = "Independent Variable" - - -@dataclass -class DV(Variable): - """Dependent variable.""" - - name: str = "DV" - variable_label: str = "Dependent Variable" - - -@dataclass(frozen=True) -class VariableCollection: - """Immutable metadata about dependent / independent variables and covariates.""" - - independent_variables: Sequence[Variable] = field(default_factory=list) - dependent_variables: Sequence[Variable] = field(default_factory=list) - covariates: Sequence[Variable] = field(default_factory=list) - - -@dataclass -class IVTrial(IV): - """ - Experiment trial as independent variable. - """ - - name: str = "trial" - UID: str = "" - variable_label: str = "Trial" - units: str = "trials" - priority: int = 0 - value_range: Tuple[Any, Any] = (0, 10000000) - value: float = 0 diff --git a/autora/variable/time.py b/autora/variable/time.py deleted file mode 100644 index a2ad641a9..000000000 --- a/autora/variable/time.py +++ /dev/null @@ -1,103 +0,0 @@ -import time - -from autora.variable import DV, IV - - -class VTime: - """ - A class representing time as a general experimental variable. - """ - - _t0 = 0 - - def __init__(self): - """ - Initializes the time. - """ - self._t0 = time.time() - - # Resets reference time. - def reset(self): - """ - Resets the time. - """ - self._t0 = time.time() - - -class IVTime(IV, VTime): - """ - A class representing time as an independent variable. - """ - - _name = "time_IV" - _UID = "" - _variable_label = "Time" - _units = "s" - _priority = 0 - _value_range = (0, 3600) - _value = 0 - - # Initializes reference time. - # The reference time usually denotes the beginning of an experiment trial. - def __init__(self, *args, **kwargs): - """ - Initializes the time as independent variable. - - For arguments, see [autora.variable.Variable][autora.variable.Variable.__init__] - """ - super(IVTime, self).__init__(*args, **kwargs) - - # Waits until specified time has passed relative to reference time - def manipulate(self): - """ - Waits for the specified time to pass. - """ - - t_wait = self.get_value() - (time.time() - self._t0) - if t_wait <= 0: - return - else: - time.sleep(t_wait) - - def disconnect(self): - """ - Disconnects the time. - """ - pass - - -class DVTime(DV, VTime): - """ - A class representing time as a dependent variable. - """ - - _name = "time_DV" - _UID = "" - _variable_label = "Time" - _units = "s" - _priority = 0 - _value_range = (0, 604800) # don't record more than a week - _value = 0 - - _is_covariate = True - - # Initializes reference time. - # The reference time usually denotes the beginning of an experiment trial. - def __init__(self, *args, **kwargs): - """ - Initializes the time as dependent variable. The reference time usually denotes - the beginning of an experiment trial. - - For arguments, see [autora.variable.Variable][autora.variable.Variable.__init__] - """ - print(self._variable_label) - super(DVTime, self).__init__(*args, **kwargs) - print(self._variable_label) - - # Measure number of seconds relative to reference time - def measure(self): - """ - Measures the time in seconds relative to the reference time. - """ - value = time.time() - self._t0 - self.set_value(value) diff --git a/autora/variable/tinkerforge.py b/autora/variable/tinkerforge.py deleted file mode 100644 index bd5518ae6..000000000 --- a/autora/variable/tinkerforge.py +++ /dev/null @@ -1,347 +0,0 @@ -from abc import abstractmethod -from typing import Any, Tuple - -from tinkerforge.bricklet_industrial_analog_out_v2 import BrickletIndustrialAnalogOutV2 -from tinkerforge.bricklet_industrial_dual_0_20ma_v2 import BrickletIndustrialDual020mAV2 -from tinkerforge.bricklet_industrial_dual_analog_in_v2 import ( - BrickletIndustrialDualAnalogInV2, -) -from tinkerforge.ip_connection import IPConnection -from variable import ValueType - -from autora.variable import DV, IV, Variable - - -class TinkerforgeVariable(Variable): - """ - A representation of a variable used in the Tinkerforge environment. - """ - - _variable_label = "" - _UID = "" - _priority = 0 - - def __init__( - self, - variable_label: str = "", - UID: str = "", - name: str = "", - units: str = "", - priority: int = 0, - value_range: Tuple[Any, Any] = (0, 1), - type: ValueType = float, - ): - """ - Initializes a Tinkerforge variable. - Args: - variable_label: the label of the variable - UID: the user identification of the variable - name: the name of the variable - units: the units of the variable - priority: the priority of the variable - value_range: the value range of the variable - type: the type of the variable - """ - - super().__init__( - name=name, - value_range=value_range, - units=units, - type=type, - variable_label=variable_label, - ) - - self._UID = UID - self._priority = priority - - def __get_priority__(self) -> int: - """ - Get priority of variable. The priority is used to determine the sequence of variables - to be measured or manipulated. - - Returns: - The priority of the variable. - """ - return self._priority - - def __set_priority__(self, priority: int = 0): - """ - Set priority of variable. - The priority is used to determine the sequence of variables to be measured or manipulated. - - Arguments: - priority: The priority of the variable. - """ - self._priority = priority - - @abstractmethod - def clean_up(self): - """Clean up measurement device.""" - pass - - @abstractmethod - def disconnect(self): - """Disconnect from up measurement device.""" - pass - - -class IVTF(IV, TinkerforgeVariable): - """ - A representation of an independent variable used in the Tinkerforge environment. - """ - - def __init__(self, *args, **kwargs): - """ - Initializes an independent variable used in the Tinkerforge environment. - - For arguments, see [autora.variable.tinkerforge.TinkerforgeVariable] - [autora.variable.tinkerforge.TinkerforgeVariable.__init__] - """ - IV.__init__(self, *args, **kwargs) - TinkerforgeVariable.__init__(self, *args, **kwargs) - - -class DVTF(DV, TinkerforgeVariable): - """ - A representation of a dependent variable used in the Tinkerforge environment. - """ - - def __init__(self, *args, **kwargs): - """ - Initializes a dependent variable used in the Tinkerforge environment. - - For arguments, see [autora.variable.tinkerforge.TinkerforgeVariable] - [autora.variable.tinkerforge.TinkerforgeVariable.__init__] - """ - DV.__init__(self, *args, **kwargs) - TinkerforgeVariable.__init__(self, *args, **kwargs) - - -class IVCurrent(IVTF): - """ - An independent tinkerforge variable representing the current. - """ - - _name = "source_current" - _UID = "MST" - _variable_label = "Source Current" - _units = "µA" - _priority = 0 - _value_range = (0, 20000) - _value = 0 - - _HOST = "localhost" - _PORT = 4223 - - def __init__(self, *args, **kwargs): - """ - Initializes Industrial Analog Out 2.0 device. - - For arguments, see [autora.variable.tinkerforge.TinkerforgeVariable] - [autora.variable.tinkerforge.TinkerforgeVariable.__init__] - """ - - self._ipcon = IPConnection() # Create IP connection - self._iao = BrickletIndustrialAnalogOutV2( - self._UID, self._ipcon - ) # Create device object - - self._ipcon.connect(self._HOST, self._PORT) # Connect to brickd - - super(IVCurrent, self).__init__(*args, **kwargs) - - def disconnect(self): - """ - Disconnect from up measurement device. - """ - - self._iao.set_enabled(False) - - self._ipcon.disconnect() - - def stop(self): - """ - Disable current output - """ - - self._iao.set_enabled(False) - - def manipulate(self): - """ - Sets the current output to the specified value. - """ - self._iao.set_current(self.get_value()) - self._iao.set_enabled(True) - - def clean_up(self): - """ - Clean up measurement device. - """ - self.stop() - - -class IVVoltage(IVTF): - """ - An independent tinkerforge variable representing the voltage. - """ - - _variable_label = "Source Voltage" - _UID = "MST" - _name = "source_voltage" - _units = "mV" - _priority = 0 - _value_range = (0, 5000) - _value = 0 - - _HOST = "localhost" - _PORT = 4223 - - def __init__(self, *args, **kwargs): - """ - Initializes Industrial Analog Out 2.0 device. - """ - - self._ipcon = IPConnection() # Create IP connection - self._iao = BrickletIndustrialAnalogOutV2( - self._UID, self._ipcon - ) # Create device object - - self._ipcon.connect(self._HOST, self._PORT) # Connect to brickd - - super(IVVoltage, self).__init__(*args, **kwargs) - - def disconnect(self): - """ - Disconnect from up measurement device. - """ - - self._iao.set_enabled(False) - - self._ipcon.disconnect() - - def stop(self): - """ - Disable voltage output - """ - self._iao.set_enabled(False) - - def manipulate(self): - """ - Sets the voltage output to the specified value. - """ - self._iao.set_voltage(self.get_value()) - self._iao.set_enabled(True) - - def clean_up(self): - """ - Clean up measurement device. - """ - self.stop() - - -class DVCurrent(DVTF): - """ - A dependent tinkerforge variable representing the current. - """ - - _name = "current0" - _UID = "Hfg" - _variable_label = "Current 0" - _units = "mA" - _priority = 0 - _value_range = (0, 2000) - _value = 0 - - _HOST = "localhost" - _PORT = 4223 - channel = 0 - - def __init__(self, *args, **kwargs): - """ - Initializes Industrial Analog Out 2.0 device. - - For arguments, see [autora.variable.tinkerforge.TinkerforgeVariable] - [autora.variable.tinkerforge.TinkerforgeVariable.__init__] - """ - - super(DVCurrent, self).__init__(*args, **kwargs) - - self._ipcon = IPConnection() # Create IP connection - self._id020 = BrickletIndustrialDual020mAV2( - self._UID, self._ipcon - ) # Create device object - - self._ipcon.connect(self._HOST, self._PORT) # Connect to brickd - - if self._name == "current1": - self.channel = 1 - else: - self.channel = 0 - - def disconnect(self): - """ - Disconnect from up measurement device. - """ - - self._ipcon.disconnect() - - def measure(self): - """ - Measures the current. - """ - current = self._id020.get_current(self.channel) - self.set_value(current / 1000000.0) - - -class DVVoltage(DVTF): - """ - A dependent tinkerforge variable representing the voltage. - """ - - _name = "voltage0" - _UID = "MjY" - _variable_label = "Voltage 0" - _units = "mV" - _priority = 0 - _value_range = (-3500, 3500) - _value = 0 - - _HOST = "localhost" - _PORT = 4223 - - channel = 0 - - def __init__(self, *args, **kwargs): - """ - Initializes Industrial Analog Out 2.0 device. - - For arguments, see [autora.variable.tinkerforge.TinkerforgeVariable] - [autora.variable.tinkerforge.TinkerforgeVariable.__init__] - """ - - super(DVVoltage, self).__init__(*args, **kwargs) - - self._ipcon = IPConnection() # Create IP connection - self._idai = BrickletIndustrialDualAnalogInV2( - self._UID, self._ipcon - ) # Create device object - - self._ipcon.connect(self._HOST, self._PORT) # Connect to brickd - - if self._name == "voltage1": - self.channel = 1 - else: - self.channel = 0 - - def disconnect(self): - """ - Disconnect from up measurement device. - """ - self._ipcon.disconnect() - - def measure(self): - """ - Measures the voltage. - """ - value = self._idai.get_voltage(self.channel) - self.set_value(value) diff --git a/mkdocs.yml b/mkdocs.yml index 2eeebf594..9716e06f1 100644 --- a/mkdocs.yml +++ b/mkdocs.yml @@ -25,9 +25,6 @@ theme: features: - content.action.edit -watch: - - autora/ - plugins: - search - gen-files: @@ -45,6 +42,7 @@ plugins: include_source: true execute: false ignore_h1_titles: True + - mkdocs-multirepo-plugin: markdown_extensions: diff --git a/tests/README.md b/tests/README.md deleted file mode 100644 index aaeb4a919..000000000 --- a/tests/README.md +++ /dev/null @@ -1,34 +0,0 @@ -# Tests - -## Seeding - -Some testcases involve random numbers, including: -- All neural network models including DARTS, Bayesian DARTS -- All Tree models including BMS. - -In order to avoid the testcases from running correctly sometimes, and incorrectly other times, we seed all the relevant random number generators for those testcases. To accomplish this, add the following pytest fixture to the test file and include it as required in the test functions: - -```python -import random -import pytest -import torch - -@pytest.fixture -def seed(): - """ - Ensures that the results are the same each time the tests are run. - """ - random.seed(180) # required for models which use the python `random` module, e.g. BMS - torch.manual_seed(180) # required for PyTorch models, e.g. DARTS - return - - -def test_foo(seed): - """ Test something. """ - - # No need to use `seed` in the function body – adding it as an argument is sufficient - - ... # Run tests -``` - -The seed value should be consistent but not tuned to produce correct results. The integer `180` is used in many tests, inspired "180 George St., Providence, RI, USA", the office address for the Center for Computation and Visualization at Brown University, whose staff supported the development of the AutoRA package. Sensible alternatives are `42`, `31415926` and `2654435769`. See [https://en.wikipedia.org/wiki/Nothing-up-my-sleeve_number](https://en.wikipedia.org/wiki/Nothing-up-my-sleeve_number) for more inspiration. diff --git a/tests/__init__.py b/tests/__init__.py deleted file mode 100644 index e69de29bb..000000000 diff --git a/tests/test_bms_1d_primitive_recovery.py b/tests/test_bms_1d_primitive_recovery.py deleted file mode 100644 index 6f9738ff3..000000000 --- a/tests/test_bms_1d_primitive_recovery.py +++ /dev/null @@ -1,265 +0,0 @@ -#!/usr/bin/env python -import warnings -from typing import Callable - -import matplotlib.pyplot as plt -import numpy as np -import pytest # noqa: 401 - -from autora.skl.bms import BMSRegressor - -warnings.filterwarnings("ignore") - - -def generate_x(start=-1, stop=1, num=500): - x = np.expand_dims(np.linspace(start=start, stop=stop, num=num), 1) - return x - - -def generate_pos_x(start=0.5, stop=1, num=500): - x = np.expand_dims(np.linspace(start=start, stop=stop, num=num), 1) - return x - - -def generate_x_log(start=-1, stop=1, num=500, base=10): - x = np.expand_dims(np.logspace(start=start, stop=stop, num=num, base=base), 1) - return x - - -def transform_through_primitive_pow2(x: np.ndarray) -> np.ndarray: - return x**2 - - -def transform_through_primitive_pow3(x: np.ndarray) -> np.ndarray: - return x**3 - - -def transform_through_primitive_sqrt(x: np.ndarray) -> np.ndarray: - return np.sqrt(x) - - -def transform_through_primitive_abs(x: np.ndarray) -> np.ndarray: - return np.abs(x) - - -def transform_through_primitive_fac(x: np.ndarray) -> np.ndarray: - y = [] - for x_i in x: - y.append(np.math.gamma(x_i[0] + 1.0)) - y_hat = np.array(y) - return np.expand_dims(y_hat, 1) - - -def transform_through_primitive_none(x: np.ndarray) -> np.ndarray: - return x * 0 - - -def transform_through_primitive_add(x: np.ndarray) -> np.ndarray: - return x - - -def transform_through_primitive_relu(x: np.ndarray): - y = x.copy() - y[x < 0.0] = 0.0 - return y - - -def transform_through_primitive_sigmoid(x: np.ndarray): - y = 1.0 / (1.0 + np.exp(-x)) - return y - - -def transform_through_primitive_exp(x: np.ndarray): - y = np.exp(x) - return y - - -def transform_through_primitive_cos(x: np.ndarray): - y = np.cos(x) - return y - - -def transform_through_primitive_cosh(x: np.ndarray): - y = np.cosh(x) - return y - - -def transform_through_primitive_sin(x: np.ndarray): - y = np.sin(x) - return y - - -def transform_through_primitive_sinh(x: np.ndarray): - y = np.sinh(x) - return y - - -def transform_through_primitive_tan(x: np.ndarray): - y = np.tan(x) - return y - - -def transform_through_primitive_tanh(x: np.ndarray): - y = np.tanh(x) - return y - - -def transform_through_primitive_inverse(x: np.ndarray): - y = 1.0 / x - return y - - -def transform_through_primitive_ln(x: np.ndarray): - y = np.log(x) - return y - - -def run_test_primitive_fitting( - X: np.ndarray, - transformer: Callable, - verbose: bool = False, -): - y = transformer(X) - regressor = BMSRegressor(epochs=30) - regressor.fit(X, y.ravel()) - if verbose: - y_predict = regressor.predict(X) - for x_i in X.T[ - :, - ]: - plot_results(x_i, y, y_predict) - print(regressor.model_) - print(regressor.pms.trees) - - -def plot_results(X, y, y_predict): - plt.figure() - plt.plot(X, y, "o") - plt.plot(X, y_predict, "-") - plt.show() - - -def test_primitive_fitting_restricted_none(): - run_test_primitive_fitting( - generate_x(), - transform_through_primitive_none, - ) - - -def test_primitive_fitting_restricted_add(): - run_test_primitive_fitting( - generate_x(), - transform_through_primitive_add, - ) - - -def test_primitive_fitting_pow2(): - run_test_primitive_fitting( - generate_x(), - transform_through_primitive_pow2, - ) - - -def test_primitive_fitting_pow3(): - run_test_primitive_fitting( - generate_x(), - transform_through_primitive_pow3, - ) - - -def test_primitive_fitting_sqrt(): - run_test_primitive_fitting( - generate_pos_x(), - transform_through_primitive_sqrt, - ) - - -def test_primitive_fitting_abs(): - run_test_primitive_fitting( - generate_x(), - transform_through_primitive_abs, - ) - - -def test_primitive_fitting_fac(): - run_test_primitive_fitting( - generate_pos_x(), - transform_through_primitive_fac, - ) - - -def test_primitive_fitting_none(): - run_test_primitive_fitting( - generate_x(), - transform_through_primitive_none, - ) - - -def test_primitive_fitting_add(): - run_test_primitive_fitting( - generate_x(), - transform_through_primitive_add, - ) - - -def test_primitive_fitting_relu(): - run_test_primitive_fitting( - generate_x(), - transform_through_primitive_relu, - ) - - -def test_primitive_fitting_sigmoid(): - run_test_primitive_fitting( - generate_x(-10, +10), - transform_through_primitive_sigmoid, - ) - - -def test_primitive_fitting_exp(): - run_test_primitive_fitting( - generate_x(), - transform_through_primitive_exp, - ) - - -def test_primitive_fitting_cos(): - run_test_primitive_fitting( - generate_x(start=0, stop=2 * np.pi), - transform_through_primitive_cos, - ) - - -def test_primitive_fitting_cosh(): - run_test_primitive_fitting( - generate_x(start=0, stop=2 * np.pi), - transform_through_primitive_cosh, - ) - - -def test_primitive_fitting_sin(): - run_test_primitive_fitting( - generate_x(start=0, stop=2 * np.pi), - transform_through_primitive_sin, - ) - - -def test_primitive_fitting_sinh(): - run_test_primitive_fitting( - generate_x(start=0, stop=2 * np.pi), - transform_through_primitive_sinh, - ) - - -def test_primitive_fitting_tan(): - run_test_primitive_fitting( - generate_x(start=0, stop=2 * np.pi), - transform_through_primitive_tan, - ) - - -def test_primitive_fitting_tanh(): - run_test_primitive_fitting( - generate_x(start=0, stop=2 * np.pi), - transform_through_primitive_tanh, - ) diff --git a/tests/test_bms_2d_primitive_recovery.py b/tests/test_bms_2d_primitive_recovery.py deleted file mode 100644 index b0917d59a..000000000 --- a/tests/test_bms_2d_primitive_recovery.py +++ /dev/null @@ -1,107 +0,0 @@ -#!/usr/bin/env python -import warnings -from typing import Callable - -import matplotlib.pyplot as plt -import numpy as np -import pytest # noqa: 401 - -from autora.skl.bms import BMSRegressor - -warnings.filterwarnings("ignore") - - -def generate_x_2d(start=-1, stop=1, num=40): - step = abs(stop - start) / num - x2 = np.mgrid[start:stop:step, start:stop:step].reshape(2, -1).T - return x2 - - -def generate_pos_x_2d(start=0.5, stop=1, num=40): - step = abs(stop - start) / num - x2 = np.mgrid[start:stop:step, start:stop:step].reshape(2, -1).T - return x2 - - -def transform_through_primitive_add_2d(x: np.ndarray) -> np.ndarray: - return x[:, 0] + x[:, 1] - - -def transform_through_primitive_subtract_2d(x: np.ndarray) -> np.ndarray: - return x[:, 0] - x[:, 1] - - -def transform_through_primitive_mult_2d(x: np.ndarray) -> np.ndarray: - return np.multiply(x[:, 0], x[:, 1]) - - -def transform_through_primitive_div_2d(x: np.ndarray) -> np.ndarray: - return np.multiply(x[:, 0], np.reciprocal(x[:, 1])) - - -def transform_through_primitive_pow_2d(x: np.ndarray) -> np.ndarray: - return np.power(x[:, 0], x[:, 1]) - - -def run_test_primitive_fitting_2d( - X: np.ndarray, - transformer: Callable, - verbose: bool = False, -): - y = transformer(X) - regressor = BMSRegressor(epochs=30) - regressor.fit(X, y.ravel()) - if verbose: - y_predict = regressor.predict(X) - plot_results_2d(X, y, y_predict) - print(regressor.model_) - print(regressor.pms.trees) - - -def plot_results_2d(X, y, y_predict): - fig = plt.figure() - ax = fig.add_subplot(projection="3d") - ax.scatter(X[:, 0], X[:, 1], y, s=0.5) - n = np.sqrt(X.shape[0]).astype(int) - ax.plot_surface( - X[:, 0].reshape(n, n), - X[:, 1].reshape(n, n), - y_predict.reshape(n, n), - color="orange", - ) - plt.show() - - -def test_primitive_fitting_add_2d(): - run_test_primitive_fitting_2d( - generate_x_2d(), - transform_through_primitive_add_2d, - ) - - -def test_primitive_fitting_subtract_2d(): - run_test_primitive_fitting_2d( - generate_x_2d(), - transform_through_primitive_subtract_2d, - ) - - -def test_primitive_fitting_mult_2d(): - run_test_primitive_fitting_2d( - generate_x_2d(), - transform_through_primitive_mult_2d, - ) - - -def test_primitive_fitting_div_2d(): - run_test_primitive_fitting_2d( - generate_pos_x_2d(), - transform_through_primitive_div_2d, - ) - - -def test_primitive_fitting_pow_2d(): - run_test_primitive_fitting_2d( - generate_pos_x_2d(), - transform_through_primitive_pow_2d, - ) diff --git a/tests/test_bms_custom_primitives.py b/tests/test_bms_custom_primitives.py deleted file mode 100644 index d2b5ed1ad..000000000 --- a/tests/test_bms_custom_primitives.py +++ /dev/null @@ -1,129 +0,0 @@ -from typing import Callable, Optional - -import matplotlib.pyplot as plt -import numpy as np -import pytest # noqa: 401 - -from autora.skl.bms import BMSRegressor -from autora.theorist.bms.prior import relu - - -def generate_x(start=-1, stop=1, num=500): - x = np.expand_dims(np.linspace(start=start, stop=stop, num=num), 1) - return x - - -def generate_x_2d(start=-1, stop=1, num=40): - step = abs(stop - start) / num - x2 = np.mgrid[start:stop:step, start:stop:step].reshape(2, -1).T - return x2 - - -def transform_through_primitive_relu(x: np.ndarray) -> np.ndarray: - return np.array([y for y in [relu(x) for x in x]]) - - -def transform_through_primitive_softmax_2d(x: np.ndarray) -> np.ndarray: - return np.array([y for y in [softmax_2d(x, y) for x, y in x]]) - - -def transform_through_primitive_softmax_1d(x: np.ndarray) -> np.ndarray: - return np.array([y for y in [softmax_1d(x) for x in x]]) - - -def run_test_primitive_fitting( - X: np.ndarray, - transformer: Callable, - verbose: bool = False, - custom_primitive: Optional[Callable] = None, -): - y = transformer(X) - regressor = BMSRegressor(epochs=30) - regressor.fit(X, y.ravel(), custom_ops=[custom_primitive]) - # custom primitive is none or it is in bms' custom ops - assert custom_primitive is None or custom_primitive in regressor.custom_ops.values() - # custom primitive is none or its name is in bms' ops - assert custom_primitive is None or custom_primitive.__name__ in regressor.ops.keys() - # custom primitive is none or it is in the fitted models' custom ops - assert ( - custom_primitive is None - or custom_primitive in regressor.model_.custom_ops.values() - ) - # custom primitive is none or its name is in the fitted models' ops - assert ( - custom_primitive is None - or custom_primitive.__name__ in regressor.model_.ops.keys() - ) - if verbose: - y_predict = regressor.predict(X) - for x_i in X.T[ - :, - ]: - plot_results(x_i, y, y_predict) - print(regressor.model_) - print(regressor.pms.trees) - - -def plot_results(X, y, y_predict): - plt.figure() - plt.plot(X, y, "o") - plt.plot(X, y_predict, "-") - plt.show() - - -def run_test_primitive_fitting_2d( - X: np.ndarray, - transformer: Callable, - verbose: bool = False, - custom_primitive: Optional[Callable] = None, -): - y = transformer(X) - regressor = BMSRegressor(epochs=30) - regressor.fit(X, y.ravel(), custom_ops=[custom_primitive]) - # custom primitive is none or it is in bms' custom ops - assert custom_primitive is None or custom_primitive in regressor.custom_ops.values() - # custom primitive is none or its name is in bms' ops - assert custom_primitive is None or custom_primitive.__name__ in regressor.ops.keys() - # custom primitive is none or it is in the fitted models' custom ops - assert ( - custom_primitive is None - or custom_primitive in regressor.model_.custom_ops.values() - ) - # custom primitive is none or its name is in the fitted models' ops - assert ( - custom_primitive is None - or custom_primitive.__name__ in regressor.model_.ops.keys() - ) - if verbose: - print(regressor.model_) - print(regressor.pms.trees) - - -def test_primitive_fitting_relu(): - run_test_primitive_fitting( - generate_x(), transform_through_primitive_relu, custom_primitive=relu - ) - - -def softmax_2d(x, y): - return np.exp(x) / (np.exp(x) + np.exp(y)) - - -def test_primitive_fitting_softmax_2d(): - run_test_primitive_fitting_2d( - generate_x_2d(), - transformer=transform_through_primitive_softmax_2d, - custom_primitive=softmax_2d, - ) - - -def softmax_1d(x): - return np.exp(x) / (np.exp(x)) - - -def test_primitive_fitting_softmax_1d(): - run_test_primitive_fitting( - generate_x(), - transformer=transform_through_primitive_softmax_1d, - custom_primitive=softmax_1d, - ) diff --git a/tests/test_bms_enforce_root.py b/tests/test_bms_enforce_root.py deleted file mode 100644 index 1c9472c2a..000000000 --- a/tests/test_bms_enforce_root.py +++ /dev/null @@ -1,52 +0,0 @@ -from typing import Callable, Optional - -import numpy as np -import pytest # noqa: 401 - -from autora.skl.bms import BMSRegressor - - -def generate_x_2d(start=-1, stop=1, num=40): - step = abs(stop - start) / num - x2 = np.mgrid[start:stop:step, start:stop:step].reshape(2, -1).T - return x2 - - -def transform_through_primitive_softmax_2d(x: np.ndarray) -> np.ndarray: - return np.array([y for y in [softmax_2d(x, y) for x, y in x]]) - - -def run_test_primitive_fitting_2d( - X: np.ndarray, - transformer: Callable, - verbose: bool = False, - custom_primitive: Optional[Callable] = None, - root=None, -): - y = transformer(X) - regressor = BMSRegressor(epochs=60) - regressor.fit(X, y.ravel(), custom_ops=[custom_primitive], root=root) - # root is none or is in custom ops - assert root is None or root in regressor.custom_ops.values() - # root is none or it is the root of the fitted model - assert root is None or root is regressor.custom_ops[regressor.model_.root.value] - for model in regressor.models_: - # root is none or it is the root of all of the fitted models - assert root is None or root is regressor.custom_ops[model.root.value] - if verbose: - print(regressor.model_) - print(regressor.pms.trees) - - -def softmax_2d(x, y): - return np.exp(x) / (np.exp(x) + np.exp(y)) - - -def test_primitive_fitting_softmax_2d_fixed_root(): - run_test_primitive_fitting_2d( - generate_x_2d(), - transformer=transform_through_primitive_softmax_2d, - custom_primitive=softmax_2d, - root=softmax_2d, - verbose=True, - ) diff --git a/tests/test_bms_mcmc.py b/tests/test_bms_mcmc.py deleted file mode 100644 index e28846068..000000000 --- a/tests/test_bms_mcmc.py +++ /dev/null @@ -1,61 +0,0 @@ -import numpy as np -import pandas as pd -import pytest # noqa: 401 - -from autora.theorist.bms import Tree, get_priors - - -def test_tree_mcmc_stepping( - num_points: int = 10, samples: int = 100, show_plot: bool = False -) -> Tree: - """ - Testing the basic MCMC capacity. Note that even though an option (`show_plot`) is - offered to compare the actual data (`y`) against the prediction, this test does not - try to assess the prediction accuracy; it only ensures that the MCMC functionality - can work bug-free. - - Parameters: - num_points: - the number of data points in each dimension of the synthetic data - samples: - the number of MCMC samples we want to get. The total MCMC iteration can be - calculated as `burnin` + `samples` - show_plot: - whether to plot the predicted against actual response variable - - Returns: - the expression tree obtained from running the MCMC algorithm - """ - - # Create the data - x = pd.DataFrame( - dict([("x%d" % i, np.random.uniform(0, 10, num_points)) for i in range(5)]) - ) - eps = np.random.normal(0.0, 5, num_points) - y = 50.0 * np.sin(x["x0"]) / x["x2"] - 4.0 * x["x1"] + 3 + eps - - # Create the formula - t = Tree( - variables=["x%d" % i for i in range(5)], - parameters=["a%d" % i for i in range(10)], - x=x, - y=y, - prior_par=get_priors()[0], - BT=1.0, - ) - - # MCMC - t.mcmc(burnin=200, thin=10, samples=samples, verbose=False) - - # Predict - print(t.predict(x)) - print(y) - print(50.0 * np.sin(x["x0"]) / x["x2"] - 4.0 * x["x1"] + 3) - - if show_plot: - import matplotlib.pyplot as plt - - plt.plot(t.predict(x), 50.0 * np.sin(x["x0"]) / x["x2"] - 4.0 * x["x1"] + 3) - plt.show() - - return t diff --git a/tests/test_bms_multi_model_output.py b/tests/test_bms_multi_model_output.py deleted file mode 100644 index 3d3962800..000000000 --- a/tests/test_bms_multi_model_output.py +++ /dev/null @@ -1,25 +0,0 @@ -import numpy as np -import pytest - -from autora.skl.bms import BMSRegressor -from autora.theorist.bms import Tree - - -@pytest.fixture -def curve_to_fit(): - x = np.linspace(-10, 10, 100).reshape(-1, 1) - y = (x**3.0) + (2.0 * x**2.0) + (17.0 * x) - 1 - return x, y - - -def test_bms_models(curve_to_fit): - x, y = curve_to_fit - regressor = BMSRegressor(epochs=100) - - regressor.fit(x, y) - - print(regressor.models_) - - assert len(regressor.models_) == len(regressor.ts) # Currently hardcoded - for model in regressor.models_: - assert isinstance(model, Tree) diff --git a/tests/test_bsr_1d_recovery.py b/tests/test_bsr_1d_recovery.py deleted file mode 100644 index c9b81f122..000000000 --- a/tests/test_bsr_1d_recovery.py +++ /dev/null @@ -1,179 +0,0 @@ -import warnings -from typing import Callable - -import matplotlib.pyplot as plt -import numpy as np -import pytest # noqa: 401 - -from autora.skl.bsr import BSRRegressor - -warnings.filterwarnings("ignore") - - -def generate_x(start=-1, stop=1, num=500): - x = np.expand_dims(np.linspace(start=start, stop=stop, num=num), 1) - return x - - -def generate_pos_x(start=0.5, stop=1, num=500): - x = np.expand_dims(np.linspace(start=start, stop=stop, num=num), 1) - return x - - -def generate_x_log(start=-1, stop=1, num=500, base=10): - x = np.expand_dims(np.logspace(start=start, stop=stop, num=num, base=base), 1) - return x - - -def transform_through_primitive_pow2(x: np.ndarray) -> np.ndarray: - return x**2 - - -def transform_through_primitive_pow3(x: np.ndarray) -> np.ndarray: - return x**3 - - -def transform_through_primitive_sqrt(x: np.ndarray) -> np.ndarray: - return np.sqrt(x) - - -def transform_through_primitive_abs(x: np.ndarray) -> np.ndarray: - return np.abs(x) - - -def transform_through_primitive_fac(x: np.ndarray) -> np.ndarray: - y = [] - for x_i in x: - y.append(np.math.gamma(x_i[0] + 1.0)) - y_hat = np.array(y) - return np.expand_dims(y_hat, 1) - - -def transform_through_primitive_none(x: np.ndarray) -> np.ndarray: - return x * 0 - - -def transform_through_primitive_add(x: np.ndarray) -> np.ndarray: - return x - - -def transform_through_primitive_relu(x: np.ndarray): - y = x.copy() - y[x < 0.0] = 0.0 - return y - - -def transform_through_primitive_sigmoid(x: np.ndarray): - y = 1.0 / (1.0 + np.exp(-x)) - return y - - -def transform_through_primitive_exp(x: np.ndarray): - y = np.exp(x) - return y - - -def transform_through_primitive_cos(x: np.ndarray): - y = np.cos(x) - return y - - -def transform_through_primitive_cosh(x: np.ndarray): - y = np.cosh(x) - return y - - -def transform_through_primitive_sin(x: np.ndarray): - y = np.sin(x) - return y - - -def transform_through_primitive_sinh(x: np.ndarray): - y = np.sinh(x) - return y - - -def transform_through_primitive_tan(x: np.ndarray): - y = np.tan(x) - return y - - -def transform_through_primitive_tanh(x: np.ndarray): - y = np.tanh(x) - return y - - -def transform_through_primitive_inverse(x: np.ndarray): - y = 1.0 / x - return y - - -def transform_through_primitive_ln(x: np.ndarray): - y = np.log(x) - return y - - -def run_test_primitive_fitting( - X: np.ndarray, - transformer: Callable, - verbose: bool = False, -): - y = transformer(X) - regressor = BSRRegressor(tree_num=3, itr_num=10, val=10) - regressor.fit(X, y.ravel()) - if verbose: - y_predict = regressor.predict(X) - for x_i in X.T[ - :, - ]: - plot_results(x_i, y, y_predict) - print(regressor._model()) - - -def plot_results(X, y, y_predict): - plt.figure() - plt.plot(X, y, "o") - plt.plot(X, y_predict, "-") - plt.show() - - -def test_primitive_fitting_restricted_add(): - run_test_primitive_fitting( - generate_x(), - transform_through_primitive_add, - ) - - -def test_primitive_fitting_pow2(): - run_test_primitive_fitting( - generate_x(), - transform_through_primitive_pow2, - ) - - -def test_primitive_fitting_pow3(): - run_test_primitive_fitting( - generate_x(), - transform_through_primitive_pow3, - ) - - -def test_primitive_fitting_sqrt(): - run_test_primitive_fitting( - generate_pos_x(), - transform_through_primitive_sqrt, - ) - - -def test_primitive_fitting_abs(): - run_test_primitive_fitting( - generate_x(), - transform_through_primitive_abs, - ) - - -def test_primitive_fitting_fac(): - run_test_primitive_fitting( - generate_pos_x(), - transform_through_primitive_fac, - ) diff --git a/tests/test_bsr_2d_recovery.py b/tests/test_bsr_2d_recovery.py deleted file mode 100644 index 7ed6739fb..000000000 --- a/tests/test_bsr_2d_recovery.py +++ /dev/null @@ -1,105 +0,0 @@ -import warnings -from typing import Callable - -import matplotlib.pyplot as plt -import numpy as np -import pytest # noqa: 401 - -from autora.skl.bsr import BSRRegressor - -warnings.filterwarnings("ignore") - - -def generate_x_2d(start=-1, stop=1, num=40): - step = abs(stop - start) / num - x2 = np.mgrid[start:stop:step, start:stop:step].reshape(2, -1).T - return x2 - - -def generate_pos_x_2d(start=0.5, stop=1, num=40): - step = abs(stop - start) / num - x2 = np.mgrid[start:stop:step, start:stop:step].reshape(2, -1).T - return x2 - - -def transform_through_primitive_add_2d(x: np.ndarray) -> np.ndarray: - return x[:, 0] + x[:, 1] - - -def transform_through_primitive_subtract_2d(x: np.ndarray) -> np.ndarray: - return x[:, 0] - x[:, 1] - - -def transform_through_primitive_mult_2d(x: np.ndarray) -> np.ndarray: - return np.multiply(x[:, 0], x[:, 1]) - - -def transform_through_primitive_div_2d(x: np.ndarray) -> np.ndarray: - return np.multiply(x[:, 0], np.reciprocal(x[:, 1])) - - -def transform_through_primitive_pow_2d(x: np.ndarray) -> np.ndarray: - return np.power(x[:, 0], x[:, 1]) - - -def run_test_primitive_fitting_2d( - X: np.ndarray, - transformer: Callable, - verbose: bool = False, -): - y = transformer(X) - regressor = BSRRegressor(tree_num=3, itr_num=10) - regressor.fit(X, y.ravel()) - if verbose: - y_predict = regressor.predict(X) - plot_results_2d(X, y, y_predict) - print(regressor._model()) - - -def plot_results_2d(X, y, y_predict): - fig = plt.figure() - ax = fig.add_subplot(projection="3d") - ax.scatter(X[:, 0], X[:, 1], y, s=0.5) - n = np.sqrt(X.shape[0]).astype(int) - ax.plot_surface( - X[:, 0].reshape(n, n), - X[:, 1].reshape(n, n), - y_predict.reshape(n, n), - color="orange", - ) - plt.show() - - -def test_primitive_fitting_add_2d(): - run_test_primitive_fitting_2d( - generate_x_2d(), - transform_through_primitive_add_2d, - ) - - -def test_primitive_fitting_subtract_2d(): - run_test_primitive_fitting_2d( - generate_x_2d(), - transform_through_primitive_subtract_2d, - ) - - -def test_primitive_fitting_mult_2d(): - run_test_primitive_fitting_2d( - generate_x_2d(), - transform_through_primitive_mult_2d, - ) - - -def test_primitive_fitting_div_2d(): - run_test_primitive_fitting_2d( - generate_pos_x_2d(), - transform_through_primitive_div_2d, - ) - - -def test_primitive_fitting_pow_2d(): - run_test_primitive_fitting_2d( - generate_pos_x_2d(), - transform_through_primitive_pow_2d, - ) diff --git a/tests/test_bsr_mcmc_actions.py b/tests/test_bsr_mcmc_actions.py deleted file mode 100644 index 78dc08ecb..000000000 --- a/tests/test_bsr_mcmc_actions.py +++ /dev/null @@ -1,174 +0,0 @@ -from typing import List, Union - -from autora.theorist.bsr.funcs import ( - de_transform, - get_all_nodes, - grow, - prune, - reassign_feat, - reassign_op, - transform, -) -from autora.theorist.bsr.node import Node, NodeType, Optional -from autora.theorist.bsr.prior import get_prior_dict - - -def _build_tree_from_literals(literals: List[Union[str, int]], **hyper_params): - """ - Helper testing function that builds up a valid computation tree with a list of str/int inputs - where a string input represents an operation (e.g. `inv`, `+`) and an integer indicates which - feature to use in a leaf node. For the list of valid operations, see `priors.py`. - - The construction is done level-by-level. For example, the list `["sin", "inv", 1, 0] will render - the following computation tree - - sin (root) - / \ - inv feature 1 - / - feature 0 - - Note that for simplicity this function doesn't check the validity of input list; e.g. using - a binary operation without specifying the features used by its two leaf nodes might cause error. - - Arguments: - literals: a list of strings and integers that specifies how the tree should be built - hyper_params: parameters to initialize certain operations - Returns: - root: the root node of the tree - """ - _, _, prior_dict = get_prior_dict() - root = Node(0) - node_queue = [root] - for s in literals: - node = node_queue.pop(0) - params = {} - if isinstance(s, str): - ops_init = prior_dict[s]["init"] - # init is a function randomized by some hyper-params - if callable(ops_init): - params.update(ops_init(**hyper_params)) - else: # init is deterministic dict - params.update(ops_init) - node.setup(s, prior_dict[s]) - elif isinstance(s, int): - params["feature"] = s - node.setup(**params) - if node.left: - node_queue.append(node.left) - if node.right: - node_queue.append(node.right) - return root - - -def _assert_tree_completeness( - tree: Node, depth: int = 0, parent: Optional[Node] = None -): - assert tree.depth == depth - assert tree.node_type != NodeType.EMPTY - if parent: - assert tree.parent is parent - if tree.node_type == NodeType.LEAF: - assert tree.op_name == "" - assert "feature" in tree.params - elif tree.node_type == NodeType.UNARY: - assert tree.op_arity == 1 - assert tree.left and not tree.right - _assert_tree_completeness(tree.left, depth + 1, tree) - else: - assert tree.op_arity == 2 and tree.left and tree.right - if tree.op_init: # operation with params - assert len(tree.params) > 0 - _assert_tree_completeness(tree.left, depth + 1, tree) - _assert_tree_completeness(tree.right, depth + 1, tree) - - -def test_mcmc_grow(): - ops_name_list, ops_weight_list, ops_priors = get_prior_dict() - hyper_params = {"sigma_a": 1, "sigma_b": 1} - node = _build_tree_from_literals(["*", "+", "-", 0, 1, 0, 1], **hyper_params) - grow(node.left.left, ops_name_list, ops_weight_list, ops_priors, **hyper_params) - _assert_tree_completeness(node) - - node = _build_tree_from_literals([0], **hyper_params) - grow(node, ops_name_list, ops_weight_list, ops_priors, **hyper_params) - _assert_tree_completeness(node) - assert len(get_all_nodes(node)) > 1 - - -def test_mcmc_prune(): - hyper_params = {"sigma_a": 1, "sigma_b": 1} - node = _build_tree_from_literals(["*", "+", "-", 0, 1, 0, 1], **hyper_params) - prune(node.right) - _assert_tree_completeness(node) - assert node.left.op_name == "+" - assert node.right.node_type == NodeType.LEAF - - -def test_mcmc_de_transform(**hyper_params): - hyper_params = {"sigma_a": 1, "sigma_b": 1} - node = _build_tree_from_literals(["*", "exp", "-", 0, 0, 1], **hyper_params) - repl, disc = de_transform(node.left) # the unary case, replaced with child - assert disc is None - assert repl.node_type == NodeType.LEAF and repl.params["feature"] == 0 - # binary & root case - node = _build_tree_from_literals(["*", 2, "-", 0, 1], **hyper_params) - repl, disc = de_transform(node) - assert disc.node_type == NodeType.LEAF and disc.params["feature"] == 2 - _assert_tree_completeness(repl, 1, node) - # binary & non-root case - node = _build_tree_from_literals(["+", "*", "-", "exp", 0, 1, 2, 3], **hyper_params) - _assert_tree_completeness(node) - repl, disc = de_transform(node.left) - if repl is node.left.left: - assert disc is node.left.right - else: - assert disc is node.left.left - _assert_tree_completeness(repl, 2, node.left) - - -def test_mcmc_transform(): - ops_name_list, ops_weight_list, ops_priors = get_prior_dict() - hyper_params = {"sigma_a": 1, "sigma_b": 1} - - node = _build_tree_from_literals(["*", "+", "-", 0, 1, 0, 1], **hyper_params) - old_left = node.left - transform(old_left, ops_name_list, ops_weight_list, ops_priors, **hyper_params) - _assert_tree_completeness(node) - assert old_left.parent.parent is node - assert node.left is old_left.parent - assert old_left.parent.left is old_left - - -def test_mcmc_reassign_op(): - ops_name_list, ops_weight_list, ops_priors = get_prior_dict() - hyper_params = {"sigma_a": 1, "sigma_b": 1} - # repeat multiple times to cover all cases - for _ in range(5): - node = _build_tree_from_literals(["*", "exp", "-", 0, 0, 1], **hyper_params) - reassign_op(node, ops_name_list, ops_weight_list, ops_priors, **hyper_params) - _assert_tree_completeness(node) - if node.node_type == NodeType.BINARY: - assert node.left.op_name == "exp" - assert node.right.op_name == "-" - else: - assert node.left.op_name == "exp" - assert node.left.left.params["feature"] == 0 - reassign_op( - node.left, ops_name_list, ops_weight_list, ops_priors, **hyper_params - ) - _assert_tree_completeness(node) - assert node.left.left.params["feature"] == 0 - if node.left.node_type == NodeType.BINARY: - assert node.left.right.node_type != NodeType.EMPTY - - -def test_mcmc_reassign_feat(**hyper_params): - node = _build_tree_from_literals(["*", "exp", "-", 2, 2, 3], **hyper_params) - reassign_feat(node.left.left) - reassign_feat(node.right.right) - _assert_tree_completeness(node) - assert node.left.op_name == "exp" - assert node.left.left.params["feature"] < 2 - assert node.right.left.params["feature"] == 2 - assert node.right.right.params["feature"] < 2 diff --git a/tests/test_bsr_node_and_operator.py b/tests/test_bsr_node_and_operator.py deleted file mode 100644 index cb8d1b08e..000000000 --- a/tests/test_bsr_node_and_operator.py +++ /dev/null @@ -1,118 +0,0 @@ -from typing import List, Union - -import numpy as np - -from autora.theorist.bsr.node import Node -from autora.theorist.bsr.prior import get_prior_dict - - -def _build_tree_from_literals(literals: List[Union[str, int]], **hyper_params): - """ - Helper testing function that builds up a valid computation tree with a list of str/int inputs - where a string input represents an operation (e.g. `inv`, `+`) and an integer indicates which - feature to use in a leaf node. For the list of valid operations, see `priors.py`. - - The construction is done level-by-level. For example, the list `["sin", "inv", 1, 0] will render - the following computation tree - - sin (root) - / \ - inv feature 1 - / - feature 0 - - Note that for simplicity this function doesn't check the validity of input list; e.g. using - a binary operation without specifying the features used by its two leaf nodes might cause error. - - Arguments: - literals: a list of strings and integers that specifies how the tree should be built - hyper_params: parameters to initialize certain operations - Returns: - root: the root node of the tree - """ - _, _, prior_dict = get_prior_dict() - root = Node(0) - node_queue = [root] - for s in literals: - node = node_queue.pop(0) - params = {} - if isinstance(s, str): - ops_init = prior_dict[s]["init"] - # init is a function randomized by some hyper-params - if callable(ops_init): - params.update(ops_init(**hyper_params)) - else: # init is deterministic dict - params.update(ops_init) - node.setup(s, prior_dict[s]) - elif isinstance(s, int): - params["feature"] = s - node.setup(**params) - if node.left: - node_queue.append(node.left) - if node.right: - node_queue.append(node.right) - return root - - -def test_basic_linear_operation(): - root = _build_tree_from_literals(["ln", 0]) - root.params.update({"a": 2, "b": 3}) - test_x = np.array([[1, 2, 3], [4, 5, 6]]) - test_y = 2 * test_x[:, 0] + 3 - assert (test_y - root.evaluate(test_x) < 1e-5).all() - - -def test_basic_exp_operation(): - root = _build_tree_from_literals(["exp", 0]) - test_x = np.array([[1, 2, 3], [4, 5, 6]]) - test_y = np.exp(test_x[:, 0]) - assert (test_y - root.evaluate(test_x) < 1e-5).all() - - -def test_basic_inv_operation(): - root = _build_tree_from_literals(["inv", 0]) - test_x = np.array([[1, 2, 3], [4, 5, 6]]) - test_y = 1 / test_x[:, 0] - assert (test_y - root.evaluate(test_x) < 1e-5).all() - - -def test_basic_neg_operation(): - root = _build_tree_from_literals(["neg", 0]) - test_x = np.array([[1, 2, 3], [4, 5, 6]]) - test_y = -test_x[:, 0] - assert (test_y - root.evaluate(test_x) < 1e-5).all() - - -def test_basic_sin_operation(): - root = _build_tree_from_literals(["sin", 0]) - test_x = np.array([[1, 2, 3], [4, 5, 6]]) - test_y = np.sin(test_x[:, 0]) - assert (test_y - root.evaluate(test_x) < 1e-5).all() - - -def test_basic_cos_operation(): - root = _build_tree_from_literals(["cos", 0]) - test_x = np.array([[1, 2, 3], [4, 5, 6]]) - test_y = np.cos(test_x[:, 0]) - assert (test_y - root.evaluate(test_x) < 1e-5).all() - - -def test_basic_plus_operation(): - root = _build_tree_from_literals(["+", 0, 1]) - test_x = np.array([[1, 2, 3], [4, 5, 6]]) - test_y = np.add(test_x[:, 0], test_x[:, 1]) - assert (test_y - root.evaluate(test_x) < 1e-5).all() - - -def test_basic_minus_operation(): - root = _build_tree_from_literals(["-", 0, 1]) - test_x = np.array([[1, 2, 3], [4, 5, 6]]) - test_y = np.subtract(test_x[:, 0], test_x[:, 1]) - assert (test_y - root.evaluate(test_x) < 1e-5).all() - - -def test_basic_multiply_operation(): - root = _build_tree_from_literals(["*", 0, 1]) - test_x = np.array([[1, 2, 3], [4, 5, 6]]) - test_y = np.multiply(test_x[:, 0], test_x[:, 1]) - assert (test_y - root.evaluate(test_x) < 1e-5).all() diff --git a/tests/test_bsr_tree_operation.py b/tests/test_bsr_tree_operation.py deleted file mode 100644 index 1f485ca31..000000000 --- a/tests/test_bsr_tree_operation.py +++ /dev/null @@ -1,17 +0,0 @@ -from autora.theorist.bsr.funcs import grow -from autora.theorist.bsr.misc import get_ops_expr -from autora.theorist.bsr.node import Node -from autora.theorist.bsr.prior import get_prior_dict - - -def test_grow_and_print_node(): - root = Node(depth=0) - ops_name_lst, ops_weight_lst, prior_dict = get_prior_dict() - hyper_params = { - "beta": -1, - "sigma_a": 1, - "sigma_b": 1, - } - grow(root, ops_name_lst, ops_weight_lst, prior_dict, **hyper_params) - ops_expr = get_ops_expr() - print(root.get_expression(ops_expr)) diff --git a/tests/test_cycle_plots.py b/tests/test_cycle_plots.py deleted file mode 100644 index b2a8a0fb1..000000000 --- a/tests/test_cycle_plots.py +++ /dev/null @@ -1,492 +0,0 @@ -import random - -import numpy as np -import pytest -from sklearn.linear_model import LinearRegression -from sklearn.metrics import r2_score - -from autora.cycle import ( - Cycle, - cycle_default_score, - cycle_specified_score, - plot_cycle_score, - plot_results_panel_2d, - plot_results_panel_3d, -) -from autora.cycle.plot_utils import _check_replace_default_kw -from autora.experimentalist.pipeline import Pipeline -from autora.experimentalist.pooler.general_pool import grid_pool -from autora.experimentalist.sampler import random_sampler -from autora.variable import Variable, VariableCollection - - -@pytest.fixture -def ground_truth_1x(): - def ground_truth(xs): - return xs + 1.0 - - return ground_truth - - -@pytest.fixture -def cycle_lr(ground_truth_1x): - random.seed(1) - - # Variable Metadata - study_metadata = VariableCollection( - independent_variables=[ - Variable(name="x1", allowed_values=np.linspace(0, 1, 100)) - ], - dependent_variables=[Variable(name="y", value_range=(-20, 20))], - ) - - # Theorist - lm = LinearRegression() - - # Experimentalist - example_experimentalist = Pipeline( - [ - ("pool", grid_pool), - ("sampler", random_sampler), - ("transform", lambda x: [s[0] for s in x]), - ], - params={ - "pool": {"ivs": study_metadata.independent_variables}, - "sampler": {"n": 5}, - }, - ) - - # Experiment Runner - def get_example_synthetic_experiment_runner(): - rng = np.random.default_rng(seed=180) - - def runner(xs): - return ground_truth_1x(xs) + rng.normal(0, 0.1, xs.shape) - - return runner - - example_synthetic_experiment_runner = get_example_synthetic_experiment_runner() - - # Initialize Cycle - cycle = Cycle( - metadata=study_metadata, - theorist=lm, - experimentalist=example_experimentalist, - experiment_runner=example_synthetic_experiment_runner, - ) - - # Run 10 iterations - cycle.run(10) - - return cycle - - -@pytest.fixture -def ground_truth_2x(): - def ground_truth(X): - return X[:, 0] + (0.5 * X[:, 1]) + 1.0 - - return ground_truth - - -@pytest.fixture -def cycle_multi_lr(ground_truth_2x): - random.seed(1) - - # def ground_truth(X): - # return X[:, 0] + (0.5 * X[:, 1]) + 1.0 - - # Variable Metadata - study_metadata = VariableCollection( - independent_variables=[ - Variable(name="x1", allowed_values=np.linspace(0, 1, 10)), - Variable(name="x2", allowed_values=np.linspace(0, 1, 10)), - ], - dependent_variables=[Variable(name="y", value_range=(-20, 20))], - ) - - # Theorist - lm = LinearRegression() - - # Experimentalist - example_experimentalist = Pipeline( - [ - ("pool", grid_pool), - ("sampler", random_sampler), - ("transform", lambda x: np.array(x)), - ], - params={ - "pool": {"ivs": study_metadata.independent_variables}, - "sampler": {"n": 10}, - }, - ) - - # Experiment Runner - def get_example_synthetic_experiment_runner(): - rng = np.random.default_rng(seed=180) - - def runner(xs): - return ground_truth_2x(xs) + rng.normal(0, 0.25, xs.shape[0]) - - return runner - - example_synthetic_experiment_runner = get_example_synthetic_experiment_runner() - - # Initialize Cycle - cycle = Cycle( - metadata=study_metadata, - theorist=lm, - experimentalist=example_experimentalist, - experiment_runner=example_synthetic_experiment_runner, - ) - - # Run 6 iterations - cycle.run(6) - - return cycle - - -def test_check_replace_default_kw(): - default = { - "subplot_kw": {"sharex": True, "sharey": True}, - "gridspec_kw": {"bottom": 0.16}, - } - user = { - "new_kw": True, - "subplot_kw": {"sharey": False}, - "gridspec_kw": {"bottom": 0.2, "top": 0.9}, - } - d_result = _check_replace_default_kw(default, user) - - assert d_result == { - "subplot_kw": {"sharex": True, "sharey": False}, - "gridspec_kw": {"bottom": 0.2, "top": 0.9}, - "new_kw": True, - } - - -def test_2d_plot(cycle_lr): - """ - Tests plotting functionality of plot_results_panel_2d. - """ - steps = 51 - fig = plot_results_panel_2d( - cycle_lr, steps=steps, wrap=3, subplot_kw={"sharex": True, "sharey": True} - ) - - # Should have 12 axes, 10 with data and the last 2 turned off - assert len(fig.axes) == 12 - assert sum([s.axison for s in fig.axes]) == 10 - - # Check number of data points on each figure - # Blue dots should start at 0 and augment by 5. - # Orange should always be 5-this is the condition sampling rate set by the Experimentalist. - l_counts = [] - for axes in fig.axes[:-2]: - blue_dots = ( - len(axes.collections[0].get_offsets().mask) - - axes.collections[0].get_offsets().mask.any(axis=1).sum() - ) - orange_dots = ( - len(axes.collections[1].get_offsets().mask) - - axes.collections[1].get_offsets().mask.any(axis=1).sum() - ) - l_counts.append([blue_dots, orange_dots]) - assert np.array_equal( - np.array(l_counts), - np.array( - [ - [0, 5], - [5, 5], - [10, 5], - [15, 5], - [20, 5], - [25, 5], - [30, 5], - [35, 5], - [40, 5], - [45, 5], - ] - ), - ) - - # Test theory line is being plotted - for axes in fig.axes[:-2]: - assert len(axes.lines[0].get_xdata()) == steps - assert len(axes.lines[0].get_ydata()) == steps - - -def test_3d_plot(cycle_multi_lr): - """ - Tests plotting functionality of plot_results_panel_3d. - """ - steps = 20 - fig = plot_results_panel_3d( - cycle_multi_lr, - steps=steps, - view=(20, 60), - wrap=3, - subplot_kw=dict(figsize=(11, 8)), - ) - - # Should have 6 axes - assert len(fig.axes) == 6 - assert sum([s._axis3don for s in fig.axes]) == 6 - - # Check number of data points on each figure - # Blue dots should start at 0 and augment by 5. - # Orange should always be 5-this is the condition sampling rate set by the Experimentalist. - l_counts = [] - for axes in fig.axes[:-1]: - blue_dots = ( - len(axes.collections[0].get_offsets().mask) - - axes.collections[0].get_offsets().mask.any(axis=1).sum() - ) - orange_dots = ( - len(axes.collections[1].get_offsets().mask) - - axes.collections[1].get_offsets().mask.any(axis=1).sum() - ) - l_counts.append([blue_dots, orange_dots]) - assert np.array_equal( - np.array(l_counts), - np.array([[0, 10], [10, 10], [20, 10], [30, 10], [40, 10]]), - ) - - -def test_score_functions(cycle_lr, ground_truth_1x): - """ - Tests the scoring functions cycle_default_score and cycle_specified_score. - """ - X_test = cycle_lr.data.metadata.independent_variables[0].allowed_values.reshape( - -1, 1 - ) - y_test = ground_truth_1x(X_test) - - scores_default = cycle_default_score(cycle_lr, X_test, y_test) - scores_specified = cycle_specified_score(r2_score, cycle_lr, X_test, y_test) - - # Check scores are the expected values - score_values = [ - 0.98950589, - 0.99352993, - 0.9858365, - 0.99909308, - 0.99811927, - 0.98663153, - 0.98748396, - 0.9848339, - 0.99359794, - 0.99691326, - ] - assert np.array_equal(np.around(score_values, 8), np.around(scores_default, 8)) - - # Results should be equal between the two functions. - # The default scorer of the LinearRegression estimator is r2_score. - assert np.array_equal(scores_default, scores_specified) - - -def test_cycle_score_plot(cycle_lr, ground_truth_1x): - """ - Tests plotting functionality of test_cycle_score_plot with a 2D linear regression. - """ - X_test = cycle_lr.data.metadata.independent_variables[0].allowed_values.reshape( - -1, 1 - ) - y_test = ground_truth_1x(X_test) - fig = plot_cycle_score(cycle_lr, X_test, y_test) - - # Should have 1 axis - assert len(fig.axes) == 1 - - # Test line is plotted correctly - axis = fig.axes[0] - assert len(axis.lines[0].get_xdata()) == 10 - y_values = np.array( - [ - 0.98950589, - 0.99352993, - 0.9858365, - 0.99909308, - 0.99811927, - 0.98663153, - 0.98748396, - 0.9848339, - 0.99359794, - 0.99691326, - ] - ) - y_plotted = axis.lines[0].get_ydata() - assert np.array_equal(np.around(y_plotted, 8), np.around(y_values, 8)) - - -def test_cycle_score_plot_multi_lr(cycle_multi_lr, ground_truth_2x): - """ - Tests plotting functionality of test_cycle_score_plot with multiple linear regression cycle. - """ - cycle_multi_lr.run(6) # Run additional 6 times, total of 12 cycles - X_test = np.array( - list(grid_pool(cycle_multi_lr.data.metadata.independent_variables)) - ) - y_test = ground_truth_2x(X_test) - fig = plot_cycle_score(cycle_multi_lr, X_test, y_test) - - # Test line is plotted correctly - axis = fig.axes[0] - assert len(axis.lines[0].get_xdata()) == 12 - y_values = np.array( - [ - 0.89368929, - 0.91897824, - 0.96375643, - 0.94514076, - 0.97807231, - 0.98778323, - 0.9931792, - 0.98768072, - 0.98952749, - 0.98867354, - 0.9872955, - 0.98999052, - ] - ) - y_plotted = axis.lines[0].get_ydata() - assert np.array_equal(np.around(y_plotted, 8), np.around(y_values, 8)) - - -def test_2d_plot_indexing(cycle_lr): - """ - Test indexing of 2d plotter. - """ - steps = 51 - fig = plot_results_panel_2d( - cycle_lr, - steps=steps, - wrap=2, - query=[0, 3, 7], - subplot_kw={"sharex": True, "sharey": True}, - ) - - # Should have 4 axes, 3 with data and the last turned off - assert len(fig.axes) == 4 - assert sum([s.axison for s in fig.axes]) == 3 - - -def test_2d_plot_negative_indexing(cycle_lr): - """ - Test indexing of 2d plotter. - """ - steps = 51 - fig = plot_results_panel_2d( - cycle_lr, - steps=steps, - wrap=2, - query=[-2, -1], - subplot_kw={"sharex": True, "sharey": True}, - ) - - # Should have 2 axes - assert len(fig.axes) == 2 - assert sum([s.axison for s in fig.axes]) == 2 - - # Should be plotting cycles 8 and 9 - assert fig.axes[0].get_children()[3].get_text() == "Cycle 8" - assert fig.axes[1].get_children()[3].get_text() == "Cycle 9" - - -def test_2d_plot_slicing(cycle_lr): - """ - Test slicing of 2d plotter using built-in slice() function. - """ - steps = 51 - - # Using Slice function - # Cycles 0, 2, 4, 6, 8 - fig = plot_results_panel_2d( - cycle_lr, - steps=steps, - wrap=3, - query=slice(0, 9, 2), - subplot_kw={"sharex": True, "sharey": True}, - ) - # Should have 6 axes, 5 with data and the last turned off - assert len(fig.axes) == 6 - assert sum([s.axison for s in fig.axes]) == 5 - - # Last 4 plots - fig2 = plot_results_panel_2d( - cycle_lr, - steps=steps, - wrap=3, - query=slice(-4, None, None), - subplot_kw={"sharex": True, "sharey": True}, - ) - # Should have 6 axes, 4 with data - assert len(fig2.axes) == 6 - assert sum([s.axison for s in fig2.axes]) == 4 - - -def test_2d_plot_slicing_np(cycle_lr): - """ - Test slicing of 2d plotter using np.s_ Index Expression - """ - steps = 51 - - # Cycles 0, 2, 4, 6, 8 - fig1 = plot_results_panel_2d( - cycle_lr, - steps=steps, - wrap=3, - query=np.s_[0:9:2], - subplot_kw={"sharex": True, "sharey": True}, - ) - # Should have 6 axes, 5 with data and the last turned off - assert len(fig1.axes) == 6 - assert sum([s.axison for s in fig1.axes]) == 5 - - fig2 = plot_results_panel_2d( - cycle_lr, - steps=steps, - wrap=3, - query=np.s_[-4:], - subplot_kw={"sharex": True, "sharey": True}, - ) - # Should have 6 axes, 4 with data - assert len(fig2.axes) == 6 - assert sum([s.axison for s in fig2.axes]) == 4 - - -def test_2d_plot_plot_single(cycle_lr): - """ - Test query of 2d plotter for a single cycle. - """ - steps = 51 - - # Using index - fig1 = plot_results_panel_2d( - cycle_lr, - steps=steps, - query=[9], - subplot_kw={"sharex": True, "sharey": True}, - ) - assert len(fig1.axes) == 1 - assert sum([s.axison for s in fig1.axes]) == 1 - - # Using slice() - fig2 = plot_results_panel_2d( - cycle_lr, - steps=steps, - query=slice(-1, None, None), - subplot_kw={"sharex": True, "sharey": True}, - ) - assert len(fig2.axes) == 1 - assert sum([s.axison for s in fig2.axes]) == 1 - - # Using np.s_ Index expression - fig3 = plot_results_panel_2d( - cycle_lr, - steps=steps, - query=np.s_[-1:], - subplot_kw={"sharex": True, "sharey": True}, - ) - assert len(fig3.axes) == 1 - assert sum([s.axison for s in fig3.axes]) == 1 diff --git a/tests/test_darts_1d_primitive_recovery.py b/tests/test_darts_1d_primitive_recovery.py deleted file mode 100644 index 12b1ceccb..000000000 --- a/tests/test_darts_1d_primitive_recovery.py +++ /dev/null @@ -1,287 +0,0 @@ -#!/usr/bin/env python -from typing import Callable, Sequence - -import matplotlib.pyplot as plt -import numpy as np -import pytest -import torch - -from autora.skl.darts import DARTSRegressor - -non_interchangeable_primitives = [ - "none", - "add", - "subtract", - "logistic", - "exp", - "relu", - "cos", - "sin", - "tanh", -] - - -@pytest.fixture -def seed(): - """ - Ensures that the results are the same each time the tests are run. - """ - torch.manual_seed(180) - return - - -def generate_x(start=-1, stop=1, num=500): - x = np.expand_dims(np.linspace(start=start, stop=stop, num=num), 1) - return x - - -def generate_x_log(start=-1, stop=1, num=500, base=10): - x = np.expand_dims(np.logspace(start=start, stop=stop, num=num, base=base), 1) - return x - - -def transform_through_primitive_none(x: np.ndarray) -> np.ndarray: - return x * 0.0 - - -def transform_through_primitive_add(x: np.ndarray) -> np.ndarray: - return x - - -def transform_through_primitive_subtract(x: np.ndarray) -> np.ndarray: - return -x - - -def transform_through_primitive_relu(x: np.ndarray): - y = x.copy() - y[x < 0.0] = 0.0 - return y - - -def transform_through_primitive_sigmoid(x: np.ndarray): - y = 1.0 / (1.0 + np.exp(-x)) - return y - - -def transform_through_primitive_exp(x: np.ndarray): - y = np.exp(x) - return y - - -def transform_through_primitive_cos(x: np.ndarray): - y = np.cos(x) - return y - - -def transform_through_primitive_sin(x: np.ndarray): - y = np.sin(x) - return y - - -def transform_through_primitive_tanh(x: np.ndarray): - y = np.tanh(x) - return y - - -def transform_through_primitive_softplus(x: np.ndarray, beta=1.0): - y = np.log(1 + np.exp(beta * x)) / beta - return y - - -def transform_through_primitive_softminus(x: np.ndarray, beta=1.0): - y = x - np.log(1 + np.exp(beta * x)) / beta - return y - - -def transform_through_primitive_inverse(x: np.ndarray): - y = 1.0 / x - return y - - -def transform_through_primitive_ln(x: np.ndarray): - y = np.log(x) - return y - - -def transform_through_primitive_mult(x: np.ndarray, coefficient=5.0): - y = coefficient * x - return y - - -def get_primitive_from_single_node_model(model): - primitive = model[0].primitives[np.argmax(model[0].max_alphas_normal()).numpy()] - return primitive - - -def run_test_primitive_fitting( - X: np.ndarray, - transformer: Callable, - expected_primitive: str, - primitives: Sequence[str], - verbose: bool = False, -): - y = transformer(X) - regressor = DARTSRegressor( - num_graph_nodes=1, - param_updates_per_epoch=100, - max_epochs=300, - arch_updates_per_epoch=1, - param_weight_decay=3e-4, - arch_weight_decay_df=0.001, - arch_weight_decay=1e-4, - arch_learning_rate_max=0.3, - param_learning_rate_max=0.0025, - param_learning_rate_min=0.01, - param_momentum=0.90, - primitives=primitives, - train_classifier_bias=False, - train_classifier_coefficients=False, - ) - regressor.fit(X, y) - - if verbose: - y_predict = regressor.predict(X) - report_weights(X, expected_primitive, primitives, regressor, y) - plot_results(X, y, y_predict) - - assert get_primitive_from_single_node_model(regressor.model_) == expected_primitive - - -def plot_results(X, y, y_predict): - plt.plot(X, y, "o") - plt.plot(X, y_predict, "-") - plt.show() - - -def report_weights(X, expected_primitive, primitives, regressor, y): - print("\n", np.column_stack((X, y, regressor.predict(X))).round(2)) - print(get_primitive_from_single_node_model(regressor.model_)) - print( - "Weight of winning primitive: {0}".format( - regressor.model_[0]._arch_parameters[0][ - 0, - primitives.index( - get_primitive_from_single_node_model(regressor.model_) - ), - ] - ) - ) - print( - "Weight of correct primitive: {0}".format( - regressor.model_[0]._arch_parameters[0][ - 0, primitives.index(expected_primitive) - ] - ) - ) - print(regressor.model_[0]._arch_parameters[0].data) - - -def test_primitive_fitting_restricted_none(seed): - run_test_primitive_fitting( - generate_x(), - transform_through_primitive_none, - "none", - primitives=["none", "add", "subtract"], - ) - - -def test_primitive_fitting_restricted_add(seed): - run_test_primitive_fitting( - generate_x(), - transform_through_primitive_add, - "add", - primitives=["none", "add", "subtract"], - ) - - -def test_primitive_fitting_restricted_subtract(seed): - run_test_primitive_fitting( - generate_x(), - transform_through_primitive_subtract, - "subtract", - primitives=["none", "add", "subtract"], - ) - - -def test_primitive_fitting_none(seed): - run_test_primitive_fitting( - generate_x(), - transform_through_primitive_none, - "none", - primitives=non_interchangeable_primitives, - ) - - -def test_primitive_fitting_add(seed): - run_test_primitive_fitting( - generate_x(), - transform_through_primitive_add, - "add", - primitives=non_interchangeable_primitives, - ) - - -def test_primitive_fitting_subtract(seed): - run_test_primitive_fitting( - generate_x(), - transform_through_primitive_subtract, - "subtract", - primitives=non_interchangeable_primitives, - ) - - -def test_primitive_fitting_relu(seed): - run_test_primitive_fitting( - generate_x(), - transform_through_primitive_relu, - "relu", - primitives=non_interchangeable_primitives, - ) - - -def test_primitive_fitting_sigmoid(seed): - run_test_primitive_fitting( - generate_x(-10, +10), - transform_through_primitive_sigmoid, - "logistic", - # Restricted group of primitives, as sigmoid function doesn't fit otherwise. - primitives=["none", "logistic", "linear", "sin", "tanh"], - ) - - -def test_primitive_fitting_exp(seed): - run_test_primitive_fitting( - generate_x(), - transform_through_primitive_exp, - "exp", - primitives=non_interchangeable_primitives, - ) - - -def test_primitive_fitting_cos(seed): - run_test_primitive_fitting( - generate_x(start=-3 * np.pi, stop=3 * np.pi), - transform_through_primitive_cos, - "cos", - # Restricted group of primitives, as the code doesn't - # find cos in the full set - primitives=["none", "cos", "linear", "subtract"], - ) - - -def test_primitive_fitting_sin(seed): - run_test_primitive_fitting( - generate_x(start=0, stop=2 * np.pi), - transform_through_primitive_sin, - "sin", - primitives=non_interchangeable_primitives, - ) - - -def test_primitive_fitting_tanh(seed): - run_test_primitive_fitting( - generate_x(start=0, stop=2 * np.pi), - transform_through_primitive_tanh, - "tanh", - primitives=non_interchangeable_primitives, - ) diff --git a/tests/test_experimentalist_assumption.py b/tests/test_experimentalist_assumption.py deleted file mode 100644 index ab2bfe524..000000000 --- a/tests/test_experimentalist_assumption.py +++ /dev/null @@ -1,74 +0,0 @@ -from functools import partial - -import numpy as np -from sklearn.linear_model import RidgeCV -from sklearn.metrics import mean_absolute_error, mean_squared_error - -from autora.experimentalist.pipeline import make_pipeline -from autora.experimentalist.pooler import grid_pool -from autora.experimentalist.sampler import assumption_sampler -from autora.variable import Variable, VariableCollection - - -def test_experimentalist_assumption(): - """ - Tests the implementation of the experimentalist pipeline with an exhaustive pool of discrete - values, no filter, assumption sampler. A ridge regression model is trained using - synthetic data generated from a ground_truth function for use. - - """ - # Make the data - def ground_truth(xs): - return (xs**2.0) + xs + 1.0 - - # X = np.random.randint(low=0, high=10, size=100).reshape(-1, 1) - X = np.array(range(11)).reshape(-1, 1) - y = np.array([x for x in ground_truth(X)]) - - # Train ridge regression model - model = RidgeCV(scoring="neg_mean_squared_error") - model.fit(X, y) - - metadata = VariableCollection( - independent_variables=[Variable(name="x1", allowed_values=range(11))], - dependent_variables=[Variable(name="y", value_range=(-20, 20))], - ) - - n_trials = 10 # Number of trails for sampler to select - - # Set up pipeline functions with partial - pooler_callable = partial(grid_pool, ivs=metadata.independent_variables) - sampler = partial(assumption_sampler, y=y, model=model, n=n_trials) - # currently theorist objects are not required to have its loss function as an attribute - - # Initialize pipeline - pipeline = make_pipeline([pooler_callable, sampler]) - # Run the pipeline - results = pipeline.run() - - # ***Checks*** - # Is sampling the number of trials we expect - assert len(results) == n_trials - - # Assumption sampling is behaving as expected by comparing results with manual calculation - pipeline_pool_filter = make_pipeline([pooler_callable]) - pool = np.array(list(pipeline_pool_filter.run())) # Create filtered pool - y_pred = model.predict(X) # get model predictions - # model_loss_function = get_scorer(scoring=model.get_params()['scoring']) - # assert model_loss_function == mean_squared_error - # sklearn does not quite seem to have functionality to retrieve loss function used by model - # you can get the scorer which corresponds to the loss function - # but there does not seem to be any built-in dictionary to get the corresponding function - model_loss_function = mean_squared_error - model_loss = model_loss_function( - y_true=y.reshape(1, -1), y_pred=y_pred.reshape(1, -1), multioutput="raw_values" - ) - # calculate model loss on an alternative loss function - alternative_model_loss_function = mean_absolute_error - alternative_model_loss = alternative_model_loss_function( - y_true=y.reshape(1, -1), y_pred=y_pred.reshape(1, -1), multioutput="raw_values" - ) - loss_delta = alternative_model_loss - model_loss - select_idx = np.flip(loss_delta.argsort()[:n_trials]) - results_manual = pool[select_idx] # Index conditions from pool - assert np.array_equal(results, results_manual) diff --git a/tests/test_experimentalist_pipeline.py b/tests/test_experimentalist_pipeline.py deleted file mode 100644 index a02bfa855..000000000 --- a/tests/test_experimentalist_pipeline.py +++ /dev/null @@ -1,350 +0,0 @@ -from functools import partial -from itertools import product -from math import sqrt - -import numpy as np - -from autora.experimentalist.pipeline import ( - Pipeline, - _parse_params_to_nested_dict, - make_pipeline, -) - -############################################################################## -# Building blocks -############################################################################## - - -def linear_pool_generator(stop=10): - return range(stop) - - -def even_filter(values): - return filter(lambda i: i % 2 == 0, values) - - -def odd_filter(values): - return filter(lambda i: (i + 1) % 2 == 0, values) - - -def divisor_filter(values, divisor): - return filter(lambda i: i % divisor == 0, values) - - -def is_sqrt_filter(values): - return filter(lambda i: sqrt(i) % 1 == 0.0, values) - - -############################################################################## -# Simple pipelines of one variable -############################################################################## - - -def test_zeroth_pipline_zeroth_input(): - pipeline = Pipeline() - result_0 = list(pipeline()) - assert result_0 == [] - - -def test_zeroth_pipline_basic_input(): - pipeline = Pipeline([]) - result_0 = list(pipeline([0, 1, 2, 3])) - assert result_0 == [0, 1, 2, 3] - - -def test_zeroth_make_pipeline(): - pipeline = make_pipeline() - result = list(pipeline([0, 1, 2, 3])) - assert result == [0, 1, 2, 3] - - -def test_single_element_pipeline(): - pipeline = Pipeline([("even_filter", even_filter)]) - result = list(pipeline(range(10))) - assert result == [0, 2, 4, 6, 8] - - -def test_single_element_make_pipeline(): - pipeline = make_pipeline([even_filter]) - result = list(pipeline(range(10))) - assert result == [0, 2, 4, 6, 8] - - -def test_multiple_element_pipeline(): - pipeline = Pipeline( - [ - ("even_filter", even_filter), - ("divisor_filter", partial(divisor_filter, divisor=3)), - ] - ) - result = list(pipeline(range(13))) - assert result == [0, 6, 12] - - -def test_multiple_element_make_pipeline(): - pipeline = make_pipeline([even_filter, partial(divisor_filter, divisor=3)]) - result = list(pipeline(range(13))) - assert result == [0, 6, 12] - - -def test_two_element_make_pipeline_with_params(): - pipeline = make_pipeline( - [even_filter, divisor_filter], params={"divisor_filter": {"divisor": 5}} - ) - result = list(pipeline(range(21))) - assert result == [0, 10, 20] - - -def test_three_element_make_pipeline(): - pipeline = make_pipeline( - [divisor_filter, divisor_filter, divisor_filter], - params={ - "divisor_filter_0": {"divisor": 5}, - "divisor_filter_1": {"divisor": 7}, - "divisor_filter_2": {"divisor": 11}, - }, - ) - result = list(pipeline(range(500))) - assert result == [0, 385] - - -def test_nested_pipeline(): - inner_pipeline = Pipeline([("pool", lambda: range(32))]) - outer_pipeline = Pipeline( - [ - ("inner_pipeline", inner_pipeline), - ("filter_by_divisor", partial(divisor_filter, divisor=8)), - ], - ) - result = list(outer_pipeline()) - assert result == [0, 8, 16, 24] - - -def test_nested_pipeline_nested_parameters(): - inner_pipeline = Pipeline([("pool", lambda maximum: range(maximum))]) - outer_pipeline = Pipeline( - [ - ("inner_pipeline", inner_pipeline), - ("filter_by_divisor", divisor_filter), - ], - params={ - "inner_pipeline": {"pool": {"maximum": 32}}, - "filter_by_divisor": {"divisor": 8}, - }, - ) - result = list(outer_pipeline()) - assert result == [0, 8, 16, 24] - - -def test_nested_pipeline_flat_parameters(): - inner_pipeline = Pipeline([("pool", lambda maximum: range(maximum))]) - outer_pipeline = Pipeline( - [ - ("inner_pipeline", inner_pipeline), - ("filter_by_divisor", divisor_filter), - ], - params={"inner_pipeline__pool__maximum": 32, "filter_by_divisor__divisor": 8}, - ) - result = list(outer_pipeline()) - assert result == [0, 8, 16, 24] - - -def test_nested_pipeline_nested_parameters_in_kwargs(): - inner_pipeline = Pipeline([("pool", lambda maximum: range(maximum))]) - outer_pipeline = Pipeline( - [ - ("inner_pipeline", inner_pipeline), - ("filter_by_divisor", divisor_filter), - ], - ) - result = list( - outer_pipeline( - **{ - "inner_pipeline": {"pool": {"maximum": 32}}, - "filter_by_divisor": {"divisor": 8}, - } - ) - ) - assert result == [0, 8, 16, 24] - - -def test_nested_pipeline_flat_parameters_in_kwargs(): - inner_pipeline = Pipeline([("pool", lambda maximum: range(maximum))]) - outer_pipeline = Pipeline( - [ - ("inner_pipeline", inner_pipeline), - ("filter_by_divisor", divisor_filter), - ], - ) - result = list( - outer_pipeline( - **{"inner_pipeline__pool__maximum": 32, "filter_by_divisor__divisor": 8} - ) - ) - assert result == [0, 8, 16, 24] - - -############################################################################## -# Simple pool and filters of one variable -############################################################################## - - -def test_zeroth_poolpipeline(): - pipeline = make_pipeline([linear_pool_generator]) - result = list(pipeline()) - assert result == [0, 1, 2, 3, 4, 5, 6, 7, 8, 9] - - -def test_even_poolpipeline(): - pipeline = make_pipeline([linear_pool_generator, even_filter]) - result = list(pipeline()) - assert result == [0, 2, 4, 6, 8] - - -def test_odd_poolpipeline(): - pipeline = make_pipeline([linear_pool_generator, odd_filter]) - result = list(pipeline()) - assert result == [1, 3, 5, 7, 9] - - -def test_poolpipeline_run(): - pipeline = make_pipeline([linear_pool_generator, odd_filter]) - result = list(pipeline.run()) - assert result == [1, 3, 5, 7, 9] - - -############################################################################## -# Pool and filters of two Weber variables -############################################################################## - - -def weber_pool(vmin=0, vmax=1, steps=5): - s1 = s2 = np.linspace(vmin, vmax, steps) - pool = product(s1, s2) - return pool - - -def weber_filter(values): - return filter(lambda s: s[0] >= s[1], values) - - -def test_weber_unfiltered_poolpipeline(): - pipeline = make_pipeline([weber_pool]) - result = list(pipeline()) - assert result[0] == (0.0, 0.0) - assert result[1] == (0.0, 0.25) - assert result[-1] == (1.0, 1.0) - - -def test_weber_filtered_poolpipeline(): - pipeline = make_pipeline([weber_pool, weber_filter]) - result = list(pipeline()) - assert result[0] == (0.0, 0.0) - assert result[1] == (0.25, 0.0) - assert result[-1] == (1.0, 1.0) - - -############################################################################## -# Helper Functions -############################################################################## -def test_params_parser_zero_level(): - params = { - "model": "%%newest_theory%%", - "n": 10, - "measure": "least_confident", - } - result = _parse_params_to_nested_dict(params, divider="__") - assert result == params - - -def test_params_parser_one_level(): - params = { - "pool__ivs": "%%independent_variables%%", - "uncertainty_sampler__model": "%%newest_theory%%", - "uncertainty_sampler__n": 10, - "uncertainty_sampler__measure": "least_confident", - } - - result = _parse_params_to_nested_dict(params, divider="__") - assert result == { - "pool": { - "ivs": "%%independent_variables%%", - }, - "uncertainty_sampler": { - "model": "%%newest_theory%%", - "n": 10, - "measure": "least_confident", - }, - } - - -def test_params_parser_recurse_one(): - - params = { - "filter_pipeline__step1__n_samples": 100, - } - - result = _parse_params_to_nested_dict(params, divider="__") - assert result == {"filter_pipeline": {"step1": {"n_samples": 100}}} - - -def test_params_parser_recurse_one_n_levels(): - params = { - "a__b__c__d__e__f": 100, - "a__b__c__d__e__g": 200, - "a__b__h": 300, - } - result = _parse_params_to_nested_dict(params, divider="__") - assert result == {"a": {"b": {"c": {"d": {"e": {"f": 100, "g": 200}}}, "h": 300}}} - - -def test_params_parser_recurse_one_n_levels_alternative_divider(): - params = { - "a:b:c:d:e:f": 100, - "a:b:c:d:e:g": 200, - "a:b:h": 300, - } - result = _parse_params_to_nested_dict(params, divider=":") - assert result == {"a": {"b": {"c": {"d": {"e": {"f": 100, "g": 200}}}, "h": 300}}} - - -def test_params_parser_recurse(): - - params = { - "pool__ivs": "%%independent_variables%%", - "filter_pipeline__step1__n_samples": 100, - "filter_pipeline__step2__n_samples": 10, - "uncertainty_sampler__model": "%%newest_theory%%", - "uncertainty_sampler__n": 10, - "uncertainty_sampler__measure": "least_confident", - } - - result = _parse_params_to_nested_dict(params, divider="__") - assert result == { - "pool": { - "ivs": "%%independent_variables%%", - }, - "filter_pipeline": {"step1": {"n_samples": 100}, "step2": {"n_samples": 10}}, - "uncertainty_sampler": { - "model": "%%newest_theory%%", - "n": 10, - "measure": "least_confident", - }, - } - - -############################################################################## -# Parallel Pipelines -############################################################################## - - -def test_parallelpipeline_run(): - pl = make_pipeline([range(3), range(10, 13)], kind="union") - assert list(pl.run()) == [0, 1, 2, 10, 11, 12] - - -def test_parallelpipeline_many_steps(): - pl = make_pipeline([range(0, 5) for _ in range(1000)], kind="union") - results = list(pl.run()) - assert len(results) == 5000 - assert results[0:10] == [0, 1, 2, 3, 4, 0, 1, 2, 3, 4] diff --git a/tests/test_experimentalist_random.py b/tests/test_experimentalist_random.py deleted file mode 100644 index e85f0a72a..000000000 --- a/tests/test_experimentalist_random.py +++ /dev/null @@ -1,132 +0,0 @@ -from functools import partial - -import numpy as np -import pytest - -from autora.experimentalist.filter import weber_filter -from autora.experimentalist.pipeline import make_pipeline -from autora.experimentalist.pooler.general_pool import grid_pool -from autora.experimentalist.sampler import random_sampler -from autora.variable import DV, IV, ValueType, VariableCollection - - -def test_random_experimentalist(metadata): - """ - Tests the implementation of the experimentalist pipeline with an exhaustive pool of discrete - values, Weber filter, random selector. Tests two different implementations of the pool function - as a callable and passing in as interator/generator. - - """ - - n_trials = 25 # Number of trails for sampler to select - - # ---Implementation 1 - Pool using Callable via partial function---- - # Set up pipeline functions with partial - pooler_callable = partial(grid_pool, ivs=metadata.independent_variables) - sampler = partial(random_sampler, n=n_trials) - pipeline_random_samp = make_pipeline( - [pooler_callable, weber_filter, sampler], - ) - - results = pipeline_random_samp.run() - - # ***Checks*** - # Gridsearch pool is working as expected - _, pool = pipeline_random_samp.steps[0] - pool_len = len(list(pool())) - pool_len_expected = np.prod( - [len(s.allowed_values) for s in metadata.independent_variables] - ) - assert pool_len == pool_len_expected - - # Is sampling the number of trials we expect - assert len(results) == n_trials - - # Filter is selecting where IV1 >= IV2 - assert all([s[0] <= s[1] for s in results]) - - # Is sampling randomly. Runs 10 times and checks if consecutive runs are equal. - # Assert will fail if all 9 pairs return equal. - l_results = [pipeline_random_samp.run() for s in range(10)] - assert not np.all( - [ - np.array_equal(l_results[i], l_results[i + 1]) - for i, s in enumerate(l_results) - if i < len(l_results) - 1 - ] - ) - - -def test_random_experimentalist_generator(metadata): - n_trials = 25 # Number of trails for sampler to select - - pooler_generator = grid_pool(metadata.independent_variables) - sampler = partial(random_sampler, n=n_trials) - pipeline_random_samp_poolgen = make_pipeline( - [pooler_generator, weber_filter, sampler] - ) - - results_poolgen = list(pipeline_random_samp_poolgen.run()) - - # Is sampling the number of trials we expect - assert len(results_poolgen) == n_trials - - # Filter is selecting where IV1 >= IV2 - assert all([s[0] <= s[1] for s in results_poolgen]) - - # This will fail - # The Generator is exhausted after the first run and the pool is not regenerated when pipeline - # is run again. The pool should be set up as a callable if the pipeline is to be rerun. - results_poolgen2 = pipeline_random_samp_poolgen.run() - assert len(results_poolgen2) == 0 - - -@pytest.fixture -def metadata(): - # Specify independent variables - iv1 = IV( - name="S1", - allowed_values=np.linspace(0, 5, 5), - units="intensity", - variable_label="Stimulus 1 Intensity", - ) - - iv2 = IV( - name="S2", - allowed_values=np.linspace(0, 5, 5), - units="intensity", - variable_label="Stimulus 2 Intensity", - ) - - iv3 = IV( - name="S3", - allowed_values=[0, 1], - units="binary", - variable_label="Stimulus 3 Binary", - ) - - # Specify dependent variable with type - # The experimentalist pipeline doesn't actually use DVs, they are just specified here for - # example. - dv1 = DV( - name="difference_detected", - value_range=(0, 1), - units="probability", - variable_label="P(difference detected)", - type=ValueType.SIGMOID, - ) - - dv2 = DV( - name="difference_detected_sample", - value_range=(0, 1), - units="response", - variable_label="difference detected", - type=ValueType.PROBABILITY_SAMPLE, - ) - # Variable collection with ivs and dvs - metadata = VariableCollection( - independent_variables=[iv1, iv2, iv3], - dependent_variables=[dv1, dv2], - ) - - return metadata diff --git a/tests/test_experimentalist_uncertainty.py b/tests/test_experimentalist_uncertainty.py deleted file mode 100644 index 2e4657731..000000000 --- a/tests/test_experimentalist_uncertainty.py +++ /dev/null @@ -1,99 +0,0 @@ -from functools import partial - -import numpy as np -import pandas as pd -from sklearn.linear_model import LogisticRegression - -from autora.experimentalist.filter import weber_filter -from autora.experimentalist.pipeline import make_pipeline -from autora.experimentalist.pooler.general_pool import grid_pool -from autora.experimentalist.sampler import uncertainty_sampler -from autora.variable import DV, IV, ValueType, VariableCollection - - -def test_experimentalist_uncertainty(): - """ - Tests the implementation of the experimentalist pipeline with an exhaustive pool of discrete - values, Weber filter, uncertainty sampler. A logistic regression model is trained using - synthetic Weber experiment data for use in Uncertainty sampling. - - """ - # Load the data - resolution = 25 - s1_values = s2_values = np.linspace(0.2, 5.0, resolution) - X = np.array(np.meshgrid(s1_values, s2_values)).T.reshape(-1, 2) - # remove all combinations where s1 > s2 - X = X[X[:, 0] <= X[:, 1]] - - weber_constant = 1.0 - y = weber_constant * np.log(X[:, 1] / X[:, 0]) - - y_classified = np.where(y >= 0.5, 1, 0) - - # Train logistic regression model - logireg_model = LogisticRegression() - logireg_model.fit(X, y_classified) - - # Specify independent variables - iv1 = IV( - name="S1", - allowed_values=np.linspace(0, 5, 5), - units="intensity", - variable_label="Stimulus 1 Intensity", - ) - - iv2 = IV( - name="S2", - allowed_values=np.linspace(0, 5, 5), - units="intensity", - variable_label="Stimulus 2 Intensity", - ) - - # The experimentalist pipeline doesn't actually use DVs, they are just specified here for - # example. - dv1 = DV( - name="difference_detected", - value_range=(0, 1), - units="probability", - variable_label="P(difference detected)", - type=ValueType.PROBABILITY, - ) - - # Variable collection with ivs and dvs - metadata = VariableCollection( - independent_variables=[iv1, iv2], - dependent_variables=[dv1], - ) - - n_trials = 10 # Number of trails for sampler to select - - # Set up pipeline functions with partial - pooler_callable = partial(grid_pool, ivs=metadata.independent_variables) - sampler = partial( - uncertainty_sampler, model=logireg_model, n=n_trials, measure="least_confident" - ) - - # Initialize pipeline - pipeline = make_pipeline([pooler_callable, weber_filter, sampler]) - # Run the pipeline - results = pipeline.run() - - # ***Checks*** - # Is sampling the number of trials we expect - assert len(results) == n_trials - - # Filter is selecting where IV1 >= IV2 - assert all([s[0] <= s[1] for s in results]) - - # Uncertainty sampling is behaving as expected by comparing results with manual calculation - pipeline_pool_filter = make_pipeline([pooler_callable, weber_filter]) - pool = np.array(list(pipeline_pool_filter.run())) # Create filtered pool - a_prob = logireg_model.predict_proba(pool) # Get predicted probabilities - # Calculate and sort max probability from each condition - s_max_prob = pd.Series([np.max(s) for s in a_prob]).sort_values(ascending=True) - select_idx = s_max_prob.index[ - 0:n_trials - ].to_list() # Get index of lowest probabilities - results_manual = pool[select_idx] # Index conditions from pool - # Check results from the function match manaual method - assert np.array_equal(results, results_manual) diff --git a/tests/test_model_disagreement_sampler.py b/tests/test_model_disagreement_sampler.py deleted file mode 100644 index ed987681e..000000000 --- a/tests/test_model_disagreement_sampler.py +++ /dev/null @@ -1,131 +0,0 @@ -import numpy as np -import pytest -from sklearn.linear_model import LinearRegression, LogisticRegression -from sklearn.pipeline import Pipeline -from sklearn.preprocessing import PolynomialFeatures - -from autora.experimentalist.sampler.model_disagreement import model_disagreement_sampler - - -def get_classification_data(n: int = 100): - x1 = np.linspace(0, 1, n) - x2 = np.linspace(0, 1, n) - - # cross product of x1 and x2 - X = np.array([(x1[i], x2[j]) for i in range(len(x1)) for j in range(len(x2))]) - - # create a vector of 0s and 1s which is 0 whenever x1 < 0.5 and x2 < 0.5 and 1 otherwise - y_A = np.zeros(n * n) - y_B = np.zeros(n * n) - y_A[(X[:, 0] >= 0.5) | (X[:, 1] >= 0.5)] = 1 - y_B[(X[:, 0] >= 0.5)] = 1 - - return X, y_A, y_B - - -def get_polynomial_data(n: int = 100): - x = np.linspace(-1, 1, 100) - y = x**2 - return x, y - - -@pytest.fixture -def synthetic_lr_models(): - """ - Creates two logistic regression classifier for 2 classes based on synthetic data. - Each classifier is trained on a different data set and thus should yield different predictions. - """ - X, y_A, y_B = get_classification_data() - model_A = LogisticRegression() - model_B = LogisticRegression() - model_A.fit(X, y_A) - model_B.fit(X, y_B) - - models = [model_A, model_B] - return models - - -@pytest.fixture -def synthetic_linr_model(): - """ - Creates linear regression based on synthetic data. - """ - x, y = get_polynomial_data() - model = LinearRegression() - model.fit(x.reshape(-1, 1), y) - return model - - -@pytest.fixture -def synthetic_poly_model(): - """ - Creates polynomial regression based on synthetic data. - """ - x, y = get_polynomial_data() - - # define the steps in the pipeline - steps = [ - ( - "poly", - PolynomialFeatures(degree=3), - ), # transform input data into polynomial features - ("lr", LinearRegression()), # fit a linear regression model - ] - # create the pipeline - model = Pipeline(steps) - model.fit(x.reshape(-1, 1), y) - return model - - -@pytest.fixture -def classification_data_to_test(n=10): - x1 = np.linspace(0, 1, n) - x2 = np.linspace(0, 1, n) - - # cross product of x1 and x2 - X = np.array([(x1[i], x2[j]) for i in range(len(x1)) for j in range(len(x2))]) - return X - - -@pytest.fixture -def regression_data_to_test(n=100): - data = np.linspace(-2, 2, n) - return data - - -def test_model_disagreement_classification( - synthetic_lr_models, classification_data_to_test -): - - num_requested_samples = 10 - - # Import model and data - X = classification_data_to_test - models = synthetic_lr_models - - # Run model disagreement sampler - samples = model_disagreement_sampler(X, models, num_requested_samples) - - assert samples.shape[0] == num_requested_samples - assert samples[0, 0] < 0.25 and samples[0, 1] > 0.75 - assert samples[1, 0] < 0.25 and samples[1, 1] > 0.75 - - -def test_model_disagreement_regression( - synthetic_linr_model, synthetic_poly_model, regression_data_to_test -): - - num_requested_samples = 2 - - # Import model and data - X = regression_data_to_test - model_A = synthetic_linr_model - model_B = synthetic_poly_model - models = [model_A, model_B] - - # Run model disagreement sampler - samples = model_disagreement_sampler(X, models, num_requested_samples) - - assert len(samples) == num_requested_samples - assert samples[0] == 2.0 or samples[0] == -2.0 - assert samples[1] == 2.0 or samples[1] == -2.0 diff --git a/tests/test_poppernet_pooler.py b/tests/test_poppernet_pooler.py deleted file mode 100644 index c2d4d1078..000000000 --- a/tests/test_poppernet_pooler.py +++ /dev/null @@ -1,202 +0,0 @@ -import numpy as np -import pytest -import torch -from sklearn.linear_model import LinearRegression, LogisticRegression - -from autora.experimentalist.pipeline import Pipeline -from autora.experimentalist.pooler import poppernet_pool -from autora.experimentalist.sampler import nearest_values_sampler -from autora.variable import DV, IV, ValueType, VariableCollection - - -@pytest.fixture -def seed(): - """ - Ensures that the results are the same each time the tests are run. - """ - torch.manual_seed(180) - return - - -def get_xor_data(n: int = 3): - X = ([[1, 0]] * n) + ([[0, 1]] * n) + ([[0, 0]] * n) + ([[1, 1]]) - y = ([0] * n) + ([0] * n) + ([1] * n) + ([1]) - return X, y - - -def get_sin_data(n: int = 100): - x = np.linspace(0, 2 * np.pi, 100) - y = np.sin(x) - return x, y - - -@pytest.fixture -def synthetic_logr_model(): - """ - Creates logistic regression classifier for 3 classes based on synthetic data. - """ - X, y = get_xor_data() - model = LogisticRegression() - model.fit(X, y) - return model - - -@pytest.fixture -def synthetic_linr_model(): - """ - Creates linear regression based on synthetic data. - """ - x, y = get_sin_data() - model = LinearRegression() - model.fit(x.reshape(-1, 1), y) - return model - - -@pytest.fixture -def classification_data_to_test(): - data = np.array( - [ - [1, 0], - [0, 1], - [0, 0], - [1, 1], - ] - ) - return data - - -@pytest.fixture -def regression_data_to_test(): - data = [-10, 0, 1.5, 3, 4.5, 6, 10] - return data - - -def test_poppernet_classification( - synthetic_logr_model, classification_data_to_test, seed -): - - # Import model and data - X_train, Y_train = get_xor_data() - X = classification_data_to_test - model = synthetic_logr_model - - # Specify independent variables - iv1 = IV( - name="x", - value_range=(0, 5), - units="intensity", - variable_label="stimulus 1", - ) - - # specify dependent variables - dv1 = DV( - name="y", - value_range=(0, 1), - units="class", - variable_label="class", - type=ValueType.CLASS, - ) - - # Variable collection with ivs and dvs - metadata = VariableCollection( - independent_variables=[iv1, iv1], - dependent_variables=[dv1], - ) - - # Run popper net sampler - poppernet_pipeline = Pipeline( - [("pool", poppernet_pool), ("sampler", nearest_values_sampler)], - params={ - "pool": dict( - model=model, - x_train=X_train, - y_train=Y_train, - metadata=metadata, - n=2, - training_epochs=1000, - optimization_epochs=1000, - training_lr=1e-3, - optimization_lr=1e-3, - mse_scale=1, - limit_offset=10**-10, - limit_repulsion=0, - ), - "sampler": {"allowed_values": X, "n": 2}, - }, - ) - - samples = poppernet_pipeline.run() - - print(samples) - # Check that at least one of the resulting samples is the one that is - # underrepresented in the data used for model training - - assert (samples[0, :] == [1, 1]).all or (samples[1, :] == [1, 1]).all - - -def test_poppernet_regression(synthetic_linr_model, regression_data_to_test, seed): - - # Import model and data - X_train, Y_train = get_sin_data() - X = regression_data_to_test - model = synthetic_linr_model - - # specify meta data - - # Specify independent variables - iv = IV( - name="x", - value_range=(0, 2 * np.pi), - units="intensity", - variable_label="stimulus", - ) - - # specify dependent variables - dv = DV( - name="y", - value_range=(-1, 1), - units="real", - variable_label="response", - type=ValueType.REAL, - ) - - # Variable collection with ivs and dvs - metadata = VariableCollection( - independent_variables=[iv], - dependent_variables=[dv], - ) - - poppernet_pipeline = Pipeline( - [("pool", poppernet_pool), ("sampler", nearest_values_sampler)], - params={ - "pool": dict( - model=model, - x_train=X_train, - y_train=Y_train, - metadata=metadata, - n=5, - training_epochs=1000, - optimization_epochs=5000, - training_lr=1e-3, - optimization_lr=1e-3, - mse_scale=1, - limit_offset=0, - limit_repulsion=0.01, - ), - "sampler": {"allowed_values": X, "n": 5}, - }, - ) - - sample = poppernet_pipeline.run() - - # the first value should be close to one of the local maxima of the - # sine function - assert ( - sample[0] == 1.5 - or sample[0] == 4.5 - or sample[0] == 6 - or sample[0] == 0 - or sample[0] == 3 - ) - if sample[0] == 6 or sample[0] == 0 or sample[0] == 3: - assert sample[1] == 4.5 or sample[1] == 1.5 diff --git a/tests/test_sklearn_bms.py b/tests/test_sklearn_bms.py deleted file mode 100644 index 8ce99033e..000000000 --- a/tests/test_sklearn_bms.py +++ /dev/null @@ -1,266 +0,0 @@ -import warnings - -import numpy as np -import pandas as pd -from sklearn.model_selection import train_test_split - -from autora.skl.bms import BMSRegressor - -warnings.filterwarnings("ignore") - - -def generate_noisy_constant_data( - const: float = 0.5, epsilon: float = 0.01, num: int = 1000, seed: int = 42 -): - X = np.expand_dims(np.linspace(start=0, stop=1, num=num), 1) - y = np.random.default_rng(seed).normal(loc=const, scale=epsilon, size=num) - return X, y, const, epsilon - - -def test_constant_model(): - X, y, const, epsilon = generate_noisy_constant_data() - for x in X: - print(x) - if x[0] == 0.0: - x[0] = 0.001 - print(X) - X_train, X_test, y_train, y_test = train_test_split( - X, y, test_size=0.2, random_state=42 - ) - estimator = BMSRegressor(epochs=30) - assert estimator is not None - estimator.fit(X_train, y_train) - # print(X_train) - # print(estimator.model_) - # print(estimator.predict(X_test)) - - -def test_weber_model(): - raw_data = pd.DataFrame( - columns=["S1", "S2", "difference_detected"], - data=np.array( - [ - (0.0, 0.0, 0.5), - (0.0, 0.2631578947368421, 0.5654124021530151), - (0.0, 0.5263157894736842, 0.6286234259605408), - (0.0, 0.7894736842105263, 0.6877183318138123), - (0.0, 1.0526315789473684, 0.7412799000740051), - (0.0, 1.3157894736842104, 0.7884804010391235), - (0.0, 1.5789473684210529, 0.8290553689002991), - (0.0, 1.8421052631578947, 0.8631975054740906), - (0.0, 2.1052631578947367, 0.8914136290550232), - (0.0, 2.3684210526315788, 0.9143873453140259), - (0.0, 2.631578947368421, 0.9328665137290955), - (0.0, 2.8947368421052633, 0.9475856423377991), - (0.0, 3.1578947368421053, 0.9592186808586121), - (0.0, 3.421052631578948, 0.9683560729026794), - (0.0, 3.684210526315789, 0.975498378276825), - (0.0, 3.947368421052632, 0.9810601472854614), - (0.0, 4.2105263157894735, 0.9853783845901489), - (0.0, 4.473684210526316, 0.9887233972549438), - (0.0, 4.7368421052631575, 0.9913098812103271), - (0.0, 5.0, 0.9933071732521057), - (0.2631578947368421, 0.2631578947368421, 0.43458759784698486), - (0.2631578947368421, 0.5263157894736842, 0.5), - (0.2631578947368421, 0.7894736842105263, 0.5654124021530151), - (0.2631578947368421, 1.0526315789473684, 0.6286234259605408), - (0.2631578947368421, 1.3157894736842104, 0.6877183318138123), - (0.2631578947368421, 1.5789473684210529, 0.7412799000740051), - (0.2631578947368421, 1.8421052631578947, 0.7884804010391235), - (0.2631578947368421, 2.1052631578947367, 0.8290553689002991), - (0.2631578947368421, 2.3684210526315788, 0.8631975054740906), - (0.2631578947368421, 2.631578947368421, 0.8914136290550232), - (0.2631578947368421, 2.8947368421052633, 0.9143873453140259), - (0.2631578947368421, 3.1578947368421053, 0.9328665137290955), - (0.2631578947368421, 3.421052631578948, 0.9475856423377991), - (0.2631578947368421, 3.684210526315789, 0.9592186808586121), - (0.2631578947368421, 3.947368421052632, 0.9683560729026794), - (0.2631578947368421, 4.2105263157894735, 0.975498378276825), - (0.2631578947368421, 4.473684210526316, 0.9810601472854614), - (0.2631578947368421, 4.7368421052631575, 0.9853783845901489), - (0.2631578947368421, 5.0, 0.9887233972549438), - (0.5263157894736842, 0.5263157894736842, 0.37137657403945923), - (0.5263157894736842, 0.7894736842105263, 0.43458759784698486), - (0.5263157894736842, 1.0526315789473684, 0.5), - (0.5263157894736842, 1.3157894736842104, 0.5654124021530151), - (0.5263157894736842, 1.5789473684210529, 0.6286234259605408), - (0.5263157894736842, 1.8421052631578947, 0.6877183318138123), - (0.5263157894736842, 2.1052631578947367, 0.7412799000740051), - (0.5263157894736842, 2.3684210526315788, 0.7884804010391235), - (0.5263157894736842, 2.631578947368421, 0.8290553689002991), - (0.5263157894736842, 2.8947368421052633, 0.8631975054740906), - (0.5263157894736842, 3.1578947368421053, 0.8914136290550232), - (0.5263157894736842, 3.421052631578948, 0.9143873453140259), - (0.5263157894736842, 3.684210526315789, 0.9328665137290955), - (0.5263157894736842, 3.947368421052632, 0.9475856423377991), - (0.5263157894736842, 4.2105263157894735, 0.9592186808586121), - (0.5263157894736842, 4.473684210526316, 0.9683560729026794), - (0.5263157894736842, 4.7368421052631575, 0.975498378276825), - (0.5263157894736842, 5.0, 0.9810601472854614), - (0.7894736842105263, 0.7894736842105263, 0.31228166818618774), - (0.7894736842105263, 1.0526315789473684, 0.37137657403945923), - (0.7894736842105263, 1.3157894736842104, 0.43458759784698486), - (0.7894736842105263, 1.5789473684210529, 0.5), - (0.7894736842105263, 1.8421052631578947, 0.5654124021530151), - (0.7894736842105263, 2.1052631578947367, 0.6286234259605408), - (0.7894736842105263, 2.3684210526315788, 0.6877182722091675), - (0.7894736842105263, 2.631578947368421, 0.7412799000740051), - (0.7894736842105263, 2.8947368421052633, 0.788480281829834), - (0.7894736842105263, 3.1578947368421053, 0.8290553689002991), - (0.7894736842105263, 3.421052631578948, 0.8631974458694458), - (0.7894736842105263, 3.684210526315789, 0.8914136290550232), - (0.7894736842105263, 3.947368421052632, 0.9143873453140259), - (0.7894736842105263, 4.2105263157894735, 0.9328665137290955), - (0.7894736842105263, 4.473684210526316, 0.9475856423377991), - (0.7894736842105263, 4.7368421052631575, 0.9592186808586121), - (0.7894736842105263, 5.0, 0.9683560729026794), - (1.0526315789473684, 1.0526315789473684, 0.2587200701236725), - (1.0526315789473684, 1.3157894736842104, 0.31228166818618774), - (1.0526315789473684, 1.5789473684210529, 0.37137657403945923), - (1.0526315789473684, 1.8421052631578947, 0.43458759784698486), - (1.0526315789473684, 2.1052631578947367, 0.5), - (1.0526315789473684, 2.3684210526315788, 0.5654124021530151), - (1.0526315789473684, 2.631578947368421, 0.628623366355896), - (1.0526315789473684, 2.8947368421052633, 0.6877182722091675), - (1.0526315789473684, 3.1578947368421053, 0.7412799000740051), - (1.0526315789473684, 3.421052631578948, 0.7884804010391235), - (1.0526315789473684, 3.684210526315789, 0.8290553689002991), - (1.0526315789473684, 3.947368421052632, 0.8631974458694458), - (1.0526315789473684, 4.2105263157894735, 0.8914136290550232), - (1.0526315789473684, 4.473684210526316, 0.9143873453140259), - (1.0526315789473684, 4.7368421052631575, 0.9328665137290955), - (1.0526315789473684, 5.0, 0.9475856423377991), - (1.3157894736842104, 1.3157894736842104, 0.21151967346668243), - (1.3157894736842104, 1.5789473684210529, 0.2587200999259949), - (1.3157894736842104, 1.8421052631578947, 0.31228169798851013), - (1.3157894736842104, 2.1052631578947367, 0.3713766038417816), - (1.3157894736842104, 2.3684210526315788, 0.43458759784698486), - (1.3157894736842104, 2.631578947368421, 0.5), - (1.3157894736842104, 2.8947368421052633, 0.5654124021530151), - (1.3157894736842104, 3.1578947368421053, 0.6286234855651855), - (1.3157894736842104, 3.421052631578948, 0.6877183318138123), - (1.3157894736842104, 3.684210526315789, 0.7412799000740051), - (1.3157894736842104, 3.947368421052632, 0.7884804010391235), - (1.3157894736842104, 4.2105263157894735, 0.8290553689002991), - (1.3157894736842104, 4.473684210526316, 0.8631975054740906), - (1.3157894736842104, 4.7368421052631575, 0.8914136290550232), - (1.3157894736842104, 5.0, 0.9143873453140259), - (1.5789473684210529, 1.5789473684210529, 0.17094460129737854), - (1.5789473684210529, 1.8421052631578947, 0.21151965856552124), - (1.5789473684210529, 2.1052631578947367, 0.2587200701236725), - (1.5789473684210529, 2.3684210526315788, 0.31228166818618774), - (1.5789473684210529, 2.631578947368421, 0.37137654423713684), - (1.5789473684210529, 2.8947368421052633, 0.4345875084400177), - (1.5789473684210529, 3.1578947368421053, 0.5), - (1.5789473684210529, 3.421052631578948, 0.5654124021530151), - (1.5789473684210529, 3.684210526315789, 0.6286234259605408), - (1.5789473684210529, 3.947368421052632, 0.6877183318138123), - (1.5789473684210529, 4.2105263157894735, 0.7412799000740051), - (1.5789473684210529, 4.473684210526316, 0.788480281829834), - (1.5789473684210529, 4.7368421052631575, 0.8290553689002991), - (1.5789473684210529, 5.0, 0.8631974458694458), - (1.8421052631578947, 1.8421052631578947, 0.13680249452590942), - (1.8421052631578947, 2.1052631578947367, 0.17094461619853973), - (1.8421052631578947, 2.3684210526315788, 0.21151967346668243), - (1.8421052631578947, 2.631578947368421, 0.2587200701236725), - (1.8421052631578947, 2.8947368421052633, 0.31228166818618774), - (1.8421052631578947, 3.1578947368421053, 0.3713766038417816), - (1.8421052631578947, 3.421052631578948, 0.43458759784698486), - (1.8421052631578947, 3.684210526315789, 0.5), - (1.8421052631578947, 3.947368421052632, 0.5654124021530151), - (1.8421052631578947, 4.2105263157894735, 0.6286234259605408), - (1.8421052631578947, 4.473684210526316, 0.6877183318138123), - (1.8421052631578947, 4.7368421052631575, 0.7412799000740051), - (1.8421052631578947, 5.0, 0.788480281829834), - (2.1052631578947367, 2.1052631578947367, 0.10858631134033203), - (2.1052631578947367, 2.3684210526315788, 0.13680247962474823), - (2.1052631578947367, 2.631578947368421, 0.17094458639621735), - (2.1052631578947367, 2.8947368421052633, 0.21151962876319885), - (2.1052631578947367, 3.1578947368421053, 0.2587200701236725), - (2.1052631578947367, 3.421052631578948, 0.31228166818618774), - (2.1052631578947367, 3.684210526315789, 0.37137654423713684), - (2.1052631578947367, 3.947368421052632, 0.4345875084400177), - (2.1052631578947367, 4.2105263157894735, 0.5), - (2.1052631578947367, 4.473684210526316, 0.5654124021530151), - (2.1052631578947367, 4.7368421052631575, 0.628623366355896), - (2.1052631578947367, 5.0, 0.6877182722091675), - (2.3684210526315788, 2.3684210526315788, 0.08561266213655472), - (2.3684210526315788, 2.631578947368421, 0.10858631134033203), - (2.3684210526315788, 2.8947368421052633, 0.13680247962474823), - (2.3684210526315788, 3.1578947368421053, 0.17094461619853973), - (2.3684210526315788, 3.421052631578948, 0.21151967346668243), - (2.3684210526315788, 3.684210526315789, 0.2587200701236725), - (2.3684210526315788, 3.947368421052632, 0.31228166818618774), - (2.3684210526315788, 4.2105263157894735, 0.3713766038417816), - (2.3684210526315788, 4.473684210526316, 0.43458759784698486), - (2.3684210526315788, 4.7368421052631575, 0.5), - (2.3684210526315788, 5.0, 0.5654124021530151), - (2.631578947368421, 2.631578947368421, 0.06713350117206573), - (2.631578947368421, 2.8947368421052633, 0.08561266213655472), - (2.631578947368421, 3.1578947368421053, 0.10858633369207382), - (2.631578947368421, 3.421052631578948, 0.13680250942707062), - (2.631578947368421, 3.684210526315789, 0.17094461619853973), - (2.631578947368421, 3.947368421052632, 0.21151967346668243), - (2.631578947368421, 4.2105263157894735, 0.25872012972831726), - (2.631578947368421, 4.473684210526316, 0.3122817277908325), - (2.631578947368421, 4.7368421052631575, 0.3713766038417816), - (2.631578947368421, 5.0, 0.43458759784698486), - (2.8947368421052633, 2.8947368421052633, 0.052414361387491226), - (2.8947368421052633, 3.1578947368421053, 0.06713351607322693), - (2.8947368421052633, 3.421052631578948, 0.08561268448829651), - (2.8947368421052633, 3.684210526315789, 0.10858633369207382), - (2.8947368421052633, 3.947368421052632, 0.13680250942707062), - (2.8947368421052633, 4.2105263157894735, 0.17094466090202332), - (2.8947368421052633, 4.473684210526316, 0.21151971817016602), - (2.8947368421052633, 4.7368421052631575, 0.25872012972831726), - (2.8947368421052633, 5.0, 0.3122817277908325), - (3.1578947368421053, 3.1578947368421053, 0.04078132286667824), - (3.1578947368421053, 3.421052631578948, 0.052414342761039734), - (3.1578947368421053, 3.684210526315789, 0.06713348627090454), - (3.1578947368421053, 3.947368421052632, 0.08561263978481293), - (3.1578947368421053, 4.2105263157894735, 0.10858631134033203), - (3.1578947368421053, 4.473684210526316, 0.13680247962474823), - (3.1578947368421053, 4.7368421052631575, 0.17094458639621735), - (3.1578947368421053, 5.0, 0.21151962876319885), - (3.421052631578948, 3.421052631578948, 0.031643956899642944), - (3.421052631578948, 3.684210526315789, 0.04078132286667824), - (3.421052631578948, 3.947368421052632, 0.052414342761039734), - (3.421052631578948, 4.2105263157894735, 0.06713350117206573), - (3.421052631578948, 4.473684210526316, 0.08561266213655472), - (3.421052631578948, 4.7368421052631575, 0.10858631134033203), - (3.421052631578948, 5.0, 0.13680247962474823), - (3.684210526315789, 3.684210526315789, 0.024501590058207512), - (3.684210526315789, 3.947368421052632, 0.031643956899642944), - (3.684210526315789, 4.2105263157894735, 0.04078133404254913), - (3.684210526315789, 4.473684210526316, 0.052414361387491226), - (3.684210526315789, 4.7368421052631575, 0.06713350117206573), - (3.684210526315789, 5.0, 0.08561266213655472), - (3.947368421052632, 3.947368421052632, 0.018939798697829247), - (3.947368421052632, 4.2105263157894735, 0.02450159564614296), - (3.947368421052632, 4.473684210526316, 0.03164396435022354), - (3.947368421052632, 4.7368421052631575, 0.04078133404254913), - (3.947368421052632, 5.0, 0.052414361387491226), - (4.2105263157894735, 4.2105263157894735, 0.01462159026414156), - (4.2105263157894735, 4.473684210526316, 0.0189397931098938), - (4.2105263157894735, 4.7368421052631575, 0.024501584470272064), - (4.2105263157894735, 5.0, 0.03164394944906235), - (4.473684210526316, 4.473684210526316, 0.011276605539023876), - (4.473684210526316, 4.7368421052631575, 0.01462159026414156), - (4.473684210526316, 5.0, 0.0189397931098938), - (4.7368421052631575, 4.7368421052631575, 0.008690104819834232), - (4.7368421052631575, 5.0, 0.011276605539023876), - (5.0, 5.0, 0.006692850962281227), - ] - ), - ) - - X, y = raw_data[["S1", "S2"]], raw_data["difference_detected"] - estimator = BMSRegressor(epochs=30) - estimator.fit(X, y) - # print(X_train) - # print(estimator.model_) - # print(estimator.predict(X_test)) - - -if __name__ == "__main__": - test_weber_model() diff --git a/tests/test_sklearn_darts.py b/tests/test_sklearn_darts.py deleted file mode 100644 index fb4d18f9c..000000000 --- a/tests/test_sklearn_darts.py +++ /dev/null @@ -1,315 +0,0 @@ -from copy import deepcopy - -import numpy as np -import pandas as pd -import pytest -import torch -from sklearn.model_selection import GridSearchCV, train_test_split - -from autora.skl.darts import ( - PRIMITIVES, - DARTSExecutionMonitor, - DARTSRegressor, - DARTSType, - ValueType, -) - - -@pytest.fixture -def seed(): - """ - Ensures that the results are the same each time the tests are run. - """ - torch.manual_seed(180) - return - - -def generate_noisy_constant_data( - const: float = 0.5, epsilon: float = 0.01, num: int = 1000, seed: int = 42 -): - X = np.expand_dims(np.linspace(start=0, stop=1, num=num), 1) - y = np.random.default_rng(seed).normal(loc=const, scale=epsilon, size=num) - return X, y, const, epsilon - - -def generate_constant_data(const: float = 0.5, num: int = 1000): - X = np.expand_dims(np.linspace(start=0, stop=1, num=num), 1) - y = const * np.ones(num) - return X, y, const - - -def generate_noisy_linear_data( - const: float = 0.5, - gradient=0.25, - epsilon: float = 0.01, - num: int = 1000, - seed: int = 42, - start: float = 0, - stop: float = 1, -): - X = np.expand_dims(np.linspace(start=start, stop=stop, num=num), 1) - y = ( - (gradient * X.ravel()) - + const - + np.random.default_rng(seed).normal(loc=0, scale=epsilon, size=num) - ) - return ( - X, - y, - const, - gradient, - epsilon, - ) - - -def test_constant_model(seed): - - X, y, const, epsilon = generate_noisy_constant_data() - - X_train, X_test, y_train, y_test = train_test_split( - X, y, test_size=0.2, random_state=42 - ) - - estimator = DARTSRegressor(num_graph_nodes=1) - - estimator.fit(X_train, y_train) - - assert estimator is not None - - for y_pred_i in np.nditer(estimator.predict(X_test)): - assert (const - (5.0 * epsilon)) <= y_pred_i <= (const + (5.0 * epsilon)) - - print(estimator.network_) - - -def test_enum_string_inputs(): - - X, y, const, epsilon = generate_noisy_constant_data() - - kwargs = dict( - num_graph_nodes=1, - max_epochs=1, - arch_updates_per_epoch=1, - param_updates_per_epoch=1, - ) - - DARTSRegressor(darts_type="fair", **kwargs).fit(X, y) - DARTSRegressor(darts_type=DARTSType.FAIR, **kwargs).fit(X, y) - DARTSRegressor(darts_type="original", **kwargs).fit(X, y) - DARTSRegressor(darts_type=DARTSType.ORIGINAL, **kwargs).fit(X, y) - - DARTSRegressor(output_type="probability", **kwargs).fit(X, y) - DARTSRegressor(output_type=ValueType.PROBABILITY, **kwargs).fit(X, y) - DARTSRegressor(output_type=ValueType.PROBABILITY_SAMPLE, **kwargs).fit(X, y) - DARTSRegressor(output_type="probability_distribution", **kwargs).fit(X, y) - DARTSRegressor(output_type=ValueType.PROBABILITY_DISTRIBUTION, **kwargs).fit(X, y) - with pytest.raises(NotImplementedError): - DARTSRegressor(output_type="class", **kwargs).fit(X, y) - with pytest.raises(NotImplementedError): - DARTSRegressor(output_type=ValueType.CLASS, **kwargs).fit(X, y) - - -def test_model_repr(): - - X, y, const, epsilon = generate_noisy_constant_data() - - kwargs = dict( - max_epochs=1, - arch_updates_per_epoch=1, - param_updates_per_epoch=1, - ) - - print(DARTSRegressor(num_graph_nodes=1, **kwargs).fit(X, y).model_repr()) - print(DARTSRegressor(num_graph_nodes=2, **kwargs).fit(X, y).model_repr()) - print(DARTSRegressor(num_graph_nodes=4, **kwargs).fit(X, y).model_repr()) - print(DARTSRegressor(num_graph_nodes=8, **kwargs).fit(X, y).model_repr()) - print(DARTSRegressor(num_graph_nodes=16, **kwargs).fit(X, y).model_repr()) - - -def test_primitive_selection(): - X, y, const, epsilon = generate_noisy_constant_data() - - kwargs = dict( - num_graph_nodes=1, - max_epochs=1, - arch_updates_per_epoch=1, - param_updates_per_epoch=1, - ) - - DARTSRegressor(primitives=["add", "subtract", "none"], **kwargs).fit(X, y) - DARTSRegressor(primitives=PRIMITIVES, **kwargs).fit(X, y) - with pytest.raises(NotImplementedError): - NotImplementedError, DARTSRegressor(primitives=["doesnt_exist"], **kwargs).fit( - X, y - ) - - -def test_fit_with_fixed_architecture(): - X, y, _, _, _ = generate_noisy_linear_data( - start=-5, stop=+5, const=10.0, gradient=20.0 - ) - X1, y1, _, _, _ = generate_noisy_linear_data( - start=-5, stop=+5, const=10.0, gradient=5.0 - ) - - # Initialize the fitter - regressor = DARTSRegressor( - primitives=["linear", "mult"], - num_graph_nodes=1, - ) - - # First fit: normal fitting - regressor.set_params( - max_epochs=500, - arch_updates_per_epoch=1, - param_updates_per_epoch=50, - param_updates_for_sampled_model=1000, - ) - regressor.fit(X, y) - network_weights_initial = deepcopy(regressor.network_.alphas_normal) - equation_initial = regressor.model_repr() - print(equation_initial) - - # Refit by setting epochs to one and arch updates to zero, and fit some different data - regressor.set_params( - max_epochs=0, - param_updates_for_sampled_model=1000, - ) - regressor.fit(X1, y1) - network_weights_refitted = deepcopy(regressor.network_.alphas_normal) - equation_refitted = regressor.model_repr() - print(equation_refitted) - - # Architecture weights should be the same - assert torch.all(network_weights_initial.eq(network_weights_refitted)) - - # ... but equations should be different - assert equation_initial != equation_refitted - - # Now refit using the "sampler". - regressor.set_params( - max_epochs=0, - param_updates_for_sampled_model=1000, - sampling_strategy="sample", - ) - regressor.fit(X1, y1) - equation_resampled = regressor.model_repr() - print(equation_resampled) - - # Now return to the original settings and recover the original results. - regressor.set_params( - max_epochs=0, - param_updates_for_sampled_model=1000, - sampling_strategy="max", - ) - regressor.fit(X, y) - network_weights_max_recovered = deepcopy(regressor.network_.alphas_normal) - equation_max_recovered = regressor.model_repr() - print(equation_max_recovered) - assert equation_initial == equation_max_recovered - assert torch.all(network_weights_initial.eq(network_weights_max_recovered)) - - -def test_metaparam_optimization(): - - X, y, const = generate_constant_data() - - X_train, X_test, y_train, y_test = train_test_split( - X, y, test_size=0.2, random_state=42 - ) - - estimator = GridSearchCV( - estimator=DARTSRegressor(), - cv=2, - param_grid=[ - { - "max_epochs": [1, 5], - "arch_updates_per_epoch": [5, 10], - "num_graph_nodes": [1, 2], - } - ], - ) - - estimator.fit(X_train, y_train) - - -def test_execution_monitor(): - - X, y, const, epsilon = generate_noisy_constant_data() - - kwargs = dict() - - execution_monitor_0 = DARTSExecutionMonitor() - - DARTSRegressor( - primitives=["add", "subtract", "none", "mult", "logistic"], - execution_monitor=execution_monitor_0.execution_monitor, - num_graph_nodes=3, - max_epochs=100, - param_updates_per_epoch=100, - **kwargs - ).fit(X, y) - execution_monitor_0.display() - - execution_monitor_1 = DARTSExecutionMonitor() - DARTSRegressor( - primitives=["add", "ln"], - num_graph_nodes=5, - max_epochs=100, - param_updates_per_epoch=100, - execution_monitor=execution_monitor_1.execution_monitor, - **kwargs - ).fit(X, y) - execution_monitor_1.display() - - execution_monitor_2 = DARTSExecutionMonitor() - DARTSRegressor( - primitives=["add", "subtract", "none", "mult", "logistic"], - execution_monitor=execution_monitor_2.execution_monitor, - num_graph_nodes=1, - max_epochs=100, - param_updates_per_epoch=100, - **kwargs - ).fit(X, y) - execution_monitor_2.display() - - -def test_label_getter(): - - X, y, _ = generate_constant_data(num=10) - df = pd.DataFrame( - { - "input_x1": X.ravel(), - "input_x2": X.ravel(), - "output_y1": y.ravel(), - "output_y2": y.ravel(), - } - ) - kwargs = dict(num_graph_nodes=1, max_epochs=0, param_updates_for_sampled_model=0) - - input_dataframe_single_column = df[["input_x1"]] - input_dataframe_multi_column = df[["input_x1", "input_x2"]] - - # The input "series" case is not supported – we enforce 2d inputs for the X values - - output_dataframe_single_column = df[["output_y1"]] - output_series_single_column = df["output_y1"] - output_dataframe_multi_column = df[["output_y1", "output_y2"]] - - estimator0 = DARTSRegressor(**kwargs).fit( - input_dataframe_single_column, output_dataframe_single_column - ) - assert estimator0._get_input_labels() == ("input_x1",) - assert estimator0._get_output_labels() == ("output_y1",) - - estimator0 = DARTSRegressor(**kwargs).fit( - input_dataframe_single_column, output_series_single_column - ) - assert estimator0._get_input_labels() == ("input_x1",) - assert estimator0._get_output_labels() == ("output_y1",) - - estimator1 = DARTSRegressor(**kwargs).fit( - input_dataframe_multi_column, output_dataframe_multi_column - ) - assert estimator1._get_input_labels() == ("input_x1", "input_x2") - assert estimator1._get_output_labels() == ("output_y1", "output_y2") diff --git a/tests/test_sklearn_pipeline.py b/tests/test_sklearn_pipeline.py deleted file mode 100644 index fa130fa5c..000000000 --- a/tests/test_sklearn_pipeline.py +++ /dev/null @@ -1,56 +0,0 @@ -import numpy as np -import sklearn.pipeline as skp -from sklearn.linear_model import LogisticRegression -from sklearn.preprocessing import StandardScaler - -from autora.cycle import Cycle -from autora.experimentalist.pipeline import Pipeline -from autora.experimentalist.sampler import random_sampler -from autora.variable import Variable, VariableCollection - - -def test_skpipe_theory_copy(): - """Checks that a deep copy is performed when the autora.Cycle is copying the theorist.""" - - X = np.linspace(0, 1, 10) - - # Variable Metadata - study_metadata = VariableCollection( - independent_variables=[ - Variable(name="x", units="cm", allowed_values=np.linspace(0, 1, 100)), - ], - dependent_variables=[Variable(name="class", allowed_values=[0, 1])], - ) - - # Theorist with skl Pipeline - clf = skp.Pipeline([("scaler", StandardScaler()), ("lr", LogisticRegression())]) - - # Experimentalist - experimentalist = Pipeline( - [ - ("pool", X), - ("sampler", random_sampler), - ], - params={ - "sampler": {"n": 15}, - }, - ) - - # Experiment Runner - def experiment_runner(xs): - y_return = np.where(xs > 0.5, 1, 0) - return y_return - - cycle = Cycle( - metadata=study_metadata, - theorist=clf, - experimentalist=experimentalist, - experiment_runner=experiment_runner, - ) - cycle.run(6) - - # Check that the memory space of all estimators are different - l_memory = [id(s["lr"]) for s in cycle.data.theories] - n_unique = len(np.unique(l_memory)) - n_theories = len(cycle.data.theories) - assert n_unique == n_theories diff --git a/tests/test_summed_dissimilarity_sampler.py b/tests/test_summed_dissimilarity_sampler.py deleted file mode 100644 index d67c0d52f..000000000 --- a/tests/test_summed_dissimilarity_sampler.py +++ /dev/null @@ -1,32 +0,0 @@ -import numpy as np - -from autora.experimentalist.sampler.dissimilarity import summed_dissimilarity_sampler - - -def test_dissimilarity_sampler_1D(): - - num_samples = 2 - - # define two matrices - matrix1 = np.array([1, 2, 3, 4, 5, 6, 7, 8, 9, 10]) - matrix2 = np.array([1, 2, 3]) - - # reorder matrix1 according to its distances to matrix2 - reordered_matrix1 = summed_dissimilarity_sampler(matrix1, matrix2, n=num_samples) - - assert reordered_matrix1.shape[0] == num_samples - assert reordered_matrix1.shape[1] == 1 - assert np.array_equal(reordered_matrix1, np.array([[10], [9]])) - - -def test_dissimilarity_sampler_ND(): - # define two matrices - matrix1 = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9], [10, 11, 12]]) - matrix2 = np.array([[1, 1, 1], [2, 2, 2], [3, 3, 3]]) - - # reorder matrix1 according to its distances to matrix2 - reordered_matrix1 = summed_dissimilarity_sampler(matrix1, matrix2, n=2) - - assert reordered_matrix1.shape[0] == 2 - assert reordered_matrix1.shape[1] == 3 - assert np.array_equal(reordered_matrix1, np.array([[10, 11, 12], [7, 8, 9]])) diff --git a/tests/test_synthetic_inventory.py b/tests/test_synthetic_inventory.py deleted file mode 100644 index 9070c6836..000000000 --- a/tests/test_synthetic_inventory.py +++ /dev/null @@ -1,22 +0,0 @@ -import autora.synthetic -from autora.synthetic.inventory import SyntheticExperimentCollection -from autora.variable import VariableCollection - - -def test_model_registration_retrieval(): - # We can register a model and retrieve it - autora.synthetic.register("empty", lambda: SyntheticExperimentCollection()) - empty = autora.synthetic.retrieve("empty") - assert empty.name is None - - # We can register another model and retrieve it as well - autora.synthetic.register( - "only_metadata", - lambda: SyntheticExperimentCollection(metadata=VariableCollection()), - ) - only_metadata = autora.synthetic.retrieve("only_metadata") - assert only_metadata.metadata is not None - - # We can still retrieve the first model, and it is equal to the first version - empty_copy = autora.synthetic.retrieve("empty") - assert empty_copy == empty diff --git a/tests/test_system.py b/tests/test_system.py deleted file mode 100644 index c1191b316..000000000 --- a/tests/test_system.py +++ /dev/null @@ -1,13 +0,0 @@ -import autora -import autora.skl.darts as skl_darts -import autora.theorist.darts as theorist_darts - - -def test_import(): - assert autora is not None - - assert skl_darts.DARTSRegressor is not None - assert skl_darts.DARTSExecutionMonitor is not None - - assert theorist_darts.Network is not None - assert theorist_darts.Architect is not None diff --git a/tests/test_uncertainty_sampler.py b/tests/test_uncertainty_sampler.py deleted file mode 100644 index 237c1a32c..000000000 --- a/tests/test_uncertainty_sampler.py +++ /dev/null @@ -1,128 +0,0 @@ -from math import log - -import numpy as np -import pandas as pd -import pytest -from sklearn.linear_model import LogisticRegression - -from autora.experimentalist.sampler import uncertainty_sampler - - -@pytest.fixture -def synthetic_lr_model(): - """ - Creates logistic regression classifier for 3 classes based on synthetic data. - """ - n = 100 - X = ([[1, 0, 0]] * n) + ([[0, 1, 0]] * n) + ([[0, 0, 1]] * n) - y = ([0] * n) + ([1] * n) + ([2] * n) - model = LogisticRegression() - model.fit(X, y) - return model - - -@pytest.fixture -def data_to_test(): - data = np.array( - [ - [1, 0, 0], - [0, 1, 0], - [0.8, 0.2, 0], - [0.7, 0.3, 0], - [0.6, 0.4, 0], - [0.5, 0.5, 0], - [0.4, 0.3, 0.2], # doesn't sum to 1 - [0.4, 0.4, 0.2], - ] - ) - return data - - -def test_uncertainty_least_confident(synthetic_lr_model, data_to_test): - # Import model and data - model = synthetic_lr_model - X = data_to_test - - # Run uncertainty sampler with least confident measure - samples = uncertainty_sampler(X, model, 5, measure="least_confident") - - assert np.array_equal( - samples, - np.array( - [ - # Least confident because 0.4s are equal - # and 0.2 is different again - [0.4, 0.4, 0.2], - [0.5, 0.5, 0], - [0.4, 0.3, 0.2], - [0.6, 0.4, 0], - # Most confident of the least-confident 5 because 0.7 is higher - # than all the other highest probabilities - [0.7, 0.3, 0], - ] - ), - ) - - -def test_uncertainty_margin(synthetic_lr_model, data_to_test): - model = synthetic_lr_model - X = data_to_test - - # Run uncertainty sampler with margin measure - samples = uncertainty_sampler(X, model, 5, measure="margin") - - assert np.array_equal( - samples, - np.array( - [ - [ - 0.4, - 0.4, - 0.2, - ], # For numerical reasons, this comes out first even though ... - [ - 0.5, - 0.5, - 0, - ], # ... the margin between class 0 and 1 in *this* case is also zero - [0.4, 0.3, 0.2], - [0.6, 0.4, 0], - [0.7, 0.3, 0], - ] - ), - ) - - -def test_uncertainty_entropy(synthetic_lr_model, data_to_test): - model = synthetic_lr_model - X = data_to_test - - # Run uncertainty sampler with margin measure - samples = uncertainty_sampler(X, model, 5, measure="entropy") - - # Manual Calculation - mat_prob = model.predict_proba(X) - l_entropy = [] - for l_prob in mat_prob: - l_entropy.append(-np.sum([s * log(s) for s in l_prob])) - s_entropy = pd.Series(l_entropy).sort_values(ascending=False) - idx = s_entropy.index.values[0:5] - manual_samples = X[idx] - - assert np.array_equal(samples, manual_samples) - - -def test_uncertainty_entropy_vs_margin(synthetic_lr_model, data_to_test): - """ - Test data should yield different results. Condition [0.4, 0.3, 0.2] should have the greatest - entropy but less margin than conditions [0.4, 0.4, 0.2] and [0.5, 0.5, 0. ]. - """ - model = synthetic_lr_model - X = data_to_test - - # Run uncertainty sampler with entropy and margin measures to compare - samples_entropy = uncertainty_sampler(X, model, 1, measure="entropy") - samples_margin = uncertainty_sampler(X, model, 2, measure="margin") - - assert np.array_equal(samples_entropy, np.array([[0.4, 0.3, 0.2]])) - assert np.array_equal(samples_margin, np.array([[0.4, 0.4, 0.2], [0.5, 0.5, 0.0]])) From b2ed6a1b87d5c5e6f6b7f38470bd095e2bc39e56 Mon Sep 17 00:00:00 2001 From: John Gerrard Holland Date: Thu, 6 Apr 2023 11:09:01 -0400 Subject: [PATCH 002/130] deps: change dependencies to autora-core and autora-darts --- poetry.lock | 1323 +++++------------------------------------------- pyproject.toml | 27 +- 2 files changed, 132 insertions(+), 1218 deletions(-) diff --git a/poetry.lock b/poetry.lock index b71bcdd18..9dba40871 100644 --- a/poetry.lock +++ b/poetry.lock @@ -1,129 +1,19 @@ -# This file is automatically @generated by Poetry and should not be changed by hand. +# This file is automatically @generated by Poetry 1.4.2 and should not be changed by hand. [[package]] -name = "anyio" -version = "3.6.2" -description = "High level compatibility layer for multiple asynchronous event loop implementations" -category = "dev" -optional = false -python-versions = ">=3.6.2" -files = [ - {file = "anyio-3.6.2-py3-none-any.whl", hash = "sha256:fbbe32bd270d2a2ef3ed1c5d45041250284e31fc0a4df4a5a6071842051a51e3"}, - {file = "anyio-3.6.2.tar.gz", hash = "sha256:25ea0d673ae30af41a0c442f81cf3b38c7e79fdc7b60335a4c14e05eb0947421"}, -] - -[package.dependencies] -idna = ">=2.8" -sniffio = ">=1.1" - -[package.extras] -doc = ["packaging", "sphinx-autodoc-typehints (>=1.2.0)", "sphinx-rtd-theme"] -test = ["contextlib2", "coverage[toml] (>=4.5)", "hypothesis (>=4.0)", "mock (>=4)", "pytest (>=7.0)", "pytest-mock (>=3.6.1)", "trustme", "uvloop (<0.15)", "uvloop (>=0.15)"] -trio = ["trio (>=0.16,<0.22)"] - -[[package]] -name = "appnope" -version = "0.1.3" -description = "Disable App Nap on macOS >= 10.9" -category = "dev" -optional = false -python-versions = "*" -files = [ - {file = "appnope-0.1.3-py2.py3-none-any.whl", hash = "sha256:265a455292d0bd8a72453494fa24df5a11eb18373a60c7c0430889f22548605e"}, - {file = "appnope-0.1.3.tar.gz", hash = "sha256:02bd91c4de869fbb1e1c50aafc4098827a7a54ab2f39d9dcba6c9547ed920e24"}, -] - -[[package]] -name = "argon2-cffi" -version = "21.3.0" -description = "The secure Argon2 password hashing algorithm." -category = "dev" -optional = false -python-versions = ">=3.6" -files = [ - {file = "argon2-cffi-21.3.0.tar.gz", hash = "sha256:d384164d944190a7dd7ef22c6aa3ff197da12962bd04b17f64d4e93d934dba5b"}, - {file = "argon2_cffi-21.3.0-py3-none-any.whl", hash = "sha256:8c976986f2c5c0e5000919e6de187906cfd81fb1c72bf9d88c01177e77da7f80"}, -] - -[package.dependencies] -argon2-cffi-bindings = "*" - -[package.extras] -dev = ["cogapp", "coverage[toml] (>=5.0.2)", "furo", "hypothesis", "pre-commit", "pytest", "sphinx", "sphinx-notfound-page", "tomli"] -docs = ["furo", "sphinx", "sphinx-notfound-page"] -tests = ["coverage[toml] (>=5.0.2)", "hypothesis", "pytest"] - -[[package]] -name = "argon2-cffi-bindings" -version = "21.2.0" -description = "Low-level CFFI bindings for Argon2" -category = "dev" -optional = false -python-versions = ">=3.6" -files = [ - {file = "argon2-cffi-bindings-21.2.0.tar.gz", hash = "sha256:bb89ceffa6c791807d1305ceb77dbfacc5aa499891d2c55661c6459651fc39e3"}, - {file = "argon2_cffi_bindings-21.2.0-cp36-abi3-macosx_10_9_x86_64.whl", hash = "sha256:ccb949252cb2ab3a08c02024acb77cfb179492d5701c7cbdbfd776124d4d2367"}, - {file = "argon2_cffi_bindings-21.2.0-cp36-abi3-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:9524464572e12979364b7d600abf96181d3541da11e23ddf565a32e70bd4dc0d"}, - {file = "argon2_cffi_bindings-21.2.0-cp36-abi3-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:b746dba803a79238e925d9046a63aa26bf86ab2a2fe74ce6b009a1c3f5c8f2ae"}, - {file = "argon2_cffi_bindings-21.2.0-cp36-abi3-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:58ed19212051f49a523abb1dbe954337dc82d947fb6e5a0da60f7c8471a8476c"}, - {file = "argon2_cffi_bindings-21.2.0-cp36-abi3-musllinux_1_1_aarch64.whl", hash = "sha256:bd46088725ef7f58b5a1ef7ca06647ebaf0eb4baff7d1d0d177c6cc8744abd86"}, - {file = "argon2_cffi_bindings-21.2.0-cp36-abi3-musllinux_1_1_i686.whl", hash = "sha256:8cd69c07dd875537a824deec19f978e0f2078fdda07fd5c42ac29668dda5f40f"}, - {file = "argon2_cffi_bindings-21.2.0-cp36-abi3-musllinux_1_1_x86_64.whl", hash = "sha256:f1152ac548bd5b8bcecfb0b0371f082037e47128653df2e8ba6e914d384f3c3e"}, - {file = "argon2_cffi_bindings-21.2.0-cp36-abi3-win32.whl", hash = "sha256:603ca0aba86b1349b147cab91ae970c63118a0f30444d4bc80355937c950c082"}, - {file = "argon2_cffi_bindings-21.2.0-cp36-abi3-win_amd64.whl", hash = "sha256:b2ef1c30440dbbcba7a5dc3e319408b59676e2e039e2ae11a8775ecf482b192f"}, - {file = "argon2_cffi_bindings-21.2.0-cp38-abi3-macosx_10_9_universal2.whl", hash = "sha256:e415e3f62c8d124ee16018e491a009937f8cf7ebf5eb430ffc5de21b900dad93"}, - {file = "argon2_cffi_bindings-21.2.0-pp37-pypy37_pp73-macosx_10_9_x86_64.whl", hash = "sha256:3e385d1c39c520c08b53d63300c3ecc28622f076f4c2b0e6d7e796e9f6502194"}, - {file = "argon2_cffi_bindings-21.2.0-pp37-pypy37_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:2c3e3cc67fdb7d82c4718f19b4e7a87123caf8a93fde7e23cf66ac0337d3cb3f"}, - {file = "argon2_cffi_bindings-21.2.0-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:6a22ad9800121b71099d0fb0a65323810a15f2e292f2ba450810a7316e128ee5"}, - {file = "argon2_cffi_bindings-21.2.0-pp37-pypy37_pp73-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:f9f8b450ed0547e3d473fdc8612083fd08dd2120d6ac8f73828df9b7d45bb351"}, - {file = "argon2_cffi_bindings-21.2.0-pp37-pypy37_pp73-win_amd64.whl", hash = "sha256:93f9bf70084f97245ba10ee36575f0c3f1e7d7724d67d8e5b08e61787c320ed7"}, - {file = "argon2_cffi_bindings-21.2.0-pp38-pypy38_pp73-macosx_10_9_x86_64.whl", hash = "sha256:3b9ef65804859d335dc6b31582cad2c5166f0c3e7975f324d9ffaa34ee7e6583"}, - {file = "argon2_cffi_bindings-21.2.0-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:d4966ef5848d820776f5f562a7d45fdd70c2f330c961d0d745b784034bd9f48d"}, - {file = "argon2_cffi_bindings-21.2.0-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:20ef543a89dee4db46a1a6e206cd015360e5a75822f76df533845c3cbaf72670"}, - {file = "argon2_cffi_bindings-21.2.0-pp38-pypy38_pp73-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:ed2937d286e2ad0cc79a7087d3c272832865f779430e0cc2b4f3718d3159b0cb"}, - {file = "argon2_cffi_bindings-21.2.0-pp38-pypy38_pp73-win_amd64.whl", hash = "sha256:5e00316dabdaea0b2dd82d141cc66889ced0cdcbfa599e8b471cf22c620c329a"}, -] - -[package.dependencies] -cffi = ">=1.0.1" - -[package.extras] -dev = ["cogapp", "pre-commit", "pytest", "wheel"] -tests = ["pytest"] - -[[package]] -name = "arrow" -version = "1.2.3" -description = "Better dates & times for Python" -category = "dev" -optional = false -python-versions = ">=3.6" -files = [ - {file = "arrow-1.2.3-py3-none-any.whl", hash = "sha256:5a49ab92e3b7b71d96cd6bfcc4df14efefc9dfa96ea19045815914a6ab6b1fe2"}, - {file = "arrow-1.2.3.tar.gz", hash = "sha256:3934b30ca1b9f292376d9db15b19446088d12ec58629bc3f0da28fd55fb633a1"}, -] - -[package.dependencies] -python-dateutil = ">=2.7.0" - -[[package]] -name = "asttokens" -version = "2.2.1" -description = "Annotate AST trees with source code positions" -category = "dev" +name = "asyncio" +version = "3.4.3" +description = "reference implementation of PEP 3156" +category = "main" optional = false python-versions = "*" files = [ - {file = "asttokens-2.2.1-py2.py3-none-any.whl", hash = "sha256:6b0ac9e93fb0335014d382b8fa9b3afa7df546984258005da0b9e7095b3deb1c"}, - {file = "asttokens-2.2.1.tar.gz", hash = "sha256:4622110b2a6f30b77e1473affaa97e711bc2f07d3f10848420ff1898edbe94f3"}, + {file = "asyncio-3.4.3-cp33-none-win32.whl", hash = "sha256:b62c9157d36187eca799c378e572c969f0da87cd5fc42ca372d92cdb06e7e1de"}, + {file = "asyncio-3.4.3-cp33-none-win_amd64.whl", hash = "sha256:c46a87b48213d7464f22d9a497b9eef8c1928b68320a2fa94240f969f6fec08c"}, + {file = "asyncio-3.4.3-py3-none-any.whl", hash = "sha256:c4d18b22701821de07bd6aea8b53d21449ec0ec5680645e5317062ea21817d2d"}, + {file = "asyncio-3.4.3.tar.gz", hash = "sha256:83360ff8bc97980e4ff25c964c7bd3923d333d177aa4f7fb736b019f26c7cb41"}, ] -[package.dependencies] -six = "*" - -[package.extras] -test = ["astroid", "pytest"] - [[package]] name = "attrs" version = "22.2.0" @@ -144,17 +34,41 @@ tests = ["attrs[tests-no-zope]", "zope.interface"] tests-no-zope = ["cloudpickle", "cloudpickle", "hypothesis", "hypothesis", "mypy (>=0.971,<0.990)", "mypy (>=0.971,<0.990)", "pympler", "pympler", "pytest (>=4.3.0)", "pytest (>=4.3.0)", "pytest-mypy-plugins", "pytest-mypy-plugins", "pytest-xdist[psutil]", "pytest-xdist[psutil]"] [[package]] -name = "backcall" -version = "0.2.0" -description = "Specifications for callback functions passed in to an API" -category = "dev" +name = "autora-core" +version = "3.0.0a2" +description = "Autonomous Research Assistant (AutoRA) is a framework for automating steps of the empirical research process. This framework implements tools for autonomously and iteratively generating 1) new theories to describe real-world data, and 2) experiments to invalidate those theories and seed a new cycle of theory-making. The experiments will be run online via crowd-sourcing platforms (MTurk, Prolific)." +category = "main" optional = false -python-versions = "*" +python-versions = ">=3.8.10,<3.11" +files = [ + {file = "autora_core-3.0.0a2-py3-none-any.whl", hash = "sha256:d546038cba6bfa85ea1ff193550d4427e0c5481b920e381c1c1fe5d9b9107587"}, + {file = "autora_core-3.0.0a2.tar.gz", hash = "sha256:6b098088bfd38d722aa27c1056de8553768de596f98b243fb36ea4c9eae1a077"}, +] + +[package.dependencies] +matplotlib = ">=3.2.1,<4.0.0" +numpy = ">=1.22.1" +pandas = ">=1.4.2,<3.0.0" +scikit-learn = ">=1.1.1,<2.0.0" + +[[package]] +name = "autora-darts" +version = "3.0.0a2" +description = "" +category = "main" +optional = false +python-versions = ">=3.8.10,<3.11" files = [ - {file = "backcall-0.2.0-py2.py3-none-any.whl", hash = "sha256:fbbce6a29f263178a1f7915c1940bde0ec2b2a967566fe1c65c1dfb7422bd255"}, - {file = "backcall-0.2.0.tar.gz", hash = "sha256:5cbdbf27be5e7cfadb448baf0aa95508f91f2bbc6c6437cd9cd06e2a4c215e1e"}, + {file = "autora_darts-3.0.0a2-py3-none-any.whl", hash = "sha256:6ac4a171440fcfc6e818481281ce37f2167e2536f464d72c157cb79183d57b7c"}, + {file = "autora_darts-3.0.0a2.tar.gz", hash = "sha256:e4951d5f3948d6c6843eec894a41cbed1df5f47021c4db10fe6e32fdc0230bed"}, ] +[package.dependencies] +autora-core = "3.0.0a2" +graphviz = ">=0.14.1,<0.21.0" +torch = "2.0.0" +tqdm = ">=4.64.0,<5.0.0" + [[package]] name = "beautifulsoup4" version = "4.12.1" @@ -383,7 +297,7 @@ files = [ name = "click" version = "8.1.3" description = "Composable command line interface toolkit" -category = "dev" +category = "main" optional = false python-versions = ">=3.7" files = [ @@ -436,26 +350,6 @@ files = [ {file = "colorama-0.4.6.tar.gz", hash = "sha256:08695f5cb7ed6e0531a20572697297273c47b8cae5a63ffc6d6ed5c201be6e44"}, ] -[[package]] -name = "comm" -version = "0.1.3" -description = "Jupyter Python Comm implementation, for usage in ipykernel, xeus-python etc." -category = "dev" -optional = false -python-versions = ">=3.6" -files = [ - {file = "comm-0.1.3-py3-none-any.whl", hash = "sha256:16613c6211e20223f215fc6d3b266a247b6e2641bf4e0a3ad34cb1aff2aa3f37"}, - {file = "comm-0.1.3.tar.gz", hash = "sha256:a61efa9daffcfbe66fd643ba966f846a624e4e6d6767eda9cf6e993aadaab93e"}, -] - -[package.dependencies] -traitlets = ">=5.3" - -[package.extras] -lint = ["black (>=22.6.0)", "mdformat (>0.7)", "mdformat-gfm (>=0.3.5)", "ruff (>=0.0.156)"] -test = ["pytest"] -typing = ["mypy (>=0.990)"] - [[package]] name = "contourpy" version = "1.0.7" @@ -544,44 +438,20 @@ files = [ ] [[package]] -name = "debugpy" -version = "1.6.6" -description = "An implementation of the Debug Adapter Protocol for Python" -category = "dev" -optional = false -python-versions = ">=3.7" -files = [ - {file = "debugpy-1.6.6-cp310-cp310-macosx_11_0_x86_64.whl", hash = "sha256:0ea1011e94416e90fb3598cc3ef5e08b0a4dd6ce6b9b33ccd436c1dffc8cd664"}, - {file = "debugpy-1.6.6-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:dff595686178b0e75580c24d316aa45a8f4d56e2418063865c114eef651a982e"}, - {file = "debugpy-1.6.6-cp310-cp310-win32.whl", hash = "sha256:87755e173fcf2ec45f584bb9d61aa7686bb665d861b81faa366d59808bbd3494"}, - {file = "debugpy-1.6.6-cp310-cp310-win_amd64.whl", hash = "sha256:72687b62a54d9d9e3fb85e7a37ea67f0e803aaa31be700e61d2f3742a5683917"}, - {file = "debugpy-1.6.6-cp37-cp37m-macosx_10_15_x86_64.whl", hash = "sha256:78739f77c58048ec006e2b3eb2e0cd5a06d5f48c915e2fc7911a337354508110"}, - {file = "debugpy-1.6.6-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:23c29e40e39ad7d869d408ded414f6d46d82f8a93b5857ac3ac1e915893139ca"}, - {file = "debugpy-1.6.6-cp37-cp37m-win32.whl", hash = "sha256:7aa7e103610e5867d19a7d069e02e72eb2b3045b124d051cfd1538f1d8832d1b"}, - {file = "debugpy-1.6.6-cp37-cp37m-win_amd64.whl", hash = "sha256:f6383c29e796203a0bba74a250615ad262c4279d398e89d895a69d3069498305"}, - {file = "debugpy-1.6.6-cp38-cp38-macosx_10_15_x86_64.whl", hash = "sha256:23363e6d2a04d726bbc1400bd4e9898d54419b36b2cdf7020e3e215e1dcd0f8e"}, - {file = "debugpy-1.6.6-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:9b5d1b13d7c7bf5d7cf700e33c0b8ddb7baf030fcf502f76fc061ddd9405d16c"}, - {file = "debugpy-1.6.6-cp38-cp38-win32.whl", hash = "sha256:70ab53918fd907a3ade01909b3ed783287ede362c80c75f41e79596d5ccacd32"}, - {file = "debugpy-1.6.6-cp38-cp38-win_amd64.whl", hash = "sha256:c05349890804d846eca32ce0623ab66c06f8800db881af7a876dc073ac1c2225"}, - {file = "debugpy-1.6.6-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:a771739902b1ae22a120dbbb6bd91b2cae6696c0e318b5007c5348519a4211c6"}, - {file = "debugpy-1.6.6-cp39-cp39-win32.whl", hash = "sha256:549ae0cb2d34fc09d1675f9b01942499751d174381b6082279cf19cdb3c47cbe"}, - {file = "debugpy-1.6.6-cp39-cp39-win_amd64.whl", hash = "sha256:de4a045fbf388e120bb6ec66501458d3134f4729faed26ff95de52a754abddb1"}, - {file = "debugpy-1.6.6-py2.py3-none-any.whl", hash = "sha256:be596b44448aac14eb3614248c91586e2bc1728e020e82ef3197189aae556115"}, - {file = "debugpy-1.6.6.zip", hash = "sha256:b9c2130e1c632540fbf9c2c88341493797ddf58016e7cba02e311de9b0a96b67"}, -] - -[[package]] -name = "decorator" -version = "5.1.1" -description = "Decorators for Humans" -category = "dev" +name = "dacite" +version = "1.8.0" +description = "Simple creation of data classes from dictionaries." +category = "main" optional = false -python-versions = ">=3.5" +python-versions = ">=3.6" files = [ - {file = "decorator-5.1.1-py3-none-any.whl", hash = "sha256:b8c3f85900b9dc423225913c5aace94729fe1fa9763b38939a95226f02d37186"}, - {file = "decorator-5.1.1.tar.gz", hash = "sha256:637996211036b6385ef91435e4fae22989472f9d571faba8927ba8253acbc330"}, + {file = "dacite-1.8.0-py3-none-any.whl", hash = "sha256:f7b1205cc5d9b62835aac8cbc1e6e37c1da862359a401f1edbe2ae08fbdc6193"}, + {file = "dacite-1.8.0.tar.gz", hash = "sha256:6257a5e505b61a8cafee7ef3ad08cf32ee9b885718f42395d017e0a9b4c6af65"}, ] +[package.extras] +dev = ["black", "coveralls", "mypy", "pre-commit", "pylint", "pytest (>=5)", "pytest-benchmark", "pytest-cov"] + [[package]] name = "defusedxml" version = "0.7.1" @@ -606,36 +476,6 @@ files = [ {file = "distlib-0.3.6.tar.gz", hash = "sha256:14bad2d9b04d3a36127ac97f30b12a19268f211063d8f8ee4f47108896e11b46"}, ] -[[package]] -name = "exceptiongroup" -version = "1.1.1" -description = "Backport of PEP 654 (exception groups)" -category = "dev" -optional = false -python-versions = ">=3.7" -files = [ - {file = "exceptiongroup-1.1.1-py3-none-any.whl", hash = "sha256:232c37c63e4f682982c8b6459f33a8981039e5fb8756b2074364e5055c498c9e"}, - {file = "exceptiongroup-1.1.1.tar.gz", hash = "sha256:d484c3090ba2889ae2928419117447a14daf3c1231d5e30d0aae34f354f01785"}, -] - -[package.extras] -test = ["pytest (>=6)"] - -[[package]] -name = "executing" -version = "1.2.0" -description = "Get the currently executing AST node of a frame, and other information" -category = "dev" -optional = false -python-versions = "*" -files = [ - {file = "executing-1.2.0-py2.py3-none-any.whl", hash = "sha256:0314a69e37426e3608aada02473b4161d4caf5a4b244d1d0c48072b8fee7bacc"}, - {file = "executing-1.2.0.tar.gz", hash = "sha256:19da64c18d2d851112f09c287f8d3dbbdf725ab0e569077efb6cdcbd3497c107"}, -] - -[package.extras] -tests = ["asttokens", "littleutils", "pytest", "rich"] - [[package]] name = "fastjsonschema" version = "2.16.3" @@ -667,23 +507,6 @@ files = [ docs = ["furo (>=2022.12.7)", "sphinx (>=6.1.3)", "sphinx-autodoc-typehints (>=1.22,!=1.23.4)"] testing = ["covdefaults (>=2.3)", "coverage (>=7.2.2)", "diff-cover (>=7.5)", "pytest (>=7.2.2)", "pytest-cov (>=4)", "pytest-mock (>=3.10)", "pytest-timeout (>=2.1)"] -[[package]] -name = "flake8" -version = "6.0.0" -description = "the modular source code checker: pep8 pyflakes and co" -category = "dev" -optional = false -python-versions = ">=3.8.1" -files = [ - {file = "flake8-6.0.0-py2.py3-none-any.whl", hash = "sha256:3833794e27ff64ea4e9cf5d410082a8b97ff1a06c16aa3d2027339cd0f1195c7"}, - {file = "flake8-6.0.0.tar.gz", hash = "sha256:c61007e76655af75e6785a931f452915b371dc48f56efd765247c8fe68f2b181"}, -] - -[package.dependencies] -mccabe = ">=0.7.0,<0.8.0" -pycodestyle = ">=2.10.0,<2.11.0" -pyflakes = ">=3.0.0,<3.1.0" - [[package]] name = "fonttools" version = "4.39.3" @@ -710,23 +533,11 @@ ufo = ["fs (>=2.2.0,<3)"] unicode = ["unicodedata2 (>=15.0.0)"] woff = ["brotli (>=1.0.1)", "brotlicffi (>=0.8.0)", "zopfli (>=0.1.4)"] -[[package]] -name = "fqdn" -version = "1.5.1" -description = "Validates fully-qualified domain names against RFC 1123, so that they are acceptable to modern bowsers" -category = "dev" -optional = false -python-versions = ">=2.7, !=3.0, !=3.1, !=3.2, !=3.3, !=3.4, <4" -files = [ - {file = "fqdn-1.5.1-py3-none-any.whl", hash = "sha256:3a179af3761e4df6eb2e026ff9e1a3033d3587bf980a0b1b2e1e5d08d7358014"}, - {file = "fqdn-1.5.1.tar.gz", hash = "sha256:105ed3677e767fb5ca086a0c1f4bb66ebc3c100be518f0e0d755d9eae164d89f"}, -] - [[package]] name = "ghp-import" version = "2.1.0" description = "Copy your docs directly to the gh-pages branch." -category = "dev" +category = "main" optional = false python-versions = "*" files = [ @@ -802,43 +613,11 @@ files = [ {file = "idna-3.4.tar.gz", hash = "sha256:814f528e8dead7d329833b91c5faa87d60bf71824cd12a7530b5526063d02cb4"}, ] -[[package]] -name = "imageio" -version = "2.27.0" -description = "Library for reading and writing a wide range of image, video, scientific, and volumetric data formats." -category = "main" -optional = false -python-versions = ">=3.7" -files = [ - {file = "imageio-2.27.0-py3-none-any.whl", hash = "sha256:24c6ad7d000e64eacc2861c402b6fb128f370cb0a6623cf796d83bca0d0d14d3"}, - {file = "imageio-2.27.0.tar.gz", hash = "sha256:ee269c957785ef0373cc7a7323185956d83ec05e6cdf20b42a03ba7b74ac58c6"}, -] - -[package.dependencies] -numpy = "*" -pillow = ">=8.3.2" - -[package.extras] -all-plugins = ["astropy", "av", "imageio-ffmpeg", "psutil", "tifffile"] -all-plugins-pypy = ["av", "imageio-ffmpeg", "psutil", "tifffile"] -build = ["wheel"] -dev = ["black", "flake8", "fsspec[github]", "invoke", "pytest", "pytest-cov"] -docs = ["numpydoc", "pydata-sphinx-theme", "sphinx (<6)"] -ffmpeg = ["imageio-ffmpeg", "psutil"] -fits = ["astropy"] -full = ["astropy", "av", "black", "flake8", "fsspec[github]", "gdal", "imageio-ffmpeg", "invoke", "itk", "numpydoc", "psutil", "pydata-sphinx-theme", "pytest", "pytest-cov", "sphinx (<6)", "tifffile", "wheel"] -gdal = ["gdal"] -itk = ["itk"] -linting = ["black", "flake8"] -pyav = ["av"] -test = ["fsspec[github]", "invoke", "pytest", "pytest-cov"] -tifffile = ["tifffile"] - [[package]] name = "importlib-metadata" version = "6.1.0" description = "Read metadata from Python packages" -category = "dev" +category = "main" optional = false python-versions = ">=3.7" files = [ @@ -873,161 +652,6 @@ zipp = {version = ">=3.1.0", markers = "python_version < \"3.10\""} docs = ["furo", "jaraco.packaging (>=9)", "jaraco.tidelift (>=1.4)", "rst.linker (>=1.9)", "sphinx (>=3.5)", "sphinx-lint"] testing = ["flake8 (<5)", "pytest (>=6)", "pytest-black (>=0.3.7)", "pytest-checkdocs (>=2.4)", "pytest-cov", "pytest-enabler (>=1.3)", "pytest-flake8", "pytest-mypy (>=0.9.1)"] -[[package]] -name = "iniconfig" -version = "2.0.0" -description = "brain-dead simple config-ini parsing" -category = "dev" -optional = false -python-versions = ">=3.7" -files = [ - {file = "iniconfig-2.0.0-py3-none-any.whl", hash = "sha256:b6a85871a79d2e3b22d2d1b94ac2824226a63c6b741c88f7ae975f18b6778374"}, - {file = "iniconfig-2.0.0.tar.gz", hash = "sha256:2d91e135bf72d31a410b17c16da610a82cb55f6b0477d1a902134b24a455b8b3"}, -] - -[[package]] -name = "ipykernel" -version = "6.22.0" -description = "IPython Kernel for Jupyter" -category = "dev" -optional = false -python-versions = ">=3.8" -files = [ - {file = "ipykernel-6.22.0-py3-none-any.whl", hash = "sha256:1ae6047c1277508933078163721bbb479c3e7292778a04b4bacf0874550977d6"}, - {file = "ipykernel-6.22.0.tar.gz", hash = "sha256:302558b81f1bc22dc259fb2a0c5c7cf2f4c0bdb21b50484348f7bafe7fb71421"}, -] - -[package.dependencies] -appnope = {version = "*", markers = "platform_system == \"Darwin\""} -comm = ">=0.1.1" -debugpy = ">=1.6.5" -ipython = ">=7.23.1" -jupyter-client = ">=6.1.12" -jupyter-core = ">=4.12,<5.0.0 || >=5.1.0" -matplotlib-inline = ">=0.1" -nest-asyncio = "*" -packaging = "*" -psutil = "*" -pyzmq = ">=20" -tornado = ">=6.1" -traitlets = ">=5.4.0" - -[package.extras] -cov = ["coverage[toml]", "curio", "matplotlib", "pytest-cov", "trio"] -docs = ["myst-parser", "pydata-sphinx-theme", "sphinx", "sphinx-autodoc-typehints", "sphinxcontrib-github-alt", "sphinxcontrib-spelling", "trio"] -pyqt5 = ["pyqt5"] -pyside6 = ["pyside6"] -test = ["flaky", "ipyparallel", "pre-commit", "pytest (>=7.0)", "pytest-asyncio", "pytest-cov", "pytest-timeout"] - -[[package]] -name = "ipython" -version = "8.12.0" -description = "IPython: Productive Interactive Computing" -category = "dev" -optional = false -python-versions = ">=3.8" -files = [ - {file = "ipython-8.12.0-py3-none-any.whl", hash = "sha256:1c183bf61b148b00bcebfa5d9b39312733ae97f6dad90d7e9b4d86c8647f498c"}, - {file = "ipython-8.12.0.tar.gz", hash = "sha256:a950236df04ad75b5bc7f816f9af3d74dc118fd42f2ff7e80e8e60ca1f182e2d"}, -] - -[package.dependencies] -appnope = {version = "*", markers = "sys_platform == \"darwin\""} -backcall = "*" -colorama = {version = "*", markers = "sys_platform == \"win32\""} -decorator = "*" -jedi = ">=0.16" -matplotlib-inline = "*" -pexpect = {version = ">4.3", markers = "sys_platform != \"win32\""} -pickleshare = "*" -prompt-toolkit = ">=3.0.30,<3.0.37 || >3.0.37,<3.1.0" -pygments = ">=2.4.0" -stack-data = "*" -traitlets = ">=5" -typing-extensions = {version = "*", markers = "python_version < \"3.10\""} - -[package.extras] -all = ["black", "curio", "docrepr", "ipykernel", "ipyparallel", "ipywidgets", "matplotlib", "matplotlib (!=3.2.0)", "nbconvert", "nbformat", "notebook", "numpy (>=1.21)", "pandas", "pytest (<7)", "pytest (<7.1)", "pytest-asyncio", "qtconsole", "setuptools (>=18.5)", "sphinx (>=1.3)", "sphinx-rtd-theme", "stack-data", "testpath", "trio", "typing-extensions"] -black = ["black"] -doc = ["docrepr", "ipykernel", "matplotlib", "pytest (<7)", "pytest (<7.1)", "pytest-asyncio", "setuptools (>=18.5)", "sphinx (>=1.3)", "sphinx-rtd-theme", "stack-data", "testpath", "typing-extensions"] -kernel = ["ipykernel"] -nbconvert = ["nbconvert"] -nbformat = ["nbformat"] -notebook = ["ipywidgets", "notebook"] -parallel = ["ipyparallel"] -qtconsole = ["qtconsole"] -test = ["pytest (<7.1)", "pytest-asyncio", "testpath"] -test-extra = ["curio", "matplotlib (!=3.2.0)", "nbformat", "numpy (>=1.21)", "pandas", "pytest (<7.1)", "pytest-asyncio", "testpath", "trio"] - -[[package]] -name = "ipython-genutils" -version = "0.2.0" -description = "Vestigial utilities from IPython" -category = "dev" -optional = false -python-versions = "*" -files = [ - {file = "ipython_genutils-0.2.0-py2.py3-none-any.whl", hash = "sha256:72dd37233799e619666c9f639a9da83c34013a73e8bbc79a7a6348d93c61fab8"}, - {file = "ipython_genutils-0.2.0.tar.gz", hash = "sha256:eb2e116e75ecef9d4d228fdc66af54269afa26ab4463042e33785b887c628ba8"}, -] - -[[package]] -name = "ipywidgets" -version = "8.0.6" -description = "Jupyter interactive widgets" -category = "dev" -optional = false -python-versions = ">=3.7" -files = [ - {file = "ipywidgets-8.0.6-py3-none-any.whl", hash = "sha256:a60bf8d2528997e05ac83fd19ea2fbe65f2e79fbe1b2b35779bdfc46c2941dcc"}, - {file = "ipywidgets-8.0.6.tar.gz", hash = "sha256:de7d779f2045d60de9f6c25f653fdae2dba57898e6a1284494b3ba20b6893bb8"}, -] - -[package.dependencies] -ipykernel = ">=4.5.1" -ipython = ">=6.1.0" -jupyterlab-widgets = ">=3.0.7,<3.1.0" -traitlets = ">=4.3.1" -widgetsnbextension = ">=4.0.7,<4.1.0" - -[package.extras] -test = ["ipykernel", "jsonschema", "pytest (>=3.6.0)", "pytest-cov", "pytz"] - -[[package]] -name = "isoduration" -version = "20.11.0" -description = "Operations with ISO 8601 durations" -category = "dev" -optional = false -python-versions = ">=3.7" -files = [ - {file = "isoduration-20.11.0-py3-none-any.whl", hash = "sha256:b2904c2a4228c3d44f409c8ae8e2370eb21a26f7ac2ec5446df141dde3452042"}, - {file = "isoduration-20.11.0.tar.gz", hash = "sha256:ac2f9015137935279eac671f94f89eb00584f940f5dc49462a0c4ee692ba1bd9"}, -] - -[package.dependencies] -arrow = ">=0.15.0" - -[[package]] -name = "jedi" -version = "0.18.2" -description = "An autocompletion tool for Python that can be used for text editors." -category = "dev" -optional = false -python-versions = ">=3.6" -files = [ - {file = "jedi-0.18.2-py2.py3-none-any.whl", hash = "sha256:203c1fd9d969ab8f2119ec0a3342e0b49910045abe6af0a3ae83a5764d54639e"}, - {file = "jedi-0.18.2.tar.gz", hash = "sha256:bae794c30d07f6d910d32a7048af09b5a39ed740918da923c6b780790ebac612"}, -] - -[package.dependencies] -parso = ">=0.8.0,<0.9.0" - -[package.extras] -docs = ["Jinja2 (==2.11.3)", "MarkupSafe (==1.1.1)", "Pygments (==2.8.1)", "alabaster (==0.7.12)", "babel (==2.9.1)", "chardet (==4.0.0)", "commonmark (==0.8.1)", "docutils (==0.17.1)", "future (==0.18.2)", "idna (==2.10)", "imagesize (==1.2.0)", "mock (==1.0.1)", "packaging (==20.9)", "pyparsing (==2.4.7)", "pytz (==2021.1)", "readthedocs-sphinx-ext (==2.1.4)", "recommonmark (==0.5.0)", "requests (==2.25.1)", "six (==1.15.0)", "snowballstemmer (==2.1.0)", "sphinx (==1.8.5)", "sphinx-rtd-theme (==0.4.3)", "sphinxcontrib-serializinghtml (==1.1.4)", "sphinxcontrib-websupport (==1.2.4)", "urllib3 (==1.26.4)"] -qa = ["flake8 (==3.8.3)", "mypy (==0.782)"] -testing = ["Django (<3.1)", "attrs", "colorama", "docopt", "pytest (<7.0.0)"] - [[package]] name = "jinja2" version = "3.1.2" @@ -1058,18 +682,6 @@ files = [ {file = "joblib-1.2.0.tar.gz", hash = "sha256:e1cee4a79e4af22881164f218d4311f60074197fb707e082e803b61f6d137018"}, ] -[[package]] -name = "jsonpointer" -version = "2.3" -description = "Identify specific nodes in a JSON document (RFC 6901)" -category = "dev" -optional = false -python-versions = ">=2.7, !=3.0.*, !=3.1.*, !=3.2.*, !=3.3.*" -files = [ - {file = "jsonpointer-2.3-py2.py3-none-any.whl", hash = "sha256:51801e558539b4e9cd268638c078c6c5746c9ac96bc38152d443400e4f3793e9"}, - {file = "jsonpointer-2.3.tar.gz", hash = "sha256:97cba51526c829282218feb99dab1b1e6bdf8efd1c43dc9d57be093c0d69c99a"}, -] - [[package]] name = "jsonschema" version = "4.17.3" @@ -1084,43 +696,14 @@ files = [ [package.dependencies] attrs = ">=17.4.0" -fqdn = {version = "*", optional = true, markers = "extra == \"format-nongpl\""} -idna = {version = "*", optional = true, markers = "extra == \"format-nongpl\""} importlib-resources = {version = ">=1.4.0", markers = "python_version < \"3.9\""} -isoduration = {version = "*", optional = true, markers = "extra == \"format-nongpl\""} -jsonpointer = {version = ">1.13", optional = true, markers = "extra == \"format-nongpl\""} pkgutil-resolve-name = {version = ">=1.3.10", markers = "python_version < \"3.9\""} pyrsistent = ">=0.14.0,<0.17.0 || >0.17.0,<0.17.1 || >0.17.1,<0.17.2 || >0.17.2" -rfc3339-validator = {version = "*", optional = true, markers = "extra == \"format-nongpl\""} -rfc3986-validator = {version = ">0.1.0", optional = true, markers = "extra == \"format-nongpl\""} -uri-template = {version = "*", optional = true, markers = "extra == \"format-nongpl\""} -webcolors = {version = ">=1.11", optional = true, markers = "extra == \"format-nongpl\""} [package.extras] format = ["fqdn", "idna", "isoduration", "jsonpointer (>1.13)", "rfc3339-validator", "rfc3987", "uri-template", "webcolors (>=1.11)"] format-nongpl = ["fqdn", "idna", "isoduration", "jsonpointer (>1.13)", "rfc3339-validator", "rfc3986-validator (>0.1.0)", "uri-template", "webcolors (>=1.11)"] -[[package]] -name = "jupyter" -version = "1.0.0" -description = "Jupyter metapackage. Install all the Jupyter components in one go." -category = "dev" -optional = false -python-versions = "*" -files = [ - {file = "jupyter-1.0.0-py2.py3-none-any.whl", hash = "sha256:5b290f93b98ffbc21c0c7e749f054b3267782166d72fa5e3ed1ed4eaf34a2b78"}, - {file = "jupyter-1.0.0.tar.gz", hash = "sha256:d9dc4b3318f310e34c82951ea5d6683f67bed7def4b259fafbfe4f1beb1d8e5f"}, - {file = "jupyter-1.0.0.zip", hash = "sha256:3e1f86076bbb7c8c207829390305a2b1fe836d471ed54be66a3b8c41e7f46cc7"}, -] - -[package.dependencies] -ipykernel = "*" -ipywidgets = "*" -jupyter-console = "*" -nbconvert = "*" -notebook = "*" -qtconsole = "*" - [[package]] name = "jupyter-client" version = "8.1.0" @@ -1145,31 +728,6 @@ traitlets = ">=5.3" docs = ["ipykernel", "myst-parser", "pydata-sphinx-theme", "sphinx (>=4)", "sphinx-autodoc-typehints", "sphinxcontrib-github-alt", "sphinxcontrib-spelling"] test = ["codecov", "coverage", "ipykernel (>=6.14)", "mypy", "paramiko", "pre-commit", "pytest", "pytest-cov", "pytest-jupyter[client] (>=0.4.1)", "pytest-timeout"] -[[package]] -name = "jupyter-console" -version = "6.6.3" -description = "Jupyter terminal console" -category = "dev" -optional = false -python-versions = ">=3.7" -files = [ - {file = "jupyter_console-6.6.3-py3-none-any.whl", hash = "sha256:309d33409fcc92ffdad25f0bcdf9a4a9daa61b6f341177570fdac03de5352485"}, - {file = "jupyter_console-6.6.3.tar.gz", hash = "sha256:566a4bf31c87adbfadf22cdf846e3069b59a71ed5da71d6ba4d8aaad14a53539"}, -] - -[package.dependencies] -ipykernel = ">=6.14" -ipython = "*" -jupyter-client = ">=7.0.0" -jupyter-core = ">=4.12,<5.0.0 || >=5.1.0" -prompt-toolkit = ">=3.0.30" -pygments = "*" -pyzmq = ">=17" -traitlets = ">=5.4" - -[package.extras] -test = ["flaky", "pexpect", "pytest"] - [[package]] name = "jupyter-core" version = "5.3.0" @@ -1191,87 +749,6 @@ traitlets = ">=5.3" docs = ["myst-parser", "sphinx-autodoc-typehints", "sphinxcontrib-github-alt", "sphinxcontrib-spelling", "traitlets"] test = ["ipykernel", "pre-commit", "pytest", "pytest-cov", "pytest-timeout"] -[[package]] -name = "jupyter-events" -version = "0.6.3" -description = "Jupyter Event System library" -category = "dev" -optional = false -python-versions = ">=3.7" -files = [ - {file = "jupyter_events-0.6.3-py3-none-any.whl", hash = "sha256:57a2749f87ba387cd1bfd9b22a0875b889237dbf2edc2121ebb22bde47036c17"}, - {file = "jupyter_events-0.6.3.tar.gz", hash = "sha256:9a6e9995f75d1b7146b436ea24d696ce3a35bfa8bfe45e0c33c334c79464d0b3"}, -] - -[package.dependencies] -jsonschema = {version = ">=3.2.0", extras = ["format-nongpl"]} -python-json-logger = ">=2.0.4" -pyyaml = ">=5.3" -rfc3339-validator = "*" -rfc3986-validator = ">=0.1.1" -traitlets = ">=5.3" - -[package.extras] -cli = ["click", "rich"] -docs = ["jupyterlite-sphinx", "myst-parser", "pydata-sphinx-theme", "sphinxcontrib-spelling"] -test = ["click", "coverage", "pre-commit", "pytest (>=7.0)", "pytest-asyncio (>=0.19.0)", "pytest-console-scripts", "pytest-cov", "rich"] - -[[package]] -name = "jupyter-server" -version = "2.5.0" -description = "The backend—i.e. core services, APIs, and REST endpoints—to Jupyter web applications." -category = "dev" -optional = false -python-versions = ">=3.8" -files = [ - {file = "jupyter_server-2.5.0-py3-none-any.whl", hash = "sha256:e6bc1e9e96d7c55b9ce9699ff6cb9a910581fe7349e27c40389acb67632e24c0"}, - {file = "jupyter_server-2.5.0.tar.gz", hash = "sha256:9fde612791f716fd34d610cd939704a9639643744751ba66e7ee8fdc9cead07e"}, -] - -[package.dependencies] -anyio = ">=3.1.0" -argon2-cffi = "*" -jinja2 = "*" -jupyter-client = ">=7.4.4" -jupyter-core = ">=4.12,<5.0.0 || >=5.1.0" -jupyter-events = ">=0.4.0" -jupyter-server-terminals = "*" -nbconvert = ">=6.4.4" -nbformat = ">=5.3.0" -packaging = "*" -prometheus-client = "*" -pywinpty = {version = "*", markers = "os_name == \"nt\""} -pyzmq = ">=24" -send2trash = "*" -terminado = ">=0.8.3" -tornado = ">=6.2.0" -traitlets = ">=5.6.0" -websocket-client = "*" - -[package.extras] -docs = ["docutils (<0.20)", "ipykernel", "jinja2", "jupyter-client", "jupyter-server", "mistune (<1.0.0)", "myst-parser", "nbformat", "prometheus-client", "pydata-sphinx-theme", "send2trash", "sphinx-autodoc-typehints", "sphinxcontrib-github-alt", "sphinxcontrib-openapi", "sphinxcontrib-spelling", "sphinxemoji", "tornado", "typing-extensions"] -test = ["ipykernel", "pre-commit", "pytest (>=7.0)", "pytest-console-scripts", "pytest-jupyter[server] (>=0.4)", "pytest-timeout", "requests"] - -[[package]] -name = "jupyter-server-terminals" -version = "0.4.4" -description = "A Jupyter Server Extension Providing Terminals." -category = "dev" -optional = false -python-versions = ">=3.8" -files = [ - {file = "jupyter_server_terminals-0.4.4-py3-none-any.whl", hash = "sha256:75779164661cec02a8758a5311e18bb8eb70c4e86c6b699403100f1585a12a36"}, - {file = "jupyter_server_terminals-0.4.4.tar.gz", hash = "sha256:57ab779797c25a7ba68e97bcfb5d7740f2b5e8a83b5e8102b10438041a7eac5d"}, -] - -[package.dependencies] -pywinpty = {version = ">=2.0.3", markers = "os_name == \"nt\""} -terminado = ">=0.8.3" - -[package.extras] -docs = ["jinja2", "jupyter-server", "mistune (<3.0)", "myst-parser", "nbformat", "packaging", "pydata-sphinx-theme", "sphinxcontrib-github-alt", "sphinxcontrib-openapi", "sphinxcontrib-spelling", "sphinxemoji", "tornado"] -test = ["coverage", "jupyter-server (>=2.0.0)", "pytest (>=7.0)", "pytest-cov", "pytest-jupyter[server] (>=0.5.3)", "pytest-timeout"] - [[package]] name = "jupyterlab-pygments" version = "0.2.2" @@ -1284,18 +761,6 @@ files = [ {file = "jupyterlab_pygments-0.2.2.tar.gz", hash = "sha256:7405d7fde60819d905a9fa8ce89e4cd830e318cdad22a0030f7a901da705585d"}, ] -[[package]] -name = "jupyterlab-widgets" -version = "3.0.7" -description = "Jupyter interactive widgets for JupyterLab" -category = "dev" -optional = false -python-versions = ">=3.7" -files = [ - {file = "jupyterlab_widgets-3.0.7-py3-none-any.whl", hash = "sha256:c73f8370338ec19f1bec47254752d6505b03601cbd5a67e6a0b184532f73a459"}, - {file = "jupyterlab_widgets-3.0.7.tar.gz", hash = "sha256:c3a50ed5bf528a0c7a869096503af54702f86dda1db469aee1c92dc0c01b43ca"}, -] - [[package]] name = "jupytext" version = "1.14.5" @@ -1412,7 +877,7 @@ files = [ name = "markdown" version = "3.3.7" description = "Python implementation of Markdown." -category = "dev" +category = "main" optional = false python-versions = ">=3.6" files = [ @@ -1574,33 +1039,6 @@ pillow = ">=6.2.0" pyparsing = ">=2.3.1" python-dateutil = ">=2.7" -[[package]] -name = "matplotlib-inline" -version = "0.1.6" -description = "Inline Matplotlib backend for Jupyter" -category = "dev" -optional = false -python-versions = ">=3.5" -files = [ - {file = "matplotlib-inline-0.1.6.tar.gz", hash = "sha256:f887e5f10ba98e8d2b150ddcf4702c1e5f8b3a20005eb0f74bfdbd360ee6f304"}, - {file = "matplotlib_inline-0.1.6-py3-none-any.whl", hash = "sha256:f1f41aab5328aa5aaea9b16d083b128102f8712542f819fe7e6a420ff581b311"}, -] - -[package.dependencies] -traitlets = "*" - -[[package]] -name = "mccabe" -version = "0.7.0" -description = "McCabe checker, plugin for flake8" -category = "dev" -optional = false -python-versions = ">=3.6" -files = [ - {file = "mccabe-0.7.0-py2.py3-none-any.whl", hash = "sha256:6c2d30ab6be0e4a46919781807b4f0d834ebdd6c6e3dca0bda5a15f863427b6e"}, - {file = "mccabe-0.7.0.tar.gz", hash = "sha256:348e0240c33b60bbdf4e523192ef919f28cb2c3d7d5c7794f74009290f236325"}, -] - [[package]] name = "mdit-py-plugins" version = "0.3.5" @@ -1637,7 +1075,7 @@ files = [ name = "mergedeep" version = "1.3.4" description = "A deep merge function for 🐍." -category = "dev" +category = "main" optional = false python-versions = ">=3.6" files = [ @@ -1661,7 +1099,7 @@ files = [ name = "mkdocs" version = "1.4.2" description = "Project documentation with Markdown." -category = "dev" +category = "main" optional = false python-versions = ">=3.7" files = [ @@ -1756,14 +1194,14 @@ mkdocs = ">=1.0.3" [[package]] name = "mkdocs-material" -version = "9.1.6" +version = "9.1.5" description = "Documentation that simply works" category = "dev" optional = false python-versions = ">=3.7" files = [ - {file = "mkdocs_material-9.1.6-py3-none-any.whl", hash = "sha256:f2eb1d40db89da9922944833c1387207408f8937e1c2b46ab86e0c8f170b71e0"}, - {file = "mkdocs_material-9.1.6.tar.gz", hash = "sha256:2e555152f9771646bfa62dc78a86052876183eff69ce30db03a33e85702b21fc"}, + {file = "mkdocs_material-9.1.5-py3-none-any.whl", hash = "sha256:981e1ef0250e2fbcc23610e9b20e5f242fe1f808079b9bcfbb6c49aa2999343c"}, + {file = "mkdocs_material-9.1.5.tar.gz", hash = "sha256:744519bca52b1e8fe7c2e80e15ed59baf8948111ec763ae6ae629c409bd16d6e"}, ] [package.dependencies] @@ -1789,6 +1227,25 @@ files = [ {file = "mkdocs_material_extensions-1.1.1.tar.gz", hash = "sha256:9c003da71e2cc2493d910237448c672e00cefc800d3d6ae93d2fc69979e3bd93"}, ] +[[package]] +name = "mkdocs-multirepo-plugin" +version = "0.6.1" +description = "Build documentation in multiple repos into one site." +category = "main" +optional = false +python-versions = "*" +files = [ + {file = "mkdocs_multirepo_plugin-0.6.1-py2.py3-none-any.whl", hash = "sha256:b484f189dfb429793d8049e8d201b191fd99887b10fc8776b9846171d1243533"}, + {file = "mkdocs_multirepo_plugin-0.6.1.tar.gz", hash = "sha256:4d09324430cb669e1ab9c128c75bc24c1350acb2a40e6ea714d666e5dcc25b8b"}, +] + +[package.dependencies] +asyncio = "*" +dacite = {version = ">=1.8.0,<2.0.0", markers = "python_version >= \"3.6\""} +mkdocs = {version = ">=1.0.4", markers = "python_version >= \"3.6\""} +python-slugify = {version = "*", markers = "python_version >= \"2.7\" and python_version < \"2.8\" or python_full_version >= \"3.6.0\""} +typing-inspect = {version = ">=0.8.0,<0.9.0", markers = "python_version >= \"3.6\""} + [[package]] name = "mkdocs-section-index" version = "0.3.5" @@ -1806,14 +1263,14 @@ mkdocs = ">=1.0.3" [[package]] name = "mkdocstrings" -version = "0.21.0" +version = "0.21.2" description = "Automatic documentation from sources, for MkDocs." category = "dev" optional = false python-versions = ">=3.7" files = [ - {file = "mkdocstrings-0.21.0-py3-none-any.whl", hash = "sha256:05c52573366f0a32536f7bf0258f2a8ad180836058bb024b252b8a61a25452b3"}, - {file = "mkdocstrings-0.21.0.tar.gz", hash = "sha256:df7399cec11bdc12ece9a370a6c37bac70ea0a07f479c051d0c82b07a38a3220"}, + {file = "mkdocstrings-0.21.2-py3-none-any.whl", hash = "sha256:949ef8da92df9d692ca07be50616459a6b536083a25520fd54b00e8814ce019b"}, + {file = "mkdocstrings-0.21.2.tar.gz", hash = "sha256:304e56a2e90595708a38a13a278e538a67ad82052dd5c8b71f77a604a4f3d911"}, ] [package.dependencies] @@ -1823,6 +1280,7 @@ MarkupSafe = ">=1.1" mkdocs = ">=1.2" mkdocs-autorefs = ">=0.3.1" pymdown-extensions = ">=6.3" +typing-extensions = {version = ">=4.1", markers = "python_version < \"3.10\""} [package.extras] crystal = ["mkdocstrings-crystal (>=0.3.4)"] @@ -1864,41 +1322,17 @@ gmpy = ["gmpy2 (>=2.1.0a4)"] tests = ["pytest (>=4.6)"] [[package]] -name = "nbclassic" -version = "0.5.5" -description = "Jupyter Notebook as a Jupyter Server extension." -category = "dev" +name = "mypy-extensions" +version = "1.0.0" +description = "Type system extensions for programs checked with the mypy type checker." +category = "main" optional = false -python-versions = ">=3.7" +python-versions = ">=3.5" files = [ - {file = "nbclassic-0.5.5-py3-none-any.whl", hash = "sha256:47791b04dbcb89bf7fde910a3d848fd4793a4248a8936202453631a87da37d51"}, - {file = "nbclassic-0.5.5.tar.gz", hash = "sha256:d2c91adc7909b0270c73e3e253d3687a6704b4f0a94bc156a37c85eba09f4d37"}, + {file = "mypy_extensions-1.0.0-py3-none-any.whl", hash = "sha256:4392f6c0eb8a5668a69e23d168ffa70f0be9ccfd32b5cc2d26a34ae5b844552d"}, + {file = "mypy_extensions-1.0.0.tar.gz", hash = "sha256:75dbf8955dc00442a438fc4d0666508a9a97b6bd41aa2f0ffe9d2f2725af0782"}, ] -[package.dependencies] -argon2-cffi = "*" -ipykernel = "*" -ipython-genutils = "*" -jinja2 = "*" -jupyter-client = ">=6.1.1" -jupyter-core = ">=4.6.1" -jupyter-server = ">=1.8" -nbconvert = ">=5" -nbformat = "*" -nest-asyncio = ">=1.5" -notebook-shim = ">=0.1.0" -prometheus-client = "*" -pyzmq = ">=17" -Send2Trash = ">=1.8.0" -terminado = ">=0.8.3" -tornado = ">=6.1" -traitlets = ">=4.2.1" - -[package.extras] -docs = ["myst-parser", "nbsphinx", "sphinx", "sphinx-rtd-theme", "sphinxcontrib-github-alt"] -json-logging = ["json-logging"] -test = ["coverage", "nbval", "pytest", "pytest-cov", "pytest-jupyter", "pytest-playwright", "pytest-tornasync", "requests", "requests-unixsocket", "testpath"] - [[package]] name = "nbclient" version = "0.7.3" @@ -1983,18 +1417,6 @@ traitlets = ">=5.1" docs = ["myst-parser", "pydata-sphinx-theme", "sphinx", "sphinxcontrib-github-alt", "sphinxcontrib-spelling"] test = ["pep440", "pre-commit", "pytest", "testpath"] -[[package]] -name = "nest-asyncio" -version = "1.5.6" -description = "Patch asyncio to allow nested event loops" -category = "dev" -optional = false -python-versions = ">=3.5" -files = [ - {file = "nest_asyncio-1.5.6-py3-none-any.whl", hash = "sha256:b9a953fb40dceaa587d109609098db21900182b16440652454a146cffb06e8b8"}, - {file = "nest_asyncio-1.5.6.tar.gz", hash = "sha256:d267cc1ff794403f7df692964d1d2a3fa9418ffea2a3f6859a439ff482fef290"}, -] - [[package]] name = "networkx" version = "3.1" @@ -2029,59 +1451,6 @@ files = [ [package.dependencies] setuptools = "*" -[[package]] -name = "notebook" -version = "6.5.3" -description = "A web-based notebook environment for interactive computing" -category = "dev" -optional = false -python-versions = ">=3.7" -files = [ - {file = "notebook-6.5.3-py3-none-any.whl", hash = "sha256:50a334ad9d60b30cb759405168ef6fc3d60350ab5439fb1631544bb09dcb2cce"}, - {file = "notebook-6.5.3.tar.gz", hash = "sha256:b12bee3292211d85dd7e588a790ddce30cb3e8fbcfa1e803522a207f60819e05"}, -] - -[package.dependencies] -argon2-cffi = "*" -ipykernel = "*" -ipython-genutils = "*" -jinja2 = "*" -jupyter-client = ">=5.3.4" -jupyter-core = ">=4.6.1" -nbclassic = ">=0.4.7" -nbconvert = ">=5" -nbformat = "*" -nest-asyncio = ">=1.5" -prometheus-client = "*" -pyzmq = ">=17" -Send2Trash = ">=1.8.0" -terminado = ">=0.8.3" -tornado = ">=6.1" -traitlets = ">=4.2.1" - -[package.extras] -docs = ["myst-parser", "nbsphinx", "sphinx", "sphinx-rtd-theme", "sphinxcontrib-github-alt"] -json-logging = ["json-logging"] -test = ["coverage", "nbval", "pytest", "pytest-cov", "requests", "requests-unixsocket", "selenium (==4.1.5)", "testpath"] - -[[package]] -name = "notebook-shim" -version = "0.2.2" -description = "A shim layer for notebook traits and config" -category = "dev" -optional = false -python-versions = ">=3.7" -files = [ - {file = "notebook_shim-0.2.2-py3-none-any.whl", hash = "sha256:9c6c30f74c4fbea6fce55c1be58e7fd0409b1c681b075dcedceb005db5026949"}, - {file = "notebook_shim-0.2.2.tar.gz", hash = "sha256:090e0baf9a5582ff59b607af523ca2db68ff216da0c69956b62cab2ef4fc9c3f"}, -] - -[package.dependencies] -jupyter-server = ">=1.8,<3" - -[package.extras] -test = ["pytest", "pytest-console-scripts", "pytest-tornasync"] - [[package]] name = "numpy" version = "1.24.2" @@ -2380,49 +1749,6 @@ files = [ {file = "pandocfilters-1.5.0.tar.gz", hash = "sha256:0b679503337d233b4339a817bfc8c50064e2eff681314376a47cb582305a7a38"}, ] -[[package]] -name = "parso" -version = "0.8.3" -description = "A Python Parser" -category = "dev" -optional = false -python-versions = ">=3.6" -files = [ - {file = "parso-0.8.3-py2.py3-none-any.whl", hash = "sha256:c001d4636cd3aecdaf33cbb40aebb59b094be2a74c556778ef5576c175e19e75"}, - {file = "parso-0.8.3.tar.gz", hash = "sha256:8c07be290bb59f03588915921e29e8a50002acaf2cdc5fa0e0114f91709fafa0"}, -] - -[package.extras] -qa = ["flake8 (==3.8.3)", "mypy (==0.782)"] -testing = ["docopt", "pytest (<6.0.0)"] - -[[package]] -name = "pexpect" -version = "4.8.0" -description = "Pexpect allows easy control of interactive console applications." -category = "dev" -optional = false -python-versions = "*" -files = [ - {file = "pexpect-4.8.0-py2.py3-none-any.whl", hash = "sha256:0b48a55dcb3c05f3329815901ea4fc1537514d6ba867a152b581d69ae3710937"}, - {file = "pexpect-4.8.0.tar.gz", hash = "sha256:fc65a43959d153d0114afe13997d439c22823a27cefceb5ff35c2178c6784c0c"}, -] - -[package.dependencies] -ptyprocess = ">=0.5" - -[[package]] -name = "pickleshare" -version = "0.7.5" -description = "Tiny 'shelve'-like database with concurrency support" -category = "dev" -optional = false -python-versions = "*" -files = [ - {file = "pickleshare-0.7.5-py2.py3-none-any.whl", hash = "sha256:9649af414d74d4df115d5d718f82acb59c9d418196b7b4290ed47a12ce62df56"}, - {file = "pickleshare-0.7.5.tar.gz", hash = "sha256:87683d47965c1da65cdacaf31c8441d12b8044cdec9aca500cd78fc2c683afca"}, -] - [[package]] name = "pillow" version = "9.5.0" @@ -2531,22 +1857,6 @@ files = [ docs = ["furo (>=2022.12.7)", "proselint (>=0.13)", "sphinx (>=6.1.3)", "sphinx-autodoc-typehints (>=1.22,!=1.23.4)"] test = ["appdirs (==1.4.4)", "covdefaults (>=2.3)", "pytest (>=7.2.2)", "pytest-cov (>=4)", "pytest-mock (>=3.10)"] -[[package]] -name = "pluggy" -version = "1.0.0" -description = "plugin and hook calling mechanisms for python" -category = "dev" -optional = false -python-versions = ">=3.6" -files = [ - {file = "pluggy-1.0.0-py2.py3-none-any.whl", hash = "sha256:74134bbf457f031a36d68416e1509f34bd5ccc019f0bcc952c7b909d06b37bd3"}, - {file = "pluggy-1.0.0.tar.gz", hash = "sha256:4224373bacce55f955a878bf9cfa763c1e360858e330072059e10bad68531159"}, -] - -[package.extras] -dev = ["pre-commit", "tox"] -testing = ["pytest", "pytest-benchmark"] - [[package]] name = "pre-commit" version = "3.2.2" @@ -2566,102 +1876,6 @@ nodeenv = ">=0.11.1" pyyaml = ">=5.1" virtualenv = ">=20.10.0" -[[package]] -name = "prometheus-client" -version = "0.16.0" -description = "Python client for the Prometheus monitoring system." -category = "dev" -optional = false -python-versions = ">=3.6" -files = [ - {file = "prometheus_client-0.16.0-py3-none-any.whl", hash = "sha256:0836af6eb2c8f4fed712b2f279f6c0a8bbab29f9f4aa15276b91c7cb0d1616ab"}, - {file = "prometheus_client-0.16.0.tar.gz", hash = "sha256:a03e35b359f14dd1630898543e2120addfdeacd1a6069c1367ae90fd93ad3f48"}, -] - -[package.extras] -twisted = ["twisted"] - -[[package]] -name = "prompt-toolkit" -version = "3.0.38" -description = "Library for building powerful interactive command lines in Python" -category = "dev" -optional = false -python-versions = ">=3.7.0" -files = [ - {file = "prompt_toolkit-3.0.38-py3-none-any.whl", hash = "sha256:45ea77a2f7c60418850331366c81cf6b5b9cf4c7fd34616f733c5427e6abbb1f"}, - {file = "prompt_toolkit-3.0.38.tar.gz", hash = "sha256:23ac5d50538a9a38c8bde05fecb47d0b403ecd0662857a86f886f798563d5b9b"}, -] - -[package.dependencies] -wcwidth = "*" - -[[package]] -name = "psutil" -version = "5.9.4" -description = "Cross-platform lib for process and system monitoring in Python." -category = "dev" -optional = false -python-versions = ">=2.7, !=3.0.*, !=3.1.*, !=3.2.*, !=3.3.*" -files = [ - {file = "psutil-5.9.4-cp27-cp27m-macosx_10_9_x86_64.whl", hash = "sha256:c1ca331af862803a42677c120aff8a814a804e09832f166f226bfd22b56feee8"}, - {file = "psutil-5.9.4-cp27-cp27m-manylinux2010_i686.whl", hash = "sha256:68908971daf802203f3d37e78d3f8831b6d1014864d7a85937941bb35f09aefe"}, - {file = "psutil-5.9.4-cp27-cp27m-manylinux2010_x86_64.whl", hash = "sha256:3ff89f9b835100a825b14c2808a106b6fdcc4b15483141482a12c725e7f78549"}, - {file = "psutil-5.9.4-cp27-cp27m-win32.whl", hash = "sha256:852dd5d9f8a47169fe62fd4a971aa07859476c2ba22c2254d4a1baa4e10b95ad"}, - {file = "psutil-5.9.4-cp27-cp27m-win_amd64.whl", hash = "sha256:9120cd39dca5c5e1c54b59a41d205023d436799b1c8c4d3ff71af18535728e94"}, - {file = "psutil-5.9.4-cp27-cp27mu-manylinux2010_i686.whl", hash = "sha256:6b92c532979bafc2df23ddc785ed116fced1f492ad90a6830cf24f4d1ea27d24"}, - {file = "psutil-5.9.4-cp27-cp27mu-manylinux2010_x86_64.whl", hash = "sha256:efeae04f9516907be44904cc7ce08defb6b665128992a56957abc9b61dca94b7"}, - {file = "psutil-5.9.4-cp36-abi3-macosx_10_9_x86_64.whl", hash = "sha256:54d5b184728298f2ca8567bf83c422b706200bcbbfafdc06718264f9393cfeb7"}, - {file = "psutil-5.9.4-cp36-abi3-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:16653106f3b59386ffe10e0bad3bb6299e169d5327d3f187614b1cb8f24cf2e1"}, - {file = "psutil-5.9.4-cp36-abi3-manylinux_2_12_x86_64.manylinux2010_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:54c0d3d8e0078b7666984e11b12b88af2db11d11249a8ac8920dd5ef68a66e08"}, - {file = "psutil-5.9.4-cp36-abi3-win32.whl", hash = "sha256:149555f59a69b33f056ba1c4eb22bb7bf24332ce631c44a319cec09f876aaeff"}, - {file = "psutil-5.9.4-cp36-abi3-win_amd64.whl", hash = "sha256:fd8522436a6ada7b4aad6638662966de0d61d241cb821239b2ae7013d41a43d4"}, - {file = "psutil-5.9.4-cp38-abi3-macosx_11_0_arm64.whl", hash = "sha256:6001c809253a29599bc0dfd5179d9f8a5779f9dffea1da0f13c53ee568115e1e"}, - {file = "psutil-5.9.4.tar.gz", hash = "sha256:3d7f9739eb435d4b1338944abe23f49584bde5395f27487d2ee25ad9a8774a62"}, -] - -[package.extras] -test = ["enum34", "ipaddress", "mock", "pywin32", "wmi"] - -[[package]] -name = "ptyprocess" -version = "0.7.0" -description = "Run a subprocess in a pseudo terminal" -category = "dev" -optional = false -python-versions = "*" -files = [ - {file = "ptyprocess-0.7.0-py2.py3-none-any.whl", hash = "sha256:4b41f3967fce3af57cc7e94b888626c18bf37a083e3651ca8feeb66d492fef35"}, - {file = "ptyprocess-0.7.0.tar.gz", hash = "sha256:5c5d0a3b48ceee0b48485e0c26037c0acd7d29765ca3fbb5cb3831d347423220"}, -] - -[[package]] -name = "pure-eval" -version = "0.2.2" -description = "Safely evaluate AST nodes without side effects" -category = "dev" -optional = false -python-versions = "*" -files = [ - {file = "pure_eval-0.2.2-py3-none-any.whl", hash = "sha256:01eaab343580944bc56080ebe0a674b39ec44a945e6d09ba7db3cb8cec289350"}, - {file = "pure_eval-0.2.2.tar.gz", hash = "sha256:2b45320af6dfaa1750f543d714b6d1c520a1688dec6fd24d339063ce0aaa9ac3"}, -] - -[package.extras] -tests = ["pytest"] - -[[package]] -name = "pycodestyle" -version = "2.10.0" -description = "Python style guide checker" -category = "dev" -optional = false -python-versions = ">=3.6" -files = [ - {file = "pycodestyle-2.10.0-py2.py3-none-any.whl", hash = "sha256:8a4eaf0d0495c7395bdab3589ac2db602797d76207242c17d470186815706610"}, - {file = "pycodestyle-2.10.0.tar.gz", hash = "sha256:347187bdb476329d98f695c213d7295a846d1152ff4fe9bacb8a9590b8ee7053"}, -] - [[package]] name = "pycparser" version = "2.21" @@ -2674,18 +1888,6 @@ files = [ {file = "pycparser-2.21.tar.gz", hash = "sha256:e644fdec12f7872f86c58ff790da456218b10f863970249516d60a5eaca77206"}, ] -[[package]] -name = "pyflakes" -version = "3.0.1" -description = "passive checker of Python programs" -category = "dev" -optional = false -python-versions = ">=3.6" -files = [ - {file = "pyflakes-3.0.1-py2.py3-none-any.whl", hash = "sha256:ec55bf7fe21fff7f1ad2f7da62363d749e2a470500eab1b555334b67aa1ef8cf"}, - {file = "pyflakes-3.0.1.tar.gz", hash = "sha256:ec8b276a6b60bd80defed25add7e439881c19e64850afd9b346283d4165fd0fd"}, -] - [[package]] name = "pygments" version = "2.14.0" @@ -2769,29 +1971,6 @@ files = [ {file = "pyrsistent-0.19.3.tar.gz", hash = "sha256:1a2994773706bbb4995c31a97bc94f1418314923bd1048c6d964837040376440"}, ] -[[package]] -name = "pytest" -version = "7.3.1" -description = "pytest: simple powerful testing with Python" -category = "dev" -optional = false -python-versions = ">=3.7" -files = [ - {file = "pytest-7.3.1-py3-none-any.whl", hash = "sha256:3799fa815351fea3a5e96ac7e503a96fa51cc9942c3753cda7651b93c1cfa362"}, - {file = "pytest-7.3.1.tar.gz", hash = "sha256:434afafd78b1d78ed0addf160ad2b77a30d35d4bdf8af234fe621919d9ed15e3"}, -] - -[package.dependencies] -colorama = {version = "*", markers = "sys_platform == \"win32\""} -exceptiongroup = {version = ">=1.0.0rc8", markers = "python_version < \"3.11\""} -iniconfig = "*" -packaging = "*" -pluggy = ">=0.12,<2.0" -tomli = {version = ">=1.0.0", markers = "python_version < \"3.11\""} - -[package.extras] -testing = ["argcomplete", "attrs (>=19.2.0)", "hypothesis (>=3.56)", "mock", "nose", "pygments (>=2.7.2)", "requests", "xmlschema"] - [[package]] name = "python-dateutil" version = "2.8.2" @@ -2808,17 +1987,23 @@ files = [ six = ">=1.5" [[package]] -name = "python-json-logger" -version = "2.0.7" -description = "A python library adding a json log formatter" -category = "dev" +name = "python-slugify" +version = "8.0.1" +description = "A Python slugify application that also handles Unicode" +category = "main" optional = false -python-versions = ">=3.6" +python-versions = ">=3.7" files = [ - {file = "python-json-logger-2.0.7.tar.gz", hash = "sha256:23e7ec02d34237c5aa1e29a070193a4ea87583bb4e7f8fd06d3de8264c4b2e1c"}, - {file = "python_json_logger-2.0.7-py3-none-any.whl", hash = "sha256:f380b826a991ebbe3de4d897aeec42760035ac760345e57b812938dc8b35e2bd"}, + {file = "python-slugify-8.0.1.tar.gz", hash = "sha256:ce0d46ddb668b3be82f4ed5e503dbc33dd815d83e2eb6824211310d3fb172a27"}, + {file = "python_slugify-8.0.1-py2.py3-none-any.whl", hash = "sha256:70ca6ea68fe63ecc8fa4fcf00ae651fc8a5d02d93dcd12ae6d4fc7ca46c4d395"}, ] +[package.dependencies] +text-unidecode = ">=1.3" + +[package.extras] +unidecode = ["Unidecode (>=1.1.1)"] + [[package]] name = "pytz" version = "2023.3" @@ -2855,27 +2040,11 @@ files = [ {file = "pywin32-306-cp39-cp39-win_amd64.whl", hash = "sha256:39b61c15272833b5c329a2989999dcae836b1eed650252ab1b7bfbe1d59f30f4"}, ] -[[package]] -name = "pywinpty" -version = "2.0.10" -description = "Pseudo terminal support for Windows from Python." -category = "dev" -optional = false -python-versions = ">=3.7" -files = [ - {file = "pywinpty-2.0.10-cp310-none-win_amd64.whl", hash = "sha256:4c7d06ad10f6e92bc850a467f26d98f4f30e73d2fe5926536308c6ae0566bc16"}, - {file = "pywinpty-2.0.10-cp311-none-win_amd64.whl", hash = "sha256:7ffbd66310b83e42028fc9df7746118978d94fba8c1ebf15a7c1275fdd80b28a"}, - {file = "pywinpty-2.0.10-cp37-none-win_amd64.whl", hash = "sha256:38cb924f2778b5751ef91a75febd114776b3af0ae411bc667be45dd84fc881d3"}, - {file = "pywinpty-2.0.10-cp38-none-win_amd64.whl", hash = "sha256:902d79444b29ad1833b8d5c3c9aabdfd428f4f068504430df18074007c8c0de8"}, - {file = "pywinpty-2.0.10-cp39-none-win_amd64.whl", hash = "sha256:3c46aef80dd50979aff93de199e4a00a8ee033ba7a03cadf0a91fed45f0c39d7"}, - {file = "pywinpty-2.0.10.tar.gz", hash = "sha256:cdbb5694cf8c7242c2ecfaca35c545d31fa5d5814c3d67a4e628f803f680ebea"}, -] - [[package]] name = "pyyaml" version = "6.0" description = "YAML parser and emitter for Python" -category = "dev" +category = "main" optional = false python-versions = ">=3.6" files = [ @@ -2925,7 +2094,7 @@ files = [ name = "pyyaml-env-tag" version = "0.1" description = "A custom YAML tag for referencing environment variables in YAML files. " -category = "dev" +category = "main" optional = false python-versions = ">=3.6" files = [ @@ -3026,51 +2195,6 @@ files = [ [package.dependencies] cffi = {version = "*", markers = "implementation_name == \"pypy\""} -[[package]] -name = "qtconsole" -version = "5.4.2" -description = "Jupyter Qt console" -category = "dev" -optional = false -python-versions = ">= 3.7" -files = [ - {file = "qtconsole-5.4.2-py3-none-any.whl", hash = "sha256:30975c6a7d7941dd646d00a23e5982db49beaa60c3920bb243727d43da805f12"}, - {file = "qtconsole-5.4.2.tar.gz", hash = "sha256:dc935780da276a2ab31a7a08a8cf327a2ea47fa27e21d485073251a7eeb16167"}, -] - -[package.dependencies] -ipykernel = ">=4.1" -ipython-genutils = "*" -jupyter-client = ">=4.1" -jupyter-core = "*" -packaging = "*" -pygments = "*" -pyzmq = ">=17.1" -qtpy = ">=2.0.1" -traitlets = "<5.2.1 || >5.2.1,<5.2.2 || >5.2.2" - -[package.extras] -doc = ["Sphinx (>=1.3)"] -test = ["flaky", "pytest", "pytest-qt"] - -[[package]] -name = "qtpy" -version = "2.3.1" -description = "Provides an abstraction layer on top of the various Qt bindings (PyQt5/6 and PySide2/6)." -category = "dev" -optional = false -python-versions = ">=3.7" -files = [ - {file = "QtPy-2.3.1-py3-none-any.whl", hash = "sha256:5193d20e0b16e4d9d3bc2c642d04d9f4e2c892590bd1b9c92bfe38a95d5a2e12"}, - {file = "QtPy-2.3.1.tar.gz", hash = "sha256:a8c74982d6d172ce124d80cafd39653df78989683f760f2281ba91a6e7b9de8b"}, -] - -[package.dependencies] -packaging = "*" - -[package.extras] -test = ["pytest (>=6,!=7.0.0,!=7.0.1)", "pytest-cov (>=3.0.0)", "pytest-qt"] - [[package]] name = "regex" version = "2023.3.23" @@ -3163,33 +2287,6 @@ urllib3 = ">=1.21.1,<1.27" socks = ["PySocks (>=1.5.6,!=1.5.7)"] use-chardet-on-py3 = ["chardet (>=3.0.2,<6)"] -[[package]] -name = "rfc3339-validator" -version = "0.1.4" -description = "A pure python RFC3339 validator" -category = "dev" -optional = false -python-versions = ">=2.7, !=3.0.*, !=3.1.*, !=3.2.*, !=3.3.*, !=3.4.*" -files = [ - {file = "rfc3339_validator-0.1.4-py2.py3-none-any.whl", hash = "sha256:24f6ec1eda14ef823da9e36ec7113124b39c04d50a4d3d3a3c2859577e7791fa"}, - {file = "rfc3339_validator-0.1.4.tar.gz", hash = "sha256:138a2abdf93304ad60530167e51d2dfb9549521a836871b88d7f4695d0022f6b"}, -] - -[package.dependencies] -six = "*" - -[[package]] -name = "rfc3986-validator" -version = "0.1.1" -description = "Pure python rfc3986 validator" -category = "dev" -optional = false -python-versions = ">=2.7, !=3.0.*, !=3.1.*, !=3.2.*, !=3.3.*, !=3.4.*" -files = [ - {file = "rfc3986_validator-0.1.1-py2.py3-none-any.whl", hash = "sha256:2f235c432ef459970b4306369336b9d5dbdda31b510ca1e327636e01f528bfa9"}, - {file = "rfc3986_validator-0.1.1.tar.gz", hash = "sha256:3d44bde7921b3b9ec3ae4e3adca370438eccebc676456449b145d533b240d055"}, -] - [[package]] name = "scikit-learn" version = "1.2.2" @@ -3272,45 +2369,6 @@ dev = ["click", "doit (>=0.36.0)", "flake8", "mypy", "pycodestyle", "pydevtool", doc = ["matplotlib (>2)", "numpydoc", "pydata-sphinx-theme (==0.9.0)", "sphinx (!=4.1.0)", "sphinx-design (>=0.2.0)"] test = ["asv", "gmpy2", "mpmath", "pooch", "pytest", "pytest-cov", "pytest-timeout", "pytest-xdist", "scikit-umfpack", "threadpoolctl"] -[[package]] -name = "seaborn" -version = "0.12.2" -description = "Statistical data visualization" -category = "main" -optional = false -python-versions = ">=3.7" -files = [ - {file = "seaborn-0.12.2-py3-none-any.whl", hash = "sha256:ebf15355a4dba46037dfd65b7350f014ceb1f13c05e814eda2c9f5fd731afc08"}, - {file = "seaborn-0.12.2.tar.gz", hash = "sha256:374645f36509d0dcab895cba5b47daf0586f77bfe3b36c97c607db7da5be0139"}, -] - -[package.dependencies] -matplotlib = ">=3.1,<3.6.1 || >3.6.1" -numpy = ">=1.17,<1.24.0 || >1.24.0" -pandas = ">=0.25" - -[package.extras] -dev = ["flake8", "flit", "mypy", "pandas-stubs", "pre-commit", "pytest", "pytest-cov", "pytest-xdist"] -docs = ["ipykernel", "nbconvert", "numpydoc", "pydata_sphinx_theme (==0.10.0rc2)", "pyyaml", "sphinx-copybutton", "sphinx-design", "sphinx-issues"] -stats = ["scipy (>=1.3)", "statsmodels (>=0.10)"] - -[[package]] -name = "send2trash" -version = "1.8.0" -description = "Send file to trash natively under Mac OS X, Windows and Linux." -category = "dev" -optional = false -python-versions = "*" -files = [ - {file = "Send2Trash-1.8.0-py3-none-any.whl", hash = "sha256:f20eaadfdb517eaca5ce077640cb261c7d2698385a6a0f072a4a5447fd49fa08"}, - {file = "Send2Trash-1.8.0.tar.gz", hash = "sha256:d2c24762fd3759860a0aff155e45871447ea58d2be6bdd39b5c8f966a0c99c2d"}, -] - -[package.extras] -nativelib = ["pyobjc-framework-Cocoa", "pywin32"] -objc = ["pyobjc-framework-Cocoa"] -win32 = ["pywin32"] - [[package]] name = "setuptools" version = "67.6.1" @@ -3340,18 +2398,6 @@ files = [ {file = "six-1.16.0.tar.gz", hash = "sha256:1e61c37477a1626458e36f7b1d82aa5c9b094fa4802892072e49de9c60c4c926"}, ] -[[package]] -name = "sniffio" -version = "1.3.0" -description = "Sniff out which async library your code is running under" -category = "dev" -optional = false -python-versions = ">=3.7" -files = [ - {file = "sniffio-1.3.0-py3-none-any.whl", hash = "sha256:eecefdce1e5bbfb7ad2eeaabf7c1eeb404d7757c379bd1f7e5cce9d8bf425384"}, - {file = "sniffio-1.3.0.tar.gz", hash = "sha256:e60305c5e5d314f5389259b7f22aaa33d8f7dee49763119234af3755c55b9101"}, -] - [[package]] name = "soupsieve" version = "2.4" @@ -3364,26 +2410,6 @@ files = [ {file = "soupsieve-2.4.tar.gz", hash = "sha256:e28dba9ca6c7c00173e34e4ba57448f0688bb681b7c5e8bf4971daafc093d69a"}, ] -[[package]] -name = "stack-data" -version = "0.6.2" -description = "Extract data from python stack frames and tracebacks for informative displays" -category = "dev" -optional = false -python-versions = "*" -files = [ - {file = "stack_data-0.6.2-py3-none-any.whl", hash = "sha256:cbb2a53eb64e5785878201a97ed7c7b94883f48b87bfb0bbe8b623c74679e4a8"}, - {file = "stack_data-0.6.2.tar.gz", hash = "sha256:32d2dd0376772d01b6cb9fc996f3c8b57a357089dec328ed4b6553d037eaf815"}, -] - -[package.dependencies] -asttokens = ">=2.1.0" -executing = ">=1.2.0" -pure-eval = "*" - -[package.extras] -tests = ["cython", "littleutils", "pygments", "pytest", "typeguard"] - [[package]] name = "sympy" version = "1.11.1" @@ -3400,26 +2426,17 @@ files = [ mpmath = ">=0.19" [[package]] -name = "terminado" -version = "0.17.1" -description = "Tornado websocket backend for the Xterm.js Javascript terminal emulator library." -category = "dev" +name = "text-unidecode" +version = "1.3" +description = "The most basic Text::Unidecode port" +category = "main" optional = false -python-versions = ">=3.7" +python-versions = "*" files = [ - {file = "terminado-0.17.1-py3-none-any.whl", hash = "sha256:8650d44334eba354dd591129ca3124a6ba42c3d5b70df5051b6921d506fdaeae"}, - {file = "terminado-0.17.1.tar.gz", hash = "sha256:6ccbbcd3a4f8a25a5ec04991f39a0b8db52dfcd487ea0e578d977e6752380333"}, + {file = "text-unidecode-1.3.tar.gz", hash = "sha256:bad6603bb14d279193107714b288be206cac565dfa49aa5b105294dd5c4aab93"}, + {file = "text_unidecode-1.3-py2.py3-none-any.whl", hash = "sha256:1311f10e8b895935241623731c2ba64f4c455287888b18189350b67134a822e8"}, ] -[package.dependencies] -ptyprocess = {version = "*", markers = "os_name != \"nt\""} -pywinpty = {version = ">=1.1.0", markers = "os_name == \"nt\""} -tornado = ">=6.1.0" - -[package.extras] -docs = ["myst-parser", "pydata-sphinx-theme", "sphinx"] -test = ["pre-commit", "pytest (>=7.0)", "pytest-timeout"] - [[package]] name = "threadpoolctl" version = "3.1.0" @@ -3432,17 +2449,6 @@ files = [ {file = "threadpoolctl-3.1.0.tar.gz", hash = "sha256:a335baacfaa4400ae1f0d8e3a58d6674d2f8828e3716bb2802c44955ad391380"}, ] -[[package]] -name = "tinkerforge" -version = "2.1.30" -description = "Python API Bindings for Tinkerforge Bricks and Bricklets" -category = "main" -optional = true -python-versions = "*" -files = [ - {file = "tinkerforge-2.1.30.tar.gz", hash = "sha256:76f0c32b2e21571444ca1e46fa7bb65a71fe88531ec413c528aa2430704589b7"}, -] - [[package]] name = "tinycss2" version = "1.2.1" @@ -3474,18 +2480,6 @@ files = [ {file = "toml-0.10.2.tar.gz", hash = "sha256:b3bda1d108d5dd99f4a20d24d9c348e91c4db7ab1b749200bded2f839ccbe68f"}, ] -[[package]] -name = "tomli" -version = "2.0.1" -description = "A lil' TOML parser" -category = "dev" -optional = false -python-versions = ">=3.7" -files = [ - {file = "tomli-2.0.1-py3-none-any.whl", hash = "sha256:939de3e7a6161af0c887ef91b7d41a53e7c5a1ca976325f429cb46ea9bc30ecc"}, - {file = "tomli-2.0.1.tar.gz", hash = "sha256:de526c12914f0c550d15924c62d72abc48d6fe7364aa87328337a31007fe8a4f"}, -] - [[package]] name = "torch" version = "2.0.0" @@ -3650,6 +2644,22 @@ files = [ {file = "typing_extensions-4.5.0.tar.gz", hash = "sha256:5cb5f4a79139d699607b3ef622a1dedafa84e115ab0024e0d9c044a9479ca7cb"}, ] +[[package]] +name = "typing-inspect" +version = "0.8.0" +description = "Runtime inspection utilities for typing module." +category = "main" +optional = false +python-versions = "*" +files = [ + {file = "typing_inspect-0.8.0-py3-none-any.whl", hash = "sha256:5fbf9c1e65d4fa01e701fe12a5bca6c6e08a4ffd5bc60bfac028253a447c5188"}, + {file = "typing_inspect-0.8.0.tar.gz", hash = "sha256:8b1ff0c400943b6145df8119c41c244ca8207f1f10c9c057aeed1560e4806e3d"}, +] + +[package.dependencies] +mypy-extensions = ">=0.3.0" +typing-extensions = ">=3.7.4" + [[package]] name = "tzdata" version = "2023.3" @@ -3662,21 +2672,6 @@ files = [ {file = "tzdata-2023.3.tar.gz", hash = "sha256:11ef1e08e54acb0d4f95bdb1be05da659673de4acbd21bf9c69e94cc5e907a3a"}, ] -[[package]] -name = "uri-template" -version = "1.2.0" -description = "RFC 6570 URI Template Processor" -category = "dev" -optional = false -python-versions = ">=3.6" -files = [ - {file = "uri_template-1.2.0-py3-none-any.whl", hash = "sha256:f1699c77b73b925cf4937eae31ab282a86dc885c333f2e942513f08f691fc7db"}, - {file = "uri_template-1.2.0.tar.gz", hash = "sha256:934e4d09d108b70eb8a24410af8615294d09d279ce0e7cbcdaef1bd21f932b06"}, -] - -[package.extras] -dev = ["flake8 (<4.0.0)", "flake8-annotations", "flake8-bugbear", "flake8-commas", "flake8-comprehensions", "flake8-continuation", "flake8-datetimez", "flake8-docstrings", "flake8-import-order", "flake8-literal", "flake8-noqa", "flake8-requirements", "flake8-type-annotations", "flake8-use-fstring", "mypy", "pep8-naming"] - [[package]] name = "urllib3" version = "1.26.15" @@ -3719,7 +2714,7 @@ test = ["covdefaults (>=2.2.2)", "coverage (>=7.1)", "coverage-enable-subprocess name = "watchdog" version = "3.0.0" description = "Filesystem events monitoring" -category = "dev" +category = "main" optional = false python-versions = ">=3.7" files = [ @@ -3755,34 +2750,6 @@ files = [ [package.extras] watchmedo = ["PyYAML (>=3.10)"] -[[package]] -name = "wcwidth" -version = "0.2.6" -description = "Measures the displayed width of unicode strings in a terminal" -category = "dev" -optional = false -python-versions = "*" -files = [ - {file = "wcwidth-0.2.6-py2.py3-none-any.whl", hash = "sha256:795b138f6875577cd91bba52baf9e445cd5118fd32723b460e30a0af30ea230e"}, - {file = "wcwidth-0.2.6.tar.gz", hash = "sha256:a5220780a404dbe3353789870978e472cfe477761f06ee55077256e509b156d0"}, -] - -[[package]] -name = "webcolors" -version = "1.13" -description = "A library for working with the color formats defined by HTML and CSS." -category = "dev" -optional = false -python-versions = ">=3.7" -files = [ - {file = "webcolors-1.13-py3-none-any.whl", hash = "sha256:29bc7e8752c0a1bd4a1f03c14d6e6a72e93d82193738fa860cbff59d0fcc11bf"}, - {file = "webcolors-1.13.tar.gz", hash = "sha256:c225b674c83fa923be93d235330ce0300373d02885cef23238813b0d5668304a"}, -] - -[package.extras] -docs = ["furo", "sphinx", "sphinx-copybutton", "sphinx-inline-tabs", "sphinx-notfound-page", "sphinxext-opengraph"] -tests = ["pytest", "pytest-cov"] - [[package]] name = "webencodings" version = "0.5.1" @@ -3795,23 +2762,6 @@ files = [ {file = "webencodings-0.5.1.tar.gz", hash = "sha256:b36a1c245f2d304965eb4e0a82848379241dc04b865afcc4aab16748587e1923"}, ] -[[package]] -name = "websocket-client" -version = "1.5.1" -description = "WebSocket client for Python with low level API options" -category = "dev" -optional = false -python-versions = ">=3.7" -files = [ - {file = "websocket-client-1.5.1.tar.gz", hash = "sha256:3f09e6d8230892547132177f575a4e3e73cfdf06526e20cc02aa1c3b47184d40"}, - {file = "websocket_client-1.5.1-py3-none-any.whl", hash = "sha256:cdf5877568b7e83aa7cf2244ab56a3213de587bbe0ce9d8b9600fc77b455d89e"}, -] - -[package.extras] -docs = ["Sphinx (>=3.4)", "sphinx-rtd-theme (>=0.5)"] -optional = ["python-socks", "wsaccel"] -test = ["websockets"] - [[package]] name = "wheel" version = "0.40.0" @@ -3827,18 +2777,6 @@ files = [ [package.extras] test = ["pytest (>=6.0.0)"] -[[package]] -name = "widgetsnbextension" -version = "4.0.7" -description = "Jupyter interactive widgets for Jupyter Notebook" -category = "dev" -optional = false -python-versions = ">=3.7" -files = [ - {file = "widgetsnbextension-4.0.7-py3-none-any.whl", hash = "sha256:be3228a73bbab189a16be2d4a3cd89ecbd4e31948bfdc64edac17dcdee3cd99c"}, - {file = "widgetsnbextension-4.0.7.tar.gz", hash = "sha256:ea67c17a7cd4ae358f8f46c3b304c40698bc0423732e3f273321ee141232c8be"}, -] - [[package]] name = "zipp" version = "3.15.0" @@ -3855,10 +2793,7 @@ files = [ docs = ["furo", "jaraco.packaging (>=9)", "jaraco.tidelift (>=1.4)", "rst.linker (>=1.9)", "sphinx (>=3.5)", "sphinx-lint"] testing = ["big-O", "flake8 (<5)", "jaraco.functools", "jaraco.itertools", "more-itertools", "pytest (>=6)", "pytest-black (>=0.3.7)", "pytest-checkdocs (>=2.4)", "pytest-cov", "pytest-enabler (>=1.3)", "pytest-flake8", "pytest-mypy (>=0.9.1)"] -[extras] -tinkerforge = ["tinkerforge"] - [metadata] lock-version = "2.0" python-versions = ">=3.8.10,<3.11" -content-hash = "b7321e5061e9b302290ca59115fd79daf9f86e2db7595b565b8d4929916cd635" +content-hash = "5935e4b2f50c9fa9dd2391dcb37d6e06539989280f5c67c16fec2c529efb7713" diff --git a/pyproject.toml b/pyproject.toml index c158f6c70..1165aa229 100644 --- a/pyproject.toml +++ b/pyproject.toml @@ -13,30 +13,8 @@ documentation = "https://autoresearch.github.io/autora/" [tool.poetry.dependencies] python = ">=3.8.10,<3.11" -numpy = ">=1.22.1" -scipy = "^1.9.3" -imageio = "^2.9.0" -matplotlib = "^3.2.1" -pandas = ">=1.4.2,<3.0.0" -graphviz = ">=0.14.1,<0.21.0" -seaborn = ">=0.11.1,<0.13.0" -scikit-learn = "^1.1.1" -sympy = "^1.10.1" -tinkerforge = {version = "^2.1.25", optional=true} -torch = "2.0.0" -tqdm = "^4.64.0" - -[tool.poetry.extras] -tinkerforge = ["tinkerforge"] - -[tool.poetry.group.dev.dependencies] -jupyter = "^1.0.0" -ipython = "^8.4.0" -ipywidgets = ">=7.7.1,<9.0.0" -flake8 = "^6.0.0" - -[tool.poetry.group.test.dependencies] -pytest = "^7.2.0" +autora-core = "*" +autora-darts = "*" [tool.poetry.group.pre-commit.dependencies] pre-commit = ">=2.20,<4.0" @@ -48,6 +26,7 @@ mkdocs-literate-nav = ">=0.4.1,<0.7.0" mkdocs-section-index = "^0.3.4" mkdocstrings-python = ">=0.7.1,<0.10.0" mkdocs-jupyter = "^0.24.1" +mkdocs-multirepo-plugin = "^0.6.1" [build-system] requires = ["poetry-core>=1.0.0"] From 6dec11e7eb3ca0afaed7971502d103371e90bb70 Mon Sep 17 00:00:00 2001 From: John Gerrard Holland Date: Thu, 6 Apr 2023 11:13:12 -0400 Subject: [PATCH 003/130] docs: add multirepo docs for darts --- mkdocs.yml | 9 +++++++-- 1 file changed, 7 insertions(+), 2 deletions(-) diff --git a/mkdocs.yml b/mkdocs.yml index 9716e06f1..b65a78fe3 100644 --- a/mkdocs.yml +++ b/mkdocs.yml @@ -42,8 +42,13 @@ plugins: include_source: true execute: false ignore_h1_titles: True - - mkdocs-multirepo-plugin: - + - multirepo: + # (optional) tells multirepo to clean up the temporary directory after site is built. + cleanup: false + # if set the docs directory will not be removed when importing docs. + # When using this with a nav section in an imported repo you must keep the + # docs directory in the path (e.g., docs/path/to/file.md). + keep_docs_dir: true markdown_extensions: - pymdownx.arithmatex: From eede9fa3890438bd9ca4e2fecdaedb9fc40cdcf7 Mon Sep 17 00:00:00 2001 From: John Gerrard Holland Date: Thu, 6 Apr 2023 11:25:07 -0400 Subject: [PATCH 004/130] docs: switch to using darts docs from other repo --- docs/theorist/darts/example.ipynb | 342 ----------------- docs/theorist/darts/how_it_works.md | 39 -- .../darts/img/darts_computation_graph.jpg | Bin 681971 -> 0 bytes docs/theorist/darts/introduction.md | 17 - docs/theorist/darts/meta_parameters.md | 32 -- docs/theorist/darts/search_space.md | 61 --- docs/theorist/darts/weber.ipynb | 348 ------------------ 7 files changed, 839 deletions(-) delete mode 100644 docs/theorist/darts/example.ipynb delete mode 100644 docs/theorist/darts/how_it_works.md delete mode 100644 docs/theorist/darts/img/darts_computation_graph.jpg delete mode 100644 docs/theorist/darts/introduction.md delete mode 100644 docs/theorist/darts/meta_parameters.md delete mode 100644 docs/theorist/darts/search_space.md delete mode 100644 docs/theorist/darts/weber.ipynb diff --git a/docs/theorist/darts/example.ipynb b/docs/theorist/darts/example.ipynb deleted file mode 100644 index a79322552..000000000 --- a/docs/theorist/darts/example.ipynb +++ /dev/null @@ -1,342 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "source": [ - "# Differentiable Architecture Search\n", - "\n", - "## Example" - ], - "metadata": { - "collapsed": false - } - }, - { - "cell_type": "code", - "execution_count": null, - "outputs": [], - "source": [ - "# Uncomment the following line when running on Google Colab\n", - "# !pip install autora" - ], - "metadata": { - "collapsed": false - } - }, - { - "cell_type": "markdown", - "source": [ - "Let's generate a simple data set with two features $x_1, x_2 \\in [0, 1]$ and a target $y$. We will use the following generative model:\n", - "$y = 2 x_1 - e^{(5 x_2)}$" - ], - "metadata": { - "collapsed": false - } - }, - { - "cell_type": "code", - "execution_count": 1, - "metadata": { - "collapsed": true - }, - "outputs": [], - "source": [ - "import numpy as np\n", - "\n", - "x_1 = np.linspace(0, 1, num=10)\n", - "x_2 = np.linspace(0, 1, num=10)\n", - "X = np.array(np.meshgrid(x_1, x_2)).T.reshape(-1,2)\n", - "\n", - "y = 2 * X[:,0] + np.exp(5 * X[:,1])" - ] - }, - { - "cell_type": "markdown", - "source": [ - "Now let us define the search space, that is, the space of operations to consider when searching over the space of computation graphs." - ], - "metadata": { - "collapsed": false - } - }, - { - "cell_type": "code", - "execution_count": 2, - "outputs": [], - "source": [ - "primitives = [\n", - " \"none\",\n", - " \"add\",\n", - " \"subtract\",\n", - " 'mult',\n", - " \"logistic\",\n", - " 'exp',\n", - " 'relu',\n", - "]" - ], - "metadata": { - "collapsed": false - } - }, - { - "cell_type": "markdown", - "source": [ - "## Set up the DARTS Regressor\n", - "\n", - "We will use the DARTS Regressor to predict the outcomes. There are a number of parameters that determine how the architecture search is performed. The most important ones are listed below:\n", - "\n", - "- **num_graph_nodes**: The number of latent variables used to represent the model.\n", - "- **arch_updates_per_epoch**: The number of architecture updates per training epoch. These updates affect the architecture weights $\\alpha$ indicating the relative contribution of each operation for a given computation step.\n", - "- **arch_learning_rate_max**: The initial learning rate of the architecture weight optimizer.\n", - "- **param_updates_per_epoch**: The number of parameter updates per epoch. Once the architecture updates are complete, the parameters associated with each operation are updated.\n", - "- **param_momentum**: The momentum of the parameter optimizer.\n", - "- **max_epochs**: The maximum number of epochs to run DARTS.\n", - "- **output_type**: The type of output to produce. In our case, we treat the outcome as a real variable, i.e., \"real\".\n", - "\n", - "\n", - "Let's set up the DARTS regressor with some default parameters.\n" - ], - "metadata": { - "collapsed": false - } - }, - { - "cell_type": "code", - "execution_count": 3, - "outputs": [], - "source": [ - "from autora.skl.darts import DARTSRegressor\n", - "\n", - "darts_estimator = DARTSRegressor(\n", - " num_graph_nodes=1,\n", - " arch_updates_per_epoch=1,\n", - " arch_learning_rate_max=0.001,\n", - " param_updates_per_epoch=500,\n", - " param_momentum=0.9,\n", - " max_epochs=300,\n", - " output_type=\"real\",\n", - " primitives=primitives,\n", - ")" - ], - "metadata": { - "collapsed": false - } - }, - { - "cell_type": "markdown", - "source": [ - "Now we have everything to run differentiable architecture search and visualize the model resulting from the highest architecture weights. Note that the current model corresponds to the model with the highest architecture weights." - ], - "metadata": { - "collapsed": false - } - }, - { - "cell_type": "code", - "execution_count": 4, - "outputs": [ - { - "data": { - "text/plain": " 0%| | 0/300 [00:00\n\n\n\n\n\n\n\n\nx1\n\nx1\n\n\n\nk1\n\nk1\n\n\n\nx1->k1\n\n\nexp(x)\n\n\n\nx2\n\nx2\n\n\n\nx2->k1\n\n\nexp(x)\n\n\n\nP(detected) = (x + 0.00)\n\nP(detected) = (x + 0.00)\n\n\n\nk1->P(detected) = (x + 0.00)\n\n\n1.00 * x\n\n\n\n", - "text/plain": "" - }, - "execution_count": 4, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "darts_estimator.fit(X, y)\n", - "darts_estimator.visualize_model()" - ], - "metadata": { - "collapsed": false - } - }, - { - "cell_type": "markdown", - "source": [ - "We can refine the fit by running the `fit` method again, after changing the parameters. This allows us to keep the same architecture but refit the parameters in the final sampled model, for example:" - ], - "metadata": { - "collapsed": false - } - }, - { - "cell_type": "code", - "execution_count": 5, - "outputs": [ - { - "data": { - "text/plain": "0it [00:00, ?it/s]", - "application/vnd.jupyter.widget-view+json": { - "version_major": 2, - "version_minor": 0, - "model_id": "bece0e3dc61b41cca6eae1d70d0af091" - } - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "image/svg+xml": "\n\n\n\n\n\n\n\n\nx1\n\nx1\n\n\n\nk1\n\nk1\n\n\n\nx1->k1\n\n\nexp(x)\n\n\n\nx2\n\nx2\n\n\n\nx2->k1\n\n\nexp(x)\n\n\n\nP(detected) = (x + 0.00)\n\nP(detected) = (x + 0.00)\n\n\n\nk1->P(detected) = (x + 0.00)\n\n\n1.00 * x\n\n\n\n", - "text/plain": "" - }, - "execution_count": 5, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "darts_estimator.set_params(\n", - " max_epochs=0, # no epochs of architecture fitting\n", - " param_updates_for_sampled_model=1000, # 1000 steps of param optimiziation\n", - ")\n", - "darts_estimator.fit(X, y)\n", - "darts_estimator.visualize_model()" - ], - "metadata": { - "collapsed": false - } - }, - { - "cell_type": "markdown", - "source": [ - "We can also change how the model is sampled from the architecture weight distribution:" - ], - "metadata": { - "collapsed": false - } - }, - { - "cell_type": "code", - "execution_count": 6, - "outputs": [ - { - "data": { - "text/plain": "0it [00:00, ?it/s]", - "application/vnd.jupyter.widget-view+json": { - "version_major": 2, - "version_minor": 0, - "model_id": "c7be110e32954ed092c008d024a309b3" - } - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "image/svg+xml": "\n\n\n\n\n\n\n\n\nx1\n\nx1\n\n\n\nk1\n\nk1\n\n\n\nx1->k1\n\n\n47.75 * x\n\n\n\nx2\n\nx2\n\n\n\nx2->k1\n\n\nReLU(x)\n\n\n\nP(detected) = (x + 0.00)\n\nP(detected) = (x + 0.00)\n\n\n\nk1->P(detected) = (x + 0.00)\n\n\n1.00 * x\n\n\n\n", - "text/plain": "" - }, - "execution_count": 6, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "darts_estimator.set_params(\n", - " max_epochs=0, # no epochs of architecture fitting\n", - " sampling_strategy=\"sample\", # overriding default \"max\"\n", - " param_updates_for_sampled_model=800,\n", - ")\n", - "darts_estimator.fit(X, y)\n", - "darts_estimator.visualize_model()" - ], - "metadata": { - "collapsed": false - } - }, - { - "cell_type": "markdown", - "source": [ - "To recover the initial model, we need to return the sampling strategy to the default `\"max\"`:" - ], - "metadata": { - "collapsed": false - } - }, - { - "cell_type": "code", - "execution_count": 7, - "outputs": [ - { - "data": { - "text/plain": "0it [00:00, ?it/s]", - "application/vnd.jupyter.widget-view+json": { - "version_major": 2, - "version_minor": 0, - "model_id": "4f4026df6f5e4934905010e90bc42fc8" - } - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "image/svg+xml": "\n\n\n\n\n\n\n\n\nx1\n\nx1\n\n\n\nk1\n\nk1\n\n\n\nx1->k1\n\n\nexp(x)\n\n\n\nx2\n\nx2\n\n\n\nx2->k1\n\n\nexp(x)\n\n\n\nP(detected) = (x + 0.00)\n\nP(detected) = (x + 0.00)\n\n\n\nk1->P(detected) = (x + 0.00)\n\n\n1.00 * x\n\n\n\n", - "text/plain": "" - }, - "execution_count": 7, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "darts_estimator.set_params(\n", - " max_epochs=0, # no epochs of architecture fitting\n", - " sampling_strategy=\"max\",\n", - " param_updates_for_sampled_model=1000,\n", - ")\n", - "darts_estimator.fit(X, y)\n", - "darts_estimator.visualize_model()" - ], - "metadata": { - "collapsed": false - } - }, - { - "cell_type": "markdown", - "source": [ - "As long as the architecture has not been refitted in the meantime, the architecture should be identical to the initial result, as the `sampling_strategy=\"max\"` is deterministic. The coefficients of the architecture functions may, however, be different, as they have different starting values compared to when they were initially set.\n" - ], - "metadata": { - "collapsed": false - } - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 3", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 2 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython2", - "version": "2.7.6" - } - }, - "nbformat": 4, - "nbformat_minor": 0 -} diff --git a/docs/theorist/darts/how_it_works.md b/docs/theorist/darts/how_it_works.md deleted file mode 100644 index b703f69fe..000000000 --- a/docs/theorist/darts/how_it_works.md +++ /dev/null @@ -1,39 +0,0 @@ -# Differentiable Architecture Search - -## How it works - -Regular DARTS treats the architecture of a neural network as a directed acyclic computation graph (DAG), containing $N$ nodes in sequential order. - -![Computation Graph](img/darts_computation_graph.jpg) - -Each node $x_i$ corresponds to a latent representation of the input space. Each directed edge $e_{i, j}$ is associated with some operation $o_{i,j}$ that transforms the representation of the preceding node $i$, and feeds it to node $j$. Each intermediate node is computed by integrating over its transformed predecessors: - -$$ -x_j = \sum_{i
- -$$ -\min_\alpha \mathscr{L}_{\textrm{val}}\left(w^*(\alpha),\alpha\right) \\ -\textrm{s.t. } w^*(\alpha) = \underset{w}{\operatorname{argmin}} \mathscr{L}_{\textrm{train}}(w, \alpha). -$$ - -That is, one can obtain $\alpha^*$ through gradient descent, by iterating through the following steps: - - -- Obtain the optimal set of weights $w^*$ for the current architecture $\alpha$ by minimizing the training loss $\mathscr{L}_{\textrm{train}}(w, \alpha)$. -- Update the architecture $\alpha$ (cf. Figure C) by following the gradient of the validation loss $\nabla \mathscr{L}_{\textrm{val}}\left(w^*,\alpha\right)$. - - -Once $\alpha^*$ is found, one can obtain the final architecture by replacing $\bar{o}_{i,j}$ with the operation that has the highest architectural weight, i.e. $o_{i,j}\leftarrow \textrm{argmax}_o \alpha^{*o}_{i,j}$ (Figure D). - -## References - -Liu, H., Simonyan, K., & Yang, Y. (2018). Darts: Differentiable architecture search. In *International Conference on Learning Representations*. arXiv: https://arxiv.org/abs/1806.09055 diff --git a/docs/theorist/darts/img/darts_computation_graph.jpg b/docs/theorist/darts/img/darts_computation_graph.jpg deleted file mode 100644 index 972ddef14882b64465a768e92bc5b5db9edb0e4e..0000000000000000000000000000000000000000 GIT binary patch literal 0 HcmV?d00001 literal 681971 zcmeFY2UJtvwl}&F5D<_K0#c+1Ql*K~0xC^Zno@j%{X3+XG_81FXHgWax^YV4|@)lN- zy9ivqYIuw0&mF<`7cKr5$vQ5OFr5t4(yWIwyxt;Q4Lio1&^Ekw4QgU$tY>&r_YWh$ ziHkbduj-y)1pp6EKOZywtHM^+Ho|n@KwcOD4nPS|f8gNjtz%+x^Upm!y*!=%y7#|( zIhg#5Utmo3&%OTLSO58kQx4ufe&8??*cBa}d>z19xCqkjfqvfLb*eWY&H2#%FS_~< z?Q_TM8hE`2q))s2jUN9)Kl~fL@`v^TnE=P^{Tc7_7kz^M5B>0O^w~eOpHtAE{|j96 z@(%WKb8+<(R=jxeqOgvm*Fz^^^I%^;Cl6m?Lr(`UA8#+82YybD;Ml)C-=ALrY=0a0 zXT~HIu3Wi%;jgRz8(;pc!{2WA%k;1LrQ-hb&ujnuM-Kiz0e}BQbwUXM{@LLYv&aJfK?s<+TR>^0BrOOTFhi>DiPoW8x=Jh)o~9X z1Wq+A)nD!39*gP(H4W`aI(mjvjNpIo;t2LcmW+ON;rH4Kd45zqx&hYYypO=ulAf>EwN%is-wQJXP_4Ex4 zZV!W@Ns4ot6Erps=X8q_pgP zZC!msV^i~omague-oE~UPlKal;}erp-=}AmFv}}Hey*;qZ{T--?d>1@CLA99;fo5O z{u^81>)$y0zwyNe@^ylShMI=%4_{O#0>MtrMnii};Uv3`Dcyr793qO(=sB;Z=GSyG zh$@-kxE}h9oZ=Q!UJ}RuVeK!@{%edy{D0!?AB_EzuUX(4aN@5OhM{nZ%%H0FP_WAG+a;61<}p9KGy8R!`P@!fx!IGzU;+v4#Iz(h?2 z3KKOO00GFPcX5)yzxu!C;9oNEe?$hTkH7tE5B^K`{*TDszx4j!Y#;UU$iLfz)VqSY`R;FyNup^k@-yU`! z11BCH1DI0kkT_5lpOGI=q7gx6B$vTlh9jyeL;MZ?Y7Q`H<};QR15T3 zvj#Mau4xNBXZo^b_sRL8q1Z}VNSgbOaTKD4ypxQ22#q}k>Qkf5OM~3+)=~O(Wi;ls zI)tz;(!Z@w+$)Hta6DcVG(bN0kd;GjFICsZt~P&2Jr^z6>5`^@?(Ut_h7Yx=CsB>b z&xC+_p{Qe^4icjUY&4F{S$8k}9P=;jJ9TgF5&clm7ZnVaDQ)=cFZOT?z!xTA_Yfos40bfGlw8WY&BDw61S6q*ZrVdV48_pme zOwd1XMQrP+zPfS@RQXYnvqp3|0n`88-Tp2p6fBdT=kRSv1GD!F5d8U71BHF zoDJsCd(B|gQP3t~G3z2g)1a!g2O~ZA{07)exhM^Ggt3usp*z)p!BeE;>PY3 zXNT=uE+%xp_ma{?KJlNl03uH7(B+@Zg?8_B?##fK(H(YI`O#7B$`i^j9*PF!IjizL zF3^aT`HA+NUeC>mzCFsKLN*TT6l(Z#3^Yu2sUtbuXCA8=$C5Ndl!qSjo1vYuW>nJD zUsH2C8tRBTC~-M@8g#y8`5^f&4)~8cM(cdg&;F(4?qn{Q;W+k3Ydx+izSP}(wo5zH zwVoK*?E0;V>h(DwPcazTsSX-;IiUnWY>pAZxVYP+8Ecg2>{d8CE7v%Z0IEs%gQo{g z$3VITq5l|o$P)|Sn|%W9(FNcS;nl;~5-*}7!LrAuqMgT!@lhC0OG9JpGf&E_m*RXu zy^sF6r1R#)5~hTbvk#Jjh`IA3dTDy}FBp{+IshL-&2VIwJmK6h2^44^$mTI{^%xkj z%sBc%G^#2^*S+f1{q`H~il7a8ZiD^0qfXQc&3W<_`@R1o0D~?=3DStIXG_dJtJiB= zr${$toh~-~j4u(LQ96C5Uwr(acU(|aD#P==)qO+}+=XRUei4E-J|IG)LOymsYPok6 z^UHADBYX5fI^cf9{SU4y$xlw%sCpEJ&l<_W<66kN$3TR3Z`mi}!|9I^H4%{0kFX(@ zZ=0m~$~@JA`xIv1n9%Ke>2jJ-ft_vu-I$EEbR!Cr#2X0dkeEWeN?%ch&O7VxmEY=& zwSwd%eu=;Azd&E+IVZ*bMSGE5f8{v@cTb*Qb|9F-xo+&0`g+VNOH8zR!Q;CN+GPo9 z2Jdu-tbEsyI0hWB$&?%wHOhlEYGM`{(SC6qE!56Tuw6cxQ8H9GOUN9lqJ6o`V838c z6y#{Ea5d(H!K}N7-RFoq9M87=amN6O!yQW*7#O6ws-z0rwFs59=YI-+__sWa1^Or5t?`^4MWv6^~&diy8Zi^&-f zFGwV`;VZH{$gAU0$U=Ih>tsCqiA%+7H*ebaff`zFPEbTNVMfu_L#^3yTEL1^vGyEGwm51-jkx;c}83j1Z=lDWIo`b+G~ zHe3y$%>N+2gS)KBMLh=x!vq9Atut;OFiMbjU4{Y|gz$(+l1AoTm{eG6xpd)OH`%I(pLTy}cZ-T!u?~DmsL?p zciU8FX_4dm@kJOv{_bS@HGMFcDPz3x3uWy2ji*=N1ueDZ ziUcIIw9rw-^1n>jKZ$y~L+}aQ0`>hhWFmZrf;a{Sl&MIcN1$W+q$}zN{>MQ6R3Ga1 zF<^WQtnj(RJ2_A;J|!-RZLTa2oyP`9?Ol@8hdKH|-!&fJeYwKwt#hEV1!qCI!jn*^ zkle(j)nu4XezkDD#ni9RyqkXP+F!m6&=nM%B7efmlh~*`c(`|t0s6pRW(Q-0ki&$pPA~4J=EMO+;(--tE_&S$EHm?1$z_kH%9Vv6O(U<3gU0AIO6MZv- zxCHLN%TuQIcncpLS)hunH?sxic#Z<{X#y=?S&Yh557P_^h$W6^I64VOFwpQ(Xr+J0 zQ|Q-;W*ay{((eO1eAKTwx2eWo8+lwxR~$T^0E%|g{cjL*R=;n*zsOdQvaD!Ax2N)V zv-HO_{nvV!PuMIJ4AQB>2EB#ogM8>UEb-h+)KzKX(jLWq%NJCLC0~l3F{NB!SKGb$ z=x*{ae|-5tAGx4i3q3!Kr|WA;cbmF?4D`G*&f4;O{cTUjjZx|{b>irbkJc}aApq_W zGTg`Vy#4IMymR=b80ALu2zeEEBOjK0_8Sc~OK2eiNAFNwSD5IiO7Sd;&wr1{#dU{R z;;FewxLD5pDlmXYVd49bctekj;FX6yX`-j2tPO;dOIb-= zmdAf6$h>>qS}g9OMzdYKdMVYDH!1XV-|kp0J3?``EYl-ZCx#YLe1%td{UeQCsLALi zs$(G8awD({8fVW=n8K}IB@``M7w25VGk^F{@BSh|Nz&4FUhL}aDMPl@YJ-8r)Cg@& z?q;u82zwg~E~e84(F1ugQ?Diwv-e`ssP$81^{s7D-8+fa^Yh=O-bpJd0H?Oyca15G zms;}4FO_{Cv~Df;wYas0kz;BR3kGGuHXxnn)-*SXJOX~mKEpg-rY06@m}|0N}0P(mB#xn_3m=2>It2* z5og#7IY`o$dth`#b3NW%h(SwqNUC}a(GyVa*}t6=Re$pSvWWgi zqRd4afOkHiND;^=*G-|AfSDiUk{G{a7OT1L65BZq3#`B2FXi->b5w=GQYWUnO8XRj zsK}}#&<@Z!5?c^E2HrOOrqF=iK(FaBz@QonS(6Pt2A(Ox@pq`mI8$inWGY?>1Bux- z`>lhwZz`U<-kD~5OAo`q6?2vE3TK37`L=u{0(S>7Gq&VJe&?PiDyTm4;QslswrhMt zGO;6#XsOEYu+Yh1F_U1)xd6B7FLD>9;qbU5iJA&uN<^6*Evv!bP zHVgCxd2UMvnUc%S0p!kyz2i*bR4d6TZM2}Vtj32GU@Dc2@QChP7uR1kdCv~ZWtH9% z=rNRjt|;;)P5LFBI)mN!z8@PJbQDG~?2~vIgf$V0{vs4Itoci zv;io;UH_9{I%wrhj0Pa;Wgcaxt)(g^w=1`*dJzfyWsizbCInrIh)%5)IGgu z+xXW;SK_Wa)bQ$Uxd?|-9VzLCK}j5-daVu{hVq4ptihQ){ERu)_>eEEmaE5B$7L(? zMz)L99TFE7Hmq3(dZZBYp2lD9_(DrL0n1O2`atXl5E1wsIB6r%L$?3X@bM~D;K|gY zS(W+K>3BtkH%=mnjG|IIsYa{;5mcg^k0`qE#rNg!S!N^q^-bqjay*!(T`m(L2X>|E zzOzHWlyd$e}mJw!?*g0R?8nz9gPVFr?pqZe0zbwJO51~O8D{E zKVX&2B8pa?<0pgevGC8%|UFpL>m z3e6LqIG;TvMjWxyeeoEhg`X9B6xyjmz6|d)*Sd5Jbb-2Qzmn&6^KJuDXt15H{**Un z#$O&r*lgMw#B)p+*-#8hsrMu(4DmQi3Xc%hX{j}ypn>J@lvN z{G6N!!L=U)&QNNSb_-&7A~9mUrBgzlTvQ@d_jPB@S@JwJvG&wa@gIOnB)Jb!<4(Cm zpnh-sqCwKUXXdH`=)4eRcT7WV3=&QQlryi%ko=ba5DWN^aDxBUcYlS109Bf?_67H4 z7J?+CR~qpgUMt@t#J2uQ*1ZhUz=XB7^f;=y29)n%+OnhCe8(NEQdidLkTAuo`4o~Sr^vQ5TfGPc(ndSO# z5_|FiY^+^5Yy^eNBxHZHTN66%Q84M4*x_0459U*f#}w$y^F- z*-xxEy>ZvxRy|OOD)p1`73vUQhWK0q-n0xX1!hn z)Y6P~pdiABGlLK$p-Cv`9gb-jKS9&Yo$kes-@v{)*5}}ykIcK~V0KCDB7DBSe^72% z((jZuy`eZf&ns3)pj`#kGH`k)xh&NSgV7!_cqHsB=qcctVNve>p$lEV-JuW$pi^w5@&f|yBxkT z1IKvq9L3kxG8S*lLP)yH7)J|l8ru1GA6_? zh5C#^zrjo^+@=oF3-NQaXydal);c0HV0nl{03NtMwArqNgGU{J3g=eUdW+tc2ho4- z()94n;G~c4hhNF{pav+(5RrqkGqJ(0V4*Xa*DC&6j!4~eUOE=jng4pfmx11i(IECM( zQAX~T0qSq*=6M1$Gr4yHLp1`v=_&3GF0tviDgc%W#jtC*lMSKdtO7!getR1e$JW6V z?$)K{*@ssi6Ca{tjX^|3s9gaTH03-+kq#<1ohnK*mkAjA^4ZA)vDDOHCj3kr%g3~T zMJ#=VeuuvzwZ_8iRP|-yq~}7Q3o#FOhaakVCBP5P1-&{3ZZ&a{u3IiZ7{T>;3+LAm zz!mhtX*4`a?*$Ea*-PUlk@>dgOVo`*i-t;VjJ!Cj@3pVl&M*Fq2`5Vre%%Wy_3sX;4 zo<}9bvLm+pxb*K!uc5->wJ{yZ(|HSrTC4;Q<<`nucjdiS^K4tEM^4}6bIY1`pv#SI zQ2NCC6P18sg_#qwFhe&&U3wN|CiiVOvzTh<>>u%P7;N7*6rV%jkkgVLE!M%1H{#MKUc-BybZ-{#QyCut?2uVrgm!c%Rs?>nmq4rXnmD$*8c z+8@t%ZSP%QD3f_yRWb)^j@R(T2E^`TLD1Q&IRLTdTiLnri~9%YKI7ROObnKqsNn{o zp~ya-^w*^83CJEoylA)Dc5aOLx;_22Mc1U(fVr#o%cUA%hpGPwAuSwIGfX(YO3ISx zLLdDxxnofip`B0`aNSiQE1$HukAbPE-;_6U@6p(4qO}oGgd`Z#m#vp^x(>taZek~4 z(D=dG_DB7=Y#N|9v=fUUdy3#qlBIQnVQ-hQKJ0q+Mej-_A_fYIj zp5a@T9rvsFz~>|rfi{&&x0!0=w#T0DJ}~a@PS@Bm!>KHqEG;Y<{GF6DfAs~5r7Gx~ zZ=7M(IkH@L*-8cd(2ImIoJ3D{KrCLusvVCC7f-t^FROCFW}DK*wD{TKiD+wj9j(OA7OJ=f!V_TV?YSe&lr z#K<$jK2&1z4073}cgPqFeG5l}P<9d0a2|IHiv#>4RW@DPhN6|~Yo|m8xGXNG-T~B2 z==%4G@}TtuMKC=Y-$ag0I|kOf22p&{?$_`VFWMCRelPG%$ou7Fi7IGJsK#Qg(u{arbX`$dOLP@3b33+ zeHfBk->Ls>v~KAzr^8u+nwQIeK~mD@*(k!2qq97xLNdNwN|9g447B&HAL>ATV`Y z(u0g^sdGoL!%WMAviEb}7?mv;`Toe<5Vd?*gS=nLrM(DTe#^4WJ%xdH+s zdPBE5Dp%xQdEReWTKr96kK*NpXO8zsRVCQ~WzH1|s@aFgS&1%a!|(3thIk|Y5t4QO z>$g*T9>g9qgVUemeQy73d|m!n_Lr!%s0&pN_S9d#q4c3Gs1C})Ce;vq@B~ZvNzxS` z%T73pms5jd;%?K?xOTs7ynOX&xK;KMfhfiW}(n7LAwg&ALP@G;la|CF9aFg7&lYT(WEoJ&R0LV%RKm-eGn;7yr{!==wlf9>+rDx zR0ZBC-%h=b;y(r+X)40mW*IB#I=PV;qXD~Xy2=Nm`T}p{-$XF?#Gf;x_e*?P0VS?im{CBwViC-quufBLCQvhjEC`i#V7fmTS(tZ~X30I`Qta2m(iu4q@c;9%M zc<_8wSyPYDyErUxud~42+W`F`$<5G6{cE#cgbUSo{7PH+fd~uX!f@v;$YK-r0kZe) zETbKNA2*JWHzaU^$`ZKDoUse20Rc$1-k_edrF*bGl>OsPUXZ^g8c?(WI zqDdp*NHEn0_en!+zr8u3d`{_f*>0Emd7mEYqaLtwh(K-d(N5I@e<|51p#M?l6F7}o zra**x^zf3MZsmOC-XDDy$U2~ycD-{XrtX9ea#7~ZuKO(I6c_{WqFhj{IvAEHdx`c@ zjStW3)+z3W#S2uOMmc&~citu`TKeo;SODQH+n3@FSq?6eD@ZEDdoW4kGge*MUN81u z8OgJ`Ng8s$iVBoTUL_QK-vNgiyRK2HKTqtuh?l zE;#{H2}!EuRi6DI+Y=SSz;;ILeF&HLpgs+ow$MD5i*N`^=N>5GX~snDN8Y3}gz1B) zP=Wf}NA~3>WVmNWyIS)kV!dnZ-bcfP*#`2fO9!dLI=@lr!j%v>YayYaWn*$-z5JCxBOZS<@eQJd&uVV zrn${KB+}iiQviH7+&OgcC6R4+MkS*5u}W61!6{bu*ZjZ65O@L)KAIvPsky8g5)r^8yWUV@GOoJxhSAG zN$hQxvu$en&`yi>Bf1;Q+MBayC=L!uvX$MBbmyJ}EGUn{q{7C9>UsKF%j1({^E4;- zUwAUiI~)`@jlC57;Mgp#N~ir~bI& zMM25S^1TS|xeZHuQG8Nsn15i_j+uwv(z_fiO%_*yqKD+{3+V)hgokaD;gEbd;aoon zv{XFDz~--RFi9kLgbH>ih<}5DPU5N9scyc7f`a(m;wKLRWt(#9)B_K1wl;2G9=?gN zIdV9#C(PpmZ;}frXNH6lRMtnmxYru%W=TlOoqq<(enl!1+c>eC8PtFUp3@MPNsq6*9mFCV?*Jmznw)WtV3k^7_W z_0Og}=_}S^iTzS*9b69vgxQART!Cm-jo|loDhDN)TlU*OzPH}e+}j=a5|Z|1B`wrf zTWD6lQ+}Gb#IuE6iiL^eV!Cl_7OIM|+pjg!=j?8tq#oAzvTLBdq~r0P;S_-Rn2q8< zEyjmw;ZgBz40s8By#2@0%}XJd@(Xjdq={K_x}_iDR)?$-5_-8v4dObpsc#(LP`-bo zG8ukCTOs?zU*sA)Q{6!4UHvkNXV7FsQwfQ4duq|5<|z)o=opZVO2jh6TTaNOf2|pr zLms`<*3QHFFrK(+DwNUPxMI8-iE-%{N)X~z;Z=deX(>!<7|EpZUJsn|G4$ZzcyrB@ zK7wn{YUEA;Xh<4A;f{B_f!T4SGMKqlZfzWDpZkH<2;dhd%~ zSeoYU6YI2TxemoapEwzx9IqitR3*5x-&p_AoiSE68#8CM@ac!aNNr|9 zi!`T%n-l{twa}1POqc{o7uWv54Y{TzIjOu!G#m}u_Sh*&y6$&hXRzJaxGx;idh~N2 z%}aoE5#dYc!K}Y%z$J3aHvi+*VvT4GI&94Nun(VOIGLyM-e{$6@O4 zXKQQi+?o_^4R_x}J$&wEK5r`pS_$a57l|YCV55~>22+JELSj$Sw~GWh&&!?9=CUf7 z*kYt1nq7Y@+O7P0e^Hu3vURFph>P)QF(VZwO|W>=1O56S4} z&irNiA#EFT^|qm#xU=tYS%vV8ltFKOVNg;iYseog6oz4He_X&A`PZo zz!byY9e?thDSRR*&;S@seI_7}fd{K#m6Yi>I&mT&{L?f{2#l7et{nrT1Dix=B*x`H z85~$kfPj@lRWZjvQR>vekTxx+sW$Bc!mDl@mITm`Cz$tMVto{%SLq>}i_IORiw-(( zR+UgvDooZl9r6V6&#s;RAl17X?>Y=Lp8GRwA^r7|`ZXxLg2v$s%= z@*ML7^@AdUDbgC1IYL0`H@yS{?T+Fp9s> zW*AJvq5oUlNKrPjY`gM@qu}Dtvao(Z&Nh4r))I%%u1y|tz|5cDbvg!0+!>#@Hbb6Y z{6P8xT>if~Qi04k1|Fkk)W#0(5g4mrx7d1pE9&%%T`#2zr7hoSnG>12ER*uC?d#i! zPrN2N!c!Amr0*a&@Q8BZ-lh-_j2{;_`Xjr$J4E`?Z=FF84J;TQSIqB1^)=k6%gmhFa6kdVcfh`OJ-xby?h zYCIeq!Ud`DOmGo3zo0Q;5T#BSQ60>*rRa7O8vMK||ZgrNy#tb6t^Sk5Br5 z++=z`rvL7>-z@$264~-6rfqu~*BO z{JlMcAKxp|5Qjgc3g0+hxW_?`Cy9=F?Xg4&GJb2Yn&F>U@1D6^^u_byCuQy$(K5mO zmyz}ngB2G$*iwR5QwKOhoM%C6;=P6VqT0_gtACI}e(NutlPo|OqzEW3OSK4QC};BBe3BP?;EG^hzKm8# zyXo%$y58I+c%h}Au@dPOgaX~_boBtcN8Gr^(2Kj&*)yXs-6e7;Q#N;rOPN$cW_@## zH`UHdXXK(!{a&KGHSQpvyYek`ZoTQ-*3=o5Xv& zwWIKKgC?E;CC!gry-&()`lTvTGyK{0z9dE{7Djf8pwc8Yf|qk_8^&eZbjx-95_nyV z)+bH6^G^$TYaN0{M6Y@u#S!GyZNi9P+n7|lBj#xM)K{S8KDGGQ%JN?-FuankjF_QPG^2u*mc>yGBeuV?dTeWpM@D?hB*nd z)`%W^#Yy@7d5e{w?${eYjasuCJ?3ey{Wzw3LjGS0QbHY(!jbaNTAGx+eVaNeBAU$59 zFYykHhOiU@dSXUy65srr7|&+EvDj=evW+syuX0FGju#ecOSFZ5Z7l@IrO191SmaI0 zp?eNuETJ`^W^yip-UdNYmiqZ#VRoS6O&#i~#$h~rYm6@ij)Xnv?z=LU4fZj=- zqt@~4Qu!e#SOmB1#W7Qq91GKVzcD#7Aa3A=bpDX&2$Xu)sskMgynWsVJKAR(;1AKb zThK#Ap(ynJYAFbLeceVSWpC}FUK|6gd+PM{l^nf%lL)7iOI!_A`A?V>wjcIC5{{PyDT4zW6%~bw)ikWy zDx__Ar=XTJNq_Pfa1(%c*?=Z>-vescj?0)I&up4Xzt{7MyD1>zLd3up*My_rz}AZ8 zraXzWu9tEF2ibC4u7r2CH2jP$D__5~{`7&;>|CLxT4KG~dm~=UTlhLr58(_kzw_Z5 zSP+Fz6RL?slWY8B-9&~-Aysw0D-_2pIR1$Ec?sTyj6t2$5O7-*islnC-Z%Na_|A1NR7kc?5R4Q;VR4_a>JLxAiM0v zLs&g9C3+?7=U{zSjq!2?4?MK;)#ru;DxTOHq%w%f{9r5ec$;2-_A~%c?=8d;j|2Rh$u9Te4!Vc#PfPr*xhC6aYega(~5keV?exQe|GIQ`&>&J zG%)idw>e=M1LqDZ>6`gN5y5BHz^gWzB$S|!EEVnM2H-Q97A}xj5IQ^tuH*HiVMe^K zy0bqkWRY_isD(KRIL2bjE`PrYZW~XycYc6iFjp?%Y=Ar z#yFW7t`EoEL=zm<+cB3|PQc=vlXCD+=1LT!Q zvlRb%VLGfXr{yndaCgB7G0U@%nIy=m>7eAhjUyf!SBgKMM$oR**c8?&|1_jA=u}1V zzfSA{l)?dkf+$5|=oaNcWFuCPA4I~+KhpK8^**n}Fe|EFgx-9%oc2@2&z~hm-|U+7 zi3$c9R(E0;Si_R!e1W5O|C9lV7EZ4Q7TmDJYDtZkOu~#XmF{=iKcsw??VTt6GT81H zOZ)nia)*k%WD5NXC$R-$=#u;q@$IU(%o+^y?PEaKm??gxx}`PqY0$PqTZBr6Xn>Rc zwCDw?lRB%H&rlM;qlfLHe^PoLs1uX{d$y>mB|dbbf2pGf%T@iEGv{VJJ>U3p)vBI_ z?N&=g#yCB>6{#uRI8X`fjX*!^Z)Jh&VL|A|rCV3y z`uiC-QG!9@udm7Wj&QgK(0glqueulgfpMZBH|w=`?fHxF5(Fawp^ZnzC=c@lSsck4 z=}&q*`1q&fIO%EdxSCpCvsB1gwr}CC;0Y)ah&DtN2DSETF_DvD`tO7EEk2HTIgk65 zTeei^VoP?#KbVRzh)ONpW4cJ=d9Q3hOlW0=Fx#gGug`sIuH>TSGJ774s3Lu%`(3UZ z<_GVT(STx*d|?A>f+ZNT{coGLrU`!|gKe+Xr&+yiN@3edVo`72Q%BL{mWN*kSVlqs zN#xHu3ZnuTwuD$>*_IIW>-Og+Wa@QsPPxAiLL26)XL8Dr`}8ZXdlKF|I>vI=&@5?V zp`bIz+%5?-#5E-;%UX8lU6}NnZT9E4u=YTfB%&s(bh?*b?n(L3FGhfVVgZ-{8w2@_ z3S01|d^%!Ij%;J3Z7jlb^jKh@JbEP>+W5-xOv%h@!bQ35&P;lO*}#|8M_b-3qeiW* zMvQLq^2JFD^wI0$8C@dsZTT#h6R`u3BzT31VMo#8P6i&Z+Z#Eaq~ zV0HwV$k)Az;v`wWC#0=^uZ^FLc0D(&{viC}8OuCw<-39zKgOxZq<)bb@iI3B&YrX| zPtjS^5zr}_!Y$(>50VLJoRCGN1z6Y5Y_4nNXf4<);igPXIE&32`K%+Ahfri!>ZHr2 zd~c)0=;M>0!LDEqMXhY_jXw52pXl4bJjbA5n&+*0--OQkPe~ng(2K-PM=?IVOzEwZ zI0oD;_nrQyYbJC*D&coUDfGXH!fg)8oMpm3DvraOUU8JW<;25evJIIQ2&1BmAaHsf z68gBjd<SPP)4N)?q@xlu193bnESwp{O@D+%9Bl5zIYsdf$Dy z7}-f<`Fqvh-^0N}1-n(|<>ke1BvV^$u$*}Er?W%&`?rqi9b6vCcZc|H0kdH!LOtuiWI{I!#~DH5ZIIo@GppS;XU$vI1uq+tAZ6NDEEW4k zXS5b_(te0iwLEvB-eHATsZr#Pf%`+;zoF!sFb=El(i$~EX*2r~`@0p?b~nNzF26=R zqKrra#jS;|qXwOKb;Q!cfek|>=q7jy&Bk{L)$%-FY>Zye^zF~yV%Lf@pU2Lb{&`E||8j!<_k;zu*Ij9f9qJ)!ztCkUAowG#SQMt9T9m zlKYSEP(qN!JOs`R6i!#>+d`2-{942A%Z;&Uqlx>v5wkW{mcBiBId16&li}wlu5e!B z;??&0t_D!R{Lo?@VmE*fLXK5)p=54w9Xc%;AMz=~iS(dnu{MDmM-yaLNx9L$$&FtKX#;jm|^m=meg~oB2 z*jdfC)H+V}Ww8swTcK4~Op~#qomvXG-#rj|*9A3P?&!kW3^{=>F=3PBeNWg=49*C6 z4+dM%2a(nRU?xn^C-{OU>ThLw}wb1TP#eNY)tyNuLXSo0Q zVDpwk%~&piW`R4L)qm*GXM=AInl?Lk#;YDS)JHRBWxH)lc&EMtre(G}sOCUOeOD66 zO5j=&@LgQ(kY^wm_aF7l^p!7Fo;p{)p~~LST|bha<}LQndih0KYWgQ#8;UzPH{c;O zsaII=#G>W6GAf3z5XGV)GO7{Kcw`hDQdk`kpxKKf?;3QcHDcM55SLV0SvKm-C+kDG z*`8FOXRWUL#@+n(hhph&{zE!_$Zd}1Zkgl;Vt!i zC0)nBnT?Q}Pt@wxe+J~-YCaXVHJQf!tn;j6)gr@;&QDZ1^!w9;Hn3jFeK^V(;{s-9 z@fJ}s0rnze55&69?p|;$iG1Qr)a)wfWHOSL&X;X^3WVlE`&UU^)D+_aOd#<{f|B)E zdee&_1MT&CF(ZWKSwhki;5{K#sfE)7y-B?6W3Tg#vD=u)s;}h;-a;Ogz{*qtI9H(BTDUS_tfgus6`ihTr=O^yuI=IRl+u(CWg~$s`Q3i_!2})m;BB5^^NEb

edN;CI4P_#cO?=UNoPshLeg+Hih>6-U2g+v^3-*l*_!?oLinm z3tlxQbqvdQ8m0Vd63L#L5n;$^^yvFnCK(=$+RKZ_fH`UK)AUam9pckBie1Z$!KcYU`-VFmQWtpc>k4mCwr} z6I4Fi`ezta~c%tyDO0<}C~M(Yw4L+5D&RS=^EZ{JHZH@1M>6 zaTjVRJy4tp9r-ndopd|7Pj%*1yh{0py$4IoC%1pP$z}!^jRdP3{CIv*m^JvBR`BUw z)8Dya(u5u29g-ipprJg`96Sy!wPsYex)HktUg0G!d+vO=kVG?6| zDAtXp1t~(X42W~Rv;X2LIK#1<^;qm>X0$>77ZE0r^pp;E0c{BKhBSY7-nkK&-4a=~ z*Pg#M*<{o|-ax*>Gyh7`Q}^fWx*`ZYJsOLl|D*6U{CND|D!zXW$3xlby`Dpv+D!54 zP|+`YrLldmPn$4F`=Dp9!ss@B74`oi3 z4GNeM#C|7ePH4Qg3UJLvDYh|##cUX!L}hs@f{(oV9XxlDd(m`>gXUa0yNdweOq180 zU5P<+x@)Q8Z`Ul#v)%Uew+o=GntgnI416}q`M_swiw`*8)Xqb?iTCP63%Y?PVi=w< zSAER?BsQruXR8}{*2j>)$96Ew{?fU78REAmyO}_64gLgrT7&T&NdZR}qa_gJf61+# zZxpNC>Ipa}O^PR|JCwK2e|cJSzV!x0AHK8+Z`>iD&V&*~$KZ#8$%GIzwiP_JR`iNO zzlWyizh&7pHy?Yfl6z@Ke?r(OM|w@H@k4~p%S_&v1qG*e^eVv$+E{@qm&wHqn8=s}=Y)$NgCs8!L4(7p=Z=;{VOn!*hF(5kChdx75 z3?eR1C2dp0NH;&mnBZymF6un-rLEw8c)c+}S8%1t;9Kpxs5w0Yzy-KZT|~~(lAj}; zB>Y}P#Nk>i__)hCpzmG$vi%Mt@PL4kt)Z|WL4}N(nYV@7bU$^GGWL4H_nEUMWdPsI zR8i=yLnnM>iQ|G!4U;&emyJns#?z|Z7eXPq6+tphQTxpOGP)6E^}czxH&vf=Yued< z`$o4W@F%tKzpIB`0XLMpigP152PRq|nxVR&(wGr`c`oySXPR!@Gu3$f6gdIe$3l=T z&UPZuE!sgFni6Phj^?cFAe51}EI;E=g~J39)tJi4c4pXh{KNBdDncBcB?gq5^@Asa zkvP@l!>L~`&`~6bO~SURnIHg~vC}f)!w#7G_8{W_Anv`Rn)=#q(I_ZY5s+Sj6cGVY zs?s7Bs)&tVq99#Blq!KBO+g?O0R%ijmmyolUo0rKs8bU+r%C}tk4vObyUOKQ)>1!ia05 z3Jp3RtPd?Y%yfTk6>3~L7aZu+{2`({=$2{N9oh|0z5PZ&h&^572z6p_{hVcdGWo5# zJO53slfh9nqQFkT`}LvSRb-Pk(s6MRS&nKhfp#u882N!_5Ic(m#SRp+WX52ZrAq&S zmm}M#$CR3QCrt@TC&$$D3OWL1vvj^B8#>iiyW$E)ly4`addhw{b{C*5s`3zxKWL_@4wx>^ zk1ohODd~@4#g7gni2wi-o2D?4J1DM5Pk94=%;$uo3oKLViq^tI^2hN;l7L0TQWXFM zDkaJjru14}36Xo;C6mt-yUr4|f2!7BURvqqfIfw5hW&b?4X@&A+CM?a=x7vb`U|Pe z{tiJt=A+q%P0k4W=xT)l9|cmRoi@%sjh1;XK7QPAXZ=DZYaADWSGi#x8D@c5d)lGd z-6%>ld#Qbui8<9|0ONBTC85@!BmsMF!{C^jwseDHr{7SLGfvS9)iC@kCt_`za|G&g zexhjQ4c{|G>_PeBy^W!j4LoN%otM#w){HHL9(n4$xDL`xtzdxnh0d5+`p73KEYy-bPIa`hT7i|nXcq~+GA;im^~V8iB~>E%+6Y<2gg5+0 zczI_s^vNkt#^t@4-E|EH z!0ae|nDI@Dq$@3BQw%wlGjjm&eUO4F)))IN3RPOJYrlN2BzJ5AAB{lu76(j|>$D2m2fU zj4cV>DTYh+T4mA)nT)UhfZdtv?Ix;150nh6Q=4%<4uM)irWg1L_edb=dN!Fg>ENjut zE>bPRBsAH7h%b+fIg?NCM=cuvS7dTu81W8z+_MA3TG^&4j%$?r)fGW6T5u~KY+iwy z6Vl}JCIywVoqr)`{9O!0ULG-zc^V$#^Pec`6;GdfIeRHC%zt7&A@vVDb}iwA^V>K0 zvqeJEL;%1YqcMX}qOfd1Yysu-w0z16J_(Qm!i0Rz9bw9@aOe}?>(jUTfMWKQ^2hX> z3NYCEseFIbV+Q&NE*YBT>q;Ry3u`ZCLfcy7xoRaFT<2tId}y*21s?357v#8fi}L)l z?FHcTa=#TlKC3r2-McJ;p*~jVT88s`B8hfh50)Mf`l14UH(#{)KI&lU^Q3INU0^x= z;5Ul~c!(PGa9utcKLzPU>cc0z&g6S793>o9l^6QKXr1rebE{G>+U%B8aIW-AyHC^X z(YU}ck)%nj(;GO z4bug->UShQL-+i5QsA03{&~@*^iUpC1B2aEXvd(fyE}+YW)GKn9x<^%Bj3 z@?sVqdl2(&w&x%DM8>Fa$->8M|A*BP8}n~Z2aR~jJ-iKI>4+uH4ne`gaEdew?d>pz z9-oQbj>FzM2b-IQ?}_Z+Vj=RvLy=87NN3m~1{kxQq+P}PywuFW6pSs4LqlzZ{M;qt zT;6(@;Mo^v*+yN)t?*|qF}-^TeeOwyGgz~LcJ|nu50w}2kp`pFAfclL$R+`#GhOR$ zCAN+vo8ZstRhVd5S=;dS#N^rYPNFe7I#8#%V^wKiZ?bBms*sO16V|C(VLdq)D9MHA zQ5F&1?gwWezMtSf_mLK1CZ+;-!%V?@~)$=CTdg>m8=_e6d8 z)l)u4t{kfE)p;Dk4q zLnR+2TDF@W_d(4F?~sR81$~?=eybWa+M4Xu?7P&}b||-qzD8XC>`@XlD^S|5_4Z#_(S32|(s|Ao95WAwvzWP+3! zv=t~V8x9E@0&U4(NIc9_>16GFw`FWa!GFKJy)Gpl@l)x4{o7Id~2i0%wVND_LCqp$nEPnrmtlKaQ&M+Mu2Jt}D zEh!i-K+|7+TjR!mp=R%{ztcDfh+C9mWFP@{*e)A~2q;41GV6}E7;$9^DdO?#Y5iSu3#R!xVRk{@tlkaR z3nuI&QsgjRbAH}ejn}A(+&ZpQIO{t=wHg;|qzOH*N1nyFW zdHLV9=`cmJTQWX(;lqoCpRC;uyrwaqj3p||B22PkZ8thj8rzRi&qjDsUeGhtOcDgh z>6F`_ZB^taD5EXwTf1j{@SIqpj5O2zC0n0 zYDqSx*EULqbyPc?E+=xm*f|Dg@VtGrP@iF$xG)d@`lU zjzT(nsk9^q-I*Y0L_u%H9zKFLsH)BWdR}NlCSfTUHsPwY3GV|M)NS%vB6h8RwuE<< zrMWA(1R*rL?=2A`@KoWMOTh`A;0sy^#*O}z{$l>KPQLZtzqJ4k9g12960|Fp5q}|@ zz3%~NI=rp4ZVoaQ2c>{&8^m;z5;BK9MhP^o7*q?YdgHBHw2^}EImtV*b~@y3hLgg4 za?PdNeRko1Uj*m%bl@PVr_OO5o2<$y{@^gN!mq)$_o22b**W1w|7&5!pGN+m#lhLY z78pCipv*jx>!e#cW0V?l*PV40-b34P5VCdCYPCEX=Us0@#=jGeEn;-vFJ{5tzOAEGP2)s=9E&Zo$Tz z-wxUVcct6U5)FM}WArznQiywh%;p@l2wXC`0Ws@^l@ zOuq5u$A;Co^zl5!?Q_H0bKMM3G&Kn@MBD%(U9-+KtA#naVy9hqGj9Ds!TXJbOSc0r z0&2jqZve&p9@a;RY}Mq7+Oh593Cg=&HQ<-6c{*p~fc&tgx+eBnLyF;*&!{_|TiDqS z8ow0Tji}Ro;2QqO9}Tr{UeKmqOmDgASjZwEa53%MAB(BiiC3M3AP0_J3^oFlf6Pif zi>0|l?8AeI!7hL8nW%x@0aTF(O&xrvY({I?QTkgov*WbO6ywx!ie;P1q;+3GpO)P* z-2)k(+z2C;Q!!S1CrW!eJHs3WkL;~mGB{q%x}Qd_!J^Xn`;n0PQJGqwPjc?8G?)zq zO9m>(h!;Uv@^|9VR6LYB2xda0Y2GXoFB9uYYaKM+NHSwdzZMS3zhRZ!dk-Wdf223M z-160?b}01%LW$&1wCLHj$>AQcqOTR7+H$x>J|(37z0-y#WK!Ee|q&ehU6KhU8#SVyj+O$^slOYVl#+qBmV1h zG$q{(zTAG7>X(K}77O{x^bfc>>0tR9@9DxzbI=kvJ6N+RunJT&`sK73C9QC^QE_+^ zp;Dyx*&63z8DQ!*YEdd3op1H%eR9;3v$cnYc=9d@u`HVXS1JWJrp1{FD8m#s#{%Y{ zdyHfgcxwsL3tkPQWg^?Ts676gbjfsVtPOwZqjb|FS(C zLpFKQ4E$Y*o`lV4$)qpBg|V{V(^y1$qVpt|#zKqUJ;Rd$!nJj9uy^-+?NF86d|iEg z+EQ(ft1@UCfbh;mxBqrB2xT;Hg^h-t9`?ub!zbOvnTf4QZAi7;!y5-1 z_pQCWriPQ%b7vHyE?n+BoI=gm&cR}k6q%XGHG~Y6FNohW#6Myc9tyas{(>r9I&1xH zQqPjTPRi}vz6?J7g&m_6I))tsYD#y3R1^GhM5|5>w z-TBikg*r!@}ezE`CCk1lQk zDq^#`xC}jxX8w7~_RFZQ(2#1VMbFFq4{4i@#j6~T&G zTO}W-jE0al$+kpz!tN)VP;cD$j+cXhSD)g>oA#q``vSB1PWuEOLkjxS&x7#5TNS*a z3kjOJmOP$UP6{y-)Dc)$S8ocZIri!VZ(iod;;W%s-nyJ%U^YDi1S45B{fD1J@j!$2RD*R>0P|U4tt0&CDgC!&axN67R*= z2w7VviPGlp)1QMt`+LxDU5k90@`%j;bwX{Sir&+8EiT3#$5^YX^Pa_g*pcJe5FxckGw(f^8lrcN69_*h1M1 zt?xvZbri9eF=COZ2sal#_KT}t!KPfT$U^K#$~E6VzqmZsz#Bi=I9F#;A0sZS7fIRH z?%1ZAplLi?%q+TNvz)Bb{+KpUde*jPWb>8+-C#kIB$tm+)=;|@j-9ecY&(jAR-tLVFv z6MDgbtvhnPs=0OCgtl(y?9gl$aISJkcTnlC7Qu(KM`@ z#sPL|C+!i@a@-G@psACA@~b81&HNBB9Uj*7Rus;1k4p@16S+VgcnU0sq==w5%fOEU z3JgmNpmm5*A}t10XO6>>Zm8q-XQx{SKh(S~v#(d^Z%@3+E%7!>a9Sn#;4SJHx@d=3$u?d{t}Nc9G{hyxFqp>$N&H6(CNQ&X#fAN ziNFhAl8(8a$^X#rJ}Ah4wIl(TvSXgeW8Y z(+kFy+mAN3E(8l!i08jcr3|_qvVJ>OpVHkSonv$wo2x{T+FZ*3wk9>ODviW1HY0K+ zE`tqHN1FLkuA@1g7M;0xiZeKZpP?3f^Fn3KB7DuVD6Heavem7M3)e2@INK}q!AtE_ zl<5bB@cHWeWL|$srg&+$&S0LScdjGvH*%0PA{!nMLbY0TAwyr(e7L4AV;|HF$|TzA z$LiiHtGt%WmQZgnCB=OB!ez1R|2vZ&q&Sv%*WS7cHG!P9o9L3MJh1=3Ie(^RU|s6I zj_%`*6;tE`bDA%*$}D*iUaX|P{GN{XQ5^2>*>j5FJGbULevj9NZwt9T2nt1ZMkkD4 z%~Ot3MI&b8OJpLeaLj~$)0%PjWgTE6BRx}@(Y}r(zoZP#BI9st61@8{dg)A`0q-Taff(pr*l$H-P8RC~uuBSgd%po)GDe)yF)J|!y`~iGrD1RvL6?wJoFhe8tMM(!!urZk`h{kcuYs*HYSYvjg3ku&o*4^PuO%4bO+s4qd&^?D(@%%>J4yiNhmPeakcA6 zKq!6;T577>jMy!*m@^x#ocON1B1^>_n>6M9L_P~LaKvW@3MdxgB0fMm2l%`*hj-uR zI1x-e09Hz~hh$eLse-+pZ7R#-$UX&tYz-FOHxnOkB zR2#UJ{+i?v?bN3xNmSjm9XVA_YOJGaZ!ec?3{5$Up}pBl1d7rnP%RCX6d)zj=pef_ znIq>r8URTSt|`FC_LAQ}nah<6e3QltXI<9~NbE`w+QrJd3!nQwtpp0$Dyk1v52|h) zx+EKwpcl-=eqInY1t3{TpC4_+h%twtr8ecDtY7<87uzze_9^Yxlb`2vyJn-^6&Yit z6Aad#kIMiBEUzy4G=XaoTUdI98JH#9zE+{2J`$l8$n=yMB&mxciJI>i)xTMYEu=Yo z%`2EIHtqm84#9+jeLlI}{T%w?*!1-wUdb+I5uUbV^9op3}Ic&sW$d~nrxia z+q5C=C+&&#X&F*U`qz(W>D>y}vUv-4N3WCbR!0xVQ}M)(P8U{Dcxsl%B(( zNLQbuK&0doi?DSn4vORW=Iyn!nkBe?t0`Eg?&XNBklo?r!%xaZ{oJ+Nf}FUQc{ zay4%rY!4xKmI5yyqo>30Xe?03JVf)aOluJN^DrIT92RM(lO1hC zJRftSPCCExzIf}X^3yKlzps=XeXJH1{~5dGG!2@5Og2cyH>+PCqQzP6f`2o6ffCQ~ zJ4pI1_W)NaM3Z4ve2@*cCurP$<~slYp70sDtdk9S7D(f>WZVepK<;k8M=p;HV3Um* zV37CkpPWXEyT$SwUJEYYH2n6>n0vaPNgMiNKz?)si?6bAuEMM<5loFwvdL^llrXmJHQ zk=6#E`i^9Svcl%SP-GeHieRQ~Jd4?w4wtO`3%M;zO`sK1STUQ^bM$LyU~+@OONPT- zk@#5j7M%7J&{so{%b^8Gql4;C58f|ZW{wmqPmH^hx2Ej6X96xhxULN7s5wF`g)fH zv%4MW6f{9qeT}_c>*ApXZtFk)LLT2@nVberh7ore?P0vXPYqP{vD*igQ}p>m&CG{3 zdE9NG7r1ezKAcXMq&yz_DLflpvIKn^uvf&-M8UbLxDufiRQm~cO*tbqESG)vo+F2~ zs4ULwbW&xTqYGU5l67x)t#9QgM*Qj<5+=H`Pn4ozPjskapL9PUX9a$=zxEg6PpFUm z;IG?e1tOt2ynm0z?Kub5>B~kar5^84q0)_z^X13nWq7qcs^WL9jW&1~M_`Vmf5Ktk z89Aj0i3{B;&f{~|(PLo_<2%5D1^#Gw2~heyO;%Z_qHNGnY8Rz%@7Z?c3^+@N2vT$z zJBJRypO1KhZL2hjT~o4hrhx8`%AzFaEZo`X51`n0oG*hGY3zG<+n1Lv0JJDX4?ff^B0n5fwjQm z!B}C-UsnV~3yzy0JEebuzi#CF?>?y*Dx5A{d5FF-N&>m=$Y~PLNtjKT&ECjNtv{x@ zHE3F`zby8>B%k%Y!Tk=U4Xd18dfe!?7FOO zMw0SHq@_+-ES?!L9HTGs96zrCL8wsqXqPBnBq#DaqEdL6qFo6#M$KgW`jF3s8ryG@ zHR-k?SIOsw_S+aqGodgWWIaa^zZL=Cx-hC`R~HXP#)QnagEQf3(l8vpr#y z-kc4VRij;rxEFIb;u3QJW&j$FCEml}koZdey3W(KLwmTXd=H|Dsq)5!!#s_r-*Vze5O@r$+2p!+-}OM&YI2oSq0W zmd$EnsAVf>ihucIvD~3hZD|r!D^;%CAqPnof@IQ}|HCsE`x-FUxoA0J9rRZqdW>LJ ze*ODPxm;Z~^sQ6|M_TCo$r_3Zk4X)C->i#2%TUqa$>jB9`12~V!AlU-(eP?`wBP7( z6*xwsJDpUl75coSO6YLWPhInOgGPh&OvvsG4$x{Msh7ikHwxAh`M#)&vlH9%c$R*A?6`9-CPr>&N{{PYxEg%$FXHvj{Qa$xjJi}GoFB0q{8n|0ssxRUi9rdWe)EN)u z`Xh{`$taI^1)jr*b#-DNSf{I9J<=-Wv-xg|?dR%c=ujh?D$e+YbA2I6EU0PrVb#s% zVdl_9dHQPIzppZBBGS8stnP(RV{_0HxurF80&+aB4R{E1MW=7uP*mEsCNGoEEn4mL z7)wZRIR@<0-sZ{VSt#6Vp9`4E1r;fg3dPAXqA;LTnaKv@tJLB}I1acr3y@66)x@LO z#J!F%5#mOg>qifg=lMzZ+fy=4nP+5c#%}DXoNKrKDdqhnFXtPC@~XM<^hkrite0%N zxX3q89m{LqYlalOc{i{7dP;VQaODB6R6jz2)Kl2H854Grf^sYt6+hGON4J-{TdS{h z->BMkm}C9Yl2j&xYn2KTcSMMTNhnniA(!dXP$z#yg+6xfbOMqzeDV+lWXB`#z^#4- zJl!>;LD){sEligZJF>Gs50pGt0QRL{5(a21|2|geYDWJnD3VW90W7l^_+GAuNrJas z{YQ-=jCBW?g#jg&Sh9m&>ssfZFdbSL+UThnD^--v;8Ff;B-KvRJhV{!)%j8Qd9(Fl z-$oruG#(i}Em%(~Y&Ct-)q;~r68B%Hb#dxtZG2eD2+%%zMxi5``8UggWs@02%I621 z1vfE6a~W2HLOtsBGDn2q#sg_6XG1}I-NE)b&6sv$&e_IVABrq$%?{^7zD+UD+ZWS_ zJs0&CvPUypLeA}O34r0FBFhgh&dKi?Ek2y9jcP$Zq3)?J$q(ns4BnXd_E9aC;VK?5 zq8&`AODbEIp!?QK2qrn{sbY6td_nO&%ht(5BrtL^BOCq3J_H8HWMO!OY;9JvgWOjy z1CzuJGxZQ_$)pb7M}1W$UmoU3L9?8~+uoW$qx}9KiEw14^;D{7PzJf9j#w}gtF2N< z@u$g&(R@Q=+)t~#+CHS!9q#0sq&`P&Z?^i80%|WkPGA&<9-HQD*ZaaN8GU-UG zr-aaE!tnlW@B=@hX8@PuM+os(bC%I1+8|PB#Th9vd%iul!>?6(axTS7WN$TxPkW;v zIxGz#3OGjB@klEF4w^0<_xYIUXr$?C^h<=X!#3aZ$77n;`ZRj zIlq1s@F{0SPuSasaLZOxWs+Y_y^0A|K6+uaaFSTuHFj zPvR8{j#hrAx+)=`>dwnpzmK0i`A7_-qMtC92_eqBz!Hr&$3}nDAcR+#`MB?8-%U`sj*x<`y0>pRX?4z0d>cZ71>9SyrLuMI^ zKe~xs+>e6eZe6fjclI`D&jGW)2t36BH|rJ#rO9K5Bz|(+tqNCKC;_et>$#ZFsF{Rd z&^{4uLE*QyUqyj`&~Hrfu;hVu>!W{#!+2>|-+PD)jPAmYdHj)T9Pl}(;GKN)N}rdM zfdoq}XJIBC4lbY^)V!xpFZ9Q<6{E|7P|c%`hTGxZ3a$}WXt7`K(+nyyX|;gwv(Gpc z1Qx@zZe3O4FCU&&frHlcuPKhtHgl(u*+&0Deb(1nH+KKYu>q^Iq$ zH_!=Qd`%426@`PfLs<~e;80|KP;e!|%lDJ^6MO80D%G=QTUd|~PguNPtGD(1-MdtJ z*(hlr?7z$4`hO_d3`Q&%eA%)?_EC7Q7P{;#wte$3LS?k@Th$=q_Utj3QGI4lvbR*s zhJON1O0tfHy~Ex4K~C-t=8r8yG>@tR*n=~37#auQrrW}!&}ArEc40FYRZJC5mrul2 z8$-6R5lEJXQ$!9zKqN8sN5mXepoRGJBv;U?OgBawqh0>%Pf@{qy1rADx&C7agq`si zlsNyh3XpDSxdmn)|DF^;!Srug0U1(7O@zLq+zk(I>4?3PMT-*abH)ZGw;3F=Dhem44It7w& zBR--*<+CSK$ftsR-3!Kl{ov)Rv(;8MJ^|({-?;W7Wc7e53oM~n3fCNz74ASgQkm7H zt5_YqP#!)#X}_FNUL<{0bIM3HY5xT~ILJlzPP{VL>J*5JEGwF!}+4s-NziIXYU5@ zaG`*9TCLvoVM<5a!O0a%%*N(>>5zF&?n&Rv(8(U;acCu$_AamuP8FkF2bMcRt5g(* z&_V`TA~lgx45nJxm)M;-9Z1krTH0bk@X_o-J;mXvp--GAuEZEQr(XfY89f&lM+oF$ z>T~#acmSM3n`F=mklocWOx3PnqyFSH6L%`bw}O7xJF4 zw15D$u5oh+4CK+w9}7H>4NOdU>|IdkEN5McX%0xd&dGW_;a83MKZa}eeurqeVKZ2w znH=n4v5ry)~nr}6=eRKvVoFX^x{>)bXL+zSOo!ht>QYJdA z-;z`h_BkhI;xB|_kX%fP`R?qy^rwy)I3QhOc_LzZ;jP&3J?qjNgK~`3I0z*jd%aN* z*>n!;0e=PM+JVOEiq!lrsl;%PcNAF_Fmiv}iMW4Dz+K>o<~c1Ee9404J0g^*MF=Y( z70-fPtjp)FmF~mqF*2eg$@#`>s=`-Y=TwyTi*Zxrlgx7oA1Q(QUx|!YhjGgX&R^66 zl4RLV^8b-a5EwVV3^j%@Y+!^wC@3}Q#xoRkB*P$&AxffxWHD3%xO#wNHvf$Axd?9wYb}lKBmwLJElbIG!|{AS)YkO{3h*8 zAMQm*&XMZK&Vh+LUU!XdosTpd`tdEAclZI1;8Xgao*>H>C8#HiLsv4$bJpNRmM|*D z-^BFJr0XHv$o14NAF?zg@A!%#sOFBxEjEbE_K0-kaQAEb5XKwm@~y(5rG?H)d+Qss z)=siw;5lKF8bd%R}2e;&Yxji(2kihOq_SgtcpG5=2lDVtusOrwq5gf z8r5C4v2W0N@DIbOm_IgVajJ?2EjGL54(^#%`DBgi0nYr9y)#bf>f-V7dSul@G|tgg zD2+#CZX}CXL4J;<_|9tOR}M5vrr(n zg=81X&r-xWlETdg)oG=wuSTFUj0_cx@zRs{!^R2ahxTMF;RMX#n%W%T(^v8^$R&Ej za6TcfPV-%{Jm(2LA?7DQ?-e#=x&5zP+4RsK#pcHEz(voi6zStBi8Ek!kQxw%tqV!& zg?q0r2F>N%@K1A&uhw;TkwHxeAclUuD>Scc0Vd4u+;;PnSat}U?gV4FZ5`WQ1mzc(tgvRyBFQP?X7E)1P#hyFVLyFClPX_nf5+$ zcjU1~k>wPRx(&?fPRF}dQrCr2tnFxJZNdxL6X7gR!=ErD-7{liNldLc^-?jPFKSs- z+xHSJv4mQ`r1NWmOz3A+G=nXe)Iyl~fx&rFJ!icpH62oCkFjrFLEWo8<+XOsH3v6) z>Gac9U+j4IbyD;>4nEUXNN6m+k8)}+4x`%X9VUUe_jLd>u9rS&G$1|n;7SNbY^fKA z6QdSIqGXXb=`R(qPV(p@daiS92rF%y%&f8uGk&NGqgOrGNq~2AhKwQytZ(MPKAZ6% z{3uEUuH#0tn>;~FEhEC(zWeA$sds9&rb1ZB-;`C5?71#ZKbS|i04jAvlwOX2QEd?V z{a&EEMftQ_6Kx$KVNWghJc&;kMgo9n zv1U7f+(|jh;3=k7QNUDK`qd9WtW#Wu9T@RJ!fZfi`v^8ai4X$0@jI50g<0KyjakMp zI356o)EvH#Dz*;1`=*faZU8kpp^2t5`^sj~*j+*hNUt29sS%A(@XG?M@@EP{5ey$V zX6P5~Ehj;|0SIN21$KU~0bq*`&!CJf#o|S-aX8~<2!Vx;Y6KS?%>Et<178r_MCvpN zLl6FgJa|-%c>{As?qAxBf|7M9AOPMB04nx;+O2_w5rz<@=K6Eal$k#^X`dx`T{3ak zAR#H96dlaw7Ld5(0twfbnz&HYniQv}94*HazD&LnTdn+A*gNh2E|N|SOsJic1IN4v%N@;VqQ&Oesx2{IbMK{pk6BAy zS(NI5SZ`Y3(;puUbD+t>*h1KW5|>WZ}ksL51X1H-U5Q-u;Emt=LjLsr-Z&3^4%}1u3CpeKKDW8 z)Hc(*;r^T=*H!+Jx2}2mUSbTh#LK(oGT@;@-cb)f~;i8mo_Pn5^Op~Xlt$Er{ zD^XKuPz*QOVx6*?nm0>=0_}#iO+O3nUC*;#whS0OdgY?^>H0VkKL~x%8pXv}5sjL}N?jHSO@_A_Ne zzSj|~N5f$`a9llu&Hf{!2YQHhm6SO%dyR1_<4OoKqc2p*i{Gbu`l^Rnrjm?&Meo$! zao-yF#exm0ws1#ML}|N+5iw z0Tvdcm94xLaw)m)OZt}TBd*%Bp5O_O@si*6Bb|}BqZ1vC@)5x_t6n^h&0q$$lW#UI_aTfMIOyMw=tAL5wlQifjk1dl7?H3Iq_ z>{_Xy4}E&^_8wuvZiu@NgcI7~Yxu>-Z{{m(jMRT9TYt?ffgqv&RP%q%%xIEBh*7W7 zSc&L%qcG{2<&>aAjQ5`k@#TwRL&vE2hnc4jQ`%5bT>S1IKFJ ze}}Cn*svTeo!-i)njusc5D{&@yHk}@ReIZzlDrn3^ z-$`-y)9pTlIYR=v^^+!K4N9QLwg;4F=ey(m{0=Vy{h&1^nRaTO-|${eyU~e|-z=R- zb{IYZ%?`$Y|2W;%#A-hUCuz)F{T_J>b%T0R{kEA}MXZ$dJMC`A>AWYU11$+HYE&6G z2z3=;G}%HxuWOOYKo?`sT-Tc>IwD|MZIfOgeW=j$hKfF!q?+U4Boi52(%Hmx2{Z5? zXQS_<$bCd!gb6)O_YCFAnfSpzLRVLpTlmkERnyxcho7$uUJef#CBfh`6KBiQ?z2h( zXPl#0fDHj8(sLN;g2XY|6KAajwG~V4OpAkD{Gs1MbpsXW<^5*dI)3_V6U@u1hLX4f z!B1dJa~@;}Fou#Swszn64}4n1G)>urdZmP4Cd-yfAJj|z$SFC0fLd9>h8KHgWy!z6 zC@ciYJ|D3HDiLk(7iWL99I-a+luGj4Yas*RIHGfWSy#M__+nip4?aC@ogc6~>m|fv zS$qA^)oENO39S;}kW@Bpc98ol9C^9Ya&c&eXaOJlAg@#<8|Qzipo122`V~TkhLZv7 z1B&VH!~KOY*vCs~R>a=-#8Le5v=D+9@4ZA5djs1cAp!Gm)k$7%xrqXPRhD)!$P4pl zA2(X}Ue+}PcY;DZ9c5*H59}WExm(fi_bRZy5t}1#Ya0Yi)N)+dgwJerw?cGGZ(&AJ6zRUTf={$tlp2(~}p^fWhEVgg;n-WP@L z5*U4Ti)A*SCv8Tu-!5SmvH$s)%Asf^sH=$9efwI+pp4dRfR&l}vqNZKiS_voG6N5j zBP8LrDk`E7<~SqSuYB~4V)-J!Q)%H6kx6jU{7zax9`z}u#0`amg2yIE8dADv(uvy8dPWZMwPl@ zgsVRx3(eM7XfSVURWOq!b}-2o;F_uZlnDY^9~~rcy>vJ_$`A@#g#&N+H;4q=mdu3S zte|)6+g|x+tc_L@5;~`Z45cFBW{hS)GEbOUOC=?1+aizk{DnlT6(iR+PmI}eFaGq& z?lq(>@%<-f-;N%Vi1hS9>@z9GT7b&z#x;Z zN>o}ep`M{#9dI0`!AK@8=f4yQPIzR-Yue8~eE6cK!OfZ3Pu5$f=jtqWB9eTK=$xNX z*Vl$&?@kV#A5>%Ab#IIi;i@z?>vvP`q?)0!H_&$JP(Q;8^}NX78>^`L~mD zduPMas7k~^!e&e(FNNtc#S{N0M@*z8{lqfaQ{Lxw2m2f%;d!0GC07ZERqFEr?D<_K z;0d+%7XoWNCeoC{PTatjj;+|FRYe`Ne&UPbmT4`9W}j46F+F2Hes+~jM}Bu890r&{ z|4B>tKO44r?rQw!o%6pq;FSUR6ZjHzolA#c{!9+hMuD*EJbMR}8Z z7a>m!nbdaB>%$*CgbmgsN#3J(kDpF$-K#NaxW6y((2VUsFyFK>kB@8ZItktkV@7)T zKxoD!yp-Oc(zyrU-<(Qa`-ybd$*nzmNuKG3^rOQQ_tuYmJ;StPOXve0AG5j@1=mAK zS7*-ts&q2y2n<)5&BJBeMzgqil$d@$ybQ?E&T3Qq zyxQ;fallmW(KSa~&n%Rx;km+I-M$*{{=JHv^T>};lnJ7@*)c95rNo9y^r!~{P@I8z z6@TMxks6^JS(iJ$BQ@c~yC9tu{+OwBTt*&c@OIGi2yLj7ef5F|ZYIitH%uZALSSdI+E);P8xJ|Ahc&M+rB_Ftwb6(qB5r zfX2|j4av<%|H&AzQS6Hagr_)N@$#!Oy@mL`6E;^Oi%oRVniAp*FENC2;7i~`In@Lm zg9;uE7RZ5KJm^5e8-{6FpcYU;J~Crw{L0ZK>7z-ib}a-SA)Jl$-pJRguJLL29=Ye! z(%lKXGOeE{n9e)Ca2Jvy4}xkUB0ubBm^1}NK*i)7ANEfO+itT-D^2qX^(yG{ayrtp zR?K-N;JfH@$A16oCo1kXenaocqkHI_#hugP{s8^5|Wu#tSzM##&jkTv1Yjnf*?wXc}DS?pab zJ_}ou7)w>~5XQF5#FFfO;>~#MW%ec%PxPo~6fs+6I(1wY&VshI zTmp)GpVk1Jz?$hC2V1`3!l+NBz2@Wvq2MDlfg7K>?k?DVJ2)I-S=a}PPvC!}xN{c+ zYqJ+Bi3)Sg5T4ZO7wpyj^)(9w#QoqtLCn%BgI$K|f1PR_lxjl6JXhR!qzk1uy31Ay zICa$yZN3xinJkNFRyEv8IODsqoMx)zu~dVk}a|miYzHv3K^6w36(ufk}aX^>x{^ny->u+ zTDGwhGWLB5Wo%)PteFvGnB{Z7`d+{5+}HK{{qA$F>zv6(idMzTjpCm zDUo_bs^+8&-Ot@*F`V9_@VbXz1$^v*bYypiqfcMHd(_hd-Us7-zIk@H7xomIjt|Km zpc3yw3j-R6$*%~wgllH57)G9%X9lM4n0np29NoFzmF{=e+WQ1ArN$Ln2Lr4_YlIsy zWZCrP?oPuAfu*VPxktJ1=WD-pHKHMr9kgg#=n@K9C)T0(s`)S?^bD@gyb6B-1%^{h z-&Jz1riBEqeBR5@xba!n@{yowYG=j`sfWK^Aar|^OUPa^eli0QnMb~dQ|XAg`}Maa zOum}SUVBk~YLaH^e8E|MKgg;>xFiXVQ+uVnD;6l%MO7c)lh-sTnt3wS(sq~{#$qZO zMrcAU)u2BkXXd(sGb7QU(TRq0PdU2!v7hb~E2b3D0gs#n^UIKJ{vArM!FMt^}fqqO@9fCInY$uNWMX5l4KJ$**8_ z%4SU1(J}z-=@30G0#|~#twC<69t1(Fp8M{TYjfggYPqecLzs(PhmX6D z&~;6vUjJqzq454qeU=pFYwla<={Z6les}vFo^kQ+*KH}>W zT{4CNVQWUGxNo>8|9TP*{enIbSf+y?i>gZ&AU@botPArVTr{ixY}%smW$=WgmwCEF zN)S`zh_A|#BDfJg#O#0-#Tii2bO^o~Q>HRuD&=<$)8?Kkrh4X^nHG*+p{se3bVaP< z6vSNbf9+$n2T%`&WMUwdkMc>L?8SD&E^xAID!}x@MZrI&3N8}AK3hvRN>i|~ZxwKV zLygKrsG7c1kh21)4c0$N=?;yw&# zyqIk3)oVHvpo9B{F{DZmgHFLkzE%8*v9qSJ2T3FT*Gfwnf8(J=2+8g81oIBdyAd4p zTn~PbpzyDYJP7CHSiZluX8f>M?%l9+d!tLr8MaZ?S6weWVr%)DnxbQ=Pm`V=?Mg>V z$VUrM1;Nd6)1u$9y>}jey%V&T(S8r(FNeVVRyTstrQj;)=i|1MYi%JT|EF+_(e z)Wx3F3dp29v+*Py86=dQ=}* z{MRZp!Q6aMy7wGe%eJKF2@vCjT+$~ z$^a(XT>FD-#GukpHcHN}^!GEE$?fLd*aRgzyH^s35O>#_ml@Z!RE;IYO=Z$eNQdG~ zOND8gHOe)@wbdZJde8j;No5|-n}33+cP=THcghZLI+E$ zr(6aecUp9dL?P@+G@$G8?b$5^9>JI#;{S$T z;y+blP++J*4#4>%XX))yl0g6VdIqyefgmme6CA~(D_-eE;YdR zo-LdJ+-xO9%9RHgz+*tbrxx+R6Xg}TY>$b`Y6EJB4lI-;_7t%{^9i$c&`1u^qk<{5 zEE%kph~f1{^^)zJqD{Va8)byRMy5{{l{t6fcusnHK%L_gm@-$Qt6{`*AD9T@#QQp9 z$D;XAh1+}Rq*4k%I3s+(bJJ^MB8w4EyWy->qKka6Gofk$fyWQ>GSp5_VN?SqjeO0c z3Vm*-^(oh!yz8dh^fUs(w9gC6Sp>}aqf5IYAgOpX3QUgdZtkL8#^&ah6nE6{a#lnK zT>U}Z?tYG{iPcW#l(D;upU0_c-8I^YcZYJfkn*Ye&(qYc=)l%v0qQJK{30cE9d_(j z2OK@_pg%4CyIZ)|1N*j1=4zyxNE}l8*g@xFw7pI@`5z=QK*(ZsfcXy>MXlZmhyI6) zZc^Z8V0j=`ClnFe&%Q(Vb4Sru>vTt;(TJEq40HubQ@i`o``8dz!U5?LxG0!-zK#Yu zkGNFCMkfI+uuexJ08UJ@D|#OG6E+A876X2=N@Xl*V3GPJ_4*nW5-JnTk**(!h|S9iNWK<8MT7SFdz zYbn*NwQS9VU|9nnA?~nnUdpl+jtMpnj%U!IFa#5g#Ja9Yc0ubTo;1VaeeDdli@)u7 z*itd~>;k`YV_R$2`kr5a1{Se+9YsRs?$HqjseuYlJv}Q64IQGT(~P7ZevB@2 za?(hX23WeoTd4DY(R7OA3Ntm~W5cnuqN&ilfk_ql(q}v^LXmxT=$d!~9gZ!}aC;^S9zv8jUUzrEAI?;l_ zxA1?~z3As^;F6GFMoLGFY0s+eNsiqw`*CjdMN_QThd|+_gU-*(K-afPjesu2 zKj>rE)B1AN@|YsPIrE^LgLjJnKZR?kUe3{(lCu{xZT==5a78bE>RkGeXuE8hJNODr zhzp&z=63Ksni{tV2eubG1i?Y4K@1JQ{6YcBBfHO8|Vq5>aFM37FmY zO`Xm{z6do|4)D$vLHQLgc1J_CWO7oaj8Y_SwWL?Y4&I)qI5x#EQd!U95Z7@DQ;U!~ z60nCM=KkhxI26n&vvHfc(6u{U+37Z8w5&{HC*03u#t{wVA$L2}c5Lzt*kX5?UieP` zw0L;S(~sS#vr6RTlx4>+FqyRaX%&T7bp>zP78UF!`W3c#bYiOoUaY4XmDK9>$+T>% z`TNih*n@fD0eRGZyM-BTz6?t|?MD^}Z>St_$JGZg0gUi(xdY`;ZlZhFg3?#7R)yse zRgBg6!4=zuz1}?#{TqlZZN4IFfbIBI;c2xhmJD60fU^*-NCttZrC-UR0)cISgcx6y8kGe6PJW87r9$ZkQkc(TB9ww`g(N>=9Xk$SrlqI&Tn6aF*o8-RUlyMi;~NM{!}8^`OO z5hHt!b3Zs+KQ!{<{ZjPK=|I%4?iJFa?+JwR=x<~n>L)-N!9gS)^BjOZQ?CJhTXtOY zpZxSA-QE-${q`Tochpxa96M}r7_o_2m!UhtgO%G2AIy4?G>h1|zVwR5i$Hq2KgOp= zOCw||4n|7ohfHigZ(UZyUy5CM{s_S!M=B-$z%?2WXK=53kSu;b$^d=kLI{@}`@)TF zHJvLWvnSG}V1B&hD}mWv&3%z%gHobtx9W~t>A#Y8x7iQ#Ki8+`r*kwnr)rB$#sCHr zAue+n(LOi!QdFY(vOD^uRFcqLIcFnZyZqic`aSsQCT{6jYHUpK@g(7BV$qtCNR^+} zFB*o6W^F+pFON?wA@jJ>!pe?bQC?8B5M7$^$p?IR&ksI?FgnXj64L{z9i5U*wo)eq z!DEfCaFNw2$dD(8@kBpS3?#AbU-w?6VMcm35;98Dbe~02sKtn18-tm)~I2eUD5fl~l zUx8N61fCUmnlMFq13$BI=?U-*EW*CEyvOEIZ=x@90k5QVeQrTnDMFp6QFQGC9=6j# zk_c3qF#h4PjEQnKY}<3odKp}|sKXvJdsceAj^?Nuod5J%IPUxU7$mPs&_g!O?pHS> z)SQ0v4*xzyN{8O0WD?zQhh4A}WSYEC6`Zf>$wcfBvoA>{y>ZYn>Uo=f`wz+YwJ8vJ zqxKEh+u%$xpCSQ)TxLvM8e<3yfMK5cDcqdx4107hzLPm^*&=x~UO=Gu&4ulBzn8h` z#~VN=h#>R%P;Yk`fHG717Ep`+&_&C)p8vOP%7GO~0PBxI(ev+l)TnGzEp|Xr@hSw2NsSK7p}JP&!-UTHS5~gYt>@n>H(n^8>t~akMs|%6PQW^V zROYhTxRy9@RQ=vnaS&aLaQBtsf3B%^GL2CrX~}0-TM)^jb&9yV;*zY4j$UNnA5gIm zuzLOY()roc{DcAdO1SlMqW9=dJKg7YXbqJOymMlKrGIWk|5|41F=m&gyb)QQmjM`0p%L-=WFRQrz8@G zv{;{-jsmOEf9ET0-&Rq&(F|s$mF{YnX55bbS{nlbE?+eK5W%1b(iOr#=B0(u+&AbL zJCb_91RlQ^;OI>lmhBNRH_3Ce$Zt>KkWN=n*Q_8?hK z#Ks%X@=M}*96e%l(uAaMz&R&baJM^1@ZPwD*Y+ZZ?LaCaOm^n&^>nD;+S%e1pP1C} zE3|Fa`RD@JOAt6XWbZ;fvGXa=)TYW1evUYB1|L;8DP!|=*CXGtc;>S3Da*#xl{Xg$ zuMMOB($IHZf!rDU#ks57mi=3XdPb%X`_G(j(oa+F+cl+~=OjG#qZc!W%_eWZBI$0x z>VCB&IYP~9FZF#I5}WoLG92T}s;@GC_VyR^k&Po0QufB!Rn&6)-o%z^OK#`!>Bi3u zsn{%mdxfb30bN=8Ps8FVQfQ3nv$^BhU9a4X#yxYbLzq^5dkw0^f`R&!dz z-9Mdi0twurOrr^XTwj^?rAbbqLD>XPN=_@tj<{{TI;G%{G-Qxuv5@$2p(&crX?=)q zMee+$_Xm+JVjEs8P6Z4GwlGu~{Ou1urJKivyFNi70g}d=e+<1xe|M*uAnu@X*5K_x zQ<4jtYfd^$hME@su-_4&W#nmR4dzgF{Rbj!wf8|=>=}Fj2!+*plV>MblQ{$J%gIoz zu~4eJ*5}frh^uGm6h+F-3zYZtnSTt5_cL@Xqi@QC)gL`2!At#09FV(ZFtSQ~Zb7pz zRL^aSNiGTj>VjkdCIZjkYmVUPHDfw>^&fL=NOY)GM=DEo{`>~4;V^MmS~qo* zkac#Oe%}>ytD!+EBq-&|aXbVkHr@Y%WJ4B{TA|9BaKZzgV+cdA4pbLX5JpxbMq-m= zgYU?LoQElSmF&QI>;tRDxHG_xx%$k@#>Hl#L|6kR@ENv}2r=N?&OZEf{_dCA6jZqOY(C3%^ zdcXfA*CsQn4!xAIAXAI$+d(ZkAk^nN%6dxOLgulz8u>2s-`$exj|CYU`Cv=V4i#)8 z>XB@Tm4}0pM)>ZS9(CW2XO&(viL<|oS6ghn)pun3grY((V}S}vlnt+%y25dC)WgsI z3<;M&5=N-dBA&=gX5sGdA$_u*1Cp&gKG^ARW-lqJLh(v zv)2B8bH1i)&>q&sU;O;^NgNFkoX`ws@gj}!P!D9>A;DX!+74#pHlxeT?KZ_XRZ|&e zY5i7Aml?%G$yOFhJ_SHYwpOUSK>9A(K4149;@Lt^E7IxK>vh06nmVYk>dpcMYi#}8 zCq+MnJDcuvL+@@s{+D}s|6lj=M`0%LPv8ta1E*UgU#EPSTVD9!CH_@QWX?!^*y`}^ z6HIj-A8s{)N7zHEk4e`2au-`T;!ZvJ3VZ?-C(jpo5!(THfFQY`erus)IA#I;R%01O zNuo-CfmFgi%|SAmJCbVZ1tymV*b0EQw*^xh%Z|=~hhv5q*daoxttx1W+8Au=0I2f8 zHwT5l>odfHzm(np>iZoz;s$Elj>-bcp>x;q2GrL5UCPy2EBquVG|^-(W2#9^51OF0 zh}fvTg_^b{2ZIZrM+{UE8>xMByA)NobQ0@-UFOFBj-%7R{jS(QQ~y$!(EUWtnXWvf z0G^C9QYiF#1G4{nM)$_-B_<9^$w&C|k2e7qGcR*drbiIGH!{w?UClL8A%PplP)3}i z6fGkesbj|`z3a-ZcHP09=lj(Hbn>udy@?zCN0%lJ6zhn0_f6bB^YKaJYttsY55xbTZkB&_Q}k22fnoE=f7?5B7Vj7QD!(=*#anc}_`1C8>T-N`sS?47(pE zW4$#ncrE=a$}|*Hun5Je%Ag47rev)VeLk74ZK6;5F;=nkUGN=R#_%PCEJ2anNkiOJ zv9fydTSUkCw!gpqiBh_cX5ZvFvW0dFx!?}k9bcYKy3wGR^xH*;<@iJ*!e;-!e}Vss ze`)qIcbrIP$d@SvuW&&Qe~9?_TKs2`2r(#W}Q1a z{E`vuXA%BzNumlavR93JA+V)=K?o!Le$B>DL1JQO{ui>IDNc#LQ%`ugAQl$F5Xcfl8?np#}Kb+TutzqxWmrjsS)*~X!>*RDr zJhERLr-RyEZf)rmqocBtb(_@|uHiVMHI2LxKiet_W)_D2frO3lRFT)|h}QAvUDCy0 z2>uI2Wc|xng8;f03rXE;+IXcnhNMo+BqZZUUqhn-D_KK8-gmBFh-6@9-10WhEkS_8 z!;9PSv7&6mw9s9L1!x75ITRQ);f@ddK7nfB)i-w=)S(ZA8H(Ndlve;(uw zRu&1OERkF^7K>VaIhd#KhskJ^VEb=MpQQ!pyGPI~i z{?2)Wq#N~#Ha54Jox~$J#4#pbSk%dxdDbBl*})SX{TUj8;~fX{rvzv7IQkZe3Kudz z!QdmJr(0|4vzA#o1ZGG4q|9r}x#|=5m{P)Z&-+`?_mr@d zYtg%8mb};PsGZ_N)2eUzdn!V%o&`)A=Mo>^KgPb`<&6dd5$!~!!G&Qprv5mIF^uae zngUq*BJPgZ^o1?L`|%2`bD@fccb6}`@F2iyZ*H;Kj^>t+ieH$%*A(|I;X?O$HuHWV z8|XdPJdUO89ykZy>V?W2k}Yu3@XOcw5ViByGCp_`CVO=x-=r}135&+m`=nFW0$Z@V z;hG39k&OMP{FZiOh9s^{RfljzuMtFx zl-D2M9~`~Hb8+wP>rAJ;u|Akk=xMPoRKf!_+}SThJ&6sG%Oa+x^%3i8?=z+jm867T zg^#?ANLlPY8G<>qv9X%viz_v(*$fV=nETjShbt_H?8~3Xv?q7L*R?4A#ueZcDPS$iEGdrJ z;UII#8Gp-OfhGH;*T0=Mz&boVv=bVzS^d)Jm(ZrV>!kni^8kzK6KWEwPK4v`8gu4!>SVd8&I4n!p+x8fv3Fb|efXV9lu?^~AI<%FqT=eb7qzV^;GejJ>xmNJi9t6EcEnfQ3HBu>l?cDLj^EkEk!P^7^29l>~=hUdCU-I&*N zAwBt9=HnffV3y0Q3C6jCNYlxBc3T4b<(myzdwV~-pUutnP7KL4>fJE2c}sveqnkNS zhjJ1XS4e%|Lj9J+*aG8!-|}qw4mN<9Y_D4b%D3nJf5q1?Ek-V$fC~>1l4BN5;C7>( zryZ4Ck1Z-*y}732Dxs^h`+5X|P=>KXm)^p7nA#B{q29zH$Djg}LL%(Wx6rHDz&HOu zp3E=kdG4NSd>(GgKPi;KaWL9-l1m>$E*6iBgf0GjgpMX_oE`Y`+PKC&B0#{T)mgXi z{qMQ=RArhyF)~ka=b;HDp2|173C4*gly^RgnX;$CUO$*05PBH?Y<+MrBmx8>#eubW z6a9$&F5v?%BYOoEJ>Cr$54 zjw@sAu2iW8)0UGc2Znve_1c0LM^?ETVzpx1Kl1F0sBz#hvOH~G^*DF2Yc}+bBwdQd z6vT=tHR6)C*r4=w2Z<%rn^J za63C4Ev*yVCGX$Ab81YSM;^w%))vbKepcB+bI|D(laQvfFFflhwt;N1X2x8;W*aGL z=baoWv}lZoTs98bg^XFCOj9YeDW}}S1 zs9PQ7l$)hUH#!ek-#tuSm6a=*CmT-rnz(c|zd2TmmA_CoqWgW=XZC?E;ZOHU1WNdY zjp4qyAobY&HQp+`m3^hmw-%fPzDUjvu^+E2sv{0guh&X~{D_V)Qx6ZHpywh*?@cxL zstlLGAzHo8t8XOz)rznUb>f(LW(w9Vq8;vf^#_o3PGw^-VlKU5Ta%iKxL?@a7k|JH zVNv@Ybk91dLz6q(HPD>|H*K*oG@1Jq!HkH-jwPj#pW^$X{KVLZE+!L-9~!c)qRQ7= zn_4a6_=JLVhX<$(TBf0NCCWM9kQdX>7x2jrN#Udg+{l zm-1Y(ecMy{KqrS6QXX%fG3qasqi>9Bi}j&)0FFz)MgbwATSKot`<@7Oz`pU{^Bd#1 zap?AQbw`bFkc}{s;JHwIv5ytR5WRGYw>}H}VUi4|%L*dO%l{TVk`rij{8H#$TmjZA z>4Fw!1;*qmDvtDAynJtB#|!3Fyiwqj4B$6TcXw^vVr;9`r=EPGo$;3`l@m?zlctSn zo7jIKKa$S6K*LcxSsXK_1Xz6&$pYOeMr&{(fC2i@*+x=^q}JcW)ZKnu1U4g<8t@2Oq6b`%uUB= z&|i@lR@0q?AB5cSW~ROgJ+TC3A}fI{W(h{)raF5rs!&(Fwx-^`x;HZIw)gOMH(=tA zcGq%uXKlIW(V{c{6XrGI4llV8Y*#M-V;qAF-Cpv|YU;P|^7}uiRvY}uw<)1!DG3_Ig|zBn*rRMkTr&oR%|1$B9!{Dlofo$g#{ z^7#`G1^w4RZTk#B_kl6p7mYa~h1;VZ&^wLszo)QlK0501sfLLimii3VT;I6BeV}un zqcXuqk^Bf()G0lzSCpve=kJd%FpO-Se`Q*8Tj@|uUbE>NNHl8k)pKr#PFGVh(9U;5 zDEV;iK%pI*F@R_@ujQb%K9is@c>Q*>eqsR;aXZG~>r;=qIaa3`_KNrC>A6t(2K?a2 z1)R?r(i!*=oR{(%&TSW}^>s}!sVqQx?%>D0;@&p2uf?N+(k^})3EkVL9+QW=DaN2m zI|AZchQC0xpW@E>GsJpadIbOyWBvW}g<7u0cX?HIF?ZkGdoOQg{&6}DI=IOzTv`e^ z1S(=&R35T1@jA)~i;P=BO`QeV`J^I*XU`G4`Hj{JeZ?Ofg`(ffh2JwWQ4!Bf4 zu5QLTy}USI_w-Dfp_gJpEGn@mMJdC~n~pX(foe@;GX7SN5_T1|Om$b;*_kSF6ILax zPYg-EvtlXDOEaxU1Y#`xGrwkstV=eFl`Tq&%inkkyH!Uicw~pnnkn{@}YLOC8Q_+(w(GSlH-7NzI!ww4GRw{VrySl{nSp?2AT8eZ)Fo$yw5G#r= zfzgDPL^?2X5&~~F&l~=`?oTH0R*P=uV1)IQ1{z>dFMaLS z`8BO91$h(e*1JB~I7Z#)+GGzAfq)2K3XK8wt z4`4*6Am_>mVu02-g6FZu_?k$7sTsDo#P94>YMI@Q2_2_XBTY6x(wPR*xaYW#tg_*Q zKA)|Qi64K)pI;7i(M!8}s;nSdgj-Q)X zSL(Uk!HaqOvD+cu%YJ&J$)y6m&dDsE5c%z{WBe6I>koQ2bfPTy&6plC(IU0QMgw*x z!J&l0M`thFn=Yfb2Z}{p^u85m{4v8-R9Uo4{`9sVc^PDWt%cja9od?Y^05-_gBP+I zuMeX$M;cg$&gWGs<`wDj7dJ((($=J|>mkA{`U6qe!|>1`Hh=0>+*I*zYoTJ&=2N`B<*jZdZo7qKe-pr8Tm*LKVzl8TODRo zmFI0pi>@OgoJ?on3oAR%0E=46$K?#BEBKlCF*vF?CceaU0lTlom-`13nhHhM>r*mD zcJ^Ac8rG+B3k|qSBZ+2AD+n?V30SlG;Uev;h%+P|DW1TFj+e*MG1$}#3j3d*_lyj` zYQE~3g8Wg+mn5O~+hy)2_4_#B3u%G##?AN3O%jN#`SLTp9K&fHI6CG2Ng^@lVPd&g zisnmNF5{ZYl^0DfzQt1=+({%St2;?_z&j&|Ua%*o>w$3NdwaVLOY>VNZ^U^Cwi$$V z_-KnsAv!ebMhpxnuc)W3H>YZC<}2U%oQd{zT|J?))16vv2?<{x9NJ{QwzVTG1E^-e z@o=DM(-PKzjQ2t*I7iHxP42sSoJ&)+{*|P`Ea9IR+ZB~6U?k8*%OTMQqonSS7+X?4 zX>rZD`PbSHi6xS+J=>sFPN?ems3TRwnTM6slOGPWpwDGMc&IgpMHih;{Wy2skN@h7 zvb)4D3>)*ua^*znoAhoOmIQ|;ts6#s@D}YnHdC>{hkNhL@I}cx0;0=uQg#hHyg9WLv(U-$a}Ujgq)Mv@ehO~;tQq71Lw0R z{|dO1$po7cM%_$0hcK+{?9Ol#p*W&ZVyImRPG1lE0lBxygthFAsYX?OsgroSBgZNZ)Zyj zZC;jscg@l)1b_VMe+$ePdj)L-hB^&n%cIpH!0gvw)mANDu`unI)mKkgf7Q2QZ<~^a z*9;!N?c0tU&ZOjY_s+fg2cm`MhO?2ah}TL7^2w&S+zM>j+to`PjkB$0gI%qcANDBa zjtJG{c4H15?j5jen0_z+IazP)>ZKrUpVsj=B>dHSe|s6nBN;j($0vsf_jhRv3#u75 z{IU|X!(c{FGa$83i*EX2KzKrVe-ISaTZTh*Sk*)}UF(bSJ+cR z8`-O7rCa2QP<`TEyfl^%tr$f;NA$XbTPR`Wz4*6=d_A#@>eLnaLeLV}WR?`Y$goh(D)(^OieL23rChug|~0nLP!Kzu?SoY=j;|s|Sc} zTIW5*=eW&)@N9(Eptie$ptF^2T!DNxAuU9&+fs+WC}POoFQ+?U>{`NsObD`g+o^HQ zt7{*vr~{J~+W|7`9I1kjLx9bP7qFu7BAzwq_KM3IMXmt7lIdq$azy^zv*ufU15+wy z%yL3{huc`MBi9L!w@F<3STM}Gb^IU`WUo0DzbdfpadL2=_it$UDxM@G9;Is_C=t%f zrOm zCLOF_1%XJ9UJ$^|jd~)Ds@>uSQs(qw(rr7R^Eif4M9I<2Pj2WMxq*+iBTpL_&VT#u zk?^tqTzJ=$h#UPvDK$#b!cK-euu|o4$i*wP8R5_@B*=Tu{3P86rQI@dzc~35_qN`+ zKqyE-(+YDN2vjCEYvg!GwI7CHR#bC}HwAkrZRv$`CLtjK5?u^mnw4vYB;U(Q$jA?y zLTFyY7WGCdDz+88g4lez7lW_fQ%8OjkG%KPSApkN%24qJAtT8rBZ5BR4bFM9H)w0qRU zdx0Z}(AkB^4}qDcuZ{4cIc}xXL)4mC0(}#JRu+=`H#)kWk75~p+SkING$4!P0VDp}uRc&whw3JE`r)YWupt%d?u3LR_K*NSSA2V= zKI_}%0CC~))&l{GBX}?JH-a-NNL)nfqH%rJo^|2)Z_z7~ZX%Cj?$!qhmqz&K(+&sA zMwmh{3&-%Bk_}aJw`PlSRm+U68X1KZ>-{*LP*hcH)NQuXyuv#m)MIvVCQ&ewQ#q{H2h z7=f2j)f_0&gGMGdR242=RT6R?T0Q*Hs7!MNM)veU69)=v1ic^?R-1|pQjdDhNOigZ z{a1buGsAau-hBFIT?wB=$`15XAdF0qJ71apfYB^N-NbMBwwVnk0~o5-OP8L72Smu$(CB_$knz`Yg2R_xGEv-02K2)lTeP6`1Xinw_IX z)_er3?)0)3$ihQ2k}Z6eP;s*iyD{~z?gZE^7}Oc&Eg7*zUK-(|3P?KZZ@Z7VlVzfft+ z3%jFr{#4}qGIi`Pz8Ce2M9{(|8=QHu0!xb}L2ql3;5It=vbi1qveFf_cyeRTQ z>avIy=3e#NN5*#3+{;X2I|dRp$Zmj6U$RoBXqbIRNlez2xuGun=9eA1zPi#G+YfJ3i1S?tt{H?wkdHB$m3SM=1cT-(Gm!&3+`8PX40@<**ErdT!fZ>yh zDqVv;7HV-5d)T#!gO6OreCCGT6%}}aOU9>Jq@GH3u@zo=4BJ}HT2GTSkchUVR|1N( zO=i%cF7bU~!lJ-xU*r!p@dAZmw3a9uFIw?zFrQWCRcx2ASH|^NY(hYq{yp;naVtW4 zDSQ}F>)#kSn^cV}=}^Pm{<#p6%;C0YIDFg4+4aQJ+}lPdQ{31~P3ffy4U$+#^SPY7 zY0pK1z0!o-6*bYzKRZ8u?h6Ir%xBVFLCi)>c&$d-gX)Kyd zJe{3&PMTL8|FWPb^z-4VsuTR}3evxjFO;_^cD=KV?~3M(0|I=&o5sd@Ce28s$c)!Q zM+&I}TXaj&YqSOYSwlS8bhlhWVPu$vmak zX-o%EpeBL%S{+_nhRz%=DJFQXqVZl`2<9!TJ2_*|Kf3y>UA}anWW=f(_Q#y)LkJ|& zEp64I0pM=R?20iOoVRwhRGs7?xe3cI0{bFaXbp&g{s*!GENd#K0h;Y(PlUCv-3VFa zeqyG4Ntr24zTmaHeSg;(fB25+qTdR1YOxDUm-vY0OC}uHzK9Bjj5zF;O!-r+a6^CJ zg`F48M*Nwn$@1IQd+zo5;Vd%XL$yLLRjX@NxRGqmRr|PTTAp4In&g}Px#GY!!u9UH zWNLl9C_i250=iTX<>%%WcB1i1v_@=pxp$u5l>;_ruvmPICRFT0?lg?o8DHJq-92mV zvExzT=A314#p3UTEEoJA$7Y=I9A*qI*6Yox89jAFtnRvj=a}y(`B2w+OSBmf3X3?a z5;Y^w32Ydxux2!=Oc7c$f7vG;Nk$oOrhlOENbDC^E*q; zaTUKEjq;yI8=X?BI%ERGt9Ctv8@dXUL^i@p6O4&2%ZsNCl!NPL)uw+7E^z@;;mo9w zb0&LBny2Ior!l-&{}N^b_$znfZc4`(R3&M9i+DV;WWt>BvD^RuLDK(2ASprviMtCW zN~4pU@e36sy-?2aHH_~Mzrl8ED%ACivaQg z-N=8=3(1!$%Dops?e`{s>JKXig>(Kr(8sFY77HX#M@uz;?1#?@eNq8qr zL>W4R=>|&LB;R*rl>*oC=>f;$1?|OI^$7d<9=cl(`$OCV)2^Qhy2sZ(n|%_GfBAes z{uPK7pO3OIPwU1(=sul8qoXbSWR`gU8!KaqDu~<3X>YBYD9?K@9Ou}WC@f~*p_6x# zu0#E0?nxqV-jl4HoXLR?#G9kb%cC;yDqq=J7ib#usRz`;}^~vBJ^}cZJFU{B?(=>WX;MOEFt2r6~UVimS6;ni{{; zLjf=~#JMvE8h4gSXEm$l3L`k{UqN$cAw)ZZ8-|ClN{RCDg(awFiu!*ko(~ML{Ol`x zczL?Yu%6#0oc)YbQdm1LPZ=BMCD=&j&SjD~*@==tzUx;=+%n8v(Y>s+(I#0Rhcs!6 zeShW;;|-R+gp*1hu9AX&;hdHKJerHMf#dFpU; z)XJ07izhVMuMJf@XPBOJ1LLq?^0x#WbAPF90&Fw+C7HK45geo!z(L9=ui!gmSiZy- zjJ&|BH`WF^hF0K$t z{KOe^w=UxMMQ`rFDGMe55EfQV?2lZyeDa+eL*Y|zOXjJw((^L3;fhu(ePrId1bIBH z&qK_JIF3V_hFSH%PuGU98{d54 z3WTK?jTS>76TzG4QXHy4^m~fiXohb%H@%Ji{G}z6(JniN=DP72x;&bDvN9~COf_Ik zj{wiKULRm2z?Z+r?waM4`_-|8gN>Iyz2ntM?i;ykG~s9M`IV}$Zz8U!P}(g$sL6#- zS`hW}9w^lW#o04P&#pDn0Wgh&%ndXChJt!Uno%@}X>is7`6P7hh$I~n$Opvu?( zKQ&nSe|yOD|1`J(RxZqvgdt)jb069CE%jNCw&-arFGFmHp&F zkb-2&jXy>2H{|pyuQSM>hNS4bAG%P*qLz}6&#I%S?4YFwSq^>x)><$5_dkYWi4VZc zCI4eaD5CYr2rHo5DE=$4!`fg?*r8VHEmQio8auTt{CF7%N{sN(hJ-dgF`h1T~Mjoy1S zM6ErgaPmA@Tr!<8AiN=F1~+K265W^W)}F$TO@L(EV$9@FjaG&Sy7Par_wDgee_Q`k z6q4Li#8gOyRETn!Zf;3ZF@&Zsg=hXN2obx=-xqN@m@rTszGoRUeueJ7Gm-ku=Bpjh)jkes*j8E$NQlPq_ zU{`;vsazcH60w?+UlI=C(V-SC#;)pF{#T9fK4fmmeXDY3C%DN=2n4DsnQQ&zo%u-i zrivj>DyW((qtT|$>q+atT88icNZ(HTa$4@Y=VKeY*w`*q8$;#1-BeQ0{%zIRiKc4P zAYE=)r{_JUcdpu1hIXj=YN4W=vs>)$dZqDEtNz((&w5x(@A@C_r{H4qe>8XbN6Yro z`+r|S@+ErwZs@_a*s>&pOZ@n|;m3a~o%4@;$F=xzNd}i>a7hOLg*?Eu_-RQ7|AqVi z?|AMnt@+P9gn;+B7C$e^;F1h3-Gl!^9^m>@!`*-39G1?-zdRS0_T%4cKe+x_l4yzU z|6X)oqWABI-dul-lrPcb_d}B*0xMT}0*&+W@9$1PG{(GIdOLy$=kKRl1 z!QUTEmgMB$izdIn_+WW>AFb9DK7r=Zwr1j4Dl9xA?6=S45DPPgc3>T=TG^!4n9}&+ z`n>Bjxpo33dU4D!>@rYV1XRJJe8%<&vN2l7V-jKuafUJwbm}7Nl<6XB2L+iv&NDG1 z4s(Gvo}f+FQ-wuTA`a9c1}O}|gHS6-jcg<@qF#wDV{!C|D9|fwiZTqUSAL^{%>FP; z?>uehFsM8}vWS`hb$b?3W;lNggFUg34$XTmqUO@0mu9lGCrf;?Bs+i8dBO?dBvq(` zLq?CVhC!)w8+C(0(Y0Q=uwm0tT9IGLD5%!|GMOp^#joUaADfuLNA%sZ_xCOOZ!`i} zvGke$QthUH_x(cu&d>^6{kYCfPOo&7AJx-bjJw-rB&G1D(cexbwNGUU_Yb|H+@76^AVD1IkpxFoKU0|OsVcWB>qxg%C}^d zRY-j<5hV6is#5yvi4vd%c5(KP7T6sy7U2(GL~VAff>?Ybn1wBE6~iF4*b!=oVyi5o z$gbE$)UlGnWpl1ey2+Am@(<<#^zRJ$^@~394Ppy@LJp$WQ%0hLDAUTvD5o%PZu6?7 zaLnwEuh5VY4wT1Z95S8fC0tlU<>^W;qMD2Lp^$*bpnB?$3abC=A2u*~0ziH6H=x@C zQgyuv2`wU*QF@YSlXet-P;j-=9Q0(%9sAJ|dPVgj>b6ENhI4a<#1X~gJfU9>4-~8T z|Jxi?MJ8o74s1q2151bP#x$+0g)Pe%jL(b%poHFmSxli%8`H+I0r`+}LA$GTN=mbd zfD&w9r8p1j$OjKJ0`=1zVm!gHp905KiV8;8Yii_w#)dAn`@Qbdm!vu`wyNV8FhLHJ z>nO0P3z{8m@XH9UJyHzHErJF+SYQ0iy)Y3IKTkCJ=K)HABv5XwT^3PIMRU&0gItIConN7CNzrANf^qE7k)B@vWeX9MBYFC>{p!E50#M1yg??2m#uDR=`EsK6q#g1v;)|2vcS#t%NTXmP7gieikqLU zm_?i0HuY&C>kDSXftL&0hhr-gfm$yazl@Ma>%uT?9h9jtztJVK{cU6$4tm1i>Z=QW z)P>(itA-?;7yKer+&#TKAK(sg3)S#z#~L!Wr*99iy6cZ>AdfAtAaZgr{a=Vm(3hk< z(D+!aC{t#8_P*P}1*eNzLwiqPU$C!WXMn=V{Q@{f#bDs{bf4hpx`?y=sWT;DxRn`v zvwRn8H38IfOYTm6SUy5u8S0itFLoC9e7|2LUH`;unNo7GX7oo%MNo$6Rz9Ny36=(7 z)s+bp_LXSZ8qE(4xi@1N&VXm@w{lU^O9g)({N-c*S_?}r`}f?l)1aW`pE1lfs25Mz zv50z5zaLygnII-FeSghDSkJG+8OYj_s)>aSR|VOU;3dos)WqXFo}ULXORxJk+PiF< zio~NW>HDgpY9Xll_l4rdIBS&e8_Lz+Fv58zA+BbN$mtJW)vF6%509i2sx)6 z(hb&1+g)NQ;F|XE*aI>5fqZg{pg8*!d`{ukOh_M-81Sx5;=n1FYc;XwFQT+R6tQ<6 z=b7ux8eS_|6d{=w?;$Xj`Wdezv364FS))`$cE*$KpzBD$f$Vtpabgp#SfU;ji%y?M z_eO_ah&I~o6E}pNfBDf-?pwj78lQ`_S~=wn!K^Q2n#$ik!TW-39qcO{ptkj7rS0V0 z)!pX;@fJc{&Shgow^AcNc7N@D&mDEC*Xqa}!!M|ZJs$6gufH$c3d*%xnU!f%?d#|% z*|?&%JX~paUElVh;Umv)zu6drpVtDKS`pOn9gapS_o*PU@+dzL{Stf)13lpIOQ051 zrh>Id0{_GfrXUh}4P5wvTG5C)F1&jU0~3yH!W;L}xQ6Dg4?Joqulo2_R;^AGnQ}dI z`9(i97phhuexyvB5RAaL%wwvGZmlZ7-n2e*^F^&w`$F{J^gW4aMgy&o%n`+jKs^9#;U>iN*Oh>FC1t7q@_8dC%-q}GsNmAD@ct)OF^OlT+>2JV~{lh7^nAKrRyY|~ec z!Ee06>^J64Zj6TQCpxf5C^;0vz$w7sq1CCZBVan}Oa+9$AGB)FeS(`uf35B~^y2Td zd@;Whlu68s;KE>!8T8LYGGJr4=xC0}4@G&U7nTcz`_tz^?Lo8+|DJI{9nkD7UiJf zs?)1|AN&rodZ{7zi;E)%lCk+Qa_)8fs=Mk@C?mB$6UjqAizJRr$#)#vluc|!bJOA6 zoT1`{74MQW2huK%UGVAS#}^2^YCUG{B`eOhrp^F;ni~R2yH+u<*W<8=J9e+*u+Bd? ze)2!T!=Qg>*@jErtR-)j6W0&~%Qms^DTG6#N5Q@D=~g79@5vs3DrKPlUTtdt6mqCX z?kV9HRLSq*6wdsDY)ds8IE=APDYyPR!bae*ETM*HY)c@us3xmw*{FxVxDJn5ZLj6Jco4Y06r*46M!=F%8m7d7ZqYM11<=w&QdA z@=AQK32W_^TPa!!i2`Jipe`5g6LvJ5wS_Ipc?|WWkycMfhc0Zcc))#~eNFOP!WVUG zG@Rz5AZ+7$@sZJ%ZCo`*4K_W|Uj#QI4)}x0vgT>(2~vuo!a?Q<3J$VgZiKN$W&vU< zz@3ff+)W;-X*1J^VDm_PP#@bTB3F3u@(Rx59Sl3<`f|pk?&bQk%qCE~y%z3bDdBM! zVUKK|1?8G_V=%8_sjQFVaHXBhH>b=xjIXFHgKMo>p+BLW6Pyb*>y9973T*agf5*;D zuoQqMa!{8S`TWd!$f5+z2!ng>PZ9P$dHZ1S@(VjV%-a&DoySmC`?(8U%1Px;T(AUE z-9{NgdoH4gIQG^*|A!)L2$cT60gdY5ksEWkxo^O$82#t}pj3eJJWDTF+JhxNsQNp} z!rFaXp06~y)y#$5rN9;rkS`H9b8epm4w`3vR3yv=;RA`E75$tPV1A`h3f;ywyL$Rb z0n73xzN%o%jxOMNrlZ5KNh|k!$Az*tAKD_d%OljnaTHpC7h6K? zRPAL~Xw2lA9Ny9aU5h_Abx4MH#c9)h=GxhR>?i6)&;+Mg&>_e%m$0rprHUpvE+=Y( z3AfN^aK2u=^4`sU5mgaSLauj&OzO8K;oo3-va`KO#k!@*5w}gQmTkGI5WDW3nRfbH zozajc+06+Jt87CytkuCUw4+d{bzJw!{nf}S;OJM#qGMRxLzD%>JIfmX0BRTW_F0 z!DJB?>qe)rmJMSTOysZ4{5+y(dLv%Cg&m0f4Fz&C9@k1{3ooLOqvM@Ooe6Hf7Izzc zl$gmP9Jps>bFa?ODTO3<3b_`;5-A5Rk4N)E%cEaUbU5}zk4a=ec(y##B#kWR zBr|Ag*YC0?sc&vJ)-`^mw_ssi{dmC|e77RJfw71RVISyKzCf)xv-b0Znx92&O)<4i z^i|Qj9hk7acH4*jD#cj>EDfmgJW;`0cC zB}&&g&DgNcACuXkSc&i;pU~Wp(<>vidjXShq}78(yvzI_{}`^aBoEBP%t z634(cwU_kPc78_-D$fXpP?;6&@}B^Ds_=7V^)k=PFCXd#ZMBtR^-+crE6Jfk1RQME ziwV0ntDIR&Pu)T_x7N6Gv~9#=o%{Nj?JE`UIXX3EqOLoL&lfQJkX5OyT?FygM~t>a zFQ2~mE*<(|bip+_S58|SCarKNkMFw`rO$iw?J33=^{Kf)sHYgcV#f8fqKYIeQ6qyc zNU#l>?eJEY4;3_s-PNzlW5Fx!KeUdqALBffr`kJFgIPhaU=UOKCW4b+RlK7%(prxN4%xw2G+p*>REIDjbWohAZ4?$t?0c(^=Xr~S9C>|t;*5-i1(g8zPqhE zD@A5}(c*^^8t@8f#0gGhebnAqRv&$-S1HJKbJy8V)nsnJN8jm= z>xWwOHp@H+sUygmf`@7BeX;$Io-ioZB_&NF*25N4Zw$)R+?Oq){F-^jO~e^qucP5@ zf};h@39|ym_-#60xjJ2OK)CXuca*S$(sP;Rdix3!VpU~?xx4K)ob#yl>jRiatW+O4 zB#jHUdtgL&3rXAbiJ+0G7el?C`uSS^S}v_qZ>oLM-o7~RjY>w1J|@>w!qE&X$X`aF zmGYb@=_E;sPS8+PUwHQMVhDPwHc!^4fA2^cx6PGx)Dhc?7w5ZW!fTRm=6|tDQLjig z>OU358*yIW@pkd!Q#J{9{-`FgWd(Y~Qv^G(ymI6nO<>0PDtblrQ^LWrz$*!P!^;B&Mfyxfg)%8!Us{9-#58AAl zGqhpZC8IbI>CX#wJoK4+BJJoZYq~3+IA6ab+-22$`pxr7ZIQ?Ju^K1LDugyXi$5&MmEx_>8ul1^J8+|gf!5O zohwjI*hwpIiK?{C%%kr8et8GhB)M%G`xYu`RLm+j^vjN8P}yrIdL6!vnt8wMEq;~R zQE+bH*{kBu(mZ($D<1jP^}@|OV`Jhy=w%dVunU;Nw1|b0DpQfp;W+D!zVG)Ocb!q( zc}!Kk@a}D_HXq9A3#UzeV){S35tjY%Z~hJVzW@E;U}ytq`Dr?@LkYvpfE*HV@Q$2D z>at;AeFVfp4P)#R00YfJb2Lsj^E3mur2%PP(-ib^{gUJk;M4q)NW{qeJMiqUh=~-Y z25V~CAR`!F9=4TC()dHu%^!_7|0_SgWqCG(Lu%~YB5F%D(+;V5@3n|B%*=~WVfGGF zb{SuQHpFuvsB#C?U#q(w`s%xgGEKe(ZB+ktkoek%hZYsOS?$VJhqH&at>>1xAAN)! z!pWud#8FmP?BH*bB=F&J%iyBQ+tWQMYEp9(cQa13UD259J&E2>o1lUttAX~q`AjV6 zDpQN|mjONF*+-iv2R)rKPLJWGpQLWAZJBuH18y$-fxeyTbN%hJig zW7-EEzVq5{v(3u2e@MP0X;mY)zk9_Vi@F1va_B*=S>S97I7T=M8_m+Bz~o8N@R8jg z8y?;4%KKsvS068V!$&fLz__81V}0rs3Nj$A)>UF_!cDzeZc=O&>S+0)44WIFV{(m$ z`!H<~hC`tHxI`_5-*e;@k6C2vj{7G}iaPX7$1jc1 z<~$VS&QZ4?JC%JldT3(S5X|K%VLSZwVz~s9VC~IQ_xx^8l$E`#-seY`Fz#CSI<+(m zvo2l{cetjBLg$E`SiWxgngjj9#{V>!`TDZj8?9>LW4mnhFO5C&-@AU5!$HuF_X0%+ zq%=;zTU0<|f#7J_KoO7&zC~16PsbvvBYD)Yt@$k`tgU(=NLy%CVUY8w$>*y$lIi|J zK+Qh8Cg4ZUEpk8QCsjM11CBu)ICTI%C+-sy%?Y@QifG7~y37o-TL6WNp@sxF7^#-jK;o5A$3eiboLEPj76Di+hAHrG zi5swW`hN8HzMnt=kNaTYr^xZG_XUT69VWwMNkPrVfUPUFNo;d8V=nqjClUbcXM_)g z4C&eP`+-jjunz27KMMHefHDNa0+SHae1Ntd>UoNJj*YAk@*b>AUYn7pn@NVRBBE?Tu__xDNbuAbE> zLZX8FLpxkJsJ1Z2$H2_qg=JZKLo^`ee1wyZ+2ud1jSG|NQb(CAmeHQK{xV!+yYg8% z)yZ>V2#+@CbuHv=Y*oaRxaFz!9&MiQu3R*8bHdewKbjt8*=}oEx|xEf*wNtaS@oS{ zA!lf{uDtgV7M;>@q;^GjAlMFZk&UmFnEKojM*^Rm1WlZ{vzEza%jk-1%XUwHZWHb_mK)Q! z^O@2KxpR^Qys;hf=XdT^=ZIt1Gi6#;DrDgFw+HT&wiNN+mFXSpKgk~Ag7=WWgqwEo z%--NU))gV_=|_Lv4S<`piOr|80xI@&5qLh2%b4)gKQqy} zr!?qLOwOvB3Kf!(Xex<1Ot>*Y|XR1fL=O4mz4M)n@<=3;TvLY>a_G?PnL$R8Ljm{52LEJ4Iv17g0G7!^$*@ zO5}re?i0kD^HytA=#<6wo!nKt&iS;n{;qpxZ|GFlHyzC17jr=U2aJN7!Vo7#V=mHG z23DhTM&p-S>unG0nY}jYc2mhfaZr5s-p1um52}2kiGi-Gxc2HknH#z{`f#YB9J$C? z#StmZ98do9`do)RmOl)^2A0ULK{=eO_1gqG$*)5f2al$JR`O_iHN0=qM;)_fxaHMc zu&0G>u7{Hp-e3pH%wt*ATZzE<%gal-rb`gMU_i>1ZHuUqtK{~KzH1NXX3GM@ajQm3 zo+qa92O{KSrMDY)8*G|)y_@<54v)8=TtorLR!yT!31k8q6#%?qQlUP=i}1_JhN|Y!sFbX#osmZ;vJKXxT<0e??1LY_~ebv zw)zRoXdpA$Et*yU-Kf}xdtRLNM3_1b4p1qmK8M-Yy~5YF&cYd8_D?`_bXW7{;N;*89;NI0+dY*O*uUUMZ9DPF_7l-b=|#SKAFQ7i(9UAs7ofqL2gg=C#gW4>7rL(Z z4wgJCaT9S`X`t{X{C$*Er)SgQ-Ns^%GyLl;CU6y=?7L8oM8W zB{A2Zc4&VAZr5}k26;r+UmM>yS1-5{`9ND$LB|JM_o%Z|) z+i{(FW69fx(E|m&m_P(1?^l{*objo6`lVcV$KJ@bm_ip1EAqmQ=&YCMEmc(-U&Ga_ zw=E-i2$2;hwiR;3!P3ZZB?R@6xY_*qB*|-WStJo$U2v$1n~XL7av!U?TI`lzmhKmz z4)&x1j>nC5v9__-elFkC*9Zw2(M{}ZOFvJ@e;VDKhE`|@S|@8IN#C={V$VhKb&i)Z zfYDzBl-hGFCAJ1*lqdqAaopD(9ge^#Cra2hw}IuOowGJ znjwke%>5^&Fu4G}>u*RUE@F_`5`xHK8i)zZinc-1Cb@pVDbM`@*agxsP^Hdvkdah3 zC$901KPm11zx_t`LOl;jlfIA`Wdx~TM47Y|aU!wIMnHWzu*yyt+_<<|%)+Ij`+^`% zpeGtLc{xoPM4Wf`fn@8o>YVk|sU)x^KH%Y-OgBzwB6{I+K6&T^MT71(H#ih+Ajkkv z51j6$zZQWIkIaL^tC6*zXco*pS&k1a>n_h}%n5fM%<49>I(2o19Jq+OWZD^L$hoT) zQZC=S^?oa|$%Wz5*7nIEce?Y!+uYVSC-~Q%J#4mI<7|P@{grG-SeoJ0*Tfc6rKb)& z>5CSlnPz@>aA;HSWWN_res`=9uXXl>e5^^?je6F0dy-v9u zF=91YZvh>eU|AyXwqe>+=#)UOz=+5z?;b%kk+HFnGxfbq;xMjm-{n@eY>p-Vn$qPR zg`JP{dKB`wZ>y@9UT2SnBYaw{?OOslaT}Q%5>xi19v^nu;RShbylFky*|3=cAc0O8 ze~c8RhlCa`oRA>wWtuEFU4Ix+c8p?wbafN@U7HspphfjozhY3B{fYp_P;ztQWy>eN zN;(#qpOW0>R+%eE+ZSRU4=YYJ&938=PE$I(^b@OecSg~Uz_&6g2W>j5CxLsl@s@_g zTcho74Ml3>3S-_Li4~pRT~0VA`A8-s)7&br zQ^tW+p7s79B}Nh{f_hSPH5iUSgwBy}J%h8(d{Xn-AyFf+3fEPA@#FT9WPka?5t;r9 zv5K?%t`45Cd4?q#L~q-gT}+H?IRi9r{={Ah&Kg7-989@CP}>=Zgi4jlf;1Z_LxI*f zM9UV_4wL6+R9=91AgLsa-8iAMC2YzKwxRG+hP)UPh=42fqYTOmqA=7v(Mw}X0;_@9 zfhl0(riO7Ii>QsW(~GDizd^wMMTu`;5)8vtoKq-;OKr9 zGmaQcI$%`h(2hNaI6+QL?W%o_qp#>(5820Bq}9In+drc!&6#H6mfiC?IVNS}Zxpsa z_C~`|A=6o~BR{Vs52`)0my=fR(aWN(@@}fp6>gh$)yHffu0j^x(!1^7XnJ?Oy(h%0 z`DUYVz_JV$23$D0nRA#)K{wO+#BONUBI>y*TdbrHGy1iSD9Tie_3nFZCKk@xft+_! zgR#-m{0R+uW)X+B3_aVKzS|f(O=jsLpV2EZ&J+QtN{^9c8#QSuEV+m}Qo3Bg)YK7? z3cq5+wRibp715Y$T4$-fxG^^%+jQ8Jl>R6yE6Z}09N;FAbC8R1}g`OWL> zZJTazhrP{{ERw$-gKt$k<#O<}-dBV`_wzdC zV%7Zl1C)}ZDc2O%Cu}_5&|r8+6!*-6v_Y4j)~V-f*GF6Z)%x9oz69knEiIp?w^yCu z)lGjCzbfALNi9Xs{jGa+&FJ+=@d4T|jL>_9y%{71(5fl0I&h@)6;Wo1iin@_IMi?O zKjEi`e;fZA{NHbr=_XC7lususzNh>=r$VUe8w{e^hbX}i1CIw8FiuEQE!6bHuZbPl z`3Z5DON-OTeKCZqK7&Ywlt;Fo!iva#%i z#IFF>tMdvofb;pThE4f(3w~qf98ws_k2}F4&GY>IX$LODTMa*L)h}PTIcy4oZAd>I zKDvM9@Ofx<2FMzJ+%Jcn!e1PAzc5Rf;(GumzC!p54hG!P|5v!>ww@1#y~FfpZu!e; z|H3U>$-w;iWea{|-aj8!*Y(7K63lq<(>DA%@t@hnFuk0HNc^-3zfAlWb`iq@AjmJ9 z@EdbqBHs^T|C#OnUgY~QaU#vwR(E(n$t`TXw8xvbPc{RK6vw&*dst0grG&OYUrHSL zIS-s9trc|hNNV|xo$sU@%y7oTv~@(0#>_MI=tzS0huO)ePlpp8#vbokHgLs+D1z-` zK&zYUTga$IOv(v1Xht+9c6=S>$gn01D4M)im{*(#h8 z!rq+ueYlzt%&2w2Eu^_nKskLRG1C*D=HdP8kekay z9XNwA(R(eqtfU4b?A)=UFiAM2y-njzRQlGbii0}BmY?6chYiF%mo#}PTb^Da0Seg# zL?UmmdFgkfg>h%Lo`2+|mQ7KKT11scu8Y1;HiaS9dE`AsWa9iMZPmVTF-lU6d&jWi zjufS+uCyf^ceE(fp8}JS z*Vm(wI3wFvKMk0j>~S!-3T~rqaak`jC3xdrj7H!E#v_1@ks|XV+_*?A)%f$WOX40IZ7Tq7KTE!FuffRh|O|D zMkws{&Ja7vvKyp&1^5u#WyG4*F=B9F@2l3d#EkZ@E)rCM$If}1ii;vM6AnJP_U>SM z+%4{Vm-)z}&&#ntD)z*A!dXC*#e)1JnhpvQC^WOh1hU2H0R41kV=;q#Zwb}b9nrm|*Z{-@mT0k4@& zva7E}<<#HW5W9ldOngsc=#$rZ2aZPp^MG_<0Y0|*`iRMT#eMHcWr!?ZI zA;w35I0CTWe2l;zbZ~tTA_AYOuWri`GnM137#>u>z z>oflW1H`KKna+zAO|Vv;frb+El3$P|p*N|3MqhSMfxI~o_+BB-$s^VPdO0nkc%jkb zAED`kRHgy0V{p_Igf^oY!APxu0(e##<#zxVM`Bpv=G9U$NWHSkBFc!2pNXOG&nMjoS+mfAX_o#o94CLZlY&3hX50ui06=- zc_u3X5u%s^AIPlJoz5Z^=bG7yk51R5-bl6%Pr#hGfFkYJ*+yX)@STmGeeuG`Uq#`j zr(Vc{W?D-qa7G?l)d6_tJ$!7+fRie8IOqkH$Gztn;waow413{GOWwrVzv zJt37dlfs{>+heykYAwcU@dlox>JEHT0}PRu-}Dl0C1)5` zJ2wV|b4w`G3#nBG)HQ8X}Y(i8mm zNwR^tAJ7NADFMnhrD%d9;eabQhqVAH>VTDx2TC%8r!DMw>#w^EJZJ_rjC*S!<(?Fd zh7ES6688oaO%(}8Og$(k-J?@>ZdcgHX?t)7itM62Y2vjR{dzI%_{_r`@=k zZE#ix<2{DUp)ib_0w@I&wdi(LqqcGf#zd8jT-&H;q(v2oLY!(Ib#q&v;I>aK*7<>t z)WwqtWlgSKvos>vQkB7JDI7YE$irQqtmtrzotd6`!qI|6kL*WsfQJaI}cT^ z)zxxd(0@svXdkpLjao@v=N*1%O(&tVRMyh%+;QS`CmtjuMtSpq2v(#j*r1V@42{aBo6zbVJH`=7 zSfRQ?G>s#o_2jC_cIq*okGqfLM7oJNfKY`%3?JEmoIvC!wpIwh-sM}8&uyxd2le&a!2d;7HYF{^i%Jz{(vL!nRpCkn+9V(U-YJpW9@R!-MR%a3YW zxDvcqTZdn9PnzfFhSk0)_rLb9zIR#GL~+RfV|pnWw!*D}hFn@O3_Eal)^7y{Q9NT1 z3Ca}(4g=r_U|-2@Z+d1coh$y~yRHf&jdG>!`r4u_7Y*JZi?EO5+xmHVSA=EkTE)ku zv)dpSOJULi)Ly<&QpX5=w@5sm`uu>-=q|&X5xuwX30?Mhli8ryQR(sY*Y8z?45`y9 zLI>w0*JL_B(G$JsRgkJ+e$kP;?%lF_O*Ks;mu8!`^sw#w{{$0JyalH+x%6Oj##9YX zn0@%mC$?6Wjf?2kO{a14e3o}eeesOY;dhE<h%Vc;&5qRiTplqZ>JJgp}`(;+ZVg=gQSk^o-R^758(MGujL37hs7wW;yf zy!5{}<`*m|<}Y;g$^)nVGeb3A=V;1YOIpD;PJJ&NuMgji z?hBpMM4vn!O1}_8MR1bIXELP8mCJNx63Sb_+)@3^d}3DGWn&XcJv9 z5ZMY_`|k2#%Vx`eOV4K|?0a5t(QK$h=-r@n{~WoLZli`jXBQqdO!EK-xcj+G=PLy> zbbvk#)C%}fr}5WvGt&aU;g!zdXM0~KzdO-Rs+T8zAV@J4hoJ(MDmMX6D&2(Nv@JNf zIy7y{nsV>X#u)QcPt$s@?5n3)5G=UUfIW-ye%NX)H@?((q4=G(Ww<4zLJbE4UHJ&@LE1}24WB7S8|L}9_N z3@QN{ZypK~v(qus<5HgrzJY842){?q)uVY`PCCz_Zm69dSRZftHCcADbmX(WC$|iK zE@uzkR659W^7}U34Lq+*5p}Sx0KkeR(CkamFcuQR z3|Y28jO8F^6G{C}t)zAGS0Z~R)l8*B$~AI|g)ey3kuC!R^$l&<2vfbOe*cEJFxDn3 z+d~gl=YW{G5Wd$#X79Vp;(k$ztI|2Pq>Q4Zv2&9)I^I(svpt6(426-0Y=oNgbASVJ z1#qKFWgz0T8o`CN>LfO*6u4A9Im=pX&`eQqzc<}lMBTtl?!&acfwWlBgHu00Isge{ zE=Wy;UQ0Xks)uty>kIXw#O$nS=DRb2UI~ZDEG6FlKAvPGZYYmn8WJsR(n7u!k-h-@ zQm8VY1hxc{aMbxHqcG{O~_^LP=SCIbL{r&NB zJ-f8A{EWUni3nu<*QehlFixMW=1j6|M4EN4$4^M1CwA;6GS2S8bqUm#OI$X>drF$D ze$&#h0XQ?(or}NIFLa=iCjeBmnk@lbZ0OBT-}#DJKRPtqEx?qWk9+^XaMe)BM|6r% z-4ZEFcx*Xx%-J<|D|$MZJrth!c95 z-k0_URlKn(jC^DqSLhINfM?>)ve;AhYb=%h0K#$A1f7S&FWH2kY#?SC`y_L&Iywwm zMz})I=zAr5f{_?{^@)Wy;eGRwTq$kes$%z?h5+WIvdw}D5I&nH*lW8OcjY$F6vLV8NV8XZqq;a zb{xarOg4D%H*njyS2ZmJl!GMqT4SWxnp7qBfd{m_v*piY3~xr4M`?mXC|c^4r}j>s zurWLYhXM!uVAUe(HECWL$vZSp`wC%5e+zdRunz-Od#V@eF=YpGY=WmKr3i%SwPgc` z$^$!~?Z4)aMl=lAij)xav=SZzFLMWVJ4P0`K#QF}`%<2T7lMP3I~#%isvJ%8==}vp z3(j0Ye?a=?+2B(3Vsat3A{_xw?!drZ=${ur9$FKIp>LrAPc{D{YB|)89`47aa_Xn% zeMO z+LfVSRsik4YPN_H-a}!-I2h;(8y8X7P3(zr45{g-;{|vV|B^Kkf6y;!vnw>upfD7W z14~3@mMsx=NmBppa{MPr>Lb{%um8kEZ|*ts19B;RuTfr@mw5*%>B@Ly{~T>*Oat-9 z&v&EpS7pdCP!l-2s(U8dUFIH-G8$Y{=P2_s`i_Z8ijkSVUymH;7kawe6t!k%1`Uqt zb``o~4O-!NE4U7B;tk^jW>cmyPPYZUb4xwyH@?u5jWHocuy=CqA?pds!nWV9L$gsi zcNI=jYCZ+cgq)Q-(h)tbR)Sj%165ik*mDXzr%T=CvNN1+bYah4 zSnJ+@tKqf6J^Q{kO0ElH3^bHn+~jp4PzRnJ3kUTPLU9p;FUD*>Qi`+J)wdAcyf{{} zBhM_i_C9D>OC!%;-Rt%X#DCBj;Y$VnBMeYy&YFN%9yo%8iXf9=z*#Ygy`9Oukl;651q?R?Jr$vi4sDW5^Ar*vRy5-a5LKh7+o zHn^0mA+{1XC-e#jZ<0B${rC>oEPKunY{tHf8OX0KjclfI2nJSPEzk2>l08*)(q*2w&W6YdLwl^k9<;!F>rHs6scZq zsI`3~>N@FU!$8H!;dl?DvR3&<}l=*d`yFcyiv2i5X2{8G36S^TVBieRB<* zB`0F7z4dw`_cu7MeZNhQ>&aQbblO0nB9B&4wgECdKtIO>%}nsPK+@&Qvg*&#rNsrh zU#xiQ8g2G`-ISxf&DOMKN$czQ>!hw3p6-9A>DGSI)9J`;m+I+ti1U^A=-o&)*t~&P zJpzykY|6x*0I`@V$(!N$bADHA2Rz>lgkMMl8Yb3Sug9&u6A{k}AuIJTCbstSv3Pn^^p^7`jvF$b*lHh^&-8HB(9E34*aJlF#1D zJl&c%ZE@|4J8j(Y*tw*(Y73)-45W`tiv*x1dVpKFQ@h>p`jRtRw=L9ba&%Sy#l+O+EWx75@^*{gA1Z7kn!aKAtP zVN`5QKQ+f}Kl%f9v{&uxWgF62Ga|nmU7vSJ!R8l0n?? zPfoZWzptceC2P5H!9nyB;+sE`Z9|8|&t5V8W@}3nLt23)WYKi%dQ&wJ8&!B$#z-P@ z6IE$^+Dcve2=8dF()kw#0Y1n1?30b+jf9^>itYMp{jK9Q`ont&kI9$KAw5^A+HxpH zTQ-wSfA$#jm`qQmctYpV@b=(pN+5|x4GJVlPWzoL2}&?_RkirIDeSv^fupmCR!Evt zs*G~2c#Nh!f6POX*XR}yr?7VozOp#|$*SBnJwkUPLzQ|~d-gjrxR6!gid(U=8Nv&w9D+R< zRHM&oO?*z&LG#kmRtwE>GC4sZNJ&pDHpl&NY(vBgN0nF!r#C!rF!}esyRod;=-5O4 z1m|>xKKZXMm=lUD2XaqbmG0Koa$))_iMnL&0AXeSa@o?XdrWjr*4S zh;z({?{SP%(E$J_&l6Iv%;@lwvT0_!(^p#;Jt>Lu)3lXSRti$QbN59sZ>Moh?yy$# z3Ke+!;3&^J}N+`s!LWC248X^Eu08=#+{!bIW*@Fd-IQFf|03|1h3g~R zBV()A-X>o;?P${%b3e_W%4}gs^iV?)4Er>LRt528_>pbP4Kwd;vo9>fCDR9vLfpGn zdW`sI#IEpbV5anWje)4l3TX79Yv4D#4*}Zc)xf^CNGF;-urBvx05l8+ldv!wcmuhj$+2b$7h5VWp+G|Bn8Z zNv|)Uwr@uHkwFx5)lk|BMp|SKSzy2N)zp<$ohJD=p++sdVcS;f*IQpJ-S4Yjy1M5Bdl3IM^vucywI#s@kLUM zVqw~u&u>=MKEIC+7Uzt5?`^~JI$hcHwj#yp^+Mn(Iwjyb0&rv(Xs{Abm5x-eTQFOi z`O<)@RDS6G7whjIhb0}#u?b#JTmt0o2C7}DS9}_{`JzKtY;J%Uia12=p|K^T{TYK* z;^S_fQ}YIPi28yj>k#n^jR$i9v&I`=LlKoaHK}bW@48z+w`okYG)VKIUvHY4NxFS+ z%3kfOnh2iKb01Uu5M3-0Rk*iYJ+sRR5n-ghdbiI;qE@$En;N;kv^2@i@$lEpp%yzQ z3O8vzuR#gmV0pFg5@VE}kgrqfX{F)g`bk%44JMFHD_aGqdzEAY7yPm}IvkM<(8^v! z33U72w?6tV|LdX6YN}Q5${#1Jm)2O_ckQx!AO}l)M`D->2B3>H!p}2!0xqg^G-?b? zQ_Pa7CyGMPMQL3L-=YxYY+m6gWyF8`GgmF@4~=*-VIIHip)@g0`n0CZxpW1#Y}t5i z*SFIqvhN+Vgmh0C^(SmmfFDJyVlQWa5T;&_spxm2DkG9zcA+S}tJc@fXIV{56aPy6 z^>4JJ4y>@W7do(+^0G+`##JMG7(iqN#lKWP8R~eSQ;co%$Qv3gNj6J6kCG!M z8PiFtD<275@;g(dqZtui@*>ogN#&e#P1PBJH)f*ZZZxPZ<7gAVq8TSAf`I0%EuYQS zf|unTpyQ-z2J*LCug*>tj;+(&KBfHnotMOR&Cv5oA&V%r$jMPiAETeEtaw1y!mMte6Tlr`>9sI=Bo- zdW>TvIj?K`wmc9Ho3Qbm&zRbDQO&}tde`OEjgybR)YeZoZg8)atQEO=c$xXBvs*Wy zP(!HuJpV~?o~5APpY(};Vo+}icy#%6We9ji1}G^&j7shfo2tL!dd3-qwEfl|)Qs&m ze7M3(CbIjLOxWXNX0dl{lUI^6F!vTwof8P(Tn1a9IRk#lu+Vy;Ex#drO~E5mMVp34 zYPrSR`r->@tyP7kc$9{|9UHLF!pM!Vf~bYc=vqm65Kv|xau!DtpIRF``rvnuNBR1E zei%|+>L4eH7+~;C?G#H+lJ3r7nN@dynzi!OpQjnA2__q!A{$Ey& zkScn=cAL`~GpYT>e$@GlKw;y=ZfkV&#Hce%m-xPdo1qb00TN9=c9F|Xdg1dVs~6>I z^a1*|h!dt_w+n-K@0s$7D7inP9()x^;0G6#C9K8Lh6StJ&gisE_hk`|GJ{H|ULNpN z^LEPqmX#jKLP6P~9lzMnL(rg^qNuYtN|ea~UVx?HOVEFqxEY3-mm zNlRkFaN=$%YNjiUWVfW^9g9?o+?3*d)*4t?y0%u@c3M5$6flO`%VEH(42fPWz$*2! zNUPZjEtvd^ZjKVzBbP4iNb{-Uo{}DyyIoMY%>UrRvNI{^LuIDHYQAW}A&c9V-^*Of zEfNx*Z8f|fAkMeJDI@)uZ#Mu*| z!cw`OJgttx4P)hMA9sqWDO*s|B@rh|PcB&%`P_!zSe12ix;46s*m4b; z-i#m8ys)h=ZZxSW6cz;Dkh7d!o>0d`Z)A2}ugtSc`4i6E1%dFoDI8T9+KOWw6B8kJ zVAhDu#$nx9gGR3~A1T=#-|6*8>k1C7HJqREEImx|TU6YY{&8j`LLbD)Vwm`FciK-C*exiYUYe!8hZEFsdds-OWV$~rmYxk-ErvJLap2(b0X z#Idt)nMu;8sd@?{oRo{0m^>1~cVbFm41YGCLv1cHkK=R!T-HX#>Ey-~1?s#+fAn5w z>jB90l$jp!;`L2GY)c%5*oL0Gh*^snJxYb9!%i=({53GyatqPc!47P@*whzGAy2^a zP3*f_)heuL==;=ha{tO-$3T5d)(b3Z<+eB+IlRgk%dbmEDjn`?CW zB{ORl@bl&&lhOf?__c$*ZF`eEqe3B_s71W>sRBpo36Nyziz{9Z%FgM>$GbXgQkcnkmd81 zY7u2NimwVSZ}>ZS=A3(mJ8|#5(P&&SLy!iXi5RhazM_7s5*zASTr^R)IC2+!p;wfe zX)pR#E&jTh*hXFxdeC!Su4&%5F*oCy#10v_B1?WIpho z^$^z0gC*7^G5TV!iQQ$9mmW|LiV(GO!v&tff}hp%XF8hJUI0>KqVp%@9co%%q<;`J zET%BG@cNKx+Cj&?eOyB=C2I_d%I|yDD^?2IT90`UXt! zdjx7#r9*_`z?Idyk4a5JuEj0*ThQS6TvkRtxmoZ$ARhb)51LZUNT+1rPK1{ee&pth zk>}zbMGHFUh4}-nIKhn49A-t|+1oSE5847uqn~ayO9YACXy6`E@+*`$V<~tSEAN!{41Kn^gzi`; z184M!n+$FmJ#*+1W%nun6omip*X+qx<9H#L?R z+Dhn*{lZ}fx+EU5Cj2xtnvC6teR%ycxZ5)Wa8I6%UoEH}*pth1=uh3A+D zH;9*T4UhPkd8^vlVp#i&Zf|X(%ze`fqWX zX(DPxsj5vEAKq$L7so{0?tik)X=U}zr=9b}F_u$8a#txZMEQ=Z2tbWr+79yU!Wx#= zS|yB4wk0%+JE&MI0ZZ;Dr~8vu_k9Jn)B}LEKpQm`vY5S?wYQHUr9p6I5PQ(U`2#U3 z&5d@h(e!6h#6uZ+Qf^aqrXuMAZrlpgenryF^S~$N=(BO7s%x)=E&ZBe#O|=%v@xuo zbb)F$0G{40t>y-%>Gt^?yc=lA*IHp@KD_fr16dW8SJ?7-^XqQdVK;HUYYZpO zo5$U1HOnI=C4*L^I(9LZmes}Ikai&0>W(@v2mS4(+ct>62++9UrZx5DBrkj*8^TqM z)AD_}=e+34mpLDq7@jfpW4MryKtG}eX1vQtSw!u}X9!Q^FDah5Sa;)Gv7{EK{H=>$ zTtd0e9(4$6l3Np{;r+O9X06ch6EO~iz1Azxi2j?m=3p%MaLINCbqhL7uP*Q}uXau) zTSj#}5-u2wGDK9fYFxPkFLN!&0JH6g^7X$&qSm8lkk3@F5hVc6MED_Gkfxx7A(1ib zTxN>zv0hFsWtNK%vJ{1cm*NI|+yl%C42>>dXm4Ka$jIoMhLp=RpL81~;~3)z1nnc= zvbl793ns^(an2v$KCUYrd6f57V7G7HA86K@y02p8pp1y zuK+Qyy#~c;Fh2TJ&PQ$|S5c&B5>*ly168-bY-2}NT0rjn7Q0q=mrOpjC~Pl(+I{dg zB2O8;Al4$pJzVdFFBWTVJoR*9Ibdj3QL!v~OLF}1+hvd#DNq6CS9F_QOm0|eLk zv|epm>O%Dx38_~(ko_{|gF$&mp6vrj)O8l68U-R;>RRnUai0Xh!X$JSr}lW}Wn=&l zz+?YI|3e7ivjXximY^fU;^)>5sH<-aXhmK6YIV1VqFp#Ik(aE&w0FaE*6yBs9F9~k2rH8p&dEwnaI z0}K{XGFV-39rE&;;5Br0mmm3J%NQSON~;%%p$w?Hm}*@wDcyr6V?9U@30pH5pg0*Wb;?>` zSQN&fx-^otbiy{^=#P2TJ=sLD;l^!}7oY(Wv)(LHKW(m!Td8VE&#S&aD!X%8$i-hR z>JxpTnG^Bk?p2ccjGN-#%`l2gzPe@4z~D)H8!GwHb(=AHa3gFw>pAvgbvr78<~nN% z9zU@4hrs$P|YMOmnluaJmLEgjFlXVJ5hmgA~WB`I(r=a9V=lQ@9Q>ZCS z54fyWvF07=g#pUsyUbeU$qS8h?L~!`T(@mSZG8nboJY1ca0VwytxXoFT~uf#tl`}3 zaqwr)0&<`>f7fN9*!O{EfUJNW`S=AHDPcg$djH}*PCxqtT|CNP>PM)}M51k{ox)a4 zbwuhIZzdc0*6tY8r+1d7h2T}sRueBVBY|@+nbA)pql6BTP)@sO#ud}CV3yijJXQDG zAmd@XpR?7vrgzWPEtA9t#SPPQO{L|m1j^Mu>&xHo^S!3QZL0A%h3>y>QvZK=1phYp ze<|?s*C5D$_xonA5QU8-OVqcmB_&Kl*-4r6mqrCU3O`s{O$Z-|e$?y-=sDhD{+bzN zcG_nPlW9yPNgHRHs7R2$L|V7$rFx~q{dUKr4ho{^zI@+iV`&wzy&@C7y`m?kUw!gn zMOm;^@r+R9Dd)WG#Urr)7kv|)I%6=Zwd+KRKq?l_$b?(-4x-oD?dyZ&j;`mZqc1tf z%kD|)SrEilG2|<7ISk5-0B%LHIgUkN-rRUF@Ic99hFo4-QAkno{?ZZu zja8$c79{(i-2v*WCjeIDJH3OAkcvM~G0AotR8{sNS*1Kgz+Pa3gPTRsM^A4aMK8J0 zn9T~{5_Qz{@Qmqup+X`b2Z3T!XtCXy65EEC2@LO_G6%moR!X1~U-`;pPhlf!HDRM= zDQC;5IrX}B3Y`(EMun4>fMLe%wX=gMM_!zK)yn$3v!>XUbo8F7yfyWpIqzmmH% zIGrP{ZIv}L$rJYmHU^1$q6TSe6siM20No+iclG79p}*I`R3GQ|B|ej|#>hJ5+6Mpw z@ZJ9cbkPeUG#2I@JvZ_VKeKy3Zt^yQszV|6$x{d0pAN#}AXjKHE5r~Q3wT;0<3je#mHLizlM3B`g@e|92XvvE5r&jpWV235{K{@GkrcgtTsr1N(1=dCD1sr* z8o*&0qP}O{rRMC!JP4U{65?t|@O6_5OuvF{o}j#V(3qhc#*#}t;@5nwN;B0xPU z2(d|c{~KMh#HK1qVhG~o_%4bvyM6fokOq!~VhOrg`?3b%&^;j_hGqUO^fTKZJXtDq zZExp4yQh#pkqZY6rd@D?jv{0S;ujvMYxE=5mnSlbI*eMXNy^u+PJF;zRF_43L0l$z zFRWM#fbeRE)xOz2p;~bO${?APukMJH7@r$GfUohqafNDnELT*P6{Ov}J`_tB{QHgF@O50yVg!O{aFjQx^9RO)1mS zUtWM6alev>?lbWT2zIf*zda0&pnz7q07E5;D^P(oCT-zRaoNj7 zQ>O`(K%>;l=gxYF%H^AO@ZZ8?>MTfGyYHwGG$zE*6_*4+G$3FW zmHoWa0q?3{szQ3sr;#30eW!$ObB-bGb4<3FHyvD%EQ)NlqMVtzW;g9NW`9{#rub!P zJ09jO@qV(=C&ZiYOSxCa{l`yV$3MJt1Tkc8J?d=g?kwQlW@cI~TU2U5A1R!y#BZhr zn0p6*K0OUMnL(V9KeT30tHnr#jpwWE4LHUGS9Ij|=h4;Aj}8}idG5x)4z4mtN*7j2 z0DNjcV%8Rjox7&>FZ2o2J&LFhNTznC^~(F$;ivMCeJT*v{YLS=T8WaL#70Is$VVNC zS;%O}?ifjsY~mD^d35kMy7GEGZfm=Z@Jit_=Zi9#Eb$ylud9uRhmcY`SM9Iowo2j-Od?5Nqk z5F?K#dP|Gn@Aq+d8`@QNufVG?B0??(?Ye`}o0k7J1pIeIl7Vub1M*8R zz|Q-@brC*fA-N;D`He#5xhmU`*S$Y5yYa};5q!MWN`f{( zunBL>cPP0T)$gzKKK1bs_X&q;du2LK8wa`*5-1a!85z>~+_hVZFJd6g2M%)|7GGlU z7+9SRZRFeJ3&&NZuV7o74do(XWQiO z*Y62po&?N->X0zhn41PQohI}J$)e$n?|Ep=#$w?0`ZJ@zyvfS!wU-8a*qop{Jy`rUJ1!}5G3lUOBS^@o-8>oU*q<>&`8b43+rQ*bDk=v-%{6;# zA(<}<4LC{imYa|94SfnQvCr(Hl{H}z*VR|@w}l&XfFgoDMVpY7WP=|g<=$Rpw{b z8jmD1gP6XStVCGX96s#*7Nc+mOA+r}<{k}P6vl7~3bnl%o= zVWKF7Al^=~unjCrt=EFNe4zdtZs4Mbqc#K%mRs+X4oL|QUizBqCgos7G+=lksh?Y0 z8~;8q1e!6=uP;Nde%nL|{N+F`>q{n;)kM5&JI8a9+tAwo(|;rU{YQ26f5qPq{WkPx zm4WWp@$FxE{4=Ha8L*Q4oKDE1wFLCiA}i6gzt3zo7yyJ{88-nI)x~SSvwZ-9b=;rP zkN?Z)M^oPC^@g}Crlok8wd7FI6DxI@os@vEZl6*a{&~Rq(p}Bz{rJbj)zS42ao7kN z_Ym9_KR!6H?RsL^^6U7kD_Yz)#OMoU7YpRfpVM((MbEe13h9IrfMv-TWpepCzO^O! zy|x^EQopJSOzi8iYKh(Sa2Hz#`CC0Gsf!J03b(`V)BsJ%x|0xyQ`jI_laa^S6J~1=~wUkTYg5h#o-6Ejn>j{B4SDV|zaBckJ>EX)#)pg-C z$ME#V6TK5--l0ZOV{u!r6&ps~bcI z3(`ZpUOzS5;7ZHZGhqN2oKLQX&JP5w6u5LK}xEad^ zsQyPHI>Ifxx~#$}n>Q^iX68sH&vUSBs8rR1HlC}e+^tJ--7Qbb)Z171X+S-{yGY~G z45AYd4K#~GoHvAx$Z~$mTYH|b9@mR`$h((#oox>{u;2d>8nFN3bs`TL4Q>5^DqPM4 z4;59eaV}d5YUzK9TJN7{ydcTd(mWH#=gEKXFzAuQ0g8&kJjO&oE0~_GUh3t8oe*GZ zV>utsrfX1_refR}$H>-`yvY!GPU#YCt8J9Qb!=^@&Hr{bq}b3xjgp1Tn%5L6d0j-_ zjMA{PV|{;I^V+FrY*O&Z;s4@v;DCIt<`pCg$^bVfd^C-fh;%X^L~W-l^o4@IZx>`hsDt=XLzadt+v^#Mc)(8~ig;*5t`o zmIdVeo{i&uLowx(H~jlyrXH@n4(4Y~0q&jMQ^4uk2N(rIX;=ggDFYYT$UtGMb2ZSx zBr!G=zf<*?D3W8+)zxb@?|Xm8HsR!by8IgR82B)g1p0YV{$@pO?uxXXL}k+QDO8+27sPp`zo4#?D08hbN9+=YfV^5q#+IVDS+ z%Mm^msc3)Ho2;;P{-l*`O7T9CC>cff+?p1%{BoS3hZH3&9s!&8bV5IKG&H(Nd=7T zj|VD~E52Ls+_!hal)>$vgftL!ci{!|uOW#@r$@trbrOnL7_zyH%7|>~AO!+mmzptv z#VZSvrmRJgbc?`jUvk8fE&^1FnIw{pg=v5~I63x7^6PRvlJ)mWcA?(q@V@?7V7bkvNT%btzups23V;_d_@TUug1W|>?f#gDd z7yg-+atJ6z;T?gxB(x2?eG~%-hn*m#G~~S?fSq~AJ!|_oZI0%!hWe#NiGSB-Xe5^K zf|O1R23X;wpAJP_S`=a0IUt+^*jv)*fn8Wz-%i92$lxh4Dg&ej`HE}8ve}Yn~PAjDto){?XeE#EN@3 z8}>yK7}*L{wWcxM2L>~s)yZjwt(}cfb*a8o&$V}x&OZA>!&~*Q$)dSx2(Kn|^r`}z zS4(XRbO|6|+2`1uxp0Y-FDE8~i8WUhb>o>@Va>0X2n`8=Uvrl|hYHHYwruWv$XxZ0D4ZQE9 zD`DUjkHerIyik^y5!8JgZa{MNJ$!%M4}CLUnNGa*PIWUAZOja3wHE@{dw6m}FK6oc z@e@u0QyRyZe7Xo~2WF5X-BoL;y@Jh)u&M6LS~5M3RA13Fy=}632A+aBQnSCts^?P2 zv!l8$7qwo5Em%6cNORc0{^PGSbXe*7!OiMOzHhVQ?_$~`S3fNW73TeVAt+fFTkr%0 zD^?RFet#OuzP|5Z-m2x5sd`k~Ls@tqLYHWnJKH-B{^d42|Mzz)h6{t^B`Q%5%K*g* z0R!4O6iI`k2jn3DoCpeI0x%Gl$P}q}A`e1Bf%__APi70^LxG=2qF zHJ?_{3&}H#yBx3SgIrR%@&xU|ZoXl^YkIbz7p2ZLM$zt%O~UuGPTemEnf+GPf4032 zjE}ln1HG$kgi7UrreXOYHrOZ#TXxMzMUcdu;d-^BPC_^-QQi|}d0*r^c-Qk*gejl+ zA7n_}GQHcEC7VSBUhj9*jAU zyP9?(^IKC2>{9tL zZSq(1rZrL9naeZot-*a^h!hGK;5vyAHFbm7myl%?4Oxzy=;9jb`-CI)sVBdv9mi4W zZ7wY+YZ*sx-bPDxT4Y#!<67-6-$rIr43->dCzM*T2LhMeD0~1cLhSm3X0&bm!!Hf? z^A;LH=3O>8IEwTH$Tqv3|C$p!{>|O+lPUDC7>U(O$xMHBzq=s+?%HSn+I))suU!=K zOSdXgZ>GJ$K^D(Yzf%51Ju`a+RQl&d{qv&!*U0?mo%(0@|6dQ*|CTY;u@d?`3xvI0 zf0L*f+x=aKj(2x9-k1RKhd$@|1ee8|97)%1r1R9SN{{_PF1U?M|>18f0UPR zJU?IEH3G~c-{H(e-A)MGI&A=_cGvRWXtl0$XLn@^m6R^7e|h3!YZ=cTy47tQ)ROia zUD5~A0hY|TUy5-?J*kqO$}Nhs{f#crGd8CkVcVy}V<#B1Wi8k=e{AQi6H=}Zm}U1T zs5@ntvcWZB%)n#ey2^|j?U&d;YAy#BUO0_%hwWbh_HUKQFH0m8t@(-!E&eQ`i`I)| z$2jsm#sg|NUzzYH=BcXa{0p$aupLXy`RiI*Ev!#on$5^ic%pA(s@$HRz$MKIC_WdA z(~(g6F(7(D(wOV}iOV}`uqsYZGe?SpO4rgfj4bYLOjWXOfN-S)Z}?APLO1>s6N>&N zA96oo7fpS;jUMgA*6kGUKZ}%IW#mZnSoyzPYsO!~{_8?~T$`~Z9 zLghC)PQUPV6+wC3>g4tHd7Gb@NO>LjD$`>FXPW;`hCxRb;SOdj4Xals|AX|H(KgsX zMCZHfgnvTm9HLKIM9oX$ox`JOf8~-Z#t-uQhu>E~=bzy6@*ADt5?T(;T(R+=>e80MgpG&CjBBk!D z)p+K&-HQyn8v}`tjbAFAF{5Xd7=i6qQ$sOMJ|qxP_6eACl8?fVuMw#l^sQcBE%B;i zY0jj(>!ah>?cni6gNG_oD3SN%bRp|AWd?zR=-i9ZryM)Z0abIK`OY z(458KETm2xS}Y%MF*}yc2z&JdEPa$q1pbjDOpxv?V8aNG1%oIoL@wGfFcATb%HkHX zI*BWZP_C{l*FKgXdCRTLA|a+9!ni!czbd;a?w?9=$sdb35)eP?vxU&oI3{jQp>dm% zmPo)_X;ASc|!9b48J4O{r$qvutm)pr#Jv-eQK7U&x=RAC9m-AzM zDb4Pu<|t0|1mXI#%kQEt@^ElmJy!6Bj;@I(>+Mn|nD7l{huZ)(yXG#{K4Er+!5*Ku z{5DE9OvA8=&J;c73K)GAAhFjgnjYAMht$<)Zq)HOf6HD?{+t%oIs`Ys6(3`&9o~Tn zs`Cxjeew1>b-qAZw7irKWCT=~fW5rq7o;O3#+sR$4gq|&j!#HuNu${op2M}W@2gtA zsp#(4fO&B6-+HI%(CAZ1MO`XIr7jH7O-fpdBE(vmVpWXBqy<(Hp+2ZX?uh~V8Q z2}m9Q&jlF*(65t3_1`@uE)HkSTSv_bU<#omKy5*JHCauKPQz?PVG;{y#mH$C;8N`1 zgWZ*L{*CUNIOX|)&5qDt2-g4kc+B@8D7?@?I;#MX*}$%>C9^yqzLyci&&MP3BWj-u zue1s!%(Pp(?uE=IwCt@VGar{9l@DxblXJ*jpEO238TqkomYp*HqnmY~P^LnqtLI_%I8$xj9 zIx;lGJ3T{1ss?9@b-Ms`qL-f>f6Ua})p{hchp%S>S~5V$#zWG*19M^|j1t7w4(z4o zBm+M`<$Eu>Bbn2{XSV2%d~UpQDS6#sPXk`(6o_|YgjokAj?|tj zwr|%J(S~_(u@`t$j!b|%YFFH2_0pP$yPP*0znW|rm{1+s?8J@rX;&o)nK@+g92d6cH_(qXaHP=v_rt)Jv%`W3eRUS9^W$j zUj&v09hPlNUAJ)%+9CK?ADdSWnzP_VZE2a%VDoWnI4@PTpfeKcydh5DCvS2B@^2&a{!1K0G!af7-?fd0g4LE z+K|~@+6CkY6-7%g{@)>Hej6PIPa(_@M>gTs>!g~uNVj`SzEZwUyyMcVl$uw^PE0yo zlEhvRVZF866Uf8!WLbyPD5QLoOM9_59B}ssT4qM&LQ_g$5K5MH79n9*4e%yALdvgq zC7@d%Khg%qbRUgC#w=o{T<2{a45XKr9rw@Ys(8vauRw1bT5)ya9eDYHL9Zv$C~D|5 zI!@J_%tY&ga@JcF08MLTqV=Aiuy*FfNH^TPdSc>IG#|-vJdYXej@)>ba|r@=6_ODIQns?ARzuBxnaj)vwRRWcMS~jqH{t84bW>byYk*Y}WCa9>h98$O} zu@87Pgj1fu{ZNvq)@t)v zT#c1YhavFIsITOW?%NPyTw*i`R39!xjfB{vgZI9#ShEsBxmND*IPO?kXbnD|@m?hI zf7PM~qUMfi!j=ytK9o4T$QRNcbPb5lZ+HF~*V1zDFB}WAU(uMxV00D+2HIByzX0!^ zgJBLdq@FxPqCh75QI_(gS@en+jTuYWY6fOb$OCYA0QAL^A7~r;HX-Bpu9=+P4L9ba z48w1%goI3RK)+P}5h+$7s8=q@sXr}WuVTccW&y(u1Og*@NS5D*>W^;V*SvOmT+d6xi$j;S-wPaV;tPTa9KI*SEk*@sL;5)(R}e2CVTGTyGYnhR=(A`0aI6FzPB zSzlC%FM+KTNMK~TiI)W$$61tk_YaD*x;q+$G8{Ke%(SM>+Q8vLilm2yf?^$4T#}>P z_LW$+#_u1Z80x5-&ct7~>+L>-Z@>aji`xt`;se{sc1;6L#|xo9$y*=BKOpB4d-j?H zId8|(nO=hyAv<9Y(v zkZK1$xp*`kDb#9dz}hk3TgI8Ynu}tQgOtz9?m@5aJ%~LjjJZx@r;QCOO=$)bAD?k@ z_vuJ$|A@f#-k!Kw-w|YW=zgXNU5}st#-T?Smqxx~DyPRxYOaaOH{ox+*IexCx^?;>#7tsqIL*hQK4a&n27rEZ z;dhC*75of|;s&=PU_TQ;u?|v~62>)vEqbx$U3prPOX}w2coE_0=-G_3m(la%GZCvq zB68Q0Xh_IyM}a0B_gL?ZSq0Dkn0hy}ms~ADuF*UyO5Y$KVe(jlj4A=+#aa#M0Ar`h zk!J|eMN@0xJ{hJBSDAO5=N}y9)SS5FS)xCByfA<6)}=#~Z?rEEf(bGT!$9kt?v1{_ z&`D!Mxj3nQTp!*hk-#;XH(sO;I&kP;TRdTGScS>n2!RMTa?`#GaiKbp%=On?OO|Fs zGepixyPg$MH|b_)DE+d!ti*1dbULdEI|gtTIc8+&gUUO><+rPaB)*S4`AB*^9X>2| zoHeT)(pCLjx#gh)Jsq>Y9>M@vJEs#3rj=qw+QFd846T+-;eq##XJxs#C^1{jUJN0& zku?av9L>905^+sTdr%F8;?KsLVk3b5uHHF~8snFO^WdFixh)25KZFHLMn|t&bOAt% zONAK2e&ov}@=4b36Rm>n^)Dpv=K0ND=eN3ND;L+y;CXcAD(AmIB7P{V5SVn%?a>b7ym*6!G0YR|xa75q1X+*tuCAN(#`+EHJa%6kuY1kO3gl+MJl;V}Im^YLO-9 zi6z|L*jFY)$%mbx2gl5|Eur6lTvQdBK4OH{l$Jt!mP9=Hs=aB+h=Yl9}U;tLeSZjx+ZrB#P@@=qc0kpBM^4k2C^%$7hZ(>>-N$v_jt+ zT;nISF4k`5b&|{y-R>h&>2#!_{$xw!o$DWLO0&{5nbx1GQ-O7c2Q?G3m_h;uL}n@k zaA7xX3?b-FcZPYxf{?93hX@_0{IL_Tz;QN#Z)5YE%Z5?9+&arTWk%2Bm<8GVo_J2^ zv{Rjn5&~Vet+i~+xF=;CxcioN_VDQeX^Mt{bhc%5xja35-C*KKlt=OA%t~?tcL89Avn;u4v@dm@u9Pt zX8nq!44ib{ku!6>UF@#J%_SP>14HKXOAwyLs!U1NPrwcGRsN8|1%8dQA zM{!#do3S5OklGaz8W^4Fd-8N&*D-QlTefxL7M(Qplga*7^efmw*FSlYUKY3dMU{Jt z8|z_=24mGZ?w3VU()ysoW)ykU>JG5h$24b=43>Zr(jyef0X(`wi$sP%2w4NbFwkyC zD;T1Alai>}LYI>bEq1UztwTT}}o!=L4BS!c`fil zo%5Y{54_zxWAp(SaUfZ|1?40ONld|OwO%kL z=~`q?jr%NoOxzzvebavk&l9VY9^OOOtDmAxWC{$a7J?!zV2dM6$J~lS3>*zS`@AmM zjKZ;b=)|5+Ocz_G{E$;xUy*f`bTw6J|LY|Qd(cd*|6UGH2oB5b=hZ&u={&_ZSnRE< zw4_i}C?2vnu07UT`@OPh|Hlh!V_pjU!IKYELpGLyvi0$&O@*u>%}fpOVxqyW5y32`e$A|9 zTvfTS>fZhZT9`bt`e;Xs0Z|Kew+OaeAa2KV*4}5@>y$owZe^=pI}K52k2no%AaQOn zjr>^Zi}nDo=96Xj9?wwcih!pxJ%gWld>aTCY(i_3%*ncbd$`V|50jt0CwVSnZ0fw` zZ-!KGd46WHJM)q~>dMH9Vt$TO+GOaMb(s^}T1E>1&V-tacr2O(Gd2p6a>=JGto+A1 zTSnW9>dX2cPo$>qw8<;#fHe|CARXCJ3rYMMQ%sAWq$Qi?FVPCqugO5lX&%U-zU|Id zXpHq?QqE%tPN-qClCCaiprlN&-zJ|WUQlcAWvL*+4{eTa5rp0(LV_z>ZHg?d91n8R zBkthdCGmli`XUVDlDtKQ-i!1X#Mg8}y>GfrI_g!jc0N1n3-h&CM%)1)sQ9o=;qiX-iJwj#<`&$?HlV2~#pA%8B zjmGsgq|#fNJOLlN`+Dh1%e!(bKA-}1{O5q{&(sbHo}wewIFz?lS)0BUa1Al4Z1eR9 zVEZ9_6JScW9!iK7f^ClAf$*q4B0Ww;FP{%n^@KsRB-b&5qr{JV^L~Za;9SB>`h_TJ z{)dl+`C5mP!U0!ikPXx*&f~F?q%#K`Sm7qoP`Pun{+}jFV#Unf*P%yhfT*|X8Ni~3 zV`{&VzhO&KG-zO{+C0AB&8YlzHnJ+rGB{p~=OBTA+)X1ewcAD9c0!h^UY(}@F!_nP zVv|+=wWUjqcMbvi8Vh?$Y9$Mjv^p{oHPa_vwAOx|8>4&gw8!eNtijM?P-Npq=2u2{ z_nw49h$*eEwu@6T1NH-tBYL=$WV_x_NjdkkQQoRTfUExAX6x*0J@x>%`07cSv@zXY zpX2W!Z-V= zEc8PoBPnuvBU0e%aJ^uDd!A)9Gmrl0TQ7=S$B!p&c?)@fF~8C`lEcYl-Mzm0E84(X z;LyJO;zj?MQ#yM>4Ye7?z;tHl{U$=`qePv@6wozS20b{0!}w$cj&Wk5dcQ zH0n^HboLE4$Tx zRHV1;MlQU5t9^P^I@{Y9`4LIsmYDHftyZfFadU^8P1_--NM3i7s#6#9TE}azEkt(ki^jA{6tW*Z9RdvpYM<2< z4qy*D+&DUuHTuYLyKbP?y#8#E?1=;=QEK@7_1lsLw?3Rx%@mEfYC%U;paKjL7X!eG zSTS-J8*!y6!u*-q-V}K7SaZRc4ZqEadCoRwa6@Ey zjUqp>4k7UCD+@gXJ1p8-lTRL2j<_qE8igCZyrn>fkwt;6@q?TftB51i0-T%}$Bh}5 zqw02ojaa8+l&LMtk^p;=Eg-x1>YynoT-6AN5m;0N@>j$2or)F@qOZerR{$H)DaY|_ z(dRl@H+q>udfe{(ZvOPY%_e|;K~i`MX$A&u$X(_>7^WYv)$j}qCE9qAS1k)B;bMKIkf8x}e2W=b8 z?Wc~{HOgiV5gjN1S-u)W*@v6`M%UF#8rdGz@VguxX;LVj*{`$UstSuX_BW(_0emNA z$bkTIkH%Hfd>Aq67G zC#5XAi{qi4W7;pZKB-TQev?>BlPIT8lvIE^e!%7@xftaOS>6K*vb*e8f6@Z}`seTX z0RJCR1pW@0OY17hImKwo04RN!@`N)q=-@rTUgr+UU}i&cv;Q;6*9e|f=@e`elRm5q z_t)zcbJSEDYdl7ZAq!JX2ukUJ@5j-R6@y>6oVxT{&}5%ZIR{$J{!?ECvY-j4T>p*k!knPr zg#6Gwj%A58VAoSE^ZW@`ycKVqT3b(l%x(2>^Ao1RHV^Iy>HzNy^aO&yrc@;%T)RB1&M_*PHOw|1=@EYY;E>W4_Jgay3qAT=NjZNnLRewiCO?DtPJL3mZq5VxOvDy>zT=E!lFLAO1L%X z4s3BF0#XHPmpS5ZYO$J+k5Ra&TDL2_WQ_EjJv>YPEQ*$qCoIDoM3q=vWIsiZ9kBHB0QNl0??} zNZ)k$p~P9CYl16V-S+fcq4}%CiyjEr=EkPlvcl33NTu*kR9Gn~!lYs#)0;?tvs$jmZpgdmDyN*L zJ8YM}pfrYD5-{KW_2EFd?7Ipmeza5@kpKu^s!u2}9j(nNNO-*P z!Tz~jwt7)ridv#sHsy97fb&M(sYsiz%&~M1^bpE{d2#zn1b1w`*2(T`Zdx=eM)*>$ zlYl+cQIm1Sl;WjE;emU!_2rf)a)*BCGU6A5ZcSj;9HJIx^9@YO4vt7}oyH$6xSX7A zW>^V92+x?x~-{LcwIRBG%oMVM;YuuqZycq#7{G%j?jgOS^b)^AE)Im?#Ffb*`0~7xd-{%SO0P{6XkC|SvFRNa_tYt%G0U~AnFKNMEltK zQ?U`mi7)5MAINQd(9s%yX!vC_J@~R<_zC@|OsXTD7EI46mIN}C*8g2bdfUphr~9#y z?5!Mwo>R|TS>@Di-LI`n?8(qhbha8C@NZ)%%mzgCaZ))BIogX~tLrIRskMqN<>hd$ zO5r%$bo$}V*Ld4gaP;R>7w*qvw7*TyND>@i@Yg|b&Z{1~UOyo5Dx zk`G`u58&ZB?_eL;nDDPXmUw$Y_3j==v`YvvrPZf0uLF*xqHpkxOO>^ija5;bU5@Kg z^H+(wTufS;{H#UqpB-J);vuOKd2u--PrXk>VNC{hs0yk3N(WEA3YV_UYx33WEwh`c zN+>*mFw-FLYa}iAIL8#EOFzqcx=!8MwN$PxzWqs-*VNe#eI>>Yi8}e|*Fx$kBXZ`& z0Z^@_VVN(qLm|CldSq4oM%ck1wewx0JK%b97cNfRef`nOS$0t%K5wf?ftTYYaw##F zS^U6;Ew(^n0E2UZUjhVaS-OCJHSsq(0Sboq89J1pFml%0Dy zZMLOLwm>#3&@Rz>Tz&Bwhm}=5rZ1PD8NNh1T2qEfpk+DdjGcbtC3hl%PxA9E9a@ekGiQ33F z*vDBq4bz8hLp)a#=nhHVj;E8Ydwh+S3bDnK&ZC=U#tM%XIfyRFh!m?0x)m5zu?gPql#I1mg71 z{fJciZxigdq5FSE>Yq3MUz7H~aaSy_q#>kpPohJj#P6-NW*)D;Mif~#Ods=pBCJtJ zJ&?ghUNo_PO0B$I?r-L${uKMDM?;c!Hl}Xo98E7>LGcV^Ppe%_22&2w*hEu#Wb54y zJr;F(Z z&d2Io36}iEn^*&fG4l`bQ4AnHemMz#d!L57TC~l=jw++!=MaM-BqZPznRN&r`v=^& z-=L=7YK;EdWk-SLxG9bZ7$I8<6#xTOLe27^BuxHFTAXvec|rX@5k3%Hc~L1!K=aSH zrBbr=ih7+n+=P1cPIjSQu<`@uj)S&nU-b##^BBUUAFkM520Zs#PG`d4gG-)UT=l{&dl47<2IqW)@W zVaSu7iW@US+P={_enK=^5+>1?Foj}sl#3B=xon{z zvSN9N8~R{KegoS<^z#jDy1cMe#be(qg)LjCHd8w?C}d$oeyzhmubjsKG@(5}?eg?3 z1R#vEj}>!|$hthdwfX`0%a%di1sxLdS^>JoqC(Pz~bUgpezo@Gf`rPEiSEQ#l*FkNSK5|LQX zG{fjh0MJy#3Z=d%5Pa&R5^WYX?pJa;VDkTNbEB_M^I$5vOf2QxTk_yN%8kiO-cV}@ruv9Ahl?!eN{I}K-!bYA6|5DNI; zna=;<|FG9*eV&xZ*9EpkHY~^CQTA62Hw`gr-3-fDV`P z$JfAFJ;)@7WHB;s>_9N+pITF9G^rIJPu)?JjT&bLOt7mWL~JG4KQHy=flwkBkn`Z# zUc4&Y0qa?St&!+oX+Vkmub%)0;BPGjk4PC}*-p}8AYo-9ktG1+P_y@ZbBx%BJrGj* z1>>+CiD|7|gcG&GY0}}!p^u%GHTVS_^*o%#ZdCZ}^}KFaVnOf!Y!Q`|u|U4*P@Yq$ z9G}3Je@pyojPlLFI8X@8DLLoVHLuA^kfS#ZWI!rxg10vj@T5gW=^|c~& z&{{ZKV1l#k{5Q+8#n5}_AG9oC%iMiFVFQ&`I1m{%<^AL*Rra2#j;7y*m;wc!WrRf5 z)*pxxVigX~kFevoZ84AR_Byr$4TPubU>&Ne!~8Gv`H!Op==Ak4y93 z#E$Gh_$hpKsDqEaIx20_>oYCR>b}@3e3r59E-QR?(}?5TJp3)}Fv=FrO)+fm*AOhM zKH6m_+h=EgJ-~nWr`?a#ud@JB@~YGNk_gv5^HHUswmT^r=rmedInr>&Ue@NN@v}<* zX-Y~ckrA1L$o;+`e5BjeQ_s^m@;?k{(EOlx#Ze7Mn zgt7|;SbSQ4Uf{^GtI{5tv6mLb+)v%}1QF=3M?t;<2EM0#$``)iDY8XjOd+rSd3s1q ziag!Mpx4d))F+|Ljw(qJm0KPToBWzfq|ytd(xujmo7lnaQ?rtSq6RX$N)`_onvAok zS{39OgxYOH2muqKgg^LTj;$*EmVu{$=SrdUo!dZZ$`16o-FT6o>Ns8q(N74*(enuE zmnL<3j=9R(2}&)iH7j1*U&`{i{GG@pDQXiI_&1l~=vTGpBiJIN)WR15`!nz6hSXq?G76u3rq8_%hQb;+Ks*@XlfUzEA z8|B~NuxWtUvdXu)iweGE_MSth5g91{RL$$S^b10pRov5~;rw5Zt{+{(*0v8Bk~JuJ zs*Drn4kbF}jpB=`LE8y-*yC*z{Ovu7j<2VWij3-JiZcgE1#1wfCqO`78>xi+-sV8? zH#H++pH4`DY^fAg*6fdhsQ0&Dwn2nG-XU((eK-*$fq{h*q?L5mZpMZ!mu)ZphlA+f zMpZ@j;`X2%p&UC9XFu7#KBr+s?*=>X%0b8YJr(-9#HEs%^AcX5ceOA>Q|76cp&Ke_ z8V%(RJC6I)*7Hm7>knrJw%_6uIpF_|Gvco|kAGxy;`Y6;1G)JLMDUw8MOUT%c&hz= zxY9j8q92I-TeBG)et%pf@Z7>1%S?0wu$jO_M$liezb)b4_UnzlF!lGS%pTP2BsF>q zFarK~$KRJ-d8bz4f2%<_R=I1k&}fBFWo4qNb5`LgET+@e$G8gJ`M=jcF8H+MY!>SFeqFYhr8ln7OncR3CVgqX0i%=GEf0eY7?=p*@E^}7nf!XVqEbKt^qyI7b z3#uOe6Q#T@_}>9s`5Q6+7Z`)cXn+r{5$qc}Wtyr|PZXz|L`~S*ggfOlQ(k|PI0gj4 z!#0*5n`!d#!P##P5oRW3=Lde|oH9mB_jYc<0EgrhX){D^cn89CyK%zu#J7FtN~%p3 zHxF;Q-|;d#;CsR^TFm+c(WNNgq`G6nN&LsYn63rB4F=!MEwgpG+pZBvVT#nm9yA#h z@z~eO=;%JpH!xpepDp)Xu?T9`emaX3iH~#7(%L?c=JHPZFsz1{cYe=#-yR_hfq{Cn zg$8oxU6gPFO0v1>hSr4dp1Q3V&OHlqg`f9VtI+0vxsEU!!*QS<;Dca?DzmJlOf1=T zuR)jSTD+Tk(8Ld7%@X9uf$adeEKQRh6#a|%kHi+P)*JM4XyuBQUc}rH(!jzGAi4?d zQ5wS5^uQ(yrM}lwaXKfi)k}!1{kSJ106cEXii{fpT<(dA=fslRIsBISl=DLM2*}`ohFAI29v)4a^};2 zEi3b1@$*jCKk<`)06(dgr++~?;{b&*?|uKdrWhKuVFj;yVrFqN@4Y^^MK0QBUhHK~jqQQF zukZA@69xAUW%FxGo)cd>@(;XA*l(Ztr*!+N_kW|${aYB#dsOX(Y6#7XxAxUZ)OdA_7IYhT1aI`cse4GC{JR6+Im_7fo3K%*7mF ztwhiL^)<765JTCd;MSno#y^o+sQS57FdS+yVmgeLmGY^@07x zrN7UE`b8d9%xC-`<`QV$ANm9y2P1yN6}Hn4!Gu7Tg;FMJRbAxwD+^>mmO$S<3Dx>wiQFUhaa+Myby^3z}4Fx+?Fu<_bVH|asVhph3`O4|8v6rH<+;f z7@8T#$u5L7LW6;(xeJn)U72wx@(5L%YEKi>Kn*g6+3IJu;DenjgB7Y?xo#0rMO)o} zu|@vXw%Hwg`Dw(f6hjk0zx^)cy{RUN!>&+Hw9{T^)XP!PsQI<)*y-WlHbv}0B7?Px zfZ{^Pk>w~}1nl8?zHQz-dwK~u33jtM{>M)dC2>e88~O z=^aV#d8P6s8&f(Z)-ZURqO07^~2 z%NFM7cDBY;ynlOE$Rvc>H?Y4-!IZ*u^K;D_$MzAiQR~H>H1qWOPs4(7YXEwLft+5b zfNv&CiSELu_vN1A2D*<&-!7orM8Z&c0God-qH0F*kXkfli+AFGB$pzDyaX|SN*{7yVBLr?!pG13jr8pM5+z8_hHa-d@M%<#K*F<+iFG+3sRAMF!YvH^6Zj`uE zv>#qEBRpyRG&G@_+I+2eU$oZd?bAYEymP%f7P(edlh41iT~au;*6g&gm4n$RTa&A6 z9~SPKZRuo4ScW?wZe&>;lUJ_n$kp{N^yX*m;o0O($Z~i){ahve7tJG^Esm`nzc_~QwyRmFcjs7AF?&m4nMjCa9D&nI z>U_e7o0g6^nZvxDU{sPYYqLP`VUFj;7Kd+Nbx9K0C8-?qY6ei;k5@ zl5PGH$jZxas0CSh==*@ZZtV8UPZfdDtmyAFL}->ea=8RXYrih-ZQ9!a(SzsKx`W>M zc-D{KImfeQPqG|WZh$^FlOCdDh8`FDe_4os6VtoaA>VY@gWk_1uByl3w0S0Lba2R# zH-7+MFVt2zXB*G|QU{O(_n6;0SQGW01c$#Q#VgAeo!9X3#~5mLcbiOk-&*<@B|2uI zhugx0iR{BYXb*+4ibb_Hp_cUzoQ3OE-nG4Mc#?1WgG<$!H|J03Bh&p(QMQQGiRJv} z4_5S8Q{&OI2~RHFPFHy~`|uO2^7**!BO^Dsir-y&xMHMzdw(_e*SA*l->PF(Me=oh zqS;n$?)pfydIWsgPn+vohw_4qvR&Op6_!<8W_gbm1mtxiGNi;@GNPm79{)<{8!`Eo zZ!H#>6O?emrAmZeS-y?MeVAzGjQEB>VS+%4heUx<_&`Dl+dla2B|A2aoTF~6YcDjZtW0jVs6Ub3>(2V0azk z-!?^m(zL0_s}7Qt$%t4h)}A_$eMaHyVjB|5=))7WdQruc6|za<0WW>!z?GTtsTfU+ zmz3M^!4c)$lXG#@O;C?>-;+%k7m@|B18FPqhu2!m6PH_VqR-Y}FL;BH)M{OP`RF3y z)%cV!3b@*KXo~cn;54$_Ze;Jlw7AYeW?|VcA-t=?PZxN>zW-TlBYw|dyZrHIz1z`L zZN^s=GtN<;jjB3f8o_7sOjIZsXH(2>`Yq;yPVpDSs*b!aR#->%vQ5aEIu*bPwW`0! zf~%v5&eDyBxX!{$Va0sif9(d@0em#(+*_N@|L+D(`R}?{n~di9C7BO zh4a~2>i5i-9oMvIMWI=O?9?7-Shw6#1{Fnv(leLubSYNgD4KpwU-)TCpLN64BKF=I z)L%^-v1O)xxCgm6dE?myjhTO)fAk;xyj$S))waswsd3$i=TXDKQf-y&#K0N`#5h4a zp9_C#W_$6_2p8U=<`yHArP`@`?&HkO4+b74C%A`(zXAY({VywBnr&R1#D;3@qu3G# zE3HUumia_-xC^OShWz17?QXRUM~Npj-;^OvO5boLK%V13cA;Vv}tatQ*U42oP5$?2gnVwXA-Vs*N z-hikUb+EX7q=95UVorZMVH&i51j6QW-9S@aY6VO2RgT<&%wgu?6cG?-5y0lQC_FqX z09{&W{jrjw_Wk~mG@Z4pBBjP=gcX{4A{d-?!*whT3WBncT~LaYa+E3!)`cT#pnlc7 z+O7{^xYh#G{@aG+D0)Oi3Y3ZwZkt4Hi*K7TSlV|WO}~ud0tBA%f)NKe*J~g!TMp|J zgsvf>w7>7eZ)aggrzZM z;EtfuP~(0e(CmW#?YVTDnjMHTP-On9k!G1k4Z4a1k?H!uN>|_>?Lc$^Oa>HeD5D~O ze)!)z@1?(PiS6e8Fd7K7|JGN(J$@sEiG~l{fgIhAb7}s`!}F`u&u^Xe7f)a0VA;a4 zFfRUWpd|k<4ixab_uM1Z&J(G+lMKw?1{3qwT@mtsb8LT4NF;UtX$CC{G@yvaEBuu3 z`k{=FX`*n#e#a+Xyw1n**L2xJhtAX-CTfqqGd2u8Z6G57CUo!@6Kvj=3A`8kD?gWU z?dLF~Nguw|2yZp{jVg#l_=fzaNP+(gxBfek@J3Hzm9lw$f`0Gv(dxo?&hc!o`)+uFX|pcy_DKDKiF(|Q|n;s*TQD^lORz(PrwgK!sq zT82SQ)|5I?-`gh@w}pzP@Q=g8l3^5QPcmljqS@JfmXG5JmERno)JN5G1CtSxkCv|b z4+4;Pu3NS;2R4C>d6@c3*7$u3w0Hcj-Nl6)81au`+ic){8;O_+xkN9Gw~GD-*Dxgx zh=4(~w`gtHwdB;?Njd?}3^40RhByM&R!#hB$UWZ@!~Sv0D=dZDx1?jcEO1`qS#|Aw zKh@;i+qeCbw0h?lMiwy4h&Rmi`)P|VzfLMxF{?0Rn#3fW6)|aeB;&cKla=XkWSi^J z`f(+_o@J+I?Plen@=>*rJ;+`3GMr6fm7eL@w{nf}V4q-27T!UiIPt5P z8z?h==Wx8Qmu0kc-c+H?VfMIzpSu9?Pz&`_&xC~{r4R)i<$k6Xnn{@P7;n4M1oX`# z&F$~q7U5q|0w^c^U_05XB1Df;G^wXAYFv6z+UKFXp}+rh@skS6p=Rmmlsn7byR+_$ zzolKLK&d7aIkEsfNO4Y0`9y9G$$r9QCM9QR{>>rwvnNq`mZNZpd)~gB_*-|+ohcyh zUa_G}<}N0mp(IYSwV|xasz`hSeBqR+bZ!J)0GBZ_I_wD|=oc<%atwvz8I z$_+5O0B!ycs>M>w7;GUskmIg(C@SkBZ2M$iH3;(lDytDi19%|T8DK~TC55{-o&OJa zir>zn|F7QfQMDq)b$ms{(py9Hi_U$MVWA#WMOk?F!@!um9!2?O3sU7D162w?7|HVR zbpJ$p13!%XfCLXw`v#!@y#9xLGSeTID7a!2Z_ z#%zmisi`u#RKmR)KeY+(Yi<|bMbGT5%u$`-$?dKKwHt=yM9ggj>DN%t_HQq0_CH2( z-a47_!TPelllW*n3rE>c4i(N3VJ#opI%#uhcG8g5J7GvN$=Bd^68Y=Z?@o-7^J4Vt zCD&dSO^ykY;4l0HKKbM7OV;K$_dlXSTPX~F&Hyu}&VUb%>QTDK`u<)R0u`If0VRnzH^FCL#3U7fBti0HB!!8Y_wEN6-3WVUa$J z%5pV4iIGgDZK|&=kU`e7`83?<>8$eV7eXSCxxjzxpjI9a3El`BSkvsST(%{=TTB~$ zSJv%vxF|Iw_c+qxxIf4A+}_&TT`8v)nbvPZ`Ns3sfre47)W$pm2on(1hY9FrG{o;l zq|AC2F3&Ob-uiIeA-||<^B;p|)z@QKq`l^5yd>UDs_{aq@AG+U3}>!;hr5jiPzR%-64tEAD{b|z)g z)l*w9i3)*%5eKz+Ms8T#04m?Tx<-zA_Y3WQaK=o>l*7a{^e;;2eU3LB)}AqU2EMj8fw@0OoObK~ z^mSpMTK~$j-ykWFY(s=LUOb!04D=|Nrg4Qbq5}6l00D~gQ9i12KaP6kfZ6;TW#Ohr z+qrJS530`RplGa~8*mQ|FTUtPdM@W6c?WXR4bFmkD91v)&+j;qY=M~)X+{)J`l~C@vN>9!l%B-*sT=fZ7)jIhino?Z?G{(3W{TTNd4nY} zAWJnJGg#HV?yoK~7FsuZGfnPZgvI6#L=o9_!&-}2G3okLLuQcGPu}m)7T4o#=O3aK zA?XI+lNJ;#*{n0al<@=*OzN<%o+D8N+JM#9hmN(1}dtHrbd~v&*=b?~*o8$BNae#ZUP}1K1z}#&Ud++AOebwer%PJYa~kYYGfVH?dok#K z?mQ2@*X)&_4Ml`lFo}OYO@ue1pcacmPSYP108(qduQ}0Kg(sf%9QA9xXkeV!LFnuz zSsNTrWr#`OA`VnSsoGi|U_C=+zuJ(P&pF?3VQFQrImh>@^4<&c?U=52GN{WK_UcnK z4N5IR51i2o{n@n3AFZLIqvqA)*{83$AFFSaoSlifYGw_RXDz9gzzjLXI7K@`wU5+b zO~i^IG}KpH9z+NCE6xS%K;mCEK`O2a*#%tolsWWC1`epC8o%(?BsGg_Y06FP$XrQc zoXfID^$)V5_@L2`^Q?{v`}9^E4)wEPOA zUiIA{X>NNgFSaN@WX6bP!=7r4#N&4ZALo;Jmr^30qT_e};A=mnG;Q>wC}VErnAP}D zcj%8JmonTnCvXYvLkZ+m(&n-aiPO)2vcg%Te#vyE`C9&$fE&&apGO{V=stKqDNz1y zm%KnYw=s(|#IO4*&m4-CaTrkmltG=D2&jPN>fUThFiA$HXV&h{bn4qnyQH|~gJU#n z>m(F+y-A@kH68gGqeNG@7PsD48q+B|Wf#mUd)(OjxK>=W)ucIRl5xz3o_8+%Uyy=` z7K0qG`?pBQFComn%G-S6koo-BsKG6#%>o8%B2@+8d~-KxNRmme68nAS0wT>_u8lp) zP3bF3ib4HdVQ746M0VUddU+42eqyB#cj%Wuu!BP?Tx(_ku6U?LYPlx*@S7(rnre}i znK$uFtJSByJrBTp^SAx-f+I&Osw+y0$4b<%Wl86tbCymOeWzB4e23EH`Ifx^f)(C~ zqev%$+`kmY;c#*VfWod$;Ay=2fPCNo(Gx)ah-{8YR->tsj1I=}*FzLkO?h&LJ2!4{sllWD%N<@$&E;cEYA-9j zu>JWupx&9!Tl!^sG=mSs@1@2!N!3{#qlOLI>Fo70VKsv9$!q8p=;x*Nk38>^V$S?1 zHDrso5%MXzotAH^yF%)8X`fE`t$hH7JaCl?Ua<2x$(6x&668BLZP!qWNZk!0>>KS% z+B8+c=x>MP`^Zkg^4D;U&yAV6T@JgpU+#E@MD)TO@L_ygyzaN=->*}ZzPQ6ysJaRi zGox_(se$U_wS<}ZwvrQ_a%*|CNmM;2vLCgsT?w|VXDv9&+caM)Kcm;;q4kp#VnM^N zoED@nt0=tfDGwC@`F$m(;ACMDG<7TFpORv8 z?)#s$vd-~Sb22q`we)@r3&Z^RHd?<;C+xCCn3fw&ZvmEvU%s3Yim{+LOt34R^nY<; zBeN(nvD+_=ZzBgFr*~mPrw7d2KO(GM55jM61v@Kfwrz~2KH!6%Y1r?4BJb6G$fTH^ z*+vodB0`IC2phteUz3=-?m_>+p%NF$DY?DIZyPnWpCU>?ge*i;kTTK_dGq zq3H;FBjS@cDYY3FQLZP_>ZQF)w*vURMb0RQx+^O)o7I0oHsXp*)-SDSQ{WT&x~tl9G61)?$TrvBTJL7USZYtt&ByWVyPJ-!5jk z>WR(Sf!Kh6EovCKA4fs?%PwM}-)4t`)r#V}d5`*RdAPK{_vG0wIeh1V?U}Ii$s7`= z(mu}fbsMxBCTiG96iJDmbpswN zavin5gLa%`cjWoDSLm@L*NXEC6&mHCXS73{B(91dNIiJ@;6>~Ou)J(nhCCX|AF9j- zRUe_C&AVLc)zj#45wVsdnul{KqZgU&glWQ1rEL)1+QUn^pdsMrQ%cfIVo69v%$)4~ zD0w>EFZIL%)btF`8{A@%KM0F37g2EZqVYE0@up0TMGREe(@N&n>O&Vi*T<-DJhcb> zXR)0MF8sC4$1~pCksXUN^Xisi8^6HPg$|gm7&Zb>n zk_tuc7e;&zyi^#&sY)|I)PfL-0|jQptYv@^Vuz>cqqH$Zy_FDQHIOeQGfcTTaW>GO z&}QSgY%o6Pc)E})G);cVKVsL=z&WL@VNwZ$?dqhrXMGBdn|Mt{C@5(tr>*~m!r2rR z5K&M=-GA}iG<)FGaI*Uux59P$I>mo7l4Zg^;4w7RnlG`v%TFuA((wtpX+?5D>7^9J zK**!0|MQoltEZU0{0DKcKWO&-JD+9x0lX~?VY4C2mL=k`rSIVGWxe-m6`z`&V^0o3 zgr3Yg{ABkN1tjUiy-PH}EspwJ{`|7EBK=CX8N^3yf!PIxzg5E^VY?-zMq5i`Pk&pl z@7YAfEmZ%+ND1D`t`0&?Xj#(@XWJXb4w760JYh>K-17-OS0{wNibtl57SiYNKTBCs zj){&{wG-NxZArE@)+R~I<0RqNuSM?nw0N6nJ@~n6&3H1Pv^?q?{L7J*kjEn24qXl! zqTS0ysuIX`z8lh+nA@k%iRKAL^^#Bxt^=q#mG(pwaq)WW#q#qu_U;xFE$EMV-#e-A zzN&MZ%^h}8YF#@lt>JoAPSpza4kdE4E;DxG(dulS!43ojWKQ}h*JFkz35HRXSu#e` zl}ee_EYX>#4=M<^xWk@krSCwblk2MAhuxZqydTu3J+jx-Xn%h4Mdn8ru|V(+&a83L zPd<9MQAIK9eg+%LnMysoPG7J)>C3WztOp;07tlCClaFQz@_dt0cr*S>DV?6^!reouXHi^l6!$DmQ45Az^V9uVjULsPo)ay_ zwkt@-3Or4al}xnu7fG=YW{B`>mRCu@*UoPMIuqe>ms1UR+HVe_3-n+aG(I^{1@MhkNX<-Y$u|Yf^VVpGx-GMVzH+6p%qY@`GLtoWcZ%hO0mF zapMKxyXUqzJ#^cZk>IGb6-1;GHX}475!LlI$X(ruru{`Q)ung`F*ik=eb8(yR3X*& z;f(_K`g1k2yFV1h4GhDKafA&_;SPkp-x^rQHA05KNdWx2MVP}5WShHk56CQ40ne3Q z1ZS^T|1uc!D+|CD+^YiYq!R$5K*X?o~M_%%m2pOeUCWD|yH{ELfQXt;cW01Zr5 zAg(;mevCSZa-gSA>J?Q-Eo(GpSXqn5cf<7$e}8%EVH48GE$|uaiPIJnu=a1GS~h43 zJCITkFn+zUpMjIQ^bBBb(4C(DpT^=OqcSti9}L|a%gfZ68oE_`qOIYzO#Uh3iem0V zkKVt77^Ye0a!n-AV&(Wy18g_{R&Ds9x{^`$9kTOrd)ZsXQ6cpVu?{t}bggWP)Af>` zr8H{6uy+1Q-)9#IA)eqM%lXVes)35Fj0e#xPG{C{{57|LuuueFv%0mSM*iiEpO z*eDDs0rB8P8VtKIJEzVQ4uGvg4}_(-G5#cn>NwP@?O^zdBa&NzyUiRy!rM>!V1A!6?9mDmj znz&K3GcQ&0)H+!D$2jTWcm-)$qqQ~!Tv#%H{KE9J%X`{Z&Gkf+!!kXm-W)pMV{Q}?(4A6_zoQSp)%^?gcUwko$qPD@8|RBy z6sl?~bGeIdlPoy?GKe4J;K>hRWIy=$KeL0RpbgdH#M!{dQte!n663w=_o8NZgg~P*MGB`w2253&-2YK|JwfHBOn0gduJ;c{a{nCAzB;PTo)PCoYn^ z=+8Y32dNWRyeo;aCEgsdpEQ}Q9Z;@&SBDmO)yCVT=Q?AHI?pCIAQh0E@B-yV*FkhM zpD;TmHm!wQQ;YGV_k*T0%;+gsv8A`$Gwtb=b1@3_V254K(&;VC@zpQxD+KCMT833G z?iW`S#@Ro6@a~@V`Gfi8(H+k&=Ip20fuWMtCkZk3A?l!_ts0(ygSj z9$vf`Egw3~RWiM1VK^}gFL?a7@UH2e_OMF1d#XcYPP_;8IfqE!JP)a0E~N#qELv`C z-J}BKyY`gE0h(h^rT*j!tK&8{*v}0+X61-=ldfC2_Le;TR_jnr%Z!-ou|@8{JLmTg z3||mQhY{Z*R2hNg_KdxkcOZ?xfMm@G#LcOuqsHw3c8y{e;jTW6=pJuJ7omf32OpEW zJx4jlYdu(}58pYX$F+_~yCkeEc;=-O9v}m#KsZ~q2D0-lU%gzoPuveo%7W>p`(>fj zEasAums&Gdoo4b&;>C7FT^JdDB5|PRDRgOqb-X-SHPQUggL~KK#UAntS-v!m05YCe z?YEwM;=wik5gIY9>OoT#BvJjE)={hQSOdw4Au{zteK<)e&Qx0O5mWb!4 z(l4(mFf&Pei@#+6V|hFUSAeT^9n6~4NE~+!EDxH>^hni0eRfEQ4Nvb*kJsdsYB6TN3f$u=9hp>z!*9S~LhyH_#<^P!=!+(pnJwrb#sORzh(n>f!v0 zSaRak6P;S#Hq!}FIs&h}9M`a{h}lMKmMW@Oa1pCB+d;cfp^jD-`^fy9jV7(TQX6BH zmd*Ixe$Ywm8DcFxF0p%eoqp`8 zzCS-^-zLvi$mGg1jdMi4H=Z8O^bhGL4Tp1fJvP~hMy?~LBFpBQ%FuggTBMMtE`X%U z0k6EF;1bhkIA*E0SboMWw%eVM*AXVjHSmqS0r5_n9%aL_2u??Fx(l+X6RtpEA-^VO zgjQBSdER$m6WL}8Tnb)php08LBUv^h{Ux|NZ(oV60m3VguXC5BB<4V|Gsh!&8cHn!p*#|kV z&psKebQ5$f9cDy=JyXILIjmXDl^2D-x?Ax+`7FyT&vUR9sRP2#%|>u+u!o^|kRBpw zx#Ys_*cVO97(?(y{{&g3kVUwOpB6=R+%W8HI_%KEE<{$b&?P+QXybfH?ST|(F28>P z{N1mj&G$uwXzFW4>N3z!MdNP*iN+d!lIQ8`qS6o{b1&KRCw$CQpU*D}p*tMzmudL! z(c%}@O@fW3f2p=D**?(5 z_@43l#d>T&$9bh}DG3+9YLD92l|l>GHwn|_8}QFGXwIqhzuQhn17BX8yO?3x-1Lhd z$Xz6(Y|tltzgx-amg~cx#;JXq`|=x)Cx4IFC%PatE)oIDyPAVf%B3BTb55JaYnH#< zy5_S3N%`LJN<3d%cWtxhj@g_Q5R^PWrXZWSe7c~-vvV6ezxA#(TS)qfw^uw4rZ_0?W4-#VrK4K*O8=t+$DMdT zsZ9y7VD>*1AVLouOeZ=FbvQzt>&BMGrT?`Rvf>GX*?je*{ z{nLP1E;p#qEW&YRyFY}9g1&gIEFRd0dLh5c@laCM_*RI}Ql@Szpa_F~kS#mKIqTjEcrZJ-Bb%;Bb;ThA-fiV{PPh-q9OXks5totW_P0RpdoCY z{QmQI!}D>v`myo$5E*1R$QNqxT82_3X%6()epl%sB*V+TzB*HOU;1QpFnTz)F}A0W z(Wq-i%yF7*N14rfaQRv^?%_$1rFk--LbRlj`kxX84-HuBq6!r$S|W31`mse?+9yVZ zA;$7{MJQv29MLsM<0!&?vra>~OM0V???yzUr>+0~cIMCiCIS2`aW>CVckerTgvLq- zp@(twc6=NeFT`kF)A(>-xgGZ0b*8Q7g1aWh;~0H4piAPlPC!G9Jlh44LKp-{U!npr zg(X4FFBsfTosPmrnN{8C4JvVgxGQDFV)^d-IFvOhszM=3D<(8i1gZhURlOHMaV+06 zmNnka_kfR`D{f7C#X0SANZ73broad_cL`I$GtrI6ZDflG(G16d$XK%8L;rL<p^1>f&2G;em0`2a+;Lo9^>EDOSvqndU9LNQ5c$-jBQMqD)zC!3^lp_EA`*(MLViJpeDn-JQ zvB0vd@PknhvNQqe`OD6eh6g{$>*X38o_i9(%F;UYbu(AK_R^Qt!#YRzJYd?8o4_|= zfDsi>72`qYH+FC@JfjW3voC= z+DFk+vjUO2Tdihc-Y!IKDP0=CUoScp5ufwoE1~4YqVnWot#MV8} z?`qZ?da6bX%KwBZ#+2t8ii=}FI2?el&opVO6lXGwpV6^8jKDX98a*hy6^ODKEIq&b zLap^y2>&6;`kur1U~CTxm`!^bhiM$dcN(k|6T%`4>To)#O(;KBZ1wS)_?vHfYR}!O zHSag=eFVYkzlTnVGxjS}C6t%Gky*Isvm=IsvK0i3Y$7xYL?vkxAy!5l?Jt%@F zCn6TyyvRp8WcZ7$667$>LjOQ>yI0UKrdZ7S@#+~GSw-Mr-F4__%=*)<<^9diluNOt zxQB2y#t#iiij9*iRquAK>-+igob;^wY!g47vXl>WSbhwSx#7l%xOatrHP!ajQ5A+E zvJ;@;Xd&9QXRdqw#KYjsl#4f)2=8r#GrS-Imnx%^ib-)bs~^rc?-?{0+7?6yyOpKl zJOnOhC*z6mn5_W=9g#FtA$l24#Esu6BaS_7nZO^`D&xR7oTAFS3q-G11bsEi$kr)0 zI6b_J9o`N`SMCM!1O+!)Wi}xmUfo8|%KC~uR}kP#xN$`K!RM@&p)fuVUXO?Zt~Mt? zeUc!_O`=0XLNtUPtU2D4xar}JuP7|kgdr!MY#sDG>fZK@=N1WGiUA9GJPF5I%|Gw# zOFDVj&vino!YlYm*(JqAlQ`Y-;S1jPYme%Sx7XO+`r)+xRV^_nb75;y37j8YQfq4p zeOhZR@T-h(sNG7?A?U=+oACy7(az=e;i8Jv$(C+{P37KYv4+r;#bD=wy0?Mk1PXgL z12l%$Q)IV6{)j_&$kFGGb(_*{cnVL1O3^CQ>_uuiA5OjRICVRL0j@v6SJH?f+FZ@HL zePz#!B%nBv5{TxB;A~GAw>4iRD^>lSxt^1!ddjtA|69{&cVCohUv^P-HZ_@_@b3P} zYoch)si4N3_JId?KlQmA+oiQGEq5l@6O{?6IBt!j<_}_0Q1>lSX$uBt zY3IlFPZXgzNB4@9$$ZKUQKsQK+THnN4b^`oLL_XAsml*V5J*zJ5u@sm6PGI^Cw9zq z%$OzKw(G1QtVI0+w)Kte=~iN%>8VB?%>x-M{0Gj7c0{rJDmThSCW}!b6$Y9t{|9^T z8Prtc?u&w`AR++)=>!Euq$$!%q9RS2p!5C$^klrB|3KtPBBib#oc1SCM{MXE$P zgx(WsAmzQwy-(R^{^#yFckbN#<(vfp}{$?dGdsTxkvT!r&cW0x{~) zOm5`&@ktP$dH~{56Q|eWF4vzxe~C73aDPJzVmY@uw0mMp>%^3jFBXX!LQmwh!0<^# zL$WDCU~1d#==NNP<@T}4fF?}%*N z#lZ2K1%^=%@16N7@QR5sFHVf^u&^xu?+(W;>@4oa{*9lH!(K=*qV;Sr5BVK2aX}L> zBKvtTvph5zO>;LOSoZ9<`%G^Mf<0Xi8-OgHQWc>FRk6;ao?f=1nYYS(P2%vFK#>`B zD}kbZg8s$H1=Vk}JmfrJ3{)+emybs;ND#e>ns%Fab-@$I+$t+HDz&P=)_PMzK42@c ztLUvp-0qeK_jI7cGQp!Ap&yb>v7` z%;TOmO6pRSgNM`9OXO43bV!M1$dq&G&Z7CVJh?ctX?trvmR?QI`>m)}SRD0yJ<$Vj zUgCXQn;LmDNO$YZC0?A&zdXJnXLTy4=|X|Ms_^W5R$|X_ROLFnMqNeq@9*~-eKz6x ziqLxrCx$b0FY$=2q9$T+V6r$gGTZ9d=p;KM30k@9?cK56vNwIKjJv75Gxbw!&4P^K zkI3U>Rgu-hO_Gue3QT03zokqdLBJSyubBnWHbO!AsTvqW42-MrtXfr1N^hUNrM?vQ zi|K67>)!>2uxLaTXGbyQ0@)qkl`Nc+rXRg#;qpyM4jDiy?xEY|`rXt4o>NC{+ z5v}7IY5qLjTo`Bs1u8)W@%Q;yVZDg$>-ap6a3oKt0U$WDlSuzOfz5M{qcXVN`)5Uw z?Sq$|1Oin~#zVug_>laLWLqWLk)NYf z#u7Xmm6LO;3xWH2Yi0TZBp4348ll=Q%_ zhJuKW1Vw)GlY)oX(%Z5ZJ*I7>KJ7o*UHtCZw+;KW+Z*S%sMC zeghA$@d&zUJqUbzLqfpJ#f28|EKTv29y|=l?vEkE@=pL=5%caMwoJp!d^)}Er{NkG zjvM|X;ZzirSfeV`K6`N--cw>RyVmfzgx)wyU^cK@MS9gWjLS2G=fK5tT>V4G@4j0% zbt);(x3In4t4Vf=Z4fJ6cXWBt45Ci6-J=?|4rP)#f$Q9pRedN5@creCQ=MVIFDlZP zAF7trQ&Q1R9z<=4XGGYd<%f;&itUl|Wq0?5`_xZ8o8m4Ipg>IVBvax9S+c2A7c0wM z6Xv}aLfTAhb{ptV6t8^wIL`b}s+KWbUfZ`x>lrg^wJ>`z0Ho}$>=1uxyqLlOoB(g{ zbD#B<-EC&U7~D*FfilvVAqgGLhI;L>#x`W zBwinOqJoZ@JLdU^W>odiAB{IOxI!$#6}5vH$=c)Fx3A)Vm%sK4;1aN^%gB`X@wf$9 zNL75d_{t12d!C*HfEIxzI<1cw_79C0igI_(bpA)@nOa8U+kc{*g@HasY#O9fcEKXK z`pbb6wQwyzj+oZ}zYG^reg2m6?0HW@DQ_kb)C?H*z#jI?gUpdb)wk3H;@^}F0OGFi z^gw!UF*NCe6oHwZdcg}oq_Frw>LQ@Fup1LQC8L%=|Fc&=s^0#KH2w4YeYT0}Sx~XcRrwXQUu;ejz{r?&aq={$_w4&vk@5P4NpxkOJg!Q5ZaY@8-MV0q8ibC8MMyIx#UOmizPJN^$oPR{@o)&LABzvjbgg8t$ie z`ImEPs0_9tuf#W2*Q6HrEAVai41JDRp^H-L?5oAo1C%^gHW}E(>Bv$cIBV}PP^%J? z-iozVeT06kG+)Yxvmha#8V&1YKvzPA!zNvGDHP1DF%Znb} zK&QYM=XAaVA~nZ8KCiTZP3b2nTrEg91NWP5tabs_iohVIO_dG3LeT8=NS;ifvf~93 zUHLbO-YW)M=?#f1iL9KubtdV(%F*YE(Olhj9q>oauswDFDo4el53b$=&;2*&q{+`p zAZYYO#h75+#-#m}@Lj=Fd65{gjFuon)2gOnHh_@t?aTw&hPG^Wh;%!FUw2(r3~F$ zA*L7bsCgi|LMj}>2|FJuir+>?ANZvgxrV4ex6f)huWj!=(sz~S(#T!8p}#na_D2Q@ zH@BB=i&d4;%7IrOr*vG7d}ugy>npGf-wOUOVUmBvEPY6#XxEktvKorHOAu?RJ!24S zbFntn%!s|ep*-V9Q0XtlAiEVyub!EP+jk{3_ZstEEzr?^C192{c^~J~FPT0Z%eiAr zMoy9v(<O&rSN{ZwQSXW_jVYK+~2l>qZq-_P%mQ0icli#2({6n)P0`!Nk!tXBZk`i5TGs>R1WYxH`dis)&vk%4gbaf4`)9g;1w zAU5W@(+oHru1vhYh=|$Q+ZcDiwSY5DvC@_)Q(i4jgH^B7MrAEq<~W*M@l<0TenN=K z@|OGE>s7%E-i&P1pNvAXDVDz4h6O2V1>vQo(hMprnx3w!P%w3%8AQ;`LM%)>Swz@Z zT;8cpK~KgfW*t7D*{uGXcc;dQk^O2gWxpS=9Rf`QS~j{~A)MyU2Uhh}jQ?>`iht%- z@99?PadcxIR1kG=u4K*F-j6v_`g^y~+xw`VIbO090f{;3C5CrIRk&5mVzML(4=}If z(k86LLQLvjHQx=KYhlVb4V#;iSr(F$f6>DL-s0Oy02*-b4L)}A+~U#~DbcX$x*dTI zF(+eBz{S<3(SdZpyce$Gwrp;#LrDZQ(-Y-?7-o{4zARXZykZ_#&G`B2QwbOr-C@|S zmY0wQBwiRP{XN$~A0VRC{#iO={HlvTYa+d6n#57#LxHE|Ap;=BiJe~KH%nVf8{M_=BfYzmkNBLFgDDEnn)9bV+twr$M7m)YCqIstn*JN-(Oxg5T93jzwr z)H`}z9t3m(2c>EJRJ60bBVm8_K%+HK``{$)JEJ0MaF-)cxg(GE_pfwZ7-UhmDPc!% zk#WIbE>8WrwGa7`)_`5m=$zf=YIsk5xa4R09@8C!Y}Fwwh*YKyw;+pCO38M>U0p<* zkd2P5{@nJ)x&pzNywe@{4y3IJojU`JQWptgt;owVyW8LkE`~GPGy}9Jl7c|4Avh~& z9^4SZX4zI~Ux7DAGuwHu23Isevw%sFZYAKUp}JGxRlvSY-v{MF+XKBRI{SyY9Hy9A z!O$N+>h2$f#6b6FSzl?ZTFceyTLwHLHxbkDKqxMwpVaq2w1Ly}l(?zcjw}gDnq9t+ zv>$wG!t42;n(pe^Zz|nL!AZ!4fo&=y9#{OZuAG|gtkhVXF=K6A68N|$w(ZR<*ZEB1 zQ61W#Y9<&uyuKDl+{#Wz1Pg4T%LcopBG5IaNmTA29!Ti`4g~tbVln+=e|wbrUf25` zT|Q)~rDf^^c0&XMiw901)E7!)n^Jh6j0+F0^QC5h2l8Z{TO@(-L+7e07q$bo}P8WDtG zaRFAp5;NlI^u37vz!)-JF={AG#B8KyTj>()VPiD4cUcYN<&M*uG4Slw0&=YG4D5+J zSUySPxG0%iaDezi)f}<)s;*#N`9ihUyv(fMqNfvItD9!4Dvz8Qb z^)>R$-;=Z%QF{yVwiEYERs035_*NF==={|}&lYhuK(6ji^%FJe3ql$4=gj%dSbAID z-apGa{tBAtG2wBvLR=)>+PE_n_~bEl0-w{ zAc(?_;Y}e&b9~f+N=u>+%xzz1VWP4@cJc7q#H$-UQy*?#qE(=M&h0`CQ*oV##zD`h z_|FOu^0JDFYJlsaN5!_!a{A%gL{dmlfr5Q^zjynxzI3S*9jPiG{lQ~Gh{|}3Ghn!9&FFjS{u{~x|=ya+nDT?{O|nFHC0W^Yon zUzoYZl&rL)tMZE$V#O-?BF~7n-K#`#>n7dsCT@2!`Dlm8MiQUUv%|S*x#mgk9a{!E zKJrUFNTq$^J^i`RQE(@7#l9yI%!TTLO=75w+lzDHoVjz= zi4P5LMvvAn#tdWueeAO99tse!VqkGdflzl9`FVb@5y2z&P|+f&>Eo!Dg~rM1kKA8> zMt$s;(|_MrbXa)>c|$3NdPpUqYh;%u5wVA$Ef9mp06N;YSU_3z+f+(9^6Jhq7rif1 z(Dq%Tw7L-`6L?l8C(YHUZUw+uMxm7|w<_Q7H0gX3Q-78N-)p(kykR){@?Mkzb2qc= zk;uPsf@*<6EnoUN=c?b~0~@Wa(=->R0LhD;1=PAu((|~yh}%k7u{S*(D2Wd-7~PV| z;SG~|R2%*4*NAZV?Ch*;9M|)Nb59>W<}kho#J->0I zlb7!L#_wVqboGNGmlghncSS_&%X$9qM3PUJeu9o~RrT(O@#bY7@hu*&UEmnoID2V5w z^vkC4T{U%EkE8&Ho(Q!h z{9eVcBuv@IKa7p~Eou67zo)xKZAMG_@T`WX>p{ekA0-ja4j=T#Z}`grcIa8Li8nP< z#IfGUgxfXo;B@L(la$!ovzH)|xN~&vFep4DQvlB?IxcPnGuP?dU zMf%I8o7{ASm((YrLa)`5I(|A18Etg6gICO9poZ2i+#maLwBVr&NRhBK@ zshiA=_FhAjTrPWhii~aJkSGl@r}D*@RNkDD9=aOcr$-s6*QKdv!QE(WCPB6vf# z8JWdOiK-;Uz(!nrM~Th(VX}(8-d6GcFM2}{?oJ>CWtBm3Id;nG(96%IQzp$#q6t-= zTLabU3$&!q7&+Z>yY4rd4_JnOgS2EN zd@{yO&}o*f!t#Z}UEMj^4h#sFp=+NkLKkJVaF5T_>rpOyO-P;vB-4;(WvVItz*003Mpwd}H z>RMH;J)RgfnkJ$SznIG^_TH^ia+!f;?^~Y=%n?i%f4!dP$kZBsF>0?`yNkC_7rB|mAJD&G7IcP)a=v=|t_Hkdh> zh1*fPm0jJg!2@3U`x))dd}-b#N}Uc7q@uu8R>yhzXaWZhgF;~S_eb57)(=UK5#O12 zjedfruGD7K%2iC5tMOgIf7HSyKDZ`0f6nj~%>l>rxPjWi>b|{6E(LEx8&nBIj1aT6 zatvjcIq`LR6zE}`Rn&B$rFxGVWXH8ud63M1q4RbD)DgpEGSuba9?xfZ^PxJIu`w47 za|>fe9B(~7$d6B^Na@k^F97OMh4uqWou((C=A$tM19SPsjzuWFOEd4=OW2I9t9HYV z26;D5>1mKITQ@((y<0S5zC5u8S6Hu`jEO#Mbkmr-J-c2fdMlbsOk9$g;WU92Rz3?J zFH_O{^v89a{x)o?%QLt8@=av}fPk(?{X$KOv_bI+q3R7yb$YegBa~)w=Ces&(v;8^ z%RjeKpP=>#PJ}bjV!zE)DyurE=?|?+j%&C+J*o2iAgQf7Bx34-P){lMT?%%@9Vx#Qur{-8Bmg=pgmb^t4X7eU2L>plzi6&UgEe9 zOIh-y-oU3{a7UvC_mv-!Q-M$Zg)B%N!=q!GW!F6&7S-Q6O_tnTnwYK#appQQD-zFJ zv0aCi)wGfI@mJCbY74+mEUcHxm2=w)&L;_;V8 zI`2mdMsqY1%I1*T-&94~r5LUbslm<+CBU*(6U7t=*q>K-9ZlwvV_Sf7A@7mQ$^?B=h za0UHtkSN^MRe&!zN{esdsToZF6#D43?;AQfR#`0_?V@JosvjYKT$>69sEuF$kAh(S zmq{0*+R+*zDa&?2LZnsaESrl(Apm$wtGMhJ`iywuM-dC2I%2>#EN;Wa(V5u3 znmFjnAgp{asnWQ{5_p(b0tGJ1S9B5(js(qR(>E%Lg@IKM8}UbtH1(A~6S}Sm6x7?R zX6ZBLwL3Hi0!g1dK#Uy|)B{ZG)DUf7ok{Z6;cc>Yze??HUL8_8@Y@QD6`A;l#$%9m z16>)@>889;^g61!#6D|_AAjH?hmeNMnyC<1`Dr{)OQa5_Q} zjW_W)QFH@S+qa>BpjB#fs1K32r{sxlR{#^Qcaf1W43w1o56yb=W7Osz`YrTdUu=GL z(DrX0!twu|7_yb*NvziIn!)hXXk@;*l?$gq(2Krvr3NyE;vZ94X`j<<0_XBij)_d% zEGL@*8%MyE+@DM(BgW3XIUA+$Gl;hDL|`3xkkJVIVy2K(d7ugr^agPt>WU^x`~V`T z{eVDrIN;l2m1hO|S~zEcyk|W0cQ4`>brH}YaKyBuPuXjLWE?oM$HSqh~xj< zR2Kl}9RC!~?tDE%53<0@dfq%M;Ta80kH{;rQ`&#AKw1b0V~b5>X3mx91YnnRiNUP# znaV(hiObERF5ccv_D9y!QO1U;+VeE@My`jLWsN6`iOYU**ClrzeEZrXjHjV1mOV^v z1G3oZaGFV>xjOA7K)6VAD$(uONpC5h+R=R9>a_dG*m=}2A{s^mNOHs;=3q{p>c_@x zYm}$;{0+iN@0qmhT%3 ztZ6T}7PJimFt7=s1s@{TI@ZNvws6<+qtgaS;B-q8XZ}OfgW>8IPi9(U@ZGOaQ|$gZ zz;2jN&@V2gj!^mWr6b)k+n_d+%BdEEZjt7OAI{5$8=HJubBFzp>3b_&5!EqdcAum0 zkx;3!O^L4?lcggyO_CN8V72e}o1KMTYn$c2p%+=nFkvhm6k-B~`ME0kEn~dqk?HWY z?gn0YDPb1jT^Klk=uU!Gau}{DG&XO9O-Pb`-d*g0>O&vZZFR_Tf(j{gO00IV+d#{Mj?5i|0)LPX9gQ#}|Y@ z&<;QVmsq%Rj`L+R2lZ4%p=aG|n5*xS7=+$xo_&0_`hUPW{zvSCgS-n|F1iSpWR}n% zVw64U3i+J5Y%HQiuzGy5J4Wft_f*iW4xlbZE|q5Vj&kVos#A=_(IA-}ee@^!$OjLw zVE9v_RJ+HODTO$#oa1ar_K9Yb!m>jeQwBAG$Kb?)E~ton8GR&*h??b2K1v{ddVyHD zOHi$FyF9+^BboVmnknnOyqHg5kq9yMGN)kAwO61P&?MbFXS>t{3a7UVTp(}c2%5zf z9hds$uau5h*jVaIr&)GyL=C;|_Wl@SVkCVD4ru;cg`h7{vTR3BiHTwRA2Sf=XMRzh zI%rpqbd9cL%&FFOWScJ&82`gB}#3{mjSQOu1d0#24}l1cylZp9hpj%q_ug!s>WV>1#NyL zhC~0cJgOW)xPl`5X9XKlxm4^wF>I+A*a>jjkB?Sv$ZQBU7)$1+M|7oCiEKamPa}{2 zPbuDiPO<&ZXt)12uQ9kwZ12pcPHqTib3ZNUx)!bRWK8-)IOr29D>RIBhv;at??L7l z9G0?_SYojl7$h}S1DCerE#>QB_tj-474HP{aJ}C%O$6#oSCd(db&FdrOPKgRlr$W*&VaU6HRC8(< zW@}eGsclzm2}Gja{&$*NAj*uzbvYRf@5`1fT5%CLThC+P(-)TH4d}RrEi-}H1kC@+ z(Bw~VnBWTC{Co!;0)QI ziUf_5IShGc{eA9!><$3I`s?x~ADKy$OjXt-aA7-!U9!$7yZ4%Ts;A`fK|H*udk!$Y z#TbZa5{o_RJqt{#^);LDQZWAnM2j+ZW>Vm1J~2}--V9IK;)!~SXwjY08J^r5Xf%bQrXG_l%;KptRv#QwPH=j^P z@figYX{joI;0J89Wa)=~Y_2z_o?;IC@dZL0m7r zem<(-@`5#`?}>DRCpcRn(EURs!wH-h3zO8Jv6;)INSlz9b3Nw{M0atuww{id|1Pv_2Li~e zS?J@AQ4w=BU5U-$ARhU+{ygEKG=?jV!1z&TaB6?oF_11_J7wtneZvo)?6)wRK{D_1 z50`%eOF!o+6#WsOH5GqkR^vEF9zH!$2gWwcTpZA3^Xc;?!2k9x!1mtVsk$B?cLV3= zQ0e^^l@i1Sq3i=j@~@wa?;O^Rag$1#W`^wN4(T zmN$Kz{gNe5J2mN!GwLpqx^rG>(Ywymo7jj=I+eyj(?Nf8YTXDv^YT-n_IS*;00b|i zyb@5Ctkj&#utfPbLBDILY5wu-vn#%_rX2`cs52}95D@{u?Scr=0HssJZ4RF*8X#>e zQP?ScIS$IOgjb6%V=w&K(03(8p!!jN-#-!X>&22h5>!|!0@=FKJkn7wao~x`$S&l; zlyM7lS1G|QO}Off=Q$c}5}=7})rVZ74nytmF^N1)99Uju*OVT(} zXurIjCgQ^FX@S;tC58|WNwQ=+3XokNdWQhJpQA5*_o9S`_&^aX{~sFunr>Qf_yx7v zhuyPrfv8&O3nY*w+cEeWY=;l%kg5jQ!B$qcH&<|0n>@a1$p@}kpxqQrEl1&J=d^_Y zpW1JGjz#EMgp(9-Ts5PfbO2uXru!bHlV1(}+(DTk_Ck)w0VdmTuDLVIUn)QUxN;up z@bB%e`FVkEpHf#=)Z=cZ=V|kY=U+?6cpgZ@tgR}x-xp3we1W{6{0Jzpmt~%KtwL)h=E4Ux#2xpZf=tUaIwb^Pm7=X@`|)B zztFf8yy3OiZX$^oPi4gJV+f9mnjOi>R4Ir!u>dtoOf$`DYV>@t(F$>q& ziwgj)n;w|}dtOK=BPG+W4*Sv#6xZYuPXZ8xisDpG!Sf_`u#A5^_MDDhxZ0z>78+}Q5Zwgx|Kam?> zG!Kq?(mHpcN!j_M^P=F@E~y(qI!)WaY~9 zd-}?iD_+%goTk#^w=q0><}=;KhSRC%LOV!m)IVV0Cgqr;Enbs@+D5WfhkP7*$*(V<|y$G;`ENPIo>#J*>=r1a?hv~P=mF! z>6ITu#GO*X^V1IYE~&?&h`XC>4X0Z=shVr(ZQ#~*PO5U0`g;L1u_4>^gEv33z0S*l zVerArc`s6%vi8l1E{6GNRQDSP!fpqWJ1DjGGY-YJ=`)WgZEE_F-arF!P@sFIV9fst zRfuqu`cs0d+olue>3tBYxNyUE#Wi5K_QqpR^+H9HdXJ;Zif{(0JkTz*1wB!+V6b&k zK#6H-c;=?z)Mn$#nPWdD*>IW1isns9yH}L{-EeP%Y24kHInnD)5Jr{5hU0%|>OPMS zhxK`jFaJ21BLU=6>)plpt!638r=`o#K5-lF>da;SmY?+rc3I zCEe}Q+7-D|_gs6fxXF=`>(LB${2Z(_#sV!Sxg00{9(i_mZ{>}0C?8pK=2HUpWwZsq zu4MBD=HV6qGmg;?uswfE_`6jrrCD*dL*G!DiMEBgPdZHVZ+OB7odpC|7Gj(hy9XQj zZtkc9CP*0NlZq|D#94;Y^=OFBK~;%5l)K67LNVxz+>$#%N!Hd_U)H>st&PAG^ptJYkb)xkoI2B` zA~9Q6x?!|LS>L(gGnUq)z^^?|`-kxW898^R$)50h+kO;BI-ihS8>YWt@UDKNLh8J! zKzs}JhK<-E?*g(7d_MHnD7A}(=zvgC(nit_S|>5FTvLqG;Q?te7^oFX#7L^ zpkbHcc_W7Qi;q%N%bAL*i8VnFUK2>ofnX}qfase8LkSXDNuJ$ zE2wjZM{U)l*Ss();XoPjRbb%l#?&^**LGmu<{$GVVvq~;q_o}s5Tyr zDO28VI5^3>2OQ8VJVD*mjU`)6e+9$C7KkR$mlit`DzfTi!*a(ZxM5j1N4c!b%&!N$ z$%pXeqdQKz{{)|Y2;eTEc4av^6OyvlMyK}*B7`gN%-{OTuMBW13UnN$w$sFyb8oKR zZ&2_EMuY=pUX&nyR68=>MueCal&fJ-xn3dn?0Z!5yS#+eO;;K*sMP7^0Oz{(V!De(!=LJ8yBEk*mId_I8bbC)ijfeh1u1712siH zMIg~RwE1)8JrXVJHTAgb46$dv0X-z1G;|-?r_1tH$c-@@ILE`%j-SDP@SmBPOFnRR zJR+uvt?*0YLf^xh*Pd2MFVaa($-m#9=H;G0f6jNz&>ZQ;puze$yb@4IJ%0R`!TAqg zwEL*-I}2c ze5P?#O?>~D?9!Ziw#5fS_NJwwSHH3}iMA}qZ zYVYYHO%mUO)FLL)cD)vZ3f^Xlu0}jk#-;GXqS?@9;E{0K*c2m$MeIYvoW30e_+yXW z!X~t;ET=ou)UWZCbO|z*fYp#li3<9gVF-ZXFze!09{}v{;(rJbz>ZI7cD&w zQVW*#^m|Mc?21L~J96p)JgZZ^DNlp7 zW^0Z;wvqSJSV?TVW^GE%pYlJ@k8`0gtY0Vlt@|EWo_ZP~hi@OZk? z^aSkR`ZV|ozxRI{9y^tOs}4hTPC8FygIfnt5ZStnkG(5?m;ME zc@7sRhg=D+ivyml67H+48;qgaA4~Ee!Z5@pSOL}pu)A%I=9j?7^9HOx%VY?U5s0N`?Ut-ViQ<5bBNq_knjk=K$D)GKK-+u>L5p z%T!X)1-Jgy*7GR?fVP)>7Z9)5@zWQnZiO_!2w~m9QO1+^tI);YnbQ7CW!MYQ z^m0*Ib5!DYeF&>Q%JcMCK5_^oR;}7ya%EIHx(nLD^=z@jtEO=DC^Gm^{ z;#r()WytpPGwq;4mmj;?N7-U)K6w)TcX`_if7p^MhC@%$d3l=W*~C7@jNjUA1SrPl z7Y7gitAZST20C92t=d5s4+1=?GG;v4&$h@c85H^L?(0HsMLrWGSD-h!s z!I87_Bamxk=-7)9KMM1_mASPBN39%VW##uU35=B$XP;rW0J6K)qxl*tGU^S{ zwm|+(Q8KBy-05U?v(20E*Okx1>7nxpgfy*U6o!4T*JrYt!P#c z`7vZ*efV-yW~XLOo*g~CRWd}QfYK*Q0N2YnC5_6kDM!6Aq9PBCJuDGDTU$pJt|x`u z+w6Yv+DPp2hG*}}<&7Ytn{)(pC$b8?okFq3L zdHzOaoFoyqZK>lSsuNVsG4MWrYcKx8~_ZcDZq@XIo_mSfqgu zQ2EX#r_AxTpC<1%@%WX>rBp|9zIc5`^f?W;pwFxGt_ehQeEdRPtHFiV`Q)fPa20+h zkM2ViDfKRy>~M*z%!1d<^62_dhHK;M-|OC7}? z_E1L=0hFqesgsfIi;aEZM+%uyeAjLseFUu_=fUlWvp`i#<$=^2bj?n+q)e`Jfm2<^wQEI>iU@gK`|A+F+4jW*}_l7ItB-Z9vc|PoOFz zXrYRelhg7=y^nB$eM5$`rO)LcpQH%7IGSBQ2?M?1YEq)5Sz~x-=ZIW34%oG$x$N#| z1O!|)zPFTmkAoZyoYp$miC_fDXj2K$jSM{RGp`(XyV{Hu9_6>MNVW_}aepZN#V)Pi zILVyx3QSIORgv!W7xDEx_(G@=-k}Un>hgz92A}`o?&h(rvhGG+(`GX5f4!ImJFI~c}0LQ_ptM^ zrh9DK&1Y^SNXlfysLUoRhI)4t{A7&d-Vmx>sCxX``*MpLRVk54-QE{91ms$8Z7HI- zfQV}=Y8&D}7l`6Umm~Jt8bLIOR#o&1P}HpS2wX6bvjsYlO^xxCES3C+rq(Yc`NlJb zOUr{H!g{SLO1FVuZPnU;;w||C!p>w%D)XL35 zet+{AnH+o^P1c;J=xp&EzB~1scJvNW#1$Hbyt zFX`Z<42y$@4_lc=G+zzW?D9uD<7YqdW4`uhZ0}jAQ^}4ibgG?Ck8U(t^q>B1d%fj5 zGr9!`#m_~B?h_1--0+<3NO{9(sVzOXy*c;ldsj?VSL377W?q{@X91yuEc=Hi!?|WE zZlMzDrXYFlAcO@n9(kF{KqM`^+&VqXL>66{68P+zC1I&bCr6u@d~9_l`}zs2rX?ri84@cL8|)~R6S z1|;0#Ee>muvJHQG@}4XJ`DOFqH+>ulz)jfRRgy-@Z}FU?J5~3Cc)<`8MDdo`tQfwo zgL1(ok;}S`{SwiSVDG5J1U>Y2aw9jea_AfGRY?$;gDF z<}drmb5G$R7EzDx`fhX-OD5j~$_%r(@~+{> zU*l$OxPjVhSzJsw=`P>*d_9)e?wD>n5zQrVe*o?i`kWG1!!JLGZNA)#9WRhPRmJ>6 zQ>dYoa<=HqV`Z@gyn>`2JloJ_+@PInx-#^Sv-7yrQ!4D+*kZ@L6Hdq_{%A#InTznz4)ii)-FDK!-DX_FzeqA zLiNGofuYMFnaWn(5Z^(m`Y3wcPx+xjVn|p%#DZ-%L%+4E1D>TR(^H?s7%i=m9vlE* za`xC^%8Ws79xr!hbFe;vS_dm8-M9T}wo&_dL&?6~)IXC!I69C|n>{vI8c4Z>eEi)& z7A0B|(7@8kup2taG<%Y98M1ybRode$RXp+55Ri^NC~Ntp$#I&Fk2uQ0(|7pA=nQeMNy#cvR3%EcueIL`~v*wZD zP$ME}@e>Yw&LtZeK{hOWH1x=B#zW<0BB@*Qs#lD4UrgN7TVBymU_$|0X~5#;17w*} zyXKQ8A1Qk<1in7PfMNyD`C4|)(|KNSs7z_Bkf1lRxEh73fx4jnxXznyYkwa6N^I!y z1#zfd0H{OXC9Pc{2K3Da`U`%H^P!dG-j9)idwK|ABsZMj8IT)6gf<~(M##nm#F42- zIemJL4^lo?eh|3Fq#^%xq3v#d?Nent8CptpAPI-X7(`Jors2TJP1;3k&3s9+>3$bh z&WlDQb_-tkQ53+J|BxF=ypLKX9RbdX@Ma>q6JW~>wgx@qqh%cCnDTBk8dA!mzQwuk?UQLxA%GPXhqcZ zx6<@1?Zdp`ZO{t;HzX@!jlx}As}~>tt|ccd$X}+of94Kd z-%C90o5Go%5y#&vg7U$pqLu8;_Y9q{{j%?C{;1nkk&~z z5v^dd*n*+sB5cwhC&lX0SL@Vt$Nnm{uTG(x(?=59;HPTH*v253^$xqS+6o0884KX8 z{e>6!%r+0^$+gRhD#D6EeqsK zDw8WFv=jg>V7=9=-rx>_)ox5s(D_DBZhsM8tdPF1WvQmgHFq>T0`na=YS>g*(?5% zPFlOnmzVmxvQO)d+<>Lhj5BACY3yN~x(Po6=IgKEJhmug=1SOrDoeZ~< z#13`Qk$cnGshz8LjWX3oD5v9ubfr9E;gS-mJ@}|VNJmh& z@2cdS%4qMZi=@7dHrGv&G*}Iy%7e@n(mH#VBoz;rlM%Ry&3sw0e)FQUNh0?0d77E} z-Fk+G#AJ-=EP}C_IaHA-w$P66!sPN?lEg0G?JWo!7>m2JVx>C~WLYll`J?TXfIjDi}{2V>ZqydVMxv!csnz1rfS9tltt`Ay^iQApqgT1R$pdss`jaW#tD3 z{a@_8c{tSnzyGf&QHZiHQxQrivM-ZlOH2r%OrnI4eK2OozD@{HOhU3w_G~kD*|P6D z*|!^ZQ-rd(QW|zMnr_;~K8a*7Ny%-5>Y+?OqzoQ7Pq; zLi<>gaS?E~=eoX>Y*WPnvOSoW@@NR#K41H^vg9VW!rqePXGU^QaCJ%lMJ_eBnD`#$ z9_(XK_6q?)9X7~DYF&c9wbd#P_yho%ANRD%k_EI7DR9=YY}!e=o)W};sq01zq%;0Y z9HZi+hjgo_0;=#%M6KTV1#nbzoJh2GZ1utEB_PZ4`!;w-!4#8&xBx$cw{P+{O>2_g zVtFxo!O@3VbuhlOr7q&#@ku?J=xb(Tr|0UVg+S^G-+i~^O3UiY6-4CKeuR3clZuLg z`iKPo8R5#xAO<&0W`?-i)_@`oNFsFCdpMWS90(~GbiN{$dp7`M60e|<+tl3idf#3( zVvzbp#&?2=r#J-ltAr=QIJm&l?CJQdljU;!e2=`d?US0gU%#ea>b+2;?_*s;-Jui7 zpu@aH+(7glz;6Lb)p0Vvw!Wg zz16H6{;Uv~uk~lTe`XI++y3?ImQRNZ3UY%P1w_Hc!>fcZF|LPXYMJ=ck zCK}ip5OPYNtL&2n`{_~2>>oM~VY}*)P|wj%a7#RjB8ojR?D=>wpf7rhD+Bi`c;yaw zwh@xW_pMg8>(?8kMU!FLtk*iO0Ca=aX)Q$-s{TfjSt1B!fhM+sRDJO=ib6Xeu?b~z zB~FMUv2Yf{3`;Q}aDIhPt1pR84*KOC^^ujAASIa5boJv=lkb&7g`f0XeK;T&;$j7& zcp(ccN<|Q{5JJY_xmA4_4MJn-@*+8t@528``%VP&$9+YMyZhu+_1WCOo46O%SKngF zU2DLkQ;6TAE#S(-=H9JYdJ7n_O>z_=__4G4x{{N`my3y0NA6p~eX@LHDTW?IUg~vY z#1_P7g@_bXx6etR4=5Jwa1}&$uj6dd5lH+8_zeh~wLb14zWi-Rkdp1Ixr(xYlVLIb zI#5gVMaIn>0vqi-fYXO_yKfG{?|@6UOA)3H5xWA!qZiCfYMf~}`wb!aPHawUN2`C? zVM?#pA&rGQaiPAFSFC1`@)nnZnG~L9q+COyX0G55J_#A3@;azx*>pGG{yIpls{l=h z8Hs3)pF%#YIQnx~P$p>rlYgJ40F{M|l+#q5#uOE)PE=}n*YYEGw~pOh_V1hdzhKLi zbE>23scAW4+e3#?%s9pKDC5&exH+JLO_Ojy&gbmhGrVCAIJE%A<(B)dU24LUoLy$S z`C0FbVDjY+Xr>os5YdR^2DUvDM4#VnpS>eXg{XES3vDsPtlEa?zzXA+I(f2vJ4+3z zFP9?l0&3j7B#!aUt;70baQIhOwo&iEF1WxfVgxmnVlnqo0$J`J!dg&aFn4AIl zQSGyyXxmlw+FX;P#86mC1x0WcQvEz6>X>WMXFlDKzcNA)8}LI#O0r|KtfBXU|1HdR zG7beMiSGa{U=MK>poq=#E?42^nHyky!Yi`2@MBDRY>UL$8JA>JQ^p9Qkc`A)C%71R zuB1e5LP}UUnj7Xl@3LRy(m88X@&j5cSux~v!w@{9eY(nNSB!S%h_FH90yS9egedp) zrWV4LYuG0l!K!I$WYx;w_Q|_1FKD|piM>~eqI&<6vEuLY>3`xa+fpy>ED!?_gMLAd zp@50ens*jd9@(gb{Jl#9A*TTC@WJ8m{(o$6AfSWKS^Zgn2WuWD0;k_42+u!PrT@L} z|7+3;egB8f1OB~N{y+0)|Ip9=d-Suv@3yQSEm#ixY|IVTj|&Fs{Hscn%WN4k{#h}~ zAg@cK?ds~(_a?D@8mqM>-VYBoF>%0#1Lebv*LCecI``AqRvND=bNz#^4P|- zE7fm`;*lWf-&9jM&b6U8RKzc=vb7RfuQP3PfcXliCmT6gLQ`@{>r?B=&1Z=}Pv#7; z5mQ2dO+!GfLloNz)M~0;TZ{&mkWwH~o8niL+$vv{O^ZB{+506MJjDl`YJr$S#BEpL z0X=AcT+ZuS+7VK#vDJUIVSl3ivk8!_Sm_wnRu16D;6#^vtWd9Orc!%b}(h2{=+ zpr$Z-;@7&$-SV9X`B_I)D6OyJVJXV@%DmOo*Fn_0XkxhSKo==L7Ban%a-(+tFS^?S z&05b$KCMC^!pn>rbhz|9u1c}%-nckK<*6Yr|9GHW{lkDqV!T(yYyY%Uh&K_q!{FeB zX(W)ZvOYpP7T3WI42;jDPha@Do~-Lr?=TtluZYNWKg;<70rdB z$cBtFw$Lw+9vP-3uV9kwKXhZwo4XA2*3n%DX7+QtxX8K-#Y+auk%bPswxq4?%Wi+s z!M`u=2@Ml-n|ddO)+d2hiffY}Bihb8jzlm7&%81}Q9q#yA~G#wJ4iwJf(Br?{~FP; zP_HDKbg@t&9>A>K({02gdj`f=O9 zWqwqxvHkl0Xd*-Kz!ciC(j@3)>Q#Y|+_xx^!&`i)-uoLbq zDWzjT{gQSX>z6Sj@9d9ERznH;cOhg8qv`hh1Du2XXt_^#GifHj53UFyD8~T+vU68& z|MDg5m5Ysjv@h4=?1z9kMB;B2U-rJJ z*M-NGz$A=Xfldb6gL)8D=P;|K-LAaAf4_bl!MHRF6j!jd(wKK|Lxh;%I$5IZ_BX)g zl0$C0wdY0Y$)$obadfSSG#LK^C>SfecD9J5ViNwaYEC!byXP!uK3TpwD?mq0TSx9_ zln_po8m$AbY~aq?C0Y))JuUChC3_0z?M{ZK>)5oU)3N$uB85qjc@*Bd#8z92l%_*I zkBiAZ9%rvHen{tm9|@n9H=BY@IIWe8pN6CxB`ZjM%e-0uc=nbChaJ{^hup^M1cn9f zSv^$&!h##NKuq^N&cSt3Va|TDEQc3y*$Lz@`V!R*%=kW51{lxDdzVDJ7v2&8&2;|^ zXSnwA2(qBl)=Rpf(7MAxGN+yI4I!Fkfa+ena#b~2+OAFaqjzu?UEPZ0?W+3FuA~(a z1WghW!jHDh#?n;yAmN1-uDqnGC+Rs}5E&wIS$kl>Zd8G z^qL}*ef#0NPda2ba6q#WvlwBJn4YlFyu3=%Y}idGnBS5zJGlTpMpT~=sS&F={|QC4`?yP-0kO{M^PA%&r5P}O z5g!7YgxYEvXk68aY&_Lo2xTd4oi|W^NxmrAc#^orT)xTnI8#DMN9KNZ6t%JcwiIkMMXHz~|)SPsF%$8*A6aQq_F2;NTTR*=OIZI#X=UMMPXok0sF6SLF zWm&d>T6WfDmnbJaV|x_O@5K7(od*UpsM)IGG!UuwizY0&zt++*KHl}4 zLrY9bRSmuSiNjQWPlKR(9%eeqOKJjg?mJ&xDiM5=Hhi=G;M?Rmb?NWn)GL?!0t+I}ZvCNLa`0T6?#G=6<@p*VAqMGDE{$euE|y}4qAsk*r#SbEPQ=baGm zolb$B$+tSYZUi*Z0S{?*jY>-irEo8HLHS9J{XyXm%ObN<+{A9`j@?ud)4U=JMuvdtv7!`D!WsNwbCHnM z;a!|#EpmF?A`2GhQ9qd-7tm3bR&#ss?|3(BO0Jy-hS;0&ijtz>VvnS4JIXUp$>saqb?A6*X zdtd#qt0%V)qe*nRTS87HHr{^<)jz8L4GcKc-x|4kEP}_Yh^I;Rfa-}ACA^AmrQM8v z9qr`-I%atvjNX6Df2lMhQ7`4^seAA!@UXt3K?~Fix&#>A=rT}v1D&XSO0Y)*BX%I;4ANE7la?(d zuKB&upmu`p_{0yzBw>`jF8Zj|p)a>Cn^bVVD*8=?E>q(7ciJEmPQV<1mEjl^PN{co zxz7B-sLa`M8jM)?eTH00OP~ILIgOK5wONF6QtplNTM*PXfd;l*I|mATo~q78+mI*w z%u1@CJ|)^Wpjm;?w3r2-Lgj(f}Z1$ zv?NKDESx`~kdV8*HTk1T^U!V3w<}{(L*mH{)%-UiY$@r@w1hOGjQkfJ*_7%C?*KHW z`@?cO!Y$AXW=|Ci6=D0WDpD(gI%$4Q;bhzf8`$G5^4`Al1zr4h>gm`_OHEtb*R@yP zGMtH056)B5Q%&qxt`IN&U}7{z*-+@cWf5!WxI6g8N_yjmiAB=I+IRV%6Z9JBd_=2( zotA{TgLg?1EnARiDX%m<;bN`58IiT@tscBFD2h`@T&KWBDTskJWizVuT@ln}tHV+H zk(Yv~!xIxK$qjP((e^)=eOu3644}T~M_LI_(rzFI%+jFgpW$krHML7uhrSE(pzdB~ zjO0PWD8ZH6vpiOlu<$nJxv*2!!(LWLvO`_Bi~SM|A@q4-bY2adV}Lwqx`2vQm@!M@ z9^VvxCMCVh*nt{i+rcV}6FcbBs271c#P&aL{)8rnrl9bC(9%e>lECxt0-8 z$9kmtu_ms)qrb`4BPwI0b}5(o8V4oW{#3s}`{idJR+sMI*2R^Te@@l=lUhZYKQXC2 z??_{nmEL^F)5xOAV+#+vu4sw)6;(>1-i;E^_WEPfI`!{-fdKQDfT}Pstnq1azCUnr z+yOr8TG7z3yUhfQ>qLUy`=5Y5MRa4OXtQ|UzG9HqNU(JLTX%!HY8YyM?-J4I@n3Wm z;1Fbms+hw6YW%=IAxI(`CH%rN%IB?+tP*{fMqMgzC;o zW<1|&Z*fYs?JUq{vztZ@VBh_48V_5undv=-{ziNrVT`Ji%O>?UD`P^uRzr?m%3i32 z4k2g4=FhpJG{feIsv}fR62)%us(8K8LHO=v0(T?dXwz(j@=lQ4+m3HA|A%S)*$+*S z?`LaMRYK$Ce}?ymA`Nh*E3GZ0alA^ix?-}CX!b}`ml^Mp*ICGPx9-;R`Kw0MQO+ZP z5PnLZq(O~e*rH!FOgTO2jJTZb7?VW@wajz!v7OGTI>lJdX-;EuB_PRc?R+bZ>Ba$- z86qL;e$Pwh9Jw6Gzl}B|e@sELPvV|0@Dy%@uPxss%@=YLW`zWAhejoZq$9+GXRr6jhU4T-BbuC=h-j?965yf>t(R6Kcg z`D6Y>?+ahoOPvO;Z^8h6;`CFV;7un&nI;L4%-;sUfuVg^05z8)y&$Q*vPlDtW&=}v z|0g#lZMpn{uNPugD-Taz`>?2D6u1E$zlvl5mn$?<&F940Fx+sF;i@u{zj4A@hfg-e zH?mtQ6Zh#4D|h(cDPM>ira}Q1k2*~a*{p%+7UCudWx5do_#2AGzV)W0t71FjTY*GI zPO;>~wGaDKn~eAA$kzXf($L?pD*xR6m&!yqKAhuO4C$KJO1P@VLNv659ScB_K zY`$=WE>t8y_lVQbL#tF%mH{!Gue^%Pm_r&G6lbAQC=B*H8%m=}L;&oSSJb zxfE44iZ2;fl}wJIIs?6-et)9fXXI*8=bUCl0!$v4J6Fm3N!CJnpo-$V#bca9!PTlg z>wZDjxp+-tJV}GBxt8J=-puj}s-K(0U1`!bGMYTOSCSz{_x`nj^7dT~-k+C{x4;6( z7r0n(Sxd4jL0VIO#4-?MKjbXJZDt^*6!{f(Jt5{o30`-}T?tcwn@i%8j&cP%NW?nn z#u;Th9J8!D?$N=EQcf|j%X&`jT`$Fmggife;!<8v_P6Rb4OP{PN{Qespfj{CG2)+# zN&hvHUjIKNz5iFQ0h>8!P_K^^+s zI(B~NerKbiw0d1)p%=h23rXNt06epq^48m>y7H%0@tC>*k>gx3@)w-ut9;{EyB_CK z&PI=9J4uoYXZ(nCk#+jc>kJ;BHHqdmmq174d zbOQ6J!#uM5^&qP7dmQ4cD*0*v%OX02#!L#nAYX0AvB#so@mk9roBI0voHr{E>lh|V zHGr%{8f>zDL5#|^9yAvVC}sEH157(?B8$Uk{oY;Q&RFT}J(2pteWh9b719bb9I&!# z9b3FQbLG1M1 zJoy+-+uP{89``YCZKCy)UtFRW%Ti(1wcD&B+Q%{p*AF!IJH8gb1@=DsAh;4Xa@E+3AxA?o`xnuqi>HFUKKeqX0PE5q>1MMhPTY0JHf3se+bZRQ zS6!pIz#Qof(E0M=_jh^{RQU5LEkrb2 zorIY~Mvj0T@x`A@yQBD=l-vY|lxP&Y72ZYnWMem1>qZJTqT<#r-4j(ZzVc|*-f15m)Pd*;ye1~uSK0~zl<%oWw=G=SLHxN_^8u3JnN zdri4IoSHx_1kdH;&LGZEs~Um1CmaeEG*ycV@)L%WB|)?}32(fxUSK)acf zG6Q!ctr1j+A%u$FIGWgcQQo?_*lV|TzD8$Pp84lt7f+ZzdS;*U`eb)|;uP%{x)j{b zHWB=U&$U^QWzrzbNRU_?P&0eKbPX-zp6ef|vHOMXnm|aKE-euZ)L)8LHL{JDTf)$m zk*XexAH09c#TuR>tG)lcA}=3ObNA6AN42lJOkrTs*X)r-+oOFzArK}En&5}STc9A4 zj}aahBK@84^od4vo~_~pJaMl96hxJ6rO>-G1rsek(1zS97JcM*tNh&F2hf;76A zA_Lo(e6a03I17H3UNe6y@dSADZ91Ll@6qWuU+oi(gPWFbn=TP&3I@s8f@N5020yoG zzRgON0dAgVUk(?he!+s^R#7VYXHlCyt}b>17@iy1K^>t#EK-6G5zmxfSRU5U;C0Y> z)J6EM;ol{Mfb3(zt<*iuZg|BBHjZ|26$=dk5&PG_w*oPb(gyDz8aDF^ea8~_nd?wa;&LE@kmAilm=d?CzUNqA4S3nT8;tt^8Uas zaoyxEx`0~^AT6UYR`3(>%UP0WKt=9297@*It-1gQ)WnZ^NYC(Z?3pXHShi<^_?TUnF*6HL^@^rP~ z)kO=Z=I-eHTphT`ux-J5>zJDT>ew*otJSL-&U9>g?s(gks(&(@jehxZi8)`5u85C> zxU{JH@`az#;Wh840Z^zxw2>~24;POPZ3Z^PeLTTLm{1oqZrNZ{!VxPxt`4iTg{o z@fXY|(Q66|=1sHVXdd`Ak2zFi&8d`#ax1L$$gbKXh=J*fTX>Wy!&ZX4xpj;A9)=8D z2{ekSn&b0FACjW+%m);`dHpwo)2|K(vi*wDAP<3XJ0CacXY$=Lr^i_>v8v@Cy{*uF zC}2T|#hpc{!R|}*QN#(Sig91nxlGP-W=t5%En9L(dw~iTQXxqe=@7V(?2dd~RU(q-zYn;~ zT-?p(x#msyWUwyGtM!ck#+~+IzOb@f4Ic*V<>A6jka3MJ*M@0b)QH%R^zRD2Z&m{n z-1Qam-#oM_wI0t5^bDgp<7h*O*P06iLu*17A3B-GXph^Kt@hpV|M^ z_K6Zhn0$L3ogTCRSdKk1xbP|Asu!|aKa;H6B+iQa>F_LltW^;xtKRO`lk4w)I5jmnKH1^p zb6tbsy0xCjvxum=gl-_aoF_Mca5K)%6;rCMsW!uVJWSs3Dc!L3K+lCDRxahUz>+`Wg4OZ5K7p<)AV7Oq}$SLr0BMq zfwdaBx`|k77q@Mf5Tr*WuAN!N_od=t!Nc|5xE@%-z%iC_CMAHjy@NlH1RSUtB826_ ziK>X=wB_fzQI}gD=F!e1iilGo#(K-xU=oC^FuMV;cNd2e+98UtO(p%vc30Ut-2n9? z(DWSo4ao%0sEHSkwit!in>=|UQ_cH!9JiK`Q3%F1s|We^_LVP5MZ}baP30VX@~_LN z{EH5}E526ag3cOi{_0>xn6R8I{`sdDmhBlBYGVHFOPPABNYXnXeR=Lba?bAymfq7(h?ryN-j ziiTE*g&+YJsPjU!T`RVV_3EWJQqB!#$1Zonr^4jk1h6G6Oo7zSEC|>605uj!*)4E5 z_8O`!@LLjPumLSqI1_`@Ah5T*L#m#3}HKr z4ahRN`qDquPb~dBuPM8UWMA1Sd2r0x;k}q(HE!JAF(WP7I zfW5-_sIuY6Opl41X)RvLN-${z2f=ULiuQ8voM^khhTwq8xmIVqM20))TwobN|3);x zJgf&PCZ8Qr;t@lBklTts@uE)sLhfA>z!USu7Px<*tG(o z19|0}jOSF&Yk7M8k?I$H-K09Nx+xZ$CRG0v$E=p9!pPLJ2pi$ zpx@;1N+VV`PRoDgfWBB;t3kRsOh2K}11rNIg`txKA;$Gf9zB6MS=(8+!$&U2t5H@{ zdkgh5-eSFh-%*GA1LtgC!ZLaObeY@IDuBy$zUSRI$s|5PNv(!*ox%3kdb9r}0A6s)e=M18K7hnq{6%-9OuayB2>@g;{R+OLG8$7C z;PXnslWB|4V|#3&8>lHI>k6iU%C>G8C5}l_efA|vobK;m-&~wO*HtACtji_y0w@L^ zp!C+}ecW7dun90aZ`Fw?U+Sl5MCI6ecsLyzFXeQ+hb@y5d9 zWWfejs=m6?>TBbx{S7A7oKTf-4g)&K9UEByb;=0W1hW4?CEzTP2l(Xl??4A~DHm*M z4-OmA2ZTc48lrQ#p3-JuG+3Z^!vxVyb~5iTN1b;Vbl^LPt<14;m+x`%VTLf|v%Vqx z|Avd!vEed&&Wo_utN{*Pp8*%?jt9rDz5LPx%S5|4se|n;2oI5yb$b z+Wo*)kcGZ9EFAZpSrVhAopVl{ee+9^!Mp_vCebe<8IDpa`;o8LA`^)PT37pZd~KFe z;`I36`#4f%zU1j;wRXD;NJ;HFB|jbAm^~h%MBr26>P+YSdn-v!50m>6&c)k%$}E<( zjhpTNl2KuYz9i8TKljO@q#=YlVcl9qXoXfvxyQPWG#8|JNl>48A0Pmo!Gq)Kx_X7l z5TeJhX-r~+%bwxaT!us+gS@XdIbd}}F)q;&H)KzK+zej(p zb%MH0U-xcGkHMY^d9=p`3-vwrb?|XOItwnv^iNrJXJ#dfvBu?Qni*>dEfkvn#=ND8 zz?vHr)P2IGXT&Y4^qj3z43P{*3*mRCb?)+7K<=KI3pRcP z(&miC!2C4{+Nn~p3lcnX{MW*JS(+H15QWuvylvj9@Qq`-aDV!GP~u}QcvezloE z--h3g{9N_{X*c$ObwFzSUHW!-;mz&WZ;Sf{_?SbMxN^8(#)2k5L|1%OGnmy8%)XC0 zKmKZh^KGh2(Lrr?Roo@N8wxV#1wY{9tEbunyIYtkw@I;NM<+7{oIOeM#_^NBTjLmk zc6T;m`Hm5=J@O;tcHT19pL9rm0AyBj{&20C#9Ct!&iC$hzb;=zx_up!K(bVnrbo7& z@Sc_kRH$W7Bh&xQcwu-EVj*FfSb#0{hmmPtkWv!woCKP(C_L> zWiyW-D=VRM?}pJQ20?$!mbg+lf}5clO7J zTW*wxcg-1jlfumEHy%*~85;zZ9k3i@NarE3C%u%sBgU~yPuD#)$` zdau9o+n^qs%;1p^ew6(;pXkP zkn=rAz*l#rCGF}_Q}pWY>lZGmuM_$bcdAvAt&@Of6-B#55^k8`PHDqRj%=3qFkj^0 zU;7HZ+I;R?OiU{8UvxnaWpB-E$kmIiSMWJ*?OUP6J}f;hWP#X6hT_Clf3;x^s9(UZ zT|w|jYi7>BA`X5=}IT-P_=Z4X&X4N_JNbVMuzt#Roux+u}fP#hvo&ZQU8i0S~hE+iz@5Fj?%W z#I9qqBYg=yN?o1H=Ae1**-g$P2ZGfcxP>jmT&qsQo|rC)eyyDIS=#Yvm1psm5^WZ6bD650hVqB)^i+%+z$iZy2B< zxSD7M1@rY7=f`-ni)Jspw*~QxhfHfny&P|rUS~K>blhiqS%m~JD{{*LKCDJXpL)k_ zo^4lQyM_VE>d)hLt{!U9#a9t1O$x27By9C7kUiV7g zb9b1ao+6z`pv1oL+~{Uf4h;E+NY}`fn+H(X9Mg&KgtB_nMBUbCg~+N#kjRp9nj~uE z+gvGDFuUM6NX@5Z`0odm zB+o?0%t!KI+Q5?#q9-*M!3L{80LOaogn0ipMGZh7kD3nbEWDB`#Qbs0F1X~0xS!TB zS=HdIyC%K~7xiiRP}phqaVcE42pcfFUx*Zjmby|dnk>3*HcDc`U!>RB%sn2HAR&!Y z%bY>T?@!+KzScRsiT{M2-c||UZzLoWufk1bsya1}G~c@A zo2#31MrVb6T{laLr#it#+p&E3)9<|?>`%`G{S0GhhN!U3$I8fV8(#Fef>WW1QS1rQ zEzw~W-tv4h^3T6VmhuboyTXo?CeBa5M5V8v2R&7i(M`>rNVA(DN51bo#5RoHmkJgT5SQ%#<_?StP=({ zXk>G&HjhcbOd8-){x0KlhsjH@<5d@(nwxd2?wx0*VH$J62D0Z2&Wz+-Hy$qlC4kse zO~u|)9CBdsdh8QZ(iw~d4Y3aKc8`)cH3GD#L{FeUyZ@%A7XU80l=u65z!^*jup=Qj z)R_n~1)sk-SL(%#V8doyGj6JR2bYucFm*_K3^%gL1i$=i#%J0m3$%Gu>U)g`ux|O< zN%<$qc|3*0%{%U9S${nZ_-n_&wjL^G2hwxUfu6mFs%O^$da!u=4C# zf?h;?DKJh_@&dD}(^2k%S=6ts&RoubNHsaAH-EF6M|8N~tyL&@u7u<>Q-3kA$N!Wg z2@;?UqaYUAWhVsd2Za<{_t}@;8&?a_sw^45+q%%&KewPo$TG$jFzGRr>2~#Y&Yqkk z5Awy#@1_|KHVLd*H*ZccBhI+`0M`vaIHKCv7AP)yOE1b@zOB;tu zNlIT%m|5UGZLFJPTpXhkW~@QP{Bo~@;~&?+zPWNEO^4wl;R6*OM{w#ptTg&9PN+_4 z;bV1O`V}H{GyO?o2$^N=k-aO?=AFna@fYsfG3|l6GW=#eNsi#uGRrDW|9(I^-PsON zW}zP`nXOieF9o8P@e{aA%vcH#%%(_5k00I{!r1Rsq@O~5KX~w|I-}!}j&q0?$Q*g|Op5oeSCPh^Mq2Q^#sAsY32FtD9`F%} zVgOWfM*l@e6*{0^M>fiXfA_+Hqa~EDm-eaH=_sER0A%r-bS#5eQJ^vR z09u%27SKnYo(l*~FQ|UJt^}-(AvY-;P;M9iAt!Nz1iUan!iIWlos)_%-(~!_@9z`( z0KB3n{u=y;r1K9+=YJEq<-be%YFk z=dS1I0d1)ZNI}Xa0|4;?YlM9A!ng`ZE_-e9u5XD$*BR2xL+Oj7)f0A;G2vSMg#CA80<{zXi*v zvJjwcIJPCD%$bz3>6DTm-N`*0p+ChT?xA|y2L6BWLUWnO6Etp;kf>x^U|GC_;B)dDZVM;hSRJtV_EI0iF(sDds-(2s z*`(F!-IDOSSGZ&K;0U0GaRQe%9LO#ruGrBXxZ?EkQVmBDKg=QM{7x7e$fCu%+{X0e zEc1y@z&RwNeU)*`1~5F!kjBZ{0aZ;IJn@vXa~6m9JbM7b&*Uluv^Hw%q-Zn3)1(z# z5%PfrdW+VJEXB3qCOld|V`%1bUa6vI@y2BHnr^=-ip<6dca4>nT!Zg5*uP{Yl4lz z!;kuCYdl_2!g0FxZcxpHHpurjOy9o;D@J-zzvRIowj>p^Lbv+t6Tj zaV-96T%OHBfMH*fjKjcDa=*Opq%2$Q^~IG4jz@Ui4d_J}x?TM`At*`>X`Hb@p)i8CZ>zQ5JmO3kiiIh&5Y@xqH^2+M)vwcA}-As-8gS5&06kE`y zYn1X@Fuy&D>Wc?P9%4;2E_^w+eT!rsY~a?iT5HQ4hbYotbmkZD@R~TRNpRT?U0I>u ze{l{KdW~E#VO~Y8rx`&}dFu;%-PX>=7u_lz*{tOPy=){uP&&Gd4Z!6QvRcnu!GImt z2&S*sS*meq@|z$vO6)SWgIQHy;8%=kJp`AJl0Y5Eqglkv8F&a*n0mX-{A$x}-XLD+2y~jkEM% zn=;$kK4`1RqI?}|Wr8-W9PKYshwOkYzF}lYUIhOJ+=b1S8J?kw)7Q7tn&3J<+{LRM zDuJ|JE~wvr(;bGyKqZmUs5HNW047jCcjyy%YUzphx(^?w2cZ=}C|1luuX~;v^1z)Vr?Cb^gdM zSPbY4sKM=8zYcFr!3vG28Uz%QT(zP#N`54I%HPu6E!4#F_8R*(1!jGwV_wEcol29? zElNH8o2P9)K^Fbstt>PXc^YSD3Kecaa)vE7w`OTivCd8X%taqBhf|l=D-Kp-uv{>J zULBEyhY}**m?tXgqRuQAaWX(y4$9$|dRP!2{!Q>{5 z=Bw<*i8e3&un(LkwaSgmtRu-Ddp_2=%h1gwvNp_r-fnlzTCC4Tezcd|W8K4qjp4Xi zdRnYI(r@c-w)>lw(RECis`-2`@7no|8LpvALxp1GvOAN3YQy0(+JeJ@HdD-$Vp1#l z60EBMi>R7Ql#aZ8udDP5GI#Pbjp9TrKS6PeIkO({#p6`p1cj5|XNOW${ z54P^>r2D(g3!K@}?F3Q2P?bUWKmfS6WE08>u*g|7t@p}7C(4tR-8%IHI-eLSBX$6< z2jU38eZNBhE{M0l5TVDy6U{nN(UQw@qiDC4`NH9EL=@Ph?<5TK5O9O=TNB7y1?!Xh zJ!js*mwD3W{O)FZf@i_voBRxHeXi$V=6CSkNkXynllRIiQ3>41-rL*lK$0wXZSZ9E zNBw)S$4@ZaX^)P7$xR4?=cJ;0_rM=}N#a$TM*yYpIJH5lzCkxoK)HK{{>DbxQUsc4}aK7pk?H}*;kn>bc&*P^n&mUL?MH$~B zkEMbFnIv}6TNeEy+HqRv3eUU{z7#yf4vhz@mna;_c~l!)C24fd!wSaMy6cjxe?HVx z@~&orj}~8Yc|3~H^cDO#@@kv&6gftnFNxVPozo75qyiTgz_!eQbX0UM=W$^Sp}7BK zzzPm6JstePYip~{DV35pak7(6q>XzS>~D^*B0%S6Tan}BHs^Wi$Qr?&u!E0gd(IOY z5zCKUll`qiM3oZX%r8DavH123C>LC+L*Xo2U~85xfe8~s_0fDJ8+lEx@(}rITb@N3 z+4Isy{zsuN*Wv9A_qA8{N40!Mn|7j+EHpWo;ba>?a;YGL&#xXTp7hu0x<_JYzx{yW zUFYZ6{-61aKQLPVpP?*ls6PcYXQ)|*0~F`iss7qzmVSEl^}Cj$>Ye29;Z|ShX2-(L zCP+v=_zl_FYpm|mg+Qq*T`frVYQ|b-a%~%ezlwki^@6ZW%}G*g+Y0?e(0;&pKTy$( zBC%_EO-`D1{(-esv{YCE?#rpjdt;b%dwWs&>Im$jb3%%K$o z^YGg{>=uiiLz0W=S4v~u>UQd@<0jh@h%)u{3&v6Jz3o@fTf_Lh-qL=o=$KYYC3xH~ z$mlP+8&fG&9-EkYCh)A0wH%q70>~yI<_lINL*mn9A@PVipFjOSebvnGp&5fy6eB~yHa+vMAdBHNwB#=gIQ~OgX?r3?vxIf>u(~fScbFFJ%Y&l zRAfkgyIhCkl4(Xszn|K38f0JHN-nx-Q8+5B_ZaC1&Ww_XB6%%JfFsly`|DoV2BxLw z-(StWq7>eB8;NJ4m!5xGgwV5mzxF8UdQ^`J_))+EksMC(&E9q}>3Vn*o6Kx8lz;!5 z`YRNXwYU=;RHg4AY}IXy+3zv@Ud-Ac8XL9 zVa@zUcTf}#+r?RmBx<}^nr{72$fXuP;@SWE+_=xcGK(ns^1i87!nBSJ-2p}wkOtcR zXec2ob6=APWm=W9`J|H@9XN4y`~Cy2$5Wr&XSCYiHu~(_*sGv zAit3n;A(wdvh%3((oqy02AQIakGYe-`qh3iTuPgdzpUH5=xZ*;tzsH?g1la53>n7| zJ<@d2TtgAezJk%R3gMo+-R%i_H|-MqN6OQ0?-#CEt=c~F@%H!H= zl{&zYa>q-6Kyg5=!V1B8@u4eCY|(>VISyZ`JLT!tiXuP4z~w(3@aNw= znnd)S0GELAfJjw_q;jAckn>8p$Xzwizq-dyu4F&IJ;BKS5#eUq(yKKZAJEfbPYBol zF@oiVMRm2vd%H(SiIhKoAR`mTyxRCw&m{hxY;Pt;r&y)&Pl_ExQLXw>hGz`(M4oGe zZCq`!R14u^lKs|H9)0rCOZq@VUCy!56bb0`*rGQ!NbBOG|Ar*l&_DE>f9N;=r|CCQ zz#(<Koe@@V>HO==t$Qra^5I@)f2hjWA zrlY@WE5hy)m9>hU_iF`Ks9N7eTpAnWyE>c0Jc1q}PW}nZ@**9e9KgP-fJfi?XvD5u zw4EbwGx(abdfLOi`MF!dd6)PG6?POS6@=&n;q{Th;1hsl1R;C_d|uU=YuwELCvw5W zMjTL~waVdg^kGv6Ga&jmOlNY*B?+VGAcFQ)_jBK?OZG0~CZ zI@=w*yYa@Ce9y4z9UDiT$O0B_5Um@*J6hMH**L($aZoy=acXl4P4s<*n^Q6xcUsut zfvW>JEh$g+%cxr!2Mv~p8?+<{_@?2+x`|Arod6eAP1Rt z*Kd(IxHRTvHTWb&n2?Kt*VfAemr&QH<117`>?%3~mUP;81pV{v;$(w*5LroYw7Hoe z8`S^|YI9a={TO$Z6n!HTN`K$Db-2#lFnammh!=Z{fNKH82uV8ov>wMEM#^nzYemT% z0feAgk(>8|0kkid;*hvl5H$O5XkYUdbx{EAi&a;h5K8v$;trp4t_f{A0672_;mh06 zsc!G!mH!ue?;X|DzpncRK>?*By+r9sQxrj3Y%~!gD$<0ANRuWY5FjKf(n|yc1cWF> zL`vu&Ez%K?UZg{)0)d1YNbyX6>+XB*-h1tR*BN_{bH^QL{lQ?6!GM`>=KPlDectE8 zhoh)DBL!*cJ}^S982_Nnko}be*z^Yh&%6#>7a2jT&>j|0lIVGDmt7#dL{N*H#K5B{ zL$sQS+cuwie0h7u>AMAU4e!fQzE+Iq`Xn;{ZF~HQ+b$N=WWbps1{Ymsj!c%4#yaNE zAo=NL!Bl}cNEjVlNvwKRo^LH;SoZKb5Ec`|u+c7BR`uX-SuunCx=6>%onBsPwT|WX zE|%gkc=d5Fw-sadL86j?M(DW<8~fu zMt0AI-``rR+=n?X_Xn&{d%I6`DgS{EZz)Usfes6>G5moJb3|v`h6bKfm;Bfo00X>I zPLRk3C1Q)s$q`jAH@=%tDY?@b1WpFW=WUCO(V&kwwC7T_GC#Si6~dUya}txJo@K-51veGV@Rv&Xl|cUi6PP7tBNa5{HFPWrxXX}nkGKfOF7)m*sBo;x zN5E{X(LYI?tYCYs_PG1M0zDR{a}|m0a{|#w`KJzD%}H~LwvUvs%bgQe!K*)|-^Yf3 zC|UdV9sC)nXw#39FU)CYe*e_EM*yae!}KP!`hr&p#|;BiO&tdB@D2MNe1eQ?MIIS} zRA^m5dFD*F_%<}Zn1G%E+*;2#O`qwxY;J~ND*3|-{WTyhpYIvetLqM(VjAlRK$85O z40jI_zMhr0R5}sV`)*!T#?1!2-m_Eld2@TCUS}hB;-aaGW|#4`5&1RN`LC7f*IO?t zNyQB9ob5C?br{(@O1+*1hZ&_=jBd=Amc6jgezU8ccxCb3-W^u$5MS^c22Zthl zT)5$y^`7vx#)i@XkpOR;SqQ>=zg(PVAba3Z;Wf!W%S8~^g}_d=$?{A{EtGzV3 zWT(wwqY=Lb=zdPdtp}Q5&a`EWCF*{oek#rF0EMAmURq5`^(h)=W#Z=CH`TR=`{64S z=dk=1tH~Oo!h2~?50b`zrJh&*`0xpP{S_a3?GcJB>o1u z=^YIMvkiBiHH-gIG+F6JsoC_ar|zB0Z8ncQZ#tEuNT|p49!?%M&v~?A!)Evu_@T$A z3;g0vU2skojNAa7rwW~Zg9>At}u!z#$PqL9Ga)u+KsyCl2y4-$qu7?sB{_wfI zB-@3tmyM#qk(A`weFE0cabX1_AmQ>^k6ShEzPJ}hN_EIHQI1VPc6zh8%V@9qkwVqo z=#uT`K%WDY3N;9dI+~#e9mAW+Zw}HK4$XA!R&-AFYnkLU7Lt7r+4Y)c9Wtb{QS`j4h zIg6ZWqFi8pbnOt4ne9kyB?iu;Td`xyZ71+EAvL=*VY}+@^nH%MpO}*1edk^{DY$fN zdC^B2DqrzJl_pC64kntSLQul=)>&NiGxl>Q(zpFe zX{}hr8W7HtOy$j*#SpZ`Mk5qI!kFP3S1f#Jm-xnfWId`Tj^ue}Y#m8>PMb3+2Rts| zasXdID%*QF3d9pN$gC7xoQM$ChFF(Q=_DhLc`p7acSW$h%V9kwN@!yR(SJ6wF`ntr zdZoc_1pCgp4%`(-&yxEomqZ}P;h~0F9<%C^?X(2cd5ZOGfPQ@9(`0{$*y*7DN47Vf zBw>F!?gi5FbWYF*Gl0qSb@1GS>SXV4k)wykJ*S4&g=!yK#Ty9C8ie2IKx*qgWUVTyOCaH%p??#_2tn+~ZF1Qo#A?rE#&B_%^bg&Xku-7g4{xorLagf?@6&8=H!~lL7JsrvB`4e)LKgk*3^Bv%`(-R?v`jxwK^mVHN zoMrwuh%+V(LoCtZS*`Rf@lTC?3#m|erqX8g$mqkytvG=@kUIUGATY}k?oRjIWr(lM z+D;JicK1%%L$#{rPI;d%2Vhlt6ON18p^6Dr+uHscU~|q@x{34S&sk10)k9g>OV|m7 zr#ErA{ZKZ#u!?VRBQaNZO}cDR2AZ$e&HS;E0IN^(^BoV#7TCM1FtUF>yWb$}EUAN0 zo^jLU zP*}BRQ*$B7`oTArTnDi_Ql*brk}3Af+5uqDcy;kl%F=6~ZMdE&U|Btp3m>0c)wuih z;NFA5H|613A1;iCDg?gc;;5i0++hItwEsO{{`#%hsBz}TDSmeEmIszGlL9J&b`&;w zi3ra(rJ6Mo?m}(1Z*wrTB9!qn6Sb|$wX;N6*!oUK&y|crz1lSKk7k{^I_+@mht6ud z^W73(Z09!i-K6O#FLh6gB=O+IJjFn8?(R~CBDtN2`!+GyDlT1Io~pG`Wr3i?p%3l& z4^X6Wstd^j(4wQn)u%HgNvhO7!}O89?|Uv@+H7~2u9IK6bmkL?IzsgTP}by6gRNw1 zVT-j~^X6}mG~JQ)&#YHYoN0$edLy3p?fRAy_rs|2ZlAcdO9TYe9_*{#eGzGX)R4W! zsi56=eeu~bBor8Kpp5gNLG~Jodi-rm9I+p=~MsLs&RyNkD0vRm&_B=dKwB_Ye z593+Jnio1Wl57M*bC$rd-7>8(M7S6v2@U_@7ZjvoHPI-%>llCSOV(<@C;(cs1?Ha6 zvNDR}E0n#9eNEa@C`{n#9k4W~@d$rB=wa-@q})UF?k$$5)KFR$#03=t><2l%(sD?e z4}Ax1-+Z_GXueT3P*C&2F4)`s8LPN!!PXnkT0zEXls%X%v)m3IHyh$$YA$Li=C3TA6RTh|*0k#QzNbQy#P=~wNL%rMn?o|9{m>ES`u{=T=` z)Qvkr6O19cf~JBX23R?!G>poN<;%ZPq2c3c#hbq5FSD`H;Dv&m_ue>rA>R%lmfPm+2+Y6=)VA2^g1 zI?+W3ihO<`4`+-A3$j!ur=~iK8`)fj(Nv!)*1x=K4NU+x3hUh( ze6J(z^(4=_=Nu%BaWXF*yT)NE=mk02phX`9egQa&Ti>6A51O2F=IXHNy-}*j7lQjZ z7H|KC^T7GE!@|o7q{*HZr14#M=dk0(-HpRTrG{Fbg}B2re}Z&xNk$QDxM&%YJdhtJ z8)WLD7R4e;tKN7M6uM%oqlv=@%4|B?f8tG)_=f6C@j>ng%x-dWvPwoaCM6cMkiiF- z(|-Z2GR=FZ$a$n)!tUDViDq#wFQJOSpRts;n|tc457Hnr(vR1+c`jk5A+I21xlOn+ z0G3Yg0&M$vekw=nhTTh)KEm}NBgQX7Iyz#Gv~iyHjz`Y$zJEehGoC9xznl-84l0vZ z8WwclS3$J@N>d4m1%izP=zXP%iyadRHp1n}=kx;5mAAw8v;ATv%VMn?!YuDwsmpE_btrlpiywNZ8j|3!x zZgraw4-_X5UIlbwZBfuK5dRm%(mE`>4C~w#()}ZGwTQ&A+DU9u&q%v}@VYoeezT5}K=E{*IZt$khZ^Y>$E2bF)BsdLaikv@T|b2)m`dq212 zP)0sl1(9c@*!j@j)T1bQ8|8eUSUG4HP1Xid%Jk=+dp@nQ^+9tHj$%JS?I0-w!WO8Gfut){GvtOU+x5}`YQjwK zGNzx-yJpcg(?pM1QfJ9o6dk~ZH5Y6Y=;uMp%Q~a!Bd@9`j0JpzPSB$DA~>7No{S-n zl(YS#@E2tlL_y3_@c{t4i)um3E-V~DaZt6NR3`@O>wNll(I|uEC6og-A?fkKb>YV6 zymazy&BFM5HscS60GKc^B<{PgI1;Q04O|#E5^NntY$XYM1`S$RGb+B%sJ`{8096-a zH8dZ&O7$c$w*Y2$9|%F2`{CyO-Z(e$2P`M|ZhT*xickp5NbGeQm%-w-Z!5~)D39OT zS}cyc@l|S9YVVFl{4>x(Y9~2m4lG9I*m2H~9#|Uum>j+=2zQ)UH@x#!%jb?C$E<0N z@VU`@3ofJG$-5O(zkfo*Xdhq*eY(}-zxWD-cpKAl~ScDg- z;g58ZkmN=**YJL2Os2Dr*r4seMI-a|bwb-ue7LQCp7wWb!^=`zw_Uap0NF`xzBdec zJLU7&(VhEEw4`6X>Bl(_=FfM@i6sWhiGnmnS7w?~(G85`ELV|czeW#JKcn19yk<2G zdF#z8q%I_RD7f{O%NdNJ)rP+=`>EoKM`0@o5zHSBg^Lc=#qWBN)9g}1B5$^UM#uRrV8+#8vpPPY2P zM$j|~v|bP*VD^)$K)y*5zEz^f1Z}Ab@<59wpfWknqQV>WV(@n}L`N|!lIg!eeH)@A zN=llDc}6%{YtAUOiWIeXm#Ex=gIM(QA++(#U1@30!4B0(9Pag_CmBU)R@$YFL5a+ZuT0wmPJF8;6#75AM4c%Sn`%HUXIseriGaHna30%xp@$C`q}0r%ux-VL zAYA^Xz@G{|vC@`G1M9y*h0t3CoG0OC%{pp*$_V*+v9rCF{kwwQX1;2~oYuMy|K_&Y zyv7C3Mo_G-M?dUhfb2GbVg-14!MRlwk64_&MRY%P(0G;tl)d0tdBQJ2HgWN@SEjG*n(q^VMDq7cBKRc*~ESv<6!YXkE`4UrRl@+mMqB zyHPeiZFw_cqL(*1zg>dg?5+lvfhslluhJUy&$g*_a$k7yM+ph`a=14UudO0;<~VPN zKp&#lY3i7vQ^YBSkZMurdLzY^>PbtixB+8&iW=7uPJ*fIH(MrLta(0x?&)XSsC@T_ zKN}f;Wm*i_H_`j#un{PGkBPxqKZ1!pNBW0pK(NxD=N4bXu&sKXowC=nD3qF0nirHk zKi3pp=Nt!f`^S#mcP6cx{X7&4J6TVs2w&#@$`*a@>fWiLp*!s0H`AAi-EeAQWpn!$| zT7j12qV+GEOO?SDOM;kKk_n2HBziVz?0$HGXc$ofUUo{s_xo9=+R{ zI8mK)x*6mt>NS)Iod-JId71PSFA$Casa)z!={nmg*S-WESe)mb%2K5OO)pHle^J{s zXOG5)eC}OZ6F=^mIT?D{w?cQyUItRTKwlAGl2OHDi1$&i!4uO*`gK&CpE+zcUtrg~ zYcE=f37GG6(0Mb-^#L{L{%e^!~YyyxJ zc6fPVrSp(EztBXVLdyW0`R0Bha$YqXy|M&+tX~>fE$DrJ7F=86Cwpk+(x>-g}vlhjjWbQZbYfYTPw$+FrvtuOi^U*E@0 z&Q3JHvC&>`H6S_|HmL?wzrrm!ThU=QBIM+`u$fN)G_Z20uhqOL=CnEzI@o zuBn)~$`x4#t5=#Kv}0uJq)f8q~m%6qsZL98#Lv(kBG zvi5D_jF7rd&;9ulrbEv4u30eI94xRCs2NV}Vn2hc@bFS;u+BSra_{t_Ty_92EPJ&3 z^Sve`;q3Q3?!PwOfog1DbC0Phf5Ak_0kCEsRV1Dvdy~AsH3+6$ve73}ZdKRsQcQo) zvlKoYt~>nX%#57F&A!KN`J*^-8>+uSp8{78q4fWERvs0X@>n+9$7P6|<4bp3xt$s! zZm=FlGwj#pBelQ%x9zn5(a(I;C1BaIz%4A6qbR&U^@FB>!>)AxJsoVt9@lmtrVhi4 za#DHb=}_z(hSm-wOSXSD+dY7Ffd9^mR|0GSjgd#xi9YfRh3EC*KsRP`%As~A`!drMvn18o!UH>0493xJtKZ6 zL0U0f6Tb{4O3F*_Ek70L!8N+M=5{B-jd$o70)oe z>Oa?tq><W?llVCpLqPD2{SXWlpE0>s(_$Z%9Oof~-rnwPK>nV=aDewPZLkZae;! z%yS=Dd?oiF0tm}Xz)7>tj(?0#30M{*6klgC@AD6^^{fUMskiHyXW6FG%t3O;vp~-P z3bf)$z@-bI1r3oiGwevVp!{a>w9xW<&4X-DEPAl0%$58!eH$$hzzLFeccLS{j3@gBOUu%NCSd~g_4H*19 zFkx`e0vRLE&<9||yRehwc7hEznLmN-q370bRM>fBHQA`|9Z1UZ%}aja;ldv2|*Nwb9|5LbpG*o9YR zLt!#I`Yph*)sMtE4~`sdo@N=?)Vf+QeL2ZG#jSQ?DHZQ{+RnOtDPE6Jw#XPcPXB=; z0+=7F21PlNeqI#-PwS=GqoK#G49YxvjbwU*kBD9B_BYajHgt z;Z77^gVE>JyZRdG8vw7427~JE$6T9;xna<6 z7jx|opZpw13?%j<7x=VTZFTwPXZVnpfFK<0I1NBpa2b{|9yzqHWz&&wZ}_ z{2=W%wv>gwQcoBk^@@A14K#LjzAFRxrB2>SU zPc^ld?PA>Nt_mUg+bb6>4Hy@t3jhcn;Hk6j6(shCAWTWjHrBGuBMGaiFa|nO)?4aVYds z9YtAs`zx^ujk7Pj+ul8-#pu09K4!J9rjYk6t6ypkyfSfHvjm$gg|;CUVJmfO27KfJ zhk-jQ-ovCn1leXLiJv(Fzt_%>vLh*B_@?`Ac+I=^J5u76g#4F<8aLQ|&g?_PyVW1O zohfh9vGDyxcOtKSgH-TWR#jhFkP?cUF)k|lv&h~`aBg!ZUj+Q+qsJpS+T!(oTIpVy^) z#4Tj$M`qUN6Bbk-=B=Xnh3J}0i(!S%sxwxIk>4O~s23m*ceTK{77~ohran2@Hdx*F zn7++?U6ZqZtr(F-%e-I?W^dquXW@-!>AmRn)F*D0LD%ec?go6}U_+zl#313(OJ94B zbj@}k^xc%v5;bXt_mYhsKB?4G+Y;$ot954o1mp354%ESo=E9wcuwxHRBXtL{;-A>dm4@KpRI@zrm!n&Ry_&L$Sx(7u&x7w^XK zbtaAIumI*f(d%mI1qg*|ZivG3w5kKna^5QW^->+;8OmR zxuJ7^aHdnwZG&T1JD&vv!)kZi;G=WHNfzMvM^n(@BdNL~P`dV=C zBzLQ=2J0H{W+_s=<<89{RqtlpIMBws4Ty8{fQlAew9;@JO_JdsUJvDZ%Jrfu4s9Xu z`W+`M@i5+;1pA=FOTvUuy>p7n=8W~&^@fXuGCfi+X%XT$#6*Bm8eP_Jg^Y=`+6Zh{ zcra+L9X?)+DFMM+8q%(uI4Ay@5xn7teMi;AqfU}}E$D;9T|!U7XR8u@xtrj(Tk(=? z=Xy<_>3=R5wzzI6J}n!jQa7E}vY23!?2b{bISA^ejb}E9ku4~Xoi%b3vZ%%{pHF1H zw!S@OSm8aW(%y9g>Q$Sp^(M1nv=~=1tbiZ7I1ye%aJ)k@W{i;Z(LP=p&vGdID|#rg z|6tnw?c-wJg_fo%jQ&cOPjaDCDg?-b-Ej-(WWUz7=-cJ-?3KY}VEz#mjo=}1ebqc& zXCd_px!Q~VF){_cKQ^ObB{$;y5BHmdZbfx9MES^eYZoqg_m@O+(KTJ(iTW^SvBhS6WFEkM6yEBMz#XF=B{@PVvQY|*58HCwc3IAgEr2%+ zgA;p+>Q6SKw_%x25J8ra=7{g!%`UsZnyCtrtuR zP|SU8{B%Tzv%ZBzeIFi11$nvbh!_s<6b9Z7e$eke*HHTP4sp_|<~wiRMnQHkEcQ1D zNRh#bQvu2~8K$FuU zuy=vLSFrDpoXDZ+BV^3NFX04i81)JnRx)Lvl`=z5Us7i?T#2cmfPVf6(uO75l~QkW zi!4OK1XO53!u?@(iRKx}P(028@&rwmuZp5_ z?CVcBJ%3#JihIH-8;NN9wlPxtt%57q>6z%?AO`wLWSgptr}62yVq3ABRuOHPqVU#dvlcM7qu} zMO53#&4jy5-E=U->>-XTt zmVw5LXJRThRWe)-4QcU^+0PgjB!m{#IKv$+euUIL@z`9+zAf={Cmj6btM`^>#+zH$ zpM>bYUFc(8mHtntegBgDA_{JqVa3MOapuF}a?VRHzPn|NawACF6AB=mmeIx7mjyOt zJ6Or6qDqy9Pq+7%3>CXaH>*k-nF54qk=Sl1I)nQ!&yV(R(3>9;6Rv#1s(atg6smvp^4uq|wTbk;|}7ub|!$4+!iGw++56^t%!{tf)sDvbF9 z{_`kk^KgBeadfJNPP(!i&z%6oS%n}!n)P_CUs z+K$ZuZ!1eLKFKqRGCUrpH#_eYswbw$f?eCdF{5TbLs%elLgbWe>cfHA2|N6nrwg)E z$8@ORzMO+LbGk(LmM_$@$=QfiWk(aO2u6Wxta`_9N_S)DQ$%xKsOG2$%0y}cnr)79WT}ai%M7wX* zuNC|}v3c;d8bw4z=nwL6Ax-ojmMpTA4FGs7VCD-@A{L90<&2Y51?R%yxQF<{f`?YgV8$6y?=(93az4_91e zB#VS6Tm#Vxq|4a;FaKqgLw*rGF0l8upUyLGI7a}2B*{hat>T0ld1>30gxReYueb%? zp*hdmw>04PdMXbA>3hy%8H@p2uesocd#JdgrndgR4N7<6^y1e8=#oy@M>rO*7HK!I z^Uhs0#>F({U3}|8+|Nbei^#07(GK!5M#ePNiRSCtZ7ci656k9IXPoHBG%DRO%?n~1 zHeyW)@Q+S{0W?{XVf;Ox!nN@q?R5!I`5h3)3l0zvunDkK9-tgO#?p+)7H$HOTKD5% zXl_Yt`k#0#zxzm(c)m7$}abC_mCckU_OP|r$9?-yFvB`s79@Ayk9evo%(>7 z(;iZ1DA4&ER9E@+iq@LNx6}5~8T0CrS!YfWT>v569w^|~U>YgP+{XB;ysOFkGmeqw zu?vABwv;NHwWYE$KCNgaf4*I7zO9pG2vaRlB6sq}!l27w753gp694-zUkHI6^oKw> zuAJ~3zI$5Se2 zA3b{|GxFeG+i|(fe=NWrfSAk{%xrm$Lue7>D0&iXbjKdn<3Z(1qu;jD2TY!tfSYij z>u^V9W*!myUYW$fOlJkk3$mlcUi$oR(4pOs{2>*)!1?!H{h)m=Gg6N6_vk-W%K!57 z`=4<^{>k|J|C;ef!p5M=nVTSE%S}J^xLe{r| z0+Z2RAz90ZELLEVbE$2?h$KBy?MQ6$vml zXHJ~8sNwx+-f>yv)SF|q_K8|K2wiH3^FQYwYT6DuPWS7RBsJV?;C7)lJTbl^oJU7h!uf5YI zGJVB2P|I)6Mm{^?Zd*+=6LscMFp;})h0jzE#P|YGvvT_wboowhH@Yw-tEotxYbn?= zlstMvS4g3S2ojBlpJY(t)pmIAp}yx+81Ds_Co0NL>7} z;U4qPOAV}lrCVq45Y5Kxq=}awkuFu%W+q!CDCSsJU9)XG_N)CdOVr27d3jirjRFbX z!WlKKq%jj&aRLZ{CI{b*dwh-ZDP=5{NAU60kcaQ3JU^Sfm&5kKQ7=l=Yt7n`8yF9u zDAYAfYq>mOw~ie*q8~p>lAV_wuT!3dYBo-DCp>o(<*~cl5KW@TX#};{j>yHHGjMog z)&&G;HylCSA#Y=W97crZfH=XlQ2R_4##pW_gZT2IMVb#N<6hOIcytv!T zMN4j-0Z&_ljoknk*_z)(kj5_fX`+|n(7tYWwG^+&aasm3Ihd+At9@h?AaD#2o(IYN z@NIT>7K~NhmEy2S%fDa`Fz&TR`y50qk`{I{PRP9S+8m%wOhbv=E7JVCj_sH-zxC5Z z-0Y(Yl1xJ$zE@DcqV1y}7e(=XI;vl>=USq+bkKljq8zIwCF2j`9%&cRHta*X=ar24 zH5S01_$pGa=yb?+Pj3%Lrerg(Y_4lL3-Nj^;a^lN-pzuT@4EETB@y?D9!&&!ihirW zOX)YfZjSuoOS7>ZDWU;oTv=a#!IDt|NC>ml%TUb17y<-wM zHGhf*M)CQ%)A@6nn#w2Pn=KO41Df?N7DG=IkUN8&%lQ{XGc=N9L0-4z2kAVBqom~4 zz{IcRXo}_y{fSGt&vI=W7j13WinJMyLn6Y2Xu4!KBBl{{;v%jX?$8&Mse5GU&{cc5 z5j=xnQworH@kfL@Ds=As&M zKTUnt+@8ys(KA(pzEIwy4H=GwyR%SqO--%=EVpx@S_))`Rper zr3MvLRSoKUcpOPivM`sBh|PIN1npxZ08HIL!t}v3nCwe9`nA*O3)cfPu@=x)Fs*Dm z;Ak5(ih7IOj7LSN>B;9_vb+iOb2^^C$qVeiY2)ud#FM)QDozE+?WK9G7*Q3A$pu#@~WhGqLP&s)qS zu4s7~jm9~k`QaYjIAWQYZ==_=rP4&l=(J9J(47U~MllO^I$RD%NPh{c)vK)@RQ@1s z-gfg`dGW81tk)w0Mc-ancRz+~2Ok?n;*hY-m2;M5`II zn6+DzLevDAJ?pjS+x7hyDr=%Q-(o@YUsP7{?(E3WR2|&WcXK4qrH}FlJ}`-0_-M<_ zOB)7q7H@C^l6T6kT~jU~ZS@Cc+@lqYf{B~>&DaJ(8-Kb0&c4!jN;Uc* ze!ycttD_MzeXVd4R(azX6ZaeVsnIU*Nnk?{Wg^e?3?t47G}kmQM!badEqNR|v$Qoq zN&4u!1um)gg-4iIQaptFTduE;)$u|LiyB;ZVV-_~{;EF<0|TLXm0fcLdt#b5oF2Nik!)Pk;%69}Vi-AZwWwj$U(KMfZ@@ zpH>INCc>+~KYyeLSKR`)fya0oZ6MpbSQdYz$S7C|k^LKVwc5LPQv$Z@3N=GdCfdPl zOaSpb1z)ThRLSqIyuE96A+$j_-D%6zOn+7%O&0>>tk{C*7{OnqW174RJvxDbA>h`N zS&JT?`^n@NT4oIhaas|=jY#R}M_4Su6RzDl#e+L^t3eH(N!$D^#&c_r;jI~PY74JZ z{Q$2rOuJ4}eJz|A@~ye?*~?Mw@ZPh{Wo%sj%&G@JNMU!Q2Rd(a%=jLeMf(XNFx* zgY9r{x9OOtwWecei>wKy+vXi0OZroYlkym9UTwV#4s> z>{I`Z!LVKC(uuRL)FhU0RbLhnF0&|Rsy=aeGq}z_%VKR@=0k?{j~J@_MI}wqb8~OE z3eI&tyZ?$In|W*Wk1G;NKZoqaJSO_JFsh*uCpdm4jjY1Rsm}czkiHF=bR4sRjP$u9 zSvOQ%4sVfpDf$R7En7>WL7oi7Hh<9<#!e`}_ANt#tB4OL&d&h6do?+-v{0BTIqom# z=P93hMnZ!IEom{qY%uxxApG{;!QEY4dTxRrRb>qoCZw$Wb%q$WIAub$W*u3Ro(SJ;#8EydOx{ceIG ztc>m4p6Vf>O14JLdoVidoN{2-DrVUz8OJNf-`2DbomcAq_%TP}7G5&RAEi3v#OgS*~XF^zfZJ`iObkhOmH z-o2>Tm5$ppb11H-8LXrS>3Cx;L2P+o#|EE>{Pwl~33a6H5tr(7$+=es>kPATDUNyL ztv)CG#?FR<4!PfR|0KcQfGd)L2Ii|eiZ;`hx@E>BE{&W9=FZX%gKFrl2(O=Fd?O7N zv@km0O>lz)!!k$P`C8K_y-i>gH%=eqxw5;pG=;gcD!=Ql+T47;b7g6V|2wSzH|T9S zrT5+URV^JExCIbrf=bm{z^39{(61%uVc$G>;I~J>nhz?%C}sxVx@Zj@0ykj(2?&TG zdyu>?()4vJl-))!5_ZzkWg+MuBo6m_hHDr4dWNS?lO$j`>3&g!T$FmwH{~O31x z5wDixSpH#8pX!ebEr`9#7Wx#xzWr<$KC5lyUOl z{ISc9gYI31?*0o0UaWTWA*NR+%~tFDLP8-*S?}*yNu!8eE{EDW4$u03(oSPrJje?B z-=Jgzx)^}H4DNT^hrw@qX1ORubvgU>rumEh2Kk=ID(19G_ywy{Z9+iFfgh;mWIsG4 zG(*<-5Ek)#BK^|rixU!)r%farv)WoT#JfN2VLM_t7rW@JP|_y-oeooAC{(GN} zWJ@Z0huv%A>z+XxcQvct-(u{$ZH%(uqk`e1O&Mp%S4m)VqHnQHbBj3l@TamwytJie zzR=AGNq3GDa?fptxO7pDn9|&~3FtU@mNS@swrRyf)#zxHX~a1ujr6>8Q=j_x&3g2n zFc-Myemu#rqxcULIsT>C@vpz%vmUtU41jC@*3xko`bdsp_<#nStA``9XxMMy6C1%Z zF@3ATb^7w|0T&;vtE=oeGqd(1-S5Q$=f^?JY6xdq*^ zY*CzU)7FeM0+{{qxTp+CW9H^Ngh*|yf8Z&IV|h5HZo$VcxPrO6Jr@*rn9N3u(ExTQ z<=a6L6(*?nINkj{9hdVz>@NqwSo4F-e$gGEFSU*W_)EG>SaXJ8rAyaDsIo$lL9F2R z_Kyp*gsT})sSJ?96-X)UXah4DHro@nXRWHcgnb^hN4u%pl5lSMF$bdh?T*Q4K97Il zObCn>=$Jq^M|>c=iw$(}VLhHO_SU}TtXnRPPXDZKG8k{Tvq~iAN3A;Cg(D!fxCNVx&@R+P=+ zsEk9916zHncGn(Y6#wYhh$1t8Mr}3KDX)*Wr|(*Z?OfMIY0eP$mB(f2A(*3pE-U^K zIGrDd%x%ERp|le^z^VS5_VwSOq?0Iz5za3|kW69u1Hexo_7&L=*-;=X10wV;C*9lx zsLFcLGEplQL>Qf66-+J8qFgEtdhn6P)er00|94k_CI==Hcz=Vg^}YfU960a%1}%nw z$0~wXD>zp|Bk6v)zjFc2lQ<{LAwL4}x4Z}l1JXR@=sya;rk_zaE}CuE|N9I0_XDx# z_UN$i`r+wJT>9qUyMVtl5M?gR!%xBe?0nQs)W5%gzcUcDG;^K&JM?g;f9#_`ua7tW zZ~7ocw}H9yr~^QVNCK9D_1lAh*S3^ij{0{)%}0U~xGC4j?R&|jA600or`;##!;qpB zj-)telOHFK2}-A$K9)`Oowjsf+GqpK=V`;W#BTar&MB!l&hxsc7r2FHlfhd-D7N3A z4G5qlXkWu&JLy;c?#sKeeSeANeg6lG<431rc3V>)c23*B zZxRwd*LH;=yi(7t@>y=Hs^>IE)<}X4c(<{!;*k+G#)E0!CMsEfl zkVEY?k8fZBL=bUc77|i%S+Y{G#z^QlD9~B9=&>v)V?D%b`m0@dSvh*BWRm%Ip|lyJ zlEuaHKt#qG=>S|=Zq|Wf$GP+#g=0Dg>s-K8$<$z5#FC7WkjQ8^rQfl?t)I3Hvz)ND zvYBZ2b36-W>J-2H_|eL00N7 z0$YTcV7203KvyutF+%ISVu#FBg$U){V~iLg&p0<(MswXRc6Sk&R;W;5lh!Xg2qAi_ z{RT;lZs1xsU)wN}mx;eY_sK3Kurc~>e}#Eu@gt_nZ4jb1T=bP)hJ>GFY*_Fc14tW| zaFwC~2h#q@wO^>pBpY{$FagWk*<9I{vFT@YjGH)~!Ouu6tjAe+U155GBp`b*#Je-V zuC^Q%qi_-60I*Wrqf--OioWKLKfU|?Sh9=H*{mOu^)-4Hk~0$Rwcbb7#XJvRk_Ovw zTu5>1`QbVsj-_z`zTHykFlp&za$7NV!B9o25a)vW5|et1A!*{}2$01>meMEae?lmc z<4{C!8&A7i7UIg+P~)?Np8jK%QH$BP;0Nx5+kJi2<9;aL6P9tt=~yruWU%4H)j{?Kg1fb8r0?1u=h zyT(rk4)I3DIzl<7N&1O}NfP~fM(av~FJUQ=GT1jxF;t@-#2L*))h87PX*O-Gq6^@e zhdz##=BaX%|C~wo zA2m_@pZ7Y9nLZ37-od;?mF}2nh!JL}(l(cLB_JHmck>NT%u5o=sNbFH)gKMKxoZB? z`wIBk)A7p055KB3M!x!c97W3h)oEx3_?Y2$ zrs48?c9mf*0i_$EFy84bl>J2UY?=YbXpL=;R8aB45vDILq|LolS_NH$K6IFXjjgb= zo$FZKR-meV;tw_sW0o6GGJ1GZ;~;_m)bgV%zOl`Fz+ZlaMEKA?FISB`?@}h~Y4P`H z&G0-e(P)%#WZ#oRn$>y+cM`(6L*tBr`DLC{gla*RB`G zRT_L)5c!IHQ0*SZr10p4DZ>JF&Dnl_Cdx)-OHuMqpo5#cSG&0V;$nC1|6uRUqoI!f zzTuHdMWiVED54U|8ey~`Nt2KelaPI16Ehz6+l|8MNw-a%Ap{y}He}_89KOGsmq40_$7V+&*TahEr*Fvr# zxBf)}eGCmZ*vX4rn=Rb!pu*^F(6cb>*V`y&06#xihlnTru76!j z@r*Ka%CtFKFgRqSUNACZtX_DB!}{8{Q2#66_#u!JRfyw_eCAQVM!sS$!e&kU5D4w+ z2%USN7uh`>5H5x$m7|r!h@0wuZcRyxR*q6ax|>?ke<7}yT7Io=O?U{ir0|x_z5D*~ zOP`|c>PqZD9LL!g5JurNe}iTWH_DFxTs<8Xg5&2Zb;{s(H zE9uWAJdW2HTl=Z6_^wBXR;c{oi?-=^*r?qXx;(LW!xr_dVxoe z=+n_Px^bS>(_V`cQam=9ZaX?0jI|5d2jUCP9nm`M(AgWlXm;8Y9U&sgx~ojz?_~S; zUHoziALl;YVgW zp$MgE&0fTl_L`p#eyLk4c<60rV`DpB>)e&kTHfbx@wwdn%+9WUDBB+baX*xm9=@P* zq-v=?{C8iepY-jXxjv87Z@H`D1McznNAxweML#jddGig_{fmW32fPvI890%c^sxK) zV=a7zn=5W`PFN*yPUt&do=mFJuNK+Q0U@#mST%6!m~^^;XZ^PIILl@UjOCTj*Al7d z+O@J$C-P6~8XNKQ#QxOvK;n~}97;&D&k(M64x`(P<-0&M8H_)Oc{%!!Q}4MaXBJ>H zQIcBrzID@X+FA-7wIPTdK7k6?sAC*tDO@>;4E4Q6xju;vCNH~(OKvAU)AG9#neUS; z)|rT_UQ_;kgU9B~^fa9Rquv~*O52Yhu>zv50A2O5+6*OdN{Y!*fd3NTx3!ZEtoZF; zF8fojjHnm5%*w;WSG!(>%N_&IY4*2+#9+oxoEJG$9WXZj?cdBUZ|Im}bGAXR96Ne& z)N#&?D^spdprARUh~a&-j#<<8C-ye@z6{rhDD9XP-yyMn>-0HU;@0w=xLjRRt2rw) zj=_7nPQ`My8aAT%!eT$WOVeFv{OK#p={WUS{^9ENdQ(M`!JBoJk;%N<#o zGG1plFImrqHDr8W(0>=B(T%@W?MKvT5jZ4e@@xcUZ39B$msL$T{Vbk2qDN!Pm5$1G zcuP)cL;``tytnKAR8XpWVi9s<7`~ICWC12*&f~!$hsjb6E&`&=F!T4f_5gFa^)JL2 zlc#6UA;7SoNxM7+lW1tVFC#{--;Er}ol)ubKrhhP)_L|G{+on#!GIfry|NCS*m`s8 z7v`O}4G{ga+HkENj~woj8qk()t7SI-?QQeR$Zs|`e)^3~msw#O>1nooMvmb{<+ zo!~xG-_p$;ZOE36Q%8lV`HiXF{q!Zb)9dQ*>)yvVC$k)vGqw>uuw$hknVSTT_S5U~ zjK-|@GBcPSO{T}*gNbFZW(Zwbx~ClFXGkmt{%p_?+DD9cnjk3M^vk59B!5uz!!y1v`FIwZvu1r6y8}Eds;1JI41ofm?_G@T zwxh4K_D$tZe#&>E^dyMEZoiEaD%$Yi&@Qm`{1LsT=eqSf#LVHSJ?K0sJLPS zkc7Q1ks%Bg#)&us-I6<@1Lea)v!7LF-mP$@iIIy^7UG07E(AY0d`kTm)3*z_tP4}4 zj!%2f%w^HATYfM}q4wrkJr|yuiv$`K6NF(_x#10l%ls3llcve;JAOTjNrrLV2;FkQ z=6ULZ-qvpo&berM$_LkyPDyg1X?hi&= zu6(DG?pGKfJd^}jPx{e_2hJX8@iTclT61M_n}iN~Z`-fZ5}t_#G}r|6&q>bR>%`aO zMv_+mE$U25I)Z(n^{rt$3J54PG71}OQJ#0I_6v@RZS~Y12>kd-(0e9Mb;BPNgYbvc z?vy=!3i3t@%lLVRLX_1tWOs314L3%M5V)wxZY?JYTPx;P;4kYbgCE zfH=ED1`3#A?Hv{F-kF!h=c7&X5J@HPWZPF|vAJyIYifi1RRhgR$1g^jt;L=S z_56P<{FM^8Ke5%|0qt|d3%F_Me-%bD_u`9aa1K+;`QTEyr=`cr&>z#eN8ErZY+CG@ zH&IJ(SFr_RlzSvZAnuay3DUGR@=DJ({3xaPZt_c2>Z-)2SXT3tNC)m4_2R~K30<`%#s*1BU!#vC8*Xg;L25x)C0`PKZ)_;Me`I0J^Wj~ zZk?$D0N&6i4Jj?PMjeSY>9)sl<9qd%Dd+f`^*-ii1?vXu#?-QhFD*d8cu=?~kf6~e_86(=UjK5jtz(Bn=oJHVJGIbI zjmfMgW!^^V*4aTV(ZNzyXS_wld6U#(xe?L6BgmO&BgW$+T2@{>?S~h-w0I+PG6J~o ztsT1|OA#lT*Oo*7Z~4yey^WPyqmon(;*Jd`_$;n_D-Nj(>AxJv=-Tf@Bya4_UVfaz zq6hn0276t1*uwRsxbG%a^1ulsD2N!Zm9m78e%uv8)?a)0w6qc}-sy(B@HTC=sv8%K z{pB*KFzIrpL2q0f`(sa0*8EAzcmCvEfbJZTJg~F{7*7Q7@wVVSz<9W4uSj)%9p{Xm za2aTK;Ye1xl9M)vzY2Q+1^XT`3vVrcl)mTm59G+qHZ_|4MYSdSy`hO?S?pEv7A!Xh zwu-R}K2~8R${Gzmqs(quOJ&7|CiPiA8Mw%~X|NJS z^7XZ&oSej;HPN28?FR^#rR}bQQ~3}idUajOK6OzLn`yU^YkJn(cC(?6l0J+Qx{H#9 z5)D!Q7-E?3lRrph>#`A82`6N>WhiJ;}Fs-)%k-Y5W6o zE><@cT`!Gtd$T{-^=u$e$@nvcTF)aHtt5S;qTBaY)`+dAG~0A}Rg`69>~Ge7Zhkap zH((|HXZ>tB6Y}j+G=fV~^Sn%}!kg>cq_6Irk?U21{)(?<1P)%ped-e0>Q`37N)m=# z$>dJ$lGI1NqS3>{!*Yo>na@FHJj;O>8Du6N@$O&{x2o}KdZ&U2_s@(QXn6h}5c(fG zXz;NQeqk!YBm)K~<7~bzIe0%)78M~M=l!~&*#uS}qq$L!G;~UapN0qS+?o|yP%Ja% zbx}El>{R>^r9Iyz zeuov0^qVBXO>oBi?|YlzOM}`N5dTMHb(<&$Cl80O-UmwaT6rrd*$2>z0E=< z-dVGqM^H~eH$)MRfr6Su1*h=^HVAN(ob4~5{hmK5vk|+gB{t#c*<$Md9Kr#SRT7^x zVXQOa#0Jx@Tk!{DUZ%bXzrI_1rv0XXVVH25W_~bEKJ3R=oSkmM>ypIwZ6qpbYTvi& zYA}zyPkYW^h+ulS*ev|PKY7+Pu=@pkLbl*bLR#>{y!T02_3)$cDgLvB`b0(da-DHQ zf0~M=aWA51sffWSkXhx0YAAs@vh7{m zK~SW-|3Y@<&=k**RnQLI#eweos1KN_i42g1)F3E+0&$gXB#<8FH$Z3E!qc@g==`6l z&ZsWQN-*_JO9B;d>3(RJDzwFmcJmH-;x8l}0iM`EWdK3NTLU1*8aWEx(ptk4tuleO zzyb9_<`ENV49Kwm?Eio*B#ogaI<vQMg8siFN6t+@irR$ z02NTkwz7BAe3abpsg_uv;r3(Evf z=$muf534AEFzLB+fbw1kTg*$?E)SaGXouQ60|m>>{4XRnXLBliio6MP{0q^QLhWvY zRRd~{Kd66w)wh59zu;9aWsLlS_5Q-p{ZKPt2}^H5>AWcf`r8(;EZ>6#Wec0E04)85 z2Phghny!xR48KI)WZRY&{R_b$c4hFthDc{~W!F#H`bsu@rQc?0;8#o zn#^z?_dr8;9@E1Tz4Se0crQGdP&yw_4WG3cmqpXrJ8l)=+|FE#j9Q-aTPR+bwx;i5 z^BnT?unyBz#R;MTmTY{5*W7`~xIM7zh+ai|JClo zacXzYsaVFbo%28%R(alJrL)s5|473|8;;dCaZz+_e_zFG7h1UWge_Q^&^dMxVAQJ?FMle%v#aTvKjWvz=pKoRb5W` z?z@C$9t($yxt+{KymsAsMW^n^eVYENy7ei3`(Zd8ps15(-c)+93Am4p^M4^z3kRju z^!gsR2b#u)0q58!wson0@51Fhu*(KGA_%saLXC!-`w!>rs*)W_rG~nBQ5tGtURGo>hGSTbq z{@0*^hMWXI`AXF-FvfBXj%4qrjPIB2o_1u4hzNbS+r!AEd0bq~e0qK84mpyY z(V%3dt2^cioixiGJj66ok`sJKNf1*xk>1L^aPh9FSd1zROBkA-kPpDWTn|!&)ngf( z=uuf&$*;VZ&idWnQ&pmVFT|v&^RdK)ax%50*HnU-Ckmkfdb*lFgR)cS)wN_KP-DZn z8rAD3a9LelL*GNeKsWfwk$Z>PO)Me*JJ=1916Ah?mXtOH4m1wRR^XT%9vDM_@X6il zgrL8W?NuN*UF;|0IKf>7^MIeJL=3&&r;{F5imk*?Boj8w@yvfA%Om=KAw7Ak5WkWC zbOrXGt=Rs*em&=7I=$h35k|L9!mPNsH0o>G)MWpq^r)kTV}n8ZkEApO8C1_Mx8kn* zx>EFsZ1qJzX3-LwC&Pck@#)=Prc+C5+#9Q(w7WY+sh6@C1um>nx;72H?(Zm)3wFkIv=$h}5NkjR& zd(lMM<-ty-op1MtzSCE(T1@Xd9yg*5Q{Y7Nsg_lS=_5o;!^xvNjVaZubI)YVcOHqA zOPf4XV6T6>{fg_5H@7I$w%9-XkM4T!fUVt}gjt0uw*CPSpgEnN+;eZoR4cg zw!|efcI)169{gu`5aAe|*O!x+i4Q=Yr64;SDwXjnYUyT~zRz1_a*Z@I1>J-rfBRW8 zZU8*>5qM@bX)+XJGK|~TFK(m-c?oS_xOo4|!js3W&N}s_%WQ`FFIHzyGa9TMsi{62 zqhV*qbBEt&~WxS9u+g zHBwPa8nG9&aN_xeSe{b|Pbs`?49*q(7G}WcCZ!FO>s>rGk5< zcLu*pZQYDdz;myRzAsG9FR%KrBG z)De9M+o9b`x$q%P3F$KO zq7PpT$~}ad?Zw_#aKHCqdh~pGyaiWvn`e5SK+$W-P2{~juW89u*d!(dhYXrTiy4y+ z&2sA(+gMMd35uBHI>2GGbsGxbp>>fEkxIZ7$;83Du{_?^pr_zo-GcxBmDh%GGZKJM z9HxNfSIUoWrOOrrEMK_SpqKx<$v5J;R0sOq8N@dz6Buhc9rG2B7Jukrf@tJLzTSLIrPbTa6ouxhK=lib=PIk|t@rGD%R@>t9;K?dL%ES{~IO82L70_yC z;Y_l*;`!{CB3e1*`epjU{^WYW_C9O3dz9p@o=@E}#!qu|^J0XrslE|X6Yxh`Y>UPl z$r#)fOfP{cbZq{5Vy=r}7gxMkM6X)o(7AUH66ee$oKpPrY<1_9d=rA1CReyAYY3kG z3v=W3rDciaGs?WpZHk_Q9VgO5?Ktfn+^_%%S-*xWuzwTM@LZ#BHqcf)18rL~| zHF{Ng^5C<>>Ww2qckczTFQcb?Jv?W~wG%$)>e2p+^U)8C`fKKFe7GCL*drpq0sr;B zM%xz@FAK_D-pQGwLzN%2Hhow#-4spL;quN^7Z_*kef2TZWpRgz`iy{ZnC%vI)ycOm!rR5i{M~L3gOA!5CdTXW%)pO5VcTMlR zXq@)zS&p8<&air&#yfE(j_5WlKkYn_xa`zhS)mtkuy^p6_TR^@hOEH>H!H zw8XQ`>i=2S8k(0hcS&|g9bk@mls0=Jo*=tdvJjV{aV13Kh~ZOk@r+0keeTa0#BDLLOO}EGQpaXa*=@Kr6Ihh2h;&z+V4<14 zvAtIe9Y9SFZa^<9C)Agh+Iurk%SS6gx<(dvQ1(6VHqAXB#JmBn*uTBhQDcHu-(+rh zvWTAP%a8;})R;#prUMnbm#pUPJQ~DXab(=EIkNJel`r?N?5$ zY5SZ5MFcm2k1Z`SUL%I4MG=~ShCh;CE<;%L2CSkVmo|EdMZbwY7OS!IjF0ub(!l&V zpmwTiA)KsURlkHU+q&ECSJ`#kI>swa!U*Qc8-seSWUxHO`EF5Nqu*jwH>!R07|t3c zwhx83|D>r={7A+vP!=q1VAAB)RM4PIzw4ZqA+Q6A{9wiBXp+lxTWrf1=$LdT(0sd! z24N>CUQc~5X%gh(uTSr|@f{JR7MbTWnCk)rEV26JG~uS+AAMitT-?)k`@ofA`F+{9 z&kw<$XlH$h83Sn~Q_y-izwfnbDlFWctmWlUK)91E4hUlihk4av)C`Efvk%y88*}@ zyQfTSpT_tjFW-)}F2`8*$<1lYt%R-}ReU#-o2~rl1M4UEyvZk0DnbgA_Kt{Gr5$W@ zi0sAPS7}Yp2;ns7B!2)H%_Cgq}ViOSUHpOkg;(tTknv0DJ^Mi5A8tQmn>xuqa69OZ~rUj5WqY{d-ev2 zus}jtbP)Cx&$*^c(_QPo**$K&p>kw>+B8UfgLeDnr+MiHwo*LbVO@N>s^q^ndIj$8 zW-)CIf*?*05e7XA_H0Zj?AYAvj}J$v8fs&q+s3lutj8zr<9*I5ITJ1`iOCvJv`L`J zVyhQ>8=_uGb&N4~uhbusbaX|ULrJ&isXv|J<0reTidBx+O)vVnT}&Cs+(M!=Hc)S( zd2i(0Hf`a;`JpB-KS~S&eT9IN5!Clt@J$oNX{x;ONU}^$GxK#pS2M@6mdiWH=L(ia zJ1MjV?f`61_QI6l^u;cW=KYc@EorHhN;jv=S7wPQGMZTItvl8HhV?s#8Lq_#Q;9E# z4cTkAOW>VWs1s{bfq0lTq2y2pm<}-YXIi0>30yRlGnAd$g0+NvhZn!UXWdnR*_Ww$ zrLz_{ysN#se5w|^L=K;ofrTQ5sN_$SPO20oiGEr#NO2`m=fTpzuzs^uk7OSzcxo^v z*QGZ0e%q&y(G}Q5<9{fJl6<-MzZ}85r9C83cw6EfB5k~S*a``404BUu>5#qB@A-~4StkH&@UQAW?{CfEEvrzmX!qMG_4FD z9zn@rfbhZ!5eY302}cL1h%KC1l&-p7T!R=NL|lMwCzgwC+`D#5=zNc$;&-5C`Y|lF zYqlSUn#jg*(vJZHD9pK_PIUFTvx9M(7Qaig?%oi%yKzcFNT>VqZ=WLx953)0pa}g7 z5kUUK=nCBoX#cky@&;)+E z01O)W4K%~#jI>0DS0P*icXurrhgfy#jEL;*4aBP9B(&U`2NjtYe~@aJI0N?3tD>;; zDy^c7V@ng;DsEv!<`eScim*h2 zzrj3awU4;jS=faW8B|Lug$?<<(E;z`LsGfh3by7rjG%+~oX|p3CHf_yY3FjiZ$7Gx z&@1(3jKxSGYB=6+N2}&5H~G+D$<=r${7jd!p8y)LYBl(S$y*oUSh(&6m3)l?3gBbd z#&Y7vm8z>sI;Z>(Ip@4OYRU-ew(B-a_YmziQ6*|x?CRm()yD>E3hcjB48fi9zn6;-@=FRGdJ*OGDhL*A+u3JN zx7$#PhBl6${wzMQy-T;ULxiJPbI0vRNz#=NgSGZ5~z#B2J{|&d{<7Z*O{Kl<<-J&y4PIWnh_j-{pK?k~)bp#6d`3 zV@c=g6rs^uXUEL)2XCPuzYP!nva;-%^=_t<#S;UP3fwlMdaoY1cPG2GCx7RL6<)2A}lnn`=%^qQOv z0{uiMu#P(0vN9xzE{SlGH=)?wv?V1xt6FqBf_@a~b0s~q0eX)u59w$)k0EMEqEW;T zG>$&x@nr+vZ3M*RRX@YXT)alF$rn}W_E+ZwY~#ChrcG~P2P^5<@n&pj4YJq%SKrIi zH6x2-svVGbsf84IkmK57WmgG>3!?n&{Vv z>u+S3v1h!$lCG9e)j)BOXbuQuu4^qpI<43iSTv!8DHJEQG_Fd>qPTY7wlA3=ct^gG znQ`8T{o~im#GGab8mmYY4{%eBM<^y1&5dZ6zdXxhZ~s7U;dNRnz-&H5ruiR%u=(w$ z;w@7#JgH86w7YLsX|ROE-%UkvOZ*M^+llk#>M`#16PSUGNHkLe#c7qVBg-Itd|YQ; zVm&K!WcR@nxiXckJ|cl_J7+@yJ~Tpp*{5=Ov}p>>ky|Ff5wyW}S?*KYt9xkuNC5#j z<-}$jK5tkZow>kcSr(B#++=BP#TCx%ttae~z6D_$s8C9?9V^W%O(=Qd=^}heHG)q^ z9dOr<9{7d;+T6s6H2lpe)(eeur4>syM@oDoH~ogzC!9Hm1tng9(RK-ox%qDkh5PS*>t~-#%eT5zq<%`=}HDJ;kDzLpH+2AzT*3TxUOZn(W4w=LkU**a* zA2uX%*BpzKVAGH#_rIB}VXUvT_t6NEq53KQhE<)cej(fW9i-4z@x_n!6C28N(GeX# z)|qc_5$)1U$mm^s(zve{afB>Y8rarL7e)AerZ}y%Gl_AL6Mc_@Aq#V0SBGEeCvPWJ zVt%SX>|}=u;bAd)t-*;a%5BM|{rXyq@Q!S`ntL;Qbjw_FqDN#4NRk@!9Fk1h0t+Qa z=~KRZ3xc)!2nlvqfQJ$_IVRmW{P=g0m}QPp(Y@s$`$k*U#(Tqj=w;gMy5WqFLjKdg;cPleWg&Y$t7{ zSoX8vfQj*B3I0njKVn>zf-m1BIw?|yYL7-nujQN;QX=&M;!_IYwubjRy ztp>Sr!JmV{|ESn3+X#Ye+=aL845$nV%MnVj zpr4YDT7O5oM+_=bL(N?~ZCiHvZTLRJEGGS#`Iq;|!{HF7#i;*fk*|&_Gzdz32HQP@ z1QN_aIOvJHc}uZWf5~ zl>DvQ%7gA`DSdH0E&HN2YK4Ng!o3 zNAHrBvgyX*Y~iFY1r2#c)0ST}gdNaxSDe=<9e%M^R#sU?cg(Wt_)GIj>^QF74!AKD z1<}8&#-Ojq0;b$KGXHY7Om#?Z(@qWWH*^6NAxczkQ`X%&T!%fry1L4P&g^||K4ybK z>B`JmOTK|ggVl>vB$!%tk+Ce^*V+LC<(O8bTzPpsUF2M0+CjX7gF3$%nmOQ3N#Idj z`~@(Gu@UQjRZ*7tf||pz)=+S&R}{;y$B|U zKZu9`?E6c8NlhrusFt@%*Qgd+FI6i`SFB=-Z67bdnOGUKxZbv z8&Qv8-Lmr&sJr&;uJqLn2DH>GV=1lk^v%K>6VIO;eAYpvSbflr>JX*w8u4E!0~;ZY z(AFG&8F&*QRDhReXP<`y5Le9im8O2P&&_*R-Sd0uMwfS5M;<&dvE| zwqc=qD6>$!c36@D=_nzt{v6la*oJ2}enxtYw5Q#GtU;w{!0}9S+X>cyXHL=Lm427> zb!!PZ=ft;PUtY6I z^Vn0}XTCUr_gXg0m<*V-utG+^61V>;k3E(h4f1JZ!3j|58b@%FQr$z zO`)36Cw=AL3iPWa$={X-XSI? zNEA=;{#aSPu(bB-<;u5=MDrn4;eq+}CMWdpd~{@`To4%Y^I94*H13E2uaTz$z|_Iz zp|Y0e2A&59U2(9!hu^1eW=OMyK8GhB13zT3`2aqrmI~Q54A6ur!yD583g8hB?;c^} z&l;_$FwOAtj@jGaP-KYdOAj|Ho-BNoFDdZ!7yq6RnmzbDOb9#ODgt zBEG}R=wa+vYa?I9Cuj%$kC~OL(OgNk-{@bqg*V`$DP7;*<@>Sf#&p%?zXH(5$N{(& zKmI@So<0Agyu2zv%lJo}wdG?hUpO~6{E^B9}F1D{%M+k7aASU$kqdZA%v-2@U3E{QigXG?lqG zxYGEW%tTj=j+<^@pjQ+z{-g-LSBdoQqFpNcKiw)Xsur&#= zkTe3YxVkA56}!u>p3*EWg8b95uDL32r)zvL{wQk%ueW@AQLhDkwC4wV41y_wH%;LDfWs{g{?Z5cBg@6%~%f9-WzeR}9!?Dkgv`wlJh&0n1& zO%tN6VL??Y=q`XPRVbYrZMazT%kJvq?;26PQbh%IhXsxaeUk+nSTl66r2!|rxlIU` z6bSh)XHv4$IVhqM=Kp}j4|4g>5uFadb~T^mmrfDwOVnpqSN6!robQuU&Luf5iP;r2 zDg{$-DnWUb|53ED|D2+FrhQ!xQtx9{*oD}K1J9!Qxgxh@x6A7YBl3-DTpKcyVPO(g zUnSU`dZ12kd@MIqKd_NQky&oeVq5XeX^cd4qd5N-jLRlwNiHug?RjJD^=bFVEJ_Y* zUj$mhX`Pe?Dla9cUIke}T+Jl0##DHg)GEGZUde`hVAEp&wf2(THVgE$rQz(ww;j(j zRM45U%t|DD-KwLno%Hnb>t|w>^l}q;58@aw2Er+KO%M1AeZTeHu+`sGWH-a!%0ASY z^kXfTft>#pkHH@E9%+WMdKBh*>puF?jZMEPe7ydLZkrbGq5O)a{9~Op$OIbyeo?jL zRHx7#N_3$&>WTe@@k8pEo3D#cKNsCE(%mnt#in%rIKvrOV=uZ6Nboc5eIDBgS7km{ zulv{vgR!IuztU$Kjj-TxMoQtN9sV%w-k;p+JL#s8T2_9iV&x&K?n*MQ60Sw(4RqUL z>`J2V%|*QoO6UUj@I%h!nNu2v+2Pm#<>KAaeK5nAh!v0|!bd55dGf~go4iw(ouVg@CFL`Bz1E@O&WlA=L-AvEGJY(Hyw~^Q z=pBd|aZ>&C-PTWRF{p!Z3@?AAFaQmpCHIZJr5mwjT%|u-O-^s`F*xLb*zz9%Ysc2|EHpnSpS?E|6)2R!k|V|va7^K_vl@zvPy%GcTBHWDejk6e!&j7z z_e(?HD#_D}+1-mhj<5@D&OF2B;M|^N6y^`A9W%kKd0oE@YxN~(#=DvqGsJ&F=na>!03Uye8R7j$W^V*O#OFt#alrYD;Fv2t zRA8IdbM_Bq{^mwC*0z-Ito65I;1!^BE@YVffM9FHXM29%R`fSf`s2Xz*{!%dz zSQ<226Y~i_{(&QXT0EITP*O|^@kkc*>mS&&Y}G~A@DWvR>^w2rwaNL-Z7E4b%*zO(ySz%wSi) z6F2GX=ujf1xlO!GMKt7B%(vYq$dff|JDszs=%ZER}FD>?M5+OK6&Olc`BPT zg@_fyfNUH$vg$7+nYya>q`0cAS6mQZ6#KHgB1$A&O~D{qmHR35_OT1O1JijjE1h|; z4=BnduX?tFFj=h9t*l$K)*wuFS#DOH-HF+u2CWRjWEZ#2Fd&=(u~tF_4A`8!*^DXj z+3-pbPs^{N{Y2@b$~Mp@g)5)0xEKaF6B7oYRIa;?JB6z6q%ffJZHT)mEdd{vpERkP zptk&u8~?-@5}36Yo;G}aD4vGG5YDt$8kce zOKtar{`57v$DX}6C{=LylSN;#E;eQq) zfMuo-NQ4I1QFnyYN*=kw^X;I`w?VJfx%(QIPbu#ePP(=7-%#SW*SG%D(2@eTuzHev zx$d`PEAL;(S>V>F3+nd}V~F#g7LVtf*(_xejOVm@FfTqNjQVM1ft(s z!h}iZ!X@O{-<6i4FEBq1`*{z{0&klqnzt%nPnwqG0a+AQVY4KrFbNBMuM?lJ^`})e z(V1YbX3tN*IW>eod?*yAhX5K_QLZU3RT7O9F}_-fZN1wo20R zz^ssvi?W-5s-*Uc>Cyj#b0dboJ^zJ3hJOln{`pENR@;x+s?lgl!G%*P|UKHj9ylsr+0Uk zn%Jqw4O^9uUP#~(f2<&sz*x{$*3I@SFQ{cJLJgwRBaBPcE=kf0dtT!$WEUD+F6_p6 zq|f+6kiGxwfeu2cXaveu@&pC`5LVO@Ak)dcypwdg>Ggijt0TE`XQ!l#^flL38uKj# zA$)J5^#WUZwjMEUXiq~aqLMTY(H7j*eqX04ObE)p--Am12!Hg0KKe(uqp~VCGl85( z(LXX6!vRrb2*(q_oO=hH_ktAt>67v;1UBC@F6nlAcX1w>tL33G;tP$Z+S-QSXlOjv z?`jbGex)|x7QN`(CpNIZTXb?GN08?+y4`p?1cNn>tGuY_?c(s)Brm(Gv?f-561M+#8?%4L4&i~Slg7`qAkY1U43vTW zILmmLVnAmO0bW{8^(gA`W!RobKMtJ30amEiXc{=NunqEh%+W z|Nry7K{LLTX|;Ulg5YdPOvU&R?p#fFqElqwEOlYPH zX?JPn-Pin+OZa^K-Ibku*kbZiA9kUMJfs4>7hm22My`o-4w9yL&`Z9qYudRrnRi89 z>v6X0*R_YjRWZ(PB0?-uv6<$`U$BC8aB&*_Ci>_iYRL4Qrl*N_lHQXLIND~nUqF7e zP0>E|6svp@V+sUxYT%JQOTR+%C8c`jOg*VUP5HT!8m}GKG~@EzH7hHRJT`T^Wj0z^ zC%#7%(}NkhLqC3=Bs%3aNVB4fH6=^E1B5G2a`0PT{6Mu}M%giN=#& zwb&DC6Zjw%{$e6MNq{B7u_9$k_4?eihqIY!4^VuOEqp92C$@PGD4=5VPH0#uTRm!M zSxcJIsY6xA%Di6L(z;MY7`6I*Ip#uSEWPM-IKOWj&mBiY$GER#WU1Ef{dUu>g?90!(1yti>3VEz)5YBK{HecIN-O&lK? zKPYp2Tgw3QG+zD;xgq#dN^BEF4&N^VxdMO6&)6jGKnGPg3Gdy-j&t3e;QL;gbYei_ z2J9MpfYi6Fcr;ao-ikPjvVJ|2+K`ACO5@j*d$v5V)M}jy|5bplak)gF@nwu!@t?y# zZu1smev`R9x@OzHa$u^1zeq{0K-~3i39B|BF;1;Vj65ZYlRr;6vD?Pw-a~jaZWKe~ zE}7q|pP3Yjx*Z)ZwlzX_0Dpvy?cV&5FM_IConrE4Dv}{ zb=HF~@BqiQA`FR5%CC@K#8X_`sqjX)K>J6Zef>3p^KK&hj>8me6diZH=0oH_&vsoJ zi8c?-p4EzDe&~Q{^-G}aoxD@g>1|MN%1u-WvYSLREhbi~Bv@1lmJ~<52xD^dS9qyZ z%vUU+DVnliosO6LFnd`+bF2uUu-_r+pDHTKipt~GHuM6HJ!%y$D!6-BC+=4Z1fm#^ zIOYo`zv+RU#QFNKr(1uyE=x)1yoMGF`GMh^HkUay+uJr-Tg@ab%^-fN_yn$#jd#cI zTn;^XE2+sTT7ZQDf2p1)KO$>$#sin^So?c-;rArYn{?0+fMI|iQ7eriWu-jICYm8l-o-ZzQ#KUYpyr%h+9eFB@KWbPO?rHOh z7&Me57_FxjkKkL~O;PAObCQ9WVuNtH2$#o41Ttc>|2(ee0-ZkVC;lh;7LWx*ZA6b0 zs3AXk3)QM{P`om}hE3k&DE5Ee23iW6Q50VhG5!2l)-*Nb>ZoUqjRxuKa|_4ULOet&P+XLe zhP1=osRkte?mFm&OD!ETzhS{LOD$Xcnv5wl5+##V4nU2suesW7hA)(_tzvRmf8QIqY#j*lJmBHs)~cqpTmKTlIX z5&Je&;xi6hkcJ0soIAfS8ALzZ04_+0UY<&2yqn*@!axm8l0Fx_U)=ZH?xcs+1S>0a9+4xIowxef7o{ohHD7iQEi5I zZRr@6yRBV&uXw}OHi6S}-x1WkLSOz_KmA8uI}Vb0O$y_+`yI~Ll)m#N{(kd^Ib#-~zXVOjj z#hNS_L6~|?ch!l0okSp)$NB%z;LrCEp;yiDrKnviso=V8-9F>4cLBC}d^#)n z8%?=#^IRhRchz&=MUIxh6{x_P-9w8V74|2xXh%O6l z&aZj)&eg(7=EF*$5)IAlA01nrao*=8PoZjdEJ0wM8QSy9CX+^zKWeY zGGO2xO%s?-NruZcdWSb^_@1*jiYmKMiRM2_JGBI>ocwR>y=Pcc?VIk61yMi{rMHM6 zND~3+B_h&9iH%;O0wN+!x`aePq!R%FK_yC&PUuJtJ<_E28hR(8gg}aW`OM5Q`<-Xz zc>jC$yr16xCl42km9Waa?)$vX>vx8JWk^{8;4n;0nrh`_$h-2>TLL%aEGygHxyXbH zZe~Jkf<|~@f60p@`3=0;s#d-(r*{Ca!-6Y-Bl?8Ju+(neZj(np4^Jdpr-2kj1eQV* ztyuDF-m_$QqGj={t*m^o>lm`n+kLJ|y~oeW5z`hu$ir2(Ljx?|J8l3``>^Cf<(kaW);Hg;!b<2GU_o;r3-?UXIlL{c)_^I{%zkjhD3 zfJ_*T_rW5Vwz}Y#i$uFWy;KdUw=YW?U=1us9#~2G+or76bHRJ3!K9~s=9ZI)7b`z+ zsCvzF>OhZd#iZHxPKc-8PPtz=94{$1Tg{zWRD$i!fT0AQktk(KO@=30$@!TIbv?k1k`l%j7 zu`qDm5~BSaF@vRKrqOLp)sjf&p;gVZkCpjN7qePj13~9B*`_YcF@eh*Uy`2;NgsvU_tJMA{J z$?Cz(?SYM>*P5v*XyGQTJ-fT$PQUeUx-QBik`7r9NCGw#@m7on-sUS>^#NB2?a^B6 z3t;IpNA~jV51jU8a1iXDjxa9i1W&%6lC|7V-}|?I8fIW01S=;n9K8R`?84}a{zSV* zYkh5mUS6MJynI&PByMt$Bq^u2>$#D9fXkma1JG<=NwP|h6 zcJA$nV(lPQ$HvAcc!~&q9ho%gEU^&@E_j=C*`*FdtrM)z+g|bQZLyU*Xg9V24fkYy zqcYrwegrdMoHc-q&g-CvzWN-yYvH*K>6`8>!N0UZlJ&f~;mdyLzHMewUURBkztBjn zbhcK`DCFQ--~pX~9!qv}brG`~pl+++HeAd#t?mR&$5~|UQU#Lt%g$YyJS+K zdH@F`bLx4@enNd_7W7uHwS{#{{6x=%C^-YZccv!%=d?~?SOAzUN#s;?A+-_g5UB#>p=bEQ8s&;)!Yv|-| zXQTt?^)UIOn>CesrD~05H%)ph`u4e7hLeUbTyCxX>7NmH`?Dac3PW(WCkN#&{1>>q zvaMTB_v*%rvHmi`pM^rC$rnNVB0!}l(H&=beaB5pJA6~9Mh0#!nJ8lx;8Li`dl z((Ln4Cb-t;BI7tqy4*%hJZAK&zVQzRn&10)7WmC{cRK2+w0{R5ooL29hnxoNA;$Q* zo#z+4rh#ZWp@xP0$Kj?cwo>ks+2~+RF5fbe81}VM{bt3q%3D*LchjzMcVfs|lNt@^ zVIJX_=i}m!R8O^MdgT9b^Bk|HqpeMwNY5rEmM4fg93i|G8rHb!vw?O70ogYmVs0wHqWXb3n5Fl zOK}9Gy8(ry2FZg<^_QrXa6yEtFJ~tuyM~`gKRAD`8YE5J-wYX`3@sd11!~QWk;;xY_QUz+0;NNhL^zp}Ewe{@` zckj_%w;fkK8pi^?xY`@ya?pXKnefB&P1aNK9{juFNy%vz|N$R29TQWqM7Y zkUYD3+ldb_tQo0pDE_vCFHxEG=KyOz1p-ZndjTlGf2>4aLR1dRz; zoKZBP8OIetyRbfCGSX6QH|!*Nb-Q$ut$x}~t?WYX?fNxIQdD&%0nr2vdobR)v@`D3U!$MKIT%ldFs#De{F~)s<_p>zs_S zMl8xu)eFqQ>NSU<#puKCI%qTkFTix9m`6K;Xx=immptoGk z-|7jdLffJnz@$r9Y%Mwx;UM6${2gZaH7|8WLF8xjE|;=(SegcdR5x>i`uc>9bh%Oc-SS1m9PSnoROp zcoNp~@EgN}^b%F%_z7ZEFO79|Gh;Q?Bz^AF$6fkV4}p@RIj1Q8z^RAt5KneZ7i_X} z0J&Hu!sdu(_{GU;XqoXEb6ltJXNgN!W?BBQN*m~o>4bzv&@PcOou&GhEk?Zj+82^V zQ%o0=laX|<%s;;QY6k$5f53Y%r7_|7cdZHq(9S`av4@~&b(?Lu34g0=Z0t%;vr-8G z3Ka5yz)V2HPOVMq2J&P~=a&Z-F^J@$O?oP9tP}nVT1p?a}=*zdvrAB)5PenbA(IZgk!`}{MF_y5^U{EzlV{A2q`sC<7n&U5vuh*?^=VNDfd zE|3oz4xn2^dQT=Sqb}4-!Bj}{I7=iS>>hzWDb&-++r;Kuqbf4IBioy^xfvuN7dO~ts#k5M^yQ36NJGC*8o;(3j6@E%We{Hw+ zL}NHH&t*f>SW#mV| z#?+6^qQ@%EP=voJuGj%Fo6yZq87lz#qWxKv{5$%kw$sl)UBX;ZKZD<$OTr@fSy_C! z3xMBsCM!8oN*XHQAchaM5b`n4?` z?%k^{Ah|BeXD-_^x35>}>EOnH9a|rK%2#p&z^!K%UL=^5)jUHsd*{!LaTW|RC0|4P zuDO5U6Z)lfKIat1(Q{MDsBc4hui(-!AD^UtBA>t0^WiH`!cTDs-}=j93echR$^dRU zz(+AV0^;DvS`KHY_4Gl~ zuQ#`(UNzRV3Aer2C8c+2=cU{PlIYfdPU}o?EJ>EoL;OH0AZx9ITnN+Ob-yr&Z0z~p zY0Vnnr^`3LJi~CxfC;Spll#QR4@3|lIXZXnK-|Y4qjR*mb|=$z5B!%R`O#2myjF;; zuKN_Z6al?p-MU+}ayOwic#)WB-(#h#{DP7_P}T#2SrEd?2EGl}KAdxY@pKa@x3x8= zOa8UtBipd}C5D|jjt-p%eg^njEP<=&;XEh(1k{wu`aYC4P#bo5;12k=J~KGJ7woSX zB?m2VpaB|N5P+yXXxe_0!bOy6?!GLYnPBXyz(bIx;%s*BzR~XyVwZXWUyC4HnRvzH z7nR<1&i9xCcdWBaAN=H4r^oK{zi5$;ykdW}NG+$YJ@XYb#dz!!wNh%WBwq``;2vs7;fZVW1u@`_NXv1R&!lww&TZ#V(yt&sYIa4 z(vGlk$fj754(DYe4p^N$ga$knUN(QXtQvLmb^H`8NxgBOBEfnY&PF-@CyV!OO=Z+- zHE+e`!NPMJ%F2?*-Ru$H7}biD8CDU&&=M)dX}vI-L~geXD`!;nhlit+)hGbxHK3q| zsO|0;nIaAk6TJ!J7PsDOF}{ttGI;6Il?LPcf8wUIqq)So<%heKOPSte?MtOe8r5-S z`7G`2s~_O7O{h~8>3-lMQ)HiWIe49xr%55GE`wbNrqq1YNqaW++H6&)IKkUyYZEzzBM>(&bm{ z#+N=Cxgp$c(xtdO{EQ)+HhWlidx4k08Ud^i5~lN(pMzMxYyvZGYyF`34pp|(>%6FK z&}ZVr%o0FhCh4`nRfa|k@cVgFlT}l~d-{W^HhSt3XZ^`~^c&Oo zelm56s!!3IL$LWym^(kTu1Y-GdBw(Hf0B~J%fj)>*H|E+I{*wwfKI8q?IW~H=~@h| zoQY@5K|kbUJ6MSf-D{@r18Q*4h8|X!y8gb}RCVePJtZSd&70ITda%!c-yxEGaTD$F zttU;;v>ARdEIYlIS~0V|eaNvXE&WnDt)%#!n!hi*$RFf9yC-A%8-}lW?Dx%4j}ywY z{xN8?<_Kr$=Re+%bR%S z%25}y%T35z@oy37&YBxeTe;#n*ZqD_vd%_A>tgDLf!bg}4^|0jgD(W0q2c%(a}3!H za^ZDMl;kR!jy7m9oV2(~Q>|3ZENY^b(B*gr4<)??^b-M%cG3D4f@`3<_3*> z>gbR5eQ2_~u~^+-E~zVVJ2B|_sFw*p+ZLPmbJi4nh{0E<&v7TweU*k9sHykJUBl^%c9N-5PjZ3a?v-+kt)1->5AwJeB_ZP)OA3gKgV_`#YeBf7m%cGX^vC$(w?K26d|hW8EIt z^?!d{nYi;<)@*Xq{LO+#c}b@3(y6L1;>~8Dv?o7M65WrBs`4M%5$i{G{L$+V_k2wZn*1Au3hV=i0prOKGP2r*9dFllt2p;$O&GY=2P-XkalDa@3OcKfBR4PSkf zFmsY{Z7rYW^udE`dM8aM5lrBhA+BP2q#V~WJm5G*BJ=Sw5br2NgWB->!qhl**nHr6 zuTcg4Zgb^0;CcsQX34}KP(g|!9@HJVxcp-v;j*>`vChH;O6%FoF2!( z^YLlqoV2O{^k!`kt;7A}a;5tvrMWW;J_1^^BQ4N!*S2m$t>LnslfIh!1?cNz-v-f3 zVLK(?SY6NT3y63LGl*|Ve&3& zP=V@Hr$)F#`1MfKQP}H{2;Lj7I75r8mnhotV|~!h>!hF)u^A`R@-Qaoq^uz{td?+w%#JxSN>i6ui7s$%^qV5oS~ zR0*?9*`l%11^~$8qbL1K@7Gg7H`!MYTzqb#_O@lDLF5cML}`4=h~lgTcP_%J{aFg) z*%4T8ppUw;)U^CCOU6FR;@~%(0!?p|L+)lol>NnvCyQM^Zht1C#Ys>CuyW_jhXFRW z8Tz_gQ|?(-b80^V4DP&N1J{Qn&8V9O(#AmC2;4b*E=8?(c_NSWPMBDsy{nZKXI%g8 z6(cM01lhFlaf!My%=6U&7f)ruaA)3L<+Oi7@rQ3(BStHSSR!D$3wlJ6AdL}ccwzjC z)5i#(YchSGMiqu~vIRM3*bbX<2^ikm@L^r%n&)bmiG-H+MDaC&+4uPBPCSf` zN-S0CcJ&PNO&P|?^S6J7{cOp>1r=RHSRqRE+Mpyeo3nr}X=sIl*WpI{<$k?7P}E+G zu#&LO0r7I?){`o8nlIz2RgQVRa;3aF)w?F67yJ6d~zfODz!!YLD*1v6_E zYo2feAiDQ5Y=|1kGa8p0&OrM@o1jq`X1EIJHc+>aAkb%pT~98`CvJv2F9>TIw@8OS z{=jluKX-JQ`yy%?`PV5jplFdCh%5*#+Q=Z?k7`sUo1NJw54HwxOTo9h+ zJ3cYL>0UxYK&-$xC370ybu{!#VTQw^UD%r8K7GhwCcM!ZOub&$5_n4M;i4Ve72(|p z9Eif{fTQK$d(3~3Fy9O^e7E%m>{B|d9VirqjV{n@UR!d;BrlL)XVt9$y5^-TeCODVJCJZviXnQ08O9e089`Y zXUGpH;Deas`CfGcmu%wV>-@(h26lH*<8oFbVebBD<$t zxkmn1cM-y(=~t4a<64EL1T{(Bnu?s4L^4~|OYi?cc%PZInh5ILoBV{W8kgMT#qfJ} zYv039S32iRJmZ^ET)cd*nchAmu$eWxk>hCl>$(YCsCUDQ%-LN>t@Sw*-)DDkRCB%e zh|O4G5Kl7X>A7j<=qgYLqJX+a@}m*A1}KK#)&vEIY8#kO# zk#kBxTeSwRI7xvAeBBS0yIK^nzs@WQtGRl12pxl*T-L~|%;dR!{y|JM=po~WHL;EX zpq=0+4OR=q6&N;5OAo2bWG`Obi>#6!YcuspoRNy0VfkUN`POt3)vz7LM3BeDM9zit zYpiP%o$#uWHHf$edd>?BC&>Adxa|oPZkdP(^F)U$%FYQGpF+WI%v#^53JKqjyJ)(~ z;Wkr(#dfpexJUMo-0jN!GQx(P_CfNJ)Dm^!OW7AsNZHvHGpZN=?1s0e-b)OK?QiRi zUeimPCL07C9SJYGJv8HgncY1uLlXcMCM*Mhw0e*uf}@__7pS=x2Rft8?m8~9p+rr1 z-aQ7_v469JdT|`C6Ih9J1bFe%C`D}`t+ycNk&U%;Rju&QBc!PO#;w#gjJ`UP!ag=g zUBf-6>wqh6)db=$6)Gdr&B*oa;8{EHG9CsCVeRi_MzmPSx$5|rJG*{Ih3_f943N6D z$Y?Q7NjpUx#u59%n7hH+t)Sg{{>5?(;00 z?k5ZxV?KSp(2wD)l_f;Z^y>C{TOP_Mb8~q*Jc{=X80%`Uc4_8(i zkhV~4D21JCR*WLQy$PN}vaAlz00_1^F^Y&PxA6q;*cx+J-^CTqX`FqCu17h0YB?DR zB$Gvu0K+#EnCKmkiz#+rT1T8MG-=eXu-=QT>o-@@NSBnNW8t_2u{bP24vkAD5|Ggp zKK#K=R0~aQ!>)h?&_uXar5!R!LvIhL0JAP3#oJpu1z%2-daaoolGl@tHzQF zvMde0S5&QIZ@%er&wxFGUy^R6@!bvO>&NQ;%Qc0Nkd_EwT2VM`B^$tprd`KtkKqfq znRd0aovu|*Z}eFdZH{FMAcBz}kH!=Y!@JgVxxLnoE&~!k(!(UKD8K})p$Ghh8(>G7 z@mvs7KwbmltP7{J!%_tKVbr^rpL@@7>hC^#K3fGDLDdkdwL*a4%t0|E+_GQ@bzU6w zQd@Qu@fHa=xww>~{U!HIr|cT!)eTkXSxp|m6kQoEj9(7fq+pf(KPAguEDuYyODJ;F zV3@XTI61O`ZITJDXD4akaOo>-ha>SJPMbG%j{D~@c#OP|Q9H+fW&f!eEh`H9SQ&a| z|E0uIfeZ%V_ybk~dX&QLXjlijEH8s=-<}2_92gq5-%Rt8Zy@!q}f`R@S_P1p1P8(i>z^}C4Q zL;uve|AFGne_sp#r`G-dmDY``zeKqMaF!uV*1jWiCUy3>sq%p1PB(~z#@COL$Ygn1D@FkP!uh^w1Fu#o zp7P+(CslYbSnIo1@UBFAS=kQqaG9~@xb9}IkLg|xSpw0hu1QbpVjExY9Y=DKrWNQZ zI=L;GUjeUxGtI7CFpBAJkkwCj0-jt4wmY^DhZGn4&_`CZd^OYCGz-b3YGsX^)Zzr0n=Xns(qiFO8>R`zPhU z6;f)XT5WU5{8Id=#kHd|HK3Oy@|;)@oQw1d!3hup%_{mlYv8>8NsZo(Lc&@}iP|x2 z93P1sq$IMzA7Z@id{4Qr;cVKZuccN%pFwUFQ=T>YrmX~kV4ipaAeaX(JI!uKK)E$V zU@r;c1eq3%r}HMYPfeyT>`Y7ugZ91gSI;Y~HboULMkZJXYil!WA&h{oy6Nfpbxl zTA>`#m`IAzCxDl5bNudyV1SoEH>rx6|3JSbeDW0d6|kJMo&~*4{Xu$y)`Tcga(!shXq*_kMsA^Yo(o*pb2E5ND$}WDeo*fa9qL=PGt8Ys_muAV3l5`Y+csyOLIK4}^8za@4%A zTPAawyIjNiRovY#!@~tLB8Yrf3s%CMgz&47G5b z@LG@Rxd?VBi#)5ofbjB{$phvfzm8GXN$~_H09AP26+CAvHs(1xan0-|wgaN;f&ECL z2@jBN21m@H(G=}@ftOP@?e4iRlKScSc`nByb&OABJ^oWlcv{~|f{+y&?f>L;UXt34 zQnxS@N`q*t@T>f$dkm}3EDcP%t%hQ?E@O$X^BfI<)_)U^qWfN;He z^epuAr!45S5ySoCsr8?FI>6(?97h~DFaycIQT6uoY5p=pGcNj34-xd#f=8$9zJ@9@ zi)4BXz+8D6e)AGtZtgX9mOpu^sCx@z`+hcewdp}V=3a=!F`%{M!E4-qIm!G#OBY}` zGY@$;%|h76B+N;kjC)*TTN8QUBYWihp7}kvdJOu4REnJ`g+!_=EkQ}(CHdUzrtp*i27&5{t4!e}j48QH{`Z!q0{` z-unD#f?7UROTgZ#IPIpve@&nmdI5kvdlItV)^=|47}b0)G$Pwwngh(XE`kQwT+V&v zyz0c|j-F%5_Rc-bhu^3!7~=z!o$vbG_u#J-^=d+5XnN`9Hq%} zV=IRHM5;VAbq3&e0Fz?@iso*)h7fDm^+%lnX+x~zLV)XB<15c&y0!KyH#zS;v@`Xy zrX-?CBS$8%e60BU+Ihq`{pCpiB(O(nxH#p+F6Gw9OhUIwgg>eTpTswp(-*a>hRwHW zKlHM(Rzrnq(v#xn!J)iJBJypyxHQwbXKyIP-N12uWXB}%dFwB&HL30>1&Td)9%#br@DcY<*4C_yK*$xE ziMz5Lpj+=_Y2z`Hdx{Z9{8?&k_T?JiIlZ^4!Ny11OK^>d#{L$)#9ScS=Wwg0lwkU% zR%gLl&;Of~#mm5VJ`$m>&Td=QG(^}tRcY=?iYlE9bL(JXe!F0= zg^qAKx^M+8Wy71QSf{|#{<;RNv9af^$;w54J0rWvG{V6HKZC8tHbZz;>t*|l>`USg ziZ6tuo|-fJG&Ulv5ySn89=-{bLU_T^>PlIpJgrYXMT1|>aW1ohxy_~N$Me;$UBaYx zkh6$#q)wopc&T=Vsr-=eeO>M_#i?qJY3`csa@wy`bbyuV&13s^bi({(@Vc*SVV?~} zX%`8tLDcT;sQZ-UY&hUMcLCKGo;lL^XU=(HWEQ!pNB^r%qX?fB!^4^|ry+NFN-gk> z%-4?0{yn~M^BZ($jz?#0-=w&ozQA=PlK#{QJYLJ=K(STDoo7Y`d@0y2am z48&%ff8k9$t!r$LnAQYWad%=UCwW)I!d-;o0HgP%50|;q>6&>=9`HcEon#xwDAp^$ zgbA#H`vzXk8f^s`*6j)P$x-pT-F;WN7q&J)>HdNeX@xyv%Glwi`^2(u-7}pFZqN(+ zkhAM>)uD0}BM%G8Un#ZzCER@1>V)_SmGPcL9=hHB;tWD)#O2;ueCJvcbj+mjt#_o5 zncIfd*8Mj#vSLfW2P%bK&Msn3srHuyf$ymY2f5*fXl6omF z2lRRs2%N1hOxmX?X>9RF59zHQp?<=1a@SIpzG)T|*jT;b8j-T`|CD0^*d{0t;kd4V z_FRqw@TM!7gOo?~$0W6C^6u_qj!kxkp)0n23?%>JSZVIE0V~h!ZR* z>Nm1EiT_%M%*7y9wcnL~!~1euQmKy;xq(0QAosOb%i7QK#$Gy5~4aGoK1 zf@r)efwfunU1tDj^YnQ1a6&ensNl^D7tI#*GfdphU3q_^stCbC1JWM=aSZVcap490 zD#}XNuQM4xs=kaH zWF|+pi$uNZ+GvSu*)dQN%`;u5PmLr<&MmiWM_H`<#?K+c_rVulhB_PelYzZwzFRC}|J4 zctt;5l2nsa9yec34$|Y5dC)SlfZF6B-+cjPzbcAHzfH9SG2SA%B%FY?-ip&W`TC0zG;*gra_gA)(A16mlwa)h*m zzmd4`Of3kWa)hkUDowELJ=4@J^aB;y8?3D2AUr#R^q3`4sj;3Jzx)OUcE%wY$1)Q_ zvJZ{@96Sy(VykN^z130Q>EV%|9DFqen-LE7IjVIw#N8yHF?b@Rp=ow)el5V34X89( z$Owz!u+30LiWGiQlNVo5nQ$JL^#$)x^@&^VHi_>ek)NLb%87{W>@>{90-MYiF$Jc6 z8WWm@=b|p9bJzt%T*;64e`A*YcYhB4J^W7v@}COif0Gvek2zxhRe{8agJ+B2*MP8h zVEjA#qMmtpU*I?q%0Ft^?vXjw=^)=U?()4&(bt^&o85y)pU;0KavW7c-$U^h=tBi0 z6X0D0zy^rbQsb|z%l$C_+Bru2bM*v}6>pz_i zo{i8>_heXEYP-QDC()mH>%m3$=G}gQ=Z}6AC&z%8TwNuh&U}=}5ETdxECj}Vg=--C z3~X487hJP3pnO62G^ykN9Fj0qMQ>0@=kyP7t51=@Jjw9 z@LdAIhpImi!%~<-V1Jq}$~0$`5&%SX2L7oJ>4>!g$J780HNS^wzCn2nkb2|)G<68h z{H7xuQ31hN^@9|dAHH9eCTH&JZ#3baYwfUwl5{)QrVp-5 zj%7Jb|7lTCc+J5xn%96^BKyz8_1IwiC?h4Anh&1Mn>kZ|HlP$Bft)g#nPZ5Yo4PRB zDx@m#HXS();W@QB2vB{MS*E{bnsB4rw#Q3>R!>4F@smHArPU24FzaV1vBGQBUA-hf zusH&joLsJcBD6}bYxeRz*q9;NDPPHRQlJ?S@Sd(9C(xP-Ao*vpW_ zfSUN&7iV=t|Kp?q?6nY&!ZkN^lH--_Coc>y*Q@Cpc8{x4_m3D1Ae@E@qRT2POZ8k` zk6(}L1b{f#wGy8_YcQs>i*I1R9B}T!NGt_PTEutGLPL>ZaA7AlGvRk+=@dATNEjhq zd?WD74m8=iGu1%;Hcw~cJD0C>v^TGPS*>UF@Pq2g0*@2i}?woFV zALS$os20u31fba1!!2Oi!j%#lPSMM|T`c5$pd_yb08`TMxgAs1pTC!$_C|6~D)@~% zcSat77V&{pjw2T8ymo|oiubnxf;bFz7jO=unMrp#ajd5esujyBlBlXgdF;`n_2BYQ zGux)e@7s*d!glcwiGHLk!hsd-Cn+GKY#9H;vfF50){*%5An_$z4S!hg^|!CsqvrR7 z|7wYNzGhMRrzPU1+A7iEWwEcz@Ez;hs>lkX&;tp7ERWpd9YWD1j2%T5=X#bTqg{?4 zd0WNARQJ@xO=G6GcMRy}>=q<{O zDb-I<2}ptS#Uq-2rVnP^&+~nQ?#aFr%ywSI(o=;kW}?cYM_Czkqff`{N=81ii|}!r zlv`MF$*LbQ@)J1Q4p&S}$_pI@`3Ig2?RREx4kyQeQobV>h?+tmz2JR6}QRuct3q* zj`S9ZpBz%ToTkn!ct4^mH^6~^9BH)O=LsE2UdAxfSbc4A<=KftniF}db54hkT$giO zY7ZSZ&WKg1+YV=^mA)iLaKHAvnA2~f51h)gz@qtItKk1b|JIhyb0N8Kz(oA&zB2#S zZ(g*>r*)LWV~2!Q-o-jOx@`*#yXIxzKg7s4`-pH&l~hY>2JILXbk;l3FLMzF=cVVa z(~pX~>EE;DX%Guu1V16Ekd2>L`$SWO=Q&3_eT8Kkj-)49nO#MBTC)4pWAEtpwu=tm zqmy8HHGK5>f5zP!)pEO?5oH%9s5_9v2w`@=0B^V90()3tKxT8`UK4aE_*owG%z7f=L8Tb_ zot^p|*!%HZ9!pfz3Ff@3+N|0SMN^8`?UKFiljhRRwUqZwEl`)OX;=(*!uX9N>rPpb zlBo)_)GV3vI|1vb=7|u}6br0Qa2kf_QCoLMkvE5H0d#^G*^kyYQ;Oa^H^V~Xa^mE) zxY)ZPQ=1p9I=xCE2Ve21*O3k`a_=>5Lg0z02?*_-2Cx)6S%ISHyb7=p+w7g+Xm?4Y zK`1?ghRCt3`GCr!9;Q3)0Ni)WIRi*>5>>D?B54ykn~n;;SAO@kH38h0$znlfLUJ6Q zDhvz1^s-m<7$PV@MK`pJHjdbnT?LaamjPLmSN^s|JitbS2Sd5VY-?36u7yS&mL8$- ztYP~y9KH{*X2WGQ1$_5o6|KjtoABx$S*&IH$7G8a`924!1)ZXmI%iKiDkY|9%&i^_ zXo+|qxN@alO!yEI-#Ph-nCiVnH?jjvt5_YWz(=px_9O6yfack9|L>bj@9;%Jit*){ zJim-2+V?i#J!_~UpNQ`%mY-a?$EFP>BC=DZyUO>lq=d`>SGI8(EU13*t?`rkL9OEa-!ElMfyVrV9k(_D~k z&uIysI!(hO1U5Yu962jL0<{`0;yn0Zf4SvxLwtA^*0eCWjQ8EG>2#4D7NHb-8&I9)}1$1PzQd zqS#4!tv2+fKM23#{nOWph?UB|Y0Fwc&)C55`N^+xKYxh1GEO8Fp>GZDS%WM>H^#f8 z%PHX9Uu*2iDnx+ca0UDyZz9lt+yE05&3`eJps$ypK=-qZ;@r=G+z;(NrfYJq2%8m_{82B+f~} zIY{(>zmosS#WkTvm8x!2&dU?!hAIPs^+v8+PiZ#i8GN-nZy08S?oL9{FSc>?)vRC4+$=pGH=$|uxJHvlJ=WoCT zjCldJ4mo4pS!?GqyUUxn7bA?BW1|01-xVmIfdrXxgfsYvdk;l9KaL=NUk zwdjKzCJoNESEEQ$2cgz#bJy~w)@uCFGMxjildfau2hRDXQjqn;dpW=9JnwY>ru)W7 zmct|i=Hp5REHFs44bvD&I=N<}W;2dOYf6zGPv|Ggn>(*-pOuKC(;o@Ms-W5b_Vi0! zuG*Ufvsl%q>>wgv($ETZ7xW3D2_E0phhw2;HoCT{)Ao}wS%a^Ge+s|%;~!bTY%-Cr zy#TzzOQ=@O3+7%R#u^vbc@$(4zVUl zvV#<^7NgRw+E`bi_4^cml00#gVDv$zR?p{b>X*4G4WK#mx@C=}F`1`YmnD~oeI+{3 z@kYHw)9UIe|G(cLbuo&+iVi=l7&ogGntBbXZT!0PiQyqDPg~j=!t8a-m#lS8E?$!Y z=d+6m3lRF&x+bY&L-t@NVW8p*w2TR#G{r$Sk>ryvKrCmsTegEa2cV=!E~tC`7d$If zAM86`TI(N=q1p(wPbS-w4F5g|Wq|P}sEIpKAhuNz&`}U@2Xf#R%xRL6=*{P9S+%dh zB#q<^1&=ihN%S3xI5Ylge3^%QDm2H+VZbeh9~eh0XyJLJX1v~J6(I|UjoF8UPoJi> z^#Kcp=F8<>72_`@Up)EJZ+_F_{gbG&SfQ>LUmr)ka+(0+Ho+ArD)VayfY=6;BG%_7 z=VBb9%~F&qB}@VYE1_X&`N)BuiFw+Y$PAb@FA~uG#%TRBw+U4<9yu$K6-?63M`f{| z`Z9b~$}!ItiB%4+OL^vf~E>|I&E>Z?+;cK{0}E@az=JdP}NkZA>$y^zKf# z(EQjV7W0qz++$L{Clr$Bdjv_gI85kOb;w+2v6CYMV|uc~hv14U@fT|-xs;>Ccoy@9u!+Kg8tg39ujgOf_Z3m&1m$&_D7v(V^ojLD zFRioV`~wTc`kuqin$`8n*uc)*r&;@-ZF;g0BzkEEt-e~>42u;(P+0^PQWB+e@?3Ow z1o(l$LOf8Qi!*YviIChe`1K(E!dcZLiZ-&QEkw-qXPYM=vw8xTU;Mmab|J?b$k>fg`#-97{cm5A zbrDKqv$P9k!c;z&4QQQCW51KjvJ-3ki5UDT3X zRWklH)qE5m_O(=y{k*#s1BJbl22sO;_pv&_UuT^ON!-33kwMA*b(46!=1$KzkR?Jpy`QlPvL#e*-hGvlFgtPG=KR2S zuw8g{V1N(Lsi$hK$JiD;L?ZOjlL051kGMiSoggeETch%R&jL-MvzZAW#9f_FI`s+1 zT+7bY0Q!mifw?9YMc#JKAtI`i&x?bey_;@7%`CgC zpNI?G8`Wa?GPJR9$RaPF(;gD@#d7R5X24xBmdXx;QFH1q(0Wv#Ah=(EoQ5-z0pCNP zni#I`9+)Rx)Mf+k^xr(zI8pU(fFw!21t0yRyEr9#Qcaf0tWCHBt*@hMr%y9TjL5kG z2x*m<7lkDvf5A-%Twz=2!a|C{+?U&yd3j0l);7~!{oPX0L#cX~zaXnbMncx1oUTGO z+Bh%$78ZVpJLBEjoSvg(<9P}HP?Mi)^zd)m((ON0uSCfYU%Y(SDbl-?&^rk=km8-L zv-fxQ)^+b*=iGDl_d9p5Kk|dTyu4-3G3Olf8P9messS0`_di`3#6ADsh9Li&6T9XK zY%tql$}vQ3NW~ViW>BN?a_Bl>qI1iuUKvZTQ*GLlgUKo77?pT#BOg(sc>0rZ@9W@D zP{w>!b4@p6j$i*#3Or-Zz^S*-8SF|uNkpsXs*=-vv*pQ3mWA8XyY z>k=`W$!2y{5h?~hoyH*3i3=asHkq#j*=5858+mWXFq%P{XRP)GoZ@D}`DG#ectvTs;nl%TIsmJbdnVT;DnHohy%;{p z(ILIaS83^5Uh+muzStEZ1?D=ACcyYX?_*LLh-Xr-n#IT$Wc6$utDd}#nMl~PalN!>x$!-E2(T`n z5MOsxp_O7Z3SO&;s3B8&g(JKzL$lrc&+h08QvwXjU%O2I#dPZIhAKvNjGr>lR_*fw z2(!-hc}cxN{^4HNudl`Z?)Z0Ou+TqYM&1+l=TCz?kfk8wf;b;3QL%Rq!$iOCi6|-< z;NLr6vxju<@V-}HPlvpC7XkY)X{ml{{6wl~gcC%t85K^pSdYkSr!6oO=aRa58?@7I z%kCF?a*^Y}X$ERkG6|{#b6;KTC!vzHneG3xUo6C<|1$N>mn$W|Dyv3-@p;`1U@?}yfkG+5X$DBN80gHIA z+)B}w4sj_zFUa1VfxmXpjTcnGJ~(?-$a*i{+qYP11=I72j%`EKv;2DQ4+!I@5zW&1 z`+f7vaQ=_Y;eT|l|MR^6yS4Jq_WPgLe(fH#gPM%1xubZxpYV4``zMJ_9*PYaIciWz zIG_pQNJAo>%5v%T50Tj~-$z~e`X%99nDt7RsJ_}ag96W`^)Y&e>QNBBCy9rZA3@mm z@6Fy9u+?BZG_T9xAt7Z zCsQ-_M5q`od|5SAM-PHD#01jP=u!ZY>`@KdZ^IC6KU%?~h?+a5A)+LvyHb02G2%q= z#x}wewpCaFjvFn8Iz$#lOH#~6Rn)4DGd*|u@CCEp5}1E2^Kufaazp)|N-YHAA!{&7 zm_Gx&jWd)uaz~9kW{;{cO{r7)LK-Uk%P5>}z-nlR;|uLHlagIot!p+n&L@(x+328h z&xAH(H=vb?KLnHli5b||!L`j5(iB-cpxz9huR{^1K<{oQTxF zcG|^^eVF2oS%7_qs1}Pe_Qd>#ste+%aFBoZ;VGbRiGk>X#Fk`y`7qtMa+3}`c@A;v zMSRTK3hbTKANyDAnjOp322fY#SYRth^fWPC2}Ix;fpwm?HI1W4BYxoOKRpC~x*!-T1w#pj{d^%pd_RbV=zm0GFf<6GHDiK~ zYMIhz{QO2g;w687B}RyK!e8Hz`CsJ)afkzekEaU6aG<=V{X>-3IwIGLa`S@gjwg3^ zB`zP4%r+{p3|8ayj22n`><_(meuA9iyJ7%gDM-V}MQL_Ikmy8S0{C z9RK0QX8V`vrK2kh)?Dh<-hQ}`%7>>DCUwi@a$@4P+v=H-@9~f9s9aE%8ujn+f~E{Qo`TBgTs@_}^R8Tw_=V|=jjj(iMNFds%2`H1f>rUA#)Pa5+j z1t9qAO179S%{z!Jw-Lcde?>6O?a11rcz@Lcp3bxjqc#lWx9Di+=MJYPm=`rtK8`(r zMroQ?5K&0V0MYTWF~>l@K96@+dtt9^Z!atIPTi#P{8RXli^@asV459yqlSZvcAYFc zBtlkiG&B3^u6AIXu%9w5`{FC5TgXRW#3Qs1zz3Z0yY!k8GkP|x@#W^)jV095QdEmv zn4pWA5yL#0P>TscOHj&2<$F+?r#|2PR-k_-a@_b5eDJ(?cE!+CwCY2MY9{>+#`2t8 zOAbi+_D#d;Y+8M6x8$|^Feh0Rd&#VeL#pfJTbKn^p3$I{O#iK>U>5TbD%WO9xiRW- zaidF0=DTj0sx`+q{&W_+$5YSZXrY*OE8Rr>Fzu8V7$e`ouO~}RL}~dVc`|&Va||_+ zu(Jt<@z;YMo=AUoB6S49a(;&@z$U9_F8&Q{@}GrU{?Y$&d~f{|mHZQx{3lr2w*P6U zWFBGUHHKN0htZ15QyG59IAuL$(mG1&V!SVCbbDZ>-Xt?140{ENe>>%zu3Jb^4%;b% z8A(PgdkvifxT&HPd3b9|wr)3_(lk9!#4eaJpFfTY&FoFsd<7=S#p74=|Z=N@+TZ)g%316J;dD<~yDQXeU<#tXH!e)$u}9p*bS&KfYcPL{DB;B}_k;Z?6p0Lfl79XoCWSk?3Xu3CXy8vZI_;b+lS3KbBR8#=y$ zAiJ*RF`C;3=RlSm-nx{olmG0jPlg|?_!Y0|n)?yW4^A8tJ+*kOstg71(!CLZL0Sh< z<2odJH&H_TRwE5#oevWzw;sGr*V9#v5g|U)zuVbU0^h{V3@!g^0m?H8{74}^__Rz zQeV}pia$1c4U`amWZp&!8DV*bmbey^eWXKH?7nu|wLrU(kxbUgsPZSr7Ar^?T~z^) zgXU4SAVF2ATE8RuoFmU%JFw`JNGbMFef)5$dw8{aqj4wrpwHX(e)EmI9_hH~iv zh7oAN&mj1Sw}a8%A>MZyT)hjz;>|JwEu3K)3(nFdG@kfrH0qbGh5gQSaLa4zk4*>c z&CO-+N@EOM68BXljYnwg3d;C$^4|&za?=dyN#+QpYG5Mwj=fFnPvf=tQJfAo7dJ(H z@6_2|REcd$y-jQ}+B%iF88aF)e*wJ68s!0JuR3WVU(!BiJQrKT|5f-iG3Ac$@?IjE zyb75teNc(mTgpzFtuqs^FcvEhu~AMo2xb<|Y|^T*L3&w5IyjY#-(`XHq*)uY1eMxl zoqCgC(wsUxc*cFod7RcFQphIlWp&u6XPCf-hD@V(?3+{Eh)K5#2`~_mUk5amt1sx2 z(BV6{MgJ*98_v;h*?nEwnuE#ZOBAWCR??C`BG;Z#o^2Pae4y86o>~2FVp7vsSBv5E zE#DPJ%XR{oVg0PowG82|Q*vb<6+H$U8xHqkN5^UuJ0mXF7g_kmzGZ6N%fhvh#P!A= zXBlJZdfI6sF&~tloXg%M|2mog%>MJ}?Aqc`7ioj3{?c(!(wtPU1>V540c5wghl=1M-hy1s7^FK08{@Id0e2@P( zZPJXMLl}u2&Vf}q_F?OPD1bAM1a_b<#Lcv|Sh%}|-WX9AF}?I;^TFVkL#Rv*zRQz@ z*TxJG!?A}#D21cgdBPZ&4~DjP4BYBjYusgj-=3>o;0D?`GjiyH# z8xG^W|dnE3u|Ji;zJ9+XYL^#>q9A2^MhhXH2-;==~*nAPKRwSg{t>p#@11i-SqIbrAIka;F;{?XNoG)H@$&{X z!^@Jh!)s#?fM?xL2ur6dN({xctg4t6+CV$8wEd9`9VG)mqZqgeU}GgVx*h%toFXDl zd+m<@4zVZzJl#ZhuB{%#Vej9h%MeN^Z+e_EjO3^-@8so;ed;iFv;#i4T*t8uRKCi* zy(%CR{^(J(xy5=AJ!uv1ub)FfR!aiPYVaid6Wa4WSKtAi*>RU}fLp%V{c!ljc_0fa z9{f?YD{HR5xxO?KF7X|5n59im^Y&Rfi~rekqY-su^nUGI1(PewSRA5;^x*11A9^w% zhejBQ@O)e&BtgNBK9%#evI|8RbsfERJ>6{ZB~dt7PJroMYVc`ACPXqK7c*aIGa^?& zCe-Y*C?@l5(>4KGX4hH{$Hq-Thp4IOMR>CrVxCNuvw^Wmijbi}-I8jx4^pH#UQ2M@ zX>vklgjav*Ts1xA;cH~#Y`~k|=DDYEFfq^G1|!xF!zHgoTPkA*M&)80hRQ)B8BDRX z{U@Uahf{r;wLe~;W%R>IiT1HcJ;3gYRB$*-%6f5fRG8ghQ~jbk_Q# zrI<0EdQ1Rpn=3P(rrs@*v%(dc^~^AOiyT9_{ZO#^E0e{)rAX35>4^kK*wbMF)h;5Q zT{d<<3H2sHUOoqxKUCjAKSgx9@^S9KU1b4O) zBnnW0b_D5qOCXN5yo=}<5YNF&NmpqrsoQMN1ahH@_s+fQTniHki+i`L7A=6fM#(2b z#|)mnsUhsk4|!)r|Dx?V5M2l9mqK4tJOP_cOMTDw|x!neY{i(9=$u3z|dLoQAevL+KH?<{+3?p0{jN4K9mvp=?7&o zV*S8LZ**&M*{G10=62(_wdZ^)B9H+503i^whsH|6RXb7O#Klni_?eH(7LU+g2wrI& z5i6~GA{iwz?q4NJ;t4WeDKUp$Ut627UJdTUyjigdJ`SdGb4b;1Mj#PFZmEH?($2LF z7?UlRjnzK~A6bDbVMl_`G%8FhMzF{#*c&CCxS1h$?RANdsQcB1V6)G9*R@1PAWD%4 zZki=MOBToB#So&{-tAmF@*?sEOeLvk8Wq=$6e7%4)(?+!ykwjKWxh{R-ga1T+4vr+ zu8E?GI#LJx=N$xmN4z&J#sxR_u{*`c&NJC z(KHpG{w!8;2Q$P8!nNU8iSOedYWYlt*6Nu&trHE=)EGPRg1#e3{MYKf6McSooC9hexERT#&rygnVnGm`2Q5ayf*s zqAN+&cicVXGS~c*e|> zNdWsPcTQ1jJzFY_7YUfngFQnaxAh_;P^T$pMiEarv)Ye; zYzxnpTupcCRnC;Ce>qH<1{KGA@kH2sXS`+vyoVL9K@kiA3S^ z>=zam4u^HOiw5w%5OuDL)8+DHx&;VGkmT{`pk)#tJIa)i|FRH&4Nr@S8Fz_gBS8a7 znUdHgs-xo%J6XMB*i7A_-B6YGeOMJ%VPK)o^=f@}rt0mj!#@Vy zm05s;iU8nkYYLtlARI0LB<%6DW0dAQ(uJeTQhtu?j}DWrAvP74*fBlPz#C4y(c^By z*wChFuSnNm*vtc0qkxw-tNHam>!tC=9tFZ+j=;|Fhj4W6E}EOcy2PmCCij}-7P;s< zq|F{tuZQyBTGF1{68d10hn>}A>;hY$qwfGH+PeVOh#5hDbbilx%J2E#&s9$2pTcZ7 z`lEX)<{pe-0&|mEf`ZPN4Sf)jgeh~G$1Sp?461G9pmpmR?U;O*ULevB-R)3qN^70v zuaOMru?p@BG?;G>3!km~q_mwbWiu^S%!b$x4&2zU&*Q$GtYfvDiMN zMtDLZnCJ@r6je58zfr++<5a>|b8|EAnS{-zMtKK>LDigiQqOp>kN^o>N7OT31$xQP z*Tk@M0(rN|tncN-M6`x7)7z5ldKbI(-6ODhDskzt@%7?JtGH3^PZgz|Y@~>-+iPql0~RGevaQU$kj&> zqw&_vX6s#^LUd&6VeReHqM;SHcY#{lhlRY}v!D1qA-ey>F&Gr^kZ$ zLcG1*BA#;8gZ6T%>N{j>y$iEC=YwDa(FYJ*8rPu!lFl6!BtR_tdj=7tt4o__hW)=o z))vyiu&d+}g*rp>tSo`*X-i7w2!QQzWi(p`^3guM@pW@s5P8ixKwLEfX>8 zT_5S663wJ)5&5zn?%t=;oZ4mz^b6fv5{+wau=(9jI`q8m4fd2`e9bk z(`gh1MjbnN>njQP=@OTP%HFBVxe5|fySQf!@5#)w*eM1%rT6ijyM4aj1Mu8` zin%_f$D%}1JzLIq3Kte#j;LFgQ?$Y@XUpTaz42U? zm0sFORkO1lSYOBK%uIr6x2o^dDrdVS?o%u%!Vp*rjW?z^f)Yjrkx9KNF^)FK1J!%% z=F=fxlp{N1;c`WY$ACRoiUuKu*0~R$wNS$}J?PH|&>kSUA;;kco_iQ<3cF7rK7WTW zZ}V`MBN&qEmmy7J@5zo_G1n!Sl?(8Szj*zdj zChR(?lH=>ZXN~zzVh&KKHXCHt+1D9PAqc*BQqPi{rP7 zNuDm)XJf3Msqg;(Y5nJlRQ z75%|3)5DPWkTEM;um{Sxwcwa#SOt9~o&fyMpG~)?9W8-!?mpUQKc?a;jEmJEys-sR zf8TI-4DX_pvjUUn^lL7jF)4J`etN9dtd_yDFqD)wv!(K^KQ_ZzFe#}xCfdeO_?S>4 zBR095hmuXz9G)w8e>|cPQGe~6mgA=O(|Y*e##0XbFl>IAqnQUSMt0A#6vPJQ)8U4f z>?!5N5thTx9CkI`67tzY?TMWmI+5T0*koYT2fz4uIfYuk<+f$;nJAt9DHGmBvU|5> zGWDUcb927&sl;8v1Ao(uj9FktLUFW6aN^(YKJMcHhpp8#~H(_2WzU(5=TWsH^6T_%lW15H z%<~w&60j`IVSsir?bd@Kse-YH{pI^#ZWg#ztGx*w`J)dB{i`8y{2%QI_OoHZ{%a?j zKQh6ADK7{KmM2^r^(7|r79pI$vb2MX0t3PYprku}Z}Ad?1;nOnK^*ay1N&M4z6DFz zI1P%%q+vv897AjpBn*QGTL;?`bQ`8|yaCvM!Y|*C#7Z$Rnu~Y-?7x3sJ$`qw__P21 zI@tdlfB$cczXCMKI9R?|iU4s+;4vg5;A>S5nRKI+Qfo7&6?*vH=2^~sGr8P$nV@lF zFNbq$k68xFn1aLGbjh025fl>7-dPDiiq0XQVVu>{2A@Jdcg~tnc=AHFKdXC z-yx-TtA{F~`)QoyL)So2Y=L6oAgH@&4WJjKCrzfr=jiSC8{lA)j0-WGfoc=YvPLU@~L&#)Y2-Tp;S zV@9c}aL+PuQ2oknpa%Z6YWq2C*h^b}O=0scl^W`4Ybpa7Zk=>&r>b zSpP&hL=rOSD7E?En__(Z5cQDu1rIdyp3rGNi$Ia^$>Mtg&w6UMur#hWm1j&}w4LptRp2hIif7Bb{kQmUYoqxHbg4wlatg9aD(lAd^nQ{hn_oWrv#UW7AV zW6~PJ$gl8MN1h+>IIQA}s3nlJ-t^u-`iZ1a!@KBsK>BWem+aVfm$QQGH8Pj4L$^kI z@$b@tn`iMh8n}~a0~+S@VyN;--#(?>VFnaa2`}I7nY<;bP}|KRFBV2N|M_wj#N7;RtR`_VE=(eh@lHZjXa#H5f*on`xS3at~?^%YE z)rc@GgPjtOV4YiXZL58!6p8VM0A94B1c1!s7eNGpc7ZDV3*n(gtW%sBV zuCmN~VUkoBf;`=?E^^Os_5;k7JWk7S(tI(iSR&&5xJ0=`HESVikMXefe83tZ$vXYBV&K{;JWpDksWvDzn+VHUj;B-pfHs?nL*x7M9i;zhp?GXPMloG z*D;?n=}agPZ*ngR-WA=i#Z-C8km+`*%$e;UAwBJ|?d3ZtxH0*{@xGloZIS}J={h~f zdFLkTU|}~DrOuzbyHjS(RH-UYdJES7sx~TLYjwqU*m7%O!eZrI53cLu>tQ?wE(Mzz zp@~z}M+qSeVKdI^Y%g~*m)*c7)3T(n_|h4u*Vnx@0@gFvcmK*NM00P~EItz#=0m{d%3ksa}WY3*!->0B0F~Z|s zFFp^M6AlnTsv)8u_aGnyQfqpdKU8+#R z%?E`K`kJX3FV-43SC|H$=TLjzx7|Ii?{Apa;bDFOBnbUdLKdSmOfrRU9x4aPVZBO# z|I=0wMSVpQXIu`fZlQ9y!s)^RggpSj_=HstF;LsAH6pgQ%A(xcE=q2RT2f6tOGOJNi zh&~INH;Mwje(h%05RdkG`b|^7`u)VKLBEHJk>{aWZKn88)Ps?wK%qk=WGvS0jU@A> z?B&{KMx6A(K#iqaD6`UYCJ#$JL9N4VBsj%>xQ~+&y!3=XLUK@ASvvC!nvLNL;ZzB` z;;h)f1k^23{$yP0H+35u`@Kn=TCyu2FOR9Sh`kGfcpNQ{`cJ8Qa#Ud{r=YZ_1OWEU zi-S~y={LsI37=8IYGC;0e`klK7Yf2#;L@(>OsWN zeQXI^Ze{N|N~{6z3&b1#$9*K0cQbbDfmhBZVyMv7CAz$A{ucH3D=kcJBYdLEFfJ6} z)~aCi?FJ+w;v4!EAY=`|w}?=NpTyW%f-PcwW7_?WVhm^yO2Wq|{^e$W*8$s2-YJfUOb!rk-T>s3PKcAF3?V+cI|np@OL%2S`qvY7ao|PV~?~!01MY zD;)_hZkMyO#@~0mnEjwakAZ-x+Nk4X1IA z-jrN?q-0t8eAi0mJFM73BYR?m@lg%Yf_Yz69W|zqnCy(*+Fi2`^rJ4@#sdW|MT%BR8lLQWVDJ&c+JK=Hmg>!xiKAmKK$YQ z;_}?kQ}*}uk!+TqBE&31_X*ZJ3$W3O=&w|FdOluXr6-nZk)id^Rq+0pyoqj_rdZLj zXFbv~l_}@xE+h7m8_@?PpHDoXpQcz;F$75FkC8+St4(yVYIsWBk^G#Tr+55B1)~l^ zq`kz`fcj|G17pKIl4%<6rtE#EEE#tbXSMZL6;gqK`{Tr)2NVsU41U=FmrBEYYfi>Y zbM~xckZ_DExW}0J+hEtQny$zQ2GWR_Wn09Cj16vU`x}Pu4rDJAv zqR@oM?lf)oE3S#7oBC;e^Ilv;KCQYd(~J-T@huvFiLJO41_(3#095vjkzkA`bl5V6 zaiT0Ic%6_>2HOM%h63gz8Qg3hEZp}q8Ad@uAA#2wp8>f`pnAwHO!ZkB0HEVwa2gIc zzWDp`*aZ}Z1|S^9_V17;)eN;wo^M!ii2!E`6uA9p+$QWdL`((?bYHhPSHS}V zp$U+w#H;)7Z`Bofu!lzFEJb^L6F#;9l$Mz~V_9S|_W@u(1uhI0DvPkaFJ3>hNv3mv z@b}+e7@OA2_E>G@>O?qebIkFaV^#IP2#$5X1oduPXgXyFvcmi*Ad z3DHWinL2(nwIZo=EN)rT@cMU%Cj$(n>{eP55xN5?;0t{!RtUJC)G1}DH10SOsx_%~ z&oPQeMOz5YEIL{=g|k@q_X4XWQ2lLPHfMStx0cy`;*9a~G=U`E(ScEW*Lf;}v1Ru; zOEU9GbNG(Li^rb3>zQ9;Id2%P@&%t&&W>&{UJ5D2?(?K*CrmE{hIJfrbcjj)EV6OT z*U&-aJ>U(clmj80SWpuAFsL*-F^4{4s@Tx@#_k8bxdkJ786cfafl1m0M#$=CWusPE48|ptVHC zJ*u_p^39C!hl!;$maG7CR@NqB=f9*3n0&|}AKB4W6Y`?N;(1Vf3vJEyFo^Huq*$*x z3?*ZbQjf;RDgQp~a^ga3bP3t1W9Vl5XDaHHo_}@6E#i)qu0PUQ!&C$qoUkbnK7y?% zqW}1yJ;vy%2XUp%-|WBozkibW^M3!elkT7G`Dc6nM;7Tn?dAVHd!h7<^;9f98RDa; zjoN!$AT>ut$02R;J8JH1)YaYM&HCQ?;P^xtckq6HGi`;4&O>K z2sw5;XDgz<%LOMNqQ77{Y&qLDV&!EzXAm5BFsiW60qsd)CTe2K#m(uFmHk(Hf-<>H zl7-ANVQcMHRm@@TfVdvK3ytP6yI7&C7q7EkYlccN4pP6XuI_tuKYZ`I1CWg#% z(#R0fqn--en~;ea$w81m*!DIYL`WJX()tpQUo);Xr7i|jIDb0_)2eL<_GR}7W9Cmu z`1L*t7df)78^%G~?~&G$VJmFqZ`CmoeDVTk6LtLDtxb{p$h3-Cb>yD<-N%pB#oGh@ z^;=gK#k*Gx8erUn`%8X^?X)|vM>MYoX#=xP>Ia+04Yg!X<{ow%I86K`a(3DiFAe<9 zD0Cxk^*}d_WF$rDh_^43!KXldp3)UHl=`7|D7O4jFw5oMo&RRyF59w9czCTZi`l{Sszk4ul7w^Wwf#Seue3h@3#7d5T$14tua`2r zI`Nfe@<@GgnE>=lgtC0&}XVA=oyT2(>?Cq{&m^sNRyEn=ShtYZStM( zh|hO!>puN_U{OF?X6!^LBE8c<5_Qt<8fR=<_mD62b32#mO>KaOa&=mP9P-L5XdxS+ z6ZE%ul%?`qEVVEu?Z*v%~**g2! z`pb%HA9qK69DV>sIo?wnDqaoUAxtqjIK5T>?8CxfR%K&-O7E3I4jGHZfY`I)4>rnC zz8#3un98#-%R!_OSr5O!G^V6b&?Xx?RZYJ7NulQ%zl_WKmGKJJ{@!YBzm#z~@~dR% z9N$};_Mrv_qCI==PRf@+mzdA=CJ_MQIc%_I{|m{u921h}Uvs@i7rpAxGva+#Q8(?H>r^f*5#NU& zaRub~6vVy(b5ZoZg76(* zDHwpe_vT2zk%uZ;;?Y*hxd*g4Bed|1(BH`kG{1(a`IOlm@8;^)FX4!gcfIX0YiQW7 zSl9{PakHcJuW$O#{Q14}Ukbu5k~-wsa)reGNGfP8F;?3!F-+dX%^*@*FoEgSPMMz9 zyV7o)4tYBmq1Z1miKW;Q0syu!14!s2$}k%GmjfA5u^#K)EDUtQjQ1ZoKTIDwUqg0C*l-sVr?>c8Jh12U6y7Cd-N)n1 z8L<i*QWnJ*_YtWd|dub5no;a--#QCAt>7M$~O`htL;iroy9iP0f+inJ7C zG3w74%r=#JxsbEKlJ~OaCD2>D2T%lqW?B6#Q(7ZyC_W%Yh1Fzh9-U43KO^@&W7|2K z?WIjkKDTKf+Nr5=qMV%y&yJ)M zuM>NzR|z3UB-FSwsafR<0J2$C3|?8O5Bh!2#;!^zM90Q~yiZh$1&C!r@%02q%rLRw+engOKfavXk~XFZwJv*1h| zgjWN^r(4F;&txFz6eb%}n9tR@%b!pAJ4E7s$M!?76kH|iO`X?}PZ)yWRwfQ8$plkR zjivg8i!tzg-;*X3zhgvhodYkG^Av*hl(R}ScCzpuWTNY~AsUBi5(vsk4;lld1|B{P z%Fsz*aN%j(N(_wZ5dd&#f@V0{%Cb6)l-MCVK279EI5uD54vccp-{B)r5|7O{MXTX&-xSXL1(#e8xNcJiKo_%)ptMa4A|k zon!dMUW0bn$Xg)+Iv%BxNLj$x9WT8g*|fobr}aCeF#ljDuSVK~b=FSVq%KO2SLpKiy7e6XDT1culObN6G6H*Q&OsnyYno5B7?CF0 z6APnb#^lFMK1P{+H4rj6e7lcVM2>b3M0*NC$d2o8y2}rt8@=`F;u7qHjuhpRYSY{! z`(N$7Ah*>8XoF0^@SanUqb!x7yMY5rP0icD?92P?P^ziS z{w7quVZ`44c!6tiRJG`=;-%9HtQVknfw9P8?gjycfWU-NaqRsUC{40`j$Ff)B3}_W zO4(f^R$u?H$`@!Iw`%yrLs^U!jB=EtLh4b!e&`2E4;;=65c7d|_-nR8^(U ztzQ|nO=HB~OK<$H0_y!dG%4@jq29kjzJKH=)F1kf<3Ior{{y)M=b`Rx|J=y!e_52+ zV4R1>ox#wt03P!?Y-V`tewW?a`tK^6orgB<`1_OqV%6V=kLsM!orHy@*7+*8Q*G*8 zWX;<@g4qTwguJN=4i3Nx*p-h7*c$qLY8;Voy)j=B8kV$6^=h@i!nxyz1@i7!+#bQc zPt7{67j-WExx2N_(ae@nkvi4=WS)o02I&-u+Gxj=IexKk1qRW}ZeiAjX_eCr-WhxO zE+2k=0gtB{P%oe`^gP+60B9~s_f2D#a=j(Bh_@iiyCgzsu3fW1G7C*bRopc)q*dOW z$52i}AFA@tm6HAUusVlN;R_$`;nt$S3_cR+K*_3`>;G*5~(mI;b zG0M@mG1~o@46jZVkG%3St1Cl5a_~j9WzF`H1t~ry6BfIL`vL|tof0RlxX-3m4{P<) z*Qr=}?FiGXX^bHux3B`g8~qi>=86q4=h+6&5r3CzzAzxhh&v|aTfGK5!=$UFB%*iq zc@f^}g9330i#kKrtW*RAzjh9W3?4Ge3tMj2t+q#}j)~t7|9D(DR>g zjT>oX1mb3UXx4k+H9xQViOj>%G)$3z(q6~VoBENAM=BV_A5qf3Pl?E2umOvf$K#-#1B$D|Aw-_^rN^{ z)+Vk&_K#`ppr#AUB_!B&$SN;Q9}nelsR)muYGj45rJ#Ik0L z!5DH)4&2V>rLNxMlB6uv$Pqso)<3jeT3a^rfUNp>uFO6NbDA7U6ENbZIbhW|wrlV+ zjhUYbkEqh8LEV8c*r0jn&Eu&Vxt$F;DE&J(`-o$+TT%venHfX~Oc2FKifxPUw4|ax z&J?pt4+g$|(3a$I>9Vg$B<)16+~xza%;?55#)(;k9a*q@;PT5icDtktS~)Dge51@R zM615Py%(8sx%!%;0w^S)YR?<*=ke1z;|f!yf1bUbw)wb!l2FtY(s>K=GGtK4^ZH4`La zT6;37AN(SEIXo%KPk38XlM_TBLTh>lM71<>6j=w|gOV>eV|KQz>)nIBI8Jujs*MRw zQsuMgI?G#6AW7PPV>e9cJjHcRnU+`_$CRMf8pK3wp&}<%**j4lcTy;Ub;iB<*b#H~;pu6YTns^b2c1FNOyOR#;Bm3%3NJO9bQRa2$ zk2Kc*zdrwr^jQ>~YJvU|D@37=m^2$yzxK^f!ODK>pVBD{_>4!{?c}KO+j5p+X z8`MHcH}HLL82g*=qg#d8^9GXbI8Uky2Z(LjFAWDRlFqU^Z`@NxQ@2N0j*Y_l9;`p= z!XRP6?r2&6qa|%0ZuQx@@84fM`Q@|d`@1~NPaj4|Ummv?m5@W7I^fcH<|~(bKLc*% z!*!!Zx6}h>0UJqzaw|)L>;u08DCLrXA*wm~*;Bz62hu;=+b<+)9WANcp2oYsPGj%X z=dX2KE1L6MR8DIliPi-MaJ)LW84U}C*8Gy~j8W?spd#l)6Ow-S9B;7vCf^13J(*Es zI93{TjDvEFV?id>lUncmh2zO;kudK1C5s7@UXA+s*Y_mrTTbm=KXgsG@9bSBhTqBg z1=+dFveaD`g#`s5zy3#hc|9*%YWiueTM&oT)xEToS;#1r14BZIjh9S)^XojA=F{M!y(~#ReuN7VAe)ze65c|QzZK$Gck$wg)&w8GDO4Omn zC|;vk3U%ci<&oFAWnXoVc8|(5d>jc7{2jTF2n$4u&3rz>=*e$xVrCecU#yb|3h?TWNZ27BZK~kC z)0|f<0jPI`^C_Ii};yMOm=uQ;CSUmrdKsq)29TKMN z3hgr--dvL^iskv8Tcp{-asdTKQUYGoCFS}lV(2TM_$&X;J^E)~LIH+r)$P<{~!io6s>b+qL#sxqdUk{!9&=~<)d!Jf&1C?!H zW%~PQPI@^f&4UspMiUY$>X;(m(_|j!Ee-W{kRG!;ws?jno(6>qe(Eu_

fFTbqXhpSOwBf7`Z4498h6RvyRVECH)l>Wq1(&A>k9v z2YhH}*ti1)_;$A!Kx=FC8!RF#aGSzV4%ob28*DY0AF^irm*n{4w%!i7%$Y)ORlGgd zMCj@P6El-*ewUL2ERTyigg$SWy?opA@F)Qb9T;BMDW$(a%jzV|JQa=IO_q9>O0k;w za<_mO_|AIXOS)esJ;KFUKD6cJc}9_{C`z4#twL-AN!v6J^lJzI_x)vq6V=P^c($N2 zb1mK{p)9B754zZGhPDHO9iG9~Ox2`B)*?V!?NzGeYGXrf0;xM9(sMRr zc%-+joEBjiU*5?Dk~qLyZlCXF?6rpG2R>dZm#q-(c$UQ-uG|#g-eKylYoXG5`$DM6 z5jfLP>+!o>>==tE8V_Zuf^m#uGbU+Kp(>Ldsna8S=*xY)ed26HjnicnKHfXwfej66 z+b--RqyQ@h=-(|4--*{K)_QQ*$8xFB%E|1kHgD%%ebPk_{z9+L=!luj_$Xw#zD6eR}!KD?(u~ zjJHz6HRrS5ei!McbAomR{1hjHjhU)3N67mQsnd~Kcc-Y{>yi}|xuv~JB+tGv(=JCL z;@)<_WL^c{F~<@{&efnEj~f$A6vKYfmum~6f#(gR~%d= zntO(zodV8ox98n6PD8v}af1zKHy_^KRy?)kMvuWD=`8E_DX>J;*>+UXQWUx;bNFy& zS!c5Dl=j!XwH0B9z4pgH{;D-fut)U8SFgXK$oLWm3=f4 zX2+HX-tO!j7kp??rWSPYOlfvIwkpOEC?P+N^Yp?+fJ*b&{t^b)(lY|_yywsgGEiCX z0pZeXtId=7UZ=~i!3V=un9ffh-TjDKFGoLUKpIx&+0uv;%dgT#`dG?{BrpqnZ05Y} zch=JN&in-~`ZaU~NcVu|1y*^kE*&tF@SLj(uSI5Q)UZkk*Y!$udT=s5b>6UKuh75x zRwvqp@ZqMh3Lq_>?ozE*T?Ik1v9EtkQ~9gB2J?!-9{?k^L_v?_nW}TlXYFx0t&gi! zyyyIwc2&3t#X(_(qzv%c1g${vdl>K%vgt6{I1?}-gBO(o^#IozQ5xczt{JB zeYejiUXDVj7qvi#;@hXZaMi?+gbg%Qif=)6j7d?HR{ooSjjlH|7g1vNBN_R8ZcR7f zO++Ec!9woXEJKCzp(fp4Z10|wD&H5J&u0R(oDBTJH>gR;1`+WN6fE!*SM^3Fn z!ZE5^hZz!1A7f-yw)G;5r>PSDOJvG{|rgS0q6;6k0^FUQ?Fn;em zj<+xQ70<(vPAxP&{Mqp1bMFf z9?|XguJ`)#z4w?G^M*Tw5Qs`RqWYNPvg9D(9uTCtr!Yf~7kp@C`@T|bO`3~wJLD1{ zNX<2AO-}CLpIdyyjd^(elw)SQ`1$JRynMH~kMKJsUMQR^G}hEyTUdaHW+s7)p!Izb z|E+rZNB{4?^YPwA?HGO5mz=B$gmOKK(hNhVPT1;viYL=K3k?UUo8byX%D zZS&6{sp$?}C>V0NU*=gqD*k{p!hO3lU&!aH+zor_bN8W7aBZ@s$wj*A-TS22OQ}YB(e}m`#`O~{n`t%vr2$Is zLStF}Om1^fKGFdPI!Lq5N8r3Jk%T`#H{TSjZ-Qhp6z9@376jP z{(;Zh8KaBGPbhv#FbxUuT3F(uW$u)Oova`Lk#WSKY^)g^+8$ydWIimT==2(eJ;eW!T=)X3GJ{ zM+`|subg!-3wOR%(RMpept)=FzESTNf#nB}3}0Mx^!vi2XdW4uJpj`f5un`N=l*O! z%l<0+8ry)z4du5?u2?_Z^h`;S>4BQH1Nk>0zgk33aW%pAc(jAeKJAApItx;dpf8Fi zXjQQ1?WMKcKkGYgua`@W!pZ zc*on6c$163Ue2BS?#*w|+X}ra$bh;+n^__DEai;fVBb;+UQC{4!cj6kn)71d$PaS% zk-8wAIC%?%S?0njiKY`X2EPfH_fGWjZ!GR#7x};Qm2IW-PZUx3t8e=KRr-g*jtS{_ z>izhpB$AA?UiO0q7xz?)D(*FGcH%)%C`tB+V_)xCTPW#j-Le^)x;|_HkOE%mB<$rP2vtX!B7CSTQ@sbCi^Km{LCQMgvEL_%7(n~w$n^0ExQC0C7&9uU; z8GiBj?jaYE?y}i};w`=tD8-Kqx*W+|!%Tbg5^4y5HZ6Z#5-f+ZbChBrD#xrX ziI_9li+>U6wtSDXdtxGpH{wu+Al=*uC0u8tb{)#IqIld##x5Vk4!~AiPHocc_ zmK^3aec(Rb_5I8jKKe_WhG<&+uL~#A)c0W4(G;lBB-W>a0FxPqCib=6smVIKEWOsPX&g$~oTlpVP9j@a$kang;)7l8eHY&Ad{=2Oe zJD3=Ab4^;k5s2lj3CXa~`8k z-&Q_`cHXD0r`+K$+FCEcb-;wf*v(VL_;@bEgn9GCyLb>RI(_=5D2s>i)+`QdVng=<(8RwFW}>n`$| z-n}Bd$^njN4^0X9bo&i=uC==h9h?1jwbteB?X*IWtvq(dylWPerL29;OeET%yJu?? zWJ_r+(zZoq1$GV&FC1pf8eE;7ogPfPUa#cy+O2?m)VmO+Zn^C>$MpDx_cOivId{)z zKh$=1-J-K0q-E$Khp}k&W?OdZT^4s6T?8JezQwr*MPf!z^U^HaB?G5O=mZdQ40Lh5 zt!{TcpkM8rP<{1T`0O;rgWUW8%fUGNv23sBmWj!p+PiK!wZiI#RDASB37B7tj*#u= zt0J#%9Irt1NY?4$@Em0@PZPxzSg7)s?dmbk4?%&dMY*{|y6DMQ}K2kvUN?DR`a zeA!V?rG*DHgG3C9a*82CSf<+Wb+3g_A_8T&8~j;|kMp1`m(GqLR0)-iWP zC4x8p!lGV&*f^`wK|4e{?$o0x(JPJH#V`YV<#S$pZ#nu5{!`Q4FSq-D^nV5j@A;8H z+B6Qd<5hY$vx4#nMa01;12a}co)y?cuh9yuEprMZ4a`y%$OtQukj#7Yc;;3Iv^!Lx zK>SjN6$Dt=`57y)RI?r!J^!B+3jWwKfN~?xO~@iJw_FhM(C8q7ScmK}+)PGKG)@kYabn23*^kehYv!1gm@> zG`zOCr*0vY`3hr|>;Pbw)VVR6sb2$ZR13DdcLgCdh_PSEpA=4iZM<9{U!5aGc9!q8 zvObZ&4I@Su^>iLWPxey7`lMA5`&}B8P&hNQlR|nnNKKPfqp}I<3kKhoz7S4~+ZN;wh?5)c07bE%% zwmT74tbo>Fdys7EJHeuEQ5OX@5sj}?tsX@jRaHn= zEA7h(|JvJ>aBP6@_J#+3>o+8u7zNCyYWONGH_O>f#!ECfm`+>a$KNj&&fq7z>8Cu0 zhOYE~@|-2f1+%t~D?7e2(B4yEbLg<3?4)6GZd(m|@dhX9VMbEAnqEiL2O6<9ftLn7 z*CXS0I2=~q6n_0(#DKjLm!ngt^x9)rAKqX0_%?@^;t-zFh0dO4@;k4G2FYC@7LK~3 zd^1y0`B0A~3JNN^)sizBD?Q>&b0Bnku!0NjAt^54A^#`2QYRMWsuW6>tTdk}+qxcO04nL!+a=3&t(8-3cpPOtsh+qdCYPJA;ybhCQj zUaLFhYg?lQvQal~&0YS0yGjVhsI8TEJ}rr_OH@4jL~cAT;ME~Q2r4VW7npS)nTQygqRfr7unnz{PPz- z`8PU@9a&YzAA7q!GfWH6`<5Ok`{>@wh|>yqA}$`5Ra|@j5#=oIY&B4^ziutI09Ule zl%Y_ht*=43rQ|)dt)QrIY5R-poBF2T`Wbrmq&QZ`BnY;Pw>e2z;102!N`{I{{3>*h!pKBZ zBq>gPJy24aoXiziArP%xsOm5VD5>YBa5^Xg0s`uwm(ftTyir%Z!Cs@%?L}8CZVCSc zPbn*t2cPRrhXz_$d{E``Ur;fffL4PvX{a$gL&2s3vCRK$1x8#%GH&5$*P8v1bJEAb z-@ie$DO6Va=PxTTvuxxt2SnR|{J{7CAUNj%D5rm)Hj9O$0Q9&nfF>vGE=ONRRuX~# z_g|0Hc0o}kV7V_Gj7tH4ja~+wv^ESm0)PiRJdR$RgYF;2s$#5ftxwqB-i?EC9n>2` zV`w8JkI4?o;yGnpAO`95dT>dgr5OZHsz6~@TSpk5hnh4g-W!4s*tc5Jd`{(moKl}O zrsTXg@-@{Gdh&R&mh&0EepS0qPI(hU``r!0p49ta(_3!V$i<DA+JfZZ@3Gm;h$PqjRPDdj}wb1%Y7yGd<|-i6&_;gDp!rx&L4q!bC1*b z6S2onM~el@HwecSa9cc!Xv;MYf`a;%@sDn?l)4UOo>tR77XNC`?XP>!?+w>myt8vk zeTcKah)6@DzvCe~wiBmE0Spflte^jN8ZcicauJIxkQEMV0d4Eu6iwEBTjVsec?Bl& zTFW4AzNx?k`}Z8a_wv%%jE0J7y@T~9X`2(&O~s_p z(`x9dg2nCbU(mN4>^3-t4Gz6b82lni&SwZxW^19%phhc)A(q^X9X}SKA$%!B?Mu{~ zAllP}@~%Eme?+u$66SoZu{m|`bz|p*!2|j( z)$ga5j58U;rg!MuP%f$(u>-9^>Vv8xCyt+e5nG1eUcIZCYM#M=&wJQp6X*Kcvd^!k zq|dbGO0Ul?6=>oSKEfg9*RL3?DEj^xcgyS1l&Cl)Z=;JRM#sZoqm}^<%YI;4L&jUkncgQymHRLw|5G2mIfP@llR(&DV@HV>dE&XS64~n zoj20%hPIxm-YsW*jlI+gK>dElr1vXZUqZVx^u#7aE88>C)saVUZ^W(j!TeB3osc-& z=U@gKGYh&tWv~!ll1FLwcXT?0UON`CL^b_33uLkBsk*2UB0PseKSqsV@bN6XD5MGocV1LgxjyEe_ELUkj=7z4H_tZw zZSlv9!fg_}HkUOUsPygl9BCq+t2c%{ye{Ux{qgO6~(gu&d_5XF&$ zaVs$4G7eAI%2=C<2E)=^+8wgWMB%ih_616R!?th|Z?lkNR*n7L;fFinCAiYa<;9Cv z4WCbnI62vUUunH?&u(?BwuuaGgvjFFOFt}Gi4WwWYF0*I}ya+i@?|^ zi~mXKy=!?ZI5N8iZ6;mlm^zB{@emTOCQVKev7slD8Ixuz6+5AaI(newdc#*UKW*8z zGIc|a3(t`^G4LThIO7xrG%7;epfgi9$Em-^VX|t^vkWsKBKyam!kHYZ@s%% z^tvv}@?LteTG&evIXzbX*YLIUS0U*7bT<~h#oSXD3N*cHdjD19+T>36ye+$Ws-~{( zx_(Tp`h`zdOHW>ieXP;9$2n?+#Rbu9hajxNZvOtViKjSkmNrWUBSHnqW<7yE+R3^e z^G?*}vlHu@YUwhQXK&<~ojqnEcDZ>6;WT&o9kR{Q(CfP&q}Ps3yApU#@S9z*na{Wk zS-tE&nQj*&Z)s|t*sy`3+`yMswJW?m%3AFC+PlUROFA?ex(;Z+X%aNvO`|uC)(jv98X}Tbjva@m{(%^9hUf*f|*N3yc z9~cfhxMf@^z~H-u!%jm zItXo*Uoz6%U(FVw0UgE)Qy@^?>m=9XfNG!I8Qs%m-X3?p{oA|ucHU-tj zwzwpVxVJP6f4cF=R-?OLkD|7sR|M1<6*P?;c-Z>A=9CeQzU>)Np$2c%Akz8Jiz zCqCnq`Cf|fTub8Wjl-a-;=uRvt$zk1@?Stg_|Ag{sejrJ=StU~G#&ld4gR0K`i*z? zEcZA_f3kX8@HR9tR>)BG=IJ2^Y3Zv6--vJa++BiT38^fY0OVUG$_fm$cKFJH5PQbJ z=rcI@&0m)p4UL8}09;}vS{t+}+AqGn?BCB zg$~Nk&qr^;NIs`!_rE_K-6P_vlizOTrzvcbWcK*W`sy2JZ=WF?`OTXzOR<+DNs&Zr z{Ib}01OQ4*>k4dXdoje$*g-o3-O*g``{hMKUX5xdQ zyYDuf;f$U8#|X*TL1dLD0DyiwS3-2I3FPvg&N8sE{cNE6Fa}r?f+HxL(k;lN5Ez1R z)~SJepeJ~1Cp4#%>DvKpe-p6%A~ZCpt?D7L;+<{TzxDis<8S!)>g$AUydj znARlM6T>WB7J00j43?x!YVyZPsar6!u$;8Gg&-Pl21AAtIu(Xb9~U&7WFr$JRJ6O{&$qU~#kdq~>kluVaf z=B+jKJL|$@W@I+D=|>aXLHURUOfnZ)lvgf^Q3$aGt&b4RYZKlJ?YnQLaQqEH-IR6R=jkQ*mE^q(itpb#YS1yxrLw&Qya&xYylTT? zszhnge*M$Wc{i^!G8%+&!q`4?M+EPKzy49K|0jM|Z5WaaP=o|A3SA{i&re7aiFbDU z9UQ-15PNU<@og9^G7>zp!_3fJ5$X5sW#X2QgZTrcPckM+xdx*%m~3s@b=j9+HpVe+gLjda{7|Eru5J)jE*HR|+572Tr!_xTilYZKkV_ zjZMK+WDN&nYIesSmo6c(BN>WIKERdZX2zAtV?4T41$`;Sr*teucDJ&mE4%XZ%gmZ6 z*&EEYMJMkgJ&x3=WyAlS~69wR`?7dX|bse1*;o^m@yI zUQ@6K2SBQCJ2HO`y|e-Y`DZgAW#11?lOKsf&CilY^BbUPZi z#M!YIYObL{Pncqm<0x@<1qPDmP$a{a)!PD%u)08^Lz31t>$(ElL}g|YN6&=-9{6SF z6_^Bw%>HzVnfCxFZ96RT3&Ifi!AL<8%VzGmqmPZ}wjMn`x_oiN4O;WL!Ka4G(J?6w zhcm4*x+{FIufV*8A4l8vj=x@yjKX??VXLmdY^H+;*m8+Gj#D+y=s8krU=2A$Ji(>y&Wg*D^z!3pMt&YNSr3cW{_dvnx6Q@(eO{!jcsD<4-6zW=Qh1gnK!QvX6W@y{ys`d;ky_x`|#(SH+O3K>Z; zkXurn-T_MQL_qzW&aJ4a0m^COk_u3m^sRY%%)Qx!&Y9*#Wi$yLp;|-~My9{q%LUt_ z3mbPBmJ31T-uDj}u@zn8Ii1J$2y_<&6x^OuN86cuGb>nKJ3S;^n`?*CNOttIO$}6R zKo;XPErSI4cd9#O$l;-VkSfY#9rr|DBT&8hVv zCS4_sawm^i-;{T`Nt~-cvt+me^Yup-2|vZ&rny#`BJRzl<)Y!Hnl^TVr;ax$-MXck zBRZ+2_!bcM9N;{zeSX+=;^v1$e{OYhNl_V*vKavDNWT1^P=mkuohUUjaf=D7XAxn#OU)H5(YNfzUTq2?`HH zt6QujEo0LspT-k5tv0)Eu;WA2(!cP!NUfh@Bz+NVdL=ToCS5l}u;I73Q|&2D(k5b&6&bwT9M~ zj@_`_`=nQ9QOn{C7Cz_Opi+WKrGVuPHIr;-zEc!h1?UT_AT7(xtn*d6gXeJ0=DIcn7Gfs1Xw3{#K@A&jmllD z4YEkuFoKe;z8m`3mI)134t>Y&nCvDj4{5S|iKU3we5fxFV?QnsKX+&XO*`=RFIC5t z?`T25chChs++7|Vs5;KM%zE1bd`0JJ&A;(0K0&V!K_k8NmSvI#7DUc|y5)~w>T?(| z5sFw^V9jCQ>Z8L!u=Iyf|2Qqt#(>pX{7sL0^;xV+)avg3Sq-l4i~k$@A`}CRV}w2# zxx9d8ZjV~>vVwe5Eb4qyK5IL;a`o-_SQvIn{rMw5X>WR+`r-B|@i*-y$6xmKo;zH> zVKGNb_`%4AS6_I;Kci%f_^)C*-D5R{O%?4@US-no#x(dsQr8?_wyJgkgg85scox!5 z)VU>f1aL{Rj`&0?E+Fq=d`NOTdVDjgOdp^$jvYK1A6ds@IQs8ctc723n32u=G%#Qn z<1%1Zu%+j7rHAGrS*vh(n)S|L-Sra;5pZ5 zpc!e_*5Rj~_S~^&v-0$ zIv-h%M$)bV+Q#wangaT#Q1GLI63%Cu?DS4y0 z`nM1lsz9zdZ&9p?NYcm1gUqmv4oK?qXfpQ6`6K7{j}aG14lTBclj_N!x&-g=O*0;< zOr%+XX2K?r=EVx&Xolzw(5OipG+o)1*rM^tR~x6Q>o2nDP7=7-qhfyjJEL$~x5n5U(`{LF0 zi^1FeY82iwd=>%iZvctTl<&J)!Y{_&@~c72nMxJISJ&`g1z>dzc~<3cbua(X^r5;7 zt(4MLuB=q$=wZ;BD=chQ?Bfp5_cy-|_;CE8rtU_pTi1kMbu-*vU78|GAWcc_DlQ8W z3;E!f27mk_T6GY{HLBw|avNl2kvz8Q7AvrjWL9sfxl*KGv@O&}Z?)~ZgCS%D+u^MS$2>-2AP zzDXZDn$yxiv*8KIed#kZ+Y1h#Di6*6qc@KxK3hHn03)O1X#3?D3G9Hto$vxQ2OD&S zKov)!FB2t-pt{wxfEBK7+4f(z$P|MUpieSOV(G~hAcv;-<_TLSD)ek zE|^-|s%O0F8UHgp;iTXz&;)^ZHtH$WNkg|k974zRY?gJQ%vs48?0xx8NqqUlM3;=-W1 z*zKE?J_2>|26(C@RXhW)$v84_68L{r9su%u2Ac83&aK{Ub>04M37MZqO#+{OZATk) zl@L73xR6U_u=aS(`NT_3Ua*tC`pmq3LxRm?*_5MbN#R?w2_>j8Cf|Q2{^jp=Z#G6c zRB;*lLP4-s2{81j0To1{9#49C46o^gfPN$2!A5S~J5FM@15$(O@3WRs z(@G3JX%-i#T06mNMdu1*&d_X}UuY+ZY^khr|MpBKc{cMyGV4TWUDE;AMvM~JnSRVH z;z)B9o~DFmDH?ITKX@S|=Y*Z&H7`AeYQO>rFg^Pg4?OS;XVz{U%?tj$G2nQg3NZ4< z0}KuC0){frLM`xEk(;2wK8V(Vpp44(3bQbbqaa8FJkBAbZf0r-ctbY58{aVo?Nd!< ziJqi`lCqB;x*)b?1R^xNnm>INU|JDbN4J8S@c~GR6Omz$qqzxAg#wQk3ySnAia^Zh zB{G)^%`TvQ;2Etf!{2MThL9Z@xb%}{3kXy)BW(u%)0`2M83e#Fzgy(N;?5+}g6Exo zV`!w0=zJx{5)IT=b4&mL{WMlv4F~{q`%bD8w3qaUkw4r7N&12WWrmz?(+qwyh{``c z@Z&myLhon9>&{EFlo8g(E&#r$|JQZ> zLHub{pi=QT_S3-Z2&tJNOaKMvNpw9y5L2{Xe6w6CH>~*x6rBJ1E>hql4_SbWPNa=U zF>+jiRiiR~8rhFxrMZwG$HF#DU!M0yzsK$U=@uX=3g5+i35}|xLW3`RS73nz?SAGWzh~|5i8Tx0-ZU`wRa5a{qrcfUx?x-)F7=@O*M0-M9rYR8Rp_ zEsDtZg_c8ZRH>YJrSVMWPP@1~^I0zlW5wmbMrV@adv+i`@9)TxOo9&W)gEq zLUV9q|0OYBLOX@ zAj$czf&Byl=}#_xFfQ%nxON3*SDY}St`%VshnXV!<~*Q2g~7f5!MfkSQai4`{$q91 zf2MU~|AWzQ{h8K&b*`)X^ScbN|G_W^SLJe5F8^#Y!2Sn=Kl-z+|LS~Kbq@O<45ejN zCRb(h&n5%xD}Sus+CSU+ug-T>=diE*v8wo2WpY&}|7U>vq4*N>S zAF7*eRVG(u^3Ns%tNFoIng6rN{2y(;tNFpzJ@`kH$v@k8ew8022-2GACo$WZ_(KTV z8Fg9D#D?R+8hiSCP9N;=i<)wF*k+eJ;%CH7pl&`&2!NaiXi_O5^n<-Rlm^nXf=+db zelvg9J>t0^$&aih3e8zFq(|R^*=yHF=skK_&nTnKk~u@MQl2S`wF8^;G8!TCcC>HJ z)TFx?*4Yb|$zx0GW)d4H(YIXqNl%KenAhSZwn!zx95E|@?^cg#5hz>%xS z9uKnPJ?{cPtPl-%{!N^y(U6H+UhcESFbABhlIVCfH*EPz8;iSv?$E3KRfimZa0)6s z9CSsHz*Gnl?#=X`zKa~pMdpTu-Xc<-0JheCvFssl&2_bS*SbY(tuGI3`UMD&N5EL@ zS-qVL6Yi3g6O|7RuCZ6XilZf3#2`*ckH`h$*;tAg@dm~@%3&fY?POq0Q&MX4x{R#R zEw}U}W?2o}VXQC~2beq{$+IB@p|Wi8TldRhh3ysiFOHNxwBK%^;F8-{vt88&S+k#O z+m0Ci<@CgfSh*m#I18Vuf`y`#C%)TaJ7?ZseOr)lc$C^8bk$ugI6|5xNC0)jSK+;J zexG$D ztBV5)-PB5Fb_WD+iObCeZ-Kkc3mIcWK_j;0&w{&;RH@voy3IxKhe#6xS(406N}v=} zyd9#|z_4L0=%;AP{Pd?tR)FvdjIqTY$+&`}c`r_a{+^SefJTo?5y6r_hDgdqjR-Q- zd=|t3?i*;92Z#l+xE0v8R5=E}$AZ{3Zj3eN*`l&&(w!xE?plq0S7rY_atdDA7OdWo+XD2XsN~nsh-y=bukkQ z=1=0iAIm&iig4o`#_fEUx4;jH;VFi4I6S2oX}=MDru8*u8t%zvRu$`M{K46kJ<|8U z_`xofq|cj#cAq?kz!$NInVuQuM5$2gHk^PzNBH9yI3fS?1?)+s$B8(my?a@yla`Z2eb&Tp;pjE{=yPxj)7 zzs&R5!s6`1stuQN>c#KvdwHk++7*~cBXkX&B{!Lqgnf@*cU@H^e=kG-%gOe4S#+Xm-s$rF9nD_^rj##5ghm zkW2tn;KA6^T*=zmqKFJZ=g2-P(hHQ~|27Zj?tw*{-aE^qa`6<$&bRF0+*kH;u73$g z@s{eXuU-k`&VIVtb7xpBk@%8jKpcF9&dI}7;CnX7iF#h^kij6SdxY{%`Ac-~P|hsg zH;{OzR@_bu&m4OUgYmH;7+bm)2t_nOY9icUbWfo(?F4IA-*Kzm#h7U2l6#tVZqJ_X zdslr@erR~#q|0W0rfC-i&X--WPmewK=IM%-k5SgvN7wSc+c~EQNTWVLTV7)iV4ER$ znS}k8{RPY4?pUkQ(<<|3PKy=oyd~lG??A8EL>De*S)`e@?6 z_nJ#LmPs-$)6f+33G^0*Ayqw|6tAo~lNimqEUYK#<}d$5;?hy+?OE&*@{Qg)kOD+8 z6R|SEFWjT(-c_k*M%fIGew(t|f9}fHZ>%X8(yXEd+!Cf>er$u z8__+QlM*lOmzyUcN+R9d%eqKiq#y)Sos)Y&Ab5+Gc=(q@t6n~~`Q*RH0C^(n04%)C z;K*bn=`llx>R@i6Y7t|`vwrhud%>C0Y}N&Lysls6xFx-Pi&D`SoBsILLw4eqUOvl_ zKLXqI0)LhT%&P+&=RGndM(wIzfo)Y(c_Q&9;hVO_CeC+eI=lP29d{dzzDRA}BVUBN zHEzqk;93n)%;nfk`|A<+u>AHtQO~Yx$|hx0q`q$$Z>e$ieCc~HV8Sw;f@1OTQXI%O z4{~v9X?2y#b$7qH7r)yt2eyE*CQI?_e=JYp&bqj zSbmCAq|a*y<-1F_^0#B)uC5BOi}%6~eE4);t9)>c-kP$YR;0Cak9Gx-S5?f04EdKy zwu!F5Oxwu$(T)d)-g$|-RW7|xIiPt#X$_|&9~(3M-!}lH3{i~Wy_#fV0QQJvh4Wq3 zfeux zwkQ-nO+}mCH5^fsw(vu9lit7!|5Sa?%mFVrflsb#PhY zVb9}YZJx_r;ZVg*=!-nXgH>9h2@Y0c9W=>fhyl1i=43LhxXK$9Jg2qYLd7&Izy10b zYpG^u_w5bB{HlKXcXrN5JC#5SUV!L;ozl#zW^%5;&g>*y`j@kOnJ=w?Zo~pe9BcB{ z&q2ZcDy?%OXU|kuR&;-JUTc$-S6ZZfP#WU0W-F|{;V`<7C5gN~Wo6QZbU=m_6iw7i ze89?gI`X}%3GOxdTw0p#2i@Np%I~udwn>V8`2)>}ZiW2-2`j#3C{miqo1!x8XZPA( z7oUCgI)$5Sx0KV+{o$Q!&Kx_#E`FsfhCosoEKAQA#cxxEXNXfvP&+n*YSV`BS)vWD@4(W%_!N#Nla&jSzj$i<(BjMtt*a343J-3hR4tm|_ z)!2V;&)nzU6R(Hsh4^P>@c_n2j~VDZz2yUK#s@9$x4&S!Y)bf53fE=(Tew^0A`~h1 zxx>N9DdVQtoK(~CWu0nNw9-dSS4S5f&S2YX=f`#*cxP?B)9=X6j-LM*B7+cE2DWB} z2JtH5zWV<5l8xkM0OC|Vd-`oeE330Xr>sO^adVc*ZoA6`wjN1qUOlfjUb}-gcmm7C z0=-r_l2cq{H0`9i0If!GBc@8C(yr?;>Xt%1-$~gk^mFnr?rTcuKk@TBQ{D*ky$q=M z*#4#;e(K^Bl}rpw;ABQ%chU+-*OJx4$sz|^TWtxBo^SmJrt&A;S_)LQndRb-44*!; zbMQ9&jV*x$4ovp=9<1g;Bmi_06_7ltzNdY51(wWD4+rP^+sqWKIKvo1U=(QSDp4dsT>Y{kj&{$-x7s~_EyH_ZYS`ym=oc&ZuekUyKA1A9y2oS6nQmZ* za_Ki=SW?R)_H0;Nwu=~hP!oCR=DBx6-H+}bL-dyN&&EvRsMzTt;^e@fT(IfW^uwtc zV`pQZ2EGhl4vovp>|J}FpS_vq&3PE?_7OsoEiCaZE(m)lhvrNfsX=be+nCZ@rL4#z z?8_>*&bspzL@L&F-x-KyDPT?lf$m6<>~K;H)g})-NQ(V>Iw~={b9%qy!>lH;g8b+s zR{Gug-vb=^vC3;Ad#$&;o`;Tx()EB2&h`;d^7+#^s!SUHAJT_n8HR zx0p&Lf4)69xWffq^6%;d6^GHIRZ)n8W%tS?z!LkaR4KdRhBagum4_2_$2M3UJX?O# zSn&#{xK-?2EbAILVCE~=<{+oI2IDzABI)~@D_Z(`YA-&nY3yV6m>(n@`|$9Da3Oc$ z)G_r;D%9g7FY_hvArb2Cmx|CR)4B4 zUy6O=>@S!Skw~NiM3cf*Hg}8FEJL?dHJ(kV@9LVK8=Xf>>us)a-uNoJVT*ID30r?7 z56Ng7?BJPqoL`#(25W_F88I;drlAr)a|l3AFKh+}yOxY&i2kX6v(~70142Y6 zLbvN6B4iImvbtF)6Bp>16l@l%+*v!bY%6eei{{rjTk){NZq}DxRRq5|Qo(Usy)dy% znq~%c3O6%CUEZ@;k0R(-;)Jm5xVrgMcmLR8KHB!tT&P6C+Iz)rMzTUUZZ1Ne)PHyE zk$nhHlagdSiK&6;Yrj!&s`A%YLK;!K)GnS{af4M{{MXPtTfD0Wkkf%4fi(0i{P#9@I)rfUS*z9%B zxJ;srKlWqHkyC{aSTmi*gN~TzPP_vgw~;zXt7e*XNlz#fSJm8;@hzxCEFXj{YjVzUFImS4r9Wy)f=5v+u4K!VxUA8yyWgYPR5?XF;ed&z#rQ<+% zqsxu36Hvt-K#t+7eYWe>3d|ZGR1^^ZVqB%}o}4UN#?E6g?5PEA`HBA!O!XD9SZIsX zdH87T{}~_D1eJkey_(ZHNP}*`uTPF*2hfVomY;y zvF}h}!NaLAL)Xz)Tuf;imYIY->Y23QM=K>mfjvy-=Y^h>WEa^uJJnY$-4{8f9oO1w z8S+;0>wY}gZB;K$GtIgnq_uX3pR%76JDr|LG`!9sAwN$}CH$5)f?YLl!w$G-x7h?iB zmIIdNhu=LbxWiK~mhk>1mtxL$4&sV)f`-nYAhKtxlGnhswheKv_?*xSADY_=qKehK zpTUJXiGzS5AX^~nr8@qqs!>K|#6g~3nSF`{mr{kx3k&@mQ`0_NEqX6uGgL;)oqGp;iNw0X(M9P`FAZn-KW~lRtQQ2o)TxPSLJ3zmx6(JvYIyc9Wqvj zQ0w;A%|a;+MK`B;pt{PoSG_dRde*$LEXgXP zw{By#%#Bwq2M#nG(#2&_PL2$#+#W(2eEi!EP~Q(){IqExtl(MuMK)64MsI0yl#`QP z*rQ>J%J~^C+Y$yew(hhY3R9TTxn*=Wo|F{0S;!*D5XSWAaQBrwksWE!Iqf({KjMG& zZBf*&AWpjO7b%90mld`J$|3jh2+-mOTW)%vz#P9Mj-()v$Yh8Q+KiQAXwnFo$iOlQ z&lp3hY+^OpS9e_752QObT&}r z@NS)?=Imumm=gU4IB6rbcz9l5$?-uQp9_?QRIYWhbH#;@lG~=r_FT|RljI<#4$vf^ zDKu4SA(8?Q$(0LUw99Z%=PGQAkU_maV^fsdegTrP;k|!4;&8sp*LCaeZtT8favN!6 z`wKt*xA5J5d2OHYlh)3DvnQ_Ee0IV+o=Vl%4I3Cc0js>zXL@-dZUuJi5F2BTc9+Ei z4S6XZZN85c95Y__d>F{_JY7fi>j6*MD`DarG{s@Z#vIJal z>83DNj7Y0EaIph#=P2xeaf(NN;$~D+2@L+`g<}-|Lf1qSiwV{qf$Ybovl?yTQ$hh7 ztRlvJu8hNlqs|r>?LVN`gUBr!52YW)7+SzR7J?|KK#kX*zs(YJM!E}jeCvDQ(?ua2 z17NC?B)T<&lbOyMaG(%SZyizEf##NW%Aq-?mNiZvHlGue*%AJ2m-gwY+=s$;*3BLK zj2BSF&MWO-m|55RD=tX;_B;XrqnO%uAnWYi`b)F6c`4#>SfA4+Sw74&^jWiANl5P$_JX zSF4xYLwtjz?R}lKCxi}XoJ$bgD^b1OB6e^v-2J6V_0Xu*wdS-&NHmviSqQiyr8F&T zs?|aXrOm#@s|UK9IYKq0hCghzo7!$V@}}40klb{E$iy;*Fp|Ss??uwK%Oi$}9(e@4 zFzK=FImd~ZX`1?G^Vnv>nIAgg_HV`t<<^*@`)+V*7tC| zMrqi6{ib+cwBW87p$j$tkF@uUYATAhg@dS|^xg?gQHn?tl@d{DA|fJ9N>q?4y-Nv2 zdItdoAu1psC3K`lItmKX2`z*sC6FM5BPqV)9d~@=jeEcM+kSAOaELy@Y8+QoniS_c? zZwlSA*bAKsjTh%NGMhFX9RIvtxylcrTLP)y{|}x1m!HGW)5g#QeZ29CXa62I#gZ`6 zD{I6$-N*NoW~8-uH**>L+0W$4IfIGo?TI#_?^5Q1`;GD0+;o&3kO4{4Z~@19zzxAy zMq`PR1-Yt>3&#B!c-v;YT z_8uYS!iS+0UKH(KZa11F2L88Wze#6$A`R`K0m93ZR>a%{ieeFvt#x5DXS>4k(Gugm z4CU8-!-irvmz)LW+62CQ50{)i3MS;!4B*j-9r)N^$U)9^2nAfkIMJYST4EF<-QlVDBu*Gm;v@?{;76YhTO@y*wgNiRcDRv2zclXtBy?3tj^UKQ2K?)bY z=eetN2B&7|kJtYlK{lIDiUH=ZBdMYcxwnbU@w|(By)SG#@L8^EoS4PA5r08L=27(q zAG!G6&~N(ElFW3_Nj!pc| z?(n|*bGnGi-V=0(r+6qC6!6fosPgbBkR+^LH)4WEf5|gkdoa*bBljR?=h6NX`5zR2 z#dcR?bv+(pPCapC#VNj^gvij##=YgS;j6md7<^6Y=+Bx89d+U-yhkq<;fzkBF~2rm zHck+g9m~Ha>sGm_CuC0^JU7!b8_9E=PnJS-*@R03A$s!yqrmwv)i9F0>Y zQf$I+VZb@ZKgR6Rdpk8s)MF)bvE&m7EwkclxEh6vz<@tPSa|^05@p5=tArjX4nAVo zuXf*vi5^hleA1-<(#uQxWW|X}?L&1iy3aYIKi1A;^2Zj;qt$b%`8`xV%BS+WA{7Ha%I(YNjJ+#&g5W%CZ&9|o`dTqNTtg!P}@0Qamrq>=c_L`K+EuuA!4-Y3Bgqlu# zoS=9TC3`KZV2jPMG(+`sq6sd~pEhgLcAiGSn!yw5!U+m^BeGto>crCt3Lp5ZO`Nxq zZ)1|DuT(PJAdNSq>uVM;qJC|ILJ0`97}7`|qc)b&z47u5Bk_4gwXGJ7qP8DvokS;t zKinJ`DpdM1#ICNdK7Llf9zxXv^+i{(#LZvk!w1@zKt(%f*_FTCJk|L9r(kb%kG=dIL3? z*3c|*wQv`FdCNP{jk}J=q&sTIOZ_b5Kt`76L_51j)(Le6&T9$&f}f$7hAaoE9!!-^ zIE;TA@K(3VSA7{gcQ?L#1IGA`ADMrZpVCczjqpgrJQ`X#>LJ4gC}xwp?W$!#S%!5} zSvDPfytnSPwxr7Dq|fhKM)eLaK9(^Rssr`@X%QaEX81IcV3Ee-+S<4miGG%23)OGR zSkCPWWG`;cZSyIf?NX}KKC{88UnR@TE+L5=OhK%SfZhP^rKVCGEM7}`qWaBnq5F^8 zKyh;oN=q)&4j+W|6a?Y-%7U0i@FX2j%RA3(^Bx_ur8a8187JNtcczJb&V5)@p#I)! zp*SA8cazxMfiQ*E8RPY^psq5oY=rJrVCnUv>P{Kgy1lrYDr(4dsN;Bl-ZQ3)h5NNo zZWMimOhlNr4$mJ|auA}+@BlT7eu!Mw>vl6VW(TN}=IGC@=MJbs!*tnFx1YJ}-eF&~ zeD?5^Vb&2N!?rvRA?kUqCLDj z;!Ie;0!5Fpu=HPd-Y#c4cq*(qsS))cxL~TCJwbAKl#TpGou}hS^KCB=()wq z6F4OoJE5l6dMdT6D9k0P9%|wIWwC4KPLIuanp)r+>MMK{ZWO5*XbbbN?^hFL8;-`EZi%VuxfN` z5r*FXeo=K(l!00Ub5)2_OA20wC5lQ%RI_FIml+~ly~nRiJ36!BVnOZ{BMVmeq|4yb z*UwRIPlFDzn7@#Q?2eq23V1_6YhXgkb$N1j=f-OQ9KJifl}6!;CjF!qYe|Mrb_xT&M9F?kT!Nnhhm~v1kXyKf zf2yJNMU-Ur*>}$#kGf;A73?AR84mLQll*6Z;YPSzM9&hMYFD7_cjXT{&USA+=y>%P zGNkUNpJ!!F&^eEe*-He!2%1c&9#O5gAm}fo6v#Jgo0PWMp$-e;KUP07L3Mf;RYQLRxeW8l)eE;nFVIpoy zCr4UzYl|g(BJ?3O4FvnxSB31vhXK~1CLinuR=(eep>98Nn-j}ax}J7vbhiD?YS>$< zEa5l;)`oZq=kNnFArnQGsDArPJy9#mrCfr(?VDSCj{yg4G2uuO(eSZ@7cC6KCNBvf zmM;MUs8G=fr=>8g=G_s;!eQ{1W-`c3v{3WT_9y*&{b5z#I@5`{R^!T@NHx)nw+>7f|#UO{4{C zv4JV{LAx1Ynxxq}sS)-mO_*ZVO1xB55){saZ+kz!+*qIOv4^=_Nz_x>mpO4ei=*c9 zLr3GUBk}NtJ^U%6v2A{@-BlnGwX|@T-0Ko1-&kq;B^Gl!mGM;oW1{-uJGNcHM2Z-= z3su0-Ub50*h*O9P^~Skd^ggo7e)iGMEqj~?kA&|Ge#ja{&zTq6+WYAk;lH4)zb8i&{YS-+v)vsy|PSnrhR02YYI2Q7T9 zX=&{y{$8bCIbn|b26TtaV_C@l2v{pd7Wf7jlf!6Ja7G1e%V?+AR$kvLqg>F3+2zwx;-gJ0JJG@^FYzc$|9C@XPn# z{0^xO{w&`z@8`_5M8GbBRB;PzpC3>M4`^GI1W#Q#*rITu7Ds?f#*|ns*1wSHX7G^@ zG_Rvi{-P(pr4}MqBPhxs?FZ8aNdQLK8QDLnKrMJdYhq_Ep{EDW6n+7XZAejm zKvbQOJ-5?rK9!-PWYu%Qc{#=E&YwD2{e_2m5!Szz;Q*1?*7qoBYf%zBF*)oGe*WwF z{MM1rWqa!UPz-&I4dklueTE|g9RwIVPoq7JG5OfST2I6~VB2)60VrmXW~0@T?c-Q9yS6>gynO4m zJpQbZ_UH6sE>~g&WP%2^{1F$SwYm6OvZ*V)p|l6h7!-%QRA2q8P<(o)p+k4b{1seJ zzGEUvt?RXN5oFd}_W`4bt~NCh-1?=VK|mIPj}-dzFfHaqdn;>wbx`5--Avjk-8^;U zx&@o-{kE2}>fI6P%FSZ_@7NMy*cK#_NU)}kaQ}s9%Ao1CXSC!(!-22F?+r~LAZ`OI zqXKRl78rgwZU?tL^t;L3j7)pr1Y6))`Inz*KcM@bFedcQT`()r^06o<6mH-awFTkk z$>N-ch*MEWI9@BvFL~7S%*kD7piU^nkE2g;UCAr{9rIhP1-_KRsYiMPUT!j63P9lY z;&(&uV)#fpiv`|6 zIcv&0=g~h$fxcNWCu7XaAoYVgHzhzf)6FueNci_OJgCT=@(1RKTxP95!%rar3mSi_ zo__U9ZyPs@42OvQA&K^YxmbQF`WK=a)1b5BrU|_JM+XNBo!^CSgyAI#v}4U%-Eb}q69=MSN~2*?QUHDZ-0=R*mD%(}2n~Ay z)s3D3O+*8}D+u;YEfAPn;8AQW%xp`gMFlmwgdxR2Hz!^ zKPZP4Paql)se8{liSXVL9=Jw_J#DHb zah~mVl(hc+5E(kN_H$%I+UVk`_Ed5=f-}^#)PQ4IaM}> zJRrj2J&HRg{gYbu_Nq&|GD9lf2wFKjhp4I7+7FmoFR^t>087ipiFgff!k%TzsQ)%k zw)|cdBWHho|4;qXSX}{;SF3(tS-%1TP;h*I*A2w;#>YLl&W?27p__WE_NZ+`k{_`j zMO45-d(iQsV$ZV7h-|Sc1vjaaH)R(_+=Yg_9zxz1%iW-d2%m+JTxI{bQ9EGIQJBCU zSffH(DAO`5{zZS}yI*|7*%`~t2T3Z4;+|Z>4cd0PPL5B14Euob;{@A`A!(Re+J1{{ z62#CYDg(q-ZXdJ7t4i9JS#FIp&8#LYr&FpfIHhDqJRbb!bJ^$2N&4gb4~axDO7Zoz zZbXEi2-PQ!#Gbcyx9?fxoH{hpa@5Iq+E!ne=WJ6HRmn3dQptF=>*Rfg8t`28us!?` z84jOs1buyc8V{>?EaO!fqBM~DxS5C$xSjYe5PFBqVRBfiKR9uts~` z8utB{ZcD2A;D(aqoljK~>pZgUnM%O}5cj$;+t88J@D^mNP-SYC1_OAqgHy_?T5Hu`$Q#jw_tsafJMQ2vtDTbK;8xr< zl^Z_$P7LznTQc1t4-e%f#S^?-9&HlMe<)Nk-fp56>37k<(htR=SnoXEM4tQ$G0Yew z4-7w)-u)1r_~*pN3SZyQ(0fGS3W8(Ar#+!~vU*Yb!2Tk*e=$Gdedr$OToDNc7=`gn z$977&1?CW2+brEISSqXri$3wAnA_-C&m?*`Mg^u`+bWuzyI~#;F%^Y7;!P2rRYomq`_A zwLq?Z=a`d})APU@jdPu!ppx?zPC5|83CvVlSx|@-dQ{apnGfSWJQb)YTKk>;^{VM^ zWwFICX$ogE4oVS&H(A6~uIGMhAi5X6U*3*>OHYdL{CR@B+tM6^5L`uIixHq;zidgH z>C~!^Qji(wRWkuHM_1^k&9qfk*|hx};Q&i$0b!s&7r{c43bMfQr0z8YIX$YGTw$8b z`{tMLNnvti`~|9Gdz>{I7C24yu0`IdP}|BYLo95@trOMxA7|txTpVCgBKx71~=veUSK&- zIWAS_!d4jLRk2ZqgL;rsF$XfJ9R$!I%Uu0z$$MEdSmDWoU_(tixlfV5q?-ylt3Zn~ z1#|**iG)iby3dhKZ2*aN+or{$!|}$*Yxce9kTabPdlnO&U?r90}05a^}>J~ zXnQy}=9WTsAa1CQjm`Qk7TI99@uQPm<-QK@M`z?wDd1jQ3cWQ%Q36cd6|~EOVo7qx zJBS4|9Pl zRRLSO*BHCpL}0vLs8J)49{OKP$Zh#x=of`Jj!rS%LgCBV2E*=jeZ2EH~&iHU9<<6kudO#NK-%qA5sn`t{e z({Y4|4(TAIm!Kf)4R1jA72Ly3e-TWh$Rbz@zOodie#1nA5Z#qI>WMVfYu{ofqqUQ5 zqEjXG=@eL)qgK#d@OwgDnH!evZ+c$r1{-{bAOch@{)PHEK2j0zEVOx%11P}h2c(CO z1c#k3a`xVK4|0t73t19CEh)?x)6V*r&_-W;FYSgWH#HSPiIan~C5spjBXvvv2X{k+ zYnxle9M0o1-@e4m-H!-wvlu`(B6f@jNu;*gv9vUhlfE`K<3KGs0XU z=Ob0iYZGxp#z3aW*J($F@&sI$7TOqGu#-WDuyO-1#DyT4Z{eh-oF+cjT28IoJ3gP{ z;Zmyauh_UIes)*-E%q^8A!xUYlBTeXA3CEn3|G=Pw@8Y2glBtmn!;UK12jHd6JmIO zfqUgWLk5{?8Oic1oQ1HSyR5)GJ5ahQsQQ+d_ey%Q-l@hq#uc3(_jn$%1|OnUZr!DV zr!YPjIe)Bqa~ijlu$ps)m3Ql4;imp!qPNs@&BP2me8#vN#<3Ny2$*2ed~SEs%C-wd z#~NjuQf`WWZfi`mI$O4^9dK172J(W32McXL;-Q4!Bs;(*kSK{`9v+15U;+y0pl%Z= zOHRPd_c!+YQaJSb2jjG6g{HvJYvLr+A|q>^fO;|69dKfkZpm0K0mw~ zZaPu$6dCP?4wIkKj6hRpEr99%mbs8K%&+ALO*P{oPVbXWOGHl@{TBaT5e=4=(>SYo$BPPHM$E3egmNwGJ2+>VF_u1> zVE0Cccv$PteX2xsh&@vHG5~sy{z7&3J49ogcR+il@dtw@HH`kZ+U2Q;As^Rmz(D!Kbwp62@_w#kp$WYKA;r1_B*6mTa zn@RZuhBS&g_*Mx96(WQH>-!T`a(h+&dj}N_Q8=@d)mZR$ixW8RJydVyyk_SMpJIV< z{~w!AbpEeD3-txx>yselR{~IfA&suIghUQ{I4cH6*@AA>rR5dk%mfv9*%T_ z$E!X>{SrhYk$^ao5*F(G7g8P0M|)9%xH0h`^0fsFhdvwRJD?>r(GJB?uP>SZ^bZMa z=&WlsB8)IcGgrdy>w=j#imo~etl*Sk9-gy4+ayz94S}8G&{*V|ETWAQ7Ul;+44#RL zzYm1a%Qr;yFMNCHbDAK#Di6EgIp&FPw7rBgG#t8C^tt(SOrjz4&&v*ekG0LsAyKT_ z0;sJl+SxUNd$=TRs18`~r#oLo*t?%(rc19RqP3djHaPGhg*d!8I=znsJ-d86!NjjH zXXNa3*AiFtIRjO<3Pqwn5RGIdZND+o+9#u%b#0F+CMV_}{* zMym@a%Xntla<{SF3x+u{0WArq{SRC{|HVQL2haZn+s=~F1h5u!Kyl1kj;wAiUd@Ct z&0;BwW?0Ae=d1zL%xk8aZ>A^ckHz7`pn2aKY!o^V6;*+~yzWQd(Kz+-jK@!7C?>DQ z;4S-Ab$Rn8fmOaI1J@vwfU56^o)>#DD6twM%c~|nzANUBk`;$9J2Xs)rEX!&w$2VQ zmu>HOdHKlJ1G0o^6JUVo*$rcA=;%gpx$)-t>PMgFcT7L?aj)0JBb|H^HH`%1M!uw| zcV9>Lq$P>+)mj@}vQ?vTFcl|w3(J2j&-oIP6Ir6Y^js|99ozT4nNsjhFCZ|UUpiqe z$icB`6I*qQr(VceO#GE;R@#SiSwHB>KND$_ZU8+BPfy|mhW5OdnUU?!sXLq!rBocZzhw;G@p~AGwp)QlprnD{sXmg_Q z{@^o?MVs2DgfwUOSC#B#JGCFm4nVSbj4ghN&BK$mz#SJRX#Kt`Qk5y-l@m2$4Si>) z0$jTC@DsFIFjMbrezLX+qVLPibh+Fr;3slNuYJrZ#rT5z>T{jXUUpo<5q_=^+T`~C zuc6Y6>J)mOc-Y(r<{J*+jf=-~9ML?kbX)fM_x3K*w%_YsYkKeG&M`0L|P z#ss`C#~2~pmfc-P%yOnqo8|a7rW>qPsC_G`O)f0(dSTH(8$&ij2bM6N7Oh$`)6!!a zO1rq}o<|Q+o~1fxU^2tpv90N>bw+J(@rwpvpGt8E`nHM9V_VBEbekv1tMm+%|j|*@OZy&unyWK%gDZRJA{hxiVgXqKr^C zEVcQ<_M=wTgRD{KD3GKzmgU%I=TTZM+C0jXTvx^v;cbP&- z!4t(9gK^^76Y1JpEZ%SinhapN0ol6fnj?}gpXj+>g-c`+!rC$Qe7wffC6i|f{p{n=q(>k*!}m6^IL*?y1D)~vEK zu19DYgQYSy3tAgqUfx;67U%DNO;k4>^T_o`Vrl&v=47m%nMj0pBAE-DyF&%hcL1Tc zlM}eL4EV_ky}5mKSJYtl(nor_jY7v@DKW2iO_L{MAl~raj-y^SQP*6fuyP>FqOB$1 z(ztP$MxC-~as4$Zq|NjJNU@)^CLX0wY_Y}(*I|i=cs;B7pN%Y1n?(5hS08zuVGAwS zUI$08*P~p9bv}7TYL%YUk4_r_WEdz&z23c}17oVvjK$Ov!4jRg#L)o5DD>EIfCOv& zp{=ArJt3tE_h@F($en9`!Ol*ut`2NJNYoK@I5-1O7ObxNwB5YF)w+Q1e;=Z?bY*?Z zywK%Jnc4iV;T3L(QV;|j^dL$4w;dY*ZIDd+m<0B$cu$kQ!oNJr#;@lGvc4}hmam#@ zNRm_TUcdG+=jjix~wNo-~XH_vVTo(PQomi(>I1Yd>+=!_Y&ryaHh+hrTxW5 zn(B;H7@w}Agp`gt%fiY<=A5nBv+v^GL_QQ_@Pm+R7bJBvby#%<3&E{aXI(%3tpq2@p? zp~&3GcNvwa3TLq^s*E+dvTNuqZWnc1_l!(ojEzzT*aLY0BL9>BAY7&~`G%_(g&&wD zg}_A`?j74zoRH(ijCHpaN+)>L+J1@+72_CuUsLvt9unU5Qzs}6&jRvvUtsmdJtBIz zwBBp;Rv4bBsUIvKw`lt|f6PZ^*_oQa$Ci;*fAVmYp?O-iB51Emka@{zTH{uU%UJAO z-7bkyDDb05*GMBm0^Q(A;Z`Q4Qr|aPmu(PFO}}ivGzOb(U^yGu81v-X*=A+k2i8q< zDgC$BcGv9hWfO+l^!w()*6+-F2GZr{BVe81)gO+lhCB%_Ug!$(xOcK?zp~7jJg8qW zNf8Q?#3`hO3%YRt(aU@BjWAYM#k!i7@k?us>G)s#{X;EbW_66%WQzmP3w?5!TCXKe z8|#D+Qxk~#w-7jEx~f-6pKft}!DLr$%|HMBA(^rFXGhy<2gd4Z^d;=@7pP14G<4q; z4XQsoH;D?g{AyVs9(9KZ?T066$+t{Yx9hEl1W>m2loyLJDLp!Bm@`VUx(*nVW_Any z0sg*Vuyx`l2u^OL{o$i2fLhi@9H?d49)|Bv6Aa%0J$;=#T&P&p4m~|S^}D$4U29J@ z$AG>4H-YZ+-i2?p8V?3`I*4t!-8W=Ciees&-)+2jQU0g96X?8b$&pP8$sc^5$ETZK zA(hc~@#H^R_`Qh@I%UtJVd>QNaY}NmP`>RYQjmjPxs+F%Ec4MxdU!XfiU`GtqC?J? zR0Bm;6CUe6`^JG~Hpa3oTf@6+2}j@;-kvA>=ikne1qsLj!J}j?$sl{%=|g!#gT}GS zOZXksrIOE4XNGrUa0UV|pMUe3^Zrct7HfaZ1UgzNU@D2~0Y>^3nW?W21VSY%mwwf` zhAY?Awr3fC&Yaz7ydwDWBcJoP+T^dCiZD5!xW*5&O;w+Zw6$( z%SgXWcRZ(e&j`UNDgq#hd_96|AJOlCQp<4^UfKZH(%e~ijpJt|gI6eNZwh@I?FqI+ zl_n#c**LeLtexCjfsdqnG_{7f@_G<5wg0JUZe@f2uF}8E2-~1Mf!!3^SwSeaIM8({H;YiZ}bl!JS z(J<_X7sflSNJ3S(h_-tb#h^V>+P~%0j-Oj_>;vm;b5p5(1;v|;-5HVvCA`M#;QX0^ zrQ{`HRjWosV&Ub<(3>EPu@1?P<@L(KFg={}JexWs?0SKoY!BrQ7swykA>!~%_**nf zgo|}B`e@)y+d=i%B5rY)yQMMXe4=)X6qu~p?(2cQ*j#o!1SBZ}7$K;c$5{eqII2a@ z9&@2fbMt4%y4Ocs7_IH#SI7Fv>WAQZx3tRsb|cYII~!1#0o~7pz+`vq&rV6_fNtFG zB3sV1X(KcH!lMdhCGMvmoDlM>*#W5)Cg(LZhd@ldnlf5%*IMtH8(+7QGCLJ{whhVB?1s=GK?#QNnW!N>+w-1r z`*xj^Y{A}@TS(Ucla#fh*4qzWq{mkvm-`T4wysIT+o0==`+ZmB?YeD^dtNMLjQO{P z_?+stZZDUZzad0d95b$dhHj#6m6IP~17p^@6siLJTz(z;gwWP&E-E=z!t~~O2{WOM z`Hyd}x0Djy)HNQPKyJD}EW~jdV;kYpO7^P_E0>d~Fpe)W(+&y%ArN&atoZtU`iRM&hW z!`H5v^dl_Fz)(9DU64lApy_k+M4A5iK*lgwL z=n%^kvRRaPVWM*)Rpox!rxRrmIo$vY;X5Y-!A2%eV`jP zPE#HEE}%n)B(hme9ilk40tJ`iJ$D<8bn(Nve1Y|veZ4;r39IS#wMSBU5Zb{(LE!Ca z{P)F}vPWB&PtfIz`4uQ3FgLp!-2fGWS}#l_RB8GhQLkqKVM5rg@c8!Cztl#vJ<2zW^`zJrz=n83e+bmbh5FYP>tM#O$81tpo$hR2G>#cJ#Lvg8{Zj6P!Yhq$$) z#9TxQYED}vXkBba`+gbv?B|!+h z(r_+ju&tS0&ULLQrv2lq_F|UWUGjh{l7(7~_JCvPNpB`WN87T@bm>ou>cxu;u?-2u zP2&&b2t-)IC^L;vMlmSt4d0uVhPJZ8Y8N0%q?`75r=)LIkdt+_p^jHnJ9(bXbw%74+!ncFvZmN{x%)D-x+KO-f46 zLI2fXNWkS!>U8k;*WZp=Z#DXfPcJxl=p0~DtaAfok0C)ueH!W(h&#wI@{2&0{e-MhP1cw9^BK4Wif zadMZCLvnGo8vPG1MJk(XmVxKTg^@FJQeOI7FP5_n7?3X@9XbdG!GT_6e4+S+_<>=E@IwE%%F$wTh^CQB{`>EYG1lz=R6oZI0~+|;?e z5F=^*D^1VNWzRJlCN@yeWR+mY4rpRoJaO$)LD0?`k#B^LUZ2FL#Wg0O>4W6j&Q+%r{h0ba#3;=Y;x9Vu7{EUtnZq%9-UrNA zqZ92W%TyR>_Gt`@B8syIG_q@UMr2qaIoAd1e%FzCe*6up~@9ONQ;SsD*M}$l5Gv09fj+> z`x0FJ%TfXNfBk|yKS6(aWLO(Q`%v~j=n4Ga`vd=9e*VwXN9ccp>g1%sV%J7wL8rM#MH!a;FdXK&ndrr^6KNDKwsiaX5#qXfblD)-?dEHl)C`g%AhbQJ{v{ z#r}N7I2O+3*(J0-?FU!}&hgaOP#sjsaqwt3;Z~KSfQBZ~v!`EseQxnr;0L8(S&cyN z9QslI2(7m-5~*wdvz9#cYZxF8rxYl}Aa-tygN5DZr|E+~|EF%Nwvm@h`*$dy{Qi^% z+BS-7rwMWJg^g~{Kj*?(Kp_ob2nuPIzvxG0|NOIA{6Ku20Tlw0)F$%Sy3FEG96p5j zZ>n1aOlo@zH5*5|2K*#jZmR{rSt_gW4F!tXsv^Fo0nzsw1BG%l2QxM5YF70G6(Lb` z52N8qF6J=Ii;}{8^bpy$_r7O8zSI8H4<+T~4FS}y6SlN#>2&Bx;MseMEJ36>qr^D} z2UCprU0v##=k_L^-mm`JrGa-pK)MD3jaXy?@APK)Pf>bc1e@X!X5aH-B=!IwVuYRm zho5~+be6BWB$)%BH#))V^XcYE$CDYK%f3S2!3gGT5lfu3tD)?KF^c@p>h@dZKuE8F zzjvt>%MqKKx2K$u%z15J;n>SJPR2Z4phHc3yFmXZ8#n`QYfs?oO8k>4nwp#WUkKZd zaIE0-vw1mH5{M?rbnC9qe&-D=5!{c7@DF(k6pm@q?QwZ#!IysuI7yJ)V4j@lsZ?>{ej8*tT$zhln`BrSLjXZw)>s z*vZ_K)$oWfy4}9)19AO3OUkEOP;LmT)*YCj2ZwWjk-qCD8v7O_y@Ot^fF?oDHrn2L zKq&Zr@FL*7efjIP*75Z>mVGiKg8fplx({9}#_G!c*4oS6zk_yxJvRn9wjLzL9?KW6 z#rCU{VM-+*Zyu)Q7P38*ADGDH6v(}Er{C~dhQMj{#&G#j1`;^A;p8Nd_MXT_QU(x+ ziaWm-e-Uh*ee^fH6*qG^wLO%A|G4Lz+Zby>12QPe>!Z}aknIhSj2N#f@kS8zdF{y} zR#65_I87V2C#}kq?FR4}!AWyp(}MPBoqh_`>zMlt`xoI8dlZglnvuj2ZGgq}FT`MH z`_EID+ndC>exkNC7|54l%0eOxeF`!r7`VLJ;_IUfh{a=gy zi#J5G2)WD9UTCW5wHm;mFr=RkBDd3jo~Es(^1n*?Z7lvrB32{iM=xFa^>ntKlx7M$ zxo>azR9hQRUaEtO<|Wmn8RQsUdp2;4ZW4-lU5!{PosAqI2p)UV7<;g2Cd=?2tw(9{ ze!on61)CE*b}k*Vv=kZ|UX{o22SVEfRjTK7=^VfQI1PL9iyqJf-Vm1h{z4c-gR4SS ziTH%^M*N9Y%%b%!>-!oJ0g)iT3;|nyuWw(Ds#i!(Kt>oLY2_~@LQBGO_%Ur@y0UPs zK4QvOU%c&Rm{fBxJ6Vu=8hq%{pcg%c)G|L7$8YBnZQZ)2Ol|8TnCrU&gCPNjS`T#J zl1$(kCT+djQclb-FKfN@0n6(@s0}oYDeEspJS`f1h{wUGZ1+&Vl%$nzXNodifW1a- zjQrP+-?4RFr)|KTkblHrpz~f7wCzw|N7^suItnt@NPlCGH8$8 zqlN^ffx|(^D+u=@v}&o@;QD%kOl)ImeCara!JQ{IuJn3!IgaJV^_fRp(QD;q@~T~? z*$LPBnO>Q;b{+#@7(8hYL}OueOF_-cxvApB&XSMT`3VOue)S(myfTu%k}Sw(-R+UV zmNOThKURE7NBv68q=0AC)6u>oSq|Wgo1>dKzCmt==)9{IqV5a$O5b@S@oVx@b#2Ou zQomCp=ng=)7R3J;T!EAB;94xFVVq2WP)A8)Vs*4n%IP4t@5^ z^xZGeRyYk-3$>l+fp4%lI7_<~@wD^HpMd?X3IE*Ww+yyg7{jO*eEMq?SiBTUOtr&t zBF25;Qf--__%wBC1KrvBYTcmP!{)1G?V;mSH*z%fUHiqdpgkLwW2l|ZCXa$k^Car!OmfY1QZnB3aCTX+95aw_fdT0p+6lo+flaId;zdT- zCH~ntgDZJY(5)@?9fd0AB~Rg+d3vDP{8SLduD7K*|$uOK39yEWF8Dz=m}l zfrS3Jm8*u)o;Yt9q$*@RufNHi)~ErLu)QAgc=qgK8(Z^18!3faO=AuJfoAhJ=5?cq zk9(>H;ft@|OYro|Ty*7&ITNdzs`MkH-afSWxz6faEIS*nJUb)ts`x8xG)Pu&!*^K7 z^r2uyttH|bE=PnWhH4jW(V$aWU1c+~^5wCXBD|Ik39BguYUK{vQ5aS0(9t`LM?Y3^MJ!68#G8TFS}FR1h>-3=IJ%Ml8S z+~ih_xh>+QVB1OX|VchaGL4d!{t%IQxY+=n!x#ZH`R zT%uorNxL!D=;_K%z;RNqcx!!|jII0bPlKDbJjp)dJv)!h80pZ}t$)}^hXmeSFhOYp zCB<7_e@cxA)Wx>vdP}Jry0^lFF76n_xeS;+RUc&_BH+_V3YYQ}$ z$(Zpkq+24-Efe!(B7B_s!9(|IOVd6n3`wn;YqLjU*k+k%XWX60mqQ)vfWA)@Z7rG4 zW0kwu+PWlt+K-2M`;zo`_J!I~x}F5ykJL4!Z%c;eqOq~aeRkmcUx-bpDv0P^{i&z^ zvk#D`4|GgVr4a^}LAi}40Yo-!E((tA9vT*UJyO@tdys_0g|$5le0mCkP(%nmGoQl&y}qxVN}SV^WGe}7PNrB?2L0|kUP__dQb2wRiZ*GTRB)gj_N`W_ymV?> zze+;Q!T||X7udFfP6$^5=E}NS=XwNRIAeTkuuHCbp+DltKdt*}J4z`Lu=g;&AkY$r zj8sjFyI$3r!e>2J?dO6`xnb7W67%kv$>A@G(N8hju3JU!NQs-hDYgWR_AO+5e5k*ZH-3uk+az_vn6|Rj=w0S+(+! z!wvWs|Cqz|+%V7b&2i0+h2nAzF5Q53pWd#F36jhg_AobcGPN*Vc9!A|NMg~6q-V-F zO^Lcp;}=P8}C?)uHC>nrn2n??T2nTFi#LnJ@1AlA^XMa6y>MAwCI z20(d58ZUPomnu$nFO59-NMxx>Ds#T1Q1m&LpZUw7ex9+4g08>Knh)Dy+zn_Zk^ov8 zW{|k0opMy@&8cuX5k-?RAzC_!NI$qE1Y zB5oiJV`?+@93_?2-FdRmonEhbWH-49Uq@PHjVb-COLzP_QxSu%LlnUQPIGJP=xFt}wtR963gzHZeaRvCS;h~mRUfO@$Ord~AfA9i7dSC5 z4!0orWs#*89KCZm^ttl6yF~w{)0?KUui_6`D~E4>iZXz3!AJReP=JI*q(%2Ax(^B6 z+6NMyqYa_p*uJQK%!6w;rZ0b&+A0Nztb4nOf7ED<-?6f6oZ;hw)5(pDIi|}{7Ml@A zW6M2-kBKu^|3aDrKoZ1^dUKTFHy`;9IJhNTmZCVeL3HYpH|dmc3E1uoQve~7)6|N| zL=R_f>JDqMxIr+Ty@yda2#vbLw1j}U<&B*+9M?(;*iUe?WlF;~(AUkaZ0@U@x^t$8#L_KmKsc%zJrl*L7a!d0zBmkV@S+ z8#7s3WUl&P&&M9c8A^X5PW5qt=E(PvTeB5O7d)(u9ef_#GoBTLvCRQs8n(FE$>JQM z%Fyc(CDmD!jW&anNz=V#YaWu?N`iiy%8CV|1fG5b68b+6!E(m`hG5xx4QV6c^}S-? zZSFh;_$LcLSpPt^n234y6*Wl2Mzn!^}}nptLH6JbouJZ{Ii=mY#DGm04{Es#$5^>HeE z7CXO093nVue*3nr*$J|!;&L>GO3}wMaJ8Pu$w^WRpyc+wJ>%b{TLXjj{ibzI}ktgt55!>4pp1 zDiGd*uJur;ppqk4GIZTC^z`$J{(|)N1KMZry1Gj4*?1z&exC(hlZ09tq4wxNtzY~C8J8=0eCrh0D+TYj`no86jc+@7 zSzGt`*^zpcw#KZ?+UdyY3zg%~+!Yf)3Cp}RP+p#SmE@Ye z^y#9zk{*8JyFqQjdtJJb!X6-+Ph!&Eajm z+asq=vh{{rB6W4d0kd(>6XvH)cu3kFFXHo5!K%0(YbaWgGH${(Or1-3hV4xbQ=lcr zoh1y%wp+7o7dHb~+#(an?Pyw2`R`-#XU4@TO(`yi>^}sACCv{4?Z>!t@X{xOvMR6m zWP=7R`GfTV+1?dWad_%8Aj9{BN@3U>RwI&Pk{>{ep#%~daS_AQ&CeN9*{5+1BSUpX z&epFVHd;S+X!D^YuuGjX>b~>xdn(vxW65D%E6Uouj0?RIeNwjlwCZD_$Ma|I zGF051M9l`-vLIWcfbaM#M&qUN>qlV2I^vF)$bB`LApI0JjLEAJR>IfH~?h|x~->1ttdZFwq z=W3X~pPnLvS0n8>(V;m0Dinphy7$xgp@CAZ1LK@kuROdK-zhPODxOR0nmOolH!P} zMDl8Kf5x1Ee95t)JF2m2VId^}V&dag?lZ<>QOEavpN#I{_q30SxBUS;qaOZU2U8o` z3b;WBP6Y=6-NC?#E48Lf-(pa7Tz0S@i+lOB_M4Op%iu%m|Gw)+-ZKLq5(G zRfc3F;hNxdKJQhgWC9_=8dhp=ACNOXGGFOhRqpHSkpU1pi8w2VS3#eEezvVm#~c=S zWe*k)fozXVH}gxZb@z+6=+jguw_l%;P}Pu0_dI|5gJwvoiJwfQtQ2IPcDP>P99u82 z7C^Ew4o|9xLWD{6a5CL3hZI|A{qU>NhkCU3r{Z_Y-xlSiZKRgI4^`8;3Eg5a>|^j0 z>VyX>2<$He2jf}>#@a>1*3xp|es84p?HA#9i-LybUZvia53;&{@4WKpOJla}MrI-5 zVIYe37TTOp3Aa=~)%vN?T_%k@;``IaRdQ_5=4seU$%l6te_)?u#-6h6G%yRREPY8J zhMvd@-`H9!_&_Pko6!+!(9x!_q zxX(=7y~(Gd-CK=1%iyQqNVH%^Yag<`-1tsaplnafl@Y7VXNJEO@4%hu`~T%HicCX6 zO2m3C0O9jipR{gdRVsAyqFQ4@rD)&PI;-jFkR{0#hf1T|AcW#5MFjiU!*3-g>Q#LN~;ZM1p~;5k}!Om`FV!kU|HyxHPq$mDk8S^WI&37*9RjY$GE^6 zf)plkp~bD$XdV};^U33ynFV;5`Bg3U{5UaIRQF;4jzKa_oc&r^C9dCc^$M zdC_CP&WUE)yQcF3-@d&uqnGTW4Adj{0Do2}nv4#s#F9NHTp!dMg=e=|{78}D-LT!3 z{jj@w6kIl)ajY1+Mz?mJPq)rbeKldLaJm1Hgzj_wwd!X1SUTE8O8gH@%?5n(215g! zsdQR1W#*%*ooiO`k~jRo=_8c*^VFZUYRqfSwaYoI=aP|Y_Y==*3qq)jR*0Emn7}B;GVLH%0!o|Mo1Rwc zmw1cNH^bwhN4&Cr5E5#{HUpze?ZZHd&M=~GHGZ!s77Wf9nM;VN57y37Nl}nsZMYAI zXm`_r1k)SU0%sgrr^WVS&$7C92q7hl1MzhzcviArH|YjFt13K%@U8hm_mxmJH{D28 zDUjC&PK=>h2l4wBwWWqd=n7_)Kk5T}XnskT5$FU$5YzB#RbMH0%8jdUvMQ^ROd_Vy zRcpT*Q)0i}Glls#*T949D!2FInlN|FTk@L51wrDjxdom*GeC3q- znM0yq@$)@3M9L-P;AFixU$72UHe>~3m9s5h?%&8t4?w%CR*1ZlDy;~Wv-G+2CFkhl zwlTByRXUv2S82EuOjWUhUSva8%mhty9>zVS=!>llCc7&&@PA)C%+o|TqVSNY}NRkzYsjoE8OcTakp z-Dg!^fIPm@Zg#cHTfx-c=vzX^PMzP1tJ@t<(XXA{95ENYYb^|5Iif+QQFvS_jv;XV z0&vg=Zsw$39IvwK@zSiXabgCh4$28*OL&QIvcCk~6UGZq1yZAjmV+SxGmdgBeWUs@ z{FrGNUaH-lPpfv_=`N(V`&5?S%w*&N;bS3$#4NT{_hz45)qOX&r$-Xt-HO8 z6knxpcxk}H+HR7W{uLm5{EFwlx0Lt*pXFz9b5n0v zP;tu_3B1FOM=YO~yg2WdU;Y4D=InlKX??O-^SbU~TGU@g;y{g(B{fHp+FstD@4?R?RONPdiI}ntpH>1wV_^P6f~N)z9QQg}9tEk#DyqV}j;)+R@Ir z-+b0Dy)d-pr*@C^Pp#Zm!@N*zRVQ;T{~u-CvEd#PR0iGkZ5oTIJND`PL@U!_r?XoTRw5YjS3qRZkf->hK)W z7V_z0VyqdCkX`^elllf9U8N=SoXQoNp=NT|Wx8mE{n!2Bv$Ju$IC&)HdfG79a!L}H zg?F~*g?3L|r6m&X+)OWebaqORqmW~#o*9R`kKT>_X~*4%IYw$X z_yfC@Xw!=g?w-^uB)Toahl4-G%n|z`mpWU))bE+*NxcNghu9C{@z&gpQE^8=h@LBN2^ho|wOtBF)uGH+Ys zGS3;TRMGRaO^@8bxMctvKT@keuE4DsLcL0+(aiQ&=gzDfAJqOXjNiZyAR)<;m9$dX zNC}Rq#2Wul!^#Eg2k>l&Sl|(yOB>E zBSMv3qulZ}pH)-tmVX|{B_oGDNtm=^T(b&4MljJz{3v?A+Dnbdk-#W3TI*RAWbbzI zqoLU)`f|#*$+L)20UQFfSc7kC$3_rW=hAi@zJ7qe1_{@B+>10pO$o|3m8OJoh5kn+ z&;0MMHm?Pb#LVc6JB`emwxg-y$^)-$)l%F=9-WwQs|8h4468d{e1iPZv!%5Kx0+eu%1sKj) zB4KxxE=87>LJdvM(P_vs}Tm}x@w_4j^-T%Q@Z)hFmB3l(j-6&SiM)DIKl5o~^|O(4sa;O!u@79)@6PJVxCqY)qIbD|H%PV)!nxYnO^ueIMQ2|EVPS)q*-;}rK&Wb zIh?T4RNLkL?_Y+;7RwHd*4&rm_PcNRUPGWf^o(4MfbZR?S>#6*V9(UX_mk-$>FZ@_1BpKF(`U;F!5xcz4QTOMvV~=&G+lL698F5_|2(&Xw z+FQdCzBMpqxqJ}7LJVzaauUr6soW^+*VMAlyDcWUWeT{D{kGbkvo`EWf_|eJr{uM{ z>T}tGIP=j%=m`dK7l2+6Y>b
y5HOHjkRJQI2fJkfq1_GgT=$Pj5?0ht+x?^yi@ z83r4wr>cIU+1+hX@p`tGm&BVlp}Opkbwz_wsi1k;zY$tsfYH)}g)@#)x0+Fi`7~bb zBlGy2MeB639YAWyQX#`+nCyd7@cldgx%- z`PZj49|t`)-u`;}*_H#=5ljUejIQS=R+GkZbk*mR`HLFbY076+ge!#far|zlmriy+ zMZQ4^`QcI2fkSnYD&`2!4+iz{PBKp1jYYWMX?O9_WihdB=oCGRXtL{Gxs^?(_1T6vebGD%5kGU25qLz4Lw928bFnV>{Uq0?D?Y-vmx|N z>IDPBBT(u`-%q%WY2rS6CrGYkS!uM)zM7XcM#8)IbIuUn zs6fYK8ENoF_|7)SAvgLQP=kRuaRlWCVp|&#iP&7v1kLEa{CcX*haV;kaj>`$xj-(` znAQN!g&Vz?;~5Lr6nA_=vJ~AHigie*Ox+ddq)TNHmeQ>oZCBz{j86*k9to@7r z3B}|wWuqSJo>I?4}cR<$;m6ZX*yGHL9{~{Mp6@QEb>4 zcxIWcSv{yq=fv2%N3ss+FJIXMB3a_uY&+&)o0Nst)~z6wNqpGA^^!u!5fwxmvPqK{ zvu1mZqG3j?5aM}e{!9TTILM}YSSN6U@p#<)q0(&$FvU;5Vsu8IbetX`KWHW}O!cwl ztU&-3I)QsdE*TFHHX;G4c+6!7aKnPca6j=>PgdQLzmOn)Hj?m>2uTbu01-h5xg_xs zH<$YhMqi|5GoNbnVEb9eyEUCAmksT@)dHo=SZ!7tHZT01(>__g<1?=)t6*78uX_q=PU`jO%S7pkq zxSY|ih!OeLul_J9a!yo1Eb~pMe{eV9BO3CEUFrnfDO?PJqGI|7Hth;9wI<}6PZ}q3 z$*T*uQJ}#Zl4EPe@-b8>h^0P?=Vi#7>?9jpuYItnB7Rw@qv*;{JCodq8Lx}i+g4Ua zuIY5ZV7pLF<;xOO{B7n(teRieM0L4zruU0^-jJ&Nv?8Z2zJvslBU|fpxkryXzf~6E z7n5nDRDsSA!u{A68b98DK1?7B5lW0X_LwdNCLg7pO$;6!pkC8Kc(Q76MH;MrqOikn z@9ly|3U}0{YRC=${hO6?d9__DjWF(7vOv69SM#d*YDIWy+M@p)$yn z%+d2n=b2;IvYYH9p1lDP_D{ymXhW^^fweARemROdh_oM3;kWYRsNdO(2Qbs+GLNy= z+-8q8l|c)K=&QBvoFnvE%^(l|fk6a?ju@6@J;#HynwSEBmiTNo5Q7J$VjJy*m`R%E zpD;R*66EqFy~fLK>aN2aGsqB(X}+II!?0PD zrn*PJe?de5I{VhB?D)T&YtJAIuDUD}hjUr`gs3L8GRoc*%2qR0gtGF+@v}44<;1Ad zwXtKhNpiB~gO|5XD>qrSNV$2Wr+$O@fF=?il6tNLN}+Vtr5#){w+E6U<+R)kXJ5|7 zC9X4VJ0AnHG^adKZN3Zv{3JMX8&-!e;X=!95ExQ_VEZL(HROV^E4Ek27A`H+w5p5@ z(T%kjZEEK#g26w$X0tk2Prlp}INfD^Fm0vQT@`=+0W~^-0>-IC? z?6BLMLN+*lf3v)tqJ$(f-0A2j#x>7qNeU6 z-XTe0h&2@kpycB_LCiMyeE|^7_p48+FydGFL77?vU{>9}cv3&13Lj2bGpjNK#xky8 z9T<-jf~{f9dT?2go3)t!EgRiYLIT9oj*yLm?(6`>1q8J+#*}hal?q{l?2VGe)jmQ_jbZ>!Y5#-3 zO2z|7;WhpP;lb)q)&zRlkh)g|hEXrQ+!PdOa-(uILBkcaAL>}h^Jt#Fc-3~~=?UT3 zG?$$TaP?b^vy{Xj!hQHYC{efQmbaNOh?4Wh%G;INsJ5o)14>ch6OkvfQ+6p5pS*nu z8rSNA$*K8H^{h=DQBctJE^IyiYFCs+9RGm5zNhr7XCn$Sfw`MsYQ4~dTQt*hTf0g6 zl^!xKxYtx3|Ascdq_oYMkrFy__c?pY_Zr!#fgZJOz|YxZPZj70p$kGu9sM^B_HSxQ zUGX@pgcyz^zeeDsIC}2`c{L-)Z?>sg3Y5jg9Gg>Bssfmfc0ZC>G;+(anUoiz_utFU zI%kt_!p`m{7$HgT!21^rp_@TjmekpXxfMiBHD3}ZZ^q?&N6ONVu4}h-tF(P>6z_j4 zVX1u&RxcgfYR%+e0uER@QUK?G2wi8Krl^E!s^#3ey^wgMBvIqNrK`vKsNo^gih6Ip z1A+o<(;RH?0SMfc&H9Nbs?PnW5~iZf?{|LbI3giP=}7Ei_$OFzIOvQMMQ}lnSWbYJ*(|~M=1RecbVA6Uo#C>WM9v3C!iHKSFxxXf z_1wPuOs<~sY=UWe()^*)FBooUfV3Jpd^0MV%)HLEVs0$%9iOJW!XMK;QWcIZWwtab z-e`!gnJ}8VI=A4Fmv;(eegX_O&^wl5w`OZdT79O*^#|5J3b`1*TW8KIPT21x!8R&E zqsjwMYl2R}feh^uFheF3+WnxbGt7E1E+nRm1!O;A67TtWOegt6_lo1OjGk#J<}JgP zaz&V5_|>+b5UVtozajMqs0>AUiL7!%_$#G-8_`z;%c}~1L^zhG$}Yr;1m$U`fZq-rfYu475XqWoJ_$!Q+%!701}jH-k9iYQiL2;R6=oYYfCDBb_MoYvNQfNJn! zU$eWgCi;8fZNsCpiZnVWTlnpPRYHiSB^fUY`I=FEgGf~`~WgYg9*a5psTFDq_jG8ln;?z)7V=PxX1*1ie+Y8naT_;1DuDd!kn|_ z-_8cQ&>CE?Ho4;4&| zOaOH(jtBDSCQl0aD0_>H48CUI*^f#Z6zyL(I((XyUun6~j#9$@MwX$MHtDCAi$Q_p zW~^1hNkt8rw8KAo$AtOvemA-AJF|b_UAn=NDa;RD54xZEF1e6wwT0DG_T7dmcQl0v z1Et&%(w?il#UmrTQq#V5=BR?z8x2rtuYloKxSDJqwmGy|Ym?PH9JtGg-^&JrLl9Jn7|;2mwPAk>_z%Pyp+U59R} z`htVNw%Oo=8D^+-Nui9@6e8d=QfAXShzOR%?@~DT;!av1&dW7(_p zmu#bZZ?t3af0KC4y8-Fgo=W2LzRtlaL$XVu^phHO!PB*hW--%Of29w#V{c>hr~t1# zP=%X7BW$gk9n>SdUoh{P+%i6?v$bBee1yN{rb>z9`+ZCfFnR{KmYF#sjjbQ~mnDCz zlyMddl9x4iq5y8m7r3Lmcf_w~6T;xbDAtwp6L@9}OA-|Kqc(O;CY({POj)i@{#>in zH#VBXen2PG*df7SUwHV3;?pN#FfM75XofA#@1`Af~z7ziOI`>Os`DZD( zhgDYKNzI^(tUU=MHLNpK9=j8fLs9Df={Cln&Afz;8l!oO+7Df>hvgOg+;8^Q0N#b8 z7)PJJQp9|rdHRW?3lIOokLY$+CF#xwA#h7}Gm`P3v`tvaF}wTx}M^tF)L{ zzo#Tqf%f<9M-X@2MO8Mh-QHpx3cFn1jdR6ET9nmu?u5MQs%h@@%^L0i`e{aJh1p=7 z;R{+Nbg`@OI>t7$z%c#t7sClIAezgwq=IYwyA4z>9sVB}cUL*;%;_$4ki*qV{=%*mj$w&#YMU|&&ExfQdlWPN|#)o2zi)#E9OX!JvQLQxxNOS1X)8Uig7F#Mhmjf#oS<~ zZi-nv!Kk|)qh)<`j?3&y{ROjja&<78yeloo{g&vn$>GGayPVXH!}=!pREA{Ggt`=I z11GCaU!3$X7JUjDOp$_g1sD>H%ak^4ZYXwwz+tnpRw9PJ*2Dj#)wQ@H?qK{V`P>Ki z03ekT8b{iNCI~O8x$Qb;O{vOnn8l9#qMw|PxO~y>8pryaz z15E$GJ{)1~dB{c!U~z(g;~2deMUyROB@Pd4y!&4`#%FN<_Opcl{;L3{6DWwUWgVa* zV;R>z`>E6>J=&=*&l}CmjDAzJlHin~x$8GfqnJqjBF#c4ZLfHuA ziTyOJNZj~%ckNrx!wD1PKZq>B*$+DQ+#(%~ejnH!|^t zy)rt9aY1fnRWCyPda@+{%0DbwEvx}H(hb=NK`lvO`6vHpv)>|PFHAfi72iP3kl+K77@+;_>zv1||R6#5dz zEN}FCFKh5#npq>i=CZ^aZ7k6>pm;d4`$UFzBfXzbzNGRp}B%AH1h^Ug) zJ&QqO`?Jy)Jwzc6OO?B%`_}Tc*{hN7F`dR>MUp(CtqX~i3Vh*=gd%ta2 z;fIIAiL|Diyzo>xWxP}fIY`8nZaW$M;Pub8XI5p8e%^iwZ&uO{u(6@LBro25;(Dm7 zs=sYnI7#h}^{M&LtCLa+KRXQ7nBmw~V0XRLNqG>6oK&yl-48$%>i#gUpqU+(OOHUx zPV-}n6SMb*jY&-=kFg|*;KM#;TAdX*JNk&BJp5T{0q9dmD|JL~N|Kk4f$Ef9SuQQKw@W0xxLKsi>MiuxBjsZkE{M7FL{U7+E@PRFEg@5|G)m zB-N($H+ zZthwv`TsDn6=2kYQ^y(LvGaeyiF}Y%fLrsb768Wx8$btoKIiHn zVmF!N7=RbVS(1o!p$!7_SPbF025VKDAJ?KlK{H?MpjdIuI^xg%lh~Y)vyTNT#-!r3 zH6LIF9iidKN>~71LJnlJ?IWrV6w07R4q`M3ZeaG7vq z2;|b5sg8B6t|~MPgvv3=SQtP0RU?6rV{KeCBc@^Dcds;JU?w{2zR#;?mIuE)_4(;S z>mbAtA%zPlJfM+SRCT`Ixf1E>`3I(nZ5BTJ2UhlRj&1$s`!$yhd(td}Z-7<^)qk{x zK6?E)U3bKmac$Jvbi$^*EWz)-?XN{NTA;mdH>Xs4%qh=T&1%&0S}~WpaS^DUgggLE zvjcf3!!*OrdEx3$-jE-o*Ka$(j)lF>e*;Sp^~JCF8uxAF2V5@gFFF5HjaPd|I(2wq zSU>6TrKDx4gdGhI)V_2Xb(_r!>45_RSF z`0YmLWcL1767|2hTH&un?~^QNe&CGLC>E$;BKb0sOD%RNxxTz>aa?IYS<&XY;Pu?v z^m==5-f?Bo`-i6<265_+elhumdWl?j)Is!>Gx*q8mlprMqAMQ*phWQpc%Kh z{t-9d-(7)+q&XPx`tVHPfV3X@9rcg;7Yrx)hIs|dBN5zGw+c`^^dUD=I|vE#tSlTU zny}_1M4+8@PTMha{4Y8>C>6wuQ;AH>9BRkA1V441Q1DNMIZpERuK)0(mWyk_|4@#5 z?+|nlZ6JnkWnB@eMbc#S!7Sz;W;o)9Vj-nO#(VW3+|uP2fHEyq3U%rrh^6I>0DTsK zj^tT^xPNqyVg=EFH%1UXn5uGRxLb&}%C`cY*FM0)dmkSySN%`UA2 zGYSrJ8Z%-C&U&e9S8Io)YXaPE7vu=mCN>zTlz6A=b%ucXox^ol; zk)*eOEyj6p#J_t_I}UvHfBPBG$1$`#-$`4f3(wHQ+cw_)?Bvs9H*R}nL^5c6j3@5r zlHb1Y%!s8uI6h)25=c&nhyK<`MHo7eO?nD{y>)-qvG$bjn9mn<_(op?Du}_t)tvSQ4>JPsx^zX<90`eC}ouLD#xPp=F9Ew z$4XuKGSwnllpte%l2m47{~n%!QKvftU7MFl3872#Jb7&2yoi50$1}}$*M8`Y44r0M z;e}ykux+S9c(clIux+s!&%=Quh9P$P>eaHncl}D{?(&A6IK78{vnFuxlk9u6+_$?- zAIuTRgp7EW##4o)3$r0#?6<6@j=Rd+c@%6-^P0J}2jYd@bYt9kkHyT-&w)ptb1m_w>^VDV9g%jSh@ zYi4ORKN0hYnZT03XmuZ@8{~LrGRv=o^He1!J&Jh3<22V@C3%uXgCG6?pZG+`iG`%> z%J*i`Wr*|Pi!<}$%DwqxyF`Lo(M}qLVvjL(yH4-c(j;zL3-bM4r{6vblda-9rVD$mcb3CfqEtT zCgbG5);YQ!4y;R%Fx|uc0PB)}fYPjks0J1>X4{;Y2f&zJ`v_1nlxnboa<@0Z#g5>9 z>P@OM-6;dCkeq=Hf&XgujWqz<=Dq4ufQZ3O*O(`A1Fh{3!wK=vg_l2&2}K)4i9+o5 zuimv+iZ@z?6*4{WQ=s;g59FtUS<83x9t!erSDHOl`b3$oxUnXZ9g(nEIMmn>&Fvp< z@f3MRzD=k+;X{7OTAlDz_-M8)Me=*>bKrR5jeLRNuTr3N8vOiD)y6w!Hjx~E37z_) zn#FwEn~2uQ7}y{oNwH~#s|+g8(r2ufcVnAXU3<97g=Y&i!jr^E#vpoeLd*BgDceP~B+qS{a(OI0}>F8*3XO#Bd1<#dll=d|j|9dB=1{aXhbHVhl zqXwYdQ0l&oJD+-tLdzv14lYz58u)l-IQ2z>} z?81}4+jJz5BGT4SRo-C4190o^~ zvGrm%NX?C)lFd-+mwGr$8PE5;A3~VUtSoeSV(>&kRWa_kmU#$}SbF%iF)GyYv%59_NID6gX;7AxG4jk}07pi12a6gi}fhZRIqr z;#9WLG2ZGsVwehb!6xqJmwiNB?HQ!ASvav&y)KO(N}Px&3bZ$%iYB-l-$m0NRyQkE zoi<2TS3g;-5h{DkXI7d|NBb`}`S0vz$`wKYX!D2s_vVkFv(-O{%J@5Y#6Md<0`<{* zW-*X^YJ)U%a5f(|fAh@}0sy^$9vO;UUBvA?Ab{`vZ$1GU;O-~H!v7EH9-7TGc@P1W zLwca_75WOGHe9ITW!xcDp(P`QP=}z4s>U+qF0lq4vTf7BQ_tX;?{ zR*wYb4Ri%)zO|jhNK)GJ?wtjU7}b;zVHP?QDt39K-kq;zK-=-PZmL{EIP1o;-`4Tr zC*YJRo_G_LglZrPITgj(_1N})xaYqTGoycQ>u13_%@yLp|AmwVOFExxAMSgk8fa)9 zwBqOHjW`VgExnLghX$jiTVF)oW8m7=UEmB5gsufrl4;+m%dh)crm+#|c=$hKii1eqDW292oxa@)`e6nLrxbHt3?Pl@!XZmWIk4@_!cRj3v|Y(nZ> z<|The9mFV8l~OZ$8j8$5m*j|NKA3VyuP9ZTG5F=zvG2^OsMess#Or-tKg9c1O9NU1 zL>|^UCe4_KsbmqookJWMo4XcHo6g|<9XHxWGv~h$z5h(|IfQlqiu9*$N$>NKFHqB-Jn>$m1 zVf8qwdZJXelTu50bl3&yH}LY?f%=rr36)T7C5TNIdP8c-NYkeZy!P!!pAw!v_)~lF zW5-{9(EX>nz`H56M?e<|@PBT3hi7%Yl-F-MrDJDGT3 z442cr=^`?8;`EwLN1QrBA3v-DDW%mVFRF+^{FCMxhrjlDwP>DuA|J!I^2yasZ)sn}?yIi{fRmzwVDOYt}fWvQ>8&-pruCZO=Fv*C@popu5!OhJ;jp zYFKE#L=Ql}EMME)a!yG2B^87&)s~EO7dC(6;4oV6A7AmDE;WH#UZ+cAl)II^O)V#` zMC7&ab~Ay)ZT0i)F3*0Fv@ZTqxcREf(Bck2XTN6S>(GG6a1$SaK;RyM))JcCUN&Of z5XsKmpMCd@1wlQdoAqJZw?BbeiPTy`L_yRxYa=1 z@vOjS5lF8IYXRe6F!5So-k2t;ttT!Ae(ub~_Thw;ln}5+FBl=i$iF=*anTTMm$fui`*XjuT@8)2giE6Ge0Cv2W}ah9It*ynGN>>x_6&1R1r0j9wN+883o@{wwa7*oVcd5w(DUr#9 zI?mD9t1>bAo#pu$eG*Q15eLUOe)L2qQFk50 zcnW5d4uF7`T#P+DtapkZeqT9F}<6Zqa3m+o?GqO$bu zGu#|CwdKZ91*76OVfO?Mj z=Rb82V&LS~$-Cc+vqwhKsC@e#nx1Rka-E5^V4Mh3W7rRDg;4csEeL$rBM_cEJ%5cO zqQq9u$On7j#iDPRFTRy)XMWSY_QG>(bRiH^Zy+E1Oz}Mgz?aseuK!H z+6xPYWF3S(>u1_mLJZ-NmU_c*Y!Jiv(_C;p|4^-`U=}S{I_;5_)!~aL&vMg0i@u*N z#}5)HQ)w}{4WyqLYr7htLjK!XEUq7P8z)>*XOl?=wWJgNjNyP5h$&Tce`lJ}KRw*B zelKY0Ye}3`NXy#vgMDpZ;F}?&RWU!63BhQ1cokQ{{P@uxS@VZ08zb2(A0in~waOU>5tBDY4a(CFRH+==^Yqn3B+bx##hk}T zm@bI0W<_9bOcL1rjK*uEecyE%&Z2}CQIs3VLC|%K+LTBV zJKxy7xHX)@ID#84d2!B7QE9s3r9u9&R`%%0J)ze8%6nje*C-}ryLgHoSv>^H|InAu z&f3r3G_uhx^J=WS_~G&Qmt?AOtSm_GsQG+wDW-K(5#rdTtNQlsDjy*f9*D7Zb7J8Zr6<5#Gs6yQ|H| z>}bAk@eB?u$DKX)e!dM!1J5^4=lNmhmsWZ6r_)jpJQ9TRxNdKbGU$PK=e74SF8hGd zjtV4+sK+blLy1)98Aaxoh35LQ>ysvw&jucpi{E#c?8HA*1LN7A) zgx)<#pPy_He9lu;9kb{y(=}RJc`22kb{AKB8Y_kaj~b2PIz)Zqn<^DK+2AWHOk`#% zXnn_#jy}Z-Y-#6yzP0FYI}@GLAX`i*Pw1bJp%>|$dhM;hFXlJ@rj|v}`gP!ELsoNdy zM{m3{;SqE>J}yQy7i*)pADm7eUM)SJ{b>1<*!?7OgM0SYgF6cJQplb314$+TBYTE+w>u5V>m;agnVrYY zMDF?lqQy}B%0ssE6996{szZr574nI%)>oG7GqmltzVxp&LfUd`UD`=r6%fuJn*+W% zM-Zo$E}ooD3xce2F#OQaBr>G(y%INsv;0;b?1Ovqpnb;r*XfQS*Ku_*O7E_DR1s<^ zd7^W8waLFZ2!kk?_ZORq&P=f|?9-emYLJQHJD?}>KJ=C6dv7t9RXpTj){NXiRLTB< zVTiajEzCi>AhufwQABJW6Pmc$BE2Izw__HrM84W>nrT~f*k`wa-Epay`-er6PGmea z#oZzBfF4IGfUT!Dfesay>A@J@RlR50e>%5CaFv{-7;)GAcSd9${3=KTss9YadJNrA@zooh zog`qg44Q}Z&@>=>Kh>eCht)DwJZ#P6w<0&9cby$|yPBW7YgDmq)NB4F+@1+yaYqIC zkRvH3o{}_hL!-T~YCvc>^yBmsZuci%BkwZ;-hPn`(QoCuFtzp=DM9#0>cM)dnsUAV zc6Z+95BY0a2_Mk{eI*|bNQXM?kJ?pRf1D$U1wf5|dpiC8_7 z&cA_R9u0bm+CDc7wiE2bd=S7H;jdsz9` zL|E3Aq=v_>a-Mvr!v_ME*_W?9i;oGG_C#G`4GmPb1M0ma)ju!*H=NjH-KH?ZXH*un zV6^;HHs#ZpJvXc4WMhB|gMWnf1@fgUFfI*j;v=fXEBd{F4pYiFVdmG_tjc1P+Wosz zZ9n7cm0@pu+17G)6$b61@cLBmhTJDtBdr$e4E&9RCi&G(CI)2r;|EEWF&!w>csa7qMW<^>Dq z><&=_V?*;j&R92+m-Wob#R$_WaSat)l26YOAzAe$G35W??aia1{{O$>5kmHmC5$Yo zY}rc~Wlt!wWtk+Q36(X5u|#E!LMf)QW@+qX8#@uQ%RXbtnwc<$S-$tH&+pv#`CZ@d zbzgs6=Q`IpAAfu*@AF5cuagN;y?H@z=L zcWm`01GN_H+a9o`O)#i9?mtLV7?u0e*M|P12B_jBo@%h?7XuIb|8?#q2qbI(nZhiD zi+I?9P=Mtjtq%NNBD@%|whYk+S{Po?g+40;4O{m$OfNV1zn=CY)WlXdJ>fnL6rNG? zplBKkPNsM07y~q0%N>Hco<226DExJB-;q&1G60{cD!M1Gm z8O8O?k5_72mSq0kAo)hK1~di|?6C=oFIg`_G`-s#aPzJ%VzyGTPm`aDYr)v*a%5G! zNz50Pm;jopgXhhK-WoyWfuUctG7wQrZ;_xiqTCJ|PYEVE;<2&#igW?==3p>(%2Qb1 z+grykSk!|VS@J6mayZv0ONykuqw~>6bdRB!s5gfVm(G6O^j(lt(6@LSt3B;NDmPm2 zu@cd2;VL;Q*F^Rv%CRT3@bR_M3`yoUO@E6L%(_ zU`z}WfC9{xv~;91k;RS-A{7MZIMJ4)it^q83Xjj=N0g8+I6^x+9-ByTR+a5^+!usu zELK6nZ%~ooR_Y)F2pki)x?A6Ez@Oie^zpBrNf-I!A&6zpAc{hYlvzgGTxQN+SG8y+z=JBdI9Ec9{{_M4H zA|3U6;BGeC_1(LvD!uJ9$K{A{I=f*Q;WnV|kEMU4p_Mv@iVbP+mc6xJYndcj`~4C) zh^f3}T`Aa-;@ zzg7I{5m+@ga$aE9Hwm;*azw=C=hIWc?=0eWHaAn*#ji*XQ2*Ix+w|L_lY65x=c z|J;KM09E=?)GpG7dUt{Zst0B!fQtN&p_mb{FkoniBJL4$=wHe3gY`5TqutI9*!ETb zJrwgFYmH-o%&FXHTCg%YZZ7P0ynZDuH_lXgkAY20j{M^T_wY7Z zI{TS!Da9)|gf1|XshCnSe-%}qe1ALwH1u}IU?TL&;)4-zOi8Lv_C`0FmwvAI-R%*z zcb42OOAr6t=Zk-P1#Le*tTVqIM~^@Azo{NvLZTMUPvW{G8!rOr-_>3`AXR$3m898fU0;)Uj_n%unlxfeioF<%>Qhul3C zby_S_QWyPNU@Ul}OKY%0Nn~SAo5+#vQ-D{vx_z_pK`O_7Y857d#L>Yp`3U|2#LoaU zv2DHz)}45nF6pJbq039iPgdXB%U$l^o1H~hPIW9Ft9^1$G|3g@Pu`NFD1$9Mgbq;6 z-K+j^%K9(x@NNK6!yYXj6#uVRvHN3#z^f5Bq-n*`KVrSnWZ70#^E(>Fo`glcLdFhK!DDAU4U0VI14$&3*G@d*rF z9PFY&=*lwbjR()8DZ^7ezq^MS;06C_QvFxccbEkpx&~ODb6vn1jw?c~>13hgZT@qF z836+`%n>>}bG|8xBHr&GXEK5`&z-#}cBD4zsAbJP#&yH+yomu+HMZ>%Itg8gN^TZh zTgMdMKQwE8Upj=@%u?L4(}^BDc2*~{AA;iD`#Whnscqw48s3{h7f&*zz@If*qnOG) zR(NL(nLB)wdOK&0KLZlugCBjqa;;iwkGnd>fJ3nR1ql#kLAZhoRKTWNxUo%n!K4CARaO>!DL6XS* zU)_RNg05R+(c(Xcl{!)iPRv;t7rw^i*e!Q&fi|D{3Gr7lb)GG}|A%w1oB@}uci@uI zR3|ya7*wK)nu{`79*>%-G&!Sb_aJzKS4!`gf~8 zQiGnjD#aM}t?}>gmaBF^4}F1kYbJde>$!cPiH?JkP6tPW1MW-^M)aUq(BQ+!2jmg@ zub6*9vWwwg{@sa63iWsW+94Lu1_7v`V~cgdK0qC)0Xi|1B)u_zXs7@|9k2c`rz`A# zIbFGOf`4h~Vz<)?|FI41Y3YVQnNQ;R#}x|_zCA%a0Jl^Rtd*8 zXx2;stzv?JApGje0KF`*D|W++zm8Yfj@gUnyf>$L!7jbcKTDwL?Mucj_~?5m!H#=! z3~c<*zo?hq(Yf)_LHdWF$=A@`mxT(@chwKxM0bV%;NKfK!#Ica%~IG)o}9<`=iYbf z#;tuRJ8GdIrpR{4AS^qDO*lrMYh+&BhJ;VdSANevP3WEN#wA0&Zsn&B!8=lBjZePa zR6K4!Y|3-qJ)H5S5!Vw8;C~B7f;ubKMQegC9-I%AvL&qK_~p;ZUP4ZL9XnwalH>MR z)5wZ-;Rnksh`zGhl*3`C<;;m$vi!d#iS^77aFkfdaVP>9eeXEu}K;(=m7k`j`Fw0Mr z~Ypqq_rQ$5tOz{DQBqq!*|B0Frr!e`I17R>HC=pTF&^pcc0ZZdb%_D z%lhc_L&Dtw_?)Z_iY`O9o1m&xgHc~uPorA78<{eAtABNxyVx^wD@zW4NcW(_>5}31A3SPx`gK( z2f^-H04=cFYP7UOc3j4!MB;^_j6HSrV@jsimEYg&>`mA7panpGEKWw?U=eEEvCUjB za6^q3UAfTrDryd{J^Z5CGkG%CFa0ru`NajW|M`-W^G!biHn~xvN?Ir<;(E2akC2+? z@lz~7XhB=DBkqA0Q;vKInA?-;i1BKU{)566NSlJIg6xv_9}GU!QOUUD-u;0ku`NQ2 zn=E4&SJJ3T@gf_subnuv*QaB5)y^&Ec%PSaxzgC2jG@@i7?e{rm6vSYDY6}ZC^SMVU_N2* zAZ?s|_R5?y>}t&e*Sr3&jRP*Spyj1+Csiov8`IegDL25p{R7gCXfci7fBuVjtd%RH z@TYuvH@~f=+>EjOLur$EQJ*8o2)DD@c`qO|Y1$Xq(pWgy1t(+haGIu*9g!D4gWi() zGy^#BLF63VhO~;)dN>D>IrofKRpr{wCx+klarBdC7!OZ?uUeFs7D;^Ec0b0~dy zYjOfr>2t7D=i#qt^*2*;G#0Cd5yg~P;d_;7A0Hau5jKZ}e?ztM`rb~)Z+C>LzhNsN z%$BS+_38%}b+2+1A584VgLt#e0*X;^H0c(3D3@yYV+&PvyEX}-U~R43J?t?(7PeqFUWh?q*7?re8d3nx#jpUkNLFCf~04b5OTn`tUBo|Jt7W z6IRH}+yx#kH#)nsHakU?d}S>6vRbxQRf?3nX2t1ug|WArOsv+~R@piB1gKqhLjY;p z-nvYb1^w?c*`#I(i?ZqI;>)>SCpw$E^KYdOX7FfN)-a^o9^~HEI%5NW59Y{!+tmMa zTDVQ%S<(Oi=>HPUq5g{Iy2Vg#XoC6tfr@1eb`J+Y=>qm52qg-89smnp4jtE_(&2?ig?0 zu?zK#)6Q-O!ypO7UIt0}@1>CKNVR000HPM9d!nAXKfg90r_ar|!1(cVZ+z74IX8=^ z=?<-w9B66y_1Rl9le6aTp?s~6e5DNKtD}3kRfr}y9`g(n_=|V7mc=3M`KF+yAd|=FLI{|LpzFD*yn?vIYz!g* zuk=D|Jg>m;TvKOWGnzT~m4w7=KH<|p>mI#)nlwgn&j+5`x>< z7d~Bop7Zl2MDEWHu7E0lTA1$~OllS-Yc343Z{&}31Ql35b8J5ESTxYnrJ|6w?02$` zJ>CB{*VRDG*fGdI0Z5qVu!S5bFBMLxBiQxRBBGQSAoE!!;_kuHRLd4zvK@ER$;rK`6}!ks%y+kT;OsTx9_%lbRg&-JA^ zqBxPl3uv+&Y||Z|rF$tWsN)v;>6f>c5$2Aj^=V@b$ttaic!`hS!Ji)@--4#VY-^J|#CL>WhHU%7yFa zSr{YXPN-Jx@MG&J@C)|`nI}8Fr8A9Vl|B&_%e9hc+r9I(`bEC(W-l1BGNRvSN4#X9 z=>j#0_&wS?tcR}v)oLXDqI$f&TgA{~T2Rh?%`c~7-iD}j*7f$9%oG}j(3KjE@#d(` zL$DXdX=hT~!6Q`OI7P*u7rS4Vhvp6H6&=!G5KGI+JOxaL9xEm96Ght4%i z@2^*CE#C687}9pcIc6C+*~6WT5i*;a8L6|zek^a=`>$6%M|;VaypPCZJH(JOXbsIr z!uy+r>YGNZHB#w-I*ZZC}yAo=tkOrDt^8Le)uRGTX#qog?XV4E^NnPNtej+06gbT;)E{!2&1=kRd@aeXwyjhgo_?XS)oJTDt)J!wG*GmGe3%$5Dm@S5Pd(g4!GA zOA%2+(~gGFZx$bxf~B$@^$lH1OBAuBN9&-@-DIFW1cluh>{1W)Brva?`bB^5Be&~= zy$D-)4gYiZZ(bK>%MYA_rof>l7{(TWNJqNmD?Ex81pLBB++E-lK5zju$W!0~u%_U; zHeA3O$P7BnS4)3srOvy_G_{|08T1aI&I^J9qjBG1)NTmqglqrP)Eu*^`#<5Q=!rW} z1pE1+)dg*5JpvM068s-J^juec9Pv2J5}0(@5jaIt^(Fh+RkY57X3^cXMAjT8={eV*F$^`A^JWqC2Wo-yV8hw?{t1C-Rhl(Jt5`7cAUwBr}`dN)GN_)#F zDc*f^SNuKfDy^4R5AaMtU2AkE3|f)RDC*9$_x*y?=N!f09eh9gJUB%B*R4Fg-M-rY zQoWX&bIItFnyjnhWy@cGB6Mls>A+Vdp~$$Cqn0ZGP91G|YG20tl$LFw1Bh zy&>Sg@x6Yb=&U(}kewUEUy0#b@U{)tPiq^vS)HHZroKv9vUO+X=c0siI8=upkx>RB z6V%9U?8cNY4FX64a{sBm!U`e&Lt6zj*Z-rq>PR(h5AolEDd8=pkpB#(q`y-CZ>PBe z%=6#=FBDr4)RAh64*2M=0lq$M5kujd22;^31Thx-A8a-VptBvQgBJ{Rfv?O)P@8@u zu-)`StOMc?g3b;Ws?!>7eMr0%GLKA@*e)y$S3C z>8L-T4dFt~1KXCJFg?)>s=!IoYXYVf6`=|K+*gefhUkDDFIC(vW|vFbk*KY)x$!9U z%;pbazMj=<)Ao0z+zw2K)Xd#F>N}I4HR`zQ<`vzy1r8JSl z%8J6@i2Zja;PsnBp3fdXO=M};2^n69a5uZOfhZhn*z#gxO4#j<+mc5uR0G%lr(cQ- z$(mi`3wxfWy9eb5^WA#FD1s%1eA*?4VAo*_KiRB9%k(|*^K6*l<=PaVQ^R==Z_YSf zecG+wV`YF4_QVg+zEhCcDJ}9PoFJ7yhh#)&s&^eIZaMz!oFCE$ZJ5_gl$ZSC9{QI*e7@LBxL+snMQ z-A;pB0l|fi*YR~-o_ZCR`-hyFzI8*n(p9O`23WOp<5Zi=o);H;g)KYpL+IPhCy`d< zP-1jj&720=9rH6d-mn3uSdu#(M1?}~8@w(B&9atD3( zs%Q<6*w@h1D2x6r`GI>qJW5YkojS0NA~-5d9YZ|KG>+01^U^p!>?A{L`!#xQwlldS zliasxxAiXwu!ahZ`ejD6OZctUbbRa9MgK5nRHb~jtdQr@pX4m9^Xrvn5rgWw zmsuuX`%xu#v#PQtxk5>PU={>fXQT{%|K0iGoBGrb1~6Cq|NVh~m!+O4w+|l;=YPyK zvTzc@bwT=mNWM{6h1_8%<{~+g5RJ3!4EA0izgyVi?lkji*zC3+S!nXqTnu_WBBl1E z`;y5ZV5}TRP@2hBC200W(WGM)t0MLi2|R`+NM0AWobVo4MOS2~cwR2`G{Il#n|$UxMsjVv+IV%gdpo{Um%t4PKB4|O`i>Yx252mmt+<^de5{pH}%SO z_bll0@{!ujJTO~e?Bg%HO8A~Ano|B(eC=StD)EO^#}FvHI+CAfix0!~erQ{ldS%{y zSNqdpU6997gYKwoEctQ3B6tN`nH-0%;NBc0799fGo?UzYNt;m*P}LL~pPZZrrJJ*2 zskrbwooS^p^zQ=dPH#U{pK_T-sziB7-R`Xo`SLjk$|51O(il7$s`5UG6M_PJ(Gjc% zEFM+m`{G?Ymc!q{*LL<=#^LK;;@T8a?}U=yLxHHfjMWe?Q9@jI9HEy^(w1G=W((#v zeAXV$It18A+-n*K%JysNaO$}N+_HO?B8R%1S&N+*RYKYtD{T6dJXWM=Da-gu56XgSwc$rk26aC@^2qNa-zKcuTke1lvyFEAQDw>JrFo0x zg&M`#@mh02XMlUy5vOTO;q_EQiMs*139OiGN0K5fHPi25I8U(VlZ!1wrBSGP1`Yaa z24IxWTWufSv;Q=TF}VGv)J$0Rca#>*rG%R!*t%_wZOEIdxzI1(etFoNfydq}eaK;| zvuO+pM-L4TekITO0_j+TE! zo+ZST?v+H@D;`a}|Hn}BeQ}QVgB!2^u(pa7GOo%!G;Gu(Tv7Ui`87>vPc5Lp7Zz_X zOa~`;)ab8`(O4!p7YAdZT)Jny%02%DIo_z0L(cDIQPDqI?#8)pcuGh~=Ot6P{D=Is_$F1c~WKu^HNNZ{r}2x9~U7;%GO&woE7vJ89FvflcfAvgPiC-)ZG7|Jo?Il|82&PR*bThdZG$JZR99;% zwp@Qi5X+bX7o+vW3N}e4SO{GN?7D<-fa~xWJ{8#5?O99`8b9+|QsP)q&at8k5QY|r z^(rGdi&iC&0UQaMg?Lan)$wHA*!3&0t0VyZ9#)3WLOIIV+BfblmeISgn03o8PyiWk z?h$3}Gdf(f$-cP6Altg`EL3QoqiK-h56I5xvn#p~h>u(3Fow(m%x(k;l{dWIaNQ9g zv!luIWrwf-tjgTnYS*mwfWdKZovuw0$TYbjfUw?&L&bg3Rn#d7XBRP_LgW)t*ve8> zQj5J0UbtVnDLY^vfmRlvY9lWLM^pabc}FNm(kJ8@rF-;lEo=s9$D?6C9F_LRx7!&z zfc^MaPuQX3afNKXz#Tizr=|g<@fZxI?e3FrImRp*C&gp5`>J1gt@jj=5eKy&xb|C7 z$C}R|O_P4ZpSf^PP^~hbTn?O4eCt=p?sq!yN&ei$BR*4szq=kj8m?7`N1(;jCTkof&}Aw(cg@%U4SC~qId=mk^;%apMqtb#!lCheesUuk^luQ z{FNVGf1K+Kn`<~8u^VlQ+-?MJ%TYLCA5eQ*W|INCkby1h zbE4%^)giww9jz^4>H$NPtx2j@s9h~m^RH3GJ^0fM)52gzTytar+@N)_DRtDv#i0FT z(#mST3aZ8FI?K);g#+9(Rca{lU58dshh<{D^L%VL)Zv@J@Xxuf@%^b)E8#myr>CWD zzp!kdzRmu*!$G_QaxbwlKAVL14fDq=qe z@9(2o8%0KXI%i)QRwt;6=N1_inQnKhF&qehrcliqEQ|^L(aEyyQaY6l)|l1Pb-qWC z%H&6c2J;MKvNtXa+BR-om+Gk&D)hk00n+k>>CC%HE=>)~rXaPyqI!mQQt>|4mW4^274uFJ3mVFwihppw z3&@5G+scy-4~DjKtW3Wh+&BU@6tXP1phslgId$5nYFM1+55W;SbWKHDMW8p)(uUI; z@+(P!K0Nm!Mt6^>Pv|H zPucN?TmJyFbaT`~36#aM9Xf@zCaNch+olnZ42Xpv$zfGIh}u(~{XTTi4{DZ}aF3iu ziwdJoG1kA+^`xib9d`Qxi$IS8<T*kq;;P;S!YRwIlZPYJ0rvPJ2oMzRDIGkyaa(drhUpU)bCXKlYzwh$?^%02bQIrzjvovnCf^k5-RDe z>7{^HvD0lH9l7v_ZR-^Zk-Q8a-g+|84pvO)v1b0uk9-Mzt%uMUs~z7dRQWDhJ~Qm? z^h%XU>FJsGKC)uPL!J;!570+tY_b<2!)uclJz6(RmWku9yq4}~-oZf~E1!n1b_81o z9a+AqsnY$FW*6|}6iQa>2cM}sma=zf2x__Hxt)q#ANV6!TNh>cx6rUN5^IHw zyQBQz04(zujDm_tO#|dnMD~RYtCVALpPFXM2fEPj*Yd<<_eXH`S}GqONdz%igO0u7 zOJ5jQe{=%1fu0Ve3w1(J5`ngM^=V65;aR>4V`F_K*ISRMrGAqVJ@*OZMOi{1rkM3< zI@=8bBVM)z9idf>v>0(8QujT9@Gff2cS6=`kj#8JZU`@K@PFyubn|^{=d*C~obC`1 zm|j4#kk9vN0-WNAXSjI1%~{g4qnhUT#8%sehx;4_KY9#9ogpY)D8VW1uW**-B+Jq1 z4mX_&s0F6=9GyUYLTJZzcPeNoK=F1lyD0vjdMhTk$K_p{Omd}|7x|Tt1}Q>PgxQpq-sIj!WPV<+8x+N4B7J-NAL1nUWk&H zz`*m3MIUyR8+_!2*w_f!+-QMtL5`sHpdH&=A4;&*m`*|qSfJUmtDfv?TJav*l>r~& zv3I0ZvU`LD)KOOK8A+XnvI^IvWx_l#FSI(EC5gYMrdK%Ivu*v#)^>EN_)9 zl?f0=KT)nUR12(fy9FDQ8IOQ+X*1xkoa^$jQla^4>7;!ljrHuu60f{|Yu^6BQf5a4 z9}lyN6}DEe6Vj5rn{{Sq)xY>0y}h^_8Aj1T9wUGL%!$Cmz>CO9er3g49@bzrqVQX> zu^MMRcvnThrLO@L{3r=*`IXA>2`KB8C`;;T5!1yVPG@0xC`1}wmz9Q(VCA*5Y=`mrUAizw$!60bUk%vxtl+#FO>>9Rsm+B{Jqf7V#mTM z;e|{Uo5fU3hLo{LW)mjyY8uJzDbj}a2IVoII05w`7cA(Ugf}0Pq9A`fv6~kBL@VMG zr5L-RJN5+4+CEvl5tab9&UF#pO?X21hXMk;cB0$4i z)nRuywbp#L=zjs@+DHiNfrq)g2_@Mt)ng`J=;%5iq6 z_$j3Iow+0VGNOlk`r=XJ-U04E(L^~MyaOIRCtFAG?U?7D4-T@cxo7Pg%9dbK^l0S@ zHFt<_|8C-2p~q|jv^l#|i?C;OCUSBf$`yH;u#$#%zVyfyQT$Us^jNvj%<;PcoJor; zb0B2TASkgTrQFE+W$(kwBz5)v*|DYUfSF;-)5`Tmij#+_<|x<92`Zm8Npj+gbVDQA z)r%ulW09m_Y*nEbmQ&l1bY3S4|27xZs)o8FcETWi0vA&<@Kkhm{Z`hbbV$j*Pr+J3 zC@@)|Lzl$X*uA;Q8FGYZ`sNGVP7@oAG1LOpy+j=USqNo7`GpEa7}qxyVww2>H?#LR!FFyYWlZi17=78A|!-Ch-Vu7%862i374joOmq(-6gl&`q@ajqUk2LA{uqVylGS~ zWyh#{#VK*sfvsJHu7mYN{Y=LH+WfY7mMTkBHBM*M9yf>C$B6CrUsdi2_3Djrt7Xo) zkfNm(4WI6JB`3Fwix6W|G@nr&b0>k&qUQ)g!D#AIgO}b~^I4k|EDx~qf&v>%EDv~p zG*Nea`JBz36e1PNYSV2MQI#0q-PKmuY~1k5nbA;Y#;JOxqv0*+^1%pSzUyG1*w(~l zitp+gW16b7(mL;a#W9BClIUG9mskj*9v>n3k#iQ|Q>txfp^rl##Doub@ynOr)$g93 zpB_}M$vpD`@ZSbs_HHzuz9J#>Tt**dE5KP@-IUd63-&OcEAgT?j6U-68iBS40(l5o zIF=a!%Y>2T(3=JLWOk}`9WA#}p}_134$j~0Q$JI)>f}|Q%bJc`VZ3zetKk*QNdH`E z)VBs=I2P+z?1MUH>l7$_va1h zvEAT;lv+*FgN$1@@BV_Vmv}_!TEa8Huw1p65=?ugR%)hC%b@dlX>}-ghawjGxh{Tu zDG>bL!SK&{?O2zDOX6|~1f@+VG=B=RmciMi z$2E#uVx_tE19#6~qm@krUMYz#Frur1JYN=O)=B5CP93ILM4CC>*V0{i!^(f;ZuXQ> zkV&_Se3GCduj4^fHd|?a>ePxxoc-HWli92FTJHsJKLItAjvQqllSw~E@5WZjb~PF9 zpphpZGbv`K!)jTK=Cwmra&lo>Z9`0fq?*5vIQmnr=aHgh zJ{U#Bitd8&hVl>*}W$f;E16O33^$ID{fA32X$*;*KNV#4>pf*1*^ z5l1{|$Ja%8SZWOH(hghk*q?T!`^14-KRjFzd7hB}83d`_t8c0s_D<~VNO8G)MJvBq z3mkBto&h9@HeQUlP6<#3T7j499Re{8UMfk`g)EV?chdB8|GrZNr_v(-zEdj{?BpQH zyty9Hm;6+hbH_PeqyNOXy7b%ecKx%1_J`?#qg5eIEZuQUW3~-PcXoVrm8b8;S z+Q>jx$+qZRaM|$dTnT>FKEB8|->Ap%4z+js5?<^_Y2QJ1X{3Us+32qM zl||EWZ`rcus+XOQ5CMGpYAQ<1E}9H!&mQVYeyC|^s6=TDcu64L{C%!3uCro(JL2s? zq8nVuX!`~I=#NHI-PYr?@X1b@DT&qcnJvB#AjhN=+4%&N=U7@S#(f8l`_$20`0UoW zl=Z(L42}yd3(R1D=Gu}H1S#H2sgF%DKC~=dq2NV4woB<)ut!V1&Pws)fOs}Vk#WHk z1%+{c70XM7a{M<6S(BsT z_Q4))E&>FX^h{`Ul{f72$R|pAhuJ6XumKjLZguBs+x` zY54-QteNmmbcOk7z865tE;=NcBpcVfKrtKGKqJ1)w_qy^S}bF4Wp1Fko5h1Y+7C02 zd=4vEv;E;*c>88dmfH?Q;-%gL-th<>Xj}Nnkw!6`_sKR9txpPHSa@OFnWY8%Gi|*S3Akb$> z585gl*C>NWGa@o{g^1ZHVIS|4%q#HSH)>PI@ly2B$LGoh-4evdo-yrAo1Csm!KZ|1 zDceG?T*UnD!*jPO#h_2f54YoepZdf3^^aGysUw7Zrg&zN1u4QgvSY03e`52%8`({J z7GQeoNwaV}d$~02o$Z+S1lk~pc%AzbaVi3q{H-7pZv_5JH(Jj6b`NIt1hiOe!IwJ2 zbtblu3JY1{`_5zAPBKmDXvP`KQ?jCxM;@wvTV;`sgink=1Baidy=c@?^P8k9jI0C? z7*AuAwnx$a_4R3vL?*kjY<99A*o$#p+5YHfb0Wjqs&^mN&zqD-b!kX_bdTXt-oK~@ znU6i>{1pQxD~|0VNxBocp7mi*DHgbuX~%B9g`}Lv*$Bd`|3no3Z(*GI$Xi4wEGL~e zc(7Z`-*hDyxFh73GC8WetD>078cr#vylH9K0)3kXnqU`-i4a6VJJ4LYbs6|0hN3Pi zh{w;a?MNls&hYIg{^=69Hx%o`|0)K(e8eq?`!VJG?ixMTIzJ{ zm^@7B7In>wLq^ zSdt}u0VH=nTb>-bsB_cNi9Br>)x~-GZ0}p|2Z~gj-=ibhW|z(x{mxPT%>Gj5R0Qnw z7uY@2lbV6L&ii9o{Q-jRl>rui;jnnjH2)w{bU30?+r;XHIwia2Zn<< zfJjLZe&OLsbY60OcQ=Yly|{_RY2>|{rfn*}%wu+AN!m|Ir0e3tp2b)uJCY>@O8)@} z5>?wRFmB|{^Tu9978Ujz8UXt$j<&A4B+JTnN9xsb`gv2yi~Pq;)Tx#edw|%&bZ59) z0Yn^FT4-YFRJxa^kT zzf|)0YQiepQjCQ7US}|ZWJ!Cg4K1490HOc~oE)dofMNR7ZyoW`L8iFJn3GlRDWiXc zO{B^{aDOQL1dORzkR~O~l4C&VTw}lG_dCOO?kh{hSBex1*t~biVjx zvaK%159GOtxDzYpQWjAIrehX*DR@H<$S#Ko7#<975R&QaY?QO)oX!GMTAns@f!Sx2 z+Zq72Tx4r%^reR!TDBFMNS)t27k9)?yY?!jcRb**+kYIzAfz1)<~(8owA|nw5+5xk zT;@IyX~>gZKQ(Q&tM=BG;vjg`LWY)YUM{@@#+@^YLj->HcKOZ!P+v%P^h>s8>*jjU zXHfx(eavzn=^5E(5gv^eLRv3iMZGe#0>+v@2aj)SKS-IKsv5Xc7x{)k+Ukq2!{dvs ztxR_Nd4Z)d~pgcW2{i*XGR5S6YfXz)v(TCd%EdqVy5!`;HuC$lzWpXrbR<5Jo z>r!)Hu|s<(tIxZrYb63rLbsD|LFjxyYZ{!~{$)5AWz#$&M!r}1HFc&;`>~sQ|2^l~ z+4-4oPr}qP1dnG8o5^Ja>6UyqmEC|(8i8$wX^{3jU^=6rp6uq$^rbU-vRc8SpFuaJ z6*xm~3NlvvkoErt0ty97ZYfp4V=@hPPI17h-Rs9jkZHLe(ZKd2` z&327G_gqg~jYIF4`cwnk@syGqr!7pU;*MI%Hr==PB8k|%*7C{l=FG~gV8unvsmGle z3OOekQN(il=($-4|Np|a^MCj6kbrT<%mf%d|D((fTj@(aBTIdo(TSokplMJ6l&~5D zWeeOy)qj`SVbN&vDKs?<3C3Gr!UgFec__Wne;ihCT$bR-hG4$IreD#Ic`x`zP3h(k zHWp%Yyzubn*2UANPkao!vOcCWsim5zitd{ZowDjp{9ZS`T*uM@WV75;7K2^7nnNfL zIJ@(U5+wB0=pHGt^5ptRcMa=>h3XQn&L)vN1sqT9@aE2=)e8C!qdwJPw^khcHr8^# ze*K#DJ+)u0#Klx>GTkFkx?EQJeI~_`#6U~OV7)*V&Y{oS&kl{v?1a&j``M@8Cm47S zy@(qO+TWIjD?xtq9wg~50}~H8;o5eT3X-4pT3aLY^=UDWu4{8=M{Qz-VO6}$B_7&| zH7V_1EoUE712EXN6hl$o-1DEhMehsn0p(DC&cYVIjR{I&eH!{^4_nm)&PZD%=!0N-h9p5 z`i-U;-$oaXdgOOB#Z|O7i0$~4`a@%6%m5{a=pg zjHBnJdDr0W6I)P1=uI*wv7rmf9&qM#tb*Xpx@5~#cZnIV@5`mKOf;M{^GPYGi^4sa z-&%!muaJ9%@!|zu%u{E3ONjCxptoCoun@T^=gEC=au`LQss((1T(iN-Y(W&yww?NE z*5}7jQDWUv)QHv+3?8_oj=B!=OP!Uh#;|u_(CM|nN*6Q!Or7>_CU2>d>+69SskG}B zqk0a>hSyCOL?~an+oz7cRYK>l)dZ#{BoZ!*dJnqTTrLIs0c7K_7~CuEwUG386v@WS zn3D0nFnpH9%4BaslqZKqq4c%Luk2E1T)S>2jUC>f6DCX#_@GV8yf0E#9af%R^v!g71i>e4mh4m05l+W2=9b zIq%t}?@y~jYahT{!aNMd8!vvI@oYX-RzJMQZl^rx70Nz6W3X7%_?S6B>PG~Evib$q ziRRX3Se(p>?$#9^q8f@`Nvc;DZiM|h^b8M_yMgo_XZp$f6`)Ak4jyOag z#rCzaE=EheIn9%8Iltl2a$=6`o!==Dmu@5r(4KmsD`hulKh4l;O~5qsom}Gd(;B+i z2>xMvoqGf?*{-^kN#jReQx$?AOqvt<&lM#>Ah#hbdS@8F>#`sg>7K4lA`UY#jtFt`>j$8lfHW2;Q4P<=;0O1&oMkKfHS9UdcESZkji9>zn+8 z7uxWj=`Wf!q_`T!UZ?eNzaw^a{AAtel02~_j(aE)kWF0Z?IA9C zMf3?cTh55Wy#@q|f2~&K`HfuVR;J!RCexSOB%{7}M;tXrdF@^4zB;^HeKy}=dP>es zk~Ll8(MHuVte&_jk>0j%L*^w)nT<%KuK(F-)7m^ixRSS=?(pE=O@kY$-@ogDGNcp5 zVbv*ryirxkSo(p@P^7J`D9`03o{%^?T@KiAG()lIExRfAtd3daH}AzD(7suLG08JJ zt8f1O>(kUbV=L8f<$d0@KfL_7r%l-X8O5aM`I7g&%aSJ`%R!1E3G_Ppc)icZVtOC; zL{-zdDaXD(^if24tM3tEnY5{1r*q&+ItUP9*}O1Dj`PzUWi9cdp63fA&PA>QKj+sB z)FTxY%ErtNrcAt1teb`?Lm0t;Q^~590PEDT#gBV#V$^lSFNHocvd<5etltq3N>Dc6 zXb{un*uzZ6qq%}ZNDH$rUV+vF7S~dzySCBJou;Lp_`ehU8#j1dZH)LCCK*~juuLp= zQw6L^@#2sR)%t#U5)hfEA(>B^qiVCR=C-@uIsq%?q`p1}oo|J%a$;;a(9HZ~4#&PADC0JmG6HcPI> z!P*9)y|TplXe11OQ6TWy*lvU43j5mIMZdU@ICK>3sJ0-oz971h5f^rhc=GX#SEhQ_ z``)>axEDgut_WQqr~}huDS$EqO1&k-(?zlT9cZSVjjtojo`1JCcw zEH6(UZ4{&*1FUhTb@-H(J`sVFa|D|N&*qkaW}u%y?7VX<@AI_f3-(`fZj?)-(nil+ zw6Srgxq(Z23V#k7HM$J-)I=^}uw$F^zKh6cjx=ikd*E{u7NWt@gEVfB#J84iE}`&w z+tM5_5!%yCmj*ZQ!k^caWvXY+YAeE~j5!L30{97Z1!l9o(Cn8BRgxe-927)Yd2dg% z{P_n3)^TX@Ci*9wWK7;6V(^+Vm`3#lniY)8u;{1L+(vEsHX^^>i@)bj{ot9KX=x0S z7vdX4Z`W+$%m_bDV2Rl^U8JOXO{r()e9;j(b2DyF1R}R+IqgW&A#`tr z62@WNPBX^2!3FwH6dPeBD!x4Cl9AGU5t=8xNSHT*E4DTdxn@gA&fxpIKt<5rH>=VI zZ&Ao7e0R*Y|Gha|_Tg+Fbl?ZV`2LOGv3kZAIKTSE+GyK7pV(gvb9F0n=qp$cBsxzG z8L)3?)jgkyG5{^}r^?>-k-l(@awPvoMrh_^m6CcSQt<5|Ho0Jjc z$&YLGoH;z^&2POp-y0+`oIUo5xch-C6^n+G&w`Ez%u2g%btm}#3*yBcrDah6U90E? z^2VphuDcDfE9&j=*5lOS?sJ7ZDGUKGh0pi?wmv-e_oMa#TniB}AQ+0PC~KGF`pfoH z_cI%=Hut+8Z8G%Ww>tYq0dFe;!Dp`hCFGwG$u1<5z5*!wnhOOT>?@i-B>8<&r}e2D!Q z^AYfk!>Lz>Q65-v>Lc=mTR_465RX`24D}+;F|5B(z1P55w)rMgmlXW1ck2#2s&tYc zFdC6iCoa|ef+a$bFTg^uF#=MZCTnrt*#+JT zC5zX-X7s-0@U1{hzm@VXVQ9~hJNrAAw-xgmwNO>>k{3o%3wHU_JC1lRukC?QA5AeD zC^H(@>=D1hz?%2d?orE(9#HYOTB#I&HfBhR{mV*$pde|qG*s)Qs(xc*T0C9Qeto>s zVdl$Qzf-aPo=a@%TVSYV3yE0m?OSKn+1Ln1s^j{ebdEKrx%0OynWPhomx5*l)ocGT zAA>%F60QSKO}7#xEQe%tTmGDz6IS0cY##bT_IT_Vzcx7EP?^%(Rf(NTmpv!_puYCa zRqW0pew#VCy+ve(EwvO1WozBRc`dQcAsC){zVJgwt#wgO%AR-im zHpAmI=XghVeObu9H=J+%vKv#F>t(ZLx|gWX(JH?1?ey69tG!=ko*%&$-}*085^gl? zesbhziZPXm=-WCJQtv(R)tlYHxrg1DbNM}S)-eNe;?MW;bKfE?+9riNQIhi~QFoK4 z_(-AH%xSzwG-gZw&b^<-Q(eAlpI?d#``|c5mi#KNq%!Qk7MJ^f*n97|rn+riIEaD> zh#*Boh*CrWL6M@g*k~d~EEExU$6k*u}mSYysH<|xlYyZ2`QQK@PGj{pFmD|J29NM80isoEKxY{a{&|;a+q! z_~=D>lc2k|v3UptVh{7{wAWlGsU;*rHEJ(bkcu0&3bn9NNa8VWusn%gi8xlRsqkp@ zTfjAw-6w^f-{G!>go*jhvwq|liYZyYD{3@L)H7`Rx36!h;avy4mDWY?2YwUW)u=rf za7Gxd|24pI&O8Hb3vBswdoY#4O{I;OjqjcocSwI{dGj=D3n;}GG+V8P{0ZC|a@06t zC6S|49U4(L|LJ3DwtWn-|Hi4hFEknh{3bW(b&9Z%FeFViW33@XI9*ecR4wZvU7577y;{sW1bePpz29%Nl6*~OR>paqbxlC<+SO43SB}hcU)-g--%^G*@swzB5)PFIf$#Mc)keCbN3#8u zUe)%SOmq9mCcM*14?5z2VB0UY^?gmyGhtq`8D{nx=pS?h`+|B-FqhBs5c0j9PPLSx z-|DBh$LIsDwwZ`RJH1Js@xjxRvSugh;D!SDi`(UDx#kHE-N;13iE7y!iH{}N7<*Y*!BL?_Vl}@kLa;Q!hjaWOl zSx&DT74`P^8TV;gS#r2iNUy^Wfga_jsZ1aYhY&`9noLP57YSVnIL)h?xQ0=WEgrm` zY~8iWGumA8`FTv-$nDq6;@P_D&u$xa6UY%B$}G)Xx%JLoMlvwm5;h)DUUua9+`>Ge?R1$V zi8B_Dq}5^y=W}A}24>%V6F7N5cMj9qN%2dbeh8>>RNCfGhpLgp!|E@Z=w?tTU0wIH z%HHU1)my!+xIJ}}WgEii5BDQY6()QvZ^K))yXe{6o1eR5onG`S4I8mjPHpnpfcj|xczbl(v_2VMU)6R-}S4~V!!k%FH`I}vGN~06? z`rM4ajyh1T-erIF>DuP9us+LK_Ys=1$FLd?LSK zF2iQD?b^OS)UOhd%K4m!E1{v-xVvd@u)oTx<`hj$GAAs%thg_R3B{&&;_n1eKC;@? zHBNiTKhxf7)c1gDRs8@>d6ys08-H?%zxU|c2Etv|?x7Eg|5r;mVGqnUMdVyw@WYC> zrjP}23ph&Rv#G-YXs()z)oxn!GH(#;!3CexFA_TxW+4q7_&U zUpu%jF5snIMju_SbeH*=sJc8`m3zmZM4V+3=P}D{)!;fTD*b-gN6je4OOJs=*%1BK z6$ZtqL8O`MZOieu;zO2$Wan;Ppx5j~1v}}d?H4||_j;SW+!3#{-|6L`S>Jh| ztA}OA_KPE+ozV)_+T%5YPgmw2!9BCc3gQK--6mKK1cmHD|J z$~%Q@-}ZlzbnM?cH*%xv&y9e9kPLzUhVQk5*=$H$qn#iK9pZI(+)IP(GNaHoXcLhc z=h89P;2FYmP5Ic*IDsd5JWZdXlG?8W;7}QA0vKj80}mtBmL`jZ1H&>!Wi;y^dxRZ6 z-4bty&--p1p0QWguRq*w%pOCz!$@7`B=%u;&~5HybdHl4>ykrtoNqk+F#VQbVLNVv z%)`$yH$>h2^myUd&&FMfCA>oOeGP63L zAya+Rr+r4V3jy@w!$g)zL+l>XiP~7PCGrV}G8H#$y*4 zqaxq4x5F1)^rf$~tOz9_ujeJ92>|!yb3t)Xa-!g+;Ygi+7Og9lTenEl=I}eHMKpOY zChDv*-I$~lF~XkZd%#=fAm?cdVQ$C$$NE2nSLlG+kbOvYf;AyLY1?HT4L<6`b<)qw z%sY|a+osCv<{!k^Sq(5@HOTru7R(by7WxR3a`Jbatlx-S@byvS{sZC0vx7&}zJwmV zHrRH;EIM#2|NiiucI#Waz{>P2DW@*ue!HiGi1&h!1#?_T51j+xdxSl-{lx`KzFCp5PjM|N7v(Qt&CR+XhdY96+T;joaKYpd@;XnDPUI02I)5xA)Vg z18s`Yp&{y*Ta+7Q(2aq8IC)XGx_ZtZNxURNh}xB*1Y2TFB1f0pvhekmsBLh(lSJCL zbD_eKHH|Y7m6c;gs}Dw+S>5&Ok%`UJB4hPC<1YRN?Sp$61Ug2 z&R)?HH(kEW+|fON0*R#Xa&;hX4XQ`(@^T^{$Hdg4b`|^r!z~?>9<+6nH`C8|zSOq6 zKp;2t(Cjuye+H~y4vdHz*rtRGpm!Hl-Uy-ejuNRW9utoVfZ!_!dYmm*Cc>h^=(r$w zr`s{x@k;ppF8H?T35sb=*>{fDzu+I8FQ1uV-FLfPyccewOMXnhD)_uGpo@**?=Gc z072zx)Y!LjX#i0Gx^O0`8Po>+Tq>ms#43rwNqNdO$iQ;u9JsxErAfTc`1+$()3vs> zoI;|!Te!q9T6S7}X6*&QsJsCWBrSus@I?afSr@B()buEi7@1fF_$wZ-OM)&JwBv#_ zV>>iDEjh=@788$Dy*lkbEfG)5L?rr_$AS~&V|xk9@>3Y9L>}Nsa%qIBvmuA(^@GqF z2Kaevx3uXh6O>s1VFY?zqZuGr{eqXN6TnjRqUVp#}rbwSy?tm%>G^wvUA2Zd8#KV>gP9pM>Zi((t2eW1pX?4{7km!fju(Y?TX&X!dt%gdZQXAe zM-`Ww!{KjasuTnU(oYK3-R&rF|7k!qPHVR!;X&#Y2$|1|JN1UCEm64C%4tM7%&$Bm zS?iumAF@)SBR*SPYvJb`&dClYY649K`;Ev4;)@GHnnT0@57VZ7j)ENpCXe+|7ao6C z>kE3|bDvG8TVB_f`{GU%-mxd1Vo&0lEh3dS4;MW)czd9{^MkF^Apw*G_`5U}RDAiyhGP3MykH?fsTjd=nZIbb6EzOO4TQYFx`g}G_z^cB z1#c%~_qM}|Y+}~3V>)#mJo?O9i}x<^xkdRP_8=~?E?%MWhW=tO-43d8&i+q=BCl4` z1Vxz<3ncH`R||2$`zDLc^X}?hC&mtrj|@EBpO3!37)#t5)_C@2M55i4$NyI9uq$dP z9rcl`Mvw5cw`h)!WTl-{qhd(Nov7J+F-b6Py>Vric+9a=KBXTo@T$cttLT_L{qd0C zpIa*~ulCpM97pD#BGKxapzUuIMlq5!w$ZO7;5EeDnX3~;OKug-xvg84cHi`1_f52g zISw&XlSvb`m|zXAd{Ztq_i9Y*kr>rm?FFhCI(73G`497Qtd4wcf@;de$YyJuUIrfq zX9O~p;^S#SvTwz**&Dz8nCK#WGzAc~0<&m0$#}V{rjw>8Yuwz(a*V|osbh1YMi#@k zA5N5WB>%R-Ndg;PzWtz5!Afk0YedUq_qzc3wg~}Afa2E;gyljQF+ZS0Bn*_B8W~aG z+i6`H^05jfN6|;r+qq=y1yu!{Lz#Yry5ncAP|h%3s7cZedP(|K?B%V#+=-WpTGIql)4sPn)KUL>8*ZJStI_8bm z%{jO^2RG;7zfcF5H`+Gm;J;A*n>OLMHsQacJeW7yH|OBy9Ne^n|3V#L-ssqzga1PL z|94#XH^=;2+t2)05adlg+_VLoI`A*i0p`E0KiYf-|B`30X%~KL7yi4+gLyMQxH<1O z*WQ1r4s7NJ|9h{&|J`iP|BK_@%nxqP!T%Ta^1stP{r&u4`B6||>F-`&3wZBv8V9H) zm3zy^{j;XXHg~%(wU66*#&Q&=y+Y@nI}qdS(0KpR*6t%JHeJbW4m9^@LUj;Tr5F?tKWAd(06Of6KmOwnKi)j)rcD2@sMI^S z3MxR(36J7>yNB!j)hx(zwJKd<@20QRyWR5s(2urPVb}d36HyX-Wu<8bNISl~zkKvYn^go@ry*<)X4y~?(B`cPY#{cg!a_7k z<1fBx{04&fg+T4}2G`#C477Hnq{+eCSwVw$>+cVAr!pSnV010?GO!z9j6s$D%cyAp+6kBX#oHR$(V7ZSt_0QlFUk1UY&~uR?PwfctRr}@(0u~fp8BG zc)d3e40;H_Y%uEEK#-=`QR`BdL1Uf|wCIie-NzrGn`(@1w6-bJO_^@$>2FpkdAOOCPp+RkPHL|bIYN!fvh`5HkEjai&72%O&P&o6l2;OA-RjvL1b3ry`cb*#FNd?V zk?sk&Hr_F>WDIN5d7{9Vd0{~+W<{kiUx;4&Vp{(;BcOW@#uc(7y!5!Mb8ObB;SYl;Ma6y?wqa{WT| zvKiLt>Bv53sm5af5HW;~J9EO_)Pkf6?`s-aSeM%C2=6!umcKaE@V7x(V0)6^f>kob z5!S^M_e#sH;E;51<_&~sIUb!u1y60~U9ua4k5d`+5blN+^^v4;M**nyQaeO40LR3; z7s7aHiMjk`=3|Zzh0(M5BNMz#@7;;uPPAfy!yZt zC_vROOMykzJPSTmo+HwuFy#scaL(ukB8h|QaN2V0OCS^fC?knE1Q<|7CK2J3=hAReQZ22Sb(6GjH>xf2ZgUZ6J)v8;EAA z+#**-`z)6A5BIPAyAdkVMm3Q$BB(VWS@`sdhc~Wb;di$WO#bg5x0iJ)!=fH^Bf9nweC1zwnmSt#)0l7S4DCu-=vK8*4A~OAsrdH??yoMV85$XSbBEa;4Ryf95{42`iynj>fXhVs z!3N@u8y_RehzuOMtuqH8d$fOOJ;F9-Yt#?#;1R-mIqJRUp5t)vpXL+E4eZ71?dC2X zpR$!6Px|A(z_Skc#)v{q;;C|gw#zk%?&_oQBBdPs?DxlUf9KcCo2RX}-V_32QwYE2 z*`_A^Clta`9=v0L95WJADQq=_57FSIg6(&;M{HD0imuF9jZ;dP%#%<4MVe|imvXPV zG@r=cO>qEg>$fSey|yGZ&nYJZYSnM9z&Nrg`R~@f=jm9S^HmSIFR$WGgW9>2(mn9#y_MN40osAw0U!6eLKPcP zAY-bMcH4>wbp#NP&Hk*p^5NB!ME(H|@(v!}^MwZxqT z3{;JWdh?SN;g~q*DK*d1%;)xRo<}$>i6H>G>|R)TlDQWeenYTMT9+~hF^sCfOCU%B z_UC^%^&HLz?6)r-!YX=6kXCD1s6M?XyKl!~aya+gc3b#;_eqy)coGA-myLOe>I@b9|va`*4fmHNBS8E^$q z2FVe^H_V@+2Wud3z$rmHw}EKAOvb~!DuEjaWGcK@j}r7N2s4VIA9CS>QJA*`(j*O9 zmjd_sgt~$F>5u&V=ifyTu$F%m%p|bek&F~*^1VBV)a(#G3&;<;r|@(Y4I&&2eA8hK z)SnPMe)I9Sp_!K$QX3{8&ES&*!Hwaw?;!Fz>JO4xSqG1KC$0#L0C@6LG!8a4_``wU z24}{N=n64&U@M}jS4W^;nnu#GII4|YuOu8C69$ozJ5W>xHV)`f>fEpB3<2H^yzUpg z(C<-9LxEHl_P3thlMWz@b+j|A$uw3=iCm%ngNdft?7r7gaL>XiXx{K00i1 zi-HuJ4dWR_S|?!_lo_uq%H6BEpWmLm;$mCZ@Cd&oyC?37SB^&layFez8!arNUGzHC zT7Z8FA0f0alv*X54qP9wD{4QjCO=q(-xpC@YbL16k-2^UP&Y*yQxiA~ffdt~8<^6&|1ODWTo&Yivd>c0)1YD)aSa2=9}c4`E(1!I%ChUD%?c7mgW` z-ew;#qgxuVj`;DND9`HhedmL?>EG3H<*cA~P3{$|7s-3y^F!fvY}fS23BAW1?;ak< z*?t37Yqf&7e9Q(#6=vN)2%Hi&<7jkV$MPE}HrC)%{5Q*1t{B7{mL?JN<{% zd1y7|k{w6#vm`G(o_CaUlrXlR8xFNh)ZOQQjrsk-QfQcKPL;HKv=dHF^AaP!O&C#~ zJEGQ?VXXEgo99TSS}X6AQ0c9wmnQ|8_U~Te@bRquKMVpQD-yH*Hh1$23ae59HP#KV zv1XOu0~=<8X=eG~e&uX6Y5~^@2lC&d%e`D@*5oxJChq?S;B1)I*nn?myMc(X8zwLy zTf(~RAVF;daf`U7N_+xQ6sL&mM~x<}=zJNlCO%*TvBLNO?y(NAgr(4t8=b!1bMVM{PdC~759dloB>jU!ynjz3n6^-NY*VWzB zSW`ln8WVez-fR*tbQ8b#&rU=K;2pB!TkclH#loIJW0Pby1+)AYUgoxyWHuV z*?;0jPR=K|;cBt@ryJrGTQ1zv8eMIspERWyZy=IW!N91;+EHuQE;2Hqq36h*@S(3R zqYFK-wHouN@c7UV*~w+S9zTbE9z{9J!|Ho?Sqxz(dCbd=sld10#==Mi!F?isElHd5 zgEXFzF;$psQPe51W4)Ar=J{^T`^INKn2uRMFUP$X26LDWF;8Qt4~u4V04kU^5H!i+ zEwuOn_s2s7{c?UUGpaoqU*!rbQ%y(MQM;xD5L_yqi=;27EO^OE;=Y%*e|sqPXQ%CM#bmhop; zkm=h&u%K!n^+@ek$t-WY4A&b6HxLdtdi%H6CCY@F8}(!zDV&(&Dsi11eh}`o=7MQK z(*+KQm_oieb!h`X$toY-HHe4FAXp#Tjo^ApU^Xj2bN7HITQNHx;nkGEswnfMd( ztwL9e+7}~Vg`d4}>&(upMduOpmUEBHZU^a=Jp1rLURMo)nAXR}z)eJw9;#Pt6xZXj zu*Vdt`b^62!_38fJHkj+vnnf3dj5Ru;oiIc+fQB|kX~J&JYe_|tk6AaM^@z6CdEw1 zYWw-g{DnO8bd(c9O0+=u!B|S+iMtL36mJC9!0R+4q?{ew0CFn0y3?fj-o*ve4mBZY zXKI$M5$BQ4whs>MKeNAxp6d6B@WYihbrD|dfICqR$TbDIkR*zfEoxn+n`{JN#JguD zfxS;4(cm&UXt{X2ybvD=-9oJ?ECdo)raXU{WW|*NY!-+`xu(N>YsizP)W{X!0vH)Q z`v+V&gwY6&&X)(DC2*o<+JSX!nUkgz6L_JatfWO@s?7$%Jgy!Nv@uuS1$}D%xt5CG zM!)05M?(TT-9;AxH&?>!Nx34}?s_awya;-pI7yco8uZ>dV zXEsMm+q7HZx=%$9JwK#s)~9Nm)X%95v&qr;P2BHU$6$pz9T%Q>?#$81bB{^OS*4s6 zcYRzkI!p7;FoM}0kZjwBwP#-rH{CXUAd)j$H7G%No-LgGdF@_|+hyNQi~A}p5nrZt z8T_xge#%kO8FA(Ez(YKtAvTr7t+9hjF!HM^?ynP8HYti~{1oh7`Rs@7A)nJqSNZiD zet!Ev+%HvuZO2v+iZ0@4rc}d;Gi1I}73~_-&c6DC8CKl2Wh*7ZN%r}d^|lfp%UEe# zkq>>=XxG1ixaa8Snk0g{OWa3SkL*W7vN4Kq#NyBPs~=fLx^GRVjhzUCwz0ebw`P*Ja%IBl=dv53-r?Ux;Zj+n`Eqf;F0Iwa^n| zR@~;`h2x=?Xb88uDv5{d#t?%lMNyXC0=iU#4_>ZhILyx5 zd(?#UZ3rKu_`-p{&bs`>D8_lxPrO|=NWhv_E zBE9WCmYbSEBGj*T_hKHa-Fi(8U%hamtf);<)ov;)`~hvuSKE4RbeuU+I*yU-#W#Wp zLT;gZ485)MqstDGf9=Gzn*_ZNJ)ud#LKD5v80wWo^BNw#p_S8|K z$+1F1rZrpbt8RAIAm8)D)lxYuLK%-(u2sc^Yl`m!e9;|lbl&PyU257i9=dLRtKQ2j z`(?(NJLu7ZoQ@;up9bK@n$QVGFI^9eRMp+$dKYA;-JMTypH<-EoHi1eJ)x}^C0uHt z{9ayXAJ_U_v@Iiq5ewZz`9npRDl?1W`lsRrEv0tvCs*SPONJ+&VPTZsKs-Vzc7Xf%Oqj`BwHHgJk zkR)peff!ze1{Zw5pk$lcm0MfivSmAaPCBLpUpk)CD{wz6R5+b=t4K6G4Lg7;oCtyL zA%$y)aog)3SpmRg-Oth~*3)mA-`#kavN*2red-mDC@z9$AJ@x-_+=w_`zlS<%YkZ> zN&Py4sSy@3AQ1u!24soooR1x&b|wqiV)0D^sJl`3K0JH-QyZw;=*MTA2<*&nqAq_M zf%)U#Omwzs;v!$!1_B=hEsOoa38(Kq3+rQ>0p)2D91u+>+5Rv8zpQo~rZSL|5AGtX z){-u-@)YgFBb*5 z4QA#a!W83MI#H982=4~FkM2~S3}wz+l^^U zlZddooM-yAMbA-%?*$vHJ~=m1e&^}^>(PKhWr}{8@q}QD{t;3egW8L-z;I7{Q2e-w zF6pOI%q~mc*Imq>^^J8o#EUGASPRy@#bduDJqz{7!8@`@gi*0xDsuF;DWHBymfq5= z;ICkI=HAUUCmko712-S=&KjLym(J-$nb!oFkAG9s$5`_ z(DKVt3sUFLT{a8i3lHqZwCm~T3%0O5@kcNsT@Xw)59W!O&&a&)Ieij_l0fR|F6WyG za(UpmS1I|8852u-I;alkpo~Qosj=-Uy>NQR1dETx(|=M|^A?nn*kK=)wZ~_lf9dCq zWU9Zx!=)&JwSjvF4|IFUk)^AO>jNF<75XNf-z%Z*#5DIaXm>1izNl9Yt@3eI0g~px zYdMR~_}~}F-d&+`lmy>QH|9ZO4P#<|@)=fA4*p|$Wo$2Xhdceq+c(*xdDr_c;+7WG z-rrrmWqws^%At&_r3_PPzKhIKmP$=EYrW?pjHxDC!wqG{MY`!Z%I26?UGsoj3VoPa ze)!|3@5jy59}IF(9}f|qUbpTn70xi7zJJq^TS?++qOVRLkCyk#)7f?97qbqx#itu6 zbZe)opJ>o^(i{Mbo5^!8JncU4-IKj;0N?!zNT9afB?K35?nVCdgqr^&L*lG8NhAZu zr;BuXMtHgCbYb}AC8LjMuD+W?6GjpCmisBvj^dfyCqxP1hi*rXT=nIX6A$I)b&;t@ zaJ|P*^}+1uEVKpfxVwe+8zL2Od?A(K&|3C;q_hnZ)FZ8jF3=}Uzy9b-8{oIEc z=02#`3siBarh)EB6EmiItb84CM;e#6f3#|y9k-K^snS}I*$?M9Qj3>cSZMAOT! zIa}scBRUcRN#q22m@t<>yW%CDo7Yy#MwT|qYtNr-6VhXUS(j|-$YH^@&#*g0?eN~m zKEcVSCZ(5m4*^$)KX4Qkh_|1GkGtEQC%eWx%QLfi=Uk?LdYUd!5G8zOdrGtZXi+vD zkka^y+lT8B9}{+k97P^X7L!>ZV(-pC#=6H?jtcpHTP zX*0upH>P6r8@5QlE7Jb-IO$067uKu1Obkc(JEow%lB+jHE8c)=l9?Yv(ZNG0#Mgx# zv(*-y;;OMKcOH+QYtv4Oah;c*3Whnn*hYza=<;Oqq){AVdiA`$CneE|okuct+gP-N1AQ_qYNxgkTbgZ;{>PPa$AW<7wtbG(E?&hg1PV&`b_l(|_ z+ALK$`t@G_DUGjxH4k_-YV-)kUj#{7{z`_f0*2@0{=+=@rxOLi->(UuJ<`feXpfuN zKv+Y&snwO3Ena}#Ca`Pq1~o>9G@j;`CTqxl?p+eDp-!}G~Juaml&&NXFPjd{}VE@;UQXIhxQw7JTG3&!r6bnTM&##6F# z$+g{;Wy-a2{)NDO+)jTlk*^`c-Iuw6u$Oq+Prhg9Vj117p~th&XxWG+4>uAxP&e_u zy$hiQyLV=dc&hK6xJE`j6?Dzhv}C`bYj10OSK64eZ|7buA!5RZBtAfXN57IxHz2Xr z;R4K+^9nmz(lcwbrumH?WPUV1n^{Bpo+Y$J@T@6k54_&OItT$;zi`4$+-!**x(Afn zR9?TcsFf4q=@MLT`iwjDLeXv2HT3N^2k}+KRX#`(a4MsIu-{~$jY*f-ls$mP=^@kk~b<1g_b)(QIwI-edz`eR94-9nuJx!F-n zQ&gDCps|=|4^&UMEmcHUccOqqS@L%pC|33W2^X>MR!n};Yze8Fl0fx*PgSjpv(NW< z)uK!>FMf7_(C*NIoi-k;c=$MHT=SDmP_+6}SW!dDOP=gjNqBmFp;}J(x{$hK^{S)I z!&lF}ZbcgZcwBtgLR#GZ@#j4v%V1J?9Rrgr2-^tl@p5}ZS0-@`HCNDoQ1}AFC5X9@nRz}sgvb0Qh&#NqQYVx=pCYE$1r{mzGKLfqdr6G>0OsH2=WCfvO91?r9VqhcTpYXQXKGV%yC3l#v6gju@JmUT9y4zxXNA zPA^1B&p%8;I(OtmPe23jyr6L2vr}}C6Y~W{ij^nn!j?k`%A@sjOs~&o&Ridn823xI zeZXdaPv+HK>G%-0Z4!wt2U_oNz&R>&>7J~lYD?_ zb(xn*{ohEB|LfA=R<`TqF~bbmg&WII~cVLKryPA3W$DUgol+!P}XsjwOxfS)Z4QUak+fK+@en4qY zrUb8EJo=aAmU(eEyrUEJ&2(2o>u@KuY*vPS1XmLl-3Z%36@pzmVfiM$rI{*iL=VAm zf-WH1HQ;2ruB=VaKpRWLARSE39Q;La%$IO-gllz*P7wF}Avcsty8@EgwJN^Bf95IQ z^7r095s+S5BxF_d&KvF}BT8krh6hCY7?$IyDwTrwc(|4Km4@M>ckx?PZ0*Lut?+)v zTjx1B?H1@Rn!~y`J10x`0UxCZKe$~+;e^H29_fnhFNVit`?j$5UXcmkDNS~w)B-j3 z!nR%UI!fl6<0eC+Jnpm_4WRMJ>g9LTQSZ2mj(GxJh>UO7}+IpGyR!|k4NB~ zAn*MMuJ~{ zxZ%$;XwuiOv+LH`uX}SU#9!SZH$luUj2U-n_}m;TT=@c8mpH`y_OFI6C3r1^@);Cr zO3pTrglbR%S^3FX<~DD82fsJ<*R%HzUU;U}mP@Zvko)ZOGbex7#Z#ds0DYjcL!!_05(jK|w(Su0TQIz0(kRDGFl-Pye5!NJ;lj@ND!Gwgu`bf~rj z9+U;dXJ(on|7cinmacCXuDvc6n=LeXMDi8P%QT!sx`6KU8zIgqW>HHjPt(KEf8?;7-T(K6u9QyFcJFRjtnP>|}U`dL2g0ifl(v4YxZbUE@wZAmQIX@v8( zFi%hH!z1~h&VBy^m53LaqD##?Cy_-cIv>kdiU;|umlXAg#as8J+OBh9w)6A`*@U;c z;YSKji|Z?X`F=;_cIFLfhlhWawv!Q%(5BQU*h7UP672;t#$0J9~txLekx+7ZPbMqYhN}K?T^}) z(yznAu6I>(2m3BI+V`3~9$iI-0^oVewE_vXyT~mjQ@!441q&hBLt5R6?R#wIC2z9V zvVZJ<@vdLX5Apc(Rv@`F|DCFdWnu{vxINsVY*jc!=F+`&{SzCsPxFYN;~rL zq43n?>JyE5w(`{{4MLv>kJlZLWKam#87z#%U-^i~N%?Q?c2}sB^w~w!S;n8~QPl#8oMaehmu=lWdD+hNQ+2k^eidZdzK~aM zo}PXGQ%8~h4(>=|reC26V_Uf1xLX;N78V4Jc9kBKVf(%BxTwWyi%PzOma;vk z&%Pb6L)B`?16PS7kYLNBm2I0}~yTtPiFYQBARDcPXyU4izwJ8{K34yEMm`IUw=S^`yQ z+dwuTa$$%_;RZL7BO@3%PE#%e-mDy;#a&M8)>A6iztMR1 z9{52Eps}`@3OXfksU|T*KjF*Wl;6{5R?P*5p*fr#ZSbO=bJ+r<_+u^etNePpT!|+! ztFS0)9@4sMv=slj3_YPWzJf~d#?a4zj#Y4H4Jew^*A0XTYKl0zfk42a@9-1KP990$ z!;4MwtT${RfW<;mS(gutG;en|txpswBPE3a>RBhP4vWR?Ot~Sw zkVi2mg(501pGNp~0A6q(J5o0Vg#CO?s58TkL9BK7A5J&Q+Y62;8J3{AgsM5`K7T(y z)g7uG7q830{^IK)v2RiL&o3qXy0|hJ87QlN3R?dSP-`F|?0}q+WT?`iA(1}XuZ)@T z-JCA%Dpa4GZhRFiniFfRJF+d`^NvaPPw5XPH`Oy=(%R0Io1>4_ye`1@O!j_{7&#)< zZq_1~1uhTsekv%AU_ZnEBt22GADR# zw%ylmNXp4D%Gu-lu@du~;@l;DI1npz!r#4jNBismezJLvB^bVr6{J5Pxz&7%?EUVP zK238vnDB5&=c4=t{fcO9^`jLJuNvh#I9^%n&haBH21rF_1=bzbT)DJ?mC5Q9eZHubC^!K|k+>!sgJGv%3NzV1n7)(>AAlI3J7O$} z@d?UIT3#S;AbftOC`dB<24Wh>UL0JonsEoTGDA2z^SXQr;nl$Z`XM1(qxtCL^WfH7 zf9aj}-`o+1z5O35+;2wLx`Eh5fK#AFG~AEsLa)04XP^R=DkZ(v^rvzCQePYuXx$2^ z;){eR!*DLtPN;{O7=i|v?+(8vfY2{VK{aw4h<8bJFvp9yHf6Laqkpd+t-8%kfh{#5 z0Gj2KgmJc1jpvabZAO!yHOy8xgw-UKmE}yYuM_PE-$=*YagNuo+1thM6?p1GWS=&$ z6A>nSYIjUViBobFE^`?~i|t=!_3Jkpz<`iC;2)k9SKfnH$SU$QzJu{5guj8+Q{8giWM^UT#qtNgELo=nrZ04?YwR|QooYFkR zMU8YSJR)htzPn%Pc*vuOxWnj_c@r+P*vyY>bv*f>52$-B(;E}{Gx>ToYQVO!?PS$o zw~K$QUBVP}QbBlP+r16MvxRE(`f?X)S@k^mlOLlFl4}xnmm3uu!vEMnz!!^#RsljC zsA_7X+R+^GBW@Jsc1H(-%|gK5%wxN)Qr%0=5ISUc@=Mzp=nn11 z^wJ+{E7-}%WQQ|LA8!1p=DU5!50g;rWN^h!J5Rk{&`$$ORKSIxub>(4Tvn*;Bt z_xcw=>RZa{#kM#?c6(l3ICam#7#k4>L)a~RnDC^XCh#QLApqSz*D_8>!%$@;pS&d_ zXQ6`y+r`~YYkCbc4hyF~*H2%XD<(txjFwnQGe-K%BU}NBJ$poLioYkhe)BlwJG?Kc z+8zNtx@w?_;G^GxDo-WcVdQB@=Q{75ksJ9~!!<2UQ^t=3QaU@0Oc+_PocVz-=smVw zpOMQ`_W{Zj?V=CL5H%FgdoN&SR3uxM`wezqp+V2f@RT{~JA<|EWll^8k)+ARYHovJ zE_EEWd)~uO7&(_;^yTMhyM2tTx{-JFp;beC@819U^re%?Xn!@uQ5+Z19bLEAEITjN z_JM+ct8$J^i@uNxN9cBq*DI`BZ-#cC)uxv0QzsV!*^L>9b_7=9$_+~(zJ<&->7!?yTs zIt(O(&HZayAK7|*XdDQ_4?0p03sf^uBV4ogp{yJ&S zr39+@<6w~dzHPl=$;ig;%6eRrTDyKlneou1GYzn;-+ISPyZ+ZuMW(uBwaDHU$>Pr~ z`SHRkcHKl5iM0ItYV)XIEzQdl1G#n&gAr7Ac!%c*Csa+yLF3X$bcbdyg*lCRi|#$RCIvzD`XPD->F;JBur*{PmB%$F&ZS1awh=X3a; zYUJ7!Zln@UcPZo2BFo|)fkt9(<33xDyQ%DbW<3Knd40_seq8$^K1oei`)=Rgo#>@N z{SuiI0lMA(m(Qq}9*2*`o}6 zr87*QSikkX!=owgaI|rwjp!^@xG+?uqV9USz=8fxLDwMW{G!}OCh-UapoWi$Zdf0~rK%2!-3aUWlGwnS6zF#xR!5`YU z)cf&>&4UO0d%x=VD6s^d|Yzk(gH!q1E$e4kzwVF#%Byy(7E4Y9~}O;q!H#BXmq zx|KiX0<&3fMFpMI*DnyZlV!`?n(u;ROA=KaGv~zR<7Fy0+ddi}9dedz+4Gq+_w5Oj zeP;28g1loed+jyurJ6?GEtcX4NVj4e6A1WLFu&%_2YJ7LRnXT&64UayvcsMUxjcZX z!_6_+VPC_fRR*dqx@ES>R$58eO6ODbt)lY67uqMT>PEyS-Q20KGHTeCC2`cuysvtH zqnO_a}g17vcBJP zGBc-W#oBz(@xWk+xXk6z8eNs#ZUMS-8g{Bt-hbJ`*Ucmjeyj!vD)j$ z(Td}DpS?GXOGeMBD)+dk9Q}SQ>Qyn;65aC^X6q&qhUbH9vgqa?i^x#$xMrlMXVT!5 z;e|(wse%5l!b2AWIJ6r-s4!w6lGxCT_vuPe&=8X2>)l492Dl-A$LkG*8~2vI^uxS{`BP~!m8IPASfv|8HwS;u}@a;Ak)`U!JhdJe*o08+7 z3*98X>DIp#;+Oh-v+uOQ+S#|ZM(avxc9}LtJlD;CGz&N7la+cz;|}f&fAdh#cnen+ zblc^EW*C_pGmg8$Y4f0RDlY@kcwbVs@{m|6M?;5@%v)z z_Ea4i6R&pupeofYwWMxrxH#oADFLJ=VC#DWU*&cj&w zy_br0zi67DH1z1&?Np_h`@l(g^X-@Ar#}G`zX1ADKqA6~0t`dI5t9ggT%ac`RH0~l zmlqg&q?eEX?<4Hr-TfHrkX(ZZg`Ii`?f@Zr^2OJGU48%FJ3bC|uYzm#CD{+PEHMME z>q>abVHDt=q(z&gJ*Zhd5SUqxJdc16+R?g57 zpcN=^yX>QK{jUqzP`M;so@7*q+5#E@Im-`BHGG)d+b=3qVkN=WTRH0Nav)M??3%OX z{)|JSCA~|IA)vC>OMs+2TvtR!kMOnkT3_cleB^7b;0q(0JH{!&3VQ~`bBj}aPkps~ zdgB=rHHqv9Z;#@Q?4L$5WB0F}f7mjGl`N7GDCb;BnGg=J*R8*77lRHV6cA>;Nk%mw zl7q6tFx!fVQC&W`LzhW##7Nf3HekZlFnzlATjd@KeT^hK`G-sUaeOJ2{dq0a(hGzX ze0%6;I}%5lL2lhAziem!3mv>m&sc}UdCCJ0mcc_rMr8XT)L?dA6_iJq+eS0+67MG1 zp!?$MdVAgV&bKNGd!8dbxu7ta9^Tfan_7}M$QLf{{_*n#?TJRhF_#;Th()=ccuFjF z#hZ52-HmdMfm0KDZ>yo~+VPW&40>WGT=*=`f38|{?AzE`-YllGl%Rn#$QO!MOfjuk zL8y|K?vmBdX)&5qqo=Pv;iOpm)}JFTtRw6|f8YGP*K=KY-Micu*ycUDkI;_5jY!^= zq#o^4j5GjoCuBRwPfcd(yxF<@be`#B_lvr9=%9M!U5VJ!IoA#v`JNFFRgxLUKZb^K zlk$;|9mPo#b(pO-8seYZ-+J0L`P#Ez(Y<{;QoQ#?6kDn( zO_s__WgoUrsBr})j~O$4JzliFnS^Auo_?u=XWlVcoYNHM<T zpj4$r1*C&g6);f|5K$12ULpblB1P#C5(Vic0s?|UkRm8xXaS@oAWcw2x`dh_y(QE@ zir@B}dCq+AdCoiQ%&eLDzIVOz2Wz{6?45n@ec$(WUB7be;`c&#Oz9;IF~;yD6RHEt z7PV|tKj6ihQ&#BkbbfSPc^#VlIHhB`TXW{ZsmQyR_oM#0OUm)K;RD{4P<+k%{Vo|) zd*0aTAWrt0UQZ9GtV>tF{y{+MwDb9kT*s4yPiPC#&e1=VLZ%CGmFv%JiF&WdHQpjY zM)*7Nw;M2h4E*l3hn_$}iqSK#7-F}mUWh(ZEKpD3 z)cUPx-9Jo^X_TYh_Q(+?b#_c8po9fGvZUf*5Pq7NP;I~Gy(l*9_1W0T{nNbF<%%XV z$33~MytJ;I0_CY%5`lHxwjF|*U+H`ZSEQ)SlpsD`BpM$R76u&^73&sGymU6sdgyfK z%Im4P%+qUNiVz;^JxdyxP-pcB*ka>$+S)QSa zWZQeL>%vYBiDy!nnHb1ov@!)kFa`xlH46nsG0sxDXkkP-v-9;MDC78>9?2333pm%v zY{725;}NgR?Q(8~c>W6&UH8A_i1-KXX#V>k3VyQ2DjU@iSc#al^+SssXyRmKOtqF= zkQb;e#HD6cp8c4L+^y>OCwjZbVt!f-p4*l)Ov!5CD@bVokLKY31}|X)%7I(RSq3Dc z{GPU8K<5%(OM$d!RSU62V)=v6)`M%Y$E@8~IfuR$Ub)939ierMS&E4y_dQtbqFg;9 zV=t5H76`FlKp!5!o(CxG(@wCvD8fjrC&tlRwY3G!Ml%D~?V@&!Be7$%DU` zcp&adF_Vg!w6;1j>nx_h6|#`7v}5Q^dwRsOpM*Vmr(F}df^PrCbaTF~yRTwvp2jmk zC=k=87nf;YK^#u+ZLzT*#zdXe@oV?=?4))NWLi#Yk8JHhqY)%MC|BMn%#`dLn~`EK zY!pc?)~!#!4Vj!e3AqBTOGEMu`*z-dbf?e}CWN6}{@+D()?kW;EddqJt>T5KM3%~ z#QeQvRFm=Qe(3ksUsH&)*?{r-?Kde#@ac5p*cn4G1dwq<7>Y0!GC z2{eZ@d&QwZ3~k~wfeHouB`p32=6wrqaoOG!d1G1z;?Qs1IEay9Kl0tDm%6ca{{-^M zp3V+)g}w0(mg4)iv9h@~Fr)nBUC)#biSm!8pMPlCxyn9jnZsR?1Kd2NZuhRfBb9>o zkBlQ0McWY$Q=|_J5aN49K4Ka>1^5k*tlP=7AM55fzi`pl*44x27t? z!<)EZtXzGQ0eqzb0V!T&BCs;B0(AhI7m{L$;KnUj_2EdreVsd&xhb*Lkoi{X$etkMgYn+T zI4}}j_mbQuPbNDj=>ld|{4U}Lj|H7d%ERRXy2bzHj{%J5&*%T+bZq+{A@k5jw0zi2 z`b*U&3rjM0Yp|v6(D6os8@r*q1ly^$)|bMU&cFC}PO$8e7#BUa(VaAJ20a9G8CY|+ zx_%|-3nN3wmH8FLOMJ^;E2is9j@&-!&sS{hB;rii{OrzgekJ zHnrD6XHpz1qPG6#|`uh9#Q5;c$Zzk7I1?m; zMo(>j(0t4A*MW)A9(U2%uj-!-&M#^D$|S8xUcHjT$`#?e8o^w$iXIhb9ATlJhry`a z5nxFm-)0;jkGG$`uBdQI$S7aM2i)~|ky`82&;I#g`JG@RkHuojD=yttH?UVt2wXoK zEE2fuTJ&Z^lAq2DpqmYpFhH}^kq9hpR6w(&|MxFP5$zftv`L^Z(_()ySxV8C*Z$eJ z0(h`7uXGqNNE6~Yq9m2!zYFS}{iiMpKr^=hCo?c;689N01mKREROI|d90N$k3HCIg zD?NFQOItD@-y}0C4v)p3)^Bw*9o{y_X z(z`VF{^xQ2zxIp&t7m5o&U2OH+IN^M;fLxa@PJX0y|TVv_0v-p zjw(l=$K}2bR3j^dG0a|;2JoDy>*%%z2WZQiv+0!-Osw#k$J-i~EWcb?d6PmU-e(sv zkqHdAbl`os0r-g}0KEVJpcA(!1>H4B^H-vYYkD{~Mwy&_b7nsn5g@<+Igo{RD4|pR z(_MG!%{zmZM7qGrIf@Nt_R9?o@C8hDJ@#YLx9*dQif8X8xASBKI(?TdmPlP-4MUP} zJLkw#akOmXPE%mPS9x0_{Mm))0gqBq#_qk|(r6z@v&WVpp|=GY4dqaH2IuL|Pg?je zsx(jE{)zpV7IjB#>8T~Y$q1+T4W?ISy0x*efu0M&0bKd@4R8i~D+$>Y6Bw4>**sO< z+X6%ufaL))zMP_S^ZEy8Qc_+j^d@YqD>@@Z$W)o{Is2U>nJ34fowJAss6XL^J>(Nv zm?ce2!K~C!L)C)JK!W%eR%e7Uv>Zjt3Ita9EkNqnznry?#~RRq64K8BEC?}DxX#G1 z8yOzjk7A+YQ54IcFuFIvmRQ7Vp z9O2uKyGTf<{4?oGhYZD-)fUb7Sb^Z@^a#z63?fRkqDJFeP)!X(Z;@s>r;LW{>XTPJ zZ$1kfj1&k4UHnw;)Xd-hl9(g*?7eQi+(!5*HWn$Kskp zgJ7e~{Lw0q;-xiMozsa62Qww_8h`sazicneV828@Lu|P}()cLv$E5Pl7EjMdfkL%K zFDI{ne@e{{vM9BSL6EIoBElMFA40B__0WZGr4 zEn14Rbueqby;i1aTl0ZaVW?Rj=xcAM@eijNWOI`;f@evfX7UVawN3$ClwZ}YkXmJT zbs?qWlGUNa&^mOIW0ps73ULB2bMNlL!i~zx*WrNvE%>12j+wkkk8rE9eDdc)`x6IB z3+{$7;D9f*VsGVda6=6_BFs@b%g$M_UdQ0iNx;# zXkpDRrzm7i9(}T;V(3|WJu)Q}1sG(JjDIoVBW_a&)A8toL6h^VVv3~KCSD(ts}%E# zYP&>R=hM^G+k7=HN}kC6=CP%S%R*43(6JwA7pdkH(@A#qD`l<4?io5%a#LyQnO{s( z6emD^Y{`_oh0HZc_hmp$nKg_pZ_jO%8~UMM@9i_v8gE3_F^ewAs~%v z4^6<4%n$p0K?>2%M%dP=XTf6MD-14`u8JJ;fSeC6mU#ZLnWZfFFR z=g7w4nByfu#^&|?AEHzwt0Og@ezr8(sQ*ogLO$4&A8Rd@^yp<(GzbXkq>aohgw)wF zN>xigW{mePT#ciBq4-jLJuJW$D6+;4`x~btHKSe&$RSIbugCUM-=4d~88$Jk6c0E; zNRF{Lik8_<-VpRlFNKv9cZQL$BFyyZBROp&bHQlN`zOOD&!8G;U(9#6_I~VZD>_}p zzL-UO73G`g@=s^~pJlSaA3;R$2SHmjMSEjuuBBFPnri8-zQs#{Cf4{XbM+lL&I8JN zuL}Hi$6Mu_xvuAOF3B|m@ox#jWolm@{5y0<-2|3EptZxFK4RMK{-6H~49)+H!(U&K z|MqcMh4GS+1i`k3FNs=&-Xv`eVoAe=XCuelvM_J+<#$VWiADZFDP|a<*tCxftFD1yl%5L@l04Ceo!r4SYf6yA3qji9U-7 zcXr&pVENkbSon#EGtMmg=jgF;K0BHKJsmC<#9>maUjJItbZW`uTwC(wlGjLT2fzcp zwt1rW?N`48*y7)h3f%?pCNx%eiR+^QfV&?BO3K53r_|b(GluI2(RqT$t*oliN6$zb z9N9FKP~e zyi@+oTOW?YGjZ%9ktgrHdE8K|^s}fHLQ%lQWwfz#cPK^U{puw?@ULlW$bX+0I}Hia z36y_#k%a>L9OjFE0(r9}*Tvw1J)&5XcR!s6-ah>p1^)@PozhR@HN<{Xm07#yA1No< zcJ1}_<|w$A1nk^tT7k9x|62Rjech}@l%{y>_I{>*riBO>qMzlYnPdeWfNP- z=p8|!rnWk;<(T5}vWLX`E3*Z`cLI;q-o3JAJXX7tN>*AWkdc?^IS5xdVf3*eZ+)zH zWmuNVFD72kn-RQ|725i)-n`14;;YOyfKRJq?JmpCIeMBOXjEyMj(b|>iZmJ7meG4d z6ul+L;S2jL=xog#*?2_#8W;QC>nGnnJptGLBQ*7o&(L3S6dA;70~#_?W3{!2fDg?1LGANIj?hHmHn1oz1wY4g(-%L1$8w!C zX0?7?TErG*mLSB~5>L9|WR-V2=85e41li(gCN?H!C;$!vO=U(+IkGhec8W=!Ib*NP z4rLI35TV=8D~?-FsYBw_$GlHpl(bQN%AU*JgqY6x#e~7s0&WlvC)JjLbmrOer+5Jr zQ96k8BL14-Qa(j7&EO%EfO+!eBZ81nOR^kQ8s0Z4LC*lI096a#YKStio%_dj(?wx7 zT>qTQ=9`~Sn|vfi zFIwtE>9JZJIGoE>{|9j}u4l+U8+5hSw#jRM%=qa~t909UDSXQ60mZJTye?c2y=50p zPa#avBzeN!y3AS456*I(!>|Hb-5=Dm38WuOMA0T&30 z{}l4JisaB8#?tO1pJ6flcEclHYw?ivn@5i~R6V7xx%ivk)8K4^97M~nZ7p|gQ7O(f z^_XNr*2y~s$z3O9KX(UPm>xd0!HIC*rbGaFo;*DhSB`O{UJX(o5Q4vxy+XWx51P)= z`KdklX|pxOfE(0=H@X=O5=YG*yThoss$R1guoe;|Z|0rya2raIl4?ije_Z-ZE4DLKR!^@GFZ3FH;30<|hCwX#aKQP8(aH>Ob8ye{MjVIAmmtOKP_S`kA@r1DW z>xrG2DhH0lHw-gLw}{IY$sJegH9UFstwZ_XbhdtB*~lJtt*J-y#v}Bq@U8`pbQJVs ze&<9JJy#yt#w|86zJTROx*zq!CepUY^m-Rh@J&Mc1(T@Z=Otcu&GoLh(7P!*Bx6En zGn%WHfQZU+T1?ll1bNi)*!4W#wBxh-nlPX>ou+%jzNGWUI!uEwA^1u25Q>1{#Opg2 zE?V^AZEUZdOV;6uG#Bk%ShpM%vU*x!{EcJn>txBKtFzcOF{hz}KPl=_tztbc$~pO57mh{KN*jBN00?9?W~pi(~+CTGk5XU54}jR=)4 z-%yS2_$BLc=5=TTh-8XJ4r32d+;D7ua-~5L9nzdj9dHj%QQ_UlhKR?@v(gL+o~`Cy zz|u$q=i-rx&ZXyRhq}&=T^5BYxod99N6YTc8ehAT7IDcc^N{)*@04$6$aS9`W$4*c z9)SH(>>|OY&|oOTY}(<;$;I|ZPCvJ zYI#^%S5Hg4$Fnv7@I$&C4%{mDXFzZDPiRbaAk$^g4FworQifi&1X@9ijm)D~v;Yxh zC<)2vXafGFcZ4<{1DPt?pe3*0#f2kRjpC%yd`o`=KmVY*NTZ{{GQh;sMYtd$9Kb_B zCp&7J?#8zy*Lm$a4Mw{(Em z9jYEP5qngEy-(xN25N0yIJiR(9+!In>rStN{2TzEL;T1n1LRZ^Xn-dq zptM!81Xi7*#*Ujy}`8T_AfE0 z+<bw1X(87l98iPaRhBH&C@4;%wZhC3nsrRxFdW&QlVY-4vG$s9$4qmpFD=ZA+Jr znbJ;GM6{d+`lIA`>@Xmd5j37c^ptf}&&(gQsn+z#p|U_-I#4}F2-7m}IdJlWo>o+Kxbvl_j$4qtA)un1(vskZY^ZmZO=~zA}7>n7GS_Q()gMB2_Dx?(1F}p}yh28{i zQO(l8fm`gMoYu!!_3Eq`LG!vy>@Uu{Fk2h(X8`+HxEG^&@)AAGf1MAeLwQ%cIN*`h z6SuHqp?L@W=%_mU!7cfeZgOX)L{R?W_lM0*4J6BPWqiye#ELLgP-?|@Ix*B}aQi2j zJEqah-}})!JKMJJcwNz~`j(@zKN~!iKlg}xD%5f2dl^suL5*}?-segrW^>;rjl`4^ z2UW`~@E%%Y1|u-Dv2T$QiG$k~rdRfdF@Tp8lmURFm2(wT8QQ}^Z9WTYn#wz`L6{ms z3Jgbyi(Fg%-t%y(KI6>=?k68G`@z8NN7K>Obd6hsko$<3{nr)&J0=qzV8OG8z!GdzT%d^0@-Y88td}`~=6Nn91 ziIU#|A>BcZsobIjlJ>337@#1ZFRX>5IPAEx0?Pc97M z(68@w+8=S{za0PDm^0Te-!+fAG96(EaLv_#^&d6L#U1XTjwE)rQjdF2qXg`fdp!?$ zM&B5+5_C(`XJ>8Zl(_6uD#~PjnENZF0@dk(7@gXA0>H~ij5&8+56*Ddry*Nj$*1y0 z_U_dd$>!N`eugZg3@i(f1<@UlX#9LDRLGW|Z!qF%Gim4aHI}jEt9SjhOVs7c(<|MY zNpch#Wr`Hq4rRtld7wCGP|*JUl{Y3!7|g9UA}RB+^ppo!S<+lAArvjNl$F>h#GjqIWcGlyrPfvz*`wlpl2skn zobb~RJ!f%=yB$I@HkTL?@2onX?+W;~)h%ZvzCdU)#7b6!uE?41!HdL{-q3l0olEp# zI^?N?%Ao!vsvXU|ujBNf71&L)=>F)gDT?@j5=|u|?oJqC#^Vz_+GwDHmI$w~?49?f z*B8BO0zG97LawUZ2WS{o$aXD_MWt}s<@_J?a2Tk0(_z8^LcRLA0(O9sAx9r1!5cdl zJOFPVcVTPaDVH=M=V;BTT?=O4rss56dESH6Od_ z!@-*%zWVUB;>!KYBcbNGi2S2Pe{C(P6OHdNkp&^Y+dG+z=9t1#^B3)cdnhHr^EP!Esr^m ztYtJK@cO_VND^Gg#-GCAq6Q{+Catbt(@c!0CE45ZVpX1B_Hu&pB(!F2d5cguT2Q>& z=R>D)F+yrNxV#7KmBjA-)AGg(&0^+*8%YJqVt2xs(Vy0lAks}_Jc3!x`h&;A* zzNaXoj?rwJl2ulHH_C1Gtar*jOOogO-solMRC+rT90={8afr$(pz;TlXQUYd@Zo&~ z?KE7bI(5YueL`%q!|<7Bq|)k3?}`jaSh?dj;wSzSXgnvxWMDg#Bh1X;W7JOfnnc#* z+@x;$$-GBtetweHR)9qOpkFS>3qU^w1mORvKX6C*gnEYM)G=*2SC^w1g1qiYe?@V% z?*0|Vef&@1!#H!$_5Omv0o#;shX%!Cnlo+*Wu}}lkp7@IUGVxj7pL3En8^&xLRhKj z=_g&?cI&RCU2omWy>W6;s@XdS^Y;x?Z)QIQTnAnRz!?XRWE zxx06cV274~T;z02+Ys7hs7y)*TsFS_?yo>CFerDeH*l-K`gb;x?8|7sr4OVUSq#}_ z>K#C1{_{Il5%J?)G0^>{3fgYZ^iSiuHGkl`v;T_gLP0b?dWo9xQ#^eV6-;Vq57|j{ zJ!po-71^#0JUSEQ;$D+>H9BfsUu}o=H1pGg&SHnv(%g(pFc%+VcRu>KYjxStP(Z`w zir+cW8)3i*viViWFhCrdF3thEj1+Oj5^zyDXNNGtDc97~75IDF3JzSqK67;S3Ht?6 zxfvuyT4M#n4Qxdx^vN2{J6E~cC^-SvWdu9jw@WuUs&6oTYQ4ZpWQjceo#_qp-oTC_ zrH`!{k)#Pq+?JduFvQ&&DsRY?_adRs>`w5qrn00Tv80sDJh)%CbOBW|lAX3&Ired> zlT+``-ZXNdyO-D*Wp=lP&9zN_o;YX$ROy zSanGmQ5eHS?luHxEk7DpKC;_>(H2zSLS}a)&;p9;cc8PEX8bYTs${OP;^zxgIv`Hk~>!E0az#; z@A{O%8`RJy=*FV0d9QFRFGu5Ctkrw!>mzjein^4w?#VSPhl#mZ2{&gdIpg*Xjrw`E z$&Y}wDwnn(spQje4kt+{hcTu`2Ev(fzb=)Le0d`-<(Zag9=DyRwi_Tsn=h$othHSeT4LfuDL#|G`36$ zsH49beH!m?w(=N4G6r$l2Sx9ckT8Si*CVb)m<+BVcg1b3PXXaQZa@zr#7Ohl7-6s{ zlFlx-nrHc{?nF7~;ntn(Cq{q|0X$VjynjSqF%SV~-Y3eU~)vB5Lb8r8_Q?DMzL0X@h0c_)nf)@H)Lh63yZPh#dV3kDJyc)r#h)h7Xb2b1%{vZt zw6VdH*TSPoQ=5BbRYya8OrMl1p{;{gzd;=#^sbfwsZ1NzJUVgpC#h%C5k|b#9)Es@ zelL+cPp`&nHNjn8`6#+XG%hN+i;<`1MH$N|{m5_S+kUCDaKt=dW*nBUdwW35Ud5&& z-mLG#G`8xsR~!+qn=U2xe&GhHd1#-~rQ1Hb7SdJp9+;}nKm9RN|NnZ#9s&a0Ttrtq z4MW$rgt8!7ZbN>yGo%n7^AL+mpPoRF-O}h~t!7+B#!5voMZ6Usx!bD5 z-Sfz|(E64t(lb3+BJ$+R&A}7{w314X`}7O@YZKI9p@D+=3fjv)=tw8+yv9oQFQ#j? zty2_EAOp&0oOrbZTruucQM#PUcgqlN&Ktr(y=k8SHf$ny}neZapW>MT7Kw~$T= z1@z>&eV~IcFT87N%Mf-6kaSJaLmz} z4S~!veD~P$aA+jup7*F0Bi1__M-m1~m->Gi7P==8Y>3k!U%@4c^Bdf{2q=iuHdPr& z=b7S0OaoiH!=KKvKNiiR{1M2f7emd+=XlyuE|Pabg`vSJN{DgABeXxwxz zoP`wF3dLu%F^-YMQa#@+)TGy&wYa#wI-U5oB1-=hqI$)OnnjIf90nNbl1QQyJzgEK zuChwodKuDDd?e$hj z_#F7Ia*zmgUzu8Jdw&3xB>5N;Pz);1}Y^YAE>^_)wJ z9#hz&`2CAov1(MbE))DfkRgNJ1ZdNWKmwN2V;V#V-Z?Y52s5w-x;D&VdYh-%Xo7EPmne@4uH?CC-hta=N||yDzGyY@Y+PSW4;D$k ze^DZ9ZQ(CL4tHlSMFvo)lG%1%4EcfLp=<(^z#@(ZXVVkI^2d!u-!)bl6lAg0rkf_S zI|UbVRn|vcJ=gp}_$T^@D-dFkM_O?r+FE3@nYS6-k$%Q((Do9WQOqo6V(v}YgR#}{ zvg%X`6Mf~9hU?vJ(&o@tKw_fLcbn}S4x_X(L-59<2#4}XMQyu}7vEav0ajlpZW~G_ z((4@gCaq;9>_03lri~{xE5AO+@T2{%v_{g=jY?tiVE&3en2Vc8Owj=5f~RO|MbI{j z2d3%reWoo5U+B>9DsC=J4Oo2Ph?eUNVM>w`4@`@+z5C2x&HnBFm$rJBl7|yt9|vo+ zeU3gUYyLdJSuAa5wur`CyE8%073c@y8)odv-I#|BszVJwVr01bxsD#G*^xV||K+U9 z*a+Jj`b^#vus1y$;=&z{s+@~ZN0LhP&e>1CPt>t$LR3Ep9McT0B3!;4e7xh`G3{qv z67FUGI{Nw`Kf(}ds zXV4gK#|RtW8sZwu5ON3-HXl*Ih{C_=4}MUBp(b?wcD#2u9!sf{iE1gv(iaXsP48Vv z0}Scrp@6!{cIP{V{&opiwZXg|j04{pBFh#5q)AS5^vv*@sFikKV=~_UYI%nF*lgru zW%d?y-wkP&y>K8|l7$aWZK={AK(Ltf?iW*c*8cL24?Pi(n?folFdfOHF(P+seBz-c zvqy@tB@+)a(#3+CmG$y(CRtfO*=u}v3?lsW)NyLGE|Z$Z3RFe7T*K*Y=nOvluOrF4 z8NKRShWHM1dZ0;orC6FF;T^V*FkwSA%(yt^`be_Dby-*e zzDR@i<7ycElm+J35YDbOhiKDCixY?;XBX0^nQN76WN}_kEvhjU)<&P zMm`eBdq~%aqwVKm(Sn~wjl?N0#5Z;ka$@%Kz5K?6S9{BQD0Ge}9RohPENo^Trmy4M zD%@Zuf0wG(aP!gH9m@tvAW%+*2zWxdgHVQz$@^DpO-gA%AR#4pie`ahkw#~=Q@o$# zR7*+YQla@YW4(-HBTx}D8uvnf9F3W@-iC@11=QmYqM+s z?&k|-G|$tJ`bE@BZANe>t_-~wT#k37hb z%qCmL)mq#(U@-E`V;=;}F*igP8sNeH@HPWlq4neB8x5%-2RpmoV8Yb#YaOoc2Q_MD zndE=_6o3)yadaJe%=RV0>8X}tfHSmgT8kNS98&V~J&`;eROBLk?G=;gMb7FGuu1F1 z9B#f@hg3|?`yRhlUpphGs1l>^sKq_h8$SzhCQ+2l)*cVe_Xs(U+6qp&3Vvg7rbcdI zR#5PM65qfNAcN64@`((Is)n2d8k~}fVm*1NH-^dzs~P}*&<=F!C$w2yzja4K9b z02@kwiv_!(s&Jpi09bKqFHoppw7T!%iA{gRnd~P|u59EpH5MgEH)~~H>Bd~Y`YPKv z((BHd@sy6#`q7R+nt&WeolQiNb;8hY2&w65tUw5QT6isX;^Sm@nV7C}94WTVQ! zZ0QAH!JwI)*v5vOb?cNR+a~qNI}?f@6sH23E{SZ#7|t=@e!JT15_arBkT9;>=+1Kuz3v~amK7rl z)k}Jh%p&StBc-cXfM~qrf7wti<6$t$3_%HaHwY8ENNuxI$=^@-EwlPmK_|=4UT|7| z+F@UQ^^`(Hg4h?LMw>A^OokLtID-?Ol8j1yt2<|SdUgWI&Sy9@n_OO;pJF@%jnCmF zA=`jr%5KNU#?YDLkMdyWNh=+bCz6wXNoGX#Q zbv5zHx_lRP$lcw&2(RPlcr;*mxUb+`E6=l}3p32-$L}z`&t+mdaR4x@C-iW965@=G z(pGWddR6HDToO}Q%29J6@5+;0c)@Fch#)an^S+XH(C2&2Mo8^MT$8KGos^(+*$jyA1j|Lc6H31Jr-tjI|(kcW(n+V_68H3s()Hb4>z>Ij$b~-D%6M zFFl`9k2^7RTlhKAg zv<$6bi{DyAt12B2$|CktEjci@w^6&LUyjXswt{3t;42q4s_K}bk6@1}5i>yV!S&VX ze3%^Nk?Qv#Vf`Fidu7wIS=+@5Wjf9(lM5Uij+C)=?@SfsYC|p5fSw>Y94V)8Rh>Jk z#?$^l!d1Z;;iTYQd*~{KtyhUUrLi77)%b1Ajb+b-{siKo)jMiCbE}C_p`AF5;C)%W z&SU$*N?%~+=j8jON*fh{X`VjSm_t^_>CZ+TMwcvn9%#bI zR7Xzc;4z;oXd-0i4IQO@i>eH}KLX|tiieSHAb7u$9s81E_tX^6HNl$etP(7zUG(j; zKcdI};(G+3PV9lv5JCnmEVRM;`>9}>oOaKqy?ZjPf7E%yxtiLSWDs$RseFT(`t;ut z==>-Aj_p_9|961$@9z(N4kcN7Gr`oFC}wY9`a>Ux12m5!=-F2Vc^_N`SI=s#Dg59H zuub?{De_*V$T|{UwT$0E62f?Zs6FR&LtLw2|7u}lV|{i_=fPt#!J^2!@7dL8qaHRW zAntmL!q98d?s`4c=6@?_r3d*bNT3F@z0%^kV{c!S2{&w8eYylu z^z~E2Zg5D|W^XfGoy^wiE#!s;lM0Aamfw{eaaG9~k7FJ0HfsX51?uXRyQaE`yNIgZ zPVS@d?|`;c6&lMpaYhY`?8a41d|dG+G8uc(xlEFP{iCCs(t3pP2;z+x6~)~*jy*m_ zF=97<0=wy8FQ)JMV)W*dlcmndU(P#!TgdEkP1wG#uNKH)U!|JkR+h>3ejvVymjEWk zex`aTuy$?5%eRJO8uIM4*4a+0mla*t__sb{c}^xBzvr`$dB16IiC*#r+B$))L4!kl zgMP^Z*MBINA3XN>@TJ45OSG-^KfvC<92t@fi69$q7Mc!OKYWduXF=%Oo3|IVMTY~q z*@5szj_QV<&0rjXlHPkq;V|kAB|0bVH9E>$iNY40V$OSUi@pPac=5o_+aItWA(o%~ z2R*)}F5#3Yz8QQ?gS~xFig;3SB@INLi#s8JAlyQG<7qw$i}Z#0g)bduIbQvtS}`l=jwg8$&%1Wa`bv_zdN&9(y*bF!@UHeHcI)%0!Dx0f=hd zPCG*Ox6O75OrJawO=Ed;8mJ&0Te7J4#2yN0`Wi1b!{~PP6?<~Pn4kWR;(KMFQI4>x z)GDM6H;+QPcsqK4c2CtL-b+NV-j-XY)YRWu>|0ykb>Dye(!At;4`AMKG~h49(EosW zLp+0h03fQBkkE`zwV-|dN6=9<}XTVEb zH_xM^i)^&h`1|%kb7^)I0#$jbJjjrkj#958kYEk&qF)%Rp?Le`=p(odAa=S7U&GQU zzGT~GfIp*(TZOPK$@qNE?R7sZUSBI!UBR2&%N%uQ$H^Yvkn4t(>Ywk^)^R!X#_@53 zOKsidh1QCe1^wH4hqWWJDBMJ)l|-U3+fqa)hzTPXqv&bXUGHn;R2M&J`|Ubc-E^l+ zmxut2h|OO<>G0_7X<7a$JoF$ci>lPS9>%RPO7uas?h?k{Z>_;&`=9{21?A#XVaE%<-;Wj~%os$J zPc={Bi;U9e+v@{&^yB&!(&1+ZjyvHJo*a;$S+l=Z$Kw1^_T%wJ=TvB7xG_+OW4A;z z13<&Gc>-Upt>sy3Klg))sEl>PLVK*Sx6F8s6bH0_!gLS_W~~O+{IVT}g_ngt=WxV( zyd1W=A9vZj|N1z;|K00=*2Bk*UL-e#Fz=f!{78T=0ZK0Iu!2_sZf z)3jFJj)TqR9lMxs%F2CZumH)gF<1`9K{lX>Q++82lel>!ms-u;(SQf(-A4TDr|cxh zC4+5azyT(8?D1Z?+*5eD7bN4PMq#p4s|8${#8u^jUdRgfuECaP-j5`=oHX_64syBR zaw>`muvPpkRP~=)0H;Lkv;)17V3NVpiO^P?$c|UR!Vg}iPjvG@`rsBUQDzfX$3o*~ z8N%?<0sUEb6z>XbhyWDc_zvxVIdmCZ(4k)`)H4*9AqP&6=5Ugmc1&sw?V2)r--FJX z#Og0x;{O)p)Xq3Tew$Ta8;Ow%yD?Oe@pR)hir|02*?Y%|Wz}BP4YqpY@w3-wOGotn z>E?S^*tWL+fy?ht)DL6EEiJ&gA;jUgb$(BnC$!`)WCAEiM8fsISuiA;tN=OSp!08x z-Ur9S5T$q!aZmk`(UXc1y#s2m?uXks!8~{K)0KT=&-i?Zu99B5fS!fU2!2BI(D*6w zrLc=+Q$*pSFMpE1X~l#sq=&ODn8AKKB4PG7&q^0zXTApoR$xPte(M-6DntpnZCJbl zgF1#}!PDRPD&~90OlTiv)4B`7T3)Yhidkug}2(*ipX#hrnG`ATdIvo`m4 zTEgRkryq~hocq+s5P2;-^!WX{YKrCREFJ!qvNgk(R~@>ag9GOOkDS|o)V==o_!z8B z9*JZK1sR%=I}_GZjrz7;-rVKI+4!hOFvS+PSN*Qzx>=O1i{( zzICSGGeBo0N@WuH-GO*W3jtIxGiVyVO<$Hsvrt|dS6+Abz^$qXqX9w^et1{{5CPpz z?&P~Gd#0FR4!C;}f>`05e`+z0 z-~j<;FIu*D%Q{u;H`-GOG+vm3z7|{f{YWg60aC6YsgwBFKq_`CC~`A_^XdRyj3n0f zIe)&>@sz(<+H$o8<)QgQ?I9bUM;U%Ax;JjW6SFSK-)JCetmw>K;_kswLc>5Y3WD+q zQe&PW`QLe9?|ih@u7)bWT*?+Sr=qsmRZ+*R>=tV)!YGP)Zq8yKzME72w}vuFhB0YdTi%kp zKfT%>MPMK@Y5OM7Lez1bW1{+U&mj23gN|=H=|TYoH=onRv#c*MOeI!fB(LDTQK}?S@gU0fDlLnx_kcHy~_P9 zNUW&VmJCIOD3!<%o227f>U)MWPM^*`18Y@;%op5x`4bRr%b-7EMHmy1C7@w!oREHA zw!R@K%DFaxW}v?>^?){;SE5Q-Idm6?cYjMQ15M&=-#AumFCe&V0u~UL!AB{v)2J8= z2wseHSi%27GwZNaTc2xDCNE%oPVJVfLeG2L9P+;;u&-dO*O1e(!BQ_5?=B>Bd%xt( zQ3wmvk#>=e!JZ28=q@KWH9DNFu#`;$HkGAqM_9qpK!5xa$&p{hPU)?BH9{mw>J&X&}7+V zfU4(*heNBFy)`*DD5u%zy;C!aJyyH#%p&9cbsD7eaS{A~hBDiU6|_L5B)@ zy;rCYYpd#RI@>PEh?h z%G-<{&~+0i?*m+|}V{un3{ddTk~y|%+fhkr?7 z&0;Z{!1mJD!Sg)>@OnA0wGwY{v}r1iDNAUD=v;`goQdRL?jwyUC1GR@=wG(zM%HA` zKvKI>BONjVbcR4P^>|#$$t09n>|D$bdTH0iTJGX=g_;Pt9VWMVAWm*+0~XDeu4nQ| z_k)MSY7^S~>jpV!sV+U+vK$D8R$l*g=JMYg?qAxU)6zQOTvwMFuFrSFLH}QjVr0}) z8V)oW9^{?4nZDE4*#G%z!J~Kg?}ae2NsM%(jw2pGj|4f+_0y!-N7PPq>1CYNx-jko zfPW!3#XhT})-4w`R+!7igXX7W$ZI&xs%4EV42}B{P?UCzDZW0qaaDRXCnV(-tOqXN zEZfU@)oycR6b3*@^F_w89|)^wOL3sOifPp7W*fdi7eO>IiuZi}>HMaBIbf(53JdT;q@4$M=zQTEyxaEV=Wgw!*a=T?Cab&`+y!Yd)+{aQ)Y31HpF-Cm{IO_%H<6Eh+MVV=TFttG`MRV_Z0;LUmo#Okux(p&ODdu zQbtF^cj?^_p~BW@C)vE}@x=QbLouzjo`-d82q&*4D&D+N?;m^^J0vBd`y+9D`3JPF zQ%&P=Jehr{WYTI`i?n_N5x_h`k)I4dLeaN^RjoT4ZA-Zvdvir3L83i6}@5Y@est71)p^z4_o z^VsM{v&oRUTkM%>-X@7v>M3ebDXh?Ms5%O)h6?eikWY12ua(QNNU=GQZ!lz(c01_o zp=4!^tF4!(14TgQ#}TlFQNvmGP|PQrm=f;VJ*os8uQ7D^OsM0@#M~PmEPGzXUgXz< z;5m=(?}Y!7K)Iqu$F7p(D#uOS#@+l?xG3fITb?PEUpp7&3?KC?=w$`!-zT;0Zt9Tn zIw1CDk5c3n_LNUgGal7kZPm129G-C^T-4Aj+s1r==5;Jf0$)<5s3a(v9+`NAq}gbf z$qGIDaj;JQv+G*(u%tqrM)mn5+}F9OFzdd@9~7=0$xgf2;<1;bdM|9v5yYyKw3|TQ zD@DRExu^hv=EVYZV9=Kw%t%$?bO({wY(3OhMTI03ntCcg3s>-KRh3axMl4>5tjUnE zz8Vt85ut|vV2%imu;lt&>F2!dsi>?JR$;LZielF#O9t5%PqX=4*;PFrLha643P1n1 z`Bdx^$tqas+BlqTK}eEhPgk&vNU7=Pant=MVvUQlH22eEDZG5>bL2i}J&G#L0qFUX zD2tPJ9s8}(Y;+66IN~T?Yu`sXs>DYAg6@wtzRHNnH(!GW&aoWSyA=^x*T3I9lv*U| zB2e{q$WO{fO#aymJSS7Z240MAXw?#H91{xwa-W*eL;CS!ir?ir#BE*U{oPO4{cOIEMR1Etivs+?}v_*yk%vB?i@+lHh+q}xDC)Rz^< zI|7&-C1u4FyYVb6MFYY7Rb^bV_L!r<;67J@w3rA-s+)bp$oRVq8V5WcPt?M`ieIh4 zgZ!G%3diKpIZ%aCcDy94`+kX+U6!{><7s)-i`fxzsa9qO1R~5G)WkMYE9t4+C#CF- zCKIvUNwhF=&2V`Uxf@`2lkT)bszBcT+ejIZ3~Gp*GNgcY8$N_(2A5!?aONgQ=F7B` zCqD#4qvAgve(H=9?^`pFB#BF^JbThbY`M|0IZ<^p^?_2yHFraYei+V9ovNO;SxO)V zWk&<5tz&T_h;Bs0FI$irYZEw%dV8PhY+Gd95ZtCV?Y@Uzod!^y|8EwA-PABoF#W=D z+!#jdyLJAC|C4RN(j=ACQ@j%%^u_C%>d=?0G?i;QChR@2Yu~Aws>nhDZkT60rm{#1 zv9h6I^eWyj%N)A;!}7ZFK+qPR-F>n;QT#fSw_j!%Cah>LnH(3;s~5ay>ALJ1r6NrL zj2-us^VBp1&b%unC|Q^CQfJ0R=7Flm4B;Oj_pJL!TobXim^bkvrXrM26I#->{Ki{{ zZMgd~UdD84yl7fG@b0_7$FI+;)wGX)d||i718goqc*H~5gQc^Qq-r3(WmHOeosgKH z^WaROzjHxBp(~qGsM6a&F@+1EC(eu%&zw3Uza$@8b&?LHM5o?L0%cO$!zXeS#$3w$ zyN&Wndh91l^`3ENyB$0u{`%zmOMJWDwjab^2F<62~f}g@u~tyWK++sMNGvA93EF$L2!-twzBOVHV4tv|*?)DBLg zpw$Z3*{VLJ7}i_Zu*WY8Z@;L?;77PxK0n{esUy;V>wlTC$EzYrQV&q#CeT)abmC!g z=Z5zcE=Lb*M$&CZ0MJV{XBf-#X*K;uz!?QZLzr;#NnsPt8xU<@n&RgcuK- z>68L?_Ul{@NpKJ9&TNyN`sk%Mx29LMJ#OIQt-!3er5 zFioV5eyvPY=9j-AOvIlUNn<_zegnAuUjV>l5ObJ*gLW0wAtc`CKv$o@_>CRzbFtf2 z8ZKwts-=4O_SU^IM;2=CQ7mSe4wMc5$Kzxju>^K|`-CXmv>Wbd)h?t~j)D8F3AW*C zbEhxxrYB(wRDF)LfpbwDKMR|#heC<{F3*Z)CEj(alYN6Mv16eyF_^Jb5)j+ z}v+%s#`cwvk8V! zipYf7r}z;DNM!JN!t4_RNja0_urMh%_pBQITG~Z}gxMY$cVgyeOr=EH0d?IIwaqYD zY9qXf{WbFt6YQ|q=te2vq2O#v-YJWovNa=vqpE~Tb?28-dym<-6cj|}h8!x0%swCj z+mN7LM)lx$P+|+Nrbj5>iAMEfti4suB2kMl1&iLQK#_OnMQ6%_MEz2(4f0)aYM3GavUnPlO77W&BC5&P?+7*g_#^TmcD<<2WXk%iE3ok7J(MN|jo z8!+iV1NR6_9Ws%PDdc_lcz)|it>c=DxjJo(`KB zo8aM86~B`H%-N#J!s3+A)l>abZp%49pV{L(k(-lFH=uC-vSD7VbaKp?)4ft{k#P^T z@$1fuJmYKAwagVY#b99vi8V-d_z;F%%y_%ZS}PTVV=vOOtD$;8Ex+|l#*b;rh(=hY zi#XjRZ#N$fJO(Lkxx(ISd3@e7FBB8wX_p{t)Tr5}%WfF#YK zM-v*^UsZ(rxQ)(;I=hP}KSv8S#sL}jJHSw8C7uBto{!WbO}~j}{egKCD{Ne5^3J49 zW~f%J(YK&|Xh?Yl`sUjkt4xl159klz@GjK|4^O-rI}y9Ath^fVZB%=acI&=oKdVXa z$zdna_XlbGn6i6c4EA%MX*fiPnFiHoGd8oG9!w9KF5})UJeoDmQ$SEe`j-YhvMB|t zKRl-0Ogdo46S)ce<)=5Sj&cV7GmKJG1V8 zfI0>ITF-T$MLfav%Qp5e)afroUB^&2JdYAqfK)2=S*;y%He(I5-nxZax}|Z>-DS_p zmxl^mP0wNLX*3?2sx!fpmYB)VBOi2Yh$AB!PTj3B3u8vsH!-U#@5*SWu|2jl>L!0D z#ID*{S(D@71nEVEX@m|!o+=ebZ5u}nl@Q#5oHxB)SD74bH`G_{vGOv{wl4q7)Qe?| zhcY`nSD^$HT>wao3PEl|)i7{B!`2VsiPQK1d)f2D_58>o|3vMxnl{Xit3v71CNC8T zv59dfZBLw0FAN+PJnY~+EmAIq;$axjSOMF)HI8Sn#k(=cc)AvZh(oafmVGb{jkgC< zivFK?c9nz7p8yTa_G|RpRDQ6+?WSce+okTto;&x`>Xh?HN|f?q7l^mRRF3^-LF)q) z2hjABdIizyMd9Jt*G+S6-8l-Gn#n=RicFr>Y8+KSW|g*#qW}lSKR(1xNO_fVi@`7g zP)`&n8?Y1oIT8bC)Dq@Cuvg+w^GsAzsRa?w?6S^xA&}|u|9$gd0k0KAo@O$^EBRUj zxPzqs=>ndKHJocjkph<=`-k1zMQaNGjHkpjLUH?-<>vr+Ivs@_oR(y-A$m|ZvePtEv|j-au* zUjel-Jd_S*n#`9a9ZA9~bl6G3ql?vY-+V;=D2A5WO~fI^T!^vtnqTO4#IeuhqjwCR zr*SBrZ(Nm_K23#zesskvxS6`QxdMd z-1x{@xETzCqgykm_5WIrv@`cm_R!?$nq6x7?jn74+#i%*Szfh~HO zG&8dDAnJpg8BQN(DMh&m1F5hlj#=Z6NpcakLT>s+wlG=;OmO!GN6q&pLS4>l?79lS zw7Yi${dbqHy2AK^9*=;qqJ(YS6dG&nwP$ODBxi1WMHbGxA$-?5jyPu3{dA-a6sVs~ ze%GtonlWoWZ;}5k&narf8VBmesyPjRY?K$*ny75U&yNrtdc<1!kD1z z1%#W;%M;@@Ur{uj$|vNlh|G^4jI%OMYu4Q`WaLpKh#llRj4w*(6R%LTCKN{<8mEok zMlPF|7rqbKhRLlSi{#lDDSg@!W6TAuSX0dCYBJXSxF9;zse%QpHI0a1`nM@EX$a=I z@IUt4PxK!~&?EF8rh-bHGmHTC-z*(Nn3w+rQ&ZBWlJCF^KqfLWwuJw4gHlSjN%_C) zofZ7^C{o_D3{eO)HI`98A+F#>}|7%AYps{GC?f@oByc%BP zTVq&RmHs^8K23da03+2#Q~5c?URjjCfel(*=oqpZ@AqYLrUeMpq%M8BKNiUBJs-nX zb*Ijvom=0&7<@GEG^1~l*tKm0o5z0HP+xWd*xeELZt`VHQI@;W!;+pHqnh|IQ`Y92 zW>B$=T48j-4~Q*OdXcu9k%~I%&PA|Vav^yjFF!-|OTCfhovkWG$jv;Mp52$XJLA;J zbncf5mbmbt6Jnh-b; zRg~)jT@F1wDu=G&nFo0C^rjvDrnPS~N37OUdF!q0aQc$-vfP+vR(V|50Ktb_a-}g( zZ*M%)d(>kbDo=hf?wP3gl0i9_tPkS3)-_-g@1*qo+0=y)1;QaK3r>ocedr)ptO- zxD1z1w^8jvETuNd{*N(rk;9w~ULXDat6gW^Vg@{}w?7;B$o&E}$p}JQ9Y9-k_+3gZ z+#Sy29-{7@(_C$>-90tv1N9%>0e_m>Z&dSc|Gbw7<=%XZKFZ(PMrKyfPHyz)r!7P3 z$WQ^CJ$BF$XN7pnF-9>vsNYzBh4Bt<4es2O3g$}7q~enbq1Oii#nzy44Nz=eRSI+=;#MQV->|V3!@&~l z4T-aIDRCMct2^jJP@ER<2fhvlP5|x6aBrQLrET9+X);Ct}XsjPU00=BSv;>+8w znYET4vNmNe9iIZ^MB~FhOU+>A<=?uO&*5YSLKI(#wK0jA}Ue~*SP~_vT z>)f)RtTc!#Q65;kk{1IuLr8Wf7nc_kSHJk5G8i2ovg|pBJAyh#nVnFlAJ?3e#nnpr zAC~(>T)&>s?v)V{b3BAIG~EQt7tx?UwA<}T#9EZ_Q7>{G1G@}TY9KsD^mD|pVi|V- zzW$7pDjhZ-hwL%*PHg#wh_|XPE&u*RsWot9SCx9B@_Uxd-RXO}7box(ci2)W zh!)C$t^@;mYwE5Y7{Irn&s-kXHWXZg)X0SDh^~Lzvxzn1T@pN#%palQksRHbIXYrM zPH{4n3aJpCP=-DJwZUfAdcOw=RWMp8F7EysWuSQ`Mm6qu%*`Ky&tB>U=$%5@&@Dm7 zVvtw5=+a(KiDpB;Sqw>Rb>cCxC9XKjydu}hHkbE-7SCuciI4S_A0K5eMg4%YAwU%q zIVpbk=&zVM42R?t>0GkYH3_AN5v!%)fwkde23bcj)i&NERH3(*pFPfSnY?uEzGHyW z#*%j}7zs&Ee?dq7>|lbk%ldOck4Z;XS_l&!uRw%1s8_@D|AA(%F5n*+l+3c0{Y|vD z^P5|r+|v56D5mj2NzlTO#RYNcQ<3tzgVC?|dU5EdrzU96vAluTyu?vI)Y z_BYlBis5q2AE?9m0?Mp0bIG*Ss)N8SMVkJY;y5!pHgBcZE!<2)#U;G;30ph2H-Fqk z{Ixf4|8fpDnNLU1^0C;>m*j|L38oIZiWv|U)SS0jq#3=9j-XF>!b|WRI4gEPC}+iR z4(zT8^kJ090>6XAthiSxOXCIQ)?~;{F`z%g=eyM*4ttc09gTq=e=KSA?D`GQ%xg0z z&caVZU8lphR8a}CAcTo*tRyTN)Ly+P(Icg=MdcTldx3A5X6> z6lVFsP}Rkz){o~6v>-pcy`bI!FK6zW>B@Qd{(DBb^d=3Mj)W3%4JvxEfqZm{^r~G( zee9M$(d92c?-N=RHy`QmC70;;7n4Q@wNBP?rn^rE`X*=00oO)WP<1B7G<+Nyj6TNX zH$GSa$uTylFLxTcyl($&bM)}^L1lRsUe_}?rM3$BWW^3CjM%aS3}3cAvPG=8C7a@c zmO+s_;Vj_kzJD`Xy;wWp@P6odBg+E+3!9wg71Q1K(xIbQxaP!`JC3;5)-YwdWA%xt z8FraNA1yU)ZY_yYOw@mdGFw^HQ&4tsQ;(Ob^y_tP+(x|@b$Y1ca&n~b2R zksj3nBmx5hIw0-BeUTFL4-QV2mXD{bGmicg)hz^z@Wjy{NkQjX{+&O2w#~q7@(JBM zMX6<0Y#fIWyZKoYgco0}LqhX7L(Ql~>Z0ieH)e6h`J zETcUZREF|!LCK*t9z9TX^mX3@+Lc6pib*ohHH(7L(Wy$ri-IJ=mq6SSHBA`t;2)V9v1 z&6>w}q;e{@q0kXqz1-U#nar_7*#zi7B45|CbocVZHkWYPcy;``J&fE!nN7D^DhmyZ zXSXxrO@Qbq-LvceLRdjS1JzW3ZbR&2VMkv6V9DBV7DY(@`;e9(gSQ|e9Nz`^^Tal; zhAOn91}7y9_PCtr-`|6}?_pMf2R7N2IdTlEhZQ(8r-ZmEfJsg++4UzAVon1rTv&$rRZHo7)oK`Dos1q zCe?Rrfyx!0?w0~haqMefqeAPj+&~K=)iRS;-H)kd-IAUz6I&S-BeRiu1{C@OWfHD? zGU7zP3o~htp`SdpqiK8H9mLW0lw#^)kKvHI{Wg!sVpC4Tpe%IT8+{u;Z=T5~CkZzv zsn2L}11&%bsvf;}gYI1*p{v^nFEZusVD9-UJFfs+nj}Kihsipu^K16=dcpR3W~VE2#Vy&2@(^pPO)(2n#71L7Q1CBz`GR8+<;K0NtwLXDoJA zoFtq)3>k<&myos$-j6$<8@tVd<`$c<6K;2}qO0IZ@QmK0f=mx4gs4-SBSvnf-RKMtR}5xIND20J9-gn$kaG+2Tuba;2e?m!Fq5t>i>i8Hs*2{6zF?!x5#Eez zV+I&sMIWs?hu@q-S=zw!pl{Ds_t8zP>=q=RPkpBcH?yx{qnWaFY51E&l``UUSa|xa zBPZ4yUy|O&-;jBNd4FOLd+AZnLyTc;3ud_FE=|6!k_Yy{ud*}pjJN5S$4m5T>;qHW z0Z09(VLzjf7_XlA6dl=X*9o`Vye4g2;3o)GKEDvZg1n{5tz1;pwp`~LzhMPQVKzRLMPF`)+dbp zOMSuvRZ9k&?^YlqvQ$yx?091>&M&40deG)UqciMz>^hUW1~+c0y~yrzJ!{!CO%?Uv zqoelI4`Z@v*653!NE*E(t;XX0C2FkZvPry_=o>o0} znUs>6kUgK9KWbRPBiSjPRJt$O?|o!8``*o5E2cmK88A3Weipz+s{}(2hhIfHg2l-J z+kglfJ5Bkha{3d5=IK65V<(FaRbV7}CmIvTb0xEuPWg@>UE4g==?YiTo%&D;fEu@2 zDh`!??A6M2j)HaTl`!|ZHYD=5thq5O!oTAP-*FZY>Un)Q#{Fy@ z@x(fq2p0($iZcLbld{o7fc~vULx^(#k5hdNcq>Ivjo{2;PBdx548c4TEgxg)_NujJ4!N zgGTyx_!w^c)c^ca#!(`C*@C8oyhTz5CENKX6-{&udg8kJx)i;>+8D~%@a~V~e(*+3 zDWa`m5!j+TE0vBbB!KL$KhE^mqN&VY^oB_#%7a;ln}-)! z)i8u+w~F}#0-sB)O2B7)CU}rCFB?!WH9_ttH@Me(q~|QIRo-1sYjaPj%qd)=d7LbI zA;s+%ay-Wh{gVMn!r34-XrjoYB%v*Sj;>Vnwq0t62rpGl^Con4)SWdD`s9=HRx^Q} zyX}O^l0tMrD<(Uim-L$j)#lyKRVSEQ94+9x4xe_a&5AJlLL8(**Ymdvwbk86pM?fp z`IvQ~dav95suU71%qNxH7$NJQ@Ep->XQ<3Og>Q)-`>xW$=FamLd3aLi;58ktIm576 z-_U;7f|~(zKfgTo@=^6xKDaZ|wV+TZnu@epn1yGLpc*~+=w07=gQ3QokS`E6|i+rH^G`Q)? z2#hpWUqvpY^~O2p4+Nq24pMW#X=#MM5Y3=t5bfBt`?}90w#+lmh8| zqpRx3-v%;NOIym0wcJ=aFy0eQ-?A3EOtSK`Sg(-I#?R|~jIweP;iJBJ!aixbMZgWw zCIbSWa5O3As2> zdhz1eF|Z`n1Kv&$TMwl;bu5D=>Xwx+h-vSGN%s(x&;bP&DQt;HfPmoBt=}x~#OBe3 zSFqFr%&JLt8`!qaPzS{hJLtv?DtQAXIs!1J5r~%j%NVifxh!{Z0_zDJ{Uz@Bj`H^p z-vmAvpv3$I_B3+t(m+|@!p^*&Op^xXLOzEtuKe%+@)0(6aw6jsQY+iQ-K!SQiIhrT z@C+dh8yXtf7O!gO35-kz!7Ys)lp8;JMr%PU;Z* zzME$n*V-sAj%aXaX9C5JXugjT3N6Kxw-$_oM)QO>se|BZHbKc{Ko!$Be1_h{K1;?0KHC>GP zm2J~Em17wTn9WhhYx!bWy!}Wq{~OMskstME{hwWK7C4&O^5dBL7jAu=9a9)7L=>$T z(2=U^V==wB9B{v+&dt&DDe=~M=Au9R`8xdL&bY9IoTMwS7b#z0e=GB-RUqM!3i9GL z#>O5e7FPX-tzjCb(aj2y3dx(#6GASzFY0Ej=oEsbq;mneoVFlO)mj1zgOlv15w@xe z` z4vIo!7Vn>4CQjAWFfe*^z@Z04bhoNU36f%Bg^CE?H`(sCYe!xm9CG}Wi}T=h)87@~ zXtED=++DK)6rwnnUe@?#^TM~qh*u5L?<3TSO#$Z@mwp5>_D~FHPptV@qrM{5{bcNB zYI5kO5-zacsNifnsFL>5O*}bh!OwZaYTBb???hfnhTj&5d!nRb;jts$8LF_N@}jEZ zu(by36^WVqq*gB0(4Gwo3z1`9$875zkh)rmJLbp7V9*J~A&OIj;q4*zAZLoK;z8zy z{K3*aA^UZ=A{yK+P6wEYeNM{ddM}d3YFYN>?u9Jn@OE|~W=qvIid_~)2)V0QGT0~* z7!GmTR|Kk%9*@vtFOz;c$aB07WOD)31N3>YW^f7-(_nY&%R*ksyP;R1$*-D@ju_um zn}aCd*(d$+&F(59_5>w|$OG=bzE$7bvty|&Gj+g4^FHVNC6)WLywR*%#)3zdFKXK@ zrjw3B1oj2Ae`&MlRwZHKGw{CbwX|0mswv@VKYO{oT@UC zB4M{3fO*d;-vQsCLU;^}UwwHOO$07G6D?2P@(n5fT2oQ13N%D9`BRl&LopR;HqY5Q zLSTdF185s|ph!9qsd(51SK!jMpCL*5;r9I5Hhay_WY$#3p0g~uO0E7`_d($Sk!V9` zn-FHgDA`!WoUe6I&$tjo=;}SxL!fF@yz(*7*n8ek!ikML4~aiC>MlBA>T59}!MV<` zNLhN?YrK1JL|$$EMIYB@0WqxJ6FVYiQislkp6p+$oG77;0u$*dy^5d?=kR3JQ_R7V zfB@@vPi|!lM^@C#&u|pE-h0{0IM{g|5{fBEqjSerC(4%v5b(>g_Ux~f431+gnEeC9 zc^>Ht1Nww#XP3@(u+4BCy>WJuAV!uOn;2U;u#)pks4_L!2sr8#Y?PF0A~*dC`aJ?!toT7)l>IuSYm|E}ZK;!H zfn;Z7Y&>-$uES0YO@-JJ z@yY6A*F%BMFeCHK?w>zVEq`SJn}G8}bD|0f9i8r;#=MYoId7m;tG_^scFD1@`wF*k zZZ|xAeZI`4ZMrJi(e6lzzL{#tr%C-t4#`mhZ%FQPvg?8N{kF?yb7_*6-mW~s`Mme4 zc*VsZ+HOVlyN(4rR62M-YjHjpb`;-jEMZjElp+avP*&G(pLkU8)iI%oOP{y67mq(M z{2KFiJ4EeVjz?MaP6hadf3s7>y&ud(+*9bb%xVCBa~_0dDgCmWMaZas;2yF0oRwAt zC1RVlTkv(USzvJ~3-Q4zqHQokR%9RI^vZYQ`gmH66t}7AEoLYr$UoM_!&3h9Iisrt zpF7jSuH1=QnYHhqo8fM!=OVTEdIH2nTW5mP&hohCqOaihRY8zW6h~6j4NA%+#Me}g z^vF-x5VoBfU-018jCLn^1Px~fJR3?-yZ-1wR39#xda+Otx9E8PeRk!sbQoEC-WDxp zdK6^0J)-QX=SPIlPZPHqs1EsG+e=QwUUoiW%%C zM^I8o^7p?1jUMEU>3O0<2H8La11s&$ebPDQ{)lVcxL)99m*8^vj#e6O`RHZqaSo;R zvPMB$lhGzUy$6vRN-V6p#*`yp2xmQAPL}0}n>>dVnQpj1P5U9lw5OjW^ zjsbC61{Cm6)C-9xK%ka`+X>Wk79XKMdC$#~b(cCk{&dn`qq{$ymHgL}P%YkZt1>WO zbnQb_8wkC0l_Y+%_!^;^*VO5D7k14X%H^ z!iILoz5j6;MU>e119dT>Mt>f0E-iCDUT?a`up+V{>cB(mGtX#Biaurjt#`l5AClgp zql;LVX2pY#!#OJ?SEeqe_u4m$5Lp)@PSdQ{=rE3YkGna@b1k|pK?E0?Z=pNR@>Y2-#T(f z?yFybi%lvrHdz0a7j=X_-wjhNJmim8!+xwThtQTW)AdN`pZ86%6 z6ccKn!BYMZW>UhzPPMvXAE6TTLuiwTtwRi$&Pd7Mr@*rUV}UJ2`b}J}aH;B$H;Xge z4GZcS4!2N(FSX)nvg)ma3sox^G3juwS6|?ih<=>z_BILqs={Ji0Ki*#UK<`mj6h2eQocl)2`Y#zSmFH%w#Xc<_QIqtg+YXI9~oEdyK zC7=yQJULP&Sn)is1UWKL=(*2)Mm=go`utKf)lzptjz8y1Sh(;?5qt*6HGA0@`cUDQ zn@Jh)FPTC;?CX0yp^UC63$kSj^f)-THZhmT1>bbSZ$1jiSYcvb$zqPa%HPt@`XRne&%1{#c*$>%WYIapKteM>6 z30|b7RXk0BEPu0n>X>T?qC0@f3dTr%qExh1rZG0~ThEV6w)YHO;ABbl)m=d7 z{c}$qwh~x-^g$2Oy`~Mu#vn&+5wFSi_p%+Og*r#rM=y2kaa2=|!Ch%9mA>+0%=ja5 z^(1PujFvM495&=@`?|>9aT}xmWJI?Q)Cpq0$)2K6b$@gBf2oht|14wjANkIIN8tkI z5K0i;tVF~yUVr<|!VnF^1={}USe0UM)gd_a*HVp(BH%QuPA&bD^V&ZZ3Qc(e(DoBB z@d%iHm?ir&|U&E-c48kW@@4W&QC;~0!?0DZF$>S_^*#GjDENa?em!&}!K z#Dz;Mg?XDR-plr_k}F1N{e?l*PcFSA>!n=K$;pnS{Y<{rp_ilxc=>OLAFH8ETckKC zEFpK~y1a&sfDBI%1}|5b?F8UUJIfK$$Nr-Jbt9Sws(};L%0CuM3K*~K-Nd|EMd+V> zJR7xaD3t6&+FQyt^WoW{G2KWLKG#CdCY?D1ovVX9Q2{FQo~7uKZa$7}G?YzG9HN+A z&M{P9D}T>&{(FG$DbthMn-7XeiBji-YO_r_jejkA_hUCHdoR*PqDC0109UP%|66B4 zW27h-`ss-}A<)GRHQ-F`UFi+hkiFo~$VL(uvpxaM5Wl-E%{&A)JfcyP?9}y6+y)*2 zHvo;#ft$*wgLN<860D1woH)al-z+2ZXkg403!Ajshz66oQ&q7e~tx1}U7X5j|?L~)6<)m)7PFe2HZ1)Y%RzqQ!JI~1WNlMg)gm!?z<<47%= z>BKQR*m!O0Ogw$*WyhsjbCm<~q~^yJ;eIH@v-9N@8h}xv`e5xt+heVo{GmAfnYqr0C|!`{5Pu z#?%$VGwVzWLGe$KZY{^t@e^t>YEy-gKT%)TAHcA;YA+t9^bT)mpzJ>uPF!QWmBKN3 z8L_?S=j^Zf9d7gYHhgaFwSS(*IFiAS`7yCWgqAafZbT$o^Vbtj9$~5$V7?ffy-F8b zYXFqAyT|+5$(h)!-z*|w8nXjwMX{~)j$bA)@^;@;Q>W5tJH%W+4C}c4CJfU07sj`c zl=PeBMIpa-Jo_zs>vnYp7)%c^HC4BgDm|5iqq->8QlIcMgRM&aJQ6d%S)`h_lwsr; z%53&C6ZbOmDg63EzM=WtlQ3!EpF&w|pst{c>9;Z$1j-nhWSiF@cW9(v>~7}Io9QA^ zuUJLmH|M4Y?n0|mc&Q>dk(V7D`e?y~?LbvmLs%{LE&mKOA1R%M-#^z!mTtktf8oVy zbm1)7!-lHZaBo(g>W(c~OXP2IHic3xqn~%Ms#A*0AqHouZ!Yy(5mj+fN}NG7uDgu4 zsLSxD*jyQVS+Bs{uMv&EZXFNOp&!_x9`odqXhue)kW18*oM25%az*DPb6a*we}bME zTW^BQ1x_g-rR+&nk?Qbr(PSqSfaK3q8Li!(|tm-cLtzZ8^_0@iRg*k5?^30Vi+gz74tL>KyFooH~9=t@=-11Xz^RRkxggYqb;(&0DDBbV9$Yiy7fqjCCN zH0==mep&58SyixEKxTGS$0_>Wi#T8*1fF^KP%gxX^gev?WX`L5-X~|C18$3(dREm# zma={=qevBU2iq&1$#;%Z5d=VTNc$92E&jmsydl4t!t@fyvvm)?P!D|3hirB3bgc#M zHNV;s6>fh*qkdW9#3WQNQXk%|>b*=l$UGgRoJrZjiMF*5GtawKhQwz zEl`)qPp%O8_PpirY2m#YN?1pEwh16c$FgdsEv}Q$c zTe6y5nHQgsIB~2kK|?9skp_s zJKHx_(z(5}dgpSNCW8u(G?20sZ*A)b&-T)PUW&6gqLL5u9suS+>j9s49s|AGvxM%4 zKrc?f83+0|pkPS=NOTmu5Y){cO9MH4DQG4Bf8`V2>;Q+Yf~r#m4FZT&R?UJK>^ z`fr&2zvK7+ek*m^PLW%JL41#oJqqz*H@nbtpY^?a)VNg*)iBy=qP0IF5m z>U-oKfv8Q{aUl_ge--b7*EDe@C1b9jWc22|+ipMtnCOFj720muR&1cgaleHhbDz!G zp)I&m*|m$~FE&-K3a?@7FnQQIEvR!MU!QZEne1G_c8rsJ=bcDs`wi1w6FRRTd`cH8 zi_ixb&dJcahSa3Y_ViSKf46J19yQ+y*Lg$YxssM*!H3m^*6RFNx1HkkK(b*QskDw+ z6>H0q=+C8ULAS3yd!hH9ddy>gGImbWlo;Trq{|aEVZvXlckjvJR_oax`4>_&i3$)(DBQ(%#wX571})!kIx>7C=}AlWJ>+$4;I(X?A?^T*Avpt9ijh z<22%3DpK@>#Z?TUUt^nw`xGvh3kw2z9eNQxJmFMnVxL86Q3N6SsNSSmc3KZd6ZQ$P zK{-gm)RgmRk}N?g{cf>-p8VHy`+h|2nGah3EXzk7 zU6=n#eFhU8G76-QJ+}1}2@v?$P;y_2e(2mfJA;aCZV{VxM6$n!_3BQeN9|Gk*dH4g ztge=NXHkE%z@Y9G@}v@iRIsb0-$dmV8^}tn_{5MC=1$t$6bJV}-6#WT2#M54m zVAW9?^xy<^l>oR;;t7QM<7zFm3p4EJMuyb~gO%k49HHY^yx6P`8wg?cRA}V0zTF=u zjc%2=%O{bKF*tB(M?t)0A`JgkaRWiFWPR|h=ksrt#Nw#0^BuGYkzzBB2Cia9mfxnG zr>2Ih#hi)OAv8nP?7%!y_xz7D$O@QvX(Upo zH_MH_PZ^khY}ji#wl=VDxaU}-^5Qy{33)(!g#ML34x#hd!s*{~*O`aiKn*Db0mlfA zMN{?d)?njXH99Adj+EDFNLix#Ag)+erqo?!@Pfaf(arU$*+T={$0ozH&UL}e99otb zl7N2eLG?m5#NAl|^)v(&DiS-C+#ipLHKPf=_#&ya04UKCPd5vvxVSBA&J#N5d;lck z%~mN<-;NL(I@tku#Xp_=ANa!LMQ3yzYjJ>6AC9mIDN<(~76KdFYS$D{(&jGo&xh9F ze}6;C%#$Xxhg5f`-z@vVM!MlVbrdplWBJR-CYIu@z6=ndn~kr~M3W5kT37g=j#R|{ z@pSN1FjP-fq9C}51T-mV=Xu|GS-UCQ{jpDy|9Aj<_Kzn+|Gp`6I+@S@U(9qDVw8}DD};Y5^myt+e`{vaD1NmmHUCjULF7Jtc1?^1 zx^@9-8%{l;1SlGxWlg|hMKey)Pmw^GnH^81gQS^4!D947Dj!Ic8fI1E#(mY~B36gmkuxh|Cs)?W61(1`75#vs3Y{(A@> z{;k2${}1)s0RqMT5p{tH+|VhZv$n36Ls^ZYB*?9|g&yU4wXq)>Txrp3o{H+iU1f^U zc}cT1i;+sIX3z30hfgHi$4NZvxPfCyhOCt8Z|rq~7wMTUboEh(j1=e0OH1PJY97xN zl2;qg65D-1I9>MrT!VVwvk`d6kD-rvB}L`_WQMHzxH31@fTTl){*uKj!YGbctoz$y z><$(@|Els<&5+Yu<=N8iFuV2j`l>@Do!2gEofWV&tu&J((VW=kGrpmnr7a4yj5DRP z+7Ct;Mi)AW9wBH)DX(nPa3*`E!m2->U&)JDHU&9~=Mz8d5Uc(DXK|!eF4w7K$m;2b zUQ>?nWb|REP53UP>YDTL{C?k@DxRfS2c-;SvcCiOny1)4rvag&Z2{Fs7h6Q-9BX;S zYu4hYG3ydcZ;+lZO=U^Kokg8Mbu*PH-c$4Og_vX38Gbb7Zj1^yC{7^#F>g;nsl|^U z!+kilDna^FAP6{oL)0J9I1CIc(nie0N-JN+DZaN_J#Deo=2DYwk-x15E;3U2UCZg# zb_`wx9~-v-R#t1|U%a22g~J{XU3jE$^&*g9wz!}2?cso*K$YHSlBKococG zj9ckLa(j5&MFQWpH=AE|$1`GBw&r!+an+_LNHgK*d?%LW*zUGyyWUlKhFDdbWETiu zy}&w#gCebHSLj+4{OqUr?gWJnYWgQhnKGc0d?bwvX}Tk+2OEbR;>LnoBat==H9g%+o!;_H5y7>wPH8t&i!+U$F+PK5|^{15itJRZuo?H|{Q zBC;fksfZX$SyEZ14M_+wWt$`kp|Wo?MaViK6fq&$O?Fvk$`X=f&u;9y8Os=E=IVR8 zpYQ#B?z_+ZJkRHOp5O2J1$Uk9e82-v;@1)&F4p0)Vp@vX4w|2?B%u@Ll+1A4k31^Bg>AI z*o6F?toqXN+`hDvrv}RpC+-E1GC;6Y8@0<3M-9rKpq~Mir2o@Y@%I9tKlQurK#D() zGWQk1@u%T$eC`@$ZqZP7OkhCo3EjP;Q_Ro=EEJ~1Fz%sd(I0}Mp%h`+;p~ z1kw;$kP1+}X(h=q*a*N=mtwA@V%J=D^)g9on;C!ZDSZF(5H5TdVz=us?Kq}EMOU+X z)|uB+zd6Wr+^=XTt}mDU)9Ks1PaBRAy)siP$+z4N%P>O+YD&C1%T5AUf8fsVuKoX% z)cwD=D4y-!b@Q$Wo6-uV&bb#wQm%uYUR2?l7uLImE13Ze;To!5jMQzYM)QMeYHvbR zY6bZwLyrgD!Ko|&A~toPp)S=a*@czSa7C+vE(BOek_K<7{*i*>v&)JW`(P*=tF^um zBCB6~@9KuBr$ou?g?wvIn~>0|$C4%{!WUR~?w@wpl*7w|ZTxvS7{P00Lvat=)$(O9 z%je*-Q-|;=d8H#|6X?d<{>NGo)haWIvz z4#hHEq z*2nbkV|B-W1-W`9(u2yARXIk*#Mk!$2bHnt5crM4r}(URo{C5rFyJveqB}+g?faNDi_rth@h%5}?zTYxvB=*3fS(Dg zLNuvPDTBle6Ipo+p(3?LJq7bNj|&=nCK|s}3;suc_vHkK!g-L06QCtQlb{?jBWDkN z@*m-SEErfUvzT!Pq~5(q82S!7P$Z!*jN$3}<3(Q&0bf1>CZ+e;th=j$hVO-+K!!}Y z4ktL^t47w$8H4L{%??S%UyD2|aOFoH)Rj5t93^^;?Xhw!XH__}OFaA3V|%zeXHpCQ zhBh9o_FE9YC(GP5Co9*qJYpa~co0ZH{BWwha@0bzW~gI<{gC6zv6X!8 zD%(t}D1SJc&Cl1Ju4#vwTz_O3N?PDD6p<6M09e>{kA@trHk9G58Q!PrmOHC3^|h#D zLB=Uxtiht7{_*#pRQ^rJktJ?on6KnJ&twa^>uoUOqM(K1K@(Wf@U7y;gSC$i=rvtW z%KdoeSO)J?d~jK5ME?FaHU;g#PBwy0HGetaw!O}C5ONN71=YaZ4hnhsxc6qdULGpU zpKr@9iA4^5&DP#TQZgu0quoW6=FzDT!U+c_`da0TSZUyQbjw}b@!}n&#{!K#XD>)Z zJ8Xi)m4CSBB4!)ZIHVNaLbY&ca(r9o68=6#KK;{r%ZHa}CB}PG(-uEB&e+1Ggi(!9 zr8SSE=Na1ga+0e2jj888)d(ch>+sDi`&0}PI8*xAKp-Qv7h!|i{mE+otjKYY$9NXa zEC`C$y~ciYa9Gm*=r!14PhSa^v~ZxO)_eDBQa|^Bex0JS!e{$fB8QYBw8m3Q;bR3# zNv4I_o2B2&bHuO*nW^drO&RxSqGO1lvi;J9bEdjAw-%wj)4_?rP>}aNiy-cS5Rix` zXnMO>)g#sSJUMs4E{BHRgg3kI%r_NX(HwEp7LYu)diM_3Zepo7B!^b_bVsl;9@7Fz zo<_}KS1Ec$wmgw6p@*7GRDJkau=bnZd9zxCijS9KS1~Egp=MX0TJ#~>%4J&02#kwy znLKx(qe>&gZ1(iXn?mX7gI|UhzSO1d`^J{vO+1AdiAhG3Q&96wa)Hiw2jv1v`didl z^sW?FuzLw2sNHriy?60%dZ6SYYv~-9r>Pin!;RxDd^Mpb@-O;t#Y_`ne+D!q0Gz}> zuz#iuQ95n0ZyJ~Fv{R1%Wc9{24|AT3+IvUg0f()oy_A&X(0Z4b=%kD4_k*T!2~Jb1 zQ5`Yn$vI=KJEm_zeUt;Sw~?6@)j>Rnr80gRJliv)ZgWzvENA#HNZaJCqP3wf9~@Tq zh#btDyQ4l0Y~t943@Ej3aadx>Cmp}4FOBpqL-1~SxQ6bAhrSYU#P7mSnJFPsj$Yd`ljnM^PDHf@KcUEPl{ zoyiHQ{b7=Q_CA91#oq?>$8!|!Z5x)BBjDY$wQ3^Kyahjq3MjQ*W0PNZJ{v`X^kuXjD029oX;Yr%s0*Q9le_pgEz;4S`lLP2 z4Tmk}tC@5+9RX}c<*CrEdx_IdWsD4!;tUS1x!@3#M4!2%pID~)erqY z`g$+1!`5r|EWr3a8h}MEh!!hMxI3wQxYoplLS8+ummRbfA<{a|#sG8JO`Qqs$IH&tup}TILbI z%?1iRq#cXj60Mn3{A)qRfAu@!soH0q3rkxa>h>1C?(M9mLh!_#dq_IFb>D0uId_-53O5?rR%U^nD;G z8)ArppbQTdd7D4+>?qgz41*}<^HXjljcx>LSL)AgS=a5qeX(Wu@69wFnp8}XICwYe z5**ZI?XC)_!xc?^#_~HkB5S<8uP|+jF4-JaPtW^y7nkqQdm=wvU6vrcay>C@*%7Vj zCVA1mLwggq&ohR~NAtr}=yN!D$3=;{-m3HXfNy)mhkFxLwF6*xQ}x0Mz623shf-$n z;000B@55w4zAuQS33P!0O6S>F_)t(}hCH;aPiccBl91vx`t$uAn*}trQGI{J0mku< zCBu8{A8F#e@24oA%vZAs_!bT*=M%ZP;Rc^gjQqKPv2ROyY*}FuCC7!7o@7$n&m^E40r(RfR)5@gtuN~A=`wF*{ zEJrNKbyFHZs*BOB>;NT2$;cO~Tn%)2sf5i3r>&mV z%MIKJuNJaRG7L1;9}d&X_jIPdr1g{hLTpBJnlt0Ea@YI4*@VmV@<%WgHPt{86;p-{ zcRbxNO5A6+86CN|xB2*+XWlO$@0is+>ak=;{?B2gTs$wsbU)EG7h1dLtaGZagLV%j z;l42+0bs0z9E|K2DHBOgxq@ENccwnqYI|$zLi++AW++o!NZ7DaJW$i~Ih^ zQLU}aQ;!R|=##`9)A(2QH0Suv?q?IM>v+&aYBlQ-rzdDuQM*aUPPd0Lc9Vzeez80! zaQ6{}DB>9zUy_c7PU=fwZ-$)0)jJGVDbwwJZQ4q;a!Ql(znro5cyR0m_Fma34tgwT ztw7`~SY4~_4DV?{bfG2Eb)MhX84E*&Y_4ngvI4lWwO09%HN`nd?t#8$bdBd?k9wsT zH@8}0!yNGY0N2rH1QSwvoEVZff6u94_6pTUd(F%E4&%)hDbZS~7IWZP-XI)bZN8dy z?~FZ;qi13xnXYlYqr^htW~o4e?zlkdLc5ur$<5Zb7g5N$nwO^Tw)P%fAgH}P<2L;b{M zdl<;A%h--QSo7`&NJ!D^P4c-tk*1!)f;*FfCG$x43m zi{;xVB8?qX34U={O%zdkpeuBmT4X?UkDv5W;vYkif1ub9)3;HKofV*9T@h1z!S@Kr zWquMq>qdXBu>rsd{M#drDDZarjl#)R9g z!s@Dy{8T^zi|d};&BgcQBOvwt$dTN+f0ol*0PD+@N^_?XpSewgz~=06;Uft{qeo}N z9;aq)rk(bFQ4Mc_M_+$w@p`k=Eb+FBlzRUz69uf9N`Dh|)wUnE7x6&N;mR@~1wK5T zbN^(3!INE;;ogmJ#NK*GKq^6mW=*%AP6)Sq@2gh^HCGrs&Fo8Say$wf4!NX#2uAhDLJS^8R?98y zC3|(A^9&KxKLU7HT+oI5a%~+FLj3zluCeIm`K`q^-qiQBC#`nZH zw#kn@_>SU$E;Aw;j|5$}t+`coQ zxJr4h8{=G6IqlV7h|&aU##x#`)&L?@eZObAE2pXWO82M!q2oD?84pjMtF0JZY5Zbz zhULg4-dB=YplU#3A0@ZeH+z+sDIQbme8E*(SFLcQ(JT-))aZM6qLqKpEcgR$T2)g= z-6{V~al$HO!?Y-{TFHKdE5wTpdlvV6?}ufqB7=LOHgG(YupOA}s0%r!{K&yAYF;bm zg%NaSvPMAO(!>JvBU#O=?C)_PVu4tK7#@UZao7`)1@C^l&h zPT=vi1uW{Gn(Lm!B;<1$C8pE^cy;9+2d^uf6Xq9xMzfzkD|sx(`pxYC%L^1_9j37C z%M!b}Cv5a}A!Q%-(TbPyX`~M+<{-~!sk*}26Rg|DY;Mad_-mjA7<$YkRS&u-ZGdr` z`5d&4nBDZXm7htzmXm#H-{U*U0#6;?;8s1mE(Kr*c?dQKZWl?5x*J;qC3?9PM8+nZ zvP1a4KpV;Q)<>hCDZJ>q~bnnH^ekk@QP9+jf?#J1PPP+UHhgpy%?yUHdH1QKe z67;Lv0_ip%ZZ6*NE_`$t7gW2ZBrA;dkQ=Q~lHo9%@Y}>BsKKbf7{*+reFX0E`!vA3 zY{BrmF<(O6kTSU}f(SY*#uEfPt*Q)2YL~0*-J3|-bbsX$#|zAhEx`(_yiTc!)s=t0V0dON^2h0{F;EI5CcE8=n`!;Qmfy3dBtR`1jiYnHxGxaeuR^6{^^8 zVc4=+>&El-?JpLu$MU%5w(lHc|#z?S+Ci>sxbVmfSzix%SRvB8kzxCyL( z^R5@dp}qF%*R-k^)-C4ywD){PRHNQcsM^Gh(Jx3}!je&WWB6N|G&%puza*Uo0)YttmAWu4|Xk4h(Gn zCVb2}7*QHui|5-g5s?qo=RlPTe0%wN{&jWwbwP!mDWKf)g;3S8CWAm0g&DNxr&Jdw zd1$Crg-PoXvS+VGttxF0tX__tR2Z)}dc?q`^)j$2DWU1NEMMkZfTY*=|3ldNujU8; zOP`}1g7yGdOk9ql!ffIF#iDP*zuxkXFh~{%0jJy1Ko~8yQuB+2y1N5#r<2b?$8-L{ zRobE~O%mv+Un*knoS#k&r3HN0lKG~xq^j^WDOvEvyC_{={=05gu{O6a?7X`_ z05uSZ-Ujf<8=!Nk98JqDg?`mjs8#45UdoJ?%7&aMBlt=q%Mb7TNII^{rQ&e7I0I%; zdp1LikYzAUU0YaTF!iqK!t?K<3($?j#Rp!~uP}Jqe7$(TRD5GoWO{d<M}al`c=qTJbC2! z;6tE{KTD|A&YV3o*vR?55)_Klmv%F|+;;MbN zukiHlg+a+_==rrxr2Q;w>-!m=(JLLy*G}kLcNYcj+~yux zLhjOsXQ^8EYzQO{FEXCJpH1hgqKi@=GZP6S=oZWE#pK`s=}{kQ$iBQ>ReL!l_zU^= ztBeofr_{}F!G*~3j~k}Xoxn%tn7D~gDZ76!jyBl>!L9$gnh>CZcjQCDOMn*^Ed?r; z4`dH{64(!Ojoy@YKBM0I5d9W8f~s*)>O@OH>u zd<8OBo~z#cfV#{5Bl^`7R;{xweFA%vfkU5l=0rC6ASsHUp4ZL+BUF z)lCA(33=i&W+Tm!HQ078n&`d^N$hBM_~NzuL$Hq#D!Z-F(Xcuxv@ty%6$B$|3QJFo zelH%w(q5Q;!I0I4f3e)f4{WZK2Mzb}%S>#DUPF+70AP1Cam)6@nw1%R?RGN1SRMdf z74ypvDQ5R0Guq~pAShxizJ-DFoh`y5hgP*_@G8K??Y zCu)s4tS8i7?NH2QB*}l@3u*=`ck1u}c393DRf(aO2@acJoo*x}n$aqM_$;gp@rhvs zh*k)!P<}UxqdFTlR#8zJ3^TU#0I8k75X2NHmP=e&_UB~$le29T>{v%$EC3e7+*;%o zCKHyRKVpDQ#pKxDkmryeTABjb2xFq1c-s=2M{AxF&c`v5z_ng@yDR>uElJ~jPiKj+ zJ+r}Bp_apze8q!{zDQ`>f@G}UbkTB3rlT3r=SVL}qQ!{QzDw!oub6GCx$-m{r+2Uh zH#e8l=TOfkNRX0PMoE-L`xvjm1O97(ymP6u|oA4%l!k7c*Krt>ik*Swy zb-$M6j}p`1;O_r&v@GIIgtrt+w)&GthHV;N3yFXF;QzNAg8$$;>_0DyxoJk1goe=j zn8^^&XY!mGnUIk^P>=C&capgmC<=dgBd~TQD$=2^@sVQY9k1C+IO4~|7o(RmeJ4Q4 z7*T>qnn&$JOlx!lAYOb3OY;$^#cu9*BQn^_@P$zSCs2k|PXmIK6MlMS%eY)c~W#nG*X z^?SlLXh61)E2|qaS_=wgB>&-_fB#P{RBV{yR#eJMREEgTNScVeQ=TSM-NARLt<--R|$+7PAbT zskku8FP0;lNzN09oA>ceOMm;$)BgTt{p$q0_j~fhWa=q;zKM6Bzm_vECSq|}rC|pw}JA55Xte_{gH6Uec zZ_q}Fa*YfuVA^R@Jgy9j2g@ere^H&QWXZL|epf3b+*hc@9em6aS^q{fdUa$Hkwn3=qhcX z=`|d-4&(K7xz;I$F4A=rOvGuQ=i&OC^9dl02YiLP%Lvg4L4ik`V0S;tH{jgLdEWT! zHr))D2syJS;f~~2uJInQ+jq3&)OL-LwZX{|kV;^JfeVb9`L%oM)KQVO+4YzmeIG;; z#}xeisF|BcFm&o|8i|zDiU_hL272qfudsA#NWFZGn6L-jn0MkPj)aV$E8DKCh&Y;; z@#>ETFhI#hU2zM_q|HfVGQ#JP)x&c-j_}$ez#1LhU0qv?DG_Mk;+VhUt8+SK&svz_ z<*GsKEiogx@zE+3!*(}aq4C~Xs>cE4z1{Fv34*L$<~we!O^=>DV}1kUr>9_Pr;wav zUyS=Gj{U&}6hf1a2HZuFS_s9JOr7XpMj&QKIFPs(P3l5+* zTZ?&7eOyj8d^BFKN1r!9DTIxvrV`9s7vgg2q9SWd=mS{g|>hqT0J?_MA=_-sJ&0|%x<9DkoO@uFy0Z3AuRwU_Ash~2S5P)jX9r66azS<6T__CT`T|ddxt1&RmXY9420&> zxKmq_w7~NS0#f2!yDS~C^_C)?t_`XJ#nCE1Kd-4&1@D;7b(o;|awh)hGMYpU+ClqT z$!b!!x_L16L&Pp@WhR~*Ago8p`t>S2we=<@%cZRGXw&+qYDEwCgRHk}0@XpMU+vCNpo;q&!gJMENR2WKxaLgfq8bA>UsZz?+w{l4z z+Pl|o;oXTw=_sp*Y_qx3bpbCPUpR=*ggBwTI3aA*TVFGc!jESzcgu7zMK1mDOFcd* z?^9uOcH%lmPrtS2p+oxY`U1i0OMHE^`S>za96<}Kbv8|^FkMZ09;XFqP4n}cexfsP@a#7^J`;!01iRkkPoU=S3FM3zDZ?zAK!WHt=xo25f{moU0WFB)a-MpWY_^C_(NLDmDQS1AppasX>8xArit=R~9 zUzi*Def#`0iceL^Eo1QVka_&|mdBL`-B#Y(4rO%adqMkACU&sx>a26rQ?uS;yEnU0 zmC^$36)^*M5j#CtqlT*WzhL%N9UbdOiPj}}>mJMhxoEWRaSBs;WQt{_ctU%Y(>Fbb zae#&+7jEiv`^t1q5lRnN?H@6Z6|8Au|K{>^ULpD7o}2+PqG-w=I)1P#*p2^NHPWb` zNJ=E|Vt&YD7<&^zwQd?DSV>Z5?vMcP-A5v=VuZm(*SA~eiGYpDB-$xI_bsgmJovf% zp>Jd4-RIP?hpiT=g!dh5hd52Yt6kFh7`oVJRdF`u(Xo?M8!;ihIhW4Q?O!PdlWA;3 zI2?b&6VFiasBzxh4Zy>vE*Od{rdHWk90=py1u_%@%D-3yEEhE3MP+n2fO^%_)iR=%2R9*Ij%>p#dv~zgQ{+RdxwG#Cf6%5Xh$TjKn&WkU5RUUd_+FkzSX3h>%=oDEZOm$nfuxNe7gFauz zOIZcJY((f;ffHkc+6|Wi%p-0mhW((2YaU|9*3!?lMO=M6J>S9Ps)7!n&@C8l-y{W- zjtMeUOfztH!zf27h#*`}-F_F-X69h~v@*{RydI80ay;}j26*h|!wd_w3bGAA%yt+N z#@S`p=B9m>sak<_;eMRFm~cvB+%Em@?2|qs8Jhe7n0Ln(~oW-NC-@)Ay(+E z#Q$K44bvP!(g4Hf7|amusZk+Urg!8&67KYzy*M6hz#NxWd+3Qr=EuTkUvCgZkJkRk zoH2QucD$`#g!eB4P5jq^!pJSd?8Iq71hlIKD4O68@Dk+Z1N3KM1f4 z=usrZfA|4Di(snBUdT^tQET!q>fSpEOq{y1oriJ-A5vr=#bx`CIg{{?cle(c{VKbX z^xZk4Bh`I5GnTjCN7x}~5}0rqh8m@|CT|QCY@|Eh*DBmOT66QuBkJB&!IH!s2-{@! zCs79*qlww3H59oZ)w5%2dsb>7+4cpcBvFI#S`TZ?9&EX z?3&kar0*Q9FuO#O>us$=6!a`;03>Ds6U5srp5iP-NJ+J{Xx^Q5#|-lRJSp6iyt5$w zdGZe1BYxmm2HWm$Rx|o4)P^Hp#q-g4>sZH>=QZ*z@ArMdiCWZ?hD%GTzsY^a6gl^H zJ`KQ%lRh2_PI%0d54GUP#w}*G-ct;4yMCnBM>4fCw!t^GIm=BPRQv|8wrF#X6}OQ(gZm$DO}#%{OYEE1K$;kL2NJ0__{XYDyfQ`n|oZm$NH(>pS8#9 z>+(v^q+VQ{_mRpJ!=?M39YOR4)Kv_}`;AEw3m)`yQeErfBh?xt4`BKRwA}E8Rl?-C z&(O}&WmV;jhMnP+cRyl=%(bD_h!tx>TcGfh{J!+of<+sKgx-N<$rbfx=M~IT3hROu zd8tNZ2j~wadx2D~en!lh-5!3t8NEEJKZvUq_5InZqRHpJofs(vbs?N!8;WvaII5IA zVpF<@g1qi$BXvE4e~&%T|NKwODU;zC9?M+d>CejlyHUqKREGpgk$=Qt(LKmfEQ7xY zxVz_7{c}Q7Yn3U zHnPsdssn_!o#sGy#((E>{o63)&;CpyKF4iS7x2})B~B5+9`;zm(O&i58JdTgxE+iU zeik~`N7xH^m^_|iwU8qy(Q+202q#Pg7QZSb7)+EpZ4pXTB**xU(pa;!tR>q{$)(B`q`+CPiBH3ayEZk?pNq3 z!(s%%>PfAoD|`{s$j@QfDUtl7NyPir_(9Lsijzv@r7aEGcIUrn&?dT11SMrfw=qS_ zFMRZ4adY_|ZIlQ~lRyiODVxb#_|p7(N(@b0j+z zxx6p9-O6)%`nV|MeUX%gq47kk7*#own;S6uoYfn~WQ3;lj)yiVXD+enu#9^b3HuRvd}>+5w%g+bvGgOH21}T8ke1u9bCS zsu#Yf&q||zPFDW_wUgZo9I`L6$R5EAX(jt#`7RbtKNo;%?Xt5w_Z|OsxIX*7N12e{ zxWuUe)2~0i2KT=3N1UUD_ty^WJGN4Tu$3bq+~>w2t)jrz9HVx86_I!ISSnFc{V>$8 zu0mdqwHj-_$R80c>ib8g2jJ7jE3Dyx7pxSrQc+XKNKjHRBsn_8U4LGimY6 z`gVyB%kDw9`3~$5Ji?-Hh59kf z;OVF40|p`xbAXXs3CdN&qp-bZ&OhG2CO8ZpQ{@tsSkktA!7^(Fe@ZV^l2`yC=gx6* zF0ODggftv@Ku0-(Aabk8g}+_%z?kI!065X{{?En^L7U%9*)Z=&#d4+kF1HcxHpBr!pM z_iWQ!PvWJXyDCV%&OF(sRqku~`j85$H>18aIKjCd7bJ3m=8(N$hS@*kVIpG9v0-@i znZ^l`0_~E9icmOzYB(19K|7^g#bt8JE@ve7L|v&NGYbF-~7;@RAH$f1XMZmO!& zY8?#0+EA0|C}z!eww;Fq8jr%)qZ287r`UJYV*S+NWeB%R2w!+RDec zqsaOj*`?0pX;-6&)E5Bht=XdRZetW+KI;+3mwl~3R?b@)N?e$mL(q;XGvW}>aa8Gk zKxnvwY{HR^@EfYQgP5M=2#|HBdxQKP8~Eusc2t5Hb{g=pZ^mwRBcUlBptGu4K|F+b zmwh6&GQ8#=kPiM4_u~JnYh0raM$9Op{c9!oM^T#E*n5-Yi@B;QncNqw{kfuUU`Q`O zgN)WqQGyECfiBkp#LLh82qaDFY#H*P0`3>fWse37P0t>-rG0i6(N_dLUy1~YlQ*3R zT0O?e^*SpBq%k>y=_Z&qVIXqBn-C0i(SS$JMFrH4RFyFzLqdrQI)&;_0 z(XDFvf{f#{$&@XHGT`iAV&)*GBWX)OxV{D0>2M@<3W!wh$B`Q`CAQ4{!@__Jb2bym zk0Jg!-2bcJE__Dr=L+=>GmRlbH(7vUj2N-J>Xh$socLpeRz#&=VZyGH7TkwlNGmmvAE#o$*N>$YwIms?Vq% zAN6S#?Yh%>L?>Onf9xc;8ntArY2cmV@IKk~cI%F{pADk(9>*k4EtYLRio4xH>zP~N zU#01(woKbeX5j%%@75N-P^?DZ##s}+jTS?~)yc6rsf&{*Gcq)jY!bRJaEU}eu|@<4 zk>)lP@nx1*Qsm<>OY4>5Dq&(K`%2z%PU z$Y2z9zKtA1+&WnVqc8piu`4T0O%$bI0<97eKr(Y8wV_?|@@vpR%%7;5iH8f+eAJVm zz2s+94}WbimTu+OCnavoZQu&PZ3`fFhkl;T&6Ufs<^7qar2uOqZhOtLeg{76t2Rd5 zg$D_hq<*LI!vBI3yoyti@Zx^ zEF1@2eYXgPHjFD7G|X$Jpo!(j9JA?jvMKqNk9H?HC=FB-u5eeP{fV5u%0M1s=~-!h z@MyK(nXOiiUuO5OhGI^!GFL29^3XjPzABxO7UbsyhPT@{)4ZHMZO<3Q%2LsQZ1kv3 z>+$&h4{rE3StP@E-)X~KR+iw*SYu~dn&1XF#2tFU*C7Y~y z-7JFDC1hyu)30j7MaTLH8O6R5G|CvT)X3ZSl`(ehN$dLQgFIAxa{6u;Ufhzn{G;-d zqr@9%Zm3P2g;vSo9tX0m_Z$*k#ADq*UA=Pn6)Nzx7Q%yrRXPXtyi1z5#Zlhe>`I#s zFRM0ptc}gto%{XS)Y$N`t>s#~US}8%#3Ej!bMRA>-meaKm%;{z)QF8x*fhQw6@V#q zuOVY(zlmE5s`ohbY(MjhH)R#ougx!U?qR7v3tb^U39(|ng zLskbB^q$J($;g!GJb&wdFsL(95xLFy{3n*%TU}j)Dw&y}OK^^7B~T_>M}S6( zhQJSKNLB=X1wI|X4$01tb{cfpYfOJrY7+&qgRJ#NV~Qnc z$A^cXyphe|pxjH4V+d8nn9{s3vN`V;hsCbTPD!1DDmvr18V2vi~_O#$}SoV=Zxp{kZ!XqT)UOy{8=<*b>=6RvQ1Q>CSrD5dfNpCOZjNJb5FZ zA-^Fl*=cQL`B7b+8Ug*B>FoOPE3xU%@h(bP$6t&*ro=q$YPc$$+#t|h@Kfg0De4R8 z{$jPkdIbN9^An66ij5ZE{DE>th?8#R(b%6Srru7OU>;^U=cKgi`&diSLHb&Lq6 zymuRQ-LwrdWSa*}oKQ?b%UVWKuCL6S!P;hFshLl&wcaV5=5GKLaqOryD)q(ePylfQX*111;PK1P> zlV29RdD~xQKkA;ZH1mV%g|{2$wCX%jrUm9Fh|jnA99(;N<<^rm6;zgVLny7-|6LBp z{?EIki^2yi+Lk8Ing|H%_l{bjTeDYf7m3e&9Z4wR8HZe&zCo}-=@|}dgzAGWj{3fc z`AEb^U#;G6ja)>n?@)qCfYENB zS(jj|NGgnZF!kQ%xlNjSZe_gMOQbnGBMl+*-4n(eRBbLn+&66JTfrcVE!s;Z<1&BR zcVC}9XYmag7r#eDa^#ViQ$~u3;RV>$k7l@i9eUq@v$yjG;X^@}^kl~x+%tc{iMv6O z_igl9?llvWohQ|wA!|^;XR~%SD;gd4_rRykK13uZxO{8-a@Zx&ZiR55RpSm)BIx`n zl&^v1d*qwZ<;^!VJ5zdI#~P~RY{8kU#$)!Nw+HMEk&Ea6`T^`U20r?sF>1VPbpL+A z&Ydc9$5_*Jxof_?8rO!2agdr?{D9{)%yVBvrroMXRSB~@-RhyjVd|nVyYPhusoIn+ zVVWK0!*#GA5q28xU6SaRa}PZ1-)`{Yn_Qe4XsIuKn`gD8er`PFCv!bVvojo+ZZNMZj z{FphIk(i-fv|txR9iq2pl#7K%IIG^ne3hQsmOo`OAS5R(@F89`>-oV#*2Nza(>tg_ zp^z7v6PWbN#QUgTmHH@OZf054+3eZV?txapH(zh-S{Pxy{YnQXaigs97mF!=6835% znwy8{ju!Marg>0eYT|~JX;%1N&tT1p9gZz;62qOJTyxQUBqpCJ>iSr!VtxA)HJ}Xj zr}HUn2?tGYB&8WiTg4uJa_iFAL)J{z9qQ%$GW%uZdg(3uXO11G4R-`~}Z>)RZA5TG@G6N6$RK6~vRs zbf{Vmvsy7pD8-Lo0?nc*$lAUKLdwAm+fhyh{nA~xi;KEs^G2SZlD?>QI6HeUj~=U` zE;wpyR%!jL> z(sDq1cqEbGjs5*XDVVz~K*}gvk76dtO(OEX!Z$=gq0|he3<~86C6e8I0OJLOMt{8W zzdsjDbtS%n%1+?Nv5-KQZ3cbb)|XB<+t^nD!Zr-YtFwWfdmIW~0T#yF*Acje0i$?^uq6n#W)Xk9(w&W2Szwa>`H%hYIs6kdmbbLe zSBIHaWsw;nQEMqr2}*O-96Nljex~o^4wr&gQnFVLy?PqcosZ+yeD_ka-H{OXNQY$< zFDZtd-3*1Ux#@?)L{=@X&Rywbc#W3J&cFAR2q~$oF}%`bBFM}AP|M)+0>A-&pF6|R z=Njc-6Lr1(oBNT5e|iySWBz4^$Dr@=E3obfen!+Ew?`-D_YKpD$-4m*SNiFo77_Ig zV-`!>GP8hc_hPA5e{;1Pv8r;F0V=|NTk<(E6uAh7-I!Kc%$IXeR(|zcn=(heWrtdB zUnjPE9({-Ie?RqxV>SP910qO*OG=8{cpD? zK{%`I-sX(ixF18N-z#nWJ-crv`3WB67oCNVqn-~J0FRyDt89oXT7U0wso7o8*1~)1 zfzR)@>JL_ALNoY+O#CIemI6<~6_WiKNWbd=biamhAlAmd;3F*<@X4J(5Bi>#iq6&d zovw|`m}13&f%AMG4_Ts*sKlRFW5=`Nr`xOcjw;W0kkdxB65agLBjk)?Bo;RB^?T`v zEFak|$*!hz)LD~%Q`2Zv@5eV_(fZq%pao*o%Fld}x#0MwUo5X_QCHaw1@+j*_oHt6 zYBIwK$31mg2xP!7Oj48oStepUo4NKhglmRgdJh3QqiZZgEGBx$1f@C4*WgfbOlGfMBT(^D=SF#5mhU zjrd`2$ec13PD?y?w0fN7txuyU zz9Ad_rKMa&roqzif06gzVNG`JmN*DXRisM|FI}oM5kw*?ARr zS||bvN)!a7MtV=A_uixvdMBX1t3AIKGiWIua9&))Za zuXV2#E=p`Os((h=IR5nBdXn|#t?gQ+6ZznIrf(+8qqkCd9w_SZozc19AFN2PnUMvg zGE^j6LJY3=G3ESdPI={Y_2#0cXXZ+gt^a2UVkeC+D+KDVMy~e1mg{2%V%u*Ubi8sO z{+QR##4jac`C%I|8`AjOUY71s;|vtwKXk!sNokr0ru2LHSw@}|kk3&IXCJ}61;&dH z`&d&MT7LDB$v`o2(!%WeS0GiQdRe$$7<@HyReD~6;l^EdGuP_PR=s>6!jU?|VSaJJ zotFT|?u5%}n9jfLK_guTL}T;oOO*;-%XMYDo(3fb8o8`KL%FF)Ur{-$`LwFMI>sT) z={<0Xft{UA!SrghX0g%3oM!c-Td))>R114=b+vo0OQd8$=l?O%!+#;cp)P+xHQ3)9 zPxqrz^8&$h!G{8JOHg^c7$x|4!MCR5F#pYiukSvkzzL5Xn?X3^ zz6lCT5Sls#8yj zMdRtcH z2K=i#B0uBs=RT6&eAN>Ohfy+wWxcIbHcl+g( zA8sb}j4UYV33Sv{r#&^!Z!JE>&O&MD-1p4KUVJPFVlvx>bHzY9oL=cDy;@Gt>_jcQ zQyBe-mnZ!N2^f}U1e2AFATJ?sXj)kzTCAv$=gjscx@o=2f-cI??a!x;Awy!Y`y`+! z5bQ~^B!4My8PODl^>bUsWPLqib53T#MkLI%s{Is*h+99OdCAmNk%PHG$2IYfmZq~2 zhe;A$f;Fn}YQ>F)&daw+rQ|@kD>pfnA_-st&~%{H}W2%|=5?v&+9uqS_waY=$umbyK`UpDSxePM9WNRH$~ z>(g)wk>_12ujU3ecTM)^?s%FdW5O1V?;~nP!~f=5DEInbNgAhNZ14sX@YAz*)>FV` zV@+N1nu8BBjkqj+VCq8Wso9Mg)mz&+CEBDO+NtR{>u-6WtrJ=hF3%F7*QTSfi|6Iy5e+2RKsOXsewei28` zSP%>dauAZfO-MKo+bfIu)Ex=;b=}QeI3lqjvGUD@clTPrj0bueGH?`n`3&Tr(V+UX`9UI;H-+Iv0yh9GFbb93lGzdlN(qv!oFXw) zruWpTE)I7)*bnE)CBsp|iV0{^pG-FJXh`ULM-Bs5X#_T9;< zlVgB#*e&;C88|C=(*l^E!DiHG3Fb&0f`!B{jS$AkVgPAm%Hgm682^8I&50<0`d!C! zV#Za-m;3IAP<&>z_yPAoMQO&L8F}pQAj*&4ry5!y)qt)~V}ii^wLWqPIR)?_e014a z7Qc^>r3XwzrGGcd(ypOujOd|xP>&TTJ+)$-WuV zwufogrE*P4`DA1~VQt>%=j?(*Nd4xsf`j&yPZI%yVQs|3h=)k~Gj&YOHZ=IkH}6qz z_XTtfs1`g&3gZ9xMddkuEFKHHTECya!drCWnF*cc|iG4ajyY=ZD^mZ1o}#^ z>idXrnVsa+kWYrw0=RCsT|#8}VyqtjSRWE+h&a}eKl6)f3|$J)nI=<-&+|yCI6xZ$ zCP;D~&{Upqw(`7oX>c1F%?u;W=8k>_PJC$Y6HN&Pe`Wk|7R(L?B7+|}ni_kX5t zZQ%Ita#aZCXWGaqT4fjXu6F3z$X^Gh<5cjUN)m;fOCOKeEpKYPG;*u#eQT}MR%h@1 zP3=)re0m1bwt$2SsB~Zf2IKbl)FYF&>!p{wNt-D{)P) z3ADp_+-NAW;Qd35cR~N%hM=I1OoM4oIa4}{%fFqW*We-(a$e;qi&I}WKCBap#XsFF7AnkQMUx|R~E$Ka;9?4Byv^eq&@JMIi@#NkS)Zy*6Xy%Rb>wr zGCjnqH>n#POYfKX@naw@bNj7rso);a2*`K9Mr4i!0i(mWB{|B>j`L>D1te?*n%hlW zgqnBE(Uc>OTqpA^i??j?5AvJRqZ0vn8f@5G)G9oNwfhmd6v&Xlu?DVRk2`}6La#)HC23#_~8p`@asxTa@x1$ zFzJYY3;_yqbQFhAKBh%^yl1+fxRNuzzaIeRT!c{%Kyqe*((hAuMnY!qNFD7OmTXwk z`ZM^MnETOnSq9B-jEHS-RG$$qNfRI5G<|ywCOhO%9GAFsTW8gQrtW2taa++j-5b>N z)e`!ETUQ3_3Nt!<)dPzq zDG_GpK#}*PoXnAq!@mFiqw;Mgtb94H(sdE;UC52^MDdpG-PACcGTpY;EH5( zqpt1)039jQeD-_$JC0gl*({xtj}-JO%n>HQn^}^HZUuIofN;Rt`Di+c+FbKK(Fz5K z)EeYG`WmcrB3e@bzm&Lv=9XQWRB9i*VGLgx+@Ni}zS0@@0vzfB zH(Dr!E~$Q$Xf>r%(jt7K_#FU-VgfWF%_A2FPqNiDM-h&Ik}-27WTe2Se0R0eW;A38 z=~;T9n@&u%o zByr>^6^1e*(LqT(b*SuaOdrX2DuEH-+QEYAoA^v{BSKtZyu)xT1K}vU&(Zr?qr~u= zv-|_`{Zo@v41JIA=X5l09_8n-HoYr;Fe4#`)G))r`C*S>khdR|7)%m!qODPw-yQ32 zoGF>EzTk+mpDHnD4$t0bUGmoUa1-v}LpYe|=-yBdX(-e`=Fx7c>afThF;saCL@BrX z#0VWYC9HYd4nxOWUzDI=`Pl2jsea|pSv_B)>2}<5ZiofnJ)?hV>dLcRAqu;{Avpr$ zg86CC;tl4(JY`{Zu@S*_>-N+ahu%tk<5iq6V@i$?H2ZQY81BR7Ze!Jjcz!~OUj59{ z={_z^Vf=#2S@5$UNX)NKlEC=7P@$U|Z=5Eg+oH8J!Y}VCy$*Xd9I7X37j#lWFCr4> zx|euZ4n$ff5Cdq6qM4#AsTGJ7ag*(Mh?its@OYu^-0|s7nMUztNoB$*7|_ zgp+eL&%%Z@F9?bf?iaQB;xft)Q#Ah=-amYPd1^AjLgyt-uG3UV@kBi(@SjbS!6^`e zG-wlGxH5*!=lMU!c_LG=@}Q~qqg=N6s{*e>L_2;o7EXkH0#5>_HpYAEh*XH zxg=1DF6p9CsN;e}j7%Mhhj2KdCKPMhT;mndtVerAqaa08W*4!2tbhIKvq0D_pkI|1 z#NrRhh2CsV7pw7$x%`TqqvW=K^Lm1ued1F5ZTmyb^3%x8P~0{f@1DuXHvKy7_tqTT zc_1P|nC}Y^pZN0t!GBld!n|O}nJvdAJg8ilC3VG!$Kj-mHU+eq!v6_SkL zok5ujmqsT%{ zLCd>>>#~>ong*uo1~9CKqEX&%fgK4E=do6z2`}oB0frLoJzQ&a?ExHd{%4U=8j_`j zzHQ{d7*b~=i_1m==8O=i2{wInW}8J!v_f1pu;{X)TkGZX^aAu3G}xr^Ms0#@qa>F3 zPdA$c|1gn%mL=8KVR3IaAy*^G^N*m7UKTY@(pK8?tClDBZ{N9fA6khG_{S3^7;r7j zuLZcRl8x6~D{5!RfE3@40|-IPu|a?j{EVC>gLF4`#Wr}schBUA`BVTf1noXSBnMEt z=2LMq6430L>ks@zHA}YSJ#mQKO&5N|(l1GXr?gonCLU*axfhXlpz;mj5fv%f?L@sa_v$aKNfOA~EXF0Z&4WcGrryDRRbJjqaqC=fe@AJ4- zi9X}IYc9b9HllRHnSlC$EtGQYrb##~<}*iK&6Hw74|3{8fcGVtrZ1*K2b?E`^RjXq z76bCiU3_b0lW7r=P2SYaaUCNMeWMQqT6J`d%egPQiY!2zm;!(F*uHo`J}CG!2{SNv z2Un3q!MK|S3LS(22?{&SZ;#rfoho;ps^q^(>YnYnZ^1R-=Bj(zU&hJ9G+w?`^HSbtj75E{Nl^0A(AI+}%`{cnJ z>lf8q-R2mbEv;WvDF_zrX8>Fh zxc+J$bHjC&%-A`NG|NsIu`jn@Lu3vmQ^ZVW+y$GAEe+nNmDw^#y- z_K)Gay_f)}&zZ+X_%RY2q6x%w(5?*hgkQ%D+l~mCm5<2ow{O{1JRyoY%TCNYq;+0! z%UAXbq7kllhR=nK%6%DHxbs^U8ft%AXkUaPo^-N7)Pw3$*udc>>lJG?J2w)yBCjw0 zfLVn1%klrBsR3D$@_FXB$77wo$eUeOy>PGjL746R zv!>I^S)h(gJYb>t=PS&`AxOa7-6!bg8Z7{lI;H_GyPdr&yjDBC_*df8k$lS|-ZM~f2->HP8L>-@=S`T610q^IAcZ?d`^q*%NaB>^2GyNvvegUK9hV-(d3RTv0eBF zg-zHQcvFlFuuGSA0SCj6UsOwP-8Y(Ox`#)-MRPiB&^7*4zNWLI zUmJ4UA??0nMSP~)#GAY#YUyghnJWw?=WeU)wg^tLkl2ZH5}R&#g9Z>gMG7`h;~CQy z?zyG(uySDgwU)s2(YTz+y(oUmH+u!o&0P%_OLRY0p2Bz{fTW9#;txHMPu)*+_;uu4RvcwKtuCGtGJ%J1fd`mcUl@)*ZGh*DF_ zQ)S0O34qK@b3B)Uc|Z|?HQO+b`2(PN_*eGN;}_iaCH5O6)#6o-(tD z_)@UoIsMG%C>$t&fEipa=0ojFY6f@MzmAra-O)X=a^`z?bU)57l4y?Y+v=EqB;Wa+ zkeHoa`utM%NxKa9W8X6Cn|~Y%n)>r-do5dt(}DP&%(*Zda9ifRX!p2%Rlnr> z;(1*mgyl&J@WFog`wfDo$>r(LzrJ5zv2vzF)(KI?UPChVyV%wXx|ov z=r@xS0lR2|w)`Ii`vrrKPL(g+hUAu>%jCrUqRM;eds9S^<<_gd&Sq3wx)T0w<^r5^ z9W6UzbYhn8Db`i=^1RydJ*u)~NGLV)I#y)mp0+7u$!+;#Sm zOGNe#_zKoK`5v$l%K-#X725K)*_wOsgb4H{Dr?meNF5|WzoFVZgNs*plZi93nC z?FYC_wc(M{d>Cf_lbwDYx~9I;)%D7p(*w)yfs1FfWfQn1(#sb{3VA)2(_2eZgX<7o z7{VQY;4ISWG5EV4%D3ND>z3Jl{$b2-*&r#5C$J^=!x_P=zIYb$F_5dwO9HpE776(G z%SJQ!Xn72VEQfI;Hl38qkDkbJJhNKO`t%5^A``4i1 z6w(AhsNjG*^>2eLa;AQN#-9d*`0Hr%k02BQI$S0t90f!-vuO~DFoN(J)QC6{th)(F z!nwf-k>D~XZ-!=bNxlt4E)MJjP@|*9QGhJ zps(>Crs_Ypu$e@i@E0dNnk(49&ens!%q9e=B>cld{&mFU%$rpK4#-!)iv4-A{xX-S zY4|@Z<6rMW%D|T?&Hu08ae8=e3WG7OtpUzbXSBcv=G_=$U$wmaCAWq7`y_4r=GKh8 z*&j;fk&hQXnq%wTb?T(D=bZ0;b;Kb@0o*M4~okl5@fck-J+hn%CB{R(}uWMRy|0!IJC?`WVv9{d^J5kWn0>%&T(7<8HL1n+F$P%%bw=VziGxXIcG$RDu zzuD+{Rb4UzEwuTk@frY9)$xfQ_52qXnnMFM+c#n9AU~i^l-?ybJ6h1WYVwUkrMGxBhp347nKSta(gM z#jGX}_<$X$UKNo3UHx}{wy_2;E5V%5k?z7B&5seyI|P478_NmX-{08qKmEq5ltCa6 zSOwu({!hN|JIrIuB)AP;9+tImRi4Mm_iikjH{@>e)LO8AyE`xTA^4NbNBIPWXiqiN zz{wnm2Um&>Z+a`YMDW3$rE3IKWS^&L56PAtetI%>Pv30;0lm>v>E)3an_b(9!zVdE zC|J3nQM~C!J6H-VTDAV4Rt^w-04K};g8(>?iP7o+{Y7nfc1lYcoGhb%tn|;=2xBaP z37cAjhr)DI%oiN@le9U^J>LJ_Z<^|#{ccW!*Ts@60fN5^g}QFk6UlNjzm4B5mjK(@ zRR2_&BBjqe6M!gwd%bY?W3EWO_wYTsJy)U^kfWDXZkB$YB;6tS;1k+Yul@OmU7;&z=mIxji3r<=fB;GjWnIiOs3HqQMIIJ_rT65*o=x7zfOGN*9>d z(>-hgmG&x2jp!Bft!575{7T8^?rkcc_&B?FR0_iU{#kldlyC5-fU5Y$9Rm0>ywNI$ zWP%TG#?IGYZhc*kKbP$;!z||ibEP;ixc}{&4_C9|k|vZ|jpmUg4rC)ml$=Cz#pcV0 zA^9kOKpqjYrO7%(-C=(%57AVAX<->f9h|bzO{KD2UPU&I%st)%BZ7oHi38k#WY(mI zBCv=yS#tnPFyJXSVs77LJ_-Hco@Nm4!MDxkD0pM#{S+eU5AizGp#edA0f6W$w@gvL zU9ouGqSKiMJn6TeZ&}H@Y7|pFdkytwR=(8AnX@29*SBX>6L`(<@FqC|=vPC=XtEDc z#7WMCfdvd5)X(hgbLB0$E{l3Mo9*#d6L05i1{jy=oQ zfOoNs{hlft%_aTK%^PFEy?$rA_g*f33-DCPWfeZKryKAyjoA=JI<4ITkU{9vMC*KK~H`K-1@{H z6zR0Cr=(&1zTZ;5pVyGz`&yz3faA<5S;{v=W3U}e8{!W1X@4G_x6Vsxi$HYb99!eQ zq&%@NS3Lr88$&XD9XFX?|8%o!^~lMyas~=C5IWQ_JG}GD@qD08+aKP}`O16WvJZtmFovnlbL{uMVr!Z!(o5J%kk$M5ZQ3B%_ zwtS7-;4M=>6E8gL;>}l=Fa1QUI`K)eTe0|~if^KGFQ`=z0F5(qNO_jU|1QBZdzCBB zIr$~jcWq{-S0z~7_O*__4yRrlk1!gji~U6~7ZHWmZe&Z6(VSkQ7#sknl)2B7rHd30 z&S(gE&i@jj#}R%m7fWV;@Vz!-JNAiY`v#%?e#n#{{oEMP%zM@o9LdcEu_GjAHo0oJ z?%HT+$SyCG#p`r))(_7Cs>SBH1CS3M5`3e*wjB{oLxygmNX30`60Z}~pDkmD=Mn%s z&!6kh_?Mnpn#H~etHaD{!l^^`yKezlyxB%=)bpyIyAVP@2;IW*qGEJ!n^pYv;}WwZ&G=@m0Og3QKZh!8UZhb48_0| z!9aC`&Kbr=&MS8<6sN5)Vs%dDZ60X-a(+r*kinX|^{Eq6^?Gl&k?2@%3Q^4eM-|R}zxgSS775CsfYW3AT zxDgSKQ&PlBgFSON&mft4(D7vV+V8OIhxkaA8deUox5edy2@nv)BFFDl=8rT2@BwFOoHr^{9GVt45DR?)7o?f4*6a* znEX+LZyu#cyiTJvY$b6-f3_foGAu&pu4@-il2xD__5dBucHo75K^-SyLoA@-!hYBx%WlVjwctqQG$-iS^XFRR(3gd1UAjZR^$uO<^m9X4v2+=!Ra#7;t9FWSTt6mqJ zZ4eSYcd5+cTC|yCL?f~KjWPwgj&}7VI|WQ@`yhj0a!`qRW|vfzxiBJ+E8j=m7Ybuc z3H&S%WUhJGe7J8nnQ8Os;oe}<7@!Ko!5eC~F(cSdGR`*0ghsZW)#7+|$fbAIfRQYWPNB)pnRrKIIOU*bH6R`!57gsT!!49DlgA?@vD};Aw0^t@e^#tO;SqVJ4sxKmrlSqx8eIvm zGe8lH9zj@^zLoNroYviYWv6n)AgO~@;- zk0k1iCKv4Ip*QR<0@3iUxYBj4E25(=})AuT5_ zdz4+wW)5X^z1@+=E0R2|J`3Ob009ZhXER&Kdd%7T2YN;r3S1BrbWZ>Ad0C3FQ zA!7JNC5*KI$UpodWRVziF_yPTHR&z#gVLFIHMS?fP zU$UY)E+7@#2da8M$7XaZpfE9XI(lsQVAs7BG%gPm#91}Sj!nYgbFO_Uir0~=-Yh^_ z?2Gkj(Sz3wi^=C)H!?pxeswE%g>@-+@T(c-aCc*uq^gkZm z|KblJV2MiW-=PNc*~rV~pB=j@lXVqAGTvpiBIh_>E$Ovi0M(+<6ajxz9JuA0JkhA( zB+~lbJ;!qR^t4st#KX7kD}hZ?@X#0^3)H#!7sjRl|6}XQIuhmnVI;I|sNnc=ievR^ znXxvM?uEI+g8XUVlR#lR{-A|V!hMehJTG*co2m8};M(g;3eNEuNi{KlJw-3Xy9N*h zexN33C=A|s(A>&f4AzU%C+n&$6+se%w zQp!T&jHSuTX+%si-AQb;5id#GRD=dv*4I~mx;t2t^x@v&%aFj{$R{0Q37kBr$(m!n z!*p^ajE*v5c^}^R3Mg(l5)v-l@zN9>y3z8jA!t`7CZ_TdPnV6%-LpRb+% z9=KS8PlL8k({$n=0nQo8Df%^TvjIlQJ3%!ss!%@><93HzKo6nm!xlSi{?4X6cY)P* zolkwd=9-{5}n@Zos#ko6<$ z_U{eMw-x(DV{c@9;}MOcLbaeKFcik)xt-JHE5R6tD5!>cq4=sjUTmWBP`fmwjGPKi z+PUx;yBoK{oNX$4k8VAu6^;Ni0CTj%2#$uy5W>c879S_is4@8EcRXW#r z@;mTc97O|vG_GM!ylv<)H%*O~u{>K1*{aQ&LukaUJq_2$Ka&=mC33}uie#OE#*iy9 z4gxn1%?K-bP;riABW4$iVUmisxK+%}qP|=bvnx-%EC^e#7|u#N{#ZQ#sM>zzO0xn+b4d`RI;$fKGmlrom~% z&AMc0cbgyiOuO3lF$<*lH^nbqydNT*N+}>&Eyy!LnY0rh;TKYYy zLh}@Ng7s!u#L4y)9IaG=wj(qFTM7J(-0Ld;o1&`5F3FT9))U*83RdBM=N?{^`EdW^ z*&mDEZ2)Z`n8bhuhu0`NX`Ual9V%o${l-pFzbR(7{pGG|Et}u#BEJQ?rfW*`Z9(oN zF?faAl+UQDjH2820$mr}nm_4?Mlbjg;K+ zmW|`c_itCTP23F}XTZ}OBJhaj9%};4oc*VMs{}jOeUr*p@;3%nPR+=8#z#DRwd=i) z37IWHhhrt8nvv(3eV40@QopP2$ZUPw`*^8)kcM>Ua!CKvGpH^xIk=a^`tkEKY8sh{ zZt(?h>1jL|?*$n>0i}4#oHz8;@EUC&>{2T5$YB26y#gpULQkP<$a$2r@J0a?ywL|s zxV&1^owKFTs%d34+M#jot*T6Y$aDU)8AzhAzdQh5AX^fkd#2%DY1pGvKQA5IV{DV! zPzgCc`%l70tLxL2m%z9EwZbSpKJOs4ZZ)%&h5IBg&3S?tZUPiap(^edFemER9v13r zuXqlBer|pA@CQBm%d6qkgHCB6HI77dRVxR}K?zMO zT_=mlZE2e~b_1Zk@glbioe%4*%M&sAoAKeq2dikdM1#`NmDq~@SkABEHw(thwQ7voPsjkWFObqmsh;hX${*J0c324g28oGqi7`p^&E&`=X=S}rdr`Mwh8K-Cer(@?`CiIV`VV9(W$$Te6l7ENNSa~8i4{0ybC0uLyM%(&B zMq&b5mYiL76~h8WTqmSuQnsHaUlDt8g_~=oCkT;i&&*OnZ7SFnlCC`zqw!2N`(WQ! zX-i6)yD4=k=k03&Fr*kO zCvr1m7LN5XY!I?f?R_S?Ksj|oZw6?QmO3AQu=-R6)p%^yz@ep{D3!x8JN>k)aBE`SUB6U`;nk2e9BJ5 z{Odlf9^6h=0;Y4p$eO@HVN}3{P`JQ9tPq@Q{XVIfAba&PZJkF24{7V~92#G+NTXDZ z*%IkU5TJv#oT%y41qY`U5X>o}>R}5hwl4XH&MdFcQ`ry6E9Uzuhn(b?^jtfS?Dg|m zErnA?w77P~1a09YPg{T*MZb?~?i)8b**ml#m)05K=&U~sY2!tEa>na&m_(z}Vx*q< zawYRH-(op-mQ>8(+fUz9fwPz{DbUL@1y#48+V}V2WIiTK1+eN#M>CuFg}U@MGE) z>_HzdSEiRvtLgIJfC6N z3ZRRw8j+z+5QW@S->H-+>2zIS1V=@Z9|HTiuD>sEv5$y4s!flctaSEML???r(p(lX zw48jMEPs%w_=9SFu*lbZ>87*@=VL88pmR#Ntn88FecX1j?fh9b?3Rjv;xb>CK}4@0 zUz9hSu5fyH(PxCmb8RF7ax}x*a zZ{pAR2D11b=KaaD=r^(WKl}Cfev#kyv*-O-?`8yQIs$s(k|YWIQJRnIQ=lWXBk{2C zl8i^G;I7p|=W`#i8w!*Ie|DfjSDTPO2fuuDyAs0goSPs%^e!#bm`t?$paeY4q#svP z$*~z|)WrpvE*huYy{58qV*1AJu12?+ad=^20WtHqFZtr*q`6PLY9ddHVi`-m&jqsp zm8V#YH$~W=mtc<A3h?>n-dNBAGXf(lreV^CVvZNQR1-#R1aQ zUsSfTz*D8ah*~k94{vgVU=eS#22}XF+{B+2*U~U~oP%oi)(iN7o-j}%F>@avyG|4V zAiGXR0X|(X&G&Tt!t%rG89N7~N_EG_a(Ul9nA`qvMCLGtD8BgZ`})s(2^!;9D7W34 zjQ|A-3|Tl86YD~0g=qj1OJ@l{ob)8S@)yi-T|M&k60A?Nv z8w3f~T_Y-!#6~pbp*eT!M_zA9x!x8nA0lDO)apJ7nV?-WY%Lnpo+oXW@3n0i;!X`6 zek8~j_zTpJe#Mb|%MS08(b68T2l%c=tk85ii!k#!%%T-O67SKiNRTwg=5)#QFn}`A z0s1XT2y(@VP~L#K;fn~sGkfe4Kv0NPW;v1JMiPvGQ>SAX{+HL(YZVZjxQY|F=4lA5Mf1pj89XX_6j~AZf}p=*u8FHrYgaxMa;%1 z1CLb}yg~}Fdtx*SspEl)5JDGji&YLqyAgXXH!n$Gt}I!<5k8mKA57ms7w1ak1#W8Z4G4WXVqB?#W^Pk>w6Sw+v!=W@ z$@SYo8PzObGS%}0J*#drAsTj_2U1(cq(;&May;x3Ns=Hjhd`vumWbTM_Z~8Y5p~iB z?YA^X>5pOK^oq?oP;5m7^&yfVA+hBxvDt)=y(ZtH`YfFapV(wqB%NSa@}5ohfaH&U->=rcO+}V z0xoUNDBP+A%;j%ni=E_GO^|!q)6yj`CcD+IJXA&5bZS0l#ED0=LZW9YW}CsB0Oy4n zZjTIeY`Sczy?El;hVXwpFge*JDr1~AkuY%V( zP5!FVFdyUH%msg5F`9u+yBD_1>7^4RIDh4BtXp%b@4MFa5EsfX=syGO>vY-9TTj^tv;)4 zd+h?-1vy>|t1buW;s<9jntD_;`xO{2%rgu@3h@@>h>7(LZSsnY ztg?+u6i#5gLfa;s5KG;_T#!$~180j3g{Kb-o){-txbkTTY7D$4YhR8=lv~Ol0*zt< zR&I57J%&2~?V-W&AE+pGNSo0cK@LJ?=0tr=<=g$$9nB7rx4bjf?^4<3B;j(V_Gg2t znCBd6MqQiH^iYrifeA;`s7XKa{BcP+4jwN1WVmQ0{z;H% zQJA~|b$fR#h8&dwKQVJ%029R9Na@@m@Qqo3LO$fy69Ba3p9a#_gi72jrKJl)mR7+d zN$hqMBc=w-!A=37L|d_3-269b++Ng=zV&lJn|6}Mi@#%Re*-5_EAkY^E&$t<{|f(! z%mMzy{s69%L;`ZU1`GJ&(msO7z7OzeWYDOavJ}H&3t1D zk}cn`PEB^#K8<|J!iUO~K1F{rk}Aorm#?&BBmnCM=v5*vXzChumG#Q^6@yAD#UAZH z7Zd@WC|~$z&IV^VH(Ht`QXi#7NXaq$HcnHamJLQrDRi5Qyfh5zIGem_;kq69C3nrz zq1;|PEq|iP&sDOiNu7ZebB6Y**EMZ()mP1h39U+=-%So*?v9^i#^H>b`_2$3Q+n8q z1HZu9ucc{#U**ZNq7M!6H;ERFiuZRTDl}HoSrHszCvJ;|%VJ+kE?sYmU+mR{wr}!z zgPTvk;+1GKiol$8A8JB!mQ`=h-{tb6ma90YDh)7Qt8B*GC2CV;(wlWJ=ZE`$c%ufd zD~}=@AD!iFgWhbLVaJc;OpsK*>ArkGBPy|&E(35QFE^b7s!hczKZnzo)Z=nFuUyUf z2_y|nj5tgrsB|SzQ=%ZH(hFE|-!A4D{hk}`J(ImgwUP(DApSF)+wV-ARUBSp6_Rix zoYop2pVoq6kn9v{D8Lr=>+t*r@Hm~EsYo?R@8#(Q>PCnIprf!U+=a2X<~y75Z8B~g zc>?^L_O@|9008Zq%C1ohcwD+sP;Rf>owfw(XZox-)ci8LYMtGCy#vG&Xi6e=DIHW` zG`Ra*f*z8aLmxeB8q{daFoyL?@0F=b zKVA#xL07PC(P;j4@Hkp_$iCD;qBCu0vX>6JWS#FZ?D%4vx=674AW9RESeJ{f_$an_ zhind%9nGK;t(3b-^D$_FQ4k|-Uz*x`Jh3|VGCO%(VT}6y*a%e^^}9tuEdhGe55^-* zD5lH^f#$hTAc7=9wC~X5*eLwLJ;O`;V(d?XFv*~$sF&iMYdt9;n=^L8_ zt?GCUJmUA&x&!>0P9!3gbN7u{A2xjZXxqt|)ZA)a657K@I3j|LiR7wt+}&ifz}=A4L5Y zVN`f1Wjcl~Up>j3V+jQ`x|K)GXK~^FFN+iPhux6v0eX*}4y)#(^8KI3)LWcUBSxyB z>dK}K?vBbl9#KyF=KgH^o*pw!y@Mmdm(yO9bzfx}!lB6srJJ8d#Lq{auPn}<4A7Zm zoo-sCnG1&;@++QD`Jh4$SkCwdkP~;7$23G`5@jh~+}8(w=Px6^}lg6rhG< zQGV+d4jx4ec`C@CaAxEY#K;J6+N`gTV90WZ35;%xfN~$0_aNy2;BbeE^x*v3eW0u7 zye2nMbFFn8i5XwQK0P$y1a5C32XrDTsqL}C1@)p>@pFoMh7*+$8EiP3y$)j!ih1eo1)Aqo5_o z!`lmF`@%-bu6R3bpuQ%Rr~N#Ju?|iYgN@DNj955k{H@6;o*T2A1Tm`~Ohu%KMwc6? zr}V*4%3`{*HKObXjnLF=Rj(7xiB<+i0sa(0xVY1>GjZMm3T`W82_$(-K1?3meyrSc ztd)*3hmh1$X^;mY^?CF7R(!Wf;8DvT9KS}H=VI$xocf~)|VZs z<8^kVW;oASEQx%I&*y*nLeYt4I3J6e$fPh*>f9@j6sg*sbBR z5(Dpdq}ovLnTxsNw|$nYQw`ES@LFU!_=tMRY;V4_c)OV3BYN z!*?`p=Jy3ZDK|>E(809aC;dcHm^Scfe9{?RHQ_*w3G^5_8L+qRi=8c3S>z25FI)Hw zz1cnKG4Ez}IkwM9^iugSttSlh*o%+_2`TWo{b|_ z_ME`%Pp{|auBW^(N81L)t;ZeQ=MOmxDKSe`@D9 zoZ{#9{A8l3)shLFg}pJW($eyS%E;;4=jzBMDzoRTqO7(2^5EFn@1RW#UZT~!Qc$&D zc`c)+Cf0ynZh4yavRR3LVu$Eg`#VjNoLXLp7t~2TunvE9@;eQyg)J)z`z+!lW;kIg z{^C${R?(8cjXt3(p;U9)pl&*z8w!xmmMr1>MoepFC!p|WkB16m&7YYau8PFy_Ipa? zN+kGbj8&Rgz>Liln+zt+Vzw!b0le#5sHDyP^4KeRgm2}>F9Gt`oEcfp{|M)L_z0)k z*l?~G@PUB7rE;&B651`CrF@!KV?gYD#C*Bu0WloV_TRpGso74d=I4iMy(2OJ>iBXv z-Om)%cWIZ*JMvCW4JfD_+tYP(KgA=KYR14Tyle3xf{J=LmEbrZzGaZ>Y8g%vnx%Ei zLZho*(H$n-dg}drepHwNd@vA3)xi|4@}kq_YI>{1yC)udi=WG^Dl=>fPT1$$+Q0zR zR_0XBaQd)VcqimerR{QsuX17gTb84=M3U4`6(F0zx<|vybx?w}^L}9ibr(58zZ_e* z4WFa0c=NGG;-0--Q2X=`{R8lu*^-PFFSG)o>EcMa1+tIQ=fga}z?U$l$o~O(?SVjg zR>Q&;G$WEefu7YaR)szyP%7`+52|xiG@lEO?XTGvZ+Bg4u-6;vsz0fBQON*eYBF5; z1%`#f3k747^3Ay-Dv0ML>`uD4>W$DbfiYsi9XP(nLA|1Sx@p5&|in$94Bwd$0X{YwdN< zJ@=k*&)9!Bq8ai&FK?O8oby+vpmcg0gL!1cw(AiJ2Pw!gTh}|e*5xhF6${;P`$cz? z$&kc;T-v$r4o=$xd4W2lW^8=Kw@>2LWSfGsE}<==r~Cb7Vlm0-3nviI`1k_bGkoRe zptz$2opZ2L=Bn?p+g1y>dwJ!`MTMGI#XcsL?>ISgW>niI#9$l@;)gGdroBT;-6YoG zsD39Y4+z?w2;NG2Wp4bpZ;locG?T3UZsF%?-05m<`iK%%vyT$*D>o3#s*Juq*h%|5 z3+Lg=7PRaHs{5#l;UTEckl$W>i2_O+pYtpbI$I>Fa=JA+%F!jQl&@QS*AG%~c?YT% z5@I1CFZq0_`G@ZP{eDUF9q6H-=(~kfBkhuJ+Y|4F?uWZbNY2}RimH{q)VvS5ew8u7 zl=FUiuU3Idyb{SCzp71g{HUF2KPcO(=W%hff0i+*^LSYNx(25|$E%PuqYQoZgZi0F zckeG32m=A&;gH|OfhB^V*>a;}`p`(l!Mmd;u3J~`aI;egv&2b_p*3CqL!3g2!uS0WfB-$R6IQ8Q_V3!j+|-IEG^=>r4vuynF$nkR>Fga zm&RO&FOOX6#ok#RSV7azx(Q4_bMRUPa=T3kpwi=q?hd*H@{`ql4ZNy8W}3HuvYfoG z>N_qkf0BbR)cg8Yc)WLvztL*DAF@L)V&A8IBb+8oa?8UR@AMuOjMm^`pDY%bHb)Gd zPlC`G^dh&QxmL?_kk$Zgij*daU)SO|M6C=W?SSX30R_lSi{%hgY@tT*Mg-mISm zd7y`QPU98JkFb|8ybdCYH!eJvgdutmY*w9bXw|&CS62O+GSJKX!jYt!yLvjD|4ZaI zG|ZlG*ktEekd89^^fa){MQt8jkDmv(kx3uVP2<$VY0YsCNz}))`S#K-ScuuRIY?PF zjvSe{+bmAj%~f4H$V6ipEcnZZhga)B!UqA#Xb@3f~pV%c>Mp zX(0uq$0P=VhY{&GA*BU&vcduq0oSBw4(V{;tWi>_di zZ|6PKGHsvQp2kfyI=U-bRTFC+txkOMQ1e@`-2W{6@{fLQFOpb6iv2}*1k&=Nj`^y$ z16){4r@FcIqU04f!Hp0|cf!DXUAWBXx>4Ik@bnQdk`lXb+FPHH$>}sx0&xYTq zT5_&CIyrg3V?dM7h|QVIA9y58z$L-UEq-qq@f3hGfr>`U^%Ct@Egyss4eoikY?i@9 z3e2QBmile{Y{am&xsz*)d zd+^?Gz5|kC0uN$adSo5bR*zmAL}F=9bLL90!jyTMCN`FfJm!q|z>0iQjz9F1Nt3`Y zJ@#(v@+->#!d7!S+aR1i@OI7MwuE%QT_6Od#hFZe+V*qx(N)8Hxkm(JLKS%zkx`!! zVFPn%K_Kfhj>B@K*Qdlz=AQ=o(`!m3MfGPMj~+6PURbseUErcKX%LPE;f9tm9?(cM3DHmpK`Pe{qU&8xst?Y z0P7C!1W49@Z@~2r{>{*%`X^`#>^r6txpxK)-1+W*`$e}M?LfO)FwxV6%-Fjdl?0nu*8{#U%qsiyt1oY`xn2>Da-u}QE}lic4uyEL9%TewSO*OKxbGIg zujiPZbu-DVZ>=*|INH|ekzFNKW4w7ks;?f3++{HOTDc#=lxcih3vq!GUpBiIo#bW2 z6&3v&R{M$q+Y7{uz#<`)Il;;nKa71dRe6WsG1Fd7tWBZEkPNoe3MNL~j>bp7t1BYcqpFd zalTT*HEx=8pc&q$2@{dJ+YaTQq#|#9bvE@okg$k3zxSy6`3VMXnQ$w$m-6z$$5LtT zP|(_M1aT+yC44j$(*Z_evcIiA^U*>**CBaH!tuvP=-9r@)l~s*X+mP(*0c};)hWE~VuD3rMy}n?c|Hk5AqB`HT&xmt^6Psyt z@Rx!5Bp8rT#6VapG2zp4WoAXpmgSCD=k79SC|vG7-h5P8^5m@vhw#$Ccsa84ihUXSjI!+J3kt^i^vHJzqN zsslFO7X#jFx2tjn-MIa&Qm!I-kijKUD#e++qa|XOb0X>CM{bXYRqJ%BplKhf1OE=e zmj|){XaqMuF-1Fv56X3B^?SE8EMtt%xQJ|!NWN~B_v{n>cO0y&lEO<-20!&e^`!5F z1}SpZad*gT>M%~~VzB|qLa~4~{&e2?vyh~L==7tgl~+V9us||Jkecnq#zs*Zkw7WS z6Ce-bjQf+F7t&i61B?acY%6PZu~wUNJ_isI5pvf3Ji$<{-2VrBgMYN){m*_cz6WHU zq4OE>>=eP5^qm;1}q?Ro+Gxc!|4J+4ssA^K3>%! zY3&k5V780t=#D0=XNhvWmv(0zLFTN4QTZKVBm94BTL283{1mk66$9nT=8h*Vp#$~m zV&V1HIrj5+IJ6nZ3#FXrd=iCIFLe=WW#SIz8siksO&CG4xi*nFS+X^So%-78;>?`Q zM>o}?yfew2HwH7zVm0POM0D!-=i?Nr4}4rmU|_$#E*MNtQu_$+MB?x2eYfiTN--kA zvNY#>3#C(>v3V2vRp|0A+v=JUah8SB&pb+xL{1$xG-4VVq75UexSKKK@$Jy^rRQGc z)A5XsG!{Z+!n}mog9we2CppZ&D-T9Jd#HV2k8QK8uwaYfRF}l6!0%VFJ5ZZIL^;pK zkD;;8+*bB0R&8^73vTbfU)cQO{UN&N`}G1*J)YzT82u1S9`Zd}_b)n*hakDvJ53vz zRtkav;Fnw3%<996_qgX%VMUEZ%TrU2pQuMIMq(iDmzheNwyx9%`~RZD@srhPgD||l zmaFOsc(>}YZwRc3>7<{3a*<>&=g73&A@%kzIKE3wS+3fymwHI7t1pjV_-(5ddY<%c zf4}!WX=7fAMO@FwL{bLDCO$Q-4e^Z~?&iFEdA*l!)_aE^5u>U|8$;uDQU>bj=L1xP z<`69(R6DU#4~i!AlFqykapv`?5EMj#-bg|^fB)0KzUDxi>M zUQBTD2LD-kAIk^CB#xS4E-WsV`6t#r(a`7}Vt}I4o+BfnIc>bbevn!D(MrMz< zTH7B8`u?F>jn7Uc=|25-(e3D?*qR8XclIZZtsnRk#Ue`_dwMw~GyN5m-TTG!$vpc9(1elFsurV<- zn-eDsiG*<|U%{%Jwix0GT=kRbjWp8a(R!R96|Kz?_u%VG_=jM6>V*MVUv)ER(V=id zgw;9A7kDI=m@;ePHRZKv_Q=P|?I2SXzM%~z9I=hPcWx|>;c^G(NkPcO)X5uv5Ul%%OkBhPehgYqxl50WBIKLg1lr`q5~-pZ11Y1KFKgJ zDVt=~G|h#7Fx6MM%ThQ#ZL-3hYVUPLwy53%b3sWRc|PaXK$PLZygoWOVBmB9BZ!-x zGX1ZOuq=mykt>^qG|+?nUIUQ7Y@5IAM^1=ttgk$+VFyW-oBXDL#A*+`9U<{h)c{9m zGbav|wf`OqC_fO*COmq$%UQu{;#d}Ch!wGJo)QahrhNs4l4~>QFlQQ8;CJIw3~NVF zYlsSoBAH(GH}#^L&pCt>)p-*MCCyH8pO<0%^0*s>#SLOSsWm@PC%Kg@IcWExyrfKO zQCTjz_ZjOfUH=!82?n|Ztr=yvN?K(_8L}HU#OBC<2c2LZRpP!k9%)RTzwa?Dpq}-bthhFbKq4?Q`6&sZLX`~ zN6DJ^#yO&LBz?r~g498dm+JmEoAKYgqCgZG0PNklf!ZKd6i590zPb|qNAcOW3Pcp- zz6CTE(%pb?115G*%Dc!GB>9B060qrA^{4TP|JfAKk@RjHcntn_FaCO85Wj~0zsDZ` zn$#D@dR!X_)PA^c*>8G(L`EJh&L)drPw}PKa}P?m|NE>s;r5GFn^|}zO<^Y<{-cJ5e4$4c*!_9;cd@oO;Eu=ar>GZyoTBzglGA*F znUq4EyZ(hS6C1xvHtLerASkI{ci4>#E zpYTPX_2UksomtMjk5A6#+J49;cgef&s7h8;$}O)g}&&{J4_SPw6B zh;J{}fPBQ)s5M=BP~>a9L5^D9cir8OpLLrALSFA^@L*p@@W%#OGDf}2DtVixQX~b9 z294xjbR)$Hi-x@^@|CTsCUCZqQ#1xr!Yn4r^wzgP{=D`e_Re>wlx#!d@x2_6zV1JH zxN|Vh@iVG#Ljc~>2zsIg5Pk~%h|5^fCO~dZI5)&9CdGc%e$#(7wqx$n-SUp^V zwTEXTC#l=cQ^JsY^Yq>06;FBS$JN_}T|>5pH{bSOr#Fhm=6?G`Fj1x!Dt6*JN4$1m zPxEXfPY{hOdnKumFXYDPB3nQET+{ZTM?n8L^da&5M>k=2A$J}Vt%JwEhDDddguzt4 zodeP5vKSYoaIPS)Z6QI)*QwPV0teVhY@Hr1Nhk@>zKgQSJikPh9=XIdRf}O~OEmdr z5CTK0(o>7jjzHfemJ;o(dV)6W&$9bMnX_o&yLqqFd+CXf4Dh#k^4)H{=NZ?A-gn7; zdbnV;9byh^V~e!>3ml0#6sZ1nt^P&^Oj5MG@wpa{f}kR@f$v3H*7FBnH?sun7@m{( z$u}rxs2P+CjS?i?Ip!eCsRJ+S?gbXC@|>obOqt0EN0qT2Jq_W}uwHB^Mk5h%Fubl* zETlXq8VSZPUzwB8A8)Jgyb%}ZKpY5KieprWzgw-)T%Dv7LuYc0ryb!2&7b-dWo$@;Wu$N_})yYq$0+PSel?bDX4h-1rl$}E!wx#T5!Of}qDm*L*#Zw7Ua z!}^SHT4Y~}7d3A~w1gn~ks5|&yW)k8@XQlXlE@#^sCA00d;O4qFfb(Io=i6`rCrH;~VmDQN1cMFvx*aUky+Rnx#ut?TOQ=A-OgRa!r! zv&!ezk^O!uj_ZMjmT(%~Rnf*q>KnwP-=L(*wvXzu!C!P`^^%EuK9(XQ3^#H*t2Ztx zbJx7~9Akf&6}uL^h|Wd;>E8ho7g<8>Fe+mVa>BPuRFoiD#M{tv<=CZ)=Qc_=mFI1& zFWjz=JI4U<*}EX^)}-7brCp?0lhw36W?{#=qpSwm=}{J_hs$TnOwQ~inOa`{aqdjP zK7^!&hhY&-Xr>#psBl$*3Op@IfM;+@D|PPLGuynqTQGvFh>#`>?~ zObb5!l&QNXu&A>wdFA=bUvz$ig!dnxw+H4Bgoxz?`B*O)=^Bl0dG`v&z2i*Y5$(wy zrFXu!sN*5siE1yewphuc@$ZOAu`Zo4s zO>Fm02kPQC{y`(IdrPTgpmu74&{57*n#ef1R;?a;XEWmRTDJ8`V2kR&8QRLG=Cnl2 zXt}AW>31`AYpY}4M7&_!xs1CB8RwcFJfNdvymt6P`_siVEi(?imCtth_l?HlVFXpw z{+3*;H9kkmQGZLXj;eHs)4*a-#$Nbg{)h4_d~}TW^d5>Yv0d}>i*G}}fFC0neF~~> zt2U`g(yA&6WAk{bxoafkuvAdWq-d+axP*Cuth7#l_mp;mq<89@SCm;7+5JrF^wm>1 z<^#v589LiSfbH~)PS69&0<~fBY4=A`#E^W&IW;x4kDx@y9#cOy*NQIHxsX9&!I0qF zvqeu0 zd!{Q-m5yCVdm6mhI8K7$U7L|ifFCS$t$GXf<65<1%&ctNbf(JjD+AmNpWOXWIwd8g zgN4|kieBF$3Fohx$Jjr_DSY*0%BQ0Xcu?#1DH-LFas`wB_{@%za?pFO3M1H6)k0vC zgyJHhTc?=@ktPKGanlJD6PxsHYN8BZIYezJuc^C;Ej?}iNR958P^QnVfvkkkvj@I> zc}mBxr4o!vgp1GySa&sBV9e|*yw7k8r+*Ih(PK_KzheC21l$-81u=N>v6j!XML{Yg z3u%1#*z)CRNNm%)ix1>%BWhm<%}?H}*_V@N%W32d6vTJ7I_it029-ZZ@W$loWPZ82 zQW_UnL1YvoMa^?RsaAy>*K4TM`a->tCcB`9-TOtS*QLrs>tAd?D$i-`Zc2TY?8w6QoKKDp6EW} zLV?T|A+Ye035$h<48~v==c7jB(B&+cToC&M3H@0^;1ByH(_n4H5HV+lNFerc>fZ}k zT9oe~+tV0mgQ@cEDvENtQf4W*6sE8UG4`1bM(-zXQqZv9 z)T1YLkn=Co++daC-kDYf%f#BMx6^cxv%<R7EgWpp3(kmWwx=ENBU*A$Gd;Bf8%hOuN8fVOOltfJZJa!rXihqv zdA=znsF-uKAn|vQP#j7orn? zP-{eYCdr4^Vv43Eb;G`RA?`r&I;cGv1S@ECXoEyzutvQ93z&Peb=3_)|62%TNx%4a zh5J7d1^xeA2t*Fh1y?AR_I+RDy<^rgP1U%_>0{jVkzaJBp2=gJw~up6Jke?imevw$ z@a0)IGCF|h9}JfR9LJ9$@LGTbu*m|!Z=xskXwfHr zV{e+kH;Q*}W=D^kGC-c$ly*Jw6m=6mbX)k9~$F2@im|oQLE8c%YSZslCiy z^d?);HCmw^>W30dz=&)Q?8~piC@1WG(NV%Q|9F_cF2(rm1Hw?oXcLHW*u<$7z<}_h z6z!-Cf~J=F$HVOByr9`pHz;ANccBHm;(K?1VQCU=9I<^j1-$90P_P+;ll;%ep&Ed9 zQwF|EQ`^afjKp$LauBV+xX&57e-1QxLUkcvoGCcXKOBjcH}{J!6&e7Jx_)&_5n2-xs|Y4?MEE zR4WG7XJH|ft&w#w~PfzI{&_n2*k@TB%Po5+C-14djk8Nl~%oK z!O%-;0vU}UM1{JV0VYWDH;Tn9gp(A~>xx6OuLXUab(Hth;U zQ%Xo50pAJ6Q*Y}>V4Ty)l68ht&&18GnKe5%IL{kr3Ru*;-IU9qZ;6=~6HBH3j%z}Q zZmYkD4g1ivWRajM4z@KsK3iq*mah(m<5~U+_S5`6Fkjk{Z<7iEo-&QR<-MroSc%Yd zS!QL7gXZHebeES(67G*CjBadYbY=4$Hay4W_Had|a$rmZIgqq}ConVsBy+EXD z^RDSHnZ;kUhPx(v7OmijD5FxJU3T2V} z$>p*{=I8Hr-K{<(%JnD^tz}ms>vTt7rnmTre`}FPY@iZ7_1GX5nI}4e(r@pxc7q(aGWOCge2;1@HFA37p z6zGN7`9kNULIZ;wiKwHFC&z=CYvwd2l&z?rVJF1qGSJ6X`rhLf-+S<{BbBR0*{gp3 z2>;^#d#6=nTsG~fPhRR>G-nHKvo!Wu`|%^6jP6D@ZX5j&3xPViMx}FY;$#=&+p4re zs_<*IOwhWgnZo3*V#hTk18oGtR1fZcZouf;^XOiJ4vLMJsB%Ef^&s&K*$hm` z7hk>0Ef$|WH0!-6@)WkL++62%iS=3ScP97jtnYS%HW-iI^&?$E%LaxyeX`D{{z)(Y zANBbE?|l#JN(W*3kUF*I;jrYx7jugFnljHb$&Bg>Ol|ai@!19-U}eLnpxgJjLFiMI z0zv94;|@U`AqZTJfqh~QE&4i$?2+ofBRdqk46D|oa)yJj#rooR*rKNf>chIA6rf>T z2I2iBnsjCW@jJTv8{t5_S3iTm-^lpAP0%4=oJN}feq_5%twsFIlA;~)g#9HrCy@b& zG;j+>VgHGygk6J-wsTR!fTVH|?SkAt&kP=ZesF4kiLC#9qW=e7Q52jCGSk@%0NJ)7 z$K|o3!S(j@?ZYw>0c|G@6~j?PxmS$uU9SW$FW#_86xH;4sA+W#GBol}^0Pw-6&T(; zevd5>Y{e)&c8~=0GSR{v_g26|w1DUe0IUY8zb`1JGyt2YABxwM+EW63)3tjeh;6ST z#Cq;IaHxN!9=QHCb1e?eC%$Pq+Q%Xc4+c+srlNpdusr$^lq7}@M_4l-Cd9w6tt5!G zy&%QhTe*BjF7=7zrLV?&(WsPV;kEpA)w{WMVQ?6D#~#t7r>Ee9G&a0Ti03^(Xf&6{ zzTP@qklT|YJU^_)Qox2eHoPpO!ZdgBx$w%KRZL?mp-hg+W za%&|wT<~|qlCMCLyEl=at;RiGHeZAK0Kf^(3;zbAlbN53Rpf`Yq(i^rq*AA7+mF{p zl5WdS$NBP63NLk^1%u`h%6=d~I8r~#Y&_q{2vi>4c7`?YURj(lMc1AzH!~~utgAlK zZ>=`mQjCg;trxgYNrM>CfYs=cJxVvV5w>_L5w2d|}mJ!prnWg*;uP6Qwk+-^V-duMGd9 zb3r~MLds;ImF_+9);>>!ss@i`;-rdS8jvp$-mglR*f6(Uu%XL=wd;{CjIM#*mkIb| zQlz8~jQPP?2<;Q^NRP}lKdrhPOO#|}=K9WZF(@pG`^Vj2nhWLPU@`nGsj~%kL>9#< z7lJKvY?B-4mYD4KB=ewBmHb>NX?u?ic=J=vxO3f5%i~T1|xPN~E#c31hO$P`lHrAMC_T?1!Ga8Mk z)rf^*Rgg-5=R$8gc@;tCG)K7g<~286VUvh845$>b_#9eWJSYK|Yp2nXOtg8hZ6o&N z*}|bjVPEhT=ziPTu`LS#J%&I0_K;u0|N9`-zjlv`4cg&H@YS(vjjeMQs^aZ*&liN8 z25jryk4e)Q!7P}O0X44k9d1ukYlAS)DQbA;PB|}#73n!vhCqqG zMAKj0E~rv^O`U3kt#@5*QpR1q=O6Z>(!d>gojsNDhifKc|JY>^o3HzQB# zOk-urdM`ty!HP87K_AA1>55fs18lY$5ZS|127SY@E;%YYC41>d@RHs!*eAh@SDT1D zn4A2LWq2q~C1+Bn7TTsQH|To2zN$9rRP*PjfnEJip6|~;#aLv-S+)=KzZTA&w_5wL zghy*q{gEd6_qVAUtq;oM?+!^muB&?E5@%3W31=Vvj3|y7;aBzAGyl)P6J$I&V_i1Ys zfCuGO@-wP?&Fp2=_gakyUgu_|OMo?kT4By@X;q}?T)hj-4wlM~{J9Ue)SNxUwf~Wz zN7TdH#!zrZEh5TF1**n{_V0M!Q9noSmmwM;40#%|dlU0B5vsBz$K0T>_EgX0p0%6u z=eH*G;s`ye2AxWGPWc@8+bmG!laGsT8zMIwXcn~VzHD>0v8tyXAmaijhM!cjHuX8p zs8q~)Ckkz*1NmobDc8Ob@bfIiyT;VN7w@14%gb>p$Npaat=@hHqE3wAgSYISl{$OD zxiua%>%(#`|58vmzjfW(*n%PwzNxc5lP)>P?hYVJnH7pV2}V}?t#S?1w6*o1=49rb zu9)bM;6))sXxo}YE=I~pvinec>-=u8>N#QW+MrP)yts97$n}U;)W#1v?;hxsQfaro z#nS>F$ZK2W^RZ2q-b;~Q`^CtVx42<_b%($vqi8_%V#br_ew3@$*%B=t7&s|re>m#? z26E0L=5`plnDwxCl9(*+zL5quw;7ARVQY7XcK(%u+gw83vYv1gy=?ebXqoz!#d6|% zM01BOCfv{I_N(qh<&=t-OB?6M%@{o9xrnwckZ~v$c>U$hmsTRlViw|C%RX@o(OK8HT8pWjEMwz!>(!UXIC{1{>8 zS)<_350#ls{9<*+~>|rffR> zWUnPgV>!`rZEPv@+fhlEC$}Dj^J)nvgl3$LNw!g@V-!xOLv><)J5EmEhp>o=Kpy;I zB?P~3y2^lRq4E2}-FQC}_J{^+g}Jk(9<+*=hQX?5VJB$gX#8#13DckZTk7-BaGzaW z{-zjC;_S$b>6%mZ{U6B<36po~-@(naE<^ z#VEN-amCnWhMaZW-4oY5r!F^H`}P~6FTo`#PNZzYO#3|&W)A%v1sstYZ`xo(o1J-< zdaFYYv>yx%`aYtjoR+BTXH5reL>q=tV#8jiqg;yDv;1<>eWbN7#%W)vE4}!oEm2GO z)wlcsSOK)umcqf@j;`=d_(ahsMHbz_&P47ySsof%j9z^(Y$!Lrdg>m*RPx4wA)9NO z`-!Zx^m~2an!wuhVk|FI;f-1$Y}2F{CbdG&m9GP;M6XHTUOL`-B2ivT=z^3t7xge4 z@Cfm@^bY$9kNHjzlRihb`;V`sLRrRNQR5w`ZXRN6zAJ7?r_Xc=M%@pCG?HajDx{36)CMWwW%+~RLz+N+_UwuuleP_rM2hpn@^n79L ztIB_#A zj4Qq#yFO&rZ>k>n8&sKZx61oEuqsw&hP*?0Ld^+e#%J3MI;T0NpSgSAp4cyUZDyNr zt}C9}oC4-1Go{=$1-pqaK}dg>=8Sywiw>#u*nJ^Rd6`X!^zO9d z42^}>rOJgjxG~2Dk+BpSRXcGc&84IoUUUD^+c%K;msSJxJg71{I=aJjKgGwBT|;_a z<-9KTfA64$SZ2;aExHv-I2kOqD{1Z-tzhIyuK0INGfbZ7wV5OKtIV|_Zhn%&b)SXm z6K79c>AHJ>wMTr=E~D{!;LxN3?MUWI=kPYaaY$bvSCQ`$=po{66!c-^51KY6V4u%8H&5S_ zh|IM3qPi!Pz;r<6-RT0KCPev698F@C86-HdyVd$;m`Lrbti3fa-MQ`P%x?VraCkMi z<`{hUYXu8;EAM??vB))SNokcusoDXY{)(P^XP#A}p71M^af6wgK~hys3;X(&=9-97 z?jKWoG&2EpeEckT7@X5Ad#c{*-YAcoWR4=sywIUXcW!ELi^O{i(FJ648s-TX#wWMW zi$8X#9a;DxHWJQdxxW6bW!!9HIkUPtM7#T9;ql{|_rCbj`KOYW<`_Hs9NSIfDQBQZ z9;Mp5oN9BOyRoFTx^Vs%o#6+sgpz9u&K>hw=9`ztV)-t*>aP&BeSXH9lX3{Xt!Or( zSGwir^H$%qjAsVEW8j_J+(*TYtI*$wcuYWE$%62I|zNkLtWyjJW8Od@KHp zU<~0H40k+vg~8U#-?arZHm`@LM9o3@IY+#bRUMjU>O-e6S05w3b*C@=VEiD)0@Hh7 zArUWqikCEY;WJfe5VRy*HmLqQyeC64eQk9jHNQFwm6ZoSI{W;gZH-vL<@L72fYi~9 z=&+wcTwJ|ePXIfQ;meX(zJeaD<0f{typLV`+y&FE`K-aw`(JZ1_*I}YrlmDVzxp0YT75n5PLG!^%yzWpX zvxS*n<;X?Ym#X@Rt5`RRe%Hs>G{KSay*i>5!H2jJ0=xD(Xw;N*`tHGnclKojNYjS? zPfnvjnbdMcyh8T#)|Lu?6d1|v_;;;B^kr4Z6&eOwslE|fd^A#xa13o7=GNlJ9lK~E zucG4)UnpHpK@E+Qw28C$gDEuL!A4Pg2g41ux6UpLcTSo1k40@>6}bPMVfwn`%4hB4 zjL*|y7UZN9sZ6reH?n_PO}1QKK7Jac>5@596-LPvZUO~yg2wwZ{o+NIVf+!-`v{gv zi14KMu~zr^^%B%QRB9V`>3U)Au;FVny%B*}#b`H!xG(=9FGIB=BQDOA?&3Cb1EHUx z*7%ed8!}gw?{kxt*u~|wE1m0-mtDTN1q;iP<6+4V{C&u?vQ}Fjy%jk*iDQnj>bHXFwkSMT*4fF|cHZOKC+lg)}*VN;HbL~BwdcLyfal83O`h04`)knmDJbx4*O zHf8>Vt(HIKi$1l}bT@ym@Q#3|`0a3Yd-V#cz9wF24$8JdJ3#Ybp~mlGti%U&51Kz>1J~qnThdz6dyxFvDK(%2uajP&6y$IXF+<+IhjAV8N;& z;AF$&_v3w*N-SLK8y&(1Sz^?QBH1CvUbQqzp+A!~8nV@?VW^W=J#y_=a;-h6tIu^j zkbalP8@o`8z z|K2xFgNQYqI`cp5#MMZQDgd}Q2Nrgrt z)3GL;9tha48&{|*nQ&k!9avU`0a_x{LiO;|2=3gUPU#bd$cH7+nDBcX< z9i8I)GXH&^|Hog?q}|9hZqQYv5%kuA<`Epeoz{?|mTC5i6omosFj$!oF|Il1GgN&f-xK6pP26GaUBGweL&&Pb`YOvR4^SNOJWO zB!4^6no~;La}}7gH&y7`Dqhv3>EWS_xu`)DAH1E$IZWwAA6PN48%j&6tm*5^Qwg>r z4+|`GZ=>Rsoykzjef*h33q6hG&3o@YT>itZm+4Z{c}2;A_Lh}85 zQ;YO?3bJR32P^fwQ2~E(+UMC$L4$&=hx+OD5KKV}In$MNB6YvB8Cg|TXLDk-)BmDr z=rIPbhtoH|@7SePxWHpip(1j#c@yKlEO#!v;j<;T%gh8JrwcJ-P)7IwuL}4<@;DjK5%fU}RX4y{Cy?txItCFq+P>7N65L10nIhCYf0@l*HZ% z41X0=ql$0*89(=_I!&GP-wVmlwo1dL7ZNam@- z0fus~=7+-?V336S*F9pY_ahKP z1^?Pi`(O0QK;jrdFNgzF9|pRSKQ$UxsOiv$C=S|JH0xPXY_@M%t7fQK?~BXMZjKj= zS!(F2emuP7(aD7`1{?DkvzdJosCTZ*QUN5^ECXE_T?1vjd>%NGy=8~iv+St00LA$e7 zoY%&t7Tw}+w^Jh#3t)~X==+c6AbvK(J|gjksJ)Yor@Q9J>Fo5l zYK~;9WD|cvLCwMQAK3cYNa7fr5_X1>A_-h%oCnWV4O6t|)kBx=Y8|(xeHnWA_DP%$ z-`t#E<^f6R++qskB65kb!;%>oq|F?kBHifNfAB4;$oN!yU+kLA`ME9qC%Qd;rxQjZ za|K7&qKs@Ds&lk2#=1+|E#5SC}JC|W?oE}h?$+G*m#;pPnzh>k}n)njRrXY}4` z(-TuDTpmOfy%z{Jv-z2ji`BlZ&4w{v3XfpOdjmqfjn~M7V?VNP47V>z32V?XI)gl* zky--9et>f!S}F*Y8}H_44otKkLy6m1=xLpbW3ErPyhV!e=$skBq@gMoGg z#2T4kbd7|X&GVl5nL@u%Z6nV0qkvLAp&eJ+$8#Yd?@Y?E5Ais?+1+-;k-(=U#}9!9 zc-hWznOOLM%h`kR(nk*)8jH}qENd0CoAjK_IT&+-ei=Lt|3O`Me?yiZdMCbrSn^S2 zJbCC=DQdBe$zE-gmgeu`ZPITxe%x$ zX^vp2%>Gidf9ZuSO~o>tFO%PhbpHwUEZ|VI_~u_GeM;$rsO!UcRuI*Y7IB@T@VILD zRJ2(uFC;I~3v|8$Q@3z>#QmXH;+Z5l`v%@c>f_FldpuWu(FGahX@+e@qgfcY$|&Pk zZQnf-svn)hd>t3xY&D?PtDe|$(@15S07BeSc6n(*mdAdxlFHLWkKfCvoS^7k#*e5;NJ?mL1dPg+-&d+V#6RHXUFCrLws$VGAAr}-& zX9M6!5=T=ick9$)3FaH|bdPf02XDEEbV@Gmu|_L!;nPf7YP>ZMsn7A>-pJ4ruIn}0 zw9t9_IX~(Bo-;=|7z(kqRsUa!^u>Q5CVXhRH|Ai}5K#YVbi(fc!HTvrlX7c6W0_({ z(_Q^Dl_wtiXZU4fAyLoyPjVQBUnBqffy%$07fO-P*@8Mmxdw_#m+#?q6VDo|+kDP1 zZw23=|E};*MSQ?6WAQ=mPyshn^y(MV9Z(YbfOH_tDA5thCiP=PW^yC(9Jfaj@Nuzl z@L`;f?XD@s^jf}}l^XYG9q$!=J8y?5l`1cplr$Zf$hq3v<}p^5S;w>=S6|SHJWM%G zptlUVJ+xN)f>jE4EzXHJ(=ojQqE@YgUtZcs=-iEaS_US zzOFn;Ec5{zU+E=JFBPT|VfG+(Js6`o2@C;g>Wz|x9GOx@WfX8HoHe+p9`LqE>tZBB zN=zDSq4+3;fqa{!+16+g8P)XFb%ME3W6Ex6+)^%xk517=Mu8~Tx^#b%8h1gpKPVkD zuofhuE`3!fRW@0aHI702e3#(1VB8Uz{a52m{Ua4Y;+8{;gOzm(u7&H|P9^3VWg7ES z#>YEdZEP<_H~(r;!xs8PbC9d+VrZPz>}uRRfaF zpXxy&0O(XF7)2=KU`_W_(VvQq$6p?zX#eD-E2m$1V@2)X**y5Q*Hye(QN~@P-Qu?e zZu3C_KtL?kQfps+X}B%0K&gTk?7*VPW9o1? zSB;U7+<@5Pu4lfLy~6lx7!8rWHvn`BPJ^tR^`2_-f&x+nk*#J`jkH%Q{l% zcq&!An0ZdG9TJIVq=IG-op(S;e4b#CSM;T!_C;)V^#MQ6wY27 zbM(PjjNM^1@i&~oNs-+t2dQsl3Q2Xw7O*xW_KQSS{y`o|sU?%c`U}mQIIPoxmbm1P z{-%Y;=%Z-o4bnN+NVwc;qCJvf`eyx=N2r(Mlw>-{~1K3PN- z-^Vo(s6uj`M@Q4nR{(e}mUXvHaca3u&igVCgrT4YYZdEX5%+-8y^YneL$P19v7GuA zNDpS>kd>;RGMjiczf+)`5lWcjD~~=535v(|lsQW%XF^x7MvoHe94M_s=D%qApuUc+ z*D)RF%0q4bv|PD9?(jkp=vWEg6XxFV@m5cV5E<#_&wL@6 zkj~5}xUTMegY8~}`t2C=ETXpI&81VCsV-fla-ue9621;RNzFbv)Ka@0H5)H*`vAgf zg@eI4K&&WsfT`>xj`>+i?t`byko%-=vL(r&nMFR5a`-Gkp!R4?SBz=L*#4vUcWfRa zLa)TNH=jcF%Ttl{SAcNVwt*A|rnW_-V8{5;K^_96!pE0-{s}kxpzh5l|5jP@*6L z0wTSIgx(Usgd4DAbIzTa_nn#Zo_o(d=fnM=lx)Hd z+57i~NbCibkP(oM9%%q(zcozC=ykO8&qH zC@uNeSGILGQ>NWLaGuXkNbCR6{?X#FDuAIgTq^!@HuOo%2}zNUlubK;t% zBq5rJ#HX~JO3^8iEFy)lvRpwOdM@rOaY(4^k-;$ex##Dl8JerOo|<)ZJ>mBesOwyj+V(34 zasu1j_q8&slZ&n&QPm4lG z4nNq}Qg&Gz*TJkBZ~2H|K@9A#KX3D!a(!vNcCPy-`-Y#%+FlZQn*)D!j*3$O%i$FP zRO1Zn&QM1zO=fD!$L;-w?L|o!xdXbN9r0(guCT?WD_#EJTi)9Cx-3aM?B{p;1H@|$ z^ghsaDX)E}iNgoXYpTkPa!9XdZr3Fe?FfC(C|_}o?vI)Yhqo^`){y-1JM#@8`>zK3hI&+9#tt2WB6ynGlDy$Zs8|Go5k zls-u-rlG+W`)GT1?Jwi{#F77yUHn%rXBubl7>YT^#QB9=h-rJ3p)kg}3t^k#)g9yn zoElM}aJ%+MoS2UY0bRdJ?`<<>7vv`wEK>?#%R03SZS`~}~F+X-t_^!8N8yh#>uiQ`2}l`z)` zog|X(sD?V5Q+a-SG(cL@#KI%o^VKHR?@vg61CJ!@PZI@-Vmr|1>wImYJOz)-4qokCZ|2{x^&Gq za%)J3Xk^=w7Hd> zYQ)qb5Gu>;ovusB3%h|jYbSSf{I=5O6tyU0LLh|uvhUn{jS!OeV9Jyc$16CKHc;fh zbF~AI#U%=Nbj;!(?gXIlm_Hz!9Ui+hr|Jo{+w;H)h9K`T%Zog>Uv1ZU;&Iu}Gg*wk zo%q<7nWijBrl1$@5|2qNfY;gq*}yxmIn5t4zRzX_-J&vHnFwlm_}cmEX(bDvkP;5N zrX8s8qg`|`#q_&3Pg|N|EKL5LlY-M}+T`QXPlz7XXfwX2lT)W3#ZS3Fr+~rZ$Yb$# zRH!8%VB|h<3K?0^DVuz4GKRYrXLs(%$xfwnQ>DRf9XS_-*~eOwr+soir?d^?XQrxUqdw@-U+s=iq7Kq;1ss zMpo~;3!_1zB>#m}*+iYRb(VaSW*2AC*tdET@=4C`6FceEm3c{kw)_+wHIl+XR<%>% zXf+Joot25shYCp?cN3u%K4)bGdRf|J=r=v0ZgrDOZZ)mYmowe}u$Zlw-*E1Z!GLY4 zJpyku8;Ri6Q1<3&(qQ=Q2)jO?Vcn*pmF`7E?o;n9k8JN=d1Z8w>5N4`mWkg+T~ujh z2Rt!K9K(xmHd*tC!wG_Oh-m_Tw!1I^YwISw)*BzaD#r} z%Ze1-d-=b)cz5rlW8TGT8GOkOik-r!fT@SgDTGin9 zLrUgiY-ICPn`+*#2BwG~Zy8wlF?AozbvWWTB|gh1WBCBp zuy$sc;$}*e|CJ>Q>%FeHrF6^B$Owa-L+p;J@n~-ZJ7k zrTb~B8Dskc@F3&Tc0^R@5R1gZXeR!d46VW+YoSU2&in@?Pq-OHSaH3Mm3pJ zh)!J={#w^ncvi(?M6MiXryZf%5ao*PU}op|3Zp`cJWAET?AC>afeR;RkJw9-uF8au zzW9+Y-Dc06uYuJj(ZXX^XD*DwRNZAO*t9nEf1IOkkor8{h8*SCx9TN@G8x3 z(-saTGN&g=w-TKz-hUiJc}_!bPLEHIJyXx!=e989Z)uY__l-5?Uswj=lEzgmu5uq7hH;#YRI%)=ziX4X;lldXHEhHaa5=aKD+MBY3XLO> zMoR?PskppirmN^0nhIQeotKxe5(WU506S!!+)2^QTR(pzd`HQ+E)X%NV{(_IZAqTT zM$fX=n^n4lxz|RyA=9DDoCa=xKo4@q#c8VM1@V6J%PwXz5H`x2$9fIl8xOv$4n1V| zIb)pp^glxW|AFt*QJB_ecX@%%3>}Hs7l8r@1%>A>O&^X00`F0@up|op&42p%zM4FZ zLT=XEDsf3gc^SoAcq{b=Q7~yi+OT|&l#Bp(Tn$vvT z3}o8EQj>WrN)(!O+9feTSB-1A86*QChewDeMcPeo$ei|;{ufeq z$7udnyYsn8%aLA)E5A&>5}ve)=8;5rv;t?du1dil>LZ@Pg$URn7}QBWtjASp>NpuWfJ&yLkKWr_{JUe05} ztp-hh?-W-`vIG}9@G!nD7Bzc`kg-^aCDsO44u4oU$<+q(Z~IT`6b9Y}Or$V~^fF5i z2Z_kMGze4v+FZ2dlK))WG2HoK`q)|P-x5Ksb0A&xk`Zy3S}22YLL+^_p%rYJH)O*n z;Mwf)pS!-5R#%_ieG=tlvgb9$_8#th@bJnxRw!fu3CPIDMTmaX>`Hxka}sv`I!<6( zct+3SDxyMmGv;CUy5`SUVH~dq!`EbMnQ!7#ovD=T2>L@BaxGlM8~}xa=KgHr#b6YiT|E{ zyr||s|7gMa^g4}~d@mXK%|gxP*}Y##)|TbirpN5OKSjOxg*NbapO+3-6u&;aKWd^m zB$byiv1B9m7qnXL`YXoyg^uZ7xQY2nR7fDim{nD>8MMNM`>DijG`(ff!~ z6VF;s5i6zQCnMAOIq&Ut|MXD3q-DkMRVCii6cCVsSHbKshztg;7a*5RT-8o@kx{xQ z+?baYr|*s4R3NZGNr_|^Z|&!!uYU4PbX!e(H)l2x|nB^`l(=LJw0zQELeTmRlyqMpai|7#9tqF)msjdM|O z;kB`>|CB54Icqc%^Tbrj6X>){uKep_>+gO3zk~c4`9FvJ`R^nUKjH8vmY%fptIiLx z*{i<`pL~5H*?Q(FZS&KCI4h!Fa{SxZjF{`^-Wbn!nO{ZA&(+*O#?FFr?DuO7O6M1? zex12N{Ngr@!=}=0o9O_H43BB8Hv=&eZyHUh6Eee;9Ekti-F|jX)cOxdZF$aZb>8r0 z+VP2caK~)wK?Rk(Oe1@Df(Ry&XU~SubcAQjy`NvPaVl}UR2d7$G0|@)p|yC ziWVWIB}0#F2=FOYj;%f=D=?nG37vF_nGSxT2n8=3Lo-?sCf7(7kJ>*B6Spdv(Ioen z5vX0a+FklaTIhzD_iC3%q^L}48ZxoNc}%`HutU&LRAqGt%xrN@L+J^g_-*WwvX$dy zXIr&q!<=wC+L4;+$k*j53u;k!rWRJdcj~5NyVu*b7`M!i=;b;bv>ibYld6=)v0!gf zN8MFCszhrO)tR0JL?G%HIUZz6&Vi%ARe+c}QbYI$p4s7WLN@3tEaUXRQY*JCL~5ty zexCAmN-0lp`MX}vN1t+QjyU*ilwY$WHY=qyN@iv?GGnL<)FQ}S5rVmq)4#lF_N2)q zjv?B5mS-j>WYt8DZuo0Vus47Qo@C|uCRfN-Nm+;4lJQX*vWc_uBLUBI>e7 zOa|v0Bl=hS?~61LPJgMLy&m66o@eLZ2Dfu?V3QzVPZ5vsei@li5 zV`l#5%a>sVu2Cks$4*HBs+R9^5^_W?PC*P2uhD#Vv!x$X=Cvd18H6L9MFYQAO8R*` zH?dBPlo5jv$ef~^7xCGua@Q)!bkCr18p0%1oW}bJ@fi0`4;J_X#}>!m*J(;Q=e#GU zgnb3$B&WOOS$TOSl-8Nwr5NX=WK&fRluF$t_4E5P($@Nq(}Z~mh%lIQjwagM@KLZ) zX-ZDXP0uR%%AxuAb{`YEa2JbeQ-kjXG+2IubFkp1=rJ-Jpd*{6|mei%=0#Fx4b+^ zxt`tEoy$)4SALF&Y+shsF`V9e#mE8r?yz?8XLm#C(>J3nmGIXnIlVmTN;nEn^XsdT zHOPVZRHE}{{EdLOyfsp0vI)RWoD3=p`e=97HH-jL!%tQdoQeiVtF4aMTXUnz_ywXq zK|A&UN;1@dyg4gx=-zDfH8pzrzDl6W6-ezZC9ZZ?2L1BwQ{37Yu@4a$4V@u8-vUahOw;Z?hhhO{>6x{NvbjeU#kh8ax4sP*%bzUaW<}}LMvCgXcpKRCzwtW+aG7S~FDEcI0{LX@Ss0@sY z0J&98;EVR?v9Q#xvz`kSeax!MTEH|Z>iE58E^7b01t%gw+dLP~m!JEjQ zfNB1yCi#=KCY$DD&t_9o$okcqS@Dagw#L2W4fsTe}ZVbjj)v+ zcg8t|w&&v*F{O>-x|}!D;=&?ia+R7hv}8n*rCz*+=?9#2uHbq&aes5Ic^;TCD!6fJ zNxUDNcbpgDE`3%zvGsf;JuK*NCfsg<0cQv7nS(>ed{>Kn!4Q~NpKkgdns9l!iVn-%gZCxLGcMw6}}G7 zb>F$qi*PL;d2ts`O!5iT|5&ipQ8L=Ag#V&%SKzWS|9>b?ClHMxVsANj^m#m zj7@=9`f4=XUu24gR9yJPmM0-spH~%ejCvW^b%1_T`3ID;*)dwT3pBMVhQXM!_Tagd z=vKJeb%(TVSX*cqS=Cl;@ic$hEktY>-D-^haunb>v?L@tkAAhtwOYR+J3asupQjd6 zZe>O7K_f7{YO?r=j=tgCy`9`=lVf*or$O%^ex$B%b$k|&DipSPv%lIjRInL8{RXhb z`!c3quyOXf*@VUSwackNS;+itUy!nRAoMH=yPz1Oab-QP3CvXdR;21zD97UPyny5$WP*rPd)cdLxq7!Ys-w3gGC?PW>kRr z*}#+L?KMm5X>%=1%*!mV0Xy{j(@()ib}br#KG@&xj~-8BomoP1!@lPC$G!*Z%eeRd zt?u|QKGJ6rY{QG|P3MdCT2j2Z*7?_4=~qBDEucCFg6GMbSZLAxmA^>eiG1SU~2Q!w5ChxML-WU>?p zE8dghtr7UabkgG}5PG@I+vYV(A<}oS#=xJaacl;F3Ywp;4q=)Db2+uP7}yr8CZ{|+uqG|*st}|J{nJO zxBMi^0Jk4Sbc??m?b-?uT*_C1Sp~@Jq8Z2V?dDo|`Q`DzO}>Ex*w5^EL5B^f?R$U^ zu^EfWr|2ENKd?ZjQFVP)Q8m1zKOo=|kNAs@0QAd0dleUCVx5-X0A4~em_cUNy4B-g zQP)Lwi>^=i7St~BTf{jKPt@%2ku2^JIzlUvr@fP>p0BBF#rCE9)4L~3tltE}%DPKe zDq%0R@w(7k@E)juEW#FrgmaM4Z~L6wqYv~At{lnRr(9_95mw>5R(GcF-MryLNhE0) zUu{7WCs?;ZnPGPm{pK?a{CF-t&+>k<9poXD>}@6nB|bGx`OR>+@DgEDFlO;4&2i1m z-iO)HS?$4jWvisSB8BYCW$$lqOH9M95lvTU>cILxLrpDK6DWM)-7w>rzSHA%0$2lHv0VHE!c<1L^nBST8L0mp8mNB;p24so==V-X zk?C7erO4J;dG}1=#=(Pc;nVtC4yuTsuTEe8142kPscGXAake3cHyh@QwPtRR2c<6m zb+$$Se71^A(*65m&o<~IX>3ocCx{5Qa(S34;cQ1H&xD#Xdi^FBTIb6T7mfvfF%Dei zcBU}3L_@}2!03q|+nei6WaA%E5BzSNzKC-D+W0gp;ZyRjdK06dR)p{eXhsr^itWd6 zz$Y7peoTU+V9GwPeEFqb>m?m;C3ao#vq6qDwA`ZR&{(~L-)Q2lIOe`Boz0%uI zwb?7B8p0#y^BdypX%zGkxcr0ZvPmcqAxi6c<1nF>n*Vvd-zT}OdN^1Im0((K2d%;c z%HGV2xba+1-*f%!+y*=wt0SLI4pYWIHxLH|eJN1X7jri3~pHUL2`B%(Be>3C3A9O@mo!ZTizghLpuUthkD2rN z7_-2lXW)R5M$CZ=G%gduL+klpctCj9tI~{1`h?ewkv>B2d1@xdZ)*%6QOS4VLm0Mt zmw7h5pBjRLG9I~glhu#XseI?eVuM9XC9fuRioEX;zAd73xsiVOpxCHL z5d-(jx3srd@6)9^$YC_Qyy;nj^UohFuPD_O+9g7f3%hEpul*huJ-a9%z6Z>cnXWQ~ z{B^PMu0q%}&U>S9=*T&IN7#j_t?(a!S5f-Y+bwz`>;axaPw~oMDGDSf93l!X9^6bj z7Ysx1O+8b(B=FZElI&5c>_zWDqN7{d&8Sd~b0qEg2#V_b*kLEhZ*uhE<+_jT&#^C5 zF0r5SP0%ILBya^j&mlH?=2)A_URreihE3|LQn}^i_fTX4sof&WLAeZ!bZ{_v z`}t*&;Jbe5k&uyRQw^P_N#VEOe?BF63gi}p%0$eigLl0x*#Nf6A0SBds}+dQfA8(J z(y^&YkZ*!8LhQk;Br@)DHZ}3{8h%~Z&1+HLt@OK8UfA`e$quPJ_qgm(r9Okx`UuD} z?>bIB*SxsMfA-gGy#y9L@GwA%o~5Wc6M@N|tN;XFukfF}g9(_iQCbuou#d{1 zfmsNJU5sfV1-)&XzL__UdfN}>Lj2`#V+}pN!T{W|wSb7_pPYFGsIkBp7ns5gIQs#% zz{9`?N%BX(t3=z$3e#37{@*<<;I8{O&vM|4>833Ucl)OjxBiFD?S{W4dKXg@UWR(@ zU#AJv1j^5UcN%~D`u^#~y!`)P3-G>F?qas;fEw=$L6-ItXjZbVzf01D70KuS8bpMU z#DD>-qto^D#IMvEgbfy$8z^6iQ{$M!o)@}nF><55x~!7cJv6sxBPZgtcez4mG{EQe ziHh9tf;>Ll;bwQ90j%fl(FS@OLIf`6#CIekK(wnJj@X}ehPH(My=bjt>k;*;zf&l4 z{2Bc}4@&=++L5lPVExfgn-{lFzT))bf~o>D&F}DDQT07k`ty8Qc7Pvz35DoP(+O=A1;uY|=(qxkc$$_Tu5Z;qL-=}c(ZI}!I!NCvR98rrxZ z@9jYKNGuD`KnhHxvb>heoqia&I&^-`kn4NG}GM_fAs#_cXEY-NJqMnk8Z15tZyAw!I-k_ zRIrgASKOUWbo<{Sx<$-Y-`VyzV7R4{;7y<4u#X}-Q$N6X<}uuBGzsdL{ZWEg$URk( zZ~JP~Ikgv9xfeav^*WtJTCAbEy!)m>G(I3p{dxMTrO*IyPcPjqTi5-NUh~R;F1HEb&=18vZDE_A9hMtV{Q{enN6oYFdJO2&S>fHx%MN*!}u;6 z!&M)6LrS`aQIxk8zp;39tnnsUcl=m(`N&}rj&w*PM$c!+_&cWx1|Bx<1aB zQMP#$9n6|q>>)~Ujy-t!m1N1EYQ;p$XU2CqI121o2TO%(?8KO^+O`0)NydMY=G%Bf z3@u#eSfcYGJ|6G1eQZR;Gw;M)pz-n&p{6}@PA+`t=l)4}&7($i4^5CVj^&9O5METJ z=BF9-{?8mC2S^- z9L(kqv(|B(hxa6J5XjgbJqQm4K~0p!4bw4IHDVwEE|#ew`jihz4BT?xBHyF%h&Q@HLa_~ z!){%->=-TkH9OrQrd7R{yNw~pWMYtaQ^s)bYWol8$G02!4|`1-8p;QY#V|wSaT60K z<@9d!aVz!v0N!vQhJ1yi@j2*3M+f{w?GL*We7^r&uk|b9B{QA4=9n5(&pI~hF@{jW$nRhrI<*QRi z((E^ZS-4Fsx^p+xdX?&0NOU*ZO{ngYK@S>chJS$>QokKIAszwh-LrH46{9IBGB0QY zIxz`4e$h`O#KHUh9rU7fEhgAzAU;sQA(wz?TSHVH*rTvCte5|19?{rJJiPXU9z0eI8bEot@PvW9Vmw>S6s}m3r4SsKC=s3sxPF!WI zWSb>0@+ZM!h+r$O@3Kp-Bew3E-4^ZFz7hPUOa8|*SZW%?NkC))PLE_}`=N}c0s||?#f=^t#f20;11!L^?EgQzq@Zrsyger^dS+8HwS%|%p zB@qMq`~nEWk}$uLuf8AjcdDZQ6jH30Bu3zo6frRS+wIT#qrQ^=;wwnP$@4 zPfTlv+%$Px4NrCh=y!G@;EH|j0`kt)JZse1@K|5DZ0WSpc}zJ5$UeG4a&xd(-LC7m z*yLW^wZ6qFy}#QDb^Y2f(RhwzD1~9sP+V^W)mv4WCsx*rAz8I|oCJ@PwXV|kMyK`{ zE0yFP+$(tbL<08k5DF~20YJmKl>xX*aAU$8aCKLzXGxYu?{xTIm!~rUYR!Q63E*3? z8_*ZS>e`0o!xiKV*@uy~mGxnIJ~-!E!u{OmhNX`+y==@v@Jij@-~3Y$#>24T{#C1Q z5<|JV2WpB$TT=L6kwEh@iGFUfso&Nds44!5$#Rn*F0AXTh-@Az&R=r2a8Dk{V3*Zk zfgu2I>fSddd}%qw&Tp|l?LVKk(Di4?pyvu4PSt)xl}GDEUE^$C_$!2x-Sd;b7_I0~4&AEIayd%rv*Bjrg zZogSQ$|lPEQ^-*Y5rHRG`Y2`;*>zDP3%OmFm%EHjwAA(Vnc^NJ>RUb0g^~nW;^mP_ z*>Nnf0Fd8~;v&b)9e8>i>~<+%wl{T|L243GMx&#ed_;&nDalyX8tw` ziD*thPsr2scW?-5WaEWDph4I^9p#4UJ^;m@1lGDlZTt>3q!K}uOu&3xr+q@qr9yY@ zXhHxGmJGDuxvr)eseeEW%dR*Y{mwBUE~oGPH{(T=C16d?1)_}$fO(}cgdWY+bafc+ z2$bE%vY#ucDSR{5;SB_t^pkgohXMTnY18Td2J@RBe*@Ih6liSg#6~cwVa~~SKeT!f zrknHpm+nulCa*Iwx?9a@v~I~d1yYu~wITrHnn1#l$7 z5>U6McD>CYz+=O*F%q=IUUkpu_%eh)8RHKL|l z3~pB(VOBDRWa$Z;bLV@|v(bfmdaLIri08I1A{qq032_WR<#g!wm<>QN)N9sMaW+mE^(Mqo}H1jNp+g=Ob1M*93Fr<5N5`@S;<%S9^tN0x@z0wSESs z%V`u(iec0n2fy@aT@&1ZY1oq`%bQnPR<#(>&Le;`JSJ9!Z#ktU(NarAJ*M>8%4&RR z;@%@m?Lv}UtIEktle*j)d+aBty6OaaRQ9)`Df6krE7m1rq2#pqljQ+wPY93huiSr)!AycawkJhlJOwmnDRUvJD|+v0{DK67TNs)RqizP z8rn7d7`l<*Oa0#eiKBh07y99halxLNIfW-_h-9?@Y$tsyTbW1#3ZQ%{>>DKqQq#9{ zMkSpu9*ee}qZzM`jG9!(Gi@%%d8cQ$Hw{r4MNQ`vEK7zCq-CHL_9<@TJyepYUHaZ* zHuKiTZv+RDkM1AP>2gb8i%mk#N=Oo*x}*(4@V!YQnD33_+0QlUTQA@|k*6gGD^QaR z3+x$zewWh==tj3p(gFGw!^Vi6H*z3di)nO%^c+A;zM-+|;zZmK56gGb zV}5_j0YX+szp%1A@KTxg8zhMXBwMeL;TzMIP1whmqU<_wWdM5KAu(*Hkr!_fvS)75 z@7$kvB)@rHvS}YZVLO*u9Exm>pHyD2erR}Fqlf^gl{*RtZeSuTPmB<#NSwL^zFISg zc-Fb??jqPq;zQzirm95#ga{6BMbr3%2W$T*CeKxh;f1J<8h z{sWpwO0riF$X@rpORvZK(NBf2jFj|5c&+lz>mbZ zg%FKNBDXI+^u9<@ln|rM3&smTh&HDK{&a)${2>5rM$EE3zw}$-W^$9EivO~0rO5BA z7dkSR<#LWk9=0N`AModanoToLc+xf|7Z1rh>+peos0c-siiR=aoF!V?xvIlZ+{s>ERwoL+ zi6*=Q6($`4_t_~1!cI)RQNFh}@iEC#__^kiXY;?`V(+XcU6tNP}%E(;a~TJqne7Fwh$7M6D<}s*U?R zKAHY>+Av>MH-#W}zN5g5N^8|JN@a=Q2=!oOcdTg^H}^T^C~6~tNy z?DhDEh;eWeH;Mi+X&!&57pyh1udNqrHPe0l%voZ>4_&eASD4FNe~H?H-s+R9Zw>&x z5vB;IxDTxbv+IRn1U4s!LCpRO z^lvOl(v%Vn1(=KtvN3=rdmbFEklBF>WriXG_^+Y?cbWbmj53bnaE*cy^&69&%O)EE zQ}k^r|8S@CZ#Hj9ansQX=@T544z;mg(>b7W+wOrtjcz}#`NaCF#?!*mn+bIa-_V&9 zO|lV;4ZpmY*c!jiBdfE&no~QC)a8Pqd)vIhkq~D?j@z{mMv~<&e&5W4X<&%MKb|R4 zcrv-+mpIGv57hj_q9k&Au#xpj)p#!>izUqe$m%7bMq>S&`iQ-gqs5v-2#*wTJ-a#3vfSArI1`-@XF zi4JNMjGq)xci|N|wd4cohl{71M%ZU%B6K9zeb(2ZCew$5!qf#Rwi%v==nr`~RFn)9+cwm^pTAfgn;VZT`zA^| z(OAcnJckE1N!z@0vZ5(7Sc&hKifwng%942ZvB8K}s90g?s|tO|X{QS3jwXsS^{g@5 zPt*XBZ+(>d#s=~vt;O=>0IUuru%6<(zi_H}4sdF$JY=x9PhS@`%=O_9KfCl)HGg>7 zKO4Q2H`7hNJC(mbJW1b8ydHl{{H*gyr zrxqJRGwJ9m*%o#k03q~nC*cZ%R+C>zpKp|Hfu+0%3w^>fc9(8v7C{Hwmcw)pF((^v4$05GuVeY%~E93YQYOMUkENR_n?+TFKbGSQR38 zqpV~#d(S$6PL$cX1r@Gwne+wchhXuxobAnorrD=o60o~XmzxxzWQ-m91Y){i3ecm_ zkVbyeZGawyd=^htOMlha=yAfKCV<>K%B;*7Ft432ips}*znYsgKy*JSAU?03U9HW0 zZI-OZBV%uWifYDAGQ^`=z>M|R!Qu7l;8gjoe_>cT8fT*Z+cOwuMNxRTBJwSB3Qdw0 z51ddg2A^K?GD?af6cKm}%#kDlSZ6k$0Zi6FIW*#c3N+9B_?fy(`o(J|Dk1S#pEwlS zt=Jg#(Ro;%_G1S6tx&%?j$=M|1O)`_KCvTWsHO~F>N29a0nb2XQGw7vw*lcEP^10Z z<9;*XZ8Z@-C_EYlkfV3{0Oe``CxTE5nYSd-(?Trfsv8 z2nwHo(Xht&9D3Ypcz?sF_A1OG|CYw!g+(4~`wN#Y_~|Lh2Ga^|(iP%ITZJ!;Qp}2< zlaOualV;Eb>)ia`chFz`qEi>u&2?W%ZTffJ7_?hxe{sbsyT@FSLfhL!Bcb?*vJ(Oe z$sx2;KM1F0V&`_x-yD<{Ydv(~imk4`&u0<3@j+C}uaJ`srmE@Q$ccB3Rzu(fAWS3? zorY15^uyh)B6pH7&c~vWi%y9?S^dnb1W>QY*H33IeG!W9H61{dR|6xfb;Qr3h_c4B ztIjg0lhH!NYH$6-k02P9paPm9&yeS=|H##d&B;=ijy3xd#wMY9}i*dnfGkkZgoZ@u^K1=Hc>|`X_wL+WJe>bw2mwT)Pj^z2ubtG@t0o_5dUA0oU9 zmaNnajjJ%15o^LuhrYpfd-t;&CJ8T{MPoi~#z{F=M2~&nAp$N;h9UD$$zn0Rwww9x zG#_8tVVX7^+Hr1^{JldH`UoUI{%sfrMF)iSqxJ)yMMKUQizJsj+%T5Gzp(rOrzsX}_`Lqwdh z-%S2B`LZ!s&Rl=3>egu{+Qup8H!bowU85|#*#q@h;VM!t?W*(c(evyrZwrRNUxh`U z4i=MEzFOv5khwVQD7@-HJ09A~ah9S!)Lu9*ecyp!SJ>+6G;22`?CIo{g>^ZVAP$9N zUceHs7GE7n$q?`8{~DNo^UU)T`XR;ZPZNG8t{y$2(uR-1HDNG``>J4{bUcyeI&vr5 z9w7%T>`g}~%==!pR$Z638&Z$2xVv9W`moC=@|SO)E;I(p+Nk19o_FkGkM$uo$a=mS zeA|^U736cZZ}sEx7k-GhaMB?*9O8foO+$x^4Ze~x9ZG~6K%SC9Rc@z2$2K)Jjih~cr}3m}Lp8d3SY zGPcKCdtTJqY=fR%IohVC0!h}kuxXvhXy&-~>P3-cXC%jG zF(lzSF3wh6q%_BMQ}{{JgPz&KfwXZTofws-;Yvb~B^}_`(-7w-J(eyW4&B|K zU6!@vPFoy$9Qy$dkuuIkGOiD!K8O*t?ysSL9l^+FEff+md@NGt^)$hnREYc{G&I5I z;gnlP&Q%r{c5U6T$M;0&BGsRJVq7iGp_6YQBcQ-6g-x-+Y>TB@Y2tHyk5bfFc}3|N zL92m{lV3V?UJ0^C)b#odbm954JX}*gY)%% zI7GWMD@C!|!Tua{gS{rI`7-~rxbv@9dY~;Xn~Yt;0=S(C%Riu2VpSTrxmRUZ{qAE; zHnG-QQ?1*O;WqA+QypHSfnx~HHH~xdzW#}4vQcoclA%gni#|RBnxoxH!eA*jrU-n$UP!_~y*cbM%qKChZQvM>YPy&w=15+ko;pjRrSXB(&D@|?S%AoL-K z9>fkhk^H55eRjkk4p~N3?k)Hzh$(2SyigEHr2L_Z|jc16d76`Tq%f^o;L4pjvCZ22&tS&#NK?C{lz|s0jDy7<%bK+Acri$u_kIC*R+v zTUO?M>e0@K)k%L{B&>~O{d?U$JcWXmA z2<3vuVJd1P^U@!TfY}ibaGxKzWoym8)z7RbQ*}u^L1{K#A&AiXQtN1G0RQj`jKEpC z0{Ev*L%7HU8 zpxPA7XcU`k-Ma0$*fVIlyDk{?ffAWdyw`RCbGC`G)K_Wwg-T3`6vw1U-9xY}(B6$V zL_LXz2_ZVHl^bfHXW*Cd%J=*}KRg&M*TG)=eYqh@s79yyt7;`bp!RGJyNjYWVKLMM z*aCea?h;~Nz`fF7S8IhEU>x)NFVCk?&zH2C*9K8tXX3_TZP^pn<5qWU{8TvieQF-M zN!h!2OBJtl5F-Wx@M|epPLLzye2Xv{Id>sKYfN$dv^)2)-_LzOO%bSVjf=MK-ikd` zB-zZFmJ?U3z)_>es+IAQ9%(ty)XL1(9^403FI|3l&mc6%+#YE z*bg2mcgTz^RRS_@J>PYtSDTnk)d}6Ndr&5#r*m5GuH0JJ-4vk4vLcRSO2(olN1?epK+_&%sI~EiF10&FM8v+E6xU-?$Y6Ov1*TN7JVT(&jN{;_-lC?EJqCh z>Q{$3Xav$>(`nu{E^0=lB{mjeG$JKJJG!`^)$eBWhvCthDt^w+2gD9WqTv$cklE>X z!n}z+BVffM3n$|-QOV}U@L%M$1coQw-l9I)oZIIj=jeju?K|X8GqRj;4MJ0kThg4K z(u6_P^E=OkdY`qctEf0Q$9@W8inq%DCj;^Sb9*H2d03SLHGR6{4+Dh@4%CdF57)<> zyD%?shsv0De;7zt$UuFmw+j@G1F)euDwiZ(4}`^#&H?SSy|M>%o020B;J(-)zvq&D z=ODpI{$bFLYPjxa}*BbJO)NzOXkF08XT1~Q7kY?v_(oI30trUS^B$ex^Wef z{s=vYdYg3>IO}X+YH?@W+v@GmG-%YO!Y`YentIHr*EjdKXRqGZN|U}Xm2Su&G%w>{ zDYt|%UnwoNS$tyd0p0$?AiwzT)u7IKg_5ZCQkkFYhSe1Ig;Ao8hx3wD%l+Q$Cd6|p zy8N9LHY7R{qru(o8TzkkwEv%>i~ok^kt+2>Pe4OnDgw*)<(NKTnmn|U&8aln!aNC+KUUc31^C+ac zkm}kS!oB2kWS^hkLkfH}7;p<&4|e53JUoV;mIz)N9o-Q*xgdw*^42-8f-1Zi86IZE zx6x1JsGuvJrwPC^ajj00q-kUFEdtu|w>OBzQKoNXzFONBViF;Os9sX3-AE+B^uJdR zZ7Z}-Zpw<@JYuHK9zFjwyVy^<>OntcZuB+XftB*<%lpn2bpkskUY@{k0DSryikU9{VoW6^)Y~`7AM-2U_YcE%wJ~h; zQ@gI0f0d^tz<)K0I?Vkr+>Ao#1;5HLe8*B_V3|hF}w=Vfr*_B>6^tE)8s;U6!@ClMQ4@o?PoQK} zQrtkPGB7T1qYl`&d9xNhR%TO2t^J}n?KoWnYNPxP%v($5TPH=`{slmX^184Odqxtw z;PIxjNx0dlxLjl@ZcJL06idEVH2;mLS7l48i*$wuJ}fV!0WPF~M*|0H4iz{sN>)z9hXxe~*UBOwLG*9r#K z5D5UdRtZ)s_A^IzSa9W83SMieVpq%s8OJRpL$JNVc_zQcmFjbSqo8p{{qCjvthW#g zq(P~|z>2)+*!jY3Sa8y?uR&LfBtbn}5yHHd!tX+LyN>yOQRqZ`MqbER5OR}AQ;qvsGAo*EoPf8_FIeyyXun(BWJd=5`l9kP-a`WG9_T6+`?4@mL{7a` zFwMKGG~fKe(}w2Susgx}I!2}r1t*p;*Dx~~s1q&6edAjBp`9x(pE2a1>^0?=Q&7d< zKWc6)zEwABax4E3U~-pV16~gYr7&91Squn`Gj1pXi89wx?I?!nkk+5;fevmxYxp2g z6H(}$aLPWaCvwa(#ZX`1sdO>}iH0Z`QLp|{(_G)+KY^6(=>F9`PEp0w(bVYE{g@Ro zM?k7LM0MJ)o-AEJcxMd!Or2;@;;0v@kiP-LDQ|dE*sSUO7qsS>;@q~pU?;n8+;fq> zTe?&vYWoiS`DKsbRjjkNQSEh!+=~_TMffGMIAMOqB;0|3!RpEF^$3*2RsUv|v9I?l zW0A7gbj&0?$cdI2na?+dMWf$E7OB9?5&pDMmc37UJ4IGmXn=b2+4Fx;Z~XQEw-it( z@iHu`B)0=@rTAt@z`#+==R$T!xs8L|rFnrQ#@y4z~)Q%#|2lsvJ@ovG>`m)sUHPGfQE=G<7s`~M$nbX_(fz5@?8~< z710Yh5SpKncD zjBLqKsv-wE;_pKb%Ea#QS}wbh1g~|QP@W+0^7Nsp8-re|Lq32p8^7I-%ANC$p8jpI z-(~INdSis`B5G64yq7qxxno*R`$9{onjZVZ@PKUKY)4Up-6?vpHZyItOuxcq%`K32 zXr_PvV{GKNVxD6RmL@+S4yiW7xnkcroA)QmS7lt(1QbiCoCQF7bu`rb-$?|JOOTmT z*p4(@84zD>0tLUu1b!K{q56kGJb(~K?`j5KX|mARfXt^F`K_8TO~+KjXguz)Eaca1 zYUXx3gu=hKP2-i^&AJGfC8BzEw3>tIERbqI8rft}_|I9~|Lf~7fm$6Zr`|J!7UqDrm5uGnf{ytk+BS-Vud z_GC7C9E}Z6>9g1^?*sR+3a!bm_fuX+QpZM+?wNNEWWr}wp3&DQrxogtax{b?+qu?u zCG-gtpCWtDGvWBpjQtbiRnZW>#rHrP^cYnV|EZO)6B@~)UIEMhsk8i1dt>4dnHh&y zahA_XdBtsL3*i1}>?DkoK%Ot%;z7t_B9xsWGC0sZxA?T3W>^PZ4F9X8xdi6)@R3eq zeS#;7@}jFbO_=XFj98-Kf8`H@xBXVanw>^aMpnXDgKV5yr>Z=mnHY_i>B}C?2%N5oMwQ~UdOv`{w06a?g-L5 zSJYvIYCDhN+MBSXH8&}9EE4dcvcO`~fXB;?)5UDecK5y=;iH|WYk4|dwY>bLV-xc< z5$jU29@hbnOr0xO;A3B(XOW!7zO;vG8EGglO;81DXI>8X5k03~@AZ=)XAu2Jez0Dh z6GCP<2^5^1z$z-zU-~ur>^@qwp|PgsPdeiNogqvi?~EQKkY!E zrvw!BWVlq;Cd^ju#hBuob=kw(yAPg319KS!^^5d#57OPYMP=fZWu>R zCM&YXO7q2L4b8@09zdp&w$%k_!PSQ~-{-c^o11f#UO+MaPTXuUIL$QeY?2f;7hS?m zeL%#dG#^^7<|oe;!>=RNAUAf8GKzn;ow)$O+OKrfLJ=5WXOb*gF6VrrVHi*p#`{5B z>*cypwzX%78=cL&u)DtQv)e&%;cQ>n?V+j~Mq#_^Dvuw?srT%g`=a<>8?a6*_MzG> zy~A%(%G{;7|QEe0PWc$n(CgY1mbIu#h)1+7Xd&wcQNOrP0e#4r7@XKD| z&ED59MOi%7&ak08`vBFWNKBu{$6C0aiL6P%Wck`a`#?VRW*#6n^;??#D<`%#AQsFf zp*zvx2lTV?^I@BjzfCQ*nN8htDA6yOSz0TUj;Wf?*f*O;PP0c8g_rQ}W#;pE?_AEm z`BUcHSe6MeOF=vgamM$Vg3w9uMC$8i+HN72RWH+&`&Q1v+uJX5hZCU1Pc(Ql^ei>Z zj7ufIZ~ZbT;MKUx@*P+LOfUS^z5ZwXApZ>f7Y4st+-W%wCm;sHDmg-EXriu_wtGQL zUip9v(W7|U70{?D%|y%i?%G~E1Lk4krcNM6K?DO(45rF`0)B0_2-MngGTlo{cjz<3 zrR6P=p7~m-GEC@sw5X}7sm>d~wOpKHifq$Iuv1S`+}|Puc@Y zXp9VUEvX29#nxA_GrgK{%U>S16MMBV0)D;m!)|csRWP@xSzZ3EjFem)25Z$lrQ*#T!+4J%I zOn@QSlXBRg_y!8-)U=bODQdK+&K4zYYQX%**AHrI`{Op&nZqF~uVa#a7vv4O!{2r`b*6oQ%zT9LV_w{Gn49MRl68y#p0Kl+AVWzpd-vT={T!&N>E`Vi+;}MTO|*@h zb{T>D!%(r@1{+JqPXB_jc%A-IkjgFV?VJHEhMkRdsDH{^rg{IxIWcgtjPnXGSXjie zUjcURmwF1?>>kpIW|PXu5NNn>EcEedY*z~unEWm7pv>vro;}KJ$!X( zFKp(FRyHTOIWW-A&#_>6+WSu{6 zdqF0Dp{i&}SkC#B^24!}UL}W|x?5-yi63&lM_D*_fr;09xeq6VBUvWM{bCP|rRUjiCu#C;+g-p7*l`YR=HWKF`d`=GCFi%eOxVOLufoE<2eI{Z-i%yiHA)azbu1b(`?Z~RE>TICj->you(M=PG(AH{<6*=Ft zEyctTf`4Tb8|l0*#MqI>8R^1fNZ8*~CiPKY*1XPYG(+qtQ>2awC+&RPa1-Y-!guuj zfR@lyWkn`?Yx`A4Qf?6FqJt4#}5v|UPJGD+%OxTeox9DPFPkKb$?!7 zrC!TgGU75#>eE#H`DpZTe{Z^%{4??h=%-`K@v%*6xt&F1w;j-#-uP3ERqxntNbb9f z-Z(1}S6shQa1$hIHEv~U*<%;TmV9ugT<3BUi*~e1i6p}vp|&!=JKdh!FZn+62=GWr z4VNC!CQ#aNL0Udlm(V`W$?0^Vd~FI86Z?z7wCv*4tFBuN*jG9dGt1d_=s`&MGOWA&pK?zAnpF@Rn9+Ee$RG!t)}qA znwovYGfV#pR~IBJ{}E3&vMMD+L0b4)(eglh@fzYO>ODx zyG}^v!&Ar<Bhz;-sNRSqoF@aAFBUI z2b`FO*GBPuf7e@GxsYU|-B(#s_4 zD#6VHy`3PON?W#p&7uLmC)r&eXh)0Bk7lYREmod}>6@~7Y6iNMww_onBZrHCE>T8~ z_^j=S;XMF_XT;Z86}^$hQ%8bYKJKW)Wf|r!zwx&BS;fw)71V836;{U7LH*A) zAM_344ykk>RbkVWfM4Q0ivyXXF{O^emxi8>DoB1)WEDu7dMy1(d1{?8=V$Wdd8c0uN9M?#>Co*%^;&X z9Ch#HmDLnG0qBYmVAqZJwU|%Y1aO2C-9&B_koLx?JZzCC+wUA+;MfI|?74w%p>?)l z72A1-jmkm>4iUWx+?MhNkzz=_Kr3jvMQbEfTIxm>ikM&qw#rWxJ+-JJExwz`IuT)g z1uU7s9$*sLBsLo-T4U)yuqBlH4{-(rBKc>QqXM=CRfb_Ep zLOs{rHO)o^XjQDaBw@UJRUhJ zV8EPG+Ceyavsz7_E|xXA^V2qK$~VK#`j&{8koL-*i~Xna|5dO0f0XC{-gfx4xeV$> z+9%hh+o*=Y>Y@`nSrL~T#bj>K7wQv*TFfbBEpD^|un4Vr=01LN$a^$YHba~5%D9VY zE$mNob}3;}ihb!WON8*LbCa!bunyiJ8*zmDU7_7;-%>a{cFV@)jS!ejThAVL+yfu?0PG_$K1cd~wT^Fef@g=W6H2+oq%^9qykJBOS$ir4l!z}#5i_bS%{yR&_((7K%D^^~O| z9_W3Y(Ru%$h4e^EeyeB{=vv3Q}4L(r;BGAh3kShLZAF$fU*Uc z?Aln~gXGJSMP$3tq*pSc-J=_%1l`rN5#< zCCu0$$qpQRdM5blvAzG}D&=8<_MB$2@#zTG8*;4--lAE-Z$KKpDN&dgm=J5WY2l(d zXWgi`-ze%?dK-=51eB;e&}|J&Zh;ZqHW1V-YasA`V@OyLHEaV3hn~19;8&!oK@9}_Ce*56w zds7Nq8r2IpFqBx?IWZULSC#IA+fw*&;f=%K6M)xwi`|!daepiK)j?WlN3F>@!KO-8 z9TAXzuMQ+8FqR4XU}{ zRJ7)OKcN_Sz!S^Bd?~bB=`+WvpFh|3E24Y)JOsK%wwCuztrQ?|A`n z>2rfUIfo)^#Rgt0n(ULgfAx+nkND+MJoQ#xk7HU(xqWwb{A?=I?4k&AeuSjKEt3%-oGEj;ca^HRxa&jRLcpD1Ul)HY zR>kpX(%*SLHvpOFr2k>KQ^xv)7Dc~0zWBv`&v``XI8MP0$@Es1t_CaoV5o9NO~ukV z4eM91ma=L?{KH^COKDMZj2x_aBXjw-PC!7T!wj;*7GNjD;&J%KV3iU2V3>2H=jR$3;?ib(2S{kER;|+c0DC(a?W1MdY$jLx}J#f+D1xkp1zLO~4sdPo)U9~`?MrD}&nJ=#w?yGQ{Lk!H<4{T=z2oq%d z;L(-(0&;MhqO@G*EFyjW#V^oZK}K?{8oR+@lgMlgC)0z$P1i|(?eY+D8tK(^sh9VW zy-8@-lQ@|x#VI{747v~W&f}C#(%drc4Yt7@52RXdWBEJCi-2NhRNY0A$V6u`quf9~ zbHb9|5?ntk(DV&MI^K6+q&BX=3!R1y+|ApunxsT>gZ64nkne?Qf3c2c)JORP$F zQ_{F5`RCRYv{CfNHDlrI8G_cunc&l9g54(tjhG%-?CsbOOR9M4YwhY$_~-+Jh@aEk zIm6!X05i(BP-|uz^!-R&#YJe6S7COgTBY1ghVqz9L$_zv%ca(2G@V77qJJ-cHEgcC zHH~92=3Do#s)*lyiPtX{Ha0&!9(_)}_*FRFgyR}Q{do*y? zMh-YJ?xLO(g52>R*}}!=cIf^|##YwGk^X4Kp=~uMQnZz?v@7k#J{F4*8i0#rJJNXw zlXX=6s|T0Q8zl_5gX@l|KhJY-eJyxutyz;(1n_59rgACIPe;0MQFVQYphrae z@~b_1Ulf0P_QXalU9ancytTc$+PX^d(|BnkKYkNEH@%Ha?%FHoDj=Y~`*h;oOmnxK zS}R|Lo!evH!&EtJ;BS8+`P^JSFgcqX^O56$tx8-|PAb7*-Xw;8!gsBwTb;S_#X{(a zyVTe(3)qCia zZbhQ5VVZ)$l7|N5K0*%w_Y)x;glesoK-?`>vh}!(h z-Nb8UOBf~OOfvma;|S8B6sp-_^tIYHh^W*@51~)(SQ07LKoTeUxcG=5f|^Rzm-wyFT+b zVAk#jKZVMNbEc-a6x}KOn8=`Sby&MZj3vFc5WU>oWHU#ij4$OOYCVxeBUay%PWFT9 zsNMaB4?z4I*+zEA0Snt5RsfO#3LRkmTNgwwPtOBM9z7Izd(i&mE9ib&%mg49Q$;O} zJlRGAkFA-9B(iA(S!zybxAK4-0y(RT?0!5Fhv}vtqj5ErcifOH<}|*DRQZ`=Iq($V zQ52eY)2ZJuz4+Z$9dXfxLF0HryBhFLap0Z0b6SI_fBeIcd}2XJHn2O|F@BzM@E*PE z{{s*pVI?hT1)bw;rgVCN3+Cq?*qdSF0YX>!H~_j3xaqbnA}DRyCfY1&KCZ0?ewd}$ z9}B5RvZ0O``8(@qxh+f8n&NJ(F^V=%?Yj*N^?pOcupjNu}E zUM7{38C~DQAB(zcZ@7c@&)DpLVMR^I&baXHptrXm>zUEH01Q6{i>)$w2v+_vx|4p0 zrr+-)a)@pGC5!aZUNq9`5og-s-3!+7;^n$8&Lig!B#;l5Wd1O?Lr+~nU}t0W-Jwb^ zp8sL!f0%R_sNs#pQnOS$F=mj#E`6MbyM4?2p3^Rgx>h61e55drqW`FwrYOGh!PKH+ z^Kc}eu)U9J;N>iL+R1tJ+ZSa&;5-RfC)TBfKMYDXQuDkAsF}F0vPjqIXuR3Z=uLopQK@6;{fA-Gk+?;X0BcLX|HHuEoK%dQ?>aYK3ZK>R8Jg`aLt(?i>Bmt^ zHd0tF=`~2xK0vdK1MyW$(F(f!e=HXUZ*F$e?_RUi{4@{ZaXO@r;uR%-?^85>S1i+y zY%CXVon3euUu5sbz$i-RUeRxRR)plpFv-zwH!9YhOGL^w`ze@M6~H0HC3M^dihb>% zu^}+4%g+VHZ+}PM!W$m?v0HV;Gyo zq3|`0K(o(?E|{P@kyIiLd4z*iO?CY`Iu!OeMK@-+j1~=6ZJ?HVj)wgu; zp=D~h?asGI-A9I7oUv2g9C@pwItxX6~vA*jh8u z&ee|RKsrY|W#{%u-w~=_HYVr}#yDlsvrO=oGO_pyC(N&LHlM(n0Igs_fzV7ua)AI0^cTpO^-Gp4@g!_q|4+xpIrm3 z15Hdl4w9Wi!$kJZT>g7A`vRjhd~asS{{*_qeX^3W-^Iz9!#f$GO5xK*3u#QP?jc$H z<6fxKtIvkEzI&c-jMv^0p83{FSyo*8YB4e1UPCI+le-AqAa28eW35Gn=;JLi%|3nR zZqUBk!_5Bt(~@^Y0f5Rg`9A}t`i~p~`DgIIB9cYzrvYEUnF82Jh(n0qEQAS+P$PDz z<~Xx5hm!)MbAx5w@UOxQGO%a-t5p-&yEYNNs}QVA}LAXY|F=6 ze6xY{`n+#R$CMHt4K|o(H{P`vRb*zXHNo#TcXr^0WJNYw{Tbi%B9O^pF=1z(GO0sXsJgjWU9(jvWFqo|T-~m9~ir zrC!RPTvutyy&5*y)x}d+mv)bOjsJMZ!A(I9C^w~q0<0`;!Vahngc7aT?crH!rN%6~ zlE;#AVC_Ntx%0wAi*j(>^tF@D`xB(sv_!;ddM`f@$)uged>NA_2ME0aYUYiaSD@)0 z)vrI_zI?U)KIf$y35djO4(E1YUVOnDu&Ujx?1|M2{=zW@nwP7~zlJ^y79-tfu+1{f zGF?c}xzb=R39=@h3ZHeA2=weQ>31Cc7pK9~Q7iKPiT%d_drSM`GavGDxnFkx6H$Jl zImq>t+rCV*?3MRQeg`(1*-mmKIklAuK)k;B-wmhqeFu318j&Q#WyDC!b#iD4vYipI zCTwt&(TStn*GR87`SijDe1}&sRrK)9@`0^=1CaM3%SV!uevoVD#kxsLrILrs&|S8g zbrE>SZ*7EgIPS^8jg0M6E$!i)&j<>m;;Jdq`-b>#S=b_MGJURbUax3obABN*_MnYIGvK`_`%6u~9 z+EwJmIH{BM>5<$y(AGr;VqN)CbMVyE)Zpn&*XP>LLhot`I-Nah_*9~>6%coDE55YP z(6Zoyu2o$w8nDoWP(0WAzK+4K^^EK7LK|tSKvoO8>Cbd+4j4>k(M5tiBg&w-$KTw4 zb++ckyR8HnJ|ttvZ~jA77@27v7k;n_q}}6RcHe%ds1t?ypZpveyoUev273E*%kM9x z?p6a-<-hJ-OebVk9WvW5$702c#NRN90bHn>i^^B%8E;xGf~h(m)mOx5q? z6v!{gd9PI|nOS!k-MZ&?<5+rtMSL@75un3pkjw#W;+~Ls+W22aVQ*mPq^;+!_ha3! zxX%8*>9}AGbPlp?mN#B6EAEFMzi|e#@k1hGLLp1 zs&+c;dP9;kOaKyJXIT_+wWJ)4J%o>^$`0&AL~1jXKQ>qr_u_3 zcs{?0rdUfT-6~-{$eTNU&O@h>SLwfAD0hcuusKA7xIB?rX+bn^(I{cO{f}Xvqd!X zQdwu%Mt%YPcxDdUd&Ecwm(+Q{O; zrB8c&JS@l;hOr(fL!&iJn54NE{zVzO5gBCydDwCRfu9l}awg`%@4r(}yYn@N1WxC( z7^%>`3vF50GW9}NNN>4rUyNNFG)&_&1i#X38yMbU`TFf5=`!Y+GhUq^?n>Nl9~@!wXKHlOVpoIf=u1bJNP!2A;;+`-~eWNkiWLLodo1M6AMQO$$na1PKz(u zjG{wkor5NR#sQ{sHDuV=$+`*2qdUs1;uV=?$i}Ib@Unc-eXS+aUUs;&mhM?5KA^@h zrv|q?Bx5OJzMwgA)EDwo@o>fEp43awJ=JhP9noKQJi))=>5eXw;(jLgbjp%x20P3( zG(Cz+GsZ3X?GyIawSdMHM0O7p4H1OcXBu;!rWy?`k9sk@w&)Q_73i@hr8tB$crNOE z;{`RMG3r88Ljt5zT9#taHXdpDfdL0_LmC@u#jDD>>O5PYB|+M|8u|jTN1#ZBqCMzY z)3(B2mh2T4zb|^Z-wWxF&5l0f$D~N$>41)jbkJExAhWl~CyRdH@o;%qQoz^iBgc_v z@l*TUwbjLMue1bEH_?TpLu-%Emn68S$6+T>X%t!9w!2N=LdPs5d>dP9wECOIozrrR zY(=rrb%cY3h+SQJl22+q7}ssFJUEaF7)IuDpmWG&?hZ_vKJ!`70 zzax61bzM~d(u&cC_gejUoPDZ{tSsuv6(y*BHFN-=IBa8Wu9?KFVp0sPfVRsI6=)K~ zG49vIO!(%LTmkn8bL|@Z(}?b8bJAcbl}z-3;rHMx5uii6t6mF9z`%9t<6*cE#T{5Z zrMwTTam-dA0qT|H`QEw-!NgUW=wE#!HS;p5udtvN&7HBD5Yf78u)&dgp02I|?$VhH zI$*9`Eh+s%uXw>{Ngo!tFV2Ltoj*nt-zcI4!Z~S0n->SG0@`LVe1`#L;2T9hN?!J! zGW)W4sJ|r_jJPezU^jm!k`jgyfH+~uqSGNw&OXW=$gzYq+2g)7eCneLZ~8bAJynF( zM*BdxXEIwR_RqdCh{BtFnc86FtAIyT+*m-T2bGgn*L16RveVZ1{AhkO(!~OsP$KzN z-8kR9n@f}aj3IMZP?`aG*U*HSFhA$>MqP%iKhy=3M2ZuTGb<^%2PUue-5<9ew~2ow ze2oX9@JgZ~i=0Gf(9ysQ7<~H%5b~e?`;E`k(AfrkgmI2x98lw*586BvIYQ?6)O${CaeZr2w@YW+ zm-|jh=q|v)3aSYyn{6}9veX;-@P|X^OQ%BQ$0xsKT(8co}|AD_K%f{A({xC8#yo(*RZN`eT64|`$hlbD66W6bR>V>j z0qu$h>S>YTVu2`Mna#!Oh8Vjr+ZPKlt#)1>Va80sr*B^VoYSJPABUYDo0>z8$&%*q zEv!!Z3hIJHOJLyfsOu$FJ~z&Bh16GwU4R?oAfD|fFckM&f|>&4w%Ks$Mt+mf7Im@< zSS38XOk_xrHNrRkQhaZXr<)KsJ?00e)gU?_@fOZV&UXa-)i}e{MJ&$mR$GWtTpR}_ zS3J3UeK#)Hy4J7NsjY9+#RvK@hyN65N)ZKCS7D4I+4SS;rxB_);X(*ew^jHO*>ld9 zIw{$a=K3?$i{WIl>c=1M5BI!8<%K`J5y?lgPoHaIM8l=XL36U#yDM?XTeJx%IU`suU`+ZNO%p|Lz!x0YSX zW2SxYe`f~DvHz8AW@)1_`Q#{_#{T`r7u!;@IWOEUey|hbeHubLy&$ZmSfF8OJ2#xO z(VwPghKht$@w5h-%-|#76HmmZ!}j@jR}bFWep+)~5(&B-8=hPE`xYC|awLsJ{^UGk zfjjO*fNQ@HAsoI*ug#dZS6{!x=dPdxZqBaRU|^oZobomt5*d-1AFxYvRdaZ6{{1E3 z#=y{Rqf+$riwPe?d>U;#2i-qiC+=|wbCz^S3bX~Y@*_|q-n4g4=)%uKWxXC%Yqq!#A}%( zO3VrYBdqqOn20C$$s+8el2UaCJ9l5a3-UfXVtxa+R_~n4vu*hL5TI-IECt*W78rki zYia;bjhk1;6oANAOsHv)aO8#b)Zrz}S;&SVV4b)Z=|sO(Lg6C=-3(FXIdNKK+B7|057w<1;Aesr>2KS>tsDG1 zVAm3cdd`OaumlStagSp5Y97$8q766x8EX6g@@sI)Jb+}AeA=cj{B{u7`wlcSTcb6O zw$Ytwv~T3NnUCrszJS+eTdmJ4AZg$Qk9~SPcrwg3g+(AP-TuZe;iQEuLD~m(ju!&f z>(IJUduyLH9yTmw|L3LiwgKFVIOB}GJ@wsCauieYtT;dZ)vM-&RlAWfAIKHy%`KTF zivZIsN6T587~LD7+oyEUFv9W%g&5L7vBqLefXQ9d>K0b}Z2!4e(O6o)^FHN10Tb4w z$T>z;%{K#js3%>e=ih+JT5pg?H^suN%tj)KEG0wiIGE+F@Ih4zCBeB!^ zQsq~J@3B9`8{qyIkYaZZ1j0v~x3Q=So^~}Jm$W>ShTpk~q{a|IKa%zd%K$m2qlCzj zC&4T5Dapvn2S*P|bSVu8Nm$1sTy4hvl&{`hvh)3~L)yI4u5R()kW(*}m4_3pjLsV; zgISWq^(}{d5Do43-UFJsdYp%f6bOZV4SB?GvfK7Q|9d|HN15M4 zep+4vwI8Cg6`p7W9?ty(_<$c!^x*IThyyaTmad4|*;3T0bjD5-44&5ok&qu=DMyu8zv^Rwc*QB%q%{LK|y$(r+^-A za2R5^##*4?JOFxnwU;=4jzdbp)Cw`+cRB0C0h8M?`jtp|ZA*MgnvE5U)A{O*D%g_O zY++Gjk6rzDGACeJSWD4{%MiOax%_<8rYgmTYyDlDiW;n5nNDVrKh3*M*PniT?^`J^ zYY^-rS-i_y1XxpOl3i2W_0G~Z_ZxIe90P?oCDywZJU)1XI zE&PU4vbk}*Gk0cwgO_&B++=?BDgOzLcyY#+dl!(l6ZUMZ)0ikGJwK8VG>qJtaJ7b=q#;xebsE@29JAA~z zd~+$WctZ|^?ybrQ_uHF`i8Yqq5sAT1G>|$2e+eLfE%Qr0vqwh%Vs3)Y`*GuBRCXR+ z49E~5scn&;HkRE&03psk$5Q}G`M=DK4*$A~SP)catQ#F>Q4tNhW@{<$qmpWBtJAi$ zXY3^^bQf}6*bHYtA7|dn^*I<tycvsJO-?t3HW&)EGSyVz!}00*RU&_ z=nRr*?R0pXmF05oM4A+7Dk^Ja)#!1CeSP-U+o4Cjl7~~kQ;=ysWL z;=;Db(VCG?r8b8B*#JdxSoWMndMzyF;ed2a+gU`(vVyi!Hf5)rF4U`zjL645;PrLB zrgnBB$T%^5Ok`h#&WxH_$FU*$o~+>q{9NY(-6%%kV7VY;$@`+OPnM>p3=1Bh`~BO2 zXix<^MfQA1K!r;u<8%i$FI7|p`D?MUoIT~A81x;S_4Z6wnQD1Si^owdSkV+VOXNzSB)}g1xBiWr6i)4B zQXN_M*z@N|?$wDz$hF>(!WHMm+)Sk1vV7-FPe*6#iTnlJT~o-HS#HS**f32n2a_{W zT?1=mvsuYD{A7e!VO)`1LA_h22Vr)Q^kHC48o?a-kpYHO=KbpWM4F{Mgi;LMD|wf* zehyjkwH|r!%#$X0bSdW(871@4oeHqwtNCZEfu{$;NfzH70fmAMl#en&kC6wic98GR znzG?p5EM--%=;bW_t#8Jg2^7UhJ!3u@g5dU1ui^ZH~i8lGKeg|(+-Us`omB}aEO4> zCS`yt-c%V0nK9|Ii1tIUj&>n2c2YpJilj~El&8G=h_2Lx1YCQ$C{yV$I}EDy>6Qd` z7;W=-y_i)|*@5FFdk<3A*seUm=Y(q2;X0q;wG86oU` zA{FwD>QVF8o*Wma{IIeXU{|)hou`u>N-6HY0_H`@yKYsg$fH#sfPd02J%zDYDRU%8 zrS;fx?;uMQ%uaFpP=Nk1DA^eG)u%(bd!p%H4t9MpFb76sxw`(jiWa2E18j6WVclY! z28?%EF=2+~?U?|Fy_Gz2ZZ8^X*k_aQbd*RnJES>K7|DKeq(2Ni)_v;>W8IweP|>7O zGer9|%SEiUQ^S4_M=q{5hI2-`=P#q9l)Kv?`o_C$E9w`FsIy?f>6&15(+XNl%gOP1 z+>pCFaKdWn&wKzbrKz$Z1+j+)sko`*W(BmmsRzjcaWnx*eB*#6_YLZgg6;?u{RDum zP2Cg(zy92^;I|px4hwCt=0MG|bDRQoG z0@`u(fOVjyo)fAg5m8#{I~0xJ2I7b0x%U5u7wFah`~j{1f#Y-j8TzjTJ79^j@0wI+ zCOLLH=+eWR3a%p1h(4ddKzWOaHr_RyXsD6a@c!HzWy$63IN-a*)P@{GVNrm5!x%qT zo@{GhK3GarFF=??TTC413-gtiGyQ-{9mR-ZoH@x-iuncq02(YLSfVpIF6!J|FX8(OnsL^pfLpe4|}P0=E`R zE=w*01H<`aNB_{@JXTjg^g~<;DM9=&2C}g0fMVu{Zps6?NcWM|_@+8)q zbCl)cWTT1`s7I+WAFQ3uA(kHjN*&4cWC5->+ILbxOwZ-!FlNB`Cm;rjOqG_Q%?0DTTLFt6ac1jSHX$CN=;j1LLzfrJ|X1xDZ zFPUU~=F9bhk~6tWuh)K#*@Mf)(-^38f3cBd*eUvnD98os!!z(Z#4i?hW-_yY&5Op{ zYzG?u$c~t|+La8h_k8EBpohycSpGi83xMI@G&3ALfU+ir<#V8%>Y1CCbSyn9u69{# zk{$;_1@X(6D1sK^t-H{=D>a{6Ibn z)G$_Xv4M5P8M}V{ssK!Qx!50O5D zQZreanAbiscKLF+ZHqcXJ%LBfPHHJ+ll8+4=$jTnV1{K`tb#l9m~@2_+fXge-HtvL|gkA(mtGFtEwar1ZT(_4qmTR(b6y_?0c4KCv? zwcbLRnRSz*6&Y9e80*Ee8AY=g`t%dQF0YNkztAcVY+D8gsJIO9Ny;PN05jVmuq!7? zjPzO{w8#90*YYjj`i+SXKF^F1R}ll|%HiBq?k5z?f0kZkUG9SSn6i2;LbqW9hBLwi zB8~)51phDc@;vX}ba;!v9Z?q_*v8J5xOJB8#_9Xfucwp$8+-2^)>PE53kCsE0Rsrq zi2{mBQ;H}pD$<46=t4xAfPnNC2uKqIB3(g>@6hR=6P(mQZ*`B#) zo@c)A%qeqc=FWX){)lLv?cVI2m9>8B{k`S)55uXfRUE8CHq1O9`)2Qrg{7S|Z=gOK z)X6kn-DOZYnpcQUyn2g%;m4J_2fHxEu5TU@O8rcDJhykPB@|BfY$WhDqd3Upe^n&Y zi`0YDt|t;+uuH7Z>sa4V5GT3ZqcaupZoU`Tl zCzJJ{vj(u^g`U=SeRJDI`|BG1b`GDXdTl=67VfWFe`sodTimtaGmuBf@^icc`&X1T zd&YDZ5M?FFB>8#Z3k(78uz*FSl|_l4TZV1VF*R$&E6mdT`!`)(Vwwl0tP5N>a`&}y z5-|Gc2IFj4U?L3X=ARB^`=b|Dni$MYOTMHi?1nu zfj;W~I?ozitqQM$Qd6i$2>R}#z>zN?WYS*3fDV9fQ(Ilkq%sQW$596_(YR43amZlQ`gpT3;vu^Qmy zx%3BQp^g?K4ddoJ298l-mAh2g&yr8RY^8T1w0*&)Yuz^)DLrOE8^e->E3I^je#4vl z!!j4DzJ-Q$sGhb-;PW+pcmk>ce}Ryql`C4xcMsAfZcW9NwaOH{$acN&)mI)X72<0* zHL=>hMmyWg^fj5Zee&|(G`BDnU|(wrQ~~BO7H4-ZUiRkJvj$y z#eaRNBy-Iwc}GgbhS%aEx^e6Sx&hmIgjuJZ_KquxLcHrJ*p+SyLJh}AMiC_1k;f5w zL&qx@@OqMDEvE9Y8b3b3$gli5Klqat_`c4s`k2F0BTf%93XG+7U9)2MZEkdXYR)qI z9du$skSDRvVJER+O;Ucr(-swNf{q_v)K{cLs!m%(w7#?!W3WwK<;4@@ha7K^=Td?<{d8h8qzOb5hTHvWdXj6o5K_BIO=Q^dH zqzmjS^AO_Xofi%KMCf+{INoj=$ZL^Nh|{uZK3gjXnbld%ljrcbliTCGFN0P519EmF zU-Sj`4L7XF^{vs6&<6kOzYX(kPEgpX1?asEqh@=XvFD`Tq&jLJ^GEPdjO5{0f;L`_ z0u;q9N>l>}0)~Y8xz%8~z)sgfD%88v{+`JCmPv<_xQ+cnqZyS0r#tk-|?y~L&1y=tj80-KOHLMj%NJprT zdc8{u8hJn~{mGED+Om5|WJ?ZBxU#c7>De(qEyDhl(AfKH>2Ais(=3DP7AdSHrXi3$ zrzr~)zKL8M2p)8^M|$RMB)+ivF1&B+Q|g!0b-JXGcxEKNUJl7dO~`PSKfxPCeSaym<=~0=1dvTvulzhb%8&E z-!8QJJ6^4cBOYfl*3=e}SAM@F`Eh`e2`YK%3+3oY#LzxdiS2Q4@Ax1(U%^-_wB$Ga z!q2@wAdcS;{c8eJs!Z-fi#;!S4`jD2`zT`IVwb*lcj`Y5DEw3!&$5^nqJW7(pKj0~ z?3y)Kj~8F8lF{0}qQxI`AKJ(rY76(~IdlNj3ByEs(E^qah&gd2MqeKv^L;cw*}O`# zT*+W{CYz|~vI>3{PMB^C?l4(2!58MP!z-ikaNsLBrQb@pS~2!1ejP7%s4+Vk@rraN zp8Ls^GNn=>s$7vIBr_%xhsZ+i5Iwc2?&Cy@!}IzEuxax{Us5lbhZoO7xd}*)s;)_; zH>5`0ALLuQ{AGepnmHD{oqjt4Wt&j6M&mUdMrh`m`h{s_y1r0UdG01{5383t^D$9L zq_6lyi8A?Dx=&y-613AH#nk}x5XE0S7;G^%egsIPUV$GNd(G71M36HQLXhI&+NzM8G5T1$#lku=<1$@!#A?Gwv66XYW z-D#ZmZ2VoG!&x2h7Awh`JZw$5O+7(CcD%XsD#!r_!}I0-KA!J-PbtCXGpn+C-$L@0 z0D*%qbU$Dp{RS#RZz&~XNSzv;I@QfN2n6;1JP6yznWCzC81sM3P`<>?uYuC8;t8O8N|dE9oqjgJ1!Asn#72j zogFJKB{t_~EcIA8+w)@44}*<_5+#Wli>sYr9;!9*jI;W=q#i&>F!7sMe$~7^5WKD8 z-uS&2qRF5={t|o2xc^F^E~P4U8=DAJ$!QDzW~mNr3jW3wc)C5%QU#+#E|B|6Tcd7uN9T(k3MLz=DHK7fdNtY69VdK? zmJ6?EmEQ=32D0}smfg)Gg1Xt>_r~k8S7BBTP^zr|(m|^y6h!0ucvDN-*xvnmy=q&2 z{rK|B8)|pgm`Qb|vC zwqT2TL{~^!s^z?3Y9T^^*W07hTZaKNl+8S_i|-)R3F{`l+o zIQwrqKK>ti1?9wmc2Fqjjz+L3a-y&VSeCg*sh%bzdEzQv$E_Vk;ZelWMANbHPNW@7 zq;_`LBzmmipF2AJNV0er^}R_XbW^ef`TIr6(F3c(iT`Y;>3_E4{%=e|dR#5pR^T{p z{%X44%OyL}n)%yy`XhnVNr7copH6OD+XR#6AHnUgsoEt6ya93dwp$dPjjXhUVj~+n zm^AHrSscoGbA-!@XGphday;eh%s=2b`GUQ=fO2eI3IYA8DT+T*oED9MJgHk1^8F&Mr*NPF@z}5<3C(~T zUrtv`80d{3e%M>>mT`u3W2o{dJRmE$i|s^`Ve1g;Gb{`UXai5llHQSZaVoGVG&gW- zl=gt@?_LRCr}t_!@{-0jTBpD1pUNBjxF~0I{5B`91BJ6-vj#@MoWz}B()oXKI@+dduLB^;it!qrdqy59p)Phb(?D@7JtJ5}# zL~uJvot@wii}zM@c<7*Sp@ZK_$bUYV_f$Z~NQ;wiM_cdcVtI%4n$6lb#JJ_~y3x%a zvD-F>JU>gCq!7wPZh@|-lIm@+vrpXXPqmSYV=G{9oKaZ-k1A&ilgV#b8*18y^sAvV zN~4zS`3H0|V&Ya|piCH2s85^NH#We{w||}^Af48d)6jQa<6#(W)+Y^EMP7M5?(9Tz zgTL1U4;fv9!P^rxD7T$c(O{}bVsXLUvd6yfUhzRHJESsRclEdyNb|4U-$f5@hXEaj zCJ_WH;e!xE{S)mqI5tyfB!1FCs8tjoC9x<|$y23cW_ z_HKSLNlugLtpL{E`g?c&8~O_V4*Tcs#J`a)rSYF}bfd1mhRzr4P!qPFVqc-~h5#vm zd;Py_ss9fIs{dD?8~SJD|0Q^HgZvT(f1cn;awBvTl{(NIE%{P0oj*FDL7(Ar01d0U z0xf6wlJ%+9d*(@PMd~7b6le`U{sW3d3ad}zAQ8WiQFE+mUiWG$k?o6r!CuWF&gIQPb-VRQsCx-5)b>q2_je^`vN)d~@_YQL^4-Vr&u;BH zL_TJDNq_MN^c*`iy@bTyE=4+0VdKJkYqoNxYd#hwdqpxI`997}qnS|Gjs10Q%*LKN z{G4bA6Cb+Ipcx2jflO{J9^lU`Mi2^G;iqRdlunr7P0sln8|%z>d3umzE;Qd@+Co_K zWW>;c%D@gxz98EQeTB6lB0Cw~h^(EQE-9i}QfsMPv5=YR@A4k&p3x3`YsTW%00Qhn zO9s3wp+ZQ<$SR`rN*%!=^wX79%aKJlxpk>slHfz5EjeW!J&kcLuIuRE8YEX5Dwrj> zH$Z8EF8DlqKRSnV-Y@L_wELIYgY%!JaxQguZDl`3h3KU&)9!rvoXx>(#0S8E+*KgJ znhe!G@P^JzhJ6accGTh|67(%5+M;E)P5=;{`?7l$Yx!g0ewV1WQOtvfxxAOv5=Fhm zPShDpilp~_&YubSBB#3ml3W7EB5PP88$@@=zPKLkMQP8AVlVTmW4T1G@*6rJfQnTZ zi?`*$FpnbKiPNOAkza&^S9n1ULOM3>rACECICS^m<#D?go-60NU~iYag93pe@|*x^ zwSDvGd1v(^GpHutE9}5vev{}S3c=fM**_!J6Ttn zF7M!sa;XD*+P!n9Xc!GHN! zzf@Rr7PdWbdkOTF+EtFlTn23Ru2of(-MwY@KAz{Xhpt2j=p)N`D#DNq#H>Xq`%WP= zJbzjBlObTPQ( zf`H`rI3QPpk<>x9p~yJRogYC0VbVBH#g*A%pkY~Q^>C+NBy#%M-aKm@@6zl1QPcgphafEG#`Z0W=St%R=|0}Re}WH*YMCENS2@c5`sMVXF7*j_HoT z%8oDO$o{m-HPz2YTbFWPiN9hp{TsJ_?$nnrS3!&+ptUQdsa**|7sak3$XFk=jyH1g z4@ma+t~v+7BubS%UnT+9t6BRdObnfF_5mq`8qL@f1~JC0f6n=MbjoY##OK>)Vx5Q} zf_yVwWmjfyo+A4Qfv%bS{ID;u7c!faRS*fCMt9`aw zSsZxJuy1$Xld9FUms6;-Lo`zqs3cXP#VMFkZ*?RAj6bu0;q&)Vt_1cJPOylb(kFc4 zZbuH+kL|AEVAkmegxjF7xBg5f;eHenf}kBs?VSd`>*b0{-Me@Wf5WbZw}gV3(lLob z#RYv&B6fi_{OhA)KOgzf#NjC>lG}dj>Q5n=Kt&aa^4@)_75Lr@|6J-I?ZH6_&!QCr z(BMD{`TKYn&=LxpSSDpAn0?f8(jtNb7^_hS&eKlj<#=o2QXbOG@PkWAp?wM?0I-rvU&2UaCUT^4H zwzG#_)8zB8-jo4<91gBF!Q(lL(xWbtlL!`FSk_WOI+x%XnJkMJ=5eI}6Mm1mjO_*T z8%`IW(C=ZGoD+;ma@S(Ls&@@hNjEw2rBdUet-%UJSZKB87~*mvtiV!+QNdtGCzoui zk(?0pjuZY7&I)}Y%wn4 zZ=dd-pwrb4cBLUyh*mJw+;R#&tr=*e;CpuWl3#vwTjzQJkDWM2(Cs1~av@=UNeQLS z`y`UELJU0XGW2`=X5!GjeHFP=*XTPuZV$D2j+B7xp>zVI9VT&aL|ouBK+&(T{JN9x zImQ3gxO=UnI(mU|tp2>Y+)rx3O&pv3@%_uCe!dnMqoZ|Ho+O$GjZnS0q$X;~@)x_$ z44)6+AAiYGd71Kksq!+Lion{X($|lZ#S2*MzvV9HbB|_q{W?HF?c78Va-*ntI%vJt z)nx}5gj_C-(aI@tU-jRSe<=yRZf=jPhekkZG~;G_$RP za@%hpyv{hUjCG)BL%0wV6x_2CPx> zcU?6kFQ0p*%;9bsyx5I9ox=x!7@>Zx@<;QKG{w)anwTm$OE5INhId+#F}TZIP3nUlH_6Uw0y+Av`q9 z4f>hL))P23oH*<)v~} zTFyk#&!ECRW&j?$S(PJG-0xk3d`orYMpE4$P%7>@&9(+yf0)D;>!Uu~Qzj15Z?D=umf#_&{kyDuo}B{x1DqHVR|MgkI={OY z-SB?W59;vs+%Xu1D}s@>3pW~5dR?Ut<62XW3`IcQKU;LWuJTJZ>aeMe?5K4pZ2pky zI#GVZaWKd@s}XwU9ob@WaLMhMqw;Q*;sO~|vuqAZ$v|WOB_FGq!dc5<*S_$FZd)&sIMre$*;*QGtu+cf3^m`&? zQ=52Vqv?1fft~ukfv`Mh_pSUeF0=P6$RTN^w*hjiM-tydZ61d%2?0$5zUl}7MI~%U zi|^X1iCGwE*7Sj&p8G1;8Xr@%0Wa9!dtwp!szX~?gY2EAyid^|JHkF1=vjx_uMI4Q z)gCe<&=e=cIRH89ra=9|bSlDrjCnn#PY;Fgd%D{eTPX_brZb8^Mf!*0;ieDZ&{rJ; ztgjg4@EMdHvtqi9m@-tcd3#kWJ44$Q~OPt$B&I_2-W|t)y%7LBQu^91$jM& zo74C(ZGWRWJB8@;yKA!aC;+1t&|hu`_n!KF)VozHrpjE^0GBFX7F8<5%)}g!Yfl>T zb-c-@Dt8+o4&caN_k5sNu?qlengNP)rS~0JDGs?b-~(}0{Uyyto?^d?k2zfno4kA5 zRgnIbVGf&oicVD&R_`(%-tsCjWU8xdjMNW&eL*nMH2+~~EZE3SoO8y6C`fsL;BKU4 zHK~%@aB4l+$*Q2+(*~*clGHOin8rLDvTYbYBOFfic^_{w%}pX-Ai~UnKb%|9JXC0s zKQ7adb^g-zd39zLhmfpZRVgB1s_9ILA)ur8;DUZ|9b#JK7V}(E>BO{?u{=iCr8L*< znOg^+kO@H>KKutn8wr%HiC&7)fS?N|Fo>B6(meyZ3l5AGlLKi}!^cF|qRq2l~& z_k>#zOx6EM`z)TNKOnv)1wWI8`KTWSCD18v)(C6sPo2#M9!uDughI*>EtXrX9AGu# zG;m~;I@@m%SodeYm@T;%RSUBW-_ICoU*=GQMt^Vp13DwSgpNhnEkZ@euU6aVt~3Nr zQ*w7zUVhHq%5xs%^xXNp5ahf?eiZh_p8c7--UyOEz~2{nVb-tilZycBN@Jr0vt8Y0wCZMB#Z4ZM=MzAYQo7_>x7fyj%1Fq7zTGz;}I0ohiR>lX~YzW%f%=(Em8 znD-@N3(Ds@6%If}C|*8A_9o1?Vp$uMz>$c{FV06?9ll4FpXrU|w?nY^AwjtjAdqAO zrp>S5jngkrl0xH@WP!;qz(W2fMYU2gp5L?AjBXWb1tAVBq(%`l+Ael3*?p?E<=>m8 z)m^)}A@pt~2Z3n&e8c*C%fTthm9lr=Cd>yhcZ`#L914t+uiS2R`u$-wTvgs?VV>2| zif35+=z5AH&ljPm*wl}_Q2fnah==n4@*h)&#w*6-f(Ow%Zpbr$BZvXu(UY-S?DRN! zc~!}0->&nrq%;bb^KanM)Gp)dPmQIfcchEG1?&ADCyK@R-euay=?IOBNP_X%-GTgL z`2&KGsZk!P39{8>5p~1{z}pLtu~Z`nA%&bv4+ACxGLI~GpMZA;ATtJ7l8c||-N=4`5ehC;UnS*gB6;Tj z;iTHs3&EEFkI9ZdAUd-?AlrFB1F)$KVC{Ydc^EW+*NUM_VsVm0ZQ60*cOYDW)32cZ z>8g|qe?UqA>554`kAj|x`;Tu$o1{;7YonhC(mjAy3rLbn0on(q1G2}51*8LoNb(ox zKU{J%jXEDi(LOLm!5G?_e4ITqsyM_eZ;vfD25g-5Kv-@8k)%ksi8T!a`%wqjN zJ(z#GVg-CR7(&okht<(O55hZq|LMW}^EGX;zo^iKsQ>3aj*X3fGGwcjh;GnTaABJ& z+0899Hm-YHba~+w>(f_~K*!dUgpEz+v)li)BJN&zgT9% zygWLM2FqYqZev!H=qC?|+e-y+kT0N-bHc#91wZR-ZiL6L&rGZftn7~#_tfypP2m@Q2?Zu1{+3dg(+ zR;9PWE0JAzL332Q2zY1@&AGm4rXB57q=Q$yv2EMUE2qn$;W1rjm*MCB*1rWL45406 z+e`vxKV%D*e52-X?0}~Mtqf@wXY-(X$O{ug=d5pROjmJs_Vaf3O*G4Y`ucVDj@i2q z(7FLq2rU43;CC%R+h=`o@OV5m&g4$r)ymK6Mt#z|8ty00osD_k^G)RIjdNGe1$QD_ zgsNmG$2&<`l7#Kp2C-bHc`h%tJHno@rcsyNhIft`&*Io~`h@P1(yo}z9&2(yC52Wo z9)K4iUD#LHlirdpkVW6PJy}+`RSPL2Fv$2w((FQ%yTMw8Tw;B4Y`mQ008rLcVQtYz zl60VOY3Zo_0}{fV0%n>Nz|Zs5PpCbxAo}$#&POW5xxv$0Ey1nhyw?Xa_0$ZB@J*mC zQrDcW5L)|0=L=3xYm(_Lc*%`=rigx$2*xW(cXdEw{(zh+0YvyBxp5y>iY*%Zo>nHMM74clusk zf0j+UJ`{jgPg&<#fwMLpr;3mztS@E~a$AnHBbERo;jc-sYMm_^W1&roX3KHMo~;{l zDx68{&ZE!&o9g0U)ffNnPe$^YQS7p0ATYGJ0BX4wHXE4fFGf+*X=qyHK9t5TdART& z9I)o+KqDSOe=hbxBX*&;p6A3+cH93E6o<;v|MpLnOqP^7+&HL)5RM-xTBE8bEsAmm zZv{(ZbGPZIcvT`Pi6C6JUAc*UMc$|JEBLqm^9jOF}crX;VK zq{Ja44nkN1W_(Rk;4@YE1Dd}A#SOO6W6FU~(ibqmF`~$7YLkvL(t`j}W7q!FeE)yy zzd$DVz=sE9>@K);jPCZG+Ws$@(KrYbT?$BdjG{`(;?bLz9nvB()F0QfCK_W#&k4ZeeHF~=^Olih&l zKZT*csl^OHCw%FK2RH~VF2I)_%X7s4PvQ=&DzHzVKUA3yN0JnO&mUbiSyjDFr$N(} zQGv`?|IsZE>JhC7xsZ!wMA{qG6IL3ViD~iH%*Vs> z`|4fnx*)FK7!v1&f3jp0Y!Q6#v&enoj8;|1^*tXjDKwQqGaS{wTEtH(rK5qk<_(MHqLi1}Ta|qS3VH7NM03aIW8W7+L*(_)7iQ zbo>175002yg0*F{aI>E*X9yG=HiXXYXEojeKdm4s3x1xe!D%+pE@m(Rsz*19$Ax~= zmfG}xX5cgO;1;t{V^hVj%f%5z{>AF*S`Bf)ZtupD=5nPx2lwgabRz5xwn`!-m}9!J zsnDI4UBdm>x~I9%L;aCt(8T?tT5*prqeKM(-!AOb_5+KOJFrd2@w_@ieyPWo0pP>& z?SThs`%INk>?e1)ZtBa~Cz{Zb#k|4?a3@P-Ypnx1x=-w6;1%ceptOyNeQ3;l4R;!E zK?|C(1Y$h01^I5N-|cw&E%A-%RdeG#dqF>(sn8g_4LS+f4;dE#mECw(FXc^r(Wf)l zGgjYAye09zML3t!;vp%bwb9*B=lU zkPk4dqudp`WytJFDCTGawxyvEBFlzzS{(ML$7b`f}Pj9jcd8*@_ z8U0xq^QP-3MmelI7n|3ip^}O20(f$`6U*)G4(w{k$s@ad8!!F(W6$~qETqcyQe3`Kky zr@K``47Ug9d^>L8SOzLTA#2p397WME_nN+5@G`f5*`r)mR9rnIRc!m(Vq;B=Oum#!`1BZ5#Xh#Bfw{C!9>%NC>1Bd;+glp}!&)6|xcWLSuMz(!Z6SQA$j> zE|0o4)^ZQxhbhb7Pzgf%PXzdo7zK9AREesYw}w|*OQ zHmn08KxgbrwGyj!vAL~vB2G-9%w>(q1jPF~>-&;OG~9pWQ44#YtedAmFL#X5;D}sB z*2l0GmY<`SeN~@m=^G48Tcaz{-T*o$-=oS*ENZ5!b55Jh21Px5!D!=iN5_KxzQ(5; zU$xa`#IupI3qc|6-PoKv4YXUi*iTbe8s4&+)g!;DKW{2bfy`i}E68t%NelTS0kHVu zywR$+(_)D}GN(|7OJ0n&OJwnG##m{fkrLBKbnAdl`~kI19b^_!Z@yQsAoU8K^mt*b{`!{mN%iTZG9y3}H2nQ?5lWikY+Z+^HuAa})S{?4F*0K6p|Q z7Qedg@9Gxb)rMwQIj}VOLQmLJY8{vYU~w=aQ~r@BX00%SqBx9J=Z5Td+N6R`$4n=m z23b`D?T@7;NT~XysVKrM!D7^M*ztfbeoGdfBoTnxK5uu>516%QsPy)$uS;&6T&}4D zNc;*i0Eyr0O3!VkfH0F&Ka}M=e)vII;v4mx6NAPEMuWff(GGI3*MrXnPniFT`x~Lc zmF;5QXU+Q{gt;NstM5(gJr+z4t=k6vQG^?S^;F&SKULx^wb->r%UJKu%UxT2@%rWW z`OPwxsc*Q4aud{o>))@v_bRbc-`16W1T+z~ygWL%iK_CV-GFnS5K3INex8@b=9ZEL~o>c5%YOK>GUnd6onu#W8yWpP`ose8~Q|ADLES`*02 zx&ssd4Q&Wqz(!~BR}#@}G^bwppzOGJBR;%W!65#N&Wa_BEtc^zE<}uHY<$;q2|eja z>ICX4cXImfB4%^4)RJ7=9N2)rb0S-QarWl)m)~F9MMal`zMQ^qS9#nWo(r#lQMrc~ z#_{|l=m~OT4nY=mahmJ*cqO>Zi7N~GvozzmR97CCOOk|>|2yehko@F-2X{s&5o^Yl zaJ8N6yo-h(!fzvfE428{iu1*Lk#^5p?~A8XJjT}Nj>ZJ1wYhG)3-k(Nw6qzLQO{00 zchS}TwCP;)QM~j!ZuLXhMQgXv?w#Aa+`czo*RXiTw9_(F|DtA)wu!x>s9E1^U6K~l z&Qqv@#2W7<=**XZqO9Y*w2W(o8k-{rX&Csfdf4Ap20;dlJ${gZv33&Pc7bS=Y_Uz1 zz5G?2tRir<`f)qkzY3X+|J{yo1 z=i)lh?D+Axg>Dc_CL?F)=zDD^iWCd=l5O=%)Kbpj5}lVQn@X=y1z@bNomv>(HCg~N z;m83{=XYk6A4UVaHx=^TxyxjWe5&b?wZsF0%l8=kTSWh-dAV!}A@mh@e#oqeC)^~s z8)%$rcMgQA3lLNK=6s5{A(P**H?2RLF$fjUMOxQ9RXNEV=r?%ua`KD8DQz?xXVl%sw>!fVIS@jek zZjFAjW%(MX=DbP360#Fur|GIHzu*fukt7(8!|g?-TZ zt|;#@&E=^l^162N0aB0nMa7qso7h zdA1hicsx_f1vn|$q>~$Y%7}#8WF&6T`L{`#gxVNIR&?c>zzCXv+Q^R|IjbCYCHe`; z!oU4d7CAP4e<$iqgJcO=u*1CT6;W4>-E_#kschqZ2ieyZN{D!*$tS}(r z@xStdO97VhRaq!P>JJ!r?V_|shiBK$?aVa&m+8VoY7yO5(L5Q6>|o16lpRUNKjZWfLa0 z71q}M(~JKFp5`DN-}dzCR<%#=i9aCS3x{GWYlDSW1>!u@H!-15kg7H@&3HGS25qZJ zWC;A6LTP{c?kP)Da(qF`Esxn0>@zB4Vf(Zn_*M;JAfkAvvvu_4=MRM#Iq@ZdHt%l_(kK7 zSVA)yZC&p##}d=m*8pZVfMa<;ThK?Bf`PRPdlpG`LjB_#*cX@n{{#QO^mvZZ-UIe? zG**%=S-*fPMwlz~EjIl`mrVv11fH)IGIfr;$SwTFW=I(wy^olmONm+e8?=2pqCx0_l4x52G#S1?18(ovu zCP>p;l+=HY!NevRZU{X;jrKbJ>lvu~#_~QUeIFGL*rKa_8YteNpCX>kD46=}xV5d2 z@%3D^E{Hc#C*`qiXrlJTuXw?`V+hT{mK<_$>&BxInP^jKDO_Om$`w|Qgiij62&NB= z%@;$U^=PtbFwkJk&d>(Bbz~^{8x&_vW~4{DKmfkW0?>8bAOl!@1en-GkDdqqM$iQ? z?oMEG{-?JXDX)hb9^o>5d};<21KID`!mj03*Tp+L{w^4k%XM6b|96r_HFX(4uZ7hG z5qAj=c;-c#cBjbMu_{Tk20_(p1BH&`XWdml(Ys$s_6rocd@*GB!Jt-jbp0c^2Tr~M z-wXwG_0u>cRT|4U>ECpdAYGiO@UqlyWY4ZI$zs7{s9E3O#4>vB9CM~Sb%uJ9+`l+5 z3EV+#6d-1my9Zx0xuYHWuGqxq$90&C40Pqg;8~4Mlk-u143Jr78gZm7#!_Z#y{dxEdlSAyRA;l(6gJ&T5eX}ogm?flv6^D$pVjFCN zkgs$o;K8>m<9m9h)T6mI_-#fru0VF2Nl2352;h{bfLRUukB-R3p%1#&fV_w|SLwWcGzNekygk72ufWECA6?p{0@oQ z=N|wp?{lX>gBX7DB;__jl$NC`H78B3UKDgWI~vC7?4xeCvKa#%owoR7oAS-!`BYtR zik0&Y>R&wgoBiOe^DhV{n;kB^ud9t_xtlIE#bGO@Cte!lu{h6OUFA}r@L)J*q)4SB zG{`AS^KaBIeIsJpGkp%)&1Z2m{L0=Z?NcYua|BH+J;^Np_!xlZFEQ@b|I5is5$5Cp z(f|up&;k`T$C2g*Qt6>0gU5`<4N z)An!LQj4+EygL5Je%+HZ%U-%1mBIf|^eNz_hGq{wi%=n};4Ivj5!Zf7HK^oF?bM7t zz|WCE-I5==6^cQ#;;}zwyFY^aP?H+;lZu2&9AtuOL+rp)gBHKn^rT9KuU(g8CFI1zdF#}d;~+o>APBU|MwtDP1`o; z%p#a`&5C=-VH}~0Jf3OoDldL;nv>-t|9aQQzjXIAa5Rzw>x34d>W&VC1cMxF14{t| z|J#5&bkWZ$yJU7vLY`g?s*vN`74&?g@~AbE zPsHm(SxetL%uiSpmQ9t1fYlLzhE*+B88Z%KHU(xxLOP@he*LR)OH z4_TD@2lW0h*doh8U4oYo_;!2r$Vc562sjmX{N~c?hgqa9S&gnBRVUo!%=2P>V) zzdT$&edgv5Vt-H<6UVfMaCMb4_k&A!s9Na4yyg1qD3WVU&{V{!k`0t9lnD8bxDvb6~@m+&A z(c@^bO$V7i$93I6+~B+Zb679aU8EpeEem_*=!Y-P&({a?nr(UW%HM}KW`(gj0hd3`|OU zR7Iw+zHU(_#<%t_8PctAER69i(r{C%3fT-;l}YM`3A~v>S3=!`t{!&`y0sad71QAL z1E%Ps@431X-EJ?N#JcrxLk2^I{_+R6Zck2)>%LbtAaaxz7OD8Rj!ySSO4uY0l@DZI z3|L)eq09&zeE=P20s6=KzG|@|$K%hUD|1Q?vG;RgE(=@#Tia$Mw-?3Ll4ergCq%#1 zzW3>7`z{_gLIPZCAm-JY#~c;y5d}+_$v4{AgladCrLf38>|M=}ykfcg_lYIByPg9? zhKW-Pdsu))#?!=Q)%B5jZ}`*5i_mGIVaPm>@M0amZivv^_S$E?a4+NF!o1(nz#m;!(SNnz^H$QC}~?BJNtsW@k2vR@aN?Q9-@3p6SS7gFMwwCvOcdW z?ZEfi(JwiFMoMp8&_*LB0pU!!)}F>aDhfY=rs)LSO< z*;H?GG+~OSdXos(%i2;{Fl@dsHrTo1PAQ5Isbf0u)J&Rq{cH5)cGA@-*@M(_$j`JrFz%fApMTK#fxKb?V`d|`wOvT5nE6FhGpa#H9ZOXe)h za|cT?U92mJ+BmaUoPjd0mg+!G_wK`24j^xh2FdV_xeElV&*|e4)%<%K?Mn#hkPX`S zqZIFbW2QipK%)Et64i9JZ^$_n={U^#OigcC&f+=@D0|~jxuHovv#OW&dxqaYwel^% zZ*uz$3R|e-`^&*^sesXrLXZhyv~%&+H@m^s(tOwa5?eKBz=x{42Vx!vDw;t>HbHiU zQ<|S0YdI~=e`GJF^Kxm6W<{9kG6jagLjk(O=_Xn71}VTHUrPZT#A@ ziw$l0${e}$^)rDX?Y33blUgO~3lJ&nUv&u?qe1G4Im`eoh%^@9uSE>s7gvx2%@LPg zt#nQPvH_%2pKkC=?_&kITK|HB7^|HW}JK=ow^DW<|vBrN=_vs0v zeAi{%X8vt84_Kd>(c<>{wQ$r&gjcH+ApN*uzf7jvY3TCzt2*j|z5};=96&FG##tBK zrji!Ht&Nt5lf(nP`sCZ;ynP{XtxU#Rf~EFv(ad(+Ezb^LBiyFCGMF=QAfu>2`eGyW zJs{fPvsr%tSopYYOQR1VdC4X>ac;bR&Ye?t%?~0J`4m<7n>Nd?`(&-Jzx=-Rt&B}2 zW^H5n%A;g)oTB|V`O(W$u!lm`m`#;>w2Czf-?$(ZWN^yU}GvCVhO zKUwz9YX&ROd$0s!_z7~)79=S^p=zsrmzVhvV>&kXE z@sj=e3293!e?Val7uA%E-%e|MrRLkw@VS8rXxa77rgaPo>x5(*IJSo6@apSwx4Tr8 zb(hlHoybC(!bJv|8fll~R?CtdyLiDd8Q9)0>Mc2Sa7J=En2)TlPm}`60mE981e2V5 z>SiYNW4I`srIGID@COH;8=L#5s03Oy0uq?*EFu7y6K}S8JE$7_%6(k97#cg4_`&zP zxA@VyJR4=h594GO2ExOdE0E+vvqj z!Epi5-9w=XDzrBHlJrqP8W5A++S^5E9i-Y6ENFf)&s$*_NRypSRXyrDXQ#ece~L<@ zy>4*xc4|6D)+}|6+`adHyTm#v@)n<__gR$}NzPAw?SXXkQw8e1!P%(7DEKK~;2M}_ zKOybfY=O*xBj84?foWG?B9O--FwEn=iU3>`6FW_ zE3lHxHP@Wq@+rF=vNFg`VyD1^3%=wZec0J_yQtBVB$J6*W0A9R*-Tq3IVr%8yHX4N z2qTDSH)#{@Hp;AF*vjqwQ?%QJO{;=vy17bn^3}v#TaE`4unsg-$g zlBD!zCl-DFr?Gz~Y>0<4JMhM|&-0R^VcSD!gX{UkQ#;ob3kdz_>oyxeK0&oOP6FKb z#!=@zQ&Hlogh;zSx<$l-ONh*afwnwYmu`#Xnb=G zVjbf~W})px0IN3#Z!?rm`d0KO030uiOq%<73?G-Bjp97P?EVJb+I_fNrzy+=WOpBz z;(YnyM^dbqPEHZ;AbOk&$w{4nVVkIi?TW)BBKCT#$&sNG<9*ZF#*obe|1j8v=!2AQt+dfp;nC6Dal@?|4-&^ZZ`{d@3Mu2`Dr$CZ z!S8`bQ-y^U@APp(wFBhsjbDvjw+I9LzFyt@JAd|!!GnjfFC*{qfd0JZ0MVG=7$uzb zM`7JHC}U;idV{N&`6Fa@$c*_nN!-A4Fd6oTVcjBs?_c1kPycWH9ykUt2}K=CL`Ogm z#UBG@r!1r-4EGp)tk@rfIUoaMfb5N0N)qz__HRIxj#qzMuk+UBf`Vgnrq^qW+Vs5i zo^-pqyUK@RgIPb+b#1o^<>&H;$$%^eXx<=znpQb12xGMqn9|t}rr)ft4MX&1uC-S- ze#!e@v~*WKXuiHs)*#`d%e9|tF}tN`?b;uj@fNZb9Q@Q zI=HN!JTLNE|$?-3m5Ba{IkvtJ(o9jX@5RobfoImM~*FF6%% z8tlHJA^_f1Z|epCg&!n8WabO-Tj0 zul&gQrjw6k%-MsZRJtcbwAlFW_tYjRgm35m>pETIeL^bnzE5itpnZUAGh&KM^}0m8 zS08u&i|Yp$mfj9EYRiSUY}k4`py!PuWO<{?dS6OJ8;0(+T45;R&x>yZJepbIQ3-NRksXWg#>$MQ0CFc= z@>p9ghjjpU<__5b^PTL`I9Bd|^GY6U%IMTc|81a_{)OJe5%|ykU?VTYFxF8rcI3WX zAM$!t3Mq{*KE7M>gWD%5nT`U&jjZ(@irQMx(H1{0rJsjW<8_O?vc2?P>=Q&q2aGb7 zP8-3iH6$e;C&%{SNgnB|`-y(j^JmLyOj^R7n)c!<6mO{97G@qbX?f%}vtcHYt}Uk; z(`j#B;yA6|ag_3i>;=Hc=e<76fhdssxQ!NRaZjsD-;WUf>jiz5)z`iqpT71q>g@DM zyfM>^52Sg>Cu1!qtmkJ~a(__&kpdO;i47Df<7S z$7p_!|G!W#u1{KobV7rmpn74!_XrW6@L}cQj^!Zh7e~@M*ZY$kPoGV+g-)o*a8#as zNb!OKwhBG`v%m9v`zcO|klO*Eh@U)w|ZHh<>4I=*daRh_VsHmT0{VtZRt zLV_bseJRc_CF;!u;SmG_oSEuz@R}YSL9KSr(p`|bt_ObAZDwuuA z$^`!@2D}gboB1lA5juO4oeuFZ8`X*?BK@ zy_{$f%j%wN?Mk9oy*(sd8YTCM&VIT7J*<)?1TM>)ns{n@nghB5C) z>&oYQSI8M|70XIA4}K(+9gs&JAN}Nt zQ}4f*pWT>xa#;`ktfKtrk2@D*2aD2W1`{@4^J5iKcahnx9hc# z5{wbkc61D{;JjEjdsrRv1KRuts4Kjz{pjzhVZ8))rL+Gm>3Y>`dM*J219u-A3OPoH}_9Cx6abMg5O`f z&sBpC;M29J?HfH=W(u}+K}L4cZ0GU{Zd|=y#LL8F37>`DYI|u{`!m@T$QC^SpnLAZ z1);>uJlhkM50i;`uAEs#wMmJ#A9;A9mePe6#W~>4c(u02&nTCX@AQsN%kD;d1zNTB z4kQS2JuoY7yCavdYNRi7>o}4_L|>`&HGiF=F}A962Hcck%6@P6;IW6*BlBOh03tfO zFeeeR_e0BH1CQdx!J4C4NKZ!9qLf6Yr_~(qT$Q(x7ZcF>a_{{)?tRc%#W!7c2iif< zvct&vGUht0v-tDzvz%_y##7Q{iAzV*kVT7T;%85&s;;SM^qq8=F&n?}%^}5Wm1Yfd z2TL|}xapR7yfm-1oO5zf7hA`9D9<;|y))jC6Rad^{_aSP)lz9)IsezTkLPV04XxtS@aRfB zQtTaq6(15@Z}mb7a>?%UoJt2Sgh5r?=6=Zi%_efIS5swa2VpuN=d(kUe z(7QC9yROU6u5%YzOY~Vc%E6(w1PfQCF}NrIsrM@w%Rs-q7}|cD*n6r;cBAH2r;4Q8 z;RWCCx!pRQt+7Y5;wuA0E}v_)!J76ThYYNAqB+9Z*o*^Mxz6$CO5x`KB^z)n7vEk5 zGGs^~Ft^fR;+sH=-ahE`Ks=?(YV)!ux}Y4)@Ji{%H&gA_@qxK1X?)AXq_#DzK9bT4 z@-J{I`@mRkGiH_C$a|jO_`E#q7YeP4VDaf~G7}{r^U?&{YaPa}xG$HzZx@QjMyd1w z@C}bo9x_s0`a9yGaOuwk^rIwIVCb$!egMQ^2IN-C=+;}yZcuwk;a~vJ{MYVy-n5aCJPo9+qsB(L=mjDt-nE0B-p-)k&6Ls$pqwv?$LTVJq{|_=R;Q{KiWHY8_;m?J|IEzPGBbb zQ3x&{d8}&8r1*P}F3)qax9TpH-R&e~#8?bAhNOq^hF2_r*$K}&Q;asau8e#c5sjic zwqbbCNw9psFxc>silDD=T5hlPVN^q>%vh@Cc*c)Tbf}2aFB@}zPp})vXba0?vOciAX$t!*e+pxFunWI@a2z-`pgt$u?%wjw*F|@#4TPeNu6t;A@`0FsF2Bjf8eidbwI*=j^1f*hPam}2EC^B#hC$+l(p2z2Cdekg6;kw6oS4JkB#LrCvN_Z z6G~!%gyEnEl73C!h$U3Su|o0Ai9o=5-!5PJtj{NlxQEkBp1ir&0`Ed@Bfig7+5q*u z$xO8?BpB=yGw|RWtLN{KBWL~>7Ca*R+N^mDW0zg56Il~8m zc;`cj(QF(hw2)uA#K&h=vGn}7pjWbgwPJZPv7~3#Oq)UVv#2|)Y@Ea-(Fvoi2QsY- z#)sGeboq>?mS+X>GCA@~LltFhL}XMg<(->gl}YLRv72QB2;efA?7SnHE;w@%{CeBd zX-5kW8rYw{*R=PyxNTzG6H;5ta2rhRNqzY)FVo<^hqRjHL@7vs-^2OyeeB@K9OF{e zAAUbp{?;wcThj(TPVEb4!U+Z09o<G`JEOvBUYNzQNNLbmwh;-AJ1iA(4VAhGtg zZ})BnX@3f=nK}OgwBAz@M1;Tr5cs?Ph39gdOQ{E7+UnsY>gCA1GexPZmsvZ>? * zn1%ZSnNcuK@tNM?P0a9Ux)$V!wPtWl+}H0wsTi1+i`oVx8A4Rfp#r(l0q%Y7P9r`3 z!<<7+Cq1pA?sxBX*Ul5gF6mQeZ)V&Y!nnS@NOgmnK1S`H@E(9|gW>`K%w1CsJ~53Z zxxk0{W!{aaNsdZS81OWux$0s2p(o=Rh*l^I(ED|w^rvtf4IkI`2ZtQeWmPXvY%#&Z z=zNu|YThR*!jNCkWqr`8-F&td>inroaz{2lK%55hinruk_~T65 zN{U(tNdqX6$F9EBr!T7fya`yPHeEI;ED<_5m#=L^>9F6`r(8J3u~3+`H_7&Rm}=#o z6gq@O_1BAtr1*yoH<*U--Me4uAIG<3biGa?v_vmgVm|K>cse`L<+cg*uGEfSS4$Qb_mdIK1fR_}-$~0`U&XY6N2g@bZ+vgo+$z%Yh2k*+bTT>8tRj zR_}9L$)Yo(?oAF{Bd5q6PYowki?TN+A1Bsjn()sAXF4;@6t$_{ki7EQXGYu8%3Q6a z=;~j(8UNVbxSmm3(cu0NHyiI+yfN--@Y7J$DjjP*8Jamh65m9{_X%{{E|WzdlgX=X zQe(5m*Vi`3=rIy0=`}WnFE4v6OdTbu3?Q!GfH>mpcQX&8$$4TV__)$}+{Gayg2NTg zA3u8@=Pm}wGrsu^@(y-A`le(Az`LC%pXn1yyahwxazkqr#hA8YJna{6-SFk}meJK^yV|Qnw_QgJ)nb zW5}sUE50G6-bFyC<<8rkM#FM4k3~Y&cIkB9eDBOl1wp;zYS@6#b@U2pPNwab?kq0@ zndLzp@AkK94Idx3XD~n!@;X{%?H}p=|I=RYLZjx`NWw%#(v5M%O`owz%8m-)b1D5~ zEw)p1%D?y*`-9yfLyP-i0y-11E}vuL-}t*Vo(1ZGpOM`WB(2{d_XmK6*=P{RhlZq- zbO@y7U)(z}1hHYvv5neaj=*|nyi4H11eAihq|)W_uTd%&qiU^sg@rE$oQtNW9~kLT zcWUX}2UbgP7C8aAY65sU)0Xd03;}rUKO7m~1Ilt2Qn5MY^NrVlZNhXMkjBcSFiE#- zpIm_}1K+R?O_9=^Y^~)?Ci5U$*N|4Q6BY#kq#Cd#4{(h={(8uh^rw)JP00HVx(A5X zw=F;Yp#!?ZYc59?W-r!C*QuDy>^K@1?9=`l+sBw$r7v7Y-4(qt%-Uw?;G|L^ay{=MG{ zUm=8 zD5R1ZAby-tCTDp3Fb3dq2xddV%cim!bwA{bH<&aoek>Q z3r@s114N>gXNRH$Dk757X(lvIQpqNr9VY2C@>Eonp|;HU2aCkaqt0J_r0kMZx@kyD z#q)8>^?`!p%E^s;?TpovZ5Q9T2Tt2G$b|!zUx)4EP}^fT?`z!NA)KIVwOD{;Tpb^~ z8dZQS{5heLL(aQO1^KzX{AQXtvX|vWK0zxVv zOQ9`uf4BuP<9^a12o__Xh!&%Fm{&Cep5m8RHyGVxPNj@JAMrNsX#)KQ31_~M<~A>c zA{03Dd?E~Ri4g@pb!uFYad8i#eWa#3%MBk9asEgndka^V?O(f={0eQyFgA{>YyVn; z3!DI`9f_YtIuM+|Y(G0w8`zJ$<<-P(xi@x}Yx=(dK#DyI#>RPbONy2~f_C4~vG|2g zwi>aBJ)jU=au&l)dikY!0nKRV$C)*v|IKh(!KI(JFdTnyzeb(CGKSU5A!^hXg>tn% z^Q?g5kym2$D6)wZWe2D&z~B76-SXPGxj%3+x~)ii%lqw?2fNzoUrQGy3uSjR`t^8s zxWZ)>V$L}Sw?1!s{ya~(65)#&oGZ7E$JwaK>BYTlz*~_XOd6q*MPp0Pw9P|m!P8o_ zv8(5csSb^SUHC0rhM#Or&{+^uAFzdgBGds} zI5Z53djN0Iqc(5JG@B!yUUrK1bmL;*7_@O$o#qj4SPPC-fwB;D@AQC{kuQ zC*AM28y7L_jL}p51i$Fbo!_9lPyn$re+h_Y1pmY@PswROhlyqpLON9fIBA^xjZ7Gm!l*G z{Df#MKw1VO8ayDhrv*0!A~Q%Eif{uMn#JeH!jF9$+u&RssPkXWphi+uI|Rn`8_K~e4NE_tIDFQH@AP3~J66P|H zpZ?{l{Nv08#>4Pd+W0i&$ydbeU(ONz*LgOMh5Y5h{AD~g1SD#Sf&VpA|F@c{)`)3T zMNX^pr13*sLdcscWIFBX&R{g@HPteoimswJ1R zTL#U`6rRqLS@6uuV>tT@m%%3TC4lL2PyBDdu73;i`d{-o^7p`hW*3|gc$iIYqyUT! zz2P;ZovKbm&xn1`kZjXS?5p zuun|Pth2cMG*IUM@uMw*@n%b~I$vxb)6?e+-`nOvw;v(q%6EfD)1I6tk&l z;PXq(tb$pMa&FkNb+bmV2)XPkNx^q|QKGU&ot~ zOi%~*RG=V0xJNlN(VcH6EoN@2*=6gt^4`dJKAC-R+Ho<+;)h?2-s6bxLT(nB88ZzG z2gqUB5}BUoynfNkqbNO+7NLD!`(3T`6kH$9{7XgD(c&y$U3KRXZ&%Aoz@{!uu@Cxf zg*Yq8n_PGx>mh#Ls4{4QKi-nyrTGN2f8YYLo#QxucxzyD(bJEn6*9qMh!@BLWIXyi z>(+Lh#Xdfov`M#2yg#+|EZ`w$eRV$-L}uB3r$JbKSW;2xlAvmNa7WL?>HE%35gbo* zH}gNAg55u;uM!xhu^asjN+Zz&;mA6`km3qKZI-Y$*b!s4Mo-egIPXITz>UTLJEC)| z(B};p^{iI;<5YE3bnLmKZudT84*fyKr?4B5oiA>AnmRn1{tDQgs4V$?c-8X3_eQ~= zetFEupIW0(7MUECWOFAo&qT%E-YHl;JGsrZBVsfeP&Pe~`h{Xtx($FVv`{M>M@pWg ze4{C?H^DWj1B*}|n}SN3Y;7hyp9|cYTqxx#vO)y6T-NNIWp>?ywkYYz+Z;cg8Eb;(l}U~qlAQ|!m{CbL)~&R;Gr$J;l}p#CK7g7f(g zopGF2hs*0H;`{^$DSBR&D5(qiAYCeeL3V0QD$xg8?X4Md}bYD?lTlq!|r+GL|O-DEFn6Fu&Afja} zm%zmis>vB8e>^!tz;KCN=e0^ou>v7pHo><{@RBQ8y!+(;YltzL8y4KHb=k zgSPHmBq#K4WB{4&P(Rky{yrmnO31}27dCMbjzuhG8v!7Eq{34im^@VPa>iXFuRmWIa6N4Ax|Rf zfg1PBz0x3bwY0Tz*J>&Wf6 zOD2Uj8n>qb`Li(BkF-L!e}(Ke==WB2kwDk-gqi~A&M7K?MgMdT2XdA-N`mK|vjT~N zMlKIW97fIpeA(H+mO)v{zxeA50W$%MehTB9&Lo{_@b2hnnm5*u?8|@ab&9P zX|B92yb~RSsuW8@E&(|S<27b!nsc>T`B$7)vaLg{GL;HblN3Mbuc$EH%)7qnZC%3* zz8P6UKb~nMwMXV0B(CJx86nVCbXi#@t-iJ{U$E&khPoDYwdm-stm@XA5Z1FeAwqjpvhfDQZLGC;q_&R(DeKja9sDU4msl zr!hbLdVkaqkOkc5X*>r+2s}n>0*jqBty661^S*bNdZBOb zFy^BEDl1THQU*Ms9K^$sKPNe$mppt+d<(9lo?iEj`k~#+)_Gro4*63De95fCG!45u zA@|YN(9<|)9g_|3pye^F6kye>+87lp+|v$1R*E$&bQb|>e14x{hUI-`G^5X_2a8L- zFHJq)IoFnsr&7kpLEKQDT z&5+BYm<3JJ)AFeGvE}r~XZKNJ*uDjdP4JD7?-}>^^2tN<0qibJWmpJshp;29XY`y| z;d~=bQjr%qkLXoXm*~+lwdHJv&*>DpfCZd9<9|ucSI?8n?$VQDN-u$rgqqkV9m%@a zm$ApaSPm)j`*5UPR13qPl280q;L*6(ht)XkHVCf@-X>|G!4vn^3b`*FqJUV}Bfi&u z5YKt{Vn<^&I_3NA?^BX^aa!S#ucZv@2~YUK9Vnn{#RNY`E(b~l$x1x+gb}BMGm`V|U#y-+SKR#xa_4(pslN`{Oak(5PQnf1oZzR)@Pcl6a==oM;ohXcd1({g>oc$~@AG?f-&}it*_Zk%AUqA=gXR;Uw3OS5 zb5Tkc6fvzpLF1O~3xS z(Xi)ikl^IV+wQlGh9LuD900%57&5 zudAqPtVrqEqK+|99n^>%jBVDV`572ah@Oue?QBIxoQ$_Rs&oY$%(6zf)*49gfwz9$ z(;i7E_~V=|3`nHqzyOIf7+QN*X$g=>1H=Cv(+hJ;0rZ2YKpB;8y!h#(2l#UDp@B4q zV5|?k_YT|o%cLXzXzg^2w*3NhDzJ&cj*D%mk$){zZ$~-V(P>GG)u?Z-4j!eJa0jRy z7QY)G#U=89=@lBwj)cWvYKO3*!vlryL#fY4eVl2KNzb->gnN}}eJIc{)Fnx6rld=r zlBe0{Wv0Aox}`Y-Z_Z{C3x!8Ee&J<&2MUCwn6j9M57fSBWqf)L_)^*VIYyOa&#Ybj zdc)nupE_~;a@Xy+`?o)MSWMrJ16Kg7@2=W}qs?Zb1>ooHgTMH_RzFnWHM=^$3|R8o zv~5}XMEb1iBRVwCdpxX4_ZUEzow-AB&GUJ!kArP-E{Kjz1}AyarM`B(e4Lp=BYo!z ze#X@DUMD3Po#n4~UN^`n!L7D`rifkqhA0rQqq%!)PJV+7W_fXxSZqId9l?x0Q#xzw z*PhlMv{gr*C@Ri;m34o!s|`}*3MiX4@~&Z6lvoMQSf!+j7vmy4)p1g?m#4vTKJFWg zJ*&tWv^x4jk%mXUMw*Is8Y=%fg;hzB#5YQz29yt+TTJa=YcDit7#n1}mQNeq;j2J# zz8jExs3;9k=yp&fX4Jf3y!QfhQu;yFu@eY4R^Nr$9i;kUA@QJNk?VC&RBbcThbH1wwylcdr-vM)|}59M6q4@6ng^4CW7o;yH~oKTc7^Qpip zAcfvMB0gFLAXAM|tu2j0k>!`1Y?tV#nmK!gjiJ_Vo~_o!$trRe*l}QdS-({K^XDuv4=w#u(bMoT&FcHYNa*mH#jL z{?)Kh6n(uY4%6!HliKcm?;P*3MVQMlVB8X#@hI{;5=0|%mwK%H)kuMqMqGV*_Z8WW zTW;~Cs_2M%*uvcDRTeV=yb9J}?Jy!K_E@BIJLCHDO!S4!ID7o?B4&#UEB?N=YGN3H zTIf|jUpgG<*5)GcDG-o43rx7{Qoo#V*OAwq1~$IsjXUIVF|30Hz^Cbo!Ce!EjOQqwyohcMn$cmGl3woQ{0oG{<;F7%=RIaD`!WR&8epm&ER?mB9w)0c)A4{ zJ%pjO#T+oA=|ZL%RW?$<>hQx)t;Jr3bRSF4`~_Px{Ocop(4c@0kcLa-4T;ZNtv1;{ z0a78H2msJ|X?<2vX7u zg?Ca2?34>{0r63Bygd2G6+oszkMR@8G3np7BRx1<4V209y}(gp)CS%8DjQcvqno!w&tL z4|pWMZ~31>l@k`$ANMdl{d3kn>2T~a_}JE6s4a){?Tg#~A(9t#p6bUBjAk@C;?=g4 z0exVVIl9oKt4kX(3JJUBU7MCMXGyxO`adW_sG3qx$uqXanhT{+H^~Ja zw3iMWX}`rk`)Em$m=T{~M#a*PbZSzzvG0nkZhu#o(kb|G z47Xu^VfVV6A)GjOjG+1I(}^9AhPyV3IzNvwf|6>c5WnWQf>?mgMN==tZ_iJ-9v9Lo z&QAEH!o@YToOs%0Tn8*P;qT6Cq0SYNc$f{}@Wks%)qf=$%g70T#d`;NI-l_g*l9Hy z%B?N8x;Pm3($nf<;k!2)G5$0;M!!~Xe&Rnbqi*;)Bm7YN9rRpA+aFYS!lh}l=JlQ%^R^TA(sh91Brr*%P5ug=`u9}v|1Z7&d+vhjU7b(dNAJ0K}+O|Za8x5WF5W6_}w zB*iS1m}r39gS{)UY~1p>SK+H0gOqirOp^dc6lkXYVHu%X`$HfOIGfF#OPI)d)zpl5 z;}7v)CNPiMo)^qk{|1>CDxQlyHlp|bWvLfHL)D_~NJpZPwID(%t zR^59nQRv!vHPPGa|3s=$#l1Q$wC@}=2Q(x}c6d`v0D_r-07S6bJHWB8k`3aou?ZxE zMzOwC=;jro`-Ra4N~K@|AF8cC9QG2Q)Y&ZtKfmC6rzhpf6RC}#C-WWiMRBpSPloW6 z+|ySv8PIo7>PBWb4eqPiMZ(jCDQ)mtUU|Pmr9Vbxjtm zb_oZY%a?KWd@fM{J$}x8qx;^4t+4Whi5ftj`}JW64%~8`Yy1g{sA(envAjU_tVwKh za*Y9CIq_Xhs0b!Z0O+1s__;Q+Ie}*WY^oRL75}A^oD&B?YRa5cIe5~w;=(HXe*85q z{Mq$`?BoU^U#q% zP%A_!w@Fa&)c7&nTyPXWflS6$PD*#8CpUC7$!0G<6J+_n`|4@(0}+4k_0p@`Py72i zU&*q^Z;#JHE>O<-&@M2ABrFs_rJux}p0?AMd0o?>x(NzH&EI9ocJoCW1+x}mAO4|j zjqv>8iD!a9G9bEuuV|Ptql&cCy>v1+6Gk1s7R9ld4sl{m5$msU-={QZ68A;mdrQ~Rcc5lW` z_li7uu=i+#!!^&wi(B{k#W=v;TrP!>iS69di#3%FYy>~>bky_Sg_bi&NZNDDOgXaB z^uhOE-0`EKi53}E(8Wg_=8i56)QdY!N(b@8oNs(lxtx;k13@;t`M^8e{+S1=%xrbT!I<;!H@ftE2zk$+jC~q-%v!U<=gTlt4>+eKyTV)VE*E1*93G;k;s-L(V)KTKK^7o8h3L^c|ZHp`YrmK~j4;n55@t4|1K(6aCUSg3Z zSc%=}@OMBq*<(R+Yjtt~QV4Z^o|59bz(lY#yZ=ju$VM zmc6lBj+wXlMpbZY^E1Qi3xu+E7$YFkm7|9|1D7mMAAf{Qv~@2vY8Ze~uAOkXHDxukAI88jz=79P5jRnXRUoS2Js(T~s zw6%IOw!E)3JHDUDfRH`|i$ABpY4=eRFXD5Q`fXMZWx+t%6)>6BU9p>`_P|lHCtf-S zI0!f&oqfc2@>vL4GmB9mIpX#@Aan=3S%j*`i9M=2_Ff_ z@+L|p3ef%ewq4hD0ongcRvWcv!?6B$Od)M|ZrU+Fd#}K9juZR^v~Tefs0p2|Sy5Je zdgAoBqq?3y4-54LD~@Mw>=6eEqALE;#Jh-oGe$s3Af-RJ;s$r1PV%Cu7;;wO_47D< z??}hjT<&HkwePRtZ`~agzh<+I6woDe(61}1xb=O=DDEF}OTXUhE;Q6?VQ2PL$4Oij zxFf|X8;a{PXB(L*gA^r#?XvBb^x;_eM~Hd7+ao)9WpPoKZ^!ZEPkUx+i{eb{=`whw zOl*VIk*S?TdEu#^js^y)eq08qU{g3bBdfc@+RwvnQ%Y#J?ODLH#K_{WV@FpewK+!% zBN+#3yE#HNO65Kk+~5c}*Cj=y$I)U(AWZcvoTJ0}8-7kx{#x8`f$i`nXX2Cd`xjZg z0O^E%fZ70KIDiBpB+K#q*=wTO+u~av@QMYo4gS(%RNR|QUR?!Q&k~NgpjVdcZ?#mM zA$Dy*M&Z9f@{kNDE7A&iilnu7;4iA*O1TCvsjF080!o7W_;XD!wDnEV>FN$I8V!b& zc;UX}L@8DU=|!U8xWcWv-YT1zZo1~*Af+UOp37(9$ut1tNfte93eg{~APWr}4+$El z3a{$;@M}f0zYpBn24BPZX6g^_7a_G!563p=F{L%8@y64trK%gNx^HQw2F9nXNRM?G z8}p*0D>5gxF)c^1(L$uc3%B+yP7Uoi`;$=)npWt0Gb%z!j(=H;Q9whR-BoN0T+P=R zwbL1&(9b?ndS&2OgDOUm!cXa(%nr&0;5zm=$di`U{8c?aB+?x7tRw7amM5~(;!Vt<36dh=8}joe+GU5En@tc+8lP-@#! z*4iEBWE#)5cq*H(&fhKt?vAC)YSi>FYQz`>rws{!RxnB{U9)#x5a+0khlG0k zOp>OfIejuGl%zTQi{Baq;+wpK>d^)R@@JKp`K0t~6#&~&RElJetN69+5b>Dr#9eLt zswZCOP-p(ip>4eLERPtxr>*Sh$|0JZQLji8CozsuuG=e_91V*9+}EUWVBga5bmrkY zCx7;0Tx?eu$NQL5gd@uNAfnAWs@yxk(>Y}BiYK=(o~o5W-DjM^(NIcM=$DS3dBNM- zNwr;*>mcsXU4unD?;(L)CWf)^4?Xce3_9~GX&wbODl}3`^{udxzLH-t+P1+i=UY6l zT5Ww=W}H=I;<#=e(t%<^^rM*ThY2(0k+9Y@PWw~&R*nA2XpR{*sVz$jeJZU<=G zMnG-T7~X)`sJVaR@UHNd+}=(&f`RJ}PN3*>hEt8t zqp`*eEF}G=qBMOu@m3CtwQo%$J@#hlI|P6Jfib6Ah-aNP!z;b3kE<;zi8d;w6>)FpY_Nl-M#T45wRe;5vXZZDzvbvc3d|7~ZLpAn^|N3JMux?e}+Oxb1BOk_F z`H}HZnctw7JM`;Z)Px``GJuQESxhh8)^X&M_>@SadVt??326SvU~d-lPCVStcC~1TN+)R2hD0xvA>lD7!A4LOB=RJFpeikB; z_3mBnmI2)ij&KdpGL{O4JVPv!7o#Y*p8ZfQ~4h}tM1OR-PX4J zHC3{FyXqHw(S?oTlnE#Zanbh>aShMtmt8`qJS6E@RrR)0H{Sl-7iU|``>U7WjW1)c zH`zY9R15dHE_-Vh6YZ_mU$b(+#%{dUEBpigq;4Z5BeS9Jp*GP>&Xpq`#>t-Y?7mT4 zw~Ix0=2vo(u1B`K-`(Zvz-R*zs$diJqDOo&{O-`q4kNsFKDx`VKHpgr|mN8{d=TuH*N=LW! ztVZHq`;~|AEE$K(r@AT6g-0o(-D%c6knJfaz_c_igwhMh-hOnYI~xVQRS@(AVNjlM zGy%g)YOMlk5h6ugKt8;HQ~5X^JS^442aarmL*LvcY?k14Sd> zIVcco)T|&a5wQ(jEzvr6q3`FeP;LN%#rufy|F9Gqc}zEo8G+Z);Vyx_0VP^x@G4ATo5;n z;KVgFPA_a1e{HU={cw>b_6=~cp2PEHsEXaO>7rSQ_kRu@6)2^#q>@>5O1~EyB=rNe z{u5T@SqiO>{`~A)a$4rKnvr7NKYsUbrCOs}i@QFMM`)<>_)E1*o~j_OgtzOqjVAc* z{)(R|+sf04l*v^#`~yb%1c(k_2mNP0&~GvGxsY9;C3XcfJqX=DuzxgaYm{i)gITKRFnM-3dtQ-{&pE>kfqUT}_$ZA4DLWty*}X()rPS{`lclG|$B?)O z&c`B1dg!KM6<{#lh8`=$9Ld2JV6n@igb6Y~kV{Yh#hmv)+}qI8DnhUNU4*_Gm!dUQ zQm~Zz-hCPRxD7CYWE%(YR?wgmv89SSlwN|*gw=Ur)X~!JK(wboT9h4OS`m!>A+Gm& znF*H^3bi-&Tl6qv8+0s8`kc5mxqx41QmA-#AR^qVpn~_t0-k>Y1;sPI;$!SyM9Bw! zj1lG*ltbIybUMLsoX38SFSG^$T|y)gBCy~9xBxqa;ga3ZkMTm$YrdFs@g5;KBb+up zWt75DGRG2JK2@Zn+!Xgh)Iw>IdkK0k0(P1~y?ZG|1D^9X4Ez20e#Qs=+20^eDAk;T zCh;NZ(fCojjVE(7m1}8-B0Aa^_BwDo%f3zOlIGJI6O$znudTm19< zhG=jcViorM0u=M1(eD2yevP4lSK4LN=5R*t#Y=65DG01do5CMHIl)_52A2I(QNGL)S=eN*u^YqZhPx&MQ`H;;$9{riTe zMT$@%vQ34AkV07}m91h>k##C0B+1U0Zzb7H2qC6O$TDTkI%G>i_H2!@?`AAxn5FyZ z{Qa)i>%Ok@e4gibUC(vj*Y!O2?~i$%=j&)@eCPOnkK_1!KJWME{T>JEiD7?NPZWji zc%9XG)nk@Svs4mq(Un#ZpMVB4YH@=?%J}F7@o!uA&Rfa1`v%B_W6M6vfT zwCBFFaItjgi^*=1EU6A2P2!CcF#$@qp5E4i9}-4b_dYn9jX zq)yu2NCcZmS}iN-uD@73saj^}Vy9eJUwiL%9U*SmlEK`KG*JF+c{d}(9Y=~fHgw_p zVjuWd6+I!=+qArIe!yV$SgG_GkC_#8TG}q0Uo~;2>UXUs;K)D1ko*79d)R+<{S^v9 z!!@JGCWs#!Bz&YY1fz8~M`g`da1AG@1!s4bI5AQ}qeV5o-1~W^ZYfWD;qH#baM{&m zmRLNU6YA8582jc?jK`n@MwWW;7c3n}QPPg|5jM9!LTDeycMxd)<_iEu&^ZEx050T1 zD{OG`8vchBEBpdL??Ws>R}Tk_xig)h1)4i%Q6I{fd?8>1+j`$v+(=VUvKTJ0a9(ZO2smV3^_<6j2h?mhlq)mOz4FUmR z__Im~`vp6Q5kU)*Gn=Doj{81ot*_85+cmaw;sgCR}gZwPC= zSxbZN2!h}{Gg9PdPv~#r8U(gMr3Gp*;$!a}l zIzYplvIZy?SddnFzO!(9`QfW_U3=>dEW77hMe7%OO|qLg%pAzgEt*)O+%xDH3PKu^ z7#T{c;NfyIYPoyt1W`nyb7Ik)Wokp2kB_NR_wa9&?923t zrG?9<6;&l-4c@k9j4F&;WR3UW#bMI-YHfR}o2N*UF#$ZPwYNy*ZP(W!`1ktaOKSxVbz zt8_(H0}6Cd1nNkVjpCUpq!)<}#4xXO-)B2r5o!$&ET>GmTSHa2&%9vwf-VsX2@Kv< zAjenER#Ws2L{6WP<2uNnw7BbGmUo9E&-@^5W)vG$70l{OC`F#dm#(#)Hth7IyNc@; zKl$9$F8OS*Z&3N!?%UeI`s3&L0Wlf|V}6K8EF8#dkLEAJZLBzc_rqqMY4+w;rSD zLc)Z@mU-n1GD}J%_4-{?t9DBr2-iAo7r`H$r8n{uXh=U%BzSFEgpt5^PQJ3+JRzajMMwRhv+7pmC$r-+BGw0 zOj#UW9hV@8sKRGp_Oe>i_R_p2T+*ah7&>D+>qFvCJKh_|4L1<|9?y!e*2-kN%wJlc zPQ6+9slr0TFRL#vfk2&`A>{k0njI*WT)jP#!N^??G~%g+b7=^WoArdw1QpLLjNd!- z4x!mt&oh>Abyal@?&-(@8>{?!9REDuGSjId-hMc3ajwH`U!?ho>%aLlF@KZoeE3s= zf`6vLo?%cxd(V;;zDTJ8nb3V*@QOa$mP!3Q%gkRxMhF14Iu z#Pb1Bi9Oe#Q zxoOqdu|JzDGE(a5GJ&1osIZ%%pkHEDThSc)fYbIXuJSR~1emV)yQzB2yWT>NfB_=o1&Roq5Y*-7+r7glM>yUV$qTh7RLj-+zNS z#A;vaztBkFdo?E%**4922;OEqo!YMuH>CnSJy4Tb!GoeXk)e7xSN_EWC+diqPQ&2S zuNw7fxq{QJ$eRzL&@|aT>9S6d7pK0)PklTTR5=STB(#D0an%2;xGf43eUxRQW3c=m z2D<(VB=haS*0BBNc{_{)f|A3WTO4&rnZpL_XGbp#NE2qhr#ee#+3nR8iuZkJ7Vh$m zCT}P;?o%r*6nN@Fp0D4YI~+m*#?=PCguZiu7W&q}ehKdhO1r$Hc!5oC%c3Yw(|bHJ zv(3*JSq;MqTG4#eL-^NfWS23wLATEY9#3Im!%LrA?yWO*JxW~lqou-BV-3V%1rN`$ zosTs#ID0flX+sOzAA(Ql_WIDPU>KN$!L9)`LJy0?GTgl&w_}SctttuPAHz?1NHL4= zl@**+H$Rd&za>ftDGB6h6guT%)@^n9Sei#+fchdqBIe7GU8=N|lEXBX7S=YJUP z+}t$kk!K`uGTP3NK1+O0NJtg>zM>|Z(ZAMF)JpxLw={t`3IE)@1)sK_^y3W*nslTR zc^p688{dWm=*vQx&DA*^phgE3fer9A6OawVA z`MaHEJsE;*DR7BV$omiYha1*m!;!dQv8g9Aq16rz@(EP16r_mL{T)3U&a3b+)NT!S z3d)Gi6H&Y#>)VrGy>>QwiHI1EV~PLJxlmeQqMIN|xI2oKUkODQrxA@s)zG3O? zmXY;9VxT(iRr@7VS6T5no&m>kDTd51m`Fil9~x`&isPut!O14X|`Zmx^*+KALc2mEDjRg)QQMd1L9o-E%0?Y$9$s*FG(&?K&rtI#=p<2R;gJfpG<%i-=4u5>-cjVzi z1Le&l>rxYv{M2LRAfRS3i!?MVL9vcQdBA&}&QYI@LD?tVWATssPcN)fR_leap)4U< z!ZyprsUz5%3ZYncBk0$}z?}@gRA?G0|z|$8BG};Y6*EVw&%@F%9ppK_?SnBqqX^& zF_?N{F%?I@%HZf?IBLX5g)3E8pu$|Qa!$_e%l`H?=&iYQ*j16eh4wF$wygE~*v{t!GRuB;cXB_XG`eM})yMu9iz6kK%9vh`U zIv0frM$Mz{`QkorNku9-ttsrYl55Kwe?y81(bJtPs19Xa4BE`6n3Il`kvmMkr4+11 zgdFW!Q(z|~9v3x5uO%%Mh zEx{x9!AaF)Z$P^mgHk!y(Sr{*J3}S17pvRI=;tp>bZZRxNkz6ExU4nHpUVHd@X5g8 zQ?csdjC|&6FMPByEe+ykSoX->J)KR0fCR2;6Z?hrnYr+C@R0m|9Xnc9Obd@pqZu+0s6fr`#uV{ofII~D0J=;xvH3xzkU(_=T%fHgaE5AW(Mo zxB`Idnvea$7Id5Z9+wlR>m}D4_QvXt=4Pbde6ss+{{(iC0+w)X4+|7)?lNvOQ}d>K zst#8!d7*gpDqN~X{Tvg9ay#x+TlmH9Z~2*I&vGBLe6?8svUAMkC2y7J=CL+F;5pp! z14}#lE{TdAL^UR7?9InLksoL8obEZH2*mU<%-3d7?T(E7JFcu^jxvn5i->NqNZPSj+udQ8c`>`IPH76u1hCiEJxrTw!S`VmxxkOhGDdsR?sp+ z&}_N&;jpe&MLj74)C=X83r{xOmi``;V=^F$YzA7G3KwXaS*7vsHvO^T_wCxM(;g;# ztq&_Wsm(cZ^%-<40gkPapvYH_G4Ibe*h*Bz{(>1-2d*NeTckd~9=y*8Hij9)U>q4a zbN zO;7Aa{w3T_t(~-#ag~zE!CfD}FN$z74f>C#GCn;fO^TQ4h zrBS3f`7-tfFeC2|YkcLfce}5(c(pD5Ei}66IX^(1^t*s}F7d=p18s~pGU74%GqoE1|Nftx4%-WSUsKj*K%0`IMRXzi1O85)^3C{fsnZBx1fp7pMXT zRtEx1Y$y2N*k%eZt1$&)p18CL9D4tsK?Z{5*I%&VStuBzmuNojxE8O&XYT$Iq$s~T z0{)$^+s-w|$Wu=MFp$rP70ORJcrm` zow|(6h`;d*MwwfwwxgDJ-X5;l_1ME>X2U}Q7O*cMnMoRkw%H;IFx}8z&-|8K z%0KfDk8L$7)|c@* zcE#)!(_8ArwqLNvLX=dW@x(@jefO9`=^PV*H~M2cjhZ7u+Z9V{ z)UcCTleYs>Qc_xy$Ck{~%vGHvZZ9+szlt+9dzYB*qBa2vM4k8K-6mO+#R{iA79J&2 zHFr?mX_*DCehas{(%r^uULI+t$1Fd`$Q)PAzDeOHF1?;y(Ks4TPptn1E7XnW9zdHE zARqd_yq9s~T7X}y-%~7&BY8uC2Q5f*B&FhSy|KD{YIWKs$a8aD%;{zp^SiW%_;5Y> z-Klpaa{Nf7!%CH{JgcIw1Q~LzOP;JAHLXAyj@* z=`QwK$DkveEcgWr?4iwP)Q;-D5eHiBFtDL4u&E^~E|Wf8=HzlQXeFbjX*gAy8}&BL zBRxLFOhB!twS|5$&019~rm=W@ASpPYH0Je8GF#bzk~*i$Zr@G0^cye6%LjKM%cn}R zbIR8Q?{UMq^L6(?HlINaZvJ1^$N$OyMf~dibFm&jR!IfhPh1TRMCx{CAlT24rJMZ4 z=7eP5PTq|=^z+L0x@6@f5!wB9;<2(+ zI_r=X)gILF4M%YdsRabB4b4J?I+0w|P6fG&@{yNJrpg&^Ca3`(#;LM}mS3=oDRl@M z@&`moMv&qOcaU2WKlgwd9tJ$Dk^KT&Lwc-0LM`Ea%`~N22eLe2mv#~l72|5cr=(#~HnoEw?vpTFw=;CqFC367(V0ph4YFv4LuH0>y8|AaW4 zgz}@~rUrlhm?`z%IEhFR91;20P!O^+@(GV}zL<2T>0764O-mcKSaO@}Fv~WV4qEJ< z1OnBmB=qrLun!<&?_BAp#G$&0b#6nTpt|spzKiFwJ8!yW49gToJ||aD1F0SMe!pYyFQp2NHp`{B?fa%b@F;T_P=hbI%__ zNR~B%3>ms(5N3y->v#uWbA?pT2JhqS&!FoQ_68Lgg*5M_376A2leE2|H+Jffosp?7N|Qxv2^Abo&pa=08X%!_Ddws5y9Ml3AN?3$ z^LTXoH{i!D5{tYkJBE!!l!`qjmD`j1Khwr3+{JAZ%shvMH_uYq6x9<$R=mV^GpI+}BTV<7rr-Y(PXch1aA+ZSVNsBzFRf|VX~8LJ*X zHHlqCbi(Cm0#tii1SQ}G3XTrwS(Y2aahDp^+I~$v&)?LlUrvAQ<0Wjoih9iwAmg4f z1TyMh`|XCDgR=Vg#5wO<50tW9M6E`u zL1i5{hCTiRdgqVA(?TwiOXIc5#)N-((uF~5Q)+4U+Kx)a8NTfXqkF%D)+Pg8nZ*M z91j959yXCS~-u@O$`}Y|Dk2K!0pnab(n$f ztGb#EedZ@WJ2aI*iqvIEXnCg9oX357?G^Lk+=Oe>+eZ4q@)v4U@lsAct=}vzis6Q(i5Y8Q=Yn0|%#*tx( zR|jXYtJ()u3?v+%f6#q+G=iCaYUJF#C46zQ+zwrGdlEPH^`M@EBkZ%zzS@q5NHe>U zFo_N2k2=Sed`3@wy>V@#B;_a48*rh-JO5V%h~f!1M#H9(p6CfBc-#GiFFjdVzELg70RN#Z^&5)5uNJ-q`?_)N~*}U1)F@K%ODP zVz<2A5Y_T=l^iLAzNHfs=$ek8%b|+(+O@cFmvTYu{{*A1;r{iR>T~_5dg=DvYvb%I z%2ecIEe=cv20?y6xioP3ov{6_94YG4_X&l%m9L5}E$sB&j1O!2SrvpWu&TpwLxeX@ zQR_udK^J>G2~lz^=*?Y#;Wl}97SCVaapqB#!Ibcg1EO@#p~(9`GS0R%`QIr@jx5vb zB2VsZm3ol?-`68qVQ#rW^!T=<1;ex!LAjK0ZP0SIUI`AfHyLJ<%?l*DS}CTL!lySo z1xmuWmIH+6ma+;C+|2{cVMY3jwtDLXce)Zo@E$X9Eb}QQ&7S%YlJ2S?K0|O;Ns@D$ z4ziAaXUWa@?1$Z|EP6iFRCaJV>dOsVmEDI=rB>1f3ub@;5F`w-RIT9=N116FULK;;5z871?}v2+pQ#ooxDH;7 zJTP=&&o0a@nQFWBki8+(L!l*Fesicb57omQ4kc2Msa zknT%_4Y&zRdP(pWk7rMCuyl_XWHk;Hzn(QJ8S71UmY<)BOt>CwYHD0$o3#-IggO*R z9ZW7uDb`+Bz~GsLlM7kkbOt^5&}b786#dM}9y(~!4E*OA#tA|QVomujj;08hi{mf; zG-;^1Hok4lVP~;3G{f9;u3k1!ecAK0kHfZ>mv9@cs{COj=H*fN(}MfU8nRv_E}=2T z;mSlH7uLJ9)2h@jf4?c+M`fg8TuRgs+I!8I{V%TW&b-)Z+GYG~nUGe|nCSMU_F0b0 ze96J(X7G*G!$DufcZzAZL3=!nrFE1YKQgbOk!14_hSdAb8ovHwrkg>z-2^jv<Zx41MO#|5=6(P)@S8 zruq{X;vGOAuI6rhw_6BQGLjfsbC8x;kI_h0SKzm}s}=zW2O?@o;e+Q@qPJU%JPg{_ zAok-4-(>6paA9{Q#FwjuoX+F(R|VyvBq{`{UxdDhH2C0+w3YU!rASkca!Vv9Y70(<2!A9F@fa3Pz4J- z7d+T?Q3L?6;YmeJEcO1H!^8pS8gb8rmG-adyr&AfWg3=9Ke*3`PM?K|eJVKhX>|du z_-X6YduVTJFO%zolBm%BEV)kR50@G_8e%L^Y_2E z4vuyFG%30j>#MC8%{&khRkP2fPY5KC@)B~Ak!QXS6KAh9FBRq{CJ#ei&Xb3AYbf)Ui*`=mg6BX+1&g-G*}C@ES{9`qLh#MG~aSwMzK?ZY=1P zHS`qJ^rX;7nxJz~S@QxX8Q(-0L>z+dTJH>Wu1Q~Z)zs7*1xQ@5PZ7=P9 z>lig>Ow_X8(4_^f>Bc@Jf4fZnu#Gm(?PY5Wy|G<0cLPHlgFlj=j_&Jk7}V(g-NW1r z-EUuN=6L_6MI!DIyF@?P(YE(@*3#05KJj}t>WNzqo;*U7%lu~C{L4#v5A1*uY$6Wz z3RjFh@F30dOHLn`@fn2+v6IqP50v-ekW7mGSOgVf)8xH+`xr?F~dDB1Qc z>O@zOMy&clA8*wY4J$x&!oTNY?8CeGnZ4Mf^$wnzQEa&*>u!un`H;`!?j?$+r_)9R zZsI>691#N%# zVP?zRQ7f%>@ANrZ{MGVeqjR^-3FM{vBCEH8ckUayAX-xF!lx+n);&G=BIuNU4I+7% znt7AEkFbo$j}z5&x~lhzEhbRYdwnG@wY@htUrnA>qvLw|O81(p7V%P-YkE;pan$W6 zyRS*Or$@3~7lFyF^O=w5mo9B+mB`)&DaPAv|5bEU)DEc57%|bvl7h<9q1n05HJg7f zjB0-a^}|$;f8lMU-uVeG&72QZzqp^FB81>OzP@$dxt3k4j*RAO>wJVhP$vh zDPyN-LHdN`A!9j(SGHdFik}#v>yG(6V;$CBMh!_q#~`wC?=@y2Mj}`c?(#vyKUJ*< z_pN{EL7)2I^?1QLU6q=&YTIRx2wqN!B@BoO>%ciW5l$nrnqq#z-Wr?FFJiQzKM$g* zek|tI{x!AZ=-mLBSus5S_lAW3(k25lFY3p)PC?$80j_t|ru<9+)Q8<~ZS;l`K#ESn z71I)pZmWeJ6JTG72t25m6Pk$}kG0KP^Ovpl;u%DdbP_Nf0bYUF&5e@hjx1K_{Ied& z1v*qohPlI~l`P?mYffL=<`VOgsdiV1t zir_gK-IE$~Rdzg^K9`pv^7LFy7A1w`9fK>O#WsFj2j-MmmNt*A$9qf|qwIaVPdbx#(Y4x9x&l%&= z^}PR)`KIglb(;#T704weMJP(d#Udq=FU@%3cGGfgo2kdJfoS0jtD%;otP}6g!J|%h zJj}JUER$Mw)YJ(`h@q>Y&3e6yldb*Ht_+{JCS39xANWR_|2r)G=$u;#U|sL4Vd`Zlp;+4AHz^wxw3;Osj8EFr(Htv1(dX_~G z83=q84Mge8n6R^S$ z*5dOQ@F(HxU!`r*+V-Zf>5aat@n`wS4h~xW_*~j&-0a2?_+!jCRO|7%?Rg-z?7lPz zI-UOaW267g|K^TgJ^!yz36O@;#8HeF$WWjz!v^Z`T_N}x4g!w&SEEW}$c;?~LABnO8|OF9j`|*=VS4TH0bSq$@A8`F-!yck``+yv za`zTU`f{UTXRk${t-WaS0|vuS|AMgugIFBZppm0%83ebfAWQyjy|Nc1?`*aJGMe=P zY9#FdlxoV}vBjHCNb8{8=Ap@KFa<6X81h~nEM+~0B0GaWfEAHRWC^H&ZxnjXGh>u9 zClrl)d!sF9u1wKl(CSF6)3m#Y$?Lgq-_GqAPG&g(DO8BX!A5Sr9(0M4wRk97uD)=y zufi>|q;lw!ou);`kdSoq5!;J$L(wjC*bw+mf>TGB7`ty?32`5-wAcNFd73hXZG6yr zSpJ;iX4ANHWK4yizUUsQXLIJ6>s8j(@$jiY=yMs=H=P>#O?*#)%;n_3#Q7g| zsjy52?i+nr~x%{DO6i)Jots#LtSLnPvnv@buq=Xwv8U@ARWjQ#db@-^NOZ*@2rC zS|X}!cGTlT@xkon4pnbE+Jh5N{XVG9oG?=XI*~~p1rX)^d;^7FMDk2<%dHlHDq^z& zPG^>O=xXbvnQgz|(w2M#qhm(kO4r)R!OvW>`X$f4wh!!lFf^3j%;&5wlMT!OZSm7Z z|L|?hosc{>@^d;bzF2QfN(a)!ksIJZFkwqR5u#bofAS%<7G+f7qNGh$G>bey9kCJa2A)p9Lih1EBV{&a>#BNE?T5miM^N$m?;buN*~Xp9qi^!N#s3 zwxMmAS?j)4SI2Y9m9Tqr@0V@k(EG4%b#~8Yn8+a!Wh40r=wE;7~Z9M88jQtip zxg);S!u7|7RMO2AK-zaCnCI)30-7ZgI=vB8OXLAPz0-eK%uBln?6N?%X)Gb4EqG24 zU(diq%w13&j(=J~8Gms*&04H3qEju4a?hA%R0fnn=RM6=2mX4c0{HbX*k15Zr)MR= zZKnZedi>fU-1k&|2KCR6-&h`I4{KQLAmxQW5^SY|;ti(;tX_>=AQ1&z1QOZm;N?Vx zcoF;6SkA(6VUNyCj}(E(jAvPkvX@%7ez2Zaxl@3A3QuuSj_>QbNaNLro6C%8hlkTjX7r<^WX442sUk<*2o zZbB|6&p&$gJf?YjdSqHSjNe=ztSBS<&0JePC^4@(KtX}#vEfMCs8`@*ob9e@P1mlO z)7d^nHQu`l_h87Tg`Q+DZ_x_*M{mV7xVCPjwD#3^c`?jAo&V^kjPL%t@7cD0&)2j6 zgX{Sm{Qu%X`11;f{qu_d)yZi5&p8JB{y(3Je;qFwv$qk*H##=ezYrF#b`jQGdoi|m zE2c_F)n@%RR6Tu&|69ZH)wgWW)(c{i=4h<8R>=8Y| z*y&3znJL#wL>WUCipReDuJS3_Gy9bp7tOnfMbN?`U6*l>Vv|2z>neQBDpieS#X2A; z8K~85^unVYzY-x5&V63|kUstW-5vBh_%wnGw5jYC2~m&uCIY5G8NbxR&?pL^4?GwV z%Ne*>m5&>s{k`j^{x}g_79%LQVhP1BQTp3s&rZ0F?OZis^#L0^XQCj8+RsxISSk09 z@1TX^2NVX>seH5}l#Ee@XDkWd#`QP3bNShvj~#tuE=0HtEOt8!-oVBxcSuPcBM7@} zfq?3XKh%=pE6%ELfp2+M;sZiHtj*uHc5a&MfUdcZJ08DUg}Mqdf{jbOq|^r%KW ztU%z?S7g44Z70&a1s1vip+iFt#5~{!Zi-?5JVdydok5pk2cl=d;LakK(LC+OQ0JsN z{eq>X0RXKo5@KNW{xpJ0zh=UW3j(|)mnELOUY6Zz8A~*nt^}e}qRPbGsl7L|N8C zHMxWOAfk4eyjXHf>#*xJTj;K}Trz{#=mtvvHGn} zJW3$vwlDvtG+hVN?Vs4NIYrKTYHJ1OXrOs~HOwwd6VvX!-60K!su(15;+L}l`;+@7 zGT$CtnIW`M^|;mHNG{G+Oz1r11RqQvZ)}>c#c|7vaq&!rZd~!5y(+D=X)wZ z{sLN2$I#8q-N#)t^DR zcQi{=FJ~WHD9k<$#=oUbSHXPMLJgoHic$B}=AG^}r^GC;gjpnJe*bLmFIa^-e4vtg zqm1lZ0wjA~JaIOg4u#!B9?{2hVn%PKMMLzNLu{Bye4B4&RQcuy3(w*~QyX-~RKOJZeuE1b|fLVbt3q1KBDYg7(e#ZRY%KPAJTt?k!GVF|(gofn}B_vbx zhA}&36E%da$8Jic2>=eA3J#RmDg6|=zZh(G_o=%)y(Rk6D9aIW;~PXDTc2roS#z{) zG|CL|w8%+?C8yZTOgdIkr1DDQz!6B}+}=-$ZaeNGRMhWOCd*{VD%IhhA&R9IBYsok zm`NqFvWT!6IQjO#TtH)V&Mij|54#7QqhT=BT)#(nnT8nl!d442O_=)eQ#6oVrpAlyD+>?s6*ej&kA6C1e8u2Y#JlHJQm|~4 z^sv2{dpKj6`5xhd7|Nnv?^F6xWhYQiA35D%YAbqd+NiYhWuc|uhD6Q@@|S|#6Mjc7 z9q_e7U4-g1f5BY1#K$^n{XFraz}dz(f>e@RpJ#3JWuIZ@xsWdeZ@bRh=i@#~ai2SWN7a<=S+JYb@_mk&VjJ7?O};1E_GVu%>aUV- z7+Kq(^3TicCmL$x&zF1PK9$?%ZCQ;9EM5oSBEo!o9jKA`T7BL>^Wn?wM5~^K0y(A0 z=UzGFJD%_vFpIu3_-EUu*sK`Nny7^SB{?TF?9i> zVuF{UuBIH}+s}P2J`aF0)}w!=jD?@*XK{c{Rw^D?>(;FOf-%onny<&BTJQ`$1PduU zhGYiL0-uHZ#rPZ&Vj~Bflk0javLwAZAIAO;mOdVYMhi~xEgd#Yjrj!p&tpkx5aHT7 zlj}bZGa4q6ksxld#(dpM%c2}v8mFA3V1it>TgnI@xi8u^s`xyqjIuKByfs~dDT&8Z z|B$R&9f-aa^7$(*%yMzfZ3XehUzTKr9h|pzqpgz{-$LtMqzTrg_%L_6h3_VZJ9%|8h-9twxw~1YqXQ?S9$#R_I;@?DgP@u8EpJ*blvn+0NS`n<%b3@jX zphLti5LY^1k=o?HSr&&__0W@UlUK~3IuYtwd%&uY_;|i@(o0A5$0Nk)8)s}4$f?gT zBl)v^wE3x#hL=E7?WOtnT0ifw3O!8BY~A|=blSw^s|PYNlj;O`Q#`$NLL`E7p=jDS z1$htZICPP?rQr2&11fg=tZx0ZccNUpSS9WkOeIQh9+kv*byDvHjljne)Cv3ro5FD2M*YV(!u6-_hxIMnE>rv-&Bf$6B#0~4JdBO6si!A6v5fCRwBKdR4vv;W~21Z7IO z-K78Vm9d-%JR;h4t5jC;wnZ3dp`LS+#ngXJlkRnACS?#urn6#PP9*)7pX+zaV(`%N zbL;(dE%bRn3D?QJzPCNBIdo=9U4Q zkC4woSWXRh{@B?g>sA4G64!mOo2C`&ITJTF7Y!I|jE?AR{C81xsu5YUM)+#4vTUj7 zc_rgF42?23hJWRVI@OQ{=WA*mE8GN)RgP0! zE>45om3jLrj8c94kua-sD>#O`A*RTwW;yklI`=$M$R( zH%ydG-mWvV4$rc^PETClgeM50YKh^4rCfxNf?HRA&c+VGO=M*;NqC(uAYgz974UVv zv}*X_LeC*FC-%`Wz?Krjf3G+`r72`B6@+aX`h7K88sNS5HpetX-5SoE-pbFf(8k_u z?_&Al4Y~+-I)c^ibZZ7TrMGq#ETPtKL^?zJ!#Cao3@i0S+zuq^?QaZARZgl_Yxnok zRB`R@d<%d5gw9P|M9e4Fv5KFsIF7&dH_qBEt8D@B6YX37RqTQP5B**CU%me)AY70Y z>I1&kEeKe7vXLFfwFo3bbrVWjJjwH8VekF)Rr|7MVBMV$ZD^9z^&XNZDrz6Ou_K&i z;PRJU3-ejAfl+^>Yp-CN+y)7CC@wUUw?0$j0uaLyyalaUIf`Id*V}K1eSBvXsb~af zbCaK5xn9@fWS7R+;_a)ixQt16Vm0;b1CNZM_<&6R;Kjj>aOK^Yq9Ds74sz1ZmL~3cq!7 z-kd#sc_S;enbLY>^VOF9s3(kDb}lf%BF@FEm%^F#BVv{1IJtS>@70f2sQRS~z#4Y~ zT|^F|s&{%Gife@PXCn8x$p7^D5vJhC7y0l?X89-d`pDCE-}_vF<$NafLKiqrxHr8q z;e)+@eG|qG{A;hy0FT7gduCerl18KD^qFdb3!U}1oQ$z@$~Qq=(WbWj4?2j9>bqw@ zr9S;32weGF5I933))&V8_WREG2_hfnG;sgb2}vm!_S<@zZ8>CEcBDXZO~NzkbnnoP zf>XZuv>I7fFEr~|N7zMDE67pbgbzv|O4=C`Rr+ysvm-51x8vOCgbB@teu6mH4|4oh zXxC2(tgT5zdi&zXwq{c>I z{oQox1qVtB72lgMM*&1J4e^}>g}rj(gYGK|TwZ5IZ;-A{zhGxyLOmnw0p0^eSLi&? z@)2DU#`13O>PM{iGpB1mPp2Q}&;$m+2l~4Dng(TMkJ|wO-<|F{2cG`sR=qz7bPM@! zzdu=u_rRX+ct3XY!yI8R_?`J>RxHIj-HVB2{^2)RRTH@O-mvZ~u$v85Sr9gZ0 z9=8*Htn^d#;Jv)W<0{ryQaKNfYV+iP_5um}oONO_0{C8T4=qXcXzf+*e0E^}OSu$Q zlJs0X%l~A@Yg>;w3@2IYS=EkAF4_8obpErauMm~GKd_|Xu(+ACCO@{>1asT$PvDh_ z%UOTrGM&?194IgkiZLL0Ggt&O@ESXATS;T4<8a1?R9BS|tw7*ALp9*_3lP1*V>Ivs|qE?tC zIS7Ui{^5)KM6uH@{A6~xCJaap9zon$rio8~b_)RqFa_RR4O~tZA8Hmt4s|s{7aljC zy|vQe6ZE}2T17-jmtebQ$a9h07YD#^4`fMKaqIC0vp#R*%<8KB(ZJq2_@c=Sj6YWg z#=qLX2x6pT`4lXxLE!*!Pb(d(3I20A6Bw^uG+zTy+D;Ja$LW&wn4W!zwOJoj8$WcJ zKt>`rmE3kh{f1xx86|qHy;5LpD3A$lBB~+e#2o5xCY-PDoB!ZZ$v*DJ;IC)ueI{%$ zv>C-)j8h3j0d;{Hg-g6>(Z|Kbk)0zW>CW?@(&KTtm3EJR*vG;oFe*UbdwL9t z9Gu3XEn9VpJ*ZrY!qS4XQ~JI{Y0(>z+de-!jeAcj5Wpw*Okox!s|Y&Nn;4#N-#m`r zvU8oFqNY3{IN@$;!1%%RL5Gl}EMMEcD?=8JJn9Mt1t%Z0ja-d48c?-cb>JtEu$=Qh zPxZ^8RY|$33hSKB1AL0nfdgTr>v|^|9%aP3qpEJ5e0gt|sA>9(Tku%`#HyfmEK6j2 zrqc3XDCNtV_AAS}!u3iMR;Wul;k%ERuIMj*KQ8LBj;DGtlaz?TR5C5MF^7L6Jo8F6 ziPRk*BE5g6E2h5X7i^o+DXVN68(n<{!S31HgRiRAYZNdUo1!1m=dY-Di-|`rtL#9a z_a5KUB^(|5sg!VvromaFh0i0jU>tiVEzV~;m(<9Q5Jtf|Mx~0;{xhp8|IzRIUtf*+ z{oteGaO7+7fy=CeK9571kvj*LDSA)kZa9DV3`{j5lf3WoR7<|Q5>y`gY2rNx(+;14 za3&7I>v2WqpSi9!Cs#E39hrRm(jnj?ejT&zCe?7N1Htow>o|oC01Fp_Jl#}sn zeyIDbi`NVqSK(iDQ}bPfF8ahco#|IG$R1Ko9UJ;a;Y@LK@P20e)GsDc=XO-Qq;}Ie z{9FcW&juM;OWgen<`}rcjGRAGiqEFC_Yp07OI$E!ewoPF5rfUA-j7~Bd9`2aW#jdv zM=WbEfV=w^G+*l0aLso*ePh=4ctCk^D?z-aq=K$gDbH5(o%f!pXr_7asGT4lRPkt% z*hPR&>;{Jp=@rA>uk0d)tKN{*GUb-geJw7rq-9o=cujQYIE+_XeCbmNk7?=t3I#{+ z${|Lyh(>H$)|xmdY)wt4gF^uJKfm}HKo_j;0w{>D)JOmo-=AQaznj0rD$Lzf24D!- zEL$eg2EcB%8UbLLzW8+wDb_lI%*vi>L?34wfw!oFxA0R4%qa0+F#Xr~{;!OnzZzXV z-LWy3MtGCS^BCkCwg%aMf874ck#Y?&y52v8IY5({d6k6L%q)VcTq|*T zvG(MSZKLb7dXeLPkP$5DyZ&6C*L<6T37HJ`$tjHiSMvyXu0Kt@nOm=jrglh^sTW?jid()v5C4pQoo-7JNV=dD(ylV@B#ZN!@4w?CAYH6vyC zu0X`Yrc-K1>PobFuWtZZKCE|zZhj#4qlLA#V^%ybf%SyTGl9UxI{b5dp+>0p6?}}& zR|hSpzs8hoP3wp>UpuRU8+^}Nrg^MthX}*01XC6A*Z{i3TmDkFf zQ{5b#aGQ&sS@4YoO-yX3o?5@hXK?$5wAtq0b{yU3E{1Rjj&fy%4Vc ztKC+=jRXA*TC%t<@k;VS^y-KqBf}G(8BoG!llq|L!^y!|I({?F%Z`jCC8T1DXpV;W zJWro1!nND<{`fJIET4p37~-_L;<<7}AJ_oxlQj)DS9c=KUKkCx4F$Ytt|xz|MgJ`x z{w>)0&)2_a4tRd`{Ws5VA0YPENTbzhdZbxkhbP-`@PDxP-f>N?+qN)>OB4k}KtPb7 zfFMN#L6DNzkR~EXZ;>t_(xgM8C{>DpfD}QRNR4!_}j$@U=Sye#-_B{ zX!OE$Y~v%UPGkfa@6LHSe`mAt7yziNcdw~kY1yfM}e25&CB`QaZZxYOGL zZOw-?Co>S)vAqg*_D#}nv@a(HroqIwK9i58L9Ud2d+5SLXFHc10x7)^^j?+EAIf|? ziEF^9D!KHTaqC6asiVGI4tq;w#}b{!g15pc$?ZS`Sa9X|%tm;{yIB?J*~j3*(`#`r zh1JX=7ZAa6)IU32O_{GLqpo+%P%_=}I1un*8I4U{S_b23YM1gK&WTv~8TM>+dls=b zOrAkpLGOpy%#N#cKj3ky6L5_4AMCfVA!0=hl~~blEEydpd%oV!#b-P4bZh6NsWT}^d&FO;pw)(07+V?7?rMMFe_;nQBk8vQVT!#CCW=eE?azlMrEv)+FjO5*3C zjDmA{n~<`f!f9GW{1Kc&p7Wm#T5SDDa~YLMm#-#vaLL-i-*BeC*8Tw8hOH3rm}$on zpO`a}NZ%bFdL+RQCj-E6;PH}8$lktf2q_wA{ud|6=GSVK90I%NYfkogE8)WN+5NNK z-q$F*tN2blQ{569<>z?e$j_E^@8uof-dOC^-|sC)N~nV4AljTT!ji{RM9=M4CfpHj zVmrq#vYy6;`HE9Mo0)Bfc`TiQM!&cIW_?CD{i?QhTOmK!^@!91%9XyP^i5kCWv|8X zRQC`%wROyzHhRkk#OHv@EkNm$&A}+tP9E{*E2jS-j~_R_{i{1<=i?pS=JPzTabq>y z=_cFZ#ncidUUTnKL1qI+^#K&$MQARFu2xd&@+O2=4e<~^@p6~slSa)}*7Q2BH=7Hy z!$9|iBI<@%qG@9KYDB3b72h+#x#VD2v3!2i6@nRN$moH#>!#|6NWzJG&FrRB(5G=r z;cp-tPSgp6*lAb;eOP>P5F4u?A?4aBTR=8bEW}|Kogns$vq=rdMuZZI> zLvr{mUJI&$s}E(St8*3TXFg(5LL92E369&^8&Ar~b}G9si+x<;+qe`^{Hv&f30w~G zGmA!WQGag*58BgF+5`~7Oj&}E+oO)xAr10>P_`1g|FFbWs{2l{;RLAR#P0gH$YY+# zKq#4cHz4@8IQbvFMO+0Lt0AnMXDU-anBHkCaHTHjcfwGPhln8f%_YAN(W*X9M1K22%qs@N0U016fYFLgGV1 z$E-}6=4Drd)Fzzdo(VT1#ECZu0n^DrHQdP!WWfqa7BOPMopN2fX=*_xrKl2?Ek52L zp7>oUotHNA8d@s{#X6HBy!+@%qtDK=15z$6v{rkb2{2}|Fab5a8~9^#xRNWda9FoV zEy9`s=Az&##Xh##{EdP-R^2!nTZYjICJVcV%EB;jp_=vM6N*R6iUX6;+;j`?vZ0o8 z(x+hdDzwk*pZZCO+>YJZO=dr6-H~Z|OQyoI1OaAL*knB?W3g>cd8b}D!;Oq{n-s6q$M0VU#!A-@I=%Q?hFg7vBX($_-bQbveg?`3xuNxNcx?hSGE zq?09H5F%3)e*RmP{RddBi0??1XIKPx4k1dfFv_QTppH!_Z|*^<;tPr`>B#(>?|JO0 z*Ig*V9(EEPVi%dlL<@8qt7lRpTlKGQ>XwRe ztCrWB8MC!pW><;tX!LvT8~`qxsdbJs_x1*!fs`c-5KrXG%WZj`$=G;;xx5LgzScUy z`s74*_*A(T?EeZ*>(&W5WB~66D3wOwo}2MT15po1^;^n?GNb$+Xpiup|GPhoI@QS z38PJ(r(c~A(5o3l9(LkzRczY}Yc5QU;d^!rH5-7BCcHDjCCmU*iwo9*0@nNUSv;jT zO@e6Cl|R)QB9F7CY3LA~!yMrTb#E+lI@9#^Cxfqvs_Jp$(d45G04LXJ0u&PQaMF2S zG+YoXLp~;PaNS!Hdo~~hdfI)%7 zH1P}x)4O9QsQuE=S|?^V;__E74{a^(K4u=B*kp}F#}ba1aAN2qiLap`ZL2Z^u*a`I zoode%Z1}%spA`k0%7kxvKre$Xh8#QSV&Hdnl8FrLWEDt*+QDhi>D(?5+{s0eI%5es zvmP#pt4JkHb$K_of5?UYZ|JH2nh^Y7_&mt>!T-tiCglR`bRLv%k|@`oTXSO4I^HV8 zN|(FWUgD*PP~NT@Ym&lkrQ>3wd;XWT-n5iCjK&l3pTTx~xQIS=X%45h#s*ydY9w*; z?H2mWBZ@+6?}arO7d#1VmkZC6O&c1ki6Y`=yK= z8B7c%6~ks%5EsE!r~{BlQU+IIi42uwC94L=0jn^2`;E?+Rg`n<-dyDziB3SE|1qK& zq<(wDi~qL8ykiesku9l2a1Hwet|r~xIs?(at7DDa>38Fi)9|<}1U+KRBTwCdodjWy zv3e`~@XU)fmczNCajg7ST&I|CV~bb9wwOT?n zeIh+B3}f781mxq@g(;Dj4$WTH^!WVBvQsv(iYI~rDSlb%Nd%9A$|%Z7aG;|72-C}bkM$3}3=>fe7obx@3Y;flxsi%9H+T_QiZ z7HpM8D2#9d-43k`0&H*k4TU8MrzBAv+K))}!?`7&EW@seapPza+&OlJK5l5Aa@|49 z76*WIn4h;2cIE-O;WNS4CG-Xz--~rPh#!meuNBxNS~b zryAfH{q^-0v|l}eBEJ9~;b(2cuEhV21FQ{{RcB-wWVeVn%EF|8-|zT@Kz5iCPY4C| z17p@CMx1I{(47F2>B@~$E%QfH&paK38uoaev!t8y^rP509Nb!}6!YN2d_lJM;`?=A zlo`eRuIofpo>I?W*^3EsgLae_DB)d)_3v>rPzx=HQmukXgi*RRED1 z$2hZ|2MH!RyYTwIq7y!X*4!w8ICWG3W83*D>=l*|o$TSoIW1h9vzM5iFR_Paj>c~)lZwt~ z(0KTqc{;ct<(jaHR}hMQZ;&6^VI*D2%laB+_C6i{Xrfq^(94>+tPYC0d)c5J!5k!h^5t zK3Bs8eMxzM6wqG-ihv=%X*lWXm=1;z?BJ(#^VGbGB?>i}g?EU0^B}Sa78p#9MNTCF z(Ub{5fyj?-Nu4gW*gcwOSIZE0xtS|oi}A!x6UN52jgDZkIdlX zia#G{!cTeM?0Pp8gUh%Zj)ypzjk2N^XX=ne_O)tUbWJP?`I#jN@^0U3_2ou z(6WA72{03$i=x$AbecAw3~eG3rpa(ULsFLUPhJcNa!b7 zd(nnd$GW{f-u5FBvQf=RDHwW>)} z>Dxgab}zypG6Yqq{nza_w#S>HhG)VP7H-!B7dE0H6VX}b9vN=%<+lMoYd*b3RBZkM ze8tcATL82=n56p~X@oHPyZ$~DW~oN$o~a4Cej9<>3_{XwFLz#@)f~H*-Ykx1?)=jEmqLOm}Z#Zov>P*8$_qhkc*mou~||0)ry zvth}PD$Rm`SbXlPhm~2IXbWH7Qx^h^(NWcVAd|;uM8#sVV~-4fb>LkoGk>^2e zoS8#IL52w)SQ8vUUvmq@Vf>L^&>~EdCiCX}!J~xrON5KwAc-$J*0;Kt8ccZcNw9+~ zK;$NP;L7U6+!?14krH`y*3;!)4;&qB;~riMeHqgu&;Lb^>LHL{!vW+Tv@+ZuG>1UxUx^KGinnio1=P@xTX08STV8cb9;tZO_2$VrcOKGs<5JJU3qGO__VT6l&3$26}5I9I?z&E5D$P};;nGVPv-XI`;K@^{+^s{(0Kqi55Y)8Ed#{G;3$V>Z z88}`5jB2@jr-<&b0=s#oA9|Af6<&m{wP);_5%J?Zb%wLR(c(ffZx=o+#UsJm_}W>p zZ8})n8Uh^dkC{pFK++epl3qadO|j3dE>wqx|!6E(tQXt0K(8Wl}|DnrLe7C_Z#Y>7?c}Iz+y4yJ@qqRdAqdi!9q+P0O<0 zT$w!WqUu#2UoY!=W;~upJ?{0Xhe;PgL#{Bh_q$0K&gPuTXPN0DJVA{tkb@E6B=rHU zoTi-pSVBKGpf33=;*2fwgtx`%16tEVL1G`pMhr7MXxsIcc>4J_I;@li`ON;*#SpPV+@^bVomxbN%#{n#*TiKB#_r>9bZQr^{@K z(RYgWX%yRyaXI>BM!Ysb9XC^d%o=n6Um@9^Ah)_!0|p ztP-*(L6<|^0X8eC7V74c7IM6kKrY~3Yf;?8VM-^ucDDm&)oVp)1~ z;PUgkqS-CyEXIyM;W?#t!${!^`en^2!ddL3Ji%h>qimjx!m~T(4-c0;DC>}DXmE+N z;!XI}d4!2V4q6q`CZ;tzqfB#oQyFM9=1F^3lmS{X^K87|PiPqg^tjeQFQ3lbSgwk{x#!y-I^;Kfuja?=t{16w@;+x9LYnh*XMzBmk^=qNFQ zI;dDhftA-BYEX^m;LN`fS_Qu#L=fMgbOf#ALzSTqj0N9rFLGEM;}GBY8ss$-D;LZ0 zayGJ3+TpGAPjazd>(tt2!`FF|fb}BL z5w|-{-(+L~L@PC#mM3~1rs&8d(;v};ZufqMAoS?l*LHrL znGfop>&MVKn!YdSGj({ z0Xdfzva9u=W&cC4pkgCnsSUs`H<$@j48<9dja7gKD6_)JA2ou`#c3cT3C8s+9@vn% zD-GPs8JeKhmX1V*Ol|vbKlqSsAV+ii28HBS+>0&J9CT0^?nk>k@v$(5(Gjiy@5XQpqE3%ayI-8ln($yr8%9O{_2D0Zan z%u}RIU%F8l%NG9@y#GG3O}q;mR`rA@WY8<^QH5GS@zB%IQv)(GGA^SW>L>Vj_{#aR z_;`|(E|l;)Ex!6EGT|$=vy|1bq4bQA*W+_4$a~6>z~s>MsV+F;Jx%ueAKK>>fcUx{@9nj7 zw`go_PQduEF1=TruWg#QtKz}nwTVJves!V_%a1yU!6{51--y`ePvp=v)DxPiy z>@m|xo~v@^B1!LseQY_v$Yni^z@29T+0U3Y9Vn=tQDk<*kB7J8bVrf~nI-uadb=Oj zD3siyRSxm6zVqd8CdnBdS->&Cdp3xSy<}DPFOZ#HkWuz#j3dRhNS8nel>=d+is3tj zkwiF2+Gw!H0evur2IYph!#t$UICJDF@WR4O{~F1dalq%n7Cw51)^$UNK<|T52|Xm^ z-Y#vN!cMC?uSJ^Yls|d4W7kdjE%TmyHh6CZnC;o)4=TG|l2;Q157^Sn%1e`#8QM;C zi|Qz7J7`5eKg{W0m1_(bVVCp^BDYGzanjZ%7V5^rkZ)_u1Ow~?d^4%IMvgEqLg9XT zrC#u(lD+U~n~(XqGXJ9vY~yb#BVz6!;=ZbO*F1dSmFkt5N#ey9A0}2fApq=5p8a|x zjp-D?q>t5n)1!}h&@m#6&D-=Lz82Ltxgy~Hw!G(6;U-Z|DJS6RczXAmrVa+uq&BLC zZzHhJtZV=klPYZ6vi3!$4=U{E#7`+mQ!Cst4Wpz^OZ~LnbY&g+3zQf9!aE2_>-+Ap ziUIZdr~RC$Mwg}MB1*&NVAUto_lhbacHwOdWmYR8=iaHmQ&7Gf6}bd*^KfcjPRssk zwSjnn>h~3=U%#4RE8pzx6g|W(_VCFNy^M3BRiaifp6>c@0Ug{@Ezpm6O+ix*xeT`cL94)8_)kx-J~keHhNwA~-{n)8+i^7|TWe%!@KSJPED}7&MXjDy_802)AP7 zH~!BFb*^e|#dPK@ZowJok-}!!}n(bi$$Mjc&JCASGg=EN34o;_H<1 zMVDDR0?i#0!}>RCUSQj%lZj01Go6*VGcs1)-onD0w_LK?C2wU8Ul0B?(jazt@aD;k zX!nWHvFuM>8|eDv0AO#THI>I#%Xy;Y;6hYd?KwZXJ7x zw`3k{Ryk{XbA7^xUWGyZW^h{H+Q-!3{rdLbSlBRjFF(y7aK0l~l*c>@?Scdd5h5Fb`M^k4rV&H>gWdKj}(=FyG;e>Ufl$&96y$eUbXm zJHx6Q4Z4W~WpYMbrQz~q`}SU{*xtIj?*1L1w4l@V?#q92n3MAF^}2tei^EUJ+Mgxo zKc46M_b7Y6cmGpM&R^5Oxh^787hVHgmKw1eTxqG)(Bb1^h*eSk zkhrN3637@1Pmywvm|Na}%Jq`Ei6u$rIni3yVN5nJuy{=o!&SN9r!al7i|WasSs)g9 zv+MGX?bK|ReWg*)qJw&5$PO$so<9{WD#!H~S3`<_y-!5|f>nQwYBp>C*GsOOov>Mr zYVLgwCS>rxaM6|~eoIFG+vcZ!F0uBPW|Pf+Y!5AA6^-6)FSZ>y?Rh~N6>~9F*>&zP ziL)wK9#R^c;M8W+e926@9`Qe#t$i7)10#0jN2cL7$J4@LO=B)2tT;Hc!4jGcZ9~$t zcVVLo!m#r4N|{)5(!pF4CE9DPgzoiUW4nHHz$we_bnfovn16;RQoo^XxZ9v*XES&i z@KL!-2oVRW1kgv#ByzzItzEhhKNkWY5p7a!s6kuZggt%c5{MYb}1N3~dJZoOHAlQ#)e@r<^0VFi0 zC@wxqErA;TOJMj6<0LA85&mk)wGmSDMmqH>KEfn3F?>DWoio=VZBXj)l^kuR_Y3O7 z+=VqYg}uVO=sv5kk&$0SgnB;RmOrZ^Iz>YmY(}50x;0~`LOvP(^7Jm{Yb&7H<8Rdy2*AtnOyG ztEb|qLuhO&25!G%+gn>p&cA~kP^8CkQXZsnJMQZT3mBBIVlF>*=p(&jw%FSTxwqo- zZyCxz<@OI|Z{RlvyWk~gVtiQ>?BHaT3K-WO4W=NU7yJY9+WBB~#w39+lNc}Q3tRb6 z0MHGUiv4^42Euau48o$Cy9gKIt4(Ei1$+QjD|uflwV66-%FiQ)@}>VSRgOY~QxZZo zwDt}ko-S)y+9wQ^Iku#qQRSxX_Nm3*@o+2WHIr!N3h5-8!pNg?H}Yj&=~%Nby&)Ul z9SGIAXQN0~M$md|3?hybRle2m5WMEgyVq|=UN^8A8tT_RD*q^Rc9`R}*xkqI+ApsjUgX|eC*_0Td)tlS z!ReBL7mp*AFnMqv{PU-Kb^{qTkJ!S2w*Kl9Cmpjy`$JV-UrrHk5;7(IpcF&4cf}LN z9nM~DUA`aVx?AyFG09X7_S9TNinsLA61!XDL&qKLsVslTN-q)ECgAgV?tH8(d{C2| zf`_jbVUZ2UQmf_;+ZkA+V#i>BPzfb6d!4$aszU1O$WxE+6fvSrOi~Mv1wJ|$sUoj; z%QG?XoIKymVZ*>cp{1n`6i6wkZy4KQy)bJ2P#SNU9_U&3d$M{%p zFK^Z;t)|gjeowhnva@GNz1&y5X1QbEzKLV5PA?vQ3}U6H0+`HWqWFt{lzV2l88VFp z2K|fSGAA410cP}_t#(n8tz@5zxvi1(wG`9PLf-Qp_`=sWF7Nw#k)^zK2)#Iw8T&x` zKr)Z5^Kwy&i9IFMC@))dj_bK2hiz>OmGi^XLLR6U8{O2n6A#XR4gI1`@nYvl4U&*@ zAmn|7P-*2z|H_*?Gh?le`OJr88a*3^GE2sWl($*4$0ReeBVHq%#abQRqlpIj1BJxN zX}50;J(+lf)s`wYX9nJ|;Tu1_GD#;f`cB~H^5E&#(X~sypoxIJYWCVJB%<7T^R)+R z5s6nJ<;hAO+;xBAKIbn7X&kwEv2XkRLG-t&;|ZpdSFX1^+-SQ!q|L)*MZ8YRg;|I& zBHGCU{@mj6WquN-&C313hk4&vw(VObfvTH#WEbUh;A)oVblLO~vOQfnWz@}RVYRXaf34VJ5a zk@B#)6Rj}fr8`LP@Bc{B|Gug#|7h&=Z~44`7{23__hyCwXpZ&e+ zzW+nsm->6pKfRi0;R)j(0Up|1Lha3z*JmTuuK$9R_)byc)+BP8JOMAx55lTo7)!eR z#aDKFx1G}WSgttZtF<2^+n7RiQ)Y9I>QeNGB^QB>h%7x@=36D})V?xS)KHwv&1 zT(=uz%v|aTvvbOvOIlLvl+NXuMc@>dVN+L8W}Yr?SYlf4lh)65Gkb=(%okPi*n`ISGGAE(OZ=Ip zAUEOYxyl_SQ@c#+w2RBRQWjjkH;$moY>2l(6;n#?)Q(#6v|qc3$#Dr=?w{(BRXj;K zUw>}c>gl*xcMX?Wi$FJBkb%RxE&t$CL76OcGnsx~NM5ix?y1}s`B=&Uh`)6UKNuG@ zX-#fPRv}f)kAs*ZOD+1I`ZYMJMztwDQEt4rtPnFBi&t+-sijKA<1{eUav$yRD+$IL+a$LWuctlFUX~W^g3}))mCPW zcp`?o|Eps?ul^W@nz?{R!G^$GNWhC4Rz!U=jf)!7#L@9>ZoHS`r(MYte6fKuUuXJ* zXk;Sb`I2^e3-?nriuR1zpBDW1c3&M&ITSZ6qQHP35)%DQOFSFF9d zLm!MTz7&m7h^;5nGb~pO+_mHSQQ~}{gMktUD?&kE%eZ99XDvGE8gzcmY%LF+wL0;Y zm~(=EPtRkut{RQmXi^IRV>0I+VBRUw&X0GQI0ioHEhi1bE}tDfE>ev^AiycGsS`{7 zay5CMsbsT(vCCG>aO5ktgOOT^+cZBHFp7PT?l6B{k!nfXF_fg9!VTMpw9Ppr{hb* z^wrlrcEgY)G*&Y?5JH~^WnTntjwS568$=_d2WLj+r^iYk^c$2_WEeX6*!=Dj^R^^) z8xc&ShGTkT@*dWLUu5YD<%J%rcYmAH({*BHc&)%SxCB{k!%j9rO3T*H=6IVBJ|tUX z$|}-%3?sPpVQME@cr6&wAh%1^YRcJ?_tjx|MTaxN_Dtilfz z4ananX)wv!an!G>WVs6m&#@lS{<4|huW~jm$!wa8I~}iw$@>$xN_W6DiKq9}%on z3G8a)5&LKXeLpqz;_J1;hXfZlW!qN7JuFFtjfHuK8Gf&8Mvps2_*1KkLjEXS-b3PB z363AU?~)R|tv|pUYi1OCtp=a&Qi+_Mh-2@pbe_1a69{0DbEvr*G@x*e&^HWl(gA?3 zi(y$PhdDD~=VVGC<$TPMVAj1EG3DhKV}o1P2SP;tNsN@I|cj44LD1~8@Uexi6%G+`{r8%wfFjFC%%$1w)yk(wpF3WXA<77 znJ9(l20xQriSJJhJ`m4KnFY<5yN3Y(fxc<-uUUeiRbl@gOqz$U02BLJLeZTb{|0mrt|13BmxDo&RS_>$QB6RS**cr0Y zf*&Af(q;lNQdt+G${#$48#BUc?2!X38MA&Q3OMSA|B0adN5Xw8Fv59BVhk)W87~A@ ze92U&CHZH`zWpxp(a`S{yy4S)q*nlc+t-cWAJ8E$s1OA=Wh=m(Yzj0mu z6mk2p@Bh31(SPs#rxsK?&k!I~LV3N7v3Z#RP>PJl+ z?RccjDxIMBM1hm6ytQ&}R>wUVRPy|V{M@ekoGt>l>U^4;1UUuwK_w?A?u=e$LcOID zPeiBQc!CyhTu=+oZ2UnR-hvc|5Ft|5_%=5rpDCdSUADHn(mt^P>)U=MVSQO4H*sTf z<9*q$oBU4m)?os!zt^fG{NN38v$)1tOUqW!P&uPYt2Ie(x$5&qO-FvNY z(Tug&;j@?-d$=+VN$_5;1mbHSdcRXpqX3^@6Z3i|TV69n+;hF+1?rcKt_fv9tUVbb z0~)X07Xjz`3&_nknIYJ{aW`_1Y9^T;{+;4A;G*=m*Y5!pBh&px=)wjsGeHtqy1g4j zF1{H-PJs$%k0$(gABD_`3)n;m66;r(4w9?h=uAx#p>9Ti-uwV?v|kJYUc3Owjg(k( zsRK7NRpyTnHne_~rZmm^gx8ko?U)c$zP*%iiYcVjJ8$x-nbcbRY?Fm)ucBAct28Emo`!*|~dE;llVv7a@dCtiqc zfpv&w{36^{4)r~DYw{k97kC2r_TDWx^g#kg1 zIq=u;`g?NXit?Ta9?;aITF@G=0TTloKp{+N55VE9no>WZz|*S zX6^=K>@``5>J{VV17v-YiN%31(WlqWtgyGr*4ozoWZkVJX-JMoa?IK%siy=6iC5It z07vB3Dx4tE2aF^Ue%%jNO+D>HMAybYg0tD(dQK~tEm8K{FyW|TP8jj z%uC}%h-a1|L>u(Y#k8RY_zD76jKne_JdyR{EY2-p~k?foC;p9W%U2uYB@`xZgUx9lPA)YDz{ zFGFmdC>>r8@r6TauKNkJ^A?E)xp4Cnm-u6NPx3&k1?ZI_=4Xlde#oeVe4I zk#cr;YTEl&`-&>2knp7~w_HaE*#Vf8Nt9DvFTYbT*YGVNZG!REk5hT-UGl~|yOsEE z&CwPXG&^Opgjh-Rjv!ir5z6)!AKvQKs*v`B@}7Zx{9&G_Ull2&P~B3g!4o{bhjnK{ zZ>Dn5WT*WLYN4TZPe6J6gqZS<*m6|El5{U2lhhwj&yA}0?I>an~b7a2=-we>eDm4BWNP53z zptuP>Shs2FhL%2etGmwDm9~>(mh6fo=W`Izv;9<(C62AoEk%;8a632Yof>mcWaxB) z7kArAKZ2deLkP#w;042}hdMY!73uMbA$Dsi7IL?%RW7cvT5?A3qU!C3*=xznn<0I25kfBG zcyFyj+^&~*%*KM*OM)#X`Lz3kdPi%-WgJHhPqiU3UFA$>%;$sW<&k$GGp}QyFETtP z|0Yut=Dz6gww!@z{jl^kw_%=|xs?Bq$w}3}nw)T2nh<%HeKG+rc7l`tM<=3%M=>HJ z+V}jS_I3y0)2g)i3sNq*l)72f3tvp=P4_-W(9{RoHUnp#^==1FONDFnSwIbALp(i{ z#R>{ArnDEXyHagK@G*po2iD%^eJ-dIgj-EDr@Lh-y>B}V9ec87Z&k*h61lFs`oWZ~ z>`>OFrU(9Kb7qtMfx{vFNIga*^yy?E^e9fp*G?jjH^bK2{B!j?ig-T%>l&&OZ~VjV z7{{@F<(eAoumDaD9rcZ5LO6!Cst2+<2$m%XUGdpMiByll zT@%-mIpTY^g(u%BuAJcFi4N6r-W*JIN7e1KgjPv_;gN=cEUye3eBtnTEs67@X3oQ% z6IY^5T3;WXrCF$9xq*`&{o;C`XaYDhM2$Sjk-2X%76s;8?5)EK+0YFU@V0Mghie-j z6Z&N>`1~Yp6TB|GV+o?IL|WG5@?1SXL-58O6??ohatx31Of)+qAQ~1kx-FGH`fjw3 ztVNb3p6@3g@zxrwVYg|_IP>@*cU{+PP5S{Ye#@~*Urds+?z6=jJOzeT?HUOdIbri+ ziaN~xsEmrXCWWcJGhlbt;XOkp{L08YVG<-1%L>i zS|$Wb-L+(AUi-8?DUA22#u-cY!au2tfky6p1=eS}co{Pr2}Fn*CvOTl@gg zph(2DVfu*Yr9NRTFy z*o;Bvwr$N!0QORDHsVfr`1Iy11zw^%puHd}G$X)!(us(iijbA#*-i>zIB+KSdz=qU0FN8PNnO%u8OyOvQ<~ zbX{6#s^JRb>tDFZCTs?e6T+B$(QRoDfepZ9vp>i^n2KHPz#{R;;->_!w4*!6W*CfY z2E*~8H!%uQ){2x&ua7B4pL|U>7BW~fKrpN^9-hWs+FG)U+&rJ>(z3d=wg)=R#s#gv zb%6h#YSSN6gK=T+Q~yH8^?%BJ)N}OIN6029;TX|l-LUN)6S((a9MP1ZG&LE9rjrQw zgP%N?XV1@hRARCzhaF*tc&f@F-W2e7mm zZ2zz=njn=xI1AG-gvMChzju)_SxCHBuErg*p4n;dQ%s9 zj6%!NPv+VDGidSul&JE5@%Nzm-uF+1Q+@*QC^s|1k)|TUZqvwDB_f>eE44VA_;u9z zHZNBf+MA4msX{icw_G@EUtWi5oxL(pPET-?Tm{|U+tU!xB1IG9;CAXpj?L4lZ_G5b zcaZaHJYEnm(pg`QHiPW*odg}bK`qdSZ-rsTCJVwzjDbk3Eok;{TKJU6>)^vg$cVNL z-Iy<Cz4`;R&Kjo;vav~eoifv5*uCz zco5b#RM-ni71}S-xtpylBbE4r%w41X_w;5TR~EF1$_|>yTj;PDXV2wa9ZY!4q%jPb zH->ZIzkhFh`5#w0{{N;#71igAd%~%+xFk|IU=BUH- z>!=S5Bi$_69XS?f&FRH%?nNNAJ>f~Q#$$qdH4K=AZX zv(VbGy27RAPgFpOS8tl0lX#nOkfVfAJ2cW_lJX*`#qN0;--eO0*rB9U-cIBwcM!0) zoty^6l0J-;c&j3&O+mKy*<-7at-=xR2o5XYAqw@}gzZEOVZy$1HvG%~a9@RG*9NzgzR4kHJ6SZ%&12dSBy1IQ!7%u&M`- zMl$+baR!ZcGM3$kGZ0dsF)yGC+co+e|AYB(U=R`b z2Woiec!56<&Rdd#lh)xFWW1C!Jx1ignlyiE4HkFvCj^)#-fvak&aX2~$}((#?SjLz z(}HJWq*|z?IGhBxSje1ZST(Yr8WS+|tP~+Dqk1b>q)OP?L!mQJt#-BJYf>`i8ky9C zN6=De%mBP7lk^J_;A_wENa71)%ZCN1*yT`N zLHi=N1>7^qq+#Ty7UZYD?UD7lXe+h-;{*UhQUOG2??^boC3bZQX!0UikW)SYp5p3m zOWX~FADe&pqZvRx2Kq5s)5!bhtTI(H-gh;EpwmeCA;L_VY|J{7j2p%ol71i{V!&I-h9Gj)i$A>xhH;BC4f+;M5 z(d8>$e>4#EyD{e9Gfzn3puGBw{7BFtf2Rn9#U#VyfcPIVQKzo!;H&Qrv7Eb(eg5dr#(n(WY-o5$$PeK0gO_}@i{r~-3&Hu^kLHYlPcfBQO;i31gi1o0O8GiX|Es-g4~KGFS1CQ(Ky7Yv@AKPKn%oh}1ZlY<5a9MUqr=gish6D%U{?*(c*Z za+_g{VZQmCRr~xC&e=WB-p_N|?fG}jJn#C}yVm-?_5RlT{(gzZ+=gJ!y4@Mvjr01RT1Ug`;$uATQ)r<^u0tHgE8w3W?ZGLA$m@i z68QgU`&bjIVPeZ2ZY#`8_C0gLe$$Schj$pyd`6qM_ji^jYp%6m&e8}bE>LugL%IqMv)=jS&h3aB(&)o4(kb)xU1XNB}NRc!4g)W%gvCw|# zF15P5#NdIh-UGERN^DjT-9@Y^h@v13Tx`EwJ9W12Ilow1bG(P6ul}ik4zgfXXGHCJ zApS-^{=fUYU7GyiF(Q(U%sSk!%i<6C6)5ce!QXtE&;Q>|L+$HDwZ7r_6Y~v?ZRS_6 zL;G2|?WbeG6k*puSMmzj|zX|LWmZla{#cAO9I zZIQ!i`LJ3^p;@$uL}`ZVsgT>x1#Yr7^YmwF=O{IIS^d28*No0<@u;Jx^$rJ3yNr6r zsKs|O^C+HCZJXnjkKbHxr|D>06CIiwYC!K%VmO6D`fZiAe!6jwV=fP7<{UX&f?LrL zV3$^y(WcY1?omgP-cB zT+ZfAOqofdTbXwHW8BI_-F&U?Ia%)q2Kodn;c=iS%U^;O%7CoA7vQje;gaw$h?NKmaNYkbp1i;=ITP9O)r&<`02}O*20?IjKXsd{X36^vw&H)daJN2+i|?Yn zE;n>bsNPp2Rgrs&I~2{>LD`q^3e~Hte~5`qXr8-g*A?^U>Y=N(Z^g8j$cVNH+lw_E z5>r+Qx^7<6ux_RqDvK|TIq@Bf76g;t;iQFCY}T#R;g1~)#%+VD{e z*Dr|h!7E@ybP#}E=>Y)3&yX!)jQ^BNCvug;z1GQa_VySh=6OFV&lQin#aYQc!;+f& z1{(WAN_``yWcfUXEK*kQn)}24Kx*6aX}Dw1`<90z&~5m$ps8T>t1aCaQfn7}Oih|;eWN5Y(25YXd=(XI4O90kB5w(DtC>k8m# zvi)`O0hn0<9c~%dmIJ7?H5s7x_of;m4bkw}4|nCqQby@Rau2Q02T*G#EyG=`AOlkT zSAHrFnqnt?jF?0nv6+L^i5kXa-rj}xW4S}D#vGI~6WkugkUm!NOfh4Nq}CF~)51{K zz+U8huMLzgC-imc1MfDx6ewS^NdK+IXtEvDhLbGbR}60|96`-T(rEP&QyoX0Y6xD< z-;3UNg5t@3;4)$S4eJ9F)vyyOfr=(G7+G`z_&=O5)e@KjkiYUDFJ1{e;W7fQ>p%B& z@)SGd@<0Xn{xxD(+QzUbvHGM(ar2y9t2b+|b}$}z8W6_Q zJ5ijj=*YZhh@_AAh+|O&A9A~XACK)$(OBn}@-_f}H}DbH?$z>Oi!P&pi{+g=6iy## z7}6m(B$e@Aia>tmH zddG4r;CU06?zV+FefK%OOB&#Bu<48idLRg)S2q)6Ebvn}}{EAbKrK zXsjmlJ3=ra&C9*asL-fgg1NGz#bYTo=3^KM@4(GZDUM?~J59oz#IJnGr4ATRU8<${g)BP?QRn|_3J?``T&E-?S&Cy#l#itK z8U?0Qx~IEe@V}QF?R~;~`!Tza#nKD=$pq&7wfpD@eVDMok#Vkon9q4+gUYweglkIg zfKRX|7IDCG69F&Ch3~=XV&*MC8q_-=zT=;``FefrkEzJ2!dajKIuf7=MI1=@6lyi) z>Wk;u6Hys+K#Ww|uleiR>PM8$$?ZU;WH5xmIa~*GjpR^Ws;fq;vzI4n_2hOT@uQO7 zHl-MFe5iqWp8h*WWjCfL^0DaFjWWz2vcP7@dj{UR^M(x1H+lv^s>~xs{0~h&CPlK^hx@?$_C}QhNtr{ zmsXXqDoh@i$r@*vS}wBozpNlN{1VYy*9Rh+?PrT%p>N1(*6Y&Jh_Xw| z9irP^4a_{6FPd&R6pPuTXoi^w60|Jw%6h3=6O425I?oteKtlGcPvn}@Ct!8t`?IUm z+Mtm9ZQRk4L#ONVtyA6~A8m0tqu%0N7|xEX@KDj|JDbI33pPn1DtpQG`iS9c0XViM zCawh_=K~mtBur^B!R0n3VYPk1nEy?4T;f z&>6BU)aS(=MQ<*pbB0m%9?>#@6B3nR_FD+WKcYTw0g_)$2aDe8)*x<4(533+R`IUa z`?7|!4c@QIvfGtOD8T2geO7by=uz)ma<4&!LGYJc%t`(u@zZo`0Gdwd=^IK%{FYKH kC1d#ti|zk}y)tt;d4xZ~u4KJ@o9jg~uYdl$&YWoaH_TwwKL7v# diff --git a/docs/theorist/darts/introduction.md b/docs/theorist/darts/introduction.md deleted file mode 100644 index 133560da2..000000000 --- a/docs/theorist/darts/introduction.md +++ /dev/null @@ -1,17 +0,0 @@ -# Differentiable Architecture Search - -## Introduction - -Neural Architecture Search refers to a family of methods for automating the discovery of useful neural network architectures. There are a number of methods to guide this search, such as evolutionary algorithms, reinforcement learning, or Bayesian optimization (for a recent survey of NAS search strategies, see Elsken, Metzen, & Hutter, 2019). However, most of these methods are computationally demanding due to the nature of the optimization problem: The search space of candidate computation graphs is high-dimensional and discrete. To address this problem, Liu et al. (2018) proposed **differentiable architecture search (DARTS)**, which relaxes the search space to become continuous, making architecture search amenable to gradient descent. - -DARTS has been shown to yield useful network architectures for image classification and language modeling that are on par with architectures designed by human researchers. AutoRA provides an adaptation of DARTS for automate the discovery of interpretable quantitative models to explain human information processing (Musslick, 2021). - -## References - -Liu, H., Simonyan, K., & Yang, Y. (2018). Darts: Differentiable architecture search. In *International Conference on Learning Representations*. arXiv: https://arxiv.org/abs/1806.09055 - -Elsken, T., Metzen, J. H., Hutter, F., et al. (2019). Neural architecture search: A survey. *JMLR*, 20(55), 1–21 - -Musslick, S. (2021). Recovering quantitative models of human information processing with differentiable architecture search. In *Proceedings of the 43rd Annual Conference of the Cognitive Science Society* (pp. 348–354). Vienna, AT. arXiv: https://arxiv.org/abs/2103.13939 - - diff --git a/docs/theorist/darts/meta_parameters.md b/docs/theorist/darts/meta_parameters.md deleted file mode 100644 index 88daeee52..000000000 --- a/docs/theorist/darts/meta_parameters.md +++ /dev/null @@ -1,32 +0,0 @@ -# Differentiable Architecture Search - -## Meta-Parameters - -Meta-parameters are used to control the search space and the search algorithm. DARTS has quite a lot of those parameters. This section provides a basic overview of all parameters along with a description of their effects. - -### General DARTS meta-parameters - -- **`num_graph_nodes`**: The number of latent variables used to represent the model. -- **`max_epochs`**: The maximum number of epochs to run DARTS. This corresponds to the total number of architecture updates. These updates affect the architecture weights $\alpha$ indicating the relative contribution of each operation for a given computation step. - -### Meta-parameters for the architecture updates -The following parameters affect the updating of the architecture weights $\alpha$: - -- **`arch_learning_rate_max`**: The initial (maximum) learning rate for updating the architecture updates. The higher the learning rate, the larger the steps taken to update the architecture weights. The learning rate decays with each epoch. -- **`arch_weight_decay`**: The weight decay for the architecture weights. The higher the weight decay, the more the high architecture weights are pressured to be small. -- **`arch_weight_decay_df`**: An additional weight decay that scales with the number of parameters (degrees of freedom) per operation. The higher this weight decay, the more DARTS will favor operations with few parameters. - -### Meta-parameters for the parameter updates -The following parameters affect the updating of the parameters associated with each operation: - -- **`param_updates_per_epoch`**: The number of steps taken by the parameter optimizer per epoch. Once the architecture updates are complete, the parameters associated with each operation are updated by a stochastic gradient descent over this number of steps. -- **`param_learning_rate_max`**: The initial (maximum) learning rate for updating the parameters. The higher the learning rate, the larger the steps taken to update the parameters. Note that the learning rate is scheduled to converge over the total number of parameter updates to **`learning_rate_min`**. -- **`param_learning_rate_min`**: The smallest possible learning rate for updating the parameters. -- **`param_momentum`**: The momentum for the architecture updates. The higher the momentum, the more the steps taken to update the architecture weights will be influenced by previous steps. -- **`param_weight_decay`**: The weight decay for the parameters. The higher the weight decay, the more the high parameters of each operation are pressured to be small. - -### Meta-parameters for the classifier -The final output of the DARTS model is computed by concatenating all edges in the computation graph into a single vector and then adding a linear classifier. The linear classifier can attach a coefficient to each edge (weighing the contribution of that edge to the final output), and it can add a constant bias term. The following parameters affect the behavior of the classifier: - -- **`train_classifier_coefficients`**: If set to `True`, the classifier coefficient of each edge will be trained (otherwise each coefficient is set to `1`, reflecting an equal contribution of each edge to the final output). -- **`train_classifier_bias`**: If set to `True`, the bias term of the classifier will be trained (otherwise the bias term is set to `0`). diff --git a/docs/theorist/darts/search_space.md b/docs/theorist/darts/search_space.md deleted file mode 100644 index 2cdf9af47..000000000 --- a/docs/theorist/darts/search_space.md +++ /dev/null @@ -1,61 +0,0 @@ -# Differentiable Architecture Search - -## Search space - -DARTS uses a search space of operations to find the best model. The search space is defined by the set of operations that can be applied in each computation step of the model. These operations are also referred to as *primitives*. We can select from the following space of primitives: - -- **zero**: The output of the computation $x_j$ is not dependent on its input $x_i$. -- **add**: The output of the computation $x_j$ amounts to its input $x_i$. -- **subtract**: The output of the computation $x_j$ amounts to $-x_i$. -- **mult**: The output of the computation $x_j$ is its input $x_i$ multiplied by some constant $a$. -- **linear**: The output of the computation $x_j$ is linearly dependent on its input $x_i$: $x_j = a * x_i + b$. -- **relu**: The output of the computation $x_j$ is a rectified linear function of its input $x_i$: $x_j = \max(0, x_i)$. -- **exp**: The output of the computation $x_j$ is exponentially dependent on its input $x_i$: $x_j = \exp(x_i)$. -- **logistic**: The output of the computation $x_j$ is a logistic function of its input $x_i$: $x_j = \frac{1}{1 + \exp(-b * x_i)}$. -- **sin**: The output of the computation $x_j$ is the sine function of its input $x_i$: $x_j = \sin(x_i)$. -- **cos**: The output of the computation $x_j$ is the cosine function of its input $x_i$: $x_j = \cos(x_i)$. -- **tanh**: The output of the computation $x_j$ is the hyperbolic tangent function of its input $x_i$: $x_j = \tanh(x_i)$. - -Some of the primitives above may also be preceded by a linear transformation, allowing for more degrees of freedom in the search space: - -- **linear_relu**: The output of the computation $x_j$ is a rectified linear function of its *linearly transformed* input $x_i$: $x_j = \max(0, (a * x_i + b)$. -- **linear_exp**: The output of the computation $x_j$ is exponentially dependent on its *linearly transformed* input $x_i$: $x_j = \exp(a * x_i + b)$. -- **linear_logistic**: The output of the computation $x_j$ is a logistic function of its *linearly transformed* input $x_i$: $x_j = \frac{1}{1 + \exp(-b * (a * x_i + b))}$. -- **linear_sin**: The output of the computation $x_j$ the sine function of its *linearly transformed* input $x_i$: $x_j = a * \sin(a * x_i + b)$. -- **linear_cos**: The output of the computation $x_j$ the cosine function of its *linearly transformed* input $x_i$: $x_j = a * \cos(a * x_i + b)$. -- **linear_tanh**: The output of the computation $x_j$ the hyperbolic tangent function of its *linearly transformed* input $x_i$: $x_j = a * \tanh(a * x_i + b)$. - -Note that the following functions are available but currently not identifiable by DARTS (please use the following functions with caution): - -- **reciprocal**: The output of the computation $x_j$ is the multiplicative inverse of its input $x_i$: $x_j = \frac{1}{x_i}$. -- **ln**: The output of the computation $x_j$ is the natural logarithm of its input $x_i$: $x_j = \ln(x_i)$. -- **softplus**: The output of the computation $x_j$ is a softplus function of its input $x_i$: $x_j = \log(1 + \exp(a * x_i)) / a$. -- **softminus**: The output of the computation $x_j$ is a softminus function of its input $x_i$: $x_j = x_j - \log(1 + \exp(a * x_i)) / a$. - -# Example - -The following example sets up a search space with the following primitives: - -- zero operation -- addition -- multiplication -- sigmoid operation - -```python -primitives = [ - "zero", - "add", - "mult", - "linear_exp", -] -``` - -We can then pass these primitives directly to the DARTS regressor: - -```python -from autora.skl.darts import DARTSRegressor - -darts_estimator = DARTSRegressor( - primitives=primitives -) -``` diff --git a/docs/theorist/darts/weber.ipynb b/docs/theorist/darts/weber.ipynb deleted file mode 100644 index c728c226a..000000000 --- a/docs/theorist/darts/weber.ipynb +++ /dev/null @@ -1,348 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "source": [ - "Example file which shows some simple curve fitting using DARTSRegressor and some other estimators." - ], - "metadata": {} - }, - { - "cell_type": "code", - "execution_count": null, - "outputs": [], - "source": [ - "# Uncomment the following line when running on Google Colab\n", - "# !pip install autora" - ], - "metadata": { - "collapsed": false - } - }, - { - "cell_type": "code", - "execution_count": 1, - "outputs": [], - "source": [ - "from functools import partial\n", - "\n", - "import matplotlib.pyplot as plt\n", - "import numpy as np\n", - "import pandas as pd\n", - "from sklearn.linear_model import LinearRegression\n", - "from sklearn.model_selection import GridSearchCV\n", - "from sklearn.pipeline import make_pipeline\n", - "from sklearn.preprocessing import PolynomialFeatures\n", - "\n", - "from autora.skl.darts import DARTSRegressor\n", - "from autora.synthetic import retrieve, describe" - ], - "metadata": {} - }, - { - "cell_type": "code", - "execution_count": 2, - "metadata": {}, - "outputs": [], - "source": [ - "# %% Define some helper functions\n", - "\n", - "def show_results_complete(\n", - " data_: pd.DataFrame,\n", - " estimator=None,\n", - " show_results=True,\n", - " projection=\"2d\",\n", - " label=None,\n", - "):\n", - " \"\"\"\n", - " Function to plot input data (x_, y_) and the predictions of an estimator for the same x_.\n", - " \"\"\"\n", - " if projection == \"2d\":\n", - " plt.figure()\n", - " data_.plot.scatter(\n", - " \"S1\", \"S2\", c=\"difference_detected\", cmap=\"viridis\", zorder=10\n", - " )\n", - " elif projection == \"3d\":\n", - " fig = plt.figure()\n", - " ax = fig.add_subplot(projection=\"3d\")\n", - " ax.scatter(data_[\"S1\"], data[\"S2\"], data[\"difference_detected\"])\n", - "\n", - " if estimator is not None:\n", - " xs, ys = np.mgrid[0:5:0.2, 0:5:0.2] # type: ignore\n", - "\n", - " zs = estimator.predict(np.column_stack((xs.ravel(), ys.ravel())))\n", - "\n", - " ax.plot_surface(xs, ys, zs.reshape(xs.shape), alpha=0.5)\n", - "\n", - " if label is not None:\n", - " plt.title(label)\n", - "\n", - " if show_results:\n", - " plt.show()\n", - "\n", - " return\n" - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "outputs": [], - "source": [ - "# %% Load the data\n", - "s = retrieve(\"weber_fechner\",rng=np.random.default_rng(seed=180), resolution=20)\n", - "X = s.domain()\n", - "y = s.experiment_runner(X)\n", - "data = pd.DataFrame(np.column_stack([X, y]), columns=[\"S1\", \"S2\", \"difference_detected\"])" - ], - "metadata": { - "collapsed": false - } - }, - { - "cell_type": "code", - "execution_count": 4, - "outputs": [ - { - "data": { - "text/plain": "
", - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZIAAAGlCAYAAADQ/XDvAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOz9d5hj933fj77OQe/AANPrzvbetOTuklSXaIkqjkpiWbYluSiOZcfJ9S/X1859bOd5Epc40e+n+Bcztq4tyUpk/6Jm2bKtZoukKBaRy51tszu97fRB78Ap9w/sAYEZzAwwA+xgyfN6Hj3izgAH3wFwvu/vpwuqqqro6Ojo6OjsEHGvF6Cjo6Oj82CjC4mOjo6Ozq7QhURHR0dHZ1foQqKjo6Ojsyt0IdHR0dHR2RW6kOjo6Ojo7ApdSHR0dHR0doUuJDo6Ojo6u0IXEh0dHR2dXaELiU7D+fznP48gCExPT+/1UurKxz/+cQYGBvZ6GTo6e44uJDqvO4aHh/md3/mdPRW23/3d3+Wv//qv9+z1dXTqiS4kOg3np3/6p0mn0/T39+/1UoCCkPyH//AfdCHR0akTxr1egM5rH4PBgMFg2Otl6OjoNAjdItFpOJViJAMDA7znPe/h2Wef5aGHHsJqtTI4OMhf/MVfVHzuM888w7/8l/8Sv9+P2+3mZ37mZwiHw2WPFQSB3/md39nw+gMDA3z84x8vXu/DH/4wAG95y1sQBAFBEHjqqae2/Bv++q//mhMnTmC1Wjlx4gRf//rXKz7uv/yX/8Lly5fx+/3YbDbOnz/PV77ylQ3rTCaTfOELXyi+vra+mZkZfumXfonDhw9js9nw+/18+MMffs3Fl3ReW+gWic6eMT4+zoc+9CF+7ud+jo997GP8+Z//OR//+Mc5f/48x48fL3vsL//yL+P1evmd3/kdRkZGePLJJ5mZmeGpp55CEISqX/ONb3wj//pf/2v+23/7b/zmb/4mR48eBSj+fyW+853v8MEPfpBjx47xe7/3ewSDQT7xiU/Q09Oz4bGf+cxneN/73sdHP/pRcrkcf/VXf8WHP/xhvvnNb/LEE08A8MUvfpGf//mf56GHHuKTn/wkAPv37wfgpZde4rnnnuMnfuIn6OnpYXp6mieffJI3v/nNDA8PY7fbq/5bdXTuG6qOToP53Oc+pwLq1NRU8Wf9/f0qoD7zzDPFn62srKgWi0X9tV/7tQ3PPX/+vJrL5Yo//8//+T+rgPqNb3yj+DNA/e3f/u0Nr9/f369+7GMfK/77y1/+sgqo3//+96ta/5kzZ9TOzk41EokUf/ad73xHBdT+/v6yx6ZSqbJ/53I59cSJE+pb3/rWsp87HI6yNW32fFVV1eeff14F1L/4i7+oar06Ovcb3bWls2ccO3aMxx57rPjv1tZWDh8+zOTk5IbHfvKTn8RkMhX//a/+1b/CaDTy93//9w1d4+LiIkNDQ3zsYx/D4/EUf/6Od7yDY8eObXi8zWYr/nc4HCYajfLYY4/xyiuvVPV6pc/P5/MEg0EOHDiA1+ut+ho6OvcbXUh09oy+vr4NP/P5fBtiHwAHDx4s+7fT6aSzs7PhsYOZmZmKrw9w+PDhDT/75je/ycWLF7FarbS0tNDa2sqTTz5JNBqt6vXS6TS/9Vu/RW9vLxaLhUAgQGtrK5FIpOpr6Ojcb/QYic6esVkml1rn6c+yLNf1epvxgx/8gPe973288Y1v5I//+I/p7OzEZDLxuc99ji996UtVXeNXfuVX+NznPse/+Tf/hkuXLuHxeBAEgZ/4iZ9AUZQG/wU6OjtDFxKdB4KxsTHe8pa3FP+dSCRYXFzk3e9+d/FnPp+PSCRS9rxcLsfi4mLZz2oJzmu1L2NjYxt+NzIyUvbvr371q1itVr797W9jsViKP//c5z634bmbreErX/kKH/vYx/iv//W/Fn+WyWQ2/F06Os2E7trSeSD40z/9U/L5fPHfTz75JJIk8a53vav4s/379/PMM89seN56i8ThcABUtTl3dnZy5swZvvCFL5S5lr773e8yPDxc9liDwYAgCGWvNz09XbHw0OFwVHx9g8GwwSL7oz/6o/tmVeno7ATdItF5IMjlcrztbW/jn//zf87IyAh//Md/zKOPPsr73ve+4mN+/ud/nl/8xV/kgx/8IO94xzu4du0a3/72twkEAmXXOnPmDAaDgT/4gz8gGo1isVh461vfSltbW8XX/r3f+z2eeOIJHn30UX72Z3+WUCjEH/3RH3H8+HESiUTxcU888QSf/vSn+bEf+zF+8id/kpWVFf77f//vHDhwgOvXr5dd8/z583zve9/j05/+NF1dXezbt4+HH36Y97znPXzxi1/E4/Fw7Ngxnn/+eb73ve/h9/vr+G7q6NSZvU4b03nts1n67xNPPLHhsW9605vUN73pTRue+/TTT6uf/OQnVZ/PpzqdTvWjH/2oGgwGy54ry7L667/+62ogEFDtdrv6+OOPq+Pj4xvSf1VVVT/72c+qg4ODqsFgqCoV+Ktf/ap69OhR1WKxqMeOHVO/9rWvqR/72Mc2pP/+2Z/9mXrw4EHVYrGoR44cUT/3uc+pv/3bv62uv9Xu3LmjvvGNb1RtNpsKFNcXDofVT3ziE2ogEFCdTqf6+OOPq3fu3Kn4N+joNAuCqtY5sqmjU0c+//nP84lPfIKXXnqJN7zhDXu9HB0dnQroMRIdHR0dnV2hC4mOjo6Ozq7QhURHR0dHZ1foMRIdHR0dnV2hWyQ6Ojo6OrtCFxIdHR0dnV2hC4mOjo6Ozq7QhURHR0dHZ1foQqKjo6Ojsyt0IdHR0dHR2RW6kOjo6Ojo7ApdSHR0dHR0doUuJDo6Ojo6u0IXEh0dHR2dXaELiY6Ojo7OrtCFREdHR0dnV+hCoqOjo6OzK3Qh0dHR0dHZFbqQ6Ojo6OjsCl1IdHR0dHR2hS4kOjo6Ojq7QhcSHR0dHZ1doQuJjo6Ojs6u0IVER0dHR2dX6EKio6Ojo7MrdCHR0dHR0dkVupDo6Ojo6OwKXUh0dHR0dHaFLiQ6Ojo6OrtCFxIdHR0dnV2hC4mOjo6Ozq7QhURHR0dHZ1foQqKjo6Ojsyt0IdHR0dHR2RW6kOjo6Ojo7ArjXi9A5/WFqqrIskw2m8VgMBT/J4r6mUZH50FFFxKd+4aqquTzeSRJIpvNFn8uiiJGoxGj0agLi47OA4igqqq614vQee0jyzL5fB5FURAEgVwuhyiKqKqKqqooioKqqgiCgCAIurDo6DxA6EKi01BUVUWSJCRJAkAQhKJlIghCxcdrogIQDAYxGAy0trYWhcVoNFZ8ro6Ozt6gu7Z0GoaiKEUrBChaG5pIaBZIKYIgYDAYiv8Oh8MYjUa8Xi+5XA5BEBBFsSgomrjowqKjs3foQqJTdzSrIp/Pl7mr1j+mms2/1NW1/trrhcVkMhVdYbqw6OjcP3Qh0akrmtvq5s2btLW1EQgEdr2pl3pf11ssmwnL+hiLLiw6Oo1DFxKduqFt6LIsE4/H8fl8u97At3t+qbBogqMoCrlcjmw2qwuLjs59QBcSnV2j1YZIkoSiKIiiWBYLqcf1q0ETB11YdHTuL7qQ6OwKzZUlyzJAUUS01N7dshtBqiQs2v+y2Sy5XK64Zl1YdHR2ji4kOjtGO+mXWiGlbCYAtWzS9bRsSoP+BoNhg7CUWiwmk6koLJX+Nh0dnVfRhUSnZjRXlpaVVWmj3U4AatmYG1XqtJWwZDKZ4mN0YdHR2RpdSHRqQlEUJEna4MpaT70sifu5YW8nLBMTE7S3t+P1estcYbqw6Lze0YVEpyqqqQ0pZS+C7fVmvbBEo1H8fj+KohQtFlEUN8RYdGHReb2hC4nOtlRqc1JNWu5eB9sbgVb8WGqxKIpCNpslk8nowqLzukQXEp0tKa0N0eIF1VCLAKTzMpNrKdJ5Gb/DTH+LDfEB2HjXC6omLLIsF1vll8ZYSvuE6cKi81pCFxKdimxWG1It1QrJXDjN31xfZiGaQVXBZBA52unkfSfbsZsNTWeRbIUmEJrYlgqLJEnF31fqE6YLi86DjC4kOhvYrDakFqoRgJyk8M0by8xHMwy02DAaRJJZiaG5KAGHibcfad3x39AMbCYskiQVux9rwlLaJ0xvma/zoKELiU4Z29WGVEs1QjITSjMfzdLnK4gIgMNixGM3cX0+zhsP+B8oi2Q7dGHRea2iC4kOUF1tSC1UIwBZSUFWVEyG8texGESykkJOVnb8+o2g3oK2nbCAPj1S58FAFxKduriy1lNJSBIZiZdnIwwvxECV6fJYsZpEImkJn91UfFwwledgqx2H2UDwNWSRbMdmwlLa2VifHqnTjOhC8jpHlmUWFhbweDyYzea6BX3XC0kiI/GFF2YZXoxjNYnIssKtxQQ2s4F0LksyK2E1GYik8zjNBi4Ptrzug9CVhEXLoltcXCSZTDIwMFAmLPr0SJ29QBeS1ymltSHXr1/noYcewmKx1O3664XklbkIt5fiDAbsmAwiiiKTysrMxzI81O8lksqTzMmc7HJxod/LgVZH2Vp1ylvm53I5UqkUwKYWiz49Uud+oQvJ65BKI3Ab4f/Xrg8wupzAbBAxG0W0l7KZDagqOC1GfuJ8F5KiYjKIG66jsxGtu0A1Q7706ZE6jUYXktcRpRtNaVZWvVq+l7J+szIZRJRNXsMoFk7S64PupetuFpplE65m3r0+PVLnfqELyeuErQLq98MiOd7l5upchHhGwmkpfO1CqTxWo1jmxqp0nWYSkmahmpn3+vRInfuFLiSvA0rbnFTKyBJFsWzTrweCICArKtF0HrvZwOkeNxOrLbwwFWY+kkFRFOxmkTcd9LO/1b7ldXR2jz49UqeR6ELyGqbaNif1PvXLisqVhTQvzsQxjo3gthl5dL+f95/u4HSPhzvzYZYWFxgM2DnVaURVFChxyVT6O3TKqcYi2YqthEWfHqlTK7qQvEappTZkvRtqt3x/ZJV/GIuDotDrFQkmcvzvK/OkczLnWsEZHuViTwBVlRkeHkaSJDweDz6fj5aWFpxOZzHlVd+0KrNbIVlPqbBUMz1SSzXWOxvrgC4kr0m0CvVq25zUM9iezEo8PbaG1SjiMYLXZsJrM7EUzfC3VyaQ2tNcOHMcv99ffM1UKkU4HCYcDjM7OwuA1+vF5/MVrSmdjTRyA9enR+rUgi4kryFKa0NqaXNST9fWWiJHNJ3HYzHAvRYn+bxENrZGJKWy761n6OjwF1uACIKAw+HA4XDQ09ODqqrE43HC4TDBYJBwOAzArVu38Pl8+Hw+bDZbXdb6IHO/3X3bCUskEiGdTtPb26vPYnkdogvJa4T1tSG13MD1DLY7LAbMRgOZtIoFlWQyyerqGpjtdLQ5CXicxcdulsLqdrtxu9309/czPz/P/Pw8NpuNxcVFRkZGsFgsRVHx+Xx1LaR8UKi3a6tW1gtLOp0mEonQ3d1dZrGsb5mvC8trE11IHnBqHYFbid1aJKqqspbIoagqrU4LJ7vcfOd6FCdZ0ukMTm8LaxmBU50uOty1bfqaz35wcBAASZKIRqNFN9jw8DAOh6MoKl6vF5PJtM1VXxs004asWcD69MjXJ7qQPMCsD6jvtDfVboLts6EUX7u6yPhqAkWF/hYbjwy46bZkmImpOD1eBNnA6R4nHzrXvWvRMhqN+P1+/H4/UGgPosVXJiYmSKVSuN3uorB4PJ6yIr3d0EzZY3ttkaxn/Xr06ZGvL3QheUDZrjakFnYabA8lc/zJM9PMhVO0u60IAgzNBLk2NstPHHdwWRXoHtyP125iMODAIO5M5LZam8lkoq2tjba2NgAymUxRWG7fvk0ulyvLCHO5XK+JbrmaBdAsaIkdm6FPj3xtowvJA8ZuR+BWYqcWyZXZCLPhFAdanYgChMNhnEqSmMnBguTkvDfDhQHfrtdWC1arlc7OTjo7O1FVlXQ6TTgcJhQKcffuXRRFKWaE+Xw+nE7nA7lRNbtFsh21DPla7wrTaT50IXmAaMTcEO06O7FIlqIZREFAUSRWVtcA6OrqQIjlWYpLqJ76uIJ26lISBAG73Y7dbqe7uxtVVUkkEkWLZWpqClEUywL3NputqTbozWhGIdnNJq9Pj3yw0YXkAUFRFObn57Hb7TgcjroXo+1ks/Y5zGQyWRYWwrichYC3IAhk8ln8DjOqmqvL2uqFIAi4XC5cLhd9fX0oikI8HicUCrG8vMzo6Chms7koKi0tLa/LjLCdoChK3T8rfXrkg4MuJE1O6QjcyclJent7cTqd2z+xBmpxbeUkhWg6j8Ms4sqsYMinSFuddLg9SIrKUiyD02rkbLcTNZGsy/oaFeQWRRGPx4PH42Hfvn3Iskw0Gi26wW7fvo3dbi8KSzNZAc20Fmh8zGYzYdE6G4MuLHuJLiRNjKIoSJJU5spqxKZazXUVReW7d1b47vAKwUSWfCrOqYDIL73zON+6E2YhkkZRIeA08/7TnRxw5pmKV75mLQHU+7lZGgwGWlpaaGlpAQoZYZFIpOgGy2Qy3Llzh9bW1mKqcb0ywmql2YREUZT7mna91fRIzWKJx+PY7XacTqc+PbLB6ELShGxWG9KILr1QnUXyD7eW+dKP7qLKeZRsEowWrkQtdITz/H/ffZjJtSSyAvsCdpwWI8vLy3UTvb1KuzWZTLS2ttLa2grAc889R1tbG7lcjpGREbLZbDHVuKWlBbfb/bo9Ae+1sFWaxTIxMUFXV1fx54KgT49sFLqQNBmlbU6g/PS+VxZJOifzneEV8tk0DiGLr9WH3WYjmMzx7HiQx4+1c6zTXfacerVdaaZ5JIIg0NLSgs9XyERLp9OEQiHC4TDz8/PIslzMCNOaTzZqo9rrjXs9zbYe7Xuj9QHTp0c2Fl1ImojS2pBSs12jkRbJVpv17GqU2aU1nCZob2vDaCx8bbw2EzOhFEuxDO3rKtbrKSTNis1mo7u7u5gRlkwmixlh09PTCIJQlhFmt9vr9vc028a9XR3JXlC6pkoWiz49sn7oQtIEVFsb0kgh0eIw61laWuL29ZvYrRYcTmdRRABSORmLyYDbuvFrtJ2Q1HKDNotFshWCIOB0OnE6nfT29hYzwsLhMKurq4yPj2M0GovWis/nw2q17vo1m4VmEzbYWtxKhUUf8rV7dCHZY2qpDWmUkKx3bamqyvBijO9dGSUSjfKW0/t5i0vgO7dXMBtFXBYj6bzMUizDuT4vA/6NEw5fixZJLX9PaUbYwMBAMSNMc4PduXMHq9VaZrGYzeaGrOV+0GyV9lC9lVTafBJ0YdkJupDsIdoXtZa5IY0OtiuKyp89O8E3rsySlVXsNge3X1zj0f1+Lu3zcX0hznIsh9UkcrrHw89e7q+47u2EpJaNsNk2zZ2wPiNMkqRiRtjMzAy3bt3C6XSWNZ8stf7W02wWQL3rSOrBTt1tWwmLPj2yMrqQ7AGltSG1zg1ptEXy3aFJvvqjaTwOC4cCHgRBJJrO8/TYGv/2bft53+kuVhNZvDYTh9qciJv0z3otBtvridFoJBAIEAgEAMjlcsX4ytjYGJlMBpfLVXSDud3uDanGzbRpNZuwQf3iNqXCUml6ZKmwvF6nR+pCcp/ZTZsTURQ3jWXsBk2ghoeH+d7QAkaLlZ5Wb/H3HpuJUDLHlZkIv/LW/exvdVR1zdeaa6uRmM1m2tvbaW9vByj2CAuHwywsLGwYR9xsFkCzB9vrSWkmpT49soAuJPeRWkfgrkcUxWKxVT3J5/MEg0HsdjttXd1MTMc2vrYgkM5Xbw3V05J4LVok22Gz2bDZbHR1daGq6oZxxNp3SZZlfD5f3dvm1EqzWSSKoty3uI0uLLqQ3BfW14bs9AvUiBjJ0tIS09PTWCwWLl68SOLOGs9Px8hJCmZj4SbMywqyonCsy1X1dXWLpH4IwsZxxC+99BJ2u51gMMjExEQxI2yvxhE3W7Bd++7txZq2EpbZ2Vni8TgHDhx4TU2P1IWkwawfgbub+Qr1FBJZlhkZGWFhYYHOri4i8RSCIHB5fws/GF/jxnwMq8mAAKTyMsc6XLzxgL/q6+sWSePQUlcDgQAdHR0oilLMCKs0jrilpaWmjLCd0IyuNtgbIVlP6T2vpflr9/JrZXqkLiQNorTgaa/nhqwnmUxy7do1VCDqPchfvrTISjTN1+Zu8sSpdn7t7Qf47u1VXpwKo6oqFwZ8PH68Dbet+l5K9aojeVBupL2ktBU+bD+O2OfzbZkRthOa0bUFzSEkpciyvKGZ5FbTIx8UYdGFpAE0cm7IboVkaWmJmzdv0t3dzctRB1/+0QKKJCECk8Ek//37U/zco/18+Hw3Hz7fvavX0i2SxrHVxr0X44ibLdiudYdoto1XE5JSNutsXCosH/nIR/jYxz7GRz7ykb1Y9rboQlJn6jkCdz276bVV6so6efIkRoePbz1/HZtZxGU3k0rlafHZWIxm+OuhRd52uBWbeeebS736gjXbRtAs66nFArgf44ib0SJpJmHTqCQk66kkLEtLS3W3IutJ867sAUM7QSwtLTExMcHDDz9c9xtrpxaJ5soSBIHLly9jt9t5ZTZCLCPR7bEg5fNoe77XbiKUyrEQzVSV5rsVr6cWKXvBTr9fjRhH3GzB9mYWklrjVYIgkEqlsNs3dpBoFnQhqQPrXVlaE7h6sxMhWVxc5NatW3R3d3P48OHizeW0GDEbBLKSglEAKGzWOUnBbBBxWnbn6tD+/s1Oqloh13Y3RzOdcpuJeomrINRnHHEzBtubUUgURanZjag1BHW5qs+avN/oQrJL1teGGI3GhlSfQ21Cst6VpRW6aRxodXCwzcn1+RitdhFVhUxeJpjM8dgBP+3u+jQUrCQkS0tL3LhxA0VRsFqtxeptn89XcTiSbpFspFGuJEHYOI44FosRDoc3jCPWPjeLxdKUrq29Gjq2FZrLu1aSySQOx+48BI1EF5IdUlobUtrmpFH9sKB6IankypIVlWt3o9xZSmA2Cjw84ONTb9rHH353nPHlGOmMQlrMcbLLw889MrDrtZYKiYaiKIyMjDA/P8+JEydwOp3FmelTU1PcvHmzbFCUx+N5zbZIqQf3Y+MWRRGv14vX690wjnhubo7h4WHsdjuKohAOhzGbzfd1UuJmNKtFUk2MpBKpVEq3SF5rVBqBW1qA1Ig2JtrrbCcklVxZ2bzMf/3eOD+cCJGXC8//y5fu8vFL/fzhB47z9PBdhu5M8NaLhznd48FkqF9/Ik0EMpkMQ0NDyLLM5cuXMZvN5PP5sn5T2Wy2OCjq1q1bSJKE2+0uuluaoXq7WdgrC6DSOOJwOMzNmzeZm5tjdHQUl8tV1nxyLyyD15KQ5HI58vk8TqezQavaPbqQ1MBmI3BLaaRFslUdiSzL3Llzh8XFxQ2urL+/tczTY2u02M04LIVpcSvxHJ97boYTXS4e6vdgCgm8od9X17VC4T0LBoNcu3aN1tZWjh07hsFgKFb5l2KxWMqCwMlkkpWVFSKRCFeuXEEUxaI7paWlZdfzPB5kmkXUTCZT8SBw/vx5VFUtxldKxxGXNp+8Hxt8swrJTlxuiUQCQBeS1wLrA+qb5ahraa+N+CJvJlLJZJKhoSFEUSy6skr5/sgaBkHEYTEW197mMjMXTvPCVJh3H3LVXfy092ZqaoqZmRmOHj1KT09PTc933hukNT09zWOPPUYsFiMUCrGwsMDIyAg2m63MV9/M6ZH1ppliEqVdG8xmMx0dHXR0dBR7TWlWppYRVppq3KhxxM0qJDuJkSQSiWJSRLPy+rnzdkEttSHal6RRQrL+JLpZVlYp8ayE0VC+Zu1vyOTlhsyC1yyOhYUFHn74Ydxu9zbP2BpBEIq++sHBQSRJKiuyS6fTxbbrLS0t9+3ku5c0i5Bo35316xEEYc/GETezkNRqkWipv83492joQrIF1Y7ALUX7kjRqboh23a1cWes52+Phb68voagq4r31p/MyBlHgYJuz7gHtaDTK1atXgYK7YzdBws2yv4xGI62trbS2tgKUnXy1jDCv11u0VvY6vlJvmskiqbZBomZlbjeOuDSLb6fuy9eSkDRDfHA7dCHZhJ22OSm1SOqNJiSJRIJr165t6spaz/tOd/LSTJjZUBqnxYCsqGQkhYf6fTw04EPKZeqyXlVVuXv3Lnfu3GFwcJCxsbFdu5uqvXmsVitdXV3FtuvJZJJQKFTWHbc0vmKxWHa1rr2mWWIkUO7aqoVaxhG3tLTg9XqrLubbaZptI9Fc3rUKSbOn/oIuJBWpdQRuKVrspBGZW9qN8cILL2zpygIIJnKk8jKdbgsDfjv/4b1H+frVRV6ZjWAxibz1cCs/froTs1FEzgvF/j47PfXIssytW7dYW1vj3Llz+P1+xsbG9qTfVunJV6uF0FJW5+fnuX37drGJobZBVSt4zXIqbDaLpB59rbYaRzw1NUUymax6HHEzWiSa4OoWyWucnY7AXY/BYKi7RSLLMqOjowAcO3aMrq6uio9bjmX5H89M8fJsBFlR6XBb+MmHenj7kTZ+7R0HKj5nuyr07dCC/QaDgcuXLxfdEVu5zO5n99/13XFLmxhqY221zKKd9praC5plY2lUVXs144hLm0+WjiNuRiEp9W7UQiqV0i2SB4WtakNqpd4pwNpGra1Hu7HWk83L/M43b3N7KY7basJmEpkNpfn09yawmwxc3l95nkhpc7haWV5e5saNG/T09HDo0KGym6RZZ5Ksb2JYqddU6SyPegWA60kzubbul3VUyzjiTCbTdOnhOxUSzSJpZl73QlJNbUit1FNISrOyDh48yPe+971Nr/3CVJjR5QTtLmtxuqHdbGQ+kuarVxc3FZJKVejboSgKo6Oj3L17lxMnTtDR0VHxurvd8O7HBrV+rG0ikSAUCrG2tsbExAQmkwmfz1e0VpuBZnNt7cXpf7NxxFpsDApiox0K9to9pAXaa12D5tJrZl7XQrJ+BG695hfUo7q9UlaWtilvtjnPhlIARRHRsJsNTK4lN918ak0QyGQyXLt2jXw+z6VLlzY9LW31Xtb6Pt+vE3hpr6n+/v6yliCyLHP9+nUcDkfRDbZXldvaWpuBZmjYKAjl44hv3ryJyWTCarU2zTjinfb/SqVSupA0K6W1IaW9/+vBbi2SzQoMt+vl1eIwowKyomIQX72xM3mFTrd105u9FoskFAoxNDREIBDg/PnzWwap6zElsfQxqqqSziuYDEJd2rhUQ2kAeHl5mSNHjiDLMqFQqFi5vdtZHjvh9ejaqgVVVbHZbPT19dHf398U44hfqw0b4XUoJDupDamV3QjJ4uIiN2/epLe3d0PMYbtrP7LfzxdfnGMpmqHVZcFoEIimC66YJ05tdD1paH//VmtWVZWpqSkmJiY4fPgwvb29275v9YyR3A2nGV3LsJbMYzII7A/YOd7pwmq6v9aANn1Qi6+UulPm5uYAyjanSi3X60Ezbd7NGNhev6bNxhGHQqH7No54pw0bE4lEUzdshNeZkGi1IXfu3EGWZY4ePdqQm3Enri3NlbW0tMSpU6c2LTAsFZJnxtb42tVFZkMpun1W3n+6k9/4sYN8+nsTLEQySIqK02Lgg2e7eO/JrYVkq00/n89z48YNYrEYDz30EB6Pp6q/qV4xklAW5ibCZBUBn91ETlJ4cTpCLCPzpoMtxSLLvWD9LA+tm/Hq6ipjY2OYzeaiRePz+ep66m0WIWkmUdPYTtz2YhzxToUkmUzS2dm5q9duNK8bIVlfG9Ko4VNQu0VS6sq6dOnSlgWG2rX/5voin/nHCXKygsVoYHUuxs35OL/4xgE++1NnGbobJZ2TOdjmpMu7ffbKZg0hY7EYQ0ND2O32YtfeaqmXRTKfEDDaJA60v9pmxXEv7nO0w0HHLmenVMt2f4sgCLjdbtxud7HATquDmJmZ4datWzidzqKo7Ca+0kybd7NNR4Ta4xHbjSPO5/NlIw524sLcTYykmftswetASCrVhjSy1TsUNvtqr7+dK2s9giCQykp84fnZe3Uir26iwWSO//Wju7zreDsPDdTWybdSv627d+9y+/ZtBgcHGRwcrHnjqoeQKCrE8jBgKf+q2swG8jGVaFqiY3dtvBqGwWAoO/VqdRChUIg7d+6Qz+c3xFeqeY836221VzRDsH09u3W3VRpHrLXgmZubQ1XVmscR78Yi0YPte8hmbU4aUTBYSjXXL3VlnT59ungS2g5RFJkKpggl87ht5QOE3FYj4VSe0ZVEzS3hSzd9WZa5ffs2y8vLnD17dtO6lVquuVMMooDFABmp/P2UFBVBAIuxuU7CW1FaB1G6OWl+eqAoKlp8pRLNFGiH5rKONOoZtykdR9zT07PjccS7CbbrQrJHrB+BW/qh3g+LZCshWZ+VVUsaoiiKmAwColjIzipFVgpNGS3G2k892ppTqVSx+LHWta1np0IiKSqL0QypnIzTYqTdphKXFCKpPB6bEUlRmY9kaHdZ6PI0V9FZtazfnLQGhqFQqDjS1mKxlMVXtMmDzWiRNKNrq1Fr2uk44t1MR9SF5D6zvjakUlbWXrq2FhYWuHXrVtWurErX7vGYONjq5MZCDItRxCAKyIpKOJVnf6uDY521Z3gIgkAoFGJycnLbPl61XLNWIYmm83x/NMhsOI2sqBhFkVRa4A0H7CwkZKaDaQyiQKfbwqV9vg01Mw8qpQ0M9+3bV5ZVpI0h1trka8kOzSIkr3WLZDsqjSPWYmOl44hFUcRisZDP56seR6w1INXTf+8jWm1IaTfSSl/wvbBIdurKqnRtVJVfe8cB/v03hlmMZoHCZt3utvDv3nmwrIakGrT2MOPj45w8ebJuGSK1ComqqvxwIsz4apK+FhsWo0g6L/P8JOQkhfedbCeSljAZBFqd5vtWS7IXrM8qymazZfEVgBs3buD3+xs6IKoamjXYvldrWh8by+fzRCIRJicnicVi/OAHP6hpHLGe/nufKG1zUk1tSC3B8J1gMBjKWmnsxpWloaoqwWSOjFzIrjrY5uRPP3qWp0ZXC24et4W3Hm6lxVFbemk2m+XatWvIssyxY8fqmmZYq5AEk3lmw2k6PZZi7MNmMuCxCEyFMjwiCPS33N9q5PXs1WZtsViKkwdzuRzPPvssfr+faDTK9PR00UevuVLuZ9X2azHYXk9MJhOtra2srq4WW7rUMo74fsZIfv/3f5/f+I3f4Fd/9Vf5v/6v/6vq5z3wQrKTuSGNDraXWiS7dWUBPD8Z4rPPTjO5lkLK57jQu8CvPxGgw2Plx89U7gJcDeFwmKGhoWJjwno3uatVSHKyci+dudzsN4kCOUkhJzXuM3uQ0L7fPT09xaptzUevVW1brdayAVHVulJ2wuvdtVUtWoyk9FCgJV1owlI6jnhkZITu7u771v33pZde4k/+5E84depUzc99oIWklhG4pTTatWUwGJAkiZs3b7K8vLwrV9YrsxH+/TeGSeVkHBYDeRWenU6w8tWb/OlHzxTnsNeCqqpMT08zPj7OoUOH6Ovr4/nnn2/I3PZahMRrM+GyFDLP2lyvDp5KSNBtNeCxPdBf17qx/j1d76PX5niUxldKayA8Hk9dN9lm27QVRWlad9t6F1Zp0sX6ccTf/va3+bu/+zsMBgP/9t/+W9797nfztre9jUOHDtVduBOJBB/96Ef57Gc/y3/8j/+x5uc31ztdJVpAPZfL1Swi0HghyefzBINB4vE4ly9f3rGIAPzVS3dJ5WQCTjN2sxG7ScBtNTC5muSp0bWarydJEkNDQ8zMzHDhwgX6+/u3rWzfKbVe0242cKbHTSqncDeSIZzKMxdOo6gCpzqdr+mYSC1sl7WlzfE4dOgQDz/8MI888gjd3d1kMhlu3brFM888w9DQELOzsyQSiV1/7s1mkWgHomYTkmqytrShbL29vfz5n/85V69eRRAEzp8/z1e/+lVOnz7N7/7u79Z9bZ/61Kd44oknePvb376j5z9wR7ydjsAtRXM9NeIGWFhYYHp6GovFwsMPP7zrL/PwUhyzsfxvNN77z7GVZE3XisfjXL16FZvNtqFKfbPK9t2wnZBkJYVbSzFuLybIyyr7AnZOdjl5x5EAw4sJYhmJLo8Vfyscan0w03wbSbXfXYvFUlZcp514NYtFFMWyMcS1ujh1IamOndSR5HI58vk8v/Vbv4XBYCCTyZBOp+u6rr/6q7/ilVde4aWXXtrxNR4oIdmqNqQWtFOBLMt1a8xWWsTX19dHNBqtyxc54DQTSuZe/UFxcy70naqW+fl5hoeHGRgY4MCBAxveu0qV7btlKyHJSRLfvDbPaDCHw2zAIAo8NxliJpji/ac7ONLhRJJVTAaBZ+PjTbVR7TW7qSMpHUPc29tb1hV3YWGBkZERbDZbWXxlu3ukGV1b0JxCstN57dpnbbVa6xrLnJub41d/9Vf57ne/u6vrPhBCUlobspsRuBql4zjrQSKR4Nq1a8WsLO3GrAfvOdnBp5cnSGQkHBYDqqoSzaq47RbefrR12+eXph2fOXOG1tbKz7mfrq10Os3f/+AKT0+mCNhEBJcDq8OBz2tjJpLh1mKcR/e3YDa++hk3WzX3XlJPC6C0IntwcBBJkorWysTEBOl0uli/0tLSsiGjqN7rqQeN6uq9W3YiJI2e137lyhVWVlY4d+5c8WeyLPPMM8/wf//f/zfZbLaqNTe9kNRzBK6GdiPUI05SKSsrHo/XTaR+/HQnU2spvnljibVEDllWcZlFfvNdh+j2bp3iWUuVer3HA0NlIQkGgwwNDZEzemnv8NDrNpBKpoiEwywtLZJQzLysJDnmo9hxtdk2hL2mkaJqNBppbW0tHjgymUyxx9SNGzdQFAWv11u0WBwOR9MFtpvNQtLYSdPGRhcjvu1tb+PGjRtlP/vEJz7BkSNH+PVf//Wq19u0QtKIEbgaWr+t3QhJqStrfVZWPetUjAaRf/fOg3zgbBc35qOEVpc5HjDy8OGtrZHV1VWuX79OZ2cnR44cqaoZZCMtktJMsSNHjuCWHdy5vojNZsNutxNoDSBLMqOLEYzkGR4eRpIkvF4vsiyTSqWqbmrYKJrJKrpf74PVaqWrq6tsDHE4HC6bOmgwGLDb7WSzWSwWy/YXbTDNKiQ7iZGsd23VG5fLxYkTJ8p+5nA48Pv9G36+FU0pJOsD6vUUEY3dbPbrXVnrT/o7rVNRVZWXZyI8PbZGVlI41+flrYcCWEwG9rc62N/qYGwsSSaT2fIa4+PjTE9Pc/z4cbq6qqszaWSwXZIkXrl2g1t3I3i69jOZtuGxiXisRpZiWTrcFgRBICmpWKw23nJygGOdTpLJZPE0fPv2bSYmJho22+NBYq9cSZV6TEWjUUZHR4nH4/zwhz8sDofSxhDXezhUNTSjkGgH42azSOpF0wmJoigsLy8jyzKBQKBhN8xOLZJqCgx34iZSVZX/8x8n+PKVeSRFRQW+MbTIN/q8/JcPncB5r15kq6B4Lpfj2rVrpNNpLl68WFNbhUYF27PZLN9/9nmeX4KUOYA4n0aZS+O0Gtjns7KazDOxlgIErCaRCwNeDnc4y4LCc3NzHD16FCiM+tVme5T67utdG9HMNItlpMVXnE4nDoeD7u7uYmHd2NgYmUymWLF9P8cQN6OQaHvNTmMk95Onnnqq5uc0jZCUjsBdXV0ln89vGhiuB7UKyVaurPXsxNq5Mhvhy1fmMYgCLqsRQShUc1+ZjfC/X57nZx/pL167kkiFw2GuXbuGx+Ph8uXLNZ8EG+HaymazrKyssCwGSJrN7A84ik0WF6JppkMpPnimk0RORlZU2t0WOu9ZJ+vXJghC8aSrXVtrwX7z5k0URXn1JOzzYbfZmm4zqRfNFtzW1rN+OFTpDA+tYru0jYvdbm/I39GMQqLdszuxSJq98y80iZCsd2UZjcYt3Tf1oBb303aurN1cW+OZsSCSohZFBCjUj+TgO7dXNhUSVVWZmZlhbGyMgwcPFgsMa6WewXZVVZmYmCASidDW1sZoxIPHmi/r1NvusjC6nCCakTjbu/Xo3kp/z/raiEQiweTCKk/dXmQuNIbNbOJIp4dTA220+lsa2iJkL2g2Iam0cdtsNrq7u4sV24lEojiGeHx8HJPJVDZ/pV6uymYUElmWd+Siv1/tUXbLngvJ+hG4giBgNBobWnkO1Vskmiurr6+PgwcPVvUF1dxEtZwcs9KrHYvLriUIZPKvrrN0w9fasITDYd7whjfg89U2zKqUelkk+Xye69evk0gkaG1txel0IodU1r9tgiCgoiIp1b3mVmsTBIGcaGEyYyfvNHHQLxKNJ7mxmmQpNEGvdRiPu+AG8/v9983F0iiaxbWlUU3TxtL4Sn9/P7IsF9vka63WnU5nWXxlp2OIdzpAqpHspAMHFA6xukWyBZVG4GpvcqNbmMD27qdaXFmVrq1do1oX0/k+L1+/ukBOUoond0VRkRWVR/f7y66tKAqJRIKrV69isVi4fPnyrrNl6hFs1yrntfnuIyMjABzpdPH9O6u0OtVii/tgMofDbKSnynny2zG+miSSytPfUphM53da6fB7iaTzHN7nQswVTsN3794FqptE2Kw0q2urFgwGQ/H9h1fHEJd2xPV4PGUdcat9jWa1SHY6Znc3B8T7xZ4IyXZtTrSmh41kK7FKJBIMDQ1hNBp31PZ9JwWPbz4U4Hy/lyszEZK5giVSmMlu4SMP9RQfJwgCmUyG559/nv7+fg4ePFiXTWW3wfalpSVu3LhRrJxPZGWCaYUWUeZCv5eptSRjq0lsRpGcomIQ4PI+Dx3u6gRwq7WpqspSLFvmFoRC767VRJaMauBASQrr+kmEWqdcv9+/baZRs2zgzbIOqM/GXWkMsVYYWTqGWDsAVBplW8/11JudCkk6naa3t7cBK6oveyIk2hdgM5/h/XJtVdrod+LKWo/2nK2ERFZUrs5FCCZzHGpzsi/g4L9+6CT/+8o83xleIZOXuTzYwkce6ikWHiqKwsLCAqlUinPnzu2qGeR6dmqRKIrC2NgYc3NznDp1CpcvwN9cX+L63SiLq3HcFgNPmGL8izd0M7wYZ3othd1s4HC7gwFfdT7xatwmFoNIKld++FBUFVQwlgz6EgQBt9uN2+1mYGCgrJJbyzTSTsJaplEzbdrw2rBItqJSR1xN/FdWVhgbG8NisZQF7kvjK80oJDtJ/YXCodZutzdgRfVlz1xbW52A74dra/1r7MaVtR5NIDfbmCdWk/z6124xFUwiK2A2Crz1cCu//cQRPn6pj49f6tvwnHQ6XagIz+VwOBx1FREofB6lw7iqQUs3zmQyXLx4EafTyf/z8l2enwwRcJrxWg0kcgrfuL6E0SDyyH4/j9xz02mxsWrYLH6TyskksxJ2s4HBVgc/nAiRzEo4LEYUVWUxmqXFYaZ9C6tnfSW3lmmknYRLs8WaJTbRLOvQaHRl+3rxLx1lq6WCO53OovhLktR0QrLTuI2etbUL7reQ7NaVtd31S8nLCv+vr9xgNpTGZhIxigJZSeE7wysEHGb+j3ce3PCctbU1rl27Rnt7O21tbcXYQz2pNdgejUa5evUqHo+HS5cuYTQaWYhkuLkQo9NjxWMzsZISsRpFckaR5yaCnO/z7njGeuna8rLCtbsx7iwnSOcUbGaRfQEHh9rszIQyrCZyCAK02M1c6PdgM1V/EizNNFIUhXg8TjAYZGFhAUmSuHHjBq2trbsOCO+GZrNI7veExPWjbHO5XFnhajabxWw2Mz093TRW5W5iJLqQ7JD7ESMRRRFJkuriytrs+pUskucmQ8yF0thNIsZ78zWsJgOyKvON60v80psHsZsLXzgtjXZqaoqjR4/S09NDKBRqyHTHWlxbWifh/fv3s2/fvuJNGk7lSGTloitOEAVURcFjMxHNSCSyEi1Gc/H1allbKdfmY7w4E8FnM9LuNpPMyQzNRTnX6+adR1uJpvMYDSLtLjPWGkRkPaIo4vF48Hg8DA4O8swzz9Dd3U06nS4GhLW+U/d7bvpeb4yl7LWwmc3msomDt2/fJpPJEIvFmJmZKbMq9yq5YqdCoqf/bsNWXzyj0diweSGlrx8MBllaWtq1K6sSmwnJcjSLCsXsJQ2TKJDNy0RSeexmA7lcjuvXr5NKpXj44Ydxu91bXrce693OIlEUhTt37rC4uMjZs2cJBAJlv3dbjdhMBhJZqViJr6qQyEo4zIaiQGrU8tlqa0vlZEaWE/hsxuJ8erNRRADG11Kc6HKzv7UxN54gCMUTrhYQ1txg09PTGAwGfD4ffr+/rnUR69nrjXs9zdS0Ueuj53a7OXDgQNGqLE2usFgsZa127keN0U5iJNrsmFo6VOwVTWuRQH3nhZSSSCS4e/cuqqrWzZW1ns1cW/sCdkRBIK+omA2vbgY5WcFnNxNwmotuI7fbzaVLl8q+6I0Sku0skkwmw9DQEIqicOnSpbIAYCYvIwA9PhuH2h0MzUXp8lpRFJVIRgIk3nQwsGProHTTTOVkMnmFgLN8k3ZYDCxGs6RyMi5r47/WpQHhnp6eYt+p9XURpS1c6uUGa7YYyf12bW2HoijFe6bUqiwdQxwOh4tjiLVWOz6fr66fUyl6jGQP0D5ISZLqLiSaK8vr9SIIQsPM3M02/PN9Xk50ubg+H0NRCnUVOUlBVeEjF7pZWrjLyMgIBw4cYGBgoGK7kPttkYTDYYaGhvD7/Rw/frz4+SxEMvzTnRVGVhKAwIkuF48dCGAURUaW46zEJawGeOeRVh494K947WrR1mY3G7CaRJJZCYvxVTFJZmVsFayeerLVBl4612P//v3FuohQKFTWyVizVnbTHkS3SLZmq6wtbQyxZk1ns9kNn1Np1l693JV6jKRBbPXhiKJY11bssDErK5/PMz8/X7frr2czIRFFgU9/6CT/6R9G+OFEiJyk4rAY+YnzXZxzRJiYCHP+/PlioVa1190tlQRKVVVmZ2cZHR3l0KFD9PX1FT+3tUSWzz8/w2woTcBpRlVVvj+yxlw4zS8+to94tpXbY5OY1RyPnuzY1doUFRZiOZKGFH6HicPtTl6cjgDgtBhJ5mRCyTzn+zz3xRqphvV1EVonY639uslk2lUn42YSkma0SKrdtC0WS1l8JZVKFQP309PTxQOC9jnt9OApy3LNLjTte6PHSHZBPTO3KmVlLS0tNTQzbCsh9DvNfPrDJ1mOZQin8vjMCmPDN8hlTVy6dGnLkZc7ab9SDeuztmRZ5tatWwSDwYrtV16eiTAbTnOo3Yl4bx0+u4nJ1RTX56Nc3u8n5bOQSNSWUryelXiWZ+5K5JajWGx53FYjxzqdXOj1MLqaZDmew2YSOd/v4VzP1j27NJJZiVhGwmQQaXGYiutvFKWdjPv6+srag+ykk3GzubaazULaaR2JIAg4HA4cDkdxDHEsFiMUCrG4uMjIyEixeFXL2qtWHHYSI0mlUqiqqsdIdkO9Mrc2y8qqt8WznmoaN7a7raipCNev3Kg6a0z7fb1v3lLXVjqd5urVq4iiuKmwzQRT2IyGsk3YaBARBJiPFBpu7rZ/V1ZS+MeRNVbTKge8Bvw+G5FUnh9NR3j8aCsfONNZrCNxWLb/Kiuqyq3FOCPLSZJZGaNBoNNt4XyfB4/t/jV1XN8eZKtOxpWquJtt436QXFu1IIoiXq8Xr9cLUIyvrB9DrH1WWx0AdjqvHdBdW1ux3Y2w2+r27QoMdzp8qlo0F9TzkyH+4oU5RpbjdHms/PM3dPPekwUzemRkhPn5eU6dOkV7e3vV14X6V+9qri2tZqWjo4OjR49u+hoem4mcvNEVJisqTouheM3dCMndcJrFaJY2u4DZICIKAi0OM6m8wvBSgqMdTuzm6nuMTa2leGU2ittqotdnJS8rzIYzyIrKmw/5MRn2ZjOs1MlY65KrVXGXusGaTUia0bXVCGGrFF/RDgC3bt1CkqSyNi6lkw13Oh3RYDA0xdTJ7Whqi2Q3Ewy3KzBsdNGjKIo8NRHlMy9MIssqggjBRI6bCzEml+NcdIWQZZlLly7V5AOtpv3KTtB6eF29erVYs7IVp3s8vDQTZimWoc1lQVVhMZrBazdxostdvOZuhCSTL/yNJkN5IoDNJBLPSCgqGKrcv1RVZWw1icVowGcvWB8Wo4Fuj4XFWJa1RI5Oz/YNJBtNpS652il4cnKSdDqN1WpFVVWi0eiedzJuhJt1t9yvFinrDwClEz2npqaK6eAtLS3k8/kdT0dsJmtvM5paSHbi2qq2wLDRQqIKIl+4GkKSVezmV5tSpnIyn39hljOPB3jswsmav1yNEBJJkpieniaXy3Hx4kU8no2xhryscGcpQSSdp8Vu4lCbgydOdPC9O6uMrxaytgJOM0+caKe3pZAavFshcduMGA0CWan8GrGMxOE254ZanC3/RkUlnVewmcq/DyaDiKKqZKTGWae7obSK++DBg2QyGaampoqWI+xtJ2Pt822mzW4vem2tj4Np6eDhcJj5+Xni8TgTExPEYrGi1bJdRuqD0kIeXkOurVJX1pkzZ7adrthoIVlOKgRTcqFYThBABVmRMagyeVUkZevYUTqg9r7VS0iSySRXr14tpkJXEpGVeJYvPD/L+GoSSVYwGkQOtTv4+MV+Tvd4mAomEQSBA62OsljDTk6pqZzMcjyLKAi0OQtTFZ9aUDGk8hisEqFUHpvJwImu2gKQRlHAZzMxF06XrTGdlzEZRJxVpg3v9cnbarXi8XjIZDKcOXOmWGy3tLRUcyfjeqAJyV6/L6U0wzyS0nTwwcFBnn/+edrb28nn88X4itvtLh4C3G73hjU/KBlb0OQWSbUb/U56ZWnB5UadXiwmAwKFym7UwqlfVVWMBiOyrGLZZeuOegjJysoK169fp6enh0AgwPDw8IbHqKrKl6/MM7wYZ8Bvw2oykM7L3JqP85VX5vnkYwP4nZXnJdRa83JzIc6zEyHCqRyCINDusvDQgJdTrUaCskAqL9Prs3Kmx0Nfy/afcSIrMRtKk8zJOMwGujwWlmJZFqIZPDYjOUklnM5zuM2B39mYKvRGoTUG3etOxrpFUh2KohQzvaBQ4Ku5wW7cuIGiKGXtdmw2G6lUqmHjiAGefPJJnnzySaanpwE4fvw4v/Vbv8W73vWumq+1p0KyleujkRMMtetD4750XW4z+7wmJiJ5kGVEsTD5MZ1X8NhNXBqsXCdSDbudHaKqKuPj40xPT3PixAk6Ozs37eG1EM0wspygy2spVqbbTAba3RZuL8VZiec27a5bTft37e+YC6f57p1VVBX6Wuyoqsp8JMPTY0FOeAxcbnPT1tGFw2KoKl13NZ7l6bEgK4mCKCmqSpvTzOF2B6uJHJG0hMkgcK7HzdFOV8NTgOvJZjGJrToZz8zMlNVEtLS0bJlmXi3ad6aZLJJmFJL1WVtWq5Wukhk5iUSCcDhMMBjk2rVr/Oqv/ipHjhxBVVUWFxfp7Oys+5p6enr4/d//fQ4ePIiqqnzhC1/g/e9/P1evXuX48eM1XaupLZKtYiS1urIqXV+7TiPMf1EU+chhA59+OUtSEhEUAUFVsJhEfvuJI7uqwN6NRaKNwk0mk1y8eLGYo76ZOKVzMjlJwWosP7FbTSLRTJ50fnOxr8UiGVlOkMrJHCj2yRLob7ExtppkQVIY7BKrLjZUVJUrc1HWknkG/IWWNIqqMhtKYzdnefxYgExewWQQseywG/FeUu0hYqtOxnfu3MHhcJTVROzE1dqMrq1mFJKt6khKEyz6+vo4cuQIn/nMZ/hf/+t/cePGDXp6ejh69CjveMc7+Pf//t9v6HG3U9773veW/fs//af/xJNPPskLL7zw2hESo9FINput+Lt6tH3XXAONiJPIsszq6ipeknzxp0/xg9ksk2tJ2t0W3nuqkwH/7gbV7FRItFG4DodjQw+vzTb9DrcVr91EMFme1RRM5mixm2lzbZ6auNXmks1mmZiYwGaz4ff7iaSlDZu6IAgYBIGMXFsRXiSVL6QNuyxFS0O85ypbiWeJpiX8jgfLlbWeWjfu9Z2M8/l80Q12584dcrncjjoZN5uQNNJdvVO0NVUr1Farlfe85z2Mj49jsVj47Gc/yz/90z/xj//4jw0bciXLMl/+8pdJJpNcunSp5uc/cK4trYX5btu+C4LQkKLEZDLJ0NBQMaf8YG8HB+s8KXMnQrK4uMjNmzfZt28f+/fv33Djb2aROK1G3nIowNeGFpkJpnBajcQzEirwlsOBLS2rzcRJa0rpcDiIx+OMjY0RTppZjJvxmTzY7fbCZ6OoKIDLXJsrT3vk+r1NEArtVqq5lKKq96wWYc/qSzajHum2JpOJtrY22trayjoZB4PBmjoZazUkzSQkwI6sq0ZROlK8FrRge0tLCx/60If40Ic+VPe13bhxg0uXLpHJZHA6nXz961/n2LFjNV+naS2S9a4tWZYZHh5mZWVlR66szV6jnmm0y8vL3Lhxg+7ubhwOBysrK3W7dim1CImiKIyOjnL37t0t2+Vrop7MSjw/FeLGfAwRONXj4dEDfhwWIz8YWyOYytPfYudNhwI8PFA5yF56zfVoMa3egUEyZi/JdB5vQOBCLsXyjUWuTi7hMipYrFbSWDjQ7qbXVdum4LWZ8DtMLMVyZUH51USOVqcZr33rKvbZUJqRlQTRtITFIDLYaudQW/Nkz9S7RcpuOhk3Y1U7NFfwXxOSndSRNDr99/DhwwwNDRGNRvnKV77Cxz72MZ5++umaxaRphaQ0/bcREwyhfinAiqLw/NBt/vLKArNZG767KR7plTlub8xwrmqFJJvNcu3aNXK53LaFj4IgkMkr/I9nphi6G8UoioDKy7MRbszH+JePDXB5sIWcrBSqzKuo4Si1OFVVZXR0lLm5OQYOn+Dp2SzjKwvISuF03e218q7zB5gKppheTZDJpOkTs7Rn5kgpsCLnsNlsm+bfz0cyTAdTZCSFNqeZIx1O4tkok2tJrCYD2byM22rifJ+nbIb7eubCaX44GUJVwWU1kpUUfjQTIZWTm6bHVaMLADfrZBwMBjd0Mm62qutmFRLNA1ILiUSibvGQzTCbzRw4cACA8+fP89JLL/GZz3yGP/mTP6npOnvu2toMbZOvlytrq9fYDZlMhu89f5X/9EKSRF5EJQuhLFdm4EybyKWH1ao23VqoptBPcx95vV7OnTu3bUKBKIqMRmEoE6XXZytmaKVzMi/PRHhDf4TL+/1YxepPVdo68/k8165dI51Oc+nSJb41EmF0OUG/z4bJKCArMBVMcs0o8tMPdZPKyYiCgMtaOExcu3atOC0ynU7j8XiKLhen08mNhTg/nAiRyisYRQFJVulvsXF5n4+1ZI5IKo/HZmIwYN8wx6QURVUZWU6gqtB1Lx7ksoDFKDK5lsK5u/6TdeN+V5Jv1ck4HA4XpxJqFsv9GBS1Gc2aRbbT6Yj3uyBRUZRNY9Nb0bQWiSAIJJNJ7ty5UzdX1np2KyShUIihoSH+fsZMIi9gMrzqK87LCleXZZ6bDO16Fsd6trNI7t69y+3btzedaVIJQRC4mwTRSNkAKpvZAKjcWUpweX9tf4eWzPD888/jcDi4ePEiKQlGVxK0uc2YjSIqKkZRoMdr424kzVIsS6/vVYtT6zXkcDgYGBjY4MvPKCJXIjbsdjv72gouF0lRmVpL0emx8Mj+6tOss5JCJC1tyA5zWYwEk3mMjatffWBYX8EdDoe5efMmJpNpR52M640WaG8mIdlpgWSjx+z+xm/8Bu9617vo6+sjHo/zpS99iaeeeopvf/vbNV+rKYUkkUhw584dZFnmTW96U13y3Sux02C7qqpMTU0xMTFR8DG+PA2Un4IMAigCPD22dt+ERFEUbt++zdLSEufOncPvr/51RVFEpHIgWlVhJ3tBNBollUoxODjIwYMHEQSBfDZ7r21M+QnNZBCRZJW8vHEBpRbY+pTWKxNLpIOLWFMRRkeWsdpsOJ1ObIKZ8dUkF/f5qm6loqUDZ/IKpcloWUnBJIKxSfamZuttZTAYiu6RWjsZ15tmy9iCnQ+1anSLlJWVFX7mZ36GxcVFPB4Pp06d4tvf/jbveMc7ar5W0wmJ5srq6OhgeXm5YSICO7NI8vk8N27cIBaL8dBDDxVOXML05q/RgJumkpBoDRd3Oj5YEAT6XbCWhnjm1VN5LJ3HaBA50VXdrA8obHSTk5NMTk5iNps5dOhQ8Xdem4l2t4W5cJo+r7W4Ka4lcvjsJtpc1afliqJ4r81Ehn0BG4okk0gkSCSTLIRDGAW45YjQGgjQ0tKyrT/fKArsD9h5cTqCxSjishjIySqL0Qy9PitiquqlNZRmEpL1wfZaOxnX2w32WhKSRru2/uzP/qxu12qaGMn6rCy73c7CwkJDX7/WrK1YLMbQ0BB2u53Lly8XUyLfeayNL7+ygKKqxboFWSmc5N9yuP7BsvVCornYWltbOXbs2I6+tKIost+lYu7w8eJ0lMVoYaaI2SjyxoN+zvZWJySSJHHz5k0ikQhHjx5lcnISRVGZj2bIywodbiuPHvDztVcWGF9L4jSLpPIqIvDmQ604K8wV2Som1OG24LYZWUvkaHNZ8Pq8OD0eUqYkp9stOB2FSZi3b9/G6XQWYyuayyWYzDEdTBFNS3jtJnq8Vk52u5lcSxFK5TCJAn0tNs73eRharvltbRjNIiRbtZDfrJNxMBgsdjJ2uVzFz6QenYxfS0Ki99qqkdKsrEceeQSr1Uomk2l4cVEtFokWd6hUh/EvH9vHcxMh5iNpFFUt1i883A4PbZMiuxO0+gxVVZmZmWFsbIzDhw/T29tb0wYzsZrk+ckQy7EMXV4rSg5+6s1dPLTPz8hyHAGBIx0uTna7q3IPpVIprl69islk4vLlyySTSYJphc8+O810MIWkqLTYTbz5cCs/caGHl6aDzIfT9PosnO5xc6yj8ulr/d+kqCrhVB4B8NpNPNzv5dnJMBOrKQyigKSo7PM7uHioFbfVyODgILlcboPLJW/xMJYwI4lmHDYLmeUkPruJNx1s4WCrnXhWwmwQCTjNTdVCpdkskmrXUtrJGF7tN6WlGcPuOxk3o5DsZE1aUsODMB0RmkBINsvK0rKMGtnJsxohKW3Fcvbs2YrpeO1uC3/18xf48ivzvDgVxmkx8LaDPozLww254UVRRJIkbty4seko3O340XSYzz47TSSVx2wQeWEqjJoSObqc4Ny+Vs71eWu6XjAYZGhoiM7OTo4cOYIoiqxF4jw9ryC44nR7rZgMIquJLH89tMhHH+rhg2c6q77JNIvkbiTN85MRFu5ZTN1eK5cHfbzvZDszoRTpvEK7y8JgwF4WhzGbzWWzuSOxOF+7MstKOIqLDCmzBafTwUrYzJUZkXefaN9yaqKqqgSTeZI5GYtRpNVprqmt/W5oljRk2F0dyfp+U1oLl9JOxpq1Um0n42bo/Lue3Vgkehv5KlhcXNw0K6u0F1aj0gm3C7anUimGhoYQBGHbuIPXbuIXHh3gFx4dAAqnraeWGzP0R1EU7t69i8Ph4PLlyzXn8mfyMv/Py3dJZQu9rTTX0SvjEb46tMSZ/kDVKcuqqjI7O8vo6ChHjhyht/fVMv6JYJrVtMrFfXaM96rDu702JlaTXJmJcKStuhOn9v6Fkjn+/uYKoVS+GEsZW0kSSeX50NlOLlfZCFMQBGSDFcHm4czhAGaxYBUnEgly0TV+tLKMN7PIQGcAv99fFiAWBIGspHBlNsJ0ME1WKqQcd3ksXBjw4a6yH9huaRaLpF7TEUs7Ge/bt2/HnYyb0SLZTYxEd21VQUdHBy6Xq2JAXRCEus1t3wyDwUAul6v4O63FeldXV/GEXQulA6jq2a5hdXWVlZUVnE4nFy5c2NFNM7mWZCmWpcNjKdsgvWaB2XCa+WimLAV3MxRFKca1KllF8awCKkUR0XBYDCzHa8tVV1WV0ZUkq4kcB1pfba3tCBgYX00xtprkQr+3pmsKFNqpiAYDbo8Ht8eDNyCxFkvj9Qqsra0V+x35/f7CKGFZZmwxzp3lBO0uK3azgZykMBPOIAgR3nzI33A32IPq2qqFnXYyfq0IiaIoukVSLaIobpmV1ejhU5WC7YqiMD4+zszMTLHF+k6vDTs/jaynNBNKmwe96xtmvYfk3gCuashkMgwNDaEoCpcvX674OfrsJhAKNTWl/aoSGZkDgepPWtpGtZbIvToorOR3JoNAKFldtWBOUsjLCl6bkTaXhflImr4WW7HV/EoiR3/AyfGDrYj36mC0k7GiKLzw0hVuJ+3Y7Q5Eh4iqWjEbRTrchZG9oWR+y6LHetBsQnI/Nu5qOxk303ujsZPDZDKZBNBjJNWw3Qd+P4Sk9PpaS5FsNsulS5cqngZyksI3ri3y7eFl8rLKWw4F+NC5bpzrXBr1HImrxUNisRgPP/wwS0tL5PM7L7PeH3AUNr5olv57m6iqqkRzcK7HSvc2s8sjkQhXr17F7/dz/PjxTW+Sg60O2qwqk6spOjyWQowknsVmMnChxiQEVVXxOUzk143dVdVC7YnbuvWNmsnLDN2NMbqSJCcrtDrMdHstJHMSk2tpjAYBSVZoc1k41+spWhUGg4FAIEAgEGBxcZEDh44yeWsVKZdmfGy8YM24XDhcTjJ5I3m58SN7m6m/Vb1cW7WwVSfjlZUVJEni6tWrNXcybhQ7cc9rQqK7turA/XBtaUISDocZGhrC5/Nt2lIkJyn8qy8N8fxUGFBBhZdnInx9aJH/+bNvKKuI1jqi7lZIEokEV69exWq1cunSJcxmMysrK7u6rsVk4CMXevnss9OMrybvbaIqHgv8+Mmt4yNacsTBgwfp7+/f8ga1mQ080qGS8nsYW0kiKxJtLitvPRLgaKd7WzGUFZW5cJo7a3nMRoFjBwot7WdCaTrcFlBhMZahxWHmYNvmLgBFVXl6LMjNxQQ+mwmr0cBsOM1yPMcjg15AIJ4t1M70+WwV557kZYW0BE67jYHOVkKpPB1uM8lEkngiwdTdZTLZHBPGNTJthcykRkwk1GiWU3cziFppJ2Or1UokEsHv9xMKhYqdjDVR2aqTcaOQZbnmerhUKoXJZGq6Xmab0dRCUuvc9lrRhGp6epqxsTEOHTpEX1/fpjfp399c4vnJEKIoIAr3LA5VZXw1yRdemOWX3zxY9vjdtqnXugn39vZy6NChsnhGLUKSyEj8YCLIrfkYFqPI+X4vDw34+M0fO8TzkyFW4lm6vFbElSQHA5VjI4qiMDIywsLCwqbZa3fDaX44EWR0OYHdYuRkuw2bQeXDl/pZjWcLloDTgrmKYVKpnMzf31rh9lKCYLhQCTidXeV0t4vx1UKMR0Ao1KXsb9nSnbQUyzK+mqLbYy1mcrmtRqaCKWZCGd59onJHZABJUbl9LyZyYwnCd0K0ex0oqspCNIfLakV0mvFbPBxvs9JtzRMMBpmbm0MQhOLm5ff767aBNVPW1l5YJFuhqipms5ne3l56e3tr6mTcKHbi3k4kEjgcjqZ6b7fide3a0ipvp6enuXDhQnGe8mb808gaCEJZMFUUBPKKwneGVzYIyU7b1KuqytjYGDMzM5w8eZKOjo6y39fSRj6WzvOH3x3j5nwMURRQFHh6LMjbj7byC48O8BMXeoqPffrp8YrXzeVyRZffxYsXK5rbc+E0f/bDaZaiWTw2I6FUjtHFGAEZ3q2otG4xAKsSL06HGbobpdtrw6GYyEsyi9EsBlHgJ9/QRSRdsFTbXOZt54VE0xL5Cm1ZPFYjK4nshhhOKdfuRnlxOorTImIRVWIZidhqkgMBOyoQSUu4LUbO9rg50OrAIAp0dXWhKAqxWIxQKMTs3By3b98u9qDy+/243e4dn+SbKQ7QTGuBjfGISp2MtaC91sm4NGjfiBnpO4mRaELyoNDUFkkjXVvxeJzR0dFiS5FqTotbnQQr/W4nA6hyuRzXr18nlUptGqepZWb79+6scmM+Rq/PVrQEYuk83x9Z5dJgC6d7Xq1Yr3TdeDzOK6+8gsvl4uLFi5vm8j87HmQpmuVgu6MotOFEltEZgcm1JAe2cD2tJycp3JiP47GZcJgNZAQBgyjQ67NyN5JhMZYtGcm7PRajiFAh6J/OK/gdpk3byiezEreXEnhtBlocZlaN0O4yE81BKJXnvSfbEQQBoyhsqCERRZG4amE67yZismFrA5cxTzod48aNG4WYT8ngqFpcH820eTeDa6uU7bK21tcTlXYynpiYwGQylbnB6lF6sJPaFq09SrN8ztux50KyVfuLRrm2ND9/e3s7oVCoapfDmw4F+Mc7a2WtUNR7//32oxvdI7W6tmKxGFevXsXlcm0Yhbv+utUK1MszYSxGscyd5LaZWE3kuDkfKxOS9Z/F8vIy169fZ2BggAMHDmz6pVZVlZHlOF67qcxac1uN5BWYC6cqCslm18vLCjlZwbLOSjAZBGRVJSvVJs49XisdbgtzkTQ9Hhsmg0AkLZGVZI53tmy6jnhWIpmT6faWb/Jum5FwMk8qJ9OyycjeqWCK5ybD5GUFp8XIalJmRRV4aKCfR48fL2YdLS4uMjIygt1uL1orXq93242nWTaYZnNtKYpSVeEibOxkLMty0Q1Wz07GO3FtJZPJho3VbQR7LiRbUW/XVml33DNnzmA2m1lbW6v6+e892cFfDy3yylwURVWLItLXYuNnLm6cp1uLa0ubHDg4OMjg4OCWN+dOZ7aXokKhkKLCdbXZH1NTUxVda5WwmQzEM+XWo3Ivl9hUY8W33Wygw21lfDVZNs0wkpZwWYy0bZNem5UURpYTTK6lUIF9fjuPDvp4YbpQEZ+XVVxWIw8P+DiySVsWAIvRcK8bsFzWAyyTVzAbxbJ2+6VIisrwYgJVVYv1OD67ibVEjuHFBAN+e1nxnZZ1FAwGuX37Nvl8vsxaWb+hNFOM5EGzSLaiNCgP9etkvNMYyYNSQwKvIyHRqtQBLl26hN1uJ5FI1HR9i8nA/++nz/LlK/P8w60V8rLCWw+38pMP9VRsp1HNhl8axK527kotQnJhwMfwYpyspGC5Z5VE03msRgMnutxljxUEAUmSGBoaIhaLcfHixary2AVB4A39Pr78yjyJrITTYkRRVebDWVwmONxe2Q1VuiHmJIWpexMOW51mLu7zshDNMLGaQs3KpHISdiHPo/t9W8Zb8rLCt4dXuLWYwGgQEIDbSwmOdTj5seNthJI58rKKz24q1Llsgc9uor/Fzq3FOF2ewoaRyMpEcjJv6PNsOq8+mZWIpPMbRvp67SYWoxliaQlbiQitn5+uuVu0jrlWq7Vorfh8vqZybTWjRVIvYatXJ+Od1pHoMZIa2Mq1ZTAYyGQyu36N1dVVrl+/TkdHB0ePHi1+0TTXUy03ptVk4Kcv9vHTF/u2fex2G342m2VoaIh8Pl8Ut2qoRUjefqSNq7NRbizECpXcKhgNAm8/2srJdUKizXd3Op3FVOOtyORlUjkZj83EI/tbmA2lGLobZTGSRUGlxWbiSJuCd4ueVVAYk/uN60vMhTPISiEofrrbzftPtXN9Ps7wTJIWq8g7T7VxpmfrLsTjqymGFxN0ey1FiyErKdxeSnCw1cHxrq2FcTWeZTacISPJBBxmTne7kBWF2VCa5TQ4czKnur2c6XFveg2jWIib5CSlTDByUiFGYzRs/l1b726RJKnYMXd0dJRsNlt0+fr9/j3P7HktWSRbUamTsVa7onUydrvdZS1ctHXs1LWlC0md2G2MRFVVxsfHmZ6e5vjx43R1dZX9XvtwG3XC28qi0or6WlpaOH/+fNV+Xagt/ddlNfLrjx/khxMhbi68mv57od9XVi+ytrZGIpEormermzGVk/n2rWVenA6Tycu0uSy87UgrP/1wL5cGW1iIZrAYRQ622nnlubktXTE5SeEb15eYDqbpbykkBETTeZ6bCuOzG/nwuU7GPWmymTTHq2gkOR9Jo1I+5dFiFBEFmIuktxSS20sJfjAeJJaRCnVAFNxi7zji53S3G1d0kovH/PS2blxHIisxF86QvucG63BbGFspzIu3GEXyssJKPMs+v52WbSyhUoxGY7EgEgqW9c2bN0mn07z88svF4LBmrdzvMbevFyFZT2mhKmzdyViSpJrX9CC1R4EmF5LduLa0lNV0Or2pi6a0jUkjvnybWQ5zc3PcuXOnqqK+Wq6blxW+e3uFf7qzRiSd51iHk3ef7OBIh4t3Hmvjncc2JgSUtqK32+10dnZu+V6oqspfvjTHs+MhvDYjNpOB2VCav3hhDlEQuDDg40hH4b3W1riVkEwFU8yGM0URAfDYTKRyMq/cjfHI/haMBpFqO3Nt1udKZeshY/GMxHOTYWSVYkZYXlYYW0vSsWjh0j4frTYqisBSLMvTY0FW4tl7IwQEWh1m2lxmVuJZFKVwUOn2Wjnf5yn7vNN5mbvhDMmcjM0k0uO14qgwk0XDbrdjtVrx+Xx0dXURjUYJBoNMTU1x69Yt3G532XyPRlsrzeba2qvuv1t1MgYYGhoicG/AWjWdjHWLpEa2+hLuNP03EokwNDSEx+Ph8uXLm35opaZnI05y6zd8rSX9yspKzaNwt7ouFDbrzz47zT/cXMEgFgZSfW9kjVfmovx/fuzQhniItp5bt24RDAa5cOECExMT21o608EUV2ejdLotuO+5rDw2E1PBFP94Z5Vzfd5iKqz22W4lJOm8gqKoG4oUrSYD6ZxCXq7NWhzw27kyGyWWlnDbCp97PCMhCgL9/s1dhwvRDOFUnsGSgkyTQcRrNTK2kuShew0h169FVlRenAoTTOTYF7AX+nMpKtPBFIfbHDx+tJVkTsZqEml3WcrSj0PJHM9OhFmKZQABFZU2p2XbOJC2jvXB4UwmQzAYLGtsqFkrjarobqZ4DTRH08bSTsa9vb0888wzDA4OEo1Gq+5knEqlaGvbvFC22dhzIdmKWl1bpS3Nqznti2KhAeBmr5HISnzvzirBRI4TXS4eGvDVdNOUWlTpdLoY7N+syWG1VKr3mFxL8f2RNTw2YzHI2+pUmQqm+MorCxzvLP+yaqN5oZB8YLVat4xXaSzHs6TyG1NifTYTy/EsyaxUFBiNra4ZcJqxmQ3E0vmy54VTeQ622rGZxC2vsRDN8MpslKlQCpfZyIkuF2d7PVybj7ESzwEqJqPIuV43+wObC4miFnpWrv90xXvNHDdjLZFjOZ6l02N5tT+XKNDqsrAQy3Jx0Ehnhd5lqqoydDfGUixDX4sNg1h4nblQhiuzUd55rHVz62qTzdtqtZY1NozFYsUq++Hh4eI0Qq19Sz023Nera6tatPu/ra2tmP24VSdjn8+HzWYjkUgwODi41aV3zO/93u/xta99jTt37mCz2bh8+TJ/8Ad/wOHDh3d8zaYWklpcW9qI13A4XNOgp81SdH80HeaX/vIaiYyEKBQ2mrO9Hv7ko2c2bJSboVkOwWCQa9eu0dbWxrFjx3b9Ra9kkYyuJEjl5LKZ54Ig4LObGF2Ok8rJRZeJ1lcsEAhw/Pjx4nqqib04LcZiINlSEodI5WVcVmNZbELrN7aZCASDQUzZLMfa7bw8GyeVV7AaRUKpPFaTyMV9vuI1KnE3kuYrryyxlszhsRmJpTNMBtNc3OfhQ2c7mY9kAJUuj5W+FlvFjVlSCmnc7S4zTouBUCqP/15tiKwUJjE+NODddGiVoqrIKhv6kxlEAVkBRan8t8cyEgvRLK2uVwdiiYJAu9vMcnzrLsLVpP+KoojX68Xr9RYrujVr5fr166iqWta+Zac9nZrNtdWMQiIIQtma1ncy1jogLCws8OSTT/KNb3yDjo4OfD4fqVSq7vUkTz/9NJ/61Ke4cOECkiTxm7/5m7zzne9keHh4x+60PReSeri2tMaGFoul5kFPlcQqkZX4V18aIpUr/FzbC67Nx/jdb43y+//seFXXFgSBcDjMzMzMhqFPu6GSkFjvVW8rKpQmBUmyitVkKLpUtJHBlfqKVVMxf6jNyYDfzvhKkr4WGxajSCSdJ5GVePxY2wYXVSUhkWSFl27cYXFhgYDTjC+Z5rDNzmzajGyysD/g5PKgj2Odr8a1Kq3rpekIwWSOgyXzSSLpPNfuxjnb4+Hy4OaHiWg6zytzMUZWEqDCgVY7B1sd3FyME8ukMIkCaUmhx2flVPfmGVotDjM+W6FGpNTyWEvk6PFai+619ShqQYTWx20KFhBbWkE7cSeZzeayVNbSNuxaQWTpNMJqN2PdItma7TK2SgV/cHCQgYEBDh48yJ/8yZ/wta99jb/4i7/gscce48Mf/jCf/OQn67Kmb33rW2X//vznP09bWxtXrlzhjW98446uuedCshXVuLYWFxe5efMm/f39HDhwoOYvUSUh+d7tFZLZws9K71dFUfnmjSV+64kjm9YQaEiSRDAYJJPJVNXHqxYqCcnZXi8Bp5mFaIZurxVREMjkZeIZibcdacMowvDwMIuLi5vGZzazHsKpHDPBNGajwIFWJz9zsY//+eIcU8EUeUnBaTXylkMB3n5kYw3M+mveXojwF9+/yUIsi7/Fz36rk7ee8HJcSrC8usZqcBWHGkKMplg1FjKRKm2aeVlhJpTGZzeV/d57r2q/4G6q7D5M5WT+7uYK42tJfLbC85+fjNDrs/KWQ35W4jlSOZlOt4VD7c6KUw/DqTw5ScFrN3Guz8MPxkNMrSWxmY0ksxIem4kzPe5N3VNuqxG/o+AO7DW/GpdZS+a2rXHZbVxi/TTCfD5f1n9KluWiq0WbELkZukWyNbXWkAQCAX7mZ36Gz3/+83zmM5/hwoULfOc73yEejzdsjdFoFKAYa9sJTS0k2iZf6cZRFIU7d+6wsLDA6dOndxyYqiQka4ncvQaHGzdVSVaJZ/JbCkkqleKVV15BlmVaW1vrKiLw6uZc+r547SY++egATz4zxUwwjSAUTrenez38s1OtvPzyy9vWq6wXKFVV+Yeby/zD8AqRZA6DQaDHa+OnHu7l195xgPGVJMmcRIfbSrfXWnFDKRWS8cUQ/+c3h0jJIod6OlGBGwtxwmmJf/loX9HU1+omJiYmSKfTxfiN1jZCuNc402wUN1TTy4qKgLBlI8fx1SRTayn2+18dAdxiNzGxluJ4l4u3Hd7Y2VgjnpF4emqFqWAKSVHxWI2c7fXw+NEAU8EU4VSeI+1ODrTaaasQME/nZdL33Iyne9z3BCiNzSySzsnYzYWfr19/PCMVM7u097VemEwm2tvbaW9vLxZEBoNBVlZWigWRWmzF6/WWbYx6sH1rdjuv/dChQxw6dKgBKyugKAr/5t/8Gx555BFOnDix4+vsuZBs59pav2HCq4FrreHibnyIlfphHe9yVxQRFWh1mgk4N3edra6ucu3aNbq7uzGbzQ05SYiiSEqCv7m2yGw4jcdm4rEDfi7v97O/1cGL02HiGYl9fjsHfQaGh17G7XZvOmdFY7318KPpMF+5uoDZKDIQcCApCjOhFH/2wxl+812HONpZXdW7qqqEQiH+9/dfIa1aOH+wo+BGUxRsJpHJtTQ3FuI8ur+lmGnU0tLCwYMHSafTTExMEA6HeemllzCbzcVN7XiHg++OhPDkZOxmA8q9+SVtLhP7tsjQWknkEEShbASwQRSwGEXmIxku9Fd+nqzC98cjzEQKs0gsRgPhVJ5/Gg3yrmOtPHZg8yy8vKzwylyUO0sJMpKCw2zgRKeLtx4KMBNOE0rm8dqMDPjthVkrZc+LMbaSJJ2TsJoMyOE8gbbGDNAqLYjs7+8vm50+MjJCLpfD6/UWrZVm27ibbT07SUfWxPx+TEf81Kc+xc2bN3n22Wd3dZ09F5Kt0DY9SZKKqYtra2tcu3aN9vZ2jh49uutZApUskocHfJzu8XBjIVYUFJVCRs+/etO+ioHX0v5UWvHj9PR0XSYkrmcxluOLYyKJiSm0xX3j2iK/8pb9vPlQgPedKowHXlpaYujKK1X174KNwfZnx4NIskpfS8FFZBANDPgdTK4lGZqL8pbD27dzEQSB5eVlpqenEZ0B2szGshvLIAqIYsEKrITNZsPn8yHLMidOnCAcDrOydq/KO53Dr9qZWkxhMJsxGIy0Os382LG2LS1Gm1FErnBQyMuFDX4zgmmV2VyGvhZHMamgw21hNlwQwkNtm1eZvzgd4eXZKF6bEZ/dRDwj8cxEiDceaCmmFlfi2t0YV2YjtNjNdHptJLMS18MyrcsZ+no2fVrdKJ2drqoq6XS6GLSfnJxEVVUWFhaKmUe1FNbWG1VVm1JIdrJHad1/G8kv//Iv881vfpNnnnmGnp7dfZmaWkhK6zxKN+qjR4/u+g/XqJS1JYoCf/pTZ/jdfxjl724uIckqAaeZX3rTPn7ywsbXzefz3Lhxg3g8zsMPP4zb7d702vXgf740z3Ja4ECnBbOxYLUtRrP86Q+mOdvrwW01FufO1+L2Wx9sX03kNmzImohG09uP+lVVFVmWmZmZ4dy5c0SmM8yNrpY/RlGQFbVir7JSZEXh6nycl2eSxDJG2ly9nN5v458JKW7NrnA3uILDZOZ4qx+fmEGWrZvewIMBOy/NRFiMZmh3WxAoCJnFKHKgbfOslYwMsqBuaNboshiJpPJIioqpQvuTaDrP6HISv91UTM22mQysxLPcWoxztMNV7INWSionM7aSxGt79XkemwmvVWA2kiWazm/7vtUTQRCw2+3Y7XZ6e3uRZZkXX3wRg8FQdENq9RF+v/++t0HXvruNHlRVC7txbTWqIFFVVX7lV36Fr3/96zz11FPs27dv19dsaiHRiq4ymQy3bt0ilUqVbdT1YLMUY4/NxB984Di/9cRhYhmJVqe5zBWikUgkeOWVV7Db7Rv6U9WjS+96ouk8V+eiOIxqcY6GIAi0uy0sRNK8MhPCnbxLMpnk4sWLNZ1q1lsk+/x2ngkHaS9xLeYk5V6a6tZ1MPl8nmvXrqEoCqdOncLv93NOSXJlNsJsKEWnx4okycyFM7S5LJzo3HydgiAwtCwxNruEURRwmA2MriSZDqb5Z2c6eOKx8p5Ud+7cKeug6/f7sVqtxLMyZoNAp8fKWw8H+MF4iMm1wvRFl9XEmw60MNCyeWDZaigIaWkDTCi0m+/yWDada5LIyiTzMr2O8vfMZS0IUDIrYTFuTPXN5GUykrIh8G4RVTJyoZjTs/lyG47BYEAURbq7u/H7/cX6iGAwyMzMzH0fcat9d5vJItlJw0ZZlkmn0w2zSD71qU/xpS99iW984xu4XK5i9b3H49kysWIr9lxItjuxiKLI1atX8Xq9W87o2Cnb1ao4LMZNW1YsLS1x48YN+vv7OXjw4Ia/pRETHiVZRVU3xjMEAWRV5ebwbS71OXf0XomiWDZH/U2HAgzdjTIdTBFwWsjLCquJLIfbXWVzTNaTSqW4cuUKNpuNtGriblzB4Myyv9XBh8518a1bK8yF0oBKt8fCe091bFnJHcvK3FyTCAQMxQB2wGlmJpTmhxMhjnU4MZX0pDp06FCxg+7KygrPXBtjMmkmKVhx2W2cGwjw6IEW+lts3I1kQIVOj6XibBFVLdSSKCp4LdDnsjATTtHpsmI2ioRTeVQVTna5N/0u20wiVqNIMieXZYClsoWKd9sm7jS72YDdbCCRlcusoHQePC5xSzfc/aI0frm+PkKb7TE7O8vw8HCxqaE2IbIRkwihuYRkJzGSRCIB0LAYyZNPPgnAm9/85rKff+5zn+PjH//4jq6550KyGaqqMjc3Rz6fp6enh+PHj9/3xopbrW10dJS5uTlOnTpFe3t7xcc1wiJpcZg42Obk2XAMVVWAwmayEk0h5DOc39fJ+TPHdvReaRaJtjkc6XDxC48O8M0bS8xHMhhEgccO+Png2e5NYxDBYJChoSH8bR3cSrn4h4ko5sV5vM4QZ3s9fOBsF8c63dwNp1EVmTa7iM2yteCFUjKJvMrhdRu931FI9Y2mpbLivdKAseIIMLc2T0xIYRNyrK6t8eX5VW6M2/kX5zrZ3xrYtMvAcizLD8aDzIYzKKpKYlngiQEbboeN6WCKfFrBYzNxeb9vQ6t8RVVZjmXJSAotdhP7A3auzccAcJgLs1vCaYlHBn1lHYJVVWU1UUg/dlqMHG538MJUBACnxUAqJxPLq5zzW3GViNJKPMvoSpK1RA6vzcT+VntxFkoj2ayOZP2IW222RzAY5O7duwBl7Vt2WhBZinavNVMW2U5cW6lUwUpulEXSiHk2TSkkkiQxPDzM2toaNpuNtra2hn05ap1iqDWDzGQy27qOGiEkgiDwUw/3cn1ykblIFptZJpXOokh5/vn5Ti6fra5Ycj15WeGHsymem45iuHmdA20OHj/Wxrk+L6d7PKwlspgM4qYTAeHVZpRHjhzhh8sC/zSyglGELrcZSRD5/uhacf0HWu3k83ny+Xyx6FQUxeL/SjEbBIxCwa1WenrPSgpmg1gxvqBxZS5KIqtwvO9eRpWqEk1mmFmNMTSxiGt8DIfDUdzUtCl48YzEN28uMx/J0OG2IgowkYYfTEb4yYf7uTjgJSereG3GDTGTUDLH90cLApSTFFxWA4fbnJzodDETShNK5XGYDDw04OFs76tu2lRO5gfjQSbXUqTzCnazgcGAnbO9bqaDacKpPBajyGGfwMnOV7PS5sJp/mkkSDSTx2E2cjeSYWw1yRsPtHC4vbEB22rrSNbP9tDat8zPz3P79m2cTueGz2Ana9HaHjULO20hb7FY9jRxoVb2fKXrP/REIsHQ0BAmk4nLly8zNDTUsLntUFtjyGg0ytWrV/F4PFy6dGnbD7oRri2Ak91ufuqwwLyhhRtzQbpcMh+4eJjHT+2scl5VVb744hx/MxwFRSZgknlhKsTwYpxfecsgp3s8W8ZESodznT9/HixOXn5xlBaHmaxUmL/hsplRgVdmI7zzaCs+W+HmMpvNyLKMoijF/8GrfdAEQaDTbabdLnA3mmGgxYbJIJLOy6wmcjy6v6XsZL6eu+EMntLqckHA47RhTyl0DLRztttRPCnfvHmz2DpkSbIzG8xxqN1VbH/SYS9Maby9GOctm9SaSIrKd++sMbmWosdnLVT+p/LF/llv6PfeszYMGwLlP5wMcWMhTpfHQpfXSDwjcWM+zoUBD+8/1U7yXprztStzxToTRVW5ejdGMiexP/CqVbQUy3BlLkp/i23TSY71YCeV7YIg4PF48Hg8DA4OFgsig8Egt27dKhZEatZKtX77ZsvYgoKQ1GptJRKJPZ8zUyt7LiSlaDGH3t5eDh06hCiKDZvbrlHtZq/Ned+/fz/79u2r6kOul0UiyQrjq0kA9rc6MBlEupwifcYQbzxt5uzZh3flGpgLp/nBWBC31YBNgBaXhYDTzNRair+9vsSp7s392VpQPZPJFIsdp9aSpPISHS4rWV41pZ0WA3fDOUKJDD6bA4PBUEyogMJGIMsy2bzE1dkoIysJZAXazDnOtYnMClZmwunCcC5R5GSXm7duUTwIhUr32XC67GeyooJQiF2sL8bTWodM3V5meTmDLRfG4XDcy6BRC9lWm6QqA9wNp5kLp4vtY6DQRiWTV7gxH+Nkl6ti1Xo4lWdyLU2721KMybmsRiRFZXQlybleT7EHWGlcIp6RWI3nCKyzFAMOM/PRDKFUni5PY4Vktxve+s8gkUgQDAZZXl5mdHQUm81WNs9+sxN+MwrJTtakCcmDRFMIiaqq3Llzh/n5+Q0xh0ad6qu9vlZBv7i4yNmzZ4uDbKqhHkLyo+kw/+OZKRYiGVSg22vlI2f8yNksbrebs2fP7vrmmQqmSGYl2m0GstmCdSYIAj6HmZlQikRWrnjqTyaTxYy1ixcvFi20FocZh9lYGBBV7KerEk3nsZtFfHbTpn51WYW/vbXMC1PhYl1AOBrlsN/CJ9/WxkIsRyqn0OI0s89vx2zcepM83eNiKphiLZHD7zCRlwtFi51uC/tby2/W0tYhZw0+7spLeO0qqVSK+fl5AJaDYQ54RXK5XMUspHReQVLUDe42u9lAMieTlxUM4sY1p/MyWUnG7yh/n20mkbVEnkxeobQOVtu8RUFAFNhQFyMrhT5em7VoqRf1bpFSOolwYGCgWBBZmo3n9XrL5tlrr79Xs0i2YqcxEt0iqRFFUfjRj36EJElcunRpgxLvpZBkMhmuXbtWXFutFfS1xl/WM7mW5Pe+NUo0nafFYUYAJpbj/P63gvzsMTPn+/rqcuPYTIbCHA3KN6P8vQ6/lWojtKB6d3c3hw8fLvvSe2wmLu7zFeba51RseYVEPEMomeedR1sJuDZ3k91eSvDidIQOtwWzoLK0tIjdbWFZtjEezHKhz13sdoAik8+/6hcXRZFbC3Feno2yHM/S4bZwrtfDmw628PJMlPHVFEaxMGDq3ce3Llo82Oqg02sjmMzRFWjDH4CXb4/jdRmx50I8++xccYiU1pZdEAQ8NiMWo4FkVirL9otmJPp81g1NLYvvmdWI8574+kusi2hGwmk14rRUbkvishrpa7FxazGO/V5nZkVVWYxl6fZaN3QQDqfyxDISFqNIm8u8a6FpdNPG9QWRqVSq6AabmJgodjpoaWlpugaS8PoYswtNICSiKDIwMEAgEKj4hhuNxobGSEo3+8JMbaHYtXdoaKjQiuP48R0VFW3W4qVavjO8QiSVv9fHClLJFC4xT0w1cz2s8vY6BfKPd7ro9FqZXonSYipcM5WTiWYk3n8osMHHPjs7y8jIyIbC0JxUyPiymAy852QHggB/+6MIK4kcPpeRdx1v5YkTHVuuZXItiayoiEqeheUV3B43Pp+PqbUUY2tpHj3YWhZP0dxhAC/PRvm74TUkpVAkOLwYZ2wlyftPt/Nzl3tZiecwGQT67sVZSlFUldlQmsVYFqMosM9v54kTbXx/NMhiLIOqgNMk8MGHBjjTHyjLQpqbm0NSwevz09nmZ7DFwvBykha7GYupkCIsCgKnujdv4uiwGDne5eSHE2EkWcVhMRDPyGQkmYf6vGWfgawoLESzLGYSOMwGznS7iaUlZkMpigOyXBYu7vMWa1vyssKL0xHuLCVIZGUsRpG+FhuP7vftuKhxN9/tnSAIQtHNqBVEru/LJooiMzMztLS03PeCyErsREgSicQDNWYXmkBIADo7Ozd1Ad0Pi+TlxRz/8b8/z9hKErvZwOMHXTzqDnPy6MZW67WgnY52UpQEBX+7KAigqsTjCVRVxeN1k4nnWU3ld+02y0lKocDPYuRnL/fz3757m/lwjvhqEqMo8oY+L+8/3Vl8fKmb7/z588VuocFEjm/dWubKbARFVTnR5ebxY238+OlOOqQVJudX6ArAQIsTOZdBNdo3fU9FQSCVSrGcTBJoDeC6d0OpqEUnWWlml/YeJDI5np2KIAADvoLF43cYmY8WxuCe7HJzZJOMs7ys8O3hVV6Zi5KVFFS10ATznUcD/OSFblbiWWRF5fYrcxy+V/muZSE5fK3MT4a4NhsiuZbCNT5JlzlLm8HOWsSK0WKl3evgfJ93QwbVWiLH5FqKZK5ghRztcGE2iNxcjJPIKrisRh7pKm+nH89IvLCkIMdDGIwJjAaBAb+dR/b7iKZdxLMSdpOBXl/5yN4b8zFemokScJpocxViNqMrhXqFdx3ffIjWVmixr72yAgwGQ9EihELW4NzcHNFolOnp6WJBpGax3O959rCze19zbT1INIWQbIXBYCCbrXZid+08MxXnj4ZyCBQCqKmczF/fijDV7eKvHt+5iEB5i5edCEm314YkrxGJRjGZTLgcDlQK/u9W+87jL7cWYvztjSVGlhLYzQbefCjAe0528H+8qYt/uj5N72Af3V4rJ7pe7UKbz+cZGhoim82WufkSWYk/fnqSO8sJvDYTogDfH1ljbCXBv37zABfOnODE4UJ/prW1NcbHx7FYLAQCAVpbW/H5fOWCm1wlm07h7G7F5SzcTKmcjKpStqFqaM+NZFRiGYV2txXRIBZPy36bkZV4loVQgt4We8X04uvzcV6YjtDmMuO2GgstZ2JZvnN7jW6Pla577ejH1+2XWUnhb68vMbKSpMVhwW6zFiYmWgTe2mcml4yyElzCmRUhHGBFLGxoRqOR0ZUk3729SjiVxyCAgkBfi5UnjrdxostFOl9oaLnecnpuKszdBJxuN+NzOcjkZUZXEliMIu8+XrkVTl5WGF5K4LYa8N6zPmxmA91eKzOhFCvxLB3bdCqohCYke33q1zAajVitVk6dOlUsiNSq7Evn2Ze6IhvNTuI2umurATTSIlFVlf/x3GLhv0t/DgzNJ3hhKsylwZ336C/NRtoJZ1sFvqJkiasm2p1WsrJCMJnDbTXycNfOCouGF2P84XfHCKfyeK0mQskc//PFOaaDKT560sXpVgOXT5a7n5LJJFeuXMHhcJQF1QGuzEQYXU4wGLBjMoioKvhsRsZXU7wwFebHz3QV3RF9fX3IskwoFGJ1dZVbt24hSRJGhxfF4iIZDeE25Hni/D5emksQXkkiUOh9dq7Py5ktqunNxkLr+LwCVvHV8bwyKmajAYup4GbU3KRaTEUQBG4txjEZhGLVeSHl2MLYaoqJtdSmVfcTq0km1lL3gv6F1/TaCiKxojh4x9n+srb4k5OT3Lp1C6vTzbMrJvKCmQNtruKc94m1FD+aifBjx9oqtsGPpvNMraXwmCkWMVpNBjpdVqaDKYLJXFl8RSMrKWTu1aWUYjMZyEkK6fzOvp/NVgBYevovLYgEyGazxWaTc3NzCIJQ1r6lHgWRldBdW/eRrb6IjUz/jaYl7kYrWzsGUeDKbGRXQqLVQdQqJFrlfGJhjl97+37+6nqYpWgGgC6PjU8+NoA9urPOwn9zfYlwKs+g/1X3UiIr8dJMmIe7TBjWidPa2hpDQ0PFlOz1n9VsKAUCRRFR1UIWj9UkMnGvj1UpBoOhGDzNSTJfuzLLU3eWCcbmMAoq/V4T/+xUhn2nWlhIFiYJHmh1cKyr4PbZjHaXhQG/nRsLMQZNBVHLyypL8Syne9z0+F3FJpJaNpj2vUpmchgoD2ILggAq5OVX34/1wh261zqlNIAuCAIuq5G791KOK7XFvzqxyFJkGbcQYiqxisPpxOFw4Ls3EyV1r15kPVlJIScrmNbdLhaTSCilkJMqfx9sJgMem5FgMl+WfRfLSNjNhoqDu6phr11b69kq1dZisdDV1UVXVxeKohTTvEsLIjUX2E4LIiuhB9ubhEZaJFajgEEozJlYj6IWhhbtllozt7S6jHQ6Xaycf/sphZHlBCoqR9pdmI0iV6/O1iwkkqwwupzAYy2fKui0GFmNZ5mL5OhTX73mzMwMo6OjHDt2jO7u7orXdFqNKMXZ5FofMMhX0dH36bEg37kTRE6n2RdwYLY7mV1L8DfDEd7WvkiLIOD3+wkYBQTFDuuERFIU7t6rHu/2WnniRDupnMR0KF1cx4FWB08cby+KeqkbTROWwYCdqWCQNsl0L51WIJUvxI9KZ4Osx2oSUdkYcM7klfIiyBJsNhtt7e0EAgr9PguZTIZkMsnq6gqRlITRYmHurkBvRys2m21DNpzHZuSuBJSISTiVx20zFjsEr8cgFgL937uzxnykUKCZzitE0/my+hSNVE4mks5jNoj4HaZND3rNaJFUIwCiKJYVROZyueKEyJs3b6IoStk8+81a6FS7pp3ESDo7O7d/YBPR9ELSqKwtSZK4M3yT863w8oqKQvnNYBAE3r1NhlE11NJKXuskrLmQtOCg2Shyct3c8J3UqBhEAbvZsGH2h6yoqBRqHdRM4bR++/ZtlpeXecMb3lB0D1TiVLeb7wyvsBApFNOJAqwl8pgMIuf7vJs+LycrfO/mPNlEjMEOb7Gj8/4OI6uJHN1Hj9NulVldXWV6eppbt27h8XiKjRmDWZG/vr7MbCiFrKq02M287XCAn7vcx9hqqthi/VCbY0PWmaQoTKymCCVzuKxGzvT7mQhmmAymcVsM5BWVdE7mTI+LHo8JWZbLNsusVPi2HAg48DsKzSN7fDYMwr3pmgIc69gYz1FUFVlR6XBb8NqMrCYlOt0OnA4HqtrKnaUY/U6VdCzMj2anMJvNBAKBYiGexWjgXI+H67dV5qM5WpwGElkJSVV5eMBf1rMrLyvMhtJEM4Xge1+LlbcfCXBtPkY0LWE1iTy6v4XTJd8rRVUZmosyNB8nlpEwG0T6W6w8ur+l4qFAE9AHTUjWYzab6ejooKOjo6wgcmlpqVgQWTrPvlph0A4rO7FIdNfWDthuSmK9LZJkMsnVq1cxm8387ofP81N//jJLaYo5+IIg8IcfPI7fufu219Vu+CsrK1y7dh3F3YHB08lKUqLbu/mJfidCIggCbz4U4IsvzhHPSLisRmRFZT6SptVl4XS3i5lRuWwsb6X2FKqqkpUUTKLAQIuND53t4K+vLTEVLLhz3FYj7z3Zzpmeyu3+VVXl9sgEC6sROltbcLtfvWlsJpGcpBDPyhzu8OL1ejl48CCZTIa1tTVWV1e5OTrJt+4aSKgm+v0unA4rwYTE168t4bGZONVd+XWhEGf48isLjC4nkJTCZ93ns/H2o23cDacZWU5gNgic7HJxqsuJUaTYwiWSpSBeUQlRKEzSfHR/Cy9NR5gJplDUwt/+lkP+siaOmbzMldkoNxZiZPIK/S02DrQ5uDkfZ3w1icUoks4rdPsc/NjJNjrc1mIs6eWJZb56bZhIWqbb5+AN+1o4G1DAbSYtq7S7LZzscnGk49X3MJaR+M7tVSbXUiiqCip0eSy881gbHzjTSSpXSP9dXzR5eynBM+MhbGYDXR4LWUnh1mKCvKzy3pPtGwa6vRbH7FYqiNSsldLxBKXz7Dd7D7R9ayfBdl1I6ky9hWRlZYXr16/T09PDoUOHUFWV//cpGbX7JLeWUvjsJt53qoMOz87N2VK22/BVVWVycpIrtyf5btDN1K0oeTmMzWTgLYcD/Opb91fslbST2AvAEyc6mAmm+NF0mNV7lkmby8wvPDqATcyQy+XweDwVx/KqqsrzkyG+M7zCUiyL22rgzYf8vOVQgJPdHu4sJZAVlYNtDjo3ef9kWWZ4eJhwKMxgTyvhTLlfMZkrtFZvcZSLqNVqpaenh56eHtITa+SWp+mxKKRiYeJhGavVSjRn5Lnx1Q3WWynfvb3KjfkY/S12bOZCsHkqmOIHY0F+4dF+Hj+2MfMpm83y7EvXeCliJZ9K4neYkFSVfxpZ5WCbgw+e6SCUlpEVlU63pczFJCsqf3drhatzMVwWAyaDyCtzMVocJh470EIknSealuj0WDjS7iw2xTQYDEwnjVyLWcHVQZtXZSGS4BvXVzjuUhmU52nxt9LW6qfF5yhL3/3RdJiR5QT9LXYs96ZBTgdTfH9kjQ+f76oYE1FUlZsLcYwGsdiq32QQ6fUJTIfSLEQzG7oJ17uqfbc0okWK0Wikra2Ntra2YkHk+gzE0nn2pfeMdn/qFkkTUEtTxa1QVZXx8XGmp6c5ceJE0QepqioGEd50qIX3nK4cB9gNWwmhJEncvHmTUDjMd0M+7qym8NnNWIwmklmJv7uxjMdq4hfftHGCWS0WiaqqKGrBtWUzG/i3bzvA7aU4U8EUNpOBc30epGSUoaGbCILA2bNnK24QT42u8bnnZ5EVFZfFwGI0wxdfvEs0I/HPz3XzyP6tExNyuRxDQ0MAXLr4MMa5BF96eZ75SAaf3UQ6L7OWyPFQv5eBLWauJ3IKFrOZtlYnKipSXiKZSiKkklwbneY503LRBeb1eoubSzSd59ZinDaXpdhF2GwU6fUV2sLPhdMbXjeVSnH16lVmUyZkq48j7Q6Ee++pzy4zsZJiYjXB2R53xdTi2XCa4cUE3V5rcX6I32FifDXFUizLe05WHkGQzEr8aCaK1Wig/V6cpsvnZCaUZnRlljef6SeVTDBy5w6SJBWbHFpdXsZWUrQ6LUWLwyAK9HitLESzLMUy9Hg3Wpl5WSWelTbMOLGaDMiySjK78TvcbJXkiqI0tGNuaUGkloGozbMfGxsjk8mUzbMvzQysBV1Idkg1WVu7MaPz+TzXr18vTg0sHRijfdiNCuhvtuGn02leeeUVjEYjzv6TTA7dwe8wF60Pt82EpKj8w/AyP32xd8NwrWqEJJGR+Ma1RZ4aXSOdlznZ7eafneniULuT411ujncV2o3MzMwwNjbG4OAgU1NTFd/nnKTwdzeXQYW+ewV/LXYTq8kc3x8J8tZDrRvacZStJZHg6tWrqBYX/fsPIBhMXN7fQl5WeGo0SDCZw2oUeeuhAO891bFlgVyL3QxCIQ5gMhQaL3rcHlazRt7Q52b/fhtra2vcuHEDRVEKAftAANXqJi8r2M3rJg4aRfKKQnZd1pPW7bmzsxODaMORT2Eo2Titoogo5gil5eKY4vXpxcuxzIZZ8Forlangxqw2jbVknkhaom/dxMaAw8RCDkSbmyO9PaiqSjKZLDY5XLg1ysyqmYDHjgV30fVSSI1WkSpllgAmg4DXZmIhmimzqNJ5GZNBwGl9df3RdJ7hxTh3FsKsLKn4FuIcbndUTFm+n8iy3PApjKUYDIbigQUoa98yNTVV7GyxsrKCz+eruiBSz9pqAKW1GDsp6ovH41y9ehWHw7Hp1MBGzVaHyht+KBQqblBHjhzhe3fWyMkbG/1ZTQbSOZlwKl9RSLYSv7ys8F++O8aPpsPYzAZMoshTo2vcWozz208cYX+rA0VRGB4eZmVlhQsXLmA0GpmcnKx4veVYhrV4ttD+/V5GFIJAi73Q2HE+kt5USILBIM++fJ1baTeLWQP58QlanRZ+7Hgbbz4U4NJgC8FkDod588yjUo51uhj0OxhfTdLutmASBVYSOZxWI5f3B2hvdxY7ycZiMdbW1pibmyMciZGLWpmOmjnY4cVsNiMIAsFkDo/NVDz5Q8EFevPmTQ4cOEBfXx+3hhY2CI0gCKgCuKxmLBZLMaW4NL3YJKjIioIkyRgMr55Os/cGXm2GySBgMgjkJQVjiQjlJQWDQPG7og3xMlntOAOdDB6SWXhplqmVGPnUAoqq4LA7yIoWnHZ72WeUysmMrSZZiWWxmQ10uC0sRDIsRgsWYkZSWI1nOdrhovNewWI0nedvbywzG85gVPMsp+Hvbq6wGHXztiOBhjeJ3Iq97v6rzbPv6elBURTu3r3L1NQUU1NTxYJIzVrZrCBSOxg0ajpio3hghGQn+diLi4vcvHmTgYEBDhw4sKlF08gU49Jra1MfR0ZGOHLkCL29hfkh3V5rMeBaWj+Qysl4baaKG/R2FskrsxFemYvS4bYW3TgtDhNTwRR/e32RX3qsj6tXrxYbUtpsNpLJZMVrqqqK1VjY2DKyiuOeiEBhQzQZxE0bIM7NzTF8Z5SXk36mYwptLhGnxcByPMsXX5zDaipkd3VXcLesJycpxcyzn3q4h2/eWGJ0JUlCUen12Xj7kQCHStqQlM690Kb0GYbv8tWhJa6ML+A0gWq0YDRZeN/Z7mLV9+zsLOPj4xw/frzYifp4p5urczFW4llanWYUFRaiGXw2U/E117duUVWVwVYnrc4os+E0PV4rBlEglpHI5GVOdpVvFqqqshTLks4r+GxGerxWJtaSDLTYMRpEspLCciJLp71gsUIhBvPSTKQwwCsjYTMbaHc76cBMOi9jFxWC0QTpTBxffo3ha0H8fj9mh4enZtJMhwpteBQFnFYD+/x24hmJtUQOi1HkXK+Hi/t8xUD7rcU4s+EM+wN2spk0JAy0uc3cWIhzpMN5X6YybsZeC0kpoijicDiwWCw8/PDDZDKZst5sWkGklg1WakmlUqmaG8RWyzPPPMMf/uEfcuXKFRYXF/n617/Oj//4j+/6uk0hJFu5rDQfoyRJVZutiqIwOjrK3bt3OX36NG1tlVtHaDRSSLQNv/T0vz6l9linizO9Hl6cCiHJRiyme2mdssL7T3dUDLZvJyQTqylkRS2bKCgIAk6LkaszYZ43zuN2uzl//nzRr6y5Z0rRai28NiOne9w8PRrEbjIUA9ULkQxHO50MBhwbnjcyMsLS0hL2niPMv7xSNmTJYTEyuZbk+yNrW6YJQ6GR4z/eWWNiLYnZIPLQgJe3HArwiUt9BJN58rJCwGmu6FrRmjGm8zKdbivvOLufrvY2npsMMrMaw6Tk6LOmYf4mV9LzxZkkZ8+eRTY5GF6MYzcb2B+w886jrTwzFmRsNYVAIdbx+LG2DYkFyazEzL1alr4WG+873cXf31xiJpxBVQuZaRf63Bxrt5HL5RBFkUhG5ju315hYS92bqmjkYKudLre1cC1AFApdid3GV928P5oO8+3ba9jNhaLDZE7m1mKCox1OPFYji7EsfX4XxztdDLaYi5vZP1yf52YIBgM2PK5CQeRqQmI+kuFfnO8CCvGj9YH5ybU0LosBgyigKgoIhTqkxWiWpVhWF5ISSr0oVqu1rCAyFosVq+yHh4dxuVyMjo4SCARIpVINs0iSySSnT5/mZ3/2Z/nABz5Qt+s2hZBshTb4qNqNXgvo5nK5im3pK9FoIcnlcvzoRz9CURQuX768ocBJEAT+/bsO8Uffn+S5yRCxdB6n1cj739DDRy70bHrdrYTEbhZR2Ziimc7mMGYzdHX1b7DStP/WnqO5aLQb9Cfe0F2cEFhInYX9rXY+camvLDVUkiRu3LhBOp3moYce4rnZJIrCBkF0Wws+eVlRN6SWakwHU/zpszOsJXK02M3E8xJfH1ribjjDzz/at2VcZimW4cuvLDK5liQvKbhtJh7d38Ljx9o43uUiLxeKDgVBIJFIcPPmTZLJJJKs8uf/eJ2ZtIW8YMJptzIYcPCBM50c73Qxd6+Z5oDfvmFOy7W7Ub41vFLMiGuxm3nHkQA//0g/U8EUeVml1WGiw20uvrc5SeYb1xYZWUnR7bFgdZmIpiSuzEV5/Ggrl/e3kMxJeKwmer1mnnt2FEEQSOdlrszGcFgMxcJJh8WIQRRYiGZ59/G2DfUfHR0d+FvbeCY4y357Bhs5IuEIS0tLmM0WFmULk4sWLhzoqHjAsxgFpHuzT9R73xnt8FFp3MD9pNmEZLM+W6Io4vUWUttLCyL/8i//ki9/+cvIssyv/dqv8YEPfIDHH3+86LmoB+9617t417veVbfraTS9kED1G70WHPV6vRXTVzejkcF2SZKYnp6mvb19y3b0PruZ33riCMuxLOFUjm6vbcsRstul/z400ML/vrLAQjRDp8eKAKxFEyRSaT70cDcHDx7c8JxSt0xWUvn+yAovTUdQgLO9Ht58yM+/e8d+hhcTrMSzeG0mTna7sJQMl0qn0wwNDWE2m7lw4UIhEG7NFqrd7wXHNRJZicGAnU00BIBnxoKsJXIcbH110I/HJnNtPsbIUpLjXZVPbjlJ4UsvzTO2kqDbY8VqMhBM5vj7W8u4rUYePeAvriWXy3H79m1EUeSxxx7jh1NRxl+axUweuxQjHYry/JqJcCTCr7ztEKc36fk1H0nzjWtL5GSFfX47ArAUy/LNm8sEnBZOdFVOS767kmAmnKX/3mhegBa7kXRe4vrdGL/waF9xgFdpBmMsLRHLSgSc5WLhsRqZC2cIp/KbdhdQEbBZrAScbgL+AJIskUgkWFmKMzo6RnZpvOh68fv9xdjioXYnk2vpe400CweOlXgOt81Ylg2WysncXkoUJ3seaHVwrNNZVjRZb5pRSKpxx2sFkZ/+9Kf5jd/4DY4ePcq5c+f4/Oc/zy/+4i/yx3/8x3zyk5/8/7P33tFxpOeZ76+qOid0N7qRIwHmHIfkBI00kmZGmtFoFKxkWR7bsrTX0u5d2d61fX0c9mrXu/Zd2Svter22rGBb1sqSrKxRmjycTAAkCBAgcgY651RdVfePQje7ATQYhpwB13rO0Tkih90oVHd97/e97xNegyu+ftwyheRKFOD5+XkuXrxIb28vXV1d18TwulnD9sXFRcLhMB6Ph/3791ddUzJXZCaSwW010lbRDmh0mauGvrVwpRNJi9vCR+/o5PNnZpgJZygU8giqwlv2NvOB23du+JrS9WXyMp99cppXZmJIqzv28wsJXpmJ8dtv6a0p+IvH4wwMDNDQ0MDOnTvLD/W+VhcdXitToQxtHismSSCclgG4q7d+089qLJheZ+liM0kUFY3FeK5mIRkLpJkKZcpaCoAGpy6ye24ywukeb9myvr+/H4fDwb59+9AEgZdn47gdVlrdXkCjUCgQS6S5tJzgn3/2HDsbHWW2Tl1dXfnaLi4liedkdjRcntO0ui1cCqQZXEzQ7du4750uKKiagN1q1nf3mqYPyU0SiZxMJlcAk1T1mQuCgN0sYTWKZPJK1QKdKahYDOI6Km8JRkmk12/jhakoHpsRSRQwSAYKopXuViv3H2tBKuqOzbOzs/RfuEjR6MDrrmN7WwP7W50MLyVJpHIkUyq99XBnj7d8OszJCj8cCnBxOYXVKJY/j+lwhgf2N64jldwo3KqFpBL5fJ5CocAf/uEf8ulPf5poNHqTru7GYksUkist+psZN5bsPJaXlzly5Eg5m+BacKNbW6UZzcLCAn6/vyoOVFU1vvT8LN/oXySVK2KQdGfb335LL43XYOV9NfTfN+70s8Nn4ZvPnCMnS7z52H4OddYjbnYEAJ6fCHF2Vk8ptJr0r0ihqDK0lOTp8TBv37de+7C8vMzw8DC9vb20t7dXfaZWo8Sv3d7JV16aZyqUQVZV6qxG3rmnidNX0J64zAYi6WpLF1XTLV0sxtqLRjwno2rrmXB2k0Q8V6RQVMlnUmX2XMmQMp0vks4VsZlKj4aAyWSmwWcmrpnYua+JTluxbGYJlItKNF1E2uC7bJL0AXstuG1GTAbxcqqiICAhki4WaHFZcFhNsGqLn83q7gHFYhGr0cieJgfPTkSRVt2L03mF5USOox3uKtfinKwwFkgTSstYjSLd9VYWYjkmQhksBpGComIxirxhez31DjNgpq6ujqixnouJEIFgisJ8BNuFJQ77BQ67PcQsAgWHkTcfbq76WWOBNKMrKbq81rKhZb6oMrKSYlejo2bxf7X4P6GQpNNprFZr+XWb2RNtJWyJQgLVvda1qLXQ53I5BgYGyrOHjew8rgY3spBU5nacPHmS+fn5qtPUP51d4AvPzWCQdJdYWVE5MxEmnpH5nx88iOEqufgbDcZXEjnmYznq7SY6vVZSqRTjF/q4q6uO/fv3b/qlLr2X1Wrl+y9fJJ0xgE1AVQVEUcJkEDGIAgNz8apComkaU1NTTE9Ps3//fvx+PwCBZJ6ZcAazUWJXo87m+e239DIdzpCTVVo9ljJLajOc6PYwHkwTy8rUWQyoGsxFs/gdJvZukE9SQr3dhEES1jnpxnNFenx24pEQQ0ND9PT00NnZWf7vVpOEz6H7Z3kq6LmpfBGzJNLkttNcbyuHsSUSCYLBIFNTU6wspAlETNSJeVxOByaTCVXVyBc1WutqnzLbPVZ2NTron4vjc5qwGkUiGRk0ONntxbxKMkkmkwycHyRv9TOwmMZtkTje7iSblxkNZAgmC9hMEofb63jzLt/l3zkr8+1zy4wHM6jolileu4k39HrZ1+JkIZbDbpLobbDTXSHIHAtm+OnFECaDyJ52H0VVYy6SZQaVXoeIORKgIBaYGxsis9oCs9vtzMdyiIJQ5YpsNuikmflY9l9MIbkeyUIqlbrl8tphCxWSzbBRaysajdLf34/f72fPnj3XpTGpfP8bUUhKmhWHw1HO7ZAkiUJB31HLiso3+hYQBQGPTV8cTAYRgyQwspLildkYJ7uvzra+8kSSkxX+1zPTPDUWIltQMBlEdtabOOWIsG/7+qH6WpSG6pqmcfr0ac4XxrmQCJBJZ4ivhmpZzBaKila1OJSYaNFolOPHj+N0OlFUjX8eWOKxkSCJXHFVVW3lkVPt7Gh00OPfnPygahoTwTTxbJEGp5lT3W4WY1lemCpZuugxsr9wpKVsJ7IRev12djU6OTcfx+cwYTHoi7MkCOxwygwNDVXRe8v3VRC4vcfLbHSB2UgWr91ITlYIp2WOdtZVCQRFUcRVVwdmOy2d3fTszhF7apzxYBJLMIokSuRFM531DvY2X253aZqePTK2kiKvqHR4rLx1jx+7WWJ4KUkkLeOxGTm9zcvBVb+yWCzGUy/1M5RxkdBMKIEgBlGg12flHfsbONHlJpGVVwfvFkRRKC+sz0/FGF1J0+2zYVoN/ZqL5nhuKsqvne7geKd7w3t4YTGBrKjl31kSBbb5bEyEMmiuRrrr7KysrNDY2FgW4RmNRlaydjIZCUW1VAk4VVXbcKMUz8rIiobbZixHA18PrldrdrPwLyXUCm6RQlLZ2tI0jdnZWS5dusTOnTvXtVGuBzdi2L6yssL58+fXaVYqF/xEtkg0I2MxVX+5zAaJuKpTL6/lmkvv+3cvzPGDwWWcFiONTjOxVIYzE0mKXR7eeRVFpGRKWKJa39bbwDNTSQwWAx6TSC6fJ5bOkU4VsKZyjIwUcbvdzM7OomkaJ06cKAcDPTMe5jvnlnVNgs+GrGjMRHTm1R+8fQcuS+1TSDCZ50svzHEpkCIvq9jNBo601/GB4y2c2uZlLprFbBDZ1eTY8H0yBYWZSAZR0DPXP3hc14acX0wQyxbxO0xst+expBY5fOQIbrcb0IvXTDhLIifjc5g51OZCUTWeHo8QTuUxGSTetNPHW3dXR9KOLKd4fDTIfCyHQRTY1+ri/ad76ZuNM7qSIpfL4TMW2WaJMfjyc3g8Hvx+P4MRgWemEmQKCoKgn8b3tTh5/7FW7t5RT05WcVuN5aIdDAY5d36QScVHRJHoqreu6o4UhpczuO1xHj7YRNMGWSv5osrQQhy3zVDOcxEEgRa3HoY1E8myu2ljO45oRl6nDyq1RdN5BZ9Zw2Aw0NraSmtraznEKze5zLnFCOdHwvicVux2O0XRgkkSqk480YzM02NhJkIZiqpGg9PEqW7Pukjiq8VWO5EoinLNgVmlQnKzTiSpVIrx8fHyn6emphgYGMDr9dLR0XHd77tlCsnVtLYURWFoaIhwOHxFe/Nrwas5kWiaxsTEBFNTU+zfv5+mpmrr+coF32kx4LQYiWYKVG6mC0UVQWDT7Iu1KL1vMlfksZEgdrMBj81AMplCVAq0eJ2MR4uMBdJVIr1KlOinlUUE4FBbHffs8vHYaIhQSr82g2ThrQebeHifk3BghQsXLgD6fCAUCuHz+TCbzTw9FkYSwe/QfxezQaCz3sZMOMPAXIK7tm88w1I1jS+/MMf5hQRtbitWo0giV+Tp8TBOi8T7j7Vt6r/14lSU7w0uE0wVEIBml4V3HW7mA8dbuT/bQDonszw9Rjad5PCJE+VdXzhd4H+/ssDYSopsUcVhNnCozcV7jrRwsL2OeFbGapRwrHEWmAim+YeX5khki/idJmRF48nREKFknl+7vRNZ1bPfHWZDWa0cCoUYnFri60NJrCYDzR67LjyTjJyfT9Lri/GGHT4qR2WLi4tcvHgRf+cOohfTtLqN5bmP1SjR6DJxcTnFPbuUcquwMmsFRaOoaogiFJWibvuOgIA+Z1LV2imbrXUW5qLVmxtZ0S303TYjqnzZtHExnmM2kkVDYPu2Lh50NvDSVJhQMsv8ShLkELvqDeRDRUL4sDnr+N7giu5O4DTjkAQWYjm+N7iC2SBu+lnXwlYsJFst1OqVV17hjW98Y/nPn/rUpwD4yEc+wpe+9KXrft8tU0g2gyRJZLNZXnjhBSRJ4tSpU68qbGaj9y+1n64FJb1EIpFY5+FV+d6lImUyiLzzYBN/c2ZmtQ1hoKDoAUO9fgfHO6++MJbov+F0gaysYDeJxGJxANxuD4IgMBfNEkzl1xWSUp55pc115Q5IEgUeOdXB0Q43FxYTKKrGnmYnh9vrSMSihMNhOjs7aWxsJBQKlVPmnE4nMwENo2SknCwF5XbFZgPnqVCGS4E0rXWW8i64zmqkUFR5cTrGA/ub1i3mJYwF0nz1lQU94KrOggYsxnRDyX97zzbqrSJj40Pl01NJ2KpqGl97ZZFz8wna3PrPjeeKPDMewW6WeNehlnJBXIvnpyLEsnIVLdlplhgNpBhZSVUx20o2Jg6Hg5mCA+fSIm1OkUwmw8pKQLfl10w8N6pyqsuFyWQqe6BNTU1x+PBhYqoZWUliMaw/zabyBXKyAquFpLSYSpKEyWSit9HB2ZmYbsmigYpKMFXAYRLxOwzlBTiVL3J+IclkKIPZIOCxGXFaDEyGMvgdJoqqRiCZp8dnp8dnY2UxgiAIPD0e5sxElFReL1RWo8Txzjo+cKKdpdUE0maXCbuWJRKJcOnSJSYiBV6Jmun2ObAZTJhMRuxmA+PBNOcXEtdcSEonsa1USK53RnIzDRvvvvvu64rovhJuiUJSKBQIBAK0tbWxa9euV/VlKSo6/TOUKrCn2cmuJud1nUgymQx9fX2YTCZOnTpVU3W/ll31wRPtxLIyPxhcIZwuYBAF9re4+P237ayaP1wJpWG73v+HQDSBz27E4dA9fJK5Ilaj3i+vRGXcLKyeBIHhxaRu/+E0sbvJiSQKHG6v43D7Zc3E3Nwcly5dYvfu3bS06Opnl8vFtm3byOfzhEIh/BOzDK7EIZvAarNiMVvQRAOSsHnaYDJXJF9Uq5T4oA+/47kiqXyxZiF5eSZKIle9qHfVWxkLpHlxIog/O1um91Y+2LORLJcCq868q+/tXi1er8zEuXd3wzqPsxJmwllca2jJZqOEomoEUxvHN4MeHSyKIg77aqCVX6d85gIJovE4Tz31FC6XS2eQpdMcOXKEuro6DDkZl9VIOC1X0cPD6QJeu0k3slyDoqoiCQK399SzEMszGc5jN0vkZAURuHu7G7dFnz8mc0W+cS7AeDCD2SiiqoAAvT4bjQ4jy8kCoiBwvNPNHT1eLEadMr+cVnlhLoLNLNHi1hfAWEbm+akonV4rJ7srN0d2fD4f27dvpzCyzPnzSxRyGWaiYQwGA3a7HYNmuqYWbwlbLfYXrm9GcjPtUW4mtnQhKTGCVlZWqKurY8+ePa/q/UaWk3z8H8+V888R4A3bfXzqpPuaCkk4HGZgYICWlpYqvcRGWDt/MRlE/u97evnA8TYmQ7qOZGej44qU3I3eV1VV0rEwvaYkIcFIXrBgUlSyBf2Uc+f2erZVaBc2moeE0wU+98QkQ0tJ8kUNkySwq8nBv3nTtvJuvJQhv7S0xJEjRzZsKZrNZlpbW/ngG5x87olJEtk8akEhkIiSyGvs9JnxkiCXs2x4mmx0mXGYJeJZuUxEAH0Q67WbqhhUaxFMFbAYpHUqfVVRGLg4zgeOtWyYN5/K68Vr7RzAbpKIZWVSeaVmIfHaTYRTqaq/U1QNELCbaj9WnfV62y6WlXFbjQiAZDAimqy8dX8Xt3c5OX/+PMlkEkEQeOlsP05PPR1Nfm7rcPHT0TAzEQWH2UAipwds3dHjrdqEDC8leWEqylIiR53FwPFOD+8/1srgYoK5SBaX1ci+Fie7Gh3l78T5pRiXAmm66y0YJREBgWReYTqc5SMn2/DaTRhEoUokq2ka80mFXFGlvYKE4LYZCacLXFpJbzjvEAQBX51+Qmv22UDTyGYzpNNpFgNhSAY5dy5eFkPOJVUGFxNE0jItdWYOtrnWWeGXNmtbrZD8S8gigS1USNY+5KW2UTwep7Ozs8yfv17kZYVf+/t+Ihm51HFBQx8OO0SZ9/Vc+bhXabm+e/du2to2ti+pRC2xY6PLck26kbUo+Y+dP3+ef/WWvfROy/x4eIVIWsZsFHnrngZ+/c7LwsyNigjA58/M8MpsnCaXGbvJQKagcG4+wV8/M8Pv3bcdRVGq7E422i1pmoaiaRhEkQOtLj52ZxffH1xmIZ7Da3NwZ6OFO5pFwoEVJscu4XA48Pv9+P3+sgtqc52FE10efjYSpFDU9DZTVkZWVe7Z5atSz69Fa52Fc3PxKjuYVDpNLJFgx+Emdu7cWIDZ4NSLVywjVzHAYqsxvW5b7cfjeKeb0ZUUwWSeeoeJoqIzoZpcZvY0Vy8EympLSBDQd+nbPDwzFiGUkjGIkC9q7Gh0cKTNycWLF9E0jaMnTvHMVJwXxoPE59NYBiNsd8jscziYzZmRZTPb6u2c6PZUtdHOLyT4+tlFskUFt8XIQizHTGSRt+7289bd6z3nSnb3Y6E8LosRi8mIpuqtT4dZZCleZDqUotNTv26R1j93YUNnAkkUyCvrv/fRjEy+qNLmttBcZ2EqnKHVbcFitZFUDLS2OLl/Zx1uMUsgEOCHr4wxGDciGcy4HVamwgaGl1K861BTFQPw54Xk9cWWKSSVKGVXWCwWTp8+TSAQIJlMvqr3fOJSiFCqUGbJAAjoffKfjCV4oG1zDUop2S8UCnH8+PEy4+dKuJ5I3CtBURTGxsbKPf+6ujp+pRXedbiF5UQOj81U1f6oNVRfjOc4N5/AZzeVd9E2k4TfYebCYpLx5Tih6YtVdieVKBRVfjQc4MlLYZL5Ir1+G2/b28ixTjeH2+uIpAuYDGKVTUehUCAUChEKhZidnaWoCfj8flob/bznUCMui4FnJyKk8voQ+007/dy9Y3OR6cluDy9Nx5gIZWh0mkmmUsyGkvQ0ubnvaG/N1zU4zRztcPPEpRAFRcVuMhDPyhQUlTdsr9+0eB3pqCOcLvDMeJiJYAZRgFa3lYcPNVcxyi6tpPjB0Arz0RwC0Om1cf++Brq8Ni4uJ8nJKj1+O3sarIwNn8dgMHD06FG+1r/MC5NR3FYjTT4PkYzMJUXlrV4Lu4QkgfAiDs2MOZUjHNbjX1Xg6bEQsqLSu2qi6cNEMJnn+ckoxzrdVae9ShhEAQ0BURBButwqEkQBaYOsFVmFTKFIo8PAdE7/LpRORbKiUlD0SOESYhmZn42GuLSSRlZ1C/1djQ4sRpH5mO635rEZeeMOH4fa9daer6mVJyIzuEnjFGUy6SgGVWUmZuYHao6PvqEH6+rptnTq30r6i58XktcRKysrDA4O0t7eXm5H3Aidx1I8hyjop5BKCOjpcIkNEuBKyOVy9Pf3A1zzoF8UdfZRLCNfVdbGlZDP53nyhbOMR4vkswInjdUthcqfcaWheiKrK7zXUmktRpFwOsfzZwc4tq1hw7mUpml8/swMj4+GMBskzAaRl6ZjjC6n+Tdv6uZgW12V2rkEk8mkO6BaPTwTcdA/G6EwEafNGuKIt0hPs5d9h71YXB4aPY4yZXUtiqpKKq9gM0q0eaw8crqd751f5uJciHwux6ntTbzvtq6qk4aialxYTDC0lKSoaPQ22Ll/rx+HWeLF6SjJfBGv3cRd2+u5s7daz7MQy/HyTJSleA6fw8TRDjf37mngWKeb+WgWk0Fkm89WVXwW4zn+7sV5opkCjS4zmgbDy0kimQK/8YbusmdXKeTM6XSyb98+ZqM5zs8naa6zlN1366xGJkMZxlIG3vKGI2iqWo58HRoaolgsItndTC1r+OqqWT/1DhMTIT2RsVYh2dvs5FIgRU5WsBj1NmEoVcBlMbKzuW5VXKkSSuV5ZjzMxaUU4WiMdreRJpeN6XAam1lv1aXzRbb77exZpRXLisq3zi1zcTlFo9OM06C7FZyZjPKuQ03cs9OHrKg0OM1VbcblRJ54rkhXg2e10Gnk83lMsRRTgTg/ffp5mtx26uvry+4RW6mQXM+wPZ1O4/VenZZsK2FLFZKxsbGyQrqSRnsjCsmORgfqZSJRGTpFU8Jh2PjUEIvF6O/vx+fzXbPwcTyQ4s9/OsXZGQXL4AscaKnj/7q7m11N16fsjcfj/I8fnuWpJYGCZiCXFznz9/189I4u7ttbLayrdO4FNnzIWtxmnBZ9F95QsegHExm0fIZD27vYvaN7w4dzIpTh+akoXrupfOLw2o1MhzN89/wKB1pdNR/qYCrPXzw+WRb8SUYj42kZOWNih9VOLBwgPjnGvN1eboGVBtCqpvHMWJifjYaIpAs4zAbu6vVyz8563tqYYZdY5MD+Q3Q2uKt+vqpp/NPZBZ64FKawSmF9cizMoTYXv3Z7J2/a6S877K4lPYyupPjS83MEk3nMRj0X5IWpGB841sqxTjf1NYSRfbMxnTXXcJkEYDdLjAfSDMzHefMuP8lkkr6+PhobG9m5c2d5Ac/KCm3u6kLssRlZSRbIFvTZTWWWeCqVYnYxQD67yHQ8RsppWg1asqNJBoyigGWDE1ahqCKKcLijjolwmgsLSd2CRtNPp2/cUV/2gsvKKt8YCHApkMKk5Mjn80wmzbRIRU531TEfy4MAt3fXcaitrjxfmgpnmQimq2IEbCbde61vLs4vn9zY3VYSBSRBQFE13aUZAYvZgsMpYbI5uf1kC8VMgnA4zMLCAqqq8crAII3+ehr9vtc0LXEjXK8g8ecnkleByclJlpaWOHXq1LobeSNy2091e9nZ6GA8mEbRtNXcbUCADx5tRNRW1r2mZAS5fft2Ojs7r2m3sxzP8W+/PshyIoek/xhemI4w9vUUf/2hQ7R7r42ZsbKywj8/c57Hl0wYDAaabEZisSyJrMx/f3KSrnpbuUBVzkNKPfCN4LLoeRr/+5UFluI57GaJaDJDKpvnXYebObBzW83rmQ5nyBYUGisKkCAIuG16MckUag+qz0xEmI1m2ea3le3j3TYj06EMC0oT9x/vQZblcgusr68PURTx+XyMpMx8fzSJJOreUrGszFdfXmBwdII3dRi5767bNlxARpZTPDUWps56OYUxJyv0z8V5YSrKm3b6NgznUjVtlWGXZ/tqQdA0jdlolu8NLrOvxblhXgzop2CLofoUKAoCkigQSOaJRCKcO3eOrq6uKqNRu1nCIAmrqZkVEQAFBZd1faETBAGn08nenU7uydl4YiSIxaIhF3LMLSwRyEKv34apEEeWjRiN+mf09Fh4leorcrSjjgf3NXGwta58wurx2emqv3ziHVpKMhlK45VyZHNpdne3YDSYuBRIYTYa+LXbG8saFuBy1kqmgKJp62MErAaCqcI6V+gSWlfnKPOxLN1eG6IoICsqK8k8xzvrqHdawWmlsbGRF8cW+clL4ygRGS5O02Ya5XCbnSa/j/r6+vJG5LVC6Rm8nhPJrZaOCFuokHR2dtLS0rJhFO5mpo1XC1EU+NtfOszvfXuYZ8bDaOjU0kdOdfCRY35eeXmp/G9VVWV0dJTFxcXrNoL87vllAskC9XYjuYxuxmc1SYRTMt8aWOJfv6nnqt5H0zQmJyeZnJxkUfShkKbZaQFNQxSgwWliMZ7n8ZEgu5qcNYfqtfDeIy1YjRKPDq2wHElgpMgjt3fzCyc6N32dzSiBoLeLDBU5FAVFw26SMG5CZZ4IpjEZxKoMEoOoL7DTYd123Gg00tzcXPa0isViLK4E+cG5BeLZIq1uC5Jiod5iJBVPMhQx8Mhb9tfchY6upMjJKu3ey98vi1HCKAkMzMd5007fhq9bSeSZjWZpdFouz9YEgWaXhYV4jplItqYSu95hIl/UqkgAmqahqBqinGFgQHdnaG1tRVE15iJ6XklLnYUOr5XJYIZOjwWTQSSWLZIqKLx5t79q0Z2NZDk7GyOQzNPgNLOz0U40LTO6kkIWJASnnX2NIne2CMzOTHNxeIicwckTSyJZzYDfaSWZL/LdVXLEh29rq+nuvBTPkUgkMBllWltbMBn1e201SSwk5HL7q/I7qKoq1tWZS64gYzbq2ypBEEjli3R4rOuKSE5WSOUVnBYD9+7x853zy4yH0uV72OO3cVfv5WdyaCnJdy9ECOYEdja6ycoKM9kCroKRumyWc+fObZpIeDNQ6gRcayH5Of33VWKjAlLCjfLC8jnM/PUvHmYlkSeSLtDhtWI3G0in0+X3XxuMdb0f6shyEkEAUdADptD03ago6PTMq4GiKFy4cIFoNMptt93Gj34yc9mLqLwG6w9lMFW45iICevvg/t1e/NlZUm1GTh09htN+ZfPLA20umlwW5mM52j1WJFEgUyiSyhW5b4+/5mwD9H5/cQNGj6JqG1qfiKKI1+slK9ow2HN0ewQEpUAmk6FQKGAVReKqwMRShAZXy8ZZ2DWuRRd21mbslSxR1v4LDf1Uuxlr+0i7m5emYsxGsjTVWdA03freKsgY42H2Hd1HQ0MD0+EM3+xfYiaip1rW2/UZjKDBTDRLUdFwmA28YUc9d1YsoBcWE/zjywtEMwXMBomB+Tgvz5h439EW7ujxEl5t/W1vsJdPA7lcji89O04wEaXeKJMpxrHZbPjMFgYXEowHMuzawDJFVVXCywvk8wXautqqsn4KRY066+WUTbi8gKqqyvZGka76OJPBDM0uEyaDQDRTRFE1jrRfLlqyovLcZJSXZmKk8zrF+URXHR863spUOEMmr+C2GdneYC/b5quaxvOTUQqKQrNd1OeEGLGaJGZSCm852MuePXtIJBLlmNuSeLZEL66Vn/5qcL2FJJVK/fxEcrNQKiRr0/6uF2szP0oU3UQiQX9/Py6X65qCsTZCvd20miCn/3m1i4aqsWmqXwmlAb8gCJw6dQqz2Uyv38HZ2Uqaq7C6A4RtPtsVi0g0U+BHQ0Femo4iiQKntnm5s8vOpaHzOJ1Obju+76q/+A6zgY/e3sH/emaG2UgG0HMubut2844DTZu+9ninm2cnIqwkdAEk6Dt/h9nAsRoGgqC3fMwGEVkDm8GALMu4XC4KqkA6mWN28hKF5TF8Ph9+vx+v11veoPT67ZgMIslcsayFyBdV8rJaM6gKwO800e2zcWEhgcNsR1xtbS3G87TUmelc06IsKCrhVAGrUaKr3sb7j7XygwsrLMV11paDPLsdKe45pXt9JXIyX35hjoVYTj9liQLBZJ7HLwV55GQHdrNEpqDQ4DTT5DKXP1dZUfnhhRVSq4PtUsttOpLlx8MB/u09PRta41gsFsKyiY5mPw0OI7lcjkwmQyYRZSlR5Ex/Gvu+Fnw+X9lNW1EUzp8/T4OpQHdrA0tJmZY6CUGAYFLPdl8b2rUUzzGynCJX1Nuf7zjQzM9GgkyFM+TTCnVWA3f2VMcNP34pws9GQjgtBlwWA8lcke8PBigqWs0TYzqvEEgVqLNIFNOXv/N1FgPBZJ5QqkCTS7fEr6urK4tnw+FwOW9FFMVyUan8zrwaVBJcrgU/N228iSgt6IqivKrFvRZKi+eLL75Id3c3PT09r7pg3bu3gR8NB4hlZSQNNE0lkVMwSgL3b5DnUYlS0qPX661KVXzbvkYeGw0yH8vitprIKZCM52lxW3njdi+aptUsIrGszH/4wSVGVlKYJF3NPrgQ4wcvFvjUG1rYu2u9YG8tUvkis5Hs6iJp5WBbHX/yzt30z8VJ5RXaPRb2tbhqxuaWcKDVxXsON/O98ytMhTKAbsfxrkPN7Gio/RC5rUaOdtTxg3MLWNUszX4PgtHMSjTH4Z4m3nvPNpKrtu4TExMMDg7i8Xjw+Xx01/u4fZuXZybCBJIFRAGKisa+Vientq0XWMazMllZod5u4qEDTYRTBcYDaSRJQFE06h0m3nmwuTyv0DSN56ei/PRikGCqgEkSONjm4qEDzfzWW3qYjWSZmpzEkMtw4tjx8hxwcCHJQizHNt/leVGbx8pEMM3LszE+evvGLcbFeI6leJ5Gp7mq5dboNLOUyLMYz60rciW4LAai2SyCaMZqs2G12XArKilDAp/HwsrKCqOjo9hsNrxeL+FIBEmSuPeO47QspXl0OMBkKIOGhttq5P59DVXtvb7ZGN8+t0w0I+unNlFgZ6ODDxxrISPrxdvvNGEziuXNTyIr8/J0FKdZwu/QHQPsJjOBVIGXZmKc6HJv6GxgNoirzs4Kxorvb0HRnYatFZk1RVVjLJBmJpJFFIx0N27j9j17SK6eVqanpxkeHsblcpULi8PhuK61oDRov5bXljzZfn4ieRXY7IaXFtKbUUhK6nngqkWGV4NjnR4+flcXn392hngO8mkZq8nAL59s5/S22vS+5eVlBgcH6enpobu7mjHVWW/jD9++iy88N8NYIIWqCRxpc/Cxu7bR6DJvuvt5bCTIyEqKljozRkkkl8sRLeRZyJtZFrzsu4JD8PcGV/jOuWViWRmDKLC9wc6v39FFh9fK3Ts23i1WIpUv6nYeNhNOi4EH9jdxvNPDyEoKUYBdTY6avlaV13HQmWHQnCMsuFhMaxilPHuaHXzktnakiizstq5tPDcW4IX5EPL8Eg3iGN0eK45OF4s5I5LJxJ5mF8c73VWkgFhW5tvnluifjVNQdEfae3c38Mm7uxmYT7CSyOOxGTjc4aal7jINvG8uzldenEcF6u1G8kWVJ0bDRNIy/+rODjJLEzjUNIdvO1GVmxPL6kmRa4uvzSSxkqhttSIKAoJwWe9ReY9EqHIpXoujHW7GQxliGZk6q57xMhvL0ey28YaD23BbjciyzPjsEt95eYKJuIogiLwc7OdNu5v42Ok2FhIymgYdXus6MecPLgTIF9UyW60UivbsRIQH9q83NQVIJWUyskaTS38vTdXQ0HCaRAKpApFUYcNCYjKIHGpz8e2+GLbVW5EvqsxGsmzzWcsW+LKi8p3zK7wyE0dWVH1GahQ5vc3L/Xv9eDweent7yeVy5dPKzMwMkiRVnVaudv25Xkv7n89IbiJKlb1YLF6zLfNmKCnDS2LHG83f/tCJdt68y8/ffPdpduzo4o4dTbS4N9agVLoIHzx4kIaG9SpkgP2tLj7znn0Eknmee+4MPS0GGi3qFXc+Z2fjGEQBoySSTqfJ5fP43HUsJmUGFxK8eZe/5mufHgvzdy/MIYkCDQ4zBUXl/EKC//rYOP/pod2bWoIUiirf7F/kiUth0gUFm0nkDdt9vPdI8xVjhQuKypnxCC9OR0nni3hJsMNe4I/ee5zljN4CctuM7Gi0Y6goorGszF8+NcXQUgpV00Az4rT4uL/BwS5HHl9oBVVVqc/7SERkTD4fRqORoqryhedm6Z+NU2834bJILMbyfPnFOX7tdAdv2b3xPdI0jScvhZBVrRynazfr7rzDS0m+90wfnU6BY8eOrRvyelcZZEVFrcrqSOUV9rXU1is115lp91gZD6bZ5pMQV6nRS4k8vX57VZEDfZaQziuYDSLHu9wsJ3K8NKMP6UVBoMFp4uFDzWUH4Xgmz9+emWYpY6C1wYtSlHl5Oct0ZIY3NFyiyevC5/NhUHxo2mXPsclgmnA6T3f9ZcqzySDisRo5N5/g3j0NGzK0nBYTVpNEXgGLSQJNv69ZuYjZIGKW9MhjQRBIFVTOLySZieawmSS2+20caDQzuJBnLJBCEgW6fVbecaCx/LOGlpK8NBOj0WkqF6R4VubMRIRev618orJYLOts8cPhMJOTkwwNDVFXV4fP56vSrmyE62Fswc9ZWzcdN4K5VYl0Ok1/fz9ms5lTp07x1FNP3ZTc9kaXhdsaBU7t8eFwbLwwlGxIYrFYTRfhtai3GTh5cA/Ly8v09fUhSVLVbGDtl9hsEFE1jUQigaIouOvcSJIIyBs+2JV4dDiAqkHrqqWLySBiNojMhLOcnYnXtIYH+Ke+Rb41sITDLOG2Gkjni3xrYIlCUeVXTtfOP1BUjS8+N8uTl8KARi6TJq/AQls9xzUj2xvMbK/RBvvxcIDzC0k6vXpuh7a6wP50KsPtb99ZHr4Gg0Gmp6cZGhrC7XYTE5wMzqdo9VjLxdFhNjAVzvD4pRDHOt0bLhyyorEUz+OyVj9OJhEisTgJn5WjR49uuLAcaHXRVW9lMpShyWXGIIkEknkcZmndyVXTNIKpgq76d5h5YH8TX3lpnrFAGknU9RZNLgsP7G+qOuGcm4/zxKUQS/E8ZoPIiS5dTHm8y8NiLIfJILK9wV5eYDOZDN988iyBvIGD2xowGSTASrPXyUQwjbXdT6tbJRQKMT09Xf7u+Xw+CrKEpq0nIUii/pmuNZ5VNY2srOCxGdnb4uS5SX1+5zBLpPIK4UyR23s8NNTZ9IF/Ks9XXllkKpTFaBBQNHhpOsphn8iDvRb8Ha1YjRLd9dVssJHldPnzLKHOqutyJkKZDZl3JZKH1+tl+/btZLPZ8mllcnISo9FYLioej6fq870eDUmhUECW5Z8XkleDK+2ob2QcbjAY5Ny5c7S1tbFjxw5EUbzhue2V2Oy9c7lcWSdRGqpXYiWRJ5op0OaxYjdJVUJDv99PQ0MDqqoSjUYJBoOMjIwgyzL19fX4/X58Pl2YdazNwdMjSxhNIo1efUGMZ2VMkr6w1IKqaSwn8us0FqWHVE8t3BjRTIEnLoVwWQxlgoHNJCGKBZ4dD/OOA001iQcjyymenYjgtooU0gnqHAacdW6mwxl+ejHIh05s3IJUNY0Xp6K4LIZyboew6jw8GcowtJjkjTt95eFrqZ0RDAY5d2GJcDSFtZiiYLVgtVoxm8zUWQwsxfPki+qGmhGjpM949Jhj/e9kWWZxeQWjwcih3dtr7k7tZgMfOdnBd84tMRZIo2hFWuos3LunoYo9FcvKfLNvkcHFJPmigsti5K7t9Xz8rk4uLCYJpwvU200cbHNVtQjPLyT4uxfnyckKXpuJrKzw3fMrBJIFfvlUO+2eaoZeKpXi7NmzZCUndU7DahHRYRAFTJLIfELmLXs7qnbtwWCQ8fFxlmJZ8ikzM2qe1nonRqMJVdMIp2Vu7/FUzZRenonx7ESEcKqAy6qHmB3tqGN0OcVyIo/dJHGi2839exvLLaWX58JMR/Js89kwSAKaBqF0nhfmUryzx8S+JvuG2qmiqm7IsBPYOJNFXaVpG8TLQl6r1UpbWxttbW0oilI+rYyNjZHL5fB4POU2WLFYvC4NCfBzQeLNxI0QJWqaxvT0NOPj4+zdu7dshV56/5tVSGr5bcXjcfr6+qivr2ffvn1VX/5IusBnn5jghakoclHDaZF4+GAT7z/WotOIKwZ5layTnTt3kkqlCAaDzM3NMTw8jN1ux5jOcqTJwkhcYnY1rMhsELlvr39TppQoCLTUWbi4nKxScMur9F3/Jgy0YLJAOq/Q4Kz+N67VhTmQzNcsJKOBFNm8jDGfwWq1lgVlDrOB/rn4poWkqGpIaxaN0h+VDbIYLBYL7e3tHNKcPBOYxGYFRS4QDodBg7hioNVjB7UIrF8cBEHgjh4v//DSvH6aMGgsBUKkVBN7O3zsq9BlaJrGQizHWCCNKArsbnLQ6rbwr+7qYiWZR1Y0Gl3mKvq0qml85aV5XpmJ0eg047EZiWZkvj2wjNkg1mxLaprGk2MhcgWFbWWDQyN2U5HzCwmmwxm2+S6f6kokj/b2diJJG5cuBte9Z1GtdksWRRGPx6NTs71t9EoKuQtzPH4pymI4jsUgoRnMdNQ7uKPihPXcZJRv9C+CtipMTBb47vkV7t/bwMfv6iaR040zK1t0mqZxYSmJ22bEbDKW/85lhIlElgR1Vc+wKIrl//X67QzMJ8gX1fIGI1NQEAWhyhMsX1R5fjLCK3MJsgWFTq+V27d51kVEV85OQD/FlU4rExMTSJJuMxMOh3G73VdVVFKrbtI/n5G8SlxNSuL1ojJdsWR0eCPffzNsVEiWlpa4cOECvb29Vapm0HdI/+EHo5ydja6mKkqk8kW++PwcRkngfcdqEwJKKmen08m2bduYn59nZGQEh83GWxqz7HKZCKo2nA4HJ3sbONKxcbumEvfuaeBSIMVSPIfXbkRWNAIpPeBosyLksRmxGEQyBaX88IL+AJuN0qbeY5lUklQ6TXODo4o5o6japq24kgPxz0ZC1DtM5aFzNCtjN0n0bpIZv7fZSVe9jclQhjZ3HXV1bgLxLGoqyzZrlmefeabcI/f5fKxkBWLZIj6Hidt7vMRzRX5yYZGhxRguu52jXfV84Hhr2X9L1TS+c26Zx0aDpHIKCDpN9aGDzbxxR/267JgSpkIZhpeStLot5dZMk8vMQizL0+Nh7tpev6FuJyurLMZy6+6zwyyxlMixnMiXC0kkEmFgYIDe3l46OjpQAynOTET0jJrVYh9K61Tf/RVU32Aqzzf7lrgUSCErup7kru1+Ptndyvn5OMvRJB4pT5MY4dJAkJDXi8vt5WcX9VlGyQ7eY4PAqrnk6R4vrTVmiTr9+vKf8/k8KytBHHYbjQ0NmEymMhNsJZFjPJhB0TSanBZ2Nti4uJLGYpBQ0VZ1LHXlk5+qaXz73DLPT0Wxm3Sqef9cnMlQhg+faF1XTCqh29HYaG9vR1EUxsfHCYVCjI6OUigUqk4rlWSLSpSov1vJwfhqsaUKyWZ4NTOSyvbR6dOnNxzY34jc9mimQCQt65bsFb3YyvfWNI3x8XGmp6drDtXPLyQYXIjjtZlWWykaJslEKF3gO+dXePhwy6aCv9LPmZ6eZmpqigMHDtDQ0ICiKITDYYLBIMHgEsmpJYaS+lylvr6+JiPlrl4vyVyRb59bIpQqYJAEDrfV8dE7Oje0FSnB7zRzosvNz0aCiILen04XFIKpAm/YXr9uIFzC3NwcUnweX52dLCZKB/2srGdfbETXrcR9exoYWU4xHkxjM0nIioaAwL17/VW7T9ADtcaDaUQBtjc4+NXbO/m7F+aYjmQoFDVcFgPvOd7Jw4eaKa46F0/Or/AXj0+ykJVQBQMum5kjXfXc321C9Uap29dNe3Mj3fW2qlnFwFycR4cC2EwSPX4zGnrr8p/7F+n0WmsuVNGMTE5W17GWnBYDiWyRdL6IaQMzRpNBwGYyEM/IVX8vqxqSIGBf/eyCwSB95wYp1LXz+AKIi3PsanLwll0+nhwLMxbUWy5Os4F79zSUM95lReUfXpzn4nKS5jorFoNIOF3gu+eW+eCJNj5y6jJ1ueQHFgqFuDizyNhMWj9ZaTasVhsWsxmvzchsNEsgkS8P/UFf4KMZnS14oNXFo0MBfA6VYiHP8vIymrWOJpuNngY7kiQhiiLPTUb5weAy0Uxh1TdM5Eibi4f2+ZkIZZEkgd1NTg611ZU3JnPRHAPzCZpc5rJZZr3dyHgww5nJKNt8tYfrlZAkqXyK3rdvX/m0EgwGGRsbw2q1louK2+2+zFxLpW5qXjvA//gf/4M/+7M/Y3l5mYMHD/K5z32OEydOvOr3vWUKyfWeGKLRKP39/TQ0NLBnz56a1b5WbsjVIJkr8pnHxnliJEhB0XCYJd57pJVfub1TN55bfe+SsGuzaF6AhVgWWdFWd/FaObXWZtKzM2KZapPFtVBVlSdeHuTZiSiO+hZSyyp3OfUgpUqjv3g8XqW58Hq9ZZPESodjQRB4YH8jb9xZz1wkh8Uo0um1XtUX/sO3tVNQVM7Oxomks1hNErf3eHnk1PpBe6nILiwscN/pw9hnc3zr3DLjwYweACUKHO1wc88G4rScrJAu6EK3No+V33xzD0+PhxldTuG0GLity8Nt3Z6qa37yUohv9i8RTuvxAo1OMx841sq/v7eXiaDuJdbqtpRdjA2rjJ5vjRdYQaPJKyAqBaKpFD/qT7Iwo/Krpzvo6mrb0ILj7FwcWVXxOfRiJqCfLMaDac4txGsWErfNiNkoks4XqzYoyZw+pK7FmjOIIie73HxzYKlM9ZUVjZlIhg6vlZ2NDpaWljh3YZihYiMjo2kQMqBpPDsR4dQ2D7/xhi5mInortNtno7lCFHlpJc14MEOn11aeHTXXWZiJZDgzEeFkt6d8Iqw8KbsbW3k6MkaxkKcoF1hJrPrcGS2oghGjcPnIMbKc4sfDAeaiWUQRuutttLktXFqKEY/HsTuc1Jut3LPLXz7RzcdyfPf8Mhqwo1F/xqIZmRdnE/zisRY+fMJzufOhFikW9fbXciJHbo1ZpiAIeO1GZiL6M2la9T7LyQrDyykCyTw2k4E9TY6qNm2JtSUIAna7HbvdTkdHB8VikWg0SigUYnh4GEVR8Hg8nD17FofDcVPbWl/72tf41Kc+xV/91V9x22238Rd/8Rfce++9jI6O1mSJXi22VCG5UmvrWmckc3NzjIyMsHPnTtrb26+oVbmeQqVpGn/wvYucGQ9jMoqYjSLJfJHPn5lBEODX7uhCFHXdxosvvljOnN/M68fnMCGJAgVFxSSJZXV8TlbKqt9aKBQK/P3PzvKN0TyyaEIIRvjxaJTvnl/mD9++szxcFQShrLnYvn07mUyGYDDIysoKL5wfZTZvwWh1sL/Dz+07mzAZJOwmw4b2GZVQVI3ZSBYNjQ6vFafFwL954zbmojmCqTz1dtOGRUhRFJ7vG2QykODQvr3Uud086IbdzU7OzSfIFVW2+Wwc7airsmrPyQrfOb/M02NhsgUVn9PI/XsauXtHPe872lrzOoeXkvz9i/Momka7ZzXnPZ7nb5+b5fdcO2r6Zy3Gc1xYTNLksqy6HmuIYhxZzbBYsDKzEmV2dhaXy1Vm0ZVac8lsEeOajYwg6K622ULtTcw2n43dTU76ZmM0uszYjNLqKUXhru1NVSaOk6E0z05EmI1k8TtMHOtwc1evl7OzcQKpPAZRKCvug8uLjI2NodZvY2Q4QWudpRx1nMoXeWEqysFWF7f3bEyLj2dlFHU9AcFpNhBJ6wFW1jX/TdM0PDYTB9rqeGY8gtfjwOeXiKezTAaStFkzjJ17kZC7jrypjm+P5UgWNBocJhRVo282TqNNYJc5jm13E00+L7ubnfRUJIFeXE6SyBWrXJe9dhPRjMzQSprbenzljV3JG6xYLCJp+v+XFQ2jdJkAlJdV3DZT+XQZy8j8/UsLXAqk9agGwGc38gtHW9jbrBeuWvRfg8FQ3qyVBIjLy8t88Ytf5Pz589jtdn7nd36Ht73tbZw+ffqGqOxL+MxnPsNHP/pRHnnkEQD+6q/+ih/84Ad84Qtf4Hd+53de1XtvqUKyGa6ltaWqKiMjIywtLXH06NGr0odcbyEZXUnx0lQUq0kqP4Rmg0g8K/P1vkU+eOJyz7SpqWnTUxGsiu5anWzzWRldSeO16W6vqXyRgqLxtr0NNd1m0+k0Z17u43sTGprRTLtLNxosqhrT4QxffG6WP3j7xmmBNpuNzs5OJnN2vjkwTSSdQynG+faFCL3PXeLjtzXQ0dKI1+utef3nFxL83QtzzESygEab28qHb2vjSIebDu9lcdha5PIFPvv9l3lxqQhGK48uz9LrD/Prd3ayvcHB9oaNF3VN0/ji87M8NhrCYTJgNYnMR3N8/swMKhr37KytjXluMkK6UKw6BXR4LIwHM7w0Ha15rYlckbys6sQDTSMajZIv5GlrrCeSVenZvZ1Wp6HsXDw9PV2miTZaJAZkBUXVyouSrKggsO7nZQoKoysp8kWV7nobHz7RhtkgMrSYJJaRcVmMPHSwqSr068Jigs+fmSWaKWAzGZgIpumfS/DeI8186h4fS/EcNpPuvbUwN8P49DRHjhzh6xfiCALl7y/obcilRJ6RlRRHOtwb3gu3zYhBFMjKSlXBSOSKdNZbq+ZiQ4tJnhkPMxPVC9zBVhcHW52MrqQpKCoGUeRYTyMfONaKw6BTi//3KwtMLWZocwgUJTtWq5UmG1ycD3P69k7ednRj49N8UY8JWLtZMRlE0vnL1iWl73FeLpLJyWzz22l0mZkNZ2j3WjCIAqm8QjKvcM+uy44NPxsNcXE5SXe9DdMqrX42kuVb55bprrdhM0lXJUgUBAGHw0Fvby9PP/00X/7yl/nc5z5HIBDgfe97H9lslqGhoRsiki4UCpw9e5bf/d3fLf+dKIq8+c1v5vnnn3/V73/LFJKrXegLhQL9/f0Ui0VOnz5dc7B1ve+/FlPhDHlFxbEuHEoimStyfnyWZDKJ3+9n7969m56KytbTAvz+fdv5s59NMrqSIp4rYjVKvGN/I794YuPshpIleVT0kSVV5VZrEAXqrEYG5hNEM4Wa4UaBZJ6/OTNDRlbo9um76IysMB3L8vh0ltviFzekFgPMR7N85rEJIulCmX46Gcrw549P8h8e2FUW6q1FNpvlrx99hafmNTwuBx6biYKiZ3T/t8cn+fQ7dtUsnLPRLC9Mxai3m8o9dZfFyHw0y6MXAtzVW19zMB9MFTa0Y5dEgWhW3vA1oKcq2s0SsUwBMZ9CURQa/A0E00VcFgN+hxmz2VAlaotEIoRCIdz5ZYz5IuemUvicFgwmE8m8yp5mJ0faL5M/Liwm+PsX51lK5FBVndV0z04fv3q6nVBKJpkv0uA0VRlcKqrG9wdXiOdkev2Xd+KL8RyPDgc43uWmzeOpah8ePXoUl8sFxGv+vhshJyvkiyo9fhs7Gh1cWEzS6DLrViVp/d7d0VNfbmu9MhPj71+cIyMruMwGLq2kGQukeHB/E/fsaiCS1um/vX57+fNqb29HvZijo9mO16x/T8KhEIqqIkq6j1Y2m93w+W6tsyCKQjmkq3R/MgWlimxRVFWeuhTmzEREDzWzmdjeoH/vZ6N5NE1vL5/ocHKszYEsy+QVjfMLCbx2U/n7IwoCbW4LM1E9d2V/q+u6XDhUVaWtrY0vfvGLqKrKuXPnaG2tfaq+FoRCIRRFobGx2p6psbGRkZGRV/3+W6qQXKn1VCjU1iwAJBIJ+vr6cLvdHD169Jo+yOsdtvsdJoyiUNU/BZCLKiIKKzMTNHndeDyeKxaRyjjcjno7/+0X9jGynCKWlemqt9UcTs/PzzM6OsquXbsgZUY7N7aOMy8KArKqIiu1nW5fnokRy8i0eS4XIZtRwm4xMhw38KkHbiedTldRi+vq6vD7/TwxrxBKFeiqaFu1eyxMR7I8cSlEt2/9TKREN70QN2O3G2lw6r+fURJpc4tMhTMMzCc42b3xcH0hliNdKNLorC5SdVYjoVSB6CazpE6vlYE1Oe+KqqGqWs37DLoZ56muOr7x8jQWSaDZ72Elpfty3bunuWwICZAuFDk7E2cxnsdmcnP4cAe79mT5Xv885xbi5NJJ9vpNvLXNgZLPoJmcRDMyX3hulnBaLrsqR9IFvje4QqPTzB299TSy/ncKpQrMRbM0OMxV37MGp5nZSIbpcJb9LQZGRkYIBoMcP368bA64p9nJS9MxsgWlqrUliQK7Klp8qXyRRy8EeGkmSr6o0u6xcrLbg91k0NtJWT0F9I07GsvapKKq8pOLAQrFy/G/oKcfPnkpzOkeb01hab3dxHQ4g9VtR1FVkqkUXo+HeLRAIZ3gzJkz2Gw2/H4/bo+XmGpCVvTv3d5mB+cXkjjNBkRRb0d11ds4UfFd+uGFAD+8sILVKJWZbPOxLA/sa6S5zkJWVmh0mmitM63qTVQKchG5qGAQhXLej65bEVA1ncgA1x+zW/pMRFHk8OHD1/T61xNbqpBsBoPBQDabrfnfS3Tabdu2sW3btmtmPlzvieRwu5sev53RFX2oa5QEcgWFTF7mZCPcc+dJJicnN33vWvbvoiCwp7m2ylXTNMbGxlhcXOTw4cO6F1Aij9NiIJqRy7oPTdOIZ2X2tTg31X3kZL3NsvbOGVd3dypUUYtzuRyhUIhgMMjZkSi5rEA6rWI2mzEaddsMoyQwF13/uQWDQQYHB2nr7EaejWFf88yZDCKaputpasFlMWCSxHVCwVxRwWIUsZtrP8h39tbz3ESUyVAGv0N3ag4mC7S5rRsWrnhWplBUsYoKHcV53tRlYSpnI1NQcVkNPHSgkXv3Xh5YhtMFPvfkFJdWUqirdh8/HDLyS7e183+/7SCKqiHLBSKrcbmvvPIKBoOByYKDhYjMjibXqvOAHn+Qymc4Mxnhjgob+UoYpMtpgpVQVE0P0xI0Lly4QCKR4Pjx40QLAv3jYQySyI4GG0c76+ibjaFpeqStJAic3OZh/6oGRlE1vvT8LC9Nx6izGjEbRC4uJ5mNZPnYnZ08eKCx7FJcyeQLpQosJ9brhfwOE1ORLPPRbBVDqxLHO92cX0gwuRxFzCfx+nyEstDZYOXhN/RQZxaIRCIMTi3z2WfmCWRANBjxOS28cXcjD+5v4Nx8AlnVON7p5s7e+vIzEc0UODMRoc5iKJMp6qxGFmI5XpyO8e/v7V0331FVFY/BwDafjYH5JG6rofysBtMyLrNEW53+Xlstr93n8yFJEisr1QF+KysrVWm014tbppDUWuhLi+ns7OymHlVX8/6yXLulUfN1osB/eucefu/bw0wE0yQUFUFTOOA38On3n8DhsG3KCCudQq4lQwR0n7ALFy6QTqerdpeNLjPvOtTMP768wEIsi3F1oXVbDXz4ts0JBzsa7JgkkXRBKVNNNU0jkVO4a7u7ys8KdCFfSel7LDvN+CsLKKpCPK63SoxGI9m8QOMaQeLc3BxjY2Ps3buXhoYGms5fZDyUwVNxsMjJCqLIpuy0XU0Oun02RpdTtLotmA0iqbxCIlvkHQebNvUAa/dY+Y27u/jn/iWmwjor7Finm/ceaakSXgaTeb7et0j/fIJCoYi5mOD+XV4++cABckWVZE5vaa1tv31vcJnhpSRdXttqUdSYj+X46ssL7Gl24rYakcxmWlpa9Az7VXeC4ZdnyWazLC+lMVvMWCwWrBYrFuPlttFG8NqM7Gxy8NJUFIdZwiDpvfuFWJbWOguZpUmKhRxHjh7lBxcjPDYSIpkrIgj6ov7uw80caqtjZDlZ3sAcbHOVW02jKynOLehalhJzrM5qYDKU4fHREJ+8e+NIZotBwiiJFNbkzxQUFaMoVBEnSn+/GMthEAX2tTi5s9XIDweDCFYXahZa3Bbedai5XJgc7nqeC8fIGD1saxEpFvKsxNN89dlLPLDdxi/saMDn861LSFxJFEjminR4qk+fHpuRcFomki7Q6q5um5XmKm/d28RCQmYyksduEsnJ+kzmrbu8uC0isixTLBaveTObSqVuWiExmUwcPXqUxx57jHe+852AvvY89thjfOITn3jV739LFxJZljl//jzpdJqTJ0++qg9BkiRyudx1vbbDa+PLv3yUZy/O8/KFS+xpq+e+UwfLw7yNBImappVPIqAfiZdjWRxmwxXzSnK5HAMDAxgMBk6cOLGO2fHB4620e6z8dCRIMJVnu9/BA/sbazKRStjboluqPzUWIZkrYpREUgUFn8PEuw41b/rau3c28NilCPFckYY6B8VikeVEFqNWxBadoK8vit/vJ5VKsbKywpEjeh4HwH17G/jLp6dZjOfw2IwUiiqhdIG9zU4OtG2c1gc6vfXjd3bxP5+eZiqUoahqWI0id/TW8+7D1ddbKOpGk6WfcaS9jt1NTn7vPoduKy+Cz26qevizssJnn5ji4koSl0kgl04SF0z8YEZjZ2+KPc3OdbtWgHxR4ZXpOJ6KWFxh1SFgJpJheDHJ6TVMqJI7wZFdIs8tT+F2GFCLBbKZDLFojGBBorPTRTwer1oUC0WVVF7PWHnnwWaCyQLTkUxZtOd3GDloT6ApumnkK3NJfjC4gt1soMdvQ9X0FuH/fmWR37tve8024lIih6yoVfRjQdBnbzPhLEVVw7jWTgB9IL+32cmzExHsJt22pqjqRbXXb6fbd3mx7puN8d3zKywncoiCQL1JYY8lxh89tJ+4asYgCvT4bVXF58JiUo9trrfqppd2Kz6Pm/Fgitm8SCqVKrv4VnrR2c0SJoNIVlZxVszRsrKC2ShsugnZ5rPz63d08sJUlKlQBrfNyJF2nTygqSrpdJp0Oo3BYChnrVxugdUm2mQymZuaRfKpT32Kj3zkIxw7dowTJ07wF3/xF6TT6TKL69VgSxWSzSq4wWCoov+mUin6+/ux2WycOnXqVdPkXq2yfWV5icLiCO+5bX2++9r5S6mAlIrJdwZX+OrLi0QzBaRV7v8n3ti9oa16IpFgYGCA+vp6du/eveEXUxAE7tpev6mZ4kYQBYF/88Zt9PodPD4aJJlXuK3bw0MHmjYMSapEV72Nf313N198YY6VeB4N6PK7+MUT7RxqMhMIBJiYmECWZex2O+FwGFEUcTqdvGF7PVlZ4XvnV4hkChglUdeanGxfJ7zUNI1YVtbpy1Yj7R4rf/zAToaXdMpnc52FnjXCsVCqwGefmGRkJVX2VWr1WPnk3d30rjJ1NkL/bJyxYJpGm0g6GafR48Jm05XvPxsJ1mw7FlUNRdPWWcOLAmgVffSNcLDNxa4mfYDttZsxOi3EtTwNVpUDPqEsrK3z1nMhZuTscoFMQcVjN/LmXX7+7T3bGJhPEErlsRkFpMgM9XYjBw8exGAw8MJUFFXTypsVSdBnCuPBNAPzcZprzIfsJgMC612Kc7JCk8tyOblzzWclCALvONBEOK3nuairdNl2t5X3H2stn3LHg2m+9MIc6YIehJVMpjg/nyLb4uVeVx2d9o03V4lcEQGqrgl00kVGkDhwYJf+nVn1AxsbGyObzeJ2u2k0GxiL5On2ObCadPeIUKrAG3f4NnVdAP1Eu9anDPRiMDg4SEuLHg5WesZLG8lSMdmoqKTT6XXD8BuJ973vfQSDQf7gD/6A5eVlDh06xI9+9KMb8jO3VCHZDJULfcl0sb29nR07rhzIdDWo5Yd1JWiaxqVLl5ibm+Pw4cP4fOvFcpVEgbVD9R8NB/nvT06jabp1haxoPH4pxEoyz+fet7+KdRQIBMpzoLXF6kbBYpR49+HmdTv6q8HxLg8H2lyMB/TQo16/HvEqyzKhUAir1crx48cJR+O8OLbEysAMLQ6J3R0NHG/0c+fDuwmkCthM0oZ2IWOBFF97ZZHRQAoB2Nfi4n3HWuj02jZNOfzHl+cZXEzQ5rbo16OozEWz/M2zM3z6HbtqMruWEjly+TxpOYfb7cZq0RcOh0Vv6dSCzSixs9HOC1NRPLbLFuvhtIzTYlhn05LO6+p6QRDY0WDn43d28d3BZfpm4xSKKvvb6nhgXyN7W5xlk8QvPzfN4+MhDIKC02oikTbwxUiGoqJy395G8vk8fX19WF1W9u/fX+7Xx7Kl3PTLKGlZStTYjbC/xbl6osrS4bViEHV7mHxR5Y5eb1Umff9cnCfHwvrw32nmDb31fPLuLi4upwmm8rgsRva3OKtON89NRohni/T6bSSTSYrZFPs7fMwlZPrm4jX9xOrtxnLmSSULL5ErcnhVR1LKa/d6vezcuZNMJkMoFOKkHGAlGOfiTBLBYMJpM3O0w8sDB65vYc1kMpw9e5bGxsaqdWltjn0tP7DXIh3xE5/4xA1pZa3FLVVIZFlmcnKSiYkJ9u3bR3PztS92m73/tZ5ISnkmqVRq09ZaqUitHaprwD+dXUTVtPLpw2LUB82jKylenolxepu3yu5k3759VXOg6XCGbw0scW4hgcti4M27/Ny/d+PMh42gaRoZWffCWjsDuRLmotlyXG4pjc9skNjbcnmnns1m6evrw263s3//fiZCWT53JsxcVEFWbFgkOJxOcXolAKpCfX09Fr+fgsVXJdpciGX5s59OsJzI47UbQYNnJ8LMRrP88QM7q+YalYhmCvTP6fkipTmGURJpqTMzE8lyaSVddb2V9yWbiJDP5XG3eLBWKP1zssK2GnRm0BfmB/c3MRXKrtq0GCgoCpIg8MCBxiofqafGwnyjb5FQalVd7zLzoeNt/PLJDt57uFj2r6o06FSMdkYTEu2NXurMIrl8jlwux1Iiw1efTdOkholHguWEzcqd7/YGO2OBNJpLq2qPiQI1s3JAdyn+5VPt/N2L88xHcyiq7uDw5l3+qpPv85NRvvziHDlZxWmRuBRIMRZI8Z5sC2/bJBl0IZbDahJJJhIkUykaGhv0LkNSD0Srhb0tTnr9dkaWkzQ4zZgkgVC6gNUkcWfPxidym81GR0cHHR0dnD4q0z+xxHwggpqJ45XjTI7Ey35qlQ4PmyGbzXL27FkaGhrWbW4rc+xLm9W1YkiAxcXF68ow2QrYUoXkSjvsQqHA7Owst9122yr//cbhWgtJaYE0Go2cPHlyU6V6qbW1lpmVzhdZTuTX9dnNBpG4BrORLCe7VC5evEg4HObYsWNVv/dYIM3vfeciwVQBi0FkLppleCnJxeUk/+4tvVe8n2cmInyjf5GZcBabSeLePX7ec6Rlw75/JZK5In/59DQvT0fJyioWo8ixDje/cXdXlbYhHo8zMDBAY2OjvhOUFf788UnmolmaXBZMkkAsK/PSSpE927bz5m0OgsEgs7OzVdRiv9/PE6MRlhM5uuptZX2C02JgNprlmfEw7zy48aYiU1ApqhoWY3WRNEoiRUUlK29M4BgdHcVdCNHZ6GY5rdBqUDFIAuFUAQG4aw17qqiqjCyniGZ0r7Vev53feksPT14KcWlF95U6tU23aSnh4nKSLz8/h6yotLotaJp+CvqbZ2dodJk3bJ2Arg1J5nVnWkkUcBh1Y0uLQ2YlmmJ0dgmfBcLhMMPDw1Veanf1+jg7G2c8mKbebqKoasQyMnubnRyu0LLkZIWnxsK8MBUlKyvsb3Hxpp0+/p/7tjO6kiIrq7S5LbS6LVUF6QdDKxQVrVxo/cByIsdPLga5vce76gawHk1OMwNTQQQpXy4iqqqBBt4auifQNy6PnG7n2wPLDC8nSRc0muus3LfHX2acbQazycjJ3R2wu6PsBxYMBllcXNTNTh2OclGpq6vb8JnKZrO88sor+P3+K3ZIKuemcJls88wzz9Df38+b3vSmK17zVsSWKiS1UFJ4apq2YWbHjcC1FJKSf1djY2PNOUUJpRz1ZDLJ8vJymYYHYDGKuCwGQukCleOQ4irDxWOV6Ovro1gscuLEiXW7o6++PE8wlaelzlJeXFP5Ik+MhnlgX9OGO+0SnhkP82c/nSAnKzjMErGszN+9OM9cNMvv3rt904fhb56d5onREB6bAbfNTLqgLzqiKPDv39oLXKb39vT00NHRgSAIvDITZz6WpaXOUj4xeWwmcrLKTy+GeOfBZlwuFz09PeWMkFLOxXMzRrSihFIsIq7OwyRRQARmwrXbTA1OEw1OM/PRbJXpYTQj47IY6KyvXqxVVeXChQskk0nuueM2uqIyX3x+jsVYDkXTqLMYeNfhZu7ovTwsX07k+B9PTTMe0FXaFqPEoTYXH7uzkw/ftrGAFODZiQjJQpGe+ssznQ6PlYlQhhemIrR7NhajOVezVrKyUvU7pXMFioUc2zvbOLRnezm869zIOPPRQRo8LvZ1NvCrJ5p4YiLBpUAakyTytn0NvG1vY3kDUVRVPn9mlucmI5gkEYMk8N3zywzMx/nUPT0124gryTzBZIF6R3WxqLebmI/mmI/mNiwkmqbRakgiKnkKNhcKInJBYSmeo8llripwG8HvMPNrt3cQyei2LD6H6YqmphthrXN2oaBHCYRCIfr7+xEEoVxU6uvrMRqN5HI5zp49i8/nY+fOndfcbhZFkRdffJEPfOADfPazn+XjH//4NV/3VsCWLyQle2ufz0c6nb6h3jOVuNpCsrCwwPDwMDt27KCzs3PTf1tqZdXX15NOp5mammJoaAiv10tDQwN+v58HDzTy+TOzJHNF7GaJoqIRyRRodpowhscxuBwcPnx43ZG3qKr0zcVxmAxV+dx2k0QiV2RwMVGzkGiaxj+dXSQnK1VtllS+yPOTUUZX0jU9tVYSeZ6filFnM+Aqq8kNq0FFURZiOdRksEzvrRzkxVcV42vbblajfs2FCj1IKSOkvb2dYrHIKz++yORYlFgsBoDZbNYtw1e9m2rBKIk8dKCJv352hqlwFpdFIlNQUDV4+GBTFaEhkszyD0+cYzIq09nahLCU5bYuD//xHbsYWdbtSrb5bGXdAejOtP/rmRmGlpK01FmwrFKQn5+M4rIa+NgdXTWvLZgsYJaqKd+CICAKbEr17aq3saPRzsBcnDb3KjU4mWU+lOBN2z0c2afb4DhddTwxneXHCxmiGROsFGmanuf2+hxHPFbu2ldPY4OfhnpP1WZoaDHJSzNRGl3mcqFqdGqMhzI8NhriF2tkwVgMetGRixpUfCSyomGQBMzG9Yt76fRnzUf4V/fs4ieXYqwkC0gC9Prt/MLRliuyGEv3rVZ783phMplobm6mubkZVVWJx+OEQiGmpqa4cOECTqeTTCZTnr1cz8zy5Zdf5t3vfjef/vSn+fjHP35TnX9vJrZUIVl7E2dnZ8uK7aamJhYXF68rwvJqcCX336sZqq/996VWlslkYseOHezYsaOsDC8dnXscTt7QaeH5+TyBZBGDKNJeZ+JtTWnam9vo7d24RSUKwqpGZL2Rpcb6xboS8WyR+Wh2nfmj3SQRyxaZDNUuJOF0gXxRWffQ2kwSwWSBgZEJ7LlgFb23hFa3BUlY782UzMvsbnJWeTNVwmAwcP/BDgaWC6iA2wK5XJ7ZUBIRDU9hhfl5odzTVjXdWywnq3R6rdzZ68ViFPnRUIDZaJZOr417dvmqvLiWoin+n2/0sZDSsNuszExEeW4qzr17/Pzq6Q4O1dgVTwTTXAqkaHKay7+T02KgoKi8NBXjfUfkmgygDq+V/jXqelXVUDXWsacUVWMimCYrK3R4rfzKqQ7+ujjDWDBFJldAzmU42e3l19+8t/yaJy6F+HrfIhajRLvHRr6ospjI0V/0cKrLSyIWYWRokIuaVt5p+3w+psIZ5KJWddoRRQGnWWJwIbHh7wK62eieZifPT0awruZ5yIrKYjzHzkYH3fXVcyVN06ratlarlRM9DcxFdR1Jx2rrbiugFODl8XjYvn07sVisTMEPhUKcOXOmfP82irreCP39/bzzne/k93//9/nkJz95yxYR2GKFpARVVRkeHiYQCHDs2DE8Hk/VkOpmnEo2s0gpFoucO3eOdDrNqVOnsFptLMVzmA0i3g12QbWU6kDZUrqrq4t8Pk8wGORhc5C9liwh2YTHbqBeS7B3z65NzdpEQeCNO+r5p77FMmNFW400dZgkTna7a77WsupSnClU/76KqiHAutyLSjSsLpjpfBGT4fLvnsopaMU8WrrA8ZPHN2SfHGxzsbfFycBcApdVV6XHsjImg8g7DjRt+iAdaHXx4dva+HrfIktJGQQDzT4b7znoY7eryNLSEiMjI6RFOz9dlFhKa2gIeGwmHj7UzNv3NXCiy0NRVZEEoepnZTIZPv/jsyykBbY3ezCuFrRYVuZnIyFOb/PWpPrGs0XyRW3dXEk/Zem+WLUKyZ29Xs5MRJgKZ/A7zGhoBJMFWt2WqsyV6XCGvzkzo2tlFA2X1cD9exv47bf28OLILIOjkxzZ3cvJ3R2XC5Km8dhIEFEQaFw9QRklkXaPjelwjpWilWN79+qC0zX59XMZO/m8ilwwYTRdvvaNZk2VEASB9x1pIZouMB7M6E7eq4aUv3iiraooaJrG8PAw0WiU48ePl9u2FqNU0zJlqyCfzzM0NITf72fPnj1lMWkoFGJkZIRCoYDX6y0Xlo38wAYHB3nHO97Bb/3Wb/Gbv/mbt3QRgS1YSPL5PP39/aiqurpo6x9CiSL3WueqZzIZ+vr6MJvNnDp1ihdmEvyPJ4eZjWQRBZ3y+ql7emhfZS1tVkTWwmw2l5Xh+/bJDA0NEQqFECWRiYkJEolEWUC10Q7nA8dbV4frug0HaNjNBn719o51qtxKWIwSd+/w8Y2+RaxGBZtJoqiorCQLNNWZOdpZuyftc5h44w4f3zm/jEYBu0kilVcIJ9Lc1iTx1jtvq0k8MIgiv/3mXv7uxTleXB3idnqsPHyomdNXCKsSBIG372vkVLeH4SVdfb23xVnuuXd1dRFJZvh337zATCSLXVIwSgIrsTyff0Zvad213beOmZZIJOjv72c6Y8LjNJaLCOjphdF0lguLyZqFpM1jwWGSiOXkqqFwfNV3arO2TKfXxife0M3X+xaZiWQAgYPtLt5/tLXccksXinzuySmmw5kyQSGSkfmns4sUMwn8+UV+4a4D+P3V9NhCUSWSlsvhVSWYV91qS0woQRCq8uuz2SyuqSWeW1jg0nyQepuI1WJFlYzkZZWT3Zs7afudZv7dW3sZXEgSTBWosxo42OaqEvipqsrQ0BDJZJJjx45dNTNqKyCfz3P27Fnq6urYs2ePbvS5KnYszUnS6TShUIiVlRVGR0fLfmCJRIJ9+/YxMTHBgw8+yCc+8Ql+7/d+75YvIrDFCkk+n+f555/H4/Gwb9++dYvnjchtrwVJksoaj1LrLBqN0tfXR3NzM7t27aJ/PsHvfnuInKxiM4qoGjwzFmY6nOHLHzmCw3y5GF2L3YmiKAwPD5NKpcrFMxaLEQgEGBkZKTvuNjTodg+lE5nHZuLP3r2XZ8bDjK6ksZsk7uz11rRdr8SHjrcxF83SPxcnmpER0IOdfvOenk1VvQC/fKodUYQnRsNE0gWUQo67Osz89juOblhEdL+n1QwUm5F//cZtxE/KZFZV8xu14c7OxvjRcIC5SJY2t5W37vFzvNON126q6Tc1sJghkIXeJjeSKOhurfk887EcX3r8PO6sr+xabDQay47J3d3dOAMp0omNnQ02+xibXBbu6PXyo6EAclHFZjKQyMkoqsb9exuqTirjwTQ/HgowGkjhthq5a3s9b9zh4w/evoPlRB5xNVyr8nszMJdgNpKl3WMt36cGp5nx5Rg/Glziv/7CoQ1jEswGkQanmYlQuurUnJMVJFGo6blmtVo5sWcbvyo6+aezC0SSOYJxGU3J0OsCf2GJpSV97ldrw2A2SDUjmEtkhlQqxdGjR28KceZmoWTF7nK5ajp5l6zhHQ4HXV1dyLJMJBIhGAzyyCOPsLy8jNPp5MSJE/zGb/zG/xFFBLZYITGbzezZswe/37/hDb6ZueqlolWawczPz3Px4kV27txJR4fuXPuPL82RKyhVIjPzKu32R0PLPHxQNz8T1rRONsNau5PSw1kpoEqlUgQCAWZmZhgaGsLj8eD3+2loaMBqsfDW3Q28dfe1/b5Oi4H/98FdnJ9PMBXO4LLqKYKbtbVKsBglfv2OLu7rdfJs3yC9rQ0cP7B73e88vJTkG/2LDC0msZsNvHmXj3cebMZmkqizGmtSQR8bDfI/n5omu2oDPhfN0j8f56N3dHLfntpeasFUHriscjaZTJhMJvyCGVlQsdvt5Xtos9nIZDL09PTQ1dXFydA8X31lsUrYFs/q9v371pAWNE0jkCxQVFWaXBZ+6bZ26qwGnrwUJp1XaHSZuW9PA2/ZffmUMLyU5P/72QThdAGHycBiPMfwUpK5aJZHTnXUdByOZApAZU69RiqZQpDz4HbhrHNv+DpBEHjLbj9Tz2aqrGcCqTx7m53suwI19s27/OxocDC4mNBJBvVW2h0Qi4TL97CUX+/3+68qIlZVVc6fP082m+XYsWObUua3GgqFAq+88gpOp/OKcRCVMBqNNDY20tjYyDe+8Q1+6Zd+CafTyfLyMs3NzRw/fpy//du/Ze/evVd+sy2MLVVIBEGgsbGxZkriq8ltvxJKp5BiscjExAQLCwscOXKE+vrLu9+LS0mMa1g2kiiApquuK9/nanC1diclSmJPTw/ZbJZgMEggEODSpUs4HI4yA6yUxHfVv7MgcKi9ruYgGfQWydPjYfrmYoiCwPFOD7f3eIiGw4wPD3J6z8Yq+6HFJP/hh6PEsjIOs4FQKs+XX5hjPJjm/7lvR80har6o8NWXF5AVjQ7v5eHsUjzH115Z4M5eb80TU4PDDGjIilp1yskUFA606rTinp4eJicnmZycxOFwMDExwdLSEttdXrbXm5kI52DVysRkEHnb3oYqK/WZSIYvPz+n261oenjX+4+18t4jrbzjQBPJnFKe/5SgaRrfGlgiki6wrYLqG80UeGwkxJt2+sqCzrVocpoRBYF8UReNJhIJcrk8gsVGZ719Q2uSEu7s9ZKRFX54YYVwWreeOb3Ny4dPtF0VPXajMLJ6j7tMzy45P09OTmI2m8tFxePxrPsul2KmC4UCx44du2nsy5uB0knE4XBcUxGpxPT0NA899BAPPvggn/3sZ/Vo3+VlHn30UVpaWm7CVb+22FKF5Eq4mSeS0hd/cHCQfD7PyZMn1w2M/U4zwVS1ylbVNECj3m6+YhHRNI1XZmI8OxEhnkrjzId48EgX23s2dk5di5lIhucnoxSKAvtaerljv5VIOEwwGGRqagqz2VwW8Lnd7vL1FIoqPx0J8ux4BFlROdbp5v69DTVPBCXkZIX/+OglXpyOoawW959eDHK0yczdnigH9++r6dPzzYFFYlmZ9grBWrqg8PJ0jMGFRM3iNRXKEkoVdPV6BertJkKpAlOhDPtaNt5Nn+hy0+m1rQ6v9ZZZJF3AKAncu0ePNp2YmGB+fp6jR4+S0MysxLOYlQxSLs49ngjNQFix4XXZuWNXMye6L9t/xLIyf/qTcWYiWXx2I6IoMhZI89+emOT379fjec2O9bOsdEFhLJDGY6s2hXRbjUyHM4wF0jULycG2OrY3OBheSmCmAIqMZnJgkUTeuqdh0++NIAjct6eBu3rrWU7ksJmkda2z60Wl87OiKOXwrqGhIYrFYlX4mSRJDAwMoCgKR44cuSWLiM1mY9++fdfFGF1YWODtb3879913X7mIADQ1Nd0Qw8StgFuqkKw1bryRyGR0UZuqqpw8eXLDL/vDh5q5uJwilS9iN0komq7ytpkN3LtJywX0IvK5J6f454ElcoUiiqJgMhqYJcOfdKhVGQ4b4Zv9S3z+zEyZaWWQBO7qred3791OS0tL+WEOBAKcP38e0DMIvPV+/uqVCGcmo2iabhzYNxfnqbEwf/LO3TWzIAB+OhLkhekYXpsRq1FCAyKJNM9Oxbm9p6dmEVFUjaHFJA6zoWrRspskImmZS4F0zUJiMgiIG+RqFFUNUWTTnbTdbOC33tLDXz8zw1gwjaIU8diNvPtwM6e63WWq6fa9h/irl4L0zcbJyXqY08kuNx+9/XZO5tLlE196aoVzcW95QXxuIs5cNFtWlJd+p+lwlp8MB2q6KxtEPXlxrZW6qumL/Wa/k8kg8sk3dPLnPxhgNFzEanPS6LLw4AGdeHA1sJkktvluHhNKkqTyBmbXrl1ldXgp/EwURYxGI/v377/m1MDXE7Is09fXh81mY//+/ddVRJaWlnjb297G3XffzV/+5V/eFOnCVsCW+1QFQajZ2rpZJ5JIJEJ/fz+SJLFz586aO6YHDzQzGUzzzf4lIqsD6jqrkX9/b2/NjO8Szs7G+eeBJTSliNOgYnXaKGr6UPlbA0t8qIbIC/S22d88O0NRVcvZHllZ5YlLIfY0O3nvkZaqh1nTNOLxOIFAgG+/OMpjo0VcZgmH1YTRaERRYWQ5xfcHV2qKywBemIwiwGoR0Uin00iagsFkYjhc5O01XicK+uK1NpSq5Py6WdHsqrexzWdjeCmJxSghiXpRCabybG9wsM1f2+MKdCbUp9+xi5lItqy5sEgCg4ODZDIZjh8/zp8/Nccz42G8NhMem5F0vsjPRkMYDSKfvHtbWSuQyWQIBoNlavELQQv5AmiqCQSDHgImCFhNElObqOstRomT2zx8f3AFl8VYZk4txnP4HCYObmKVrygK8+PDPNwj0nbfMWRNpLnOvC7HY6ugshXb0dHB2bNnURQFm81WthSqbIFtVW8pWZY5e/YsFovluovIysoKDzzwACdOnOBv/uZvtuzveiOw5QrJZrgZhWRubo6RkRF27drF1NTUpqJEUYB/86ZtPHSgkXMLCSxGiVPbPFX+UrXwzFiIbK6Ay6SbxomigITOCHpsNLRpIXl6PFKO/SxH4K7aXv/0YpD3HqnusQqCgNvtxu1288N5CYNxCbtZpJAvkM1kkQwSqALPjgU3LSSldpa66kGEpuFyOUnF8+X/thEEQeCeXX49p7ug04tVTWM5kcdjM3LbagzrRhAFgY/d2cl/+ck4C7EspZ/S5DTz8Ts7q+i7wVSex0ZCXFhM4DAbuKPHy+keL6Ig0LUqftN3lf0AHD9+nOVUkb7ZOF6bsSzIrLMaUTU4MxHlA8cK+Bz6fa7U/BQKBWbOTPD8UoBwOIokiZjNJsxmMzlZoaGGFX0J7z7UzEw4s0rV1tA08NpNPHKqvWaLUZZl+vv7EUXxmqOjX2+Urt1oNHLs2LGy4LfUArt48SKFQoH6+vpyYdkqDK7SScRsNnPgwIHrKiKhUIgHH3yQffv28aUvfemW+uyuB7fUb3cj6b+qqjI6Osri4mJ5qD4zM1OzUFVmiHR4rXRdQ6sgnU4zM78AgoDdbquik4qrFtibIZPXf+e1vW2DKJDMbX4/REFvFVksFl31rarIsoySyxONRnjuuefKw/q1KXLHOz28PB0lEo9jMRiwOx3kZRVREDja7t705z58qImJYJqXZ2KE0wU0BNxWA//XXV1VFiPle1Qogqa3p7Y3OPizd+3hzESUlWQev8PE7T3eKjX9UjzHH/1glJlIFkkQUDWNM5MR3rHcxK/drgvzcrkc/f39WCwWDhw4gCRJhFIZcrKCx1p9DTaTRDhdIJwubKj9MJlMvO1IN8/M5YimZbxWgWKhwHIwgaZBp2RgaWmpip5dCa/dxO/fv4NXZmLMrvp+nehyb2iXD5Rt4Cuv/VZBaTdfWohL1y6K4jq9RaXLg9PpLBcVp9P5ulBjSwXQZDJx8ODB6yoi0WiUhx56iN7eXr7yla/cUjOh68WWKyRXCre6EScSWZY5d+4c2WyWU6dOYbPpu9daNinXIjJci0gkwvnz5znS4eFsOElBUctWIIqqUVS1K/a6dzU5EYSlKmqqqmnkixqHOzancR7rdPP9wRVS+SIOs0F/MCQjBqPGQyfa2NZhIhAI0NfXV26PNTQ04PF4ON1u4VvmAnNpiYJgILEaWHWi081d2zcXptlNBn7//h2cm9fDoWwmiZNdnnVFZC6a5R9enOfsbAwNXcH+oRNt9PrtPLC/tu34N/sXmQ5naHNfnlfEMjKPDq1w9456Wux6CJTX661ixDW59EzxVEHBbb28SJTmXg3O2pTU5joLn7y7m789M8tSIo+qGWnw2nj7LjeHvcWyMtztdpfbjKXvFugtrloamEqUnKVLeoVbqa9eOZzerCVUqbfo7u6mUCgQCoUIhULMzMxgMBiqEg1fi0JaLBbp7+/HYDBc90kkHo/z0EMP0dLSwte+9rVbiuL8arDlCslmkCSJfD7/qt4jnU7rgT9W67qh+kats8q8gGstIouLi2UtyummFvrCw7wyE0MQ9JNCUdVoc1t4z5HN6X939nrZ1+zk/EISs0FAFIWymO89hzd/7W1dHu7Z5eNnF0Nl00RBEDjU5uKhgy3YzQaamprKNg+BQIChoSFkWUbTND55m58Z1cvZuSSiAKe2eXnLbv+GPfpYVhcZNjhNGEQRSRQ40uHmSId7w2sLpwv80ff1U4XLos8cnhkPMxZI86fv2lNTW6FpGi9MxbCbDFU04jqrgblYjhfGVmiX52hra6Onp6fqM2uus3B6m5cfXwygqho2k0S6oJDKF3n4UPOmBpAARzvc7G12cnE5RVFR2d7oKBMWtm/fXqZnl9L4Sqpmv99f04a8EqXvp8/nY9euXbeUYK2k+nY4HNfMcDKZTOvy60OhEKOjo+Tz+bLliN/vvylK+GKxSF9fHwaDgYMHD15X4Uomkzz88MN4vV6++c1vbplW3WsBQas12X6dUCwWa546JicnSSQSHDp06LreOxwOMzAwQGtr64ZunWfPnsXv99PR0VEVkXmtJxFN0xgfH2d+fp4DBw6UtSiZgsK3zy3x+GiIfFHlVLeHdx9uqRn1Wol4VuYfX57nsdEw+aLCsQ43HzzeelUqdkXVODMR4YXpCIWixpH2Ou7e4as59J6bm2N0dBSfz0cmkyk7nJYWxLUPcihV4PNnZnhhKkpR1Wh0mvngidYqU8SN8E9nF/n8mRma6yzlgqBqGgvRHB883sojpzs2fJ2maXzky/2k8kpVG0rTNGbCad7gz/PhO3rLQtK1yBQU/u6FOZ4eD5OVFWxGiTft8vGLJ9pu6BC7WCwSXqVnB4PBcmunlA+ydrFKJpOcPXuW1tbWmmadWxUlO/WSdciNOkVpmlYmPQSDQeLxeDkjZKN27PWgdBIRRZFDhw5dVxFJp9O8613vwmAw8P3vf/+mJx1uNWy5QqIoSs05yOzsLMFgkKNHj17z+5achHfv3l3TDHFgYIC6ujq6urrKBQSuTamuKEo5z+Lw4cM3/AulrTKfxJuwyJQK4MLCAgcPHsTj0VtumUyGQCBQfpCdTmd5rmK0WPntfx7mwmISp1nCIIkksjImg8Tv3tu7aSvnPz56iafGwrStCXBaiufY3+LiT9+1p+Zr/9cz0/zzwBKtdZaykn0lliaby/Hpt/dwYtfmFv+gCwJDqQJ+p3lTGvSNQCkit7QglnbZpeKczWbp7++nq6uL7u7um3otNxqldECPx1P2n7pZKMU2l/5XWZy9Xu81D7UVRaGvr+9VFZFsNst73vMeisUiP/zhD3E6a+cA/Z+KW661da0zElVVGRkZYWlpiaNHj27oS1RCZZJhqb5ey86qZHciSVKV3cmNhJ6vfeOhqirnBi/QPxvD19bDUs6Ae9Xe3Gaz0dXVVWYvlRbDyclJJtImBuc0vHYz9lX2mt0ksRjL8c2BpU0LicdmRIMqG3XQT1BrBYlr8a7DzVxYTDIWTCMABVlGUIq892jLVRUR/eebrtjKulEQRbFse7M2TuDixYsA5QVx7f3YyijllL9WrTij0ViVERKLxQiFQoyNjZHNZsvFuZbrbiUURSkHVl1vEcnlcnzgAx8gm83y4x//+F9kEYFbsJBcC2tLlmUGBgbI5/NVQ/Urvf/1DNWTyST9/f14vd4berR/LSDLMj99vp8vX8gSlo0o47OYDPMcbq/jd+/dXkVPNZlMtLa20traiqIoTD49hqqtIOczxPP6g240GrGZJabDmXV2JZW4a3s9Px4OEkoVqF9tUUUzuq383Ts2z3vxO8x8+h27eGI0xPMjc6j5Iu+4bSd37Nw4cncroXLQbLPZGBwcpKWlhUKhwIsvvnhFu5GtgnQ6zdmzZ2lsbLxixOzNwEbFORQKEQgEGB0dxW63l+/j2vmUoigMDAygaRpHjhy5riKSz+f58Ic/TCQS4ac//Sl1dZsnOf6fjC1XSDb7Ml7LiaT0Jbfb7Zw8efKKR15N07BarYyPj5NKpcqtm6s5VQQCAS5cuEB3dzddXV2v625SUTX65+IsJXI0Oc0c7qhbZ51eiWw2y9m+Pr5yUWUlZ8DnMGKSBLKyygtTUf7qmWn+/Vu3b/haSZJob/RiNEZwOs1oqkJBlslkMsTyGo0OI4HlJRoaGjakQO5rcfErpzv4uxf1KFvQ6b/vO96yqdakBKdZotcQxtdW4MiR2664UdhqKNFeDx48WLaBLzkUBINBLly4gKqqVXYjW4VKmkqlOHv2LC0tLVtmnlPS/XR2diLLcjkmd2BgALh84nO73eV7u1H66NVAlmV++Zd/mfn5eR5//PFyG/hfKrbcjKSkc9gI0WiUc+fOcffdd2/6HqFQiHPnztHW1nZVO6XSPERV1SpTxGQyidvtLheVtUdlTdOYmZlhcnJyXazs64FAMs8f/WCU0eUURVVDEgV6/Xb+6IGdGzKgSlkcCYOHz51N4zRL5ahb0Af8gijw5V86vGGAF0AiJ/PxfzzPSjJPg8OEQRRI5Iqk8kXevdvBkbosqVRq0/sYSObpn4ujanr4VS22ViWKxWLZBPDw4cO3HENmdnaW8fFxDh3a2AYeqAqdCgaDpNPpsvPzRvfxtUKpiLS2tq5jxW1FlJweKu+jwWCgq6uLxsbGa96AFItFfuVXfoWRkREef/xxGho2t0f6l4BbqpAkEglefvll7rnnnpqvv5qhegklZlbplLN2qJ7L5cpD5mg0WjVkttlsjIyMEAwGOXTo0A091iZzRZ4aCzMXzdLgNHH3Dt9V5VH/+28N8/xkFI/NgMUokS+qRDIyR9rr+PP3VLuWBoNBBgcH2bZtGzMFB3/0g1GaXOaqIX5OVkgXFP7nBw7S7av9sA0uJPivP5tgIZ4rU2rfstvPv7qrC6MkVlFio9EoDoejrFe5Vsdi0LUKJb7/wYMHbynVsKZpTE1NMTMzw5EjR67pe7P2Ptrt9nJRuRHspatBIpGgr6+Pjo4Otm3bdtN/3o2EqqqcO3eOfD5PU1MT4XCYaDSKzWaraoFt1kpUFIWPfexj9Pf388QTT9DU1PQa/gZbF7dUIUmn0zz77LPce++9G77u4sWLrKyscPjw4SseNSuV6nDloXpJMBUIBAiHw4De2tm7dy8+n++GPcTT4Qy/++2LzMey5b+rt5v44wd2crCt9qIzG8ny0a8MYBQF7BWZIpmCQq6o8j8/cIBev84gm5+fZ3R0lL1799LU1MRMJMO/+up5DIKAsyLHPZQqUGcz8qVfOnxFU8l8UaF/LkG6UGRHg4N2z8a75RLrpnQfjUZjuahUOhbXQkms53Q6r9uN9fWCpmlcunSJ5eVljh49isNxZep2LZRaN8FgsMxeKhWVmyXgi8fj9PX1lVu4txJKRaRQKFQ5EJco2iVLfKDcSqyvr69qJSqKwic/+UnOnDnDk08+SWtr6+vyu2xFbLmt3JWU7WtTDEFf5Etfksp43lq4Hn1ISTDldrvLwiWbzcaFCxeQJImGhoZ1i2G6UCSQ0C3Rr2TZXrquP39sgtlolvrVNpGqaoRSBf7LT8b50kcO13SKjWVlZEVbF61qkgRSeZVYRq7Stxw5cqRcbDu9Nu7srecnwwFkVcNiEEkXFFRN412Hmq9YREBPxTt5FW60laybynnA4OAgmqaVd4Yl+/FKJJNJ+vr6aGxs3FAHtJVRyiiPRCIcP378Vc9zjEYjTU1NZTFpiVpcEvBVzlVuRNsvFovR39/Ptm16/sythFKg1toiAvqaUgqeKrXAQqEQU1NTXLhwAYfDwU9+8hMeeughvvCFL/D000/zxBNP/LyIrMGWKySbYW2KIej92r6+PhwOB7fddttVDdWv1+6kNKNpbm4uz15KRnSBQKC8GHrrfTy5JPLjsQTpgoJJEnnzbh+/8YbuTWNsF2I5hpZSOC2GcmCRKOrxtAuxHOfnEzUjTDu81nJ+usdWYf1RULCZDHR4LFy4cIF4PM6JEyfW6Vv+7zdtw2Mz8tOLQbKrqvmHDzXz7sM3jwW1kWNxMBhkfHycCxcu4PV6y63EdDrNwMAAnZ2ddHdfXX7LVkFlvOzx48dvuDK7FrV4YWGBixcv4nK5yvf5apIM1yIajdLf38/27dtpb2+/odd+s6GqKoODg+RyOY4ePbopWaHS7LSUXz88PMxTTz3FZz7zGURR5EMf+hCTk5O0tLS85sSHP/qjP+KP//iPq/5u586djIyMvKbXsRFuyUJSLBYxGo1lRkZ7e/s1D9Vfjd1J5eyl0oiutBj+5RPjfGckiYCG1SiRV0W+PbBMIlvk0++onYmblRUUVcNsqL4uSdRNCXNybcaa22rkHQea+MrL84TTBaxGiaysUFQ13n7Qz+ylCyiKwvHjxzfcoVqNEh+/s4sP39ZGIluk3m4q+3q9Fqh8iLdv3046nSYQCLCwsMDw8DAADQ0NNDY23lJFRFGU8mn5tYiXXethlc/n1yUZbhR+VgvhcJhz586xc+fOW24XXioi2Wz2ikVkI1itVg4fPszJkydZWFjgd37nd+jv7+eDH/wghUKBubm515wpuHfvXn72s5+V/7xV5oNb4yoqcKXEt5LWY3p6mrGxMfbs2XPFL/jaofrVFpFXZmJ8o2+R4YUILlHmgyd7Nh3gC4KA0ergzGIRq9mE06xfa1EpoqgqT46s8Nw2M0e3t264mHd6bfgcJlaSecwV7KlkrojdbGBX0+Zip0dOt2MzSXzn3DLxXBG3zcj9u+rZLiwhSbarojraTYZNT02vFex2O93d3RiNRpLJJC0tLWSzWZ5//vmyf1VDQwxT+wAAMlVJREFUQ8NrNmS+HpR0TMB1LWQ3AmazuUr3U9lKVFW1yrJl7fWFQiHOnz/Prl27brk42NIpMJPJXPe91zSNT3/603z1q1/liSeeYPfu3eX3Hh0dfV3o5gaDYUsO+F//FeMaIYoiY2NjxGIxjh07dlVDdblYJCcrWAziVReRHw8H+E8/GiOTlxHRCEgSf/LEPCnNxC8crf1QLcbzpPJ6BocoiZgkEyZMmBWFUKrA4PQymeVJ6urqynOV0kzHZBB55FQ7//VnEwSTecwGkXxRt23/hSPNG9qbV8IginzoRBvvPdpCPCMjyFmGBs/hb2i45QwANU1jcnKS2dnZqnlOaThaciwWRbHc/vJ6vVtm+F4oFOjr6yvbkW8FG/i1rcQStbg0D6ikFqdSKc6fP18mZNxKKBWRdDrN0aNHr+sUqGka/+W//Bf+9m//lscff7xcREBfgyr//FpibGyMlpYWLBYLp06d4k/+5E9qesq9lthyrC3QH8KNLqtQKPDkk09iNps5ceLEFYfqclHh71+c5Rt9S8SzMk11Fj50vI13HNi8PVIoqrz3b15mMZbBaQSLxYogCMSyMk6zxNc/eryK3VSJcLrA+z9/FkXTqv5NTlbIySqf/YV97PJbyrTiSCSyjg77zHiEb/QvMhnK0FJn4aGDTdy/t+Ga/LUq6b2dnZ23XBEpUauPHDlSk91Ucokt6X6KxWLVsP71Eu/lcrny3O5WYZZlMplyCywSiQB6K7Grq2tLn/rWQtO0stfd9bYSNU3jz//8z/nMZz7DY489xuHDh2/ClV47Hn30UVKpFDt37mRpaYk//uM/ZmFhgQsXLrzu1iy3TCEpDdULhQJ79+6luXnzIbCmafyXH1/iG32Lq7nYAvmihijAJ9/YzQeP125RvTy+zCe+fhGLQcRhM8Oqu1VR1UjmZP6/d+/l9Lbanl3/76OXePRCAIdZwmIUKSgaiazM3mYn/+tDB6sKQiUdNhQKYTabyyeVq7Ed3whr6b23Ekqml6lUiiNHjly16E7TNJLJZLlAp9PpTR2LbxZK3lP19fXs3r37llmAS1heXubChQt0dHSQy+UIh8OvCbX4RkDTNIaGhkgkEhw9evS62GqapvHf//t/5z//5//Mj3/8Y06cOHETrvTGIBaL0dnZyWc+8xl+9Vd/9XW9lluitRUMBjl37hwdHR1lDcdmUFWVhWiG751fxiiJ2M36F99qgkS2yN+9MM/Dh5qxGtc/EMFgkNGLw0iStLqjvbwQlMz0alFwS/g3b+wmkZV5eSZGMl/EKInsbnbyRw/sWneqWEuHLbVtSrbWpaJyNZ5Ltei9twpKgWOqqnL8+PFr2k0KgoDL5cLlctHb21u2Hl9eXmZ0dBSn01k+9V0Pc+lqUKInNzc3s3379luuiJQsWw4dOoTPp3udVZ76RkZGyvG4pcKyVYKbSvTqeDzOsWPHrruI/PVf/zX/6T/9Jx599NEtXUQA3G43O3bsYHx8/PW+lK1ZSARBKA/IZ2ZmGBsbY+/evbS0tPDyyy9vGodbGqpfXE6SK6rUWat/RatJJJGTmQ5n2F0xvNY0jdnZWSYmJrjn+B5+El7kUiCN0SAirl5PIlekuc7MgdbNUwldFiN/+vAeLgXSzEQyNDjMHGhzXbE1ValHWRs0pShKeSHcKMtCVVWGhoaIxWIb0nu3OkrRsmaz+br9jyphs9no7Oyks7OzSkw6NTVVPvWVmEs3YsEvifVuRXoywMLCAqOjoxw8eLCcnwP6PKC+vp76+np27txJKpUiGAwyPz9/Q6jFNwKlIhKLxV7VSeRLX/oSf/iHf8j3v/99Tp8+fROu9MYilUoxMTHBhz/84df7UrZma0uWZYrFIsPDwwSDQQ4fPozb7Qagv78fj8ezTllbKTIEODsb51//0wWsJrHKfTYrK6gafO1Xj9Lq1tsmJav5SruTwYUE/+5bw8QyMioaArrq+z88sJNTm7S1bgYqNRaBQIBcLleeBZTM/s6dO4eiKBw6dOiW851Kp9P09/fjdrtvunNy6dRXshoByvdxowJ9NYhEIgwMDNDbWztMaytjbm6OsbGxq3KEqEQ+ny/fx0gkcs3U4hsBTdO4ePEikUiEY8eOXVcLU9M0vvKVr/Cbv/mbfOc73+FNb3rTTbjSV4/f+q3f4sEHH6Szs5PFxUX+8A//kIGBAYaHh8vrwOuFLVlISs69iqJw5MiRqi/H+fPnsdvt9PT0lP+uUmQoCAKiKFJUVd7/t33MRjK4LHoka1FRSeYVTnR5+O/v2w/oRaukej106FBVT34lkefRoRXmYzkanWbu29tQ0/rjtYKmaWWNRSAQIJVKIQgCVquVQ4cO3XIOuCXvppaWlte8HaRpGrFYrDxXKSnCGxoa8Pl81+T8fCtSZIGy6WjlZu16UFmgQ6FQFbXY5/PdFL1DiZQRDodfVRH5+te/zic+8Qm+8Y1vcN99993w67xReP/738/TTz9NOBzG7/dzxx138B//43+sWgtfL2zJQvLCCy8AsH///nVfwKGhIQwGAzt37gQ2V6oPLyX5d98aJpjMr7bLoKveymfes49Wt4VMJsPAwABWq3XDn7XVUVqEbTYbgiAQj8dxuVzl9thWLyolsdu2bdted++mygIdDAbLzs+lduJGQ/+lpSWGh4fZv3//LekAOzU1xfT09DWbR14Ja912M5nMDXctriwiR48eve73/Na3vsWv//qv87WvfY0HHnjgVV/Xv1RsyUKSyWRq6j1GRkZQVZU9e/Zcld1JOl/kiUthVpJ5Or1W7uz1YjZIG9qd3ErYiN5bajUEAgEikQh2u71cVK7HZfdmYnl5maGhIfbs2XNFBt7rgVwuV76XJafd0lzF6XQyPz/P2NjYupnCrYKSRufo0aM3nTpambkei8VetWuxpmmMjo4SDAY5duzYdReR73//+zzyyCP8wz/8Aw8//PB1vcfPoWNLFpJisVhzoD4+Pk42m2Xv3r2oqlpmUl2P3cmOHTtuOe8guDp6b7FYrKIVG43GKmPJ17OolLI4Dhw4UGYHbWWUKNqlto0gCCiKwo4dO2hra7sldCIlaJrGxMQECwsLr9qB+HpQeS/D4TCSJFVlrl9pRlVyUA4EAq+qiPzoRz/iwx/+MF/4whd43/ved13v8XNcxpYsJIqi1IzUnZqaIhaLsW/fPmB9hshmKD1Ec3NzHDhw4JbbSVZe/6FDh656MFqyxii1bQRBKLdsXks1eImevLCwwOHDh2+5aFJN0xgbG2NhYQGv10ssFivPAkpsuq3cHi1d/9LSEseOHXvdmX2V1OJgMIgsy1WuxWtnVKXrX15e5tixY9fdun388cd5//vfz1/91V/xoQ99aEud1G9V3FKFRNM0FhYWGBkZKVs/X22mtaIoZbHSoUOHXvOd2KtFJb33yJEj170IlCzHS0WlpAa/2QthKS8mEom8qut/vVDqyYdCofL1l2xGSvcym81WiSC3EnuutJNfWVnh6NGjW+7+a5pWphaXZlR1dXVVc5WJiYlyEbzeIvL000/z3ve+l//23/4bjzzyyM+LyA3CLVNIKuchpYUwEAigaVqVvmKjopLP5xkYGEAURQ4ePLhlRFRXi5JQ70bTeyv9lgKBQHkhvJa8+quBoiicP3+eXC7H4cOHXzOV+Y1CqYgnEolN1fYl+/ZAIEAikShrLEoiyNcLlUXw1bSDXkvkcrkqyxZRFFFVld27d9PU1HRdp+jnnnuOd73rXfzpn/4pH/vYx35eRG4gtmQhWZuSWJlmWNnKqqRvVnotNTY2ljUByWSSgYEBPB7PTdco3Axks1n6+/uxWq0cOHDgptpTVNKKK/PqGxoarnvxl2WZ/v5+BEHg0KFDr5v/1fWisgj+/+2daVBUV/rGH0QBF0BBaBFFXFAEZRUNJjEhIrII3TiJxnFGYpzELDpxLLM4M//UmMTRlCl1jImapEatZCgXuhGX4IaAwRWaRkHjghEFhaYRWbqhF7rv/4N1bgBBoPvC7QvnV8UH+wO8fbu9zz3nvO/zhISEdFrEW89YDBw4kH26Ntf6xhzIsN7jx48t6m7ii9bbiY8fPwaAFq7FnVlF5+bmQiwW4/PPP8eKFSuoiHCMVQsJmVTvTIZI820GpVIJnU4HR0dH1NXVwdvbG+PHjxfcl6eurg4KhQLu7u6YNGlSj4ogyauvrKxETU0Nm1ffladrYl44aNAgTJ061Wo9mtqjqakJBQUFMJlMCA4ONlsEiWMxERbiXdXdZ1Qmk4m1DQkNDRXcShAA7ty5g7KyMrYxoK3W4o481RQKBebNm4d//vOfWL16teDuA0LAaoVEr9e3mFTvyqG6yWRCcXEx7t+/Dzs7O/YQj2zZCOGpmGRBWIN7r16vb9FWPHDgQPZatte+SUw2hw8fLkjzQr1eD4VCgQEDBnBqA9/6jMpgMHSLY3HzVEZzbUP4hrQoT5s2rd0zTY1Gw26B1dTUsE7aGo0GU6ZMwbVr1xAbG4s1a9bgk08+Edz3UChYpZA0NTVBq9Wy/+7KExsJnamsrGTtTsiWjVKphFqtZs8B3N3drfK8xJrde5vngVRVVaF///7s0zWxxSD53l5eXhg3bpzg/vOSldTgwYMxderUblsxEMdiItIajYYd3LNkO5EkA5JQJ2v8jnfE3bt3ce/evWeKSGv0ej0ePXqE8vJyzJs3D/3798eAAQMwe/Zs/PDDD1axItu4cSPWrl2LDz74AFu3buW7HM6wSiFJSkrCnTt3IJFIkJCQAE9Pz07djAwGAwoLC6HT6Z6yOyE0NjZCqVSyB6JcnANwhbntvXzRPK9epVKBYRg4OjqipqYGEyZMwJgxY/guscs0NjZCLpdj2LBhmDx5co9uJzY2NrKiQp6uycqvswOl5ExHp9PxlspoKURELBmWvHr1KpYvXw47Ozt2JR0VFYWNGzfCx8eH44o7R25uLhYsWAAnJydERERQIeluysrKkJKSAplMhvPnz2PatGkQi8UQi8XtbvMQuxMHBwcEBAR06gCu9TkAsRcRiUQ9fijZvL03ODhYcO3JZEakpKQEAwYMaDFf0V1eS1xDtuPImRTf24nNhyA7Y4hI8uGbmposOtPhk5KSEpSUlFgkInfu3EF0dDRef/11bNq0CTY2Nrh69SoOHz6Mt99+GyKRiOOqO4bk63z77bf44osvEBQURIWkp2AYBuXl5UhNTYVMJsPZs2cREBDAisqECRNgY2ODrKwsNDY2YuzYsZg4caJZT5F6vZ4VFZJaKBKJeqR1k7T3khuA0PazGYZhbwCBgYEYNmwY1Go1ez1JyJQ1byfW1tZCoVBg9OjRVrcd13qgFHjasdhoNEKhUIBhGAQHBwtCuFtDDCRDQ0Ph5PTsqIb2KCkpQUxMDOLj47Ft2zar6dJMSkqCi4sLtmzZgpdffpkKCV8wDIOqqipWVM6cOQNfX19MmTIFMpkM//nPfzjz5TcYDFCpVFAqlezhMhEVrj2rmrf3CtE4kgy6VVRUICQkpM2nyIaGBlZU6urq2syr55Pq6mrWPNLat+NI1xK5njqdDi4uLtBoNLCzs0NISIjgvkMA2CwgS0SkrKwMc+fORVRUFHbs2GE1IrJv3z6sX78eubm5cHBwoEJiLTAMg+rqarz55ptIT0+Ht7c3bG1tIRaLIZFIOM3JJp5VSqWS3WIgomJpljWf7b1cQLbjamtrERIS0qlp49ZmiOQcoDuTC58FMb+cNGkSPD09e/RvWwoRlatXr6KpqQkmk4kVaTc3N6t3fyYQEbHEhbi8vBzR0dF48cUX8f3331tNq3lpaSmmTZuGU6dOISAgAACokFgLOp0OSUlJuHz5Mo4ePQpPT08cPXoUUqkUJ06cgIeHBysqwcHBnN2gSeYCEZX+/fuzZypdHTKzpvZec2hqasKVK1dgMBgQEhJi1nYVWfmRcwAHBwdWVCwV6c5AHIinTJnCy765pRgMBsjlctjb2yMgIKDF9STuz5a47PYEpaWlKC4utkhElEolYmJiMG3aNOzdu9dqRAQADh06hMTExBY1GY1GNjdJp9NZVb3mIkghMZlM+Pzzz/Huu+8+lQOhVqvx888/QyqVIj09HS4uLkhISIBEIkFYWBin8wCkDZYYIRJR6SgdjrT3WquFekfo9Xrk5+ezMxZcbKU0z6tXqVSwtbVl22A766fWFcrKynDr1i3BOBC3Rq/XQy6Xs44Hra+PwWBgrydx2SUrle64nuZAPoOQkBCzQ7WqqqoQGxsLPz8/JCcnW922Xn19Pe7du9fitaVLl8LX1xcff/wxaz4rdAQpJJ2loaEBJ06cgFQqxbFjxzB48GDEx8dDIpEgPDycsy9d83z15v5fIpGoxeSy0Np726KhoQH5+flwcnLidAuxOa2vp8lkemZefVcpKSnB3bt3BfsZ6HQ6yOVyDBkypFOfQfPrqVKpYDQauz29sCOIiHQ13rc51dXViIuLw7hx47B//36rbOJoC7q1JWC0Wi1Onz4NmUyGtLQ09O/fH/Hx8UhMTMQLL7zAWatkW/5fZHuBtBkLsb0XePJ0lZ+fD5FI1GPtsW0dLjdvK+7K50aEvKysDCEhIWYf6vKJVquFXC6Hs7OzWd5xrY06icUIWa30RMfggwcPcPPmTYtEpKamBvHx8RgxYgRkMpmgOh2pkPQSDAYDMjMzIZVKcejQIRiNRsTFxUEikeDll1/m3F23vLwcDx48YGcrPDw8BDNbQSCdTd7e3vD29uZlv51YjZMna+JSQFYrz/rcSKpeZWWlVdqod4bmw5J+fn6cfAako06lUrFRzeTBpzuaHx4+fIgbN24gKCgILi4uZv2Ouro6SCQSODk54fDhw7wPElP6qJA0p6mpCTk5OTh48CAOHToEjUaDuLg4iMVizJ492+L2VNLe6+DggHHjxrGphY2NjYLx/1IqlSgqKoKvr69VdTY1NjayK5Vn5dUT88KamhpBOuACT95rXl4eXF1du827jHiqkfRCBwcHVqS5cCwuLy/Hr7/+apGIqNVqzJ8/H3Z2djh69KhgOtN6O31eSJpjNBpx4cIFpKSkIDU1FY8fP0Z0dDTEYjGioqK6/BT7rPZejUbDWrVYs/9XaWkpbt++jalTp8LNzY3vctqlvbx6V1dX3L17t8s28NZEQ0MD5HI53NzcemxLsXnzA4kXJiuVzkTitoaIiCUZ9w0NDXj11VdhMpnw888/C3J7uLdChaQdTCYTcnNzWVEpLy9HVFQUxGIxYmJiOrRvIO29Y8eO7XArqPXAnjX4fzEMw7qvBgcHm91VwwckF1ypVLIddZ6envDw8OjRLBAu0Gg0yMvLg4eHB3x8fHipnTgWE6Fu7qbdmXOqiooKXL9+3SIR0Wq1WLhwIdRqNU6cOCHI863eDBWSTmAymVBQUMCKSklJCWbPng2xWIy4uLinbk6lpaW4deuWWe291uD/xTAMfv31VzZWVohPfiRQq1+/fhg1ahSbB8JXXr05qNVqyOVyeHp6Wk2eTlvnVMSxmETiNodsiwYGBprdZq3T6bB48WKoVCqcPHlSkJ12vR0qJF2EYRhcu3aNNZW8ceMGIiIiIJFIEBMTg3//+99obGzEhg0bzN4HJpDtGqVSyU6Bd7f/l9FoRFFRETQaDUJCQgR5kKnT6ZCfn8/azpBtmNYxzaQNljxZW9NgWH19PeRyOWvFb60Qx2KVSsV+R4lQazQaXLt2DQEBAWZvixoMBixZsgT37t1DRkaG2SsaSvdChcQCiM+UVCrFwYMHcevWLQwcOBDvvfceli5dCnd3d86eIpv7fz169Ig9A+DS/8tgMKCgoIA1/rPmBoD2IJ1NQ4cOfWZ7bPNEzcrKSmi12hbbNXyeU9XW1iI/Px/e3t4YO3Ysb3V0FbKlSM5VSJfimDFjOhzSbYumpia8+eabuHHjBjIzM636jK6vQ4WEA2pqajB//nyoVCpIJBKcOnUKeXl5mDlzJhISEiAWizFy5EjORKWpqYndr+bKWkSr1bLdZd2dDd9daDQa9lDa19e3S9dBrVaz17S+vp6TgClzIKFgQjCQbA+VSsW2ipNOMIZhWgxBdvT9MhqNWL58ORQKBTIzM60u4I3SEiokHLBo0SLU19dj3759bK50aWkppFIpZDIZLly4gLCwMNaqxcvLizNRMRqN7FOgSqXCgAEDuuz/pdFokJ+fDxcXlx4Pc+KKuro65OfnY9SoURafJ7QOmDInr94cHj9+DIVCAR8fH4wePbrb/k53olKpcPXq1Rb+Zc1z1snqr/kQZOvVn9FoxMqVK3Hu3DlkZWVZVcs5pW2okHBAVVUVhg4d2uaAIcMwePjwIWt//8svvyAgIAASiQRisZjTQ1Rz/L9IDoenpyeb7yI0yFM86ZDjkvby6t3d3eHo6MjZ9aqurkZBQQEmTpyIUaNGcfI7e5qqqipcuXKlQxNMEn2tUqnYWAEbGxvY29vD398fq1atwpkzZ5CZmSnYVVlfgwpJD8IwDCorK3Ho0CHIZDJkZmbC19eXFZWubsc8i874f5EW5QkTJsDLy4uTv9vTkPfQEzdgEilAthTJ6o8YIZr72ZH34Ovri5EjR3Jcdc9A3oOfn1+XtqFIQ0lycjLWr18Pd3d31NfXY+/evRCLxbytjnfs2IEdO3agpKQEAODv749PP/0UMTExvNRj7VAh4QmGYfD48WOkpaVBKpXi9OnTGDduHGt/7+/vz9l/oub+X0qlEkajEYMHD0ZdXR0mT54s2K0D0lrKh4syWf2R1QqAFm3FnT1jIltBQnWCBoBHjx7hypUrXRaR5phMJqxduxanT5+Gj48Pzp49i8GDB2PRokX46quvOK64Y44cOQJbW1v4+PiAYRjs3bsXmzZtgkKhgL+/f4/XY+1QIbESamtrceTIETZTxdPTkxWVoKAgTkXl5s2bKCsrw4ABA55qgRWK/xcx/rOGifvWRp0Gg6FT17SyshKFhYWCzUMBft+Smzx5stlCyDAMPvvsM+zduxdZWVnw9fWFwWBAdnY27t69i7feeovjqs3DxcUFmzZtwrJly/guxeqgQmKF1NfXt8hUGT58OOtUHBYWZraoMAyD27dv4+HDhwgODoaTkxPUajVr1SIU/y+SqBcYGGjxrA7XMAyD+vp6VlQaGhpaXFNysExCtaZOnfpUpo5QICJiyZYcwzDYuHEjdu7ciczMTKvM5zAajTh48CCSkpKgUCjg5+fHd0lWBxUSK6ehoQHHjx9nM1WGDBnCdn+Fh4d3eguluXFhcHBwm91HZGLZWv2/iG1LaWkpgoODzU7U60naOlh2cHBAZWWlRdPefEM6zCwVkS1btmDLli3IyMhAUFAQt0VaSGFhIcLDw6HVajFkyBAkJycjNjaW77KsEiokAkKr1eLUqVNspoqdnR27Unn++efbXUEYjUZcuXIFOp2u08aFbfl/iUQiuLm58TLtToY/KyoqEBoaKkjbFq1Wi9u3b6OiogIAnmorFkrHHBERS3LuGYbB9u3b8eWXX+LEiRMICwvjuErL0ev1uH//Pmpra5GSkoIffvgB2dnZdEXSBlRIBIper2+RqWIymTBv3jw2U4WsIJRKJYqLi2Fvb4/AwECztquI/5dSqWTt2olVS0/4fzEMg+vXr+Px48cICQkRrHU4cVIOCgqCo6Mje1BPLNt7Mq/eXGpqapCfn29RlxzDMPjuu++wbt06pKenIzw8nOMqu4fIyEiMHz8eu3bt4rsUq4MKSS+gqakJv/zyC5up0tjYiLi4ODz//PPYsGEDXn31Vaxbt46TafWe9v8ymUwoLCwUtPcX8Pu5TltOymSolHhWWWO+OvD7vM6ECRPMHphkGAZ79uzB2rVrcfToUcyaNYvjKruPV155BV5eXtizZw/fpVgdVikk33zzDTZt2oSKigoEBgbi66+/xvTp0/kuSxAYjUacP38eu3btwoEDBzBhwgT4+/sjMTERUVFRnD7Nt+f/JRKJONmqIVtyBoMBwcHBVnFOYw4kIz4kJKTDc5225n9IBxgXefXmQvy/LBWRn376CWvWrMHhw4cRERHBcZXcsXbtWsTExMDLywv19fVITk5mt+HmzJnDd3lWh9UJyf79+7FkyRLs3LkTM2bMwNatW3Hw4EHcvHlTsN0tPU1OTg7i4+OxatUqREVFQSqVIjU1FUqlEnPmzIFEIkF0dHSHmSpdoT3/L5FIZNYEODGQtLGxQVBQkGDakltDMl3MyYjnMq/eEoiIjB8/3uzBVYZhcODAAaxcuRJSqRRz587luEpuWbZsGTIyMlBeXg5nZ2cEBATg448/piLSDlYnJDNmzEBYWBi2b98O4MkT2ujRo7Fy5Up88sknPFcnDF577TVERkZi+fLl7GsmkwkKhYK1v79//z4iIyMhFosRGxvLaeCTpf5fer0e+fn5sLe3F6yBJMMwuHPnDsrKyhAaGmqxaDfPAamsrIRGo2nhV9VdyY91dXWQy+UWm0jKZDIsX74c+/fvx7x58ziskGINWJWQ6PV6DBo0CCkpKZBIJOzrSUlJqKmpQVpaGn/FCQiGYZ55s2YYBkVFRayo3Lp1i81UiYuLg4uLC6eiUl1dzd4Ayf6/u7t7m/5fWq0Wcrkcjo6OmDJlitWcD3QFhmFQXFyMhw8fdluHGemqU6lUqK2thbOzMztZz9X2JRERSz3Mjh49iqVLl+Knn35CYmIiJ7VRrAurEpKHDx/C09MT58+fb9HJ8dFHHyE7OxuXLl3isbreCZl0l0qlkEqlKCwsxKxZsyAWixEfH89ppgrZ/ycRuAzDsKLi4uKCxsZG5Ofnw9XVFZMnT7bazqVnQdqUlUolQkNDu9UtmNBeXr0lWTUkWMvb29siETl+/Dj+/Oc/Y/fu3ViwYIHZv4di3VAhobCQ7Rhify+XyzFz5kyIxWIkJCRwmqlCbEXIVH1TUxN7sOzv7y/IMxGGYXDjxg1UVVUhNDSUlzbl1uFS9vb2rKh0dvuSiMiYMWMsCtbKyMjAokWLsGvXLvzxj38U5IMBpXNYlZDQrS3rgWEY3L9/nxWVixcvIiwsDGKxGGKxmNNMFTLg5ujoCJ1OB71eLzj/r+azLqGhoT0yX9MRRqORjRWoqqpiYwXc3d3bbStWq9XIy8uzOOL37NmzeO2117Bt2za88cYbVER6OVYlJMCTw/bp06fj66+/BvBkO8TLywsrVqygh+08QTJVZDIZZDIZcnJyEBgYyNrfjxs3zuwbBXGOJWFO5FC5tf+XSCTq0U6lrkDsZ2praxEaGmqVsy6dyatXq9WQy+VsOJi5nD9/HvPnz8dXX32Ft956i4pIH8DqhGT//v1ISkrCrl27MH36dGzduhUHDhzAjRs3BOuQ2ptgGAZKpZLNVMnKysLkyZNZUZk0aVKnbxyVlZUoKip6pnMs6VRSKpVspxKxarGGuRKTyYSioiKo1WqEhoZ2W/cUl7SVVz906FDU1tbC09MTkyZNMvt3X758GRKJBF988QXef/99KiJ9BKsTEgDYvn07O5AYFBSEbdu2YcaMGXyXRWkFwzCorq5ukakyYcIE1v7ez8+v3a6rhw8f4saNG5gyZUqn54NIp5JSqWRz1clWDR83cDJ139DQgNDQUKsQtq7CMAyqqqpQWFgIW1tbGAwG9rp21VctPz8f8fHx+L//+z/87W9/oyLSh7BKIaEIDzI8RzJVTp48iVGjRrGiEhgYyIrKL7/8AoPBgMDAQLi6upr191r7fzk7O7Oi0hPnEyaTqYURphBFBHjiTiyXy+Hh4YEJEyZAq9W2yKt3cnJi24qf1YF29epVxMXF4cMPP8THH39MRaSPQYWE0i3U19fj2LFjkEqlOH78OJupUltbi7S0NFy+fJmzaFydTsdu0zx+/PgpV12uaW7dEhISYpXnNp2hoaEBeXl5GDFiBHx8fJ66+TfPq3/06BEGDRrUZl799evXERMTgxUrVuDTTz+lItIHoULyDM6ePYtNmzZBLpejvLwcqampLbrJKJ1Do9EgPT0dn376KX777Tf4+Phg1qxZkEgkeO655zidXG998+sO/6+CggKYTCYEBwcLoqOsLRoaGiCXy+Hu7o6JEyd2eF1a59Xn5uaiuLgYzz//PNatW4e//OUv+OKLL3gVkQ0bNkAmk+HGjRsYOHAgZs6ciS+//NKiMx9K5xDm/4IeQqPRIDAwEG+++Sbmz5/PdzmCxcHBASdPnmSfgH/77TfIZDIsXLgQ9vb2iI+Ph0QieWamSmexs7ODp6cnPD09W8xUlJSUWOz/1dTUBIVCARsbG0GLSGNjY5dEBAD69++PESNGYMSIETAajTCZTMjNzcWHH37INmCkp6dj9uzZvDUcZGdn4/3330dYWBiamprw97//HVFRUbh+/XqPDIb2ZeiKpJPY2NjQFYmZ3LlzB3/6059w4MCBFs6xer0eZ86cYTNVALCZKi+99BKn5w6W+n8ZDAYoFArY2toiKChIkP5fwBMRycvLg5ubW5c67FpTUlKC6OhoJCQk4A9/+APS0tKQmpoKFxcXKBQKjqs2D5VKBXd3d2RnZwvKrl6IUCHpJFRILKMj/6+mpiacPXuWzVTRarWYN28exGIxXnnlFU5nM4j/F7Fq6cj/y2AwID8/HwMGDEBgYKBgRUSr1SIvLw+urq7w9fU1W0RKS0sxd+5cREdH49tvv2WvF8MwqKioaLeVu6cpLi6Gj48PCgsLrTILvjdBhaSTUCHpOYxGI86dO4eUlBQcOnQItbW1iI6OhkQiwZw5czi1HunI/6upqQn5+flwcHBAQECAIE0kgd9FxMXFxSIfs/LycsydOxezZs3C999/b7WiajKZkJCQgJqaGuTk5PBdTq+HCkknoULCDyaTCZcuXUJKSgpSU1NRWVmJqKgoSCQSzJ07l9NMFYZhWoRKGY1GAMDgwYMRHBws2O4s4qg8bNgwi0REqVQiJiYGYWFh2LNnj9WKCAC8++67SE9PR05ODmfdgZT2oULSSaiQ8I/JZEJ+fj5rf19aWorIyEhIJBLExsZymnVOzhL69esHk8kEg8GA4cOHQyQSwdXVVTAH7TqdDnl5eRg6dCj8/PzMvj4qlQpxcXHw9/fH//73P6t+/ytWrEBaWhrOnj1rkekkpfNQIekkVEisC2JNQkTl9u3beOWVVyAWiy3OVCHbQMOGDYOfnx+AJ3MxZKUiBP8v4ImIyOVyODk5wd/f3+zrUV1djdjYWIwfPx4HDhyw2vfLMAxWrlyJ1NRUZGVlwcfHh++S+gxUSJ6BWq1GcXExACA4OBibN29GREQEXFxczI4cpXAPsW8nolJUVISXXnqJzVRxc3Pr9E2UtMY+6yzB2v2/gCcdcXl5eRaLSE1NDeLj4+Hh4QGZTGY1768t3nvvPSQnJyMtLa3F7Iizs7NVuDH3ZqiQPIOsrCxEREQ89XpSUhL27NnT8wVROoRkqhBRUSgULTJVPDw82r2pkiG9rrTGWpv/F/C7iJCUSXNFpK6uDhKJBM7OzkhLS7NKV+PmtPc+d+/ejTfeeKNni+ljUCGh9FoYhsG9e/cglUqRmpqKixcvYvr06WymyujRo9mbT0VFBW7dugWRSNTpIb3WNDY2sttffPh/AU9ERC6XY/DgwRZFFavVasyfPx92dnY4duwYfaKnPBMqJJQ+AcMwePDgAZupcu7cOQQFBUEikcDHxwfvvPMOtm3bhsTERE4O7Nvz/xKJRN2WnEhEZNCgQZg6darZItLQ0IBXX30VDMPg2LFj3ZI5T+ldUCERCNRHiDuIpUdqair27t0LuVyO0NBQREVFITEx0ewVSXt0t/8X8GRoUi6XY+DAgRaJiFarxcKFC6HRaHD8+HE4OTlZXBul90OFRCBER0fj9ddfb+EjVFRURH2ELEAulyMqKgrvvvsuxo4dC6lUioyMDPj4+CAhIQGJiYmYPHkyp0OIrTPVHRwcIBKJnnLU7ervlMvlFg9N6nQ6LF68GFVVVTh58iSGDh1q1u+h9D2okAgU6iNkGUajkTXkXL16NYDfM1UOHz7MZqp4eXmxosL1ZDvx/1IqlaiqqsKAAQNYUemM/xfwu32LnZ1di8yXrqLX67FkyRKUlpYiIyMDLi4uZv0eSt+EColAoT5ClkMOxNujrq6uRaaKu7s7KyqhoaGci0p7/l/Dhg1rU1SIfQvxADO3HoPBgGXLluHmzZs4c+YM3NzcLH07lD4GFRIBQn2Eeh6SqSKTyXDs2DE4OzsjISEBEokEM2bM4NQupLn/V2VlJQC08P/q168fKyL9+/e3yEiyqakJy5cvx5UrV5CZmQmRSMTZ+6D0HaiQCBDqI8QvjY2NOHnyJGQyGY4cOQIHB4cWmSpc2oe05f81fPhw1NfXw97e3iJLe6PRiBUrVuDChQvIysrCyJEjOaub0regQiIwqI+QdaHX63H69GnIZDKkpaXBxsYGcXFxSExMxKxZszidBGcYBtXV1bh27RoMBgNsbGxY/6/hw4d3SVBMJhNWrVqFzMxMZGZmUqcGikVQIREI1EfI+jEYDGymSlpaGnQ6HeLi4iCRSBAREWHxZLjRaGQTGgMDA1tM1Wu1WgwfPhzu7u4d+n+ZTCZ89NFHOHbsGLKysugDCcViqJAIBOojJCyMRiNycnLYTJW6ujrExMRAIpEgMjKyy0OJRESAJ75vzVcfDMNAo9GwZyoajQaurq5wd3d/yv/LZDLhH//4B6RSKTIzM+kDCYUTqJAIBOojJFxMJhMuXrzIiopKpWqRqdLR5LjRaERBQQFMJhNCQkI63MLSaDTsmUp9fT3s7Oxw6dIlLFiwALt378aPP/6IzMxM+Pr6cvk2zeLs2bPYtGkT5HI5ysvLqcO2QKFCQqH0ICaTCXK5HFKpFDKZDGVlZYiMjIRYLG4zU8VoNOLKlSswGo0IDg7u8kF+Y2MjLl26hE8++QTXrl2Dvb09/vrXv+K9996zinOR9PR0nDt3DqGhoZg/fz4VEoFChYRC4QmTyYSrV6+yolJcXIzZs2cjISEB8+bNg52dHd5++20sXrwYc+fONbsbjGEYbN68Gd999x2WLFmCS5cuITs7G8HBwThw4AC8vb25fWNmQjN/hIswA6gpVsGOHTsQEBAAJycnODk5ITw8HOnp6XyXJRj69euHoKAgfP755ygqKoJCocBzzz2HnTt3YuzYsZg5cyauXbuGiRMnmt3iyzAMvv76a2zZsgWpqalYv349Tp8+jfLycrzzzju05ZfCCXRFQjGbI0eOwNbWFj4+PmAYBnv37sWmTZugUCjg7+/Pd3mCRafTITY2Frdu3YKnpyfkcjlmzpwJiUSChIQEjBgxolP2KQzDYNeuXfjss89w/PhxPPfccz1QvfnQFYlwoSsSitnEx8cjNjYWPj4+mDhxItavX48hQ4bg4sWLfJcmWIxGIxYuXIja2loUFhbiwoULuHXrFuLj45GSkoJJkyYhKioK27dvR2lpKdp7DmQYBrt378a//vUvHDlyxOpFhCJsqJBQOMFoNGLfvn3QaDQIDw/nuxzBYmtri/j4eNZ918bGBmPHjsWaNWuQk5ODu3fvYsGCBTh27Bj8/f0RERGBrVu34u7du6yoMAyDH3/8EWvXrsXhw4fx4osv8vyuKL0durVFsYjCwkKEh4dDq9ViyJAhSE5ORmxsLN9l9XoYhkFFRQVSU1Mhk8mQnZ2NKVOmQCwWw97eHuvXr4dMJkNUVBTfpXYaurUlXKiQUCxCr9fj/v37qK2tRUpKCn744QdkZ2fDz8+P79L6DAzD4NGjR0hLS0NycjLOnDmDn376CYsXL+a7tA5Rq9UoLi4G8GTQcvPmzYiIiICLi4tVtCdTOgcVEgqnREZGYvz48di1axffpfRJSKSwUMw8s7KyEBER8dTrSUlJ2LNnT88XRDEL7mxKKRQ8mY3Q6XR8l9FnsbGxEYyIAMDLL7/cbsMARThQIaGYzdq1axETEwMvLy/U19cjOTkZWVlZOHHiBN+lUSiUHoQKCcVsKisrsWTJEpSXl8PZ2RkBAQE4ceIE5syZw3dpFAqlB6FnJBQKhUKxCDpHQqFQKBSLoEJC6dVs3LgRNjY2WLVqFd+lUCi9FioklF5Lbm4udu3ahYCAAL5LoVB6NVRIKL0StVqNxYsX4/vvv8ewYcP4LodC6dVQIaH0St5//33ExcUhMjKS71IolF4Pbf+l9Dr27duH/Px85Obm8l0KhdInoEJC6VWUlpbigw8+wKlTp+Dg4MB3ORRKn4DOkVB6FYcOHUJiYmKLREGj0QgbGxv069cPOp3O7LRBCoXSNvSMhNKrmD17NgoLC1FQUMD+TJs2DYsXL0ZBQQEVEQ745ptv4O3tDQcHB8yYMQOXL1/muyQKz9CtLUqvwtHREVOmTGnx2uDBg+Hq6vrU65Sus3//fqxevRo7d+7EjBkzsHXrVsydOxc3b96Eu7s73+VReIKuSCgUSqfZvHkz3nrrLSxduhR+fn7YuXMnBg0ahP/+9798l0bhEboiofR6srKy+C6hV6DX6yGXy7F27Vr2tX79+iEyMhIXLlzgsTIK39AVCYVC6RRVVVUwGo0QiUQtXheJRKioqOCpKoo1QIWEQqFQKBZBhYRC6QH+9a9/wcbGpsWPr68v32V1ieHDh8PW1hZKpbLF60qlEiNGjOCpKoo1QIWEQukh/P39UV5ezv7k5OTwXVKXsLOzQ2hoKDIyMtjXTCYTMjIyEB4ezmNlFL6hh+0USg/Rv39/wT+5r169GklJSZg2bRqmT5+OrVu3QqPRYOnSpXyXRuERKiQUSg9x+/ZtjBw5Eg4ODggPD8eGDRvg5eXFd1ldYuHChVCpVPj0009RUVGBoKAgHD9+/KkDeErfglqkUCg9QHp6OtRqNSZNmoTy8nKsW7cODx48QFFRERwdHfkuj0KxCCokFAoP1NTUYMyYMdi8eTOWLVvGdzkUikXQw3YKhQeGDh2KiRMnori4mO9SKBSLoUJCofCAWq3GnTt34OHhwXcpFIrFUCGhUHqANWvWIDs7GyUlJTh//jxrdb9o0SK+S6NQLIZ2bVEoPUBZWRkWLVqER48ewc3NDS+88AIuXrwINzc3vkujUCyGHrZTKBQKxSLo1haFQqFQLIIKCYVCoVAsggoJhUKhUCyCCgmFQqFQLIIKCYVCoVAsggoJhUKhUCyCCgmFQqFQLIIKCYVCoVAsggoJhUKhUCyCCgmFQqFQLIIKCYVCoVAsggoJhUKhUCzi/wHTyqLUMD2lJAAAAABJRU5ErkJggg==" - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "show_results = partial(show_results_complete, data_=data, projection=\"3d\")\n", - "show_results(label=\"input data\")" - ], - "metadata": { - "collapsed": false - } - }, - { - "cell_type": "code", - "execution_count": 5, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": "
", - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZIAAAGlCAYAAADQ/XDvAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOz9eZRk+VnfCX/ufm/suWdVZe1dS++belG1QCC0WKAxZtOgYcZahsW8MtjzHl6DfTwvMKAjM2M8+MCYATyv0IwB2RKSQYC1gRq1JDfdre6qrn1fc8+MPe5+7+/940ZEZWRmVeVald19P+f0kSoz8saNGxG/731+z/N8H0kIIUhJSUlJSVkj8r0+gZSUlJSUNzapkKSkpKSkrItUSFJSUlJS1kUqJCkpKSkp6yIVkpSUlJSUdZEKSUpKSkrKukiFJCUlJSVlXaRCkpKSkpKyLlIhSUlJSUlZF6mQpLwl+MhHPsKePXvu2XNJksSv/Mqv3JXnT0m526RCktJDs9nkl3/5l/l7f+/v0d/fjyRJ/OEf/uGajmXbNr/yK7/C888/v6HnmJKSsrVQ7/UJpGwt5ubm+F/+l/+FXbt28eijj65LBGzb5ld/9VcB+J7v+Z6NOcE3KI7joKrp1y3lzUkakaT0sG3bNiYnJ7l69Sr/2//2v93r01kxrusSx/FdeS4hBI7jrOpvTNPc0kLSarXu9SmkvIFJhSSlB8MwGB0dXdFjX3nlFd73vvcxODiIZVns3buXj33sYwBcuXKFoaEhAH71V38VSZJWlCe4dOkSP/ZjP0Z/fz+ZTIZnn32Wv/zLv+x5zPPPP48kSXzmM5/hX/7Lf8mOHTvIZDLU63UA/vN//s889NBDmKbJQw89xBe+8IVlnyuOY37rt36LBx98ENM0GRkZ4Wd+5meoVCo9j9uzZw8f+MAH+PKXv8zb3vY2LMvi937v91Z0jTosfu2/8iu/giRJXLhwgY985COUSiWKxSIf/ehHsW17yd//h//wH3jyySexLIv+/n5+/Md/nOvXr/c85oUXXuDHfuzH2LVrF4ZhsHPnTv6n/+l/WiJ6H/nIR8jlcly8eJHv//7vJ5/P8xM/8ROrej0pKQvZurdIKVuamZkZ3vve9zI0NMQv/dIvUSqVuHLlCp///OcBGBoa4nd/93f52Z/9WX7oh36IH/7hHwbgkUceueUxp6enOXLkCLZt8/M///MMDAzw6U9/mr//9/8+n/vc5/ihH/qhnsf/2q/9Grqu8wu/8At4noeu63zlK1/hR37kR3jggQf45Cc/yfz8PB/96EcZGxtb8nw/8zM/wx/+4R/y0Y9+lJ//+Z/n8uXL/M7v/A6vvfYa3/rWt9A0rfvYs2fP8qEPfYif+Zmf4ad+6qc4dOjQRlxGPvjBD7J3714++clP8uqrr/Lv//2/Z3h4mN/4jd/oPuYTn/gE//P//D/zwQ9+kJ/8yZ9kdnaW3/7t3+a7v/u7ee211yiVSgB89rOfxbZtfvZnf5aBgQFeeuklfvu3f5sbN27w2c9+tud5wzDkfe97H+94xzv41//6X5PJZDbk9aS8RREpKbfg5ZdfFoD41Kc+teR3X/jCFwQgXn755Vv+/ezsrADEL//yL6/o+f7pP/2nAhAvvPBC92eNRkPs3btX7NmzR0RRJIQQ4utf/7oAxL59+4Rt2z3HeOyxx8S2bdtEtVrt/uwrX/mKAMTu3bu7P3vhhRcEIP7oj/6o5++/9KUvLfn57t27BSC+9KUvreh1fPjDH+55LiHEkuvwy7/8ywIQH/vYx3oe90M/9ENiYGCg++8rV64IRVHEJz7xiZ7HHT9+XKiq2vPzxddCCCE++clPCkmSxNWrV3vODxC/9Eu/tKLXk5JyJ9KtrZQ10bkL/ou/+AuCINiQY/7VX/0VTz/9NO94xzu6P8vlcvz0T/80V65c4dSpUz2P//CHP4xlWd1/T05OcvToUT784Q9TLBa7P3/Pe97DAw880PO3n/3sZykWi7znPe9hbm6u+9+TTz5JLpfj61//es/j9+7dy/ve974NeZ0L+Uf/6B/1/Pu7vuu7mJ+f727Tff7znyeOYz74wQ/2nOfo6CgHDhzoOc+F16LVajE3N8eRI0cQQvDaa68tee6f/dmf3fDXk/LWJBWSlDXxzne+kx/5kR/hV3/1VxkcHOQHf/AH+dSnPoXneWs+5tWrV5fdMrr//vu7v1/I3r17l/w9wIEDB5YcY/Fxz58/T61WY3h4mKGhoZ7/ms0mMzMzt32ujWLXrl09/+7r6wPo5mnOnz+PEIIDBw4sOc/Tp0/3nOe1a9f4yEc+Qn9/P7lcjqGhId75zncCUKvVep5HVdVlt/tSUtZCmiNJWROSJPG5z32OF198kS9+8Yt8+ctf5mMf+xi/+Zu/yYsvvkgul9v0c1h4B75a4jhmeHiYP/qjP1r2951CgY14rtuhKMqyPxftCdhxHCNJEv/lv/yXZR/buc5RFPGe97yHcrnML/7iL3L48GGy2Szj4+N85CMfWVLRZhgGspzeR6ZsDKmQpKyLZ599lmeffZZPfOIT/PEf/zE/8RM/wWc+8xl+8id/EkmSVnWs3bt3c/bs2SU/P3PmTPf3d/p7SO7iF7P4uPv37+drX/sazz333KaJxEawf/9+hBDs3buXgwcP3vJxx48f59y5c3z605/mH/7Df9j9+Ve/+tW7cZopb3HSW5KUNVGpVLp3zR0ee+wxgO72VqcSqFqtruiY3//9389LL73Ef/2v/7X7s1arxe///u+zZ8+eJXmOxWzbto3HHnuMT3/60z1bOV/96leX5Fc++MEPEkURv/Zrv7bkOGEYrvicN5sf/uEfRlEUfvVXf3XJ9RZCMD8/D9yMbBY+RgjBv/23//bunWzKW5Y0IklZwu/8zu9QrVaZmJgA4Itf/CI3btwA4Od+7ucoFot8+tOf5t/9u3/HD/3QD7F//34ajQZ/8Ad/QKFQ4Pu///uBZDvogQce4D/+x//IwYMH6e/v56GHHuKhhx5a9nl/6Zd+iT/5kz/h/e9/Pz//8z9Pf38/n/70p7l8+TJ/+qd/uqKtmE9+8pP8wA/8AO94xzv42Mc+Rrlc5rd/+7d58MEHaTab3ce9853v5Gd+5mf45Cc/ydGjR3nve9+LpmmcP3+ez372s/zbf/tv+dEf/dH1Xsp1s3//fn7913+df/7P/zlXrlzhH/yDf0A+n+fy5ct84Qtf4Kd/+qf5hV/4BQ4fPsz+/fv5hV/4BcbHxykUCvzpn/7pkp6YlJRN4Z7Vi6VsWTrlrsv9d/nyZSGEEK+++qr40Ic+JHbt2iUMwxDDw8PiAx/4gHjllVd6jvXtb39bPPnkk0LX9RWVAl+8eFH86I/+qCiVSsI0TfH000+Lv/iLv+h5TKf897Of/eyyx/jTP/1Tcf/99wvDMMQDDzwgPv/5zy9bkiuEEL//+78vnnzySWFZlsjn8+Lhhx8W/+yf/TMxMTHRcz1+4Ad+4M4Xrs1qyn9nZ2d7HvepT32q5zovfE3veMc7RDabFdlsVhw+fFh8/OMfF2fPnu0+5tSpU+Ld7363yOVyYnBwUPzUT/2UOHbs2JIS7g9/+MMim82u+PWkpNwJSYhF8XJKSkpKSsoqSHMkKSkpKSnrIhWSlJSUlJR1kQpJSkpKSsq6SIUkJSUlJWVdpEKSkpKSkrIuUiFJSUlJSVkXqZCkpKSkpKyLVEhSUlJSUtZFKiQpKSkpKesiFZKUlJSUlHWRCklKSkpKyrpIhSQlJSUlZV2kQpKSkpKSsi5SIUlJSUlJWRepkKSkpKSkrItUSFJSUlJS1kUqJCkpKSkp6yIVkpSUlJSUdZEKSUpKSkrKukiFJCUlJSVlXaRCkpKSkpKyLlIhSUlJSUlZF6mQpKSkpKSsi1RIUlJSUlLWRSokKSkpKSnrIhWSlJSUlJR1kQpJSkpKSsq6SIUkJSUlJWVdpEKSkpKSkrIuUiFJSUlJSVkXqZCkpKSkpKyLVEhSUlJSUtZFKiQpKSkpKesiFZKUlJSUlHWRCklKSkpKyrpQ7/UJpLy1EEIQRRGe56EoSvc/WU7vaVJS3qikQpJy1xBCEAQBYRjieV7357Iso6oqqqqmwpKS8gZEEkKIe30SKW9+oigiCALiOEaSJHzfR5ZlhBAIIYjjGCEEkiQhSVIqLCkpbyBSIUnZVIQQhGFIGIYASJLUjUwkSVr28R1R6dB5nK7raJqGqqrL/m1KSsq9Id3aStk04jjuRiFAN9roiEQnAlmIJEkoitL9d0dYXnzxRQ4dOkSpVEKWZRRF6YlaUmFJSbl3pEKSsuF0Fv8gCHq2qxY/ZiWLf0dYOv+rKEr32L7vI0lSV1g0Tes+JhWWlJS7RyokKRtKZ9vqxIkTDA8PMzg4uCGLeucYt4pYFgvL4hxLKiwpKZtHKiQpG0ZnQY+iiEajQV9f34Yt4Au3xBb/vCMsnd/HcYzv+3ielwpLSspdIBWSlHXT6Q0Jw5A4jpFl+ZYL/2bSEYdUWFJS7i6pkKSsi85WVhRFAF0R6ZT2bhRrEablhKXzn+d5+L7fPedUWFJS1k4qJClrpnOnvzAKWcitFv57tUgvTPorirJEWBZGLJ0y404PSyosKSm3JhWSlFXT2crqVGUtt9DeKYJY7cK8GVtltxMW13W7j0mFJSXl9qRCkrIq4jgmDMMlW1mLuRc5kvWyEmFxXZcwDBkcHEyFJSWlTSokKStiJb0hC9loIblXyfvFwlKpVKhUKuRyOSAR0sU5llRYUt5qpEKSckeWszm500L5RoxI7kTndUuShKZpPT5hnufhum4qLClvSVIhSbktC3tDOvmClbBWIQmixE5FU3qfZysK02JB7QhLFEVdq/yFOZaOrctKhDgl5Y1EKiQpy3Kr3pCVstqFv+YEHBtvcHG2hQD29Fs8NlagP6v3nNNWpiMQHbFdKCxhGHZ/v5xPWCosKW9kUiFJWcKtekNWw2qExPYjvnpmjstzNv0ZDUmC71yvMVX3+MDDIxTMN6bb762EJQzDrvtxR1gW+oSllvkpbzRSIUnp4U69IStlNUJyed7m6rzN3gELtb2lVcpoXJyzuTDb4omdRWDrRCTruSapsKS8GUmFJAVYWW/IaliNkJRbySKqLsiLyJKEqcpM173u8d5s3ElYIJ0emfLGIBWSlA3ZylrM7YSk6fp86/glWrHCQLGA44fEyzw2iASW3uv0+2bmVsKy0Nk4nR6ZshVJheQtThRFXL9+HcuyKBaLm+7WOz5b4fe/cpTJlkDEMZEQZAwdVddRRMjuoQIAc00fQ5XZP5jpHu+txnLC0qmiC4KAVquF4zhs27atKyzp9MiUe0EqJG9RFvaG3Lhxg5GREUql0oYdf7GQCCEYHx/nM988TSXO8czhYVRFxvd9Ls/UqLRcpqamuDY+jWkZDOYzvOPgMGMls+cYb2UWz2JptVpMTU0xODi4bMSSTo9MuVukQvIWZPEI3M3YGpEkqXv8MAw5deoUUzOzRPlR9hkWmqogEBiGwcEdQ1wq27z//kGU2KdWq6P4DZwbp/nW1Hn6+vrwfb/r1nsv2Wpi1hEOuPWQr3R6ZMpmkwrJW4iFC83CqixZlruL/kbRWazq9TpHjx7FNE2effbtnHlpksVrsSQBAixd5YFtfcAIkAherVajUqkwPz/PpUuXmJiYoK+vr/ufYRgbet5vJBaPK06nR6bcK1IheYtwu4T6ZnWN1+t1/u7v/o49e/awe+8+dFXhvqEsL14uUzQtOuvXbNOnYKlsL5o9fy/LclcwGo0G/f39ZDIZKpUK169f59SpU2QymR5h0TRtw1/HVuZOfmfpkK+Uu0EqJG8BFtqc3MryfSMjkjAMmZ2dpdG0kUcP8pXxmNalS2wvmRwYzjJWsrgw28LUZPxIYCgy7zzQTylzaxHo7P8PDAwwMDAAQBAEVKtVKpUKly9f5sSJE+Tz+a6oFIvF7rbPm5HFEcntSKdHpmwmb95vWcqKbU42cpphrVbj2LFjCCG4FBS4drmFpSlkNIWTE3WuzLd47wMjHBq2GK+65E2VA8M59g5Yq34uTdMYGhpiaGgIAM/zusJy9uxZPM+jUCh0haVQKPRs/bzRWc97djthSadHpqyWVEjepKymN2QjtraEEFy7do1z586xb98+5loB56/Os2NU7/plDeR0Lsw2OTlR4797clv3uVfCSs7RMAxGRkYYGUlyLI7jdG3fJyYmCMOQYrHYFZZ8Pv+G7sFYTURyJxYKy0qmR3ZKjVNn4xRIheRNSadDfaU2J+tNtgdBwIkTJ6hWqzz55JP09/dz/qXTtPyYvkXbVQNZncmaR8uPyOqbGx1YloVlWWzfvh0hBLZtd4Xl2rVrCCEolUr09fXR399PNptd0aK4lRbOzTqXdHpkympIheRNxMLekNXYnKwnIqlWqxw7doxcLsdzzz2HrifRh6FKyFLSna6rN8/BC2MMRUZXVhcJrDdqkiSJbDZLNptlbGwMIQTNZrMrLJcvX+5J7vf19WFZ1pZeFDcyIrkTKxGWSqVCJpPp5qZSYXnrkArJm4TlekNWs2202ohECMGVK1e4cOEC9913H4OjY/zXqzXOTjXQFJmCiOk3Ja6WbfYMZNAUmaYXUnUC3nt4CF1NoqDVLDIbPXExn8+Tz+fZtWsXcRzTaDSoVCpMT09z/vx5NE3rERbTNO984LvIvexpWU5YJiYmGBgY6JZkL2eZnwrLm5NUSN7grHYE7nLIstzNpawE3/c5fvw4jUaDp556CtXK8f+8eI3TUw1MVSEWglqjxbABw0WDq2WbOAZDlXlyZ4nn9g8AqxOuzV58ZFmmWCxSLBbZs2cPURR1e1jGx8c5c+YMpml2y4t93+9GX/eKuxmR3ImFopJOj3zrkQrJG5jFCfW1DkhazbZRpVLh2LFjFAoFjhw5gq7rfOP8HGemmuwdyKKryZbVFD43yh4/vH8QU5NxgoiBrM7u/gySBEGw+pzM3bwDVxSF/v5++vv7gaSkuVqtcvXqVVqtFt/85jfJZrPd/EqpVLonpcZbaRFeGGGm0yPfWqRC8gblTr0hq2ElyXYhBJcvX+bixYscOHCA3bt3d5/z7HQTXZW7IgKQ0WXCGKYbLt//0OiSY62We724qKrK4OAgrVYrsXU5eLBbanzhwgUcx1nSw7LZpcZbza7ldhFSOj3yzU0qJG8w1jsCdznuFJH4vs/rr79Oq9Xi6aefplgs9vxeV+RlbOCTYyryxi0CW2nh1HWd4eFhhoeHgaSHpVKpUC6XOX36NL7v95QaFwqFDS813kpbW0D387gSVjPka/FWWMrWIxWSNxCbMTcEbp9sL5fLHDt2jFKpxJEjR9A0jaYbcnyiTs0J6M/q7BvMcPRGjaYXkjOSj1TNDTEUif2D2XWfX+cctzKGYTA6Osro6ChCiJ4elhs3bhDH8ZIelvW+pq0mJOs5n3R65BubVEjeIMRxzPT0NNPT0xw+fHhDF5DlIhIhBBcvXuTy5cscOnSInTt3IkkS18o2//eL17lecQCBhMTOPotDw1nOz7YYrzoggEjw6LDC/qGNEZLOOb0RkCSJTCZDJpNhx44dCCFotVpdYbl69SoApVKJ/v5++vr6yGQya85vbRU6JecbQTo98o1FKiRbnIUjcDvbJxu9eCy2SPE8j9dffx3HcXjmmWcoFJJhU1Es+NPXJrhWdtg/lEGVZYIo5tJci75MkY8d2cW1iosiSRSwEbXJDe+8fiMiSRK5XI5cLsfOnTsRQnRLjefm5rhw4QKqqi7pYbkTWy0iWW0592q4lbB0nI0hFZZ7SSokW5g4jgnDsLuVpSjKhtu9Q+/W1vz8PMeOHWNgYIDHH3+8pxJpvOpwZd5mrGSitr+gmiKzrWByca7FjzyxnQe3J/mTqakpLtdu/XyrXXA2y6F4LWxETqpQKFAoFNi9ezdxHFOv1ymXy0xOTnL27FkMw7ijXf5WE5KNjEjuxHLCsnB6JNBtzO14rKXTIzePVEi2ILfqDdksIelUbZ0/f54rV65w//33s2PHjiVfOj+MiWKBtqgrXVUkwljgRzcX+q208G91ZFmmVCp1J1RGUdStCLudXf7dXLhXwmZGJHdiuVksU1NTzM7O8vDDD3cfk06P3BxSIdliLLQ5gd67980YQAXJnVu9Xsf3fZ599lny+TyQbGWdmWpwfqaJJEns7s/Ql9GYaXiM9d3ceplp+IwWDUbyN++aN1pItoow3Y1zUBTljnb5uVwOgEwmQxiGW8IufytFSAsbJFVVTadHbjL3/tOX0mVhb8jCsL3DZiyms7OznDt3DlmWefvb395dkMIo5o9fvsELF+bxgxghgaXJ7O7PUHMCLsw2yekqdS8ga6i874GRnj6SrbLwvxlYbJfv+35XVMrlMi+88MKWsMvfihFS53yWi1jS6ZEbRyokW4DVzA3ZqIiks5V17do1duzYQbVa7bmrffV6jb89N8dAVqfQn9iCVGyfy3M2739omLlmwEzd5fC2PEf29XP/tnzP8e8kJG/kHMm9Rtd1RkZGKJfLGIbBtm3btoRd/r3c2lqOTrPuciwUlnTI1/pJheQes5rekI0SEsdxOHbsGGEY8va3vx3btimXyz2Pef1GjUgICtZNG/i+jM5c08cNYn76u/bc9jnShX/z6WwlrcYuv6+vj1wutykL4laOSG7Hwm0wSIVlLaRCcg/pfFDv1twQgJmZGY4fP87IyAj3338/iqLguu6SRd8PY5RlzkeS6Emq34o7CclqRWYtDsVvBRZ/Zu6VXX6nHHcrLayr6bRfyO2EJZ0euTypkNwDFvaGrGZuSKffYy1f2DiOOXfuHNevX+fBBx9k+/bt3d91Fuk4FnhhjKnJHN6W5+8uV/DDuJv7cIMkajo4fOcmw82ISNIIp5eVXI/b2eXPzMxsmF1+51y2WkSyEbmihcKy3PTIhcLyVp0emQrJXWY9NiedL+lqvyC2bXPs2DHiOObIkSNks71CIJB4dSbiS392iqoTMJI3eG7/APdvy3FqsompyQiSKOXxnSWe2FW643NuRtVWSi9ruaFYqV3+QmFZiV1+573eSu9THMdd2/+NZGElZTo9MiEVkrvIakfgLqbz+NUs0FNTU5w4cYLt27dz6NChZQXor07P87VrMYMDLlld4cJsi0vzNh98cgeP7ixx7HoNWYLHd5U4sq8fU7uziKURyeazEVtJt7LL71i5nDx5smuX39fXR6lUWnZx7mw7bqWFcq1bW6slFZZUSO4Ki3tD1voBWhiR3Ik4jjlz5gwTExM89NBDjI6OLvu4csvnhYtVTAV2tntD+rM6NyoOz5+d5dd/8AHe/+DIqs/1TkISxzHfPnGJh/Ztp5TLrOh4KUvZ6OvSscsfHBwEklLjjrBcvHgR27bJ5/Ndj7COXf5W3dq6F+dzO2G5du0ajUaD++677001PTIVkk1m8Qjc9cxXWKmQtFotjh07BsCRI0fIZG69UN+oOtS9iOyi3Yv+rM58K2Cm4bGr/84L/WJuJyRCCP722AVeO3+dY5cm+K6H9/Pwvu13vC5RHHNl3uZ6xcENY7YVDPYMZLqOw3eLrfJlvxsR2q3s8iuVSo9dfqeJdStFjRuVI1kvC7/znTL/TuHMm2V6ZCokm8TChqeNnBtyp+qlyclJTp48yY4dOzh06NAd78iyuoquyPhe7wLghRGaIpHR1/ZFvJ2QvHL2GscujgMQhBF/89o5Lk3O8+4nD5GzlnpKdTg3H1Cvl4HEpuVa2eFq2eW77+snb771Psr3okrqVnb5c3NzALzwwgs9pcYbYZe/Vu5VRHI7oihaYiZ5u+mRbxRheet9++4CmzU3pHOs5YQkiiJOnz7N9PQ0Dz/8MCMjy29HCSG4VnY4N9NEU2Qe2pZn32CGF89V8cIYQ5Vx/IiZhs/3HBxkMHfrhf1OLCckZ65N8Y1j55f8/MrUPH/01Zd51xMHOTA2vOT3VTfmcjVk3y6VQls0YiG4Mu9wca7FY2PFJX+zGWylO264t9HRQrv8vr4+yuUyb3vb25a1y+8ISzabvWvnvJWFZCG3cjZeKCwf+tCH+PCHP8yHPvShe3HadyQVkg0mjmOmpqYA6O/v3xTL98VC0mw2OXbsGLIsc+TIkVtakEex4P/5u+t87fQMLT8RuYGsxrsP9nPlBkxUHSIBqizx2M4iH3pqbF3nuXjRvT5T5kt/d+qWf+P4AX/54knu3z3POx/Zj2nc3G+rezFeJLoiAiBLEgVT5VrZuWtCspXYSn0bnUX7Vnb58/PzXLx4cYldvmmam/Ya3ihCspjlhGVqampL+Kndiq17Zm8wFtqcTExMYBhG13RvI1ksJBMTE5w8eZJdu3Zx4MCB235xXrgwz18enyJnqOwdMIgFTNZc/urULN+3LeaBJ/ZTc0OG8wYPjOZRlfV9CRcKyXytyRe/fZyMoVO3HSRuvXhcmphlcq7G9z15iJ3Dfe3XLSHE0sVzOTfitwpbKTparqv9Vnb5lUqFqampFdvlr5WtKiQrKadeiCRJ2LZ921znvSYVkg1g8VaWoijd/7/RdHIPYRhy+vRpZmZmePTRR7vJ0Nvxwvk5BEkiHUCRYEfJ5OJsk6uKxH+/s7hhycmFpcot1+fz3ziK4wVAQNY0GJ+cwvcDLMvCtMzu86qyjBAwV7f53b98ib7+Ae7ftwPJizEVmG36DLddhr0wxg5iHh/Yul+wzWQrRSQrOZeFdvl79+5dsV3+Wrmd19a9Yi0FAJ0Jm52Chq1IKiTrZLneEEVRuqW+G40sy7RaLU6ePImmaTz33HMr7kSuOgG6svSuEUnCjTa2yqWzqLh+wBe+cZS6ndTTB0HA2evXUWSJQi5LuVbFn/XRdZ2MZVEq5AmQuVZ2KdsB4xWHixNzDPb3UTKTxsjL8zZS+1ocHM6ybzAVknvNWgwbV2qXv7CHZTXbO1s1IlnLObVarSWNxFuJVEjWyMLekMU2J5s1N6SzfXbq1Cn27NnDfffdt6oP5aGRPBdmWz0LUOKpBUPmxm6VJNVlgr/49nFmqg0A7JbN9PQ0uVyOgYEBojji0NAQjZZDq2UjxSE3JqaouBFzvkpfVsdUDRQRcv3aVeZzBd79+EFMXSGMBaWMymjBRJW3xmJ6L9gqQrIRho23ssuvVCqcP38e13VXZZe/VYVkLTdrnf6drUoqJGtg8QjcxVVZmzHJMAxDTp48ie/77Nu3jwMHDtzxb6JYcHa6QcuL2D2Q4b0PDPPK1QqX5lqUMjpRLKi7AQ9ty7Nfq274OZ+8UUbkZBRZoVwuU61WGRoeIp/PJ3ewSDQdD01VGRsdotpyyBZKuNN1zIZLHIZUHQdIrumNqRn+/Jvf4R9/4Bn6C7kNPdc3IlspR7IZFvIdu/xOBaLjON2I5eTJk3e0y3+zCInv+wRB0B1mthVJhWQV3GoE7mI2OiKp1+scPXoU0zTJ5/Mr+kBdnmvxfzx/mUtzLYIoJm+qvPf+Yf7f776PL74+xempBpom870Ht/GDj47y8jevb+jC9NLpq1yabfBA3yjXxifwfJ+xsTF0Y2mi0TJ1qk2HQtakYbvomoauxxStLAIIg4CWbRPHAdev3+A3PjXBcw/t5ZmH7qO/v39T/JTeCGylra27YSHfscvftm3bErv869evE8dxT6nxVhSStWwfN5tNgFRI3gwsTqjfrkNdluUNSbYLIbh+/Tpnz55l79697N+/n5deeumOIuX4Ef/maxe4OGezrWCgqzJVO+BPX5ugP6fz/3nvARw/QpGlrrPvRnpjnbg0wYunrwBw7uJlshmLwwf24/hL80Y506DRcvHCmOvzTTK6ymDeZLbp40cxupL4EwlZI2fJjG3rRyPklQtTnLs+zQOjOYYG+pZYdmwmW2Xxhq1zLnd7qNVK7PIBzp07x8DAAH19fWQymXt+vdaSI2k2m92ena1KKiQrYOEI3JU0F27E1lYYhpw4cYJKpcITTzzRTUiuJNp59XqVK/M2YyWzKxQDOR0vjPnyyRk+8NAolr60KWojoqjLk/N89ZXT1Gt1AArFAv19/TheSCFr0rQ9YhLBMg2NuuNxo+Iw0/AJohhFliiaKjv6c0yUmzTFze3DohxStHSQ9O6X6pItURrJ4nkep06dIgzD7l1pf3//pg1x2gpstYjkXjdHLrTL932fb37zm+RyOWZnZ7lw4cKG2OWvl7VsbXVKf7dadLWQVEhuw0pH4C5mvRFJrVbj2LFjWJbFkSNHemrrl2v0W0zFDhDQM0MdIKMrVO0AL4yXCMlKjnsnpit1/vybR5mYnMR1kiqtQqFAp2WkbrsYmookyYRhSBCETNVcblRcLF0hq2sEsWCu5SOAh3eWaDgBkgSRZxN5AYvbT8JY8NLFaQ7tHOF7nnqaOAwol8tUKhWuXLnSHeLUiVhu1az5RmQr5Ui22nTEDnv27OmW43d6WCYmJtZsl79e1iIkzWbzrjoCrIVUSG7BemxO1hqRdNxBz507x759+9i3b9+S51xJRDJaMFAkCTeIeizfG27IfcM5TG3pF369EUmt5fDnLxzl0pWrKIrC2M4xrly5AovWOi8I0RQZS1douR6zTR9dlbHa56QrEgVTo+aGeH7AaMHAMlRuTNrYt3n+s9enmS7XedcTBykOjuIY/QwNRaiRi+I3mZyc5OzZs5im2bVNv5Ul+u3Yaov3Vllcttq89s5nuSNuiqJ0BQPWbpe/Hjo51tUKyVYv/YVUSJZltSNwF7OWZHsQBJw4cYJqtcqTTz7ZnQ+xkmOfmKjzxdenOD/TZCRv8K7DQxwezXF8vE5/Vu/mSBRZ4gMPj9yyQGCti6TjBfzhF/+Wc5euMTjQz8jwYDcfIhYpiUzSZ1OzPVRFQSCxeLyJpkhEriCKBaoqU7c9spaO5zq3PAcJ8MKQ/+vLr6Bli4yOjKIqMpoicd9wH088tgdJxFSrVcrlMpcuXaLVanXLSfv7+ykWi1vyrvp2bJXFe6tFJHf67i62yw+CoJtfWWiXv1BY1pt763xv04jkTc5aR+AuZrVCUq1WOXbsGLlcjueee+62IfbiY790pcK/+vI5Gk6IpSuMVx2Ojdf5wUdGGcwZvHqtSt0JGcob/IPHtvE9BweXPe5ak+1+EPB7n/0S569PMjI6QjabxfFD8hkz2YVadEhZVbk61yQII3Ql6a6PJRUhou619sIYVYZS1mx3w4PtJdt1WdOg5Xo9xxRCkLNM5hsOkzUPatO4rRZPPrAfw7Q4M9VkMKuzfyjbs3h4nke5XKZcLnfLSUulUjdi2epf3jQiuTWrrdjSNO2Wdvlnzpzp2uUv7GFZrXAu3N1YDbZtpxHJG4U79YashpXmSIQQXLlyhfPnz3PgwAH27Nlzx+dcuAUVx4L/58VrNN2Qnf1W92/nmh5fPT3Dv/vvHuOjR3bR9CK2FQyM20w2XMvWlm3b/J//6b9wba7Ozp07e7YCGraLrqpoqtJ9rYGQeenCDLYXIRBICExVIYhChKmhSYl9vRPE7BvOg7h5DSWSBseW45HLGNiuT9wWvkLGpOF4tPwIP4wpWSpNx+WFV09xcPd2cqV+rpYd9g/1fhkNw2Dbtm3dctJWq0WlUqFcLnP58mVkWe7mVvr7++9JcvZ2pNtst2a9pb+L7fJd1+1+Nm7cuEEURau2y1+rkHQikq3MW15IVtobshpWkiPxfZ/jx4/TaDR4+umnKZVKKzr2wohkuuFxreLQl9V7zrkz4fD0VIN3HhhkcAXl56vd2pqbm+OPvvg3TDdDxnaMIS3TXR5EMUEY0l8q4AcR3zk/i+tH9Gc0kMALIupuyEBWA2KcUGAZGrsGTErm0uMJBEgkTYyKgqEqqLJEw/ZASmzlkYD2tYiF4MyVcVR9Duvh+4DlozFIhHShc23HYLBcLjMxMcHZs2exLKs71S4Mw3vuxrqVFu+t1rOxkT5bkiR1e1i2b9/ec9OxGrv8TqJ9te9Zq9Xa0j0k8BYXksUjcDdCRODOW1uVSoVjx45RKBR47rnnVpXUW7jg64qMIklEca8ARLFAkSQMdeVfpJVubQkhuHjxIn/94jEc2WLH9hxBeIvoSyJx7I0F5ZaPHcYULS15LgSaImFqCn4keHRHgTAWFDI6mqLgeDcjjs6xFhJEEbqm0PQi5ltJNZcsSShSImAdR2AhBLPVJmcvXOJYSeGR/TtWXHnXMRjct28fYRh2K8Hq9TovvPBCd+Rsf3//mrY6NoKtIiRbSdRgc4Vt8U3Hcnb5C5P7nWh2rV52tm2nQrJVWdgbstD7fyPoCMniL5cQgsuXL3Px4kUOHDjA7t2715TID4IkbzCQ03l0rMgLF+bI6gqqIhMLwXTdY7Rg8MiOlc/oWElex/d9Xn/9dc7fmKEiLDRTJ4pi8paZWMMvei0SEqau0nJ9Wq6PiAWmqeO38x6Q5EiiWCBJUMro+GGEH4Soioypatief/OAC3RF11QuzTaZqrntTTIJhRhVkbD9CFmKkSXwI0F/zkCXBF8/er47iTGfWd02laqqDA0N0Wg0yOVy7N27t1tmfPz48W5XdWcr7G7kV7bS4r1Vk+13g9vZ5U9PT3Pu3DkMwyCTySCEwPO8Vdnlp1VbW5BOQr3TY7B9+51nha+Wzl3HwjsQz/M4fvw4rVaLp59+mmJxbYOYppoRxydaXI6neNuuEv/jc7uZqDpcnre762x/RuPj37NvVWNy7xSRVKtVjh49SiBpTHo6WrseIBaChuOSs0w8PyBcIEaqKuP6IZoukzVUVEWi1nQp5Uw8PwRinCBmpKBjaAphHHejkDCKCUOffNakabs980tURabSSpyBdVXuljiHqDiux0jewAuTY40WdfqzOlL76lydLvMfvvoy3/v4QQ7vWn6K5EowTZPt27f3bHWUy+WeAU4L8ysbOWejw1bKkbzRk+0byXJ2+bVajfHxcaIo4lvf+taq7PKbzeaWNmyEt5iQLOwNaTQamzYDufMB7ghJuVzm2LFjlEoljhw5sqb69DgW/P++fZXPvDSD40doZ8+TM1U+emQ3v/mjD/PCxXmulx36Mhrfdd8Ao8XV3XHfKtm+0KZlaNsY3z4/s7gQC4CW66HKMjnToOl6eEHMeBMuO1U0TWUkbzCU05msuXhVG11V8CKBqcnsKFkosowXLLJQkW4m7U1dpYZARkKVFeabLQT09MmoxCApGLrK9pKKjISuqbhB0HNYLwj50kunuDQ5x7seP4ipr+79WBJ5Ldjq2LVrF3EcU6vVKJfLjI+Pc/r06W6PQqd/ZSPyK1stItkq5wJbK2ejKAr9/f0EQYDneTz66KOrsstvtVps27btrpzrv/pX/4p//s//Of/kn/wTfuu3fmvFf/eWEZLFvSGbOXyq8wEOw5CrV69y+fJlDh06xM6dO9f8ZXvh4jz/8ZVxJGDAksjmTMotn3//zSscHM7x/gfXfnfdOefFd7gdx+Fyucz9Dz7MV49exvGDWxwBwjim6XjIqsqpGxUmWzGlnIAw5sJsi6Gczn1DOeZbPl4YMZxV2D9SJKfL2N6tj+uHIW4QYmkKlqHR8nzCSCAvcy3DKCIIInKGRQzLHjeOBVUn5MuvXeHrJ8d5z5OHeMf9Y6uK4G5Hp5u+0/y2sEdhoR16J7+y2LV2NWyVxfutvLW1Ujo3liuxy8/n8zQaDVqt1l2bjvjyyy/ze7/3ezzyyCOr/ts3vZDcqjdEURR837/zAdZA58t97NgxfN/nmWeeSaxC1sFfn54liAUDpkIYJIvoQFZnvOryt+dmeXjH+o6/eGur2Wxy9OhRdF3nqaef4c++fZKG7ZIx9N68xZIDwXjFodz06bMULF1B01SsWDDf8tlesnhkrNAtdCiYKkEYYWraksih97ASXgRzLR9FEmQNhfmW33MnHMVJtsTQZCRZQRIxqiz3bLfFAsarLvOtpEETL+Rz3zzJiWsz/OS7H6Vg3d4mYy3bSYt7FBzH6SkljeO4JzG7UnPBrRQFbORQtI1gKwrJrexRbmWX/7nPfY5/82/+DbVajdOnTxNFEe9617t429vetuFd981mk5/4iZ/gD/7gD/j1X//1Vf/9m1pIbmdzspkRyfz8PJAsIG9729s2ZBujYvuosoQk3ewWl6Qkc1B11j+NcWGyfXJykhMnTrBr1y7279/PX/zXk0yVawAEYdS1e1+8pAohKGQsXrtWQ5Zi4ijG0DRiQJGTCq6WFwJJvqCQMWk6N5sLCxmTestdUqEVx4J5V3Bhzse0K6iyRH/OxGx37BtqMjnRD2P6szo7+rI07OQ4qiyTNXVabiJ+TTekbAfkTAVVljENHdv1OHZhgv/Tdfgf3vUo2wbWlr9aKYtLSZvNJuVymbm5OS5evNg1F+zkWG6VX9lKOZI0IrkzKy1J7nw+fu7nfo6Pf/zjvP/97+fAgQMcPXqU//1//9/ZtWsXr7766oae28c//nF+4Ad+gHe/+92pkCxkuRG4C9kMIYnjmIsXL3LlyhUUReG+++7bsF6DB7YVeH28Tixuvo4wTvomDo2svzSwkyM5ffo04+PjPProowwNDfE3r57l4sTsggcm5oumlrwud0Feo5i1qNsuuioRxSADXuC3jRIT+VPa/SY5y6DWsHv6T+q2i2VqRFGMv6CkuO7HXJ5rIUvQl9EII8F03WEgbzFUkCi3EmPH0YLBzoEstut3xSiMY0LH7zYxukGEEInAGLqG4/rIkoQqS0yWm3z2+dd46vBunr5/N8pdWIgWutbu3r27m5hdOMc8m812RaWvr697V7vVIpKtci6wdYVktVGbLMvYts1/89/8N/zoj/4ocRwzNTW1oef1mc98hldffZWXX355zcd40wnJ4t6QWyXUN2pmSAfXdbtbWc8++yyvvPLKhg63+sAjo3z93CwTFRtdionsgIYbsncww/cdHlr38eM45sqVK2iaxpEjR8hkMrx85ipHL9xY9vFuECIB+YzJbLVFw4dz03NYmkLJ0piue3gxZIQgCEKaXkghY9Kf0cgYOi3HWxJ5QOLbJUsSectIREnTuDbfQFdkRPtyqopEwVSptlzGigX2D+dpuT6GlmyTLTnugiZGy9AReGiqgh+End5FYiGQ5eR//+70Fa5MzfPep+5noHB3yy47idn+/n7279/fza+Uy2XOnTuH53ldq440Irk1W22rDdZ2Tp2KwE75b6fSdKO4fv06/+Sf/BO++tWvrsu54U0lJJ3ekM4CfrsGw42MSGZnZ3n99dcZGhriySefRFXVdc8kOT3Z4Plzc7T8kMOjeb734CCf+MEH+L2vn+O1axUUWeJ9Dw7z4Wd30Z9dn/313Nwc5XKZXC7HM888g6IonLk6xYsnL9/27wRwY67B2VmHSstLemeAgqkynDe4areoOCFqAJamsKuks30gj+eHy1Z+dUhKij0KWRPbDQijpD9kYQpFlRPLFC+IaDk+uYxJEIa9TYxAEAkqLZ+aGyJLEqYqkzUNmn6IId+cWw9QMG/uO09XGvzJ117hHY/s59EVNjFuBsvlVzr+YJAkSDvbYP39/ViWdU/OdStFR7B1I5K17FBsZvnvd77zHWZmZnjiiSe6P4uiiG984xv8zu/8Dp7nrUj83hRCstDmZKWOvRsxfCqOY86fP8+1a9d44IEH2LFjR/d36xm3+9nvjPN7L1zBaW/DyNIkX3htgv/1hx/iF9+1k9dPtTjy9qeWzBRZLUIILl26xKVLlygUCgwNDaEoCtdnKnzppVNtM0SDhu0uez2FgAtzNuWWx4Clo+karutRcQJMVeG+koxqWWQyFiVLI29qeH5IGEXkMwaVeuuW75MQ0HQCEIJixmSqUmfhsuCHSfe6qcrIkkQYRsSx6CkGCCLB5TmbqhOgKRJCQEUIcmYivPUgJo6SSZFDeYOC2ft1iITgv568zKWJOd79tsMU2k2M93LBtCyLHTt2sH37dr7+9a/z4IMP0mw2e4Y3LexfuRszNmBrbm3dawubxURRtKb3YzMtUr7v+76P48eP9/zsox/9KIcPH+YXf/EXVxxBba0rvQbWOjdkvRGJ4zgcO3aMMAx5+9vfvuSNXuvW2fWyzR988wpRLBjJG0iSRBDFnJlu8n+/eI1/+HgfmiTWLSIdr69ms8kzzzzDtWvXiOOYuVqTP/vm60RtEWw6HnnLxPGD7s862H5M1QnI6woCge/7mKZOQUhUnYCCKTGS18jlTCQJNE3puvk27OS4bhD2HDeKBZM1l4oTY3sBGV3B1GR0TafuOmSjmDASuGHMaMEgoytYptZNpgdhRD5j0nTcJBJxAkoZDVkCBMiKSqXlsqvPRJblZKsrCsjqas+WmBCCGJnr8y2uzbe4MFnhA8/ej75FtpM621r5fJ7BwUH27NnTza+Uy2WuXbvGqVOnyOVyXWHZCCv0253PVooAtmpEspatrc10/83n8zz00EM9P8tmswwMDCz5+e14QwvJakfgLmQ9QjIzM8Px48cZGRnh/vvvX/bDsdaI59uXyth+xHBbRAA0RcZQZf7m3Cz/w+N9646karUar732GoVCodsgKUkSLdfn+W8cxVtUhtt02yaJhoHtJVVWkgSKIhNFMdKCOz/fT8pq5c41aa+7WdPoqdDqHldVeqqqLs/ZzDoxsojQFImGG9JwoWRAqMoISUGWI3b1WWwrGuSzRmLa2EGChpNMYrQDF1WR6OTzLVNPPLxiQSRgKKsBAitr9ST4hYCaB1fnql0fs6m6x9xXX+PggM5T942u6/pvJAs/8wvzK3CzP6FcLnP27NlufmVh/8pGRRFbMSLZakKylhyJ67pEUZR2tm8Gax2Bu5C1LPRxHHP27Flu3LjBgw8+eNuk11q3toJo+TteWZLav1vb3BDo7VLfv38/e/fu7V63IIr56muXkM3l73yCKOre7ddth4xhEEYeWUOh6YWUrJv5hbrjkzOVrstvIWNSt91lj9u1QskYTNds6j7oUtztWDdUmZoT4oaC7VnB6JBFKWfiej5Zy6DRWj5p7wXJZ0PXNBACy9BxFlRzLVxiFif4Y0nhymwFS1fQ2+aPfhQz2/CJ3BYz1QaFwVH2bhtY5TuwcXQ+A7f73C/sTxBCdPMrlUqFa9euASwZQ7xWMUhzJHdmLRFJq9UCuKumjc8///yq/+YNJyTrGYG7kNVuPdm2zbFjx4jjmCNHjtwx1Fzr1tYjYwV0RablR+SM5O2JhcD2I77v8CC6pq5JoKIo4uTJk8zNzfHEE08wMDCw4Hcx3z59g4bjU7yFkAA4QcTJizNU3JgojhnIqGwvWlyeazHf8tEUmSCKMVSZ/UM5vMYcA6aOH9zhOkjQcDxkRcUJQkpG7wJgajKOFxDrYGgyjueTz5hLKrTCSFBpz6RXFQlTkynbHpm8RRglj3X8CE2VyS3Kh3QS/KWsxbnpOgKpKyKQOC3bRLSCmIwX8mffep0n7tvJsw/tQb8He/GrvZmQJIlMJkMmk2FsbKzrWFsul3uMBRcKy2r289OtrTuzFmv7VquVbMFa1iad1cbwhhKSO/WGrIZORLKSO6mpqSlOnDjB9u3bOXTo0IruKlYakbS8kG9cmGeq5rK9ZPJd+wf4vvuH+NLJaWw/RJFl/DBmMKfz3z+zKylRXaWQtFotXnvttW5p78IyPyEEX33lDDfm6gghkoijtdTJ1w9jXr1eo+rG6FLy/Nf9mJzm88C2POVWQNMLyRkq20smpYxGxVNptFxkVb9ls2EHS9eo1x2IYxRVJwzD7kODSPRsURmaiu14xEKQzyRRiRvGXJxtUXPbfS0iEZ2CpVFpucSxQNM04liwo2gua4diaApNx0MI0PWlXw2JJGEPYGoqRy/e4NLUHO976v5Nb2JczEoiktux0LG2k1/pjCHuzDDvjJrtjCG+3ed+q21tbeQ8ko1irRHJVp/UCW8QIVnYG7KeEbgL6byhtyvJi6KIs2fPMjExwUMPPcTo6Mr3xleydXZhpskvfuEk49Wb2z47+yw++Q8e4MHtBb5ycoaaG/DYWJEffWI7ewez2La9KiHpiODY2BgHDx5c8uX69olLnLwygSRJRHFEw3bJWgZBEBJEN59nsuZS92KKhoQsJddLCEHNjfEieGB77x6uqWu4YUxWT9IkN5sNBX67x8cLYiYbHpVWhCCmL6OR0WVmag6DeQNZSoTWC2PGChqylzj/JjmOZCFt2B4ZU+PaVJOqE9CX0ZClxOu34Ub4kWDvgIUXxsjAcDGHKtFjmwKAJNH0IqIoxlQlfD+gUMgQtT9zYSwQCCxNQpaTGTCxEFSbDv/p66/x1OFdPPPAnrvSxNh72huzwCiKwsDAQDdS9X2/uw12+vRpgiDoya/kcrklIxK20sK9VSOSN+O8dngDCMlGjsBdyJ2EpNVqcezYMYBug95quFNEEseCX/urs1yvJI69qiwTRjFXyzb/61fO83s/8Rj/4NGljp8dc8U7RVKdfM74+DgPP/xw18dnIccvjfPiqXavSLuqCcB2fRRZJmfdTJA7oSCOImTpZi5EkiQQMfNNj4d2FKm3y4R1VSUMIxA37VxgYS7CZK7e5PR0k6oTYepJ4UN1LiBvqhQtlUorGWyVNXV2FFVG8wrlOVAVBXeRcWTN9ik3PfpzFsQ3h5T1ZXXmGi5yyWC00LYZETFIvbYpVTtk3g6p2V7SaW4o5A2VubqDpsjIioLnh/RndHIiQlVkgvbnMYgEjh/ytdcucn58jg+8/cG70sS42c2Iuq73jJq1bbubuO+MYFjoD7bVIpKtKCRrSba/EWaRwBYWks0YgbuQrtHfMnmMjtfU2NgYhw4dWtMH8k45kjPTDS7OtsgbKmr7+KoikzNUTk81uDRnL5kx3jku3P5D6bouR48eJYoi3v72ty/7Qbw0McfXXjnT/be0KIkfxTFNO5mPHkbJ3XwcL128YpFMOmw4HnnLwAsipM4d/wJxWvj4huPSDBKPsMG8SRxFoKpkNEHFCdhRyrF3QCWIYixNYahoUWu00NWlIgKASCIULwgoZgy8IOjan3SecyELbVMmKzYTjQDH88noCrEQiReXobCzZNJq9/LsHyqiEePbYVeAyq0gscVvNzTeqLpcm6vzA08d4vEDY5u6sK53a2s1SJJENpslm80yNjZGHMfd/MrU1BTnzp0Dki7pMAzvOF/jbrAVhWStOZI0IlkjQgjq9TqNRoOBgYENFxGg6wC8MGqIoojTp08zPT3NI488suxd/Eq5U3lxww2JYoGq9H6wVFnCDZLf3+q84dZ3pPPz8xw7dozBwUEefPDBZcVmulLnq6+cTmZ1tBfmzvjbLgIaXshsK6CU0Rnry3B5rkXTC8kaChLQ8pNmvs7dftPxyVkGAoEXtMXpFj3s09UWqpIYJ/rt66TIEoqUlPzuKN3M47Rcn4yuUl50rFgk4qYpchJBtHwMNcAy9G6BgqnJ5JbruWnbprgR+GG0oBlRQrVk6k6AUpDY3d9JcgqKWYvxZj15rV7EjYqDJEHRUhFAy4u4Om/z5VfOMj5X5Z2PHeg2MW4W92KBkWWZYrFIsVhk7969hGHIt7/9bRRF6c7X6Iwh7vSv3O1FfasJSefGOI1I7hKdKKRSqXDp0iWee+65TXuuhYt9xzZdURSOHDmy7iqJhSNxl+PAcI6MrtDyQooLSmdbfkTeVJeNRjrHhaUJ94Vd6ocPH2ZsbPk74lrL4QvfOEbL9ZCAgmVSd9ye6CEIY05M1Jmse0RCRiZmOK/z0FgfpyYqlFvJ6zJUmQPDOYZyRtv516TheCASD67pZSKSDvmMxXi1gucnDrxekHSxx4Il4pq3DOaqdRw/bHfae0zWXKYbPkEUk9EVipZKxldo+tBwbaJYkDENtuVVtFvMrs+aBqcm59rlwVYya0WIblLfX5AjypkGtaZLEEZkTJWyExDEgr5M8t5JQN5UKbcCQmQujs9xfabK9z5+gMO7RjZ8wb+bEcmdUFUVSZLYtWsXhUIBz/O622CnTp0iDMOeMcSL8yubwVbz2uqsM2vNkWx1toyQLO4N0TRt02zeO3SEZHx8nFOnTrFr1y4OHDiwIXcyd9ra6s/qfPDJHfzhi9eYb/mYqpxskUjwoafGyJvLvzXLCUkQBLz++us0m83bjvF1vIAvfOMoLTfJewig7rRnjKgKTntxOj3V5Mq8TTFrohDjhxLXKw6yJPGuQyPMtTz8IKI/q5FtlygXMlZi3Q7dpkBNVTC0zthhQbkVYAcRxayJCBwC36Mmovb7reJGSUQ2kL0prFlTp+F43VG7TcfjetXlRtVHEhGakljJ192QA8N5vCCk6SUi15/VGcqbKLLUM5ArjgWSrFC3PSxNoeX7OJ6Ppibd7b6fRINaW9A6c+eRkmtmeyGynkFXl6n80lXqtk++ZOCHIV9++TQXJ+b4vicOYhkbZ1ey1fo2FibbDcNYkl/pJO4vX77cza90EvfrMQu8FVstIul8X9cSkdzNHpK1siWEZLneEFVVN11IZFnm4sWL1Ot1Hnvsse7Eso1guaotIQQtL8LQZDRF5iffsYf+rM5/+s44s02fXf0ZfvypHcsm2Tt0tvk6x67Vahw9epRcLnfbMb5hFPHn33qd+Xprye9szycWYOkKjh8yUXUoZE1UKWmANDQFAUzXPRw/YDSvk7OSxkRILOEby5T2BlGM5IcUVI2/uzjLXMtHkhVcdx4l8ujPGpRtn1rTQVJkLF3l8PYSpbaIGpqK25lw2D627UdMVF10WaKUzeD6AaYm0/BiZhoeD4xmWbi++mHYjZDqjsts3WO6FeAFMTKCjK4gk2zjZWJBDASxTNZQKJgqqiITRkmFVsMNmbMjJMCSw2T+Sc7A9XwkSUqi0NDHVHvfgwvjs0zO1/i+Jw+xb9vgLd/b1bCVnH/h1uW/C/MrO3fuJI5j6vU65XKZyclJzp49i2maXVEplUobkl/ZakISRdGatug30x5lI7nnQrJ4BO7CwVMdK/jNoNFo4DjJQvjcc89t+F3R4qqtvzk7yx988wpX5x0MVeYHHh7hH33XXn7syR386BPb8cMYXV1ZRVon2rl+/Tpnzpxh37597Nu37zYGiIIvvXSKG7OVWx4zFoKWF5BRdWJJgThKplG10RUZJwhwg5icmUQcWdNAlrmlJXwnR/L69TJzdkgpa2A3m8SxT6hZCM3g7Qez1J0Az/fRhY9ozDPZFFimiW5Z6Lp5c2ER4AQxfhiTy2i4fhJFiFiQ0SWabkAQJddx0YnQcFxqbsyVqocqS+gKBBHMtwLyhoIqS7T8CFmCvCGxf6SIrsgokoTt+VwtO8w2fVp2CAjyUZJwn6zY9OUM/DDGdUPyhtKzVRlEyWTI2nSTo9de5MkDO/ixdzxI/g6TGO/EVoxIVvrZLZVKlEolIBnn3OlfuXjxIo7jLOlfWa0gdPIRW01I1lJx2mw204jkdtxqBG6HzrbTRn9hhBCMj49z+vRpdF1n3759mxJaLxSSvz4zy7/8s1P4UYyhKth+xJ+8fINLsy1+58cfRZal7hbQSpAkiXPnzlGr1ZZ0qS/HN45d4OrkPKam9gyiWnxMBGR0BU0WRMgsvC/0whhdkckYN88zimOCUCRWJcs5BEvJQjrT8NBlQbNRR5FlisUCAom6ExLGgrH+DNAurxYQhAFx4ON7Ljdm51AVFb2dQJeJUeRkqJeqSARhiK5piFigyDcHZy0mFnBtvokmy5QyOo7noSkyiizhhTF7R3PIUtL0aGkKIo4wTA0Jidl5n+mGl1TYxe3Z9lKyRdaf0XA8H8PQGcsb5DUJVenYziTuwzUnQFOTv/vrY1e4MlPlf3z3Y+we6bvt+3YntoqQdMrR17Jwq6rK4OAgg4NJpOZ5Xtcm/+TJk90qsI6wrKSCqROtbTUhWUvOptVq0de3vs/J3eCeCMlKbE46vR0bmTQLw5CTJ08yPz/P448/zpUrVzZ0+NRCOlGDEIL/61tX8KOYoqV1X6cXRrxyrcor16o8vWflH5RWq0UURbiuu6RLfTlePXedV85eBegOomos8r3yw5jZZogbgOP67OwzOT3ZQLJMFCK8MMYNYu4bznY7wlUlKZUNoojASTy4bDcgFjevp4REGAv8ICTyPUxdwbIy6LpGEIZEIiBadPkFglI+S8vVMDJZCv1DXJiqcnG+iedB3p4kEAqzjkJfVqeYz9OwXRpeyOFtRUy9PdxqEUEUg6wiRyGu72PoGmEUYagyLS8ijAV9mZtfh4U5n1YAuqqgKTJty0pyhkLFDihYGg8N9NF0PRRJIpcxaLnJLPmqHVBzAopt92EhBLqmc2mqxh9+5RW+77F9vP3BvWtqYtxKW1sbmfg3DINt27axbdu27lCnhfkVRVF6bFyW+/x3vtNvBiFxHIedO3duwhltLPdESDofuDsNnoK1vwGLqdfrHD16FNM0uwvw9evXNy0P08mRNL2IK/MOhqr0vFZdkXGDmNOTjRULyfT0NMePH0eWZQ4fPnxHETl/Y4bnj57r/lsADTtJrodhhB9FXCs7nJyo0/RCgiDgamuG+0fzPLCtwNWyjRdLaKrC7oEMh4aTEFtGQlXknp6OzgRCU705DwQg8l3kMMKXVbLZJOoIggDbj8lbOjmj973tVn6ReGednKwy3wowrSy269GScxhyjBlHVJoe05UWhqYyXDAoaoI4islnDOqt3giplDWJJxuEsUBXZfwgGXQlyyqqHKIpNx+7OOdje8k4Xl1XoZn8LEn+SxhG4ijciYSajoeuKiiKQmPOTpyQ28fJmAaO57dLhUNeOXuNq1Nl3vf0/QwWV7d9sZW2tjYrApAkiVwuRy6XY9euXcRx3B1DPD4+zpkzZ7Asq2cMsaqqW1JI1npD3Gw2V90MfS+4Z1tbnQ7t2/0ekihiPcN5Fjre7t27l/3793e/gBs9bnchna0tU0ss4G2/93mESM6tmLlzYjGOY86dO8eNGzd46KGHug1gt2NirspfvXhi2WvcWRjdUOLo9SoxEkVTxRE+XhhzfLzOc/f1s3cwgxcmJoyD+UxSJkxix96p/FpIxyHYMnWuztYZr7Qo6hKHdvRzbs6l3Aow1MTYMRaJdclQMdO9g8+3S3s7C/hcy2e+FVCyVISIyZsquZxBueXz8K5BNGIcz0OEPnLoMTUxjqqqWJbFQF+RZgDzdgCSjCa5lCyN8ZqHLEeYqowbxjQ9n7H+LHlTQwiBZWhJzodkNoosSZQsjesVB1OVMHQNLwjwoxhTV5FFBFLvAuH4IRIROdOgYrdLpTUVpyOwQiC31WW21uRP/vo7HHloL/fv3o6qyEtzPLdgqwjJwomkm8nCbvp9+/YRBMGS/EqhUOharm+lqG2t3l9p1dY6kSRp3ZVbQRBw8uRJKpXKsrmEjZiSeCs6IqUpMj/w0Ah/8sqNdp4hMf6ruwFFS+N7Dty+iqczCz4IAp599llyuRwXLly47XmX6y3+8wuvEy7eN1pALATnp+qEyAxkNDzPW9AL4XOj4vDIWLG7qNUdF0vX0FWF2i0s4QHmWz7Hz81QbrjESBiyxEFL4uEdRcarDnU3pGRobCuajOQ0mraHrimYukrd7k3aJ02ZyaIbR8nQKlVJ+k7m6g4PbMvRt6BUOI5jXNfFsR1OXplkvBmDqqNIEsgyRUtnMKfTcEOqTogqSwzldEbzKoosYekajhcy3wqYqnvYfjITpWRp5AyVih0Q+R5IMkKXGM6qZBc0Oza9kKm6R6M91tdQZSQpmaEStLvfHT9CVaSus3PyOgP+7785jqxf4PD+3Tywo8SjY8UlExsXshUjkrt9PpqmMTQ01K22dF2XcrnM7OwsAN/85jd7+lfuZYf4enIkqZCsk/UMn6rVahw7dgzLsjhy5AiGYWzo8e/EQpH6R9+9l4tzLb5zrYobtCMRS+PX/v79lG4TkZTLZY4ePcrg4GB3Fjzc3sfLdn0+/42jCAS6puLfIrkOJO7CUmKNstBvTJYlHH/p8VVFoeF4txy/6wUxr10rU6nbDBYs4jgiROHCbJNHjSKP7Swm+2vtRsUwap+bJNFygmSyoe12exhV+abb7kL8ICTbl1/iwCLLMplMBt2wuNxSsbIhWTX5ErdshynbQeR19g1lkdQMhtYWAimJPoIwpukLzs+0iGKBoSXbj9ddh5GCQV/GYmLeQ5UE+wczbC+atNpRRsuLOD/TwgkSW5cwFjRbAaoqY3sByAqel0Rk24tmt9veC2Iuzdm0vIisEfPqybNcmxlmtrmD9z84jHWLIoytdLe9VZLbpmmyfft28vk81WqVJ554gkqlwvz8PBcvXkRV1Z4xxMutCZvFWoUkLf+9A5s1DlcIwbVr1zh37twdy2IVRblt9/laiWLB1YrHdCtJtudMlf/jxx/l5asVzkw1KVoq33Nw6JYiIoTg8uXLXLx4kUOHDrFz586e17Cwj2QhfhDyhReOUWslZc0dg8S6vdQWHmC0L8u1yhyRLhGFIYp6s3mwaPV+NDri0bEWWTJ+V8ClyXnKdZvRvhy6rmG3bFQRIWsWE3WPsT6rJ+KQkJLcghBEIqbScKh5EU03ApEMt9JVmZYXYqrJH7phjIQgpyZCKSHhLnoPG15Iy48YLmQIwxBNS8aHZh2fluvSbDSJw3l0TcfLWFimRX+pgO0FXJhpIEkyg/kkGY+WzGGp2AE7d1hkYg1T18iYMi3Px9Q0YgRX5m2cIHEw7rxEXZHw4yTqUWUJs8/C0iW0Bett2fZpehF9WQ2jLfzzM5P8da3O/n6DR3f13/IzslUikru1tbVSOvmIfD5PPp/vya+Uy2Vu3LjB6dOnyWazXVEplUqbOuN9LTmSTrHBVp+OCFs8IlFVdVW9JEEQcOLECarVKm9729vuWDanKAque+ttmrXwt+fm+M2vXWC84hBFgj+bfoV/8fcO8fCOAs/s7eeZvcsvDB2CIOD48ePU6/VbdqkvF5HEccxfvXiSqXLt5s/aBok5y8TzA/wwYqbh4QQxw8UM/aZCwdSotAJMFVwvxCPpPN/Zf9MiJskb+D0i0HQ9VEUhYxg0HYeZ6RlqDQfLsjANPRGYdsggiQjHY2kkI4Gmqrjt/pQTEw3KdnKHr6gaqogYyOnUnICyHeBFCpofsmfAYiCr47WjrXzG7EmOi/bsET9I3IYhGd5FewbH6IiFJiUVMY7j0KpXmZ6ZRtFMKk0Jy9AIIwlTN3A8D1OVqdgBjh+RNfSk36Z9HdwgQAK8WEZXpIWXiHzGYqLSRJZ0hvNJnk+WJLKm3nVKbvkRqpzMY+kUL8iSRKVa4z99/VXy73mMfduXbn9uJSF5I1jIL8yv7N+/v2vDVKlUOH/+PK7rUigUesYQb+RrSnMk95DVRCTVapWjR4+Sz+d57rnnVpSgX+s43Ftx7EaNf/b5k7hhhKkm+/qnJxv8488c4zM/+RTbirevsupUlmUyGY4cOXLL17C4UEEIwddfO8fFidllH99yPRxf8NLVKjN1G2QV6VqV4bzOo2MFLs3ZzDZcIgHb8zr3b8szWspRtx10TSUIomXNF8MownYc6uV54liwZ2yU6ngLL4i6vRRCCNwgZjBn9EQyYRglVu5tgbpWdphr+fRltGS7DYEdKNTciIe25YmQuHz1OofGCkumGzZsl1iSmW96+GHEYMFCk2yanujmGQSClh8xYqqUMgZRHCMrMqND/dRtl0IQ0GzZxNUWFdfBVWV0XSNjWQhZQZEl8hmDWrlOr1wk22siCpEUFUWWieIYQ9ex2zcpyoIFvzOJMWcZeH6IrsiomrbE1TgWEEUhf/7t4zy4Zxvf/eh9qIrSTd5LW2hr641oIa9pGsPDwwwPDwPJTUXHH+zGjRvEcdzTv5LJZNb1GtMcySaxUVtbQgiuXLnC+fPnOXDgAHv27FnxG77ROZI/fuk6XhiRMxQkJGI5RNcVak7IF45O8P96575b/m0n3F5cWbYciwXw1XPXee389dt0tsOLl+eZrrsMFDKIKBn4NFF1MVWFI/v6qbUcJicnObyvv9sJnrVMJETXNn0xjUaT8zdmEJrF0EA/Y6UsAxWXqXriYRVGAtuPKWQVdrUjnKablAn35TPM15Ja2igWTDc8LE3uLroSEpYqqDkhqq6TI6TfhKyx9Ms4UXW5NG/jhYlH24WZFgVTJZCSrnKlPYgqb6rs7EvMGWVJopAxOTdVY7ruJR37hsJgX4H5lo+hAlFIpdag4UcM5Uxq5bnughALqDsBThCjyklCvjJvY6NSzBq0XI+GG3UNJW++GdD0Q6brHpqqMFLKMnujQiui26PT9JKqsmJbBE9emeT41RkKA6P4sp4URSgRpeXflrvOVoxIVrtoW5aFZVls374dIQTNZpNyuczc3BwXL15E07Qef7DVVpJGUbRq65fO1laaI1knd7JJ8X2f48eP02g0ePrpp7u2C6s5/kYKydnp1s3emPYNoyRJxEJwYXapxxX0Wtc//vjj3Q7f27FQSE5fneL5o+eSO9wgSvb1F1Gxfcotn4KlQ/tuzVIUokgwUXNxgghLV9BluttDEoAQuEHYM+AKAAHTc/O8dr2Gg47swaTb5PREncd395PVFabqHlEMJVPmkbEi/dmbXzzT0Kg0bHKZ5LgiTsROXiSEkgSyotBoOQwO5ZJ+jE6yvk3DDbk4ZwMwnDeJYkGoGdQcnz0DJogkr5IzVAZzOqZ2c/bLqYka1yoecZxsL801fWRZImuo+FFMhIZi6ezqU9meAY2QasvBCwUX5j1akYwiq0hKYlXfn9FohYKpqo2qJon8Xf1Wt/ItFknkNV33CGOBIkvoqsxIMUO56VK1QyQJLE1mrGRhtYXF8SMuzrewL5e5f8829u7azrVZm0stwXc5QY8ly71gK22zwfp9tiRJ6uZXdu/eTRRF3fzK9evXOXXqFNlstscf7E7CtRZxs207KYtPcyTr43blv5VKhWPHjlEoFHjuuefWZPS20UKyvWhwZb5XMIQQKJLEaGHptpZt2xw9ehRJklZlXd8RkmvTZb780ikgmdmhyjI506C5qMfDC2MiAZqiIER0c+64odNwXPwwJqPeHGwlhCCXMbvi0dmSark+YRgyPTPNpXkXG4O+jE7GMvB8n7oTc+xamfc8uI0Htgum5+aIA5/B/E0RyRg6zXZ+oFv6q8n0ZTQmai6mJne3jrxQoMmCgpXkaCRJxjK0HpuXcivAC2OG8mayxSQEicWkIBQy9w0uve5JD03MjYqNJKCU0dAUBS8IqNohsgQPjuaTcm1VZjBvdLvlIwHNRkjdDjHkEOG7IMvMuypxVufhsX6aXlL+25fVyZgadjuim2/6TFTdJErRlSQX0vKZrtk8sK0AkoTnB+QMtbs1CFB1I5peSMlUmJieodFssm/HMOcrgsvzNo+N3d158Yt5I25trQZFUbqiAckNbKd/5ezZs3ieR7FY7EYsy+VX1jqvHUi3tm7HWre2OnM3Ll68yMGDB9m9e/eaP8Qb3ZD4I0/s4O+uVLC9ZKBSLJL5Iroq84OLHH1nZmZ4/fXX2bFjx6qnMMqyzHy9xd8dvXazaopk8l/T8chnDFoL7EqKloalq7TaUwA7NNtTDUtZg8D3u3mQQtZaYqPScFxEFDE7PUUsJBwli6kLMqaO7wdISBTMpNfi+nyT3QMZ+rIG85WbomaoKl4QIkgqoaZqDkEkyBsKh7cXk6R6K0BTJGIkZElib7+ZTC6MYqI4xnZ9SvkMjXaZcCQEEqDIMsGC6FWSOoO2itiOT7wgx2PqGjfKLdx2lVUcx7hRjGnoZCPR7R8pmDpZS+/Z2guimNlWyFBfAU2+OcVT9TwqLY/zV64xkDOwLAvfE0kjZcbEdnzmWj6yBLoqoSkqfhCQNxXKdkDd8RnJGwwP5Gk6N0ugJSCMQUZ0XY0bLZtXTp5HKEZ3NsxC7nZfx1bc2trM89F1fUl+peMPdv36dYCe/IplWWuejqgoyl0tU14rWzoiWSwknudx/PhxWq0WzzzzzC3nbqzm+BuZbH/XoUE+/s59/ME3r9DyI+IYihmFf/H+wxwaSe4q4jjm/PnzXLt2jYceeoht225tGX8rbC/ka8euYOaWCXklaDgeupokfm03YLiYYVepyZnpJlF7oqAfxggE+waSPEg+kwynupUlfKvZYnp6mmKxyL6x7Zx89TqaoixZvDuLeywEthdgGRqKLHd7PqI4sXs/MV6n5d2crz6Uc3lydz9TdZdyyyNn6vRbCkM5vfu6Ov9bt10MLfnoZrUkKe76QdemRAhBECVDp7qWJbKM4wdJ97yTOADL7dyJqkhIEni+TwzoutZNrjec3uguipPhW1EYYpoaWnuoUyGXY6LSYmi4n4wUYjs2tWoNSZKwLItCPkcsElNJyzRw2+IkteOvqG0E2XBcTC2ZuOh4AYWMiYxLtGjMcRzHTJXnefXkWZ7ckaWYs2h5IccnGpydbhILODCc5eHt+U3f+nqzRyR3wrIsduzYwY4dOxBCdMcQz87Ocv78eXRdJ47j5ObC91ecX+nkR7aSSN+KLS0kqqrieckXuVwuc+zYMUql0m3nbqyGjd7akiSJjz23m7//6CivXK1y+uRx/tvvfYTtQ0kZsud5HDt2DM/zePvb376mkNULQr595jpN11teSIBKK+DMdJnpuodlGuzIqxwazWFoMpfmbPwwsRs5MJxl32CWWAiark/W0LDdRZbwAubL89SqNYZHhsnlcrRcj+39GS7P2kn3dvsP3CBGU2RKVmdqoITtBciyRMbQqbUc/DDm1EQDN4iSngspcfKdbnjkyy0Oj2R5fHcflYa97OIURoJy06PptVBlmd1DeaYaPrNNP7HhJ2nyK2ZURtojgP0wAhHRn7eYqrUQMeQMhWI7gipaSWd7GAkaTsjOPpORUo5Ko0UnDPDDxL4eIKNJ2EEyV4YoImOZzNdaGKpMwdKxdIt8IZ+MjG45VBsOtZkyzVZAEwMCF93Q0TSNMEpsWDILGg/LLS/prI9kfK9O3lSTAV5OSE5PNu5qboSpQOi5/IevvczbH9zHpYbMhTmbvKEiAS9cKHO94vL3Hx7uDiDbDLZaRLLWUtuNQGqXmBcKBfbs2UMURVSrVU6dOsX8/Dzj4+PkcrmeMcS32vJ6o1jIwxtgaysMQy5cuMDly5eXbc5bD+sRkjgWPH9+jq+dnsUNIt6+r58PPDyKpSsM5gz+3oMjGDOnyGjJuVYqFY4ePUp/fz9PPPHEmpqfoijmi996nZmqTdZMFuHFVaBVO+Ab5+doeiEZy6DatCk3FcpOxDv2lTgwnCOMBJoidf2eAExNxQkiQOru68dRzNT0FL4foBSGOD0X4E/NM5gz2F4wmao41D2BLEKitnfY3sFsV0hoO94amkqt6ZDPmpyfrNL0Q0qWhtTewFFlGVOVmaq5PL67j2rTIWeZuAsaHhMnYTg+0WC+FSQjeTWVy3Mt7t9eZCBnMFF1iIVgW9FiR9HsJtYBkBW+dWGWqptskWU1meG8ThQnlWECkCUYzuscGi1QbdqYukYQCc5NN5hueASRIAp8spqMJkuUWwFZU6NWaSJJMnsHM90EuRBwtewyVffxAlBki3yxQNhyaAQxktdK8i6yymjBwFJEtzDg7HQLJxSokkBRVKYaPhlVJqspXc+2vK6QM+S2l5vCn37zBDOeynOP3EfeSgR0IKdzed7m3EyLx3duXh7lzZZs30gURWFgYABN0zh48CC5XK5bZnzmzBl836dUKvXkVzrXcrMrtj75yU/y+c9/vmt+eeTIEX7jN36DQ4cOrfpYWzoiieOYSqVCs9nkmWeeoVAobOjx1yokcSz4/37xNH/++lQ3wfvV07P8p++M83/9D49TaC+knRzM5cuXuXDhAgcPHmTXrl1r+tIJIfjKK6e5Ol1GkiWajk+pX0WWEpPADuemmzS9iMFChigKMUyNMIoZr9hUvSJ9ppTcSS9AU2Ti9kyJIAyJY4GuSFy4egNVU2lpJc6PJ9tisiwx0wrJVxwe3J5nrulTdWM0WbCtYLBzQfe6hETGUJOkvZT0e8iykvy3SARlWUJWVWpNF02VaXUaHk29m6yecyWqIuk1MY3Eir7hwtmpOs/u7efwtgKNlou0aCaJLCt852qZ2WaSI1IkiboX03BbPLS9QCwEfhRjqQqDBQMJQQi4QciFWZuJeoCKIKvL1HwoOzG7h1R0TaHhRBQMlZG8znBeS7bD2hHF1bKNqSr0ZTWEkKg5IRlDZ1u/Tt0J0VQFLXLIyiGTkxMoskIt1qi6CkMFs30ZBbqp0gphZ17vRhax79Bs+Biaiu0FtPyYaq3OK6+f5oH7djMy0Nce4CUzXnU3VUje6ltbK6ETJem6zsjICCMjIwghuvmVSqXCtWvXACiVSjz//PPdkuTNurZ/+7d/y8c//nGeeuopwjDkX/yLf8F73/veblXaarinQiJJNyuFFjM3N8elS5e6FU2bYV/Qaexb7QfvW5fK/PnrU8jSzbneUSw4O93k0y9e4+e+dz+QvL5O1+xTTz216vLkhXz7xCVOXZnsHlcIgReESEDBMrvOvNMND1NXieOb4qIqMkJEjM832XXfII4fdu/0ZUlGkRV8v+NMm4TUMzMzDA8OoGYKfOf0dDv5rGLoOp7vU24FTNe9xD+LJNltGVpPmXDW1JlqNlj4qi1NQpUEIQoKnXMUeBGULKl7PSFpeAzDqF0m7FL1QbckdO3mDUDOUCnbAXNND0OVyGd6rVsUWWam6THfCrrNjgA6UPdk5u2AA0NJn7qMhCbL3aowN4iZrrtoskTRMoniGEuVEcTU3Ih37Cgl57GwHNn2MA2NmWYDVZa7xQ26ppJvj+vdP6ixbyADEmSMPvwwJAgiXM9larxGHPrMz7dQVRVd09B0Hd+PQbEoWlpSVBEk1WeinY9S5aTpMghCjp2+yPaRAQ7v3UUYi26U1GGy5nKt4hDFgpG8we6BDOotBoKthK22tbVVhWTxFpYkSWQyGTKZDGNjY8RxTKPR4OrVq3zuc5/jxIkT6LrOT/3UT/Ge97yHd73rXStqD1gpX/rSl3r+/Yd/+IcMDw/zne98h+/+7u9e1bG21tXmpmX6a6+9xvbt2zEMY9M8cDpv7GoT7n99JukgX7joKXLypf4vJ2eAZJSv67pEUcSRI0fWJSKvXxznxVOXu/9eKMCCxJk3Y+joioKpKYRR3Lvl1f6Hqkg0XR8JyJoGCLAMtW3zkSwk5XKZmdkZRkZHyBWLTNZsImQsTcHQdfwgQJIkTE1msuYSt5PAURzTtJOObaWdE7G9gCgW3Kg4vH6jxonxOrYfsbMvqQpr+EnDYsUJsVSJPQPWkiR/x9tLVRQkSUbuzKzvVCa1/+vkopuul8wJN5OEpqEp1G0fIXo7zCVAJqZmh+RMPbGQN/We0mI3SBo3DUXGD0OEEGiaiiYBkkxtkW1Mh6bj4wUxOStJsnYGeamy1B4GFvfMOhHtmfKGYTA80I9hWvS3hzZFcUyjXqfRaDI7M0u90eg6SCPLTFQd5tqRlq7ItPwQgWBiep6vvfQ6jt1i78DNeRYvX63yH1+d5Ktn5vibc/N89rVJvnRyppv/WQtpRHJnVtJHIssyxWKRRx55hG984xv82q/9GocPH6ZQKPCJT3yCkZERLl68uGnnWKsl9kqdMufVsKW2tjqW6b7v8+yzz+L7PnNzc5v2fAuHZ61GrIJoYTFpL34YMz4+zqlTp9A0jb17965rnsrlyTleeP18z8+Wi+Rsz0dTFA5vK/KNs9P4YdLsJoSg6SWTAHeUkj6VMI4JbJf+QpZqK2nmi+LkDt92bMbGxhacc2LoaOSyPc2OgiQP3bOAtBd9y0gmQYax4Gw5wp6vtjs74PK8zb7BDI/sKDBecfAjwe6hHAOmvKyJpRfEeFESCWSVCE9SkqFU8k0TR02RerrHwygiCMLk9TXtdkOgWNzLSBAJDDXZJuzLZ6i3ekuedTXJhfhRjCm3J0IGIYqWNHbqyvKLpypLWJpE1fbY1pfDbUd7fhSjyBLmIkdfN4got3z6ciZ5I0oqyCKBaRgYhkHDDekzI/pzCrV6nemZGQJZ52o1RtYqKKpKRlfIGUoizO258roi05i5wcRkhl19e5lrhXz7UgVNljg4lGxdOH7EsfE6Y30Wj42tbes4jUhuT2fXY7V9JEEQsGfPHn7zN38TSAbbdUqON5o4jvmn//Sf8txzz/HQQw+t+u+3zNbW7Owsr7/+OkNDQ13L9Gq1umk2753nlyRp1c9xZF8/f35skqjdnQx075AfGZQ4c+YMjz32GJcvX15XefFUuc5ffPsEYRT1uPhKtLc0YsGlOZur8zZ+FLNrIMdYUefw9hIXp+vdxKypyjy2s0hhwWJbzFpUmnbiOOt53fr30ZHRHuEbyulkDJ1K0yFnJFstjuvhBTF7BnIsvhFVZJkoEjihR8WDeSdmuKSitqM3x4+4PGfz7L5+ntpTImNo2F5A1jR6kutBJDg/02SylnSBG6qMoaogxdQ9CU0Bv116vKc/Q8FYKCSChi84dW4aQ1cpWRoZXaFqBxRMFbltlihLMFowyGUMqg0HTVVAwHjFJoyT/pbBnM54NREYXZEJkWnaHg/uzNGXM7s9JlU7mWHS9BJblIyuYocwVW2SNTSQJOpuyGjeIN/xChMw0d5mipEJwxp9WYOx/iyTVZuyHSAJMHWZPUMFhtqNnX4EL5yeAAlMOcR3HWquQkvTODSSQ1WTJsycqTJSzPLK2etcniwzsm0HDTfk4PDN/W9LVzBVmXPTzTULSRqR3J6FI8VXw+Jk+8jIyIae10I+/vGPc+LECb75zW+u6e/veUSysK/igQceYMeOHd3f3ckiZb1IkrSmpsT33D/MZ18d59VrtWSbok1Bh3dtFxx5e9Klfu3atTULSbXp8J9fONZdLBe6+CZbOzEvXq5waa7V3nLR+c7VeS5YGt97cJA9/RZVJySKwmT+xQKjw5xlUG9bws/NV5idnWVs2wjXJ6aIhOBa2aFmB2iqxO6BHIdHsxy/UWOu5SPho6gqQwWD+4Z6E3KSRDv5myyu18o2mipjaFo34rF0BbsVMddw2dnfT7M9zKqTXM8aSQPgqckG1ysuli6T0RQiWWG8GnH/DhVTV6nYIblSjqLedg1or2N+GHNmxmG8Ynd7V1QZxgZy1FoudTckFmBqMvcNZdk5kE0mIkowUXU4O9PEj2XCIEBVJIZyBtuLJvMtHz9OhmttL6iMlQxajk8+Y3BptsGZySZelERHNSfA0FWGMhq2LHC8EFmGQ9uKDGeVrvjONn3Oz7bQVRVLkwhlldlGYjz51N5Byg0bkChYKkbbZsXSNa5M1IklmYwmyOcLaKpMs2Uz1/C4MT3PaCbpXTHMPNVGC0VVmK+3OHH9OLaa576hPT12NHI7elwradXW7emsL2vpbL8b5b//+B//Y/7iL/6Cb3zjG4yNja3pGPdUSBzH4bXXXiMMw2X7KjoWKZv5QV1LU6Kuyvzuhx7jT16+wV+emKbleuzLePz44yO844kHux/itboLO17AF75xdMk425brJQlcU+PqbMyVso2hKmQtgzAIMBWNmhNydrrJU3v6GMioFLJmtwscwDJ0Wo6HQDA/O0+j0WB0dBQ9k0FWVV68WmeuGdDJQJyfdXhke47n9ifNgn4oKGU09gxkyZo6drvPJ2lmNHuS7bGg3ZEeoesanucnEZUAy1zk38XN5HosK8w0fHKGgqHKaKpGEAYoMsw0fb7rvgL7h5LPQ9bU8fyQsH2dZ5oh4xWbUrs3BJIoaLzc4u37BohigR+G5A2VnJXMHBEkW2hnZ5q4QUzRktEyFl4QMVlzuX80x/6hPoJYUK8EGJrcPXat5XK96iFkiX6zXa0nSTS8iIrj88TOYtL0KEtoqtxuFJVw/IDJuockyeTN5HOuKxKljErNCSk3HHb0ZZFlcNtVeaoiE0QRXpREU5LU7nwPY3LZLL6kU8ooDBdVQt9ndq6C47nouo5lWciSztTUFN/yHZ68fx8ZyySME1fkfYM38yhBlFj6H59o0PRC9g5keGyscEv36q22cG+184miqHvTuhqazeaGJtcXI4Tg537u5/jCF77A888/z969e9d8rHsqJKdPnyaXy3H//fcvq9YLk+FrsWBeCWstAbZ0hY8e2cU7hjyuXr3Kgw8+yPbt23ses5ZoJ4wi/uybxyg3ljd5DOMYxw9pRgpRHFHKGQSBj9S2FNEUiRtVl6eg2wVuahogiEmGX4VhxNTUFFEcMbZzrNvcebkWMe35DBYziDBAVVUqLY/Xx+u8+/AQD25fuPUhsF2PfNak6bjkLYuG05tjGM5pzNST6iDfD9C1ZBtLNzSsW72dEszVbEIBJUNDcHOSoiaDHwq8MEZtfx46HmMdQZmsuWiK1F3oAUxNwbZ9ZuoO+4eyZE2Lpu2hSBJu20NrvuVj++0mSSTCsD0nxNSZrLscGi1i+z6u2ntDYwcRddvH0pVuRZuiKphRTNONcIK4J3/jhyG0k+uOX8HSe/3klLY9gB/F3Wg0byXXWFMVHC/x4opFr7G/H4QEQchwMY9lKuj5HJlcnqmay1TVxmt66DQgEFy8bnNjZp59e3ZR7Otn/1COB7fdnHP+N2fnePFKtb2dKPPSlSoXZlv88GPb2FFaKiZpRHJ71rp+2ba9qRHJxz/+cf74j/+YP/uzPyOfzzM1NQVAsVhcse9fh3sqJI899thtf78wGX4vhcTxI/72/BzzLZ+HdxR4eHsB3/d5/fXXcV2XZ599dlmHztVGO0IIvvads0zO1W77OFlKtl5kRSeKo575GEl1Uu/j3SBAU2Qyps70XJWp6SlM02Tb8LbuFy6KBXMO6BqIMMAwDIIwJGeo1JyA6YbHngXVP0C3N6SYtXD9ZPDTRM3FC2KyhsJwXqeoJ1s9Sd9Isi22fyjLYE5HiOWvjaEpyAgcPyRn6Xjt9yeMJSxF6rrpdgjjmNDxKOasHu+x7mkuuB6xENRtl1Iuk2xptYnipCFw8bWMwgDJsgg6Y4EXZexlSUKWkuN6vo9lGPhhsn0mSUmTY8+5RgI3jPBCm8FChvGKjW7e/GxHceKpZS54jfP1Fs1IZmqySixiCqZKRpOpOxGqmVwbx48STzVFUMiaNB2f87M2EzU3iV5kAzvWKOZkhjVBuely+dwZ9g0X2D18H05dw1T6mHciXp9oMJTTu9YqQzmdC7M237lWZUdpdMn13YpCslnrxVpYa6f9Zo/Z/d3f/V0Avud7vqfn55/61Kf4yEc+sqpj3VMhudMiLstyUv0ThuuqfFrPObxytcrP/8fXqdo+SMky89SuPP/tWJNtQ/08/vjjt6z4Wu3W1t8ePc/JyxMYWuLftHjYUQdJkhjJKoy7MS0nJp9NtraiWBDFgt2LFnxJAlVVuD45Q6NaYbCvj1yh2LMgCgGiHdXouo7v+8iyjKap4ATdMt/FZAydesthtulzbKJJpXFzrG9el9iZl8j0FZhr+GiqzLaiyVBOT7bcWkknOgIqdsB8K8mt9Gc1BnM6082QWCRVYI4fEsSwvaCjLVJKEQsypkGt6bK9ZHJ62u4phOhat7SrwgoZk1rLQZFlQMH2fXJGsuXkRzF6t6xbEEkqWTUpbMhnDOaEIIhgvOoSREmTYsHSmGv4ZPsMnPZ2pBtJ5A2FXLsIQAi4UXW4XkmE1jQ0NClOmtIiCUVExEDLC+nP6N1zDcKYi2Wf8Uor8QdTVKbqTfKqxFBGJvEigLGSyY6SyWAxS63lULVD5u2IrJ50vkPi51W1A0aLOZ7ZMUDW1Jkr1/jb1y8zPTNLv6UwE2WYmlN5YHsRIdRuQUpfRuNq2SGI4p6y95mGx9WqR3brrNtbLiJZ643wZluk3KqHby3c82T77ZAkacP9sBZzu8W+6YV8/E+O0fTCnuqsl67WGLJK/K/vfnRVA6hux3fOXeM755LO1m6jYcZMkuILiGOBpspklJgHt5U4MVFnvu4gywqImJGCweGR3ujI0nWuXh+n2WwyOjpKLpdd0jyoKhJFA2qxjO/73bnwthtgmToD2aUOpLqWuPmGseDY9RpVJzGIFHFMEMXMN11EEPO++7LcN5hD19WuODZtD0WW0VWJV69VuTJvE0QdyxTYP1pgFJhr+dgNF11V2FVU2NO3YGtFwHjNZaoZUW3OY+kK2woGfaZM3U+iiY71ye7+DH2WRs40aNgeZTvgwmyLmpNsueW0pIR4vpVEb4oMgZAxFcFYn0kkBA3bwxUyZ2Y9QjpzyqFoJsOsZqp299TyhsojO/vQVIkwipmouZydTsQgn9Fx/YC6F1EwVVQiAmQQgm1Fk70Dme7nreLGjJdblDLaTVNKw2K22mRfQWbvjmL3/cuYetdws+YEuL7Ptr4sYdutQJEkVEVmvuVzeHuRpu1hZSzA4roNRmmAAStDNDXP9fEJZCCTschkszihQn/O7J5D0wv5yulZzs60mJ5rYqoSc+oM33dosFsYcK94swjJZm9tbST3vPz3Tmy2kNzu+F87PUPDC1Ha/RJxHLcrgST++mITP4wxtFt/QGRZvtkxfhvOXZ/mb4/29ooIkvxGxtAJwogzU3VOTzZotctLB9SIt9+fZyRvcKPqEEaC4bzBoe1FXO/mc1qayrmLlxBCsHPnTlRNTZrcbJdmABen64SxYDCrs7ekcaYaU7ZjdFXqOs4eHNAZLiaWHZ2GPUWWQSSNiOWWT90NKbSTxkgSpqGR8XxqHth+yHAxQ3PRpMUgirhedrlW89EUmbyZfPlDFC5MNXhqd5EDw1n8MMbSFWYnmhQyBrGUjLO9UrY5N+cSBCGGKlN1Aqp2wIHhLNuKMk0/mSbYn1EZyunJ7HnXp+GFHBuv4/oRWUNFiIiZFhQtlf2DGeZaiQCNWBrbS0Z3XG8YCc7MuHixxLZ+izBMRLTqRezN6owV87hB0rMzkNPRZIEQEpahc6NSRZEkiu1Iw9KSeSRuEHP/aAFNkdFUmf6s2Z0no6kKU7UG6qKcjyRiYiEI0bpzSwxVxfOCm/Y0nSo2P0isObTEtr7jfdapVIsFTNc9pusef3elynAhQ35wBC3Tz3BGwnUcZss1xmseQ9s1Lpz36O/v5/mrHq+NNxgtmih5hVYA37pYRlNk3nN48xLEK+HNIiRvlOmIsMUjEtj8EuDbCclMw+9Wx3QiC1mWEXGS8G160W2FZCU5kvHZKv/l707eMsy0PZ/TU02+c71BGPiYhk655TEbCfKTDR7eUWC4cDNa8PwgmX/hBsgi5NS582QyGYaHhm96UAk4Pl5v28pLSLLEhVmHvBzyxFgfc65gtuljagq7+y129We6UVKS+HV6ynyjuNOU1jl+0rin6zqO65GxzCUi0mG64eP5AcPtwVSyLEMQEInEEfiRHQsS/BLJTBXLRFM1rlV8RJzMFAHIoNBwQ25UXN6xvw9NTTrhM6aO4/ntRlLBRM3D9iMGshqdlVdXBOWWx31DOQ6O5FAWWeQDlO0AOxQUjGS71dB1JN8no6tM1z3uG8r0LPjJtYmpNB0iScbQktcXthP8hirT9JLu+VKmPWbX8chlDFwvQJHkzuVcghACPwjImQaOH+BHMVfmbKYbHgLItgdn2UFERgMvjpEVFUHIQFbrJuovzba4WnGQJQlVlrg4U0eZbTC2bRh/aBhZMdCLFu+7z+KZbSqtepWXT5zj+Ys+xaxBpGWJo4iCoYGpc3y8zpG9pU11G74TW01I1nI+nTG7b4TpiPAGEJLbTUncCG4nJIdGc8SxIEYkMzXat3lCJHf/y3ViL+ROW1vleouvvXKaMLr1Y/ww5vh4DRFG9OczhGGIaqg0nIhTkw0ODueWmDA2bY/Qc5iemaa/rz+Z27JgfZtr+pydbibbLIaCLEvEksJM2WHODnh8z/J3lEmU5NCfz/Zsi5UyGqam0PKibrOdEIKG45EzFExFwr3FSwzjZDBVGEWoys2/ldq/W+4kwiim4QZ4kcBaVEVl6QpNL6TpR/SpiRml7fhkMzqOl2yrNdyw7S214C5fSmaSzNZt7hsexPOXfiZuJuQTXM/DNAx8LyCIkjzKYiGBxEpHRCHIas9z+lGMKtOzFRREMafHq3ixjCqDrkhEbVuVTm7CCaLue9dwXLKmwStXq9wot9DaVvpVuz2fJYhx/I6vWsDuwTw7ShZ+GNJ0QyZqHpamYLVviLK6oGwHuM0qhZLCw3v2cHB7Hzv7rOR420bQB22+VbvCgB7hug4tO+nZ0cwAF51ywyFr3FwA627IfMsnoylda//NZKsJyXoiknRrawVsha2tW5XoxnFMnzvFjixM2Mm0Q0mIZCKfJPHT37V32UVjJccGaDken//G0cRePWNge/6S4UUAVSdIfJsyJmEYIEsysqKgSckI3bLt99T3i1hQq5ap1hqJy+hgX08fCcBkPUkU54x2MlWWIQxRFYWpxvIJ/g6FrMV8vcV006fuxvhBwEjB4MBIlpMTDcqtZJvKj2IsXWNUDXD9YEk/C0DgB/RZCjeqINpNlnEQoygqkhQxkOktsOhUVEmApavEUYhQVFRF6dq3RO1cgLZgyJVl6TRsr1smnNFlZhqLr7VACOjLW9RtDwkpGfLVHgsMUDBVNCWxL7EAw0hGDDedgJ0DObQFghDFgrmmjxfGWJrC/uECr9+oEEcKhWzSzNhwQ0byN7fOvCDm9fE6NV8QhSGxEFiGjq7KNNywe+1UWWJbTiFvSBQyFuena9yotBguZYnC5P3LxoKKHTBaMrF0BSFgpJjBUAR+EJLPGEzWPPwoJm/evM6SJGGqMm4IUuhx5tx5SuoedvXtoiOCJUujmDFAkdjW38fU5CSyLFPxIA6anHztZSaLOYqlPk7XVc7MJ6OCDU3hwFCW9z84tKnDtt4sQrLZVVsbyZaPSO7F1pbjOBw9ehQhBJ/66FP867+5yl+fmSUW0J/V+dnv3suHntpxiyP2Hnu5iMQPQr7wwjFqLadnoqGuyThe7xaQpsgoqornJ4ObYhEnFVRK0iGtL3TLDULmZqYREoztHENV1W4fiSBxC4abWyVJR7xGELTFQ8SEUdytalos9DnLoNKweflKlRvVpD9EUVXOTbc4MJzhqd0lrlUcWl7ErnyW0ayCU7EX9LOoBJHgylyTmUoN32mRVwUWGnP1xLtKlmWCKGC4YHDfaOHmubWJRUy23cw4mNWZqLlIGQ3LSLbRmm7ItqLRrZYqZJL+ljgWNPwAJwjZP1xgouZRd5OeDCGSKKWYNSi01zeBoN5yKbsx42WHMI4YzOoMZhSmmhGtQND0bLxQYGkyozkVS9e6OaPj43WqTmKgqGkaBU1irGQy1wyYrTnomsqugQx7+61uPuN6xaHqxuQNCUVPTqTlR8SSzIM7irRcH1mSkkjYbSYCY7vUneR9jcIARVGSaI4IRZbwwpjDozlyltF1EYDkM2fqiQjHQvR0uquaRhSFXXPMb5+8zIkrM2wfGyOWFEoZnf1DGV69XieKBW4o8JFRrQzve2IvT+1MZm48f3qKr5yvYSkxg3kLIUxeuuwSRDE/8fSOnufcKNbi5r3ZrEVI4jhOI5KN5G4k2xcuVh3Pr9HRUQ4fPoyiKPzWBx+hagfU3YDRgrmkj+FWLLe1Fccxf/niCaYr9Z6f+2EIYZKDaNg3R92O9WUZsMpM1oLueFghBK4fMTaYYVspgx+GOI7DzPQUxXyBYl9/z0yOjrtvPmNSbzkM5XUUWSKW1e5rj4UgjGEkl4hP3jJ67OYz7Y74q2WH6xWHrKF0t1q8SHBp3mW0aPL2ff0osowiJ7YdNyo37/znGi4vXakw1/TwPQ9d18mbKg/tsJgoN5hu+AgJduR09vUpuI5LKZ+l5XoEUcy0AxNTLv51m+G8zp4BCz+K2zPPkwbKoYLJ/aM5kCBrGdRthxsVl8vzDnYQockSY30mD2wvcGXeoWb7SBL0ZQ32Ddy0koljwfGJBjeqLrIkoagKk7UGOSXm4KBJM5ZxfMFwXmOsZFLKaDh+AJLEpbKXmDBmdHRNwQ8j5lo+pmby9O4iTpBYqeRMtTu/BGDWDlFl0c2NAGR0hXIrIAxDHt89kBhLStCMZHw/IiuBknhSAjftOHRdI275qIqEqWm02k7Fjh8x10pKxQ1VxlCSUmVTScREkmUaTZcDw5muwFXsgG9dvIHznWuMbttGsVRiW9HksR15rldd6p6gPy/zvQ8M8fSeZA5K/+AQ08Jmz5jFoCVj2w6OYyPZDt86UWVMrvLg7mH6+vo2ZNpph4W5zK3CWvpaWq2kITnNkayAlWxt3Y0cieu6CCG4cOECV65cWeL5BUke4E45kcUs3toSQvDX3znLpYlbOxo3HBfL1IgigSKD4wc8u7ef58/NUXVuCl5GFTyzu0gQhoSuzeTEJGPbt6GbmWWtzaM4ZrbWopg12dGncGA05OxkNTlPKanQKhgyu0vJNkez2zFuJLYcQbK1Ml51kKReC31Dkai4ATVPMJqXbibiO2ZXJP977EaViXKTvC4xNNRHFEfUXcG5eZ/vPrAdCYHneTi2g92qU6vMMW0Y5HNZzlfhSktBcx00RWG+5TOV0Xjb7iK2l3SQW5rMcMEgbxkEYYTt+NyouLw+0UACDE0mjARnp1vs7o95ameeEIUgiigYyoKTTXywxqsuOSOxZxeAYlpMztcZyQue3LX8oKi6HTBdbTGQt+jcbyiSRE5XmGv6HBzO0pe9+Tlq2B4ZM4lkJJZPrCPdrOKzTA0RC+qxoBlEGF5Ef0bnmuLS8iKyRrJg1Vsumqoy1pclipMig+m6x5npJk6QPJcsQbY9u6YRycRxhIRgtGB0naJjARdmbZwgomRpeLVZfOFxLeynP6vz08/t4uWjNXaO9LF/z037cSdIilFyhoqua+i6QalUYlTEnByv4sYSly9f5uTJk8liaRVxlCz5bJZ9Q9nudt9q2YpCEkXRqsWyIyTp1tYGcbcikldeeQXHcW7Zpb7WYy+MSF4+c5XTV6fu+HdNx8cNBBlLgyimmNH4/odHuV6xabkRliYT1aYoGApT09PYLZv7D+wnkpQeq3dIFqZzM03OTjW7pakPjpV4Zk+JkiFxvTPgqGCSjRo9HdVhHIMfkLX0bj9LFN/qBkDQtF3y2RKul2y1SEh0jDzm6y1uzNXJ6Cq5rEUcR2iKSt6IqDk+FTtgIKthmiamadJHH1EY4TgON8pNLs0FmDJoUpJ0zujJvPUbFZfDo73hv+MHmLqKG0Zcnnfaw7+Sj7qhJjmGyZrH3oEMxYxCNm8RhCFecPPaVexknG9n61AC4ihEURWqt6ocICkQiOLksbKqAxJR2z7ej+KlBQQCai2PYs5kR8ni+I0qWV3ubvs4foSuyN3xxbbr40YSJ2cD5pseZrVCX0ZjpKAz0/CZbyYCrskyO0o6I4X/P3t/GizZed53gr+zL7nn3bfagQIKOwkSBCRKlEiJlOW2NXZPezrabrc6RhMdDsWMQ9FfHI7wF320w+EIj9tyj9vh6XHPDL20NG7bWixKFPcNBFBAAVWoverW3XPPsy/vfHhPnptZ91YBKAImOMMnooCoW3lPnjx5zvu8z/P8FwtDUxkOYt7d80gyQduVNs1JJhiGKWfmHEnI1DXqtompZGgFrHgcpozCRPrAF1/7cDQiH/u8kcb8+acXaVpHpfFdU6Ph6ByMY+r24SLqxTnNqsMz5zdYbzqEYcj/9todvnm5S8+Txm2LNYsvXZjnlfOrH1iq4+OaSGz7eJ2yB4Xv+xiGgWV99OCEDyN+IhLJRzkjCcOQTqfDwsLCh+7EON3aevvWNl+/eA1NVanaVskVuD+u73u8fneAl+QoQrDaqvCpkw3qtsaZebk7Ebng+gjubd1DVVUunH+MIJFtkYptzYg9vr095PW7AxRFwdQVwkzw3RsdBl7E555Y4txCzMRdZWfbY1rBSUGSDgdeiGXopez63iic6asnmUBRFU4u1Bl4oWyjOTadOAYBw+GQ7Z0DNN3AdUy50OmS15BnOaquc5xaiqZrVGtV9EDFMEaoWYiuW2RpShAG5LnK3YMRp5vFA6dIl0Nd1RgHMXEmiAVHUG2WruLFCV6UstJyGQfRTOtvguCarlCEEFiWSZZ6ZLlO3b0PPCAgB4lSM1RSRSdJ5IzEMk0GQx/X0ErHRATsjGSrMMoVVNFnqWax3HLZH4Qoihz+a6rC6TmX2gROq+p89+oeQy+m5hgYusbuMJItwtUaQSxFKBuOwXq7wiiICIEgUwiSnKZzmBAMTcHUFPbHMZ842S4g2oKKbRMWbc2Jple5dxBSJcELY27dvsOfvGpx0pFcla4X89rdAXd6IXVbZ7lhsTUI2R6EResvk+91osFaARC51k14bS9nYb7NEycMwiji1v6Yf3txl+HOHVaaDu12m3a7TavVes8W0UTS/uOWSD5oa2s8HlOpVD5W0jMPi5+I1lYUHb/o/ighhODOnTvcvn0b27Z5/vnnGYUp/9urd7lx4LHWdPiLz60wV310aZZJIrm90+WPvv8OUDgJBhE1V3pZ5FMr6GYv4JvXu+SomJLvx+2DEQM/4n//4gZZofcUhAEgUUNnTm6U/e+J5lTNtfGCiDDNuLI7RlMVKgVCC0XBCxNuHHg82fdpVS0URZXmS8qhbIIQgqprsz/wudcPidKMum3w5FqLzV5A14/RJlbFAs4s1miYBVIKUcJSVRU6Bx1OrS2xfdeTJk0Vvayc5LwA2gVh8H6wgaIoaLrk7ijIjYVlmVS1Gju9EQo5O7uyyrNtm4V2kyTT0TRN2n/meQG7PbzOaQHTbVad0k9EIBj58pyTVLaLNDUgTHNsXcWyrEI1GdqOVoIH4kzw7u6IzV5AmgvaFYPVVoUbe0MCRXqm930fXVc5v1IvkX5bw5A3741QNB1dpCS54N3A42Tb4em1GqMoR+QZC1WT+YpMvhXb5LXbXfw4o2YpKCLHMlSWLZedgc84yqTLJJQM/kmbU24uFExDn+HHyPmPwSiIy2RxMAzoeAkpCuQ5tq4xjjIajo5lGURxwjiWra6t/S6Xu/u8ori8MfS52wuxdYnas3SVM3MOQZJzMI6xdJWfPdviF8/Pl8/+xXsFIbZ4zhzH5okNi6t7Ps3TC5xtS9fOd999lyiKaDQazM3N0W63qVarR9aQj9ugHR5tRjJJJD8p8RNRkXzYra00TXnrrbfo9XqcPXuW/f193t3z+G/++av0gwRNkdj9/+tXb/A//tXnefFk65HeR1VVuiOft751cVZMUJGzEFOXC96E33Bpa0iOiqtTbAElo3kQxLx9r8+Lp+fY3N6l0+kCsL68jB/eZ/daHNsydIZxLnWdDBUUUBTZB7d1lXGU0g8SXEsriYa7k2Y8EuZ7bWfAd2528aJscmjmd0a8cm6BzZ7PvZ6PqiicXqix1jDLdghI+fhbm9ukOZw9fRJVVTm/pPLa3QE9P0FXIM4yFOCJBRdVEQSh9PcYBxGZgCBKaVRtWraGqauEIdhC7tSDKMa0LB5bqXKyZRNFEUqesrPXYRxGaLpJo+qwVNG40YtQHQNb14iSlEGYstpysdScycXzo4w7PWlbaxkaJ+crnGjZ3OmFhClkvocKLLgai4WwVBCnvL45ZHuUQp6hayrbwwTLSzg15zIIUoIkY65qsNFyWHD1suq5eRCgKCp1U0EIDQfJD9kZRpyZc1mra1RdCz+QFaNp6ARRwjiSHJIJFDrPBXmeYJoGQdGam5lRFVG3DTRFcnsaFZskSclyQZIrLJqHFUfPS0r5eABdN0CkqMAwyhGBNP1yDI3Tcw6qAn6U8C++9g6x1eSlC6cxC22v3WHE9jDm//QzG6iqgmNoR2C/oyg9IqmiFPr4cQ4LCwssLCyQZDnfvb7P127s0722Q1u7xeNNhZPLMqnMzc1hmubHMpE8imjjRB7lpxXJ+4zjbGOn48NubY3HY1577TUsy+KVV16RbZftbf77f/0Wg1C+z2TJD5KMv/kv3+RPf+tnZ4bL7zeCOOVbV7ZZ2Th57L/HaYoyQWoFIcNYQSWHKdTOhC0+CGKu3rxNnsScPnWCu5t3CZME7QGtuChJQWSFX3hStGXk50tzyUKfPMACmXxsU0dRJX+iO/T5/q0eXrETVYqB/N4o4s3NHq+cneOTp9pEsfQyT6cSZRzH3Li7zaansO/BW6MdVttVHltw+bnHF3hna8AgSGg6FidaNhutog+uyOHzzjjh8s4YPxWIrMtqw+L0nMvb90L6YYqq5qiKwmrD5mTboWKbVB2Lg5HPXp6xFchdt9H3mTcz6sBwlNBTVFzbYrlhc2HJLa/tOEr5/i15ToaukvkJ24OA8ysNPnOmzd4wJMsFLddAi0al93vXi9kehDiGhltxECJH5IL9cUSQZLx0qnnYApzAbv2QHI0wFTimOnPv24ZGz08YRSmupTEuYOG6Ko2nciFwTI00FxiqQJ0mN8YJrungWqb0dclytgYRu6OINBPMFUKYO8OIKJVukHEqcE21vP65gCt7Y7w4pV2Rcvq5EPRDlWbVoGlpeHFG1ZLEwmnpmF6Qosd9Ll1+l3OnT1CrVFiomVw/8NkZSV+WSQghSY+qonCiZXNl15tplcap/H6XCkfIXAj+7cVdvnmjh6ao6FaD61EFP1JZQmdzc7O0pJjs4j9OCeVRWlue5+G67nu/8GMSP/ZE8l7xYVYk29vbvPXWW5w8eZJz586hqiqqqrI5zLi6H6Fw2G6bJLiDccz3bvX4mbNzH+i9wjjhj199Fy98OMFvsog3Ky4VA8ZBDhw+AELIP5E3JDMMllfWME0TS5OL5YMSCUDV0pl3NTYHOVGSoiuSFe7HGcsNi7nKbNsuSjMqtkwau6OIUST1sybXZOI3vtUPCeIMRYkLTsdhO8r3fO5u73B1ZDBO5LmrisKN3QE9L+EXzs/xylmJ7snzXM6QpjZdm/2QV+8OUBQ5TwhSwfV9n5WGzYW2Qm46aLpE0C1WTUCUO77XNkfFwq7iWAZhkrOTGDyz7GCIlN44QMnHLNkWIoQws7Bsi5sHAf0wkYtn8VnDJOPa7ogTrUWeP9EqW24HB6PyfIeh1NoydVUqDmgaqq5h6wmdQq9LPYa0mmcphq4iUBAiK98zy0XhKXP4/YdxwjAWDMOMJEmk2ZehMg4EFVMm92GUSv01V94Lpq7z6p0+d7uSp6Qpcg7SdHTOLVTo+jFJJlhfcDkzX0EVcq4yDBKGgTT9mlQ8qqJQMRXGYcqnT7VR8pSj2z5RACsgimIuXbnO2tICy0uLxTEOX3mr4/OH7+xzqwBBLNUtapbG1T2fuYpRKBSnPLlU5YmlavE7Ad+73Zeq0UXyynLBtQOPHdHgVz/1OHEc0+v12N7eJkkSvva1r9Fqtcr5iuu6P7bd/aPOSH5SOCTwE5BIPgz4b57nXL58ma2tLZ577jkWFxfLf9M0DS/Jj/hMTMekzH+/kWU5/+5bb3KvM8A2CwmSh1iZurZJ3/N5fKnCgZcQxCm2Ic2L/ChFV6Q/+uryApqiomkqfpKyYplomjpj9yvfX+p4aKrCLzyxzB9e2uJgFCNUlTxLma9afOZ0+8jnNXWdOM0Y+aGEKwqF+589TVVIM0EqBJZpMPRDDE3D1g22dvbpdrskZh0vDWk4OoEfYxsqtUqVvb7H21sDfu78klSpPUou5/qBj0ClZipATsO1CZOU/XFEowpn23ahWCvD0DTSPGe763PgJTRdS1Z1SMTVIEjZHKZ89mybjSXpMtgbDAnDkNwb44UJtwc6uqLJrFd8YEtTiDOVrZ6Po0kjqvF9xl0TwcQsz7EtS3Jysgw0HUubvbxCSK2uKM1YqFeYdzVuHAS0qxaqIi18h4GsBEoJ+UxweS/g9sEYgUBVZYtv3jXJ4wgvzkmQC//jixVWWnK43hnHbA8Tao6JrsiLnAvo+TGLdYtPnWxKgmIQyarV0Avo8UQtWZk6b4FpGER+yMgPWSg00Qa+rMb6QYI3zLEtlUGUUXNM8izjztYON3e6nD21wenC1mBvFPH/+N49doYRSzUTAby759F0dJ5drbE1iDA1hc+fn+Nnz7ZLJNjdnpxVTUOCNVWhbum8s+Pxq0+DaZosLS2h6zphGPL000/T7XbpdDpcv34dwzDK2cqHzV15r3hUHslPZyQfIN5Pa+tHSSTTLPVXXnnlSLmoaRrLTo5ravhxNrNwTnaUz68fzxk4LoQQ/NEP3uH2bhdVUQmTDAS4llXa0k6HY+qExYzk7HyFcZjyzp6PHyWIPMdSc14+3WRjRe7iXdtgHEqZdz+MqVT0clHoejEX7w3ZGUhZj3NLdZ5YdPnCE4vsDmWFMV93aNlHS36pJSZtWwEqOpiGSpyrWFpJhSeIM9oVg6W6WyLP4iRl894e5Alra2tc2guKY8qLqet66YHeHceMCj5EHKdEyWESTHKBl0jL2UmkaSrlTlSdMJ2t7uTwXSWME7xY2vSqpoppGsSFXP2hMGJOu+ZIUcRqVe72BGhKzrtv7eFFMeNxhKqq6LqOY9ukWYyqOOXcyTZ0TF2jULtnoWpRMTWCTEGJJes8SnOiKOX8egPXNvEj6bz4xuaQjpeAqqGIIQtVk8WaSdeLyQFd02k4Ok+t1Mod/J6XcnN/VEizqAgEXpzTC3PONDU03aBer9NwdBquXQ7X+0FKnKTULQPDKLxlChWE/VHEJ0+2ZwbxE0HOlVYFZ2vEOE5pFJBdyzTZHfg0HJ2KpRMmKV6UcWnXZ7fvo2kKvi+wsgTXdtgfhiiKTJyWkSEGO9y61+bZs2u8emfA9jDisQW3TFZ1S+fagc/JOZf/8lNrqPdxlMr7SBw10MoEM940Qggu7Xj8yZ2cP+5vs1y3+Myps/zs0w6DwYButzvDXZnMVmq12kfaBnvU1tZPE8mHGD9KIjk4OOCNN95gaWnpoXa+Bhl/4+fP8ff+4zVptARlhfLXXtpgqf7+MeDfeusGb9+SePjJTZ8UfhDTelNxmnNl1+P6gUeaZmy0XZ5erfH8RoNzCy43t/YReca5tWVcx0YIUcp9TI4thJAoMD8iReVPLu9LRWJdBUXhrc0eWz2PL15YZLlhsYzEpBuahqFrpXqvJOvppJko4b9VW0qqv7M9IjUMFJESp7KN86kzC2USSdOUnW2JmlpeWabqOFQHh9+XVLtNixmLFFUE6UsvRF4mQUWRUFRb1xgFCfZUyy7NcrI0oVo3yl1+6RFfnIely0Q4sfXVNQ2BIAlTKpZGu+rMCE1mhYKzpaucXWrwzq6HowMiQwjBTm+ECijhkNEww3EdRmnOjW7EONPRel2W6zbPn2jx+p0efV+2h3RVYaPlsN608MOYqmvznZs77I5iWhVZLUWpytYg5Oy8y6dONfHjFFNTOTlfk5DoQur95n4PQztsdSkoVEyVrhcRWRobFYNaxTgyXFcL6LIQcl5l6Dp5LkHeplH40BRk0QMvZmsQ4sc5DVvn1HyVa3sjOl6MYxl0PA/bUDm7UCkT3M2Oz+7AZ7HhgsjR0hDNMknThHMLLkkmMHWFhapF3dH509evcmO7w3ZWxdbVmYpHVSWgZGcYHRm6x2lOnOWcnXeoOzq7o5ilmomiKARJhh9nPL9+qA793Vt9/uUbB4w8wZqdcfHekCu7Y/7zF1Z46dQcc3OyPR2GId1ul263y+bmJsBMG+yDclfeKx5l2P6TJI8CPwGJRNf1DzxsF0Jw/fp1bt68yZNPPsn6+voDX6tpGkIIfv3lDVoVk3/6jVvc6visNG3+68+c4L9+aeN9v+/F6/f4zts3y79PqwVP602lueDfv7XLzjAGIVnGb94bcrvj88tPtBl29pmzdJaWVmnVK4z8kHrFmTG5mqnkFHjtVgcvETRLAyqBrup0vZhbHZ/Hlw5vyiTLSNKMekUiiKquTXcUcHeY0PVTmkGf9abDs2t1qpbOjQOPMNVZbZpcWG3QLCqaMAzZ2d7BcZ1Spj5MEpbrJlXHZhhGqMWQOIwzNAVOtA8fUpEXsumORZSkmLrOiabFRT8mSDJsQyXLBaMwpekYuGqEpsn5h66pjPxIWtMCizWTpmPQ9RPqto4gI0xy0HQeX66Vi2eeC67ue9zqBMSZhLZutGzmHJVuJBCZ9DqpuA7n5myads54PGb3oMONkRQm1NQEy3HYG49ZbSR85nSLnp+Q5oK6rUvf92Kt3OyM6AXSBldXJRrZ0lWyXGNrEPH4UrWQs4cwjjE0qcSbpHJgfn9ff4LXkmAKi4plFsoDGR0/ASFnY5YuB+MVU8rhZznkisZiVS87ind7AZe2xyS5JEzujSJcM+TMfIVMUemNApaqDqsNu2y3TQAXjqGRF3pcuq5hKDnDTGAbGucWj268bu92uXawxVCrc3L6HhCCNJP8lkn4ccZXrhzwg9sDwjRjrWlzfrHC5V2Pq/vSPEzXFD6x0eBTJ5vy2iUZX7nSQQBrNY2lmiW9enoBX7nc4bm1etkqs22b1dVVVldXpUr1aESn02FnZ4d3330Xx/lg3JWHRZ5LF8yfViQfcbzXAGxSkbxfX+iJl7rv+7z00kvU6/WHvn6yUxBC8JdfWOUvv7D6SB7UN7YO+LPX3539oVIs+FPzkTBJubrnsTtOMRWBXkAlcyEYBAnfu7rNJzckVn6SfBoVh+g+2937W4K7wwhNEQiRo+kGaRKjKXIA2vWO8QKZHLvq0huH/MmVA3YGkmh4bzzi3d0xT6/WeXqtzrlFeUM7plzAh37IeDxmf2+f9lybRHP47q0efT+hYumcWajw7KrLpR3Y78ckQYptaFxYqbHePFxEslxwbd/jdrdDisZizeBEw+DcgsvtbkC/QPa0XZMXNup4vT2SVLYfu+OEH97psz+S/Ie1ptTYurLr0Q8OtaQeW3R5bLFSLsyXdsZc3fXQNcnx8JOMt3fGPLlc5cyCyTjO0RSFtiuZ2QDNZpMb+x6j/gBXT1HIUWIPXTPY7AsWKhqn5o/fPUZpTpym1G0bTVPJslxaH2sKUZKTFFURICuEUUiCimNoLFQl6ik3DxFNUSoX/aoh1ZIFsDtO+eHtHl4kB+GOoVK3dQZBKttpyCplfa7CY0t1siwjiFPe3fckL6ZQWRZIxeC9UcTPPz6PvlYjitMZRJ5S/vdwE5OlOZWKgXKMNbQfZ3SLc2jYGnfubfOdYMzzj59C03W2BhEt1+CZtVr5HPy/fnCP797q03AMLF3lys4Y19T4c08vyiorE6w1LJ5YrpbV2s4wouPFtG2VLDl8duerJrujmN1RPJPAgiRjqx+iayrrzRr1ep3Tp0+Tpim9Xm+Gu9JsNsvE8kEhuRNC8gdNJL7vz8xyP+7xY08k7xWTL+D9DKz6/T6vv/469Xqdl19++X0N1CbHzLKsZLV/0CSy0x3y7771JkIIKrZZktwmx5pe8CX0MSVPE0zHkotBLoqdS84gM5ibP0SI2aYphfpglnnN7HFtQyPzYpl4kwRN0xFFtfMgkcmqYzEYB1zcHHDgZzj6xLNdx49zLm2PWGs6tCoGhqaSZjlBlOCPhnQ7PZaXl+klKt++2iFKJI+i6yfc6we8cm6BXzjX4uLVIWvr8zRtfdbsSMCrdwfcPPAxTB2yiGtewO7Q5qUTVc7MuwyDFENTmasYqKqC35M6XruDgG9c6+IncgecZRlX9zx6fsIrZ1qMw5QkEzQrBjXLIIgSOQNSNe50A0xdLRnmZsGpud0JeHq1QZbLttwEkj2JAy9B11RMRU7RXbdCGATEfsTd3RgzHGA7Do7rYFt2KZpZtXQqloUXxTiGhm7oiDwnCmVyneyS00zw5taQXS8jCGM5THZMao5Jz5fS/LmQ1d3JlkPdCKg6Fjt9n+/d7JEKaFdtsizDi1K6XsIThZ9OJmC1VaGiSzMsXdOIMoUgzstkCZPWmY6XQm8c4VoauqbN3NOqKmG5Nzo+tq5iGwZ5njPwpBHaersCQs4Fb3Z8ru57sjJUJCm2YWt43oiv/fASKytrnF6Z488/s1huMK7v+1y8N2KtaZcKzk1H5/qBz+Udj//usyeOfT5NXUVXFZJUlPBskIAFXVXKuZsQgm/f7PNH7+zT8eRc62Tb4S+/sMLJtiOFPwvuCsgFfdIGu3XrFpqm0Wq1ysG9aT6csDxpy3/Q1tZ4PObMmTMf6Hd+nPGxTySTxT1N0wcmEiEEd+/e5cqVK5w7d45Tp06972SgFoZVjzqH6Y8Dfvdrr5MUv58GMbWKRPhIENDsgl93HbKsByjkhS1tPiV9bU0lP7No603mFiM/pOrYRHFy5Lin5xx2xyleKBnEWZbixzmWZR7yNKbCKdR8USQkU0VyTiTXRME1JeJpexAyVzHRNA0/iNjd3SVJEtY31qlVKnzth3eI07xofRTQ2Uzh1Vtd/tzTS8xZgkVHo92ozjD5O17M3V5A1TbR1Rx0CfftByFXDzQ+99g8VWt2h6uqCmmecbMTMo4ymq4hnf1smzAq0EqDiFNzDgpgF0kEJLJqbxiRoXK/9qalKyRCpTMOyxbOKAhLWfg4zVCL6g7ANEzyPMO0TMxUoVZ3mJ+3iKOQg/0D4jQjUix00+L0coulqsqNg5wsByPNidMcRdM51bZK5NfVfY+7gwRLlY6PWS7oeRENR3q/b3bGGJrKSsNivWkzHqSMw5idMCNIJBNf5Bm2aaIq0PUSxmHKs+t1KckTRCUiLc0ywjhBN4yy7ToJXdcJo0OWe5pljIKYTijY63uYutT9ajkGo1RhGPp4iaBmCs7Nu5BnVF2LOwdjLu96qAq0XQPTNOiNQ/aTjBc26oWxWJ8X5xtcWDps4eyOIuI0L5MIyGeo5Rrc7QXEmcDSD5PCzU7A/jiiaumcaNm8enPEUoGnSbKc7WHEM6s1lgtDrbe3x/yrH24hBCzXbdJccGXP4//+nbv8zV88c0Qs0nVdXNdlfX1dJsxiaH/37l3efvttqtVqObRvNBpHEkaWZY8k2fKT5EUCH4NE8l4LvtQ9evBCn6Yply5dotvt8slPfpJ2u33s6x4WjzrQD6KY//Vrr5VDa3nCcsG3DL0898niWXNtRl7IibbD5Z0RUZqh5DKZ6KZNGsecmZdPgaoUKKr7ZOi9UBo0OZYxo4v13Il5un7C1T0pQwKyF//8apXTC3WCOCnZ9aauEyeHfIC8cCTMs0zqO+l6aZCU5QLXNugNPba3t9ENnfX1dVRNZbs3xkukretkNTIMnTyPGcUZHe9wAFwy+VWdII7p+jGZUNDVKW0vBWxdY28YMo5iWlVHwoQLPt+kKuqMJQJMQlYFSZJgmSajKGQQJAhhU3XtmeE6IG2R84xM6JiGVlreKpoBcXKkcvML58OGa7FYM9jsB+SKKt9Ps4gS2WZartuYtoVp2eA0+ebVPYZhjBABF7eGLLsq6xWTgygnyRRcU+PUnMOF1QZRIsUi7w1idERZoeiaQt3WGUcZFR1+6aklskwmNdPQ6SQplq0TJvmUNhjEiaxKDT3HT/JjWe4ALdfA0XK8RBItsyxHVTU6o4DVhl06Jo7ClB/cGTAIUnRNcl80JeCp1QYiyxmEGkPhc36jzmJNItzGQcS+l5CjUrdUCR+OY6qWTseTwpJPrcpW1ju3ttk5GPDFTz/JcrtOxdQKQcl8lk+T5MxVzBKl5ccZ/8v373Hx3pAgydFVhcWaSctR2fVSvD0PFLnB+rXnlsp15ju3+gRpzrlCt84Czsy53DjwePPekJ85++D1Q1VVWq0WrVaLs2fPEsdxWa1cunSJLMtm2mCu6z6yqdVPeSQfciiK8sCFfjwe8/rrr2MYBi+//PIHVticxKMkkiTN+L2vX6Q38o/99wmksmrL0t+1TcaFz8ha0+HsnMW7ez4C6TGSxjEn2hWe22iT5ym2qc8mqOn3znKudSN6qSDOfNbbVc60Ez51ssW5hSo7wxBVVVhrSH+NcRhhFBpVUZIW6KbDBLXWdKT1rgJCSIRUKjR0LePscp29bp/dnV1q9Rrzc/PloqSpinQp1DU0XUMRFEKFcmFTlVkF4LgATdRcG1OXhLQ8F0xv1nIhMDWJ7Bn5Ia5lEqcptmVwL82wCxHG3J+FjMvKDWqOJQUVp5JIkubkAuq2nDvcG4QgdFzbJEwyhn7I6Tl3RlDxbj/g6p7POEoxNIWzi3VOzFW4sTuUw9NM+sOcbDulfWyY5nzzWocwU5ivyQ2BF+nsRhmPuwrnqxFRKo3DKnrCYOzh2LbUv8py9PvWG02VhMO4aCmqikLVtogLFCAgrY2F5IlMUFVpKsEUS416oYUmEVz3+mHJyZhzDdabDjc7PnvDEN0wyDNZAT2+VCm/42v7HoMgoeWa5fGDTM4tPnu2yck5m1tJR7pZTiUrCV/PsEybKInLhXwCkZ6O2wdDfvvLX2dtZYlPPLbBfNXkdjfgRMvB0BQGYYofZ/zq081yVvTvL+3xnZs9Vuo2aw2NKM252w+ZN+A/e7xCY2GZpmPw5HL18HsFdkchlfuUijV5o9IPZkE9fiy16oIkZ71ps9GyZza+pmmyvLzM8vJy6bHe7XY5ODjg+vXrmKZZJoMkST4Qd2UikfKTEh/7RALHy6Ts7Ozw5ptvcuLECR577LEfCQf+MEvc40IIwR+/epmtTv/hrwOCOGfRMcnSQmNXQLfbYcPwWX+sxX4ge9grDYuTbZcsS2nWHPrj4IEH/c6NLm/vp0CGYZoc3OlxdUfll55cpFUxZvwuJiGRWimNmsvwvmNfWKmxOwzpejGKEEQiRSHlqfU2Sjhie3efhYUFavVZef2qpTNftdjqB5iaiqZriEwwLhjxC1WL2x2OEA9HXshjy3Uubg4ZRUnBnpf97DjLOTcFNfXjmJpjy2RUHGejZbMzkDIkjiFtZMdxiqUprDVt8lyCJUZhyjvbI7aHEULAXMXg1JwrbXC9BC8JMVSVE22Xp1cOP9vdfsCrdwZkOdiGSpwJLm72OT1f4RMrNgd+SsV1ma+aLNasshrYHsiWW8s10DQVVVFxRU6SCfqZwTOnlkiSBD/wy967pmu06nVcXWEQ5kyPkaJU7sonbZ4sz0mynK1BzLV+hulFLLcM6raUVnFNqZvmxxmuqXKibaOrGkKDi/cGXN3zCkVhKZNfMTWeWqkSJjlC0ahYGit1k0kTL8kEeyM525lmp1dMja4XM4ry0nbg/s5CwzG42wuJkxRN1UBAkkn74Glfn62+9IuJUsHb2yP+7NIm58+cYq7qcLcXkAuoWBqfe3yOzxbVgh9n/OB2n5ZjyESKnBGuN21u7vg07AqfPz9/5BkAWG3Y3O7OEkultL9sn03iyu6Y/+f377E9lMjAiqXz0qkm/8UnVo6VS1IUpeQnnThxgizL6Pf7bG1tkWUZ3/jGN6jVauVs5b24Kz9FbX3A+KC+7Xmec+XKFe7du8ezzz7L0tLSj3wOD7LEfVB89fWrvH1zW/JCilnIg8LQVLwgJgwhTgXj3j4GGesb65imydn7Xl93bfrjQGompRnxfQnuYBxzdd9DV8A2dTQNhKbiJdI46nPnF449D8lDsRmMAva9hFsdnyBOWKxZnJ6r8PknFnjzTkdKfldtzi3XMcI+u/sB58+dJhHyewrijN2hVMFdqls8v9FgHEkhxDyLUDWNimXwyZMNNE2ZqUj6vvTQaFQdGlnOJ9br/HBrRN8LUYpW3mrD5vxUz7xim1ze6nOj49MdQ3Ps8fhynceXKlw/8On5iZyHGBovbDRwdfCiGIHK9+8M2RsG5UK4NYjoByk/e7ZFLhTiXGCqMFc1qdimdKZE4eqeT55TQlIFkKFyt+vTnIMX1mpYTqWU359ElOZQ2BenSUKGBHCYuiRyooBhGjTMBo1GgzzP0cnZ7w6oCo+9CA5SDVtXEKjEOZxqOzSKxdK1bf708g5bg4g4ydB1la3xkNWmTc3WOfAk/He5YfHCiTYaOX4c40UZd/sJukoJeBBCJpN7/YgvPLnEqODjKEgQxjTUfDpM0yCKpPx/kmVUbBcExFnO3U7A9kAeZ65i0Kra7I9CHFMFFJJcoeHorBYS8nGac2l7LNV/ayZZlpPnKRffucLnnjvLf/ezjxGmgtWmxVrjsBrw44wozamas8uXVB0WhFOPjB9nfOtGjzc2B4BEcdmGyu1uwGLVJMkFO8OQk22HZwvk2DhK+Rffu8fuKOJEy5bCqWHKn77bYblm8fknjk9S06FpGnNzc+R5ThAEPPvss2Ub7O7du8Ahd2Vubm6mmzKpbn5S3BHhY5BI3k9MZFLCMOT1118nyzJefvnlDy1jf5DW1qtX7vDDd+/M8EJAwnqPHFdVCHOVb13u0Q1S0izHMHQeW3BZ049WDTXHKq1U/UjKtJdSFkVsFwKCtiYhmJOBu0bO9ig91t4XoFFxGHohP7zT5+2dkdR10nRu7Htc2/P4/BMLPLXksuGknNhY4O7mPdJcsL6xTiIUXMvk0lafH9zqyR0s8sF9Zq3OX3hulSs7Q0ZhimNonJxzWW5WGPpByd34/q0eNw98MjTyrEfV1vnUySY/f6ZBL6zjRTF1S2epZpb6VLZh8OZmnx/eHZDlApGl+An0ohHPr1X5hcfmSuTNcsOiZptl++zmwZj9Uch83SFPJ6q4Kj0/4WbH52fOLZStQyEE4yCiYlsM/ZhxlErF5CIMw4AkkTpliYIXxlRqUhI+mIK81mwd3TAJo7gYJsuWW5TmrC/WDmHlQmqK3Rsm9MYBTdfk9MoSrVbMtX2PMBWkcciiq7Jm6/iBz1yzwVubXbYGEVVLIyFB1wWqYbE9iHj5dINnVusIYK5qzyAHu16MF0YsNpwpKL0khw6TnM44KOdDAsHBMCBFRVNyFmuyzWQbGlaRRCbXp+0ajIIQTdP44eaInWFUfu5elFM3FU60HTkrAzaaBk+tNrENhSTN6HgJfpKxUHfKjoOqKji6wncv3eB8S+VXP3OBuisX2b6fcG8QYukqc67BziguKxKQrSnXUFisymcrSDL+yTdu88a9IWax+39ze8RSzcI1NA48iY57bq3Orz23XFZ+l7blZzk555Sfp+kYjKOMb93s8Yvn52Y4YvcGIVv9iIqp8fhSZaZimcxI3i93JQgCTp069Z+ktfWP/tE/4u/+3b/Lzs4Ozz33HP/wH/5DPv3pTz/SsX4iEommafT7fS5dusTCwgIXLlz4kUhC+6OI/+mbt/nKlX1MTeW5Vsp/u/JwcUWAd+/u8mdvXJ35WZikR0yRABBg6gbfuRcxiAUaktcghODdPZ+qbfKJjUOOS8U2DxnHRUxY6zXXwo9islwU3BCBomr3KZwKCbvMxZHkUy0S1IEX887OSArx2cX1s2w6XsylrRFPzOkgcm7fuYNhWKysLJYw1tsHI757oweqStWSIAIvSrm47dFwjBnCI8jhes2x0FSV6wcB7+55uJaBqwhyoTMKU757s8cXzs+x3jDQNQvT0KUsPpJ9HyQpl7ZHIGSrJAwzdF3BTxLePQj5/GM2dUfOIlzLnJkpjcJUzg7SrCSd5rlsFY0T5dj5kx8VHueWSRDFWIBuGCRJUrbLJsPeScIKM4U7B2PJ02hXaNk+e+PDdlCQSJ7IWl1KyAdRwjvbI97e9aUFq6aw2QvYG0V88kSDLzy5RJjmVG2DOAgYjMeM+j329/a4NtTJMwUNjQRZzevkpAL6Yc5CTcXSdcI4mbmPVFXOrOJEDszLVrGikheINJAJ//Kux62uT5zm6JrKYk26Jw7CHMIAkQsMXeH8UhXH1MjSjG0vZy+Jma85ZGmCUSScvp9wes4td/pSMicnzxRqjiQLarpOkiQznQlFkTOfO3s9/pf/+H1+7rnHeLcv+NOrXYZBgqGpVEyNMMm43Q2kplucMY4znprTS9XgH9wecPHeiPWGXYIYojRnsx/y1z69xmOLFQxNYalmzby/H+elSsF02LrKKEzJBNIGIc358g+3+M7NPuMoLWdmf/0zGyVn5bhhu6Io1Ov1Y7krv/3bv82f/MmfMD8/z5e//GVM0+TZZ5/90CVcvvzlL/Nbv/Vb/M7v/A4vvfQS/+Af/AO++MUvcuXKlUfir3w8dJYfEkJIH+9bt27x+OOP88wzz/xISWRvFPGX/sl3+Z+/c4c73YBr+x7/67sRf/Pf3pK6WA+Ie/t9fv+7l47VBZuYIlUdS0pzCEHNtbi6O2AQ5WgITENi8g1NRRGCt+4NsC15w9uF18SxHTIFRkGEpmo4pslq08I2LYIkK1tquRAkmeBU2yVHyOTjWKiKimMewny3+iFpLmZ229JHQ+HuMCIMQ7IspVKtsbS0VCYRkBDhOMtwNNneUBVpDBXFkjl/XIzDGAW4O0jQVQ2zeFtVUajbBl6cca9ohaRZjh/E1FxbymYUulBBkpeyKsXFxjU1hl5IkEhpl5prH0kM0iJXSr7IXXiObhrkqGjiaPXoRRk9LyFJM1ZrOjkqiVDKJDIMU5qOTstSi2sOP7w74Pff3ObitscPt0b80dt7zFUNzs67KEhb4vmqyYsnGsxX5UYhTnNudENURdB0dCqmRtM1pEDjzhiQny/Pc0zb5tT6ChsnTrC6tia5QXmO78sklCSJBBnkGVGSUnMt2YYTgjQTbA8iNnuFzL2pyUUwy0mSFEXVCZOMlcYsBPny7pg8h6qpoylwpzOm6pg8t1ZlrW5xdsHlpZNNThULpRCCUSy/mDxLsUyTvLAWVhTZitUKGZTJ9zcIEm7tj1hqVjBV2X4qv14h8GMJBrA0lShJ+R//4FX+6R+9RhTFrDVtGo7O/liKga42LOIsp+7o/OXnl/n5DaNcdK/sjkFhxgbY0qX4/tV9j42Ww3J9tmW2O4yYcw0MTW6Ups+rH6ScnqpSvnLlgK9cPpAyO/MuKw2b6wc+/+xbd8q15P3w3ybclfPnz/Ov//W/5qtf/SphGHLx4kU++9nPsrq6yj//5//8ocf4oPH3//7f5zd+4zf49V//dS5cuMDv/M7v4Lou/+yf/bNHOt6PvSJ52IwkjmPefPNNoijixIkTD5U6eb/xT79xi844LoX3QPbAr3Yi/j9vbPNXXjz6Hp2hx+99/Q3S7OFzFC+M0VWVdtXlYDjm7s6+3NloKsqUx4imKiRZzl7fZ7VVIcsF+TGL23RMdsBnllo82wv5wa0QP8lRC5mKuarJsxNxySL5uJY5zUGegQtPhxCCwA9IIwUUCXG8P/w4k+IcyoTToyMKD4npheD+yHLBOIrRDXPqTA6NlOJpBI8CQy+gUbWJY7kYqUxcGw/vk7zg52R5hqnbxwr6rTVtru57jELpn6EAQSAXtdPzhy3RIM54/d6QnYEcqlqGypk5l/WGyfYwxs8FIpc8mU+caJB6fQDudgNu7PtYhkpVV1A1Ey/OeXd3zM8/Ns9TKzXZgjS0GSHQ/XFEEGe0KqZspxbQa9eU4pLjOJuSSpdoM0PXcCyLE/M1BltDHFsnDAMUFLwwIkkFIhjS6cgWSi/I+f6tHqNItrFMXZI6s1wy14UQ6IZgsWbxzFoDkInnVifAUJUCzg2aKq9bZ5zw1FKFJ1fqRxK2VCWmtEqeaNUZho7wk8MEgoTwXrw3ZHcUkeVyE1AxFbxcggU0RSHNJYfk3GKlcOyEO/2I0E/obidUtDXq9Ton2irbg4hfeWqRxxYrOIaKoam89tq9MpEYmnLs/FLAfdDijH9/aY9vXOvhJ/L6u4bGZj8s2fUdT4JCfuFxOR9Jc8E3rvdwTK0c0lu6womWw91eyDs7Y17YaDySztaJEyfo9/t8+ctfplar8e1vf7vUCfswIo5jXn31Vf7W3/pb5c9UVeULX/gC3/72tx/pmD/2RPKgGAwGvP7661SrVRYXFz802ec/uXIwk0QmoQBffffgSCLxgojf/drrKKp8oJP04bMUxzLYPugx6B1QM3VUJSMXML0nSQv5joqlk+Y5cZIeaUcdF9JwyuNTZ+ZwlZjbvRDDcpivmpyZr8zwIFRFakbJnarkryzXbTR1SDwly5ELQRSnnG7pOLU6YjzCNg3ZHpmKdsXkdteXqB9NI88yyY/RdNoPsSNWVIWFqs1mP8Cp2KiqLPfTQiOrZmszSaDu2gw9eR1OzFdp3OnT8RIajuSN5ELgJxlLdYvlhnMI81U1ruzKuYita5xo2bywXufi1ohhmIIijbzOL7istxwsU8cLYr53q8/2UGpHmYZKmEoZlZdOtTg37zIMU1pVh4oh7Xn3Pfl2d/sBArA0Fd0wSJMUWxMMUyku2H7A/K7mWAiRE8VJKd+eZVmRHJlhZSuawfdudOh4EpG13q4wXzE58BLSVCo2q5rOmbbJk6sund6AwdYeb/UUMtXE1cE0JNdkdxhzYaVatLZ0DCVnuW6hCCkmut33iLP8CJem4ljsDQJGYULN0koHSz+WM440TakZCqNYIVNUKDY8fiThrssNCY0WRQW3NQhxDZVqRVoXH4wE6y0b13YZ+iFNx2CjZZezjywXhEmOocnq8MbNW8zPzbGyskwmZKU4TSIMk4wrBxE72YBTcy769d7Ma0ZhiqbCM6uHg+x/+cNt/uidfWq2Ts3SGAQJfpxxfqlCmOSEac4zqzW+8MQ8TyzLFm6c5oyjtOTbTMLUVTIhSi7Xo/BIfF9W+NVqFcMw+Lmf+7kP9PvvFQcHB2RZdgSotLS0xOXLlx/pmB+7RDLNUj979iynT5/mnXfe+dDMre7ve07H/bC+OEn53a+/wcCTcFlVke6BIz88tpJyLYut3QP29/dptVu8cGKey/1bdLwUJcslXySTA/Inl6vUXavw0oaxH1F1LYJiFjKJvWHEOzsjBlFORVc4v1xlvSV9wxfcCtVG8+i5CLCtQx7KRLZ9Xdc4t1Dh6p5HlEqeS5KmNFyDT55exFAyycqOE7mgTyF3zsxXuLYnd/i2CSLPCZOMiqXz1GoDy9ClkOD0aQiBY+qcsg32xxE9L5Q7dE3HC0OWahYrNbMEB1Rsi5v7Q/ZGCQLBci3mM2fn+fq1DgM/Jk0FqprTdE0+dbJFXCT1YZDy9etdhqF8aLM05FbH55m1Ol94Yp79UYyma9RNlYqlkeWyjeYnsO8lVC29nH1UVJUgU3h7e8QXn5wvodS2ac5opsWF5pVpmtKHBMmZybOYJM+PSOUIIedgWR7RsHV6QUJDUZAK+Tq+57PecspqIMlV/vitLUZRhqbKKux21+eZ9RZrrZzrWx1cR+fEXI3Hl+tEccLSso2375H2+1S0HEVAEPioikqaKWz1A371uVWCcHaGMvRDGo4pNxBRUrQFZcvFCyIMTdrkThwsb/cjLm2P8cNYbgJyWJl36IwCCYpAPmen5gxOtFx0TWWz57M/iqlZOq4tvVtcUycXKX0/4ZMnGjhmFU1TSzUCgGbVxtah7+dlS/ag06E7GGI3l1iY2sRcvDfkn74Z4uX7qHqfpqOzWDXZH0unSIS0Rvi5c3O8UDg27gwjvnOzR7ti0i4qi6qlsz0IGQQZf+fPnUNTJIl0+jlzDKkycHXPm4ENj6MUW1dZLpBpjyohb1lWqerxkxA/9jOd8RfIMi5dusTBwQGf+MQnynLuw7Tb/XNPL/GPv3aT+32mBPDFC4dDpjzP+Xfffovd3vDwZwW6p+ba+GFSMtZB7vzu3rvHcDhieWUZ13VJ0oyXVi3e2NPYGcWkmcBQVS4sVfm5J5bLJCIvBKW1qqmrBHHM7Y7Pn109IMnlMGtfCO72Al463WLZBj+MWVm28aPDc7lfbr7vJwzDlIoZM1+z+PyFFRZrXa7vjRh5PusLFZ7emMe1NIIgYELXGHoh40QwDGIcXaXlGvzC+Xne3B6z1ZOVyVrL4bn1BpYGcZJJePE44E4vkAgtRYUg4ZkTKq+cnePS1pC+n6CR8tRakwtLFQwNOcA1VL5zo8O7ex5JYcxlqArnFip8/vE5CVm+t0ezanN+dY6qY5SJ69LOiEGQ0HCkzLzhOgy8SGqFNSyeWGmUcvPT13tv6JMLBdvQS40t0zSJg4gwEcSZwC42HmEsCYGuaRBngoWqRTfIiQofEpCVpqIoNCxZ7VRdi+445PLOiHuDmDjNWKiYnJpzSfY8BmFS2BUkLDZdXjjRAAUsXed71zoMo5SWc+ja6MUZ72wN+NJTizRzA7dapdGoyk3WpFWYCVRVxbbk4mZigRCEXsjA87l27QaWLTXBMtVgaxBL9rypsVQ1uJkIxlGCaxl4UYwXZ6w27HKx3BvHvHanD8B83SUM5YLbGQU8tVKV3x0wVzGZr5ql0rSiaiR5TtO0ysQLcpYVZXkhRplBklGr2Gz3PJJcZW845GTboR+MSlRgmgt832dJbNHrLJItV+h4Cf+3b97hwBecXDBwHYf9sZTI/9WnF8treH6xwoWVWtly2x1FjKOMk+3ZqrrhGPQC+exMC42Wt4+i8IUn5rndCbjd8WlVJLl1EKS8dKrJuQUJAsmyDMuyjvz+w2I8HlOpVD4yR8f5+Xk0TWN3d3fm57u7uywvLz/SMX/siWQSnufx2muvoes6r7zyygyuWtd1omNMoR4l/ttXTvLHl/d5d1cONicIkRdXLL70lCz1hBB85dUr3Nw+OPYY4yDC0DVsTSKFFCG4c+cOSSL5IdNtONfUeGlFofHMGn0vomZpLDYrBWfhaExmIa5t8f1bW6SZ9AYRxa49SDJ+eKfPL52tSNhqwVq3dXkujUJuPk5zvnW9y91eQJoLNAWW6jY/e67NRlVBGfksn1qiVquVMiwTIUg/yvjG9U7Ry5YOeUsVjS89s8ZnXYMglmizyS4VZK986IW8ueNzcbMHqCAyojine73PFy4s80tPLhDEKZoiPTZUVcG1LcI44V4v5Mqeh6Yo1O1DhM27ex7zFYONlkN9xUHVTZpVq9ztp5lgZxBhT5Hm0jShYmsMo5xRAtX7k0gRjqmhkBOlKbZlkudSbiXJBI6hzhhsTbw77nVD2lWH88tV7g0i+kFcoPEkl2KpZrHatEGBgRfy3Vt96fynSkbNnV7AgRfz6ZNNgiQjSHIqlsZqw8bS1QJ9lrAzlEPy6cXENVX6QSoJoGnGgm2iKypBfrgwVy3ZLktzKVY4mZGphmRmt+d1giDg9k6PtzspUS4dN1GkYONSzWIYq3hRiqrknGg7PLNaL7/nzV5Akkk9sDRN0HUNV5Os/iDOeXrtGO6DgmS5Fwz+6bpfSvmrh61W4FtX97ndj4mSDEXIQfrpOYfdYYyfZGiqnEU8tVLl1Su32esOSZ0W++OYRUdg6VohXWNx68BnaxDxf/mF08feA3VbxzJUgiSb0ffy4wxbV6lZD14iP7nRIHtZ8EfvHLA7jDB1lV99epFffXpxCgn3wb3jJ4nkowrTNPnkJz/JV77yFX7t134NkOf5la98hd/8zd98pGN+LBLJ7u4ub775Juvr6zz++ONHLvyH6dtetXX+3//HT/G7r2/xZ+8eYGgqL8zDJxcOHf2+984tLt6499DjJIUMha4Ibt29g2HYrK+vzCCd4FC00VQFKw2bmmPTH/sPtPWdxGZnxDjJsczDJAJg6RpBktEJMprahIEsz6Vdd+kOPVAUvnerx40DT85iTLmLu9cP+OO3tni2lXHyxAbNRq1UFp4+129e73CvX3ifF94Y90bw1Su7/MzZ9iyKaip6fsJbmz0MXcM1NLJMQRMp4yjnrXsDfuZsu0DNKMV7Se2wumtzu9shy6HqHB7bNjSGYcLdfshqQxIGl9o2acGFgKNuvZMQRYslFzOi5zOxWJXtjP1xDEhfjSAVpHnOmflqyWeJ05zv35b9/TBO0Q9SVgaCz5xpcX1vzPYgQlXgsYVKCSkF2TbZ7su2kWFopEmCbWj0g4Q7vYBPn2rOnE9WmE8ZRQI51p55IgRafDAB+IngbtcHBG3XZK5ilqgmrTCBciyLswsOc00Hz3Z4fT8n12KathQPTbOUoZ9CFvP5JxYIcpVWxUFl9rmbLOQgN1yqKg3EdEPHvx/1KKSvfZTmVC2NpbrFnY5Po2Ih0pQoy0lzwal5tzzmzQOfd/c8bFOnbqtomklnFJDngp891ybJBIaq4FryPjF0ja3OgDe3NhnHNtWayTS6wTJU9scP3oSeajucX6ry2t0Bq3VKdFsvSPjShQUazoNns4qi8NKpFp880WQYyO/Wve/ZeNQZyUdZkQD81m/9Fn/9r/91XnzxRT796U/zD/7BP8DzPH7913/9kY73Y08kWZZx/fp1nn766QeWVR9mawvkzfJffXqD/+rT0rTq1q1b9Ho9AN6+tc1337lFxbZmW0/HxGAwZDzoMT83R73ewItTbuyO6XoxFVPj7EIVVVHLtpOp6ww8n3rFZuxHR5jR94eqKFJl1pRMaWXCIQE0RZ2BIju2QW8UYFsmXiiZ64amlsNTXVXQyOkE4J5dolqtMByHM66NKDBKBLujqETByGNb5EHIna7g5bNq6Yl+f+wMJby4oimkaYpuGKXz4VY/JM0kN0HhcCGakDCTHNQjeHv5sCaZYH9/H9fUEZqJH0rZlHEQoQFLNZNb3QBLV8uqJEzBVKBhKViGgSAniFI2+yF7owgFSWL89Kkmr90dcuAneFGKpas8t9HisbnDdsTFeyPudAMcU0U3QNF1tns+WZryF19YwwviIyq6IBOrqsuqJ03ygs8CppYVyWs26hWnrFTXmg7XOwF2gYwTCLxImn0t1kzCTMcLY97aCbiy55GhSg6HpnGybVOzXbYHEWkuWGlVON0yaTk6fpiQotEPUiqWLuchhhQANZKMMINb2we4Skpkmcw3Gyi6KatsBVqOwfZAKhtYpkkQynsnTVKWGg10VSXNc/w447W7A/ZGMZkQuJbFSk1jo2mzN44QioahaZydtzm3UOy+Bdw88NB16XkPkGcp7ZrNoBB73GjPtpl0TSVIE1xDZbC9Tz5WqdWqmKZZQIkzTs3N2mvP3mMK/81L6+S54N09j+2hJBZ+9mybv/Tc+2vz6KpCu3I84OTjarP7V/7KX2F/f5+/83f+Djs7Ozz//PP8wR/8wSMrhfzYE4mmabzyyisPfc2E2f5RnkOWZdze6fKH33tb8jKSbHaRnQohBHt7e4gkpj2/iO06dP2Y3397n84wQFXlbvvVOwM+s+HQ1AWmrpMUwoLDKXXg+9FRkzgxV6Nhd9gfpehqimYY5GlKmORUTI2FqoFfVBOGrpEkGQJBGCf0gxih6iVfQrZsJDQ5y0E1pQ3sITtfLiRxFBOmEiljFwqCqqaRZdIXJEozuqOQ00v1UpV3OlRFQSmY9YqikKWpTIaKCkrx71O/VCsSKsCcq3PrIEPVbLIsLRBa8tzN1Mc1XZpzcyhFAu37Uhbd0VWeXKrQ9RMGQVLKvZu6xlPLFaqWRpgk5Dl8/+6Y63uHM6+r+x6n5xx++akltvu+FFS0dVxTenCEcYofpdztySRl6SqZIkU4K5ZGx5d8iNWmg6aqMyx3gLprkSYjhC4dE7PCNkBoGvcXdWGm8Pq7e4wKhNFK3eJgHDKKIc8SmYB0hadWaszVbK7upoyUlHd2ZTuwZihojksQJdzsBLxypsUzqzV0XZ9N/AqM/RBFVYsFThQ/lsCBKIhZXFykaasEQUB/5OEHHYJcotPark3FlG1DK43I0pxxLFio6yxU5IdyLZM/e3ebnVGEa+pUTWnve21f8OxajadWq0Rp4SZZmfi+SDuFFA2VhGmco8gyqVBdQM4nO/Vpz5iVhkXT0dnte6RXrrG6ukakObRcg8899nDo7HzV5L//whmu7/v0g4SlmnVEoPFR41ESyX8q5d/f/M3ffORW1v3xY08kwANlPSbxYba2HvT+BwOP79y5eOjZPr3ICkFUVEQTj3LX0qkvraAXEilfv3pAdxRKkmEuF/U4zfnuHY9fOmUdkYSfqAPXHZthMDsvqTkygb18us0fX97HjzJEJH0NLNPg5TNNDC0veBxSKTfKD69P1dTRREauSGJbHMfouk6ONIYyyJl+UMMkkez8io2tSUnuOMuxTV22UIQUUzQ0haqtM/JDbMtA5IfXRQjBueU6r93tSxLhpD0jBH4Uc3bOYjQc4lZcDMM4RL8VieX0vMvNjk9nHGDp0g42ihMcNePxpQbzS/NkWU6YZrx+d8idXkAuBDVL55On2/z8uTa3ugFdL6bmWCxVdZbrZtkCutEJuLE/kmx7RSLn4jTnziDl2u6I9dascrQXxuiahqJpJVxb1w2iyENVpYnSBJoapxmIwrq4qCgc06DtZNiGxihKy157nGZkScb5E/Pl7n13lPCtG13COENVYbMnTaE+sdEgTnOGsbQEXqrqLDVskjRHINgZJqSZoObKY+eZlC6JctjshZxou6iKwv0dp4atUzEUhkHMXM0hSRNURWUYSiHHpmOgawq1ao39SOPSSOBHKaqaY4gBy45gLHSGhTr9oqvy0ukWrqmR5jlb+yN6kaBmGZi6ihA5FUtnHKXcOPA5t1ChasnvfRxGJePfMlQqBuyG+QysdgIV18mpOhZhLNWxR/7hZsbSVT59qsm3Lo+Jsow7d+9yYnmOX/+FTxxWPA8JVVF4bPHDrwLeDyHx/vhJ8yKBj0kiea/4qBNJEKd87dJd5paOlrKTRbbu2uwe9NjZ3WG+1aRSPzSxCeKMe/0QTQUKfxFV1TBESpjl7Ac5a8docQlgGEip9CTNSLIM17IYB/IBWaxb/IVnl0sp74qlc26+wonFOtu7BwghjpWbtwyVxxYrXNwcECNwLIs0y0lROF0zZtRXD89FMA5i2o7GKaPC1b0xJDmaIkiKXvaTy7USgjlBMdUcm6EflEP+Z9cavL45kNwNAFQW6ibnF2zyNGZnq4eh6+zFJpvjnHEsq4DzS1V+/rE5Lu+MJUAgzThRhSdXWpxYmSeMpXLs16912S70ljRFoecn/Ok7e3z+ySU+eXIOu2C9CyEKCfVcalt1fRACVUi3Pk3TcXToDAO2BuGRRALS1EkRORXHkryIqfZqlOaYhWcIAArs9D3u9CWbXFNgrWnx3FqNi1sjidBiAot1Wa8XsGLD4LVN6TDZcKQKsihmC+/sjPmlJxfKdl3VMskQJTw2yXPu3zQLITXJhCJlQbzitX6csdkLCYuq64mlKq9tDtkfBhiGTpbnGAo8tVotme7bw4jX7krZ/JptSJXlRKGDwadWdeI4JAgCDAWiUY9x5uA4DkGSE8cJ1aqUyEmK62ZqamE9PKtWINGKGqaucXbepeMlDIIUx1TLZL1Us1isSUi1Y0l03v0Vcc3SebwuWFhpg6pRMTWuXL3OvC04s/LeQosfRTwKIfEnTfkXfkISiV44BX4UEcYJf/iDq3hRzIMKYCEEd7d3GQ/6rC0tYjqVmZs4zibVwQTCJBBZJtnfWYofP/zcJwKNtmlybW+ApigsVKV4YdXWeb7AvE9i6AVYpmzBHKcZlec5a2ZIvyrYi3SiNMMyTc40LD51qnHk9ZNQFIUwyXjlbJuKZfLOdp84FRiayoXlCs/ddx5xmnPtTgc/UyEfc6LlcGGlRruic6cbEKU581UJd520yhYXFd7aGvDadpdcSDSZHyXsjyJe2KjziRMNTlUzhsMhS4tLrCzOlUTNnWHE3kj2sPVifmPqKqMw4bXbXc68uFH4m6jl9yYQ0sp48l0Wf4fCta5A7d0fYSIl2yuWzrk5i9fvJfiJtEXOspxcgTPzLvVCIdiPM/7saoeun2DoBgLY7gdstB0+//gce2PJD2q7BnMV6d2RZBn9MGMc51TNQwa8ohQyMKHkWLQLLouiypM1dSnL3nYN7g2lP/1kWJ0L+We5YcsF2zK5uT/iuzf75TBcQRpbfXKjwd44IsxUHE3wxEoDWzusmm92fNI8pzk1cJ6zbA6GPqFW58Ryg/F4zGAwQNd1hoMh+/v7BEJWgkmWk+cZhiG5NnGa45raoUf95DsRAkPXGPkR51caCAGXd8eMI1mhnZl3ubAswQ8KkkU/jiW82iu4LJPjoIBr6qianPENvJB/+803eeb0Kp997izmf2Juxse5tfVhxscikbxXL/KjqkiyLOfffetNecM/QP5E5HLQ6/kepzbWsR0HTdXwp+DINUunaukMw0Ra9xZZJhESgrngvkevVcCb94b84E6fJJdQybql89nH5lhpHG/WZRo6fpRyyrEZeIFECA1CEDl2OqbpaPziMydIc4UgyXEtjZotd3LTSsVxmnNtz2N7KHfRVqzwnGPy/FqVF081ORgGuKZ2hPEcxBlfubxPx0/LmchbW2M+daLGqTlH+nQcgaYJclXjre0xpmXh6DLp5Zkczr5+p4cV9TBUiXVfmm8xGAdomkrFNunvjMiFKJNIeS00lVGc0x8HaKoU0PQCmWAVFNDk8HpnGEuVAU0Or8MigUsPE/kZgiTn9c0h9/ohuZA+FC+caPHcapWr+x5BLtuGTyxVeWrKw+Ra4RnfrjrkWTGbMizuDSJOz6Wl8+V01F2Hg70heZqiWDqqppW/e39UHYvuOGCzF9L1UwJfZbUlFXg73iGJMM5yFuoOSxWNJMsI4pTX73n4SUaj8H3JckHHk8ixX7qwJK+VIr+fqm2XbpqjMEWf2k1r+gT0Ad1xwBOLFcJAzlpa7RYtWmRphuf7bIceWwMPWwNDj8hV2Vo9s+CWaLjyOkxABoqU9jm9UOX0YpXuOMJQFawpbbiqa5evnVQyExLjJKFMFJYN/bBaf/PmFnf2evzyp55gbb557DX+KOLjOmz/sONjkUjeKyaJ5H49pR8lhBD84fff5vZulyhKsAwNTVVnnAPTJGV7ZxsFhdOnTmLoBQlOpDODeFVVePFUi69e2SdOBaoiEKqOSBMem3ew1fioOvBU3O76fOdWjzyT7RI0Ocz843f2+UsvrFKxZm/Eqm2x3+2T5Tl9L+DbNwdc3R1KbaZczjheOFFnTdUwNIVGRXI1yrmMK5NPmOT80Tt7dAoEkXwMdfK3tvmZs3OkacpSw5EqtvdVVa/fHXDgxVRMvRyAe1HMDzZHLDcsXGP21pJCljY39qQ1qq2rKIqGrmvkSoarqozDmCBTqVcsvEGfiwcHpWe267i0qjaToaw6dR1ToVDVpDCggsLYj1A1ha1+Qncc4poaGy1plLQ3iuV7Zim5gNWGxVJFp+qY9MchX7/aZd9LsHQFXVUZJ/CNq/u8cqbFr1xYYHN7j3a9SrvVnJHL2RpGGIZJlh4q2ark5ELQj3LuV3Cb+J+0KwYVS2MUJtRtgWEaJLGU6Gi6sg1pGwadUcDXr3XZG8UIhLw3g4DHFhwWahb3evJePLdY47EFp/AAkSKlfS+k6ZolClBTFRxDZXcc0/OiGb7MOIzQNQk2aDh6oc2loWqqdMOkYOmbGn4ck+Y5rnU4BNd0jYW5Fj/jVPjh3QE7g5AozdCymEU7Z0GFXjfGcR0sy8K1zCOcqgmXaqXlMvIPN2wVxzoC8ojTQxJjbyT1axRFmZlXTWLgBfzrr77Oi0+c4DMXTqF9yIq6x8WjzkhWVlY+ojP6aOInJpGAzO4flmzAN9+8zju3dwB54wWRXAAm0haBH7CzsyO1vpYWpDz3ZCd/H9opStKSP/D63QG9IMfRBRdW2pxrm+zt7TLyw3KomN0HLLi855Ol2VTfWGBpEOUKV/fGM60txzLwwli2OYRUOL2yM0BX5EKqahqJUHhjc8hqw+bsUp3xtFQH8twrtsXrm/t0xjGOqaEq0tJ4OPa5uudxZqHCSsOeST6TBzPLBbe6AYauFRvZifCghKTujlKeWLaJppLPZNdpaFIWRAgphpgj0DSdMAhRFYXVlWXW2xXiJCUIQjzfo9/vs7+3j2pYuLoiW0GGhPpGmeSLnJl3ygpoGKZ87eqBNL3SdfI0peEYvHSqgZ+pXN8doio6602HM/MuhqYSRBm9UNANJMtbUxV0XcdIEkaJ4PKOVIt1DemmmWc5NVdClxVFwdR1Mj9Ambo/J3OaNJVaan4QkyPIhcLbW0OiJGOuYvDcWo3v35a+6GqUIhQNx9R5bq2OocnNzbu7HrujSAIpVIVApIgs49q+z68+s8zza3V5HoY2I1UzkSwRuWzH6bpBksSoqkImFOI0x7xvoUuzjDTNeGa9xfYwZhilVC2DLMvwClHJjZaE4eZZTpBkrBRDcFHY+tqGyiunW4yjCY9ER1cFQRCQJzGdg33yXFBxXUzLxnEctPu8hkd+hG0apTRNEB71np88jyM/xNI1TE3Ftc3S1+f+EAi+f/k2t7Y7fPHTTzLf+OhaSHkuW96PUpH8tLX1CPFeVcYkeXxYieSNa5t8951bh++vKsUDL+1o0yhge2eH+bl56vU6jmWWPhnTUaKdimrj1JzLEysN4iQt0V9RGJUl9zgoWOhFsprImXRG4ZFyX1FAZClRLvkncZpKCHEB852QB6/vexLxpsoF2bAs1ETuaLdGKUuN433f/SjmxoGPrhuoipwr5FmOrsiW3L1+WLbVJslnAgqIkxhF1SBNQFVLeLRSTECDovqpuRKZVXEshr5Uq20WM4LdYYSmKgiRE4QemaKzXLdZqkurXCHAtm1y1cBXXMxKTlVNuZCNeWM3ZhTJuZlrW5xp2zy5VCvOVfC9Wz06XkLF0iQAwjAZhAkXtwN+6XyLM62jLpKKotDx5HdlWZYk6aVS7NHQFPqBlJifWP6mec7Il4ijOEnZaFrsDIKSKwOFVa6qslq3SvmbzX7At2708KaG7xtth8+ea3O3F0r4r6Nzes5lrSVtgYNYtqH0KTl2RQHLUBjHGTf2Rrx0Zk5yTcKjYpuWLpnbrqmRpgmqphEmgrZ9qPR79IJAxYDPnGry9l5Abyy/v6W6xfPr9RJ0IXlN0uxLU1XqFfvQJlqRBODpJXGyQDZbc5iaYHu/x3A0ZP9gH9M0cR23rFYm8HhVVajZFqGXPHStCKMEoSjomlKe14NifzDmd7/+Bi88tsEnH9/4SMh/k3b8owzbf5pIPoJQFMmE/jDmJNfv7fOVH16Z+ZmqqAik8dH+/j5BEHDm5AlMy8YytEOF2WPi0IvELhjC+SGEmEO2+CQmLPR6xUYIaQDVdA283v2Ch/L/jqaQZhlV2yJO00M5E0UhFzljPyztXSV3I0HVVBRNKYbUD74h5XwiRTVtEMUiWeIFjk6gJ6CAxWaVlt1ha3CoFqsgF05dVVisWSAoF9ooSQsNJoGpqbx0qsWfXT2g78eFhIRGw9H59KkmNdemP5LM/9c3h1zeGROnEp3UcAxeOTPPX1rXuXMwkqiq2Megz95uhFtxSVWTvVEkWd2lB0aOa+p0vJj9UcRi7fi5k2NoZdtosmERQpAJqJkaWZoQhiG2ZTMKEm73QsZRStO1Odl22BoEbA0iRCGrr6sqjy9V5PUAel7It24OCFNB1ZZSJnGWc7Pj03IMXpgyOoMCFi9kYsryowvjZPHLhdwMxXGOYxozfJaKpfH4QoVLO2MGQYquKWQIDAVePL1IIfb1wHvk8eUGS3WTjDZBGFG3jdmXi8PzcC2D/iig5lp4RfX1oKg4FqMgZH11iTBOiZOEIAgIgoC93T0EAqfQBFucazIoqugJuvG4ECLH0DSGvnS7nDxrx4WqSJfGb7x5nVs7HX75xSeoV45qav0oMaE0/LQi+ZiEUrRdftREst0Z8LU3rh5ZJCeyJpv3NtFUjY2NDdA0bENDFPpT77VjCeMYyzAwNGZudEVVZlRj5Q9lyyHLcixd56mVGtuDsJTLFkBSQCTPLVbIc0GOwDR00kxCWtNEthHmXRUvLQ5aRC4UyBNOLtQeeu4n2y5vbg3JRY6CgqopkrBYDKePC8cy6I18Xjo7x3+4uM04LBanolt3brHCXIEy0jSVrZ7P92/32B2l5HnKasPm+fU6n17WuN0RGG6dRsVmo2kz33AZjAMqjsXFzT5v3huiKXLXnAtBz4/5s6sd/vwzSzx3epFxEKEqcxgq7B708MYee6MOcaJg6Rq5IhdjRVVRi2umGwaappAd4yWw3pRugOMkxxUJuqaS5JJceqplsru7S6PeIFItvn6lwzhK0XSDfN/nzXsqv3B+kVPtRFq4KgorDYulmlV+Nd1Q4AURNVuXbZxcYCmQZILrBz5PrhwuHtWp9oyuqpyar/LmZh8h1PL7jFOJ1tqYqzDyDt01p4l6AE+t1qhYGjc7PmGq0HRUzs27tGypZu2H8czmp/yuTYNx0XJUyak3XbIsL1WX4RAp5ViG3HAVA3NT149YEU+iMpmLKId8nbrroGmaXEAFRHFE4AdkccjbV65hmiaO41CtVGg2asd2CCq2yW7hb+NH8js4Tq1bCIEzpc68ud/nX/zHH/C558/x5MnlD606mUB/P+jxfppIHjHez4X+UWVSeiOf3/v6G/hRjGuZpFleDvWCQJbitmWzsLiAUvIj5M3+oNlGGQIs05A3t5gwtuXwcyJrMr3xc0ydIJIPr4LC0+tt/Djlh3cGBIncfbcrJp89N4djqNJPJJhisfsROztyvvOpc8scXNrDi7LClU4lyxPmKyYrVZ2KI1sv6TFJ+MJKje1RSqeoABAgVJ0zbfsIWqzrxWyPEqK4z0LVZLVh8cWnlnhnR6oBO4bK2YUKjy9VmUgFhqng9y/tMo5STE1B0wxudny2e2M+taTx4uNrGIV3vWyDycrPD2Mu74xRNY2JI7CmKFRNHS/K2BomheCiUoglwsbqEn6U0I4S3h3tECQZiImGli7bTJqGlPJScG2Dg2HAu3tjtgchuqZysmXz+SeX+erlXYZhihCS0X9+0aWaDJhbmKNWq/EHl/bw4pxWzSVPU4ShM44yvnn9gP/dc8ucW3Cl4KBy2GJxLZO+NwIKodAsAxQ03UCNMqI0L+8Ricg7lHpP85zTbYt7A4fuOEBTFOJUEvTOLVRpu/oMoXcUhDimQZbLRV9RJOHz3GK1ICge3gvjIELXVGzdmIGSa6pKms3WFEE04Q5ZDIvFWSDQVfXIzj9OpdXx/UNvXVPlrHHqkZ/MZMpKRpHtxVq1Qppm1JtzBEGAH/js7O6ytb3NXLOOqptYto2u67iWSac3mFUTL9S6JyTGyfNbd+0jXYY4TfmjH1zmxnaHX3zhcVz7wR477zcehUMCP0VtfaTxo8ikBFHM73799fJB8SMp/V21Le5u79DrSp2tVrtVDtwnpEA4nG1YhS+4F2Vc3Bxwq+ujAE+vt3h8oWjzFIO/ySB+cs6TysDUNJJMlDtAgWAUhLx4eoHzy3X2hhG6pjBXMVGKJFaiWgTs7R3Q7fU4tbHKrTubNByDLz21xMXNAZu9EF1XOdWu8OxaHUNX8cMIXVWp2LJPvzeKSLKc+arFaqvKLz+hcGXXZHsgB+FOOuZnzs9jGnqZaC9uDnh9c0RaDA9V4ETb4ecfm+dnTjeoPbU0g66ZWA3/2ZU9vCgtHAoVhMiwVEGYa4y1WplEXNsoPqNyeE3CBCXP0S0pmSKvn0zMXpgg8tlENw5idE26Uz693uCHdwYkuVQC8IukvWKndPa2CVwXoVt8+07AwSgohv+wM045OYr5lacW2R/H0rc8C0i8Aesbq9QqVXYGPl0/oWKbMhkoEmLsmhpenLE1CFmuW9Rci0GB0jN0jSCKaTlSFifNREH6E6RJQqZorNaMUkYGwZEKoWbr/NyZBje7FrujCG8U88RanafXW+X3NHPPx/ct+oWqwXG8ozTLSdO4NK0Sgge+NheCUbE4R3GKyAWWoR/vHjoBpZiHKgjyWhwjC3RfJRPFE5kcgaqpVKoVKtUKCOnw5wc+gTdm0O+iqjqO65Z6cffHpOpxbZM8Ew81kLt2b5+tgwFf+OR5zqz+aCTGR4H+CiHwPI9a7RgV5Y9x/MQkkkdtbSVpxu99/SK90ayveJplXLt5GyVPWV9fZ/PeJiIXD/RPL30VdJ3fe2OTUTHUVDSdb1zd490di7/w7ErJCp4M4hsVp2RYm6qOqirEx7DcvVBi4s8s1kuOStU+hDuKXLC7t8vYD0mdNlcOYkQuhe9arsLnHp/Hvq8/Xn7WPGd7f8i3bg7ojEP58FsGTy+5PL/R5PmNRokMu3FjTBQnqKpGzbG4vjvgtbsDUFQcXUUpWjG3uwGXd8c8tVKT6BrLIC/aHhIaHbE/juXij5znJElS2LcKhsUaZRoaYZwyvQLIobzO3jCWw2FVQ1Wl0RiqSsWc3eX1/Ji7PclmX6pbfOr0HKamcq0b0R8HtCoW55eqnJmzCYMAz/e4eHvA7hgqlo6ua2iaRhSn3Or4nJ13WW3YHBwc4AUeq2urGIZFmCQ4linvDZHPLFoFDQNFUQueUUq94hKnckEPo5SlqsFi1WBnFBfoNYWocKu8sFLDMXVUVZ0xxJqOiqXx9EqFp5cr7G55nFirlxI1x8X0oq8pCsOHOXAWC7ll6NimzsALH/xaDm2la64pZxIPeW0Yy2ehVXXojvyH22unMjnN1V26k6H9fedpWiamJSuGPMvQFdjv9Bj7Eniyu7srh/aOU0oYpVlGnudUHZM4KboEDwg/ivn6xeucWGqhf8BEMB2PkkhAwn9d98FCkx/H+Fgkkvfb2vqgiSTPc37/u5fY6vRnfp7ECds722iaxvLyCo5lYRtyJ5QLcWy/WJ4ofPvqPuNYtkkmBDKhquyNIq7ujXlyiqQ2kR2xDR1VUbFMg7EfcXXP4/q+R5LnrDedYhHRyhK/XpFS6V4Bd5zwWfYDuNRVCZN+sZgJ9sUuX3pmFU1VHrgAhYnkpIzjFNs0ZDKLU169O8C1dB5fOuzHKlM74lEQsT1KSYWCqx2qcxua1G+6ceCVpLwwSlBUaNRs+kMfRZES9EJAlmflAFvTNMhSdCWT7QMhiO8XgwKeXK7RGXfx4gxLF2S5IFE0GiYl9FQgePPeiDfuDcsdsaYqnN73+NLTKzy1muFFSckvATBqNWq1Gt/a3sLQUxQKD5I0hTwnyxQ2ux5q0CdNU9bWDttvCDCUjFbFpjuOqJpqmUwm+mLzhWPfBFJedy1yIEkFiqrws2fbvLUt1YSzHJZrJhdWZHtK1zTJS0J5uDJ0AZ/OcoGl6w9NJpPwo+SIa+NxoWkqQy8sLI+Ph9BOwjR1dvZCqo51BFRyf1QKder3GpiDbId1x8FMJfOgaFQrjIKQ1dVlxqMRe50ulmUx9sZ0Oh10Q8d1XGzHZqHVZOjPkhiPvQaqyq+8dOFHSiLwaBwS4KcVyUcZjyKTsnUw4MbWrDmV53ns7u5Sr9eZm5tDURTiNCUTAsvQZgaJx8Wdro/IM9SidcVE5lvA3V4wk0gAUCBKMhxLLqp/euWA6wceQsiFeXcoE9B/9uyKJB4qclHWdQ3T0BgMx2zvbKOaLm92Ium3bshdfRjnXN3zWN0c8okTzRnJ+um4eeDhxRmOoaEh2ziuZTIKQt7eHs0mEqYWBCGrD0UIOVSeYl0rimTFT4ep6wy9iKprE0YJZ+Ydbh6M8aMM15K77aDwszg9VwEEQZJQdSzevtfjRscnTHIWayaPLVZ46VSTi1tD/FjCvlddnZ97fAHXlB4pu8OINzYHAFQL0macCW50Al6/0+PxxQqtmstwHByvVKwoGIaOoqpkaYrQdUSQMBoOCRSoVWskSYKu6eVCWa84PLtS4Zs3IsapgCxDIGG8z63XS4Y5QL3qMPJCBJKM6UcRmqrxqZMtXthokGU5k5c7hk5/5KOoCpauY2jaEeviSViGTphkhEmKycPtny1dJ4wSMiFIg6OyItNhFFXZBO7t2AZpmh+76Bu6VvKEgiil3lAfuDibk3aWcoj8q9rmDL9pErahMy5UCSaVzPRMZjrcqaF9lKSESUrNsag3mjSbTfI8l0gwP8AbDtjb2yuRYK7j0mpUjzWY+7lnz7LY+tEX8keZkSRJQhRFPx22f1TxKBXJ+mKL//ILL/Ifvn2J7tCj2+vS7/VZXFykWpv6ooQccA68gIV2izTNiB/wXpqqgCIVTcknC6wcaD7ID77iGAzHITvjlJs9yZ+YvFYIGIQpb2wOeOVsW+6eVQU/ihmNRoz6PVqtFnc9lTgNpOd5wdfQFMg1nddud3h80ZlxSpyOUSQfeFVRQFWKnXeOoRuMovs+p0IJDnBtg5oh9aqSJMEwJXMbIMuZGchrmir5H7nAC2JUFWrC52RVsOnrBIkAMgxN5fn1Oo8vN8pe9dfe3eWtbb/gbcBWP+TanscvX1jkLz67TJRL86WJgm6W51Rdi9s3u6S5KJKIvJ6mrpDGOdf3PR5bqDDyJI8lSlKyqT7+yTmX1+/2EYqKyORgPEoyFARnF2vM123CIGR/b588z3Ech4V2k/4wY6Pl8Pnz81zd8xglAldXynbYJJxy7iOT88RV0zJVglD6hhjFblXXVOIsK0mmYZJAItFXXijl8ieLqKaqZMUQXClY/uNAwl3jNJ2ZVahygEM2pWhdyorcJ3uvFMeetsGdDNfvT1Tla9OJVfAsw3x6cVaK+y6eSlxZnjMukto0YkxVFHLBTNtJzhCjI5WMrqlyNjT1yAkhCJKMJdso0GVQqVRoNyW3K4ol0djzPLqdLju7Oo1arSBDGiiqwrm1BZ49u8aHEY+qswX8tCL5qOJRZyRLrTp/5Rdf4H/+vT/m9nDE+vp62V+FQ4/zzVQUNrPFjsmxjh3KPbZU4+BGV/IfFIU8S8mEgqrqnJ4/2imWiBE5pL7bD6XUtyk1r/JcJiAVKZD3ypk2lmngBRGdgw6j0Yjl5WXm202uXdmTg93pvryqooiMIFGK6kE+aPWKM7MLr9uFhIWqIabk5pM0ZbFuzXzWifueZWiM/JDT8xXe3fPYG8XEWYim6SSpZH9fKKsvgaGrXN4e8u7umGGY4igJJ2oqv/riOXYGodQBA1abNqutSjkA7gcJb22NEEDVNsrqYBRJY6QvPrWEVbScJpHngrEfoRRy84eriUBTdWnxO1Ut+WGMpilUHLPU4Hpyucq+l7Hd8xBIAqTIM87NWZxamS8qiFgin+IYkcTs7HeIokgS51yXT6y6WLaFocnq0Z+QDHVVtuvu2/QnBeG16kpUHygoikzCksiozwhNjoMI29RJ81zO51BwJujA6Y+N3OlLUMUh2dV1rKNe9VDK3tdcq0QvVe+DDJfXukQ+2YSFBldl6n6ZgZdPAU1yBHGSzrx2JpQpgq4u50Kuffz5Tj6frGSsMhn691U/k3Mp0WUFElAUoEnTNDFNk0azQZ7nhEGIH/j0h0MsTcFxHJ74xCmCIPhQZhSP6o4I/BS19SjxUcJ/x+Mxr732Gi+eW+azn36er75xfcZMqu46jIJwhu+R5TljP5JwxDAp20WKAp840eLWwZitgSQCTlA75xZcnt5o4015JDimXLgmzPlyucsl9FPV9HKHT6FF1R977O7skmZp6f/uhRFzVQNFlXLfE5gvIiUTsNSwZhaVoRfI4beQD/OZ+Qpv7fj0xgGmJv1L4ixHVeDCcq38rOMglq2tPJXSKAWr+wtPLvDWvRHXDzyyPOfkgstLZ+YxFZkgaxWbb1/b5we3+3L3m+f0UOhEUN8e8vhynYW6lExxbMk3mMws7vWlq6JragghBRw1Q8fIBJv9oODbHN97b5gqqqKCqkKel6KCuRCs1K2Z12YFWkfu8mPaVZvPnVO41THZ7IyJwoCzS3UeW22XFYSua9iGgaFrCOFgV2pkWYYf+Pi+X0KwXVeysZfm2gRJgq5phA/ov4PUArNMg7xAPE0vtIpSzHOK9ScpJGBqrg1CIvwm9+lEgmXy/KR5XravFCEYPczhsxiu24aBaWjvOQ/xCg2uZsWmPz587XEM8kOgiU1/FByxn56OCYilVZMcooeFrGQiWlWXgX/0tdPXIheCoRfSrLl4xyQyVVVxKy5uxZVKBVnK5y6sMRr0+e7tW9i2zdzcHHNzczSbzUeadTyqYKPjOI/0fj/O+FgkEjjKAL8/HiWRTLzgT5w4wWOPPYaiKGwszfMH373E3f1eWbJL2OV984UpFIui6IRxXEJof/WZZW7se9ztBaiK9Jc4OefiBWG5gAshCkfEQzmTE22HS1tD0lygq1ICRdF08izlybUWncGQ7e1tTNNkfWV9pr+60XRo2SrdELQ0R9UEUSYl3p9bPyoNP+0XIkTOL5xr8Y3rOV0vJs0Fti5/79xCpdhJSthxo17l8r0uXtKhWbE4tVCn4jq8eLLJiyebU+8gqDgWqgJ7A5/XNwfSm54ctRDA9JOMH9zps9FyClVeq+TaTF3m2fsAyAtpEk3TiZJZBdrpOD3v8u7emP1RhGWaZEFUtLp0nlg+2mOeJIiKLWXeDU1h0Uwx7IClk0tHdqFpmpFlWSmBA5IYW6vWqFUl2TOKolIPbG93j7lGDdO20UwL0zSPLLKTiGIpIYPycMLrJLFomiYlbHSd3Z3dEgAw4Y9M1B+kAkROlgscy3jgQHkSAtmKrFUOdcMeFKqqMJhssCbMdXH8RlAmp4iKc7Tldn/Yls5gHGAWCKsHzYYAKo5Jb+xj6Bq2PmujcP91rLs2g3FQwt8faJ2twOdeOM+L508A0ryu3+/T6XS4cuUKcRzTbDbLxOI4zvva/D7KsH08Hn/kfu0fRXxsEsl7ha7rRNFDdlhTIYTg2rVr3Lp1i2eeeWbGC75esfnPP/cCr165wzffulGuZJOWzv0xES1s1dwSQqypCo8tVXls6ehiFcaSEV2xLfpjv3y4c5Gz1qzw2GKVd/fGpNlE8jpnvuZwvq2xublJo9Fgrj13ZIXVNYUvPbXEd2522ezLKqlmwIunGkd8rCeRC0FWmB8t1m3+4rMrdP2YJJO+GMZEGl7Ia9YZRXz1TsKBr5MlCfQi3trd59l2Trvm4LouFbdyKB+CHLQOwpwoydAVgabrZQKUXiEpgyBlrmoQpxmWaczMK1abNroqYbB2cT65gEwonKjptKruA1WTTU3lC08s8M6ux7XdEbqhc7bl8NRyRUp5HBOKopDkgihOCEZD+v0+q6urWJZ15LVCCKqFp7xlSmOnaei2oijYti13r+05HFNj96DHcOxB1idMcyqViqxYHEdWT0U4U9yZimMRJ9mxpFEAoyAoZmnG/v4euiqYX11F1dSyKpFIuxxdVQnjhLy4l+uVo+S7SahFEsuE1A07bs4y/Vkn98k03+M4r3qlAJ8IDlvFFcc6vjJQFDlb4/BZq7n2sVbOEzAAyqzU0ESFezqRWFNDe1mpSbkeL4yOoDJPLbX55OMb5d91XWd+fp75+XnZ7vZ9ut0unU6H69evY5pmmVRardYDk8X/v5hawU9QInm/M5IkSXjjjTfwfZ/PfOYzxw6tVFXlU0+eYn2xxX/4ziW54KsProiqjk1v6OPa5ntCFxUkemngBSUjXi1k1hUFfv7xeTbaDjf2PZJccHKuwoIRs7O9xZmTG6iGyYMKM9dU+bUXNuiMfJJM4HV2qDaOMnCzXHCnGzCO5SzjRMvBNnUqjnW0BCgWIJELvn1nxN4wwNRVHKeAICcp1wOH1QWb8XhM56CDaZo06zXi2MYwTPY7HVA1NO0+gbqCIaYqYJuHwpcTfxEvjGk6Bs+s1njj3ggvKgh+qoarC57faJSijw9aaGu2yadPGrywLr9nVVFKufH7k48QgoojkT67u7ukScq5M6dQNe1YCHLpk4GsIBRFqhYMx0cTm2NJDk+9Xqder0vZmTxlMJDXLM1SHNvBrbg0arXi/eQxjpvhTEJuROR9vbO9g6ZpzC8t0qy6JXlw8tlykZcKC5OBdX/sl9yX5D5pE+c+OHC56N+3e58k1OkW3IQE6Vo6YuqmOu61WZ7jBRFV2yrJoQ86B4Gcs7iWWc78Jv9g6OrsXKQgPFqGXqINFUWRIANmh/aywxCWM5nJcaq2xS9/6smHVoSVSoVKpcLGxgZZltHr9eh2u1y9epUwDGeqFdd1y2NlWXbsBuVhMUkkP61IHjE+jNbWaDTitddeo1Kp8PLLL2MYx+9KJ7Ey1+Cv/vKn+dMfvivROcdAZyu2FJebhS4ePxQUQshBavEQlcPEwq9Bfk44u1Dh7EIFXVXZ2dlhPPZZX1tH0U2sYrcfHlPeT+Y5pq5i6tBJMxYsA13TykV2GKT84du79IO0JALWLJ0vPrVI2zWP7OAmfxI07nU9DE2KHeZ5iqZKZvj+OCY35lhbbZHlGVEYEgQ++92uJHGi4KgaUa5i6CqiYMDHmbRIXWtXyt0hSEOxcRZRL67V8xsN5qsWNzoyQc5VDB5frFAxC/fBBy60Al1XJYdlsngIGPvRsUiteuFZsbOzg6qorK6tkuagIFFg08lHQktlO+vw+6VEgU0nNl0rYONTt6+qqKCZzM3Psba6TG84xvd9PM9j1O8hFK30WrFtmyyT90vNtfHDiDyfLMomvaHH9vY2tm2zsCAlfEZ+hGloqKokOyqKQrPqMvIiNE0rB/YCQRDJ2VfVMRkFEaqiShmfYyqEctGfQlRN7rvjYhzGzLcrmLq8BsfJjxy+djJcly2pCXH1uPDjeMbKeTqp3x+TVphjSCkc1zEfyF6fVDK1ipT1/9JLT34gORRN08pqBeRwvNPp0Ol0uHHjRlmttNttkiT5wEP7n1YkH3G8l0TK9vY2b731FqdOneLcuXPvO6Nbhs6XXrqACAd8553NmX+zTYPgPijtZOB3nMLpcTd7kmXESU6raczobeVZxr2tLZI8Z2N9o/RiCIvyXlV1Xr11wCiSsNfnT7SPPMyKouCHMQ3TKnf4X7t6QNeLsS0TReTkQmUUpfzJ5X3+8ifWyh2cEKIcCFdsixt7I4SQc+tJyJaJQFF1opLwpzLfbjIYm/h+iGIo2JbN+cTj4kHCKEhRC4vhimXwi08uzwzXy3NndjHcaCmcmpc7sfQYLk85LC/cD/M8LzTNHrAQhfFM5VNxTDr9ETs7O1i2xeLCYnmPiAIFVnUtwki6XEoS3PH30Gxii8pkdlxkuWAcRrSbNSzLYH1liYHnS+0o32d3b7dAWMmkkmc5tmViGSq6pnHQG7C9s021WpW8p6lzihNZwdVcm1zkcsaBcmRgP6lWxmFMxTZRgMGEYa4czlemvpwSGWWb+hGDqJkQciG3spyG6zDw/Flo4X0xWcibVZvBw47LhBQb0qq6D1XgnoQXxsw1KscqR8xEMRN8+cIp1hda73nch8VkMzCpViazlWvXrhEEEmqsKArtdvt9VRo/iTa78BOUSB7U2srznKtXr3L37l2ee+45FhcXH+n451bnabkWt4Y59w76mLpOmmbHs9xnBvHSM6F6jHtb+XJVInWWFmsSTTIa0z+QRk1rKwtHbq7dYcQfXLpDmCmFFIfCG/cG/PKTi6w2D7kKk3J+gtZJUdkehlimTCIgWz2GptIPUvZGEUs1q9ihQtWVO+s4SWm6BrqmkOYCcwplk2Z54SFvY5tSTuSgN2BnZ4dKpcL83DyKojA/P8/JFZ8rO0NGQUxFVzjVhHDYQXUrWPZx1ruHi2HVscjyjCB68CIwcT80DQ3HshiMH74QTSqfRsXhoNdna2uHWr1Gu90+9ly8IJZDXFN/4E758NjSPqBdr7zneUzOu16xSdIcTdWoVqpUK1UEcmDv+z6D4YC9/T0sy6LdbGDqGltbO7RabZrN5vEHFxAlCZqiYhn6sS06RVHQlMIcTt5OZRIuZyxMIcaK5JLlgiBKqBWtquP6BRMwiaJI7lOl0OCa2B0cF5qm4oUJpi6l9I+rvidhaBrjIEJReE9mvq4pUo3azqk7NgP/+NkawPpCk089cfKBx3qU0DStbHEB/OAHP8BxHHq9Hjdu3MAwjJnZynHeSj+J8ijwE5ZI7m9txXHMG2+8QRiGfOYzn/mRMrmqqjimxn/xC8/z3bdv8dq1u0eY2/fHZDjYrDoSunjfPSsE3OsHbA4y2llMvZEwHg0JRn2sSo1Ws3Xs7/zZ1QOCJMfUFTlQRSWKEr767gH/hxfXShOsmXagAp1hgKLpKPc98qoizarCJJPzkIJWH0YJrm3iRwmOofHkUpWLW0OiREKMs0K+/snlGoYqSWDj0ZjtrS1a7TaNRmNmQV6ouyzU3eLcBFEYEobBDEzWrUjb3OlZisgnA1spcPggD4lJ6JrKYBxMCVo+eJenqyr7nR57e3usLC1gOQ9uG4hC3WDoh4ctmocolTQqLv1RUFRVD65KAGzLYOhHJcx7ct4KsqKzLZt2q02apcRRyGAwwA+k4CF5ytgbH7luUAzBFSnXrqjKkRbd/WEWWnJJltKsVxj7EVmeHQ7skSrECmCbk9fmM9yQ+68ZQr7WC2OSLJvhsxx/jQtBSLmHoOYUys/HzO8MTVr6AoWwpI0XREckZBR5cFAK6G8QlsKS9yc1xzT40qcvPJIy7weN+fl5lpaWymql2+1y/fp1giCQwJoisUyqlf/UEvK3bt3it3/7t/mTP/kTdnZ2WF1d5a/+1b/K3/7bfxvTfP8tv49NInk/LonTFclwOOS1116jXq/z8ssv/8jOiZqmFSZLKi8/fYaTy23+w3cuMfAejm03dbl7dSyTJE1JihbQZFbR9STCStlNeG3L56UlhcWFeRbbLYL4qDR9x4vp+wm6Nmk3KJClmJaUKt8dRSWjvJSoL2KtVcVglzjNcWyLLEkO1WZVhbZrlANJBQXTNBj5EVphT/riySamrvL2zogoybENlSeWazy3Xse1Te5u7dLv9zmxvobtVkgesJNUFDANAyEUDMtmdXmZTn/I2PPodXvsJXvYjl2iwNqNWtkSVFXlgQgfeb0n0hxKed2zPD92Jy6VVMds7+yzuLSI5VakV8d9s49JTFqTk7abVcxoovjo57Qto2w1yvdOiwRx9Lw1TZXtugJ8MCp4JOIYnTFd08gUhTCMWVpakgKQvk86HrG7syvlPYp2iqEbM3OjmRZdnBzh31Rdq2wFTqokQ9dwNAkTniZDTkAJk/DzXM5WXDmzKJ9XIaub6aQxqZBrrs14yiF0+hqX3xGyuj8yXIcjLPnJwPw4r5OKY7GdZFSsw+91Iix5f1L75U89SdX5YEPwR4lpHsl0tfLYY48RBAGdTodut8utW7fo9Xr8q3/1r6hWqx94QP+jxOXLl8nznH/yT/4J586d46233uI3fuM38DyPv/f3/t77Ps7HJpG8V0y3tra2trh06RJnzpzhzJkzHwrC4f7W2ep8k7/2xZf4yquX+fY7d/HjjJZrTPmqy3mBQM5NZhjxfsQfX96j48XSHlXI3X0vUnirb/DnT7rl4HEiTT+JtCCgKQhUVSfPM7kyZ/L/ytQuaroisQvZ9+fWG3z/Vg8/iDAMgzSVEuxPLddwTbWEcdYqh/4fWZbjZRGNqsPzGwrPrNYJ0wxbl97lpqFx++4mvh+wuraKZlikWXrs7vcQtSM/k+RuxNSqFRq1GmGckKQJvidJfd5gwPaOSqWoVmxL7jirjoUfyaHz9OdVVIUsPVyYguj4nbhAEHpDdjs9VlZXsC0bhEQEOYUfzXTlI6XsZxPMBGo64ZGUMiUziaE8uyMqyJMwj5FOn6DAps9bIIj8MTt7HVZWVrBtuWFwHAnvXlmF3mDEaDSm2+lSq9h0dMmyd+xDboNXSOq7tl6y7SeJ4f6W3oRtP0mCCgpuxcQLQnRNP6xgBWQioz/2qFgmSZ6TZjmmoeIFMY57HwS9XPQPBRJdy3hg+/f+4fq08vX9MfE6mfj0VG2rbNPdvxZMkzS9MOYTj21wemXu6EE/gngYIdFxHNbX11lfXyfPc95++20ajUZZGdy8eZNf+ZVf4Utf+hLPP//8R4bi+tKXvsSXvvSl8u9nzpzhypUr/ON//I//fzuRvPPOO2xtbfH888+zsHDUe/tHPf509PyUf/NuzPeuJUSDfVQEF1ZqvHymjabJBXZ6gZgw4r0U9scxmiqlwrM8Rysw/1vDiGGQUHeMcgc2jZufq5rYukokVNRpOZNMYGgKLUefWdiEEHIXm0vV4ufWGxiaylv3hnhxSsXSeG6jxfl5u6xEjuz0KIbfXih34QZo8eGCfHdzkyTNWFtfQ9cKDknOzIA6m/AWCqHC+0POQorP6gsajQYLc23iNGXseXLwvFsMnl2XkSthshNS3QS6ez88Vp6LKNn5fpSQZhmjXpeB58+q9xYRRNIHfLKIW6ZeIH+OeViL5OM6FkmakqbZsYlhEhMV5Jor+ScPAwRMI8zCOGHU73PQG7C6unpsWyHJoNFosLQwR5ZldHpDfN+f0QObVCugS7kc1ybJMvwCuXV8FEnQ1AvNsUQqJ0A5W5lG+PnF9XNNnSTJComZ40mVEw2uumsRxOmxl3gSk+F6vbBnfthrJ4mqapukueyRCSFmuDrTrx0HEesLTV55+vRDDvrhxvslJKqqytNPP83/8D/8D/yNv/E3qNfrPPvss/z+7/8+/+bf/Bt+8IMf/Cc428MYDAa02+0P9Dsfm0TyXhl3ssh3Oh1efvnlDzSQCuKMb17v4CcZn9host46SuBTVXUmkWS54P/85Ytc2R1jVmqYtoPX2eHNe0N0VeHzF1aO1wVS4GDoI/kTClmWSk0sQFEhzcCLM+rO4eI28g8Z8ZDys48v8sdv7xCJQmOxUAr+xEYDS1cLboUtvU8KfP1kYVMUaa16YblKnOVosoVOo+IwDmQr6EGtHZjdhXf6Q7qdfVA1VldXj31Ip3e/iqLIBPegFWCqIsjyYuqLcnTw7Pn0+3329/Yl5LXdoFKpHJtEpkNKvAj6B3uESc7a2hqaevyDPNHrqjkW6TEtpvsjCOXGoFmTc5GHhcglKqhZcx8IWZ0975BBt0OaJqytrT20TZtlOVEkpWaq1SqVSgWBkGZPvs9oNOLg4KDUA0uiCs16VSoGPwTIAJJM61imvEfuqzSnkV0yoeTsH3QwNBXLNA8Z9gVqbDKwn0SaCzRVld7y74GqSvOcXAg5v3vIcF1BVvBRklFzLPI8f+A6Yhk6/9/23jtMrrM8G79PnV52Zmereu9aNTdsg7DcLUt2AAMOGMdfcPhipxAScAoxIXyYOB/wgRMwEDAJ8S+ALRdsy7ItSzbu1mpXfdVXbWen7O70ctr7++PMOXumbtfu2ue+Ll8XSKOz75ydee/zPvfz3Pd165eAuQi6iIbRDiQuXboU9957L+69996aIxETgRMnTuCHP/zhiE4jwBQiklqIx+PYu3cvAGDt2rUjIpHXj0fxwNOHEc+KIES1xbhj3Qx89fqFumgNDGokGt7rHsDRcAocQ4Fl1JkAT9NMJAeiOBzJYF06p4dYlaLOzoEiCkSJgOd4ECKDKAoUok7Fe23l8y2apYnXYcM8QnDd0gYc6EkglhHhtrJY0erGfIMpZCaXB0DBaa1gg1GYKlYDGyl97sBh4wvT+0MckwkQivYjFeuD1e6Ex+ut8TRb6OxiaHBMrVcNIlvo7gEA4zZRJDz7fJAkCelMGulMBqFwBAzLgrNY4bA7YLVayzYNQRQQDoVgtViwcN6s6pYY2tssiLOSpMBuKXdNLoXNymMgkSmcfATUaEyChWeRSGdVTycrV3VDlBUZ4VAINEWhPtAIj9Ne1eZdA8cxhtZpVeS38BZYeAvqvHW6H1g6nUZ/NI2eYBB2ux0Nfi9kMFWfklUzSfWeVZrDMSKbSiCWSKG5uRk2Kw+GopApnBwVouhlP4qi1Hmh3GCpUytfVdr0jYmgklRwCC5ps9dgNIRUuygZsGzl93bt+iVwOyo7QEwECCGj9toyDlGPtqT1ta99Dd/5zndqvubIkSNYsmSJ/v8vXLiAG264AZ/85Cfxx3/8xyP6eVOeSM6fP48jR45gwYIFOHr06Ij+bTCew5efOIicKINn1VOBKBM8/v45zPbb8dlLZuivLS1tnenLgBQ2fg0URcHm8UPM20ExLIAKAq9CkE30o8lO0JOmIBPV1E4i6ia7tBBiVQkco3YMOW1WzAswmFNfmzBtFg7xdA5z/H6ksjl1ylmbVDeI6ur7Ux1p1VKapWa3UyKRQCYZg8NdB6/XDSvP1TwNMAwNWSHIC0JFK5FSaBsWAYHLVn1TZlkWDfV+CJIEd50fuWwWRBLQGyp0gRVmL+x2uzr5HepFwFcHu8uNdG7otXgcNn1GQpQkVQhOVz6tWS1coQ1V1Xw4loGFq5y/oQ50qo7Cmv5UqQtMkiQEg0E47VZ4fH7QFK3Ob9ToAjMK5rrI7yguJ2p+YC2NASRSWeTyOWQyGZwLhkARGTxv0QmZ4zlQoMo0lGpDoIQQJGJ9iKcyaGlpUXOCZAIJCjwuO5LprDrsqqjlLhvP6R2N2ucxkakccGW38sW6iD7PUi6uO628eh8Mv6pcoSmidGB49fxWLGgdvzL4cKA9lI7G/Xc82n//6q/+Cl/4whdqvmbevHn6/+7p6cHGjRtxxRVX4Cc/+cmIf96UIZJS5lUUBV1dXQgGg1i7di38fj9Onjw5Iiv53+3v1aNMtevzLIWcKOP/23O+JpG01tlUjZsArGFpskLgdDjwxzdfijf3H8fRcyH97yRJQm9Q3eSuXTEDh8J57DvXr1qE0xTWzfVjdXPl1j5NuFcIMUwAV39KdtosiIQl0LRa6rIUDO+yeaGMRABSVNdPZvKwWbWa/+AOTkDQ39cPIZeB1xeAzWbTBwG1KfTyB+Xia1cSkYvXPbhhaUI8xzLgufKNk2EKG7KiTorb7Q4ADqxoaEQ8mUIilUI8rs5eEEIQ8NWBsww+ddZai93KIWEo8Q1qROXkU0lc10Rqt8OmOuca7oeFLy7J6MOXPAsa6tyRIAoIBoOo97phd3mL1laNIBxaLkgR0anrLhX5rRZOzxCxWW2wWW3w+/yQJAnZXBaKmMe58+fAsiy8LieyWRssJac84xBoJpeHJCuIhiOQZQmtLa0lm6TaBWYtRDTkBUnV7oiie4IZ24tTmZzeLZjJqeXRfBUNRRPX3Q4rEplcUVCWEWrJTSUfbTLf73bgqlXzyy86wRgtkaRSqXHJIgkEAsPWkC9cuICNGzdi3bp1+MUvfjGqtugpQyRG5HI5dHZ2QlEUXHHFFXrXykhTEnsTOVWbKNnMaIpCKFFcuy4lksvn1mGO347uaAaEocDQlGrpTYDb17SgzmnFzZevwNxmP17dewzJlGpjYbPb0BBogNtpg82aw6oWB0J9MRAxh1ktrop98BQw2FtfQCUhXoNqT58f9AcjamkMhAymyWGwnq1ZxBuRLXniVIiCcCgMokgINDaBNQjURVPoFK3b8GsW8qVicjWbEhvPIZUrF30HO4eKW0N5lq34xJ/OCbBarXC7nOgJhSH0C2gO+JFI59AXOw+WYfWZFZvVVrYWYwtxKXRPLfugG251cZ1CIp2DlWchE0AUq7cAA4BQ2Cg5iuD0hQtoCvhhtbuqlC+KCUINOyt3CNCgi/w2C9J5oUJXmQqWZeFyugC40NTUjHgioQZ4RaJFfmBae7HWJszQQF8oBJqhUR9orrrZaGTgtPGFgUZZ16mM7cWEELUpIqV2aBGKqGI8qpRzqEJqI8+CoRmkpMoWRZo+kyq0FI9HZO5ooO0lU9208cKFC/jYxz6G2bNn41//9V8RiUT0vzOa3Q6FKUckAwMD6OzshN/vx/Lly4sYfaThVgsbnIWarRqHCwx2nyxsKD4ZaGK79mFkGRqP3LEKf73tELp6UxBlBRxDYXNbM/5so/qEQ1EUls9tASVl8d8vvAGvV4341J4cAdUB12vjkJCyeqeJcSK+1J+rFLoQrxAIkgSeZQv29Nr0sVw0nZwshBBpm2YtjyLtidPGsTjZfR4Mw2DGjBmo5vitdV657UP7HwGDNiV2K6+X1aoP+FEFIZ6DrCiwcLWny0VZRm8oDFnIYf6c2SA0A7tLLetp9iN6N5PdBofdAZfTCafNAlFRilqIS0EICpqSBXTBlaAWcoKk5tU7bRhIpit3Dmn3JK12p81sbYTd4RpS5FdjlynYOLU7rlbNnCjq58vjsFWMsS1bS06Ar84LD5f1PgAAgFFJREFUxaPA5fVCFES1JTuVRl+0DxzH6V5g/QP9cDusaGlpHbLpQbeWp9SQL+3UW826hWZpZPMCLByr+4JVEuwBlQhTmXzFeOHSzrGrVs2Hzz05vlWa0D4SjUOde7q4ee0vv/wyTpw4gRMnTmDGjBlFfzcSoX9KEcnZs2dx9OhRLFq0CLNmzSr7JYyUSG5e0YifvtGNSDIPmqYKw3lqsuE9Hym2R9AIy/hhnOmz4/+7Zz0OB5OIpgQsanQWxcsSQnDs2DH0nDuH+z99A473JnHg1IUyf65SQ0rdLtumeiRVIxENmhDvtFkgiIOTumoIVbHFBTC4gXsdVgzU6qICIOQFnD1zFm6XEzNbm5DK1s6vAFGfDL0OW9U0OyNkWUGmMKMSr9AWXIpsXoTDzuvkWOmLqBAF4XAYgiBgVusMWK0WKIQgL0igKRoOuwMOuwOkvtDNlM4gkUggHA7D61YJBSwPjuNq3huaUk9uQ1lzAIP6lstuRU6oLFInU0lEIhE0BhrgcLohSnKh1JevuuGok+CqdlBt0NAIl92KeLpQNrLxyNTY9HWbFBBVw6Eo1dnZ61XtarJZpFIpxEIx2HgW2byM3nAf6rxu0DRdlQTtNl4/FTOFAdNUhcx1iqLgstnUpghCIS9KqkFkJlcm2FMUpaY4Fk7npfHC2mlH+xnL5zRj6ezhP1GPN0aTRQJcfIuUL3zhC0NqKcPBlCGSRCKBkydPYt26dVV7mEcabuW2cfjpH67BN57rwr7zcSiEoMFlwZ99fD4+vri4fqj90ktb9iiKwvIWd9m1JUnCvn37kE6ndXuWpsZGzG6qw4vvHikyWKxkUa/q4urwodG9txq0sCy+IG4qilp7TsVSUBRFL0docx4sQyM+hNVHOp1WN1evFzNbGpHKCQUxt7btCM+xSGTzoICqsx36+yxYgsRTuZqT4hpsloKwT6DPhWjZGoD6+9EsV1pbW2G18nq9vHRwkAI12M1UV6fmhfQNoD+RgpjPgWVZsLylYl6I1cKqT/VEda2trhENGl1qefXG2r+GWDyGgf4BNDY2otFfp5caU4UJcLXhoPzixlPf4LUrd4E5DBu4LKsuvtXWbeO5wXjlChoOQzPgeR75fB4+rxcOhwOpgh9YJBKBxWpBfZ0HhGKLfNQ4lkHe4MYsKwTpbL7i75JlaXVmBerpg6EYZAUJdqtFHSgtnNhBVL0snc1BUQbLV0bb+2QhMZGiKPjcDny0bUH5L+oiYjQdW0B519Z0wZQhEo/Hg6uuuqpmD/1QDsCVMD/gwH/evQ4XYllkBRmz/XZwTHnpwUgkQ9nPp9Np7N27FzabrcyuflajH5+7/hK8vKcLx8+HARROJCWbhKZzEKCmN5EGlyFTm2UY8CwLl8sFq9Wqzg8kkohGorBYLHC51LkMiqH1DYLC4AZOQBCPxTEwMICGhgY0Bfz6ZpUq2I6UTn7r94mmABB9QzA68lY6ChutwgdnVCqn8XFssR17KiuAZRlYeBrZnAhRFNUESQuPQCAAj8M+eJorzKhUa1tVN/Y83C433C43CCHI5rKAJCISiUJWZL0LzO1yqsFjuo3ZoEbEUHRR9xAhBDaLpYhMizq1Mjn09fcjmUiiuaUZgTpPWcluMNa3OPGvkpW98dpGgtB0HOMJq9q6GZpST7Ulvy5Nw3HaLegbSCDYG4TL5UJjYyMEUYLP4AeWyWQwkEhBEVX3Ad5mg8PhQJ3brQ+nFr9Hoew9ckxl7UmQ1AFDr9OBZEbtAlP1MvXfGU8riqJAkmQ4rTxoCmBZBjdesgz8GC2TxorRzJAIggBRFE0iGQsoihrSL2ukpS0jWr21e8i14/NQ149Go9i3bx9aW1uxaNGiih8Wm4XH5itW4sCpHuzuOFZW2lKNCSX9e6x7Ezmsg228Bui99YX5EEEUkVcIPE4bkhlanx+QZAnZTAaikEf32TOq6OxQ/aysNqsePdrX14d0Jo3mluaCz1XxZpXNi2BoNb+iVKTneQ7Zko6kVJVN1m7V/JoMhGHQH4yZHhSl+myJQvH9lwpCPEcD3T0XdDt1dxVRu1LbKsexhQaB4lZuu00tISyur0cmm0U8kUQimUQiPgBQjH7veIsamVs8na/es2qT/FRBiI8N9EHIqdYyHpejatu1ZOgCS6azYFmmqpV9afNDXlRtYpQquk/puku7yopAgGh/HP3RMHx1dWhuDJSdOFmGLSJkQchDFvLIJOMI9YZ0HzW73Q6eG5zQlwx2LCh0V1WFYXiVodW2aIZhigV7DHaCxZIZ0BSNq1fNh989+e65o50hAWDayE80RpPbPtLrVyMSQgjOnDmD48ePY9myZWhtba15LYqisGp+K2YEvHji1fcR6lXbhGmKBk1RyCslP4eC3sZLYdBa226xDJKI0fKbLvd2YmgGzQ0BpLJ5eH1+VXROD2Ze2Gw20ET1SJrROgN2m7XQe1++WcmKGqlqPG2o8ydVOpJKNiu+wuZthHHDV8XT6g0HmXQG4XAYTY0BeDwesAxTcw5Gb1u1qQmVFIWKZSMNqqDNYUZzEyhKzerIZNT/euI9hdZjdWO0FWr46gZHVZ07UYiipjBKEpqbm+FzOZDOC1XXDBTb1LAMM6SoLYgyCCT49BjoGsJuYWN2O201XYoz2QxCvSH4fD60NjXU1KoA9XNusVhh97gBBJBMZ5BKqZY3/X39YFlWL7tqfmCKokZAW3i2ZpkTUDss07l8UQt3qWAvK6qz7uzGOiyd1aDvETRN6/9dbIyGSFKpFACYNvJjxXBSEkd7IhkOSqfbNWimapFIBBs2bKieDVEBPrcDn/zYGmQGQlBAwcqzNSeojbnVgighJwj6kKFRfNSgtX067Zaipzyj6FyPeqTTabW1r2C3koz3Q8jbwFmsZV5UGoynDSvPlcxLVIChvKQoQ9uOaBt+nduuDq1VQDweR39/PxoaGmCzO9RaOq1mgtdqiKEKXWAuh6ViBnkpFIWAgtrezXEMXC4XXC6XXgLTkvCksASbzQaPywm73QFnYdajeP5C1XEoikJLSwsYmoYgK6q+RVUuGRrBs6xKhFVifY1w220YSGZrliM12K2cej2arjhbk06nEQqHEKgPoN5fp5fOSv3UytbLMXpOvNVigdNuQzYvQlHKO+hcTjusNjusVhtYjq05HMuxTEEnge6llq2wjmgkCp4B7rn9OlgsFsiyDEVR9P8A6B1UFEVdFGIZjdiutf5OBvGNFVOKSIYCy7IQxSG6isaASkSVz+fR0dEBRVFw+eWX646sIwHPsVjWWofFq9rw4nuHh3w9gfrE7rBwkGUFEhlsS67UZUSUwTRDujBVbUQul0M0EoXL5YLf71fLaqKAbCaNUCgClufgsDtgd9hhsZQHUDEMrXck1fLp0lZPiEqItezgNThsFgwkM7BwrB4bW7gK+vr6kEqmdCdc7f0nK8yoVIKuz1AYcu1WnitYk6Boal0rgdltdhA/gSiKyBZaZHtDEfA8j/o6NxjeApbjIUsygsEgOJ5DQ0NDwXp98CRH1+hiAtRNWxPMtVjfau/TamF13azUiLK8bZZGvpATX8luPplMIhKNoLGhES6XQx/uA4x+apVEfqKfMoBSN+Gcnneu+YEpooD+WALhcET3A/PVecByXNFwLKA2jGQNxJgqWYd26iOKgns/fTPcLrUkpG3giqLopEIIGfQDK5DJRJLKaDSSVCo1LfPagWlGJAzDIJcbuoV0LNcvzTzZu3cv6urqsGLFilF1YQDq05CiKJjV6MPnrrsUL71/BCd7IlVfrw0oJjJ50DR0B9xqrao2Xv1iEYIicRqAvkHU++vhdqs1bb/bqWZi2Byob2hEJp3GQDyJYDAIiqJ0UrHZbLDynDrlXcOC3QijX1M1O3gNWsjSoP5Q2EhTWYQjYQh5QXXv5bgy91/jjErFDibrYAfTUGtnGNWhWds4S63VB38vFDiWg6+pAamsAJ8iq8mG6QyEvgF14xNEPVudpmg4DZ1UgHryqdbFZOFZddDU8HuuZlXC0JTaBmx4ZtCNKCs8uVcStjWCEHJpRKNRNDU1qVPwlvJOPElWIMpqqTNl6AIsHSLV7tRg5orqEkCBQn2dB8l0Dq0Ol+4HlslkcPrMWdAUBZ/XDdAc7A67mj9foYyqr8NmwfFTZ6AoCj51/ZWY0VDe6Wksa2lkohGL8Xs+ESWw0ZS2pms6IjDFiGQ4pa2J1EiMDsC9vb04cOAA5s+fj7lz547pKcH4hGS38thy5SrsO3kBr3UeKyu7aO2yiUxO/eBLBJJUyCev0MbLsjREWdY3QUmSIRU2we7zQSQScTQ1NenCsstRvDlKMgFvs2OBz4d4KqP7MkWjURBFhsvp1H2ZmMJmVC18ymkvt/BIZfMVLVDoQvdXUTcbUfWJWF8ElFJw7y3cO7ejXFyv5mPFcwwyQjnx6k/tRbMbBBaO03M7BjFora5NravrGNw4GVr1tHI5XcjmsggGg6hzOZDM5nGm+ww8LicSFgtshSlxI0o70uhCi3ilj39pXj0hSk3BfPDJXc0jMRohGkFAEOnrQ2wghgXzZkMGXQj+qvywppc6C12ALMOo5otVHnCMFjWKQoqcoTU/MJdTLR9qnzuSSyE+EEUvw+vNDpofmL5uheDYyW6wDIUr16/ChqVzKv58IzSSqHZa0faV8TqtjFYjMU8kFwGjaf8dCTSiOn78OM6cOTOmDHgjjE9FDMOAoii0LZiBGQEvXnj7ICLxlP5at92KRDpXNGSofYFL5zAoSvXoKhUsFUJw4vRZEFnEnFmzQBUsKuxWrvKMSOGJ3Wm3guc42G12+H1+cAyFSP9AUWux9uWWZZXcMjn1tKGbGlbYVMqf8AmsFTZCURQR7A2C53k0NzfDblPbaotOFyUoTTMUCxtCabu1fm8UUpjdUM0i7dbqeSHA4NS6y26BKMtF80Ea0pk0wqEw/H4/PG4PmngWoiAgkUohkUwhGu0Dx3N6IqQ2d6GRvtNmgaKgpnZWpFdZLEgMkROvPrnL8LnsiFUQ4gkI+vv7kUwm0dLaApnQqqX+ML5fgiCB51mAIjWLnIDqEpAXJPAsDY5hK17f6AfGMgwURUIum0FfLIGBgQEwDKM3O1gsFoRCIVCgMGf2LFy7fumoNt7S04rxv/E4rYxWI5mOHVvANCOSiRbbKYrC2bNnIcvymDPgjTB+YI2o9zjx2Ws34Pf7T2LvsbNwWPki0bn0C1JsQpiFw2atUIKQdKG3qbEZNMvAYbUgL4hVO7Q0GMsoNE0jmc6hzluntxZn0hmkM2kMDAzorcVetwsup7No/qMyBrvMOJYpa5nN5XPoDfbC6VLbewkopLJ5eJxWZHLVy3rGewMQeJ1qB9NQm0uq0G5dLS7YCKJALVlxLBiaLtIrEskEotEoGhoa4HQ4C2sRYbda4bDb4HC4VNuWjCo6l+bX22w2UBQNmUjgOXbIrA6WoZFIZcsMHSuB5zjE0jnwPFdY16D+FI1EkcmqDr48x4NhKGRFCZIsq6fWKt1ogPrHFIB0RhiWyM8yNNK56i3lgyCFbB0KnNWOhfN8SKazyGYHT8mSJIGhGfh8ddi0diFsluHnildDpRKYRiqjPa3Isjzi+O+L7bM1nphSRDLUl38iS1uZTAbxeBw8z+Oyyy4bUfD9UNDeVyUSZBkGG9cswqyGOrz0/mHd5qHaxql1sKgllOKNJC/k0dvbC5vVhkAgUBiEVG0+7MOw+VDXqLIBURRQFPRSC8uwcLvdcLvd+saYzqTR09MLhgbcbhcohoPdXrvrhGVopDK5ovKSNmFf56uD1+PVX8vQNHJ5tb5utXA121YBVVCPpbJw2HgIolLz6drCs+rMjkJqGi2qUFMoU4ap9XQuj1gshlgshuamZt1YVFuHdj1NLGecDJzOQnhXLq8Scv8A4qQPoYKnldOhhlBVEsuBwtR4IcmxkuOvERSlWrwQhQwOgjqsiCcziEQjyOfzaGlpKZTcVBsW7YSYTNfWwrQ4aWBokd9oe6+3lFeJDjDqLfop3MLDZrHAYrUgm8vCalVnVOb67TjddRChs6cQCATg9/vh9XrHrHNUK4Fp5DLc08po50hMIrkImKgTSV9fHzo7O2GxWNDU1DSuJAKoRFKttRhQdZHZjXX49MfXYmf7MXT39te8ntNuwUAqA5Zh9Dq4Vl7xer3w1nmLiIjnOSQz+TIhvhKsFrV7CQRlbr8aaIqGw+FQNz+bBX2xBNKZNORsAv19UbC8RRfsjdqAbstBBq1BguEootEoAg0B/Ym+cFeKyl+VxG8jjPYgmZxYUaDWoOeFKEA1LURfRUGz0tqqZVlBWsojl04gEVdjcS28peI6gMGmAM25gAIFq9UKq9WKpoYG5AUByWRKn7sIchx8Xjd4ixUsxxs2ZgKGoSHmBz//pbG+xgRDp63E8ZkA8VQG8YE+KJKoZokU7HQqCebVCMJZmPsxoprI77CW58QbowOMeS52K1exq04QJHVOJBoGx3JobGzE7CYfbr+6DZIkob+/H5FIBAcOHICiKPD7/aivr0d9ff24fI+rCfbGUwtQfloZLZGYpa2LgInQSDSjyCVLliCRSFTd7McKrXOrFMbarMtuw9arVqPzxHm8vu9ExSE6m0GLUMVmGYqQQzgcRiAQKPogEkKKRGqjEF9pQ2ZZWn0CLfxY3e3XoU7Elz5tasKztjECgCxLUEQB4f4B9PWp2oDD7oDH7YTI0Pq1CQjOXOhBJpXC3DmzAKr4S1e+RsMApqIUzajwHItMSVdbuUCt3cvyvBDAoIVoNvyF96oL+YZ7Go6Ekc/lMWf2bPA8p5eMOEMXmhGyrCBVZmtCwNAUaJqBx+OBx+OBoihqsmEmg/6BGFiGBs2pLbKN/jpkKpzItFhfYytv6ZoB9XPW29sLQghaW1t1oqlkwzL4b4oJgmWZmqdao8gvSgpyFRoeNGi6mdNuRS4v6q3JpZBkCcEeVTebM6sVFp7DDZcuA0VR4DiVWBobG9XArYRaZjx79iwOHToEj8ejk4rLVc2uf/gY7mmFoihIkjTin5dKpUwiuRgYzxOJoig4cuQIQqEQ1q9fj7q6OnR1dU0okRjXrk0MG3MLtA/emoUzMSNQhxfeOYT+RFr/N6VeVIQUZi3SKcyZORMWq7Woxl7aoaWifCIeqC7cgwCJdK6sXKQ+eZd37DAMC4ZhsXi+F8lMDql0WtcGJJno0+GpVApCXkBTczNA0WpoUaHmX/pUb4T6FD7YecUwNMq6v/R3Wm7fUutUo9qwD27KPMMiaXA4VhQFvaFeKLKCltYWEKiOtWreSx40BYhVRP4iWxOaAscwZeugabo4vz6XBxQRyWQKB8JhWK3WwZNeiXOx1srrdvBIlHW3yQj2BkHTNJqbmwFQSBYMHXNidfcBDXr4mJ7jUh2SrDonuJ3WoQdYQSFVmE8SJLlsVkaSJPQEe2C1qO3UeVHCTZcth8NqKb8SRemEPH/+fOTzeUSj6mm3u7sbDMOgvr4egUAAPp9vxPpFJVQ7raTTaaTTabAsC0EQhj0MmclkzNLWeGA4GokxM2S0EAQBHR0dkCQJl19+uV7fZhgG+fzQ1uijgbG0ZTweA4M+X0YEvE58dtN6vL7/BPafuACaLvaiUrO+w5AkCa2traAYtvCEZ9EH2Wq5+Bo35EQ6B5ejXLg3wlgukmSl7ARQilRWAM9xCPjqwDbUI5nOIZvLIp1SS3AEKqnkc3kwNKMHRDE0hUyF8CsjiKHzihAMqf1oJyuP04bYMIT4dFZQ18JQeqi8cTNuaWkZ3BAKROt12YalQQmiDJdNK7kQVPv9aCUwC++Ex1sHWZLQF4urJbCB/mIftcKwJiEE2bwIl82it0Nrcb4cz6GxobHIGVmSFYBQ+pxSNahW9oM2+ZXa0I1QZ4GG5/asldWoEvdmURIR7AnCalNJhAKF9UtmY3aTv+b91WCxWNDa2orW1lYoioJYLIZIJILjx48jm82irq5OP62Mx+atfR7y+TwOHDiAlpYW1NfX6w+MwxmGTKfTaGxsHPNaJgNTikiGgvYUMZqOCA3JZBJ79+6Fx+PBunXriq4zkV1hWmnLWFsdKviGYxlcs3Yx5jT58Mb+U/rpRJRE9AZ7wbIsWltb9Q+kJsS7HdaaPlcatA3Z73YinqlsUWKELKsblcPKD9ldpK5ThsWmGh5qpYhcLgeb3Ya6ujpkM9kiW3KX0wmXywmX3V4WWlQJFEUhJ0qwWbmaug+gDXhmYbcO3WWkXVvzGoslUugJBmHhLWhoaKhQ4lNt8ofuSlIn6FOF4dGhOp5oWt3EtWHNGU0NhawOoneB6T5qVhvqfV5QDAdRUsDzLCRJRE9Pjz4gaVy3UQQ3TqJX+sxoJcxqbehGGHURo9tzpWsby2rEYK+TzubQ09MDu92O+vp6UKDQUu/BFcvnVr2vtUDTNHw+H3w+HxYvXqx3gEWjURw/fly/P/X19airqxu1YJ/JZNDe3o7GxkYsWrRIv9/DHYY0xfaLBKPV+2iIRBsynDdvHubNm1e2IZSWn8YT2rW1D9NI0tPmtwTQWOfGjvcO49iZIHpDvXA61DbZsvAvWi23EIKClUTtDdZh49GfSoNj2SLxsxq05MJqQrwRdquWeUGBIjJCwSBsNjv89f5CJ5YVdXVqa3E6nYEk5nG6+wxYlkW91wOGt4DnLRXvk7H8VUv3ATA47KdUG0oshrapUqDQF0sgGg7D43LB7fWWnZRsVk7fJIfqSmLo4gn6Wh1PZfb0Bddkm4WHrCh6w0M96iHkBUAW0BuOQhAEWKwWWCwWpJIpBPx1sDvdRdcuF8GNk+jFHmkWnq3QHViZIDRvrKJ7ZFi3kTQZhlaz2EvuZyyZQqg3iPo6D+wuj/o54VnceNnycZs8t9vtmDVrFmbNmqUL9tFoFIcOHYIkSfD5fPppZbiWSNlsFu3t7WhoaCgiEaBYW9FOJpWGIXt6ekbtnjHZmFJEMtTGqm2+I93sCSE4efIkTp8+jVWrVlU9Pk70iUQQhBGTiAanzYIrFjUheqEbos8Hl6s8bAsotnnXMt+rlbisPIdMIdp0KCG+VLgfdPut/LTJc4OtqlpHmc/vQ0tjQH0SNrycZVjMaAogmSm4FmeySGXSEGJxMBTA8FbVQdZmB03TsBSML0s3wsqdV+XDj6VDicYN32Gz6NpPNptFb6gXXq8XHq+3UHoZ3PBZVksJrNyVVDzNX1nkNwraRssUj8OGRIUJ82yJRkRRFOrcLmTyecywuyBJEhKJBGKxGAAgOhCDjyiwWO3gOF53Za5UOiyeU8qBYSg9WKoMFQiCYeiqp6tiAs8VtRtrEAQBPcEeuJwu2J0euOxWZPMCrrtkKdz2kXvcDQcsy6KhoQENDarTcSqVQiQSQU9PD7q6uuB0OnVS8Xg8Fb+32WwWe/bsQSAQKCORUmikUjoM+fvf/x4dHR34+Mc/PiHvc6JBkZEE804wFEUZ0pRx586d2LBhA9zuyhtpKSRJwoEDB5BIJLB27dqaoTE9PT04d+4cLr300hGtuxa0GumRI0dw/vx5uN1uNDQ0IBAIDPsYSwjBqVOncPbsWaxYsQIKa8X2dw9hIJEpek0lGxFAfaosfdJkGLrQXVL+xa80n+ByWJBMV37it1l5iEXZIpRKJIK6qfX19RW19zptfNGmWclaBVA7u3K5HChZRGQgDlEQ4XDY4XI5wfGWiq7FFA04rYO1dqOIXwkcy6geWXkRFp6FIEkgCpBKpxAJR+Cv98NtIG0tf16SJVgt/BCzLYMzKtVsSoxgWQY8w4BQpPAwUPthw2HjIUoyZIXoQnU2l0Vvby/qvHVwe9y6+242kwFHA7xVdXw2pmlWgs3CqeWWIUw3AfXE57ZbhzUICgB1Ljvi6WxRV6JGIm6XG3W+Ov2zsHbRTHy0beGQ15wICIKAvr4+vQxGUZROKn6/Xy/V7tmzB36/H0uWLBmVdvv222/jtttuw3e+8x38yZ/8ybS0SJl2RLJ7926sXr0adXV1Q14vm81i7969YFkWa9asGbKvPBQK4eTJk7jiiitGtO5qKBXVBUFANBpFJBJBf38/bDZ1cLChoQFut7viB0iWZRw+fBixWAxtbW06EQqShNc7T+DAqR4AxTXvSqAo9VSjPlGr9flaZSyKpuCwqPMndlvhtTU+KQxDqfX/QitqKptXLTgSSTQ2NcJmLQ4WY1kGHEODQM2krz0Vr5KhIAjIZbPoG4gjl8up7rEl4VMaHDYeoFTNaKipeG3DzwkSREnWya+hoaEi2TMMBZdNHX4cDtxOK3I5seLgYCk4hoa1RktuKZw2HgohRbNEfr+/7EGLgIBnKKRSqcL9y6uWN4UJe54vvn/OQsuvlWeHzEVx2PhC/ku5EWUpVGFf0FM+M3kBeSGPYE8QHo+n6Hvd6HPhUxvXgp0C5R5FURCPx3VS0SJxM5kMfD4fVq5cOarS2/vvv48tW7bgn/7pn3D//fdPSxIBphiRqGlrtT+0v//977F06VLU19fXfF1/fz86OzvR2NiIpUuXDuuXHIlE0NXVhauuumpE664Eo7hWqUNDkiT09fUhEokgEomApmmdVHw+n14K27dvHwghWL16NSyW8rbH4+fDePPAKQwk0xjOxmO3cqApqqYgbITLYUEuLw0pTgPqZlXntCOWyiAUVmctmpqbilLyjGAZGjYLP+STuga33QIF6uS1QhQ1fCqdQSarpuMZ0yCtPA9CCDiWqZ4GaFi53WqBoiiIRPsQ7e/XnXArQSsraZ1utb5CPMdAlhUoIGq2eJWpdQ1aB5V6ikTNpgbt4YGAgJJFnDp7Hg2BhoqzCA6bBamseupjWQY0IYjGYoXTShY0TesBVD6PG/lCmzkBgctmLVjsl79PjlXr/toQIssyqs1JBW2OYajBbjEUyI0Gjp/qhsfrRZ13kER4jsGd126A1zk13XBjsRg6OzvBMAwEQVDjBAqnFZ/PNyyto6OjA7fccgv+7u/+Dn/1V381bUkEmGIayXAwHJuUc+fOoaurC4sXL8asWbNGdO3x0EiMJFJND2FZVh+m0toTw+Ewjhw5AlEU4fV6kUgk4PV6sXLlyqofzIUzGtDkc+PF9w7jfDg25NpYRt1YhyPEUxRVSOHDkC2igHri6Yun0N8XAU0IWlpbapRPCFhWTTq0WjjICqnpe+Ww8YgXyl/anAdjcI/N5tQ0yEg0AqIocDkd4C022Ow2eF2Omi2rLrsNiUwW0WgU2UwGixfMQ16sPE+k5ZZQVPWI4cEbqN5DbZPVM0CqhEQZT5WlekXpZ8hhGxTMk4kk+vr6MKu1FQ6no6ybSh3YHDyZSZIMAoLWpgYk01kQAv3+9ff1oS8SBm+x6UaJqaw2/0KXlPJImS5ijNM1anNqC3GxLpLP5dHdG0RjQO2WMq5707olU5ZE8vk8Dh06hEAggGXLlkFRFAwMDCAajaKrqwuCIBQJ9kb7HA0HDhzArbfeiq985SvTnkSAaXgieffddzFjxoyKUbeKoqCrqwvBYBBr1qyBz1eeUVAL8Xgce/bswTXXXDOif2fEcEhkqH9//vx5HD16FBzHQRRF1NXV6aeVal0kiqKg/dg5vHXwVNXSgt3GI1PooiKFck41IZ4QAqfd0DUEUiV7QoWapZFDsCcIllNJ0uOwVyzREEJUW3xj1geNqk/sFl41MzR+UhmGhoVjyshQIQo4mkK0P4Z0Jg0hr3Yx1XnccDgcUECVlcCS6ZyafyIIaG5uBsdycNh4fVJc/5m0erIsO51RKNivD77XSu9RA8vQ6uZu2FSdNh7JKu7JditfFG7FswwkRYGiEMRiMQzEBgZPUIW1aBoRRalEUm2Ww3jy0TJfYok00hl1kDSfyxeVEOvr3LoON1Q51dgmXBrTnM1l0Rvshc/vg8ftKbqHK+e1YtP6JVWvO5nI5/Nob2+H2+3G8uXLyz6rhBCk02m9BBaLxWC32xEIBJBIJLBixQqcPHkSN910E770pS/hwQcfnPYkAkwxIgEw5EBge3s7AoFA2UlDEAR0dnZCEASsXbt2VAExqVQKb7/9Nq699toR/9vSSfVKQ4bDwblz53Ds2DEsXboULS0tyGaziEQiCIfDiMVicDqduljvdDrLfkZvfwLb3zlUVr/nOVbNLSkhmWoeU+5CJkopKlmUMAwFURBx9vx5tSXVX6+vy2blIUpSUfpdrQ3IYeOLntgZhgJNVe4G0snQGLTksBa54kqShExGdS3OZbNw2a0Aw8PhdMDtdEAQJQSDqnVIU1NT0cmveMNXy1+1ymQ2C6d3MA0lrhuJXP3dKFWt79X7QKt6RU6ApdB5NdA/gEQigabmJlgtxQ8YdiuHvCDrljq1QFFq6YsiKLNWkWVZz6/PZFUxvc7jhtftggxm6JIxBXgKFjsayWazakNAJS2nNeDBbVe1gWMnXxcphSAI2LNnT1USqQRRFHU/sM9+9rPo7e2Fy+XCunXr8POf/3xcYiqmAqYdkXR2dsLj8WDu3MHhJG3I0O12Y+XKlaMeVsxms3jttddw/fXXj4gEKhm4jeYkcuzYMQSDwarNBKIo6ppKNKrmgwQCAQQCgSLnU0GSsLvjOA6dDgJQn6QZhq6aoU7RgNMy6DFV6+lYff2gEE9RFIgsovvsedTV1cHj9ZTbptCqe2+64O2UKeTQVwPL0AUhNl9IQBxitqXw5MvSNFK56uvWXIsVKY94IgkAEGUFLMuiubm5YhmOgMBtt6mtocPsYHLaeMTTlS1eSmHlOTA0kB7iPWrr97udiCUziBQE3+bm5qpNJC67BQohQ4rlgEqCoNS27mrxxVoJUcznkEqlwYBAYVg1TtfuqPi9Y2gKFE2DZ2kIooJEMolQKKT7XxnBsjQ+u2kD/O6pN5SnkYjL5cKKFStG9ZB47NgxfP7zn4fL5dIjvDds2ID/+I//wPLlyydg1RcPU04jGWlKYjgcxv79+zF79mwsWLBg3JIMhzsYNJSoPhxoLcrZbBaXXHJJ1dMUx3FoaWlBS0sLZFlGf38/wuEwDhw4AEKITip+vx/XbViKOU0+vNJ+DDRN6bMlFd+DwWNKURSk88O1KLEiFo/h7IUgAoEAXM7KrdWyom7CHocV2bw0ZIeWFqfqczmG1USQFyRYOAYUTdVyHdGH+AhRg7vOnjsHAtVI8uyZs7DZbHoJR9sUKVBQFAWSosDCVy8RaaAoIJOX4LJZCzMq1d8sIUS11c/li+xBqsHtsKE/kUZsoA+SkENLa0vFFmhAJahkNq+7F9dqCmAYCqIkQ5KVmq7Jan69DVavB26vAFEUQSQBA/Ek+qKDBp12hxpABQJYC7G9kiQjm80i1h9BfaC+4mdl45pFU5ZE2tvb4XQ6h30SKUV3dze2bNmCzZs34wc/+AFomkZvby+2b9+OlpaWCVj1xcWUO5EIQu0umCNHjoCiKCxevBinTp3CqVOnsHLlSjQ1NY35Z0uShFdeeQUf//jHh2VBPVY9BAByuRw6OjrA8zxWrVoFjqu8MQy1jng8jnA4jEgkglwuB7/fj0AgAN7uxK7Ok7gQiQ15HYZRnxwp0DXT+gD1ST2fSSEc7cPMGTNA0bWfSbRaPSEENE0hl6+9IWunIhvPVSy9GUHTAMeqm3ypnlAJHAMcP9kNp8uJOTNakM4JEAS1fTaTzhS1Fns9bjCMqiNoJaDqnVek6ARVq4MJKC/x1Vq7SmIiekMhiIKI5pZm1LmcFTUomqbAlGg5HMuAYUrFcm3NxSU7rexWiXwqlSUZhi6kacb0MhhFUQjUeUAYNXEzm80iFA6hIdCApoCvbBB0yexG3HDJsimnF2gkYrfbR93ie+HCBVx33XW47rrr8KMf/Whcs+GnCqYdkRw7dgz5fB6yLCMWi2Ht2rXDHk4cCoQQ7NixAx/72MeGtEYYDxKJx+Po7OxEIBDAkiVLxuUDpol9WgkskUjA5XajNyXjWChZs4tqcLakdtgTIQSJWD/iyRSamprB81xNIV59KjbkY1BaOFL1ifu8KOrieumQYem1i5sCCnoCx1Y0USSKiNNnzsNXVwev1wugPHdFVgZ1ATGfg6xAP6nYbDY9rKp0wy8VlLX7WuleWi1cxfkZbR7H+H5omgJNAWfPX4CiKGhuatZPzEZdptr9qLWWWlpOaaeWNi9S6bSqlgBVvUpRCKBI6I8l1Hsoiio5uVyoq6sDx3JFg6Belx2f3bQeFm5qFUhEUUR7eztsNtuoSSQYDOKGG27AlVdeiZ/97GfT1gJlKEw5IhFFsaaVe1dXFy5cuACn04m2traKsxVjwUsvvYSPfOQjVafOjW6eYyGRUCiEQ4cOYd68eZg9e/aEPYnlcjmdVE6c7cGBCwmA4fXyAwWqaodRpQl3WZHRF4lAlmUEGhuLiKmSEA9UF9dtFg6iLBcJ8QxDgaLoihP3lTqpqm2EmraRyuZ0QsoVLE/8/vL6vNo1NGj3opWEkpmc3hqbzqShyApsdhvcTifqvJ5CjobqX1VLn7HyLJSCuwDD0KAAfZ6i0trV2Q11U7ZZWJw8fVaNT25qKtvQaJqC3ap2n2kGi7Wg/V5ZhkEmr3bxVQeBy2FDNi8WPvO1twueY8DQFCSZQJRkJFNJRCIRuJwuiJKIXDYHjuN0Ym6s9+KWK1aiwVvdcWIyoJGI1WrFqlWrRkUioVAIN910E9auXYtf/vKX42JdP1UxrYhkYGAAe/bsAcdxuPrqqyfkiFjLgmW8RPXu7m6cPn0aK1asuKhdG2q+Qwjb396PQ909+hBfY70PMqlMiMa2XFmW0dvbC7uVh9dXX/H+UzQFp5XXPanUUk/1zcooxANDz6uwDF1oNRb0yNtaeg7Ps6AARKJ9SMRj8PkDNTv6tC4zWyFV0ggCtT1dI5V8Po86twsWqxUWW23LEaBQGrPykBUy5EwOoG7KHEPj6InTYFgGjY2NoKnqn3mPUz0RGIm2GjiOgZVji7zDqkMl1bwgDTmdrz2UAEBPbwR9fX1obGqE3abec1lRtZJMWj3xrZrtx6XL5xfZjkw2RFHE3r17wfM8Vq9ePap9JhqN4qabbsLSpUvx+OOPT4n3NZGYNkRy/vx5HDlyBA0NDcjn87jkkksm5Ofv2rULbW1tZV1TpXYno/lwaWFafX19aGtrG7eS3Ghw6HQPXnhrH3LZLKIDcRCiwG6z6xG6pe+PpQlOdZ+Bz+uBw+UdcvNx2iyQZBmCJA/5FKvV5Cu1n1Z7vcdhQzqbrzjYV/ra/r5+KEIWzjp/1Wl1IxxWDqCoIbudJElCNpuBLOaRSmWgUJQuNlst1or3yO2wQlYU5ITaOg4AsAyF091n4XU54PR4QdUgEe2UA4oCzzBDaFwENqsF2ZxQ8ZRXCu1EqZYYLTXJR3ttPBFHKhFHY2MjWK5y1WB+az2uWjZTtw3KZDJ6TkggUJvwJwqiKKKjowMcx42aRAYGBnDLLbdg9uzZ+M1vfjPu0d1TEVOOSCRJKpouVxQFR48eRU9PD9ra2iAIAs6cOYPLLrtsQn7+66+/jmXLlhVZsIyHHiKKIvbt2wdJktDW1jZse+qJRCyZwUt7unA+MoB8Pq8/aYuCWNTBJIgCQqEQZjQ1wOX2IDdE5xKgCuAWngMIhvX07bTxyIsyWLrKlLgBmikkgJo2IoQQRKIRULIIjz8Ar8tRlPJYCSxLgxBAKjgn1+p2Mua5K0QBTWSEowPIZFQzTc3HSnMtNpa/1IFKtupciiJL6OnpgcVqQ32gHvaa2SXFIv9Qw6al5UB1XqZ8uBOorItUIx8rzyEniojH4ugf6EdzUzPsdptedjN+b9wOK+68dgOs/OCTujYzFY1Gi7zo6uvri9rbJwqSJOnefKtXrx6VnhGPx7F582Y0NjZi27Zt4156n6qY0kQiiiI6OzuRz+f1IcNwOIxjx47hyiuvnJCf/+abb2LhwoV6ycmYFzDaIcN0Oo3Ozk44HI6adieTAUVR8M7hbrx3pFvXEkRR7WBKp9PI5dQNp77OA5vDDY7j4HHahohRNXYC1Z6IBwAbzyErinrrbi0hvlRMrtZJpRAF4VAYNBT4Ag162amSmG1cd6mjby0LlEraj83CQZQkpNJZvQtMFEW4nHZYbXbYbHa9Vq4J1MkS+5a8kEd/JAzeZofP59M3cYqm1CyRkvdaTSeq5NdltxYsXio4Lev6Chl875JcWRcpJR+aVu13wpE+DMQG0NzcXDQk6SwYf8qK2rX3qY1r0ez3lF1Xg+ZFp02IK4qiW47U19ePe6loPEgkmUxiy5YtcLvdePbZZ6fEw+LFwpQlklQqhb1798LhcGD16tX6l6+vrw8HDx7ERz/60Qn5+e+88w5mz56NpqamcRHV+/v7sX//frS2to55zmUicT4Sw4vvHtY3JAKCgYEBxGNx+H1e5PICUuk02MIAmq/OA57nIUrl5ZlKG1s1Ib6a8FzajaRfu2RyXYOxdVZWVC2HoSk0N7eg9BNuFLONf1e56woVLVCqdV0Bqu6jTpQXcmFEAZIgYCCeqOharD2V5wUJuVwO8f4IeLsT3gpBWkCxDf9QGpTR9ZnjGBCCmiW1QVsTUT1h1Dh9akSYyOTgsllwrieEeDyO5ubmik/iGvmsXTQLG5bMrnrdsp9DCBKJhN40kk6n4fF49Lkpu90+pu+VJEno6OgATdNoa2sbFYmk02ncfvvtYFkWzz333LRNOhwtphyRyLKMYDCIffv2YdasWVi4cGHRhyQej6O9vX3CAmDef/99NDc3o7m5eUyiOqD2j3d1dWHJkiUVvcGmGnKCiJ17j+LomRAikQiyuSxaW1pgt1khiLI+Ga49aVMU4K/zAAyn6ioUXbNFtNITdS1xvXRDVo0mq+d0MAwNmiI41X0WHMdh9sxW5IXqZSy1vVWdaRlqml9bqyQrUAip2XUFGMtL+aKTiyzLyGQzutisue46HA44rBwuXOiBw+WFx1P9aR1QZ1QsLIPcEDMzGuwWHhQ1dL49AIAC6ly2Qt7N0J97t8OCYG8Ekb5+NLc0w8JXL+fMafJhy5Wj64LSoHUiaiUwzeFhNFG5sixj7969YyKRbDaLT3ziE5AkCS+88ELNzKMPKqZcP9rZs2dx6NAhLF++vOLE50SmGAKqiG4U/EfzgSeE4MSJEzh//vyozCMnC1aew3XrFiPbH0KoV0JrSwvcTodex9cmwx0OB0g9QS6fQzqdhpLJIBoJw+1yIWWxwmazV/xCEj0NUJ36ViNfq4vrenSt3QpRlAtT5dU3tmxONY2sr/OgsaEBqSE2TS0L3eMsJB8OsWlqKX8uuwWxZO0pdC3f3G23QpCNvmQMXBVci8OhMCgQOO028BwLWZZrbmqSJINjaJVoq5QBjWBYGpmces+HIhOHlUd/IgO71VLmk1YKC8+i+1wPkskkFs2fC6EGqTlsFlx/ybIxax1WqxUzZ87EzJkzIcuyXgI7ePAgFEWB3+/XS2C1hG5ZltHR0QGKokZNIrlcDp/5zGeQzWaxY8eODyWJAFPwRBKPx5HP56s+kY3WD2s4IIToaYqtra013XarQZZlHDx4EMlkEmvWrJlWR1xtyt5isWDWvIV4ff9JnOntH/LfERDQIMhl04j0xSEIAqxWq/6kXcnGw223QpTlYQnxFKWWrhSZVBXic/kceoO9cLvdmNnaBFFSQFEY0tJEc/RlGbqGmD0I7XShlpfKc9mNsFpYtTREautEyaQ6a9Hc2ICcICKbzQCyBMKwehdYaaaLMbFyqOwSo8hvHBys9M03Ogtr98fYnm0ERQGxgQHE4gk0tzSD5/iqJUmKAv7go2sws6HcQ268QAjR72UkEkEqlYLb7dZLYA6HQ98zZFlGZ2cnFEXB2rVrR0Ui+Xwef/iHf4hQKISXX355WGF7H1RMOSIZKiVRFEXs3LkTmzZtGtcBH60zK5/PIxRSSzuxWAwul0vPdB6KFHK5nB52s3r16mnV9pdMJtHR0QG/368HgcmKgrcPncaerjMVNx0jtLKTy25FfzKNTLog1mdzqgdTwdiPt/CwWfiCvlB7gh4o7oyqpFUAQCaTQSgUgs/nQ2ODv7B5D9fSZNAepNamCZR3MBmns0tRyXLeZuEgl+hE8UQc/X39mDdnFgg1uJmJkghKkRAdiCGTyYJlB0nF7/WUzc9Ue6+lwVMaKjcREFh4rox8NU0pk8/rxKkQBdlUAtGBOFqaW4rEb5qmYDeYegLAZcvn4vLlc3ExkcvldLG+r68PPM8jEAjA5/Ph7NmzIIRgzZo1o9pHRFHE5z//eXR3d+PVV1+F3++fgHcwfTDtiERRFLz00kvYuHHjuLXWaYJ6qaguCIJu4a61I2oW7qXRuNpG7PP5sGzZ2I/vFxN9fX268eXcuXPLNt1z4QG8+N7hqtbvpd1LxqdS3W6koAlwLAuH0wGL1Qqb1QaKoqoK8UBlAdx4/WQyiUg0goZAAzweV8Wp+GoeVpWaAtRN01J22uA4FlIFG/7KXWnVLec15+REJod4PI5YLIYFc2dDJpU/L1qb80AsoearZLOQCYHNVtxaXPm9lnehFS+mmJirNhto96BAnJm8gEwihr5YEs0tzVWNI52F+9hS78EfXN02qd8JzeQ0EokgGAzqXWANDQ2or68f0V4iSRL+6I/+CF1dXXj11Vc/MFbwY8G0IxIA2LFjB6688soxl41GkiGitSNqxogcx+lhU5Ik4eDBg5g7dy7mzJkzZTuzKqGnpwdHjhzR80+qISeIeHlPF06cjxT9eTWRutJTKSEKiCyhLxZHOp0GIQR2u13XXVx2a9ETda2OJJqmkEuncKE3XJictulDdpVQOrcxlKWJ0eRwqHAooNhOZqgNmYAgm0oi2j+AWTNngKKZIU58Klmlsmp2STyRKmotLnUt1rzGKJqqGTylwWbhwDIUEsPItyeEIJOIYSCRRFNzy5BP8y6HFXdsXKvmwEwyFEXBvn37IAgCFi9ejP7+fkSjUcTj8aISWKWcHw2yLOPee+9FR0cHdu3aNS5msR8ETEsiqWVjMlyMZVJdURTdwr23txeyLKOurg6zZ88edl7zZIMQgtOnT+PMmTNYtWrVsI7mhBAcPB3E7s5jkCSleP6jCtSnUrUkYtxgCQjy+TzSacOGaLch4POCZnlYeB4KUSpOXGvT6olkAgvnzYFMCt1iQ2yamj4gSDLEYUzcAwROmxWEKMPKC6FowG23IZZMV51CJyCIRqLIZDOYM2sGnHZ7TdIxwuO0IpsXi05ugmiwbDGkGQbqvLBYLcjmxSHLkjzLQCEEVgtXM1OeEIJIJAxFkjBj5gzQdPWMGw1br1qNuc2TX/YxksjatWuLSnH5fL6oBMayrN4FZvw+y7KM+++/H2+++SZ27949LToxLxamHJEMJ2539+7dVcOfhvszFEWBLMujng/RYn3D4TAWLFiAdDqNcDgMURR1i4dAIDAljdqMVi1r1qwZcadJfyKNl97vQiSWrNkCq4FjGTgsHGI1hhiNG6IsiHA6bKA4Hg6Ho0hoVjcz1Sq/qbkJPMfDZbdAlBTdvbcWNL8rUVaGFOIBtfwlyXKZtlHtfSpEUecvKuSyE0IQDoeRF/JobmqG161mydeaQtfgtKuGkjRNF4WKGaGlGQr5LFKpNEDT8LhccLmcoBmuqk5k1EWMMyqla+8N9YKnAY8/AJZhh9Sg1i+ZhatWLah5zy4GFEXB/v379cHmWsOMWv66JtgLgoDHHnsMbW1tOHnyJF5//XXs2rULs2cPfw7mw4BpSSS///3vsWTJEgQCgVFdfzzsTvbv3w9BENDW1gabzaZfO5VKIRwOIxwOI51Ow+fz6brKVLBLkCRJ/1KtWbNm1NO3kizjrYOn0X707JCvtVo45PKCQZOoEZpFCGw8i3DfAIgsoD+WAMOqQ5B2mx0DsQHIsqwnGlp4FoKk5rlXEuJLr10q3NcKk7JZOFWMJtWnyg1XL9IjSie/FaIgFApBltS1e12OIl1F7bwiFclKf48Gzq624YOCGsWbF/XW4kwmDZ6h1Ijhgpea9pRdqQzHskyRXxchBKFQCBwDeH2BshN3JQ2qye/GpzauBTPJWqGiKHpo3Lp160Y0Ea91gT300EN44YUXcOLECSxfvhx/8Ad/gFtuuQVr1669qLrPgw8+iG984xtFf7Z48WJ0dXVdtDVUw9R7XB4GRjtLUk1UHwkymQw6Ozths9mwYcOGohMHRVFwuVxwuVyYP38+MpkMwuEwenp60NXVBY/Ho3eAaeRzMaF1lXEcV7b2kYJlGFy9egFmN/qw4/0jSFcxW2QZpiB+U0hm8rDV9IxSPZiSmbxetgw0NCKZSiEWSyAYU6ODnU4n8vk8WDuj6lyF/SuZydW8fpHFOlFfXy1bhGEKHVeFfXpwBsZScQMvFdzVlEfVryuRyqC3NwRCCJpbmuG0WZHMFp/O8oIEilLbehOpQbKiKAoEKCIRAEhlBbAsAytXbNCoWuHnC2mGqhhP4IcgCJDFvD4hbrFaEKjzok8QyroLJUmGKElwO2z62mkKqKuv7D6cyQlgGBp2G49MVoCFZ3HTZcunNYkA6r3X9JJ0Oo233noLx48fx3PPPYfvfe972L17N9asWTNBq6+M5cuX45VXXtH//1SpeEy5EwkwdG77e++9h9bW1mHXKEciqtdCLBZDZ2cnmpubsWjRohFdQ5vGDYfDGBgYgNPp1MX6WuLeeCGVSuldZVp773ghmxfw0vtdONUTLfmbyl1DNE3BZuHLyMdu4SvmY8iyhIFoGKJCwePxIJPNIJ1Kg2Mo0JzhKZtmql7feLooRaUgrFoT96Vtv1rZqZJQLcsy+qJh0DQNX30AHMsOORWvmiJKkCR58ARVBUaDRofNilS29mAlTVPgGBoD8TgSiSQymayaD1IwmLRarfq/V4iC/mgEiqKgpaUF0hD29JoGdfXqBVg0s7HmaycaiqLg4MGDSKfTWLdu3aha8Qkh+OY3v4nHHnsMu3btwtKlS/W/EwQBHFetXDgxePDBB/H000+js7Pzov3M4WJq0NkIMZITSamoPloSCQaDOHz4MBYtWoSZM2eO+N8bp3FFUUQ0GkU4HEZ3dzcsFot+UvF4POP+4ezv79ctZ+bNmzfu17dZeNz6kZU4cKoHuzuPQ5aV4jJSCRSFIJXNFbXZciyDvFQ+uS4IAoLBIOwOOxbMaUU2L8But2POzBb0xZJIp9OIx+KIhCOw2qz6rIWsKOoEfS4PmmLUHI0q+6AsK0jJeX1Qz2GrHMSlQSw8sbvsNgiihHQVaxVJkhAMBsHxHBoCDXDYLJAVUr0dt4B0Vn3Cr3M5EEtlar5Wm6B32C2QJXnIritFIcgTGU0N9XA6nZAkRbdsCfWGAKiuxTa7DYlEAgCwYO5ssAwzZHYJBQrzWgIfGBL5zne+g//4j//Aq6++WkQiACZtRuz48eNoaWmB1WrF5Zdfjm9/+9uYNWvWpKzFiCl5IhkqbrezsxMejwdz59YecBoPPYQQglOnTuHs2bNYuXJlkb38eECzeNDaimma1kllpL5BlaAR4FDtveOFvkQaL7xzCDlBHFbrKccyYGkKCsqn0LO5LHp7e+HxeFBXVwcKFDiWgc3CIl5iaSJKoi7W57KGzHW3B26XDanMMDymoJbW8qI0LCGeptVTlCDKZYFPoigiGAzCarMiUB9Qy552lUiGypQHClPxeRGuEkfeStDakwVRGmIAU4Wmi5SerAgIcrkc0qk0EskECCHwe92gCtqK22mvufaA14lPX7MO7CR2LRJCdGeJ9evXj5pEvve97+G73/0udu7cedHLV9Wwfft2pFIpLF68GMFgEN/4xjdw4cIFHDx4cNKtWaYlkRw8eBAWiwULFy6s+prxIBFZlnHo0CHE43GsWbMGTqdzxNcYCbSOEY1UZFnWu7/q6+tH1FY8mvbe8YIky3jjwCl0HDs35Gu1RD0KVJFQrnXB+f3+ojZvjmOhyLKacVGFqLQhyHQ6DSIJEGSCBp8XYDhYC0OQlcBzLER5ULivJcQb7eyNKZIURemnKIfDAX+9HxQo2G28fnJRZ1oq538A5VPxg4685eRWKSa52gAmUClfpNhdQFZU01SGZtDYGEAylUYqldJbi10uB3xeLySCIiLnWAZ3XrsBda6LH0algRCCQ4cOIZFIYN26daNqbiGE4JFHHsFDDz2EHTt2TFiA3nggFoth9uzZ+O53v4t77rlnUtcyLYnkyJEjoCgKS5Ysqfj34yGq5/N57Nu3DwDQ1tZ20Y+ymnW21gGWy+Xg9/v1DrChWhi7uroQjUZH1d47Xuju7cOL7x2pOiQIFE/FaxPrfQMDiEajqn7kGCRvLdBK21ArWY6UXjuRyurdS6KQg6Io4C3qAJ/mWKxdm2OL5yLsVq5qEFalbieHjUcsnsSFniDcHnfRKarUpqRS/geg/t4dtgpT8ZQqpJeWlyplogDlA5hArel8NVNelCScOXseDMugqakJVkNbsNZanM6kkclk4LRZQHMWtQxmteHGy5Zj6ezJG84jhODw4cOIxWJYv379qEnkJz/5CR588EFs374dV1xxxQSsdHyxYcMGbNq0Cd/+9rcndR1Tkkhq5bYDwLFjxyCKIpYvX1705+MlqmvCtNfrxbJlyyZ9wJAQoj+hh8NhpFIp1NXV6aRibOEdr/be8UI6l8dL73ehO9hX9nc2a0HQ1jqjQJCIx5FNJeHx1Rd1tpUGWmnQLEdK5yosvFrqMX66CQhEQYAs5BEZiEGSJHUq3G5HQ72vouV8pSAsm5UrkGPxZyubzSIaCSMQ8MNq0wiQ1Mz1KD1tVAup0mC3qqU0SZYrvkcjioKzoLYFVyvZybKM3t4g3A4bHO46eJy2qic+Qgiy2SyEfA7ZTBoNbiuu27BUPzlf7HxyI4msW7duVJ95Qggee+wxPPDAA3juuedw9dVXT8BKxxepVAqzZs3Cgw8+iD/7sz+b1LVMSyI5efIkUqkUVq9erf+ZMYQKGD2JRKNRHDhwYMKE6fFANpvVScVo7+D1enH06FFwHIdVq1Zd9C90NRBC0HniPH6//6RebtEibbX/T0DQF+1DKp1Cc1Mz/HXuopjboWxHjG68lQwTy19vQSyZRjKVBCQBA4k0LFZLRbddo2MuQzMgIGVlo3QmjXAoDH+9X20BL3RSDWVKCUA/bUi6G/IQlvAMBRvPQZDkIYckAYDnWVg5tmqqpSRLCPYEwfO8qs257EhkcsOY/Ad8bjtu3rAI8diA7rjr9Xp1Uplo92tCCI4cOYL+/n6sX79+1CTy3//93/irv/orPPPMMxOWdTRWfOUrX8HmzZsxe/Zs9PT04B//8R/R2dmJw4cPj2qmbjwxLYmku7sb/f39WLt2LYBiPYSiqFEL1OfOncOxY8ewbNkyNDc3j+oaFxuCICAcDiMYDCIWi4FlWcyYMQONjY1wuVxTiggjsRS2v3sIfYm0Pv0NGCa+8/kiE0DNoZaiUTPQSoPmj0VTVNUs9NLXWywcUuksJFlWxfp0GtlsoSW2YINvsVhAgQLPsbDwjG7friGVSiEcCaMh0FCko7kdVuQEcVibPcPQsPEscoJcM1MeGDydUaDKUh4rwWGzIJ3LF2ZMigdCJUlCT7AHVosVgYYALCwLUVFAU1RNHUdb82euWY+Ad/A9a23ukUgE/f39sNvtus433h2JhBB0dXWhr69vTCTy29/+Fvfddx+eeOIJ3HDDDeO2vvHGpz/9abz++uvo6+tDIBDAlVdeiW9961uYP3/+ZC9tahKJMbe9Es6fP49gMIgNGzaMW2fW0aNH0dvbi7a2Nni93jGs/uJDa++dMWMGnE6nnh7HcZzeAeb1eqcEqYiSjLcPnUL7UVWIVxQFvaFeKIqC5qbmsjIixzKw8ExBBxh6/U4bD4qmkUxXn3DXoHYXEdgsfJHQryhqS2w6reoBFEXB4XCg0V8HmWLgttv01ycSCfT19aGxsRF2+6DQrJWdQAFOa23hHiC64WTtTHkVxtNZrUx5oFwXsVl5PaxKlEQEewqdZYEAKKDILqVapryGTesXY+W86rNcmtGp9nkEoJOKz+cb0zCdkUTWrVs36gHfp556Cl/84hfx61//Grfccsuo1/Nhx7QkkmAwiO7ublx22WVjJhFJkvTp1zVr1kzKxPlYoLX3lsb5arbZWgcYAH0A0u/3T7rN/ameKF545yBOd58FzdBoamwqXxM1WNe3WTiIslwzrc/o6FstYMkI49BhtddrKYZEEhDpj4EoqmOxv86DTDaHvoEBNDU1wWYd/NzQtEpSxpOIOmQoVjShLNVFaoVPWXkOuVKjzCo5Lcb7ZwRDU2Ao4PjpbtjtdtTX14OqYSNfqWts0awG3HTp8mF/5wghiMVi+mkll8vB5/PpJbCRnCa0B79IJIL169eP+jv73HPP4e6778avfvUr3HbbbaO6hgkV05JIwuEwjh07hssuuwyEkFHrIdlsFp2dneB5fkppCsMBIQTd3d04ffo0Vq1aVXO+RfsSa7qKZiypZTFMhs1CJpPBm++8h8PBJGTWXvb7q9TWWit4qjTZD6hsZa/B5VAt642o9nqeYyDKqv4m5AWk04U5C0WB22kHa7HpFu7VmgIAzX+ruJPKbuXLQqqMP1fLlFfXV05QRpSSYTViEEQBPT09aPT7YHe5QUiltuASGLzJvC477rx2Ayzc6D836XRaJ5V4PA6XyzUsG3dCCI4dO4ZwODwmEnnxxRfxuc99Dj//+c9xxx13jPp9mFAxJYlElmVIUuXuEm1TfP/999HU1DTqJ+x4PI7Ozk40NDRg8eLFk/6EPhIoioKjR48iHA5jzZo1I7LT14zoNFLJZDJFbcUXo805mUxi7969aGxsxKJFi9Bx4jze2H+yiASqdS9pliBpw9P6UHkhRit7QNUMalmJGIV7iqLAcQwEQ7mnL9qHdDqNQCCgtqrLAmKJFDieR4O/DqA5cDxX8frqaUMtjXEsW9UqXwcF3a/LabfWLHkBBTK08iCKglROKFuDIAjoCfbA5XLB5/OBZ1nwHINsJQPISvfGbsHmy1egyV85Cns0EAQB0WgUkUgEfX19etZPIBAoGsolhOD48ePo7e3F+vXri0qJI8Grr76KT3/60/jxj3+MO++8c0qUfKc7phWRGO1OtGNyOByGJElFZZuh2nVDoRAOHTqE+fPnY9asWdPqgyTLMvbv3z9upTitrTgSiSCRSEy4saSm58yZM6coBCw0kMT2dw9hIJGp6YulQXtaz+ZEuOwWpIbYYDUhnhBS5qRb9fU0BZah9WsbLexLkwFpCpCEHMJ9MWSyGbAMq4v1Rv8qDRaOA8tSQxKDBq/ThnROGDJTHlDvDc+yReQJAHkhj2BPEG63G3W+usKa1PZkjmWGlYvy0baFWLto5BZBw4Usy0U27pIkob6+HvX19fpc1VhI5PXXX8cnP/lJ/L//9/9w9913T6vv/lTGtCESI4kYS1nGwb1QKARBEKqWbbRp7+7ubqxcuXLSW+ZGinw+X5QJP96luErGksa8+rF+6UKhEA4ePFim52gQJRmv7zuBw93BYeWcgALqnDYMJDMYjhDP0ICjUJ4ZzutdNgtAAclMXrVSD4cgCiKaW1QL+6JrMzQoSvUdiyczyGazeoohAD3B0Ga3gaboQvkrD2eFIcNSaAFiDFU7U167J5ouYrRAyefzCAaDut2MBuNAY63IYwCY11KPWz+y8qJtvsbT84ULFyAIAtxuN5qamhAIBEZMJm+99RZuv/12/Mu//Avuvfdek0TGEVOSSEpTEquRSCmMeSChUAjZbBY+nw+NjY3w+/04fvw4+vv7J3Xae7RIp9PYu3cvvF4vli9fPuGlOFEUdVLp6+uD1WrVSaU0r344OHfuHI4fPz4sAj9+PoxX9nRVHeLToJ1cbJbBTqRqMGoXwxHirRZODcoigIVncP78BeRFqWJnmZrRzuutssbra/5VWmuxJEvwe9xqaJfdAYZhalqalM7EVMuU1+C0WUqMMglYCjhxuhteb11RR2IlXaRa7orTbsEfXrsBNsvFd3g4efIkLly4gJUrV+raykhbi99//31s2bIF3/zmN3HfffeZJDLOmNJEok2qj9buRCvb9Pb2IpVKgWEYzJs3Dy0tLZPm3jkaDAwMoLOzEzNnzsT8+fMv+pdAlmW9hh2JRMAwjF5KHMpY0mh6uWbNmmG3ViczOex47wjOhQcq/j3LFA8GDtU2Wyqua1pCZXsRChQoSLICWZHRG+wFTVOYN2cWMjmxXLivoOeoVvbF6yEgoBQFsUQSqXQKQl5QhyAdDrhdTjjt9iIhvqpdCooz5TU4bTySJcSQy+UQ7A2iubEBLrcHoijp/77UtsUIh43XUx5pmsInPrYGrfXeiq+dSJw8eRLnz5/HunXrimZ0arUWl5a3Ozo6cMstt+Dv//7v8eUvf9kkkQnAlCUSQRDGZVI9nU6jo6MDdrsddXV1uhbg9Xr1J+zJthGphd7eXhw6dAiLFy/GjBkzJns5RcaS4XAYiqJU1ae0qeNoNIq1a9eO2PRSURS0HzuHtw6eKhGC1dmP0ryQam2zditXdaCxVIg3ni4kWbWBZ1kWjY1qqJNRiFevXb3rquz0UNKOK0mSXv7ShiAb/F6A5cHzPDx2GxI17FJUw0XVr0vtLJOLtJ9sLoveYC98fh88bg8oGnBa1VKazVqeE1MKLeWxbcFMXLpsTs3XTgS0B5D169fX/OwoioJ4PF7UWnzo0CGIoohVq1bhj/7oj/CVr3wFX/va10wSmSBMSSKRJAm5nPHpcXRlHOOg3oIFC/QPUS6X0zfCWCwGt9uNhoYGNDY2Tpk5EkIIzpw5g1OnTk1ZPYcQgng8rt/LfD6v61N1dXU4evQo0un0mJsCevsT2P7OIcRSWQBD26XwHAOaopETxDIrlkowPt27HVYk0jl1WC8YVLNiAg1FG5CmPUiyMnTXVeH1NK2aN1az1pcVGdlMFul0GqKQU9fEWWF3qKaINTUUCweaAtKGKfRMVs0X8df74XYVd/XVuVSCGmrdADCrsQ63XbX6onc1as7VQ5FIJaTTafzXf/0Xfv7zn+Pw4cNobm7Gn/zJn2DLli1YufLiaTyV8NBDD+GBBx7An//5n+P73//+pK1jvDElieSuu+7CyZMnsXXrVtx6661obW0d8S///PnzOHr0aFVhV4NmMRIOh9Hf368LzI2NjRPuE1QN2sBVKBQacXvvZKE0rz6VSoFlWcydOxfNzc1jzqsXJAm7O47jTKi/ahphESj16VuS5SG1lsI7gMdhRzydgVDIEjEO65VdnlLbeONV/KtK4bTyoGhqyMx6QJ0XyWVzehcYgToE6bCrSZClm7rTbkE6J8Bp5ZFI55DNZhEKhVBfX1+mBWonKI5hymZaSmGz8vjcdRvgsI7tdzdSaCSybt26UWuZR48exY033og77rgDa9aswe9+9zvs2LEDX/jCF/DII4+M84qHh/fffx+f+tSn4Ha7sXHjRpNIJhrnz5/HE088gW3btuGtt97C+vXrsWXLFmzZsgWzZ8+uSSpar3lPTw9WrVoFn8837J9bKjDbbDadVC5GHC6g6hEHDhxAJpOZlpP2+Xwee/fuBcdx8Pv9iEajurGkVkocbesmABw924ude48NK3jKZbdCVuSqVvBG8ByjJjsqMs6ePw+b3QGfz1eVsLRT0VCdTkCxE/HQQj+B3Tqoi9gsHJLpNBKJlHpaEUXYbDY1Xthhh9flKCZWRUT32XOor28oe5JXT2dEP4kYZ1pKyY2igNuvbsOsxuF/f8YD3d3d6O7uHhOJnDx5EjfccAM+/elP4+GHH9aJN5fLIRaLoanp4tvdp1IprF27Fv/+7/+Of/7nf0ZbW5tJJBcLhBAEg0E89dRT2LZtG15//XWsWrVKJxVjuQoY3ITT6TTa2trGdKKQJEmPw41Go+B5Ho2NjaPuWhoOBEFAR0fHhLX3TjS0zrK6ujosW7ZM/wLn83mdoPv7++FwOHRSGQ1BJzI5vPjuYVyIxKq+xig8D+lfVdAu4okUgr1B+Orq0NLUWJYpr6F0oLFapxNQeRpdE/orvb5S2c64fkEU9CRIRRTAcDxshdOKIAgIR8JobW6C1+tBtsRwsVoOfSULlA1LZ+PKlRfXDFAr5a5bt27Up/Du7m7ceOON2Lx5M37wgx9MmUHju+66Cz6fD9/73vfwsY99zCSSyQIhBNFoVCeVV199FUuWLNFJxWq14k/+5E/w13/91/jYxz42rptwaRwuwzD6SWW8zBC1pgC3240VK1ZMmS/AcBGPx9HR0YGWlhYsXLiw6j3R8uq1bhue53WxfiT3UlEUvN91Fu8cPl02kV0ti6SSEK9ZsYT7BhDqDenCNFBJiDekKFZpvVWFdaJfu5pdSqXr2y08MvnK5pSl66cogKEo9MfjqmNxJgsCAofDAa/HC4vFArdj0MJ+KF2JoqDH9LYGvPjkx9Zc1M/g2bNncfLkyTGRyPnz53H99dfjuuuuw49+9KMp8x36n//5H3zrW9/C+++/D6vVahLJVAEhBAMDA3j22Wfx5JNPYseOHbBarVi1ahX+z//5P1i7du2EfYgURdHNEMPhMCiKQiAQQGNj46gz1mOxGDo7O9Ha2lp2ypoO6Ovrw759+zB//nzMnj172P+u1FhSu5cNDQ3w+XzDupfBvji2v3sY8YIQTxem0auVmnieBYXBp2+n3YJQpB+hcAiBQAAuZ3E5xSjEV0pRLIVxCLBaemGl62ulrqGy3LWJfpYZFO6TySQi0Qi8Hi8kSUImkwEowGF3wOd1w+V0Ip0vt0uphDqXHbd/tA1u+8XrZNRIZO3atfB4Rme9EgwGccMNN+Cqq67CT3/600kPo9Nw7tw5rF+/Hi+//DJWrVoFACaRTEU8/fTT+NznPodbbrkFuVwOL730Epqbm7FlyxZs3boVa9ZM3JOVoii6GWIoFAIhZMQOu5pdy8KFCzFz5sRZT0wUtPbksWa4GO+l0RpDu5e1jCXzooRdHcdw+HSw6txFEQpBUqIkI9I/gGgkqk/vVwaB024FUZSizqjqIPA4bUikc0NmhWiv9zrtelfaUHDaeFAUjWQmi0Qyib5oHxqbGmG3qdoTIeoQZDqTRj6TgaIo8LhdAMPB4XSAoatvsrdeuRLzWy5eh+C5c+dw4sSJMZFIKBTCjTfeiPXr1+OXv/zllCERQN2fbrvttqI1ybKs5ybl8/kptd7RYloTyb59+3DllVfiP//zP3Ub6FQqhRdeeAFPPvkktm/fDp/Ph1tvvRVbt27Fhg0bJuyXprXChkIh3WFXI5X6+vqKP/fMmTM4efLklG3vHQpnz57FiRMnhnQfHik02xtNV9EcCoYyluw624ud7UeHFSRF0xTymTR6QmEEGhr0TbganHYLZFkZciIeUKfRKZoGy9BDCvEA9JbjoTLogeLSmpDLoDcUQqCx2MZ+EARWC494UhXqFVFAKp0Bb7HqYr3RL2zNopn4WNvCmmsdT5w/fx7Hjh3D2rVrR50BFI1GcdNNN2HZsmV4/PHHJ8XJuhaSySTOnDlT9Gd33303lixZgq9+9atYsWLFJK1sfDGtiQRQn2iqPclnMhns2LEDTz75JJ5//nk4HA5s3rwZW7duxeWXXz5hHzrNI0gjlVwupz9dBwIBMAyDY8eO6UFao30SmywQQnDixAlcuHABa9asmfD1G/Pqk8lkzWHSeCqL7e8dRjAar3o9hSgQsmkEw1HMaG2Fx+1EpoZ/ldEuRZ1Y56sK8aXT6NUy5TXYrRzSBpdeiqb0Nt7S1xtdjuPxOPoH+tHa0gKfx1XRtLKSLkIUGYKQQ99AHLlsDjzPw+6wY25rIz5/4xWFsK+Jh0Yia9asKfL+Ggn6+/tx8803Y968efj1r389bdwqzNLWNEYul8Mrr7yCbdu24ZlnngHLsti8eTNuu+02XHnllRPWIUUIQTqd1kklnU7rP2u6zIgYoSiKnpG9du3aiz5rUzpM6nK5dILW2l0VRcG7R87g3cOny0pLBAT5dBK90X51voW31EwCZBgKFEVDKjmFVBLigco5J4OvF4oaA0rbcWu93pjPEovFMBAbQHNzM6wWq8FafzDjfmjh3oZ4Ko10JgMhl8Mlc7yoc9mLGh8mqiR84cIFHD16dEwkEovFsHnzZjQ1NWHbtm1jnlO6mDCJ5AMCURSxa9cuPPnkk3j66achyzJuvvlmbN26FR/72Mcm7EMpCALa29shSRI4jkMqlUJdXZ3+dD3VvwyahX0ul8OaNWsm3VpGy7Ewzv1oG6Hb7UZPXxwvvnsYicLGTkCQisfQH0+gubkZPFf8BFveBls801GKUr+rWps3ALAsA64gxAPV23Ervd5p45HKChgYGEA8Hq845KkK8cMX7rX3u2ndYsxvqUd/f79uM6JZ32jeVeN1eu/p6UFXVxfa2tpGNONlRCKRwNatW+F2u/Hss89O+ufQxIeUSIyQJAlvvPEGfvvb3+Lpp59GOp3GzTffjC1btuCaa64Zt4HATCaDvXv3wu12Y/ny5WAYBtlsVn+6jsfj8Hg8aGxsRCAQmHKDiKIoorOzEwDQ1tY25WZcNBM/be5Ha9H21PnQfjKEY+fC6OuLIpfLoampufrGaEgCdDtsFcO1iqGeBrKCOKQVi/Z6t8MGohD1BDQkCDwOdYK+v78fiWRCP0lVe70q3A/PWn/FvBZcu35J8RUKep9GKppGpRHLaB94gsEgjhw5MiYSSaVSuP3228HzPJ577rkxDbeaGD986InECFmW8fbbb+OJJ57AU089hYGBAdxwww3YsmULrrvuulGXcbT23lozFvl8XieVgYEBvWTT2Ng46V+WXC6HvXv3wm63Y+XKlVO+y8TYoq09XZ8fyODI+QF46wNFAnM1uB1WZHJ5SMPwo9LIJCdIwwqecth4yAqBIisQhng9Raknn/6+fsTjcQQam2pqAZouMhyrfL/Hgc9csx4cW/v3qVm3h8NhJBIJ3aUgEAgM+zuhkcjq1avh9/uH9W9Kkclk8IlPfAKKouCFF14YsQeXiYmDSSRVoCgK3n//fZ1UgsEgrrvuOmzZsgU33njjsO0bwuEwDh48OKL2XkEQiqxatElwzf/rYs6ZpFIpdHR0wO/3Y8mSJVNmyGu4EEUR7e3tEAQB6byEd472IEdotWvJbq/YCsuxDBSi2vVahvCjAgY376GEeP3aBfv2WsI6MDjQeOZ8D9KpNFpaW1DndlaciAcAm5VD1uByXGuCnmVpfHbTBvjdI3s40lwKtEwQrZxYKxOkt7cXhw8fHhOJ5HI53HHHHUilUtixY8e00xY/6DCJZBhQFAWdnZ06qXR3d+Oaa67Bli1bcPPNN1f9AmntsStWrEBDQ8OofrY2Ca6VbKxWq27V4nK5JpRUtJPUjBkzJiUHZazQLGc4jsPq1aqDbTyRwMvvHsA7B09BEIQi3yo19VBtmdV0D03ITlUQ4gHAblOJQ+u6qh08VXxtDao1fXlmusPGo/vcBWQyGbQ0t+jlRGNWiAaGoUEBFZMlKzUGXHfJUiyfM/q5H6A4EyQSiYCm6bKBUi0Vc/Xq1aNuEc/n87jzzjsRiUTw0ksvjVqgNzFxMIlkhCCE4NChQ7qpZFdXFzZu3IitW7fi5ptvht/vh6Io+MUvfoEFCxaMa3usFjAVCoV0exFNqB8qIW6kiEQiOHDgABYsWIBZs2aN23UvFrRynMPhwMqVK8tOUufCA/jdG/sQivYjnU4jn8/DYrWgwVcHMFyZBlTJj6pWOFSl4KlqHV1AQVhnad0fy8KxON8TRDabLcuHL319rQAs43q0ifslsxtxwyXLxvXzouXUaKQiiiKcTicSiQSWL18+6mFVURTx+c9/HmfOnMHOnTtHfaIxMbEwiWQMIITg2LFjePLJJ/Hkk09i//79uOKKK5DNZnHhwgW88cYbaGxsnJCfrdmLhEKhIv8vLQtkLJtET08Pjhw5guXLl0+KU+pYoTU21NXVYenSpVXLcTlBxCt7unD8fASSLAGyiHDfAHLZHDieg8PhgMPhAM/zoEAV+VFRFCqeLopQmKBPZnJw2ixl6YXlUIX4ZDqH/v4okmn1JFK9Y0o9LRGFIDXUNH/h9c31Xtx21WpYuIkb3NOydI4fPw6r1Yp8Po+6ujr9tDLcLitJkvBHf/RH6Orqwq5du6bl0O6HBSaRjBMIIdizZw8++clPIpVKQRRFrF69Grfeeiu2bNmClpaWCSsNaU+DGqkQQnRSGa5nlYbu7m6cOnVqTPXsyUQqlUJ7ezuampqwaNGiIe85IQQHTwfx9qFTyOQFEEUNmcpk1Iz1TCYDlmF1UrFYLXBYLaApVBwCrASnzQJBkiGIQ1vfK4qCTCqGZCqDQGNTodxWHTYLp3aLEaLH6FYDw9D49DXr0OAdnT37cBGJRLB//36sXLkSDQ0NyGazuuYXi8X0zB9t9qfS70iWZdx7773o6OjArl27puUDzYcJJpGME06fPo3rr78eq1atwn/+538iGo3iySefxLZt2/D2229jw4YNulXLrFmzJoxUNENLrQNMluWqUbil/+748eMIBoPTclASGHQgnjlzJubNmzeie9yfSGP7u4cRHkgW/blCFD25UDNDrK/zgOOt8HrcNedAAOgW9aIkl2W4l4IQgmSsH/F0Bq0trXA7bVWFdWDQikWSZDVG12JBIlP99RvXLkLbgomNa9ZIZMWKFRVP49rsj+b+bLFYdLFeG4KUZRn3338/3nzzTezevbtmMJ2JqQGTSMYJPT09+I//+A/83d/9XdEJgBCCnp4e3f7+97//PVatWoWtW7diy5YtEypia55V2lS9IAi6VUt9fb1eMlEUBYcPH0YsFsPatWsnvd14NNBilefNmzciB2IjZEXBWwdPYU/X2Yp/TwiBIomIJRJIpdJQFAX1Pg9o1gKb3QaaKj/5GW1KNCE+XdA1Sq/dFw0jJ4hobmrWCb+SsK69vpIuUu31C2YEcMvlKya0YSIajWLfvn1VSaQUpe7P3/zmN/WHnX379uG1114b9e9yrPjRj36EH/3oR+ju7gYALF++HF//+tdx4403Tsp6pjpMIrmIIIQgHA7j6aefxrZt27Br1y4sWbJEJ5UlS5ZMKKmkUimdVLLZLPx+P+rr69Hb2wtJkrBmzZopP11fCVpjwOLFi8fl6fVsqB8vvnekrI3X6HVFQJDP59XUwlwOoiiCM5ghMjRTFK5lhDaBrukrClEQDoVAAahvaChrSS4V4gE1/bHasCTL0OA5BpnC690OK+68dgOs/MQNkUajUezfvx/Lli0bVRmKEIKXX34ZP/jBD/Duu+9ClmVcf/312LJlC2699dZxNQUdDn73u9+BYRgsXLgQhBD88pe/xMMPP4yOjg4sX778oq5lOsAkkkmCVoJ65pln8OSTT+KVV17BvHnzdPv75cuXT+jMRiqVQjAYxNmzZ6EoCnw+n95WPF3M74BBG/vhPgUPF9m8gJf3dOHkhSiAgteV3VJVFxFFAYokIBwdgCiKcLscsFhtsNnslcXywgR9PJVBsDcIG8/C6wvU+J2TAnnki0wkq0FrW87k8vjUxnVo9k+csaaWRzNaEgHUU/Hf//3f47e//S127doFSZLwzDPP4Omnn8YXv/hF3HPPPeO86pHD5/Ph4YcfnhJrmWowiWSKIB6P43e/+50e1NXa2qqTSltb27iTSjabxd69e+F0OjF//nx9ViWRSMDr9epWLVPZx0hzkB1vG3sNhBAcONWD1/Ydh43naiYManDYeKQzOWQzGQzEE8jlcuAt/GAHmMHfS1EUDETDYGkaLl/9sH7HdisHhaB2t5gBV62ej/WLJ6481N/fj87OTixdunTULb6EEPzTP/0TfvnLX2L37t1YsqTcsmUyZ5hkWcZvf/tb3HXXXejo6MCyZcsmbS1TFSaRTEEkk8miTJX6+nrdqXjDhg1jJpVkMomOjg4EAoGycprmrhsKhRCPx+F2u/WTylTy/+ru7sbp06fR1tY24QNq0VgKL75/GJGB1JCvJYTA7bBCVggyOQGyLCOdSetxuBynthXbbDb09ffBynNoaGiEzcrXFOK1azvt6rCjw2qpKcQDwOwmH267avWEbcIaiSxZsgQtLS2jugYhBA899BB+/OMfY9euXVMqn+PAgQO4/PLLkcvl4HQ68fjjj+Omm26a7GVNSZhEMsWRyWTw4osv6pkqTqdT7/66/PLLR+x7NTAwgM7OTsyePRtz586tuclodhihUAgDAwNwOp06qVxs+3gNhBCcPHkS58+fx9q1ay9ad5kky3jzwCnsPXau5us0cZ1AJRR1AFG9x4qiIJPJIJVWg6Zoikad1wOL1Qar1QqXvbIQP3jtYl2kmrCu/p0Ff3jtBtitE1OmHBgYQEdHx5hJ5Hvf+x6+973vYefOnWhraxvfRY4RgiDg7NmziMfjeOKJJ/Czn/0Mr732mnkiqQCTSKYRcrkcXn75ZT1Thed5/aTykY98ZEhHXs33a9GiRZgxY2RtoKIo6qRi9P9qaGioOgsw3iCE4OjRowiHw1i7du2kmPZ19/Zhx3tHKk6RW3gWgigVZaBYeBaEED31UJZlBINB0AyNloYAIv0xpNNpAIDdYYfX44bL4UC+JCXRaimI/CXfVpahwbMsMvnB9VAU8AcfXYOZDRNzUtNIZCzNDYQQPPLII/jOd76DHTt2YMOGDeO8yvHHpk2bMH/+fDz66KOTvZQpB5NIpikEQSjKVFEUBbfccoueqVIqmGt6wlh8vzRIklRk1WK1WnVScbvdE0IqxhbldevWTWqZLZMTsOP9I+gO9ul/RlEUOJauGJNLUepQ4kAijWBvEBzHYf6cWXopi6CQsZ5WS2CKrKC+zgOK5WC3O8CyNBiaqeHkOyjEA8Bly+fi8uVzx/19A6r/2t69e0f1MKKBEIKf/OQn+MY3voHt27fj8ssvH+dVTgw+/vGPY9asWXjssccmeylTDiaRfAAgSRJ+//vf65kq2WxWz1TZuHEj/umf/gmSJOHv/u7vxl1PkGUZfX19OqmwLKuTitfrHRdSURQF+/fvRzabxdq1a6dEizIhBJ0nzuP3+09CkuRBY8cqkGQJA9EwKJpFS3MTRFkpO10AKqkIeQHpdBqSmEcmk4XX7QLNWeBwOGqWMq08iya/G1s+smpCOv5isRg6OjqwYMGCYTtZl4IQgsceewwPPPAAnnvuOVx99dXjvMrxwQMPPIAbb7wRs2bNQjKZxOOPP66fnq699trJXt6Ug0kkHzDIsoy33npLdypOpVIghOBrX/sa7rnnngkdNlQURQ+XikQioCiqyP9rNJubLMvo7OyEJElYu3btlAvUisRS2N15DOfDsaqvkSQJPcEeWC1WtLY0w8KzSA2jAwwAeJZCKplCpD+mG0tqHWClRo42C4c/vO4SOG3jT7TxeBx79+4dM4n86le/wle+8hU8++yz2Lhx4zivcvxwzz33YOfOnQgGg/B4PFi1ahW++tWvmiRSBVOaSP7t3/4NDz/8MHp7e7F69Wr88Ic/xCWXXDLZy5oWyOfz+NznPod3330XN9xwA1555RWEQiFce+212Lp1K2644YZhZ6qMBpr/l2bVQggpsmoZDqmIooiOjg7QNI22trZxi3sdb4iSjN/vP4l9J85X+DsRwZ4gbDYb/PV+PRveZbcilRkU4ivBynPIiWJhhsWKeHJQqM9lc+D5wbZijudw+9VtmNM0/v5oGonMnz9/1E7QhBD85je/wf33348nn3wS119//Tiv0sRkYsoSya9//Wt8/vOfx49//GNceuml+P73v4/f/va3OHr06Jhr/B8G3H333Th8+DCee+45BAIBKIqCjo4O3f7+7Nmz2LRpE7Zs2YKbbrpp3G3ojSCEIBaL6aQiSRLq6+vR2NhY1f8rn89j7969sFqtWLVq1ZRPZQSAUz1RvPT+Ed1/SxRF9AR74LA7CiRSHN1r5VnIBBXNFmkaYBmmSHPhOQYMRSMriKqxZDqDdEb1AFs2sx6bNiyvGTA1GiQSCbS3t4/JegYAtm3bhnvvvRe//vWvccstt4zL2kxMHUxZIrn00kuxYcMGPPLIIwDUJ9yZM2fi/vvvx9e+9rVJXt3Ux+nTp3V31VIQQnDw4EGdVI4dO1aUqeLz+Sbc/0ubVcnn8zqpaP5f2rCklm8/nVIZ07k8drx3BMfP9SLYE4TD6YDf74eV58o6ugCAolE2E6KdQCpqLoWJ+GQmC+0001jnxMaVs9BXMENkGEY//Y22pAgMksjcuXMxZ86cUV0DAJ577jncfffd+NWvfoXbbrtt1NcxMXUxJYlEEATY7XY88cQT2Lp1q/7nd911F2KxGJ555pnJW9wHDFpLrZapcuDAAVx99dXYsmULNm/ejIaGhgn3/9JIJZvNwuPxIJVKIRAIYNmy8Q1fulhIJpP49Quv4lxMgqfOC5qiq3Z0aTDOhLgK2SW1oGWy0zSFO6/dAI9D7WIrLSkqijIs9+dK76G9vR1z5swZE4m8+OKL+NznPodf/OIX+NSnPjXq65iY2piSRNLT04PW1la89dZbRa2Bf/M3f4PXXnsN77777iSu7oMLbdhPs79vb2/HFVdcoRvnTWSmCqDOuRw4cAAsy0IURfh8Pl2sny7+X9oGPHPmTDh9AbzwziFIklKzo0sDyzKw8SxS2XzFjq5SMDSFGy9bgYUzKgc+EUIQj8f1LJBcLof6+nrdtr1a44L2HrSh1dFi586d+MxnPoNHH30Un/3sZ6flQ4GJ4cEkEhMVQQjB2bNndVJ55513sGHDBmzZsgVbtmwZ90wVrbV0zpw5mDt3LrLZrO5UrPl/aaQyVf2/EokE9u7dW7QBC5KE3+87if0nLwz57ymKAsfQsPDssHy9Vi+YgY+vXTSstRFCkE6n9ZNKKpVCXV2dHjCl3dNUKoU9e/Zg1qxZmDdv3rCuXQmvv/46PvnJT+IHP/gBvvCFL5gk8gHHlCQSs7Q1taBlqmzbtg3btm3DG2+8gdWrV+v29yMNkSqF5h67cOHCiq2lmv+XlrDndrt1Upkq2SlaZ1M1PeHEhQhefv8IckLlFMNSXcRq4aDICoQqQ4gBrxOfvmYd2FE2IWSzWf2eap5qHo8HwWAQM2fOxPz580d1XQB46623cPvtt+Nf//Vf8cd//McmiXwIMCWJBFDF9ksuuQQ//OEPAai131mzZuG+++4zxfZJBCEEoVBIz1TZvXs3li5dqpPK4sWLR7RxaOWsZcuWDcs9VhAEfQPs7+/XY1s1q5bJgHaaGqo9NpnJYcd7R3AuPFD2d067pWy2pJIQDwAcy+DOazegzjU+JCoIAs6fP49Tp06pgVkG+xuXyzWi3+d7772HrVu34p//+Z/xp3/6pyaJfEgwZYnk17/+Ne666y48+uijuOSSS/D9738fv/nNb9DV1TWuuRMmRg9CCPr7+4syVRYsWKDb3y9btqxmx1BPTw+6urpGbdui+X+Fw2H09fXBZrOhoaEBjY2NF83/S3PAHa5lCCEEe46exVsHT0EpmC3yHAtRKu/o0uC08cjkRf31N1y6DEtnj1+GeTqdxp49e9Da2orZs2frQ6XRaBQcxw3bqWDv3r3YvHkz/uEf/gF/+Zd/aZLIhwhTlkgA4JFHHtEHEtva2vCDH/wAl1566WQvy0QFaMKulqny0ksvYcaMGTqprF69uohUTp48iTNnzqCtrQ0+n2/MP1/z/9I2QJ7ndVKZKP8vrSQ3GvPCUH8CL7x7GPFURk9drAWWZcAxNOa11OO6DUvHsuwipNNptLe3o7m5GQsWLCi6T6VRuAB0TaV0qHT//v24+eab8dd//df46le/apLIhwxTmkhMTF8kk0k8//zzePLJJ/Hiiy+ivr4et956K7Zs2YKnnnoK77//Pp566il4POOf3Kf5f2kbIMMwRVYt47HJadGyYwl0EiQJb+w/VXEivhJ8bjs+c8068ONkE5PJZLBnzx40NTVh4cKFNe+LoiiIxWL6CVAURRw4cABOpxMrVqzApz71Kdx33334+te/Pmkk8u1vfxvbtm1DV1cXbDYbrrjiCnznO9/B4sWLJ2U9HyaYRDIEXn/9dTz88MNob29HMBjEU089VdQAYGJopNNpPVPl6aefBsuy+MQnPoHPfOYzuOyyyyZ0al1RFP2pOhwOg6IoBAIBNDY2jnpYT7PjH0u0rBHHzoXwSvvRmqcShqHxmWvWI+AdHx0ok8mgvb0dDQ0NWLRo0Yg2f0IIkskkHnnkEfzXf/0XLly4gLlz5+KrX/0qtmzZgkCgcjvyROOGG27Apz/9aWzYsAGSJOFv//ZvcfDgQRw+fHjS8nM+LDCJZAhs374db775JtatW4fbb7/dJJJRQpZlfOlLX8KOHTvwt3/7t3j77bfx7LPPwmKxYPPmzdi6deuwMlXGAu2pWhuA1Ib1Ghsb4fP5hkVooVAIBw8exMqVK8fVqieRyeHFdw/jQiRW8e83rV+MlfNGl/1Rimw2iz179oyKRIw4ceIEbrzxRtx4441YsGABnnrqKbS3t+Mv//Iv8fDDD4/LWseCSCSChoYGvPbaa1PWZfiDApNIRgCKokwiGSV+9rOf4f/+3/+Ll19+WRelBUHAq6++qp9UAOiZKh/96EcndAhR03S0WRVRFIusWiqRSjAYxJEjR7By5coJeepWFAXvd53FO4dP68I6ACya1YCbLl0+LiUjjUQCgcCIO+yM6O7uxg033ICtW7fi+9//vn6yu3DhAgYGBqZEZO6JEyewcOFCHDhwYEqs54MMk0hGAJNIRg9ZlpFIJKrmoUiShNdff13PVMnlcrjllluwZcsWfPzjH5/QIUStVKOdVLQJ8IaGBtTX14PjOL3DbPXq1fD7x99h14hgXxzb3z2MeCoLj9OGO6/dAAs3dufjXC6HPXv2wO/3Y8mSJaMmkXPnzuH666/HDTfcgH//93+fkl5oiqLg1ltvRSwWwxtvvDHZy/nAwySSEcAkkosDWZbx5ptv4oknnsDTTz+NeDyuP/1ee+21EzqEqE2AayeVdDoNu92OTCaDVatWXTTn6bwo4bXO41g9vxWNvrHn0msk4vP5sHTp0lGTSDAYxPXXX4+rr74aP/3pT6esK/OXvvQlbN++HW+88caokxxNDB8mkYwAJpFcfCiKgnfffVcP6gqHw7juuuuwdetWXH/99ROaqQKobcrd3d2wWq3IZrO6rUhDQ8OUSGocDnK5HNrb21FXVzcmEgmFQrjxxhuxYcMGPPbYY1OWRO677z4888wzeP3118fkFWZi+DCJZAQwiWRyoSgK9u7dq9vfnzt3Dps2bcLWrVtx0003jfu8yJkzZ3Dq1CmsWbMGXq+3zFbE4/HopDKZGfK1kM/nsWfPHni93jG5KUciEdx8881Yvnw5/vu//3tKhowRQnD//ffjqaeewu7du7Fw4cLJXtKHBiaRjAAmkUwdKIpSlKly/PhxfPzjH8eWLVvGJVPl9OnT6O7uxtq1ayvOuuTzeZ1UBgYG4HK5dFKZKq2m+Xwe7e3teq7LaO9Hf38/brrpJsyfPx+/+c1vplzcsYb//b//Nx5//HE888wzRbMjHo9nyhL9BwUmkQyBVCqFEydOAADWrFmD7373u9i4cSN8Pt+oY0dNjC8IIejq6tJJ5eDBg/joRz+qZ6oEAoERbaInT57EuXPnsG7dumGVzgRBKLJq0byqGhsb4XA4JmVATxAE7NmzZ8wkEovFsHnzZjQ3N2Pbtm1T2s6/2nv8xS9+gS984QsXdzEfMphEMgR2796NjRs3lv35XXfdhccee+ziL8hETWiZKhqpdHR0FGWqNDc3V91wtH974cIFrFu3blQmkKIoFlm1WK1WnVRGaoA4Wmgk4nK5sGLFilH/zEQiga1bt8Lj8eCZZ56Zsvb9JiYfJpGY+MCCEIIzZ87gySefxFNPPYV33nkHl1xyiZ6pMnPmTH2TVRQFR48eRTgcxvr168elPCXLMqLRKEKhUJEBYmNj47jmqhshCALa29vhcDiwYsWKUbfmplIp3H777eB5Hs8//7xZGjJREyaRmPhQgBCCCxcu6Jkqb775Jtra2rB161Zs3rwZ3/72t5HP5/GTn/xkQtqLjQaI4XC4yP/L6/WOyyyGRiJ2ux0rV64c9TUzmQw+8YlPgBCC559/ftLs+U1MH5hEMo1gmtKND7RMlaeeegpPPvkk3nzzTTgcDtx11134wz/8wzHZhgwHWq56KBRCJBIBIUQnFZ/PNyoCEEUR7e3tsNlsYyKRXC6HO+64Q/dHc7vHPsNi4oMPk0imEUxTuvGFLMv4X//rf2H37t340pe+hN27d2Pnzp1YuHAhbr31Vtx2221YunTphE5uE0IQi8X0AUhZlhEIBNDQ0AC/3z+sWQ2NRKxWK1atWjXq9ebzedx5552IRqN46aWX4PV6R3UdEx8+mEQyjWGa0o0N//Iv/4Kf//zn2LlzJ1pbW3X/rWeffVbPVJk1a5ZOKmPZpIcDQggSiYROKoIgFFm1VJrdEEURe/fuBc/zZZkvI4EgCPj85z+Pc+fOYefOneOSEWPiwwOTSKYxTFO6sSGVSiGdTldN3EwkEkWZKg0NDTqprFu3bsJJJZVK6aSSzWbh9/v1YCmO4yBJEvbu3QuO48ZEIqIo4p577sHRo0fx6quvTpoNvInpC5NIpilMU7qLi3Q6je3bt2Pbtm14/vnn4fF4cOutt2Lr1q249NJLJ9wuJJVK6UJ9KpVCXV0dstksrFYr1qxZM+qfL0kS7r33Xuzbtw+7du0yY6xNjAomkUxTmKZ0k4dsNouXXnoJ27Ztw+9+9ztYrdaiTJWJtg9JJpPo7OyEJEmQZRler1cX60cy6yHLMu677z68/fbb2L17N1paWiZw1SY+yDCJZBrCNKWbOhAEAa+88gq2bduGZ555BhRF4eabb8Ztt92Gq6++etwnwSVJQkdHB2iaRltbG0RR1O3v4/E43G63PqtSa/ZDURT8xV/8BXbt2oVdu3aZLg0mxgSTSKYRTFO6qQ1RFPVMlWeeeQb5fB4333wztm7dio0bN455MlyWZXR0dICiKLS1tZWVs/L5PCKRCEKhEAYGBuB0OtHY2Fjm/6UoCv7mb/4Gzz//PHbv3m0+jJgYM0wimUYwTemmD2RZxhtvvKFnqiQSCdx4443YunUrNm3aNOKhR41EAAxLExFFUSeVvr4+UBSF7du34w/+4A/wzDPPYNu2bdi1a9ekP4y8/vrrePjhh9He3o5gMGiaok5TmEQyjWCa0k1PKIqCd955RyeVSCRSlKky1OS4LMvo7OyEoihYu3btiIV1SZJw4MAB/MM//APeeustAMDnPvc5fPGLX8T69esnxVRSw/bt2/Hmm29i3bp1uP32200imaYwicSEiYsIRVHQ3t6OJ598Etu2bcP58+exadMmbNmypWKmiizL2LdvH2RZxpo1a0Yt5BNC8O1vfxs///nP8Td/8zfYs2cPfve738Hr9eKFF17A8uXLx+stjhpmTMP0hUkkJkxMEhRFwf79+3VSOXHiBK655hrceuutuOWWW8DzPL74xS/izjvvxPXXXz8mEvnud7+L73//+3j11VexevVqAKqmsnPnTmzcuHFKlEZNIpm+mLiJKhMfCvzoRz/CqlWr4Ha74Xa7cfnll2P79u2TvaxpAa3z6pvf/CYOHjyIjo4OXHbZZfjxj3+MuXPn4oorrsChQ4ewaNGiUc+JEELwwx/+EN/73vewY8cOnUQAwGKx4KabbpoSJGJiesMkEhNjwowZM/DQQw+hvb0de/bs0VMKDx06NNlLm1agKArLli3D17/+dbz77ru4+uqrkc/n4ff7sX79etx000149NFHEQwGMdwiAiEEjz76KB566CG88MILWL9+/QS/CxMfVphEYmJM2Lx5M2666SYsXLgQixYtwre+9S04nU688847k720aQlZlnHHHXcgHo/jwIEDePvtt3Hs2DFs3rwZTzzxBBYvXozrrrsOjzzyCM6dO1eVVAgh+MUvfoEHH3wQv/vd73DZZZdd5Hdi4sMEk0hMjBtkWcb//M//IJ1O4/LLL5/s5UxLMAyDzZs36+67FEVh7ty5+MpXvoI33ngDp0+fxqc+9Sk8//zzWL58OTZu3Ijvf//7OH36tE4qhBD813/9Fx544AE8++yzuOqqqyb5XZn4oMMU202MGQcOHMDll1+OXC4Hp9OJxx9/HDfddNNkL+sDDUIIent78dRTT2Hbtm147bXXsGLFCmzZsgUWiwXf+ta3sG3bNlx33XWTvdSaSKVSOHHiBAB1Pua73/0uNm7cCJ/PZ07bTyOYRGJizBAEAWfPnkU8HscTTzyBn/3sZ3jttdewbNmyyV7ahwKEEPT19eGZZ57B448/jldffRW/+tWvcOedd0720obE7t27sXHjxrI/v+uuu/DYY49d/AWZGBVMIjEx7ti0aRPmz5+PRx99dLKX8qGDFilsGnmauJgwNRIT4w5FUZDP5yd7GR9KUBRlkoiJi46J9bs28YHHAw88gBtvvBGzZs1CMpnE448/jt27d2PHjh2TvTQTJkxcJJhEYmJMCIfD+PznP49gMAiPx4NVq1Zhx44duPbaayd7aSZMmLhIMDUSEyZMmDAxJpgaiQkTJkyYGBNMIjFhwoQJE2OCSSQmPtB46KGHQFEU/uIv/mKyl2LCxAcWJpGY+MDi/fffx6OPPopVq1ZN9lJMmPhAwyQSEx9IpFIp3HnnnfjpT3+Kurq6yV6OCRMfaJhEYuIDiT/90z/FzTffjE2bNk32UkyY+MDDJBITHzj8z//8D/bu3Ytvf/vbk72UDyz+7d/+DXPmzIHVasWll16K9957b7KXZGISYRKJiQ8Uzp07hz//8z/Hf//3f8NqtU72cj6Q+PWvf40vf/nL+Md//Efs3bsXq1evxvXXX49wODzZSzMxSTAHEk18oPD000/jtttuK4qmlWUZFEWBpmnk8/lRx9aaUHHppZdiw4YNeOSRRwCo3mozZ87E/fffj6997WuTvDoTkwHTIsXEBwrXXHMNDhw4UPRnd999N5YsWYKvfvWrJomMEYIgoL29HQ888ID+ZzRNY9OmTXj77bcncWUmJhMmkZj4QMHlcmHFihVFf+ZwOOD3+8v+3MTIEY1GIcsyGhsbi/68sbERXV1dk7QqE5MNUyMxYcKECRNjgnkiMfGBx+7duyd7CR8Y1NfXg2EYhEKhoj8PhUJoamqapFWZmGyYJxITJkwMGzzPY926ddi5c6f+Z4qiYOfOnbj88ssncWUmJhMmkZgwcRHw4IMPgqKoov+WLFky2csaFb785S/jpz/9KX75y1/iyJEj+NKXvoR0Oo277757spdmYpJglrZMmLhIWL58OV555RX9/7Ps9Pz63XHHHYhEIvj617+O3t5etLW14cUXXywT4E18eDA9P8kmTExDsCz7gdER7rvvPtx3332TvQwTUwRmacuEiYuE48ePo6WlBfPmzcOdd96Js2fPTvaSTJgYF5iT7SZMXARs374dqVQKixcvRjAYxDe+8Q1cuHABBw8ehMvlmuzlmTAxJphEYsLEJCAWi2H27Nn47ne/i3vuuWeyl2PCxJhglrZMmJgEeL1eLFq0CCdOnJjspZgwMWaYRGLCxCQglUrh5MmTaG5unuylmDAxZphEYsLERcBXvvIVvPbaa+ju7sZbb72lOxR/5jOfmeylmTAxZpjtvyZMXAScP38en/nMZ9DX14dAIIArr7wS77zzDgKBwGQvzYSJMcMU202YMGHCxJhglrZMmDBhwsSYYBKJCRMmTJgYE0wiMWHChAkTY4JJJCZMmDBhYkwwicSECRMmTIwJJpGYMGHChIkxwSQSEyZMmDAxJphEYsKECRMmxgSTSEyYMGHCxJhgEokJEyZMmBgTTCIxYcKECRNjgkkkJkyYMGFiTPj/Adu3FhUzgbaSAAAAAElFTkSuQmCC" - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "# %% Fit first using a super-simple linear regression\n", - "\n", - "first_order_linear_estimator = LinearRegression()\n", - "first_order_linear_estimator.fit(X, y)\n", - "\n", - "show_results(estimator=first_order_linear_estimator, label=\"1st order linear\")" - ] - }, - { - "cell_type": "code", - "execution_count": 6, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": "
", - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZIAAAGlCAYAAADQ/XDvAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOz9d5ykaV3vD7/vWLmqqzr3TE9PDjuzs4ndnZllF4QlKogKPKAcWUU5HMGDeI4/41F5jiCGc8RwRPRRVIIoCPo7Epa4LLts3unJoWemu6d7OlfOd3z+qL5rqjqH6uma2fv9eq041VVXXZWuz/3Ngm3bNi4uLi4uLmtE3OwNuLi4uLjc3LhC4uLi4uKyLlwhcXFxcXFZF66QuLi4uLisC1dIXFxcXFzWhSskLi4uLi7rwhUSFxcXF5d14QqJi4uLi8u6cIXExcXFxWVduEJyE/HII48gCAKCIHDo0KGGry8IAh/4wAcavm4j+Pu//3sEQWBoaKh625133ll9P37kR35k8zYH/O7v/i6CIGzac23fvp1HHnnkhjy/i8tcXCG5yWhra+PTn/40H/vYx+b97Qc/+AEvf/nL8fv9dHV18V//638ll8vNu8/v/u7vkkqlGr63xx9/nDe/+c309vbi9Xrp6uri9a9/PU8++WTDnwvgox/9KJ/+9Kdpa2vbkPVdXFxWhrzZG3BZHYFAgHe9613zbu/v7+fVr341Bw4c4H//7//N6Ogof/zHf8zAwABf+9rXqvf7wQ9+wIc//GEeeeQRWlpaGrq3ixcvIooi73vf++jq6iKZTPKZz3yGhx56iK985Su8/vWvb+jzvfGNbwTgt37rtxq67s3IhQsXEEX3utBlc3CF5BbhN37jN4hGozz22GOEw2Gg4u74+Z//eb7xjW/w2te+dsP38HM/93P83M/9XN1tv/ALv8DOnTv5+Mc/vqSQWJaFpml4vd6N3uaaMAwDy7JQVfWGPF+hUMDv96/4/h6PZwN3s37y+TyBQGCzt+GyQbiXMLcAmUyGb37zm7zrXe+qigjAT//0TxMMBvmXf/kXoOJb/5Vf+RUAduzYUY0v1MYdAP7t3/6NQ4cO4fF4OHjwIF//+tfXvDe/3097e/s8V5oTj/nsZz/LwYMH8Xg81ec5c+YMr3rVq/D5fGzdupXf+73fw7KsNe+hlqmpKd7znvfQ2dmJ1+vljjvu4B/+4R/q7jM0NIQgCPzxH/8xH//4x9m1axcej4ezZ88C8MQTT3Dvvffi9XrZtWsXn/zkJxd9vs985jPcc889+Hw+YrEY73jHOxgZGam7zytf+UoOHTrECy+8wEMPPYTf7+c3fuM3VvW65sZInJjSk08+yS//8i/T3t5OIBDgx37sx5ienp73+K997Ws8+OCDBAIBQqEQP/zDP8yZM2fq7nPy5EkeeeQRdu7cWXVd/uzP/izxeLzufk4M5+zZs/zkT/4k0WiUl7/85at6PS43F65Fcgtw6tQpDMPgZS97Wd3tqqpy5513cvz4cQB+/Md/nIsXL/JP//RP/Mmf/Ek1ttDe3l59zBNPPMGXvvQlfuEXfoFQKMSf/dmf8RM/8RNcvXqV1tbWFe0nk8mgaRozMzP84z/+I6dPn17wYPzOd77Dv/zLv/CBD3yAtrY2tm/fzsTEBD/0Qz+EYRj82q/9GoFAgL/+67/G5/Ot9e2pUiwWeeUrX8mlS5f4wAc+wI4dO/jCF77AI488QiqV4oMf/GDd/T/1qU9RKpV473vfi8fjIRaLcerUKV772tfS3t7O7/7u72IYBr/zO79DZ2fnvOf7yEc+wv/4H/+Dt7/97fzcz/0c09PT/Pmf/zkPPfQQx48fr3MtxuNx3vCGN/COd7yDd73rXQuutxZ+8Rd/kWg0yu/8zu8wNDTExz/+cT7wgQ/wz//8z9X7fPrTn+bd7343r3vd6/iDP/gDCoUCn/jEJ3j5y1/O8ePH2b59OwDf/OY3uXLlCj/zMz9DV1cXZ86c4a//+q85c+YMTz/99LwEgLe97W3s2bOHj370o7jTKm5xbJebhne/+912X1/fvNu/8IUv2ID9+OOPz/vb2972Nrurq6v67z/6oz+yAXtwcHDefQFbVVX70qVL1dtOnDhhA/af//mfr3ifr3vd62ygut5//s//2S4Wi/OeSxRF+8yZM3W3/9Iv/ZIN2M8880z1tqmpKTsSiSy6776+PvuHf/iHl93Xxz/+cRuwP/OZz1Rv0zTNPnr0qB0MBu1MJmPbtm0PDg7agB0Oh+2pqam6Nd7ylrfYXq/XHh4ert529uxZW5Iku/bnNDQ0ZEuSZH/kIx+pe/ypU6dsWZbrbn/FK15hA/Zf/dVfLfsabNu2f+d3fsee+9Pt6+uz3/3ud1f//alPfcoG7Icffti2LKt6+4c+9CFbkiQ7lUrZtm3b2WzWbmlpsX/+53++br2JiQk7EonU3V4oFObt5Z/+6Z/mffec/b3zne9c0etxuflxXVu3AMViEVjYT+71eqt/XwkPP/wwu3btqv778OHDhMNhrly5suI1Pvaxj/GNb3yDv/3bv+XIkSNomoZhGPPu94pXvILbbrut7ravfvWrHDlyhPvuu696W3t7Oz/1Uz+14udfjK9+9at0dXXxzne+s3qboijV7Lbvfe97dff/iZ/4iTprzTRNHn30Ud7ylrewbdu26u0HDhzgda97Xd1jv/SlL2FZFm9/+9uZmZmp/tfV1cWePXv47ne/W3d/j8fDz/zMz6z7Nc7lve99b52l8OCDD2KaJsPDw0DFykilUrzzne+s26ckSdx///11+6y1CkulEjMzMxw5cgSAF198cd5zv+9972v463FpTlzX1i2A8wMvl8vz/lYqlVblFqo9IB2i0SjJZBIATdNIJBJ1f29vb0eSpOq/77zzzur//653vYu7776bRx55hC9+8Yt1j9uxY8e85xoeHub++++fd/u+fftWtH/TNOfFAGKxGKqqMjw8zJ49e+ZlNx04cKD63Evtb3p6mmKxyJ49exbc31e/+tXqvwcGBrBte8H7QkXAatmyZcuGBPLnfp7RaBSg+nkODAwA8KpXvWrBx9fG3BKJBB/+8If5/Oc/z9TUVN390un0vMcu9Pm63Jq4QnIL0N3dDcD4+Pi8v42Pj9PT07PitWoFoRZ71sf9gx/8gB/6oR+q+9vg4GDVjz4XVVV585vfzMc+9jGKxWKdqDUi7jGXkZGReQfYd7/7XV75yleueq317M+yLARB4Gtf+9qC72kwGGzYcy3Fcp+nk8Tw6U9/mq6urnn3k+XrR8Tb3/52fvCDH/Arv/Ir3HnnnQSDQSzL4vWvf/2CyRAb9Zpcmg9XSG4BDh06hCzLPP/887z97W+v3q5pGv39/XW3rbf6+o477uCb3/xm3W0LHUC1FItFbNsmm80ue7j09fVVr5JruXDhwor219XVNW9/d9xxR3XtkydPYllWnVVy/vz56t+Xor29HZ/Pt6L97dq1C9u22bFjB3v37l3R3jcDx43Z0dHBww8/vOj9kskk3/72t/nwhz/Mb//2b1dvX+i9cHnp4cZIbgEikQgPP/wwn/nMZ8hms9XbP/3pT5PL5Xjb295Wvc3J5V9rZXs0GuXhhx+u+8+p/Zjr7nCe51//9V/p7e2lo6Nj2fXf+MY38vTTT/Pss89Wb5uenuazn/3sivbn9Xrn7c9x57zxjW9kYmKiLmPJMAz+/M//nGAwyCte8Yol15Ykide97nX827/9G1evXq3efu7cOR599NG6+/74j/84kiTx4Q9/eF7Gkm3b81JmN4vXve51hMNhPvrRj6Lr+ry/O25Cx7KZ+1o+/vGPb/geXZof1yK5RfjIRz7CsWPHeMUrXsF73/teRkdH+V//63/x2te+tq4Q8J577gHgN3/zN3nHO96Boii86U1vakix2Bve8Aa2bt3K/fffT0dHB1evXuVTn/oUY2NjdYf3Uvw//8//w6c//Wle//rX88EPfrCa/utYE+vhve99L5/85Cd55JFHeOGFF9i+fTtf/OIXefLJJ/n4xz9OKBRado0Pf/jDfP3rX+fBBx/kF37hF6pCdPDgwbr97dq1i9/7vd/j13/91xkaGuItb3kLoVCIwcFBvvzlL/Pe976X//7f//u6Xk8jCIfDfOITn+A//af/xN1338073vEO2tvbuXr1Kl/5yld44IEH+Iu/+AvC4TAPPfQQf/iHf4iu62zZsoVvfOMbDA4ObvZLcGkCXCG5Rbj77rv51re+xa/+6q/yoQ99iFAoxHve8x5+//d/v+5+9957L//zf/5P/uqv/oqvf/3rWJbF4OBgQ4TkZ3/2Z/n85z/Pn/zJn5BKpYhGoxw5coTPfe5zPPjggytao7u7m+9+97v84i/+Ih/72MdobW3lfe97Hz09PbznPe9Z1/58Ph+PPfYYv/Zrv8Y//MM/kMlk2LdvH5/61KdW3PDw8OHDPProo/zyL/8yv/3bv83WrVv58Ic/zPj4+Dyh+7Vf+zX27t3Ln/zJn/DhD38YgN7eXl772tfy5je/eV2vpZH85E/+JD09PXzsYx/jj/7ojyiXy2zZsoUHH3ywLpPsc5/7HL/4i7/I//k//wfbtnnta1/L1772tVXF4FxuTQR7rq3q0rQ88sgjfOc73+HFF19EluWG98q62UilUhiGwd13383hw4f5j//4j83ekovLSxI3RnKTMTIyQnt7u9tygkprkfb29nktR1xcXG4srkVyE3H27FnGxsaASvqoUwz2UuWZZ56pJhe0t7dXs7NcXFxuLK6QuLi4uLisC9e15eLi4uKyLlwhcXFxcXFZF66QuLi4uLisC1dIXFxcXFzWhSskLi4uLi7rwhUSFxcXF5d14QqJi4uLi8u6cIXExcXFxWVduELi4uLi4rIuXCFxcXFxcVkXrpC4uLi4uKwLV0hcXFxcXNaFKyQuLi4uLuvCFRIXFxcXl3XhComLi4uLy7pwhcTFxcXFZV24QuLi4uLisi5cIXFxcXFxWReukLi4uLi4rAtXSFxcXFxc1oUrJC4uLi4u68IVEhcXFxeXdeEKiYuLi4vLunCFxMXFxcVlXbhC4uLi4uKyLlwhcXFxcXFZF66QuLi4uLisC1dIXFxcXFzWhSskLi4uLi7rwhUSFxcXF5d14QqJi4uLi8u6cIXExcXFxWVdyJu9AZeXFrZtY5om5XIZSZKq/4mie03j4nKz4gqJyw3Dtm10XccwDMrlcvV2URSRZRlZll1hcXG5CRFs27Y3exMutz6maaLrOpZlIQgCmqYhiiK2bWPbNpZlYds2giAgCIIrLC4uNxGukLhsKLZtYxgGhmEAIAhC1TIRBGHB+zui4uDcT1VVFEVBluUFH+vi4rI5uK4tlw3DsqyqFQJUrQ1HJBwLpBZBEJAkqfpvR1iefvpp9u3bR0tLC6IoIklSndXiCouLy+bhColLw3EOf13X69xVc++zksPfERbnfyVJqq6taRqCIFSFRVGU6n1cYXFxuXG4QuLSUBy31enTp+no6KCtra0hh7qzxmIWy1xhmRtjcYXFxWXjcIXEpWE4B7ppmmSzWaLRaMMO8FqX2NzbHWFx/m5ZFpqmUS6XXWFxcbkBuELism6c2hDDMLAsC1EUFz34NxJHHFxhcXG5sbhC4rIuHFeWaZoAVRFxUnsbxVqEaSFhcf4rl8tomlbdsyssLi5rxxUSlzXjXOnXWiG1LHbwb9YhXRv0lyRpnrDUWixOmrFTw+IKi4vL4rhC4rJqHFeWk5W10EG7nAWx2oN5I1xlSwlLqVSq3scVFheXpXGFxGVVWJaFYRjzXFlz2YwYyXpZibCUSiUMw6Ctrc0VFheXWVwhcVkRK6kNqaXRQrJZwfu5wpJMJkkmkwSDQaAipHNjLK6wuLzUcIXEZVkWanOy3EF5M1oky+G8bkEQUBSlrk9YuVymVCq5wuLyksQVEpclqa0NceIFK2GtQqIZFjbgkeufpxmFaa6gOsJimma1VX5tjMVp67ISIXZxuZlwhcRlQRarDVkpqz34kwWdJ68kOD+Rw7ZhT0eAYzujdIQ8dXtqZhyBcMS2VlgMw6j+faE+Ya6wuNzMuELiMo/FakNWw2qEJF82+JcXx7gyXSAWVBGApweTjCSLvOu+rUT9yk150C4mLIZhVLsfO8JS2yfMbZnvcrPhColLHcvVhqyU1QjJuckcg/Eiu9r9yFLlEI35FQam85way/LQ7hjQPBbJet4TV1hcbkVcIXEBVlYbshpWIySTGQ1RoCoiAKIo4FUkRpPF6nq3GssJC7jTI11uDlwhcWmIK2suSwmJbduMJItMZjX8ioQsgWXNv69mWoS9ct3jbmUWE5bazsbu9EiXZsQVkpc4pmkyMjKCz+cjEolseLfesm7yr8fHeGE4QVG3kESBiLeSyXQtVaI77AEBprMaPllkf1ewut5LjYWExcmi03WdfD5PsViku7u7Kizu9EiXzcAVkpcotbUho6OjdHZ20tLS0rD1FxOSJy7FefJygs6gwpaIhGnbDCdKqJKAIglcnikA0OKTec2Bdna3B+r2/FJm7iyWfD7PxMQEbW1tC1os7vRIlxuFKyQvQeaOwN0I14ggCNX1HQzT4tnhJCGPTNgnY9ugiAJ9MS9XkyV+aG8bAVXCsm16oz6ifqVuvWag2cTMEQ5YfMiXOz3SZaNxheQlRO1BU5uVJYrivEN/vSx0WOmmTVEz8Sj1wiWLApZlIwpwqCe06HrNdohvNnPHFbvTI102C1dIXiIsFVDfqM66c8XJq4hsafFxdjxL1Hf9wMuWTXyKRGdN8aHLyliu35k75MvlRuAKyUuA2jYni7V8vxEWiSAIPLSnjaF4gcvTBVr8CmXDJFc2ObojSm/Uu+R6rkVSz1yLZCnc6ZEuG4krJLcwK21z0uhphnBdnK4mCvSPpEkXdbZEfdzVG+Ftd7Tz788OkEgLtAT8vOJgOw/ubnUPrFWyns9sKWFxp0e6rBZXSG5RVlMbslGurTPTGi9cvEKqqCGJIqZl861TI9zlS/CWfa2UDJtcJo49OcW5UoRoNEosFiMYDM5LAHAtkvmsxiJZjlphWcn0SCfV2O1s7AKukNySOBXqK21zshHB9oJu8/hwEcWvsrejUgsyPRPn7Giezv2d/OjBfVVhKBQK1TkfV69eBaClpYVoNEo0GiUQCCz6PJtBMx2cG7UXd3qky2pwheQWorY2ZDVtTjbian80o5MsWdzR48U0DSYnpwDYs6Wda3mBbMkg6Km4SQKBAIFAgK1bt2LbNtlslmQySTwe5/Lly3VFdm1tbfh8vobu9WalkRbJcqxEWJLJJH6/n0gk4grLSwxXSG4RFqoNWU0gttEWiSNLhXyeZCJOMBgkFouRLOgYlo3NwgehIAiEw2HC4TB9fX1YlkU6nebChQtks1mefvppPB5P1VqJRqN4PC/NbK/NdPUtJCxjY2O0trZWP4+FWua7wnJr4grJTc5qR+AuhCiK1VhKo9gaVvAJBpfG4uzb2kYgEMCybaZzZe7rixLySCs6CEVRJBqNEgqFCAaDbNmyhXQ6XXWDnT17lkAgUBWVlpYWFEVZdt1bgRtpkSxHrai40yNferhCchMzN6C+1gFJjXBt5UoGP7iS4OS1NJZp4M2Nc3vMZtBq5VreRi0VKBkWW1t8vP5g55qe07ZtZFmmtbWV1tZWAHRdr8ZXLl++TKFQIBwOV4UlEonUFemtl2YL+DfTIWxZVl1tkjs98qWDKyQ3KcvVhqyG9Qbbc2WDv3z8CqevZbEtnWwmhyBJ7I+pvO9Vuzg1liFV0NkW9fGy7VHag2q1TfpKWez1KYpCR0cHHR0dAJRKpaqwnDt3Dk3TiESuZ4SFQqFbpltus4naUhaSOz3y1sYVkpuM9Y7AXYj1WiRPDyY4fS1DRNQoawW29sYolk0uJnLkygbveNnWea9hLazkcV6vl+7ubrq7u7Ftm2KxSDKZJJFIMDo6imVZdRlhwWDwpj2omsm1BVS/jythNUO+5rrCXJoPV0huIjZibgisP9h+YjhBPpshFBDp7u5CkRVsK4dlwaWpPPfviDVkj2t5jN/vx+/3s2XLFmzbJpfLVS2WwcHBagzG+c/n8zXV4bwUzSYk69nPaoTFnR7ZfLhCcpNgWRaTk5NMTk6yf//+hh4g67FIJiYmGBsdRZRVuro6ru9LELCxkcTG7XO9rhxBEAiFQoRCIbZt24ZlWWSzWRKJBJOTk1y8eBFVVauiEovFmj4jrNmEpFEH+3LCAu70yGbCFZImp3YEbrlcJplMNvzwWEuLFMuyOH/+PGNjY7zy8Ha+dDZDXjMJeipfqUzJQBYFblukm+9q2YgDUxRFIpEIkUiEHTt2YJom6XS66gY7d+4cfr+/zmJpJprNIqkNtjeaxYTF6WwMrrBsJq6QNDGWZWEYRtWVJUlSw+s9YPWurZPD03zxybPMFCwO7+7jgZ4OjpVlnr6S4FqqiG0LiLbFXR0Sh7rDCz7fag+cG9EiRZIkYrEYsVjFFafrOqlUquoGO336NKqqIssy8XiclpaWhmaErZZmE5JGWiTLsZCw1E6PBKqFueFw2J0eucG4QtKELFYbslFCshqL5NEXL/PJxwcxRIVoOMRjl1K8MJrjkSPbuLcvysXJLJIk0q5oiOlriA10bd1oFEWhvb2d9vZ2AMrlMgMDA2QyGS5cuEC5XK6mGsdiMcLh8A29Ar6RB/dK2EiLZDkWmsUyMTHB9PQ0t99+e/U+7vTIjcEVkiajts0J1F+9b0RPLOc5llvXsixOnTnHZ58aR/b6OdAVqVoJVxNF/v3EOP/zzQe4szcCwNTUFAPpxu5xs9NdPR5PNcvr4MGDFItFEokEyWSSa9euYZpmNSPMaT650QdVMx2EzWQh1RZIyrLsTo/cYFwhaSJqa0NqzXaHjTpMl7NICoUC/f39jOcsbF+Y3tD1zCZBEOgMe5jIlhlOFNnbGdzQvTYTPp+PLVu2VDPC8vl8NSNsaGgIQRDq4it+v7+hB1Wzvb/NaCE5+1nIYnGnRzYOV0iagNXMDdkoi2SxQ2liYoLTp0+zZcsWuvb08h/jF7Hm3NeybUSoy9BaTkiaMUayHgRBIBgMEgwG6e3trWaEJZNJpqenuXTpErIsV62VaDSK17v4IK+V0EwWAGyua2shnGLdhagVFnfI1/pxhWSTWU1tyI10bTlZWVdGxvB27qQQiLEl6KEv5uP8ZI6dbRKiIGDZNuOZMrvbg/TFfHVrNvPBv9HUZoRt3769mhHmuMHOnz+P1+uts1hUVV3VczSbkDSzRbIUtW4wcIVlLbhCsok4X9TNnBvirFt76DuurDNxk+dTUeJDM9hM0x708ODuVlJFncvTBQTAxqYz7OWn7tuKLF3/0S4nJKsVmY3oUHwjmZsRZhhGNSNseHiYM2fOEAwG65pPyvLyP89mOcicdNxm2Q+srtK+lqWExZ0euTCukGwCtbUhq5kb4hz4jf7B1h7SjiuLUAdPxHUKmklPixcBmMiU+frZKf7LQ9tJFXWms2Vagx7u2x6lI+SZt2ajLZJbycKRZZm2tjba2toA0DStGl8ZGBigVCoRCoWqbjAnhbWWZno/nL00m0XSiPTsWmFZaHpkrbC8VKdHukJyg1lPmxPnR9qoH0jtupZlcfbsWcbGxjh06BDfGtZIF8fY2Rao7m9Li5crMwVOj2V574Pbl1yz0UJyq/8gVVWls7OTzs5OgGqPsGQyydjYGIZhzGs+2UwWgPNZN8t+oPI72YiRArWZlO70yAqukNxAVjsCdy7O/Rt9JepcVaVSKY4dO4bf72fmzCWkOXsUBAFFEpjOlVe0V9ciWTs+nw+fz0dPTw+2bS84jti5AMjlcgQCgU09pByLtpkOyrW6tlaLKyyukNwQ5taGrPULVGuRNIqJiQlOnTqFIAgcOXKk+hy9MT+mFa9kZNUImG5abI/5l13XtUgahyAsPI743LlzFAoFnn/++WpGWG3zyRtJs7q2NmM/SwnL1atXyWaz7N69+5aaHukKyQYzdwTuWtqDODRSSEzT5MKFC4yNjbFnzx4uXbpU96N7+a4Y3zo3xeBMnvagBwSYyWl0hDw8tLdt2fVvZYtks3/sglAZR+zz+YhGo3VTI8fHx7lw4ULdOOJYLLbqjLDV0qyurc1sYeNQ+5t30vwda/JWmR7pCskGUVvw1Mi5IY3IXsrn85w4cQJBEDh27BiWZfHd4xf5i8euMJIo0tPi5eH97fzyw7v5p+dGGZjKY9s2h7eEecfLttIbXf5qdyPqSFzqcWIkta3woZIRttQ44mg0uqKMsNXg1JA00+e0WRbJUpimOa+Z5FLTI28WYXGFZAPYqLkhzlrrEZLaAsN9+/YhiiLfPTvGP18WkLwTeGSJ02MZnrqS4L+8Ygf/4437mMqWsW3oDHtW9TpuRYukGfZQy0Kfx2aMI26mwL9DMwtJLYt1Nq4Vlne+8528+93v5p3vfOdmbHtZXCFpMJZlMTExAUAsFmv4j2utQlLryrr99tur2UGaYfHPL05QNm1ui/kRxIolMZoq8dlnRrh/e5TO8OorsNfSmn4pmu2QagZWenjfiHHEzVbVDjePkMxlIWGZmJhouBXZSJp3ZzcZtW1OxsbG8Hg81SvCRrIWIZnryvL7rwfLhxMFJrMaYQWo6Z/VEVSZympcns5zsGd+K/iV0EjX1nLrvRRZ6/uxEeOIm62qHZpXSFYbrxIEgUKhUPe7bTZcIWkAc11ZkiRV//9Gs9og9vj4OGfOnKlzZdUiCgKCAJUVbaByYFiAKLDmCYe1qcoLHUJOyvFKfxzNdrXbDDTCnSQIjRlH3IyuraV6bW0Wa0kAcBqChkKNGRK3EbhCsk4Wqg2RJKma6ttoVmqRLObKmsv2Vj99MR8vpjL0WDayVOmfNZkps7MtwK72wJr2uZSQOCnHlmXh9Xqr1dvRaHTRArKXeu+uhdiIw1sQ5o8jzmQyJJPJeeOInc/N4/G4rq0VslZxy+fzBAJr+y3eCFwhWSO1tSFz25xsVE+sla69lCsLIJHXOD2WQRQEbt8S5meP9XF5dJLhRAFRELGxaQ96eM8DfSjS2n6ICxVPWpbFhQsXuHbtGocOHSIYDFZnpjsTCGsHRUUikaY7CJqNjT68RVGkpaWFlpaWeeOIR0ZGOHv2bNWicSzzjagmXwvNKiRrSWwoFAquRXKrMXcE7tysrI2aZOg811JrL+fK+r8nJ/jMMyMkixoCAjG/wruP9vKTuyyszi3EiyYdIQ8P7m6jp2Xtbc7nCkmpVKK/vx/TNDl27BiqqqLrel2/qXK5XB0UdebMGQzDoKWlhVgsVm1u6XKdzbDQFhtHPDY2hq7rfP/73ycUCtU1n9ysWo5bRUg0TUPXdYLB4Abtav24QrIKFhuBO5fNsEhM0+T8+fOMj48v6srqH0nz/3tyCMuy2RKp1IJMZct88vvD/Eg7/OQdnQ2riK4Vkng8zokTJ2hvb+e2225b1PXn8XjqgsDOoKhEIkEikQDgzJkzVYtlvfM8bnaaIS7hjCMWBIFyucwdd9xRja/UjiOubT55Iw5357fabEKylhhJLpcDcIXkVmBuQH2p4itRFDc02D5XSPL5PP39/YiiuKAry+E7F6YpaibbalqcdIU9jCSLnEltTLru4OAgw8PDHDhwgK1bt67q8bWDokZGRpiamsLn8zE2NsaFCxeqld3OIXWj0iM3+/CupVn24sRIPB4PXV1ddHV1VXtNOVamkxFWm2q8UeOIm7FlC6wtRpLL5apJEc2KKyQroHYE7kqKC2+ka2s5V1Yt07nyvCwsRxBzemPnfTgWx9jYGPfffz/h8NpSiB0EQUCWZXbu3MnOnTsxDKOuyK5YLFbbrsdisRt25buZNINF4rDQXgRB2LRxxM53udm+A2txbTmpv832WmpxhWQJVjoCdy4baZE4hX4rcWXNZXd7gOeHUnWNGC3LxrJtuvyNy4pKp9McP34cgHvuuachQcK577ssy7S3t9Pe3g5Qd+XrZIQ58ZVoNLrp3XE3gmbKYltJHclcK3OxccS1WXxrdV/eSkLSDN2dl8MVkkVYT5uTjbZISqUSTz/99LKurLm89rZOvnN+hpFEkWhAARsSBZ2eFi93tBXXvWfbthkdHeX8+fPs3LmTgYGBhrqbljo4vV4vPT091bbr+XyeRCJBPB7n8uXLdQdULBbD4/EsutZa93CjaSaLZC3pv6sZRxyLxWhpaVlxMV8zCokTt1mtkDR76i+4QrIgqx2BO5eNDLaXy2Wmp6fp7e1d1pUFFYujbFh4FZHeqI/feuM+/v6pq1ycyiEAR3ZEeffRbYyeeW5dh6Rpmpw5c4aZmRnuvvtuWltbGRgYaNjBu5rPoPbK16mFcFJWr127xrlz56pNDJ0DqpnbTyxFswhJIyrblxpHPDg4SD6fX/E44kY1Sm0kzpngWiS3OGsdgTuXjRASx5WVTqfp7OzkwIEDS95fNy3+rX+c/3tqglRBpyfi5a139/Dq/e187MduYyZXGQ/aFlQRBIFrZ9fu2nKC/ZIkcezYsao7YqkiwhvZImVud9zaJobOWFsns2itvaY2g5vdIlmOlYwjrm0+WTuOuBkztmq9G6uhUCi4FsnNwnK1Iauh0TGS2qyszs7OFbmy/vr7Q3zp+BiSKOBVRAamcvzRNwco6hZvOtxF+wIz1tcifpOTk5w6dYqtW7eyd+/euh9JI6vRG3lIzW1iuFCvqdpZHo0KADeal5qbbTXjiFVVbbrPbK1C4lgkzcxLXkhWWhuyGhoZI5mblXX+/Pll1x5Pl/j6mUl8qkTUX6kyjvgUJjJl/vn5UV57oB2PUm9er7Zbr2VZXLx4kdHRUQ4dOkRXV9e8+zS6rclGHZxzx9rmcjkSiQQzMzNcvnwZRVGqorJRSRRrodkskhttASw2jthJujBNk5MnT1YvCjbbPeQE2le7B8el18y8pIVk7gjcRg3maYRra7GsrJUc+ANTOXJlk55IvdUR8crM5DXG0iV2tNVf4azm0C+VSpw4cQJd1zl69OiiV0tLvZfNOtiqttdUX1/fvJYg2Wy2OmzIia9s5hS+ZhGSzRY1QagfRzwzM8OFCxeIRCJ1CRebOY54rRMbC4WCKyTNSm1tSG3v/0bgCMlaf1xLFRiKooiu60s+PuSVkSUB3bTwiNe/uJppoYgCQc/8j32l4pdIJOjv76etrY177rlnySB1o6ckNkNLkIGBAbLZbLUpZrlcXvcsj7Wy2Yd3Lc3WRt62bRRFoa+vj76+vmrCxWaOI75VGzbCS1BInID60NAQoijS09PT8B9jbcBvtVcg4+PjnD59mt7e3nkxB1jZgX+oJ8z2mJ+B6TxdYQFFEinrJpmSwSv3ts+Lj8Dyh75t2wwODnL58mX27dtHb2/vsu/bRsRI0kWd0WSJsmkR8sj0Rr14lRtnEUiShM/nY//+/QB17pSRkRGAusNpoZbrjaKZYiTN1v13rqttsXHEiUTiho0jXmvDxlwu19QNG+ElJiS1tSHZbHbD0gOdL/BqhMRxZU1MTHD48OFFCwwXEpLRZJF/6x/j+EiakFfh4QOVeesf/fpFrqWKlccJAod6wvzCK3YsuO5SwXZd1zl16hSZTIb77ruPSCSyotfUaCGZzJtcPD1FsqCDICAAW6NeXrGnlbD3xn2Va78zc2d5ON2Mp6enGRgYQFXVqkXjBIEbRbNZJM2yF1g+ZrMZ44jXKiT5fJ7u7u51PfdG85IRkrm1IRs5fMr5ApumuaKW2rWurKNHjy6ZlTVXSIbjBf7bF08znimhSAKmZfPi1RRvONTJX77zMM8OpYjnNLZGvdy7PbpoW/jFYi+ZTIb+/n78fn+1a+9KaaSQaKbFubhFpMNkR1sli8qwbIbjBU5dy/DArlhDnmc9CIJAOBwmHA5XC+ycOojh4WHOnDlDMBisikoj4ivNcng3m2trtcH/5cYR67peN+JgreOI1xojaeY+W/ASEJLFakMkSULTtA15TufHvZKYw3KurIXWrl3308+MMJ4p0RnyIM720cqVDb55doofPtTJq/e3r3jPcw/90dFRzp07V+1vtZYAeaOEJF4wSWsW+yLe6j5kUSAWUBlOFLlnm3lDXFyreT2SJNVd9Tp1EIlEgvPnz6Pr+rz4ymre42ayAtZ6SG4U680iW2gcsZMNNjIygm3bqx5HvB6LxA22byJLtTnZ6HG4y6UA17qy7rjjjuqV0HLUWiS2bfP0YAKfIlVFBCCgSuRKBi+OpDm8dWVuqNp1TdPk3LlzTE5Octddd1ULwlZLI4XEtsGyKuN/axEFMCywmidcsCi1dRC1h5PjpweqouLEV5aimWIkN7tFshS144i3bt265nHE6wm2u0KySSw0AreWjRQSWDooPjcrazVpiHNdULJYGY27EPIq5q07h36hUKC/v786XXE9KZKNEBLdtLBsaA0oBBSbmZxGx2yygG3bJPIaezuD+NXmuRpeCXMPJ6eBYSKRqI609Xg8dfGVuW7SZrNImmUvsLF1LWsdR7ye6YiukNxg5taGLBZQ38gOvUutPzY2xpkzZ1bsylpoXUegBEHgVfva+ecXrqGbFopUEZlU0cCnShzdufK4gSAIZDIZBgYGVtSSfqVrrrntStmgfzTDwHQey4KIpNHpr8SAhuIFVFmkqJm0BVUO9zR3RstKqG1guGPHjrqsImcMsdMm3wn+ghsjWYwb6WpbaByxExurHUcsiiIej2dV44idBqRu+u8NxKkNqT1oF/uhbbRFMte1tVZX1lzmWjo/dV8vJ0bTXJzKVy0Tryzyrvu3sat9ZV8+y7LI5XIUi0Vuv/32hmWIrFVINMPiWxdmGJjKE/UrSKLA+ekSVsHmx+9sIVnUyZUM2kMqu9oCtPibY0Z4I5mbVVQul6vxlbNnz2IYBrZtc+3aNTo7OzdsQNRKaSbrCDa319bc2JgzjvjKlStkMplVjyN2039vELVtTlba9XMjW71D/YG/HlfWQuuWdZNcySDgkWgNqvzp/+cw3zo/zdmxDEGPzEN72rhj68oGSZXLZU6cOEG5XKa3t7ehaYZrFZKrySJXZgr0xXyocuUwkKMejids0iWdl29yhtZmHJhzJw/m83meffZZstks165dq/roHYtlM6q2m01ImqWjszOOeHp6utrSZTXjiG9kjORjH/sYv/7rv84HP/hBPv7xj6/4cc3xTq+Dtc4NuRExEtM01+3KqmU6W+bPvj/Gdy+WUV98mgNdId7zQB93b2vhLXd085Y7VicCyWSS/v5+YrEYHR0dDf/hrVVIkgUdy6YqIlCpg/EqMJ4uN3KLNyW1Y1dvu+02FEWp+uidqm2v11s3IGqlrpS10oyurWbaD1zP2pp7UVDbfLJ2HPGFCxfYsmXLDev++9xzz/HJT36Sw4cPr/qxN7WQrHYEbi03QkiuXr1KNptdlyvLoaiZ/Pd/Pc258QyiDQrw/NUUFyZz/Mnbbuf2LSsfZWvbNkNDQ1y6dIm9e/eybds2zp492/AsoLUKiWdWQOa6S3QDgp6bK6i+0TjtfWp99M4cj9r4Sm0NRCQSafgh24wWSbMJyUJxm9qki7njiB999FG+8pWvIEkSH/rQh3jjG9/Iq1/9avbu3dvw9zqXy/FTP/VT/M3f/A2/93u/t+rHN9c7vUKcgLqmaWsSEdhY11Y+nyebzVIsFjl27Ni6RQTguxdnuDiZo8Un45ch6JFpD6pkSwaff250xesYhkF/fz/Dw8Pce++99PX1VWNJjX4/1iok26I+Yn6F0VQJ07Ir2VlFA1G02dPR3NkrNwrnfV3oe+/M8di7dy/3338/DzzwAFu2bKFUKnHmzBkef/xx+vv7uXr1KrlcriEXEG6MZHlWkrXlDGXr7e3l7/7u7zh+/DiCIHDPPffwr//6r9xxxx189KMfbfje3v/+9/PDP/zDPPzww2t6/E1nkaxnBG4tG5W15biyVFWlr6+vYb7qC5NZABRJxGnZKAgCHkXk1FhmRWtks1mOHz+Oz+ebV6W+2jbyK2GlQmLZNiPJEpOZMpIosC3q5ZV7W3niUoLhRBHbBtmGAy0CO1pvrO+/WVnNZ+XxeOqK65wrXsdiEUWxbgzxWuaku66t5VlLHYmmaei6zm//9m8jSRKlUolisdjQfX3+85/nxRdf5LnnnlvzGjeVkCxXG7IaHIukUVdStUV8d9xxB9euXWvowdziU7CpFOZRs65hWrT4lvd/X7t2jbNnz7J9+3Z279497zXfaIvEsiwKhQKq18d3L8Y5OZZFNyxsIOyVeXB3K2+9u5vxdBnTsvFYRUavxJvqqnczWcoiWYraMcS9vb11XXHHxsa4cOECPp+vLr6ykthZs7m21lr8t5GspY7ESf113luv17smoV+MkZERPvjBD/LNb35zXeveFEJSWxuynhG4tTgfqGma6w4y53I5Tpw4UZeVNTEx0dCD+VX72vnMMyOkigaKXXlPClrFovqR2+cPlXKoTTu+8847aW9fuGXKStrTr5bFhKRYLHL8+HEymQzXSgon0iq9sRBbYkFkWWYyU+b7l+JsiXjY2VYJKqfTBiNNUMndTNXksP4MstqK7J07d2IYRtVauXz5MsVisVq/EovF5mUUObgWyfKsRUg2el77Cy+8wNTUFHfffXf1NtM0efzxx/mLv/gLyuXyivbc9ELSyBG4tTRKSBbLymr03Pa+Vj//7TV7+N/fGiCRBS2noUgibzjYyY/dtXC21mqq1Bs9zXCxNePxOP39/XR2dnL48GE+/9wIvkIaLZ/mcmISj8dDwB9goiQxFM8v2PLeZeMETZZl2tvbqxccpVKp2mPq1KlTWJZFS0tL1WJxDrlms0iaUUjWUiS50cWIr371qzl16lTdbT/zMz/D/v37+dVf/dUV77dphWQjRuDW4qy11jjJXFfW3ID6RsRg3niokzt7AvztV55k174d3NUbZX/XwoVo09PTnDx5ku7ubvbv37/qZpCNoFZIajPF9u/fz5YtW9A0DUn10hoT6GnxYhomhUKBfD5PKpnmxf4ZlFTl0PJ4PBta93OzsVbX1mrxer309PTUjSFOJpN1UwdjsVhdN4lmoBmFZC3utrmurUYTCoU4dOhQ3W2BQIDW1tZ5ty9FUwqJbdtkMhmy2Sytra0NFxFYWWPFxVjIlTWX9aYXT2ZKfOXUJNdSRXpafLzhYCc9LV7aQx7ubbd5+O6eBS0p27a5dOkSQ0NDHDx4kJ6enhU930YG2w3D4PTp06RSKe69915KgpcLkzk8osWOmJfBeAHTspFkiVA4hOjxs00N8/L9LYTsAolEglQqhWVZnDt3bkNme9ys3EgrYKEeU04bF+czdoZDOWOIN6sosNmExLkwbjaLpFE0nZA4VkgymeTKlSs88MADG/ZcaznsV1pguJ6YQ/9Iml/50mlSBR3bBkGAf3pulI/92G3cNVuxvpAAaprGiRMnKBaLHDlyZFVtFTbKtVUul3n66adRFIU77rmP71xKcXZ8glzZxCPB1hYvnUGVy9MFQl4Jw7IpGzZ3bw2zf0srktjGtm3bSKfT9Pf3oyhKdbZHre9+I2ojmpkbZZEsRW18ZWxsjIMHD1ZjLAMDA5RKpWrF9o0eQ9xsbe2dc2atMZIbyWOPPbbqxzSNkDhzQwzDwLIsFEXZ0IJBWJ2QLOfKmstaXVumZfPRr18gWdCJ+hVEodLdN1nQ+ejXLvLPP/cyYL6QJJNJTpw4QSQS4dixY6u+Emx0TAcq7Vempqbo7e1l3759fP3sFM8OJekOe+iJeMkUygxMF9jfGeBV+1q5MlNAlUT2dQW5rSuIVNO92ImN7d69u7q204L99OnTWJY1rwX7Rh2yzRALaLa6Ddu2q9Mgnd9G7QwPp2K7to2L3+/fsNfQbBaJ89tai0XS7J1/oUmEZKHaEFmWm0ZIVuLKWmjttRzM5yeyjCSKBD0y4uyPTBQEQh6ZsXSJM+O5uniGbdsMDw8zMDDAnj17qgWGq6Wxs0NsLl++TCqVorOzkwMHDpAtGZwey9IeUIn4FCzbJuhV6EJgNFXitQfaObZEt+K5r2lubUQul6uOuD11foC8rRIIhdnaHmPP1na8nlvLDdZs2WMLBdt9Ph9btmypVmzXfkaXLl1CUZQ68W+kq7LZhMQ0zTW56G9Ue5T1sulCMncEbu3gqY0O3q3kKtxxZW3bto09e/as+Mu51it83bSx7IUHONl2ZT6Hs7bjl04mk7zsZS8jGo2u+vkcGhVs13WdkydPksvlaG9vr15NFTSDsm7SGqg/LPyKSDxvVVOZl2Kxw7PWd6+0dHKFBBOJDMXpIs9fHSLaf5F7tgbpbK90ZL2RLpaNohktkqX2U/sZ9fX1YZpmNb7itFoPBoN18ZW1uqaceEQzfcZr7cCRy+Vci2QpFhuB6+BYCxv5g1nKIlmtK2suaxWSfZ1BogGFRF6jxadUX3uubBLxyRzoDvHMZZFcLsfx48fxeDwcO3YMj2d9abKNCLY7lfPOfPcLFy5U14z4FEJemVRRrw6hcmanBFSJ6DKt4FfyHSjpJs8PpynqNge2tiEKAmXDZHgmT8lbKYAcHa20k1nNJMJmpVmExLbtVdeRSJJUff/h+hji2o64kUikriPuSl+v851rNiFZ65jd9Vwg3ig2RUhW0ubE8fFvZNBsMSHJ5XL09/cjy/Ka276vNUbiUyX+y0M7+INHB0gWdGRRwLBsFEngvQ9uJ+iRsW2bkydPsn37dvbs2dOQA2W9FsnExASnTp2qq5yvdZd5FYn7t0f5yulJRlNFQh6ZTFEjVzZ5xd5WIiuozl9O6KZzGomCxtYWX9Ut6JElokEvWUHkodt2IgrMm0TodMptbW3d1Eyj1dBMrq1GBP4XGkPsFEbWjiF2LgCWioE53+NbQUiKxSK9vb0bsKPGsim/GOcLsNzgKVj7B7ASFhKStbqyFlp7pQfzcLxA/2iagEfi6I4YP3pHN+1BlX954RpD8QLbYn7eencPL98Vqw412rt3Lzt37lzT3hZirRaJZVkMDAwwMjLC4cOH6ezsBCouuDPTGgOJPP6rl9jTEeCevihvvqObZweTpIsafkXigZ1R7t+x/BXXSg4pw7KxF3ALOmJs2TaSKBIOhwmHw2zfvr2uktvJNHKuhJ1Mo9rnbpYDvJlcW422ABbqiOuI/9TUFAMDA3g8nrrAfW18pRmFZK0XxLlcrjoyoJnZtEuv5Q4u50tgGMaG1QvUWg3rdWUttPZyQmKYFh97dID/9+Q4mmEjCBDzK/x/33yAB3a1cmxXa/W+xWKRZ555Btu28Xq91VGrjWItwXYn3bhUKnHkyJGqL9e2bf7fExN883IBWRJoV3S+dX6GcxNZ/tP927hza4RsSUfGxKtIq3ZZLEbUp+BXJTIlo2rh2LZNuqhzoCuIIs0/WOZWcjuZRs6VsCAIdW6wZqJZhKR2IulGIAhCnfjXjrJ1UsGDweC8oH2zvD+w9t5fbtbWOhEEYcMztxyroRGurLmsxLX1T8+N8qX+MWRRIOyVsGxIFHR+7ctn+df/fB8ds+1BZmZmOHHiRDUD6qmnntqQKvTVrJlOpzl+/DiRSISjR4/WuYOGE0VeuJoi6pMIqiIdES9dYZuLkzmeHkzwljt7iPoVNG3lwrXQoaCbFldmCgzFCxgWbIt62d7q48JknlzZRJVFsiWD1oDCno6VZb7UZhpZlkU2myUejzM2Nsb58+eRZRmv10s8Hl9XQHi9NKNFcqP2M3eUraZp1TTjc+fOoWkaAMPDwwtalZvBemIkrpCskxsxVz2dTjM0NLRuV9ZCay93MH/x+BjY4FMqXzBJqAxuypcNHj0zybvu7+Xy5csMDg5y4MABtm7dCmxMzcdqXFtOJ+Fdu3axY8eOeT/SsVSRom4S80rYjptBEGjxK1yYzK35EKzdn2nZPHk5ydmJHKokIIowGK+M5723L8JERqOomexq87Ozzb9sMH8hRFEkEokQiUTYuXMnuq5z9uxZSqVSNSDs9J2KxWI3dG56s7jYYPOD26qq1k0cnJmZ4cyZM2QyGYaHh+dZlZuRXLFWIXHTf5dhs8fhmqZJIpEgn89z5513NmT4VC0rOexnshryHIe+KAgIAkyki7zwwgsUCgXuv/9+wuHrExA3qi/WcmtalsX58+cZHx/nrrvuoq2tbcH7ybMuJMu2oea8M0wbj0+sutFWc+jOE6t0iQtTObrDKr7ZLDDDshmKF9nZ6ueH9rYutMy6UBQFv9+Pz+djz549dW6woaEhJEkiGo3S2tra8LqIuTSTRbLRrq3VIAgCqqoiyzKHDx+uWpW1yRUej6cqKjdiDDGsLUbizI5ZTYeKzaKpLRJZljeklsRxZRmGQXt7e8NFBFbm2trTGeDEaAZvzaFgWjaWZWMmryG2t3D06NF5X/TNsEhKpRL9/f1YlsXRo0eXDADubg8QC6hMzuRomx1xUNAM8prBa7at7b123h/nAJ3JaeimXRURqATVfYrISKrIwZ6N+/E5SSJOQHjr1q11fadq6yJqW7g00g3WTELSzC3ka63K2jHEyWSyOobYabUTjUYb/jk5uDGSTWQjLJLarCxFUchkVjZdcLWsZHDWI0f7+JV/PU22bOCVJSzbpqybxDwWP3r3Tvbv2bngY2/0NMNkMkl/fz+tra0cPHhw3g8tU9R5bjjFwFQOjyxy+5YIbzjYwT89mWI4rZERcsiSwD3botzX15iceFEU6qwdB9OyFwyqbzS1fad27dpVrYtIJBLVTLuWlpaqtbKR7UFuNDdTC3lnDLFjTZfL5XmfU23WXqPclW6MZIO40a6thbKyrl69umGuM+eLvJSQvHJvGx9+037+8nuDTGbKWJbJgRab33rTIQ5sX3jGiLP2Rlgkc9e0bZurV69y8eJF9u7dy7Zt2+a9llRB5+9+MMzAZA6PImFaFsdHUjy4u423HQpzaTLP1r5uusIedrcHqm6v1eI8r2ZUfpDdYQ8Bj0QirxGbrZbPl01M26YvtvkFhnPrIvL5PIlEotp+XVGUOvfKat1grkWyOKtxI3k8nrr4SqFQqAbuh4aGqhcIzue01viKaZqrdqE53xs3RrJOGtUmZbGsrI2MwTg/rOVaNbzxUBfHtgX49tPHCXk9PHTfXcuOvNwIIZlrkZimyZkzZ4jH40u2X3nqSpyLkzl2tQeqlkC6qPPUlQRtO2Vu71C4Y+/CsZTVMJ3TOBkXGHz2GoossqcjyMHuIGfGc1yeKYANqiRye0+Y7a3NlXdfO95227Ztde1B1trJuNmEpFn2AmvvsyUIAoFAgEAgUB1DnMlkSCQSjI+Pc+HChWrxqtPGZaXisJYYSaFQwLZtN0ayXhqR/rtUgeFGCsliExgr7SRmXTNcrwg/1LfyrLGNEhJnTWcUriiKHD16dElhOz2WJeiR69xJEZ/CRKbEtSxEW9bvgkvkNb55Ps6VLBy2oaRbPHE5wb6OAK870EY8r2Pa0B5U6Y54qlXti+GkDQ/GC+imzdYWLzvb/Cuqrm8Ec9uDrLWTcbMc3jeTa2s1iKJIS0sLLS0tANX4ytwxxM5ntdQFwFrntQOua2spNtq1tZICw42YYujgvD7ncJ7JlfnE9wb5+tkpNMPiyI4ob9gmoBam6irCV8JGBtudmpWuri4OHDiw7A9SFitt7muppoM2qKPw+ckcUzmNLh/EAkolgOpTuDxT4LbuELdvCS+/yCymZfPccIoLU3n8ioQkCBwfzTCeLvPg7hgh743/SSzVydip4p6bZdRMVkAzurY2Yj8LxVecC4AzZ85gGEZdG5fayYZrnY4oSdK6++jdCJraIlmrkKy0wHCtrd5XgiAIVaHKlQ1+7tP9DM7kEUQQEPjuhWmevgx/96476OxsX/XaG7Xv48eP19WsLMcdvREuTuUp6ZUqdYCZnEbIK7Mj5sHWtXXvaSxdJuCRydScmx5ZxLIhWVjd8LCpbJnLMwW6Q57qfmMBheFExUI5vIwobfQBvlCXXOcq+MqVK9WrYK/Xi2maTdHl9la1SJZj7gWAEwdzMsKcdPBYLIau62uejrjZn+9KaGohkWWZcrm8qsesplfWjSh4tCyLr5+aZHAmj0cREaiYyF4ZNEvkn/unub1vdULSaIvEMAzOnj0LwD333LNsK5DJTJl0UactqHJkR4xLU3lOXktjWZUW+EGPxGsOdNAdKBKPr98iCagSZeP6/JXq/9qgyqv7kaWKBoZpV0UEKpZTQJUZT5eWFZIbTW0V9549eyiVSiQSCcbGxigWizzxxBObXmzXbBbJWlNt18PcOJiTDp5MJrl27RrZbJbLly+TyWSqVstyzUFvlhbycAu5tmpdWXfeeWe1d1Kj1l8LzoHfP5quZKraFoZpIksyoihi6CbPDqXWtG6j0n/z+TzHjx+vBg1rCx/nkisZfOHFa5wYzVDUTQIeiSM7orzjZT3c09fCSKKAIons7wqxs83PyMjImvdl2zYlw0KVRPZ0BLgwmSWrz44fsGzG0yVa/Ap90dUdnE4B6FzLQp8jLs2K1+ulp6cHWZYZHh5m3759JBIJJiYmNq2TcTO52aA5hlrVpoPv3LmTp556is7OTnRdr8ZXwuFw9SIgHA7P2/PNkrEFTW6RrGaC4Vp6Zd0oIQmoArZtYRqV6mhh9jCzbIj4Vv8RrGcefC1TU1OcPHmSrVu3snPnTr7zne8saunYts0/v3CNJy7F6Qx7aAsqpIsGXz8zhSKJ/NidPdyzraXuMWt1wV2YzHF8JM1MXiegStzeE+Jl2yL831G4Ei8iSyKtAZWX74rRsoLWJ7ppEc9XXGyxgELYKzOV02gPqoiCQLZsYFoW25ogbXilOFbAejoZN4qXqmtrNViWVc30AqqWZTKZ5NSpU1iWVddux+fzUSgUNrTe6BOf+ASf+MQnGBoaAuDgwYP89m//Nm94wxtWvdamCslyHWdXkv67nrbvzpX9Rn3xRFEkm83SbUwgAqYgogiVQ8AwK91+33S4a03rrse1Zds2ly5dYmhoiEOHDtHd3V03unchxtNlTo6m6Qp7qod3W1DFsm2eupLgNfs7CM4JVC/3A1jo8z83keMrp6cwLYuITyFV1Hn03AxHd0R4oNNm521teD0qPRFvdUDWUlxNFHn+aop4TgNBoDWg0BPxMJ4pM5wsIlCJtxzqCbNtldbNZrLQ57RUJ+Ph4eG6mohYLLZsmvlq9tJMB3czCsncrC3Hsuzp6akmWCSTSeLxOCdOnOCDH/wg+/fvx7ZtxsfH6e5evK5srWzdupWPfexj7NmzB9u2+Yd/+Ad+9Ed/lOPHj3Pw4MFVrdXUFslS6b9rcWXNxflgN+KL50yAvHDhAq84uAu9ReSTTwxR0q8LwA/tbeMdL1tZULuW9QiJMwo3n89z5MiRao56bQuShUgVNQq6SWe4PoMk6JGJ5zXSJX1BIVnNPk3L5vmrKWzsai1IlMq0yFNjWXYAe9r9K85imclpfP9ygqJu0hWpHJqTmTJF3eKh3bHZscY2LT6F1oCy4iu/Zrj6Xok7ablOxoFAoK4mYq2tQZrRIrkR/bNWw1J1JLUJFtu2bWP//v386Z/+KZ/97Gc5deoUW7du5cCBA7zmNa/hN3/zNxftcbda3vSmN9X9+yMf+Qif+MQnePrpp28tIdnICYbO+jC/1mO9OMV85XKZHTt2sGvXLnbtglftb+db56bRTIv7d1TahYhzpzCtgLUKiTMKNxAIzOvhNTddeS4xv0pAlciUdKL+61XYmZJO0CMvWIOx1OFSLpe5fPkyPp+P1tZWfD4fubJBIq8TnbNW1K9wabpAbpVeyKvJIumCzs72637mrVEfV2YKxHMad/Y2dqbLjWY1h/dCnYwdN9j58+fRNG3NnYxdi2RpHK/HSoXa6/XyIz/yI1y6dAmPx8Pf/M3f8J3vfIdvf/vbGzbkyjRNvvCFL5DP5zl69OiqH9/0rq25QuK0MG9E23en+V4j4yT5fJ7+/n4kSSISidR98Hs6guzpWH8WxlpiD+Pj45w+fboqbKvt4dUZ9nBXbwuPXZzBtCqZWemiQaZk8pY72gl65n+VFtunM8skEAiQzWYZGBjA5/MRiEQxyhZFPHX1HCXDQpVFFHt17dNzZRNlgawuWRTIlTcuNnYjWG+yhaIodHR00NHRUR1t67RwWW0n42a0SJpJSGpHiq8GJ9gei8V461vfylvf+taG7+3UqVMcPXqUUqlEMBjky1/+Mrfddtuq12l6i8SJkZimydmzZ5mamlqzK2sutbUejWBycpJTp06xZcsW9u3bx/Hjxzek3mM1FollWVy8eJHR0dFlJz/WHvyGaXF6LMuFySwCAvu6gvzYnd0oksALV1NMZssEPTJvPtzF6w8uXEy50OHixLR27dpVHaM6nioyEU+iFTMEynFOXDNJtfhojwSRVR/jeZM9HQGiqRW95CotPhndsLBsu1rtbtk2umUtG6Q3LZuxdInpbCVI3x6qxGWahUZmSq23k7GbtbU0zvmyljqSjU7/3bdvH/39/aTTab74xS/y7ne/m+9973urFpOmFhInRpLNZjlx4kRDJxg6NKIo0TmsR0ZGOHjoEN8bNfnVv3qW0USevmiR97/Ky8MHGteqfqXpv+VymRMnTqBpGkePHl02ldBZ1zAtPv3MCI9fiqPN1m+oZ0Ue2t3Kf7q/l9cf7CRTMmgNqEtWgtdanLZtV9+jO++8k7a2NqbSBb5+Zoor8QJlwybs9XJ47z5iPUXOjCY5P57B0KfpCkps726lILBs8kUirxHP68iSQFfYQ3tIZThRpD2oYtswk9foDKpLZmiZls0LV1Ocn8zXTf/b3xkgZNs0wxG1kYf3Yp2M4/H4gp2MN6NuYymaUUici9bVkMvlGhYPWQxVVdm9ezdQqSF77rnn+NM//VM++clPrmqdTXdtLYWj4E8//XTDJxjWPsd6LJJSqcSJEyfQdZ2jR4/yl0+O8Y/PzNZP2DYDMyV++Yun+Z0f2c9P3NXTkD2vxCJx3EctLS3cfffdK4oBOQf/iyNpvjcwQ2tAJeytXLlnijrfG5jh9i1hXtYXrXbcXcl6uq5z4sQJisViVdB0w+T/nprk/ESOLS1evLJIsqDz/UtJ3nR7By/f20mqoOORIEiZdCpBIQHPPfcckUikeog5vnzTsnl2KMWpsSy5soEoCHSEVA52B4lkNSYylcLWXW1+7u6NEF5CAMfSJS5M5mkLqNXMsIJmcmEyT59i0hNujnqTG2UFLNfJ2BkmNTk5SSwW2/RAd7MJyVoaNkKlaeONLki0LGvVReDQxBaJaZqcP38eqOQ39/Q05hCey3qEJJFI0N/fT1tbG/fccw/TeYPPPTeKQKXi2jItbGx0y+bPvnOZN93etepK7IVYTkhGR0c5d+4cu3fvZvv27avKRrIsi5OjaUzTrooIQNinMJUrc3I0w8tWOFPEiT899dRTBAIBjhw5Uj1kriaLDM4U6I158SuVr2F7yEPZtHlhJMPd21pqXEkhOjvaGBsb4/DhwxSLxTpffiwWI0mAZ8Z0YkEPO0M+TMvmWqrMyWtZfuyOTiwq70HIIy37fkxmy9hQl17sVyVm8jBTMOgJb9zkw5WyWe6khToZnz9/nlwut+ZOxo1mrQf3RrFWi22jx+z++q//Om94wxvYtm0b2WyWz33uczz22GM8+uijq16rKYWkNisLqBbxbARrERLbthkcHOTy5cvs27eP3t5eBEHg+MgMumnjkWd/4EKlr5YiCSQKOldm8uzvWn9L6MWExLIszp07x8TEBHfffTetrasbN1t1bVn2gtlkgiCgr8INmE6nKRQK7Ny5kz179tQdfLmSgW7Z1Xn1DkGPRK5koBkW8gJ1Ik4DQyelNZ1OE4/HefbUNcbSZcSoDyMYJBgIsKXFy3CiyGiqzP6ulV/ZNdE49EVplpntTlNBWZbZt2/fmjsZN5Jms0jWOtRqo1ukTE1N8dM//dOMj48TiUQ4fPgwjz76KK95zWtWvVbTCcncrKzvfOc7N6T6fKXous6pU6fIZDLcd999RCLXU0h9ioQwO7iv9qdi25V/r6SAbiUslA1VKpU4fvw4tm2vOY7krHugO8STl+J1jRhLuoltw23dy/eism2bK1eucOXKFVRVZe/evfPuE/EpeGSRXNkg5Llu+WSKBl0RD54FLLe5B1CtL78t7sUX0/ChkZt1vQCkLC9jk7Ajqqy4/qQz5OHcRI6iblaFrqhXvoOtvua40m2mAHftXtbSybjR3CpCstGurb/9279t2FpNEyNZLCvrRjRWXOn6mUyG/v5+/H4/x44dm5cSeXRnjKhfIVnQcTTDtmwsBG7fEmJbrDE54HPFz3Gxtbe3c9ttt63ZrHcskvv6Yjw/lOT4SLo6Z8QwLe7a1sLL5rRBmYthGJw+fZpUKsWBAwe4cuVK3d+LWuW97o362NsRoH80TUew0ucqWdCxbJt7+1qQFqmvWexKfGvUy4sjGl1tEVqiLdiWTSpXoDidoZCa4cknhwgGg9XYylyXS7qoE8/riAK0BlX2dgS4OJkD5ztq2+ztDBIu5VbyVm44zSYkCx3ci3UyjsfjdZ2Mnc8kFAo1RABuFSFxe22tklpX1gMPPFDXuqFRUxIXY6VC4sQdlqrD8CoSv/+Wg3zoC6co6SZQ6YbbHlL48JsONGzPzoFv2zbDw8MMDAzUudhWSzyn8cxQkmevmlwVkjx8OMz7HtrBU4MJ+kfSANzZG+HYzlZ8S1hVhUKh2gDy2LFj5PPXs54mMyUeuzDDhanKQby/M8h921vwKyLnJ/PECxpRn8L9O1q4Y8vC7r+lXtuBrhCDM0UGZ4pEAwqGaZMqCbxszxZed1s7lqHPc7k4V8VjZZWLcY1c2ai0UfEr1RjNRKYEQFfYS0+Ll8sDU01zgDcLK41J1HYyhuv9ppw0Y6AhnYybTUjWsh8nqeFmmI4ITSAkyxUYNmJK4lIsJyS1rVjuuuuuZdPxXr67lf94/xH+/cQEF0enaPeYvO8NL2vo9D2n9uXUqVPLjsJdjsvTef7isSuMJovkcgb9yWmeGinyC6/YycP7O3h4/8rSluPxOP39/XR3d7N//35EUayOCk0VdD7zzCjDiQJtwYoV98SlOMPxPO++bwuv2NtGUTNp8SsLurRqcYRpJFnk9FiWyUyZaEDhtq4Qr7utjZNjWcZTZTyyyMt3Rblja7jS8VdV62Zz53K5Sl+jK+M8OZwj5FXpjgXxB4JkivDsUIo3HmxnW2z597VsWIgCdVMiN5pms0jWspe5/aacFi61nYwda2U1nYybTUjWY5G4beRXwPj4OOfPn1+ywPBGdOhdbP1CoUB/fz+CIKwq7tAZ9vLeB7czPCwwMzPT8BGumqZhGAbFYpFjx46teYKaZdl89tkRrqWK7GwLkBAK+AMqEzmNzzw7wod/ZD/yMoejbdtcvXqVixcvsn//fnp7e6t/c9J/T1xLM5wosKcjUHVZRX0KF6eynBrP8uDu1iXTcWvXg4r4ffXMFLmySdAjMZnVuDRd4FV7W3nDbR2UdBNJFBY92GtdLkNakD6yxFSTXC7HxPg4hmFwFR/dcoH79vYsGiCeyWmcn8wxmS0jItAX87G/K9iwWNhSNJOQNOLgFgSh2sl4x44d6+pkfKsIyUZnbTWSTRWSrq6u6rS3xdgs15bTYr2np6d6hb2WtRtd2T49Pc2JEycAuPfee9f1g7mWKnJlpkBnyDt7wAsIQHfYy8jsxMClWrpYllWNay1kFTlCMpooospCXdxDEgUE2+KJEwNsC1hs6Yghr+DHZpgWzw5V5qHsar8ec5rIlHl2OMW+ztUd5HnNxOtRCIeDhCMRsG3KZY2z1+JMJ1I888wIHo+n6pJxPs9kQeeJywlSRZ0Wn4Jp2xwfTZMq6jy4O3ZDrJNmEZKNELW1djLeyG7ea2UtQmJZlmuRrBRRFJdtZX0jgu21sz0sy+LSpUsMDw9XW6yvlUZOMqzNhNqzZw/nz59f94/XsCrdb50DXhAqGWayCKZdqfBejFKpRH9/P5ZlcezYsQU/R0dIwj4Zw6xfq1gscen8WQoBgS99N4EsSfR2trK9p53t3W20hOZfiQmCQLZsMpXTqi4yh/ZgpYJ9OqfRt4q5Il1hD8OJ0vU2KoKAICvEWlq490A7vS2euivjYrGI1+vlQtxgoiCxp+t60D7okRlJFpnIlOnd4Jb0zWSR3IimjSvtZOyUCjSTkKylriWfzwO4MZKVsJIfwo2IkZRKlYCq01KkXC5z9OjRZa8Gnh9O8pePDXLiWpqIT+Gtd/fwcw9srxYdNqqPl2EY1ZTj+++/H4/Hw/nz59d9mGxp8VWsj2Rx9vAVAJupTJmOkIe+RbLMUqkUx48fp7W1lYMHDy7ZHtu2bQ72hHl6MMm1VInusIdkKsWz/WewdZ22YCWd2DBNBsemGBybAqCrtYXO1gg7etrZ2tGKIleeQxIq1sxcYdJNC1kUqxMQFyNTMrg0lWMyq+FTJdoCCm0BmaHZIL1p2aSLOrvbK3UokiTS1tZWjY2dOXMGXdc5PZ5hJpXHTI0TDoUIhUMEA0FMG7KljbOgHZqljgRufNPGpToZX7x4EYDTp0/P636wWZimueo0Z0dIXNdWg7hR6b/JZJL+/n6i0eiKWoo8eTnO+z7bj1UZHU5BK/EXjw1y+lqW//POwwiC0BDXVi6X4/jx43i9Xo4ePYqqqlULar0mvCqL/MTdPfz194e4PJPHKFmYJY3WsJ8fv6tnwQwtJzliz5499PX1LfkDdYRkZ1uANx3u4tEzkzx7bpDxkat4ZYG9nUFa5kyItG2bcNDPRDzFRDzFiYvDSJJESzhMIh6nbUuBXW1+XhxJE/BIKJI422CxTF/UN29eSi3Jgs6jZ6cZS5fwKiKaWRnle1tXkJ4WH6OpEooocP/2Fg50hRZ0T0mShNfr5bZgC56ZPDHFIpvLMTk5yXDpKmnby7S3SCZgb9hEQud9aiaLZDP3UtvJuFQq8YMf/IC2tjaSyWRd9wPnv6U6GW8EpmmueohYoVBAUVZe+7TZ3BRCspExEkEQyOVyPP/88+zdu5dt27at6Efxv791CdMGUWC2s6yAZdk8NjDDiyNp7tnWsm7XltNNuLe3l71791b35YjHatc2TIvnr6Y4OZoB4FBPiHu3R/nvr9nN9wfiHL80Qm/Mz5vv3c3BnvrCQ8uyuHDhAmNjY8tmr83kyrwwnOLKVIapSdg1nefebS2MXx0mZ6fo6o3QHQ3gkQSKpTKG8zpsCAf8ZPPF6lol3eLKRI7ExWnSmRzfv/wdDvZ1IqheTqX9BEIhJEmmO+zhlXtbl7RITlzLcC1dYmerv+rOm8lpXJop8La7url/ewuCICy4Rr5sMBgv8vy1En7VpK9XRBQENMlDZ1eQ9s5ORuJ5IkYJH6VqkoZzeLW2tjb8AGsWIWmmmIQjatu2bWPbtm2r7mS8EawlRpLL5QgEAk3zGS/HTeHaWksTsZVgGAbXrl2jWCxy3333rbgVS65kcH6iUg9R+xoEoeIcemYwsS4hsW2bgYEBhoeHuf322+nqqh/HuxYh0U2Lv3p8kMcH4uhm5XGPnp3kgV2tfOCVO9nfFaI/lCIcDrNzjohomlZ1+R05cmRJc3skUeDvn7rKtVQJWbQZj8NffPsircYMXrtUtRhMQydbtrAsC69HwaMqCECmRkQsGwam80xly4Q8MgFVQJRkTgxNsbs9gFdJkkvBlvYY+7ZswYOx6NWxbloMx4vE/Epd0L81oHAlXmAiU2Zf58KuzEzJ4DsXZriWKpHJmtiCTVrI0BZUMW2bkWQRAYGOsI97tnXRHfFiWRaZTIZEIlGtQXJ6ULW2thIOh9d1+G62FVBLM+1lrqgt1MnYCdo7nYxrg/YbMSN9LTESR0huFm4Ki2QjXFvOtEBJkggEAqvq56VIlQwkY4FgtG2DX628rWuJkWiaxsmTJykUCovGaZyBXKsRkueGknzvYpxYQKm2fs+XDZ68HOfubS28cm/bgu3ps9ksL774IqFQiCNHjizp8rNtm2+cnWIsVWJPZwDbtChPl7h47gyYOsd2xebViQiz/chKZR3dMCqzMTweRBEmUkUSeZ2IV8HrUSgXBVTRwhQFJrNl7uqNIApglnI8c/ICL567TMjvZWtHK9u72+jtbEWdbQhZec9g7ltmz/4fcYnD4/xEjpFkkZ1tfiY0CVmWUL0ymZLJq/e1YlN5fHtQrYuPtbS04A+GESJdiNkihVyWqXSWsbExbNuuGxy1WtdHM00lbKa9LGcdqXPqieZ2MlYUpc4N1ogWLmtp2ui0R2kWgV6OTReSlUxJbLRry/Hzb9++nUgkUg3QrRSPIvGaA+18/cxU9WrMtm1My0YWRV5/W0d176s57DOZDMePHycUCs0bhTuX1Vo7x0fSGJZVNz8k4JGZzGq8eDXFK/e2zROnyclJTp48yfbt29m9e/eyX+psyeDSdJ72sIooCEzF4wwNDxNrbSWRF8mWzTohEQTweTyUNL1ubkl+NvkhV9IQRJFQwIdlW1izlpQqi5QNC9OyEaXKnvxelbJmkEjnSKRznByopIhu7YjR193Gjp52drX5eHooTYtPrsY/JjNlon6F7sjCvmjbthmMF2iZY8m0+GQG40XymrmoJVPQTJ4aTDKcKGDbYNkiYW8r9x7YSZtqEo/HGR8f58KFC/j9/qq10tLSsqKDp1kOmWaakLgaN9tCnYwdN1gjOxmvxbWVz+c3bKzuRrDpQrIcjbRIarvjOkWQ8Xh8Tev/6uv2cnosy0iigPPdkgSB//HGfXTNtj9fzWHvTA7cuXMnO3fuXPaHuVohsey5rSRn1xGoWlaOINq2zeXLlxkcHFzQtbYkQqXQ8erVEYaHhzFNE62sYegGpmnh9agosoSumwiCTTZfXPS1emQRVZHJ5osoUsUKUxWZgikSUKge7CG/l2yhNO/xmm7ywqUxnjo/SiTgI+RTKNge+hM+IpEIgiQR8coc3RldcFTw9fdo7sVO5Xlte+nD/OJUjivTeXpjvqpwTWTKHB/J8IaDHezYUSm+c7KO4vE4586dQ9f1OmtloQOlmdxJN5NFshS1QXmgYZ2M1xojuVlqSOAmEJJGpf86VeoAR48erf4415pZ1RHy8OX33c9XT09wYjRDzK/wpsNd7K4p4HNcRUt9uWuD2KsZIbycJTeXQz1hvnthhqJmVrOxnI6+d26NVPdrmib9/f1kMhmOHDmyqjz2kFdmV6uff3v8BVS9kr6IDdmyQcAjEfUrlMoapTIEfT5yhSIBnxdRFCiWdUzTxLIrLjcE6I4FGU2VmMzqBFUZw7JJ5EogSvR1BPCpMj6Ph3JNHZBDQTO5NJ0nXTRQPR6uzMQJeWV2tPqwTJvx6at0tUbp29VNTG1Z9GAWBIHd7X6evJIk6r/+PZnOaUR8Ml2LZImZls1QvEjYp9Rlf3WEVK4mSkxly2xvrXwH585Pd9wtTsdcr9dbtVai0SiSJL2k03+XopGB/0Z1Ml5rHYkbI1kFK3FtrVdIpqenOXnyJF1dXRw4cKDui7ae9f2qxFvv3sJb796y4N+dL89iX+5yuUx/f391uuJqTNnVWiTHdsZ46kqC54dT1aQA07a5q7eFl++uNNEzDIPp6WnC4XA11XglVKwYyBaKGPGreG2NmYKOgE3OgJggsLcjiCqLlVoPRSZXLGJaFvliafY7AEUTrsRLxHNlBAH8E3m2Rr3IkkA8p1MyISIK9LUF6GnxIUkSqVxFsCqxFbUqSlcTOdJFk86IH93QsSSFVEFnNFXmtq5gpamvWeT0wCBDI2MgwPbudvpmYys5zSZdMvAqIrvbA0xkygzFC0xnDUTJptcH925vWbK1i2XZzE0Am7VlWKzWc667xTCMasfcixcvUi6XaWlpwTCM6oXKZh/izbAHh43KIFuok7FTu+J0Mg6Hw3UtXJx9rNW15QpJA1nPQW/bNpcuXWJoaGjRKYsbWaeyVHaVU9QXi8W45557VtyQrnbt1QiJR5H40Kt38/ilGV4YTmHbcHdfCw/tbq1M/5uZYWJigkAgwD333LOiH2NZN/n+pTg/uJJgciZJfuoqW8IKd/T4mQxKlAxIJcoc2tlKQBXxqpWCv1JZm7dWUTc5PpKhbEFQlQCbvCEwnNI53O2nLwaj1/J0tvppiwZBgELpejZfJbZS+XdBM8kbAq1h32y1voAo2AQ9MpmSTkEzCXgkJElClSVyxYpb7PTlEfoHrjKaLKGJXvyhMK2xKPu3tPLArhh7OgIcP5cm4FW590AH7aH51kimZJAu6nhlkS1RLyevZWnxK9VgfqpoEPTItAZWFsSVZbmuILJQKJBIJBgaGmJsbIyZmZk6a2Uzxtw2k2vrRs2PlySp7nNZqpOxI/qr4WZqjwI3gZDIsrymYLuTslosFpd00Thugo24kllMSEZGRjh//vyKivqWWnsxIbFtm2eHkjx6dorRZJGtUR+vP9jJvX0tvO62Tl53W2fdfYeGhhgYGKC1tRWPx7Oi98GybD733CjfvxSnlE4wM36VYtlgLCHxsr4o21v9lVhLVscrQSTgxwYky8YwTGzqL8mnsholSyDqvW6hBhWbeL7EWErk4NYIpaBKOOjFtCzMJURUVRQMI4eGiS0JiIKAoqrIsk05X8aybVRVxragOEfUJjJlxtIlAqqOYJQYjk9y+qzNmQudvPXIbva2iISCnnkiYlg2L15Nc3YiS75sosoirQGFiFdmKF7Ep4iVqY+iyD3bwvMaeWZKBrmygUcWifmVRb8Tfr8fv99POp3G5/PR0tJCPB5ncHCQM2fOEA6H6+Z73AhL4VZ1ba2GpToZA9WR3CvtZOxaJKtkuS+gYzGsxnxOpVL09/cTiUQ4duzYkh9a7WHf6C+gIAh1KcBOS/qpqak1jcKtZSkh+ca5Kf7m+8OUDBO/KjGWLnHyWob3vnw7r73telt40zQ5c+YM8Xice++9l+np6Wq7mOW4MpPnucEEZnqC/PQUfkXEJ6vE8xqD8TyxQAtQEYWg30s6X+T6xyfg93oQsCmWNcqaji0p2GYe264/YCWxYmGUyjo2kC+WCYcUgn4vtg2lcrmuJ1jA5yFbKOOVBfKaScQnY2OjaRqZUuWg7mwJIooVMdRrLlIMy2Ymp+GRRYI+T+Vzsy18os2ZK6PYhRRaLk1XWwv3FW36utvoiIYRBIFz41meHU4R9Sv0taqUdIvRVIktES/3b48wk9PxKSK9MR9bItdTfXXTon80w8BUnrxWyWrrjXq5r6+FwBIJALZtzwsOl0ol4vF4XWNDx1rZyIruZrJImqE4sraTcW9vL48//jg7d+4knU6vuJNxoVCgo2NlIxyagU0XkuWojTMs52esbWm+0qt9Z03TNBcVHMO0+Ma5Kb5xdhrLtnnl3jZ+5Pauas3AUjgHfrFYrAb7F2tyuBoWqyMpaCb/8sI1LNuuBnMBxlIlvvDCNR7cXRlO5YzmhUrygdfrJR6PrziIe3kqw6WBC/jtEqIooszWa/h1i0Rew7JsJFHEpyqVrCul9r21KZTKmKaFbVuEQ378xQKiPN8tY1rgU0WCfi/XyjoeH5imRa4mS8vnUcmWTWbyOqmJGUJehY6Qh+FEpQ5FlUV000ISBfZ2t1CoEUsntiKIItlCCcOyCfq86LrBbJUJkihgWna1yeVUMsPxC0P84ORFfB6V3q42LqXAGwwR9Vdeg1+V2NriZTqncSwY5fCWCAtxfiLH8ZE00YDCtqCXom5xYTKPbcMP7W1d9Pu70IWV1+uta2yYyWSIx+PVim5nGmFra2vDphGCa5EshXMR2dHRUc1+XKqTcTQaxefzkcvl2Llz54bs6fd///f50pe+xPnz5/H5fBw7dow/+IM/YN++fWtes+mFxDncDcNYUkicEa/JZHJVg55EUUQQhEXjJIZp8f7Pn+R7F2eqV9TfODvFF164xt/99N1LTgx01k8mk1y6dImOjg5uu+22hnzRF7NIhuJ5EjmdtmD9oRwLKMzkNIbiBbq8RtXUPnjwYHU/Ky1ynEllePzpFyjmMnj9KiIWmlZxERmWRcjvIRL0ISBQ1K4fyHPRyiVEAdIZm6BsowomyYJFLFRJq0zmy/hUiR3t4VnhEBZc6/JUhtGMQb5QRpJFpksQ88nsaguQKmrkNZMWn8z2jggq9Z9zbWzFMi1iQR/pkkGLV6Gs6YBN2bBQZRGvLJID/F5PNT5TKJU5fXmUM+NZFElkuDVCe2uM9tYoLeEQmmFR1Bd+T3XT4uJUnqBXpmXW1RVQJXoiHkaSReJ5fV6X41qWOrydgsiWlpZqRbdjrZw8eRLbtuvat6ynp9NLIdi+VkzTrHomHOZ2MnY6IIyNjfGJT3yCf//3f6erq4toNEqhUGh4Pcn3vvc93v/+93PvvfdiGAa/8Ru/wWtf+1rOnj27ZnfapgvJcl9Ap4p7qYC409jQ4/GsadDTUgH3/zg1wfcuzsy7vX80zeeeG+U9D/Qtuq4Tezl//jwHDhyoG/q0XhaqQgdQJbFadV/7LphWpV18Mj7F6PiVBfuKLbZmLZdGJvjKE8fxiRYBVSZd1In4FEQBNMNCMyz6Yn4Ks+m8siwR8HlQFZVCWcOyrEqGVyZNMpnERMA0DHxeD70BD+MFkVSuCAiEfSr7u4JE/GrlqneBOhjdshnLGOiaTmxWPG3bZjJVQBW8HO6NIklitf3K3O9brmwwk9Mp6hatIS+qUBHFKU3Dq0gIooSBQFdExqdKWF6VfLGMx3f9xy2LAl5ZJK+ZJJJpiqUyFy4PIYgy/lCIyQ6R7mA3Pm+9KJQNi5Jh4VfrDz6vUim4LOqLf+dXe3irqlqXylrbht0piKydRrjSw9ipO2qWw7sZhWSpC+Bawd+5cyfbt29nz549fPKTn+RLX/oS//iP/8iDDz7I2972Nt773vc2ZE9f//rX6/7993//93R0dPDCCy/w0EMPrWnNTReS5XC66C520I+Pj3P69Gn6+vrYvXv3mgdQLbb+V09PMvf36szt+OrpiUWFxDAMzpw5g2ma1XnqjWQxi2RnW4CdbX7OjGfZpkhVUZnKavQGLPITg4vGZ5aySGzb5vv9F/n2ixfwqQrRoI9DW8KcvpYhWahYI5IosLsrQk9Yqb6flmWTK5RQ1cq6HkVhemqSsUSBlB0gr9tIIsQMiMo6nWKJsiIQCYaIhGS8sk2uUOm/JYjg96iE/D5KZQ1BEkikymSL5apLqfI6Ku6weF6nrBsolkRZ15FlGZ9auV+hpDGdK3NpOk/ZsPGoMlNjaXyqSGfIQ0EzKeomsm3TE1LpCnkI+nwUsml83uvPZc027mwPecjFC+hI6PkShmVR0nQUweKp42d45sRZOmOR2Sr7DjpjYbyKRMgjkS4ZdQWRubKJX5WXLJJcTx3J3GmEuq7X9Z8yTbPqamltbV1yMqizj2aySDa6CeNqWO1+2tra+Omf/mn+/u//nj/90z/l3nvv5Rvf+AbZbHbD9phOpwGqsba10PRCAgu3SXGu9MfGxrjjjjvWFZhaqieWZlizFcz1t9tUrigXolAo8OKLL6IoSjXLptEsJiSiKPDeB7fzh98YYCRZOYBt2yYolHl1j8wDx44tup/Fano03eBPvvQE3+6/TEEzEQWBaEDhzq0tvO72HiYzZXKlMp0RPx7BQqwpnnBEFyqZdNOTE0zlDcbKKoZtE/Sq6JbF1ayG3eLntm0dyILNTCJFIh5H1w28Xi9+v68yNa5URpCL+D0qllXJ0FostiXLcuVzmi1YNE2TXHE28cGyGc8aiJJCd0ihVCoRCCgkCzrZksHBniCmVREJVZFQ5ErtS76kI8s2JXRSZZuCbiIDrQGZ/d0Rrs7kKBuVeMzWqJfOsGf2PbCZiKfIFUo8c/oSPo/Ktq42PN4g+YLABBD2yhR1k3TR4HBPqE4cHQzLRhIa605SFIXOzk46OzurBZHxeJypqalqQaQTW2lpaak7GJ3vS7NYATebRbIYTvrv3r172bt37wbsrIJlWfzSL/0SDzzwAIcOHVrzOpsuJCv5Mcy1GJzAtW3bHFviYFwpS1W3v3JvG88MJevExLYrV9+v2je/Ct0Zhbtlyxb27dvHM888syF1Ko6QlHWTJ68kODmaQRbhZduj3NsX5Q9//BBPDSYYnU6Tnb7GvdvCHL3njmUz2OY1bcwX+bMvP86j/VcBCHplLMtmKlvm2aEED+5upSMgsy3mxbJBkSUMw6xJq63ENYrFIql4HEn1UBA96JZG1CdjYyKLIKoSMwUTUVaRRZtoLEpMiKHrBsVigUKhiKZpzMzEkbAp5CW8Ph8yNrJgUdAgFvIDNppuoNvQ7hWxF/lc85pJXjPwyQLlchlJllBlmZgkkymUKekWflXCoyhYtlVX+5IsmUyn81iWjUcWydsCWc1kT4fC3dtbSeeLSIKALNW4DQURj6ownswxk9MoaFlOjaZoDShYNmiCij8Ypqs9xr27u7h9TnB+KF7gwmSOZEEn7FWwsgYrbIKwKmoLIvv6+upmp1+4cAFN02hpaalaK07dSjNZJKutydpI1lLX4oj5jZiO+P73v5/Tp0/zxBNPrGud5nnHl6C2TcrMzAwnTpygs7OTAwcONMSMXcq19dZ7tvCFF8cYnMnjDOWTRIGOkIefPnLdXVXbn6q2+HEj5rZD5Ydb0Aw+8rWLPDuUxLQrE7a+dmaK193WwftfuZO7Wm3ksWF23r2y/l1zXVvXphJ8+9lT9A9OY1oW0cCsj18UiIoKqaLOTN5ge5uHQqly0Do1gpIk4feo+DwypVKBbDpDKFLphns6OYNPkeosII8sktbgWiLLlhYvqqLMFjBaKKpCOBxmbGycaCREoVSmUChUBwa1eVTGcxbjyRwCNpLiIeIR2dsdwSuLFIrleW3Ggj4vppHFEiVEUcAyLUqmhmZagI1XVYkEPWi6QalkVN87y7aZzpsIskSLX0GRK8KaKWpcnkzjlyouK99slb2mGdhUrIfxZI7BeAHNtFGlSnpyqqCzLeajKwSSkCc7nuLZ5CgTo21s725ne3c7Y1mDxy8lsOxKUeVYpsS1CYNgpMyWhZsqNIza2em2XbkgcIL2V65cqQpJPB6ntbV10w/xW8Uicbr/biQf+MAH+I//+A8ef/xxtm7duq61bgohcVxbly5dYnBwkAMHDqz7hc9dfzEhCXpkPveel/F3Tw7z1TOTWJbNaw508J4H+mgLVsLZuq5z6tQpstks999/P+Hw9XkejZzbXosoijw5nOeZoQJtQQ8+pfJlzZR0Hj07xVa1QLg0uSq3X61FcvryCN94+mRlMFChjNejoqoeLMtC13VEUUCSFHKajrZAryvTNMnkixiGSSqZZlvvVsKhEEVNRxIENEeVbRtRlrFtMI0SilSxLnXDqNZ4CIKA3+cl5FOxEClJARKCgimYBEyLAGVahTIFS8TrDxJQLXqiQSxDp2CAJIn4PBURLJQ1Al4PqVyBgEciWzRomXUh2VTiE60BhbBPIZ0rAKDIMt7Z2Mo1S6Bk2ER9Ep7ZaZWWbeNTRDJlg6JuokhCNavLoyqIVOJ8yXIlhbjWZZUrG0zndboiPizTQBYFSprOxeFxLg6PV1xwBQF/KMz+bZ1EvF6ifoWpcZuLM2WO6CZe5cbEBARBqLpqe3t7MU2T6elpzp49y+DgIGfPnq3WR7S2tm5KG/RbRUg2siDRtm1+8Rd/kS9/+cs89thj7NixY91r3hRCIggCg4ODWJY176BuBMvNDYn4FD708G4+9PDueX/L5XK8+OKL+P3+BftTNWpu+0J77h+vDFTy1RwkIY/MRCLHM5dL/I+fOLKqqxpBEDBMk+8+f4YXzl25vqZXZjxdwpmKKwgCkqIiaCUCixxipmmRScXRDJOOjk4ESSY7GzTvawtwcbqEJYhIkoBpWSTzGiGvvGBcQJEkdMMgU9QYS1hkLRlFlrBtiXjRpD0Y4NDOLkTbIJHKUChkmBhL4vX68Pt9+Hz+SiW8IBDwqOiGSTTkZ58tcmo0STyvIQoClg0BVeS2LTGyhVLVlWnUxFbAwqPKFVE1bczZGgpzdqaJVHNw+r0eimUN27Yp6WUS2WLFXaYqCIKIYRhE/BLJvEaqUF6wb5dmWCQyxcoI2akJFFmmvTVKsZAnqXhJFQ26bpCQzEWSJCKRigvuyJEj1fqIeDzO8PDwpoy4bTYhWUvw3zRNisXihlkk73//+/nc5z7Hv//7vxMKharV95FIZMnEiqXYdCFZ7oolnU6TSqWqB/VG9BJaq/tpYmKCU6dO0dfXx549exZ8LRtpkRiWXTeQyTRNMpk0NtCzpXfVX0TNMHj85BXUYEvd7dtb/UznNNJFA78qIcsyU8ksUb9Ce1DF5/GgyBKarlMsa+i6TjoRRzNtRLEyCKqkW+imhU+R2BrxkinozBRNCsUyiqrQGvZzoNPP3BpPn1dF0wxMyyJdtpkpGMRCCopYsWh8kkJSg5wh0O730tamYNut6LpGsVicDRwnUFUZTQoQL1nYQsUt1R32cnhrhLwOJcNCtA22xoIYur5Qx/1KDEiEmE9hKpMj4lXwKDKiJJHTNVp8Cv7ZuqKg31fNNoPrI5lNy56tTwFVVdA0E4+qEPR6QLCuZybM4veqiBQp6zoeuSKoY5PTTMcTiNdmaLHSHNrRw7auVnraKqnON5La1N+59RHObI+rV69y9uzZalNDZ0LkRlgrN6rX1kpZy35yucr01Y2KkXziE58A4JWvfGXd7Z/61Kd45JFH1rTmpgvJYti2zcjICBcuXCAYDNLe3r5hDelW27jRtm0uXrzIyMgIhw8fprOzc9H7blSMRBRFbmtTGcpq6KaFbRqVFEFZJeCTubNvZQWZDvF0ji9/7ziTySwHOrrAFiiWy5iWRVfYyx1bwgxMFygZUNJLdEW83N4TRpVFiuUyxdnYiK5rJGdmCIWCdIQiDFwZ4txEgZliFsOy8SkSfTEfR/d0cHU6TbZYsS5aAyqKJKDKMh6PUqkbsSvDrZwixJxemami1GSFeT0K2XSJ0XiWiBrC61FQZRnTqtSuRCIRZEnk9GiSwakclmkgAFNJifGEwuGtLcQCHiRJRZV92IDP78MwzVlrAqayZSazGmXDRLZEgqpOW8BLsqiTKRuIQNgn0xvz4feqqIpMadYSsWzQTRtFEmjxyUxmyyiSSMDnoVAsky4ZRHwy2OasC8+DIFQ6GCMIGIZJyCMxmS0jiSLybJV90bDpCoqYusaL5wd59swlBFHCFwjRGouya2sH+3ta6qzVjWCxqva5I26d2R7xeJzR0VGAuvYt6ymInLufZhOS1VokhULFpbpRFslGjCBoSiExDIOzZ88yMzPDPffcw8TExIYcxg6rERKnGWSpVOLIkeVdRxvp2jqyRWWo6OHkSALT0FFVD7Ilc2RnlKM7Vp4TPnhtiv944kXSuQKmaXF6JMFwvEBBM+mI+DnQHebAlih9bUGS+TKSIBDyyvNSovO5HMlEnFAkij8UxrZhtCiRsUwCqoQsWpR0k4szZSQxwZaIh5DqLGJhWQJlXaes64QDPrLFcuWKXBQpaxX3U+1PQPV40MplLNtCnB2lW9b06hW/KImEfF5SJZ140SYaCuBVREzDRNM14jmN04Pj7Gn34vP6UFQPXq+H0uwLkySRqZzBYErHMi28qsJ0Ik9SEjnUG6Yr4kUzLBRJIOyVkSQRSRRJ5wpYNsQLJjMFg5JuIdomUZ9M2CtTtkTSiVwlQ0qV6G3xIc6m9GYLZaazZVJlKGo6fo9K1KcSMy3SJQNrNnswIAv0tQbQzcrc+4JmMhjPkS/HgSEAulsjPHzndg71dbGlfWOslZWmIc+d7eG0b7l27Rrnzp0jGAxWhWWtkwjh1hCSfD6Px+PZ9MSF1bDpO51XaZzL0d/fj6Io1Z5U09PTDR+3W8tKD/t0Os3x48eJRCIcPXp0RR/0Rrq2fJLN23datJsWM2Ibfq+HY7tiPLy/fUV9wGzb5vmzV3j8+LnqgTCctZhJpACQJYErUxkmMhov6w2yJeqnty2MbVd6ZdWOx82mU6TSGdo7Oqp+1uRsVlfYL+ORZBTFQ0gUSeQrrVq6w+qsxWZXK6SxwedTZwPdQt28kqhfJm1J6LZA0KtSKpfRZmt5FmrL7veqpPMFJtJlSrpBV8RfuWhQLCRZIiapKLJMMChRKORJptKAjc9XiatIiodLk3lkSSLgr2RhEfKQKdtcSxW5Y2ukOm9EEgVURam2pB9LlxiOF2etLJGSYTFhCuzuDOERIVMQUWWJsFdGqUkTnkiXmMhbmEaleWSmUCSesdjW6qOvPYRhgW1b5BMlBNusdgoYTZXIl41qlwHLhul0nq8/e4Hzl4bxqDK9na3s6Gmnr7udcGBtvvCFvkOrPbgFQSASiRCJRNi5c2e1IDIej1eLeGsnRK7Gb9+MQrJaayuXyxEIBJompXolbLqQ1OLEHHp7e9m7d2/1CyHLMuVyeZlHrx1Jkqq9ohbDmfO+a9cuduzYseIPWZIk9AWymtaCbducn8iRKupY6RLF+AzBYJBf+YkHVv1lNUyTbz97mqGx6aorJq9ZTORtfD4Bv0fGtm1agn6mUjnOTdh0hDwYpuP3r3TwBZux0WtkiyW6e3rq3I8FzcS0QZGEagq3rutItklRt1FVdVYQNDTDRBaFymCqUsWlpJsmM3mNXNmsTBm0TDp8IikTxpJ5JFlGFiW2tda3dbdtm3DAP9sSpXLIC4KAphsIsxckoigiqzKqVHEhBAJ+bBs0rUyhUCSbzZDIaaQ0lRafTMmqFD6WNR1FECiblUI+nyKh6wY211vS66bNZKaMKgsE1MpPzCNLlC0YnExzeEuYba0BvKqKZdkUyhVR1k2bjC5gmzqh2cC7KkNBgKmMRkfQg08SCAV8DExbBHwefF4PM5kiudnqeEfYfF4V0yqTKmiUwiqCYHB5dJLLo5MAxCJBdm/tpLezlZ72KPIa0+gb0bBxbkFkLpcjHo8zOTnJxYsX8fl8dfPsl7rCbzYhWct+HCG5mWgKIbFtm/Pnz3Pt2rUFYw4bOXzKWX8xq8GpoB8fH+euu+6qDrJZKY2ySK6livzhowNcmMxR0g0Eo8yd7SK//66X4VFX9zHmCiX+/XvPMz6TrN6mKgo6MoYg41clBEDxeNA1Db8qkS7qFHWzGkwGm2Q6SyYZR7dsdmzvw+fxYFrW9dRXWUQUQJBkTNOoWh2aaeGVKwdwxjQBm1Cg0uTRME0kw6KkG5wazzOTK1MxVGwwTfZ3eukOeEiXKvuI+BRifgXfbGxENwwkUSRbuN62PuKT8SsSmdl4hG3bCKJMNpOjsyOAbVt4PUolO8yjoKoq0WgLbRbMXJxC0wxKxdk2LYKAiYRPNimWyiiiB9O2UGSZkOpDNw0yqQKaYVVbnEhSpTGoZBoUDYuyUUkR1o3rohz0eikYFoVyHo9cfzB7ZJFc2aSkG8TCYbL5IoZpkS+WsYXKEDBFUfD5FGzLRJFkSuVK7YzlWHpzKJY0Xjg3yLNnLqPItdZKG5Hgygt8G92wsXYS4fbt26sFkfF4nPPnz6PrOi0tLXXz7Gufv9mEZK0xEtciWSWWZfHss89iGAZHjx5dUIkXapHSSBYTqlKpxIkTJ6p7W0sFfSNE0DAtfu+rFzg/kSOk2IiU0WWZZ6csPv/8NR45tnjjyLlMxFP822PP12UUQaVuQ9M0bNPAFkRUVQF7VgjtSlsUqSbIXSwWSSVmUDw+ulvbMEyrmt4rCgI+jwe/10OrXyGeLRINeCs1EoaFbtrsafdV1wv6vOQK111loigwmbdIlW1ag15s26JYKJAzYDhtcH+LSNTvtOGvrFEqaximWWllUtJIlWAqV0bXdKJ+me2tPgbjBRJ5HVlVsIp5OsMeemZng5TKOiUqlqMkSYQDXsqaSVvYTzxfpiUUxDJN0tkcec3AQ4Z8yqCQU/H5fKiqpypcfo+Kz+dBFARkWcC2LAzDRLcsZElAnnPQSZKIYVsUSyWwTGxJwuvxVERX0zHMykCsSMBPNu98bnb1tXtkERGLeDpPZzQ421bGQzGvEVCZV2fi9aik82UksWKt6YbBlWuTXLlWsVai4SC7t3bQ29nKlo7YktbKRh/ccwsinQmR8Xicy5cvo6pqVVSi0egtISQ321AraAIhEUWR7du309bWtugbXlvZvhHMPewvTuY4e3Wa3MQgh/sqrdbXWkHfCIukfzTNpak8QcnE1nUi4RCWaaFninztzBTvuHfriorSzg+O8bUf9GNaC7+XbUGVgCqSKRqEbWu2rsSibArs7w7TEvRSLGnkslmSiQSRaHTBmh7TssmXSgR9XnoDFl6vj6whUdRMJMFmd3uAHW2VCYqRoI9MvtLt18EwLYZnsshYmKaFVtaQFZnusJ+pdIF02cLvUaoWjm1bqLMV5tl8kXOTeSYzWvVgn8rJbIn6uHd7K6miRrGs41d9RP3KvJnqpmVTtmByLEXAI7Gj1YsoSWTLJoZlU7YEOsJejuzrIZ1KUywWZpveCdWaFZ/PR0iGqYKB34SAV8UWJEpli86AjFe5ftApioxgV4TQI4vEAgpj6TK2Zc3OUbHRbJFtrZXU6LJhV2NGumWTK5uokkB3WGUiLzOeyKFIIrpZQpVFulr9BH2VqZfFskY8b3D1WhzDrKzfEfLQHlTrEidKmsYL54d47uwVZEmit7OV7T3t7Ohpn2et3MgW8oIgEAgECAQC1YJIZ5795cuXKRaLlc7Pk5PVVi+bfVW/FiHJ5XI31ZhdaAIhAeju7l7ysN1o15YTbE/kNf7rP5/kueFU9W/3z2h8fJdJLLB5QjKezJMvlvB5IRQJI4oSmlWebbNhkCkZSwqJbds80X+BZ04PIIqVIVEClerrytjaymEQDfroC1SCwqlC5epcEARaAyo7YyqFYplcJk0um6NvW2/FZVXz2vJlkyszeSazGqIk0RmQCKkq7cUMrR4PcshLe7SF7lgYyzaRRIlM3pkzMn/PhmFQNkwEUURVPZiGgShKeD1ewkEvhVKlVX3A5yFfLGNZJtM5jYlMmZBHQp5tH29YNqPJPFG/SE/Yi7ctCDYUymWsmumK2bLJlUSlcNCybTySSE+Ll91tPrIlA920KHk0trYGK0IWDhEKBbEsm4lUnqFkntxkAo9g0hP147MgVxTJFnVkSaQ9oLCrI0TI58GybCzboqjpJPMammHhkUW6I15MCxIFrTKyV5HoCKrEvAKarqMqlbYsSV1kbKqALWgoksC21hA9IZO07KGomcQCCq0BhaBHriZGJMtwaTJLwKviVSFbLDMYL2DbNp3hSowp4Ku0u3GsQ8M0GRybYnBsiu8CLaFANbaypSO2qS3kJUmqNpOEipX81FNPVYuEnYJIx2LZjHn2aylIdFxbNxNNISTLcaNiJL/0Lyd54Wqq7m/PD6f5b188zafeffea1l5v+m8mk2Hm6gCqLKD4Aohi5UspUGnV0eFTqkORFqKs6Xz1yX4uj1aqVy3r+nTBRF7jcrxSIyFJ0O4Bv2jxQ7vaGM+UKM/6+bvDXgRskvEZcoUS3d1dWIIIloXP40GWRNKFMs8MTpPRbDwSmJrB+axFe1Dlrq1bMMolCoUC0+OjpGdkIuEwkqwSi0ZmixkrdRuCUJmxHpQt4lmDtoCCdzaRoKBbKBJ4RJNcoYxA5WCzLAufR6VY1siUK8KmSCI2lfo+r6qSKxeZTBVp98sYNZ9HZf+VvmUXR7KkCxoRXyVoXdQthuJFvEpl2JSAQMYukiuWkT2V99Dv9XAtVWIobaKZMqpPwRQkhjNFtgTAaxUxbYGQ10vMr2CZBtmCRcDrJZUvM5wsky5bGIaBaRjEAio72/x0hT0gSsiijSoKVYtBNwwuTWUZyxjEIh5iIR+6BZdncvSEZPpiC7tfPaqH4dEZVAlkTGyr0rFAswTSGnRLEj5VJl9cOqmlVNY4fmGI589dqVS2e2UUW2P3vjzR8OYefs7U0dtuuw1FUUin09Uq+9p59s6EyBthraylINF1bW0QsixveIzkakrjmaH8vL+Zts0PriQYnMmzo231H+56ChKdWSsPHtzJGa3A81fT6LMdZ1MFHcuGt9zZvWiqbzKT598ee454ev4sg3RR58nLCXJlk4DXQ7msMZC1CckqdwZ9+NXKrHOAclkjnZzBsGDr1i11P4zibDbd5ak8WV2gLaQiUOk/5rcsZvIaMwWTvlgl3VNRRAr5Aql0lkIyzcTkJD6fD7/fj+r1Iysq+UyKqFgiG/CQ06Fs6VWraVe7n6CnEmAOBnykc3kci0ZVZPw+L4piIIqVhpCqR6WsaVi2jSBQ81lUMrkKpRI+j4epTIls2aAzGkCgEpvwqxK6aTGRKdEb86PIIsWyXokfOe9xrsiF8QyCbdMR9qEo8qyFYlKUFA7u6KRcLlEoFEmlkkxPTxONBEkJMiN5SJYsWnwyfo+A7fGQ0W2mCib7O/yUdbPO4oPK6IKZnIYq2QQ8CgI2gmWgCjbJosUeVUUSBQplrVolH/B5mEjm0U2rmg0GlT8Ltkk6pyF0BdE0g1DAh2ladY93qG35ApVD8upkmkwmy2The7QEA+ycja30draiyDe2dYvz2YqiWFcQCVAul6vNJkdGRhAEoa59S6MKIufiurZuICuZq76RFkkul2M0VQIW/8BHksU1CclaXFu1lfN33nkn7e3t/EaXxl9+b5BnBhNkSwYhj8zLOwx+/M6eBdcYHp/mW8+exjAqUwoNo/79uzSVJ69btIW8WKaJxyOjmxbxbImB8RTb2wIEvB6KhSLx6QlUb4Du1tZ5RYjOfnM62KaOoYPTc9/j8SAbItlZK8HvVSvDnlQv7e1ewEbTNNLZPCdGU8zkZ7BECVUQ2N7m58F9HUxkykyki8iiTVfIQ0fYgyiI+Lwq2TluMd0w8UsWlmlQ0kUioQC2ZWEhIAoi7SHvbGNKqrEVn8dDoVSiODvRUa9JA1dVBT8ShmkiUAnIz6WSTWUSC3gQJZHibMZawCNRNgVUjwevquDz+bDtKD5VZnImSTJb4NpMCY8kULQ9FZeVqqBgk8jrpAoa0YB3thhTR5u9kNKMSqsZz+zFg9PYUpVF8ppBIlsk4JGqjS4lUaRU1pDFSrKEYdqoNVlhmmER9HsplsqVmEz+enaaz1uJrWiajixL1Wy8uZ+98/stahonBq7y4vlBJElia3uU7T2VDsbR8MZnIdUKyVw8Hg89PT309PRgWVZ1QmRtQaTjAltPQeRc3GB7E+EISaMDe7ZtMzQ0xMDAAF2Bpb8421vXNvNkta4tXdc5ceIExWKxrnI+FlD5rTfuYypbJl3U8VpFLp8/UzdECiqv6fiFIR57/iyWbc3eVmkl4lEUDNOkUCqTKFkoooBVszdZFMAWSBY0+mw/k1MzJJMJIi1R2ttaUWUZwzIpluprbkJ+P5aZxqqc0NXBLbquY+ga2DItIR+WaeNVlMrVLgACqqoyWiiR1BVUVUCwLQwbzk1kyeWy7Grzs7fFT7SlBb/Xg2GaWDZ1LhjTsshrJrIo0hpQ6W3xMVEwuTaTqXwGAmxvC7GrMzJbTFm5qg76PWRyhcr7I1fiKWXdRJVEECqWWFGD1kCl1XzQ4yOrKpg14iUKs+m9ooCm6TV7srFtg0KxhCKJeFUZj6pimiaRSBhUP8FyBp9kY+o6+UIeK2uh+nxkC0WKERGlxqWlyjKqKiNJJl61TDJv12UoaYaFLArV4kZJFDEMk7xeccFF/B66YzCWLCKYFopUGedrCjIB2Z5n1ZqWTTpfQhYrdStlTSPo987WvVy3VpyP2+dRKetG9TA3TZPhiRmGJ2b4HueIBP3s6Gmnt7OVbV1tqErjj56lhKQWURTrCiI1TatOiDx9+jSWZdXNs3dcZmvd01piJN3d3Wt+zs3gphESYHYGeGO2bBgGp0+fJpVKcejQIc6cOcMr9rTyxKV4de4IVA6KV+5tY9sivuflWI1rywkSBgIBjhw5smBwsCPkoSPkIZUy5tUHmKbFt549xalLV+tun9s6JOT34VclMiUJQRSwZwPO9ux/iiiQTiZIZ7K0d3Ti83nrW4+IIn6POhuDsMkWCnSFPIwmihR1C99sVlJeqxQS7u6KkspeTzeWxMrVLsBkKs94uoAsmKiigM9XybTJlgzygg2iRDqdYnp6mlDQj8/rw+vzEQmHEAQYmMhweSpHQa+kKHeEvBzaGqEtVyJZkMCGiF+hNaBWxUcSBUJ+HwXNIF0G0zIJ+ioNKCcyZXyKhCiAIUgItklX0FexCnSDoqbj8agEfF5EsXLADyfLJHJlWvwyApVeWAXNZGuLF1UWZ1vuS2TyhdnPQ6A94ieS0SmVDQJBFb/tR1UUxmbSiJjEpybIyBJ+vx+fz4/l9aIZBgGfl5hfYiYpYYkSCBV3W1G36I1Wnk9RZLBtSppOQTPRTAuPbNLmFSh4BVJFE80W8SgKHapAT+h6V17LhulsmamcRlk3iYUChPMarYFK12Rn/461Uszn8aoKJU1fsodTsaRx5so1+i8OI4oiWztis2OH24mFG5Nd5RRHrnYtVVXp6uqiq6urriByYmKiWhBZO89+pcJQ6Tpgr8kicV1ba2C5D/7/z96fxsh6Zved4O/dt1gzI7ebmXcnL3cWyVpYlLWUVkttj9Vy98iepTX2wIY+aL7IGEACBjYwMAYGNC0I1tjQh25LxnjG7XYDUo8XyW7LKlWVXAuLvNzJu6+5xx7vvjzPfHgiIjPvvWSRl6TMmqkDEIWbFfFGxLs85znn/JdZ8vikEkkURVy8eBHbtnnppZcoS7WT+r//1af4td9/mz++1FXfC/jxC0v8g//yyYf+rA/b2trf3+eNN97g5MmTnD9/nqsHMe/tdQlsky+dblO7R2L83uNGScof/tlr3Nw5+MDPqfsKbrtWN7nbC0mkEhDUNI1hnGFpghoJ47Bg7cS6WpTuCSEERVVRVYIkywlcm/OrTaJCcmlnRL9QC45jGTyz0cLVK462oKqpjzvAwWBMklcs1R0c257PwhxT7ZiDRovlTgfH0un1R4RRyEGvx7ZhEONwfShwXIdWzaOsBFujlLQoeeFUi8XgftlyxXGxubQ94MpBRJSVGKZJw3M42aoROCa7oxTTdvAo2Wj5tLzDzYCQkt1JwbXRHrphUrM1Nts+umEwSnLKokDTlGTLZtvDNA0MTSdOM3pRwcEkIy0FdcfE1yWjokBi4Ts2g6TAcRzOLQV0Aos0TYjjhLt7XQZJhe0prbCVVkDTLEnTgkQrcR2bR5c8Nluu4qxUgiQvudlP6EeKh2IZOos1i1MLHhsSJDpSVHiWgWOpakcIydXdEbf6CYau0QhcuuOIA1SCWZ4mnJlEDoBp6iSpVEZhQihVAo4nFMe2qCoxBzkIIbi92+X2bpevX3yPuu/NyZCbq4s4D4mu+iQ4JA8iRM6qlRkh8l4/+/dbv2adiIcZtv8gkXwKMdtlfBJzktmCvbGxMZdhmfERao7BP/7ffI67g4Q7g4STCx7rrY+nSfS9EomUkuvXr3P9+nWeeuopFpdW+Af/7gp/crlLVgg0DZZqDv/nnz7Pl44IMR497n5/xO9/9WUmUYJjqxZWVVVESQ7aoae2a1tzxvfpBZ9BVHCzF3MwjtEA24DHOhZN12B1bZM0f7C0i+86vLc95NpBSJhV+JbOmU7AuUWPtaYzR04t+CbO+z5DkvFoRJmEOKZBJbV5P9k0TdKqwDLANjTqvsskTqjV69TqdUVQTBJevjUkzQuMKiOpXHRDp+GYTHJISo2mo6qDWZiGjmka7AxC3t0LqSpJ21eLYxgnvJukfP5Um2dOdciLiqoqj+iACbIs43ovYVTZ1AILkaXsjwX1ScaFlRrLvk4loBm4dOo2CEkpKrKiYGuYcq0bUwmJqWv0owLf1tloeeRSZxyl1GyDtU6NzcUaGhqWZRALk95Yp/J0wiQmH1fc6U444Uvafonj+dR9F8fS0TWNtBJ4ts2tQc5BWOBbOnXHIKsk26MMxzQ5txRMZy5qp5yX5fQ/we4kp+47NDyHLM9puCaTrGR3nLIYWMdIqTXf4+5wSFnJORlV0zR8x8HQNdKiRJ8qGN8LGjgacZpx6fYOb1y9ja7rrC+1ObW2xOm1Dp3Wh0dXfRpkRNM0WV5eZnl5eU6I7PV6dLtdrl69iuM4x/zsj250Z8/nDyqSz0homvaxB+5SSq5evcrNmzd56qmnjvUgj7bOdF1no+2x0f5kRO0+6Hsfba/NDLv+X9+5w797Z5+aY7LgW1RCsh9m/IN/d4X//n//HAvTXfYskVy6tc0f/tlr893eveq3vquqjaKsCOOUUkgsQ7Vbnj/Z4kwnoBfllEWOU4SIssCvt0jzQu3eXcXYTtOcoqpo1gJevbHPG1tjpATH1BilJRfvjMhLwaMrNTp1h6KoqIRU6r2acv2btUaklAz6PbI0YWN1ibGecneYIh0Dy5BMkpy0FDy2WqfTrCOEwDKtI46JOq7nI42EVt2m4TlEcUSWZZRlRFTp3NzOObfSYKHZmBJaS4pCkGYF+5OctKjoBIdInYZr0YtyeklJfQrtBYnvOJimznA04dqdXSaVzXK7AaIA0yCwdfpxyd444cJKbbrpkehI0qLAtk003WB7PEFHtdnUkWGUVGQVPLpkIxbs+SI9a8GVlWR7UmDaLgu2Rm6rRbIf5/TSCR1NEo8GhIMeC606Y8PC9zyitGBrEOKZGoGrhDHt6SK7H2Ys1635sP5opNNBfsM3iJNEtTlNk5ZlE2UFeSnwbGNKJPUZhcnRkdj82s6qFd91KMsK31W8mTjN7qtWTNNA17T5PSuE4M5ejzt7Pb7xGtR8d2o53GFztTN3qnxQfNqs9qOEyJMnT1JV1dzP/sqVK6RpeszPXtM0dF3/yK22HySSh4wPc6I/jkxKURS88cYbRFHEiy++eJ9hzOzmq6rqEyctHa14jv7OJEl49dVXMU2Tl156Cdu2kVLyb97cVQPOaSvLNDRW6g57k4yvX+3xV549TIDv3N7njb1XHoikAvVgCSGJkpS3t8fcHuXklaRuG5zruJxa8Gn7FrZIGSQjWouL7O3tH75fqvcCIDWatYCsVKQ9pFT8FU3DQ1nGXutGPLnRJs2KOXL0cCgucW0LXdfYunuXUVyw0FnCdR2ePKH+vjdWKr22qfPISo2nNlpzu9uZj7ptKR5InOS4lk5capRVieu4uI5LWQmKKMPUJPt7e+zt7tJuNjBth0a9Rt13QU+PORmq66RhW6YiSLZmCUbBaMPehIODA/xGG8/UcW2DIlf9b6mBZ0n6cakgxlISeO60dadRpTm9qCBMcxYDB9ue2gqLisCBbphyesF54MIel4IkFzhGRV5q6IaObZosmiZbcYRXa7K85OBaBvu9PkkY0uv2KDSTMDZo+w5FUVCUJbZlYepQSkOh6RDH+DSghCVtSxEY7RmZsyxJCvVbzenGxDYMepOEvUlGb1xgIqgX4hhjv+a5cyXkfP7cKqHPWbXCtFrMi/d/rsMk4/rWPm9du4OuaawttTmztsSpE0ss3VOt/HmbWhmGQafTmevvHZVvuXFDIdeklOzv79Nutz/02vID1NanGA8rkzKZTLh48SJBELyvw+Js1/Bpyb3DcfRGv9/n4sWLrK2t8dhjjx2+RsI4Ke9D0Bi6hobifoB68P7om69ze3/EuUeWSNNy3sKahZSSRi1gHEZ8++aQawcRpq5h6hp7aUY/ynBdh3o5oTccsbKyiuu67O8fwD27RkPXsS2TURjRj3LCJKPm2liOSn5lUeCaOqnQ2e6Hx5R4D0NjEiXc3Tvg+rAi1xyMJGbBLzjXcfncRoMoq8hKQdO3CRzzHritqmpm7TbDUJa4L98aEuUVnqVTCckkLek0XB7ZaGHoGqYOB70Bw+GQvb09HMchrWyKSmBYJqauU009PbKipH6MTyAZDocMBkPWVtdINIdrgx6ZqTYFtm2h6zpxIbENMHSDuu8yjuJpIlUS70jlfFhWFTITWJaFqASaruM6Jq5lIUR5bFE0dB3H0ijKAls35/dQmisWvBQCz7ZYbNZIsnyKQmpRVhWTKGYnmdAfT7B1CHyfLEvJhYFl6hR5jtQ1PNdG0zQOJhlRVuCaBp4B/bii4ap7Ja8kcVGx3nSxdEUWvdUdc/UgIhMaZaFRVhrJXsgjHZ+6a05bkSn3hzzmZc80eVvmg2crmqbh2vb8PUJKtvb7bO33+cbrlwg8l1Ori5xdX2ZztfOfXWdr5me/sbGBEIK7d+9y48YNbty4MSdEzqqV9yNESimJouhTc0f8tOL7JpE8TGtrRug7ffo058+f/8DK59PiqhytdnRdn7s+PvbYY2xubh7/DrrG+eUar94e0nDN+ffNCuWed7YTMApj/uBPXma3NyTJC+IkwzRNAtdBopFMZU/qgc8kihkmJbf7MZ6l40wJYq6lBsPfvrLLcwsVG+sbNGqBQhdNiXyzcCxzDreVUs75CEVVYRzhXBiWhV5IfOfBu64kSTjo9ni3D5k0qTmAKLnbz+iHCV95bIXVtoeQkjTLSfP336XqmoZjm9RFxrkFi5u9kriQmIbJiQWbcwsuuqbRqPmMw5h2e4F2e4GqKonjBDEJ0YuUG1sJzZoylSow6TR8Ti81QJZICd1ulziOOHVyE9/3IEzxbV2pCLsmeVFQVAoddfZEk8VmTcnhG6aCQiMRQtLwLALHYJQWLDd88jynkpJhUrLR8pCywrJMvKmsfJjmJKVAE4LANgmzclr9KbhtmFX4JtRci8EkQkroxSXduCLOBZYG7UadUVLgOSZZmhBHSqp/vW4yGQn8KWrtajcmzJXHiWmY1F2DhgtRruZDhq6xUrfZaHn4nsM4TrkzSEgLQcs3icsKaUiSvGI3qtjoNA6r2PcJ17YopnOTbG6xoOG7NoaukxUVZanagskH2EeEccLtvR7v3NhC1zQC28CSOacfGbHc/nSsfD9s6LpOEAQ4jsOXvvQl0jSdVytHCZEzNNhRP/s4jh9KIPbDxNe+9jV+4zd+g1deeYWdnR1+//d/n5//+Z//2Mf9TCSSD9va+rALvRCCy5cvc/fuXZ599lmWl5c/0eN/lJhVIWVZcvnyZfb39/n85z8/Z9zeG3/tC+u8uzthZ5zRcE2KShLnJc9uNFn3Bf/s3359LiUCagcjhJjvAE1dpx54INWub9iNKCpJYB8O/KqqwtAgTAray+sYpkGUqvcLCY5l0Qg8BBDF6ZTDo95bd02WajZ3h4pjYJsGFTr9ScJqw8G3NGV3axiUU4Z0OJkQToaMhEsmSxYCa/79HVOnFxVc3RvzhTMd4jTHMgx816SSkiTNpp8t2RqmbI+Vb4pvwam2x+lFnxMtjzAr5y1B2zAIPJeyqtB1DSGgFIIwlxi2x+aJGq2Fklv9hK3emLIs8XRBy88YD0sC3yecjNFkyZnTp4kKwWQYU3NNzi/XuLIf0otmUGhYa7qcWa4zmKg2nK5pBJ5NmFbEeY5rGpxfrnGjn7M7iucFX8s3WW/aCgVXSJKsZHtSsD1IkJqOZ5vUPEsRRaN8+ltUYmpYBnGWY5om26OUawcxmqakYcJSGXetLdSIs4LStFlseSzXLOpmRZok7O3tcTuEDIemb+HYJhJBd5zRqdl8brON1DRMTWLr6l6K04w4rwizippjoKEhUdWZbymp+53+BM8ylCy/qdBu8RHe0b3s+MOQ89cZho5j25iGju7qD6xWABqBPx/yCynZ6Q0Zjyf0/+jP8F2H02tLnFlf4uTKIq5zP4Lv046jXQjXdY8RIsfj8Zxl/84771Cv17l8+TKdToc4jj+1iiSKIp599ln+5t/8m/zCL/zCJ3bcz0Qi+TDxYWVS8jzntddeI8/z95Wlf1B8WolktmC+9tprAHPXx/eLF88s8H/5uQv8P791m9v9BNvQ+Kln1nhxTef3/+Q78/bb0UQyC9eyqKQ8IjWulGcty0IzTKQoqaqKcopG8lx7XqUc/b5xmlGvB0zCGEPXqXkuEkmSFggpeWa9QVYKhqlgkhcgJYuBzbPrTTRNOyLJrpBZWRyxtnaCve0IXTvewkHTMHTIhD7tqWtzFBFMF2Xf4ep+yFu7EVUlsHTYTwS9MOfpEw022h4L/iEIwbJMhvPZChxEJVe7CZMkAyloexZfOLfEU67JI8vq/tClII5joiii1+uhaRpm0OQbV7tkQkfTdWq2zsmWzQsnW/SjnFJImp7FStMnyw4Xy0lW8MrtAcO4pBIC37V5bK3JCyddtvsmeaW4Nm3PnFeAUkpuDXJudiNcS8c2JJO4YDCRnF+uEbg2SV5i6pKVhsvN6z1AmWjdHaaYhjb3P/EsnUwaDCYJz6zXMfQajanDY5RkNOo1oqxiZydEz1OyJCEKS0zDxDBM+qGkXCgJHAPTUO0ww1D3QVLE0+Qx/bFTNXvPdRmGCVI69/GWZkgu01Azpw/im1iGMfWsP0p6nVUrBlmh7A5qgTdPIrM4OoeM04xbuwe8c+Mumqaxutji9FqHMyeWWV7486lW3m9mo+s6rVaLVqt1jBD5z//5P+df/st/SVVV/J2/83f4hV/4BX7mZ37mvs7Fx4mf/dmf5Wd/9mc/sePN4vsmkXyYhX5mhdtqtXj++ec/Eufk0/JWVxLjSqLhc5/73IeCAv7w+UV+6OwCw6TA0jW+8+Z7fOu1mxiGQc13QUKUZsBhGyrwlMyFuOchXfBMAhMGk5jANhBVgWa5iKrg1IJ/3zxG01B9/lBJcsdZwTvbY7ZGKULCmaU6F1br/MWnA24ejIkypTy8UneOQUOlFAx6PbIsY3FpGakZOIaGZpjYU4Z3WaqkohkWuix5kAqwkJL+OObyfgSiYrHmYhgmlajojROudyPWmu7U6taYJsLDRWh3nPL63TGaBr5lgG7RzzRevjng+fXgSCI18DyP0WhIENSoNVp84+qBmh3oCr20F+lMEocfubDChYZPWVZImC+YoFj27+xM6EeF8nHXDUo0Xr3Z5akTdU4u+niODZpygqympLVK09kaDAlsfT54r9k6k6xid5TwQtNmre6BpmEaGp5tYZqGQn4VxzW0XMehSlKioprLqRyVN/FdB92USEJ818UyfYQQ5EVBmuWEYcSdu8rbxPd8TNuZ+73bhkYrcIkKiW8ZSCSObdObxDRdE+9I5ZsWqpJKC0GrJvAMoaoV28KyTMVDSrP5ZbdNE4Gco/MOQx67pjXfQ5v+jqPVilIiPuJxM22xSSnZ6Q7Y6Q745ptX8FxnmlSWOLnSwXM/nWrlw8qjzAiRv/mbv8mv//qv8/jjj/P888/ze7/3e/zyL/8y//gf/2P+9t/+25/Kd/yk4v9nEsndu3d59913OX/+PKdPn/7IO46PI674frG9vc3bb7+NYRicO3fugTdVmJa8fGtAVgqeXm/MeSu6ruEa8K+//l1u7yqCZFVVhPHsHGi4jqkkwV2HUZg+EL1lGhpfOt3iG1e7jOIcw9QxKVlvuXzhTIfAtSiKkiTPMQz1kI+jBM9zKSrBt28O2Rml6NOB/3euH7A1yvj8hs+pTg3bnLawjixUVVUy6HUpK8Hy6tr8d59oudzsJewPI+quiWkYRCXYpmCj9eAqTUqJ0E3GUULTsyjLaq4bVnMtcqGBYeI7OnlR3YdEujNQkvBtz0LTFI9EkzkHo4xuy+bcstqdDkZjtre3qNcbnD65zhu3egjdYr3jK++XokDLc3rDjO+8E/PMRhPH9RQSzHLJioK8qJROVlLS9q0pb8WkKAoSYGuYstpwCY8h2Ww81+LWQUhRSRruDB6s5GYcQyMpKgRKS0xIQSohyQvKUvmyeK6DpmtomnJqzHJVLRm6hvGAHbGh6+RZjK1DLjTqjouQAkM3yKXBsh9wfs0njiO6/b7S2rJsDNulUfNZDUyudWN20wwhlM9Kux5wsu3M/V0macnl/Ygwq3Bdm7vDPr5t8siSryqW6WxE06fVhqaRlRXlB8zG0DR8x54niNlzMKtW4ihU94XvMYmSBz4PAEmacf3uPpdv7yKEYGWhOfdbWW43/rPqbGVZRp7n/L2/9/f4+3//7zMYDL73mz4D8ZlIJB8H/iuE4N1332V3d5fnn39+7k3wUeOTbG3NZjRbW1s899xzvPXWWw8s5//0Spf/9n+5Si/MEag5xi987gS//CNn6I0m/MFXXz4Cf703JHmh4L2jMFVzCdNUrObs6KJeoacjPrcokBsdSqk4E8t1ByFKJrE6p4Hnzi1hi6LAdR22R5ny9nAVugkNdMNipz/htq/jWYfIKkM38D2bLMvY2tkHw2BldRVNO3woG67FsxsN3tmdEGYCNIFroPgiNVdxTnSdJMsoSpXUG4HHnd4EQ1fkQt04ItJYVVSVxNAgzUsljujq5EVJmimGeZQp7SxdN+a/bVY5JXlFmGSEYcj+/j4bJ1ZZXuqQ5uVcckVDcZgMw8B1XYSZY/vKm+Wgpx7yGVqn1aijmxaGaShGu65TTBdM29RVQpASfd6WVIrFg3EMssKxTDTTwjF08kJJjhRSErg22hT1NRvgz+4BA4FvCA7CgsWGCxoYpkUUF6zV7blcDSjDsAKTre0Bjqlzoulwo5ewM5hgGzq5UBDtC2t1At/CtCxqjRa3ehE3+xHJIEFuT2i7sNrwqXyPg0FC3bU52bYJHB3PsTEMnUsHQyZpwcZinTTLCQKbYVxwq59Qd835NZBSUlWCtKwoK4FrW9iWoWRmksNqRSG4rAcIRx5WK3lRKng3imn/IN4KKFuBoiznJMnd3pDd3pBvvXkFz7E5udrhkZOrPLK5+j7P3oeLhxVs9Dxv/r73m6V+1uIzkUiAqevb+/dOH5RI0jTltddeQwjBSy+9hOc9PInwk0okRVHw2muvkWUZL774IkEQPJDdfneQ8H/7w8uEWclCzcbQYJyW/PPv3sWuIrTJwZzA96CwDAPHMggTBeM92pOOc8E4l4iyQEZddN3k5MbGfQKPs/BdZ25Vq5s2/X6fJJqwGytCpKFr05aKQVkW6LrG7jjlwsohaaoSgt39HuF4gOX4bJxYRdc19scJvUmKaxos1mzWmi6biwF745SqErR9C8vQEVIe26n7roNtGaR5RcM1aPsW+5N86mqokkqYlpxba4IoERxvaTm2GiC3ay47oxSQ8+s7Y7u7lj6F9w5YO7HKQrvNcDowb3g2+qTCsm2q8lCMUDNt6q7F0nKbjpRkWUYcRwyHA/b398k0mzwzKAwNyzNxHMXlyEqlVzVLIhqKbDeezrMarknbM9kdxdRdE8vQqNDRDIv1ljO3uxVC0Ovvk0mTbljg2oJzSwFSi+mNFYlQ02DRt3jsRJO6a1NWFb1JzM1hyd5wMCcRNj2TUwse47Qkyis6nsmpTp3AUr4jrm2xNcnZnlSYlk3Hc8hLwSSrCCqNphixZOWYCIokJNc8pISkUJ+33KpNr4VNXpTUXJMwq4jzat6K812bJCum8w1VqcyqFd3Q8RxrOtTnA9FgUkp8x2YUxnP5HdAIpppgWVGS5TmeY5MfuZ73RpLlXN/a5+nzH38u8TCCjWEYft/5tcNnKJF8rzBNk+zITnswGHDx4kWWlpZ44oknHtoKdxafxIxkxlmp1Wq8+OKL8xnNg479x+8dMElLluv2/KZpuCa37tzln/27S/ylp9VuSNcUiQuNeU/dtdXiUFTiWPIVEl67M+TKfkRaqP59YMJPPLVMs+6TZsV9/ee67zKJUsR04Lu4qFRP0zShGg8pipwsExiGOVUKlkg5VQo+EuPxmGgyot5sUavVGcdqNrE1TCmlkvto+yZfPrOAVgkW/fcnZ9mmSVZU3DiYIKWkU3P54rklvnNzwMEoASQasL5Y52zL5kGzlbwoyYuS0ws+e6OUsJAEtkVeFIzjgrZvQTphlERsbm5QD/wjiUwtxK4esTcMqTsmpmmRlBLHqFhpqJ66pmm4rovrujRbCxRlAVXJwc0+W90Bnqnj2CYlBrbj8OhaC8+xyIoS17bZH0V0Q9WGChyTc9O2Ty/KiXJJ3fNYDWClbuPYKuFevXWXy72C0vC4sxvhWqZyXlxwWKmZ5KXEsXRanoWsSibTVuh2WNENczoNH1lVFFXFIC6wDJ2n1pQAZs1XRMpZognTnOu7I3QkNcfCti0CqWHbOeOs4OzmGsPuHoZhkGUpw+FAVX6Wi6ZZJGmKOALmsC2LAkV6lFPiZpLlCCFVtalrx6yPFW+mxNR10rxQCtamSSEqkiSfX3YpJfXA4/ZgcM9mSU5niSoagYdEVc/vV63YlsnP/+jnWV9euO//+6jx/y+mVvB9lEiOSsnfvn2by5cvc+HCBTY3Nz+R7P1xZyR7e3u88cYbD+SsPOjY/UjtnmevE0Iw2LlFMewRHbHNVTv1w51YM/Dniz4cR21dO4h4Z2eCoYNnCHTdJKkkf/LuLn/xyRV825i3wIqqxDQMxlFyD/NeSZd7ns+5NZ39fIKQJboUZJlixle6xZKnkWUptu0wHPRJk5j24tIckXZpL+RmL8a3DWqmrnbFIXzj8j5/8ekTGLo+T4xHw3Us7vZjXr87JExLJOBZBueXAl5Yr9Ft2gjDoOnYNFwNUd1/zaK8JMkFnYZP0y14fDXgRjdmECboGqwvBKxaGbooOH3qJJaldsV5KRinJYYOTc/iqRN1ruxHjNMSE4GrC84vBSw1fBxL2Qz3Jwk3ejF74wzTsmg6Go9vLrE7StkfJ2R5iSEz6kbC+CCDtEaz0WBvkvHWTsIkTue78U7N5sm1OqdKD8dxqMocbyqamaQp13d2uDmBTHPp1HwcyyBKc+4MEwxD43zHm3utzFpguq4hMNjpRziGTlUW0/Ns0zFtwjwnzEpOLNQYR8fnbHkpyCuBP5VFqSqBlAJdCgQ6lmXj2jaGbdOo15FSkqYpsiq52R/SzypangJX2LbNMCkIbBNTk2pRlxAWcPMgZJKWWIbGasNhtaGAG3P5lKkQ5n3yP44NqFbheH4e37/qDqdcKBUzlr1OVhZkWYFr2/zCj3+B1cXWA4/xUaOqqo9smDVLJJ9WRRKGIVevXp3/+8aNG7z22mssLCxw8uTJhz7uZyaRfJjWVlEUvPnmm/R6vQ/kYjxMPGxrS0rJtWvXuHHjBk8//TSrq/f3VR/U2jrT8ad+4gKqgu6d6xRpQikkndqDUSSNwGcYxoceFZZF4Nl4rkOc5Fw7CBESbFFh22reYJmScVpyZ5Dw2GqNLC8oigrXsYiTTBEZpSTJc+7No+dXW+xOMq4dFGQVgIluwHrNpGEU7Ozs4to6uqbTbLXnpKpSCO70U2xTn3vJ+76HlqT0o4pbBxOW6w4g8RwHy1RzDUM3OBjHvHJrQFoKGp6FBsR5xTu7EwLHYHPBxzQN0qxAVALHsnBs5bMyjFLe252wPUzBsKAasNZ0eWKtzlrTIcwqNCmY9A8Qpc6pU5tIwLYMbg9S3t0ekuRqNtLwTJ5Yq/PFM21KqVBPNcdE17R5tVNUgje2JwwSQc21qYqSO1HBMC544WST88s1KiEV674sKfOMKIq4u3vAtVBHaiYLgYPn+0ipcTBJuNOPee50h0mcwTSJFEXBzs4OwrApDIOGZWCbOlmeY2iSmmczzJm24ap5ItE1DcPQORgnVEKgmYfPWJ7nCKnMunzPRUqo+cf92i1Dw9R18lLiB0qaRghJXompi2RGmuc0XBffdRjGBYXhkVc5T51Z5fLuhHGSE8c5+SjGNnXWXA9TU8TaflxyaT+iEpK651JKyfV+SlJUPLHWRCLfVz5FCEGYpNQ8l1GU4rk2nmOCZswhybPwXWfa9jy6vshj85ZG4POXf/h5VhabD/y8h4nPoqnVd7/7Xb7yla/M//2rv/qrAPzSL/0Sv/d7v/fQx/3MJJLvFUIIRqMRQgi+/OUvfyyzmQfFwySSsix58803GY/HD9TwmsWDWls/8dgy/+K7W1zdOqDo3QUkRaV0nJ5YO34cTVPIlHEUH9sxVkIwiVKkZiCkYJIotVXHc9CkNn8vGqRTaXfLNNFQ/WYhJEVZoV6idmgK61/g2RaTOOXZ9QYnmi574wwJdAKblYaDmCKzikpgWg7dXh+dHo16gDBdsrLEMY254GaR5xi6hpCSrDy0u02ynDiVNGoeaZYzyCSZ1Gh5ytsDoOaY9OOcnUnO5kJwRDpFU73v6WJzeS/i9qik4XnosiRF52Y/RtM0nllvEJglOzt7uK7D6ZOb89787V7Ea3fH6Bp0Gh5SavSilLe2J/zwI0uYspqjqY7G/iTjYJKy2q5R5jmmCb7r0U8qDqKKU+3DtltQr1GWLn6tTuHEyHhIYAqiKCKMQizTQkOnm9gIqexxkzQnSVN2d3eUiJ9bp5qMCVyXfKoqoDHjwKRMYpeaayl4r6ZTlCVJVlB3bTzbJCkqLF2ft3SirKJZ86iKnFCqc5iVglEGSSkwEDRcg34qGcfKQTGvBFGmJFN822AoVeXyys0+/aQizXMs02Sh5vL4eptBlJIWAsfUCAxBzZLcurNNVVVspRaZNFisuegokqzUYZBKCqnh2yZlKR7YgkJOW3GJqqLSLCeMc2zbom6oof8swu/BtPdch7/yoy+w1G584Os+ajzsjOTTFGz8sR/7sQ/csD9sfF8kkm63y+XLl9F1nS9+8YufCDxPSsl/vNTlX7+xwySrOFev+MrJD48nj+OYV199Fdu2+fKXv3xM4uDeeFBrq+6a/B+fa/Lf3niLrUqZVLU9i+dPtlhveVPVXW0+0zjqCHgYaoeZZRnDXpfArEhKDSQYppJYyUt17KZn4TsOaVFQluWcqa4SkxpmhknKQZiTlOAYGmeW62gIllBS9rPIspRRv4du2awtd+ZleFHkitQ3GaOVOZPCxNQ1yqLEMHTyUvli1J2jt51KIso2F0ZhQlWUaI6jdNE0KIsS13EIk/J9AQhJUbEzzggsA0PODLwcLMtmPyzoj0PG/S6NRp2TG+uEccJskb87UEm16VtU0/O96Nv0k5JuVLDZdo8N8mcRZSWWZVMWxVwCt6oqtKpgfxxzruPhOfac5FnO2nCaggUHgUpOVakkQbJccNDt8u6VMfXAxzRNwvGQ9dUV/FqNYZRR811GUYJ/D1/DtRT/RAhJWQrKqqCsKlzHxjJNHlkVvHlnwDAtcczptbBUi9LQFBAhzAXv7qo2k64rAETDd1ms2URpwTjJMQ2N9abLmc5MwkOyF1XsxRWBBUFgU0nJ/jAizzNeONkmcO0px0NnHCVs+nWiNOPWzQG6LBmOhui6jm3ZeL7LMMk5GEXTyvxQOiUtSvK8UCq8nnNfgpi1tqpptRJ4DlGc4cwQjQ9w9ww8l7/6419gsfnJM8kfZkbyacqjfJrxmU4kUkpu3LjBtWvXOHnyJLu7u59YEvl7/+o9/sdXtuayE3+mwb+9pPM/nc9YaXxwX7PX6/Haa69x4sQJLly48KGsPY8mEiEEX33lXV577zo/8ViHJK8ohaTmmGjaoequ7ygZbtuyqPuegrXmh/IomqaRZxnjYQ8vqPPcGZ+vXekxTktcU853/8sNnyc3F0FWlEU1l7U4Wv8nRcV3bo7YD/N59fTanQEvnmkraK6nFoODbp/RsI/r12m1mseOYVk2zaZNs9lCq+V881qXfphiUiF1E6EZbLZsGq4+PS/gOe48iQBTv/GpedZ0121ZFmmccrbTxHMV9PbeHnIp1X82hyZaZVGgCUmUZOzsh1w4ucpSZ2GKzDp8f5yXc4va2eeVZYkoS4ZhwqKnZPeDqatjkuUIKah5LsVBDLZ1TEu9FBLH1OeJY6Y04E8l3TsCLGNCkqv5g23bOI5NWKWcWgloN3XG4zFZlqHrOr3RhElacHK1w3oqubJXUmUl9swuV0g22h6GruO5FnlesjdO2R6lczmTE02PZzZaHMQVk6RgoW6y6Oks1axDZn0vZpyWLPhqE+I4DvvDGFmVPHWihhAujcCl7lqkmbIVAOjFFbauY01334am0fRMxmlJP8oQoqI+ZaJ7roVlGEpbzI0ROPiWalsjBYPhmCgXDJ0MWwR4ns+wrDgIc0ZJiedYrLd9AvUAzC1/4TizfU5IvGe2YujTakUDUzf4+R/7PO3Gp9NKetjW1vebhDx8hhLJfQvDtG00Go344he/CMDW1tYn8lmv3B7yP766NV9LZsmklwh++0+u8ff/yhMPfJ+Uklu3bnHlyhUef/xxNjY2PtTnHU0kSZbz77/1Brd3uvMb/ygbeBZ135vqZ8ljvBDHsnAdJXqnIQjDCYudzvzm+6FzC7y5NWaUluganO34/PCFVaI4njN/PddD0yBOi/n3emcvZnuUUHcMTNuaigoWvHxryE8+tsQkShgNR8TRmLXVNer1+pyEN4tKSCopWah5nAA+f6rF1YOIOK/QpWTJgyUjZutuSL0WUA9qZFmOZR1Wc2tNlxu9mEFUKKFJx6U3jPBsg+VADegt08B3bYSAOEuxLYtSgIEgK8Gcnk8JTOIMUeScWO7QajUZjFWrq+YpyZAkK2h4FluDFBzFMi6KQs2uNObXRgh5qGdm6ASuw1rL4spByCjJ5/OcaDpjWak7NAJvaq+rAZL+RJEjPcvgzFKNW4OMSSHRZEFalNQckzOdAJnH5HlBZ2mFnbDg6n5MIXJevtHlRMNmxbEZ5jpSN2nWDNbqJit1m8BTs4CtYcJ7uxNKIbENnd2spBvmPL5a54kVD9Ook+cFnmtjGgZZXjCMU0ZpNZ0D6di2TZqm1BydcVqQFpVynJxyj6RUiD/DMEHTj6kagBIgFQKqSlL3vTkkN0kLhmWGoWustXxujzJ006Lm2KplWeqs1XUW6xpRFLF70Gc7MYiFrpBrlsPtXsjpRZ/Ti/7U8lcjz8v586QUmB9M0J1VK43A4xd+/As0a5/e7v8HieQ/c4RhyMWLF3Fdd+7VEYbhJ0YY/Pfv7GNo2jE5EU2DSsIfvb3/wERSVRXvvPMO3W6XL3zhC7RarQ/9ebP5S3eoSIbDSQQwHxRXQhDP3AylRj1Q/IIHPQh5WZLmBZPhgKIoWFlaYmmpQ5zlCCHYaCtXR+WXrrFQ9wnjQ2SW4LBNpmQmbCoJd/oxrqkr4iFqV1l3TIaxsoe1ipAsTVhcWgHDmic5x7aQaLx+d8TV3TGGZVMz+1xYrXNqwWez7ZEWAsvQsKYyG4YO4/GE/f6QPEsJfBfD9rEdC9/1+PzJFpf2QvqZJElTVuoOj6wESgEXRawbT6uYwLOREhbqHqc7Nd7bGYNUBMBJnBBnJU+st1hfWiSM1e+W93BWzi03GGYQlgK7VFIwUV6yENhze9lZ2JYJUiUoDXik43G1K5kUqj1oonF+yePcamvKEdGI8pLLexG9KEdISd01OdcJ+Nx6g1u9kLzUOLtcZ7PtMRn06A+GrK2tcn1Ycruf43k+lqiIM5M7UcXJWsGKlgEGDSugZvg0pygo0zS40VX310x/DJQFwe1BysZicMg3OtLmsU0T23EwNIlrm6RZhqEbKASGapceVtUanmMRJYqFbWkGSanR8F2Ykj6jrMAxdTpNf96C6oY5dwYpYaZmeYs1i7atEeYVaZZjWRar7RrnFj1MrULTWsQHEVkyoelIhCgo44RKM7m2V9Jy9SPoRQUOaNV8SiEf+OzMolUL+Ks/8UUawSdjXvd+8YNE8p8x9vb2ePPNN9nc3OTRRx+dVypH4b8fFxpXTglp9x5HA6oHDKLSNOXixYsADzXo13Wd27s9/vk33qM7UZaqC4F9XJzQ0Kl5DppmzO1wH/jdy4pRv0ucFVSGwzv7MeZwj8WazfmVJpZhkBUFtqUQRmGczJnQ97azhJQYhs5ud0JRlniOjWlZSCkoS8UAr6SkNxiwYMup3MnRW0bt6P/sWp/tUYY/1Sw6SATDG0O+fLbFUs051s+fDZGDWp2gVmdrEPPazphRMkIKwUpg8NSqzwvrdeJSA03Hs/X54P1o1AOX/jiiEuBYOucWlXz83WHGOIwQVcWzpzo8udEkPiICGOcl26OMMC3xbJ3VhsPzm03evNMnLiSWZXG2HXCmbc8TK4BhGlw/CDmYZBi6mhutNhwWA4t+VCCBlm+x1qrN3QXjLOf1u2P6UU7gmFiaxiAqeFckPLum8+y6GvBKKenu7RLHMWdOn0IYFvt3D6j5DrYmwTDwLINBXBBpFo+dWSNNEuI4JhwPeH1vF8/zqQyHpBAs1H1MXfmZSCFp+jaTtGQQpg8EDhiaxNMFg1xikOM4Npqm05sk1ByT5lT0UUpJUsE7twcMooIsFiw2gUqyO1SCk0UlQdN5dLWBZ+kkGfSjgnd2lQyMb+nTzUvKZqfOY22DrLQxddUSM3Qlae85NpMipha4ND2bsiypyoq8yOlFOVdv77Bat/A8H9/3MHQFAw40YwpQcabunPl8ttZu1PirP/4F6v6nm0Tg4YbtURSxsPDxOSx/3vGZSiRXrlzh5s2bD4TRHrXD/ShijA+KH32kw//7O3cVWmm2YkvQNfjKo51jrx0Oh1y8eJFOp/NQxEcpJa9e3ea/++ol9uND4tVaw+FHH+3MF1nL0EnzkrxQCriBp5A3yqJ2iqjJMob9LlIzKL0237xyQCEKdF3NDN7dnvAjj3Zo+i4SNdjGsoiz7L4komsavu8wiVIC16TmmEzSHJNDj/ekVPIjNUtnZXXpmNzJLPYnGfthTitw0KUAKkwLhknJzUHO2eWmYivnJY25Yqv6HrvjlFfujCkriec6VJVkN5VU+yVnw100BPUgQPc9DNOet8CklFi2zdcv7bIzUjLzDc/kkaXp4h/3yFvw6Jkz1F0HqUliodp4gzjn1TsjNVDWNISErXHJEyuCL59tE+cVhq7hWSp5+Z5qnWRFxdcv77M/ydCnUPU7g5RTCx5Pnqiz1nTRdR3XMhnN1Zclg7RiUmgsN32qSl3Hmu+yO4i4M9Bo+U2kFOzt7VMUBevr60g0euOErKgILBPLUlDpoizwbIMwKymFxPd9VpcXGYcJrSnQoTuKiMKcKovxHQvLsglqPlkh0I2KB03zJBJNajy5scB3rh/QC0sMvaASEtvUubDRotOsTblAOa/e6pIUFZQ5WSXZjyoWfAvb1IhzQWAbnFwMWPR1kizH0HV6qQTNZDE47ATUPIftfsiy37iv8iurikmcUFUluqarc+s4lFalOCTCZGXZp2kJ4jhiMkyZxClurljrvu8TJYfVimObLLcb/NwPPUfgfTRux8PGwxISf1CRfIy4fv06Ozs7fPnLX37giZwlj08ikfzw+UV+5JFFvn61p25qqQa/jg6/8pWz89fNhCAfeeQRTp069ZErobKq+PfffJ1/9s0bbMcatq7K70oo6e8/vdzlLz65QuA5pHlxpHUg5+0nKRVJL88SBgf72H6AGzT50zd3KYRSYLUsi1IItkYpV7opT62qmUwsFaDeNEz8KXImzjIMXccwjHmrx9A0Hlut8d1bI0ZpoYa4RUklNU43dU6eWMZ3lcJumpfH2PFRAVJq0ySiQkPDMXR2hxGTWF3LRs1Hk8oDPZ7OfK4eRBRTmRQAwzVxipJBWuKur7DgGUp+ZDQhS1ULzHU9glqdr767y/4kw7MNDF2jG+YM45zTXs5S3eWJk5uqBThtq2iA59i8uhUR5VKJKuo6umHQnSS8u1vRqdlzKXZ1FVQbsB64vLc9pBsVLDUDdCRlWZIWFbcHyodlreUrt8R75M/HcUaZ51RTr3HHcZBCYpsGo7REiIrd3V2khPX1E+i6Es400xKkmKoXHEHs6Qa+rTgTvm0zidKpW6ODbTu0Wi1GDNkdJRSVoCwTJmFIInRWGi5N38J3XSohuN2dcHeYMk4KGjWPZU/n2Y0G+5NMiS1aOss1Rw3Oo4Sa53DlYEKBTsMSJJWgtdCgqCDMBc+v1Kk5Fq6lqmIpKoSm5o8HowgdEFIN2k3DoCiU3lVcVCxwf5VkGQbLDZfLu2NsQ87tkbMKaoHL+kIdTZSsLi+yP4y4NtgiSkD2htT0HqsNi2bNx/N8ltp1/ou/8JxSifhzCEXgfLjW1vebOyJ8hhLJqVOnOHHixPv6Gs/scD+JOYmua/w//tqz/A/fvcsfvLZDlJc8vx7w+WDI2U6AEIJLly6xvb390EKQYZzyB199mWvbPW71E3QpMU3l92DpOnpRsTVMyKWBdp8Q3fHodnsMBn0WFpdoNRvcHGRkUle75mluM3UNx7F5d2vAY0su2hFkVnXE+MqzLXRDnwIMxHxYfmbRx9A0ruxHyobX0Di76PLUyUVAO0LeUnMR2zJBgEGMEBVC6nMdKVDtw4atBreeax/zSDF0Hdu2iEoN11a3oGWpIbc5Ra0p+RiHRqNJo6F27VmWUWQpr125w/bEoOmamIaS1TA1nf1RTN9y+PKZk9Pfe/h9JNAdx+wNQ3xLGSfNQBB1x2SSlQzjgs4RmLOyK1ZOk/uTDB2lXyZQlWwj8MgmGeE0dxyVk5+FPZ0LSSFxXGcu81OUFct1n2HvAM+2aS4soOk6udQYjhJcU7V5BnFBy1Oe9nkpCLOSR5YDfNtW1sCBSz/Mub4/JikqAttgo+1RCohKjaLMqahoWJIFI+PK1eu4rkMsHW6MlbaaZzt0Rwl7Q8EjSwFnO/ejmOq+yzCMGYYZRZIQI6jXazi2g28Y7I9jcqETeDZZXqBp+nwuBxLb0BinJZ6poWsGSaJmUYZh0Ao8ap7aYMzasBKdQkiWA5NeYNOPiilIS2IZOqebNoiCmu8RZyVXezkHqUbdt9B1l3FRoeXg5AW6GHHCbXPj2tUHOhJ+GjHbFH7URPID+O/HjPdLIEfjk1TotU2d/+bFk/w3LypZgNFoxCuvvHKfMdbDXNSd7oD/+avfJUxSZVkqwZiS/kRVQVWhSdAMi3FacGrRU4PPe+YzQkjGwz7jScjK6hqO41BWFaMwQZYFmgHG1IxIM3TSOKFEIVPUYPt4BVWbonpErj5HSIljm7i2RVkKNtuSupYQRZLFxUU870G/XSPLS2zTJExSTrQ9mgcZUV4SWIqRkpUCISXnlmrYtnkfB6YSyvnQkBVxUdIM6kp6w9Dnwpz3+qQ4toVr22SuR5BZGNEIDUGaKMayrhtKx0pzpoid+6vH2dk1TZOqqubKvJqmYVj2vOqaybY0Am+aALVj7we1oCl2uFLlNQ0dz7bIy+qYg+Vy3aHmxoSlRpVkylwqKxVzJ+5T2R6dxQ65gEu7CfuTlDwrcC2dlYaDlErMU0iJaehstnweX2vNwQJ3+xFv7UzICoFt2+xFFZ5Z8PypNmGckhY2rqWzGNhY0/MbRRHv3hkrC18nJy+UknOlW+yGFWeXDRCH/jD1wJ1vBNIkpqwki+062pT0KIpi6qxp4FhqkzFDBKpkIlhtOAzinFIzSNIYIWGcVtQdE0cX84F8LnRu9hO6YUZZFCzVHc52fFbqFZOpC+aCb9HyrTnE91Y/YW8Y4RuChmfjuA5lKTiYxHTWNvg//Zc/TJ4mc5vbd999l3q9zuLi4gf6p3+ceNhEEobhDyqSTzs+rEviw8RMXfib3/wmjUbjIxtjzeLdG1v80X96nUqohFd3TAwNjklC6RqiAl1WWFRzXkTgu4q8lmRkec6o3yPJC06sb2AeEb/r1GwMXaMUEl1UgEmRpRRC4+RiQM1z5jLqoBa9Zs2bo4iSouLdnQm3BmoQf6Lp8thqDS0dI8qCs6dPUlbcZ5I1O5YiEKpj2brGsyc8Xr09YpxUaIaBbZpcWKtxfuUoC/3e0Di14PH2vsYojHEtnUpIolyyUPc5s1Sb+454U7jzzGvEMVXP3LItQCPLMgxDo5IaeTyhu5dTqwUYlo1lO/NFInAMOnWPnWE8b6cBTNJC8Tn0ikpoh8rDc1VajZWGy0GYU1YCc1pllNJAlyVt3yTJChLUb7Usg1IoQl/g6nzhTIeLt/qMUwWbtXVoGQkbCw0WFxcoheT17Yi9QUTNNam7JrnU2JqUPLUaYOlQlGqRXKw7ZFPPjkoILu8rK+WF4MjvKSSXdsb86IVlxNTueBamaWJ5AbpTseJryKqgKArlZS9iEqFz0y05tdykHvhYptJjE0Kwu7PLoqtxUDgUAmxjqgWXC+qOQWBp88pXSEFcKkRWVSllgKc2F7m6OyItK3Q0Go7BI8seOgIhNKJc8PZezCTJ8SwdwzDZDisKmfPEss9a87BaPGpcNYwLTENDFuqczNwqg6DOhQuP4zk2nmPTbDY5e/YsWZbR6/Xo9Xrcvn0bXdfnSWVhYeFDbWq/V8w2vD8QbfwMxqdlhwuKZCiEYH19nXPnzn3kHYoQgq9ffI+X37mGPrWnBdC1nNMLLpcPErJSYFtK9iEvK84s+rSmC5qUco61T9OU8aCvhqknTtynN7Rcd9hse1zvJZS5oBA5eSlwLJ3HOmqhsS2FeinKCtPQpnBZjaISfO1Kj4MwxzaUQOO1g4itYczzSzqn11fISzlnDxu6kjEpSjFXiN3uhwzjAsvQpsgll5983GZvnFEKwYl2DddQcwDLtSnLmUfKkWG/Dk9ttgnzLnf6JYO4QEej7pk8s6bcBw1dtY/KSpAd4ausNBxqjkF3HONoFbVaQImBIXOe3Fgi8CCKY6LeANPQaNRrOK5Lo17n7KLLMMroRbli3QuJaxk8tlLD1HXMqaT9cJJQCkFRKYb8o2sW3TBjbzydK1k2sko5veAfW8R7Uc6lvZBRUqDrOgs1h2fWm/zUU2vsDmNGk5B01Ge5s0Cz2ZyioHT2hxEt35rzMTzUAnmrG/FjF5anMGt5rEIaJUr+XSkFKACA67pkZUw/zNgbhASO8v446sroOcq2oKgqPMuaL5xZUVLGOVkac/3GgFY9AMPCdV2l7By4bG4u8dqdAQeTnIkoMU0D3zJ4dMmfw7uVS2TIzjidS/bXfY8LqwE/+tgqB+MYXYOmayrXd6kUpXtxySjK5oRIAEtXaLClwODcsjKd0oHxEZtde8roR8r5HdZuNrGXNmkEx2ciW8OUawcRpbBZXz7Dlx9/gmgyptfrcfPmTd555x0ajcY8sdRqtYeqVmaD9o/yXinlD2YkHzc+rLnVJ51IpJRcvXqVmzdvAnD27NmPfOOkecG/+car3NjaBw4F5VRovHS2jRSCrUgjywt0HR5ZDnjp7P0wvziO6Pe6BLUGQaNFUVY4to1rm3MnQk2Dn376BH/65m1uDTOkBicXPB5fq7NSVw9OUVYIkeFYJlGaU/MdQOPNOwN6UU7dNRSXRgh0NMKsYkQNXTfm5yU6wrUIPBdd1/jWtR7vbQ/JhUK5NVyTL5xq06nZbLY9JUsfJ0g59W6fViTm1H1xkBSEcUYrsBFZwXMbDc51fEaJYpd3agpyK6XE91wGkwim4N9giqAys5xNvyRJBML0mOQSSyt5dKXGqQVfQT/9gE5HsjeMefdgTCUy9HKX052A59Y8dkIlC+/bBustl7ZvY1sGM/2vG92Y692YtFAJ7UTT5akTDU53JKNUkBc5nSBgqWbPocmTrOTinRFxXtHwbZCSnUHMJM548UwbLU/Q4iHnT6/j+zWSLKNZ87h1uw9wH6nPNnXivEJoci6xcpSZPUrL+fUBlC9Nlk2/z2E1WYlD3oxrmziazvpCjWv7E0xdzP1golzQafo8cqpJzXU46A/Y6U+4szUiLMBzKjaiA5460abSTMZJSVWVSuHXONx5b48ytkYpdcfAMnQs22YwiXnzdsYXTrdZqtl4ro2h6XNSq+dY9LcnSmFA06ZdXpUYpFROonGqREZHSYZjm9iWhRSCTi1nZ5SRquEV7VaTpY2zaLrO+aXD9uyfXevzHy51GaclGgop+dxGg59/dpV2u8358+dJ03Rerdy6dQvDMI5VKx+2S/Ew0F/4wYzkzyXezyXxYaMsS9544w3CMOQLX/gC3/rWtz4yZK8/DvmDP3mZ/jh8n1dIiqLgmSWDF88vkkmdhcDBMTXlVz17lYRwMqLfH9BZWjpW3uZFQT4z+9F1GoFLXlQ8vuyxZER4nkUQ2Pj+4Y3r2CZSMm9rzBBa3TBFMwxcxyFNU8pyKvRomexP7teTAuUolxclb2+PeHNrhGuZdFybSkiGYcK3bw74qcc7dBq1I0zu4zFOCv708gHdeOaEZ/LoSp3HllwarnUPt0FO5xOqippkJdcPIvbGGboOdTJONk3+6xfPcxCWTJKElmsROMdv5xu9mLe2JgjdoipzpHQZHVQ82opolCmrrkOtFqDrFc7Ula+sKm71Et7anqBrGp5lUAjJ9W5MVgp+/InV6bm05jpWRVmRpBlbw4QoK1lpKg90IRU6rB/lXN3pUxcRq6sraIZNkuXUfeWPsdjw0HZDSiGP+bxkpWCt5VOVYj6EPpoUarZOO3CZ5IIF1ySd+p+HWclS3cZ3ji9krmMzSTIMDdYbBoPQYBCX6EIt2U3P4vHVGg3fI0wy4krn3YOMUpoEnk2al7yzE7LXG/HUmo9pudR9j1bgKi2sKaJvd5xiaGqhtm2bPM+pOSa9KKcf5tQdUxFwZ9faV170Dd+jF6n7kan6iZRKstHUwbHMuRHYnV5EPy6m59jm/Eqdd24nVGaAu3wS0zT4iQsdNtuKL7I1TPkPl7romsaFZYUkjLKSl2+POLXo8aXTSkncdV3W19dZX19HCMFwOKTX63H9+nXefvttms0mnU6HxcVFfN9/303nwyC24AeorT+XmA1JP4mIooiLFy/iOA4vvvjivLyvqupD90hvbO3z1Vff+UB1UQ2Nuu/R6/XpLJv4gKwK0krJwLu2RVGWbO9sE4Yxq2sncJwHI0o0VItiMI6RUlCr12m16qRJQr8/5OCgi+M4LLabVKWDYaqWx9GwDJ2qrEhiReSzLRvLscmiHNu8/6HwXXsOTb7ejdEB19Copomt4ZqEBQxzDT/N7vs8UIvBy7cG7EcCz5Q4tkZaFFy81aUqGnzuZBvLMilKQZ7neK4777WHWck3r/UZpSWWDmmWsY+OEQSs5iUNG9quP9+lz4a8cV7y7k6IaVm4hkCzbYSU9OOCofR59tQqaZoQRTGiCOke7NOo17Acj2v7E7RptaXOmYJI91LBne6Etq/EBI9WXJZpkAsddwqtlVM4tKZBVZb0RikXLqzhOIo06brW/Df6BrQ9k0EqaHomSMEkzrAtm7WGdcRaF0ASZhV5pfgaZxdd3tuP2RmEmIYJuk6r5vLosj+vlCSSbiy4fH2XJK+wTZ3NtsezGw2GcTH/21LNpV33kEhkVfLWzT0qTNYWAnUszyEtKyoMMk2jzFL6gwE7Oxq+r2C27VYDw7SxTbBMa65SPIt7Cb81z2UYJUgJbVfjjqGRS4Oaa05NyBSR82SnrtSakVzei7gzzOa2xXcGKUs1i+dXXf7yX/ohbNvk9IJ/zI7hWjdmkpY8unxILQgcE9soeGt7Mk8kR0PXdRYWlNHbI488QpIk82rl+vXrWJY1TyrtdvtY4ngYDkme5xRF8YNE8nHiz7O1dXBwwOuvv87GxgaPPvro/IJ/WHixlJJX37vBV195Z97fPfRMr6btJw3TNDENncEwfqB0c1GWxEnCaNAjLyoefeQcpql8qY+KPEqp2iaDpIJexFrTUSgwTaMSGpbjs7LmYRkGZZHRHwzZ3t3DNC2CwMf3A1xXDfLXWy7v7oyVA5+rRCLDOEVWgrNLTeqBCxLiNMN3nTmBUEglRW8Zxx8OwzCgKOmPI5a9Gp7rYBk6eXGIXupGOYMUAlPOxRED20Bkkhu9mEeWaxh5iWnouI6yo50hzK53I0ZpScPRSdOEhmthewG3eyHrDWXde3SXPrPpPYgrCgzqeoU2peGpCkNnd5Ty9HoDz/NZXlxgEifkeUEcR3QP+gzDEsexKKupZ7tl4rsWB+OEKK9oP6DzUFYC3zZJswmBqeYOGhrjyYSirFhZa+M4auduW8aRHblqaX1uo8G7uyHdUC2QzXrAI0tKTypOlIR/WlS8vTPhIMyphMQ1Dc6t1HlmLWB/omTia47JasMhcCzl9a5pXDuI+O7NLjrgmAZJXvH29oS8FHO7ZF3X5zv+NE3Z2t6hMj0W6z62pVFM53T1KZlSGA1OdFpzM6s4jhgM+uzv7yMqm0lqYusCz1OyKXGi9LWa3uEmTTNMvnO9y/5EXbtOzWaj6bI7TtmNleBiK3B5aqNJ3bVIsoxBWLI1VsN419KRUkHNY83nxEaDL55uqTnKPYu4EtC8f40xp7DqBz3jQh5vN3qex8bGBhsbG1RVNa9Wrly5QpqmtNvteRusLMuH4pAAPyAkftrxcVtbUkpu3rzJ1atXefLJJzlx4sR9x/9eiaSsKv7Dt9/krWt35n+7173NMk0C11F8iCR9X9OuNM0Y9btgmKydOEGal5Ar2OXMvS1Kcr5xo8f1/ZCiqlSF45r8hXMLLNWPDxJdx2ZSVbQXl+gsLyPLkvFkwv7+HlJK5WkvKs424HZoMMkEaAJL13hkOWCzNVPiVUJ7lRDUA48sV33spmexN87wpmZVumFQVhVSVDSmA98kzZmNQZWWmEE3UVL3QXC80pup1+aVoOU6SHFc/0nToJcqgEKWxViWTb1WI89zKgGDuGCtea9cjUZZVeRFSVnkmJ4SFpRSKjXgqWS+FIJ6o8Zk2oqbufjVGy2uRgfEWUGe50gh0HMDTCXK6BgPrriaNY/FOMc1dUZJSVBJkjgmzCsWW3UeW+/gO4q3kmQFk7SkGylWftu3aPsWL5xsEmUVjmtDqRJrNIUM+47NazsDJUVj6QS2SVZJ3rw74Mm1Oo8s1+77TmGS4bkO72z1sU3lXy+qSm1g8oo7g4RTCx4118I0FAs9SWJ2d/dYXGiz3a3IsgybQzXgsqrQdW2+wGqahud5WI6D7jVACtplzuD2kK1ejGVMMAwDTTc4t9rk5FKdqpKUleDrl/fpx0qcE+BWP6HpmTyz3iSrBKaus9R0EVNItaEbindlWASuIjpqGpxYXiQxanRLqVqK003YLKHous5G28M2NMKsnJNOKyGZZCU/snxYjZRC8t1bQ16+NWKcFmy0XF48054n3FkcnZ2Amm3MqpVr166p36xp9Ho9Wq3Wh0oqYaja4z+YkXzM+DAuiQ9bkVRVxdtvv02v1+OLX/wizeb9Tmjfy243SlL+5z99he2D/gd+lutYU5kMhX6q+R6OZWDo+pyjEEfToXq9SavVukdb69C97e3dmMt7IZ5tKRhskTNOC75+rc9ffnoFy1DKq45jHyPhVZUEzaDWaFFvthBlQXd/j7SoWLIqOksOE2Fj2TZrzRnySJt7xM/aLrPv4zo2nzu1yFcvHTBMcuq+S5IVpHnJSsNh9b4FHYqqxMZEVjmWqSN0A9tQboFSKqc9zzJoBq7SURLHr72UUCQJUZSxUHMJAh+JhmGaSJnfN5xW515pMjVcA9c0mCQ5gS2mvwJyDM4verRq/jEE1CwMXeP0os/bOxMM28U2IUlzxlFG3axIB3uMyxqO66GbJkmpUWCwOx6yVLd5er3BuztjuqMINOg0azyxVsMzVQVaCcl2WPLO9oQozZFSDbtPLXg8sVpjrV1jHKdK2XIaQkju9CZs9ybUbJ2a76EhsYUgLwpu9xNOTQmlh+dOwbS3ehPSUuJbkE/JkLqu0wws+nFBXql/p7nil+zv79HpLFGv1zlRRLy3F+KYgrrvEicJ47TEtww2FgKCKSz76v6YqwexMsPSNGq2zlMnl5mkBXujGFGW1PQcK9zn2vUJS4tt7o5LJoXGaiugKgukBM9SrcdBkvPIch1zKhs0i0oIkjSjLHKEbU9bS4sEvk88KVg7sY5t21RVhRCCcZJzeT8myiuW6w5Pr9V49e4Y21TPTJhVnOv4vHCyNf+Mf//uAf/xUhdTV6rcr29NuHoQ89c+f4In196/5eT7Pr7vs7m5SVVVXL16lW63y6VLl8jz/Fi14nkP1vmaQX8/CauMP+/4TCWS7xWmac5JZB8l0jTl1VdfRdd1Xnrppff1Uf6gRLXXG/Gvvv4KZSUIXJcoy+4jEIIisd3tTtgaJWjARsvD1iVJpvzJPcdm2B/Q73VpL3beFzMupaTme7x1dwsdgS5LRKWqHcvSCfOKrWHKo6uKGHa0VXJvxHHMZDjAsFw21xbVA5okDEcjxpM+sZhAFtBs1HB8/0ibaBZqHtB2NF7YqHG1r5KZYZqcazo8vd44xmoHxV53LJMwTunUbJZqNtujFN82lJig1EC3eHKzNe2j35sUJL1ej7qeMbJsDNtRr5MQ5iW+Y3JupUngmSSpIgbOZNSllNQdk/PLPu/tqqGsoandZtOzeGy1Tjj1ezFMgyTLudsLySo5lXL3kbrJtf0xcaRQW5udGs+caGDrgiiKOegPuNYvGFRTBxQpaXo2T60FnPNTMs9S/fXApua55IXSrhrEOa/dHIAGbc/AtFyyCm70UtbaAbr+4HlbWghKIRWkuyjmMxjftlSCtixkVSGmbPKZWZht6Op8CzH3C5FCEOUlutQwp6rMWZKzs39Aajbo9Uvs8Zilms1aw2aQw3Z/AppGYBs8vlajqirGcUU/ynl3LwLNoB04ZLmCVmel4MUzbR5dqc+vZ57naKJid/+AG72cMNexhUoIrqvaflYhmaQVxj1JJCsrKiFpesosLSsFa6sLBL6nJPgbbZ7dVHMKwzC4ehDxP7y8zdZQ1cemrvHIks/PPL7AjV5KUUkePRfw+VPtOQS/G+Z8+8aApmcqyXxgqWZzvRvztat9Hl+t3XefPygMw8DzPBqNBk899dS8Wjk4OODKlSt4njdPKq1Wa544wjD8VP3aAf7RP/pH/MZv/Aa7u7s8++yz/PZv//bcpuPjxPdVIjEMgzT9YNvMe2MwGHDx4kWWl5d54oknPjDbv18iuXRzmz/8T6/NCXEwtb/1XDSN+ULmOTZ/+t4ur90ZzU2NTEPncxt16lKV3dvb20yimJWVVeq12nzYnhzVaNI06p5Ld6y0qGY7TQ21CIBAlBVC07EtZUlbVdWhA9+RuL0/4Mp+RFxptGsa56yMtaaLabt0llxWVzXKPGMymbC9vYOQEt8PCAIfz/OOCTVKKXlqY4GNdkycK2l411I6XrqmYLNlpVpRcIgY09D4wqkWr90dsTvOyEuBbWg8d3KRjbp5KKdfVfNd+v7+PlmW84ULmzg7MTe70bxicUydx1dqmFRESYWmabTrPkUpCPOSqhLUXZMLKzWansXWMCUrBZ2aw/nlOroSOSHOcsajgldujxilFWgGhq4Imk+vBmw0FggzNYhueYfAhVbLZlDZDAkxtQIHQV5V9CaC7yQpz69YnFxdRteNY8kNYG+SkVWCRV+ZYZVliYFqE97uRZy5sEwl5HwuMgvPUrIySV5gH2mvJUWJZ0nyosDUlZugYpZP4b6WwUrd4WY/xtQ1bEOp88alZKVm4VsaO/sHbO332S484kpgWzpVlXN3kPDMyQVOGZJJqmyYOzUb9wg59u4wISslnUBDlDmWobPSDOhFBb2oZL01g5NDp91iHMWsr28wMcaMdycKKh+GhGGIZVnklYHb9nAs1W7rhymX90L2xhmVkAS2GsRbtUX6lcNgXNFotnh2s8lzJ1WXIS0q/qdXt9mb5JxfrmNM1QTe3otZb3n8H760fqTzoXTTdF1nZ5QySkseWTreWloMLHZGKeOknCedtKh4dzdkb5Lj2wZPrNaODfdnqC1N0wiCgCAIOHnyJGVZMhgM6Ha7vPPOO1RVRbvd5pVXXqFWq32qba1/8S/+Bb/6q7/K7/zO7/ClL32J3/qt3+JnfuZnuHTpEsvLyx/r2J+pRPJhWlsfZUZy584d3nvvPS5cuMDm5ub3zPT3eqtLKfmz1y/xrTev3PdaxbNQSc0yTTzb4mYv5tU7Y5ASd6rqm5eCV++MeaohaXf3SfKK9fV1DMM4Bus1DQPPsRFSICRM4gRLV54gg7jgKLK1EBLTsvDNQ1jvbMhs6LryLMlyLt3t8epOqmClhs6wG3NnkPL5k815T72sJEGtjm46tBY6SFEShhHdbpdeXDGqLKRustL0efrkIuM4Rdd0ao5+5DwcfodGoJLPMEq5O4gxdJ2lmo1rGbx4ZoEwK8kqwWoroJjOlI76rgshuL59QFrC+vIajm3z3LrBetOhH6l21krdmQ9tpZQ0Apf3tvq8vTNhlKhKqVNzeeZEjZW6IkxapomuMf8cUKzsV2+P6IU5Dc9E1wSaaXHjYILvmHzxVJt6lqk24ZEwDI27wxxNiik/B+yygjgmyjV2JwJR3qHdbJAlDoZlY5ozVOCUNHfE5dIwTGQSk+Ta3GdFOTIqjkqS5awv1Fg8iNkepQS2gWVo8yrl1KJ3uNnQ4NL2gDv9mLiEhZrDWjsgKyu6oSIR2pZFx7d4bDVgOBwyHA5JrAZhlLMQGOiaRBoaubS5tBfyk48ts9qsKB4wlM4qDcvQDlvCUlKWBWWZM0ktHCvAtkwMQ2M4SVRylJLVhsfdYYYAGp5SRg6zClEVJINd3isHuJ7P5YGgn0oCx8aWFeO0YGl1lc+fbCIkrG1s8uhKXYEnprO7qwcRW8OUzbY3b38Gjqoy3tiJ+EvPrmHr2rwFJuU0mUjlGz+zLp6tF3ml9L1msj3DuOCfvbzF5f1oLvraqdn818+vzdtf7wf/NU2TpaUllpaW5gTE3d1dfvd3f5c33niDIAj4tV/7NX7u536Ol1566RNh2c/iN3/zN/lbf+tv8Tf+xt8A4Hd+53f4N//m3/BP/sk/4dd+7dc+1rE/U4nke8WHhf8KIXjvvffY2dnhhRde+ND6/kcrkiwv+KNvvs6V2zsf+B7ftcnykjBOeP1Wl6qqCDwbTTeQosKWkjgXdEuH01Jjff3EAxNaWVXkpZKTKMsKz7HRNXh6vck3rnXnO+NKCCrdZDXQ77EE1uaDaikFw0Gfd7s5QjdpOIeouCgreWNrzKkFH8vQjku7SwADv9YgDnWu9iLyqqIsc24PC97dHvLiyRpLrTr2VJ7kaNSmznSX90Pe2ZmQVWqnXXMMnl712Wh5NDwTz3Ee6EE/ilK+dmmXsNAwHZdLwy5rTZ8ffrTDRtuaky0PfzHUAo/b3Qkv3xqSFAoSK5Hc7U8Yhgk/8dgyy01PSXncA9PuRzmDuKDuKhkb23EocjUwv7435lzbwTY11QIzVIIWQiDRiFLlXw7KUz5JEjzXQRQazXad8yca7HX7TIYj8iyj5nv4gY9vTX1vhFqcdF2nKHKKSrJ4BIwghKQ/TtgPMyzLou5UfPn8Eq/dHnK3H5KVqjJ7rFPj9IKPriu+z3vbI97cGlMIgW3oDKKU2wc6z2w0eXpzgbQQChzh6gwHAyaTCSura1y9OcGzDNS6q6nrm+f044Lb3TGbbXfOmynLiiTLcB0H39LYK0qkbc/vBqHWVjzbIM0LbNtkbxByq5+yH5ZUSBZdg822x/YwZZAU6JqB45g8ttZgvWGTJDHb/ZC73RzPhFLamKbJk+dPsZ+b9FL4v/6vv/RAguDMfti6BxhhGzp5WZGXEsc15t2JrCgJk4L1ts9G0+XWIOFU28WcJutemPOTjy3NLR/++FKXd3dCzix6ilUvJbcGCX/w+h5nFn182/hQhERN06jVapw/f56vfe1r/NN/+k/57d/+bfb39/nFX/xFkiTh7bff/tBOrB8UeZ7zyiuv8Ou//uvzv+m6zk/+5E/yzW9+82Mf//sqkXyYYXue51y8eJGyLHnppZfed7D1fscXQjCcRPzBV1+mOwynu3yNJC/vq4YUiztjxiKO80oplFYVcvY9NQ0MQ7UzFhfftyoKPJc4yahEhZRKvlzTNE4vuujmCm9uTRjFGbbtsNEwee5k84FmT1VVMuh1GaYVSSlxTSVoaJjK2c8XkjCv6IYZF06071PJBcXdeGt7PCd7IU0qYJRUXO6mZOHwGLTYcRxadZ9xlLA9ynj97hgNqNsGEsE4KvjurYITC3WavvVA3k2apnzj0g7jQqfTrKPJkrzSuN0L+calii+fbePYin1elhVZXuI6NmGccqsfE+cVbd+an1/bsBjEBdtTqOiMc+B7h224vBRUUi04lm3PPeJNQyMvFRjAnppTgQJRGLqBZRkst3xuHkwwqcjSDM/zkLqBVhSstutkpaDVatFqtRCiIo4TJlGMjCIC3aQfSVzTRNMEWamIi5tHcMV7k4w37o5IhUFRZFiGzkbL45n1Bo+u+KAZ+LYCLuiajmUZjOOUK/shAnmfO+LlvQnnVhq4eo7EYDIaUhUZZ06dIj8GctCwLAXqOB5HeTMSzbQoK8G5lTo7o5RhXFBzTJWws5KGa7HScGgELoNJzMU7I/bGGY6pdvpXJxWLdY+XHl0izgRZntNwzUN/HqvJoLRwJ2PqtkZRltTrdQTg6oJQ2sRpRqN2/xK23nKpu6qSXwgOPWx6Uc7jqzVqU6KmkJJvXR/w1Ss9BrFqUZ3reOQSbg9TpFQE0afWAn7oTJ2iKMgqyetbYxYCa16h6JrGZtPl5kDJrzy93ngouwshBBsbG/zu7/4uQghef/111tfXP9Ix3i+6XbXJXVlZOfb3lZUV3nvvvY99/M9UIvlerafv1doaj8e8+uqrtFotXnjhhY98IQ3D4O5en4vfenc+s5j1mqUEz7WxDIO0KHAt8x5kEyzVHXZGKcoFRO3MqqpCExDoFaBNNbi0qWS2mLZmfMZRPGfyHjeh0jjZtDnT7pBVys+k5j1YvyrPM0b9HugmS0sL6PsHMD1mOW2hCcAwTeqBT5o/eEC/O87ISkG77qqkONUwcnRBP9P4yhPn0MQhtNi1TLpdC98PuNnNKIWczhTUfKThmowyweXdEY8tB8zbcIZOlhcMhmNubO8TVgaLzZpSntXUDtK31fcJswpQEGvL1HFtpUtV8xzGaYmha8fuH03TMG2b7iTmzIKqZMQ9bbilpo/vKalFOTf/gqQQ1Bxz7tcOR4mZkjQv2GhY3DkQDBJBK6iTS0GSFJxZbuKbh5yFUgi2hhndsMTQHZYX6vzQCZ33tofc7cdIDTabLmc7DpZWAQZpWfHanSElFoFZoVs2WSm42YtpeMqmFwRlIbAsE8dUvfi4kMR5RXAPoz1wDDJhsDsIaXkWBwf7ZFnG2toaAg3ftjiz3OCd7TENw5gnkTArp8rBx7XEbvQzuuMYNDUzOdfx2Y8qwqKaSpbYPL5Wp9PwmcQZ++OMgzCn5Vtz5n5gG/QmCVt9h0eWArTAw3MOPXOEYJ50dMPkwlkleaLrOolhYlQZ3/7mNwkCn6WlJRYWFphIl1Fa0vIsXjzT4j9e6k1/g8EoKWi6Jl+50Jlf5z+71udfvLKNoWm0fJMoq/iz60N+5PwCP/fkCmFWshhYnF5wMTSmtgulEu7UlTClpimu0cw9cua++rBeJDPwja7rPPfccx/p/f854zOVSL5XfFBFsrOzw1tvvcXZs2cfSi8L4MrWAa9d26Hdvp/lqmmQZjmFruPYFmleTrkWFXFSgCZ5fLXGlf2QJFey4lVVIdGUnlMgEKI6psHluw62aRKl6dy74V4nQwDXtqhEhSkEUsgp1+PoXEVy0OszGfaxvWD+/RcCxfswjekiKyVxoVRkPaOiKDVcx8Y2DPKyJMmK6edLdMtC3Je0DxdHUzdptRdYWVkhzzPCMKI3GLLXz5GVTlEo/3BFzLSQSUKYFPPjzNpwo9GIyXjI0soKVhojqwL9CKzX1DXySijSmDM7F8cVbWuOyb5RYVoWoqyoRIVl25RRhG+/n5GRhmdqbLYcLu+M1JzLMYhzlfAfWQrmc4ea7xDFGUlREefK8MnIJ5zyC8b4hHmFYWg8e3KRJ9bqaFKQ5gWlkLx8a8judHMBcHtYcGrB5nNnlnnuDBRFSRzHxHHIeNCl7nv0S5u4hJZTzc+Fa+nkpeBOP+Fcxwc0bMs85j8vhVCeN5aNqSlHRQ0Nw7Sp4gRdg729XcqyZHXtBP2kYpJF2IbOUmCxVLM5mCSYhoVAw9R1Hl0O8KeeMeO04I2diHGU4TuKDHh3kBBmJV861aIQ6v7t1BwFw64EGsxVj4/Kv2iaUnXeG6ecXVRdg9nGTAN81+GM63Cjn6LVOhRSwzVNdL+JnVb8whfWefFUg36/z82tPf77b77BrQmqleu7PHtygf/VM6u8uTVmlBZ8/lSLv3BuYT4bzEvBVy/3sHSNjamMSsO1sKOc1+6O+enHl+/jaQkhaJsmZxY9Xt+a0PIOxSW7YUHdMdloqfd81vzaO50OhmGwt7d37O97e3v3udE+THxfJZIHzUiklFy5coXbt2/z7LPPPhT6oKoEX3v1XV67usUDgE/zcKypflU6MydSC61h6HiOS+C5/NSFgm/d6NMNCwxDZ63h8sXTbUb7W8eABKahHsTBJEQI5QviWBZlWREf8bOYe4g8AIRQVsqwajweEU3GrK6s0Gg05uipF062+NqVHpOpuJ9mmHimwfMbtbkXeZoVpFP5c9sycW2T86smr94ekRTMB5hSqt7zmUUfU9exTOVMqBKChuvXWPcDTssJ7+1FSFESxzmWbZPlOVIcSo5Mrxz9fp/xeMLa2hqe72PcGJFJjYajrGXLoiQtKxxTp+aax6qCo3Gy7XG7l9Abx2oQbTsMk5Ka57D+AH7L7Lci4YllHwvBrX5CluXUbYNH1ps8dqKJrumgwWAc8/buhNt95Tooy5IFR/DiI2t4rk0hwLPV7GAmCeLYFtv9lL2opO4qhQPLUm29GwcRa3WH5bqDZVk0m02azaYiKyYxeT8hjRMSaWDbqhU3IwFmpZjOHyzKe5B6Dc+k4ejsjyPaUyVh07Y5GGcs+jbhQFWoneVVXrkzZm+SI4RE13Xqnsljyz6rdYtRUmCbOsv1GuttH9tWfJHL3YRRlLIQWPO2qmPqDOOCvUnO6UUfXdMwTINRqGC3uq5R8x1MKz8GpjFNizxOsLx7lyDJKC05CDNqjsnf/Knn+F/e7dLLdQrHpwn87JPLvHR2QQEvVlb4t9cy9qjYWNExqpz+JOY/vD6mv+/wv/38GoudNZqNxrHN5SAuGMT5MTsBUOTQ692YvUl2XyKZkRt/+slVtscF13sZgaOTFiph/vRjizQdnaIoKMvyI29mwzD81BKJbdu88MIL/PEf/zE///M/D6jE+Md//Mf8yq/8ysc+/vdVIrm3IimKgjfeeIMoinjxxRcf6iLEac6/+tp3ubPXo6wktmXQCHy1Q08P2x3+1OPjQYTFSgjCRElLyKjHT5yt0VxcJssKpusw4wNtvgAqqKsgTtP53/KiJC8qsrJib1Kg6Trr7QdxOg5DSslwMCBNItqLS2jmjJSoWkd136Xp27y3MyYTOpYuONX2jslUHI2yqpBYUJU8eaLBO3sJk1KiVcojvOGaPHmijmdbFFVFmt9bHWqcXnC52YuIMmgEDYqqJE5zbEq0qMvBQYLve4RhSJblnDq5ged5pFnB2U7Au7sTBpMY29TJSwm6wdMbTRYbvpJyeQCobzGwef5kk7d3xqSlThTG1ByTZ9YbdOruvGqL0oyDcUY/qSiqirZnstZ0eWy1ziMrNQVdNlQ7JYwzmoHHKEy43Eu53s+xDR09SykkHOQW7+4nfOmsj6Nrc4+QWeRFyfW9EZqoME0b21JtG9cyCTPV6lm+Z6EyDYOlzgKRmOAPSuWxUpZkZYlEkkiLzaaNCdPBvzoZaVmRFQLfNnhyTc1nBlGOZTuUYUjdNenoEb7jsrmxwSu3+myPUhqupTZHSPphxjs7gh99ZJHTi4ezmjQvp9W3S2+S4rkOtj3lc0k1H5AoEIehaziWdYzTJISkbmkYsmIUS9o1V9k8Z4oLc9RjJM4r3toe0w1zKik5eeo01u0u/7vPtaivnSEtJestd87xANifZLyxNWal7kyTgk+71aIxSdmOU+52x3MV306nM2+D+baBYxrTVuDhMpjkFY6hHbNcvjfOdgL+9l84xbduDLjei2l7Fs9tNnh2va44OlFEFEWYpkme53M5eU3TPpB+EMfxp+pF8qu/+qv80i/9Ep///Of54he/yG/91m8RRdEcxfVx4jOVSD7MjKSa9uxnoou+7/PlL3/5oWByB4Mxv/8nL08Va9WOI8uL+b9tSz1ouq4zCmM+6OvNmOq1RpNaQzHJLUP5hJuGMW9DBK5LnB4O1dXvBtC42Yv51o0BSVGhmxaG3OOx1To/emFlzleZcSmEqBj0u+R5ydLK6hxeOj3ivHVkIPmhR1eQQlKIiiR98FzkKIEQ4Mm1Gi3P5FY/IS10TizUeGy1Ts1ROlEPqpAA2r7Nl8+2ubyfsT+O0IDNBZ/nNps0bZ3xZMz+/gFSCpqNOlmaIaSGYRg8eaKObepcO4jISoFv65zreDy93mQSJaoNZ5kURUl/khDmFa5lUHdMTi8GnF2qszWI0DRY8C0MXZ9XbSB5c3vC9YHyVqkqxd9Yb7t88VRL+dgf4Uc0Ao9xrPgn1/bGGFJSpTmWadKu14jziq1xRpiXOA9g2MOhkLtlWWTZoWujYZi4ro1jmaR5MYUAa2qwn+R0ajarDZetYYpjGui2SZJXuLpkxZNcv3kL37Vx/YBL/ZK9ULXRHNPg7KLPi2fahAX0JwmO4SCiPoFr01roMIoSbnYjPMcm8ByklBSFGnSP05KDMOfEPVXczBrANTX2xxm+IUED07LQNNCSEs9WXuxHW46VkEo3zDN5fLXGe3sh/bikrBS0/ZGVOo+utdCAMM147e6I/UlG3TU5feYMk0zySlfn2SdXeWHlwazycVqSloKFeyqLhmcTF5LNc+c4veAxHA7nhMAkSWi325yp2Xx7O8exdOqOSVII7g4TnllvcnLhg0E6G22P/6p9/2viOObNN9/kxIkTdDqdect6tgGdJZMHJZUoiu4bhn+S8Yu/+IscHBzwd//u32V3d5fPfe5z/NEf/dEn8pmfqUTyvWI2PN/b2+Ott95ic3OTRx999KHmIZdv7/CHf/bavD0FqgwvisMFsihLHNtkHMUYhk7gqpZLmGTzEl1KmIxHDIcDOkvL9xGKZkP7sqqoew66riTeo6Q8Ng8ZpwX/6XpfGSl5DlKUZCW8vT2h4Zo8ulxTvWPPRpQVd7d2qITGyurakRtSkhRqgK/QLwreO2szwOFcRUo5b5ndSyBUobHe8lhvHT4sdcdUC4qtRAmLsiRJ82Pn39A1zi41Wa2nhFmArjH/LnlZMBhN8D2PUxtr3O2Oef3OgCxXi+eJdsDZhYDzSz55JXFMjWbgz5FlaVYQpTlvbY+51U8ppI6pwUrd4oun2+iivG+XP4v9Sc71foYmSpq2gcREoLMTVmxPCjYaSuDwXmXeOFewbL0qsExD2bgWBbZpkGSSUuh0aqr9WN1Tra7WbfqJJE2zOZ8hKwXIipohyYoSx7Jwp4vYpZ2hkpUPbJ7fbNJwTe4OEkohWW95PL25QGBK5T4Yx7x8a8TWOMe1DDzbIisq3twe4Tk2my2btu2wvb2D77ksLS1NRT7l1LZXmzPkNU3HdQyiQuPoTzjqWT+7H7ZHGZO0VAP8PGeSlnimwalODds0MTSN7iTh6kHE9jBFSEmnZnN+KeCnn1rj9sEEIT3avkXTO7Rh7kU5o0zSaQac3NykLEtWmh6x5vH1qz2+cqFzzPNkFks1m7pjMEyKY9d+mChYd6dmH1PxvXDhAnEc0+12eao64ObWkOt3JkhDJdYn11v84udPfCgG+70RxzGvvPIKKysrx9alGahmxls52lU5qgf25+GO+Cu/8iufSCvr3vi+SiSzBfPNN9/kqaeeYm1t7SMfQ0rJt968wptX72DoGvl8wD0jRM4Y6QaWacx36EKIKd8CQJvu5mBne4vRVP7dth8s/w7KlGkUxRRTFJUa7qoFPUozbvZicgE110QKNfB1TIMoK7m6H/Hocg0J9AdjxoMeuuVwcmMV27IoipKtfsjFu2MOJooRvVR3+PK5DtyDLDvcoavf2675VFL5ivRCNZhXLYKjD5IiGs6semftDgBN1zmIK8JEkSZPLvjTGdLx9kCWZezu7hAENU5trvOd613e3ZlMtZ48docavTThhN3Hti0C3ydYaDOOkmOJ6r2dCe/thAq5ZYJA42Y/AU3npx5fns+H7r3mo0yJZM7goBpgIKiKkhv7IWcXl+dS9JMjidegoipy5eHiumionXiYZJi6sgSYxBKQeI6DZR4qHz+5ucjeZIf9ST5tASk83+kF77D/rsE7W0NevzskKSSGaeKYCY8sujy+WuPCSk3BsGsekzhFoqFpOqXuMC4NFus+pq68dQxRkguN1293aWo+/eGQWhDQ6XTm19M2NBbrHtuDGMtT6s9SCsZxiSYFddfAd20MXUfXNYaTeFpZSZbrNk+u1bm8HzJMiikiz+KZjSYGknGkXCVfvTOmG1d4lokmSu4MEsa5xhc2NU4uPJi5nRRKaPP0hXPkRYHnebTbbfS0YJIqkIPt3Z9Imp7FS+cW+Ndv7lEJpWg9SUuiXPCXn+nc43Ojwvd9Tp48ycmTJ/nCcwVv3dzj+k6XPByxJEdsXZ2QdTp0Oh1c98Eztvu+f5LwyiuvsLy8fN/mdrZuHdXyu5cMCbC9vf1QHiafhfhMJZIPqiyqquLNN98EeOihel6U/Ltvvs6lW9vzv808QSohGOn6dPBtT1Va30+/SjIYhYwHPbKi4vzZM7iOTZYX81bFLGYtozQvsZxqjsw6uqDrmobULUVivKdlZOjaFEkEYTghGo9wgzrNZpMsLxUZMiv506sDolLimMo1bmdc8Idv7vAzTyw98GECldwGYcylvZC3tsfkUsPQdRZ8kxc26rR9G02DwHXnVr1HY5QUfONan1FSoOkGSMlyM+bHL3QwNTFnhMdxxN7ePq1Wi5Pra1zbG/LOzhiNQ1nxrBRsRZLTa+ucalqEkwk3bt9R1dVUssW0Xa73YkxDIeFm4Atpatzth9w6cFkIrPmCnuUlaZ7TqPnEW2Me1JvUNeWRMVdwLso5qzyJE0bdfTZaHlthRVpUBJ5LGGfERcWZjn8kWWpEqbLiHacljcBl05b8+GMrXNodcTDJ0XVYbbist6aeJLbF/iTl1dtDhFSQaQ2I8oK3tnMWGy6nFnwM3WAwCY/J1UR5RVEJao41tyzQDQMzyYjSnLv7fTwTRFmQhJO5f33gOZxZyOmOE6WYYOmUlaQSkrMdn6an5FXqvsftgzHXeynduERHSaqcn3qnD+IC21JscXmkjNkdZRxMUgUw0AXoOg2/TjfM2BorU6sHPed112bj9BlGSc5iI6DVaoGmWlerdYfAfv8F9r94agXH0PnGtT7jVIEb/uKTC/zEY0vv+55ZWJbFc49s8NwjGwoBF4YcHBywvb3Ne++9R61WozNNKs1m84HfPUkSvvvd77K0tPQ9OySzpDL735la8de//nUuXrzIj//4j3/P7/xZjM9UInm/SJKEixcvYhhq8fiwu4SjMY4Sfv9PXuZgMDr296Is5+0t0zAIPKXxE+fvLw6ZJgmDfg/DcjixvjJly6pdrGOr3ncpBKKqEBKiVBEJDw66jMeTqfaOj2Wp3XHgOXjGBFkWCN1QXhaaRjUdcndqNsPBgCQOabYX8P3j5e/1bsQkLag5Boap0GCurTPKSq4exDy/eVzp+FDUL+FmL+GV20NA6TIJUbEzyPmzouK/emET29DmlcixYyD59s0Bg7igFTggBWUl2BmE/Omlih97ZJHAdQgnE/q9LstLS6wud5jEKVtDJZrXOoLYcU2drKy43U84v1TDbxicabXRpNJi6g+GDJOcMDZwbQPDMJWKMGqXHeeSKK9YCJT7YJKpvNEMFFR2faHGpf2IojpkPFdT3P/mQg0xdUcENSDeO+ixv39AZ3GRswsLvL6l2mm9cYRtGpzp+Dy73ph//6ys+PaNIfthjqbrVOWIwDH5/Mkm55drPHNSmWEl0xaY79ikRcGdvpoHLcwo7yjexyAquLo74vRiwDCMcSwbxzanCrg5rqWr9lQlcWwdXVPkxKyoQJQsL7ZZbDdJkoQwitnb7SM0k4bvsNoKeH6jxu2hYq7XXYNTC950yK64OduDkG/dGMx5GEJKLkUZYSn5sUc7tAKXshIU5XHAxSQ7DvW1bIc8y9BFye4w4ZkTDTzHppJC6YlJZQr2iz/2JL/7jRvcSmzatk9SVgzjgrJSn3evD87RsAydn31qha9c6DCZJhLX+ug7e03TqNfr1Ot1zp49S57n9Ho9ut0uFy9eVNDmaVJZXFzEsizSNOWVV16h0+lw4cKFj9xm13Wdb3/72/z1v/7X+Yf/8B/yy7/8yx/5e38W4jOfSPr9Pq+99horKys8/vjjfO1rX/vIUvJ39/v8f/70u3PY7oNCTtVjb/f6tKYeIoHroGmHDz9AFIUMej1qjRat1v1S9DP9LH/qRzLrG3emSp+KM6BMgEzTZHlxgTRNOb3g8c6OYmNblUSfav54jsXpBhR5wkJnCce5P4n2o2LacrGpSpUAKwRaVdINc3xP+WOneUFZVtSO2Nhe3lfw4/q0MjCmMNNRUnJ5d8TJlotpGPhT5NNsrjKICvpRQSNwFYEQtXh4lsH+dFc+g/eurq2w1G6hTPZsiurBg3rDMMnK6ojulmoFeUGdjaDOCSm58uYeeSEYj4boho5pqFmHaWjHdq26ruNappJkB9qucgXcHpdkEkSliGUrTZ+TbXveDquk5O3bXa4fhOiWzZpecd6I+fLZRU63JxRVk1bNwbf0Y94p7+6G7ExyWr6NLgXCshinJa/eGfGTgY0Qh0TIVj1ACIklBGlRTbW3jp8LXQehW3PtrbwsyacbHl3X2Fisc6Kfc7sbqh67VhKnBWGa8dhKQGdBcYlMx/v/tvfe4XXcdb7/a+b0pt7de2+SncQhFJNeHDmh32wIgXthuSS/3WVZyi5LWWAJm3uBZbMLWVrYhVwCsdMTHHDshDSIbbnHRbJlWbZ0iso5OnXq7485MzqSJRcVS0rm9ew+PJGl0feMzpnP9/sp7zct4RzRXIhMNgM9WQKdaeYXaSwoDuCt9OFwunB7PAj5lG0yY6Ra+3IKZQVqAapL50x3kpNRH9NKPFZ6VlaMzjxBMJSEdYzaodvjRsrlEARDednrEpEVFTm/6RIFgeKQjyuXzyV86gQfvXw6u3o87GlPEOuTKPa52LiignctKB/y/TIYr8sxogAyHG63m9raWmNwU9OIx+PEYjFOnDjBgQMHCIVCpNNpq/YyklrtG2+8wfve9z6++c1v8pd/+Zfjqvw7nkyqQDL4Jra1tXHkyBEWL17MjBkzgJF5kvi9btYuncuxtk46Yj1n/14Egn4v4Vh3QRFdH6AH5fO46enpoqe7m7KKymFVOo3dfoBEMmW4x+WMOQuHQ6Qk4KWkKEA6a8hmaIpMrLuXdDqFIAisqfRxrNdNOKmg6UZOel5Iw6tLlFVW4fV48Lpdgya0jWE10elCkQcWvjUd/O5+iXlHvqdfALxuJ5mcRDyj4HIO3O25XC50OUtvSmJmibHzTBTUVQI+D4mcju5woisyiIWpPGOAsDMSw4vMzBnT8ft9eSkZg8oiLyd6JRCdVhASHU6UTIaKwNDdMjrGCWPF9FLeOB7F7Q3gdohkcjmSmSyVfgE1HSctBAiFAjhFkdM9SSMwO0Rqijysm1VMa1ea9t4smuZkbnUJ86v8CJqOnPdIeflwB229OdwuFy5doDmaJpo2ZjfM+gqqQlo1XqvP40bRNNrjOXxuB2K+xiYKgpWvj/TlrKaFoN9Hb18KM3JUFPloiyuIohMtfy90QBdchFwDA66sanQmcsiqRonPxZppQTRFIZpSkFQNTZaZX+Fn9awK62cOdfRxpk/FK2qUBzwomk4iK3NGcVPj9pBIpshksvi8LopDIXJZFy6Ph66kZLVCF/5tBdFJVypHdciFohonPwC3y4HP42Gu4KA5kiStiuj59vm0pFqWCgPeZ04HVy6fS2fbcWbPns2cOXNYiVF4T+YUKoMeSzJlohFFkdLSUkpLS1mwYAG9vb3s2bMHp9NJLBbjlVdesU4rZWVlF1TraGpqYtOmTXz5y1/m3nvvnbJBBCZZIDHRNI1Dhw4RiURYu3btgEnzkbgklhUFuWzZfC5bNp9kOktze5jmU520dcYQRRGnKJLMZPMyB2fPiRTKv9fU1BIKGoqm2ZzMsXCCZFYh6HUyo9RPcdBPIpk+a1Jd03RLqdftdODxekHw4fH6kGSFbDZLKpViYTDFTI+Gy+3B51AQHE6qqqoQBHM3ZwRR0zVP12HFjDKOx9rJSLol65GRNZyiwNwKIw3mdjkQEAY80D0uN+VFPjri/QV5Z95nW9f0s6Q2wAiU6UyO0oAbFyqy7sDjcqNpCqqikJVVRE3FI8CcWTNxiE7L19xkerGHZo9INJnJD+q5yWZkSvxu5lUO3bVi1mpml0KyNsSJWJpkTjGmr+tKaZgeRM6miXd3EYlGOd4nEs2CqguIgqH+etmsEuZXBplfGbRaWhXJ0I7yuFy0nIlyJqkS8rnxuY0TWpHfSSyR4UhYYP3cgeKflsWvKKKpOk6XA6fbUATQNA1RMO6XeQILBbxnmWnVBF0UuSDWl8bnduJwugyJFrfOrILCdKQvx862XlL51JHb7WJ6sZuGmUWEu+JEuvuYPrOCuooSI7ipKj19acJJFRcqnvxO3ekQCHld9GYUFEcx1dVFCIJxQuvq7iWV6sEhgqB5kPPpWdFh/qwTXcswhEkksqIhKxkEXefyeZXsbouTlA2FXZcIC6qCTC/tP0173C6uXbuIMyePM3fuXGbNmmX9W3nAPWBWZLKRy+U4ePAglZWVLF26FE3TLGn4w4cPI0kSZWVlVmAZSu9v//793HrrrXzuc5/jb//2b6d0EAEQ9HPptl9idF2nr6+PpqYmNE1jzZo1Z/0R/vSnPzF9+vQxETPLSjInTkdoPtXJ8dMR+pIpzpw5w9y5c6zvkSTJKKorGjU1tTjyudpEVuH5QxF6MyqIIrquUR70cPWCUkIex7ByJ2YqoL+zSO+XKVFVMtkciUSCdLKPnGx0dvh83nzBOTBAP0wURetkcbJX5s+tvXnvCw2PU2TV9CKW1ATxeTxIsnJWeyrAia4Urx3vAQwnR1VTSaZzFPmc3Lis6qyWS4dDwON0kc5J7D+TYP/pBIIALlFE1gw9qyVlDtYvnpYv4g4tFZCVVQ539nEmaUyDTy/xsrA6SHVJwDBakhSrcUFFxyE40XXFmqjOyip9+fx9KF/w9nvcSIrCoY4+dp2KI2oyDl1DEAWyqjEdf92SKqpKQ1ZLK2D5nxzvznEy5aAs4MHpMvxHZEkiLRlSJRtXVJ/VFmrWOrYfiRLuy1FipggdTiQNFEXlnXOLmFFZXBBEdHKKhphPBaVyCofDSTr7JARBpNzvYFFVgLrSIA6ng0Q6x7P7zhjyNl4nLpeLdFYiLSnML3NSJqSpqanB6+3/rOi6Dg4Xz+zvxOtyIKJZmyRdN6TQr5xXxowyHy5nYbDXkSSZlnCcfR0pnAIEvC4cLiepnLE5eef88iGHWg3LYUO8M6eoRPuMwcLaEj8VIR+KqpLO5vB63FzbsJj21mYWLFhgZRumArlcjl27dlFUVMSyZcvOCgDmjFssFiMWi9Hb24vfb+iBJRIJli9fTktLCzfddBOf/vSn+drXvjblgwhMshNJLpfjtddeo7S0lOXLlw+r5z9Su93BeN0ulsyZxpI501BUlcMtbTz7Qgq/10M6myObzdITi+L0eKmr6xd703V48WiM7pSExynicICmC8TiGf54ymyAXgAAZItJREFUXOT9a2rJZCUGR+ig30sqM3g6WxggU5JNp8mlk1RWVOL0eFAUhVQqTSqVoqurC7fbTSAQoKS4CKfLYeXpZxa7qFxaRmc8i9vtYkaZH5cATqeYDy5D34M55X6yssaRaJa+VBpRgMqQm/csrqY85CGT7W+nNU815rzJ8toQXqfIsUiKZE7GrcvMK/fyjqUzkRQFv8+NrhkifFlJs0QA/W6jGPrORTUDWqqBAZ7vOiL7O1Oc6Eoj5XIU+1wsqw0xrcR3Vj486POQyhrzPc2RJA50gj4vDofRiSdKEj19GY62R0j3xQkE/Hg8XnRdo7PT8LSvKCvjZCqBDmhqvt9fABxOvC4nbqdjQGux8TsN06pF1UF60zK9aRmPU0TRFDQd5lX4mVFRlP9+LydjSQ6eidOdNupa00p8LK0NcsXcMjRdICvJVmE5nZMgB23daTIqlBf5EQVD0cHjFEhnVVpjEktX1A5oQDGbKXr70rgFjWR+psLpdCIKIsmsjMshUBpw43QMPjEa/vWLp1egODyciKVIqQJyNocTjdmlTlxqGinrxuXxWJ1khvio2SIOHqfD0rACrK+HAj7es2o+7a3NLFy4cEwk0i8VphT7cEEE+qXhg8Egs2fPRpZluru7iUaj3H333XR2dhIKhbjsssv4zGc+85YIIjAJTyTt7e3W8NRQ7Nmzh+LiYubMmTPkv4+GTCbDiy++yLXXXkvTwcO8/OcmZIcPwTnwmN2dknlszxlEQbCc/dB1FE1D1aBxZTUVIS8Bn1GPSGdz+H2eIT3C+9Hp6TblTirwen04HaJR5MaoiaiqSiqVRpVzxBN9CKLDknL3er0D7pm5O8zkcvg8HmRVyU+1D/z9xqnGRW8yQ0/acLgz/dvNdfkKJspTgwYQwWjvPdMZoby0mJnT6wa8Tk3XOXimj5buHJKqIWga00q8XLWwcghRyH5UXeePx3s53ZPBIxp6ZpIu4BJFrpxdRE2BF4uZpgIBTdd5Ym8nuq4PUO8FSEiwus5PnVehuyeen+swNie1tbXkVNh2tJucohF0G6qusqaRzKosqwuxoi5keXIIgs7xzjhZWSPodVLicxLpk2iOpuhKGUOCc8p8rJhZZqkJdKclXm7uJqsKBDxOZMWYx6ku9rJhUSUMc3prjibZ3RanqjiInK+DyYpCKifjcjm5ZUXNAL/2oN9rzT8dj6XYk5f19zhFZE1DUnQW1xXzjnkVhgDmIDfGfnQk3cHprj7EvNKvqEmk08bGRhSgKBTE7fZQUlxMVj73Bi/g8/DeNQtob21h8eLF1NXVnfP7JxOSJLFz505CoRDLly8f2RD00aN89KMfJRQKkcvlaGpqYt26dfz0pz9l2bJl47DqS8ekOpEIgiHCNpYuiReDeQI6cuQI8Wgnd952I2VlZXTF+zh2Ksyxtg4i3XGystHW63a7UAsn4wUBBY2sYgwaJdNZBMFIf2iqRlFeul0a9IHTNI2erhiyIlNRVWPJvRQWuUVBoCjgp7Q4RCqdpbi0jEwmQyqVIhIJo+tYQcXv81GUTzEAVpeMOdUuKRqJTJag25g9SGdzuJ0i1UVDtVUbUg4dPUkOnklwOi4hig5ml/uYX+5Byabp6opRU1lJbXWl1Q1m8mZnkn2nE4YOk1NAAVp7cmjN3Vy9oOysuRuT3qxGZ0+GoEvAmd+hu3WdeDbHkXCSedWGT7wgQiLZH7hEQaAs4OJMbxavy2GMjggimi6AlqPI6yJUHMIfCBGLdhqdYpLMyZNtlBSFWFjq4FBUoTet568HtcUeFlUFMdt3JZfOtoMddGUMu2OXKFATdLB2ZglXzi0DdETRUFYu1J1qiaYs3xRQcToF/B4/sbRMRzxLTdA15L0o8rrwuN2kslncDoFMNouqKKi4qPa7CXo9OJ0iuZyE2+WyggjA3Ao/giBYv9vtEFlaG2JRdcB6f4iiQMBjTPYXDnSaAWlORWHdyonP56e8vBxZlkmlUmQzGY5EooQCfnz+AA6X+yzjs5Dfy4Y182k73szSpUtHNEw8UZgnkWAwOOxJ5Hy0trbS2NjIxo0b+cEPfoAoinR2dvLcc89NqYA6HJMqkFwIY5naGow5dRqLxbjiiissuYKKkiIqSopYv2IBiVSG3UdPsaPtT6QTcTwFHU+KpuMURcMMCkPh1+l0kBqgb2XURNp7c+w+2UM4nsLrFJgZFFg7v3bYbg9VM3L98b4UHfEsJ3okElmVkNvF/Moail2GVk9PTzfxHp2w020FFvOa6ZzCa8e7OBFLowkOSv2G2GFN0DVsLSPk9xLpTbLtcIyejIxLFNCR2dOW4XinSEOFztzZs/D7A2f5syiaxrFIEodo+E+IogO3oJOVFNpjfZyu8FJX6sebV7I103RBv5dDHVE0XcPpKMjFC4bneFcqZ9RxAl4SyYx1SpBlhUxOYlF1kFhSIp6V8bmdaHlZ97oSL9VFHnK5HB0dHYRCQQRvESldwhNwIjgVStUkCwNZEoohx15V7GdGeRCHKFrpm6f2tNORyBH0OHA5dHKKSmuXRNDnYf3ccnKShNPhGBBEALpS8gDXPofTacwaKTLRRJYZJf0Ck5l8m7Wu68ytLuZYJGnY+2oK6Dq6w4XX6WBhVYBMTkKUDGkXWVEpCvjyKtKGwsCccj+zynzkFI2Qz22cngtSdJqmF4iDGidQj8tFRjJSokM/NwVcLjfT60LG36K0jHQ6TV8qRTodxet2URQK4XC5KS8t4b1r5nPyeDPLly8fVz2pscYMIn6/n+XLl59TdHE4Tp8+zc0338wNN9xgBRGAmpqaMRFMnAxMuUDicDgM5dExxtTJAVizZs2wmjdFAR/vWbOQj/U4+K9XT6Bm+yCbJJNMoGk6S+qC+N0Oa1p+cMcSCBxs7+WVlm4UTUMQHfTJAofjILYnWDer9KzfKYA1+9EcTfP6iW4U1XD869B1TvZkuWZJFbOm1aAqKsl0lnQ6RSLRRzQaw+v14PP5eaNDoiMh4Xa7EDSVzt4Uv+9L8875ZSyqKcHhFMnmzAHN/px3SyxNT8bwWxAFoz01J0n0pBUSjjK8eSHKgM9juQ8qqkZW1sgpmmEp63Sgq4afisshkJFVkjklr3qcbwEWoCgQQFEVq/7R37RgoGg6RW4nQb97gAaXeZ/dLicLa/24XW72tffSk5ZwoLGkJsjS2hC5bIbOzjAlpSWc6BNoPhlFE5xoiozbIbK8LsSqxXXIUpZ4vI/u3hjt6R78AT9V5WW0RuJEk1I+iBgPBE/ebrW5M8GS6gABtzG9XRTwkZONtQmCgM8lksgYJx2Xy4WSbznWdeMag+VrAl43LqeDVDbH2pnFIKXpTOk43R5K/C4WVQepLvJaMzNm4DLncByiiC+vD5fOyvi9bmRZHXbTYL7bnA4HvUmjRdmwFnCh6jqZghSYofvmsToRRdFBMBgiGAwZbe/ZLOl0GjGXZVmNnxPNR6mrq6OoqGi4XzzpkGWZ3bt34/f7WbFixYiCSEdHBzfddBPvec97+I//+I8RXWMqMOkCSaFnwVA4HA6y2bOtWkdDd3c3TU1N1NXVGW/+c/yxzbbeT101E79LYMueTuLZcqpniLx7lpdlZRDpitPblx5SIVfTdZra48iqaigL6xoOp4OconE4nGbtnEpCHkOmQtP1Aaq8sqqxu60XNd+aK2DoN6VyMq+0dFEdrMYpipSXFFFSFCSdlVAUhXQ6xclYktM9Eh63C4dmpKdcHgfJnMLBjj5mlPogZ3QUeT1ufB7DvEvXIZzIIQpYQUSSJNB1nG43PVmNTP4hXug+6Pd68Ho8eFwuY8ZBVS05XEXVcQjCoBqGTsDnyz/ADLvUIr+XlKQRcOkIuk5W0dCAxXUlpAbt9nUMmQ8UHVlRmVbipSpYAaLDMMeSFRKJBNFohIqKSrplB0fDPXi9Hpy6Ak4naUll35kE5UE3lUEPJWXllFdUgKaSTqU4eeo00bRKThLwiC70AldGlygi5T1bnIICBfsHr9uFx+1iYU0x4UQESRdBltF0w4XQ53ZQVzIwrajrGqIo0pvMoKoqfT0xlld5eVdlFRlJydu8GpI2LpdjkOCmgarpVprL73Vb/5uT5bPSqyZFAe8AJYMBLef54IZgnFL6UkMP+AqCgM/nY1pNBVctm03biRZqa2vJZDK88sorVhdTZWXlsLIjE40sy+zatQuv1zviIBIOh7nlllu47LLL+PGPfzxldbQuhEkXSM7HWNdITp06xeHDh62hxzNnzgybOjPloM0ZgY+tn8lfXD7D0vcxW2U1TeN0tIfmU500nwpbuWiAREamLyvjdIg4BN3q0Xc7RNKSyolInLkVAQRBoCToMyRW8g/oWFIiI2tG7j//QRcQCOS946OJLBVBj/XBd4gCoeIgJaEAp1IiTk8Sl6CiqTqSIiEAIiLdSQlZ1XA5HDhE49o9CVNK30HQ70VIGl1IkmQMmfn8AaR0DseQZdp+GfvFtSF2tnbjdLhwiwI5SSIta9QUeagK5QUUBcOzvjA15nGKrJsR5M8ne0lkjHkat9PFsho/M0v6012arnMknKQlmiIra4R8TlbNKKNWMLrrUDUUIJ6Ik04kmD9nFg6Xm6ZDYQSnCxeqlbsJuB30ZhXae7JUBo1ivo6A1+NFRWRWMERFTuH4wSgZWcIhSTgcIg6HAwknHqeAe4jnTU5WyMkKNUEnq2aVcyScJCGDrij43CJrphdbLcwmwfz9UFWVjo4OnE4H5ZXlxibC68brcaFphqLs2afegfi9bsNLx9rY6HjcLjxOp2UtoOtQFPQNqalWeK/TuRxet+GX7vMY1tOSYohUFgaE8uIg71g6k1Otx1m9ejXl5cZ0emEX0549ewDOkh2ZaMyTiMfjYeXKlSMKIrFYjI0bN7J8+XIeeuihi7b9nmpMuVc3VjUSTdM4cuQIZ86cob6+3nqji6I45PVNGWjztGS+uVwO4azhKVEUmVFdzozqct7TsJRIT4LmU2GaT3VwpvMEQj4MFL5BtbxwoJku8XkMKXPDf0Qn4PUQVPI/kzeF13UjzWGe0AbPOKh5W15RECjye0FP4vJ40TUFXdPQdA0pp+LQFNrb2igOhQgEA8huj7U2WdGoCTo41qGQklX8XkP8L501TikzhvFtMLvG5msaiZSf1q40GVXH6RSZVVnEVfNKEclLmLucJNM5srJKd8p4OFcG3VQXeblhaRWdCWPor8TnJOR24HY68XicqKrGH49GONyZRBTBKYp0Z3V2HA5z2eyS/DCmTnd3D4lEgtraGlQcqJKKLroQhRwOhxNFyRf88/dPVk0FaNHQXcvv9nUd/G4nM0u9HI+puN1eHCJksgo5OUNNsUiit8dqLT67i87HIgHqgg66UjIOUWB2ZQi/xyj4S7JqNGd4DZkSRZHp6OjA7fbkh1L7TwnmPIqqaQR9nrMK5Sb9bdGFXxUswU8wUmChvHaWQxQsz5vBWMZV+e6/TE4mU+iu6XGhaRoBr5fLF9Vx6uQJVq9eTVlZ/yCny+WiurraaqqJx+NEo1GOHz/OgQMHKC0ttQyohlOPGE9kWaapqQm3282qVatGFER6enpobGxk/vz5/OpXv5oUwXG8mXSB5ELNrUaDLMvs3buXTCbD+vXrB7xhh7p+oZeAaUpzoQiCQHVZMWUhPx45QZ1/Nl0+maaWM2haLj/9DFlFI+RxUldsOBsm09mCvb5AKivhd+j4XQJJSSfkdoEgIEuG+VJpwH2WbSj0F/yrAgpeh048lSHgMcQvNRUEUWbptCBzp4fo7Y0TjcWQJEPG2yzWV3qhyqMQyTrIaIYDodMhsGpGKUvqSslK8gDxPrOmk0hlcIoil80uZWltiERWwevMtxfrGi6XA4/bha7rHOxMcuhMIj+oZ9jyXj6nlMqgh8V1JWRyUr+bZF53qi+ncLwrjc/rwes0/i6KLNGn6Bzs6GNWmY/urhiZTIZp0+pwuQzbWp/PTYkH2rskFNGZP1UYNS0BhbKAC7fLAbpgyeUX0jCzGLdD5GR3GlV34vc6WD2rioXlbpJ9ScKdYXQMufJAwI/X66OkKGDt9kNeF6G8IrOqKPTla1J+jwe320FWUpGkHJ2dnfh8fior+2XgwbB8VjXNChoDC+X9UvYOh0Bq2Nbe/E/oOn6vl96+jPW3M7XZClNgDoeAy+kcMoUG/Smw6vJiLl9QS/upNurr6w0V32EQBIGSkhJKSkpYsGABmUyGaDRKLBbj2LFj+Hw+KisrqaiooKSkZNzrC4qi0NTUhNPpHPFJJB6P09jYSF1dHY888sg5rSXeSkyqORIw/pjnChSRSISjR49y1VVXjej6qVSK3bt34/P5WLVq1Vm7hVdeeYUFCxZYMvWFfgGmXeZIfueePXsIBAKsWLGCzj6JLz7+JsfDceR0H1IqgUvN8K55pSyaVnrOeZP23gx/bO5G0gQ0VUEQRYJeN9curqTYM/BnPC4nmq5bD/kz8SyvtnSTllR0jB3mjFIvN66chlMUkBV1QF0llUpZpx2fz4+vpIK27jSCIFBb5KUiaLZ49k/nJ7MSp+M5MjnDrGo4CXtvXslWVjSOx1K8dqIHp9OF3+NEkWWSWZmgx8kH1s1EleUhH4Zt3Wleau6myGv4tCuyjNPpRNYMjbOGSnCjUltbi9PpzLsQusjkDC2n7UdiJLIKHqeIjo6kGErLt66ZjtfpIJnJnbMw7XK76Iqn8XscOAseOqIoIOgaqWSSru5eRFEH0WUF5qHSHGatI5uTkaQckXCYivJSyssrSBecKLwe1wUUzA05lmxWwut1o2kDtdn60Qn5fWd12xX+u6FmbRiTJQrUAIaitqKEhnnVnGk/RX19PcXFZ4uaXiiKoljKu7FYDE3TrBRYRUXFmO/yFUVh9+7dOJ1OVq1aNaJ6Rl9fH42NjRQVFfHkk0+OSKV8qjLlAklXVxcHDhzg3e9+90Vfu6uriz179jBt2rRh1Tpff/11Zs2aRU1NzcCayEWeREy6u7vZt28f06ZNY/78+dY10pLKi8e6aOtOUxF08445JcTjcZpPdXLidMTqvBmM2+kgnlV4syNOMqdS5HUyr8JPyGtYyxrT5KDpKlmp39fbRFIMO1FJNaTL51UXW91PYJxgfB43qqZxuiNMb28vxcVFOATo7o3jcDgtGXzjg9J/TzoTEq+29pDKKQiCA5cD5pV5aJhZMuDe+b1uspJsrW3roQjRpETIm3/A6joIIilF4B1ziplZ4h7y3ncmsrxwpIuQ32OJP4IhnyJJMu+Z5WXRnJko+d27w+EgV2APEM/IvNnZx5l4Pk1X6qN+djkOtPzajKYBp8NBVpKt7jIYWjdrMALGEF4uJ5HJpOnujZNMpfPqBEZQ8XiMzizD5tnQXOvs7LB26mBsXvxew7I5k8sNWyg/19pEUcDvzQ/I5nKoqk7Q3991NRwup2itzXhvuNB14xqFsWxaVSmrZ1XQ2WGkiseyO0vX9XyjRJRoNEoqlaK4uNgq2Pv9/lEV7M2TiCiKrF69ekRBJJVKcfvtt+N0Onn66afH3elwsjHpAomqqucspsfjcXbt2nXRBjCmkvCSJUvOKcvwxhtvDJCOhpGfRE6fPm0V8i9GG0xVNU5Fumhu66TldNj6sHs9LhRFPSsPPpiQ30sqm8OfHzIbygYWdEKWnPygf9F1otEouVyW+XNn4fX48oVfhXQ6kz+tGMX4QMBPIBDA4fHz5L5OspKC320MAuYUDVUTePfiKpZUG11kfp/bSLcUvOs2N51BVvsn0XVdx+X20NOXYkVdEQ2zSvPzFdoAuRddgOff7CKayBDyOAyrZEUjkckxLeTkmuXTEAQRj9uJKBhtraqmDZB/h3x9quC+DfeJ8LicuF1ORIdAvO/cu3PTsnfgLImOyyEiSTni8QTdvQk8bheBQAC3xwvohMMRysvLKCoauJv3+zz5orhmFLmdTqRBVseDrXGHXZtoqBADxgnoHJsWQRCG3NQIAvjyToplRUGWTy+ls+MMDQ0NhEJD+6uPFdls1kqBdXd34/F4rBRYaWnpRaWkVFVl9+7dowoimUyG97///SiKwrPPPjvur38yMulqJOfjYmskmqZx+PBhOjo6aGhoGFD4GwpRFJFl2QoiI8mT6rpOc3Mz7e3trFmz5ry/czAOh8js2kpm11Zytb6cjq5eTrRHOHaqk6548py/t/BBUpg7D3g9Ruu0JKEoGj6vZ8ggomkax9s7aE8oOH0h4m19zCqVKPK6CPi9+en8IiRZIZczFIuTiTiHoxGSGYGgx5FXlReM9FBO4cCpbqaHnIQCXnTd6EgqLAwX+1x0JrKA8SF2uQwfC4CQ13mWm2TA70bAaCZYNyPEK8dlEhnFaAFWFMr9Tt6xqBZBMHbQkpUKMk4jpvw7gqHthTZQZmU4crLhChjvy1gqAXqBR4uJmG/ZHjyQCIYRleBwU1JWQV1dHdlMlr5kH9FIBFVT8eT1q1RVtR5qQb+HVNqsdeSL3AVzM+bMkohw3lOS4czozqsBGHhcTjxu14AhRpfTaaT7hgkyug7pjMSs2gqWTSsm3NnB2rVrCQaDw/7uscLr9TJjxgxmzJiBqqpWCuzAgQNomkZ5ebmVAjtXjUJVVcuwaqRBJJvN8pGPfIRMJsPWrVvflkEEpuCJxNTDuv766897SpBlmT179pDL5aivrz9vF4iu6+zfv59EIsG0adOoqqq66DynqqocOHCAvr6+cw42jpSueJ/RAdYepjPWa31dAAIFGkvD4XAI+NxuRIeILPcbEoFxxD944gz7uzRUwQ15xVi/y8E755dTW2zeC91q/RREgd6+FDtbezjYkcTr1NE13TBbcohIqiHgd/c75w4KXEbayCGKHAv3sf1IGE0zCr2KbMjRl/hd3LC06ix3PLfLCTpIimEgpupwuL2b0+EoFcUBFkyryKf5PGQHPeTPQtcpLQqgqJrROaUMvUkx7u/QqSAz9SSKAlJe8mWoIn0hXo8bWZaNzrq+PmKxKNNrjXRqV28vmUwOr9dDZVkpiE5c53ggmiKNqUyOgNdoW05lJWszZGJ1XQ1rIW3UaoI+NwgCSatrcGjmTKtkcXWIWCxKQ0PDhKdzTPVwMwWWTCYpKiqyUmCBQKDfpEtV2bNnD5qmUV9fP6Igksvl+Iu/+AvC4TC///3vB9hdvN2YdIFE07RzTq7Lssy2bdu45pprztmbnUql2LVrF4FAgFWrVp23j9vszMrlcoTDYaLRKL29vYRCIaqqqqiqqjrvByWbzbJnzx4cDgerVq0a946NvnSGlvYIzac66IqnBgSRjKzSHEkRSebwOEVml/uZWxlE1xnQYeVyOvB5XKQzWZqPt/JGTCSjuwi6dDD+j2ROocTvHiCjbrazJlIZ3C4XJ7uzbDsSxSsa8uiapqKoKilJZ3qxm8um+6yawFA75va4zN7TCfqyMrqqUFXkYe3MkrPkyr0eN8oAGX5DlSAc7qS2uprKynJkRTUm7IdQYC6k/zWY903Py604kOX+2QhR5CzdrKFw54vSDlG0OqcGz1fAwBpRIhGnq6ubmppqfD5zo2OkwBQpR6y7l3hfHy6Xy/KuH1ibGrpgLpBPPTlEcpKMqmmD5OKHxpSrUVTNuMYQHVwA82dUM7/ST3dXFw0NDRPSqns+stmsVaw3lbMrKyspKyujra0NXddZs2bNiGY8ZFnmox/9KK2trbzwwgvW+MDblSkXSDRN4/nnn2fDhg14PJ4hvycWi7F3716mT5/OwoULz3tyMQvqg4vqkiQRjUaJRCJ0d3fj8/moqqqisrKSoqKiAdc1fVTKyspYunTpJZdCyOQkTpyJ0nKqk33HO3j2QCfxjJzvqQKny8nK2gCrpp3dSZPJpAmHw+ieIl7rUHCLAqLev6NWNJ2cqnHj0ioqgobkxuCHl6xqbD0UoTut4PO4EARIZxU8LgeX1XnwC4ZqrMMhFjwQfQiCYJ0wMpJMPCvjdTmpKvZZaSPzHTrUCcPczVdWVllplVDASzYn4fW4UbWB0h6FGOms4U9wRpB1o6MPmQYsxEgvqcjKwFOAOfOiaRqpjETA58l3Yen09vbS29tLTc1QMvD9KUqnQ0SVJeJ9Cbp74oBgtRZXlpWSPk9wcDqMOpFDdFieIEMFc5/bhaQM1xGm43W7cLmcTKssY2aJi3hvLw0NDUMaN002VFW1BiE7OjqsLrCqqioqKiqGfZYMhaIofPzjH+fw4cO88MILVofn25kpF0gAtm7dylVXXTXkCeFCi+rQL3di1lzOVVQ32xEjkQjRaBSXy0VlZSVVVVUoisKBAweYM2cOs2fPHjPJh0hfjt/sOs0fm7txiALvWVjBB+vrKBliXqSQf37uME/uPI5fy5BLJUAQSGeMzqybl1dZopLQ/yAuL69A9BezZVcbPqeYn61wgiAgyRJZSeX6pVXUFHnxed1DtpMmcwpNp+Kc7s2CIFDqd7N2dhmzy/2kczkURSOTyVitxbquU1JUhNfnw+3xDhl8RUHA73PjdIj5gn//27W3t5eenh5rN6/rOsUBH4n0UB1LxmtOZ2UjXef1DNMS24/RTWUM74miQMDrQccQVCxM+RhpqqGNwwoJ+j0IuoCGTvvpDhJ9CWpra3G7+x9iheZQQ+EQBdA1En0JMuk0iWRmwMzP4N21yykiCuKAgvlQ3VdGLUk5ZyoLYMmcaUwPOejrS9DQ0DClWlw1TWPv3r1IksSiRYvo7u4mFosRj8cHpMCCweCwn2FVVfnUpz5FU1MT27dvp6am5hK/isnJlAwk27ZtY926dQNaDDVN48033yQcDrNmzZrz5iuHm1S/0DV2d3cTiUTo7OxEVVVKS0uZNWvWBfs1n4+ulMRf/eYArV1pSzFW0XQWVgf5/vuX97fKDkLVdDY9+GckWaPEbwz7ZdNJMn1xIrEu6uv8LK8rAnR6enqJx3uprq6msqyU3lSGJ/Z2ksqpeS0v4zSTklSK/V4+vG4aTlE85y4eQBdEJFXFLWJJuRhaWl5EQcinSRQcAsS6e0gmU8iyjN/vs04rDofx+gp35wKC1SnUfqaDnt44tbW11m4y5PcMsBIeCocoEvAZFsXnqom4XU7DJneIfzcFC0VRQNM0Mln53HUYCltyIRqNkcmkmTd7Nl6fh1zOXMf55joMRBG8bjeZnIRTEEinU3T3xkmlMwNai4MBPwIC0jlqjoJgCJHqGI0HQ71ek2XzplPrF0ilkjQ0NFzULn6iKQwi9fX1A+ZQcrncgBSY0+m0usAKP8+qqnLvvffyyiuvsGPHjjFxaX2rMOm6ti5kNz+4c0uSJOtNsn79+vMetUc7HyKKImVlZUQiEURRZOHChaRSKQ4fPowsy5bEQ2VlJU6nk/aeDC+3GIZJq6cXsXJa0Xl/55P7OjnZnaY86MYp9kt3HA0nef7NCO9bM7SHgW4WNvKXFwQBXyCE1x8k56vgyoZKlpXCH9/YQyKRYPq06RSFAiQzOZyiyJoZxbx+ooe+nIJDMIyiXA6RhhlFqKpGJm+VahpdpQcZXZn5f484+PUJA0QdS4J+VE2nrsadH4KUSaXSJJN9xGIxPB4Pfr+PmqoKqxNJx9Adi0ajZLMZ5s6eRSDgM6a4ReG8QcTlFHGI4sCaSD5do8gq6Xw9w+d2IavDt1mb6wj6PKQyEj6PC6fTMeAa1vdaJ4w0um4M1EpSjrq6aciajpzK5tdh6GflcvJZiseFGB1h/c6Ysq7j8vqprvEZrcW5HL3xOJHODmIOBx6vYdPs8/mGvKY/371nBML+GtHg17JywQwqPRrpdHpKBpF9+/YNGUQAPB4P06ZNY9q0aZb/ejQatfzXH3roIVavXk1LSwsvvfQS27dvt4PIICbdiUTXdUNd9hz88Y9/ZPHixVRWVpJMJtm9ezfBYJCVK1decFF9NEOGsixbb8zVq1dbgUvXdZLJJJFIhEgkQiqVYl8yyJMtMpJmPNSd+RTVP9y44Cw/9ELueWQ/+04nqAwOLNiH+3JsWFDBN25dPOzPfut3R/ndwQjVIY+RCsEQi9SAf33/UtIdLeRyOeYtXEx7rJfmtk7aI91WLSKcyHIskiKeVSj2OVk+rZSKgHPIB6tZrDfTOuey9TXv0eD0k8vZL7ufzkqoqkIqnUZXJLp7EzidxhCkz+ent7cHVTWm1R0Op9Vqq6gqXrcLTR96ituUPDnX7tzldBDwelDyvvXnYrh24QGvJZMzpPjTWXRdIxwOoyjm2vtPraa+lrlul9NhiTIWuhea2l/n7QhzG5pXiiLTl0jQ1RtHVTXrxOf3+3E4HAR87nP+vVxOYzh1/owaShyS1f04lWQ/NE1j//79ZDIZGhoaLmoi3uwCu++++3j22Wdpbm5m2bJlvO997+OWW26hvr7+ktZCv/a1r/H1r399wNcWLVrE4cOHL9kahmPSnUguBPNEEovF2LNnDzNmzBhVUf1C0HWd5miaWDxJ6kwz5UV+1q1bNyBwCYJAKBQiFAoxb9489p2M8cRvDyEpKj6HjkMQUXSRPxyOsKw2xAcbhndG87nEIeX0BcA7lMRsAXdeNoP9p/s4E8/iEEDVwSUKNK6spKf1EG6321p7VXkp9YvmkMlKtJwO03wqjLMjarklBnwDfdsHY2oshfzGbEjQ70XXsGTwB93FIRVmC6XKHaJAyB+gvKSYRCpFqLiMTCZNMpmit7cDgGAwSC6XIxRy5ae9Jes65jX6fThyeJzmCePc80cel5N4/uQgigL+glmTwtrBuaba+1+LTjDgRQP8XhfHT7Shahp1dbWIYn8QMdNUhcFvgHS7mJduxxhUzZynsD6wYC4SKCohWFyCU4BkKkl3jyGSWFocpNfpJuD343INHRhkRWPVglqCZJAk5aIfxBPNaIII9PuvC4JAKpXi1Vdf5dixYzz99NN873vfY8eOHaxZs2acVj80y5Yt4w9/+IP135NFVXhyrKKAC01thcNhIpEIS5cuPe8xc3BR/WKDSGtXmn/+3TEOdSSQZIWg28Gd68tZdZ5ayGttSRREKos9hiudoiKoCqmMwiOvHaOhJENVVdWQxb0NCyv4c2svaUnF73ag6zopyUjhvHv+uVsNZ5b5+MEHl/P0/jAHziQIeZ1cOTOIt/c4RUXlLFmy5KydlM/rZvm8GSyfNwNJVjjZEeNER4RjJzvPmf8fXBw2u5sEQTDk5yE/sGeowp6v+8kY2tPoS6eMwBzw4fcaHUJ+v5+ioiIymTTxnm66YjHcHg+BgLHLNh/QhT4cAZ8bdPA53WQl6ayuKpPBJ4xC10BTyFDEaAVOnGfoD4zJ8WReBr6zswNRdDB/7mycDofVSjs4TTUUmqaTk1QEQFYUAj5j9iaTk/MGZP34PIbXyGBZHF0HWQePL0itL4Df66KvL0lvb5xTXd351mL/Wa3Fly2bi09NoeZnLaZaEDlw4ICVihvJ2nVd55vf/Cb/7//9P7Zv386SJUu44ooruPPOO5EkaULuh9PpnJQF/kkXSM6HphmdP4lEgrVr115UUT0tqbx+ood4VmFhVZDldaHzBpSMrPL5xw7RGkvhQiXkdSFpAj95tY1iv4vbVw/vPZ3MqXmrUkOi3OUWceEip0sogkgymaS1tRWPx2PNqphGP9cuqWRXW5wXjsRI5owHhssh0riyhivnnX9Svirk4eNXzgQMva+9e/cyfeZM5s6de97X7HY5WTCzhgUza7h67XLaI900t3fScio8oBAsYNjiDtVhZHrWQ37Ize9FQMDtcgyrFeVyGg6M5qyDruv0xPvo6Ogg4PczY3odTqcTXSsxpruzxmR9b2+cSCSKz+e1ivVOp2sICfV+ddycpFh+8YZUzPCyIjqQzuQI5RWN+619jQnzwvspCkZDQDKdRVGUvAy8i6qq6vxpQsYcxnQ5HOTyLonD/U08bqN1WMoHwMI6k8ftxu1yGBsUQRjkOTI0RjE/g8PlpbzSS02tiCJJJBJ9dHZ2YrYWv7thKV4liQ7U19dPmp3vhWAGkVQqRUNDw4hScbqu853vfIef/vSnvPDCCyxZsmTAv09Ueu/YsWPU1dXh9XpZv3493/72t5k5c+aErKWQSVcjAaN4PtSyJElizx6jSDxz5kwWLlx4zusU1kP2n+njy08dIZrMu/s5RC6fXcI3bl1MwD38h2TroQhfefJNPKLRMup0Grve7pTEzDIf/+/jDcM+BJ45EOaff3eMYp/Tms7WdZ1YUuKm5dV8+caFlsSD2VYsimJ/UCkpYVdbgp1tvTgEgcvnlLJ6+vkL9YV0dHRw6NAhlixZQl3d8Km0C0HXdcLdcVpOhTnW3kkmK51zNw0UCBKaKRl9yGJ94SCcSTabobOzk+Li4vyGQchrTuXwuF3G4KBiNACoqkIqlSadTpHJZCkJ+REcbgLBQP5Df/Y9czsdBHwespKcT48Nf1+DPk+B5EzhNfq9UbI5Ga/bmByXZcNLxOfzUlFROeBv5nI68t1r+Q2CUxxy5mWoezIUAZ8bSVbztSp9gFpwIeeTgXHkVYunlwUocWuW3IjZODIVWn11XbeUJdauXTviIPK9732P7373u2zbtu2Sp6+G47nnniOZTLJo0SI6Ojr4+te/zunTpzlw4MCES7NMmUBiFtVDoRAOhwOfz8eCBQuGvUZhEMnIGh/66W5iyRwhrwsxLyiYlVU+snYaf331vCGvoaoq33l8J48fTVMRGjjnYCjcCjz7mcstf/HBpCWVex/Zz5udSdxOwZi2llVK/S7+9QMrWFA1cA7G7Bgxg4qqqtaHuKKi4qLainVd58SJE5w8eZKVK1eOy+RtTyJpybV0xHrOengNN6RXiFHgdqNo2oACdyqVIhKJUF5ebrV5D9ScGngNn8eFoumk01kCPg+d0S7S6RTpdAaHQ8ynvwJ4vabh1MBWW1P1WNMHPogHF8KHwyGKuF0Owy0xl6P5RCt+f4CKinIKH9xul+MsdYFCzJkX84RxrnZcGNq4ShT6r2Fqml2IlhjAO1cvRE8Z6a758+dbQ3zxeJxgMGjNTp1r1mKi0HWdgwcPkkgkRtxZpus6DzzwAPfddx9bt27lsssuG4eVjg29vb3MmjWL7373u3ziE5+Y0LVMiUASjUbZu3cvM2fOZMGCBRw+fBhBEFi8eOjOpcFF9a1vRvnq00cIeZxWFxNAX1Yh4HHw9P++DI9z4EM6l8uxd+9e/typ8KvDKsV+l9WGC8aJZHqpj0c+MfyJBIx5kF+8fopth2NIqkb9jGI+tn4GS2rOvYMwpbPNDrBsNkt5ebk1WX+u/KwpVBmLxVizZs0l2a0k01mOnzaEJU91duFxOcnltaTORdDvsdSAHaKI3+uipzdO++kOKqsqCQTy0+oX8CA06zVmK6vRJKCSyWSs04quG4ZTleWlIDoQhOGHIM2INdRJpJDCE0Yul6WjwzhFTa+tRhRFqzbjdRudb+c7YZjWuLquW3MzQ/msB/1ekucNDjqlIT+KqiEphi3vcO/X99QvRk5E8Xg8Z7kDSpJELBYjGo3S1dVlDeRWVlZetOLueKDrOocOHaK3t5e1a9eOOIj853/+J1/72td47rnnuPLKK8dhpWPLunXruOaaa/j2t789oeuYlIlPQRCsAvnJkyc5duwYy5Yts1IzDodjyKHF4YrqPSnjewePNrgcAllZIy2pAwJJMpmkqamJkpIS7rp2ETvC+2jvMaTKHXlvdUEQ+EB93Xl3ZeUBN5+9eh5//d65aLo+wADpfPeguLiY4uJi5s+fb+3Q29raOHToEKWlpVZQKUw5KIrCvn37yOVyXHbZZZcsHRH0e1m5YCYrF8wkJ8ucOB2huT1M6+nosN4qg7ufVE3l1JkuQzaktoaK0hIABPH8qrbG9XwD6jVGDcdnKBYXhZAVlVxOQpVztJ/pQFGU/FS4cVoxT3yarpPNyTidDrI5iYDXg+gQyeaUswrc5gkjJytkMhnC4U5KS0spLi4hZaX9jACnA0gKcr6mMRT9EirGf6cLrmHOvMiKilMUzxtEzGHOngLJe6/bZSj9FkilCAJsaFhCtieM3+9nxYoVZwUGt9tNXV0ddXV11kBuNBrl4MGDKIpizU6Nh+nU+SgMIqM5iTz00EN89atf5emnn54SQSSZTNLS0sKdd9450UuZnCcSWZZRFIVDhw4RjUZZs2bNAMvOlpYWkskkq1atsr5WOGQIA+VOdp7s5f/7zX7cTgceZ/8HpDcjM6vMx68/0WCJEcZiMfbv38/MgsJ0SzTFN547Sks0hapBwOPgA2tq+Z9XzTrLJ/1SkMlkrJNKobxDSUkJR44cweVysXLlyknRZaOoKm2dXbS0h2lpD+dPH/1DeoXig7FYF6lUcoBsiHkSMZWCh9qZmwXuc6efDEtZt9OYw8jkzCFIw1sllzPUdv3+AMXFIbxuzxABsL/ALSsqaLplmpVOpwiHI1RUlBMKDTR1GmzkZUi/G6eTQt2r4VJ3gwn5vWQkCZ/bjaoPrSXWP68zfJecOeV/2dK5pLo6CAaDLF++/KJOF0Mp7paUlFhBZbwVgXVd580336S7u5u1a9eOaOOk6zq/+tWv+Nu//VueeOKJi/Y6ulR87nOfY+PGjcyaNYszZ87w1a9+lT179nDo0CEqKysndG2TMpCYyr2qqlJfX3/Wm6O1tZXu7m7q6+uBgfUQQ6114AdB03U+8+v97G7rNYa6ROMk4hAF/v6GBdyyohqAU6dOcfToUZYuXUptbe1Z1zgSTtKX7/g6n97VpUKSJCKRCB0dHfT29uJ0Opk+fTrV1dWEQufvSruU6LpOR6yXE2ciHG49Q29f2vp6JBIhl8tRV1eL0+k6R22iYGcuq0iKgsflsmZJhqNQNwv6PThk1TCHUlWVVCqNnPdYERxOy7TL2OEOvI8+jxtN03C7nfT2xmlrPz1AONLEOGEM3TwCZjrPkPXvS2bO23VVFPCe1X7crwMGmbymWVHgQqRWBK5eu5S+6GmKi4tZtmzZqN8vpulUNBqlu7vbSCPmU2BmR+JYoes6hw8fpqura1RB5Le//S333HMPjz76KDfccMOYrW+s+fCHP8xLL71EV1cXlZWVXHXVVXzrW99i3ryha7yXkkkZSF5//XUAVqxYMWTbYXt7Ox0dHaxbt+6CJ9UTWZkHdrTy+8NRFFWjKuThritmsDEfRI4cOUJnZyerV68ecPqZCljtvdOnEwwGLfc4l8tldYCVlJRMuqDSFU9ypPU0L76+i1g8SU2NMfEtiiJel/OcvhlgdDu5HA4cTgfqoN19IefSzYL+Qjv51uOcJJPJpEmlUqTThke9mf7y+XwE/V4yeRXiRCJBV1cXtbU1VJSVYtZmVE2/qBNGXzqDIOSDSkGRvPB+FQWHdrQcTEnIh6rqZKWzU3EmDlHkmnVL6Q2forS0lKVLl475+8MUOjXfj4AVVMrKykbVUlwYREajQPzYY4/xyU9+kkceeYRbbrllxOt5uzMpA0k6nT5nUOjo6KC1tZUrrrjiouVOUpJCKqdSHnDjEAUURbGmX9esWTMlJLELMdt7B9v5mrLZZgcYYHXclJeXT3hxFIzT1O7du3G5XMyZv5CT+RRYtCdx3rbioYKDWazXdSzXwvPpZpmY6Sd0Q5AR+nf32axRrE+lUridIg6nG3/AjyzLxONxampq8Hr73zcCUBzwo+pq/mE+fOfVUCcMg/6Zl0xOwut2nVdL7GzRx8JUnNEmLQiGLP21ly2l60wbFRUVLF68eNw3GaZsvnlayWazlJWVWSmwizlN6LrOkSNHiEajrF27dsSf2aeffpq7776bX/7yl9x2220juoaNwaQMJIqinNNONxKJcPToUa644gprmGskH4RMJsOePXtwu92TpqZwoei6TmtrKydOnGDlypVUVFSc83t7e3utuoopLGl6MUzEsFk6nWb37t1WSqUwsGVyklGsPxWmtSN61oP4QoKDIAgUBbxGO29mKM/6fgYXuK1rwICuKbfLSVdPnFQqTV9fAlU1rHFDodAACfeBTQT5uRmHA0lVLY/1Cz9hGMFBkhU8LieyZlxjqJNXcBgHRxOnQyQU8HHF0rnEzrRSXV19QdJC40EqlbKCSjweJxQKXZCMu67rHD16lEgkMqog8rvf/Y4777yTn/3sZ3zoQx8azUuxYZIGknPZ7ZoPxTfeeIOampoR77Dj8Th79uyhqqqKRYsWTYod+oWiaRpHjhwhEomwZs2aAXL658MsjppBJZ1OD2grvhQTu319fezevZvq6moWLVp0zgeZrKi0dcZoPtVJS3sEQWBA4Xo4Bs5X6MMW6y+shdaQqJcUFbfTwZmOTrp64lRVVSHLEqlUmmw2i9vtorq8HN3hOMcQpBOP24FDdNCbTJ3n9w4tK18485LJ11/8vvPPurhdDq5dt5TwqRPU1dUxf/78SZHuvNDWYl3XOXbsGJ2dnaxdu3bErowvvPACH/7wh/nRj37EHXfcMSnuwVRnSgWSQrkT85gciURQFGVA2uZ8g3vhcJiDBw8yb948Zs6cOaXeSKqqsm/fvjFLxZltxdFolEQiQXFxsVVXGY80n1nPmT179kWbgGmaxulIjyHX0h4mnhza/OncMyf9xXoRgd5kashZEuu79X4/FF3HSsvMmjmDYMBnOR8qioIDjXCsm0wmjaOgWD+cNe5QqbhCznfCAHA4BII+D5rGWXWVQjwuJ9detpSOky1Mnz6defPmTcr3vaqqlox7NBq1WosrKiqsuarRBJGXXnqJD3zgA/zrv/4rd99996S8B1ORKRNICoNIYSqrcHAvHA4jSdKwaRtz2ru1tZUVK1ZMeMvcxZLL5QZ4wo91Ks7suIlEIvT09BAMBgf41Y/2QxcOhzlw4MBZ9ZyRoOs6kZ4EzafCtLR3Eu3pAzivbpb5s0ZaKYPL6cTrcQ1ZrC/0dDc6y8JIkkxdXa1lvAV5xeKgz/DwyEqomko6bTpBGp1pgYAffyBAVVlpwXxJP0J+Gt0stHvcrvOeMEzl4MJZE7/Hg8PpMEy78u3LHreL69Yt4czJFqutfSpQeHo+ffo0kiRRVFRETU0NlZWVFx1MXn31VW6//Xb+5V/+hU996lN2EBlDJmUgGeySOFwQGUyhH0g4HCaTyVBWVkZ1dTXl5eUcO3aM7u7uSzbtPZakUil2795NSUnJWTWF8UCWZSuodHV14fV6raAy2K/+Qjh16hTHjh0btwDe05fixOkIR052DCnXYqLr+rCtsQNPCDkCPsPTXdc1Ojs70TTN6iwrxEiP9ase+71GI0c6P1mfzWZJp9MoUo5UJovP57cUiwdfSxQEvB4X6OBwGBa50hADnQ5RwONynaOzTcfjdhHye3nH8rmcOtFsWUFPJXRdp6WlhdOnT7NixQqrtnKxrcVvvPEGjY2NfOMb3+Cee+6xg8gYM6kDiTmpPlIPETNt09nZSTKZxOFwMHfuXOrq6qaUOU9PT4/luzIRKQnT+8VMNzgcDiuVeD55DF3XOX78OG1tbWcNlo4X6WyOlnbDW+VkR2xAob3woT8cAnn5eQwr3ZbWk+g61NTUDHit59fh6j8h6JpOMpNBkuR8W3GKXE7C6/X064B53EMEByMguF1OFMU48TidIi6n01JJHg6/182165Zw6vgxK4071WhpaaG9vZ2GhoYBMzrnai0enN5uamrilltu4ctf/jKf/exn7SAyDkzaQCJJ0rCT6hdDKpWiqakJv99PaWmpVQsoKSmxdtiTWdW0s7OTgwcPsmjRIqZPnz7RyxkgLBmJRNA0bdj6lDl1HIvFqK+vP2tY71KQk2Vaz0Q51tZJtCdBdyJ1zu8XBQGv12V0eqmGDLzT4WT2rBm4nM4CL5HBaaWh6T855Ppl31XDPVFVVSv9lctm8fu8ON2e/BDk0MV6bz6oqJpKOiMNO6MS8Hm4du1iTrYcZcGCBcyYMeMC79jkwdyArF279pzvHU3TiMfjA1qLDx48iCzLrFy5ko9//ON87nOf44tf/KIdRMaJSRlIFEUhm+3fNY40jVM4qFfYoZLNZq0HYW9vL0VFRVRVVVFdXT1p5khMnbHjx49P2nqOruvE43HrXuZyOas+VVpaypEjR0ilUpNmPkdVNU5Fumg5Faa5vfOsQnbhIKSiGDLwHo+HysqqggeQIaTodjrJ5aVWhns4OUQRl8sx5MnBko5XNWRZBUGnpzdhDUGKoqFYbJhNGX7rLqeYl+RX8us10mhgpNHMTVfI7+Xq+oWcPH6MRYsWTUl/cVO5+nxBZChSqRT//d//zc9+9jMOHTpEbW0tf/mXf0ljYyMrVqyY0GBy33338aUvfYm/+qu/4vvf//6ErWOsmZSB5K677qKlpYVNmzZx6623Mm3atIv+47e3t3PkyJHzFnZNiZFIJEJ3d7dVYK6urh53naDhMAeuwuHwRbf3ThSD/eqTySROp5M5c+ZQW1s7IiG98UTXdTq6eq2gkkhmLD90WZbo6OjA7/fn53P633uDfdNNf/XBxXrjoe8o8GEZGpdTxOEQcTmc6JZisWHeZp5WdF2jKBQkGAzidHmG3FiZMy9FAR/rl86iteUYixcvHrUHzURgBpGGhoYR1zKPHDnCjTfeyIc+9CHWrFnDU089xdatW/nYxz7GAw88MMYrvjDeeOMNPvjBD1JUVMSGDRvsQDLetLe38+ijj7JlyxZeffVV1q5dS2NjI42NjcyaNeucQcXsNT9z5gwrV66krOz8boImgwvMPp/PCiqXyn9BVVX2799POp2eNDv5iyGXy1nT6uXl5cRiMUtY0kwljrR1czzp6u2j5XSYA8dOsufgYUKhUP69U+Al4nQgFBhSDcYq1gOyrA77fdb1XA7QBaSCDkVByA9BCqb8vIqmKiSTKeKJPmRZthSLAwH/gO6x4qCf966ex4kWQy17Mlqyno/W1lZaW1tHFURaWlq44YYb+PCHP8z9999vBd5sNmsoS0/AfUkmk9TX1/Mf//EffPOb32T16tV2ILlU6LpOR0cHjz32GFu2bOGll15i5cqVVlAZPFBlPoRTqRSrV68e1YlCURRisRiRSIRYLIbb7aa6unrEXUsXgiRJNDU1jVt773hjdpaZ2k3mBziXy1kBuru7m0AgYAWVyWSQ1NvbS1NTE5XVtShOH82nOjkV7kLT9PPqdZmY36dqmmEuhUA6l0NV9SG+Tzun6Zc5cyIIIMkKmZycVyw2vFWy2Rwej4dAwE9ddaVREznezPLly6murh6DO3JpMVO5DQ0NIz6Ft7a2cuONN7Jx40Z+8IMfTJpB47vuuouysjK+973v8Z73vMcOJBOFruvEYjErqLzwwgssXrzYCiper5e//Mu/5O/+7u94z3veM6YP4cF2uA6HwzqpjJUYotkUUFRUdNFS3pOBeDxOU1MTdXV1LFiwYNh7Isuy1QFmBmizWD+RwpJdXV3s3bv3rMJ0VpI53h7mxJkIx09HhvWbB85hXKUT8HlxiAJZSUYUxAuy0B1stetxOQ2ZFFUjk8sZ6bR0Cicaq2aV4XU5qaqqYtasWWOutDvetLW10dLSMqog0t7ezvXXX891113HD3/4w0nzGfr1r3/Nt771Ld544w28Xq8dSCYLuq7T09PDk08+yebNm9m6dSter5eVK1fyz//8z9TX14/bm8g09TFrAYIgUFlZSXV19Yid4np7e9mzZw/Tpk2bNLIVF4P5EJ43bx6zZs264J8bLCxp3suqqirKysou2YMgEomwf//+Ie0DClFUlbaOGM15b5XCji2vx418AY6QXrcTURRwOvKe9cMU671uF7KiDqsR5nQYSsEhv591C2tpPd7CrFmzyGazxGIx616aSrsXY9N8qTGDSH19PcXFxSO6RkdHBzfccAPvfOc7+fGPfzxpXu+pU6dYu3Ytv//971m5ciWAHUgmI48//jh33nknt9xyC9lslueff57a2loaGxvZtGkTa9asGdegYoohhsNhdF2/aIVdU65lqrZomu3J53sIn4/Ce1kojWHey/ESljxz5gyHDx9m+fLlVFVVXdR6O2K9NLeHOdUZI9rbd179L5/HTU4eqBPmtibrVVL5Yr3P40KSlfMGpeqyItYvnsHJ1uOsWrWK8vJya22FEkKyLFNeXm4FlsmUMj116hTNzc2jCiLhcJgbb7yRtWvX8otf/GLSBBEwnk+33XbbgDWpqmr5JuVyuUm13pEypQPJ3r17ueqqq/iv//ovSwY6mUzy7LPPsnnzZp577jnKysq49dZb2bRpE+vWrRu3P5rZChsOh60PrxlUKioqhvy9J0+epKWlZdK2956PtrY2mpubz6s+fLGYsjfmg9BUKBhrYUlz/YUP4ZGuN9bbZ5xUTnUS7k6c9T2mD/u5jKscokgw4EXTVJLps9WIC6mtKOGyhXW0tZ5gzZo1lJaWDrs2s5uu0MHQvJcT2czR3t7O0aNHqa+vH/GgaiwW46abbmLp0qU8/PDDE6JkfS76+vo4efLkgK/dfffdLF68mC984QssX758glY2tkzpQALGjma4nXw6nWbr1q1s3ryZZ555hkAgwMaNG9m0aRPr168ftzedqRFkBpVsNmvtrisrK3E4HBw9etQy0hrpTmyi0HWd5uZmTp8+zZo1a8Z9/aZCQSQSoa+vb9TDpKbm2smTJ8dl2j6eTFtBpT3Sjd/rJp2Vh3VJNAn4PJZhligI+H1DF+unVZWydl4Np9oufv2ZTMYa3DP11MwNz6VsfDCDyLmC4Pno7u7m5ptvZu7cuTzyyCNTRq3CTm1NYbLZLH/4wx/YsmULTzzxBE6nk40bN3Lbbbdx1VVXjdtxX9d1UqmUFVRSqZT1u6bKjEghmqZZHtn19fWXfNZm8DBpKBSyAvSFDK6Z7eEdHR3U19ePu+ZaOpPjxJkoze2dtJ6JDltgD/jceUveIVdtFevLioKsnFVB+6m2UaWDoL/xwWx3N+XbzcaH8UoJnz59miNHjowqiPT29rJx40ZqamrYsmXLpJtTOhd2IHmLIMsy27dvZ/PmzTz++OOoqsrNN9/Mpk2beM973jNub0pJkti1axeKouByuUgmk5SWllq768n+YTAl7LPZLGvWrJlwaRnTx6Jw7sd8EA7Vom1KtnR1dU1IEJRkhZMdMZrbOzl+OmJNvAfzXiLn+yDOqq1g5cwyzpw+TX19/ZhuQszGB/O0YkrfmNpVY3V6N2tSq1evvqgZr0ISiQSbNm2iqKiIJ598csLfhzZv00BSiKIovPzyy/z2t7/l8ccfJ5VKcfPNN9PY2MjVV189Zjlk0xGwqKiIZcuW4XA4yGQy1u46Ho9TXFxMdXX1hOeuh0KWZfbs2QPA6tWrJ1XBFvpF/My5H7NF29xdAxw4cIC+vj4aGhom/OGjqhqno90cPx3hWFtn3m53eOZMq2RpXQnhzvE/SZn1PjOomDUqM7CMdMPT0dHBm2++Oaogkkwmuf3223G73Tz99NOTcrj17cjbPpAUoqoqr732Go8++iiPPfYYPT093HDDDTQ2NnLdddeNeAdrtveea8Yil8tZQaWnp8dK2VRXV0/4hyWbzbJ79278fj8rVqyY9F0mhS3a0WgUXdcRRUOnqqGhYdIFaV3XCXfH83ItYWK9fQP+ff6MahbVhAh3dp6lgnspMKXbI5EIiUTCUimorKy84M+EGURG09iQTqd5//vfj6ZpPPvssxMiAmozNHYgGQZN03jjjTesoNLR0cF1111HY2MjN9544wXvCCORCAcOHLio9l5JkgZItZiT4Kb+16WcM0kmkzQ1NVFeXs7ixYsnzZDXhSLLMrt27UKSjHkNsxXW7KabbCcrgJ5EkuZ8UAn5vcyt8BGLRmloaJgw/TcTU6XA9AQx04nn8gTp7Ozk0KFDowoi2WyWD33oQySTSbZu3TrlaotvdexAcgFomsaePXusoNLa2srVV19NY2MjN99887AfILO99GJnFAopLIjGYjG8Xq8l1RIKhcY1qJgnqclszXouTMkZl8vFqlWrEEVxgLBkKpUa0FY82WpUuq5z+PBhYrEYDQ0NE34yHUyhJ0g0GkUUxbMGSk1XzFWrVo24RTyXy3HHHXcQjUZ5/vnnR1ygtxk/7EBykei6zsGDBy1RycOHD7NhwwY2bdrEzTffTHl5OZqm8fOf/5z58+ePaXusaTAVDocteRGzDjDWkhjRaJT9+/czf/78KWmIZKbjAoEAK1asGPIklU6nraBi+tWbD8KJfmjrus6hQ4fo6emZlOm4wZg+NWZQkWWZYDBIIpFg2bJlIx5WlWWZj370o5w8eZJt27aNat7HZvywA8ko0HWdo0ePsnnzZjZv3sy+ffu48soryWQynD59mpdffnncxPPMLptwODxA/8v0AhlNUDlz5gxvvvnmlFWQNRsbSktLWbJkyQWl4yaTsKS5WYnH45OiMeBiMb10jh07htfrJZfLUVpaagXpC309iqLw8Y9/nMOHD7N9+/YpObT7dsEOJGOEruvs3LmTD3zgAySTSWRZZtWqVdx66600NjZSV1c3bg8jczdoBhVd162H4MVqVrW2tnL8+PFRT3tPFMlkkl27dlFTU8PChQtHdM8HpxM9Hs+4nfwGo2kaBw4cIJlM0tDQMOnSbRdCNBpl3759rFixgqqqKmsI0pz9MT1/zNmfoe6nqqp86lOfoqmpie3bt0/JDc3bCTuQjBEnTpzg+uuvZ+XKlfzXf/0XsViMzZs3s2XLFl577TXWrVtnSbXMnDlz3B5GpqClmbJRVXVYK9zBP2cO6k3FQUnoVyCeMWMGc+fOHZN7XKj8XCiGOB7CkpqmWV40DQ0NU2ZSuxAziAwnZW/O/pjqz4YDpVGsN4cgVVXl3nvv5ZVXXmHHjh1T0uHx7YYdSMaIM2fO8NOf/pR/+Id/GPBw0XWdM2fOWPL3f/zjH1m5ciWbNm2isbFxXIvYpmaVOVUvSZIl1VJRUWENmWmaxqFDh+jt7aW+vn7C6wMjwbRVnjt37kUpEF8MhcKSZpAuvJ+jaYvWNI29e/eSy+Wor6+fkkEkFouxd+/eC/ZDGaz+/I1vfMPa7Ozdu5cXX3xx3P6W5+OHP/whP/zhD2ltbQVg2bJlfOUrX+HGG2+ckPVMduxAcgnRdZ1IJMLjjz/Oli1b2L59O4sXL7aCyuLFi8c1qCSTSSuoZDIZysvLqaiooLOzE0VRWLNmzZRNpezfv/+S+pObQdoMKtls1morvliFXVVV2bt3L7IsU19fPylbks9HLBZj3759LF26dERpKF3X+f3vf88PfvAD/vSnP6GqKtdffz2NjY3ceuutYyoKeiE89dRTOBwOFixYgK7r/OIXv+D++++nqamJZcuWXdK1TAXsQDJBmCmoJ554gs2bN/OHP/yBuXPnWvL3y5YtG9eZjWQySUdHB21tbWiaRllZmdVWPJV2w6aM/US7Ag72qzelbyorK89ZXFZVlT179qBpGmvWrJl06rUXgulHM9IgAsaJ7Mtf/jK//e1v2b59O4qi8MQTT/D444/zyU9+kk984hNjvOqLp6ysjPvvv39SrGWyYQeSSUI8Huepp56yjLqmTZtmBZXVq1ePeVDJZDLs3r2bYDDIvHnzrOJyIpGgpKTEkmqZzB1DpoLsWMvYj5bBxWVTpaCqqmrAQKGiKDQ1NSEIAqtXr56SQaS7u5s9e/awZMmSEbf46rrOP/3TP/GLX/yCHTt2sHjx4rP+fSJnmFRV5be//S133XUXTU1NLF26dMLWMlmxA8kkpK+vb4CnSkVFhaVUvG7dulEHlb6+PsObvLLyrHSaqa4bDoeJx+MUFRVZJ5XJNMvQ2trKiRMnWL169aQeUBusUuD3+61C/bFjx3A6naxevXrSy84MhRlEFi9eTF1d3Yiuoes69913Hz/60Y/Yvn37pPLn2L9/P+vXryebzRIMBnn44Ye56aabJnpZkxI7kExy0uk0v/vd7yxPlWAwaHV/rV+//qIfQD09PezZs4dZs2YxZ86cc+70zNmKcDhseVeYQWWipDp0XaelpYX29vYxV8AdbxRFsQZKI5EIoihSV1dn2TRPJeWAnp4empqaRh1Evve97/G9732Pbdu2sXr16rFd5CiRJIm2tjbi8TiPPvooP/nJT3jxxRftE8kQ2IFkCpHNZvn9739veaq43W7rpPKOd7zjvEVaU/dr4cKFTJ8+/aJ+tyzLVlAp1P+6lAN7uq5z5MgRIpEI9fX1U1K0T5Ikdu/ejcfjYdq0aVZKERjQVjyZTyhmEBlNc4Ou6zzwwAN85zvfYevWraxbt26MVzn2XHPNNcybN48HH3xwopcy6bADyRRFkqQBniqapnHLLbdYniqDC+ZmPWE0ul8mhTtrU//LDCpD+YCMBYUtylNBMmQoTD8aU0XZTFHquj6grViW5SHbtCcDvb297N69e0SbERNd1/nP//xPvv71r/Pcc8+xfv36MV7l+PDe976XmTNn8tBDD030UiYddiB5C6AoCn/84x8tT5VMJmN5qmzYsIF/+qd/QlEU/uEf/mHM6wnmwJ4ZVJxO5wAfkLEIKpqmsW/fPjKZDPX19VOyRTmXy7Fr1y5CodA5O/JMm2ZztqJQWHKiO+p6e3tpampi/vz5F6xkPRhd13nooYf40pe+xNNPP8273vWuMV7l2PClL32JG2+8kZkzZ9LX18fDDz9snZ6uvfbaiV7epMMOJG8xVFXl1VdftZSKk8kkuq7zxS9+kU984hPjOmyoaZo1BR6NRhEEYYD+10iaBMz2WEVRpuyMRTabZdeuXRQXF7Ns2bKLCq6DvUCKi4ute3opT2XxeJzdu3ePOoj88pe/5HOf+xxPPvkkGzZsGONVjh2f+MQn2LZtGx0dHRQXF7Ny5Uq+8IUv2EFkGCZ1IPn3f/937r//fjo7O1m1ahX/9m//xmWXXTbRy5oS5HI57rzzTv70pz9xww038Ic//IFwOMy1117Lpk2buOGGG8bVZc/U/zLTNbquD5BquZCgIssyTU1NiKI4ZdtjM5kMu3btoqysjCVLlozqhJbNZq2gYjY/FLYVj1edygwi8+bNG7EStK7r/OY3v+Hee+9l8+bNXH/99WO8SpuJZNIGkkceeYSPfvSj/OhHP+Lyyy/n+9//Pr/97W85cuTIqHP8bwfuvvtuDh06xNNPP01lZSWaptHU1GTJ37e1tXHNNdfQ2NjITTfdNK5ihINrAIqiUFFRQXV19bD6X7lcjt27d+P1elm5cuWkLj4PRzqdZteuXVRWVrJo0aIxvb9m80OhZpU5+zOWf8tEIsGuXbtGLT2zZcsWPvWpT/HII49wyy23jMnabCYPkzaQXH755axbt44HHngAMHa4M2bM4N577+WLX/ziBK9u8nPixAlLXXUwuq5z4MABK6gcPXp0gKdKWVnZuOt/mbMquVzOCipmYdkcljT97aeaKyMYKaldu3ZRXV09YhXiC6VQWNK0FDBPfyNNKUJ/EJkzZw6zZ88e8fqefvpp7r77bn75y19y2223jfg6NpOXSRlIJEnC7/fz6KOPsmnTJuvrd911F729vTzxxBMTt7i3GGZLrempsn//ft71rnfR2NjIxo0bqaqqGnf9LzOoZDIZiouLSSaTVFZWsnTp0ik1W2FiStnX1dUxf/78S/oaBqcUNU27IPXnwfT19bFr1y5mz549qiDyu9/9jjvvvJOf//znfPCDHxzxdWwmN5MykJw5c4Zp06bx6quvDmgN/PznP8+LL77In/70pwlc3VsXc9jPlL/ftWsXV155pSWcN56eKmDMuezfvx+n04ksy5OmW+liMB/AYyllP1J0XScej1t1lWw2S0VFhSXbPlzjgvkazKHVkbJt2zY+8pGP8OCDD/I//sf/mJKbApsLww4kNkOi6zptbW1WUHn99ddZt24djY2NNDY2jrmnitlaOnv2bObMmUMmk7EmwE39LzOoTFb9r0Qiwe7du0f9AB4PdF0nlUqdV1gymUyyc+dOZs6cydy5c0f8+1566SU+8IEP8IMf/ICPfexjdhB5izMpA4md2ppcmJ4qW7ZsYcuWLbz88susWrXKkr8f7c7bVI9dsGDBkK2lpv6XKYJYVFRkBZXJ4p1idjaNtp5wqchkMtY9NTXViouL6ejoYMaMGcybN2/E13711Ve5/fbb+T//5//wv/7X/7KDyNuASRlIwCi2X3bZZfzbv/0bYOR+Z86cyT333GMX2ycQXdcJh8OWp8qOHTtYsmSJFVQutjvJTGctXbr0gtRjJUmyHoDd3d0DWmAnSjLFPE2Npj12IpEkifb2do4fP46u6wPkb0Kh0EX9Pf/85z+zadMmvvnNb/KZz3zGDiJvEyZtIHnkkUe46667ePDBB7nsssv4/ve/z29+8xsOHz48ob4TNv3ouk53d/cAT5X58+db8vdLly49Z8fQmTNnOHz48IhlW8wWWFNZ1+fzUVVVRXV19SXT/zIVcEcjGTLRpFIpdu7cybRp05g1a9YAa2GXy3XBSgW7d+9m48aN/OM//iN/8zd/YweRtxGTNpAAPPDAA9ZA4urVq/nBD37A5ZdfPtHLshkCs7Breqo8//zzTJ8+3Qoqq1atGhBUWlpaOHnyJKtXr6asrGzUv9/U/zIfgG632woq46X/ZabkLqUz41hjtinX1tae1WE22AoXsGoqg4dK9+3bx80338zf/d3f8YUvfMEOIm8zJnUgsZm69PX18cwzz7B582Z+97vfUVFRwa233kpjYyOPPfYYb7zxBo899hjFxcVj/ruHmqsolGoZi4ecaS07GkOniSadTrNz505qampYsGDBOe+L6VdvngBlWWb//v0Eg0GWL1/OBz/4Qe655x6+8pWvTFgQ+fa3v82WLVs4fPgwPp+PK6+8ku985zssWrRoQtbzdsIOJOfhpZde4v7772fXrl10dHTw2GOPDWgAsDk/qVTK8lR5/PHHcTqdvP/97+cjH/kIV1xxxbhOrWuaZu2qI5EIgiBQWVlpeYCMZFjPlOMfjbXsRGNO3VdVVV30wKQpLPnAAw/w3//935w+fZo5c+bwhS98gcbGRiorK8dx5cNzww038OEPf5h169ahKAp///d/z4EDBzh06NCE+ee8XbADyXl47rnneOWVV2hoaOD222+3A8kIUVWVT3/602zdupW///u/57XXXuPJJ5/E4/GwceNGNm3adEGeKqPB3FWbA5DmsF51dfUFe4CEw2EOHDjAihUrpqxUTyaTYefOnSMKIoU0Nzdz4403cuONNzJ//nwee+wxdu3axd/8zd9w//33j/GqL55oNEpVVRUvvvjipFUZfqtgB5KLQBAEO5CMkJ/85Cf83//7f/n9739vFaUlSeKFF16wTiqA5any7ne/e1yHEM2ajjmrYnqAmFItQwWVjo4O3nzzTVasWDFhu+7RYgaR0ep/tba2csMNN7Bp0ya+//3vWye706dP09PTMyksc5ubm1mwYAH79++fFOt5K2MHkovADiQjR1VVEonEsH4oiqLw0ksvWZ4q2WyWW265hcbGRt773veO6xBioQdIOBy2JsBNYymXy2V1mK1atYry8vJxW8t4ks1m2blzJ+Xl5SxevHjEQeTUqVNcf/313HDDDfzHf/zHpNRC0zSNW2+9ld7eXl5++eWJXs5bHjuQXAR2ILk0qKrKK6+8wqOPPsrjjz9OPB63dr/XXnvtuA4hmhPg5kkllUrh9/tJp9OsXLlyyqazzCAyWjn7jo4Orr/+et71rnfx4x//eNKqMn/605/mueee4+WXX56ybdlTCTuQXAR2ILn0aJrGn/70J8uoKxKJcN1117Fp0yauv/76cfVUAaNNubW1Fa/XSyaTsWRFqqqqpoxTo2msVVpaOqogEg6HufHGG1m3bh0PPfTQpA0i99xzD0888QQvvfTSpJOqeatiB5KLwA4kE4umaezevduSvz916hTXXHMNmzZt4qabbhrzeZGTJ09y/Phx1qxZQ0lJyVmyIhPlVngx5HI5du7cSUlJyajUlKPRKDfffDPLli3jV7/61aQ0GdN1nXvvvZfHHnuMHTt2sGDBgole0tsGO5BcBHYgmTxomjbAU+XYsWO8973vpbGxcUw8VU6cOEFrayv19fVDzrrkcjkrqPT09BAKhQa4FU4GTJ9409dlpPeju7ubm266iXnz5vGb3/xm0tod/+///b95+OGHeeKJJwbMjhQXF0/aQP9WwQ4k5yGZTNLc3AzAmjVr+O53v8uGDRsoKyubkrpKb0V0Xefw4cNWUDlw4ADvfve7LU+VysrKi3qItrS0cOrUKRoaGi4odSZJ0gCpFlOrqrq6elwtcM+3pp07d446iPT29rJx40Zqa2vZsmXLpJbzH+41/vznP+djH/vYpV3M2ww7kJyHHTt2sGHDhrO+ftddd/HQQw9d+gXZnBPTU8UMKk1NTQM8VWpra4d94Jg/e/r0aRoaGkYkAinL8gCpFq/XawWVixVAHClmEAmFQixfvnzEvzORSLBp0yaKi4t54oknJq18v83EYwcSm7csuq5z8uRJNm/ezGOPPcbrr7/OZZddZnmqzJgxw3rIaprGkSNHiEQirF27dkzSU6qqEovFCIfDAwQQq6urx9RXvRBJkti1axeBQIDly5ePuDU3mUxy++2343a7eeaZZ+zUkM05sQOJzdsCXdc5ffq05anyyiuvsHr1ajZt2sTGjRv59re/TS6X4z//8z/Hpb24UAAxEokM0P8qKSkZk1kMM4j4/X5WrFgx4mum02ne//73o+s6zzzzzITJ89tMHexAMoWwRenGBtNT5bHHHmPz5s288sorBAIB7rrrLv7iL/5iVLIhF4Lpqx4Oh4lGo+i6bgWVsrKyEQUAWZbZtWsXPp9vVEEkm83yoQ99yNJHKyoqGtF1bN5e2IFkCmGL0o0tqqryP//n/2THjh18+tOfZseOHWzbto0FCxZw6623ctttt7FkyZJxndzWdZ3e3l5rAFJVVSorK6mqqqK8vPyCZjXMIOL1elm5cuWI15vL5bjjjjuIxWI8//zzlJSUjOg6Nm8/7EAyhbFF6UbHv/zLv/Czn/2Mbdu2MW3aNEt/68knn7Q8VWbOnGkFldE8pC8EXddJJBJWUJEkaYBUy1CzG7Iss3v3btxu91meLxeDJEl89KMf5dSpU2zbtm1MPGJs3j7YgWQKY4vSjY5kMkkqlRrWcTORSAzwVKmqqrKCSkNDw7gHlWQyaQWVTCZDeXm5ZSzlcrlQFIXdu3fjcrlGFURkWeYTn/gER44c4YUXXpiygpQ2E4cdSKYotijdpSWVSvHcc8+xZcsWnnnmGYqLi7n11lvZtGkTl19++bjLhSSTSatQn0wmKS0tJZPJ4PV6WbNmzYh/v6IofOpTn2Lv3r1s377dtrG2GRF2IJmi2KJ0E0cmk+H5559ny5YtPPXUU3i93gGeKuMtH9LX18eePXtQFAVVVSkpKbGK9Rcz66GqKvfccw+vvfYaO3bsoK6ubhxXbfNWxg4kUxBblG7yIEkSf/jDH9iyZQtPPPEEgiBw8803c9ttt/Gud71rzCfBFUWhqakJURRZvXo1sixb8vfxeJyioiJrVuVcsx+apvHXf/3XbN++ne3bt9sqDTajwg4kUwhblG5yI8uy5anyxBNPkMvluPnmm9m0aRMbNmwY9WS4qqo0NTUhCAKrV68+K52Vy+WIRqOEw2F6enoIBoNUV1efpf+laRqf//zneeaZZ9ixY4e9GbEZNXYgmULYonRTB1VVefnlly1PlUQiwY033simTZu45pprLnro0QwiwAXVRGRZtoJKV1cXgiDw3HPP8b73vY8nnniCLVu2sH379gnfjLz00kvcf//97Nq1i46ODlsUdYpiB5IphC1KNzXRNI3XX3/dCirRaHSAp8r5JsdVVWXPnj1omkZ9ff1FF9YVRWH//v384z/+I6+++ioAd955J5/85CdZu3bthIhKmjz33HO88sorNDQ0cPvtt9uBZIpiBxIbm0uIpmns2rWLzZs3s2XLFtrb27nmmmtobGwc0lNFVVX27t2LqqqsWbNmxIV8Xdf59re/zc9+9jM+//nPs3PnTp566ilKSkp49tlnWbZs2Vi9xBFj2zRMXexAYmMzQWiaxr59+6yg0tzczNVXX82tt97KLbfcgtvt5pOf/CR33HEH119//aiCyHe/+12+//3v88ILL7Bq1SrAqKls27aNDRs2TIrUqB1Ipi7jN1Fl87bghz/8IStXrqSoqIiioiLWr1/Pc889N9HLmhKYnVff+MY3OHDgAE1NTVxxxRX86Ec/Ys6cOVx55ZUcPHiQhQsXjnhORNd1/u3f/o3vfe97bN261QoiAB6Ph5tuumlSBBGbqY0dSGxGxfTp07nvvvvYtWsXO3futFwKDx48ONFLm1IIgsDSpUv5yle+wp/+9Cfe9a53kcvlKC8vZ+3atdx00008+OCDdHR0cKFJBF3XefDBB7nvvvt49tlnWbt27Ti/Cpu3K3YgsRkVGzdu5KabbmLBggUsXLiQb33rWwSDQV5//fWJXtqURFVVPvShDxGPx9m/fz+vvfYaR48eZePGjTz66KMsWrSI6667jgceeIBTp04NG1R0XefnP/85X/va13jqqae44oorLvErsXk7YQcSmzFDVVV+/etfk0qlWL9+/UQvZ0ricDjYuHGjpb4rCAJz5szhc5/7HC+//DInTpzggx/8IM888wzLli1jw4YNfP/73+fEiRNWUNF1nf/+7//mS1/6Ek8++STvfOc7J/hV2bzVsYvtNqNm//79rF+/nmw2SzAY5OGHH+amm26a6GW9pdF1nc7OTh577DG2bNnCiy++yPLly2lsbMTj8fCtb32LLVu2cN111030Us9JMpmkubkZMOZjvvvd77JhwwbKysrsafsphB1IbEaNJEm0tbURj8d59NFH+clPfsKLL77I0qVLJ3ppbwt0Xaerq4snnniChx9+mBdeeIFf/vKX3HHHHRO9tPOyY8cONmzYcNbX77rrLh566KFLvyCbEWEHEpsx55prrmHevHk8+OCDE72Utx2mpbAt5GlzKbFrJDZjjqZp5HK5iV7G2xJBEOwgYnPJGV+9a5u3PF/60pe48cYbmTlzJn19fTz88MPs2LGDrVu3TvTSbGxsLhF2ILEZFZFIhI9+9KN0dHRQXFzMypUr2bp1K9dee+1EL83GxuYSYddIbGxsbGxGhV0jsbGxsbEZFXYgsbGxsbEZFXYgsXlLc9999yEIAn/913890UuxsXnLYgcSm7csb7zxBg8++CArV66c6KXY2LylsQOJzVuSZDLJHXfcwY9//GNKS0snejk2Nm9p7EBi85bkM5/5DDfffDPXXHPNRC/FxuYtjx1IbN5y/PrXv2b37t18+9vfnuilvGX593//d2bPno3X6+Xyyy/nz3/+80QvyWYCsQOJzVuKU6dO8Vd/9Vf86le/wuv1TvRy3pI88sgjfPazn+WrX/0qu3fvZtWqVVx//fVEIpGJXprNBGEPJNq8pXj88ce57bbbBljTqqqKIAiIokgulxuxba2NweWXX866det44IEHAENbbcaMGdx777188YtfnODV2UwEtkSKzVuKq6++mv379w/42t13383ixYv5whe+YAeRUSJJErt27eJLX/qS9TVRFLnmmmt47bXXJnBlNhOJHUhs3lKEQiGWL18+4GuBQIDy8vKzvm5z8cRiMVRVpbq6esDXq6urOXz48AStymaisWskNjY2Njajwj6R2Lzl2bFjx0Qv4S1DRUUFDoeDcDg84OvhcJiampoJWpXNRGOfSGxsbC4Yt9tNQ0MD27Zts76maRrbtm1j/fr1E7gym4nEDiQ2NpeAr33tawiCMOD/Fy9ePNHLGhGf/exn+fGPf8wvfvEL3nzzTT796U+TSqW4++67J3ppNhOEndqysblELFu2jD/84Q/WfzudU/Pj96EPfYhoNMpXvvIVOjs7Wb16Nb/73e/OKsDbvH2Ymu9kG5spiNPpfMvUEe655x7uueeeiV6GzSTBTm3Z2Fwijh07Rl1dHXPnzuWOO+6gra1topdkYzMm2JPtNjaXgOeee45kMsmiRYvo6Ojg61//OqdPn+bAgQOEQqGJXp6NzaiwA4mNzQTQ29vLrFmz+O53v8snPvGJiV6Ojc2osFNbNjYTQElJCQsXLqS5uXmil2JjM2rsQGJjMwEkk0laWlqora2d6KXY2IwaO5DY2FwCPve5z/Hiiy/S2trKq6++aikUf+QjH5nopdnYjBq7/dfG5hLQ3t7ORz7yEbq6uqisrOSqq67i9ddfp7KycqKXZmMzauxiu42NjY3NqLBTWzY2NjY2o8IOJDY2NjY2o8IOJDY2NjY2o8IOJDY2NjY2o8IOJDY2NjY2o8IOJDY2NjY2o8IOJDY2NjY2o8IOJDY2NjY2o8IOJDY2NjY2o8IOJDY2NjY2o8IOJDY2NjY2o8IOJDY2NjY2o+L/B8/AuHrxeZQFAAAAAElFTkSuQmCC" - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "# %% Fit using a 0-3 order polynomial, getting the best fit for the data.\n", - "polynomial_estimator = GridSearchCV(\n", - " make_pipeline(PolynomialFeatures(), LinearRegression(fit_intercept=False)),\n", - " param_grid=dict(polynomialfeatures__degree=range(4)),\n", - ")\n", - "polynomial_estimator.fit(X, y)\n", - "\n", - "show_results(estimator=polynomial_estimator, label=\"[0th-3rd]-order linear\")" - ] - }, - { - "cell_type": "code", - "execution_count": 7, - "outputs": [ - { - "data": { - "text/plain": " 0%| | 0/30 [00:00", - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZIAAAGlCAYAAADQ/XDvAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOy9d5wkZ33n/66qrs5huifP7OzMzuaoLO2uhJBBWGTMEU74MMHYHD4RbXz+mTtsOBsE9gXgMCIZOJCwTTS2MQiwJASysnY2z+5smNnJobunc6jw/P7ord7u2clhp1eq9+sl4+3pfrq6uvr51DdLQgiBjY2NjY3NMpHX+wBsbGxsbK5ubCGxsbGxsVkRtpDY2NjY2KwIW0hsbGxsbFaELSQ2NjY2NivCFhIbGxsbmxVhC4mNjY2NzYqwhcTGxsbGZkXYQmJjY2NjsyJsIbFZV97xjnfQ1dW13odhY2OzAmwheZ5x4sQJPvaxj9Hf37/eh7Kq3HHHHUiShCRJyLJMMBhk+/bt/M7v/A4///nP533tyZMnkSQJt9vN9PT0gutLkoTH42Hfvn185jOfwTRNgKq/z/ffI488AsDk5CQf+MAH2LFjBx6Ph6amJm6++Wb+5E/+hHQ6XX7vd7zjHVWvd7lcbNu2jT/7sz8jn8+vyvmzsVlLHOt9ADary4kTJ/j4xz/OHXfc8by709+wYQP33nsvAJlMhjNnzvCDH/yA+++/nze/+c3cf//9qKp62evuv/9+WlpaiMfjfO973+P3fu/3Flx/amqKb3/723zoQx9icnKST3ziE3zrW9+qev43v/lNfv7zn1/2+M6dO4nFYtx4440kk0l+93d/lx07dhCNRjly5Aj33Xcff/AHf4Df7y+/xuVy8dWvfhWARCLBj370I/7iL/6Cs2fP8sADDyz/pNnYXAmETU1gGIbI5XIrXue73/2uAMTDDz+88oO6Arz97W8XnZ2dCz7vxS9+sdi9e/dlj+u6Lv7Lf/kvAhD/9b/+18v+bpqm6OrqEn/4h38oXv/614s77rhj0evncjnR2dkpAoGA0HX9stfcc889Yq6f0F/91V8JQDz22GOX/S2RSFR9129/+9uFz+e77Lj3798vJEkSY2Njs77HWqFpmigUClf0PVdKJpNZ70N4QWO7tlaRj33sY0iSRG9vL29+85sJBoPU19fzgQ984DIXhSRJvPe97+WBBx5g9+7duFwufvrTnwIwPDzM7/7u79Lc3IzL5WL37t187WtfW/D9v/GNb/CmN70JgN/4jd+4zNUiSRIf+9jHLntdV1cX73jHO6rWkSSJxx57jD/8wz+ksbERn8/H61//eiYnJy97/U9+8hNe9KIX4fP5CAQCvOpVr+L48eOXPe8f//Ef2bNnD263mz179vDDH/5wwc+0EIqi8LnPfY5du3bx+c9/nkQiUfX3xx57jP7+fu6++27uvvtuHn30UYaGhha1ttvt5qabbiKVSjExMbGk4zp79iyKorB///7L/hYMBnG73fO+XpIkbrvtNoQQnDt3rupviz3f3/3ud9m1a1fV+Z4Zk+rv70eSJP7n//yffOYzn2Hz5s24XC5OnDgBQG9vL2984xuJRCK43W5uvPFG/umf/qnqfTRN4+Mf/zhbt27F7XZTX1/PbbfdVuVyHBsb453vfCcbNmzA5XLR2trK6173ustcsF/4whfKv4e2tjbuueeey9yRd9xxB3v27OHZZ5/l9ttvx+v18pGPfGTe82mzttiurTXgzW9+M11dXdx777088cQTfO5znyMej/PNb36z6nkPPfQQ3/nOd3jve99LQ0MDXV1djI+Ps3///rLQNDY28pOf/IR3vetdJJNJPvjBD875vrfffjvvf//7+dznPsdHPvIRdu7cCVD+36Xyvve9j3A4zJ//+Z/T39/PZz7zGd773vfyD//wD+XnfOtb3+Ltb387d911F5/+9KfJZrPcd9993HbbbRw6dKi8af3sZz/jDW94A7t27eLee+8lGo2WN5aVoigKb3nLW/joRz/Kr3/9a171qleV//bAAw+wefNmbrrpJvbs2YPX6+Xv/u7v+OM//uNFrW1ttHV1dUs6ps7OTgzDKJ+f5WBtsuFwuPzYYs/3j3/8Y/7jf/yP7N27l3vvvZd4PM673vUu2tvbZ32vr3/96+Tzed797nfjcrmIRCIcP36cW2+9lfb2dv6//+//w+fz8Z3vfIff+q3f4vvf/z6vf/3rgdIN1L333svv/d7vcfPNN5NMJnnmmWd47rnneNnLXgbAG97wBo4fP8773vc+urq6mJiY4Oc//zkXLlwoH/PHPvYxPv7xj3PnnXfyB3/wB5w6dYr77ruPp59+mscee6zKbRmNRnnFK17B3XffzVvf+laam5uXdY5tVon1NomeT/z5n/+5AMRrX/vaqsct18vhw4fLjwFClmVx/Pjxque+613vEq2trWJqaqrq8bvvvluEQiGRzWbnPYb5XFuA+PM///PLHu/s7BRvf/vby//++te/LgBx5513CtM0y49/6EMfEoqiiOnpaSGEEKlUStTV1Ynf//3fr1pvbGxMhEKhqsevvfZa0draWn6tEEL87Gc/E8CKXFsWP/zhDwUgPvvZz5YfKxaLor6+Xvy3//bfyo/99m//trjmmmtmXX/Hjh1icnJSTE5Oit7eXvHHf/zHAhCvetWrZn3P+VxbY2NjorGxUQBix44d4j3veY/49re/XfX5LSzXlvXeZ86cEf/zf/5PIUmS2LNnT/k7WMr53rt3r9iwYYNIpVLlxx555JHLzvf58+cFIILBoJiYmKha96UvfanYu3evyOfz5cdM0xQHDx4UW7duLT92zTXXzHmOhBAiHo8LQPz1X//1nM+ZmJgQTqdT/OZv/qYwDKP8+Oc//3kBiK997Wvlx1784hcLQHzxi1+ccz2bK4vt2loD7rnnnqp/v+997wPgX//1X6sef/GLX8yuXbvK/xZC8P3vf5/XvOY1CCGYmpoq/3fXXXeRSCR47rnn1v4DXOTd7343kiSV//2iF70IwzAYGBgA4Oc//znT09O85S1vqTpWRVG45ZZbePjhhwEYHR2lp6eHt7/97YRCofJ6L3vZy6o+/0qwAtepVKr82E9+8hOi0Shvectbyo+95S1v4fDhw7O6gnp7e2lsbKSxsZEdO3bw13/917z2ta/lG9/4xpKPp7m5mcOHD/Oe97yHeDzOF7/4RX77t3+bpqYm/uIv/gIxY55cJpMpv/eWLVv48Ic/zK233sqPfvSj8new2PM9MjLC0aNHedvb3lYV0H/xi1/M3r17Zz3eN7zhDTQ2Npb/HYvFeOihh3jzm99MKpUqv1c0GuWuu+6ir6+P4eFhAOrq6jh+/Dh9fX2zru3xeHA6nTzyyCPE4/FZn/OLX/yCYrHIBz/4QWT50rb0+7//+wSDQX784x9XPd/lcvHOd75z1rVsrjy2a2sN2Lp1a9W/N2/ejCzLl/mDN23aVPXvyclJpqen+fKXv8yXv/zlWde2fPVjY2NVj4dCITwezwqPvJqNGzdW/dtysVibgbVxvOQlL5n19cFgEKAsPDPPC8D27dtXRRytdNpAIFB+7P7772fTpk24XC7OnDkDlL4Lr9fLAw88wCc/+cmqNbq6uvjKV76CaZqcPXuWT3ziE0xOTi4Yz5iL1tZW7rvvPr7whS/Q19fHgw8+yKc//Wn+7M/+jNbW1qrsMbfbzT//8z8DMDQ0xF/91V8xMTFR9Z0u9Xxv2bLlsuds2bJl1vM981o8c+YMQgg++tGP8tGPfnTW95uYmKC9vZ3/8T/+B6973evYtm0be/bs4eUvfzm/8zu/w759+4DSpv/pT3+aP/qjP6K5uZn9+/fz6le/mre97W20tLRUHfP27dur3sPpdNLd3V3+u0V7eztOp3PW47K58thCcgWovKuvZObGb9UrvPWtb53Tr279OFtbW6se//rXv14VMF8KhmHM+riiKLM+bt1NW8f7rW99q7whVOJwXLnL69ixY8ClzTOZTPLP//zP5PP5WQXs29/+Np/4xCeqvhufz8edd95Z/vett97K9ddfz0c+8hE+97nPLfvYJEli27ZtbNu2jVe96lVs3bqVBx54oEpIFEWpeu+77rqLHTt28J//838uB7fX8nzPdS1++MMf5q677pr1Nda5vv322zl79iw/+tGP+NnPfsZXv/pV/s//+T988YtfLH/GD37wg7zmNa/hH//xH3nwwQf56Ec/yr333stDDz3Eddddt+LjtVlfbCFZA/r6+qru8M6cOYNpmgvWdTQ2NhIIBDAMo2pTmY2ZRXi7d+8G5hYtKFkUMzNgisUio6Oj877XXGzevBmApqameY+3s7MTYFbXx6lTp5b13pUYhsG3v/1tvF4vt912GwA/+MEPyOfz3HfffTQ0NFz2nv/9v/93HnvssfLzZ2Pfvn289a1v5Utf+hIf/vCHL7PQlkN3dzfhcHjBc97a2sqHPvQhPv7xj/PEE0+wf//+JZ9vywqrZLbH5jpOAFVVF7wWASKRCO985zt55zvfSTqd5vbbb+djH/tYlVhu3ryZP/qjP+KP/uiP6Ovr49prr+V//a//xf33318+5lOnTpXfG0rX5/nz5xd1DDbrhx0jWQP+5m/+purf//f//l8AXvGKV8z7OkVReMMb3sD3v//98h12JZWpt3feeWfVf5aF4vP5AGat4N68eTOPPvpo1WNf/vKX57RIFuKuu+4iGAzyyU9+Ek3T5jze1tZWrr32Wv7f//t/Vem5P//5z8tppsvFMAze//73c/LkSd7//veX3Tv3338/3d3dvOc97+GNb3xj1X8f/vCH8fv9iyr0+6//9b+iaRr/+3//7yUd15NPPkkmk7ns8aeeeopoNHqZC2c23ve+9+H1evnUpz4FLP58t7W1sWfPHr75zW9WVdD/8pe/5OjRo4s6/qamJu644w6+9KUvzSp6lddiNBqt+pvf72fLli0UCgUAstnsZenvmzdvJhAIlJ9z55134nQ6+dznPlcVP/rbv/1bEolEVSaeTe1hWyRrwPnz53nta1/Ly1/+ch5//HHuv/9+fvu3f5trrrlmwdd+6lOf4uGHH+aWW27h93//99m1axexWIznnnuOX/ziF8RisXlff+2116IoCp/+9KdJJBK4XC5e8pKX0NTUxO/93u/xnve8hze84Q287GUv4/Dhwzz44IOX3bEvlmAwyH333cfv/M7vcP3113P33XfT2NjIhQsX+PGPf8ytt97K5z//eQDuvfdeXvWqV3Hbbbfxu7/7u8RiMf7v//2/7N69u2qzm49EIsH9998PlDYnq7L97Nmz3H333fzFX/wFUAo2P/zww7z//e+fdR2Xy8Vdd93Fd7/7XT73uc/NWg1vsWvXLl75ylfy1a9+lY9+9KPU19cv6li/9a1v8cADD/D617+eG264AafTycmTJ/na176G2+1eVN1DfX0973znO/nCF77AyZMn2blz56LP9yc/+Ule97rXceutt/LOd76TeDzO5z//efbs2bPo8/03f/M33Hbbbezdu5ff//3fp7u7m/HxcR5//HGGhoY4fPhw+Rzdcccd3HDDDUQiEZ555hm+973v8d73vheA06dP89KXvpQ3v/nN7Nq1C4fDwQ9/+EPGx8e5++67gZI1/qd/+qd8/OMf5+Uvfzmvfe1rOXXqFF/4whe46aabeOtb37qoY7ZZJ9YzZez5hpX+e+LECfHGN75RBAIBEQ6HxXvf+97LqtYBcc8998y6zvj4uLjnnntER0eHUFVVtLS0iJe+9KXiy1/+8qKO4ytf+Yro7u4WiqJUpQIbhiH+5E/+RDQ0NAiv1yvuuusucebMmTnTf59++umqdR9++OFZU4sffvhhcdddd4lQKCTcbrfYvHmzeMc73iGeeeaZqud9//vfFzt37hQul0vs2rVL/OAHP1hSZTtQ/s/v94utW7eKt771reJnP/tZ1XP/1//6XwIQ//Zv/zbnet/4xjcEIH70ox+V158rvdhKm52ZOj1f+u+RI0fEH//xH4vrr79eRCIR4XA4RGtrq3jTm94knnvuuarnzlbZbnH27FmhKErV97PY8/33f//3YseOHcLlcok9e/aIf/qnfxJveMMbxI4dO8rPsdJ/50rNPXv2rHjb294mWlpahKqqor29Xbz61a8W3/ve98rP+cu//Etx8803i7q6OuHxeMSOHTvEJz7xCVEsFoUQQkxNTYl77rlH7NixQ/h8PhEKhcQtt9wivvOd71z2fp///OfFjh07hKqqorm5WfzBH/yBiMfjVc9ZKBXc5sojCTEjD9Fm2VgFVZOTk8u+y7exWUuuvfZaGhsbF2x0aWOzFOwYiY3N8xBN09B1veqxRx55hMOHD3PHHXesz0HZPG+xYyQ2Ns9DhoeHufPOO3nrW99KW1sbvb29fPGLX6SlpYX3vOc96314Ns8zbCGxsXkeEg6HueGGG/jqV7/K5OQkPp+PV73qVXzqU59adMKAjc1isWMkNjY2NjYrwo6R2NjY2NisCFtIbGxsbGxWhC0kNjY2NjYrwhYSGxsbG5sVYQuJjY2Njc2KsIXExsbGxmZF2EJiY2NjY7MibCGxsbGxsVkRtpDY2NjY2KwIW0hsbGxsbFaELSQ2NjY2NivCFhIbGxsbmxVhC4mNjY2NzYqwhcTGxsbGZkXYQmJjY2NjsyJsIbGxsbGxWRG2kNjY2NjYrAhbSGxsbGxsVoQtJDY2NjY2K8IWEhsbGxubFWELiY2NjY3NirCFxMbGxsZmRdhCYmNjY2OzImwhsbGxsbFZEbaQ2NjY2NisCFtIbGxsbGxWhC0kNjY2NjYrwhYSGxsbG5sVYQuJjY2Njc2KsIXExsbGxmZF2EJiY2NjY7MiHOt9ADYvLIQQGIZBoVBAUZTyf7Js39PY2Fyt2EJic8UQQqBpGrquUygUyo/LsozD4cDhcNjCYmNzFSIJIcR6H4TN8x/DMNA0DdM0kSSJYrGILMsIIRBCYJomQggkSUKSJFtYbGyuImwhsVlThBDouo6u6wBIklS2TCRJmvX5lqhYWM9zOp2oqorD4Zj1tTY2NuuD7dqyWTNM0yxbIUDZ2rBEwrJAKpEkCUVRyv+2hOWJJ55g+/bt1NXVIcsyiqJUWS22sNjYrB+2kNisOtbmr2lalbtq5nMWs/lbwmL9r6Io5bWLxSKSJJWFRVXV8nNsYbGxuXLYQmKzqlhuq2PHjtHU1ERDQ8OqbOrWGnNZLDOFZWaMxRYWG5u1wxYSm1XD2tANwyCVShEOh1dtA690ic183BIW6++maVIsFikUCraw2NhcAWwhsVkxVm2IruuYpoksy3Nu/GuJJQ62sNjYXFlsIbFZEZYryzAMgLKIWKm9q8VyhGk2YbH+KxQKFIvF8jHbwmJjs3xsIbFZNtadfqUVUslcG/96bdKVQX9FUS4TlkqLxUoztmpYbGGxsZkbW0hslozlyrKysmbbaBeyIJa6Ma+Fq2w+Ycnn8+Xn2MJiYzM/tpDYLAnTNNF1/TJX1kzWI0ayUhYjLPl8Hl3XaWhosIXFxuYitpDYLIrF1IZUstpCsl7B+5nCEo/Hicfj+P1+oCSkM2MstrDYvNCwhcRmQWZrc7LQRnk1WiQLYX1uSZJQVbWqT1ihUCCfz9vCYvOCxBYSm3mprA2x4gWLYblCUtRNBOByVL9PLQrTTEG1hMUwjHKr/MoYi9XWZTFCbGNzNWELic2szFUbsliWuvHHsxqPnYvRO5ZGCNja5ONgd5imgKvqmGoZSyAssa0UFl3Xy3+frU+YLSw2VzO2kNhcxly1IUthKUKSKeh857kRzk1mifidSMAT5+MMxnO89eYNhL3qVbnRziUsuq6Xux9bwlLZJ8xumW9ztWELiU0VC9WGLJalCMnJ8TTnozk2N3pxKKVNNOJV6ZvMcHQkxe1bIkDtWCQrOSe2sNg8H7GFxAZYXG3IUliKkIwni8gSZREBkGUJt6owFM+V13u+sZCwgD090ubqwBYSm1VxZc1kPiERQjAYzzGeKuJVFRwKmOblzy0aJkG3o+p1z2fmEpbKzsb29EibWsQWkhc4hmEwODiIx+MhFAqtebfegmbw/UMjPDsQI6eZKLJEyF3KZBqeztMadIEEk6kiHofMjhZ/eb0XGrMJi5VFp2kamUyGXC5Ha2trWVjs6ZE264EtJC9QKmtDhoaGaG5upq6ubtXWn0tIfn0mymNnYzT7VdpDCoYQDMTyOBUJVZE4O5UFoM7j4GU7G9nS6Ks65hcyM2exZDIZxsbGaGhomNVisadH2lwpbCF5ATJzBO5auEYkSSqvb6EbJk8NxAm4HAQ9DoQAVZbojLi5EM/zG9sa8DkVTCHoCHsIe9Wq9WqBWhMzSzhg7iFf9vRIm7XGFpIXEJUbTWVWlizLl236K2W2zUozBLmigUutFi6HLGGaAlmCPW2BOdertU18vZk5rtieHmmzXthC8gJhvoD6WnXWnSlOblWmvc7DidEUYc+lDS9VMPCoCs0VxYc2i2Ohfmf2kC+bK4EtJC8AKtuczNXy/UpYJJIkcfvWBvqjWc5OZqnzqhR0g3TB4MCmMB1h97zr2RZJNTMtkvmwp0farCW2kDyPWWybk9WeZgiXxOlCLEvPYIJETqM97OG6jhBvuqaRHz3VRywhUefz8uLdjbxoS729YS2RlXxn8wmLPT3SZqnYQvI8ZSm1IWvl2jo+WeTZ0+eYzhVRZBnDFPzi6CDXeWL81vZ68rognYwixic4mQ8RDoeJRCL4/f7LEgBsi+RylmKRLESlsCxmeqSVamx3NrYBW0iel1gV6ottc7IWwfasJnh0IIfqdbKtqVQLMjkV5cRQhuYdzbxu9/ayMGSz2fKcjwsXLgBQV1dHOBwmHA7j8/nmfJ/1oJY2zrU6Fnt6pM1SsIXkeURlbchS2pysxd3+UFIjnje5ps2NYeiMj08AsLW9keGMRCqv43eV3CQ+nw+fz8eGDRsQQpBKpYjH40SjUc6ePVtVZNfQ0IDH41nVY71aWU2LZCEWIyzxeByv10soFLKF5QWGLSTPE2arDVlKIHa1LRJLlrKZDPFYFL/fTyQSIZ7V0E2BYPaNUJIkgsEgwWCQzs5OTNMkkUhw6tQpUqkUTzzxBC6Xq2ythMNhXK4XZrbXerr6ZhOWkZER6uvry9/HbC3zbWF5fmILyVXOUkfgzoYsy+VYymqxIajikXTOjETZvqEBn8+HKQST6QI3d4YJuJRFbYSyLBMOhwkEAvj9ftrb20kkEmU32IkTJ/D5fGVRqaurQ1XVBdd9PnAlLZKFqBQVe3rkCw9bSK5iZgbUlzsgaTVcW+m8zr+fi3FkOIFp6LjTo+yNCM6b9QxnBM58lrxusqHOw8t3Ny/rPYUQOBwO6uvrqa+vB0DTtHJ85ezZs2SzWYLBYFlYQqFQVZHeSqm1gH8tbcKmaVbVJtnTI1842EJylbJQbchSWGmwPV3Q+cKj5zg2nEKYGqlkGklR2BFx8p6XbOboSJLprMbGsIcbu8I0+p3lNumLZa7Pp6oqTU1NNDU1AZDP58vCcvLkSYrFIqHQpYywQCDwvOmWW2uiNp+FZE+PfH5jC8lVxkpH4M7GSi2SJ87HODacJCQXKRSzbOiIkCsYnI6lSRd07r5xw2WfYTks5nVut5vW1lZaW1sRQpDL5YjH48RiMYaGhjBNsyojzO/3X7UbVS25toDy9bgYljLka6YrzKb2sIXkKmIt5obAyoPthwdiZFJJAj6Z1tYWVIeKMNOYJpyZyHDLpsiqHONyXuP1evF6vbS3tyOEIJ1Oly2W8+fPl2Mw1n8ej6emNuf5qDUhWcnxLEVY7OmRtYctJFcJpmkyPj7O+Pg4O3bsWNUNZCUWydjYGCNDQ8gOJy0tTZeOS5IQCBR59Y5zpa4cSZIIBAIEAgE2btyIaZqkUilisRjj4+OcPn0ap9NZFpVIJFLzGWG1JiSrtbEvJCxgT4+sJWwhqXEqR+AWCgXi8fiqbx7LaZFimia9vb2MjIxwx74ufnAiSaZo4HeVLqlkXschS+yao5vvUlmLDVOWZUKhEKFQiE2bNmEYBolEouwGO3nyJF6vt8piqSVqzSKpDLavNnMJi9XZGGxhWU9sIalhTNNE1/WyK0tRlFWv94Clu7aODEzyvcdOMJU12belk1vbmjhYcPDEuRjD0zmEkJCFyXVNCntag7O+31I3nCvRIkVRFCKRCJFIyRWnaRrT09NlN9ixY8dwOp04HA6i0Sh1dXWrmhG2VGpNSFbTIlmI2YSlcnokUC7MDQaD9vTINcYWkhpkrtqQtRKSpVgkDz53li89eh5dVgkHAzxyZppnh9K8Y/9GbuoMc3o8haLINKpF5MQw8iq6tq40qqrS2NhIY2MjAIVCgb6+PpLJJKdOnaJQKJRTjSORCMFg8IreAV/JjXsxrKVFshCzzWIZGxtjcnKSvXv3lp9jT49cG2whqTEq25xA9d37WvTEst5joXVN0+To8ZM88PgoDreXnS2hspVwIZbjR4dH+YvX7uTajhAAExMT9CVW9xjXO93V5XKVs7x2795NLpcjFosRj8cZHh7GMIxyRpjVfHKtN6pa2ghryUKqLJB0OBz29Mg1xhaSGqKyNqTSbLdYq810IYskm83S09PDaNpEeIJ0BC5lNkmSRHPQxViqwEAsx7Zm/5oeay3h8Xhob28vZ4RlMplyRlh/fz+SJFXFV7xe76puVLV2fmvRQrKOZzaLxZ4euXrYQlIDLGVuyFpZJHNtSmNjYxw7doz29nZatnbwL6OnMWc81xQCGaoytBYSklqMkawESZLw+/34/X46OjrKGWHxeJzJyUnOnDmDw+EoWyvhcBi3e+5BXouhliwAWF/X1mxYxbqzUSks9pCvlWMLyTqzlNqQK+nasrKyzg2O4G7uJuuL0O530Rnx0DueprtBQZYkTCEYTRbY0uinM+KpWrOWN/61pjIjrKurq5wRZrnBent7cbvdVRaL0+lc0nvUmpDUskUyH5VuMLCFZTnYQrKOWBfqes4Nsdat3PQtV9bxqMEz02Gi/VMIJmn0u3jRlnqmcxpnJ7NIgEDQHHTzn27egEO59KNdSEiWKjJr0aH4SjIzI0zX9XJG2MDAAMePH8fv91c1n3Q4Fv551spGZqXj1srxwNIq7SuZT1js6ZGzYwvJOlBZG7KUuSHWhr/aP9jKTdpyZRFo4tdRjWzRoK3OjQSMJQv89MQEf3B7F9M5jclUgXq/i5u7wjQFXJetudoWyfPJwnE4HDQ0NNDQ0ABAsVgsx1f6+vrI5/MEAoGyG8xKYa2kls6HdSy1ZpGsRnp2pbDMNj2yUlheqNMjbSG5wqykzYn1I12tH0jluqZpcuLECUZGRtizZw+/GCiSyI3Q3eArH197nZtzU1mOjaR494u65l1ztYXk+f6DdDqdNDc309zcDFDuERaPxxkZGUHX9cuaT9aSBWB917VyPFD6nazFSIHKTEp7emQJW0iuIEsdgTsT6/mrfSdq3VVNT09z8OBBvF4vU8fPoMw4RkmSUBWJyXRhUcdqWyTLx+Px4PF4aGtrQwgx6zhi6wYgnU7j8/nWdZOyLNpa2iiX69paKraw2EJyRZhZG7LcC6jSIlktxsbGOHr0KJIksX///vJ7dES8GGa0lJFVIWCaYdIV8S64rm2RrB6SNPs44pMnT5LNZnnmmWfKGWGVzSevJLXq2lqP45lPWC5cuEAqlWLLli3Pq+mRtpCsMTNH4C6nPYjFagqJYRicOnWKkZERtm7dypkzZ6p+dLdtjvCLkxOcn8rQ6HeBBFPpIk0BF7dva1hw/eezRbLeP3ZJKo0j9ng8hMPhqqmRo6OjnDp1qmoccSQSWXJG2FKpVdfWerawsaj8zVtp/pY1+XyZHmkLyRpRWfC0mnNDViN7KZPJcPjwYSRJ4uDBg5imycOHTvP5R84xGMvRVufmzh2N/OGdW/i7p4fom8gghGBfe5C7b9xAR3jhu921qCOxqcaKkVS2wodSRth844jD4fCiMsKWglVDUkvf03pZJPNhGMZlzSTnmx55tQiLLSRrwFrNDbHWWomQVBYYbt++HVmWefjECP9wVkJxj+FyKBwbSfL4uRh/8OJNfPSV25lIFRACmoOuJX2O56NFUgvHUMls38d6jCOupcC/RS0LSSVzdTauFJa3vOUtvP3tb+ctb3nLehz2gthCssqYpsnY2BgAkUhk1X9cyxWSSlfW3r17y9lBRd3kH54bo2AIdkW8SHLJkhiazvPAk4Pc0hWmObj0CuzltKafj1rbpGqBxW7eV2Icca1VtcPVIyQzmU1YxsbGVt2KXE1q98iuMirbnIyMjOByucp3hKvJcoRkpivL670ULB+IZRlPFQmqQEX/rCa/k4lUkbOTGXa3Xd4KfjGspmtrofVeiCz3fKzFOOJaq2qH2hWSpcarJEkim81W/W5rDVtIVoGZrixFUcr//2qz1CD26Ogox48fr3JlVSJLEpIEpRUFUNowTECWWPaEw8pU5dk2ISvleLE/jlq7260FVsOdJEmrM464Fl1b8/XaWi+WkwBgNQQNBFZnSNxaYAvJCpmtNkRRlHKq72qzWItkLlfWTLrqvXRGPDw3naTNFDiUUv+s8WSB7gYfmxt9yzrO+YTESjk2TRO3212u3g6Hw3MWkL3Qe3fNxlps3pJ0+TjiZDJJPB6/bByx9b25XC7btbVIlitumUwGn295v8UrgS0ky6SyNmRmm5O16om12LXnc2UBxDJFjo0kkSWJve1BfvdgJ2eHxhmIZZElGYGg0e/iXbd2oirL+yHOVjxpmianTp1ieHiYPXv24Pf7yzPTrQmElYOiQqFQzW0EtcZab96yLFNXV0ddXd1l44gHBwc5ceJE2aKxLPO1qCZfDrUqJMtJbMhms7ZF8nxj5gjcmVlZazXJ0Hqv+dZeyJX1z0fGuP/JQeK5IhISEa/K2w908NubTczmdqI5g6aAixdtaaCtbvltzmcKST6fp6enB8MwOHjwIE6nE03TqvpNFQqF8qCo48ePo+s6dXV1RCKRcnNLm0ush4U21zjikZERNE3jV7/6FYFAoKr55HrVcjxfhKRYLKJpGn6/f42OauXYQrIE5hqBO5P1sEgMw6C3t5fR0dE5XVk9gwm++lg/piloD5VqQSZSBb70qwFe3Qi/fU3zqlVEVwpJNBrl8OHDNDY2smvXrjldfy6XqyoIbA2KisVixGIxAI4fP162WFY6z+NqpxbiEtY4YkmSKBQKXHPNNeX4SuU44srmk1dic7d+q7UmJMuJkaTTaQBbSJ4PzAyoz1d8JcvymgbbZwpJJpOhp6cHWZZndWVZPHRqklzRYGNFi5OWoIvBeI7j02uTrnv+/HkGBgbYuXMnGzZsWNLrKwdFDQ4OMjExgcfjYWRkhFOnTpUru61N6kqlR6735l1JrRyLFSNxuVy0tLTQ0tJS7jVlWZlWRlhlqvFajSOuxZYtsLwYSTqdLidF1Cq2kCyCyhG4iykuvJKurYVcWZVMpguXZWFZgpjWVnfeh2VxjIyMcMsttxAMLi+F2EKSJBwOB93d3XR3d6PrelWRXS6XK7ddj0QiV+zOdz2pBYvEYrZjkSRp3cYRW9dyrV0Dy3FtWam/tfZZKrGFZB4WOwJ3JmtpkViFfotxZc1kS6OPZ/qnqxoxmqbAFIIW7+plRSUSCQ4dOgTADTfcsCpBwpnn3eFw0NjYSGNjI0DVna+VEWbFV8Lh8Lp3x10LaimLbTF1JDOtzLnGEVdm8S3Xffl8EpJa6O68ELaQzMFK2pystUWSz+d54oknFnRlzeQ3dzXzUO8Ug7EcYZ8KAmJZjbY6N9c05FZ8zEIIhoaG6O3tpbu7m76+vlV1N823cbrdbtra2spt1zOZDLFYjGg0ytmzZ6s2qEgkgsvlmnOt5R7DlaaWLJLlpP8uZRxxJBKhrq5u0cV8tSgkVtxmqUJS66m/YAvJrCx1BO5M1jLYXigUmJycpKOjY0FXFpQsjoJu4lZlOsIe/vsrt/ONxy9weiKNBOzfFObtBzYydPzpFW2ShmFw/PhxpqamuP7666mvr6evr2/VNt6lfAeVd75WLYSVsjo8PMzJkyfLTQytDaqW20/MR60IyWpUts83jvj8+fNkMplFjyNerUapq4m1J9gWyfOc5Y7AnclaCInlykokEjQ3N7Nz5855n68ZJv/YM8o/Hx1jOqvRFnLzxuvbeOmORj71+l1MpUvjQRv8TiRJYvjE8l1bVrBfURQOHjxYdkfMV0R4JVukzOyOW9nE0Bpra2UWLbfX1HpwtVskC7GYccSVzScrxxHXYsZWpXdjKWSzWdsiuVpYqDZkKax2jKQyK6u5uXlRrqwv/6qfHxwaQZEl3KpM30Sav/55HznN5DX7WmicZcb6csRvfHyco0ePsmHDBrZt21b1I1nNavTV3KRmNjGcrddU5SyP1QoArzYvNDfbUsYRO53OmvvOlisklkVSy7zghWSxtSFLYTVjJDOzsnp7exdcezSR56fHx/E4FcLeUpVxyKMylizwD88M8Zs7G3Gp1eb1Urv1mqbJ6dOnGRoaYs+ePbS0tFz2nNVua7JWG+fMsbbpdJpYLMbU1BRnz55FVdWyqKxVEsVyqDWL5EpbAHONI7aSLgzD4MiRI+WbgvV2D1mB9qUeg+XSq2Ve0EIycwTuag3mWQ3X1lxZWYvZ8Psm0qQLBm2haqsj5HYwlSkyksizqaH6Dmcpm34+n+fw4cNomsaBAwfmvFua71zW6mCryl5TnZ2dl7UESaVS5WFDVnxlPafw1YqQrLeoSVL1OOKpqSlOnTpFKBSqSrhYz3HEy53YmM1mbSGpVSprQyp7/68GlpAs98c1X4GhLMtomjbv6wNuBw5FQjNMXPKlC7domKiyhN91+de+WPGLxWL09PTQ0NDADTfcMG+QerWnJNZCS5C+vj5SqVS5KWahUFjxLI/lst6bdyW11kZeCIGqqnR2dtLZ2VlOuFjPccTP14aN8AIUEiug3t/fjyzLtLW1rfqPsTLgt9Q7kNHRUY4dO0ZHR8dlMQdY3Ia/py1IV8RL32SGlqCEqsgUNINkXueObY2XxUdg4U1fCMH58+c5e/Ys27dvp6OjY8HzthYxkkROYyiep2CYBFwOOsJu3OqVswgURcHj8bBjxw6AKnfK4OAgQNXmNFvL9dWilmIktdb9d6arba5xxLFY7IqNI15uw8Z0Ol3TDRvhBSYklbUhqVRqzdIDrQt4KUJiubLGxsbYt2/fnAWGswnJUDzHP/aMcGgwQcCtcufO0rz1T/70NMPTudLrJIk9bUH+y4s3zbrufMF2TdM4evQoyWSSm2++mVAotKjPtNpCMp4xOH1sgnhWA0lCAjaE3bx4az1B95W7lCuvmZmzPKxuxpOTk/T19eF0OssWjRUEXi1qzSKplWOBhWM26zGOeLlCkslkaG1tXdF7rzUvGCGZWRuylsOnrAvYMIxFtdSudGUdOHBg3qysmUIyEM3yR987xmgyj6pIGKbguQvTvGJPM194yz6e6p8mmi6yIezmpq7wnG3h54q9JJNJenp68Hq95a69i2U1haRomJyMmoSaDDY1lLKodFMwEM1ydDjJrZsjq/I+K0GSJILBIMFgsFxgZ9VBDAwMcPz4cfx+f1lUViO+Uiubd625tpYa/F9oHLGmaVUjDpY7jni5MZJa7rMFLwAhmas2RFEUisXimryn9eNeTMxhIVfWbGtXrvutJwcZTeZpDriQL/bRShd0fn5iglftaealOxoXfcwzN/2hoSFOnjxZ7m+1nAD5aglJNGuQKJpsD7nLx+GQJSI+JwOxHDdsNK6Ii2spn0dRlKq7XqsOIhaL0dvbi6Zpl8VXlnKOa8kKWO4muVasNItstnHEVjbY4OAgQogljyNeiUViB9vXkfnanKz1ONyFUoArXVnXXHNN+U5oISotEiEET5yP4VGVsogA+JwK6bzOc4MJ9m1YnBuqcl3DMDh58iTj4+Ncd9115YKwpbKaQiIEmGZp/G8lsgS6CWbthAvmpLIOonJzsvz0QFlUrPjKfNRSjORqt0jmo3Ic8YYNG5Y9jnglwXZbSNaJ2UbgVrKWQgLzB8VnZmUtJQ1xpgvKIZdG486GYwnz1q1NP5vN0tPTU56uuJIUydUQEs0wMQXU+1R8qmAqXaTpYrKAEIJYpsi2Zj9eZ+3cDS+GmZuT1cAwFouVR9q6XK6q+MpMN2mtWSS1ciywtnUtyx1HvJLpiLaQXGFm1obMFVBfyw69860/MjLC8ePHF+3Kmm1dS6AkSeIl2xv5h2eH0QwTVSmJzHROx+NUONC9+LiBJEkkk0n6+voW1ZJ+sWsuu+1KQadnKEnfZAbThJBSpNlbigH1R7M4HTK5okGD38m+ttrOaFkMlQ0MN23aVJVVZI0httrkW8FfsGMkc3ElXW2zjSO2YmOV44hlWcblci1pHLHVgNRO/72CWLUhlRvtXD+0tbZIZrq2luvKmslMS+c/3dzB4aEEpycyZcvE7ZB56y0b2dy4uIvPNE3S6TS5XI69e/euWobIcoWkqJv84tQUfRMZwl4VRZboncxjZgX/4do64jmNdF6nMeBkc4OPOm9tzAhfTWZmFRUKhXJ85cSJE+i6jhCC4eFhmpub12xA1GKpJesI1rfX1szYmDWO+Ny5cySTySWPI7bTf68QlW1OFtv1cy1bvUP1hr8SV9Zs6xY0g3Rex+dSqPc7+ex/3Mcveic5MZLE73Jw+9YGrtmwuEFShUKBw4cPUygU6OjoWNU0w+UKyYV4jnNTWTojHpyO0mbgCLs4FBMk8hq3rXOG1npsmDMnD2YyGZ566ilSqRTDw8NlH71lsaxH1XatCUmtdHS2xhFPTk6WW7osZRzxlYyRfOpTn+JP//RP+cAHPsBnPvOZRb+uNs70Clju3JArESMxDGPFrqxKJlMFPverER4+XcD53BPsbAnwrls7uX5jHb91TSu/dc3SRCAej9PT00MkEqGpqWnVf3jLFZJ4VsMUlEUESnUwbhVGE4XVPMSrksqxq7t27UJV1bKP3qradrvdVQOiFutKWS616NqqpeOBS1lbM28KKptPVo4jPnXqFO3t7Ves++/TTz/Nl770Jfbt27fk117VQrLUEbiVXAkhuXDhAqlUakWuLItc0eDD3z/GydEksgAVeObCNKfG0/yfN+1lb/viR9kKIejv7+fMmTNs27aNjRs3cuLEiVXPAlqukLguCshMd4mmg991dQXV1xqrvU+lj96a41EZX6msgQiFQqu+ydaiRVJrQjJb3KYy6WLmOOIHH3yQH//4xyiKwoc+9CFe+cpX8tKXvpRt27at+rlOp9P8p//0n/jKV77CX/7lXy759bV1pheJFVAvFovLEhFYW9dWJpMhlUqRy+U4ePDgikUE4OHTU5weT1PnceB1gN/loNHvJJXX+funhxa9jq7r9PT0MDAwwE033URnZ2c5lrTa52O5QrIx7CHiVRmazmOYopSdldORZcHWptrOXrlSWOd1tuvemuOxbds2brnlFm699Vba29vJ5/McP36cRx99lJ6eHi5cuEA6nV6VGwg7RrIwi8nasoaydXR08LWvfY1Dhw4hSRI33HAD3//+97nmmmv45Cc/uerHds899/CqV72KO++8c1mvv+oskpWMwK1krbK2LFeW0+mks7Nz1XzVp8ZTAKiKjNWyUZIkXKrM0ZHkotZIpVIcOnQIj8dzWZX6UtvIL4bFCokpBIPxPOPJAoossTHs5o5t9fz6TIyBWA4hwCFgZ53Epvor6/uvVZbyXblcrqriOuuO17JYZFmuGkO8nDnptmtrYZZTR1IsFtE0jT/7sz9DURTy+Ty5XG5Vj+vv//7vee6553j66aeXvcZVJSQL1YYsBcsiWa07qcoivmuuuYbh4eFV3ZjrPCqCUmEeFevqhkmdZ2H/9/DwMCdOnKCrq4stW7Zc9pmvtEVimibZbBan28PDp6McGUmh6SYCCLodvGhLPW+8vpXRRAHDFLjMHEPnojV117uezGeRzEflGOKOjo6qrrgjIyOcOnUKj8dTFV9ZTOys1lxbyy3+W0uWU0dipf5a59btdi9L6OdicHCQD3zgA/z85z9f0bpXhZBU1oasZARuJdYXahjGioPM6XSaw4cPV2VljY2NrerG/JLtjdz/5CDTOR1VlM5JtliyqF699/KhUhaVacfXXnstjY2zt0xZTHv6pTKXkORyOQ4dOkQymWQ4r3I44aQjEqA94sfhcDCeLPCrM1HaQy66G0pB5URCZ7AGKrlrqZocVp5BVlmR3d3dja7rZWvl7Nmz5HK5cv1KJBK5LKPIwrZIFmY5QrLW89qfffZZJiYmuP7668uPGYbBo48+yuc//3kKhcKijrnmhWQ1R+BWslpCMldW1mrPbe+s9/JHL9vK//5FH7EUFNNFVEXmFbubef11s2drLaVKfbWnGc61ZjQapaenh+bmZvbt28ffPz2IJ5ugmElwNjaOy+XC5/Uxllfoj2ZmbXlvs3aC5nA4aGxsLN9w5PP5co+po0ePYpomdXV1ZYvF2uRqzSKpRSFZTpHkWhcjvvSlL+Xo0aNVj73zne9kx44d/Mmf/Mmij7dmhWQtRuBWYq213DjJTFfWzID6WsRgXrmnmWvbfPztjx9j8/ZNXNcRZkfL7IVok5OTHDlyhNbWVnbs2LHkZpCrQaWQVGaK7dixg/b2dorFIorTTX1Eoq3OjaEbZLNZMpkM0/EEz/VMoU6XNi2Xy7WmdT9XG8t1bS0Vt9tNW1tb1RjieDxeNXUwEolUdZOoBWpRSJbjbpvp2lptAoEAe/bsqXrM5/NRX19/2ePzUZNCIoQgmUySSqWor69fdRGBxTVWnIvZXFkzWWl68Xgyz4+PjjM8naOtzsMrdjfTVuemMeDipkbBnde3zWpJCSE4c+YM/f397N69m7a2tkW931oG23Vd59ixY0xPT3PTTTeRl9ycGk/jkk02Rdycj2YxTIHiUAgEA8guLxudQW7bUUdAZInFYkxPT2OaJidPnlyT2R5XK1fSCpitx5TVxsX6jq3hUNYY4vUqCqw1IbFujGvNIlktak5ILCskHo9z7tw5br311jV7r+Vs9ostMFxJzKFnMMEf/+AY01kNIUCS4O+eHuJTr9/FdRcr1mcTwGKxyOHDh8nlcuzfv39JbRXWyrVVKBR44oknUFWVa264mYfOTHNidIx0wcClwIY6N81+J2cnswTcCropKOiC6zcE2dFejyI3sHHjRhKJBD09PaiqWp7tUem7X4vaiFrmSlkk81EZXxkZGWH37t3lGEtfXx/5fL5csX2lxxDXWlt7a59ZbozkSvLII48s+TU1IyTW3BBd1zFNE1VV17RgEJYmJAu5smayXNeWYQo++dNTxLMaYa+KLJW6+8azGp/8yWn+4fduBC4Xkng8zuHDhwmFQhw8eHDJd4KrHdOBUvuViYkJOjo62L59Oz89McFT/XFagy7aQm6S2QJ9k1l2NPt4yfZ6zk1lcSoy21v87Grxo1R0L7ZiY1u2bCmvbbVgP3bsGKZpXtaCfa022VqIBdRa3YYQojwN0vptVM7wsCq2K9u4eL3eNfsMtWaRWL+t5Vgktd75F2pESGarDXE4HDUjJItxZc229nI25t6xFIOxHH6XA/nij0yWJAIuByOJPMdH01XxDCEEAwMD9PX1sXXr1nKB4VJZ3dkhgrNnzzI9PU1zczM7d+4kldc5NpKi0eck5FExhcDvVmlBYmg6z2/ubOTgPN2KZ36mmbUR6XS6POL2aG8fGeHEFwiyoTHC1g2NuF3PLzdYrWWPzRZs93g8tLe3lyu2K7+jM2fOoKpqlfivpquy1oTEMIxlueivVHuUlbLuQjJzBG7l4Km1Dt4t5i7ccmVt3LiRrVu3LvriXO4dvmYITDH7ACchSvM5rLUtv3Q8HufGG28kHA4v+f0sVivYrmkaR44cIZ1O09jYWL6byhZ1CppBva96s/CqMtGMWU5lno+5Ns9K371a18w5YozFkuQmczxzoZ9wz2lu2OCnubHUkfVKuljWilq0SOY7nsrvqLOzE8MwyvEVq9W63++viq8s1zVlxSNq6TtebgeOdDptWyTzMdcIXAvLWljLH8x8FslSXVkzWa6QbG/2E/apxDJF6jxq+bOnCwYhj4OdrQGePCuTTqc5dOgQLpeLgwcP4nKtLE12NYLtVuW8Nd/91KlT5TVDHpWA28F0TisPobJmp/icCuEFWsEv5hrIawbPDCTIaYKdGxqQJYmCbjAwlSHvLhVADg2V2sksZRJhrVIrQiKEWHIdiaIo5fMPl8YQV3bEDYVCVR1xF/t5rWuu1oRkuWN2V3KDeKVYFyFZTJsTy8e/lkGzuYQknU7T09ODw+FYdtv35cZIPE6FP7h9E59+sI94VsMhS+imQFUk3v2iLvwuB0IIjhw5QldXF1u3bl2VDWWlFsnY2BhHjx6tqpyvdJe5VYVbusL8+Ng4Q9M5Ai4HyVyRdMHgxdvqCS2iOn8hoZtMF4lli2yo85Tdgi6HQtjvJiXJ3L6rG1niskmEVqfc+vr6dc00Wgq15NpajcD/bGOIrcLIyjHE1g3AfDEw6zp+PghJLpejo6NjDY5odVmXX4x1ASw0eAqW/wUshtmEZLmurNnWXuzGPBDN0jOUwOdSOLApwuuuaaXR7+Q7zw7TH82yMeLljde3cdvmSHmo0bZt2+ju7l7Wsc3Gci0S0zTp6+tjcHCQffv20dzcDJRccMcni/TFMngvnGFrk48bOsO89ppWnjofJ5Er4lUVbu0Oc8umhe+4FrNJ6aZAzOIWtMTYFAJFlgkGgwSDQbq6uqoqua1MI+tO2Mo0qnzvWtnAa8m1tdoWwGwdcS3xn5iYoK+vD5fLVRW4r4yv1KKQLPeGOJ1Ol0cG1DLrduu10MZlXQS6rq9ZvUCl1bBSV9Zsay8kJLph8qkH+/inI6MUdYEkQcSr8j9eu5NbN9dzcHN9+bm5XI4nn3wSIQRut7s8anW1WE6w3Uo3zufz7N+/v+zLFULwT4fH+PnZLA5FolHV+EXvFCfHUvzOLRu5dkOIVF7DgYFbVZbsspiLsEfF61RI5vWyhSOEIJHT2NniR1Uu31hmVnJbmUbWnbAkSVVusFqiVoSkciLpWiBJUpX4V46ytVLB/X7/ZUH7Wjk/sPzeX3bW1gqRJGnNM7csq2E1XFkzWYxr6++eHuIHPSM4ZImgW8EUEMtq/H8/PMH3//PNNF1sDzI1NcXhw4fLGVCPP/74mlShL2XNRCLBoUOHCIVCHDhwoModNBDL8eyFacIeBb9TpinkpiUoOD2e5onzMX7r2jbCXpVicfHCNdumoBkm56ay9Eez6CZsDLvpqvdwajxDumDgdMik8jr1PpWtTYvLfKnMNDJNk1QqRTQaZWRkhN7eXhwOB263m2g0uqKA8EqpRYvkSh3PzFG2xWKxnGZ88uRJisUiAAMDA7NalevBSmIktpCskCsxVz2RSNDf379iV9Zsay+0MX/v0AgI8KilC0yRSoObMgWdB4+P89ZbOjh79iznz59n586dbNiwAVibmo+luLasTsKbN29m06ZNl/1IR6Zz5DSDiFtBWG4GSaLOq3JqPL3sTbDy+AxT8NjZOCfG0jgVCVmG89HSeN6bOkOMJYvkigabG7x0N3gXDObPhizLhEIhQqEQ3d3daJrGiRMnyOfz5YCw1XcqEolc0bnpteJig/UPbjudzqqJg1NTUxw/fpxkMsnAwMBlVuV6JFcsV0js9N8FWO9xuIZhEIvFyGQyXHvttasyfKqSxWz2U6kijhkOfVmSkCQYS+R49tlnyWaz3HLLLQSDlyYgrlVfrIXWNE2T3t5eRkdHue6662hoaJj1eY6LLiRTCKjY73RD4PLIZTfaUjbdy8QqkefURJrWoBPPxSww3RT0R3N013v5jW31sy2zIlRVxev14vF42Lp1a5UbrL+/H0VRCIfD1NfXr3pdxExqySJZa9fWUpAkCafTicPhYN++fWWrsjK5wuVylUXlSowhhuXFSKzZMUvpULFe1LRF4nA41qSWxHJl6bpOY2PjqosILM61tbXZx+GhJO6KTcEwBaYpMOLDyI11HDhw4LILfT0sknw+T09PD6ZpcuDAgXkDgFsafUR8Tsan0jRcHHGQLepkijov27i8c22dH2sDnUoX0QxRFhEoBdU9qszgdI7dbWv347OSRKyA8IYNG6r6TlXWRVS2cFlNN1gtCUktt5CvtCorxxDH4/HyGGKr1U44HF7178nCjpGsI2thkVRmZamqSjK5uOmCS2Uxg7PecaCTP/7+MVIFHbdDwRSCgmYQcZm87vpudmztnvW1V3qaYTwep6enh/r6enbv3n3ZDy2Z03h6YJq+iTQuh8ze9hCv2N3E3z02zUCiSFJK41AkbtgY5ubO1cmJl2WpytqxMEwxa1B9ransO7V58+ZyXUQsFitn2tXV1ZWtlbVsD3KluZpayFtjiC1rulAoXPY9VWbtrZa70o6RrBFX2rU1W1bWhQsX1sx1Zl3I8wnJHdsa+PhrdvCFX55nPFnANA121gn++2v2sLNr9hkj1tprYZHMXFMIwYULFzh9+jTbtm1j48aNl32W6azG1/59gL7xNC5VwTBNDg1O86ItDbxpT5Az4xk2dLbSEnSxpdFXdnstFet9i3rpB9kadOFzKcQyRSIXq+UzBQNDCDoj619gOLMuIpPJEIvFyu3XVVWtcq8s1Q1mWyRzsxQ3ksvlqoqvZLPZcuC+v7+/fINgfU/Lja8YhrFkF5p13dgxkhWyWm1S5srKWssYjPXDWqhVwyv3tHBwo49/e+IQAbeL22++bsGRl2shJDMtEsMwOH78ONFodN72K4+fi3J6PM3mRl/ZEkjkNB4/F6Oh28HeJpVrts0eS1kKk+kiR6IS558aRnXIbG3ys7vVz/HRNGensiDAqcjsbQvSVV9befeV4203btxY1R5kuZ2Ma01IauVYYPl9tiRJwufz4fP5ymOIk8kksViM0dFRTp06VS5etdq4LFYclhMjyWazCCHsGMlKWY303/kKDNdSSOaawFhqJ3HRNcOlivA9nYvPGlsrIbHWtEbhyrLMgQMH5hW2YyMp/C5HlTsp5FEZS+YZTkG4buUuuFimyM97o5xLwT4Bec3k12djbG/ycdfOBqIZDUNAo99Ja8hVrmqfCytt+Hw0i2YINtS56W7wLqq6fjWY2R5kuZ2Ma2XzvppcW0tBlmXq6uqoq6sDKMdXZo4htr6r+W4AljuvHbBdW/Ox1q6txRQYrsUUQwvr81mb81S6wH2/PM9PT0xQ1E32bwrzio0SzuxEVUX4YljLYLtVs9LS0sLOnTsX/EE65FKb+0rK6aCr1FG4dzzNRLpIiwciPrUUQPWonJ3Ksqs1wN724MKLXMQwBU8PTHNqIoNXVVAkiUNDSUYTBV60JULAfeV/EvN1MraquGdmGdWSFVCLrq21OJ7Z4ivWDcDx48fRdb2qjUvlZMPlTkdUFGXFffSuBDVtkSxXSBZbYLjcVu+LQZKkslClCzq/960ezk9lkGSQkHj41CRPnIWvvfUampsbl7z2Wh33oUOHqmpWFuKajhCnJzLktVKVOsBUukjA7WBTxIXQiis+ppFEAZ/LQbJi33Q5ZEwB8ezShodNpAqcncrSGnCVjzfiUxmIlSyUfQuI0lpv4LN1ybXugs+dO1e+C3a73RiGURNdbp+vFslCzLwBsOJgVkaYlQ4eiUTQNG3Z0xHX+/tdDDUtJA6Hg0KhsKTXLKVX1pUoeDRNk58eHef8VAaXKiNRMpHdDiiaMv/QM8nezqUJyWpbJLquc+LECQBuuOGGBVuBjCcLJHIaDX4n+zdFODOR4chwAtMstcD3uxRetrOJVl+OaHTlFonPqVDQL81fKf+vAKdjaT+y6ZyOboiyiEDJcvI5HYwm8gsKyZWmsop769at5PN5YrEYIyMj5HI5fv3rX697sV2tWSTLTbVdCTPjYFY6eDweZ3h4mFQqxdmzZ0kmk2WrZaHmoFdLC3l4Hrm2Kl1Z1157bbl30mqtvxysDb9nKFHKVBUmumHgUBzIsoyuGTzVP72sdVcr/TeTyXDo0KFy0LCy8HEm6bzOd58b5vBQkpxm4HMp7N8U5u4b27ihs47BWBZVkdnREqC7wcvg4OCyj0sIQV43cSoyW5t8nBpPkdIujh8wBaOJPHVelc7w0jZOqwB0pmWhzRCXWsXtdtPW1obD4WBgYIDt27cTi8UYGxtbt07GteRmg9oYalWZDt7d3c3jjz9Oc3MzmqaV4yvBYLB8ExAMBi875qslYwtq3CJZygTD5fTKulJC4nNKCGFi6KXqaOniZmYKCHmW/hWsZB58JRMTExw5coQNGzbQ3d3NQw89NKelI4TgH54d5tdnojQHXTT4VRI5nZ8en0BVZF5/bRs3bKyres1yXXCnxtMcGkwwldHwORX2tgW4cWOIfx6Cc9EcDkWm3ufkts0R6hbR+kQzTKKZkost4lMJuh1MpIs0+p3IkkSqoGOYJhtrIG14sVhWwEo6Ga8WL1TX1lIwTbOc6QWULct4PM7Ro0cxTbOq3Y7H4yGbza5pvdF9993HfffdR39/PwC7d+/mz/7sz3jFK16x5LXWVUgW6ji7mPTflbR9t+7s1+rCk2WZVCpFqz6GDBiSjCqVNgHdKHX7fc2+lmWtuxLXlhCCM2fO0N/fz549e2htba0a3Tsbo4kCR4YStARd5c27we/EFILHz8V42Y4m/DMC1Qv9AGb7/k+OpfnxsQkM0yTkUZnOaTx4cooDm0Lc2izo3tWA2+WkLeQuD8iajwuxHM9cmCaaLoIkUe9TaQu5GE0WGIjnkCjFW/a0Bdm4ROtmPZnte5qvk/HAwEBVTUQkElkwzXwpx1JLG3ctCsnMrC3LsmxraysnWMTjcaLRKIcPH+YDH/gAO3bsQAjB6Ogora1z15Utlw0bNvCpT32KrVu3IoTg//2//8frXvc6Dh06xO7du5e0Vk1bJPOl/y7HlTUT64tdiwvPmgB56tQpXrx7M1qdzJd+3U9euyQAv7GtgbtvXFxQu5KVCIk1CjeTybB///5yjnplC5LZmM4VyWoGzcHqDBK/y0E0UySR12YVkqUcp2EKnrkwjUCUa0HClKZFHh1JsQnY2uhddBbLVLrIr87GyGkGLaHSpjmeLJDTTG7fErk41lhQ51Gp96mLvvOrhbvvxbiTFupk7PP5qmoiltsapBYtkivRP2spzFdHUplgsXHjRnbs2MFnP/tZHnjgAY4ePcqGDRvYuXMnL3vZy/hv/+2/zdnjbqm85jWvqfr3Jz7xCe677z6eeOKJ55eQrOUEQ2t9uLzWY6VYxXyFQoFNmzaxefNmNm+Gl+xo5BcnJykaJrdsKrULkWdOYVoEyxUSaxSuz+e7rIfXzHTlmUS8TnxOhWReI+y9VIWdzGv4XY5ZazDm21wKhQJnz57F4/FQX1+Px+MhXdCJZTTCM9YKe1XOTGZJL9ELeSGeI5HV6G685GfeEPZwbipLNF3k2o7VnelypVnK5j1bJ2PLDdbb20uxWFx2J2PbIpkfy+uxWKF2u928+tWv5syZM7hcLr7yla/w0EMP8W//9m9rNuTKMAy++93vkslkOHDgwJJfX/OurZlCYrUwX42271bzvdWMk2QyGXp6elAUhVAoVPXFb23ys7Vp5VkYy4k9jI6OcuzYsbKwLbWHV3PQxXUddTxyegrDLGVmJXI6ybzBb13TiN91+aU013Fas0x8Ph+pVIq+vj48Hg++UBi9YJLDVVXPkddNnA4ZVSytfXq6YKDOktXlkCXShbWLjV0JVppsoaoqTU1NNDU1lUfbWi1cltrJuBYtkloSksqR4kvBCrZHIhHe+MY38sY3vnHVj+3o0aMcOHCAfD6P3+/nhz/8Ibt27VryOjVvkVgxEsMwOHHiBBMTE8t2Zc2kstZjNRgfH+fo0aO0t7ezfft2Dh06tCb1HkuxSEzT5PTp0wwNDS04+bFy49cNk2MjKU6Np5CQ2N7i5/XXtqIqEs9emGY8VcDvcvDafS28fPfsxZSzbS5WTGvz5s3lMaqj0znGonGKuSS+QpTDwwbTdR4aQ34cTg+jGYOtTT7C04v6yGXqPA403cQUolztbgqBZpoLBukNUzCSyDOZKgXpGwOluEytsJqZUivtZGxnbc2Ptb8sp45krdN/t2/fTk9PD4lEgu9973u8/e1v55e//OWSxaSmhcSKkaRSKQ4fPryqEwwtVqMo0dqsBwcH2b1nD78cMviTLz7FUCxDZzjHPS9xc+fO1WtVv9j030KhwOHDhykWixw4cGDBVEJrXd0w+daTgzx6JkrxYv2G84TM7Vvq+Z1bOnj57maSeZ16n3PeSvBKi1MIUT5H1157LQ0NDUwksvz0+ATnolkKuiDodrNv23YibTmOD8XpHU2ia5O0+BW6WuvJSiyYfBHLFIlmNByKREvQRWPAyUAsR6PfiRAwlSnS7HfOm6FlmIJnL0zTO56pmv63o9lHQAhqYYtay817rk7G0Wh01k7G61G3MR+1KCTWTetSSKfTqxYPmQun08mWLVuAUg3Z008/zWc/+1m+9KUvLWmddXdtzYel4E888cSqTzCsfI+VWCT5fJ7Dhw+jaRoHDhzgC4+N8M0nL9ZPCEHfVJ4//N4x/vzVO3jDdW2rcsyLsUgs91FdXR3XX3/9omJA1sb/3GCCX/ZNUe9zEnSX7tyTOY1f9k2xtz3IjZ3hcsfdxaynaRqHDx8ml8uVBU3TDf756Di9Y2na69y4HTLxrMavzsR5zd4mbtvWzHRWw6WAnwKJ6RjZGDz99NOEQqHyJmb58g1T8FT/NEdHUqQLOrIk0RRwsrvVTyhVZCxZKmzd3ODl+o4QwXkEcCSR59R4hgafs5wZli0anBrP0KkatAVro97kSlkBC3UytoZJjY+PE4lE1j3QXWtCspyGjVBq2nilCxJN01xyETjUsEViGAa9vb1AKb+5rW11NuGZrERIYrEYPT09NDQ0cMMNNzCZ0fn200NIlCquTcNEINBMweceOstr9rYsuRJ7NhYSkqGhIU6ePMmWLVvo6upaUjaSaZocGUpgGKIsIgBBj8pEusCRoSQ3LnKmiBV/evzxx/H5fOzfv7+8yVyI5zg/laUj4sarli7DxoCLgiF4djDJ9RvrKlxJAZqbGhgZGWHfvn3kcrkqX34kEiGOjydHNCJ+F90BD4YpGJ4ucGQ4xeuvacakdA4CLmXB8zGeKiCgKr3Y61SYysBUVqctuHaTDxfLermTZutk3NvbSzqdXnYn49VmuRv3WrFci22tx+z+6Z/+Ka94xSvYuHEjqVSKb3/72zzyyCM8+OCDS16rJoWkMisLKBfxrAXLERIhBOfPn+fs2bNs376djo4OJEni0OAUmiFwOS7+wKVSXy1VkYhlNc5NZdjRsvKW0HMJiWmanDx5krGxMa6//nrq65c2brbs2jLFrNlkkiShLcENmEgkyGazdHd3s3Xr1qqNL53X0UxRnldv4XcppPM6Rd3EMUudiNXA0EppTSQSRKNRnjo6zEiigBz2oPv9+H0+2uvcDMRyDE0X2NGy+Du7GhqHPie1MrPdairocDjYvn37sjsZrya1ZpEsd6jVWrdImZiY4G1vexujo6OEQiH27dvHgw8+yMte9rIlr1VzQjIzK+uhhx66ItXni0XTNI4ePUoymeTmm28mFLqUQupRFaSLg/sqfypClP69mAK6xTBbNlQ+n+fQoUMIIZYdR7LW3dka4LEz0apGjHnNQAjY1bpwLyohBOfOnePcuXM4nU62bdt22XNCHhWXQyZd0Am4Llk+yZxOS8iFaxbLbeYGVOnLb4i68USKeCiSvuh6AZg23YyMw6awuuj6k+aAi5NjaXKaURa6nFa6Bus9tXGnW0sB7spjWU4n49Xm+SIka+3a+tu//dtVW6tmYiRzZWVdicaKi10/mUzS09OD1+vl4MGDl6VEHuiOEPaqxLMalmYIU2Aisbc9wMbI6uSAzxQ/y8XW2NjIrl27lm3WWxbJzZ0RnumPc2gwUZ4zohsm122s48YZbVBmous6x44dY3p6mp07d3Lu3Lmqv+eKpXPdEfawrclHz1CCJn+pz1U8q2EKwU2ddShz1NfMdSe+IezmucEiLQ0h6sJ1CFMwnc6Sm0ySnZ7iscf68fv95djKTJdLIqcRzWjIEtT7nWxr8nF6PA3WNSoE25r9BPPpxZzKNafWhGS2jXuuTsbRaLSqk7H1nQQCgVURgOeLkNi9tpZIpSvr1ltvrWrdsFpTEudisUJixR3mq8Nwqwr3/tZuPvTdo+Q1Ayh1w20MqHz8NTtX7ZitDV8IwcDAAH19fVUutqUSTRd5sj/OUxcMLkhx7twX5D23b+Lx8zF6BhMAXNsR4mB3PZ55rKpsNltuAHnw4EEymUtZT+PJPI+cmuLURGkj3tHs5+auOryqTO94hmi2SNijcsumOq5pn939N99n29kS4PxUjvNTOcI+Fd0QTOclbtzazl27GjF17TKXi3VXPFJwcjpaJF3QS21UvGo5RjOWzAPQEnTTVufmbN9EzWzgtcJiYxKVnYzhUr8pK80YWJVOxrUmJMs5Hiup4WqYjgg1ICQLFRiuxpTE+VhISCpbsVx33XULpuPdtqWef7lnPz86PMbpoQkaXQbvecWNqzp9z6p9OXr06IKjcBfi7GSGzz9yjqF4jnRapyc+yeODOf7Li7u5c0cTd+5YXNpyNBqlp6eH1tZWduzYgSzL5VGh01mN+58cYiCWpcFfsuJ+fSbKQDTD229u58XbGsgVDeq86qwurUosYRqM5zg2kmI8WSDsU9nVEuCuXQ0cGUkxOl3A5ZC5bXOYazYESx1/nc6q2dzpdLrU1+jcKI8NpAm4nbRG/Hh9fpI5eKp/mlfubmRjZOHzWtBNZImqKZFrTa1ZJMs5lpn9pqwWLpWdjC1rZSmdjGtNSFZikdht5BfB6Ogovb298xYYXokOvXOtn81m6enpQZKkJcUdmoNu3v2iLgYGJKamplZ9hGuxWETXdXK5HAcPHlz2BDXTFDzw1CDD0zm6G3zEpCxen5OxdJH7nxrk46/egWOBzVEIwYULFzh9+jQ7duygo6Oj/Dcr/ffwcIKBWJatTb6yyyrsUTk9keLoaIoXbamfNx23cj0oid+/Hp8gXTDwuxTGU0XOTGZ5ybZ6XrGribxmoMjSnBt7pculv+inkxQRp0E6nWZsdBRd17mAh1ZHlpu3tc0ZIJ5KF+kdTzOeKiAj0RnxsKPFv2qxsPmoJSFZjY1bkqRyJ+NNmzatqJPx80VI1jprazVZVyFpaWkpT3ubi/VybVkt1tva2sp32MtZe7Ur2ycnJzl8+DAAN91004p+MMPTOc5NZWkOuC9u8BIS0Bp0M3hxYuB8LV1M0yzHtWaziiwhGYrlcDqkqriHIks4ZImR6fySjlk3TJ7qL81D2dx4KeY0lizw1MA025uXtpFnigZul0ow6CcYCoEQFApFTgxHmYxN8+STg7hcrrJLxvo+41mNX5+NMZ3TqPOoGEJwaCjBdE7jRVsiV8Q6qRUhWQtRW24n47Xs5r1cliMkpmnaFslikWV5wVbWVyLYXjnbwzRNzpw5w8DAQLnF+nJZzUmGlZlQW7dupbe3d8U/Xt0sdb+1NnhJKmWYOWQwRKnCey7y+Tw9PT2YpsnBgwdn/R4tIQl6HOjG5WsVdYN4dIKxqI/mSGhRbedTBYOJdLHsIrNo9Jcq2CfTRTqXMFekJehiIJa/1EZFkpAcKpG6Om7a2UhHnavqzjiXy+F2uzkV1RnLKmxtuRS097scDMZzjCULdKxxS/paskiuRNPGxXYytkoFaklIllPXkslkAOwYyWJYzA/hSsRI8vnSXbHVUqRQKHDgwIEF7waeGYjzhUfOc3g4Qcij8sbr2/i9W7vKRYer1cdL1/VyyvEtt9yCy+Wit7d3xZtJe52nZH3Ecxc3XwkQTCQLNAVcdM6RZTY9Pc2hQ4eor69n9+7d87bHFkKwuy3IE+fjDE/naQ26EMDgVJLx/jME6iT+LjqKx+2is6WBTW2NdLY04HHPXvSnSCVrZqYwaYaJQ5bLExDnIpnXOTORZjxVxONUaPCpNPgc9F8M0humIJHT2NJYqkNRFJmGhoZybOz48eNomsax0SRT0xmM6VGCgQCBYAC/z48hIJVfOwvaolbqSODKN22cr5Px6dOnATh27Nhl3Q/WC8MwlpzmbAmJ7dpaJa5U+m88Hqenp4dwOLyoliKPnY3yngd6MEujw8kW83z+kfMcG07xN2/ZhyRJq+LaSqfTHDp0CLfbzYEDB3A6nWULaqUmvNMh84br2/jyr/o5O5VBz5sY+SL1QS//4bq2WTO0rOSIrVu30tnZOe8P1BKS7gYfr9nXws9OTHB2Kksum2Hywjk2BBXqLsaPcvkCvf3D9PYPI0kSHS31tNbXsamtkeZIiFhWZyoPm6VSm5PnBhP4XAqqIl9ssFigM+y5bF5KJfGsxoMnJhlJ5HGrMkWjNMp3V4uftjoPQ9N5VFnilq46drYEZnVPKYqC2+1ml78O11SGiGqSSqcZHx9nIH+BhHAz6c6R9Ik1m0gItWeRrOexVHYyzufz/Pu//zsNDQ3E4/Gq7gfWf/N1Ml4LDMNY8hCxbDaLqi6+9mm9uSqEZC1jJJIkkU6neeaZZ9i2bRsbN25c1I/if//iDIYAWeJiZ1kJ0xQ80jfFc4MJbthYt2LXltVNuKOjg23btpWPyxKPpa6tGybPXJjmyFASgD1tAW7qCvPhl23hV31RDp0ZpCPi5bU3bWF3W3XhoWmanDp1ipGRkQWz16bSBZ4dmObcRJKJcdg8mWH/pgg7mgM8evQcjz3Xx4Z2H6oMQlz+GXxuF4NjUS6MTvHLQ6cZSmpoiodsQeNYdohbtrbQXe9hIF5ySYFEa9DFHdvq57VIDg8nGU7k6a73lt15U+kiZ6ayvOm6Vm7pqkOSpFnXyBR0zkdzPDOcx+s06OyQkSWJouKiucVPY3Mzg9EMIT2Ph3w5ScPavOrr61d9A6sVIamlmIQlahs3bmTjxo1L7mS8FiwnRpJOp/H5fDXzHS/EVeHaWk4TscWg6zrDw8PkcjluvvnmRbdiSed1esdK9RCVn0GSSs6hJ8/HViQkQgj6+voYGBhg7969tLRUj+NdjpBohskXHz3Po31RNKP0ugdPjHPr5nree0c3O1oC9ASmCQaDdM8QkWKxWHb57d+/f15zezCW5RuPX2B4Oo9DFoxG4YuPnuf117YiUlOcPn2a1pAbt0vFMEwy2TyCSx2CQ34viXQOSSrNtO+bzDCRKhBw5cikkjwzHaP3TJjf2L2BWzc24XR78btVNtV75w2ya4bJQDRHxKtWBf3rfSrnolnGkgW2N8/uykzmdR46NcXwdJ5kykBIgoSUpMHvxBCCwXgOCYmmoIcbNrbQGnJjmibJZJJYLFauQbJ6UNXX1xMMBle0+a63FVBJLR3LTFGbrZOxFbS3OhlXBu3XYkb6cmIklpBcLVwVFslauLasaYGKouDz+ZbUz0tVShlI+izBaCHA6yyd1uXESIrFIkeOHCGbzc4Zp7EGci1FSJ7uj/PL01EiPrXc+j1T0HnsbJTrN9Zxx7aGWdvTp1IpnnvuOQKBAPv375/X5SeE4GcnJhiZzrO12YcwTKQUaJrO3/zjr9gVkXA5ZHTDIJ01MAwTIUy8bheKQ0EGEuls+YeczJcmJobcKqoikZMgHHCTSCd5+NAppqfG8LpUNrY2IOWb6GxpwOeZ3RVQOmcw85SJi/9Hnmfz6B1LMxjP0d3gZayo4HAoON0OknmDl26vR1B6faPfWRUfq6urw+sPIoVakFM5sukUE4kUIyMjCCGqBkct1fVRS1MJa+lYFrKOnDPqiWZ2MlZVtcoNthotXJbTtNFqj1IrAr0Q6y4ki5mSuNquLcvP39XVRSgUKgfoFotLVXjZzkZ+enyifDcmhMAwBQ5Z5uW7msrHvpTNPplMcujQIQKBwGWjcGeyVGvn0GAC3TSr5of4XA7GU0WeuzDNHdsaLhOn8fFxjhw5QldXF1u2bFnwok7ldc5MZmgMOpElCYOSMKYvnGZkKkGbO1wVw7CyxHTdwBSCQlFDdThwO0ufezKTwhQCVZGQFQVFUSgWNZwOmYJuYpiCfFHj9MAopwdGUR0KjeEgG5rq2dTWSEv9pYwqhyyxpdHL4+enqfM4yvGP8WSBsFelNTS7AAkhOB/NUjfDkqnzODgfzZEpGnNaMtmiwePn4wzEsggBppAJuuu5aWc3DU6DaDTK6Ogop06dwuv1lq2Vurq6RW08tbLJ1NKExKW42WbrZGy5wVazk/FyXFuZTGbNxuquBesuJAuxmhZJZXdcqwgyGo0ua/0/uWsbx0ZSDMayWNeWIkl89JXbabnY/nwpm701ObC7u5vu7u4Ff5hLFRIrlnDZOhJly8oSRCEEZ8+e5fz587O61uZFutQ9N5FM0D8wQF04gkNVZ/1MHpcTzTDRiqUEAt0wSOdK34dTApfTiayqOKTS3xCCgmHidypVG7vb6UQ3DEYm44xMxnnq+BkUxYHbH6Curo7NbY1saQwwnirSP1WyegwhCLkdHOgOzzoq+NI5mnmzU3pfIebfzE9PpDk3maEj4ikL11iywKHBJK/Y3cSmTaXiOyvrKBqNcvLkSTRNq7JWZttQasmddDVZJPNRGZQHVq2T8XJjJFdLDQlcBUKyWum/VpU6wIEDB8o/zuVmVjUFXPzwPbfwr8fGODyUJOJVec2+FrZUFPBZrqL5Lu7KIPZSRggvZMnNZE9bkIdPTZErGuVsLKuj77UbQuXjNQyDnp4ekskk+/fvX1Iee8DtYHtTgMfPx8glopw/dw6tqBFNZnCrCnVeFZ/HjSxJFDQdRRKksgUqf4umKLncAPxuB01+JxeiaXxOBSSZolBQHArtEReWjvg8LrL5YtX5yBYNzkwmSeYmEJRcGg1BLy/du5EbWiLILjcep8rGsJvGwNyZMZJUsmQeOxcn7L10nUymi4Q8DlrmyBIzTEF/NEfQo1ZlfzUFnFyI5ZlIFeiqL12DM+enW+4Wq2Ou2+0uWyvhcBhFUV7Q6b/zsZqB/9XqZLzcOhI7RrIEFuPaWqmQTE5OcuTIEVpaWti5c2fVhbaS9b1OhTde384br2+f9e/WxTPXxV0oFOjp6SlPV1yKKbtUi+Rgd4THz8V4ZmC6nBRgCMF1HXXctqXURE/XdSYnJwkGg+VU48VQsmJAliVeuqOBx3qO88z5ISQJ0jpEJIltTX6cikQmV6rZCXg9ZHI5/F4XQkC2UCSeKXJuKksyryOEoDHkp8EDbXUuommNrGaiOjU6w26afCoep4rLqZIralWbmRBwIZYjkdMJuRW8Xg+5fIGRqWl+/FSWXS1+3E6VjS31uLRGPEojfq+76vNMpYsk8jpuVWZLo4+xZIH+aJbJlI6sCDo8cFNX3bytXUxTMDMB7OIRMlet50x3i67r5Y65p0+fplAoUFdXh67r5RuV9d7Ea+EYLNYqg2y2TsZW7YrVyTgYDFa1cLGOY7muLVtIVpGVbPRCCM6cOUN/f/+cUxbXsk5lvuwqq6gvEolwww03LLohXeXaSxESl6rwoZdu4dEzUzw7MI0QcH1nHbdvqS9N/5uaYmxsDJ/Pxw033LCoH2NBM/jVmSj/fi5GpmDQFXEip8bZHhQ424Kk8hrTZoY9G0NE/KU7d1mS8bhVUtkchmFS1PJIkkS2aNIXLZDVSrEbh8PB+HSa6bTMdR0hOiNehoYzNNd7CQbccLFOZzqdBaiKrURTOaZzOj5XSUQKhQKyVKo8T+Y1skUDSYK+wTH6Bsfwe924nSqb2ppobYpwPiHom8yR1QxURaKjzsPB7jBbm3wcOpnA53Zy086mWS2ZZF4nkdNwO2Taw26ODKeo86rlYP50TsfvclDvW1wQ1+FwVBVEZrNZYrEY/f39jIyMMDU1VWWtrMeY21pybV2p+fGKolR9L/N1MrZEfylcTe1R4CoQEofDsaxgu5Wymsvl5nXRWG6CtbiTmUtIBgcH6e3tXVRR33xrzyUkQgie6o/z4IkJhuI5NoQ9vHx3Mzd11nHXrmbu2tVc9dz+/n76+vqor6/H5XIt6jyYpuDbTw/xqzNRPKqC0PJ89+leHOjc2Blmc5Mfj0vltBkvz3d3qg5AIpO7PJ17IlVgOp2jMeAu3WkjaAn7mEgVmUgV6G7w4lUlHIqEosioDoV07lKfrsrYim4YOBwOfB7nxcyw0h2zInMx6H0pJuRxOUln86SzeaamUwz9+3GGE0U2NtfT0dqIPxDg7FQGSYLX7G1Ga3TicrkuExHdFDx3IcGJsRSZgoHTIVPvUwm5HfRHc3hUuTT1UZa5YWPwskaeybxOuqDjcshEvLPHkwC8Xi9er5dEIoHH46Guro5oNMr58+c5fvw4wWCwar7HlbAUnq+uraUwXydjoDySe7GdjG2LZIksdAFaFsNSzOfp6Wl6enoIhUIcPHhw3i+tcrNf7QtQkqSqFGCrJf3ExMSyRuFWMp+Q/OzkBF/51QB53cDrVBhJ5DkynOTdt3Xxm7sutYU3DIPjx48TjUa56aabmJycLLeLWYhzUxmeGZimJehCz6Y4099HQBVEMwbnoxkiPpV0tkCuqKPpBg3hAEJIaHPcFOS0S20krBsHQzcQhkamKOPzuPC4VNwXg/b5gjbrOgAhrwu3o0A0mSHkcaAoCqrqIJHT8TrB41RQFaXU6j5/SdR0s+TSckiCxHScVCqBoigoioPRoQAdXhPXHOf85GiKpwamCXtVOuud5DWToek87SE3t3SFmEpreFSZjoiH9tAlN5pmmPQMJembyJApGrgcMh1hNzd31uGbJwFACHFZcDifzxONRqsaG1rWylpWdNeSRVILxZGVnYw7Ojp49NFH6e7uJpFILLqTcTabpalpcSMcaoF1F5KFqIwzLORnrGxpvti7fWtN4+Jd7GzohsnPTk7wsxOTmEJwx7YGXr23pVwzMB/Whp/L5crB/rmaHC6FuepIskWD7zw7jClEOZgLMDKd57vPDvOiLaXhVNZoXiglH7jdbqLR6KKDuEPTebJFHTkb5cLAQLlOw6MqxDJFTPNSWnTA6yaRznOxagNFlvG6XRimQTqbL9VU+L0MxmOYzurvyzDBqyplKyavabi9HgJeD4ZploUgkdOJZopIsoLbIVHvdZDOa8QypXRhLV1AkSU213uJBLwIAUVdr7pBMczSvHpVlnCoDoQp0IoaRTTi0SQ/+mUCqZCmozlCxnTQ2dpI0OdBNwUnx0oJAWFvSQy9ToUNdW4m00UO+sPsaw8xG71jaQ4NJgj7VDb63eQ0k1PjGYSA39hWP+f1O9uNldvtrmpsmEwmiUaj5YpuaxphfX39qk0jBNsimQ/rJrKpqamc/ThfJ+NwOIzH4yGdTtPd3b0mx3Tvvffygx/8gN7eXjweDwcPHuTTn/4027dvX/aaNS8k1uau6/q8QmKNeI3H40sa9CTLcikVdI44iW6Y3PP3R/jl6alydtHPTkzw3WeH+drbrp93YqC1fjwe58yZMzQ1NbFr165VudDnskj6oxliaY0Gf7XrJOJTmUoX6Y9maXHrZVN79+7d5eNZSpGjIgnGBs+jFtOoDgeK4kAIEzOv45SVkrAg4XU5SWVzVb57wzRJZXOk02l03aC1qZ5W2aDf6yKWyRNwq0hAqqDjUWUa/SoBr4fhgobLIyhqOkVNLx9zLGfSN5mnoAtMI4chSnUeXfUeUnmdTNEg7FVp9DvpqA+QuiheUB1bIVfAo8oUTAlDN8vtWwq6idMh43bIpDMGF8ZjaIdP8/CzJ6jz+2htjDASM2mur77m3KpCUTfJabOfU80wOT2Rwe92lHuO+ZwKbSEXg/Ec0Yx2WZfjSubbvK2CyLq6unJFt2WtHDlyBCFEVfuWlfR0eiEE25eLYRhlz4TFzE7GVgeEkZER7rvvPn70ox/R0tJCOBwmm82uej3JL3/5S+655x5uuukmdF3nIx/5CL/5m7/JiRMnlu1OW3chWUzr8Pk2erjU2NDlci1r0NN8Afd/OTrGL09PXfZ4z1CCbz89xLtu7ZxzXSv20tvby86dO6uGPq2U2arQAZyKXK66rzwLhllqFx+PTjA0em7WvmJzrTmTZCbHiePHENkkCc0g5Cn9YIq6SdEQ7OkIEfC6Sy4oTWfmkkKUJiomkwncbhdHTkzhcbtodbmQTQcFIYMEIY/KpnoPbZEAqWxu1mslVzToHUngcDoJOA1UhwdFkZlIFUjnDbY2+S6+pyDo85LM5KrSjaezBaYm0uQ0A6+q0BYJMBDNktFMZGGgm1A0TNpCbjxOhTTgdTkvutYE0USKqekUp8bTHDKgu62BpoYIjfVhTFnF61TmzOwq6CZ53cTrrN743Gqp4DKnzX3NL3XzdjqdVamslW3YrYLIymmEi92MrbqjWtm8a1FI5rsBrhT87u5uurq62Lp1K1/60pf4wQ9+wDe/+U1e9KIX8aY3vYl3v/vdq3JMP/3pT6v+/Y1vfIOmpiaeffZZbr/99mWtue5CshBWF925NvrR0VGOHTtGZ2cnW7ZsWfYAqrnW/9dj48z8vVoV2f96bGxOIdF1nePHj2MYRnme+moyl0XS3eCju8HL8dEUG1WlLCoTqSIdPpPM2Pk54zMLWSTZosFzZ0Z59OnDqJLJ3vYgR4eTxLNFoNTefUOdm86Im6KmU9B0VIeC3+vC4VDJ5oqYwmBsbJzpnEbOEWY6oaHIKhEdwg6NRilPQUi4XR6awwHqw34kWcLlVMtpxpWk8wa6pOChdOenGzq6AapkEs1q7HU7cUgyyBKpGSISzWicmcxQ0EwUGaYdTsZT0zQFXGSLUDAU/F6V5oCTOreMECY+t5NMvojLWzoQ82LjzsaAi/PRLGcGx5mcTpE+0ovkcHH95jYyKQ91ngiOGRuKW1UIuBQSeb2qIDJdMPA6HfMWSa6kjmTmNEJN06r6TxmGUXa11NfXzzsZVFQkLtQCy6nZWEuWejwNDQ287W1v4xvf+Aaf/exnuemmm/jZz35GKpVas2NMJBIA5Vjbcqh5IYHZ26RYd/ojIyNcc801KwpMzdcTq6ibFyuYqx8XlO4oZyObzfLcc8+hqmo5y2a1mUtIZFni3S/q4q9+1sdgPFc6ViHwSwVe2ubg1oMH5zyeuWp6hBA8cnqKbz1yjHPnB5BlibBHYWeTh9u21DORKqCbJkG3Skd9gEKxSFEIJKnkGkxl8rhcJrphEJuaoCBkxnUfuWxptnrREFxICkTYy66NTRQKefRikcR0nLGxMdxuN16vB0WW8bmd+D1usoUCiiTjUE10TYNZ0l6FEOQKGh6nSjZbxO1UUdVSAWo6W+BCLIduCOr9TpyqSqFYJJ41SeV1drf5McySSFgV9EG/l1w6hcvpIJouMpkuktUM3A6FxoCTjWE3GU0mnsriUGTqXYJ8coofPBzFoSh0NNfT1dpAV3sjdX4fDlliZ0uAX52JMZYsEHQ7yGkGiZzOvrZAOd5SiW4KFGl13UmqqtLc3Exzc3O5IDIajTIxMVEuiLRiK3V1dVUbo3W91IoVcLVZJHNhpf9u27aNbdu2rcGRlTBNkw9+8IPceuut7NmzZ9nrrLuQLObHMNNisALXQggOzrMxLpb5qtvv2NbAk/3xKjERorS5vGT75VXo1ijc9vZ2tm/fzpNPPrkmdSqWkBQ0g8fOxTgylMQhw41dYW7qDPNX/2EPj5+PMTSZIDU5zE0bgxy44ZoFM9hmE5JnBuJ85h8fJz45jtelYJqCkXiefNHgrj2t1Ae8ZHJ5An4PqUxuxqtLw7JyuRyjo2M01Ue4MC3IFfM0Bj3l90xl8+XJgq3hOnKFIoFQCE3TyeWyZLM5cvk8F4ZH8fmSROqCOL1eGgNu/B4n6YJW7iMmBOSKJt0NfpyKQq5QRJKgoGkULs5yyWoCTcjUB50okkShWLKq/C6FdEEnr5nlbsKyLOF2OklmcmTyRVK6REwTSLKCS3WSyhdI5nV2tNXR4IfWQACHXEpVttANg/MjE5wdizHw4DNIDhcbWxu4eXs7+7tCnJ7MkcyV0n9v7qxjd2t1unp/NMup8TTxrEbQrWKmdBbZBGFJVBZEdnZ2Vs1OP3XqFMVikbq6urK1YsW+askiWWpN1lqynLoWS8yvxHTEe+65h2PHjvHrX/96RevUzhmfh8o2KVNTUxw+fJjm5mZ27ty5KmbsfK6tN97QznefG+H8VAZrKJ8iSzQFXLxt/yV3VWV/qsrix7WY2w5cLOLT+cRPTvNUfxxDlCZs/eT4BHftauKeO7q5rl7gGBmg+/rF9e+azbWVL2p88Ue/Zmp8lPDFehBkibCsEs/kOTM2zcaIB7/XjWGYBHwe8gWtnOYrSZBOZ5iejtPV0Y4pO0mORfE4S9+pputIgNvpoJA3waFSKGqXguGqA1UtuWFGRkZxuUppwMOj4xiGjtvtpk5xMi4grZVK9ouFIo0hDy0hJ8U50o2FMBGmiabp6IhSwoBDQRR10C+lBKsOBVm6lCZsCsFkxkByKAScMmBQ53FSFBLDiTyRVh8Ss1gLkkTBkDgxGKVoCJyKxsR0iud6++lu9HFNdwvdjQ1s2dBIc7h6A+mbyPDomRimEPhdDkaSeYbHdPyhAu2zN1VYNSpnpwtRuiGwgvbnzp0rC0k0GqW+vn7dN/Hni0Vidf9dS9773vfyL//yLzz66KNs2LBhRWtdFUJiubbOnDnD+fPn2blz54o/+Mz15xISv8vBt991I197bIB/PT6OaQpetrOJd93aScPFam1N0zh69CipVIpbbrmFYPDSPI/VnNteiSzLPDaQ4cn+LA1+Fx61dLEm8xoPnphggzNLMD++JLffTItkajrFz584wtD4FOqMVGf5orunYIhSUV9FcaAQ4HKqOB0OnIpMMjnN5k1dICtwsUNy2S140dQzTBNZlijkC+gOJx63E1VR0A2DXKForUww4GMiK4hJQQzJwGeY+CgQFgUyeRlZdbGpMURbxEvA46Kg6RSKxcs29saQD08sRyJbpM6rouk6RV0nntVo8LtoDHlRJJmirpMvXqpZKRqQ1wVhT+l8K4qCBMiaTjKnM51xEPG5cDtVBIJcXkOSwKEo9I7G0U1R5bJKF3SG4llCI1PEplM8dbSXuoCPrtZGNrU10lRfx5HhJLJUGo0MEPaqTIwKTk8V2K8ZuNUrExOQJKnsqu3o6MAwDCYnJzlx4gTnz5/nxIkT5fqI+vr6dWmD/nwRkrUsSBRC8L73vY8f/vCHPPLII2zatGnFa14VQiJJEufPn8c0zcs26tVgobkhIY/Kh+7cwofu3HLZ39LpNM899xxer3fW/lSrNbd9tmPuGS0NVPJUbCQBl4OxWJonz+b56Bv2L+muptIiOT88wb/8+jkKRQ2/SyGnlzJ/DN1AN/RSkFlR8LkcFRu9tU5pdG7/+ACaYbKhrR2/z4ckS+QKGu11bnrH0uQVCacMJpDWwOsobbKSBPlCEUuaFEXG43Li87g4MpQmVizFCUAiagoaAz52djVhFAtIwmAyNkF/wsTt9uD1ekoz1a26k0IRv8dFOptnY9jDGc0kmikiSxKmKLm2OupcgEQql8c0BW6XisvhQDdNZKn03oYp8LlLHYcN07w4LVNCkaTqDsaqA1VRKOhmKYlghiB7nQrpgomBROai1TOdytCTytBzuh/NhNGcQldrAwFHA35fyY0bUCUyRZPpnE7LFRKSmSiKQihUqo/Zv39/uT4iGo0yMDCwLiNua01IlhP8NwyDXC63ZhbJPffcw7e//W1+9KMfEQgEytX3oVBo3sSK+Vh3IVnojiWRSDA9PV3eqNeil9By3U9jY2McPXqUzs5Otm7dOutnWUuLRDdF1UAmwzBIJhMIoK29Y8kXonWsz5w4xy+fO1G2TrrqvUymp5lMZPE6SzUiGV0i4lNpnKVnlKZpjIyMEvC60TUN3TSZSmbRDBOPKrOtJYiBg8FYhnheR5YlfKrErhY/qjLb9SBhGCbD0wUmMhLNkSBuh4JhGmTzRSZTRZoCLra2hMnkCnT4AmhakVwudzFwHENxOMjhpKh4MFGoD7ho9KrsbvUTy2oUdBO3KhP2qDTV+UhlSzImSVAoahSKGqYAt0OmMeAkaTooaDoSpTk0qbxOvU+tmtLocTnLNS9F3cTUDRwOGbfLiQC0ooa42LqlqOk4XZdvOKVRsWl6cxlOnz2P3+elqSFCKpkm3BzAOev5unJUpv7OrI+wZntcuHCBEydOlJsaWhMi18JauVK9thbLco4nnS5NX12rGMl9990HwB133FH1+Ne//nXe8Y53LGvNdReSuRBCMDg4yKlTp/D7/TQ2Nq5ZQ7qlNm4UQnD69GkGBwfZt28fzc3Ncz53rWIksiyzq8FJf6qIZpgIQy+lCDqc+DwOru1cXEFmJbph8OTJCwh3vOrxlqCba9qDnJ5IkylouFxuGtyCvW1+nA4Zr7s0yCpX1Egm04yNjdHSWI/HHyR2vp+TY1mmcil0U+BRFbrqvWyp99ARdhFNZvF5Sr2rdE3DmHGuXKqKKUxyhSJp7eJMFUMnb5RiHy6nA7dwkDWksmUkSSXryel0EgqFShl+owmGE0WKhRgSMDShEPCo3NBVz/a2OkxTkLtorVgiAiXP20SqwHiqSEE3MPJFNtQ7MXWTeFZDcThwyDJNIQ/tQbWckOH3uEnnChimiWaUhnPVeRyMpwrlTDCHQyWZ06gPuIj43VUuOKvK3utSifidDMezBN0q6UyWRCrD8GSM9qlJfu3J093eRHd7E8gOBuM5skUDn8tBR9hdZa2uBXNVtc8ccWvN9ohGowwNDQFUtW9ZSUHkzOOpNSFZqkWSzZYaka6VRbIWIwhqUkh0XefEiRNMTU1xww03MDY2tiabscVShMRqBpnP59m/f2HX0Vq6tva3O+nPuTgyGMPQNZxOFw7Twf7uMAc2LS0nPJ3N88+/Pszg5DTOiI8z4ykSuTxhr5PNDV46671sCHvRkSkUigTcjov1NKLcviSRSJCIx9m0sR2vz082X6Q/JUgaOfxuJx5VIa8ZHB9N4vO4qHdBk98BGGSz2YtNFF04VQVNN5CQyGuXAu+yJDHzJyDLMppeoFiQME0nHpcLhyJR1A3yhdLGXDAkEppCwOPCHfRg6AZFrUg0XeRQ3xCbwipej5dIXRDdUPF7PRSKRTTdYGg6R3+0VAypKhJZ4eD0RIY9HfW0htwUdRNVkQi6HTgdCm6nisMhk8oWGE3kGU8VKF6sjI94VUIelWReR1VVtFwWv1OhwSNT1DRU1YFTVRlL5BmYymAioUg5Qm6ZsFclmdMxKeXB+VSJRo9C/8gkQ5Nx/umxI6RMF6o/RH0kgqIotAZd3LGtnnrf2rmUFpuGPHO2h9W+ZXh4mJMnT+L3+8vCstxJhPD8EJJMJoPL5Vr3xIWlsO5HOvMiTKfT9PT0oKpquSfV5OTkqo/brWSxm30ikeDQoUOEQiEOHDiwqC96LV1bHkXw5m6TRsNkSm7A63ZxcHOEO3c0LqoPmMVYdJp/fOQZJuNJzk7rTE2WfKYORWYkqRHLZbhlk4P2kId8sYjLU/25hRBMTUVJp1N0d3UiJJlcoUiqYJAyHIR9HlwX6zdURSJryJwYinGwO3zRYhPlCulsPk8mJwj6veQLGj63E5DIFgoEnBJTBcjrJm6HjNPpJJ0rYJpmuS17rnAp48qpqnjdThKxLLmCRuTicxSHgsfhIaI4AUEk4qFYyNM/OAwIPB5P6T+vj2hO4PM4cUoSTqcDs5gja8JIIs++9mDVvBErYSCRzjEUzzGc1HE7VXwOQTpXYDBusDHiZnNziFgqi6o4CXocqBcX0XWDwViWgVgWj8uFyyGhmTCS1GgPOWkOuCgaJqoik5xK43erKA6FfEFjMJ5jOpsk5JkmPjZEY32EaCyIV5V5+e6mNQt6L6eqXZIkQqEQoVCI7u7uckFkNBotF/FWTohcit++FoVkqdZWOp3G5/PVTEr1Ylh3IanEijl0dHSwbdu2S/O2HQ4Khctbj68WpVngxXmfY81537x5M5s2bVr0l6woCpo2d6fapSCEoHcszXROw0zkyUWn8Pv9/PEbbl22a6C3f5if/PthDMMgUzQZywg8HgmvVVUtBImizvGhaVqDbgJeD7ppkMuXzpdhmIyPj4Ew2dy9qWpgUyqvlXpimRqmWdrYJUVByxbIFUrtRxyKjHXDJoRAmCY+n4tUJo9mmFyIZUgXDJyKjNfloNvlYiRlkDNMjEymXE0/22wQp8NBMpOjcLGORFVVFEVG03WMi3PifS4Xfr8fw+MhGApTLBbIZnOkUikGRqOM5hTq/W5Ujwtw4FJVkE1yRYOCdmnapISE1+0klc2jGYLxVBEZgYoEAkJeJwUDkrpMG+askxU1UzCeLOD3uHFggilQAYcsmM4LtrT4EcIgny9SUBWQJIqaTk4zSF+sjpel0uY1NjFJ0RhnbHSUdv+N7Otam06yq9GwcWZBZDqdJhqNMj4+zunTp/F4PFXz7Oe7w681IVnO8VhCcjVRE0IihKC3t5fh4eFZYw5rOXzKWn8uq8GqoB8dHeW6664rD7JZLKtlkQxP5/irB/s4NZ4mr+lIeoFrG2XufeuNuJxL/xqFEDx2+BTHzg4iXXQdJfMGRRMiFQFj1enCbeSJZ4tMZ/LlYLIiyygSDI2N4lZV6psaL5v653LI5ZnwbkXBME30YpFcUcfjchAOeFEkyBWKpV5gioLb4yabL6ALODqaYSpdoFQiIxBagS2NEjdvamAymUdVHYQ8DnyKBJKo+mxBv7dcHBnyOPCoClPJHKGL1pSQZFBU2sLu8rUlSSUXjMvlIhyuw5spEBtJoek6uVj84nMkDGQCATehgBdFEmiagUNRyllXea3Ud6yyxYlpCjxOB9FUllxQoTHkxSErFHSNQkErueA0A0lRwdShYvNxOxTS+SJTiQx+lwO/10vc4UAzDJxw8fxc3n3B6XSSKer85MnjOGXBjo1zx/KWy2o3bKycRNjV1VUuiIxGo/T29qJpGnV1dVXz7Cvfv9aEZLkxEtsiWSKmafLUU0+h6zoHDhyYVYlna5GymswlVPl8nsOHD5ePbTkV9Kshgrph8pf/eoresTQBVSBTQHM4eGrC5O+fGeYdB+duHDkbhaLGvz7Ww9mhkgtLCPC4nQS87tLxmgKHDKrLhVYoXBwZK5VbhQCk0plSUL2pHq8/iNvpwqHIpUr0i0HjiM9J0CmR1sFR1FGkkltKMwRbQ25yFzdeCUrvLUvkLxYjXojlmUoXCXudpaLGVIosEpMFBx26xoaQlXhhIpDwulwoikK+UMThUOkdjhPNlBor1vucdNV7OB/NEsuUrEO320WdEyLuUvdnr9uFLEnkC0W0i99XayTAUEIjmilQV+fFNAwSqXRpbggx+s+nCQYD+LxeXE4vfq+bXEFDVUwUWUIzTZSLnZAdqoNUNn+x4l0uW3QATqeKS3XgdMOp8XGELFHpmdRNs/Q6WcKpOiiagmzRIBh24fd40I0MblUpPWY1iJQlcoaCRy3Fdn769ElyBY3rtm5AM0zyWilLrXKe/HJY6417ZkGkNSEyGo1y9uxZnE5nWVTC4fDzQkiutqFWUANCIssyXV1dNDQ0zHnCKyvb14KZm/3p8TQnLkySHjvPvs5Sq/XlVtCvhkXSM5TgzEQGv2IgNI1QMIBpmGjJHD85PsHdN21YdFHadCrDPz7yNFPTl5rAWXUbXofAhUFWE9QHXCDAQCJXNNjc6MN1cXdLJBJMTU3RtXEDsqPkoqmMTagOB26XihCws9FFf0oiVdQxTIHLUZqBvqnhkih7XE6y+WI5Y0tVFWIFgd/rAqGTSqVRnU5a63xMpfIkCiZel1qOq5R6Z+WQZQnVofLcQJSJjAGi1N9rLFmkOeBkb1ug1IbE5QJTJ+xVkcsJA6VMLcMU5A1KbfE1k64GD7ppksiXuhgXhUxzyMXuDWGcksl0Mkk0GgNJwnsxthIJ17GhPkB/NItDEbgdpXkqmaJBe8h9WS2Jpum4VJVioUBznY+xlIZuGjhkCc0wyRQMWoKlVjDIpUQEgGzBIG/mqfN56GqQOT2WJJ7VcMgSitsHCFqC7nIc5+HDZzgyGEfxh8lrJgG3gz2tAXa2+qvSyJfClWwhL0kSPp8Pn89XLoi05tmfPXuWXC6HEILx8fFyq5f1vqtfjpCk0+mraswu1ICQALS2ts672a61a8sKtscyRd7/D0d4emC6/Ldbpop8ZrNBxLd+QjIaz5DJ5fG4IRAKIssKRbOAU5HIFHWSeX1RQnJhbIofPfJMud+UhXFxCJWqyGypkxgzHUxMZ4DSj7ct4ufm7kZkDIZHR8lmM2zp3lRyD1WQKRicm8owmihtylta63AIiS5PHgIehOIk6PMQ8pUK/qBkiaRz+aquvkXNoFAoUNR08loev8+H1+tF03QEJTeOdddpZXQ5ZAlJlhiYSjMUzxJwKTgcMrLTgSQ7iBV0WjTB1pbQRRfU5ankiZzO6fE0BRQKhVJDyQ1hLzd1N5DM6aRyBdLTGnU+J41hP5lckYYGF5F6wVg8Q388Q3oijmtgiohPJehwk9YU8oaMIsk0B5x0hKsDx4Yp0CWV8YkkLodMo69UnxLPCpBlFEmh0S/T1eBDcagUtJIgj2dMhotZkIuoikSDz8neznrG42l0yYksl+p8Kt1ro4k8T/WfoaO5gWu3d5HIafzb6SkMIdjXvrwi3/VsIa8oSrmZJJR68D3++OPlImGrINKyWNZjnv1yChIt19bVRE0IyUJcqRjJB79zhGcvTFf97ZmBBH/0vWN8/e3XL2vtlab/JpNJpi704XRIqB4fsnwpuJvXBU0etTwUaS6EEBw+PcBDTx9HUWSC3tJd9nA0Te94ivFUAUWS6Grw4ZJNbt8UZjSZp3DRz98adFMs5hkbG8MhS+zYuhVZUarG1OaKBk/1x4lni7hUBUVROHR+ika/k+s2tKAX8mSzGZLRBFrahdvjIRgIksxkkWYIkixJ+B0m5+JZNjSEUGSZYrFIpqDjdalsiATwOmWy+ZILze1yous6umGSLFy0ahQZQSk2galhaAbxjIYWNkoJA1WtV0AzBKcnMuSEjE8x8flUcprJuakMTkWiLeTC7VdxaioBvxtdL/XqkiSJkUSB87EiJiour5N8USdmyDSrOg4jg6FLBHxumoIBQj73xa7ERXKayVBSZzyZLG3IkkTYq9Ld4KUlWMrQcioyYb8Ll/NSfcvQdJ7JPEScEl6nQtEojfWVJNjSXIeklMSokqJuMpEq4lYVMqkkp88NcO2ObqIZnaMjKbY3+8sW51KopemI1tTRXbt2oaoqiUSiXGVfOc/emhB5JY57OQWJtmtrjXA4HGseI7kwXeTJ/sxlfzOE4N/PxTg/lWFTw9K/3JUUJFqzVl60u5vjxSzPXEigXXQPTWdLlda/dW3rvKm+hmHy0NPHONw3AICpm2i6TiKn8euzUbK6hNepYgo4OjSNF9jcLdFd8VmLRY3R0RECPi/1DY3kNR00HVmS8LhdSBKcnSqJSH3AjSxJGLqO0+tgKlNkKmvQGSmlewphks/nMbUiA4ODqIqM1+vF4XRhyCqGkMhnknj0NO2NYWKZAk5FLltNmyNOMDWyeQlZlgj5Pei6KF8f8sXJjJIsl5IIpIvjlAul1i65fOFibKYUq/C6XUhSyZLJGeBXL3UL8KoKmm4ylszTFnIhUeqZlcoUUFQPqqoiyTLj6QwORcZ3sTK9PuBhbDpHVvaxe1MzhUKebDbHVDTK6Ng4brcLv8/HhO5hdDpDnUctz42ZSpcsjK2NPnyU1nO7veR0E6fqIJUrMpUu4pIFHod8MXZSet5kusi2dieqermQFHQTzTDLMZTJWIKe3nPs3rqJWFYnXdBxOZZeb1Jr0xGhdPNWWRAJUCgUys0mBwcHSzG8ivYtq1UQORPbtXUFWcxc9bW0SNLpNEPTeWDuL3wwnluWkCzHtVVZOX/ttdfS2NjIR1qKfOGX53nyfIxUXifgcnBbk85/uLZtznWy+QL/9MtnGZqIXva3MxMZ0oVSnMDpdFAsFnD63EylBVNZg9ZASZyy2SxjY2O0NjXi8QWqCgLNitjCRDKHy+VCdTgwL35X1p3YdFaj82J9pFN14HGHSjUiwRDFYpFEKsPh/hixgkBICrIw2d5az76Ij7GkSjxbmrveEnDRFCy5xYQQ+Nxu4skMVqt6t8vJxoYAI0mNfFHH7SwV+GXyBRDQGHBfbExZOse6YZDMZFEdDjTTxBQCj9tTGo6l6aUguVJqMCkoVatPTE7iVEsbrq4bRDM5UrkCEZ8Tt7OU3pzLlbLbUnmdonGpLgUiaJpONpshqwvOjEzhcyoUC6XNRlVVfC6FeFarrpUpWn27XOjZApphloLxFT8bpyKT0wXTOR3PxUaalRaXQy4lS2iGwOUovTCVKzA+ncbv9V4Wt1kstRTcrhSSmbhcLtra2mhra8M0zfKEyMqCSMsFtpKCyJnYwfYawhKS1b77EULQ399PX18fLb75L5yu+uXNPFmqa0vTNA4fPkwul6uqnI/4nPz3V25nIlUgkdNwmznO9h4vd+GdyWQ8yU8f7yGbKyBLMqaoFrPJdBGnQy5VWBeLSEggTExNZ3w6w4a6evLZNNPRSbo62pEcrqqNayYBn5vRRIKiYsLFGdUOVUUpiHLnYLdLxTCMi2NqASScTidD2TxxXUWigBMD06FyZGiadDrFtkYvrQ1OPB5P2a0HEPR5Lrp6Sp2DM0WDbLGUidQWdDCcMCgWJUShiDBN2uvcNAVcZWujFFsRuFSVgqbhkASmrpPMZEvjihUFVf3/2fvPWFvT674T/L057XxyuDlUZgUWyaqSJUqy2jLVPbBa7oGsBsYae8aGgJG/yBhAAgwbGAgDYzQtCFa3oS9tyZjucTtM22jZbkm2LJEUxVS3buVbN+eTdt77zeF55sOzz77n3EAWb1VJxW6uDyR4efa73/2GZz1rrX8wmRQ5bc/Ac+w5g/9g6LqmuBtCgK7QWJZlIXRJlWXcf3ssy+TI5iZ3hjG1qYlnSERVkhcZ0+kUzTCpNJMsc3FMB9NxKWeWu3lZ0arXMfUpiVDXbz/yShD4AaahMoxumMC9ROLZBm3fYneSoWkmlqETpgUXb+/x1374GYL73BgrIef6Y99pEP9prUi+U+i6fogQmef53CHy3XffRQhxyM9+v2X2uOf0ODOStbW1x/7OP4/4vkkkoLL7xyUbUJYl7777LqPRiGeffZb33nuPL55Z4E+u9Oe+I6Ac8n707CJHO4+XSL6X1tb+kDAIAl555ZWHDgeX6w7LdYfRqHykZs6lW9v8r197c+4JAhqB56DrOlmuSIKBYzHNKsoDLZD9Qbala2xv7xDHESeOHUVqBr5rY+j6A7LsQkiagUfLjhUnpFDCjEJKhtMYXcJK3aFV9xACMimRspp/fpKWbI9jKFNqvovveXNzomEpSUpBHg4ZDfoEvo/tuNRqAdNYcUTujFJu9GLiokLXNBZrNqeXfI4tNbnTnwAGTd/n6EIN0zDI8pIsV7wN27HZGkTKQdK1WKrb7EwyPMtA1yqSaYprmRzp1DF01Qa7X6Ol4SpL3FSY6JlSEVbD8oLjiwELzYAwSpGzD9YCn0mS41sGrmVQSknNt5H4tDs6290Buijp7+1QNmqMogzP83FdF11XSfPYaodzwzFpKdB1ST6D864t2nM4b5wVeI5DbxKTVwLH1DnSchFSMopLMqGhaRV1J+PZ1XvPdiUk721PeW97SphVtD2L5zbqnF1+OK/h01aRaJr2PSc227ZZXV1ldXX1ECFyZ2dnTog86Gf/YRODEAIp5WNVJD9obT1GfLcbv588Pq5EEkUR58+fx7ZtXnvtNcqyRAjB//uvPssv/+v3+MOLPXVewI8/scQ//C+feezv+rCtrb29Pd5++22OHj3K6dOnudKN+WC3R2CbfOF4m5p7+Hc/7LhSSr7+zmX+9K2L9x1dHtpNN2oep1ZKdqY5SVHhWjpI5Y1h6xIzn1Cic/L4ccTs8wcH645tKbhqVSKFZBRGrDYcTi8HXO/FDGJVcTimztlln+NLDUbTmP0dtDPjTVRCcHNvTBilrLYDtZOf/SbHVC2loNFieXGRsiwp8pQ4jukP+ni2zRSHD7o5hmHg2waVlGyNUtBNnlszOb1872VMsgJQ52VbJqNM8I3LfcZhoqC7tsGxjkfgWOxOUiohWWl4rLccfBMmM3KjZuhMKp1bW4oY2vYtTq62uLwzZhirc9eAhcBmvWEzjXNM08RzLHbGCZduTUiKirpr0vZMdqY546TEMjXGSUFQb3K6bbNYt4kKQRTF3NntMUwqpGHTDBxWmgHrTYdUQpiXmIbO2fU2i417O+eiktwYxGz3J5RCYhk6CzWLYx2PtYbEcRyKSrlAXtvu89Jp5ZB17taIP7k6xLV0AttgZ5KyNUkphXzAtXH/mfs0VSQfNak9jBC5X63sEyLv97N/1O+v7mvxftj4QSL5hGJ/l/FxzEn2F+zNzc25DMs+H6HmGPzj//oF7gwTbg8Tjna8uZnQ48Z3SyRSSq5du8a1a9d49tlnWVha4R/+/mX+6FKPrBBoGizVHP7vf+k0XzggxHj/cfOi5A++/hYf3Nz6jt/VrAVMwpjVwOBkx+HGIGGSq8XPMjQ26rBYd1hcXOZRZ53lJde6Edd6MZMkp+E7nFmu8cxGg/WmSz9SFctiYLPeqc1bUAfPNS8KxuMx0XhEs1nHsG00xLzKUmKI+hxJVA88CsfG82t0pCBJEt67OSLNShqOTlVamDOE084oZKNhPlQ2BSSZ0Pj2tR6VEEr+xLIYJwVXezEvbjY51vFmcxBxSAcsyzIu78WMqxLbMnFsi7sh9KIRT6zWyGdkS9fS6fj2nMBZVoKL22NuxzpxlGCZOoO4wLd01poOcV6RFoKWZ7PSsOnUHYLAQyQFUWUwmBrERgFVxbCfcLs3ZSOQrNcA06Lue7Ra9XtmYcDNQcL2OKMTeMiqIK8k22OFzjux4GNZ+lyy/90bu7x4ap0or3j77pSma7JQU3OgpmexNU558/aYs8vBAwTGP0/47/3xSVRHpmmyvLzM8vLynBDZ7/fp9XpcuXIFx3EO+dkf3Ojuv58/qEg+JaFp2kceuEspuXLlCjdu3ODZZ5891IM82DrTdZ3Ntsdm+6MlkIPHftR5H2yv7Rt2/Y/fus3vv79HzTHp+BaVkOyFGf/w9y/z3/+fXqQzU3I9mEgmUcK//qNv0x2O8V3FMM+LcuZVfm8BDzyP3jjEMnR0XeOloy1OLAb0o5wizyCJaHsW66traLpBkmUP3W3dHmWcuzlECIFjavQmMd1xzNNrNZ4/2uHIYkO11SSHJNn3Q4k89oiiiM88cYzkxpi7o5jANvBcm7ySVBgcbzuYuk7Nd4iSfJ5kNE3H9XykkdCs27imMuTK8pwqSciEwWA8JTCqQztGTYPA9XjrVp+0qFisKdHGosjxTRhkknEOx5brTKLkwPdppGnKtTu7hMKiGTi4po5p2xRSZ5pp7I5TnlipPbS1kpWC3RiEgPWFBlmmeDPDuCDOKp5ZqyEAY/Y5UzeopEKq3RomlEKyVJ9VGxIGcU4vnbLSMknCEVU8YRIl+L6H5/kUUmMQKUMyyzLJqwLH1BHCoBflnF5pUB7QsxmGCbe7Y3TbIcxLNu/bPLU8i1FSME3L+fO3H58m+O8n3WY7SIg8evQoVVXN/ewvX75MmqaH/Oy12azwe70+P0gkjxkf5kJ/FJmUoih4++23iaKIV1555QHDmP2Hr6qqj520dLDiOfg7kyThjTfewDRNXnvtNWzbRkrJv3tHcTXqs1aWaWis1B12pxlfvdLnrzyvEqCmKeTS7d0+v/uVc/PW08EWlG1ZuLZFXla8c3fMB9s75KWCgD6xWudo21Ps7iKiPx1y4sQRrt24xTROsW0L27JwbAspJFGWgZTYts37W7sgBS3PBE3DQ7XFrvViji/4NDxnxuEQ1H3Fm4izDCFAiIqdnV2SouLo0WOUAp5dr2PoGruTjFGYYps6JzouZ1dqtAOfoqrUQPu+2ZVnG4ziglbgUs7uXVkJ0ihDViWDfk/Biz0f07ZpNZuEieLHPGyArGsQFxXTtMD3XYqiJM8LwjCk2+1iB030ssKzTbVAGDaGkJi6IJLm/D6r+7P/XGtEeUVYQNMzKCUz3oxqK41nyK6DHA7XtQnTgkJoxFl1uK2pKfvnvRAsv8Hm+hpFnjOYxoRhRL/fp8AijHVagUtR6riuS5ZlWIZGVAgEOvcPe965scMXnj6JbehkRYV5YPielYrPcvAcR7Gq4C7djnG1io2koPld+EyfdPxZm1oZhsHi4uJcf++gfMv169cxDAMpJXt7e7Tb7Q+9tvwAtfUJxuPKpEynU86fP08QBI90WNzfNXxScu9wGL0xGAw4f/48a2trPPnkk/f+RsIkKR/ghRi6hgaMk+LQcW/ujXjvP3z9kUP3olTug39yucfl3RDbtrAsk36c8Y1rA8TxFoGIiOOY06dOINFni5ycf744kLybgcfOOCEp1SJ4UCXQsxTctZA6RVUpIiAcchq0DI3Ld/e4NpLkusfF9/do+RZPrNR4YbNBlFVks2O7lkHddxlGyuRHA3zXwTA00kyd15GWS1jAIErxLaURNs1KFusuZ460MDRNMeSzlDCKGA2HGKaFzHXKSiCEOUe9SQkYJp5lzuTs1bUu84x+r8fKygrjQofxVFVifk15pmggZ227TqvJaDIF9qVbFHzBd12EDBFSoglwXJc0iWckxMNiixLIK8V/MU0DNHjY7dVQiaqsJK4f0NSViVdRVoRxwlYyZTieYhsS13HQkRTSwDF1pLxXRVRCMooLdj7YYm1lifWmy5VuxGZLU+TFvKIX5XzuWGuO7Lo9TPj9C12605zpJKWsBENzh7/8tPr8n1f8eQ/+9/3sNzc3EUJw584drl+/zvXr1+eEyP1q5VGESCklURR9Yu6In1R83ySSx2lt7RP6jh8/zunTp79j5fNJcVUOVju6rs9dH5988kmOHDly+Bx0jdPLNd64NaLhmvPzzQqFctonCQoh+Mr5D/jgdo/jJxvkM87D/RF4LluDkOu9ENfScAwJVDQcg2kuefvOiC8sa5w4fmy+GO6bVd0fvuswmETkeYkmFd/Dsi2kEBRFQSVUtVIWBcJ6kNiWJCk3725zI3FJhEHD1jAch15SEt4a8eqJDnXXJHDUNXNt67BTIRDP9LyklLiWxdNHFpH6kEs7YyapEoVcrts8uapQVgC1eg2t3iAvS6pKGWgtmRnbk5jb3YS6a2FaJpXuUPMsVur2/Dt6vR5RHHP0+HHqvoc2CvFtg0x3McoKDTXUzivBiQWfaVbSbjWYTMNZdaKqHN20qDkGk7Sg6ZokmUA3TKI8Z7PlYR+YO3iOrRJyJbFNnbqrXBRbnjVPKmFW4ZngWcq2t6wEe9OM7UlGWlR4lkGnWWMUF5i6pKyU3W8Yh5xsu4yGQzzfR2gmV3ox40QhAH/7y5f5zKk1VhsOe2FOOauUnluv8/ljLfUcC8nXrg4ZRAWnl3y6MkJIQS/M+Nq1IX/1hdXH1u36qPHnnUgOhq7rBEGA4zh84QtfIE3TebVykBC5jwY76Gcfx/FjCcR+mPjKV77Cr/3ar3Hu3Dm2t7f51//6X/PTP/3TH/m4n4pE8mFbWx92oRdCcOnSJe7cucPzzz/P8vJ392L4pBLJfhVSliWXLl1ib2+Pl19+ec64vT/+2uc2uLAzZXuS0XBNikoS5yXPbzb5wok2SZbzu195gxtbeyR5QZrlygTJtqiEIE5yJIJG4DOJEoZxTlFJggPS8EJIZdBk2tQXVzEMU/mIC4mm6Yd2wIauY+j6XJK97pos1x0lySErTENHoJEIjfWmTadmc39hF4ZTut0eWtAhDmM6vnJXRFS0HOhHgm5asb5QI89L0O4ljXlIyd1xyu1hQpRVLDYDVgODjabDRmuFTGjISqHO9hcT17IoJRRVSSkkYS4wbI/lep0v1EuudUN6YUaWZXhmxZJhkyc6hnQZDAaUZcna+jphAdNRwnKzxmcMi3e2IvpRgYZKFGsNl/WWi6ZpTNOSRq3GaDIlzCs8P0DTDE4v17i4EzJM1OxI15X17kbTns8ZSgl3Bxm3+mou4pg6K02XrKjoRzm6riGEpO6aeMh5e/PK7oSboxwhJLapMZpVrh3fIq8kpW7SDgJOLzdZrRsMxiG7u7vcDiGqDNqBg+vaVGnI9ijl6fUGP/P8AkkhqLsGK3Vn/o72wpydacZaQ/2bRF3vlbrD9ihlEBWz2dOffXyaEgkc7kK4rnuIEDmZTOYs+/fff596vc6lS5dYXFwkjuNPrCKJoojnn3+ev/k3/yY/8zM/87Ed91ORSD5MfFiZlDzPefPNN8nz/JGy9A+LTyqR7L+Ab775JsDc9fFR8cqJDn/vp57g//ONW9waJNiGxn/2mTX+L3/hGOOZcu9oGs2PK6UkL0vyfYkQU6fuBVRCYBo6tqHPCHNg6FBVJVmWYdqukorXNcpKtUPU+YLvWAS+S1lJ8iI/MHRX3/mZjQZZKRhEBYIK07Ro2vDUkocUEHgOhq6T5jm7e11GoxGnThzj3O3prJVzcOOgJNO7o5hytUYlBY6p4MFpVpDP7sn1fsyFnRAkeJ7D7d6UrYHGc+sNNtsejibB1HFsZT5ViYo0r6iE4PYw4foBrknHt3hqtc7zR1pklaBWa5DFIWEYEkVqzqBpGtLy+faNEcnssau5U144scqLR0yGsarCao5JO7AO7cJ3Jik3hyU7gynSLHAsnaNtjxePNulHBcWM6LfZcklmLS4pJZf3YnZicC0d11Lw5xv9mKMtW80uZp9bCCy27wzQNI1RlHJ3nOGYJvt7hf02Y1oKnltvIKWqbhqeRZqXLDk+cVZy+9aQmqgospQkDjENk2bN47Im+OLpzkMBJ5L9eR/z52+/NSz5ZPzAP2x82hLJo2Y2uq7TarVotVqHCJH/7J/9M/7lv/yXVFXF3/27f5ef+Zmf4Sd/8icf6Fx8lPjSl77El770pY/tePvxfZNIPsxCv2+F22q1eOmll74nzskn5a0+Ho8BJdHwwgsvfCgo4A+fXuCHTnYYJQWupTgSV+/s8u/+5Dz5TLlXvcjaoRfXNE1MQ2ccxvN/O7ZYZ2EnoRemOORKA8sLCNOcU6v1h+p0RWmG53vESQqaxp1JxY1+RJ4XrLdcTiz4/IXTCwzjiqSoMDTJSt3B0NViEiUZUgr29rpUZcEzT5wB3cC345n5leQgHLgUklbNJc3LmXTJrBqRig0vpM7N4RBT12gGHmVZYvs246TgWi9irenOobZZXqrropt4nsWV7SHvb0+VrLhtUEnYmWTkleDzx9sstZqEhaTZalGWJaPxmFoQoDs+b9weE2Ulri4xTZOxdPj6tT4/cnaRTefhz1YpBO9vTxnEBUvNJlUliPOKy3sRtqkfQkQJwHddsqJgmhSMcw3f1uZDbdPWCbOKSQbPrTnz37h/z33HYm+akxUVTUsHTZ/P0D1bzTeK6p7BViWZz66EBE03CFwb0wgQQlAUOXv9AXFW8aff6HJ6fWEObd2fLS4ENks1Bf441vHUuUjJ7jTjSMs7hOoaxQWXuxGjuKDhmZxeCj5R//jHYZF/kvFh5VH2CZG//uu/zq/8yq/w1FNP8dJLL/E7v/M7/MIv/AL/+B//Y/723/7bfwZn/Pjxv5lEcufOHS5cuMDp06c5fvz49wy5+yjiio+Kra0t3nvvPQzD4NSpUw99qMK05Ns3h2Sl4LmNxpy3omTAFZLrW+9d4StvXMCxrUNWt/utDQDXtimrijQ7bBlclAUvbfh8+eKUMBPYrk8uNI60fZ59hHS479hMwoRSCL5xfcT2OFVSILrOcDehGwt+5HSb1YZBWT14zaqqZGdnF11T85e4qICKjbbP7XFFWFT4JoBkmhYEnsuiZzy4m9UgzQv6YU6cl3TqgTIOLFUi8meLZZSXNNyZH7uhoxkWRakW0W6qISS0Z86IJmD6FqO4YJQJnEJ9Z380ZTQaUq/VaHc63OjHVLrNxmKAqCqKokDqGv1pxJtXck62rXkP/OCzNogKRkk5F2KUAmquySgu2BqlrB0gDUoJtuOQFQW5gAKNhmXOlMPUzl9ZBRTEmUngmLN7zuwZ0TF0JV6Zl4KGb8/FGishMTSlsbUfhgaBazNNczzbwLMM1b4ylMih47hM05LPHF3l1RcWmY6G3Lp1iwsXLuD4dexak83VJV470eIPPuhxpRsxDUuEDsdXTF492Z4nu+1xyr99d4+dSYY5E6R849aELz2z9NhyQ98tPo0Vyfea2LIsI89z/sE/+Af86q/+KsPh8BM6u483PhWJ5KPAf4UQXLhwgZ2dHV566aW5N8H3Gh9na2t/RnP37l1efPFF3n333YeW/F++3OO/+Q9X6Ic5AjXH+JkX1vmFHzmBPms5/f7X3+bC9TuAcjbMclWRGLqO51j4roMzM4Z62HdUVUU67vGFNQP8ZZJCLborDZfAU8q9aZpTCgFSDdWHkyn1ep2tccbOJKPumpj7oAEp6YY5l3amvHCsja8bpHlOvq8Hlefs7GxTC3xWVlbIynvXtOYYPLPq8v72lElSoRkGjSDg9IIzJ8A9LFzbxDBN0rzANnRMS8m1pGGMrmnzxVJDw/X8GYtdxSBMCXwfTa+Q+wSxWeVUajYSJU3T3dtjYXGR5VZNKQQXCnKsoWEYJpZtg+mSGznCANvU2NlRDpP7aB3P82YCjxLXsSjLCssyKcoK29RJCuUTf7ANFmcl9cAjKSSazCiExDZ0pWCsQSklpgbtmkuWl0i5T5KEOFWkxrZnsTfNcG11rUshCbOStaZ7wKdGqRMMooK4UK2utabD9X7MKC6wDCXoqOvQMQqWFzosL3Q4duIkX720x5ev7NG/OkC+vsXJpsYzG22mXsCtQmet4/HDz67OCaBCSr56dcDeNOPMkj/f8NzoJ3zlyoCNlvuRnRkfFv9bSCRRFOF53vxzj5qlftriU5FIgEO764fFwxJJmqa8+eabCCF47bXXZgqrjxcfVyIpioI333yTLMt45ZVXCILgoez2O8OE/+f/eokwK+nUbAxN6U79s9fvcGzB54unWvybP/42O/3RQ7+nEoI0L9GQREmutLAMnTQrGITKplaKEhkNWGjWaXcW7mMO3FPulRIC38HUNCauy16vz3A44lZsUlUCQ5/5nEuJ67iEWcj2JOFsOps/SYlj2xR5Sm9vl8WFNvW6gqKO05JpWuKYOgs1m7Wmy1LNZhgXuI6Lawhs0yBwHeSBc9oP2zSxLJ2mG9Kd5rR8CypBVlQkQuf4go9vq2qm3qgRpfeSiIbiXHTDHC+w0Y0DCDPHQ9c0RqMRw+GQldVVfN+n0nQMvcC3DMTMK15Dw7ZdskoiJHTqPssrLYK6Ui+OoojhcMje3h4pNkWunA33kwFAVlYsBvZDEU15pbHartEZFuzOErdlaKSlIC8FR5cCXMehrJQbZH+wB6bD7iTFtQ2OdZTcSX+aYJgKvrxYszmxcO99kGicuzliGBdYlk0pKlqexfGOzyQtifKSpmexXLdJ4pCyUjO2b94Y8pWrY+p+wFOdJtO05PYoohbCk36XwIvwKIgHO4TaAkEQMIwL7o5SVhv3qjVN01hrOuxOMrph/onAhD9tieRxWm1hGH7f+bXDpyiRfLcwTZPsAJJnOBxy/vx5lpaWePrppz9yb/TjmJHsc1ZqtRqvvPLKfEbzsGP/4QddpmnJct2ePzRNz2J3mvEvvnGF/k3BOIofqWWkfMYtJlGK57nEaYaQ8OatEVf7KVmlet4Nx+LVdkDrO5y3Y1tkWcG0KKg1mrTaHURV0r3WpxxFRGGEaRo4rkueJUgOt0zQNLq9Hv1+n+NHN7FdD9M0+db1Adf3JhTinmnTZ482aXoOxxY94iwHFGEznCUQyzRxbYsoVb4bQpPUbZ1n1uq8WU3mXBoNpYh8csHFdVw812EcP6jOe6Tt0Y9yRjOhRN2wGUURi+0AsinjOGJ9fX3uR1FUgiAIWEpyajNJ97pjIgrJNCtwLZ3VhktalNR8j1hXhL9Wu0NRFCRJwl485vbeCNfUcGwToVvouvGA3E6Ul/TCnEpIlhsup5Z8NA0GUU6Uq8rk2ILHkY5HlOZYps6Vm1vcHFfobp1kJ8LSNZZqNk8s+4S50qITQtDyDyeta/2YfpTT8iwcSyevNAazSuTZtfohMkuSl1y62+X46iLnb0+oeyYrs2rDtQxMQ6dfCs4+9yTXP3gH27YZj8dcv34dy7IwgjZRLKjZh9nZ+wN5cd+GUUqlNGwZ+rw19jjxaUsk/3sxtYLvo0RyUEr+1q1bXLp0iSeeeIIjR458LNn7o85Idnd3efvttx/KWXnYsQeRmmXcf+4iHnPh7hbPucpnZJ+dXgkxZ61bpiLSZUV1qIq72o14f2eKjsAQFYEfEOUF37o95b/s1NCkeEBO3ncdoiQ9IHWhzeYeOkcW69yalFiWhaULsjQlLUpyqdMwDLI0xXYc+v0+0+mUs6dPUlRQlBVv3h5xaTskcE06rkMhKnqThPN3pvz4k/4siTwYRVlxZxjz3nZIikOWRvi2GtS+eqJNN8wVV8I2WKrZmLpOJSWp1PdtSYjyiiSvcC2DlYbDM2t1rvViorxC1wTH1xapiZAiq9jY2MCcDZLzUjBJS4ZRzsZCk+cqyeW9iEQYpLMd+6mlgMZs3iLRiPOSm4OE3UmGlLBQs3jxzAa3Bgl744SsKHGNgqYWU4UlY6naYINE8MFOqFpousbl3SmLDZdn1+oUlU9eCTxLzTEAyqpksLvHnakg1RwWLJ3AckjLiq1Jjm0ZnF70lanYvpf97NlIS8HuKKbmmJi60qzzHYdqJtMS5dUDMvLnPrhJzQ8Is/IBOG/dNbk9SJik5dxAamNjAyEEo9GIbq+HkXR5c7fH8Y5LrVYjCGpshyXLdWeelAAu7oa8cXvM3jTHtw1e2GzwwmbjsVpfn8ZE8r0aZu0nkk+qIgnDkCtXrsz/9/Xr13nzzTfpdDocPXr0sY/7qUkkH6a1VRQF77zzDv1+/ztyMR4nHre1JaXk6tWrXL9+neeee47V1dUH/uZhra0Tiz4aCuVjzmRUxntbjLa3OHFgGHmQXa5rGvWajxSCKMkeuGZXu6GSeTEkfq2GFIK6bTCJUi5sjXhytT5jhyvfDNexmIQHq57DD+9Kw+HJtQYXd6fEWQUYmK7D6YbFek2wvb097/kfWV9T0iO6TllJbg8SbFPHMTSKQiWNds1jnGtsjyKWag9/waK84vytEcKuEdg67aDNYDTmws6UwDEe2hLxfZ8wFziux7eu7LI9TikqiWVorDVcnlqrsdp0iTJFpkzDCcKAlZV1dMMAKbnRj7neT2azEY3GrsmLGzVePmZSGh55KQgc49COeZLmfNBN2R7EeLaaa9wepiSVznNrNU4v1aiEpO5aZEVOEsVEYcTOXp+roY7UTNqBQ+C7xEnKIC65PUw4vXR4J18UhbrWpkNlmnRsc+b+qOGaitG/N805vuBj6xoN3yVMcqQUqD/TyLKcwDEVux4oywJdU/pflTj83rmWQW805ZvvXsE1leKAZ92r+MOsnKsD92eLt5CSO6OMQWzgNdf52R/b4N++tc3dwZRuNyS81aPuGLzU6jAeerTbba70Ev6Xd3bJSjHX8/r37+0xSkr+sycXH/p8fKf4OG0mPo74NJpavf766/zYj/3Y/H//0i/9EgA///M/z+/8zu889nE/PVf9u4QQgvF4jBCCV1999SOZzTwsHieRlGXJO++8w2QyeaiG1348rLX1F59c5p+/fpcb/RjXgKh7m+l4hG3oPP0QuW5QTPXxNGYf4+naFoFn41gWYZwwnMYYmoHvO/PBsqZpCv1UVOwPXKWEmu+QZjl131OM74dUCIHn8MyaxlJgsjtVn1us2aw0HKqypMwzbNvCdV22d7sUZaEMqGyPvKywzXsvkW4Y6IZJkWYI3Sbw3AfmIaDQPqXh0nTUwlxVgsV2k+3ekDvD5BDqCVTLM8zVbz13c8TNQYpvzbzMS8GNQYymKe6Lb8Ko30ezPc4e3WSaqt+8M8n4YDdC16DpmggJw6jg3O2QHz3dxtQUr+P+6E5zemFJy78HRnAtnUGUc3eccmYmYy+RdOoBkWXTarXYGsXIeIRvCqIoIo0VL0g3LO4OJScXg3lbKssytne2qdVqaG4d4gjXtigO+MhYhk5aVJSVxDYUxFdJv8ysfz0b37GUfL2hI5FqgyINHFPDO/DbsqKiN83ojiNuDBJOHjvKQLjomvJeCfOK3UnO5481WazZ3JSStJT8z2/ucGEnJCsFhgabbY+feHqFQdxhEBU0XJ0Vp8LIJly6dIk0y/nW0GMibM6utbBsizbKDfPtuxNe3Gx8z8TGT1tF8rgzkk9SsPFHf/RHPxGuz/dFIun1ely6dAld1/n85z//sTwsUkr+08Ue//btbaZZxal6xY8d/fAPbhzHvPHGG9i2zauvvnpI4uD+eFhrq+6a/L9+5hn+m9+7wJe/9SZVVbLSrvHykQYrtftui9SoBy6TKDmky5QVFdMoJSsE3b0dlhouO/FMkZV7WkrAXFBP1zUs05j7a+RFCZqmZiCWxZ1RSncc0q77FCLFMnSW6s4hSfYsTdnZ2aFer7O6tkZWlDyxtEyR53R7A6I4RuYZ41Sj4VnYlo1hmyR5iWXouKZqCTXqAVGcUB2AEEvDopLV/PwBilLgBzXi/N4gfT9UNVIR5xVb44xmzccQKkG4loGUKjltNgwm/S4rK8t49RZFdU9I884oRUh57xoBbd9iEBd0U0nnERiOMC2pRIXnOBTFPa8TsygYxYfP9dCrq+kYpkktsNDQKIqMIi+I0xS0jDt3M2qBj2EYDPoD2u02rVaLpKgwdYiyAvtAZZQWAtcy5vyTJMtxnXtQYKTg2ILPxd2QcVpiGzp5KTBNONZRSaKqKqK84sJuxDiM0dEQUnJ3fJkfffk58kpye5jiWjqfP9bkx59QFYOUkje2Yt7YLdlsuQSOSV4JbvUTdA1+/pUjh+dprHLmzBn2hlO+8uVrmCLlxs2bWKZJEAT4vk8vgX6Uf98nkseZkXyS8iifZHyqE4mUkuvXr3P16lWOHj3Kzs7Ox5ZE/sHvfsC/OHd3LjvxNQ3+/UWdf3U6Y6Xxnfua/X6fN998k/X1dZ544okPZe35sPmLyCJOGz0WnlugnLGkNe3ewLkSgjwvsG2LaXw4icA9efPd3V2OrK9iNAz6l/tMM0ngqh54nGUs1mw22x6WaSKlIJ61xQ4ecJoU/MH7u3SnOZphoWkJLc/i5c2A9gESWRSG7HW7LC8u0u4szBereLa7X1lZxrZMCrfHuRtDprnEliVFPEGgc7Tj0XB00DSmSY5pmHiuwTSMMQ2DmuehaekhmKxEycQcXzvMe7EtkzCrQFMKtUWlZO0ty56302xTZxRl3Nne48TaIn69BSgXQ9+1SbKCOC/n3hz3rq1q9I2jlEW/9sCAGMAydZUgNH2elAzDoBQ5zn0VTJRk2KZJUSn1ZcfUSXJBM7CRwsTwDCJhcGIxoBXAZDIhy7KZq2XOaDKlXvNZbTjc6sdkGjO2e0UlVAVwsO02iAuu7E1JcoGjl2y2fJ5Zq7M1Tonzik7NZr3pcmypTpQWc3hunFW0XWMuhz9KSs5/cJX/x3/9RSqpETjGIVJhWlRc7Kd0fG8+Z7ENnSMdjzsjJWlz4j7eiKZptBo1ljot8kqwGFjEcUwcRdzZ3qWXCG5ciQiKZRYWFqh0i/e3Q24NE3zb4MxSwOkZrPhgfBoTyf8evEjgU5RI7n8o9ttG4/GYz3/+8wDcvXv3Y/muc7dG/Is37s5HAvvJpJ8IfvOPrvKrf+Xph35OSsnNmze5fPkyTz31FJubmx/q++5PJFJKzl+8wR+//j5CCjz78MO2PxexLQvDUC91zXdJ0lx5g6Mgu1VVMpmknDpxFM2wWAN+6HSHd+5OGCc5uganljxeOb1Mx3dI8ow0Kx5IIgBv3R2zM8no1HwQFZWU9KYxr9+q+CsvboCUbO3sMhyNOLKxgRcEc1mW/aiEZJrm2EXJyeU6vudxYTdimuTYlmTJg2Vb7UA911X8iyCgFBa1WoBuWCzpCuI7jAp820DTIM4rfNtkte5QC1zCmSKw66lqBJQsyP5O27VsZsMBpnFKVeRsrCyxtrpElN27D/vCjg3X4u4oBZv5M1EJiWHo2IambInTB1t/izUb1zLoRxlt36YslNuhrmmsNh5svQpNI8pLfNtgs+1yvRdTRjmyLMhnDPT1po1R5RR5wdLSCtthwdW9mCSPcfQuJzouKzaMKksN5G2DzZbHeuve922NUy7uRpQCAtdib5IziAolC7PZPMxlkeo6pKVgnJb4lobOAbM3W2d3MOGP37zMz33xuQcW6rySFALq1uFn2DaUMnFWHN5ACSmZpqoyfWatzh9d7uHbBrVaDdv1GWsBL22anFk32Nvb4833L/P60KZfWNQDD8O0OHdrxBfPLPAjpw9zxn6QSP784lOTSA5GGIacP38e13XnXh1hGH5shME/eH8PQ9MO7TI1TUlI/N57ew9NJFVV8f7779Pr9fjc5z5Hq9X60N93cP5SVYIvn3ufty7ffABBdTB81yHNC2XYVBSH/l0Dbt+9S1WWrC4voRn3pPE3Wx4bTY8orzANDdfUCTyL4VSptHqug2OaZEVBOvMuT4uK7XFOzXNAqPM0NI26YzKMc67vTdDSCXmW8tTZM1Toh+Tls1LwwW7I7UGCkHIuDX92fZGTawt0h2MsQ5sjccqiIIrjmW3uQFnR1uosLixg6QYvH21xcTdkb5ohBSzXHM6sBLR8myivqAU+RVHMqxFQs4nNtpJAl0lO4Dj0ByOSrOTJ9RYLzRpCHk6eUZJjGTpH2h7dMGOUqOQlJERZyVrbZ7lukxXFQ2HYDdfkqZUal/YiBnFJVZTYpuTMUsDygbZMlJWzvynmoosnFwOeW2+wN01Ic5O2b7HWdMijKUkWs7q2yvVRyc1BjmXaNByHOCu5Oi7YdEuOmgmpYdAIfOqOnCfOSijggJSS1aaPEBV2oORkrvdjlur2fJ4Dqg3muw5poapDUaZo5j0zJikFoHHhxhZXT69wbKUzN2wSElxDshhY9KKcxgHflGFcUHfNQ+2pi7shX7s6ZGeivFHOrgQ8s1rjej9hZ6LcG48v+Hzp6WXVFThxnP77u0yG22zUStJkhJCCWHf5D+8kHG9ZHF28V6X+IJH8+cWnLpHs7u7yzjvvcOTIEc6ePTt/oA/Cfz8qNG7fHe7+42go5vb9kaYp58+fB3isQf9+RXLh7pB/8YffIo1COoGF77rKzbAsSbN7kieNwGc6E1G8PyZhzPb2NpapY/t1bkwq9Dimbmust1x0TZHgao6BRFLzZwN6DXRNP8SOd2fmVUWYIjQNQ8yUHWdh6ApKurPXZdHTOHL0CMJ0MDUdTVPzFSEl37oxZGuc4Zg6uqaxM8kYpxLTrbFUc1hq1YgO/B7Tsmg2mzSbTe4OYy5sT4jGJdXtbRasijOLLk90Ap5a6YCmzxFR+3cpzgV1P6DICvJSUEmJaxpzh8Lbg5juKAIpeGazzZNrDUzTIJnpcEV5ydY4I0xL2jWXtqvEH6/2YsKsRNdgo+3x3EYdU1OzKN+1GSc52+OMfphj6BrLdZvVpkMnsBnGCgVnawLfvvdaFZXgrTsTBnFOYJt4rs0wyngnm/DqqQVW62oTsC9bnyQxGxvrpMJkexzOvVkAaq7N3nBCqPs8sdFEk4LBeMre3h5CCDzPozIcoqyk7loIIchz9VwFtkGYV0RZRdO7f7GVOJZOxze41a0OGVhFhaDmmjR9mz968wo/9+OfZTcs+MaNETf7CeN+ydmjoGdwrRfT8kySQpDkFT9ypjNPJFe7Ef/q/DZxLlgIlCrx164OeW69zs+9vMEkLfEs1fo8CP292E1Y6dRZbTggJVmWE0Uhl/ZCfv9PzvH8ejDXA3uchfuTjMcZtkdRRKfT+e5/+CmLT1UiuXz5Mjdu3HgojPagHe5Hhfh98cwi/99v3TngYoeS9tbgx84ehh2ORiPOnz/P4uLiYxMf0wr+0Vfu8PoHX6HIlBz4WsPhi2cXlUEUihToWBaGoTGaxg89TpZlbG9v027WGUmfr17apahAn2klHenU+ImnlihLxXj3HEcJOM6kPu5D95IVJZqmY1kGDc9lHKcc7LLFeQlVQdN12dhYxfXrZEVJicDQLTzX4PreRLGxHXM+Z3BNjVDaXO5GLNUd8krDNAzK+yrKnXHKudsTygr8wKESkn4pqQYlZ8oRZVHgui657xMEPta+z4kGYV7x5p0x2+MMISUN1+LMcsDZJQ83H1H4Bk8cP4MoFPfGcxzCrGIY57xxe8w0VS2oW8ME19T4zEaDV0+2ifMKQ1MggbxQiQdUQnjj1ljNkDQ1PL8zSjjWUbOHtaZL3bMZR4eRaHvTjGFcKCdKTcMyNFqzQf7dUcKZBRcpBbu7exRFwfr6BoZhIoSq9GoH5hGGjtIXyypKoYzGDFttavI8J45jeuOQOCoQuQ6+g2UaVFKjkgo+/jDCX5hk1DyXtcCgPzboRypRVkLimAYnF33sWSL+F3/yPtuizigpIQuZZJL39nJOL/oEjkEvKul4Ji+e7fDZY/fg+d++OSbKKk4t3YO21myDS3sRr55s8+z6IxCP2gFFYU3DcR1sx2ahdPnMs4scC0r6/T7vvPMORVFw8+ZNiqJgcXHxOwJg/izicQmJP6hIPkJcu3aN7e1tXn311YdeyP3k8XEkkh8+vcCPnFngq1f6qr0lQdfB0eEXf+zk/O/2hSDPnDnDsWPHHrsS+m+/fJM/ffsKlqHhWsqL+84o5cuXevzlZ1ZUW60SlEbFNM4xDB3PUTuwKM0U8zuM2NnZ4ejGGqVu8413dykqiW8bc4vZG90J37ThlZML2LZFORuEP+q8lSkSaBJOL7mcu5kRVhqWJpSEe15wasHl+OYq9XqD6ICGVSUEAo0MBZc9OKy2XQ+r0OiHBUjFlQk8j+l0eiBxS650I4pKsNKuU0j1wtmmZJJWuK1lOp5BHCsHx+FQtcB836fdavKnV4f0whLH0jF1jV6YMY5zjnk5yw2HpaVlpATHtsnynEKoof0Hu+Hce3zGXyTMJRd2QhZr9lwp17WVRtZ+XNoe05vmND3zntJwKbg1SFhpOKw1XcaTkFrgEWX32n7JbIazP5MoyhLTMLGNkv405VTbYmdnBylhY2MdXZ9lcqkMcSsh599X5AWlkJi60hfL8oK67zFNC2zbxrYVvHjMkN1xShzHlEWOadpMSo3Vpodn3rtP3TDjzjBlkha0fZuVmsnzmw32phlhVuFaOst155CF7tc+uEOmOZxabiCk4MTpTeJCshOW/F+fW2EhsDB19XtFWVDqClhxZ5TQuM+K17MNikrSj3JOLz2cO/HUao3/8EGPhZqYG4D1wpyGZ3JyqcZS3WFlZYVemPE//MG36PYk1aUbrFoXeXEj4MjqIgsLCzQajT9T2REp5WO3tr7f3BHhU5RIjh07xvr6+iN9jfc9Dz6OOYmua/y3f+15/qfX7/Bv3twmykte2gh4ORhxclFJal+8eJGtra2PJAQppeTff+M9vvn+9fngFkA3NECwPckYxDkbrYBKSpLZQLeqxNwfBCCNQyajAadPHgPd5MZeOHPC0+dFhmnomIbgxjDlZSFJwwRN0xTPw7bI0nzu7QHguQ55Keay4icWfExN49JexCgqcQ2NZ440eHqzQ6PeIMwehN5KlJ2s6bhUolSWwJqO0ExKUdJwjXkVFGUlzXqNSRip3yhhnCgNLnFA/tw0NDTDmsnHODQaTRqNpkKbxQlxHPPBrV3u9CragYuhSUzDwnQke+OEgWXz7PLKHEtgWBa2VLpkUV4xjAuFjpv9Bg2oOwaDMGGUFCzOiJLiPpLe7jTDsQ8TEh1TJ8xKhlHBicWAItMeaL/uy/TPRhjqnAydSoJJxdbWFqZpsrKyAprGJC0oZxuExYZLd5LS9CwcyyCKlQPi6eUa5uxZipKMqJDcGSoyZWCbbLZ9dF1nb1AiLYtUVCwGFm095ebNmziOQ4zD9XGFkKrttd0bsdWD544ucmLR54HyFSirijgrGY26THcFx48doxknNBt19sKcQSo5vuTOF1EhxBxkUrN17o4zFgMT0GY2wQJNB996cLGNMmUT/fLRFreGKVf2IjRN3RffMfmxM505JH2cFPzLN7Z5uy85uhLgWRZ34hw91GiEMXfu3PmOjoSfROz/7u81kfwA/vsR41EJ5GB8nAq9tqnz1185yl9/RckCjMdjzp0794Ax1uPe1Lwo+b0/fZM/ee8GZVliaBIMC91UL5JJSZGXlBjkZflQeKmQkr29PbIs5eSxY1QzdV7TzEHT0O6TYTQti6JUi6ZlKMmQoqzmO+vAUzOUqhKkpZjzN3RNQ0PjSMfDlzFjp2BtdYXAD2jWfUZR/gD0eD/WWy4XdkKSysaXBY7rERUqQd0vFx5mAseyyIoCQ1MLcVJpHFSiV8q28gGfFE1T1qVB4DPWU6zxCF2HLMtJZsRGxzSIq8MvbpKXNH2PInq4JAvMhqKmeU+eXdPmcOaDUVYVPISYCMwFRdOsoOa5RLn638t1h5oTM0rU8FnXNPphgqFrWMUUJ/BYXFwiyquZj0mOEAo8cHSxTlFYjNMSPS+hrNhoeYfgtFvjhEu9jGlazNpRKTXH5Oklm1W/MeOY6CwENgvNGoNpTBTHXLg1IUxL6pZit/umTi40Lt7ts1ZfmfFQDr9rdcdkMhpQVpKFdp3BcMRgOML3fWTQxtQ3562c/QVUCEFVVbx4pMHNwS7daUrHtygE3BllbDTdQ+2u20OlEHyjr5Sdn1yt8RNPLPKZdQVddi2DU4v+oWfr7btTrvcT1nxltew4DguBza1hjNY5wg8/9wyTyWRuc3vhwgXq9fp8tvIo//SPEo+bSMIw/EFF8knHh3VJfJzYVxf++te/TqPR+J6NsQ7GOIz5N3/8Ot3hmLpjYmjMF0sxO/+8KLEcNai1LO0eLHcWZVmyvbODZeicPH5iTiyM05zAkhhoCM3EMtXgWzdM0jBlvenOk8j9EaUZtmVRGS6vX93i1jBBCMla0+Wp1RrZZEBe5BzZ3MC2bMXfKDXFC3nEdfcshbJ64/aYqLQYhzmOZXByyefk4uFEIpHolgNFAZrG8QWP97oFaVHhmmqXPklK6q7J6ZUmWf7gYu45Npau+BWmaWEaBlEcY1kWaVpRZTG3b9+aSbsHeJ5LJQRSSgLHoOla9KIM2zzQ2spKGr5D21ebGd+xCJPDApArDZduOEHTnBmSSREBTV0RNpMDiaesKqZpgT4bcj+30eDCTsgkLZQHiQ5LRsxmp8bCQodSSN66M2YQFdRcpYcV5xWXtse8eKyjYM15hmcFND1rntRLIbm8FxJlFSvNYO4NM0lKrnUjPne8dYjYOQlj2jWfXGpoVs6Sq+HognA6JU0zhBAkwuDGVpfNxQadVpMoLRCAZ2pcvnKFBVejWzgUAsWil5K7vRHBNORPvlkQDY5wcmOFxXadK92Yu6MUU9c4tVjnJ56SfPPGiGuDFEPT2Gw6/NQzC5hUlKWkGxX8s2/fZS9UZEQh4KtXBuxOMv76FzZ58Ujzoc/gjX6MZxlUHK4EpdTYHme8sKnNwR0nT54kyzL6/T79fp9bt26h6/o8qXQ6nQ+1qf1usb/h/YFo46cwPik7XFAkQyEEGxsbnDp16rF3KHf2+vwvXz43F1j0bIPjHZdL3YSsFJiGGmIKw+JI3cSiIstVL9+Z9eWH4wm7Ozu0GnU6i4sPaCEt1x2OdDyu7k3JCvD8gDSVOJZatB6WRPZDGi6/994O/UigzQQDr3YjbvcmfHbV4sTmBsasT9+oBYSFJHCcQ4lkmpZKjtzQ58ilnwgWmRY6qZAEpkbLsx56HmlRUq/VmIYhp1fqRDLj9iBhmJdoGjQ9Uy0YGtzvpAhgGkqIseYY9CYxvqnY7VmlYTuCZzcaLHiqRdDt7qEhsUyTxU4b3XJ5crXGG7cqBgcGyq5lcGrBxbMtimo2NELNduK8wjaULW4vzOhFuUL2STX8Pr7gs9n25tyWfpRz8dqAqFKyOC3f4smVOq+caDNOCqI4oQyHtOsBa6srJHlJL8yUGZZvzVtn9ZkZ1vYk40fOLDDrCB6KcVISZRV114RZctN1DUcrGScVcfagGOM0imh5++g+HVHls6pbkhUVZZyRpQm3bo3Y3rZoNuq0mw0uXbuDaZk8d3KZi3sRe5OMqVD3LLBNnlqrYyD5xrtX+Nrbl7jaz5lIB6/exK81aPk2f/npZf5vXzzBziTDNnWOtBx0lDS+lJLzt5SJ2pll1ZrT0Gh6Jle7ERd2Qj579OGJJHAU0RNxGNEpkQf8WFTcHaVc7UaUwmZj+QSvPvU00VRVKzdu3OD999+n0WjME0utVnustWB/0P69fFZK+YMZyUeND2tu9XEnEiklV65c4caNGwCcPHnysZPI25dv8R+/9Q6WaVAPPMqyIk4zXlwPyLOMnQSKStm2Hm/ZvHbyHswvLwryoiAMQ/q9HkfWV/FqdfL8wUpAQ+OHTnVwZMHdSFICR9suzx9psVo3H3BJ3I9Go8Fbdyb0QyXg5/h1sjiCsiSpdCZaME8iAJnQAUGYFri2TZxlvHVnwrVeTF4KJW7omXzuWIuFwGYtcBXbPHlQzl1dbBinJd1JzlLNpO45vLDpcnIxYJyoxLRUszENjbys1CA5PoyCyqsSx9A44pUksSDHpsjBNiRnlwOOLvjoGgSBj5SLTNOMD273uDrqY8iS1YbNUwsew9wlKRUKaqPl0vZtPMeiiEqSVFn4XuvFpEWFoWusN12eWavTjwqmmUQiWarZLNUdxOyZnGYlb9weE+cVTd9B0zX2JjlxPuKVE21skTGe9jm2sYqmGxRFjqkbpIVaSO9HVNmmzihMqR5RDR7867IssW1HXeTvqKWkkWcpR9oel7b6NFwDU1cuklEuWGz6nDnWAilJkoTBNOKNG9cIC416YHHMiDi75LHZcgmzCsvQWKw51Fxrrte2Ncq4tjel7hiIeETaNRjYPv9jt8vf/S+e5+m1BxOCEIK7k/yeC6RQ11hHtTv3pinw8ETy1GqN87fHjAo5h9DvTnPqjsnppXtV8deuDviPF3tM0hINpVH24maDn35+lXa7zenTp0nTdF6t3Lx5E8MwDlUrH7ZL8bi2vz+YkfwZxKNcEh83yrLk7bffJgxDPve5z/GNb3zjsSB7Qgj+6Nz7nP/gOgBZLuZcDcs0aTd8XlqL6CyvKR92U7U8DoYEhoMBw9GIUyeOg2EpxVnfoxIV6X09e0PXePFYi+XdHp5nEwQ2vg15qSqJyX1bWN/1CNOKQVQgZ5/P8pJSqPlUpWvsTe99Ry3wiat94UcwTIvLtwZc3A2xDZ2mZyGkZBQXfOP6kP/D8+sUpaCoFMmvuM+CN84rzt8eszfN5rDS00sBT6zWaHomTe/BR7GczUvCvOJaN6IbKYfAhp6zFmj85HMbjNIKx7axdMWdORjX+zEfbE+JM4EGaIbHdCI528qpFSkNQ8e3fWwMhDSJ0xzPMbmwNeHdrSm6puFZBoWQXOvFZKXg88db1H2XML3nVLlffd4dpURZxUJgoWkSz7NxLFX9XNkaUJcRG+vr6Pq+cGKF75q4lmpP7iOy9iMrBatNV4ljmiZ5eXgT1fRMao7JNFXWvlVZgBRM04LlhoN/3/WQUpJXAtvUOdUxGYc2w0RSZIpw2fBMnlqtK4SZpiF0m7fu7lFIc2bRW/DGzQGLO4JnVwOWgwDDdghc5V65HzuTFENXEjIAlaiwq4zLV67wj/75Ll84u86J9SVObiyz0mnOCY6dwOFKN1ELsFTnK4RAAI7BnBMj0bi4F3GlG1MIyfGOxyvHG/zu7hZXewm6odF0Lf7ik0scaXvze/MfL/bQNY0nZmKaUVby7Vtjji14fOG4giq7rsvGxsYhWfx+v8+1a9d47733aDabLC4qJJjvPyjTsh+Py2n5QUXyZxCmaX5sFUkURZw/fx7HcXjllVfmfdGqqr6nHmmS5fzbr77Bze3uQ///sqqIkwwpBY5lcKzmIipBlKTzh1BIyd7uLkmS8NTZM+QHfmKUZiAh8DwkgihOQVPQXQyLjQ2HOI6ZTKZ0uz0cxyEIfDqtJoYGeVli6DqVboFUO0iJkiYviwLbcbF0iKfxnIgmkZSaAdxLBlFWcHuiuBf7ki6GptFwTaZZyc60ZLWhFgDPsSkOVBJSwrdvjNiZZASOgWdp5ALe34vQdTVQfVikRYnQDL5+tcs4LXEdiyiK6Wo6wqqxaZqsNCxMQ3+g/RflFR/shpRVQSew0FDJcG+aMZI+zx9fJUkT4iim1+spjw7PZ7HT4Fo3RJup3QJYhvqt+5wQ88AC4dkG+/l3mpaYunbvvu6rGZQl/UnKE2fXWGjWDiX5OM04sRhwrRfTC5WZlqFrJLmy+j3aMMmLEr2qCDyPMC2I8pK8VDOfsysB725N6Uc5pqwoyoJWzeUzm615Z1AiuTNMuTWISQqBb+usBgbPrtYYxQVxbtGquSzVPYoiV8ZlSF6/dJsSg7X2vj+GQ1pUpGVFioWIIvJeD9NSgouGZWM7LqW4J8GioWFZFvls3lUJyU5vxE5vxNffvkzgOWyuLHByfZknln3evDNhb5qzVLcRaNyd5izVHZ5Zb6qNZFXxu+/s8vUbY8pKYOg6X7825OlVnx9dlRx/ehXT1Dne8Q+x6q/2YqZpydnle89a4JjYRsG7W9N5IjkYuq7T6XTodDqcOXOGJEnm1cq1a9ewLGueVNrt9qHE8Tgb0jzPKYriB4nko8SfZWur2+3y1ltvsbm5ydmzZ+c3/HuFF/dGU/7g62+x9Qg73P1oBB573R5lVRHG6viOY+NaFmEcc/u28mR/+sknSIrqobOF24MpgygncG2OLwZzRI1tO9i2Q6vVpqpK4jgmimKuXr+BZZp0mnWCWoO8LNE0jY2Wy/tbY8JU0PQddF0nqSSGYXBsZs1aD3zi8nBFIZEkJdynbYiua0ip2jqrKDhmch9UuBcqt8O6a8xZyw3bYBRnXO1GnFkOHumMd7kXM05LGo5OUaQ0PAvdtNieZOxOM9aaLmUlqLkO0YGWXi/MySpJ8wDUt6qUztX2OOW5jQa+5+N7PgssUOQFURSxs9tlMCkxDY1Uq7BMC93QsU2NKJdEeUW7EtR8lyjNDz0vnm3MTaU0TaMsyzlqbmW1jeu6SuH3voiTlNdOLnDu1lCdd6lMrZ5Zb7DgqOMLIemOplwbFtwZJpRC4pg6xzoeLx1pMo4zhtOYmuOw2nCxKfEsG8M0ee/OiPd3Q3QgsJXyc3+iqpMnVu4trHmeYug6pia5duMWuWbRCOxD76Zj6sogzA5YX/DJ8oI0TYnjiGg0wUASaA79XOKZ4HseeZ6TVwJD1w5xUuK84r2tLn9woUeRv81yw2Floc2ecOgOaziey0rd4aeeXWG9rQbQ13YmfPv2lI5v0fQU0i4tKt66PeEpR+O/OtpA1/UHFnEFRHjwGTN1jfy+Zx1m1ZDk0HPpeR6bm5tsbm5SVdW8Wrl8+TJpmtJut+dtsLIsH4tDAvyAkPhJx0dtbUkpuXHjBleuXOGZZ55hfX39geN/2ERyY6vL7371DbKZXlXgq0U0SrJDev+Nms9ef/iAB0BelEymEdvbW7QaDY4fO8Y4epDRXlWSr13rc7OfUArVomm323zxVJOmc/hlMQyTer1Bvd5ASkGSJBR5zna3S5ZXeJ5HXuScqMOdxGKaC0BZnD65scCpRQchBZVmcrAagZmplqOzV1gcFEUvZzMf/wAsdn9hD2ctnzivqIQ8JH0hhMTUoJIaWSnmDP/74/YgwjJ0sjTFcpw5/r+SihOyNjO6kvc70kuJdl+VgpSze6xmEhzYNdu2TaseMJn6LMQjJnGOEIIojhTyyTCQQhl1gao2DF2bt7UANpoud4YJ47SkZhvEcUJSSZqBz2YnoOZaTKbq76dpSS/KkVJJ1ncCjddOdhhEOaVQemWyzJBCm/++t+9O2JmktAIXXbdIipKLuyE11+RIw+RI47A6cpLllEnGnZGyA2h5JkWe03Atoqzk9iDhWMc7NJAWZcHFm7dotdsEuaDEwLbV5+Tszuu6gW5o5IXanHieh+U46F6DqqpYzhL2phE74wInzNANJed/pOPPkXFZqZQJpgVYqHfuei9mEOU8u9Ygmw5oCI9n19YJSCmrANMwuDlIyUpJZ8Gd32dPgzyN2dPsQ9yV/YSi6zqbbQ/b0Aizck46rYRkmpX8yPK9aqQUktdvjvj2zTGTtGCz5fLKifahhAscmp2Amm3sVytXr16di632+31ardaHSiphGAL8YEbyUePDuCQ+bkVSVRXvvfce/X6fz3/+8zSbDw7uPozdrpSSNy/d5I9ef29OWpNSEs78wjVNo+Y5s4VNn3mI6HPI6H5MpyF7e3t0Oh2OHT3KNCupBf4c/bMfb9+dcLUb45garmWimzajpODL1yZ86Wwd6xEPqKbp+H5AfWUZic5et0+320UiWXEly4HJVNhYts1ay6Pj23iOiS6qB6qR/Ti7UmMQl0ySdM7QT0vB0aUmq/c5Fx7kxfi2gWGonZ9t7hNLS/JSUA/0Q9pOD1zvqiQrShbrtcOKxfftFqNEmWztc2YWAhtTE8S5nM+jpFRyIMcXa4eEC+fXDLVr3qiZTDMBukbN9UjzgklSULcKJt0tqsjD83zWltoMkpJxojgcS3WHz2w0uLA9pTtWBLpOPeDlk0s0HAXhBbjWi7i4G5HNrrNlaBzreLx4tEPdMxFC4s0qoP0YxoVidDsmBgKdkqZnM0kKLtzusXRmAeMhVX2SV0zjlGbNpSpLbFsttp6QjNJixmCfPUNVybWbt1lcWqRer7NWRHywE2JIE9tQHipRUtFwDVruvedua5xyeS8iztUQu+XbvHh6nf4kZnccI8qSmlHSlgXRuMS0HXYiSVhAwwJdU8uQZ0kGccEwyTmxEACCO7t9Lly7jWWaHFlZYC/fV2y4t7B3uz2EqFhb38C27TkZcpLkXNpTFsvLdYfn1mq8cWeCbSpv+DCrOLXo89mjrfmx/uBCl/90sYepqxbuW3enXOnG/LWX13nmEYZzwAxu7nPkyBGqquLKlSv0ej0uXrxInueHqhXPe7jBzT7099MkPPlh41OVSL5bmKY5NxD6XiJNU9544w10Xee11157pI/yd0tUVSX4T6+/x1uXbj7yb6SU7Ixj9mLV4jjecQ8lSClhMBgwGo1YXV1heWmZ6UxSI84F9cBnOksmYsYTMHTm8hC6ZRMYknFcMMwNlh9hugRq3U0LQRiFjIb9OQmrKAuFDoliknRKPLAh8wn8gKV2Cx6B+tpoubx8rMmVPZPBVDkKnlr0+eyJ1gOLWJzluJZJWijP7+WazdY4xZcGrmMRZiWVkBxr2timMZfHv3cdFSS7oeWMDJNKMzBmVVKYKWmU1YO+MZqGYxrzRLLS8Di95PPBTsggLjA0jVJImp7JC0dah++rlPTDnHgvpeYYnFwKqNC5MUznSeLIYo3PrDewdUEUxUymU96+2WU3Ucx8wzBoehbPrtU46adseDYLnQ7twMZ3DAzDJI4jhnHBBzshaBqd2e48LQXXejFt3+bsWhNN0+e70/1IC0Ep5HyALYRArwocvSKXyg3SewhD3DJ0XNcmTlLlGjkbwFUSPNuhVfPQNIHIMy7evEPlNLk4KLEnE5ZqNutNh70wZypKDEPgmRpnFgPqroKr74xT3t2aIOZ+OhrDpOKd20NeOdHm7Mr+4ivnemCTwZitqSDNdALdUoKhhjHXAhsnJVJKmjWfSRQDGmGa8+71LeK84vrtMaO7NdaXFyirEsNyqDXaPH9EzSkMw+BKN+J/+vYWd0dKIcLUNc4s+fzkUx2u95UV89lTAS8fa9Oa3YdemPPN60Oanjn3XFmq2VzrxXzlyoCnVmv35Pe/QxiGged5NBoNnn322Xm10u12uXz5Mp7nzZNKq9WaJ44wDD9Rv3aA/+6/++/4tV/7NXZ2dnj++ef5zd/8zblNx0eJ76tEYhgG6UN6zN8phsMh58+fZ3l5maeffvo7ZvvvlEiyouDff+0tdvsjHsZvgFn74c6EN7dT8lIlPFPXeOXkAq6mIYQS58uyjM3NTeq1gFQc/DyEuaBeC5iGSoeqqMR8kTYdDyHv6TaNkpKNunNIE+pgBJ7LhbsDLtwdIWyPeqZxykpZa7pzgpaohJqrxBHbO9v0unvYfkDgB8o2977ZxbGOx/EFjzCuKSfBmkv6kG6jhoZlqkSiafC54y3evD1hZ5IRpRWWrvPEis+Z5QDfNg/5fQihGP15nvHC6XWMnZitYUxeqWTsmMrLonmfdlOUKj8QDeXD8cRKjaZncXekODwd3+Zox8MzISvVHGOSFrx+a8w0rcizBFPXWGk4vHSkxdMbLXYnKbap2kL797zVsok1j72tLTzbQEeSFzndUc7XpyEvrTmcWV+Z+51keUHb10g0JbWSVYIF3z4kga+k/FOOL/pYSALXIkrz+Xe6M02x/arOMgzKIidMCjzbwLN06r4Svtxn5WvAYsNjwZ1yI6owdQ3b1CkqyTgpWG04mFJZJt/Y2qNLi9GoQEdSSbgzTDizHHC0o0iMsqroBBauaZAVqlK8sjsmrySrrUBtlqREp2QQ5+xOMo7NGegatu3gOA4ba6tMr3fp70zJ8pxypj9mWRZlKTA1SaPmMYnUfbu0F7E7UWi/wDaouSb90ZTt3pCqLPH8gGdOZHhVkzitoRsm/+qNLXanOaeX6xi6RpSVvLcbs9Hy+D9/YeNA50NSliW6rrM9ThmnJWeWDreWFgKL7XHKZMb1ATWXubATsjvN8W2Dp1drh4b7+6gtTdNmigwBR48epSxLhsMhvV6P999/n6qqaLfbnDt3jlqt9om2tf75P//n/NIv/RK/9Vu/xRe+8AV+4zd+g5/8yZ/k4sWLLC8vf6Rjf6oSyYdpbX0vM5Lbt2/zwQcf8MQTT3DkyJHvmukf5q0OMI0T/uc/ep3ucAIouKxrW8RpSlXdO987o5RzWwlS3GsX5KXgT6/2+UzLoNFX6KAjRzaxLAvdch+aBMKsoh4EVJMpNcdkGBe4to7Q1DEVKkb5izuuR3Hf7lWF5J2bPf70ZojQDKyyoj/NuT1MePlYizPLanipGzq1eo1avYbvWPRHU2RZ0Ot1GSSCcWUhdZPlps/JpQBvZl+72q4zCSMsyyR9yD1Ji4q74zE6sFCzcC2DV062Z/a0SrbjoDXsfhRlxcWb22SVZGNlCce2+dGzAVe390l+gpWG80AS2Z1kvLc9ISzU/GLBN3l6NWC14RyuXFCqxwoBlfPGrTGDMKflGwSGMou6M0zxrCkvbOocWwhm8vOHr+2l7SGmoc3adgaOY0MUkZQ6vaikunEDz/PwfZ/ldoPBZIplGqqlJuUD+xBd0yiEhLIkmm1CbNPCcSySXKkHL9VttscZDd2gKjOSvKIUkmMzL+BpnIKU9OKS7WmhkG5axWrDJS8dumHONCsxNI3lusNTqzWKLOHO1i5jvcEgzOj4FpZtYeg646Tgajfi1DNNDMRD380or7B0DVFVSPZRjyamBZVmHNId0zUNxzYJ45TVhsedUYYA6p6vTNoSZehl5yW3bxVYjstbOym9uMK3lZXwJFUbk2VXkOUVtUXFYVqxM/742+/y5dffpTIc3tqtOHNkhf19UOCoKuPt7Yj/4vk1bF2bt8CknCUTWWFozGVl9s87r9R8b1+2ZxQX/A/fvsulvWgu+rpYs/k/vrQ2b389Cv5rmiZLS0ssLS3NCYg7Ozv89m//Nm+//TZBEPDLv/zL/NRP/RSvvfbax8Ky349f//Vf52/9rb/F3/gbfwOA3/qt3+Lf/bt/xz/5J/+EX/7lX/5Ix/5UJZLvFh8W/iuE4IMPPmB7e5vPfvazH1rf/2EVSW805f/3R99mGt0TUdxH4miaRi1wKcqSvCi5NiypqvKQ46Fj6cRZxXYMRzE4efIIhg6G5R5S0z0YUkrGSU6jHvDMep0/vTYglhZ2JamkpKgE602X1aYyO6r53iGRRykF3W6PN7YEUlctFw0wDJtxmPD23QnHOt4DelaGrkrywG1yKzG5uDcmLyukTLkxSLhwd8grR+sst2tMAdM0SPPD10siubwX8f72lKRQpCzPhBc2m2y2XZYa7qHEAVBUFTXP5e5gylcv7jItlOTL9XDEUi3mi2cXWG24uI5FUogHNgSjuODbN4YkpaDh2UjdZHucME0KvnhmgcB58IWWoqIf5QzjguZssK1pGrah41qSu6OUp1br2JWS5JcHVv7AsYjTfM75yLKUNMvw/RpVLml2Gmy2bKW+myW8f+EulmUp3kFpzj63L9Ci8kohJCu+Ma9kAcI041p3SiUla+0anzve4d2tKXf7U8pK4Fg6Ty7VDulO3R6mvLM1Ve0iKRgIGCTw4tEGp5YFcVbimAYtz6BMY7a6fVbX1rh6Y4pnGei6RlWWVICrw0QzGcQFxzs+cZZy/whRbXQqhJTIGRgkL0qKIsfAxTINPMcmKkqu7kbcmP2e5brNkbbH1ihlmCiVaMe2+eypVTq2JElibvcmbA+VyKY104NrugbdMGckSn7smc0HOgxSwm5/TG8vopr2sCxz5nnfRrd9ilKSlxLHNeafzYqSMCnYaPtsNl1uDhOOtV2F3CsE/TDnJ55cmgNC/vBijwvbIScW1DskpOTmMOHfvLXLiQVfmaN9CEKipmnUajVOnz7NV77yFf7pP/2n/OZv/iZ7e3v87M/+LEmS8N57731oJ9bvFHmec+7cOX7lV35l/m+6rvMTP/ETfP3rX//Ix/++SiQfZtie5znnz5+nLEtee+21Rw62HnX8g8P227t9/s2Xz83JhfeHGrKnSCnpdNqMo70HGl5qxyPIBCwsLJCXFbXAo3pE4bX//ZqmhoEvnFjGME3e3s2JZl4ZJ5ZrvHS0OddRyoWmZLulpKpKdnZ2EIZDoZnKrvbAsT3bIMpKemF+yJ4VqXgbALvjmPe2FZeiM1PDrYRgHBd8sBeRR2NM02Cx1UAzHVzXnS/u22PFfgfFw9B0jXGU8+2bQxruEnXv4aqrcRzztYs7jHOdduBgzkiN25OMP728x6sn2koQ0fceSMA3BzFxUc0QQQLbtjGkxTAuuD1MHspTiWdGYtVMILKo7t05xaxXCTvPS+qBkmoHBXdOk4S2b7E1TjHJSdN0/pwZhk7dNbEtC6/dgsqn2agTJ0q5WEYTzBy245ha4KPpOlkhWAxMVur3XsfdScbbdyeEs/mZeWfCieU6L200eH69zjTNMVDcpP0oK8GVboym6zQtDVAL5TjJeOfWgB85s8B6q4ahw97eHt3BiPX1dXTTAqYPXCPLtinjiCTNCBNFmvQ9G0PTGEYZZVlxcqnG7jRjEGbUHBMhpdIucy1WGg5lJZjECW/cmXKnHxO4Nrqpc3OYUrMNPrNZJytVS2xzsT7XorOsJsPSwplO8GxN2U8XBYZhYAKVbpMXBe5D5p2LDQ9rJyTOSzwp2d3dY3d3l1FScmp9kQ+uOpzYXKZdD/jm9RF/fLnPMFYtqlOLHrmEWyP1Xpu6xrNrAT90ok5RFGSV5K27EzqBNd+I6ZrGkabLjaGSX3luo/FYdhdCCDY3N/nt3/5thBC89dZbbGxsfE/HeFTsc6VWVlYO/fvKygoffPDBRz7+pyqRfLfW03drbU0mE9544w1arRaf/exnv+cbeTBR3djp8wfffPeRSeRgNOo1xknJ0eU2u9OdeedCiIqqEmiaTsOq7rUGdBNLNw6xgYG5T7am3SO1qWSyxvGVTOk+mfp88L4fZSWo1QJ6/T47Ozu4rkdzZR1td2eGHtPmxzdMC22ma3UwXNsknXFTdiYZRSWpHaisDF3Hs01Gpcbm0XWKLEXkKaPRHkUl8H01rL/eyxR8dZ+pLiWdmks/TLk9VN4d90cURVy/u0csXZq+IhiCGhTXPZ2dcTKHbRZFDlI71BqapDMJ+1ntIKpiZlrGHMjwsGj7FrahE8YpB4uWtFD+6fuV5TROcG2btBTUbINxVnFy0WdnGNELS5q+Sy410jhns+Wx2fbIiwpbh3FccHeU0YtKDM1huVPnlSXB1b0pW6MQIWGz43KsYWBpAlCSKW/dmZAUFa2ZSGOFweWdMZ4hObUU4Fsalmnj2hZVJYjTnLiQJKVAXfqDFZQyw5qmJYaWEo5HDCdTjh87Ss3zKCvBasPhajfCs3R0XcGh+5N4phy87+IIt3shl3ZDRnGB5Tis1G2eXmtyrTslzCo0YKnu8ORKDdc0MA2dnUnO1jCm5ZuYugQqbNdkmFZMC42nV2rohkF4nxyOM0P46YaJa6pBflkUCAxkmbO3s03guXiBj6abZNIE3cTQJBtNh+t9JeVjGhpZIXBMnbZZ8LW3LvGt965wZ5xzeaLRaLbYWGoTZRVfuzbiR053+KlnVgizkoXA4njHxdDUQp8XJWUlMHUQUlXHGtqMTyXn7quP60WyL9io6zovvvji9/T5P8/4VCWS7xbfqSLZ3t7m3Xff5eTJk4+tl7U/I+mOpvzbP32HLC9VkphMH3k8wzBIhQ5IzqzUee/OkCjNMDSpyn10Asdgs6Z6sY5lEWUVmlZhW+bMhY95r/ZgEtmPvFIvaM159O3a7Y8ZdPeo1xusriyRCZ1OYLM7SbFcfe7qF2bKl3ypdnhBtyxjnkhgn5V93/fNujH6TNLdrtdYXVmhNw6J4ojhcMjuoEBUOkUBhqmQOPsD+6wS80pgPybjCf1Bn3qzjZ4Wc5+N/TARxFIqt0AH8qI6VCGAkkbZHittJsswKNIE07KVd8Uj+CkABhWnV+q8d6tLMfOUTwvVnjm9FNxDokn1H6UQXN8d4po6ehZyPCgZ1wLCXMGGzy7XOLsSUBUFLd9hdzDm9ZtjdibpnOVyox9zfNHnpZMrfBawDY3uYEgcRexuj/Bch73MYJrmdAJHuSpa1kyXS+P2MOHUog+adsgiwHMtSk3Na+R9HCAh1SbN0GA87BPGCWvr6+xMcqbdGNvQOdoJiEuNbpihaVCEIY6pc3a5NrcOnqQFb9waEecVjcClLAuu7ib0fYtXT3QwTBNd1zBRNgLW7P73pglSckj+RdMUe35rEPLsep04zaj5Dhqa4r9UgsWaTdMzGUY5ri6QokJzPIxS8tR6nc2WQ5IkDCcRH3QTppWJ1HQsXWO54fDESo3dSUZWCtZbLkfbHkt1F8vUidKC9+8MFQE4GhLu3qLZaKC5Nb51teIvPbU89zuZX0chaJsmJxY83ro7peWZ82e5FxbUHZPN1qyC/5T5tS8uLmIYBru7u4f+fXd39wE32seJ76tE8rAZiZSSy5cvc+vWLZ5//vmPhD4wDINpnPJHX32LrChBg2la0GjUmU4jDhLx9sMPAqJcvbh11+Q/f2GDP3zzKsNUKdWuNl0+f7zNZO+uSiSuSzH7e8exyPLioZXI/PiuTZyX+K5F8ojd9Xg8ZjAYsLG2gWnqOLZDkVd89miTr1wpmWbl/Mw9U+eHzy4/sGAfBA0s1x0sA/JKw5kXFpKsEJxY9DENDcswSLOUvNAIfA/XdVnoLLBV9rm0F1GWJXmubIU13UCisVi71wJjBoOeTCesra2BYWHudEkLOV+4NA2msfKCr7v3HtU4zdA1Y85VOdr2uTVQqJqGo2Cyo0lEI/DYbD26tSklfHbdxawaSoiyErQ8k1NLAUc79z5XCsE3rnbZmuQkaYYoCzq25JWz63iOrVSddW1+TT3bZDiasDXO2IuVgKM+uwNpWXGjF7PedDm+WCNOs3sIOiFI4phkMqEsK9I0ncmLZFiWUgbOSvEAZtC1TIqiwpAVdQv2pgVLTV+1B8uKSZix2nApwiFpXrK4vMq52xN2p/mcC1VzFfLo+EKb7WFIzQs40gmo2xrpjHR7e5AQ5RUrrYCyLDBNHduwlErxOFWzGgECSd330HSNPC/ZL6APmnsBlBJqnjvnYKn/loyTEt0waAcOLx5p8fWL20yzCst2cFBJ/kjbmyGialweVMSGTmAJNFGSZDk3ujlVnvH8eg3dtHBdB3MGDU5zZV2QFMoFEtTGaTgcIhniLGyyO80eSCT75Ma/9MwqW5OCa/2MwLm3+fhLTy7QdHQlPzRTkvheIgzDTyyR2LbNZz/7Wf7wD/+Qn/7pnwZUYvzDP/xDfvEXf/EjH//7KpHcX5EURcHbb79NFEW88sorH/kmVBL+w/mrGO5hP4AwLfCDgDxNDvmO+55SQN1/YNI0Zby3zZeeXkaz1KK5/6BOZ38TF/dgh2GSz1/2/SSSFhVb45RKSGWK5LtAha49CFuWUtLv9wmjkLW1NWzXpeYYJDOi22LN5iefWuZGP2aSKnmQ4ws+ay2PKLnXRtA1nfhAm63hmjy5WuPCbkKaVMoMaybqt49KcW2DPFe6XZ5tEM4wwGdW6mxNcuUx4ihyWJyV1GwdbbpLt3DwPZ8wDMnyjI31DSxbtU5OLPpc6mWEWYllaFRScT+eWq0daudVlaAeOPOqZKFm89KRJhd2Q8aTEDSV1J9bcVlvHZ6pdKc5u1Pl877ZdimNiieWXJ7bbDKKc2xDf4Ar8N72lKvdBEOk6GUBmkW/NLmwl/DZo/b8HgPUXJtpGIEGt/sRlDmaZWFaFtpMVjzOMsZpdYgVD2qhCmo1NlcsbkcDbM+hTGOEUAKPYamxVjMoi0KheTQNz7aZJBlxpu7vM2t1slLQG98jtnZqHpuu8nBZX1vj/d2QrXFKw7WwDKX8O4oLrgxyXjvmsry5T9atyApwLAvXsYjLqbJnPsDl0jX1DBy0F7YtizTPKWbP4Xor4PakIqkEnqlQTmlZYVomC969ax3nFe9uTeiFit1vGbBkC55bsWkuLJMLcLQKx7y304/ykn5S4RsqoYKJ57pEWUk/KemOQ7Qyw3MsakGAZio9MMtQcOqiksyLVk1j8+hxNK/5Hav/k4sBf/svHOMb14dc68e0PYsXjzR4fqOOFIIoioiiCNM0Z5spff5+fyf6QRzHn6gXyS/90i/x8z//87z88st8/vOf5zd+4zeIomiO4voo8alKJB9mRrJvZbovuuj7Pq+++upHhskJIfiT92/Tn0Qsuw/ezCQvsCwH1yyVTLumIQwbbcZYn06n7HW7LHQ6BM0mgaUdQlJpmobvObNdtJztBCW+61CUMZqmcaMf843rs3Ib1Qp4ej3jpaMNolRJTYiZqm4lKvZ29yjLko2NDSxzJjqJdkhFPHAMnlk/zMiN0gLHtubzH9+xCO9TF35uvUHbs7g7KYhzRSo8uejPX7DyAGw5SmbnJqDj27x6os27W1NGSYGm6RxfqvPikSZWlTIJQ3b3dkEqNnCapeiGIvQ9s1YncGwu7E4pKklg6zy91Hion3dvHBGVszmKa3Kk43FyweVO30EDOoGCsEZxgue5JHnJO3cnXO5GFJVE0+CDOz02Wy6fO96irCoWA584rziorJIUFXdHGXqVQDUzq/IM0kKyO83IK+YLUc21CaNoXi6owyhIxP7iq+kahmkqReWZH8r9sRBYHFtqcG1njGOZ6KZGmld4hmTFg97eDqZpYroerw8rdsNypr1lcHLB59UTbfammRJotHRIhtiGQauzBJrGbiioeS62oRB+ugaLTZ/+JKYbuqzfp1KQlyV5WRI4JlujmJbnwUxLTIiZdtwsmbq2RVlVlJVQvjtSEtgapzs2H+yGDGOBZlh4ps3JljX/Liklb95R6tA1x8RBEKUlN5KKdqvJigHKudnAcx1VnRUlcSlJ84L6fcg8xzIoBDTabRbrDnmWMxqP53pgtVrAoq9xY5Bh6g6OqbN57ASxEfCZ5dqhivRhsdn2+K/aD/5NHMe88847rK+vs7i4OO82HATR7CeW+5NKFEUPDMM/zvjZn/1Zut0uf//v/312dnZ44YUX+L3f+72P5Ts/VYnku8X+8Hx3d5d3332XI0eOcPbs2Y+FCfr192+wNZgiH/Ji70dRqcog8D0M0yTMVZuh3+8zGY9ZW12dE4pyqWOaxnzB1TSNQuiYyEOtrCgrsUyTQZjytasDNbieIa0KofHu1oS6a3B2pUbgmEzjnKIs2NlWi8nGxsb8gZTIeevj/jbCwdA0JW8/BxI84u822x5PbbQfSDK6ph/aTQspaTgW00Qdb7XhstJwCDOlYOvbBjXXpshgr9fD93za7Ta7o5Drd0YURY/FmsV6u8aRRsCTaxuEWYEhywcY85WUvLs14XovptJNNClZbbq8erJDlmUs39eOkECe5QySist7EaahKYVdWZGgc3uYsFx3OLUUMI0TbNPEtm3SGXekkhBHU7SqwDINhVADbBOmScpoGnFipYmh64ym4aFnca3p0p3mVEJ5jei6Tl5JZFXMLG4lgeug6xrDKGVrGCMkHF9s8MwyOJqYCzRutDxOLQUs1mwltyMqvnxxj+1I4BgalqGRZBXvbikgxZnlGhqSu3fvYlo2S0tLaJpGXgmyXEGd5cxlUjcMyrJACDl3Wbw/6oHLop9yXYfBNCFwFEckKjWagcfxxQaurarrKCu43I3YGqUIKVms2ZxeCvgLpzr0o0Jps5mq8nUdG9sy2B4l9KOchmsqgmde4hoSw3S4OVBzJWNW/ew/e75r45kageco4u78jivAhGPqNDwbUzeoTIuFhUUWFlQnI45jOkbE0CiYJqAvbZBoynPmZ19e/1AM9vsjjmPOnTvHysrKoXVpf/65z1s52FU5qAf2Z+GO+Iu/+IsfSyvr/vi+SiT7C+Y777zDs88+q3rrH0OkecH5azuKif1dmPNCSrJKw9J1hCjY3d0lz3M2NzfngoKgkFS+5zOdTJSwnWOTFhW+dXAeAiDxXJvrNwfklSCwjfkD6DkWkyTnSjfi7EqNNC9JkoTdvV1qQY2FhYX53/ajnPO3x3TDFClhoabY2Uv1h8Nto7TANHTKUpBmJUUlGMVK9XZfWA94gPOhzsskLPP577w7Tkn3IgLHYr3pzRFU9QPtgSQKuXL9BksLCwTNFu9vh1zYycgrHaTF3VSyF0856g+p+y71Wo1K0w9BiwEubE+5sB1imzquJhC6wc1+giZ6vHL04a3NUgh2hjGlkNRnVrZ5liqb4kJwd5TOfcPzsoSyoB4E5IVEpGPKIsc07iUR9XeKpObNkv44DLEtE3em9RSnBcc6HjuTlL1probgskIKwfEFj6W6o1pCacaNfsy7WxOySkM3DN7bjjm1oAiDT6zUEFIe4J5AI/C5058wKQ3avompK28dA0lUVFzcGrNgFUTTCZ7vs7i4OP+sbSgF3t1JhmsqS+Y8S0kKgWubbCzUCTxzZn2gfmvgOYzDmOW6wzNrdS7tharaRCXlp5Zd6q5JWVVYtslbN0bc7Udzn5Xbw4RBVPBDpxc4s9ogPdBqzPKCLC8YRSlCari2RRgpewHHcdHKag7FNg60tALPJk5zNGC1ZnBpN6U0dQLPJislhagUus021bzzQFiWNZ9Lba4LTh3dQGg6eThmSY65e2VKtrjI4uIirnu4OntUJEnCuXPnWF5efmBze9DHfr8yuZ8MCbC1tfVYHiafhvhUJZLvVFlUVcU777wD8JGH6vfHW9e2yYsK3/OYTB7E098fvmtTVHDn7l0MXWdzc/OhD0CclTSbDSaTKYZlz9ty95KIiigtyWbD7vuvgTHz7wYYjMZMRwParfYh0ckwK/mjSz2iTGBpat6yOy34o0s9fvLp5YeaRoHEcxwKveStOyPe256SFGoeshDYfP54i5ZnKWjxTDL93kfVuY6Sgq9dHTCKZ3Iwlk3LC/mhU51DSaTIUm7evE6n06HRbLIXlby/rZBwzZn4X1YKdlLBsdVlfA+KIqU/HCuvdT/AD3ws2+VaP8aaMcoBHFMl3jv9CYNFh07w8MSZl4pYqOuQZwdajjCHbHLgX9MsI08SouEexxcCbo7VgNY2dfJSkhQVJxZ91js1JmEMmjIKu9WPmCQljm1wernBjz+1ytXulN1xBlIZVW003fmOdxjnvH1XaVUtBg5lWSovlb2StXaNjZZLnGVzImA98JhGMVGu5HNqjqUQWbPnTzfVEHlvMKLpGsiqYDgY4HoerqsG1KeXAkZJyTiTWEVKWUkqITm56GPIkihWz0Em4HI34fagiyYlGy2X08sBa02HYazafJ3AouG7pFmBkJLr3ZDtYUTTV3MVXdOoFUrp+PaMO/Kw8C0DTVYMJyG2oeE4DqZlUlUagadhHUB8BZ5DnN5LdGeXa5iaxq1hQhgrG99n1mo8ud7ENk00XSfNMu4vvTUNfuqHXuKpExuzx1oShiHdbpetrS0++OADarUai7Ok0mw2H7pGJUnC66+/ztLS0nftkOwnlf3/3lcr/upXv8r58+f58R//8Ud+9tMcn6pE8qhIkoTz588rMpJpfuhdwoeJoqw4f2ULgLgQcw7Dd4o4Sbl26y61WsDCwuJ3fHDCtCTwPfpjh16vy3Q6IQgCfD/Ang2ZJZLVdo33ZuJ3uq5IEKrXLFls2wwHA8bjMSeOboJxeLG82ouIsoqmb1OV6u1ydY1xWnF5L+TlY62HnluSl9wdJZy7NQbAswyEkOxOMr5yuc+XnlnGMvT5XGb++1NF1vrW9SHDqKDmKjMmKSXdaca5WyO+eGYBDY3JZEI07rOyvExQq1EJwc44IS8F7QOLvmsZZKWSJ3l6fYUitVnoLDAJlQ7YcDBkkhZEsYEzYw7ruk5R5HimwVQouY7OIzoDC4HNpb2IIsuwZi1HIVQf/34JFds0mIzHbO3ssLiwwIvLNdy9mLvjnCgvMDQ4vuDxQ2eWmESJSiJFxTdvjNibDfIB3rs74YdOL3Gy4/P0ahNd14hn0Nb92BopWfSluktZKaRg4BgMo4JLOyOaThtNU/Be1zJnyCYF4jCN2bDYvPf8lVJDFDmL7RYL7SZJkhBFMbd3BySVxHdsVps+r55sc3lXCVrWXWOmoeazv9iOkpzX70QMZ4ZnumFyeZAxLSQvb9ZYbah30PcckjSfc6SmWTmD+h6YC2karmUxSCoC1z68KZlFYErqpqCXCCzbpRCCaaiS3JOLDVzbwnPsGZIvPTQH1DWN08s1ji/6ylXUsbBMgywryGbVj2kYeI6FlKrKFlLypddemCeR/fOs1+vU63VOnjxJnuf0+316vR7nz59H07R5UllYWMCyLNI05dy5cywuLvLEE098z212Xdf55je/yc/93M/xj/7RP+IXfuEXvqfPf1riU59IBoMBb775JisrKzz11FN85Stf+Vh929+/tUec3WMtG9+FxBhOQ7qDEZ2FDptrKw+QqA6GBKQQ6KZDZ6FDq92aG08NBkMsy8T3laDbesOh7dsMohzb1DFNk2RGQFx1CqbTXPmnGBamqVpS+zGIigPfqEL5Zej0o0cTKisheH8rRAhJfVa1GLpSYJ2kJbeHKScXfeIsx7Ft8rLEsy3ipGQQFwziQinbznaLmiapuRZ7k4xpWlLEE6aTKatLC9gHGMgKOPBgwtZnPfwqzynKCl1I2o3aHFocpxkXp12yvESWhSLOWSbjaIptOrS8RwMuNloeR5sRN3pTdE29wEIzWaq7nFi8JzFiGDrnrm5zZWeCbtmsaRVnzIrPrNc4tVAS5xXtmstSwyNK7i2IF3ZCtscpdddUyVcqmfRvXOvyF59YOpA8JJ5jY1kmeV6QV1I5WFaH2y+GrpEU6jNSSkzDYDhNAIlrWxz1XVZ7Kbd7U2oz9FVWSiZhxBMrAYudNqCEPq/uZuxMDPKyQqOkNpjwRHPIqcDhdMMmCHylFTbfsUt2oorBNKbjW/PF0RawPYzotlyeWFMqtWGSHFrULUM/NKPbR6plRYouNaI0x9A1PHffBC0jiVNGgy5Pr3hsJyY7k4y4VHp1Tyz7HFvwKMoKxxZEkZrvBJ4auCdZMefSmLqOH1ggtTk/az/KSjCdwYx1XeM//6EXeeL4YT+i+8O2bdbW1lhbW0MIwXg8ptfrcf36dd59913q9bqatXQ6j5VEAL797W/zV//qX+VXf/VX+YVf+IVPVPn3k4xPVSK5/yLeunWLixcv8uSTT3LkyBHg43NJBDXsPHf5zqHvj7KSTcd+cDYwkzXPkpjV1TV83ycvykOidPf9OXLeA63wHZu0KGk0GjQaDYQQxHFCHEdsb2+jaRqvHQl4ewd2wpJKaizVbI74BXVTsLqygWGaM7itybS8d377bR5xQKcJTS1A93vDHwzbNOhOplj3Jc99AmF4ENJp6uQlc05AXgqElA84JmpUaiax18Ol4MyJY2TF4Wu5ENhc7cYIac5F9YSUVEKw2fbIZrasQgjiJKYeBAqC7TqcXW3w7tYUDA3TgDBUml6LbkEykjSWFtFMByEkw7hgGBfYps7RtsNLmzU6ns6d2RB4teFwYsFXxD9dDYr/49u3uDFIsG0LS2pc7cZsTzL+wqkOncCm5pgEns1wouC1jmWiGwZb0wLH1OfmXbZtU5M5k7Rib5qxMeezqMUvyQos02Sp7nFjmKMbJrKqkEikVO22fUZ5zXOZRilFJWaqAzEtz+K5VR+EoJ8IJmlBmcacXgp44dji/Fq/vz3l9jCh5pg0PZtSwihKuZl6vNR2yNKEYS9EN3RMy8XxXJY7bbb6fWxDP/RsGzM3zEGUIZGEkbJ99j0bQ9fJcqUofHlPiSu2fBsNCBM1y9jn9FRCzjdgaZYyGfTotDvUm02W05wnSkE+Mzvbv54135l9RlW+UbIP9lCJ1bJMqkpSVgph9qjQNPjSay981yRyf+i6Trvdpt1uc+bMGUajEW+++SamadLr9fja1742r1Y6nc6HmnWcP3+en/7pn+bv/b2/x9/5O3/n+zaJwKcskeyHEIL333+fvb09Xn75Zdrt9vz/+6guiQfjynafUXivolAGVBLDsg55cggh2N3ZJS9yzp46RS5nqrV5SS8q6U4S5VLX9ubIkv0korSUCgL3QXJTrRZQqyn5bWVXGvNEPeeoU2G7FpQJruexsryMdgAqqIiJ92hpJxZ8rvUToiyfy3rszzv2VX4fFrahPNcHiWBfl0n9XrWYHRQ73Jcm30d6tX2lNZTe524YpwWWoeNoldJxMoD7iqL/f3t/HifXXV754++739p6X7V5kWXLkqzVKwGCscGrLJmwDmOMwwyEb8wvGwmQZEhIQiBhBhjiBAgJmASYEGzZZjMGvGJsiC3JtrzI2tX7Ul37dvffH7fqdlV3VbekblmSXef18h9udVd96lbV59zP8zznnBXtIQ7FC0wVDN9qGzAdl/awyrLojC+gB5lc3s+mKFpc2B/D8TyOxIsUSkUkWeG8Do0LuzUcs8iRo4PYrsuIFWEk5+J4fjzwLsnj0rPbOK8nwnkzrkmhZBBSFfYeGWEka9PeEkUR/dvssOqRKvpJhL+xsgNdUwMBHfiGf0bRwDL9LHd/DN0PsRLKZG7VMVarjMl2RyRaFIhnCoQUGVlRyJsOLbrCWR1hIiGNXNFgImvw9ECKfKV0JIksa9PZsqKVTK7I0dE0y8/qYkV/p7+pGxbZkslQsoiuSIRUxY9a8xxiukKqaGNLrfT0tJQ/f34JrJhNczCZwLMlSmZZ/yNWKQqBlogebOp4UAhOZh6dsRBXnNfNzoG0TzhlL7NVPVGWtdeWpEtGiVQ8TigaRdHDlAwLVZFpjao4nhs0/KNhvTxKX2+jFSiZNv6Bzx9kiYV1PDwKJavGO08UBa573UZWHyeJzIRhGLzwwgt0d3ezZs0aXNcNrOH37t2LaZp0dHQExFLP72/Pnj3cdNNNfPSjH+WP/uiPzmgSgdOQSAzDYPfu3biuyxVXXDHrTVisE4nneTy9b6jmZ75fjku+fPdbKBlYlsXo6CiyJLN8+XJsQQLPI1Oy+OlLE6SLLq7rE1t7WOUtF3YT06btsyOaQr5kkCsaSLIyK8AJ/JNQKBQiFAqxYkkvyWSSwdEJJFGkUCgwNjZGuJxpIMsyluMQ0dSgJNcT03j9yg5+uX/C32jwfYo2LGthZXek5mQx/fqhZJic3xPhyUNJiqafS+56fqpeS8gnxgoc16UtGiKV9XOl/bJDlD0jGbIlG0USMW0Hx3Y4v0Nn2dJ+wppKoZCf9SVRZJE3nNfBy+M5hrO+5uCcrjAbl7UiObUiPQDLcRlPZulqiVCwXTYsbWV9X4SJtD8ZNK16j0An7BlOcWQ8gyoJ6KKI5zpkTI9fHUpwzdqemmhZ8Kfjjg4MMZYq4SEhCy4CApKiICCg2y6TOf8EUSjOru9rskhbWGEsUyKiq1hWqTzuLREOibMU0pVpPDxf+3H5Oe3sHc8xmjGwLZNlLRqr+6L0d0R8XzFR4KkjSQqWS4vue2+ZtsuRqQIRBcJmigvP6kPXQzWbuiBKCJKCJgu43rQNvFzWr1QSGv2o6AidHW0UigamadHnppnM26QL5ekuwHAFoiGdVnV6gqwWAoZp0RtVedN57b49j6LQEVFQBGo29VKpSHIqTiTWQkvL9OCIb/viD0OIgkBbzPcCU2QpEDjOhKr437dKiStbPu0I+IMxkiRhWTZXXbpuUUhk586dtLa2smbNmmDQoUIaF1xwAfl8nng8zvj4OC+//DLhcJju7m4ymQzr1q3j4MGDbN26ldtvv50//dM/PeNJBE4zIjEMgyeffJL29nbWrVvX0M9/MYhkKJ5mLFE7oVU5kYCAJ8oUCynGxsaIxvzJjUhIp2j5nk6P7p8ikffLGZLs310m8iYP74uzdV2P/+EQBKRy7adSkpqpyZiJ8XiSTCJOd3c3sVgM27LIFwrk83mmpqZQVdUnlPY2PITAAfi8rhCdoV7GMv5dXF+LRliVKBoW9b70YU2mUChwTmeYkuWyd6JA0XQRBYHumMplZ7fPMod0bQdJEgI7lbVLYmiKyP6JPPmShS7YrOzTWX92D9GQhiRMl/1M2yVn2OiySFiT0RWJDcta2eB5hEL+iG8+m60Rv5Qslz0jGQaSRVzXozWksHFFOyu7o2TyVsPR5sGUgabItIY1bMvEtl0iqkDWcHjh8Chnd4aIhCNoukZEVzlw+Cie59HV2cHRQiZ4vyrNYge/WazI/oZlWjM/fwIX9ETJWgKT6TyaLGK7Hq4HK7vDhBURvdwAHkuXeHT/KMmChYDfu1nTH2XLijZs18XzfIW2okhk8z6pHk0UKDrQ2RIGDxzbQpUEDEnk5ZEU11/UX2cARUDCRZdFsiXDV7GXRbvZgh/WVSFgSRTQFKVMQr5h4+plXdhSlsPxPFnTxvU8NFmkVy7gFD3yrk44HEKY4bhQOWlJAtPCRs9/XZGQr5lJpdIk4hNEW9ppmZEzX41IWCOZzVMxedM1FUWWsWyHYqls+6/IeJ5bl2R8XqsCSwAAedRJREFUzYlv03P9b2zkgrMWRiIVK/aWlhbWrl1blwAq1vDRaJSzzz4by7JIJBJMTk5y2223MTY2RiwW49JLL+V3f/d3XxUkAqcZkWiaxpo1awLxVD0s1olk5mkE/BNJRXE+EU+QTcTp6OwIRm0lSQLLJlmwmMgYKJJv3y6IIpLnokgC8ZxJomDRWTZFrN50DNNsFK4YRMtms1lWrliKI/pferlq5t11HPKFAoV8nn2HDqOrClooTEssimOLhBSJc6qyKQBsxyEWDpGbYb1e6U0IgsCa/hgruyOYnn/X1xGZ3bSWJZFsPociSyCIOJ6HKPhGhUsjAqNjE3R2tNHW1ua/d45LzvB7ES+MZNk3kcO0y5nobSG2rGj1TwaCgGvbiGJtj8zxPH55KMFouuSTtSgwmTV4/MAUllFkVV8bkiSSLxo4Vd1e1/P8ICJZwrF9j6jKBlq0LWRNRxYFMqkpPDzyRRNVUejv78dw4cWxHFnDIab5Y8UuArbtsbRLDrygNFVBVWTGUiWSuQIxXWZleSrrwKTgC+s0mXM6w5zbFfatbwyLVNHmwRfHKNouUd1PMzwQz5Mq56YokhgYHVZrLSzHxXUcnCprEhcPz3GQNR2lQXR0LKxzbmeJ3YMl0gUTTbaxXBfL9rhwSRtLO2IYpokgihRm9AQFQeCiJTGWt4eYyhm0RMKEJQfRtcjnC+QyKXLpBIqmI8kKkUiUaCSMZVl11foevgNCsVQgGY/T0dlNT1cHdtm5uN7a/QygymfCvyaV66LIEtGQiutBrth44GUxSeTpp58mFos1JJF6UBSF3t5eent7ueuuu3jf+95HLBZjbGyM/v5+LrnkEv71X/+VtWvXLmh9pxqnFZEIgkBvb++ipiTWQ8m0mUrn6zy/f3c1ORknl8uyYtnyYMP18zp8UihZfqNZFnzX30o6nCgKvsCvPG0ji76T6fRduR/gNDNPoxLBa9sW552zwg/FqWOfIUpSMJ7ouS6i5zKRSJKcnKRgGOWx4rAfoFT1Qbfs2qEA2/VIZvPIwvTmrckiIQHEkIZdp/xm2y7/dTjBYLKEKEms6Iywui+KUyoQj8fp7fFPUOCXDQXPQhE9Xhov8NxwBkkU0Mt36ofjeUzb5crzO0EARfDI5YtEQjqO5wtER9N+XyCmyciS32ANxzSm0nn2TXgsKTduBUEgqmvBRqWrCl0RlcFEHrUc6AVgOT7x9bRFaWnR0JUuXt5/iJCmoSoS4yPDCIrK+R0Ke+MmqaKNKEq+cj6mcEFPRewokMyV+PWRFPGcr1rXdY1lUwYbl0R4XayDencLsbDOUy+N+lNfYQVwkEVQdIVUySNpeJzV7ut2ZgroWnTfsNF0XFTJHws3SiUcFHrDKlFdQ5YlTMvfaAVBIBrSyJcMzun0r9PBybwfQyCJnN8T5vwenULJQBJFPM9Xrtu2S7FGbyHQqsus6Grxx5wRAYVQKAx4WJZPKkapRDGXJa0oiIpKOBxG07RZ16BULJCYitPa1o4eCpPJ+wQgigJh3Z8aK5ZMwrpKtmFPxIckieSK/ii1X8Kq2KZYwc2bKArc8PpNnL9iYcLlykkkGo0eF4lU48iRI2zbto2tW7fypS99CVEUGRsb4/777/enMc9wnFZEcixYjNLW4GQycN2t/lBUCKxQKPgiQ0Ulqklk8wVCukqprNFoD/vjlpbjluNiPSRJpmT4JowVfUTlmF8Nr+zNdTRR5IWRLIm8iYzNWa0yl6xaQljXyOQKxHSpYZbGaLrEvokcOcOlRZfZuLyfFqdEPp8nkUgwMTHhJx2WiaVkQljXSRVNnhvKcDRZwigVaA0pXLQkxooO/xTjeh5hVSRXqiUS2/X48e4BkkULRRTwLIcXR2wG4lnWttosX9Jf08uKagrZXBbb9XhxcApF8jPFwZ+0EgWB8YzBZM7k3M4wmbw/AZUr+lGxYV2j5Pg+TRUSUWQZy/TFZom8Gbx3nucFd6QhTUUWRdaVs9bTRQtdkXBcD7OcKtnboqKKAi/vP0QsFkXQW5jMmbhSiDbFpV+xUdpsUpaMJ0B3a4TlndEgfx08/utIitF0iaguoysKBcNk/2gJwXV44wW9/onC9MdSPc+jNRIiUygylbdQZoy5iQI4jsVU1mBJTAkSBU3Ln+wSBH96r79VZzBZ9HMxbAtP8rPTz++J+BOG5daSriqEdRXDssu9cYFzOsOc1RHCsH0ikkQRtSzkrJBWZYiiWm9RKBlEIqEyicyEgKKotLWphHWVfNH//BULBZJTk4iiiKJoqLpOKBTGMIok4lO0dXQQidQ6ELiuFwwwxEIatuPQEglhWnZwDaqhKTKO4wYj1dW2KeAFJpNv2LR60UgkHA6zbt26OU0XG2F4eJgbbriBa6+9NiARgL6+vkUxTDwdcMYRid84mz9sai4cHUtiWLYvpipv1n5T3Rcm9vf3oSg+GRiO34mQZRnKJ6GQInFhX4znhjOULN9C3HH8OvKFPdGqKabZJ6t80eBIyuKx/XFsx0PwXAxBYG/CRRrM8Bvn+B+yXLGEoqhYM8SAByby/OpwopzbLjCZtxmI5/iNle2c3dnppzCaJoVCgUwmw+TkpK/DaG/j0aNFRjMmmuz3VuI5k18cSPDGVULQWM/mi4RDoZqc8sPxPMmin7cg+oM6GKZJqiBi9rTXkIgqi+QL/mmvZDkYtuOHGXkyoqTgun4JsGg5uC4BiQQQfNEett9DEEQJCRfL9DcK2/X85MUZ1zWkKZimTdF1adMEfuPcDvbFS74CW3RY2RVm7dIWJM9j38HDtLW3cTgrcODoJHa556NKIuuWxth0wRImp5K4tkGxkGZsOIUWChEORyi6ftRrLKSgyRKOY6OV41YHEkWmsgV0WaIylhrSVEqGhedBSBHJFGd/JkRJQhJ8nyvbcct9LVAVmZCmYjsOl6xoQXZKDKZNNE2jLaxwQW+U3pba3oiqyEFfQRJ9ax4Ef5quoqb3m9PM0lpAtd7CIxrWcVyXWFivudOvRkWQKAgi0WiMaDRWNYWYJ5fJkE0lAQ9F08onlfpoiehl0hJmXYPKFJemTJtC1oeA5Thcs3kDq1YsLGfDsix27dpFOBzmoosuOiESGR0d5frrr+dNb3oT//RP/3RCj3Em4LQjkspdZiNIkjSvH9Z8ODqe8B+rvBsVi0XGxkaJxWJYVnpGWcglGgljlidCPHwb7C0rWlEkgZfGcpRsF12C9Wd3sqavPFrqebMSEMEPGXpmKONPoggusiwjSiKG7fLyRIHV3ToxTfabrrJYQySW47JrMIXjeoEnlyiIZAoOOwfSLO/wx49VVUVVVdra2rBtm0KhwL7RJMMpD1UEwXGQy3eluZLN8yMZlrXpgdW1505vGJoscXQ85Yv4yiRimv7EkShAesbpBWd65FKTfR2AZbuojlP2YtIwLNcXrtkloL5LwdI2nfBIlkzBICx7KIqC4Xh4nsPKrkhNUz6i+75LluMGnlR9LRp9LX5WiCQKtEbCFAtZjgwM09XVRcKS2DeeRJEEIrrk39WaDi9OFOkM5+iORYEosdYOisUijmVSyKYZyVgYpkdI9nsnlc+KIvqj0IbllolEQJFlklmfKFVFZvXSduLFBEXLIaSIuB4UHFBF6G+dvcEGE0yeRzoR5/wOhTesXUHBsJGE+uWz6pKQ43rkynqLygSTKksYllPXQ60a0XBohtjWQ1N9g0U/kdEgEtJrrEoqqJ5CLOTzJBJxND2M5zpMjo362SqqRigURtc1PA9aopWTae1rqp7iCqkKoiSiKjJFw6jbYBdFgRtfv3lRSGTnzp3oun7CJDI+Ps6NN97IpZdeyte+9rUz1kfrWHDaEcl8WGiPJJkrki7XZnNFg1w+z8TEJF1dXbS0tJLNZoOwnwps1zeN82qce2HjslbWL23xSwaySGtYC6ayNFWuG9ObKVkkcwVE8J1Xyx9QVfYDcibLfQEoT9doKmb5CxPPmb65njJt7IjnEtYU8qZNMm/RFa2dZJJlmZaWFsS8gCznCasiRjGPWR5ZFvFLRZURS/B7FLGwn0Ioi74OwPPKjWzT7/lomoZRshFcm7AiUrAcoqpEJjddBlEkgZVdYfaMZClZ/jUqFIuUHJGlrSoruqJBTX8mIprMb67u5hcvT/i2GyUbVRI5rzvERSva0MruxbIs8/ThOAcn85Qsl1hIZnVPlLM6Q4Dgk5ksEp+KMzY+SW9vDx1trbx4IAmi5Ad3+YIPWqMh4uk8Q6lSMLIrCELZ0TlMrLUVvdVib2aCou0i44Ln+jc3joCuSL5zswCRkB6MoYK/IfaERFZ1qhyMF8lYHgIiIdFlw7LWGm+yaggCjI+N4QKd3Z0Ypk8ifk9AxLRtiiWT1lh4RnO6Fr62ySNbMHBcF02R0VQF23YoVPVFBPzpqtmODUJgsAjQEg7hloOpCiWjboM9X8iRTEzR2dVd7qv48dPFYpFCvkCqGAcgFomSz+cJh0OIYv3NVldlf7zcnHZx8Ke4pPIUl4kkiYtGIrt27ULTNNavX39CJBKPx9m6dSvr1q3jzjvvPO7Y7zMNZ9yrW2iPpHIa8TyPeDyOY5bo7+8PPuj+iaj2TscPwVHIFIxyBvp0k1oUhEAEmC9ZQZNclaVZROJ5HplUElwHRdVrPqCeB7huoOStQBUFKveOolC7TQiCgG0WsR0PUVSnBwPqQJNFXMfG8xRURfWzzV0Xy3QQHZvBwQEi4XDQVymUSoRUjWwux4qOEEenCuSKvqZAUVQMy7/TX94RIl80aIvoFI3SrL7TuiU+0R6Z8nPXVUWhN+xx8fIohmmVNzQZy3ZJ5oq+El2RWdKm06aJXLu2h7G0geW6dIRV2sJ+CcswLFrCOr/YH2fveMEvg3ke8ZzJk/kkjudxblcETZGZjMdJJFMsWdKPpumUTNvf5F0HSVQRJQlBErDKOTMzy4kVREL+e3ZWZ4RD8bw/rScKFG0Ry3VYGnLIpVN0tLeSzRdnEaQgCKxf2so5nWEKjohhGPS2aLRHQkGzvLYn4DIyPIIoKb4oNfi5EEw6eZ5HW8z/7Prap/onjZCmYlhWcJNkWHbQH5FEkZCu4eHrZ6oFl/UQDetkqk4+1c3ukmlj2Tb5XJZkMkFnV09N6VMUJSKRKJFIFM9zUSWRsckp7EKeXDqBqoWQZIVwJBJM2+mqgmU7MzRYtVNcuqpwzRXrF4VEdu/ejaqqbNiw4YRIJJlMsm3bNs477zy+/e1vLzgr6UzAaUckxxpudaI4Op7EcR3Gx8axbIuzli8HafoyCII460Ri2TaGaU7rNhos0cMjrGlki0aN+Ap876ux8XFE12Vpe5jhjIUgUJ6a8cVhIdmbVeLIFkuEdJ2S5dAV1YhoEtmSTUSVkARw8J1z2yMufa2hoAQ3E8vbQ8S0LJlsnlhEB8/D8QQ8RNYsa2NJt0ahUCCZTPrNej1Ed1uEUChCl+bRo9lMlCRKrkDJsJFFgQv7oixr04nqCsmMr78Ile0qCoaJ4/g5HJee3c6FfVEcJFzbpCOsBKUp07YxLYvnR7LsnShiugKi4BGRXS4/p4PumMbyGSFDlQb2cCLHvvEMUtnEUCyTQrpo8sJolgv6WhgZGyWfL7B06ZKg7wXQHVUZzxg4roMoSViGieuBJCks6YjV6GWAYArKK5c1VUnkaKKA7XiEVJGLuqOc06bgWgbjY2NYjoOsaESjEUKh8HRmjOextDPm9wIiPgEUqprlmqqgqzKFksGRo8Nomk5397QN/MxPXEskFEw/AbP6Iq7rEtbVwJ23HhzXo1AqoasqhZLhi/jKjgwz+yIzy2f+Kmqb3VapSC6TZvmyZXh1kj2D9zAaIZMv0tnZCYBtV6bAihRyGRRFQQ+FMDUdRdUa7g2iKHDt6zZw3vKFkYht2+zevRtZlk/4JJJOp9m2bRtLlizhu9/9bk20xKsZpx2RzIeFlLYc1+Xg0ARDQ0MossKyZctAEH31ebnpLoq1PRpJhHw56TAWCdVViVfDsGwEqLkztEyTsbExFFWlv6+P1i6Hn++NkzbAK7+WiKbw+rPbkGd8eAX8jdVfi8BlZ7fziwNT5E0X1/I3kLAicdnZbbiOjSxJdRuRIVXiN86K8ui+ArlcAUFREfFdbNctiaFIfvZHR0cHpmnimQXGJiYplQbRFJlLlrdQEEJMFV0EQaC/RacrqvjRsvnpUepswWAkncFxPc7qjhELqRRKJZa0R/0NSJv9xToUL/DscCYIPHIch3TJ41dHs2zbEMG17WDfEijfEedLJPMmpu3RUraid10H13VQBQ/DkTgyNIomuixbtmxWyWRld4SBZIms5aJYJTw8TNujM6rSExZxHNe/y5ZERATSVfV7WRTZtLyVtf0xSrZDWJUIq0p5CipEpKWVUsnAMkuU8jlSiSlEWSEcDtPX3VXe+OtviqZlY5kmA4NDxGIxli31N8diyawpHwlAJFxbPoPZfZHWaMi3VJGdus1y8O16NEUOPrPTn11fM6PJMpbrW+7MN5brn0SSdPf04gkSkigS1v0TcOU1eJ5HS3T2NJgs+5opyvn1rm2RzmbJ5+PggaJpqJpOOBwO3k9JFLnxDZsWhUR27dqFLMts2LDhhPoZ2WyWm2++mY6ODu6+++45BwtebTgjieRETyQvHRzg0JEjtMRa6OzqDFTh1dNVvrrdhbJ5nibLGPgnpZLph/k0HgXwtSJtEY1UuVdQLBYZHx+nJRajo6MDBIGYLnLjRb2M5xzGMyXCqsTq3giCW/915YtGMEm1rD3E9et6GUqViKeytOgyK7vCxHT/+B/SJRxn9rxYWBbpicrctL6P4VQJ03ZZ3tVCTJdn/W5HNEQm5xAKhTAMEz0cpVQy8OwsvYqKpIaIygpRLVJDIkPJIr8+kgpI+ddHkpzfG+WNF/T6Y72aWlOPr2D/ZB5BlAlJAh4esiQSFT1SuSIvj6RY3RcjrGu45ZJjpfSiyiKiQNk8suoOWZQwiwVMS6F/aR+S6MezypJIyTD99yis8pY1vTwzkGAkbSAKAud2hbiwL4ZatgTJFw1aIyFS+QK65osQK41mEFBlEVUW0VQZ1/WqpqAEdF331eYtYFkmpVIRz7Y4dOgQriCW9T6RGa67IHgORwYGaW1tpa2tLXitteUjX0Q5XwkqEtbI5Irl93daSFn9GiRRRFGkBs13P2PFMG1ikRCFYolYOFRDCtXIZTOkUim6e/qCTdRx3RrLkpCmoqlyjXNyPYRDOqYl0alqgIdhGH4WejZLLp1C0VQUVeftV1/BymULi4qtnEQkSTphEsnn87z97W8nFApxzz33LGrUxZmA045I5ittnWiPZGBggIeeeJquzq5Ztgz5oomiKli2G6jbK011z/PvwAX8nPJYxG9CzwnXBQ+y2QzxeJyuri5iM55TkUSWt4qc3Rn2TQuNUs0kUjUEBHCnQ7HaQwrtKjhds+/uiyWTaEQnV5yutYc1mUzWD5LSZJFzA9t0F0X0EEQZo1wSi2oy6UyGyck4pVKRpUuXBsdzz/Mdix3bJJOYZHR4kEjZBt8RFZ44lMSwXCKaHBgx7p0o0KLFWVUW9EmiRERXcTyPguGXioq2gIiDx/QXuBL+VTAdHNejaJjI5b5TxWpDEAXaQoqfqaH5TW5EmUwmx7IWmbOX9fs3BtSWXiIh3d9AJZvLzm4P5IMzNUX+XbPvm1XZUMHXWoR11XcsdlxMa2b9vhaqotLeGiNXMIi0+M1m1zJIxiewPdB1nXA4QkhTODI45AeAVflP+aumLCAUUBUFp6y1sGyHQtkupBqzS1D1X4OAQLZYTycyfR1aI6FgoqrWx6pCbBbJZIJkKkVvbx+qWv9O3NcFiaSyBapPO7Y7TWzgj3JX93PAT0vUNH9ztm2bUqnI5nN6mRg8xC8nhunu7qarq4v29vbjKkk5jsPu3bsRRZGNGzeeEIkUi0Xe+c53AvD973//pMflno447YhkPhzvicR1Xfbu3cvo6Cjhjl7sUv2/1cumcIIg4JY3bfDzEqq/oiXD9I30GvCdKAikcjlK+TxTU0n6+vvrun+CvzmENdk3nDPnJtCiYflJhYZNRFfIZBvfjebyJVqiYbJF32fIKJUaErRhWgiCTSwSwXZsUukMh4ZGGcrYCGqYxESRlV0CMV1BKN9Jt0Y7SWfztFomtmWSz6Z4cdIgXxKJahIifrkkLEmkCwYHJvMBkTiuS6ZqM2qLhmkPKwwWTajqSVY2kZguoyr+OG2lsVptIf6bF/Tw2MEkU5liudeRoysi8xsX9M/ygQIIqSqGaQXlv2qtRrFkBqezlkiIbL7+mLntuGTyJcK6n9Giayqi4LsYzCwrioKArk+fHiRJIhotjxa3TY8W59NJEpaNLMsIgojjOLM2NUnyR4orp4dKrnxFxOh6/kkhEtbmnOACpsnR8jPewyEVSfCt4INR9yoynflY0+TskU2nyeWynHfO2YiSMkMdP/0XLZFQVSmultj8U6OKiEDBNGb1KauhqSpvv/pyVi7rxXGcIHzq+eefx3VdOjs7AxPFuXoUFRIRBOGESaRUKvGe97yHYrHIAw88ELg7vNZwxhJJoxyQaliWxTPPPINhGGzacjHP/Xx3w9+tfDlFUQridrvaWzHNmY13h2gkRK7BqSSkiBwcHMcwDM479xxs5r47KhlmWfswP2zLj4stlhrfQVaQyRWIhHQEvHn7Op7n4VgmpVKJfYPj7By3sRwBQSjiJYrsG8/xhvM66WvRAtGYIIqomu7XrCMxIqUkUrEEgkfJ9K03fJ0LQVTwjGclGg6RyhU4t0NjJJmjYHmENBnbdigaNm1hhVW9LbiuN8shwIdARIGrVrUxngkxNDpB//J2zl/ahVlHtBrWVUqmVbNJ1bjNigIRXUWWRDL5eSaXqprv1cQW0jUUScQwbUzbQVeVuo7BMD1a7Nkyk1MJOjs7EAUB2ygwnkqAqBCOhIlEwoR0vVyam/26fBGhv0HHwjqu6xKLhCgZZl2thZ8/4wVTW94MK3hdVVBkGVkUSWRnuzdPwyObSZHOZOnt68OwPbDNWnW84ZNCLBya1c+phuO6OK5DwbTxXK9hw18SRW5642bOLZezJEmip6eHnp4ePM8jm80yOTnJwMAAL774Ii0tLXR3d9Pd3U0kEglei+M4PPPMM3iex+bNm0+IRAzD4JZbbiGRSPCzn/2sJv76tYbTjkiOpbQF/gdhrtnsfD7Pzp07iUQiXH755RwaS84STlXDchzCukZHRzu5XN6vx6YTOJ5ApGzhrpbH+EzTqmu+aFs2h4aO4jguS5ctxQMkQagxFZwJUQDBrc0XaQTDsmmN6KSyc9eXwc8jeXkiwVgqjyzCWe0hlrbpdatnUV1lKpViZGSUPZMitgNtEQ1BELFtm5xh8V9HU7zn0hX1NwNBoCOigZtH1lRkyXfJdVwXwzJpUxySyUTQExAQahrFy9tDXHp2O88PZ8gXDUQBVnRGecMF3Wiyn6rXcGJHEFAFBzs1xpqlvsGmadnlzUzF8zwKZf+mfB3x3IwXgut4pArFQMAnSyIls3Yzqze5VPn7YsmkiG9y6W+GAmFBrSndVMOxSgwMjdDf3xeMoEMrMdumVCzi2Abx8TFESUZWNSKRcLn+PuOEUD491J5EfK2FKstYlk3BMNE1312gkSV7RVWuKDLJXAFF9ktgjuufdqYnv/yTiE8i/TUjrjVphAK0RsO4noeqSA0b/mGtdrKsuuGvq76Q0sXjLZdeFJDIrJULQhAct3LlSkqlEvF4nHg8zqFDh1BVle7ubjo6OhgYGMDzPDZt2nRCJGJZFu9///sZGhrioYceqslMei1C8OaSkZ8CuK47pwWK67r89Kc/5corr2w4FRGPx3n22WdZtmwZ559/PoIg8LOdL7Pn0Gjd36/0Q0KaQtFyg81WdG2S6YzvIVQsosiyr7OIROhqb6tx1DUNk8TkGIIo1LgXR3SdvGnX3wg9D03yKJVMQrqK5UJD5wd8gZ9tlAiHNEzHC4SKM5Et2Ty0b4qpdNY34PZAUVU2L29lTV+toWM0pDE+GWdifBxHjfLEUAlN8vPAfQh4gkTJ8bh2dTudkfqlAstx+fm+JJOpAqoslCeYfDuU31zZRqtkkcxk8BBob21BUlR0PVTr+Ot6pEu+n1d/e5R80cDDL93oqoJbk4zn352WinmGRkbp7u4pl4xmIxrW8TwXURDrlp/Az0iRRDEoF9ViOoVPFAXS2dkK7GqoioSAUGO+KIki4ZCK5/q9Icdxsc0SQyPj9PfXs4GvPJbfE8xkczi2SamQx7JdFE33Tyoh//30SWRux4dISEMSRGy3tow387U2Oj0Ign9iQxAYHR0lnc3R19eHLDfWSfjJhrPTDP1Tp29bP994MpRPIr+5hXOX9sz5GhvBcZzAzn10dBTXdenq6qKnp4eurq7jmrCybZvf/u3fZu/evTz00EP09JzYml5NOO1OJPNBLJdMbNuu++ZX4nkvvPBCf7y3jKPjyVm/W7E7qUwDFQyTkK5jWDaqLFEqmrTEYrTEYuXY1yL5fJ7RkRES8UnUUJRINILrukxMTNDf3Y6mhWr2mHypRCwSrlsKi+oq2axfRiuWTFRFRpTl4G4xb9q8MJLlaKLoTxV1KFzQFcJxfcfTWCRMwXJmTc+8NJ5jKpUhok1H2ZYsi11H4pzVvpS+9ohvcaFrDI+O+QMB3d0UPBUo1ZxaBMEPRXLLzc+I7je6Z27IHbEwbzjHYfcgDKdKuK5HV0xl/dKWwKm3pb0Dx7YoFPKkElOUTCs47YVCYSRRpD2k+P2dqnFbv/zk38lO5317xCenGJ2YpK+v+m6+6v31vFmP5Wem+xNcpm1TMiw0VQZPaEAiUH2Xns4WysSm4uJRKBg1G7KmyLieO0vP47hu1UbvYZUKpNJpzl6xHEGq/zXUVRnbcX1LnEgEiNDS2lYeLTYo5XMk4pO0xGJkswrhcKThKV3XFErG9KSVKPquyb7exChrZvxyY6MSVMUgM5NKksnlOfusFYR0Hcuya1yuK4iGtBmTZf41LlU1/KMhHdt1QPDqWdMBCycR8EtgnZ2dDA0NEY1GueCCC0gkEgwPD88qgUWj0YYnYMdx+J3f+R1eeOEFHn744SaJlHHGEQnUn9xyXZeXXnqJ8fHxWfG8AOf2d/LMgeHg/z08PNebpVRXRAED3yfKqPowiaJINBIhGvGjcYvFIq5jMzY2hud6RMIhbNdDrdO7yeWLaLqGUXWsl0WBfL7Wyt60bCTXJaTpTOUNHnhxklTB8stfnsOuIxmOTqpcu6YHVRbJ5AuIohjkjXgehFWZAyMJFEmsUbprskjedDgczxFRfZvxyckJ8tmMr/jWQ4Qcl7AikTcdX/AoSeU7aIuoJtERVmr6AWFNQ5KndRZRTeEN53Vi2A626/l2IeUN3N9gPRxRJhxtJRxtwbFtbNMgm80yMT6BHtLp7eoglXGQGmyujuthWTYTk5Ok0mnOO/dswqEQJXNmP6Dc3J3VdBZqRl1bov6pyLIcsBuVF72q5ruAZbtY9rQFekRXyzc3zrwTXOBRyKaJJ9P09/cjSJI/WizLWLZNoVzGC2kKpmXXsR6pHi1upV8SmEqmsC2DybF03dHikK5gmHZNb8h1vSrC8N9LTfWFpI36j57nkU0nyOYK9Pf3Yzte+fr6JyddU/zkxZJBSNcCPUsjaKpCOl8MLIciIa3GORn8EuHWNy6MRPzX6/Lss89imiabN29GURTa2to499xzMQwjKIEdOXIEWZaDKbDq/HXHcfjIRz7CU089xSOPPEJf38K0K68mnHZEcixe/zMnt0zTDD4k9eJ5AX5j3TkcGp0iky/N8MyqncAqlJ1MHadxg7piSpdJJREQ6OzuRMFhYjLOhOsQDoeJhCOEI76iOV20GBnPY7p+cmFvTEOTRHJ1NhzHcSkUCxyZMkkVLUKqhCyAY1rIisRU3uRgPM+Fff50iOu6ZHJ5P+gnHCKVzc157Sq1/8NHBykUi/T3+TP/4fKX+OKz2vnlwSnyFoiWhVO2bdm8vK3KSt1/pKJhEpF00oXCdC2+nH2iydMXNaT7tia1m6KAJCtIsoIWjtJuWwiuQyqTIZPNoSh+PyASidQo0kOawuDwCIVCkSVLluB4lZFUj1DZe6niwTVXcxf8uny+OD0hVOmruJ4XmBE2Ev5VULFAD+sqpmWjqQqSJFIyfKuQGngemXSSdDbHkiVLg9NDtdWHqshEQiqW7cw5uRR4YhUNYuVRYcdxKBYLuJZJasofLW6NxSgVVbQZZcTax/JHqSsGk7qqzPLh8u19EmTzRfr7+2cRfeXUKOA7AoPfS2pUSgyXjTYrlfWZQwu6qqBrKldevGZRSOS5556rIZFqaJrG0qVLWbp0aZC/Pjk5GeSv33nnnWzcuJGDBw/y2GOP8fDDD7N06dIFrenVhtOuR+KVjQHnwi9+8QtWr15Nd3c3uVyOXbt2EY1GWb9+/ZwN+CNjCe7+xbP+SaQOiVTQEg6RyecbHrUd12V8fBzHcVh5ztlYLkjYWJaDaZp+oz6fx7RMxk2VlxMujkc5AxxW9sS4fKk2S8VejR89P068BBFVxDaKwZ19zrQ5pyPMlRd01fy+nyhXQBAEnjyaZe94jrBEoIo3LBdPENi+sZ/s1DiObdPX31/nennkbZEXhjNM5UrENJHze6L0zMgdl0QBTVWr9BnTqIyjVkpw+aoNox5EEXRNDSaHHMcG1yafy5PKZBFEkUgkQmd7G6NjE9iOXXczq34sx3bRVAXL8U0NZ77RkZBWs5HNhCAIfk9BFMkVSnOeMuo/1rRbrmW7lEoGqeQUuUKpvPb6DV7/sXwSqwQ+CfgDBxXbncpIcaNpMPC/R6LnkMlkMYwihmUHSYbhcDh4fkGAkK42fCxJFNE1mfGxMbL5Ij29fQ3XXv+x/FKiIouYZdfhSFinOM/ggyz55axzliycRPbs2UOxWGTLli3H5XtVmQL77Gc/y49//GMOHDjA2rVr+a3f+i1uvPFGNm/e/Irawv/lX/4ln/rUp2p+dsEFF7B3795XbA2NcNqdSI4FlRNJPB7nmWeeYfny5UFTfS6s6GljzYpenj882pBEADzXt1mvvpPygETeomCYWNkEIU1h6ZIl/ginJpHLGyCAqqmomkp7RzvjqQIvvziJ43rIgodguwiKxr6RKdpl32KjERRJwHVMHBNkRfVTGMsbs1wVjuSVXWsz+SIIvur+wh6doaksWcNGkmTf78jzWNcfITU+jCRJLFm6tO6XIBYKQaHIpStiQHQ6J7vKULDSmK5HIjA9UhsL6+RLBtGwBp4fazuzoSpLIrIs1Ww+kiSDJNPSrhNtbcNzbIxikYHBQUzLIRaLYRgGoZBYoxWpqLQrj1Vpds88aURDjaaupiGK/h1+rnza8ct4/mmnOscjGtbJF0p17jmq3XI9ElOTCMCqledQMq26m2g0rJGv6rlUBz5VTpJiWaiZnUfVHgvr5IsGsbZ2YrRhmiZGqYRdmh4tjkYjdLS3zklItmMzPDxOvmjQ37+EaMQXcxqGVdMHEgWhfDMwc13+ybXy45ZoKBAz5huUvk4HEgH/ZqLSL8nn8zzxxBPs37+fH/7wh3zhC1/gkUceYdOmTQta4/Fi7dq1/PznPw/+/3RxFT49VlGFYy1tjY+PMzExwZo1a+Y9ZlbKWI7j8IZ153BkPEG+gUuqKAgUCgVEARRJwXIcUkWLXxxIMJn1LbhVSWD9shB9oi/g0htcxaG0iYtAWPPn9h3HRbAMXNvlhaEk/brfbFZVtcquxceF/a0MTQ1jeSJ4vm7GRkKSFc7pmlbOxsL6LM+i1pDCdWt72DeRZyJrENYUlrco6FaaWCRGS3t7ndq7Vz6JVYvPah1WNVUhpCo4nlveYOu/Vz65TedLVJrMlQhYUfTda8Vydkg9bUQFguCfRkbGxlFUnf6+dmzLIJ1OMj4+7pcRIxFaW2LHqLMI4XkusXCIQsmse9JQZBFRlIJwJRCqjBWnrUZEQSCdm3uCS8DzT6+uR19fL0XDD5iKhPy+SmUNjUeKy9cUMCwLRfaTODVVRVPkusr2aFgnN0PVrqpaWXHujxYbJV8IOTgwgCuI6Hpo1mix57mkE1PkSyb9/f2IolirNymXEm3bRhAa31hUULGnr5Cof+LSEKA8yeYtKok8//zzFAqFEyIR8D/Hf/M3f8P/+3//j4cffpgLL7yQyy+/nFtuuQXTNE+Jq68sy6dlb+a0I5L54LouxWKRTCZTt6k+ExUC8TyPgunwq8MpXL2NiYlBv1wz43sbViWyOX/TkSUQRJmfvVRueuOiyhKOB7sG0+iKxCVntZJMZ9FVxVf1Vo0um47v11WOu0CVZRyrhISD7QhIrs3U2CiW59/5RCIRVE2lNazTb5us7I5wOF4IxnxF0eOCngjL2jSiIX/yqDr/oxoRTWbT8lbCukYylWZ0dBSttZVISyuO4/qTS7KEYZlYtkNE12tcZOtBFkVyxZJ/wqrTT6igOulu5ntRacDqqowo+qcR8BroCzx0RWLv/oNEImG6unwXXFnV0CMxHMfGMQ2y2RyH43EUTSMcjhCJhGeNpFZH3lY/fljTkBXJ9+CynCA9sF6WjA+f+FRFIZ0rzHkdBDxGR0YQJIm+vr5gs3errgP4NvCO46EqckOdhSyJVURZmw1SrWwXmd9YUdMUopEQJcMi2tpOsVDAcSwyySmmyqPF4XAIyyhSLFkBidS7DqZloSt+fygW1uteBygLOIu1E27+iWu64R+LhHjrZRdx9iKRSD6fZ8uWLSfkwOt5Hn/3d3/Hv/7rv/LQQw9x4YUX1vz7qXL13b9/P0uWLEHXda644go+85nPsGLFilOylmqcdj0S8Jvn9ZZlmibPPPMMmUyGFStWcP7558/5OBUScV2XPSNZ/vwHLzOZ89P9rOwUPZrNmy/oCjJAVEnCKNVGvx6eKvLQ/hQSfvBT5QtVtBzawwrb1rRVhUx5xCJhSraL7brsn8jziwNTqJKAKkk4ln83VjAdVvVEeOOqTjzX8/UBRompRIawJiFICpFIBE3XGU0bjKR9i5NlbTp9LRqKLAWaB6Hq7tYvHU3fYcdCOqMTk0xOTtLV1V3XvsG3HdcQRAG7LFqrdyqsVnLPhD+5pOGW+06zQ5FqMVs3UN1P8DUOoiAg4nLwyFFaW1vLNwyz11Vp5JuWhWtb5PM5UukcsqIEzXpVVedVVlc2MgEwbZdiHf8qqC4lzn4sUSj3NASBQrHA4NAwiqrR1dXd8LFqRYT1jRVn5qs3QiyskyuWiOi+5Xq9RndASA30MqVSCbNUolTIYdoOkqKWM2pmjxZXfL9mGj5W+ksCvmOEriqzSGQmZElk25su5uz+7jlf43zwPI/nn3+ebDbLxRdffMIk8oUvfIHPf/7zPPjgg694+aoR7r//fnK5HBdccAGjo6N86lOfYnh4mOeff/6UW7OcMURSaarHYjEkSSIUCrFq1aqGj1FNIkXL5V3/uot4ziCmK4gCFE2L5Ogga/siXH6uf6oJK2JgGQ/+nc0v946wN2ETDdfqFCzHxbMM/tslS5BnhFGJokA0HCaRK/Hj58eZylsIjokggO146IrIdWt76YhM3zULQETXKBYLZLJZppJpP0siEiESDhMOhxFEEV2R/RHYOrkjlYkZv2IkMDA0Qjqdpre3t67OQi0nLRpVm4oi++Oo1RvZfGUXmO51GIZFqOzbNHskd66ewjQ0RcYyDYaHh4m0ttESa6n7e40a5q7r4NoWxUKBZCqDrqtIiko4HEHX9bqb+swR2YoI0vE8isEmOL/VB4CIx8DgIG2tLfT19WJa9qyTxlyEVIEsiURCKp7np2XO9U2tfwr0kxRlScKwLGzbKRtfNiYk13VIJeIYlkNHRyemUcK2DIrFEl55tDgSiaBrOqoqz1mWBP8GxHFcFEXCLN8kzLz+siSy/U2XcFZ/V4NHOTZ4nscLL7xAJpNhy5YtJ2Tj7nked9xxB5/97Gd54IEHuPTSSxe0ppOJVCrFWWedxec//3k+8IEPnNK1nBGlrcnJSZ599llWrFjBqlWr2Lt375zGja7rBv+Josjjh6aI501iuoJUFleENZVSWxf7J+NccnYbUV0hl8sFH3LbthkfH0eT/Ltsx7aQVQ3PdUHwsEyDmCbW9clyXY9MLk9UVXj75iU8+tIoh+M2judxVofOxuWtNSQiCiK6KpMrGSBIRFraiLW2I+KSzWaJJ/ywqfa2FhRVJxSqH0nq4Y9QRkIaR44O4lgG5688F0+QZo2ihlS//zPTw6pW/CcSi4QxLaucHFn/es80VZxZR1dlyS8HqcqM2v1syJJINptleHSUnp4eWmIxX4BYdguutDRiYd2vt9d5DFGUEFWJNj1Ed09PEJaUTMQxTLssgiyTsyDWJaTq6zDtwSXNW/4TcDlydJBYS4xoS2u5WT5jgsswZgVS1YMkiuSL/qnC7y+ps04acxkrwnSSoiJLqIqMIstIgljXzt9xHNKJOIbt0tfXTyVSGaClPFrsWCaJyQlESUKU1XJfpf5ocfXwQLFchtMUxbfdL7sULCaJvPjii6TTaS6++OITJpF//ud/5m//9m+5//77T2sSAWhra+P888/nwIEDp3oppyeR+JuW3yA/evQo+/fvZ+3atSxZsgTwm+31bFSqm+owrYJP5v3fnbnnhyNRckYBy/aV25Uvg2majI6Oous6G87t4khunEzJQvVcZEUve225rO1vpZH1O54/eZUtlHjDqk7esq4f23YpzRhtViUJQRT9Zm4VXM8PPg1FW1gRa0FXZFKpNPFEkvHxCUIhfVbJQRIFFFniwKEjOI5NX18/puMBVmBNYVkOgujX2OfTKYQ0lVQ2X752ApGwL3ArVI2i6pqvN2hkqlgyLD9TPBrCMG1aIuEa4V3NtVAkf4Y/PkVfn++a7FTV0QXBL4tpiq8Rma9UIpcJTFJUwopKODYtgkxnMkxMTNDR1kI2659WGnsuebgupAqFYOKoOtskeLXlLJG2tjZaW9tqrkN1TyMWCYEHkZA/KlvvdUwT/TRh5GaIQUVRQJZEktnCnEMqiiyXy0xWMEAgiRLhkOpP05UMLMsnEdPxavo5FfiuxTEkUUTuEUmm09iWSS6dJBGPIykq0WgkCJ3yrVFmk5tp25jlmxpNlbnpDVtYsUgkkkqlFnQSufPOO/mLv/gLfvjDH/K6171uQWt6JZDL5Th48CC33HLLqV7K6VnasiwL27Z58cUXmZycZNOmTbS1tQX/fvDgQXK5HBs2bAh+5nlecAoBynkW/of46aMp/n//uQdVltDk6TJUqmixrEXhpnMEppJpAAqFAuPj40FdXhAEEnmTxw5MkchbeIAmCWxY1sq6/vq5AyICIV2uO94oSyJhTcMqDwDYVZtFPXherUJbEAQUSaBQyBOfSlEoFtE0jZaWGJFwmJHRMSRJpLe3t+6pJRbWKZkWIc3fqOppLHyNiNIw/7tSQlNkiWLJnLN2Xy2cm3kdgiZ10UBTFcbGx0hnsvT399fNtJhumE+P5MqyRMk0a0pH9byu6kGXRTK5rK9XyebRNDVo1ldEkJIkoMpy1QRXzYqCyaVcPsehwwN+9kyDUpxPhLVjrxWtiD8m608uzcxXr4fgc1Eo+bn3ip9iOPP9VJVyTEGDCGbwdTvpxBSKotDe0Ynd4Hnr91c8DMPENEpYRoliqUQoFEKSVcJV13EmFFli+5suZkXfwknkpZdeIpFIcPHFF59QoJTneXz729/mj/7oj7jvvvt485vfvKA1nSx89KMfZevWrZx11lmMjIzwF3/xFzzzzDO8+OKLdHcvrLe0UJyWRFJx7nUch82bN8/6cBw5coREIsHmzZuB2n6IIAizJkxcz+N3/2MPuwZS/pdBFChZLpIo8KfXruIN58TYvX+Qx3e9wNj4BN3dsxvTHpA3bFK5Ap0RFV2RyiUPHdtxgya1XDY8nK92HNY1bNv26/COS75ehoMHsbA2h2bAQ1NkisUCiYTvfySKIi0tLUQi0Zr0vfrusNUbukuh6IdH+WFFx9DYLfguAZXylWH53lUVAhdF0FVt3rHQsK4yNjqKYRp0dvcgivUPyo2vxbTLreO6NXkjda9anWvhug6ebZHL5UhmMkiSQmssSqwlhiBKzFWOwzE5NDDE0v5+ujracVx3Fgn710JtSM6V19EaDfthX4Y1Wxlf9XuNejWV97NCHo7rznktLMsinYzjIga+UaGydsis0g7JkohUtsefC7oiEU8kcSyTQqGAK4iEQqFyf0oDhEUlkb179zI1NbUgEvne977H7bffzl133cW11167oDWdTLz73e/mscceY2pqiu7ubl7/+tfz6U9/mpUrV57qpZ2eRPKrX/0KgIsuuqiu4GZoaIjR0VEuueSSGhKplLLqIVOyuOORI/xs7yS249IT07j18uVsvci3pH755ZcZGBpGjHVzYCRRU2oSBQFNFubcEDVFQVcVv2xTN7Z0Gr4KffaGHq4kBxYNBEH0syyOYRNOpjOMjIzS09VJOKyTSmVIZbJIkhi4FXd3tM0bzRrSVWRRxMMf4awn5q4do519rTVFRlNlHNvF8dx5CSmsKxw8PIDrOvT19SPLEuGKMWSp0h+YW8AWrF9TMS0LsTyJ5rjurL+pvpNvBNd1EHHJ53Ik01kc1w3KiKHQDMdiy2BgaJje3j7CVQMZgbmk5+d+yJLY4FQzjdpezbRTrjWjSV3rqFsfuqpguw6aojQM3bIsk3RiCk+Uyne0s9/PyvCF4BEEkjXCzKEM13X90WLbpFQsYjkOoXCYt191ORddsHJBYrpqEtmyZUvD8Lj5cM899/DBD36Q7373u9x4440nvJ7XOk5LIikUCnOSwujoKEeOHOHyyy8/JhKpRt60yRsOnRE/K8K27UD9umnTJkIhP770xSMj7Nx7lGyhiCx6854wQqpaNtlzphvM5nQ9GKo24XnS69RyqQLqq8EriIWrx3trSyqKLOJYJslUmkKhgGE5wThsxXq8GjNDnyqbd+0m5I/IzmdXrioSeAIebsMNHSCsKew7eAhJkujt7aujVfCIhnRf+V4yaxTlMxEJqRRK1qwJrsposk+OJmFdm3c8WVeVoOToeS6ubWOaJdLpDIWSWSaVEJosMjw2SX9/H7pefyOTJTEYG5fKQsx6J4SZqvaZUGQRXVURRZFMrjBnf0jXVCzLmiE6rbYqsUln82SSUwiyEuhz6j+vhFgePa5cS6DGsgXmymiZfn7LMrli9XJk1w9R6+joCMwRj+c04XkeL7/8MpOTk1x88cUnTCI//OEPue222/jWt77FzTfffEKP0YSP05JIbNuecyprYmKCffv2cfnllweeWcdCIjNRLBZ55plnUFWV9evXz1Kquq7L4ZFJXj46yqHh8YY190BsNetKVt1VWhaSJJGfw44CZjdZqzMgKjX0SmlmYGiUVCpFb29vzd1wBYosIkmS3wh3HVLpDFOJlD9WXB7jDIfDtERDDdY//TrCuoaqyBRKRkPRHFQ332s3y+o79ELJQFUk9h04hK7rdHf31H3/Kgrzis1IpXxl2vaMO/T5R4oFgTKhUHPamYnGrrv+dXBsG8sskctkyRT8/lQsFqurs6jehKsfY9pc0qZkWuUT0jyWLVX+WtV9lcKMDf1Y+iumaZBOxInFWmjv7KjbJwNQZQkEoS6BT4+a+9+9TH5uhb8iS9x85SUs7+0E/PL15KR/E5ROp4nFYsdk4+55Hvv27WNiYmJBJPKTn/yEW265ha9//eu8613vOqHHaGIapyWROI6D3aA+7HkeqVSKp556ir6+Pnp6eujs7Dxu87R0Os0zzzxDT08PF1xwwbx/bzsOR0fjNaRyrCcMSRTRFL9+r6p+3kg9wVskpFIsNQ74CSaGZJEjA0Nksln6+vrrTqlUbNtnNlklSUAsm9FNJJKoInhl36VGk0uSJKDJSrlkVyFHpcZ/C/yNpVRqfIKqQJFgaHCIltYWorHWupv2fE3iis5DFAXSDdT9wfpFAU1RZpQcp3NJDMvGtGwiIW1GCmA9eBRzWSamkvT29iAJ/vRMOpNFUSvN+gjRSAjPY84mN0BrNORHCddplFcgiqArat2SqYBfkpQqJck5TrDgx8OmE3FkTaejowMQyn2VcjRu+fVXFP7zrb9i0RPSyoFVjlsuzU6/jpkkMhOmaRKPx5mcnGRqym/6V0ilvb09+G56nsf+/fsZGxvj4osvrnvzdCx46KGHePe7381XvvIV3vve957QTWgTtTijiKTa7iSVSjE5OcnExAS2bdPd3R2QynzRmePj47zwwgusXLmSFStWHPcHqUIqh4cn2Ht0dA47DX9DBGbd1QWpf65LvmSUm6fzEZKAqsgcPjqAZVmce/ZZhHR9VmM2XL4rrX9XXYFfpjIMg1w2x1QyTbFUQte1IGxKlhVfVS0KDZusqiKjq76rcTo/94YuCIDrcPjoAG1tbcEkXlj3XXYN0zcCbHSqqVl9VcPcTx+sbww5t5J7+lq0REJ4gG27s7yrqp6UbCZFMp1lyZL+GhsWx3HwHItiIU8mmwNBRA+FfPFenWhcmC0irJ5kKxomrushiiKqIs0/vBHSKJYMNEVGUZS6LgWmYZBMTKJoYTo66jsFCILviCAIfvlqrvcgFpnd66u8jrCu4bgOlu1y85suZlkDEpkJx3ECG/fJyUls26arq4uuri4y5ZHthZDIY489xjve8Q7+7//9v9x2221NElkknDFEUk0i1aUsz/OCD9j4+DimadZEaFaXGzzP4/Dhwxw5coSLLrpoUUbmHMdlYDzOgcFxDgyO1Uzl+PYdcwcdVZq/QN3EvQoUWcLzXI4ODCIIIn191eO902OoAvOXGQQgMqNhKwh+mFc+nyeeSJIvFIlGdEKhCJoeQlWVuo853bwuBr5TtWpwH5IkYJZKDAwNzzEi69ESCePhzWowz/y9+eJgRVHAtG1cdzaJz8TM+n4w+OD6gw8VVXs6mSCTK7BkSX0Le/BLe4Zp4ZgmpVKBZDqDaTnBiS8cDgFC3Qm6ma8jFvaHDrJ54xhs7GeXJgN1vuuSSmdITsVRQ5E5/en8k2Al0322BXzl/TgWtwNVkbj5TZccM4nMRMXGfWJiguHhYUzTpKWlhb6+Prq7u4+bTJ544gne9ra38fd///d86EMfapLIIuK0JJKZue2NSGQmPM8jl8sFpFIsFuno6KC3t5fOzk72799PIpFg06ZNJ8WbxnVdRiaT7BsYY3gywWQyM6etRSUVrnpDn25oTt9d66pMsWQwODTUsKdQHSurKgq6ImOXm9zVvyuKvop+vjHUaEgjm80xlUyRzeWQy3n1kUikXEoTqk4FdXynRIGwpoLgGyBmM1lGxyfo7e0hHK6vv4mGa3tNldNOdaZIPRKsh8rUkirJSHKDoCka31VXv46QpjA2OkIub9DT1ziPI6yplGb1Jzwc28I2TdLpDLlika6ONgRJrckFmQm/P1QZt51tLhlcszpmiDNRMkqk4nE6Ozto72inULJq+ioVaKrv8dXoFOK/H77rcSpbnHMieqEkUoHneRw8eJDh4WEuuuiioLeSSCQIh8NBCay1tXVOYnjqqafYtm0bf/3Xf83tt9/eJJFFxmlNJBWlerXdyfF8APL5PBMTE4yNjZHL5ZAkiXPPPZclS5acdPdOz/MYm0pzYHCMfQOjpLK1ZpCVvslco8KCINAaDZHN5jl09CixWEuDksQ8ugJdxXV9h12xrGqfC7Ubum8kaJRKJNNpUqk0oigRiUTo7mzHZe73RFUkpqYS5LIZli9fhodU9+56vg298jpEQSCTK865cdZvmPu9HVVVsCybfNGgNRae8zkrfxefGMe0Xfr7+4iE9bo+YuFyf2Xur5OHKonkcjmyuRyZbB6tXEoMhyPBsMdcTe6K3YqmyAiCV+4PNV6/USqSnIoTirbQ2uonKfp9FQ1JEoJckepJtbngT+0VfGW87utVqq1rwH/P33blpSzt6ZjzsY4FBw8eZGhoiC1bthCNRoOf27bN1NQUk5OTxONxgIBUZpa3d+/ezY033sif//mf84d/+IdNEjkJOG2JxDTNhkr140E+n2f37t2Ew2Ha29uZnJwkk8nQ1tZGT08PPT09JyRkOh54nsdUOsf+wTH2D4ySzhWOSXkdC+uMTsaZnJigs6uLvp4uJEGs0QRUppHmy8fWy/5GmqrglX2O6r3z85UsFFnCtU3yuRxj8QRA0GAOh0M1QVMhTWF4ZJRsLl9Wq6tU7q4lScSwLN82pXySmm9gQSn3Cio5FuBRLJk1hDHbWXg2KkMSnkCNOeVMCHiMjY7iCQK9vb01r616+grw7fzn+XxGZyj8K32VfC7n635kmdaWFiKRCKI0twiy8j755av65cRSqUhyapJIrJWWchxvnatBNBxCFJhVvmr0nDPXVT0qbrsu2964ZVFI5NChQwwMDHDxxRfXkMhMuK5LOp0O+iqlUokXXngBy7JYv349v/3bv81HP/pRPv7xjzdJ5CThtCQS27Yplabvrk80zjKRSPDss8+ybNkyzjvvvOBDVCqVmJiYYGJiglQqRUtLCz09PWWX3BMbJzweJDM5DgyOs39wjNF4ata/+30HncGRMZLJVJ1y0PRmTJA/0RgzNSJQtjwP+aeyyiisH0Y192NVe1jJsgiOUzaWTGE7djBW3NnWxuDwCIZp0t/fNysfpPI6WspKbsuyG25ivg6jfsM/2MREAc9zyRfNOcuJUAl+mv58SaJIWFcC00vP80lkZGQESZYbjifD9OaqKQqqKvs55zN6O41sYqrhug6S55LNZ0mmMrieEJhLzjRFbHR6mx4LhkQyTTw+QaylraFlC1AW0U738YIhkPLNRgWNMmaqsZgnkcOHD3P06NF5SaQe8vk8//7v/87Xv/51XnzxRfr7+/md3/kdtm3bxkUXXXRKyeSzn/0sn/jEJ/i93/s9vvjFL56ydSw2TksiufXWWzl48CDbt2/npptuYunSpcf95g8NDfHyyy+zevXqORMUTdMMSCWRSBCNRgNSiUTq1/IXE9lC0SeVgVGGJhJ4nn/nemRwmHw+13C8V5FlRMFPzdM11c9SsXxdQm1a3txCN/DNLGORkD8tNMekjqrI4FEjsqxAEgVEAbLZLNlclmyuiCgKtLW1E4tFZzWn6/U6VEVGV2QsZ3pySlNl3Aa2+dWIRXRy+SJ6JbBrhv8W1Pe6mn0tBFRZYGhoCFFR6ejopNHm2egOvTJ95XgepZI5b7461BdBGkaJdDpNybSC8ldvd0d5/Y2/D8VSgeRknJ7eHjra22eZSwbPqfllvkbTfZU+lyyLZPLFuk4HFZwMEtmyZcsJ9zJffvllrrvuOt71rnexadMmfvCDH/DAAw/w/ve/nzvuuGPBazwRPPXUU7zzne+kpaWFK6+8skkkJxtDQ0Pcdddd7NixgyeeeIKLL76Ybdu2sW3bNs4666w5SaUyaz4yMsL69evLs/LHBsuygpHiqakpQqFQQCpziaQWC4WSwf6BMR564ikGx6fo7e2teyc/13ispsioqoxp2ciiSL5B2aYC36BRrbJiqW+GqGsqtm3PO5Ib0VX2HTxEJKQTiYT9seJiCU2bHivWNXVOU0jwN+NoSMdx3TntTGoy62dkcfjW7TK2ZQeEO/eQgW8DPzAwSCQapaOjY9Zo8vRzhuedjpNEwR+NFkU/TrZk1N20j1UEWSzkSWbyhELh4LQyk6CLxQKJeJzW9o6qO/kqMWf55BfWVQzLnlO4CNM9EQGhKmfGqiF2TZF525svZUl342mwY8WRI0c4cuTIgkjk4MGDXHvttbz73e/mc5/7XFDRKJVKpFKpUxJVm8vl2Lx5M//0T//E3/zN37Bx48YmkbxS8DyP0dFR7rnnHnbs2MFjjz3G+vXrA1KpLleBX3Pes2cP+XyejRs3LuhEYds28XiciYkJ4vE4qqrS29vrZ2S0tJwUUjFNk927dyNJEqsvXMPgRJL9A2McGZ0MvrjHKpqLhUOUTMsPqbLduvkT82ss/A1IV/2R1nrW78Fven4s7v5Dh9H1EN3dfiqggN88LhTzJJJp8oU8YV1H0fQgvbDeZhwJaVVainJPxPMCwVzlOY+lHCeJIpqqIEuCL5hrQK4iDoePDtLa2kpb28xN0e+JyJKEKAmkMnNbt0uSUM5Xnx5sqKjBJVGkaBhYtttg0mvGM1dNxzm2jWOb5PN5UpksqqqVs1UiOLZFYipOW0cnkUjjclAsrEPQH6pPrHNN5E2Pm8vgedz4hs2LQiJHjx7l0KFDbNmyhZaWxuW4uXDkyBGuu+46tm7dype+9KUTLosvNm699VY6Ojr4whe+wJve9KYmkZwqeJ5HPB4PSOWhhx5i9erVAanous7v/M7v8Md//Me86U1vmmV3shA4jsPU1BQTExNMTk4iSVJwUmlra1sUUqkMBbS0tLBu3bqaL4BlOxwZmeTwyDj7BsbmdGCtN1IMM0whCwbqsZaMqgKkKqedmcp8AZAEjwOHjxKLxejs7KCu5YYiIwu+BX4inSad8SfpKh5gFeHezDHg2tfn9wH8bBlh3rTCev2VSk/E9Qj0F4Jnc/joIB0dHQ0b09Wba73R5OprfWwiSF8HYc5wCJj5nI2SFCtJkIW8by4pigKqptPa2hY47c7ETOKqsa4pT1/NTSLTWMyTyMDAAAcPHlwQiQwNDXHNNdfw1re+lS9/+cunDYn8x3/8B5/+9Kd56qmn0HW9SSSnCzzPI5lM8v3vf5+7776bBx54AF3XWb9+PX/7t3/L5s2bT9qHyHVdEolE0FcRBIHu7m56e3tr7ByOB6lUimeeeYalS5fOOmXNREUAuX9gjAOD4zV52bVWJo1RmbARhMamkI1LRj4qTVnbdSgVihw6OkhHR/uMQKdpzB4v9VBlGdsySKYzJJJpRFGgu6MdJLmusWQF083rEpGQ7vtZVZWeKjgWmw9REBCwGRoaprW9g3B47jv5+azbDcuu4681GzNFhEGmiONSLJ8ej3VDL+TzTE1N0tnR4U8wZTJYtkMkEiUSCZcdi8V5J9oEwffqqgSHzVXG1BSZt111KUu6Fo9ENm/eHIwoHy9GR0e59tprecMb3sDXvva1ed0tXikMDg5y8cUX87Of/Yz169cDNInkdMS9997LLbfcwo033kipVOKnP/0p/f39bNu2je3bt7Np06aTSiqpVCoQQHqeV2PVcizPW7FrWbVqFcuXLz/u5x+eLJe/RiYpGMa8eREzY2UFQSBSjnDNFysGgMfm8iuJIkapwPDIKCuWLSUai1UpwadxLOUbSRKQ8EgkkkylMnjetLFkKBQOrmXjXA+vZugAmDeLA8C1TY4ODtHT00s0Egn0FSVjug9wLFNXUE4iFDy08ml4pkNuBfMNQFSISRJF0vM4/RbyORKJKTq7ugmF/BOO53m4joVlGKQzaQolk4621nJufbhu4Fnl76qDw2aaS1aIfTFJZHBwkAMHDiyIRMbHx7nuuuu4+OKL+eY3v3nakAj4+9PNN99csybHcYLcJMMwTqv1nijOaCJ59tlnef3rX8+//du/BTbQuVyOH//4x9x9993cf//9dHR0cNNNN7F9+3YuueSSk/ameZ5HOp1mfHyciYkJLMsKSKWrq6vu8x49epSDBw8uil1LRQC5f2CU/YNjswSQML/oz6/h+03Z+e5IVUUinUozNjFZ4z5ca9tuENY08nXsO2auvTojRJZEBM8lk80ST6awLYtQKERLLEZra0uNELAeQrqC53q+iWCdcdzKc7qWwcDwCH19fcEmXPUbQYPa81wy+dKcJ8WKKWf1NROgqkHtCxiPxVoEpkeUq0d6ZyrSC/ksiakEXT09DW3s/ZOfSDaTIZcrkMnl0XQ9aNZXhjnm6zf5OTP+797whk2LQiJDQ0Ps27ePzZs31ySgHg/i8TjXX389a9as4Tvf+c6CMk5OBrLZLEePHq352W233cbq1av52Mc+xrp1607RyhYXZzSRgH9H0+hOvlAo8MADD3D33Xfzox/9iEgkwtatW9m+fTtXXHHFSfvQVTyCKqRSKpUC/6/u7m4kSWLfvn2MjY2xcePGE74Tm+v546ks+wfHODA4xkQic4yiv+qIXa+cTT47ylZTZSYmJkmm0vT396Fp9QWdLREd23aQJD9PpJFf1EyhXjVEUUAWIJfPkUpn/BHfYCOcbd1eT2GuyCK65qv7/d6Li2UUGRmboK+vv6Egtdo1uFF/CGZb/9dHJf3Qm5UkOet6NLCAqSamyXic+FSCru65BbUzS2iOY+PaFRFkDllRCIdD9PV0Ydouc30+NFXht958Kf1dbXO8zmNDhUQ2bdo0p/fXXEgkEtxwww2ce+65fPe73z3pbhWLhWZp6wxGqVTi5z//OTt27OC+++5DlmW2bt3KzTffzOtf//pFbc5Xw/M88vl8QCr5fD54rk2bNp1wY/F4kMyUVfWD44zVEUDCfA3icplD8u1Njg4OUSgW6e/vr5vJXb+/4gX9jMr4qCgIhHR13uTDiqW87bioskg+n2MqkSJfKKJpaqCx6GiLHZNmplTIkUyl6OjsQWmw+VQr6Weimpgc28V0jmWMtvY0WCGm6hNTZaprvuuRz2VJJBKsWL6MWDTSUJE+nw9XpVlvGkWmEhk8YdqlQNf1msdbTBIZHh7m5ZdfXhCJpFIptm7dSl9fHzt27KirtTpd0SSSVwksy+Lhhx/m7rvv5t5778VxHG644Qa2b9/Om970ppP2oTRNk507d2LbNoqikMvlaG9vD6xaXokvQyZf5ED5pFIRQM4lNKxGWFc4dGQQwXM55+wVeOVgpeoN59gaxD6pKMeQfNj4bt/Pqy8Vi0wlk9imieUSTIBVjCVn/An5XJqpZKps2aIR0f3+UKEcGgYzDRPnuh5+KqauqQgN0iyPRXNS6YkcS/phPpsmmUrT3dNb83mplJ5sx6FQMoiG9HnNHKtLiq7r4jk2ZqlIMpPBMK2gWd/W2sI7rr5iUUhkZGSEvXv3snHjxuPSeFUjk8mwfft2Wlpa+P73v3/SLY6amB+vSSKphm3bPP7443zve9/j3nvvJZ/Pc8MNN7Bt2zauuuqqRbNMKRQK7Nq1i5aWFtauXYskSRSLxWD6K51O09raSm9vL93d3a+IVUuhZHBgcJxDw+McGYnPaVUe1lUOHDwMAvT19QUN20qmt2O7FA2TyAz7kXqYmXyoqUpZOOjUZGjUs3aZicpmWDJNbNMkkUqTzmQQBHFaAKn7+RqZVJJ0Nkd//5I6Zc1KKU/0M0nmmXybObQA1aPJlUhd55imrqoHCKpdkwulajNEj2w2QzqVpqe3F1VtfNPREtbwylNfjfpT8+lEHNvGNg0K+Rwbz+1l5YqlgSniid7wjI6O8tJLLy2IRHK5HG9729tQVZUf/vCHJ5xL0sTi4jVPJNVwHIcnn3ySu+66i3vuuYdkMsm1117Ltm3beOtb33rCAsfKeO+SJUtYtWpV3dq4YRgBqSSTSWKxWKBVeSW+LCXT4tDwBAdmCCA9zyOsq+w7cBBFUent7ZlhXuhDFHzls4hQ10CwgvlGchVZ8tP6EMgVivM36etshqoiYZsmqUyGRDLlW60oMqbtzgqkqoZvx+Ji2U650T57YgmOzXYGPNqiERzXxbCshvHEfliZUjPGXUHF0kUQBMbHx0mmUvT09s/ZC/D7KyUqp596OeszhxsaQVMV3n7VpcR0JXB8yGQygTddd3f3MX8nKiSyYcMGOjtPzFq+UCjw9re/Hdd1+fGPf3zcHlxNnDw0iaQBXNflqaeeCkhldHSUt771rWzbto3rrrvumO0bJiYmeP75549rvNc0zRqrlkgkUuP/dbKtWkzL5uhonP2DYwyMTvDSvgOEQmG6urrqPrckCaiyTLGqn1BPjX5sTelpD6u5grLmss6vhiKLTIyNYph22RLEJRwOBXn1lZPVXGurbrRLAvPazsxe27QS3KrKm6+nfq/3WLl0mmQmwzlnrSAcCs0afph53eaaygvpKqoqky8Yc+prdM3vifR1ttX83DCMwGU3kUgQCoXmzQQZGxvjxRdfXBCJlEol3vWud5HL5XjggQdekd5iE8eOJpEcA1zX5ZlnnglI5ciRI1x11VVs27aNG264oeEXaGBggAMHDrBu3Tp6enpO6Lkty6qxatF1PbBqicViJ5VUUqkUu3btRtSjGILKwaGJWXfOcznzViAIAi0R3Q8eK9bXVlQwl7NtRNf8/IuSSTikzhtuJQgwPjaK40JfXy+yLCEBmWyGeCKFafpjxZ3tbSiqhjCP7icW0SkZJrqqznLHrcZMd+GZqKjiwZvHUdcjm06RzmTp7euvGgip+IhJQZJkJaXy2AluWndj2rXNel1TePtVl9HbMfc0YXUmyOTkJKIoBiPvHR0diKLI+Pg4zz//PBs2bKCrq2vOx2sEwzB473vfy+TkJD/96U9PuEHfxMlDk0iOE57n8cILLwSmknv37uXKK69k+/bt3HDDDXR2duK6Lt/4xjc477zz2LRp06KN9zqOQzweZ3x8PPD/qjTq50uIO15MTk6yZ88ezjvvPFasWAHUCiAPDI6Vo2znt1mJhqa1JMEIqyjWOA1XZ7DPtRn6k16Kn5UoCBSrmuTVEPAYHR1BECV6enpnXRtRFFBEgUI+z+RUkkI5r74ytTRziq+ejbpUPnVVyM3zvGNKb5Ql0c9jMe2qnHaXQtGsOnV5ZNJJMtk8fX2NbPin1+Z5zEluPonoZBusrUJuoihw4xs2z0siM+G6bk3WumVZRKNRMpkMa9eupb+//7gerwLLsnjf+97H0aNHefDBB0/4RNPEyUWTSBYAz/PYt28fd999N3fffTfPPfccr3vd6ygWiwwPD/P444/T29t7Up7bcRwSiQTj4+M1/l89PT20t7cviFRGRkZ46aWXWLt2bUOnVM/zGI2nODA41lAACfOVWyq5KgKCIM5rviiKIvqMVMnKyKw/VuyL/gQ8hoaHUVWVrq7uxnqNMsFB2VgyX2AqmSSXL6CqSlD+6upom5fgJEkouxV7DckNyie4BhYq1aeu0dFR0rk8fX39c+qdZp7gZpKbP0Xmh1fNNwRxrCeR+eB5HkePHmX//v3ouo5hGLS3twenlWOdsrJtm9/+7d9m7969PPzwwwsW7TZx8tAkkkWC53k8/fTTvOMd7yCXy2FZFhs2bOCmm25i27ZtLFmy5KSVoSp3gxVS8TwvIJVKieFYceTIEQ4dOnRc9eyZAsjJZHZer64K/FwSnVyhON3gtuxZpbJjNULUFYmBgQH0UISWtraGzx0N6+TLZpQzH8MfKy6Vx4oNTMermgCbPVYsCkLZot4IXlM9qxVFlhGYe8za8zwyqQS5QoFzzz4bVVUaZsTM61QgCER0FVmWfOfgOUqKi0Ui4J9mn3vuOS666CJ6enooFotBzy+VSgWZP93d3Q3jGRzH4UMf+hC7d+/m4YcfPiXW700cO5pEskg4fPgw11xzDevXr+ff/u3fiMfj3H333ezYsYMnn3ySSy65JLBqWbFixUkjlYqhZWUCzHGcGv+vRhYxlRyX0dHRBQslk5kch4Yn2Ht0tKEAEsobcIPQJ02V0RQFy7axHQdREOc1QhRxOTIwSCwWo62tnZCmoChyOX1xevLq2GxKPKJhHdOysQyDZCpNMp3xhwjK5a9QKIQsiYH6vdHjVKxWbNeZM+CqQiLZvC/2nH6vPEKahlKVEXO8ViuV8WZJFGdNkemawjuuuoyeRSSRdevW1T2Nm6ZJPB4PstY1TQua9W1tbYiiiOM4fOQjH+GXv/wljzzyyJzBdE2cHmgSySJhZGSEf/3Xf+XP/uzPak4AnudHtlbs73/xi1+wfv16tm/fzrZt21i5cuVJJZVMJhOo6k3TDKxaurq6gpKJ67q8+OKLpFIpNm/evKjjxvUEkOCXqTRFrjv2Wg1N9ZMgFXlabFc3X93zs0Ta29vqOhBXegACkJ7HKgbq27YosoTrWKTTfrNeFKClJYaiaoTD4bpj0VDrw6WrCooizbJa8TyPdHKKfLFEX1//HJ5wlXhir6GPWPAaGvZrvPI6ZERB4KY3blkUEonH4zz77LMNSWQmKuXZSjzDX//1Xwc3O88++yyPPvooZ5111oLXdSL48pe/zJe//GWOHDkCwNq1a/nkJz/Jddddd0rWc7qjSSSvIDzPY2JignvvvZcdO3bw8MMPs3r16oBUVq9efVJJJZfLBaRSLBbp7Oykq6uLsbExbNtm06ZNJ1VdXygZHBwa58DAOGOJ1LxphfWSIIMYW3c6lElw/SyRzq7Ohvnk1c18WZII6dPeW9U4VqdfTZXxHJtUOsNUMoVt2zXJhZWx4tn2+dMIrPgdm5GRUQolg/7+/jndeWcOJFQew78e0yQ7l39ZBSFN5e1XXbpoJPLcc8+xZs2aEypDeZ7Hz372M770pS/x61//GsdxuOaaa9i2bRs33XTTCU98nSh+8IMfIEkSq1atwvM8vvnNb/K5z32O3bt3s3bt2ld0LWcCmkRyilApQd13333cfffd/PznP+fcc88N7O/Xrl17UoN5crkco6OjDAwM4LouHR0dwVjxK2F+10gAWcGxqNolUcBzLIaGR2ht72iYCjiXirumOW2Y6Nr8+eqKLNaU2iRRQBYhk8kST6QwTJNQSKejrQ1V0+ccK/Y8l3RiipJlc+7ZKxAFsa4a/VisZyRRJKQryJLk28/P8c1eTBKZmpri2WefPWESAf9U/Od//ud873vf4+GHH8a2be677z7uvfdePvjBD/KBD3xgwetcKDo6Ovjc5z53WqzldEOTSE4TpNNpfvCDHwRBXUuXLg1IZePGjYtOKsVikV27dhGNRlm5cmWgVclkMrS1tQVWLa+Ej1FFALlvYJTDwxPIZQ+u+T6arlXi6NAIvb19RCMRwiGfAIslsyr//NiEixXnY1EUEBAa5qurigQIDf3BREFAkUWKBX+suNpY0h8rniZp13VJJ+MUDbtsOyMGjxHWVShbrTjHaLVSbfpYeQxBrM6Z8RHSVN5x9WV0ty9c1JdIJHjmmWe48MILT3jE1/M8/uqv/opvfvObPPLII6xevXrWv59sEe5ccByH733ve9x6663s3r2bNWvWnLK1nK5oEslpiGw2W5Op0tXVFTgVX3LJJQsmlWw2y+7du+nu7p5VTiuVSkFQVzqdpqWlJTipvBL+X7bjMDAa58DQ+KwEyAo8z8MxiwyOjNPf3zcri6NiLSIKAuA11E5U0ChffabepeJCPJ9uppJE6HkeqiJRLBSYSqbI5nzn50qjvpTPUjRt+vv7GvZX8DzaYmEc1wvGm+thLufg6ikygJvfdMmiksjq1atZsmTJCT2G53l89rOf5Stf+QoPP/zwaZXPsWfPHq644gpKpRLRaJTvfOc7XH/99ad6WaclmkRymqNQKPCTn/wkyFSJRqPB9NcVV1xx3EFdyWSSZ555hrPOOotzzjlnzju9ih3G+Pg4yWSSaDQakMqJ+o4dD1zXZWgiEYwV5wp+lohZLDA6Eae/v79hT6dCJvliKZhWqtjXV+NYx4pbI2E8waNkNPbNgvp5KJXH0BQZo1QikUxhlIoUTZuWlhiRSJRQyM+rr/mLWZ5Yvp2/XE6BrJyKpl/r/D2RxTqJJJNJdu/evWAS+cIXvsAXvvAFHnzwQTZu3LjgdS0mTNNkYGCAdDrNXXfdxb/8y7/w6KOPNk8kddAkkjMIpVKJn/3sZ0GmiqqqwUnlN37jN+bNVKn4fp1//vksW7bsuJ7bsqyAVKr9v3p6ehpqARYTvgAyyaO/2slz+47S0t7ZsJczbxyvLFEybTzPO6Z89ZCqYNpOWYcxPc5rWnaNtcjMEKl6cByHVCKOh0BPVwepVIapVNrXfETCwWkFhHnKWWXXZFlGECGdLc75HoR1lXdcfTldbcfmETcXKiRywQUXnPBorud53HHHHfzd3/0dDzzwAJdccsmC13WycfXVV7Ny5Uq++tWvnuqlnHZoEskZCtM0azJVXNflxhtvDDJVZm6ylUS6hfh+VWDbdo1Vi67rAam0tLScFFKZOaKcK1nsHxznwOAY8VQ2+L1jM0L0p50UWUKWJCzbbjhGG9KUstlj/a9JxdBRQJhXme84DunEJKYDvb3Tti2KLPkTYJk0U4k0ruvQ1dGGIFUy1uuXvQTBN2EsFM2G01uwuCTi+6/tOqGbkQo8z+Of//mf+dSnPsX999/PFVdcseB1vRJ485vfzIoVK7jzzjtP9VJOOzSJ5FUA27b5xS9+EWSqFIvFIFPlyiuv5K/+6q+wbZs/+7M/W3TDO8dxmJqaCkhFluWAVNra2haFVFzX5bnnnqNYLLJ58+ZZ5axKAuTBoQkS6ew8Zar6+eqqLPvjxlValWOZHIOK6K9Y3sxrR5MrsG2LdGIK2xPo6elpeF1kSUQRIZHyA7gqxpKVZn2llDlTTV8NSRQJ62oQsvX2qy5bNBLZvXs355133jE7Wc+E53nceeedfOITn+CHP/whb3zjGxe8rpOBT3ziE1x33XWsWLGCbDbLd77zneD09Ja3vOVUL++0Q5NIXmVwHIcnnngicCrO5XJ4nsfHP/5xPvCBD5zUbBPXdZmamgoEZoIg1Ph/nciQgOM4PPPMM9i2zebNm+ct32XyRb+nMjDG8GRiVpnpWKzsZUkkFtawbHdeLUYjhXllM/c8SGWzpBJTuIj09HTP+t1p1HpiiaKALArkcjniiSSlkoGua0SjUTrb27Aa+HlVENZV3n7V4vRE0uk0u3btWjCJfOtb3+KjH/0o3//+97nyyisXvK6ThQ984AM8+OCDjI6O0trayvr16/nYxz7WJJEGOK2J5B//8R/53Oc+x9jYGBs2bOAf/uEfuPTSS0/1ss4IGIbBLbfcwq9//WuuvfZafv7znzM+Ps5b3vIWtm/fzrXXXnvMmSongor/V8WqxfO8GquWYyEVy7LYvXs3oiiycePGOc0L6yFfLHFwaMLPVRmLoykKhnUMJ4wqt2JJFAiHfJ1Jvljb/5jP68p/DSbpqTihcJje3l4KRnXq4YznncN+XhAEP68+lyOXz5FIZVHV6bFiVVWYWc5651sup7N14e9xhURWrlwZOEEfLzzP4z//8z/5yEc+wt13380111yz4HU1cfrgtCWS7373u7zvfe/jK1/5Cpdddhlf/OIX+d73vsfLL7+84Br/awG33XYbL774Ij/84Q/p7u7GdV12794d2N8PDAxw9dVXs23bNq6//vpFt6Gvhud5pFKpgFRs26arq4ve3t6G/l+GYbBr1y50XWf9+vXHPZ02E0XD5NDQBAeGxjgyMtnwRDJX+qEoCERCGh4eAsK8XlemaZJOxhEkla6uTkAIJqyksr6jYqTY2M6k6vlF0BWVgmGgqwrFQoFEMkUml0OSZKLRCOFwhI62lkUjkUwmw86dOzn33HMXZFeyY8cOPvShD/Hd736XG2+8ccHrauL0wmlLJJdddhmXXHIJd9xxB+Df4S5fvpyPfOQjfPzjHz/Fqzv9cfjw4cBddSY8z+P5558PSGXfvn01mSodHR0n3f+rolUxDCMglYr/V0UsWcm3X2wxpmnZHBmdZP/AGIeHJ4KprWMxQvRdjcNk8kUiodmEEDyHaZBOTCEqatlFuYGNvq6hKTK54tyJhdMkMnsSTVMVTKNEMpmmWCzwpg3nsvKs5QsqKcI0iZxzzjmcffbZJ/QYAD/84Q+57bbb+Na3vsXNN998wo/TxOmL05JITNMkHA5z1113sX379uDnt956K6lUivvuu+/ULe5VBs/zePnll4NMlT179vDGN76Rbdu2sXXr1jkbw4vx3LlcLiCVYrFIa2sruVyO7u5u1qxZc9LHiisCyMOjk7x8ZKQmLrjeeuuP5HpEQrovXjRM8oUCqak4sqbT0dHBXNG30yJCXyOi1LHRnyvXvRqRkMZvXXkJomcHpz/XdY/J/XkmstksO3fu5Oyzz14QifzkJz/hlltu4Rvf+AbvfOc7T/hxmji9cVoSycjICEuXLuWJJ56oGQ38kz/5Ex599FF+/etfn8LVvXrheR4HDx4M7O937tzJ6173usA472RmqoCvc9mzZw+yLGNZFh0dHUGz/pXw/6ongKxgOl9lbpsS0zRITU3S1tZOtKWloXixenS3HjRVRlVkbNvG85h3Ei0S0njn1ZfT0Tp9AvU8j3Q6HWSBlEolurq6Atv2RoMLFRKpiFZPFA8++CDvec97+OpXv8p/+2//7ZTanDRxctEkkibqwvM8BgYGAlL51a9+xSWXXMK2bdvYtm3bomeqVEZLzz77bM455xyKxWLgVFzx/6qQyivh/+V5HqNTKfYPjLF/YBTX8+b1ujJMg1R8Ei0coa2tnUC8qMiY5rR4cT4SqUAURVRFwnFcdE3BsV0Kxmwb/XokUu/15PP54KSSy+Vob28PAqYq1zSXy/H000+zYsUKzj333GO6VvXw2GOP8Y53vIMvfelLvP/972+SyKscpyWRNEtbpxcqmSo7duxgx44dPP7442zYsCGwvz/33HMXtFFU3GNXrVpVd7S04v9VSdhraWkJSOVkjjNX4Hkek8lMXQFkBYZRIjk1iR6O0dbWVvdxKloVAUjlCnNeswqJzBRWBhnveBQKBpGwxjuumptE6qFYLAbXtOKp1trayujoKMuXL2flypXH9XjVeOKJJ3jb297G//7f/5v/+T//Z5NEXgM4LYkE/Gb7pZdeyj/8wz8AftlhxYoV3H777c1m+ymE53mMj48HmSqPPPIIF154YUAqF1xwwXFtHJVy1po1a47JPdY0zWADTCQSQWxrxarllUAi7Qsg9w+OMT6VxigVSUzFCUf9zbgRqhvmsiQ2zEQ5VnV+LBLit958yYKns0zTZGhoiEOHDuF5Xo39TSwWO67387/+67/Yvn07f/M3f8Pv/u7vNknkNYLTlki++93vcuutt/LVr36VSy+9lC9+8Yv853/+J3v37j2m9LUmTj48zyORSNRkqpx33nmB/f2aNWvmnBgaGRlh7969J2zbUvH/mpiYYGpqilAoRE9PD729va+I/xfAkcFhfvbYkzhymILtNfTZkkShYSSvL15UcD0wLatsMDl3TyQa9stZ7S0LJ898Ps/TTz/N0qVLOeusswJRaTweR1GUY3Yq2LVrF1u3buV//a//xR/8wR80SeQ1hNOWSADuuOOOQJC4ceNGvvSlL3HZZZed6mU1UQeVxm4lU+WnP/0py5YtC0hlw4YNNaRy8OBBjh49ysaNG8uTTQtDxf+rsgGqqhqQysny/6qU5CrmhfliiQOD4+wfHGNwfCoQPvpTV/KcE2H+7/nlLEnyr1OhVF+8uNgksnPnTvr7+znvvPNqrtPMKFwg6KnMFJU+99xz3HDDDfzxH/8xH/vYx5ok8hrDaU0kTZy5yGaz/OhHP+Luu+/mJz/5CV1dXdx0001s27aNe+65h6eeeop77rlnzlLQiaLi/1XZACVJqrFqWYxNrhIt2yjQqWiYHB6eYP/AKGNT6XmtVmRJRJIkDLMqE6UqV6VQ8rUqsbDOO66+bFFIpFAo8PTTT9PX18eqVavmvC6u65JKpYIToGVZ7Nmzh2g0yrp163jnO9/J7bffzic/+clTRiKf+cxn2LFjB3v37iUUCvG6172Ov/u7v+OCCy44Jet5LaFJJPPgscce43Of+xw7d+5kdHSUe+65p2YAoIn5kc/ng0yVe++9F1mWefvb38573vMeLr/88gWr1ueC67rBXfXExASCINDd3U1vb+8Ji/UqdvzHGi1rWjaHR3yrlsPDE7NGguuRyGx49LS3csMbNtGxSCSyc+dOenp6OP/8849r8/c8j2w2yx133MG///u/Mzw8zDnnnMPHPvYxtm3bRnd394LXdyK49tprefe7380ll1yCbdv86Z/+Kc8//zwvvvjiK5Kf81pGk0jmwf33388vf/lLtmzZwtve9rYmkZwgHMfhwx/+MA888AB/+qd/ypNPPsn3v/99NE1j69atbN++/ZgyVRaCyl11RQBZEev19vbS0dFxTIQ2Pj7O888/z0UXXXRCfZ2KAHL/4BgHhsaxbQdJEmsEiPUQC+u84y2X0x5b+IZYLBZ5+umnT4hEqnHgwAGuu+46rrvuOs477zzuuecedu7cyR/8wR/wuc99bsHrXCgmJyfp6enh0UcfPW1dhl8taBLJcUAQhCaRnCD+5V/+hf/zf/4PP/vZz4IcC9M0eeihh4KTChBkqvzmb/7mSRUhVno6Fa2KZVk1Vi31SGV0dJSXXnqJiy66aFHuul3XZWi8LIAcGmvotXUySKS7u/u4J+yqceTIEa699lq2b9/OF7/4xeBkNzw8TDKZPC0icw8cOMCqVavYs2fPabGeVzOaRHIcaBLJicNxHDKZTMM8FNu2eeyxx4JMlVKpxI033si2bdt485vffFJFiJVSTeWkUlGA9/T00NXVhaIowYTZhg0byt5Zi7+G0XjKHyseGCOdKwDQEgnx9qsvWxQSKZVKPP3003R2drJ69eoTJpHBwUGuueYarr32Wv7pn/5p0b3QFgOu63LTTTeRSqV4/PHHT/VyXvVoEslxoEkkrwwcx+GXv/wld911F/feey/pdDq4+33LW95yUkWIFQV45aSSz+cJh8MUCgXWr1//ijhPVwsg15y7dFFJpKOjgwsvvPCESWR0dJRrrrmGN77xjXzta187qf2theDDH/4w999/P48//vgJJzk2cexoEslxoEkkrzxc1+XXv/51ENQ1MTHBW9/6VrZv384111xzUjNVwB9TPnLkCLquUywWA1uRnp6eWUmNpytKpRI7d+6kvb19QSQyPj7OddddxyWXXMKdd9552pLI7bffzn333cdjjz22IK+wJo4dTSI5DjSJ5NTCdV127doV2N8PDg5y9dVXs337dq6//vpF14scPXqUQ4cOsWnTJtra2mbZirS2tgakEgqFFu15FxOGYfD000/T1ta2IDflyclJbrjhBtauXcu3v/3t4w4ZeyXgeR4f+chHuOeee3jkkUdYtWrVqV7SawZNIjkONInk9IHrujWZKvv37+fNb34z27ZtW5RMlcOHD3PkyBE2b95cV+tiGEZAKslkklgsFpDK6TJqahgGO3fuDHJdTvR6JBIJrr/+elauXMl//ud/ntTJuoXg//v//j++853vcN9999VoR1pbW09bon+1oEkk8yCXy3HgwAEANm3axOc//3muvPJKOjo6Tjh2tInFhed57N27NyCV559/nt/8zd8MMlW6u7uPaxM9ePAgg4ODbNmy5ZhKZ6Zp1li1VLyqent7iUQip0SgZ5omTz/99IJJJJVKsXXrVvr7+9mxY8crYud/omj0Gr/xjW/w/ve//5VdzGsMTSKZB4888ghXXnnlrJ/feuut3Hnnna/8gpqYE5VMlQqp7N69uyZTpb+/v+GGU/nb4eFhtmzZckImkJZl1Vi16LoekMrxGiCeKCokEovFWLdu3Qk/ZyaTYfv27bS2tnLfffe9Ivb9TZyZaBJJE69aeJ7H0aNHufvuu7nnnnv41a9+xaWXXhpkqixfvjzYZF3X5eWXX2ZiYoKLL754UcpTjuMQj8cZHx+vMUDs7e2ltbX1pJCKaZrs3LmTSCTCunXrTng0N5fL8ba3vQ1VVfnRj37ULA01MSeaRNLEawKe5zE8PBxkqvzyl79k48aNbN++na1bt/KZz3wGwzD453/+55MyXlxtgDgxMVHj/9XW1rYoWowKiYTDYS666KITfsxCocDb3/52PM/jRz/60Stmz9/EmYsmkZxBaJrSLQ4qmSr33HMPd999N7/85S+JRCLceuut/Pf//t8XZBtyLHBdl2Qyyfj4OJOTk3ieF5BKR0fHCRGAZVns3LmTUCi0IBIplUq8613vCvzRWlpaTuhxmnhtoUkkZxCapnSLC8dx+B//43/wyCOP8OEPf5hHHnmEBx98kFWrVnHTTTdx8803c+GFF55U5bbneaRSqUAA6TgO3d3d9PT00NnZeUxajQqJ6LrO+vXrT3i9hmHw3ve+l3g8zk9/+tOGSY9NNDETTSI5g9E0pVsY/v7v/56vf/3rPPjggyxdujTw3/r+978fZKqsWLEiIJWFbNLHAs/zyGQyAamYpllj1VJPu2FZFrt27UJV1VmZL8cD0zR53/vex+DgIA8++OCiZMQ08dpBk0jOYDRN6RaGXC5HPp9vmLiZyWRqMlV6enoCUtmyZctJJ5VcLheQSrFYpLOzMwiWUhQF27bZtWsXiqIsiEQsy+IDH/gAL7/8Mg899NAps4Fv4sxFk0jOUDRN6V5Z5PN57r//fnbs2MGPfvQjWltbuemmm9i+fTuXXXbZSbcLyeVyQaM+l8vR3t5OsVhE13U2bdp0ws9v2zYf+tCHePbZZ3n44YebMdZNnBCaRHKGomlKd+pQLBb56U9/yo4dO/jBD36Arus1mSon2z4km83yzDPPYNs2juPQ1tYWNOuPR+vhOA633347Tz75JI888ghLliw5iatu4tWMJpGcgWia0p0+ME2Tn//85+zYsYP77rsPQRC44YYbuPnmm3njG9+46Epw27bZvXs3oiiyceNGLMsK7O/T6TQtLS2BVmUu7Yfruvz+7/8+Dz/8MA8//HDTpaGJBaFJJGcQmqZ0pzcsywoyVe677z4Mw+CGG25g+/btXHnllQtWhjuOw+7duxEEgY0bN84qZxmGweTkJOPj4ySTSaLRKL29vbP8v1zX5U/+5E/40Y9+xCOPPNK8GWliwWgSyRmEpindmQPHcXj88ceDTJVMJsN1113H9u3bufrqq49b9FghEeCYeiKWZQWkMjU1hSAI3H///fzWb/0W9913Hzt27ODhhx8+5Tcjjz32GJ/73OfYuXMno6OjTVPUMxRNIjmD0DSlOzPhui6/+tWvAlKZnJysyVSZTznuOA7PPPMMruuyefPm426s27bNnj17+F//63/xxBNPAHDLLbfwwQ9+kIsvvviUmEpWcP/99/PLX/6SLVu28La3va1JJGcomkTSRBOvIFzXZefOndx9993s2LGDoaEhrr76arZt21Y3U8VxHJ599lkcx2HTpk0n3Mj3PI/PfOYzfP3rX+dP/uRPePrpp/nBD35AW1sbP/7xj1m7du1ivcQTRjOm4cxFk0iaaOIUwXVdnnvuuYBUDhw4wFVXXcVNN93EjTfeiKqqfPCDH+S9730v11xzzYJI5POf/zxf/OIXeeihh9iwYQPg91QefPBBrrzyytOiNNokkjMXJ09R1cRrAl/+8pdZv349LS0ttLS0cMUVV3D//fef6mWdEahMXv31X/81zz//PLt37+byyy/nK1/5Cueccw6ve93reOGFFzj//PNPWCfieR7/8A//wBe+8AUeeOCBgEQANE3j+uuvPy1IpIkzG00iaWJBWLZsGZ/97GfZuXMnTz/9dJBS+MILL5zqpZ1REASBNWvW8MlPfpJf//rXvPGNb8QwDDo7O7n44ou5/vrr+epXv8ro6CjHWkTwPI+vfvWrfPazn+XHP/4xF1988Ul+FU28VtEkkiYWhK1bt3L99dezatUqzj//fD796U8TjUb51a9+daqXdkbCcRze9a53kU6n2bNnD08++ST79u1j69at3HXXXVxwwQW89a1v5Y477mBwcLAhqXiexze+8Q3+8i//kh/84Adcfvnlr/AraeK1hCaRNLFocByH//iP/yCfz3PFFVec6uWckZAkia1btwbuu4IgcM455/DRj36Uxx9/nMOHD/POd76TH/3oR6xdu5Yrr7ySL37xixw+fDggFc/z+Pd//3c+8YlP8P3vf583vOENp/hVNfFqR7PZ3sSCsWfPHq644gpKpRLRaJTvfOc7XH/99ad6Wa9qeJ7H2NgY99xzDzt27ODRRx9l3bp1bNu2DU3T+PSnP82OHTt461vfeqqXOidyuRwHDhwAfH3M5z//ea688ko6OjqaavszCE0iaWLBME2TgYEB0uk0d911F//yL//Co48+ypo1a0710l4T8DyPqakp7rvvPr7zne/w0EMP8a1vfYv3vve9p3pp8+KRRx7hyiuvnPXzW2+9lTvvvPOVX1ATJ4QmkTSx6Lj66qtZuXIlX/3qV0/1Ul5zqEQKN408m3gl0eyRNLHocF0XwzBO9TJekxAEoUkiTbziOLl+10286vGJT3yC6667jhUrVpDNZvnOd77DI488wgMPPHCql9ZEE028QmgSSRMLwsTEBO973/sYHR2ltbWV9evX88ADD/CWt7zlVC+tiSaaeIXQ7JE00UQTTTSxIDR7JE000UQTTSwITSJpookmmmhiQWgSSROvanz2s59FEAR+//d//1QvpYkmXrVoEkkTr1o89dRTfPWrX2X9+vWneilNNPGqRpNImnhVIpfL8d73vpevfe1rtLe3n+rlNNHEqxpNImniVYnf/d3f5YYbbuDqq68+1UtpoolXPZpE0sSrDv/xH//Brl27+MxnPnOql/KqxT/+4z9y9tlno+s6l112Gf/1X/91qpfUxClEk0iaeFVhcHCQ3/u93+Pb3/42uq6f6uW8KvHd736XP/zDP+Qv/uIv2LVrFxs2bOCaa65hYmLiVC+tiVOEpiCxiVcV7r33Xm6++eaaaFrHcRAEAVEUMQzjhGNrm/Bx2WWXcckll3DHHXcAvrfa8uXL+chHPsLHP/7xU7y6Jk4FmhYpTbyqcNVVV7Fnz56an912222sXr2aj33sY00SWSBM02Tnzp184hOfCH4miiJXX301Tz755ClcWROnEk0iaeJVhVgsxrp162p+FolE6OzsnPXzJo4f8Xgcx3Ho7e2t+Xlvby979+49Ratq4lSj2SNpookmmmhiQWieSJp41eORRx451Ut41aCrqwtJkhgfH6/5+fj4OH19fadoVU2cajRPJE000cQxQ1VVtmzZwoMPPhj8zHVdHnzwQa644opTuLImTiWaRNJEE68A/vIv/xJBEGr+W7169ale1gnhD//wD/na177GN7/5TV566SU+/OEPk8/nue2220710po4RWiWtppo4hXC2rVr+fnPfx78vyyfmV+/d73rXUxOTvLJT36SsbExNm7cyE9+8pNZDfgmXjs4Mz/JTTRxBkKW5VdNH+H222/n9ttvP9XLaOI0QbO01UQTrxD279/PkiVLOPfcc3nve9/LwMDAqV5SE00sCprK9iaaeAVw//33k8vluOCCCxgdHeVTn/oUw8PDPP/888RisVO9vCaaWBCaRNJEE6cAqVSKs846i89//vN84AMfONXLaaKJBaFZ2mqiiVOAtrY2zj//fA4cOHCql9JEEwtGk0iaaOIUIJfLcfDgQfr7+0/1UppoYsFoEkkTTbwC+OhHP8qjjz7KkSNHeOKJJwKH4ve85z2nemlNNLFgNMd/m2jiFcDQ0BDvec97mJqaoru7m9e//vX86le/oru7+1QvrYkmFoxms72JJppoookFoVnaaqKJJppoYkFoEkkTTTTRRBMLQpNImmiiiSaaWBCaRNJEE0000cSC0CSSJppoookmFoQmkTTRRBNNNLEgNImkiSaaaKKJBaFJJE000UQTTSwITSJpookmmmhiQWgSSRNNNNFEEwtCk0iaaKKJJppYEJpE0kQTTTTRxILw/wfWptHV5w50PwAAAABJRU5ErkJggg==" - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "image/svg+xml": "\n\n\n\n\n\n\n\n\nx1\n\nx1\n\n\n\nk1\n\nk1\n\n\n\nx1->k1\n\n\nlogistic(x)\n\n\n\nk3\n\nk3\n\n\n\nx1->k3\n\n\n-2.40 * x + -0.14\n\n\n\nk5\n\nk5\n\n\n\nx1->k5\n\n\n-0.92 * x + 0.12\n\n\n\nx2\n\nx2\n\n\n\nx2->k1\n\n\n-0.73 * x + -0.66\n\n\n\nk2\n\nk2\n\n\n\nx2->k2\n\n\nlogistic(x)\n\n\n\nx2->k3\n\n\n0.52 * x + -0.51\n\n\n\nk4\n\nk4\n\n\n\nx2->k4\n\n\n0.71 * x + 0.45\n\n\n\nx2->k5\n\n\nlogistic(x)\n\n\n\nk1->k2\n\n\n-1.12 * x + -0.91\n\n\n\nk1->k3\n\n\n-1.02 * x + -0.76\n\n\n\nk1->k4\n\n\n-0.39 * x + 0.70\n\n\n\nP(detected) = Sigmoid(x + 0.00)\n\nP(detected) = Sigmoid(x + 0.00)\n\n\n\nk1->P(detected) = Sigmoid(x + 0.00)\n\n\n1.00 * x\n\n\n\nk2->k4\n\n\nlogistic(x)\n\n\n\nk2->k5\n\n\nlogistic(x)\n\n\n\nk2->P(detected) = Sigmoid(x + 0.00)\n\n\n1.00 * x\n\n\n\nk3->k4\n\n\n1.35 * x + 0.49\n\n\n\nk3->k5\n\n\n1.35 * x + 0.37\n\n\n\nk3->P(detected) = Sigmoid(x + 0.00)\n\n\n1.00 * x\n\n\n\nk4->k5\n\n\n0.54 * x + 0.56\n\n\n\nk4->P(detected) = Sigmoid(x + 0.00)\n\n\n1.00 * x\n\n\n\nk5->P(detected) = Sigmoid(x + 0.00)\n\n\n1.00 * x\n\n\n\n", - "text/plain": "" - }, - "execution_count": 7, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "darts_estimator_tuned = DARTSRegressor(\n", - " batch_size=64,\n", - " arch_updates_per_epoch=100,\n", - " param_updates_per_epoch=100,\n", - " max_epochs=30,\n", - " output_type=\"probability\",\n", - " num_graph_nodes=5,\n", - " primitives=[\n", - " \"none\",\n", - " \"linear\",\n", - " \"logistic\",\n", - " ]\n", - ")\n", - "\n", - "darts_estimator_tuned.fit(X, y)\n", - "\n", - "show_results(estimator=darts_estimator_tuned, label=\"pre-tuned DARTSRegressor\")\n", - "darts_estimator_tuned.visualize_model()" - ], - "metadata": { - "collapsed": false - } - }, - { - "cell_type": "code", - "execution_count": 8, - "outputs": [ - { - "data": { - "text/plain": " 0%| | 0/1 [00:00", - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZIAAAGlCAYAAADQ/XDvAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOy9eZwcZ33n/66qrr6vuS+NRhrdkiXftiQbY2zA4TIOmDMEyAFkMeHYTTYbdgMJCwGyuwQ2DsYhC/wCJuEwxASCbYgvML6t0a3RSJoZzX30zPR91PH8/uipVvfcR4+mZdf79VKCe7qfrq6ufj71vSUhhMDGxsbGxmaFyOt9ADY2NjY2lza2kNjY2NjYrApbSGxsbGxsVoUtJDY2NjY2q8IWEhsbGxubVWELiY2NjY3NqrCFxMbGxsZmVdhCYmNjY2OzKmwhsbGxsbFZFbaQ2KwYSZL4y7/8y7Kt99hjjyFJEo899ljZ1rSxsVl7bCGxueT41re+hSRJhX9ut5vm5mZuu+02/u///b/E4/EFX3/dddchSRL33HPPktZ3OBy0tLTw/ve/n4GBAQDe//73lzxnvn/vf//7ATBNk3/6p3/i+uuvp7q6mkAgwPbt23nve9/L008/XXhvS0ytf4qiUF9fz5133snJkyfLcwJtbMqMY70PwMZmpXzmM59h8+bNaJrG8PAwjz32GB//+Mf50pe+xE9+8hP27ds36zVdXV0899xzbNq0ifvuu4//9J/+06LrZzIZnn76ab71rW/x61//mmPHjvGhD32IV7/61YXndnd386lPfYoPfvCDvOIVryg8vmXLFgA++tGP8vd///e8+c1v5nd+53dwOBx0dnby85//nPb2dvbv31/y3h/96Ee59tpr0TSNI0eO8LWvfY3HHnuMY8eO0djYuNpTZ2NTXoRN2UkkEut9CBcFQHz6058u23qPPvqoAMSjjz664PO++c1vCkA899xzs/72H//xH8Lj8Yi2tjaRSqVm/f1Tn/qUqK+vF/fff7+QJEl0d3cvef0/+7M/E4D43ve+N+s1zz33nADEN7/5zVl/Gx4eFpIkiQ984AOz/maaphgZGSn8t3UOfvCDH5Q875577hGA+OIXvzhrjbUmmUxe9PdcDS+X318lYbu2Vslf/uVfIkkSJ06c4N3vfjdVVVXceOONhb9/5zvf4eqrr8bj8VBdXc073/lO+vr6Stbo6urirW99K42NjbjdbjZs2MA73/lOotFo4Tnf/OY3ueWWW6ivr8flcrF79+45XTObNm3ijW98I4899hjXXHMNHo+HvXv3FuIOP/rRj9i7dy9ut5urr76aQ4cOlbz+/e9/P36/n3PnznHbbbfh8/lobm7mM5/5DGIJjaIHBgb4/d//fRoaGnC5XOzZs4dvfOMbs57X39/PHXfcgc/no76+nk984hNks9lF11+MW265hb/4i7+gt7eX73znO7P+/t3vfpc777yTN77xjYRCIb773e8ueW3L0jh79uyyjqm7uxshBDfccMOsv0mSRH19/Yrfe6nnu7e3l9tvv73kfD/00EOzYlI333wzl112GS+88AI33XQTXq+XT37ykwBks1k+/elPs3XrVlwuF62trfzX//pfZ31vv/jFL7jxxhsJh8P4/X527NhRWMPi7/7u79izZw9er5eqqiquueaaWd/FoUOHeN3rXkcwGMTv93PrrbeWuAHhghvy8ccf58Mf/jD19fVs2LBh0fNpU15s11aZeNvb3sa2bdv467/+68KG+7nPfY6/+Iu/4O1vfzt/+Id/yNjYGH/3d3/HTTfdxKFDhwiHw+RyOW677Tay2Sx//Md/TGNjIwMDA/z0pz9lamqKUCgEwD333MOePXu4/fbbcTgc/Nu//Rsf/vCHMU2Tu+66q+RYzpw5w7vf/W4+9KEP8Z73vIf//b//N29605v42te+xic/+Uk+/OEPA/D5z3+et7/97XR2diLLF+4pDMPgt37rt9i/fz9/8zd/w4MPPsinP/1pdF3nM5/5zLznYGRkhP379yNJEh/5yEeoq6vj5z//OX/wB39ALBbj4x//OADpdJpbb72V8+fP89GPfpTm5ma+/e1v88gjj5Tlu/jd3/1dPvnJT/Lwww/zgQ98oPD4M888w5kzZ/jmN7+J0+nkLW95C/fdd9+sTW4+enp6AKiqqlrW8bS1tQHwgx/8gLe97W14vd5lvX6+917q+U4mk9xyyy0MDQ3xsY99jMbGRr773e/y6KOPzvlekUiE173udbzzne/kPe95Dw0NDZimye23386vf/1rPvjBD7Jr1y6OHj3K3/7t33L69Gn+9V//FYDjx4/zxje+kX379vGZz3wGl8vFmTNnePLJJwvrf/3rX+ejH/0od955Jx/72MfIZDIcOXKEZ555hne/+92FdV7xilcQDAb5r//1v6KqKvfeey8333wzjz/+ONdff33JMX/4wx+mrq6OT33qUySTyWWfX5tVss4W0SXPpz/9aQGId73rXSWP9/T0CEVRxOc+97mSx48ePSocDkfh8UOHDs3pypjJXG6a2267TbS3t5c81tbWJgDxm9/8pvDYQw89JADh8XhEb29v4fF77713livpfe97nwDEH//xHxceM01TvOENbxBOp1OMjY0VHmeGa+sP/uAPRFNTkxgfHy85pne+850iFAoVPsOXv/xlAYjvf//7heckk0mxdevWVbu2LEKhkLjyyitLHvvIRz4iWltbhWmaQgghHn74YQGIQ4cOzbn+L3/5SzE2Nib6+vrED3/4Q1FXVydcLpfo6+ub9X4LubaEEOK9732vAERVVZX47d/+bfG///f/FidPnpz1PMu19Y1vfEOMjY2JwcFB8eCDD4qtW7cKSZLEs88+W3juUs/3//k//0cA4l//9V8Lz0mn02Lnzp2zzvcrX/lKAYivfe1rJWt++9vfFrIsi1/96lclj3/ta18TgHjyySeFEEL87d/+rQBKrpOZvPnNbxZ79uyZ9+9CCHHHHXcIp9Mpzp49W3hscHBQBAIBcdNNNxUes76rG2+8Uei6vuCaNmuH7doqE3/0R39U8t8/+tGPME2Tt7/97YyPjxf+NTY2sm3btsLdoGVxPPTQQ6RSqXnX93g8hf8djUYZHx/nla98JefOnStxgQHs3r2bAwcOFP7bunu75ZZb2Lhx46zHz507N+v9PvKRjxT+t3XHm8vl+OUvfznn8QkhuP/++3nTm96EEKLkM992221Eo1FefPFFAP793/+dpqYm7rzzzsLrvV4vH/zgB+f9/MvF7/eXZG/pus73vvc93vGOdyBJEkDBVXjffffNucarX/1q6urqaG1t5c4778Tn8/GTn/xkRa6Tb37zm9x9991s3ryZH//4x/zJn/wJu3bt4tZbby1kghXz+7//+9TV1dHc3Mxv/dZvEY1G+fa3v821114LLO98P/jgg7S0tHD77bcX1ne73SXWWjEul4vf+73fK3nsBz/4Abt27WLnzp0l73XLLbcAFK7ncDgMwAMPPIBpmnOuHw6H6e/v57nnnpvz74Zh8PDDD3PHHXfQ3t5eeLypqYl3v/vd/PrXvyYWi5W85gMf+ACKosy5ns3aYwtJmdi8eXPJf3d1dSGEYNu2bdTV1ZX8O3nyJKOjo4XX/ef//J/5x3/8R2pra7ntttv4+7//+1ni8OSTT/LqV78an89HOBymrq6u4JKZ+dxisYALYtXa2jrn45OTkyWPy7Jc8gMG2L59O3DBxTKTsbExpqam+Id/+IdZn9falKzP3Nvby9atWwsbusWOHTvmXHslJBIJAoFA4b8ffvhhxsbGuO666zhz5gxnzpyhu7ubV73qVfzzP//znJve3//93/OLX/yCH/7wh7z+9a9nfHwcl8u1ouORZZm77rqLF154gfHxcR544AFe97rX8cgjj/DOd75z1vM/9alP8Ytf/IIf//jHvPe97yUajZa4H5d7vrds2TLrfG/dunXOY21pacHpdJY81tXVxfHjx2e9l3VdWO/1jne8gxtuuIE//MM/pKGhgXe+8518//vfLzm/f/Znf4bf7+e6665j27Zt3HXXXSWur7GxMVKp1JzXw65duzBNc1accebvz+biYsdIykSxxQD5ugFJkvj5z38+552S3+8v/O//83/+D+9///t54IEHePjhh/noRz/K5z//eZ5++mk2bNjA2bNnufXWW9m5cydf+tKXaG1txel08u///u/87d/+7axNcL47s/keF2WYtmwdw3ve8x7e9773zfmcudJx14L+/n6i0WjJRmlZHW9/+9vnfM3jjz/Oq171qpLHrrvuOq655hoA7rjjDm688Ube/e5309nZWfL9LZeamhpuv/12br/99oLPv7e3txBLAdi7d28hvfiOO+4glUrxgQ98gBtvvJHW1tY1Pd8zr2XIf7979+7lS1/60pyvsW5SPB4PTzzxBI8++ig/+9nPePDBB/ne977HLbfcwsMPP4yiKOzatYvOzk5++tOf8uCDD3L//ffz1a9+lU996lP81V/9VdmO2ebiYQvJGrFlyxaEEGzevLlw17YQe/fuZe/evfyP//E/+M1vfsMNN9zA1772NT772c/yb//2b2SzWX7yk5+UWBvzBUtXi2manDt3ruS4T58+DeSzwuairq6OQCCAYRgl9RVz0dbWxrFjxxBClNwld3Z2rv7ggW9/+9sA3HbbbUA+2PzAAw/wjne8o8SdZvHRj36U++67b5aQFKMoCp///Od51atexd13381/+2//rSzHes011/D4448zNDRUIiQz+cIXvsCPf/xjPve5z/G1r31t2ef7xIkTs873mTNnlnycW7Zs4fDhw9x6662zLJuZyLLMrbfeyq233sqXvvQl/vqv/5r//t//O48++mjhWH0+H+94xzt4xzveQS6X4y1veQuf+9zn+PM//3Pq6urwer1zXg+nTp1CluVZ1rXN+mK7ttaIt7zlLSiKwl/91V/NuuMXQhCJRACIxWLoul7y97179yLLciGt0rIkiteJRqN885vfXLPjv/vuu0uO9+6770ZVVW699dY5n68oCm9961u5//77OXbs2Ky/j42NFf7361//egYHB/nhD39YeCyVSvEP//APqz7uRx55hP/5P/8nmzdv5nd+53cA+PGPf0wymeSuu+7izjvvnPXvjW98I/fff/+i6cc333wz1113HV/+8pfJZDJLPqbh4WFOnDgx6/FcLsd//Md/IMvyvG4miy1btvDWt76Vb33rWwwPDy/rfN92220MDAzwk5/8pPBYJpPh61//+pI/w9vf/nYGBgbmfE06nS5kSk1MTMz6+xVXXAFQOL/WtW/hdDrZvXs3Qgg0TUNRFF772tfywAMPlLhSR0ZG+O53v8uNN95IMBhc8rHbrD22RbJGbNmyhc9+9rP8+Z//OT09Pdxxxx0EAgG6u7v58Y9/zAc/+EH+5E/+hEceeYSPfOQjvO1tb2P79u3ous63v/3twkYB8NrXvhan08mb3vQmPvShD5FIJPj6179OfX09Q0NDZT92t9vNgw8+yPve9z6uv/56fv7zn/Ozn/2MT37yk9TV1c37ui984Qs8+uijXH/99XzgAx9g9+7dTExM8OKLL/LLX/6ysMl84AMf4O677+a9730vL7zwAk1NTXz7299edlrsz3/+c06dOoWu64yMjPDII4/wi1/8gra2Nn7yk5/gdruBvFurpqaGgwcPzrnO7bffzte//nV+9rOf8Za3vGXB9/zTP/1T3va2t/Gtb31rVoLFfPT393Pddddxyy23cOutt9LY2Mjo6Cj//M//zOHDh/n4xz9ObW3touv86Z/+Kd///vf58pe/zBe+8IUln+8PfehD3H333bzrXe/iYx/7GE1NTdx3332F87OYhQH5lOrvf//7/NEf/RGPPvooN9xwA4ZhcOrUKb7//e/z0EMPcc011/CZz3yGJ554gje84Q20tbUxOjrKV7/6VTZs2FCor3rta19LY2MjN9xwAw0NDZw8eZK7776bN7zhDYW41mc/+9lCPcqHP/xhHA4H9957L9lslr/5m79Z0nm3uYisR6rYSwkr/Xe+dMf7779f3HjjjcLn8wmfzyd27twp7rrrLtHZ2SmEEOLcuXPi93//98WWLVuE2+0W1dXV4lWvepX45S9/WbLOT37yE7Fv3z7hdrvFpk2bxBe/+EXxjW98QwAl1dltbW3iDW94w6zjAMRdd91V8lh3d7cAxP/6X/+r8Nj73vc+4fP5xNmzZ8VrX/ta4fV6RUNDg/j0pz8tDMOYtebMyvaRkRFx1113idbWVqGqqmhsbBS33nqr+Id/+IeS5/X29orbb79deL1eUVtbKz72sY+JBx98cFnpv9Y/p9MpGhsbxWte8xrxla98RcRisZLjcTgc4nd/93fnXS+VSgmv1yt++7d/u2T9udKLDcMQW7ZsEVu2bClJN10o/TcWi4mvfOUr4rbbbhMbNmwQqqqKQCAgDhw4IL7+9a8X0pGFmL+y3eLmm28WwWBQTE1NFT7fUs73uXPnxBve8Abh8XhEXV2d+C//5b+I+++/XwDi6aefLjzvla985bypublcTnzxi18Ue/bsES6XS1RVVYmrr75a/NVf/ZWIRqNCiHxngTe/+c2iublZOJ1O0dzcLN71rneJ06dPF9a59957xU033SRqamqEy+USW7ZsEX/6p39aWMPixRdfFLfddpvw+/3C6/WKV73qVSVp7UIsLRXcZu2RhChDpNXmJcP73/9+fvjDH5JIJNb7UGzWmC9/+ct84hOfoL+/n5aWlvU+HJtLGDtGYmPzMiCdTpf8dyaT4d5772Xbtm22iNisGjtGYmPzMuAtb3kLGzdu5IorriAajfKd73yHU6dOzVuMaWOzHGwhsbF5GXDbbbfxj//4j9x3330YhsHu3bv5l3/5F97xjnes96HZvASwYyQ2NjY2NqvCjpHY2NjY2KwKW0hsbGxsbFaFLSQ2NjY2NqvCFhIbGxsbm1VhC4mNjY2NzaqwhcTGxsbGZlXYQmJjY2NjsypsIbGxsbGxWRW2kNjY2NjYrApbSGxsbGxsVoUtJDY2NjY2q8IWEhsbGxubVWELiY2NjY3NqrCFxMbGxsZmVdhCYmNjY2OzKmwhsbGxsbFZFbaQ2NjY2NisCltIbGxsbGxWhS0kNjY2NjarwhYSGxsbG5tVYQuJjY2Njc2qsIXExsbGxmZV2EJiY2NjY7MqbCGxsbGxsVkVtpDY2NjY2KwKW0hsbGxsbFaFLSQ2NjY2NqvCFhIbGxsbm1VhC4mNjY2NzaqwhcTGxsbGZlXYQmJjY2Njsyoc630ANi8vhBAYhkE2m0VRlMI/WbbvaWxsLlVsIbG5aAgh0DQNXdfJZrOFx2VZxuFw4HA4bGGxsbkEkYQQYr0Pwualj2EYaJqGaZpIkkQul0OWZYQQCCEwTRMhBJIkIUmSLSw2NpcQtpDYrClCCHRdR9d1ACRJKlgmkiTN+XxLVCys5zmdTlRVxeFwzPlaGxub9cF2bdmsGaZpFqwQoGBtWCJhWSDFSJKEoiiF/7aE5emnn2bHjh2Ew2FkWUZRlBKrxRYWG5v1wxYSm7Jjbf6appW4q2Y+ZymbvyUs1v9XFKWwdi6XQ5KkgrCoqlp4ji0sNjYXD1tIbMqK5bY6duwY9fX11NbWlmVTt9aYz2KZKSwzYyy2sNjYrB22kNiUDWtDNwyDeDxOVVVV2TbwYpfYzMctYbH+bpomuVyObDZrC4uNzUXAFhKbVWPVhui6jmmayLI878a/lljiYAuLjc3FxRYSm1VhubIMwwAoiIiV2lsuViJMcwmL9S+bzZLL5QrHbAuLjc3KsYXEZsVYd/rFVkgx823867VJFwf9FUWZJSzFFouVZmzVsNjCYmMzP7aQ2Cwby5VlZWXNtdEuZkEsd2NeC1fZQsKSyWQKz7GFxcZmYWwhsVkWpmmi6/osV9ZM1iNGslqWIiyZTAZd16mtrbWFxcZmGltIbJbEUmpDiim3kKxX8H6msExOTjI5OYnf7wfyQjozxmILi83LDVtIbBZlrjYni22Ul6JFshjW55YkCVVVS/qEZbNZMpmMLSw2L0tsIbFZkOLaECtesBRWKiQ53UQALkfp+1SiMM0UVEtYDMMotMovjrFYbV2WIsQ2NpcStpDYzMl8tSFLZbkb/2RK48lzE5waTiAEbKv3cbC9ivqAq+SYKhlLICyxLRYWXdcLf5+rT5gtLDaXMraQ2MxivtqQ5bAcIUlmdb7/4iDnxlJU+51IwNPdk/RNpnnPdRuo8qqX5EY7n7Doul7ofmwJS3GfMLtlvs2lhi0kNiUsVhuyVJYjJCdHEnRH0myp8+JQ8ptotVelayzJ0cE4N22tBirHIlnNObGFxealiC0kNsDSakOWw3KEZCSWQ5YoiAiALEu4VYX+yXRhvZcaiwkL2NMjbS4NbCGxKYsrayYLCYkQgr7JNCPxHF5VwaGAac5+bs4wCbodJa97KTOfsBR3NranR9pUIraQvMwxDIO+vj48Hg+hUGjNu/VmNYP7Dw3yQu8Eac1EkSVC7nwm08BUhqagCyQYi+fwOGR2NvoL673cmEtYrCw6TdNIJpOk02mampoKwmJPj7RZD2wheZlSXBvS399PQ0MD4XC4bOvPJyS/PhPhybMTNPhVWkIKhhD0TmRwKhKqInF2PAVA2OPgNbvq2FrnKznmlzMzZ7Ekk0mGh4epra2d02Kxp0faXCxsIXkZMnME7lq4RiRJKqxvoRsmz/ZOEnA5CHocCAGqLNFW7eb8ZIZXba/F51QwhaC1ykOVVy1ZrxKoNDGzhAPmH/JlT4+0WWtsIXkZUbzRFGdlybI8a9NfLXNtVpohSOcMXGqpcDlkCdMUyBJc1hyYd71K28TXm5njiu3pkTbrhS0kLxMWCqivVWfdmeLkVmVawh5ODMWp8lzY8OJZA4+q0FBUfGizNBbrd2YP+bK5GNhC8jKguM3JfC3fL4ZFIkkSN22rpSeS4uxYirBXJasbJLIGBzZX0VrlXnA92yIpZaZFshD29EibtcQWkpcwS21zUu5phnBBnM5PpOjoixJNa7RUebiyNcTbLq/jgWe7mIhKhH1eXrmnjldsrbE3rGWymu9sIWGxp0faLBdbSF6iLKc2ZK1cW8fHcrxw+hxT6RyKLGOYgl8e7eNKzwR37KghowsSsQhiZJSTmRBVVVVUV1fj9/tnJQDYFslslmORLEaxsCxleqSVamx3NrYBW0heklgV6kttc7IWwfaUJniiN43qdbK9Pl8LMjYe4UR/koadDbx5z46CMKRSqcKcj/PnzwMQDoepqqqiqqoKn8837/usB5W0ca7VsdjTI22Wgy0kLyGKa0OW0+ZkLe72+2MakxmTy5vdGIbOyMgoANta6hhISsQzOn5X3k3i8/nw+Xxs2LABIQTxeJzJyUkikQhnz54tKbKrra3F4/GU9VgvVcppkSzGUoRlcnISr9dLKBSyheVlhi0kLxHmqg1ZTiC23BaJJUupZJLJiQh+v5/q6momUxq6KRDMvRFKkkQwGCQYDNLW1oZpmkSjUTo7O4nH4zz99NO4XK6CtVJVVYXL9fLM9lpPV99cwjI4OEhNTU3h+5irZb4tLC9NbCG5xFnuCNy5kGW5EEspFxuCKh5J58xghB0bavH5fJhCMJbIcl1bFQGXsqSNUJZlqqqqCAQC+P1+WlpaiEajBTfYiRMn8Pl8BVEJh8Ooqrroui8FLqZFshjFomJPj3z5YQvJJczMgPpKBySVw7WVyOj85twERwaimIaOOzHE3mpBt1nDQFLgzKTI6CYbwh5+a0/Dit5TCIHD4aCmpoaamhoANE0rxFfOnj1LKpUiGAwWhCUUCpUU6a2WSgv4V9ImbJpmSW2SPT3y5YMtJJcoi9WGLIfVBtsTWZ2vPnGOYwNxhKkRjyWQFIWd1U7+6JYtHB2MMZXS2Fjl4ZpNVdT5nYU26Utlvs+nqir19fXU19cDkMlkCsJy8uRJcrkcodCFjLBAIPCS6ZZbaaK2kIVkT498aWMLySXGakfgzsVqLZKnuyc4NhAjJOfI5lJsaK0mnTU4PZEgkdV55zUbZn2GlbCU17ndbpqammhqakIIQTqdZnJykomJCfr7+zFNsyQjzO/3X7IbVSW5toDC9bgUljPka6YrzKbysIXkEmIt5obA6oPth3snSMZjBHwyTU2NqA4VYSYwTTgzmuT6zdVlOcaVvMbr9eL1emlpaUEIQSKRKFgs3d3dhRiM9c/j8VTU5rwQlSYkqzme5QiLPT2y8rCF5BLBNE1GRkYYGRlh586dZd1AVmORDA8PM9jfj+xw0thYf+G4JAmBQJHLd5yrdeVIkkQgECAQCLBx40ZM0yQejzMxMcHIyAinT5/G6XQWRKW6urriM8IqTUjKtbEvJixgT4+sJGwhqXCKR+Bms1kmJyfLvnmspEWKaZqcOnWKwcFBbt63iR+diJHMGfhd+UsqltFxyBK75+nmu1zWYsOUZZlQKEQoFGLz5s0YhkE0Gi24wU6ePInX6y2xWCqJSrNIioPt5WY+YbE6G4MtLOuJLSQVjGma6LpecGUpilL2eg9YvmvrSO8YP3zyBOMpk31b27ihuZ6DWQdPn5tgYCqNEBKyMLmyXuGypuCc77fcDeditEhRFIXq6mqqq/OuOE3TmJqaKrjBjh07htPpxOFwEIlECIfDZc0IWy6VJiTltEgWYy5hKZ4eCRQKc4PBoD09co2xhaQCma82ZK2EZDkWyUMvnuXeJ7rRZZWqYIDHzkzxQn+C9+/fyLVtVZweiaMoMnVqDjk6gFxG19bFRlVV6urqqKurAyCbzdLV1UUsFqOzs5NsNltINa6uriYYDF7UO+CLuXEvhbW0SBZjrlksw8PDjI2NsXfv3sJz7OmRa4MtJBVGcZsTKL17X4ueWNZ7LLauaZocPX6S+54awuH2sqsxVLASzk+keeDwEP/z9l1c0RoCYHR0lK5oeY9xvdNdXS5XIctrz549pNNpJiYmmJycZGBgAMMwChlhVvPJtd6oKmkjrCQLqbhA0uFw2NMj1xhbSCqI4tqQYrPdYq0208UsklQqRUdHB0MJE+EJ0hq4kNkkSRINQRfD8Sy9E2m2N/jX9FgrCY/HQ0tLSyEjLJlMFjLCenp6kCSpJL7i9XrLulFV2vmtRAvJOp65LBZ7emT5sIWkAljO3JC1skjm25SGh4c5duwYLS0tNG5r5adDpzFnPNcUAhlKMrQWE5JKjJGsBkmS8Pv9+P1+WltbCxlhk5OTjI2NcebMGRwOR8Faqaqqwu2ef5DXUqgkCwDW17U1F1ax7lwUC4s95Gv12EKyziynNuRiurasrKxzfYO4G9pJ+app8btoq/ZwaiRBe62CLEmYQjAUy7K1zk9btadkzUre+Nea4oywTZs2FTLCLDfYqVOncLvdJRaL0+lc1ntUmpBUskWyEMVuMLCFZSXYQrKOWBfqes4NsdYt3vQtV9bxiMHzU1VEesYRjFHnd/GKrTVMpTXOjqWQAIGgIejmd67bgEO58KNdTEiWKzJr0aH4YjIzI0zX9UJGWG9vL8ePH8fv95c0n3Q4Fv95VspGZqXjVsrxwPIq7YtZSFjs6ZFzYwvJOlBcG7KcuSHWhl/uH2zxJm25sgjU8+uIRipn0Bx2IwHDsSwPnhjlP920iam0xlg8S43fxXWbqqgPuGatWW6L5KVk4TgcDmpra6mtrQUgl8sV4itdXV1kMhkCgUDBDWalsBZTSefDOpZKs0jKkZ5dLCxzTY8sFpaX6/RIW0guMqtpc2L9SMv1Ayle1zRNTpw4weDgIJdddhm/7M0RTQ/SXusrHF9L2M258RTHBuN88BWbFlyz3ELyUv9BOp1OGhoaaGhoACj0CJucnGRwcBBd12c1n6wkC8D6rivleCD/O1mLkQLFmZT29Mg8tpBcRJY7Ancm1vPLfSdq3VVNTU1x8OBBvF4v48fPoMw4RkmSUBWJsUR2ScdqWyQrx+Px4PF4aG5uRggx5zhi6wYgkUjg8/nWdZOyLNpK2ihX6tpaLraw2EJyUZhZG7LSC6jYIikXw8PDHD16FEmS2L9/f+E9Wqu9GGYkn5FVJGCaYbKp2rvourZFUj4kae5xxCdPniSVSvH8888XMsKKm09eTCrVtbUex7OQsJw/f554PM7WrVtfUtMjbSFZY2aOwF1JexCLcgqJYRh0dnYyODjItm3bOHPmTMmP7sYt1fzy5Cjd40nq/C6QYDyRoz7g4qbttYuu/1K2SNb7xy5J+XHEHo+HqqqqkqmRQ0NDdHZ2lowjrq6uXnZG2HKpVNfWerawsSj+zVtp/pY1+VKZHmkLyRpRXPBUzrkh5cheSiaTHD58GEmSOHjwIKZp8uih09z92Dn6JtI0h928emcd//nVW/nn5/rpGk0ihGBfS5B3XrOB1qrF73bXoo7EphQrRlLcCh/yGWELjSOuqqpaUkbYcrBqSCrpe1ovi2QhDMOY1UxyoemRl4qw2EKyBqzV3BBrrdUISXGB4Y4dO5BlmUdPDPK9sxKKexiXQ+HYYIynzk3wn165mb94/Q5G41mEgIaga1mf46VokVTCMRQz1/exHuOIKynwb1HJQlLMfJ2Ni4XlXe96F+973/t417vetR6HvSi2kJQZ0zQZHh4GoLq6uuw/rpUKSbEra+/evYXsoJxu8r0Xh8kagt3VXiQ5b0n0T2W475k+rt9URUNw+RXYK2lNvxCVtklVAkvdvC/GOOJKq2qHS0dIZjKXsAwPD5fdiiwnlXtklxjFbU4GBwdxuVyFO8JyshIhmenK8novBMt7J1KMxHMEVaCof1a938loPMfZsSR7mme3gl8K5XRtLbbey5GVno+1GEdcaVXtULlCstx4lSRJpFKpkt9tpWELSRmY6cpSFKXwv8vNcoPYQ0NDHD9+vMSVVYwsSUgS5FcUQH7DMAFZYsUTDotTlefahKyU46X+OCrtbrcSKIc7SZLKM464El1bC/XaWi9WkgBgNQQNBMozJG4tsIVklcxVG6IoSiHVt9ws1SKZz5U1k001XtqqPbw4FaPZFDiUfP+skViW9lofW+p8KzrOhYTESjk2TRO3212o3q6qqpq3gOzl3rtrLtZi85ak2eOIY7EYk5OTs8YRW9+by+WyXVtLZKXilkwm8flW9lu8GNhCskKKa0NmtjlZq55YS117IVcWwEQyx7HBGLIksbclyO8fbONs/wi9EylkSUYgqPO7+IMb2lCVlf0Q5yqeNE2Tzs5OBgYGuOyyy/D7/YWZ6dYEwuJBUaFQqOI2gkpjrTdvWZYJh8OEw+FZ44j7+vo4ceJEwaKxLPO1qCZfCZUqJCtJbEilUrZF8lJj5gjcmVlZazXJ0HqvhdZezJX1b0eG+c4zfUymc0hIVHtV3neglXdvMTEbWoikDeoDLl6xtZbm8MrbnM8UkkwmQ0dHB4ZhcPDgQZxOJ5qmlfSbymazhUFRx48fR9d1wuEw1dXVheaWNhdYDwttvnHEg4ODaJrGr371KwKBQEnzyfWq5XipCEkul0PTNPx+/xod1eqxhWQZzDcCdybrYZEYhsGpU6cYGhqa15XV0RflH5/swTQFLaF8LchoPMu9v+rljXXw7ssbylYRXSwkkUiEw4cPU1dXx+7du+d1/blcrpIgsDUoamJigomJCQCOHz9esFhWO8/jUqcS4hLWOGJJkshms1x++eWF+ErxOOLi5pMXY3O3fquVJiQriZEkEgkAW0heCswMqC9UfCXL8poG22cKSTKZpKOjA1mW53RlWTzSOUY6Z7CxqMVJY9BF32Sa41Nrk67b3d1Nb28vu3btYsOGDct6ffGgqL6+PkZHR/F4PAwODtLZ2Vmo7LY2qYuVHrnem3cxlXIsVozE5XLR2NhIY2NjodeUZWVaGWHFqcZrNY64Elu2wMpiJIlEopAUUanYQrIEikfgLqW48GK6thZzZRUzlsjOysKyBDGhlXfeh2VxDA4Ocv311xMMriyF2EKSJBwOB+3t7bS3t6PrekmRXTqdLrRdr66uvmh3vutJJVgkFnMdiyRJ6zaO2LqWK+0aWIlry0r9rbTPUowtJAuw1BG4M1lLi8Qq9FuKK2smW+t8PN8zVdKI0TQFphA0esuXFRWNRjl06BAAV199dVmChDPPu8PhoK6ujrq6OoCSO18rI8yKr1RVVa17d9y1oJKy2JZSRzLTypxvHHFxFt9K3ZcvJSGphO7Oi2ELyTysps3JWlskmUyGp59+elFX1kxeu7uBR06N0zeRpsqngoCJlEZz2M3ltelVH7MQgv7+fk6dOkV7eztdXV1ldTcttHG63W6am5sLbdeTySQTExNEIhHOnj1bskFVV1fjcrnmXWulx3CxqSSLZCXpv8sZR1xdXU04HF5yMV8lCokVt1mukFR66i/YQjInyx2BO5O1DLZns1nGxsZobW1d1JUFeYsjq5u4VZnWKg//4/U7+NZT5zk9mkAC9m+u4n0HNtJ//LlVbZKGYXD8+HHGx8e56qqrqKmpoaurq2wb73K+g+I7X6sWwkpZHRgY4OTJk4UmhtYGVcntJxaiUoSkHJXtC40j7u7uJplMLnkccbkapZYTa0+wLZKXOCsdgTuTtRASy5UVjUZpaGhg165dCz5fM0z+tWOIfzs6zFRKoznk5s6rmrl1Zx1f+O3djCfy40Fr/U4kSWLgxMpdW1awX1EUDh48WHBHLFREeDFbpMzsjlvcxNAaa2tlFq2019R6cKlbJIuxlHHExc0ni8cRV2LGVrF3YzmkUinbIrlUWKw2ZDmUO0ZSnJXV0NCwJFfWP/yqhx8dGkSRJdyqTNdogv/1iy7Smsmb9jVSN8eM9ZWI38jICEePHmXDhg1s37695EdSzmr0cm5SM5sYztVrqniWR7kCwOXm5eZmW844YqfTWXHf2UqFxLJIKpmXvZAstTZkOZQzRjIzK+vUqVOLrj0UzfDg8RE8ToUqb77KOORRGY5l+d7z/bx2Vx0utdS8Xm63XtM0OX36NP39/Vx22WU0NjbOek6525qs1cY5c6xtIpFgYmKC8fFxzp49i6qqBVFZqySKlVBpFsnFtgDmG0dsJV0YhsGRI0cKNwXr7R6yAu3LPQbLpVfJvKyFZOYI3HIN5imHa2u+rKylbPhdowkSWYPmUKnVEXI7GE/mGIxm2FxbeoeznE0/k8lw+PBhNE3jwIED894tLXQuK3WwVXGvqba2tlktQeLxeGHYkBVfWc8pfJUiJOstapJUOo54fHyczs5OQqFQScLFeo4jXunExlQqZQtJpVJcG1Lc+78cWEKy0h/XQgWGsiyjadqCrw+4HTgUCc0wcckXLtycYaLKEn7X7K99qeI3MTFBR0cHtbW1XH311QsGqcs9JbESWoJ0dXURj8cLTTGz2eyqZ3mslPXevIuptDbyQghUVaWtrY22trZCwsV6jiN+qTZshJehkFgB9Z6eHmRZprm5uew/xuKA33LvQIaGhjh27Bitra2zYg6wtA3/suYgm6q9dI0laQxKqIpMVjOIZXRu3l43Kz4Ci2/6Qgi6u7s5e/YsO3bsoLW1ddHzthYxkmhao38yQ9YwCbgctFa5casXzyJQFAWPx8POnTsBStwpfX19ACWb01wt18tFJcVIKq3770xX23zjiCcmJi7aOOKVNmxMJBIV3bARXmZCUlwbEo/H1yw90LqAlyMklitreHiYffv2zVtgOJeQ9E+m+deOQQ71RQm4VV69Kz9v/a8fPM3AVDr/OknisuYgH37l5jnXXSjYrmkaR48eJRaLcd111xEKhZb0mcotJCNJg9PHRplMaSBJSMCGKjev3FZD0H3xLuXia2bmLA+rm/HY2BhdXV04nc6CRWMFgctFpVkklXIssHjMZj3GEa9USJLJJE1NTat677XmZSMkM2tD1nL4lHUBG4axpJbaxa6sAwcOLJiVNVNIeiMp/ssPjzEUy6AqEoYpePH8FK+7rIGvvmsfz/ZMEUnk2FDl5tpNVfO2hZ8v9hKLxejo6MDr9Ra69i6VcgpJzjA5GTEJ1Rtsrs1nUemmoDeS4uhAjBu2VJflfVaDJEkEg0GCwWChwM6qg+jt7eX48eP4/f6CqJQjvlIpm3elubaWG/xfbByxpmklIw5WOo54pTGSSu6zBS8DIZmvNkRRFHK53Jq8p/XjXkrMYTFX1lxrF6/77Wf6GIplaAi4kKf7aCWyOr84McobLmvg1p11Sz7mmZt+f38/J0+eLPS3WkmAvFxCEkkZRHMmO0LuwnE4ZIlqn5PeiTRXbzQuiotrOZ9HUZSSu16rDmJiYoJTp06hadqs+MpyznElWQEr3STXitVmkc01jtjKBuvr60MIsexxxKuxSOxg+zqyUJuTtR6Hu1gKcLEr6/LLLy/cCS1GsUUihODp7gk8qlIQEQCfUyGR0XmxL8q+DUtzQxWvaxgGJ0+eZGRkhCuvvLJQELZcyikkQoBp5sf/FiNLoJtgVk64YF6K6yCKNyfLTw8URMWKryxEJcVILnWLZCGKxxFv2LBhxeOIVxNst4VknZhrBG4xaykksHBQfGZW1nLSEGe6oBxyfjTuXDiWMW/d2vRTqRQdHR2F6YqrSZEsh5BohokpoMan4lMF44kc9dPJAkIIJpI5tjf48Tor5254KczcnKwGhhMTE4WRti6XqyS+MtNNWmkWSaUcC6xtXctKxxGvZjqiLSQXmZm1IfMF1NeyQ+9C6w8ODnL8+PElu7LmWtcSKEmSuGVHHd97YQDNMFGVvMhMpXU8ToUD7UuPG0iSRCwWo6ura0kt6Ze65orbrmR1OvpjdI0lMU0IKTkavPkYUE8khdMhk84Z1Pqd7Guu7IyWpVDcwHDz5s0lWUXWGGKrTb4V/AU7RjIfF9PVNtc4Yis2VjyOWJZlXC7XssYRWw1I7fTfi4hVG1K80c73Q1tri2Sma2ulrqyZzLR0fue6Vg73Rzk9mixYJm6HzHuu38iWuqVdfKZpkkgkSKfT7N27t2wZIisVkpxu8svOcbpGk1R5VRRZ4tRYBjMleMsVYSbTGomMTl3AyZZaH2FvZcwILyczs4qy2WwhvnLixAl0XUcIwcDAAA0NDWs2IGqpVJJ1BOvba2tmbMwaR3zu3DlisdiyxxHb6b8XieI2J0vt+rmWrd6hdMNfjStrrnWzmkEio+NzKdT4nXzlHfv45akxTgzG8Lsc3LStlss3LG2QVDab5fDhw2SzWVpbW8uaZrhSITk/mebceIq2ag9OR34zcFS5ODQhiGY0blznDK312DBnTh5MJpM8++yzxONxBgYGCj56y2JZj6rtShOSSunobI0jHhsbK7R0Wc444osZI/nCF77An//5n/Oxj32ML3/5y0t+XWWc6VWw0rkhFyNGYhjGql1ZxYzFs/zfXw3y6OkszhefZldjgD+4oY2rNoa54/Im7rh8eSIwOTlJR0cH1dXV1NfXl/2Ht1IhmUxpmIKCiEC+DsatwlA0W85DvCQpHru6e/duVFUt+Oitqm23210yIGqprpSVUomurUo6HriQtTXzpqC4+WTxOOLOzk5aWlouWvff5557jnvvvZd9+/Yt+7WXtJAsdwRuMRdDSM6fP088Hl+VK8sinTP4k/uPcXIohixABZ4/P0XnSIK/fdte9rYsfZStEIKenh7OnDnD9u3b2bhxIydOnCh7FtBKhcQ1LSAz3SWaDn7XpRVUX2us9j7FPnprjkdxfKW4BiIUCpV9k61Ei6TShGSuuE1x0sXMccQPPfQQP/vZz1AUhU984hO8/vWv59Zbb2X79u1lP9eJRILf+Z3f4etf/zqf/exnl/36yjrTS8QKqOdyuRWJCKytayuZTBKPx0mn0xw8eHDVIgLw6OlxTo8kCHsceB3gdzmo8zuJZ3T+5bn+Ja+j6zodHR309vZy7bXX0tbWVogllft8rFRINlZ5qPaq9E9lMEyRz85K68iyYFt9ZWevXCys8zrXdW/N8di+fTvXX389N9xwAy0tLWQyGY4fP84TTzxBR0cH58+fJ5FIlOUGwo6RLM5SsrasoWytra184xvf4NChQ0iSxNVXX83999/P5Zdfzl//9V+X/djuuusu3vCGN/DqV796Ra+/5CyS1YzALWatsrYsV5bT6aStra1svurOkTgAqiJjtWyUJAmXKnN0MLakNeLxOIcOHcLj8cyqUl9uG/mlsFQhMYWgbzLDSCyLIktsrHJz8/Yafn1mgt6JNEKAQ8CusMTmmovr+69UlvNduVyukuI6647XslhkWS4ZQ7ySOem2a2txVlJHksvl0DSNT33qUyiKQiaTIZ1Ol/W4/uVf/oUXX3yR5557bsVrXFJCslhtyHKwLJJy3UkVF/FdfvnlDAwMlHVjDntUBPnCPIrW1Q2TsGdx//fAwAAnTpxg06ZNbN26ddZnvtgWiWmapFIpnG4Pj56OcGQwjqabCCDodvCKrTXceVUTQ9EshilwmWn6z0Uq6q53PVnIIlmI4jHEra2tJV1xBwcH6ezsxOPxlMRXlhI7qzTX1kqL/9aSldSRWKm/1rl1u90rEvr56Ovr42Mf+xi/+MUvVrXuJSEkxbUhqxmBW4z1hRqGseogcyKR4PDhwyVZWcPDw2XdmG/ZUcd3nuljKq2jivw5SeXyFtUb984eKmVRnHZ8xRVXUFc3d8uUpbSnXy7zCUk6nebQoUPEYjEGMiqHo05aqwO0VPtxOByMxLL86kyElpCL9tp8UDka1emrgEruSqomh9VnkBVXZLe3t6PresFaOXv2LOl0ulC/Ul1dPSujyMK2SBZnJUKy1vPaX3jhBUZHR7nqqqsKjxmGwRNPPMHdd99NNptd0jFXvJCUcwRuMeUSkvmysso9t72txst/ec02vvTLLibikEvkUBWZ1+1p4LevnDtbazlV6uWeZjjfmpFIhI6ODhoaGti3bx//8lwfnlSUXDLK2YkRXC4XPq+P4YxCTyQ5Z8t7m7UTNIfDQV1dXeGGI5PJFHpMHT16FNM0CYfDBYvF2uQqzSKpRCFZSZHkWhcj3nrrrRw9erTksd/7vd9j586d/Nmf/dmSj7dihWQtRuAWY6210jjJTFfWzID6WsRgXn9ZA1c0+/h/P3uSLTs2c2VrFTsb5y5EGxsb48iRIzQ1NbFz585lN4MsB8VCUpwptnPnTlpaWsjlcihONzXVEs1hN4ZukEqlSCaTTE1GebFjHHUqv2m5XK41rfu51Fipa2u5uN1umpubS8YQT05OlkwdrK6uLukmUQlUopCsxN0207VVbgKBAJdddlnJYz6fj5qamlmPL0RFCokQglgsRjwep6ampuwiAktrrDgfc7myZrLa9OKRWIafHR1hYCpNc9jD6/Y00Bx2UxdwcW2d4NVXNc9pSQkhOHPmDD09PezZs4fm5uYlvd9aBtt1XefYsWNMTU1x7bXXkpHcdI4kcMkmm6vddEdSGKZAcSgEggFkl5eNziA37gwTECkmJiaYmprCNE1Onjy5JrM9LlUuphUwV48pq42L9R1bw6GsMcTrVRRYaUJi3RhXmkVSLipOSCwrZHJyknPnznHDDTes2XutZLNfaoHhamIOHX1R/vRHx5hKaQgBkgT//Fw/X/jt3Vw5XbE+lwDmcjkOHz5MOp1m//79y2qrsFaurWw2y9NPP42qqlx+9XU8cmaKE0PDJLIGLgU2hN00+J2cHUsRcCvopiCrC67aEGRnSw2KXMvGjRuJRqN0dHSgqmphtkex734taiMqmYtlkSxEcXxlcHCQPXv2FGIsXV1dZDKZQsX2xR5DXGlt7a19ZqUxkovJY489tuzXVIyQWHNDdF3HNE1UVV3TgkFYnpAs5sqayUpdW4Yp+OsHO5lMaVR5VWQp3913MqXx1z8/zff+8BpgtpBMTk5y+PBhQqEQBw8eXPadYLljOpBvvzI6Okprays7duzgwROjPNszSVPQRXPITSyVpWssxc4GH7fsqOHceAqnIrOj0c/uRj9KUfdiKza2devWwtpWC/Zjx45hmuasFuxrtclWQiyg0uo2hBCFaZDWb6N4hodVsV3cxsXr9a7ZZ6g0i8T6ba3EIqn0zr9QIUIyV22Iw+GoGCFZiitrrrVXsjGfGo7TN5HG73IgT//IZEki4HIwGM1wfChREs8QQtDb20tXVxfbtm0rFBgul/LODhGcPXuWqakpGhoa2LVrF/GMzrHBOHU+JyGPiikEfrdKIxL9Uxleu6uOgwt0K575mWbWRiQSicKI26OnukgKJ75AkA111WzbUIfb9dJyg1Va9thcwXaPx0NLS0uhYrv4Ozpz5gyqqpaIfzldlZUmJIZhrMhFf7Hao6yWdReSmSNwiwdPrXXwbil34ZYra+PGjWzbtm3JF+dK7/A1Q2CKuQc4CZGfz2GtbfmlJycnueaaa6iqqlr2+1mUK9iuaRpHjhwhkUhQV1dXuJtK5XSymkGNr3Sz8KoykaRZSGVeiPk2z2LfvRpu4BwTDE/ESI+lef58D1Udp7l6g5+GunxH1ovpYlkrKtEiWeh4ir+jtrY2DMMoxFesVut+v78kvrJS15QVj6ik73ilHTgSiYRtkSzEfCNwLSxrYS1/MAtZJMt1Zc1kpUKyo8FPlU9lIpkj7FELnz2RNQh5HOxqCvDMWZlEIsGhQ4dwuVwcPHgQl2t1abLlCLZblfPWfPfOzs7CmiGPSsDtYCqtFYZQWbNTfE6FqkVawS/lGshoBs/3Rklrgl0bapEliaxu0DueJOPOF0D29+fbySxnEmGlUilCIoRYdh2JoiiF8w8XxhAXd8QNhUIlHXGX+nmta67ShGSlY3ZXc4N4sVgXIVlKmxPLx7+WQbP5hCSRSNDR0YHD4Vhx2/eVxkg8ToX/dNNmvvhQF5MpDYcsoZsCVZH44Cs24Xc5EEJw5MgRNm3axLZt28qyoazWIhkeHubo0aMllfPF7jK3qnD9pip+dmyE/qk0AZeDWDpHImvwyu01hJZQnb+Y0I0lckykcmwIewpuQZdDocrvJi7J3LS7HVli1iRCq1NuTU3NumYaLYdKcm2VI/A/1xhiqzCyeAyxdQOwUAzMuo5fCkKSTqdpbW1dgyMqL+vyi7EugMUGT8HKv4ClMJeQrNSVNdfaS92YeyMpOvqj+FwKBzZX8+bLm6jzO/n+CwP0RFJsrPZy51XN3LilujDUaPv27bS3t6/o2OZipRaJaZp0dXXR19fHvn37aGhoAPIuuONjObomknjPn2FbvY+r26q4/fImnu2eJJrO4VUVbmiv4vrNi99xLWWT0k2BmMMtaImxKQSKLBMMBgkGg2zatKmkktvKNLLuhK1Mo+L3rpQNvJJcW+W2AObqiGuJ/+joKF1dXbhcrpLAfXF8pRKFZKU3xIlEojAyoJJZt1uvxTYu6yLQdX3N6gWKrYbVurLmWnsxIdENky881MVPjgyR0wWSBNVelc/cvosbttRwcEtN4bnpdJpnnnkGIQRut7swarVcrCTYbqUbZzIZ9u/fX/DlCiH4yeFhfnE2hUORqFM1fnlqnJPDcX73+o1csSFEPKPhwMCtKst2WcxHlUfF61SIZfSChSOEIJrW2NXoR1VmbywzK7mtTCPrTliSpBI3WCVRKUJSPJF0LZAkqUT8i0fZWqngfr9/VtC+Us4PrLz3l521tUokSVrzzC3LaiiHK2smS3Ft/fNz/fyoYxCHLBF0K5gCJlIa/+3HJ7j/Q9dRP90eZHx8nMOHDxcyoJ566qk1qUJfzprRaJRDhw4RCoU4cOBAiTuodyLNC+enqPIo+J0y9SE3jUHB6ZEET3dPcMcVzVR5VXK5pQvXXJuCZpicG0/RE0mhm7Cxys2mGg+dI0kSWQOnQyae0anxqWyrX1rmS3GmkWmaxONxIpEIg4ODnDp1CofDgdvtJhKJrCogvFoq0SK5WMczc5RtLpcrpBmfPHmSXC4HQG9v75xW5XqwmhiJLSSr5GLMVY9Go/T09KzalTXX2ottzD88NAgCPGr+AlOk/OCmZFbnoeMjvOf6Vs6ePUt3dze7du1iw4YNwNrUfCzHtWV1Et6yZQubN2+e9SMdnEqT1gyq3QrCcjNIEmGvSudIYsWbYPHxGabgybOTnBhO4FQkZBm6I/nxvNe2hRiO5UjnDLbUemmv9S4azJ8LWZYJhUKEQiHa29vRNI0TJ06QyWQKAWGr71R1dfVFnZteKS42WP/gttPpLJk4OD4+zvHjx4nFYvT29s6yKtcjuWKlQmKn/y7Ceo/DNQyDiYkJkskkV1xxRVmGTxWzlM1+PJ7DMcOhL0sSkgTD0TQvvPACqVSK66+/nmDwwgTEteqLtdiapmly6tQphoaGuPLKK6mtrZ3zeY5pF5IpBBTtd7ohcHnkghttOZvuLLGKZugcTdAUdOKZzgLTTUFPJE17jZdXba+Za5lVoaoqXq8Xj8fDtm3bStxgPT09KIpCVVUVNTU1Za+LmEklWSRr7dpaDpIk4XQ6cTgc7Nu3r2BVFidXuFyugqhcjDHEsLIYiTU7ZjkdKtaLirZIHA7HmtSSWK4sXdepq6sru4jA0lxb2xp8HO6P4S7aFAxTYJoCY3IAuS7MgQMHZl3o62GRZDIZOjo6ME2TAwcOLBgA3Frno9rnZGQ8Qe30iINUTieZ03nNxpWda+v8WBvoeCKHZoiCiEA+qO5RZfqm0uxpXrsfn5UkYgWEN2zYUNJ3qrguoriFSzndYJUkJJXcQr7YqiweQzw5OVkYQ2y12qmqqir792Rhx0jWkbWwSIqzslRVJRZb2nTB5bKUwVnvP9DGn95/jHhWx+1QMIUgqxlUu0zefFU7O7e1z/naiz3NcHJyko6ODmpqatizZ8+sH1osrfFc7xRdowlcDpm9LSFet6eef35yit5ojpiUwKFIXL2xiuvaypMTL8tSibVjYZhizqD6WlPcd2rLli2FuoiJiYlCpl04HC5YK2vZHuRicym1kLfGEFvWdDabnfU9FWftlctdacdI1oiL7dqaKyvr/Pnza+Y6sy7khYTk5u21/NWbdvLVx7sZiWUxTYNdYcH/eNNl7No094wRa+21sEhmrimE4Pz585w+fZrt27ezcePGWZ9lKqXxjd/00jWSwKUqGKbJob4pXrG1lrddFuTMSJINbU00Bl1srfMV3F7LxXrfnJ7/QTYFXfhcChPJHNXT1fLJrIEhBG3V619gOLMuIplMMjExUWi/rqpqiXtluW4w2yKZn+W4kVwuV0l8JZVKFQL3PT09hRsE63taaXzFMIxlu9Cs68aOkayScrVJmS8ray1jMNYPa7FWDa+/rJGDG338x9OHCLhd3HTdlYuOvFwLIZlpkRiGwfHjx4lEIgu2X3nqXITTIwm21PkKlkA0rfHUuQlq2x3srVe5fPvcsZTlMJbIcSQi0f3sAKpDZlu9nz1Nfo4PJTg7ngIBTkVmb3OQTTWVlXdfPN5248aNJe1BVtrJuNKEpFKOBVbeZ0uSJHw+Hz6frzCGOBaLMTExwdDQEJ2dnYXiVauNy1LFYSUxklQqhRDCjpGslnKk/y5UYLiWQjLfBMZ8O4lp1wwXKsIva1t61thaCYm1pjUKV5ZlDhw4sKCwHRuM43c5StxJIY/KcCzDQByqwqt3wU0kc/ziVIRzcdgnIKOZ/PrsBDvqfdy2q5ZIUsMQUOd30hRyFara58NKG+6OpNAMwYawm/Za75Kq68vBzPYgK+1kXCmb96Xk2loOsiwTDocJh8MAhfjKzDHE1ne10A3ASue1A7ZrayHW2rW1lALDtZhiaGF9PmtzHk9kuefxbh48MUpON9m/uYrXbZRwpkZLKsKXwloG262alcbGRnbt2rXoD9Ih59vcF1NIBy1TR+FTIwlGEzkaPVDtU/MBVI/K2fEUu5sC7G0JLr7INIYpeK53is7RJF5VQZEkDvXHGIpmecXWagLui/+TWKiTsVXFPTPLqJKsgEp0ba3F8cwVX7FuAI4fP46u6yVtXIonG650OqKiKKvuo3cxqGiLZKVCstQCw5W2el8KkiQVhCqR1fnDb3fQPZ5EkkFC4tHOMZ4+C994z+U0NNQte+21Ou5Dhw6V1KwsxuWtIU6PJslo+Sp1gPFEjoDbweZqF0LLrfqYBqNZfC4HsaJ90+WQMQVMppY3PGw0nuXseIqmgKtwvNU+ld6JvIWybxFRWusNfK4uudZd8Llz5wp3wW63G8MwKqLL7UvVIlmMmTcAVhzMygiz0sGrq6vRNG3F0xHX+/tdChUtJA6Hg2w2u6zXLKdX1sUoeDRNkwePjtA9nsSlykjkTWS3A3KmzPc6xtjbtjwhKbdFous6J06cAODqq69etBXISCxLNK1R63eyf3M1Z0aTHBmIYpr5Fvh+l8JrdtXT5EsTiazeIvE5FbL6hfkrhf8vwOlY3o9sKq2jG6IgIpC3nHxOB0PRzKJCcrEpruLetm0bmUyGiYkJBgcHSafT/PrXv173YrtKs0hWmmq7GmbGwax08MnJSQYGBojH45w9e5ZYLFawWhZrDnqptJCHl5Brq9iVdcUVVxR6J5Vr/ZVgbfgd/dF8pqow0Q0Dh+JAlmV0zeDZnqkVrVuu9N9kMsmhQ4cKQcPiwseZJDI6P3hxgMP9MdKagc+lsH9zFe+8ppmr28L0TaRQFZmdjQHaa7309fWt+LiEEGR0E6cis63eR+dInLg2PX7AFAxFM4S9Km1Vy9s4rQLQmZaFNkNcKhW3201zczMOh4Pe3l527NjBxMQEw8PD69bJuJLcbFAZQ62K08Hb29t56qmnaGhoQNO0QnwlGAwWbgKCweCsY75UMragwi2S5UwwXEmvrIslJD6nhBAmhp6vjpamNzNTQMiz/K9gNfPgixkdHeXIkSNs2LCB9vZ2HnnkkXktHSEE33thgF+fidAQdFHrV4mmdR48PoqqyPz2Fc1cvTFc8pqVuuA6RxIc6osyntTwORX2Nge4ZmOIf+uHc5E0DkWmxufkxi3VhJfQ+kQzTCLJvIut2qcSdDsYTeSo8zuRJYl4VscwTTZWQNrwUrGsgNV0Mi4XL1fX1nIwTbOQ6QUULMvJyUmOHj2KaZol7XY8Hg+pVGpN643uuece7rnnHnp6egDYs2cPn/rUp3jd61637LXWVUgW6zi7lPTf1bR9t+7s1+rCk2WZeDxOkz6MDBiSjCrlNwHdyHf7fdO+xhWtuxrXlhCCM2fO0NPTw2WXXUZTU1PJ6N65GIpmOdIfpTHoKmzetX4nphA8dW6C1+ysxz8jUL3YD2Cu7//kcIKfHRvFME1CHpWptMZDJ8c5sDnEDQ2C9t21uF1OmkPuwoCshTg/keb581NEEjmQJGp8Ks0hF0OxLL2TaSTy8ZbLmoNsXKZ1s57M9T0t1Mm4t7e3pCaiurp60TTz5RxLJW3clSgkM7O2LMuyubm5kGAxOTlJJBLh8OHDfOxjH2Pnzp0IIRgaGqKpaf66spWyYcMGvvCFL7Bt2zaEEPx//9//x5vf/GYOHTrEnj17lrVWRVskC6X/rsSVNRPri12LC8+aANnZ2ckr92xBC8vc++seMtoFAXjV9lreec3SgtrFrEZIrFG4yWSS/fv3F3LUi1uQzMVUOkdKM2gIlmaQ+F0OIskc0Yw2p5As5zgNU/D8+SkEolALUkV+WuTRwTibgW113iVnsYwncvzq7ARpzaAxlN80R2JZ0prJTVurp8caC8IelRqfuuQ7v0q4+16KO2mxTsY+n6+kJmKlrUEq0SK5GP2zlsNCdSTFCRYbN25k586dfOUrX+G+++7j6NGjbNiwgV27dvGa17yG//7f//u8Pe6Wy5ve9KaS//7c5z7HPffcw9NPP/3SEpK1nGBorQ+zaz1Wi1XMl81m2bx5M1u2bGHLFrhlZx2/PDlGzjC5fnO+XYg8cwrTElipkFijcH0+36weXjPTlWdS7XXicyrEMhpV3gtV2LGMht/lmLMGY6HNJZvNcvbsWTweDzU1NXg8HhJZnYmkRtWMtaq8KmfGUiSW6YU8P5kmmtJor7vgZ95Q5eHceIpIIscVreWd6XKxWc7mPVcnY8sNdurUKXK53Io7GdsWycJYXo+lCrXb7eaNb3wjZ86cweVy8fWvf51HHnmE//iP/1izIVeGYfCDH/yAZDLJgQMHlv36indtzRQSq4V5Odq+W833yhknSSaTdHR0oCgKoVCo5IvfVu9nW/3qszBWEnsYGhri2LFjBWFbbg+vhqCLK1vDPHZ6HMPMZ2ZF0zqxjMEdl9fhd82+lOY7TmuWic/nIx6P09XVhcfjwReqQs+apHGV1HNkdBOnQ0YVy2ufnsgaqHNkdTlkiUR27WJjF4PVJluoqkp9fT319fWF0bZWC5fldjKuRIukkoSkeKT4crCC7dXV1dx5553ceeedZT+2o0ePcuDAATKZDH6/nx//+Mfs3r172etUvEVixUgMw+DEiROMjo6u2JU1k+Jaj3IwMjLC0aNHaWlpYceOHRw6dGhN6j2WY5GYpsnp06fp7+9fdPJj8cavGybHBuN0jsSRkNjR6Oe3r2hCVSReOD/FSDyL3+Xg9n2N/NaeuYsp59pcrJjWli1bCmNUh6bSDEcmyaVj+LIRDg8YTIU91IX8OJwehpIG2+p9VE0t6SMXCHscaLqJKUSh2t0UAs00Fw3SG6ZgMJphLJ4P0tcF8nGZSqGcmVKr7WRsZ20tjLW/rKSOZK3Tf3fs2EFHRwfRaJQf/vCHvO997+Pxxx9ftphUtJBYMZJ4PM7hw4fLOsHQohxFidZm3dfXx57LLuPxfoM/+9qz9E8kaatKc9ctbl69q3yt6pea/pvNZjl8+DC5XI4DBw4smkporasbJt9+po8nzkTITddvOE/I3LS1ht+9vpXf2tNALKNT43MuWAlebHEKIQrn6IorrqC2tpbRaIoHj49yLpIiqwuCbjf7tu+gujnN8f5JTg3F0LUxGv0Km5pqSEksmnwxkcwRSWo4FInGoIu6gJPeiTR1fidCwHgyR4PfuWCGlmEKXjg/xamRZMn0v50NPgJCUAlb1Fpu3vN1Mo5EInN2Ml6Puo2FqEQhsW5al0MikShbPGQ+nE4nW7duBfI1ZM899xxf+cpXuPfee5e1zrq7thbCUvCnn3667BMMi99jNRZJJpPh8OHDaJrGgQMH+OqTg/zTM9P1E0LQNZ7hP//wGJ9+407eemVzWY55KRaJ5T4Kh8NcddVVS4oBWRv/i31RHu8ap8bnJOjO37nH0hqPd42ztyXINW1VhY67S1lP0zQOHz5MOp0uCJqmG/zb0RFODSdoCbtxO2QmUxq/OjPJm/bWc+P2BqZSGi4F/GSJTk2QmoDnnnuOUChU2MQsX75hCp7tmeLoYJxEVkeWJOoDTvY0+QnFcwzH8oWtW2q9XNUaIriAAA5GM3SOJKn1OQuZYamcQedIkjbVoDlYGfUmF8sKWKyTsTVMamRkhOrq6nUPdFeakKykYSPkmzZe7IJE0zSXXQQOFWyRGIbBqVOngHx+c3NzeTbhmaxGSCYmJujo6KC2tparr76asaTOd5/rRyJfcW0aJgKBZgr+7yNnedPexmVXYs/FYkLS39/PyZMn2bp1K5s2bVpWNpJpmhzpj2IYoiAiAEGPymgiy5H+GNcscaaIFX966qmn8Pl87N+/v7DJnJ9M0z2eorXajVfNX4Z1ARdZQ/BCX4yrNoaLXEkBGuprGRwcZN++faTT6RJffnV1NZP4eGZQo9rvoj3gwTAFA1NZjgzE+e3LGzDJn4OAS1n0fIzEswgoSS/2OhXGkzCe0mkOrt3kw6WyXu6kuToZnzp1ikQiseJOxuVmpRv3WrFSi22tx+z++Z//Oa973evYuHEj8Xic7373uzz22GM89NBDy16rIoWkOCsLKBTxrAUrERIhBN3d3Zw9e5YdO3bQ2tqKJEkc6htHMwQux/QPXMr31VIViYmUxrnxJDsbV98Sej4hMU2TkydPMjw8zFVXXUVNzfLGzRZcW6aYM5tMkiS0ZbgBo9EoqVSK9vZ2tm3bVrLxJTI6mikK8+ot/C6FREYnp5s45qgTsRoYWimt0WiUSCTCs0cHGIxmkas86H4/fp+PlrCb3ok0/VNZdjYu/c6ugsahz0ulzGy3mgo6HA527Nix4k7G5aTSLJKVDrVa6xYpo6OjvPe972VoaIhQKMS+fft46KGHeM1rXrPstSpOSGZmZT3yyCMXpfp8qWiaxtGjR4nFYlx33XWEQhdSSD2qgjQ9uK/4pyJE/r+XUkC3FObKhspkMhw6dAghxIrjSNa6u5oCPHkmUtKIMaMZCAG7mxbvRSWE4Ny5c5w7dw6n08n27dtnPSfkUXE5ZBJZnYDrguUTS+s0hly45rDcZm5Axb782ogbT3UODzkS064XgCnTzeAIbK5Sl1x/0hBwcXI4QVozCkKX1vLXYI2nMu50KynAXXwsK+lkXG5eKkKy1q6t//f//l/Z1qqYGMl8WVkXo7HiUtePxWJ0dHTg9Xo5ePDgrJTIA+3VVHlVJlMalmYIU2AisbclwMbq8uSAzxQ/y8VWV1fH7t27V2zWWxbJdW3VPN8zyaG+aGHOiG6YXLkxzDUz2qDMRNd1jh07xtTUFLt27eLcuXMlf0/n8ue6tcrD9nofHf1R6v35PleTKQ1TCK5tC6PMU18z3534hio3L/blaKwNEa4KI0zBVCJFeixGamqcJ5/swe/3F2IrM10u0bRGJKkhS1Djd7K93sfpkQRY16gQbG/wE8wklnIq15xKE5K5Nu75OhlHIpGSTsbWdxIIBMoiAC8VIbF7bS2TYlfWDTfcUNK6oVxTEudjqUJixR0WqsNwqwqfv2MPn/jBUTKaAeS74dYFVP7qTbvKdszWhi+EoLe3l66urhIX23KJJHI80zPJs+cNzkuTvHpfkD+6aTNPdU/Q0RcF4IrWEAfba/AsYFWlUqlCA8iDBw+STF7IehqJZXisc5zO0fxGvLPBz3WbwnhVmVMjSSKpHFUeles3h7m8ZW7330KfbVdjgO7xNN3jaap8KrohmMpIXLOthdt212Hq2iyXi3VXPJh1cjqSI5HV821UvGohRjMcywDQGHTTHHZztmu0YjbwSmGpMYniTsZwod+UlWYMlKWTcaUJyUqOx0pquBSmI0IFCMliBYblmJK4EIsJSXErliuvvHLRdLwbt9bw07v288DhYU73j1LnMvij111T1ul7Vu3L0aNHFx2Fuxhnx5Lc/dg5+ifTJBI6HZNjPNWX5sOvbOfVO+t59c6lpS1HIhE6Ojpoampi586dyLJcGBU6ldL4zjP99E6kqPXnrbhfn4nQG0nyvutaeOX2WtI5g7BXndOlVYwlTH2TaY4NxhmJZanyqexuDHDb7lqODMYZmsricsjcuKWKyzcE8x1/nc6S2dyJRCLf1+jcEE/2Jgi4nTRV+/H6/MTS8GzPFK/fU8fG6sXPa1Y3kSVKpkSuNZVmkazkWGb2m7JauBR3MrasleV0Mq40IVmNRWK3kV8CQ0NDnDp1asECw4vRoXe+9VOpFB0dHUiStKy4Q0PQzQdfsYneXonx8fGyj3DN5XLouk46nebgwYMrnqBmmoL7nu1jYCpNe62PCSmF1+dkOJHjO8/28Vdv3Iljkc1RCMH58+c5ffo0O3fupLW1tfA3K/338ECU3okU2+p9BZdVlUfl9Gico0NxXrG1ZsF03OL1IC9+/358lETWwO9SGInnODOW4pbtNbxudz0ZzUCRpXk39mKXS0/OTxtxqp0GiUSC4aEhdF3nPB6aHCmu2948b4B4PJHj1EiCkXgWGYm2ag87G/1li4UtRCUJSTk2bkmSCp2MN2/evKpOxi8VIVnrrK1ysq5C0tjYWJj2Nh/r5dqyWqw3NzcX7rBXsna5K9vHxsY4fPgwANdee+2qfjADU2nOjadoCLinN3gJCWgKuumbnhi4UEsX0zQLca25rCJLSPon0jgdUkncQ5ElHLLE4FRmWcesGybP9uTnoWypuxBzGo5lebZ3ih0Ny9vIkzkDt0slGPQTDIVACLLZHCcGIoxNTPHMM324XK6CS8b6PidTGr8+O8FUWiPsUTGE4FB/lKm0xiu2Vl8U66RShGQtRG2lnYzXspv3SlmJkJimaVskS0WW5UVbWV+MYHvxbA/TNDlz5gy9vb2FFusrpZyTDIszobZt28apU6dW/ePVzXz3W2uDl6R8hplDBkPkK7znI5PJ0NHRgWmaHDx4cM7v0RKSoMeBbsxeSzNMErFJYslqgr7FrT1JkohnDUYTuYKLzKLOn69gH0vkaFvGXJHGoIveicyFNiqShORQqQ6HuXZXHa1hV8mdcTqdxu120xnRGU4pbGu8ELT3uxz0TaYZjmVpXeOW9JVkkVyMpo1L7WRslQpUkpCspK4lmUwC2DGSpbCUH8LFiJFkMvm7YqulSDab5cCBA4veDTzfO8lXH+vm8ECUkEflzqua+cMbNhWKDsvVx0vX9ULK8fXXX4/L5eLUqVOr3kxawp689TGZnt58JUAwGstSH3DRNk+W2dTUFIcOHaKmpoY9e/Ys2B5bCMGe5iBPd08yMJWhKehCAAMTScb6ztE7afL/hs9TEw7Q3lzPpuY6mmvD824EipS3ZmYKk2aYOGS5MAFxPmIZnTOjCUbiOTxOhVqfSq3PQc90kN4wBdG0xta6fB2KosjU1tYWYmPHjx9H0zSODcUYn0piTA0RDAQIBAP4fX4MAfHM2lnQFpVSRwIXv2njQp2MT58+DcCxY8dmdT9YLwzDWHaasyUktmurTFys9N/JyUk6OjqoqqpaUkuRJ89G+KP7OjDzo8NJ5TLc/Vg3xwbi/P279iFJUllcW4lEgkOHDuF2uzlw4ABOp7NgQa3WhHc6ZN56VTP/8Ksezo4n0TMmRiZHTdDLW65snjNDy0qO2LZtG21tbQv+QC0haa/18aZ9jTx8YpSz4ymy2Qzjfedo8kLYk7csIlNxIlNxnjtxFpdTpb25ntbGGtpb6vG4nIwncoxnYIuUb3PyYl8Un0tBVeTpBotZ2qo8s+alFDOZ0njoxBiD0QxuVSZn5Ef57m700xz20D+VQZUlrt8UZldjYE73lKIouN1udvvDuMaTVKsm8USCkZERejPniQo3Y+40MZ9Ys4mEUHkWyXoeS3En40wmw29+8xtqa2uZnJws6X5g/Vuok/FaYBjGsoeIpVIpVHXptU/rzSUhJGsZI5EkiUQiwfPPP8/27dvZuHHjkn4UX/rlGQwBssR0Z1kJ0xQ81jXOi31Rrt4YXrVry+om3Nrayvbt2wvHZYnHctfWDZPnz09xpD8GwGXNAa7dVMWfvGYrv+qKcOhMH63VXm6/dit7mksLD03TpLOzk8HBwUWz18YTWV7oneLcaIzREdgylmT/5mp2NgR45lQfT7xwjuZGN6oMYo7PIEkSp/uGOdkzQFY3iWgOcoqHeCrHqdwwV2+upb3GQ+9k3iUFEk1BFzdvr1nQIjk8EGMgmqG9xltw540ncpwZT/G2K5u4flMYSZLmXCOZ1emOpHl+IIPXadDWKiNLEjnFRUOjn7qGBvoiSUJ6Bg+ZQpKGtXnV1NSUfQOrFCGppJiEJWobN25k48aNy+5kvBasJEaSSCTw+XwV8x0vxiXh2lpJE7GloOs6AwMDpNNprrvuuiW3YklkdE4N5+shij+DJOWdQ890T6xKSIQQdHV10dvby969e2lsLB3HuxIh0QyTrz3RzRNdETQj/7qHToxww5YaPnJzOzsbA3QEpggGg7TPEJFcLldw+e3fv39Bc7tvIsW3njrPwFQGhywYisDXnujOWzhajGMnTtAUdON0OshksqQypd+t3+smkc6CyNfgnB5NMhrPEnA7SMZjJKbGOdNbxxuuauNNe+pJ6QKvU2FzjXfBILtmmPRG0lR71ZKgf41P5VwkxXAsy46GuV2ZsYzOI53jDExliMUNhCSISjFq/U4MIeibTCMhUR/0cPXGRppCbkzTJBaLMTExUahBsnpQ1dTUEAwGV7X5rrcVUEwlHctMUZurk7EVtLc6GRcH7ddiRvpKYiSWkFwqXBIWyVq4tqxpgYqi4PP5ltXPS1XyGUj6HMFoIcDrzJ/WlcRIcrkcR44cIZVKzRunsQZyLUdInuuZ5PHTEap9aqH1ezKr8+TZCFdtDHPz9to529PH43FefPFFAoEA+/fvX9DlJ4Tg4ROjDE5l2NbgQxgmUhx03eBrP32K7QEdl0Mmk8uRyeUwTBNFkfG6XfnNCIl4KlNoLxPL6EykNEIeFVWRSCHwuxQiY8Pc/+gY122upq2xlvYN9ZghFRYQkvw5g5mnTEz/H3mBzePUcIK+yTTttV6GcwoOh4LT7SCWMbh1Rw2C/Ovr/M6S+Fg4HMbrDyKFGpHjaVKJOKPROIODgwghSgZHLdf1UUlTCSvpWBazjpwz6olmdjJWVbXEDVaOFi4radpotUepFIFejHUXkqVMSSy3a8vy82/atIlQKFQI0C0Vl6rwml11PHh8tHA3JoTAMAUOWea3dtcXjn05m30sFuPQoUMEAoFZo3Bnslxr51BfFN00S+aH+FwORuI5Xjw/xc3ba2eJ08jICEeOHGHTpk1s3bp10Ys6ntE5M5akLuhEliQM8lZffPAc54fHqW+roiFwwecrAYZhkkxn8bqdJNIZfG4XiiyT0TWysSymKVAVCUG+VXk2m8PlkMnqJpmczrmBUc4NjALQUBNi64YGNjfXURsujU84ZImtdV6e6p4i7HEU4h8jsSxVXpWm0Ny+aCEE3ZEU4RmWTNjjoDuSJpkz5rVkUjmDp7on6Z1IIQSYQiboruHaXe3UOg0ikQhDQ0N0dnbi9XoL1ko4PH+yQTGVsslU0oTE5bjZ5upkbLnBytnJeCWurWQyuWZjddeCdReSxSinRVLcHdcqgoxEIita/89u286xwTh9Eymsa0uRJP7i9TtonG5/vpzN3poc2N7eTnt7+6I/zOUKiRVLmLWORMGysgRRCMHZs2fp7u6e07W2INKF7rmpdIre8+cJBEMoimPOGwbVoaAoCsl03sVV7OoKeJ143C6QZZyyRFTTcTpdZHUTv8tRsrFLkkQileHJw6d58vBpQn4PGxprUb0hvD4fAbfK1jofI/EcPeOpfIt7IQi5HRxor5pzVPCFczTzZif/vkIsvJmfHk1wbixJa7WnIFzDsSyH+mK8bk89mzfni++srKNIJMLJkyfRNK3EWplrQ6kkd9KlZJEsRHFQHihbJ+OVxkgulRoSuASEpFzpv1aVOsCBAwcKP86VZlbVB1z8+I+u59+PDXO4P0a1V+VN+xrZWlTAZ7mKFrq4i4PYyxkhvJglN5PLmoM82jlOOmcUsrGsjr5XbAgVjtcwDDo6OojFYuzfv39ZeewBt4Md9QGe6p7ASMfpOn2aTCZDDgduVaEh5CHgcWMIk1Qmh8ftJJPNoeeK6ngEJHN5C9TrVAi7ZYZiWXyqgqw4yAkFIZk0h1wFd5TikFGLxAhgaCLBrzpHiGV0FIeDUCjM9o2N3HldO7sa/EykcrgcChur3NQF5s+MkaS8JfPkuUmqvBeuk7FEjpDHQeM8WWKGKeiJpAl61JLsr/qAk/MTGUbjWTbV5K/BmfPTLXeL1THX7XYXrJWqqioURXlZp/8uRDkD/+XqZLzSOhI7RrIMluLaWq2QjI2NceTIERobG9m1a1fJhbaa9b1OhTuvauHOq1rm/Lt18cx3cWezWTo6OgrTFZdjyi7XIjnYXs1T5yZ4vneqkBRgCMGVrWFu3JpvoqfrOmNjYwSDwUKq8VLIWzEgyxKv2VXHcye6+M3pbiRJkNCg2iuxvcGPJATxVBqAgM+Dpul4XE6yOR3dMJhMa5wbSxGbrsOoDnhp9DtACCLJHPGMTsihsbXWz+b6IA5ZRjdNNN0gk70gRgLB+ck00bRO2OvAoSjIWpKnDh3jzJkzvOGqzWzf2Mimxjrcztk/fiEE44kc0YyOW5XZWudjOJalJ5JiLK4jK4JWD1y7KbxgaxfTFMxMAJu2ZZiv1nOmu0XX9ULH3NOnT5PNZgmHw+i6XrhRWe9NvBKOwWKtMsjm6mRs1a5YnYyDwWBJCxfrOFbq2rKFpIysZqMXQnDmzBl6enrmnbK4lnUqC2VXWUV91dXVXH311UtuSFe89nKExKUqfOLWrTxxZpwXeqcQAq5qC3PT1pr89L/xcYaHh/H5fFx99dVL+jFmNYNfnYnwm3MTJLMGW2rduDPjtDpTSM0BYmmNKTPJZRtDVPsu3LkHvF5iyRSmaSLM/LAWE5kzEY14zsStgNvjZSyaJJZSuHJDkLZqD/0DKRpqvQT9HtKZHD63i0w2h1N14PG50XSDdCZHRjeZSmv4XApOhwNBXiT9LgeTySxHzg1ytn8EWZbZ2FjDttZGtmzI16tkdZMnz07QOZIkpRmoikRr2MPB9iq21fs4dDKKz+3k2l31c1oysYxONK3hdsi0VLk5MhAn7FUL1tNUOn8cNb6lBXEdDkdJQWQqlWJiYoKenh4GBwcZHx8vsVbWY8xtJbm2Ltb8eEVRSr6XhToZW6K/HC6l9ihwCQiJw+FYUbDdSllNp9MLumgsN8Fa3MnMJyR9fX2cOnVqSUV9C609n5AIIXi2Z5KHTozSP5lmQ5WH39rTwLVtYW7b3cBtuxtKntvT00NXVxc1NTW4XK4lnQfTFHz3uX5+dSaCR1WQTZ0f/KIDychwzcYwO5vDqIrM8ZMTBN35uzFZkvG4VeKp9HRXrzwSEn0TSSbjKWp8Ki5Xvr1IfdjL8FSakXiWLbU+vGq+xkMIQdDnmbZuJLI5ney0O8ypOpBVGYcjjUuVMIWJOX37r0zHb8xpC9g0TfpGJhiOTPEfzx1jY2MtOYeP7oRMS5WPppCLjGZwdjyJJMGb9jag1TlxuVyzREQ3BS+ej3JiOE4ya+B0yNT4VEJuBz2RNB5Vzk99lGWu3hic1cgzltFJZPNZbdVedd5rwuv14vV6iUajeDwewuEwkUiE7u5ujh8/TjAYLJnvcTEshZeqa2s5LNTJGCiM5F5qJ2PbIlkmi12AlsWwHPN5amqKjo4OQqEQBw8eXPBLK97sy30BSpJUkgJstaQfHR1d0SjcYhYSkodPjvL1X/WS0Q28ToXBaIYjAzE+eOMmXrv7Qlt4wzA4fvw4kUiEa6+9lrGxsUK7mMU4N57k+d4pGoMuZD3D6c5OvLJGJG3QHUlR7XOSBnKagSIrhPz5FiyxadfWTNK5/CarOp1kc7nC4w5ZQkfB73EhyxICS0QyzJU8oOkGhsjf9U+lMtQGPAiRv7FI5gw8Trkw9dCpqggEmekYzZmBUY4NxhFIpJpqaayvo76mmg3hfBuZ0fj89Uwnh+I82ztFlVelrcZJRjPpn8rQEnJz/aYQ4wkNjyrTWu2hJXQh1VczTDr6Y3SNJknmDFwOmdYqN9e1hfEtkAAghJgVHM5kMkQikZLGhpa1spYV3ZVkkVRCcWRxJ+PW1laeeOIJ2tvbiUajS+5knEqlqK9f2giHSmDdhWQxiuMMi/kZi1uaL/Vu31rTMIx5BUc3TB4+OcrDJ8YwheDm7bW8cW9joWZgIawNP51OF4L98zU5XA7z1ZGkcgbff2EAU4hCMBdgcCrDD14Y4BVb88OprNG8kE8+cLvdRCKRJQdx+6cypDUDt56g+9zZ/F0p+XHDE8kcZpHwqw6FRDqHYZgggc/rQkYimcmQm7YkAh4nA7EcWi5XMpVQN0wcGPkiRcDvcSEkUB0ymn7h81sTDnO6QUNVgKALppIwNJnE6ZAxTHA5nWyt9+GQweN2ktN0jKJzaJj5efWqDCNjEUbHJ/C43YSCAQxXkGR27kQI3RScHE7gcypUefOWhtepsCHsZiyR46C/in0toTlfe2o4waG+KFU+lY1+N2nNpHMkiRDwqu01816/c91Yud3uksaGsViMSCRSqOi2phHW1NSUbRoh2BbJQlg3kfX19YXsx4U6GVdVVeHxeEgkErS3t6/JMX3+85/nRz/6EadOncLj8XDw4EG++MUvsmPHjhWvWfFCYm3uuq4vKCTWiNfJycllDXqSZTmfCjpPnEQ3TO76lyM8fnq8sL89fGKUH7wwwDfee9WCEwOt9ScnJzlz5gz19fXs3r27LBf6fBZJTyTJREKj1l/qOqn2qYwncvREUjS69YKpvWfPnsLxLKfI0alIjA8PEElGcDpVHJKKrusYpo7TqeQLAAGPy0k6k7vguxeQTOVFIZ6Io8oyVeEgzch0j8WZTGn43Q4kIJ7NZ5jVB1w4HQqKLJNIZRGSA4HA43TiUBV6RhOcHIqhmwKXy8Xg+Qhhj4NNNR7iGZ1kLm+Z1fmdBJwQ8HowTBO3U81nek1/r6oi41FlElkDj9OB4nCQymSYiKfQzWF+Zk5Q6xbsaivtCJ3TTdKaMauy3q0q03+b+5xqhsnp0SR+t4PwtKvL51RoDrnom0wTSWqzuhwXs9DmbRVEhsPhQkW3Za0cOXIEIURJ+5bV9HR6OQTbV4phGAXPhMXMTsZWB4TBwUHuueceHnjgARobG6mqqiKVSpW9nuTxxx/nrrvu4tprr0XXdT75yU/y2te+lhMnTqzYnbbuQrLYBWhVcS8UELcaG7pcrhUNeloo4P7To8M8fnp81uMd/VG++1w/f3BD27zrWrGXU6dOsWvXrpKhT6tlrip0AKciF6rui8+CYebbxU9GRukfOjdnX7H51pxJNqfRffY0uegY6ZxBaLrnWFY3MZDZ1hTG41RxOBykcxqC0jUFgkgkQjQaw+dx0z84jNvtYnPYzVjWRTyro+s6QbeD9lovdUEPmm6gGxc2ZAmJTE4jk8rQNRrH6VSp97kwDJOsYjKZ0gm6dLbVX/hhCCEI+DzEEunC507rglhOkMzqyEIn5FZJa4JY1kDNGWimIKebNIfdmLrG8Z5xOvvG6ByOsad9A9s3NuJW80IwmsiVFHwmsjpepzJvZldWN8noJl5n6cbnVvMFl2lt/mt+uZu30+ksSWUtbsNuFUQWTyNc6mZs1R1VyuZdiUKy0A1wseC3t7ezadMmtm3bxr333suPfvQj/umf/olXvOIVvO1tb+ODH/xgWY7pwQcfLPnvb33rW9TX1/PCCy9w0003rWjNdReSxbC66M630Q8NDXHs2DHa2trYunXrigdQzbf+vx8bYebv1Zrb8e/HhucVEl3XOX78OIZhFOapl5P5LJL2Wh/ttV6OD8XZqCoFURmN52j1mSSHu+eNzyxmkaRyBif7Izz27GHMXIa9zUGODsaYTOVjGoos0Rxy0xxwoCgymWwOr0vF63ZiCAlh5oV1eGSY8XgW01tD91QGhxygWhdUSVnCWhQPMt6ghw11PoJ+P6lsttDaZKYoxdI6OVOi2iOTme7JpqoOwn4HU1kz7xpTZBAQ9HqJJzOFDTiSzE9WzGoGiiIhhETQ66alysdkMu+6UxWJ5tDsrsLJdI5fPnecx148xe7NzTSEaxiOCwanMoS8KhnNYDKpsa8lOG+GlltVCLgUohm9pCAykTXwOh0LFkmupo5k5jRCTdNK+k8ZhlFwtdTU1Cw4GdQ6jkqySNa6CeNyWO7x1NbW8t73vpdvfetbfOUrX+Haa6/l4YcfJh6Pr9kxRqNRgEKsbSVUvJDA3G1SrDv9wcFBLr/88lUFphbqiZXTzekK5tLHBfk7yrlIpVK8+OKLqKpayLIpN/MJiSxLfPAVm/ibh7vom8wHtoUQ+KUstzY7uOHgwXmPZ76aHiEEj50e53u/6aLrzFlMUyfolNjXEuTGLTWMJrLohknQrdIQynfWTabz4pLJGSTTWdwuN06HzMDgELGsYEIOkZpK43JI5AzB+biJqPKxu62ebCZLMpVkamKC3vP9eDweqsNB3E7HrJ5YbqcTIZIYhln4jgzDIJszkJBwOVV8LhUx3cfLwjAF5yfS6IZJtS/vPnKqKqOxNJga12yuQZJlMpkcUpF4CSHwe930jscYjedIaQZHB6LUBZzUhoM4fFUIM4THpbJ/c35m/HybrEOW2NUY4FdnJhiOZQm6HaQ1g2haZ19zoBBvKUY3xXT2WfncSaqq0tDQQENDQ6EgMhKJMDo6WiiItGIr4XC4ZGO0rpdKsQIuNYtkPqz03+3bt7N9+/Y1OLI8pmny8Y9/nBtuuIHLLrtsxeusu5As5ccw02KwAtdCCA4usDEulYWq22/eXsszPZMlYiJE/u77lh2zg6/WKNyWlhZ27NjBM888syZ1KpaQZDWDJ89NcKQ/hkOGazZVcW1bFX/zlst4qnuC/rEo8bEBrt0Y5MDVly+awTaXkLzYF+WrPz/E6OB5PKqMKQnGEgYdg0les6sev9uBbph43U6ymkGu2CWTn5VFKpViaHiIqlCItEMll9VoDPvRdQ3DNMloxvRkQTchj4e66jCJdJZAlUY6lWYiGiOdSpNIZaip0vH7/Xi9HrJGBpdDIpnLz2+H/PeTzpm0VuUTGrK6QTan43KqOB0K6ZxGLJEllTMKd/0uVz5bzOeUSeYMphIZvE4FWZLwuV0IAYl0Fp/bSd9kirGsA9MUuBxyvnYko6MbggYtgxkfY8vWDeyqr8E1IyFjMJqhczgxXRmvsq3eyw1bqjg5nCCWzqf/XtcWZk9Tabp6TyRF50iCyZRG0K1ixnWW2ARhWRQXRLa1tZXMTu/s7CSXyxEOhwvWihX7qiSLZLk1WWvJSupaLDG/GNMR77rrLo4dO8avf/3rVa1TOWd8AYrbpIyPj3P48GEaGhrYtWtXWczYhVxbd17dwg9eHKR7PIk1lE+RJeoDLt67/4K7qrg/VXHx41rMbYf8DzeV0/ncz0/zbM8khshP2Pr58VFu213PXTe3c2WNwDHYS/tVS+vfNZdryzRNvvngswz2dVPltQK/EmGPRCSW4sxwlNZqD1V+L4YAh5nv9mu9l4REIplgamqKDU1NOD1eJsfGUCXI5bKYQuBQHQSdTkZjaVI5k8awWsjSUh0qalAlGAwyODSIy+UindXIpMeIpzOEAwFaAy7OTWaZSJrIEhhmvqni5roAsiQVakyyOY1sTkMIgceVrwcR6HjcbtKZfNB9powKIUiks/nKZp+bZCJGJGUiKRCethg8KCSzOkPTkyXdqsLh0+c5dqaPHW1NXLNzEzUhPz2RFI90jpPMGfhcCmOJHN2RFK/YWs0bLqsnrZm4HPIs8ekaTfLEmQlMIfC7HAzGMgwM6/hDWVrmbqpQNopnpwshSKfThaD9uXPnCkISiUSoqalZ9038pWKRWN1/15KPfOQj/PSnP+WJJ55gw4YNq1rrkhASy7V15swZuru72bVr16o/+Mz15xMSv8vBd//gGr7xZC//fnwE0xS8Zlc9f3BDG7X+vN9c0zSOHj1KPB7n+uuvJxi8MM+jnHPbi5FlmSd7kzzTk6LW7yrURsQyGg+dGGWDM0UwM7Ist99MiySVyfLwU4c53dM3a1qg5WJKaTpBn4fJRKpQZOhyqrhUFd0w8oOFpqJsbd+EkJR8h2RFIquZhavP0A1ypj6d5aXmpxC6IJ3Jlc57QcLhcGK6/Jwfj2NILrIZEx9xasiiKS4U1UXA7WBzQxWSJND02d+rJEkowkBFJ2Mq+ITA5VRJZ3MksgY1PrUkG0+WZVyqg0Q6y1QyR1ozaQx6UCRBbtrl6lEV4jkDHZn0dLsWwxSc6B7kRPcgm5prmcJPBiebay9Y0COxLIf6orTXeucMymuGyZGBGLKUH40MUOVVGR0SnB7Psl8zcKsXJyYgSVLBVdva2ophGIyNjXHixAm6u7s5ceJEoT6ipqZmXdqgv1SEZC0LEoUQ/PEf/zE//vGPeeyxx9i8efOq17wkhESSJLq7uzFNc9ZGXQ4WmxsS8qh84tVb+cSrt876WyKR4MUXX8Tr9c7Zn6pcc9vnOuaOoXyFuKdoIwm4HAxPJHjmbIa/eOv+Zd3VFFskkWiCf33sOSZjScI+N8OxHA6HiqZrhT5dSBLV/ukAdlFxYE7TSWezjAyPIEmCLZvb8Hq8JDNZFEmiJeTm1EiCjC7hlMEQkNTyqa8+VSKRzMcyVNWB26liCpNUOotAoidqMJqKoEgAEhFTUBfwsWtTPYaWJZVKY+pJBvtj+SFFiorH45nVOkSWJXa1VHGkb5LBySyyJCFJCtUBL+01rsKncSgKiiKTni5alKV8/6xUJovLIeN0qsiyRDKjoSoSuq7jcs7+WZ3qHeHE8FkaqoO4t7RRV5OfxljjdzIwmWEiqdESnr3hxDM6sYw+K14SUCWSOZOptE7jRRKSmSiKQiiUr4/Zv39/oT4iEonQ29u7LiNuK01IVhL8NwyDdDq9ZhbJXXfdxXe/+10eeOABAoFAofo+FAotmFixEOsuJIvdsUSjUaampgob9Vr0Elqp+2l4eJijR4/S1tbGtm3b5vwsa2mR6KYoCT4bhkEsFkUAzS2ty74QLYuke3CUn/7qENnpzbM17GJ4KkUkruNzq8iKQjylUeN3E3bP/tFqmsbg0CBOh4rX5SaV0UgbKXQTagMedm+oJpUzGYymSegmqsuFx2Gyq9GHWtTlUNcNEtMWhcflIoOD0aRGwO3AOW0h6aZgLJ6jzu/MZ1fV1RBLpNE0jXQ6TTqdIpWIIkkOJjWZhOkASaEu7KXGrbCnyc9ESiOrm7gdMtU+J26HhM/jAiQ03SCr5a0OU+SHmoVcCrGcgUOW0DQNSZJJTlspPpd6oY9+ybmVkKV8nOW5o6eoDgfZ2b4Rj9eLQ557vC/ka1scskTOMEssD90EhyLjVNa/YaO1cc+sj7Bme5w/f54TJ04UmhpaEyLXwlq5WL22lspKjieRyE9fXasYyT333APAzTffXPL4N7/5Td7//vevaM11F5L5EELQ19dHZ2cnfr+furq6NWtIt9zGjUIITp8+TV9fH/v27aOhoWHe565VjESWZXbXOumJ59AME2Ho+RRBhxOfx8EVbUsryJxJZ98YT3dPluyFjUEXl28IcXokkb/zVgUNAZXLmgJUBTzIkkQ6k0M3TFLpFMPDw4TDIZoaGjjeeYbBkSTj6Ti6YeJRFTbVetnTHGBLg59k1kTXNaq8aomIFONxOckZBuOJLLou43Z6UB0ODMNEaDlkCSZSGjubw4X0XqfTidPpJBQK5efQDE7RH8uCyCBJMDKVIOBR2dcSLmlZYmGY+dRhJImEJtEzFiOtGYisTrVPRXWrTKY1ZFkBTAIumXpfvobH63KRzOSHcplCoBkmTkWhIeSjN5Ig7FWZmIrx5AtHkd1+DlzWPqvwUDNMMpqJW5Vpq/ZwdDCOy6HgcuR7dkUyJlc0qSWWSipn0DeZJpUz8LkctFa5S6zVtWC+qvaZI26t2R6RSIT+/n6AkvYtqymInHk8lSYky7VIUqkUwJpZJGsxgqAihUTXdU6cOMH4+DhXX301w8PDa7IZWyxHSKxmkJlMhv37F3cdraVra3+Lk560iyN9Exi6htPpwmE62N9exYHNy8sJNwyTxw91cuL8CHKwgVODUZK5vEtlS52PtmovLWE3puQgk83PUJeQClXqIMhl0kQnxtnQ1ITP7yeT0+iJCWJGBr/HiUdVyOgmxwfjyJLEjsYADpEGp4LHpeJQ8vGF4gvd53GRyubyd75SPhHXNAyy0+fUoTpw6BJej4t4au5eWEnNZCILNSEfLodCLpcDBKPxLEe7h2ivyru/PF4vbpcLnyffrNE0Tfon03RH0siyhN/jZjyZJhnV2NMapK3OTzJroEj5AVmyLGGYJvF0vg9YLCfoGU+Q0008bicBp0TYqxJL64Wgvt+M03e2i1/IaQ5c1o7f6+HEUJwjg/nmjz6nQnuth/ZaL/2TafTpscANHokrmnyFTXw8kePR0xFGivqBNQVd3Ly9hhrf2rmUlpqGPHO2h9W+ZWBggJMnT+L3+wvCstJJhPDSEJJkMonL5Vr3xIXlsO5HOvMiTCQSdHR0oKpqoSfV2NhY2cftFrPUzT4ajXLo0CFCoRAHDhxY0he9lq4tjyJ4e7tJnWEyLtfidbs4uKWaV++sW1IfMItUJstPnniBrt5hOsdzjA+PwHQNxmBcZzw5xdWtQXY0VxNNpnC6Sy1DIQTjkXHi8ThbNreBlG9noqMQ0yV8LrnQPkR1yMQyBn3RHE3B7LTFJkhn85s7Arye/NAqWZJJpC8UEAacEuNZyEy7oSBfpyKEwKfkM7EcilywBiwSWR0hKTgVOT8nfvp7C/lkFNlLU6OXqWiM0dFR3KqC7HDh8XqQVReD0SxOh4zPqYDQ8ToEOVQiaZO6gITHN/c1MDCVpieSxqkqBH0eYskMU0mTjVVuGgIucoaJKssEPQ4cssTJ3iH6x6aQ3T4mJD9+l5OAWyGR1Xmqe4obtlSxtyVAMptvxdLXOUTIk39vUwie6ZlkJJ6hrTpfx2MN1nq+N8prd9WuWdB7JVXtkiQRCoUIhUK0t7cXCiIjkUihiLd4QuRy/PaVKCTLtbYSiQQ+n69iUqqXwroLSTFWzKG1tZXt27cXLgiHw0E2O3/n1dWiKNZd6vxYc963bNnC5s2bl/wlK4qCpmmLP3EJCCE4NZxgKq1hRjOkI+P4/X7+9K03rNg1MDYZ48ePPUcskSapGQwnBR6vtfEL3ApMpgy6J3NsaxK4Xc58kd705zdMg5HhETRNY/f2bWQ0HQRkchqjU2k03cQTcOB0ujDN/F2+WxUkUll0049DkbFu2PLtNkzS2Rx+j5tIIkkiB4mciWnoOGRoDqiMZ0ySWQNJkXHIMo0BlfqAa1qMpmshvC6EKUhmsvg9bgwjiWFKJd+bKQSqJCEpKtU1NWxu3UA8lSIyGc33P0rmiKQUqn1ONNmJ6nBMJzfIRFNZkPx4XQrJTLZkXc0QDMeyuFWZoM+FpmkEPA5ypsRYIkdj0I06I7bhdTuZSmY41jWGQ3Vwza52fMFq/C4HY4kcJ4YS7G0OsmE6ID8kX/gsE0mNoWiWxqC7MH5YkSUagk4GpjJMpWcH68tFORo2ziyITCQSRCIRRkZGOH36dL4gtWie/UJ3+JUmJCs5HktILiUqQkiEEJw6dYqBgYE5Yw5rOXzKWn8+q8GqoB8aGuLKK68sDLJZKuWySAam0vzNQ110jiTIaDqSnuWKOpnPv+eaObOElsKZvmF++exREtMuoVjGIGdCdVHqqyIr+N0SY9EUo1NJvE4Fp9OBW3WSyqTp7e1Hdars2rGNVCZHcWt3l5ov6MtqBrKSLcS4DGQ8bnlWgFmSJBTZgcftJBJLcXQwyXgid6ENh4Cd9Q6aazykdQndNAi4HFQXDY6C6dqP6c8U8Hpw6iY+l0oso0/fxUvohklWzxctSpJEwOsmmsoACs2NDThkmb7xKON9U/mAeyYGgNOpkkpncXsUNF0nhYnXnbegLOspqxnopiDkdaNZgXpTIJkmuinhUB1gXrievW4XmZxGVjfylopi0HHyDDXDQXZv3UTI7WI4liOW0QqWXbH7zxT5WIwy43wqcn4uvTHfOMYyUO6GjcWTCDdt2lQoiIxEIpw6dQpN0wiHwyXz7EtuDipMSFYaI7EtkmVimibPPvssuq5z4MCBOZV4rhYp5WQ+ocpkMhw+fLhwbCupoC+HCOqGyWf/vZNTwwkCqkAmi+Zw8Oyoyb88P8D7D87fOHIuhBA8c/wMT3Z0IkS+7sOpKnjdaUBgTjd4dKj5gLau68gShY1K0wyisfzQnpqqMK0tLSXt2C2qvSpBp0Qsq+P2eshm89ML05rBpsYAPrcTp9OBpumksxqqquBQHCTTWc5PpBlP5KjyqkgSJOIJUpqge0rnliYfboeEblgZVWK680D++HRTMBzLkDJk0gMxav0uNla5GYxrRDMGupZFkWUaAi6agi6CXs/0nJTpRo7TdSC1QS8tdRJDkwlCfj+qQ2EsMkkyJ3ARZXw0g9fjIev14nI6C4KS0wWqqpLOaSXFhZopkCRBLqcR8l2YOZ/JaQgBDjkvrpphosgKkcl8QL6uro7GhkbcjtLWJNbnrfKqVHmdjCdytIQvJA5EEjnq/K5C4WThOIoC+TPrg5bLWm/cMwsirQmRkUiEs2fP4nQ6C6JSVVX1khCSS22oFVSAkMiyzKZNm6itrZ33hBdXtq8FMzf70yMJTpwfIzHczb62fKv1lVbQl8Mi6eiPcmY0iV8xEJpGKBjANEy0WJqfHx/lndduWHJRmm4YPPTUEU52DxQesyq+A6qET5VJGTJVbhVD09CNfBv0LXW+wqYYjUYZj4zT3NhIKBQilkxPf9Z82qxhClLpDLIk0R6WiQgv44kMpsi3FNla52NzrZesphdSawNeN7Isk8nlZ5kMx7P5zyQE8XgCRVGor/YS1yQGJ5M0hdwI08TtdOKQJVLZ/LwTEzg5nCCSAWP65mMknqMh4GJ7nZdYRkeWvYR9TtyyIOB1EysakmUKQTStoZsCn9NBc0AhnXGSNiWiSY2cUGgIOdizoQojlyWVThMdHs4XU3q9+P0+qsMh6vw6PdOTFZ2KTM7Iu+Nawi5cqkImp+NxqiiygkPJF05a0xEHo1lkWcKpyGQ1g5Pn+jEyaaZ2BAl78802hRCkNBMtliXgUriqNcgTZyboHk/hcSrT7V8UrmgNFiw/3RQcG4hxfDhBOmcQcDu4rCnArib/rB5mS+VitpCXJAmfz4fP5ysURFrz7M+ePUs6nUYIwcjISKHVy3rf1a9ESBKJxCU1ZhcqQEgAmpqaFtxs19q1ZQXbJ5I5Pvq9IzzXO1X42/XjOb68xaDat35CMjSZJJnO4HFDIBRElhVyZhanIpHM5QvWliIkiVSGBx5/nqHxqZLHDVMgTQ+LavMbTMgORicTyLKE4lBprvazuymQD6qPjxNPxNmyqQ1FzQ+HsohnNA73RxmKTotIQ4DqYAAmJ6gKuHA43VQHfYR8+RoNC6/bSTqrFawaj8uJ6nCS09LE4ymcLidutxu3y81EKoHAk7/rlGU0w0QzQJJkAl6V85NpxtMmHgUcHgWJfPfjkXiWuoCTZivVVwj8nrxbS1Xy68QyGl2jSWKZfADf6ZBpDrm5tr2WwckEhnBhpMGjynhcTnA58QcCCNNkaCrJ+Wia1PgUDjFGtVel1uMlmjVImPkuwo1BJ61V+cCx15XvEKwbGvFsfrMxNI2mkBtDCCaSGslsvlZlQ7WPKjf8668Os2dzMwf2tHNkzODZRAQcCbxOhd2Nfm7ZUcP5ifwck211XrbV+2gMXrBQXjg/xVPnJvG7HPhcCtG0xn+cHscQgn0tKyvyXc8W8oqiFJpJQr4H31NPPVUoErYKIi2LZT3m2a+kINFybV1KVISQLMbFipF8/PtHeOH8VMnfnu+N8l9+eIxvvu+qFa292vTfWCzG+PkunA4J1eObrluYnsehC+o9amEo0kKMRKL8269eQDdNvB4XqXSWiVSOzuEEI/EsigQtYTdht8LuDUGGok6yuonf5aAp5EKWYGpiDEyDXdu35mePFM0HSWsGz/ZMMpnUcKkyIHGkP0q1W+HqjRtQhUE8kSAyMkjU4cDr9eLzeamtDpPKlKb8ZnMaTpFhIJ6kpTaIy+lElmWmEmlcDrnk8xbuOCWJrG4QzwoQEn6vm0w2kx9JK+VlK5LI0hR0Icn5RoxWPy9JyjdtPNsfI5rRCbkdKLJEWjMYTBi4x2IFARpL6yiyi4DXTTKVxUQwGM3SM2WA5MbhNsnkdEayJi2OLNUii8Op4lQdVHlVFAk8TpWsZpDK6pwdTzGV1hFCoKoOanwqrWE3jUEXOUMQ8DhxKlIhC+149yCPHu9nLGWwb3sddQEXiazOb85NcsOWKl6xde7xzYmszvGhfA2LlQ7sdzkYiWU5OhhnR4N/Vo+vpVBJ0xGtqaO7d+9GVVWi0Wihyr54nr01IfJiHPdKChJt19Ya4XA41jxGcn4qxzM9yVl/M4TgN+cm6B5Psrl2+V/uagoSrVkrr9jTzvFciufPR9GmO85OpTRMAXdc0bRoqm9n7xA//00HelHfqVhW55neOLGMhlMCDYnTY2ncpsnGjRLtRZ81p+UYGBzCoTrYvqWdZDqLz+PKN47M5Ar1FpNJjSqfimP6DkzTdcaTOUYTOm3VXqpcHmrr6hGGxlQ0RmxyguHhETweTz5oqroxhEQmGcNrJKkN+ZhM6XhMhZyeRXU42FLtLnT5LcahyKiKA11PYhgGmqbhUByoqkpOyyHQ8xuHEDgVB/GUNdwq/69/PM5kKkdDyAtCkNM0qvxeRqJJhmPigiVD3oKLpzL5jDPZwWA8itOh4HZIgIzf5WAylSOtONmzuYFsNkMumyWbSjA1MYHqcuFyu+lLwGTGJOzJC5duCIam0nhUBxvDThzTI4KLBTurm/SNx4lGpxgLumkM+wvCcHwoweUtwTlnvccyOqmsXhJDAQh5HESSGomsjsux/HqTSpuOCPmbt+KCSIBsNltoNtnX14ckSSXtW8pVEDkT27V1EVnKXPW1tEgSiQT9U/mMnfnom0yvSEhW4toqrpy/4oorqKur45ONOb76eDfPdE8Qz+gEXA5urNd5yxXNC67z1NEufnP49Ky/dY0kmEqkqfKqOBwqSNMDsCYyDE6laavJf9ZUKl+pHgoF2bihJT+aFgr/H0nC53UT1xIoioxTzY/cFVyYUTGV0mibro80TAGSQktLC5lcDlkIhscnOdwfZTwZwUBClWBzvZ/rm6oZTWqMRtM4PU4agy7qAy58HjeyND1fRAKnQ0GSZDI5jWqfyvnJfOaUS82nded0E5fTxYZqPy6neqHliSmw+v1m9bw7S9Py1pHXm5/KqCr5aYVzbZi6YebjJoZErT/fht56jtfpIJ7RyRkiX+zo8eBS863nY4kEIxMxBsYzuBSJtHDhVFVUp4rPqTA4maQ17MalOktmqADkDBPNMFFl6B8dJ57KsGfrJvyBAKOJ7HRn4dk/a7dDxumQSWsmgaIAeyqXj824V2CN5M9h5QS3i4VkJi6Xi+bmZpqbmzFNszAhsrgg0nKBraYgciZ2sL2CsISk3Hc/Qgh6enro6uqi0bfwhbOpZmUzT5br2tI0jcOHD5NOp0sq56t9Tv7H63cwGs8STWu4zTRnTx1HnqetiKYbPPLcMY6d65vz72PxLKoioTpV9OnMJ0Q++ympQ8DnZmh4lJGxMRobG6ipqr4gHsUIQTKVQRg6yMp0W3i1pHbGUVQzIUsSHreLeCo9/XroiUNMeHC5smDq6EKmczRJJpViU7WbXTX5jrPy9A8ymckfh8Mh43O7SOU0IvE0Dlmmxvf/s/ensZKe2X0n+Hv3Lfa7L7lnMrkWq1gbi5JKi2WXpR7AaqkHsgcYa+yBDX3QJxkDSMDA/iIMjNGMIFhtQxhgWjK6PW615LExtmxZUkmqKtVeZLKYJJO5r3eLG3u8+/I88+GJG3lvZpJFJkmJ1V0HKBB5K+KNiHd5znPO+S82x9ou94YpYVbNroHGsY7DcsPFMnRs2yacobSkVEnCs3R0ICtK6oFPPPutlWay7JuPvO8sw8A0JUJUJHmO51gIISnLCjFj4h9cHtsyKYVKpJ4fsOnXuZft4xmSqiiI4ggxFWiGiTTsGamyohF4hEk2b/3Zho5p6MRCtTfjNOPi1ZvUGk2Ob6wp4uQjohMo1eGLW1N0DQJHJbp+VPCZk62Hkk8lpNIfs/R3HMR/VCuSdwpd148QIvM8nztEvv766wghjvjZH7TMHvc7Pc6MZG1t7bE/868jvm8SCajs/kHJBpRlyeuvv85oNOLZZ5/ljTfe4EfPLfCX1/pz3xFQXuQ/9sQixzuPl0jeS2vrYEgYBAEvvvjiI4eDy3W1Kx+NyrfVzJlGCf/hS99hrz9WSBfPRtM0kiyjmv04x9SISosiL+4bdqGsbGVVcv3WHcIw4vyZ0/i+T5w+mhAqASkEZ1aa3B3uECYCz9LRNI1UqKH0al21DUxDxzTNeSIA1XLZGSdUeYpvm/i1Bo5jM4oLxkUGusFoNKK7v4/rOHMZc9u2sQyDSztjbuyH5NJAl4K2Z3BuOWCx5jCKc6SExbrLYt2hLKt5e8/3XCoh2eqHCuHj2izUbIYZFGGKoUFSCCxDY6nmEnj23NcEVBLRDR3P1Kg5hkKDaaq6Ni2LOC7YbDrYpo5lmgjJEYi0rEpqrk0lJYFjExBQVYJRlGJogt3tLSzTwPd9Go0atSBQ5lymzmLNZn8AcVGx4HmMwpTtYYRLTlEswywpSCnZD5U0fsM1eelUe854351m+JbBxzcbfOp4c/69KiF5Y2fKGztTwqyi7Vk8t1HnieVH8xo+ahWJpmnvObHZts3q6iqrq6tHCJG7u7tzQuRhP/t3mxiEUJuUx6lIftDaeoz4Xhf+IHl8UIkkiiIuXLiAbdu89NJLlGWJEIL/x889y6/8+zf44uWe+l7AT5xf4p//t8889me929ZWt9vltdde4/jx45w9e5Zr+zFv7fUIbJPPnmxTe8Cr4u2Ou9sf8R/+4juEs5aIlPJQJSFnbSGd8xttvvLWHhnGfMgaphW2DmY2Ia0kT547QymZcSyUdImhq7lIVamHpBSChu8iSDm3XONmL2YQq2rEMXXOLQesND1810EIQfhAQhpOI8I4YbHm4LoulmWS5QUGFdK0WVldQatK8rIgjmPiKGI4HOJ7DuPK4vqwwjBNAhtKKdkNJVJP+diaz2Jg41gmFRyZDwHc2p9ybT8iLdX9Z2kVT210qMcZu5MUISSdwGKj6dB0DSZhgqZruLZFNxHcvTchLRRjfLXhUo0ShvFBFab4G0+ut9ClQKI4L/0oZ3+ak5aKSFm3dXYnGdK2QJbkpapWTrQcFmsWaZIQJwk373UZphW26+PaSvxx0QXLtlUlZugca3sEesW/+dPv8OMfP8fx1UW+dG3Atf2YJFeyKk+sBHz+bIcXjlVzd8gHxSJfvjPiL68PcS0lC7M7SdmepJRCPuTaeHB/fZQqkveb1B5FiDyoVg4IkQ/62b/d7z/oRDzOsP0HieRDiINdxgcxJzlYsDc3N+cyLEqaQ1JzDP7V/+Hj3Bsm3B0mHO94czOhx43vlUiklNy4cYMbN27w7LPPsrC0wj//r1f58ys9skL5kC/VHP4vf+ssnz0kxPio416+tc1/+fp3H1o074dGlivi34pv8NRGmxu9iFFaghQ4hsZGXVJ3DM6eOUmcFhz2DJxXJRL2opKr3ZBpWmJrglOLAU+u1FhvuvQjNStYDGzqrollmkRpTlVVuI6NZRpEScpwOCIcDfBdB820sWx7xgSX5KXANKAocmzToN2oEXguWaOB79r0hiPeujUizQr8KiOt1GA9ME12RxEnOx4nFj3iLKcsj56nSVrw1l5IWUnqswSdSYe39iKeXfE40fGoJNiGNvexF0KQZRlv7oRMpIvnVlRlyShWsvbnV2rkpZpfuJahiJRSYNsWRSnYGqVc70VUQnm1DyLFUl9rusR5RVGZrLQcmg4szobnvu8TS5PB1CDWC6K0oghLtgcxJxo6npHg1APqvodjHQAcKv74O28R4VB5Cxzr+Kw1HKZZxct3JtiGzk+cf7Q6Q5iVvLY1pemaLMwSTNOz2B6nvHp3zBPLwUMExr9O+O+D8WFUR6Zpsry8zPLy8pwQ2e/36fV6XLt2DcdxjvjZH97oHjyfP6hIPiKhadr7HrhLKbl27Rq3bt3i2WefPdKDPNw603WdzbbHZvv9JZDDx3677324vXZg2PVvvnWX//pml9pM+qMSkm6Y8c//61X+3//HT9CZLTKHE4mUkq+9doXXrt7BdSwSKeYtrMNhmSZ5WVFUOYau89yaz2bTohfm6AiMZISsNE6dOEaU5LzdRvPafsTF7RAJ2Lok1Exe24nIS8ETKzWah+C5Sr13Bu/VNNK8IMly+r0eosx59uwJ0rsT9mKBiFJsUyctBFklObXoYerKbOtg6Nyq+xRlhet6SDOh1bBxDY28KCjynLKKiUud7mCEr1f4vkfdd48MrfenOWlRsRA4gMRxHPS8oB/ljHOX1bYz92IBdf/lec7t7X1CXGquhWuB6XmIStCdpuyNE86v1OabHsNQyKEozclKwW5YomsaTX/WdkIyjEvivOSZtTrejEvTOPRdKyG5M0goK8lS/X6ffpoJ9tMpp1xJMh4QDQWu5+HPFIwLofHG9h51b8SqfxbNqdNwTcpK8NZeyKdPtOYJ9HCMkoIwL9l8YPPU8ixGScE0Lef330F8lOC/H3ab7TAh8vjx41RVNfezv3r1KmmaHvGz1zQNXdff8/n5QSJ5zHg3J/r9yKQURcFrr71GFEW8+OKLDxnGHNx8VVV94KSlwxXP4d+ZJAmvvPIKpmny0ksvYds2Ukr+8OIupq7NH3TT0FipO+xNM75yrc/feV4lwIOdcl6U/PE3XuOtW9uHPlXiuw6GrpNkOWlRcnOQ89bOiKyoaHgW51dqHO94tH0LPY/pD/osLS8zHPSohKARuKqF9UDVk5eCG/0EDUnDMWa8QkmYCW70U5491sbQIE5zGjV/NlQ/pIVUVezu7RHnFUtLSwg0XnpihVfvTrjbn1U4ps65pYDTS/fnUlJKmjWf0TRB0xRpsRV47I0ifNvENQxwXcpKINIKqoqd3V2FwPI8Go06nWaTJFcmVgcDZNu5nzQMXWMcZ2S5M+OhKI+V6XTKoN/DbSzAIMez77dapYSm7zFIFCNfm+3Q9VnS1DRNuRzGKcsNDynV+zQ0fFtnnJRYlk2alWhoTOMMx7JAY+Zhr1pQB+HYFkWV0x1XdM5s4NkGSZaRxDFhFNHv9yk0izDWsRC8dvk6x9aWObm5hm8b7Ec5SVE9MpG4pjFn05uHPjMrBbZx1Et+FBdc78VcuRvjahUbSXFkA/HXEX/VplaGYbC4uDjX3zss33Lz5k0Mw0BKSbfbpd1uv+u15QeorQ8xHlcmZTqdcuHCBYIgeFuHxYNdw4cl9w5H0RuDwYALFy6wtrbGk08+ef81EiZJ+RAvxNCVke04KY4cN8kLfu9Pvs5ef/zAp2ozAUUQUvD6XspbOxNVdWgavTBjGOcI2SaoIqIo4sQx5ai4190nTjNKIQFF3NN1nTBJFCJJakRZgW/ph/MDnqUzTQu2BhGLgUWroYbHhq7PRQOLouD63R3uRRo5FpenI1bbNU62S55adjnRsjBMC9sATR4aTEtJM/CZxum8SsqLkuXAYH+ik1U6ll5RVpKkgnZgc2azhaFrZFmm2hGDIds7uwSeh60paK9pWeSzJCJRFUB9toCGs88q0phhv8/m5ibdWAA5EjmzFtbQNMiKgsC1aNYDwijBse25ErGUEqQAqYiWhqHjODZppqTuXUf5rdiHWkZZUYIGNc9Rm5DZ321LVZRy/roC3zVpN2pzE6+iqgijhO1kyiRKCMMpvf6Ard09jh0/TavhH0kiWSm41Y+ZZiU122C96XJtP2KzpeFaBlFe0YtyPn3iPrLr7jDhv17aZ3+aM52klJVgaO7yt59eOsK3+auOv+7B/wEQZHNzU3Gr7t3j5s2b3Lx5c06IPKhW3o4QKaUkiqIPzR3xw4rvm0TyOK2tA0LfyZMnOXv27DtWPh8WV+VwtaPr+tz18cknn+TYsWNHv4OucXa5xit3RjTc+5DTrKjQtKMkwe5wyldev8Pqxjv1qCWVZnJle4itaziWQk3VNJ3BNObCzX0+uaxz5vQpDNMkzVU76z4aTMmwH/yzEXgU0wyNA6vX+59UCYmua1iGRiPwGIdqQK+hFsQojrl++y43IptMGtQcA9OyuNsP6U8NPneqPVvg1KKrBBAhTFIagT8zi5p9K9UlY73pkpeC24OEaSFxLJvFAM4vB3N9KddxcB2HTrtNWVUkcUwxjbC1itvdIa4BtmWRCZ2Ga7LacGafIdnf75EkMadOncTzXAoSfNtgktxXES4qQV4JTgYqebQaNeK0mG8ahBA0PEtJkqQlLdckSVNlL4BGx+JIEoFDXBFDp1P3GcYZC75NWQkljZ9V+Ca4lk5ZCYoyIyo1ru9NSYsK19JZW+ywN44xNYkUJTe3e1zd6vG3nllne7VgYWGBwnD5o0s97gzSecW8XLdYbTh0w5yyUuTX59brfOZEa36dv3p9yCAqOLvksy8jhBT0woyv3hjycx9ffWzdrvcbf92J5HDouk4QBDiOw2c/+1nSNJ1XK4cJkQdosMN+9nEcP5ZA7LuJL3/5y/z6r/86L7/8Mjs7O/z7f//v+Zmf+Zn3fdyPRCJ5t62td7vQCyG4cuUK9+7d4/nnn2d5efkDPf57iYMFpSxLrly5Qrfb5VOf+tSccftg/N1Pb3Bpd8rOJKPhmhSVJM5Lnt9s8tlT6j1X7uzwh195hTgr8FwL27KJ0/TIXETXNFzX4c17Q4pKENjW/HsIIZBlTm7YnDx9AkNTLHQ4aJnd/z5SghAVdd9jNI0xNY21psfWpMBGQ0dSCsk0K1lruGx0akwP8U0ksNvtsd/rId0WVSpYdHUM06QsCzq+RT/KuTdKeGr1/i7sYLBfD2aoGAlb45S7w4QoU62Z4x2PkwvKubHSlKx7y7cJXEfNGQ79kEJIolyg2x5PnlmitRBxdXfCMCnI8hyHkmXLIU8MDOkyGAyoqpKTJ08yTEoGScRKy+f8aoO3dib0o2J+nlcbDhstB99xmcQZhq4kWnaHEaVQII6zyzUu704ZJCVIiWVrBBacX61TlSW6rlNKye1+wt5UVYQHcjCeaTBMKqqqRAgFEHC53yrdHmdc34+xTBPLMIhLjXES0/FNciEpK4MF12OpZhHGCV994xbHGnf5RlenW9icWW7QatSQ6Nzqxzy1Vudnn19Q5EXXYKXuHHFi3J3OpGY0DYnayKzUHXZGKYOoeAgJ9lcVH6VEAke7EK7rHiFETiaTOcv+zTffpF6vc+XKFRYXF4nj+EOrSKIo4vnnn+cf/sN/yM/+7M9+YMf9SCSSdxPvViYlz3NeffVV8jx/W1n6R8WHlUgOHsBXX30VYO76+Hbx4qkO/9efPs//+I073Bkk2IbG3/zYGv/nHz6BqWt84/Wr/OWFyxw0PKI4IzMPuBEOhqaRlSUaECcZtqmha8qXwpgh37I0Q9MNPM8hywqkaVDz3JlaiDavSKRkLm4YJvfNm55ZqxHnI/pRjm4Y6JrBUt3h06cXidJDBmFSMhwOGY/HrKyscKVfIEWBYVjouj4/56ahMUmOXltNm+lhzXxF7gxT3urGFEWBZeh0pxn9KOfZ9TpPrbcJ0wzPNGeD+QTTMHBti2mUcm+UcKMXkxQVtu3Q2It5arXGCycXyGYIt4Zn0huM54xnXdMwgyZfubJPPPtqdXfKueU6P/rkMnf2p5QCao5BO7Bo+B7h7LdPkoLv3BoSFaoFZ5sax9senzjeYhAVGKaJFCUdz6KqSnzPJs1Lru6GbI0zJQpp6qSlYHeSc3opQEegGz4I5Rm/c28AKBOtrVGKaWgEtnK1lEj6k5K0lDy3UUfOEGgH5NVBDknokpgOq55GNBnT39/DdVxs2+PqTsWPnu08EnAiOZj3HVxiOW8NSz4cP/B3Gx+1RPJ2Mxtd12m1WrRarSOEyH/7b/8tv//7v09VVfyTf/JP+Nmf/Vm+8IUvPNS5eD/xUz/1U/zUT/3UB3a8g/i+SSTvZqE/sMJttVq88MIL74lz8mF5q4/Han7hOA4f//jH3xUU8EfOLvBDpzuMkgLXMvBtg7Kq+C9f+y5v3rgHKFYz2tEHN06yGbta4FgWlm+yKiUNz2QUF3gGlGWOZlhous1Gw5rNYyThrHVkaBo1z8a2bZIsQzMMLtwesDVOERLWmw6nFgJ++GyH/WmuhsGuxVrLI3AsiqpS8xkp6e7vk6Up6xsb2LZNLYqBjLIs0WZKBbZtI1OJa91/4BT73Z4TF7NScLUbIipBO3CwLJOiKBjFBffGBevNFOMBx8GyqgiTin5ScmU/pSwr2jWfNM/ZnZTkleAzJ1s4s/5cVkh83yeJptSCAL/e4ms3+kRZgasrxFu/KIizkk8Zbc6uNpFCkOQF9cAjTFQSqYTgzZ0pg7ig4Zo0fJOshCvdENts8MRakzjNkdyf1WVFRVoKhpmkZt/n9dQcg6SE3XHCp4430XUN11LqwDuzeyDOK9JCUHdNHMsiy3LQoBU4DKOMohJHhvUH0Z+EXN/d45nTxzh1/DiVqIiiiOEkZLc34Wvf2Ofs+sIc2nowW1wIbJZqCvxxouPNZkBKXflYyzuC6hrFBVf3I0ZxQcMzObsUfKj+8Y/DIv8w493KoxwQIn/jN36DX/3VX+Wpp57ihRde4Hd/93f5xV/8Rf7Vv/pX/ON//I//Cr7x48f/ahLJvXv3uHTpEmfPnuXkyZPvGXL3fsQV3y62t7d54403MAyDM2fOPPKmCtOSb98ekpWC5zYac96KrmvzhzJOM/7zV1+lN5qqqmGWO7RD1QNAzXeIUuUoWFbZ7Hfp/NiTq/zJ69uMohTTtHBMl9VA57lHSIdLYBKlNDQDwzD46s0Rd3oRINFQrY3tccYPnemw2nBwHYuyEpRVxSRW18c2dLrdPaqyZGNzE8MwcGyT9ZbHtW7EOCnnA9/eRLXLziw3qPsKKeZY1hwsADBNS5JCsbOlFOR5jqbptOsBozAmyisa3qNv5Zv7IVlRsNYOqGbtItO3GMUFvZntLUCaJkpTrNHk2OYal3dDhG6xsegr75eiQMtzBpOMN26mlCs1PN9jbXGBUZjMgQeDqFDWtp6ljMAkOIaksiy6UcFaVvDgnl3TNOJckOYFa62ALC+QUmCbFnmZkRaSJC8VQisvZna/BhJlQGboCmaaFcX8e8RpjmXoBI4NHL2vNaDpO+hMefXyTSbTKU+dOUmz0SQUDs8sGnzuqTrT0ZA7d+5w6dIlHL+OXWuyubrES6da/PFbPa7tR0zDEqHDyRWTz51uz83PdsYp/+n1LruTDFNXOm6v3JnwU88sPbbc0PeKj2JF8l4TW5Zl5HnOP/tn/4xf+7VfYzgcfkjf7oONj0QieT/wXyEEly5dYnd3lxdeeGHuTfBe44NsbR3MaLa2tvjEJz7B66+//siS/0tXe/w//+Qa/TBHIAlsg5/9+Dq/+PlT8zZEbzTl3//FtxlPY0Dt1n3fmQ9HD6DFzZrPOEoe4n6UZclwb5fnOwLjxCqGZVOzderW/VbHQaivqKFJZRB1ozvldm9KzTZxHRsNSPOcfphzux/ziRMLpEUxlzgH1Vq8s7OD67psbmxQC5QUSZaVBJbO85sNLu1OmaRK4iWwDZ5crVO3dZI0x7UtTNMgOdQhM/VZe07ct5O1LItxnGIYOo3ABfHwvSGlItnVPFctzoBj23MdsLRQC2wYhuzvd1lYWGRtdYkwyRknGbZto2samqF4TK7rIswczdIoy4LpMGFvr0u7WcfzPEzLUQKPHLW91dAwdTWjsU1jLhp5OGxTx9J11aKzLSzDJs0LSqlhG8ozBalQeFJIkqKi5tpYZcVS3WV7FNM8pCIc5mpmpSGo+w6TKEVKGMYFmm4gqoz1hsPNfsLVrX22e2PWNjZY6rT43Kk2ywsNlhc6nDh1mq9c6fKla1361wfI72xzuqnxzEabqRdwp9BZ63j8yLOrLM2kcISUfOX6gO4049ySP79Pb/UTvnxtwEbLfd/OjI+K/zUkkiiK8Dxv/r63m6V+1OIjkUjg4d31g/GoRJKmKa+++ipCCF566SU87/FJhB9UIimKgldffZUsy3jxxRcJguCRLPR7w4T/23+5QpiVdGo2hqZ0p/7td+5xYsHnv3lulZvbXf7jl185Yh4lpJzLn+i6TuDaBLWA8fR+EpmmpfI6FyUyGhB4LidPHFOGWLNF1DJNXNsiKwryokR1KAQL7SZ7+/vQ63EnNqkqiaFDWar3mYaB7ej0U0mS5Ud213Ec093bo9lsKttTKdmfZvSnKU3fpe2brDddluo2w0gt7G3fwjZ0DNPA1HXirICswDRNPNtiGic0PYu2b7EfZrR0C9d1iNOMKKvYbLvIqpwlIH0G21UnQtOg0wjYHoTYvoWGSnRCKj0s19QYjUYMh0NWVlZYXlyYe5T4lkGex+iuh65pczBCJaHT8DlzcoFJlJLlOXEU0e0NMBBMMo0y18ksHccyZ/eWSpIdXycvy4cIkgAN16QTWOxOMhzbJs1zSgyyouL4cg3XtuYM++6gSy5NbvUi2jWHM4suSZYrXxOUPtxiYHNqQT0P0zhD1w0u3B0R5koiX0NJyJ/oeEzSkiivGO1t8cyCwfmV+9bN37w15MvXx9T9gKc6TaZpyd1RRC2EJ/19Ai/CoyAe7BJqCwRBwDAu2BqlrDacQ9dCY63psDfJ2A/zDwUm/FFLJI/TagvD8PvOrx0+Qonke4VpmmTZfTTQcDjkwoULLC0t8fTTT7/v3ugHMSM54KzUajVefPHF+YzmUcf+4lv7TNOS5bo9v2mansXeNOM/Xtxl3Ur485ffPLLbfzA0TcExx2GMYep4tsvXr+/zxtaIrKyoKqXp9ONPK8JUfkiRtyhLilIlEM+xMQ2dSpSgNTheq5MmKVt3R5RlRhQpOKtpmpiGiZA6sirxXMUMj5KM6WRCv99naWmJWr2uWNT7CTf3Q/JK8VdavskPn1umFbiYh8T1TNNA17UjO/UkL9gaxui6zlrT45n1Oq/eFUSlzmgUoWtKuv3JGZtc2fZC4LpUQpDmOfXAZyXI2R1qTNIS3zaohCTMlEaWIxKSOGJtbY2lTusI2my57nB3mLA/Tag7JrZtMwwTPMvgzHKDaZyh6bpybnRdmkJJ0LdFSf/mgN3BBM/ScR2bSjPRdI2NlouUMI1TfNdmGGbszXSsAsfgzFKA69jKjVGAbVQ8udFio6FanFJK7u7scntcURoe9/Yi7H5KxzN44USbvVFEXkkcS6fl2Ucqzte3x0wyQcu3EJa6b4axAi48u16fU4IGgwH/5k++wxc+/SStRp0LdyfUPZOVWbXhWgamodMvBU889yQ337qIbduMx2Nu3ryJZVkYQZsoFtTso+zsg4G8eGDDKKVSGrYM/Ugl917jo5ZI/rdiagXfR4nksJT8nTt3uHLlCufPn+fYsWMfSPZ+vzOSvb09XnvttUdyVh517EGkejcPfndL17h89Tpf1nwCzyUvS9I0f+h1pmlgGUpJ1/c9qkpw4XaP794dYmjgmxqG45IIjS9d2edvP71M8AhDKIA4Tal5LnFaUvdcitl3PbPWYSceoGtgaIIiL0i1iqQQNBo+w/EE27aZjkckScz6xsbcIOj2uODy7oTANqg5FqWQ9MOCr17d50fOLhC4Noauq2SmaeTF/US7N814fXvCNFU7bM8yeHKtwd/+2CZXd0ZklYtnGSzVbcwHHtQ4ywnTAttx6U0SVhsOxVqdm/2YMKswdJUkFo2EMKpYXVlheaHFOEzJS8EkLTF0ldSfXa/PrHdLkiKlHTg8u9FS3IzZ0psWFTf7MXsTxbdZqFk8c2KZXlxyd39CLiRambDgCqqwZCIDfN/n5n7Glb2IvIKyUqZbG+2AswsO6/WW8jGxdDzLwLYMhKi4eW+Lu1NINYemY+I5NmGasT3JsfemPLfRUhuEokQi55uQtBCEucTWBKIscR2bLC+oOyajRFn6HjYLS/OCP/jSBY6vLTOOTVaaRyv9umtyd5AoxeOZgdTGxgZCCEajEfu9Hkayz6t7PU52XGq1GkFQYycsWa4786QEcHkv5JW7Y7rTHN9WasQf32w8Vuvro5hI3qth1kEi+bAqkjAMuXbt2vzfN2/e5NVXX6XT6XD8+PHHPu5HJpG8m9ZWURRcvHiRfr//jlyMx4nHbW1JKbl+/To3b97kueeeY3V19aHXPKq1dWrRnxH7xHwxrMqSwdYNNj1BUToUpSL1ObalDJly1YZSA+6KciZTfRDX90Ml86ILLMfFchysSjDJK+6OU55cPrrTOWiV1HyP6Qzee7Ar9xyHM75Hd5pztRuSlmBaPrIqOd4xWPIkOzs784f3wGWuEbgUpeTq7j6Ooc9RUaau0fBMhrHStDJ0DcsyMA011M9ztZhGecmrd8ekpaDpqXZUlFdc2otxDI0zqw00tDlz/HDkleDN7Qn9FJJ0iG0aHF8MON2xWWs6hFmFJgXT4T66rrO6sk6zHjCcJtwbpdzoJ4RJjq6p7/r0Wp1Pn2gRZiqhLTU88qKi5rtMo5RCCL57b0IvzPFsHQ2Ne8OUcVLyyWNNntk4zihMcE2daqZeHIYhO90e10MDqRm0A4daI6AsBfcGIa4hObt09DpFccLO7g62V6OIKhq2SeA55HmBa6oqqzvNmaZKvqURKCiyFAIJWJZJkmb4tpLsSNJMzXxsmzhKqA7dQ7ZlzrlGV25vc2UvpThxjHObS/PXhFk5Vwfuz66/kJJ7o4xBbOA11/n5H9/gP313h63BlP39kPBOj7pj8EKrw3jo0W63udZL+P9d3CMrxVzP6z+/0WWUlPzNJx8tLPlO8UHaTHwQ8VE0tfrOd77Dj//4j8///cu//MsA/MIv/AK/+7u/+9jH/eic9e8RQgjG4zFCCD73uc+9L7OZR8XjJJKyLLl48SKTyeSRGl4H8ajW1t94cpnf+84Wt/qxkp6oCnbvXEcvM54+c5RAmRelmmMgadV8hFTufIeTb1lWDKcxGuA4LrbrUuQ5GiDKgiwX1H2PsqqIkgxNUw6BNd+b/fvoDiidSYc8v9nkzEqD7UlOkqYsBjYrDQdRVezs7GBZFo7jMB6P6fV6LLabJMJAajq29UAVpWtzwyR75tGRZAVQ4M2Y7Fe7IXFe0Q6smQwJdOo+u+OIeyOlliuB+iEtrIO4tDNlKxQ4mqDpmWSl4PLOGGSTj23WkFXJzu4eruOwtLxMw/eYxhm7E1UB6cBS0yfNcoZxwWtbE1482abuWri2SV6qhXkap3iOyd4goR/ldAJrzub2bJ1+mNNPJb6T0wkc5Sefa9i2TavVYnuUIOMhgSmJo4g0SbAsC0vX2R4lnF7058fLsoyd3V1qtRqaWwM9wnftubQLgGXopIWSiKkqQVSJmSFWimdbTOIMzzZJCuX4KJGUVUmYVjR8R8ndoPxikrxke5QQzbxPXENw4c0r9AcDnjt3kgKdvUnOZ040WazZ3JaStJT8f1/d5dJuSFYKDA022x4/+fQKg7jDICpouDorToWRTbhy5QpplvOtocdE2Dyx1sKyLdpY8/P+ic3GeyY2ftQqksedkXyYgo0/9mM/9qFwfb4vEkmv1+PKlSvous5nPvOZD+RmkVLyZ5d7/KfXdphmFWfqFT9+/N3fuHEc88orr2DbNp/73OeOSBw8GI9qbdVdk//7zz7Df/8XN/n6lW3GO7dpWYIXziyy1nh0kmwECpmlQsOzLXzHIs8ytnd2aLkG+6mGZTuUsyRSzTSzGq7BNFZSGLZpYllKcDGKMw6m9EIoPsA0VTvOtaaLbegs1x18EwKvgZSCwWjC3t4eQRDMVU5B9c/3egOqJCaPMlKhsVD3ZoQ15n3wTs1FcNQjJJ1VGJphohvmPInYtk1eFFi6TpxXs1/OfKhe912mSUqcVfRTcDSBN5NUP/jv7f6UVV+STwfUghqdTntehYECPgghafo2ZVHiWhaOZdGdJHSnGaeXa5RCHuntJ3nJOMowTYsj6VIqxePdUcSxZousKNE05sgpTdNA0zBNkyC4397Ls4wszck0yb2tlFoQYBgGg36fdrtNq9UiKSo82yRMcuregeS+al25lnFEVHEap9Q8G1FJTEPnxILPlb2QUVrizOyDNSRLno5rGegaTLKS794dMZ21rISUuDN2fbc34E/6I04f3+SHnz4+l6KXUvLKdswreyWbLZfAMckrwZ1+gq7BL7x4bC5Xo2KVc+fO0R1O+fKXbmCKlFu3b2OZJkGg2n69BPpR/n2fSB5nRvJhyqN8mPGRTiRSSm7evMn169c5fvw4u7u7H1gS+Wf/8S3+l5e30HUNISRf1eA/X9b5g7MZK4137mv2+31effVV1tfXOX/+/Luy9nzU/OVYx+cffWaRVniTbGmR5UaAbmiE0VFEj5SSZt1nHB6G90rSoqI/mhBOp6yvLtFY8fjTSz0GYYxrGgipvMgXazabbW8OFS6rCsNQHuf1wKOoKobTlK/fHLA/vY/EarkmP/rUKnLu054SRRGjQZ/1lSUs10PZ1Sr48TRO54zd3I54+c6IYZRhIEA3KYXkxIJPzdbf1jPF0iSiKjFMH9MwyHKVYPJKDYofPC/TOMUyDRzHJE77c9HFg7ANnWGccXdnjxMrCywtdnAsk2l8f7Ae59WRnnw5qx4ty6IQSpyxfES1ahoaRVng1Pw5cMF1HIajiI53fzOgBuzZTFFYERUP5PJrroGh67ieRyRy1hs2Gyseu/s90jRT/JA8ZzQJWVtq0XETbg8KirKi7rtM4pRKqArg8KB6lJS8vjNlEucsNnw6nsHTa3W2xylxXrFQs1lruiwFFqUQOKbBnWHKJC3pzKyFNTRGSTnjONWpBDhiTDnaIYx8fLtBWlRc7qd0fG8u6mgbOsc6HvdGStLm1AO8EU3TaDVqLHVa5JVgMbDmpmX3dvboJYJb1yKCYpmFhQUq3eLNnZA7Q6V1dm4p4OwMVnw4PoqJ5H8LXiTwEUokD94UB22j8XjMZz7zGQC2trY+kM96+c6I/+WVrTl56yCZ9BPBb/35dX7t7zz9yPdJKbl9+zZXr17lqaeeYnNz81193tslklfeusmfv/wmlg6WYxLPUGm6oeM7NkII4iyn7ntMHuCIKDnykskkZWVlBb/WoGmZ/Oj5BV7bmtKfqB3hmcWA5481MXW14Bu62g0ns9bIAQz1zb2I/UgQ2CamoSEkjAvBV650+cknF9G1o1BZy/WxTCVDomnqOJWQVEJiGTonFwM0Xef6fkScl2hITgQGm17O7Vu3MG1lmxv4/hFF5rWmQzuw6ccFrp5j2w7jSC0gJzqPhnc7tsV0EquWT1li6urhlcA0SRFFzsbKEo1mDUPXmSZqUQ/jFImSR9kapuCo6g2gkpKyLGgG9tsOPpdqDresmN40oenZ2LbJIIzRNebij4ejP1EotMW6x/F2xu1RRm+aYuga+YyBfmqxRpjEiLJkY32d28OU692IQgzRr3dZb9is+zbDXCXRumdzrK10tA5id5rx1k5IXlbYhs6t/Sk7lskz63We32wetTSQUHMt+tOE7jih4dm4tklWFDOzN51JWsz8W2x8x+bWbp/be32eOrFGmeQUIqBuHV0wbUPxWbLi6H0vpGSalliGzjNrdf78ag/fNqjVatiuz1gLeGHT5Ny6Qbfb5dU3r/KdoU2/sKgHHoZp8fKdET96boHPnz3KGftBIvnri49MIjkcYRhy4cIFXNede3WEYfiBEQb/+M0uhqYdaVVomuII/NEb3UcmkqqqePPNN+n1enz605+m1Wq96897cP4ihOAvXrnEK2/dfOTrhRCESap4Ip7C4lumOecyCCHZ3+9SliXNZot2q6U80rOClcDiJ8+1iYsmzcDF0iFKMqSUWIYBD8BsQSGPbvcibB0s08IwDaSEQOaM4oL9aY6WjkmShI2Z3Amo2Y1r2wyjlGu9jGu7YyohaPvK7+TkgsextktWCgLXwtB1BRIoS6gK+oMxg34f07IwHY964FPzPT5/fpkLtwd0p2ous9p0eXajRWA+3Nut+UoHzLUM1mom13o5hmGiyZIwzojzkifXWnSaNRzbIp1xZqZximtbICXH2h77U8XD8G0DISRRXrHS8mnYGnmhuB8qmd9PKnXX5MmVOle6IaNUUEYRdc/lRMdk+RAyKcorruyF9KMcIdX7nj/RUVa204y8FLR9j7WmQx5NmEwmrK6ucn1Usj2VGLaLr0mizOJuVHG8VrCqKz/7hgt1w6LuBkyTDAncGaQIIejMKziDcVJydW/KsadWjkjc1z1nLo+j/iiUcZhtKzBHUaKqTnAtk2mczCTZNF6/scXe7g76wkn2NYOGe39GOJw5Rx5uT13eC/nq9SG7kwzL0HhiJeCZ1Ro3+wm7kwxD0zi54PNTTy+rrsCpk/Tf3GMy3GGjVpImI4QUxLrLn1xMONmyOL54X53hB4nkry8+colkb2+PixcvcuzYMZ544on5g3sY/vt+oXHlDBb54HE0OIJgOYg0Tblw4QLAYw36DyqSW/2Ym72Qa9euE01G7/ge0zTQNX3uty5nvXdRVVy7cUu1nyyXrQh27ozmZD99xs8IbIOiyCkkOLaJbZlkWUn+iJZSXgqElNizh1AKgRAC17EJ85Td7j6LnsbmTO5EfR9Jo+YzDlO+dmPAzijFtU0sy2ZnkjKMC1463WGpbtPyHTUTmSVT0zTBNFnfCNgPC165uc+4myBFyGpgcGrB4Xwn4KmVADQdzzbQQMGhi5Ji9hsCz2EYJjPpE4MnZpySu4NYDfGl4JnNNk+tNbBNg6oSCCGJ84rtcUqYKtmRsytNnl0X3OjFhJkSvDy93OBkW/FrDgbsjm1xvTulN80xdFiqO6w2HdbbPrvjBCElLc9isa78ToqqoqgE3703ZhAVBI6BCUwzydeudPmhs0sc6wQUs/u61+uRJAnr6+vkUmdnHOJaJjXHoSwrXMtgGBdEusWTx9ZI00SRQLtddnd3aTfrCN1hHKXU3aNtwMAxiLKSvVHMSsOjknLW4lMzN9fUaXoW3WmGY+rkhULRFRgEtmSjUyPNMnRNYxgX3BuljJOCNC5ZyHfIdvoMR+ucWl8iLSVJXvH5c515Irm+H/EHF3aIc8FCYJFXSo7+ufU6f+9TG0zSEs/SOd7xjrQZL+8nrHTqqsKTkizLiaKQK92Q//qXL/P8ejDXA3uchfvDjMcZtkdRRKfT+d4v/IjFRyqRXL16lVu3bj0SRnvYDvf9Qvx+9Nwi/59v3UPNPe+X+LoGP/7EUdjhaDTiwoULLC4uPjbxMa3g//XtPhf3dxhu3UQWivX7U8+t0/DsWYvlfgJzLdW3zsvDdq8wHE/Y2dnB932E3+HLb+6SlxG6HqNpsNZw+fy5RRxTn6u0qsSrPNM1NOqBS5IWR3r+gWMS2AZhLnAdjWqGhBpHCZQ5q806m6vLFLP3SClpBD5hnNGdZnQnGXXXxDR0QLBQcxmlJVe6Ieud5RnK7OEEtjVM+NbtIZXUqdcCirJiOynI+hXniiFlUeC6LrnvEwQBEep61QOXMCn42rUe22MFIGi4FueWA84tebj5iNzXOLGxwWLDV2x5dMqqZBgXvHJ3rAbKmjITu9WP+ezpRX7kCZ9xlNGq+1RFweFeYl4Kvnlzn15UzCqrkrujlDNLAc+sN460suIsxzSU6sCV3QnDuFBOlLqGbVvkWc4gFlzbm/Dx4y08x+Lm7bsURcH6+jqmaTKcZBQVNF1lI6xrOpZl4VmCMCsViXFm+6oW2AxNltzrjsizilEWE7gOlmVhmiZCSHRNw9A0kryg5tpoyBl6T22iTi74RFlJPyowZgg729D45MlFLF2j0HWGccEbuyFJIaDMySrYjyo6fknU2+LisMeZ4+v8Nx87wadO3l8Qv317TJRVnDkEba7ZBle6EZ873ebZ9bdBPB4WJtU0HNfBdmwWSpePPbvIiaCk3+9z8eJFiqLg9u3bFEXB4uLiOwJg/iricQmJP6hI3kfcuHGDnZ0dPve5zz3yRB4kjw8ikfzI2QU+f26Br1zrq/aWBF0HR4df+vHT89cdCEGeO3eOEydOPHYl9D9+d8w3bo8Ro20sUVBpsDVK+aOL2/ztZ1YwdI3A9eY6StkMx384wjBib2+PdruNGzT4z2/1yIqSumfPHfm2Rimvb0944XgTKeTMZtYhy8tZG08yje6jnYqiJC1KDF3j2c0W37qlhuMK1VOR5wVnFlxWlhYoKzXczcsS27TmUiKTVB3bPLSLFEJgIhhnzHa96UPnTkrl/Z5XkravY5oKPWSZqifvtpbpeIYawsYxw+EQ0zTxfZ+sUeflrZS9aYajK0OwXpgxinNOejlLDYcTS8toukaU5QSuO0eFvbUXEqZKil2bKWCOkpILdwb82LlFTiw3GUyTI0kE4N5IIbianoWpa9h2wDTOuDVQkOgHEUZKyDIH3ZjdXxq2pZIImtLOGqeKPHjnzl18x2R5eR19Nt+xTR1T18irSvnWS0GVCzTDxKQ8ygDXNJY6TSZRyunjPkM5ohcWVKIgDUOkhFQarDRcXFOJe4ZRQi/K2ZnkhLnARLLRcnl+s0F3ms+4IganluqYVERpRuA5vLEXkRYCj4KCinanQVFJokLy7HqAoUn0aI+3LkXU5UmeOL6KpuvcGyU0HrDi9WyDopL0o/wh7sxBPLVa40/e6rFQE3MDsF6Y0/BMTi/VWKo7rKys0Asz/qc//hb7PUl15Rar1mU+sRFwbHWRhYUFGo3GX6nsiJTysVtb32/uiPARSiQnTpxgfX39bX2NDzwPPog5ia5r/Pd/93n+5+/c4z+8ukOUl7ywEfCpYMTpxQAhBJcvX2Z7e/t9CUECdKcZX7veJ+vewTUV9FM3NECwM8kYxDkLgU2YJNQ8l1xW1DyXKEmphFBCe8PhfMhdqwXcHZdESY5v6cjZzME2TYRmcLMf8/yGkrwIfJckKx7CjR+gnUA5EWoanDIMEIIr3YhhlGGKgqc26jx3fGEOxZ1GKfVA+ZZYhkFRVVgz+fYHW46V1LBNjTDJqXkuRVmRl0c1w8ZJgWsqXxJRKXKlqWtohsUkVSzoRqNBo9FASkkcxxR5yqXbe9weqOG057ogwXQk3XHCwLJ5dnmFmco+rm0zTVIMXUdqBqNYtZi0OWhXo+6YTLOSpFID8brvEifZEc3c7kzF9gDKmucFdd8hGiUM4rc3c6rKEt0wsExTSdTMzlFZCTzTZHt7G9M0aS0s4zoW41hJ1XdqDjVHtZFanuKp5JVgmuY8tdag7jlzwEQpdb51fZ+0FAS2wWbboxQwSTUM3ydNUxqGpGOk7G3fY083iHG4Oa6opIZr6iS6wRu7IWcWPE7PFvW65zKJYpi1SydxSm+SYFBRCUGjXkfXdUxDI40LxmnJWsNBIhlMYv7om2/wzUs3+cxTpwgsje1JzmKgnCU1TVNcKF3pmj0YUVai6xqfOt7izjDlWjeac598x+THz3XmIpHjpOD3X9nhtb7k+EqAZ1nci3P0UKMRxty7d+8dHQk/jDjYCL7XRPID+O/7jLdLIIfjg1TotU2dv//icf7+i0oWYDwe8/LLLz9kjPV+L+q3L99h0t1Cp+Lw6TZ0jaIQhFnFQsAhIT+NvFB968B12N7eZjyesLmp5EfqvsdkuwscsUxHSqGSCko7y7GU4OE7UY+kPHBG1LBNkyfXW3giYuIUrK2u4Hv+oddK6jVvbjSFBg3fZbMleHMnZJKW1B0TXYNMKAmR4231oB+YXdV9b97G0zUN29SJC1URHiQ7IQRVWVJ3W3M2P6iWVrNRRzdadMsx1nSMbUIUxfMf45g6cXV/hlMLvHnlVAlBlJaYlon2CASdYZjEWYFv2YRJhmOZSu34AJigzdX7kSgflfxAUfgd7t3lusOdUcb+JKVdc6iqkiir0JCY+QSn5bO4uEiUV3z79kip8xomhhiy2lTaXJOkRCAxdZ3Nlstmy1HQbd9lexjzrRtd0lLM2lEKeff0Wh0hJWkhaAVNWp6J75hMw4gwirh0R0nQ1G0NNAtHt8g1jZ2wZKMlWGh4TKL46C5eQpbE5KVkpVPHdd2ZkrJGJSoMXZvDhpmtn5Mo44+//SaTHPYLH9dYZLHmUAi4N8rYaLpH2l13h0oh+FY/Rtc0nlyt8ZPnF/nYuoIuu5bBmUX/iBT9a1tTbvYT1nxYrts4jsNCYHNnGKN1jvEjzz3DZKYFd/fuXS5dukS9Xp/PVt7OP/39xOMmkjAMf1CRfNjxbl0SHycO1IW//vWv02g03rMx1qPi1Su3uXDxElqVUwqJO/PgqMqCciaJ3nAM6oHHJDyKCCrLkreuKm/ns6dPK4FEDSZxymJdOSGWQmIaqmWFVH389aaLZRpM4hjfdQCNKDnaWkqKiks7IXfHGUJIVhsOT60EZNMBmhQ8ceYklbj/+oPB+hHFWqm+i2ubfP78Mn95ZZ9JqhYV27E4uWBzZvFou2IapzPnQkWOPLNc49W7U6KZ5IYQUiUk16TjK9mUuq8Y2pqmrn86Y1zruo5lW4BGlmVqI1JqlFnM7Tu3WV5ok6YZrufOf3vgmAQm9GOJ7+gzVrwkKQSepdM65GmSFWrofkAkXKm77E9ziqpSQ/+8IC0EpgaBxRFFX4naUWtotAObj63VuLg9YThNMEwTXQpaRspmRy1mpZB8996EfpixUPcRVUGmmdwZpDy7XsNdMigqgW+bND1zLn6YFyWvb40RaCwE6lyAZBAV3OrHfPpka155ebaBoauEaXkBWDlLroaO8lqJ4xghJONQZ9TSqLtHF8Cqqtjb3aXjauwXDkUFWpZjGgbDpKTuKoXmgxBStaymqTqPxxbr9Cc9Xru4h9dss7S4xImFGj/9zAImFWUp2Y8K/u23t+iGiowoBHzl2oC9Scbf/+wmnzjWfORzdqsf41kG1SH7YdvUkVJjZ5zx8U2NZrNJs9nk9OnTZFlGv9+n3+9z584ddF2fJ5VOp/OuNrXfKw42vD8QbfwIxodlhwuKZCiEYGNjgzNnzryvHYqUkq+9doWvX7yKa+mc7Lhc2U9I0hzT0KgkVJrJyY7D8aXmfG5xEGmasru7i+d5LC0tUQqJpulEaUozUKiWYx2P692QQkAlBXklcEydz55Zmu3Ctbk5lO866LpGGCul2S9f7dOPZ20pKbm+H3K3N+GTKyanNtcohUbgOUghidOMRs07kkSmWTlTjtVYrjk0bI2fem6F3rQgE4Jgtig/6hweOBcGnsvT6y7jpOTuIGEYF+hoNDyLF441Z1IeM7SUaeC6NuMZUXOl4VBzDHqTGEerCHyfXIAuBZ88tclGXafbHxHFI4QQ+J6PH/j4vs/5lRqv3B2zN0lxHJssK/Edg/MrwZE5D0BRCbb6Ie2ax/EO9MKMfiKYjmKkBENXA+qFwFayKbbF3iTl9e0x46RE16ETOJxb9HnxVJtxUhDFCWUYsra6hOupBaMX5oySgpVWQFWqQbePZKxBN6r45Kb30MzGtUx2RjHjWAEdHMeZqWNr1ByTcVISZxWBY+JYBnlRkqQVjmWim8YM/q44OAcLZ5aXyLxiOBoTDboEnhJclJoxn1F97PQqb+1FdKcZSSkpy5SaY/LUSoOFukecF2R5yZs7ITuTFCEkpmVxoxdxding4xseYZZgR1uc2tjA09vouo6Ukgt3RuyMU84t+6qVjUbTM7m+H3FpN+STxx+dSALHpKgEiKPtVYnEfaBttjVKub4fUQqbjeVTfO6pp4mmqlq5desWb775Jo1GY55YarXaY60FB4P29/JeKeUPZiTvN96tudUHnUiklFy7do1bt24BcPr06feVRIQQ/Mm3XufitTvzv31iPSDPMnYTVTUYusaZBZuffHoVCfiOspXVNI0wDNnb26PT6dBqtdA0lJzHDKY5mUmkfOHZDf7y0j2u92KkDscbHp88vUTderiZdcAb8Byb672EflRS9yx0lGgjZUVSaky0AGO2mMapUrNtNWskM8tbISXf3ZpwYzYk1zXlo/HpE20WazYnlgIlE16JR5o3SakqjrwULOkGmhR8/olltvoh47TEMpQ0/GFFXykllm0yjhLqMxKhY2gc80uSRFDpDpNMJdEnVmqcWa6R5gWnjm8yiRK6k5g7vZCoN8Rhn7WGw1Mdl1FhkVbQXm6xHJhzx8aDz7zZi7nRi0lL1bI51gn47Jklbu9PVdLTNZZrNkt1Z77GdycJ3741IhXgmTqGobMzTJgmOS+eamOLjPFUSe17XkDdV1DdtKjQdZOyKI7kC0uHYZjgewuk+X0DMdtS1fPh2VeWKSFGXdfJy/uClrZhUAkxf26yQglQbi7UuNYNsQypCKhCkgqddmDwxIklZZ6VJOwMJuxMCya5xDFhsxpxfqXBEyt19icxpu6zECjL5oPNxjCV7ExzpfzsuaRpSpQrcEV7ZtULcPXOHlfv7LGx1Ob5c8e4O0oJnFnFJaRqgaLmIt1pCjw6kTy1WuPC3TGj4r7Z2940p+6YnF263wL76vUBf3q5x2RWJVmGzic2G/zM86u0223Onj1LmqbzauX27dsYhnGkWnm3XYrHtf39wYzkryDeziXxcaMsS1577TXCMOTTn/403/jGNx4Lsjc/3sxX/W63f2T4bJk6Ty/ofH5lnUlaUnNNlpsBUZIRzn6Pa1tMxiO6e11WV1dn5a0SVQzj9KHPSrKMMx2LVRMC3yGoBaAVvNMlTfOCvUmMphtYpkGWpuR5jmVZVIZGNzyqqFsPPEYzIch64PLKzQGX90JsQ6fpGQihpDi+cXPAf/vJY/ftcbWDVk/CwSQnziteuTuiO8nAsDC1EacWfJ5Zq7PS8lkS8pHJp1Hz2B5G3NiP2JvsY1kGdVKWXckXnttglFSUQvE3lhr+3GxrmqTsRhUv3wnJKoGGhZQm04nGE62CWjFhybExRIlNDc92SXL1+bf7Ca9vT9F1ZWlbVJIbPcVN+YmnVpk8AoUGarcbZkpixHVcsiKnHVgMopxr2wPqMmJ1dRXP95WlcZwRuA6dmkBsT6ikiXnouFkpWAxs4iRTKgKOSVFWSCEohRKmrDkm07Sk5VlUM+BFWkHHt6l7FmiScibRL6SqskxDY7NpMYpMxpmkSAsMQyewNJ5cqSnBSEMjrjQu7WeUGPiuTSHgzW5EfxxyoqFTC3x8139I8v1md4ImBY2gRjFTda45Jv0oZxDmD8nYTKOE//zVV7naS5lqPgvuMQLfn6tTC8AxmFksa0g0Lncjru3HFEJysuPx4skG/3Fvm+u9BN3QaLoWf+PJJY61vfm1+dPLPXRN4/yyQoVGWcm374w5seDx2ZNKSdx1XTY2No7I4vf7fW7cuMEbb7xBs9lkcVEhwXz/YZmWg3hcTssPKpK/gjBN8wOrSKIo4sKFCziOw4svvjgv76uqeqweaZYX/IcvfYe7e31gJv1uWcSzSkMIiWcb+DMfieiQiZKQgtt375GmKcdPHKPdrJNmJY5tPDKJSBRpsFGv47kumqwYjiYURYZAp1ar4fv+Q8gU2zSxDR0hStKkpBICz/PRNIiT8ojoX81TPf+Dx2QSpdzox5imhWtINDQMHeqOQSJ0ruxO7msqzZjjtmVhGIpU+a1bQ3bGKe26D6IkLSWXdqfYhs75VW0+jzgAHIBKRtuDkK/fGKqKRYd0GrGLjrbeYcMwWGmoa2VbJllZzgficV5x4XYfTddYClxEVSGEZBCXDKXLDz91gt5gRBTH7O112dreYandpNJMbvSUOnJjVqW4lk5SVOxNM+70pmwu1EiLcs63OYhpWmJoqJZZrioENIXc6k9Szj+xhvMAmVVIQds1WWn6bA1C6q7yek/yCl3TODaThSnKiqoS1Dyb3ZGC4AaOwRMrAa9vT+lH+Vzqp+aaPLlWo+7ZjKYKdXVvmHB7kJAUFY6pc6zt8fxmg1FcINCVCZcBtnmgOpzz+u0upWay2rpvl9vAIysr3JpFlkaMRiM0Tcf3/dn/PEUQtW2SRG0kLMtE13SIiocIvw3fZRhGgEbb07lzr8uXB/usLrZYXl4mN32W6g7PrDfVRrKq+I8X9/j6rTFlJTB0na/fGPL0qs+PrUpOPr2Kaeqc7PhHkHTXezHTtOSJ5fvUgsAxsY2C17en80RyOA7sETqdDufOnSNJknm1cuPGDSzLmieVdrt9JHE8zoY0z3OKovhBInk/8VfZ2trf3+e73/0um5ubPPHEE/ML/rjw4jjN+Hd/9m32BqP53w6k3w84GyNTx9B1LMu8v3NHVUU7OztomsbmsU1Mw2QapQSeC2hqgSxKhlFOP8qxTZ21hoMxI1MutJtM45RlN6CsSkRREMUh9+7dmynMKkXVWk2Z5azWbS5KQZgKGr4NSAppYBg6JzoqEQSekh05igqTJHmJLiWmpZwRq7LCdV2mk5isfBgJlRclsoCk0uhHJQsNH01WoCvmvRBS9c6XAwxdeaF4jo0QEssymCYpN/sx47Sk4eikaULDtdBNi9u9KaeWfFYCNUuRKGTWQfTCnKRQMiGiqrAsmzzP8CydQSKVtLrv4/k+LCyQFwVxFBEnCcNpiqFDqlXKt13XsHQIKyWdEqWKcOg71ozsqMK3DTTTJM9zQKOqSuI4QaCx3Gk9lEQsU4lXVkLw9IqHY+rsjtS59CyD04v+3JJW00BqGn/+1i79qERqOpooObng88njLTWzKCpqtsFq02Wh5jAOE3zH5kY/5uL2VFkMmDpJXvHG9pS8FDy32UQIQVkKLEvNU3qDMVs7u+SaPdcak1Li2moOk2Q5iXB54sQxAPrDEXGcMBgM6HYLfHz2xgVLDRfTMCmKkrwSmIbOeqeGZeoUZYVumnz92h77YQ4SFutKN2x3knJ7d8DtvQENz+YLnzhDmS1gtXxuDFK+fXdKx7doeqbiyBQV37074SlH47873kDX9YcWcQWseHiNMXWN/BH3rpQSITnC1/E8j83NTTY3N6mqal6tXL16lTRNabfb8zZYWZaPxSEBfkBI/LDj/ba2pJTcunWLa9eu8cwzz7C+vv7Q8d9rIplECX/wxW8ymIRv+5lRmlOWlUJeSQC10KRZqpjqns/y8vJ9dJHvziuWshJ85+6Ua90pxUFick1++EyH0yvNWdWg3mcaJhgmtuuxurpGHMf0hyN6+/sM+j1My6Eock7W4V5iEeYCEJiG4Myiz3PH2kqi/VC1dBC6pgafu5MMb3YNbMchTnN0jYfaFQehAfuTBKkZWIbG4ctnm0rOPC8Fnq0euiQv8F0lzS6lcks0kKRJgu042PascswqdocxK7UmgWMzjh9WTD4cRZFjWTamqGaQ4vsCjWjKK8S2bepC0hr3SIoKKQuSJFFzJN1ASh3HuM8DKcuKhu8xmWlVnV1tcHe4yzhR1rlJnBDlFfXA44n1Npahq6EwEOeC/jClKJXtb9u3eG7N59ySN9MKq47Ir3uOxV+8tcfOWA23LV1Q6CZX92NMQ+fcgWmZhMBVMzeAaZJxeWeMY1sEto6olOR8nJfcG2WcWSqZFSEURcl4MqHf2+fY2jL37sbklSK2uo5NlmWzs6ZhGPfNxdqtJu1Wi51RhGsZeMMhe2HOdn+KZWjq9xgGxzsBtlZRlALXdfjLKz12x7HikWiqpdj0TD620VQy9xpsdALGgx6//8WeapdqHuOpzonO0jzBeRrkaUxXU0KnB9Dbg4Si6zqbbQ/b0AizktrsXq2EZJqVfH75fjVSCsl3bo/49u0xk7Rgs+Xy4qk251eOLu6HZyegZhsH1cr169cxDANN0+j3+7RarXeVVMJQrSE/mJG8z3g3LomPW5FUVcUbb7xBv9/nM5/5DM3mw4O792q3O5xG/OFfXnjbJHIQlmmCxrxNZVsWWRKztbV1f6g+W9QCzz3S9rq4NeHS9hjb0GjWPMpSMEkyvn5rSsu3sN/mBs3yEt20OHX8GJoGu/sD9vf3AcmqK1kOTEJhY9o2ay2Pjm9TCUFZiZkDYPJQlfjEco1+VDBJSwJPqfJmpWSzE7DafHvp/YWah8aYOBX4nkNZlICcJxD7UEvNMg3yQlBWJTXfgaokzXMWai6mNbtdZ7eIrqlzOY5SNYhP0nlrqxPYuKbyMDmwGBZSEmU551bqGG/TdjB0jeNtj9d3pnhBDUNUpEXBJCmomwWT3jZV5M1bOfcGU9JKwzI06o7GxzYaXNqd0hur3eVCs8bTa3UsXfmZBK7N6/eGXN1PiGcLsWXonOh4PLNWxzV1oKIeuMQzKZu673CnN1WMbtecM7wNJIUGO9OCEx0FflAijIck8guhmOi2hqxUyzUvSnzHYpwUjA75fkRRxF53j6XFJWzX5+SSwZs7U6Smk2U5UiryX+AYLAb320Y3u1Ou7kdkQkdHEtg6zx5fYpqW7I1jRFlQ03P8LKW7F7O80OLN7oTuJGap5uLYyvHTs0oGUcEwzjm1EFDz7CO/ZRqnXN/vc7MbUg1bLC2pttJkPEaIirV1JShaVRVCCCZJzpVuTJRXLNcdnlur8cq9CbapvOHDrOLMoqroDuKPL+3zZ5d7mLqGZxt8d2vKtf2Yv/updZ5Ze/uW08H9cOzYMaqq4tq1a/R6PS5fvkye50eqFc97tIr1AfT3oyQ8+W7jI5VIvleYpjkjQL23SNOUV155BV3Xeemll97WR/m9JKr+OOT3//QbhEmGaRhq7pFmCCGYpiX3RslMv6iGZ5kUs4GnBHb2uoxGIzY3NljstAmTBClmSSS9/+BUQnK1G2HomhIdLJUcezPwGSc5W6PsIa+Hw6HNIJ6D4Zh4OqLVbNBqdyhntq9+FJOmU+KBjV3WKasA07QoqxTfcx5CX220XD59osXV/YRRmqMDpxc9nluv0/A90iw/0l4CtXBpesVyzWZ7nCJkhm2ZpCVUQsncH7QPdE1D1zSysgIkd+5t09ALJq6HOKSJFs64JOdWm/Oke6DmK6QkLxUX5exSwFt7IYOoUEx8kdJwTE60nCPzmEpIemGm/EEck1NLPpppcnV3TCk1dM3g2ILDxzYa2JogimMm05CXb/Xp5zpSNzENg07N5clFhzNeSubZqr8e2PPfVwnB3d6Uq/2Uqqrm6rxpqQQj277FRkt5vEzjDNPQ6dR9BlM1EymFnCeRg7ANbQ73btc8RmH80P9v6IpFbhkaWZ5j6AalVHBpa1aOTKdTtvb2qdwmbw1KnMlEIfE6PlvDGKlplIVSR356tT5P/v0o5/XtKZph4GoVEuhNSwQGP3S6xbnl+/7jeZ6jiYKdvR53BjlpppPogrI0MQwDx7JxHY1JVj2URLKyohKSpmdi6hqDSUiWZ7x56RKGZeMvbHBu0cOYWTdf24/4n7+9zdZIoRxNXePcks8Xnupws59SVJInzgR86kR77nPTC3O+eXNI0zNZmCXKpZrNjV7Ml68NeGq1NneufKcwDAPP82g0Gjz77LPzamV/f5+rV6/ied48qbRarXniCMPwQ/VrB/iX//Jf8uu//uvs7u7y/PPP81u/9Vtzm473E99XicQwDNL04eHzO8VwOOTChQssLy/z9NNPv2O2f7eJZH844fe/+M35rKOsxHwwfamb8o3rPdWC03W+eWvCx9YD6jMEyl63S5ZlbG5u4tg20yhB1zWadY/JA+2ZolL8EGN2Y2mAYVpUVYGUAgwD0zgg1j0YksDzePP2Lpe2RuS6Taeu8WwgaTnWnKBVVYI8TYjThN69LaUcHPj4foDvezQCZUfLrFI8t1Ln5FLANCkwDX22g1amV4ZhqPlKrKoZ01AkQyklnz7Z4tW7E3YnGWFSYJsanzy1wKm2ffB1cWczBykF3W6XLMt5/vQa2k7IbigII3W+HVPnUycXlGHWoUiygjCr8FwLA8H5lRpNz2J7nFEIaLo6x9ueYnjHGb5j05umfPPmkGFczDTDNI4v1HlmxWO9vkCYlri2yXrLJ5xd75ZtMygshmKM54AhBVmesr2fMJmYfHzF5NzqCvoDi76UkkkhieKUpbqLYRoUhdK0SgvBzjidJRIVnmMymEYErkM9FzPtLXEkmWSzqq7u2wynETXPoTy0AXAtg9WGw61+jKFrOJbyeB9ME9ZbHpudOlu7e9zrDtgpfMI4n3NMdsOSky2TT2zWCdMS2zI5vhggq2q+YdgapVSaTtMEUN+r41sMJjG39g3OrzaxLZMwSVloNZhGCRubPlNjwmRvihAVYagShmVZRKXGiXZbIb08h94k5up+xN4koxJSQYpdkyiXDLojpJQ4QhJE+7xy4QK97ducXF/mT26m9BLJ2eU6hq4RZSVv7MVstDz+T5/dONT5kJSlcoTcGaeM05JzS0c3ZwuBxc44ZZKU86STFhWXdkP2pvksudaODPcPUFvqeVLimsePH6csS4bDIb1ejzfffJOqqmi327z88stzkMyHFb/3e7/HL//yL/Pbv/3bfPazn+U3f/M3+cIXvsDly5dZXl7+3gd4h/hIJZJ309p6LzOSu3fv8tZbb3H+/HmOHTv2PTP9o7zVH4y9wZjf/9Nvzj3ND8ftQczXrqr2ke+rIWma5rxyd8JzLbC3ttB1nWMPyLH7rscoTDB0Xe2UkxQpJNYMFTWMC8XmNgxEpby5dQ1cXVJJST2Ysapnp05KST3w+Nblu7y8FSE0A9OQjPcj7g4SPnd6gafW6iRZroQQO228vEZnYZEkSYnjmF5vn0EiGFcWmmmz3qlzouNizTD+tUfMRKqqIkoqar7LOMroRgVlWbJUt3EtgxdPtwkzxSMJHBPH1HEsE6TEsi3COKMsSy7f2SUtJRsrSzi2xadPtOmGOdNcoAObbR9HP6yXrGYpb2xPGacFSFhuBTy17LLacDi9XD8yFD+IMM35zu0xo2TmVKhpSE3neneMTsnHN5v4s9lNmGTUfIc4yRFScnuQYBk6zcChrCosy4Q4JsoF/bhE37qLbtkz864A0zJp+C7RbOgthEDkAtu2KAqlRJxX939RzXOU/wkKzFGzdTY7NW71pvgWWIY2r1KeXG8SxYr9HyYzReZI0A8TNXxvOGSlMwMgSKSoWKo7PLkScGdrh+lkgggWCbshncBG08C2bAbTiJu9gvWmx+Ks8i3zQi3yvpL0z6Ua+sN9pKOyE1YWwGlRkBYFDd9FSDmv3FebHvdGSs+s4ftUZcUkydERRP0dLucDXM/n6kgyyCS+aWFUqq1qWiZNEnwPao0WC4HNSsPB1HV2eiO+e3OPl++MOL6yyG7eZmGhQ+C6LAQ2r+1E/O+eX8PWtXkLTMpZMpEVhnZgXXyfTJhXyqztoAobxQX/07e3uNKN5qKvizWb//0La/P219vBf03TZGlpiaWlpTkBcXd3l9/5nd/htddeIwgCfuVXfoWf/umf5qWXXvpAWPYH8Ru/8Rv8o3/0j/gH/+AfAPDbv/3b/OEf/iH/w//wP/Arv/Ir7+vYH6lE8r3i3cJ/hRC89dZb7Ozs8MlPfvJd6/t/r4pke3/EH/zZN8kfwXcAuNqNFMzXMUBKRKUG7FFasBNrnFi0jwzVH5QeqYRgEiWYho7tWoRxyjPrdb52Y0hUSGypIKBFJVhvqUXyQIBRSY9YTKOEmu9y9eZt3thLkbpJ073PMg+zku/cHrDWsJQcB3JeWWmahu97+L7HfulwuTsmLyukjLm+H/F6zeGz6z6LrQDLth+BgVG57JVbfa70FIpIVGq4+fHNJpttVyWgQ51FpWCs/jAKE75yZY+w0NBNk5vRkKWazWdOtlmpO6yg+DamoR9pe4ySgm/fGpEUFYFtIIGtQcgkzvip59YemUQABlFOP8rwbdWaPPC78SyDrWF6pIXDbJF2rPtIoYPeflmoobznuogC6s0Gy00bjZL9gUL2NAOfvmHiGZZCB84kcvJcCTkKzaDjq8fRd23COCEvBfthTlkJmp7FuUUHKQW9qGSaZri2wcc3Oix7+pzIeG+Y8Nr2hLKS2KZOVEi604xn1xs8s95iECY4pkHbNxkNh0ynU1ZWV7l8c4pnmziODVKSZxk122QQFwzi4sjGQUpJGKUEnkPN1tnXjCO8KSHlzAhLLaR132V/HHKrn7A9SkHX2egEnFyqcbcfMYzV9anVahxvmmw0bJIkZnsQcnc/xzOhdOyZ1pzP3d4Y3aj4iWePPbLDUAmBblhMJ2Om0zG3bt8iCAKcoIlfb5AVAsez5u/NipIwKdho+2w2XW4PE060XSVGWQj6Yc5PPrk031R88XKPSzshpxY8bFN5298eJvyH7+5xasGfmaN9b0KipmnUajXOnj3Ll7/8Zf71v/7X/NZv/Rbdbpef//mfJ0kS3njjjXftxPpOkec5L7/8Mr/6q786/5uu6/zkT/4kX//619/38b+vEsm7aT3lec6FCxcoy5KXXnrpbQdbb3f8txu27/ZH/Ls//xa6ruRDwkeQ0uK8VEqpuokUJZoGZZFRlSWlY7K+usKhTedD+lUH/iEH0GHXsXjuWAdNN7i4NSFMlXzGqcUaLxxrHtXmOpAe8W1u3r7NJK0oMPHtozINvmUQ5RX704yFRkCWPez+F2Ylr29P0DTo1FSy0gyTwTThrf2Y89mUSoIfBAS+j+ve17PaGae80U0QZUlgGZiexyhK+fbtIQ13iYZ39JYLXIdpkpGmGd+80WNS6LR8G8vUySvBzjjj1btjPne6gz6zCw6T7P5wXcLtQUKcV7R9a76g2obOpIDL2yM+dWrxkSTCvBRUQikOH+D+q5lse16qtuJhIACoRQcJ650a13dH1GyNLE3xPA+pG+hlRd01ZzpgFqeONzA1jd1+nziOkdEUR8D+RMe11Gwlq5Sr5JNrbQJHJ04z9qYZ3703IcoUN8YylGDjxzYapKVAN9o0PJMiPwQlryRXuhFSQju4v5OdpHBnlLHRdNhoeXMTrTiOWV9fxzAtNG2qmPNSUhQFtmPPq/8HNwwSdT/0JhFLvsEdKiaZRitQVcokKWh4JisNh7rvMpxEXLg7YW+iTLM0TXDp3pCGZ/KZUwvks891dOaLtWU1GZYW7nRC3dYoypIkjplOp2gVVJaLY6vZSpLmh66tZLVd443tKUmhzdGAURhxrztisWbz+3885amT6xxfW+L2RPKlawOGsWpRnVn0yCXcGaVzNepn1wJ+6FSdoijIKqXu0Jmx+UHN9o41XW4NlfzKcxuNx7K7EEKwubnJ7/zO7yCE4Lvf/S4bGxvv6RhvF71ej6qqWFlZOfL3lZUV3nrrrfd9/I9UIvlerafv1dqaTCa88sortFotPvnJT77nC/l2iao7GPMHf/atuRItgOfamLqhrEdn33u54bIblohKSTBUQlUQum5Q00uSvKDTrFOUFbZlHlm8D5LI4Z1dlpeUuuBjGy2eXK0zCFPsQyX2Q99fg0tXruO5HmdOrPNK797BaGMeB/+sB/58Vz+NM2qeR1oUVFXF7kTZvx4Q8izbpixKPNtkkGssra3i6JK93pC9ble152b+69sTSZYV816yqEpavs0wKrg7THjGu498cSyLJC+Iopib213GuUkrcHFtk6oqsQ0d30bNVbKC5WYwr56UY6E5U8ctZsqz93+nZZmIJGGSWjNvcwVVPrxNqLsWzgyCHJjGTKJEI5c6nq1Y7Y+Kuu+wVku5Y2iKqe27ZEIjzUrWm+6RXnlZCa7uTxnnBmXhsNxp8OKS4Hp3wvYoIy8ylmsmp9suuijICwPDsnj1Xpckr2j6FjpqFnKrH9PwTM4sBviuRZIqif40V1XLJC2JZ1XZ4Qve9G2GYUKY+2y0a9y8fZckTY/YNqw2HG4NVULXdY08V4KLNd9hveMjhVBw1ijnxiBTqDRNSdqcXQrYGqWMwmQO2X1mrUEnUBVyd5qzH+a0fGsOaQ5sST8quDeI+OTJBaI0J3Bn6LGZPI9KOhq6YVJzXcbjMYauo6NDlXP58lUs26LZqNNuNJgWGoUEqoTNtsvNXqL4K7ry13FMnVOLPkVZ8Y03rvN7X77IW/spjWaLjZUFplWNr97I+PzZDj/9zAphVrIQWJzsuBiaWujzoqSsBKauyKQHascHm5wD99XH9SI5EGzUdZ1PfOIT7+n9f53xkUok3yveqSLZ2dnh9ddf5/Tp04+tl/WoGUlvNOX3v/gt0gfaI+rfBa5jYZkGUZzxieMdruyFM1byLDGg4zsGGzUBUhLGKbXZ/MSc6SA9KomASqyOZRHOkFyr7ZryyXjEHKnMM25t79Bstmi1W4Bgse6wNy2w5H0NoigvaQXezP/8/mdFaYah69Q8FyHuw5kN06IoikP+Heo8SV3j2OY6SMl4GhLFMVE44e5ejqx0ikL9Pm1mMyylQBxqgRgzoT5F6hpQb7bRpjG6Jqmqck4gPBgwW5ZzhMgJM4izrrFQ99iZqMVH0+5vOKTkyIzDsVSL70Aavu6abLZdbg0yiijFMnSyQqWaj51YwjIMhLyfetKiQmoG8TDEyEKOOSlTt0YiDURZcH6lxhPLwX1kj6bzlav77IyUnL+m69wZ5Rxv27xwepVPAsUMQZenCTdv3UI3DEaVTZQJlhqe2jhpakielYI7g4Rn1lskaa6qs/i+UVmYVUqbSqprK6VimIdxqpwGheDqjVuIquTcmVNsjxJGowjLUAi4YbTPIM7VDAdwDJ1TbRtdClzHIsoF391WLUPfVkTQe8OEMCv57MkWRSVncigGjcAmSTMagcf1vvKQP8yL0TQN29CY5HK+oTn4r66rQbttWVzbjxinFXoYqs2C7WGUgqc2Gmw2HZIkYTQN+dbN24TCopIS33VZbbo8sRLQneZkZcV60+V4x+PYQp04U4n3Vj9GlhUyHnHv5kghvtyAL6dT/tZTn577nRyEEIK2aXJqweO7W9MjwqS9sKDumGy21Hs+an7ti4uLGIbB3t7ekb/v7e095Eb7OPF9lUgeNSORUnL16lXu3LnD888//77QBw8mqv445Pe/+M058epRkeUlWV5S8z08KfnJJzp89VqXUaqOt9Z0+czJNuPu1mywrngiErUg1zyHSZiodsEDyS9wnSNw4HA2C/Ft60glFE4nDIZDFheXjtyIn9hs8OWrPaJSR1RK5M93bF7YrD+kdAuqtxwmGaeWm7y2FZIJDa1ScuhSSrJScGrBny8IWV6ABkudFvVACTZuJPtc6UZUZUme5zNCmKF2mLriqKRpgW2ZbO3sMplMWVtbA8PC3knm5kwHBMJ4pkelCYWCezCEkKwEJjcdh0mWU3NMRCmYpAWebbB5CAWVzZUGlDS8pmn80NllvFs9bg8SikrpV51dClipKUScrhuESc4bO1O2xhlpXiDLgo4tefGJdTzHJisFDd+hEvK+L72hc60bsT1KaMxtiFUyujcq2GwWLNaV8m6n3cbQO6RZThzH7O9OyNKMUZXiui76TIzR1DVKqZHlR83KpFTOlzXHZKUVsNUPMXwNz7FJs5wwrViq20TDHiDpLK/ypSv77E1zNN0EKXD3JjyzVmezVIrMtqmxUnfpzFpkaV5wo5cySTJWWj5ihtxyTJ1RXLA3zeceIfUZDwkUYVeKSsnXW9ZRsUnDRBMPbgwlo7igO1G/51MnOnz1rW0iTCp0HODscsCxtoemQVALuDIoSS2TQCvRREWSxVy+F7JRt/jsqTae71NJ1ZKOM5WA00KQFNURdeCqqpBpRC6X2JtmDyWSA3Lj33pmle1JwY1+RuDopIVAA/7Wkws0HZ2iUCCT97qZDcPwQ0sktm3zyU9+ki9+8Yv8zM/8DKAS4xe/+EV+6Zd+6X0f//sqkTy40BdFwWuvvUYURbz44ovv+yIcnpGMpjF/+NULR8iBj4oDhFSYpKRpiowH/OTZJnbQRNc0XEstIBNNwzIN0lyJCiLVjTsJFazSNHXiNCcrBVujFMe2qacRzQdmCgezEN91qKqK7b098jRleXkV9wEJjsXA5gtPL3OrnzDNSlo1l82ZBPs7haUJnllvcHE3ZJwoefdKShquyTMPemtLxZ6uz9wYz6002JrkMxKcqvCmWYVnSLSoz607CcudNju9LmGUsLGxjmWplsbpxYBLu1OmQg2Kp2mC1A2eWPbftp0HsFCz+di6z6U9iHKBqNTu8GMbjYfOX3eScXFrgmVZLNdtqirhydU651ZqlDNo7RytM/MkuT5IudKNcE0NoyrIhWS/MLnUTXjhuI1j6WRFMavoHKJEcUDuDhQH6HDSdi2DfqRaPSeXa0RJhmXopHmhNha1GpsrFnejAZahIUQ1Fyuc5rDRlGQzoc2DZSotBdnsfJ9bcJnGGXGpMYkjJNBwDRb1GE0zWF1d49JuyNYopeGa+K5FlmeEhcaV/ZSXTjY4ufDwufZdh/3xAFNTz52UEsuaDazjgiibVXmHkshBLNUcru9H9KcJdcfAsizSSlJVKWvN+3DXOK94fXtCL5z599gmNRHx9KKDXWsj0Fht+jiWTpzkgCTKSgaZxNUFnqXmUp7r4uQl46JkZzBF7HXxHZsg8KnV6qCbWIaGqSulgYN7yzAMTp59ggz7kajEgzi9GPCPf/gE37g55EY/pu1ZfOJYg+c36kghiKKIKIowZ3I5B3Lymqa9I/0gjuMP1Yvkl3/5l/mFX/gFPvWpT/GZz3yG3/zN3ySKojmK6/3ERyqRvJsZyQGy5kB00fd9Pve5z30gMDnDMMiyjDjN+IM/+xajaYRtmdiW+UimN9wfmE+nU7rdLgsLCzSbTeqBR5pllDMdH9sw1LzEVHBBIcV8YJGXJXkJu2HFl67sk1XK/MoydM6v1Pj0idaDdhSEccre3i6ebbC8soppPvr3B7Y5hyR6jo2u66R5TiXewTtRwgsnWtQdnd2oYhKlLNZsTi/6Dz1gUsq5qZM5Q+O8dFrw+raSW9d0gxOLHh/bqONQIcuM67eUxP5iu0mSpOi6IpE9s65QUtf3I7JSUHMtzi4FnO64R4yjQO3sp1mFa+mzloLLudUGd/sRgWtja+Khquvi1oSr+xFFJdXuUpOcWAj4xEYNQ9cxzIcTbFJUXN2d4tsGslAtonbdJy0E90YJ51dqc+Z8JQRhnNKsucRJ/rbulBogZEUUK+viB1WPF2s2qw2XrVGKbRoYtklSCAJHcqyus3XvHoZhYLs+dyLlWVIJ5RB5asHnbz6zyo3dEWll0/RskuEerm2xsrJMJeHeKMU1daXoW+TomkZgSkZRyjircaYZEMbpvIXquw5JqnTK9medPk3T5tWFRKku1AOPyTSaPyeVUHpVTc/kqdW6IofGJYYJuiw5s+hzbrWJoSsJ+lfvjelOM2qOSc0y6A8nTKTGylKNtdncqaoK4goMQ8d3HApZkGZ96vbR+9IxlWpzo9NhvR0wHE2Ioojh1g5lWdJq1Fipmdwc5JhGhe/YnDp3nkGu87GNGsc77wzS2Wx7/Hfth18TxzEXL15kfX2dxcXFecv6YIN6kEwelVSiKHpoGP5Bxs///M+zv7/PP/2n/5Td3V0+/vGP80d/9EcfyGd+pBLJ94qD4fne3h6vv/46x44d44knnvjAmKCGYZBkOf/uz7/NaKokLg4QVJ7roGsc6dPXA49JpBRBJ5MJa2trc0KR6ktr1AOPJM3RDYOirLBsjsxDDmYPk7Tgzy7tUUiNmmsjDCUh8ubOlJZn8cTK/Z1KUZTs7u7QCHzqrY7S8EKS5gVJoWYuvm0cmWvUAnduk2vqB4KDj27ZHfBSNtsem21wrBZo2hGwwUEo06uZLpgQlGnG2dUmK3WHcOa7faClZOpw63YP3/dpt9vsjUK6/Slx1mcxsFhvB5zuBJxd8imEpO7Zc0WAaZziuzZJVvDqvTE3e/FskKqx2nD40fMrpFnB0mzBqXkecZbPPTy604yr3QjT0Gh6NlIKsqLiZnfKRttjrfbonWKcV5RCIPME2zSoNxsUeaEqpqw8IsFykFTHYYKm65xeatCd7s+hvqCG5rqusRjY+J4995cxTIs7vZCiEizWbD5xvEnDM7k3TKikxrG2y6mOGuRr2hKyKviLt7psTQpsXXmUJJXOW91YuVyu1CnKgp3tHXzX5fSJY+RVRZioTYTir9y/nro2E+bMCiZRgq7rM1i2JJwlxY22x/Y4Y5qWBI5qV07TEt/S2Wi6TMMI17EQaLx6d8S9foSYcSzOLgX88Jk2YaERpxntmejiwfM0iHPGOXTqStgznEyUYRUmtwcJJxf8IwKKlRDK+6YscEyDUlPOm2Whkls6G64v1j3SvMD1XFzPZYGFuSNkM4vxRcIkdnE6GwxTyTMbdX7+U+vvisH+0L0Sx7z88susrKwcWZcOuCoHvJXDXZXDemB/Fe6Iv/RLv/SBtLIejO+rRHKQwS9evMizzz6reusfYAgJf/HqVTTn4RZZOvO5OGAOm4bBOIzY2+uS5zmbm5sPybaLg9514GKaOkIKhBQPJRGAm/2YXEDN0ZFViWGauIZkmuRc3Q/niUS5J+6x1Gnj1RtKUiQv6McFr+/EbA2mgHp4P3GsyVLNmWln3Ye/lkJQzAah0ySd2/SOkoJm4CIfqL6yopx7jBxGmnmOQgNtj9LZgmqy3lRJyHNtLNOgmD00ZVFwb2cH1/dZWFjgzZ2QS7sZeSXRsNnJoBuHHPeGmKbBYqfFpLCPQIvjNOfSbsjlboypKZZzWUnujQv+7NIuP3K2wwGAIEwytZs3dZK8YG+SUQhBw1OKx1LKmWd8xdWdMaeeWVVzoOL+Qy6lpOHo5EmMaRg4rktZFJiWSZyVWLqGZ99PQI3Am7d1pBAsBTrrLZ+9aQZCIGeShyfaLqeW6/O26a1+zOvbU9JCYJgWJhPOLQc8uVLj6TV1jQ/33KWEUQbTymSl40NVUJQFGjAKp7yZxTT1jCQKCWoBi4uLs0G2pF3zWG763O5N6PjW/JhpKRTB0puh7Wbih3GaY9sWpqGxAjyzVudKN2QUKwBGzTH49KlFNKFslqM05xs3h+xNMmqeg2Xo3BulDOKCn3hyhWVbQPAwezvOK7Iso267TKdTXNfD8zzCNCUvBUV1PxkjNWq+Q5ikOJaCRV/phuS5jmPqVOhUmsmTqwFCVA+RnC3rvrLDqWM6z5w9yTjJyMMxS3LM1rUp2eIii4uLD7WL3y6SJOHll19meXn5oc3twbp1uHX+IBkSYHt7+7E8TD4K8ZFKJO9UWVRVxcWLFwHe91D9USGl5C8vXme7P2Fj/dGzFg2IZlLnZVmyvbWNputsHmKqPxhqd5+RFRVtS7GnKziSRGC2U9W0ebtLVBVoakgW52pxC8OQ/f19VpaXqdUb85syzEr+/HKPMCvxbAspJdvjjFHS5+98fAOS7KFzq2ma8gwxTS7thrx6d0gmQJOChcDmMydbtLxD7bKZx0jNd0mzAk3X2J+mfOlqj3FcqCVSU4ZKP3xGEUANXSNwHbqDIeN+j1qjQavZohtmvLkzRdM0mjNv8KxSc4fjy21OLDh0+0PieDiDFgcEgY9pu1zbDzEQNAOfIs+xHBO9KNibZgyigs4hMcG8rNCoaPgulRgDGrqhU5WHdoSoFkyaq4Xx8CDe0gS3795hs+2xNa1I8wrb1EmSnKSoeGqtNW/11T2H0TRmb5oxSRV0eb3p8qnjde4OTSaZgkIv1x3OrzWJZ1I/w7jgta0JlUB5xmuSpNC40ktpeTanFgOSGZv8cMRZRVZWBHaJbhp4nkuWZTTrBnGa0xtN8IyZKm2vjx/4eK6HkJLjTZPe1GKag6mVFJWkEpLTi8F8phS4NjvDiCvdkP2pUng+1vF5/niH08t1tgYhhq5zfLFOmt33kNkdZ/TmUF8JKE2xcSa50Y95atnlUVQt31Jma4PhCM+2ME2DolQzw3bg0a55ZHmOEMyTyEE8sRxg6hp3BglZKbBN+Nh6g42GjWtbWIZBVhTqGh86j45l8nM/8VnWFlvqFpdy/oxtb2/z1ltvUavVWJwllWaz+cg1KkkSvvOd77C0tPQ9OyQHSeXgvwcJ+ytf+QoXLlzgJ37iJ972vR/l+EglkreLJEm4cOEChmFgmua73iW8l/jyhcts9cbvKNECYJoGkzDi3tYWzUaDYxtrj5Rdh4MdvLrhHcfh9r1tPM9lodVC6gaOrVAhUkpWWgFv7IQIqc3LaikleZ5zfLlOFE7Z3++zurpKq9E40le/3ouJspK6Y6JpatfrOS7DMOXN7QmfONZ4299zeXfCN24MMEwL15RUlcbuJOPLV/v87WeWHxIJjGY7fdux+NrFXYZRQd01lDDgTPzwO3dG/Ni5BSqhBCqzaEqjs0BtVrZvDZVoXsu/f/u5psY4KdiPJedWbJaWlgFJmmbEccRgMGSSFoSxamHkWYplW0gBlq4RzbxCOg90BpQTYcpGx+f6ICPNirmjXyUkpYDVhjt7rVIJqHk2URRx9fZdFhcX2QhquFsT7o1SplmJpatZxPklF8+2sC2dvWHEN2+N6E6zOZgicAw+ebzFmUX1pQxdpxG4DCbRfOa1NUpJC0EnsOabC9/SGMYFe1HBmRWdI5L3B+fL0rF0jbxSlVmapmi6RoWOJgXLC20W2k2SJCGOYm5sdcmFhudYrLUCPr7uc3uQMUwknbrD8bbDZlMlYd+12RvHfP3mkDArcU2dUsCbOxP6UcbnTnU4uVTDdx3CKDny3aaZgl0fhvqapomeJmz3Q55c8qh5yuMkOgRlXwxM7CJiJAxcw6IQkrRQs5/1hkmSZWhotOoulVDn8kDvS9c1zi4HnFzwyUtBq+ZSFCUSqbxTDs7ZzGyumJmc/exPfHqeREBtrur1OvV6ndOnT5PnOf1+n16vx4ULF9A0bZ5UFhYWFGggTXn55ZdZXFzk/Pnz77nNrus63/zmN/l7f+/v8S/+xb/gF3/xF9/T+z8q8ZFPJIPBgFdffZWVlRWeeuopvvzlL3/gvu2vXr3Dty/doBACzzLRdKUn9WBomkYcRtzb3lFD9VaTKM2peQ5FVZEfaot4js00TmeJSc6VPuM4pj+aIMocXTewXZeVxQVWayYt32IYFzPkkKpSHENn0UzpDXLOnTmJYztED/ApBlEx+34Hf5GURYlh2exHbw9dBrjSDRFC0nTUHEPoitk9TkvuDVNOLz7chnBsm9vdCeMMfFuftxwOpLe7s115GU/I05hmZ5FOq0FZCoqqonibQb9h6ERpiq41sR2TJCtwXRfXdel0FkjSjMvTfdK8RBQ5VmmppKur1ssRIt4DcWIhYH1vyvakIJ7tTMtKVV+nFu8PTSsheflGl7e2hthewGK/5Amz4oXjLc6vqJmIZxvzSkTTYBKm3Bzm7E5y6q5Sp5USxmnBhbtj/saTi9iGjudYDCYhjqW4R2Gi2jZKmurQAqSBZRmMw4QoSRXgwzTVjGv2srZvsVhz6EYlMlYcmCjOmCQZT67UOLmxqqx3BVzby9hPfdWeHZdcHww5GVRsBA5nmx5B4GDbNoHrYBkGYZJwsxcxTctZglPhWTr705ydccrTNY/hzD7Bdx1MwyBK1feQMOf0mKZFWRQKhWXpc2UCUIzwmueQ5znXrt/hYxsNdlKD3UlGnFe4ps75FV8ZrkmNwHcYhfcRYb5jY5oGaZqTVxWmodEIfMWxeQTUIStKsqLEsUx+9sc+w/pi+23vF1DdgLW1NdbW1hBCMB6P6fV63Lx5k9dff516vU4cx3Q6ncdKIgDf/va3+bmf+zl+7dd+jV/8xV/8UJV/P8z4SCWSB0/inTt3uHz5Mk8++STHjik3tg/KJfEgbu/0+LNvv6E+H40wzVgxdFzXOoLUElKShlN293usrq0eUemMZhINDd9lEqdYhkFelnPlW01Tv800TRqNBo2GakslSYIuSq7cuKmYrEse10a2YsdLyVLN5rhX0DAFK6sbeK5HXlY4M9fEg/BnffqDhxfAtG1EmBDYDr5rP0TmU6+XTNIS13Ooqpkchq4rBFxeMc0eVhFQFryKMVwUOX6gJFSYEfcMTSMXgt39Hg2zYnF5FdOySLJi1uqyWQgsrmscGUJLKalmg9miqigrZRo1PjyTcR3OrzZ4fXuK6VhQ5SR5RZznrNUtRDwm1gI8T81VhnHBMC6oew7NsuTTJ5rc7MXsJ4IsL1ipKyTaAZdASsk3rna53k9wLJOqqLg1EHSjkpdOtegENsEh1JprmaRZQVEJru2OcS0dz1HmYZqmrHonaUl3mnN+raHIg2j3ARyOzXLT43pPif/pmob8/7f35+FxnfXZOH6ffZlF62jzlsRx4tiOd2drGggEsjp2wv6mIU15Xyjfhl83WqALLaWUUN4XeGlaoLQQWuCFkjg7IZDFCdlo4i12HK+xLMuWNBpJs519eX5/POcczUgzki3Jlpyc+7q4LiJLM8+cmXnu83w+n/u+QSBwPCzLQnMznbYLfx8si5zmoqibaFAE/NaSVrx4cBCDZRclwwZxHSzJJLF6UWtU+jmQM3Ci6ELhCZoTIlyfoGg4yBIV85MSTEPHiUIBLMuipbEBLC8gmVBRtOkdfOWHimMZEAAWYVHSR08ikVcbgHPbUujO2ygaJpqTKhzHgeF4YEAnnSrhEwJd13Hk6DE0NjZiXmc7FgMYKuowXQ+qSMd0QSjhVJazANBhEdr6gSwJkCUBpuVGivNakAQet75rchIZC5Zl0dTUhKamJixZsgT5fB47d+4Ez/PI5XJ44YUXotNKc3PzSfU6duzYgc2bN+Ov/uqv8KlPfeqsJRFgjhFJCN/3sXfvXmSzWaxfvx5NTaNv+nRTEisxVCjj4V9vj47XbKC2dl0fZddCQpHh+T4M00KpMIJ8ScOC+QsCHyUqhuvNmzT0SOaxoMmHKosQOQ55zRhtqtf4fLAsi8ZGauO+rDWDUklDoVjEkqSGhZIPQZQAz4AiK2hrb6OeVMH4K8MwSCVkFMt0kz23JYHDg3p0t8zz1H6FZxmc26xAM4LGumZWVUgYhkFTUkZfXocY2KEQ34dDPLAcTdSrhCTSDHqAQaNC7UU0w0ZCFsAEzsSm44ElHhQWmDdvfpW3mOcTaIaF5fOa8GZOx2CJ6i1ACHyWR1pkozIQLUkZSCgibMeLrPKXdqbACwLeOD4Cy2PA8wKWNCdxUUYC59sojAyjr9/BUZ3HoAkQ8AChk1WXLGrEkrYklgDgeRaSIIwKPgnQ3ZfD0REDaUWAXDFOmtdtHBm20ZIQQIILKHIcXM+HH9hieIQ6MjuOHWS1M4BLfbk4jgt0D9UwLQcZlUMmrSBXtiEy1AV5uKAjJfNYVDGCOlC0sK2ngLJFm+6iJKIzUcaGcxowMFRAdtjA/PZWZBpHdT5UCa9DZH3IAg+O58G6LlIykDdcuFwD2jvS9HPqexgayUPLFzAw4MEo8zBsBqm0Cl7g4bouNSLkBXiOjSrnTUSXEBzxsaxNwRsDBCO6DcIAHCFYkklifmN1SZrxPRzpoSTS0NgQEYUscGhOK2AZBoZpQ5aEcSRS/UC01FUo6SCg1juyyMP1fOimAzD0QzhVEhkLy7Lw+uuvI5PJYNmyZfB9P7KG37dvH2zbRnNzc0Qstfz+du/ejZtvvhmf/vSn8ad/+qdnNYkAc5BILMvCjh074Ps+Lr/88nFvwkydSHTTxgPPvlp1Z88wTJVpo27ZcBwHpZEhmI6PBfMXRBkTJdPFL/dmMaIHKmMGaFJF3LJ2AXTfQjLMPZ/g88EyLBzfg2k5kGQZixpSKBsmisUihnJDYDkWuq4jmx1AKpGEJCvgeX5UyazKMCwbbSkR6xc1YvuxAnTHB3FsSByLlfPS6GyQosa6IgtReYleSxZLMioGCga0QJPhEzpB06AwWNrVFGVP0CkzOtkG0C/7Be1J7D5eRNGwIbAsXLCwbAcXtvC4cPE50GucaMAwMG0b71nejj29BbyZ08ByAjqSXJUmo/J9ImDAsByI7yIpi1iaARY1tqFkBjoSOfwYJ5BubMLBrIbj2SFIHMATSp5F3cPLR4Zx7bJ2yAIH1/XhuvQaaoaFbHYAg0UbDMdXkQhAPZ96h0u49Jw0RJ6D5XgBT3jRvzcqArIlCzIf2OwQAhccZJFHQqiO/iWgLgEcw0DiOayfn8Ib/UUMmww818WiJgUXtiej12W5fkQiaZkqxHXDQveQD5UnSHslXLSoc1zvkGU52I4LiWMC23pKZooswvDsIECMOigYlh2FLdm2DXOggKE+HYMjBcg8C47n4fESJI5BV0P9zAyWYXB+WwotDMg0pAAAfO1JREFUqoDBsgWf0LTKjkZ6gxD6aDG+hyNHe9Dc3Ix0Q3UPj4DecDDB2ggBUqoC07bhuOO/+wlZgm5aUTGL6rLoZy/Um3Aci+t/a/WMkMi2bdvQ0NCAZcuWUbsfjotI48ILL4SmacjlchgYGMD+/fuhqioymQyKxSJWrFiBw4cPY+PGjbjrrrvwF3/xF2c9iQBzjEgsy8JLL72EpqYmrFixoq6f/3SJxPN8PPbCTuRL1Wly4YkkhGEYyGWzUJNJnDOvHRzLUrsUAjx7IIchzYbEs0Hjj2DE9PHIzl5svLgdZcOCLAmRm+9YJNVRXQdAT2Flw4RnmxgeGkImk0EqlYLt2IDnIjech5kdpLXsRAJqYEkiChwkgcMFbcD8Jhkjhg/LcdCelpAYsyEaFlVPq4oI3aBJhQubZKxZ0IC9fSUYtgeGYdCWotbtruOA5znIvACe48YNFawIomEPZjWULQeCb2HVwiTWnz8P2hiNiu36UeNWlXjA97F6fgOuOD9DtRQ1vkym42P38SKOjRjwCUFLSsXSdhWdaZpvItcyVSTAwWwZqiwhKfHwXAeu64FhXOQ1C68d7sXiTBKJhApJklEs68gNDkLkGTQ1NoApFce1tj0CCAwDx6UmnGlVikKuAHoDsrQ9ibzhIG9QjYnrEYDxcH5GxbymBAzLgev5GAwm1oZ1ByyAeY0KlnYk8K6LOjFc0kEIQWOSbtSaQafH+goWypaLBoVaqriOQ9Xdlo39Jwq4YUUHWpsaQAhQDv5GkQQQy4ESxA0LFUMTZd0EB6ApIaExocCwqi1XRFHE0vkZuFwRR3I6dNsF4zKAWcI5KQZW2UdKaISqqvRvg79jGQayKEC3LDqWW1HKCk8ULMOAZwiO9Z1AS2sLUqna8bUMAHVMbHBYwhIFHrbtwrCpaWUliYyF5/uwXRe3XjX9k0hoxZ5Op7F8+fKaBBBawyeTSZxzzjlwHAfDwzTm+s4770R/fz9SqRQuueQS/MEf/MFbgkSAOUYkkiRh2bJlyGQydS/wTJxIntu5D8eyQ+N0EaGxISEEpVIJQ7kcOjraoahJ2E44SqqgO1fEQMmCyNFGMwnKF4LnY0izMaw7aE2KsCpCgCr7LbTPYFY1WAkIhoaGUC6VsXDBAiQSKkzLQUtDGiXdRFeXCs/3oWsaNF3HSD5PfbcSdDQ209yEBCFQRRuAWOtlA6CEpekWmtNJjJQ0MACWdSSxuFXFiE4nmiobrK7rQVJ4MIFgbayp5JK2JOYlGZzoz6K1uRGd7W2wPQ+yyNOmOCF4/USJzvm7PjiWwbxGBesWNiAlU1uYVEJGSbOqdm/PJ3jh8DD6iyYN9WJZDBQNDGsW3nF+M1qTtZX8PqHTPhzHw/dcCKIIwIYg8LB8B5KqwPc99PcPINSTpBMKkg3NaBAlvJHVUTbd6DTg+gSO5+PC9gTd3CSBCg4ZwHBZDJV1JEVqmX7Fec04lNUwpNlIJQSc15rAwkY6dMEwDCyfwUtH8tAtF4rAwScEBwc1aC5wBcdGm70ebJ6qJILjWDgebWrzAg/XcQAQWJZFPawkCYI0uuEqoghJEKBbNLHz/EwCO3uLKJo0npimbhKcn0mgJSmjoBkgxA+ei4Nm2vB9OgBwcVcaC5oUGD4LyzSRSUpgfeoH1nO8D57nIqGqaG5qhKLI9KRk1p5gjN4f18GbPb1oaW1BQzoNVZbAMDS8K3RbCElknD0RQz2/wlC5dIISlSwJgR/e+D1jpspZtm3j1VdfRSqVqksitSAIAtrb29He3o777rsPH/3oR5FKpdDf34/Ozk5s2LAB//7v/47ly5dPa32zjTlFJAzDoL29fUZTEsdiX/cJbNvXDSDQRSgSbMeF4/nRbHcul0OxWMSS886Fz4ze9YajpAQcCMMGDr+gn9+gF+ITeicd/U3g0JpQZNiuC5ZhoFl2FYnQCN4BuI6LefPmgeMFmJaDhqSKQllD+AXhWDYaT/QJgWEY0DQqiswPDyGhJiDKMkRJntDTRxIF9A0X0ZigRoNOoALuSI+ve0sCVR+XTBeHh0wczpYBECxqVnBRRxKuqWNoKIeOtgwaGxpoo9z14ICOP790aBCvHS+CY5lgjJTgSE6D7fm4fnkHTNtBSfOoItpHVJLoL1iRXQbH0C+k6DgomDb2nChg46r5KOrjbWtYlkFHUxLd2QJERYBj2+AFAXbgFNzWkECmQUZjo40TJ04gpVIjv0JPDxRFwZImEQfzLEYCF1yWYdDVIGNJJkEbvroJzXbx3915DJZt+IRez/YEh/WLmnDF4mZ6182xsCuU44QQvHZsBLrtItOgwgvsRRKyhL7hMo43CJHpYQgjcJxuTckQRAOmaUNgGZgWzXwHJ6A5KUZRzAD9qJRNA4QAaVXG8vmUcN/M6dAdqoO5oE3FqoVNMAIDQ4AJwr8cMAy1ySdgUNZNLGxNo6jpQKS45qEoKlpaaG6JpukYHBqG79CyYEtTAxQlAR/MuH2deC66e44h05pBMpWET0h0UmFANUfhYEqlHU4thJlA4U7BczScjBBCUyxBKIlcPXMnkWQyeUokUonu7m5s2rQJGzduxDe/+U2wLIv+/n48/vjj6Orqmtb65gLmFJGcDKZT2srlS3jiN7urfqaZNliW2nAPF6gqXNd1LLtwCSy3NqGpAiAwgMdw4IgLnhfheTSnQOCYyDG1Erpp0c1UkWFrJo4O63i9r4RhzQYPD4vSHDYs6QIflPNYloFmWlBlCZbtRjPzAA2POpDVUDRd6mPU2YUmESiUSigNDYMQD7wg0YyQRCIqEVouLRUdGTLgeB4aFAGr5jfggo6GmneS4RdGs108vX8QecOBwPNgwOD1vhJ6ciWsaHCxYB6tzwsCDRkKMVI2cGSEvu5wNJfn6OY8qHnoHdai7A4qcqS2HEXdRMGkJROeZcALAtxgEkriWAxrNgqaQceuXS/q+QDUeeDcRgEnhlkUDAeywEG3TdgewaJMCu1pEZZloa+vD22tTTAgQSc2PM6DxHloICYWiyY0UYIgymhMSFjQkkRTkroDEBC80p1HX8FEQuIgcCxs10VP3kVS0bF6fgpiYMI4FkNlSgRh7okgSHAc2sMpmPVvjjrSMtpUDr0jdpCLQeBDoH2qtmS0YctBbG/4WQntVy7qasDFC5swUrLAsQRpVaa9pxo3bIQgsrxJqzI9rcj0dFC9gTIQBBEtzRJEIQNNpxHNhZKOvoEcOI5Fc2MD7XGyPBjioftYL9oybUgkx9uAEBDolg1FEqEbJlRJAs+zMCwHzpgbx4QiQTeqy1mu51cNozQlE3jvZSvRlZkZElFVFStWrJjwBq0ejh8/jhtvvBHXXXddRCIA0NHRMSOGiXMBZx2RcBxX5RF0sjBtBw/9envNZp3vEwwXShjJZcGxDM5ZuKAqP3ssFIHD0o4kXjtehM8L8FwXnku9fy5qS0YZGGOhyrSUcKLkYuuBIbi+D4b4sMBg3wgB11vEJYuaaNyrRL+8ruuB5zkoggjDsnFwUMPLR0ai3PbBkoXeohu4traAEHqnCN9BNkcnSSRJgqKq+O/jFrI6AQcPLMMgV7bx7IEcfN/H8vnN4+4Cw7u+Nwd15A0amRuKJXmGxYhuwWxrgiwrNGt+zN8bjgfNpALGMG8eoM3eoaKOkuVWhUARn24GKVWGzFPrFpbj4DoVKYA+QUrkonJI6Lhb0k2oEs3e6GyQccW5zXijv4S84YDnGJzXqmJ5VwLwXAwO9KG9rQVv5FwcGszBCd5rkWdwcVcaSxe3Q9fpaY/YOoYHChjJ0d6U7nMYLNtISFwk1pR4Fh7xcGigiPULGwNRaO3PTUgYHMfBtg0aisTxVWPFlZAlAZbjYN2CFIhZRr/mQRQkZBpVLOtIo1Gm78dYEqmEZTuwbEDiGTQkVLjeeNuQsQinAkOSEgUOiijC9rwokZBjGYgCD8OywXIskqkkkqkk9boyKbEMFwbAM9SktLW5EZI8/tQLIOjriNENjW5Zo6O9ogBB4INeF8aRyFiIPIfrLl81bRJxHAfbt2+Hqqq4+OKLp0QifX19uOGGG/DOd74T//Iv/zKlxzgbMOeIJOxT1APHURXvqYAQgl+89BpGilrNfzcMI2qCMYYFURBgubUjd2ldHVi/sAGKyGPP8SJMD0goIi7MKFg1v7aKXJUlFHUDPgFeOjQID4DIAFywyVquj339ZVzUkUJnUxLlik3ZdWm5SJIlbD96HL5PIit4jhdQ1E1s68ljQZNCv9yiCEDEhec3o6RpKJU19OTK6C/54OCC5zlwLAeR51A2XbzeV8KCJgUJWYLt0pNVUpGjNfQX6fRZqHOwbTpwIMoyRkwfCVmkUbZjXrPMB3fsjgeeBQSe5qKbpg2OZesSblk3sbBFwd4BESOahaTIUk8x14dPgMWZRPRcoeNuWpGhB01jhmHQ1Sijs0GC5VJjR55jUS6XcTybxbyuThQ8Afuz/RBYFg0KXYdue3jteBEtCRGZVBKpVBIJSURuOA/4DnJDOQxoHkybgcQKICwT3aULLAuHMMgWqPW/GmyYujl6J7+oRcFAyYJNGBCHlsXKFm3OtyUFJFQJnkdgBH8jSwJsx4HruMhlB3BuI4dLL+gCAUP1FQwDkeegSAIsqzaJVEKRhKAnQsBz1P3Xdr2qqNqwZ1TSjKrSlON6cFx6wpEEnmpMGKBQ1mva7ygK9cpqSqdwtPc4kskkypqJ3FAe6aSCRCIJhhcgiRIYtppEqh8MMB0HpuNEn8+kSsfydcMeVz6LylkzQCLbtm2DLMtTJpGBgQHcdNNNuOSSS/Dd7373rPXROhnMOSKZDFPpkeTyJRztz9X8t2KxiFwuh9bWVqRSKTiWgaJmoLWpAZppjvEFqkwyBNaf04RlnUnq78MxaEqq47IYANrboNkWDEqGjZLhgCE+eFEAL4rwXKpm120Pw7qLtFJbjd49UIBFWCgC/fawHAfPcyELHMqWh2HdRiY5esenmRYkSYKqyOi3BDCDOci8AM/36DQYABa0VOR6PnTLBs8FmRoVX2qRHx1CCLMxBEmAZbpQxAQN5aqxXoFjsLhVpYaEtg9CHBCw0Fwf7UkRbanad6cAILDA5ec24jdHC8iXzSC3nFphLGkbLY14hOBgVsfh3CAMy0FTSsHiJhGLWlS6GQeTXYVCAcPDw5g3rwsJVcVv9mUBMEgpoYCQgSpyKBgOjuUNZFIiVEmEZlpQVAWAgoWpBrTaHg7tOg7ddsDb9E6c4zi4DA8BfuS6HJb4aDOZgWaYWNiswvAYvHFiBJrrA6DPuWZ+GimZj4hbkUVK8oYF23HR19cHnuPQ3t4OZsyGxrIMyroF36fkT916x2/IqiJFqYoALQWF9j2yKEAUeZgmTfykYsP6CCehTNuBJAiQRIFmqlt2Fal4toljx/vR0d4RXEPA96gQt6hpMHQdksAjnUpCF0RIohyN149FmPNCgKiqwHIMVEkCGALdcCDw7IyRyPbt2yFJElauXDklEsnlcti4cSNWrFiBe++995Rjv882nHWvbio9kkxTGr9z3RV49IWdGByhfRBC6JRUqUQT+hRFQVKVcdTxQAgtsYgCD1ZgglhdEliS0y9iOkHt0zkmsEkHItdbqtVwo+eRJQGaQb/ExfwICPGDGFoGnuMEcba0uSuLPEidO0uGYUA8F4TjwfFsZPBICIkaw2PhuB58hkEymMdnWBYix4GAZiQ4tgfWc3HsWA8SQU+lqSEVmRcCwMJmFUeHdBpXy1Plu+VQk8lFLWoweaWgWOPudEVXOsob1xwfDHHRlZbwrqXtgO9Wjf0ajodhzQHHUoV0C/HxnguakNNceACSAlNtJAlgR08BB3Mm4LvgWQb9I2UMlXiwPI+FjVR1PzIygmKxiK6uLqSTKk21dH0whMB1HarNAQM/eM8c14csClGzOwQhBIrAYnEmjTdHLBDfBSE+DJeBbek4t4FFKT8CNaFClqi6PiIUSQTP87iIIZiXymBIs8GxDNpSEqQxoV2E+CgbDjzXRX4oC1WW0NTSOu7ayiIPx/Gik0jYuOY5jp42HLrZUxKh+o1asILfSydkOK6HlCrDtJ2aZWCOZYOANnptKjUbVAgowPF8FAojONGXRXtHe5UWjOVYJJIJJJIJOnBCXAwN56EVhsDCRzKRgCDKECQpyhiqJJFK+P5os14SeNxy9YYZIZEdO3ZAFEWsWrVqSiQyMjKCTZs24fzzz8ePfvSjGclKmuuYc0RysuFWp4qWhhRuu/YKPLdjP15940309/fDdV3Mnz+fTgQF00kMw0YZFrbjgmGo22gh0JwwDFNRyhm/VqrVYKAGDcFUQkVZN+H5Hgb6B8D6PuY3qTiWt8D7BCzLwHUdWD6DhqSMFqX+8TeTosltRdNFAyeCYVm4rgvT9dGsimhSa39gFUVEi+0iHTgRJ4Ieg0cYELBYNr8RXRkJuq7D0kvYnx2AoihoaWqEIMrIyATtkocBk4XpszAt6se1ZlEzMmpAopqBhCLBcryq94dnGVx6ThMuOS+DvuEyJIGl9uXEQyJIVfR8H3tOFPFGPx0R5nkBrx7N49JzmpBJiehMC1SUlpAjQgaoQeDRvA0OHpSgxyALHEqmi109I7iwfSGO9R6HpuvomteFxlQiUphnkiKyxcA0MOgZsLwAhvHR1iDDdekNRS2snp8GzxZxdJiAMBIU4uDirhYsTLEwDB0D/TQXW1VVqAkVqqICDFDSDQgch3nNChpVs2a4mCTycD0PpkkHAhRVQaalBQmFnmzoxsmMI5FKuJ4XNdrpiCwBx7KRO8BYROWs4CRi0vBBqLIEjmMCGxiPkgjH1RwkAEZJxTUNDAwMYsnic2hccoW6PAQLWrrTLYLmlhY0t7TAdRxouo5CsQjPdaDIEhKJBAxDhywrdfcGkedm5CTiui527NgBnuenfBIpFArYtGkTurq68NOf/nRctMRbFQyZrOt2huG67oREkc1mceDAAVx55ZVTenxN0/Dor57Fzu4smlpaow+LItHQpGPHetDc3FIRMEPv3BOyBMN2wDJMsIFPTGYkyH4oahZM20J/fz9EQURbexvKlocn9+WQN5zwl6EqIt55fjMWV+RU1EJv3sTzbxaC2jvA8gJkluAdS1rQ0TDeFTkhS4FIDTiRN/FSdwG65cEnVFk9v0nGby1uhsCx0e+6Lh3r1DQNjk1tTHhRhi+lkNNpw/O8tjRUbnzOvEeAnOaibNrIJEUa56qI0PTxVvYAvXvuHjHx7P4BmtSnSLAtC7rjIyVxuH55exRXDAACz0PgOOiWjUHdwy9eO4EGha96bMfzYbs+NrSzUDgf5yyYD0EUq65r2XLx9P5cpK8gILBdgkxKxsZVnXSAYpKegyiIGCxqaFBE6hgckBwBgWVa0HQNukaDpjhBCIglQd1wg9dqOU5k9ikJtOyo6wb6+vqQSqXQ3Nxc1QcQOA4JWYTleIF2oj4SSqD4DuyIE4oMlmGqNBuEEDQklYh46iGpyuAYFrppVU3JjYVj6Ojtz6KrszNqrHMs7ccQQsut9ORdP1gNoCPxjO8hNzwCyzIhsCzUhAqGE6GqCtig3yDyHN73rktnhES2b98OnuexatWqKfUzSqUSNm3ahHQ6jYcffvi0uJTPVZx1RDI0NIQ9e/bgHe94xyk/9tDQEHbu3Il58+aha8EiPP7Sazg2MIR0QonKOL29vWhsbEAymQQh1WmGAs9BUUSUyifX7JclAYZhoLf3ONRkEs3NzdEpxvF8dA8bKBgOEiKHJe0p8AwloMgXqwY4jkXBcHFgoISyRYVzF3U2IK0I4xT0PEeV+pUbYpgJz/I8VJYgk6J3ugLHwSN+ZBFDCD2iFwp5pFNpCByD3EgBPM+jIZ2GoigQRLFqAz82YuA33SPQLBcsJ4BnfCztTGPNvDQwrjAxil+8PoARkyApsfT5CQka0S4uO7epqicSrq0xpeBgXxFPvpGFIrLgK+4eDceD4zi4oovHwnmdaEwqNOWQIChTUhQMB2/0l3CiQEl5YZOCVQsawYOAYalRoG7aNQklqUrj3iMuIGPdGN2oZUlAWdNQLlMhqWma1J0gIBVRFJEMNnjDslDWdfT39aOxsRGNjY3jmsl0OsuD53tIyDJYtpoYQlSTSDXCU3XY66sXgxCC56h7g+W4wUmFCiUty4Fd8V21DQ0nBgbR2dkJSard/wqvESEEmmHTyOkaqCpnESrA1HQdhq6DJT5kRYGiKvjQe6/E4oVd01KIhycRlmWxevXqKZGIpmm49dZbwfM8Hn300dOedDjXMOeIxPO8CZvphUIB27ZtO+UAmNBJ+KKLLsL8+fMB0LueV/YewQuvHYg8pE6cOI5kMoVUMMZIQcWGoX/WWEV8LaRUGccHssjlcmhva0OmpbmmAy8QBPXo1V9mVRbH6UcIIZE31FgwwR1uuClQsZs44V1fUglKRfCDE5kd/e3g4CAMw0RnZ0d0PJdEHsViGaZhYKRQpOsM+io+K+LxvVmYjo+ExIEBYBMGjkdw6aI01TvUwX3bT8AlBAlJABgGfvD+F00XK+elx03CSQJP7Up8gl/uH0Y2ryMt82BZamNSMGzMS3G4ZsX8gJT1aBowqdI+QKXlvx/cKKiSUKWDAWgzO6HK0HQr2vRCB+R6oPboMlzfh2XbVZu853kwdB2arkPXdWremU5BUWjpZjg3iFRDI9Tk+Os1SiLVm2/43tPN2QreV3MC6g7LWTI000ZCEuGD1ByrFTgOLMuMy5WnDwLIkgiBZzGUG8KJ7CC6OrsgSrXLORzLBKr7UbdgRQrKZxU9mXo9kRCu68K2TFy6pAucb0OSJGQyGbS2tqKpqemUSlKe52H79u3TIhHDMPD+978fruvi5z//eV3bl7cy5lyPZDKcao/E933s27cPfX19WLduHS0VBGBZFpeuWIyO1gY89sKuoEfCVMVzRuOdHB99AcKkwHqiLknk0d17nOa4d9BGvm5aUdBVJQGpsjjOLgWgZoVUPzLa9E2pSl0XVEJIpMEoGyZSCQXlSaZvaFSpAEmgPZ/weh0+1o/jJReMqGJkwMB5GRZpmYdlu2htbgQhjUg3NsE0TWiahqGhIRzJuyibLFIBiQA09S5vWzg6YuOCtvHhTCEaVQEDJQe+61EbdUGMGrijhowUPEt7WL7vgwGwfn4CL7kuSqYPz6MN6laVw29d2EmvhV5tgROScJj06Hp0aCAhizUJ2vcJSmUjEq36Ppl0qsknBLZLN0Y5cIouB4I+juOQTKWQTKXoadG1US6VcaKvH77vQ5Ko24As8OB5LsogqUciwKh7AgCkEhIYAkgBKda62RnbEymFPlgsi2RwUtEMCzzP0bHrWiQC0NFcy0Y+X0Z/NodzFy1CMqHCdT3oVnUpk2pOqstZBIFehC4KsiQGVvB2RO61oMoSbr/hKnRlmuB5XhQ+tWfPHvi+j5aWlshEcaIehed5UWDVVEnENE185CMfgWEYeOKJJ96WJAKchScSwzDw7LPP4tprr530OOs4Dnbu3AnLsrB27dqqDJGxKOkmHvn1Dux4fT8sy0I6nUIiqGcTQqAq8ri7VUkI3FkrvmgEBCO5HMq6gY7ODohC9Qc5oVCnVd8n4IIAK7euZoWCbno2PIK6E11Vz6FKcBwv2ownghqcRJKKjOFiCa9392PPkA+XjN7VKSKHq85vxvnt1OqbAYOEQid7vCB3+pXuYbzeV4bCEfiEUI8r34PtAZLA4bZLFoJhxyu+CSEY0n386vUT8AhN/vN9WoJrTat49wWNEMOpJoaBwvMw7DGGkJ6P7mwJw4USWtIqzutoDvoITk2iDxGWeACMOxHWvFaKCNO0oY7pbYyFJNLJwsrmtshT7YVWUYYSeQ6EEAyP5DE4OIiWlhaak67rsCwLsiwjlUqiraUJAM2enwhJVYJWYRsiBUMkdhDoBIyeRCazIBEDrYgXjIXXvI4EMLQSsrlhdHV1RfEKACDwHGSR6oYs24UocuOm4MatP8ocYSDyfHAdaW58JIycoCcSeuQNDg5icHAQ5XIZ6XQamUwGmUwGiUQi2jM8z8POnTvh+z7Wrl07JRKxLAu/8zu/g4GBAfzqV7+qirt4u2HOEYnv+xMq1x3HwVNPPYVrrrlmwtlsTdOwbds2JBIJrFq1atI5bqqRcPDUK3vwws590HUtqGdLaG9tBuH4caQAAAzLUL2BYcF1XRRHcjAcDx3tHXU/nILAgwGBwPMTNtYrVoeGZAIl3YgmyuqBCURqRcPG0byNY0N0UuqcZhXzGuUqk12OHSUyy7YwnBvE830EmgOkpCBTgxCULA/NKQkbV7RVDd/wPEvvMk0bhwc1vHB4GKrI0WAvx4bnudBsgvYEgyvOSSOhJtDSlKbOucHjpAJV+uFBDbtPFKHbVHWfSVJr/PZGSv6GZQcnjPEboK7rGBgYQHNzMxoaGpBWZRh1xlerriqhdiHUikaGUaPXEIKGg1WWWwiSigw/uHsPNyhR4OH7Ptw6p2aGYZBSZHgedWkeHsljaIhGKFeOybquC13X4ToWSqUyGJZDc2MDmhrS8FkW3hjnBVoerUMOgWuuwNOR82J54hOVGHxXwhsRlmGqBJY+IQGJFJEdGqEkUmfElWVYyCIPjqMnSd2q3bepJJGx4Fj6/BzL4vorVp90Y900TeRyOeRyOQwNDUEURWQyGTQ3N6OnpweEEKxZs2ZKGg/HcfDRj34U3d3dePrpp9HS0nLKj/FWwllHJL7v45e//CWuvvrqug29XC6HXbt2Yf78+bjgggsmPbn4vh/9j2VZ7O/px6/++3WYlgXHtpAvlKAbOgReCCzcVUiSFJWjCAgknsXRnh5wvDShe3GIhCyCZdlJey0A7beUdBNCoEg37Qn6HqqME8NlPLlvEAXDAcsJ8H0XHANcPC+NNQsa6JoJQVKmsb26QTdiX0zipV4bksiDxejdtOsTOD5w7dKWKsFj+NrTCQX5somfvz6AYZ3mXzAgsBzqPXbpggQSDHWNZTnaE0il0lAVpeqE4vkEhcDShObPM9GzNCVVFHVzXGmH3oHm0NaWQTKZBM+yVJ/j+0hIEjTLqku+oa9XiLC3YdhO1VSeLImwbDsKQBsLWRTAcyzV7Pj+hFNNAJ08I8RHMV9AqVRAc0tb4FI85nElanviuB7NXtc1aBodQ29pTNMyCssjqSooGxOTA3299HMUkoppu+N8rASeB0DqkjDtJYkYyg0iN1JAR0cneKH2RswyLEShelyYDf4ewXCB55MKEqz/PZjudJbneZGde19fH3zfR2trK9ra2tDa2lp3L6kF13Xxe7/3e9i3bx+efvpptLW1TWlNbyWcdUQCAE888QSuvPLKmpMRtZrq9RBOZIU9F5pmSD/MQ4UyHnl+J3TLhmk5tORg0JFYXaMbYkJN0Eaz72NwMIuutjaoqSTNopgAPMfCJyRSI2t1ei2a7WJ/VsfhbBksA5zTomJ5ZwqtDYkqW/oQieCu7oXDwziQ1ZAUOTAMA5ZlYbqUKG+6uB1NqkDJSTPpRpwbRKY1Ax0intibhcyzkCSROtQCAMNBNy1cu6ytrhpdEDjoto9XjubRkyvDJwSNqoCV89KY36hE19swDGi6BsvQqXWJpECWFaiqWrdJSr20DFrDV+hgAgFBPp/HyMgI2ts7oKpKdBqr3Lg4lo2uS+UlTikydbWtQeIMaEPdCbydrCA2eSJQkmcg8HzQOK5dVgxJZGBgEOUyFcNKooSEQq9rOCwRksj4ExKBaVoRqfCMD0VRkUgmwHICuFp314Shm/XY/lqY78HzMIPvHCH1SST8G62Ux1A+EHgmElVakxBjhYv1HqwhodLPRQ1SCzFTI76+72PXrl2wbRsXXnghhoeHkcvlUCgUqkpgyWSy7s2d53n4xCc+gR07duCZZ55BR0fHtNb0VsFZSSRPPfUUNmzYgHR6dJrH93288cYbGBgYwJo1ayatV4YEEr78WpuYZTt48tW92H+0f9zfhhbu5XIZPvHR0pCGIKtIJROQpdoZ6eHfhqOZISRBAGEIbHv0i6g7Hn7xehYF0wMTTAv5BGhJirhuWRuaU/Ru3gvq8DzHRvYRP9l2HJ5HxgQ/Eegei7XzEthwbgtMy8bISB75Qh7t7e1QFRWu7+PBXf3QLA9JiQPLcgDLoajpSMo8Nq3sqBqzHfu6Uiq16MhrFizXi+xCxoJlGfAsi2K5DEPX4Tk2ipoBRVHoiU9Vo3JDQhbHbYA8x6JcKmJgcKhq1LSuXxOCpDxZgqZbSChi4CU18UlQEqhmhQS2IxMJ4qo3YAJVlsAyDCWG4M9CEunrG4Bh6Ojs7IQwplxKLWpo5MB4x91qpFQZQ/kCdF2HrumwbSqATSQSkY8VUIdExr0GWn4SOA6WQzM/xj43IQRaMY+RQgldXV3VpEUIFFmCwLE0QRKIyKke6BRkkP0eNNsFgYPj+pHf2OkgkbVr11aV4izLqiqB8TwfTYFV5q97nodPfepTeOGFF7B161bMmzdvWmt6K2HOTW2dzDz42Mkt27ajD0mteN6xIMFpICxl1XtOSRRww+Ur0dXaiGd37I/uSkNTOk3TwDAMFnZ1oVAqo5DLIZsdgKqoaGttBmHpZlw0HfQMG3B9gvPa08CYCF4rsBVPVozv7h8oo2gTyDwDNshE8X2CoTLtR0g8G2Qw0B5FqMynLxA1qwS+60ASBYAQZAcHYegGurq6gg2HTkStXdCAl46MoGS54DnAdS3IkoT1C1N1SQQAbeAGugqRY9GYrDc1RiCLNKFRlmTIEhVttRIPtmUhOzTqWNzUkIbrSFUbFiEEJ/r6YZomzlm4AAlVRdkwg02p/mbpeT5KmoGUKgU56mzdfghASYQ2iulmKIsCRIGDZlio/DOB5zC+FMRE7wXPsVAkEa7nw3FdHD/RB9u20NU1r2ZtXuA5au7p+5BFHpIg1LxbTwVhaaIoQhRFNDY2wvO8wMpdg2kaUCQR6VQKusFF48V1X6tPYFs2wneMvt5RDy0AKBfyyJfK40kECEpVNmyWBnSRYI2u50XTkJWoIpHg7ytDqwSeQ0NCxXsuvXhGSOS1116rSSIADdSbN28e5s2bF+WvDw4ORvnr9957L1avXo3Dhw/jueeewzPPPBOTyBjMuRNJaAw4EX79619j6dKlyGQyKJfL2L59O5LJJFauXHlSTXXP8yYlkbE4MTiCR198bdTuZGAAnudhXlcXREEIrLkpqWmaBk3TwMLHMZ3HvmEXHgEYlgNDfJzTouKq85vBseOfO6lSrcoTbwzj+HB5XIa5Znk4p0XFuy5sjX7WlFIxUhoNwHru0BAODY6WtgDAcj34hOB9a+ejPDQAjgUamlprNkn7iyYO53QUTRcpkcWStiTmN6sQeL7mSUuRBRjG+J/LEn1s0x7dBMMNsB4UWYTtOCiVNZRLJZQ1DTzPI5FIQFEU5PN5eJ6Hzs5OcBw9CTQlVTiBC/BE72dCFoMMeBIRt+V444ScIs/B90nNhjkblMpsx42SBOtNb4UQeB6+7yE3mAV8H42tGTDMeFJW6vViCL0uAs9BN2lmx1h33nEgBAzxMTg8AtMwILAMZFUBy4tQVTW6y5YFAa7v1bVPASgZ5oeHYBgmmjMZcFzt7xgVLtITzdifK5JIy8OmTRND9QoSqYGZcvH1fR+7d++GYRhYt27dKflehVNgd999N37+85/j0KFDWL58Od73vvfhpptuwtq1a8+oLfzf/u3f4gtf+ELVzy688ELs27fvjK2hHubcieRkEJ5Icrkcdu7ciQULFkypqX4qatjO1kZctnYlfv78dvQe64EiCZjXNQ+phAItTHljAEkSIUkimpubMJDXsa93CD4YcMQDzzBwfR9v5jS0JUUs7xo/c14OjB95tj6/89zoumVJwEhJgyIK8AiB7XhYNS+NbMlCyXTDwSuwDINVC5ow3N8LjuOQaetAUlVgBxb1lWhPSVjclq5yAKYiPhepyB+Lro/nOTh27dp2aHaZTCjQTZt6lGl6zXJXCCMIGmtvbUZDKgnTdmAYBsrlMvL5PAAgmUzCsiwoioKGhIp8QEyKSEsjtUZbQ8Elwag1SEmnmSeV/QlJoOPe9aaufJ+ebMLNEQy9NvVux0SBflaP9R4HIQSdnR1gWQ7JQEAYnkBVSYRZr6HP0Kk1w6JE7HkeUgm5ruqeCaasNNNCa2srUHmDUyyiXBiBLMmQFBW+IoOtQwwAdesdHhlCSTPQ2dkJURQoKRBSpZyvRyJAdehUSpXg+wQpVampyAfmBokAo/nrDMNA0zS8+OKLOHjwIB599FF8/etfx9atW7FmzZpprfFUsXz5cjz55JPRf88VV+G5sYoKnGxpa2BgANlsFsuWLZv0mDm2qX6qJNI9pOMffnEQe/uKsGwGnNGMJayH8xNyRCK1cKxgwyMEqsCBEyTYpgku2Hj29A6jU3aRCGwywuUQQsAyDBY2SujNW7BdGo8KQvUSLAOc06wEr4OJXpMR1LRTKt2grl/ehgMDGrIlCyLPYnGrClLKQlKUaKoszMoYq9SvpzNggpp/GCZVNi3wLFMVLTweDMqaiYQqgfhkQhIJIQk8XQ+AhqQKlgGGh4ehqirS6TQMw0Aul4PIMRjgBCSDvooJWpcXeQ6SKERRrLJIw6HqbdIhYSYVOmI6mcYiVHuHv8cGdiqOV53tIQocHNdDb28vWJZDZ2cHGIYdJTHQDTihSFEo1WQ9kZJmjlaDEBgrMiw0kyrvWTCQRbHqJgAMIEoiRElEE5rgui5c20apVEIhPwxBEMAKElRFpf5QweP7no9SYRhlw0JnZycNGasgBeoXRns8nu9PqhNJKfKY3hSBKkngODaaIJtJEtmzZw90XZ8SiQD0u/j3f//3+H//7//hmWeewUUXXYTLLrsMt99+O2zbnhVXX57n52SDf84RyWTw/SDPoFjE+vXrT6mprtseXj4ygoLp4oK2JFZ0pSYlFMPx8OcP7EV3ToMAj3paSe3Yp5XQcLyI85rrjw3aHolS/jzXgSBJIL4PFw58MLBtG/l8HjzPIZGgE2CtTQ0oGxbOa1VxomDi6Ag1MCQ+AccyuLA9iQVNSpCiWK3GDjcoVREhCj7WLAgEk5aJ7EA/kqkUmpqaql4z/RsDCUWE4/oQeG7SsoPn+yjpBhqTSlXZqh4kkaf6A5/QTV4QamoGqIVJhc0LgKF8Ef19fWhtbkRDYxMcz4eqqlg4vxMj+RI0TUO+UEB2cBCKLENNJJBQVdiuR8ObJBGW7UQeYvUgcBxc14Pm0GhgNWh4W2NeH8+z49TeVO0eZIlIIkSBiyzcjx3rhSgKaGtrr/lZC0mTEAJZFCCJtLw1Vk2eVgNjxYqHIEA0XMAASCgyBG5yIkwmVDiiAFlV6fcpsGvJD+eo+l6QqMLeNqFbNiWRGiUcnxBYtgM2yNtRa9idhIhKmlXXgBlVuhOCVELBTVeumTES0TQN69atm5IDLyEEX/nKV/Dv//7vePrpp3HRRRdV/ftsufoePHgQXV1dkGUZl19+Ob785S9j4cKFs7KWSsy5HglAj+G1lmXbNnbu3IlisYiFCxfiggsumPBxKvshu0+U8FeP7Mdg2QYITYi79JxGfPHmpUiI9fn0ib1ZfP7hNyCxNLua52lteViz0ZXi8cHzWfQOjtT82wNZDb8+NARFpAJECgaGC5zfIuGqJS3wfQIjGCu2LWotHvpXybKMEwULfUUbkiggo3LoSEsVjfn6G0bov3S8PwutkEeqsWlS+wZJ4CHw/KQTPgCiU0y4AZi2W9MRmeNZMMC4jUUWBHAcB80wIx+sdEKu0nWYQXJlQ0NDRIApVYFP/HFeTKEFua5pMAJjxMZ0ivYDeD4a5601ScRzHLiaViDB9BXLQjMscBwDjmHrW4YEEAUetm0hO9APVVWRTDeiFjGrclBuq9ETCcOmDNOGIotVsbe1wDL0JKJb1F1XCQR8hmVXlekUiSr+a44zExqRWyqX4dsmfELAiRJkSY5ciysh1LNQIYSWZzkejuuA5ziqE5ngpm2mTiKEEOzZswelUgnr16+fMol8/etfx9e+9jU89dRTZ7x8VQ+PP/44yuUyLrzwQvT19eELX/gCjh8/jj179sy6NctZQyRhUz2VSoHj6BTKkiVL6j5GJYkYjo8P/ft25MoWUrIAlqEWHKbj4SPr5+GP3r245mN4noevPPgqHjygozUlV92VaZYLhmHw6Cc3YNfBo3h5z+Fxa3Y8airYP6KBY+nm7ng+ZIHF+9cvgswRREVmhoHIscgX6V22ruvUvj4o26iqilRChWHaEHgOtutOaP9BCNVZuKaGxpYMBHFiwRXD0BFQ03Yg8TwEka/bvE7I4riNISyRlXWz4iUx4wRpY6FIAr0LHlNS0jQN2WwWLS0tVWPesiTAtl2osgjX96vcfEP4Hp0A07QSiiWNOs4G17G5sQE8F/RRGKp34Dl23MljLCSegyQJsAP79okmoAzTxLHeXnrCbGmlmiNZhO+ToOTEVDX+64Eq7xU4Hj0pWrZT0/Ym9LGqZysflo9834Nh1SnxBfBcF4WRIViuj+bm5mg823EsMBwPQZCQTCaplTvDTmrDQ3tqdEBgrN1J5TWbKRJ5/fXXUSwWsW7dulMSGVY+xj333IO7774bTzzxBC655JJprel0Ip/PY9GiRfja176Gj33sY7O6lrOitDU4OIhdu3Zh4cKFWLJkCfbt2zehcePYpvrzbw4hp9lIyUI0KSULHByP4LHXs/jkO86BxFdPR1mWhV27diEteOA4Hj4YVB7uLdfH/CYFisjj8hXnY2F7C37+4mtVhn6NSRlXn9+AXb0M3szp8AjBomYVqxekIbM+JJ4HGAaW7QRCOzMiDRJaZ2sahoeHkc1moaoqmhrSUBrTsCYhkVwuB8+20NTSCkGUaH3aNGu6uVOn4NGSkuW6sFy6Wfs+qhqosshDM+1xd5eEEBQrmtAlzYIqC9W1+howLAdJWYTrelAD48RyqYRcLoe2tjYkKlxwZYGHY9NpqdAORJVFsAyLsjlaKgsbwrKioLnFDzQ/OrLZLAYG6HVsSKfQ0txIbTvqaH5C8BwLMIgyOxRRgCDwwd3+aMlMEnhouo7e48fRkKanKDBBgz5Yr8DTRrtpOfBJ/Z4IIVSsVxwTNhW67Vo2DZFiGRYCz0+YTaJbVtDMdyCJPPhAKzJ22oxa/AzBdn10dHSAYZhoMw5Hix3LxPDgAAo8DwT9KbnOaHFlOSt8/RzHQJEkMAA004TAzxyJ7N27F4VCAevXr58yifzrv/4r/uEf/gGPP/74nCYRAGhsbMQFF1yAQ4cOzfZS5iaRhKUOQgiOHj2KgwcPYvny5ejq6gJAm+21RIv1muojGv3dsdO2AkcbxbrtVRFJuVzGjh070NjYiDvecyG2DryG3hEDKYkDF2SrMwyDD6wdzUGYl2nC71x3OZ58ZS8OHuuHwHEwLBuqyOPy85px2blNIKiOww1LAo1JOr7LjLnDl2UZsiyjubkZjuOgXC6jVCqi90QfmhvSECUZkqJUlRx838fAwABAfLR3dIJhaXO3qBsQeZ4q0MdsnGm1uqQUQjdp/G9Kpep7muboT3gSolngBhqTajBRVN/1F6DBW5WW54ZWhl4qUO+pCpNNkaeN3rFTSuFrEQUekijAtG1abglOGAzDQlUTUNUEgNZIFZ7LDWEwmwUviMi0NCGZTMKocSoROHacjbrpOFGJLCFLYFgGtuuiVCrjxIk+NDU1oaGxoebrlQQB+ZIOEvz/WnnntMw3SiIRGMC07dEEQ0WEyPMTRgUAtCEfltBoQ9wBCIEkihAFHo7roqzrKAwPwfWB9oBEKsFxHFKpFMSmRviEoFgqwzINqi0ZGQLLiUgk6E0Qy3F1eiLUBmem43FDEsnn89M6idx77734m7/5Gzz66KO44oorprWmM4FyuYzDhw/j9ttvn+2lzM3SluM4cF0Xe/fuxeDgINasWUNDfgIcPnwY5XIZq1atin5WKTIEqu1OXj2ax//vv3bTRm9FPnbecLCoWcFPPrYu2uBzuRx2796NhQsX4rzzzgPDMDg8qOGLjx/A4UENng8kJA4fWNOJ/3nlonE56YQQ7D7ci9+8fnjSpidA71A9z4cYjJ1OVH8P+xKu60blL8Z34YOFGvRUhoaGwLEcFi6YB7uO1UVCluF41MOpVpmq5jqDQKKCZkyYcwEExBTcvYsCFdWFpaRKKJIA0xp16M3lctA0DZ2dnUgmVEgij7Jhgec4YDLrDtAbB0ngwHN0WqpeSY3jGAgcj1KZ6n20wG1XVRW0NDZAlGQQhq1JIrUgiwKKpTKGc4NobW0FL9VOxpsoJ0QSeIgCD9O2IYvSpFb1PMcFE3MuVYUHpyTH8WDYo6SUkKUxZpPj4bku8sODkEQJmfb24HQz/vNQ04eLEFi2HZXAbNuCIisALyChqjU9xMLXO1MnkTfeeAPDw8NYv379lFIJCSH40Y9+hD/90z/FQw89dMpZR2cKn/70p7Fx40YsWrQIJ06cwN/8zd9g586d2Lt3LzKZzKyubU4SSejc63ke1q5dO+7D0d3djeHhYaxduxZAdT8k9JaqhE8I/uAnu7G9J09jY4ORVY5l8BfXLcFNF7cDAI4dO4YDBw5g2bJl6OzsHPcY+wfKKAUTX4118tFDjJQ0/Oq/X0dvdnjC35MEPtrwGADJhFLTxVUJ8iXGvlme51GH2GIJxTI91XS2ZUYtMurwA8MwaEjIKOsW3Emt6UlwcrCoPbgkRqO1YxG6+Y6FwHO05BWO5EbhVPSEk81mYVkWurq6qk5YksDTbA3DntAMkWUDg8CoZxJYbvC0oR++RJZlol5QJTzXhabToQdD15FOqUgnk2B4kdqY1LmOiihiOJ9Hf/8AMqFxJMdBlUQ4nheNWE+mvI+unyrDdjw6OjyGFEJUJRbWgBSczhCUGye6SXBdB/mhHHyGQ1smAzBMNO3mE1p+IoSOMhMyfmhiLGSRx8DgEHzHhmkaAMNCkhV6oyNJAMPMKIns27cPQ0ND0yKRn/3sZ7jrrrtw33334brrrpvWmk4nPvzhD+O5557D0NAQMpkMrrzySnzpS1/C4sW1e7xnEnOSSF5++WUAwMUXX1xTcNPb24u+vj5s2LDhpJXqRdPBPVu78at9g3A9H20pCXdctgAbAxLZv38/+vv7sXr16qrTz3RACMFrh47h17sOjFNPA6EZ4fjNRRL5YOKGbnY8y0bCt1owDAP9AwPoamuFJIoYGBqBruvg2NGx4kp9AEDvaBkQEEKV6dQIsfZrSKvjdSUhoVTqGmjM7MTJfJRQBJi2G6nDBwYG4Pu0Ll9pvU9PDtSllo63SuNs24Gw2czX1TFQnYcM23aD8tDEegeOZWDoOvKFInRDhyIKSKWSYDihqh8gSyItkeVy1K+sRt6NwHNIyhIM25mwSQ8EOosxZCMJPESRGjgaFrXCmTBsKkCYMsjzXEWuCG30h3AdByNDgwBLvaVqEQ7LUK8ugEG5IiWy5vrHlLPCbBXXsWAZBjzPh6Kq+OB7rsCyJedOS0xXSSLr1q2b1BapHh544AF8/OMfx09/+lPcdNNNU17P2x1zkkjCCNJ6X7q+vj50d3fjsssuO2W7E812oVkeWhIiOJaB67qR+nXNmjVT/kBOhKJm4KlX9uJI32D0s3okUolUkMIoiUJdM8JyuYzBQVpS6ci0wHJcKBIdFw2NJTVdA4DIrVhNqJBFmkQXQgg2nNIYfcdkliaUUAQ4jg+7nuiv8vc5DgxLeymywOPI0aPwCYP29vaqkyTHMhAEvuZUlhR4UIVlIlngoU8ihgtPIiCkZqM8hEjH66JpJEIITMOEptOTisCxkBUViYQKzTCRH8mjo6MDslL7brhSRBieFGynuidS1513DFRZBM9xsF0vMjWshXrZHpFVCSHIF8sYyQ2C5QWqfp/Qh8uH6/mRAJJlmXF57fV6IhEIge+5uHzpfDCuBdM00dzcHJkjnsppghCC/fv3Y3BwEOvXr5/yd/bRRx/FnXfeiR/+8Ie45ZZbpvQYMSjmJJG4rjvhVFY2m8WBAwdw2WWXgRBS1Q85FRiGgZ07d0IURaxcufK0KlUJIXij+wS2bt8HnxA4jjvppgsADQkZvo9xd6oAKmzU29HYkIbnjUaxSjwPQeCjGN8wFrdcLkPiWTBhtsoY+3ZJFCBwHEqGWTdIaiwkQQDDkMCLq344FMey4IOJI8dx0NfXB1mScM6iBWDA0PRFhgEbZHtPNIkE0JNaUpVgOW5NY8DoeQNX27E5LglFDqaHqNWHyFOn37rlGwJYtgXPoc7JLAPwggBRUpBIjtdZjFWiV18zetKwHRc8w0Cb5LWO7U8IdU4a48wQa8C2bYwMDSKdSiGTyUA3nZonjUoSGX8taOlQFHgADAqlMpgJfKckgcet77oEXa20nKVpWpRkWCgUkArWMpmNOyEEBw4cQDabnRaJ/OIXv8Dtt9+O733ve/jQhz40pceIMYo5SSQTxe2G+ohXXnkFHR0daGtrQ0tLyymbpxUKBezcuRNtbW248MILz5j5mmZY+PWu/Xj9zeOT/i4NIjKizG6OZaPskqGhIWiaho6ODqiqDJ5hYdW4ZookgqlQEKcUCbmRQmQs6ThOJICsNPNLJ2j632QRtHTzHS27hWUk07Krmv2VJwzbttDX14dEIonW1haEm54k8tQwkRBoNUwgK0EFeEKU+U3v9qmNfOXGN1oeq39ioZYvMnziTxo0pkoijp3oQ7lcRiaTgWM7VEjq2GAFAbwgIplMoqUxXZdEQlBPLDr6LAY9o1rlL5HnQeDDqRPJHPY0WIZFQdNAJnhSJ0jCFCQFzc3NAMMEAkYRHMvCtOxA6zS5mSMwehIRKqN5x2hFxpLIWNi2jVwuh8HBQQwNDUEQhIhUmpqaou8mIQQHDx5Ef38/1q9fP2F09kR4+umn8eEPfxjf/va3cdttt03pJjRGNc4qIqm0O8nnac51NpuF67rIZDIRqUyWvzwwMIDXX38dixcvxsKFC2flg3R8cATPbHsDA8OFmv+uSCJMa4xgjdCfHz9+AppporOzEzzPQ5WEiUdAA2NCnudQKOlV/+Q4TkQqYU54U2MDJEkGy3HBBs2jpI3vffAcDXOqXa+nUbSuTyOMZZGWnwzDwMBAPxobG4NeVOXI8+jrTigSHM+v8q4KMZZEKsEAUBWaXmnaDnhufE78WNCNmt7tCzwHRRRhjxnJBejaeo71wjBNdHV2VSUDhjoL2zTgORY8wtCTSo3+FADqiSUL40axw2z3sFEvi0L9U0EFwg2dDUgFCGNxR3/Hti0MDw5CVFQ0NzXVLkMRglRCDRIu3Zq5JCGi6byxo8Is1YoABJ7vY/M7N9QlkbHwPC+ycR8cHITrumhtbUVrayuKxWJ0EpkqiTz33HP4wAc+gP/7f/8v7rzzzphEZghnDZFUkkhlKYsQEn3ABgYGYNt2VYRmZbmBEIIjR46gu7sbF1988ayPzBFCsPfIcfx614Eqzyx6Vz5+8/BcD/39/WBYBuefew4sx4MqCyc1Zhw2wlVFpmr/Gj0F13XhWBZK5RLKmg5RFKNmvarIUAPRou/7VWmAE4KhG45PCAYGh5DNZtHa2opUKl39a0ztYCpZoFYh9HnJhCRSCY5lIfI8eJ6F6/nR9NRYSEK4UY8vZ9GRXGr4yLMsjhw9Btux0dXZBY4ff7NCCEE6qaJY0qAbBlzbgmnocD0CQZSQSCagKio4jg1ew8SnrkQgtvSJHynia6FefyIkVRYM8uUSBvsHIKmJCf3pZFGIpunCayAJPL2GFSW0eiQy9vrdevUGdGWaJ3yd9RDauGezWRw/fhy2bSOdTqOjowOZTOaUyeTFF1/Erbfein/8x3/EJz7xiZhEZhBzkkjGpiTWI5GxIISgXC5HpGIYBpqbm9He3o6WlhYcPHgQw8PDWLNmzax701TCcly8svdNbNvXDd/3aVzsGMGlYwc9BVlGpo2696ZVGQRM0Jeof8dK7/JH9RrhOC8Bqiagwka47XjwfQ+aFozDGnqUCZJKJtHc1ADij1qg10NYMtFNC8VCESMjwzhn0QKIolx1iqFNXHFCFTz1DpPBsgyKZb3u7wHhSYmtUuSLPA850K2EjXRavqlNIpVQRAHHenvBMQxa2tpQ26aqWole8Q8wTROObcE2DeiWTfUVklxVShyLsRs6xwY2K8HUWriElKqgVCcyOIRtWRjKZdHc1IxMaytM266pMVJEAbZbK96XImzWcyyL/CTvwWTlrJMFIQSHDx/G8ePHcfHFF0e9ldANOiyBNTQ0TEgMr7zyCjZt2oQvfvGLuOuuu2ISmWHMaSIJlepTzRAJ/Zr6+/tRLpfBcRzOO+88dHV1zZp750TIl3X8Zs8hvH7keJV63DRM9Pf3I92QRnNTM8AETdXApTcc0dRrTCJJAg/X9epuDrIkgGc56JYV5J3XKinSMU5Noy6xssiDFyRkWppoUmSN8lN4N6zpJkZGRlAoFNDR2UHLPGR0+kc3TSjyxHb8QLUpIW000wCssWW1yTQWoc2IFOSU18rPqIQiCTj0ZjcYhkFHRwddhyRC4HlYlg07uMFJJ5RJT4YswwDER7FUgmMZ0HQDDMtT76pEIhr2UCQBllM/J55laN6IwLHIa3rdLBSAWv0MDw5ATTWgoSFQ21cKGIO+jCJLcBxnwtRIYJS4WDYooTEMDKt6wEISeLzvXZeis7Vxwsc6GRw+fBi9vb1Yt24dkhV2Oa7rYmhoCIODg8jlcgAQkcrY8vaOHTtw00034a/+6q/wJ3/yJzGJnAbMWSKxbbuuUv1UoGkaduzYQX2qmpowODiIYrGIxsZGtLW1oa2tbUpCptOJXL6El18/hAM9/SiVShjMDqKlddS8UJUlGMZ43QcTEEpo4y1y4RTSxPV1lqVqd4AK0OodbhjQTW6oollPCEFDOoXmpgYwHA+fhNND1DtsMDcIXdeDUCRx3OOpCs3TqBTvjQUXTHGNKwURSoSh1xTD4KQ0FrIkBpumHxka1gqJUkQeBw4fgcDzaG9vHz+VFEwuKSL1FKvnJEBfA1XKmxVrc10XtmXCsUyUNQ0ELFoaG8FLEiWViXy4kiqKZZ027BUJHMNAG/MabMtELptFMt2AdEgiNZBUZDAMampNKp+zPlmO5ooQQnDzVetnhETefPNN9PT0YP369VUkMha+76NQKER9FdM08frrr8NxHKxcuRK/93u/h09/+tP47Gc/G5PIacKcJBLXdWGaox/YqU5UDQ8PY9euXZg/fz7OP//86ENkmiay2Syy2Szy+TzS6TTa2trQ3t5+WnQkUwEhBDv3vIEnXtgGh1OgJmg9WBap++1Eo8NMcGKpTOCb6HeVino9G5SQLMcdJ6JMKmL14xHAtMyIVDzPQ0tTAxpSKdg+MDw0DNux0dnRWdWYDp9HkarLWbIgQBA4GJYTlZsmc7YNIXI0zCrM6Kh3fZQwn2Tcv5OKkCgbIs/gwOEjkCUJmba2OhsQQVJRqGYjHIcNypKVhogTpQeG8D0PDPFRKhXpNJ1HomyVShHkyW7o+UIBA/0DSDU0IpVO1/jd2teDY1moUnAdDRs+SOT9NZltiyQIeN+7LpkREjly5AiOHj06KYnUgqZp+M///E9873vfw969e9HZ2Ynf//3fx6ZNm3DxxRfPKpncfffd+NznPoc//MM/xDe+8Y1ZW8dMY04SyR133IHDhw9j8+bNuPnmmzFv3rxTfvN7e3uxf/9+LF26dMIERdu2I1IZHh5GMpmMSCWRSEz3pUwJoeBqYGAAa9asge0zeHnPIXT3DcLzJp/giRrhFs3HDgmlVvkp7GGMX0Qw/cQw0AxzcosPAliODbg2Bofy8H2adqcm01DVRFVzmglIpJ7IMjypgFDl/WRN6dCnLBxBZhhq0w4gGpcGEDngTqbfkTgWPceOIZVKIplurP37BFUhXNX/RktHosDD8Tz4/sQeakCQJ2+NlnPDkeJyuUxLT4oKRVXRkWmh7ssTwDINDGazdOCkpRmO40KvMVY82fVgGAZqoBUpasaEfbjTQSLr1q2bci9z//79uP766/GhD30Ia9aswSOPPIInnngCv/u7v4t77rln2mucCl555RV88IMfRDqdxtVXXx0TyelGb28v7rvvPmzZsgUvvvgi1q9fj02bNmHTpk1YtGjRhKQSzpqfOHECK1eupLPyJwnHcaKR4qGhISiKEpHKRCKpmYTnedi9ezd0XR+ntM+NlLDjQDf2Hjlel0xoL2G8I6wk0I2tbIzmhYw7YdRBWqVrMKwJ/K4CdXahpKGvr4+OoSoqdF0HfBeyLIETZCSSCaSTibokEoJj2Sh3JSFLFVke1ZAEHj6pr7FgWQYJmU4uFXVzwvwPABA5ehJJp1Jobm5GmH/OMgz0oBcQ9X8muXYCz4NBkPUi8nAdr+aGHtqZ1FwZIbBtG15gM5IvaZAUOlacCEK7KhGSSGNzS9WdPB0rHp2+UiVpUlKNTj+aifDExvNU2Fl54ppJEunu7kZ3d/e0SOTw4cO47rrr8OEPfxhf/epXo4qGaZrI5/OzElVbLpexdu1a/Mu//Av+/u//HqtXr46J5EyBEIK+vj488MAD2LJlC5577jmsXLkyIpXKchUwuglrmobVq1dP60Thui5yuRyy2SzNBxdFtLe3o62tDel0+rSQim3b2LFjBziOw6pVq+oq7XXTwq6DPdh54GiVDqHeCG0lOJaFKtM8iHETRjUw9iSSUOjflnUbYIKPDqGJjSPFEp0sU+QoFx6gY8uarsE0dPieA44VwAXCPVEcb4hYa+qK/pw2eO2wQSyKJyWaCzdqlmWhyiI834duVIvmCCEQWeDgm91U41JjRDa0CBF5DkXdnPAOvZ6IcKxOJKXK9UlkdHW0ya2bcBwbvutA1zQUyxp4QURCVaEmEvA8B0ODg2hqbq3KcRl3PVQJCDLVdMuq2aynU2gKilrtEhq1oOfAMAxuunLtjJDI0aNH8eabb2LdunVVYWangu7ublx//fXYuHEjvvnNb54xofFkuOOOO9Dc3Iyvf/3reOc73xkTyWwhDGsKSeXpp5/G0qVLI1KRZRm///u/jz/7sz/DO9/5zhm1O/E8D0NDVAMxODgIjuOik0pjY+OMkEo4FJBOp7FixYqT+gK4nod93Sewbd8R5PJlJBRp0uknYJQcEjItXZV1a5QUavxeLYQOt6ZlQxQEDOUL6OvvQyqVQktzy3gBXqD/KOsGFe7ZFhzLhEcAqUK4J/DcSVm3p1QqOrQcd8LfrXe3zwWk4hOCsmaCZ3wc6u5BS3Nz3cY0yyCYHKOBIGE/olbA1cmICOn4Ns181wyrjkyEBGaO428OPNeF5zowDR2FUgnEByRZRkNjY+S0OxY03nd0FJwNyleV01fRKPMEHmsAtdN5/7svQUdL44S/dzLo6enB4cOHp0Uivb29uPbaa/He974X3/rWt+YMifzkJz/Bl770JbzyyiuQZTkmkrkCQghGRkbw8MMP4/7778cTTzwBWZaxcuVK/MM//APWrl172j5Evu9HiYXZbBYMwyCTyaC9vb3KzuFUkM/nsXPnTsybN2/cKetkQAjB0f4cXjvYg8O92QkdWmuRA89Ri3c67eXW/b2xCPUfZU1Dtn8AiVQayRqbAMuwkERunAiS+D50w4Dn0DwL1/OQSCQgygqUOql7wPjccUkQIAl0dLky+pVuwBP7TgEEjOehr78PmbY2cHxt6/16r4E+RNCo51j4vg/LcU9Oia6Pro1jGaiSBAISNblpH2by98HQdeQGszTXHj6KxTIsx0UimURCVem1DHQoeo0ogsproUoSRIF6po1NUKzE6SCRtWvXjo4onyL6+vpw3XXX4bd/+7fx3e9+d1J3izOFY8eOYf369fjVr36FlStXAkBMJHMRDz74IG6//XbcdNNNME0Tv/zlL9HZ2YlNmzZh8+bNWLNmzWkllXw+HwkgCSFVVi0n87yhXcuSJUuwYMGCaa+prJvY82Yvdh/sGVe6OpmGuSpLkEQO+bIxYRJi2DDPBkmDmUwGqVQKCYVajofOvGGvYzIFvMCxMAwDlmlC1zTotg1FpicVpcJYcsIGMSFQggwSMECxPLHyGiDwHRtHe0/QWN9EAlzQU/EIgR6cZGqN7taCLImwbQeiQD3D6p2WJnPKDU8JPM+hqJkT3hgYmoZcLofWTCZKlCSEwHVseI6NYrEI3bTR3JAGK4hRgmHNqzGmJ1IVllXR25lJEjl27BgOHTo0LRIZGBjA9ddfj/Xr1+MHP/jBnCERgO5Pt9xyS9WaPM+LcpMsy5pT650qzmoi2bVrF6688kr8x3/8R2QDXS6X8fOf/xz3338/Hn/8cTQ3N+Pmm2/G5s2bsWHDhtP2phFCUCgUMDAwgGw2C8dxIlJpbW2t+bxHjx7F4cOHT4tdi+/76O6jp5QjJ7KBvcnkJ4yEQieRwia15/vj8j/CMlVfliqMa2VxcCwdIyaEVN1518K4UhAhsGwLxKXxwmXdhCzLaG1pAsuLkxJ0mCSp1BnHpc8BOLaB3hP96Ghvr4r1jV5n8BpY0H7SRN+UegRHXX5HG+3phDqpEr2ymV/LUDGEoZWRy+WQaWuHXG9snRCIPINisQxNK6Oo6ZAkOWrW80EJmObO1BdVhjkyLMvixivXzAiJ9Pb24sCBA1i7du2UM4ByuRxuuOEGLFu2DD/+8Y+nlXFyOlAqlXD06NGqn915551YunQpPvOZz2DFihWztLKZxVlNJAC9o6l3J6/rOp544gncf//9eOyxx5BIJLBx40Zs3rwZl19++Wn70IUeQSGpmKYZ+X9lMhlwHIcDBw5EQVpTvRM7WRQ1HW8cOYHX3+zFSEmr+TsTTSKJPDVuNG0Xvu9B5Hkc7+tHsVRCZ0cHpBqCToHnInGgwLNQRKm2EaIowK6wAqkF13XAeC7yhSKKZQ2SLEceYGO91EKhXtVGXTGOG5a/LL2MvoFBdHR21hWkihwXZZOwgVMvMN4McWzfoRbCtRHfp6edOt5ZowMTNUZ8CYEiixA4DtlcDoO5IUoiEwhqk4oErSK0zHUdEI9GNedLRfC8CFVR0JFphe35NdcUYiZPIiGJrFmzZkLvr4kwPDyMG2+8Eeeddx5++tOfzkm3ilqIS1tnMUzTxJNPPoktW7bgoYceAs/z2LhxI2655RZceeWVpy2LhBACTdMiUtE0LXquNWvWTLmxONW19A3lsffNXuzr7oumomiZarwT7VhwLD2JZLNZjBSKaG/vqJnJHY692jUcnEMjRNtx6NG+otdRD5UZG77nwXdtlEol5IvlyFhSUVVkmhpQnMSmhAGBUS6jWCqivaMTPmo7JkwULRuZITIMTQGcsO9QW0QY+lZ5PoERZKqzYCBP5uQMQC+VkBsewoL585FOJeuaUo4lkbHwfQ++68A2TQwXCvAJoKqjiZqVjydLdMR3Jkjk+PHj2L9//7RIJJ/PY+PGjejo6MCWLVsgSdK013WmEBPJWwSO4+CZZ57B/fffjwcffBCe5+HGG2/E5s2b8c53vvO0fSht28a2bdvgui4EQUC5XEZTU1Nk1XImvwyO6+Fw7wBef/MYBvOlSTURPMeCZRj0HOuF67ro6OxEQzIBhqF+WSEXTKbrCEEzwX2IgjBOl1CJifoJxPdBPAfFUgm6psMDg0SQrSLVmFpiGQb5kWHkC0V0dnZCEMVxpSeGYU566iqcCFMkCRzHjCs9AZMp0YN1sQwSigSWYVHS9JqmkCG0UhHDwyNoa++o+ryEQVehqWNSlYJQsok1V+HafN+H71FSKRSLMG0HiUQSiYSKpsYGfPA9l6O9efon5xMnTmDfvn1YvXr1KWm8KlEsFrF582ak02k8/PDDc87i6O2ItyWRVMJ1XTz//PP42c9+hgcffBCapuHGG2/Epk2b8O53v3vGLFN0Xcf27duRTqexfPlycBwHwzCi6a9CoYCGhga0t7cjk8mcUauWsm5if08f9nWfQP9Qfty/ixy1te851gsA1LyQq1aqJwLRnmFZ4zbTsUjIEnSz4k65wl7EsN1ocuxkrMojhbluAr6LcrmEoZECwLBVefUcy2I4N4iSpqOzq6tmWVPkeSgSdQQu6+aE03M1kwgJgSJL4IMgLdtxTtLMkYUUWMOEYVdUAFnhnUUIJZGRAto72iGK9W86kipNfiSEQDftOqLDUW1KrX/zXBeObcHQNaw5tw3nLZwXmSJO9Yanr68Pb7zxxrRIpFwu49Zbb4Uoinj00UennEsSY2bxtieSSnieh5deegn33XcfHnjgAYyMjOC6667Dpk2b8N73vnfKAsdwvLerqwtLliypuUFZlhWRysjICFKpVKRVOZNflpFiGW90n8Ab3ceRL+kQBQ6O46LnWC8EQUB7W1vNSNVwJBcAEpIIjwB6DW1EUp243AJCIIkCtW4xJjZCZBg6ZTb2NMUAAamUMTSSBxtMyLg+QVdnZ9RgrvcafJ9EfR3X88YZGU6aTx68joaUCuIDtuPAqBMQNWpnU2uqjQQuySwGsgMYHs6jvWO8+WUlxo4VVxFTZOo4EYmMQpYEvP/dlyIp8ZHjQ7FYjLzpMpnMSX8nQhJZtWoVWlpaTupvxkLXdbz//e+H7/v4+c9/fsoeXDFOH2IiqQPf9/HKK69EpNLX14f3vve92LRpE66//vqTtm/IZrPYs2fPKY332rZdZdWSSCSq/L/OhFULIQT9QwXsOvAmnnlxGxheQGtra83nVmWadzL2zjfM0PB8As00g81r4gmuqlLQBEaIVBwonUTAFYPB/hNwPR+W48H1PKiBxUjlKOxEY8VhPyOMMpicRAL9R8VGLQqjFiVa0M/gORY8y9a07q98sHKxgJF8EYsWLUBSVWE744cWACCVCAiu7vUlgTKfh25NrBMJSWRsOcuyrMhld3h4GIqiTJoJ0t/fj717906LREzTxIc+9CGUy2U88cQTZ7S3GGNyxERyEvB9Hzt37oxIpbu7G+9+97uxadMm3HjjjXW/QD09PTh06BBWrFiBtra2KT234zhVVi2yLEdWLalU6rSSSqVQUk4348DRPhw41lfVlJ/QJ6oCYUqi75O6VuVUxa2gVGtMOZy8EmmjnmHYSR2BeZZB7/HjIGDQ0d4OhmHAsYCh6RgaGQnMEBVkmpvA8kJdfQV9emoZUjYsJBSJlo1C4WAFGNDS3UQeZjxHbWoirUv9Z0WpUEC+WERHR2fVQIgYZKTTPBHrpEi6+iRSXydSj0TGojITZHBwECzLRiPvzc3N9CQ1MIA9e/Zg1apVaG1tnfDx6sGyLNx2220YHBzEL3/5yyk36GOcPsREcooghOD111+PTCX37duHq6++Gps3b8aNN96IlpYW+L6P73//+zj//POxZs2aGRvv9TwPuVwOAwMDkf9X2KifLCHuVDE4OIjdu3fj/PPPx8KFC6Of+76PnoEh7O8+gRO5PIaLJZzUCaPiLn70Dp+eVABmdAOexMwxDK5iGAYCz9FN0B5/d86zQE9PLzieR1tAImNWBp5lYRk6ciN5aLoBWZKodXtFyFT1a6gmuMhlOCgbEdB8k8nNHEdHozmW5okQf2w/g6BYGEGxWEZHZyd4vv5UYTohgxDAI6RmTk34eElVqToljV2TLAngWBY3/fbaU26s+75flbXuOA6SySSKxSKWL1+Ozs7OU3q8EI7j4KMf/SiOHj2Kp556asonmhinFzGRTAOEEBw4cAD3338/7r//frz22mu44oorYBgGjh8/jueffx7t7e2n5bk9z8Pw8DAGBgaq/L/a2tqoVcY0SOXEiRN44403sHz58gmdUj3Px9H+HA709OHQsYFxJosnM7HEcyzkIL61UNInvKGu3IArIQk8JFGI7NJ5jsHRo8cgSRJaK8wjxyKlyFHGhsBxsCwDQyN5lMoaREGIyl+tTY2T9hM4hkFCpap+3bTqTnyJAgcQpuZo9Kj9PYMTfSdQLGvo6OicUO80tpzFstStGCAwTDtILiTBcMDEBCdLAj7w7kvRNs3pLEIIjh49ioMHD0KWZViWhaampui0crJTVq7r4vd+7/ewb98+PPPMMzMu2o0xc4iJZIZACMGrr76KD3zgAyiXy3AcB6tWrcLNN9+MTZs2oaur67SVocK7wZBUCCERqYQlhpNFd3c33nzzzVOuZ7ueh57+HPYf7cPh3gFYtntSPlHUw4omHHKROy8Z16ifSNdRCYlncaynB2oyiUQyXXMwAKhomI9jLkJPOpaJoZE8bNOA4zMVE2DSuL8Zn+BIoEjUct2qGG0em5tSC4QQlArDKJZ1nHfOOZCCnPlafzO2sT4WVNwoQRQ4lHVzwnFmRRLx/ndfMm0SAehp9rXXXsPFF1+MtrY2GIYR9fzy+XyU+ZPJZOrGM3ieh0984hPYsWMHnnnmmVmxfo9x8oiJZIZw5MgRXHvttVi5ciX+4z/+A7lcDvfffz+2bNmCl156CRs2bIisWhYuXHjaSCU0tAwnwDzPq/L/qmcRE+a49PX1TVso6Xoeevpy2N8TkEodj6qo2Vzj36mJoQgfgOu48AiZPNALBG92H0U6nUZTU1OU7e751RGy0VjxhP0E2jC3LBuuayOfL2I4X6B3/IFoT1EU8Dw7wdQVEPYiREGA7/soTTBWTAhBKT+Moqajs7Or4r0aHTqwHBem5aAhqZzka5Cou3PoVjyG3IDTQyIrVqyoeRq3bRu5XC7KWpckKWrWNzY2gmVZeJ6HT33qU3jhhRewdevWCYPpYswNxEQyQzhx4gT+/d//HX/5l39ZdQIghODEiROR/f2vf/1rrFy5Eps3b8amTZuwePHi00oqxWIxUtXbth1ZtbS2tkYlE9/3sXfvXuTzeaxdu3ZGx43Dk8qBnv6q8pfIcWBOwi5ekQS4rgdZEus2uAGAJR7e7D6GpqZGNDQ0jvt3nmMhiwJ4nkO+OHEJrdJzbOxjEM9FoVjC0MgIGAZIp1IQRAmqqoJhap9+wmkt1/NpHokk0LHiCpsUQgiKI0Mo6SY6OzsnJPyGpEpPNp4Po07OPVBJIuMeJSAmHizL4Oar1iHTNP0pqFwuh127dtUlkbEIy7NhPMMXv/jF6GZn165dePbZZ7Fo0aJpr2sq+Na3voVvfetb6O7uBgAsX74cn//853H99dfPynrmOmIiOYMghCCbzeLBBx/Eli1b8Mwzz2Dp0qURqSxduvS0kkq5XI5IxTAMtLS0oLW1Ff39/XBdF2vWrDmt6nrP89EzQHsqR/tyk/YdopHcCqk3yzBQlWrPK8Z38Wb3MbS2tiCVqr0hEkKQTtKGeWWDWzOrg50YJogfNiaeCJMEHp7noFQqIzc8Atd1oShqUAJTwbKUCGRJgOPU9hILhw5cz8OJvuPQDRudnZ3R39Z+DWpQkqMQeBayKEaK9hDJGkQ4Fook4gPXXDpjJPLaa69h2bJlUypDEULwq1/9Ct/85jfxm9/8Bp7n4dprr8WmTZtw8803T3nia6p45JFHwHEclixZAkIIfvCDH+CrX/0qduzYgeXLl5/RtZwNiIlklhCWoB566CHcf//9ePLJJ3HeeedF9vfLly8/rcE85XIZfX196Onpge/7aG5ujsaKz4T5nef56M0O4+CxPhw81j/O5ytSv0/w6WQYgCUueo+fQGNzCxSlnjiuvgCvkpjCkK7JPMdEPjBzDE5TLMuAY4ByuYTccB6WZUNRZLQ0NUIQJTB1iAEACPFRGB6CaTs475xFYFm2phq9kgjrgWMZKLIInuNQLBsTxujOJIkMDQ1h165dUyYRgJ6K/+qv/go/+9nP8Mwzz8B1XTz00EN48MEH8fGPfxwf+9jHpr3O6aK5uRlf/epX58Ra5hpiIpkjKBQKeOSRR6Kgrnnz5kWksnr16hknFcMwsH37diSTSSxevDjSqhSLRTQ2NkZWLWfCx8j3fRwfHAmmv/oBMNB0c1IjROLaONp7HO3tHUGAE53+MszqxMKx4sBaYFlqU8KyLDiWgWbYNU8RkzX9GYaBwDEwDR1DwyMoaQYkSYya9YIwStK+76MwkoNhudR2JniPw+ktJsiJd12fuhpPklhYZT8/5jE8b/RqziSJDA8PY+fOnbjoooumPOJLCMHf/d3f4Qc/+AG2bt2KpUuXjvv3MyHCrQfP8/Czn/0Md9xxB3bs2IFly5bN2lrmKmIimYMolUpVmSqtra2RU/GGDRumTSqlUgk7duxAJpMZV04zTTMK6ioUCkin09FJ5Uz4fxFCcGJwBAeP9ePQsX4Uagj2CCFwbQPH+wbQ0dEBWR67LtpYZjkWLAiKNfsEo6DhW2MV5gQJhXp0GZYNx/VO2swxoUgwTBs+8SEJPAxDx/BwHsUydX4OG/WGVoJpu+js7KjbXwEIGpMJeMSvO70FUKW/UsMuJroeshTpb265egNaG0/OmWEihCSydOlSdHV1TekxCCG4++678e1vfxvPPPPMnMrn2L17Ny6//HKYpolkMokf//jHuOGGG2Z7WXMSMZHMcei6jl/84hdRpkoymYymvy6//PJTDuoaGRnBzp07sWjRIpx77rkT3umFdhgDAwMYGRlBMpmMSGWqvmOnAkIIBoYLOHSsHwd6+jFS1AAQWLqGvmwOnZ2ddXs6LMNAlkTopjlqs2KPD7gSeJba2U9iU5JOULKq9RiVSChBnO24bxWBJPCwzNGxYsN2kU6nkEgkoSgyxk4AjNfhjJ/eYhjmpPs6qiziA9dcNiMkMjIygh07dkybRL7+9a/j61//Op566imsXr162uuaSdi2jZ6eHhQKBdx33334t3/7Nzz77LPxiaQGYiI5i2CaJn71q19FmSqiKEYnld/6rd+aNFMl9P264IILMH/+/FN6bsdxIlKp9P9qa2urqwWYSRBCMDhSxNaXXsXug91Q0811ezm0TMXXsFCptAVx4fk+GIaNeh31IEsiHMeJxH2yJEIUeNh2tefVydjFeJ6HwvAgfDDItLYgX6COvgzDIJFQo9MKwEwq5qTZLjwYhkGhrE/4HpwOErnwwgunPJpLCME999yDr3zlK3jiiSewYcOGaa/rdOOaa67B4sWL8Z3vfGe2lzLnEBPJWQrbtqsyVXzfx0033RRlqozdZMNEuun4foVwXbfKqkWW5YhU0un0aSGVyhHldevWwXQ8HOjpx8Fj/RgYKkS/x7EsBIGbQNdBIQp85Lxru17dMVpFFmDZbt3wrXCcFwxDkxknQEgitge0V9i2CDwL4nkoFIrIjeTh+x5amxvBcEHGep1S5uipy4rySLwgaKsSM0ki+Xwe27dvn9LNSAhCCP71X/8VX/jCF/D444/j8ssvn/a6zgTe9a53YeHChbj33ntneylzDjGRvAXgui5+/etfR5kqhmFEmSpXX301/u7v/g6u6+Iv//IvZ9zwzvM8DA0NRaTC83xEKo2NjTNCKr7v47XXXoNhGFi7du24clahrOPQsX4c6h1ALl+alERkkeo4Knsd1Rsx1XeM9jom/oqECnOe46DIgYfYmF6F6zooDA/BJQza2trqXheOZSByDIbzBVoCsx0ogVtxIpGISpmURGpPmFGHAIGORjPA+9516YyRyI4dO3D++eeftJP1WBBCcO+99+Jzn/scHn30UVx11VXTXtfpwOc+9zlcf/31WLhwIUqlEn784x9Hp6f3vOc9s728OYeYSN5i8DwPL774YuRUXC6XQQjBZz/7WXzsYx87rdkmvu9jaGgoEpgxDFPl/zWVIQHP87Bz5064rou1a9dOWr4r6yYO9Q7g0LF+HBsYGneSmEjXEYLnWCQTMhzXgz5RdgrqW7dHWhVCkC+WkR/OwQeHtrbMuN8dRbWxIssy4BlA0zUMDo3ANC3IsoRkMomWpkY43sRfXXoSuRStjdOfzioUCti+ffu0SeSHP/whPv3pT+Phhx/G1VdfPe11nS587GMfw1NPPYW+vj40NDRg5cqV+MxnPhOTSB3MaSL553/+Z3z1q19Ff38/Vq1ahX/6p3/CJZdcMtvLOitgWRZuv/12/OY3v8F1112HJ598EgMDA3jPe96DzZs347rrrjvpTJWpIPT/Cq1aCCFVVi0nQyqO42DHjh1gWRarV6+e0LywFgzTxuHjAzjY04+jfTmIIjdhmSpEZa8jMkGskTY4mdcVfQ02CsM5KIqK9o72CiPFGs87wZgywzAQeRZauYyyVsZwvhTl1ScSCYiiULWOhCLhA9dcipaG6b/HIYksXry4ygn6VEAIwX/913/hU5/6FO6//35ce+21015XjLmDOUskP/3pT/HRj34U3/72t3HppZfiG9/4Bn72s59h//79067xvx1w5513Yu/evXj00UeRyWTg+z527NgR2d/39PTgmmuuwaZNm3DDDTfMuA19JQghyOfzEam4rovW1la0t7fX9f+yLAvbt2+HLMtYuXLlKU+njXs8x8GR44M42NOHIycG647R0s28NjlU2sYzwKQkYts2isM5gBfR2toCgIlSHWks8ajepb6dyShYFpAFEbplQRaFirHiMjiORzKZgKom0NyYxgffc9mMkEixWMS2bdtw3nnnTcuuZMuWLfjEJz6Bn/70p7jpppumva4YcwtzlkguvfRSbNiwAffccw8Aeoe7YMECfOpTn8JnP/vZWV7d3MeRI0cid9WxIIRgz549EakcOHCgKlOlubn5tPt/hVoVy7IiUgn9v0KxZJhvP9NiTMf1cLRvEAd6+vHm8Swsm/ZUTuaEMWpTokc6k1q28bZtIT+cAydIgYty7SCvhCxBFHlo+sSxwuMdhkcfQxIF2JaJkZECDEPHO1edh8WLFkyrpAiMksi5556Lc845Z0qPAQCPPvoo7rzzTvzwhz/ELbfcMuXHiTF3MSeJxLZtqKqK++67D5s3b45+fscddyCfz+Ohhx6avcW9xUAIwf79+6NMld27d+Oqq67Cpk2bsHHjxgkbwzPx3OVyOSIVwzDQ0NCAcrmMTCaDZcuWnfax4tD/683jWRw42jehPUp9mxJKCBzHwrQclHUd+aEceElGc3Mz6tq8Y1SJPlYjUqlr4VgGoiBMmgiZUCS87+oNYIkbnf583z8p9+exKJVK2LZtG84555xpkcgvfvEL3H777fj+97+PD37wg1N+nBhzG3OSSE6cOIF58+bhxRdfrBoN/PM//3M8++yz+M1vfjOLq3vrghCCw4cPR/b327ZtwxVXXBEZ553OTBWA6lx2794NnufhOA6am5ujZv2Z8P8KrVoO9lBVfaWG42S8roDRk0hTYyMSyXTdU8ZkIkJJ5CEJAhzXASGYJNedksgHr7kMzQ2jJ1BCCAqFQpQFYpomWltbI9v2eoMLIYmEotWp4qmnnsJHPvIRfOc738H/+B//Y1ZtTmKcXsREEqMmCCHo6emJSOXll1/Ghg0bsGnTJmzatGnGM1XC0dJzzjkH5557LgzDiJyKQ/+vkFTOhP8XIQR9Q3kcCrQqnu9PSiKWbSGfG4SkJtDY2IRKu3bHdaGb9qgSXZKCMeP6YFkWosDB83zIkgDP9Wvm3SdVCR94dzWJ1Ho9mqZFJ5VyuYympqYoYCq8puVyGa+++ioWLlyI884776SuVS0899xz+MAHPoBvfvOb+N3f/d2YRN7imJNEEpe25hbCTJUtW7Zgy5YteP7557Fq1arI/v68886b1kYRuscuWbKk5mhp6P8VJuyl0+mIVE7nOHMIQghy+VKQqdKPXL407ncsy8TI0CBkNYXGxsaajzMqXiQolIwJrxnHMTUDs3guTJH0oRs2EidBIrVgGEZ0TUNPtYaGBvT19WHBggVYvHjxKT1eJV588UXceuut+N//+3/jf/2v/xWTyNsAc5JIANpsv+SSS/BP//RPAGjZYeHChbjrrrviZvssghCCgYGBKFNl69atuOiiiyJSufDCC09p4wjLWcuWLTsp91jbtqMNcHh4OIptDa1azgRGimUcPNaPg8cG0J/LwzINDA/loCbpZlwPo1NXNs0iqSNerEciY5FKKHj/uy45ZRIZC9u20dvbizfffBOEkCr7m1QqdUrv53//939j8+bN+Pu//3v8wR/8QUwibxPMWSL56U9/ijvuuAPf+c53cMkll+Ab3/gG/uu//gv79u07qfS1GKcfhBAMDw9XZaqcf/75kf39smXLJpwYOnHiBPbt2zdl25bQ/yubzWJoaAiKoqCtrQ3t7e1nxP8LAI72nsCvnn0RLq9Cd0nd/JSJGuaV4kXTcsBzY52IxyOp0p5IU3r65KlpGl599VXMmzcPixYtikSluVwOgiCctFPB9u3bsXHjRvz1X/81/viP/zgmkbcR5iyRAMA999wTCRJXr16Nb37zm7j00ktne1kxaiBs7IaZKr/85S8xf/78iFRWrVpVRSqHDx/G0aNHsXr16mCyaXoI/b/CDVAUxYhUTpf/V1iSC80LNcPE4d4sDh7rR09/LhI+hlknxiQnDC7oifDBZJVuWjXFizNNItu2bUNnZyfOP//8qus0NgoXQNRTGSsqfe2113DjjTfiz/7sz/CZz3wmJpG3GeY0kcQ4e1EqlfDYY4/h/vvvxy9+8Qu0trbi5ptvxqZNm/DAAw/glVdewQMPPDBhKWiqCP2/wg2Q47gqq5aZ2OTCaNl6gU6GZePI8SwO9vShf7gwqdiQ51hwHBdpWgBE4sXKoK2UKuMD11w6IySi6zpeffVVdHR0YMmSJRNeF9/3kc/noxOg4zjYvXs3kskkVqxYgQ9+8IO466678PnPf37WSOTLX/4ytmzZgn379kFRFFxxxRX4yle+ggsvvHBW1vN2Qkwkk+C5557DV7/6VWzbtg19fX144IEHqgYAYkwOTdOiTJUHH3wQPM/j/e9/Pz7ykY/gsssum7ZqfSL4vh/dVWezWTAMg0wmg/b29imL9UI7/pONlrUdF919gzjQ04cjx7Pj8kxqkch4ELQ1NeDG316D5hkikW3btqGtrQ0XXHDBKW3+hBCUSiXcc889+M///E8cP34c5557Lj7zmc9g06ZNyGQy017fVHDdddfhwx/+MDZs2ADXdfEXf/EX2LNnD/bu3XtG8nPezoiJZBI8/vjjeOGFF7Bu3TrceuutMZFMEZ7n4ZOf/CSeeOIJ/MVf/AVeeuklPPzww5AkCRs3bsTmzZtPKlNlOgjvqkMBZCjWa29vR3Nz80kR2sDAAPbs2YOLL754Sn0d1/PQ05ejCZC9A3BdDxw3WbAWVd1/4D2XoSk1/Q3RMAy8+uqrUyKRShw6dAjXX389rr/+epx//vl44IEHsG3bNvzxH/8xvvrVr057ndPF4OAg2tra8Oyzz85Zl+G3CmIiOQUwDBMTyRTxb//2b/g//+f/4Fe/+lWUY2HbNp5++unopAIgylR5xzvecVpFiGFPJ9SqOI5TZdVSi1T6+vrwxhtv4OKLL56Ru27f99E7MByQSn/d8tfpIJFMJnPKE3aV6O7uxnXXXYfNmzfjG9/4RnSyO378OEZGRuZEZO6hQ4ewZMkS7N69e06s562MmEhOATGRTB2e56FYLNbNQ3FdF88991yUqWKaJm666SZs2rQJ73rXu06rCDEs1YQnlVAB3tbWhtbWVgiCEE2YrVq1KvDOmvk19OXydKy4px+FICQrnVDw/msunRESMU0Tr776KlpaWrB06dIpk8ixY8dw7bXX4rrrrsO//Mu/zLgX2kzA933cfPPNyOfzeP7552d7OW95xERyCoiJ5MzA8zy88MILuO+++/Dggw+iUChEd7/vec97TqsIMVSAhycVTdOgqip0XcfKlSvPiPN0GCt88NgAlp03b0ZJpLm5GRdddNGUSaSvrw/XXnstrrrqKnz3u989rf2t6eCTn/wkHn/8cTz//PNTTnKMcfKIieQUEBPJmYfv+/jNb34TBXVls1m8973vxebNm3Httdee1kwVgI4pd3d3Q5ZlGIYR2Yq0tbWNS2qcqzBNE9u2bUNTU9O0SGRgYADXX389NmzYgHvvvXfOkshdd92Fhx56CM8999y0vMJinDxiIjkFxEQyu/B9H9u3b4/s748dO4ZrrrkGmzdvxg033DDjepGjR4/izTffxJo1a9DY2DjOVqShoSEiFUVRZux5ZxKWZeHVV19FY2PjtNyUBwcHceONN2L58uX40Y9+dMohY2cChBB86lOfwgMPPICtW7diyZIls72ktw1iIjkFxEQyd+D7flWmysGDB/Gud70LmzZtmpFMlSNHjqC7uxtr166tqXWxLCsilZGREaRSqYhU5sqoqWVZ2LZtW5TrMtXrMTw8jBtuuAGLFy/Gf/3Xf53Wybrp4P/7//4//PjHP8ZDDz1UpR1paGiYs0T/VkFMJJOgXC7j0KFDAIA1a9bga1/7Gq6++mo0NzdPOXY0xsyCEIJ9+/ZFpLJnzx684x3viDJVMpnMKW2ihw8fxrFjx7Bu3bqTKp3Ztl1l1RJ6VbW3tyORSMyKQM+2bbz66qvTJpF8Po+NGzeis7MTW7ZsOSN2/lNFvdf4/e9/H7/7u797ZhfzNkNMJJNg69atuPrqq8f9/I477sC999575hcUY0KEmSohqezYsaMqU6Wzs7PuhhP+7fHjx7Fu3bopmUA6jlNl1SLLckQqp2qAOFWEJJJKpbBixYopP2exWMTmzZvR0NCAhx566IzY98c4OxETSYy3LAghOHr0KO6//3488MADePnll3HJJZdEmSoLFiyINlnf97F//35ks1msX79+RspTnuchl8thYGCgygCxvb0dDQ0Np4VUbNvGtm3bkEgksGLFiimP5pbLZdx6660QRRGPPfZYXBqKMSFiIonxtgAhBMePH48yVV544QWsXr0amzdvxsaNG/HlL38ZlmXhX//1X0/LeHGlAWI2m63y/2psbJwRLUZIIqqq4uKLL57yY+q6jve///0ghOCxxx47Y/b8Mc5exERyFiE2pZsZhJkqDzzwAO6//3688MILSCQSuOOOO/A7v/M707INORn4vo+RkREMDAxgcHAQhJCIVJqbm6dEAI7jYNu2bVAUZVokYpomPvShD0X+aOl0ekqPE+PthZhIziLEpnQzC8/z8D//5//E1q1b8clPfhJbt27FU089hSVLluDmm2/GLbfcgosuuui0KrcJIcjn85EA0vM8ZDIZtLW1oaWl5aS0GiGJyLKMlStXTnm9lmXhtttuQy6Xwy9/+cu6SY8xYoxFTCRnMWJTuunhH//xH/G9730PTz31FObNmxf5bz388MNRpsrChQsjUpnOJn0yIISgWCxGpGLbdpVVSy3thuM42L59O0RRHJf5ciqwbRsf/ehHcezYMTz11FMzkhET4+2DmEjOYsSmdNNDuVyGpml1EzeLxWJVpkpbW1tEKuvWrTvtpFIulyNSMQwDLS0tUbCUIAhwXRfbt2+HIAjTIhHHcfCxj30M+/fvx9NPPz1rNvAxzl7ERHKWIjalO7PQNA2PP/44tmzZgsceewwNDQ24+eabsXnzZlx66aWn3S6kXC5HjfpyuYympiYYhgFZlrFmzZopP7/ruvjEJz6BXbt24ZlnnoljrGNMCTGRnKWITelmD4Zh4Je//CW2bNmCRx55BLIsV2WqnG77kFKphJ07d8J1XXieh8bGxqhZfypaD8/zcNddd+Gll17C1q1b0dXVdRpXHeOtjJhIzkLEpnRzB7Zt48knn8SWLVvw0EMPgWEY3Hjjjbjllltw1VVXzbgS3HVd7NixAyzLYvXq1XAcJ7K/LxQKSKfTkVZlIu2H7/v4oz/6IzzzzDN45plnYpeGGNNCTCRnEWJTurkNx3GiTJWHHnoIlmXhxhtvxObNm3H11VdPWxnueR527NgBhmGwevXqceUsy7IwODiIgYEBjIyMIJlMor29fZz/l+/7+PM//3M89thj2Lp1a3wzEmPaiInkLEJsSnf2wPM8PP/881GmSrFYxPXXX4/NmzfjmmuuOWXRY0giAE6qJ+I4TkQqQ0NDYBgGjz/+ON73vvfhoYcewpYtW/DMM8/M+s3Ic889h69+9avYtm0b+vr6YlPUsxQxkZxFiE3pzk74vo+XX345IpXBwcGqTJXJlOOe52Hnzp3wfR9r16495ca667rYvXs3/vqv/xovvvgiAOD222/Hxz/+caxfv35WTCVDPP7443jhhRewbt063HrrrTGRnKWIiSRGjDMI3/exbds23H///diyZQt6e3txzTXXYNOmTTUzVTzPw65du+B5HtasWTPlRj4hBF/+8pfxve99D3/+53+OV199FY888ggaGxvx85//HMuXL5+plzhlxDENZy9iIokRY5bg+z5ee+21iFQOHTqEd7/73bj55ptx0003QRRFfPzjH8dtt92Ga6+9dlok8rWvfQ3f+MY38PTTT2PVqlUAaE/lqaeewtVXXz0nSqMxkZy9OH2KqhhvC3zrW9/CypUrkU6nkU6ncfnll+Pxxx+f7WWdFQgnr774xS9iz5492LFjBy677DJ8+9vfxrnnnosrrrgCr7/+Oi644IIp60QIIfinf/onfP3rX8cTTzwRkQgASJKEG264YU6QSIyzGzGRxJgW5s+fj7vvvhvbtm3Dq6++GqUUvv7667O9tLMKDMNg2bJl+PznP4/f/OY3uOqqq2BZFlpaWrB+/XrccMMN+M53voO+vj6cbBGBEILvfOc7uPvuu/Hzn/8c69evP82vIsbbFTGRxJgWNm7ciBtuuAFLlizBBRdcgC996UtIJpN4+eWXZ3tpZyU8z8OHPvQhFAoF7N69Gy+99BIOHDiAjRs34r777sOFF16I9773vbjnnntw7NixuqRCCMH3v/99/O3f/i0eeeQRXHbZZWf4lcR4OyEmkhgzBs/z8JOf/ASapuHyyy+f7eWcleA4Dhs3bozcdxmGwbnnnotPf/rTeP7553HkyBF88IMfxGOPPYbly5fj6quvxje+8Q0cOXIkIhVCCP7zP/8Tn/vc5/Dwww/jt3/7t2f5VcV4qyNutseYNnbv3o3LL78cpmkimUzixz/+MW644YbZXtZbGoQQ9Pf344EHHsCWLVvw7LPPYsWKFdi0aRMkScKXvvQlbNmyBe9973tne6kTolwu49ChQwCoPuZrX/sarr76ajQ3N8dq+7MIMZHEmDZs20ZPTw8KhQLuu+8+/Nu//RueffZZLFu2bLaX9rYAIQRDQ0N46KGH8OMf/xhPP/00fvjDH+K2226b7aVNiq1bt+Lqq68e9/M77rgD995775lfUIwpISaSGDOOa665BosXL8Z3vvOd2V7K2w5hpHBs5BnjTCLukcSYcfi+D8uyZnsZb0swDBOTSIwzjtPrdx3jLY/Pfe5zuP7667Fw4UKUSiX8+Mc/xtatW/HEE0/M9tJixIhxhhATSYxpIZvN4qMf/Sj6+vrQ0NCAlStX4oknnsB73vOe2V5ajBgxzhDiHkmMGDFixJgW4h5JjBgxYsSYFmIiiREjRowY00JMJDHe0rj77rvBMAz+6I/+aLaXEiPGWxYxkcR4y+KVV17Bd77zHaxcuXK2lxIjxlsaMZHEeEuiXC7jtttuw3e/+100NTXN9nJixHhLIyaSGG9J/MEf/AFuvPFGXHPNNbO9lBgx3vKIiSTGWw4/+clPsH37dnz5y1+e7aW8ZfHP//zPOOeccyDLMi699FL893//92wvKcYsIiaSGG8pHDt2DH/4h3+IH/3oR5BlebaX85bET3/6U/zJn/wJ/uZv/gbbt2/HqlWrcO211yKbzc720mLMEmJBYoy3FB588EHccsstVdG0nueBYRiwLAvLsqYcWxuD4tJLL8WGDRtwzz33AKDeagsWLMCnPvUpfPazn53l1cWYDcQWKTHeUnj3u9+N3bt3V/3szjvvxNKlS/GZz3wmJpFpwrZtbNu2DZ/73Oein7Esi2uuuQYvvfTSLK4sxmwiJpIYbymkUimsWLGi6meJRAItLS3jfh7j1JHL5eB5Htrb26t+3t7ejn379s3SqmLMNuIeSYwYMWLEmBbiE0mMtzy2bt0620t4y6C1tRUcx2FgYKDq5wMDA+jo6JilVcWYbcQnkhgxYpw0RFHEunXr8NRTT0U/830fTz31FC6//PJZXFmM2URMJDFinAH87d/+LRiGqfrf0qVLZ3tZU8Kf/Mmf4Lvf/S5+8IMf4I033sAnP/lJaJqGO++8c7aXFmOWEJe2YsQ4Q1i+fDmefPLJ6L95/uz8+n3oQx/C4OAgPv/5z6O/vx+rV6/GL37xi3EN+BhvH5ydn+QYMc5C8Dz/lukj3HXXXbjrrrtmexkx5gji0laMGGcIBw8eRFdXF8477zzcdttt6Onpme0lxYgxI4iV7TFinAE8/vjjKJfLuPDCC9HX14cvfOELOH78OPbs2YNUKjXby4sRY1qIiSRGjFlAPp/HokWL8LWvfQ0f+9jHZns5MWJMC3FpK0aMWUBjYyMuuOACHDp0aLaXEiPGtBETSYwYs4ByuYzDhw+js7NztpcSI8a0ERNJjBhnAJ/+9Kfx7LPPoru7Gy+++GLkUPyRj3xktpcWI8a0EY//xohxBtDb24uPfOQjGBoaQiaTwZVXXomXX34ZmUxmtpcWI8a0ETfbY8SIESPGtBCXtmLEiBEjxrQQE0mMGDFixJgWYiKJESNGjBjTQkwkMWLEiBFjWoiJJEaMGDFiTAsxkcSIESNGjGkhJpIYMWLEiDEtxEQSI0aMGDGmhZhIYsSIESPGtBATSYwYMWLEmBZiIokRI0aMGNNCTCQxYsSIEWNa+P8DLQ7HFu75WTIAAAAASUVORK5CYII=" - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "image/svg+xml": "\n\n\n\n\n\n\n\n\nx1\n\nx1\n\n\n\nk4\n\nk4\n\n\n\nx1->k4\n\n\n-0.63 * x + 0.40\n\n\n\nk5\n\nk5\n\n\n\nx1->k5\n\n\n-1.56 * x + 0.03\n\n\n\nx2\n\nx2\n\n\n\nk2\n\nk2\n\n\n\nx2->k2\n\n\n-0.27 * x + -0.38\n\n\n\nk3\n\nk3\n\n\n\nx2->k3\n\n\nlogistic(x)\n\n\n\nx2->k4\n\n\n0.81 * x + 0.32\n\n\n\nx2->k5\n\n\nlogistic(x)\n\n\n\nk1\n\nk1\n\n\n\nk1->k3\n\n\n-1.38 * x + -1.09\n\n\n\nk1->k4\n\n\nlogistic(x)\n\n\n\nP(detected) = Sigmoid(x + 0.00)\n\nP(detected) = Sigmoid(x + 0.00)\n\n\n\nk1->P(detected) = Sigmoid(x + 0.00)\n\n\n1.00 * x\n\n\n\nk2->k4\n\n\nlogistic(x)\n\n\n\nk2->P(detected) = Sigmoid(x + 0.00)\n\n\n1.00 * x\n\n\n\nk3->k4\n\n\n1.40 * x + 0.36\n\n\n\nk3->k5\n\n\n1.36 * x + 0.26\n\n\n\nk3->P(detected) = Sigmoid(x + 0.00)\n\n\n1.00 * x\n\n\n\nk4->k5\n\n\nlogistic(x)\n\n\n\nk4->P(detected) = Sigmoid(x + 0.00)\n\n\n1.00 * x\n\n\n\nk5->P(detected) = Sigmoid(x + 0.00)\n\n\n1.00 * x\n\n\n\n", - "text/plain": "" - }, - "execution_count": 8, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "darts_estimator_tuned.set_params(\n", - " arch_updates_per_epoch=0,\n", - " param_updates_per_epoch=1000,\n", - " sampling_strategy=\"sample\",\n", - " max_epochs=1\n", - ")\n", - "darts_estimator_tuned.fit(X, y)\n", - "show_results(estimator=darts_estimator_tuned, label=\"resampled DARTSRegressor\")\n", - "darts_estimator_tuned.visualize_model()\n" - ], - "metadata": { - "collapsed": false - } - }, - { - "cell_type": "code", - "execution_count": 9, - "outputs": [ - { - "data": { - "text/plain": "0it [00:00, ?it/s]", - "application/vnd.jupyter.widget-view+json": { - "version_major": 2, - "version_minor": 0, - "model_id": "d795b0ef59f340ecaa60a90cd7d9b0ff" - } - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "text/plain": "
", - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZIAAAGlCAYAAADQ/XDvAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOy9eZwjZ33n/64qlW61Wuq7Z3p6puee8YzvY8bGGBtwuMxlzhBgkwBZTDh2k82G3UDCQoDsLoFdJ+CQBX7hSDgMMeGwDfGFjW9Pz91zdvf0fUjduo86nt8fmtJIfatbPa2x6/16TYLV0qNSqfR86ntLQgiBjY2NjY3NMpHX+gBsbGxsbC5tbCGxsbGxsVkRtpDY2NjY2KwIW0hsbGxsbFaELSQ2NjY2NivCFhIbGxsbmxVhC4mNjY2NzYqwhcTGxsbGZkXYQmJjY2NjsyJsIbFZNpIk8Zd/+ZdVW++RRx5BkiQeeeSRqq1pY2Oz+thCYnPJ8a1vfQtJkor/3G437e3t3H777fyf//N/SCQSC77+uuuuQ5IkvvrVry5pfYfDwbp163j/+9/P0NAQAO9///vLnjPfv/e///0AmKbJP/3TP3H99dcTDocJBAJs27aN9773vTz11FPF97bE1PqnKArNzc3ceeedHD9+vDon0MamyjjW+gBsbJbLZz7zGTZt2oSmaYyOjvLII4/w8Y9/nC996Uv89Kc/Ze/evbNec+rUKZ599lk2btzId7/7Xf7jf/yPi66fzWZ56qmn+Na3vsXjjz/OkSNH+NCHPsQrX/nK4nN7e3v51Kc+xQc/+EFe9rKXFR/fvHkzAB/96Ef5u7/7O974xjfyu7/7uzgcDk6cOMEvf/lLurq6uOGGG8re+6Mf/SjXXnstmqZx6NAhvva1r/HII49w5MgRWltbV3rqbGyqi7CpOslkcq0P4aIAiE9/+tNVW+/hhx8WgHj44YcXfN43v/lNAYhnn3121t/+/d//XXg8HtHZ2SnS6fSsv3/qU58Szc3N4t577xWSJIne3t4lr/9nf/ZnAhDf//73Z73m2WefFYD45je/Oetvo6OjQpIk8YEPfGDW30zTFGNjY8X/ts7BD3/4w7LnffWrXxWA+OIXvzhrjdUmlUpd9PdcCS+V318tYbu2Vshf/uVfIkkSx44d493vfjehUIibbrqp+PfvfOc7XH311Xg8HsLhMO985zsZGBgoW+PUqVO89a1vpbW1Fbfbzfr163nnO99JLBYrPueb3/wmt956K83NzbhcLnbt2jWna2bjxo28/vWv55FHHuGaa67B4/GwZ8+eYtzhxz/+MXv27MHtdnP11Vdz4MCBste///3vx+/3c/bsWW6//XZ8Ph/t7e185jOfQSyhUfTQ0BC///u/T0tLCy6Xi927d/ONb3xj1vMGBwd505vehM/no7m5mU984hPkcrlF11+MW2+9lb/4i7+gv7+f73znO7P+/r3vfY8777yT17/+9QSDQb73ve8teW3L0jhz5kxFx9Tb24sQghtvvHHW3yRJorm5ednvvdTz3d/fzx133FF2vh944IFZMalbbrmFyy67jOeff56bb74Zr9fLJz/5SQByuRyf/vSn2bJlCy6Xi46ODv7Lf/kvs763X/3qV9x0003U19fj9/vZvn17cQ2L//t//y+7d+/G6/USCoW45pprZn0XBw4c4DWveQ11dXX4/X5uu+22MjcgXHBDPvroo3z4wx+mubmZ9evXL3o+baqL7dqqEm9729vYunUrf/3Xf13ccD/3uc/xF3/xF7z97W/nD//wD5mYmOD//t//y80338yBAweor68nn89z++23k8vl+OM//mNaW1sZGhriZz/7GdPT0wSDQQC++tWvsnv3bu644w4cDgf/9m//xoc//GFM0+Suu+4qO5bTp0/z7ne/mw996EO85z3v4X/9r//FG97wBr72ta/xyU9+kg9/+MMAfP7zn+ftb387J06cQJYv3FMYhsHv/M7vcMMNN/A3f/M33H///Xz6059G13U+85nPzHsOxsbGuOGGG5AkiY985CM0NTXxy1/+kj/4gz8gHo/z8Y9/HIBMJsNtt93GuXPn+OhHP0p7ezvf/va3eeihh6ryXfze7/0en/zkJ3nwwQf5wAc+UHz86aef5vTp03zzm9/E6XTylre8he9+97uzNrn56OvrAyAUClV0PJ2dnQD88Ic/5G1vexter7ei18/33ks936lUiltvvZWRkRE+9rGP0drayve+9z0efvjhOd8rEonwmte8hne+85285z3voaWlBdM0ueOOO3j88cf54Ac/yM6dOzl8+DB/+7d/y8mTJ/nXf/1XAI4ePcrrX/969u7dy2c+8xlcLhenT5/miSeeKK7/9a9/nY9+9KPceeedfOxjHyObzXLo0CGefvpp3v3udxfXednLXkZdXR3/5b/8F1RV5Z577uGWW27h0Ucf5frrry875g9/+MM0NTXxqU99ilQqVfH5tVkha2wRXfJ8+tOfFoB417veVfZ4X1+fUBRFfO5znyt7/PDhw8LhcBQfP3DgwJyujJnM5aa5/fbbRVdXV9ljnZ2dAhC//e1vi4898MADAhAej0f09/cXH7/nnntmuZLe9773CUD88R//cfEx0zTF6173OuF0OsXExETxcWa4tv7gD/5AtLW1icnJybJjeuc73ymCwWDxM3z5y18WgPjBD35QfE4qlRJbtmxZsWvLIhgMiiuvvLLssY985COio6NDmKYphBDiwQcfFIA4cODAnOv/+te/FhMTE2JgYED86Ec/Ek1NTcLlcomBgYFZ77eQa0sIId773vcKQIRCIfHmN79Z/K//9b/E8ePHZz3Pcm194xvfEBMTE2J4eFjcf//9YsuWLUKSJPHMM88Un7vU8/2///f/FoD413/91+JzMpmM2LFjx6zz/fKXv1wA4mtf+1rZmt/+9reFLMviN7/5TdnjX/va1wQgnnjiCSGEEH/7t38rgLLrZCZvfOMbxe7du+f9uxBCvOlNbxJOp1OcOXOm+Njw8LAIBALi5ptvLj5mfVc33XST0HV9wTVtVg/btVUl/uiP/qjsv3/84x9jmiZvf/vbmZycLP5rbW1l69atxbtBy+J44IEHSKfT867v8XiK/zsWizE5OcnLX/5yzp49W+YCA9i1axf79u0r/rd193brrbeyYcOGWY+fPXt21vt95CMfKf5v6443n8/z61//es7jE0Jw77338oY3vAEhRNlnvv3224nFYrzwwgsA/OIXv6CtrY0777yz+Hqv18sHP/jBeT9/pfj9/rLsLV3X+f73v8873vEOJEkCKLoKv/vd7865xitf+Uqampro6OjgzjvvxOfz8dOf/nRZrpNvfvOb3H333WzatImf/OQn/Mmf/Ak7d+7ktttuK2aClfL7v//7NDU10d7ezu/8zu8Qi8X49re/zbXXXgtUdr7vv/9+1q1bxx133FFc3+12l1lrpbhcLv7Df/gPZY/98Ic/ZOfOnezYsaPsvW699VaA4vVcX18PwH333YdpmnOuX19fz+DgIM8+++ycfzcMgwcffJA3velNdHV1FR9va2vj3e9+N48//jjxeLzsNR/4wAdQFGXO9WxWH1tIqsSmTZvK/vvUqVMIIdi6dStNTU1l/44fP874+Hjxdf/pP/0n/vEf/5HGxkZuv/12/u7v/m6WODzxxBO88pWvxOfzUV9fT1NTU9ElM/O5pWIBF8Sqo6NjzsenpqbKHpdluewHDLBt2zbggotlJhMTE0xPT/MP//APsz6vtSlZn7m/v58tW7YUN3SL7du3z7n2ckgmkwQCgeJ/P/jgg0xMTHDddddx+vRpTp8+TW9vL694xSv453/+5zk3vb/7u7/jV7/6FT/60Y947Wtfy+TkJC6Xa1nHI8syd911F88//zyTk5Pcd999vOY1r+Ghhx7ine9856znf+pTn+JXv/oVP/nJT3jve99LLBYrcz9Wer43b94863xv2bJlzmNdt24dTqez7LFTp05x9OjRWe9lXRfWe73jHe/gxhtv5A//8A9paWnhne98Jz/4wQ/Kzu+f/dmf4ff7ue6669i6dSt33XVXmetrYmKCdDo95/Wwc+dOTNOcFWec+fuzubjYMZIqUWoxQKFuQJIkfvnLX855p+T3+4v/+3//7//N+9//fu677z4efPBBPvrRj/L5z3+ep556ivXr13PmzBluu+02duzYwZe+9CU6OjpwOp384he/4G//9m9nbYLz3ZnN97iowrRl6xje85738L73vW/O58yVjrsaDA4OEovFyjZKy+p4+9vfPudrHn30UV7xileUPXbddddxzTXXAPCmN72Jm266iXe/+92cOHGi7PurlIaGBu644w7uuOOOos+/v7+/GEsB2LNnTzG9+E1vehPpdJoPfOAD3HTTTXR0dKzq+Z55LUPh+92zZw9f+tKX5nyNdZPi8Xh47LHHePjhh/n5z3/O/fffz/e//31uvfVWHnzwQRRFYefOnZw4cYKf/exn3H///dx77738/d//PZ/61Kf4q7/6q6ods83FwxaSVWLz5s0IIdi0aVPxrm0h9uzZw549e/jv//2/89vf/pYbb7yRr33ta3z2s5/l3/7t38jlcvz0pz8tszbmC5auFNM0OXv2bNlxnzx5Eihkhc1FU1MTgUAAwzDK6ivmorOzkyNHjiCEKLtLPnHixMoPHvj2t78NwO233w4Ugs333Xcf73jHO8rcaRYf/ehH+e53vztLSEpRFIXPf/7zvOIVr+Duu+/mv/7X/1qVY73mmmt49NFHGRkZKROSmXzhC1/gJz/5CZ/73Of42te+VvH5Pnbs2Kzzffr06SUf5+bNmzl48CC33XbbLMtmJrIsc9ttt3HbbbfxpS99ib/+67/mv/23/8bDDz9cPFafz8c73vEO3vGOd5DP53nLW97C5z73Of78z/+cpqYmvF7vnNdDT08PsizPsq5t1hbbtbVKvOUtb0FRFP7qr/5q1h2/EIJIJAJAPB5H1/Wyv+/ZswdZlotplZYlUbpOLBbjm9/85qod/9133112vHfffTeqqnLbbbfN+XxFUXjrW9/Kvffey5EjR2b9fWJiovi/X/va1zI8PMyPfvSj4mPpdJp/+Id/WPFxP/TQQ/yP//E/2LRpE7/7u78LwE9+8hNSqRR33XUXd95556x/r3/967n33nsXTT++5ZZbuO666/jyl79MNptd8jGNjo5y7NixWY/n83n+/d//HVmW53UzWWzevJm3vvWtfOtb32J0dLSi83377bczNDTET3/60+Jj2WyWr3/960v+DG9/+9sZGhqa8zWZTKaYKRWNRmf9/YorrgAonl/r2rdwOp3s2rULIQSapqEoCq9+9au57777ylypY2NjfO973+Omm26irq5uycdus/rYFskqsXnzZj772c/y53/+5/T19fGmN72JQCBAb28vP/nJT/jgBz/In/zJn/DQQw/xkY98hLe97W1s27YNXdf59re/XdwoAF796lfjdDp5wxvewIc+9CGSySRf//rXaW5uZmRkpOrH7na7uf/++3nf+97H9ddfzy9/+Ut+/vOf88lPfpKmpqZ5X/eFL3yBhx9+mOuvv54PfOAD7Nq1i2g0ygsvvMCvf/3r4ibzgQ98gLvvvpv3vve9PP/887S1tfHtb3+74rTYX/7yl/T09KDrOmNjYzz00EP86le/orOzk5/+9Ke43W6g4NZqaGhg//79c65zxx138PWvf52f//znvOUtb1nwPf/0T/+Ut73tbXzrW9+alWAxH4ODg1x33XXceuut3HbbbbS2tjI+Ps4///M/c/DgQT7+8Y/T2Ni46Dp/+qd/yg9+8AO+/OUv84UvfGHJ5/tDH/oQd999N+9617v42Mc+RltbG9/97neL52cxCwMKKdU/+MEP+KM/+iMefvhhbrzxRgzDoKenhx/84Ac88MADXHPNNXzmM5/hscce43Wvex2dnZ2Mj4/z93//96xfv75YX/XqV7+a1tZWbrzxRlpaWjh+/Dh33303r3vd64pxrc9+9rPFepQPf/jDOBwO7rnnHnK5HH/zN3+zpPNucxFZi1SxFxNW+u986Y733nuvuOmmm4TP5xM+n0/s2LFD3HXXXeLEiRNCCCHOnj0rfv/3f19s3rxZuN1uEQ6HxSte8Qrx61//umydn/70p2Lv3r3C7XaLjRs3ii9+8YviG9/4hgDKqrM7OzvF6173ulnHAYi77rqr7LHe3l4BiP/5P/9n8bH3ve99wufziTNnzohXv/rVwuv1ipaWFvHpT39aGIYxa82Zle1jY2PirrvuEh0dHUJVVdHa2ipuu+028Q//8A9lz+vv7xd33HGH8Hq9orGxUXzsYx8T999/f0Xpv9Y/p9MpWltbxate9Srxla98RcTj8bLjcTgc4vd+7/fmXS+dTguv1yve/OY3l60/V3qxYRhi8+bNYvPmzWXppgul/8bjcfGVr3xF3H777WL9+vVCVVURCATEvn37xNe//vViOrIQ81e2W9xyyy2irq5OTE9PFz/fUs732bNnxete9zrh8XhEU1OT+M//+T+Le++9VwDiqaeeKj7v5S9/+bypufl8Xnzxi18Uu3fvFi6XS4RCIXH11VeLv/qrvxKxWEwIUegs8MY3vlG0t7cLp9Mp2tvbxbve9S5x8uTJ4jr33HOPuPnmm0VDQ4NwuVxi8+bN4k//9E+La1i88MIL4vbbbxd+v194vV7xile8oiytXYilpYLbrD6SEFWItNq8aHj/+9/Pj370I5LJ5Fofis0q8+Uvf5lPfOITDA4Osm7durU+HJtLGDtGYmPzEiCTyZT9dzab5Z577mHr1q22iNisGDtGYmPzEuAtb3kLGzZs4IorriAWi/Gd73yHnp6eeYsxbWwqwRYSG5uXALfffjv/+I//yHe/+10Mw2DXrl38y7/8C+94xzvW+tBsXgTYMRIbGxsbmxVhx0hsbGxsbFaELSQ2NjY2NivCFhIbGxsbmxVhC4mNjY2NzYqwhcTGxsbGZkXYQmJjY2NjsyJsIbGxsbGxWRG2kNjY2NjYrAhbSGxsbGxsVoQtJDY2NjY2K8IWEhsbGxubFWELiY2NjY3NirCFxMbGxsZmRdhCYmNjY2OzImwhsbGxsbFZEbaQ2NjY2NisCFtIbGxsbGxWhC0kNjY2NjYrwhYSGxsbG5sVYQuJjY2Njc2KsIXExsbGxmZF2EJiY2NjY7MibCGxsbGxsVkRtpDY2NjY2KwIW0hsbGxsbFaELSQ2NjY2NivCFhIbGxsbmxVhC4mNjY2NzYqwhcTGxsbGZkXYQmJjY2NjsyJsIbGxsbGxWRGOtT4Am5cWQggMwyCXy6EoSvGfLNv3NDY2lyq2kNhcNIQQaJqGruvkcrni47Is43A4cDgctrDY2FyCSEIIsdYHYfPixzAMNE3DNE0kSSKfzyPLMkIIhBCYpokQAkmSkCTJFhYbm0sIW0hsVhUhBLquo+s6AJIkFS0TSZLmfL4lKhbW85xOJ6qq4nA45nytjY3N2mC7tmxWDdM0i1YIULQ2LJGwLJBSJElCUZTif1vC8tRTT7F9+3bq6+uRZRlFUcqsFltYbGzWDltIbKqOtflrmlbmrpr5nKVs/pawWP9fUZTi2vl8HkmSisKiqmrxObaw2NhcPGwhsakqltvqyJEjNDc309jYWJVN3VpjPotlprDMjLHYwmJjs3rYQmJTNawN3TAMEokEoVCoaht4qUts5uOWsFh/N02TfD5PLpezhcXG5iJgC4nNirFqQ3RdxzRNZFmed+NfTSxxsIXFxubiYguJzYqwXFmGYQAURcRK7a0WyxGmuYTF+pfL5cjn88VjtoXFxmb52EJis2ysO/1SK6SU+Tb+tdqkS4P+iqLMEpZSi8VKM7ZqWGxhsbGZH1tIbCrGcmVZWVlzbbSLWRCVbsyr4SpbSFiy2WzxObaw2NgsjC0kNhVhmia6rs9yZc1kLWIkK2UpwpLNZtF1ncbGRltYbGzOYwuJzZJYSm1IKdUWkrUK3s8UlqmpKaampvD7/UBBSGfGWGxhsXmpYQuJzaLM1eZksY3yUrRIFsP63JIkoapqWZ+wXC5HNpu1hcXmJYktJDYLUlobYsULlsJyhSSvmwjA5Sh/n1oUppmCagmLYRjFVvmlMRarrctShNjG5lLCFhKbOZmvNmSpVLrxT6U1njgbpWc0iRCwtdnH/q4QzQFX2THVMpZAWGJbKiy6rhf/PlefMFtYbC5lbCGxmcV8tSGVUImQpHI6P3hhmLMTacJ+JxLwVO8UA1MZ3nPdekJe9ZLcaOcTFl3Xi92PLWEp7RNmt8y3udSwhcSmjMVqQ5ZKJUJyfCxJbyTD5iYvDqWwiYa9KqcmUhweTnDzljBQOxbJSs6JLSw2L0ZsIbEBllYbUgmVCMlYPI8sURQRAFmWcKsKg1OZ4novNhYTFrCnR9pcGthCYlMVV9ZMFhISIQQDUxnGEnm8qoJDAdOc/dy8YVLndpS97sXMfMJS2tnYnh5pU4vYQvISxzAMBgYG8Hg8BIPBVe/Wm9MM7j0wzPP9UTKaiSJLBN2FTKah6SxtdS6QYCKRx+OQ2dHqL673UmMuYbGy6DRNI5VKkclkaGtrKwqLPT3SZi2wheQlSmltyODgIC0tLdTX11dt/fmE5PHTEZ44E6XFr7IuqGAIQX80i1ORUBWJM5NpAOo9Dl61s4ktTb6yY34pM3MWSyqVYnR0lMbGxjktFnt6pM3FwhaSlyAzR+CuhmtEkqTi+ha6YfJM/xQBl4M6jwMhQJUlOsNuzk1lecW2RnxOBVMIOkIeQl61bL1aoNbEzBIOmH/Ilz090ma1sYXkJUTpRlOalSXL8qxNf6XMtVlphiCTN3Cp5cLlkCVMUyBLcFl7YN71am0TX2tmjiu2p0farBW2kLxEWCigvlqddWeKk1uVWVfv4dhIgpDnwoaXyBl4VIWWkuJDm6WxWL8ze8iXzcXAFpKXAKVtTuZr+X4xLBJJkrh5ayN9kTRnJtLUe1VyukEyZ7BvU4iOkHvB9WyLpJyZFslC2NMjbVYTW0hexCy1zUm1pxnCBXE6F03TPRAjltFYF/JwZUeQt13exH3PnCIak6j3eXn57iZetqXB3rAqZCXf2ULCYk+PtKkUW0hepFRSG7Jarq2jE3meP3mW6UweRZYxTMGvDw9wpSfKm7Y3kNUFyXgEMTbO8WyQUChEOBzG7/fPSgCwLZLZVGKRLEapsCxleqSVamx3NrYBW0helFgV6kttc7Iawfa0JnisP4PqdbKtuVALMjEZ4dhgipYdLbxx9/aiMKTT6eKcj3PnzgFQX19PKBQiFArh8/nmfZ+1oJY2ztU6Fnt6pE0l2ELyIqK0NqSSNiercbc/GNeYyppc3u7GMHTGxsYB2LquiaGURCKr43cV3CQ+nw+fz8f69esRQpBIJJiamiISiXDmzJmyIrvGxkY8Hk9Vj/VSpZoWyWIsRVimpqbwer0Eg0FbWF5i2ELyImGu2pBKArHVtkgsWUqnUkxFI/j9fsLhMFNpDd0UCObeCCVJoq6ujrq6Ojo7OzFNk1gsxokTJ0gkEjz11FO4XK6itRIKhXC5XprZXmvp6ptLWIaHh2loaCh+H3O1zLeF5cWJLSSXOJWOwJ0LWZaLsZRqsb5OxSPpnB6OsH19Iz6fD1MIJpI5rusMEXApS9oIZVkmFAoRCATw+/2sW7eOWCxWdIMdO3YMn89XFJX6+npUVV103RcDF9MiWYxSUbGnR770sIXkEmZmQH25A5Kq4dpKZnV+ezbKoaEYpqHjTo6wJyzoNRsYSgmc2TRZ3WR9vYff2d2yrPcUQuBwOGhoaKChoQEATdOK8ZUzZ86QTqepq6srCkswGCwr0lsptRbwr6VN2DTNstoke3rkSwdbSC5RFqsNqYSVBtuTOZ2/f+wsR4YSCFMjEU8iKQo7wk7+6NbNHB6OM53W2BDycM3GEE1+Z7FN+lKZ7/OpqkpzczPNzc0AZLPZorAcP36cfD5PMHghIywQCLxouuXWmqgtZCHZ0yNf3NhCcomx0hG4c7FSi+Sp3ihHhuIE5Ty5fJr1HWEyOYOT0STJnM47r1k/6zMsh6W8zu1209bWRltbG0IIMpkMU1NTRKNRBgcHMU2zLCPM7/dfshtVLbm2gOL1uBQqGfI10xVmU3vYQnIJsRpzQ2DlwfaD/VFSiTgBn0xbWyuqQ0WYSUwTTo+nuH5TuCrHuJzXeL1evF4v69atQwhBMpksWiy9vb3FGIz1z+Px1NTmvBC1JiQrOZ5KhMWeHll72EJyiWCaJmNjY4yNjbFjx46qbiArsUhGR0cZHhxEdjhpbW2+cFyShECgyNU7zpW6ciRJIhAIEAgE2LBhA6ZpkkgkiEajjI2NcfLkSZxOZ1FUwuFwzWeE1ZqQVGtjX0xYwJ4eWUvYQlLjlI7AzeVyTE1NVX3zWE6LFNM06enpYXh4mFv2buTHx+Kk8gZ+V+GSimd1HLLErnm6+VbKamyYsiwTDAYJBoNs2rQJwzCIxWJFN9jx48fxer1lFkstUWsWSWmwvdrMJyxWZ2OwhWUtsYWkhjFNE13Xi64sRVGqXu8Blbu2DvVP8KMnjjGZNtm7pZMb25vZn3Pw1NkoQ9MZhJCQhcmVzQqXtdXN+X6VbjgXo0WKoiiEw2HC4YIrTtM0pqeni26wI0eO4HQ6cTgcRCIR6uvrq5oRVim1JiTVtEgWYy5hKZ0eCRQLc+vq6uzpkauMLSQ1yHy1IaslJJVYJA+8cIZ7HutFl1VCdQEeOT3N84NJ3n/DBq7tDHFyLIGiyDSpeeTYEHIVXVsXG1VVaWpqoqmpCYBcLsepU6eIx+OcOHGCXC5XTDUOh8PU1dVd1Dvgi7lxL4XVtEgWY65ZLKOjo0xMTLBnz57ic+zpkauDLSQ1RmmbEyi/e1+NnljWeyy2rmmaHD56nO8+OYLD7WVna7BoJZyLZrjv4Aj/446dXNERBGB8fJxTseoe41qnu7pcrmKW1+7du8lkMkSjUaamphgaGsIwjGJGmNV8crU3qlraCGvJQiotkHQ4HPb0yFXGFpIaorQ2pNRst1itzXQxiySdTtPd3c1I0kR46ugIXMhskiSJljoXo4kc/dEM21r8q3qstYTH42HdunXFjLBUKlXMCOvr60OSpLL4itfrrepGVWvntxYtJOt45rJY7OmR1cMWkhqgkrkhq2WRzLcpjY6OcuTIEdatW0fr1g5+NnISc8ZzTSGQoSxDazEhqcUYyUqQJAm/34/f76ejo6OYETY1NcXExASnT5/G4XAUrZVQKITbPf8gr6VQSxYArK1ray6sYt25KBUWe8jXyrGFZI2ppDbkYrq2rKysswPDuFu6SPvCrPO76Ax76BlL0tWoIEsSphCMxHNsafLTGfaUrVnLG/9qU5oRtnHjxmJGmOUG6+npwe12l1ksTqezoveoNSGpZYtkIUrdYGALy3KwhWQNsS7UtZwbYq1buulbrqyjEYPnpkNE+iYRTNDkd/GyLQ1MZzTOTKSRAIGgpc7N7163Hody4Ue7mJBUKjKr0aH4YjIzI0zX9WJGWH9/P0ePHsXv95c1n3Q4Fv951spGZqXj1srxQGWV9qUsJCz29Mi5sYVkDSitDalkboi14Vf7B1u6SVuuLALNPB7RSOcN2uvdSMBoPMf9x8b5jzdvZDqjMZHI0eB3cd3GEM0B16w1q22RvJgsHIfDQWNjI42NjQDk8/lifOXUqVNks1kCgUDRDWalsJZSS+fDOpZas0iqkZ5dKixzTY8sFZaX6vRIW0guMitpc2L9SKv1Ayld1zRNjh07xvDwMJdddhm/7s8TywzT1egrHt+6ejdnJ9McGU7wwZdtXHDNagvJi/0H6XQ6aWlpoaWlBaDYI2xqaorh4WF0XZ/VfLKWLADru66V44HC72Q1RgqUZlLa0yML2EJyEal0BO5MrOdX+07Uuquanp5m//79eL1eJo+eRplxjJIkoSoSE8ncko7VtkiWj8fjwePx0N7ejhBiznHE1g1AMpnE5/Ot6SZlWbS1tFEu17VVKbaw2EJyUZhZG7LcC6jUIqkWo6OjHD58GEmSuOGGG4rv0RH2YpiRQkZWiYBphsnGsHfRdW2LpHpI0tzjiI8fP046nea5554rZoSVNp+8mNSqa2stjmchYTl37hyJRIItW7a8qKZH2kKyyswcgbuc9iAW1RQSwzA4ceIEw8PDbN26ldOnT5f96G7aHObXx8fpnUzR5HeBBJPJPM0BFzdva1x0/RezRbLWP3ZJKowj9ng8hEKhsqmRIyMjnDhxomwccTgcrjgjrFJq1bW1li1sLEp/81aav2VNvlimR9pCskqUFjxVc25INbKXUqkUBw8eRJIk9u/fj2maPHzgJHc/cpaBaIb2ejev3NHEf3rlFv752UFOjacQQrB3XR3vvGY9HaHF73ZXo47EphwrRlLaCh8KGWELjSMOhUJLygirBKuGpJa+p7WySBbCMIxZzSQXmh55qQiLLSSrwGrNDbHWWomQlBYYbt++HVmWefjYMN8/I6G4R3E5FI4Mx3nybJT/+PJN/MVrtzOeyCEEtNS5KvocL0aLpBaOoZS5vo+1GEdcS4F/i1oWklLm62xcKizvete7eN/73se73vWutTjsRbGFpMqYpsno6CgA4XC46j+u5QpJqStrz549xeygvG7y/RdGyRmCXWEvklywJAans3z36QGu3xiipa7yCuzltKZfiFrbpGqBpW7eF2Mcca1VtcOlIyQzmUtYRkdHq25FVpPaPbJLjNI2J8PDw7hcruIdYTVZjpDMdGV5vReC5f3RNGOJPHUqUNI/q9nvZDyR58xEit3ts1vBL4VqurYWW++lyHLPx2qMI661qnaoXSGpNF4lSRLpdLrsd1tr2EJSBWa6shRFKf7valNpEHtkZISjR4+WubJKkSUJSYLCigIobBgmIEsse8JhaaryXJuQlXK81B9Hrd3t1gLVcCdJUnXGEdeia2uhXltrxXISAKyGoIFAdYbErQa2kKyQuWpDFEUppvpWm6VaJPO5smayscFLZ9jDC9Nx2k2BQyn0zxqL5+hq9LG5ybes41xISKyUY9M0cbvdxertUCg0bwHZS71311ysxuYtSbPHEcfjcaampmaNI7a+N5fLZbu2lshyxS2VSuHzLe+3eDGwhWSZlNaGzGxzslo9sZa69kKuLIBoKs+R4TiyJLFnXR2/v7+TM4Nj9EfTyJKMQNDkd/EHN3aiKsv7Ic5VPGmaJidOnGBoaIjLLrsMv99fnJluTSAsHRQVDAZrbiOoNVZ785Zlmfr6eurr62eNIx4YGODYsWNFi8ayzFejmnw51KqQLCexIZ1O2xbJi42ZI3BnZmWt1iRD670WWnsxV9a/HRrlO08PMJXJIyER9qq8b18H795sYrasI5IxaA64eNmWRtrrl9/mfKaQZLNZuru7MQyD/fv343Q60TStrN9ULpcrDoo6evQouq5TX19POBwuNre0ucBaWGjzjSMeHh5G0zR+85vfEAgEyppPrlUtx4tFSPL5PJqm4ff7V+moVo4tJBUw3wjcmayFRWIYBj09PYyMjMzryuoeiPGPT/RhmoJ1wUItyHgixz2/6ef1TfDuy1uqVhFdKiSRSISDBw/S1NTErl275nX9uVyusiCwNSgqGo0SjUYBOHr0aNFiWek8j0udWohLWOOIJUkil8tx+eWXF+MrpeOIS5tPXozN3fqt1pqQLCdGkkwmAWwheTEwM6C+UPGVLMurGmyfKSSpVIru7m5kWZ7TlWXx0IkJMnmDDSUtTlrrXAxMZTg6vTrpur29vfT397Nz507Wr19f0etLB0UNDAwwPj6Ox+NheHiYEydOFCu7rU3qYqVHrvXmXUqtHIsVI3G5XLS2ttLa2lrsNWVZmVZGWGmq8WqNI67Fli2wvBhJMpksJkXUKraQLIHSEbhLKS68mK6txVxZpUwkc7OysCxBTGrVnfdhWRzDw8Ncf/311NUtL4XYQpIkHA4HXV1ddHV1oet6WZFdJpMptl0Ph8MX7c53LakFi8RirmORJGnNxhFb13KtXQPLcW1Zqb+19llKsYVkAZY6Ancmq2mRWIV+S3FlzWRLk4/n+qbLGjGapsAUglZv9bKiYrEYBw4cAODqq6+uSpBw5nl3OBw0NTXR1NQEUHbna2WEWfGVUCi05t1xV4NaymJbSh3JTCtzvnHEpVl8y3VfvpiEpBa6Oy+GLSTzsJI2J6ttkWSzWZ566qlFXVkzefWuFh7qmWQgmiHkU0FANK3RXu/m8sbMio9ZCMHg4CA9PT10dXVx6tSpqrqbFto43W437e3txbbrqVSKaDRKJBLhzJkzZRtUOBzG5XLNu9Zyj+FiU0sWyXLSfysZRxwOh6mvr19yMV8tCokVt6lUSGo99RdsIZmTSkfgzmQ1g+25XI6JiQk6OjoWdWVBweLI6SZuVaYj5OG/v3Y733ryHCfHk0jADZtCvG/fBgaPPruiTdIwDI4ePcrk5CRXXXUVDQ0NnDp1qmobbyXfQemdr1ULYaWsDg0Ncfz48WITQ2uDquX2EwtRK0JSjcr2hcYR9/b2kkqlljyOuFqNUquJtSfYFsmLnOWOwJ3JagiJ5cqKxWK0tLSwc+fOBZ+vGSb/2j3Cvx0eZTqt0R50c+dV7dy2o4kvvHkXk8nCeNBGvxNJkhg6tnzXlhXsVxSF/fv3F90RCxURXswWKTO745Y2MbTG2lqZRcvtNbUWXOoWyWIsZRxxafPJ0nHEtZixVerdqIR0Om1bJJcKi9WGVEK1YySlWVktLS1LcmX9w2/6+PGBYRRZwq3KnBpP8j9/dYqMZvKGva00zTFjfTniNzY2xuHDh1m/fj3btm0r+5FUsxq9mpvUzCaGc/WaKp3lUa0AcLV5qbnZKhlH7HQ6a+47W66QWBZJLfOSF5Kl1oZUQjVjJDOzsnp6ehZdeySW5f6jY3icCiFvoco46FEZjef4/nODvHpnEy613LyutFuvaZqcPHmSwcFBLrvsMlpbW2c9p9ptTVZr45w51jaZTBKNRpmcnOTMmTOoqloUldVKolgOtWaRXGwLYL5xxFbShWEYHDp0qHhTsNbuISvQXukxWC69WuYlLSQzR+BWazBPNVxb82VlLWXDPzWeJJkzaA+WWx1Bt4PJVJ7hWJZNjeV3OJVs+tlsloMHD6JpGvv27Zv3bmmhc1mrg61Ke011dnbOagmSSCSKw4as+MpaTuGrFSFZa1GTpPJxxJOTk5w4cYJgMFiWcLGW44iXO7ExnU7bQlKrlNaGlPb+rwaWkCz3x7VQgaEsy2iatuDrA24HDkVCM0xc8oULN2+YqLKE3zX7a1+q+EWjUbq7u2lsbOTqq69eMEhd7SmJtdAS5NSpUyQSiWJTzFwut+JZHstlrTfvUmqtjbwQAlVV6ezspLOzs5hwsZbjiF+sDRvhJSgkVkC9r68PWZZpb2+v+o+xNOBX6R3IyMgIR44coaOjY1bMAZa24V/WXsfGsJdTEyla6yRURSanGcSzOrdsa5oVH4HFN30hBL29vZw5c4bt27fT0dGx6HlbjRhJLKMxOJUlZ5gEXA46Qm7c6sWzCBRFwePxsGPHDoAyd8rAwABA2eY0V8v1alFLMZJa6/4709U23zjiaDR60cYRL7dhYzKZrOmGjfASE5LS2pBEIrFq6YHWBVyJkFiurNHRUfbu3TtvgeFcQjI4leFfu4c5MBAj4FZ55c7CvPW/vv8kQ9OZwuskicva6/jwyzfNue5CwXZN0zh8+DDxeJzrrruOYDC4pM9UbSEZSxmcPDLOVFoDSUIC1ofcvHxrA3Xui3cpl14zM2d5WN2MJyYmOHXqFE6ns2jRWEHgalFrFkmtHAssHrNZi3HEyxWSVCpFW1vbit57tXnJCMnM2pDVHD5lXcCGYSyppXapK2vfvn0LZmXNFJL+SJr//KMjjMSzqIqEYQpeODfNay5r4e/ftZdn+qaJJPOsD7m5dmNo3rbw88Ve4vE43d3deL3eYtfepVJNIckbJscjJsFmg02NhSwq3RT0R9IcHopz4+ZwVd5nJUiSRF1dHXV1dcUCO6sOor+/n6NHj+L3+4uiUo34Sq1s3rXm2qo0+L/YOGJN08pGHCx3HPFyYyS13GcLXgJCMl9tiKIo5PP5VXlP68e9lJjDYq6sudYuXffbTw8wEs/SEnAhn++jlczp/OrYOK+7rIXbdjQt+ZhnbvqDg4McP3682N9qOQHyaglJJG0Qy5tsD7qLx+GQJcI+J/3RDFdvMC6Ki6uSz6MoStldr1UHEY1G6enpQdO0WfGVSs5xLVkBy90kV4uVZpHNNY7YygYbGBhACFHxOOKVWCR2sH0NWajNyWqPw10sBbjUlXX55ZcX74QWo9QiEULwVG8Uj6oURQTA51RIZnVeGIixd/3S3FCl6xqGwfHjxxkbG+PKK68sFoRVSjWFRAgwzcL431JkCXQTzNoJF8xLaR1E6eZk+emBoqhY8ZWFqKUYyaVukSxE6Tji9evXL3sc8UqC7baQrBFzjcAtZTWFBBYOis/MyqokDXGmC8ohF0bjzoWjgnnr1qafTqfp7u4uTldcSYpkNYREM0xMAQ0+FZ8qmEzmaT6fLCCEIJrKs63Fj9dZO3fDS2Hm5mQ1MIxGo8WRti6Xqyy+MtNNWmsWSa0cC6xuXctyxxGvZDqiLSQXmZm1IfMF1FezQ+9C6w8PD3P06NElu7LmWtcSKEmSuHV7E99/fgjNMFGVgshMZ3Q8ToV9XUuPG0iSRDwe59SpU0tqSb/UNZfddiWn0z0Y59RECtOEoJKnxVuIAfVF0jgdMpm8QaPfyd722s5oWQqlDQw3bdpUllVkjSG22uRbwV+wYyTzcTFdbXONI7ZiY6XjiGVZxuVyVTSO2GpAaqf/XkSs2pDSjXa+H9pqWyQzXVvLdWXNZKal87vXdXBwMMbJ8VTRMnE7ZN5z/QY2Ny3t4jNNk2QySSaTYc+ePVXLEFmukOR1k1+fmOTUeIqQV0WRJXomsphpwVuuqGcqo5HM6jQFnGxu9FHvrY0Z4dVkZlZRLpcrxleOHTuGrusIIRgaGqKlpWXVBkQtlVqyjmBte23NjI1Z44jPnj1LPB6veByxnf57kShtc7LUrp+r2eodyjf8lbiy5lo3pxkkszo+l0KD38lX3rGXX/dMcGw4jt/l4OatjVy+fmmDpHK5HAcPHiSXy9HR0VHVNMPlCsm5qQxnJ9N0hj04HYXNwBFycSAqiGU1blrjDK212DBnTh5MpVI888wzJBIJhoaGij56y2JZi6rtWhOSWunobI0jnpiYKLZ0qWQc8cWMkXzhC1/gz//8z/nYxz7Gl7/85SW/rjbO9ApY7tyQixEjMQxjxa6sUiYSOf7Pb4Z5+GQO5wtPsbM1wB/c2MlVG+p50+VtvOnyykRgamqK7u5uwuEwzc3NVf/hLVdIptIapqAoIlCog3GrMBLLVfMQL0lKx67u2rULVVWLPnqratvtdpcNiFqqK2W51KJrq5aOBy5kbc28KShtPlk6jvjEiROsW7fuonX/ffbZZ7nnnnvYu3dvxa+9pIWk0hG4pVwMITl37hyJRGJFriyLTN7gT+49wvGROLIAFXju3DQnxpL87dv2sGfd0kfZCiHo6+vj9OnTbNu2jQ0bNnDs2LGqZwEtV0hc5wVkprtE08HvurSC6quN1d6n1EdvzfEoja+U1kAEg8Gqb7K1aJHUmpDMFbcpTbqYOY74gQce4Oc//zmKovCJT3yC1772tdx2221s27at6uc6mUzyu7/7u3z961/ns5/9bMWvr60zvUSsgHo+n1+WiMDqurZSqRSJRIJMJsP+/ftXLCIAD5+c5ORYknqPA68D/C4HTX4niazOvzw7uOR1dF2nu7ub/v5+rr32Wjo7O4uxpGqfj+UKyYaQh7BXZXA6i2GKQnZWRkeWBVubazt75WJhnde5rntrjse2bdu4/vrrufHGG1m3bh3ZbJajR4/y2GOP0d3dzblz50gmk1W5gbBjJIuzlKwtayhbR0cH3/jGNzhw4ACSJHH11Vdz7733cvnll/PXf/3XVT+2u+66i9e97nW88pWvXNbrLzmLZCUjcEtZrawty5XldDrp7Oysmq/6xFgCAFWRsVo2SpKES5U5PBxf0hqJRIIDBw7g8XhmValX2kZ+KSxVSEwhGJjKMhbPocgSG0JubtnWwOOno/RHMwgBDgE76yU2NVxc33+tUsl35XK5yorrrDtey2KRZblsDPFy5qTbrq3FWU4dST6fR9M0PvWpT6EoCtlslkwmU9Xj+pd/+RdeeOEFnn322WWvcUkJyWK1IZVgWSTVupMqLeK7/PLLGRoaqurGXO9RERQK8yhZVzdM6j2L+7+HhoY4duwYGzduZMuWLbM+88W2SEzTJJ1O43R7ePhkhEPDCTTdRAB1bgcv29LAnVe1MRLLYZgCl5lh8Gykpu5615KFLJKFKB1D3NHRUdYVd3h4mBMnTuDxeMriK0uJndWaa2u5xX+ryXLqSKzUX+vcut3uZQn9fAwMDPCxj32MX/3qVyta95IQktLakJWMwC3F+kINw1hxkDmZTHLw4MGyrKzR0dGqbsy3bm/iO08PMJ3RUUXhnKTzBYvq9XtmD5WyKE07vuKKK2hqmrtlylLa01fKfEKSyWQ4cOAA8XicoazKwZiTjnCAdWE/DoeDsXiO35yOsC7ooquxEFSOxXQGaqCSu5aqyWHlGWSlFdldXV3oul60Vs6cOUMmkynWr4TD4VkZRRa2RbI4yxGS1Z7X/vzzzzM+Ps5VV11VfMwwDB577DHuvvtucrncko655oWkmiNwS6mWkMyXlVXtue2dDV7+86u28qVfnyKagHwyj6rIvGZ3C2++cu5srUqq1Ks9zXC+NSORCN3d3bS0tLB3717+5dkBPOkY+VSMM9ExXC4XPq+P0axCXyQ1Z8t7m9UTNIfDQVNTU/GGI5vNFntMHT58GNM0qa+vL1os1iZXaxZJLQrJcookV7sY8bbbbuPw4cNlj/2H//Af2LFjB3/2Z3+25OOtWSFZjRG4pVhrLTdOMtOVNTOgvhoxmNde1sIV7T7+38+fYPP2TVzZEWJH69yFaBMTExw6dIi2tjZ27NhRcTPIalAqJKWZYjt27GDdunXk83kUp5uGsER7vRtDN0in06RSKaanYrzQPYk6Xdi0XC7Xqtb9XGos17VVKW63m/b29rIxxFNTU2VTB8PhcFk3iVqgFoVkOe62ma6tahMIBLjsssvKHvP5fDQ0NMx6fCFqUkiEEMTjcRKJBA0NDVUXEVhaY8X5mMuVNZOVphePxbP8/PAYQ9MZ2us9vGZ3C+31bpoCLq5tErzyqvY5LSkhBKdPn6avr4/du3fT3t6+pPdbzWC7ruscOXKE6elprr32WrKSmxNjSVyyyaawm95IGsMUKA6FQF0A2eVlg7OOm3bUExBpotEo09PTmKbJ8ePHV2W2x6XKxbQC5uoxZbVxsb5jaziUNYZ4rYoCa01IrBvjWrNIqkXNCYllhUxNTXH27FluvPHGVXuv5Wz2Sy0wXEnMoXsgxp/++AjTaQ0hQJLgn58d5Atv3sWV5yvW5xLAfD7PwYMHyWQy3HDDDRW1VVgt11Yul+Opp55CVVUuv/o6Hjo9zbGRUZI5A5cC6+vdtPidnJlIE3Ar6KYgpwuuWl/HjnUNKHIjGzZsIBaL0d3djaqqxdkepb771aiNqGUulkWyEKXxleHhYXbv3l2MsZw6dYpsNlus2L7YY4hrra29tc8sN0ZyMXnkkUcqfk3NCIk1N0TXdUzTRFXVVS0YhMqEZDFX1kyW69oyTMFf33+CqbRGyKsiS4XuvlNpjb/+5Um+/4fXALOFZGpqioMHDxIMBtm/f3/Fd4LVjulAof3K+Pg4HR0dbN++nfuPjfNM3xRtdS7ag27i6RynJtLsaPFx6/YGzk6mcSoy21v97Gr1o5R0L7ZiY1u2bCmubbVgP3LkCKZpzmrBvlqbbC3EAmqtbkMIUZwGaf02Smd4WBXbpW1cvF7vqn2GWrNIrN/WciySWu/8CzUiJHPVhjgcjpoRkqW4suZaezkbc89ogoFoBr/LgXz+RyZLEgGXg+FYlqMjybJ4hhCC/v5+Tp06xdatW4sFhpVS3dkhgjNnzjA9PU1LSws7d+4kkdU5Mpygyeck6FExhcDvVmlFYnA6y6t3NrF/gW7FMz/TzNqIZDJZHHF7uOcUKeHEF6hjfVOYreubcLteXG6wWssemyvY7vF4WLduXbFiu/Q7On36NKqqlol/NV2VtSYkhmEsy0V/sdqjrJQ1F5KZI3BLB0+tdvBuKXfhlitrw4YNbN26dckX53Lv8DVDYIq5BzgJUZjPYa1t+aWnpqa45pprCIVCFb+fRbWC7ZqmcejQIZLJJE1NTcW7qXReJ6cZNPjKNwuvKhNJmcVU5oWYb/Ms9d2r9S2cJcpoNE5mIsNz5/oIdZ/k6vV+WpoKHVkvpotltahFi2Sh4yn9jjo7OzEMoxhfsVqt+/3+svjKcl1TVjyilr7j5XbgSCaTtkWyEPONwLWwrIXV/MEsZJFU6sqayXKFZHuLn5BPJZrKU+9Ri589mTMIehzsbAvw9BmZZDLJgQMHcLlc7N+/H5drZWmy1Qi2W5Xz1nz3EydOFNcMelQCbgfTGa04hMqaneJzKoQWaQW/lGsgqxk81x8jowl2rm9EliRyukH/ZIqsu1AAOThYaCdTySTCWqVWhEQIUXEdiaIoxfMPF8YQl3bEDQaDZR1xl/p5rWuu1oRkuWN2V3KDeLFYEyFZSpsTy8e/mkGz+YQkmUzS3d2Nw+FYdtv35cZIPE6F/3jzJr74wCmm0hoOWUI3Baoi8cGXbcTvciCE4NChQ2zcuJGtW7dWZUNZqUUyOjrK4cOHyyrnS91lblXh+o0hfn5kjMHpDAGXg3gmTzJn8PJtDQSXUJ2/mNBNJPNE03nW13uKbkGXQyHkd5OQZG7e1YUsMWsSodUpt6GhYU0zjSqhllxb1Qj8zzWG2CqMLB1DbN0ALBQDs67jF4OQZDIZOjo6VuGIqsua/GKsC2CxwVOw/C9gKcwlJMt1Zc219lI35v5Imu7BGD6Xwr5NYd54eRtNfic/eH6IvkiaDWEvd17Vzk2bw8WhRtu2baOrq2tZxzYXy7VITNPk1KlTDAwMsHfvXlpaWoCCC+7oRJ5T0RTec6fZ2uzj6s4Qd1zexjO9U8Qyebyqwo1dIa7ftPgd11I2Kd0UiDncgpYYm0KgyDJ1dXXU1dWxcePGskpuK9PIuhO2Mo1K37tWNvBacm1V2wKYqyOuJf7j4+OcOnUKl8tVFrgvja/UopAs94Y4mUwWRwbUMmt267XYxmVdBLqur1q9QKnVsFJX1lxrLyYkumHyhQdO8dNDI+R1gSRB2KvymTt2cuPmBvZvbig+N5PJ8PTTTyOEwO12F0etVovlBNutdONsNssNN9xQ9OUKIfjpwVF+dSaNQ5FoUjV+3TPJ8dEEv3f9Bq5YHySR1XBg4FaVil0W8xHyqHidCvGsXrRwhBDEMho7W/2oyuyNZWYlt5VpZN0JS5JU5garJWpFSEonkq4GkiSViX/pKFsrFdzv988K2tfK+YHl9/6ys7ZWiCRJq565ZVkN1XBlzWQprq1/fnaQH3cP45Al6twKpoBoWuO//uQY937oOprPtweZnJzk4MGDxQyoJ598clWq0CtZMxaLceDAAYLBIPv27StzB/VHMzx/bpqQR8HvlGkOummtE5wcS/JUb5Q3XdFOyKuSzy9duObaFDTD5Oxkmr5IGt2EDSE3Gxs8nBhLkcwZOB0yiaxOg09la/PSMl9KM41M0ySRSBCJRBgeHqanpweHw4Hb7SYSiawoILxSatEiuVjHM3OUbT6fL6YZHz9+nHw+D0B/f/+cVuVasJIYiS0kK+RizFWPxWL09fWt2JU119qLbcw/OjAMAjxq4QJTpMLgplRO54GjY7zn+g7OnDlDb28vO3fuZP369cDq1HxU4tqyOglv3ryZTZs2zfqRDk9nyGgGYbeCsNwMkkS9V+XEWHLZm2Dp8Rmm4IkzUxwbTeJUJGQZeiOF8bzXdgYZjefJ5A02N3rpavQuGsyfC1mWCQaDBINBurq60DSNY8eOkc1miwFhq+9UOBy+qHPTa8XFBmsf3HY6nWUTBycnJzl69CjxeJz+/v5ZVuVaJFcsV0js9N9FWOtxuIZhEI1GSaVSXHHFFVUZPlXKUjb7yUQexwyHvixJSBKMxjI8//zzpNNprr/+eurqLkxAXK2+WIutaZomPT09jIyMcOWVV9LY2Djn8xznXUimEFCy3+mGwOWRi260SjbdWWIVy3JiPElbnRPP+Sww3RT0RTJ0NXh5xbaGuZZZEaqq4vV68Xg8bN26tcwN1tfXh6IohEIhGhoaql4XMZNaskhW27VVCZIk4XQ6cTgc7N27t2hVliZXuFyuoqhcjDHEsLwYiTU7ppIOFWtFTVskDodjVWpJLFeWrus0NTVVXURgaa6trS0+Dg7GcZdsCoYpME2BMTWE3FTPvn37Zl3oa2GRZLNZuru7MU2Tffv2LRgA3NLkI+xzMjaZpPH8iIN0XieV13nVhuWda+v8WBvoZDKPZoiiiEAhqO5RZQamM+xuX70fn5UkYgWE169fX9Z3qrQuorSFSzXdYLUkJLXcQr7UqiwdQzw1NVUcQ2y12gmFQlX/nizsGMkashoWSWlWlqqqxONLmy5YKUsZnPX+fZ386b1HSOR03A4FUwhymkHYZfLGq7rYsbVrztde7GmGU1NTdHd309DQwO7du2f90OIZjWf7pzk1nsTlkNmzLshrdjfzz09M0x/LE5eSOBSJqzeEuK6zOjnxsiyVWTsWhinmDKqvNqV9pzZv3lysi4hGo8VMu/r6+qK1sprtQS42l1ILeWsMsWVN53K5Wd9TadZetdyVdoxklbjYrq25srLOnTu3aq4z60JeSEhu2dbIX71hB3//aC9j8RymabCzXvDf33AZOzfOPWPEWns1LJKZawohOHfuHCdPnmTbtm1s2LBh1meZTmt847f9nBpL4lIVDNPkwMA0L9vSyNsuq+P0WIr1nW201rnY0uQrur0qxXrfvF74QbbVufC5FKKpPOHz1fKpnIEhBJ3htS8wnFkXkUqliEajxfbrqqqWuVcqdYPZFsn8VOJGcrlcZfGVdDpdDNz39fUVbxCs72m58RXDMCp2oVnXjR0jWSHVapMyX1bWasZgrB/WYq0aXntZK/s3+Pj3pw4QcLu4+borFx15uRpCMtMiMQyDo0ePEolEFmy/8uTZCCfHkmxu8hUtgVhG48mzURq7HOxpVrl829yxlEqYSOY5FJHofWYI1SGztdnP7jY/R0eSnJlMgwCnIrOnvY6NDbWVd1863nbDhg1l7UGW28m41oSkVo4Flt9nS5IkfD4fPp+vOIY4Ho8TjUYZGRnhxIkTxeJVq43LUsVhOTGSdDqNEMKOkayUaqT/LlRguJpCMt8ExkI7ifOuGS5UhF/WufSssdUSEmtNaxSuLMvs27dvQWE7MpzA73KUuZOCHpXReJahBITqV+6Ci6by/KonwtkE7BWQ1UwePxNle7OP23c2EklpGAKa/E7agq5iVft8WGnDvZE0miFYX++mq9G7pOr6ajCzPchyOxnXyuZ9Kbm2KkGWZerr66mvrwcoxldmjiG2vquFbgCWO68dsF1bC7Harq2lFBiuxhRDC+vzWZvzZDLHVx/t5f5j4+R1kxs2hXjNBglnerysInwprGaw3apZaW1tZefOnYv+IB1yoc19KcV00Cp1FO4ZSzKezNPqgbBPLQRQPSpnJtPsaguwZ13d4oucxzAFz/ZPc2I8hVdVUCSJA4NxRmI5XrYlTMB98X8SC3Uytqq4Z2YZ1ZIVUIuurdU4nrniK9YNwNGjR9F1vayNS+lkw+VOR1QUZcV99C4GNW2RLFdIllpguNxW70tBkqSiUCVzOn/47W56J1NIMkhIPHxigqfOwDfeczktLU0Vr71ax33gwIGympXFuLwjyMnxFFmtUKUOMJnME3A72BR2IbT8io9pOJbD53IQL9k3XQ4ZU8BUurLhYeOJHGcm07QFXMXjDftU+qMFC2XvIqK02hv4XF1yrbvgs2fPFu+C3W43hmHURJfbF6tFshgzbwCsOJiVEWalg4fDYTRNW/Z0xLX+fpdCTQuJw+Egl8tV9JpKemVdjIJH0zS5//AYvZMpXKqMRMFEdjsgb8p8v3uCPZ2VCUm1LRJd1zl27BgAV1999aKtQMbiOWIZjUa/kxs2hTk9nuLQUAzTLLTA97sUXrWzmTZfhkhk5RaJz6mQ0y/MXyn+fwFOR2U/sumMjm6IoohAwXLyOR2MxLKLCsnFprSKe+vWrWSzWaLRKMPDw2QyGR5//PE1L7arNYtkuam2K2FmHMxKB5+ammJoaIhEIsGZM2eIx+NFq2Wx5qCXSgt5eBG5tkpdWVdccUWxd1K11l8O1obfPRgrZKoKE90wcCgOZFlG1wye6Zte1rrVSv9NpVIcOHCgGDQsLXycSTKr88MXhjg4GCejGfhcCjdsCvHOa9q5urOegWgaVZHZ0Rqgq9HLwMDAso9LCEFWN3EqMlubfZwYS5DQzo8fMAUjsSz1XpXOUGUbp1UAOtOy0GaIS63idrtpb2/H4XDQ39/P9u3biUajjI6Orlkn41pys0FtDLUqTQfv6uriySefpKWlBU3TivGVurq64k1AXV3drGO+VDK2oMYtkkomGC6nV9bFEhKfU0IIE0MvVEdL5zczU0DQU/lXsJJ58KWMj49z6NAh1q9fT1dXFw899NC8lo4Qgu8/P8TjpyO01Llo9KvEMjr3Hx1HVWTefEU7V2+oL3vNcl1wJ8aSHBiIMZnS8DkV9rQHuGZDkH8bhLORDA5FpsHn5KbNYeqX0PpEM0wiqYKLLexTqXM7GE/mafI7kSWJRE7HME021EDa8FKxrICVdDKuFi9V11YlmKZZzPQCipbl1NQUhw8fxjTNsnY7Ho+HdDq9qvVGX/3qV/nqV79KX18fALt37+ZTn/oUr3nNaypea02FZLGOs0tJ/11J23frzn61LjxZlkkkErTpo8iAIcmoUmET0I1Ct9837G1d1rorcW0JITh9+jR9fX1cdtlltLW1lY3unYuRWI5DgzFa61zFzbvR78QUgifPRnnVjmb8MwLVi/0A5vr+j48m+fmRcQzTJOhRmc5oPHB8kn2bgtzYIuja1Yjb5aQ96C4OyFqIc9EMz52bJpLMgyTR4FNpD7oYiefon8ogUYi3XNZex4YKrZu1ZK7vaaFOxv39/WU1EeFweNE080qOpZY27loUkplZW5Zl2d7eXkywmJqaIhKJcPDgQT72sY+xY8cOhBCMjIzQ1jZ/XdlyWb9+PV/4whfYunUrQgj+v//v/+ONb3wjBw4cYPfu3RWtVdMWyULpv8txZc3E+mJX48KzJkCeOHGCl+/ejFYvc8/jfWS1CwLwim2NvPOapQW1S1mJkFijcFOpFDfccEMxR720BclcTGfypDWDlrryDBK/y0EklSeW1eYUkkqO0zAFz52bRiCKtSAhCtMiDw8n2ARsbfIuOYtlMpnnN2eiZDSD1mBh0xyL58hoJjdvCZ8fayyo96g0+NQl3/nVwt33UtxJi3Uy9vl8ZTURy20NUosWycXon1UJC9WRlCZYbNiwgR07dvCVr3yF7373uxw+fJj169ezc+dOXvWqV/Hf/tt/m7fHXaW84Q1vKPvvz33uc3z1q1/lqaeeenEJyWpOMLTWh9m1HivFKubL5XJs2rSJzZs3s3kz3LqjiV8fnyBvmFy/qdAuRJ45hWkJLFdIrFG4Pp9vVg+vmenKMwl7nficCvGsRsh7oQo7ntXwuxxz1mAstLnkcjnOnDmDx+OhoaEBj8dDMqcTTWmEZqwV8qqcnkiTrNALeW4qQyyt0dV0wc+8PuTh7GSaSDLPFR3Vnelysalk856rk7HlBuvp6SGfzy+7k7FtkSyM5fVYqlC73W5e//rXc/r0aVwuF1//+td56KGH+Pd///dVG3JlGAY//OEPSaVS7Nu3r+LX17xra6aQWC3Mq9H23Wq+V804SSqVoru7G0VRCAaDZV/81mY/W5tXnoWxnNjDyMgIR44cKQpbpT28WupcXNlRzyMnJzHMQmZWLKMTzxq86fIm/K7Zl9J8x2nNMvH5fCQSCU6dOoXH48EXDKHnTDK4yuo5srqJ0yGjisrapydzBuocWV0OWSKZW73Y2MVgpckWqqrS3NxMc3NzcbSt1cKl0k7GtWiR1JKQlI4UrwQr2B4Oh7nzzju58847q35shw8fZt++fWSzWfx+Pz/5yU/YtWtXxevUvEVixUgMw+DYsWOMj48v25U1k9Jaj2owNjbG4cOHWbduHdu3b+fAgQOrUu9RiUVimiYnT55kcHBw0cmPpRu/bpgcGU5wYiyBhMT2Vj9vvqINVZF4/tw0Y4kcfpeDO/a28ju75y6mnGtzsWJamzdvLo5RHZnOMBqZIp+J48tFODhkMF3voSnox+H0MJIy2NrsIzS9pI9cpN7jQNNNTCGK1e6mEGimuWiQ3jAFw7EsE4lCkL4pUIjL1ArVzJRaaSdjO2trYaz9ZTl1JKud/rt9+3a6u7uJxWL86Ec/4n3vex+PPvpoxWJS00JixUgSiQQHDx6s6gRDi2oUJVqb9cDAALsvu4xHBw3+7GvPMBhN0RnKcNetbl65s3qt6pea/pvL5Th48CD5fJ59+/YtmkporasbJt9+eoDHTkfIn6/fcB6TuXlLA793fQe/s7uFeFanwedcsBK81OIUQhTP0RVXXEFjYyPjsTT3Hx3nbCRNThfUud3s3badcHuGo4NT9IzE0bUJWv0KG9saSEssmnwRTeWJpDQcikRrnYumgJP+aIYmvxMhYDKVp8XvXDBDyzAFz5+bpmcsVTb9b0eLj4AQ1MIWtZqb93ydjCORyJydjNeibmMhalFIrJvWSkgmk1WLh8yH0+lky5YtQKGG7Nlnn+UrX/kK99xzT0XrrLlrayEsBX/qqaeqPsGw9D1WYpFks1kOHjyIpmns27ePv39imH96+nz9hBCcmszyn350hE+/fgdvvbK9Kse8FIvEch/V19dz1VVXLSkGZG38LwzEePTUJA0+J3Xuwp17PKPx6KlJ9qyr45rOULHj7lLW0zSNgwcPkslkioKm6Qb/dniMntEk6+rduB0yU2mN35ye4g17mrlpWwvTaQ2XAn5yxKajpKPw7LPPEgwGi5uY5cs3TMEzfdMcHk6QzOnIkkRzwMnuNj/BRJ7ReKGwdXOjl6s6gtQtIIDDsSwnxlI0+pzFzLB03uDEWIpO1aC9rjbqTS6WFbBYJ2NrmNTY2BjhcHjNA921JiTLadgIhaaNF7sg0TTNiovAoYYtEsMw6OnpAQr5ze3t1dmEZ7ISIYlGo3R3d9PY2MjVV1/NRErne88OIlGouDYNE4FAMwX/56EzvGFPa8WV2HOxmJAMDg5y/PhxtmzZwsaNGyvKRjJNk0ODMQxDFEUEoM6jMp7McWgwzjVLnClixZ+efPJJfD4fN9xwQ3GTOTeVoXcyTUfYjVctXIZNARc5Q/D8QJyrNtSXuJICtDQ3Mjw8zN69e8lkMmW+/HA4zBQ+nh7WCPtddAU8GKZgaDrHoaEEb768BZPCOQi4lEXPx1gih4Cy9GKvU2EyBZNpnfa61Zt8uFTWyp00Vyfjnp4eksnksjsZV5vlbtyrxXItttUes/vnf/7nvOY1r2HDhg0kEgm+973v8cgjj/DAAw9UvFZNCklpVhZQLOJZDZYjJEIIent7OXPmDNu3b6ejowNJkjgwMIlmCFyO8z9wqdBXS1UkommNs5MpdrSuvCX0fEJimibHjx9ndHSUq666ioaGysbNFl1bppgzm0ySJLQK3ICxWIx0Ok1XVxdbt24t2/iSWR3NFMV59RZ+l0Iyq5PXTRxz1IlYDQytlNZYLEYkEuGZw0MMx3LIIQ+634/f52NdvZv+aIbB6Rw7Wpd+Z1dD49DnpVZmtltNBR0OB9u3b192J+NqUmsWyXKHWq12i5Tx8XHe+973MjIyQjAYZO/evTzwwAO86lWvqnitmhOSmVlZDz300EWpPl8qmqZx+PBh4vE41113HcHghRRSj6ognR/cV/pTEaLw30spoFsKc2VDZbNZDhw4gBBi2XEka92dbQGeOB0pa8SY1QyEgF1ti/eiEkJw9uxZzp49i9PpZNu2bbOeE/SouBwyyZxOwHXB8olndFqDLlxzWG4zN6BSX35jxI0nnMdDnuR51wvAtOlmeAw2hdQl15+0BFwcH02S0Yyi0GW0wjXY4KmNO91aCnCXHstyOhlXmxeLkKy2a+v//b//V7W1aiZGMl9W1sVorLjU9ePxON3d3Xi9Xvbv3z8rJXJfV5iQV2UqrWFphjAFJhJ71gXYEK5ODvhM8bNcbE1NTezatWvZZr1lkVzXGea5vikODMSKc0Z0w+TKDfVcM6MNykx0XefIkSNMT0+zc+dOzp49W/b3TL5wrjtCHrY1++gejNHsL/S5mkprmEJwbWc9yjz1NfPdia8PuXlhIE9rY5D6UD3CFEwn02Qm4qSnJ3niiT78fn8xtjLT5RLLaERSGrIEDX4n25p9nBxLgnWNCsG2Fj912eRSTuWqU2tCMtfGPV8n40gkUtbJ2PpOAoFAVQTgxSIkdq+tCil1Zd14441lrRuqNSVxPpYqJFbcYaE6DLeq8Pk37eYTPzxMVjOAQjfcpoDKX71hZ9WO2drwhRD09/dz6tSpMhdbpUSSeZ7um+KZcwbnpCleubeOP7p5E0/2RukeiAFwRUeQ/V0NeBawqtLpdLEB5P79+0mlLmQ9jcWzPHJikhPjhY14R4uf6zbW41VlesZSRNJ5Qh6V6zfVc/m6ud1/C322na0Beicz9E5mCPlUdEMwnZW4Zus6bt/VhKlrs1wu1l3xcM7JyUieZE4vtFHxqsUYzWg8C0BrnZv2ejdnTo3XzAZeKyw1JlHayRgu9Juy0oyBqnQyrjUhWc7xWEkNl8J0RKgBIVmswLAaUxIXYjEhKW3FcuWVVy6ajnfTlgZ+dtcN3HdwlJOD4zS5DP7oNddUdfqeVfty+PDhRUfhLsaZiRR3P3KWwakMyaRO99QETw5k+PDLu3jljmZeuWNpacuRSITu7m7a2trYsWMHsiwXR4VOpzW+8/Qg/dE0jf6CFff46Qj9kRTvu24dL9/WSCZvUO9V53RplWIJ08BUhiPDCcbiOUI+lV2tAW7f1cih4QQj0zlcDpmbNoe4fH1doeOv01k2mzuZTBb6Gp0d4Yn+JAG3k7awH6/PTzwDz/RN89rdTWwIL35ec7qJLFE2JXK1qTWLZDnHMrPflNXCpbSTsWWtVNLJuNaEZCUWid1GfgmMjIzQ09OzYIHhxejQO9/66XSa7u5uJEmqKO7QUufmgy/bSH+/xOTkZNVHuObzeXRdJ5PJsH///mVPUDNNwXefGWBoOkNXo4+olMbrczKazPOdZwb4q9fvwLHI5iiE4Ny5c5w8eZIdO3bQ0dFR/JuV/ntwKEZ/NM3WZl/RZRXyqJwcT3B4JMHLtjQsmI5buh4UxO8XR8dJ5gz8LoWxRJ7TE2lu3dbAa3Y1k9UMFFmad2Mvdbn05f10kiDsNEgmk4yOjKDrOufw0OZIc9229nkDxJPJPD1jScYSOWQkOsMedrT6qxYLW4haEpJqbNySJBU7GW/atGlFnYxfLEKy2llb1WRNhaS1tbU47W0+1sq1ZbVYb29vL95hL2ftale2T0xMcPDgQQCuvfbaFf1ghqYznJ1M0xJwn9/gJSSgrc7NwPmJgQu1dDFNsxjXmssqsoRkMJrB6ZDK4h6KLOGQJYansxUds26YPNNXmIeyuelCzGk0nuOZ/mm2t1S2kafyBm6XSl2dn7pgEIQgl8tzbCjCRHSap58ewOVyFV0y1vc5ldZ4/EyU6YxGvUfFEIIDgzGmMxov2xK+KNZJrQjJaojacjsZr2Y37+WyHCExTdO2SJaKLMuLtrK+GMH20tkepmly+vRp+vv7iy3Wl0s1JxmWZkJt3bqVnp6eFf94dbPQ/dba4CWpkGHmkMEQhQrv+chms3R3d2OaJvv375/ze7SEpM7jQDdmr5XXDaYi44xGfLSEg0tqO5/IGYwn80UXmUWTv1DBPpHM01nBXJHWOhf90eyFNiqShORQCdfXc+3OJjrqXWV3xplMBrfbzYmIzmhaYWvrhaC93+VgYCrDaDxHxyq3pK8li+RiNG1caidjq1SgloRkOXUtqVQKwI6RLIWl/BAuRowkmy3cFVstRXK5HPv27Vv0buC5/in+/pFeDg7FCHpU7ryqnT+8cWOx6LBafbx0XS+mHF9//fW4XC56enpWvJmsq/cUrI+pzPnNVwIE4/EczQEXnfNkmU1PT3PgwAEaGhrYvXv3gu2xhRDsbq/jqd4phqaztNW5EMDAZJyxvtME6iX+OTKCx+2is7WRTe1NdLY24nHPXfSnSAVrZqYwaYaJQ5aLExDnI57VOT2eZCyRx+NUaPSpNPoc9J0P0humIJbR2NJUqENRFJnGxsZibOzo0aNomsaRkTiT0ymM6RHqAgECdQH8Pj+GgER29Sxoi1qpI4GL37RxoU7GJ0+eBODIkSOzuh+sFYZhVJzmbAmJ7dqqEhcr/Xdqaoru7m5CodCSWoo8cSbCH323G7MwOpx0Psvdj/RyZCjB371rL5IkVcW1lUwmOXDgAG63m3379uF0OosW1EpNeKdD5q1XtfMPv+njzGQKPWtiZPM01Hl5y5Xtc2ZoWckRW7dupbOzc8EfqCUkXY0+3rC3lQePjXNmMk0mnWLi3FnW1ynUn48fZbI5evqG6OkbQpIkOlobaGuoZ1N7Ey3hING0zmQWNkuFNicvDMTwuRRURT7fYDFHZ8gza15KKVNpjQeOTTAcy+JWZfJGYZTvrlY/7fUeBqezqLLE9Rvr2dkamNM9pSgKbrebXf56XJMpwqpJIplkbGyM/uw5YsLNhDtD3CdWbSIh1J5FspbHUtrJOJvN8tvf/pbGxkampqbKuh9Y/xbqZLwaGIZR8RCxdDqNqi699mmtuSSEZDVjJJIkkUwmee6559i2bRsbNmxY0o/iS78+jSFAljjfWVbCNAWPnJrkhYEYV2+oX7Fry+om3NHRwbZt24rHZYlHpWvrhslz56Y5NBgH4LL2ANduDPEnr9rCb05FOHB6gI6wlzuu3cLu9vLCQ9M0OXHiBMPDw4tmr00mczzfP83Z8TjjY7B5IsUNm8LsaAnw2OGzPPHCKdav86HKIMTsz+BzuxgYjXBuZJJHD5xkMK6hKR7SOY0j6UGu39pKV4OH/qmCSwok2upc3LKtYUGL5OBQnKFYlq4Gb9GdN5nMc3oyzduubOP6jfVIkjTnGqmcTm8kw3NDWbxOg84OGVmSyCsuWlr9NLW0MBBJEdSzeMgWkzSszauhoaHqG1itCEktxSQsUduwYQMbNmyouJPxarCcGEkymcTn89XMd7wYl4RrazlNxJaCrusMDQ2RyWS47rrrltyKJZnV6Rkt1EOUfgZJKjiHnu6NrkhIhBCcOnWK/v5+9uzZQ2tr+Tje5QiJZph87bFeHjsVQTMKr3vg2Bg3bm7gI7d0saM1QHdgmrq6OrpmiEg+ny+6/G644YYFze2BaJpvPXmOoeksDlkwEoGvPdbLm69oQyQmOXnyJG1BN26XimGYpNJZBBc6BAf9XmLJDJJUmGl/aiLFeCJHwJUhlYjz3HSUntMhXrF7PTduaMbp9uJ3q2xq8C4YZNcMk/5IhrBXLQv6N/hUzkbSjMZzbG+Z25UZz+o8dGKSoeks8YSBkAQxKU6j34khBANTGSQkmus8XL2hlbagG9M0icfjRKPRYg2S1YOqoaGBurq6FW2+a20FlFJLxzJT1ObqZGwF7a1OxqVB+9WYkb6cGIklJJcKl4RFshquLWtaoKIo+Hy+ivp5qUohA0mfIxgtBHidhdO6nBhJPp/n0KFDpNPpeeM01kCuSoTk2b4pHj0ZIexTi63fUzmdJ85EuGpDPbdsa5yzPX0ikeCFF14gEAhwww03LOjyE0Lw4LFxhqezbG3xIQwTKQGapvN3//obdoUlXA4Z3TBIpg0Mw0QIE6/bheJQkIFYMl38IcezhYmJQbeKqkhkJAgF3MSScR4+cILpyVG8LpUNbY1I2WY6WxvxeeZ2BRTOGcw8ZeL8/5EX2Dx6RpMMTGXoavQymldwOBScbgfxrMFt2xsQFF7f5HeWxcfq6+vx+uuQgq3IiQzpZILxWILh4WGEEGWDoyp1fdTSVMJaOpbFrCPnjHqimZ2MVVUtc4NVo4XLcpo2Wu1RakWgF2PNhWQpUxKr7dqy/PwbN24kGAwWA3RLxaUqvGpnE/cfHS/ejQkhMEyBQ5b5nV3NxWOvZLOPx+McOHCAQCAwaxTuTCq1dg4MxNBNs2x+iM/lYCyR54Vz09yyrXGWOI2NjXHo0CE2btzIli1bFr2oE1md0xMpmuqcyJKEQUEYk+dOMjwZo90dKothWFlium5gCkEur6E6HLidhc89kUpgCoGqSMiKgqIo5PMaTodMTjcxTEE2r3Gyf4ST/SOoDoWmUB3rmxvY1N5Ea8OFjCqHLLGlycuTvdPUexzF+MdYPEfIq9IWnFuAhBD0RtLUz7Bk6j0OeiMZUnljXksmnTd4sneK/mgaIcAUMnXuBq7d2UWj0yASiTAyMsKJEyfwer1Fa6W+vn5JG0+tbDK1NCGxEjfbXJ2MLTdYNTsZL8e1lUqlVm2s7mqw5kKyGNW0SEq741pFkJFIZFnr/9nt2zgynGAgmsa6thRJ4i9eu53W8+3PK9nsrcmBXV1ddHV1LfrDrFRIrFjCrHUkipaVJYhCCM6cOUNvb++crrUFkS50z43FY/T191MfCuNQ1Tk/k8flRDNMtHwhgUA3DJKZwvfhlMDldCKrKg6p8DeEIGeY+J1K2cbudjrRDYPhiSmGJ6Z45uhpFMWB2x+gvr6eze1NbGkKMJbI0zdZsHoMIQi6HezrCs05KvjCOZp5s1N4XyEW3sxPjic5O5GiI+wpCtdoPMeBgTiv2d3Mpk2F4jsr6ygSiXD8+HE0TSuzVubaUGrJnXQpWSQLURqUB6rWyXi5MZJLpYYELgEhqVb6r1WlDrBv377ij3O5mVXNARc/+aPr+cWRUQ4Oxgl7Vd6wt5UtJQV8lqtooYu7NIhdyQjhxSy5mVzWXsfDJybJ5I1iNpbV0feK9cHi8RqGQXd3N/F4nBtuuKGiPPaA28H25gBP9kbJxCL0nj2LlteIxFO4VYV6r4rP40aWJHKajiIJEukcpb9FUxRcbgB+t4Nmv5NzkSQ+pwKSTF4oKA6FdWEXlo74PC7S2XzZ+UjnDU5PxIlnxhEUXBqNdV5u27OBq1vDyC43HqfKhpCbpsD8mTGSVLBknjg7Rch74TqZSOYJehy0zpMlZpiCvkiGOo9alv3VHHByLpplPJFjY0PhGpw5P91yt1gdc91ud9FaCYVCKIrykk7/XYhqBv6r1cl4uXUkdoykApbi2lqpkExMTHDo0CFaW1vZuXNn2YW2kvW9ToU7r1rHnVetm/Pv1sUz38Wdy+Xo7u4uTlesxJSt1CLZ3xXmybNRnuufLiYFGEJwZUc9N20pNNHTdZ2JiQnq6uqKqcZLoWDFgCxL3LajkSe6j/Jc7yCSBEkdwpLEtmY/TkUilSnU7AS8HlKZDH6vCyEgncszlcpzdjJNPKsjhKAp6KfRA+31LiJJjbRmojo1OkNumn0qHqeKy6mSyWtlm5kQcC6aIZbRCboVvF4PmWyO4clpfv5Mml2tftxOlQ2tDbi0JjxKE36vu+zzTCbzxLI6blVmS5OP0XiOvkiaiYSOrAg6PHDtxvoFW7uYpmBmAtj5I2S+Ws+Z7hZd14sdc0+ePEkul6O+vh5d14s3Kmu9idfCMVisVgbZXJ2MrdoVq5NxXV1dWQsX6ziW69qyhaSKrGSjF0Jw+vRp+vr65p2yuJp1KgtlV1lFfeFwmKuvvnrJDelK165ESFyqwidu28Jjpyd5vn8aIeCqznpu3tJQmP43Ocno6Cg+n4+rr756ST/GnGbwm9MRfns2SipnsDHsRE6Msb1O4GyvI5HVmDZTXLYhSNhfuHOXJRmPWyWRzmAYJnktiyRJpPMmpyI50lohduNwOBibTjKdlLmyI0hn2MvgUIqWBi91ATecr9OZTqYBymIrkUSG6YyOz1UQkVwuhywVKs/jWY103kCS4NTAKKcGRvF73bidKpvam2lrDtMbE5yayJDWDFRFoqPew/6uEFubfRw4HsPndnLtzuY5LZl4VieW0XA7ZNaF3BwaSlDvVYvB/OmMjt/loMG3tCCuw+EoK4hMp9NEo1H6+voYHh5mcnKyzFpZizG3teTauljz4xVFKfteFupkbIl+JVxK7VHgEhASh8OxrGC7lbKayWQWdNFYboLVuJOZT0gGBgbo6elZUlHfQmvPJyRCCJ7pm+KBY+MMTmVYH/LwO7tbuLazntt3tXD7rpay5/b19XHq1CkaGhpwuVxLOg+mKfjes4P85nQEj6ogtCw/fLYHBzrXdIbY3OzH41I5aU4V57s7VQcgkcrMTuceT+SYTmZoCrgLd9oIWkM+xhN5xhM5uhq9eFUJhyKhKDKqQyGZudCnqzS2ohsGDocDn8d5PjOscMesyJwPel+ICXlcTpLpLMl0lsnpBIO/PcpQLM+GlgY62prwBwKcmUwhSfCGPS1oTU5cLtcsEdFNwQvnYhwbTZDKGTgdMg0+laDbQV8kg0eVC1MfZZmrN9TNauQZz+okczouh0zYO3c8CcDr9eL1eonFYng8Hurr64lEIvT29nL06FHq6urK5ntcDEvhxeraqoSFOhkDxZHcS+1kbFskFbLYBWhZDJWYz9PT03R3dxMMBtm/f/+CX1rpZl/tC1CSpLIUYKsl/fj4+LJG4ZaykJA8eHycr/+mn6xu4HUqDMeyHBqK88GbNvLqXRfawhuGwdGjR4lEIlx77bVMTEwU28UsxtnJFM/1T9Na50JPJzjdd4qAKoikDHojKcI+lWQ6Ryavo+kGjaEAQkho89wUZLQLbSSsGwdDNxCGRiov4/O48LhU3OeD9tmcNuc6AEGvC7cjRySeIuhxoCgKquogltHxOsHjVFAVpdDqPntB1HSz4NJySILY9BSJRAxFUVAUByODATq8Jq55zvnxkQTP9E8T8qp0NjjJaiaD01nWBd1cvzHIZFLDo8p0hD2sC15wo2mGSfdgnFPjKVJ5A5dDpiPk5rrOenwLJAAIIWYFh7PZLJFIpKyxoWWtrGZFdy1ZJLVQHFnaybijo4PHHnuMrq4uYrHYkjsZp9NpmpuXNsKhFlhzIVmM0jjDYn7G0pbmS73bt9Y0zt/FzoVumDx4fJwHj01gCsEt2xp5/Z7WYs3AQlgbfiaTKQb752tyWAnz1ZGk8wY/eH4IU4hiMBdgeDrLD58f4mVbCsOprNG8UEg+cLvdRCKRJQdxB6ezpPM6cjrCuf7+Yp2GR1WIpvKY5oW06IDXTSyZ5XzVBoos43W7MEyDZDpbqKnwexmYimI6y78vwwSvqhStmKym4fZ6CHg9GKZZFIJYRieSyiPJCm6HRIPXQTKrEU0V0oW1ZA5Fltjc4CUc8CIE5HW97AbFMAvz6lVZwqE6EKZAy2vk0ZiKxLnv0RhSLklHS5iU6aCzrYk6nwfdFBwfLSQEhLwFMfQ6FdbXu5lI5tnvD7F3XZC56BlNcmAgRsinssHvJqOZnBhLIQS8YlvDvNfvXDdWbre7rLFhPB4nEokUK7qtaYQNDQ1Vm0YItkWyENZNZHNzczH7caFOxqFQCI/HQzKZpKura1WO6fOf/zw//vGP6enpwePxsH//fr74xS+yffv2Za9Z80Jibe66ri8oJNaI16mpqYoGPcmyXEgFnSdOohsmd/3LIR49OVnMLnrw2Dg/fH6Ib7z3qgUnBlrrT01Ncfr0aZqbm9m1a1dVLvT5LJK+SIpoUqPRX+46CftUJpN5+iJpWt160dTevXt38XgqKXJUJMHoQC9qPonqcKAoDoQwMbM6TlkpCAsSXpeTRDpT5rs3TJNEOkMymUTXDdqaG2iTDfq8LqKpLAG3igQkcjoeVabJrxLwehjKabg8grymk9f04jFHMyanJrLkdIFpZDBEoc5jY4OHRFYnlTcIeVWa/E46GgIkzosXlMdWyOTwqDI5U8LQzWL7lpxu4nTIuB0yyZTBubEo2sGTPPz8Mer9PtqawgxHTVoayq85t6qQ100y2tznVDNMTo6n8LsdxZ5jPqdCe9DFwFSGSEqb1eW4lIU2b6sgsr6+vljRbVkrhw4dQghR1r5lJT2dXgrB9uViGEbRM2Exs5Ox1QFheHiYr371q9x33320trYSCoVIp9NVryd59NFHueuuu7j22mvRdZ1PfvKTvPrVr+bYsWPLdqetuZAspXX4Qhs9XGhs6HK5ljXoaaGA+88Oj/LoyclZj3cPxvjes4P8wY2d865rxV56enrYuXNn2dCnlTJXFTqAU5GLVfelZ8EwC+3ipyLjDI6cnbOv2HxrziSeynDs6BFEOk5MMwh6Cj+YvG6SNwSXdQQJeN0FF5SmM3NJIQoTFePxGG63i0PHJvG4XbS5XMimg5yQQYKgR2VTg4f2cIBEOjPntZLJG/QMx3A4nQScBqrDg6LIjCdyJLMGW5t9599TUOfzEk9lytKNp9M5JseTZDQDr6rQHg7QH0mT0kxkYaCbkDdM2oNuPE6FJOB1Oc+71gSRWILJ6QQnxpIcMKCrvZHmxjBNDSFMWcXrVObN7MrpJlndxOss3/jcaqHgMqPNf81Xunk7nc6yVNbSNuxWQWTpNMKlbsZW3VGtbN61KCQL3QCXCn5XVxcbN25k69at3HPPPfz4xz/mn/7pn3jZy17G2972Nj74wQ9W5Zjuv//+sv/+1re+RXNzM88//zw333zzstZccyFZDKuL7nwb/cjICEeOHKGzs5MtW7YsewDVfOv/4sgYM3+vVkX2L46Mziskuq5z9OhRDMMozlOvJvNZJF2NProavRwdSbBBVYqiMp7I0+EzSY32zhufWcwiSecNXjg9wmPPHkSVTPasq+PwUJypdB4otHdfX++mM+wmr+nkNB3VoeD3unA4VNKZPKYwGB0dYzqjkXGEmI5pKLJKWIeQQ6NJypITEm6Xh5ZQgIaQH0mWcDnVYppxKcmsgS4peCjc+emGjm6AKplE0hp73E4ckgyyRGKGiERSGqcnUuQ0E0WGaYeTscQ0zQEX6TzkDAW/V6Ul4KTeLSOEic/tJJXN4/IWDsQ837izKeCiN5Lm9MAYE9MJkod6kBwurtrcTirhod4TxjFjQ3GrCgGXQiyrlxVEJnMGXqdjwSLJldSRzJxGqGlaWf8pwzCKrpaGhoYFJ4OKksSFWmA5NRurSaXH09jYyHvf+16+9a1v8ZWvfIVrr72WBx98kEQisWrHGIvFAIqxtuVQ80ICc7dJse70h4eHufzyy1cUmFqoJ1ZeN89XMJc/LijcUc5FOp3mhRdeQFXVYpZNtZlPSGRZ4oMv28jfPHiKgalM4ViFwC/luK3dwY379897PPPV9AgheOTkJN9+5Ahne/uRZYmQR2Fns4ebtjQwnsihmyZ1bpWOhgC5fJ68EEhSwTWYSGVxuUx0wyA6OU5OyIzpPjLpwmz1vCE4FxeIkJddG5rJ5bLo+Tyx6SlGR0dxu914vR4UWcbnduL3uEnnciiSjEM10TUN5kh7FUKQyWl4nCrpdB63U0VVCwWoyXSOc9EMuiFo8Dtxqiq5fJ6ptEkiq7O73Y9hFkTCqqCv83vJJBO4nA4iyTwTyTxpzcDtUGgKONkQcpPSZKYSaRyKTINLkI1P8uOHIzgUhY6WBja2NbJxXRP1fh8OWWJna4DfnI4yGs9R53aQ0QxiGZ297YFivKUU3RQoUnXdSaqq0tLSQktLS7EgMhKJMD4+XiyItGIr9fX1ZRujdb3UihVwqVkk82Gl/27bto1t27atwpEVME2Tj3/849x4441cdtlly15nzYVkKT+GmRaDFbgWQrB/gY1xqSxU3X7Ltkae7psqExMhCpvLrdtnV6Fbo3DXrVvH9u3befrpp1elTsUSkpxm8MTZKIcG4zhkuGZjiGs7Q/zNWy7jyd4ogxMxEhNDXLuhjn1XX75oBttcQvJc/xRf/tcnmZoYw+tSME3B8FSWbN7g9svaaAh4SWWyBPweEqnMjFcXhmVlMhlGRkZpbghzblqQyWdpqvMU3zORzhYnC7aF6snk8gSCQTRNJ5NJk05nyGSznBsaweeLE66vw+n10hRw4/c4Sea0Yh8xISCTN+lq9ONUFDK5PJIEOU0jd36WS1oTaEKmoc6JIknk8gWryu9SSOZ0sppZ7CYsyxJup5N4KkMqmyehS0Q1gSQruFQniWyOeFZnR3s9jX5oCwRwyIVUZQvdMOgdHufMaJT+B55DcrjY0NbIddvXccPGICcnMsQzhfTf6zrr2d1Wnq7eF0lzYizJVFqjzq1iJnSW2AShIkoLIjs7O8tmp584cYJ8Pk99fX3RWrFiX7VkkVRak7WaLKeuxRLzizEd8a677uLIkSM8/vjjK1qnds74ApS2SZmcnOTgwYO0tLSwc+fOqpixC7m27rx6HT98YZjeyRTWUD5FlmgOuHjvDRfcVaX9qUqLH1djbjtwvohP53O/PMkzfVMYojBh65dHx7l9VzN33dLFlQ0Cx3A/XVctrX/XXK6tbF7ja/c9zuTYCKHz9SDIEiFZZSqV5fToNBvCHvxeN4ZhEvB5yOa0YpqvJEEymWJ6eoqNHeswZSfx0QgeZ+E71XQdCXA7HeSyJjhUcnntQjBcdaCqBTfM8PAILlchDXhoZAzD0HG73dQrTsYEJLVCyX4+l6cp6KE16CQ/T7qxECbCNNE0HR1RSBhwKIi8DvqFlGDVoSBLF9KETSGYSBlIDoWAUwYM6j1O8kJiKJYl3OZDYg5rQZLIGRLHBiLkDYFT0RifTvBCTx9dTT4u72qlq6mRLeubaAmVbyCnxlM8djqKKQR+l4PheJahUR1/MMe6uZsqVI3S2elCFG4IrKD92bNni0ISiURoaGhY8038xWKRWN1/V5OPfOQj/OxnP+Oxxx5j/fr1K1rrkhASy7V1+vRpent72blz54o/+Mz15xMSv8vB9/7gGr7xRD+/ODqGaQpetbOZP7ixk8bz1dqapnH48GESiQTXX389dXUX5nlUc257KbIs80R/iqf70jT6XXjUwsUaz2o8cGyc9c40ddmxitx+My2SyekEv3rqEINjk6gzUp3l8+6enCEKRX0lxYFCgMup4nQ4cCoy8fg0mzdtBFmB8x2Si27B86aeYZrIskQum0N3OPG4naiKgm4YZHJ5a2XqAj7G04KoVIchGfgMEx85QiJHKisjqy42NQVpD3sJeFzkNJ1cPj9rY28K+vBEM8TSeeq9Kpquk9d1ptIajX4XTUEviiST13Wy+Qs1K3kDsrog5Cmcb0VRkABZ04lndKZTDsI+F26nikCQyWpIEjgUhZ6RKXRTlLmskjmdwak0weFJotMJnjncQ33Ax8a2psJ0yMZ6Dg3FkaXCaGSAkFdlfERwcjLHDZqBW704MQFJkoqu2o6ODgzDYGJigmPHjtHb28uxY8eK9RENDQ1r0gb9xSIkq1mQKITgj//4j/nJT37CI488wqZNm1a85iUhJJIk0dvbi2maszbqarDY3JCgR+UTr9zCJ165ZdbfkskkL7zwAl6vd87+VNWa2z7XMXePFAYqeUo2koDLwWg0ydNnsvzFW2+o6K6m1CLpHRrnZ4+/QC6v4XcpZPRC5o+hG+iGXggyKwo+l6Nko7fWKYzO7RvrRzNM1revw+/zIckSmZzGuno3PaNJsoqEUwYTSGrgdRQ2WUmCbC6PJU2KIuNxOfF5XBwaTBLNF+IEIBExBU0BHzs3NmPkc0jCYCI6Tl/MxO324PV6CjPVrbqTXB6/x0UynWVDyMNpzSSSyiNLEqYouLY66l2ARCKTxTQFbpeKy+FAN01kqfDehinwuQsdhw3TPD8tU0KRpPIOxqoDVVHI6WYhiWCGIHudCsmciYFE6rzVM51I0Z1I0X2yD82EkYzCxrZGAmoj/vNu3IAqkcqbTGd0Wi+SkMxEURSCwUJ9zA033FCsj4hEIvT396/JiNtaE5LlBP8NwyCTyayaRXLXXXfxve99j/vuu49AIFCsvg8GgwsmVizEmgvJYncssViM6enp4ka9Gr2Elut+Gh0d5fDhw3R2drJ169Y5P8tqWiS6KcoGMhmGQTweQwDt6zoqvhCtY33u2FkefeFY0TrZ2OBlIjnNRCyN11moEUnpEmGfStMcPaM0TWN4eISA142uaeimyWQ8jWaYeFSZba11GDgYiKaYyurIsoRPldjV6kdV5roeJAzDZGg6x3hKoiVch9uhYJgG6WyeiUSe5oCLra0hUpkcHb4AmpYnk8mcDxxHURwOMjjJKx5MFBoCLpq8Krvb/ETTGjndxK3KhDwqzfU+EumCjEkS5PIaubyGKcDtkGkKOImbDnKajkRhDk0iq9PgU8umNHpczmLNS143MXUDh0PG7XIiAC2vISQJRS7UxjhdszecwqjYJD2ZFCfP9OL3e2lpbCCRSBFqrsM55/m6eJSm/s6sj7Bme5w7d45jx44VmxpaEyJXw1q5WL22lspyjieZLExfXa0YyVe/+lUAbrnllrLHv/nNb/L+979/WWuuuZDMhxCCgYEBTpw4gd/vp6mpadUa0lXauFEIwcmTJxkYGGDv3r20tLTM+9zVipHIssyuRid9iTyaYSIMvZAi6HDi8zi4onNpBZml6IbB08fPIdxTZY+31rm5fF0dJ8eTpHIaLpebRrdgT7sfp0PG6y4MssrkNeLxJKOjo7Q2NeDx1xHt7eP4aJrJTALdFHhUhY0NXrY0eOgIuYjE0/g8hd5VuqZhzDhXLlXFFCaZXJ6kdn6miqGTNQqxD5fTgVs4SBtS0TKSpIL15HQ6CQaDhQy/kRhDsTz5XBQJGBxXCHhUrt7YwPb2ekxTkDlvrVgiAgXP23gix1giT043MLJ51jc4MXWTqbSG4nDgkGWagx7W1anFhAy/x00yk8MwTTSjMJyr3uNgLJErZoI5HA7iGY2GgIew313mgrOq7L0ulbDfydBUmjq3SjKZJhZPMTQRpWNigqd8OTata2HzumZ0ITEwlSGdN/C5HHSE3GXW6mowX1X7zBG31myPSCTC4OAgQFn7lpUURM48nloTkkotknS60Ih0tSyS1RhBUJNCous6x44dY3JykquvvprR0dFV2YwtKhESqxlkNpvlhhsWdx2tpmvrhnVO+jIuDg1EMXQNp9OFw3RwQ1eIfZsqywlPprP82+MHGZiYxhn2cXosQSyTJeR1srnRS2eDl/UhLzoyuVyegNtxvp5GFNuXxGIxYlNTbNqwDq/PTzqbpy8hiBsZ/G4nHlUhqxkcHYnj87hocEGz3wEYpNPp800UXThVBU03kJDIahcC77IkMfMnIMsymp4jn5MwTScelwuHIpHXDbK5wsacMyRimkLA48Jd58HQDfJankgyz4FTg2wKqXg9XsL1deiGit/rIZfPo+kGg9MZ+iKFYkhVkUgLByfHU1zW0UBb0E1eN1EViTq3A6dDwe1UcThkEukcI7EsY4kc+fOV8WGvStCjEs/qqKqKlsngdyo0eiTymoaqOnCqKqOxDP2TSUxkFClD0C0T8qrEMzomhTw4nyrR4JY5eW6Mc+NT/Ntvj5B1+HDXhfGed0+01bm4ZVsDDb7VcyktNQ155mwPq33L0NAQx48fx+/3F4VluZMI4cUhJKlUCpfLteaJC5Ww5kc68yJMJpN0d3ejqmqxJ9XExETVx+2WstTNPhaLceDAAYLBIPv27VvSF72ari2PInh7l0mTYTIpN+J1u9i/OcwrdzQtqQ+YxWhkmn995DkmpuKcmdaZnCj4TB2KzHBcI5pJcf0mB+uCHrL5PC5P+ecWQjA5GSGZTNC1sRMhyWRyeRI5g4ThIOTz4Dpfv6EqEmlD5thglP1dofMWmyhWSKezWVIZQZ3fSzan4XM7AYl0LkfAKTGZg6xu4nbIOJ1OkpkcpmkW27JnchcyrpyqitftJBZNk8lphM8/R3EoeBwewooTEITDHvK5LH0DQ4DA4/EU/nl9RDICn8eJU5JwOh2Y+QxpE4ZjWfauqyubN2IlDMSSGQanMwzFddxOFZ9DkMzkGJgy2BB2s7klSDSRRlWc1HkcqOcX0XWDgWia/mgar8uNW5XIG4LB6RwdITctARd5w0RVZOKTSbwuBZdLJZ3N0zuZYjodJegZpbkhREd7K0PTguf6Y7x6Z+OqBb2XU9UuSRLBYJBgMEhXV1exIDISiRSLeEsnRFbit69FIanU2komk/h8vppJqV4Kay4kpVgxh46ODrZt23Zh3rbDQS43u/V4tSjMAs8v+BxrzvvmzZvZtGnTkr9kRVHQtPk71VaCEIKe0STTGQ0zliUTmcTv9/Onb71x2a6Bnr4hfvnbgxiGQSpvMpoSeDwSXquqWghieZ2jg9O01bkJeD3opkEmWzhfhmEyNjYKwmRz16aygU2JrFboiWVqmGZhY5cUBS2dI5MrtB9xKDLWDZsQAmGa+HwuEqksmmFyLpoimTNwKjJel4Mul4vhhEHGMDFSqWI1/VyzQZwOB/FUhtz5OhJVVVEUGU3XMc7Pife5XPj9fgyPh7pgiHw+RzqdIZFI0D8SYSSj0OB3o3pcgAOXqoJskskb5LQL0yYlJLweJ4l0Fs0QjMXzyEKgnh9lFfQ5yeoSCU2mXRhzTlbUTMFYPIfP48YpFc6FKhVmycTysLnFh6YVGmJmFBlVdZLN62Q0k2TWwO9yIEsSk9FpJqPTyA6V6EQT13YGi638q001GjbOLIhMJpNEIhHGxsY4efIkHo+nbJ79Qnf4tSYkyzkeS0guJWpCSIQQ9PT0MDQ0NGfMYTWHT1nrz2c1WBX0IyMjXHnllcVBNkulWhbJ0HSGv3ngFCfGkmQ1HUnPcUWTzOffcw0uZ+VfoxCCJw6e4MiZAaTzrqN41iBvQrgkYKw6XbiNLFPpPNOpbDGYrMgyigSDoyO4VZWG5qZZU/9cDrk4E96tKBimiZ7Pk8nreFwOQgEvigSZXL7QC0xRcHvcpLM5dAGHR1JMJnMUSmQEQsuxpUniuk2NTMSzqKqDoMeBT5FAEmWfrc7vLRZHBj0OPKrCZDxD8Lw1JSQZFJX2kLt4bUlSwQXjcrkIherxpnJEhxNouk4mOnX+ORIGMoGAm2DAiyIJNM3AoZR0KNYN8oZZ1uLENARep4NIIkOm3kFznRdZKbgJNb3w/nndRFJUJNNAlATRXQ6JZCZHJJHG71IJ+DxEnCo5TcerOgsCPEftSi6fY3A8yvOnBnnVFavTSbbaDRtLJxFu3LixWBAZiUTo6elB0zTq6+vL5tmXvn+tCclyYyS2RVIhpmnyzDPPoOs6+/btm1OJ52qRUk3mE6psNsvBgweLx7acCvpqiKBumHz2FyfoGU0SUAUyOTSHg2fGTf7luSHev3/+xpFzkctr/OKJbs4MFlxYQoDH7STgdReO1xQ4ZFBdLrRc7vzIWKnYKgQgkUwVgurNDXj9dbidLhyKXKhEPx80Dvuc1Dklkjo48jqKVHBLaYZga9BN5ny6qwSF95YlsueLEc9Fs0wm84S8zkJRYyJBGomJnIMOXWN90Eq8MBFIeF0uFEUhm8vjcKj0DE0RSRUaKzb4nGxs8NAbSRNNFaxDt9tFvRPC7kL3Z6/bdT5hII9+fmNvCwcYjGlEUjnq672YhkEskSzMDSFKX2+SuroAPq8Xl9OL3+smk82jyoXGmZphopzvhKyqDuLpXKHiXZZIn7foBKLQukVRcLlBH0shZlXFi/OvkwGBISnkDInm8y3s3aqCW1VI542yBpEGBbfZ0d5hdq1vYF1jIVVXM0yyWiFLrXSe/HJY7Y17ZkGkNSEyEolw5swZnE5nUVRCodCLQkgutaFWUANCIssyGzdupLGxcd4TXlrZvhrM3OxPjiU5dm6C5GgvezsLrdaXW0FfDYukezDG6fEUfsVAaBrBugCmYaLFM/zy6DjvvHb9kovSphMp/vWRZ5mcvtAEzqrb8DoELgzSmqAh4AIBBhKZvMHmJh+u83GXWCzG5OQkGzesR3YUXDSlsQnV4cDtUhECdja56EtIJPI6hilwOQoz0Dc1XhBlj8tJOpsvZmypqkI0J/B7XSB0EokkqtNJW72PyUSWWM7E61KLcZVC76wMsiyhOlRe6I8wnjJAFPp7jcbztASc7GkPFNqQuFxg6oS8KnIxYaCQqWWYgoxeuObMvMHGRg+6aRLLFroY54VMS9DF7vUhnJLJdDxOJBIFScLr8eDxeAmH6ljfEKAvkkQxBR6ng2QmRypvsC7owu248F1JFIZ0OQNOcukc6xrqOBdJIp8P0Gu6SSpfcIW5HIW79WS2ILbTGZ2A34+Zy9BW56I/mmEqraEqEpoJXp+ftno3EvDLZ0/w9lsu5+xklqOjSTJ5g4DbwWVtAXa2+cvSyCvhYraQlyQJn8+Hz+crFkRa8+zPnDlDJpNBCMHY2Fix1cta39UvR0iSyeQlNWYXakBIANra2hbcbFfbtWUF26OpPB/9/iGe7Z8u/u36yTxf3mwQ9q2dkIxMpUhlsnjcEAjWIcsKeTOHU5FI5XXiWX1JQnJudJL7Hnmu2G/Kwjg/hEpVZLbUS4yaDsanU0Dhx9se9nNdVxMyBkMjI6TTKbZ0bSq4h0pI5QzOTqYYiRU25S1t9TiExEZPFgIehOKkzuch6CsU/EHBEklmsmVdffOaQS6XI6/pZLUsfp8Pr9eLpukICg0zrbtOK6PLIUtIskT/ZJLBqTQBl4LDISM7HUiyg2hOp1UTbG0Nni/8m51KHsvonBxLksNBLpfF5ZBZH/JyXVcjsaxOIp0jOa1R73PSFPKTyuRpbHQRbhCMTqXom0qRHI/i6p8g7FMJKG7SmoOcaSIJidaAk45QeeBYN01M2cXpsTguh0zIrZDyqqS0wjwWhEnz+dcFAwESWQ3DFIylBUP5DEzk8ThVGj0Smxq9xDIambxJR30dXrdadK+lsnm+/uBBZH8DAbeKz6UQy2j8+8lJDCHYu255Rb5r2UJeUZRiM0ko9OB78skni0XCVkGkZbGsxTz75RQkWq6tS4maEJLFuFgxko//4BDPn5su+9tz/TH+84+O8M33XbWstVea/huPx5k8dwqnQ0L1+JDlC8HdrC5o9qjFoUjzIYTg4Ml+Hnr2KIoiU+ct3GUPRZL0jCUYS+RQJImNjT5cssnNm0KMxLPk9IKfv63OTT6fZXR0FIcssWPrVmRFKRtTm8kbPNM3xVQ6j0tVUBSFA72TNPmdXLm+FT2XJZ1OEY/E0JIu3B4PdYE64qk00gxBkiUJv8Pk7FSa9Y1BFFkmn8+Tyul4XSrrwwG8Tpl0tuBCc7uc6LqObpjEc+etGkVGUJgtj6lhaAZTKQ0tZBQSBspar4BmCE6Op8gIGZ9i4POpZDSTs5MpnIpEe9CF26/i1FQCfjeaXujVJUkSw7EcvdE8JioubyEAHtEl2lQTVYth6BIBr5v2UD11Pje5vF6oss/rDCcFY/FI8c4+5FXZ3OjFMAU53SToc+FVJRTFQSKrgSQxOJ1lIiMI14HX5SCvG/RPm4U07bCKy+lEk8qvibxhcnRwkq71DrY0Fxp0+V0OxuI5Dg8n2N7iL1qclVBL0xGtqaO7du1CVVVisVixyr50nr01IfJiHPdyChJt19Yq4XA4Vj1Gcm46z9N9qVl/M4Tgt2ej9E6m2NRY+Ze7koJEa9bKy3Z3cTSf5rlzMbTz7qHpdKHS+k1XtC2Y6msYJg89e4SDp/oBMHUTTdeJZTQePxMhrUt4nSqmgMOD03iBzV0SXSWfNZ/XGBkZJuDz0tDYRFbTQdORJQmP24UkwZnJgog0BNzIkoSh6zi9DiZTeSbTBp3hQrqnECbZbBZTy9M/MICqyHi9XhxOF4asYgiJbCqOR0+yrilENJXDqchFq2lz2AmmRjorIcsSQb8HXRfF60M+P5lRkuVCEoF0fpxyrtDaJZPNnY/NSDgcCh5XoZjy3GSKtEEhBnV+g/GqCppuMhrP0h50IVHomZVI5VBUDy6nCrLCaDKFIkPQXdi8w34v4/EMKdnB7k1N5HI50uk0o+MTDAwN43a7CdfXMZx2MDJdSACw5sZEknmcisSWJl8hsUGY6IaC6naBliGnm0wm87iUwlhjhyzhOJ8AMTCdYV0ohKyoFDuMnienm2i6ycjYBBubg4TqCq6ToMdBJKWRzOm4HJVndtXadEQo3LyVFkQC5HK5YrPJgYGBQgyvpH1LtQoiZ2K7ti4iS5mrvpoWSTKZZHA6C8z/hQ9MZZYlJMtxbZVWzl9xxRU0NTXxydY8f/9oL0/3RklkdQIuBzc167zlivZ510lnc/z00ecZHI/M+tvp8RTJXCFO4HQ6yOdzOH1uJpOCybRBW6AgTul0mtHRUdqam/D4AmUFgWZJbGE8nsHlcqE6HJjnvyvrTmw6rdF5vj7SqTrwuIOFGpG6IPl8nlgixcG+KNGcQEgKsjDZ3tbA3rCP0bjKVLowd7014KK5ruAWE0Lgc7uZiqewWtW7XU42NAYYjmtk8zpuZ6HAL5XNgYCmgPt8Y8rCOdZ1nYSuozoc5E0DIQQetxtdN9B1HUmScCiFBpOCQrX6+MQETrWw4eY1g0gqQzKTo9Hvwul0ADLZfB6PKpPI6uSNC3UpUGgfk8lkmErlOTuexOuAbDqP6lQL82tcSrFli2UheH0+MrqJQ5FJZnU0w8Qx4yfjdMik8jr/P3t/GitZmt53Yr+zb7HfuPvNfau1q6uql6pqihQpShQ5A4uixqBkw6IlWwIB8xNlAyQwkL4QhmB6CFocCfxikYJnrKEkmJqhKJEUOWR3s9lLLVl77pk3l7vGHnH27fWHNyLy3sxb1VVZVWT2TD9Ao6tuRZxz4sSJ93mf5/kvcaFQtXQoDrcvdVWZAwDevHqbrzx3AdPQCdMCa2oj/CjxOA23DyaSB8OyLNbW1lhbW6Msy7lD5EFC5KwF9kkIkQ/G94ftj1HMEsmnvfsRQrC5ucm1a9dY8T78wTm58GieJx+3tZVlGW+99RZRFB1izrc8k//6Jy6wP0kYRRl2GXHj8ntzFd4HozMY83vffJMwSlAVlVIcTmYdP8XUVcmwTlMUFBAlZZazNwzYaCwQhz7DXoeTx9ZRdGs21jgyqp7NzmhEqpUw9ajWDQMtEXPlYNsyKIpialMLoGCaJvfCmEFuoJBgUlDqBm/fG+L7E84vuqy2TRzHmbf1AGqeM5UykcrBQVoQphKJtFbT2RoVpKmCSFJEWbLesFmqWvNqQ85WBJZhkGQZuiIo85xxEEm7Yk1DN3TGaULT0XFtcw7vPRiqqqAqkBUFBiZJXmDbNmkRoT6ghQaSM+G5Lv1UoRKPcDRQ8gTf92WbSNMpFZ04sbF0G0PXCdICgULFcQiSHENViKZqMbNI8xJDVXEt88hF0DE0Gq7B/iRBAd65fodzJ4/RCzK+dLKB94Ab46y1Zhvqhw7iH9eK5MNCVdVDhMg0TecOke+++y5lWR7ys5+1zB71mh5lRrK6uvrI5/yLiO+ZRAIyu39asgF5nvPuu+8yHA555plneO+99/ihcwv86fXeoa6Aqkhzq+OtR0skH6e1NRsSep7HSy+9dORwcKlqsVS1GA7zD9TMuXpnh//0jTfnniCg4DkWqqqSpJIk6FkGk6Qgz+63DGeDbENV2NnZJQwDTp04jlA0XNtEU9WHZNnLUlD3HBpmKDkhmRRmLIVgMAlRBSxXLRpVh7KERAiEKObvH8c5O6MQ8piKa+M6ztycaJALorwk9QcM+z0818W0bCoVj0koOSL3hjGb3ZAwK1AVhXbF5Oyiy4nFOvd6Y0Cj7rocW6hIFd40I83k+U3LZLsfSAdJ22CxarI7TnAMDVUpiCYxlq5xou2hqRpHidfWbGmJG5UaWl6gAGGc4qclZ5frmIbKoTJOAdW0sUWGbWjkpcDzqqxUK4RBxMCPUEVBb3+Xsa5JCwCzxLZt/DijUbFpV2I6A4izElUVpFN/9+Mtl1wI0jjD0DXSvCBMC9JpdXOsac/RXle2upSqwV9+9iRfOF6fX15RCt7bmfDezgQ/KWg6Bs+uVzm/dDSv4XGrSBRF+diJzTRNVlZWWFlZOUSI3N3dnRMiD/rZf9TEUJYlQohHqki+39p6hPhuX/wseXxaiSQIAi5evIhpmrzyyivkeU5Zlvw//9Yz/MJvv8cfXenK6wJ+5MIi//RvPv3I5/qora39/X3efvttjh8/ztmzZ7neCbm818Uzdb58sknFPvy5jzquEIJvvnONP3vrygNHF4d207WKw5nlnN1JSpQV2NPFzk9yTFWgp2NyVE6fPEk5ff/BwbplGliGQVrkiFIw9ANWahZnlzxudUP6oaw4LF3l/JLLycUaw0nIbAst369TlCW390f4QcxK08MwjPlnsnTZUvJqDZbabfI8J0tjwjCk1+/hmCYTLC51UnRNwzU1CiHYHsYIVedzqzpnl+7/GOMkI2Z6XabOICr51rUeIz+S0F1T40TLwbMM9sYxRSlYqjlsNG1sVTDyQwSSnT/KFW7eHc29RU4s1g5xVBRFVpCLroZhmFi69Ivvhxm+MBnu96laOg3HYHcsK0xTVynRMS2Ls22PdsWgyHMmSUGv32UYlwjNkAKPtsqCLfk/fpKjayrHmg4XVutE+ez50Li2P6YfZuRTWZUFz+BEy2G1EGRFyZJT8gNnmpgH4Miv3xnypzcG2IaKZ2rsjmO2xzF5KR5ybZw9c49TRfJJk9pRhMhZtTIjRD7oZ/9Bn794oMX7UeP7ieQzitku49OYk8wW7I2NjbkMy4yPULE0/sX/7vPcG0TcHUQcbzlzM6FHje+WSIQQ3Lx5k5s3b/LMM8+wsLjMP/39a/zx1S5JVqIosFix+L/9tbN8+YAQ44PHTbOcP/jmW1y+vf2h56pXPMZ+yIqncbplsdmPGKdyiTc0hfUqtKsW7fYSH3TVSZpzsxNwsxsyjlJqrsW5pQpPr9dYq9v0AlmxtD2TtVZl3oI6eK1pljEajQhGQ+r1KpppolDOqywphqjO5wRVzyGzTBy3QkuURFHEe7eHJEmOZSkUuYmmqTQrFntDn35NP1I2RQhBXMB3bnYoSkG76qAbBqMg4fp+wAvHG5xoORi6garKttlMuiVJEt7fmTAqTWzLxDYM7o4yenHA+SWPtJBkS1tXaXnmdCZRkBXQT1WuDwqiPMTQVPpBhmtqrNVtgqncSsWxOLFaxdXknW8tLDAZxPR9jUjNEUVOfz/AUgqW9JKmm2M6HlVXapmpmg7TKvTSzpi9SUrF0qhaGkku2B4laKrCqQUXkLOoa1tdnj4hlST8JOftrQl1W2ehIsuvumOwPYp58+6I80veQwTGv0j474PxWVRHuq6ztLTE0tLSnBDZ6/Xodrtcv34dy7IO+dkf3OjOfp/fr0gek1AU5RMP3IUQXL9+nc3NTZ555plDPciDrTNVVdloOmw0P1kCOXjsD7rug+21mWHXf/+du/z++/tULJ2Wa1CUgn0/4Z/+/jX+3/+H5+eaSQcTyTiI+O0/fpXOYIRrS4Z5muVTr/L7C7jnOHRHPoamoqoKLxxvcKrt0QtSsjSBKKDpGKytrKKoGlGSHLnbujtMeP32gLIssXSF7jikMwp5arXCc8dbHGvXZFtNcEiSfRZS5LFLEAR87sIJos0RW8MQz9RwbJO0EBRonGxa6KpKxbUIonSeZBRFxXZchBZRr5rYutxkpGlKEUckhU5/NMHTikM7RgWouA5v3ekTZwXtioUQgixNcQ2FQaYyyRQ2Fjyi9D5BUlEU4jTl5tYefmlSd21sQ0UBXK9KZxSwN465sFw5srWS5CXXdsfojkfTnLX1BP0wJ0hznl6tIoSctyiAYyiUhTStut2PKArBYlX26QWCYZjRDzLaCkSjPsGgpOJ5+GGC47pkQqHrp7Q8C8SswlMohUbXT1mr23i2QZRmvHNrZ55IhlGGn+ZsPLB5ajgGwyhjEucPaXY9TvDfz7rNdpAQefz4cYqimPvZX7t2jTiOD/nZK9NZ4ce9P99PJI8YH+VGfxKZlCzLePvttwmCgJdeeukhw5jZw1cUxadOWjpY8Rz8nFEU8cYbb6DrOq+88gqmKTWTfvcdydWoTltZuqawXLXYmyR8/XqPv/GcTICKIpFLd/d6/M7XXp+3ng62oEzDwDYN0rzgna0Rl3d2SfOSmq1zYaXK8aYj2d1ZQG8y4NSpY9zcvMMkjDFNA9MwsEwDUQqCJAEhME2T97f3QJQ0HB0UBQe5m73ZDTm54FJzrCmHo6Tqyr58mCSUJZRlwe7unuzpHz9BXsIza1U0VWFvnDD0Y0xd5VTL5vxyhYbnkBclqsJDsyvH1BiGGXXPoShyTNMkL0riIJG7914PQ1OwbQfdsmjVG/hRQpKXRw6QFQSTOCMuBJ7rMvZ9QMGfTOh0OphuHTW/L9RouxWSAiqexyAM59+zPNb0uVYU/Din0AxcTcXUNdI0AxQ8U2U8RXbNKi8BhJmg6rqEw5AwLQ5pdikoeJZOPzSxK3WWlyzSLEOlpDsK6PV7ZBj4oYqju8hLkMc2NIUwLeeyKnlesDfw6Qx9FhsVbF3D1FSSrEA/cM4kLzEPVIcgkXg3uiFX74bYSsF6lFH/Lnymzzr+vE2tNE2j3W7P9fcOyrfcunULTdMQQrC/v0+z2fzIa8v3UVufYTyqTMpkMuHixYt4nveBDouzXcNnJfcOh9Eb/X6fixcvsrq6yhNPPHH/NQLGUf4QL0Sb7lRHUXbouLf3h7z3n7/5gUP3LJfug396rcu1PR/TNDAMnV6Y8K2bfcqTDbwyIAxDzp45hUCdLjpi/v7sQPKuew67o4goLyXH4cBi7BgakzgnEypZUUgiIBxyGjQ0hWtb+9wcClLV4cr7+zRcgwvLFT6/USNICpLpsW1Do+raDKfCiwpIwICiEKfyuo41bCYZDIIY15Bck0mS0646nDvWQFMUkiQhSWKiMGJzMARVQ2Q6+fQaZ6g3IQSlolJ1bQohlYtd12N/b5dOt8fyygqjTIXxBAFYlk1SyM1BXpTUa1V0TaOU2GJ5vNk/lwVCkQAElPttjlLIxPDg0qc/hMQ7DNESQuqvOZYJikS+2Y6D4dbI8gI/jNiOJuz3Rzi6tEQ2TZNUaJi6Kucx0+8nLwX/6eImT53ZoDJttV3vBGw0FGxDI0gLukHKF0/cR3bdHUT8/qUOnUnKZByTFyUDfZe//tQia/VHRzh90viLHvzP/Ow3NjYoy5J79+5x69Ytbt26NSdEzqqVDyJECiEIguAzc0f8rOJ7JpE8SmtrRug7efIkZ8+e/dDK57PiqhysdlRVnbs+PvHEExw7duzwNagKZ5cqvHFnSM3W59ebTFFGM5JgWZZ87eJlLt/tcvJ0jTTLj/xsnmOz3fe51fWxDQVLE0BBzdKYpIK37w358pLCqZMnENOFamZW9WC4tkV/HJCmOYqQfA/DNBBlSZZJ2Q7TNMmzjNJ4GN4URTG3t3bYjGyiUqNqKOimRTfM8e8MeflUi6qt41nyntmmcdipEOae5kIILEPnqWMthDri6u6YcZyjKQpLVYsnVipzgcmK51Kv10iynDwviOMIM47ZGkbc68ZULAPd0MmERqNWoT2dDQghuLO1QxyGnD97hqwoUbMC11TxkwLD0VGEZMSnRUnTMahVK0z8YP5+AYiyZLVV5XYQMI4zFASmrhGnGWFasNGw5/Do+TOj6eyNQiqWTsXSmCQFDUcSLQWCIM1xDQXXlvfbMg3u9iN2xglxVuAYGq16hWGYYZoaaRzRn0SkecF6VccfC4rUplB0rndD/M0RtwJdzgOqBis1i30/JZ9WSs+uVfnSiYZ8jkvBN24M6AcZZxddOiKgFCVdP+EbNwf8rc+vPLJu1yeNv+hEcjBUVcXzPCzL4stf/jJxHM+rlYOEyBka7KCffRiGjyQQ+1Hia1/7Gr/8y7/M66+/zs7ODr/927/NT/7kT37i4z4WieSjtrY+6kJfliVXr17l3r17PPfccxJC+Ske/+PErArJ85yrV6+yv7/PF77whTnj9sH4219c59LuhJ1xQs3WyQpBmOY8t1Hny6eaREnK73ztDTa394nSjDhJcSwLyzSk7EaUIiipeS7jIGIQpmSFwDsgDV+WQho06SbV9gqapksf8VKgKOoh3StNVdFUdS7JXrV1lqoW94YxiijQNZUShahUWKubtComDxZ2vj+h0+mieC1CP6TlSndFREHDhl5Q0okKVlseeV7I9s6D/jNCsDWKuTuICJKCdt1jxdNYr1tsNFeIC8kDsXVlXiiZug6qRpLlZIUgSEs03WZhocIrlQa3eyE7A58oiqm5Fm01IAshEQ79fp88z1leXaMfC1zLwtRjzi5WuONDx5fVoapIK+L1hk2QltiWSZyk91tapWDJszm7pHBl12cQ5WiqSp5mNFyD9bo5nzMUpWCzHzGIBXGaU3WlVW6al/SDDFVRKIWgauvYCJJc0Kh43OmHXN7zUVAwdYXhtHJtuQZpITAshwXHYaliUNUK1DJlb2+POz4EhUbLs3BEzGqzzWYv5MnVKj/13AJRVlK1NZar1vw32vVTdicJqzX5N4Ecti9XLXaGsZzdVD47R8YPi8cpkcDhLoRt24cIkePxeM6yf//996lWq1y9epV2u00Yhp9ZRRIEAc899xx//+//fX7qp37qUzvuY5FIPkp8VJmUNE158803SdP0A2Xpj4rPKpHMfoBvvvkmwNz18YPipVMt/uufuMD/51t3uNOPMDWFv/q5Vf5PP3CC0VS5dzgJ5scVQpDmOelMIkRXqToeRSmZ0KYmPUGKEjQViiInSRJ005ZS8apCXsh2iLxecC0Dz7XJC0GapQeG7vKcn1uvkUwXt5ICXTeom/DkooMoZQtKUyXDe2+/w3A45MypE7x+d4KqPLhxUNBV6IxCitUKeVli6jpV1yZOs7lXx61eyKVdObNwbJO73QnbfYVn12psNB0sBTAUPNtGVRXSLKdEIcty7g0ibvZColRyTVqewRMrVZ5Zr3F2yaNRrzPxfcIwJAgCer2ebHWaHq/eHhBOH7uGa/HUapVn6zqDMCMvBRVLp+kZcxvgUjWIipjL2xMGYYaiahi9nBMtl+eP1+kFGWle0HAqOKqU65/NVq7uBeyMUxxLxzZUwiRl4BecXHAxp3Box9BouQY79/qA9JC50Y0kKMGSi9aszRjnJc+u1fAsgyRL0ab3veKYKHaNO3cGVMqCNIl56/0rlEmIablc2yn4obOtIwEngtm8j/nzN2sNCz4bP/CPGo9bIvmgmY2qqjQaDRqNxiFC5L/+1/+af/tv/y1FUfCP/tE/4qd+6qf4sR/7sYc6F58kfvzHf5wf//Ef/9SON4vvmUTyURb6mRVuo9HghRde+Fick8/KW300GgFSouHzn//8R4IC/qWzC3zldIthJElrrqlx494ev/unF0mz+1yFmVTILHRdR9dURn44/9uJdpWF3YiuH2ORSg0sx8OPU86sVI/U6QriBMd1CKNYigSOCzZ7AWmasdawObXg8gNnFxiEBVFWoCmC5aqFpsrFJIgShCjZ3+9Q5BlPXziHomq4Zjg1vzrc889LQaPiEKeSZJkXUzFFAbZlUgq4PeijayoN1ybLc0zXZBRl3OwGrNbtaStLIYiTqUGWS1Fk3OuHvLczQVUUPEujLGF3LH3Uv3SySaPikhSCRq2KEILRcIhXqaCZDq/fHRMkGbYmpfH3hxkJOs+tVVj/AFRfnOVc7RXsTWRF6VU8RlHBtf0AU1fniCjH0gmnyVsIOeTvBhkNz5rb9+oqKIpO10/5wonGA6x8+QxkpSAvwTEPf4+OKecbWVECAu3A7CtMckohuSaebaJrniSBWjZ5kbHbHfNn3+pwdm1hDm2dzRYXPJPFigR/nGg58lqEYG+ScKzhHEJ1DcOMa52AYZhRc3TOLnqfqX/8o7DIP8v4qPIoM0Lkr/zKr/CLv/iLPPnkk7zwwgv85m/+Jj/7sz/Lv/gX/4J/+A//4Z/DFT96/C8mkdy7d49Lly5x9uxZTp48+bEhd59EXPGDYnt7m/feew9N0zhz5syRD5Uf57x6e0CSlzy7XpvzVlRVGkMJIfjOe9f52huXsEzjkNXtDLkFYJsmeVHItsqByPKMF9Zdvnplgp+UmLZLWioca7o88wHS4a5lMvYj8rLkW7eG7IxiKQWiqgz2IjphyQ+ebbJS08iLh+9ZUeTs7u6hKnL+EmYFULDedLk7KvCzAlcHpigpz7FpO+rDu1kF4jSl56eESU6rVgHuI+Dc6WIZpDm1qWAiCtiuS5TmqIrKbiAXzZkzIio0VAln7fgJ9XodJS+ZRAnb21vUanVazSabvYhSNVhvu5TTOZCeF+x2B9h5wJlFOVi1LesQ6KAfZHQmCasLDYosoSihYusMw4ztYcxqTVajYZLhWNa82ksLmVAdUyfLi+nOH2xdxY8zoiTDMWdzMzG/QZauIsqCvNDQDghwFaVAU+TgPi9KKo70t3csgyjJ5oCGMCupaVLkcBJl1FqLPN3WePnJKpPhgDt37nDp0iUst4pZqbOxssgrpxr8weUu1zsBEz+nVOHkss7Lp5vz2dTOKOY/vLvP7liaeeWl4I07Y3786cVHlhv6bvE4ViQfN7ElSUKapvyTf/JP+KVf+iUGg8FndHWfbjwWieSTwH/LsuTSpUvs7u7ywgsvzL0JPm58mq2t2Yxma2uL559/nnfffffIkv+r17r8N//5Oj0/pUTOMX7q82v87A+eQp22nH7/m29z6dY9QDobJqmsSDRVxbEMXNvCmhpDHXWOoiiIR12+vKqBu0SUyUV3uWbjOVK5N45T8rIEIYfqg/GEarXK9ihhd5xQtfWpO59UQ+74KVd3J3z+RBNX1YjTlDSb2sWmKbu7O1Q8l+XlZZL8/j2tWBpPr9i8vzNhHBUomkat4nG2Zc4JcEeFaejopkWcSga4aduIoiDOE1RFOYRyqlVr+FMtr6IUjBKB59rA/euYVU6KbhHlJb7vs7/f4fixY5LUB3PJlRmHSdM0bNshnyTotk6epezuSofJGVrHdZypwKMgL0tsxyXJZaI1dZUokz7xM4Vi9QC5z9RVDE0jTHMMTZUKxgr4SYFt6NOBvKAsBWLKDRFCoFNSt1T6iUBXxVxF2E9yVuv23KcmLwWFEPTDjP5Eeq2s1S1u9UIpiqkpXLrb4YV6k5dPtVlaqLG00OLEqdN8/eo+X72+T+9GH/HaNqfrCk+vN5k4HncyldWWw196ZmVOAC2F4Os3+uxPEs4tuvMNz2Yv4mvX+6w37E/szHhU/C8hkQRBgOM48/d90Cz1cYvHIpEAh3bXR8VRiSSOY958803KsuSVV16ZK6w+SnxaiSTLMt58802SJOGll17C87wj2e33BhH/9/90FT/JaVVMNEXqTv3r1+5xYsHlh840+Pd/8iq7veGR5ynKkjjNURAEUSq1sDSVOMno+9KmVpQ5IuizUK/SbC1w+O7eV+4VAjzXQlcUxrbNfrfHYDDkTqhTFCWaOvU5FwLbsvETn51xxPl4On8SQnpgpDHd/T3aC02q1TpZXkhDqDjH0lUWKiardZvFiskgzLBtKT9iGhoV26QoC4LoMAlS1zQWajY1K6DjpzRUA/KCvBQkwmCtrs595GvVCpM4mxcIigKeqdH1C6pVmyS+74KooGBYJsPhkMFgwMrKMrrtYiqCOE1xTQnlFeJ+wZEVglLIGcP66gJpLg24wiBgOBiwv79PgkmeKqSGinUAvZbkBW3PPIRoCpIMxzaJ4pSqrbPSdLnbC6naOoamSu/3vOCJlTq2qc/dIPf3+6TojOIcP0450bJhKFtjAgkAaFdMTi3c/z0MgoTr3ZC+n1AUUjGh7hicaLmMY0mMrJk6zyzoPHugUv325oCv3RhRdT2ebNWZxDl3hwEVH55wO3hOgENG2N/FVxbwPI9BmLE1jFmp3R/SK4rCat1ib5zQmZIiP+143BLJo7TafN//nvNrh8cokXy30HWd5ACSZzAYcPHiRRYXF3nqqac+cW/005iRzDgrlUqFl156aT6jOerYf3S5wyTOWaqa84em7hjsTRL+zbeu07tdMgrCD9Qykj7jBuMgxnFswjihFPDmnSE3ejFJUZJlKTXL4OWmR+NDrtsyDZIkY5JlVGp1Gs0WZZHTudkjHwYEfoCua1i2TZpECB7gOigKnW6XXq/HyeMbmLaDpum8udnn1v6YbKqC23QNXjxep+5YnFh0CZOU2ZxnMtUCsy0L09AYB7HU7FKhYgqeXqvy5t3xnEujKNB0TS6s1KlVHPK8wE8LHrxVx5oOvSClG6TUbYsoiuRufaFOEY4JwpC1tbW5H4Wq65AmLFUt7vYl6q1q6ZimRT9MsQ2VlZqNbRlkhRRTtG2berNFlmXEUcR+NGZ/6DMYjal6LkmpoOn6Q3I7YVqwN8kIwgjP0riwXCHLS/pBSpAWmJrKiQWXlbpBWciW3t3tPW6PcnLdYWc3hDxjsWJyasHmWMvBjzMsXaXhHk5aN7shgzCnYmpoqk5Rirkt7zOr9zkNo9Fo/syFacHFu2Oqjs7ytNqwDQ1dU+nlJeeffYJbl9/BNE1GoxG3bt3CMAw0r0kQllTMw+zs2UC+fGDDKIRUGjY0dd4ae5R43BLJ/1pMreB7KJEclJK/c+cOV69e5cKFCxw7duxTyd6fdEayt7fH22+/fSRn5ahj9wM5y3jw2stwxKWtbZ61pc/IjJ1elOWctW7oOqqqkGTFoSruRifg/d0JKiVaWeC5HkGa8Z27E/5mq4Iiyofk5F3bIojiA1IXynTuoXKsXeXOOMcwDAy1JIlj4iwnFSo1TSOJY0zLotfrMZlMOH/2NFkBWV7w5t0hV3d8PFun5ZhkeUl3EnHx3pi/8uTKNIk8HEmWc6cX8N7OhFixSOMhjqFxdsnj5dNNOpOUOJdcicWqia6qTKKUer1GPIUoB0kxFaPUWK5ZPL1a5WYvZBBl2IbFiq3TNjKyJGd9fR3DkD+DmWlUxTKxjZRn1qtc2w8YRzm5KhP9mUWPmqMTJTkKEGUFt3ohe+MEIWChYvDU8SWGccGdzpikEIg8paFFFH7OSMg2WD8qubzrE6U5mqpQFjntccYzq1WywpE+JoaKY2iURYllaFy/dY+7E4gVm7qp45oak6hke5xgGhrPHfMILO2+l/302YjzUiZEU8fUpCeJpkrfkmGYERxgz3fHATv9CWsLNfwkx0/yh+C8VVvnbj9iHOdzA6n19XXKsmQ4HNLpdtGiDm/udTnZsqlUKnhehR0/Z6lqzZMSwJU9nzfujtifyCrw8xs1Pr9Re6TW1+OYSD6uYdYskXxWFYnv+1y/fn3+77du3eLNN9+k1Wpx/PjxRz7uY5NIPkprK8sy3nnnHXq93odyMR4lHrW1JYTgxo0b3Lp1i2effZaVlZWHXnNUa+tU20VBenbrUxmV0f42w53tqaiejIPsclVRqFZcRFnOW0CHE4kvZV40gVupIMqSqil395e2hzyxUsW1LTRNJYpTbMtg7B+seg4/vMs1iydWa1zZmxAmBaCh2xZnawZrlZKdnZ15z//Y2qqUHlFV8kJwtx9h6iqWppBN5zrNqsM4U9gahCwdIagIECQ5b94bURgunqHRdGoMJj6XdiZ4psZa4+GWSMVz5KKm6Vy83WdnFJMVAkNTWK3bPLlaYaVuE0w90ImGRIVgeXkdTZO8mc1eyK1eOEWhqdSskicWPb54okGUCQrVoGJp8x1zUZYYpsG3bg3o+imOKeca9wYxoyjnK2cW2KibCAGOZZBnmYQX+wG7+z1u+CpC0Wl6Fq5tUZQF++OEu7ZENx2MLMvY39kiVw1yTaNmaFimRppl2LpKUWrSpyZM8WyLrCim5l3lnAVfFIIiTynQEEJ+Bk1VKErZ6jsY727usrZQk9pnhkaQyMQ9Cz/J5+rAveniXQrBvWFCP9Rw6mv89A+v8x/e2mGrP6HT8fHvdKlaGi80WowGDs1mk+vdiP/pnT2SvJzref3H9/YZRjl/9Yn2kc/Hh8WnaTPxacTjaGr12muv8cM//MPzf//5n/95AH7mZ36G3/zN33zk4z4+d/27RFmWjEYjyrLk5Zdf/kRmM0fFoySSPM955513GI/HR2p4zeKo1tZfeWKJ33pti81eiK1B0LnLZDTE1FSeOkKuGyRTfTQJmaF2bNPAc0wsw8APIwaTEE3RcF0LcUBwEAXirGAmBy8EVFyLOEmpug5FURxZIXiOxdOrCouezt5Evq9dMVmuWRR5Tp4mGIaBY9vs7HXI8kwaUJkOaV4ckidXVBVdN0jjBDQT2zSI0+yhc+6ME1IM6qYmLXsFNKsu+0Ofe8OI1Qd660JIgUcFwaX9kM2eFH90TUnk2+yFKMDnNmq4Ouzs7lGv1Vhdas93fbvjhMt7Ppqi0LANCiEYpfDWvREvn26x2qowSR5+Nrb6EV0/oXVg9uGYKv0w58b+hHNTGfuqY+JPpUwajQbbwxARDnH1kiAI8H1fzriA7WHE6bY7P16SJOzs7lKpVGh4dfLxEEOTzo3l9PYZmkKcleRFOfU4KactPnn/K45CzTUYTwJUW2BZJklWEiQFlq7gGPd38XFW8Ifv3GWES7tqc6zp8NbWGFWR3it+WrA3TvnSiTrtisltIYhzwf/vzV0u7fokeYmmwEbT4UefWqYftugHGTVbZdkq0JIxV69eJU5SvjNwGJcm51cbGKZBE+mG+fbWmOc3ah+b2Pi4VSSPOiP5LAUb//Jf/sufCdfneyKRdLtdrl69iqqqfOlLX/pUHhYhBP/zlS7/4e0dJknBmWrBDx//6A9uGIa88cYbmKbJyy+/fEji4ME4qrVVtXX+Hz/1NP/N713iq995k6LIWW5W+MKxGsuVB74WoVD1bMZBdGgGkGQFkyAmyUo6+7ss1mx2g6kiK7Ods3xoZoJ6qqpg6BrjaRsozXJQpH+5aRhsDWM6I59m1SUrYwxNZbFqHZJkT+KY3d1datUqK6urJFnOhaVl0jSh2+0ThCEiTRjFCjXHwDRMDMskSiQiydIU0hLqFY/RVFJkFoVQEKp+qL9fomEaJmH6cOux4rlEuSDMCm53A2quhaFME62hIYCdcczGWGPc77DUbuHWWlQciyCWyXNrGFEKQWN2j1CoqQrjUGdvHFOrHr1DHASJbDMeuFYFBdc0GEb3gSH5gxsURUXTdSqePF9RFJRZSp6ljOKIe1sxFc9D0zT6vR7NZlMaKukGlj4mzkos/f5iEGfSydDSVaLp3OlgGJrK6bbLm37IKM6xckEuZBWx0bDRFHkNflpwaTdgEuf081sstNvUbZ2TLYdBmHF3EGMbKl86UedHLsiKQQjBG9shb+zlbDRsPEsnLUru9CJUBX7mpWMPaIetcO7cOfYHE7721ZvoZczm7dsYuo7nebiuSzeCXpB+zyeSR5mRfJbyKJ9lPNaJRAjBrVu3uHHjBsePH2d3d/dTSyL/5Hcu829e30JVFcpS8A0F/uMVlX93NmG59uF9zV6vx5tvvsna2hoXLlz4SNaeR81fyiTgrNZl4dmFOUtaUeQMZDYXSdMM0zSYhNFDg2RFUYjjmL29PY6traBVNXrXe0xigedYFEJKjbQrJhtNB0PXEaIknCGjDhxwEmV88/09OpMUxTBQdiIajs4Xj1VpuPeFLgPfZ7/TYWmxTbPZIpk6LM7mN8sry5iaSmZ1ef32ED8tMURBFo0pUTnedKjZsp00jlIcx6Es8imsWdCs16Dfn7fMQA5nM0VjwTv8uAohEKoORUmSFWSlkOivNJ5XG6amMgwT7u3uc2J5geXlFfwoQxxo58wG24e+M0VBKAqKbpDmR8/ODF1FzHkd9+9lVpRYzv1rjZIM2zJJphDpmq3LRT8tcUwNx7aIRYlu66xXdBp1jfF4TJIkU1fLlOHYp1WvsFKzpLR8nmNoCkleUpSCjaYjpVcKqbh8qxewPYoJ4pyqY7Dqqjy9WmV7FBOmBYsVkwXPZKlqzWcqt3sR41gO75PhHkZFI1RbjOOc//0X10hygWdph0iFcVZwpRfTcp25qKOpqRxrOdwbSkmbUw/wRhRFoVGrsNhqkBYlbc8gDEPCIODezh7dqGTzeoCXLbGwsEChGry/43NnEOGaGucWPc5OYcUH43FMJP9r8CKBxyiRPPhQzNpGo9GIL33pSwBsbW19Kud6/c6Qf/PG1vy3P0smvajk1/74Br/0N5468n1CCG7fvs21a9d48skn2djY+EjnezCRCCG4eGWTP3ntfUpRzmXJZzGbi5iGgaZpKIpCxbWJ4vseGUJI4t94HHPm1HEUzWDVha+cafHO1phRnKIqcKbt8NLZJVqeRZgkJGn2UBIBeGtrxO44oVlxUcqCQgi6k4hXb5f8jefXAdje2WUwHHJsfR3H80jzwzvtopToK1NTObNcx3VdLu0FTOIMUwgWHViyYjY3b+M4Nq7rkrkepmlQq3igKOR6QcM1GQRy+DpDD9mGyrn1Foj7LTjPdYgzeT8cU8PUFIIko25ZpJl83SSKKbKU9eVF6rUKUSITX5CkmIYk/9Vsna1hjGfeR8gVpZgagX3w7rBdMbnVDfBTgWeoKIpMSqIUrNQOVzG6qjCc8khcU2OjaXOrGxLn8rP5YUqrYnOqXUGkIVmasri4xI6fc2M/IEq7WGqHEy2Hk3WL3XFKWig4psZGwz40O7rV8Xlra0wpJD+l46fsD2KeXKny3EZ9nqQrros/JbbGeckoLqSIpSJZN5t3t1heStkpFhmGKeeWKg8t1GkhyEqoGoefYVNTyAtBkh1OwqUQTGJZmT69WuWPr3VxTY1KpYJpu4wUjxc2dM6taezv7/Pm+9d4bWDSywyqnoOmG7x+Z8gPnVvgB88e5ox9P5H8xcVjk0gOhu/7XLx4Edu2514dvu9/aoTBP3h/H20qgDcLZep38Xvv7R+ZSIqi4P3336fb7fLFL36RRqPxkc93cP5SFCVfff193rp2+yEE1cFwbUnAK8uSJMsO/V0B7m5tUeQ5K0uLKNr9imGjKV0dg7RAVxU5FHUMBhOp0upYllxAs5xo6r0eZwU7o4yKbaGU8jo1RaJ6BmHKrf0xSjwmTWKePH+OQlHJDni9J3nJ5T2fu/1pi2gqDX9uvc3p1QU6gzGGpsyROHmeEQTh1G2uj27omLbHyvIihqrxheN1ruz57E9SRFmyVDE5t1zB1lU8u8pkPJamQboB03aXrWtsNB2u7weoSoFSFvhhQpTmPLHaYKFewbOteXtMQcHWZSI51nTo+CnDKMebWvYGSUHLM2hYKkxVdx+Mmq3z5EqVW4OEgS9h0RXb5GTLOAQmCNKCt+516Ex5HlVb53Tb43PrNXbHCUmSsNz2WK1baJlPpz9kZXWVW8OM2/0UQzepWTZhknPbh9PVhBXVB02j5nlULTEvioqy5OreGEPX8KayKZoi6KVSr2yGdAOI4hhd0yVKb/rxpF9KNDfo2t3voo4TimJ9zuOaGTaVAmxN0PYMukFK7YAd9CDMqNr6ofbUlT2fb9wYsDtOMDSF88seT69UuNWL2B0naIrCyQWXH39qSXYFTp2k9/4e48EO65WcOBpSipJQtfnP70ScbBgcb9/nvHw/kfzFxWOXSPb29njnnXc4duwY58+fn+8QD8J/Pyk0Li9nWkWHj6MgmdsPRhzHXLx4EeCRBv2ziuTS1oB/80ffIQ58Wp6Ba9vSzTDPiZP7kic1z2Uy1WF6MMZ+yM7ODoauYrpVNscFahhSNRXW6lKwUFEki1wIQcV1GE0CUEBVVJIsmycmawotzoOEEtCEhP3OQlMVCiHY3e/QdhSOnzhBodnoU3+UNMspheA7mwO2RwmWrqIqivQhj0tMp0q7YtKuuYcMt3TdoF6vU6/X2RqEXNoZEwwLyp0dGlrOhSWXCy2PJ5c9UFQcU5s3joI4o16rkqUZQSLbWUUpsA2VC0sVmWQHEVGcU5YFT280eWK1Nv0eNKAkSHO2RwlhOsYyVNZqNp9bq3GjG+AnOaqisNG0eXa9TlkWVF0bP85Ii5KdUULPT9FUhaWqyUrdol2x6AcWRSlYb7mIAxuerCh5696IfpDRqDgUZcEgyHgnGfPC8TqvnF0gCKK5a2SZpaytrZEIlZ2RP5cyATnzGYYZg1Ln+VNt4igiDEP29zuUZYnjOBSaRZBkLFQNyffRNNJYAhD8tCBICurOVKWgLKnYKn4hZyx1R6fnJ9SM+7+NIM2xygmXb97m3PLTqIrCrW7AtzaH3O5FjHo554+DmkiuSsPRibKSKC34wXOteSK50Qn4dxd3CNOSBU+qEn/jxoBn16r8nS+sM45zHEPleMs5BP290olYblVZqVkgBEmSEgQ+V/d9fv9PX+e5NW+uB/YoC/dnGY8ybA+CgFar9d1f+JjFY5VIrl27xubm5pEw2oN2uJ8U4vdD59r8f79zb+oeN5MxlYzgHz5/GHY4HA65ePEi7Xb7kYmPcQH/7Gv3eO3y18iSFFVVWK1Z/ND59pyVbZkGlmGgaQrDSXjkcZIkYWdnh0atygiHr1/dJytAnWolHWtV+NEnFinyHBSBY1lymK3IHfgDM1jSPEfVVHRdpeY5jMKYg+PNMM2hyKjbNhsbq1KnKy+nSsImjq1xa3/M3jihaukYmjyBrStMMLnaCWhXLUpVnbcPD8buOOb1u2OyoqRadclyQT8vudwvOJcPyDPJfk9dF8/z5sKBkzhH13XeujNiZxRTCqg5OucWPc4vutjpCOEZLLfbuJYx/37DLGcQprxxd8QklglD0TRu90KeW6/z8ukmYVqgKdLUqeqYTMKINMtJsoKL98ZyhqTIDfy9YcSJlsvTq1XOrdQYBzG6AgexaPuTlEGY0XQNTB2KUioy98OMe4OIY01nylbfJ8syVlZWqFdcbnUDkrycD+RnUXUM/DCmENW57SsI0jQlDEO6o4AwSCnTiGrFQzFNWakIOfd5kPA3CSJcxyZKC55arfOd69v0AlnNFqXA1OWg/u5ul9/95rs888Q5fuviHoMwg8RnnAje208523bxLI1ukNNydJ4/3+LFE/fh+a/eHhEkBWcOQJsrpsbV/YCXTzd5Zu0DEI/KAUVhRcGyLUzLZCG3+dwzbU54Ob1ej3feeYcsy7h9+zZZltFutz8UAPPnEY9KSPx+RfIJ4ubNm+zs7PDyyy8feSNnyePTSCR/6ewCP3huga9f701d7EBVwVLh53749Px1MyHIc+fOceLEiUeuhP7br97mz96+Lm1fp05+94YxX73a5a8/vSzbakVJrhVMwhRNU3EtOQQN4gQhBL4fsLu7y/H1VXLV5Fvv7pEVst9uGAZ5UbLZGfNtE1463cY0dYq8AAHKB7CFXdsizksUAWfbFq/djvALFUOBOElI04wzCzYnN1ZxvSpRer+dVZQlJQoJOqVgnkQATNvBzBV6fjqVuZee4uOJf+DsguudgKwoWax7FIqKoUlV3HEQYzeWaDmaHMKGIYPBAF3XcV0Xx3V5ez9jexjhmBq6Kj3KR2HKCSdlqWqzuLRIzTGZBDIpe45FkBZc3vPn3uMKoOkavUnC+7sT2pWFQ7a2M/5OkuV0wpz9SULDMeaLcZKX3OlHLNcsDF2bCyIejCgrps+XQp7l6KZBUZSYmsI4zucVJsDa2tp0oyLQNUWiqUpxYPEXpEmGIkoqlkaS3SeRmqaFaVo0Gg1GDNkdRRRFQb/fpSwEkdBYrtk4B4QdO37CvUFMkA2xdJ0TTZPPbdToTNIpV0RjqWLNBS9v7/b46tUOVJdpGxmRSDl1doMwE+z6Of/nZ5dZ8Ax0VSatMs/IVVUqSA8jag9Y8TqmRlYIekH6EHdmFk+uVPjPl7ssVMo5IKLrp9QcndOLFRarFsvLy3T9hP/uD75Dpysorm6yYlzh+XWPYyttFhYWqNVqf66yI0KIR25tfa+5I8JjlEhOnDjB2traB/oazzwPPo05iaoq/Ld/+zn+h9fu8e/f3CFIc15Y9/iCN+R0W0pqX7lyhe3t7U8kBCmE4D9+6z2+/f4tNE3FnC62qqYAJTvjhH6Yst7wKIQgmsJRi6I81NqKAp/RoM/ZU8dBM9jc96dOeOq8yNA1FV0r2ezHfOFESezLPrdhGLiWQZrlxAdnLY5NnN5nxp9acNEVhav7AQM/xtIUnjnR4InVOrVqFT95WDBT+rKDbtkUpWRoK4qKUA3yMsM94PI4U/md6XsVAkZRjmWoKLo+N2RXplldysdY1Go1arWa9H2fJpVb211udQvqroWBIuXzFZX9UUjfsHhmeQkFOUCWZZhA1TSCRFYHFUuf37c8L6i7JqMwZRBJxBKArkoo7ez690YxunpYwsPSVfwkZxDI97mm+VAimS1+s5asqigUSN2umq2ztbWFrussLy+jKArjKKPnpyzUXeqO5FXUHQNNhRIVP445t1ghSVLZAo0zRlHG7jghygo8U86K8lK2pRSrQpak1HRoaQm3b9/GsixCLG6NCkohFYSzAt64PeHsoseZ9tGLel4Ktnojglt36dcrPHHhPIau0zAU9v2Ufiw4uWjPF9GyLOcgk4qpsjVKaHs6oMwtihUVXOPhxTZIpE30F443uDOIub4foCjSlM21dH74XGsOSR9FGf/2jR3e7gmOL3s4hsG9MEX1FWp+yL179z7UkfCziNnn/riJ5Pvw308YH5RADsanqdBr6ip/96Xj/N2XpCzAaDTi9ddff8gY61G/1DTL+b0/e5M/fW+TPM/RFAGaIbWcUNDJydKcAp00zx/SHwKJcNnf3yeJY06fPEE+VefV9BQUFYXD90I3TLK8IM7y+4PtomAcytfZloWhqdIzJMnmraaZGu2xloMrQkZWzurKMq7j0GrUGPgPuBUeiLWGzaVdn6hQcUWG7Tj4mfRDP3lANFBRFHLUucufpsiFOMhK8uL+Zy+FQFX1h3xSFEWZt3JiI8Ec97BNjThOiWKZdC1DIyzuvy/PS6qezSSIZJvuiFCQm5S5Tco0bFMny+8nhTS7LwZ5VAgB+fQ1B7/Kpao1l5Gv2joizQjSEgWBEQ+xXIvFxUWCtOC9nQmDIKUQUHECFiuyKh3FGUKApStsNJy5DPs4CBlnCq/dGRJn5ZSpXuKZOp/bqJPEIXGa06jUqE0rqTzP8YOAS3fG+HFO1VTQNRMlyxGKyu4k41hDYOoPf1jb0AiG0vIgzwveu3QZ27JYWFgg0StyRjZt5cwW0LIsKYqC54/VuN3fozOJabkGWQn3hgnrdftQu+vuQCoEb/ZCVEXhiZUKP3qhzefWJHTZNjTOtN1DUvRvb0241YtYdWGpamJZFgueyZ1BiNI6xl969mnG4/Hc5vbSpUtUq9X5bOWD/NM/STxqIvF9//sVyWcdH9Ul8VFipi78zW9+k1qt9rGNsQ7GyA/593/yGp3BiKqlT1sU8r+V0+tPsxzDsmh6JqahHNr9goQ/7+zuYmgap0+dmirWQhSnVAyBiqBUNAxdnUudj/2YtfoHS3THSYpi28TovHGny+1+SFkKKSOyUiEZ90mzlGMb65iGiaqqjFOBZRiHkGMHwzEkyuqNuyOCwmTsZ5iGxukjdrZZUeJVPCYT6XR4csHhvf10TqgrSsE4zqnaOsda7uEV+YFQVRVV0zEMQZmUGIZBnBQUScTdO3elrLvnoqoeFdsiSEs8S6NuG3SDBFM3mTFABkGMZ2qH+DIP8n6WqxaDOCYvxZxgF2dS3qblGbiWThCGVF2HcZwRJDkK0kzr2fUal3YmjOMcIXI826BBzHLNodFsUpSCN++O6IeZfF5UhTBOuZsJnlqtcHZKrNSKhIZrzqupohS8c6dPUaoseAaz6qsfpNzuTnhuxUFR5M7bUAW6YRADhuOhGCmLtoKmCNLIJ4kTylIwHAdsWxkXji2RC2UONzc0hdubm7RshU5mk5UCU1UI44Sd67fxTI3v1CPi8Tpn1papVhyud0K2hjG6qnCmXeVHnxR8e3PIzX6Mpihs1C1+4ukFdAryXNAJMv71q1vs+5KMWJbw9et99sYJf/fLGzx/rH7ks7DZC3EMjYL7QBxTVxFCYWeU8PkNZQ7uOH36NEmS0Ov16PV63LlzB1VV50ml1Wp9pE3td4vZhvf7oo2PYXxWdrggSYZlWbK+vs6ZM2ceeYdyb7/H//TV1+coJcfUONmyudqJSPISXZNDzFIzOFbVMciJ0+mw3TTI85L+aMTe7i7Neo1Ga+EhLaSlqsXxlsuN/QlJBrZbIY1LLEPn2bWjzaoAVE0jERp/cGmPXlig5lJK40Yn4G53zIsrBqc21tHUqbSG5+JnoFuHE8kkzufKsUtVi5W6zY96JpNcIS4kp6Lh6EfeQz/O8FybIIw5teASY7E59cRQUKg7Bs8fq1N17blP/MFwLIPFipwRdIYBnqngui5JCaap8cxGjQVHtgg6+x32yj3a9QroFq7r8sRKhTfuFPSDdLqDF9iGxgsnmvM5j4JcIPNCEKaFdDZs2vSCjD0/m1cvmgonF1wWPBNtWs7c7oy51pUtSwVouAZPLFd46XSTUZgTRBFFMGBtYxHTkui/rp8wjPJD85eqbeBngq1hzEunmlQsnYl/+DkYRTmTJKfh2SiyKQgoND2bznBM0DLn9rszblLV80imXiuFAFdXUC0b27JJspw8TImjgPcvX8E0DdqtJpbtsHl7B1XTePb0Klf2AvYnCZOpcKVn6Ty5WiNNUr72xmX++LX32RzmDEsLp1LH9SrUXZO//tQS/5cfOsXuOMHUVY41LLkhKkvJrbojTdTOLbmylY1C3dG50Qm4tOvz4vGjE4ln6dIJsjyM6BSIOeJtFlvDmBudgLw0WV86xctPPkUwkdXK5uYm77//PrVabZ5YKpXKI60Fs0H7x3mvEOL7M5JPGh/V3OrTTiRCCK5fv87m5iYAp0+ffuQk8va1O/zhd95B1zSqnkOel0RJwvNrHmmSsBtBVoCua5xsWLxy+j7ML81y0izH93263Q4b66tUKjXi5OFKQEHhK2daWCJjK1TIRMmxhsXT6zVOLXiM/eChzyCEwPMqvL01oueneJaO6dRIwgnkOVGhMla8eRLRNHXuVR4kGa5j4Ycxb90bc7MbkOZC6i85Ol880WTBM1it2Ji6PpceOepej+OcQQiuWtKsODxrK5xYcBhFkqm9WJE8hyDOjkR6GZqGpSkcc3KisCRXHEZJiaWrnF+ucLwldao810O0BXvDkKvdEZM4xKLDSs3kyQWHQWoT5eCaGusNm7W6TTTV/nIsnXfujLjZDYlz2TJaq9s8tVLhVKmyPQhRVXmti1ULVVEIooRJnPP6nSGpULF1FRTYnySEacFLp5qYImE06bG4uMhCs8EklPOiOJcL6YOIKlWUxLkkD/rBYSmZ6YMAIO2TbZs0L9BUhTg6GjoOMAkCGo7FSs3iTj9ELyVCqxSCIC1p113OnWiAKImiiL1hwK3uPkGhUXE0NlSf84suG00HP8kxVJV21aTmSMIrwPYw4drOhKqlUfh9Ik2jZ3r8950O/9f/8jmeWn04IZRlydZYPpeKoiBKgUCgIuci+5MYODqRPLlS4eLdEcNMzCH0exMp/3928X4L7Bs3+vzhlS7jWCZAQ1N5fqPGTz63QrPZ5OzZs8RxPK9Wbt++jaZph6qVj9qleFTb3+/PSP4c4oNcEh818jzn7bffxvd9vvjFL/Ktb33rkSB7ZVnyx6+/z8XLtwBIy3Lura5rGs2qwwurJgvL6wzCFFtX8B5gswtg0O/THww4d/oUpaoTpTmuY6EpCv500ZmFpiq8eKrF4vYeruPieRaureEnGZWKR5amUkdrGvV6HT/N6U9JcZqqkGYZBSq6rmOqKvuTA6xxz8NPZ3tcBYHKtT2fK3s+pqZSdzRKAcMw51u3BvxvPr9GlpdkeYqmqvOWyCzCtOCNu0P2JynF1FL23KLg7JJH3Tao24fbCUIIqo7UF5skOTc7AXvjFMPQcMuQVU/hx55dZxAVqJqGZ2qHEFcgCXiXd0PCKMMwTLJCZzKG842UShZT01Rc08VEI4gSXMckTuW53t2eoKoKjqGRFSU3uwFJXvAD5xZZcA/31F1Lxw8StoYxQVqw4KmYpvQrMTWVfpBxfadPtfRZWVmhVvUIgxDT1EmnbT3lIYQWpHlJq6LiGCr+Ebm5buuyUolzNDXBsmxEWTCOExYr1kPPWClkezEPIp5Z9UizlL1xQZamKKrURXtypSKlaRSNXDV5Z7dLJqS3+yTOeevukO3OgGeWXRZdF83QqdjmIdHP3XGMpjJ1dZS7czOPuXb9Ov+v39rjy+fXOL2+xKm1RZZb9TnBseVZXO9EcgEWzI28SsDSpPum9DRRuLIfcL0TkpWCky2Hl07W+J29bW50I1RNoW4b/JUnFjnWlHO6rWHMH17poioKF6ZimkGS8+qdEScWHL58UkKVbdtmfX39kCx+r9fj5s2bvPfee9TrddptiQRz3YdlWmbxqJyW71ckfw6h6/qnVpEEQcDFixexLIuXXnpp3hctiuJj9UijJOV3vv4Gd3Y6R/73vCjmNriGpnBisUpZCsIoYTbdLYVgf2+PKI558sJ5svI+5WOGAtINHdcyCaKYvCiouA7jSGNjfYMwDBlPxnS6HSzLwnPlULpZ85gEAa7t4CcFKLLXLZDS5HmWYVoWlusSDcdY+mxQqhJkhyuBKMu56xeoCnNJF22qCDtJcnYmmSSNAa5lzI2qZp/vO5uS0exZGq4h3f/eujdCAE8sH42bj1LZuvnmjQGjOMPSNXpjH6FqlEaFDV1npW5QdS386HDlFqQ5l3Z8FAVaroGqqRRCYxBmDIXLcydXiOKIMAjpdrsURUG7UZvqOkktshlT29CkfPz+JGVvGLHRrhIeqBTFVA1gEudTsqZCUeTAFGmYZ/RGMRcuSAMtS4NJkSNSgWWYLFYsWp459UKR5wqnJl0bdROlzA8N8f0kJy2kNfP5JY93tyf0ghQjzimKgoZnTbWoptcnJOfldj8iTHKqrsWyq/LEos2Kp5GWUHNsGq5OPt0AqZS8cX2LHI3V5swfwyLOCqK8IMKgCEPiqE9fV/EqFTTdxLJt8vK+TpqCRA6m6RSRWAp2u0N2u0P+7K2reI7FxvICp9eWuLDk8ua9MfuTlMWqSYnC1iRlsWrx9FpdbiSLgt95Z49vbo7IixJNVfnmzQFPrbj85RXByadW0HWVky33EKv+RjdkEuecX7r/rHmWjqllvLs9mSeSg6GqKq1Wi1arxblz54iiaF6t3Lx5E8Mw5kml2WweShyPsiFN05Qsy76fSD5J/Hm2tjqdDm+99RYbGxucP39+/oV/XHhxdzDm97/19gfa4cJ0Z+057Hc6FGU5ryw0XcW1TOI44catTTRV48nz54nzh88vhGB/HNML5GL/1MYCQz9EUzVMy8S0TBrNBkVeSM+LMGAwGLCja7TqNYSioxomCgrrDZv3t0f4cUndtVBVCWE1TIcTC7Jn77reQ4lECAjTci6vMQtVnTocxvk8kcRpzkGP2p6f0vXTqYWs/FvdtRhFKTe7AecWvSOd8fKiZHucM4ozapZKnqXUXRNVN9gZJ+xNElbr9hQ2ffj9XT8lygoWXBVRKpRliWVaOEbBzijm2fUaruPiOi4LLJClGVEUEoUBvWGIrqvEioFh6KiahqmpBElOkBYoB0AAuqYShDFME2wxbcmURYlh6owmPllesLzalEnE0JhMFY/ls5bimibPrde4vOvTDST4wDU1Ti24nGgYjP0AQ9coVYPv3OrRDWRVJx0UHV483mAU5wzGEyqmyUrdplWxMQyDIE7Z7AW8v+MDgppjMfJDuiNBWpRcmCdxQZFnWIYOZc7NzXskwqDmmYd+m5auEqQFqumxvuASpxlxHBOGAcFwjIbAVSx6qcDRwbVd0jQlnZpp1Q9wScK04L3tDn9wqUuWvs1SzWJ5ocl+adEZVLAcm+WqxU88s8xaUw6gb+6OefXuhJZrUHd0hJDCkW/dHfOkpfBfHa9JIMYDz6k0a3v4GdNV5UhRTmkMxqHn0nEcNjY22NjYoCiKebVy7do14jim2WzO22B5nj8ShwT4PiHxs45P2toSQrC5ucn169d5+umnWVtbe+j4HzWR3Nza5z98/Q3SLJfQVEf6U4dxcgDxo1D1HLqD4UMApKIo6fRH7OzsUK9WOHXqFMOJ/7B4ZVHyZzf73O6Fcqenqryxl/FXLyziKofvhaZrVGtVqrUqohREUQSioNfrEcZSaTfNUk5V4V5kMElLQFqcnl50eeZYSzKkH0giICHCNVtnP5fvOXh9um7MGfoAWVHgOhbhdFYSpAVFKQ6RFhECTZSkuUJSlLjq0T+67VEkZwVRguO69xUORMEgzFityx3wQVn46eElrLco5wktn8J5BVO29IFds2mamKbJ6tIS7w5uE8YZZVkQBJLJjqojhIKlKfhRgmmaZEWBrWtk04+13rC5N4gYRTkVS2PcHxCVKo2Kw0ZLLoTa9N6N45xukN73eGlWeeG4RpBKP/qKqdFwdMbTpJNmOa/e7rIfFlQtE1WRZMcrez6uqXOipnKseh9oEaeZ1GoTsD3K0DWVVsUiTWJqtk6QFNztR5xoOYcG0mkSs3nnLo1Gk0oqKFAxTZ0sy6RKMFJqRtUUkumz7zgOhmWhOjWKomA5iehMAnZHGZafok7Nw461XJpTZFySF7x5b8QkA2MKY7/VDekHKc+s1kgmfWqlwzOra3jE5IWHrmnc7sckuaA13fQIIXAUSOOQfcU8xF2ZJRRVVdloOpiagp/k8xZoUQomSc4PLt2vRvJS8NrtIa/eHjGOMzYaNi+dah5IuDIOzk6AqW6crFZu3LgxF1vt9XrSAuAjJBXfl4Td789IPmF8FJfER61IiqLgvffeo9fr8aUvfYl6/eHB3Uex2xVC8PqlW3z1jffnyUEIQXCgleM51nSuoOBHsSTpPSDQOJn47O/v02o12Th2nHGcUatVmUwCDhIa3tkac6MTYOoqFUNFtSqMopw/uNzlbz67MG+rPBiKKtFMjudRL2E8GrK/30EgWLYFS57OpDQxTJPVhkPLNYlzQb1SZRQfnazPL3n0goxJLA2RilIQ5wXHF+vzauTAjbp/P0wNXVPI8lL2zYWcT6V5Sa1iYX2IrWqWpmRlSfVAEpHHP7xbLB+4DwsVE9fQCNMM17qvipCWKscb1kOVlbxpkCQhZxervHVvBLpBxVaJs5xxlFHVc8bdbYrAYXGhgdBMOklKZxShaQqLFYvPrde4tDuhMwpQgOVWlXNLFWq2jmPqTPwJt3ohV/ekBIpAthtPLcS8eGpxvpFwDI2xf18JYBBmdP0Uz1DRRYZlSZ22SZxzfWfAits8sqoLkpyhH0idrzzHsiyKosAuSkZJgZ8U9xNJkXHr9j3a7TbVapXVLODyno8qdExNeqgEcUHN1mjY97+L7VHMtf2AMM2nSDWT58+u0RuH7I1CyjynouU0RUYwytFNi91A4GdQM0BV9OlnFvTDjEGUcmrBA0ru7fW4dPMuhq5zbHmB/dQgz3Lg/sLe6XQpy4LVtXVM05yTIcdRytX9kCAtWKpaPLta4Y17Y0xdEkv9pOBM2+XF4435sf7gUof/+UoXXZXKym9tTbjeCfnbX1jj6Q8wnAO5+Luuy7FjxyiKguvXr9Ptdrly5Qppmh6qVhzHOfIYM+jv4yQ8+VHjsUok3y10Xe6MPm7Eccwbb7yBqqq88sorH+ij/N0SVV4U/OF33uXd63c/9HydccL2RCr3XlipoarZPEEKAf1+n+FwyPLyEqurq/ix/Ex+lOK6LmkSSXvUUnBtP0BTFUxNRTctSuTCPIlztv2S1Q/ZvDiORZILojjCHw3nJKwsl7avbhASxRPCvgmJ/CFU3A8WpFxvOHzxhOB6J6Q/9lEVhTNtjxdONh5axII4wzI00rygXZFzgO1RjCfAMnQp714KTjUtjsojAkGv16OmJkxMW7Lfp7t5P5GM+IPJK4xTOeCetimqls6ZBYv3tmIGQYaqyh1o07M594AcRyEEnUmCoqioRcKZtkOY5twZRIxiydg/tlDhc+tVTEUQhAF73T7XBwX7fkaJiqZp1F2DZ1YqnHZi1h2ThVaLpmdS91yCJIMiZxjlXN6Vledsdx7nJTc6Pk3X4MxqgywrSeLDyKs4K8mn7SyQ5mK6YeDogjgVUx/2h3e9hqbg2jZhnOCa2nR2A6WiYlsadc9GoaTIEq5ublHYda70c8zxmMWKyVrdYn+SMhE5mlbi6Arn2h5V28QyDXZHEe9ujynnfjoKgyjnnbsDXjrV5PzybPG9rwc27o/YnpTEiYqnGpRTHtRMC2wU5XMJ/3EQAgp+nPLurW3CtODW3RHDrQprSwvkRY5mWFRqTZ47JucUmqZxvRPwP7y6zdZQ3kddVTi36PJjT7a41ZNWzOfPeHzhRHPOH+r6Kd++NaDu6HPPlcWKyc1uyNeu9+8DEb5LaJqG4zjUajWeeeaZebXS6XS4du0ajuPMk0qj0ZgnDt/3P1O/doB//s//Ob/8y7/M7u4uzz33HL/2a782t+n4JPE9lUg0TSOO4+/+wgMxGAy4ePEiS0tLPPXUUx+a7T8skYRxyu9+4yL9kY+iSuvvB0MgeHc74PV7Y7LprOPPbvR44VidtmlSCsHe7h5JkrCxscHS4gLjB4bEUZphGBa2XjD0I9lbnkp6oxko4n6ndxxlPLHcZDSZHHnNum5w9V6PS1tDcs2iZsNZI2a1bs8JWmVRzucqvc4+u3v7NOo1TNuRtrnK4ft1ouVyrOWQJFUoS1pVhyh/uIpUFJkw0rxAURS+eLLBm3el50meFhiqyoVll9MLDp5lSD/1aZRCihimScrnz6yj7vjsjFLSaVvT0qWXxcF+O4qCqWl0JwmKAgsVi9MtC89osD2KibOSlmdwvOmw1HQIp1XXOM547c6IQZAiygKVgpWqxQ9eWObkgkOQSB5JwzHmN75hNuhnJsPCxzQEOhKt1hmmfHPi88KqxbnVZbTZop+meJaB7/vsTxLSoqTlmvNhuGOoxFnB1jBio+lQcwyG6eHn0DFU2c+fIsE0TaUscvwwwTE1Ko6JY5pkeX6f3CoU2jWPlhOw2ZMwX1NXyQrBKJLgCIOCPEm4vdOhQ4PhIENFUAi4N4g4t+RxvOWSlgqilNL6tq6RZDlJlnN9b0RaCFYantwsCQnZ7Ycpe+OEE3MGutQDsyyL9dUVJrc69HYnJGlKnufomi414/ISXRHUKg7jQHKvru4H7I0TilICDCq2Tm84Yac7oMhzHNfj6VMJTlEnjCuoms6/e2ObvUnK2aUqmqoQJDnv7YWsNxz+j19eP9D5EOR5jqqq7IxiRnHOucXDu7MFz2BnFDOO8nnSibOCS7s+exPpm/PUSuXQcH+G2jqoyHD8+HHyPGcwGNDtdnn//fcpioJms8nrr79OpVL5TNtav/Vbv8XP//zP8+u//ut8+ctf5ld/9Vf5sR/7Ma5cucLS0tInOvZjlUg+Smvr48xI7t69y+XLl7lw4QLHjh37rpn+KG91gP7Y57f/+DUGk2B6nSpVz6IoC4Iwua/H5Oe8emeMEOW8XZDmJa/eHvJsI4edXWzTYGlpkUa9/lASmcUsCTWrLlVLIo28apUZpUKiYqDhGEziDMe2iOLDMiaaqvLq9V1e3wooFQ1dKxnFJfcGPb5wosG5JbkrVzWVSrVCpVqh6ljs90coZc5+p0s/KhgVBkLVWaq7nF6s4BgaKgrtuofvh6iaBkd8J3FWsj0agxC0qyaOofHy6RZ+InebhsocJXbwO8/ynCt3dklywfryIpZp8OWTLUZhwr1hhK6qLNesw0kE2Bsn/MnVHoNIGnctVW0uLJis1u2HfN6LvJj3+9+4M6LvpzQrJmUakxUqd4cx37nV5S9dWMU/ihMj4N4opkwD2vUKeSHIixyCkKhQ6QY5xe1NHMfBdV2qFQ9DKXAtc14xPfgoqopMEo6hMhj7qKpKxbHIy5IwTmm4BosVk+1RQs3R0EVBmOTkpeBEyyHPCyZ5BEIwiAq2RimjuMBWc1ZqNmlu0fFTJkmOpkgi6ZMrFfIk4u72HkO1Rj9IaLkGpmmiqgqjMONGJ+DMch2N8sjfZpAWGKpCWRQIpqhH00DPoEA9ZPugKgqWqeOHMSs1h3tDaV9QdVxp0halZGmGmebcvZNhWDZv7cZ0wwLX1LB0VXJAFFiyS5K0oNJusOCZLJsJf/Lqu3z1tXcpNIu39grOHVtmVih7lqwy3t4J+C+fW8VUlXkLTIhpMhEFmnLfunh23WkhMDR1LtszDDP+u1e3uLofzEVf2xWT/+0Lq/P21wfBf3VdZ3FxkcXFxTkBcXd3l9/4jd/g7bffxvM8fuEXfoGf+Imf4JVXXvlUWPaz+JVf+RX+wT/4B/y9v/f3APj1X/91fvd3f5d/+S//Jb/wC7/wiY79WCWS7xYfFf5bliWXL19mZ2eHF1988SPr+x9Vkdzd6/E/fvV14vQA3FOIOZnMskwsQ5d+I9cGFGVxyPHQMlTCpGA3VDjRNmi2l6h6zlRQ8OiYWZ8GieBL51b4w/d3GUWyl10I2cZYq9us1C1AQSgaqpLNjbJEKRiOBry3lyBUnfpUPFFVVUaTkLe3xpxoOQ/pWWWFwHFdDE1lM9C40hmR5gVCJGz2Yy5tD3npeIWlRlUOOS1z7lB4/9rh2n7A+zsToqxA03UcXfD8Rp2NpkPDNed8gFkEUYJpmXRGIV+/ssskU1B1nVvBgMWKyQ9fWKRmKnzxZOtQ5TKLYZjx6uaAKC+pezZ5XrA9CBhOAn7w3MJD/JI4zag4Dps9f27ApCuQKVJawykFW4OY/sinWnHndsLzzwhEUYKhqWRpQikEcZzi2DZFDvVWjY26KSu9IGTc20cgZ1YN20HXJDdlJmUz43es1x38qVhnWZb0xoHk9qgqSzWHF443cXZ9tocBYV5iGSpPLFYO6U7dHcS8sz2hREGjpF9CPxI8f7zOmUVBmEoYdcPRyOOIrU6XldVVbmxO5CZBVeagBFuDcanTDzNOtlzCJObBEWLF0hmE0vlRlKX0qUkzsixFU+ypKrJJkOXc2AvY7EwohGCpanKs6bA9jBlEGQiwTJMXz6zQMgVRFHK3O2ZnIEU2jakeXN3WpAlZmfPDT2881GEQAvZ6I7r7AcWki2HoU8/7JqoprQrSXGDZ2vy9SZbjRxnrTZeNus3tQcSJpo2uKcRZSc9P+dEnFueAkj+60uXSjs+pBfkbKoXg9iDi37+1x6kFF9fUPhIhUVEUKpUKZ8+e5Wtf+xr/6l/9K37t136N/f19fvqnf5ooinjvvfc+shPrh0Waprz++uv84i/+4vxvqqryoz/6o3zzm9/8xMf/nkokH2XYnqYpFy9eJM9zXnnllQ8cbH3Q8Q8O29+/tcXvffPtDx3AS3MnMGyXMCsfAhjKHU9JUsLCwoJcQHUT19IekFW///pZqKrKStXkrzxznFc3+wRTr4xTSxVeOF6XHiPIqkdqWE0o8oKd3V1SzSFDxzXv76zKsqTqWYyDhK6fHrJnNTSNaGrDOwhTLu1JdnzLk3OIopTtkMt7IWkwQtd02o0qimFh2/b8HDujmLe2RoBkvauqyihMefX2kKqts970Hp5zKSDylG9c2WGUqTRdC11XyaZGUt++0eMLxyrSlfGwPToAt/shYVbQdA0MVUE3NDSRMYpy7g4inlx5eEhalNJjpBACQ1fJ0vstUwkJFSRFSaXIURXm1SBI7kzNhO2oRKcgjhNcx0W3LNRCMqpN08AwaqwvNhlN/LlycRLsoccwiIypQZogLQRLVYtF9/4H2xsnvL01nqsu66rKycUKL55o8LljdSZRik6JdQBxlRcl1zshiqpSNxRmJmWjKOWdO31+6FybtZaLpijs7+3TGQxZW1uTTpM83B41TJM8DIjiBD+SpEnXMdEUhUGQkOcFpxcr7E0S+n5CxdIphcBPcmq2wXLNIi9KxmHEG/cm3OuFeLaJqqvcHsRUTI3PbVRJctkS22hX51p0hlFnkBtYkzGOqUiJlyxD0zR0oFBN0izDPmLe2a45GLs+YZrjCMHe3j57e3sMo5wza20u37A4tbFEs+rx7VtD/uRaj0EoW1Rn2g6pgDvDGCGkrtozqx5fOVUlyzKSQvDW1piWZ8w3YqqicKxuszmQ8ivPrtceye6iLEs2Njb4jd/4Dcqy5K233mJ9ff1jHeODYsaVWl5ePvT35eVlLl++/ImP/1glku/Wevpura3xeMwbb7xBo9HgxRdf/Nhf5MFE9fqV27x+6Rai/OBW2/SqMW2XOCtYbdfZHsWSQoFEEhVFiaKo1AzZTnEdW+LwlRLT0A+xz2eVyMzmFMDQdU60dFZry4Rpiamr84HrwfDjDENTuXP7Dq1GnbKygNLpPAQ7FqhTQ6/Df7dNg2zaxtkdJyRZOddpAomQckyNYa6wcWyNLIkp0ojJqEOSl7iui+e53Oql5IWY95JFWdJwTfpBwt1BxFrj4R5wEARsbncISou6a6BPf6CGpuJacKc75oklmwpQ9Rwm8eFENJ4OxBUUsjzDMgwKRSZQ/wMQaFGSsdxwMLUxaVEe+iFEWUnF0nEMOQuoODZ+IpOsqUk01em2y+4woDvJqHs2SQnD4YTTy425FH3NNumNxmwNE7p+gaZaLLVqvLRYcmNvzPbIpxRwvGGzXskxlBLQiLOSt+6NibKChmNI1jsaN/bHuDqcWfTwDAXLsKb6bJL0GmaCKC+R9iH3v2DP0giSgnGcoSrgj4cMRhNOnTiB59jkRclKzeJGJ8AxpAmZaZr0xiG2MROElLv9u12fq3s+wzDDsCyWqyZPrda52ZngJwUKsFi1eGK5gq1r6JrK7jhlexDScHV0VQAFpq0ziAsmmcJTyxVUTXtIvcGaCpKqmo6ty6o6zzJKNESesr+7g+fYOJ6LouokQgdVR1ME63WLW72QdKpvl2RSRqepZ3zjrat8573r3BulXBsr1OoN1hebBEnBN24O+cGzLX7i6WX8JGfBMzjZstEUudCnWS4h76qc5SnTSmnGp5q5rz6qF8lMsFFVVZ5//vmP9f6/yHisEsl3iw+rSHZ2dnj33Xc5ffr0I+tlzWYkb1y9w5+8cQUAw7LQVQijo4f8tVpVssaBc4sel/c8/MkEDSHLfVQ8S2OjInuxqm6iTGGflmWTZrIqmfVqDyYRAMc28ZOCqmOhKh+MWAvDkO7+Po1Gg+X1NcJUDkb3pv7Ys/nTJM6oORJFdTAOeZILQVHkqIr1QF982utWFVzPRfcclpeX6I8DgkCaT+31c8pCJcvk96Wq6nzoHGflIctdgPFoTK/fo1JrokX5XFl3FpaukQhpIlWxIAhjNE0/ZIlcsTR2RmL+Gco8k59IiENtxoe+O0vjWMvh+s4AXZWJK5m2HA+SJP0opuq6dCYRQZlCnqOmE056OaOplIymKlxYrnB+ycY1VXRNozsc8ertIbujZH53N3sRJxccXjizwosCLENhvzeQIpO7EyzLZC/SmMQpLU/qeOmmgZJlaIrC3UHEmbYLijIfeMvnxCBXJGJJcLiCLoXcpGkKjAY9/DBidW2NnXHCpBNgairHWx5hrtDxJVgh832pX7ZUwTXlMjGOM964MyRMC2qeTZ5n3NiL6LkGL59qoek6qqqgU1KWAkOXSKzuJEIIDn23igI6gu2+zzNrVcI4oeJK2HyUpORFSbtiUnd0BkGKrZaIskCxHLRc8ORalY2GRRRFDMYBlzsRk0JHKCqGqrBUs7iwXGFvnJDkJWsNm+NNh8WqjaFLLbf37w2k8VgwwN+7Q71WQ7ErfOdGwV97cmnudzK/j2VJU9c5teDw1tbkkDBp15fKzRuNaQX/mPm1t9ttNE1jb2/v0N/39vYecqN9lPieSiRHzUiEEFy7do07d+7w3HPPfSL0gaZpvHtrhxvd+9DLLC9IEdQqHn4YHWo9VSveVAF1ytZ2DH70XItv3sjpDEN0TWOlbvOlk03G+1s4tkV4YDbixxm2aRBOXRAfTCIAs5d/WF00Go3o9/ssLi6y0m7K3TMKLx5v8LVrPSZxPn+/Y2j8wLkl9APPuKooBAd2+UtVC1NTiQuBNS1+xHQxP7XgoqsqtqkRRTF5WFD1PGzbZmGhxXbW4+p+IHkiaTolhEntpHbVuu+7MoVBjydjVldXQTMw9vtEWYl3YKYRximWrlKd/q0UgqqpMTkwKznedLnTjxnHOQ3HJIpDokLa5c60lo6KIEqk+CUZt/sRWV5Sd3TOLnocP/C+vCj502u7bE9ywsBH5Dktq+Slc6s4tilVnVVlzk1RhGAy8dn1c0kgdKRrIMhkutmLWKvbnF6q4UfxfQRdWRKFIfF4TF6UxHGMYRhkWYquS3n5Gffk4FNiGzpZVqCJgqoB+5OMxbqLrqlkecHYT1ip2WT+gDjNaS+t8PrdMXuTdC6KWbEl8ujkQpOdgU/F8TjW8qiaCvG05Xm3HxGkBcsNjzzP0HUVUzMYhhk7o1jOakooEVRdB0VVSNN8Du8+wAGV91Ugq71Qbi7k/wtGUY6qaTQ9i+ePNfjmlR0mSYFhWljA2UWPY01nioiqcK1fEGoqnlGilBK1ttlJKdKE59YqqLqBbVvoU2hwnGZS6iUrsI3pnKooGAwGCAZYCxvsTZKHEsmM3PjXnl5he5xxs5fgWSrxtKX9155YoG6pUn4ozz/2Ztb3/c8skZimyYsvvsgf/dEf8ZM/+ZOATIx/9Ed/xM/93M994uN/TyWSByuSLMt4++23CYKAl1566RN/CVe3enz7yl0W24uH/q6gyJ60buDqKpMgxLZMwpx5EgHJV4kGe3zlmMfyF07hTybzHfEYKNX7znwIWQUIVUeIeJ5E4qxgeyQ5FmtNDzT5QAZxijldMOaHEJJr4Qc+q6ur2LYtKx1DJ8kK2p7Jjz21yGYvYhxnuKbGyZZL3Z0Ol6dtQscyJc9hGjXH4ImVCu/v+kSlQJtKjtdsnaen3tpzQp8iDZdml3Vuucb2eOoxYsoKz08KKqaK5nfoZCau4+L7PkmasL62jmHK1snJlsWVboIf5xi6Sl5AmqR8br12CBgwCWIs2yKZotsWKiYvHKvz7s6Y4SRElJK9/OUzLer2/UdcCEHHl7DUUgiWqzZqmfHFk03OLXnkhfQof3ABeG9nwvX9EEOkmKIkVRQ6ic6l/YgXj1vYB7KyZxsEYYQANvfHkGfopoFhGAgUbDLCNGeclPgPVLmqKjWrNpYN7gZ9TMcij0NKIaQydK6wWtHIs0yieRQFxzQZRwlhkuOaGk+vVknyku4onB+3VXHYsBNUVWVtdZX393y2RzE128DQlKn4Zsb1fsorJ2yWNmZk3YIkA8swsC2DMJ9gW+ZcjwvkJkQapd1P7KZhEKfpHKG21vC4Oy6IihJHlyinOC/QDZ0F5/69DtOCd7fHdP2UvBQYGiyaJc8um9QXlkhLsJQC68D9DtKcXlTgajKhgo5j2wRJTi/K6Yx8lDzBsQwqnoeim5iW9OzRVYWsEMyLVkVh4/hJFKf+EEDjYJxue/zDHzjBt24NuNkLaToGzx+r8dx6FVGWBEFAEATouj7fTM1+3x9GPwjD8DP1Ivn5n/95fuZnfoYvfOELfOlLX+JXf/VXCYJgjuL6JPFYJZKPMiMpimIOm7t48SKu6/Lyyy9/Ypjc2zfu8eq1rQ+dieRFSV6UVKsVcqEiDlQXk8mE/c4+C60F6o06QghW2g1GYznE9FyHOCtxDEDI/ipC6lJVPJcwitnshXzr1rTcBiwr4NxShS+eaKAococ9SyRFWbC/t0+e56yvr2Posz62lCKZ5QXP1B9m5ArZCpklEvUIRvSza1VarsGOnzOJUtoVi9Ntd/4DSw/6k4QJumFQlJKr8fLpFu9uTxiGGYqqcbLt8MLxBkYRM5pM2NvfAyHZwHESo2qS0Pf0apWqa/P+zkT6vFs6J5bqD/t5KxJpsz9JcEx9aoTlcHapwp29/lyoUVMVPFufz0ne2Z5wbd8nL2Qb7NremNWKxpdONKQagaURZ4cr3jgr2BokGKSIPAYUao5DWirsTjLCrJhbxboHksj0Ns//IZui/lRVQdMkJ0Um6IeftwXP4MRijZu7IyxDtovitMDRBMsOdPf30HUN3XZ4bVCw50sYsKVrnF5weflUk/1JQpSVuIYK0QBT02i0FkFR2PNLKo6NqYEQJaoC7bpLbxzS8aWk/sFI85w0z/Esne1hSMNxQJFuizNFAWu6s7dNg7wo5oTaUgg8U+Fsy+Tyns8gLFE0A0c3Od0w5ucSQvDmvRH7Ezm0tygJ4pzNqKDZqLOsSRSZgoZjW7I6y3LCXBCnGVXrcBvJMjSyEmrNJu2qRZqkDEejuR5YpeLRdhU2+wm6amHpKhsnThFqHp9bqnC89eEgnY2mw391RLUbhiHvvPMOa2trtNvt+dxz1smYJZOjkkoQBA8Nwz/N+Omf/mk6nQ7/+B//Y3Z3d/n85z/P7/3e730q53ysEsl3i9nwfG9vj3fffZdjx45x/vz5T8wEHQYRX3/39rSN8N2Z84qqYWoGaR7PGdjj0ZjVldVDhKJxnFGrViQ6SzenhK0HhuooFEJhFGd840afrJCCfQqQo/D+jk/DMTi/XJGKs4qsxHZ3dtF1nfX19UMPZHcimcCubX5oP8yPcyn3XpRER0BqURTWmw4X1kyCBwbWhq4Sx/GB+y5nEX4sfywrNYvlqoU/9d12DQ3X1Cly2Ot0cB2XZrPJ3tDn1r0hWdalXTFYa1ZYr3icfGaZKM2pGA+LaBal4N3tMbe6IYWqoyBYqdu8eKyOIaTP+6HPGcRUPYcbHZ9r+z66qkjxSFV6fNwbpCxVTc605WepVVyCpJi34NJCEMUhSh5jaNocoaYrgkkcE0Ypy7U6IBj74aHezWrdojNJ5vLwiqqQFiDKjKo+9R+3LTRNYeDHbA9DSgEn2zWeXgJLKbk3iMhLwXrD4cyiR7tiSrmdsuCrV/bZCUosTcHQFKKk4N1tybM4t1RBQUhPeMNkcVHKr6RFSZJK7pNQVXTdQNU08lxaL+fF0QjFqmfTdmNuqdCfRHiWJjd0uULdczjZrmGbspUWJBnXOgHbw5hSCNoVk7OLHj9wpkUvyNB1HVeXFa5tmZiGxs4wohek1GwdFUGa5tiaQNMtbvdDTrYl2kzAfM7m2iaOLnXusqJEmz6LIFuIlq5Sc0x0VaPQDRYW2iwsyN9PGIa0tICBljGJQF1cJ1Jsnl6t8tNfWPtIDPYHIwxDXn/9dZaXlw+tS7P554y3cvCZPqgH9ufhjvhzP/dzn0or68H4nkokswXznXfe4ZlnnpG99U8YQgj++M0bJHmBbTv4R0ByH3qPoskdV1FIBnaasrGxgWmah16noDBJcpqNBlvdAaUoKUV5KImAhO/uBlKN1TO1aRksh4ZpUXKtE3B+uUJRCnQKNre2qHiV+3BioBekvLPtsz3wEcBqs8Kza5WHhuoHP3fFsciynCgryPKSYZShawpNx5gviH6YYhj6oQXGNjTSZCqEWAi2RjHxXkDFsVity92iokD1QFspTUKu37xFs9mi1mjy/o7Ppd2EtFBBGGzFgv1wwnF3QN1zsFwPP1EPQYsBLu1OuLQrPVFcDVKhcLsXoSoKX163OUrhdRJEDCP5GasVE01VSeMQU1MJKdgaxHNb4LEvZ1sVxyJKcvQ8Ik9idE3Dduz731lRYqgKlqEgRMkkjKTLpWGQFbJPf6LlsjtO2J8kcgguJIrtZMthsWrNF8XNXsi722OSUkHVNN7bCTmzIAmDF5YrlGJm7ztNdp7Lvd6Yca7RdHV0VWqXaQiCrODK9ogFIyOYjHFcl3a7PX+vqUkF3r1xMjffSpOYKCuxTZ31hSqeoxNGyRzx500Vg5eqFk+vVrm67zOM5ByuYmk8uWRTtXXyosAwdd7aHLLVC+Y+K3cHEf0g4ytnFzi3ctisLUkzkjRjGMSUQsE2DfwgQFUVLMtGyQvSfCoBc7CF6JiEsXShXKloXN2LyXUVzzFJckFWFpxZ9HBN/SEekGEY87nUxlrJmePrlIpK6o9YFCO2rk9I2m3a7fYUov3dI4oiXn/9dZaWlh7a3B70sZ9VJg+SIQG2t7cfycPkcYjHKpF8WGVRFAXvvPMOwCceqh+Ma1tdbu32AUhyCc/9sDAMnSCRvg+D7v4c+/1BD4CCglDuG/w8mERmMY4L+eoZC1jX5zLW4VQuw/d9Rv0ezUbzkOikn+T88dUuYSaYOXff7fl0JjF//emlh0yjZhEmObahcuXuiPemBEJVgQXP5EsnpxpEClJsMLrP8C6ms4lhJKuoYTj1TDEtGrbGV860DiWRJIq4d/c2zWaTpYUWd4cJ7+9MUBRJMJP3vmQ3LjmxskSlopIlMXudwdTZ0cN1XQzL5mY3lPpRpgYIKpaJouTc64w419BoeYeT+Syi6L5hUnGAM6IqPNReyouCKIoRWcq4t8eJBZc7o5x4Cr9Oi5IoLTjVdlltVpkEshKJkozNrs84yrFNjTNLNX7kiWVudgN2RzGIkpWazXrDnu94B2HK21tjuXP3LPJcStVf3s9ZbVZYb9iESTInAlY9h0kQEqQlWVFSsQyJyJo+f6ouh8j7/SF1W0MUGYN+H9txsG05oD676DGMckaJwMhi8kJQlILTbRdN5AShtOJNSrjWibjb76AIwXrD5uySx2rdYhBmqIpCyzOouTZxklEKwa2Oz84goO7KuYqqKFQyqXR8d8odOSpcQ0MRBYOxj6kpWJaFbugUhYLnKBgH2q+eY00BKvLfzy9V0BWFO4MIP5Q2vk+vVnhirY6p6yiqSpwkPLjJUBT4ia+8wJOnJFdDCIHv+3Q6Hba3t7l8+TKVSoX2NKnU6/Uj16goinjttddYXFz8rh2SWVKZ/f9MrfjrX/86Fy9e5Ed+5Ec+8L2PczxWieSDIooiLl68KMlIuv6RdwnfLZIs50/eujn/d0VViHLBoqFL8tsRYVs2/jhgZ2eHhUaNdu3oh2sWQgj8OKFRcdnvdJmMJ3Jh9FxM4/6iV3d0NMOiLKXF7EzqvCgE7aZJv99nNBqxtLREq1EnSe9f341uQJAUVC0NIeQDagJ+LkUfv3BA3fRg5GXJjf2I1+8MZcIwNKkHNk742vUeP/7UEoauTs21JFZIVRWC6Y/4O7eGDIKMii0RRaUo6foFr98Z8UPnFlAUye0JRj2WFhfxKhXiLKcbZGSFoOHef/xsQyPJS+4NYs4ttbFrHl6lRpIkBIH0VxlHGUGkYRkapShRFZUsS3F0jSAvCNKC1gd0BhY8k6v7PqKUhLpcSJBsXsJK7fDzZOoavj9ha3uH9sICLyxVcDsRdwcxQZqhKXByweEHzi/Pk0iSFXx7c8j+JJm3xd7dGvOVs4ucajk8uVJDUe5DW2exPZKy6Is1W8qsKJL3MQgyru4OqVtNFEXOtGxDnyKbFGxDlYrKhcDU7z9/uVAos5R2s8FCs04URQRByN29PlEhcC2TlbrLy6ebXNvz6YcZVVvjRMuZMuTlsYZRymv3AgaTEEtXUTWda/2ESSb4wkZlfs9cxyKaGrcBTJJ8CvVlPpSX8z2DflTg2eaRVsyeLqjqJd2oxDBtsrJk4ssk90S7hm0aOJbUJ5uE8SF+lKoonF2qcLLtSnKuZWDoGkmSkcyM4TQNxzIQQprRlULw4698fp5EZtdZrVapVqucPn2aNE3p9Xp0u10uXryIoijzpLKwsIBhGMRxzOuvv0673ebChQsfu82uqirf/va3+Tt/5+/wz/7ZP+Nnf/ZnP9b7H5d47BNJv9/nzTffZHl5mSeffJKvfe1rn5pL4jffv41/gNegKtIi1rRs0nTy8EOhwH5/yO5+h4WFBWr1Oo6hzl0MHwyBwDZ1wjRnaWkR26vNBRL7gz6GbuB6Lp7ncbLlcGnHpz9OMQ0F0oK0EFi6yoqVMZmkrK1Jhz1T1w4lkn6QoagKZVkcumZNkS2vDwrb0HnrzraE1FqyatFQ0GyFcZRxdxhxuu2RFcXU7yPDMXX8LKUfyv+5U0c/ef/As3X2JwmTOCMLJ4wnY9aXFtEPgCEmQYRyBHplpjdl6woTP8SxTXTVmUKLFwjjhCt+hyTLEblMuIahE0c5lqkfIlA+GGt1ixMtl1v7I1QFNF0nFyrtismphftDU01TuXhzj2u7I1TDZFUpOKcXPLvqcbplEaYFzYrNYs0liON5C/DSrs/OKJ6ad0nZDD+Db93s8lcutA8kDyktY+hSGTktBJqmzlV559ehKkRT+RkhBLqmMZhEgMA2DY67NivdmLvdCZUp+irJBWM/4MKyR7vVBEC3HG7sJeyO5fkUcir9MRfqA854FmdrJp7nYlkm93fsgt2goD8JabnG/JkyS9gZBHQaNhdWpUqtH0WHFnVDU6ebIHlrlOlgOcliVCHRh5qq4Niy5RolCVEYM+x3eGrZYSfS2R0nhLmUBLqw5HJiwSHLCyyzJAjkfMdzZAs1SrK5Np2uqrieAUI5RPQFCZSZTGHGqqrwX3zleS6cPOxH9GCYpsnq6iqrq6uUZcloNKLb7XLr1i3effddqtWqnLW0Wo+URABeffVV/tbf+lv80i/9Ej/7sz/7mSr/fpbxWCWSB2/inTt3uHLlCk888QTHjh0DPj2XxL2Bz8Xr2w+dX5SCMM2p1SpTbxAZAkHk++wNpO/2bKiu6TockUgEAlEKtKmZUxhnWJaBrteo1WqUZUkYhYRByM7ODoqi8PlFh027yvZU6XSxYnLczajpJcvL63OwgR8lqKoy5wDINo/yEFs9zzOq1geriZqawiiauuIdiFnbxY8P3Oe594pc3NJ86iD3wEmVsiQvS3Y7PWxSzp86TpIevj8LFZMbvYiyVOeIsVIIirJkvekynkh5liiWHu2WYZJkBa5tcX6lxrvbE9AUNFVI6ZEkp+2ACECxWhJmrSgMwoxBmGGoCqfaLs+vuTQtuDcdAq/UJBKtXXUQTG0C3rnLZi+SEidC4UYnZGec8ANnWrQ8k4ql4zkWg7H0jbFNE1VT2Z5kWLo618+yDAvE/7+9P4+S6yyv/fHPmU9NPY+aPMjyINmyJk8EHIwNHmXJhPFyjXG4F8I35peJBEhySUhCIOFe4BInQEjAJMANwZZtJmPAI56IrcGWbWTN6lbP1dU1V53598epc7qqu6pbUkuWZNdei7Vwq7vqrVNV7z7v8zx7b4Ns2Z8uW9wWkJW/+ZUMC0WW6U5EODhlIkoynuP4nxvPN+YMFOXxiE6uUMZyXEazBpZTpC2icFFfFFyXyZJLtmxhl4uc0x1jzRld4bV+eSTH4FSJuCbTGlGxPUgXyhwqR1jXrmGUS0wl84iSiKzoaBGdno52hicnUaXaUWhJFPwYhIKBh0e+4CdDRiN+38kwfUfhPeO+uWJbVEXAj0cQgCWVa+C4XqhiLxtlsqkkHe0dJFpb6SmbnGe7mLY/dBJcz3hUq/yNMCP/xydWRZFxKuaZ5hzuF4IA179hzbwkMhOiKNLe3k57ezsrVqwgnU6zY8cOZFkmmUzy5JNPhqeVjo6OI+p1bN++nc2bN/Pnf/7nfPSjHz1tSQROMSIJ4LouL7/8MuPj42zYsIH29vbw3xaakgj+Hd5DO/bUqrnxS1uB8WHRmLYwcV2X0bFRJElm6dKl4aix63m8NJShaJhEFJGl7ZHKZIlPIp7nYTt+T8QDIqpCvtJrEEWReCxOPBbH8zzK5TKFQoGzIgXOUB2QNbBLRCIRenp6aiazPCCuq+Ed1lmdUfYnS763UGUUtWT5tuErF02n5tVcAzzKhh9/O5E30GPRsCTjVpxxY1V3+H4qoBy6DLdHfa+hcuULH6Bo+FYtGjaLFi0OVe3VWNYeYX+yyGTJr7MHJ5G2qMpZrTKCUOUGbDk4TplYJELBsLmgL4HjehxIFimbFqIkcU5flAu6NRyjxMGBQVzPY8iMcjjn+OaFImw/NMmlZ7ZxTk+Mc3pq61/5UpmIqrDr4DBDWZv2lhiVaVaiqke6ZPPKWJ7fWN6BrqlVVh6+WM+wHSzTQpYkFEUFQcA0fIW453lYzuzxuWBMtjsm0aJAMlskosjIikLBdGjRFc7oiBKLaORLfsP+uYE0haB0JIksadNZv6yVbL7EoZEMS8/oYll/p7+pGxa5ssnhqRK6IhFRFT/d0HNI6Arpko0ttdLT01L5/PklsFIuw76pFJ4t+aPpqjh9eqx8Plpierip40Ex7J95dCYiXHFON1sHMj7heL42Z0VPnCXttSXEslEmnUwSicdR9Chlw0JVZFrjKo7nhg3/eFSvmFnW22gFyqaNf+Dzv3OJqI6HV0m5rPauE7j+DWs4/yhJZCYMw+Cll16iu7ublStX4rpuaA2/a9cuTNOko6MjJJZ6fn87d+7k5ptv5mMf+xh/9Ed/dFqTCJyCRGIYBtu3b8d1Xa644opZb8LxOJGMpfPhJlwNURBDHYmL5/dDCilGR0fRNJWe/iW+bTqQK9v87NfjTBUsEAU826I9qvDWC3oqvQrfIqJkTitcDdOqsdUOEMSVRiIR+qRuirkMh0cnEEWRYrHI6OhomGkQnEoMyw4fq7dFY/3SONsGMhRMX8WuySIXL26hMyJSZx8josiUSiU/9TBvUjBt1EpJpmT5G1mNKlwAXZXIGv6D6YrIeT0xdg7nyJVtFMnPvnZsm3PbdZYsXkREUygUC7NeryKLvOmcDl4ZyzOcc7Acl7O6oqxb2oZgz7aiKVsO+XKWnvYEhbLN6sUtrFkcZ3Qqj65Mq95J+ASx83CaA6ksqiigSyKe45A1PJ7Zn+LaVT010bLgE/yhwcOMpsuAhCx4CAhIioIA6LbLRN4/QRRLs0uFmizSFlUYzZaJ6SpWZbzWciWiEXGWQjqiKWRLJni+9uPys9rZNZZnJGtgWyZLWjTO74vT3xEDTwBR4NmDUxQtlxbd994ybZeDk0ViCkTNNBec0YeuR2o2dUGUECQFTRbCaUHwrUoc1wvtYARBIBaN0dnRRrFkYJoWfW6GiYJNpliZ7gIMVyAe0WlVpyfIaiFgmBa9cZU3n9POWNZX5nfEFBSh1pC0XC4xNZkklmihpWV6cMSyHSzbd5YQBYG2RATbcVFkKRQ4zoSq+N+3oMQVOHML+CPCkiRhWTZXX3rhcSGRrVu30traysqVK8NBh4A0zjvvPAqFAslkkrGxMV555RWi0Sjd3d1ks1kuvPBC9u3bx8aNG7njjjv40z/909OeROAUIxLDMHj66adpb2/nwgsvbOjnv1Ai2TuUrKuxEMTaPJRUJs/UZJJIJMJZZ51BwZz+t8f2JJks+PYdkiDiIJIqmDyye4KNF/b6DUZNwa6yHjFth6iu0Gb1ggAAe5tJREFU1tdtVGAU8hweGqF/0SIisXg4814oFJicnERV1XCKqS0Ro2TYRFSFFT0xlrTpjGZ9X6e+Fo2o6o8pJ6JamMIYIPA9OqszStlyeXkkh78sj+64xmVnts2ymXdMi2il5wOwalELmiKxZzxPoWyjCzbL+3RWn9lLPKIiCR5lYXrEOW/Y6LJIVJPRFYmLl7SyBt8+HEGgXCzWPF/Zctg5nGVgqoTrQmskxfozuzizM0o2Xw7NEWdiMG2gyTKtMQ3bMrFtl5gqkjUcXjowwpmdEWLRGJquEdNV9h44hOd5dHV2cKiYxb8K081iB79ZrMj+hmVaMz9/Auf1xMlZAhOZAposYrt+6W95d5SoIqJXGsCjmTKP7Rlhqmgh4KdOruyPs35ZG7br4nl+70pRJHIF/2bnUKpIyYHOlqg/dWZbqJKAIYm8Mpzmhov66wyg+DbyuiySKxu+ir1yks4Vy6iyGE7WSaKApigVEvING89f0oUt5TiQLJAzbVzP79f1ykWckkfB1YlGIwgzgs+Ck5YkMC1s9PzXFYtoiKJAOp0hlRwn3tJOS0v9EzNALKpVMoAEwEPXVBRZxrIdSmWfrFVFxvPcuiTjj1ebiKLADb+xhvPOWBiJBFbsLS0trFq1qi4BBNbw8XicM888E8uySKVSTExMcPvttzM6OkoikeDSSy/ld3/3d18TJAKnGJFomsbKlStD8VQ9HI8Tyd7hyYrliN+ADCAKYqg4z+ayJCeSdHd10dESozqwbqpoMZY1/KS6SilLVlRc17dnTxUtOuPVzUuqnqP+6wqEjVYxR19/P90dbeQNu2bm3XGckFSmpqbIRDRERaOnvRUP3533rK7ZPZGZNvh+WcvfpARBYGV/guXdMYqVvkdnTJ1lDxxRJXL5PJIooms6Zcu3Vz+3J8bimMDI6BidHe20tbX5f+q45A2/F/HScI7d43lM20USBRa3RVi/rBVdkSqN2VoxGfgjuU/uTzGSMXyyFgUmcgaP7Z6gvCzKuX1+ubNYNqf9u/DLcqbroSgSju17RAUbaMm2kDUdWRTIpifx8CiUTFRFob+/H8OFl0fz5CoTcIIg4CJg2x6Lu+TQC0pTFVRFZjRdZipfJKHLLO9rRRQF9k4IvrBOkzmrM8rZXVHf+sawSJdsHnp5lJLtEtc1HNdjb7JAumTxmys6USQxNDqs1lpYjovrODhVYlkXD89xkDUdpUF0dCKqc3Znme2DZTJFE022sVwXy/a4YFEbizsSGKaJIIoUjdqTliAIXLQowdL2CJN5g5ZYlKjkILoWhUKRfDZNPpNC0XQkWSEWixOPRbEsC6eOO4SH721WKheZSibp6Oymp6sD2/GDu+qtPVeoLmf51yS4Lorsp0K6HrOsZqpxPEnkueeeI5FINCSRelAUhd7eXnp7e7n77rt5//vfTyKRYHR0lP7+fi655BL+9V//lVWrVi1ofScbpxSRCIJAb2/vcU1JnInJbIFUruh7RFWiYMPnr9ylTyQnyOd8/6pINIKmqzV39CXLwfP8KaXQDsP1KqFAXmjiNvPLCf6XSZIlnKp6k+u6jI2PYVs2vd19KIpMvmQgyXLNl1KSpHA80XVdSqUSRqnEwOHDWI5LLOqPFUcj0fC1BM+palp49FdliWyuHNp0g1+e0eRKPbrOialQMnnuUJrBKV/RflZvK+f2xHDKBZLJSXp7ukkkfK8zz/MQPAtV9Ng1WuKFoSySKKBX7tQPJAuYtstV53biAYrgUSgWiUd1LNvFsBxGMmXGcyYJzbci9zyPWEInmSmwe8xjUatfdhMFgURUw/GgWDLQFJmumMZgKo8aUcJtyHI8REGgpy1OS4tGROlm1559RHXNPykMDyEqKud2KOxKmqRLNqIoIXgefQmF83oCHzdfhf6rg2mSeRPH9dB1jSWTBmsWxXhDooN6oSmJqM6zvx7xp76iCuD4jsO6QrrsMWV4nNGuYDvuLAFdi+7bvfgxuwK242CUyzgo9EZV4rqGLEuYlr/RCoJQmbIzwom0fRMFiqaDKomc2xPl3B4/x10SRTzPV67btkupRm8h0KrLLOtqIVso4eebKEQiUcDDsnxSMcplSvkcGUVBVFSi0Siaps26BuVSkdRkkta2dvRIlGzBJwBRrDgx4A9YRHWVXMOeSPBdEMmX/FFqv4QV2KZY4YlRFAVufONazl22MOFycBKJx+NHRSLVOHjwIJs2bWLjxo18+ctfRhRFRkdHeeCBB1i0aGEkdyrglCKSI8FCS1t7hyfD/1+quOQGTfeAwIrFIkuWLAnNBAVAU+Vw5LY9qsya4ffwcJGQJY/2mD/zXjRnb8hB0/2loTQvjeRIFUxkHM5okXjzRcsoV+7OPM8josjk60yEjWTK7B73hW/drRHOaOmhU/O9elKTKcbtcSLRSEgskiShyyL5ssULQxkOTZYwjDKtEYWLFiVY1jF9ijFMq1JImP6yeB78cPsA6ZLfC/GAnQMpDk1kWdlis3RRP5EqIWdcU8jlc9iux0uHkyiSTETx6+qy5G/+Y1mDibzJ2V1Rsnl/Oi5XKIEHsahO2fYJVpbkSr9JxjJ9sVmqYIb9IdebTquMaiqyJHLh4hbGsiUyJctPlXR914BFrTq9LSqqJLBrzz4SiTiC3sJE3sSVIrQpLv2KjdJmk7ZkPAG6W2Ms7YwjhcMOHv91MM1Ipkxcl9EVhaJhsmekjOA6XHler3+iMP2xVM/zaI1FyBZLTBYsFKl2ExIFcByLyZzBooQSJgqalj/ZJQgC3XE/MnhwquTnYtgWnuRnp5/bE6NkmFBp+emqQlRXKz00/9N7VmeUMzoiGLZPRJIoospSZSzXDt93qNVbFMsGsVikQiIzIaAoKm1tKlFdpVDyh0VKxSJTk35/T1E0VF0nEoliGCVSyUnaOjqIxWrNVV3XCx2AExEN23FoiUUwLTu8BtXQFBmn4nsXfKem4wm80GTyTWvPP24kEo1GufDCC+c0XWyEoaEhbrzxRq677rqQRAD6+vqOi2HiqYDTjkj8xtn8fliNUE0ktusSj6jkSyaWZTEyPAJAf19/SCLgGxQqihx8V4koEhf0JXhhKINhOUiV5iWCyAU9MaKqfxfdCDsPT/HY7kkcz0PwXAwEdk15RA5muLhvusFdLBsIgljTztkzXuCZA6lKbrtAsmCydxR+4+x2zuzspLOjE9MyKRaKZHNZJpIT6JpOJhbjVyMWIzkL2bMREUjmTX65N8WVK4SwsW7ZzqzwqN2jGdIlm4Qu+6cwDwzTJFVwsHq6akhElUUKRZ8YypaDYTvIoofgyQiSguu6vi+U5eC6XkgiIQQolMrgmP5El+gr2C3TqLxnHi26POteVVdVDNOm6Lq0aSK/cXYHe5JlUkULUXRY3hVl1eIWJM9j994DtLW3cSAnsPfQBHbldKhKIhcuTrD2vEVMTE7h2galYobRoTRaJEI0GqPk+lGviYiCJks4jo1WiVsdSJWYzBUrbsBeKKIrGxaeBxFFJFuafdoWJQlJ8EJT0ECXpCoyEU3FdhwuWdaC7JQZzJhomkZbVOG83ji9M8WUihz2FSRRIKKpIPjj50FZ1W9OM0trAdV6C494VMdxXRJRveZOvxqBIFEQROLxBPF4IpxCLBYL5LNZcukpwEPRtMpJpT5aYnqFtIRZ1yCY4tKUaVPI+hCwHIdr113MimULy9mwLItt27YRjUa56KKLjolERkZGuOGGG3jzm9/MP/3TPx3TY5wOOOWIJAhgagRJkiiXG9dE50K2WGZsqjZS1HE8SqUSoyN+E8zK1N4BKZJE2TQwbQdJ8h1uPc9jw7JWFMkXohm2S0T1yeUNZ7dTNEyMOl868O++njs4hQsouMiKhChJGJbDCwMpzm7rDZugjuvSEtPCTd10XLYPpnFdz7eaEARwLAqmy9ZDaX/8uJJup6oqbe1t2LZNsVDkUDLHSMZDFkHGQRIlX8FdtnlxOMuStmlPq2KpEh7l+maMAxO+iC8gEdP0J44kQWSq6G/4YZ/Cnh651GRfB2DZfo3fc/xMCcPy88o92wDqbyyL2yK8OJwjUzSIyh6KomDYHh6274tV9R5FdY1S2cBy3NCTqq9Fo6/FzwqRRIG2eJRiIc/BgcN0dXWRsiR2j02hSAIx3e/VFE2Hl8dLdEbzdCfiQJxEawelUgnHMinmMgxnLQzTIyL7ZcwwyVL0R6ENy60QiYAiy0zl/AECVZE5f3E7yVKKkuUQUURcD4oOqKJv8DgT4QST55FJJTm3Q+FNq5ZRNGwkoX75rLok5Lge+YreIphgUmX/s1aqU3atRjwamZFY6KGpvsGi4/gBZbGIXmNVEqB6CrFYKJBKJdH0KJ7rMDE6gqIoSKpGJBJF1zU8zzfLzBaKs15T9RRXRFUQJRFVkSkZRt0GuygK3PTGdceFRLZu3Yqu68dMImNjY9x0001ceumlfP3rXz9tfbSOBKcckcyHhfRI9lWdRgKMTiTJTk1VlOot5HK5UEsCVKzbfXKLqhLZUuCXBWuWtLJ6cSuG7YYNYQTRJx+rfrBNtmyRK1tIooCsyOEHVFdlcoUSE3mjxqeqWDb9EVABJvMmRcv1tSKCgCSI2K6LKnqUbI+pokXXjEkmWZZpaW1BLAgIYhZdEbEMC9Oq6Fkq02bBiCX4G1Bcl/y+kGOjyf4drOt5mIaJIPheSEbZRsRFkwVKlkdcFcnmp8sgiiSwvCvKzuEcZcv3qSqWSpQdkUWtKsu64pQrjzcTMU3iN8/v4ZevjPu2G2V/PPmcriirl7VX1P2+dmPrgST7JgqULZdEROb8njhndEYAwSczWWQimWR0bILeXt9i5uV9UyBKaDJUBB+0xiMkMwUOp8vhyK4gCBXxaZREayt6q8Wu7Dgl20XGBc/1b24qQVpRVUIQIBbRw5Ib+BtiT0RkRafKvmSJrOUhIBIRXS5e0jo9wjwDggBjo6O4QGd3J4bpk4jfExAxbZtS2aQ1EZ3RnK6Fh9/HyxUNHNdFU+TpmN6qvoiAP101M/Y2GO0NSmAt0QhuJZiqWDbqNtgLxTxTqUk6u7orfRU/frpUKlEsFEmXkgAkYnEKhQLRaKRyAp0NXfX7mU4obg2muKTKFJeJJInHjUS2bduGpmmsXr36mEgkmUyyceNGLrzwQu66666jjv0+3XDavbqF9Ej2Dk0Tied5TCYnyeVynHPmUhzRvxSBuj38vaB/gl9q8vzc0nDzkwRmCfJaYypWYbZOxfM8sukp8Pxsbt8RNhABVlqZM0pituOXmvJly7ecoKrB79nh4zq2ha42fjs1P2Qa0fP87JLKXL9lOoiOzeDgALFoNBwtzhfLxGMRcrkcyzoiHEoVyRcNdEVEUabv9Je2RyiWDVqjGoYx3bsIcOGiFgzbTwXMGzaqotAb9bhkaRzD9BMiNVXBtGym8iWmijaqIrGoLUKb5nHdqh5GMwaW69IRVWmLKhimRdkwaYlF+OXuCXaNFREAwfNI5k2eLkzheB5nd8XQFJmJZJLUVJpFi/rRNJ2yaZMrlMF1kEQVUZIQJAHLMEEQsBqUTWIRHVEUOaMzxv5kAUH0bx5KtojlOiyOOOQzaTraW30bmDp6odWLWzmrM0rRETEMg94WjfZYJGyW1/YEXIaHhhElhd6enqqfC+Gkk+d5tCX8TTqqa3UnoMAPLzMsK3RDqI7plUSRiK7h4SIghP2KRohHdbJVJ5/qZnfZtLFsm0I+x9RUis6unhotmChKxGJxYrE4nueiSiKjE5PYxQL5TApViyDJCtFYLJy201UFy3ZwaqYPa6e4dFXh2itWHxcS2b59O6qqcvHFFx8TiUxNTbFp0ybOOeccvvOd7yw4K+l0wClHJEcabnW0KJZNDiczALiOr1S3LZslS5fgSQoi/h13tbqdSsPRv5tzMR2HeCxC0Wj8/IIggOvN2lBdx2F0bAyxYgNyOG34J42KJUbJNIlpct0SRyBk7I5rxDWJbNkmoSnYpr9pGLZLe1SlTRVw/aefhaXtEWJqmky+QEs8iud6OJ6Ah8jKJW0s6tYoFv3c9fHxcWLRCEZMp6WlhW7do0ezGS/7d95lx0aWBC7oi7OkTSeuK6QrAV66oqCqMsWyheP6ZHPpme1c0BfHQcK1TTqi0zb1hmVjmBYvDufYNV7CdCueXbLL5Wd10J3QWDojZChoYA+l8uweyyJVTAzFCilkSiYvjeQ4r6+F4dERCoUiixcv8lXnFXTHVcayBo7rIEoSlmH6li+SwqKOBJIk1EzWBVNQngfrl7WiSiKHUkVsxyOiilzUHeesNgXXMhgbHcVyHGRFIx6PEYlEww3J8zwWdyb8XkDMJ4BiVbNcUxXfn61scPDQEJqm0909bQNfC4+WWCScfgJm9UVc1yWqq6E7bz04rkexXEZXVYplwxfxiWLdvsjM8pm/itpmt1Uukc9mWLpkSeh8PWvlnkdrPEa2UKKzsxPwLX38KbASxXwWRVHQIxFMTUdRtYZ7gygKXPeGizln6cJIxLZttm/fjizLx3wSyWQybNq0iUWLFvG9731vVrTEaxWnHJHMh2Mtbe0fTeHhYZkWIyMjyIrMkiVLECtq7kREJ1cq++r2yhcuovlf6Op0s7kSFMH/ImdyBf8UURmjtUyT0dFRFFWlv6+P1i6HX+xKkin7X25BENAElzee0z0dYVsF07L9erRpc9mZ7Ty+d5K8YeOYju91pEhcdmabb64Y1WtiTwO0x1QuWxLlqf0G2XwRQZKRJIkzOyNcuCiBIvnZHx0dHViWiV3KMzGZYnBoGFkSuXxpG3khQrLkICDQ36rTFVN8q5aqhnm+ZDA8msVxPc7oTpCIqBTLZRa1x/0NSJv9xdqfLPL8ULYSeOSHWWXKHs8cyrHp4hiubYf7lkDljrhQZqpgYtoeLRUretd1cF0HVfAwHImDh0fQRN/mf2bJZHl3jIGpMjnLRbH8gDLT9uiMq/RE/cAvP3RKREQgU1W/l0WRtUtbWdWfoGw7RFWJqKpUpqAixFpaKZcNLLNMuZAnnZpElBWi0Sh93V2Vjb/+pmhaNpZpMjB4mEQiwZLF/uZYKps15SMBf7otN6MENbMv0hqP+JYqslO3WQ6+XY+myOFpZvpU42tmNFnGcn1r+fnGcv2TyBTdPb14goQkikR11feqq7wGz/Noic+eBpNlXzNFJb/etS0yuRyFgi8gVjQNVdOJRqPh+ymJIje9ae1xIZFt27YhyzIXX3zxMfUzcrkct9xyCx0dHdxzzz1zDha81nBaEsmxnEj2Dk1SKpZ8ZWlLgq7Orprvg2lXLEfECllUDAk914XgdCEIFMsGmqZhNrBriKoyWdOfahIQKJbKjI2N0ZJI0NHRAYJAQhe56aJeDk2WKNkQ0yX6o2KY714Pruv3Zpa0R7jxol72jaTJliRadJnl3VESlcyRfKFEPBatyWAXELBM3zjw5tUaQ+kSpuPS2xqlry1W81o8z6MtqpHzHCKRMoZhEIsnKJTKOGaGPl1HVHXikkJcj5IrTJPI4akSvzqYDonsVwenOLc3zpXn9YLnW5gX6+RC7JkoIIgyEaki7pRE4qJHOl/ileE05/cliOpaeFIMSi+qLCIK/kmy2jzSEyXMUhHTUuhf3Ick+vGssiRSNkxM26EtqvLWlb3sGEgxnDEQBYGzuyJc0JcIFf2FkkFrLEK6UETXfBFi0GgGAVUWUWURTZVxXa9qCkpA13Vfbd4ClmVSLpfwbIv9+/fjCiLRaJRoNDbDdRcEz+HgwCCtra20tbWFr7W2fOSLKOcrQcWiGtl8KSzOBkLK6tcgiSKKIjVovgsYpo1h2iRiEYqlMolopIYUqpHPZUmn03T39IWbqOO6NZYlEU1FU2UKdaxmqhGN6JiWRKeqAV4YJ1DI5chn0iiaiqLqvOOaK1i+ZGFRscFJRJKkYyaRQqHAO97xDiKRCPfee+9xi7o4XXDKEcl8pa1j6ZEYls0Luw8wPpGkq7urri2DYdnENDVUt/tWGJYvLauQSGWBqJLYkEiC0WTLdnAtk9GRMbq6ukjMeE5FEjmnJ0ZcV/FwKcyzKZQMy59OshwWt0ZISA3GHwWBUrmMIithrT+uSWRz/t2fJouc3TVtWmiaBrHINPEkNJlMLsfExATlcpnFixeHx3PP8912bcskOznOyNAgsajvAeaICk/tn8KwXGKaP55rOh67xou0aElWVAR9kigR1VVcz6No+KWiki0g4uAhVb0M3824aDo4rkfJMJErDfbAakMQBdoiip+poflNbkSZbDbPkhaZM5f0h+PT1aWXWET3N1DJP+EF80/Vn73pu2ZfgBlsqOBrLYLX4DgupjWzfl8LVVFpb02QLxrEWvxms2sZTCXHsT3QdZ1oNEZEUzg4eJiOjo4a/yl/1VQEhAKqouBUtBaW7VTGxOee4KomherXICCQK9XTiUxfh9ZYJJyoqvWxCojNYmoqxVQ6TW9vH6pa/07c9fybhHSuSPVpx3aniQ18L7Lqfg74aYma5m/Otm1TLpdYd1Yv44P7eXJ8iO7ubrq6umhvbz+qkpTjOGzfvh1RFFmzZs0xkUipVOJd73oXAD/4wQ9OeFzuqYhTjkjmw9GeSFzX5ZVdu8hmpuhf1F/XiTOAWLHNdh0XUfADcOrlZhTKBqIozepFyJJIsex/4VKpFLlcliVLlqJoje9OSoaJfMSfe/8JrXlKe47roQlgeaApEtl84/hgz/XIFfK0xGN4rkc6m2X/4VEOZ20ENUpqvMTyLt+XKZhgao13kskVaLVMHNMkl83w62SZQlkkrkmI+OWSqCSQKRrsnSiERDLzDrU9EaU9qjBYMqCqJxlsIgldRlX8cdqgsVptIf6b5/Xw+L4pJrOlSq8jT1dM5jfO65/lAwUQUVUM0wp1CNVajVLZDAcZWmIRvyFfB7bjki2Uieoqpm2jayqiMDu0Cnzxpa5Pnx4kSSIer4wWt02PFhcyU6QsG1mWEQQRx3FmbWqS5I8UB6eHcoUUAhGj6/knhVhUm3OCC5gmR8vPeI9GVCTBt4IP3B6qyXTmY02Ts0cukyGfz3HOWWciSsoMdfz0X7TEIlWluFpi80+NKiICRdOoIpHZ0FSVd1xzOcuX9OI4Thg+9eKLL+K6Lp2dnaGJ4lw9ioBEBEE4ZhIpl8u8973vpVQq8eCDD5JIJI76MV4LOG2JpJ6L7kxYlsWOHTswDIPNb7mC/9ozPOfv50sGsiKRzWWJajJIct2ehet5tGhKjWgPQJdFDA/Gx8cwTYNFixbT3hKvazkSIKrKFItFVEWtsWuph0LJoCUeJZOtE7o1A8XKVJNtmnUNKqshIODaFqVSiT2DYzw3ZmM5AoJQwkuV2D1W4E3ndNDXooWiMUEUUTUdNJ1IPMGAMYVULIEAZdO33hAEAbFyqpgNj3gswlSuyNkdGsNTeYqWR0STsW2HkmHTFlVY0duC63rYdW8eBGIKXL2ijbFshMMj4/QvbefcxV2YdUSrUV2lbFo1m1SN26woENN9dXy2ztRdNaqb79XEFtE1FEnEMG1M20FXlbqOwTA9WuzZMhOTKTo7OxAFAdsoMpZOgRgEn0WJ6HqlNDf7dfkiQn+DTkR1XNclEYtQNsy6WgtFlgEvnNryZljB66qCIvuf/VRutnvzNDxy2TSZbI7evj4M2wPbrFXHGz4pJKKRWf2cajiui+M6FE0bz/UaNvwlUeTmK9dxdqWcJUkSPT099PT04HkeucppemBggJdfftkfFunupru7m1gsFr4Wx3HYsWMHnuexbt26YyIRwzC49dZbSaVS/PznP6+Jv3694ZQjkiMpbYH/QZhrNrtQKLB161ZisRiXX345LgI7D01QMhuo4j1wPZclfb2MJlPkczlS2RxaxW03FouhVN3dGJZZSYGbXm+xVGJ4eAhBEFm8eDGSJJErlIhEdMp1Gp2yKJDPFyoNdwtFkhuOnobLtAwiqlz38apRNGxeGR1nNFNCUyQWtygsaY8wMyse/GyTyakphkdGeGFCxHKgLaYhiiK2bZMr2/zXoQzvvXRp/c1AEOiIaeAVkGW1ouqveEJZJm2Kw9RUKuwJCAh+o7hyx7+0PcKlZ7bz4lCWQslAFGBZZ5wrz+tBk6FQrq81Af+OXxUc7PQoKxd30NraimnZlc1M9ctxFf+mQh3x3IwXgut4pIulUMAnSyJls3Yzqze5FPx9qWxSwj+d+puhQFRQa0o31XCsMgOHh+nv7wu1FtBKwrYpl0o4tkFybBRRkpFVjVgsWqm/zzghVE4PtScRX2uhyn50dNEw0TXfXaCRJXugKlcUmal8EUX2S2CO6592pie//JOITyL9NSOuNWmEArTG/awbVZEaNvyjWu1kWXXDX1d9IaWLx1svvSgkkVkrFwRaWvzguOXLl1Mul0kmkySTSfbv34+qqnR3d9PR0cHAwACe57F27dpjIhHLsvjABz7A4cOHefjhh2syk16PELy5ZOQnAa7rzmmB4rouP/vZz7jqqqsaTkUkk0mef/55lixZwrnnnhtuQv/1yiBPvHhg1u97nhf+T1NkTMtBkaBsWhQLBd9DqFRCVhSfVCqmdNFoJLSE9xyLgwf2h9kD1RtfRFMpWu7sOrYmka1KYVRlCU+SG9o/xNWgTOXREotRMO26o765ss3DrySZzOR83YkHiiKz/owOVvbV1m/jEZWxiSTjY2M4apynDpfRJD8P3IeAJ0iUXY/rzmv3nYHrwHJcfrF7iol0EVUWKhNMvh3Kby5vo1WymMpm8RBob21BUlR0PVJzTRzXI1P2Ew372+MUSv7otSJL6KqCW5OM59+dlksFDg+P0N3dUykZ1bluUR2vkvFer/wEfkaKJIphuagW0yl8oiiQyc1WYFdDVSQEhBrzRUkUiUZUP4HTMHyvKLPM4eEx+vvr2cAHj+X3BLO5PI5tUi4WsGwXRdP9k0rEdxf2SWRux4dYRKuIWGvLeDNfa6PTgyD4JzYEgZGRETI5Py1UlhvrJPxkw9lphv6p07etn288GSonkd9cz9mLe+Z8jY3gOE5o5z4yMoLrunR1ddHT00NXV9dRTVjZts1v//Zvs2vXLh5++GF6eo5tTa8lnHInkvkgVkomtm3XffODeN4LLriAJUuW1PzbmuWL2Lr78PSpxJuOxAX/i2LZLq1xnUy+6LvttrSQqETjlioW7sMjI0iiSFd7G6IWxXVdcqlxWlvbpm3Uq1AyzIqocHpjUSSxJsoX/LwSTfAnaRzXo2DYvDSS41CqhCwKLInDqv4EuiKRLRQrtXFt1rjvrtE8yXSWuOZ7Y4Hve7X1wARLWmUWdyQoGhYxTeHwyCjJZJKu7m6KngqUa9bvGyO6uJWSUEz3G92lsold1WDuSER501kO2wdhKF3GdT26EiqrF7ewqBKx2tLegWNbFIsF0qlJyqYVnvYikSiSKNIeUWiJR8lVjdv65Sf/TnY679sjOTHJyPgEfX3Vd/PT8O/Sax8LPCKaP8Fl2jZlw0JTZfCEBiQC1XfpmVyxQmwqLh7FolGzIWuKjOu5s8qUjutWbfQeVrlIOpPhzGVLEaT6X0Nd9W8qHNerNHBjtLS2VUaLDcqFPKnkBC2JBLmcQjQaa3hK1zWFsjE9aSWKAnFdq+hNjIpmxiM+RwnK8zzypTLZ9BTZfIEzz1hGRNexLNvvJ8744Mcj2ozJMv8al6sa/vGIju06IHgNS7ALJRHwS2CdnZ0cPnyYeDzOeeedRyqVYmhoaFYJLB6PNzwBO47D7/zO7/DSSy/xyCOPNEmkgtOOSKD+5Jbruvz6179mbGxsVjxvAFWWWLdiMU++dDAsZQUf3poPTvDzqh+JokgsHicW96NxS6UShUKBcjqL5bgkIr6/VaPeTblsIiISbL2aBPUq54Zlo6kKRdvlwZcnSJcs3+PKMkilXYbSZa5b2YMqi/4GaxWIRyOYrn8qiKkSu4eTqJIYkgj401oF0+HQZJGEJhGPaIxPjFPMZ33Ftx4h4rhEFYmC6RBTfQ8wXI+iYRHXJDqiSk0/IKppSLKIAGQLJeKawpvO6cSwHWzXt5QJSmn+BuvhiDLReCvReAuObWObBrlcjvGxcfSITm9XB+msg9Rgc3VcD8uyGZ+YIJ3JcM7ZZxKNRCibM/sBleburKazUDPq2hL3T0WW5YA927+q9rH8prNlu1j2tAV6TFcrNzfOvBNc4FHMZUhOZejv70eQJH+0WJaxbJtipYwX0Xy1/2zrkerR4lb6JYHJqTS2ZTAxmqk7WhzRFQzTrukNua5XRRj+e6mpMsU67gThyj2PXCZFLl+kv78f2/Eq19c/Oema4icvlg0iuhbqWRpBUxUyhVJoORSLaDXOyeCXCDdeuTAS8V+vy/PPP49pmqxbtw5FUWhra+Pss8/GMIywBHbw4EFkWQ6nwKrz1x3H4aMf/SjPPvssjz76KH19C9OuvJZwyhHJkXj9z5zcMk0z/JDUi+etRngqMaZjb2v6BgLk8yUSEXVWM716jZFIhEKhgCoL9PT0kstmSSaTuK4TfpFjMV/RnC3ZDEzlkBWV9qjM0vZoRcRX/7UapsWeMT/wKKKISPjZ444rMpk32TdR4IL+RLAY8qUyoiDQGo+Syecrr6f+7V1Q+z9waJBiqUR/nz/zH6k0N9ef2c5Teycp2CBavjpdkUTWLW2rslL3H6lkmMQkv18Q1uIrehxNrirt6QqmOXNTFJBkBUlW0KJx2m0LwXVIZ7Nkc3kUxe8HxGKxGkV6RFMYHBqmWCyxaNEiHC8YSfWIVLyXDNNCluU5m7vg1+ULpekJoaCv4npeaEbYSPgXILBAj+oqZuUmQJJEyoY9e7rO88hmpsjk8ixatDg8PVRbfaiKTCyi+uPjc0wuhZ5YJYNEZVTYcRxKpSKuZZKe9EeLWxMJyiUVbUYZsfax/FHqwGAysK2p9uHy7X1S5Aol+vv7ZxF9cGoU8B2Bwe8lNSolRnWVYtkMxb8zhxZ0VUHXVK7asPK4kMgLL7xQQyLV0DSNxYsXs3jx4jB/fWJiIsxfv+uuu1izZg379u3j8ccf55FHHmHx4sULWtNrDadcj8TzPN9ddg788pe/5Pzzz6e7u5t8Ps+2bduIx+OsXr16XnM0z/N4+qWDPPnywdkkAsR0mVzOH5eNxSIU60xcuY7D2NgYjuOwaNEiWivlk8AZt1Dpq1iWyZip8krK9XPTBZBklXO6Ily+LFYjopuJn7w0xkTBIapJuOb0JpY3HM7qjHLVeV01r6k1qvuz/gI8fTDL7vEiURkEAm8lF08Q2HxxP7nUGI5t09ffX+d6eRRsiZeGs0zmSiQ0kXN74vTMyB2XRAFNVav0GdMIxlEd1w8dKlRtGPUgiqBrajg55Dg2uDaFfIF0NocgisRiMTrb2xgZHcd27LqbWfVjObaLpipYjm9qOJO0YxGtZiObCUEQ/J6CKJIvluc8ZdR/rGm3XMt2KZcN0lOT5IvlytrrN3j9x/JJLAh8EhAolM3QYSEYKW40DQb+Z0L0HLLZHIZRwrDsMMkwGo2Gzy8IENHVho/lJ2LKjI2OkiuU6Onta7j2+o/llxIVWcSsuA7HojqleQYfZMkvZ521aOEksnPnTkqlEuvXrz8q36tgCuxzn/scP/nJT9i7dy+rVq3it37rt7jppptYt27dq2oL/5d/+Zd8+tOfrvnZeeedx65du161NTTCKXciORIEJ5JkMsmOHTtYunRpTVO9EVzXxXVdLjqrl237hsMZ9gC+hcr0l6BUMlCUirDP80gVLYplEzOXIqopLFq82J8msc2wr6BpKpqm0tHRzli6yK6XJ3BcD0XwEBDwXItdh4u0qR6r+hvPnMsCeJ6Da5hIihoaMwpQ1Qj3V90SmOhVFrGyN8pQqkDOsJEkGQ8BwRNY1R8jPT6EJEksWry47pcgEYlAscSlS+NAbDonu8pQMGhM1yMRmB6pTUR1CmWDeFQDz4+1ndlQlSURWZZqNh9J8kevW9p14q1teI7tJ0EODmJaDolEAsMwiETEGq1IoNIOHitods88acQjjaaupiGK/h1+vnLa8ct4/mmnOscjHtUpFMt1zn/VbrkeqckJBGDF8rMom1bdTTQe1ShU9VyqA5+Ck6RYEWrm5hGwJqI6hZJBoq2dBG2YpolRLmOXp0eL4/EYHe2tcxKS7dgMDY1RKBn09y8iHvPFnIZhzYipFio3AzPX5Z9cgx+3xCOhmLHQoPR1KpAI+DcTQb+kUCjw1FNPsWfPHn70ox/xxS9+kUcffZS1a9cuaI1Hi1WrVvGLX/wi/O9TxVX41FhFFY60tDU2Nsb4+DgrV66c95gZTGQF5bCIprL2nEU88/JAze9FVYVCYVq857ououeSKVk8vmeSibw/baNKIhcvjdIrCGiSQL5QQFUURFnBqCpnDGZMXARimj+377ketlnCtV1+PTzF4ohNNBqtiKZqVdUX9LcylBrCkgTAv9u1PRFJkUNlugDEdK2yKU6jNaJw/aoedo8XGM8ZRDWFpS0KupUhEUvQ0t5ep/bu0RKdKT6rdVjVVIWIquB4bmWDrf9e+YZ80/kSQZM5iIAVRd+9Vqxkh9TTRgQQBP80Mjw6hqLq9Pe1Y1sGmcwUY2NjRCuOxa0tiSPUWUTwPJdENEKxbNY9aSiyiChKYbgSCFXGitNWI6IgkMnPPcEl4PmnV9ejr6+XkuEHTMUifl8lWEPjkeLKNQUMy0KRZcqGiaaqaIpcV9kej+rkZ6jaVVWrKM790WKj7AshBwcGcAURXY/MGi32PJdMapJC2aS/vx9RFGv1JpVSom3bCELjG4sAgT19QKL+iUtDgMokm3dcSeTFF1+kWCweE4mA/zn+m7/5G/7f//t/PPLII1xwwQVcfvnl3HrrrZimeVJcfWVZPiV7M6cckcyHIKs8m802bKpXIyAQz/Momg7PHJgiU7Y5sz0+a65dYPaMe75s8tCuSSYLBhIemizieALbBjO0RFXOqhwqTMtCsG1i0Wm7EdPxqpr2AgK+vkF2wbJszFKRcj6D7YlEKlYjmqbSEtFYZPsxtAeSRcwKOYmiy3k9cRa3qCR0FVESKxNJsxHTZNYubSWqa0ylM4yMjKC1thJracVxXH9ySZYwLBPLdojpeo2LbD3Ioki+VMZxvbr9hADVSXcz34ugAaurfhaLXEkTrK8v8NAViV179hGLRenq8l1wZVVDjyVwHBvHNMjl8hxIJlE0LexNzRxJrY68rX78qKYhK5LvwWU5YXqg0UhvVCE+VVHI5ItzXgcBj5HhYQRJoq+vL9zs3arrAL4NvON4qJXR87rXXhKriLI2G6Ra2S4yv7GipinEYxHKhkW8tZ1SsYjjWGSnJpmsjBZHoxEso0SpbIUkUu86mJaFrvj9oURUr3sdoCLgLNVOuPknrumGfyIW4W2XXcSZx4lECoUC69evPyYHXs/z+Lu/+zv+9V//lYcffpgLLrig5t9Plqvvnj17WLRoEbquc8UVV/DZz36WZcuWnZS1VOOU65GA32eotyzTNNmxYwfZbJZly5Zx7rnnzvk4AYm4rsvO4Rx//sNXmMj76X6yJHJ23OGiTt87S5UlyqXCrMfYN1Hg4VcmUFUFWZIqd9H4IUqSw2+t6asZl/U8aI3HyBkWu8cL/HLvJLpcaZjbNh4+oa3oiXPlOZ14nku5XMazbZJpP3hKlHy9iqbrjGQMhjP+SO6Stgh9LRqKIiEJ/ihlUMsHX8RVHcqViOiMjE8wMTFBV1d3XfsG33ZcQxAF7Ipord6psFrJPRP+5JIWOhnPDkWqxWzdQHU/wdc4iIKAiMu+g4dobW2t3DDMXlfQyDctC9e2KBTypDP5iubHP62oqjqvsjrYyATAtF1KdfyrIDhtReqSrihUehqCQLFUZPDwEIqq0dXV3fCxakWE9Y0VZ+arN0IiqpMvlYnpvuV6vUZ3SEgN9DLlchmzXKZczPupoIpayaiZPVoc+H7NNHwMPpMC/ui7riqzSGQmZElk05s3cGZ/95yvcT54nseLL75ILpdjw4YNx0wiX/ziF/nCF77AQw899KqXrxrhgQceIJ/Pc9555zEyMsKnP/1phoaGePHFF0+6NctpQyRBUz2RSCBJEpFIhBUrVjR8jGoSKVku7/7XbSTzBgldQRT8DI+SYbIiUuSSZa2+seGM/HDP83hi1zC7Ji1imoxY6VXg+X0AzzZ43yVLZvQsfOiqStkV+MHzIySzJQTP8s8krouuSFy/soeOKnGfIPhTRKVSkVwuz+RUxs+SiEWJRf2wKUEU0BUFx3XqKpMFIBIJ6ugCA4eHyWQy9Pb21tVZqIoUei4FUGR/HLV6I5uv7ALTvQ7DsIhUfJtmj+TO1VOYhqbIWKbB0NAQsdY2WhKzTTahccPcdR3f8qVYZCqdRddVJEUlGo2h63rdTX3miGwggnQ8j1K4Cc5v9QEg4jEwOEhbawt9fb2Ylj3rpDEXIQWQJZFYRMXzIFdVEqqH+qdAP0lRliQMy8K2nYrxZWNCcl2HdCqJYTl0dHRiGmVsy6BUKuNVRotjsRi6pqOq8pxlSfBvQBzHRVEkzMpNwszrL0sim998CWf0dzV4lCOD53m89NJLZLNZ1q9ff0w27p7nceedd/K5z32OBx98kEsvvXRBazqRSKfTnHHGGXzhC1/ggx/84Eldy2lR2pqYmOD5559n2bJlrFixgl27ds1p3Bg01V3XRRRFntg/SbJgktAVPw6XSoSuo3AwL7IBj3yxtkTkOA6jo6NooltxBAbRcUAQEUUByyjTEpHDx5uJsulHf/7W2j5+uWuEfRO+i+0ZHVHWLGmpIRFJEtBkmULZAEEi1tJKvLUVCY9crkAylWJ8fJz2thYUVSMSqR9J6uF7JsUiGgcODeJYBucuPxtPkGaNokZUBctxZnlY1Yr/RBKxqF+2E4SGG9lMU8WZdXRVlvxykKrMqN3PhiyJ5HI5hkZG6OnpoSWR8AWIFbfgoKWRiOp+vb3OY4iihKhKtOkRunt6wrCkqVQSw7QrIsioT86CWJeQqq/DtAeXNG/5T8Dl4KFBEi0J4i2tlWb5jAkuw5gVSFUPkihSKPmnCr+/pM46acxlrAjTSYqKLKEqMoosIwliXTt/x3HIpJIYtktfX38YqQzQUhktdiyT1MQ4oiQhymqlr1J/tLh6eCAQAWuK4tvuV1wKjieJvPzyy2QyGTZs2HDMJPLP//zP/O3f/i0PPPDAKU0iAG1tbZx77rns3bv3ZC/l1CQSf9PyG+SHDh1iz549rFq1ikWLFgF+s72ejcrMpnqggp8q+L87c89XJAFHi6ErMiVrulFoVoKodF1nzfJODhbGyJZsNM9DklWKRX/MdmV/YpaKvepFoMkShVKJy89q5y3n9/pfqBnWFL6dRiUlr+a1gI1AJB5nWSKOrsik0xmSqSnGxsaJRPRZJQdJFFBkib37D+I4Nn19/X6fBiu0prAsB0H0a+zz6RQimkq6or4XBYFY1B8KKFaNouqarzdoZKpYNiw/UzwewTBtWmLRGuFdNVRF8mf4k5P09flOzU5VHV0Q/LKYpvgakflKJXKFwCRFJaqoRBPTIshMNsv4+DgdbS3kcv5ppbHnkofrQrpYDCeOqrNNwldbyRJpa2ujtbWt5jpU9zQSsQh4EIv4o7L1Xsc00U8TRn6GGFQUBWRJZCpXnHNIRZHlSpnJCgcIJFEiGlH9abqygWX5JGI6Xk0/J4DvWpxAEkXkHpGpTAbbMslnpkglk0iKSjweC0OnfGuU2eRm2nbY89NUmZvftJ5lx4lE0un0gk4id911F3/xF3/Bj370I97whjcsaE2vBvL5PPv27ePWW2892Us5NUtblmVh2zYvv/wyExMTrF27lra2tvDf9+3bRz6f5+KLLw5/5nleeAoBKnkW/of4uUNp/n//uRNVlvzs8grSJYszOiJ8cdNyHt2xh7FUlmKxyPj4eFVdHqaKFo/tmWSqaOLaNooI687sZN3S1vBLUQ1RENFkYRY5gL/ZR3UNx/FwPRe7arOoB8+rVWgLgoAiCRSLBZKTaYqlEpqm0dKSIBaNMjwyiiSJ9Pb21j21JKI6ZdMiovkbVT2Nha8RURrmfweiM0WWKJXNOWv31cK5asiSON2kLhloqsLo2CiZbI7+/v66mRbTDfPpkVxZliibZk3pqJ7XVT3oskg2n/P1KrkCmqaGzfpABClJAqosV01w1awonFzKF/LsPzDgZ880KMX5RFg79hpoRfwxWX9yaWa+ej2En4tiGU2R/XKgO/v9VBUZz/PC01U9OI5NJjWJoii0d3RiN3je+v0VD8MwMY0yllGmVC4TiUSQZJVo1XWcCUWW2PzmDSzrWziJ/PrXvyaVSrFhw4ZjCpTyPI/vfOc7/NEf/RH3338/b3nLWxa0phOFj33sY2zcuJEzzjiD4eFh/uIv/oIdO3bw8ssv0929sN7SQnFKEkng3Os4DuvWrZv14Th48CCpVIp169YBtf0QQRBmTZi4nsfv/sdOtg2k/S+DKFC2/DzxP71uBTdd1IvneTz8zHYeeGoHLW0dswwAZUlkIlOgUDbpjKnoigheJdxHlvwShuBrFiTBo9xw6sdHTPfVy7rqZ2HUKzXgQSKqzaEZ8E0mS6UiqZTvfySKIi0tLcRi8Zr0vfrusNUbukux5IdH+WFFR9DYLfoRtUH5yrB876qAwEURdFWbdyw0qquMjoxgmAad3T2IYv2DcuNrMe1y67huTd5I3atW51q4roNnW+TzeaayWSRJoTURJ9GSQBAl5irH4ZjsHzjM4v5+ujracVx3Fgn710JtSM7B62iNR/2wL8OaI3emca8meD8D8nBcd85rYVkWmakkLmLoGxWpaIfMKu2QLIlIFXv8uaArEsnUFI5lUiwWcQWRSCRS6U9pgHBcSWTXrl1MTk4uiES+//3vc8cdd3D33Xdz3XXXLWhNJxLvec97ePzxx5mcnKS7u5s3vvGNfOYzn2H58uUne2mnJpE888wzAFx00UV1BTeHDx9mZGSESy65pIZEglJWPWTLFnc+epCf75rAdlx6Ehq3Xb6UjRf5ltSvvPIKo6OjrFx1IbuGp9i+ezDUGCiyBLaFaTcmB0X241ztStlmLiSieuMNHf8OXRBEP8viCDbhqUyW4eERero6iUZ10uks6WwOSfI1GNFYjO6OtnmjWSO6iiyK/mRZebofUY3aMdrZ11pTZDRVxrFdHM+dl5CiusK+AwO4rkNfXz+yLBGtNoZ03Lp38nXXr6mYloVYmURzXHfW31TfyTeC6zqIuBTyeaYyORzXDcuIkcgMx2LLYODwEL29fUSj0wMNobmk5+d+yJLY4FQzjdpezbRTrjWjSV3rqFsfuqpguw6aojQM3bIsk0xqEk+UKne0s9/PYPhC8KicBBtj5lBGYHTq2CblUgnLcYhEo7zj6su56LzlCxLTVZPI+vXr57RFmgv33nsvH/rQh/je977HTTfddMzreb3jlCSSYrE4JymMjIxw8OBBLr/88iMikWoUTJuC4dAZ87MibNsO1a9r164NP5BTuSKP7djN4PgUnm3Om0oYrZQjHMdFr4xwGpZdU16Zji2du+GsVkoVUF8NHiARrR7vrS2pKLKIY5lMpTMUi0UMywnHYQPr8Zr1zwh9Cjbv2k3IH5Gdz65cVSTwBDzchhu6f80Udu/bjyRJ9Pb21dEqeMQjuq98L5s1ivKZiEVUimVr1gRXMJrsk6NJVNfmHU/WVSUsOXqei2vbmGaZTCZLsWxWSCWCJosMjU7Q39+HrtffyGRJRJElRFFEqggx650QZqraZ0KRRXRV9b3b8sU5+0O6pmJZ1gzRabVViU0mVyA7NYkgK6E+p/7zSoiV0ePgWgI1li0wV0bL9PNblskV5y9Fdk3K5TIdHR2hOeLRnCY8z+OVV15hYmKCDRs2HDOJ/OhHP+L222/n29/+NrfccssxPUYTPk5JIrFte86prPHxcXbv3s3ll18+bbx4BCQyE6VSiR07dqCqKqtXr66rVB0aT7Hr4DC7B0cbng4abgJe1bSOZSFJEoU57ChgdpO1OgMiqKEHpZmBwyOk02l6e3tr7oYDKLKIJEl+I9x1SGeyTKbS/lhxZYwzGo3SEo/4c/4NPwn+GKmqyBTLRkPRHFQ332s3y+o79GLZQFUkdu/dj67rdHf31H3/AoV5YDMSlK9M255xhz7/SLEgUCEUak47M9HYdde/Do5tY5ll8tkc2aLfn0okEnV1FtWbcPVjTJtL2pRNq3JCmseypcpfq7qvUpyxoR9Jf8U0DTKpJIlEC+2dHXX7ZOC7ZSMIdQk86JMFo+bZwtwKf0WWuOWqS1ja2wn45euJCf8mKJPJkEgkjsjG3fM8du/ezfj4+IJI5Kc//Sm33nor3/jGN3j3u999TI/RxDROSSJxHAe7wQnA8zzS6TTPPvssfX199PT00NnZedTmaZlMhh07dtDT08N5550379+7rsvgWIpXDg2zZ3CMckXrEp4w5iAySRTRKvV7VZWxGgjeYhGVUrlxwE84MSSLHBw4TDaXo6+vv+6USmDbPrPJKkkCYsWMbjw1hSqCV/FdajS55I8nK5XhgaDkotT4b4G/sZTLjU9QARQJDg8epqW1hXiite6mPV+TONB5iKJAJl+q+zvh+kUBTVFmDD9M55IYlo1p2cQi2owUwHrwKOVzjE9O0dvbgyT40zOZbA5FDZr1MeKxCF5FbzQXWuMRP0q4TqM8gCiCrqh1hzcECJ2bPTyKc5xgwY+HzaSSyJpOR0cHIFTKqpVo3MrrDxT+860/EfX1KxGtEljluJXS7PTrmEkiM2GaJslkkomJCSYn/aZ/QCrt7e3hd9PzPPbs2cPo6CgbNmyoe/N0JHj44Yd5z3vew1e/+lXe9773HdNNaBO1OK2IpNruJJ1OMzExwfj4OLZt093dHZLKfNGZY2NjvPTSSyxfvpxly5Yd9QfJcVwOjSbZPzTOroPDGHMkOqqVu9SZd3W+rYUv/CuUjUrzdO67Ul9JLHPg0ACWZXH2mWcQ0fVZjdmwzDbHXWlQpjIMg3xFAFkql9F1LQybkmXFV1WLQsMmq6rI6KqCAGQKc2/oggC4DgcODdDW1hZO4kV132XXMH0jwEanmprVVzXM/fTB+saQcyu5p69FSyyCB9i2O8u7qupJyWXTTGVyLFrUX2PD4jgOnmNRKhbI5vIgiOiRiC/eqxONC7NFhNWTbCXDxHU9RFFEVaR5hX/RiEapbKApMoqi1HUpMA2DqdQEihalo6O+U4Ag+I4IguCXr+Z6DxKx2b2+4HVEdS0Uzt7y5g0saUAiM+E4TmjjPjExgW3bdHV10dXVRbYysr0QEnn88cd55zvfyf/9v/+X22+/vUkixwmnDZFUk0h1KcvzvPADNjY2hmmaNRGa1eUGz/M4cOAABw8e5KKLLjouI3OO4zI4PsmegVH2Hh6tabRHNAXTnDvoKGj+AnUT9wIosoTnuRwaGEQQRPr6qsd7p8dQBeYvMwhAbEbDVhDwdS+FAsnUFIViiXhMJxKJoekRVFWp+5jTzetS6DtVqwb3IUkCZrnMwOGhOUZkPVpiUd+FuYEKOvi9+eJgRVHAtG1cdzaJz8TM+n6Qt+64/uBDoGrPTKXI5ossWlTfwh780p5hWjimSblcZCqTxbSc8MQXjUYAoe4E3czXkYj6Qwe5gnEENvazS5OhOt91SWeyTE0mUSOxOf3p/JNgkOk+2wI+eD+OxO1AVSRuefMlR0wiMxHYuI+PjzM0NIRpmrS0tNDX10d3d/dRk8lTTz3F29/+dv7+7/+eD3/4w00SOY44JYlkZm57IxKZCc/zyOfzIamUSiU6Ojro7e2ls7OTPXv2kEqlWLt27QnxpnFdl+HkFLsHRhkaTzExlZ3T1iJIhave0KcbmtN317oqUyobDB4+3LCnUB0rqyoKuiJjV5rc1b8riiK6Ks87hhqPaBWrljS5fB5ZlsOTil9KE6pOBXV8p0SBqKaC4Bsg5rI5RsbG6e3tIRqNzX5KKr2mql5NcNqpzhSpR4L1EEwtqZKMJDcImqLxXXX164hoCqMjw+QLBj19jfM4oppKeVZ/wrf/t02TTCZLvlSiq6MNQVJrckFmwu8PBeO2s80lw2tWxwxxJspGmXQySWdnB+0d7RTLVk1fJYCm+h5fjU4h/vvhux6nc6U5J6IXSiIBPM9j3759DA0NcdFFF4W9lVQqRTQaDUtgra2tcxLDs88+y6ZNm/jrv/5r7rjjjiaJHGec0kQSKNWr7U6O5gNQKBQYHx9ndHSUfD6PJEmcffbZLFq06IS7d3qex+hkhr2Do+weGCGdq7VgkUQRVZFnGd5VQxAEWuMRcrkC+w8dIpFoaVCSmEdXoKu4ru+wK1ZU7XOhdkP3jQSNcpmpTIZ0OoMoSsRiMbo723GZ+z1RFYnJyRT5XJalS5fgIdW9u55vQw9ehygIZPOlOTfO+g1zv7ejqgqWZVMoGbQmonM+Z/B3yfExTNulv7+PWFSv6yMWrfRX5v46eaiSSD6fJ5fPk80V0CqlxGg0Fg57zNXkDuxWNEVGELxKf6jx+o1yianJJJF4C62tfpKi31fRkCQhzBWpnlSbC/7UXtFXxuu+XqXaugb89/ztV13K4p6OOR/rSLBv3z4OHz7M+vXra7Rdtm0zOTnJxMQEyWQSICSVmeXt7du3c9NNN/Hnf/7n/OEf/mGTRE4ATlkiMU2zoVL9aFAoFNi+fTvRaJT29nYmJibIZrO0tbXR09NDT0/PMQmZjgae5zGZybNncJQ9AyNk8sUjUl4nojojE0kmxsfp7Oqir6cLSRBrNAHBNNJ8+dh6xd9IUxW8is9RvXd+vpKFUgnyKuTzjCZTAGGDORqN1ARNRTSFoeERcvlCRa2uEtxdS5KIYVm+bUrlJDV3f8gPrSobVphjAR6lsllDGLOdhWcjGJLwBGrMKWdCwGN0ZARPEOjt7a15bdXTVwDZ/NwDF+CfHqrfp6CvUsjnfd2PLNPa0kIsFkOU5hZBBu+TX76qX04sl0tMTU4QS7TSUonjrXM1iEcjiAKzyleNnnPmuqpHxW3XZdOV648Liezfv5+BgQE2bNgwSyBcDdd1yWQyYV+lXC7z0ksvYVkWq1ev5rd/+7f52Mc+xic+8YkmiZwgnJJEYts25fL03fWxxlmmUimef/55lixZwjnnnBN+iMrlMuPj44yPj5NOp2lpaaGnp6fiknts44RHg6lsnr2DY+wZHGUkmZ71737fQWdweJSpqXSdctD0ZkyYP9EYMzUiULE8j/insmAU1g+jmvuxqj2sZFkExyGXy5FMpbEdOxwr7mxrY3BoGMM06e/vm5UPEryOloqS27LshpuYr8Oo3/APNzFRwPNcCiVzznIiBMFP058vSRSJ6goehAQr4DE8PIwkyw3Hk2F6c9UUBVWV/ZzzGb2dRjYx1XBdB8lzyRVyTKWzuJ4QmkvONEVsdHqbHguG1FSGZHKcREtbQ8sW8EuAgQIepvsqgaligEYZM9U4nieRAwcOcOjQoXlJpB4KhQL//u//zje+8Q1efvll+vv7+Z3f+R02bdrERRdddFLJ5HOf+xyf/OQn+b3f+z2+9KUvnbR1HG+ckkRy2223sW/fPjZv3szNN9/M4sWLj/rNP3z4MK+88grnn3/+nAmKpmmGpJJKpYjH4yGpxGL1a/nHE7liySeVgREOj6fwPP/O9eDgEIVCvuF4ryLLvh2+Zfn6CqliUWJaNddqPqEb+GaWiVjEnxaaY1JHVWTwqOsvJokCogC5XI5cPkcuX0IUBdra2kkk4rOa0/V6HaoioysyljM9OaWpMq47t1cU+JtrvlBCDwK7ZvhvQX2vq9nXQkCVBQ4fPoyoqHR0dNJo82x0hx5MXzmeR7lszpuvDvVFkIZRJpPJUDatsPzV291RWX/j70OpXGRqIklPbw8d7e2zzCXD59T8Ml+j6b6gzyXLItlCqa7TQYATQSLr168/5l7mK6+8wvXXX8+73/1u1q5dyw9/+EMefPBBPvCBD3DnnXcueI3HgmeffZZ3vetdtLS0cNVVVzWJ5ETj8OHD3H333WzZsoWnnnqKDRs2sGnTJjZt2sQZZ5wxJ6kEs+bDw8OsXr26Mit/ZLAsKxwpnpycJBKJhKQyl0jqeKFYNtgzMMrDTz3L4Ngkvb29de/k5xqP1RQZVZUxLRtZFH1r+nlGijVVrRJb1jdD1DUV27bnHcmN6Sq79+0nFtGJxaL+WHGpjKZNjxXrmjqnKST4m3E8ouO47px2JtO5HrOzOHwxqIxt2SHhzmdfI+AyMDBILB6no6Nj1mjy9HNG552Ok0TBH40WRd/huWzU3bSPVARZKhaYyhaIRKLhaWUmQZdKRVLJJK3t1X5xVWLOyskvqqsYlj2ncBGmeyICQlXOjFVD7Joi8/a3XMqi7sbTYEeKgwcPcvDgwQWRyL59+7juuut4z3vew+c///mwolEul0mn0yclqjafz7Nu3Tr+6Z/+ib/5m79hzZo1TSJ5teB5HiMjI9x7771s2bKFxx9/nNWrV4ekUl2uAr/mvHPnTgqFAmvWrFnQicK2bZLJJOPj4ySTSVRVpbe318/IaGk5IaRimibbt29HkiTOv2Alg+NT7BkY5eDIRPjFPVLRXCIaoWxafkiV7dY1hZxfY+FvQLrqj7TWs34Pf9PzY3H37D+Arkfo7vZTAQX85nGxVCA1laFQLBDVdRRND9ML623GsYhWpaWo9EQ8LxTMBc95JOU4SRTRVAVZEnzBXANyFXE4cGiQ1tZW2tpmbop+T0SWJERJIJ2d27pdkoRKvvr0YEOgBpdEkZJhYNlug0mvGc9cNR3n2DaObVIoFEhnc6iqVslWieHYFqnJJG0dncRijctBiagOYX+oPrHONZE3PW4ug+dx05vWHRcSOXToEPv372f9+vW0tDQux82FgwcPcv3117Nx40a+/OUvH3NZ/Hjjtttuo6Ojgy9+8Yu8+c1vbhLJyYLneSSTyZBUHn74Yc4///yQVHRd53d+53f44z/+Y9785jfXtTs5VjiOw+TkJOPj40xMTCBJUnhSaWtrOy6kEgwFtLS0cOGFF9Z8ASzb4eDwBAeGx9g9MDqnA2u9kWKo0kZ4vlZFPdKSUVWAVHDamanMFwBJ8Nh74BCJRILOzg7qWm4oMrLgW+CnMhkyWX+SLvAAC4R7M8eAa1+f3wfws2WEedMK6/VXgp6I6xHqLwTP5sChQTo6Oho2pqs313qjydXX+shEkL4OwpzhEDDzORslKQZJkMWCby4pigKqptPa2hY67c7ETOKqsa6pTF/NTSLTOJ4nkYGBAfbt27cgEjl8+DDXXnstb3vb2/jKV75yypDIf/zHf/CZz3yGZ599Fl3Xm0RyqsDzPKampvjBD37APffcw4MPPoiu66xevZq//du/Zd26dSfsQ+S6LqlKYuH4+DiCINDd3U1vb2+NncPRIJ1Os2PHDhYvXjzrlDUTjuMyMJb0BZCDYzXjw7VWJo0RTNgIQmNTyMYlIx9BU9Z2HcrFEvsPDdLR0T4j0Gkas8dLPVRZxrYMpjJZUlMZRFGgu6MdJLmusWSA6eZ1mVhE9/2sqkpPAY7E5kMUBARsDh8eorW9g2h07jv5+azbDcuu4681GzNFhGGmiONSqpwej3RDLxYKTE5O0NnR4U8wZbNYtkMsFicWi1Yci8V5J9oEwffqCoLD5ipjaorM26++lEVdx49E1q1bF44oHy1GRka47rrreNOb3sTXv/71ed0tXi0MDg6yYcMGfv7zn7N69WqAJpGcirjvvvu49dZbuemmmyiXy/zsZz+jv7+fTZs2sXnzZtauXXtCSSWdTocCSM/zaqxajuR5A7uWFStWsHTp0qN+/qGJSvlreIKiYcybFzEzVlYQBGKVCNdCKTAAPDKXX0kUMcpFhoZHWLZkMfFEokoJPo0jKd9IkoCERyo1xWQ6i+dNG0tGItHwWjbO9fBqhg6AebM4AFzb5NDgYXp6eonHYqG+omxM9wGOZOoKKkmEgodWOQ3PdMgNMN8AREBMkiiSmcfpt1jIk0pN0tnVTSTin3A8z8N1LCzDIJPNUCybdLS1VnLro3UDz4K/qw4Om2kuGRD78SSRwcFB9u7duyASGRsb4/rrr2fDhg1861vfOmVIBPz96ZZbbqlZk+M4YW6SYRin1HqPFac1kTz//PO88Y1v5N/+7d9CG+h8Ps9PfvIT7rnnHh544AE6Ojq4+eab2bx5M5dccskJe9M8zyOTyTA2Nsb4+DiWZYWk0tXVVfd5Dx06xL59+46LXUsggNwzMMKewdFZAkiYX/Tn1/D9pux8d6SqIpFJZxgdn6hxH661bTeIahqFOvYdM9denREiSyKC55LN5UhOpbEti0gkQksiQWtrS40QsB4iuoLner6JYJ1x3OA5XctgYGiYvr6+cBOu+o2wQe15LtlCec6ToqbIs4hLgKoGtS9gPBJrEZgeUa4e6Z2pSC8WcqQmU3T19DS0sfdPfiK5bJZ8vkg2X0DT9bBZHwxzzNdv8nNm/N+98U1rjwuJHD58mN27d7Nu3bqaBNSjQTKZ5IYbbmDlypV897vfXVDGyYlALpfj0KFDNT+7/fbbOf/88/n4xz/OhRdeeJJWdnxxWhMJ+Hc0je7ki8UiDz74IPfccw8//vGPicVibNy4kc2bN3PFFVecsA9d4BEUkEq5XA79v7q7u5Ekid27dzM6OsqaNWuO+U5srudPpnPsGRxl7+Ao46nsEYr+qiN2vUo2+ewoW02VGR+fYCqdob+/D02rL+hsienYtoMk+XkijfyiZgr1qiGKArIA+UKedCbrj/iGG+Fs6/Z6CnNFFtE1X93v915cLKPE8Og4fX39DQWp1a7BjfpDMNv6vz6C9ENvVpLkrOvRwAKmmpgmkkmSkym6uucW1M4soTmOjWsHIsg8sqIQjUbo6+nCtF3m+nxoqsJvveVS+rva5nidR4aARNauXTun99dcSKVS3HjjjZx99tl873vfO+FuFccLzdLWaYxyucwvfvELtmzZwv33348sy2zcuJFbbrmFN77xjce1OV8Nz/MoFAohqRQKhfC51q5de8yNxaPBVLaiqh8cY7SOABLmaxBXyhySb29yaPAwxVKJ/v7+upnc9fsrXtjPCMZHRUEgoqvzJh8GlvK246LKIoVCnslUmkKxhKapocaioy1xRJqZcjHPVDpNR2cPSoPNp1pJPxPVxOTYLqZzJGO0tafBgJiqT0zBVNd816OQz5FKpVi2dAmJeKyhIn0+H66gWW8aJSZTWTxh2qVA1/WaxzueJDI0NMQrr7yyIBJJp9Ns3LiRvr4+tmzZUldrdaqiSSSvEViWxSOPPMI999zDfffdh+M43HjjjWzevJk3v/nNJ+xDaZomW7duxbZtFEUhn8/T3t4eWrW8Gl+GbKHE3spJJRBAziU0rEZUV9h/cBDBcznrzGV4lWCl6g3nyBrEPqkoR5B82Phu38+rL5dKTE5NYZsmlks4ARYYS874Ewr5DJNT6Ypli0ZM9/tDxUpoGMw0TJzreqiYlo2uqQgN0iyPRHMS9ESOJP2wkMswlc7Q3dNb83kJSk+241AsG8Qj+rxmjtUlRdd18Rwbs1xiKpvFMK2wWd/W2sI7r7niuJDI8PAwu3btYs2aNUel8apGNptl8+bNtLS08IMf/OCEWxw1MT9el0RSDdu2eeKJJ/j+97/PfffdR6FQ4MYbb2TTpk1cffXVx80ypVgssm3bNlpaWli1ahWSJFEqlcLpr0wmQ2trK729vXR3d78qVi3FssHewTH2D41xcDg5p1V5VFfZu+8ACNDX1xc2bINMb8d2KRkmsRn2I/UwM/lQq0QT25ZTk6FRz9plJoLNsGya2KZJKp0hk80iCOK0AFL38zWy6SkyuTz9/YvqlDWDUp7oZ5LMM/k2c2gBqkeTg0hd54imrqoHCKpdk4vlajNEj1wuSyadoae3F1VtfNPREtXwKlNfjfpT8+lEHNvGNg2KhTxrzu5l+bLFoSnisd7wjIyM8Otf/3pBJJLP53n729+Oqqr86Ec/OuZckiaOL173RFINx3F4+umnufvuu7n33nuZmpriuuuuY9OmTbztbW87ZoFjMN67aNEiVqxYUbc2bhhGSCpTU1MkEolQq/JqfFnKpsX+oXH2zhBAep5HVFfZvXcfiqLS29szw7zQhyj4ymcRoa6BYID5RnKDwC8PgXyxNH+Tvs5mqCoStmmSzmZJTaV9qxVFxrTdWYFU1fDtWFws26k02mdPLMGR2c6AR1s8huO6GJbVMJ7YDytT6rpAB5YugiAwNjbGVDpNT2//nL0Av79SJjj91MtZnznc0AiaqvCOqy8loSuh40M2mw296bq7u4/4OxGQyMUXX0xn57FZyxeLRd7xjnfgui4/+clPjtqDq4kThyaRNIDrujz77LMhqYyMjPC2t72NTZs2cf311x+xfcP4+DgvvvjiUY33mqZZY9USi8Vq/L9OtFWLadkcGkmyZ3CUgZFxfr17L5FIlK6urrrPLUkCqixTquon1FOjH1lTetrDaq6grLms86uhyCLjoyMYpl2xBHGJRiNhXn1wspprbdWNdklgXtuZ2WubVoJbVXnz9dTv9R4rn8kwlc1y1hnLiEYis4YfZl63uabyIrqKqsoUisac+hpd83sifZ1tNT83DCN02U2lUkQikXkzQUZHR3n55ZcXRCLlcpl3v/vd5PN5HnzwwVelt9jEkaNJJEcA13XZsWNHSCoHDx7k6quvZtOmTdx4440Nv0ADAwPs3buXCy+8kJ6enmN6bsuyaqxadF0PrVoSicQJJZV0Os22bdsR9TiGoLLv8PisO+e5nHkDCIJAS0z3g8dK9bUVAeZyto3pmp9/UTaJRtR5w60EAcZGR3Bc6OvrRZYlJCCby5JMpTFNf6y4s70NRdUQ5tH9JGI6ZcNEV9VZ7rjVmOkuPBOBKh68eRx1PXKZNJlsjt6+/qqBkMBHTAqTJIOUyiMnuGndjWnXNut1TeEdV19Gb8fc04TVmSATExOIohiOvHd0dCCKImNjY7z44otcfPHFdHV1zfl4jWAYBu973/uYmJjgZz/72TE36Js4cWgSyVHC8zxeeuml0FRy165dXHXVVWzevJkbb7yRzs5OXNflm9/8Jueccw5r1649buO9juOQTCYZGxsL/b+CRv18CXFHi4mJCXbu3Mk555zDsmXLgFoB5N7B0UqU7fw2K/HItJYkHGEVxRqn4eoM9rk2Q3/SS/GzEgWBUlWTvBoCHiMjwwiiRE9P76xrI4oCiihQLBSYmJyiWMmrD6aWZk7x1bNRlyqnroDcPM87ovRGWRL9PBbTrsppdymWzKpTl0c2M0U2V6Cvr5EN//TaPI85yc0nEZ1cg7UF5CaKAje9ad28JDITruvWZK1blkU8HiebzbJq1Sr6+/uP6vECWJbF+9//fg4dOsRDDz10zCeaJk4smkSyAHiex+7du7nnnnu45557eOGFF3jDG95AqVRiaGiIJ554gt7e3hPy3I7jkEqlGBsbq/H/6unpob29fUGkMjw8zK9//WtWrVrV0CnV8zxGkmn2Do42FEDCfOWWIFdFQBDEec0XRVFEV+SaRngwMuuPFfuiPwGPw0NDqKpKV1d3Y71GheCgYixZKDI5NUW+UERVlbD81dXRNi/BSZJQcSv2GpIbVE5wDSxUqk9dIyMjZPIF+vr659Q7zTzBzSQ3f4rMD6+abwjiSE8i88HzPA4dOsSePXvQdR3DMGhvbw9PK0c6ZWXbNr/927/Nrl27eOSRRxYs2m3ixKFJJMcJnufx3HPP8c53vpN8Po9lWVx88cXcfPPNbNq0iUWLFp2wMlRwNxiQiud5IakEJYYjxcGDB9m/f/9R1bNnCiAnpnLzenUF8HNJdPLF0nSD27JnlcqO1AhRVyQGBgbQIzFa2toaPnc8qlOomFHOfAx/rLhcGSs2MB2vagJs9lixKAgVi3ojfE31rFYUWUZg7jFrz/PIplPki0XOPvNMVFVpmBEzr1OBIBDTVWRZ8p2D5ygpHi8SAf80+8ILL3DRRRfR09NDqVQKe37pdDrM/Onu7m4Yz+A4Dh/+8IfZvn07jzzyyEmxfm/iyNEkkuOEAwcOcO2117J69Wr+7d/+jWQyyT333MOWLVt4+umnueSSS0KrlmXLlp0wUgkMLYMJMMdxavy/GlnEBDkuIyMjCxZKTmXz7B8aZ9ehkYYCSKhswA1CnzRVRlMULNvGdhxEQZzXCFHE5eDAIIlEgra2diKagqLIlfTF6cmrI7Mp8YhHdUzLxjIMptIZpjJZf4igUv6KRCLIkhiq3xs9TmC1YrvOnAFXAYnkCr7Yc/q98ohoGkpVRszRWq0E482SKM6aItM1hXdefRk9x5FELrzwwrqncdM0SSaTYda6pmlhs76trQ1RFHEch49+9KM8+eSTPProo3MG0zVxaqBJJMcJw8PD/Ou//it/9md/VnMC8Dw/sjWwv//lL3/J6tWr2bx5M5s2bWL58uUnlFSy2WyoqjdNM7Rq6erqCksmruvy8ssvk06nWbdu3XEdN64ngAS/TKUpct2x12poqp8EqcjTYru6+eqenyXS3t5W14E46AEIQGYeqxiob9uiyBKuY5HJ+M16UYCWlgSKqhGNRuuORUOtD5euKiiKNMtqxfM8MlOTFEpl+vr65/CEC+KJvYY+YuFraNiv8SrrkBEFgZuvXH9cSCSZTPL88883JJGZCMqzQTzDX//1X4c3O88//zyPPfYYZ5xxxoLXdSz4yle+wle+8hUOHjwIwKpVq/jUpz7F9ddff1LWc6qjSSSvIjzPY3x8nPvuu48tW7bwyCOPcP7554ekcv75559QUsnn8yGplEolOjs76erqYnR0FNu2Wbt27QlV1xfLBvsOj7F3YIzRVHretMJ6SZBhjK07HcokuH6WSGdXZ8N88upmvixJRPRp761qHKnTr6bKeI5NOpNlciqNbds1yYXBWPFs+/xphFb8js3w8AjFskF/f/+c7rwzBxKCx/CvxzTJzuVfFiCiqbzj6kuPG4m88MILrFy58pjKUJ7n8fOf/5wvf/nL/OpXv8JxHK699lo2bdrEzTfffMwTX8eKH/7wh0iSxIoVK/A8j29961t8/vOfZ/v27axatepVXcvpgCaRnCQEJaj777+fe+65h1/84hecffbZof39qlWrTmgwTz6fZ2RkhIGBAVzXpaOjIxwrfjXM7xoJIAMciapdEgU8x+Lw0DCt7R0NUwHnUnHXNKcNE12bP19dkcWaUpskCsgiZLM5kqk0hmkSieh0tLWhavqcY8We55JJTVK2bM4+cxmiINZVox+J9YwkikR0BVmSfPv5Ob7Zx5NEJicnef7554+ZRMA/Ff/5n/853//+93nkkUewbZv777+f++67jw996EN88IMfXPA6F4qOjg4+//nPnxJrOdXQJJJTBJlMhh/+8IdhUNfixYtDUlmzZs1xJ5VSqcS2bduIx+MsX7481Kpks1na2tpCq5ZXw8coEEDuHhjhwNA4csWDa76PpmuVOXR4mN7ePuKxGNGIT4ClslmVf35kwsXA+VgUBQSEhvnqqiIBQkN/MFEQUGSRUtEfK642lvTHiqdJ2nVdMlNJSoZdsZ0Rw8eI6ipUrFacI7RaqTZ9DB5DEKtzZnxENJV3XnMZ3e0LF/WlUil27NjBBRdccMwjvp7n8Vd/9Vd861vf4tFHH+X888+f9e8nWoQ7FxzH4fvf/z633XYb27dvZ+XKlSdtLacqmkRyCiKXy9VkqnR1dYVOxZdccsmCSSWXy7F9+3a6u7tnldPK5XIY1JXJZGhpaQlPKq+G/5ftOAyMJNl7eGxWAmQAz/NwzBKDw2P09/fNyuIIrEVEQQC8htqJAI3y1WfqXQIX4vl0M0ESoed5qIpEqVhkcipNLu87PweN+nIhR8m06e/va9hfwfNoS0RxXC8cb66HuZyDq6fIAG558yXHlUTOP/98Fi1adEyP4Xken/vc5/jqV7/KI488ckrlc+zcuZMrrriCcrlMPB7nu9/9LjfccMPJXtYpiSaRnOIoFov89Kc/DTNV4vF4OP11xRVXHHVQ19TUFDt27OCMM87grLPOmvNOL7DDGBsbY2pqing8HpLKsfqOHQ1c1+XweCocK84X/SwRs1RkZDxJf39/w55OQCaFUjmcVgrs66txpGPFrbEonuBRNhr7ZkH9PJTgMTRFxiiXSU2lMcolSqZNS0uCWCxOJOLn1df8xSxPLN/OX66kQAanounXOn9P5HidRKampti+ffuCSeSLX/wiX/ziF3nooYdYs2bNgtd1PGGaJgMDA2QyGe6++27+5V/+hccee6x5IqmDJpGcRiiXy/z85z8PM1VUVQ1PKr/xG78xb6ZK4Pt17rnnsmTJkqN6bsuyQlKp9v/q6elpqAU4nvAFkFM89sxWXth9iJb2zoa9nHnjeGWJsmnjed4R5atHVAXTdio6jOlxXtOya6xFZoZI1YPjOKRTSTwEero6SKezTKYzvuYjFg1PKyDMU86quCbLMoIImVxpzvcgqqu885rL6Wo7Mo+4uRCQyHnnnXfMo7me53HnnXfyd3/3dzz44INccsklC17XicY111zD8uXL+drXvnayl3LKoUkkpylM06zJVHFdl5tuuinMVJm5yQaJdAvx/Qpg23aNVYuu6yGptLS0nBBSmTminC9b7BkcY+/gKMl0Lvy9IzNC9KedFFlCliQs2244RhvRlIrZY/2vSWDoKCDMq8x3HIdMagLTgd7eadsWRZb8CbBshslUBtd16OpoQ5CCjPX6ZS9B8E0YiyWz4fQWHF8S8f3Xth3TzUgAz/P453/+Zz796U/zwAMPcMUVVyx4Xa8G3vKWt7Bs2TLuuuuuk72UUw5NInkNwLZtfvnLX4aZKqVSKcxUueqqq/irv/orbNvmz/7sz4674Z3jOExOToakIstySCptbW3HhVRc1+WFF16gVCqxbt26WeWsIAFy3+FxUpncPGWq+vnqqiz748ZVWpUjmRyDQPRXqmzmtaPJAWzbIpOaxPYEenp6Gl4XWRJRREil/QCuwFgyaNYHpcyZavpqSKJIVFfDkK13XH3ZcSOR7du3c8455xyxk/VMeJ7HXXfdxSc/+Ul+9KMfceWVVy54XScCn/zkJ7n++utZtmwZuVyO7373u+Hp6a1vfevJXt4phyaRvMbgOA5PPfVU6FScz+fxPI9PfOITfPCDHzyh2Sau6zI5ORkKzARBqPH/OpYhAcdx2LFjB7Zts27dunnLd9lCye+pDIwyNJGaVWY6Eit7WRJJRDUs251Xi9FIYR5s5p4H6VyOdGoSF5Genu5ZvzuNWk8sURSQRYF8Pk8yNUW5bKDrGvF4nM72NqwGfl4BorrKO64+Pj2RTCbDtm3bFkwi3/72t/nYxz7GD37wA6666qoFr+tE4YMf/CAPPfQQIyMjtLa2snr1aj7+8Y83SaQBTmki+cd//Ec+//nPMzo6ysUXX8w//MM/cOmll57sZZ0WMAyDW2+9lV/96ldcd911/OIXv2BsbIy3vvWtbN68meuuu+6IM1WOBYH/V2DV4nlejVXLkZCKZVls374dURRZs2bNnOaF9VAoldl3eNzPVRlNoikKhnUEJ4wqt2JJFIhGfJ1JoVTb/5jP68p/DSaZySSRaJTe3l6KRnXq4YznncN+XhAEP68+nydfyJNK51DV6bFiVVWYWc5611svp7N14e9xQCLLly8PnaCPFp7n8Z//+Z989KMf5Z577uHaa69d8LqaOHVwyhLJ9773Pd7//vfz1a9+lcsuu4wvfelLfP/73+eVV15ZcI3/9YDbb7+dl19+mR/96Ed0d3fjui7bt28P7e8HBga45ppr2LRpEzfccMNxt6Gvhud5pNPpkFRs26arq4ve3t6G/l+GYbBt2zZ0XWf16tVHPZ02EyXDZP/hcfYeHuXg8ETDE8lc6YeiIBCLaHh4CAjzel2ZpklmKokgqXR1dQJCOGElVfQdgZFiYzuTqucXQVdUioaBriqUikVSU2my+TySJBOPx4hGY3S0tRw3Eslms2zdupWzzz57QXYlW7Zs4cMf/jDf+973uOmmmxa8riZOLZyyRHLZZZdxySWXcOeddwL+He7SpUv56Ec/yic+8YmTvLpTHwcOHAjdVWfC8zxefPHFkFR2795dk6nS0dFxwv2/Aq2KYRghqQT+X4FYMsi3P95iTNOyOTgywZ6BUQ4MjYdTW0dihOi7GkfJFkrEIrMJIXwO0yCTmkRU1IqLcgMbfV1DU2TypbkTC6dJZPYkmqYqmEaZqakMpVKRN198NsvPWLqgkiJMk8hZZ53FmWeeeUyPAfCjH/2I22+/nW9/+9vccsstx/w4TZy6OCWJxDRNotEod999N5s3bw5/ftttt5FOp7n//vtP3uJeY/A8j1deeSXMVNm5cydXXnklmzZtYuPGjXM2ho/Hc+fz+ZBUSqUSra2t5PN5uru7Wbly5QkfKw4EkAdGJnjl4HBNXHC99dYfyfWIRXRfvGiYFIpF0pNJZE2no6ODuaJvp0WEvkZEqWOjP1euezViEY3fuuoSRM8OT3+u6x6R+/NM5HI5tm7dyplnnrkgEvnpT3/Krbfeyje/+U3e9a53HfPjNHFq45QkkuHhYRYvXsxTTz1VMxr4J3/yJzz22GP86le/Oomre+3C8zz27dsX2t9v3bqVN7zhDaFx3onMVAFf57Jz505kWcayLDo6OsJm/avh/1VPABlgOl9lbpsS0zRIT07Q1tZOvKWloXixenS3HjRVRlVkbNvG85h3Ei0W0XjXNZfT0Tp9AvU8j0wmE2aBlMtlurq6Qtv2RoMLAYkEotVjxUMPPcR73/tevva1r/Hf/tt/O6k2J02cWDSJpIm68DyPgYGBkFSeeeYZLrnkEjZt2sSmTZuOe6ZKMFp65plnctZZZ1EqlUKn4sD/KyCVV8P/y/M8RibT7BkYZc/ACK7nzet1ZZgG6eQEWjRGW1s7oXhRkTHNafHifCQSQBRFVEXCcVx0TcGxXYrGbBv9eiRS7/UUCoXwpJLP52lvbw8DpoJrms/nee6551i2bBlnn332EV2renj88cd55zvfyZe//GU+8IEPNEnkNY5Tkkiapa1TC0GmypYtW9iyZQtPPPEEF198cWh/f/bZZy9oowjcY1esWFF3tDTw/woS9lpaWkJSOZHjzAE8z2NiKltXABnAMMpMTU6gRxO0tbXVfZxAqyIA6XxxzmsWkMhMYWWY8Y5HsWgQi2q88+q5SaQeSqVSeE0DT7XW1lZGRkZYunQpy5cvP6rHq8ZTTz3F29/+dv73//7f/M//+T+bJPI6wClJJOA32y+99FL+4R/+AfDLDsuWLeOOO+5oNttPIjzPY2xsLMxUefTRR7ngggtCUjnvvPOOauMIylkrV648IvdY0zTDDTCVSoWxrYFVy6uBVMYXQO4ZHGVsMoNRLpGaTBKN+5txI1Q3zGVJbJiJcqTq/EQswm+95ZIFT2eZpsnhw4fZv38/nufV2N8kEomjej//67/+i82bN/M3f/M3/O7v/m6TRF4nOGWJ5Hvf+x633XYbX/va17j00kv50pe+xH/+53+ya9euI0pfa+LEw/M8UqlUTabKOeecE9rfr1y5cs6JoeHhYXbt2nXMti2B/9f4+DiTk5NEIhF6enro7e19Vfy/AA4ODvHzx5/GkaMUba+hz5YkCg0jeX3xooLrgWlZFYPJuXsi8ahfzmpvWTh5FgoFnnvuORYvXswZZ5wRikqTySSKohyxU8G2bdvYuHEj/+t//S/+4A/+oEkiryOcskQCcOedd4aCxDVr1vDlL3+Zyy677GQvq4k6CBq7QabKz372M5YsWRKSysUXX1xDKvv27ePQoUOsWbOmMtm0MAT+X8EGqKpqSConyv8rKMkF5oWFUpm9g2PsGRxlcGwyFD76U1fynBNh/u/55SxJ8q9TsVxfvHi8SWTr1q309/dzzjnn1FynmVG4QNhTmSkqfeGFF7jxxhv54z/+Yz7+8Y83SeR1hlOaSJo4fZHL5fjxj3/MPffcw09/+lO6urq4+eab2bRpE/feey/PPvss995775yloGNF4P8VbICSJNVYtRyPTS6Ilm0U6FQyTA4MjbNnYITRycy8ViuyJCJJEoZZlYlSlatSLPtalURU553XXHZcSKRYLPLcc8/R19fHihUr5rwuruuSTqfDE6BlWezcuZN4PM6FF17Iu971Lu644w4+9alPnTQS+exnP8uWLVvYtWsXkUiEN7zhDfzd3/0d55133klZz+sJTSKZB48//jif//zn2bp1KyMjI9x77701AwBNzI9CoRBmqtx3333Issw73vEO3vve93L55ZcvWLU+F1zXDe+qx8fHEQSB7u5uent7j1msF9jxH2m0rGnZHBj2rVoODI3PGgmuRyKz4dHT3sqNb1pLx3Eika1bt9LT08O55557VJu/53nkcjnuvPNO/v3f/52hoSHOOussPv7xj7Np0ya6u7sXvL5jwXXXXcd73vMeLrnkEmzb5k//9E958cUXefnll1+V/JzXM5pEMg8eeOABnnzySdavX8/b3/72JpEcIxzH4SMf+QgPPvggf/qnf8rTTz/ND37wAzRNY+PGjWzevPmIMlUWguCuOhBABmK93t5eOjo6jojQxsbGePHFF7nooouOqa8TCCD3DI6y9/AYtu0gSWKNALEeElGdd771ctoTC98QS6USzz333DGRSDX27t3L9ddfz/XXX88555zDvffey9atW/mDP/gDPv/5zy94nQvFxMQEPT09PPbYY6esy/BrBU0iOQoIgtAkkmPEv/zLv/B//s//4ec//3mYY2GaJg8//HB4UgHCTJXf/M3fPKEixKCnE2hVLMuqsWqpRyojIyP8+te/5qKLLjoud92u63J4rCKAPDza0GvrRJBId3f3UU/YVePgwYNcd911bN68mS996UvhyW5oaIipqalTIjJ37969rFixgp07d54S63kto0kkR4EmkRw7HMchm802zEOxbZvHH388zFQpl8vcdNNNbNq0ibe85S0nVIQYlGqCk0qgAO/p6aGrqwtFUcIJs4svvrjinXX81zCSTPtjxQOjZPJFAFpiEd5xzWXHhUTK5TLPPfccnZ2dnH/++cdMIoODg1x77bVcd911/NM//dNx90I7HnBdl5tvvpl0Os0TTzxxspfzmkeTSI4CTSJ5deA4Dk8++SR333039913H5lMJrz7fetb33pCRYiBAjw4qRQKBaLRKMVikdWrV78qztPVAsiVZy8+riTS0dHBBRdccMwkMjIywrXXXsuVV17J17/+9RPa31oIPvKRj/DAAw/wxBNPHHOSYxNHjiaRHAWaRPLqw3VdfvWrX4VBXePj47ztbW9j8+bNXHvttSc0UwX8MeWDBw+i6zqlUim0Fenp6ZmV1Hiqolwus3XrVtrb2xdEImNjY1x//fVccskl3HXXXacsidxxxx3cf//9PP744wvyCmviyNEkkqNAk0hOLlzXZdu2baH9/eDgINdccw2bN2/mhhtuOO56kUOHDrF//37Wrl1LW1vbLFuR1tbWkFQikchxe97jCcMweO6552hra1uQm/LExAQ33ngjq1at4jvf+c5Rh4y9GvA8j49+9KPce++9PProo6xYseJkL+l1gyaRHAWaRHLqwHXdmkyVPXv28Ja3vIVNmzYdl0yVAwcOcPDgQdatW1dX62IYRkgqU1NTJBKJkFROlVFTwzDYunVrmOtyrNcjlUpxww03sHz5cv7zP//zhE7WLQT/3//3//Hd736X+++/v0Y70traesoS/WsFTSKZB/l8nr179wKwdu1avvCFL3DVVVfR0dFxzLGjTRxfeJ7Hrl27QlJ58cUX+c3f/M0wU6W7u/uoNtF9+/YxODjI+vXrj6h0ZppmjVVL4FXV29tLLBY7KQI90zR57rnnFkwi6XSajRs30t/fz5YtW14VO/9jRaPX+M1vfpMPfOADr+5iXmdoEsk8ePTRR7nqqqtm/fy2227jrrvuevUX1MScCDJVAlLZvn17TaZKf39/ww0n+NuhoSHWr19/TCaQlmXVWLXouh6SytEaIB4rAhJJJBJceOGFx/yc2WyWzZs309rayv333/+q2Pc3cXqiSSRNvGbheR6HDh3innvu4d577+WZZ57h0ksvDTNVli5dGm6yruvyyiuvMD4+zoYNG45LecpxHJLJJGNjYzUGiL29vbS2tp4QUjFNk61btxKLxbjwwguPeTQ3n8/z9re/HVVV+fGPf9wsDTUxJ5pE0sTrAp7nMTQ0FGaqPPnkk6xZs4bNmzezceNGPvvZz2IYBv/8z/98QsaLqw0Qx8fHa/y/2trajosWIyCRaDTKRRdddMyPWSwWecc73oHnefz4xz9+1ez5mzh90SSS0whNU7rjgyBT5d577+Wee+7hySefJBaLcdttt/Hf//t/X5BtyJHAdV2mpqYYGxtjYmICz/NCUuno6DgmArAsi61btxKJRBZEIuVymXe/+92hP1pLS8sxPU4Try80ieQ0QtOU7vjCcRz+x//4Hzz66KN85CMf4dFHH+Whhx5ixYoV3Hzzzdxyyy1ccMEFJ1S57Xke6XQ6FEA6jkN3dzc9PT10dnYekVYjIBFd11m9evUxr9cwDN73vveRTCb52c9+1jDpsYkmZqJJJKcxmqZ0C8Pf//3f841vfIOHHnqIxYsXh/5bP/jBD8JMlWXLloWkspBN+kjgeR7ZbDYkFdM0a6xa6mk3LMti27ZtqKo6K/PlaGCaJu9///sZHBzkoYceOi4ZMU28ftAkktMYTVO6hSGfz1MoFBombmaz2ZpMlZ6enpBU1q9ff8JJJZ/Ph6RSKpXo7OwMg6UURcG2bbZt24aiKAsiEcuy+OAHP8grr7zCww8/fNJs4Js4fdEkktMUTVO6VxeFQoEHHniALVu28OMf/5jW1lZuvvlmNm/ezGWXXXbC7ULy+XzYqM/n87S3t1MqldB1nbVr1x7z89u2zYc//GGef/55HnnkkWaMdRPHhCaRnKZomtKdPJRKJX72s5+xZcsWfvjDH6Lrek2myom2D8nlcuzYsQPbtnEch7a2trBZfzRaD8dxuOOOO3j66ad59NFHWbRo0QlcdROvZTSJ5DRE05Tu1IFpmvziF79gy5Yt3H///QiCwI033sgtt9zClVdeedyV4LZts337dkRRZM2aNViWFdrfZzIZWlpaQq3KXNoP13X5/d//fR555BEeeeSRpktDEwtCk0hOIzRN6U5tWJYVZqrcf//9GIbBjTfeyObNm7nqqqsWrAx3HIft27cjCAJr1qyZVc4yDIOJiQnGxsaYmpoiHo/T29s7y//LdV3+5E/+hB//+Mc8+uijzZuRJhaMJpGcRmia0p0+cByHJ554IsxUyWazXH/99WzevJlrrrnmqEWPAYkAR9QTsSwrJJXJyUkEQeCBBx7gt37rt7j//vvZsmULjzzyyEm/GXn88cf5/Oc/z9atWxkZGWmaop6maBLJaYSmKd3pCdd1eeaZZ0JSmZiYqMlUmU857jgOO3bswHVd1q1bd9SNddu22blzJ//rf/0vnnrqKQBuvfVWPvShD7Fhw4aTYioZ4IEHHuDJJ59k/fr1vP3tb28SyWmKJpE00cSrCNd12bp1K/fccw9btmzh8OHDXHPNNWzatKluporjODz//PM4jsPatWuPuZHveR6f/exn+cY3vsGf/Mmf8Nxzz/HDH/6QtrY2fvKTn7Bq1arj9RKPGc2YhtMXTSJpoomTBNd1eeGFF0JS2bt3L1dffTU333wzN910E6qq8qEPfYj3ve99XHvttQsikS984Qt86Utf4uGHH+biiy8G/J7KQw89xFVXXXVKlEabRHL64sQpqpp4XeArX/kKq1evpqWlhZaWFq644goeeOCBk72s0wLB5NVf//Vf8+KLL7J9+3Yuv/xyvvrVr3LWWWfxhje8gZdeeolzzz33mHUinufxD//wD3zxi1/kwQcfDEkEQNM0brjhhlOCRJo4vdEkkiYWhCVLlvC5z32OrVu38txzz4UphS+99NLJXtppBUEQWLlyJZ/61Kf41a9+xZVXXolhGHR2drJhwwZuuOEGvva1rzEyMsKRFhE8z+NrX/san/vc5/jJT37Chg0bTvCraOL1iiaRNLEgbNy4kRtuuIEVK1Zw7rnn8pnPfIZ4PM4zzzxzspd2WsJxHN797neTyWTYuXMnTz/9NLt372bjxo3cfffdnHfeebztbW/jzjvvZHBwsCGpeJ7HN7/5Tf7yL/+SH/7wh1x++eWv8itp4vWEJpE0cdzgOA7/8R//QaFQ4IorrjjZyzktIUkSGzduDN13BUHgrLPO4mMf+xhPPPEEBw4c4F3vehc//vGPWbVqFVdddRVf+tKXOHDgQEgqnufx7//+73zyk5/kBz/4AW9605tO8qtq4rWOZrO9iQVj586dXHHFFZTLZeLxON/97ne54YYbTvayXtPwPI/R0VHuvfdetmzZwmOPPcaFF17Ipk2b0DSNz3zmM2zZsoW3ve1tJ3upcyKfz7N3717A18d84Qtf4KqrrqKjo6Optj+N0CSSJhYM0zQZGBggk8lw99138y//8i889thjrFy58mQv7XUBz/OYnJzk/vvv57vf/S4PP/ww3/72t3nf+953spc2Lx599FGuuuqqWT+/7bbbuOuuu179BTVxTGgSSRPHHddccw3Lly/na1/72sleyusOQaRw08iziVcTzR5JE8cdrutiGMbJXsbrEoIgNEmkiVcdJ9bvuonXPD75yU9y/fXXs2zZMnK5HN/97nd59NFHefDBB0/20ppooolXCU0iaWJBGB8f5/3vfz8jIyO0trayevVqHnzwQd761ree7KU10UQTrxKaPZImmmiiiSYWhGaPpIkmmmiiiQWhSSRNNNFEE00sCE0iaeI1jc997nMIgsDv//7vn+ylNNHEaxZNImniNYtnn32Wr33ta6xevfpkL6WJJl7TaBJJE69J5PN53ve+9/H1r3+d9vb2k72cJpp4TaNJJE28JvG7v/u73HjjjVxzzTUneylNNPGaR5NImnjN4T/+4z/Ytm0bn/3sZ0/2Ul6z+Md//EfOPPNMdF3nsssu47/+679O9pKaOIloEkkTrykMDg7ye7/3e3znO99B1/WTvZzXJL73ve/xh3/4h/zFX/wF27Zt4+KLL+baa69lfHz8ZC+tiZOEpiCxidcU7rvvPm655ZaaaFrHcRAEAVEUMQzjmGNrm/Bx2WWXcckll3DnnXcCvrfa0qVL+ehHP8onPvGJk7y6Jk4GmhYpTbymcPXVV7Nz586an91+++2cf/75fPzjH2+SyAJhmiZbt27lk5/8ZPgzURS55pprePrpp0/iypo4mWgSSROvKSQSCS688MKan8ViMTo7O2f9vImjRzKZxHEcent7a37e29vLrl27TtKqmjjZaPZImmiiiSaaWBCaJ5ImXvN49NFHT/YSXjPo6upCkiTGxsZqfj42NkZfX99JWlUTJxvNE0kTTTRxxFBVlfXr1/PQQw+FP3Ndl4ceeogrrrjiJK6siZOJJpE00cSrgL/8y79EEISa/51//vkne1nHhD/8wz/k61//Ot/61rf49a9/zUc+8hEKhQK33377yV5aEycJzdJWE028Sli1ahW/+MUvwv+W5dPz6/fud7+biYkJPvWpTzE6OsqaNWv46U9/OqsB38TrB6fnJ7mJJk5DyLL8mukj3HHHHdxxxx0nexlNnCJolraaaOJVwp49e1i0aBFnn30273vf+xgYGDjZS2qiieOCprK9iSZeBTzwwAPk83nOO+88RkZG+PSnP83Q0BAvvvgiiUTiZC+viSYWhCaRNNHESUA6neaMM87gC1/4Ah/84AdP9nKaaGJBaJa2mmjiJKCtrY1zzz2XvXv3nuylNNHEgtEkkiaaOAnI5/Ps27eP/v7+k72UJppYMJpE0kQTrwI+9rGP8dhjj3Hw4EGeeuqp0KH4ve9978leWhNNLBjN8d8mmngVcPjwYd773vcyOTlJd3c3b3zjG3nmmWfo7u4+2UtrookFo9lsb6KJJppoYkFolraaaKKJJppYEJpE0kQTTTTRxILQJJImmmiiiSYWhCaRNNFEE000sSA0iaSJJppoookFoUkkTTTRRBNNLAhNImmiiSaaaGJBaBJJE0000UQTC0KTSJpoookmmlgQmkTSRBNNNNHEgtAkkiaaaKKJJhaEJpE00UQTTTSxIPz/AdayfHXNJ9zQAAAAAElFTkSuQmCC" - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "image/svg+xml": "\n\n\n\n\n\n\n\n\nx1\n\nx1\n\n\n\nk1\n\nk1\n\n\n\nx1->k1\n\n\nlogistic(x)\n\n\n\nk3\n\nk3\n\n\n\nx1->k3\n\n\n-2.40 * x + -0.11\n\n\n\nk5\n\nk5\n\n\n\nx1->k5\n\n\n-0.90 * x + 0.12\n\n\n\nx2\n\nx2\n\n\n\nx2->k1\n\n\n-0.66 * x + -0.67\n\n\n\nk2\n\nk2\n\n\n\nx2->k2\n\n\nlogistic(x)\n\n\n\nx2->k3\n\n\n0.47 * x + -0.46\n\n\n\nk4\n\nk4\n\n\n\nx2->k4\n\n\n0.70 * x + 0.43\n\n\n\nx2->k5\n\n\nlogistic(x)\n\n\n\nk1->k2\n\n\n-1.14 * x + -0.85\n\n\n\nk1->k3\n\n\n-1.11 * x + -0.70\n\n\n\nk1->k4\n\n\n-0.42 * x + 0.67\n\n\n\nP(detected) = Sigmoid(x + 0.00)\n\nP(detected) = Sigmoid(x + 0.00)\n\n\n\nk1->P(detected) = Sigmoid(x + 0.00)\n\n\n1.00 * x\n\n\n\nk2->k4\n\n\nlogistic(x)\n\n\n\nk2->k5\n\n\nlogistic(x)\n\n\n\nk2->P(detected) = Sigmoid(x + 0.00)\n\n\n1.00 * x\n\n\n\nk3->k4\n\n\n1.38 * x + 0.47\n\n\n\nk3->k5\n\n\n1.35 * x + 0.36\n\n\n\nk3->P(detected) = Sigmoid(x + 0.00)\n\n\n1.00 * x\n\n\n\nk4->k5\n\n\n0.56 * x + 0.54\n\n\n\nk4->P(detected) = Sigmoid(x + 0.00)\n\n\n1.00 * x\n\n\n\nk5->P(detected) = Sigmoid(x + 0.00)\n\n\n1.00 * x\n\n\n\n", - "text/plain": "" - }, - "execution_count": 9, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "darts_estimator_tuned.set_params(\n", - " arch_updates_per_epoch=0,\n", - " param_updates_per_epoch=1000,\n", - " sampling_strategy=\"max\",\n", - " max_epochs=0\n", - ")\n", - "darts_estimator_tuned.fit(X, y)\n", - "show_results(estimator=darts_estimator_tuned, label=\"resampled DARTSRegressor\")\n", - "darts_estimator_tuned.visualize_model()\n" - ], - "metadata": { - "collapsed": false - } - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 3 (ipykernel)", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.8.13" - } - }, - "nbformat": 4, - "nbformat_minor": 1 -} From ac8b3b2885672e31baa91a9a17ad47fd3d161a01 Mon Sep 17 00:00:00 2001 From: John Gerrard Holland Date: Fri, 21 Apr 2023 11:50:05 -0400 Subject: [PATCH 005/130] fix: import order in mkdocs --- mkdocs.yml | 9 +++++---- 1 file changed, 5 insertions(+), 4 deletions(-) diff --git a/mkdocs.yml b/mkdocs.yml index b65a78fe3..1511f24f7 100644 --- a/mkdocs.yml +++ b/mkdocs.yml @@ -38,10 +38,6 @@ plugins: python: import: - https://scikit-learn.org/stable/objects.inv - - mkdocs-jupyter: - include_source: true - execute: false - ignore_h1_titles: True - multirepo: # (optional) tells multirepo to clean up the temporary directory after site is built. cleanup: false @@ -49,6 +45,10 @@ plugins: # When using this with a nav section in an imported repo you must keep the # docs directory in the path (e.g., docs/path/to/file.md). keep_docs_dir: true + - mkdocs-jupyter: + include_source: true + execute: false + ignore_h1_titles: true markdown_extensions: - pymdownx.arithmatex: @@ -105,6 +105,7 @@ nav: - DARTS & BMS: 'cycle/simple_cycle_bms_darts.ipynb' - BMS & Poppernet: 'cycle/simple_cycle_bms_model_poppernet.ipynb' - Uncertainty Experimentalist: 'cycle/simple_cycle_uncertainty_experimentalist.ipynb' +- Workflow (local): '!import ../../autora-workflow/?branch=main&docs_dir=docs&multi_docs=True' - Contributor Guide: - Module Contributions - Core Contributions From 14142fc96d54c8df1d7c78632ba4b709d20a551c Mon Sep 17 00:00:00 2001 From: John Gerrard Holland Date: Fri, 21 Apr 2023 13:39:22 -0400 Subject: [PATCH 006/130] docs: add link to colab notebook from gh-docs branch --- mkdocs.yml | 1 + mkdocs/overrides/main.html | 13 ++++--------- 2 files changed, 5 insertions(+), 9 deletions(-) diff --git a/mkdocs.yml b/mkdocs.yml index 1511f24f7..7e35e2a42 100644 --- a/mkdocs.yml +++ b/mkdocs.yml @@ -3,6 +3,7 @@ site_name: Autonomous Empirical Research repo_url: 'https://github.com/autoresearch/autora' edit_uri: 'blob/main/docs/' +colab_base_url: 'https://colab.research.google.com/github/AutoResearch/autora/blob/gh-pages' theme: name: material diff --git a/mkdocs/overrides/main.html b/mkdocs/overrides/main.html index 611f41563..3fece5d56 100644 --- a/mkdocs/overrides/main.html +++ b/mkdocs/overrides/main.html @@ -5,15 +5,10 @@ {% include ".icons/material/download.svg" %} + + {% include ".icons/material/play-circle-outline.svg" %} + {% endif %} -{% if page.file.src_uri %} - {% if page.file.src_uri.endswith('.ipynb') %} - - {% include ".icons/material/play-circle-outline.svg" %} - - {% endif %} -{% endif %} - {{ super() }} {% endblock content %} From 3ca4d8178559683cd026e771691badfe13de9e15 Mon Sep 17 00:00:00 2001 From: John Gerrard Holland Date: Fri, 21 Apr 2023 13:39:33 -0400 Subject: [PATCH 007/130] docs: remove (local) on Workflow --- mkdocs.yml | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/mkdocs.yml b/mkdocs.yml index 7e35e2a42..dd62cd324 100644 --- a/mkdocs.yml +++ b/mkdocs.yml @@ -106,7 +106,7 @@ nav: - DARTS & BMS: 'cycle/simple_cycle_bms_darts.ipynb' - BMS & Poppernet: 'cycle/simple_cycle_bms_model_poppernet.ipynb' - Uncertainty Experimentalist: 'cycle/simple_cycle_uncertainty_experimentalist.ipynb' -- Workflow (local): '!import ../../autora-workflow/?branch=main&docs_dir=docs&multi_docs=True' + - Workflows: '!import ../../autora-workflow/?branch=main&docs_dir=docs&multi_docs=True' - Contributor Guide: - Module Contributions - Core Contributions From 2453466c94adea67764ea0a33f82ede2884a0ac3 Mon Sep 17 00:00:00 2001 From: John Gerrard Holland Date: Fri, 21 Apr 2023 13:53:20 -0400 Subject: [PATCH 008/130] docs: update import of workflows --- mkdocs.yml | 9 ++++++--- 1 file changed, 6 insertions(+), 3 deletions(-) diff --git a/mkdocs.yml b/mkdocs.yml index dd62cd324..f0365359c 100644 --- a/mkdocs.yml +++ b/mkdocs.yml @@ -40,12 +40,15 @@ plugins: import: - https://scikit-learn.org/stable/objects.inv - multirepo: - # (optional) tells multirepo to clean up the temporary directory after site is built. - cleanup: false # if set the docs directory will not be removed when importing docs. # When using this with a nav section in an imported repo you must keep the # docs directory in the path (e.g., docs/path/to/file.md). + cleanup: false keep_docs_dir: true + nav_repos: + - name: workflow + import_url: https://github.com/autoresearch/autora-workflow?branch=main&multi_docs=True + imports: [mkdocs.yml, docs/*] - mkdocs-jupyter: include_source: true execute: false @@ -106,7 +109,7 @@ nav: - DARTS & BMS: 'cycle/simple_cycle_bms_darts.ipynb' - BMS & Poppernet: 'cycle/simple_cycle_bms_model_poppernet.ipynb' - Uncertainty Experimentalist: 'cycle/simple_cycle_uncertainty_experimentalist.ipynb' - - Workflows: '!import ../../autora-workflow/?branch=main&docs_dir=docs&multi_docs=True' + - Workflows: workflow/docs/ - Contributor Guide: - Module Contributions - Core Contributions From cf0784e97d99b4275dd0ba8b769cd955c36b454f Mon Sep 17 00:00:00 2001 From: John Gerrard Holland Date: Fri, 21 Apr 2023 15:31:53 -0400 Subject: [PATCH 009/130] docs: update mkdocs settings --- mkdocs.yml | 21 +++++++++++---------- mkdocs/_gen_ref_pages.py | 39 +++++++++++++++++++-------------------- 2 files changed, 30 insertions(+), 30 deletions(-) diff --git a/mkdocs.yml b/mkdocs.yml index f0365359c..8e6c369d3 100644 --- a/mkdocs.yml +++ b/mkdocs.yml @@ -28,6 +28,15 @@ theme: plugins: - search + + - multirepo: + cleanup: false + keep_docs_dir: true + nav_repos: + - name: workflow + import_url: ../../autora-workflow?branch=main&multi_docs=True + imports: [mkdocs.yml, docs/*, src/*] + - gen-files: scripts: - mkdocs/_gen_ref_pages.py @@ -39,20 +48,12 @@ plugins: python: import: - https://scikit-learn.org/stable/objects.inv - - multirepo: - # if set the docs directory will not be removed when importing docs. - # When using this with a nav section in an imported repo you must keep the - # docs directory in the path (e.g., docs/path/to/file.md). - cleanup: false - keep_docs_dir: true - nav_repos: - - name: workflow - import_url: https://github.com/autoresearch/autora-workflow?branch=main&multi_docs=True - imports: [mkdocs.yml, docs/*] + - mkdocs-jupyter: include_source: true execute: false ignore_h1_titles: true + include: ["*.ipynb"] markdown_extensions: - pymdownx.arithmatex: diff --git a/mkdocs/_gen_ref_pages.py b/mkdocs/_gen_ref_pages.py index 5942f2eb3..01978b975 100644 --- a/mkdocs/_gen_ref_pages.py +++ b/mkdocs/_gen_ref_pages.py @@ -1,36 +1,35 @@ """Generate the code reference pages and navigation.""" from pathlib import Path -from typing import List import mkdocs_gen_files nav = mkdocs_gen_files.Nav() -source_paths = sorted(Path("./autora").rglob("*.py")) -special_paths: List[Path] = [] +namespace_src_dirs = sorted(Path("./temp_dir").rglob("**/src/")) +for src_dir in namespace_src_dirs: + source_paths = sorted(src_dir.rglob("*.py")) + for path in source_paths: + module_path = path.relative_to(src_dir).with_suffix("") + doc_path = path.relative_to(".").with_suffix(".md") + full_doc_path = Path("reference", doc_path) -for path in source_paths + special_paths: - module_path = path.relative_to(".").with_suffix("") - doc_path = path.relative_to(".").with_suffix(".md") - full_doc_path = Path("reference", doc_path) + parts = tuple(module_path.parts) - parts = tuple(module_path.parts) + if parts[-1] == "__init__": + parts = parts[:-1] + doc_path = doc_path.with_name("index.md") + full_doc_path = full_doc_path.with_name("index.md") + elif parts[-1] == "__main__": + continue - if parts[-1] == "__init__": - parts = parts[:-1] - doc_path = doc_path.with_name("index.md") - full_doc_path = full_doc_path.with_name("index.md") - elif parts[-1] == "__main__": - continue + nav[parts] = doc_path.as_posix() - nav[parts] = doc_path.as_posix() + with mkdocs_gen_files.open(full_doc_path, "w") as fd: + ident = ".".join(parts) + fd.write(f"::: {ident}") - with mkdocs_gen_files.open(full_doc_path, "w") as fd: - ident = ".".join(parts) - fd.write(f"::: {ident}") - - mkdocs_gen_files.set_edit_path(full_doc_path, path) + mkdocs_gen_files.set_edit_path(full_doc_path, path) with mkdocs_gen_files.open("reference/SUMMARY.md", "w") as nav_file: nav_file.writelines(nav.build_literate_nav()) From e61f73b9e9af23fa84e1e31ab3ad49ae4b0393ad Mon Sep 17 00:00:00 2001 From: John Gerrard Holland Date: Fri, 21 Apr 2023 15:51:20 -0400 Subject: [PATCH 010/130] Revert "docs: update mkdocs settings" This reverts commit cf0784e97d99b4275dd0ba8b769cd955c36b454f. --- mkdocs.yml | 21 ++++++++++----------- mkdocs/_gen_ref_pages.py | 39 ++++++++++++++++++++------------------- 2 files changed, 30 insertions(+), 30 deletions(-) diff --git a/mkdocs.yml b/mkdocs.yml index 8e6c369d3..f0365359c 100644 --- a/mkdocs.yml +++ b/mkdocs.yml @@ -28,15 +28,6 @@ theme: plugins: - search - - - multirepo: - cleanup: false - keep_docs_dir: true - nav_repos: - - name: workflow - import_url: ../../autora-workflow?branch=main&multi_docs=True - imports: [mkdocs.yml, docs/*, src/*] - - gen-files: scripts: - mkdocs/_gen_ref_pages.py @@ -48,12 +39,20 @@ plugins: python: import: - https://scikit-learn.org/stable/objects.inv - + - multirepo: + # if set the docs directory will not be removed when importing docs. + # When using this with a nav section in an imported repo you must keep the + # docs directory in the path (e.g., docs/path/to/file.md). + cleanup: false + keep_docs_dir: true + nav_repos: + - name: workflow + import_url: https://github.com/autoresearch/autora-workflow?branch=main&multi_docs=True + imports: [mkdocs.yml, docs/*] - mkdocs-jupyter: include_source: true execute: false ignore_h1_titles: true - include: ["*.ipynb"] markdown_extensions: - pymdownx.arithmatex: diff --git a/mkdocs/_gen_ref_pages.py b/mkdocs/_gen_ref_pages.py index 01978b975..5942f2eb3 100644 --- a/mkdocs/_gen_ref_pages.py +++ b/mkdocs/_gen_ref_pages.py @@ -1,35 +1,36 @@ """Generate the code reference pages and navigation.""" from pathlib import Path +from typing import List import mkdocs_gen_files nav = mkdocs_gen_files.Nav() -namespace_src_dirs = sorted(Path("./temp_dir").rglob("**/src/")) -for src_dir in namespace_src_dirs: - source_paths = sorted(src_dir.rglob("*.py")) - for path in source_paths: - module_path = path.relative_to(src_dir).with_suffix("") - doc_path = path.relative_to(".").with_suffix(".md") - full_doc_path = Path("reference", doc_path) +source_paths = sorted(Path("./autora").rglob("*.py")) +special_paths: List[Path] = [] - parts = tuple(module_path.parts) +for path in source_paths + special_paths: + module_path = path.relative_to(".").with_suffix("") + doc_path = path.relative_to(".").with_suffix(".md") + full_doc_path = Path("reference", doc_path) - if parts[-1] == "__init__": - parts = parts[:-1] - doc_path = doc_path.with_name("index.md") - full_doc_path = full_doc_path.with_name("index.md") - elif parts[-1] == "__main__": - continue + parts = tuple(module_path.parts) - nav[parts] = doc_path.as_posix() + if parts[-1] == "__init__": + parts = parts[:-1] + doc_path = doc_path.with_name("index.md") + full_doc_path = full_doc_path.with_name("index.md") + elif parts[-1] == "__main__": + continue - with mkdocs_gen_files.open(full_doc_path, "w") as fd: - ident = ".".join(parts) - fd.write(f"::: {ident}") + nav[parts] = doc_path.as_posix() - mkdocs_gen_files.set_edit_path(full_doc_path, path) + with mkdocs_gen_files.open(full_doc_path, "w") as fd: + ident = ".".join(parts) + fd.write(f"::: {ident}") + + mkdocs_gen_files.set_edit_path(full_doc_path, path) with mkdocs_gen_files.open("reference/SUMMARY.md", "w") as nav_file: nav_file.writelines(nav.build_literate_nav()) From 8a76bc9cd35fe36b84522aa869f21d42d4b08d01 Mon Sep 17 00:00:00 2001 From: John Gerrard Holland Date: Fri, 21 Apr 2023 15:51:20 -0400 Subject: [PATCH 011/130] Revert "docs: update import of workflows" This reverts commit 2453466c94adea67764ea0a33f82ede2884a0ac3. --- mkdocs.yml | 9 +++------ 1 file changed, 3 insertions(+), 6 deletions(-) diff --git a/mkdocs.yml b/mkdocs.yml index f0365359c..dd62cd324 100644 --- a/mkdocs.yml +++ b/mkdocs.yml @@ -40,15 +40,12 @@ plugins: import: - https://scikit-learn.org/stable/objects.inv - multirepo: + # (optional) tells multirepo to clean up the temporary directory after site is built. + cleanup: false # if set the docs directory will not be removed when importing docs. # When using this with a nav section in an imported repo you must keep the # docs directory in the path (e.g., docs/path/to/file.md). - cleanup: false keep_docs_dir: true - nav_repos: - - name: workflow - import_url: https://github.com/autoresearch/autora-workflow?branch=main&multi_docs=True - imports: [mkdocs.yml, docs/*] - mkdocs-jupyter: include_source: true execute: false @@ -109,7 +106,7 @@ nav: - DARTS & BMS: 'cycle/simple_cycle_bms_darts.ipynb' - BMS & Poppernet: 'cycle/simple_cycle_bms_model_poppernet.ipynb' - Uncertainty Experimentalist: 'cycle/simple_cycle_uncertainty_experimentalist.ipynb' - - Workflows: workflow/docs/ + - Workflows: '!import ../../autora-workflow/?branch=main&docs_dir=docs&multi_docs=True' - Contributor Guide: - Module Contributions - Core Contributions From 97e407972a03749568e10b62b6ba6539752755ee Mon Sep 17 00:00:00 2001 From: John Gerrard Holland Date: Fri, 21 Apr 2023 15:51:20 -0400 Subject: [PATCH 012/130] Revert "docs: remove (local) on Workflow" This reverts commit 3ca4d8178559683cd026e771691badfe13de9e15. --- mkdocs.yml | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/mkdocs.yml b/mkdocs.yml index dd62cd324..7e35e2a42 100644 --- a/mkdocs.yml +++ b/mkdocs.yml @@ -106,7 +106,7 @@ nav: - DARTS & BMS: 'cycle/simple_cycle_bms_darts.ipynb' - BMS & Poppernet: 'cycle/simple_cycle_bms_model_poppernet.ipynb' - Uncertainty Experimentalist: 'cycle/simple_cycle_uncertainty_experimentalist.ipynb' - - Workflows: '!import ../../autora-workflow/?branch=main&docs_dir=docs&multi_docs=True' +- Workflow (local): '!import ../../autora-workflow/?branch=main&docs_dir=docs&multi_docs=True' - Contributor Guide: - Module Contributions - Core Contributions From ebbd8dea9a9b4485a1ba4127e4eec63e58c3fc6e Mon Sep 17 00:00:00 2001 From: John Gerrard Holland Date: Fri, 21 Apr 2023 15:53:01 -0400 Subject: [PATCH 013/130] docs: change path to workflow package docs --- mkdocs.yml | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/mkdocs.yml b/mkdocs.yml index 7e35e2a42..4f253c265 100644 --- a/mkdocs.yml +++ b/mkdocs.yml @@ -106,7 +106,7 @@ nav: - DARTS & BMS: 'cycle/simple_cycle_bms_darts.ipynb' - BMS & Poppernet: 'cycle/simple_cycle_bms_model_poppernet.ipynb' - Uncertainty Experimentalist: 'cycle/simple_cycle_uncertainty_experimentalist.ipynb' -- Workflow (local): '!import ../../autora-workflow/?branch=main&docs_dir=docs&multi_docs=True' + - Workflow: '!import https://github.com/autoresearch/autora-workflow/?branch=main&docs_dir=docs&multi_docs=True' - Contributor Guide: - Module Contributions - Core Contributions From 9cace9bf7f07b93197e7339351ab7d1feb95ef92 Mon Sep 17 00:00:00 2001 From: John Gerrard Holland Date: Fri, 21 Apr 2023 15:54:20 -0400 Subject: [PATCH 014/130] docs: remove code reference --- mkdocs.yml | 12 ------------ 1 file changed, 12 deletions(-) diff --git a/mkdocs.yml b/mkdocs.yml index 4f253c265..72034bd03 100644 --- a/mkdocs.yml +++ b/mkdocs.yml @@ -28,17 +28,6 @@ theme: plugins: - search - - gen-files: - scripts: - - mkdocs/_gen_ref_pages.py - - literate-nav: - nav_file: SUMMARY.md - - section-index - - mkdocstrings: - handlers: - python: - import: - - https://scikit-learn.org/stable/objects.inv - multirepo: # (optional) tells multirepo to clean up the temporary directory after site is built. cleanup: false @@ -110,4 +99,3 @@ nav: - Contributor Guide: - Module Contributions - Core Contributions -- Code Reference: reference/autora/ From 1fbab969a6df881199d77aff3a708a27b4cf9239 Mon Sep 17 00:00:00 2001 From: John Gerrard Holland Date: Mon, 24 Apr 2023 09:21:15 -0400 Subject: [PATCH 015/130] docs: fix warning for unknown variable --- mkdocs.yml | 4 +++- mkdocs/overrides/main.html | 2 +- 2 files changed, 4 insertions(+), 2 deletions(-) diff --git a/mkdocs.yml b/mkdocs.yml index 72034bd03..90ff6107d 100644 --- a/mkdocs.yml +++ b/mkdocs.yml @@ -3,7 +3,9 @@ site_name: Autonomous Empirical Research repo_url: 'https://github.com/autoresearch/autora' edit_uri: 'blob/main/docs/' -colab_base_url: 'https://colab.research.google.com/github/AutoResearch/autora/blob/gh-pages' + +extra: + colab_base_url: 'https://colab.research.google.com/github/AutoResearch/autora/blob/gh-pages' theme: name: material diff --git a/mkdocs/overrides/main.html b/mkdocs/overrides/main.html index 3fece5d56..6fd63f8e9 100644 --- a/mkdocs/overrides/main.html +++ b/mkdocs/overrides/main.html @@ -5,7 +5,7 @@ {% include ".icons/material/download.svg" %} - {% include ".icons/material/play-circle-outline.svg" %} From 0ce6fbe8a321fc2e2b3c4e706b59219478e94cac Mon Sep 17 00:00:00 2001 From: John Gerrard Holland Date: Tue, 25 Apr 2023 17:57:39 -0400 Subject: [PATCH 016/130] build: update pyproject.toml --- pyproject.toml | 52 ++++++++++++++++++++++++++------------------------ 1 file changed, 27 insertions(+), 25 deletions(-) diff --git a/pyproject.toml b/pyproject.toml index 1165aa229..2f8771e18 100644 --- a/pyproject.toml +++ b/pyproject.toml @@ -1,36 +1,38 @@ -[tool.poetry] +[project] name = "autora" version = "0.0.0" -description = "Autonomous Research Assistant (AutoRA) is a framework for automating steps of the empirical research process. This framework implements tools for autonomously and iteratively generating 1) new theories to describe real-world data, and 2) experiments to invalidate those theories and seed a new cycle of theory-making. The experiments will be run online via crowd-sourcing platforms (MTurk, Prolific)." +description = "Autonomous Research Assistant (AutoRA) is a framework for automating steps of the empirical research process." authors = [ - "Sebastian Musslick ", - "John Gerrard Holland ", + {name = "Sebastian Musslick", email="sebastian_musslick@brown.edu"}, + {name = "John Gerrard Holland", email="john_holland1@brown.edu"}, ] readme = "README.md" +requires-python = ">=3.8,<3.11" +dependencies = ["autora-core"] + +[project.optional-dependencies] +theorists = [ + "autora-darts", +] +dev = [ + "pre-commit>=2.20,<4.0", + "mkdocs-material>=8.5.10,<10.0.0", + "mkdocs-gen-files>=0.3.4,<0.5.0", + "mkdocs-literate-nav>=0.4.1,<0.7.0", + "mkdocs-section-index>=0.3.4", + "mkdocstrings-python>=0.7.1,<0.10.0", + "mkdocs-jupyter>=0.24.1", + "mkdocs-multirepo-plugin>=0.6.1", +] + +[project.urls] homepage = "https://musslick.github.io/AER_website/Research.html" repository = "https://github.com/AutoResearch/autora" documentation = "https://autoresearch.github.io/autora/" -[tool.poetry.dependencies] -python = ">=3.8.10,<3.11" -autora-core = "*" -autora-darts = "*" - -[tool.poetry.group.pre-commit.dependencies] -pre-commit = ">=2.20,<4.0" - -[tool.poetry.group.docs.dependencies] -mkdocs-material = ">=8.5.10,<10.0.0" -mkdocs-gen-files = ">=0.3.4,<0.5.0" -mkdocs-literate-nav = ">=0.4.1,<0.7.0" -mkdocs-section-index = "^0.3.4" -mkdocstrings-python = ">=0.7.1,<0.10.0" -mkdocs-jupyter = "^0.24.1" -mkdocs-multirepo-plugin = "^0.6.1" - [build-system] -requires = ["poetry-core>=1.0.0"] -build-backend = "poetry.core.masonry.api" +requires = ["setuptools", "setuptools-scm"] +build-backend = "setuptools.build_meta" -[tool.isort] -profile = "black" +[tool.setuptools.packages.find] +where = [] # no source files for this repository From d1cf249916a732555b92160f80d74e16366eb4d6 Mon Sep 17 00:00:00 2001 From: John Gerrard Holland Date: Tue, 25 Apr 2023 17:58:58 -0400 Subject: [PATCH 017/130] build: update IDE settings --- .idea/autora.iml | 3 ++- .idea/misc.xml | 1 - 2 files changed, 2 insertions(+), 2 deletions(-) diff --git a/.idea/autora.iml b/.idea/autora.iml index e163492a5..35b6fe7a6 100644 --- a/.idea/autora.iml +++ b/.idea/autora.iml @@ -8,8 +8,9 @@ + - + diff --git a/.idea/misc.xml b/.idea/misc.xml index 2f700f2b8..588d16260 100644 --- a/.idea/misc.xml +++ b/.idea/misc.xml @@ -1,6 +1,5 @@ - From b781a4c0927555f83107f53df94c266c72955eff Mon Sep 17 00:00:00 2001 From: John Gerrard Holland Date: Tue, 25 Apr 2023 17:59:36 -0400 Subject: [PATCH 018/130] chore: remove old brewfile --- Brewfile | 7 ------- 1 file changed, 7 deletions(-) delete mode 100644 Brewfile diff --git a/Brewfile b/Brewfile deleted file mode 100644 index 8c840000d..000000000 --- a/Brewfile +++ /dev/null @@ -1,7 +0,0 @@ -# Python environment -brew "pyenv" -brew "poetry" -brew "pre-commit" - -# External tools -brew "graphviz" From 8a0f4834f0ecc6687b41447cb844a211318ffa94 Mon Sep 17 00:00:00 2001 From: John Gerrard Holland Date: Tue, 25 Apr 2023 18:02:41 -0400 Subject: [PATCH 019/130] chore: remove python sdk --- .idea/autora.iml | 1 - 1 file changed, 1 deletion(-) diff --git a/.idea/autora.iml b/.idea/autora.iml index 35b6fe7a6..a2defaceb 100644 --- a/.idea/autora.iml +++ b/.idea/autora.iml @@ -10,7 +10,6 @@ - From 9d9152c94c6bb92e7f3f35e64a6ea1b7d5fa8305 Mon Sep 17 00:00:00 2001 From: John Gerrard Holland Date: Tue, 25 Apr 2023 18:02:52 -0400 Subject: [PATCH 020/130] chore: switch sci-view to false --- .idea/other.xml | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/.idea/other.xml b/.idea/other.xml index a708ec781..589e5a6b7 100644 --- a/.idea/other.xml +++ b/.idea/other.xml @@ -1,6 +1,6 @@ - \ No newline at end of file From c4667ac678414b7bfe45729bf692b636aa83e786 Mon Sep 17 00:00:00 2001 From: John Gerrard Holland Date: Tue, 25 Apr 2023 18:03:27 -0400 Subject: [PATCH 021/130] chore: remove poetry.lock --- poetry.lock | 2799 --------------------------------------------------- 1 file changed, 2799 deletions(-) delete mode 100644 poetry.lock diff --git a/poetry.lock b/poetry.lock deleted file mode 100644 index 9dba40871..000000000 --- a/poetry.lock +++ /dev/null @@ -1,2799 +0,0 @@ -# This file is automatically @generated by Poetry 1.4.2 and should not be changed by hand. - -[[package]] -name = "asyncio" -version = "3.4.3" -description = "reference implementation of PEP 3156" -category = "main" -optional = false -python-versions = "*" -files = [ - {file = "asyncio-3.4.3-cp33-none-win32.whl", hash = "sha256:b62c9157d36187eca799c378e572c969f0da87cd5fc42ca372d92cdb06e7e1de"}, - {file = "asyncio-3.4.3-cp33-none-win_amd64.whl", hash = "sha256:c46a87b48213d7464f22d9a497b9eef8c1928b68320a2fa94240f969f6fec08c"}, - {file = "asyncio-3.4.3-py3-none-any.whl", hash = "sha256:c4d18b22701821de07bd6aea8b53d21449ec0ec5680645e5317062ea21817d2d"}, - {file = "asyncio-3.4.3.tar.gz", hash = "sha256:83360ff8bc97980e4ff25c964c7bd3923d333d177aa4f7fb736b019f26c7cb41"}, -] - -[[package]] -name = "attrs" -version = "22.2.0" -description = "Classes Without Boilerplate" -category = "dev" -optional = false -python-versions = ">=3.6" -files = [ - {file = "attrs-22.2.0-py3-none-any.whl", hash = "sha256:29e95c7f6778868dbd49170f98f8818f78f3dc5e0e37c0b1f474e3561b240836"}, - {file = "attrs-22.2.0.tar.gz", hash = "sha256:c9227bfc2f01993c03f68db37d1d15c9690188323c067c641f1a35ca58185f99"}, -] - -[package.extras] -cov = ["attrs[tests]", "coverage-enable-subprocess", "coverage[toml] (>=5.3)"] -dev = ["attrs[docs,tests]"] -docs = ["furo", "myst-parser", "sphinx", "sphinx-notfound-page", "sphinxcontrib-towncrier", "towncrier", "zope.interface"] -tests = ["attrs[tests-no-zope]", "zope.interface"] -tests-no-zope = ["cloudpickle", "cloudpickle", "hypothesis", "hypothesis", "mypy (>=0.971,<0.990)", "mypy (>=0.971,<0.990)", "pympler", "pympler", "pytest (>=4.3.0)", "pytest (>=4.3.0)", "pytest-mypy-plugins", "pytest-mypy-plugins", "pytest-xdist[psutil]", "pytest-xdist[psutil]"] - -[[package]] -name = "autora-core" -version = "3.0.0a2" -description = "Autonomous Research Assistant (AutoRA) is a framework for automating steps of the empirical research process. This framework implements tools for autonomously and iteratively generating 1) new theories to describe real-world data, and 2) experiments to invalidate those theories and seed a new cycle of theory-making. The experiments will be run online via crowd-sourcing platforms (MTurk, Prolific)." -category = "main" -optional = false -python-versions = ">=3.8.10,<3.11" -files = [ - {file = "autora_core-3.0.0a2-py3-none-any.whl", hash = "sha256:d546038cba6bfa85ea1ff193550d4427e0c5481b920e381c1c1fe5d9b9107587"}, - {file = "autora_core-3.0.0a2.tar.gz", hash = "sha256:6b098088bfd38d722aa27c1056de8553768de596f98b243fb36ea4c9eae1a077"}, -] - -[package.dependencies] -matplotlib = ">=3.2.1,<4.0.0" -numpy = ">=1.22.1" -pandas = ">=1.4.2,<3.0.0" -scikit-learn = ">=1.1.1,<2.0.0" - -[[package]] -name = "autora-darts" -version = "3.0.0a2" -description = "" -category = "main" -optional = false -python-versions = ">=3.8.10,<3.11" -files = [ - {file = "autora_darts-3.0.0a2-py3-none-any.whl", hash = "sha256:6ac4a171440fcfc6e818481281ce37f2167e2536f464d72c157cb79183d57b7c"}, - {file = "autora_darts-3.0.0a2.tar.gz", hash = "sha256:e4951d5f3948d6c6843eec894a41cbed1df5f47021c4db10fe6e32fdc0230bed"}, -] - -[package.dependencies] -autora-core = "3.0.0a2" -graphviz = ">=0.14.1,<0.21.0" -torch = "2.0.0" -tqdm = ">=4.64.0,<5.0.0" - -[[package]] -name = "beautifulsoup4" -version = "4.12.1" -description = "Screen-scraping library" -category = "dev" -optional = false -python-versions = ">=3.6.0" -files = [ - {file = "beautifulsoup4-4.12.1-py3-none-any.whl", hash = "sha256:e44795bb4f156d94abb5fbc56efff871c1045bfef72e9efe77558db9f9616ac3"}, - {file = "beautifulsoup4-4.12.1.tar.gz", hash = "sha256:c7bdbfb20a0dbe09518b96a809d93351b2e2bcb8046c0809466fa6632a10c257"}, -] - -[package.dependencies] -soupsieve = ">1.2" - -[package.extras] -html5lib = ["html5lib"] -lxml = ["lxml"] - -[[package]] -name = "bleach" -version = "6.0.0" -description = "An easy safelist-based HTML-sanitizing tool." -category = "dev" -optional = false -python-versions = ">=3.7" -files = [ - {file = "bleach-6.0.0-py3-none-any.whl", hash = "sha256:33c16e3353dbd13028ab4799a0f89a83f113405c766e9c122df8a06f5b85b3f4"}, - {file = "bleach-6.0.0.tar.gz", hash = "sha256:1a1a85c1595e07d8db14c5f09f09e6433502c51c595970edc090551f0db99414"}, -] - -[package.dependencies] -six = ">=1.9.0" -webencodings = "*" - -[package.extras] -css = ["tinycss2 (>=1.1.0,<1.2)"] - -[[package]] -name = "certifi" -version = "2022.12.7" -description = "Python package for providing Mozilla's CA Bundle." -category = "dev" -optional = false -python-versions = ">=3.6" -files = [ - {file = "certifi-2022.12.7-py3-none-any.whl", hash = "sha256:4ad3232f5e926d6718ec31cfc1fcadfde020920e278684144551c91769c7bc18"}, - {file = "certifi-2022.12.7.tar.gz", hash = "sha256:35824b4c3a97115964b408844d64aa14db1cc518f6562e8d7261699d1350a9e3"}, -] - -[[package]] -name = "cffi" -version = "1.15.1" -description = "Foreign Function Interface for Python calling C code." -category = "dev" -optional = false -python-versions = "*" -files = [ - {file = "cffi-1.15.1-cp27-cp27m-macosx_10_9_x86_64.whl", hash = "sha256:a66d3508133af6e8548451b25058d5812812ec3798c886bf38ed24a98216fab2"}, - {file = "cffi-1.15.1-cp27-cp27m-manylinux1_i686.whl", hash = "sha256:470c103ae716238bbe698d67ad020e1db9d9dba34fa5a899b5e21577e6d52ed2"}, - {file = "cffi-1.15.1-cp27-cp27m-manylinux1_x86_64.whl", hash = "sha256:9ad5db27f9cabae298d151c85cf2bad1d359a1b9c686a275df03385758e2f914"}, - {file = "cffi-1.15.1-cp27-cp27m-win32.whl", hash = "sha256:b3bbeb01c2b273cca1e1e0c5df57f12dce9a4dd331b4fa1635b8bec26350bde3"}, - {file = "cffi-1.15.1-cp27-cp27m-win_amd64.whl", hash = "sha256:e00b098126fd45523dd056d2efba6c5a63b71ffe9f2bbe1a4fe1716e1d0c331e"}, - {file = "cffi-1.15.1-cp27-cp27mu-manylinux1_i686.whl", hash = "sha256:d61f4695e6c866a23a21acab0509af1cdfd2c013cf256bbf5b6b5e2695827162"}, - {file = "cffi-1.15.1-cp27-cp27mu-manylinux1_x86_64.whl", hash = "sha256:ed9cb427ba5504c1dc15ede7d516b84757c3e3d7868ccc85121d9310d27eed0b"}, - {file = "cffi-1.15.1-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:39d39875251ca8f612b6f33e6b1195af86d1b3e60086068be9cc053aa4376e21"}, - {file = "cffi-1.15.1-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:285d29981935eb726a4399badae8f0ffdff4f5050eaa6d0cfc3f64b857b77185"}, - {file = "cffi-1.15.1-cp310-cp310-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:3eb6971dcff08619f8d91607cfc726518b6fa2a9eba42856be181c6d0d9515fd"}, - {file = "cffi-1.15.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:21157295583fe8943475029ed5abdcf71eb3911894724e360acff1d61c1d54bc"}, - {file = "cffi-1.15.1-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:5635bd9cb9731e6d4a1132a498dd34f764034a8ce60cef4f5319c0541159392f"}, - {file = "cffi-1.15.1-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:2012c72d854c2d03e45d06ae57f40d78e5770d252f195b93f581acf3ba44496e"}, - {file = "cffi-1.15.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:dd86c085fae2efd48ac91dd7ccffcfc0571387fe1193d33b6394db7ef31fe2a4"}, - {file = "cffi-1.15.1-cp310-cp310-musllinux_1_1_i686.whl", hash = "sha256:fa6693661a4c91757f4412306191b6dc88c1703f780c8234035eac011922bc01"}, - {file = "cffi-1.15.1-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:59c0b02d0a6c384d453fece7566d1c7e6b7bae4fc5874ef2ef46d56776d61c9e"}, - {file = "cffi-1.15.1-cp310-cp310-win32.whl", hash = "sha256:cba9d6b9a7d64d4bd46167096fc9d2f835e25d7e4c121fb2ddfc6528fb0413b2"}, - {file = "cffi-1.15.1-cp310-cp310-win_amd64.whl", hash = "sha256:ce4bcc037df4fc5e3d184794f27bdaab018943698f4ca31630bc7f84a7b69c6d"}, - {file = "cffi-1.15.1-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:3d08afd128ddaa624a48cf2b859afef385b720bb4b43df214f85616922e6a5ac"}, - {file = "cffi-1.15.1-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:3799aecf2e17cf585d977b780ce79ff0dc9b78d799fc694221ce814c2c19db83"}, - {file = "cffi-1.15.1-cp311-cp311-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:a591fe9e525846e4d154205572a029f653ada1a78b93697f3b5a8f1f2bc055b9"}, - {file = "cffi-1.15.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:3548db281cd7d2561c9ad9984681c95f7b0e38881201e157833a2342c30d5e8c"}, - {file = "cffi-1.15.1-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:91fc98adde3d7881af9b59ed0294046f3806221863722ba7d8d120c575314325"}, - {file = "cffi-1.15.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:94411f22c3985acaec6f83c6df553f2dbe17b698cc7f8ae751ff2237d96b9e3c"}, - {file = "cffi-1.15.1-cp311-cp311-musllinux_1_1_i686.whl", hash = "sha256:03425bdae262c76aad70202debd780501fabeaca237cdfddc008987c0e0f59ef"}, - {file = "cffi-1.15.1-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:cc4d65aeeaa04136a12677d3dd0b1c0c94dc43abac5860ab33cceb42b801c1e8"}, - {file = "cffi-1.15.1-cp311-cp311-win32.whl", hash = "sha256:a0f100c8912c114ff53e1202d0078b425bee3649ae34d7b070e9697f93c5d52d"}, - {file = "cffi-1.15.1-cp311-cp311-win_amd64.whl", hash = "sha256:04ed324bda3cda42b9b695d51bb7d54b680b9719cfab04227cdd1e04e5de3104"}, - {file = "cffi-1.15.1-cp36-cp36m-macosx_10_9_x86_64.whl", hash = "sha256:50a74364d85fd319352182ef59c5c790484a336f6db772c1a9231f1c3ed0cbd7"}, - {file = "cffi-1.15.1-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:e263d77ee3dd201c3a142934a086a4450861778baaeeb45db4591ef65550b0a6"}, - {file = "cffi-1.15.1-cp36-cp36m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:cec7d9412a9102bdc577382c3929b337320c4c4c4849f2c5cdd14d7368c5562d"}, - {file = "cffi-1.15.1-cp36-cp36m-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:4289fc34b2f5316fbb762d75362931e351941fa95fa18789191b33fc4cf9504a"}, - {file = "cffi-1.15.1-cp36-cp36m-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:173379135477dc8cac4bc58f45db08ab45d228b3363adb7af79436135d028405"}, - {file = "cffi-1.15.1-cp36-cp36m-manylinux_2_5_x86_64.manylinux1_x86_64.whl", hash = "sha256:6975a3fac6bc83c4a65c9f9fcab9e47019a11d3d2cf7f3c0d03431bf145a941e"}, - {file = "cffi-1.15.1-cp36-cp36m-win32.whl", hash = "sha256:2470043b93ff09bf8fb1d46d1cb756ce6132c54826661a32d4e4d132e1977adf"}, - {file = "cffi-1.15.1-cp36-cp36m-win_amd64.whl", hash = "sha256:30d78fbc8ebf9c92c9b7823ee18eb92f2e6ef79b45ac84db507f52fbe3ec4497"}, - {file = "cffi-1.15.1-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:198caafb44239b60e252492445da556afafc7d1e3ab7a1fb3f0584ef6d742375"}, - {file = "cffi-1.15.1-cp37-cp37m-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:5ef34d190326c3b1f822a5b7a45f6c4535e2f47ed06fec77d3d799c450b2651e"}, - {file = "cffi-1.15.1-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:8102eaf27e1e448db915d08afa8b41d6c7ca7a04b7d73af6514df10a3e74bd82"}, - {file = "cffi-1.15.1-cp37-cp37m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:5df2768244d19ab7f60546d0c7c63ce1581f7af8b5de3eb3004b9b6fc8a9f84b"}, - {file = "cffi-1.15.1-cp37-cp37m-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:a8c4917bd7ad33e8eb21e9a5bbba979b49d9a97acb3a803092cbc1133e20343c"}, - {file = "cffi-1.15.1-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:0e2642fe3142e4cc4af0799748233ad6da94c62a8bec3a6648bf8ee68b1c7426"}, - {file = "cffi-1.15.1-cp37-cp37m-win32.whl", hash = "sha256:e229a521186c75c8ad9490854fd8bbdd9a0c9aa3a524326b55be83b54d4e0ad9"}, - {file = "cffi-1.15.1-cp37-cp37m-win_amd64.whl", hash = "sha256:a0b71b1b8fbf2b96e41c4d990244165e2c9be83d54962a9a1d118fd8657d2045"}, - {file = "cffi-1.15.1-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:320dab6e7cb2eacdf0e658569d2575c4dad258c0fcc794f46215e1e39f90f2c3"}, - {file = "cffi-1.15.1-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:1e74c6b51a9ed6589199c787bf5f9875612ca4a8a0785fb2d4a84429badaf22a"}, - {file = "cffi-1.15.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:a5c84c68147988265e60416b57fc83425a78058853509c1b0629c180094904a5"}, - {file = "cffi-1.15.1-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:3b926aa83d1edb5aa5b427b4053dc420ec295a08e40911296b9eb1b6170f6cca"}, - {file = "cffi-1.15.1-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:87c450779d0914f2861b8526e035c5e6da0a3199d8f1add1a665e1cbc6fc6d02"}, - {file = "cffi-1.15.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:4f2c9f67e9821cad2e5f480bc8d83b8742896f1242dba247911072d4fa94c192"}, - {file = "cffi-1.15.1-cp38-cp38-win32.whl", hash = "sha256:8b7ee99e510d7b66cdb6c593f21c043c248537a32e0bedf02e01e9553a172314"}, - {file = "cffi-1.15.1-cp38-cp38-win_amd64.whl", hash = "sha256:00a9ed42e88df81ffae7a8ab6d9356b371399b91dbdf0c3cb1e84c03a13aceb5"}, - {file = "cffi-1.15.1-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:54a2db7b78338edd780e7ef7f9f6c442500fb0d41a5a4ea24fff1c929d5af585"}, - {file = "cffi-1.15.1-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:fcd131dd944808b5bdb38e6f5b53013c5aa4f334c5cad0c72742f6eba4b73db0"}, - {file = "cffi-1.15.1-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:7473e861101c9e72452f9bf8acb984947aa1661a7704553a9f6e4baa5ba64415"}, - {file = "cffi-1.15.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:6c9a799e985904922a4d207a94eae35c78ebae90e128f0c4e521ce339396be9d"}, - {file = "cffi-1.15.1-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:3bcde07039e586f91b45c88f8583ea7cf7a0770df3a1649627bf598332cb6984"}, - {file = "cffi-1.15.1-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:33ab79603146aace82c2427da5ca6e58f2b3f2fb5da893ceac0c42218a40be35"}, - {file = "cffi-1.15.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:5d598b938678ebf3c67377cdd45e09d431369c3b1a5b331058c338e201f12b27"}, - {file = "cffi-1.15.1-cp39-cp39-musllinux_1_1_i686.whl", hash = "sha256:db0fbb9c62743ce59a9ff687eb5f4afbe77e5e8403d6697f7446e5f609976f76"}, - {file = "cffi-1.15.1-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:98d85c6a2bef81588d9227dde12db8a7f47f639f4a17c9ae08e773aa9c697bf3"}, - {file = "cffi-1.15.1-cp39-cp39-win32.whl", hash = "sha256:40f4774f5a9d4f5e344f31a32b5096977b5d48560c5592e2f3d2c4374bd543ee"}, - {file = "cffi-1.15.1-cp39-cp39-win_amd64.whl", hash = "sha256:70df4e3b545a17496c9b3f41f5115e69a4f2e77e94e1d2a8e1070bc0c38c8a3c"}, - {file = "cffi-1.15.1.tar.gz", hash = "sha256:d400bfb9a37b1351253cb402671cea7e89bdecc294e8016a707f6d1d8ac934f9"}, -] - -[package.dependencies] -pycparser = "*" - -[[package]] -name = "cfgv" -version = "3.3.1" -description = "Validate configuration and produce human readable error messages." -category = "dev" -optional = false -python-versions = ">=3.6.1" -files = [ - {file = "cfgv-3.3.1-py2.py3-none-any.whl", hash = "sha256:c6a0883f3917a037485059700b9e75da2464e6c27051014ad85ba6aaa5884426"}, - {file = "cfgv-3.3.1.tar.gz", hash = "sha256:f5a830efb9ce7a445376bb66ec94c638a9787422f96264c98edc6bdeed8ab736"}, -] - -[[package]] -name = "charset-normalizer" -version = "3.1.0" -description = "The Real First Universal Charset Detector. Open, modern and actively maintained alternative to Chardet." -category = "dev" -optional = false -python-versions = ">=3.7.0" -files = [ - {file = "charset-normalizer-3.1.0.tar.gz", hash = "sha256:34e0a2f9c370eb95597aae63bf85eb5e96826d81e3dcf88b8886012906f509b5"}, - {file = "charset_normalizer-3.1.0-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:e0ac8959c929593fee38da1c2b64ee9778733cdf03c482c9ff1d508b6b593b2b"}, - {file = "charset_normalizer-3.1.0-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:d7fc3fca01da18fbabe4625d64bb612b533533ed10045a2ac3dd194bfa656b60"}, - {file = "charset_normalizer-3.1.0-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:04eefcee095f58eaabe6dc3cc2262f3bcd776d2c67005880894f447b3f2cb9c1"}, - {file = "charset_normalizer-3.1.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:20064ead0717cf9a73a6d1e779b23d149b53daf971169289ed2ed43a71e8d3b0"}, - {file = "charset_normalizer-3.1.0-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:1435ae15108b1cb6fffbcea2af3d468683b7afed0169ad718451f8db5d1aff6f"}, - {file = "charset_normalizer-3.1.0-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:c84132a54c750fda57729d1e2599bb598f5fa0344085dbde5003ba429a4798c0"}, - {file = "charset_normalizer-3.1.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:75f2568b4189dda1c567339b48cba4ac7384accb9c2a7ed655cd86b04055c795"}, - {file = "charset_normalizer-3.1.0-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:11d3bcb7be35e7b1bba2c23beedac81ee893ac9871d0ba79effc7fc01167db6c"}, - {file = "charset_normalizer-3.1.0-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:891cf9b48776b5c61c700b55a598621fdb7b1e301a550365571e9624f270c203"}, - {file = "charset_normalizer-3.1.0-cp310-cp310-musllinux_1_1_i686.whl", hash = "sha256:5f008525e02908b20e04707a4f704cd286d94718f48bb33edddc7d7b584dddc1"}, - {file = "charset_normalizer-3.1.0-cp310-cp310-musllinux_1_1_ppc64le.whl", hash = "sha256:b06f0d3bf045158d2fb8837c5785fe9ff9b8c93358be64461a1089f5da983137"}, - {file = "charset_normalizer-3.1.0-cp310-cp310-musllinux_1_1_s390x.whl", hash = "sha256:49919f8400b5e49e961f320c735388ee686a62327e773fa5b3ce6721f7e785ce"}, - {file = "charset_normalizer-3.1.0-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:22908891a380d50738e1f978667536f6c6b526a2064156203d418f4856d6e86a"}, - {file = "charset_normalizer-3.1.0-cp310-cp310-win32.whl", hash = "sha256:12d1a39aa6b8c6f6248bb54550efcc1c38ce0d8096a146638fd4738e42284448"}, - {file = "charset_normalizer-3.1.0-cp310-cp310-win_amd64.whl", hash = "sha256:65ed923f84a6844de5fd29726b888e58c62820e0769b76565480e1fdc3d062f8"}, - {file = "charset_normalizer-3.1.0-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:9a3267620866c9d17b959a84dd0bd2d45719b817245e49371ead79ed4f710d19"}, - {file = "charset_normalizer-3.1.0-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:6734e606355834f13445b6adc38b53c0fd45f1a56a9ba06c2058f86893ae8017"}, - {file = "charset_normalizer-3.1.0-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:f8303414c7b03f794347ad062c0516cee0e15f7a612abd0ce1e25caf6ceb47df"}, - {file = "charset_normalizer-3.1.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:aaf53a6cebad0eae578f062c7d462155eada9c172bd8c4d250b8c1d8eb7f916a"}, - {file = "charset_normalizer-3.1.0-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:3dc5b6a8ecfdc5748a7e429782598e4f17ef378e3e272eeb1340ea57c9109f41"}, - {file = "charset_normalizer-3.1.0-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:e1b25e3ad6c909f398df8921780d6a3d120d8c09466720226fc621605b6f92b1"}, - {file = "charset_normalizer-3.1.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:0ca564606d2caafb0abe6d1b5311c2649e8071eb241b2d64e75a0d0065107e62"}, - {file = "charset_normalizer-3.1.0-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:b82fab78e0b1329e183a65260581de4375f619167478dddab510c6c6fb04d9b6"}, - {file = "charset_normalizer-3.1.0-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:bd7163182133c0c7701b25e604cf1611c0d87712e56e88e7ee5d72deab3e76b5"}, - {file = "charset_normalizer-3.1.0-cp311-cp311-musllinux_1_1_i686.whl", hash = "sha256:11d117e6c63e8f495412d37e7dc2e2fff09c34b2d09dbe2bee3c6229577818be"}, - {file = "charset_normalizer-3.1.0-cp311-cp311-musllinux_1_1_ppc64le.whl", hash = "sha256:cf6511efa4801b9b38dc5546d7547d5b5c6ef4b081c60b23e4d941d0eba9cbeb"}, - {file = "charset_normalizer-3.1.0-cp311-cp311-musllinux_1_1_s390x.whl", hash = "sha256:abc1185d79f47c0a7aaf7e2412a0eb2c03b724581139193d2d82b3ad8cbb00ac"}, - {file = "charset_normalizer-3.1.0-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:cb7b2ab0188829593b9de646545175547a70d9a6e2b63bf2cd87a0a391599324"}, - {file = "charset_normalizer-3.1.0-cp311-cp311-win32.whl", hash = "sha256:c36bcbc0d5174a80d6cccf43a0ecaca44e81d25be4b7f90f0ed7bcfbb5a00909"}, - {file = "charset_normalizer-3.1.0-cp311-cp311-win_amd64.whl", hash = "sha256:cca4def576f47a09a943666b8f829606bcb17e2bc2d5911a46c8f8da45f56755"}, - {file = "charset_normalizer-3.1.0-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:0c95f12b74681e9ae127728f7e5409cbbef9cd914d5896ef238cc779b8152373"}, - {file = "charset_normalizer-3.1.0-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:fca62a8301b605b954ad2e9c3666f9d97f63872aa4efcae5492baca2056b74ab"}, - {file = "charset_normalizer-3.1.0-cp37-cp37m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:ac0aa6cd53ab9a31d397f8303f92c42f534693528fafbdb997c82bae6e477ad9"}, - {file = "charset_normalizer-3.1.0-cp37-cp37m-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:c3af8e0f07399d3176b179f2e2634c3ce9c1301379a6b8c9c9aeecd481da494f"}, - {file = "charset_normalizer-3.1.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:3a5fc78f9e3f501a1614a98f7c54d3969f3ad9bba8ba3d9b438c3bc5d047dd28"}, - {file = "charset_normalizer-3.1.0-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:628c985afb2c7d27a4800bfb609e03985aaecb42f955049957814e0491d4006d"}, - {file = "charset_normalizer-3.1.0-cp37-cp37m-musllinux_1_1_aarch64.whl", hash = "sha256:74db0052d985cf37fa111828d0dd230776ac99c740e1a758ad99094be4f1803d"}, - {file = "charset_normalizer-3.1.0-cp37-cp37m-musllinux_1_1_i686.whl", hash = "sha256:1e8fcdd8f672a1c4fc8d0bd3a2b576b152d2a349782d1eb0f6b8e52e9954731d"}, - {file = "charset_normalizer-3.1.0-cp37-cp37m-musllinux_1_1_ppc64le.whl", hash = "sha256:04afa6387e2b282cf78ff3dbce20f0cc071c12dc8f685bd40960cc68644cfea6"}, - {file = "charset_normalizer-3.1.0-cp37-cp37m-musllinux_1_1_s390x.whl", hash = "sha256:dd5653e67b149503c68c4018bf07e42eeed6b4e956b24c00ccdf93ac79cdff84"}, - {file = "charset_normalizer-3.1.0-cp37-cp37m-musllinux_1_1_x86_64.whl", hash = "sha256:d2686f91611f9e17f4548dbf050e75b079bbc2a82be565832bc8ea9047b61c8c"}, - {file = "charset_normalizer-3.1.0-cp37-cp37m-win32.whl", hash = "sha256:4155b51ae05ed47199dc5b2a4e62abccb274cee6b01da5b895099b61b1982974"}, - {file = "charset_normalizer-3.1.0-cp37-cp37m-win_amd64.whl", hash = "sha256:322102cdf1ab682ecc7d9b1c5eed4ec59657a65e1c146a0da342b78f4112db23"}, - {file = "charset_normalizer-3.1.0-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:e633940f28c1e913615fd624fcdd72fdba807bf53ea6925d6a588e84e1151531"}, - {file = "charset_normalizer-3.1.0-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:3a06f32c9634a8705f4ca9946d667609f52cf130d5548881401f1eb2c39b1e2c"}, - {file = "charset_normalizer-3.1.0-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:7381c66e0561c5757ffe616af869b916c8b4e42b367ab29fedc98481d1e74e14"}, - {file = "charset_normalizer-3.1.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:3573d376454d956553c356df45bb824262c397c6e26ce43e8203c4c540ee0acb"}, - {file = "charset_normalizer-3.1.0-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:e89df2958e5159b811af9ff0f92614dabf4ff617c03a4c1c6ff53bf1c399e0e1"}, - {file = "charset_normalizer-3.1.0-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:78cacd03e79d009d95635e7d6ff12c21eb89b894c354bd2b2ed0b4763373693b"}, - {file = "charset_normalizer-3.1.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:de5695a6f1d8340b12a5d6d4484290ee74d61e467c39ff03b39e30df62cf83a0"}, - {file = "charset_normalizer-3.1.0-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:1c60b9c202d00052183c9be85e5eaf18a4ada0a47d188a83c8f5c5b23252f649"}, - {file = "charset_normalizer-3.1.0-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:f645caaf0008bacf349875a974220f1f1da349c5dbe7c4ec93048cdc785a3326"}, - {file = "charset_normalizer-3.1.0-cp38-cp38-musllinux_1_1_i686.whl", hash = "sha256:ea9f9c6034ea2d93d9147818f17c2a0860d41b71c38b9ce4d55f21b6f9165a11"}, - {file = "charset_normalizer-3.1.0-cp38-cp38-musllinux_1_1_ppc64le.whl", hash = "sha256:80d1543d58bd3d6c271b66abf454d437a438dff01c3e62fdbcd68f2a11310d4b"}, - {file = "charset_normalizer-3.1.0-cp38-cp38-musllinux_1_1_s390x.whl", hash = "sha256:73dc03a6a7e30b7edc5b01b601e53e7fc924b04e1835e8e407c12c037e81adbd"}, - {file = "charset_normalizer-3.1.0-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:6f5c2e7bc8a4bf7c426599765b1bd33217ec84023033672c1e9a8b35eaeaaaf8"}, - {file = "charset_normalizer-3.1.0-cp38-cp38-win32.whl", hash = "sha256:12a2b561af122e3d94cdb97fe6fb2bb2b82cef0cdca131646fdb940a1eda04f0"}, - {file = "charset_normalizer-3.1.0-cp38-cp38-win_amd64.whl", hash = "sha256:3160a0fd9754aab7d47f95a6b63ab355388d890163eb03b2d2b87ab0a30cfa59"}, - {file = "charset_normalizer-3.1.0-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:38e812a197bf8e71a59fe55b757a84c1f946d0ac114acafaafaf21667a7e169e"}, - {file = "charset_normalizer-3.1.0-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:6baf0baf0d5d265fa7944feb9f7451cc316bfe30e8df1a61b1bb08577c554f31"}, - {file = "charset_normalizer-3.1.0-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:8f25e17ab3039b05f762b0a55ae0b3632b2e073d9c8fc88e89aca31a6198e88f"}, - {file = "charset_normalizer-3.1.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:3747443b6a904001473370d7810aa19c3a180ccd52a7157aacc264a5ac79265e"}, - {file = "charset_normalizer-3.1.0-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:b116502087ce8a6b7a5f1814568ccbd0e9f6cfd99948aa59b0e241dc57cf739f"}, - {file = "charset_normalizer-3.1.0-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:d16fd5252f883eb074ca55cb622bc0bee49b979ae4e8639fff6ca3ff44f9f854"}, - {file = "charset_normalizer-3.1.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:21fa558996782fc226b529fdd2ed7866c2c6ec91cee82735c98a197fae39f706"}, - {file = "charset_normalizer-3.1.0-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:6f6c7a8a57e9405cad7485f4c9d3172ae486cfef1344b5ddd8e5239582d7355e"}, - {file = "charset_normalizer-3.1.0-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:ac3775e3311661d4adace3697a52ac0bab17edd166087d493b52d4f4f553f9f0"}, - {file = "charset_normalizer-3.1.0-cp39-cp39-musllinux_1_1_i686.whl", hash = "sha256:10c93628d7497c81686e8e5e557aafa78f230cd9e77dd0c40032ef90c18f2230"}, - {file = "charset_normalizer-3.1.0-cp39-cp39-musllinux_1_1_ppc64le.whl", hash = "sha256:6f4f4668e1831850ebcc2fd0b1cd11721947b6dc7c00bf1c6bd3c929ae14f2c7"}, - {file = "charset_normalizer-3.1.0-cp39-cp39-musllinux_1_1_s390x.whl", hash = "sha256:0be65ccf618c1e7ac9b849c315cc2e8a8751d9cfdaa43027d4f6624bd587ab7e"}, - {file = "charset_normalizer-3.1.0-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:53d0a3fa5f8af98a1e261de6a3943ca631c526635eb5817a87a59d9a57ebf48f"}, - {file = "charset_normalizer-3.1.0-cp39-cp39-win32.whl", hash = "sha256:a04f86f41a8916fe45ac5024ec477f41f886b3c435da2d4e3d2709b22ab02af1"}, - {file = "charset_normalizer-3.1.0-cp39-cp39-win_amd64.whl", hash = "sha256:830d2948a5ec37c386d3170c483063798d7879037492540f10a475e3fd6f244b"}, - {file = "charset_normalizer-3.1.0-py3-none-any.whl", hash = "sha256:3d9098b479e78c85080c98e1e35ff40b4a31d8953102bb0fd7d1b6f8a2111a3d"}, -] - -[[package]] -name = "click" -version = "8.1.3" -description = "Composable command line interface toolkit" -category = "main" -optional = false -python-versions = ">=3.7" -files = [ - {file = "click-8.1.3-py3-none-any.whl", hash = "sha256:bb4d8133cb15a609f44e8213d9b391b0809795062913b383c62be0ee95b1db48"}, - {file = "click-8.1.3.tar.gz", hash = "sha256:7682dc8afb30297001674575ea00d1814d808d6a36af415a82bd481d37ba7b8e"}, -] - -[package.dependencies] -colorama = {version = "*", markers = "platform_system == \"Windows\""} - -[[package]] -name = "cmake" -version = "3.26.1" -description = "CMake is an open-source, cross-platform family of tools designed to build, test and package software" -category = "main" -optional = false -python-versions = "*" -files = [ - {file = "cmake-3.26.1-py2.py3-none-macosx_10_10_universal2.macosx_10_10_x86_64.macosx_11_0_arm64.macosx_11_0_universal2.whl", hash = "sha256:d8a7e0cc8677677a732aff3e3fd0ad64eeff43cac772614b03c436912247d0d8"}, - {file = "cmake-3.26.1-py2.py3-none-manylinux2010_i686.manylinux_2_12_i686.whl", hash = "sha256:f2f721f5aebe304c281ee4b1d2dfbf7f4a52fca003834b2b4a3ba838aeded63c"}, - {file = "cmake-3.26.1-py2.py3-none-manylinux2010_x86_64.manylinux_2_12_x86_64.whl", hash = "sha256:63a012b72836702eadfe4fba9642aeb17337f26861f4768e837053f40e98cb46"}, - {file = "cmake-3.26.1-py2.py3-none-manylinux2014_aarch64.manylinux_2_17_aarch64.whl", hash = "sha256:2b72be88b7bfaa6ae59566cbb9d6a5553f19b2a8d14efa6ac0cf019a29860a1b"}, - {file = "cmake-3.26.1-py2.py3-none-manylinux2014_i686.manylinux_2_17_i686.whl", hash = "sha256:1278354f7210e22458aa9137d46a56da1f115a7b76ad2733f0bf6041fb40f1dc"}, - {file = "cmake-3.26.1-py2.py3-none-manylinux2014_ppc64le.manylinux_2_17_ppc64le.whl", hash = "sha256:de96a5522917fba0ab0da2d01d9dd9462fa80f365218bf27162d539c2335758f"}, - {file = "cmake-3.26.1-py2.py3-none-manylinux2014_s390x.manylinux_2_17_s390x.whl", hash = "sha256:449928ad7dfcd41e4dcff64c7d44f86557883c70577666a19e79e22d783bbbd0"}, - {file = "cmake-3.26.1-py2.py3-none-manylinux2014_x86_64.manylinux_2_17_x86_64.whl", hash = "sha256:19fa3e457afecf2803265f71652ef17c3f1d317173c330ba46767a0853d38fa0"}, - {file = "cmake-3.26.1-py2.py3-none-musllinux_1_1_aarch64.whl", hash = "sha256:43360650d60d177d979e4ad0a5f31afa286e6d88f5350f7a38c29d94514900eb"}, - {file = "cmake-3.26.1-py2.py3-none-musllinux_1_1_i686.whl", hash = "sha256:16aac10363bc926da5109a59ef8fe46ddcd7e3d421de61f871b35524eef2f1ae"}, - {file = "cmake-3.26.1-py2.py3-none-musllinux_1_1_ppc64le.whl", hash = "sha256:e460ba5070be4dcac9613cb526a46db4e5fa19d8b909a8d8d5244c6cc3c777e1"}, - {file = "cmake-3.26.1-py2.py3-none-musllinux_1_1_s390x.whl", hash = "sha256:fd2ecc0899f7939a014bd906df85e8681bd63ce457de3ab0b5d9e369fa3bdf79"}, - {file = "cmake-3.26.1-py2.py3-none-musllinux_1_1_x86_64.whl", hash = "sha256:22781a23e274ba9bf380b970649654851c1b4b9d83b65fec12ee2e2e03b6ffc4"}, - {file = "cmake-3.26.1-py2.py3-none-win32.whl", hash = "sha256:7b4e81de30ac1fb2f1eb5287063e140b53f376fd9ed7e2060c1c7b5917bd5f83"}, - {file = "cmake-3.26.1-py2.py3-none-win_amd64.whl", hash = "sha256:90845b6c87a25be07e9220f67dd7f6c891c6ec14d764d37335218d97f9ea4520"}, - {file = "cmake-3.26.1-py2.py3-none-win_arm64.whl", hash = "sha256:43bd96327e2631183bb4829ba20cb810e20b4b0c68f852fcd7082fbb5359d57c"}, - {file = "cmake-3.26.1.tar.gz", hash = "sha256:4e0eb3c03dcf2d459f78d96cc85f7482476aeb1ae5ada65150b1db35c0f70cc7"}, -] - -[package.extras] -test = ["codecov (>=2.0.5)", "coverage (>=4.2)", "flake8 (>=3.0.4)", "path.py (>=11.5.0)", "pytest (>=3.0.3)", "pytest-cov (>=2.4.0)", "pytest-runner (>=2.9)", "pytest-virtualenv (>=1.7.0)", "scikit-build (>=0.10.0)", "setuptools (>=28.0.0)", "virtualenv (>=15.0.3)", "wheel"] - -[[package]] -name = "colorama" -version = "0.4.6" -description = "Cross-platform colored terminal text." -category = "main" -optional = false -python-versions = "!=3.0.*,!=3.1.*,!=3.2.*,!=3.3.*,!=3.4.*,!=3.5.*,!=3.6.*,>=2.7" -files = [ - {file = "colorama-0.4.6-py2.py3-none-any.whl", hash = "sha256:4f1d9991f5acc0ca119f9d443620b77f9d6b33703e51011c16baf57afb285fc6"}, - {file = "colorama-0.4.6.tar.gz", hash = "sha256:08695f5cb7ed6e0531a20572697297273c47b8cae5a63ffc6d6ed5c201be6e44"}, -] - -[[package]] -name = "contourpy" -version = "1.0.7" -description = "Python library for calculating contours of 2D quadrilateral grids" -category = "main" -optional = false -python-versions = ">=3.8" -files = [ - {file = "contourpy-1.0.7-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:95c3acddf921944f241b6773b767f1cbce71d03307270e2d769fd584d5d1092d"}, - {file = "contourpy-1.0.7-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:fc1464c97579da9f3ab16763c32e5c5d5bb5fa1ec7ce509a4ca6108b61b84fab"}, - {file = "contourpy-1.0.7-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:8acf74b5d383414401926c1598ed77825cd530ac7b463ebc2e4f46638f56cce6"}, - {file = "contourpy-1.0.7-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:1c71fdd8f1c0f84ffd58fca37d00ca4ebaa9e502fb49825484da075ac0b0b803"}, - {file = "contourpy-1.0.7-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:f99e9486bf1bb979d95d5cffed40689cb595abb2b841f2991fc894b3452290e8"}, - {file = "contourpy-1.0.7-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:87f4d8941a9564cda3f7fa6a6cd9b32ec575830780677932abdec7bcb61717b0"}, - {file = "contourpy-1.0.7-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:9e20e5a1908e18aaa60d9077a6d8753090e3f85ca25da6e25d30dc0a9e84c2c6"}, - {file = "contourpy-1.0.7-cp310-cp310-musllinux_1_1_i686.whl", hash = "sha256:a877ada905f7d69b2a31796c4b66e31a8068b37aa9b78832d41c82fc3e056ddd"}, - {file = "contourpy-1.0.7-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:6381fa66866b0ea35e15d197fc06ac3840a9b2643a6475c8fff267db8b9f1e69"}, - {file = "contourpy-1.0.7-cp310-cp310-win32.whl", hash = "sha256:3c184ad2433635f216645fdf0493011a4667e8d46b34082f5a3de702b6ec42e3"}, - {file = "contourpy-1.0.7-cp310-cp310-win_amd64.whl", hash = "sha256:3caea6365b13119626ee996711ab63e0c9d7496f65641f4459c60a009a1f3e80"}, - {file = "contourpy-1.0.7-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:ed33433fc3820263a6368e532f19ddb4c5990855e4886088ad84fd7c4e561c71"}, - {file = "contourpy-1.0.7-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:38e2e577f0f092b8e6774459317c05a69935a1755ecfb621c0a98f0e3c09c9a5"}, - {file = "contourpy-1.0.7-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:ae90d5a8590e5310c32a7630b4b8618cef7563cebf649011da80874d0aa8f414"}, - {file = "contourpy-1.0.7-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:130230b7e49825c98edf0b428b7aa1125503d91732735ef897786fe5452b1ec2"}, - {file = "contourpy-1.0.7-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:58569c491e7f7e874f11519ef46737cea1d6eda1b514e4eb5ac7dab6aa864d02"}, - {file = "contourpy-1.0.7-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:54d43960d809c4c12508a60b66cb936e7ed57d51fb5e30b513934a4a23874fae"}, - {file = "contourpy-1.0.7-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:152fd8f730c31fd67fe0ffebe1df38ab6a669403da93df218801a893645c6ccc"}, - {file = "contourpy-1.0.7-cp311-cp311-musllinux_1_1_i686.whl", hash = "sha256:9056c5310eb1daa33fc234ef39ebfb8c8e2533f088bbf0bc7350f70a29bde1ac"}, - {file = "contourpy-1.0.7-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:a9d7587d2fdc820cc9177139b56795c39fb8560f540bba9ceea215f1f66e1566"}, - {file = "contourpy-1.0.7-cp311-cp311-win32.whl", hash = "sha256:4ee3ee247f795a69e53cd91d927146fb16c4e803c7ac86c84104940c7d2cabf0"}, - {file = "contourpy-1.0.7-cp311-cp311-win_amd64.whl", hash = "sha256:5caeacc68642e5f19d707471890f037a13007feba8427eb7f2a60811a1fc1350"}, - {file = "contourpy-1.0.7-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:fd7dc0e6812b799a34f6d12fcb1000539098c249c8da54f3566c6a6461d0dbad"}, - {file = "contourpy-1.0.7-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:0f9d350b639db6c2c233d92c7f213d94d2e444d8e8fc5ca44c9706cf72193772"}, - {file = "contourpy-1.0.7-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:e96a08b62bb8de960d3a6afbc5ed8421bf1a2d9c85cc4ea73f4bc81b4910500f"}, - {file = "contourpy-1.0.7-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:031154ed61f7328ad7f97662e48660a150ef84ee1bc8876b6472af88bf5a9b98"}, - {file = "contourpy-1.0.7-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:2e9ebb4425fc1b658e13bace354c48a933b842d53c458f02c86f371cecbedecc"}, - {file = "contourpy-1.0.7-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:efb8f6d08ca7998cf59eaf50c9d60717f29a1a0a09caa46460d33b2924839dbd"}, - {file = "contourpy-1.0.7-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:6c180d89a28787e4b73b07e9b0e2dac7741261dbdca95f2b489c4f8f887dd810"}, - {file = "contourpy-1.0.7-cp38-cp38-musllinux_1_1_i686.whl", hash = "sha256:b8d587cc39057d0afd4166083d289bdeff221ac6d3ee5046aef2d480dc4b503c"}, - {file = "contourpy-1.0.7-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:769eef00437edf115e24d87f8926955f00f7704bede656ce605097584f9966dc"}, - {file = "contourpy-1.0.7-cp38-cp38-win32.whl", hash = "sha256:62398c80ef57589bdbe1eb8537127321c1abcfdf8c5f14f479dbbe27d0322e66"}, - {file = "contourpy-1.0.7-cp38-cp38-win_amd64.whl", hash = "sha256:57119b0116e3f408acbdccf9eb6ef19d7fe7baf0d1e9aaa5381489bc1aa56556"}, - {file = "contourpy-1.0.7-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:30676ca45084ee61e9c3da589042c24a57592e375d4b138bd84d8709893a1ba4"}, - {file = "contourpy-1.0.7-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:3e927b3868bd1e12acee7cc8f3747d815b4ab3e445a28d2e5373a7f4a6e76ba1"}, - {file = "contourpy-1.0.7-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:366a0cf0fc079af5204801786ad7a1c007714ee3909e364dbac1729f5b0849e5"}, - {file = "contourpy-1.0.7-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:89ba9bb365446a22411f0673abf6ee1fea3b2cf47b37533b970904880ceb72f3"}, - {file = "contourpy-1.0.7-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:71b0bf0c30d432278793d2141362ac853859e87de0a7dee24a1cea35231f0d50"}, - {file = "contourpy-1.0.7-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:e7281244c99fd7c6f27c1c6bfafba878517b0b62925a09b586d88ce750a016d2"}, - {file = "contourpy-1.0.7-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:b6d0f9e1d39dbfb3977f9dd79f156c86eb03e57a7face96f199e02b18e58d32a"}, - {file = "contourpy-1.0.7-cp39-cp39-musllinux_1_1_i686.whl", hash = "sha256:7f6979d20ee5693a1057ab53e043adffa1e7418d734c1532e2d9e915b08d8ec2"}, - {file = "contourpy-1.0.7-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:5dd34c1ae752515318224cba7fc62b53130c45ac6a1040c8b7c1a223c46e8967"}, - {file = "contourpy-1.0.7-cp39-cp39-win32.whl", hash = "sha256:c5210e5d5117e9aec8c47d9156d1d3835570dd909a899171b9535cb4a3f32693"}, - {file = "contourpy-1.0.7-cp39-cp39-win_amd64.whl", hash = "sha256:60835badb5ed5f4e194a6f21c09283dd6e007664a86101431bf870d9e86266c4"}, - {file = "contourpy-1.0.7-pp38-pypy38_pp73-macosx_10_9_x86_64.whl", hash = "sha256:ce41676b3d0dd16dbcfabcc1dc46090aaf4688fd6e819ef343dbda5a57ef0161"}, - {file = "contourpy-1.0.7-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:5a011cf354107b47c58ea932d13b04d93c6d1d69b8b6dce885e642531f847566"}, - {file = "contourpy-1.0.7-pp38-pypy38_pp73-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:31a55dccc8426e71817e3fe09b37d6d48ae40aae4ecbc8c7ad59d6893569c436"}, - {file = "contourpy-1.0.7-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:69f8ff4db108815addd900a74df665e135dbbd6547a8a69333a68e1f6e368ac2"}, - {file = "contourpy-1.0.7-pp38-pypy38_pp73-win_amd64.whl", hash = "sha256:efe99298ba37e37787f6a2ea868265465410822f7bea163edcc1bd3903354ea9"}, - {file = "contourpy-1.0.7-pp39-pypy39_pp73-macosx_10_9_x86_64.whl", hash = "sha256:a1e97b86f73715e8670ef45292d7cc033548266f07d54e2183ecb3c87598888f"}, - {file = "contourpy-1.0.7-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:cc331c13902d0f50845099434cd936d49d7a2ca76cb654b39691974cb1e4812d"}, - {file = "contourpy-1.0.7-pp39-pypy39_pp73-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:24847601071f740837aefb730e01bd169fbcaa610209779a78db7ebb6e6a7051"}, - {file = "contourpy-1.0.7-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:abf298af1e7ad44eeb93501e40eb5a67abbf93b5d90e468d01fc0c4451971afa"}, - {file = "contourpy-1.0.7-pp39-pypy39_pp73-win_amd64.whl", hash = "sha256:64757f6460fc55d7e16ed4f1de193f362104285c667c112b50a804d482777edd"}, - {file = "contourpy-1.0.7.tar.gz", hash = "sha256:d8165a088d31798b59e91117d1f5fc3df8168d8b48c4acc10fc0df0d0bdbcc5e"}, -] - -[package.dependencies] -numpy = ">=1.16" - -[package.extras] -bokeh = ["bokeh", "chromedriver", "selenium"] -docs = ["furo", "sphinx-copybutton"] -mypy = ["contourpy[bokeh]", "docutils-stubs", "mypy (==0.991)", "types-Pillow"] -test = ["Pillow", "matplotlib", "pytest"] -test-no-images = ["pytest"] - -[[package]] -name = "cycler" -version = "0.11.0" -description = "Composable style cycles" -category = "main" -optional = false -python-versions = ">=3.6" -files = [ - {file = "cycler-0.11.0-py3-none-any.whl", hash = "sha256:3a27e95f763a428a739d2add979fa7494c912a32c17c4c38c4d5f082cad165a3"}, - {file = "cycler-0.11.0.tar.gz", hash = "sha256:9c87405839a19696e837b3b818fed3f5f69f16f1eec1a1ad77e043dcea9c772f"}, -] - -[[package]] -name = "dacite" -version = "1.8.0" -description = "Simple creation of data classes from dictionaries." -category = "main" -optional = false -python-versions = ">=3.6" -files = [ - {file = "dacite-1.8.0-py3-none-any.whl", hash = "sha256:f7b1205cc5d9b62835aac8cbc1e6e37c1da862359a401f1edbe2ae08fbdc6193"}, - {file = "dacite-1.8.0.tar.gz", hash = "sha256:6257a5e505b61a8cafee7ef3ad08cf32ee9b885718f42395d017e0a9b4c6af65"}, -] - -[package.extras] -dev = ["black", "coveralls", "mypy", "pre-commit", "pylint", "pytest (>=5)", "pytest-benchmark", "pytest-cov"] - -[[package]] -name = "defusedxml" -version = "0.7.1" -description = "XML bomb protection for Python stdlib modules" -category = "dev" -optional = false -python-versions = ">=2.7, !=3.0.*, !=3.1.*, !=3.2.*, !=3.3.*, !=3.4.*" -files = [ - {file = "defusedxml-0.7.1-py2.py3-none-any.whl", hash = "sha256:a352e7e428770286cc899e2542b6cdaedb2b4953ff269a210103ec58f6198a61"}, - {file = "defusedxml-0.7.1.tar.gz", hash = "sha256:1bb3032db185915b62d7c6209c5a8792be6a32ab2fedacc84e01b52c51aa3e69"}, -] - -[[package]] -name = "distlib" -version = "0.3.6" -description = "Distribution utilities" -category = "dev" -optional = false -python-versions = "*" -files = [ - {file = "distlib-0.3.6-py2.py3-none-any.whl", hash = "sha256:f35c4b692542ca110de7ef0bea44d73981caeb34ca0b9b6b2e6d7790dda8f80e"}, - {file = "distlib-0.3.6.tar.gz", hash = "sha256:14bad2d9b04d3a36127ac97f30b12a19268f211063d8f8ee4f47108896e11b46"}, -] - -[[package]] -name = "fastjsonschema" -version = "2.16.3" -description = "Fastest Python implementation of JSON schema" -category = "dev" -optional = false -python-versions = "*" -files = [ - {file = "fastjsonschema-2.16.3-py3-none-any.whl", hash = "sha256:04fbecc94300436f628517b05741b7ea009506ce8f946d40996567c669318490"}, - {file = "fastjsonschema-2.16.3.tar.gz", hash = "sha256:4a30d6315a68c253cfa8f963b9697246315aa3db89f98b97235e345dedfb0b8e"}, -] - -[package.extras] -devel = ["colorama", "json-spec", "jsonschema", "pylint", "pytest", "pytest-benchmark", "pytest-cache", "validictory"] - -[[package]] -name = "filelock" -version = "3.10.7" -description = "A platform independent file lock." -category = "main" -optional = false -python-versions = ">=3.7" -files = [ - {file = "filelock-3.10.7-py3-none-any.whl", hash = "sha256:bde48477b15fde2c7e5a0713cbe72721cb5a5ad32ee0b8f419907960b9d75536"}, - {file = "filelock-3.10.7.tar.gz", hash = "sha256:892be14aa8efc01673b5ed6589dbccb95f9a8596f0507e232626155495c18105"}, -] - -[package.extras] -docs = ["furo (>=2022.12.7)", "sphinx (>=6.1.3)", "sphinx-autodoc-typehints (>=1.22,!=1.23.4)"] -testing = ["covdefaults (>=2.3)", "coverage (>=7.2.2)", "diff-cover (>=7.5)", "pytest (>=7.2.2)", "pytest-cov (>=4)", "pytest-mock (>=3.10)", "pytest-timeout (>=2.1)"] - -[[package]] -name = "fonttools" -version = "4.39.3" -description = "Tools to manipulate font files" -category = "main" -optional = false -python-versions = ">=3.8" -files = [ - {file = "fonttools-4.39.3-py3-none-any.whl", hash = "sha256:64c0c05c337f826183637570ac5ab49ee220eec66cf50248e8df527edfa95aeb"}, - {file = "fonttools-4.39.3.zip", hash = "sha256:9234b9f57b74e31b192c3fc32ef1a40750a8fbc1cd9837a7b7bfc4ca4a5c51d7"}, -] - -[package.extras] -all = ["brotli (>=1.0.1)", "brotlicffi (>=0.8.0)", "fs (>=2.2.0,<3)", "lxml (>=4.0,<5)", "lz4 (>=1.7.4.2)", "matplotlib", "munkres", "scipy", "skia-pathops (>=0.5.0)", "sympy", "uharfbuzz (>=0.23.0)", "unicodedata2 (>=15.0.0)", "xattr", "zopfli (>=0.1.4)"] -graphite = ["lz4 (>=1.7.4.2)"] -interpolatable = ["munkres", "scipy"] -lxml = ["lxml (>=4.0,<5)"] -pathops = ["skia-pathops (>=0.5.0)"] -plot = ["matplotlib"] -repacker = ["uharfbuzz (>=0.23.0)"] -symfont = ["sympy"] -type1 = ["xattr"] -ufo = ["fs (>=2.2.0,<3)"] -unicode = ["unicodedata2 (>=15.0.0)"] -woff = ["brotli (>=1.0.1)", "brotlicffi (>=0.8.0)", "zopfli (>=0.1.4)"] - -[[package]] -name = "ghp-import" -version = "2.1.0" -description = "Copy your docs directly to the gh-pages branch." -category = "main" -optional = false -python-versions = "*" -files = [ - {file = "ghp-import-2.1.0.tar.gz", hash = "sha256:9c535c4c61193c2df8871222567d7fd7e5014d835f97dc7b7439069e2413d343"}, - {file = "ghp_import-2.1.0-py3-none-any.whl", hash = "sha256:8337dd7b50877f163d4c0289bc1f1c7f127550241988d568c1db512c4324a619"}, -] - -[package.dependencies] -python-dateutil = ">=2.8.1" - -[package.extras] -dev = ["flake8", "markdown", "twine", "wheel"] - -[[package]] -name = "graphviz" -version = "0.20.1" -description = "Simple Python interface for Graphviz" -category = "main" -optional = false -python-versions = ">=3.7" -files = [ - {file = "graphviz-0.20.1-py3-none-any.whl", hash = "sha256:587c58a223b51611c0cf461132da386edd896a029524ca61a1462b880bf97977"}, - {file = "graphviz-0.20.1.zip", hash = "sha256:8c58f14adaa3b947daf26c19bc1e98c4e0702cdc31cf99153e6f06904d492bf8"}, -] - -[package.extras] -dev = ["flake8", "pep8-naming", "tox (>=3)", "twine", "wheel"] -docs = ["sphinx (>=5)", "sphinx-autodoc-typehints", "sphinx-rtd-theme"] -test = ["coverage", "mock (>=4)", "pytest (>=7)", "pytest-cov", "pytest-mock (>=3)"] - -[[package]] -name = "griffe" -version = "0.26.0" -description = "Signatures for entire Python programs. Extract the structure, the frame, the skeleton of your project, to generate API documentation or find breaking changes in your API." -category = "dev" -optional = false -python-versions = ">=3.7" -files = [ - {file = "griffe-0.26.0-py3-none-any.whl", hash = "sha256:38f3f6bbe834501cc199a07b7b7e0e2550aaf19a9d1ee27acf879027e47c9b9e"}, - {file = "griffe-0.26.0.tar.gz", hash = "sha256:08675ffe8c17139e7769e950dd21f8e98a2e76205cbbd2911d5dec26d2cbf1be"}, -] - -[package.dependencies] -colorama = ">=0.4" - -[package.extras] -async = ["aiofiles (>=0.7,<1.0)"] - -[[package]] -name = "identify" -version = "2.5.22" -description = "File identification library for Python" -category = "dev" -optional = false -python-versions = ">=3.7" -files = [ - {file = "identify-2.5.22-py2.py3-none-any.whl", hash = "sha256:f0faad595a4687053669c112004178149f6c326db71ee999ae4636685753ad2f"}, - {file = "identify-2.5.22.tar.gz", hash = "sha256:f7a93d6cf98e29bd07663c60728e7a4057615068d7a639d132dc883b2d54d31e"}, -] - -[package.extras] -license = ["ukkonen"] - -[[package]] -name = "idna" -version = "3.4" -description = "Internationalized Domain Names in Applications (IDNA)" -category = "dev" -optional = false -python-versions = ">=3.5" -files = [ - {file = "idna-3.4-py3-none-any.whl", hash = "sha256:90b77e79eaa3eba6de819a0c442c0b4ceefc341a7a2ab77d7562bf49f425c5c2"}, - {file = "idna-3.4.tar.gz", hash = "sha256:814f528e8dead7d329833b91c5faa87d60bf71824cd12a7530b5526063d02cb4"}, -] - -[[package]] -name = "importlib-metadata" -version = "6.1.0" -description = "Read metadata from Python packages" -category = "main" -optional = false -python-versions = ">=3.7" -files = [ - {file = "importlib_metadata-6.1.0-py3-none-any.whl", hash = "sha256:ff80f3b5394912eb1b108fcfd444dc78b7f1f3e16b16188054bd01cb9cb86f09"}, - {file = "importlib_metadata-6.1.0.tar.gz", hash = "sha256:43ce9281e097583d758c2c708c4376371261a02c34682491a8e98352365aad20"}, -] - -[package.dependencies] -zipp = ">=0.5" - -[package.extras] -docs = ["furo", "jaraco.packaging (>=9)", "jaraco.tidelift (>=1.4)", "rst.linker (>=1.9)", "sphinx (>=3.5)", "sphinx-lint"] -perf = ["ipython"] -testing = ["flake8 (<5)", "flufl.flake8", "importlib-resources (>=1.3)", "packaging", "pyfakefs", "pytest (>=6)", "pytest-black (>=0.3.7)", "pytest-checkdocs (>=2.4)", "pytest-cov", "pytest-enabler (>=1.3)", "pytest-flake8", "pytest-mypy (>=0.9.1)", "pytest-perf (>=0.9.2)"] - -[[package]] -name = "importlib-resources" -version = "5.12.0" -description = "Read resources from Python packages" -category = "main" -optional = false -python-versions = ">=3.7" -files = [ - {file = "importlib_resources-5.12.0-py3-none-any.whl", hash = "sha256:7b1deeebbf351c7578e09bf2f63fa2ce8b5ffec296e0d349139d43cca061a81a"}, - {file = "importlib_resources-5.12.0.tar.gz", hash = "sha256:4be82589bf5c1d7999aedf2a45159d10cb3ca4f19b2271f8792bc8e6da7b22f6"}, -] - -[package.dependencies] -zipp = {version = ">=3.1.0", markers = "python_version < \"3.10\""} - -[package.extras] -docs = ["furo", "jaraco.packaging (>=9)", "jaraco.tidelift (>=1.4)", "rst.linker (>=1.9)", "sphinx (>=3.5)", "sphinx-lint"] -testing = ["flake8 (<5)", "pytest (>=6)", "pytest-black (>=0.3.7)", "pytest-checkdocs (>=2.4)", "pytest-cov", "pytest-enabler (>=1.3)", "pytest-flake8", "pytest-mypy (>=0.9.1)"] - -[[package]] -name = "jinja2" -version = "3.1.2" -description = "A very fast and expressive template engine." -category = "main" -optional = false -python-versions = ">=3.7" -files = [ - {file = "Jinja2-3.1.2-py3-none-any.whl", hash = "sha256:6088930bfe239f0e6710546ab9c19c9ef35e29792895fed6e6e31a023a182a61"}, - {file = "Jinja2-3.1.2.tar.gz", hash = "sha256:31351a702a408a9e7595a8fc6150fc3f43bb6bf7e319770cbc0db9df9437e852"}, -] - -[package.dependencies] -MarkupSafe = ">=2.0" - -[package.extras] -i18n = ["Babel (>=2.7)"] - -[[package]] -name = "joblib" -version = "1.2.0" -description = "Lightweight pipelining with Python functions" -category = "main" -optional = false -python-versions = ">=3.7" -files = [ - {file = "joblib-1.2.0-py3-none-any.whl", hash = "sha256:091138ed78f800342968c523bdde947e7a305b8594b910a0fea2ab83c3c6d385"}, - {file = "joblib-1.2.0.tar.gz", hash = "sha256:e1cee4a79e4af22881164f218d4311f60074197fb707e082e803b61f6d137018"}, -] - -[[package]] -name = "jsonschema" -version = "4.17.3" -description = "An implementation of JSON Schema validation for Python" -category = "dev" -optional = false -python-versions = ">=3.7" -files = [ - {file = "jsonschema-4.17.3-py3-none-any.whl", hash = "sha256:a870ad254da1a8ca84b6a2905cac29d265f805acc57af304784962a2aa6508f6"}, - {file = "jsonschema-4.17.3.tar.gz", hash = "sha256:0f864437ab8b6076ba6707453ef8f98a6a0d512a80e93f8abdb676f737ecb60d"}, -] - -[package.dependencies] -attrs = ">=17.4.0" -importlib-resources = {version = ">=1.4.0", markers = "python_version < \"3.9\""} -pkgutil-resolve-name = {version = ">=1.3.10", markers = "python_version < \"3.9\""} -pyrsistent = ">=0.14.0,<0.17.0 || >0.17.0,<0.17.1 || >0.17.1,<0.17.2 || >0.17.2" - -[package.extras] -format = ["fqdn", "idna", "isoduration", "jsonpointer (>1.13)", "rfc3339-validator", "rfc3987", "uri-template", "webcolors (>=1.11)"] -format-nongpl = ["fqdn", "idna", "isoduration", "jsonpointer (>1.13)", "rfc3339-validator", "rfc3986-validator (>0.1.0)", "uri-template", "webcolors (>=1.11)"] - -[[package]] -name = "jupyter-client" -version = "8.1.0" -description = "Jupyter protocol implementation and client libraries" -category = "dev" -optional = false -python-versions = ">=3.8" -files = [ - {file = "jupyter_client-8.1.0-py3-none-any.whl", hash = "sha256:d5b8e739d7816944be50f81121a109788a3d92732ecf1ad1e4dadebc948818fe"}, - {file = "jupyter_client-8.1.0.tar.gz", hash = "sha256:3fbab64100a0dcac7701b1e0f1a4412f1ccb45546ff2ad9bc4fcbe4e19804811"}, -] - -[package.dependencies] -importlib-metadata = {version = ">=4.8.3", markers = "python_version < \"3.10\""} -jupyter-core = ">=4.12,<5.0.0 || >=5.1.0" -python-dateutil = ">=2.8.2" -pyzmq = ">=23.0" -tornado = ">=6.2" -traitlets = ">=5.3" - -[package.extras] -docs = ["ipykernel", "myst-parser", "pydata-sphinx-theme", "sphinx (>=4)", "sphinx-autodoc-typehints", "sphinxcontrib-github-alt", "sphinxcontrib-spelling"] -test = ["codecov", "coverage", "ipykernel (>=6.14)", "mypy", "paramiko", "pre-commit", "pytest", "pytest-cov", "pytest-jupyter[client] (>=0.4.1)", "pytest-timeout"] - -[[package]] -name = "jupyter-core" -version = "5.3.0" -description = "Jupyter core package. A base package on which Jupyter projects rely." -category = "dev" -optional = false -python-versions = ">=3.8" -files = [ - {file = "jupyter_core-5.3.0-py3-none-any.whl", hash = "sha256:d4201af84559bc8c70cead287e1ab94aeef3c512848dde077b7684b54d67730d"}, - {file = "jupyter_core-5.3.0.tar.gz", hash = "sha256:6db75be0c83edbf1b7c9f91ec266a9a24ef945da630f3120e1a0046dc13713fc"}, -] - -[package.dependencies] -platformdirs = ">=2.5" -pywin32 = {version = ">=300", markers = "sys_platform == \"win32\" and platform_python_implementation != \"PyPy\""} -traitlets = ">=5.3" - -[package.extras] -docs = ["myst-parser", "sphinx-autodoc-typehints", "sphinxcontrib-github-alt", "sphinxcontrib-spelling", "traitlets"] -test = ["ipykernel", "pre-commit", "pytest", "pytest-cov", "pytest-timeout"] - -[[package]] -name = "jupyterlab-pygments" -version = "0.2.2" -description = "Pygments theme using JupyterLab CSS variables" -category = "dev" -optional = false -python-versions = ">=3.7" -files = [ - {file = "jupyterlab_pygments-0.2.2-py2.py3-none-any.whl", hash = "sha256:2405800db07c9f770863bcf8049a529c3dd4d3e28536638bd7c1c01d2748309f"}, - {file = "jupyterlab_pygments-0.2.2.tar.gz", hash = "sha256:7405d7fde60819d905a9fa8ce89e4cd830e318cdad22a0030f7a901da705585d"}, -] - -[[package]] -name = "jupytext" -version = "1.14.5" -description = "Jupyter notebooks as Markdown documents, Julia, Python or R scripts" -category = "dev" -optional = false -python-versions = "~=3.6" -files = [ - {file = "jupytext-1.14.5-py3-none-any.whl", hash = "sha256:a5dbe60d0ea158bbf82c2bce74aba8d0c220ad7edcda09e017c5eba229b34dc8"}, - {file = "jupytext-1.14.5.tar.gz", hash = "sha256:976e66be8056459a2067e0ec3ff68cc31e00c31895faf9eb893022d319e8f5b4"}, -] - -[package.dependencies] -markdown-it-py = ">=1.0.0,<3.0.0" -mdit-py-plugins = "*" -nbformat = "*" -pyyaml = "*" -toml = "*" - -[package.extras] -rst2md = ["sphinx-gallery (>=0.7.0,<0.8.0)"] -toml = ["toml"] - -[[package]] -name = "kiwisolver" -version = "1.4.4" -description = "A fast implementation of the Cassowary constraint solver" -category = "main" -optional = false -python-versions = ">=3.7" -files = [ - {file = "kiwisolver-1.4.4-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:2f5e60fabb7343a836360c4f0919b8cd0d6dbf08ad2ca6b9cf90bf0c76a3c4f6"}, - {file = "kiwisolver-1.4.4-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:10ee06759482c78bdb864f4109886dff7b8a56529bc1609d4f1112b93fe6423c"}, - {file = "kiwisolver-1.4.4-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:c79ebe8f3676a4c6630fd3f777f3cfecf9289666c84e775a67d1d358578dc2e3"}, - {file = "kiwisolver-1.4.4-cp310-cp310-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:abbe9fa13da955feb8202e215c4018f4bb57469b1b78c7a4c5c7b93001699938"}, - {file = "kiwisolver-1.4.4-cp310-cp310-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:7577c1987baa3adc4b3c62c33bd1118c3ef5c8ddef36f0f2c950ae0b199e100d"}, - {file = "kiwisolver-1.4.4-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:f8ad8285b01b0d4695102546b342b493b3ccc6781fc28c8c6a1bb63e95d22f09"}, - {file = "kiwisolver-1.4.4-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:8ed58b8acf29798b036d347791141767ccf65eee7f26bde03a71c944449e53de"}, - {file = "kiwisolver-1.4.4-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:a68b62a02953b9841730db7797422f983935aeefceb1679f0fc85cbfbd311c32"}, - {file = "kiwisolver-1.4.4-cp310-cp310-win32.whl", hash = "sha256:e92a513161077b53447160b9bd8f522edfbed4bd9759e4c18ab05d7ef7e49408"}, - {file = "kiwisolver-1.4.4-cp310-cp310-win_amd64.whl", hash = "sha256:3fe20f63c9ecee44560d0e7f116b3a747a5d7203376abeea292ab3152334d004"}, - {file = "kiwisolver-1.4.4-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:e0ea21f66820452a3f5d1655f8704a60d66ba1191359b96541eaf457710a5fc6"}, - {file = "kiwisolver-1.4.4-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:bc9db8a3efb3e403e4ecc6cd9489ea2bac94244f80c78e27c31dcc00d2790ac2"}, - {file = "kiwisolver-1.4.4-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:d5b61785a9ce44e5a4b880272baa7cf6c8f48a5180c3e81c59553ba0cb0821ca"}, - {file = "kiwisolver-1.4.4-cp311-cp311-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:c2dbb44c3f7e6c4d3487b31037b1bdbf424d97687c1747ce4ff2895795c9bf69"}, - {file = "kiwisolver-1.4.4-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:6295ecd49304dcf3bfbfa45d9a081c96509e95f4b9d0eb7ee4ec0530c4a96514"}, - {file = "kiwisolver-1.4.4-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:4bd472dbe5e136f96a4b18f295d159d7f26fd399136f5b17b08c4e5f498cd494"}, - {file = "kiwisolver-1.4.4-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:bf7d9fce9bcc4752ca4a1b80aabd38f6d19009ea5cbda0e0856983cf6d0023f5"}, - {file = "kiwisolver-1.4.4-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:78d6601aed50c74e0ef02f4204da1816147a6d3fbdc8b3872d263338a9052c51"}, - {file = "kiwisolver-1.4.4-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:877272cf6b4b7e94c9614f9b10140e198d2186363728ed0f701c6eee1baec1da"}, - {file = "kiwisolver-1.4.4-cp311-cp311-musllinux_1_1_i686.whl", hash = "sha256:db608a6757adabb32f1cfe6066e39b3706d8c3aa69bbc353a5b61edad36a5cb4"}, - {file = "kiwisolver-1.4.4-cp311-cp311-musllinux_1_1_ppc64le.whl", hash = "sha256:5853eb494c71e267912275e5586fe281444eb5e722de4e131cddf9d442615626"}, - {file = "kiwisolver-1.4.4-cp311-cp311-musllinux_1_1_s390x.whl", hash = "sha256:f0a1dbdb5ecbef0d34eb77e56fcb3e95bbd7e50835d9782a45df81cc46949750"}, - {file = "kiwisolver-1.4.4-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:283dffbf061a4ec60391d51e6155e372a1f7a4f5b15d59c8505339454f8989e4"}, - {file = "kiwisolver-1.4.4-cp311-cp311-win32.whl", hash = "sha256:d06adcfa62a4431d404c31216f0f8ac97397d799cd53800e9d3efc2fbb3cf14e"}, - {file = "kiwisolver-1.4.4-cp311-cp311-win_amd64.whl", hash = "sha256:e7da3fec7408813a7cebc9e4ec55afed2d0fd65c4754bc376bf03498d4e92686"}, - {file = "kiwisolver-1.4.4-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:62ac9cc684da4cf1778d07a89bf5f81b35834cb96ca523d3a7fb32509380cbf6"}, - {file = "kiwisolver-1.4.4-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:41dae968a94b1ef1897cb322b39360a0812661dba7c682aa45098eb8e193dbdf"}, - {file = "kiwisolver-1.4.4-cp37-cp37m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:02f79693ec433cb4b5f51694e8477ae83b3205768a6fb48ffba60549080e295b"}, - {file = "kiwisolver-1.4.4-cp37-cp37m-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:d0611a0a2a518464c05ddd5a3a1a0e856ccc10e67079bb17f265ad19ab3c7597"}, - {file = "kiwisolver-1.4.4-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:db5283d90da4174865d520e7366801a93777201e91e79bacbac6e6927cbceede"}, - {file = "kiwisolver-1.4.4-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.whl", hash = "sha256:1041feb4cda8708ce73bb4dcb9ce1ccf49d553bf87c3954bdfa46f0c3f77252c"}, - {file = "kiwisolver-1.4.4-cp37-cp37m-win32.whl", hash = "sha256:a553dadda40fef6bfa1456dc4be49b113aa92c2a9a9e8711e955618cd69622e3"}, - {file = "kiwisolver-1.4.4-cp37-cp37m-win_amd64.whl", hash = "sha256:03baab2d6b4a54ddbb43bba1a3a2d1627e82d205c5cf8f4c924dc49284b87166"}, - {file = "kiwisolver-1.4.4-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:841293b17ad704d70c578f1f0013c890e219952169ce8a24ebc063eecf775454"}, - {file = "kiwisolver-1.4.4-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:f4f270de01dd3e129a72efad823da90cc4d6aafb64c410c9033aba70db9f1ff0"}, - {file = "kiwisolver-1.4.4-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:f9f39e2f049db33a908319cf46624a569b36983c7c78318e9726a4cb8923b26c"}, - {file = "kiwisolver-1.4.4-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:c97528e64cb9ebeff9701e7938653a9951922f2a38bd847787d4a8e498cc83ae"}, - {file = "kiwisolver-1.4.4-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:1d1573129aa0fd901076e2bfb4275a35f5b7aa60fbfb984499d661ec950320b0"}, - {file = "kiwisolver-1.4.4-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:ad881edc7ccb9d65b0224f4e4d05a1e85cf62d73aab798943df6d48ab0cd79a1"}, - {file = "kiwisolver-1.4.4-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:b428ef021242344340460fa4c9185d0b1f66fbdbfecc6c63eff4b7c29fad429d"}, - {file = "kiwisolver-1.4.4-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.whl", hash = "sha256:2e407cb4bd5a13984a6c2c0fe1845e4e41e96f183e5e5cd4d77a857d9693494c"}, - {file = "kiwisolver-1.4.4-cp38-cp38-win32.whl", hash = "sha256:75facbe9606748f43428fc91a43edb46c7ff68889b91fa31f53b58894503a191"}, - {file = "kiwisolver-1.4.4-cp38-cp38-win_amd64.whl", hash = "sha256:5bce61af018b0cb2055e0e72e7d65290d822d3feee430b7b8203d8a855e78766"}, - {file = "kiwisolver-1.4.4-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:8c808594c88a025d4e322d5bb549282c93c8e1ba71b790f539567932722d7bd8"}, - {file = "kiwisolver-1.4.4-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:f0a71d85ecdd570ded8ac3d1c0f480842f49a40beb423bb8014539a9f32a5897"}, - {file = "kiwisolver-1.4.4-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:b533558eae785e33e8c148a8d9921692a9fe5aa516efbdff8606e7d87b9d5824"}, - {file = "kiwisolver-1.4.4-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:efda5fc8cc1c61e4f639b8067d118e742b812c930f708e6667a5ce0d13499e29"}, - {file = "kiwisolver-1.4.4-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:7c43e1e1206cd421cd92e6b3280d4385d41d7166b3ed577ac20444b6995a445f"}, - {file = "kiwisolver-1.4.4-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:bc8d3bd6c72b2dd9decf16ce70e20abcb3274ba01b4e1c96031e0c4067d1e7cd"}, - {file = "kiwisolver-1.4.4-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:4ea39b0ccc4f5d803e3337dd46bcce60b702be4d86fd0b3d7531ef10fd99a1ac"}, - {file = "kiwisolver-1.4.4-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:968f44fdbf6dd757d12920d63b566eeb4d5b395fd2d00d29d7ef00a00582aac9"}, - {file = "kiwisolver-1.4.4-cp39-cp39-win32.whl", hash = "sha256:da7e547706e69e45d95e116e6939488d62174e033b763ab1496b4c29b76fabea"}, - {file = "kiwisolver-1.4.4-cp39-cp39-win_amd64.whl", hash = "sha256:ba59c92039ec0a66103b1d5fe588fa546373587a7d68f5c96f743c3396afc04b"}, - {file = "kiwisolver-1.4.4-pp37-pypy37_pp73-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:91672bacaa030f92fc2f43b620d7b337fd9a5af28b0d6ed3f77afc43c4a64b5a"}, - {file = "kiwisolver-1.4.4-pp37-pypy37_pp73-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:787518a6789009c159453da4d6b683f468ef7a65bbde796bcea803ccf191058d"}, - {file = "kiwisolver-1.4.4-pp37-pypy37_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:da152d8cdcab0e56e4f45eb08b9aea6455845ec83172092f09b0e077ece2cf7a"}, - {file = "kiwisolver-1.4.4-pp37-pypy37_pp73-win_amd64.whl", hash = "sha256:ecb1fa0db7bf4cff9dac752abb19505a233c7f16684c5826d1f11ebd9472b871"}, - {file = "kiwisolver-1.4.4-pp38-pypy38_pp73-macosx_10_9_x86_64.whl", hash = "sha256:28bc5b299f48150b5f822ce68624e445040595a4ac3d59251703779836eceff9"}, - {file = "kiwisolver-1.4.4-pp38-pypy38_pp73-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:81e38381b782cc7e1e46c4e14cd997ee6040768101aefc8fa3c24a4cc58e98f8"}, - {file = "kiwisolver-1.4.4-pp38-pypy38_pp73-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:2a66fdfb34e05b705620dd567f5a03f239a088d5a3f321e7b6ac3239d22aa286"}, - {file = "kiwisolver-1.4.4-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:872b8ca05c40d309ed13eb2e582cab0c5a05e81e987ab9c521bf05ad1d5cf5cb"}, - {file = "kiwisolver-1.4.4-pp38-pypy38_pp73-win_amd64.whl", hash = "sha256:70e7c2e7b750585569564e2e5ca9845acfaa5da56ac46df68414f29fea97be9f"}, - {file = "kiwisolver-1.4.4-pp39-pypy39_pp73-macosx_10_9_x86_64.whl", hash = "sha256:9f85003f5dfa867e86d53fac6f7e6f30c045673fa27b603c397753bebadc3008"}, - {file = "kiwisolver-1.4.4-pp39-pypy39_pp73-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:2e307eb9bd99801f82789b44bb45e9f541961831c7311521b13a6c85afc09767"}, - {file = "kiwisolver-1.4.4-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:b1792d939ec70abe76f5054d3f36ed5656021dcad1322d1cc996d4e54165cef9"}, - {file = "kiwisolver-1.4.4-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:f6cb459eea32a4e2cf18ba5fcece2dbdf496384413bc1bae15583f19e567f3b2"}, - {file = "kiwisolver-1.4.4-pp39-pypy39_pp73-win_amd64.whl", hash = "sha256:36dafec3d6d6088d34e2de6b85f9d8e2324eb734162fba59d2ba9ed7a2043d5b"}, - {file = "kiwisolver-1.4.4.tar.gz", hash = "sha256:d41997519fcba4a1e46eb4a2fe31bc12f0ff957b2b81bac28db24744f333e955"}, -] - -[[package]] -name = "lit" -version = "16.0.0" -description = "A Software Testing Tool" -category = "main" -optional = false -python-versions = "*" -files = [ - {file = "lit-16.0.0.tar.gz", hash = "sha256:3c4ac372122a1de4a88deb277b956f91b7209420a0bef683b1ab2d2b16dabe11"}, -] - -[[package]] -name = "markdown" -version = "3.3.7" -description = "Python implementation of Markdown." -category = "main" -optional = false -python-versions = ">=3.6" -files = [ - {file = "Markdown-3.3.7-py3-none-any.whl", hash = "sha256:f5da449a6e1c989a4cea2631aa8ee67caa5a2ef855d551c88f9e309f4634c621"}, - {file = "Markdown-3.3.7.tar.gz", hash = "sha256:cbb516f16218e643d8e0a95b309f77eb118cb138d39a4f27851e6a63581db874"}, -] - -[package.dependencies] -importlib-metadata = {version = ">=4.4", markers = "python_version < \"3.10\""} - -[package.extras] -testing = ["coverage", "pyyaml"] - -[[package]] -name = "markdown-it-py" -version = "2.2.0" -description = "Python port of markdown-it. Markdown parsing, done right!" -category = "dev" -optional = false -python-versions = ">=3.7" -files = [ - {file = "markdown-it-py-2.2.0.tar.gz", hash = "sha256:7c9a5e412688bc771c67432cbfebcdd686c93ce6484913dccf06cb5a0bea35a1"}, - {file = "markdown_it_py-2.2.0-py3-none-any.whl", hash = "sha256:5a35f8d1870171d9acc47b99612dc146129b631baf04970128b568f190d0cc30"}, -] - -[package.dependencies] -mdurl = ">=0.1,<1.0" - -[package.extras] -benchmarking = ["psutil", "pytest", "pytest-benchmark"] -code-style = ["pre-commit (>=3.0,<4.0)"] -compare = ["commonmark (>=0.9,<1.0)", "markdown (>=3.4,<4.0)", "mistletoe (>=1.0,<2.0)", "mistune (>=2.0,<3.0)", "panflute (>=2.3,<3.0)"] -linkify = ["linkify-it-py (>=1,<3)"] -plugins = ["mdit-py-plugins"] -profiling = ["gprof2dot"] -rtd = ["attrs", "myst-parser", "pyyaml", "sphinx", "sphinx-copybutton", "sphinx-design", "sphinx_book_theme"] -testing = ["coverage", "pytest", "pytest-cov", "pytest-regressions"] - -[[package]] -name = "markupsafe" -version = "2.1.2" -description = "Safely add untrusted strings to HTML/XML markup." -category = "main" -optional = false -python-versions = ">=3.7" -files = [ - {file = "MarkupSafe-2.1.2-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:665a36ae6f8f20a4676b53224e33d456a6f5a72657d9c83c2aa00765072f31f7"}, - {file = "MarkupSafe-2.1.2-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:340bea174e9761308703ae988e982005aedf427de816d1afe98147668cc03036"}, - {file = "MarkupSafe-2.1.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:22152d00bf4a9c7c83960521fc558f55a1adbc0631fbb00a9471e097b19d72e1"}, - {file = "MarkupSafe-2.1.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:28057e985dace2f478e042eaa15606c7efccb700797660629da387eb289b9323"}, - {file = "MarkupSafe-2.1.2-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:ca244fa73f50a800cf8c3ebf7fd93149ec37f5cb9596aa8873ae2c1d23498601"}, - {file = "MarkupSafe-2.1.2-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:d9d971ec1e79906046aa3ca266de79eac42f1dbf3612a05dc9368125952bd1a1"}, - {file = "MarkupSafe-2.1.2-cp310-cp310-musllinux_1_1_i686.whl", hash = "sha256:7e007132af78ea9df29495dbf7b5824cb71648d7133cf7848a2a5dd00d36f9ff"}, - {file = "MarkupSafe-2.1.2-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:7313ce6a199651c4ed9d7e4cfb4aa56fe923b1adf9af3b420ee14e6d9a73df65"}, - {file = "MarkupSafe-2.1.2-cp310-cp310-win32.whl", hash = "sha256:c4a549890a45f57f1ebf99c067a4ad0cb423a05544accaf2b065246827ed9603"}, - {file = "MarkupSafe-2.1.2-cp310-cp310-win_amd64.whl", hash = "sha256:835fb5e38fd89328e9c81067fd642b3593c33e1e17e2fdbf77f5676abb14a156"}, - {file = "MarkupSafe-2.1.2-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:2ec4f2d48ae59bbb9d1f9d7efb9236ab81429a764dedca114f5fdabbc3788013"}, - {file = "MarkupSafe-2.1.2-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:608e7073dfa9e38a85d38474c082d4281f4ce276ac0010224eaba11e929dd53a"}, - {file = "MarkupSafe-2.1.2-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:65608c35bfb8a76763f37036547f7adfd09270fbdbf96608be2bead319728fcd"}, - {file = "MarkupSafe-2.1.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:f2bfb563d0211ce16b63c7cb9395d2c682a23187f54c3d79bfec33e6705473c6"}, - {file = "MarkupSafe-2.1.2-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:da25303d91526aac3672ee6d49a2f3db2d9502a4a60b55519feb1a4c7714e07d"}, - {file = "MarkupSafe-2.1.2-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:9cad97ab29dfc3f0249b483412c85c8ef4766d96cdf9dcf5a1e3caa3f3661cf1"}, - {file = "MarkupSafe-2.1.2-cp311-cp311-musllinux_1_1_i686.whl", hash = "sha256:085fd3201e7b12809f9e6e9bc1e5c96a368c8523fad5afb02afe3c051ae4afcc"}, - {file = "MarkupSafe-2.1.2-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:1bea30e9bf331f3fef67e0a3877b2288593c98a21ccb2cf29b74c581a4eb3af0"}, - {file = "MarkupSafe-2.1.2-cp311-cp311-win32.whl", hash = "sha256:7df70907e00c970c60b9ef2938d894a9381f38e6b9db73c5be35e59d92e06625"}, - {file = "MarkupSafe-2.1.2-cp311-cp311-win_amd64.whl", hash = "sha256:e55e40ff0cc8cc5c07996915ad367fa47da6b3fc091fdadca7f5403239c5fec3"}, - {file = "MarkupSafe-2.1.2-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:a6e40afa7f45939ca356f348c8e23048e02cb109ced1eb8420961b2f40fb373a"}, - {file = "MarkupSafe-2.1.2-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:cf877ab4ed6e302ec1d04952ca358b381a882fbd9d1b07cccbfd61783561f98a"}, - {file = "MarkupSafe-2.1.2-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:63ba06c9941e46fa389d389644e2d8225e0e3e5ebcc4ff1ea8506dce646f8c8a"}, - {file = "MarkupSafe-2.1.2-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:f1cd098434e83e656abf198f103a8207a8187c0fc110306691a2e94a78d0abb2"}, - {file = "MarkupSafe-2.1.2-cp37-cp37m-musllinux_1_1_aarch64.whl", hash = "sha256:55f44b440d491028addb3b88f72207d71eeebfb7b5dbf0643f7c023ae1fba619"}, - {file = "MarkupSafe-2.1.2-cp37-cp37m-musllinux_1_1_i686.whl", hash = "sha256:a6f2fcca746e8d5910e18782f976489939d54a91f9411c32051b4aab2bd7c513"}, - {file = "MarkupSafe-2.1.2-cp37-cp37m-musllinux_1_1_x86_64.whl", hash = "sha256:0b462104ba25f1ac006fdab8b6a01ebbfbce9ed37fd37fd4acd70c67c973e460"}, - {file = "MarkupSafe-2.1.2-cp37-cp37m-win32.whl", hash = "sha256:7668b52e102d0ed87cb082380a7e2e1e78737ddecdde129acadb0eccc5423859"}, - {file = "MarkupSafe-2.1.2-cp37-cp37m-win_amd64.whl", hash = "sha256:6d6607f98fcf17e534162f0709aaad3ab7a96032723d8ac8750ffe17ae5a0666"}, - {file = "MarkupSafe-2.1.2-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:a806db027852538d2ad7555b203300173dd1b77ba116de92da9afbc3a3be3eed"}, - {file = "MarkupSafe-2.1.2-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:a4abaec6ca3ad8660690236d11bfe28dfd707778e2442b45addd2f086d6ef094"}, - {file = "MarkupSafe-2.1.2-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:f03a532d7dee1bed20bc4884194a16160a2de9ffc6354b3878ec9682bb623c54"}, - {file = "MarkupSafe-2.1.2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:4cf06cdc1dda95223e9d2d3c58d3b178aa5dacb35ee7e3bbac10e4e1faacb419"}, - {file = "MarkupSafe-2.1.2-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:22731d79ed2eb25059ae3df1dfc9cb1546691cc41f4e3130fe6bfbc3ecbbecfa"}, - {file = "MarkupSafe-2.1.2-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:f8ffb705ffcf5ddd0e80b65ddf7bed7ee4f5a441ea7d3419e861a12eaf41af58"}, - {file = "MarkupSafe-2.1.2-cp38-cp38-musllinux_1_1_i686.whl", hash = "sha256:8db032bf0ce9022a8e41a22598eefc802314e81b879ae093f36ce9ddf39ab1ba"}, - {file = "MarkupSafe-2.1.2-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:2298c859cfc5463f1b64bd55cb3e602528db6fa0f3cfd568d3605c50678f8f03"}, - {file = "MarkupSafe-2.1.2-cp38-cp38-win32.whl", hash = "sha256:50c42830a633fa0cf9e7d27664637532791bfc31c731a87b202d2d8ac40c3ea2"}, - {file = "MarkupSafe-2.1.2-cp38-cp38-win_amd64.whl", hash = "sha256:bb06feb762bade6bf3c8b844462274db0c76acc95c52abe8dbed28ae3d44a147"}, - {file = "MarkupSafe-2.1.2-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:99625a92da8229df6d44335e6fcc558a5037dd0a760e11d84be2260e6f37002f"}, - {file = "MarkupSafe-2.1.2-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:8bca7e26c1dd751236cfb0c6c72d4ad61d986e9a41bbf76cb445f69488b2a2bd"}, - {file = "MarkupSafe-2.1.2-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:40627dcf047dadb22cd25ea7ecfe9cbf3bbbad0482ee5920b582f3809c97654f"}, - {file = "MarkupSafe-2.1.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:40dfd3fefbef579ee058f139733ac336312663c6706d1163b82b3003fb1925c4"}, - {file = "MarkupSafe-2.1.2-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:090376d812fb6ac5f171e5938e82e7f2d7adc2b629101cec0db8b267815c85e2"}, - {file = "MarkupSafe-2.1.2-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:2e7821bffe00aa6bd07a23913b7f4e01328c3d5cc0b40b36c0bd81d362faeb65"}, - {file = "MarkupSafe-2.1.2-cp39-cp39-musllinux_1_1_i686.whl", hash = "sha256:c0a33bc9f02c2b17c3ea382f91b4db0e6cde90b63b296422a939886a7a80de1c"}, - {file = "MarkupSafe-2.1.2-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:b8526c6d437855442cdd3d87eede9c425c4445ea011ca38d937db299382e6fa3"}, - {file = "MarkupSafe-2.1.2-cp39-cp39-win32.whl", hash = "sha256:137678c63c977754abe9086a3ec011e8fd985ab90631145dfb9294ad09c102a7"}, - {file = "MarkupSafe-2.1.2-cp39-cp39-win_amd64.whl", hash = "sha256:0576fe974b40a400449768941d5d0858cc624e3249dfd1e0c33674e5c7ca7aed"}, - {file = "MarkupSafe-2.1.2.tar.gz", hash = "sha256:abcabc8c2b26036d62d4c746381a6f7cf60aafcc653198ad678306986b09450d"}, -] - -[[package]] -name = "matplotlib" -version = "3.7.1" -description = "Python plotting package" -category = "main" -optional = false -python-versions = ">=3.8" -files = [ - {file = "matplotlib-3.7.1-cp310-cp310-macosx_10_12_universal2.whl", hash = "sha256:95cbc13c1fc6844ab8812a525bbc237fa1470863ff3dace7352e910519e194b1"}, - {file = "matplotlib-3.7.1-cp310-cp310-macosx_10_12_x86_64.whl", hash = "sha256:08308bae9e91aca1ec6fd6dda66237eef9f6294ddb17f0d0b3c863169bf82353"}, - {file = "matplotlib-3.7.1-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:544764ba51900da4639c0f983b323d288f94f65f4024dc40ecb1542d74dc0500"}, - {file = "matplotlib-3.7.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:56d94989191de3fcc4e002f93f7f1be5da476385dde410ddafbb70686acf00ea"}, - {file = "matplotlib-3.7.1-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:e99bc9e65901bb9a7ce5e7bb24af03675cbd7c70b30ac670aa263240635999a4"}, - {file = "matplotlib-3.7.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:eb7d248c34a341cd4c31a06fd34d64306624c8cd8d0def7abb08792a5abfd556"}, - {file = "matplotlib-3.7.1-cp310-cp310-win32.whl", hash = "sha256:ce463ce590f3825b52e9fe5c19a3c6a69fd7675a39d589e8b5fbe772272b3a24"}, - {file = "matplotlib-3.7.1-cp310-cp310-win_amd64.whl", hash = "sha256:3d7bc90727351fb841e4d8ae620d2d86d8ed92b50473cd2b42ce9186104ecbba"}, - {file = "matplotlib-3.7.1-cp311-cp311-macosx_10_12_universal2.whl", hash = "sha256:770a205966d641627fd5cf9d3cb4b6280a716522cd36b8b284a8eb1581310f61"}, - {file = "matplotlib-3.7.1-cp311-cp311-macosx_10_12_x86_64.whl", hash = "sha256:f67bfdb83a8232cb7a92b869f9355d677bce24485c460b19d01970b64b2ed476"}, - {file = "matplotlib-3.7.1-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:2bf092f9210e105f414a043b92af583c98f50050559616930d884387d0772aba"}, - {file = "matplotlib-3.7.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:89768d84187f31717349c6bfadc0e0d8c321e8eb34522acec8a67b1236a66332"}, - {file = "matplotlib-3.7.1-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:83111e6388dec67822e2534e13b243cc644c7494a4bb60584edbff91585a83c6"}, - {file = "matplotlib-3.7.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:a867bf73a7eb808ef2afbca03bcdb785dae09595fbe550e1bab0cd023eba3de0"}, - {file = "matplotlib-3.7.1-cp311-cp311-win32.whl", hash = "sha256:fbdeeb58c0cf0595efe89c05c224e0a502d1aa6a8696e68a73c3efc6bc354304"}, - {file = "matplotlib-3.7.1-cp311-cp311-win_amd64.whl", hash = "sha256:c0bd19c72ae53e6ab979f0ac6a3fafceb02d2ecafa023c5cca47acd934d10be7"}, - {file = "matplotlib-3.7.1-cp38-cp38-macosx_10_12_universal2.whl", hash = "sha256:6eb88d87cb2c49af00d3bbc33a003f89fd9f78d318848da029383bfc08ecfbfb"}, - {file = "matplotlib-3.7.1-cp38-cp38-macosx_10_12_x86_64.whl", hash = "sha256:cf0e4f727534b7b1457898c4f4ae838af1ef87c359b76dcd5330fa31893a3ac7"}, - {file = "matplotlib-3.7.1-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:46a561d23b91f30bccfd25429c3c706afe7d73a5cc64ef2dfaf2b2ac47c1a5dc"}, - {file = "matplotlib-3.7.1-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:8704726d33e9aa8a6d5215044b8d00804561971163563e6e6591f9dcf64340cc"}, - {file = "matplotlib-3.7.1-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:4cf327e98ecf08fcbb82685acaf1939d3338548620ab8dfa02828706402c34de"}, - {file = "matplotlib-3.7.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:617f14ae9d53292ece33f45cba8503494ee199a75b44de7717964f70637a36aa"}, - {file = "matplotlib-3.7.1-cp38-cp38-win32.whl", hash = "sha256:7c9a4b2da6fac77bcc41b1ea95fadb314e92508bf5493ceff058e727e7ecf5b0"}, - {file = "matplotlib-3.7.1-cp38-cp38-win_amd64.whl", hash = "sha256:14645aad967684e92fc349493fa10c08a6da514b3d03a5931a1bac26e6792bd1"}, - {file = "matplotlib-3.7.1-cp39-cp39-macosx_10_12_universal2.whl", hash = "sha256:81a6b377ea444336538638d31fdb39af6be1a043ca5e343fe18d0f17e098770b"}, - {file = "matplotlib-3.7.1-cp39-cp39-macosx_10_12_x86_64.whl", hash = "sha256:28506a03bd7f3fe59cd3cd4ceb2a8d8a2b1db41afede01f66c42561b9be7b4b7"}, - {file = "matplotlib-3.7.1-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:8c587963b85ce41e0a8af53b9b2de8dddbf5ece4c34553f7bd9d066148dc719c"}, - {file = "matplotlib-3.7.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:8bf26ade3ff0f27668989d98c8435ce9327d24cffb7f07d24ef609e33d582439"}, - {file = "matplotlib-3.7.1-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:def58098f96a05f90af7e92fd127d21a287068202aa43b2a93476170ebd99e87"}, - {file = "matplotlib-3.7.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:f883a22a56a84dba3b588696a2b8a1ab0d2c3d41be53264115c71b0a942d8fdb"}, - {file = "matplotlib-3.7.1-cp39-cp39-win32.whl", hash = "sha256:4f99e1b234c30c1e9714610eb0c6d2f11809c9c78c984a613ae539ea2ad2eb4b"}, - {file = "matplotlib-3.7.1-cp39-cp39-win_amd64.whl", hash = "sha256:3ba2af245e36990facf67fde840a760128ddd71210b2ab6406e640188d69d136"}, - {file = "matplotlib-3.7.1-pp38-pypy38_pp73-macosx_10_12_x86_64.whl", hash = "sha256:3032884084f541163f295db8a6536e0abb0db464008fadca6c98aaf84ccf4717"}, - {file = "matplotlib-3.7.1-pp38-pypy38_pp73-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:3a2cb34336110e0ed8bb4f650e817eed61fa064acbefeb3591f1b33e3a84fd96"}, - {file = "matplotlib-3.7.1-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:b867e2f952ed592237a1828f027d332d8ee219ad722345b79a001f49df0936eb"}, - {file = "matplotlib-3.7.1-pp38-pypy38_pp73-win_amd64.whl", hash = "sha256:57bfb8c8ea253be947ccb2bc2d1bb3862c2bccc662ad1b4626e1f5e004557042"}, - {file = "matplotlib-3.7.1-pp39-pypy39_pp73-macosx_10_12_x86_64.whl", hash = "sha256:438196cdf5dc8d39b50a45cb6e3f6274edbcf2254f85fa9b895bf85851c3a613"}, - {file = "matplotlib-3.7.1-pp39-pypy39_pp73-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:21e9cff1a58d42e74d01153360de92b326708fb205250150018a52c70f43c290"}, - {file = "matplotlib-3.7.1-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:75d4725d70b7c03e082bbb8a34639ede17f333d7247f56caceb3801cb6ff703d"}, - {file = "matplotlib-3.7.1-pp39-pypy39_pp73-win_amd64.whl", hash = "sha256:97cc368a7268141afb5690760921765ed34867ffb9655dd325ed207af85c7529"}, - {file = "matplotlib-3.7.1.tar.gz", hash = "sha256:7b73305f25eab4541bd7ee0b96d87e53ae9c9f1823be5659b806cd85786fe882"}, -] - -[package.dependencies] -contourpy = ">=1.0.1" -cycler = ">=0.10" -fonttools = ">=4.22.0" -importlib-resources = {version = ">=3.2.0", markers = "python_version < \"3.10\""} -kiwisolver = ">=1.0.1" -numpy = ">=1.20" -packaging = ">=20.0" -pillow = ">=6.2.0" -pyparsing = ">=2.3.1" -python-dateutil = ">=2.7" - -[[package]] -name = "mdit-py-plugins" -version = "0.3.5" -description = "Collection of plugins for markdown-it-py" -category = "dev" -optional = false -python-versions = ">=3.7" -files = [ - {file = "mdit-py-plugins-0.3.5.tar.gz", hash = "sha256:eee0adc7195e5827e17e02d2a258a2ba159944a0748f59c5099a4a27f78fcf6a"}, - {file = "mdit_py_plugins-0.3.5-py3-none-any.whl", hash = "sha256:ca9a0714ea59a24b2b044a1831f48d817dd0c817e84339f20e7889f392d77c4e"}, -] - -[package.dependencies] -markdown-it-py = ">=1.0.0,<3.0.0" - -[package.extras] -code-style = ["pre-commit"] -rtd = ["attrs", "myst-parser (>=0.16.1,<0.17.0)", "sphinx-book-theme (>=0.1.0,<0.2.0)"] -testing = ["coverage", "pytest", "pytest-cov", "pytest-regressions"] - -[[package]] -name = "mdurl" -version = "0.1.2" -description = "Markdown URL utilities" -category = "dev" -optional = false -python-versions = ">=3.7" -files = [ - {file = "mdurl-0.1.2-py3-none-any.whl", hash = "sha256:84008a41e51615a49fc9966191ff91509e3c40b939176e643fd50a5c2196b8f8"}, - {file = "mdurl-0.1.2.tar.gz", hash = "sha256:bb413d29f5eea38f31dd4754dd7377d4465116fb207585f97bf925588687c1ba"}, -] - -[[package]] -name = "mergedeep" -version = "1.3.4" -description = "A deep merge function for 🐍." -category = "main" -optional = false -python-versions = ">=3.6" -files = [ - {file = "mergedeep-1.3.4-py3-none-any.whl", hash = "sha256:70775750742b25c0d8f36c55aed03d24c3384d17c951b3175d898bd778ef0307"}, - {file = "mergedeep-1.3.4.tar.gz", hash = "sha256:0096d52e9dad9939c3d975a774666af186eda617e6ca84df4c94dec30004f2a8"}, -] - -[[package]] -name = "mistune" -version = "2.0.5" -description = "A sane Markdown parser with useful plugins and renderers" -category = "dev" -optional = false -python-versions = "*" -files = [ - {file = "mistune-2.0.5-py2.py3-none-any.whl", hash = "sha256:bad7f5d431886fcbaf5f758118ecff70d31f75231b34024a1341120340a65ce8"}, - {file = "mistune-2.0.5.tar.gz", hash = "sha256:0246113cb2492db875c6be56974a7c893333bf26cd92891c85f63151cee09d34"}, -] - -[[package]] -name = "mkdocs" -version = "1.4.2" -description = "Project documentation with Markdown." -category = "main" -optional = false -python-versions = ">=3.7" -files = [ - {file = "mkdocs-1.4.2-py3-none-any.whl", hash = "sha256:c8856a832c1e56702577023cd64cc5f84948280c1c0fcc6af4cd39006ea6aa8c"}, - {file = "mkdocs-1.4.2.tar.gz", hash = "sha256:8947af423a6d0facf41ea1195b8e1e8c85ad94ac95ae307fe11232e0424b11c5"}, -] - -[package.dependencies] -click = ">=7.0" -colorama = {version = ">=0.4", markers = "platform_system == \"Windows\""} -ghp-import = ">=1.0" -importlib-metadata = {version = ">=4.3", markers = "python_version < \"3.10\""} -jinja2 = ">=2.11.1" -markdown = ">=3.2.1,<3.4" -mergedeep = ">=1.3.4" -packaging = ">=20.5" -pyyaml = ">=5.1" -pyyaml-env-tag = ">=0.1" -watchdog = ">=2.0" - -[package.extras] -i18n = ["babel (>=2.9.0)"] -min-versions = ["babel (==2.9.0)", "click (==7.0)", "colorama (==0.4)", "ghp-import (==1.0)", "importlib-metadata (==4.3)", "jinja2 (==2.11.1)", "markdown (==3.2.1)", "markupsafe (==2.0.1)", "mergedeep (==1.3.4)", "packaging (==20.5)", "pyyaml (==5.1)", "pyyaml-env-tag (==0.1)", "typing-extensions (==3.10)", "watchdog (==2.0)"] - -[[package]] -name = "mkdocs-autorefs" -version = "0.4.1" -description = "Automatically link across pages in MkDocs." -category = "dev" -optional = false -python-versions = ">=3.7" -files = [ - {file = "mkdocs-autorefs-0.4.1.tar.gz", hash = "sha256:70748a7bd025f9ecd6d6feeba8ba63f8e891a1af55f48e366d6d6e78493aba84"}, - {file = "mkdocs_autorefs-0.4.1-py3-none-any.whl", hash = "sha256:a2248a9501b29dc0cc8ba4c09f4f47ff121945f6ce33d760f145d6f89d313f5b"}, -] - -[package.dependencies] -Markdown = ">=3.3" -mkdocs = ">=1.1" - -[[package]] -name = "mkdocs-gen-files" -version = "0.4.0" -description = "MkDocs plugin to programmatically generate documentation pages during the build" -category = "dev" -optional = false -python-versions = ">=3.7,<4.0" -files = [ - {file = "mkdocs-gen-files-0.4.0.tar.gz", hash = "sha256:377bff8ee8e93515916689f483d971643f83a94eed7e92318854da8f344f0163"}, - {file = "mkdocs_gen_files-0.4.0-py3-none-any.whl", hash = "sha256:3241a4c947ecd11763ca77cc645015305bf71a0e1b9b886801c114fcf9971e71"}, -] - -[package.dependencies] -mkdocs = ">=1.0.3,<2.0.0" - -[[package]] -name = "mkdocs-jupyter" -version = "0.24.1" -description = "Use Jupyter in mkdocs websites" -category = "dev" -optional = false -python-versions = ">=3.7" -files = [ - {file = "mkdocs_jupyter-0.24.1-py3-none-any.whl", hash = "sha256:759833c7d1528ae2d6337342786be7bc1e2235b0b98e9326427d4cf8d4eebee0"}, - {file = "mkdocs_jupyter-0.24.1.tar.gz", hash = "sha256:9677037fb7e931268f3df7599fc0828c261247df3d1575bced320ba8b7d1d46d"}, -] - -[package.dependencies] -jupytext = ">1.13.8,<2" -mkdocs = ">=1.4.0,<2" -mkdocs-material = ">9.0.0" -nbconvert = ">=7.2.9,<8" -pygments = ">2.12.0" - -[package.extras] -test = ["pytest", "pytest-cov"] - -[[package]] -name = "mkdocs-literate-nav" -version = "0.6.0" -description = "MkDocs plugin to specify the navigation in Markdown instead of YAML" -category = "dev" -optional = false -python-versions = ">=3.7" -files = [ - {file = "mkdocs_literate_nav-0.6.0-py3-none-any.whl", hash = "sha256:8c1b84714e5974da5e44e011ec0069275ae7647270c13a679662cf6ffce675a4"}, - {file = "mkdocs_literate_nav-0.6.0.tar.gz", hash = "sha256:81ccbea18163ae8e10bd0bd39237fe70c32a1f2dff6c170779f5d52dd98a0470"}, -] - -[package.dependencies] -mkdocs = ">=1.0.3" - -[[package]] -name = "mkdocs-material" -version = "9.1.5" -description = "Documentation that simply works" -category = "dev" -optional = false -python-versions = ">=3.7" -files = [ - {file = "mkdocs_material-9.1.5-py3-none-any.whl", hash = "sha256:981e1ef0250e2fbcc23610e9b20e5f242fe1f808079b9bcfbb6c49aa2999343c"}, - {file = "mkdocs_material-9.1.5.tar.gz", hash = "sha256:744519bca52b1e8fe7c2e80e15ed59baf8948111ec763ae6ae629c409bd16d6e"}, -] - -[package.dependencies] -colorama = ">=0.4" -jinja2 = ">=3.0" -markdown = ">=3.2" -mkdocs = ">=1.4.2" -mkdocs-material-extensions = ">=1.1" -pygments = ">=2.14" -pymdown-extensions = ">=9.9.1" -regex = ">=2022.4.24" -requests = ">=2.26" - -[[package]] -name = "mkdocs-material-extensions" -version = "1.1.1" -description = "Extension pack for Python Markdown and MkDocs Material." -category = "dev" -optional = false -python-versions = ">=3.7" -files = [ - {file = "mkdocs_material_extensions-1.1.1-py3-none-any.whl", hash = "sha256:e41d9f38e4798b6617ad98ca8f7f1157b1e4385ac1459ca1e4ea219b556df945"}, - {file = "mkdocs_material_extensions-1.1.1.tar.gz", hash = "sha256:9c003da71e2cc2493d910237448c672e00cefc800d3d6ae93d2fc69979e3bd93"}, -] - -[[package]] -name = "mkdocs-multirepo-plugin" -version = "0.6.1" -description = "Build documentation in multiple repos into one site." -category = "main" -optional = false -python-versions = "*" -files = [ - {file = "mkdocs_multirepo_plugin-0.6.1-py2.py3-none-any.whl", hash = "sha256:b484f189dfb429793d8049e8d201b191fd99887b10fc8776b9846171d1243533"}, - {file = "mkdocs_multirepo_plugin-0.6.1.tar.gz", hash = "sha256:4d09324430cb669e1ab9c128c75bc24c1350acb2a40e6ea714d666e5dcc25b8b"}, -] - -[package.dependencies] -asyncio = "*" -dacite = {version = ">=1.8.0,<2.0.0", markers = "python_version >= \"3.6\""} -mkdocs = {version = ">=1.0.4", markers = "python_version >= \"3.6\""} -python-slugify = {version = "*", markers = "python_version >= \"2.7\" and python_version < \"2.8\" or python_full_version >= \"3.6.0\""} -typing-inspect = {version = ">=0.8.0,<0.9.0", markers = "python_version >= \"3.6\""} - -[[package]] -name = "mkdocs-section-index" -version = "0.3.5" -description = "MkDocs plugin to allow clickable sections that lead to an index page" -category = "dev" -optional = false -python-versions = ">=3.7" -files = [ - {file = "mkdocs_section_index-0.3.5-py3-none-any.whl", hash = "sha256:1f6359287b0a823d6297cf1cb6c0a49ed75851d0d1cea8b425b207a45ce10141"}, - {file = "mkdocs_section_index-0.3.5.tar.gz", hash = "sha256:fa8b1ce0649326b1873c6460c1df2bb0c4825fd21e3dd416f13ec212d31edf12"}, -] - -[package.dependencies] -mkdocs = ">=1.0.3" - -[[package]] -name = "mkdocstrings" -version = "0.21.2" -description = "Automatic documentation from sources, for MkDocs." -category = "dev" -optional = false -python-versions = ">=3.7" -files = [ - {file = "mkdocstrings-0.21.2-py3-none-any.whl", hash = "sha256:949ef8da92df9d692ca07be50616459a6b536083a25520fd54b00e8814ce019b"}, - {file = "mkdocstrings-0.21.2.tar.gz", hash = "sha256:304e56a2e90595708a38a13a278e538a67ad82052dd5c8b71f77a604a4f3d911"}, -] - -[package.dependencies] -Jinja2 = ">=2.11.1" -Markdown = ">=3.3" -MarkupSafe = ">=1.1" -mkdocs = ">=1.2" -mkdocs-autorefs = ">=0.3.1" -pymdown-extensions = ">=6.3" -typing-extensions = {version = ">=4.1", markers = "python_version < \"3.10\""} - -[package.extras] -crystal = ["mkdocstrings-crystal (>=0.3.4)"] -python = ["mkdocstrings-python (>=0.5.2)"] -python-legacy = ["mkdocstrings-python-legacy (>=0.2.1)"] - -[[package]] -name = "mkdocstrings-python" -version = "0.9.0" -description = "A Python handler for mkdocstrings." -category = "dev" -optional = false -python-versions = ">=3.7" -files = [ - {file = "mkdocstrings-python-0.9.0.tar.gz", hash = "sha256:da0a54d7d46523a25a5227f0ecc74b491291bd9d36fc71445bfb0ea64283e287"}, - {file = "mkdocstrings_python-0.9.0-py3-none-any.whl", hash = "sha256:00e02b5d3d444f9abdec2398f9ba0c73e15deab78685f793f5801fd4d62a5b6f"}, -] - -[package.dependencies] -griffe = ">=0.24" -mkdocstrings = ">=0.20" - -[[package]] -name = "mpmath" -version = "1.3.0" -description = "Python library for arbitrary-precision floating-point arithmetic" -category = "main" -optional = false -python-versions = "*" -files = [ - {file = "mpmath-1.3.0-py3-none-any.whl", hash = "sha256:a0b2b9fe80bbcd81a6647ff13108738cfb482d481d826cc0e02f5b35e5c88d2c"}, - {file = "mpmath-1.3.0.tar.gz", hash = "sha256:7a28eb2a9774d00c7bc92411c19a89209d5da7c4c9a9e227be8330a23a25b91f"}, -] - -[package.extras] -develop = ["codecov", "pycodestyle", "pytest (>=4.6)", "pytest-cov", "wheel"] -docs = ["sphinx"] -gmpy = ["gmpy2 (>=2.1.0a4)"] -tests = ["pytest (>=4.6)"] - -[[package]] -name = "mypy-extensions" -version = "1.0.0" -description = "Type system extensions for programs checked with the mypy type checker." -category = "main" -optional = false -python-versions = ">=3.5" -files = [ - {file = "mypy_extensions-1.0.0-py3-none-any.whl", hash = "sha256:4392f6c0eb8a5668a69e23d168ffa70f0be9ccfd32b5cc2d26a34ae5b844552d"}, - {file = "mypy_extensions-1.0.0.tar.gz", hash = "sha256:75dbf8955dc00442a438fc4d0666508a9a97b6bd41aa2f0ffe9d2f2725af0782"}, -] - -[[package]] -name = "nbclient" -version = "0.7.3" -description = "A client library for executing notebooks. Formerly nbconvert's ExecutePreprocessor." -category = "dev" -optional = false -python-versions = ">=3.7.0" -files = [ - {file = "nbclient-0.7.3-py3-none-any.whl", hash = "sha256:8fa96f7e36693d5e83408f5e840f113c14a45c279befe609904dbe05dad646d1"}, - {file = "nbclient-0.7.3.tar.gz", hash = "sha256:26e41c6dca4d76701988bc34f64e1bfc2413ae6d368f13d7b5ac407efb08c755"}, -] - -[package.dependencies] -jupyter-client = ">=6.1.12" -jupyter-core = ">=4.12,<5.0.0 || >=5.1.0" -nbformat = ">=5.1" -traitlets = ">=5.3" - -[package.extras] -dev = ["pre-commit"] -docs = ["autodoc-traits", "mock", "moto", "myst-parser", "nbclient[test]", "sphinx (>=1.7)", "sphinx-book-theme", "sphinxcontrib-spelling"] -test = ["flaky", "ipykernel", "ipython", "ipywidgets", "nbconvert (>=7.0.0)", "pytest (>=7.0)", "pytest-asyncio", "pytest-cov (>=4.0)", "testpath", "xmltodict"] - -[[package]] -name = "nbconvert" -version = "7.3.0" -description = "Converting Jupyter Notebooks" -category = "dev" -optional = false -python-versions = ">=3.7" -files = [ - {file = "nbconvert-7.3.0-py3-none-any.whl", hash = "sha256:8983a83d0b083d56b076019f0a319f63bc16af70c9372892b86a0aab0a264b1d"}, - {file = "nbconvert-7.3.0.tar.gz", hash = "sha256:b970a13aba97529c223d805dd0706c2fe04dfc05e250ad4e6f7ae33daf6fede1"}, -] - -[package.dependencies] -beautifulsoup4 = "*" -bleach = "*" -defusedxml = "*" -importlib-metadata = {version = ">=3.6", markers = "python_version < \"3.10\""} -jinja2 = ">=3.0" -jupyter-core = ">=4.7" -jupyterlab-pygments = "*" -markupsafe = ">=2.0" -mistune = ">=2.0.3,<3" -nbclient = ">=0.5.0" -nbformat = ">=5.1" -packaging = "*" -pandocfilters = ">=1.4.1" -pygments = ">=2.4.1" -tinycss2 = "*" -traitlets = ">=5.0" - -[package.extras] -all = ["nbconvert[docs,qtpdf,serve,test,webpdf]"] -docs = ["ipykernel", "ipython", "myst-parser", "nbsphinx (>=0.2.12)", "pydata-sphinx-theme", "sphinx (==5.0.2)", "sphinxcontrib-spelling"] -qtpdf = ["nbconvert[qtpng]"] -qtpng = ["pyqtwebengine (>=5.15)"] -serve = ["tornado (>=6.1)"] -test = ["ipykernel", "ipywidgets (>=7)", "pre-commit", "pytest", "pytest-dependency"] -webpdf = ["pyppeteer (>=1,<1.1)"] - -[[package]] -name = "nbformat" -version = "5.8.0" -description = "The Jupyter Notebook format" -category = "dev" -optional = false -python-versions = ">=3.7" -files = [ - {file = "nbformat-5.8.0-py3-none-any.whl", hash = "sha256:d910082bd3e0bffcf07eabf3683ed7dda0727a326c446eeb2922abe102e65162"}, - {file = "nbformat-5.8.0.tar.gz", hash = "sha256:46dac64c781f1c34dfd8acba16547024110348f9fc7eab0f31981c2a3dc48d1f"}, -] - -[package.dependencies] -fastjsonschema = "*" -jsonschema = ">=2.6" -jupyter-core = "*" -traitlets = ">=5.1" - -[package.extras] -docs = ["myst-parser", "pydata-sphinx-theme", "sphinx", "sphinxcontrib-github-alt", "sphinxcontrib-spelling"] -test = ["pep440", "pre-commit", "pytest", "testpath"] - -[[package]] -name = "networkx" -version = "3.1" -description = "Python package for creating and manipulating graphs and networks" -category = "main" -optional = false -python-versions = ">=3.8" -files = [ - {file = "networkx-3.1-py3-none-any.whl", hash = "sha256:4f33f68cb2afcf86f28a45f43efc27a9386b535d567d2127f8f61d51dec58d36"}, - {file = "networkx-3.1.tar.gz", hash = "sha256:de346335408f84de0eada6ff9fafafff9bcda11f0a0dfaa931133debb146ab61"}, -] - -[package.extras] -default = ["matplotlib (>=3.4)", "numpy (>=1.20)", "pandas (>=1.3)", "scipy (>=1.8)"] -developer = ["mypy (>=1.1)", "pre-commit (>=3.2)"] -doc = ["nb2plots (>=0.6)", "numpydoc (>=1.5)", "pillow (>=9.4)", "pydata-sphinx-theme (>=0.13)", "sphinx (>=6.1)", "sphinx-gallery (>=0.12)", "texext (>=0.6.7)"] -extra = ["lxml (>=4.6)", "pydot (>=1.4.2)", "pygraphviz (>=1.10)", "sympy (>=1.10)"] -test = ["codecov (>=2.1)", "pytest (>=7.2)", "pytest-cov (>=4.0)"] - -[[package]] -name = "nodeenv" -version = "1.7.0" -description = "Node.js virtual environment builder" -category = "dev" -optional = false -python-versions = ">=2.7,!=3.0.*,!=3.1.*,!=3.2.*,!=3.3.*,!=3.4.*,!=3.5.*,!=3.6.*" -files = [ - {file = "nodeenv-1.7.0-py2.py3-none-any.whl", hash = "sha256:27083a7b96a25f2f5e1d8cb4b6317ee8aeda3bdd121394e5ac54e498028a042e"}, - {file = "nodeenv-1.7.0.tar.gz", hash = "sha256:e0e7f7dfb85fc5394c6fe1e8fa98131a2473e04311a45afb6508f7cf1836fa2b"}, -] - -[package.dependencies] -setuptools = "*" - -[[package]] -name = "numpy" -version = "1.24.2" -description = "Fundamental package for array computing in Python" -category = "main" -optional = false -python-versions = ">=3.8" -files = [ - {file = "numpy-1.24.2-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:eef70b4fc1e872ebddc38cddacc87c19a3709c0e3e5d20bf3954c147b1dd941d"}, - {file = "numpy-1.24.2-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:e8d2859428712785e8a8b7d2b3ef0a1d1565892367b32f915c4a4df44d0e64f5"}, - {file = "numpy-1.24.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:6524630f71631be2dabe0c541e7675db82651eb998496bbe16bc4f77f0772253"}, - {file = "numpy-1.24.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:a51725a815a6188c662fb66fb32077709a9ca38053f0274640293a14fdd22978"}, - {file = "numpy-1.24.2-cp310-cp310-win32.whl", hash = "sha256:2620e8592136e073bd12ee4536149380695fbe9ebeae845b81237f986479ffc9"}, - {file = "numpy-1.24.2-cp310-cp310-win_amd64.whl", hash = "sha256:97cf27e51fa078078c649a51d7ade3c92d9e709ba2bfb97493007103c741f1d0"}, - {file = "numpy-1.24.2-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:7de8fdde0003f4294655aa5d5f0a89c26b9f22c0a58790c38fae1ed392d44a5a"}, - {file = "numpy-1.24.2-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:4173bde9fa2a005c2c6e2ea8ac1618e2ed2c1c6ec8a7657237854d42094123a0"}, - {file = "numpy-1.24.2-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:4cecaed30dc14123020f77b03601559fff3e6cd0c048f8b5289f4eeabb0eb281"}, - {file = "numpy-1.24.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:9a23f8440561a633204a67fb44617ce2a299beecf3295f0d13c495518908e910"}, - {file = "numpy-1.24.2-cp311-cp311-win32.whl", hash = "sha256:e428c4fbfa085f947b536706a2fc349245d7baa8334f0c5723c56a10595f9b95"}, - {file = "numpy-1.24.2-cp311-cp311-win_amd64.whl", hash = "sha256:557d42778a6869c2162deb40ad82612645e21d79e11c1dc62c6e82a2220ffb04"}, - {file = "numpy-1.24.2-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:d0a2db9d20117bf523dde15858398e7c0858aadca7c0f088ac0d6edd360e9ad2"}, - {file = "numpy-1.24.2-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:c72a6b2f4af1adfe193f7beb91ddf708ff867a3f977ef2ec53c0ffb8283ab9f5"}, - {file = "numpy-1.24.2-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:c29e6bd0ec49a44d7690ecb623a8eac5ab8a923bce0bea6293953992edf3a76a"}, - {file = "numpy-1.24.2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:2eabd64ddb96a1239791da78fa5f4e1693ae2dadc82a76bc76a14cbb2b966e96"}, - {file = "numpy-1.24.2-cp38-cp38-win32.whl", hash = "sha256:e3ab5d32784e843fc0dd3ab6dcafc67ef806e6b6828dc6af2f689be0eb4d781d"}, - {file = "numpy-1.24.2-cp38-cp38-win_amd64.whl", hash = "sha256:76807b4063f0002c8532cfeac47a3068a69561e9c8715efdad3c642eb27c0756"}, - {file = "numpy-1.24.2-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:4199e7cfc307a778f72d293372736223e39ec9ac096ff0a2e64853b866a8e18a"}, - {file = "numpy-1.24.2-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:adbdce121896fd3a17a77ab0b0b5eedf05a9834a18699db6829a64e1dfccca7f"}, - {file = "numpy-1.24.2-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:889b2cc88b837d86eda1b17008ebeb679d82875022200c6e8e4ce6cf549b7acb"}, - {file = "numpy-1.24.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:f64bb98ac59b3ea3bf74b02f13836eb2e24e48e0ab0145bbda646295769bd780"}, - {file = "numpy-1.24.2-cp39-cp39-win32.whl", hash = "sha256:63e45511ee4d9d976637d11e6c9864eae50e12dc9598f531c035265991910468"}, - {file = "numpy-1.24.2-cp39-cp39-win_amd64.whl", hash = "sha256:a77d3e1163a7770164404607b7ba3967fb49b24782a6ef85d9b5f54126cc39e5"}, - {file = "numpy-1.24.2-pp38-pypy38_pp73-macosx_10_9_x86_64.whl", hash = "sha256:92011118955724465fb6853def593cf397b4a1367495e0b59a7e69d40c4eb71d"}, - {file = "numpy-1.24.2-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:f9006288bcf4895917d02583cf3411f98631275bc67cce355a7f39f8c14338fa"}, - {file = "numpy-1.24.2-pp38-pypy38_pp73-win_amd64.whl", hash = "sha256:150947adbdfeceec4e5926d956a06865c1c690f2fd902efede4ca6fe2e657c3f"}, - {file = "numpy-1.24.2.tar.gz", hash = "sha256:003a9f530e880cb2cd177cba1af7220b9aa42def9c4afc2a2fc3ee6be7eb2b22"}, -] - -[[package]] -name = "nvidia-cublas-cu11" -version = "11.10.3.66" -description = "CUBLAS native runtime libraries" -category = "main" -optional = false -python-versions = ">=3" -files = [ - {file = "nvidia_cublas_cu11-11.10.3.66-py3-none-manylinux1_x86_64.whl", hash = "sha256:d32e4d75f94ddfb93ea0a5dda08389bcc65d8916a25cb9f37ac89edaeed3bded"}, - {file = "nvidia_cublas_cu11-11.10.3.66-py3-none-win_amd64.whl", hash = "sha256:8ac17ba6ade3ed56ab898a036f9ae0756f1e81052a317bf98f8c6d18dc3ae49e"}, -] - -[package.dependencies] -setuptools = "*" -wheel = "*" - -[[package]] -name = "nvidia-cuda-cupti-cu11" -version = "11.7.101" -description = "CUDA profiling tools runtime libs." -category = "main" -optional = false -python-versions = ">=3" -files = [ - {file = "nvidia_cuda_cupti_cu11-11.7.101-py3-none-manylinux1_x86_64.whl", hash = "sha256:e0cfd9854e1f2edaa36ca20d21cd0bdd5dcfca4e3b9e130a082e05b33b6c5895"}, - {file = "nvidia_cuda_cupti_cu11-11.7.101-py3-none-win_amd64.whl", hash = "sha256:7cc5b8f91ae5e1389c3c0ad8866b3b016a175e827ea8f162a672990a402ab2b0"}, -] - -[package.dependencies] -setuptools = "*" -wheel = "*" - -[[package]] -name = "nvidia-cuda-nvrtc-cu11" -version = "11.7.99" -description = "NVRTC native runtime libraries" -category = "main" -optional = false -python-versions = ">=3" -files = [ - {file = "nvidia_cuda_nvrtc_cu11-11.7.99-2-py3-none-manylinux1_x86_64.whl", hash = "sha256:9f1562822ea264b7e34ed5930567e89242d266448e936b85bc97a3370feabb03"}, - {file = "nvidia_cuda_nvrtc_cu11-11.7.99-py3-none-manylinux1_x86_64.whl", hash = "sha256:f7d9610d9b7c331fa0da2d1b2858a4a8315e6d49765091d28711c8946e7425e7"}, - {file = "nvidia_cuda_nvrtc_cu11-11.7.99-py3-none-win_amd64.whl", hash = "sha256:f2effeb1309bdd1b3854fc9b17eaf997808f8b25968ce0c7070945c4265d64a3"}, -] - -[package.dependencies] -setuptools = "*" -wheel = "*" - -[[package]] -name = "nvidia-cuda-runtime-cu11" -version = "11.7.99" -description = "CUDA Runtime native Libraries" -category = "main" -optional = false -python-versions = ">=3" -files = [ - {file = "nvidia_cuda_runtime_cu11-11.7.99-py3-none-manylinux1_x86_64.whl", hash = "sha256:cc768314ae58d2641f07eac350f40f99dcb35719c4faff4bc458a7cd2b119e31"}, - {file = "nvidia_cuda_runtime_cu11-11.7.99-py3-none-win_amd64.whl", hash = "sha256:bc77fa59a7679310df9d5c70ab13c4e34c64ae2124dd1efd7e5474b71be125c7"}, -] - -[package.dependencies] -setuptools = "*" -wheel = "*" - -[[package]] -name = "nvidia-cudnn-cu11" -version = "8.5.0.96" -description = "cuDNN runtime libraries" -category = "main" -optional = false -python-versions = ">=3" -files = [ - {file = "nvidia_cudnn_cu11-8.5.0.96-2-py3-none-manylinux1_x86_64.whl", hash = "sha256:402f40adfc6f418f9dae9ab402e773cfed9beae52333f6d86ae3107a1b9527e7"}, - {file = "nvidia_cudnn_cu11-8.5.0.96-py3-none-manylinux1_x86_64.whl", hash = "sha256:71f8111eb830879ff2836db3cccf03bbd735df9b0d17cd93761732ac50a8a108"}, -] - -[package.dependencies] -setuptools = "*" -wheel = "*" - -[[package]] -name = "nvidia-cufft-cu11" -version = "10.9.0.58" -description = "CUFFT native runtime libraries" -category = "main" -optional = false -python-versions = ">=3" -files = [ - {file = "nvidia_cufft_cu11-10.9.0.58-py3-none-manylinux1_x86_64.whl", hash = "sha256:222f9da70c80384632fd6035e4c3f16762d64ea7a843829cb278f98b3cb7dd81"}, - {file = "nvidia_cufft_cu11-10.9.0.58-py3-none-win_amd64.whl", hash = "sha256:c4d316f17c745ec9c728e30409612eaf77a8404c3733cdf6c9c1569634d1ca03"}, -] - -[[package]] -name = "nvidia-curand-cu11" -version = "10.2.10.91" -description = "CURAND native runtime libraries" -category = "main" -optional = false -python-versions = ">=3" -files = [ - {file = "nvidia_curand_cu11-10.2.10.91-py3-none-manylinux1_x86_64.whl", hash = "sha256:eecb269c970fa599a2660c9232fa46aaccbf90d9170b96c462e13bcb4d129e2c"}, - {file = "nvidia_curand_cu11-10.2.10.91-py3-none-win_amd64.whl", hash = "sha256:f742052af0e1e75523bde18895a9ed016ecf1e5aa0ecddfcc3658fd11a1ff417"}, -] - -[package.dependencies] -setuptools = "*" -wheel = "*" - -[[package]] -name = "nvidia-cusolver-cu11" -version = "11.4.0.1" -description = "CUDA solver native runtime libraries" -category = "main" -optional = false -python-versions = ">=3" -files = [ - {file = "nvidia_cusolver_cu11-11.4.0.1-2-py3-none-manylinux1_x86_64.whl", hash = "sha256:72fa7261d755ed55c0074960df5904b65e2326f7adce364cbe4945063c1be412"}, - {file = "nvidia_cusolver_cu11-11.4.0.1-py3-none-manylinux1_x86_64.whl", hash = "sha256:700b781bfefd57d161443aff9ace1878584b93e0b2cfef3d6e9296d96febbf99"}, - {file = "nvidia_cusolver_cu11-11.4.0.1-py3-none-win_amd64.whl", hash = "sha256:00f70b256add65f8c1eb3b6a65308795a93e7740f6df9e273eccbba770d370c4"}, -] - -[package.dependencies] -setuptools = "*" -wheel = "*" - -[[package]] -name = "nvidia-cusparse-cu11" -version = "11.7.4.91" -description = "CUSPARSE native runtime libraries" -category = "main" -optional = false -python-versions = ">=3" -files = [ - {file = "nvidia_cusparse_cu11-11.7.4.91-py3-none-manylinux1_x86_64.whl", hash = "sha256:a3389de714db63321aa11fbec3919271f415ef19fda58aed7f2ede488c32733d"}, - {file = "nvidia_cusparse_cu11-11.7.4.91-py3-none-win_amd64.whl", hash = "sha256:304a01599534f5186a8ed1c3756879282c72c118bc77dd890dc1ff868cad25b9"}, -] - -[package.dependencies] -setuptools = "*" -wheel = "*" - -[[package]] -name = "nvidia-nccl-cu11" -version = "2.14.3" -description = "NVIDIA Collective Communication Library (NCCL) Runtime" -category = "main" -optional = false -python-versions = ">=3" -files = [ - {file = "nvidia_nccl_cu11-2.14.3-py3-none-manylinux1_x86_64.whl", hash = "sha256:5e5534257d1284b8e825bc3a182c6f06acd6eb405e9f89d49340e98cd8f136eb"}, -] - -[[package]] -name = "nvidia-nvtx-cu11" -version = "11.7.91" -description = "NVIDIA Tools Extension" -category = "main" -optional = false -python-versions = ">=3" -files = [ - {file = "nvidia_nvtx_cu11-11.7.91-py3-none-manylinux1_x86_64.whl", hash = "sha256:b22c64eee426a62fc00952b507d6d29cf62b4c9df7a480fcc417e540e05fd5ac"}, - {file = "nvidia_nvtx_cu11-11.7.91-py3-none-win_amd64.whl", hash = "sha256:dfd7fcb2a91742513027d63a26b757f38dd8b07fecac282c4d132a9d373ff064"}, -] - -[package.dependencies] -setuptools = "*" -wheel = "*" - -[[package]] -name = "packaging" -version = "23.0" -description = "Core utilities for Python packages" -category = "main" -optional = false -python-versions = ">=3.7" -files = [ - {file = "packaging-23.0-py3-none-any.whl", hash = "sha256:714ac14496c3e68c99c29b00845f7a2b85f3bb6f1078fd9f72fd20f0570002b2"}, - {file = "packaging-23.0.tar.gz", hash = "sha256:b6ad297f8907de0fa2fe1ccbd26fdaf387f5f47c7275fedf8cce89f99446cf97"}, -] - -[[package]] -name = "pandas" -version = "2.0.0" -description = "Powerful data structures for data analysis, time series, and statistics" -category = "main" -optional = false -python-versions = ">=3.8" -files = [ - {file = "pandas-2.0.0-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:bbb2c5e94d6aa4e632646a3bacd05c2a871c3aa3e85c9bec9be99cb1267279f2"}, - {file = "pandas-2.0.0-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:b5337c87c4e963f97becb1217965b6b75c6fe5f54c4cf09b9a5ac52fc0bd03d3"}, - {file = "pandas-2.0.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:6ded51f7e3dd9b4f8b87f2ceb7bd1a8df2491f7ee72f7074c6927a512607199e"}, - {file = "pandas-2.0.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:52c858de9e9fc422d25e67e1592a6e6135d7bcf9a19fcaf4d0831a0be496bf21"}, - {file = "pandas-2.0.0-cp310-cp310-win32.whl", hash = "sha256:2d1d138848dd71b37e3cbe7cd952ff84e2ab04d8988972166e18567dcc811245"}, - {file = "pandas-2.0.0-cp310-cp310-win_amd64.whl", hash = "sha256:d08e41d96bc4de6f500afe80936c68fce6099d5a434e2af7c7fd8e7c72a3265d"}, - {file = "pandas-2.0.0-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:24472cfc7ced511ac90608728b88312be56edc8f19b9ed885a7d2e47ffaf69c0"}, - {file = "pandas-2.0.0-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:4ffb14f50c74ee541610668137830bb93e9dfa319b1bef2cedf2814cd5ac9c70"}, - {file = "pandas-2.0.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:c24c7d12d033a372a9daf9ff2c80f8b0af6f98d14664dbb0a4f6a029094928a7"}, - {file = "pandas-2.0.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:8318de0f886e4dcb8f9f36e45a3d6a6c3d1cfdc508354da85e739090f0222991"}, - {file = "pandas-2.0.0-cp311-cp311-win32.whl", hash = "sha256:57c34b79c13249505e850d0377b722961b99140f81dafbe6f19ef10239f6284a"}, - {file = "pandas-2.0.0-cp311-cp311-win_amd64.whl", hash = "sha256:8f987ec26e96a8490909bc5d98c514147236e49830cba7df8690f6087c12bbae"}, - {file = "pandas-2.0.0-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:b3ba8f5dd470d8bfbc4259829589f4a32881151c49e36384d9eb982b35a12020"}, - {file = "pandas-2.0.0-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:fcd471c9d9f60926ab2f15c6c29164112f458acb42280365fbefa542d0c2fc74"}, - {file = "pandas-2.0.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:9253edfd015520ce77a9343eb7097429479c039cd3ebe81d7810ea11b4b24695"}, - {file = "pandas-2.0.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:977326039bd1ded620001a1889e2ed4798460a6bc5a24fbaebb5f07a41c32a55"}, - {file = "pandas-2.0.0-cp38-cp38-win32.whl", hash = "sha256:78425ca12314b23356c28b16765639db10ebb7d8983f705d6759ff7fe41357fa"}, - {file = "pandas-2.0.0-cp38-cp38-win_amd64.whl", hash = "sha256:d93b7fcfd9f3328072b250d6d001dcfeec5d3bb66c1b9c8941e109a46c0c01a8"}, - {file = "pandas-2.0.0-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:425705cee8be54db2504e8dd2a730684790b15e5904b750c367611ede49098ab"}, - {file = "pandas-2.0.0-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:a4f789b7c012a608c08cda4ff0872fd979cb18907a37982abe884e6f529b8793"}, - {file = "pandas-2.0.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:3bb9d840bf15656805f6a3d87eea9dcb7efdf1314a82adcf7f00b820427c5570"}, - {file = "pandas-2.0.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:0778ab54c8f399d83d98ffb674d11ec716449956bc6f6821891ab835848687f2"}, - {file = "pandas-2.0.0-cp39-cp39-win32.whl", hash = "sha256:70db5c278bbec0306d32bf78751ff56b9594c05a5098386f6c8a563659124f91"}, - {file = "pandas-2.0.0-cp39-cp39-win_amd64.whl", hash = "sha256:4f3320bb55f34af4193020158ef8118ee0fb9aec7cc47d2084dbfdd868a0a24f"}, - {file = "pandas-2.0.0.tar.gz", hash = "sha256:cda9789e61b44463c1c4fe17ef755de77bcd13b09ba31c940d20f193d63a5dc8"}, -] - -[package.dependencies] -numpy = [ - {version = ">=1.20.3", markers = "python_version < \"3.10\""}, - {version = ">=1.21.0", markers = "python_version >= \"3.10\""}, -] -python-dateutil = ">=2.8.2" -pytz = ">=2020.1" -tzdata = ">=2022.1" - -[package.extras] -all = ["PyQt5 (>=5.15.1)", "SQLAlchemy (>=1.4.16)", "beautifulsoup4 (>=4.9.3)", "bottleneck (>=1.3.2)", "brotlipy (>=0.7.0)", "fastparquet (>=0.6.3)", "fsspec (>=2021.07.0)", "gcsfs (>=2021.07.0)", "html5lib (>=1.1)", "hypothesis (>=6.34.2)", "jinja2 (>=3.0.0)", "lxml (>=4.6.3)", "matplotlib (>=3.6.1)", "numba (>=0.53.1)", "numexpr (>=2.7.3)", "odfpy (>=1.4.1)", "openpyxl (>=3.0.7)", "pandas-gbq (>=0.15.0)", "psycopg2 (>=2.8.6)", "pyarrow (>=7.0.0)", "pymysql (>=1.0.2)", "pyreadstat (>=1.1.2)", "pytest (>=7.0.0)", "pytest-asyncio (>=0.17.0)", "pytest-xdist (>=2.2.0)", "python-snappy (>=0.6.0)", "pyxlsb (>=1.0.8)", "qtpy (>=2.2.0)", "s3fs (>=2021.08.0)", "scipy (>=1.7.1)", "tables (>=3.6.1)", "tabulate (>=0.8.9)", "xarray (>=0.21.0)", "xlrd (>=2.0.1)", "xlsxwriter (>=1.4.3)", "zstandard (>=0.15.2)"] -aws = ["s3fs (>=2021.08.0)"] -clipboard = ["PyQt5 (>=5.15.1)", "qtpy (>=2.2.0)"] -compression = ["brotlipy (>=0.7.0)", "python-snappy (>=0.6.0)", "zstandard (>=0.15.2)"] -computation = ["scipy (>=1.7.1)", "xarray (>=0.21.0)"] -excel = ["odfpy (>=1.4.1)", "openpyxl (>=3.0.7)", "pyxlsb (>=1.0.8)", "xlrd (>=2.0.1)", "xlsxwriter (>=1.4.3)"] -feather = ["pyarrow (>=7.0.0)"] -fss = ["fsspec (>=2021.07.0)"] -gcp = ["gcsfs (>=2021.07.0)", "pandas-gbq (>=0.15.0)"] -hdf5 = ["tables (>=3.6.1)"] -html = ["beautifulsoup4 (>=4.9.3)", "html5lib (>=1.1)", "lxml (>=4.6.3)"] -mysql = ["SQLAlchemy (>=1.4.16)", "pymysql (>=1.0.2)"] -output-formatting = ["jinja2 (>=3.0.0)", "tabulate (>=0.8.9)"] -parquet = ["pyarrow (>=7.0.0)"] -performance = ["bottleneck (>=1.3.2)", "numba (>=0.53.1)", "numexpr (>=2.7.1)"] -plot = ["matplotlib (>=3.6.1)"] -postgresql = ["SQLAlchemy (>=1.4.16)", "psycopg2 (>=2.8.6)"] -spss = ["pyreadstat (>=1.1.2)"] -sql-other = ["SQLAlchemy (>=1.4.16)"] -test = ["hypothesis (>=6.34.2)", "pytest (>=7.0.0)", "pytest-asyncio (>=0.17.0)", "pytest-xdist (>=2.2.0)"] -xml = ["lxml (>=4.6.3)"] - -[[package]] -name = "pandocfilters" -version = "1.5.0" -description = "Utilities for writing pandoc filters in python" -category = "dev" -optional = false -python-versions = ">=2.7, !=3.0.*, !=3.1.*, !=3.2.*, !=3.3.*" -files = [ - {file = "pandocfilters-1.5.0-py2.py3-none-any.whl", hash = "sha256:33aae3f25fd1a026079f5d27bdd52496f0e0803b3469282162bafdcbdf6ef14f"}, - {file = "pandocfilters-1.5.0.tar.gz", hash = "sha256:0b679503337d233b4339a817bfc8c50064e2eff681314376a47cb582305a7a38"}, -] - -[[package]] -name = "pillow" -version = "9.5.0" -description = "Python Imaging Library (Fork)" -category = "main" -optional = false -python-versions = ">=3.7" -files = [ - {file = "Pillow-9.5.0-cp310-cp310-macosx_10_10_x86_64.whl", hash = "sha256:ace6ca218308447b9077c14ea4ef381ba0b67ee78d64046b3f19cf4e1139ad16"}, - {file = "Pillow-9.5.0-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:d3d403753c9d5adc04d4694d35cf0391f0f3d57c8e0030aac09d7678fa8030aa"}, - {file = "Pillow-9.5.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:5ba1b81ee69573fe7124881762bb4cd2e4b6ed9dd28c9c60a632902fe8db8b38"}, - {file = "Pillow-9.5.0-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:fe7e1c262d3392afcf5071df9afa574544f28eac825284596ac6db56e6d11062"}, - {file = "Pillow-9.5.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:8f36397bf3f7d7c6a3abdea815ecf6fd14e7fcd4418ab24bae01008d8d8ca15e"}, - {file = "Pillow-9.5.0-cp310-cp310-manylinux_2_28_aarch64.whl", hash = "sha256:252a03f1bdddce077eff2354c3861bf437c892fb1832f75ce813ee94347aa9b5"}, - {file = "Pillow-9.5.0-cp310-cp310-manylinux_2_28_x86_64.whl", hash = "sha256:85ec677246533e27770b0de5cf0f9d6e4ec0c212a1f89dfc941b64b21226009d"}, - {file = "Pillow-9.5.0-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:b416f03d37d27290cb93597335a2f85ed446731200705b22bb927405320de903"}, - {file = "Pillow-9.5.0-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:1781a624c229cb35a2ac31cc4a77e28cafc8900733a864870c49bfeedacd106a"}, - {file = "Pillow-9.5.0-cp310-cp310-win32.whl", hash = "sha256:8507eda3cd0608a1f94f58c64817e83ec12fa93a9436938b191b80d9e4c0fc44"}, - {file = "Pillow-9.5.0-cp310-cp310-win_amd64.whl", hash = "sha256:d3c6b54e304c60c4181da1c9dadf83e4a54fd266a99c70ba646a9baa626819eb"}, - {file = "Pillow-9.5.0-cp311-cp311-macosx_10_10_x86_64.whl", hash = "sha256:7ec6f6ce99dab90b52da21cf0dc519e21095e332ff3b399a357c187b1a5eee32"}, - {file = "Pillow-9.5.0-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:560737e70cb9c6255d6dcba3de6578a9e2ec4b573659943a5e7e4af13f298f5c"}, - {file = "Pillow-9.5.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:96e88745a55b88a7c64fa49bceff363a1a27d9a64e04019c2281049444a571e3"}, - {file = "Pillow-9.5.0-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:d9c206c29b46cfd343ea7cdfe1232443072bbb270d6a46f59c259460db76779a"}, - {file = "Pillow-9.5.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:cfcc2c53c06f2ccb8976fb5c71d448bdd0a07d26d8e07e321c103416444c7ad1"}, - {file = "Pillow-9.5.0-cp311-cp311-manylinux_2_28_aarch64.whl", hash = "sha256:a0f9bb6c80e6efcde93ffc51256d5cfb2155ff8f78292f074f60f9e70b942d99"}, - {file = "Pillow-9.5.0-cp311-cp311-manylinux_2_28_x86_64.whl", hash = "sha256:8d935f924bbab8f0a9a28404422da8af4904e36d5c33fc6f677e4c4485515625"}, - {file = "Pillow-9.5.0-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:fed1e1cf6a42577953abbe8e6cf2fe2f566daebde7c34724ec8803c4c0cda579"}, - {file = "Pillow-9.5.0-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:c1170d6b195555644f0616fd6ed929dfcf6333b8675fcca044ae5ab110ded296"}, - {file = "Pillow-9.5.0-cp311-cp311-win32.whl", hash = "sha256:54f7102ad31a3de5666827526e248c3530b3a33539dbda27c6843d19d72644ec"}, - {file = "Pillow-9.5.0-cp311-cp311-win_amd64.whl", hash = "sha256:cfa4561277f677ecf651e2b22dc43e8f5368b74a25a8f7d1d4a3a243e573f2d4"}, - {file = "Pillow-9.5.0-cp311-cp311-win_arm64.whl", hash = "sha256:965e4a05ef364e7b973dd17fc765f42233415974d773e82144c9bbaaaea5d089"}, - {file = "Pillow-9.5.0-cp312-cp312-win32.whl", hash = "sha256:22baf0c3cf0c7f26e82d6e1adf118027afb325e703922c8dfc1d5d0156bb2eeb"}, - {file = "Pillow-9.5.0-cp312-cp312-win_amd64.whl", hash = "sha256:432b975c009cf649420615388561c0ce7cc31ce9b2e374db659ee4f7d57a1f8b"}, - {file = "Pillow-9.5.0-cp37-cp37m-macosx_10_10_x86_64.whl", hash = "sha256:5d4ebf8e1db4441a55c509c4baa7a0587a0210f7cd25fcfe74dbbce7a4bd1906"}, - {file = "Pillow-9.5.0-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:375f6e5ee9620a271acb6820b3d1e94ffa8e741c0601db4c0c4d3cb0a9c224bf"}, - {file = "Pillow-9.5.0-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:99eb6cafb6ba90e436684e08dad8be1637efb71c4f2180ee6b8f940739406e78"}, - {file = "Pillow-9.5.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:2dfaaf10b6172697b9bceb9a3bd7b951819d1ca339a5ef294d1f1ac6d7f63270"}, - {file = "Pillow-9.5.0-cp37-cp37m-manylinux_2_28_aarch64.whl", hash = "sha256:763782b2e03e45e2c77d7779875f4432e25121ef002a41829d8868700d119392"}, - {file = "Pillow-9.5.0-cp37-cp37m-manylinux_2_28_x86_64.whl", hash = "sha256:35f6e77122a0c0762268216315bf239cf52b88865bba522999dc38f1c52b9b47"}, - {file = "Pillow-9.5.0-cp37-cp37m-win32.whl", hash = "sha256:aca1c196f407ec7cf04dcbb15d19a43c507a81f7ffc45b690899d6a76ac9fda7"}, - {file = "Pillow-9.5.0-cp37-cp37m-win_amd64.whl", hash = "sha256:322724c0032af6692456cd6ed554bb85f8149214d97398bb80613b04e33769f6"}, - {file = "Pillow-9.5.0-cp38-cp38-macosx_10_10_x86_64.whl", hash = "sha256:a0aa9417994d91301056f3d0038af1199eb7adc86e646a36b9e050b06f526597"}, - {file = "Pillow-9.5.0-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:f8286396b351785801a976b1e85ea88e937712ee2c3ac653710a4a57a8da5d9c"}, - {file = "Pillow-9.5.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:c830a02caeb789633863b466b9de10c015bded434deb3ec87c768e53752ad22a"}, - {file = "Pillow-9.5.0-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:fbd359831c1657d69bb81f0db962905ee05e5e9451913b18b831febfe0519082"}, - {file = "Pillow-9.5.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:f8fc330c3370a81bbf3f88557097d1ea26cd8b019d6433aa59f71195f5ddebbf"}, - {file = "Pillow-9.5.0-cp38-cp38-manylinux_2_28_aarch64.whl", hash = "sha256:7002d0797a3e4193c7cdee3198d7c14f92c0836d6b4a3f3046a64bd1ce8df2bf"}, - {file = "Pillow-9.5.0-cp38-cp38-manylinux_2_28_x86_64.whl", hash = "sha256:229e2c79c00e85989a34b5981a2b67aa079fd08c903f0aaead522a1d68d79e51"}, - {file = "Pillow-9.5.0-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:9adf58f5d64e474bed00d69bcd86ec4bcaa4123bfa70a65ce72e424bfb88ed96"}, - {file = "Pillow-9.5.0-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:662da1f3f89a302cc22faa9f14a262c2e3951f9dbc9617609a47521c69dd9f8f"}, - {file = "Pillow-9.5.0-cp38-cp38-win32.whl", hash = "sha256:6608ff3bf781eee0cd14d0901a2b9cc3d3834516532e3bd673a0a204dc8615fc"}, - {file = "Pillow-9.5.0-cp38-cp38-win_amd64.whl", hash = "sha256:e49eb4e95ff6fd7c0c402508894b1ef0e01b99a44320ba7d8ecbabefddcc5569"}, - {file = "Pillow-9.5.0-cp39-cp39-macosx_10_10_x86_64.whl", hash = "sha256:482877592e927fd263028c105b36272398e3e1be3269efda09f6ba21fd83ec66"}, - {file = "Pillow-9.5.0-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:3ded42b9ad70e5f1754fb7c2e2d6465a9c842e41d178f262e08b8c85ed8a1d8e"}, - {file = "Pillow-9.5.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:c446d2245ba29820d405315083d55299a796695d747efceb5717a8b450324115"}, - {file = "Pillow-9.5.0-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:8aca1152d93dcc27dc55395604dcfc55bed5f25ef4c98716a928bacba90d33a3"}, - {file = "Pillow-9.5.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:608488bdcbdb4ba7837461442b90ea6f3079397ddc968c31265c1e056964f1ef"}, - {file = "Pillow-9.5.0-cp39-cp39-manylinux_2_28_aarch64.whl", hash = "sha256:60037a8db8750e474af7ffc9faa9b5859e6c6d0a50e55c45576bf28be7419705"}, - {file = "Pillow-9.5.0-cp39-cp39-manylinux_2_28_x86_64.whl", hash = "sha256:07999f5834bdc404c442146942a2ecadd1cb6292f5229f4ed3b31e0a108746b1"}, - {file = "Pillow-9.5.0-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:a127ae76092974abfbfa38ca2d12cbeddcdeac0fb71f9627cc1135bedaf9d51a"}, - {file = "Pillow-9.5.0-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:489f8389261e5ed43ac8ff7b453162af39c3e8abd730af8363587ba64bb2e865"}, - {file = "Pillow-9.5.0-cp39-cp39-win32.whl", hash = "sha256:9b1af95c3a967bf1da94f253e56b6286b50af23392a886720f563c547e48e964"}, - {file = "Pillow-9.5.0-cp39-cp39-win_amd64.whl", hash = "sha256:77165c4a5e7d5a284f10a6efaa39a0ae8ba839da344f20b111d62cc932fa4e5d"}, - {file = "Pillow-9.5.0-pp38-pypy38_pp73-macosx_10_10_x86_64.whl", hash = "sha256:833b86a98e0ede388fa29363159c9b1a294b0905b5128baf01db683672f230f5"}, - {file = "Pillow-9.5.0-pp38-pypy38_pp73-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:aaf305d6d40bd9632198c766fb64f0c1a83ca5b667f16c1e79e1661ab5060140"}, - {file = "Pillow-9.5.0-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:0852ddb76d85f127c135b6dd1f0bb88dbb9ee990d2cd9aa9e28526c93e794fba"}, - {file = "Pillow-9.5.0-pp38-pypy38_pp73-manylinux_2_28_x86_64.whl", hash = "sha256:91ec6fe47b5eb5a9968c79ad9ed78c342b1f97a091677ba0e012701add857829"}, - {file = "Pillow-9.5.0-pp38-pypy38_pp73-win_amd64.whl", hash = "sha256:cb841572862f629b99725ebaec3287fc6d275be9b14443ea746c1dd325053cbd"}, - {file = "Pillow-9.5.0-pp39-pypy39_pp73-macosx_10_10_x86_64.whl", hash = "sha256:c380b27d041209b849ed246b111b7c166ba36d7933ec6e41175fd15ab9eb1572"}, - {file = "Pillow-9.5.0-pp39-pypy39_pp73-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:7c9af5a3b406a50e313467e3565fc99929717f780164fe6fbb7704edba0cebbe"}, - {file = "Pillow-9.5.0-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:5671583eab84af046a397d6d0ba25343c00cd50bce03787948e0fff01d4fd9b1"}, - {file = "Pillow-9.5.0-pp39-pypy39_pp73-manylinux_2_28_x86_64.whl", hash = "sha256:84a6f19ce086c1bf894644b43cd129702f781ba5751ca8572f08aa40ef0ab7b7"}, - {file = "Pillow-9.5.0-pp39-pypy39_pp73-win_amd64.whl", hash = "sha256:1e7723bd90ef94eda669a3c2c19d549874dd5badaeefabefd26053304abe5799"}, - {file = "Pillow-9.5.0.tar.gz", hash = "sha256:bf548479d336726d7a0eceb6e767e179fbde37833ae42794602631a070d630f1"}, -] - -[package.extras] -docs = ["furo", "olefile", "sphinx (>=2.4)", "sphinx-copybutton", "sphinx-inline-tabs", "sphinx-removed-in", "sphinxext-opengraph"] -tests = ["check-manifest", "coverage", "defusedxml", "markdown2", "olefile", "packaging", "pyroma", "pytest", "pytest-cov", "pytest-timeout"] - -[[package]] -name = "pkgutil-resolve-name" -version = "1.3.10" -description = "Resolve a name to an object." -category = "dev" -optional = false -python-versions = ">=3.6" -files = [ - {file = "pkgutil_resolve_name-1.3.10-py3-none-any.whl", hash = "sha256:ca27cc078d25c5ad71a9de0a7a330146c4e014c2462d9af19c6b828280649c5e"}, - {file = "pkgutil_resolve_name-1.3.10.tar.gz", hash = "sha256:357d6c9e6a755653cfd78893817c0853af365dd51ec97f3d358a819373bbd174"}, -] - -[[package]] -name = "platformdirs" -version = "3.2.0" -description = "A small Python package for determining appropriate platform-specific dirs, e.g. a \"user data dir\"." -category = "dev" -optional = false -python-versions = ">=3.7" -files = [ - {file = "platformdirs-3.2.0-py3-none-any.whl", hash = "sha256:ebe11c0d7a805086e99506aa331612429a72ca7cd52a1f0d277dc4adc20cb10e"}, - {file = "platformdirs-3.2.0.tar.gz", hash = "sha256:d5b638ca397f25f979350ff789db335903d7ea010ab28903f57b27e1b16c2b08"}, -] - -[package.extras] -docs = ["furo (>=2022.12.7)", "proselint (>=0.13)", "sphinx (>=6.1.3)", "sphinx-autodoc-typehints (>=1.22,!=1.23.4)"] -test = ["appdirs (==1.4.4)", "covdefaults (>=2.3)", "pytest (>=7.2.2)", "pytest-cov (>=4)", "pytest-mock (>=3.10)"] - -[[package]] -name = "pre-commit" -version = "3.2.2" -description = "A framework for managing and maintaining multi-language pre-commit hooks." -category = "dev" -optional = false -python-versions = ">=3.8" -files = [ - {file = "pre_commit-3.2.2-py2.py3-none-any.whl", hash = "sha256:0b4210aea813fe81144e87c5a291f09ea66f199f367fa1df41b55e1d26e1e2b4"}, - {file = "pre_commit-3.2.2.tar.gz", hash = "sha256:5b808fcbda4afbccf6d6633a56663fed35b6c2bc08096fd3d47ce197ac351d9d"}, -] - -[package.dependencies] -cfgv = ">=2.0.0" -identify = ">=1.0.0" -nodeenv = ">=0.11.1" -pyyaml = ">=5.1" -virtualenv = ">=20.10.0" - -[[package]] -name = "pycparser" -version = "2.21" -description = "C parser in Python" -category = "dev" -optional = false -python-versions = ">=2.7, !=3.0.*, !=3.1.*, !=3.2.*, !=3.3.*" -files = [ - {file = "pycparser-2.21-py2.py3-none-any.whl", hash = "sha256:8ee45429555515e1f6b185e78100aea234072576aa43ab53aefcae078162fca9"}, - {file = "pycparser-2.21.tar.gz", hash = "sha256:e644fdec12f7872f86c58ff790da456218b10f863970249516d60a5eaca77206"}, -] - -[[package]] -name = "pygments" -version = "2.14.0" -description = "Pygments is a syntax highlighting package written in Python." -category = "dev" -optional = false -python-versions = ">=3.6" -files = [ - {file = "Pygments-2.14.0-py3-none-any.whl", hash = "sha256:fa7bd7bd2771287c0de303af8bfdfc731f51bd2c6a47ab69d117138893b82717"}, - {file = "Pygments-2.14.0.tar.gz", hash = "sha256:b3ed06a9e8ac9a9aae5a6f5dbe78a8a58655d17b43b93c078f094ddc476ae297"}, -] - -[package.extras] -plugins = ["importlib-metadata"] - -[[package]] -name = "pymdown-extensions" -version = "9.10" -description = "Extension pack for Python Markdown." -category = "dev" -optional = false -python-versions = ">=3.7" -files = [ - {file = "pymdown_extensions-9.10-py3-none-any.whl", hash = "sha256:31eaa76ce6f96aabfcea98787c2fff2c5c0611b20a53a94213970cfbf05f02b8"}, - {file = "pymdown_extensions-9.10.tar.gz", hash = "sha256:562c38eee4ce3f101ce631b804bfc2177a8a76c7e4dc908871fb6741a90257a7"}, -] - -[package.dependencies] -markdown = ">=3.2" -pyyaml = "*" - -[[package]] -name = "pyparsing" -version = "3.0.9" -description = "pyparsing module - Classes and methods to define and execute parsing grammars" -category = "main" -optional = false -python-versions = ">=3.6.8" -files = [ - {file = "pyparsing-3.0.9-py3-none-any.whl", hash = "sha256:5026bae9a10eeaefb61dab2f09052b9f4307d44aee4eda64b309723d8d206bbc"}, - {file = "pyparsing-3.0.9.tar.gz", hash = "sha256:2b020ecf7d21b687f219b71ecad3631f644a47f01403fa1d1036b0c6416d70fb"}, -] - -[package.extras] -diagrams = ["jinja2", "railroad-diagrams"] - -[[package]] -name = "pyrsistent" -version = "0.19.3" -description = "Persistent/Functional/Immutable data structures" -category = "dev" -optional = false -python-versions = ">=3.7" -files = [ - {file = "pyrsistent-0.19.3-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:20460ac0ea439a3e79caa1dbd560344b64ed75e85d8703943e0b66c2a6150e4a"}, - {file = "pyrsistent-0.19.3-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:4c18264cb84b5e68e7085a43723f9e4c1fd1d935ab240ce02c0324a8e01ccb64"}, - {file = "pyrsistent-0.19.3-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:4b774f9288dda8d425adb6544e5903f1fb6c273ab3128a355c6b972b7df39dcf"}, - {file = "pyrsistent-0.19.3-cp310-cp310-win32.whl", hash = "sha256:5a474fb80f5e0d6c9394d8db0fc19e90fa540b82ee52dba7d246a7791712f74a"}, - {file = "pyrsistent-0.19.3-cp310-cp310-win_amd64.whl", hash = "sha256:49c32f216c17148695ca0e02a5c521e28a4ee6c5089f97e34fe24163113722da"}, - {file = "pyrsistent-0.19.3-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:f0774bf48631f3a20471dd7c5989657b639fd2d285b861237ea9e82c36a415a9"}, - {file = "pyrsistent-0.19.3-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:3ab2204234c0ecd8b9368dbd6a53e83c3d4f3cab10ecaf6d0e772f456c442393"}, - {file = "pyrsistent-0.19.3-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:e42296a09e83028b3476f7073fcb69ffebac0e66dbbfd1bd847d61f74db30f19"}, - {file = "pyrsistent-0.19.3-cp311-cp311-win32.whl", hash = "sha256:64220c429e42a7150f4bfd280f6f4bb2850f95956bde93c6fda1b70507af6ef3"}, - {file = "pyrsistent-0.19.3-cp311-cp311-win_amd64.whl", hash = "sha256:016ad1afadf318eb7911baa24b049909f7f3bb2c5b1ed7b6a8f21db21ea3faa8"}, - {file = "pyrsistent-0.19.3-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:c4db1bd596fefd66b296a3d5d943c94f4fac5bcd13e99bffe2ba6a759d959a28"}, - {file = "pyrsistent-0.19.3-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:aeda827381f5e5d65cced3024126529ddc4289d944f75e090572c77ceb19adbf"}, - {file = "pyrsistent-0.19.3-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:42ac0b2f44607eb92ae88609eda931a4f0dfa03038c44c772e07f43e738bcac9"}, - {file = "pyrsistent-0.19.3-cp37-cp37m-win32.whl", hash = "sha256:e8f2b814a3dc6225964fa03d8582c6e0b6650d68a232df41e3cc1b66a5d2f8d1"}, - {file = "pyrsistent-0.19.3-cp37-cp37m-win_amd64.whl", hash = "sha256:c9bb60a40a0ab9aba40a59f68214eed5a29c6274c83b2cc206a359c4a89fa41b"}, - {file = "pyrsistent-0.19.3-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:a2471f3f8693101975b1ff85ffd19bb7ca7dd7c38f8a81701f67d6b4f97b87d8"}, - {file = "pyrsistent-0.19.3-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:cc5d149f31706762c1f8bda2e8c4f8fead6e80312e3692619a75301d3dbb819a"}, - {file = "pyrsistent-0.19.3-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:3311cb4237a341aa52ab8448c27e3a9931e2ee09561ad150ba94e4cfd3fc888c"}, - {file = "pyrsistent-0.19.3-cp38-cp38-win32.whl", hash = "sha256:f0e7c4b2f77593871e918be000b96c8107da48444d57005b6a6bc61fb4331b2c"}, - {file = "pyrsistent-0.19.3-cp38-cp38-win_amd64.whl", hash = "sha256:c147257a92374fde8498491f53ffa8f4822cd70c0d85037e09028e478cababb7"}, - {file = "pyrsistent-0.19.3-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:b735e538f74ec31378f5a1e3886a26d2ca6351106b4dfde376a26fc32a044edc"}, - {file = "pyrsistent-0.19.3-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:99abb85579e2165bd8522f0c0138864da97847875ecbd45f3e7e2af569bfc6f2"}, - {file = "pyrsistent-0.19.3-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:3a8cb235fa6d3fd7aae6a4f1429bbb1fec1577d978098da1252f0489937786f3"}, - {file = "pyrsistent-0.19.3-cp39-cp39-win32.whl", hash = "sha256:c74bed51f9b41c48366a286395c67f4e894374306b197e62810e0fdaf2364da2"}, - {file = "pyrsistent-0.19.3-cp39-cp39-win_amd64.whl", hash = "sha256:878433581fc23e906d947a6814336eee031a00e6defba224234169ae3d3d6a98"}, - {file = "pyrsistent-0.19.3-py3-none-any.whl", hash = "sha256:ccf0d6bd208f8111179f0c26fdf84ed7c3891982f2edaeae7422575f47e66b64"}, - {file = "pyrsistent-0.19.3.tar.gz", hash = "sha256:1a2994773706bbb4995c31a97bc94f1418314923bd1048c6d964837040376440"}, -] - -[[package]] -name = "python-dateutil" -version = "2.8.2" -description = "Extensions to the standard Python datetime module" -category = "main" -optional = false -python-versions = "!=3.0.*,!=3.1.*,!=3.2.*,>=2.7" -files = [ - {file = "python-dateutil-2.8.2.tar.gz", hash = "sha256:0123cacc1627ae19ddf3c27a5de5bd67ee4586fbdd6440d9748f8abb483d3e86"}, - {file = "python_dateutil-2.8.2-py2.py3-none-any.whl", hash = "sha256:961d03dc3453ebbc59dbdea9e4e11c5651520a876d0f4db161e8674aae935da9"}, -] - -[package.dependencies] -six = ">=1.5" - -[[package]] -name = "python-slugify" -version = "8.0.1" -description = "A Python slugify application that also handles Unicode" -category = "main" -optional = false -python-versions = ">=3.7" -files = [ - {file = "python-slugify-8.0.1.tar.gz", hash = "sha256:ce0d46ddb668b3be82f4ed5e503dbc33dd815d83e2eb6824211310d3fb172a27"}, - {file = "python_slugify-8.0.1-py2.py3-none-any.whl", hash = "sha256:70ca6ea68fe63ecc8fa4fcf00ae651fc8a5d02d93dcd12ae6d4fc7ca46c4d395"}, -] - -[package.dependencies] -text-unidecode = ">=1.3" - -[package.extras] -unidecode = ["Unidecode (>=1.1.1)"] - -[[package]] -name = "pytz" -version = "2023.3" -description = "World timezone definitions, modern and historical" -category = "main" -optional = false -python-versions = "*" -files = [ - {file = "pytz-2023.3-py2.py3-none-any.whl", hash = "sha256:a151b3abb88eda1d4e34a9814df37de2a80e301e68ba0fd856fb9b46bfbbbffb"}, - {file = "pytz-2023.3.tar.gz", hash = "sha256:1d8ce29db189191fb55338ee6d0387d82ab59f3d00eac103412d64e0ebd0c588"}, -] - -[[package]] -name = "pywin32" -version = "306" -description = "Python for Window Extensions" -category = "dev" -optional = false -python-versions = "*" -files = [ - {file = "pywin32-306-cp310-cp310-win32.whl", hash = "sha256:06d3420a5155ba65f0b72f2699b5bacf3109f36acbe8923765c22938a69dfc8d"}, - {file = "pywin32-306-cp310-cp310-win_amd64.whl", hash = "sha256:84f4471dbca1887ea3803d8848a1616429ac94a4a8d05f4bc9c5dcfd42ca99c8"}, - {file = "pywin32-306-cp311-cp311-win32.whl", hash = "sha256:e65028133d15b64d2ed8f06dd9fbc268352478d4f9289e69c190ecd6818b6407"}, - {file = "pywin32-306-cp311-cp311-win_amd64.whl", hash = "sha256:a7639f51c184c0272e93f244eb24dafca9b1855707d94c192d4a0b4c01e1100e"}, - {file = "pywin32-306-cp311-cp311-win_arm64.whl", hash = "sha256:70dba0c913d19f942a2db25217d9a1b726c278f483a919f1abfed79c9cf64d3a"}, - {file = "pywin32-306-cp312-cp312-win32.whl", hash = "sha256:383229d515657f4e3ed1343da8be101000562bf514591ff383ae940cad65458b"}, - {file = "pywin32-306-cp312-cp312-win_amd64.whl", hash = "sha256:37257794c1ad39ee9be652da0462dc2e394c8159dfd913a8a4e8eb6fd346da0e"}, - {file = "pywin32-306-cp312-cp312-win_arm64.whl", hash = "sha256:5821ec52f6d321aa59e2db7e0a35b997de60c201943557d108af9d4ae1ec7040"}, - {file = "pywin32-306-cp37-cp37m-win32.whl", hash = "sha256:1c73ea9a0d2283d889001998059f5eaaba3b6238f767c9cf2833b13e6a685f65"}, - {file = "pywin32-306-cp37-cp37m-win_amd64.whl", hash = "sha256:72c5f621542d7bdd4fdb716227be0dd3f8565c11b280be6315b06ace35487d36"}, - {file = "pywin32-306-cp38-cp38-win32.whl", hash = "sha256:e4c092e2589b5cf0d365849e73e02c391c1349958c5ac3e9d5ccb9a28e017b3a"}, - {file = "pywin32-306-cp38-cp38-win_amd64.whl", hash = "sha256:e8ac1ae3601bee6ca9f7cb4b5363bf1c0badb935ef243c4733ff9a393b1690c0"}, - {file = "pywin32-306-cp39-cp39-win32.whl", hash = "sha256:e25fd5b485b55ac9c057f67d94bc203f3f6595078d1fb3b458c9c28b7153a802"}, - {file = "pywin32-306-cp39-cp39-win_amd64.whl", hash = "sha256:39b61c15272833b5c329a2989999dcae836b1eed650252ab1b7bfbe1d59f30f4"}, -] - -[[package]] -name = "pyyaml" -version = "6.0" -description = "YAML parser and emitter for Python" -category = "main" -optional = false -python-versions = ">=3.6" -files = [ - {file = "PyYAML-6.0-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:d4db7c7aef085872ef65a8fd7d6d09a14ae91f691dec3e87ee5ee0539d516f53"}, - {file = "PyYAML-6.0-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:9df7ed3b3d2e0ecfe09e14741b857df43adb5a3ddadc919a2d94fbdf78fea53c"}, - {file = "PyYAML-6.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:77f396e6ef4c73fdc33a9157446466f1cff553d979bd00ecb64385760c6babdc"}, - {file = "PyYAML-6.0-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:a80a78046a72361de73f8f395f1f1e49f956c6be882eed58505a15f3e430962b"}, - {file = "PyYAML-6.0-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:f84fbc98b019fef2ee9a1cb3ce93e3187a6df0b2538a651bfb890254ba9f90b5"}, - {file = "PyYAML-6.0-cp310-cp310-win32.whl", hash = "sha256:2cd5df3de48857ed0544b34e2d40e9fac445930039f3cfe4bcc592a1f836d513"}, - {file = "PyYAML-6.0-cp310-cp310-win_amd64.whl", hash = "sha256:daf496c58a8c52083df09b80c860005194014c3698698d1a57cbcfa182142a3a"}, - {file = "PyYAML-6.0-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:d4b0ba9512519522b118090257be113b9468d804b19d63c71dbcf4a48fa32358"}, - {file = "PyYAML-6.0-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:81957921f441d50af23654aa6c5e5eaf9b06aba7f0a19c18a538dc7ef291c5a1"}, - {file = "PyYAML-6.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:afa17f5bc4d1b10afd4466fd3a44dc0e245382deca5b3c353d8b757f9e3ecb8d"}, - {file = "PyYAML-6.0-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:dbad0e9d368bb989f4515da330b88a057617d16b6a8245084f1b05400f24609f"}, - {file = "PyYAML-6.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:432557aa2c09802be39460360ddffd48156e30721f5e8d917f01d31694216782"}, - {file = "PyYAML-6.0-cp311-cp311-win32.whl", hash = "sha256:bfaef573a63ba8923503d27530362590ff4f576c626d86a9fed95822a8255fd7"}, - {file = "PyYAML-6.0-cp311-cp311-win_amd64.whl", hash = "sha256:01b45c0191e6d66c470b6cf1b9531a771a83c1c4208272ead47a3ae4f2f603bf"}, - {file = "PyYAML-6.0-cp36-cp36m-macosx_10_9_x86_64.whl", hash = "sha256:897b80890765f037df3403d22bab41627ca8811ae55e9a722fd0392850ec4d86"}, - {file = "PyYAML-6.0-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:50602afada6d6cbfad699b0c7bb50d5ccffa7e46a3d738092afddc1f9758427f"}, - {file = "PyYAML-6.0-cp36-cp36m-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:48c346915c114f5fdb3ead70312bd042a953a8ce5c7106d5bfb1a5254e47da92"}, - {file = "PyYAML-6.0-cp36-cp36m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:98c4d36e99714e55cfbaaee6dd5badbc9a1ec339ebfc3b1f52e293aee6bb71a4"}, - {file = "PyYAML-6.0-cp36-cp36m-win32.whl", hash = "sha256:0283c35a6a9fbf047493e3a0ce8d79ef5030852c51e9d911a27badfde0605293"}, - {file = "PyYAML-6.0-cp36-cp36m-win_amd64.whl", hash = "sha256:07751360502caac1c067a8132d150cf3d61339af5691fe9e87803040dbc5db57"}, - {file = "PyYAML-6.0-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:819b3830a1543db06c4d4b865e70ded25be52a2e0631ccd2f6a47a2822f2fd7c"}, - {file = "PyYAML-6.0-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:473f9edb243cb1935ab5a084eb238d842fb8f404ed2193a915d1784b5a6b5fc0"}, - {file = "PyYAML-6.0-cp37-cp37m-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:0ce82d761c532fe4ec3f87fc45688bdd3a4c1dc5e0b4a19814b9009a29baefd4"}, - {file = "PyYAML-6.0-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:231710d57adfd809ef5d34183b8ed1eeae3f76459c18fb4a0b373ad56bedcdd9"}, - {file = "PyYAML-6.0-cp37-cp37m-win32.whl", hash = "sha256:c5687b8d43cf58545ade1fe3e055f70eac7a5a1a0bf42824308d868289a95737"}, - {file = "PyYAML-6.0-cp37-cp37m-win_amd64.whl", hash = "sha256:d15a181d1ecd0d4270dc32edb46f7cb7733c7c508857278d3d378d14d606db2d"}, - {file = "PyYAML-6.0-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:0b4624f379dab24d3725ffde76559cff63d9ec94e1736b556dacdfebe5ab6d4b"}, - {file = "PyYAML-6.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:213c60cd50106436cc818accf5baa1aba61c0189ff610f64f4a3e8c6726218ba"}, - {file = "PyYAML-6.0-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:9fa600030013c4de8165339db93d182b9431076eb98eb40ee068700c9c813e34"}, - {file = "PyYAML-6.0-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:277a0ef2981ca40581a47093e9e2d13b3f1fbbeffae064c1d21bfceba2030287"}, - {file = "PyYAML-6.0-cp38-cp38-win32.whl", hash = "sha256:d4eccecf9adf6fbcc6861a38015c2a64f38b9d94838ac1810a9023a0609e1b78"}, - {file = "PyYAML-6.0-cp38-cp38-win_amd64.whl", hash = "sha256:1e4747bc279b4f613a09eb64bba2ba602d8a6664c6ce6396a4d0cd413a50ce07"}, - {file = "PyYAML-6.0-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:055d937d65826939cb044fc8c9b08889e8c743fdc6a32b33e2390f66013e449b"}, - {file = "PyYAML-6.0-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:e61ceaab6f49fb8bdfaa0f92c4b57bcfbea54c09277b1b4f7ac376bfb7a7c174"}, - {file = "PyYAML-6.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:d67d839ede4ed1b28a4e8909735fc992a923cdb84e618544973d7dfc71540803"}, - {file = "PyYAML-6.0-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:cba8c411ef271aa037d7357a2bc8f9ee8b58b9965831d9e51baf703280dc73d3"}, - {file = "PyYAML-6.0-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:40527857252b61eacd1d9af500c3337ba8deb8fc298940291486c465c8b46ec0"}, - {file = "PyYAML-6.0-cp39-cp39-win32.whl", hash = "sha256:b5b9eccad747aabaaffbc6064800670f0c297e52c12754eb1d976c57e4f74dcb"}, - {file = "PyYAML-6.0-cp39-cp39-win_amd64.whl", hash = "sha256:b3d267842bf12586ba6c734f89d1f5b871df0273157918b0ccefa29deb05c21c"}, - {file = "PyYAML-6.0.tar.gz", hash = "sha256:68fb519c14306fec9720a2a5b45bc9f0c8d1b9c72adf45c37baedfcd949c35a2"}, -] - -[[package]] -name = "pyyaml-env-tag" -version = "0.1" -description = "A custom YAML tag for referencing environment variables in YAML files. " -category = "main" -optional = false -python-versions = ">=3.6" -files = [ - {file = "pyyaml_env_tag-0.1-py3-none-any.whl", hash = "sha256:af31106dec8a4d68c60207c1886031cbf839b68aa7abccdb19868200532c2069"}, - {file = "pyyaml_env_tag-0.1.tar.gz", hash = "sha256:70092675bda14fdec33b31ba77e7543de9ddc88f2e5b99160396572d11525bdb"}, -] - -[package.dependencies] -pyyaml = "*" - -[[package]] -name = "pyzmq" -version = "25.0.2" -description = "Python bindings for 0MQ" -category = "dev" -optional = false -python-versions = ">=3.6" -files = [ - {file = "pyzmq-25.0.2-cp310-cp310-macosx_10_15_universal2.whl", hash = "sha256:ac178e666c097c8d3deb5097b58cd1316092fc43e8ef5b5fdb259b51da7e7315"}, - {file = "pyzmq-25.0.2-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:659e62e1cbb063151c52f5b01a38e1df6b54feccfa3e2509d44c35ca6d7962ee"}, - {file = "pyzmq-25.0.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:8280ada89010735a12b968ec3ea9a468ac2e04fddcc1cede59cb7f5178783b9c"}, - {file = "pyzmq-25.0.2-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:a9b5eeb5278a8a636bb0abdd9ff5076bcbb836cd2302565df53ff1fa7d106d54"}, - {file = "pyzmq-25.0.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:9a2e5fe42dfe6b73ca120b97ac9f34bfa8414feb15e00e37415dbd51cf227ef6"}, - {file = "pyzmq-25.0.2-cp310-cp310-manylinux_2_28_x86_64.whl", hash = "sha256:827bf60e749e78acb408a6c5af6688efbc9993e44ecc792b036ec2f4b4acf485"}, - {file = "pyzmq-25.0.2-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:7b504ae43d37e282301da586529e2ded8b36d4ee2cd5e6db4386724ddeaa6bbc"}, - {file = "pyzmq-25.0.2-cp310-cp310-musllinux_1_1_i686.whl", hash = "sha256:cb1f69a0a2a2b1aae8412979dd6293cc6bcddd4439bf07e4758d864ddb112354"}, - {file = "pyzmq-25.0.2-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:2b9c9cc965cdf28381e36da525dcb89fc1571d9c54800fdcd73e3f73a2fc29bd"}, - {file = "pyzmq-25.0.2-cp310-cp310-win32.whl", hash = "sha256:24abbfdbb75ac5039205e72d6c75f10fc39d925f2df8ff21ebc74179488ebfca"}, - {file = "pyzmq-25.0.2-cp310-cp310-win_amd64.whl", hash = "sha256:6a821a506822fac55d2df2085a52530f68ab15ceed12d63539adc32bd4410f6e"}, - {file = "pyzmq-25.0.2-cp311-cp311-macosx_10_15_universal2.whl", hash = "sha256:9af0bb0277e92f41af35e991c242c9c71920169d6aa53ade7e444f338f4c8128"}, - {file = "pyzmq-25.0.2-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:54a96cf77684a3a537b76acfa7237b1e79a8f8d14e7f00e0171a94b346c5293e"}, - {file = "pyzmq-25.0.2-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:88649b19ede1cab03b96b66c364cbbf17c953615cdbc844f7f6e5f14c5e5261c"}, - {file = "pyzmq-25.0.2-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:715cff7644a80a7795953c11b067a75f16eb9fc695a5a53316891ebee7f3c9d5"}, - {file = "pyzmq-25.0.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:312b3f0f066b4f1d17383aae509bacf833ccaf591184a1f3c7a1661c085063ae"}, - {file = "pyzmq-25.0.2-cp311-cp311-manylinux_2_28_x86_64.whl", hash = "sha256:d488c5c8630f7e782e800869f82744c3aca4aca62c63232e5d8c490d3d66956a"}, - {file = "pyzmq-25.0.2-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:38d9f78d69bcdeec0c11e0feb3bc70f36f9b8c44fc06e5d06d91dc0a21b453c7"}, - {file = "pyzmq-25.0.2-cp311-cp311-musllinux_1_1_i686.whl", hash = "sha256:3059a6a534c910e1d5d068df42f60d434f79e6cc6285aa469b384fa921f78cf8"}, - {file = "pyzmq-25.0.2-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:6526d097b75192f228c09d48420854d53dfbc7abbb41b0e26f363ccb26fbc177"}, - {file = "pyzmq-25.0.2-cp311-cp311-win32.whl", hash = "sha256:5c5fbb229e40a89a2fe73d0c1181916f31e30f253cb2d6d91bea7927c2e18413"}, - {file = "pyzmq-25.0.2-cp311-cp311-win_amd64.whl", hash = "sha256:ed15e3a2c3c2398e6ae5ce86d6a31b452dfd6ad4cd5d312596b30929c4b6e182"}, - {file = "pyzmq-25.0.2-cp36-cp36m-macosx_10_9_x86_64.whl", hash = "sha256:032f5c8483c85bf9c9ca0593a11c7c749d734ce68d435e38c3f72e759b98b3c9"}, - {file = "pyzmq-25.0.2-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:374b55516393bfd4d7a7daa6c3b36d6dd6a31ff9d2adad0838cd6a203125e714"}, - {file = "pyzmq-25.0.2-cp36-cp36m-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:08bfcc21b5997a9be4fefa405341320d8e7f19b4d684fb9c0580255c5bd6d695"}, - {file = "pyzmq-25.0.2-cp36-cp36m-manylinux_2_5_x86_64.manylinux1_x86_64.whl", hash = "sha256:1a843d26a8da1b752c74bc019c7b20e6791ee813cd6877449e6a1415589d22ff"}, - {file = "pyzmq-25.0.2-cp36-cp36m-musllinux_1_1_aarch64.whl", hash = "sha256:b48616a09d7df9dbae2f45a0256eee7b794b903ddc6d8657a9948669b345f220"}, - {file = "pyzmq-25.0.2-cp36-cp36m-musllinux_1_1_i686.whl", hash = "sha256:d4427b4a136e3b7f85516c76dd2e0756c22eec4026afb76ca1397152b0ca8145"}, - {file = "pyzmq-25.0.2-cp36-cp36m-musllinux_1_1_x86_64.whl", hash = "sha256:26b0358e8933990502f4513c991c9935b6c06af01787a36d133b7c39b1df37fa"}, - {file = "pyzmq-25.0.2-cp36-cp36m-win32.whl", hash = "sha256:c8fedc3ccd62c6b77dfe6f43802057a803a411ee96f14e946f4a76ec4ed0e117"}, - {file = "pyzmq-25.0.2-cp36-cp36m-win_amd64.whl", hash = "sha256:2da6813b7995b6b1d1307329c73d3e3be2fd2d78e19acfc4eff2e27262732388"}, - {file = "pyzmq-25.0.2-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:a35960c8b2f63e4ef67fd6731851030df68e4b617a6715dd11b4b10312d19fef"}, - {file = "pyzmq-25.0.2-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:eef2a0b880ab40aca5a878933376cb6c1ec483fba72f7f34e015c0f675c90b20"}, - {file = "pyzmq-25.0.2-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:85762712b74c7bd18e340c3639d1bf2f23735a998d63f46bb6584d904b5e401d"}, - {file = "pyzmq-25.0.2-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.whl", hash = "sha256:64812f29d6eee565e129ca14b0c785744bfff679a4727137484101b34602d1a7"}, - {file = "pyzmq-25.0.2-cp37-cp37m-musllinux_1_1_aarch64.whl", hash = "sha256:510d8e55b3a7cd13f8d3e9121edf0a8730b87d925d25298bace29a7e7bc82810"}, - {file = "pyzmq-25.0.2-cp37-cp37m-musllinux_1_1_i686.whl", hash = "sha256:b164cc3c8acb3d102e311f2eb6f3c305865ecb377e56adc015cb51f721f1dda6"}, - {file = "pyzmq-25.0.2-cp37-cp37m-musllinux_1_1_x86_64.whl", hash = "sha256:28fdb9224a258134784a9cf009b59265a9dde79582fb750d4e88a6bcbc6fa3dc"}, - {file = "pyzmq-25.0.2-cp37-cp37m-win32.whl", hash = "sha256:dd771a440effa1c36d3523bc6ba4e54ff5d2e54b4adcc1e060d8f3ca3721d228"}, - {file = "pyzmq-25.0.2-cp37-cp37m-win_amd64.whl", hash = "sha256:9bdc40efb679b9dcc39c06d25629e55581e4c4f7870a5e88db4f1c51ce25e20d"}, - {file = "pyzmq-25.0.2-cp38-cp38-macosx_10_15_universal2.whl", hash = "sha256:1f82906a2d8e4ee310f30487b165e7cc8ed09c009e4502da67178b03083c4ce0"}, - {file = "pyzmq-25.0.2-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:21ec0bf4831988af43c8d66ba3ccd81af2c5e793e1bf6790eb2d50e27b3c570a"}, - {file = "pyzmq-25.0.2-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:abbce982a17c88d2312ec2cf7673985d444f1beaac6e8189424e0a0e0448dbb3"}, - {file = "pyzmq-25.0.2-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:9e1d2f2d86fc75ed7f8845a992c5f6f1ab5db99747fb0d78b5e4046d041164d2"}, - {file = "pyzmq-25.0.2-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:a2e92ff20ad5d13266bc999a29ed29a3b5b101c21fdf4b2cf420c09db9fb690e"}, - {file = "pyzmq-25.0.2-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:edbbf06cc2719889470a8d2bf5072bb00f423e12de0eb9ffec946c2c9748e149"}, - {file = "pyzmq-25.0.2-cp38-cp38-musllinux_1_1_i686.whl", hash = "sha256:77942243ff4d14d90c11b2afd8ee6c039b45a0be4e53fb6fa7f5e4fd0b59da39"}, - {file = "pyzmq-25.0.2-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:ab046e9cb902d1f62c9cc0eca055b1d11108bdc271caf7c2171487298f229b56"}, - {file = "pyzmq-25.0.2-cp38-cp38-win32.whl", hash = "sha256:ad761cfbe477236802a7ab2c080d268c95e784fe30cafa7e055aacd1ca877eb0"}, - {file = "pyzmq-25.0.2-cp38-cp38-win_amd64.whl", hash = "sha256:8560756318ec7c4c49d2c341012167e704b5a46d9034905853c3d1ade4f55bee"}, - {file = "pyzmq-25.0.2-cp39-cp39-macosx_10_15_universal2.whl", hash = "sha256:ab2c056ac503f25a63f6c8c6771373e2a711b98b304614151dfb552d3d6c81f6"}, - {file = "pyzmq-25.0.2-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:cca8524b61c0eaaa3505382dc9b9a3bc8165f1d6c010fdd1452c224225a26689"}, - {file = "pyzmq-25.0.2-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:cfb9f7eae02d3ac42fbedad30006b7407c984a0eb4189a1322241a20944d61e5"}, - {file = "pyzmq-25.0.2-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:5eaeae038c68748082137d6896d5c4db7927e9349237ded08ee1bbd94f7361c9"}, - {file = "pyzmq-25.0.2-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:4a31992a8f8d51663ebf79df0df6a04ffb905063083d682d4380ab8d2c67257c"}, - {file = "pyzmq-25.0.2-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:6a979e59d2184a0c8f2ede4b0810cbdd86b64d99d9cc8a023929e40dce7c86cc"}, - {file = "pyzmq-25.0.2-cp39-cp39-musllinux_1_1_i686.whl", hash = "sha256:1f124cb73f1aa6654d31b183810febc8505fd0c597afa127c4f40076be4574e0"}, - {file = "pyzmq-25.0.2-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:65c19a63b4a83ae45d62178b70223adeee5f12f3032726b897431b6553aa25af"}, - {file = "pyzmq-25.0.2-cp39-cp39-win32.whl", hash = "sha256:83d822e8687621bed87404afc1c03d83fa2ce39733d54c2fd52d8829edb8a7ff"}, - {file = "pyzmq-25.0.2-cp39-cp39-win_amd64.whl", hash = "sha256:24683285cc6b7bf18ad37d75b9db0e0fefe58404e7001f1d82bf9e721806daa7"}, - {file = "pyzmq-25.0.2-pp37-pypy37_pp73-macosx_10_9_x86_64.whl", hash = "sha256:4a4b4261eb8f9ed71f63b9eb0198dd7c934aa3b3972dac586d0ef502ba9ab08b"}, - {file = "pyzmq-25.0.2-pp37-pypy37_pp73-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:62ec8d979f56c0053a92b2b6a10ff54b9ec8a4f187db2b6ec31ee3dd6d3ca6e2"}, - {file = "pyzmq-25.0.2-pp37-pypy37_pp73-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:affec1470351178e892121b3414c8ef7803269f207bf9bef85f9a6dd11cde264"}, - {file = "pyzmq-25.0.2-pp37-pypy37_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:ffc71111433bd6ec8607a37b9211f4ef42e3d3b271c6d76c813669834764b248"}, - {file = "pyzmq-25.0.2-pp37-pypy37_pp73-win_amd64.whl", hash = "sha256:6fadc60970714d86eff27821f8fb01f8328dd36bebd496b0564a500fe4a9e354"}, - {file = "pyzmq-25.0.2-pp38-pypy38_pp73-macosx_10_9_x86_64.whl", hash = "sha256:269968f2a76c0513490aeb3ba0dc3c77b7c7a11daa894f9d1da88d4a0db09835"}, - {file = "pyzmq-25.0.2-pp38-pypy38_pp73-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:f7c8b8368e84381ae7c57f1f5283b029c888504aaf4949c32e6e6fb256ec9bf0"}, - {file = "pyzmq-25.0.2-pp38-pypy38_pp73-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:25e6873a70ad5aa31e4a7c41e5e8c709296edef4a92313e1cd5fc87bbd1874e2"}, - {file = "pyzmq-25.0.2-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:b733076ff46e7db5504c5e7284f04a9852c63214c74688bdb6135808531755a3"}, - {file = "pyzmq-25.0.2-pp38-pypy38_pp73-win_amd64.whl", hash = "sha256:a6f6ae12478fdc26a6d5fdb21f806b08fa5403cd02fd312e4cb5f72df078f96f"}, - {file = "pyzmq-25.0.2-pp39-pypy39_pp73-macosx_10_9_x86_64.whl", hash = "sha256:67da1c213fbd208906ab3470cfff1ee0048838365135a9bddc7b40b11e6d6c89"}, - {file = "pyzmq-25.0.2-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:531e36d9fcd66f18de27434a25b51d137eb546931033f392e85674c7a7cea853"}, - {file = "pyzmq-25.0.2-pp39-pypy39_pp73-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:34a6fddd159ff38aa9497b2e342a559f142ab365576284bc8f77cb3ead1f79c5"}, - {file = "pyzmq-25.0.2-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:b491998ef886662c1f3d49ea2198055a9a536ddf7430b051b21054f2a5831800"}, - {file = "pyzmq-25.0.2-pp39-pypy39_pp73-manylinux_2_28_x86_64.whl", hash = "sha256:5d496815074e3e3d183fe2c7fcea2109ad67b74084c254481f87b64e04e9a471"}, - {file = "pyzmq-25.0.2-pp39-pypy39_pp73-win_amd64.whl", hash = "sha256:56a94ab1d12af982b55ca96c6853db6ac85505e820d9458ac76364c1998972f4"}, - {file = "pyzmq-25.0.2.tar.gz", hash = "sha256:6b8c1bbb70e868dc88801aa532cae6bd4e3b5233784692b786f17ad2962e5149"}, -] - -[package.dependencies] -cffi = {version = "*", markers = "implementation_name == \"pypy\""} - -[[package]] -name = "regex" -version = "2023.3.23" -description = "Alternative regular expression module, to replace re." -category = "dev" -optional = false -python-versions = ">=3.8" -files = [ - {file = "regex-2023.3.23-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:845a5e2d84389c4ddada1a9b95c055320070f18bb76512608374aca00d22eca8"}, - {file = "regex-2023.3.23-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:87d9951f5a538dd1d016bdc0dcae59241d15fa94860964833a54d18197fcd134"}, - {file = "regex-2023.3.23-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:37ae17d3be44c0b3f782c28ae9edd8b47c1f1776d4cabe87edc0b98e1f12b021"}, - {file = "regex-2023.3.23-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:0b8eb1e3bca6b48dc721818a60ae83b8264d4089a4a41d62be6d05316ec38e15"}, - {file = "regex-2023.3.23-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:df45fac182ebc3c494460c644e853515cc24f5ad9da05f8ffb91da891bfee879"}, - {file = "regex-2023.3.23-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:b7006105b10b59971d3b248ad75acc3651c7e4cf54d81694df5a5130a3c3f7ea"}, - {file = "regex-2023.3.23-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:93f3f1aa608380fe294aa4cb82e2afda07a7598e828d0341e124b8fd9327c715"}, - {file = "regex-2023.3.23-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:787954f541ab95d8195d97b0b8cf1dc304424adb1e07365967e656b92b38a699"}, - {file = "regex-2023.3.23-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:20abe0bdf03630fe92ccafc45a599bca8b3501f48d1de4f7d121153350a2f77d"}, - {file = "regex-2023.3.23-cp310-cp310-musllinux_1_1_i686.whl", hash = "sha256:11d00c31aeab9a6e0503bc77e73ed9f4527b3984279d997eb145d7c7be6268fd"}, - {file = "regex-2023.3.23-cp310-cp310-musllinux_1_1_ppc64le.whl", hash = "sha256:d5bbe0e1511b844794a3be43d6c145001626ba9a6c1db8f84bdc724e91131d9d"}, - {file = "regex-2023.3.23-cp310-cp310-musllinux_1_1_s390x.whl", hash = "sha256:ea3c0cb56eadbf4ab2277e7a095676370b3e46dbfc74d5c383bd87b0d6317910"}, - {file = "regex-2023.3.23-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:d895b4c863059a4934d3e874b90998df774644a41b349ebb330f85f11b4ef2c0"}, - {file = "regex-2023.3.23-cp310-cp310-win32.whl", hash = "sha256:9d764514d19b4edcc75fd8cb1423448ef393e8b6cbd94f38cab983ab1b75855d"}, - {file = "regex-2023.3.23-cp310-cp310-win_amd64.whl", hash = "sha256:11d1f2b7a0696dc0310de0efb51b1f4d813ad4401fe368e83c0c62f344429f98"}, - {file = "regex-2023.3.23-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:8a9c63cde0eaa345795c0fdeb19dc62d22e378c50b0bc67bf4667cd5b482d98b"}, - {file = "regex-2023.3.23-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:dd7200b4c27b68cf9c9646da01647141c6db09f48cc5b51bc588deaf8e98a797"}, - {file = "regex-2023.3.23-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:22720024b90a6ba673a725dcc62e10fb1111b889305d7c6b887ac7466b74bedb"}, - {file = "regex-2023.3.23-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:6b190a339090e6af25f4a5fd9e77591f6d911cc7b96ecbb2114890b061be0ac1"}, - {file = "regex-2023.3.23-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:e76b6fc0d8e9efa39100369a9b3379ce35e20f6c75365653cf58d282ad290f6f"}, - {file = "regex-2023.3.23-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:7868b8f218bf69a2a15402fde08b08712213a1f4b85a156d90473a6fb6b12b09"}, - {file = "regex-2023.3.23-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:2472428efc4127374f494e570e36b30bb5e6b37d9a754f7667f7073e43b0abdd"}, - {file = "regex-2023.3.23-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:c37df2a060cb476d94c047b18572ee2b37c31f831df126c0da3cd9227b39253d"}, - {file = "regex-2023.3.23-cp311-cp311-musllinux_1_1_i686.whl", hash = "sha256:4479f9e2abc03362df4045b1332d4a2b7885b245a30d4f4b051c4083b97d95d8"}, - {file = "regex-2023.3.23-cp311-cp311-musllinux_1_1_ppc64le.whl", hash = "sha256:e2396e0678167f2d0c197da942b0b3fb48fee2f0b5915a0feb84d11b6686afe6"}, - {file = "regex-2023.3.23-cp311-cp311-musllinux_1_1_s390x.whl", hash = "sha256:75f288c60232a5339e0ff2fa05779a5e9c74e9fc085c81e931d4a264501e745b"}, - {file = "regex-2023.3.23-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:c869260aa62cee21c5eb171a466c0572b5e809213612ef8d495268cd2e34f20d"}, - {file = "regex-2023.3.23-cp311-cp311-win32.whl", hash = "sha256:25f0532fd0c53e96bad84664171969de9673b4131f2297f1db850d3918d58858"}, - {file = "regex-2023.3.23-cp311-cp311-win_amd64.whl", hash = "sha256:5ccfafd98473e007cebf7da10c1411035b7844f0f204015efd050601906dbb53"}, - {file = "regex-2023.3.23-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:6572ff287176c0fb96568adb292674b421fa762153ed074d94b1d939ed92c253"}, - {file = "regex-2023.3.23-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:a610e0adfcb0fc84ea25f6ea685e39e74cbcd9245a72a9a7aab85ff755a5ed27"}, - {file = "regex-2023.3.23-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:086afe222d58b88b62847bdbd92079b4699350b4acab892f88a935db5707c790"}, - {file = "regex-2023.3.23-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:79e29fd62fa2f597a6754b247356bda14b866131a22444d67f907d6d341e10f3"}, - {file = "regex-2023.3.23-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:c07ce8e9eee878a48ebeb32ee661b49504b85e164b05bebf25420705709fdd31"}, - {file = "regex-2023.3.23-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:86b036f401895e854de9fefe061518e78d506d8a919cc250dc3416bca03f6f9a"}, - {file = "regex-2023.3.23-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:78ac8dd8e18800bb1f97aad0d73f68916592dddf233b99d2b5cabc562088503a"}, - {file = "regex-2023.3.23-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:539dd010dc35af935b32f248099e38447bbffc10b59c2b542bceead2bed5c325"}, - {file = "regex-2023.3.23-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:9bf4a5626f2a0ea006bf81e8963f498a57a47d58907eaa58f4b3e13be68759d8"}, - {file = "regex-2023.3.23-cp38-cp38-musllinux_1_1_i686.whl", hash = "sha256:cf86b4328c204c3f315074a61bc1c06f8a75a8e102359f18ce99fbcbbf1951f0"}, - {file = "regex-2023.3.23-cp38-cp38-musllinux_1_1_ppc64le.whl", hash = "sha256:2848bf76673c83314068241c8d5b7fa9ad9bed866c979875a0e84039349e8fa7"}, - {file = "regex-2023.3.23-cp38-cp38-musllinux_1_1_s390x.whl", hash = "sha256:c125a02d22c555e68f7433bac8449992fa1cead525399f14e47c2d98f2f0e467"}, - {file = "regex-2023.3.23-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:cd1671e9d5ac05ce6aa86874dd8dfa048824d1dbe73060851b310c6c1a201a96"}, - {file = "regex-2023.3.23-cp38-cp38-win32.whl", hash = "sha256:fffe57312a358be6ec6baeb43d253c36e5790e436b7bf5b7a38df360363e88e9"}, - {file = "regex-2023.3.23-cp38-cp38-win_amd64.whl", hash = "sha256:dbb3f87e15d3dd76996d604af8678316ad2d7d20faa394e92d9394dfd621fd0c"}, - {file = "regex-2023.3.23-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:c88e8c226473b5549fe9616980ea7ca09289246cfbdf469241edf4741a620004"}, - {file = "regex-2023.3.23-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:6560776ec19c83f3645bbc5db64a7a5816c9d8fb7ed7201c5bcd269323d88072"}, - {file = "regex-2023.3.23-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:1b1fc2632c01f42e06173d8dd9bb2e74ab9b0afa1d698058c867288d2c7a31f3"}, - {file = "regex-2023.3.23-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:fdf7ad455f1916b8ea5cdbc482d379f6daf93f3867b4232d14699867a5a13af7"}, - {file = "regex-2023.3.23-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:5fc33b27b1d800fc5b78d7f7d0f287e35079ecabe68e83d46930cf45690e1c8c"}, - {file = "regex-2023.3.23-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:4c49552dc938e3588f63f8a78c86f3c9c75301e813bca0bef13bdb4b87ccf364"}, - {file = "regex-2023.3.23-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:e152461e9a0aedec7d37fc66ec0fa635eca984777d3d3c3e36f53bf3d3ceb16e"}, - {file = "regex-2023.3.23-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:db034255e72d2995cf581b14bb3fc9c00bdbe6822b49fcd4eef79e1d5f232618"}, - {file = "regex-2023.3.23-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:55ae114da21b7a790b90255ea52d2aa3a0d121a646deb2d3c6a3194e722fc762"}, - {file = "regex-2023.3.23-cp39-cp39-musllinux_1_1_i686.whl", hash = "sha256:ef3f528fe1cc3d139508fe1b22523745aa77b9d6cb5b0bf277f48788ee0b993f"}, - {file = "regex-2023.3.23-cp39-cp39-musllinux_1_1_ppc64le.whl", hash = "sha256:a81c9ec59ca2303acd1ccd7b9ac409f1e478e40e96f8f79b943be476c5fdb8bb"}, - {file = "regex-2023.3.23-cp39-cp39-musllinux_1_1_s390x.whl", hash = "sha256:cde09c4fdd070772aa2596d97e942eb775a478b32459e042e1be71b739d08b77"}, - {file = "regex-2023.3.23-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:3cd9f5dd7b821f141d3a6ca0d5d9359b9221e4f051ca3139320adea9f1679691"}, - {file = "regex-2023.3.23-cp39-cp39-win32.whl", hash = "sha256:7304863f3a652dab5e68e6fb1725d05ebab36ec0390676d1736e0571ebb713ef"}, - {file = "regex-2023.3.23-cp39-cp39-win_amd64.whl", hash = "sha256:54c3fa855a3f7438149de3211738dd9b5f0c733f48b54ae05aa7fce83d48d858"}, - {file = "regex-2023.3.23.tar.gz", hash = "sha256:dc80df325b43ffea5cdea2e3eaa97a44f3dd298262b1c7fe9dbb2a9522b956a7"}, -] - -[[package]] -name = "requests" -version = "2.28.2" -description = "Python HTTP for Humans." -category = "dev" -optional = false -python-versions = ">=3.7, <4" -files = [ - {file = "requests-2.28.2-py3-none-any.whl", hash = "sha256:64299f4909223da747622c030b781c0d7811e359c37124b4bd368fb8c6518baa"}, - {file = "requests-2.28.2.tar.gz", hash = "sha256:98b1b2782e3c6c4904938b84c0eb932721069dfdb9134313beff7c83c2df24bf"}, -] - -[package.dependencies] -certifi = ">=2017.4.17" -charset-normalizer = ">=2,<4" -idna = ">=2.5,<4" -urllib3 = ">=1.21.1,<1.27" - -[package.extras] -socks = ["PySocks (>=1.5.6,!=1.5.7)"] -use-chardet-on-py3 = ["chardet (>=3.0.2,<6)"] - -[[package]] -name = "scikit-learn" -version = "1.2.2" -description = "A set of python modules for machine learning and data mining" -category = "main" -optional = false -python-versions = ">=3.8" -files = [ - {file = "scikit-learn-1.2.2.tar.gz", hash = "sha256:8429aea30ec24e7a8c7ed8a3fa6213adf3814a6efbea09e16e0a0c71e1a1a3d7"}, - {file = "scikit_learn-1.2.2-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:99cc01184e347de485bf253d19fcb3b1a3fb0ee4cea5ee3c43ec0cc429b6d29f"}, - {file = "scikit_learn-1.2.2-cp310-cp310-macosx_12_0_arm64.whl", hash = "sha256:e6e574db9914afcb4e11ade84fab084536a895ca60aadea3041e85b8ac963edb"}, - {file = "scikit_learn-1.2.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:6fe83b676f407f00afa388dd1fdd49e5c6612e551ed84f3b1b182858f09e987d"}, - {file = "scikit_learn-1.2.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:2e2642baa0ad1e8f8188917423dd73994bf25429f8893ddbe115be3ca3183584"}, - {file = "scikit_learn-1.2.2-cp310-cp310-win_amd64.whl", hash = "sha256:ad66c3848c0a1ec13464b2a95d0a484fd5b02ce74268eaa7e0c697b904f31d6c"}, - {file = "scikit_learn-1.2.2-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:dfeaf8be72117eb61a164ea6fc8afb6dfe08c6f90365bde2dc16456e4bc8e45f"}, - {file = "scikit_learn-1.2.2-cp311-cp311-macosx_12_0_arm64.whl", hash = "sha256:fe0aa1a7029ed3e1dcbf4a5bc675aa3b1bc468d9012ecf6c6f081251ca47f590"}, - {file = "scikit_learn-1.2.2-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:065e9673e24e0dc5113e2dd2b4ca30c9d8aa2fa90f4c0597241c93b63130d233"}, - {file = "scikit_learn-1.2.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:bf036ea7ef66115e0d49655f16febfa547886deba20149555a41d28f56fd6d3c"}, - {file = "scikit_learn-1.2.2-cp311-cp311-win_amd64.whl", hash = "sha256:8b0670d4224a3c2d596fd572fb4fa673b2a0ccfb07152688ebd2ea0b8c61025c"}, - {file = "scikit_learn-1.2.2-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:9c710ff9f9936ba8a3b74a455ccf0dcf59b230caa1e9ba0223773c490cab1e51"}, - {file = "scikit_learn-1.2.2-cp38-cp38-macosx_12_0_arm64.whl", hash = "sha256:2dd3ffd3950e3d6c0c0ef9033a9b9b32d910c61bd06cb8206303fb4514b88a49"}, - {file = "scikit_learn-1.2.2-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:44b47a305190c28dd8dd73fc9445f802b6ea716669cfc22ab1eb97b335d238b1"}, - {file = "scikit_learn-1.2.2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:953236889928d104c2ef14027539f5f2609a47ebf716b8cbe4437e85dce42744"}, - {file = "scikit_learn-1.2.2-cp38-cp38-win_amd64.whl", hash = "sha256:7f69313884e8eb311460cc2f28676d5e400bd929841a2c8eb8742ae78ebf7c20"}, - {file = "scikit_learn-1.2.2-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:8156db41e1c39c69aa2d8599ab7577af53e9e5e7a57b0504e116cc73c39138dd"}, - {file = "scikit_learn-1.2.2-cp39-cp39-macosx_12_0_arm64.whl", hash = "sha256:fe175ee1dab589d2e1033657c5b6bec92a8a3b69103e3dd361b58014729975c3"}, - {file = "scikit_learn-1.2.2-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:7d5312d9674bed14f73773d2acf15a3272639b981e60b72c9b190a0cffed5bad"}, - {file = "scikit_learn-1.2.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:ea061bf0283bf9a9f36ea3c5d3231ba2176221bbd430abd2603b1c3b2ed85c89"}, - {file = "scikit_learn-1.2.2-cp39-cp39-win_amd64.whl", hash = "sha256:6477eed40dbce190f9f9e9d0d37e020815825b300121307942ec2110302b66a3"}, -] - -[package.dependencies] -joblib = ">=1.1.1" -numpy = ">=1.17.3" -scipy = ">=1.3.2" -threadpoolctl = ">=2.0.0" - -[package.extras] -benchmark = ["matplotlib (>=3.1.3)", "memory-profiler (>=0.57.0)", "pandas (>=1.0.5)"] -docs = ["Pillow (>=7.1.2)", "matplotlib (>=3.1.3)", "memory-profiler (>=0.57.0)", "numpydoc (>=1.2.0)", "pandas (>=1.0.5)", "plotly (>=5.10.0)", "pooch (>=1.6.0)", "scikit-image (>=0.16.2)", "seaborn (>=0.9.0)", "sphinx (>=4.0.1)", "sphinx-gallery (>=0.7.0)", "sphinx-prompt (>=1.3.0)", "sphinxext-opengraph (>=0.4.2)"] -examples = ["matplotlib (>=3.1.3)", "pandas (>=1.0.5)", "plotly (>=5.10.0)", "pooch (>=1.6.0)", "scikit-image (>=0.16.2)", "seaborn (>=0.9.0)"] -tests = ["black (>=22.3.0)", "flake8 (>=3.8.2)", "matplotlib (>=3.1.3)", "mypy (>=0.961)", "numpydoc (>=1.2.0)", "pandas (>=1.0.5)", "pooch (>=1.6.0)", "pyamg (>=4.0.0)", "pytest (>=5.3.1)", "pytest-cov (>=2.9.0)", "scikit-image (>=0.16.2)"] - -[[package]] -name = "scipy" -version = "1.10.1" -description = "Fundamental algorithms for scientific computing in Python" -category = "main" -optional = false -python-versions = "<3.12,>=3.8" -files = [ - {file = "scipy-1.10.1-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:e7354fd7527a4b0377ce55f286805b34e8c54b91be865bac273f527e1b839019"}, - {file = "scipy-1.10.1-cp310-cp310-macosx_12_0_arm64.whl", hash = "sha256:4b3f429188c66603a1a5c549fb414e4d3bdc2a24792e061ffbd607d3d75fd84e"}, - {file = "scipy-1.10.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:1553b5dcddd64ba9a0d95355e63fe6c3fc303a8fd77c7bc91e77d61363f7433f"}, - {file = "scipy-1.10.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:4c0ff64b06b10e35215abce517252b375e580a6125fd5fdf6421b98efbefb2d2"}, - {file = "scipy-1.10.1-cp310-cp310-win_amd64.whl", hash = "sha256:fae8a7b898c42dffe3f7361c40d5952b6bf32d10c4569098d276b4c547905ee1"}, - {file = "scipy-1.10.1-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:0f1564ea217e82c1bbe75ddf7285ba0709ecd503f048cb1236ae9995f64217bd"}, - {file = "scipy-1.10.1-cp311-cp311-macosx_12_0_arm64.whl", hash = "sha256:d925fa1c81b772882aa55bcc10bf88324dadb66ff85d548c71515f6689c6dac5"}, - {file = "scipy-1.10.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:aaea0a6be54462ec027de54fca511540980d1e9eea68b2d5c1dbfe084797be35"}, - {file = "scipy-1.10.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:15a35c4242ec5f292c3dd364a7c71a61be87a3d4ddcc693372813c0b73c9af1d"}, - {file = "scipy-1.10.1-cp311-cp311-win_amd64.whl", hash = "sha256:43b8e0bcb877faf0abfb613d51026cd5cc78918e9530e375727bf0625c82788f"}, - {file = "scipy-1.10.1-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:5678f88c68ea866ed9ebe3a989091088553ba12c6090244fdae3e467b1139c35"}, - {file = "scipy-1.10.1-cp38-cp38-macosx_12_0_arm64.whl", hash = "sha256:39becb03541f9e58243f4197584286e339029e8908c46f7221abeea4b749fa88"}, - {file = "scipy-1.10.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:bce5869c8d68cf383ce240e44c1d9ae7c06078a9396df68ce88a1230f93a30c1"}, - {file = "scipy-1.10.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:07c3457ce0b3ad5124f98a86533106b643dd811dd61b548e78cf4c8786652f6f"}, - {file = "scipy-1.10.1-cp38-cp38-win_amd64.whl", hash = "sha256:049a8bbf0ad95277ffba9b3b7d23e5369cc39e66406d60422c8cfef40ccc8415"}, - {file = "scipy-1.10.1-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:cd9f1027ff30d90618914a64ca9b1a77a431159df0e2a195d8a9e8a04c78abf9"}, - {file = "scipy-1.10.1-cp39-cp39-macosx_12_0_arm64.whl", hash = "sha256:79c8e5a6c6ffaf3a2262ef1be1e108a035cf4f05c14df56057b64acc5bebffb6"}, - {file = "scipy-1.10.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:51af417a000d2dbe1ec6c372dfe688e041a7084da4fdd350aeb139bd3fb55353"}, - {file = "scipy-1.10.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:1b4735d6c28aad3cdcf52117e0e91d6b39acd4272f3f5cd9907c24ee931ad601"}, - {file = "scipy-1.10.1-cp39-cp39-win_amd64.whl", hash = "sha256:7ff7f37b1bf4417baca958d254e8e2875d0cc23aaadbe65b3d5b3077b0eb23ea"}, - {file = "scipy-1.10.1.tar.gz", hash = "sha256:2cf9dfb80a7b4589ba4c40ce7588986d6d5cebc5457cad2c2880f6bc2d42f3a5"}, -] - -[package.dependencies] -numpy = ">=1.19.5,<1.27.0" - -[package.extras] -dev = ["click", "doit (>=0.36.0)", "flake8", "mypy", "pycodestyle", "pydevtool", "rich-click", "typing_extensions"] -doc = ["matplotlib (>2)", "numpydoc", "pydata-sphinx-theme (==0.9.0)", "sphinx (!=4.1.0)", "sphinx-design (>=0.2.0)"] -test = ["asv", "gmpy2", "mpmath", "pooch", "pytest", "pytest-cov", "pytest-timeout", "pytest-xdist", "scikit-umfpack", "threadpoolctl"] - -[[package]] -name = "setuptools" -version = "67.6.1" -description = "Easily download, build, install, upgrade, and uninstall Python packages" -category = "main" -optional = false -python-versions = ">=3.7" -files = [ - {file = "setuptools-67.6.1-py3-none-any.whl", hash = "sha256:e728ca814a823bf7bf60162daf9db95b93d532948c4c0bea762ce62f60189078"}, - {file = "setuptools-67.6.1.tar.gz", hash = "sha256:257de92a9d50a60b8e22abfcbb771571fde0dbf3ec234463212027a4eeecbe9a"}, -] - -[package.extras] -docs = ["furo", "jaraco.packaging (>=9)", "jaraco.tidelift (>=1.4)", "pygments-github-lexers (==0.0.5)", "rst.linker (>=1.9)", "sphinx (>=3.5)", "sphinx-favicon", "sphinx-hoverxref (<2)", "sphinx-inline-tabs", "sphinx-lint", "sphinx-notfound-page (==0.8.3)", "sphinx-reredirects", "sphinxcontrib-towncrier"] -testing = ["build[virtualenv]", "filelock (>=3.4.0)", "flake8 (<5)", "flake8-2020", "ini2toml[lite] (>=0.9)", "jaraco.envs (>=2.2)", "jaraco.path (>=3.2.0)", "pip (>=19.1)", "pip-run (>=8.8)", "pytest (>=6)", "pytest-black (>=0.3.7)", "pytest-checkdocs (>=2.4)", "pytest-cov", "pytest-enabler (>=1.3)", "pytest-flake8", "pytest-mypy (>=0.9.1)", "pytest-perf", "pytest-timeout", "pytest-xdist", "tomli-w (>=1.0.0)", "virtualenv (>=13.0.0)", "wheel"] -testing-integration = ["build[virtualenv]", "filelock (>=3.4.0)", "jaraco.envs (>=2.2)", "jaraco.path (>=3.2.0)", "pytest", "pytest-enabler", "pytest-xdist", "tomli", "virtualenv (>=13.0.0)", "wheel"] - -[[package]] -name = "six" -version = "1.16.0" -description = "Python 2 and 3 compatibility utilities" -category = "main" -optional = false -python-versions = ">=2.7, !=3.0.*, !=3.1.*, !=3.2.*" -files = [ - {file = "six-1.16.0-py2.py3-none-any.whl", hash = "sha256:8abb2f1d86890a2dfb989f9a77cfcfd3e47c2a354b01111771326f8aa26e0254"}, - {file = "six-1.16.0.tar.gz", hash = "sha256:1e61c37477a1626458e36f7b1d82aa5c9b094fa4802892072e49de9c60c4c926"}, -] - -[[package]] -name = "soupsieve" -version = "2.4" -description = "A modern CSS selector implementation for Beautiful Soup." -category = "dev" -optional = false -python-versions = ">=3.7" -files = [ - {file = "soupsieve-2.4-py3-none-any.whl", hash = "sha256:49e5368c2cda80ee7e84da9dbe3e110b70a4575f196efb74e51b94549d921955"}, - {file = "soupsieve-2.4.tar.gz", hash = "sha256:e28dba9ca6c7c00173e34e4ba57448f0688bb681b7c5e8bf4971daafc093d69a"}, -] - -[[package]] -name = "sympy" -version = "1.11.1" -description = "Computer algebra system (CAS) in Python" -category = "main" -optional = false -python-versions = ">=3.8" -files = [ - {file = "sympy-1.11.1-py3-none-any.whl", hash = "sha256:938f984ee2b1e8eae8a07b884c8b7a1146010040fccddc6539c54f401c8f6fcf"}, - {file = "sympy-1.11.1.tar.gz", hash = "sha256:e32380dce63cb7c0108ed525570092fd45168bdae2faa17e528221ef72e88658"}, -] - -[package.dependencies] -mpmath = ">=0.19" - -[[package]] -name = "text-unidecode" -version = "1.3" -description = "The most basic Text::Unidecode port" -category = "main" -optional = false -python-versions = "*" -files = [ - {file = "text-unidecode-1.3.tar.gz", hash = "sha256:bad6603bb14d279193107714b288be206cac565dfa49aa5b105294dd5c4aab93"}, - {file = "text_unidecode-1.3-py2.py3-none-any.whl", hash = "sha256:1311f10e8b895935241623731c2ba64f4c455287888b18189350b67134a822e8"}, -] - -[[package]] -name = "threadpoolctl" -version = "3.1.0" -description = "threadpoolctl" -category = "main" -optional = false -python-versions = ">=3.6" -files = [ - {file = "threadpoolctl-3.1.0-py3-none-any.whl", hash = "sha256:8b99adda265feb6773280df41eece7b2e6561b772d21ffd52e372f999024907b"}, - {file = "threadpoolctl-3.1.0.tar.gz", hash = "sha256:a335baacfaa4400ae1f0d8e3a58d6674d2f8828e3716bb2802c44955ad391380"}, -] - -[[package]] -name = "tinycss2" -version = "1.2.1" -description = "A tiny CSS parser" -category = "dev" -optional = false -python-versions = ">=3.7" -files = [ - {file = "tinycss2-1.2.1-py3-none-any.whl", hash = "sha256:2b80a96d41e7c3914b8cda8bc7f705a4d9c49275616e886103dd839dfc847847"}, - {file = "tinycss2-1.2.1.tar.gz", hash = "sha256:8cff3a8f066c2ec677c06dbc7b45619804a6938478d9d73c284b29d14ecb0627"}, -] - -[package.dependencies] -webencodings = ">=0.4" - -[package.extras] -doc = ["sphinx", "sphinx_rtd_theme"] -test = ["flake8", "isort", "pytest"] - -[[package]] -name = "toml" -version = "0.10.2" -description = "Python Library for Tom's Obvious, Minimal Language" -category = "dev" -optional = false -python-versions = ">=2.6, !=3.0.*, !=3.1.*, !=3.2.*" -files = [ - {file = "toml-0.10.2-py2.py3-none-any.whl", hash = "sha256:806143ae5bfb6a3c6e736a764057db0e6a0e05e338b5630894a5f779cabb4f9b"}, - {file = "toml-0.10.2.tar.gz", hash = "sha256:b3bda1d108d5dd99f4a20d24d9c348e91c4db7ab1b749200bded2f839ccbe68f"}, -] - -[[package]] -name = "torch" -version = "2.0.0" -description = "Tensors and Dynamic neural networks in Python with strong GPU acceleration" -category = "main" -optional = false -python-versions = ">=3.8.0" -files = [ - {file = "torch-2.0.0-1-cp310-cp310-manylinux2014_aarch64.whl", hash = "sha256:c9090bda7d2eeeecd74f51b721420dbeb44f838d4536cc1b284e879417e3064a"}, - {file = "torch-2.0.0-1-cp311-cp311-manylinux2014_aarch64.whl", hash = "sha256:bd42db2a48a20574d2c33489e120e9f32789c4dc13c514b0c44272972d14a2d7"}, - {file = "torch-2.0.0-1-cp38-cp38-manylinux2014_aarch64.whl", hash = "sha256:8969aa8375bcbc0c2993e7ede0a7f889df9515f18b9b548433f412affed478d9"}, - {file = "torch-2.0.0-1-cp39-cp39-manylinux2014_aarch64.whl", hash = "sha256:ab2da16567cb55b67ae39e32d520d68ec736191d88ac79526ca5874754c32203"}, - {file = "torch-2.0.0-cp310-cp310-manylinux1_x86_64.whl", hash = "sha256:7a9319a67294ef02459a19738bbfa8727bb5307b822dadd708bc2ccf6c901aca"}, - {file = "torch-2.0.0-cp310-cp310-manylinux2014_aarch64.whl", hash = "sha256:9f01fe1f6263f31bd04e1757946fd63ad531ae37f28bb2dbf66f5c826ee089f4"}, - {file = "torch-2.0.0-cp310-cp310-win_amd64.whl", hash = "sha256:527f4ae68df7b8301ee6b1158ca56350282ea633686537b30dbb5d7b4a52622a"}, - {file = "torch-2.0.0-cp310-none-macosx_10_9_x86_64.whl", hash = "sha256:ce9b5a49bd513dff7950a5a07d6e26594dd51989cee05ba388b03e8e366fd5d5"}, - {file = "torch-2.0.0-cp310-none-macosx_11_0_arm64.whl", hash = "sha256:53e1c33c6896583cdb9a583693e22e99266444c4a43392dddc562640d39e542b"}, - {file = "torch-2.0.0-cp311-cp311-manylinux1_x86_64.whl", hash = "sha256:09651bff72e439d004c991f15add0c397c66f98ab36fe60d5514b44e4da722e8"}, - {file = "torch-2.0.0-cp311-cp311-manylinux2014_aarch64.whl", hash = "sha256:d439aec349c98f12819e8564b8c54008e4613dd4428582af0e6e14c24ca85870"}, - {file = "torch-2.0.0-cp311-cp311-win_amd64.whl", hash = "sha256:2802f84f021907deee7e9470ed10c0e78af7457ac9a08a6cd7d55adef835fede"}, - {file = "torch-2.0.0-cp311-none-macosx_10_9_x86_64.whl", hash = "sha256:01858620f25f25e7a9ec4b547ff38e5e27c92d38ec4ccba9cfbfb31d7071ed9c"}, - {file = "torch-2.0.0-cp311-none-macosx_11_0_arm64.whl", hash = "sha256:9a2e53b5783ef5896a6af338b36d782f28e83c8ddfc2ac44b67b066d9d76f498"}, - {file = "torch-2.0.0-cp38-cp38-manylinux1_x86_64.whl", hash = "sha256:ec5fff2447663e369682838ff0f82187b4d846057ef4d119a8dea7772a0b17dd"}, - {file = "torch-2.0.0-cp38-cp38-manylinux2014_aarch64.whl", hash = "sha256:11b0384fe3c18c01b8fc5992e70fc519cde65e44c51cc87be1838c1803daf42f"}, - {file = "torch-2.0.0-cp38-cp38-win_amd64.whl", hash = "sha256:e54846aa63855298cfb1195487f032e413e7ac9cbfa978fda32354cc39551475"}, - {file = "torch-2.0.0-cp38-none-macosx_10_9_x86_64.whl", hash = "sha256:cc788cbbbbc6eb4c90e52c550efd067586c2693092cf367c135b34893a64ae78"}, - {file = "torch-2.0.0-cp38-none-macosx_11_0_arm64.whl", hash = "sha256:d292640f0fd72b7a31b2a6e3b635eb5065fcbedd4478f9cad1a1e7a9ec861d35"}, - {file = "torch-2.0.0-cp39-cp39-manylinux1_x86_64.whl", hash = "sha256:6befaad784004b7af357e3d87fa0863c1f642866291f12a4c2af2de435e8ac5c"}, - {file = "torch-2.0.0-cp39-cp39-manylinux2014_aarch64.whl", hash = "sha256:a83b26bd6ae36fbf5fee3d56973d9816e2002e8a3b7d9205531167c28aaa38a7"}, - {file = "torch-2.0.0-cp39-cp39-win_amd64.whl", hash = "sha256:c7e67195e1c3e33da53954b026e89a8e1ff3bc1aeb9eb32b677172d4a9b5dcbf"}, - {file = "torch-2.0.0-cp39-none-macosx_10_9_x86_64.whl", hash = "sha256:6e0b97beb037a165669c312591f242382e9109a240e20054d5a5782d9236cad0"}, - {file = "torch-2.0.0-cp39-none-macosx_11_0_arm64.whl", hash = "sha256:297a4919aff1c0f98a58ebe969200f71350a1d4d4f986dbfd60c02ffce780e99"}, -] - -[package.dependencies] -filelock = "*" -jinja2 = "*" -networkx = "*" -nvidia-cublas-cu11 = {version = "11.10.3.66", markers = "platform_system == \"Linux\" and platform_machine == \"x86_64\""} -nvidia-cuda-cupti-cu11 = {version = "11.7.101", markers = "platform_system == \"Linux\" and platform_machine == \"x86_64\""} -nvidia-cuda-nvrtc-cu11 = {version = "11.7.99", markers = "platform_system == \"Linux\" and platform_machine == \"x86_64\""} -nvidia-cuda-runtime-cu11 = {version = "11.7.99", markers = "platform_system == \"Linux\" and platform_machine == \"x86_64\""} -nvidia-cudnn-cu11 = {version = "8.5.0.96", markers = "platform_system == \"Linux\" and platform_machine == \"x86_64\""} -nvidia-cufft-cu11 = {version = "10.9.0.58", markers = "platform_system == \"Linux\" and platform_machine == \"x86_64\""} -nvidia-curand-cu11 = {version = "10.2.10.91", markers = "platform_system == \"Linux\" and platform_machine == \"x86_64\""} -nvidia-cusolver-cu11 = {version = "11.4.0.1", markers = "platform_system == \"Linux\" and platform_machine == \"x86_64\""} -nvidia-cusparse-cu11 = {version = "11.7.4.91", markers = "platform_system == \"Linux\" and platform_machine == \"x86_64\""} -nvidia-nccl-cu11 = {version = "2.14.3", markers = "platform_system == \"Linux\" and platform_machine == \"x86_64\""} -nvidia-nvtx-cu11 = {version = "11.7.91", markers = "platform_system == \"Linux\" and platform_machine == \"x86_64\""} -sympy = "*" -triton = {version = "2.0.0", markers = "platform_system == \"Linux\" and platform_machine == \"x86_64\""} -typing-extensions = "*" - -[package.extras] -opt-einsum = ["opt-einsum (>=3.3)"] - -[[package]] -name = "tornado" -version = "6.2" -description = "Tornado is a Python web framework and asynchronous networking library, originally developed at FriendFeed." -category = "dev" -optional = false -python-versions = ">= 3.7" -files = [ - {file = "tornado-6.2-cp37-abi3-macosx_10_9_universal2.whl", hash = "sha256:20f638fd8cc85f3cbae3c732326e96addff0a15e22d80f049e00121651e82e72"}, - {file = "tornado-6.2-cp37-abi3-macosx_10_9_x86_64.whl", hash = "sha256:87dcafae3e884462f90c90ecc200defe5e580a7fbbb4365eda7c7c1eb809ebc9"}, - {file = "tornado-6.2-cp37-abi3-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:ba09ef14ca9893954244fd872798b4ccb2367c165946ce2dd7376aebdde8e3ac"}, - {file = "tornado-6.2-cp37-abi3-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:b8150f721c101abdef99073bf66d3903e292d851bee51910839831caba341a75"}, - {file = "tornado-6.2-cp37-abi3-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:d3a2f5999215a3a06a4fc218026cd84c61b8b2b40ac5296a6db1f1451ef04c1e"}, - {file = "tornado-6.2-cp37-abi3-musllinux_1_1_aarch64.whl", hash = "sha256:5f8c52d219d4995388119af7ccaa0bcec289535747620116a58d830e7c25d8a8"}, - {file = "tornado-6.2-cp37-abi3-musllinux_1_1_i686.whl", hash = "sha256:6fdfabffd8dfcb6cf887428849d30cf19a3ea34c2c248461e1f7d718ad30b66b"}, - {file = "tornado-6.2-cp37-abi3-musllinux_1_1_x86_64.whl", hash = "sha256:1d54d13ab8414ed44de07efecb97d4ef7c39f7438cf5e976ccd356bebb1b5fca"}, - {file = "tornado-6.2-cp37-abi3-win32.whl", hash = "sha256:5c87076709343557ef8032934ce5f637dbb552efa7b21d08e89ae7619ed0eb23"}, - {file = "tornado-6.2-cp37-abi3-win_amd64.whl", hash = "sha256:e5f923aa6a47e133d1cf87d60700889d7eae68988704e20c75fb2d65677a8e4b"}, - {file = "tornado-6.2.tar.gz", hash = "sha256:9b630419bde84ec666bfd7ea0a4cb2a8a651c2d5cccdbdd1972a0c859dfc3c13"}, -] - -[[package]] -name = "tqdm" -version = "4.65.0" -description = "Fast, Extensible Progress Meter" -category = "main" -optional = false -python-versions = ">=3.7" -files = [ - {file = "tqdm-4.65.0-py3-none-any.whl", hash = "sha256:c4f53a17fe37e132815abceec022631be8ffe1b9381c2e6e30aa70edc99e9671"}, - {file = "tqdm-4.65.0.tar.gz", hash = "sha256:1871fb68a86b8fb3b59ca4cdd3dcccbc7e6d613eeed31f4c332531977b89beb5"}, -] - -[package.dependencies] -colorama = {version = "*", markers = "platform_system == \"Windows\""} - -[package.extras] -dev = ["py-make (>=0.1.0)", "twine", "wheel"] -notebook = ["ipywidgets (>=6)"] -slack = ["slack-sdk"] -telegram = ["requests"] - -[[package]] -name = "traitlets" -version = "5.9.0" -description = "Traitlets Python configuration system" -category = "dev" -optional = false -python-versions = ">=3.7" -files = [ - {file = "traitlets-5.9.0-py3-none-any.whl", hash = "sha256:9e6ec080259b9a5940c797d58b613b5e31441c2257b87c2e795c5228ae80d2d8"}, - {file = "traitlets-5.9.0.tar.gz", hash = "sha256:f6cde21a9c68cf756af02035f72d5a723bf607e862e7be33ece505abf4a3bad9"}, -] - -[package.extras] -docs = ["myst-parser", "pydata-sphinx-theme", "sphinx"] -test = ["argcomplete (>=2.0)", "pre-commit", "pytest", "pytest-mock"] - -[[package]] -name = "triton" -version = "2.0.0" -description = "A language and compiler for custom Deep Learning operations" -category = "main" -optional = false -python-versions = "*" -files = [ - {file = "triton-2.0.0-1-cp310-cp310-manylinux2014_x86_64.manylinux_2_17_x86_64.whl", hash = "sha256:38806ee9663f4b0f7cd64790e96c579374089e58f49aac4a6608121aa55e2505"}, - {file = "triton-2.0.0-1-cp311-cp311-manylinux2014_x86_64.manylinux_2_17_x86_64.whl", hash = "sha256:226941c7b8595219ddef59a1fdb821e8c744289a132415ddd584facedeb475b1"}, - {file = "triton-2.0.0-1-cp36-cp36m-manylinux2014_x86_64.manylinux_2_17_x86_64.whl", hash = "sha256:4c9fc8c89874bc48eb7e7b2107a9b8d2c0bf139778637be5bfccb09191685cfd"}, - {file = "triton-2.0.0-1-cp37-cp37m-manylinux2014_x86_64.manylinux_2_17_x86_64.whl", hash = "sha256:d2684b6a60b9f174f447f36f933e9a45f31db96cb723723ecd2dcfd1c57b778b"}, - {file = "triton-2.0.0-1-cp38-cp38-manylinux2014_x86_64.manylinux_2_17_x86_64.whl", hash = "sha256:9d4978298b74fcf59a75fe71e535c092b023088933b2f1df933ec32615e4beef"}, - {file = "triton-2.0.0-1-cp39-cp39-manylinux2014_x86_64.manylinux_2_17_x86_64.whl", hash = "sha256:74f118c12b437fb2ca25e1a04759173b517582fcf4c7be11913316c764213656"}, - {file = "triton-2.0.0-1-pp37-pypy37_pp73-manylinux2014_x86_64.manylinux_2_17_x86_64.whl", hash = "sha256:9618815a8da1d9157514f08f855d9e9ff92e329cd81c0305003eb9ec25cc5add"}, - {file = "triton-2.0.0-1-pp38-pypy38_pp73-manylinux2014_x86_64.manylinux_2_17_x86_64.whl", hash = "sha256:1aca3303629cd3136375b82cb9921727f804e47ebee27b2677fef23005c3851a"}, - {file = "triton-2.0.0-1-pp39-pypy39_pp73-manylinux2014_x86_64.manylinux_2_17_x86_64.whl", hash = "sha256:e3e13aa8b527c9b642e3a9defcc0fbd8ffbe1c80d8ac8c15a01692478dc64d8a"}, - {file = "triton-2.0.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:8f05a7e64e4ca0565535e3d5d3405d7e49f9d308505bb7773d21fb26a4c008c2"}, - {file = "triton-2.0.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:bb4b99ca3c6844066e516658541d876c28a5f6e3a852286bbc97ad57134827fd"}, - {file = "triton-2.0.0-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:47b4d70dc92fb40af553b4460492c31dc7d3a114a979ffb7a5cdedb7eb546c08"}, - {file = "triton-2.0.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:fedce6a381901b1547e0e7e1f2546e4f65dca6d91e2d8a7305a2d1f5551895be"}, - {file = "triton-2.0.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:75834f27926eab6c7f00ce73aaf1ab5bfb9bec6eb57ab7c0bfc0a23fac803b4c"}, - {file = "triton-2.0.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:0117722f8c2b579cd429e0bee80f7731ae05f63fe8e9414acd9a679885fcbf42"}, - {file = "triton-2.0.0-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:bcd9be5d0c2e45d2b7e6ddc6da20112b6862d69741576f9c3dbaf941d745ecae"}, - {file = "triton-2.0.0-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:42a0d2c3fc2eab4ba71384f2e785fbfd47aa41ae05fa58bf12cb31dcbd0aeceb"}, - {file = "triton-2.0.0-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:52c47b72c72693198163ece9d90a721299e4fb3b8e24fd13141e384ad952724f"}, -] - -[package.dependencies] -cmake = "*" -filelock = "*" -lit = "*" -torch = "*" - -[package.extras] -tests = ["autopep8", "flake8", "isort", "numpy", "pytest", "scipy (>=1.7.1)"] -tutorials = ["matplotlib", "pandas", "tabulate"] - -[[package]] -name = "typing-extensions" -version = "4.5.0" -description = "Backported and Experimental Type Hints for Python 3.7+" -category = "main" -optional = false -python-versions = ">=3.7" -files = [ - {file = "typing_extensions-4.5.0-py3-none-any.whl", hash = "sha256:fb33085c39dd998ac16d1431ebc293a8b3eedd00fd4a32de0ff79002c19511b4"}, - {file = "typing_extensions-4.5.0.tar.gz", hash = "sha256:5cb5f4a79139d699607b3ef622a1dedafa84e115ab0024e0d9c044a9479ca7cb"}, -] - -[[package]] -name = "typing-inspect" -version = "0.8.0" -description = "Runtime inspection utilities for typing module." -category = "main" -optional = false -python-versions = "*" -files = [ - {file = "typing_inspect-0.8.0-py3-none-any.whl", hash = "sha256:5fbf9c1e65d4fa01e701fe12a5bca6c6e08a4ffd5bc60bfac028253a447c5188"}, - {file = "typing_inspect-0.8.0.tar.gz", hash = "sha256:8b1ff0c400943b6145df8119c41c244ca8207f1f10c9c057aeed1560e4806e3d"}, -] - -[package.dependencies] -mypy-extensions = ">=0.3.0" -typing-extensions = ">=3.7.4" - -[[package]] -name = "tzdata" -version = "2023.3" -description = "Provider of IANA time zone data" -category = "main" -optional = false -python-versions = ">=2" -files = [ - {file = "tzdata-2023.3-py2.py3-none-any.whl", hash = "sha256:7e65763eef3120314099b6939b5546db7adce1e7d6f2e179e3df563c70511eda"}, - {file = "tzdata-2023.3.tar.gz", hash = "sha256:11ef1e08e54acb0d4f95bdb1be05da659673de4acbd21bf9c69e94cc5e907a3a"}, -] - -[[package]] -name = "urllib3" -version = "1.26.15" -description = "HTTP library with thread-safe connection pooling, file post, and more." -category = "dev" -optional = false -python-versions = ">=2.7, !=3.0.*, !=3.1.*, !=3.2.*, !=3.3.*, !=3.4.*, !=3.5.*" -files = [ - {file = "urllib3-1.26.15-py2.py3-none-any.whl", hash = "sha256:aa751d169e23c7479ce47a0cb0da579e3ede798f994f5816a74e4f4500dcea42"}, - {file = "urllib3-1.26.15.tar.gz", hash = "sha256:8a388717b9476f934a21484e8c8e61875ab60644d29b9b39e11e4b9dc1c6b305"}, -] - -[package.extras] -brotli = ["brotli (>=1.0.9)", "brotlicffi (>=0.8.0)", "brotlipy (>=0.6.0)"] -secure = ["certifi", "cryptography (>=1.3.4)", "idna (>=2.0.0)", "ipaddress", "pyOpenSSL (>=0.14)", "urllib3-secure-extra"] -socks = ["PySocks (>=1.5.6,!=1.5.7,<2.0)"] - -[[package]] -name = "virtualenv" -version = "20.21.0" -description = "Virtual Python Environment builder" -category = "dev" -optional = false -python-versions = ">=3.7" -files = [ - {file = "virtualenv-20.21.0-py3-none-any.whl", hash = "sha256:31712f8f2a17bd06234fa97fdf19609e789dd4e3e4bf108c3da71d710651adbc"}, - {file = "virtualenv-20.21.0.tar.gz", hash = "sha256:f50e3e60f990a0757c9b68333c9fdaa72d7188caa417f96af9e52407831a3b68"}, -] - -[package.dependencies] -distlib = ">=0.3.6,<1" -filelock = ">=3.4.1,<4" -platformdirs = ">=2.4,<4" - -[package.extras] -docs = ["furo (>=2022.12.7)", "proselint (>=0.13)", "sphinx (>=6.1.3)", "sphinx-argparse (>=0.4)", "sphinxcontrib-towncrier (>=0.2.1a0)", "towncrier (>=22.12)"] -test = ["covdefaults (>=2.2.2)", "coverage (>=7.1)", "coverage-enable-subprocess (>=1)", "flaky (>=3.7)", "packaging (>=23)", "pytest (>=7.2.1)", "pytest-env (>=0.8.1)", "pytest-freezegun (>=0.4.2)", "pytest-mock (>=3.10)", "pytest-randomly (>=3.12)", "pytest-timeout (>=2.1)"] - -[[package]] -name = "watchdog" -version = "3.0.0" -description = "Filesystem events monitoring" -category = "main" -optional = false -python-versions = ">=3.7" -files = [ - {file = "watchdog-3.0.0-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:336adfc6f5cc4e037d52db31194f7581ff744b67382eb6021c868322e32eef41"}, - {file = "watchdog-3.0.0-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:a70a8dcde91be523c35b2bf96196edc5730edb347e374c7de7cd20c43ed95397"}, - {file = "watchdog-3.0.0-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:adfdeab2da79ea2f76f87eb42a3ab1966a5313e5a69a0213a3cc06ef692b0e96"}, - {file = "watchdog-3.0.0-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:2b57a1e730af3156d13b7fdddfc23dea6487fceca29fc75c5a868beed29177ae"}, - {file = "watchdog-3.0.0-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:7ade88d0d778b1b222adebcc0927428f883db07017618a5e684fd03b83342bd9"}, - {file = "watchdog-3.0.0-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:7e447d172af52ad204d19982739aa2346245cc5ba6f579d16dac4bfec226d2e7"}, - {file = "watchdog-3.0.0-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:9fac43a7466eb73e64a9940ac9ed6369baa39b3bf221ae23493a9ec4d0022674"}, - {file = "watchdog-3.0.0-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:8ae9cda41fa114e28faf86cb137d751a17ffd0316d1c34ccf2235e8a84365c7f"}, - {file = "watchdog-3.0.0-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:25f70b4aa53bd743729c7475d7ec41093a580528b100e9a8c5b5efe8899592fc"}, - {file = "watchdog-3.0.0-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:4f94069eb16657d2c6faada4624c39464f65c05606af50bb7902e036e3219be3"}, - {file = "watchdog-3.0.0-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:7c5f84b5194c24dd573fa6472685b2a27cc5a17fe5f7b6fd40345378ca6812e3"}, - {file = "watchdog-3.0.0-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:3aa7f6a12e831ddfe78cdd4f8996af9cf334fd6346531b16cec61c3b3c0d8da0"}, - {file = "watchdog-3.0.0-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:233b5817932685d39a7896b1090353fc8efc1ef99c9c054e46c8002561252fb8"}, - {file = "watchdog-3.0.0-pp37-pypy37_pp73-macosx_10_9_x86_64.whl", hash = "sha256:13bbbb462ee42ec3c5723e1205be8ced776f05b100e4737518c67c8325cf6100"}, - {file = "watchdog-3.0.0-pp38-pypy38_pp73-macosx_10_9_x86_64.whl", hash = "sha256:8f3ceecd20d71067c7fd4c9e832d4e22584318983cabc013dbf3f70ea95de346"}, - {file = "watchdog-3.0.0-pp39-pypy39_pp73-macosx_10_9_x86_64.whl", hash = "sha256:c9d8c8ec7efb887333cf71e328e39cffbf771d8f8f95d308ea4125bf5f90ba64"}, - {file = "watchdog-3.0.0-py3-none-manylinux2014_aarch64.whl", hash = "sha256:0e06ab8858a76e1219e68c7573dfeba9dd1c0219476c5a44d5333b01d7e1743a"}, - {file = "watchdog-3.0.0-py3-none-manylinux2014_armv7l.whl", hash = "sha256:d00e6be486affb5781468457b21a6cbe848c33ef43f9ea4a73b4882e5f188a44"}, - {file = "watchdog-3.0.0-py3-none-manylinux2014_i686.whl", hash = "sha256:c07253088265c363d1ddf4b3cdb808d59a0468ecd017770ed716991620b8f77a"}, - {file = "watchdog-3.0.0-py3-none-manylinux2014_ppc64.whl", hash = "sha256:5113334cf8cf0ac8cd45e1f8309a603291b614191c9add34d33075727a967709"}, - {file = "watchdog-3.0.0-py3-none-manylinux2014_ppc64le.whl", hash = "sha256:51f90f73b4697bac9c9a78394c3acbbd331ccd3655c11be1a15ae6fe289a8c83"}, - {file = "watchdog-3.0.0-py3-none-manylinux2014_s390x.whl", hash = "sha256:ba07e92756c97e3aca0912b5cbc4e5ad802f4557212788e72a72a47ff376950d"}, - {file = "watchdog-3.0.0-py3-none-manylinux2014_x86_64.whl", hash = "sha256:d429c2430c93b7903914e4db9a966c7f2b068dd2ebdd2fa9b9ce094c7d459f33"}, - {file = "watchdog-3.0.0-py3-none-win32.whl", hash = "sha256:3ed7c71a9dccfe838c2f0b6314ed0d9b22e77d268c67e015450a29036a81f60f"}, - {file = "watchdog-3.0.0-py3-none-win_amd64.whl", hash = "sha256:4c9956d27be0bb08fc5f30d9d0179a855436e655f046d288e2bcc11adfae893c"}, - {file = "watchdog-3.0.0-py3-none-win_ia64.whl", hash = "sha256:5d9f3a10e02d7371cd929b5d8f11e87d4bad890212ed3901f9b4d68767bee759"}, - {file = "watchdog-3.0.0.tar.gz", hash = "sha256:4d98a320595da7a7c5a18fc48cb633c2e73cda78f93cac2ef42d42bf609a33f9"}, -] - -[package.extras] -watchmedo = ["PyYAML (>=3.10)"] - -[[package]] -name = "webencodings" -version = "0.5.1" -description = "Character encoding aliases for legacy web content" -category = "dev" -optional = false -python-versions = "*" -files = [ - {file = "webencodings-0.5.1-py2.py3-none-any.whl", hash = "sha256:a0af1213f3c2226497a97e2b3aa01a7e4bee4f403f95be16fc9acd2947514a78"}, - {file = "webencodings-0.5.1.tar.gz", hash = "sha256:b36a1c245f2d304965eb4e0a82848379241dc04b865afcc4aab16748587e1923"}, -] - -[[package]] -name = "wheel" -version = "0.40.0" -description = "A built-package format for Python" -category = "main" -optional = false -python-versions = ">=3.7" -files = [ - {file = "wheel-0.40.0-py3-none-any.whl", hash = "sha256:d236b20e7cb522daf2390fa84c55eea81c5c30190f90f29ae2ca1ad8355bf247"}, - {file = "wheel-0.40.0.tar.gz", hash = "sha256:cd1196f3faee2b31968d626e1731c94f99cbdb67cf5a46e4f5656cbee7738873"}, -] - -[package.extras] -test = ["pytest (>=6.0.0)"] - -[[package]] -name = "zipp" -version = "3.15.0" -description = "Backport of pathlib-compatible object wrapper for zip files" -category = "main" -optional = false -python-versions = ">=3.7" -files = [ - {file = "zipp-3.15.0-py3-none-any.whl", hash = "sha256:48904fc76a60e542af151aded95726c1a5c34ed43ab4134b597665c86d7ad556"}, - {file = "zipp-3.15.0.tar.gz", hash = "sha256:112929ad649da941c23de50f356a2b5570c954b65150642bccdd66bf194d224b"}, -] - -[package.extras] -docs = ["furo", "jaraco.packaging (>=9)", "jaraco.tidelift (>=1.4)", "rst.linker (>=1.9)", "sphinx (>=3.5)", "sphinx-lint"] -testing = ["big-O", "flake8 (<5)", "jaraco.functools", "jaraco.itertools", "more-itertools", "pytest (>=6)", "pytest-black (>=0.3.7)", "pytest-checkdocs (>=2.4)", "pytest-cov", "pytest-enabler (>=1.3)", "pytest-flake8", "pytest-mypy (>=0.9.1)"] - -[metadata] -lock-version = "2.0" -python-versions = ">=3.8.10,<3.11" -content-hash = "5935e4b2f50c9fa9dd2391dcb37d6e06539989280f5c67c16fec2c529efb7713" From db540cac768883c2b3813dfa788de48863361455 Mon Sep 17 00:00:00 2001 From: John Gerrard Holland Date: Tue, 25 Apr 2023 18:18:08 -0400 Subject: [PATCH 022/130] chore: add empty src/autora directory --- src/autora/.gitkeep | 0 1 file changed, 0 insertions(+), 0 deletions(-) create mode 100644 src/autora/.gitkeep diff --git a/src/autora/.gitkeep b/src/autora/.gitkeep new file mode 100644 index 000000000..e69de29bb From 88ef29823cb493afa5e8b4bf6c473c5709a5d02c Mon Sep 17 00:00:00 2001 From: John Gerrard Holland Date: Tue, 25 Apr 2023 18:18:22 -0400 Subject: [PATCH 023/130] chore: remove other.xml --- .idea/other.xml | 6 ------ 1 file changed, 6 deletions(-) delete mode 100644 .idea/other.xml diff --git a/.idea/other.xml b/.idea/other.xml deleted file mode 100644 index 589e5a6b7..000000000 --- a/.idea/other.xml +++ /dev/null @@ -1,6 +0,0 @@ - - - - - \ No newline at end of file From c1715163ccbc12643062d251410d42ef4752e596 Mon Sep 17 00:00:00 2001 From: John Gerrard Holland Date: Tue, 25 Apr 2023 18:18:28 -0400 Subject: [PATCH 024/130] chore: remove test_install --- test_install.sh | 40 ---------------------------------------- 1 file changed, 40 deletions(-) delete mode 100644 test_install.sh diff --git a/test_install.sh b/test_install.sh deleted file mode 100644 index 5db0ce05c..000000000 --- a/test_install.sh +++ /dev/null @@ -1,40 +0,0 @@ -#!/bin/bash - -# Build the distribution -original_directory=$(pwd) -distfile="${original_directory}/dist/$(poetry build -f sdist | tail -1 | awk -F' ' '{print $NF}')" - -# Create a new tempfile for the test -tempdir=$(mktemp -d) -echo "new temporary directory: ${tempdir}" - -# Copy the test files -echo "copying the test files" -cp -r -v "${original_directory}/tests" "${tempdir}/." - -# Change to the new directory -echo "change to the new directory" -cd "$tempdir" || exit - -# Create a new virtualenv and install the distribution -echo "creating new virtualenv" -virtualenv venv - -echo "activating new venv" -# shellcheck source=/dev/null -source venv/bin/activate - -echo "installing distribution file ${distfile}" -pip install "${distfile}" -pip install pytest - -echo "Installed version of AutoRA: $(python -c 'import autora; print(autora.__version__)')" - -echo "running unit tests:" -pytest - -echo "Run and test using:" -echo "cd \"${tempdir}\"" -echo "source ${tempdir}/venv/bin/activate" -echo "python -c 'import autora; print(autora.__version__)'" -echo "pytest" From 9329acd5680bb6ae97abc9ce6bb2e0fd577142f6 Mon Sep 17 00:00:00 2001 From: John Gerrard Holland Date: Tue, 25 Apr 2023 18:18:44 -0400 Subject: [PATCH 025/130] chore: update dev dependencies to include build --- pyproject.toml | 7 +++++-- 1 file changed, 5 insertions(+), 2 deletions(-) diff --git a/pyproject.toml b/pyproject.toml index 2f8771e18..53db536e9 100644 --- a/pyproject.toml +++ b/pyproject.toml @@ -8,14 +8,17 @@ authors = [ ] readme = "README.md" requires-python = ">=3.8,<3.11" -dependencies = ["autora-core"] [project.optional-dependencies] +core = [ + "autora-core" +] theorists = [ "autora-darts", ] dev = [ - "pre-commit>=2.20,<4.0", + "build", + "pre-commit", "mkdocs-material>=8.5.10,<10.0.0", "mkdocs-gen-files>=0.3.4,<0.5.0", "mkdocs-literate-nav>=0.4.1,<0.7.0", From 6794bbab4f45b960ba2f80bb203eafbe343e9c46 Mon Sep 17 00:00:00 2001 From: John Gerrard Holland Date: Tue, 25 Apr 2023 18:18:56 -0400 Subject: [PATCH 026/130] chore: specify src directory --- pyproject.toml | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/pyproject.toml b/pyproject.toml index 53db536e9..64d1017c4 100644 --- a/pyproject.toml +++ b/pyproject.toml @@ -38,4 +38,4 @@ requires = ["setuptools", "setuptools-scm"] build-backend = "setuptools.build_meta" [tool.setuptools.packages.find] -where = [] # no source files for this repository +where = ["src"] From 05fb24fbab419ce070f06345b8462b1b03171e18 Mon Sep 17 00:00:00 2001 From: John Gerrard Holland Date: Tue, 25 Apr 2023 18:23:12 -0400 Subject: [PATCH 027/130] chore: add todo note --- pyproject.toml | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/pyproject.toml b/pyproject.toml index 64d1017c4..5c6f67283 100644 --- a/pyproject.toml +++ b/pyproject.toml @@ -16,7 +16,7 @@ core = [ theorists = [ "autora-darts", ] -dev = [ +dev = [ # TODO: move these to autora-core[dev] dependencies "build", "pre-commit", "mkdocs-material>=8.5.10,<10.0.0", From 51e31cf55228612192abf8717f7655386901639f Mon Sep 17 00:00:00 2001 From: John Gerrard Holland Date: Tue, 25 Apr 2023 21:52:17 -0400 Subject: [PATCH 028/130] chore: add ignore for _version.py --- src/autora/.gitignore | 1 + src/autora/.gitkeep | 0 2 files changed, 1 insertion(+) create mode 100644 src/autora/.gitignore delete mode 100644 src/autora/.gitkeep diff --git a/src/autora/.gitignore b/src/autora/.gitignore new file mode 100644 index 000000000..050cda3ca --- /dev/null +++ b/src/autora/.gitignore @@ -0,0 +1 @@ +_version.py diff --git a/src/autora/.gitkeep b/src/autora/.gitkeep deleted file mode 100644 index e69de29bb..000000000 From 6be03b1f2da261190221cffa94e6a1c5c05c0b55 Mon Sep 17 00:00:00 2001 From: John Gerrard Holland Date: Tue, 25 Apr 2023 21:53:27 -0400 Subject: [PATCH 029/130] chore: add root src directory --- .idea/autora.iml | 11 ++++++++++- 1 file changed, 10 insertions(+), 1 deletion(-) diff --git a/.idea/autora.iml b/.idea/autora.iml index a2defaceb..81f35b263 100644 --- a/.idea/autora.iml +++ b/.idea/autora.iml @@ -2,6 +2,7 @@ + @@ -10,6 +11,7 @@ + @@ -20,7 +22,14 @@ + + + - + \ No newline at end of file From d48044dffe59c5b38f815911a438a1704404ae85 Mon Sep 17 00:00:00 2001 From: John Gerrard Holland Date: Tue, 25 Apr 2023 21:53:47 -0400 Subject: [PATCH 030/130] build: set up dynamic versioning for build --- pyproject.toml | 15 ++++++++------- 1 file changed, 8 insertions(+), 7 deletions(-) diff --git a/pyproject.toml b/pyproject.toml index 5c6f67283..cf7c08686 100644 --- a/pyproject.toml +++ b/pyproject.toml @@ -1,6 +1,13 @@ +[build-system] +requires = ["setuptools", "setuptools-scm"] +build-backend = "setuptools.build_meta" + +[tool.setuptools_scm] +write_to = "src/autora/_version.py" + [project] name = "autora" -version = "0.0.0" +dynamic = ["version"] description = "Autonomous Research Assistant (AutoRA) is a framework for automating steps of the empirical research process." authors = [ {name = "Sebastian Musslick", email="sebastian_musslick@brown.edu"}, @@ -33,9 +40,3 @@ homepage = "https://musslick.github.io/AER_website/Research.html" repository = "https://github.com/AutoResearch/autora" documentation = "https://autoresearch.github.io/autora/" -[build-system] -requires = ["setuptools", "setuptools-scm"] -build-backend = "setuptools.build_meta" - -[tool.setuptools.packages.find] -where = ["src"] From 0f20a5b66a8be992afbaac369114ae1bf9633eb8 Mon Sep 17 00:00:00 2001 From: John Gerrard Holland Date: Tue, 25 Apr 2023 21:53:59 -0400 Subject: [PATCH 031/130] chore: remove old pytest run configuration --- .idea/runConfigurations/pytest_in_tests.xml | 19 ------------------- 1 file changed, 19 deletions(-) delete mode 100644 .idea/runConfigurations/pytest_in_tests.xml diff --git a/.idea/runConfigurations/pytest_in_tests.xml b/.idea/runConfigurations/pytest_in_tests.xml deleted file mode 100644 index 351b1dff2..000000000 --- a/.idea/runConfigurations/pytest_in_tests.xml +++ /dev/null @@ -1,19 +0,0 @@ - - - - - \ No newline at end of file From f619b19fe4ca4a172e5dd893a1e1154b574e1263 Mon Sep 17 00:00:00 2001 From: John Gerrard Holland Date: Tue, 25 Apr 2023 22:02:47 -0400 Subject: [PATCH 032/130] chore: remove empty autora directory, just keep src/ --- .idea/autora.iml | 7 ------- pyproject.toml | 12 +++++------- src/.keep | 1 + src/autora/.gitignore | 1 - 4 files changed, 6 insertions(+), 15 deletions(-) create mode 100644 src/.keep delete mode 100644 src/autora/.gitignore diff --git a/.idea/autora.iml b/.idea/autora.iml index 81f35b263..01e4256c7 100644 --- a/.idea/autora.iml +++ b/.idea/autora.iml @@ -22,13 +22,6 @@ - - - diff --git a/pyproject.toml b/pyproject.toml index cf7c08686..f83abc749 100644 --- a/pyproject.toml +++ b/pyproject.toml @@ -1,10 +1,3 @@ -[build-system] -requires = ["setuptools", "setuptools-scm"] -build-backend = "setuptools.build_meta" - -[tool.setuptools_scm] -write_to = "src/autora/_version.py" - [project] name = "autora" dynamic = ["version"] @@ -40,3 +33,8 @@ homepage = "https://musslick.github.io/AER_website/Research.html" repository = "https://github.com/AutoResearch/autora" documentation = "https://autoresearch.github.io/autora/" +[build-system] +requires = ["setuptools", "setuptools-scm"] +build-backend = "setuptools.build_meta" + +[tool.setuptools_scm] diff --git a/src/.keep b/src/.keep new file mode 100644 index 000000000..a5b252d28 --- /dev/null +++ b/src/.keep @@ -0,0 +1 @@ +# file to ensure that the src/ directory always exists so setuptools works diff --git a/src/autora/.gitignore b/src/autora/.gitignore deleted file mode 100644 index 050cda3ca..000000000 --- a/src/autora/.gitignore +++ /dev/null @@ -1 +0,0 @@ -_version.py From db1b2ed51a01f95821d6a450bc9430bfb0e93a42 Mon Sep 17 00:00:00 2001 From: John Gerrard Holland Date: Tue, 25 Apr 2023 22:03:12 -0400 Subject: [PATCH 033/130] docs: add LICENSE.md to pypi resolves #302 --- pyproject.toml | 1 + 1 file changed, 1 insertion(+) diff --git a/pyproject.toml b/pyproject.toml index f83abc749..396a8c09b 100644 --- a/pyproject.toml +++ b/pyproject.toml @@ -8,6 +8,7 @@ authors = [ ] readme = "README.md" requires-python = ">=3.8,<3.11" +license = { file = "LICENSE.md" } [project.optional-dependencies] core = [ From bf02562aab18548ba660992a673ff9bddc67db1a Mon Sep 17 00:00:00 2001 From: John Gerrard Holland Date: Tue, 25 Apr 2023 22:18:41 -0400 Subject: [PATCH 034/130] docs: add how-to install and publish to PyPI using twine --- README.md | 32 ++++++++++++++++++++++++++++++++ pyproject.toml | 14 +++++++++++--- 2 files changed, 43 insertions(+), 3 deletions(-) diff --git a/README.md b/README.md index 56715d601..282d630b2 100644 --- a/README.md +++ b/README.md @@ -422,3 +422,35 @@ The release process is automated using GitHub Actions. - Click on "Publish release" - GitHub actions will run to create and publish the PyPI and Anaconda packages, and publish the documentation. Check in GitHub actions whether they run without errors and fix any errors which occur. + + +# How to Develop + +Install this in an environment using your chosen package manager. + +## Using `virtualenv` + +Create a new virtual environment: +```shell +virtualenv venv +``` + +Activate it: +```shell +source venv/bin/activate +``` + +Use `pip install` to install the current project (`"."`) in editable mode (`-e`) with dev-dependencies (`[dev]`): +```shell +pip install -e ".[dev]" +``` + +Build the package using: +```shell +python -m build +``` + +Publish the package to PyPI using `twine`: +```shell +twine upload dist/* +``` diff --git a/pyproject.toml b/pyproject.toml index 396a8c09b..0bd26ed69 100644 --- a/pyproject.toml +++ b/pyproject.toml @@ -17,9 +17,13 @@ core = [ theorists = [ "autora-darts", ] -dev = [ # TODO: move these to autora-core[dev] dependencies +dev = [ "build", - "pre-commit", + "twine", + "autora[docs]", + "autora[core-dev]", + ] +docs = [ # TODO: move these to autora-core[docs] dependencies "mkdocs-material>=8.5.10,<10.0.0", "mkdocs-gen-files>=0.3.4,<0.5.0", "mkdocs-literate-nav>=0.4.1,<0.7.0", @@ -28,9 +32,13 @@ dev = [ # TODO: move these to autora-core[dev] dependencies "mkdocs-jupyter>=0.24.1", "mkdocs-multirepo-plugin>=0.6.1", ] +core-dev = [ # TODO: move these to autora-core[dev] dependencies + "autora[dev]", + "pre-commit", +] [project.urls] -homepage = "https://musslick.github.io/AER_website/Research.html" +homepage = "https://www.empiricalresearch.ai/" repository = "https://github.com/AutoResearch/autora" documentation = "https://autoresearch.github.io/autora/" From d673133238894fcb6d37ea6c6a90a258a356f5fb Mon Sep 17 00:00:00 2001 From: John Gerrard Holland Date: Tue, 25 Apr 2023 22:32:19 -0400 Subject: [PATCH 035/130] docs: update virtualenv instructions --- README.md | 4 ++++ 1 file changed, 4 insertions(+) diff --git a/README.md b/README.md index 282d630b2..c83804f0c 100644 --- a/README.md +++ b/README.md @@ -430,6 +430,10 @@ Install this in an environment using your chosen package manager. ## Using `virtualenv` +Install: +- python: https://www.python.org/downloads/ +- virtualenv: https://virtualenv.pypa.io/en/latest/installation.html + Create a new virtual environment: ```shell virtualenv venv From a1a446c378c7363e428aab0d2a4366adedf38dc8 Mon Sep 17 00:00:00 2001 From: John Gerrard Holland Date: Tue, 25 Apr 2023 22:33:27 -0400 Subject: [PATCH 036/130] docs: cleanup after generating docs --- mkdocs.yml | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/mkdocs.yml b/mkdocs.yml index 90ff6107d..5fb889393 100644 --- a/mkdocs.yml +++ b/mkdocs.yml @@ -32,7 +32,7 @@ plugins: - search - multirepo: # (optional) tells multirepo to clean up the temporary directory after site is built. - cleanup: false + cleanup: true # if set the docs directory will not be removed when importing docs. # When using this with a nav section in an imported repo you must keep the # docs directory in the path (e.g., docs/path/to/file.md). From a12c5de9377fac70308eecc0378085a72ae2cc5d Mon Sep 17 00:00:00 2001 From: John Gerrard Holland Date: Tue, 25 Apr 2023 22:39:15 -0400 Subject: [PATCH 037/130] docs: remove documentation which belongs elsewhere --- docs/CODEOWNERS | 1 - docs/cycle/cycle_results_plots.ipynb | 643 - docs/cycle/cycle_scoring.ipynb | 420 - docs/cycle/cycle_scoring_bms.ipynb | 360 - docs/cycle/simple_cycle_bms_darts.ipynb | 396 - .../simple_cycle_bms_model_poppernet.ipynb | 622 - ...le_cycle_uncertainty_experimentalist.ipynb | 350 - .../Experimentalist Pipeline Examples.ipynb | 311 - docs/synthetic/inventory.ipynb | 68 - docs/theorist/bms/example.ipynb | 210 - docs/theorist/bms/how_it_works.md | 75 - docs/theorist/bms/img/BMSEquationTreeOps.png | Bin 191653 -> 0 bytes docs/theorist/bms/img/BMSTempering.png | Bin 503083 -> 0 bytes docs/theorist/bms/introduction.md | 23 - docs/theorist/bms/meta_parameters.md | 9 - docs/theorist/bms/search_space.ipynb | 126 - docs/theorist/bms/weber.ipynb | 14324 ---------------- docs/theorist/bsr/bsr.ipynb | 142 - docs/theorist/bsr/how_it_works.md | 20 - docs/theorist/bsr/img.png | Bin 17622 -> 0 bytes docs/theorist/bsr/introduction.md | 16 - docs/theorist/bsr/meta_parameters.md | 10 - docs/theorist/bsr/search_space.md | 17 - mkdocs.yml | 39 +- 24 files changed, 3 insertions(+), 18179 deletions(-) delete mode 100644 docs/CODEOWNERS delete mode 100644 docs/cycle/cycle_results_plots.ipynb delete mode 100644 docs/cycle/cycle_scoring.ipynb delete mode 100644 docs/cycle/cycle_scoring_bms.ipynb delete mode 100644 docs/cycle/simple_cycle_bms_darts.ipynb delete mode 100644 docs/cycle/simple_cycle_bms_model_poppernet.ipynb delete mode 100644 docs/cycle/simple_cycle_uncertainty_experimentalist.ipynb delete mode 100644 docs/pipeline/Experimentalist Pipeline Examples.ipynb delete mode 100644 docs/synthetic/inventory.ipynb delete mode 100644 docs/theorist/bms/example.ipynb delete mode 100644 docs/theorist/bms/how_it_works.md delete mode 100644 docs/theorist/bms/img/BMSEquationTreeOps.png delete mode 100644 docs/theorist/bms/img/BMSTempering.png delete mode 100644 docs/theorist/bms/introduction.md delete mode 100644 docs/theorist/bms/meta_parameters.md delete mode 100644 docs/theorist/bms/search_space.ipynb delete mode 100644 docs/theorist/bms/weber.ipynb delete mode 100644 docs/theorist/bsr/bsr.ipynb delete mode 100644 docs/theorist/bsr/how_it_works.md delete mode 100644 docs/theorist/bsr/img.png delete mode 100644 docs/theorist/bsr/introduction.md delete mode 100644 docs/theorist/bsr/meta_parameters.md delete mode 100644 docs/theorist/bsr/search_space.md diff --git a/docs/CODEOWNERS b/docs/CODEOWNERS deleted file mode 100644 index 3e42d47ec..000000000 --- a/docs/CODEOWNERS +++ /dev/null @@ -1 +0,0 @@ -* @musslick \ No newline at end of file diff --git a/docs/cycle/cycle_results_plots.ipynb b/docs/cycle/cycle_results_plots.ipynb deleted file mode 100644 index d01f36ef0..000000000 --- a/docs/cycle/cycle_results_plots.ipynb +++ /dev/null @@ -1,643 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "source": [ - " # Examples of using cycle results plotting functions" - ], - "metadata": { - "collapsed": false - } - }, - { - "cell_type": "code", - "execution_count": null, - "outputs": [], - "source": [ - "# Uncomment the following line when running on Google Colab\n", - "# !pip install autora" - ], - "metadata": { - "collapsed": false - } - }, - { - "cell_type": "code", - "execution_count": 1, - "metadata": { - "collapsed": true - }, - "outputs": [], - "source": [ - "from autora.variable import VariableCollection, Variable\n", - "from autora.cycle import Cycle, plot_results_panel_2d, plot_results_panel_3d\n", - "from autora.experimentalist.pipeline import Pipeline\n", - "from autora.experimentalist.pooler.general_pool import grid_pool\n", - "from autora.experimentalist.sampler import random_sampler\n", - "from sklearn.linear_model import LinearRegression\n", - "import numpy as np\n", - "import random\n", - "%matplotlib inline" - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "outputs": [ - { - "data": { - "text/plain": "" - }, - "execution_count": 2, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "# Simple linear regression cycle\n", - "random.seed(1)\n", - "\n", - "def ground_truth(xs):\n", - " return xs + 1.0\n", - "\n", - "# Variable Metadata\n", - "study_metadata = VariableCollection(\n", - " independent_variables=[\n", - " Variable(name=\"x1\", allowed_values=np.linspace(0, 1, 100))\n", - " ],\n", - " dependent_variables=[Variable(name=\"y\", value_range=(-20, 20))],\n", - ")\n", - "\n", - "# Theorist\n", - "lm = LinearRegression()\n", - "\n", - "# Experimentalist\n", - "example_experimentalist = Pipeline(\n", - " [\n", - " (\"pool\", grid_pool),\n", - " (\"sampler\", random_sampler),\n", - " (\"transform\", lambda x: [s[0] for s in x]),\n", - " ],\n", - " params={\n", - " \"pool\": {\"ivs\": study_metadata.independent_variables},\n", - " \"sampler\": {\"n\": 5},\n", - " },\n", - ")\n", - "\n", - "# Experiment Runner\n", - "def get_example_synthetic_experiment_runner():\n", - " rng = np.random.default_rng(seed=180)\n", - "\n", - " def runner(xs):\n", - " return ground_truth(xs) + rng.normal(0, 0.1, xs.shape)\n", - "\n", - " return runner\n", - "\n", - "example_synthetic_experiment_runner = get_example_synthetic_experiment_runner()\n", - "\n", - "# Initialize Cycle\n", - "cycle = Cycle(\n", - " metadata=study_metadata,\n", - " theorist=lm,\n", - " experimentalist=example_experimentalist,\n", - " experiment_runner=example_synthetic_experiment_runner,\n", - ")\n", - "cycle.run(5)" - ], - "metadata": { - "collapsed": false - } - }, - { - "cell_type": "markdown", - "source": [ - "## Plotting 2D\n", - "The plotter will create a panel for each cycle.\n", - "* Default shows black points for previous data and orange points for new data to the cycle.\n", - "* The theory is plotted as a blue line.\n", - "* Default panel configuration is 4 plots to a row." - ], - "metadata": { - "collapsed": false - } - }, - { - "cell_type": "code", - "execution_count": 3, - "outputs": [ - { - "data": { - "text/plain": "
", - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkcAAAGzCAYAAAAlqLNlAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8o6BhiAAAACXBIWXMAAA9hAAAPYQGoP6dpAABusklEQVR4nO3deXxM1/sH8M9M9j1CNhHEvmcRYqmi1aKqdEEVCUVbDbX1q5SumqqWb3WxVO1bqb1fWktp7EISCRFiC7EkkSC7bHPP749p5pfIIsskNzPzeb9e84rM3Hvnmcwx95lzzn2OQgghQEREREQAAKXcARARERHVJkyOiIiIiAphckRERERUCJMjIiIiokKYHBEREREVwuSIiIiIqBAmR0RERESFMDkiIiIiKoTJUQUJIZCWlgbWzjRsbAfENkBsA/qLyVEFpaenw87ODunp6bLFcPPmTSgUCkRERMgWg6GTux2wDciPbYDkbgMA20F1YXJUDRISEjBp0iQ0adIEZmZmcHd3x8CBA3Ho0CG5Qyvi/Pnz6NGjB8zNzeHu7o5vv/1W7pD0hi60gezsbIwePRrt27eHsbExBg8eLHdIekUX2kBwcDAGDRoEV1dXWFlZwcvLCxs3bpQ7LL2iC+0gJiYGvXv3hrOzM8zNzdGkSRPMmTMHeXl5cocmG2O5A9A3N2/eRPfu3WFvb4/vvvsO7du3R15eHvbv34/AwEBcvnxZ7hABAGlpaXjxxRfRp08fLFu2DBcuXMDbb78Ne3t7vPPOO3KHp9N0pQ2oVCpYWFjggw8+wPbt2+UOR6/oShs4efIkOnTogI8++gjOzs7Ys2cP/P39YWdnh5dfflnu8HSerrQDExMT+Pv7w8fHB/b29oiMjMT48eMhSRK+/vprucOTh6AKSU1NFQBEampqiY/3799fuLm5iYyMjGKPPXr0SAghxJgxY8SAAQOKPJabmyscHR3FihUrhBBCqFQqMX/+fNG0aVNhamoq3N3dxVdffSWEECI2NlYAEOfOndPsf+HCBdGvXz9hZWUlnJycxMiRI0VSUlKpr2PJkiWiTp06IicnR3PfRx99JFq2bFmuv4OhK6sd6EobKCwgIEAMGjSoXNuSmr61gQIvvfSSGDNmTIX2MVT6cj4oydSpU8UzzzxToX30CYfVtOjhw4fYt28fAgMDYWVlVexxe3t7AMC4ceOwb98+xMfHax7bs2cPsrKyMGzYMADArFmz8M033+CTTz5BdHQ0Nm3aBGdn5xKfNyUlBc899xy8vb0RGhqKffv2ITExEUOHDi011lOnTuHZZ5+Fqamp5r6+ffsiJiYGjx49qszLJ+hWG6DqoettIDU1FQ4ODhXah4rT5XZw7do17Nu3Dz179qzAK9YzcmdnuqasbwohISECgNixY8dTj9OmTRsxf/58ze8DBw4Uo0ePFkIIkZaWJszMzMSvv/5a4r5PflOYO3euePHFF4tsc/v2bQFAxMTElHiMF154QbzzzjtF7rt48aIAIKKjo58av6ErrR3oUhsojD1HFadvbUAIIbZs2SJMTU1FVFRUubY3dPpyPijQtWtXYWZmJgCId955R6hUqqfGrq/Yc6RFogKXc44bNw6rV68GACQmJuKvv/7C22+/DQC4dOkScnJy8Pzzz5frWJGRkfjnn39gbW2tubVq1QoAcP369Qq+CqoKtgHS1Tbwzz//YMyYMfj111/Rtm3bcr8GKpkutoMtW7YgPDwcmzZtwt69e7FgwYJyvwZ9wwnZWtS8eXMoFIpyTbLz9/fHzJkzcerUKZw8eRIeHh7o0aMHAMDCwqJCz5uRkYGBAwdi/vz5xR5zdXUtcR8XFxckJiYWua/gdxcXlwo9P/0/XWoDVD10sQ0cOXIEAwcOxPfffw9/f/8KPS+VTBfbgbu7OwCgTZs2UKlUeOeddzB9+nQYGRlVKAZ9wJ4jLXJwcEDfvn2xePFiZGZmFns8JSVF8++6deti8ODBWL16NdasWYMxY8ZoHmvevDksLCzKfamnj48PLl68iMaNG6NZs2ZFbiWNdQNA165dcfTo0SKXah48eBAtW7ZEnTp1yvmK6Um61AaoeuhaGwgODsaAAQMwf/58XqmqRbrWDp4kSRLy8vIgSVK599Er8o7q6Z6nXZ1w/fp14eLiItq0aSO2bdsmrly5IqKjo8UPP/wgWrVqVWTbAwcOCFNTU2FkZCTu3r1b5LHPP/9c1KlTR6xdu1Zcu3ZNnDp1SnPlwpNjzHfv3hWOjo7ijTfeEGfOnBHXrl0T+/btE6NHjxb5+fklxpmSkiKcnZ3FqFGjRFRUlNi8ebOwtLQUv/zySxX/QoahrHagK21ACPU8s3PnzomBAweKXr16iXPnzhW56oVKpw9t4PDhw8LS0lLMmjVLxMfHa24PHjzQwl9I/+nL+WDDhg1iy5YtIjo6Wly/fl1s2bJF1K9fX4wYMaKKfyHdxeSogp72n0EIIe7duycCAwNFo0aNhKmpqXBzcxOvvPKK+Oeff4psJ0mSaNSokXjppZeKHUOlUomvvvpKNGrUSJiYmIiGDRuKr7/+WghR8qWbV65cEa+++qqwt7cXFhYWolWrVmLKlClCkqRS44yMjBTPPPOMMDMzE25ubuKbb76p2B/DgD2tHehKG2jUqJEAUOxGT6cPbSAgIKDE979nz56V+psYGn05H2zevFn4+PgIa2trYWVlJdq0aSO+/vpr8fjx44r/UfSEQgguClMRaWlpsLOzQ2pqKmxtbat0rIyMDLi5uWH16tV47bXXtBQh1QRttQO2Ad3FNkA8H+gvTsiWgSRJSE5OxsKFC2Fvb49XXnlF7pCohrENENsAAWwHtRWTIxnExcXBw8MDDRo0wJo1a2BszLfB0LANENsAAWwHtRXfBRk0bty4QjUwSP+wDRDbAAFsB7UVL+UnIiIiKkSnk6N58+ahU6dOsLGxgZOTEwYPHoyYmJin7rd161a0atUK5ubmaN++Pf78888aiJaqW9itRzh5PVnuMIiISMfpdHJ05MgRBAYG4vTp0zh48CDy8vLw4osvllhwq8DJkycxfPhwjB07FufOncPgwYMxePBgREVF1WDkpG0PMnIQuDEcI1eE4MDFBLnDISIiHaZXl/InJSXByckJR44cwbPPPlviNsOGDUNmZib27Nmjua9Lly7w8vLCsmXLnvoc2rx0k7RDJQmMXn0Gx64mo4mjFf6Y+Ayszap3Oh3bAbENENuA/tKrCdmpqakA1GXbS3Pq1ClMmzatyH19+/bFrl27Stw+JycHOTk5mt/T0tKqHihp1c+Hr+HY1WSYmyixdETHakmM2A6IbYDYBnRHVm4+Lt5LQ6fGpecDZdHpYbXCJEnClClT0L17d7Rr167U7RISEuDs7FzkPmdnZyQklDwUM2/ePNjZ2WluBQvzUe1w/GoyFh26AgAIGtweLV1squV52A6IbYDYBnSDJAlM2RyBN5efxrawO5U6ht4kR4GBgYiKisLmzZu1etxZs2YhNTVVc7t9+7ZWj0+Vl5Cajcmbz0EI4M1O7ni9Y4Nqey62A2IbILYB3fDdgRgciE6EkUIBj3qWlTqGXgyrTZw4EXv27MHRo0fRoEHZJ0gXFxckJiYWuS8xMREuLi4lbm9mZgYzMzOtxUrakaeSMOm3cDzIzEUbV1t8/krban0+tgNiGyC2gdpvW9gdLA2+DgCY/0Z7dGxkgMNqQghMnDgRO3fuxOHDh+Hh4fHUfbp27YpDhw4Vue/gwYPo2rVrdYVJ1WDB/hicvfkINmbGWDLCB+YmRnKHREREMjp78yFm7TgPAJjYuxle9a78aIJO9xwFBgZi06ZN2L17N2xsbDTzhuzs7GBhYQEA8Pf3h5ubG+bNmwcAmDx5Mnr27ImFCxdiwIAB2Lx5M0JDQ7F8+XLZXgdVzIGLCfjl6A0AwHdDOqBxPSuZIyIiIjnFPcjCu+vDkKcSeKm9C6a90KJKx9PpnqOlS5ciNTUVvXr1gqurq+a2ZcsWzTZxcXGIj4/X/N6tWzds2rQJy5cvh6enJ7Zt24Zdu3aVOYmbao+4B1mYvjUSADD2GQ/0a+cqc0RUm9xPz8b4daFITMuWOxQiqiFp2XkYu/YsHmbmokMDOywc4gWlUlGlY+p0z1F5SjQFBwcXu2/IkCEYMmRINURE1Sk7T4X3N4UhPTsfPg3tMbN/K7lDolokIycfb685i6i7acjIzsdv73SROySSycrjsWjpbINnmteTOxSqZvkqCZM2ncPV+xlwsTXHr/6+sDCt+jQLne45IsMyd080ou6moY6lCX5+ywcmRmy+pJankhC4MRxRd9NQ18oU815rL3dIJJNNIXGYuycab685i9jk0ldLIP3w1d5LOHIlCRYmRlgR4AtnW3OtHJdnF9IJu87dxcaQOCgUwPfDvFDf3kLukKiWEEJg1o4Lmg/IlaM7cR6agfoj8h5m77oAABjXwwMebAd6bf3pW1hz8iYA4PthnmjnZqe1YzM5olrv2v10fLxT/YE3qXcz9GrpJHNEVJv89+AVbAu7AyOlAotHeMPL3V7ukEgGhy8nYtqWCAgBjOzSEP/p21LukKgaHb+ajM//uAgA+E/fllqff8rkiGq1rNx8TNgQjqxcFbo3q4vJfap2BQLplw2nb+Gnw9cAAEGD2+G5Vs5P2YP00ekbDzBhQzjyJYFBXvXx5SvtoFBUbUIu1V7X7mdgwsYwqCSB13zc8H6vplp/DiZHVGsJITB7ZxSu3s+Ak40ZFg3zhlEVr0Ag/XHgYgI+3R0FAJjSpzne7NxQ5ohIDhfupGLc2lDk5Evo09oJC4Z4VvlKJaq9HmXmYuzas0jPzodvozqY91r7akmEmRxRrfXbmdvYee4ujJQK/PyWDxxtWJmW1MJuPcIHm89B+nfpmMnPN5c7JJLB1cR0+K8KQUZOPro0ceCFGnouN1/CexvCcOtBFhrUscAvozrCzLh6CgCzFVGtFHU3FZ//Tz2e/OGLLdHZo3Il4En/XE/KwLi1Z5GdJ6F3S0d8NZhDKIbo9sMsjFwZgkdZefBsYIcVAZ1YKV+PCSHwya4ohMQ+hLWZMVYGdEJd6+r7wszkiGqd1Md5eH9jOHLzJTzfygnvPttE7pColrifno2AVWc0J8TFI3xgzJ4Cg3M/LRsjV4YgMS0HzZ2ssWZMZ1ib6XTZPt0kSUDGffXParbiWCy2hN6GUgH89JY3WrrYVOvz8VOFahUhBGZsi0Tcwyy42Vtg4VDOHyC1giKPdx49RqO6llg5uhMsTXlC1CvlONmmZOVi1MozuPUgC+4OFtgwzg91rExrMEgCoH6Pji0Adk9U/9RigiRJEhITEyH9e8y/oxPx9V+XAABzBrRB7xq4YpmfLFSrrDwei/0XE2FqpMSSET6wt+SHHqmLPE7YEKYp8rh2TGfUq8YudZJBwcn2TijQwBfo8SGgLPr9PSMnH6NXn0VMYjqcbMywcWwXrRX9owrKSla/VxmJ6p9ZyYB11ZMWSZIQFBSEkJAQ+Pn54bW3J2Hy5nMQAnjLryHGdG9c9djLgckR1RqhNx/im78uAwDmvNwanqxXQ1D3Jn60/TyOXU2GhYkRVrHIo356ysk2O0+Fd9aFIuJ2CuwtTbB+rB8a1rWUMWADZ1lPncQWJLOW2lmqJSkpCSEhIUhISMDxsPPYozyLzH9LuXzxStsam1/I5IhqhQcZOZi46RzyJYGBnvUxqksjuUOiWmLhgSvYEa6+anHJCB8mzfqqjJNtnkrCpN/O4eT1B7AyNcLaMZ2rfc4JPYVSqe7dy0pWv1dK7czScXR0hJ+fH06dCUVSmyFISs9Fk3pWWPJWx5KvRJQkrccAMDmiWkAlCUzZEoGEtGw0qWdVbXUrSPdsOH0LP/+jLvI479X26N2K1dH1ViknW0kS+GjbeRyMToSpsRIrAjoxQa4tlEqtDKUVPaQSH3/8MSasO4PomIewszDBytGdYGdpUnzjcgzFVjoOrRyFqAp+PnwNx64mw9xEiaUjO/KqEwJQtMjj1D4tMLSTu8wRUbUrONn+e4ITQuCL/13EjnN3YaxUYOkIH3RtWlfmIKm6/fzPDRyIeah+z0f6lL5GXklDsVrC5IhkdfxqMhYdugIACBrcnl3lBEBd5HHSb+oij8M7u+OD55vJHRLJ4L8Hr2DtqVtQKICFQz3xfGsuD6Pv9py/h+//Vp8T5g5uh25Ny5jLVDAUa+2s1XlPAIfVSEYJqdmaqxDe7OSO1zs2kDskqgWuJ2Vg7NqzyPm3ztXcQSzyaIh+PXpDs27el4PaYZCXm8wRUXWLuJ2C6b9HAgDGPuOB4U9bEqia5j0BTI5IJuoJluF4kJmLNq62+PyVtnKHRLVAQZHHlKw8eLrb46e3vFnk0QD9diYOQX+q69r8p29LXqBhAO6lPMb4deo18p5r5YSPX2pdvh2rYd4TwGE1ksmC/TE4e/MRbMyMsWSED8v+EzJy8jFmtbrIY+O6llgV4MsijwZoz/l7+HjnBQDAez2bIrA3h1T1XWZOPsauDUVSeg5audjgx+HyLzLO5Ihq3MHoRPxy9AYA4Ns3OrBmDSE3X13k8eK9f4s8vt25WtdNotrpn5j7mLolAkIAwzs3xEf9WsodElUzSRKYuiUCl+LTUM/aFCsCfGvFRTlMjqhG3X6Yhem/RwAA3u7ugf7tXeUNiGQnhMDMHeoij5amRlg9phMa1WXCbGjOxD7EhA1hyFOpa51xQWHD8O3+GBz4t0zDL6N80aBO7SjsyeSIakx2ngoTNoYhLTsf3g3tMbN/K7lDolpgwYEYTZHHxSN80KGBvdwhUQ2LupuKsWvOIjtPQu+WjvjvUE/Zh1Wo+m0NvY1lR64DAL59vQM6Nqojc0T/j8kR1Zi5e6IRdTcNdSxNsPgtH5gas/kZuvWnb2HxP+oPx3mvta+RBSWpdrl2PwP+q84gPScfnT0csHRkKZWQSa+E3HigmVs26blmGOxdu65GZAukGrE74i42hsQBAL4f5oX69hYyR0Ry238xAZ/9W+Rx2gstMNSXRR4Nze2HWRi5IgQPM3PR3s0OKwN8eXGGAbj1IBPv/TuE+lJ7F0zt00LukIphckTV7tr9dMza8f/fEHqxd8Dghd16iA8KFXmc9ByvSDI099OzMWplCBLSstHMyRpr3+4MG/MSloggvZKWnYexa0PxKCsPHRrYYeEQLyhr4RAqkyOqVlm5+ZiwIRxZuSp0a1oXU2rhNwSqWdfuZ2Ds2lAWeTRgqVl58F95BjcfZKFBHQtsGOsHBytTucOiapavkjBx0zlcu58BF1tz/OrvCwvT2tlTyOSIqo0QAnN2RuHq/Qw42Zjhhzflr11B8rqfxiKPhi4zJx9j1pzB5YR0ONqYYeM4P7jYmcsdFtWAuXuicfRKEixMjLAiwBfOtrX3feenElWbzWdvY8c59VVIPw33hqMN69YYsvTsPIxZcxZ3U1jk0VDl5Kvw7vowhMelwM7CBBvG+rFsg4FYd+om1p66BUA977Sdm53MEZWNyRFVi6i7qfjsj4sAgA9fbAm/JlxJ25CpizyG4+I9daE3Fnk0PPkqCR/8dg7HryXDytQIa9/uzIWmDcTRK0n44n/RAIAZ/VqiXzsXmSN6OiZHpHVp2XkI3BSO3H/nlLz7bBO5QyIZCSEwc/t5HL+mLvK4ajSLPBoaSRL4aPsF7L+oLvb3q78vvNzt5Q6LasC1++kI3BQOlSTwmo8bJvRsKndI5cLkiLRKCIH/bI3ErQdZcLO3wMKhnrXySgSqOd/tj9EMry5hkUeDI4TAl3uisT38DoyUCvw83BvdmtWTOyyqAQ8zc/H2mlCkZ+ejU+M6mPdae525+ILJEWnVyuOx6m+HRkosGeEDe0tegWLI1p26iSXB6iKP37zWnmUcDNCiv69izcmbAIAFQzrgxba1f0iFqi43X8J7G8IQ9zAL7g4WWDayI8yMa+eVaSVhckRaE3brIb756zIAYM7LreHJbnODti8qQTPvbPoLLTCERR4Nzsrjsfjh0FUAwBevtMWr3g1kjohqghACs3dewJnYh7AxM8bKgE46N8eQyRFpxYOMHARuPId8Sb1o5KgujeQOiWQUevMhJm8+p1ldfSKLPBqc38/extw96km4H77YAgHdGssbENWY5UdvYGvYHSgVwE9veaOFs+5NvGdyRFUmSQJTf49EQlo2mtSz0qlxZdK+wkUe+7R2wtxBbdkeDMyfF+Ixc8d5AMA7zzZBYG8mx4biYHQivtmnHkH45OU2OjuUzuSIquznf67h6JUkmJsosWSkD6zNWLvGUBUUeUx9nAcvd3v8NNyHRR4NzJErSZi8Wb00zJud3DGrfysmxwbi4r1UTY/xyC4NMVqHewv5qUVVcuJaMr7/+woA4KvB7dHKxVbmiEgu6dl5GL1aXeTRo54VVo3uVGuXBqDqEXrzId5dH4o8lcCADq4IepW9yIbifno2xq8NRVauCs80q4fPBup2jzGTI6q0xLRszbeEYb7ueKMjJ1saqoIij9Hx/xZ5HNOZa2UZmIv3UjFmzVlk50no1dIR3w/14nJBBiI7T4Xx68JwLzUbTRytsHiED0x0vMdYt6Mn2eSrJEzadA7JGblo7WqLLwa1lTskkokQAh8VKvK4enRnNKxrKXdYVINuJGXAf+UZpGfno3NjBywd0RGmxjy9GAIhBD7cGonI2ymwtzTBqoBOsLMwkTusKmPrpUr57kAMztx8CGszYywZ4QNzEw6fGKpv98dgZ6Eij+0b1O41k0i77qY8xsgVIXiQmYt2brZYMbr2rrRO2rfo76vYcz4exkoFlo7oiMb19KP6PZMjqrCD0Yn45cgNAMB3b3SAh578Z6CKW3vyJpayyKPBSkrPwagVIbiXmo2mjlZYO6YzbM11v9eAyuePyHuaOlZBr7ZD16b6s4YmkyNSkyQg4776ZxluP8zC9N8jAABjujdG//auNRAc1RRJkpCYmAjpKe0AAPZFxePz/7HIo74pbxtIfZwH/1VncCM5E272Flg/1k/nCv1RycrTBs7FPcKHWyMBqMs1DOvUsKbCqxFMjkidEB1bAOyeqP5Zyn+I7DwV3t8YjrTsfHi522NW/9Y1HChVJ0mSEBQUhLFjxyIoKKjMD8azNx/ig80REAJ4y49FHvVFedtAVm4+3l5zFpfi01DP2gwbxvmhvr1FDUdL1aE8beBuymOMXxemWVz8o36tZIi0ejE5IiArGbgTCmQkqn9mJZe42Vd7o3HhbirsLU2weIQPJ1zqmaSkJISEhCAhIQEhISFISkoqcbtr99Mxbm0ocvMl9GntjC9f0e1Ldun/lacN5OSr8O76MITdegRbc2OsH9uZQ+t65GltIDMnH+PWhiI5IwetXGzww3BvvbwqkWc3AizrAQ18AWtnwK0jIKRivUe7I+5iw+k4AMD3w7zgxm+JesfR0RF+fn5wcXFB586dIUlSsW+NiWnZCFh1FqmP8+Dd0B4/DfdmkUc98rQ2kK+SMGVzBI5dVV+ZuObtzmjtytpm+qSsNqCSBCZvjvi3x9AUKwJ89bbor0IIIeQOQpekpaXBzs4OqampsLXVow+FgjlH4WuBu2HqZKnHh4BSiWv30/HKzyeQlavCxN7N8GHflnJHKzt9bQcFcw2WL1+Os2fPws/PD7Nnz4ZSqUR6dh6G/nIal+LT4FHPCtsndDPoWkaG1gYABWbuOI/fQ+/A1EiJVaM74Znm9eQOV1aG1gbm74vBL0dvwNRYic3vdIFPwzpyh1pt9DPlo4pTKtW3u2FFhteyTB3w/sZwZOWq0LVJXUx9oYXckVI1UiqVUCqVOHv2bJFu9Tp1HfHehjDNHBMWedRfJbWB+/fvY/nZh/g99A6MlAr8ONzb4BMjfVZSG1gVfAm/HL0JQH2Vsj4nRgCH1aiwwsNrDXwhLOpizs4oXEnMgKONGX4Yzoq3hqBwt7qfnx/q1q2HGdsiceLaA1iZGmHNmE4s8qjnnmwDmy+kYtWJWADA/Nc7oF87F5kjpOpWuA009H0e8w/dAgB88HxzDPJykzm66sdhtQrS125UDUlST8i2rIffQu9g1o4LMFIqsGmcH/yalFLDotA+UBpGvq3v7UCSJCQlJcHR0RHf7r+CZUeuw1ipwKrRnfBsC8cyt1eyDeiFgvd0z5VMzN17CQDw2cA2GNPdo8zt2Qb0hyRJOHf1NsZujkHK4zwM6OCKn970hrKML8n60g50N3KqHkolYO2EqPh0fPaHuobNhy+2LDsxKkcZANItSqUSzs7OWHfqFpYd+bfI4+sdSk2MylsCgHSHUqnEsTt5msRoap8WZSZGbAP6Jz1HhRl7YpHyOA+eDeywcIjnUxMjfWkHTI6omLTsPARuCtfUsHj32Salb1zOMgCke/66EI8v9kQDAP7Tt2WpCwuXtwQA6ZZ9UQmYsU1d5G/cMx744PnSa1mxDeiffJWEiZvCcT0pE6525vjV3/epy0TpUztgckRFCCHwn62RuPUgC272Flg4tOxvCk/OU4IlJ2nqgzOxDzF5i7rI4wi/hni/V9NSt31yfoqjY/HeJdItx64m4YPfzkESwFDfBpg9oHWZtazYBvTPF/+LxrGrybAwMcKv/r5wsjV/6j761A50es7R0aNH8d133yEsLAzx8fHYuXMnBg8eXOr2wcHB6N27d7H74+Pj4eJSvgmG+j7GvOLYDXy19xJMjBTY9l43eLrbP30nzjmSOxytunY/Ha8vPYXUx3no09oZv4zq+NSJ+Poyz6Ai9LUNhN16hJErQvA4T4WX2rvgp+E+5boQg21Af9rA2pM38dkfF6FQAMtGdkTftuWfgK8v7UB3IweQmZkJT09PLF68uEL7xcTEID4+XnNzcuJimQAQdushvvnrMgBgzoA25UuMAM08JUNJjPRZ4SKPPv8WeSzPibFgjpIufxgSEH0vDWNWn8HjPBV6NK+H74eV/wpVtgH9cORKEr74d83EGX1bVSgxAvSnHeh0naP+/fujf//+Fd7PyckJ9vb22g9Ihz3MzMXETeeQLwkM6OAK/66N5A6Jalh6dh4CVp3B3ZTHaOJohZUBnWBhWvYcA9IfscmZ8F8VgrTsfPg2qoNfRnWEmTHff0NyNTEdEzeGQxLA6z4N8F7PMuab6jmdTo4qy8vLCzk5OWjXrh0+//xzdO/evdRtc3JykJOTo/k9LS2tJkKsUZIkMGVLBOJTs9GknhXmv96Ba2U9Qd/bQW6+hPc2hOFyQrqmyGMdFnksQp/bwL2Uxxi5IgTJGblo42qLlaM7wdLUIE8PZdLnNvAwMxdj14YiPScfnRs74OvX2hn0eUC3+70qyNXVFcuWLcP27duxfft2uLu7o1evXggPDy91n3nz5sHOzk5zc3d3r8GIa8bP/1zD0StJMDdRYslIH71dK6cq9LkdSJIoVuTR3YFFHp+kr20gOSMHI1eGqHsM61lh3djOsLMwkTusWklf20BOvgrvrQ9D3MMsNHSwxDL2Gur2hOzCFArFUydkl6Rnz55o2LAh1q9fX+LjJX1TcHd315sJeCeuJWPkyhAIASwY4lnq5dqGTp/bwby/LuGXIzfKLPJI+tkGUh/nYfjy04iOT0N9O3NsndCNi0qXQR/bgBAC/9l2HtvC7sDGzBg73u+G5s42coclO4PvIujcuTOOHz9e6uNmZmYwMzOrwYhqTmJaNiZvPgchgGG+7kyMyqCv7WDNiVj8cuQGAPWyEEyMSqdvbeBxrgrj1p5FdHwa6lqZYsM4PyZGT6FvbQAAfjl6A9vC7kCpAH4e4cPE6F8GNaxWkoiICLi6usodRo3LV0mYtOkckjNy0drVFl8Mait3SFTDnizy+DqTY4NRMMfs7M1HsDE3xrqxndHE0VrusKiG7b+YgPn71FcofzawLXryy5GGTvccZWRk4Nq1a5rfY2NjERERAQcHBzRs2BCzZs3C3bt3sW7dOgDAokWL4OHhgbZt2yI7OxsrVqzA4cOHceDAAblegmy+OxCDMzcfwtrMGEtG+Dy18inpl8JFHkd2KbvII+kXlSQwdUsEjlxJgoWJEVaP7oS29e3kDotq2MV7qZiyWf0ZMKpLIwR0ayx3SLWKTidHoaGhRYo6Tps2DQAQEBCANWvWID4+HnFxcZrHc3NzMX36dNy9exeWlpbo0KED/v777xILQ+qzg9GJmqGUb9/oAI96VjJHRDXpamI6xq09i9x8CS+0ccYXrxj2VSmGRAiBj3dcwN4L8TAxUuCXUR3h29hB7rCoht1Py8a4taGaelafDWwjd0i1jt5MyK4pul4R9fbDLAz48RjSsvMxpntjfDaQw2mVoavtICE1G68tOYF7qdnwaWiPTeO7sNewknStDQghELT3ElYcj4VSASx+ywf92xvelAJt0rU2AADZeSoMW34akbdT0NTRCjve786rE0tg8HOODElOvgqBm8KRlp0PL3d7zOrfWu6QqAalZedh9OozuJearSnyyMTIcPx8+BpWHI8FAHzzegcmRgZICIEPt0Yi8nYK7C1NsDKgExOjUjA5MiBf7bmE83dSYW9pgsUjfGBqzLffUOTmS3hvvbrIo6MNizwamrUnb2LhwSsAgE9fboOhvvpRn4cqZtHfV7HnvHpIddnIjmjMKRWl4tnRQPwReQ/rT98CAHw/1IuX7BoQSRL4z7ZInLyuLvK4ejSLPBqSHeF38Nkf6rWyJj/fHG8/4yFzRCSHPyLv4YdDVwEAQYPbo0uTujJHVLsxOTIA1+5nYOb28wCAwN5N0bsVF9o1JPP3XcbuiHswViqwdGRHtHPjlUmGYv/FBPxnm/r//pjujTGlT3OZIyI5hMc9wodbIwEA7z7bBEM7sefwaZgc6bms3Hy8vzEMWbkqdGnigKl9WsgdEtWg1Sdi8cvR/78ykUUeDceJa8mYtOkcVJLAGx0b4JMBbXhVogG68ygL76wLRW6+hD6tnTGjXyu5Q9IJTI70mBACc3ZF4UpiBhxtzPDjcG8YG/Etr3UkCci4r/6pRX9eiMeXhYo8vubDIo+1lSRJSExMhKSlNhAe9wjj14UiVyWhX1sXfPNaeyiVTIxqO223g4ycfIxbG6op9vvDm14wYjsoF54p9diWs7exI/wulArgp+HecLIxlzskepIkAccWALsnqn9q6UPxTOxDTGGRR50gSRKCgoIwduxYBAUFVfnEeCk+DaNXnUFWrrqGzQ/DvfilSAdoux2oJIHJv53D5YR01LM2w4oAX1hxUfFy4/8YPXXxXio+/XcS5od9W3LyXW2VlQzcCQUyEtU/s5LLv28pPU5XChV5fJFFHmu9pKQkhISEICEhASEhIUhKSir3vk/2NNxMzoT/qjNIy85Hx0Z18Et5V1evpt5LKr/KtoPSepu++esSDl2+D1NjJX717/jUi3C03Wul65gc6aG07Dy8vzEcufkSnm/lhPeeZa9BrWVZD2jgC1g7q39a1ivffqX0OCWkZmN0oZPjj8O92Y1eyzk6OsLPzw8uLi7w8/ODo2Mp88KeSGCe7Gm4+ygTI1aEICk9B61dbbEqoBMsTcvRU1BNvZdUMeVpB08mMKX1Nm05G4dfj6lrWi0Y4gnvhnXKfG5t91rpA/ax6RkhBP6zNRK3HmTBzd4CC4d6cq5BbaZUAj0+VPcYWdZT/14eJfQ4pRnX0RR5bOpohRX+vizyqAOUAGZPHo+krHFwdHKGsqQ2UJDA3AlVJ9E9PizS03AiNBKHfj2NuynZ8KhnhXVvd4adZTmL+5XUe2nNK1rlMG7cOIwbNw7OzsXbQUECExISAj8/P8yePbvE3qYbGcaYvTMKgLp0wyue9Z/6vCUdx9nZuVpeo65gz5GeWXXiJvZfTISJkQKLR/jA3pKF/mo9pVJ9MipvYgQU63HKMa2Dd9f9f5HHNSzyqBv+TXqU//sAzjHrS/9ALiGBKehpcKzvjuS2Q3HzYTZc7cyxfmxnONqYlT+GyvZektYUJD7jx4/HihUrStympATmyd6mTKUlJmwMQ74k8HIH13KXbih376UBYc+RHgm79Qjz/rwEAJgzoA283O3lDYiqT6EeJ8m8LmZsO49TNx7A2swYa8awyKPOKG+vTUECU9BzZFkPSqUS0/4zE2G/nkTy3Qw4WJli/Vg/NKhTwfe+sr2XpDXl6bkpSGAKeo4cHR2hVCo1PUim1vZ4fdkppGTlwdPdHguGeBadayhJpb7HhY9TcFxDx+RITzzMzMWkTeHIlwQGdHCFf9dGcodE1e3fHqf5f14qVOTRB23rs8ijzigh6SmVjz/g7a/pZczNlzDxt3OIuJsBGzNjrHu7M5o5WVcujoLeS5JFSYlPSUoadlMqlXCo54gxq8/iRlIm6tuZ41f/jkWH1EsYli0pQTL0obTCmBzpAUkSmLIlQr2gaD0rzH+9A69OMhBPFnns0Zzd4TqlPL02JZzYVJLAtN8j8E9MEsxNlFg5uhMrn+uwp/XclDTfqIAQAl/87yKOX0uGpakRfg3wLV62hfPKKox9Z3pg8T/XcPSK+kNyyUgfWLOWhUEoXORxRj8WedRZT5tz9sSJTWQmYc6uKM0CoktHdkRnD4eajZm0rqDnpqQhrbIu81978iY2nI6DQgH88KZ3yT3HnFdWYTyL6riT15Lx/d/q1bbnDmqHVi62MkdENaFwkUf/ro0woSfLNeitQkNvws0X3xx9gN/OxEGpABYN80bvluwB0HelDbsFx9zXfEGa2a8VXmhTyrAY55VVGJMjHZaYlo0PNp+DJIChvg0wxNe9zEl3pB8KF3ns29YZnw1sW2QYVZIkTqzUJ4VObEvOpOKXY+ovQ/Nea48BHVxL3IVtQL+UNOx2NTEdkzapP/+HdGyAd55tUmy/Yu2AQ2nlxv81OipfJWHSb+eQnJGLVi42+HJQOxZzMwDxqY8RUKjI4w9vFi3yyGJuekqpxPoLWfjugDoxmjOgNYZ1aljipmwD+qnwsNuDjBy8vfYs0nPy0dnDAUGvti82z5TtoGqYHOmoBQeu4EzsQ1ibGWPpyH+vTKjKUhRU66U+zsPoVWcRX0aRx6osRUG1165zd/HJbvVyQJOea4ZxPYr3EhRgG9BvOfkqvLchDLcfPkZDB0ssG9kRpsYVm6dET8fkSAcdupSIZUeuA1BfoeRRz0r9ACfd6Y8nlorIyVfh3fWhiEksu8gji7npF0mSsPVkDKZvjQQABHRthGkvtChzH7YB/VJ4yRAhBD7eEYWzNx/BxtwYq0b7wqGUYq9sB1WjEEIIuYPQJWlpabCzs0NqaipsbWt+8vPth1l4+afj6l6Ebo3x+Stti27AOUc1olrbwROXbkvdp2Py1vP4X+Q9WJsZY8u7XcqsZcT5JjWjuj8LJElC4Jc/YF9WEwilMV71ro+FQ7zKtRwQ20DNqIk2UPgSfodn3sR3+6/ASKnA6tGd8GyLshMetoPK44RsHZKTr0LgpnCkPs6Dl7s9Pn6pdfGNOOlO9z0xPDpvzzn8LzKx3EUeWcxNPwRfiMX+TA8II2PYpN3Ah892LPc6iWwD+qHw0NjB6PuIy1TPOft8YJunJkYA20FVMJXUIUF7L+H8nVTYW5pg8QifEseZSQ8UGh5dmfcifj2dCIBFHg1JTEI6pu26DsnIBFYZd/CaSypcnfmlx9AUDI3ZNW6He41eAKAu3TGqa2N5AzMA7DnSEX9E3sO6U7cAAN8P9YKbvYXMEVG1+ffS7T2hV/DVTvXcMhZ5NBxxD7IwamUIUh7nwcvdDt+/4o1Gbi4cFjFASqUS4yZNxx8/H0d+Rh56NK+HT19uI3dYBoHJkQ64dj8DM7efBwAE9m6K3q34DVLfnb75CNN2x7LIo4FJSM3GiJWncT89By2dbbBmTGfYW5Y84Zb03+NcFd7dEI6kjDw0c7LG4hE+MDZiklwT+Feu5bJy8/H+xjBk5arQpYkDpvYp+0oV0n0xCekYvy4UuaqSizySfnqUmYtRK0Nw++FjNKprifXjmBgZMkkSmL41AufvpKKOpQlWBvjC1txE7rAMBpOjWkwIgTm7onAlMQOONmb4cbg3vzXoufjUxxi9+gzSs/PhW0KRR9JP6dl5CFh9BlfvZ8DF1hwbxvoVXzyUDMqiv6/gzwsJMDFS4JdRvmhU10rukAwKz7S12Jazt7Ej/C6UCuDHN735YannihV5DChe5JH0T3aeCuPXheL8nVQ4WJliw7jOcHewlDssktGuc3fx4+FrAICvX23PhYVlwOSolrp4LxWf/qGuiDv9xZbo2rSuzBFRdSpc5NHJxgxr3+aQiiHIU0mYuCkcp288hI2ZMda93RnNnGzkDotkFHbrEWb8O8f03Z5N1GtmUo1jclQLpWXn4f2N4cjNl9C7pSMn4+o5SRL4cOt5nL6hXg5mzZjOaFCHPQf6Tv2+R+LvS/dhZqzEigBftHMru4YV6bc7j7Lw7vpQ5OZLeKGNMz7q20rukAwWk6NaRgiBj7adx60HWXCzt8B/h5avIi7prnl/XcL/Iu/9O7egI9rUr2Cl3SeWGqHaTwiBT3ZHYXfEPRgrFVg2siP8mlS+d7jwEhOkmzJy8jFubSiSM3LR2tUWi4ZV/LOf7UB7mBzVMqtO3MRfUepJeItH+JS4fhbpj5XHY/HrsVgAwHdveKJ7swquh1ew1Mjuieqf/FDUCd/uj8HGkDgoFMD3w7yqVJ6Dq6/rPpUk8MFv53A5Qb124soAX1iZVazSDtuBdjE5qkXC4x5h3p+XAACzX2oNL3d7eQOiarXn/D18tTcaADCzfysM9nar+EGeWGoEWclajpK0bWnwdSwNVhf3/PrV9hjoWb9Kx+Pq67pv3p+XcPiyenj1V39f1K9EkV+2A+1iclRLPMrMxcSN4ciXBAa0d0VAt8Zyh0TV6PSNB5i2JRJCAKO7Nca7zzap3IEKLTWCBr7q36nW2nD6FubvuwwAmNW/FYZ3bljlY3L1dd22+UwcVhxX9x4vHOpZ6S/FbAfapRBCCLmD0CXVsQqzJAm8vfYsgmOS4FHPCn9M7A4bFvuq1arSDmIS0vHGspNIz85Hv7YuWDzCp2q1jCRJ3WNkWU+99AjViIq2gd0RdzFlSwSEACb2boYP+7bUWixcfV0eVT0fnLr+AKNWhiBfEpjapwUm92lepXjYDrSHf71aYEnwNQTHJMHMWIklI3yYGOmxeymPEbBKXeSxU+M6WPSmlzoxqsqkaqUSsHZiYlSLHbqUiOm/q3sKR3VphOkvllzpvrITagtWX+cJUXfEJmfivQ1hyJcEXvGsjw+ebwagapOq2Q60h39BmZ28loz/HrwCAJg7uB1au2qnN4pqn9THeRi9+gwS0rLRzMkav/r/W+SRk6r12ukbD/D+v0Pmr3q74YtXSl4OhhNqDUdqVh7GrjmL1Md58HK3x7dvdIBCoWAbqEWYHMkoMS0bH2w+B0kAQzo2wFAW+9Jb2XkqvLMuFFcSM+BkY4Y1Yzr9f5FHTqrWW+fvpGDsmrPIyZfQp7Uzvn2jQ6mXZ3NCrWHIU0l4f1MYbiRnor6dOZb7d9RUwmcbqD2YHMkkXyVh0m/nkJyRi1YuNpg7uJ3cIVE1US8gGYmQ2FKKPHJStV66mpiOgFVnkJmrQtcmdfHzW94wKWNtRE6o1X9CCHz+x0WcuPYAlqZGWDm6U5FloUpsA6xjJouKFVIgrVlw4ArO/HuyXDLCh2to6bGgPy9h7/n40os8KpVAjw85qVqP3H6YhZErQ/AoKw+e7vb4tRzr5CmVSsyePZsTavXYmpM3NfWtfnzTu9g0imJtAFAPtd8JVX9x6vEhPx9qCP/KMjh0KRHLjqjrnMx/vQOaOFrLHBFVlxXHbmDl8XIUeeSkar1xPy0bI1aEIDEtBy2crbF2TCdYl7OgHyfU6q9/Yu5j7h51XbNZ/VuhTxvnErcr0gY45C4b/g+sYbcfZmHa75EA1PVtBnRwlTkiqi5/RN7DV3vVRT0rXeSRdMqjzFyMXBmCuIdZcHewwPqxflxAmBCTkI5Jm9TzS4f6NsD4HuWsa8Yhd9lwWK0G5eSrELgpHKmP1V3tH7/UWu6QqJqcuv4AHxZKgitd5JF0RkZOPkavOauZdL9pXBc425o/fUfSa8kZORi79iwycvLh5+GArwa3L/FqxRJxyF02TI5qUNDeSzh/JxV2FiZY/JY3TI3Z0PXR5YQ0vLM+FLkqCf3auuCTl9uU/8OQdNbp6w9w/k4K7C1NsGGcH9wdLJ++E+m1nHwV3lsfhjuPHqNRXUssG9mx4p/7BUPuVKOYHNWQ/0Xew7pTtwAA3w/zLHq1EumNeymPMXrV2eJFHknv9WnjjJ+Ge8O9jiVaONvIHQ7JTAiBWTsuIPTWI9iYG2NlgC8XEtchTI5qwPWkDMzcfh4AENi7KZ5rVfJEPNJthYs8Nneyxgr/TrwK0cC83KFqi8iS/lgSfB07wu/CSKnAkhE+aObEhFmXcFynmmXl5uP9DeHIzFWhSxMHTO1T8rIBpNsKF3l0tjXDmrc7w86Sy8AQGaJ9UfH4bn8MAODzV9qiR3PWrNI1TI6qkRACc3ZFISYxHY42ZvhxuDeMyygCR7rro+3nERL7EDb/Fnl0s7eQOyQikkHU3VRM3fL/F2OM6tJI5oioMnimrka/h97GjvC7UP5b8KtwJVTSL6941oetuTF+GdWR6+MRGajHuSqMXxeKx3kqPNvCEXMG8IpkXcXkqJpE30vDp7svAgCmv9gSXZvWlTkiqk7Pt3bG8ZnPoVtpRR6JSO9ZmBphzoA26NDADj+/xZECXcYJ2dUgLTsP728MQ06+hN4tHTGhZ1O5Q6IaYGvOOUZEhm5AB1f0b+dS6gLDpBuY1mqZEAIfbTuPmw+y4GZvgf8O9eJ/EiIiA8LPfN2n08nR0aNHMXDgQNSvXx8KhQK7du166j7BwcHw8fGBmZkZmjVrhjVr1mg1ptUnbuKvqASYGCmweIQP61oQERHpGJ1OjjIzM+Hp6YnFixeXa/vY2FgMGDAAvXv3RkREBKZMmYJx48Zh//79WoknPO4Rvv5TvZbW7Jdaw8vdXivHJSIiopqj03OO+vfvj/79+5d7+2XLlsHDwwMLFy4EALRu3RrHjx/H999/j759+1YplkeZuZi4MRz5ksCA9q4I6Na4SscjIiIieeh0clRRp06dQp8+fYrc17dvX0yZMqXUfXJycpCTk6P5PS0trdg2kiQw9fcI3EvNhkc9K3zzegUWFiSdUJ52QPqNbYDYBgyHTg+rVVRCQgKcnYsu3eHs7Iy0tDQ8fvy4xH3mzZsHOzs7zc3d3b3YNkuCryE4JglmxkosGeEDG161pHfK0w5Iv7ENENuA4TCo5KgyZs2ahdTUVM3t9u3bRR6/9SAT/z14BQAwd1BbFgDUU09rB5IkITExEZIkyRQhVbentQGA7UDfsQ0YDoMaVnNxcUFiYmKR+xITE2FrawsLi5KXezAzM4OZmVmpx2xUxwJLvOIQEpeBoVkXAelDQMmcU9+U1Q4kSUJQUBBCQkLg5+eH2bNnQ8k2oHee9lnAdqD/KtUGACArGbCsx3ODDjGod6pr1644dOhQkfsOHjyIrl27Vv6gWcnol/8PPrPdA9wJVf8nIIOSlJSEkJAQJCQkICQkBElJSXKHRDJgO6BibeB+InBsAbB7ovone5N0hk4nRxkZGYiIiEBERAQA9aX6ERERiIuLA6DuAvX399ds/9577+HGjRuYMWMGLl++jCVLluD333/H1KlTKx+EZT2ggS9g7az+acnlIwyNo6Mj/Pz84OLiAj8/Pzg6cgVuQ8R2QMXagKVC/aU5I5FfnnWMQggh5A6isoKDg9G7d+9i9wcEBGDNmjUYPXo0bt68ieDg4CL7TJ06FdHR0WjQoAE++eQTjB49utzPmZaWBjs7O6SmpsLW9t/5RZLEblMD82Q7kCQJSUlJcHR05FCKgSjps4DtwLA8tQ0A6h6jO6HqL889OO1CV+h0ciSHEpMjMjhsB8Q2QOVqA/zyrJMMakI2ERFRjVIqAWsnuaOgCmIaS0RERFQIkyMiIiKiQpgcERERERXCOUcVVDB/nWvq6BYbGxutrnfHdqB72AYI0G47YBvQTeVpA0yOKig9PR0AuKaOjtH2FUUPHjwAwHagS7TdBvhZoJu02Q7YBnRTedoAL+WvIEmSEBMTgzZt2uD27du8hLeWSUtLg7u7e7H3Rtu9BikpKahTpw7i4uJgZ2enteOSdpTUDrTdBvhZULvVxGcB20DtVpU2wJ6jClIqlXBzcwMA2Nra8j9DLVXd701BgT87Ozu2gVqsOtsBPwt0A9sAVea94YRsIiIiokKYHBEREREVwuSoEszMzPDZZ5/BzMxM7lDoCTX13rAN1G5sB8Q2QFV5bzghm4iIiKgQ9hwRERERFcLkiIiIiKgQJkdEREREhTA5IiIiIiqEyRERERFRIUyOiIiIiAphckRERERUCJMjIiIiokKYHBEREREVwuSIiIiIqBAmR0RERESFMDkiIiIiKoTJEREREVEhTI6IiIiICmFyRERERFQIkyMiIiKiQpgcERERERVSqeQoJCRE23EQERER1QqVSo66du2KFi1aYO7cubhx44a2YyIiIiKSTaWSow0bNqB58+aYO3cumjdvju7du2PZsmV4+PChtuMjIiIiqlEKIYSo7M7JycnYvHkzNm3ahNOnT8PU1BT9+vXDyJEj8corr8DU1FSbsRIRERFVuyolR4Vdv34dmzZtwsaNG3H16lXY2dnhjTfegL+/P5555hltPAURERFRtdPa1WoWFhawtLSEubk5hBBQKBTYvXs3evbsiU6dOiE6OlpbT0VERERUbaqUHKWnp2P16tXo06cPGjVqhI8//hiNGzfGtm3bkJCQgHv37mHLli24f/8+xowZo62YZSWEQFpaGrTU4UZERES1TKWG1Xbv3o2NGzdiz549yM7ORqdOneDv748333wTdevWLbb9r7/+isDAQOTm5molaDmlpaXBzs4OqampsLW1lTscIiIi0jLjyuz06quvwt3dHVOnToW/vz9atmxZ5vaenp4YMWJEpQKk4m7evAkPDw+cO3cOXl5ecodDRESkVyo1rHb48GHcunULQUFBT02MAKBz585YvXp1ZZ5KJyUkJGDSpElo0qQJzMzM4O7ujoEDB+LQoUNyh1aia9euwcbGBvb29nKHQkREJLtK9Rz16tVLy2Hoj5s3b6J79+6wt7fHd999h/bt2yMvLw/79+9HYGAgLl++LHeIReTl5WH48OHo0aMHTp48KXc4REREsuPaalr2/vvvQ6FQ4MyZM3j99dfRokULtG3bFtOmTcPp06cBAG+//TZefvnlIvvl5eXByckJK1euBABIkoRvv/0WzZo1g5mZGRo2bIigoKBSnzcqKgr9+/eHtbU1nJ2dMWrUKCQnJz813jlz5qBVq1YYOnRoFV41ERGR/mBypEUPHz7Evn37EBgYCCsrq2KPFwxbjRs3Dvv27UN8fLzmsT179iArKwvDhg0DAMyaNQvffPMNPvnkE0RHR2PTpk1wdnYu8XlTUlLw3HPPwdvbG6Ghodi3bx8SExOfmvAcPnwYW7duxeLFiyv5imsBSQIy7qt/EhERaUGlhtWoZNeuXYMQAq1atSpzu27duqFly5ZYv349ZsyYAQBYvXo1hgwZAmtra6Snp+OHH37Azz//jICAAABA06ZNSy2m+fPPP8Pb2xtff/215r5Vq1bB3d0dV65cQYsWLYrt8+DBA4wePRobNmzQ3avuJAk4tgC4Ewo08AV6fAgome8TEVHV8EyiRRWpijBu3DjNJPXExET89ddfePvttwEAly5dQk5ODp5//vlyHSsyMhL//PMPrK2tNbeCBO369esl7jN+/Hi89dZbePbZZ8sdc62TlaxOjDIS1T+znj6MSERE9DTsOdKi5s2bQ6FQlGvStb+/P2bOnIlTp07h5MmT8PDwQI8ePQCoq41XREZGBgYOHIj58+cXe8zV1bXEfQ4fPow//vgDCxYsAKBO7CRJgrGxMZYvX65J1Go1y3rqHqOCniPLenJHREREeoDJkRY5ODigb9++WLx4MT744INi845SUlI0847q1q2LwYMHY/Xq1Th16lSRCuLNmzeHhYUFDh06hHHjxj31eX18fLB9+3Y0btwYxsble0tPnToFlUql+X337t2YP38+Tp48CTc3t3IdQ3ZKpXooLStZnRhxSI2IiLSAZxMtW7x4MVQqFTp37ozt27fj6tWruHTpEn788Ud07dq1yLbjxo3D2rVrcenSJc3cIgAwNzfHRx99hBkzZmDdunW4fv06Tp8+rbmS7UmBgYF4+PAhhg8fjrNnz+L69evYv38/xowZUyQBKqx169Zo166d5ubm5galUol27dqhTp062vuDVDelErB2YmJERERaw54jLWvSpAnCw8MRFBSE6dOnIz4+Ho6OjujYsSOWLl1aZNs+ffrA1dUVbdu2Rf369Ys89sknn8DY2Biffvop7t27B1dXV7z33nslPmf9+vVx4sQJfPTRR3jxxReRk5ODRo0aoV+/flAyaSAiIqqQSq2tZsi0ubZaRkYG3NzcsHr1arz22mtaipCIiIiqgj1HMpAkCcnJyVi4cCHs7e3xyiuvyB0SERER/YvJkQzi4uLg4eGBBg0aYM2aNeWeRE1ERETVj2dlGTRu3LhCNZGIiIio5uj0bN158+ahU6dOsLGxgZOTEwYPHoyYmJin7rd161a0atUK5ubmaN++Pf78888aiJaIiIh0gU4nR0eOHEFgYCBOnz6NgwcPIi8vDy+++CIyMzNL3efkyZMYPnw4xo4di3PnzmHw4MEYPHgwoqKiajByqg4nrydj7/n4p29IRERUBr26Wi0pKQlOTk44cuRIqctiDBs2DJmZmdizZ4/mvi5dusDLywvLli176nNo82o10p7bD7Pwys/H8SgrD0tH+KB/+5IrgxMRET2NTvccPSk1NRWAulJ1aU6dOoU+ffoUua9v3744depUidvn5OQgLS2tyI1ql6zcfIxfF4pHWXno0MAOvVs5yR0SERHpML1JjiRJwpQpU9C9e3e0a9eu1O0SEhLg7Oxc5D5nZ2ckJCSUuP28efNgZ2enubm7u2s1bqoaIQT+s/U8Lieko561GX4Z1RHmJkZyh0VERDpMb5KjwMBAREVFYfPmzVo97qxZs5Camqq53b59W6vHp6pZEnwdey/Ew8RIgWUjfeBqV7FFe4mIiJ6kF5fyT5w4EXv27MHRo0fRoEGDMrd1cXFBYmJikfsSExPh4uJS4vZmZmYwMzPTWqykPYcvJ2LBAfXViV8OagffxqUPpxIREZWXTvccCSEwceJE7Ny5E4cPH4aHh8dT9+natSsOHTpU5L6DBw8WWxSWardr9zMw+bcICAGM7NIQwzs3lDskIiLSEzrdcxQYGIhNmzZh9+7dsLGx0cwbsrOzg4WFenjF398fbm5umDdvHgBg8uTJ6NmzJxYuXIgBAwZg8+bNCA0NxfLly2V7HVQKSQKykgHLekChBXRTH+fhnXWhSM/JR+fGDvj05bYyBklERPpGp3uOli5ditTUVPTq1Quurq6a25YtWzTbxMXFIT7+/2vfdOvWDZs2bcLy5cvh6emJbdu2YdeuXWVO4iYZSBJwbAGwe6L6pyQBAFSSwOTN53AjORP17cyxZKQPTI11uhkTEVEto1d1jmoC6xzVkIz76sQoIxGwdgYG/QxYO2H+vstYGnwdZsZKbJ/QDe3c7OSOlIiI9Ay/clPtZFkPaOCrTowa+AKW9fBH5D0sDb4OAPj2jQ5MjIiIqFro9Jwj0mNKJdDjQ82co6j4dMzYFgkAePfZJhjk5SZzgEREpK/Yc0S1l1IJWDvhQVYe3l0fhuw8Cc+2cMSMfq3kjoyIiPQYkyOq1fJUEiZsDMfdlMdoXNcSP73pDSOlQu6wiIhIjzE5olpt7p5onIl9CGszY/zq7ws7SxO5QyIiIj3H5Ihqrc1n4rDu1C0AwPfDvNDc2UbmiIiIyBAwOaJaKezWQ3yyOwoAMP2FFnihjfNT9oC6FlLGfU1NJCIiospgckTlJkkSEhMTIVVz8pGQmo33NoQjTyXQv50LJj7XrDzBlVg0koiIqKKYHFG5SJKEoKAgjB07FkFBQdWWIGXnqfDu+lAkpeegpbMNFgzxhEJRjgnYWcnAnVB10cg7oerfiYiIKoHJEZVLUlISQkJCkJCQgJCQECQlJWnt2AU9UiqVCrN3RiHyTirsLU3wq78vrMzKWYqrhKKRRERElcEikFQujo6O8PPzQ0hICPz8/ODo6KiV4xb0SIWEhMDK52WE5LrDSKnA4rd80LCuZfkP9ETRyMIL1RIREVUEkyMqF6VSidmzZyMpKQmOjo5Qain5KOiRisu1RFqOG6AAZr/UGt2bld7zI0lSyXH8WzSSiIioKpgcUbkplUo4O5fjqrEKcHR0ROtOPXApvRmgUOJ1HzeM6d641O0L9zT5+flh9uzZWkvUiIiIAM45Ipk9zpMQadsFKmNzeDawQ9Cr7cucgF2dc5+IiIgAJkckIyEEPtwaiSuJGXC0McMvo3xhbmJU5j4Fc59cXFy0OveJiIiogEIIIeQOQpekpaXBzs4OqampsLW1lTscnfbToatYePAKTI2U+O2dLujYqE659it1zhEREZEWcM4RyeJgdCIWHrwCAPhqcLtyJ0ZA9cx9IiIiKsCv3VTjriamY+qWCABAQNdGGNrJXd6AiIiICmFyRDUqNSsP49eFIiMnH12aOGDOy23kDomIiKgIJkdUY1SSwMTfwnHzQRbc7C2w+C0fmBixCRIRUe3CMxPVmG//uoRjV5NhbqLEcv+OqGttJndIRERExTA5ohqxO/wOfjkWCwD4ru0ttHWxkTkiIiKikjE5omp34U4qZuw4DwCYYHcaA1WH1WugERER1UK8lJ+qVVJ6Dt5dH4qcfIFejun40PkK0MBXvTgsERFRLcTkiKpNbr6E9zeG4V5qNprUs8IP7/WBkXhOnRixeCMREdVSTI6o2nzxv4s4e/MRbMyMsdzfF3ZWZgCc5A6LiIioTPz6TtViU0gcNobEQaEAFr3phWZO1nKHREREVC5MjkjrQm8+xGd/RAEAPnyxJZ5vzaU+iIhIdzA5Iq26l/IY720IR55KYEB7V7zfq6ncIREREVUIkyPSmuw8Fd5dH4bkjBy0crHBd0M6QKFQyB0WERFRhTA5Iq0QQmDWjgu4cDcVdSxN8Ku/LyxNOd+fiIh0D5Mj0ooVx2Kx89xdGCkVWDzCB+4OlnKHREREVClMjqjKjl5Jwry/LgEAPhnQGt2assAjERHpLiZHVCW3HmRi0m/nIAlgqG8DBHRrLHdIREREVcLkiCotIycf49eFIvVxHrzc7TF3cDtOwCYiIp3H5IgqRZIEpv8egSuJGXCyMcMvozrCzNhI7rCIiIiqjMkRVcqPh69i/8VEmBop8cuojnC2NZc7JCIiIq1gckQVti8qAYv+vgoACHq1Hbwb1pE5IiIiIu1hckQVEpOQjmm/RwAAxnRvjCG+7vIGREREpGVMjqjcUrJyMX5dKLJyVejWtC5mv9Ra7pCIiIi0jskRlUu+SsKk384h7mEWGtSxwM9v+cDYiM2HiIj0D89uBACQJAmJiYmQJKnEx7/56zKOXU2GhYkRlo/yhYOVaQ1HSEREVDOYHBEkSUJQUBDGjh2LoKCgYgnSjvA7WHE8FgCwYIgn2tS3lSNMIiKiGsHkiJCUlISQkBAkJCQgJCQESUlJmsfO30nBzB0XAAATezfDgA6ucoVJRERUI5gcERwdHeHn5wcXFxd07twZkiRBkiTcT8/GO+vCkJsv4flWTpj2Qgu5QyUiIqp2CiGEkDsIXZKWlgY7OzukpqbC1lZ/hpcK5hwtX74cZ8+ehW/nLrjg+BzCbj1CU0cr7AzsDltzE7nDJCIiqnbGcgdAtYNSqYRSqcTZs2eRkJCA3XdM8SjrEWzMjfGrvy8TIyIiMhgcViONguE109bP4ZFDWygUwE/DvdHE0brM/Z52pRsREZEuYXJEGkqlEi+8NQGJ7r0AAB/1a4VeLZ3K3OdpV7oRERHpGiZHpHE35TECN52DShIY6Fkf7z7b5Kn7lHWlGxERkS5ickQAgMe5Kry7PhQPMnPRtr4tvn29AxQKxVP3K3ylm5+fHxwdHWsgWiIiourDq9UqSB+vVhNCYPLmCPwReQ8OVqb4Y2J3NKhjWe79JUlCUlISHB0doVQy3yYiIt2m02eyo0ePYuDAgahfvz4UCgV27dpV5vbBwcFQKBTFbgkJCTUTcC21/OgN/BF5D8ZKBZaM8KlQYgSo5yo5OzszMSIiIr2g02ezzMxMeHp6YvHixRXaLyYmBvHx8Zqbk1PZk471WXDMfXyz7zIA4LOBbdClSV2ZIyIiIpKXTtc56t+/P/r371/h/ZycnGBvb6/9gHRMbHImJv12DkIAb3Zyx8gujeQOiYiISHY63XNUWV5eXnB1dcULL7yAEydOlLltTk4O0tLSitz0QXp2HsavC0V6dj46NqqDLwa1LdcEbCIiIn1nUMmRq6srli1bhu3bt2P79u1wd3dHr169EB4eXuo+8+bNg52dnebm7u5egxFXD0kSmLolAtfuZ8DZ1gxLR/rAzNhI7rCIiIhqBb25Wk2hUGDnzp0YPHhwhfbr2bMnGjZsiPXr15f4eE5ODnJycjS/p6Wlwd3dXaevVvvvgRj8ePgaTI2V2PpuV3i628sdEhERUa2h03OOtKFz5844fvx4qY+bmZnBzMysBiOqXn9diMePh68BAOa92p6JERER0RMMalitJBEREXB1dZU7jBpxOSEN07dGAgDGPuOB1zs2kDkiIiKi2kene44yMjJw7do1ze+xsbGIiIiAg4MDGjZsiFmzZuHu3btYt24dAGDRokXw8PBA27ZtkZ2djRUrVuDw4cM4cOCAXC+hxjzKzMX4daHIylWhe7O6mNW/ldwhERER1Uo6nRyFhoaid+/emt+nTZsGAAgICMCaNWsQHx+PuLg4zeO5ubmYPn067t69C0tLS3To0AF///13kWPoo3yVhMBN4bj98DHcHSzw83AfGBsZfKchERFRifRmQnZN0cXlQ778XzRWnYiFpakRdrzfDa1cdCNuIiIiObD7QM9tC7uDVSdiAQD/HerJxIiIiOgpmBzpsYjbKfh45wUAwAfPN0e/doYx8ZyIiKgqmBzpqftp2Xh3fShy8yW80MYZU55vLndIREREOoHJkR7KyVfhvQ1hSEzLQXMna3w/zAtKJZcGISIiKg8mRzKTJAmJiYmQJEkrxxNC4NNdFxEelwJbc2P86u8LazOdviiRiIioRjE5kpEkSQgKCsLYsWMRFBSklQRp/elb2BJ6G0oF8NNbPmhcz0oLkRIRERkOJkcySkpKQkhICBISEhASEoKkpKQqHe/U9Qf44n/RAICZ/VuhZwtHbYRJRERkUJgcycjR0RF+fn5wcXGBn58fHB2LJzMlDbuVdN+dR1kI3BQOlSQwyKs+xvdo8tTn1/aQHhERkT5gEcgK0mYRyILkBACcnZ2hVCqLPR4UFISQkBD4+flh9uzZAFDsvux8CW8sPYXo+DS0c7PFtve6wdzE6KnP/eRxnnx+IiIiQ8SzoUwKkpPx48djxYoVJW5T0rDbk/fdv38fM7adR3R8GupZm+KXUb5PTYxKOzYRERExOZJNeZKTkobdnrxv+6V07DkfD2OlAktGdISbvYVm/7KGzcozpEdERGSIOKxWQdoaVivvsJYkSUhKSoKjo6Pm8YL7oh4KjFsXBiGArwa3w8gujSp0/JKOTUREZOhYAEcmSqUSs2fPLjM5KS15USqVyFRaYcqWExACGN65YZHECCi5Z8rZ2blYDE/eR0REZOjYXSCjguSktMSotBpIadl5GLcuFOnZ+fBtVAdfvNK22P4cNiMiIqoc9hzVUqX1/KgkgambI3AjKROuduZYOrIjTI2LJ1fl6ZkiIiKi4njGrKVK6/n578EYHLp8H2bGSvwyqiMcbcyK7Fd4EnZZPVNERERUMk7IriBt1jl6mifnHO09H4/ATeEAgEXDvDDY263Y9qxdREREVDU8c9ZihXt+ou+l4cOtkQCA8T08iiVGAGsXERERaQOTo1royfpEDzNzMX5dKB7nqdCjeT181K9ViftxEjYREVHVcVitgqp7WO3JobEZM2dh9OpQnLrxAI3qWmJ3YHfYW5qWuT8nYRMREVUer1arZZ4cGvtk+zmcuvEAVqZG+NXft8zECGDtIiIioqpi10ItU3horI5Pf/wecR8A8P0wL7RwtpE5OiIiIv3HYbUKqomr1SRJwuHzsXh/awxyVQJT+jTHlD4tquW5iIiIqCj2HNVCSRm5+HhvLHJVAn3bOuOD55rLHRIREZHBYHJUy2TnqfDu+jDcT89BC2drLBzqBaVSIXdYREREBoPJUS0ihMCcXVGIuJ0COwsT/OrvC2szzpknIiKqSUyOapE1J29iW9gdKBXA4rd80KiuldwhERERGRwmR7XEyWvJ+GrvJQDAxy+1xjPN68kcERERkWFiclQL3H6Yhfc3hUMlCbzm7Yaxz3jIHRIREZHBYnIks6zcfIxfF4qUrDx0aGCHr19rD4WifBOwn1xmhIiIiKqOyZGMhBD4z9bzuJyQjnrWZvhlVEeYmxiVa9+CZUbGjh2LoKAgJkhERERawuRIRkuCr2PvhXiYGCmwbKQPXO0syr3vk8uMJCUlVWOkREREhoPJkUwOXUrEggMxAIAvXmkH38YOFdq/8DIjfn5+cHR0rI4wiYiIDA6XD6kgbSwfcu1+OgYvPomMnHyM7NIQXw1uX6njSJKEpKQkODo6QqlknktERKQNrDBYw1If5+GddWHIyMlHZw8HfPpy20ofS6lUwtnZWYvREREREbsbapBKEpi8+RxuJGeivp05lozwgamxkledERER1SJMjmrQd/tjEByTBDNjJZb7+6KetRmvOiMiIqplmBzVkD8i72HZkesAgG/f6IB2bnYAeNUZERFRbcPkqAZE3U3FjG2RAIB3ezbBIC83zWMlXXXGYTYiIiL58Gq1Cqro1WoPMnLwys8ncDflMXq2cMSq0Z1gpCxaAbvwVWcAEBQUhJCQEPj5+WH27Nm8Eo2IiKgG8axbjfJUEiZsDMfdlMdoXNcSP77pXSwxAv7/qjOlUslhNiIiIpkxOapGX/4vGmdiH8LazBgrAnxhZ2ny1H1Y3JGIiEheHFaroPIOq20+E4eZOy5AoQB+HeWLPm0K1SOSJCArGbCsB5QwZMbijkRERPJhEchqEHbrIT7ZHQUAmNanRfHE6NgC4E4o0MAX6PFhsQSJxR2JiIjkw24JLUtIzca768ORpxLo384FE59rVnSDrGR1YpSRqP6ZlSxPoERERFQiJkdalJ2nwrvrQ5GckYNWLjZYMMQTCsUTE7At66l7jKyd1T8t68kTLBEREZWIw2paIoTAxzsvIPJOKuwtTfCrvy+szEr48yqV6qG0MuYcERERkXyYHGnJqhM3sSP8LoyUCix+ywfuDpalb6xUAtZONRccERERlRu7LbTg+NVkBO2NBgDMfqk1ujfjUBkREZGuYnJURXdTHmPib+GQBPC6TwOM6d5Y7pCIiIioCjisVkVONmZ4xbM+Iu+kIujVdsUnYBMREZFO0emeo6NHj2LgwIGoX78+FAoFdu3a9dR9goOD4ePjAzMzMzRr1gxr1qypUgwmRkp8OagdNo/vAnMToyodi4iIiOSn08lRZmYmPD09sXjx4nJtHxsbiwEDBqB3796IiIjAlClTMG7cOOzfv7/KsViYMjEiIiLSB3qzfIhCocDOnTsxePDgUrf56KOPsHfvXkRFRWnue/PNN5GSkoJ9+/aV63nKu3wIERER6Sad7jmqqFOnTqFPnz5F7uvbty9OnTpV6j45OTlIS0srciMiIiL9ZVDJUUJCQrE1y5ydnZGWlobHjx+XuM+8efNgZ2enubm7u9dEqERERCQTg0qOKmPWrFlITU3V3G7fvi13SERERFSNDOpSfhcXFyQmJha5LzExEba2trCwsChxHzMzM5iZmZV5XEmSkJSUBEdHRyi5HAgREZFOM6gzedeuXXHo0KEi9x08eBBdu3at9DElSUJQUBDGjh2LoKAgSJIESZKQmJgISZKqGjIRERHVMJ1OjjIyMhAREYGIiAgA6kv1IyIiEBcXB0A9JObv76/Z/r333sONGzcwY8YMXL58GUuWLMHvv/+OqVOnVjqGpKQkhISEICEhASEhIUhMTCyWLBEREZHu0OnkKDQ0FN7e3vD29gYATJs2Dd7e3vj0008BAPHx8ZpECQA8PDywd+9eHDx4EJ6enli4cCFWrFiBvn37VjoGR0dH+Pn5wcXFBX5+fgBQJFlKSkqqwiskIiKimqY3dY5qSkl1jgrPOQKAoKAghISEwM/PD7Nnz+Y8JCIiIh3C5KiCylMEkhO0iYiIdJdBXa1WU5RKZbF6SkRERKQb2K1BREREVAiTIyIiIqJCOKxWQQVTtLjGmm6xsbGBQqGQOwwiItIBTI4qKD09HQC4xpqOKWsCPRERUWG8Wq2CJElCTEwM2rRpg9u3b/OEW8ukpaXB3d292HvDniMiIiov9hxVkFKphJubGwDA1taWyVEtxfeGiIgqixOyiYiIiAphckRERERUCJOjSjAzM8Nnn30GMzMzuUOhJ/C9ISKiquKEbCIiIqJC2HNEREREVAiTIyIiIqJCmBwRERERFcLkiIiIiKgQJkcVtHjxYjRu3Bjm5ubw8/PDmTNn5A6JABw9ehQDBw5E/fr1oVAosGvXLrlDIiIiHcXkqAK2bNmCadOm4bPPPkN4eDg8PT3Rt29f3L9/X+7QDF5mZiY8PT2xePFiuUMhIiIdx0v5K8DPzw+dOnXCzz//DEC9zpq7uzsmTZqEmTNnyhwdFVAoFNi5cycGDx4sdyhERKSD2HNUTrm5uQgLC0OfPn009ymVSvTp0wenTp2SMTIiIiLSJiZH5ZScnAyVSgVnZ+ci9zs7OyMhIUGmqIiIiEjbmBwRERERFcLkqJzq1asHIyMjJCYmFrk/MTERLi4uMkVFRERE2sbkqJxMTU3RsWNHHDp0SHOfJEk4dOgQunbtKmNkREREpE3GcgegS6ZNm4aAgAD4+vqic+fOWLRoETIzMzFmzBi5QzN4GRkZuHbtmub32NhYREREwMHBAQ0bNpQxMiIi0jW8lL+Cfv75Z3z33XdISEiAl5cXfvzxR/j5+ckdlsELDg5G7969i90fEBCANWvW1HxARESks5gcERERERXCOUdEREREhTA5IiIiIiqEyRERERFRIUyOiIiIiAphckRERERUCJMjIjII8fHxmDlzJnr37g0bGxsoFAoEBwfLHRYR1UJMjojIIMTExGD+/Pm4e/cu2rdvL3c4RFSLMTkiIoPQsWNHPHjwAFeuXMG0adPkDoeIajEmR0Sksx4/foxWrVqhVatWePz4seb+hw8fwtXVFd26dYNKpQIA2NjYwMHBQa5QiUiHMDkiIp1lYWGBtWvX4tq1a5g9e7bm/sDAQKSmpmLNmjUwMjKSMUIi0kVceJaIdJqfnx9mzJiB+fPn49VXX0ViYiI2b96MRYsWoUWLFnKHR0Q6iMkREem8zz//HHv27EFAQAAyMjLQs2dPfPDBB3KHRUQ6isNqRKTzTE1NsWrVKsTGxiI9PR2rV6+GQqGQOywi0lFMjohIL+zfvx8AkJ2djatXr8ocDRHpMiZHRKTzzp8/jy+//BJjxoyBt7c3xo0bh9TUVLnDIiIdxeSIiHRaXl4eRo8ejfr16+OHH37AmjVrkJiYiKlTp8odGhHpKE7IJiKd9tVXXyEiIgKHDh2CjY0NOnTogE8//RRz5szBG2+8gZdeeqnItgBw8eJFAMD69etx/PhxAMCcOXNqPngiqpUUQgghdxBERJURHh4OPz8/TJgwAT/++KPmfpVKha5du+Lu3bu4ePEi7O3tAaDMSdr8KCSiAkyOiIiIiArhnCMiIiKiQpgcERERERXC5IiIiIioEF6tZgBUKhXy8vLkDoOIiGohU1NTKJXsKymMyZEeE0IgISEBKSkpcodCRES1lFKphIeHB0xNTeUOpdbg1Wp6LD4+HikpKXBycoKlpSXXmiIioiIkScK9e/dgYmKChg0b8jzxL/Yc6SmVSqVJjOrWrSt3OEREVEs5Ojri3r17yM/Ph4mJidzh1AocZNRTBXOMLC0tZY6EiIhqs4LhNJVKJXMktQeTIz3HLlIiIioLzxPFMTkiIiIiKoTJEdG/1qxZo1mDi4iosoKDg6FQKHilsA5jckS1zujRo6FQKKBQKGBqaopmzZrhyy+/RH5+frU+77Bhw3DlypVqfY6nKfzaTUxM4OzsjBdeeAGrVq2CJEkVOhaTvaoreD+++eabIvfv2rWrxociCtqFQqGAlZUVmjdvjtGjRyMsLKzCx+rVqxemTJmi/SANQOH3oaTb559/LneIpAVMjqhW6tevH+Lj43H16lVMnz4dn3/+Ob777rsSt83NzdXKc1pYWMDJyUkrx6qKgtd+8+ZN/PXXX+jduzcmT56Ml19+udoTRCrO3Nwc8+fPx6NHj+QOBatXr0Z8fDwuXryIxYsXIyMjA35+fli3bp3coRmM+Ph4zW3RokWwtbUtct+HH34oW2za+iwkJkdUS5mZmcHFxQWNGjXChAkT0KdPH/zxxx8A1N/mBw8ejKCgINSvXx8tW7YEANy+fRtDhw6Fvb09HBwcMGjQINy8eRMAcODAAZibmxfr5p48eTKee+45ACX3tCxduhRNmzaFqakpWrZsifXr12seu3nzJhQKBSIiIjT3paSkQKFQIDg4GADw6NEjjBgxAo6OjrCwsEDz5s2xevXqcr12Nzc3+Pj44OOPP8bu3bvx119/Yc2aNZrt/vvf/6J9+/awsrKCu7s73n//fWRkZABQd+uPGTMGqampxb7Rrl+/Hr6+vrCxsYGLiwveeust3L9//2lvicHq06cPXFxcMG/evDK3O378OHr06AELCwu4u7vjgw8+QGZmJgDg559/Rrt27TTbFvQ8LVu2rMjzzJkzp8znsLe3h4uLCxo3bowXX3wR27Ztw4gRIzBx4kRN8vbgwQMMHz4cbm5usLS0RPv27fHbb79pjjF69GgcOXIEP/zwg6Zt3Lx5EyqVCmPHjoWHhwcsLCzQsmVL/PDDDxX+e+k7FxcXzc3Ozg4KhaLIfdbW1pptw8LC4OvrC0tLS3Tr1g0xMTFFjrV79274+PjA3NwcTZo0wRdffFHkC1BcXBwGDRoEa2tr2NraYujQoUhMTNQ8/vnnn8PLywsrVqyAh4cHzM3NsW7dOtStWxc5OTlFnmvw4MEYNWpUNf1V9A+TI9IJFhYWRb4VHTp0CDExMTh48CD27NmDvLw89O3bFzY2Njh27BhOnDgBa2tr9OvXD7m5uXj++edhb2+P7du3a46hUqmwZcsWjBgxosTn3LlzJyZPnozp06cjKioK7777LsaMGYN//vmn3HF/8skniI6Oxl9//YVLly5h6dKlqFevXoVf/3PPPQdPT0/s2LFDc59SqcSPP/6IixcvYu3atTh8+DBmzJgBAOjWrVuxb7UF32jz8vIwd+5cREZGYteuXbh58yZGjx5d4ZgMhZGREb7++mv89NNPuHPnTonbXL9+Hf369cPrr7+O8+fPY8uWLTh+/DgmTpwIAOjZsyeio6ORlJQEADhy5Ajq1aunSaLz8vJw6tQp9OrVq8LxTZ06Fenp6Th48CAAIDs7Gx07dsTevXsRFRWFd955B6NGjcKZM2cAAD/88AO6du2K8ePHa9qGu7s7JElCgwYNsHXrVkRHR+PTTz/Fxx9/jN9//73CMVWFEAJZufk1fquOesizZ8/GwoULERoaCmNjY7z99tuax44dOwZ/f39MnjwZ0dHR+OWXX7BmzRoEBQUBUBdnHDRoEB4+fIgjR47g4MGDuHHjBoYNG1bkOa5du4bt27djx44diIiIwJAhQ6BSqTRfJgHg/v372Lt3b5Hnp7KxCCSViyRJSEpKgqOjY42uwSOEwKFDh7B//35MmjRJc7+VlRVWrFihqc+xYcMGSJKEFStWaOaCrF69Gvb29ggODsaLL76IN998E5s2bcLYsWMBqBOslJQUvP766yU+94IFCzB69Gi8//77AIBp06bh9OnTWLBgAXr37l2u+OPi4uDt7Q1fX18AQOPGjSv1dwCAVq1a4fz585rfC88Zady4Mb766iu89957WLJkCUxNTYt8qy2s8AdkkyZN8OOPP6JTp07IyMgo8q231pIkICsZsKwH1FBbfPXVV+Hl5YXPPvsMK1euLPb4vHnzMGLECM170rx5c/z444/o2bMnli5dinbt2sHBwQFHjhzBG2+8geDgYEyfPl3TM3PmzBnk5eWhW7duFY6tVatWAKDpJXVzcysytDNp0iTs378fv//+Ozp37gw7OzuYmprC0tKySNswMjLCF198ofndw8MDp06dwu+//46hQ4dWOK7KepynQptP99fY8xWI/rIvLE21e0oMCgpCz549AQAzZ87EgAEDkJ2dDXNzc3zxxReYOXMmAgICAKj/L86dOxczZszAZ599hkOHDuHChQuIjY2Fu7s7AGDdunVo27Ytzp49i06dOgFQD6WtW7cOjo6Omud96623sHr1agwZMgSA+vOxYcOGlUq+DRV7juipJElCUFAQxo4di6CgoApPDK6MPXv2wNraGubm5ujfvz+GDRtWZKJj+/bti6wDFBkZiWvXrsHGxgbW1tawtraGg4MDsrOzcf36dQDAiBEjEBwcjHv37gEANm7ciAEDBpQ6afnSpUvo3r17kfu6d++OS5culft1TJgwAZs3b4aXlxdmzJiBkydPlnvfJwkhikwC/vvvv/H888/Dzc0NNjY2GDVqFB48eICsrKwyjxMWFoaBAweiYcOGsLGx0Xx4x8XFVTq2GiNJwLEFwO6J6p810BYLzJ8/H2vXri3x/Y+MjMSaNWs0bc/a2hp9+/aFJEmIjY2FQqHAs88+i+DgYKSkpCA6Ohrvv/8+cnJycPnyZRw5cgSdOnWqVNHWgh6PgrahUqkwd+5ctG/fHg4ODrC2tsb+/fvL9f4uXrwYHTt2hKOjI6ytrbF8+XLdaBe1VIcOHTT/dnV1BQDNEHZkZCS+/PLLIm2moDcvKysLly5dgru7uyYxAoA2bdrA3t6+SBts1KhRkcQIAMaPH48DBw7g7t27ANRTBgouLqDyYc8RPVVSUhJCQkKQkJCAkJAQJCUlwdnZuVqfs3fv3li6dClMTU1Rv359GBsXbapWVlZFfs/IyEDHjh2xcePGYscq+ODo1KkTmjZtis2bN2PChAnYuXNnkTk8FVXQg1a4O76gMnmB/v3749atW/jzzz9x8OBBPP/88wgMDMSCBQsq/HyXLl2Ch4cHAHUvwcsvv4wJEyYgKCgIDg4OOH78OMaOHYvc3NxST7KZmZno27cv+vbti40bN8LR0RFxcXHo27evbkzmzEoG7oQCGYnqn1nJgHXNTKJ/9tln0bdvX8yaNavYMGRGRgbeffddfPDBB8X2a9iwIQD1FWLLly/HsWPH4O3tDVtbW03CdOTIEU2SWlEFJ8qCtvHdd9/hhx9+wKJFizRz0qZMmfLU93fz5s348MMPsXDhQnTt2hU2Njb47rvvEBISUqm4KsvCxAjRX/at0ecseF5tK7wUR0FiUvDlMiMjA1988QVee+21YvuZm5uX+zme/CwEAG9vb3h6emLdunV48cUXcfHiRezdu7ei4Rs0Jkf0VI6OjvDz80NISAj8/PyKfUupDlZWVmjWrFm5t/fx8cGWLVvg5OQEW1vbUrcbMWIENm7ciAYNGkCpVGLAgAGlbtu6dWucOHFC0+0NACdOnECbNm0A/H/SFR8fD29vbwAoMjm7gKOjIwICAhAQEIAePXrgP//5T4WTo8OHD+PChQuYOnUqAHXvjyRJWLhwoSZJe3JuiKmpabHlAC5fvowHDx7gm2++0XwjDQ0NrVAssrKsBzTwVSdGDXzVv9egb775Bl5eXpqLAAr4+PggOjq6zDbbs2dPTJkyBVu3btUMb/Tq1Qt///03Tpw4genTp1cqpoK5ZX369AGgbqODBg3CyJEjAahPxleuXNG0W6DktnHixAl069ZNM4wMQNPrWpMUCoXWh7dqIx8fH8TExJTaZlq3bo3bt2/j9u3bmv+r0dHRSElJKfJelmbcuHFYtGgR7t69iz59+hTpgaJyEKSXHj9+LKKjo8Xjx4+1cjyVSiUSEhKESqXSyvHKEhAQIAYNGlShxzMzM0Xz5s1Fr169xNGjR8WNGzfEP//8IyZNmiRu376t2e7q1asCgOjQoYMYO3ZskWOsXr1a2NnZaX7fuXOnMDExEUuWLBFXrlwRCxcuFEZGRuKff/7RbNOlSxfRo0cPER0dLYKDg0Xnzp0FAM02n3zyidi1a5e4evWqiIqKEi+//LLo3Llzma+tX79+Ij4+Xty5c0eEhYWJoKAgYW1tLV5++WWRn58vhBAiIiJCABCLFi0S169fF+vWrRNubm4CgHj06JEQQogTJ04IAOLvv/8WSUlJIjMzU9y/f1+YmpqK//znP+L69eti9+7dokWLFgKAOHfuXKlx1SoqlRDpieqf1ayktjZq1Chhbm4uCn98RkZGCgsLCxEYGCjOnTsnrly5Inbt2iUCAwM120iSJBwcHISRkZH466+/hBBCnDt3ThgZGQljY2ORkZFRZiwAxOrVq0V8fLy4efOmOHDggHj99deFkZGR2Lhxo2a7qVOnCnd3d3HixAkRHR0txo0bJ2xtbYu8jvHjx4tOnTqJ2NhYkZSUJFQqlfjhhx+Era2t2Ldvn4iJiRFz5swRtra2wtPTs/J/QD335GdGgX/++afI/0Uh1O81ABEbGyuEEGLfvn3C2NhYfP755yIqKkpER0eL3377TcyePVsIoW4vXl5eokePHiIsLEyEhISIjh07ip49e2qO+dlnn5X6/qSkpAhLS0thamoqNm/eXObr0Pb5Qh8wOdJTutzYK5McCSFEfHy88Pf3F/Xq1RNmZmaiSZMmYvz48SI1NbXIdgUJzOHDh4vcX9IH3ZIlS0STJk2EiYmJaNGihVi3bl2Rx6Ojo0XXrl2FhYWF8PLyEgcOHCiSHM2dO1e0bt1aWFhYCAcHBzFo0CBx48aNMl8bAAFAGBsbC0dHR9GnTx+xatWqYonpf//7X+Hq6iosLCxE3759xbp164p9IL/33nuibt26AoD47LPPhBBCbNq0STRu3FiYmZmJrl27ij/++EO3kqMaVFJbi42NFaampuLJ75ZnzpwRL7zwgrC2thZWVlaiQ4cOIigoqMg2gwYNEsbGxiI9PV0Iof7SUadOHdGlS5enxlLQLgAIc3Nz0bRpUxEQECDCwsKKbPfgwQMxaNAgYW1tLZycnMScOXOEv79/kdcRExMjunTpIiwsLDQn7OzsbDF69GhhZ2cn7O3txYQJE8TMmTOZHJWhKsmREOoEqVu3bsLCwkLY2tqKzp07i+XLl2sev3XrlnjllVeElZWVsLGxEUOGDBEJCQmax8tKjoRQJ/IODg4iOzu7zNehy+eL6qIQohquXyTZZWdnIzY2VlP7goiIDMvzzz+Ptm3b4scffyxzO54vitP/gV0iIiID8ujRIwQHByM4OBhLliyROxydxOSIiIhIj3h7e+PRo0eYP39+sYsHqHyYHBEREemRgoKgVHksAklERERUCJMjPcf59kREVBaeJ4pjcqSnCiqzPm0pCSIiMmwF1dONjLRfJVxXcc6RnjIyMoK9vb1mHR9LS0uuq0NEREUULCpuaWlZbJkmQ8a/hB4rWHG7IEEiIiJ6klKpRMOGDfkFuhAWgTQAKpWq2IKoREREgHqtvYI1GkmNyRERERFRIUwViYiIiAphckRERERUCJMjIiIiokKYHBEREREVwuSIiIiIqBAmR0RERESFMDkiIiIiKuT/AF+eft1hdH5gAAAAAElFTkSuQmCC\n" - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "# Plot cycle results with each cycle as one panel\n", - "plot_results_panel_2d(cycle); # Add semicolon to supress creating two figures in jupyter notebook" - ], - "metadata": { - "collapsed": false - } - }, - { - "cell_type": "markdown", - "source": [ - "### Default parameters can be changed by passing in keywords" - ], - "metadata": { - "collapsed": false - } - }, - { - "cell_type": "code", - "execution_count": 4, - "outputs": [ - { - "data": { - "text/plain": "
", - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAysAAAGZCAYAAACJyq4LAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8o6BhiAAAACXBIWXMAAA9hAAAPYQGoP6dpAACB4UlEQVR4nO3dd3iUZdbH8W8mPZBCSaEECJBG6CgREAFFQhHBsrrqCqLoqtixISgoImAvi7q7rqCuvnZB6R2kGAXpCQkldBISSgohbeZ+/xjJilKSkGRmkt/nunKFTJ6ZOcPkJM957nLcjDEGERERERERJ2NxdAAiIiIiIiJno2JFRERERESckooVERERERFxSipWRERERETEKalYERERERERp6RiRUREREREnJKKFRERERERcUoqVkRERERExCmpWHFyxhhycnJQ706RmkN5LVLzKK9FqoaKFSeXm5tLYGAgubm5jg6l1J49e3Bzc2Pjxo2ODkXEJSmvRWoe5bVI1VCxUgOlp6fz4IMP0rJlS7y9vQkPD2fw4MEsWbLE0aGdYfPmzfTs2RMfHx/Cw8N5+eWXHR2SiNNyhbwuKCjgjjvuoF27dnh4eDB06FBHhyTi1Fwhr5cvX86QIUNo1KgRderUoWPHjnz66aeODktqEQ9HByCVa8+ePfTo0YOgoCBeeeUV2rVrR3FxMQsWLGDUqFFs377d0SECkJOTQ79+/ejbty/vv/8+W7Zs4c477yQoKIh77rnH0eGJOBVXyWur1Yqvry8PPfQQ33zzjaPDEXFqrpLXa9asoX379jz11FOEhoYye/Zshg0bRmBgINdcc42jw5PawIhTy87ONoDJzs4u0/EDBgwwTZo0MXl5eX/63vHjx40xxowYMcIMGjTojO8VFRWZ4OBg88EHHxhjjLFarWbq1KmmVatWxsvLy4SHh5sXX3zRGGNMWlqaAcyGDRtK779lyxbTv39/U6dOHRMSEmL+9re/mczMzHPG+e6775p69eqZwsLC0tueeuopEx0dXabXKeLKampe/97w4cPNkCFDynSsSE1QG/L6tIEDB5oRI0aU6z4iFaVpYDXIsWPHmD9/PqNGjaJOnTp/+n5QUBAAI0eOZP78+Rw+fLj0e7NnzyY/P5+bb74ZgDFjxjBlyhSeffZZkpKS+OyzzwgNDT3r8544cYIrr7ySTp06sW7dOubPn09GRgY33XTTOWNdu3YtV1xxBV5eXqW3JSQkkJKSwvHjxyvy8kVqJFfKaxEpG1fP6+zsbOrXr1+u+4hUmKOrJTm/8lypSUxMNID59ttvL3hsmzZtzNSpU0u/Hjx4sLnjjjuMMcbk5OQYb29v8+9///us9/3jlZqJEyeafv36nXHM/v37DWBSUlLO+hhXX321ueeee864bdu2bQYwSUlJF4xfxJXV1Lz+PY2sSG1TG/LaGGO++OIL4+XlZbZu3Vqm40UulkZWahBTju0SR44cyfTp0wHIyMhg3rx53HnnnQAkJydTWFjIVVddVabH2rRpE8uWLaNu3bqlHzExMQDs2rWrnK9CRH5PeS1S87hqXi9btowRI0bw73//m7i4uDK/BpGLoQX2NUhkZCRubm5lWpQ3bNgwnn76adauXcuaNWuIiIigZ8+eAPj6+pbrefPy8hg8eDBTp0790/caNWp01vuEhYWRkZFxxm2nvw4LCyvX84vUZK6U1yJSNq6Y1ytWrGDw4MG88cYbDBs2rFzPK3IxNLJSg9SvX5+EhASmTZvGyZMn//T9EydOlP67QYMGDB06lOnTpzNjxgxGjBhR+r3IyEh8fX3LvHVi586d2bZtGy1atKB169ZnfJxtLi5At27dWLlyJcXFxaW3LVq0iOjoaOrVq1fGVyxS87lSXotI2bhaXi9fvpxBgwYxdepU7dgp1c/B09DkAsq7u8iuXbtMWFiYadOmjfn6669NamqqSUpKMm+99ZaJiYk549iFCxcaLy8v4+7ubg4ePHjG9yZMmGDq1atnPvroI7Nz506zdu3a0p1H/jgH9uDBgyY4ONjceOON5ueffzY7d+408+fPN3fccYcpKSk5a5wnTpwwoaGh5vbbbzdbt241n3/+ufHz8zP//Oc/y/k/JOJ6ampeG2Nfe7ZhwwYzePBg07t3b7Nhw4YzdiISqalqal4vXbrU+Pn5mTFjxpjDhw+Xfhw9erSc/0MiFaNixcmV95efMcYcOnTIjBo1yjRv3tx4eXmZJk2amGuvvdYsW7bsjONsNptp3ry5GThw4J8ew2q1mhdffNE0b97ceHp6mmbNmpmXXnrJGHP2rRBTU1PNddddZ4KCgoyvr6+JiYkxjzzyiLHZbOeMc9OmTebyyy833t7epkmTJmbKlCllfo0irqwm53Xz5s0N8KcPkZqupub18OHDz5rTvXr1KvPrFLkYbsaUY5WXVLucnBwCAwPJzs4mICCgUh87Ly+PJk2aMH36dK6//vpKfWwROTfltUjNo7wWqRpaYF8L2Ww2srKyeO211wgKCuLaa691dEgicpGU1yI1j/JaRMVKrbRv3z4iIiJo2rQpM2bMwMNDPwYirk55LVLzKK9FtBtYmU2ePJlLL70Uf39/QkJCGDp0KCkpKRe831dffUVMTAw+Pj60a9eOuXPnVkO059eiRQuMMezfv7/Me7OLiHNTXovUPMprERUrZbZixQpGjRrFTz/9xKJFiyguLqZfv35n3XLwtDVr1nDLLbdw1113sWHDBoYOHcrQoUPZunVrNUYuUnOkpOc6OgQRERGpRlpgX0GZmZmEhISwYsUKrrjiirMec/PNN3Py5Elmz55dettll11Gx44def/998v0PFW5YE/EVRzJLWDC99uYtzWdr+/tTpfmrt2LR3ktUvMor0WqhkZWKig7OxuwN3Y6l7Vr19K3b98zbktISGDt2rVVGptITWGM4ev1B7j69ZXM3ZKOxc2NbYeyHR2WiIiIVBOt1KoAm83GI488Qo8ePWjbtu05j0tPTyc0NPSM20JDQ0lPTz/nfQoLCyksLCz9Oicn5+IDFnFB+4/l88x3W/hxRxYAbZsEMPWG9sQ1DnRwZOWnvBapeZTXItVDIysVMGrUKLZu3crnn39e6Y89efJkAgMDSz/Cw8Mr/TlEnJnVZvhwVRoJb67kxx1ZeHtYeHpADDPv7+GShQoor0VqIuW1SPXQmpVyeuCBB5g1axYrV64kIiLivMc2a9aMxx57jEceeaT0tvHjxzNz5kw2bdp01vuc7UpNeHi45sBKrZCakcuTX29m4/4TAHSNqM/UG9oT0bCOYwO7SMprkZpHeS1SPTQNrIyMMTz44IN89913LF++/IKFCkC3bt1YsmTJGcXKokWL6Nat2znv4+3tjbe3d2WELOIyikpsvLt8J9OW7aTYavD39uDpgTHccmkzLBY3R4d30ZTXIjWP8lqkeqhYKaNRo0bx2WefMWvWLPz9/UvXnQQGBuLr6wvAsGHDaNKkCZMnTwbg4YcfplevXrz22msMGjSIzz//nHXr1vGvf/3LYa9DxNls3H+Cp77eTEqGfVviq2JCePG6tjQK9HVwZCIiIuJoKlbK6L333gOgd+/eZ9w+ffp07rjjDsDeadZi+d8yoO7du/PZZ58xbtw4nnnmGSIjI5k5c+Z5F+WL1Bb5RSW8vjCVD1enYTPQoI4X46+NY3D7Rri5uf5oioiUTUGxFR9Pd0eHISJOSmtWnJz2bZeaaPXOLJ7+djP7j50C4LpOTXj2mjbUr+Pl4Miqh/JaxL6Zxlfr9vP6olRe/UsHrogKdnRIF0V5LfI/NpvBZgwe7he/l5dGVkSk2mTnFzNpbhJfrjsAQONAHyZd344+0SEOjkxEqosxhhWpmUyeu710+ucnP+11+WJFROz5vTw1k1cXpHBdpyaM7Nnyoh9TxYqIVIv5Ww/z7KxtZObad88Z3q05T/SPoa63fg2J1BZJh3KYPC+5tH9SoK8nD10Vyd8ua+bgyETkYq3bc4yX56fw855jAOQWlDCiRwTuF7lRjs4SRKRKHcktYPysbczbat+UomVwHabe0J5LW9R3cGQiUl3Sswt4bWEKX/96AGPAy93CsG7NeeDK1gT51Y7pnyI11bZD2by2MJWl248A4OVhYXi35tzXu/VFFyqgYkVEqogxhq/WH+DF2UnkFJTgYXHj3l6teODK1lpMK1JL5BWW8M8Vu/j3j7spKLYBcE37RjyZEEOzBn4Ojk5ELkZa1kleX5TKD5sOAeBuceOmS8J56KrWlbqjp4oVEal0+4/lM+bbLazaaZ/q0bZJAFNvaO+yHehFpHxKrDa+WLefNxalkpVXBMClLerxzMBYOjWr5+DoRORiHM4+xdtLdvDlugNYbfZ9ugZ3aMxjV0dVSRNnFSsiUmmsNsOMNXt4dUEKp4qteHtYePTqKEZeHlEpO4KIiHMzxrAs5Qgvzd3OziN5ALRo4MfTA2JJiAvVtuQiLuzYySLeXbaTj3/aS1GJfaT0ypgQHu8XTZvGVbcDnooVEakUqRm5PPn1ZjbuPwFAfER9ptzQvkqusoiI89l6MJtJc5JZu/soAPX8PHn4qkhujW+Ol4cuVoi4qtyCYv6zKo0Pfkwjr7AEgK4t6vNE/+hqWX+qYkVELkpRiY13l+9k2rKdFFsN/t4ejBkYy18vDcdSCQvrRMS5HTpxilcXpPDthoOAfXHtnT0iuK93KwJ9PR0cnYhUVEGxlf/+tJdpy3ZyPL8YgLjGATyREE2vqOBqGylVsSIiFbZh33Ge+mYzqRn26R59Y0N5cWhbwgJ9HByZiFS13IJi3lu+i/+sSqPwtykhQzo25vF+0YTX1+J5EYew2SA/C/wagqViI5rFVhtfrz/AW4t3kJ5TANh38nzs6igGtm1U7RciVayISLnlF5Xw2sJUPlydhjHQoI4Xzw+JY1C7RpqTLlLDFVttfP7zPt5cvIOjJ+2L57tG1GfcoFjaNw1ybHAitZnNBj++CgfWQdNLoOfj5SpYbDbD7C2HeWNRKmlZJwF78+ZH+kZxfecmDlt7qmJFRMpl1Y4sxny3mf3HTgFwfacmjLumDfXrqFeCSE1mjGFRUgZT5m1n928nMi2D6zBmQCx9Y0N0oULE0fKz7IVKXob9c34W1A254N2MMSxPyeSVBSkkHc4BoH4dL0b1ac1t8c0c3m5AxYqIlEl2fjEvzkniq/UHAGgS5Muk69rSO/rCvwhFxLVtPnCCF+ck83OavTN1/TpePNo3kr92bYandvoTcQ5+De0jKqdHVvwaXvAuP6cd45UF2/llz3EA/L09uPuKltx5eQR1vZ2jTHCOKETEqc3bcpjnvt9GZm4hbm4w7LLmPNE/xml+kYlI1ThwPJ9XFqQwa6O96Zu3h4W7Lo/g3t6tCPDR4nkRp2Kx2Kd+lWHNytaD2by6MIXlKZmAPbfv6N6Ce3u1op6TzZTQmYaInNORnAKem7WN+dvSAWgVXIepN7TnkmrYqlBEHCf7VDHvLt/J9NV7SvspXN+pCY8nRNM4qPI6U4tIJbNYzjv1a1dmHq8vSmXO5sMAeFjcuOnScB66MtJpN8dRsSIif2KM4at1B3hxThI5BSV4WNy4r3crRvVp7fC5qyJSdYpKbHyWuJe3luwo3aq0e6sGPDMwlrZNAh0cnYhU1KETp3hr8Q6+/tXedd7NDa7t0JhH+0bRwsn7oalYEZEz7DuazzPfbWHVziwA2jUJZOoN7au0O62IOJYxhgXb0pkybzt7juYD0DqkLmMHxtI7uvr6KYhI5TqaV8i0Zbv47097KbLaR0n7xoYwul80sY1c4++6ihURAcBqM0xfncZrC1M5VWzF28PC6H5R3NkjwmHbFYpI1ft133EmzUlm/V77AtuGdb149Ooobr4kXLkv4qJyCor54Mc0/vPjbk4WWQGIj6jPk/2j6dLctaZyq1gREVLSc3nqm81s3H8CsP9Cm3pDe6cfGhaRitt3NJ+pC7aXzl338bRwT8+W3NOrlTbPEHFRBcVWPl67h3eX7+LEb1M52zUJ5ImEaHpGNnTJUVL9NhKpxQpLrLy7bBfvLt9JsdXg7+3BM4NiufmS8GrvUCsi1eNEfhH/WLqTj9fap4W4ucGNnZsyul+00y6wFZHzK7ba+HLdft5esoOMnELAvinO4/2i6d82zCWLlNNUrIjUUr/uO85TX29mx5E8APrGhvLi0LY6WRGpoQpLrHyydi/vLN1J9in7FdfLWzfkmYGxWpMm4qJsNsMPmw/xxqLU0vVmTYJ8eaRvJNd1clzX+cqkYkWkljlZWMKrC1OYsWYPxkCDOl48PySOQe0aufSVFxE5O2MMc7ekM3X+dvYds5/MRIf68/TAGHpHafG8iCsyxrB0+xFeWZDC9vRcwL7ebFSf1twa3wxvj5qzc6eKFZFaZGVqJmO+3cLBE6cAuL5zE54d1MbpGkCJSOVYv/cYL85JZsO+EwAE+3vzeL8obuwSjrumeoq4pJ92H+WVBSmlm2L4+3jw9ytaMqJHBHVq4HqzmveKRORPTuQX8eKcZL5efwCwDxFPuq4tvaPP3ThKRFzXnqyTTJ2/nXlb7Q1dfT3dueeKltxzRcsaeTIjUhtsPZjNywtSWJlq7zrv42lhePcW3NerFUF+Nfeio35jidRw87Yc5tlZ28jKK8TNDYZ3a8ETCdE6YRGpgY6fLOLtpTv47097KbYaLG5w0yXhPHZ1FCEBWo8m4op2Hsnj9UUpzN1iv/jgYXHjr13DefDKSEJrQV7rbEWkhjqSU8Czs7ayYFsGYN8V5OUb27vc/uoicmGntyt9Z+lOcgtKAOgVFcwzA2OJDvN3cHQiUhEHT5zizUWpfPPrAWwG3NxgaMcmPNI3kuYNak9rARUrIjWMMYav1h1g4pwkcgtK8LC4cV/vVjxwZesateBORP63E9DL81NK16LFhPkzdlAsPSODHRydiFREVl4h05bt5NOf9pV2nb+6TSij+0URE1b7du5TsSJSg+w7ms+Y7zazeudRANo3DWTqDe2JbVT7frmJ1HQ/px1j0pwkNh3IBiA0wJvR/aK5oXNTLZ4XcUE5BcV8sHI3H6xKI/+3rvPdWjbgif7RdG5Wz8HROY6KFZEawGozfLgqjdcWpVBQbMPH08JjV0dxZ4+IGrHHuoj8z+7MPKbM287CJPsUzzpe7tzbqxUje7bE10ujpyKu5lSRlY/W7uG95btKeyB1aBrIEwkx9GjdoNZvL65iRcTFbU/P4amvN5deXe3WsgFTbmhXq+azitQGR/MKeXvJDj5N3EeJzeBucePmS8N5tG8Uwf7ejg5PRMqpqMTGF+v2886SHRzJtXedbx1Sl8f7RZEQ59pd5yuTihURF1VYYmXa0p28u3wXJTaDv48HYwfGcvOl4foFJ1KDFBRb+XB1Gu8t20VuoX3x/FUxITw9IIbIUC2eF3E1Vpvh+00HeWPRjtJGrU2CfHn06iiu69RE0zj/QMWKiAtav/c4T32zmZ1H8gDo1yaUiUPb1ootDEVqC5vNMGvTQV6Zn8Kh7AIA4hoHMHZgLN1bN3RwdCJSXsYYFicf4dUFKaRknO46780DfVpxSw3rOl+ZVKyIuJCThSW8ujCFGWv2YAw0rOvFC0PaMqCthotFapI1u7J4aW4yWw/mANA40Icn+kczpEMTLLrqKuJy1uzK4pUFKWzYdwKAAB8P/t6rFSN6tMDPS6fj56P/HREXsTI1kzHfbindnvT6zk14dlAb6tWpuV1rRWqbnUdymTx3O0u2HwGgrrcH9/dpxZ09IvDx1FVXEVez+cAJXlmQwo87sgDw9XRnRI8W/P2KVgT6eTo4OtegYkXEyZ3IL+LFOcl8vf4AYJ/X+tL17egVpR4KIjVFZm4hby5O5fNf9mP9bfH8bfHNeOiqSBrW1eJ5EVez80gury5IZf42e9d5T3c3bunajAeubE2Iv6Zsl4eKFREnZYxh7pZ0xn+/jay8QtzcYHi3FjyREE0db6WuSE1wqsjKBz/u5v0Vuzj5W1+Fq9uE8vSAGFoF13VwdCJSXvuP5fPWkh18+7uu89d1asKjfaMIr+/n6PBcks54RJxQRk4Bz87cWtpHITKkLlNuaE+X5rW3KZRITWK1Gb799QCvLUwlPce+eL5D00CeGRhLfMsGDo5ORMorM/e3rvOJeym2GgAS4kIZ3S+aKO3ad1FUrIg4EWMMX/yyn0lzk8ktKMHD4sb9fVozqk8r7RIiUkOs2pHFpLnJJB+2L55vEuTLk/2jGdy+sRbPi7iY7FPF/GvlLj5ctYdTxfbR0ctbN+TxhGg6hgc5NrgaQsWKiJPYe/QkY77dwppdRwH7VdYpN7QntlGAgyMTkcqQkp7L5HnJLE/JBMDfx4MH+rRmePcWWjwv4mJOFVmZviaN95fvIqfA3v+oQ3gQTyVEa2vxSqZiRaQibDbIzwK/hmCxXNRDlVhtTF+9h9cWpVBQbMPH08Lj/aIZ0SNCjaFEqpHNZiMzM5Pg4GAsF5nXv3ckp4A3FqfyxS/7sRnwsLjxt8ua89BVkdTXbn4iVaqy87qoxMYXv+zj7aU7yfyt63xUaF0euzqahLhQtRGoAipWRMrLZoMfX4UD66DpJdDz8QoXLMmHc3jqm81sPpANQLeWDZhyQzuaN6hTmRGLyAXYbDYmTZpEYmIi8fHxjB079qJPbPKLSvjXyt38a+Vu8n9bPN8/LoynBsQQ0VA5LlLVKjOvrTbDrI0HeWNxKvuP2VsIhNf35dG+UQzpqK7zVUnFikh55WfZC5W8DPvn/CyoG1KuhygssTJt6U7eXb6LEpvB38eDcYNiuemScF2VEXGAzMxMEhMTSU9PJzExkczMTEJDQyv0WFab4ev1+3ltYSpHfrvy2jE8iHGDYrmkRf3KDFtEzqMy8toYw6KkDF5bmFradT7Y35uHrmzNzZc2w8uj8kZh5exUrIiUl19D+4jK6ZEVv4blmha2fu8xnvpmCzuP5AH23UJeGNKW0ADtuy7iKMHBwcTHx5degQ0ODq7Q9JEVqZm8NCe59KQmvL4vT/WPYVC7RroQIVLNLjav1+zM4uUFKWzcfwKwd52/r3drhndvrq7z1cjNGGMcHYScW05ODoGBgWRnZxMQoIXWTuP3xQmUaVrYycISXlmQwkdr92AMNKzrzQtD4hjYrlE1By+Oprx2Tr8/iQHKNX0k+XAOL81NLu1SHejryYNXtub2bs21k18tobx2ThXJ6437T/DKgu2s3mnf8MbX0507L2/BPT3Vdd4RVBaKVITF8r+pX3lHLjgtbEVqJs98u4WDJ+zzXG/s0pRxg2IJ8tPiWhFnYbFYSqeIZGRklGn6SHp2Aa8vSuGr9Qcwxt6leli3Fjx4ZWvlt4gTKE9ep2bk8uqClNIeZ57ubtwW35z7+7RS13kHUrEicrHONi3sNyfyi5g4O5lvfj0AQNN6vrx0XTuuiAou33NU4u5jInJhZ5s+8nt5hSX8a8Uu/vXjbgqKbQBc074RTybE0KxB2bpUV9XuYyJydufK6/3H8nljcSrfbTiIMWBxg+s6NeWRvpHl7jqvvK58mgbm5DSs7CL+UEwYY5i7JZ3x328lK68INzcY0T2C0f2iqONdzmsElbj7mDgH5bVrONtJR4nVxpfrDvD6olSy8uyL5y9pXo9nBsXSuVm9cj12Ze8+Jo6lvHYNv8/rrJNFTFu6k89+3lfadb5/XBij+0URWYGu88rrqqGRFZHK8LtpYRk5BYybuZVFvw0jR4bUZcoN7enSvOwnMmeohN3HRKT8fj99xBjD8pRMXpqbzI7fNsdo0cCPpwfEkBAXVu7F85W5+5iIlJ3FYsHHvz6vLkxl+ur/dZ3vGdmQx/tF0+Eius4rr6uGihWRSmKM4Ytf9jNpbjK5BSV4WNy4v09rRvVpdXELbM8zzUxEqt7Wg9lMnpdcutg2yM+Th6+K5Lb45hXetvRC08xEpPLlF5UwffUe/rnif13nOzUL4omEaLq3uvi/rcrrqqFpYGW0cuVKXnnlFdavX8/hw4f57rvvGDp06DmPX758OX369PnT7YcPHyYsLKzMz6thZdewJ+skY77dwtrd9pOZDk0DmXpje2LCKuk905qVGkV57RoOnTjFqwtTSuexe7lbGNGjBff3aU2g78XvCKS57TWL8tp5FZXY+L+f9/HO0p2l0zejQ/15PCGavrEhlbqtuPK68mlkpYxOnjxJhw4duPPOO7n++uvLfL+UlJQzfmmFhGj6Tk1SYrXx4eo0XluYSmGJDR9PC4/3i2ZEj4jK7Wb7+93HRKRK5RYU8/6KXXzwYxqFJfbF89d2aMwTCdHlXmx7Pr+fZiYilc9qM3y34SBvLk7lwHH7bpzN6vvx2NVRDO7QuEq6ziuvK5+KlTIaMGAAAwYMKPf9QkJCCAoKqvyAxOGSDuXw9Leb2XwgG4DurRow5fr2Zd4JSEScS7HVxuc/7+PNxTs4erIIgK4R9Rk7MPai5rGLSPUyxrBgWwavLUwpXWMW4u/Ng1dFcvMl4eo672JUrFSxjh07UlhYSNu2bZkwYQI9evQ47/GFhYUUFhaWfp2Tk1PVIUo5FZZY+cfSnby3fBclNoO/jwfPDmrDXy5pqg7VclbKa+dmjGFx8hEmz0tmd+ZJAFo2rMPTA2K4uk2o8lrOSnntfIwxrNqZxSsLUkovJAb6enJf71YM79YCXy81aHVFKlaqSKNGjXj//fe55JJLKCws5IMPPqB3794kJibSuXPnc95v8uTJPP/889UYqZTH+r3HeOqbLez87UpN/7gwXhgSR0iAmkXJuSmvndfmAyeYNCeZxLRjANSv48UjfSO5pWszPN119VXOTXntXH7dd5xXF6SwZpd97aiflzt3XR7ByJ4tK2WNmTiOFthXgJub2wUX2J9Nr169aNasGZ988sk5jznblZrw8HAt2HOwk4UlvLIghY/W7sEYaFjXm4lD4hjQrpGjQxMXoLx2PgeO5/PKghRmbTwEgJeHhZGXR3Bv71YE+OjERi5Mee0cUtJzeXVhSmm7AC93C7dd1oxRfVrTsK63g6OTyqCRlWrUtWtXVq1add5jvL298fZWcjmT5SlHGPvdVg6esC/O+0uXpowb1IZAP53QSNkor51H9qli3l2+k+mr91D02+L56zs1YXRCNE2CfB0cnbgS5bVj7Ttq7zo/c+P/us7f2KUpD10VSdN6Wjtak6hYqUYbN26kUSNdiXcVx08WMXF2Et9uOAhA03q+TLm+PZdHqs+JiKspKrHxWeJe3lqyg+P5xQBc1rI+4wa1oW2TQAdHJyJllZFTwDtLd/D5z/spsdknBw1sF8ZjV0fTOqSug6OTqqBipYzy8vLYuXNn6ddpaWls3LiR+vXr06xZM8aMGcPBgwf5+OOPAXjzzTeJiIggLi6OgoICPvjgA5YuXcrChQsd9RKkjIwxzN58mAnfb+PoySLc3GBE9wgeT4jCz0spI+JKTu8KNHX+dtKy7IvnWwXX4ZmBsVwZU7n9FUSk6pzIL+K9Fbv4aM0eCorto6JXRAXzRL9o2jXVBYeaTGdeZbRu3bozmjw+9thjAAwfPpwZM2Zw+PBh9u3bV/r9oqIiRo8ezcGDB/Hz86N9+/YsXrz4rI0ixXmkZxcwbuZWFifb575GhtRl6o3t6dysnoMjE5Hy2rDvOC/NTeaXPccBaFjXi0evjuLmS8Lx0OJ5EZdwsrCE6avT+OfK3eT+1nW+S/N6PJEQzWUtGzg4OqkOWmDv5NQRt3rYbIbPf9nP5LnJ5BaW4Onuxv29W3N/n1Z4e2irQ6lcyuuqtf9YPi8vSOGHTfbF8z6eFu7u2ZK/92pFXW9do5OqobyuXIUlVj5L3Me0ZTvJyrP3PYoJ8+eJhGiNitYy+q0ttd6erJM8/e1mftpt37q0Q3gQL9/QnugwfwdHJiLlkZ1fzD+W7eCjNXspstpwc4MbOjdldL8oGgVq8byIKyix2vh2w0HeWryjdGOb5g1+6zrfvjGWKug6L85NxYrUWiVWG/9Zlcbri1IpLLHh6+nO4wnR3NG9Be76ZSjiMopKbHzy017eXrKD7FP2xfOXt27ImIExxDXWXHYRV2CMYf7WdF5dmMKu35qzhgZ489BVkdx0Sbj6HtViKlakVko6lMNT32xmy0F7h9vLWzdk8vXtCK+v7Q5FXIUxhnlb05k6fzt7j+YDEBVal2cGxtIrKljTRERcgDGGH3fYu86f/psc5OfJ/b1bMaxbC3w8NRW7tlOxIrVKQbGVfyzdyfsrdlFiMwT4eDDumjb8pUtTndiIuJD1e48zaU4Sv+47AUCwvzejr47ixi5NtXhexEWs33ucVxZsL52GXcfLnbt6tuTunhH4qzmr/EbFitQa6/Yc46lvNpcOLw9oG8bzQ+II8fdxcGQiTsBmg/ws8GsIFuc92d979CRT529n7pZ0AHw93fl7r5bc3bMldbR4XuQMNpuNzMxMgoODsThRXicfzuG1hSksTj4C2LvO/+2y5ozq04oG6jovf6Df7FLj5RWW8Mr87Xz8016MsV+BnTgkjv5t1aBTBLAXKj++CgfWQdNLoOfjTlewHD9ZxDtLd/LJT3sothosbvCXLuGM7hdFSIAuOIj8kc1mY9KkSSQmJhIfH8/YsWMdXrDsyTrJG4tT+X7TodKu83/pEs5DfSNpEqRNMOTsVKxIjbY85Qhjv9tauqPITZc0ZezANgT6aXhZpFR+lr1Qycuwf87PgrohVfNc5RzBKSyx8vGavbyzdAc5v/VY6B0dzJgBsdqxT+Q8MjMzSUxMJD09ncTERDIzMwkNDa2S57rQCE56dgFvL93Bl7/8r+v8oPaNeOzqKFoFq+u8nJ+KFamRjp8sYuLsJL7dcBCApvV8mXJ9ey6PbOjgyESckF9D+4jK6ZEVvyrKk3KM4BhjmL35MFPnb+fAcfvFhpgwf54ZGMsVUcFVE59IDRIcHEx8fHzpyEpwcAXypgwXF843gnP8ZBHvr9jFjDV7KCyxd53vHR3M4/2iadukknfqc5GprFJ+KlakRjl9gjPh+20cPVmExQ1G9IhgdL8o/Lz04y5yVhaLvXCo6j/0ZRzB+TntGJPmJrNp/wnAvn3p6H7R3NC5qbYVFykLmw1LfhZjnxlDZtbRiq1ZKePFhbON4NQJasCHq9L498rd5BbaR0QvaV6PJ/vH0DWifmW8wgrFKq5JZ29SYxzOPsWzM7eWLtiLCq3L1Bva06lZPQdHJuICLJaqm/p12gVGcHZn5jF1/nYWbMuwH+7lzr29WjGyZ4QuNoiU1e9O3C1NLyG0oifuZby48PsRnC5dL+OH1DzeW76ZoyftXedjGwXwZEI0vaOrcDvx6pzKKtVOv/3F5dlshv/7ZR9T5m4nt7AET3c3RvVpzf29W+PloSsrIk7jHCM4R/MKeXvJDj5N3EeJzb54/q9dm/FI30jt1idSXpV14l7G6aEWi4Wnnh7DRytT+PDndA7P2Q5AiwZ+PNYvmmvaNar6rvPVNZVVHELFiri0tKyTPPXNZn5Os+/R3qlZEFNvaE9UqBbeijil343gFBRb+XB1Gu8t21U6VaRPdDDPDIwlUjksUjGVceJ+ev3H5Y/BqWPnnB5qs9kbs762KIXdv7UFCAvw4aGrIvnLJU2rr+t8dU1lFYdQsSIuqcRq44NVabyxKJXCEhu+nu48nhDNHd1baE67iJOz2QzfbzrEKwtSSnfqi2scwNiBsXRvrSuiIhflYk/cy7D+wxjDitRMXl2YwtaDOQDU8/Pk/t6tub1bc8d0na+OqaziECpWxOUkHcrhqW82s+VgNgA9Ixvy0nXtCK/v5+DIRORC1u46yqS5SaUnOI0CfXgiIZqhHZtU/VQRkdriYk7cLzCNbN2eY7y8IKV0RoO6zktVU7EiLqOg2Mo7S3fwzxW7KbEZAnw8ePaaNtzYpWnVLdoTkUqx80guU+ZtL90Ao663B/f1bsVdl0c45iqsiJzdOaaRJR3K4dWFKSzd/lvXeQ8Lwy5rzv19WlO/jpcjI5YaTsWKuIR1e47x5DebS+fEDmwXxoRr4/63+Fb7q4s4pay8Qt5cnMr//bwfq83gbnHj1q7NeLhvJA3rep/3vhdqNCciVeAP08jSjp3i9UWp/LDpEADuFjduuqQpD10VSaPAinWdV25LeahYEaeWV1jCy/O38/HavQAE+3szcUhb+rcN+99B2l9dxOmcKvpt8fzyXeT9tni+b2woTw+IoXXIhTtWn6/RnIhUMYuFw1Z/3p65lS/XHcD6W9f5wR0a89jVUUQ0rFPhh1ZuS3mpWBGntWz7EcZ+t4VD2QUA3HRJU8YObEOg3x/mxGp/dZHqc4FRTJvN8O2Gg7y6IIX0HHvutm8ayDMDY7msZYMyP83ZGs2FhoZW2ssQkf/5/UjHiVMlvLd8Jx+t3UvRb13n+0QH83hCNHGNL77rvHJbykvFijidYyeLeOGHbczcaB9yblbfj8nXt6PHuXYJ0v7qItXjAqOYq3dmMWlOMkmH7YvnmwT58kRCNNd2aFzuxfO/bzQXHx9PcHBwpb4UEbE7PdKx5pdf8ekwkB2WcPIKrQB0bVGfJ/pHc2mLyus6r9yW8nIzxhhHByHnlpOTQ2BgINnZ2QQEBDg6nCpljH070+d/SOLYySIsbnBnjwge6xd14e7VWrMiLsRl8zrvCMx6wD6KWTcUhvwD6oaQmpHL5LnJLEvJBMDf24NRV7bmju4tLmrxvOa1iytx1bzed/AwNz3zDhkNOmK87NO74hoH8HhCNL2jqqbrvHJbykMjK+IUDmefYtx3W1ny2y4j0aH+TL2xPR3Dg8r2ANpfXaTq/WEU84jVnze+3cIXv+zDZsDD4sbfLmvOg1e2psEFFs+XhcVi0fQQkSpSYrXx9foDvLVkB+mNegAQ6FbApL9exsB25R8NLQ/ltpSHihVxKJvN8NnP+5gybzt5hSV4urvxQJ9I7uvdCi8PXW0RcSq/7RKUfyKDD37N5f3XVpBfZJ8u0j8ujKcGxFzUwlsRqXo2m2Hu1sO8vjCV3Vn2HTYbBfpwZ9dQhl8Rg5enTg3FuegnUhwmLeskT32zubSxVKdmQUy9oT1Rof4OjkxEzsZqM3zz60FeW5hCRk4hAB3Dgxg7KLZS57SLSOUzxrA8JZNXFqSUriurX8eLUX1ac1t8M/U7EqelYkWqXYnVxr9/TOONxakUldjw9XTnyf7RDOvWAnd1sBZxSitTM3lpbjLb03MBCK/vy1P9YxjUrpGasoo4uZ/TjvHKgu38suc4YG/KenfPltzVM4K63joVFOemn1CpVlsPZvPUN5vZdsh+VadnZENeuq4d4fX9HByZiJzN9vQcXpq7nZWp9sXzAT4ePHhlJMO6N8fbQ1diRZzZ1oPZvLowheW/bX7h7WFhePcW3NerFfXUdV5chIoVqRYFxVbeXrKDf67cjdVmCPT1ZNygWG7s0lRXZUWcUEZOAa8vTOWr9fuxGfB0d2N4txY8cGVrgvx0kiPizHZn5vH6olRmbz4M2De/uOnScB66MpKwQB8HRydSPipWpMr9nHaMp7/ZXLqQb1C7Roy/tg0h/vqFKeJsThaW8K+Vu/nXyt2cKrYvnh/UrhFP9o+meQMtnhdxZodOnOLtJTv4ar2967ybG1zboTGP9o2ihTa/EBelYkWqTG5BMS/PT+GTn/YCEOLvzcShbUmIC3NwZCLyRyVWG1+tP8Dri1LJzLUvnu/SvB7PDIylS/N6Do5ORM7naF4h7y7fxSc//a/r/FUxIYzuF02bxq7T80XkbFSsSJVYuj2Dsd9t5XB2AQB/vTScMQNjCfT1dHBkIvJ7p3cImjwvmdSMPACaN/Dj6f4x9G8bVvXTNNXQVaTCcguK+fePafznx92c/G0b8a4R9XkyIZpLHLhDn5o+SmVSsSKV6mheIS/MTmLWxkMANKvvx5Tr29G9dUMHRyYif7TtUDYvzU1m9c6jAAT5efLwVZHcFt+8evoc2Wzw46ulTSbp+bgKFpEyKCi28snavby7fCfH84sBaNskgCcSYrgisqFD14LabDYmTZpEYmIi8fHxjB07VgWLXBQVK1IpjDF8v+kQz/+QxLGTRVjc4K7LI3js6mh8vbRjkIgzOXTiFK8uTOG7DQcxBrzcLdzRowWj+rSu3tHP/Cx7oZKXYf+cnwV1Q6rv+UVcTLHVxlfrDvD2kh2k59hnLrQMrsPj/aIZUB0joWWQmZlJYmIi6enpJCYmkpmZqW71clFUrMhFO3TiFONmbmXp9iMAxIT5M/WG9nQID3JsYCJyhtyCYv65Yjf//nE3hb/Na7+2Q2OeSIh2zPbhfg3tIyqnR1b8NAIrcjY2m+GHzYd4Y1Eqe47mA9AkyJeHr4rk+s5N8HB3npGL4OBg4uPjS0dWgoODHR2SuDg3Y4xxdBBybjk5OQQGBpKdnU1AgHMtkrPZDJ/+vI+p87aTV1iCl7uFB65szb29WlXPFBIRF1XdeV1itfF/v+znzUWpHD1ZBMClLeoxdlAbOjr6ooLWrEgNURV5bYxhWcoRXlmQSvJvXecb1PHigStbc2t8M6ftdaQ1K1KZNLIiFbI7M4+nv9nCz3uOAdC5WRBTb2hPZKi/gyMTkdOMMSxJPsLkecnsyrRvHR7RsA5PD4ihX5vQs08Zqe7iwWLR1C+Rs0jcfZRXFqSwbq+967y/twf3XNGSOy+PoE45u85Xd/FgsVg09UsqjYoVKZdiq41//7ibNxfvoKjEhp+XO08mRHN7txa4Wxw/V1ZE7LYcyGbS3CR+2m2/oFDPz5NH+kZxa3wzPM81ZUQL3kUcbuvBbF5ekMLK1P91nb+jRwvuvaJiXee14F1cnYoVKbOtB7N56pvNbDtkH4q+IiqYl65rS9N6DpjrLiJndfDEKV5dYF88D+DlYeGuyyO4r3crAnwusHheC95FHGbnkTzeWJTKnC3/6zp/86XhPHiRXee14F1cnYoVuaCCYitvLdnBv1buxmozBPp68tw1bbi+cxOn2HlERCCnoJh3l+3iw9VppU3hruvUhNH9osp+QUEL3kWq3cETp3hrcSpfrz+AzYCbGwzp0JhHr46ieYOL7zqvBe/i6rTA3sk5eoF94u6jPP3tFtKy7PPdB7VrxIRr4wj29672WERqisrM62Krjc8S9/HWkh0c+23x/GUt6/PMwFjaNw0q/wNqwbtIhZQ3r7PyCpm2bCef/rSPIqv9AsPVbUIZ3S+KmLDK/XuvBe/iyjSyImeVW1DMlHnb+TRxHwAh/t5MHNqWhLgwB0cmImBfPL8wKYMp87aXXkxoGVyHZwbEclVsSMVHPbXgXaRK5RQU8++Vu/nPqjTyf+s6361lA57oH03nZvWq5Dm14F1cmYoV+ZMlyRmMm7mVw9n2hlN/vTScMQNjq7dZnIic08b9J3hpTnLpbnwN6njxyNVR/PXS8HMvnhcRhyootvLRmj28t2IXJ37rOt++aSBPJERzeWvHdp0XcWYqVqTU0bxCnv8hie83HQKgeQM/Jl/fju6tNG9dxBnsP5bPywtS+OG3HPXxtDDy8pb8vVdL/C+0eF5EHMoY+M+qNE7kF9M6pC6P94siIc45us6LODMVK4IxhlkbD/H8D9s4nl+MxQ1G9mzJo32j8PVyzoZTIrVJdn4x05bvZMbqPRRZbbi5wQ2dmzK6XxSNAn0dHZ6IlIGvlzvjrmlDYbGV6zs31Xb/ImWkYqWWO3TiFGO/28KyFPt+7jFh/ky9oT0dHN3VWkQoKrHx35/28vbSHaXTRnq0bsAzA2OJaxzo4OhEpLyu7dDY0SGIuBwVK7WUzWb4NHEvU+Zt52SRFS93Cw9d1Zq/92qlOe8iDmaMYd7WdKbO387eo/kARIXWZcyAWHpHB2vaiIiI1BoqVmqhXZl5PP3NZn7ZcxyALs3rMfWGdrQO8XdwZCICsOVgNvd/+isAwf7ejL46ihu7NMVDFxJERKSWUbFSixRbbfxr5W7eWrKDohIbfl7uPNU/htsva45Fc2dFnEb7pkEM6diYFg3qcM8VLanjrV/VIiJSO+kvYC2x9WA2T369maTDOQBcERXMS9e1LXtnaxGpVm/e3FHTvUREpNbTnIIyWrlyJYMHD6Zx48a4ubkxc+bMC95n+fLldO7cGW9vb1q3bs2MGTOqPM4/Kii2MmXedoZMW03S4RyC/Dx57S8d+GjEpSpURJyYChUREREVK2V28uRJOnTowLRp08p0fFpaGoMGDaJPnz5s3LiRRx55hJEjR7JgwYIqjvR/EncfZcBbP/L+il1YbYZr2jdi0aO9uKFLU50IiYiIiIjT0zSwMhowYAADBgwo8/Hvv/8+ERERvPbaawDExsayatUq3njjDRISEqoqTAByC4qZMm87nybuAyA0wJuJQ9rSLy6sSp9XRERERKQyqVipImvXrqVv375n3JaQkMAjjzxSpc+7OCmDcTO3kp5TAMAtXZsxZmAMAepuLSIiIiIuRsVKFUlPTyc0NPSM20JDQ8nJyeHUqVP4+p6963RhYSGFhYWlX+fk5JTp+bLyCnn+hyR+2HQIgBYN/Jh8fXu6tWpQwVcgIpWlonktIs5LeS1SPbRmxclMnjyZwMDA0o/w8PDzHm+M4bsNB7j69RX8sOkQFjf4+xUtmffwFSpURJxEefNaRJyf8lqkeqhYqSJhYWFkZGSccVtGRgYBAQHnHFUBGDNmDNnZ2aUf+/fvP+/zfLluP49+sYnj+cXEhPkzc1QPxgyMxdfLvVJeh4hcvPLmNYDNZiMjIwObzVYNEYpIeSmvRaqHpoFVkW7dujF37twzblu0aBHdunU77/28vb3x9vYu8/MMad+IDxf8wuA6Sfy9gzeejS+vULwiUnXKm9c2m41JkyaRmJhIfHw8Y8eOxWLRtSURZ6K8FqkeypIyysvLY+PGjWzcuBGwb028ceNG9u2z77g1ZswYhg0bVnr8vffey+7du3nyySfZvn077777Ll9++SWPPvpopcblU3ycOS2+5AG/xXgeWgf5WZX6+CJS/TIzM0lMTCQ9PZ3ExEQyMzMdHZKIXCTltUjFqFgpo3Xr1tGpUyc6deoEwGOPPUanTp147rnnADh8+HBp4QIQERHBnDlzWLRoER06dOC1117jgw8+qPxti/0a4hHeBeqGQtNLwK9h5T6+iFS74OBg4uPjCQsLIz4+nuDgYEeHJCIXSXktUjFuxhjj6CDk3HJycggMDCQ7O5uAgICzH2Sz2UdU/BqChpRFnF5Z8tpms5GZmUlwcLCmioi4AOW1SNXQmpWawGKBuiGOjkJEKpHFYvnT9uci4tqU1yLlp7JeRERERESckooVERERERFxSipWRERERETEKWnNipM7vf9BTk6OgyMRcS3+/v64ubk5OoyzUl6LVIzyWqTmuVBeq1hxcrm5uQCEh4c7OBIR13LeHfQcTHktUjHKa5Ga50J5ra2LnZzNZiMlJYU2bdqwf/9+p/0lXRvk5OQQHh6u98HByvo+OPMVWOW181BeOwfltVQm5bXzKMt7oZEVF2exWGjSpAkAAQEBSjonoPfBObjy+6C8dj56H5yDK78Pymvno/fBeVzMe6EF9iIiIiIi4pRUrIiIiIiIiFNSseICvL29GT9+PN7e3o4OpVbT++Acasr7UFNeh6vT++Acasr7UFNeh6vT++A8KuO90AJ7ERERERFxShpZERERERERp6RiRUREREREnJKKFRERERERcUoqVkRERERExCmpWBEREREREaekYkVERERERJySihUREREREXFKKlZERERERMQpqVgRERERERGnpGJFRERERESckooVERERERFxSipWRERERETEKalYERERERERp6RiRUREREREnJKKFRERERERcUoqVkRERERExClVqFhJTEys7DhERERERETOUKFipVu3bkRFRTFx4kR2795d2TGJiIiIiIhUrFj573//S2RkJBMnTiQyMpIePXrw/vvvc+zYscqOT0REREREaik3Y4yp6J2zsrL4/PPP+eyzz/jpp5/w8vKif//+/O1vf+Paa6/Fy8urMmMVEREREZFa5KKKld/btWsXn332GZ9++ik7duwgMDCQG2+8kWHDhnH55ZdXxlOIiIiIiEgtUmm7gfn6+uLn54ePjw/GGNzc3Jg1axa9evXi0ksvJSkpqbKeSkREREREaoGLKlZyc3OZPn06ffv2pXnz5jzzzDO0aNGCr7/+mvT0dA4dOsQXX3zBkSNHGDFiRGXFXKsYY8jJyaGSBsBExAkor0VERMqmQsXKrFmzuOmmmwgNDeWuu+4iNzeXN998k0OHDjFz5kyuv/56PD09cXd358Ybb2TcuHFs2LChsmOvFXJzcwkMDCQ3N9fRoZTas2cPbm5ubNy40dGhiLgk5bWIiEjZVKhYue6660hMTOTRRx8lOTmZxMRERo0aRYMGDc56fIcOHbjtttsuKlApu/T0dB588EFatmyJt7c34eHhDB48mCVLljg6tFIpKSn06dOH0NBQfHx8aNmyJePGjaO4uNjRoYk4JVfI69/buXMn/v7+BAUFOToUERFxYR4VudPSpUvp3bt3mY/v2rUrXbt2rchTSTnt2bOHHj16EBQUxCuvvEK7du0oLi5mwYIFjBo1iu3btzs6RAA8PT0ZNmwYnTt3JigoiE2bNnH33Xdjs9l46aWXHB2eiFNxlbw+rbi4mFtuuYWePXuyZs0aR4cjIiIurEIjK+UpVKR63X///bi5ufHzzz9zww03EBUVRVxcHI899hg//fQTAHfeeSfXXHPNGfcrLi4mJCSE//znPwDYbDZefvllWrdujbe3N82aNWPSpEnnfN6tW7cyYMAA6tatS2hoKLfffjtZWVnnPL5ly5aMGDGCDh060Lx5c6699lpuu+02fvzxx0r4XxCpWVwlr08bN24cMTEx3HTTTRfxqkVERCpxNzBxvGPHjjF//nxGjRpFnTp1/vT909MxRo4cyfz58zl8+HDp92bPnk1+fj4333wzAGPGjGHKlCk8++yzJCUl8dlnnxEaGnrW5z1x4gRXXnklnTp1Yt26dcyfP5+MjIxynajs3LmT+fPn06tXr3K8YpGaz9XyeunSpXz11VdMmzatgq9YaiybDfKO2D+LiJSVEaeWnZ1tAJOdnX3BYxMTEw1gvv322wse26ZNGzN16tTSrwcPHmzuuOMOY4wxOTk5xtvb2/z73/8+633T0tIMYDZs2GCMMWbixImmX79+Zxyzf/9+A5iUlJTzxtGtWzfj7e1tAHPPPfcYq9V6wdhFXF1NzeusrCwTHh5uVqxYYYwxZvr06SYwMPCCcUstYLUas3yqMf/9i/2zfteLSBlpZKUGMeXYBnXkyJFMnz4dgIyMDObNm8edd94JQHJyMoWFhVx11VVleqxNmzaxbNky6tatW/oRExMD2JuFns8XX3zBr7/+ymeffcacOXN49dVXy/waRGoDV8rru+++m1tvvZUrrriizDFLLZGfBQfWQV6G/XP+hacTiohABRfYi3OKjIzEzc2tTItthw0bxtNPP83atWtZs2YNERER9OzZE7A3+CyPvLw8Bg8ezNSpU//0vUaNGp33vuHh4QC0adMGq9XKPffcw+jRo3F3dy9XDCI1lSvl9dKlS/n+++9LLzoYY7DZbHh4ePCvf/2rtHCSWsivITS9xF6oNL3E/rWISBmoWKlB6tevT0JCAtOmTeOhhx760/z2EydOlM5vb9CgAUOHDmX69OmsXbv2jKadkZGR+Pr6smTJEkaOHHnB5+3cuTPffPMNLVq0wMOj4j9SNpuN4uJibDabihWR37hSXq9duxar1Vr69axZs5g6dSpr1qyhSZMmZXoMqaEsFuj5uH1Exa+h/WsRkTLQb4saZtq0aVitVrp27co333zDjh07SE5O5u2336Zbt25nHDty5Eg++ugjkpOTGT58eOntPj4+PPXUUzz55JN8/PHH7Nq1i59++ql0R6E/GjVqFMeOHeOWW27hl19+YdeuXSxYsIARI0acceLye59++ilffvklycnJ7N69my+//JIxY8Zw88034+npWXn/ISI1gKvkdWxsLG3bti39aNKkCRaLhbZt21KvXr3K+w8R12SxQN0QFSoiUi4aWalhWrZsya+//sqkSZMYPXo0hw8fJjg4mC5duvDee++dcWzfvn1p1KgRcXFxNG7c+IzvPfvss3h4ePDcc89x6NAhGjVqxL333nvW52zcuDGrV6/mqaeeol+/fhQWFtK8eXP69++P5Rx/lDw8PJg6dSqpqakYY2jevDkPPPAAjz76aOX8R4jUIK6S1yIiIpXNzZRn9aZUu5ycHAIDA8nOziYgIKBSHzsvL48mTZowffp0rr/++kp9bBE5N+W1iIhI2WhkpRay2WxkZWXx2muvERQUxLXXXuvokETkIimvRUSkJlKxUgvt27ePiIgImjZtyowZMy5qUbyIOAfltYiI1ESaeFxGkydP5tJLL8Xf35+QkBCGDh1KSkrKBe/31VdfERMTg4+PD+3atWPu3LnVEO35tWjRAmMM+/fvL3PPBRFxbsprERGpiVSslNGKFSsYNWoUP/30E4sWLaK4uJh+/fpx8uTJc95nzZo13HLLLdx1111s2LCBoUOHMnToULZu3VqNkYuIiDivo3mF5Wp+KiK1ixbYV1BmZiYhISGsWLHinN2ab775Zk6ePMns2bNLb7vsssvo2LEj77//fpmepyoX4oqIYyivRaDYamP66jTeXLyDN27uSEJcmKNDEhEnpEnNFZSdnQ3YG7ady9q1a3nsscfOuC0hIYGZM2ee8z6FhYUUFhaWfp2Tk3NxgYqIwymvRc70c9oxxs3cQmpGHgA/bDqkYkVEzkrTwCrAZrPxyCOP0KNHD9q2bXvO49LT0wkNDT3jttDQUNLT0895n8mTJxMYGFj6ER4eXmlxi7iyE/lFvLt8Jzab6w0GK69F7LLyChn95SZu+udaUjPyqF/Hi5dvbM/bf+3k6NBExElpZKUCRo0axdatW1m1alWlP/aYMWPOGI3JycnRiY3Ualab4fNf9vHqghSO5xfToI4XN1/azNFhlYvyWmo7q83w2c/7eGX+dnIKSnBzg1u6NuPJhGiC/LwcHZ6IODEVK+X0wAMPMHv2bFauXEnTpk3Pe2xYWBgZGRln3JaRkUFY2LmHur29vfH29q6UWEVc3S97jjF+1jaSDtunTUWH+tOiQR0HR1V+ymupzTbtP8Gzs7ay+YB9+nRc4wBeHNqWTs3qOTgyEXEFKlbKyBjDgw8+yHfffcfy5cuJiIi44H26devGkiVLeOSRR0pvW7RoEd26davCSEVcX3p2AVPmJTNz4yEAAnw8eOzqKP52WXM83DV7VcQVZOcX88rC7XyauA9jwN/bgyf6R3NbfHPcLW6ODk9EXISKlTIaNWoUn332GbNmzcLf37903UlgYCC+vr4ADBs2jCZNmjB58mQAHn74YXr16sVrr73GoEGD+Pzzz1m3bh3/+te/HPY6RJxZYYmV/6xK4x9Ld5JfZMXNDf56aTiP94umQV2NTIg4hM0G+Vng1xAsF75YYIzhm18PMnluMkdPFgEwtGNjnhkUS4i/T1VHKyI1jIqVMnrvvfcA6N279xm3T58+nTvuuAOwd5C2/O4Xeffu3fnss88YN24czzzzDJGRkcycOfO8i/JFaiNjDEu3H2Hi7CT2HM0HoHOzIJ6/ti3tmgY6ODqRWsxmgx9fhQProOkl0PPx8xYsKem5PDtzKz/vOQZA65C6TBzSlm6tGlRXxCJSw6jPipNTPwap6XZl5jFxdhLLUzIBCPH3ZszAGIZ2bIKbW82cKqK8FpeRdwRmPQB5GVA3FIb8A+qG/Omwk4UlvLVkB/9ZlYbVZvD1dOfhvpHc2SMCLw9N3RSRitPIiog4RG5BMf9YupMPV6dRbDV4urtx1+UteeDK1tT11q8mEafg19A+onJ6ZMWv4RnfNsYwf2s6L8xO4nB2AQAJcaE8NziOJkG+johYRGoYnRGISLWy2QzfbTjIlPnbycy1N0q8MiaEZ69pQ0RD19vpS6RGs1jsU7/OsmZlT9ZJnvt+GytT7aOizer78fy1cfSJ+fPIi4hIRalYEZFqs+VANuO/38qv+04AENGwDs9eE8uVMaHnv6OIOI7FcsbUr4JiK+8t38V7K3ZRVGLDy93Cvb1bcX/vVvh4ujswUBGpiVSsiEiVy8or5NUFKXyxbj/GQB0vdx68KpIRPVrg7aGTGxFXsSzlCONnbWPfMftGGFdEBfP8tXEaFRWRKqNiRUSqTLHVxidr9/LG4lRyC0oA+xamYwbGEhqgLUxFXMWhE6d44Yck5m+zb9sfFuDDs9e0YWC7sBq7EYaIOAcVKyJSJVbvzGLC99vYcSQPgLZNApgwOI5LWtR3cGQiUlZFJTY+XJ3GW4t3cKrYirvFjbsuj+ChqyIrZyOMcvZwEZHaR8WKiCPVwD/U+4/lM2lOcukV2Hp+njzZP4abLglX12qpFWw2G5mZmQQHB5/Re8vV/LT7KM/O3Fp6weHSFvWYOLQtMWGVtN12OXu4iEjtpGJFxFFq2B/qU0VW3l+xi/dX7KKwxIa7xY3bL2vOo32jCPTzdHR4ItXCZrMxadIkEhMTiY+PZ+zYsS5XsGTmFjJ5bjLfbjgIQIM6XowZGMsNnSu591F+lv33X16G/XN+1ll7uIhI7aZiRcRRXOgP9fmuFBtjmLc1nUlzkjl44hQA3Vo2YPy1bSrvCqyIi8jMzCQxMZH09HQSExPJzMwkNNQ5d7v7Y15bbYZPE/fyyoIUcgtKcHODW7s244mEaIL8vCo/gAv0cBERARUrIo7jIn+oz3elOCU9lwnfb2Pt7qMANAnyZeygWAa01aJbqZ2Cg4OJj48vzZfg4GBHh3RWf8zra4aN4tnvt7H1YA4A7ZoEMnFoWzqGB1VdEOfp4SIicpqKFRFHcZE/1Ge7UuzjX583FqfyyU97sdoM3h4W7u3Vint7tcLXq4xbEdfA9ToiFouFsWPHOv2aldN5fSgrm2/3e/Phe2sxgL+PB0/2j+HWrs0qvMasXGt2/tDDRUTkj1SsiDiSC/yh/v2V4ku7xrM47RSvLlzG8fxiAPrHhTF2UCzh9f3K/qA1bL2OyO9ZLBannfp1WoMGDanXeQDJ+aFYPXwBuL5zE8YMiCXY37vCj1sT1uyIiHNRsSIi53X6SvHijbt5e9Vhps/cBkDrkLpMGBzH5ZEVmL7mQut1RGqa5MM5PDtzK+uKWoAHRIXUZeLQtsS3bHDRj+1Ka3ZExDWoWBGR88rIKWDKvO1899vOQP7eHjzcN5Lh3Vvg6V7BK6Yusl5HpCbJKyzhzUWpTF+zB6vN4OflziN9IxnRI6LiufwHrrJmR0Rch5sxxjg6CDm3nJwcAgMDyc7OJiBAOytJ9SkssfLhqj28s3QH+UVW3Nzg5kvCeTwhmoZ1Kz5NpFQtXrOivJbqZIxhzpbDTJydREZOIQAD2obx7DVtaBzkW+nPV1P6zIiIc9DIioj8ydLtGbzwQxJ7juYD0KlZEM9fG0f7pkGV9yQusF5HxNXtzsxj/Pfb+HFHFgDNG/jx/LVx9I6uutxzhTU7IuI6VKyISKm0rJO88MM2lqVkAhDs782YATEM7dgEi7rPi7iMgmIr05bt5J8rdlNkteHlYeG+Xq24r3crfDzLuGOfiIgTULEiIuQVlvCPpTv5z6rdFFsNnu5u3NkjggeviqSut35NiLiSpdszGP/9NvYfszdp7RUVzPPXxtGiYR0HRyYiUn46CxGpxYwxzNp4iJfmJnMk1z6XvVdUMM8NbkOr4LoOjk5EyuPA8Xxe+CGJhUkZADQK9OG5a9rQX01aRcSFqVgRqaW2Hsxm/PfbWL/3OGCfy/7cNW24MiZEJzYiLqSoxMYHq3bzzpKdnCq24mFx467LI3joqkjqaGRURFycfouJ1DJH8wp5dWEqn/+yD2PAz8udUX1ac9flEZrLLuJi1uzK4tmZW9mVeRKArnXSebFTHlH9+9e6XfZEpGZSsSJSS5RYbfz3p728viiVnIISAIZ0bMyYAbGEBfo4ODoRKY8jOQVMmpvMrI2HAGhYx4Nn6i3jOo+1uGWHQv4t2m1PRGoEFSsitcCaXVk8/30SKRm5ALRpFMCEa+PoGlHfwZGJSHmUWG188tNeXl+YSm5hCW5ucPtlzRndN5LAdZvgQKgarYpIjaJiRaQGO3A8n8lztzNny2EAgvw8eSIhmr9e2gx3bUUs4lJ+3Xeccd9tJelwDgAdmgYycWjb//U/6vl4rW20KiI1l4oVkRqooNjKP1fs5r0VOykotmFxg9vimzO6XxRBfl6ODk9EyuH4ySJeXrCd//t5PwABPh482T+GW7r+4aKDGq2KSA2kYkWkBjHGsGBbOhNnJ3PwhL3HQnxEfSZcG0dsowAHRyci5WGzGb5av58p87ZzPL8YgBs6N2XMwBga1vV2cHQiItVDxYpIDZGakcvzP2xj9c6jgL3HwthBsQxq10hbEYu4mKRDOYybuYVf950AIDrUnxeva8ulLbTOTERqFxUrIi4u+1Qxby5O5eO1e7HaDF4eFu69oiX39m6Fn5dSXMSV5BYU8/qiVD5aswebgTpe7jx6dRTDu7fA013rUESk9tGZjIiLstoMX63bz8sLUjh2sgiAhLhQxg1qQ3h9PwdHJyLlYYzhh82HeXF2EkdyCwEY1L4Rzw5qo63FRaRWU7Ei4oJ+3Xec8bO2seVgNgCtQ+oyfnAbekYGOzgyESmvnUfyeG7WVtbssk/hbNHAjxeGtOWKKOWziIiKFREXciSngCnzt/PtrwcB8Pf24OG+kZoiIuKCThVZ+ceyHfxr5W6KrQZvDwuj+rTmnita4uPp7ujwREScgooVERdQVGJj+uo03l6yg5NFVgD+0qUpT/aPIdhfuwKJuJrFSRmM/35b6a59faKDef7atjRroCmcIiK/p2JFxMktSznCxB+S2J11EoCO4UFMuDaOjuFBjg1MRMpt/7F8nv8hicXJGQA0DvThucFxJMSFatc+EZGzULEi4qT2ZJ1k4uwklmw/AkDDut481T+aGzo3xaLu8yIupbDEygc/pvHO0h0UFNvwsLhx9xUtefDK1tq1T0TkPPQbUsTJnCwsYdqynXzwYxpFVvtJzZ2XR/Dgla3x9/F0dHgiUk6rdmTx3KytpaOjl7Wsz8QhbYkM9XdwZCIizk/FioiTMMbw/aZDvDQ3mYwc+9alPSMbMn5wHK1D6jo4OhEpr4ycAl6ck8wPmw4B9tHRcYNiGdKxsaZ8iYiUkYoVESew9WA2z/+wjV/2HAegWX0/nr2mDX1jQ3RSI+JiSqw2Plq7lzcWpZJXWILFDYZ1a8GjV0cR6KvRURGR8lCxIuJAx04W8erCFP7v530YA76e7ozq04qRPbV1qYgrWr/3GGO/28r29FwAOoQHMWloW9o2CXRwZCIirknFikgF2Gw2MjMzCQ4OxmIpf3+TEquNz37ex2sLU8k+VQzA4A6NGTMghsZBvpUdroiUwcXk9bGTRUyZl8yX6w4AEOjrydMDYrj5knBtiCEichFUrIiUk81mY9KkSSQmJhIfH8/YsWPLdWKzdtdRnv9hW+mV19hGAUwY3Ib4lg2qKmQRuYCK5rXNZvhi3X6mzt/OiXz7hYebLmnKU/1jaFBXPZBERC6WihWRcsrMzCQxMZH09HQSExPJzMwkNDT0gvc7dOIUk+YmM2fzYQCC/DwZ3S+aW7s2w11XXkUcqiJ5vfVgNuNmbmXj/hMAxIT5M+m6tnRpXr8aIhYRqR1UrIiUU3BwMPHx8aVXYIODg887faSg2Mq/Vu7m3eU7KSi2YXGD2+Kb89jVUdSr4+WgVyEiv1eevM4pKOb1hal8vHYPNgN1vNx59Ooo7ujeAg/38k8LFRGRc3MzxhhHByHnlpOTQ2BgINnZ2QQEBDg6HPnN709igLNOHzHGsDApg4mzkzhw/BQAXVvUZ/y1bYhrrMW2tZny2jldKK/d3Nz4ftMhXpyTTGaufXvxwR0aM25QLKEBPo4MXUSkxtLIikgFWCyW0ikiGRkZf5o+kuvmx/M/JPHjjiwAwgJ8eGZQLIPbN9JWxCJO6nx5/fP2fby1Kp21u48C0LJhHV4Y0pbLIxs6MmQRkRpPxYrIRfr99JFOXbvxz5+z+HjtXkpsBi93C3dfEcGoPq3x86p4ul3s7mMiUj6n83rtz+uxdBzM7Z8mUWw1eHtYeOiqSEb2jMDb4+K2F1dei4hcmKaBOTlNF3ENJSVWpq/YzvtrDnH0ZBEAV7cJZdygWJo3qHNRj32xu4+J81FeOz9jDAu2pTNh1lbSc+053Tc2hPGD4wiv73fRj6+8FhEpG42siFykDfuOM+H7bWw6kA1Ay+A6PHdNG3pHh1TK41d09zERqZh9R/OZ8MM2lm4/AkCTIF8mXBvH1W0qL++U1yIiZaNiRaSCjuQW8PL8FL5eb28CV9fbg4evimR49xZ4eVTeFdKz7VIkIpWvsMTKP1fsZtqynRSW2PB0d+OeK1ryQJ9IfL0ubsrXHymvRUTKRtPAymjlypW88sorrF+/nsOHD/Pdd98xdOjQcx6/fPly+vTp86fbDx8+TFhYWJmfV9NFnE9RiY2P1uzhrSU7yCssAeDGLk15sn80If5VsyOQ5rbXLMpr57MyNZPx328jLeskAN1bNeCFIW1pHVK3yp5TeS0icmEaWSmjkydP0qFDB+68806uv/76Mt8vJSXljJORkJDKmRokjrEyNZMJP2xjd6b9hKZD00AmXBtHp2b1qvR5f79LkYhUnvTsAibOSSpt1hrs782z17Splp37lNciIhemYqWMBgwYwIABA8p9v5CQEIKCgio/IKlW+47mM3FOEouSMgBoUMeLp/rHcGOXpljUfV7E5RRb7SOkbyxK5WSRFYsbDO/egkevjiLAx9PR4YmIyG9UrFSxjh07UlhYSNu2bZkwYQI9evQ47/GFhYUUFhaWfp2Tk1PVIcp55BeV8O6yXfzrx90UldjwsLgxrFsLHu4bSaCvTmikbJTXzmXdnmOMm7mV7em5AHRuFsTEoW3VrFVExAmpWKkijRo14v333+eSSy6hsLCQDz74gN69e5OYmEjnzp3Peb/Jkyfz/PPPV2OkcjbGGH7YfJiX5iSTnlMAwOWtGzJ+cBsiQ/0dHJ24GuW1cziaV8iUedv56rdNMYL8PBkzIIa/dAnXCKmIiJPSAvsKcHNzu+AC+7Pp1asXzZo145NPPjnnMWe7AhseHq6FuNUo6VAOE77fxs97jgHQtJ4vz17Thn5tQtV9XipEee1YNpvh81/2M3X+drJPFQPw10vDebJ/DPXreDk4OhEROR+NrFSjrl27smrVqvMe4+3tjbe3dzVFJL93/GQRry1K4bPEfdgM+HhaGNW7NXdf0RIfz8rdtlRqF+W142w5kM24WVvZtP8EAG0aBTBxaFu6NK/aTTFERKRyqFipRhs3bqRRo0aODkP+wGozfPbzPl5bmMKJfPtV10HtG/HMwFiaBPk6ODoRqYjsU8W8tjCFT37aizH2PkiPXR3FsG7N8XDXNsEiIq5CxUoZ5eXlsXPnztKv09LS2LhxI/Xr16dZs2aMGTOGgwcP8vHHHwPw5ptvEhERQVxcHAUFBXzwwQcsXbqUhQsXOuolyFkk7j7KhB+SSD5sX/AcE+bPhGvjuKxlAwdHJiIVYYxh5saDTJqTTFZeEQBDOjZm7MBYQgKqpg+SiIhUHRUrZbRu3bozmjw+9thjAAwfPpwZM2Zw+PBh9u3bV/r9oqIiRo8ezcGDB/Hz86N9+/YsXrz4rI0ipfodOnGKyfO288OmQwAE+noyul8Ut3ZtpquuIi4qNSOXZ2duJTHNvt6sZXAdXhzSlu6tGzo4MhERqSgtsHdy6nRduQqKrXzw426mLdvFqWIrbm5wa9dmjO4XrYW2Um2U15XrZGEJby/dwX9+TKPEZvDxtPDQVZGMvLwlXh66+CAi4so0siK1gjGGRUkZTJyTxP5jpwC4tEU9xg+Oo20T9VYQcUXGGBZsS+eFH5I4lG3fYvzqNqE8d00bwuv7OTg6ERGpDCpWpMbbeSSPF2YnsTI1E4DQAG+eGRjLtR0aaytiERe19+hJxn+/jeUp9rxuWs+XCYPj6Nsm1MGRiYhIZVKxIjVWbkExby/ZwfTVeyixGbzcLYzsGcGoPq2p460ffRFXVFBs5f0Vu3h3+S6KSmx4uVv4e6+W3N+7Nb5e2mJcRKSm0Rmb1Dg2m+HbDQeZMm87WXn2RnxXxYTw7DVtaNGwjoOjE5GKWpGayXOztrL3aD4Al7duyPND4mgVXNfBkYmISFVRsSLlZrPZyMzMJDg4GIvFuRavbtp/gvHfb2Pjbw3gWjasw7OD29AnOsSxgYk4OWfO68PZp5g4O4m5W9IB+1TOZ69pw6B2jTSVU0SkhlOxIuVis9mYNGkSiYmJxMfHM3bsWKc4scnMLeTl+dv5av0BAOp4ufNw30ju6B6h3YBELsBZ87rYamP66jTeXLyD/CIr7hY37ujegkevjqKupnKKiNQK+m0v5ZKZmUliYiLp6ekkJiaSmZlJaGjZF7SW9eptWY8rttr4aM0e3lq8g9zCEgBu6NyUp/pHV0oDOGe+2ixSWS42r6Hycztx91Gem7WNlIxcALo0r8eLQ9sS2+jit3pWXouIuA4VK1IuwcHBxMfHl16BDQ4OLvN9y3r1tqzH/bgjkwnfb2NX5kkA2jcNZMK1cXRuVq/iL7ACcYi4uovJa6jc3M7KK+Slucl8++tBAOrX8eLpATHc2LkpFsvFT/lSXouIuBYVK1Jmp69GjhkzhqNHj5b7qmRZr95e6Lj9x/KZODuJhUkZADSo48WT/aP5S5fwSjmZKW+8Iq7sYvMaKie3rTbDZz/v45X528kpKMHNDf56aTOeTIimXiU2bFVei4i4FhUrUiaVcTWyrFdvz3VcflEJ7y3fxT9X7qaoxIa7xY1h3ZrzSN8oAn09L/o1VjReEVdVWaMMF5vbm/af4NlZW9l8IBuAuMYBvDi0LZ0qaZS0IrGKiIhzcDPGGEcHIeeWk5NDYGAg2dnZBARc/FztisrIyOCuu+4iPT2dsLAw/vOf/1ToamRF5rW7ubkxZ8thXpqTXNqlukfrBowfHEdUqP+FnhDys8CvIVTgJExz26Uq1LS8horldm6BlVcWbufTxH0YA/7eHozuF8Xt3Vrgfp5R0ovNS+W1iIjr0MiKlEllzGk/fXJQlpMhi8VCaGgoyYdzmPD9NhLTjgH2LtXjBsWSEBd24S1LbTb48VU4sA6aXgI9Hy93wXI6DpGaqDJGGSqS2yEhIXz760FempvM0ZNFAFzXqQljBsYQ4n/+jTEqYzRIeS0i4jpUrEiZWCwWxo4dW6GrkRU5uTiRX8Qbi1L55Ke92Az4eFq4t1cr7u3VCh/PMnapzs+yFyp5GfbP+VlQV/1WRE67mLyGiuV2Snouz87cys977BcgWofUZeKQtnRr1aBMz6k1JyIitYuKFSmzil6NLM/JhdVm+L+f9/HawhSO5xcDMKhdI8YMjKFpPb/yPbFfQ/uIyumRFb+G5Y5dpKa7mFGG8uR2XmEJby1O5cPVe7DaDL6e9l5Id/YoXy8krTkREaldVKxIlSvrycUve44xftY2kg7nABAVWpcJg+Po3vrCRcZZ56BbLPapXxexZkVEzq0suW2MYd7WdF74IYn0HPuas4S4UJ4bHEeTIN/zPv7Z8vpiR4NERMS1aIG9k3OWhbgX63wLWtOzC5g8L5lZGw8BEODjwWNXR/G3y5rj4X7hExH1TRBXU1PyGs6f23uyTvLc99tYmZoJQLP6fjx/bRx9Yi48HVN5LSIioJEVqSZnm2pSUGzlP6vSmLZsJ/lF1tK+Co/3i6JBXe8yP7bmsIs4zrly+93lu3h/+S6KrDa83C3c27sV9/cu+5oz5bWIiICKFalC57riaoxhSfIRJs5JYu/RfAC6NK/H89fG0bZJYLmfR3PYRarPhbb9XZZyhPGztrHvmD23e0Y25Plr42gZXLdcz6O8FhER0DQwp+eq00XONYVjV2YeL/yQxIrfpoWE+HvzzMBYhnRsfOGtiC/wfJrDLq6ipuU1wKETp3jhhyTmb0sHICzAh2evacPAdmXYZvw8z6e8FhGp3TSyIlXij1M40g6k8+XWbD5cnUax1eDp7sZdl7fkgStbU9f74n8M1TdBpOqdbWpW/YbB/GdVGm8t3sGpYivuFjdGdG/BI1dHXXRuK69FRETFilSJ01M4fkpMpH7nAfz1kyQycwsBuDImhGevaUNEwzoOjlJEyuOPU7N251r426c/suNIHgCXtqjHxKFtiQlzndEiERFxbpoG5uRcdboIwMZ9xxn33Sa2Hj4JQETDOjx7TSxXxuhKqdRurpzXNpuN7XsO8a+fM5n52w5+Dep4MWZgLDd0bnJR0zlFRET+SCMrUumy8gp5ZX4KX67fjzFQx8udB6+KZESPFnh7lLH7vIg4HavN8N+f9vHqwhRyC0pwc4Pb4pvxRL8YAv08HR2eiIjUQCpWpNIUW218vHYvby5OJbegBIDrOjXh6QExhAb4ODg6EbkYG/Yd59lZW9l60N60tX3TQCYOaUuH8CDHBiYiIjWaihWpFKt2ZPH8D9tK5663bRLAhMFxXNKivoMjE5GLcSK/iJcXpPB/P+/DGPD38eDJhGhujW+Ou0VTvkREpGqpWJGLsv9YPpPmJJduV1q/jhdPJERz0yXhOpERcWE2m+HrXw8wZd52jp0sAuD6zk0YMyCWYP+yN20VERG5GCpWpEJOFVl5b8Uu/rliF4UlNtwtbtx+WXMe7RuluesiLi75cA7PztzKur3HAYgMqcuLQ9sS37KBgyMTEZHaRsWKlIsxhnlb05k0J5mDJ04B0K1lAyZcG0d0mH+VPa+aw4lUvbzCEt5clMr0NXuw2gx+Xu480jeSET0i8HSvmrxTbouIyPmoWJEyS0nP5fkftrFm11EAmgT5MnZQLAPaVrxDdVmcr2u2iFw8Ywxzthxm4uwkMnLs/ZAGtgvj2Wva0CjQt8qeV7ktIiIXomJFLig7v5g3FqfyyU97sdoM3h4W7u3Vint7tcLXq+q3Ij5b12x1tRapHLsz8xj//TZ+3JEFQIsGfjw/pC29ooKr/LmV2yIiciEqVuScrDbDF7/s55UF2zmeXwxA/7gwxg6KJby+X7XF8ceu2cHBVX8SJVLTFRRbmbZsJ/9csZsiqw0vDwujerfm771a4uNZPf2QlNsiInIh6mDv5BzV6XrdnmOM/34b2w7ZeypEhtRlwrVx9GjdsNpi+D3Na5eaxNEd7Jduz2D899vYf8y+7qxXVDAvDImjeYM61R6LcltERM5HIytyhvTsAqbMS2bmxkOAvafCo32juL1b8z8tsK3OkwyLxaLpISIX6cDxfJ7/IYlFSRkANAr0YfzgNiTE/W/dWXUXD8ptERE5HxUrAkBhiZUPV+3hnaU7yC+y4uYGN18SzhMJ0TSo++eeCloYK+I6ikpsfLBqN28v2UFBsQ0Pixt3XR7BQ1dFUsf7f38GlNciIuJsVKwIS7dn8MIPSew5mg9Ap2ZBPH9tHO2bBp3zPloYK+Ia1uzK4rlZ29h5JA+ArhH1eXFoW6JC/7zVuPJaREScjYqVWiwt6yQTZyexdPsRAIL9vRkzIIahHZtguUD3+TItjLXZID8L/BqCrs6KVKsjOQVMmpvMrN+mdDao48XYQbFc16nJObcaL0tea42JiIhUJy2wd3JVsRA3r7CEfyzdyX9W7abYavB0d+POyyN48MpI6nqXvX4970mLzQY/vgoH1kHTS6Dn4ypYRH5TlQvsS6w2/vvTXl5bmEpuYQlubnD7Zc0Z3S+aQF/PC97/fHmtaWIiIlLdNLJSixhjmLnxIJPnbudIrr3xW6+oYJ4b3IZWwXXL/XjnXRibn2UvVPIy7J/zs6BuyMWELyIX8Ou+44z7bitJh+27+HVoGsiLQ9vRrmlgmR/jfHmtaWIiIlLdVKzUElsOZDP++638uu8EAM0b+PHcNW24MiakarrP+zW0j6icHlnxc8yWxyK1wfGTRby8YDv/9/N+AAJ9PXkiIZpbujbD/QJTOstDfVFERKS6aRqYk7vY6SJH8wp5dWEKn/+yH2PAz8udUX1aM7JnBN4eVdz4TWtWRM6qsqaB2WyGr9bvZ8q8/zVu/UuXpjw9IOasu/j9dqeLykutWRERkeqkkZUa6vS89dcXpZJTUALAkI6NGTMglrBAn+oJwmLR1C+RKrLtUDbPzvzfaGl0qD8vXteWS1vUP/edKmEtmfqiiIhIdVKxUgOt2ZnF8z8kkZKRC0CbRgE8PyTu/CcxIuIScguKeX1RKh+t2YPNQB0vdx69Oorh3Vv8qXHrn2gtmYiIuBgVKzXIgeP5vDQ3mblb0gGo5+fJ4wnR/PXSyp23LiLVzxjDD5sP8+LspNINMga2C+PZa9rQKNC3bA+itWQiIuJiVKzUAAXFVt5fsYv3lu+isMSGxQ1ui2/O6H5RBPl5OTo8EblIuzLzeG7WVlbvPApAiwZ+vDCkLVdElXOBu8Vin/qltWQiIuIiVKy4uJ92H2X0l5s4eOIUAJe1rM/4wXHENqrc3g0iUv1OFVn5x7Id/GulvSeSt4eFUX1ac88VLfHxrOAGGVpLJiIiLkTFiosL8vMkPaeAxoE+jB3UhoHtwqpmK2IRqVaLkjKY8P220gsRfaKDmXBtHM0b1HFwZCIiItVHxYqLiwkL4INhl3BZywb4elXxVsQiUi027j/B3R+vA6BxoA/jr42jX5tQXYgQEZFaRxOWy2jlypUMHjyYxo0b4+bmxsyZMy94n+XLl9O5c2e8vb1p3bo1M2bMqJLY+sSEqFARqUE6hgcxqH0j7uvdisWje5EQpxFTERGpnVSslNHJkyfp0KED06ZNK9PxaWlpDBo0iD59+rBx40YeeeQRRo4cyYIFC6o4UhGpCf5xSyee6h+Dn5cGwEVEpPbSX8EyGjBgAAMGDCjz8e+//z4RERG89tprAMTGxrJq1SreeOMNEhISqipMEakhNJIiIiKikZUqs3btWvr27XvGbQkJCaxdu9ZBEYmIiIiIuBaNrFSR9PR0QkNDz7gtNDSUnJwcTp06ha/v2Zu4FRYWUlhYWPp1Tk5OlcYpIlVPeS0iIlIxGllxMpMnTyYwMLD0Izw83NEhichFUl6LiIhUjIqVKhIWFkZGRsYZt2VkZBAQEHDOURWAMWPGkJ2dXfqxf//+Cz6XzWYjIyMDm8120XGLSOVTXouIiFSMpoFVkW7dujF37twzblu0aBHdunU77/28vb3x9vYu8/PYbDYmTZpEYmIi8fHxjB07FovF8seDID8L/Brau1eLSLWqiry22WxkZmYSHBz855wXERGpIfQXrozy8vLYuHEjGzduBOxbE2/cuJF9+/YB9iunw4YNKz3+3nvvZffu3Tz55JNs376dd999ly+//JJHH320UuPKzMwkMTGR9PR0EhMTyczMPPMAmw1+fBVmPWD/rKu0Ik7vQnl9upi56667mDRpkkZfRESkxlKxUkbr1q2jU6dOdOrUCYDHHnuMTp068dxzzwFw+PDh0sIFICIigjlz5rBo0SI6dOjAa6+9xgcffFDp2xYHBwcTHx9PWFgY8fHxBAcHn3lAfhYcWAd5GfbP+VmV+vwiUvkulNcXvEghIiJSQ7gZY4yjg5Bzy8nJITAwkOzsbAICAs56zHmng5weWTmwDppeAj0f11QwEQe72Lwu0/RPERGRGkDFipMry0nNBWnNiohTqYy81poVERGpDbTAvjawWKBuiKOjEJFKZLFY/tTLSUREpKbR5TgREREREXFKKlZERERERMQpaRqYkzu9pCgnJ8fBkYi4Fn9/f9zc3Bwdxlkpr0UqxpnzWkSqhooVJ5ebmwtAeHi4gyMRcS0XtSlFFVNei1SMM+e1iFQN7Qbm5Gw2GykpKbRp04b9+/frl7QD5eTkEB4ervfBwcr6PjjzFVjltfNQXjuHmpDXIlI1NLLi5CwWC02aNAEgICBAf0ydgN4H5+DK74Py2vnofXAOeh9E5I+0wF5ERERERJySihUREREREXFKKlZcgLe3N+PHj8fb29vRodRqeh+cQ015H2rK63B1eh+cg94HETkXLbAXERERERGnpJEVERERERFxSipWRERERETEKalYERERERERp6RiRUREREREnJKKFScxbdo0WrRogY+PD/Hx8fz888/nPf6rr74iJiYGHx8f2rVrx9y5c6sp0pqtPO/DjBkzcHNzO+PDx8enGqOtmVauXMngwYNp3Lgxbm5uzJw584L3Wb58OZ07d8bb25vWrVszY8aMKo+zLJTXzkF57Xg1Ka9FpHqpWHECX3zxBY899hjjx4/n119/pUOHDiQkJHDkyJGzHr9mzRpuueUW7rrrLjZs2MDQoUMZOnQoW7durebIa5byvg9g77Z8+PDh0o+9e/dWY8Q108mTJ+nQoQPTpk0r0/FpaWkMGjSIPn36sHHjRh555BFGjhzJggULqjjS81NeOwfltXOoKXktIg5gxOG6du1qRo0aVfq11Wo1jRs3NpMnTz7r8TfddJMZNGjQGbfFx8ebv//971UaZ01X3vdh+vTpJjAwsJqiq50A89133533mCeffNLExcWdcdvNN99sEhISqjCyC1NeOwfltfNx5bwWkeqnkRUHKyoqYv369fTt27f0NovFQt++fVm7du1Z77N27dozjgdISEg45/FyYRV5HwDy8vJo3rw54eHhDBkyhG3btlVHuPI7zpgPymvnoLx2XcoHETlNxYqDZWVlYbVaCQ0NPeP20NBQ0tPTz3qf9PT0ch0vF1aR9yE6OpoPP/yQWbNm8d///hebzUb37t05cOBAdYQsvzlXPuTk5HDq1CmHxKS8dg7Ka9fljHktIo7h4egARFxVt27d6NatW+nX3bt3JzY2ln/+859MnDjRgZGJSEUpr0VEnItGVhysYcOGuLu7k5GRccbtGRkZhIWFnfU+YWFh5TpeLqwi78MfeXp60qlTJ3bu3FkVIco5nCsfAgIC8PX1dUhMymvnoLx2Xc6Y1yLiGCpWHMzLy4suXbqwZMmS0ttsNhtLliw54+re73Xr1u2M4wEWLVp0zuPlwiryPvyR1Wply5YtNGrUqKrClLNwxnxQXjsH5bXrUj6ISClHr/AXYz7//HPj7e1tZsyYYZKSksw999xjgoKCTHp6ujHGmNtvv908/fTTpcevXr3aeHh4mFdffdUkJyeb8ePHG09PT7NlyxZHvYQaobzvw/PPP28WLFhgdu3aZdavX2/++te/Gh8fH7Nt2zZHvYQaITc312zYsMFs2LDBAOb11183GzZsMHv37jXGGPP000+b22+/vfT43bt3Gz8/P/PEE0+Y5ORkM23aNOPu7m7mz5/vqJdgjFFeOwvltXOoKXktItVPxYqTeOedd0yzZs2Ml5eX6dq1q/npp59Kv9erVy8zfPjwM47/8ssvTVRUlPHy8jJxcXFmzpw51RxxzVSe9+GRRx4pPTY0NNQMHDjQ/Prrrw6IumZZtmyZAf70cfr/fvjw4aZXr15/uk/Hjh2Nl5eXadmypZk+fXq1x302ymvnoLx2vJqU1yJSvdyMMcYxYzoiIiIiIiLnpjUrIiIiIiLilFSsiIhIjXT48GGefvpp+vTpg7+/P25ubixfvtzRYYmISDmoWBERkRopJSWFqVOncvDgQdq1a+focEREpAJUrIiISI3UpUsXjh49SmpqKo899pijwxERkQpQsSIiIi7j1KlTxMTEEBMTw6lTp0pvP3bsGI0aNaJ79+5YrVYA/P39qV+/vqNCFRGRSqBiRUREXIavry8fffQRO3fuZOzYsaW3jxo1iuzsbGbMmIG7u7sDIxQRkcrk4egAREREyiM+Pp4nn3ySqVOnct1115GRkcHnn3/Om2++SVRUlKPDExGRSqRiRUREXM6ECROYPXs2w4cPJy8vj169evHQQw85OiwREalkmgYmIiIux8vLiw8//JC0tDRyc3OZPn06bm5ujg5LREQqmYoVERFxSQsWLACgoKCAHTt2ODgaERGpCipWRETE5WzevJkXXniBESNG0KlTJ0aOHEl2drajwxIRkUqmYkVERFxKcXExd9xxB40bN+att95ixowZZGRk8Oijjzo6NBERqWRaYC8iIi7lxRdfZOPGjSxZsgR/f3/at2/Pc889x7hx47jxxhsZOHDgGccCbNu2DYBPPvmEVatWATBu3LjqD15ERMrFzRhjHB2EiIhIWfz666/Ex8dz33338fbbb5febrVa6datGwcPHmTbtm0EBQUBnHfRvf78iYg4PxUrIiIiIiLilLRmRUREREREnJKKFRERERERcUpaYC9SA1mtVoqLix0dhoiIOBlPT0/c3d0dHYZImalYEalBjDGkp6dz4sQJR4ciIiJOKigoiLCwsPNuQCHiLFSsiNQgpwuVkJAQ/Pz89IdIRERKGWPIz8/nyJEjADRq1MjBEYlcmIoVkRrCarWWFioNGjRwdDgiIuKEfH19AThy5AghISGaEiZOTwvsRWqI02tU/Pz8HByJiIg4s9N/J7S2UVyBihWRGkZTv0RE5Hz0d0JciYoVEamVZsyYUdrlXERERJyTihURcag77rgDNzc33Nzc8PLyonXr1rzwwguUlJRU6fPefPPNpKamVulzXMjvX7unpyehoaFcffXVfPjhh9hstnI9loqvynH6PZkyZcoZt8+cObPar0af/tlwc3OjTp06REZGcscdd7B+/fpyP1bv3r155JFHKj9IAWD58uW4ublpJ0aRKqBiRUQcrn///hw+fJgdO3YwevRoJkyYwCuvvHLWY4uKiirlOX19fQkJCamUx7oYp1/7nj17mDdvHn369OHhhx/mmmuuqfKCTc7Ox8eHqVOncvz4cUeHwvTp0zl8+DDbtm1j2rRp5OXlER8fz8cff+zo0GqN3xeNZ/uYMGGCo0MUqdFUrIiIw3l7exMWFkbz5s2577776Nu3L99//z1gv9I9dOhQJk2aROPGjYmOjgZg//793HTTTQQFBVG/fn2GDBnCnj17AFi4cCE+Pj5/usr58MMPc+WVVwJnH4l47733aNWqFV5eXkRHR/PJJ5+Ufm/Pnj24ubmxcePG0ttOnDiBm5sby5cvB+D48ePcdtttBAcH4+vrS2RkJNOnTy/Ta2/SpAmdO3fmmWeeYdasWcybN48ZM2aUHvf666/Trl076tSpQ3h4OPfffz95eXmA/aruiBEjyM7O/tMJ1CeffMIll1yCv78/YWFh3HrrraXblsrZ9e3bl7CwMCZPnnze41atWkXPnj3x9fUlPDychx56iJMnTwLwj3/8g7Zt25Yee3pk5v333z/jecaNG3fe5zjdD6NFixb069ePr7/+mttuu40HHnigtJg6evQot9xyC02aNMHPz4927drxf//3f6WPcccdd7BixQreeuut0p+PPXv2YLVaueuuu4iIiMDX15fo6Gjeeuutcv9/1XSHDx8u/XjzzTcJCAg447bHH3/cYbFV1sUbEWemYkVEnI6vr+8Zf4SXLFlCSkoKixYtYvbs2RQXF5OQkIC/vz8//vgjq1evpm7duvTv35+ioiKuuuoqgoKC+Oabb0ofw2q18sUXX3Dbbbed9Tm/++47Hn74YUaPHs3WrVv5+9//zogRI1i2bFmZ43722WdJSkpi3rx5JCcn895779GwYcNyv/4rr7ySDh068O2335beZrFYePvtt9m2bRsfffQRS5cu5cknnwSge/fufzqJOn0CVVxczMSJE9m0aRMzZ85kz5493HHHHeWOqTZxd3fnpZde4p133uHAgQNnPWbXrl3079+fG264gc2bN/PFF1+watUqHnjgAQB69epFUlISmZmZAKxYsYKGDRuWFrbFxcWsXbuW3r17lzu+Rx99lNzcXBYtWgRAQUEBXbp0Yc6cOWzdupV77rmH22+/nZ9//hmAt956i27dunH33XeX/nyEh4djs9lo2rQpX331FUlJSTz33HM888wzfPnll+WOqSYLCwsr/QgMDMTNze2M2+rWrVt67Pr167nkkkvw8/Oje/fupKSknPFYs2bNonPnzvj4+NCyZUuef/75M0ZQ9+3bx5AhQ6hbty4BAQHcdNNNZGRklH5/woQJdOzYkQ8++ICIiAh8fHz4+OOPadCgAYWFhWc819ChQ7n99tur6H9FpBoZEakRTp06ZZKSksypU6ccHUq5DB8+3AwZMsQYY4zNZjOLFi0y3t7e5vHHHy/9fmhoqCksLCy9zyeffGKio6ONzWYrva2wsND4+vqaBQsWGGOMefjhh82VV15Z+v0FCxYYb29vc/z4cWOMMdOnTzeBgYGl3+/evbu5++67z4jtL3/5ixk4cKAxxpi0tDQDmA0bNpR+//jx4wYwy5YtM8YYM3jwYDNixIgKvfY/uvnmm01sbOw57/vVV1+ZBg0alH79x9dzLr/88osBTG5ubpnjrE1+/55cdtll5s477zTGGPPdd9+Z3//JvOuuu8w999xzxn1//PFHY7FYzKlTp4zNZjMNGjQwX331lTHGmI4dO5rJkyebsLAwY4wxq1atMp6enubkyZPnjAUw33333Z9uP3XqlAHM1KlTz3nfQYMGmdGjR5d+3atXL/Pwww+f97UbY8yoUaPMDTfccMHjKovNZjMnC4sd8vH73x9lda48W7ZsmQFMfHy8Wb58udm2bZvp2bOn6d69e+kxK1euNAEBAWbGjBlm165dZuHChaZFixZmwoQJxhhjrFar6dixo7n88svNunXrzE8//WS6dOlievXqVfoY48ePN3Xq1DH9+/c3v/76q9m0aZPJz883gYGB5ssvvyw9LiMjw3h4eJilS5ee9XW46t8LqZ3UFFJE/sRms5GZmUlwcDAWS9UPwM6ePZu6detSXFyMzWbj1ltvPWMeeLt27fDy8ir9etOmTezcuRN/f/8zHqegoIBdu3YBcNttt3HZZZdx6NAhGjduzKeffsqgQYPOuQg9OTmZe+6554zbevToUa5pMffddx833HADv/76K/369WPo0KF07969zPf/PWPMGQu6Fy9ezOTJk9m+fTs5OTmUlJRQUFBAfn7+eXvrrF+/ngkTJrBp0yaOHz9eunB/3759tGnTpkKxVTubDfKzwK8hVMPP42lTp07lyiuvPOs0n02bNrF582Y+/fTT0tuMMdhsNtLS0oiNjeWKK65g+fLl9O3bl6SkJO6//35efvlltm/fzooVK7j00ksr1BfJGAP8b/tZq9XKSy+9xJdffsnBgwcpKiqisLCwTI89bdo0PvzwQ/bt28epU6coKiqiY8eO5Y6pok4VW2nz3IJqe77fS3ohAT+vyj0NmjRpEr169QLg6aefZtCgQRQUFODj48Pzzz/P008/zfDhwwFo2bIlEydO5Mknn2T8+PEsWbKELVu2kJaWRnh4OAAff/wxcXFx/PLLL1x66aWAferXxx9/THBwcOnz3nrrrUyfPp2//OUvAPz3v/+lWbNmFRq5E3E2mgYmImew2WxMmjSJu+66i0mTJpV7V6qK6NOnDxs3bmTHjh2cOnWKjz76iDp16pR+//f/BsjLy6NLly5s3LjxjI/U1FRuvfVWAC699FJatWrF559/zqlTp/juu+/OOQWsLE4XbadPFOHPDdUGDBjA3r17efTRRzl06BBXXXVVheezJycnExERAdjXy1xzzTW0b9+eb775hvXr1zNt2jTg/HPWT548SUJCAgEBAXz66af88ssvfPfddxe8n1Ox2eDHV2HWA/bP1fDzeNoVV1xBQkICY8aM+dP38vLy+Pvf/37Gz9+mTZvYsWMHrVq1Auw7cC1fvpwff/yRTp06ERAQUFrArFixovSktrySk5MBSn8+XnnlFd566y2eeuopli1bxsaNG0lISLjge/z555/z+OOPc9ddd7Fw4UI2btzIiBEjXOdnwwm1b9++9N+NGjUCKF0jtmnTJl544QXq1q1b+nF6al5+fj7JycmEh4eXFioAbdq0ISgoqPQ9B2jevPkZhQrA3XffzcKFCzl48CBgX5N3emc7EVenkRUROUNmZiaJiYmkp6eTmJhIZmYmoaGhVfqcderUoXXr1mU+vnPnznzxxReEhIQQEBBwzuNuu+02Pv30U5o2bYrFYmHQoEHnPDY2NpbVq1eXXvUEWL16denow+mTg8OHD9OpUyeAMxbbnxYcHMzw4cMZPnw4PXv25IknnuDVV18t82sDWLp0KVu2bOHRRx8F7KMjNpuN1157rbRo+uO6Ai8vL6xW6xm3bd++naNHjzJlypTSE6B169aVKxaHy8+CA+sgL8P+OT8L6lbfLm5TpkyhY8eOpRs7nNa5c2eSkpLO+3Pbq1cvHnnkEb766qvSK9y9e/dm8eLFrF69mtGjR1coptPrk/r27QvYf06HDBnC3/72N8B+wSE1NfWMkbOz/XysXr2a7t27c//995fednpksrr4erqT9EJCtT7n75+7snl6epb++3ShcPqCT15eHs8//zzXX3/9n+7n4+NT5uf448UbgE6dOtGhQwc+/vhj+vXrx7Zt25gzZ055wxdxSipWROQMwcHBxMfHk5iYSHx8/J+u4DmD2267jVdeeYUhQ4bwwgsv0LRpU/bu3cu3337Lk08+SdOmTUuPmzBhApMmTeLGG2/E29v7nI/5xBNPcNNNN9GpUyf69u3LDz/8wLfffsvixYsB+6L/yy67jClTphAREcGRI0f+tJPTc889R5cuXYiLi6OwsJDZs2cTGxt73tdSWFhIeno6VquVjIwM5s+fz+TJk7nmmmsYNmwYAK1bt6a4uJh33nmHwYMHs3r16jN2lQJo0aIFeXl5LFmyhA4dOuDn50ezZs3w8vLinXfe4d5772Xr1q1MnDix3P/fDuXXEJpeYi9Uml5i/7oatWvXjttuu4233377jNufeuopLrvsMh544AFGjhxJnTp1SEpKYtGiRfzjH/8A7FfZ69Wrx2effcbs2bMBe7Hy+OOP4+bmRo8ePS74/CdOnCA9PZ3CwkJSU1P55z//ycyZM/n4449LpzRGRkby9ddfs2bNGurVq8frr79ORkbGGcVKixYtSExMZM+ePdStW5f69esTGRnJxx9/zIIFC4iIiOCTTz7hl19+KR2xqQ5ubm6VPhXLWXXu3JmUlJRzFrixsbHs37+f/fv3l15cSEpK4sSJE2Wasjly5EjefPNNDh48SN++fc8YoRFxaY5dMiMilaUyF0xarVaTnp5urFZrJUR2fudbZH6+7x8+fNgMGzbMNGzY0Hh7e5uWLVuau+++22RnZ59xXNeuXQ3wp4WmZ1so++6775qWLVsaT09PExUVZT7++OMzvp+UlGS6detmfH19TceOHc3ChQvPWGA/ceJEExsba3x9fU39+vXNkCFDzO7du8/72gADGA8PDxMcHGz69u1rPvzwwz/937/++uumUaNGxtfX1yQkJJiPP/7YAKUbBhhjzL333msaNGhgADN+/HhjjDGfffaZadGihfH29jbdunUz33///Z82CnB6VqsxuRn2z1XsbD9vaWlpxsvLy/zxT+bPP/9srr76alO3bl1Tp04d0759ezNp0qQzjhkyZIjx8PAo3dDAarWaevXqmcsuu+yCsZz+2QCMj4+PadWqlRk+fLhZv379GccdPXrUDBkyxNStW9eEhISYcePGmWHDhp3xOlJSUsxll11mfH19DWDS0tJMQUGBueOOO0xgYKAJCgoy9913n3n66adNhw4dyv4fVstcaIH97/Nxw4YNpf/Xxhgzf/584+HhYSZMmGC2bt1qkpKSzP/93/+ZsWPHGmPsmw107NjR9OzZ06xfv94kJiaedYH9ud6fEydOGD8/P+Pl5WU+//zz874OLbAXV+JmzO8mYIuIyyooKCAtLa10O0sREalcM2bM4JFHHvlTD6fly5fTp08fjh8/XjritXHjRjp16kRaWhotWrQAYMGCBbzwwgts2LABT09PYmJiGDlyJHfffTdg3/jiwQcfZMmSJVgsFvr3788777xTOhV3woQJzJw586xTUAGGDRvGnDlzOHTo0HlHkvX3QlyJihWRGkJ/fEREarerrrqKuLi4P01b/CP9vRBXUjsmioqIiIjUUMePH2f58uUsX76cd99919HhiFQqFSsiIiIiLqxTp04cP36cqVOn/mnnOhFXp2JFRERExIXt2bPH0SGIVBk1hRQREREREaekYkWkhtGeGSIicj76OyGuRMWKSA1xunNyfn6+gyMRERFndvrvxOm/GyLOTGtWRGoId3d3goKCOHLkCAB+fn64ubk5OCoREXEWxhjy8/M5cuQIQUFBuLu7OzokkQtSnxWRGsQYQ3p6+p8alomIiJwWFBREWFiYLmiJS1CxIlIDWa1WiouLHR2GiIg4GU9PT42oiEtRsSIiIiIiIk5JC+xFRERERMQpqVgRERERERGnpGJFRERERESckooVERERERFxSipWRERERETEKalYERERERERp6RiRUREREREnNL/AxMUDpcFOLfDAAAAAElFTkSuQmCC\n" - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "# Change wrap to 3 and Adjust dimensions\n", - "plot_results_panel_2d(cycle,\n", - " wrap=3,\n", - " subplot_kw=dict(figsize=(9,4.5))\n", - " );" - ], - "metadata": { - "collapsed": false - } - }, - { - "cell_type": "markdown", - "source": [ - "Above the wrap is changed to 3 panels per row and the dimensions of the figure are adjusted.\n", - "\n", - "* Keyword arguments can be supplied to the underlying matplotlib plotting functions as dictionaries.\n", - " * The above example supplies figure dimensions to the [subplot](https://matplotlib.org/stable/api/_as_gen/matplotlib.pyplot.subplot.html) function using the keyword `subplot_kw`. The subplot function controls the layout and configuration of the entire figure of panels.\n", - " * Below shows ways to specify the parameters of the [scatter](https://matplotlib.org/stable/api/_as_gen/matplotlib.pyplot.scatter.html) points and theory [line](https://matplotlib.org/stable/api/_as_gen/matplotlib.axes.Axes.plot.html)." - ], - "metadata": { - "collapsed": false - } - }, - { - "cell_type": "code", - "execution_count": 5, - "outputs": [ - { - "data": { - "text/plain": "
", - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA4QAAAHFCAYAAACq1TfbAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8o6BhiAAAACXBIWXMAAA9hAAAPYQGoP6dpAACDvElEQVR4nO3dd3iUVdrH8e9kII2QIAZCERAEBJRqRVRUWJFVFMvK2kDsigW7uHZUQGRtbwRcV1BXxd5wRRABFbAAoSMRgQUpEUQSJgkQJ+f942SGmZCemUz7fa4rl5kzz8xzPySezP2cc+7jMMYYREREREREJObEhToAERERERERCQ0lhCIiIiIiIjFKCaGIiIiIiEiMUkIoIiIiIiISo5QQioiIiIiIxCglhCIiIiIiIjFKCaGIiIiIiEiMUkIoIiIiIiISo5QQRgljDHl5eRhjQh2KiEQo9SMiUhvqQ0QikxLCKLFnzx7S0tLYs2dPqEPxs3HjRhwOB0uXLg11KCJSCfUjIlIb6kNEIpMSwhi3fft2brnlFtq1a0dCQgKtWrVi0KBBzJ49O9Sh+Vm+fDmnnHIKiYmJtGrViqeeeirUIYlIiUjoR/bu3cuVV15J165dqVevHoMHDw51SCJSIhL6kLlz53LeeefRvHlzGjRoQI8ePXjjjTdCHZZIQNQLdQASOhs3bqRPnz40atSI8ePH07VrV4qKivjiiy8YMWIEP/30U6hDBCAvL48zzzyT/v37M2nSJFasWMFVV11Fo0aNuO6660IdnkhMi5R+xO12k5SUxK233sr7778f6nBEpESk9CELFiygW7du3HvvvWRkZDB9+nSGDh1KWloa55xzTqjDE6kdI1EhNzfXACY3N7fKrxk4cKBp2bKlcblcBz33xx9/GGOMGT58uDn77LP9ntu/f79p0qSJefnll40xxrjdbjNu3DhzxBFHmPj4eNOqVSvz+OOPG2OM2bBhgwFMVlaW9/UrVqwwZ511lmnQoIFp2rSpufzyy82OHTvKjfPFF180hxxyiNm3b5+37d577zVHHnlkla9VRCoXzf2Ir2HDhpnzzjuvytcoIlUTK32Ix1//+lczfPjwar1GJBxpymiM2rVrFzNmzGDEiBE0aNDgoOcbNWoEwDXXXMOMGTPYtm2b97np06dTUFDAkCFDABg1ahRjx47lwQcfZPXq1bz55ptkZGSUed7du3dzxhln0LNnTxYtWsSMGTPIycnh4osvLjfWhQsXcuqppxIfH+9tGzBgAGvXruWPP/6oyeWLSABEUj8iIuEn0vuQ3NxcGjduXK3XiISlUGekEhjVvSv3/fffG8B88MEHlR7bpUsXM27cOO/jQYMGmSuvvNIYY0xeXp5JSEgw//rXv8p8bem7cqNHjzZnnnmm3zGbN282gFm7dm2Z7/GXv/zFXHfddX5tq1atMoBZvXp1pfGLSNVEcz/iSyOEIsERK32IMca8/fbbJj4+3qxcubJKx4uEM40QxihTjZLQ11xzDVOmTAEgJyeHzz//nKuuugqANWvWsG/fPvr161el91q2bBlz5swhJSXF+9WpUycAfvnll2pehYiEkvoREamNSO1D5syZw/Dhw/nXv/7FUUcdVeVrEAlXKioTozp06IDD4ajSYu2hQ4dy3333sXDhQhYsWEDbtm055ZRTAEhKSqrWeV0uF4MGDWLcuHEHPde8efMyX9OsWTNycnL82jyPmzVrVq3zi0jgRFI/IiLhJxL7kHnz5jFo0CCeeeYZhg4dWq3zioQrjRDGqMaNGzNgwAAyMzPJz88/6Pndu3d7vz/00EMZPHgwU6ZMYerUqQwfPtz7XIcOHUhKSqpyaehevXqxatUqDj/8cNq3b+/3Vdb6AYDevXvz9ddfU1RU5G2bNWsWRx55JIccckgVr1hEAi2S+hERCT+R1ofMnTuXs88+m3HjxqnKuUSXEE9ZlQCpSWWvX375xTRr1sx06dLFvPfeeyY7O9usXr3aPPfcc6ZTp05+x86cOdPEx8cbp9NptmzZ4vfcI488Yg455BDz6quvmnXr1pmFCxd6q36Vnre/ZcsW06RJE3PRRReZH374waxbt87MmDHDXHnllebPP/8sM87du3ebjIwMc8UVV5iVK1eaadOmmeTkZDN58uRq/AuJSGWiuR8xxq49zsrKMoMGDTKnnXaaycrK8qs6KCK1E819yFdffWWSk5PNqFGjzLZt27xfv//+ezX+hUTCkxLCKFGTTtgYY7Zu3WpGjBhh2rRpY+Lj403Lli3Nueeea+bMmeN3XHFxsWnTpo3561//etB7uN1u8/jjj5s2bdqY+vXrm9atW5snn3zSGFN2qefs7Gxz/vnnm0aNGpmkpCTTqVMnM3LkSFNcXFxunMuWLTMnn3yySUhIMC1btjRjx46t1nWKSOWivR9p06aNAQ76EpHAiOY+ZNiwYWX2H3379q3WtYqEI4cx1VjRK2ErLy+PtLQ0cnNzSU1NDfj7u1wuWrZsyZQpU7jgggsC/v4iEnrqR0SkNtSHiEQmFZWRChUXF7Nz504mTJhAo0aNOPfcc0MdkohEGPUjIlIb6kNEgksJoVRo06ZNtG3blsMOO4ypU6dSr55+ZUSketSPiEhtqA8RCS79HyUVOvzww6u1T5CISGnqR0SkNtSHiASXtp0QERERERGJUUoIA2zMmDEcd9xxNGzYkKZNmzJ48GDWrl1b6eveffddOnXqRGJiIl27duW///1vHUQrIiIiIiKxTAlhgM2bN48RI0bw3XffMWvWLIqKijjzzDPL3HDVY8GCBVxyySVcffXVZGVlMXjwYAYPHszKlSvrMHIREREREYk12nYiyHbs2EHTpk2ZN28ep556apnHDBkyhPz8fKZPn+5tO/HEE+nRoweTJk2q0nmCXepZJGYZ4HWgJ9A1xLEEmfoREakN9SEikUkjhEGWm5sLQOPGjcs9ZuHChfTv39+vbcCAASxcuDCosYlIJTYCZwHDgKsBd0ijEREREQk4VRkNouLiYkaOHEmfPn04+uijyz1u+/btZGRk+LVlZGSwffv2cl+zb98+9u3b532cl5dX+4BFxHIDmcD9gGe294/A58A5oQoq8NSPiEhtqA8RiQ4aIQyiESNGsHLlSqZNmxbw9x4zZgxpaWner1atWgX8HCIxaTVwCnAbB5LBlsCnRFUyCOpHRKR21IeIRAclhEFy8803M336dObMmcNhhx1W4bHNmjUjJyfHry0nJ4dmzZqV+5pRo0aRm5vr/dq8eXNA4haJWfuB0di1gr6ztW/EJolRlgyC+hERqR31ISLRQVNGA8wYwy233MKHH37I3Llzadu2baWv6d27N7Nnz2bkyJHetlmzZtG7d+9yX5OQkEBCQkIgQhaRLOw6wRU+bR2AfwF9QxJRnVA/IiK1oT5EJDooIQywESNG8Oabb/Lxxx/TsGFD7zrAtLQ0kpKSABg6dCgtW7ZkzJgxANx222307duXCRMmcPbZZzNt2jQWLVrESy+9FLLrEIkp+wDPLi9O4C7gYSApZBGJiIiI1AlNGQ2wiRMnkpuby2mnnUbz5s29X2+//bb3mE2bNrFt2zbv45NOOok333yTl156ie7du/Pee+/x0UcfVViIRkQC6ETgVqAH8AMwFiWDIiIiEhO0D2GU0N4/IlW0G1tB9D7saKBHIXbORP0QxBQm1I+IBNleIDHUQQSP+hCRyKQRQhGJHR8BXYAHgOdLPZdETCeDIhJk44FTgeJQByIi4k8JoYhEvxzgYuB8wDNb+yns3XoRkbpwBnY/08DvRCUiUitKCEUkehngVaAz8K5P+9nYtYJRPHVLREKoCNhYqu0Y4BbgzzqPRkQi2RJgZnBPoSqjIhKdNgLX49+JHoqdKnoJ4AhBTCIS3QzwCXAPdgr6Uvw/aZWeqi4iUp61wIPYG9qtgJ+BIO3yohFCEYk+/wccjX8yeAmwBrgUJYMiEng/AqcBg4FsYBUwNXThiEiE2gRcAxzFgdlNmwlqf6IRQhGJPj8D+SXftwQmAeeELhwRiWIbgfuBt0q1n4LdykZEpCp+A8YALwL7fdozsMXwrgzeqZUQikj0eQI7bessYByg6uciEmi7gSeB5/D/8NYRW7TqXDQbQSTCFZki6juCXII8F5gAPAO4fNrTsNPPbwMaBDcETRkVkcj2AwffmU8BlgMTUTIoIoH3KXAEdisJTzKYDrwArATOQ8mgSIRb5lpG/2X9We5aHtwTPQiM5kAymITdK3kDdvZBkJNBUEIoIpEqH7gT6I2da7+h1PMN6zwiEYkV7bF39cEWebgPWAfcjPYzFYkSmVszcRW7yNyaGdwT3Y3tR+oDI4BfsFNHDwnuaX0pIRSRyDMb6Ab8E7vJc0HJ9yIiwbCn1OPOwHXA5dhKgGOw07tEJCpkubJY7FoMwCLXIrJcWbV/02LgTeCNUu2tgCnAT9iieM1rf6rqUkIoIpHjD+BqoD+wvqQtARiLnXsvIhJI64EhQE/81wmC/eD2OtCmroMSkWCbuHUiTpwAOHEyaeukmr+ZwU4z7wlcBtyB/1pBsJXQ29X8FLWlhFBEIsOHQBfgFZ+2U7FrBe9FJbJEJHB2YT+0dQLewU7herHUMfoEJRKVPKODbtwAuHHXfJRwLtAHW2TKsxTxN+CDgIQaMOrORCS8/Q78DbgA2F7S1hBbMGYOtqKfiEgg7MNOPz8CO+ugqKS9CdA4VEGJSF3yHR30qPYo4SJgAHA6sNCn/XjgS2BorcMMKCWEIhLe4rGVRD3OBlYDN6AeTEQCw2BHAjtji1XtLmlPBP6BLRgTZh/gRCTwSo8OelR5lHANcBFwHDDTp70LdqbTd0C/QEYcGPo4JSLhrSEwGXuH/k3sPPzDQhqRiESTVdhqxUM4UK3YAQwDsoHH0fY1IjGirNFBjyqNEr4EvO/z+HDgVex00cGE7XY0SghFJHy4geeBjaXaz8IWd7iEsO1MRSRCNQB8b/r3A5YAU7HV/0QkJpQ3OuhRpVHC+7F7ITcDMrFViIdCOTlm2FBCKCLhYRV24fVtwPXYKVy+Uuo8IhGJRsWlHh8O3AocBfwXmAX0qNuQRCT0Jm6diKOSu84OHHaUcDfwAPBsqQOaYPuRdcBN2GUvEUAJoYiE1n7gMWw55u9L2mbiv25QRKS29gJPAV2xe5f6ehRYCgxEsxBEYpDbuFmZvxJz0N1ofwbDitwVuNu74Qls3/FHqYNOwc48iCAq1C4iofM9cA2w0qetI/AycEJIIhKRaFMMTMNO5fpfSds/sXf3PZLrOigRCSdOh5OZ3WZS4C59t6hEEbaOwXOQvDEZZ37JHNB84BvsthIRTAmhiNS9fOBB7FQLz804J3AP8BC2sp+ISG3NA+7CloD3cAA7QxOOiISvFGcKKc5S61Pc2ETwYQ4UnQI7x/KKkva2dRRgECkhFJG69TVwJf4da0/shvM9QhCPiESftcC9wMel2gdgp412q/OIRCTS/Bfbj6ws1X4+tvpwlzqPKGi0hlBE6paLA8lgIjAWu16wR6gCEpGo8TtwM7ZAjG8y2A34ApiBkkERqZrv8E8G+2OXunxAVCWDoIRQROraX4HLgb7YfXnuRXMVRCQw9gNTwFs1vgV29sES4MxQBSUiEaF0BeI7gcbYmgazsRWIj6/roOqGEkIRCZ7twBgO3kJiMvAV0KHOIxKRaNYcuxa5Abb6XzYwnLDfA0xEQmg1cAG2toGvNOBHYCFwRl0HVbeUEIpI4BnsXfrO2Mp+/yn1fDLqfUSkduZgR/12l2q/C/gZW6Aqwkq/i0gd2oitadAV+BBb6G57qWPaERNb0egjmYgE1gZs4YarOPBB7QkOTOESEamNNcAg7B37Wdh1yL4aYEcKRUTKsh24BbvN1ascmCqair2ZFIOUEIpIYLiBZ4CjsR/SPC4HvkVTtkSkdnKAG7B386f7tH+NbjiJSOV2Y2ctHQH8H3ZvQYBDsDeWfsFuKh+DVMpBRGpvJXaD+e992lph1woODElEIhItCrAbyY/DVin2aAk8ib3ppNvbIlKRTOAB/KeYJwO3Y6eZN6r7kMKJEkIRqTmDLdzwJAfutAHchL3b1jAUQYlIVHADr2E/xG31aU8BRgEjsR/oREQq4+JAMhiPnW1wP5ARqoDCixJCEak5B3a+vScZPBJ4GTg5ZBGJSLTIBe7gwIc4J3Ad8DD6ECci5XMDe/EvKnULdproX7B9SJsQxBXGNMlCRGrnWaAZ8A9gKUoGRSQwGmNHBwHOBVYAL6JkUETKZrDVQrthZxH4SgZ+wu5LqmTwIEoIRaTqvgQ+LtXWBFgHPA4k1nlEIhINtgEjgN9Ktd+MLRrzMXYbGxGRsswGTsTuJ7gamAT8r9Qx2oamXJoyKiKV+wO4E7u34KFAb6Cpz/PqZEWkJlzABOApbPEYB3Zal0cCMVv1T0Sq4HvsDKXZpdqPBfbUfTiRSiOEIlKxD4Au2GQQ4HfgpdCFIyJRwI1db9wBeASbDAJMQx/iRKRyK4HzsaOCvslgV+ATYD52GyypEiWEIlK27cBFwIUl34PdtHUytjKXiEh1GWAG0AO4lgN9Sz1s0Yc1qDqxiFTsLuw6wY982o4A3sDWMhiEnW0gVaYpoyLiz2BHA+/Ef7+eQcBE7N5fIiLVtQy4G5hVqv187DY1Hes8IhGJRG2xn1UAWgAPAVcB9UMWUcRTQigiB/wKDMcWj/FoArwAXIzuuIlIzewH/or/foLHY9cPqjKxiJTnD+zWVr51C64FpgJDsMWokuo+rGijKaMickACkOXz+Apsta4hKBkUkZqLx97FBzgceAv4DiWDIlI2F/AkdjTwvlLPxQM/YKeOKhkMCCWEInJAE+A5oDXwOfAakB7SiEQk0vyJLfm+uVT71dg1yD8Bf0c3mUTkYPuws5KOwFYPzQVexfYbvtR/BJQSQpFYtQ94AthRqv1S7KjgWXUekYhEMgNMxxZ7uBF4sNTz9YDrsDMRRER8ubHTQI8EbuXAnqRx2KUsqaEJK1YoIRQJM0WmKPgn+Q7oBTwAjCz1nAPtKygi1bME6IctPrWmpO01YEPIIhKRSGCA97HbRQzHfzP5v2FvUL+MLR4jQaOEUCSMLHMto/+y/ix3LQ/OCVzYBPAkbCcL8A7wc3BOJyJRbjMwFDgGmOPT3hu7D1jbUAQlIhHjYuwWV2t82s4CFmM/nxwZiqBijxJCkTCSuTUTV7GLzK2ZgX/zmdhNWp/jQLnmY4BF2M2hRUSqKg+7H2lH4HWf9nbYD3HzsUmhiEhFBvl83weYh61h0Cs04cQqJYQiYSLLlcVi12IAFrkWkeWy5T5rPYV0F3YaxgAOTMVIBJ7CTh3tXru3F5HwsnNLHutX5LBzS15wTmCw00PHAHtL2hoDz2Dv8v8NFXwQiWBB60NWAOtLtV2GrWQ+HfgGODWwp5Sq0T6EImFi4taJOHHixo0TJ5O2TuKmFjdx67pbeaH9C3RL6Vb9N/0EW8Qhx6etL3Y+fvuAhC0iYWTJ7PXM/zSbva79JKbE02dQR3r1axfYkziA27Ef5OKBW7DVAA8J7GlEpO4FpQ/5BXgYeBM7PfQdn+ecwLTavb3UnkYIRcKAZ3TQjRsAN24WuRYxbvO42k0hzeVAMpgKvAR8hZJBkSi0c0se8z/NhmJDRps0KDbM/zS79nf5f+Tgu/p/x04Z/Ql4GiWDIlEg4H3IVmzF4U7AG9jZBe9ii1BJWFFCKBIGPKODvuKIY23hWsB/Cmm1XI6dKnoutojMtVT4f32dVDgVkaDI21XIXtd+0pokExfnIK1JMnvz97Np7c6aTf/aiB0FPB64u9Rzcdhta1Q0RiRqBKwP+R24F3vzeRJ2b1KAQ7E3kDoHIXipFU0ZFQkx37WDvoop9n7vmUI6uePk8t9oPfABcJdPm6OkLYlK1/Qscy2r3fRUEQmp1MZJJKbEk7ujgLQmyeTuKGB/4Z/MeWc1xX8WV336127s+sDnsPuVgu1HvgNODOIFiEhI1boPcQHPAuOxhac8UoA7gTvQfoJhSiOEIiFW1uhgaZ4ppGWOErqBCdgKoncD/y31fDJVKvAQ1AqnIhJ06S1T6TOoI8Q5yNmUS9H+PzEY4uOdVZv+tR94AXtX/ykOJIOHlrQfUwcXISIhU+s+5BzgQQ4kgwnYJHA98AhKBsOYRghFQqi80cGylDlKuAK4GrvGx2MM8Neax+FJPHum9Kzem4hIyPXq147WndLJ21XI7h35zH5zpd/0r5xNueTtKiS9pc8nMwN8iJ3itc7nzRKw+5aOAtIqP/fOLXnk7SoktXGS//uLSMSoUR/icSt22wgntrr5Q0Cr6p1f/UhoKCEUCaGJWyfiwIHxbgxYPt9Rwp71e9r1O2M4MDffAYwAnqxZHKUrnFY4PVVEwlZ6y1TSW6ayc0veQdO/EhvEk9o4yf8FVwFTS73J5cDjQJuqnbNOqpuKSJ2otA9plATvYTeN7+rzwvOxxaaGYfcorSb1I6GjKaMiIeI2blbmr6xSMujhxMmknybZDVtHcyAZ7AR8i53W1bB6cZRX4bRGRWxEJGyUnv5FnIM+53Y8+K77+T7f98XOOHidKieDQatuKiIhdVAf4nDQp3VH0gen2v1G7y31Agf2ZnUNkkH1I6GlEUKREHE6nMzsNpMCd4G3bWX+Su7eULqc3wFu3CyKW0RWfBY96Wn/Dx6F3QMsoWZx+I4OemPTKKFIVPCd/pXaOIn05FT4H/7J3iDs1PPzsGuAqrmpvKcyYUabtKpNKxORiOHtQ+YWkjo5ifTnff6f/hy7hUSv2p9H/UhoaYRQJIRSnCk0jW/q/Zq2YxqOSj6NOYodTLphEhwLLAYeo8bJYOnRQQ+NEopEj/SWqbTrmEH6O6lwBHBdqQMcwMvYxLCaySD4VyYsLjblT00VkcizDNKvT6Xd5Rmkf+OTmPXAFrELULkB9SOhpYQwCL7++msGDRpEixYtcDgcfPTRRxUeP3fuXBwOx0Ff27dvr5uAJSxUdQqpiTOs6LUC9wI31HJ3iIoqnHpGCUUkghngHey+X3cAfwAzgS8Cd4oqT00VkcjxM3ApNvH7zKe9I/A29ob0QGp0E6ks6kdCS1NGgyA/P5/u3btz1VVXccEFF1T5dWvXriU19cAvftOmTYMRnoQpvymkBtsBpwGnlDqwEJJTknE6K96qojKVVTj1K2KjiqMikWc+dl/S73zaHMAVQJfAnuqgqan6ECcS2Ybi33ccht06YhhByx7Uj4SOEsIgGDhwIAMHDqz265o2bUqjRo0CH5BEjBRnCik5KbZa6EdAa2Al/oVi4gNzrqpUOHXg0FpCkUizDrgPeL9Uez/shtFBur/jqUwoIlHgUWAAkI6tHHojkBj806ofCQ1NGQ0jPXr0oHnz5vzlL39h/vz5oQ5H6prBruPpgk0GATYBbwX+VFWenophRf4K3MZd4XEiEiaew/YhvslgF+xan1kELRkUkQi1B1uLYEGp9r8A/8ZuKn87dZIMSuhohDAMNG/enEmTJnHssceyb98+Xn75ZU477TS+//57evUqu3TTvn372Ldvn/dxXp7K8ka0ddhCD3N82poC/wdcFPjTlVXhtDzJzmScjtpNT5XwpH4kCnUFikq+z8B+0LsK/bWXoFAfEsH2AhOxexfvBL7EbirvWRPowPYdEhP0JyIMHHnkkRx55JHexyeddBK//PILzzzzDK+//nqZrxkzZgyPPvpoXYUowfIn9o7+g0ChT/swYAJwaPBOneJMIcWZErwTSNhTPxLhioFd2CldHmdg9wfrjF0/WM19SUWqQ31IBPoTmIqdEvqrT/sCYDVwVAhikpBzGGOqviu2VJvD4eDDDz9k8ODB1Xrd3XffzbfffsvChQvLfL6su3KtWrUiNzfXrzCNhLG12OIOP/q0tQEmY+ftiwSZ+pEI9g1wJ1Af+Bb/Sn+GgFX+E6mI+pAIUgy8h70BnV3quUuwswna13VQEi40Qhimli5dSvPmzct9PiEhgYSEGm4+J+EhAVhV8r0DuAV4AtCgndQR9SMRKBu4lwPrjAE+AC70eaxkUOqI+pAIYLDbzNwPlN5a+GzgcezWEhLTlBAGgcvlYt26dd7HGzZsYOnSpTRu3JjWrVszatQotmzZwmuvvQbAs88+S9u2bTnqqKPYu3cvL7/8Ml999RUzZ84M1SVIXTgcO3d/Mnbhdu+QRiMi4WwH9g7+JOyUL4+uQJOQRCQikWIs/sngqdjPH31CE46EHyWEQbBo0SJOP/107+M77rgDgGHDhjF16lS2bdvGpk2bvM/v37+fO++8ky1btpCcnEy3bt348ssv/d5DIpwLeAq4G/81PTcDN2BHC0VESivErjMeA/jW62gOjAauBFTzSUTK4+BA8ter5Psz0UwC8aM1hFEiLy+PtLQ0zdsPRzOxFUT/h50W+nxowxEpj/qRMDMTuAbY7NPWALgHu36wQSiCEimf+pAQywYewt4oOqvUc18DJ6MN56RM+rUQCZZd2E55ADYZBHgF+C1UAYlIREnjQDIYh00Of8Z+4FMyKCIem4FrsXuOvo1dL1hc6phT0ad+KZemjIoEmsFW8roZ/+TvDOAl7P6CIiKlFWGrhnqcAAzBThV9Cjg6FEGJSNjagZ1O/iKwz6f9V+yG8qoaKlWkhFAkkLYCNwEf+7SlYfcUvArN2RcJgCJTRH1H/coPjBS/AQ8Di4Dv8F8TOBVIDEFMIhK+8oB/Yj9buHzaU7H7j45Ee5BKtWjwWCRQXsVO1/BNBgdjN3q9GiWDIgGwzLWM/sv6s9y1PNSh1F4BdquZI7DVQxcB/yl1jJJBEfEw2ESwHXZjeU8ymIgtWrceu8+gkkGpJiWEIoGyC8gt+b4p8A52f7AWIYtIJOpkbs3EVewic2tmqEOpOTf2BlJH4AEOfKhLwSaJIiJlcQBfAb+XPK6HrVT+C3Za+aEhiksinhJCkUC5Fbvm50pgDfA3NCooEkBZriwWuxYDsMi1iCxX6V2Wg6PIFAXuzb4EjsX2E1tK2pzYD3XrgBsDdyoROdjOLXmsX5HDzi15lR9ciYD2DWUpxo4K+noc22dchv2sMZEa33gOevwSMZQQitTEcuCFUm1OYA4wBWhc5xGJRL2JWyfiLFlg58TJpK2Tgn7OgE1R/Rn4K/AXYKlP+znY/mQikFG7U4hIxX6Ync1b4xfw/nPf89b4BSyZvb7G7xXU6esG+Ay7b+D7pZ7rAWzATi+vRdGYqJp+L7WmhFCkOvZh5+cfA9yGLQDhK6nOIxKJCZ7RQTduANy462SUMGBTVPcCX/g87oWd+vUpdu2xiATVvA0LuLXBcH479H9ktEmDYsP8T7NrPFIYtOnrXwOnYG8WLcNOK/+z1DGtan+aqJh+LwGjhFCkqhZg78w9ju2cDfB0KAMSiR2+o4MewR4lDOgU1a7AcKA18DrwI3B67WMUkar59+5/URS/l+UnfEVcnIO0Jsnszd9P3q7Car9XdfuGKk1TzQIGAn2B+T7tKUBOtUOsUKim30v4UkIoUpk92PWBJwM/lbTVx5aJfyNUQYnEjtKjgx7BHiWs0RRVN/BvbLJXennOeGwfcjn66ytSh7JcWawydmrkr+nr2Jz2C7k7CkhsEE9q4+pP7alO37Bk9vqKp6muxe432guY4dPeCbun8Y9Ay2qHWKFQTL+X8KY/SSIVmYHdDPoFDizsPh5YAjwCJIQmLJFYUtbooEewPszUaIrqF0BP4BpgLvBSqecPQdPKRULAtw9xFDv4uvV0iHPQ59yOpLdMrdZ7Vadv2Lklj/mfZkOxOXiaajFwLXAUtiq5R2tsLYIVwIUEvDhdqKbfS3hTQihSFhcwFDt9Y1NJWxJ2/58F2CRRRIKuvNFBj2B9mKnWFNXlwADgLOyHOA99vhIJudJ9iIkz/HbYRrre1pBeZ7Sr9vuN3zz+oLby+oa8XYXsde0nrUnywdNU47AbzHu6tqbA80A2tgpxvWqHViWhmH4v4U8JoUhZkrDTODzOwH7Qux3KGagQkSCYuHUijkpukTtwBPTDTJWnqG4BrsKuLZ7pc+BxwDzg5YCFJCI1VF4C9FbRa9V+ryxXFmsL1x7UXt6NqdTGSSSmxJO7o4DivebgaaqjsXsHPo7dS/AWgjrzKFTT7yX8KSEUKYsT+2GuScl/vwSOCGlEIjHHbdyszF+JOWgjLn8Gw4r8FbhN2aOI1VXpFNXNk+Ah7MbyUzgwnbwN8Ba2+vCpAQlFRGoh0AlQWaODHmWNsqW3TKXPgI6wwUHOB7mwpdQ01Y7Ar8A/sMVjgiwU0+8lMgRpQFokghRjk74e2PWB2M1a63etD/9Da35EQsTpcDKz20wK3AWVHpvsTMbpqP3wvW/1vbK4cbOocBFZn2fRs6CnbUzDloa/GUisdQgiEiCeBKisKeeeBGhyx8lVeq/yRgc9fJPMnik9bVGpV6DXY+1ovTOdvPqFpBYkkd6n1JrFOuozqtS3+cYvMUUjhBLbfsZOB70eO/Vrf6nNWpUMioRUijOFpvFNK/1KcQbm9nqVp6g+MslWG74NO9XrLpQMioSRQK8/rmh00MM7ff1NoDNwA7AV0ven0q4gg/RTUiG/6tcQSKGYfi+RQwmhxKY/gaeAbti1PgCrgM+0WatIrKrWFNUWK3CvcsOz2DVAIhJWApkAuY2b7MLsSo8zGFbsWoH7Cre9UeRxHrb41GtA40rfJuBCNf1eIoemjErsWYotC+87c+JwYDJknZTF4mz/zVo1dUIkchWZIuo76lfpWL8pqluxN43ex64RHAWMOHBssjMZp7P8Kao7t+SRt6uQ1MZJ1S5rLyK1U5MEqKIp58vzl1f4XuPbjOfo4UfDd5BckIyzuOS9TgeeBE6s/jUEsg8JxfR7iSxKCCV27MVW9BrHgTLPDuyUr9FACkzMPrDeoLrrC0QkvCxzLePWdbfyQvsX6JbSrUqvSclPIWVcit1iZq/PE69j+4oqzKtZMns98z/NZq9rP4kp8fQZ1JFe/apf3l5EaibQCVBlaxHf/v1tzmh6BuwoaTwOeALoT432EQxGH5LiTAnY1HqJPpoyKrFhEbZozJMcSAa7YPcUfAZI0WatItGmWtO/i4CJQHtsP+FJBg8BJgALqdJfzAo3ohaROhOo9cdVXot4fxb0Aj4Avgf+Qo2SQfUhEgpKCCU2xHNgPn994GFgCX7TOLRZq0j08K2oV+GNHQN8gl1PfBMH7vDHA3di+407qPLeYBVuRC0iEWXnljye+fn5qq1F/HOSvfl8PjVKBD3Uh0goKCGU2NANuA+7rcQS4BH8PuBps1aR6OJ7g6fCGzu/AX8HfvJpuxhYAzyNHSGsBr+NqIvL2IhaRCLCktnreePpb/mpaHXV1yKWM4pYHepDJBS0hlCiz07s+p9HsHf5PR4saStjqUAg9yoSkdAqvd9WhftrZWBHAJ8A+mCTwBoUgPBIb5lKn0Edmf9pNjmbcklsEO+/EbWIhD3PtM24/Q6uHf8Yv2/eDW4YvO1YGu9vaPcevRFboK5ku5lAFWNRHyKhoIRQoocB3gZuxU77SgQe8nk+vqwXabNWkWhT1g0eJ04mbZrE5Lcn26mgvp+t7gWOAQZTq6leHr36taN1p3RVGRWJUHlbC9n7034y1qcRt89BCxLJScwlvjCFptc3hbup9uyB6lAfInVNU0YlOvyK3efnEg6sAXoRqLzAmDZrFYkiFU7/3ruIrE+y7HYSvhpS63U/paW3TKVd1wx9kBOJNPsh9e9JJK6LJ7e4gGIMuQkFJLaKJ3V2ki06FcRk0EN9iNQlJYQS2YqBSdiKoZ/6tF+I3W8wueKXa7NWkehSVnEoD+efTibdMAkygfy6jUtEIkQ8pA9Kpc/vHcHhIKdNLpzmoM/9HUnvoeRMopOmjErk+hk7f/9rn7Zm2A97F1TtLbRZq0j0qHT6dz03i45bRNYPWfRsoOnfIjHPANOBM4AGPu33Q6+cdrS+Pp28QzVtU6KfEkKJPAa7d+A/8N84+ipqVBVQm7WKRAfP9O+KRvwdOJhkJjEZFYkSiWlzgPuB74Ax2ErkHk2BtyCdVNJRIijRT1NGJTLt4kAy2BaYBfybOpnXLyLhp66nfxeZolq9XkRC5EfgTOyo4HclbeOA3JBFJBJyGiGUyOMAHgA+BAYAo/Gf6iEiMcc7/fuFAlv04VBsNdFLOegvXW2nfy9zLePWdbfyQvsX6JbSrRZRi0idWYP97PBBqfajsNvOaCBQYpgSQgl/32I78mt92hKBxXj3/xGRGGOA94HTsckfJdO/r0+x1YVvJmgf8DK3ZuIqdpG5NVP7k4qEu43YPYhfxxai82gLPIatTq7yABLjNGVUwlceMAI4Bfvhbk2p55UMisSmBdhN5P8GPF7quSTsuqAgJYO+hWs8+5OKSJgqBHoBr3IgGfQUn/sJuJyQJIM7t+SxfkUOO7fk1f3JRcqghFDC03+Bo7F7CQLsB/4vdOGISBhYh00C+wALS9oygc11F4LvthZOnNqfVCScJQE3lnx/CDAW+AW4CYgPTUhLZq/nrfELeP+573lr/AKWzF4fmkBEfCghlPCyE3vH7mwOfMhLxlYVfT5UQYlISP0O3I7db/Q9n/Yu2LXEh9VNGKU3vXfj1iihSLjIB8YDu0u13w08DKwH7qXS/YmDaeeWPOZ/mg3Fhow2aVBsmP9ptkYKJeSUEEp4MMBbQGfgDZ/2/sBKYCSa4y8Sa/Zht5I5AngW8BT2zAAmQ9HSInvzyFE34ZS16b1GCUVCbD92pkB74B5sn+GrEXYNYaO6DKpsebsK2evaT1qTZOLiHKQ1SWZv/n7ydhWGOjSJcUoIJfR2AudiqwHuLGlrBEwBZmIXfotIbDHAqdi7+55y8EnYKoE/w7JLl9F/VX+Wu5bXSTilRwc9NEooEiJu4DXgSGydge0l7S8ArlAFVbHUxkkkpsSTu6OA4mJD7o4CEhvEk9o4KdShSYxTQiihlwJk+zy+CFtA5krq7M6/iIQZBzDU5/vhwM/YbWYa+lf6rAtljQ56aJRQpA4Z4COgOzAMW0XU40Ls+uKUOo+qStJbptJnUEeIc5CzKRfiHPQ5tyPpLbXnhYSWtp2Q0EsEXgb+jr2zd0FowxGREMjGVgZt5tN2HZAF3IL98FeirEqfPVN6Bi003/OVxXeUMJhxiMS82dgqwj+Uaj8Tu5fgsVV/q51b8sjbVUhq46Q6Tch69WtH607pITm3SHk0Qih160/gKQ7eQuIUbOUvJYMisWUncCt2c+gHSj1XH3uzqLt/c11X+py4dSKOSqYrOHBolFAkmFzYGUS+yeCJwBzgC6qVDIa60md6y1Tadc1QMihhQwmh1J2lwAnYKl/X4r9BLGhfQZFYshcYhy0Y8wL2ZtErwIqKX1bXlT7dxs3K/JUYTIXHGQwr8lfgNu4KjxORGkrBfn4A6Ap8gt2T9LTqvY0qfYocTFNGJfj2Ao9hRwY9n5UWYjvyk0MVlIiERDG2ovD9wCaf9mRsAZlKikh5Rgd9i7t4Rgknd5wc8HCdDiczu82kwF1Q6bHJzmScDpVDFqm1DcCTwOPYqsIetwKHAxdT4yENT6XPjDZp3kqfOZtyydtVqBE7iVlKCCW4vgGuwb9ozNHAv4HjQxKRiITKXOAuwHc5XhxwFfamUfOKX17eWr5gr+FLcaaQ4gzTKhUi0WQ7Ngl8CbvNTDLwnM/zydh6A7XgW+kzrUmyKn2KoCmjEix5wAhs2XhPMlgfeBT7YVDJoEhsuRE4Hf9k8CzsVPJ/UWkyCKr0KRK1/gBGAe2wewp69hx9BwjwFn2q9ClyMI0QSuB9hS0F/atP24nY4hBHhSQiEQm1EwBPvtYNu3n0X6r+clX6FIlC+dgRwKc4sN8oQAPgDuBO7P6jAaZKnyL+NEIogVePA8mgZ7rHtygZFIkVBcCOUm1XAGcDU4AlVCsZBFX6FIkq+7HFpI4A/sGBZDAeuA1Yj51Gnha8EFTpU+QAjRBK4J2KnR62DphMpUUiRCRKuIH/YD/gnQxM83nOCUyv4dvWoNKniruIhLEi7L6BOSWP44ArgYeB1iGKSSSGKSGU2tkMTMQuAvcdb34Ge6ev4hv6IhItvsRWCV1a8vhtYCR2ungtqdKnSJRpgN139Bbs3oKjgU4hjUgkpikhlJopxo7+3QvsAQ4DbvJ5PiEUQYlInVuFTQQ/L9U+CGgcuNOo0qdIlLkOOAnoFepARERrCKX6srEbwd6ETQbBrhP8M1QBiUid2479QNcN/2SwF7aw1CdAxxDEJSKRIR4lgyJhQgmhVF0RMBb7AfAbn/arge/QeLNIrJgMtMduF1Fc0tYKeB34Ebu9hIiIiEQEfYSXqsnCJn5ZPm3tsJvH9gtJRCISKunYcvEADYH7sZUBta+ziIhIxFFCKBUz2IqBT2ErCIIdV74dWxI6OURxiUjoXAD0BY7GVgVsEtpwREREpOaUEErFHMAuDiSDXYF/A8eFLCIRCTUHMBu7lYSIiIhENK0hlMqNw04PfQxYhJJBEVEyKCIiEiU0Qij+PgN2A5f5tKUBq9FWEiIiIiIiUUYjhEHw9ddfM2jQIFq0aIHD4eCjjz6q9DVz586lV69eJCQk0L59e6ZOnRr0OP3sAC4FzgFuxG4470vJoIiIiIhI1FFCGAT5+fl0796dzMzMKh2/YcMGzj77bE4//XSWLl3KyJEjueaaa/jiiy+CHCm2aMwbQGfgrZK2PcArwT+1iIiIiIiElqaMBsHAgQMZOHBglY+fNGkSbdu2ZcKECQB07tyZb7/9lmeeeYYBAwYEPL4iU0R9R307CngD8F+fJxsDzwBXBPy0IiIiIiISZjRCGAYWLlxI//79/doGDBjAwoULy33Nvn37yMvL8/uqimWuZfRf1p/lry2HLvgngxdj1woOxVYRFJGoVtN+REQE1IeIRAslhGFg+/btZGRk+LVlZGSQl5dHYWFhma8ZM2YMaWlp3q9WrVpV6VyZGzJxFbvILMwEV0ljC+Aj4G0go9yXikiUqWk/IiIC6kNEooUSwgg1atQocnNzvV+bN5euAnOwLFcWi4sWA7DouEVk9ciCa4FVwHnBjVdEwk9N+hGAnVvyWL8ih51bNBogEsvUh4hEB60hDAPNmjUjJyfHry0nJ4fU1FSSkpLKfE1CQgIJCdUr/Tlx60ScOHHjxul2MmnSJCafMLnGcYtIZKtJP7Jk9nrmf5rNXtd+ElPi6TOoI736tQtShCISztSHiEQHjRCGgd69ezN79my/tlmzZtG7d++AnSPLlcVi12LcuAFwO90sqr+ILFdWwM4hItFt55Y85n+aDcWGjDZpUGyY/2m27vKLSJWoDxEJT0oIg8DlcrF06VKWLl0K2G0lli5dyqZNmwA7xWLo0KHe42+44QbWr1/PPffcw08//cSLL77IO++8w+233x6wmDyjg76cOJm0dVLAziEi0S1vVyF7XftJa5JMXJyDtCbJ7M3fT96ustc6i4j4Uh8iEp6UEAbBokWL6NmzJz179gTgjjvuoGfPnjz00EMAbNu2zZscArRt25bPPvuMWbNm0b17dyZMmMDLL78csC0nSo8Oerhxs8ilUUIRqZrUxkkkpsSTu6OA4mJD7o4CEhvEk9q47KntIiK+1IeIhCeHMcaEOgipvby8PNLS0sjNzSU1NdXvueuyr2Opa+lBCSHYUcKeKT2Z3FFrCUViXUX9iId3/U/+fhIbxNPn3I70OkPrf0REfYhIpFJRmSjnGR0sj+8oYc+UnnUYmYhEol792tG6Uzp5uwpJbZxEesuyP/SJiJRFfYhI+NGU0Sg3cetEHJXsMu/AobWEIlJl6S1Tadc1Qx/kRKRG1IeIhBclhFHMbdyszF+JoeJZwQbDivwVuM3BU0pFRERERCR6acpoFHM6nMzsNpMCd0GlxyY7k3E6nJUeJyIiIiIi0UMJYZRLcaaQ4kwJdRgiIiIiIhKGlBBGCU+x2Lw8be4qEi4aNmyIw1HxGt5won5EJLyoDxGR2qpKP6KEMErs2bMHgFatWoU4EhHxqKj0ejhSPyISXtSHiEhtVaUf0T6EUaK4uJitW7dijKF169Zs3rw5ov6IVCYvL49WrVpF3XVB9F5btF4XVP3aIu3ufnFxMWvXrqVLly4x/XOLNNF6XRC91xbNfYg+i0SmaL22aL0uCGw/ohHCKBEXF8dhhx3mnaaRmpoadb/4EL3XBdF7bdF6XRB91xYXF0fLli2B6Ls2X9F6bdF6XRC91xZt16XPIpEvWq8tWq8LAnNt2nZCREREREQkRikhFBERERERiVFKCKNMQkICDz/8MAkJCaEOJaCi9bogeq8tWq8LdG2RKlqvLVqvC6L32qL1ujyi9fqi9bogeq8tWq8LAnttKiojIiIiIiISozRCKCIiIiIiEqOUEIqIiIiIiMQoJYQiIiIiIiIxSgmhiIiIiIhIjFJCKCIiIiIiEqOUEIqIiIiIiMQoJYQiIiIiIiIxSgmhiIiIiIhIjFJCKCIiIiIiEqOUEIqIiIiIiMQoJYQiIiIiIiIxSgmhiIiIiIhIjFJCKCIiIiIiEqOUEIqIiIiIiMQoJYQiIiIiIiIxSgmhiIiIiIhIjFJCKCIiIiIiEqOUEIqIiIiIiMSoGiWE33//faDjEBERERERkTpWo4Swd+/edOzYkdGjR7N+/fpAxyQiIiIiIiJ1oEYJ4X/+8x86dOjA6NGj6dChA3369GHSpEns2rUr0PGJiIiIiIhIkDiMMaamL965cyfTpk3jzTff5LvvviM+Pp6zzjqLyy+/nHPPPZf4+PhAxioiIiIiIiIBVKuE0Ncvv/zCm2++yRtvvMHPP/9MWloaF110EUOHDuXkk08OxClEREREREQkgAJWZTQpKYnk5GQSExMxxuBwOPj444/p27cvxx13HKtXrw7UqURERERERCQAapUQ7tmzhylTptC/f3/atGnD/fffz+GHH857773H9u3b2bp1K2+//Ta//fYbw4cPD1TMUgZjDHl5eQRowFdEYpD6ERERkdhTo4Tw448/5uKLLyYjI4Orr76aPXv28Oyzz7J161Y++ugjLrjgAurXr4/T6eSiiy7igQceICsrK9Cxi489e/aQlpbGnj17Qh2Kn40bN+JwOFi6dGmoQxGRSqgfERERiT01SgjPP/98vv/+e26//XbWrFnD999/z4gRIzj00EPLPL579+5cdtlltQpUgmP79u3ccssttGvXjoSEBFq1asWgQYOYPXt2qEPzWrt2LaeffjoZGRkkJibSrl07HnjgAYqKikIdmogQGf2Ir3Xr1tGwYUMaNWoU6lBERERCrl5NXvTVV19x2mmnVfn4448/nuOPP74mp5Ig2rhxI3369KFRo0aMHz+erl27UlRUxBdffMGIESP46aefQh0iAPXr12fo0KH06tWLRo0asWzZMq699lqKi4t58sknQx2eSEyLlH7Eo6ioiEsuuYRTTjmFBQsWhDociVJFpoj6jvqhDkNEpEpqNEJYnWRQwtdNN92Ew+Hghx9+4MILL6Rjx44cddRR3HHHHXz33XcAXHXVVZxzzjl+rysqKqJp06b8+9//BqC4uJinnnqK9u3bk5CQQOvWrXniiSfKPe/KlSsZOHAgKSkpZGRkcMUVV7Bz585yj2/Xrh3Dhw+ne/futGnThnPPPZfLLruMb775JgD/CiJSG5HSj3g88MADdOrUiYsvvrgWVy1SvmWuZfRf1p/lruWhDkVEpEoCVmVUIsuuXbuYMWMGI0aMoEGDBgc975lKdc011zBjxgy2bdvmfW769OkUFBQwZMgQAEaNGsXYsWN58MEHWb16NW+++SYZGRllnnf37t2cccYZ9OzZk0WLFjFjxgxycnKq9eFs3bp1zJgxg759+1bjikUk0CKtH/nqq6949913yczMrOEVi1Quc2smrmIXmVv1eyYiEcJIVMjNzTWAyc3NrdLx33//vQHMBx98UOmxXbp0MePGjfM+HjRokLnyyiuNMcbk5eWZhIQE869//avM127YsMEAJisryxhjzOjRo82ZZ57pd8zmzZsNYNauXVthHL179zYJCQkGMNddd51xu92Vxi4iVRfN/cjOnTtNq1atzLx584wxxkyZMsWkpaVVGrdIdSzZs8T0WtzL+7Vkz5JQhyQiUimNEMYoU42y8tdccw1TpkwBICcnh88//5yrrroKgDVr1rBv3z769etXpfdatmwZc+bMISUlxfvVqVMnAH755ZcKX/v222+zZMkS3nzzTT777DOefvrpKl+DiAReJPUj1157LZdeeimnnnpqlWMWqa6JWyfixAmAEyeTtk4KcUQiIpWrUVEZiXwdOnTA4XBUqeDD0KFDue+++1i4cCELFiygbdu2nHLKKQAkJSVV67wul4tBgwYxbty4g55r3rx5ha9t1aoVAF26dMHtdnPddddx55134nQ6qxWDiARGJPUjX331FZ988on3RpIxhuLiYurVq8dLL73kTU5FairLlcVi12LvYzduFrkWkeXKomdKzxBGJiJSMY0QxqjGjRszYMAAMjMzyc/PP+j53bt3e78/9NBDGTx4MFOmTGHq1KkMHz7c+1yHDh1ISkqqcnn5Xr16sWrVKg4//HDat2/v91XWGqTyFBcXU1RURHFxcZVfIyKBFUn9yMKFC1m6dKn367HHHqNhw4YsXbqU888/v3oXLlIG39FBD40SikgkUEIYwzIzM3G73Rx//PG8//77/Pzzz6xZs4bnn3+e3r17+x17zTXX8Oqrr7JmzRqGDRvmbU9MTOTee+/lnnvu4bXXXuOXX37hu+++81YOLG3EiBHs2rWLSy65hB9//JFffvmFL774guHDh+N2u8t8zRtvvME777zDmjVrWL9+Pe+88w6jRo1iyJAh1K+vst4ioRQp/Ujnzp05+uijvV8tW7YkLi6Oo48+mkMOOSRw/yASkzyjg278f/98RwlFRMKVpozGsHbt2rFkyRKeeOIJ7rzzTrZt20aTJk045phjmDhxot+x/fv3p3nz5hx11FG0aNHC77kHH3yQevXq8dBDD7F161aaN2/ODTfcUOY5W7Rowfz587n33ns588wz2bdvH23atOGss84iLq7s+xP16tVj3LhxZGdnY4yhTZs23Hzzzdx+++2B+YcQkRqLlH5EJJg8o4OlE0I4MEo4uePkEEQmIlI5h6lOVQAJW3l5eaSlpZGbm0tqamrA39/lctGyZUumTJnCBRdcEPD3F5HQUz8iUn1Zriyuyb6m0uNe7viy1hKKSFjSrVSpUHFxMb/99hujR4+mUaNGnHvuuaEOSUQijPoRiWYTt07EgaPCYxw4tJZQRMKWpoxKhTZt2kTbtm057LDDmDp1KvXq6VdGRKpH/YhEK7dxszJ/JYaKJ1sZDCvyV+A2bpwOVcYWkfCiv8pSocMPP7xae42JiJSmfkSildPhZGa3mRS4Cyo9NtmZrGRQRMKSEkIRERGRGkpxppDiTAl1GCIiNaY1hCIiIiIiIjFKCWGAjRkzhuOOO46GDRvStGlTBg8ezNq1ayt93bvvvkunTp1ITEyka9eu/Pe//62DaEVEREREJJYpIQywefPmMWLECL777jtmzZpFUVERZ555Jvn5+eW+ZsGCBVxyySVcffXVZGVlMXjwYAYPHszKlSvrMHIREREJmgJgaaiDEBE5mPYhDLIdO3bQtGlT5s2bx6mnnlrmMUOGDCE/P5/p06d720488UR69OjBpElVK1Md7P3DRCT6qR8RCZJPgVuAvcBaIC204YiI+NIIYZDl5uYC0Lhx43KPWbhwIf379/drGzBgAAsXLiz3Nfv27SMvL8/vS0SkOtSPiATZRuA84Fzgf0AO8FAoAxIROZgSwiAqLi5m5MiR9OnTh6OPPrrc47Zv305GRoZfW0ZGBtu3by/3NWPGjCEtLc371apVq4DFLSKlFAP/AVyhDiSw1I+IHFBkigL3ZvuBMUAX4BOf9jOAGwN3GhGRQFBCGEQjRoxg5cqVTJs2LeDvPWrUKHJzc71fmzdvDvg5RAT4AegNXAGMDXEsAaZ+RMRa5lpG/2X9We5aHpg3fAe4HygsedwMeBP4EugUmFOIiASKEsIgufnmm5k+fTpz5szhsMMOq/DYZs2akZOT49eWk5NDs2bNyn1NQkICqampfl8iEkD7gKuBE7BJIcDTQPkD9xFH/YiIlbk1E1exi8ytmYF5w0uA47Gfsm4DfippcwTm7UVEAkkJYYAZY7j55pv58MMP+eqrr2jbtm2lr+nduzezZ8/2a5s1axa9e/cOVpgiUpl4wHfArAvwGfZOv4hEjSxXFotdiwFY5FpEliurem/wJzCrVJsT+DewGHgWFZERkbCmhDDARowYwX/+8x/efPNNGjZsyPbt29m+fTuFhYXeY4YOHcqoUaO8j2+77TZmzJjBhAkT+Omnn3jkkUdYtGgRN998cyguQUTA3sl/Dkgv+e9SoF8oAxKRYJi4dSJOnAA4cTJpa9WqewOwEDgWOBOYX+q5o4EeAQlRRCSolBAG2MSJE8nNzeW0006jefPm3q+3337be8ymTZvYtm2b9/FJJ53Em2++yUsvvUT37t157733+OijjyosRCMiAbQeOB9bGt5XZ+wo4a1A/boOSkSCzTM66MYNgBt31UYJdwLXACcBy0raRgDayEtEIpD2IYwS2j9MpAbysYVixmPXDB4BrAISQhlU6KgfkVhzXfZ1LHUt9SaEYEcJe6b0ZHLHyQe/oBh4BbgX2OXT3gN4EVuASkQkwmiEUERij8FWAewMPI5NBsEmiNmhCkpE6lLp0UGPckcJlwJ9gGs5kAw2xK4R/BElgyISsZQQikhsWQ6cDgzhQNGY+sA9wFqga4jiEpE65bt2sDS/tYT7gJHAMcB3Pgddiu0zbgPqBTFQEZEgU0IoIrFhF3Az0BOY59M+EFgJjAM0S1IkJpQ3OujhN0pYH1iEnS4Kdh/B2cAbQPPqn7vIFNUoZhGRYFFCKCKxYSSQyYEPdUcAn2C3kugYophEJCQmbp2Io5JNAR047ChhHHZ9YCrwJLaIzBk1O+8y1zL6L+vPctfymr2BiEgQKCEUiXK6G13iEWyxmAbAGGzxmEFoo2iRGOM2blbmr8RUUhLUYFiRvwK3cUM37BTzUdg9Smsoc2smrmIXmVsza/4mIiIBplnvIlFsmWsZt667lRfav0C3lG6hDqfubAH+hy0J79EO+A+28EPLUAQlIuHA6XAys9tMCtwF/k/MBB4CfgU62MfJick4HSXrDGs5pdwzTRXwTkftmdKzdm8qIhIAGiEUiWIxdzd6H3b070jg79iqob4uQsmgiJDiTKFpfFP7taUpTS9sStNBTWma1ZSmO5rSdFFTmi5uSoozJWDn9C1i41e0RkQkxJQQikSpsu5GRy0DTAeOAu7HJoKbgX+GMiiRyLdzSx7rV+Swc0teqEMJvH3AE0AXbP/h0R9YAZwauFOVLmJT7tYWIiIhoIRQJErFzN3otcDZ2PWAv5S0xWErio4o/2VaWylSsSWz1/PW+AW8/9z3vDV+AUtmrw91SIEzC7su8AFgb0lbC2AadupogAtNlbXFRVT3yyISUZQQikShSL8bXaVRiTzs3oFdgc992vsCWcALQOOyX6pKfyIV27klj/mfZkOxIaNNGhQb5n+aHVEjheX2I2OBM4HsksdO4HZgDXZ/0gAXmipvi4tI65dFJHopIRSJQpF8N7pKoxJfY9cJjgc8A32HAW8Dc7B3/isQc2srRaopb1che137SWuSTFycg7QmyezN30/ersJQh1YlFfYj52H3FgRbeGoxdnp5kPYhLas/9oiUfllEopsSQpEoE8l3o6s8KtEOO0IIdiuJB4GfgIup9O5+TK2tFKmh1MZJJKbEk7ujgOJiQ+6OAhIbxJPaOCnUoVXqoH6kqFQ/0hkYDbwCfAN0r/l5KpvJUF5/7BEJ/bKIRD8lhCJRJpLvRpc7KrGj1KjEYcA/gMHYaV6PYfcXrIKYWVspUgvpLVPpM6gjxDnI2ZQLcQ76nNuR9JZBGkYLIG8/0jCZuG8cpH2TzN49pUY37wWGU+NPQVVdXzlx60QcldylcuBQPyQiIaV9CEWiiO/oV1l870aH4/5XvqMSaU2Syf2tgMTf4km9JAm+A9J8Dr6Pan+YK/3vE+7/HiKh1KtfO1p3SidvVyGpjZMiIhkESG2UROKueHLnF5BWkExu/QIStwVudLP0CGTujgLmf5pN607pfv9GbuNmZf5KDKbC9zMYVuSvwG3cB/Y8FBGpQ0oIRaKI5250RR9APHejJ3ecXIeRVY1nVGL+p9nkLMsl8Zd4+mzsSPruVDvF62mfg2twZ98zOug7fcszShiO/x4ioZbeMjViEkEAlkD6Tan0WduR+Ydmk5OYS2JcPH26BW500zMCmdEmzTuTIWdTLnm7Cv3O4XQ4mdltJgXugkrfM9mZrGRQREJGCaFIlIiWu9G9jmhH6/Xp5H1VSGpREun7Sz5gubD7DdawAmB5o6caJRSJAruxa4lfBIqhF+1oXZBO3qBCUh9IIr1H4JLag2YyVLC+MsWZEtDN7UVEgkEJoUiUiPi70QXAOOApSN+bSrqn5N8J2C0kjqvd25c1OuihUUKRCGWAN4C7gByf9s6Q/mIq6acFfnTTbybDplwSG8RHzPpKEZGyKCEUiSIReTfaAO8BdwKbfdozsAniFdS6/FWkr60UiXVFpoj6jvoHP7EZuAbYV/I4GXgYGAnEBy+eSF1fKSJSFlUZFZHQ2oX9QOdJButhk8O1wDAC0kup0p9I5FrmWkb/Zf1Z7lp+8JOtsQWm4EDV4XsIajLokd4ylXZdM5QMikjEU0IoIqF1KPBoyfcDgBXY4jFp5b6iWmqytlJEwkfm1kxcxS4yt2bCdOz0cl/3Al8AH2ITRBERqRZNGRWRuuMGpgDnYxNBjxHYzaLPpMZFY8oT8WsrRWKY73TvRa5FZD2YRc/vesLjPgclYfsOERGpESWEIlI35gO3AFnAEmw1QI/62NHBIInItZUiwsRfJ+IsduKOc+P808mkGyYx+ZbJcC3QJtTRiYhEB00ZFZHg2ootDHMyNhkEmAz8L2QRiUgEyPoqi8UFi3HH2Wnc7npuFh23iKz3szQ1VEQkgJQQikhw7MNWCe0I/MenvRswB93dF5Gy/Qr8DSb+PBHnn/5TuJ04mXTkpIBPLRcRiWVKCEUk8D4DjsZW/8svaWuMnSa6GDg1RHGJSHjLBDpB1rosFh+3GHc9/yJPvlvEiIhIYCghFJHAGgacA6wreRwH3ARkAzeilcsiUr48IB8m3jARp7vsAk9OnNoiRkQkgJQQikhg9fH5/lRsAZlM/KuKioiU5U7IGlwyOugsewsYjRKKiASWEkIRqTnDwXuCXQ0MAt4C5gLd6zgmEQl/bmAiMLpUezxMHDMRRyWLBB04NEooIhIgmrwlIjWzGLgV6ABM9Wl3Ap+EIiARiQiLsNPHF2E/hZyPXXMMuI2blYUrMZgK38JgWJG/Ardxa+9QEZFaUkIoItWzA/gH8DJ2hHABcANwYiiDEpGw9wfwAHZk0JPv/Ql8jjchdDqczOw2kwJ36akHB0t2JisZFBEJACWEIlI1f2I/yD0E7PZpPxI7/UtEpCwGeB24G/jNp/0obOXhUlWHU5wppDhT6io6EZGYpzWEIlK5r4Ae2Cmiu0vaGgITgOX4F5IREfFYBZyGrT7sSQYbAE8BWWgLGhGRMKARQhEp3/+AO4H3S7VfCYwBmtV1QCISMb4G+mFnF3hcCDwDtApJRCIiUgaNEIpI+b7GPxk8DvgOmIKSQRGpWG+gU8n3R2DXCr6HkkERkTCjhFBEync59kNdU+AVbDJ4QkgjEpFw9Uepx/Wx644fAVYCZ9V1QCIiUhVKCEXEWoWdBlraG0A2MBz1GCJysL3YpO8w7LpAXycDDwOJdRyTiIhUmT7eicS63cBt2A3k78duJu+rLZBWtyGJSISYgd0y4lGgALu/YHFIIxIRkWpSQigSq9zYvQQ7AM9zYOuIf/oc46jroEQkImwGLgIGAr+UtNXDVg0tClVQIiJSE6oyKhKLFgK3AIt92pKwI4R3hiQiEYkERcCz2BHBfJ/2U7F7Ch4VgphERKRWlBCKxJJtwL3YTaJ9DcHuC9a6ziMSkUjxNXATdr2xR1PgaWwBKs0oEBGJSEoIRWLFOqAn4PJp64qdLnpaKAISkYhhgNs5kAw6sMnh40CjEMUkIiIBoTWEIrHiCOD4ku8PAf4PWIKSQRGpnAM7JdSB3Y/0R2wf0iiEMYmISEBohFAkjOzckkferkJSGyeR3jK1dm+2FWjh89iBHQ38P2A0kF67txeR8BSQfuRH7D6CPXzaTsBWIe4DOGsXo4iIhA8lhCJhYsns9cz/NJu9rv0kpsTTZ1BHevVrV/03cgFPYKuFfgj81ee5o7AbRYtIVKp1P7IL+AcwGZsM/oh/8ndqAIMVEZGwoCmjImFg55Y85n+aDcWGjDZpUGyY/2k2O7fkVf1NDHYT+SOBscB+7Jqf/cGIWETCTa36EQNMBToBk0oeZwH/CWLAIiISFpQQioSBvF2F7HXtJ61JMnFxDtKaJLM3fz+b1u5k/Yqcyj/QZQGnYCv9bS1piwcu4MD+giIS1Wrcj6zAjvwNB3aUtKUAE4BL6yJyEREJJU0ZFQkDqY2TSEyJJ3dHAWlNksndUcD+wj+Z885qiv8sLn/q107gAeAl7B19j0HYKaPt6+oKRCTUqt2P7AEeAZ7D/8bR34BngJZ1fAEiIhISGiEUCQPpLVPpM6gjxDnI2ZRL0f4/MRji451lT/0y2OIwHbBrfTzJYEfgv8AnKBkUiTHV6ke+BDpjbxx5ksEOwBfAOygZFBGJIRohFAkTvfq1o3WndPJ2FbJ7Rz6z31zpN/UrZ1MuebsKbdVAB/aD2+6SF6cADwG3YaeKikhMqnI/0jgVtpW8KBFbSOZuICF0sYuISGgoIRQJI+ktU0lvmcrOLXkHTf1KbBBPauOkAwc/A8wChmCLyDSv3bkDuuWFiIRMlfqRlsAI4BfgBaAGBY1LUx8iIhKZlBCKhCHP1K/5n2aTsyGXxJx4+pzc0f9DVnvsh7kATO0K2JYXIhI2vP3Iv7PJWZRL4rHx9DnXpx+ZgP0U4Kj9udSHiIhELiWEImGq1xntaL0pnbwnC0ndlET6ylQ7JTTZ56AAJIOlS9Xn7ihg/qfZtO6Urrv8IpFsE/TKbEfrz9LJq19I6llJpJ/h8/90/cCcRn2IiEhkU1EZkXC0GjgT0q9Kpd26DNL3p8IW4OvAn6q8UvV5uwoDfzIRCb79wDhs0ZgPIX1/Ku3yM0hflOpfjThA1IeIiEQ2JYQi4SQXu5l8N2wVQI9+wHLgrMCf0rdUfXGxKXu9oohEhrlAD+A+oKCkLQN4A/iYgEwPLU19iIhIZFNCGARff/01gwYNokWLFjgcDj766KMKj587dy4Oh+Ogr+3bt9dNwBJ6xcAr2G0jnuVAGfjDgfexxWO6BOfUpUvVE+fwX2ckIuFvO3A5cDqwpqQtDrgZWIvdYD4IySCoDxERiXRaQxgE+fn5dO/enauuuooLLrigyq9bu3YtqakH/oA2bdo0GOFJOHoQeNLncRIwCrir5Psg8y1VrwqBIhFmD3A08LtP2wnARKBn3YSgPkREJHIpIQyCgQMHMnDgwGq/rmnTpjRq1CjwAUn4ux67jUQh8DdgPNCmbkPwlKoXkQjTELgSWzX0EOz6waup8zlA6kNERCKTEsIw0qNHD/bt28fRRx/NI488Qp8+fco9dt++fezbt8/7OC8vry5ClEDYD/wMHOXT1poDe4GdHoqgJBapH4lQv2OTwHiftoexU89HAU1CEZSIiEQqrSEMA82bN2fSpEm8//77vP/++7Rq1YrTTjuNJUuWlPuaMWPGkJaW5v1q1apVHUYsNfYFtmBMf+w0L19Xo2RQ6pT6kQjjWWt8JHY00FdD4J8oGRQRkWpzGGOCUIRaPBwOBx9++CGDBw+u1uv69u1L69atef3118t8vqw7+61atSI3N9dvHaKEiV+AO4BPfNruwU7tEgkR9SMRZBlwE7Cg5HEStnhMHU8tFxGR6KMpo2Hq+OOP59tvvy33+YSEBBISEuowIqkRFzAGeBo7VdTjJGBISCIS8VI/EgHysNNBX+BA9WGAcwH96EREJACUEIappUuX0rx581CHITVlgGnA3dgN5T2aYwvGBLEEvIhEAQO8g92XdJtPe0cgEzvtXEREJACUEAaBy+Vi3bp13scbNmxg6dKlNG7cmNatWzNq1Ci2bNnCa6+9BsCzzz5L27ZtOeqoo9i7dy8vv/wyX331FTNnzgzVJUhtrAOuAr7xaasP3Ancj13rIyJSnrXY/QO/9GlLBB7AbkWjkUEREQkgJYRBsGjRIk4//UB1kDvuuAOAYcOGMXXqVLZt28amTZu8z+/fv58777yTLVu2kJycTLdu3fjyyy/93kMiSAqw1Ofx2dgtJTqEJBoRiTSv458MDgKeA9qGJhwREYluKioTJfLy8khLS1MxiHAxAZgEPItNCEUigPqRMFEAdCn5/nnsekEREZEg0bYTIrUxD+gH/FGq/VZgJUoGRaRiG7FrBX0lA58Bq1EyKCIiQaeEUKQmfgUuAU4DvsJWAfRVH63zEZHy7QOexI4EDsVuTePrKGxiKCIiEmRKCEWqYy/wBHZj6Gk+7d8DRSGJSEQizWygO/APoBCbHD4SyoBERCSWKSEUqQqD3VT+KGylv4KS9nTgJexm0fVDE5qIRIht2C1n+mMriYL9K3wb8H+hCkpERGKdqoyKVOYnYCTwhU+bExiBvat/SN2HJCIR5E/s3oEPAnt82nsDLwI9QhCTiIhICSWEUmd2bskjb1chqY2TSG8ZIRUM92HXCeb4tJ2Orfx3dCgCEoltEdePbATOx38rmkOBccBwNE9HRERCTgmh1Ikls9cz/9Ns9rr2k5gST59BHenVr12ow6pcArZgzE1Aa+x2EhcCjlAGJRKbIrIfaQa4fB5fC4zBJoUiIiJhQPcmJeh2bslj/qfZUGzIaJMGxYb5n2azc0tejd9v/YqcKr2+OscC8APwW6m264AXgDXARdQ6Gax2TCIS0H4kqH1IaYnY9YE9gIXYNccBSAbVj4iISKBohFCCLm9XIXtd+8lok0ZcnIO0JsnkbMolb1dhtad8VWeEoFqjCTnAKGAKcDXwss9zTuDmAw+LTBH1HTWrIBORIxwiYSBQ/UjQ+hCw00JvAyYBnX3aBwB/IWC3YNWPiIhIIGmEUILuzyI3xcWGHZvzKC425O4oILFBPKmNk6r1PtUZIajysUXAP4GO2GQQ4BUgq+wYlrmW0X9Zf5a7llcr9urGLyL+AtGPBKUPAcjFJoLHAF9jC06ZUscE6K+t+hEREQk0JYQSVEtmr+eL15ZTkLePrRv+YN2y7RDnoM+5Has9OugZIUhrkuwdIdibv5+8XYU1O3YW0A24E/B8lkrDJojlFIzJ3JqJq9hF5tbMasVe3fhF5IBA9SMB70MM8BbQCVtoqrikfRsHTz0PEPUjIiISaEoIJWh872Qf0T2DFu0OoUFqIgOGdqPXGdWf3pTaOInElHhydxRUOkJQ4bHrsVX/zsRuKQF2XeA1QDZ2i4kyZoRmubJY7FoMwCLXIrJc5QwjBiB+EbEC2Y8ErA8Bu6a4H3Zfwe0lL0rCFoxZBmSUfz21WfunfkRERAJNCaEETek72U0OSyXO6aBefWeN37N996YU7f+TnE25FY4QpLdMpc+gjhDn8D/2nVToAnzkc3Bv4EfgX0DT8s89cetEnNjYnTiZtHVStWIvN6ZIKJ0vEiKB7kdq3Yc0SrXrjbsDc3xecC42SbwPiC/73Etmr+et8Qt4/7nveWv8ApbMXl/t+NWPiIhIoKmojASN753stCbJtbqT7VtEIa5eHEf3PozjBhxR4YegXv3a0bpTuv+eZZuwewuCLQf/FHAZld4a8R0dBHDj9o4S9kzpWeXrKDMmESlXoPqRgPUhA4EZPgcdjq1CfE7F5y+99i93RwHzP82mdaf0avcD6kdERCSQNEIoQROoO9mlP0jFxztZtzyn8hcC6S1Sadc148A5hwKnAHdjp4deQZX+L/AdHfSoySgh2H8Xv5hEpFyB6Edq1YeU/v/13pIn4oEHgFVUmgxC4Nf+qR8REZFA0QihBFUg7mTXqNz8LuAhbLGY13za47DTvKox26z06KBHTUcJRaR6atuP1HjLin3A70ALn7bTgPHAIODIqscQyBkTIiIigaQRQgm62t7JrlYRBTd2D7AOQCbwOvBtqWMqSQZLF30oa3TwwFvVbJRQRKqnNv1IjQqxfImtQnwxB6qHetxFpclg6X5Ea/9ERCRcaYRQwp7ng9T8T7PJ2ZRLYoP4sj9IfQvcgt0c2qMBtqroyVU7V+kNn5uc72Zxw4NHBz00SigS/qrchwBswW5F83bJ42zsLIMrq36+8jaO19o/EREJR0oIJSJU+EFqC3AP8GapF10GjANaVu0cZRV9eN01BUdDB+agXaYPcOBg0tZJTO44uXoXJSJ1ptJk7E9scZiHAJdP+0lAr6qfp7LiMZ4vERGRcKGEUMLSzi15B31wO+iD1F7gGeAJIN/nxT2xH+z6VO+cpdcZNWySyI4mmytMBgEMhhX5K3AbN05HzbfUEJHAKt2PlJuMzQduApb7tKVjbyhdSbUWV9R4vaKIiEiIKCGUsFPedKuDzADu93l8KDY5vIZqFY3xKF30Yc+OvQx5dxRn39KVxs0aVvjaZGeykkGRMFKlfmQndnbBFJ82B3Ad8CTQuPrnVfEYERGJNCoqI2Gl9HQrig3zP832Fmbwcx624l8ccDN2rc/11CgZhLKLPpw+sBudWh9B0/imFX6lOFNqeMUiEmhV7key8U8GewILsYWpapAMgorHiIhI5NEIoYSVcqdbbS4kfVaqf2EHBzAR2I+tBhgAKvogEvmqPG3zJGA48D52dsGN1PiGki/1IyIiEkmUEEpYKXO61R/xpF6UZIvHtADO9HlBp8DHoKIPIpGtzH4kPp7Ud5OgC/5J33js9NBmgY1B/YiIiEQKTRmVsOI33WpVLix00Gd2R9K3lHywug8qqfEiIjHOrx/5Xy5sddDns46kj06Fl0sdfCgBTwZFREQiiUYIJez06tqO1lPTyZteSGpREun7S5LB84EJ2KmiIiIV6NWvHa3rpZP3QCGpP/j0I48DVwH1QxmdiIhI+FBCKOGjCMgEHoH03FTSKfkA1xl4DvhLyCITkUiSD4yG9AmppP/pM23zfOBZlAyKiIj4UEIo4WEXcAqw2qctFXgUGIE+wIlI5QzwEXAbsNmnvR12b9K/hiAmERGRMKc1hBIeDgHalHzvwE7pygZGomRQRCrnxm5FcwEHksF44EFgJUoGRUREyqERQgmNvUACB9YDOoBnABfwNHB8iOISkcjkBFr6PD4T+D+gQ2jCERERiRQaIZS6ZYB3gY7AJ6WeOxL4GiWDIlI1pSsOP4ndXP4dYAZKBkVERKpACaHUnZVAP+Bi7JSu27EjhXVo55Y81q/IYeeWvLo9sYgEzq/A37AjgL4OARaXPBfEasTqR0REJJpoyqgE3x/Aw8CL2HU+Hh2A3dTZHmBLZq9n/qfZ7HXtJzElnj6DOtKrX7u6ObmI1F4RtuLwI9hKojOBi4DmPscEeVsa9SMiIhJtNEIoweMGXsImfi9wIBlsh50uOoM6SwZ3bslj/qfZUGzIaJMGxYb5n2brDr9IpPgGOx30bmwyCHYdcnbdhaB+REREopESQgmO+cBxwPXA7yVtydg1PquAQdTpBvN5uwrZ69pPWpNk4uIcpDVJZm/+fvJ2FdZdECJSfb8BVwKnYvsOsH3HjcBaoG/dhaJ+REREopESQgmOZ4Asn8d/x354GwUk1n04qY2TSEyJJ3dHAcXFhtwdBSQ2iCe1cVLdByMilXMDE7HFpl71aT8G+B47Bf2Qug1J/YiIiEQjJYQSHE9jE7/u2MqhbwGH2aeqWpChyBQFLJz0lqn0GdQR4hzkbMqFOAd9zu1IesvUgJ1DRALon8BN2HXGAGnYJPB74LjQFHZRPyIiItHIYYwpXbhbIlBeXh5paWnk5uaSmlrHH04+w5Z/P6dU+yLsmh/ngaaqFmRY5lrGretu5YX2L9AtpVvAQt25JY+8XYWkNk7ShziRUkLajxwUDNAJ2AYMBZ4CMuxToS7son5ERESiiUYIpeZ+Bs7GJoI3YDeV93UsfslgdQoyZG7NxFXsInNrZkBDTm+ZSruuGfoQJxJODLCmVFsq8G9gHnbKaEkyGA6FXdSPiIhINFFCKNW3B7gPOAr4b0nbFuA/Fb+sqgUZslxZLHYtBmCRaxFZrqyy3k5EosFKbGGY47D7C/oaiC0m46M6hV20X6CIiEjllBBK1Rls0nckMA67JxjYtYFvYSuKVqCqBRkmbp2Is2Ro0YmTSVsnBfQyRCQMuIB7sNPKv8FuJXH7gafLW0Nc1X5kyez1vDV+Ae8/9z1vjV/Aktnrg3QhIiIikU0JoVTNYuBk4Arsmh6AeOAfwE/YKqKVbCNRlYIMntFBd8mmhW7cGiUUiSYGeB/oDIwH/ixpPwK42n67zLWM/sv6s9y1/KCXV6UfCYdppSIiIpGiXqgDkAgwFbgK+0HO4zxgAvZDXDX06teO1p3Syy3I4BkddHt3sT8wSji54+SaxS8i4WEdcAsww6ctAbsdzb14t6TxXUNc1v/3lfUjnmmlGW3SvNNKczblkrerUOv+REREStEIoVTuTKBByfdHYj/MfUS1k0GP8goylB4d9NAooUiE2ws8AhyNfzI4ELvZ/MN4k8GqriGuqLCL9gsUERGpOiWEcrAdpR63AMZgRwSXAwOCc1rftYOlaS2hSAT7E1sxdF/J48OAD7Bb1pS6sRSINcTaL1BERKTqNGVUDvgfcCd2I/lsoJHPczcH99S+owJl8R0l7JnSM7jBiEhgpQDPAUOAO4AHS9pKKd0P1Ob/+8qmlYqIiIilEUKBQuBR7CbQ72NHCB+t2xAmbp2Io5KqNA4cGiUUCXdFwNPAhlLt52NvNI2jzGQQyp4lUJvZAdovUEREpHJKCGOZb7W/R7DrfACaAj3qLgy3cbMyfyXGr2rNwQyGFfkrcBt3hceJSIh8je077gZuK/WcA2hb/ku1hlhERCQ0NGU0Vq3CfmCb7dNWD7gVeAhIq7tQnA4nM7vNpMBdUOmxyc5knI6y1xmKSIjkYPcUfM2nbTqwAuhatbcoq8KwhyoNi4iIBI8SwliTi63o93/g97nrL9g1Pp1DERSkOFNIcZYzj0xEwpMbmAzcj+1bPI4DXqTKyaDWEIuIiISOpozGmv3AqxxIBttit5D4gpAlgyISgX4ATgBGcCAZPASYBCwEjq36W2kNsYiISOgoIYw1TYDHgCRgNLAau8l8xZ/FREQOGA2cCPgO6l0J/ARcD+XsHlMmrSEWEREJLU0ZjUU3Yiv+HRbqQEQkIvUEb/52NDAROLlmb6U1xCIiIqGlhDAW1UPJoIjU3DnA5djE8Bagfu3eTmuIRUREQkdTRoPg66+/ZtCgQbRo0QKHw8FHH31U6Wvmzp1Lr169SEhIoH379kydOjXocYqI1Njr2E3ma5kMioiISGgpIQyC/Px8unfvTmZmZpWO37BhA2effTann346S5cuZeTIkVxzzTV88cUXQY5URERERERimaaMBsHAgQMZOHBglY+fNGkSbdu2ZcKECQB07tyZb7/9lmeeeYYBAwYEK0wREREREYlxSgjDwMKFC+nfv79f24ABAxg5cmS5r9m3bx/79u3zPs7LywtWeCISpdSPiIiIiKaMhoHt27eTkZHh15aRkUFeXh6FhYVlvmbMmDGkpaV5v1q1ahXQmIpMUUDfT0TCT7D7EREREQl/Sggj1KhRo8jNzfV+bd68uUqv27klj/Urcti5pfyRgGWuZfRf1p/lruWBCldEwlAw+xERERGJDJoyGgaaNWtGTk6OX1tOTg6pqakkJSWV+ZqEhAQSEhKqdZ4ls9cz/9Ns9rr2k5gST59BHenVr91Bx2VuzcRV7CJzayaTO06u1jlEJHIEsx8RERGRyKARwjDQu3dvZs+e7dc2a9YsevfuHbBz7NySx/xPs6HYkNEmDYoN8z/NPugOf5Yri8WuxQAsci0iy5UVsBhEJLJVtR/xHKtRRBERkfCnhDAIXC4XS5cuZenSpYDdVmLp0qVs2rQJsNO0hg4d6j3+hhtuYP369dxzzz389NNPvPjii7zzzjvcfvvtAYspb1che137SWuSTFycg7QmyezN30/eLv81ihO3TsSJEwAnTiZtnRSwGEQkslW1H1kyez1vjV/A+899z1vjF7Bk9voQRSwiIiKVUUIYBIsWLaJnz5707NkTgDvuuIOePXvy0EMPAbBt2zZvcgjQtm1bPvvsM2bNmkX37t2ZMGECL7/8ckC3nEhtnERiSjy5OwooLjbk7iggsUE8qY0PTEn1jA66cQPgxq1RQhHxqko/Up1RRBEREQk9hzHGhDoIqb28vDzS0tLIzc0lNTW1zGO8a3/y95PYIJ4+53ak1xkH1v5cl30dS11LvQkh2FHCnik9tZZQJAYEoh9ZvyKH95/7now2acTFOSguNuRsyuXCW0+gXdeMMt9TREREQkdFZWJIr37taN0pnbxdhaQ2TiK95YEPfL5rB335jhL2TOlZl+GKSBiqqB8B/1HEtCbJZY4iioiISPjQlNEYk94ylXZdMw76EOe7drA0rSUUEV/l9SOe5/oM6ghxDnI25UKcgz7ndizzWBEREQk9jRBKuaODHholFJHqqGwUUURERMKHRgiFiVsn4sBR4TEOHBolFJEqq2gUUURERMKHEsIY5zZuVuavxFBxbSGDYUX+CtzGXeFxIiIiIiISOTRlNEp4isXm5VW/tPt7h79Hobuw0uOSnEnk78mv9vuLxKqGDRvicFQ8+h5OatOPiEjgRVofIiKRSQlhlNizZw8ArVq1CnEkIuJR0fYN4Uj9iEh4ibQ+REQik/YhjBLFxcVs3boVYwytW7dm8+bNUfVHJC8vj1atWkXddUH0Xlu0XhdU/doi7e5+cXExa9eupUuXLjH9c4s00XpdEL3XFq19iIhEJo0QRom4uDgOO+ww71Sv1NTUqPrj6RGt1wXRe23Rel0QfdcWFxdHy5Ytgei7Nl/Rem3Rel0QvdcWrdclIpFFRWVERERERERilBJCERERERGRGKWEMMokJCTw8MMPk5CQEOpQAiparwui99qi9bpA1xapovXaovW6IHqvLVqvS0Qik4rKiIiIiIiIxCiNEIqIiIiIiMQoJYQiIiIiIiIxSgmhiIiIiIhIjFJCKCIiIiIiEqOUEIa5zMxMDj/8cBITEznhhBP44YcfKjz+3XffpVOnTiQmJtK1a1f++9//+j1vjOGhhx6iefPmJCUl0b9/f37++edgXkK5qnNt//rXvzjllFM45JBDOOSQQ+jfv/9Bx1955ZU4HA6/r7POOivYl3GQ6lzX1KlTD4o5MTHR75hI/ZmddtppB12bw+Hg7LPP9h4TDj+zr7/+mkGDBtGiRQscDgcfffRRpa+ZO3cuvXr1IiEhgfbt2zN16tSDjqnu/7vBFK39SLT2IRC9/Ug09iEQG/2IiEQxI2Fr2rRpJj4+3rzyyitm1apV5tprrzWNGjUyOTk5ZR4/f/5843Q6zVNPPWVWr15tHnjgAVO/fn2zYsUK7zFjx441aWlp5qOPPjLLli0z5557rmnbtq0pLCysq8syxlT/2i699FKTmZlpsrKyzJo1a8yVV15p0tLSzK+//uo9ZtiwYeass84y27Zt837t2rWrri7JGFP965oyZYpJTU31i3n79u1+x0Tqz+z333/3u66VK1cap9NppkyZ4j0mHH5m//3vf80//vEP88EHHxjAfPjhhxUev379epOcnGzuuOMOs3r1avPCCy8Yp9NpZsyY4T2muv9WwRSt/Ui09iHGRG8/Eq19iDHR34+ISHRTQhjGjj/+eDNixAjvY7fbbVq0aGHGjBlT5vEXX3yxOfvss/3aTjjhBHP99dcbY4wpLi42zZo1M+PHj/c+v3v3bpOQkGDeeuutIFxB+ap7baX9+eefpmHDhubVV1/1tg0bNsycd955gQ61Wqp7XVOmTDFpaWnlvl80/cyeeeYZ07BhQ+Nyubxt4fAz81WVD3L33HOPOeqoo/zahgwZYgYMGOB9XNt/q0CK1n4kWvsQY6K3H4mFPsSY6OxHRCS6acpomNq/fz+LFy+mf//+3ra4uDj69+/PwoULy3zNwoUL/Y4HGDBggPf4DRs2sH37dr9j0tLSOOGEE8p9z2CoybWVVlBQQFFREY0bN/Zrnzt3Lk2bNuXII4/kxhtv5Pfffw9o7BWp6XW5XC7atGlDq1atOO+881i1apX3uWj6mf373//m73//Ow0aNPBrD+XPrCYq+/8sEP9WgRKt/Ui09iEQvf2I+hB/kdSPiEj0U0IYpnbu3Inb7SYjI8OvPSMjg+3bt5f5mu3bt1d4vOe/1XnPYKjJtZV277330qJFC78/lmeddRavvfYas2fPZty4ccybN4+BAwfidrsDGn95anJdRx55JK+88goff/wx//nPfyguLuakk07i119/BaLnZ/bDDz+wcuVKrrnmGr/2UP/MaqK8/8/y8vIoLCwMyO93oERrPxKtfQhEbz+iPsRfJPUjIhL96oU6AJHqGjt2LNOmTWPu3Ll+hRP+/ve/e7/v2rUr3bp144gjjmDu3Ln069cvFKFWqnfv3vTu3dv7+KSTTqJz585MnjyZ0aNHhzCywPr3v/9N165dOf744/3aI/FnJpEvmvoQiI1+RH2IiEjwaIQwTKWnp+N0OsnJyfFrz8nJoVmzZmW+plmzZhUe7/lvdd4zGGpybR5PP/00Y8eOZebMmXTr1q3CY9u1a0d6ejrr1q2rdcxVUZvr8qhfvz49e/b0xhwNP7P8/HymTZvG1VdfXel56vpnVhPl/X+WmppKUlJSQH4PAiVa+5Fo7UMgevsR9SH+IqkfEZHop4QwTMXHx3PMMccwe/Zsb1txcTGzZ8/2uxPsq3fv3n7HA8yaNct7fNu2bWnWrJnfMXl5eXz//fflvmcw1OTaAJ566ilGjx7NjBkzOPbYYys9z6+//srvv/9O8+bNAxJ3ZWp6Xb7cbjcrVqzwxhzpPzOwWxjs27ePyy+/vNLz1PXPrCYq+/8sEL8HgRKt/Ui09iEQvf2I+hB/kdSPiEgMCHVVGynftGnTTEJCgpk6dapZvXq1ue6660yjRo285cSvuOIKc99993mPnz9/vqlXr555+umnzZo1a8zDDz9cZrn4Ro0amY8//tgsX77cnHfeeSHbwqA61zZ27FgTHx9v3nvvPb/y4nv27DHGGLNnzx5z1113mYULF5oNGzaYL7/80vTq1ct06NDB7N27N2yv69FHHzVffPGF+eWXX8zixYvN3//+d5OYmGhWrVrld+2R+DPzOPnkk82QIUMOag+Xn9mePXtMVlaWycrKMoD55z//abKyssz//vc/Y4wx9913n7niiiu8x3vKxd99991mzZo1JjMzs8xy8RX9W9WlaO1HorUPqcm1RUo/Eq19iCeWaO5HRCS6KSEMcy+88IJp3bq1iY+PN8cff7z57rvvvM/17dvXDBs2zO/4d955x3Ts2NHEx8ebo446ynz22Wd+zxcXF5sHH3zQZGRkmISEBNOvXz+zdu3auriUg1Tn2tq0aWOAg74efvhhY4wxBQUF5swzzzRNmjQx9evXN23atDHXXnttSP5wVue6Ro4c6T02IyPD/PWvfzVLlizxe79I/ZkZY8xPP/1kADNz5syD3itcfmZz5swp83fLcy3Dhg0zffv2Peg1PXr0MPHx8aZdu3Z++6J5VPRvVdeitR+J1j7EmOjtR6KxDzEmNvoREYleDmOMqbvxSBEREREREQkXWkMoIiIiIiISo5QQioiIiIiIxCglhCIiIiIiIjFKCaGIiIiIiEiMUkIoIiIiIiISo5QQioiIiIiIxCglhCIiImFo27Zt3HfffZx++uk0bNgQh8PB3LlzQx2WiIhEGSWEIiIiYWjt2rWMGzeOLVu20LVr11CHIyIiUUoJoYiISBg65phj+P3338nOzuaOO+4IdTgiIhKllBCKiIjUkcLCQjp16kSnTp0oLCz0tu/atYvmzZtz0kkn4Xa7AWjYsCGNGzcOVagiIhIjlBCKiIjUkaSkJF599VXWrVvHP/7xD2/7iBEjyM3NZerUqTidzhBGKCIisaZeqAMQERGJJSeccAL33HMP48aN4/zzzycnJ4dp06bx7LPP0rFjx1CHJyIiMUYJoYiISB175JFHmD59OsOGDcPlctG3b19uvfXWUIclIiIxSFNGRURE6lh8fDyvvPIKGzZsYM+ePUyZMgWHwxHqsEREJAYpIRQREQmBL774AoC9e/fy888/hzgaERGJVUoIRURE6tjy5ct57LHHGD58OD179uSaa64hNzc31GGJiEgMUkIoIiJSh4qKirjyyitp0aIFzz33HFOnTiUnJ4fbb7891KGJiEgMUlEZERGROvT444+zdOlSZs+eTcOGDenWrRsPPfQQDzzwABdddBF//etf/Y4FWLVqFQCvv/463377LQAPPPBA3QcvIiJRx2GMMaEOQkREJBYsWbKEE044gRtvvJHnn3/e2+52u+nduzdbtmxh1apVNGrUCKDCQjP68y0iIoGghFBERERERCRGaQ2hiIiIiIhIjFJCKCIiIiIiEqOUEIqIiIiIiMQoJYQiIiIiIiIxSgmhiIiIiIhIjNI+hCISdtxuN0VFRaEOQ0REwkz9+vVxOp2hDkMkqighFJGwYYxh+/bt7N69O9ShiIhImGrUqBHNmjWrcJ9OEak6JYQiEjY8yWDTpk1JTk7WH3sREfEyxlBQUMBvv/0GQPPmzUMckUh0UEIoImHB7XZ7k8FDDz001OGIiEgYSkpKAuC3336jadOmmj4qEgAqKiMiYcGzZjA5OTnEkYiISDjz/J3QWnORwFBCKCJhRdNERUSkIvo7IRJYSghFRERERERilBJCEZEINHXqVBo1ahTqMEQkCsydOxeHw6EKzyIxSgmhiEgtXHnllTgcDhwOB/Hx8bRv357HHnuMP//8M6jnHTJkCNnZ2UE9R2V8r71+/fpkZGTwl7/8hVdeeYXi4uJqvVe0J7hFpm7WOnl+JmPHjvVr/+ijj+p8mp3nd8PhcNCgQQM6dOjAlVdeyeLFi6v9XqeddhojR44MfJAxwPfnUNbXI488EuoQRSTElBCKiNTSWWedxbZt2/j555+58847eeSRRxg/fnyZx+7fvz8g50xKSqJp06YBea/a8Fz7xo0b+fzzzzn99NO57bbbOOecc4KeFEeKZa5l9F/Wn+Wu5XVyvsTERMaNG8cff/xRJ+eryJQpU9i2bRurVq0iMzMTl8vFCSecwGuvvRbq0GLGtm3bvF/PPvssqampfm133XVXyGILVH8oIrWjhFBEpJYSEhJo1qwZbdq04cYbb6R///588skngB2xGTx4ME888QQtWrTgyCOPBGDz5s1cfPHFNGrUiMaNG3PeeeexceNGAGbOnEliYuJB07duu+02zjjjDKDsEbWJEydyxBFHEB8fz5FHHsnrr7/ufW7jxo04HA6WLl3qbdu9ezcOh4O5c+cC8Mcff3DZZZfRpEkTkpKS6NChA1OmTKnStbds2ZJevXpx//338/HHH/P5558zdepU73H//Oc/6dq1Kw0aNKBVq1bcdNNNuFwuwE5XGz58OLm5uQeNWrz++usce+yxNGzYkGbNmnHppZd69yCLFJlbM3EVu8jcmlkn5+vfvz/NmjVjzJgxFR737bffcsopp5CUlESrVq249dZbyc/PB+D//u//OProo73HekYYJ02a5HeeBx54oMJzeDYQP/zwwznzzDN57733uOyyy7j55pu9Cevvv//OJZdcQsuWLUlOTqZr16689dZb3ve48sormTdvHs8995z392Pjxo243W6uvvpq2rZtS1JSEkceeSTPPfdctf+9ol2zZs28X2lpaTgcDr+2lJQU77GLFy/m2GOPJTk5mZNOOom1a9f6vdfHH39Mr169SExMpF27djz66KN+N342bdrEeeedR0pKCqmpqVx88cXk5OR4n3/kkUfo0aMHL7/8Mm3btiUxMZHXXnuNQw89lH379vmda/DgwVxxxRVB+lcREV9KCEUk6uzcksf6FTns3JIXkvMnJSX53fmePXs2a9euZdasWUyfPp2ioiIGDBhAw4YN+eabb5g/fz4pKSmcddZZ7N+/n379+tGoUSPef/9973u43W7efvttLrvssjLP+eGHH3Lbbbdx5513snLlSq6//nqGDx/OnDlzqhz3gw8+yOrVq/n8889Zs2YNEydOJD09vdrXf8YZZ9C9e3c++OADb1tcXBzPP/88q1at4tVXX+Wrr77innvuAeCkk046aOTCM2pRVFTE6NGjWbZsGR999BEbN27kyiuvrHZMoZLlymKxy06RXORaRJYrK+jndDqdPPnkk7zwwgv8+uuvZR7zyy+/cNZZZ3HhhReyfPly3n77bb799ltuvvlmAPr27cvq1avZsWMHAPPmzSM9Pd1786CoqIiFCxdy2mmnVTu+22+/nT179jBr1iwA9u7dyzHHHMNnn33GypUrue6667jiiiv44YcfAHjuuefo3bs31157rff3o1WrVhQXF3PYYYfx7rvvsnr1ah566CHuv/9+3nnnnWrHJNY//vEPJkyYwKJFi6hXrx5XXXWV97lvvvmGoUOHctttt7F69WomT57M1KlTeeKJJwAoLi7mvPPOY9euXcybN49Zs2axfv16hgwZ4neOdevW8f777/PBBx+wdOlS/va3v+F2u7030cDuMfjZZ5/5nV9EgsiIiISBwsJCs3r1alNYWFir91n85S/m+ds+N09d/bF5/rbPzeIvfwlQhGUbNmyYOe+884wxxhQXF5tZs2aZhIQEc9ddd3mfz8jIMPv27fO+5vXXXzdHHnmkKS4u9rbt27fPJCUlmS+++MIYY8xtt91mzjjjDO/zX3zxhUlISDB//PGHMcaYKVOmmLS0NO/zJ510krn22mv9Yvvb3/5m/vrXvxpjjNmwYYMBTFZWlvf5P/74wwBmzpw5xhhjBg0aZIYPH16jay9tyJAhpnPnzuW+9t133zWHHnqo93Hp6ynPjz/+aACzZ8+eKscZSteuvdYct/g402txL3Pc4uPMdWuvC+r5fH8mJ554ornqqquMMcZ8+OGHxvdP/tVXX22uu84/lm+++cbExcWZwsJCU1xcbA499FDz7rvvGmOM6dGjhxkzZoxp1qyZMcaYb7/91tSvX9/k5+eXGwtgPvzww4PaCwsLDWDGjRtX7mvPPvtsc+edd3of9+3b19x2220VXrsxxowYMcJceOGFlR4XcBOMMS2r8DWojNcOquJrJ9Q+zPL+P5szZ44BzJdffult++yzzwzg7ZP79etnnnzySb/Xvf7666Z58+bGGGNmzpxpnE6n2bRpk/f5VatWGcD88MMPxhhjHn74YVO/fn3z22+/+b3PjTfeaAYOHOh9PGHCBNOuXTu/PtJXoP5eiIilEUIRiRo7t+Qx/9NsKDZktEmDYsP8T7ODPlI4ffp0UlJSSExMZODAgQwZMsSvUEPXrl2Jj4/3Pl62bBnr1q2jYcOGpKSkkJKSQuPGjdm7dy+//PILAJdddhlz585l69atALzxxhucffbZ5RZeWbNmDX369PFr69OnD2vWrKnyddx4441MmzaNHj16cM8997BgwYIqv7Y0Y4xfEZMvv/ySfv360bJlSxo2bMgVV1zB77//TkFBQYXvs3jxYgYNGkTr1q1p2LAhffv2BezUtHDnGR104wbAjbvORgkBxo0bx6uvvlrm78CyZcuYOnWq9/cvJSWFAQMGUFxczIYNG3A4HJx66qnMnTuX3bt3s3r1am666Sb27dvHTz/9xLx58zjuuOO8G4RXhzEGOLCXnNvtZvTo0XTt2pXGjRuTkpLCF198UaWfcWZmJscccwxNmjQhJSWFl156KTS/G3nAlip87SjjtTuq+No6mPDQrVs37/fNmzcH8E7RXrZsGY899pjf74xn1LagoIA1a9bQqlUrWrVq5X2PLl260KhRI7/fwTZt2tCkSRO/81577bXMnDmTLVu2AHZKvKdAkogEX71QByAiEih5uwrZ69pPRps04uIcpDVJJmdTLnm7CklvmRq0855++ulMnDiR+Ph4WrRoQb16/l1rgwYN/B67XC6OOeYY3njjjYPey/NB6bjjjuOII45g2rRp3HjjjXz44Yd+a/KqKy7O3v/zfBgHO+3P18CBA/nf//7Hf//7X2bNmkW/fv0YMWIETz/9dLXPt2bNGtq2bQvY9YvnnHMON954I0888QSNGzfm22+/5eqrr2b//v3lJhX5+fkMGDCAAQMG8MYbb9CkSRM2bdrEgAEDIqIYxcStE3Hi9CaEAE6cTNo6ickdJwf9/KeeeioDBgxg1KhRB02zdblcXH/99dx6660Hva5169aArez50ksv8c0339CzZ09SU1O9SeK8efO8yXl1eZIDz+/H+PHjee6553j22We960xHjhxZ6c942rRp3HXXXUyYMIHevXvTsGFDxo8fz/fff1+juGolFWhZheOalNNWldcGrwvzql+/vvd7TzLmqRjscrl49NFHueCCCw56XWJiYpXPUbo/BOjZsyfdu3fntdde48wzz2TVqlV89tln1Q1fRGpICaGIRI3UxkkkpsSTu6OAtCbJ5O4oILFBPKmNk4J63gYNGtC+ffsqH9+rVy/efvttmjZtSmpq+Z/yLrvsMt544w0OO+ww4uLiOPvss8s9tnPnzsyfP59hw4Z52+bPn0+XLl2AA4nmtm3b6NmzJ4BfgRmPJk2aMGzYMIYNG8Ypp5zC3XffXe2E8KuvvmLFihXcfvvtgB3lKy4uZsKECd7EtPQ6r/j4eNxut1/bTz/9xO+//87YsWO9ow6LFi2qViyh4rt20JfvKGHPlJ5Bj2Ps2LH06NHDW8zIo1evXqxevbrC39u+ffsycuRI3n33Xe9awdNOO40vv/yS+fPnc+edd9YoJs960f79+wP29/S8887j8ssvB2wCkp2d7f3dhbJ/P+bPn89JJ53ETTfd5G3zjLDXuTtKvmrik8oPCQe9evVi7dq15f7OdO7cmc2bN7N582bv/6+rV69m9+7dfj/L8lxzzTU8++yzbNmyhf79+/uNNIpIcGnKqIhEjfSWqfQZ1BHiHORsyoU4B33O7RjU0cGauOyyy0hPT+e8887jm2++YcOGDcydO5dbb73VrwjIZZddxpIlS3jiiSe46KKLSEhIKPc97777bqZOncrEiRP5+eef+ec//8kHH3zgLc6SlJTEiSeeyNixY1mzZg3z5s07qELkQw89xMcff8y6detYtWoV06dPp3PnzhVey759+9i+fTtbtmxhyZIlPPnkk5x33nmcc845DB06FID27dtTVFTECy+8wPr163n99df9qlUCHH744bhcLmbPns3OnTspKCigdevWxMfHe1/3ySefMHr06Gr9W4eKZ3SwLJ5RwrrQtWtXLrvsMp5//nm/9nvvvZcFCxZw8803s3TpUn7++Wc+/vhjb1EZsNMHDznkEN58802/hPCjjz5i3759B01RLsvu3bvZvn07//vf/5g1axYXXXQRb775JhMnTvROf+7QoQOzZs1iwYIFrFmzhuuvv96vMiXY34/vv/+ejRs3snPnToqLi+nQoQOLFi3iiy++IDs7mwcffJAff/yxdv9gUq6HHnqI1157jUcffZRVq1axZs0apk2b5u1H+vfv7/19W7JkCT/88ANDhw6lb9++HHvssZW+/6WXXsqvv/7Kv/71LxWTEaljSghFJKr06teOS+4+iQtvPYFL7j6JXme0C3VIB0lOTubrr7+mdevWXHDBBXTu3Jmrr76avXv3+o0Ytm/fnuOPP57ly5eXW13UY/DgwTz33HM8/fTTHHXUUUyePJkpU6b4VYF85ZVX+PPPPznmmGMYOXIkjz/+uN97xMfHM2rUKLp168app56K0+lk2rRpFZ53xowZNG/enMMPP5yzzjqLOXPm8Pzzz/Pxxx/jdNqEqHv37vzzn/9k3LhxHH300bzxxhsHbYlw0kknccMNNzBkyBCaNGnCU089RZMmTZg6dSrvvvsuXbp0YezYsTWavlrXSq8dLK2u1xI+9thj3ml/Ht26dWPevHlkZ2dzyimn0LNnTx566CFatGjhPcbhcHDKKafgcDg4+eSTva9LTU3l2GOPLXPqX2nDhw+nefPmdOrUiRtvvJGUlBR++OEHLr30Uu8xDzzwAL169WLAgAGcdtppNGvWjMGDB/u9z1133YXT6aRLly7eqcPXX389F1xwAUOGDOGEE07g999/9xstlMAaMGAA06dPZ+bMmRx33HGceOKJPPPMM7Rp0wawvy8ff/wxhxxyCKeeeir9+/enXbt2vP3221V6/7S0NC688EJSUlIO+vmLSHA5jO+CEhGRENm7dy8bNmzw7k0lEqmuy76OJa4lGMr/8+rAwTEpx9TJWkKRSNGvXz+OOuqog0a0S9PfC5HA0hpCERGRAHEbNyvzV1aYDAIYDCvyV+A2bpyOsqeWisSKP/74g7lz5zJ37lxefPHFUIcjEnOUEIqIiASI0+FkZreZFLgr3k4DINmZrGRQBFtl9I8//mDcuHEHFUASkeBTQigiIhJAKc4UUpwpoQ5DJGJs3Lgx1CGIxDQVlREREREREYlRSghFJKyozpWIiFREfydEAksJoYiEhfr16wNQUFD52isREYldnr8Tnr8bIlI7WkMoImHB6XTSqFEjfvvtN8Du1edwOEIclYiIhAtjDAUFBfz22280atTIu9epiNSO9iEUkbBhjGH79u3s3r071KGIiEiYatSoEc2aNdNNQ5EAUUIoImHH7XZTVFQU6jBERCTM1K9fXyODIgGmhFBERERERCRGqaiMiIiIiIhIjFJCKCIiIiIiEqOUEIqIiIiIiMQoJYQiIiIiIiIxSgmhiIiIiIhIjFJCKCIiIiIiEqOUEIqIiIiIiMSo/wcD3MmwgJOL6wAAAABJRU5ErkJggg==\n" - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "# Change wrap to 3, Adjust dimensions, adjust scatter plot and line colors, shapes, and sizes\n", - "fig = plot_results_panel_2d(cycle,\n", - " wrap=3,\n", - " subplot_kw=dict(figsize=(10,5)), # Panel configurations\n", - " scatter_previous_kw=dict(color='rebeccapurple', marker='o', s=10), # Previous data point\n", - " scatter_current_kw=dict(color='limegreen', marker='^', s=50, alpha=1), # Current cycle data\n", - " plot_theory_kw=dict(color='magenta', ls='--', lw=2, zorder=0), # Theory line\n", - " );" - ], - "metadata": { - "collapsed": false - } - }, - { - "cell_type": "markdown", - "source": [ - "Saving the figure to an object (above) will allow you to cycle through the axes to make panel-specific edits." - ], - "metadata": { - "collapsed": false - } - }, - { - "cell_type": "code", - "execution_count": 6, - "outputs": [ - { - "data": { - "text/plain": "
", - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA4QAAAHFCAYAAACq1TfbAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8o6BhiAAAACXBIWXMAAA9hAAAPYQGoP6dpAACSNElEQVR4nOzdeXxU1fnH8c9kyEpIEANhERBUxAUQrFqkrqCIFkVrtdYq4tYq7tYF69ZqRVyq1qaAtYJad61atCqIohVxAcKOIAI/lCWCSIZJQhJmzu+PM5PMhGyTzOTO8n2/XvflzJ07M+cS8+Q+95zzHJcxxiAiIiIiIiIpJ83pBoiIiIiIiIgzlBCKiIiIiIikKCWEIiIiIiIiKUoJoYiIiIiISIpSQigiIiIiIpKilBCKiIiIiIikKCWEIiIiIiIiKUoJoYiIiIiISIpSQpgkjDF4PB6MMU43RUQSlOKIiLSGYohIYlJCmCR27txJfn4+O3fudLopYdavX4/L5WLRokVON0VEmqA4IiKtoRgikpiUEKa4LVu2cPXVV9O3b18yMzPp2bMno0ePZvbs2U43LcySJUs45phjyMrKomfPnjzwwANONykqfMCiwOZztCUiLZcIcWTXrl1cdNFFDBgwgHbt2jFmzBinmxQViiGSDBIhhsyZM4czzjiDbt260b59ew477DCee+45p5sVFYoj0s7pBohz1q9fz7Bhw+jYsSMPPvggAwYMoLq6mvfee4/x48fz1VdfOd1EADweDyeffDIjRoxgypQpLF26lIsvvpiOHTty+eWXO928VtkFDA489gLtHWyLSEskShzx+XxkZ2dzzTXX8NprrzndnKhRDJFElygx5NNPP2XgwIHccsstFBYW8tZbb3HhhReSn5/Pz3/+c6eb1yqKI4KRpFBaWmoAU1pa2uz3jBo1yvTo0cN4vd49Xvvxxx+NMcaMGzfOnHbaaWGvVVVVmc6dO5snn3zSGGOMz+czkyZNMvvtt5/JyMgwPXv2NPfee68xxph169YZwBQXF9e8f+nSpeaUU04x7du3N126dDG/+c1vzNatWxts59///nez1157mcrKypp9t9xyiznwwAObfa7xqswY0z2wlTncFpFkjiOhxo4da84444xmn2M8UwyReJIqMSTo1FNPNePGjYvoPfFIcUQ0ZDRFbd++nXfffZfx48fTvv2e94I6duwIwKWXXsq7777L5s2ba1576623KC8v59xzzwVgwoQJ3H///dxxxx2sWLGC559/nsLCwnq/d8eOHZx44okMHjyY+fPn8+6771JSUsI555zTYFvnzZvHscceS0ZGRs2+kSNHsmrVKn788ceWnH7cyAE2BrYch9siEqlEiiPJSjFEElmix5DS0lI6deoU0XvikeKIqIcwSUR6V+7zzz83gPn3v//d5LEHH3ywmTRpUs3z0aNHm4suusgYY4zH4zGZmZnmH//4R73vrXtX7p577jEnn3xy2DHffvutAcyqVavq/YyTTjrJXH755WH7li9fbgCzYsWKJtsvIs2TzHEkVDL1EIrEk1SJIcYY89JLL5mMjAyzbNmyZh0vEs/UQ5iiTAQloS+99FKmTZsGQElJCe+88w4XX3wxACtXrqSyspLhw4c367MWL17Mhx9+SG5ubs3Wv39/AL755psIz0JEnKQ4IiKtkagx5MMPP2TcuHH84x//4JBDDmn2OYjEKxWVSVEHHHAALperWZO1L7zwQm699VbmzZvHp59+Sp8+fTjmmGMAyM7Ojuh7vV4vo0ePZtKkSXu81q1bt3rf07VrV0pKSsL2BZ937do1ou+PN7uACwKPnwWyHGyLSKQSKY4kK8UQSWSJGEM++ugjRo8ezSOPPMKFF14Y0ffGK8URUQ9hiurUqRMjR46kqKiIsrKyPV7fsWNHzeO9996bMWPGMG3aNKZPn864ceNqXjvggAPIzs5udmnoIUOGsHz5cvbdd1/233//sK2++QMAQ4cO5eOPP6a6urpm36xZszjwwAPZa6+9mnnG8ckHvBrYVOpZEk0ixZFkpRgiiSzRYsicOXM47bTTmDRpUsJXOQ+lOCKaQ5gkWlLZ65tvvjFdu3Y1Bx98sHn11VfN6tWrzYoVK8xjjz1m+vfvH3bszJkzTUZGhnG73Wbjxo1hr919991mr732Mk8//bRZs2aNmTdvXk3Vr7rj9jdu3Gg6d+5szj77bPPFF1+YNWvWmHfffddcdNFFZvfu3fW2c8eOHaawsNBccMEFZtmyZebFF180OTk5ZurUqRH8C8WnKmPM3wJblcNtEUnmOGKMnXtcXFxsRo8ebY4//nhTXFwcVnUwESmGSDxJ5hjywQcfmJycHDNhwgSzefPmmu2HH36I4F8oPimOiBLCJNGSIGyMMZs2bTLjx483vXv3NhkZGaZHjx7m9NNPNx9++GHYcX6/3/Tu3duceuqpe3yGz+cz9957r+ndu7dJT083vXr1Mvfdd58xpv5Sz6tXrzZnnnmm6dixo8nOzjb9+/c31113nfH7/Q22c/HixeZnP/uZyczMND169DD3339/ROcpIk1L9jjSu3dvA+yxiUh0JHMMGTt2bL3x47jjjovoXEXikcuYCGb0StzyeDzk5+dTWlpKXl5e1D/f6/XSo0cPpk2bxllnnRX1zxcR5ymOiEhrKIaIJCYVlZFG+f1+tm3bxsMPP0zHjh05/fTTnW5SUvEDwXpm+6FJvZKcFEdiRzFEUoFiSGwpjogSQmnUhg0b6NOnD/vssw/Tp0+nXTv9LxNNFUC/wGMvkFrlMCRVKI7EjmKIpALFkNhSHBH9Rkmj9t1334jWCZLI5TvdAJEYUxyJLcUQSXaKIbGnOJLalBCKOKg9sMPpRohIwlIMEZHWUhwRDROOsokTJ3LEEUfQoUMHunTpwpgxY1i1alWT73vllVfo378/WVlZDBgwgP/+979t0FoREREREUllSgij7KOPPmL8+PF89tlnzJo1i+rqak4++eR6F1wN+vTTTznvvPO45JJLKC4uZsyYMYwZM4Zly5a1YctFRERERCTVaNmJGNu6dStdunTho48+4thjj633mHPPPZeysjLeeuutmn0//elPOeyww5gyZUqzvifWpZ4lNiqB3wYeTwUyHWyLNMAAzwKDgQEOtyXGFEcSj2KIxBPFkMSkOCLqIYyx0tJSADp16tTgMfPmzWPEiBFh+0aOHMm8efNi2jZx3m7g6cC22+G2SD3WA6cAY4FLAJ+jrRHZg2KIiLSW4oioqEwM+f1+rrvuOoYNG8ahhx7a4HFbtmyhsLAwbF9hYSFbtmxp8D2VlZVUVlbWPPd4PK1vsLS5dOCBkMcSJ3xAEXAbEBzt/SXwDvBzpxoVfYojiU8xRJykGJIcFEdEPYQxNH78eJYtW8aLL74Y9c+eOHEi+fn5NVvPnj2j/h0SexnATYEtw+G2SMAK4BjgWmqTwR7ADJIqGQTFkWSgGCJOUgxJDoojooQwRq666ireeustPvzwQ/bZZ59Gj+3atSslJSVh+0pKSujatWuD75kwYQKlpaU127fffhuVdoukrCrgHuxcwdDR2ldgk8QkSwZBcUREWkcxJMbuvhtcLth339Z/1vr19rNcLpgzp/WfJ0lFCWGUGWO46qqreP311/nggw/o06dPk+8ZOnQos2fPDts3a9Yshg4d2uB7MjMzycvLC9sk8fiBjYHN73BbUlox8BPgTmxiCHAAMAf4O5Ckv16KI4lPMUScpBjSiOOPj14yF2OKI6I5hFE2fvx4nn/+ed588006dOhQMw8wPz+f7OxsAC688EJ69OjBxIkTAbj22ms57rjjePjhhznttNN48cUXmT9/Pk888YRj5yFtowII9h97sYvDigMqgeAqL27g98BdQLZjLRJpFsUQEWktxRFRD2GUTZ48mdLSUo4//ni6detWs7300ks1x2zYsIHNmzfXPD/66KN5/vnneeKJJxg0aBCvvvoqb7zxRqOFaCR5tEN3Zhz3U+Aa4DDgC+B+lAxKwlAMEUlAt94KhxwCHTtCejp07w5jx0LI9WGY//wHDjoIsrLg6KNh6dLw1995B447Djp0gOxsOOYY+PDDZjdHcSS16WcfZc1Z1nFOPWO3f/nLX/LLX/4yBi2SeNYeqHa6EalmB7aC6K3Y3sCgidiIqBJrkkAUQxLMLiDL6UZIXHj3Xdi4EXr2hN27YdUqeOYZWLkSvvgi/NgtW+BXv4I+fcDvh3nzYNQoWL0acnLgpZfgvPPAGOjdG9LS4JNP4KSTYNYsOOGERpuiOCLqIRSR1PEGcDBwO/DXOq9lo2RQRGLnQeBYNElLrGefhe3bbU/fypUQnCb05ZfwzTfhx1ZWwuuvw/LlMGOG3bdxo00gwfY2GgMXXwzr1tn3n3km+Hxw551td06SsJQQikjyKwHOAc4EgqNxHsDerRcRaQsnYtczjf5KVJKIFi2CI46A3FxbfOayy2pf27Qp/Ni99oKRI+3jkSPtc7DJ5NattoIowFNP2d7BtDSbQAJ8/nksz0KShIaMijioErgh8PgvQKaDbUlKBngGuB74MWT/acBkNHRLEp5iSJyqxpZs3Ddk3+HA1cBuJxokceWTT+x8QWNg773h4IPB67U9hWB79lqib1/o3HnP/VVVe+4LoTgS5xYC24CTY/cVSghFHLQbu6oB2A4rBeEoWg/8FpgZsm9v7FDR8wCXA20SiTLFkDhjgP8AN2OHoC8i/Eqr7lB1SX7GwK46w1E+/9zuB9vL160b3H8/TJhQ/2f8+KOdCxicE/hj4A7ngAE2AezdG/7v/2DIEHjhBWgX+J9u9Wq7P6Px5eYVR+LUKuAO4BWgJ/A1MfvhKCEUcVA6dnWD4GOJkr9hi8aUhew7D3gMqOfmqUiiUgyJI19il6z5OGTfdOBSR1oj8WLDBlv1M9QDD9Q+DiZ133/f8GdkZsIZZ9gewK+/tvu6dYMLL7SP77sPzj8fXn0VPvoIevSw1UpLSmxP5EknNdpExZE4swH4EzZ+BDuLvw08/21svlJzCEUclAHcHdgav38nEfma2mSwBzADeB4lg5J0FEPiwHrg18CRhCeDx2CXshGpKz0dJk2yS01UVED//jB5csPHd+0KL75YO5T0pz+1y0zk5Njnv/41vPWWXXaiosJWLO3QwSaMlzZ9R0JxJE58j53icgDwT2qTwULgceCi2H21yzRnnQSJex6Ph/z8fEpLS8nLy3O6OSLO8gIDgFOASYB+JZpFcUQkAjuA+7AjD0KnaPXDjrs7nZQbmq4YIsmm2lST7opxv2kp8DDwCPb6JSgfO/z8WuzaIDGkHkIRBxnsNcWOwGNpgS+AF+rsywWWYAvH6JpEkphiiENmAPthl5IIJoMF2Lv4y4AzSLlkUBKX4kj9FnsXM2LxCJZ4l8T2i+4A7qE2GczGTntZB9xGzJNBUEIo4qhyYK/AVu5wWxJOGXAjMBQ7R2ddndc7tHmLRNqcYohD9sfe1Qdb5OFWYA1wFZqEJQlHcaR+RZuK8Pq9FG0qiu0X3YSNI+nAeOAbYCL2B9JGlBCKSOKZDQzE1sf2Y/+C/cXRFolIMttZ5/lBwOXAb7CVACdih3eJSFIo9hazwLsAgPne+RR7i1v/oX5sPYPn6uzvCUwDvsIWxevW+q+KlBJCEQflYEcbVQUeSxN+BC4BRgBrA/sygfuxY+9FUoxiSIytBc4FBhM+TxDshduzQO+2bpRIdCmO7Gnypsm4cQPgxs2UTVNa/mEGO8x8MHA+dtFHb51jzgP6tvwrWksJoYiDXNgRAuloukmTXgcOBp4K2Xcsdq7gLWgRHUlJiiExsh170dYfeBk7hOvvdY7RFZQkCcWRcMHeQV+gzKcPX8t7CecAw7BFpoJTEb8H/h2VpkaNwpmIxLcfgF8CZwFbAvs6YAvGfIit6CciEg2V2OHn+2FHHVQH9ncGOjnVKBFpS6G9g0ER9xLOB0YCJwDzQvYfCbwPXNjqZkaVEkIRB1Vh5xLfxJ6jkSQgA1tJNOg0YAXwOxTBJOUphkSJwfYEHoQtVrUjsD8L+AO2YEycXcCJRIviSK26vYNBze4lXAmcDRwBzAzZfzB2pNNnwPBotjg6dDkl4qBq4KHAVt3EsSmrAzAVe4f+eew4/H0cbZFI3FAMiYLl2GrF51JbrdgFjAVWA/ei5WskqSmO1KqvdzCoWb2ETwCvhTzfF3gaO1x0DHE7JlezbkQclA78PuRxyvMBRdix9vuG7D8FW9wh14E2icQxxZAoaA+E3vQfjr0yPsyR1oi0OcURK7SyaH1CewkH5w6u/6DbgCex1yt3YJfFyoh+W6NNCaGIgzKw6xoL9i79JcDnwNvAu4TfSVMyKLIHxZAW8BM+Pmpf4BrgHew/5inE7V18kVhQHLEmb5qMCxcG0+AxLlxM2TSFqV2m2htHBcB1IQd0Bv4LDKFNFpSPFg0ZFRFnVQF/wpZj/jywbybh8wZFRFprF/AAMIA9V9/+I7AIGIWSQZEU5DM+lpUtazQZBDAYlpYuxbe/D/6MjR0/1jnoGBIqGQT1EIo4ygC7A4/bkYLXIZ9jh1MsC9nXDzvc4ihHWiSSUFI+hjSHH3gRO5Tr/wL7/gLcHnKMFl+TFKY4Am6Xm5kDZ1Luq3u3KKAaW8fgMchZn4O7LDDPsAz4H3aqSwJTQijioHJqR0J6SbgbSi1Xhh1b/yjU3IxzAzcDd2Ir+4lIk1I2hjTXR9jJUfND9rmAbc40RyQeKY5Yue5cct115qf4sIngXdQWnQI7xvKCwP4+bdTAGFJCKCJt62PgIsID62DsgvOHOdAeEUk+q4BbgDfr7B+JHTY6sM1bJCKJ5r/YOLKszv4zsdWHD27zFsWMEkIRB+VQO/Q8ZUYsealNBrOAu7HrfikaiUQsJWNIY37A3rGfAmHLiA3EVs042YlGicQ3xZEGfEZ4MjgCO2/wSGeaE0u6BBNxkAvo6HQj2tqpwG+Ab4F/AAc42xyRRJaSMaQxVcA0apPB7tg7+RdCA0uLiaQ8xZGAuhWIb8QuhXUAcB9wohONahuqMioisbMFmAh7FO2aCnyAkkERia5u2LnI7bHV/1YD41AyKCINWwGcha1tECof+BKYR1Ing6CEUMRRVdgRk3cHHicNg71LfxC2st+/6ryeg6KPSBQkbQxpjg+xQ0B31Nn/e+BrbIGqVK2OIRKBlI0j67E1DQYAr2ML3W2pc0xfUqLsqssY0/iCG5IQPB4P+fn5lJaWkpeX53RzpJnKSMLKXuuA3wKzQvYdiF14Xnfp45riSOJJyhjSlJXYXsC3As9vAe53rjlSSzEkMaVcHNmCnQs4FbucRFBX4GXsOoIpRnMIRRzUDrgy5HFC8wF/xa7tFbqMz2+AR1AyKBIDSRVDmlKCLRjzJOEFYz4OPFeMEWmRlIkjO7BVhh8j/DplL+yNpatJ2ao6Sf1zF4l3mdj5yglvGXaB+c9D9vXE3n0b5UiLRFJC0sSQxpRjF5KfhO2+COqBLfTwGzQEXaQVUiKOFGFvWO8I2ZcDXI8dZt6x7ZsUT5QQikjLGWzhhvsIH3ZxJXYIVwcnGiUiScEHPIO9iNsUsj8XmABcR8rezReRCHmpTQYzgN9haxwUOtWg+KKEUERazoUt3hBMBg/EDuf6mWMtEpFkUQrcQO1FnBu4HDtsVBdxItIQH7CL8MmQVwN/A07CxpDeDrQrjmmQhYiDyoD0wFbmcFta7FHsROw/AItQMijShpIihjSkE7Z3EOB0YCnwd5QMikRZ0sQRg60WOhA7iiBUDvAV8BRKBuuhHkIRh+12ugGReB/71+KMkH2dgTWkQFkykfiUUDGkIZuxC8jfBXQJ2X8VcCQpWfVPpC0lfByZjR0C+kXg+dfYheVDkz9dpzRICaGIg7KB70Iex60fsYF1GrA3MJTwizYFWRFHJEwMaYgXeBhb+a8cOwz9byGvZ6JkUCTGEjqOfI4doTS7zv6fADvbvjmJSkNGRRyUhi2U14M4/mX8N3AwNhkE+AF4wrnmiEithIgh9fFh5xsfgF0NO1gC/kV0ESfSxhIyjiwDzgR+SngyOAD4DzAXONSBdiWohPm5i0gb2wKcDfwi8BggD7uUxG1ONUpEEpoB3gUOAy6jNra0wxZ9WImqE4tI436PnSf4Rsi+/YDnsLUMRmNHG0izacioiIOqsOujAlyLrYTsOIPtDbyR8PV6RgOTsbcQRSQuxGUMachi4CZgVp39Z2KXqenX5i0SERIsjgD0wV6rAHQH7gQuxlbFkRZxGWNM04dJvPN4POTn51NaWkpeXp7TzZFmKsMuqQV2Ko3jU/G+A8Zhi8cEdQYeB85Bd9ySnOJI4om7GNKQKuxFXOh6gkdi5w+qMnHSUAxJTHEdR37ELm0VWregChgGnAuMJwEnPsYf9RCKOKgdMDbkseMygeKQ5xcAfwEKnGmOiDQu7mJIQzKwd/F/B+wLTMRezOkmk4jj4jKOeIG/YgtOnYVdLiIoA1tNVPEjauLm5y6SijKB6U43IlRn7LiR27BzBU9xtjki0ri4iyFg69c/CZwG9AzZfwn2Am4stuEiEhfiKo5UYgvX3Qt8H9j3NHAz0D/kOCWDUaWiMiKpqhL4M7C1zv5fAytQMigikTHAW9hiD1cAd9R5vR1wOUoGRWRPPmxWeiBwDbXJYBp2KotGIMeUEkKROFNtqmP/JZ8BQ4DbgevqvOYiziYQiEjcWwgMxxafWhnY9wywzrEWiUgiMMBr2OUixgH/F/LaL7E3qJ/EFo+RmFFCKOKgMqBjYCsDFnsXM2LxCJZ4l8TmC73YBPBobJAFeBn4OjZfJyKxVTeGtLlvgQuBw4EPQ/YPxa4D1seJRolIJByNI+dgl7haGbLvFGAB9vrkwLZuUGpSQijisNLABlC0qQiv30vRpqLof9FM7CKtj1FbrvlwYD52cWgRSUihMaTNeLBzjfsBz4bs74u9iJuLTQpFJCE4EkfAjioIGgZ8BLyDHcUkbUZFZUQclA2sDjz+ylvMAu8CAOZ751PsLWZw7mCqTTXprlYsrrMdu6bg9JB9WcCfgOtRFBBJYKExJFh5fdtGD57tFeR1yqagRwwm3hjs8ND5Ifs6YecMXkkCLGImIqHqxpGYxZCl2CkpfUP2nQ/8F1vV/FRULMYhuhQUcVAatZ1zl2+ajBs3Pny4cTNl0xSu7H4l16y5hsf3f5yBuQMj/4L/YIs4lITsOw47Hn//VjZeRBwXGkMAFs5ey9wZq9nlrSIrN4Nho/sxZHjfht7eMi7szaTzscnf1cAfgL2i+zUi0jZC40hMYsg3wF3A89jhoS+HvOYGXmzdx0vracioSBwoDvQO+vAB4MPHfO98Jn07qXVDSEupTQbzsKWcP0DJoEgS2rbRw9wZq8FvKOydD37D3Bmr2bbR07oP/hJYW2ffr7BDRr8CHkLJoEgSiHoM2YStONwfeA47uuAVbBEqiStKCEUcVA0UAVeVrcRVZ5xVGmmsqlgF1A4hjdhvgJHA6dgiMpfR6G99m1Q4FZGoCcaQIuCH7RXs8laR3zmHtDQX+Z1z2FVWxYZV21i7tCTyi7r12F7AI4Gb6ryWhl22RkVjRBJeaBwpq6hufQz5AbgFe/N5CnZtUoC9sTeQDor2GUhruYwxpunDJN55PB7y8/MpLS0lL0+LtSSKMiA38HjQomG4/bvqPc6Nm8G5g5nab2rDH7YW+Dfw+zr7y7GTApoYl7/Yu7h1w1Ml4SmOJJ7QGLJ+k4f/PPAp+A35nXMo3VqOZ3sFWbkZ+Hf7mz/8awcwEVuAqjJk/zzgp9E/B0keiiGJKTSOPHjzLDJ37W5ZDPECjwIPYgtPBeViaxncgNYTjFPqIRRxkBvos3MBe/04G5fxN3hccAhpvb2EPuBhbAXRm7CTs0Pl0KxJ2jGtcCoiMeHGTsk5Gyjsnsew0f0gzUXJhlKqq3ZjMGRkuJs3/KsKeBx7V/8BapPBvQP7D4/12YiIE0LjyLBR+7c8hvwcW1wq+HImNglcC9yNksE4pqIyIg5a6S1mr68vb9b0m2ChmbBewqXAJdg5PkETsZW6IlDcQIVTEYlvWdgpOUFDhvelV/8CPNsr2LG1jNnPLwsb/lWyoRTP9orwyoEGeB07xGtNyIdlYtctnQDkN92WmFc3FZGYCIsjJ/ThgH57RxZDgq7BLhvhxi4yfyfQM7K2KI44QwmhiIMmb5qMCxeGpkduh/YSDk4fbOfvTKR2bL4LGA/c17J21K1w2ujwVBGJWwU98ijokce2jR6ycjMo3VpeM/wrq30GeZ2yw99wMeHL0oCdf3wv0Lt539km1U1FpE00GUM6ZsOr2EXjB4S88Uxssamx2DVKI6Q44hwNGRVxiM/4WFa2rFnJYJAbN1O+mmIXbL2H2mSwP/AJdlhXh8ja0VCF0xYVsRGRuFHQI3wIKWkuhp3eb8+77meGPD4OO+LgWZqdDMasuqmIOGqPGOJyMaxXPwrG5MEvsaMKQrmwN6tbkAwqjjhLPYQiDnG73LwxcCaD0uzd+nnVP7C2bBk3ratbzq+WDx/z0+ZTnFHMYAbb3+AJ2DXAMlvWjtDewZq2qZdQJCGUU7t+2NfYKcOhQoeQ5nXKpiAnD/6P8GRvNHbo+RnYOUARLgztCVQ3Leyd37xhZSISVxqLIzUxZE4FeVOzKfhryO/0O9glJIa0vg2KI85SD6GIg9q7c9nicrPF5aZzRhde3Poiriauxlx+F1N+NwV+AiwA/kSLk8G6vYNB6iUUSQwGu9TXpsDj+hT0yKNvv0IKXs6D/YDL6xzgAp7EJoYRJoMAeZ2ya4aV+f2m4aGpIhKXGo0ji6Hgt3n0/U0hBf8LScwOwxaxi1K5AcURZykhjIGPP/6Y0aNH0717d1wuF2+88Uajx8+ZMweXy7XHtmXLlrZpsDgmCygObOnNHEJq0gxLhyzF96kPWrk6RLB3sD7BXkIRiV+hMSSrvgMM8DJ23a8bgB+BmcB70WtDs4emikhcqjeOfA38Gpv4vR1ycD/gJewN6VG06CZSfRRHnKUhozFQVlbGoEGDuPjiiznrrLOa/b5Vq1aFrdvTpUuXWDRP4ogbG2sBcLmZOXAm5b5yexH3Nray3zF13lQBObk5uN31J3LNFVpZtD5hRWxUcVQkLoXFkLrmYtcl/Sxknwu4ADg4uu3YY2iqLuJEEka9ceRCwmPHPtilI8YSs+xBccQ5SghjYNSoUYwaNSri93Xp0oWOHTtGv0GSMHLdueSW5NpqoW8AvYBlhBeKyYjOdzWnwqkLl+YSiiSaNcCtwGt19g/HLhgdo/s7wcqEIpIE/giMBAqwlUOvoIFhCNGlOOIMDRmNI4cddhjdunXjpJNOYu7cuU43R9pANbba+3Sg2mDn8RyMTQYBNgAvRP97m1vh1GBYWrYUn/E1epyIOCMshgA8ho0hocngwdi5PrOIWTIoIglqJ1TfC9O/DokjACcB/8QuKn89bZIMinPUQxgHunXrxpQpU/jJT35CZWUlTz75JMcffzyff/45Q4bUX7qpsrKSysrKmucej8ryJqIq7NqtAL88DdLfCXmxC/A34Ozof687dHhqE3LcObhdrRueKvFJcSTxhcUQIH0AtVd0hdiiUxejv/YSE4ohCWwXMBm4D6rKYdztdvcvgXSww8svdqpx0tb0JyIOHHjggRx44IE1z48++mi++eYbHnnkEZ599tl63zNx4kT++Mc/tlUTJUbcu+HUDcBqcH8Q8sJY4GFg79h9d647l1x3buy+QOKe4kiC84N7O5xaYJ+6AU7EXtEdhJ0/GOG6pCKRUAxJQLuxXYF/BL6zu9yZcOp/gWPArZiRklzGmOavii0Rc7lcvP7664wZMyai991000188sknzJs3r97X67sr17NnT0pLS8MK00gcW4Ut7vBlyL7ewFTsuH2RGFMcSWD/A27E3sr/hPBKf4aoVf4TaYxiSALxA68CdwCr67x2HnY0wf5t3SiJF+ohjFOLFi2iW7duDb6emZlJZmYLF5+T+JAJLA88dgFXA38G1GknbURxJAGtBm6hdp4xwL+BX4Q8VzIobUQxJAEY7DIzt2HXlQh1GnAvjZQqllShhDAGvF4va9asqXm+bt06Fi1aRKdOnejVqxcTJkxg48aNPPPMMwA8+uij9OnTh0MOOYRdu3bx5JNP8sEHHzBz5kynTkHawr7AfdgewX8CQx1tjYjEs63YO/hTsEO+ggYAnR1pkYgkivsJTwaPxV5/DHOmORJ/lBDGwPz58znhhBNqnt9www0AjB07lunTp7N582Y2bNhQ83pVVRU33ngjGzduJCcnh4EDB/L++++HfYYkOC/wAHATYXN6yq+CQVcDabAYyHGkcSIStyqwlUMnAqH1OroB90D5RTAoUPNJMURE9uCiNvkbEnh8MmEjCcqBQYHHiiOpSXMIk4TH4yE/P1/j9uPRTOBy4P+ww0L/WvtSGbUjRL1A+zZumkgoxZE4MxO4FPg2ZF974Gbs/MH2iiESXxRDHLYauBO4CDilzmsfAz+j3gXnFEdEPYQisbIduAF4OmTfU8Dt2CUlsMv6fELtYxGRGvnUJoNp2BLwf8L2DgYohogI32JjwzTAh00MTyY8+Tu24bcrjogSQpFoM9hKXlcB34fsPxF4gppkEGyZeA3hFxHArh+YHvL8KOBc7FDRB4BD93yLYohICtuKHU7+d6AyZP932AXlm1k1VHFElBCKRNMm4ErgzZB9+dg1BS9G1f9EoqDaVJPuSm/6wETxPXAXMB/4jMCCggHT0S17EQnnAf6CvbbwhuzPw64/eh1ag1QiUs9IYhFpkaeBgwlPBscAK4BLqDcZ3A28Eth27/myiNSx2LuYEYtHsMS7xOmmtF45dqmZ/bDVQ+cD/6pzTBPJoGKISAox2ESwL3Zh+WAymIUtWrcWu85ghMmg4oioh1AkWrYDpYHHXYC/AWfTaK9gJXBO4LEX/UKKNKVoUxFev5eiTUVM7TfV6ea0jA+b+P0B2BiyPxebJEZAMUQkhbiAD4AfAs/bYQtP3QF0b/nHKo6IfuYi0XIN8BJwEHYYR6em35IGHBfyWEQaVuwtZoF3AQDzvfMp9hYzOHdwzL83qkNU38feyV8Uss8NXAbcDRRG9nGKISKR2bbRg2d7BXmdsino0bpKqDEfvu7HJoGhN5bvBd4FfoWNGc2cJ1ifYPsVR0Q/d5GWWAI8XmefG/gQW+WrGckgQDYwJ7BlR6ttIklq8qbJuAMT7Ny4mbJpSsy/M2pDVL8GTgVOIjwZ/Dk2nkwm4mQQFENEIvHF7NW88OCnvPbY57zw4KcsnL22xZ8V0+HrBngbu27ga3VeOwxYhx1l0IpkMLT9iiOihFAkEpXYoRmHA9diC0CEUiQViYlg76APHwA+fDW9hLEUOkS1VXYB74U8H4Id+jUDO/dYRGLqo3Wfck37cXy/9/9R2Dsf/Ia5M1azbaOnRZ8XtdhQ18fAMdibRYuxS1XVndjXs/VfE7P2S0JSQijSXJ9i78zdiw3OBnjIyQaJpI7Q3sGgWPcS1jdEtcUGAOOAXsCzwJfACa1vo4g0zz93/IPqjF0sOeoD0tJc5HfOYVdZFZ7tFRF/VqSxYdtGD2uXljSefBYDo7BjN+eG7M8FSiJuYqOiGtskKSghFGnKTuz8wJ8BXwX2pWPLxD/Xuo+uwOaYhwUei8ie6vYOBsW6l7BFQ1R9wD+xyV51ndcexMaQ3xC1v76KISJNK/YWs9zYoZ3fFazh2/xvKN1aTlb7DPI6RT60J5LYsHD22saHqa7Crjc6BDs3MKg/dk3jL4EeETexUXXb/7fN/1QcSXFKCEUa8y52MejHsT2CAEcCC7GTuTNb9/F+7IiQxYHHIrKn+noHg2LVS9iiIarvAYOxVf/mAE/UeX0voj6sXDFEpGmhMcTld/Fxr7cgzcWw0/tFXFgmktiwbaOHuTNWg9/sOUzVjy0mdQjwcsibemFrESwFfkHU1y+ur/0LyooVR1KcEkKR+niBC7HDNzYE9mVj1//5FJskRkEWMDOwae1pkT011DsYFKtewoiGqC4BRgKnYC/igtpgFJZiiEjj6sYQk2b4fp/1DLi2A0NO7Bvx5z347YN77GsoNni2V7DLW0V+55w9h6mmYReYD4a2LsBfgdXARcRsHYD6Ylu638ep3z2qOJLClBCK1CcbO4wj6ETshd710EBHRYu4sUUHT4rux4okjcmbJuNq4ha5C1dUewmbPUR1I3AxdpzVzJADjwA+Ap6MWpMapBgi0riGbu68UP1MxJ9V7C1mVcWqPfY3dGMqr1M2WbkZlG4tx7/L7DlM9R5gb2xtgm+Aq2n1yKOm2l9fbPNTzZbvn6XAW6w4kqKUEIrUx429mOsc+O/7wH6Otkgk5fiMj2VlyzA147XrZzAsLVuKz9TfixipJoeofjsF7gT6YYd2BZvXG3gBW3342Kg0RURaIdrzj+vrHQyqr5ewoEcew0b2g3UuSv5dChvrDFPtB3wH/AFbPCbGnBh+L4lBC9OL+LFJ32HY+YEEFmsdkA7/R0yXkthNbSX6kegXUiSU2+Vm5sCZlPvKmzw2x52D29X6e9uh1ffq48PH/Ir5FL9TzODywXZnPrY0/FW0+XgrxRCRhgUToPqGnAcToKn9pjbrsxrqHQwKTTIH5w62RaWegiF/6kuvbQV40ivIK8+mYFidOYttFDMai20GN9vzhjIb+NJbzBG5g9umURI31EMoqe1r7HDQ32KHflXVWWw2xusKVmKXGvp54LGIhMt159Ilo0uTW647OrfXmz1E9e4pttrwtdihXr/Hkck3iiEi9Yv2/OPGegeDaoavPw8cBPwO2AQFVXn0LS+k4Jg8KGv+OURTY7HNn5bON/s/xjf7P8bkzU+1ccskHighlNS0G3gAGIid6wOwHHi7bRdrTQN+Etj0yyjirIiGqHZfim+5Dx7FzgFyiGKISP2iOf/YZ3ysrljd5HEGw9LtS/Fd4LM3ioLOwBafegbo1OTHRF1Tsc1lDDlly8kpW87yKA6/l8Sh0SWSehZhy8KHjpzYF5gKxUcXs2B1+GKtg2M4dCIbu8SQiMRGtakm3ZXerGPDhqhuwt40eg07R3ACML722Bx3Dm53w0NUt2304NleQV6n7IjL2kdCMURkTy2Zf9zYkPMlZUsa/awHez/IoeMOhc8gpzwHtz/wWScA9wE/jfwcohlDIhp+P+CtqAy/l8SihFBSxy5sRa9J1JZ5dmGHfN0D5MLk1bXzDSKdXyAi8WWxdzHXrLmGx/d/nIG5A5v1ntyyXHIn5dolZnaFvPAsNlY0oxtu4ey1zJ2xml3eKrJyMxg2uh9Dhkde3l5EWiba84+bmov40g8vcWKXE2FrYOcRwJ+BEbRoHcFYxJBcd27UhtZL8tEIE0kN87FFY+6jNhk8GLum4CNAbgsXohaRuBXR8O9qYDKwPzZOBJPBvYCHgXk06y9mowtRi0ibidb842bPRbytGIYA/wY+x64F04JkUDFEnKCEUFJDBrXj+dOBu4CFhA3jiGgh6iipAIYFtoqYfYtI6gmtqNfojR0D/Ac7n/hKau/wZwA3YuPGDTR7bbBGF6KOAcUQkdjZttHDI1//tXlzEXdPsTefz6RFiWBQW8cQUBwRJYSSKgYCt2KXlVgI3E3YBV601ypqLj+2k/LTwGMRiY7QGzyN3tj5HvgV8FXIvnOAlcBD2B7CCIQtRO2vZyHqKFMMEYmNhbPX8txDn/BV9Yrmz0VsoBcxEm0dQ0BxRDSHUJLRNuz8n7uxd/mD7gjsq2eqQDTXKopEJvB6yGMRab26623tsT5YqEJsD+CfsbfHH6JFBSCCCnrkMWx0P+bOWE3JhlKy2meEL0QdZYohItEXHLaZVuXisgf/xA/f7gAfjNn8EzpVdbBrj16BLVAXWG4mWmuhtnUMAcURUUIoycQALwHXYId9ZQF3hryeUd+bmrkQdYwqjrYDxkT1E0Wkvhs8btxM2TCFqS9NtUNBQ6+tbgEOx/4ytmKoV9CQ4X3p1b+gTaqMKoaIRJ9nUwW7vqqicG0+aZUuupNFSVYpGRW5dPltF7iJiEcPRKItYwgojoiGjEqy+A67zs951M4B+jvQdIGxqK5VJCLOanT49675FP+n2C4nEaoDrZ73U1dBjzz6DiiM+YWciERZFeT9KpusNRmU+svxYyjNLCerZwZ5s7Nt0akYJoNBiiHSlpQQSmLzA1OwFUNnhOz/BXa9wZzG396StYqiyQfMCWxaBlak9eorDhXk3u1myu+mQBFQ1rbtihXFEJEoy4CC0XkM+6EfuFyU9C6F410Mu60fBYclZ3KmOCIaMiqJ62vs+P2PQ/Z1xV7sndW8j4j2WkWR2oVdtxbAC7SP6qeLpJYmh3+38zH/iPkUf1HM4PbRHf7tFMUQkVYwwFvAiYT/8twGQ0r60uu3BXj2bpthm05SHBElhJJ4DHbtwD8QvnD0xbSoKqCTi7W6sJ2bwcci0nLB4d+N9fi7cDHFTGEq0S8S5QTFEJEW+hC4DfgMmIitRB7UBXgBCsijgORNBIMUR0QJoSSm7dQmg32AJ4ARzjWnpXKA5U43QiQJtGT4d2t6/KtNNemu9Ba/P1oUQ0Qi9CX2hvKskH2TsFVD8x1pkeMUR0QJoSQeF3A7tkbySOAeNL5BJMXVDP9+vNwWfdgbW0301+zxl661w78XexdzzZpreHz/xxmYO7AVrRaRNrMSe+3w7zr7D8EuO5P8HYEiDVJCKPHvE2wgvyxkXxawgJr1f0QkxRjgNezEl73trlx3Lrm/zbXVha8iZhd4RZuK8Pq9FG0qisn6pCISReuxaxA/S/iq632AP2Grk0e3PIBIwlGVUYlfHmA8cAz24m5lndeTIBmsAE4KbBUOt0UkYXyKXUT+l8C9dV7Lxs4LilEyGFq4Jrg+qZMUQ0QaUQEMAZ6mNhkMFp/7CvgNjiSD2zZ6WLu0hG0bPW3/5fVQHBH1EEp8+i/wO+DbwPMq4G/YIJ5E/MD7IY9FpBFrgAnAqyH7ioAbgJ5t04TQRe/duJmyaYqjvYSKISKNyMbODQyuHXgLcDVNLkkVSwtnr2XujNXs8laRlZvBsNH9GDK8r3MNQnFElBBKvNkGXAc8F7IvBzu+/2onGhRbmcC/Qh6LSD1+wPYEFgHVIfsPxi4yv0/bNKPushY+fDW9hINznVnGQjFEJKAM+Dt2eknHkP03AenYa4uOdd/UtrZt9DB3xmrwGwp751O6tZy5M1bTq3+Bo8taKI6IhoxKfDDAC8BBhCeDI4Bl2ECehGP82wHnBzbdnRGpoxK7lMx+wKPUJoOFwFSoXlQNp9FmddLrW/Q+2EvoFMUQSXlV2JtF+wM3Y2NGqI7YOYQd27JR9fNsr2CXt4r8zjmkpbnI75zDrrIqPNudHaipOCJKCMV524DTsdUAtwX2dQSmATOxE79FJLUY4Fjs3f3SwL5sbJXAr2HxrxczYvkIlniXtElzgr2DPnxh+0N7CUWkDfmAZ4ADsXUGtgT2P45dXT0O5XXKJis3g9Kt5fj9htKt5WS1zyCvU7bTTZMUp4RQnJcLrA55fja2gMxFJP0KqT7skkhfBh6LSIALuDDk8Tjga+wyMx3CK322hfp6B4Oc7CVUDJGUY4A3gEHAWGwV0aBfAPOw1xVxqKBHHsNG94M0FyUbSiHNxbDT+zk6XBQUR0Q9wxIPsoAngV9h7+yd5Wxz2tIu4MjAYy9aTlFS2GpsZdCuIfsuB4qx84cH1e6ur9JnLOfw1Z07WJeTcwkVQySlzMZWEf6izv6TsbUGftL8j9q20YNnewV5nbLbNCEbMrwvvfoXOPLdDVEcESWE0rZ2A38BRmPnCwYdA3xDUiwlEQkX0DvksUjK2YZdC2wy9m7/kyGvpdd5HtDWlT4nb5qMCxcG0+AxLlyOVBxVDJGU4cWOINoRsu+nwETg+Mg+yulKnwU98uIiEQxSHBENGZW2swg4Clv2+TL2rG2cYskg2AKq6wObg1WwRdreLmAStmDM49ibRU8BSxt/W925fLGew+czPpaVLWs0GQQwGJaWLcVn2nbAlWKIpIxc7PUDwADgP9g1SY+P7GPqVvrEb5g7Y3XcrAnoBMURUQ+hxN4ubA/AA9QOTp+HDeQ/c6pRIuIIP7ai8G3AhpD9OdgCMk0UkQrtHQyKZS+h2+Vm5sCZlPvKmzw2x52D25WE5ZBF2to67NqB92KrCgddA+wLnEOLuzSClT4Le+fXVPos2VCKZ3tFXPXaibQlJYQSW/8DLiW8aMyhwD+pHbAuIqlhDvB7IHQ6XhpwMfamUbfG397QXL5Yz+HLdeeS647TKhUiyWQLNgl8ArvMTA7wWMjrOdh6A60QWukzv3OOKn2KoCGjEiseYDy2bHwwGUwH/oi9GFQyCNjO0zGBbZejLRGJsSuAEwhPBk/BDiX/B00mgxC/lT6dpBgiSeFHYALQF7umYHDN0ZeBKC/RF6+VPp2kOCLqIZTo+wBbHOK7kH0/xRaHOMSRFsUtH/BmyGORpHUUEMzXBmIXjz6p+W+P50qfTlIMkYRWhu0BfIDa9UbBlrm8AbgRu/5olMVjpU8nKY6IEkKJvnbUJoM52Apg46GBG/spLQM7Mib4WCQplGMv9DqH7LsAeBVbJfACIo4H8Vzp00mKIZKQqoCp2KUiSkL2Z2BHE9wGdIltE+Kt0qeTFEdECaFE37HYgL4GG/CbKBKRytKxBVdFkoIP+BfwB2zBqBdDXnMDb7XwY1tQ6TNVirsohkhCqiY8GUwDLgLuAno51KYUpjgiSgildb7Frh92L+EzUh/B3mbSgjYiqeF9bJXQRYHnLwHXYYeLt5IqfYokmfbA7cDV2FED9wD9HW2RSEpTQigt48f2/t0C7AT2Aa4MeT3TiUYlHj+wMvD4IFTlSRLQcmwi+E6d/aOBTtH7GlX6rJ9iiCSsy4GjgSFON0QUR0QJoURuNXYpif+F7HsMG9z1f1REKrCrcAB4sTdNRRLCFuBO7BIy/pD9Q7AFY05wolGpRzFEElYGSgbjhOKI6CaANF81cD+2QmBoMngJ8BlKBluoILCJJIypwP7Y5SKCyWBP4FngS5QMtjHFEBFpLcWR1KZLeGmeYmziVxyyry+2LNVwR1qUFNoDW51uhEikCrBVRAE6YCsCXktMysNL4xRDRKS1FEdECaE0zmArBj5A7eI0acD1wJ+wy0qISGo5CzgOO8boLsKXlxAREZGEooRQGucCtlObDA7Azhk6wrEWiYjTXMBstLaoiIhIEtAcQmnaJOzw0D8B81EyGEW7gPMD2y6H2yISESWDcUExRERaS3FE1EMo4d4GdmCjQlA+sAItJREDPuD5wOMnnGyIiCQkxRARaS3FEVEPYQx8/PHHjB49mu7du+NyuXjjjTeafM+cOXMYMmQImZmZ7L///kyfPj3m7QyzFfg18HPgCuyC86GUDMZEBvBIYMtwuC0ikngUQ0SktRRHRAlhDJSVlTFo0CCKioqadfy6des47bTTOOGEE1i0aBHXXXcdl156Ke+9916MW4otGvMcdiXSFwL7dgJPxf6rBdKB6wJbuqMtEZFEpBgiIq2lOCIaMhoDo0aNYtSoUc0+fsqUKfTp04eHH34YgIMOOohPPvmERx55hJEjR0a9fdWmmnRXuu0F/B3w35AXO2FvEV0Q9a8VEREREZE4ox7CODBv3jxGjBgRtm/kyJHMmzevwfdUVlbi8XjCtuZY7F3MiMUjWPLMEjiY8GTwHOxcwQuxVQQl5vzA+sDmb/RIkehraRyR+KEYIk5SDEkOiiOihDAObNmyhcLCwrB9hYWFeDweKioq6n3PxIkTyc/Pr9l69uzZrO8qWleE1++lqKIIvIGd3YE3gJeAwgbfKjFQAfQJbPX/pEVip6VxROKHYog4STEkOSiOiBLCBDVhwgRKS0trtm+/rVsFZk/F3mIWVC8AYP4R8yk+rBguA5YDZ8S2vdKwnMAm0tZaEkcAtm30sHZpCds2qjcgHiiGiFMUQ5KH4khq0xzCONC1a1dKSkrC9pWUlJCXl0d2dna978nMzCQzM7LSn5M3TcaNGx8+3D43U6ZMYepRU1vcbmm99kCZ042QlNWSOLJw9lrmzljNLm8VWbkZDBvdjyHD+8aohdIUxRBxkmJIclAcEfUQxoGhQ4cye/bssH2zZs1i6NChUfuOYm8xC7wL8OEDwOf2MT99PsXe4qh9h4gkt20bPcydsRr8hsLe+eA3zJ2xWnf5RaRZFENE4pMSwhjwer0sWrSIRYsWAXZZiUWLFrFhwwbADrG48MILa47/3e9+x9q1a7n55pv56quv+Pvf/87LL7/M9ddfH7U2BXsHQ7lxM2XTlKh9h4gkN8/2CnZ5q8jvnENamov8zjnsKqvCs12zTkSkaYohIvFJCWEMzJ8/n8GDBzN48GAAbrjhBgYPHsydd94JwObNm2uSQ4A+ffrw9ttvM2vWLAYNGsTDDz/Mk08+GbUlJ+r2Dgb58DHfq15CJ1Vip3FeFngsEs/yOmWTlZtB6dZy/H5D6dZystpnkNep/qHtEnuKIZJIFEPik+KIuIwxxulGSOt5PB7y8/MpLS0lLy8v7LXLV1/OIu+iPRJCsL2Eg3MHM7Wf5hI6oQzIDTz2YsfxizilsTgSVDP/p6yKrPYZDDu9H0NO1PwfpyiGSDxRDElMiiOiojJJLtg72JDQXsLBuYPbsGUCkA7cG/JYJN4NGd6XXv0L8GyvIK9TNgU96r/ok7ahGCKJRjEk/iiOiHoIk0RDd+UuX305C70LMTT8Y3bh4vDcw9VLKJLimnN3X0SkIYohIolJcwiTmM/4WFa2rNFkEMBgWFq2FJ/Zc0ipiIiIiIgkLw0ZTWJul5uZA2dS7itv8tgcdw5ul7vJ4yS6DLAt8LgAcDnYFhFJPIohItJaiiOihDDJ5bpzyXXnNn2gOKIc6BJ4rIncIhIpxRARaS3FEVFCmCSCU0E9Hi3umkjKQh57oJ46sJLIOnTogMuVOPdaFUcSj2JIclMMkbagOJLcmhNHlBAmiZ07dwLQs2dPh1siLdXd6QZI1CVaYQXFkcSmGJJ8FEOkrSmOJJ/mxBFVGU0Sfr+fTZs2YYyhV69efPvttwn1R6QpHo+Hnj17Jt15QfKeW7KeFzT/3BLt7r7f72fVqlUcfPDBKf1zSzTJel6QvOeWzDFE1yKJKVnPLVnPC6IbR9RDmCTS0tLYZ599aoZp5OXlJd3/+JC85wXJe27Jel6QfOeWlpZGjx49gOQ7t1DJem7Jel6QvOeWbOela5HEl6znlqznBdE5Ny07ISIiIiIikqKUEIqIiIiIiKQoJYRJJjMzk7vuuovMzEynmxJVyXpekLznlqznBTq3RJWs55as5wXJe27Jel5ByXp+yXpekLznlqznBdE9NxWVERERERERSVHqIRQREREREUlRSghFRERERERSlBJCERERERGRFKWEUEREREREJEUpIRQREREREUlRSghFRERERERSlBJCERERERGRFKWEUEREREREJEUpIRQREREREUlRSghFRERERERSlBJCERERERGRFKWEUEREREREJEUpIRQREREREUlRSghFRERERERSlBJCERERERGRFKWEUEREREREJEUpIRQREREREUlRSghFRERERERSVIsSws8//zza7RAREREREZE21qKEcOjQofTr14977rmHtWvXRrtNIiIiIiIi0gZalBD+61//4oADDuCee+7hgAMOYNiwYUyZMoXt27dHu30iIiIiIiISIy5jjGnpm7dt28aLL77I888/z2effUZGRgannHIKv/nNbzj99NPJyMiIZltFREREREQkilqVEIb65ptveP7553nuuef4+uuvyc/P5+yzz+bCCy/kZz/7WTS+QkRERERERKIoalVGs7OzycnJISsrC2MMLpeLN998k+OOO44jjjiCFStWROurREREREREJApalRDu3LmTadOmMWLECHr37s1tt93Gvvvuy6uvvsqWLVvYtGkTL730Et9//z3jxo2LVpulHsYYPB4PUerwFZEUpDgiIiKSelqUEL755pucc845FBYWcskll7Bz504effRRNm3axBtvvMFZZ51Feno6brebs88+m9tvv53i4uJot11C7Ny5k/z8fHbu3Ol0U8KsX78el8vFokWLnG6KiDRBcURERCT1tCghPPPMM/n888+5/vrrWblyJZ9//jnjx49n7733rvf4QYMGcf7557eqoRIbW7Zs4eqrr6Zv375kZmbSs2dPRo8ezezZs51uWo1Vq1ZxwgknUFhYSFZWFn379uX222+nurra6aa1mg9YFNh8jrZEpOUSIY6EWrNmDR06dKBjx45ON6XVFENERKS12rXkTR988AHHH398s48/8sgjOfLII1vyVRJD69evZ9iwYXTs2JEHH3yQAQMGUF1dzXvvvcf48eP56quvnG4iAOnp6Vx44YUMGTKEjh07snjxYi677DL8fj/33Xef081rlV3A4MBjL9DewbaItESixJGg6upqzjvvPI455hg+/fRTp5vTaooh8anaVJPuSne6GSIizdKiHsJIkkGJX1deeSUul4svvviCX/ziF/Tr149DDjmEG264gc8++wyAiy++mJ///Odh76uurqZLly7885//BMDv9/PAAw+w//77k5mZSa9evfjzn//c4PcuW7aMUaNGkZubS2FhIRdccAHbtm1r8Pi+ffsybtw4Bg0aRO/evTn99NM5//zz+d///heFfwVnuYDugc3lcFtEWiJR4kjQ7bffTv/+/TnnnHNacdbxQzEk/iz2LmbE4hEs8S5xuikiIs0StSqjkli2b9/Ou+++y/jx42nffs97ysGhVJdeeinvvvsumzdvrnntrbfeory8nHPPPReACRMmcP/993PHHXewYsUKnn/+eQoLC+v93h07dnDiiScyePBg5s+fz7vvvktJSUlEF2dr1qzh3Xff5bjjjovgjONTDrAxsOU43BaRSCVaHPnggw945ZVXKCoqauEZxx/FkPhTtKkIr99L0abk+f9MRJKckaRQWlpqAFNaWtqs4z///HMDmH//+99NHnvwwQebSZMm1TwfPXq0ueiii4wxxng8HpOZmWn+8Y9/1PvedevWGcAUFxcbY4y55557zMknnxx2zLfffmsAs2rVqkbbMXToUJOZmWkAc/nllxufz9dk20Wk+ZI5jmzbts307NnTfPTRR8YYY6ZNm2by8/ObbLdIJBbuXGiGLBhSsy3cudDpJomINEk9hCnKRFBW/tJLL2XatGkAlJSU8M4773DxxRcDsHLlSiorKxk+fHizPmvx4sV8+OGH5Obm1mz9+/cH4Jtvvmn0vS+99BILFy7k+eef5+233+ahhx5q9jmISPQlUhy57LLL+PWvf82xxx7b7DaLRGrypsm4cQPgxs2UTVMcbpGISNNaVFRGEt8BBxyAy+VqVsGHCy+8kFtvvZV58+bx6aef0qdPH4455hgAsrOzI/per9fL6NGjmTRp0h6vdevWrdH39uzZE4CDDz4Yn8/H5Zdfzo033ojb7Y6oDfFkF3BB4PGzQJaDbRGJVCLFkQ8++ID//Oc/NTeSjDH4/X7atWvHE088UZOcJhrFkPhR7C1mgXdBzXMfPuZ751PsLWZw7uBG3iki4iz1EKaoTp06MXLkSIqKiigrK9vj9R07dtQ83nvvvRkzZgzTpk1j+vTpjBs3rua1Aw44gOzs7GaXlx8yZAjLly9n3333Zf/99w/b6puD1BC/3091dTV+v7/Z74lHPuDVwKaS8ZJoEimOzJs3j0WLFtVsf/rTn+jQoQOLFi3izDPPjOzE44hiSPwI7R0MUi+hiCQCJYQprKioCJ/Px5FHHslrr73G119/zcqVK/nrX//K0KFDw4699NJLefrpp1m5ciVjx46t2Z+VlcUtt9zCzTffzDPPPMM333zDZ599VlM5sK7x48ezfft2zjvvPL788ku++eYb3nvvPcaNG4fPV//lzHPPPcfLL7/MypUrWbt2LS+//DITJkzg3HPPJT09sct6ZwB/C2wZDrdFpCUSJY4cdNBBHHrooTVbjx49SEtL49BDD2WvvfaK3j9IG1MMiQ/B3kFfnbQ8tJdQRCReachoCuvbty8LFy7kz3/+MzfeeCObN2+mc+fOHH744UyePDns2BEjRtCtWzcOOeQQunfvHvbaHXfcQbt27bjzzjvZtGkT3bp143e/+12939m9e3fmzp3LLbfcwsknn0xlZSW9e/fmlFNOIS2t/vsT7dq1Y9KkSaxevRpjDL179+aqq67i+uuvj84/hIPSgfFON0KkFRIljiQrxZD4EOwdrJsQQm0v4dR+Ux1omYhI01wmkqoAErc8Hg/5+fmUlpaSl5cX9c/3er306NGDadOmcdZZZ0X980XEeYojIpEr9hZz6epLmzzuyX5Pai6hiMSl1LqVKhHz+/18//333HPPPXTs2JHTTz/d6SYlFT/wdWBL7NmQIg1THIkdxRDnTd40GReuRo9x4dJcQhGJWxoyKo3asGEDffr0YZ999mH69Om0a6f/ZaKpAugXeOwFml9WRyRxKI7EjmKIs3zGx7KyZRgaH2xlMCwtW4rP+HC7ErcytogkJ/1Vlkbtu+++Ea01JpHLd7oBIjGmOBJbiiHOcbvczBw4k3JfeZPH5rhzlAyKSFxSQijioPbADqcbISIJSzHEebnuXHLduU43Q0SkxTSHUEREREREJEUpIYyyiRMncsQRR9ChQwe6dOnCmDFjWLVqVZPve+WVV+jfvz9ZWVkMGDCA//73v23QWhERERERSWVKCKPso48+Yvz48Xz22WfMmjWL6upqTj75ZMrKyhp8z6effsp5553HJZdcQnFxMWPGjGHMmDEsW7asDVsuTqgELgpslY62REQSkWJIAikHFjndCBGRPWkdwhjbunUrXbp04aOPPuLYY4+t95hzzz2XsrIy3nrrrZp9P/3pTznssMOYMqV5ZapjvX6YxEYZEJx5ogqB4jTFkcSjGJIgZgBXA7uAVagSkIjEFRWVibHS0lIAOnXq1OAx8+bN44YbbgjbN3LkSN54440G31NZWUllZe39YI/H07qGiiPSgQdCHou0JcWRxKcYEufWA9cC/wnZdyfwmCOtERGpl4aMxpDf7+e6665j2LBhHHrooQ0et2XLFgoLC8P2FRYWsmXLlgbfM3HiRPLz82u2nj17Rq3d0nYygJsCW4bDbZFG+IF/YbtgkojiSOJTDImealMdvQ+rAiYCBxOeDJ4IXBG9rxERiQYlhDE0fvx4li1bxosvvhj1z54wYQKlpaU127fffhv17xAR4AtgKHABcL/DbYkyxRERa7F3MSMWj2CJd0l0PvBl4DagIvC8K/A88D7QPzpfISISLUoIY+Sqq67irbfe4sMPP2SfffZp9NiuXbtSUlIStq+kpISuXbs2+J7MzEzy8vLCNkk8fmBjYPM73BapoxK4BDgKmxQCPAQ03HGfcBRHEp9iSHQUbSrC6/dStKkoOh94HnAk9irrWuCrwD5XdD5eRCSalBBGmTGGq666itdff50PPviAPn36NPmeoUOHMnv27LB9s2bNYujQobFqpsSJCmCfwFbRxLHSxjKA0A6zg4G3sXf6ReKEYkjrFXuLWeBdAMB873yKvcWRfcBuYFadfW7gn8AC4FFUREZE4poSwigbP348//rXv3j++efp0KEDW7ZsYcuWLVRU1P6pvvDCC5kwYULN82uvvZZ3332Xhx9+mK+++oq7776b+fPnc9VVVzlxCtLG2qHqTnHJhS38UBD47yJguJMNEqmfYkjrTN40GTduANy4mbKpedW9AZgH/AQ4GZhb57VDgcOi0kQRkZhSQhhlkydPprS0lOOPP55u3brVbC+99FLNMRs2bGDz5s01z48++mief/55nnjiCQYNGsSrr77KG2+80WghGkkO7YHqwKZy8Q5aC5yJLQ0f6iBsL+E1qISjxCXFkNYJ9g768AHgw9e8XsJtwKXA0cDiwL7xgBbyEpEEpHUIk4TWDxNpgTJsoZgHsXMG9wOWA5lONso5iiOSai5ffTmLvItqEkKwvYSDcwcztd/UPd/gB54CbgG2h+w/DPg7tgCViEiCUQ+hiKQeg60CeBBwLzYZBJsgrnaqUSLSlur2DgY12Eu4CBgGXEZtMtgBO0fwS5QMikjCUkIo4qBK7Cij8dTmJBJjS4ATgHOpLRqTDtwMrAIGONQukRZQDGm50LmDdYXNJawErgMOBz4LOejX2JhxLZrEKSIJTQmhiIN2Y0cZ/T3wWGJoO3AVMBj4KGT/KGAZMAnQKElJMIohLdNQ72BQWC9hOjCf2nU9+gOzgeeAbpF/d7WpblGbRURiRQmhiIPSgbsCm2qWxNh1QBG1F3X7Af/BLiXRz6E2ibSSYkjLTN40GVcTiwK6cNlewjRsxp0H3IctInNiy753sXcxIxaPYIl3Scs+QEQkBjTIQcRBGcDdMf6OalNNukuXityNnTfYDrgduJ6ULR4jyaMtYkiy8Rkfy8qWYZooCWowLC1bis/4cA902yHmrRxFULSpCK/fS9GmovqL1oiIOEAJoUgSW+xdzDVrruHx/R9nYO5Ap5vTdjYC/4ctCR/UF/gXtvBDDycaJSLxwO1yM3PgTMp95eEvzATuBL4DDrDPc7JycLsC8wxbmQwGh6kCNcNRB+cObt2HiohEgYaMijjIADsCWyzWfwm9G50SKoGJwIHAr7BVQ0OdjZJBSSqxjiHJKtedS5eMLnbb2IUuv+hCl9Fd6FLchS5bu9Blfhe6LOhCrjs3at8ZWsQmrGiNiIjDlBCKOKgc2CuwlTdxbKTquxudtAzwFnAIcBs2EfwW+IuTjRKJvVjGEIBtGz2sXVrCto2eGHy6wyqBPwMHY+NH0AhgKXBs9L6qbhGbBpe2EBFxgBJCkSSVMnejVwGnAaOBbwL70rAVRcc3/DZV+hNp3MLZa3nhwU957bHPeeHBT1k4e63TTYqeWcBA7HziXYF93YEXsUNHo1xoqr4lLpI6LotIQlFCKOKgHKAqsOVE8XMT/W50s3olPNi1AwcA74TsPw4oBh4HOtX/VlX6k2QRqxiybaOHuTNWg99Q2Dsf/Ia5M1YnVE9hg3HkfuBkYHXguRtbZGoldn3SxouPRqyhJS4SLS6LSPJSQijiIBe2VHw60b0GSeS70c3qlfgYO0/wQSDY0bcP8BLwIfbOfyNSbm6lJK1YxRDP9gp2eavI75xDWpqL/M457CqrwrO9IorfEjuNxpEzqF2j42hgAXZ4eYzWIa0vHgclSlwWkeSmhFAkySTy3ehm90r0xfYQgl064g7gK+AcmrwqTqm5lSItlNcpm6zcDEq3luP3G0q3lpPVPoO8TtlON61Je8SR6jpx5CDgHuAp4H/AoJZ/T1MjGRqKx0GJEJdFJPkpIRRxUBVwU2CritJnJvLd6AZ7JbbW6ZXYB/gDMAY7zOtPQPvmfUfKzK2UlBCLGAJQ0COPYaP7QZqLkg2lkOZi2On9KOgRo260KKqJIx1ySPufi/z/5bBrZ53ezVuAcbT4Kqi58ysnb5qMq4m7VC5cikMi4iitQyjioGrgocDju7GLTLdGaO9XfULvRsfj+lehvRL5nXMo/b6crO8zyDsvGz4D8kMOvpWIL+bq/vvE+7+HSFOiHUNCDRnel179C/BsryCvU3ZCJIMAeR2zydqeQenccvLLcyhNLydrc/R6N+v2QJZuLWfujNX06l8Q9m/kMz6WlS3DNLEgiMGwtGwpPuOrXfNQRKQNKSEUcVA68PuQx60VvBvd2AVI8G701H5To/CN0RXslZg7YzUli0vJ+iaDYev7UbAjzw7xeijk4Bbc2Q/2DoYO3wr2Esbjv4dIU6IdQ+oq6JGXMIkgAAuh4Mo8hq3qx9y9V1OSVUpWWgbDBkavdzPYA1nYO79mJEPJhlI82yvCvsPtcjNz4EzKfU0vCJLjzlEyKCKOUUIo4qAMbF2UaEiWu9FD9utLr7UFeD6oIK86m4KqwAWWF7veYAsrZzTUe6peQklk0YwhCW0Hdi7x3wE/DKEvvcoL8IyuIO/2bAoOi15Su8dIhkbmV+a6c6O6uL2ISCwoIRRJEgl/N7ocmAQ8AAW78igIlvw7CruExBGt+/j6egeD1EsokqAM8By2m7QkZP9BUPD3PAqOj37vZthIhg2lZLXPSJj5lSIi9VFCKOIgA+wOPG5H68vGJ+TdaAO8CtwIfBuyvxCbIF5Aq8tfJfrcSpGGRDuGxKtqU026q55Bsd8ClwKVgec5wF3AdUR3QmUdiTq/UkSkPqoyKuKgcuw1S0bgcUrajr2gCyaD7bDJ4SpgLFGJUqr0J8kqFWLIYu9iRiwewRLvkj1f7IUtMAW1VYdvJqbJYFBBjzz6DihUMigiCU8JoYg4a2/gj4HHI4Gl2OIx+Q2+IyItmVspIvGjaFMRXr+Xok1F8BZ7Zr63AO8Br2MTRBERiYiGjIo4KAf4MeRx0vMB04AzsYlg0HjsYtEnE/Uxbwk/t1KkEckeQ0KHe8/3zqf4jmIGfzYY7g05KBsbO0REpEWUEIo4yAV0dLoRbWUucDVQDCzEVgMMSsf2DsZIQs6tFGmGZI8hk7+bjNvvxpfmw73bzZTfTWHq1VPhMqC3060TEUkOGjIqIrG1CVsY5mfYZBBgKvB/jrVIRBJA8QfFLChfgC/NDuP2tfMx/4j5FL9WrKGhIiJRpIRQxEFVwN2BrcrRlsRAJbZKaD/gXyH7BwIforv7IlGQlDHkO+CXMPnrybh3hw/hduNmyoFTkrecqoiIA5QQijioGltP5Y+Bx0njbeBQbPW/ssC+TthhoguAYx1ql0iSSboYUgT0h+I1xSw4YgG+duFFnkKXiBERkehQQijioHbAlYEtaSb0jgV+DqwJPE/DnuBq4AqS6ERFnJd0McQDlMHk303G7au/wJMbt5aIERGJoqT4+yGSqDKxN8STyjDgmcDjY4G/AoOca45IMku6GHIjFH9hewcbEtpLODh3cBs2TkQkOamHUERazrDnmmCXAKOBF4A5KBkUkT35gMnAPXX2Z8DkiZNxNTFJ0IVLvYQiIlGiHkIRaZkFwDXAAcD0kP1u4D9ONEhEEsJ87PDx+dirkDOxc44Bn/GxrGIZBtPoRxgMS8uW4jM+rR0qItJKSghFHFRG7RpiO4D2jrUkAluBPwBPYnsIPwV+B/zUyUaJpKaEiiE/ArdjewaD+d5u4B1qEkK3y83MgTMp99UderCnHHeOkkERkShQQijisN1ON6C5dmMv5O7EXnkGHYgd/iUijoj7GGKAZ4GbgO9D9h+CrTxcp+pwrjuXXHduW7VORCTlKSEUcVA2dsmt4OO49QF2eOjykH0dsIufXQVkONAmEYn/GLIcWwL145B97YG7gOuAdAfaJCIiYZQQijgoDejhdCMa83/AjcBrdfZfBEwEurZ1g0QkVFzHkI+B4YR3Yf4CeATo6UiLRESkHqoyKiIN+5jwZPAI4DNgGkoGRaRxQ4H+gcf7YecKvoqSQRGROKOEUMRBVcCDga3K4bbU6zfYi7ouwFPYZPAoR1skIiHiKob8WOd5Onbe8d3AMuCUtm6QiIg0h8sY03htZ0kIHo+H/Px8SktLycvLc7o50kxlQLB0gheHKwQuxy4XMSFknwHWA52AfAfaJG1KcSTxxEUM2QXcj81KPwG0VryISELRHEIRB7UDxoY8dsQObIGHImy10KHA8SGv92n7JolI8zgeQ97FFpb6JvD8CuxSNBp/JCKSMJQQijgok/A13duUDzsXcAKwLWT/X6hNCF1t3CYRiYhjMeRb4HrC5xi3wy4hUY1tmIiIJAQlhCKpaB5wNbAgZF82cBu2qqiISH2qgUeBP2LHqwYdi11T8BAH2iQiIq2ihFAklWwGbsEuEh3qXOABoFebt0hEEsXH2DUFQ9cj7QI8hC1ApREFIiIJSQmhiIPKqF1DbCMxLgixBlvswRuybwDwV8LnDIpIwmizGGKwQ0SDyaALmxzeC3SM1ZeKiEhb0LRvEYeVBraY2w84MvB4L+BvwEKUDIokuDaJIS7skFAXdj3SL7ExpGOsv1hERGJNPYQiDsoGVoc83rbRg2d7BXmdsino0cqy/5uA7iHPXdjewL8B9wAFrft4EXFe3RgCUYojX2LXETwsZN9RwBxgGOBu2ceKiEj8UUIo4qA04IDA44Wz1zJ3xmp2eavIys1g2Oh+DBneN/IP9QJ/xlYLfR04NeS1Q7ALRYtIUgiNIRCFOLId+AMwFZsMfkl48ndsq5ssIiJxRkNGReLAto0e5s5YDX5DYe988BvmzljNto2e5n+IAZ4DDsQuEl2FnfNTFYsWi0i8aVUcMdj1K/oDUwLPi4F/xbDBIiISF9RDKOKgauAJ7DKAmRXVdN8nj7Q0F/mdcyjZUMqGVduaN/SrGLuMxNyQfRnAWdj1BkUkKQVjCMCI7RXs8lZR2Ds/sjiyFFsg5pOQfbnYpSV+HeMTEBERxykhFHFQFXAVQI88HszPonRrOfmdcyjdWk5VxW4+fHkF/t3+hod+bQNux14RmpD9o7FDRvdvk9MQEYfUxBBg/d7ZZOVmND+O7ATuBh4j/MbRL4FHqC1fKiIiSU1DRkUc5AbODmzDRu0PaS5KNpRSXbUbgyEjw13/0C+DLQ5zAHauTzAZ7Af8F/gPSgZFUkBoDCnsnsew0f2aF0feBw7C3jgKJoMHAO8BL6NkUEQkhaiHUMRBWcArwScn9OGAfnvj2V7Bjq1lzH5+Gfmdc8KGfnm2V9ghXy7shduOwHtzgTuBa7FDRUUkJYTFEGDI8L706l/QdBzplAebQz7kD8BNQGZbn4GIiDhNCaFIHCnokUdBjzy2bfTsMfQrq30GeZ2yaw9+BJgFnIstItOtdd8d1SUvRMQxzYojPYDxwDfA40ALChrXpRgiIpKYlBCKxKGCHnbo19wZqylZV0pWSQbDftYv/CJrf+zFXBSGdkVtyQsRiRs1ceSfqymZX0rWTzIYdnpIHHkYexXgav13KYaIiCQuJYQiDiqndg2xr4GckNeGnNiXXhsK8NxXQd6GbAqW5dkhoaEHRSEZrFuqvnRrOXNnrKZX/wLd5ReJc43FEDbAkKK+9Hq7AE96BXmnZFNwYsjvdHp02qAYIiKS2FRURsRBBtgU2EKLhLICOBkKLs6j75pCCqryYCPwcfTb4AmUqg+dZ7SrrArP9orof5mIRFW9MaQKmIQtGvM6FFTl0beskIL5eXUCTXQohoiIJDYlhCIOysIuIVgceEwpdjH5gdgqgEHDgSXAKdFvQ16n2lL1fr+pf76iiMSlPWLIHOAw4FZs9yFAIfAc8CZRGR5al2KIiEhiU0IYAx9//DGjR4+me/fuuFwu3njjjUaPnzNnDi6Xa49ty5YtbdNgcYwbe+12mB/cT2GXjXiU2jLw+wKvYYvHHBybNgTnGQVL1ZPmCp9nJCJxqyaGbAH3b4ATgJWBF9OwixSuwi4wH4NkEBRDREQSneYQxkBZWRmDBg3i4osv5qyzzmr2+1atWkVeXu0f0C5dusSieRKP7gDuC3meDUwAfh94HGOhpepVIVAkwewEDgV+CNl3FDAZGNw2TVAMERFJXEoIY2DUqFGMGjUq4vd16dKFjh07Rr9BEreqsSO5uAHOfxzSdwK/BB4EerdtW4Kl6kUkcVQDz3UA/gbnXwDpHbDzBy+hzccAKYaIiCQmJYRx5LDDDqOyspJDDz2Uu+++m2HDhjV4bGVlJZWVlTXPPR5PWzRRoqEKWw7wEPtwHMDe8MvHIb0XdsiXSBtQHElQPwAdgIyQGPIr+OUiSL8R6Oxg20REJOFoDmEc6NatG1OmTOG1117jtddeo2fPnhx//PEsXLiwwfdMnDiR/Pz8mq1nz55t2GJpsfewBWNGADvt/J9TA5t7LEoGpU0pjiQYP/AUcCB2DUHqxJD7UTIoIiIRcxljYlCEWoJcLhevv/46Y8aMieh9xx13HL169eLZZ5+t9/X67uz37NmT0tLSsHmIEie+AW4A/hOy72bs0C4RhyiOJJDFwJXAp4Hn2djiMW08tFxERJKPhozGqSOPPJJPPvmkwdczMzPJzMxswxZJi3iBicBD2LFdQUcD5zrSIpEaiiMJwAPcBTxObfVhgNMB/ehERCQKlBDGqUWLFtGtWzenmyEtZYAXgZuwC8oHdcMWjIlhCXgRSQIGeBm7LunmkP39gCLssHMREZEoUEIYA16vlzVr1tQ8X7duHYsWLaJTp0706tWLCRMmsHHjRp555hkAHn30Ufr06cMhhxzCrl27ePLJJ/nggw+YOXOmU6cgrbEGuBj4X8i+dOBG4DZsMYiAcmBQ4PFiIKdNGigicW0Vdv3A90P2ZQG3Y5eiCekZVAwREZHWUkIYA/Pnz+eEE2qrg9xwww0AjB07lunTp7N582Y2bNhQ83pVVRU33ngjGzduJCcnh4EDB/L++++HfYYkkFxgUcjz04BHgAP2PNRg88fgYxERniU8GRwNPAb02fNQxRAREWktFZVJEh6Ph/z8fBWDiBcPA1OAR7EJYQN8wGeBxz/FVgwUcYriSJwoBw4OPP4rdr5gAxRDRESktZQQJgldyDnkI+BPwKvAXiH7q7El4lX0QRKI4ogD1gNfAOfU2b8c2yOoMaAiIhJjWodQpCW+A84Djgc+wFYBDJWOkkERaVglcB+2J/BC7NI0oQ5ByaCIiLQJJYQikdgF/Bm7MPSLIfs/x/YKRmg38Epg29361olIIpiNrQTzB6ACmxze3bKPUgwREZHWUlEZkeYwwAxsCfi1IfsLsHf5L6ZFk3cqqR0p5kW/kCJJbTO22vALIfvSgKuBP7bsIxVDRESktfS3Q6QpXwHXAe+F7HMD47F39ffa8y3NlQYcF/JYRJLQbuzagXcAO0P2DwX+DhzW8o9WDBERkdZSQihtZttGD57tFeR1yqagR4IUrKjEzhMsCdl3Arby36Gt//hsYE7rP0YkZSRcHFkPnEn4UjR7A5OAcbQ6i1MMERGR1lJCKG1i4ey1zJ2xml3eKrJyMxg2uh9Dhvd1ullNy8QWjLkS6IVdTuIXgMvJRomkpoSMI12xYzmDLgMmYpNCERGROKARJhJz2zZ6mDtjNfgNhb3zwW+YO2M12zZ6Wvx5a5eWNOv9kRwL2PLv39fZdznwOLASOJtWJ4MRt0lEohpHYhpD6soC/oYdFjoPeIKoJIOKIyIiEi3qIZSY82yvYJe3isLe+aSlucjvnEPJhlI82ysiHvIVSQ9BRL0JJcAEYBpwCfBkyGtu4Krap9WmmnRXekTtbqhNh59xIFee0Aew14rZLfpUkeQXrTgSsxgCdljotcAU4KCQ/SOBk4jaLdjQdqXtlcUTdx5HdodMxRAREWkR9RBKzO2u9uH3G7Z+68HvN5RuLSerfQZ5nSK7dImkh6DZx1YDfwH6YZNBgKeA4vrbsNi7mBGLR7DEuySitjfUpk/fWcNiYDF2HXsRqV804khMYghAKTYRPBz4GFtwytQ5Jkp/beu2yxhY3SFTMURERFpMCaHE1MLZa3nvmSWUeyrZtO5H1izeAmkuhp3eL+LewWAPQX7nnJoegl1lVXi2V7Ts2FnAQGwZ+OA1Xj42QWygYEzRpiK8fi9Fm4oiantDbfLtqODpdT8yEzuyTET2FK04EvUYYrBLSPTHFpoKZmSb2XPoeZTUbVdBx0wu/cs8nl73o2KIiIi0iBJCiZnQO9n7DSqke9+9aJ+XxcgLBzLkxMgLQeR1yiYrN4PSreVN9hA0euxabNW/k7FLSoCdF3gpsBq7xEQ9I0KLvcUs8C4AYL53PsXeBroRI2h/Tk4Gp2a4OYkWLWMokvSiGUeiFkPAzikeDvwa2BJ4Uza2YMxioLDh82nN3L+67dr5fTkDN5RyaoZbMURERFpECaHETN072Z33ySPN7aJdessvW/Yf1IXqqt2UbChttIegoEcew0b3gzRX+LEv58HBwBshBw8FvgT+AXRp+Lsnb5pM8JLLjZspm6ZE1PYG25QIpfNFHBLtONLqGNIxz843HgR8GPKG07FJ4q1ARv3fvXD2Wl548FNee+xzXnjwUxbOXhtx+xVHREQk2lRURmIm9E52fuecFs8dhDpFFNqlcejQfThi5H6NXgQNGd6XXv0Lwtcs24BdWxBsOfgHgPNp8tZIaO8ggA9fTS/h4NzBzT6Pum3q2COPtwOvjUS/kCJ1RSuORC2GjALeDTloX2wV4p83/v115/6Vbi1n7ozV9OpfEHEyF9qunE7ZLAjEEcUQERFpCfUQSsxE60523QupjAw3a5aUNP1GoKB7Hn0HFNZ+54XAMcBN2OGhF9Cs34LQ3sGglvQSgv13CbapEnsd+XNq81QRqRWNONKqGNKjTgy5JfBCBnA7sJwmk0GIbP5iJO3q0CNPMURERFpFNxMlpuq9wx6hFpWb3w7ciS0W80zI/jTsMK8IRpvV7R0MamkvYag04Cchj0VkT62NIy1esqIS+AHoHrLveOBBYDRwYPPbEM0RE6EUQ0REpLX090Nibo877BGKpBAEPuwaYAcARcCzwCd1jmkiGaxb9KG+3sHaj2pZL2FQNnb64pdo/TCRxrQmjkQUQ4Lex1YhPoc913P4PU0mg3XjSKzm/imGiIhIa6mHUOJe8EJq7ozVlGwoJat9Rv0XUp8AV2MXhw5qj60q+rPmfVfdhag7n+ljQYc9eweDotFLKCKx1ewYArARuxTNS4Hnq7GjDC5q/vc1tKB9NEZMiIiIRJsSQkkIjV5IbQRuBp6v86bzgUlAj+Z9R31FH571TsPVwYXZY5XpWi5cTNk0han9pkZ2UiLSZppMxnZji8PcCXhD9h8NDGn+9zRVPCa4iYiIxAslhBKXtm307HHhtseF1C7gEeDPQFnImwdjL+yGRfaddecZdeicxdbO3zaaDAIYDEvLluIzPtyuyErhVwAjAo/fR0O+RKKpbhxpMBmbC1wJLAnZV4C9oXQREU2uaPF8xRZSDBERkdZSQihxp6HhVnt4F7gt5Pne2OTwUlq0ynvdog87t+7i3FcmcNrVA+jUtUOj781x50ScDIKdmvRpyGMRiY5mxZFt2NEF00L2uYDLgfuATpF/b6yKxzREMURERFpLRWUkrtQdboXfMHfG6prCDGHOwFb8SwOuws71+S0tSgah/qIPJ4waSP9e+9Elo0ujW647t0XfmQm8HtgyW9ZsEamj2XFkNeHJ4GBgHrYwVQuSQWj7heMVQ0REpLXUQyhxpcHhVt9WUDArL7ywgwuYDFRhqwFGQVsXfWgHjInpN4iknmYP2zwaGAe8hh1dcAUtvqEUqi3jiGKIiIi0lhJCiSv1Drf6MYO8s7Nt8ZjuwMkhb+gf/Tao6INIYqs3jmRkkPdKNhxMeNL3IHZ4aNfotkFxREREEoWGjEpcCRtutbwU5rkYNrsfBRsDF1a3QhM1XhKKD5gT2HyOtkQkeYTFkf8rhU0uhr3dj4J78uDJOgfvTdSTwbakGCIiIq3lMsYk0eV16vJ4POTn51NaWkpeXoLflf4ett3owfN6BXnV2RRUBc7nTOBhoI+TjYuuMiA4+9CLXTZRxClJFUeAbR958NxeQd4XIXFkH+zapOlOtix6FENERKS1NGRU4kc1UATcDQWleRQQuIA7CHgMOMmxlsWMCzuCLfhYRKKgDLgHCh7Oo2B3SGJ7JvAoSZMMgmKIiIi0nhJCiQ/bgWOAFSH78oA/AuNJqgu4UDnAcqcbIZIsDPAGcC3wbcj+vti1SU91oE0xphgiIiKtpTmEEh/2AnoHHruAi7El4a8jaZNBEYkiH3YpmrOoTQYzgDuAZSRlMigiIhIN6iEUZ+zCLpoVHOPkAh7BToJ5CDjSoXaJSGJyAz1Cnp8M/A04wJnmiIiIJAr1EErbMsArQD/gP3VeOxD4mJRKBiuwUyNPCjwWkQjULYl2H3Zx+ZeBd0mJZFAxREREWks9hNJ2lgHXAB8Gnl8PjASy2q4J2zZ62mzR+ebwA++HPBaRZvgOGz+OBa4O2b8XsICYV1eJpziiGCIiIq2lhFBi70fgLuDvhC+UdQCwgzZbA2zh7LXMnbGaXd4qsnIzGDa6H0OG922bL29AJvCvkMci0ohqbMXhu7GVRGcCZwPdQo6JcTIYb3FEMURERFpLQ0YldnzAE9jE73Fqk8G+2OGi79JmyeC2jR7mzlgNfkNh73zwG+bOWM22jZ62aUAD2gHnBzbdnRFpxP+ww0FvwiaDYDOg1W3XhHiMI4ohIiLSWkoIJTbmAkcAvwV+COzLwc7xWQ6Mpk0XzfJsr2CXt4r8zjmkpbnI75zDrrIqPNs160Ykrn0PXIQdHhpcX8EFXAGsAo5ru6YojoiISDJSQiix8QhQHPL8V9iLtwm06ZzBoLxO2WTlZlC6tRy/31C6tZys9hnkdcpu+8aE8AFfBjZfE8eKpBQfMBlbbOrpkP2HA59jh6Dv1bZNisc4ohgiIiKtpYRQYuMhbOI3CFs59AVgH/vSto0e1i4taXKYVbWpjlpzCnrkMWx0P0hzUbKhFNJcDDu9n+MFIXZhi6oeGXgsIgF/Aa7EzjMGyMcmgZ8DRzQ/jkRTPMYRxRAREWktlzGmbuFuSUAej4f8/HxKS0vJy2vji5O3seXff15n/3zsnB937a7mFmRY7F3MNWuu4fH9H2dg7sCoNTWeqgMClAMHBx6vwI6qFXGKo3Fkj8YA/YHNwIXAA0Chfcnpwi7xFEcUQ0REpLXUQygt9zVwGjYR/B12UflQPyEsGYykIEPRpiK8fi9Fm4qi2uSCHnn0HVDo+EVcUA6wPrDpQk5SlgFW1tmXB/wT+Ag7ZDSQDMZDYZd4iiOKISIi0lpKCCVyO4FbgUOA/wb2baS29nkDmluQodhbzALvAgDme+dT7C2u7+NEJBkswxaGOQK7vmCoUdhiMiEiKezixLBSERGRRKOEUJrPYJO+A4FJ2DXBwM4NfAFbUbQRzS3IMHnTZNyBrkU3bqZsmhLV0xCROOAFbsYOK/8fdimJ62tfbmgOcXPjyMLZa3nhwU957bHPeeHBT1k4e22MTkRERCSxKSGU5lkA/Ay4ADunByAD+APwFbaKaBPLSDSnIEOwd9AXqJfnw5fUvYS7gDGBTQUhJCUY4DXgIOBBYHdg/37AJfbhYu9iRiwewRLvkj3e3pw4Eg/DStuKYoiIiLSW1rGVpk0HLsZeyAWdATyMvYiLwJDhfenVv6DBggzB3kFfSAH1YC/h1H5TW9b+OOYD3gx5LJLU1gBXA++G7MvELkdzCzVL0oTOIa7v976pOBIcVlrYO79mWGnJhlI82yviYt5fNCmGiIhIaykhlKadDLTHDvE6EHgMGNnyjyvokVfvRVno3MFQob2Eg3MHt/yL41AG8ETIY5GktAu4P7BVhuwfBTxO2I2l+uYQ1/d731AcgfBhpfmdc+JivcBYUQwREZHW0pBR2dPWOs+7AxOxPYJLaFUy2JjQuYN1JetcwnTgssCW7nBbRGJmN7ZiaDAZ3Af4N3bJmjqjDKIxhzge1wuMFcUQERFpLfUQSq3/A27ELiS/GugY8tpVsf3qhnoHg5K5l1Ak6eViRxacC9wA3BHYV0fdONCa3/umhpWKiIiIpR5CgQrgj9hFoF/D9hD+sW2bMHnTZFxNVKVx4Uq6XkI/sDyw+R1ui0hUVAMPAevq7D8Te6NpEvUmg1D/KIHWjA6Ip/UCY0UxREREWksJYSoLrfZ3N7Ul6roAh7VdM3zGx7KyZZiwqjV7MhiWli3FZ5KndEIFcGhg23MVNZEE8zE2dtwEXFvnNRfQp+G31q0wHJTslYZbSzFERERaS0NGU9Vy7AXb7JB97YBrgDuB/LZritvlZubAmZT7yps8Nsedg9tV/zzDRFXgdANEWqsEu6bgMyH73gKWAgOa9xH1VRgOSuZKw9GgGCIiIq2hhDDVlAJ3AX8jvEb5Sdg5Pgc50SjIdeeS625gHFkSa8+eNXxEEoYPmArcho0tQUcAf6fZyaDmELecYoiIiLSWhoymmirgaWqTwT7AG8B7OJYMikgC+gI4ChhPbTK4FzAFmAf8pPkflapziEVEROKBEsJU0xn4E5AN3AOswC4y3/i1mIhIrXuAnwKhnXoXAV8Bv4UGVo+pVyrPIRYREYkHGjKaiq7AVvzbx+mGyC7gksDjfwJZDrZFpNkGQ03+digwGfhZyz4q1ecQt5ZiiIiItJbLGNP4bVlJCB6Ph/z8fEpLS8nLS94S68mmjNoK/F7sfCARp0QURy7AJoZXoxXRHaQYIiIiraUhozHw8ccfM3r0aLp3747L5eKNN95o8j1z5sxhyJAhZGZmsv/++zN9+vSYt1OclwE8EtgyHG6LSESexS4yr2TQUYohIiLSWkoIY6CsrIxBgwZRVFTUrOPXrVvHaaedxgknnMCiRYu47rrruPTSS3nvvfdi3FJxWjpwXWDTdbWIREoxREREWktzCGNg1KhRjBo1qtnHT5kyhT59+vDwww8DcNBBB/HJJ5/wyCOPMHLkyFg1U0REREREUpwSwjgwb948RowYEbZv5MiRXHfddQ2+p7KyksrKyprnHo8nVs2TGPIDGwKPe6Eue2lbiiOJTzFERERaS3874sCWLVsoLCwM21dYWIjH46GioqLe90ycOJH8/PyarWfPnlFtU7WpjurnSf0qsEtB9gk8FmlLsY4jEnuKISIi0lpKCBPUhAkTKC0trdm+/fbbZr1v20YPa5eWsG1jwz0Bi72LGbF4BEu8S6LVXGlETmATaWuxjCPSdhRDRESkNTRkNA507dqVkpKSsH0lJSXk5eWRnZ1d73syMzPJzMyM6HsWzl7L3Bmr2eWtIis3g2Gj+zFkeN89jivaVITX76VoUxFT+02N6DskMu2xZeNFnBDLOCJtQzFERERaSz2EcWDo0KHMnj07bN+sWbMYOnRo1L5j20YPc2esBr+hsHc++A1zZ6ze4w5/sbeYBd4FAMz3zqfYWxy1NohIYmtuHAkeq15EERGR+KeEMAa8Xi+LFi1i0aJFgF1WYtGiRWzYYKf+T5gwgQsvvLDm+N/97nesXbuWm2++ma+++oq///3vvPzyy1x//fVRa5NnewW7vFXkd84hLc1FfuccdpVV4dkePutk8qbJuHED4MbNlE1TotYGEUlszY0jC2ev5YUHP+W1xz7nhQc/ZeHstQ61WERERJqihDAG5s+fz+DBgxk8eDAAN9xwA4MHD+bOO+8EYPPmzTXJIUCfPn14++23mTVrFoMGDeLhhx/mySefjOqSE3mdssnKzaB0azl+v6F0azlZ7TPI61Q7JDXYO+jDB4APn3oJY6wSuCywVTZxrIjTmhNHIulFlNZTDBERkdZyGWOM042Q1vN4POTn51NaWkpeXl69x9TM/SmrIqt9BsNO78eQE2vn/ly++nIWeRfVJIRgewkH5w7WXMIYKQNyA4+92PlAIk6JRhxZu7SE1x77nMLe+aSlufD7DSUbSvnFNUfRd0BhvZ8pLacYIiIiraWiMilkyPC+9OpfgGd7BXmdsinoUXvBFzp3MFRoL+Hg3MFt2dyUkA7cG/JYJN41FkcgvBcxv3NOvb2IEj2KISIi0lrqIUwSzbmz35j6egeD1EsokhpaG0eCmupFFBERkfihHkJpsHcwSL2EIhKJpnoRRUREJH6oqIwwedNkXLgaPcaFSxVHY8AAWwObuuolmRT0yKPvgEIlgzGmGCIiIq2lHsIU5zM+lpUtwzRxKWEwLC1bis/4cLvcbdS65FcOdAk8VkEIEYmUYoiIiLSWEsIkEZwK6vFEXtr91X1fpcJX0eRx2e5synaWRfz50rDQf00P1DODUxJZhw4dcLka732PJ62JI+IMxZDklmgxREQSkxLCJLFz504Aevbs6XBLpKW6O90AibrWFmdpa4ojiU0xJPkkWgwRkcSkKqNJwu/3s2nTJowx9OrVi2+//Tap/oh4PB569uyZdOcFyXtuyXpe0PxzS7S7+36/n1WrVnHwwQen9M8t0STreUHynluyxhARSUzqIUwSaWlp7LPPPjVDvfLy8pLqj2dQsp4XJO+5Jet5QfKdW1paGj169ACS79xCJeu5Jet5QfKeW7Kel4gkFlUZFRERERERSVFKCEVERERERFKUEsIkk5mZyV133UVmZqbTTYmqZD0vSN5zS9bzAp1bokrWc0vW84LkPbdkPS8RSUwqKiMiIiIiIpKi1EMoIiIiIiKSopQQioiIiIiIpCglhCIiIiIiIilKCaGIiIiIiEiKUkIY54qKith3333JysriqKOO4osvvmj0+FdeeYX+/fuTlZXFgAED+O9//xv2ujGGO++8k27dupGdnc2IESP4+uuvY3kKDYrk3P7xj39wzDHHsNdee7HXXnsxYsSIPY6/6KKLcLlcYdspp5wS69PYQyTnNX369D3anJWVFXZMov7Mjj/++D3OzeVycdppp9UcEw8/s48//pjRo0fTvXt3XC4Xb7zxRpPvmTNnDkOGDCEzM5P999+f6dOn73FMpL+7sZSscSRZYwgkbxxJxhgCqRFHRCSJGYlbL774osnIyDBPPfWUWb58ubnssstMx44dTUlJSb3Hz50717jdbvPAAw+YFStWmNtvv92kp6ebpUuX1hxz//33m/z8fPPGG2+YxYsXm9NPP9306dPHVFRUtNVpGWMiP7df//rXpqioyBQXF5uVK1eaiy66yOTn55vvvvuu5pixY8eaU045xWzevLlm2759e1udkjEm8vOaNm2aycvLC2vzli1bwo5J1J/ZDz/8EHZey5YtM26320ybNq3mmHj4mf33v/81f/jDH8y///1vA5jXX3+90ePXrl1rcnJyzA033GBWrFhhHn/8ceN2u827775bc0yk/1axlKxxJFljiDHJG0eSNYYYk/xxRESSmxLCOHbkkUea8ePH1zz3+Xyme/fuZuLEifUef84555jTTjstbN9RRx1lfvvb3xpjjPH7/aZr167mwQcfrHl9x44dJjMz07zwwgsxOIOGRXpude3evdt06NDBPP300zX7xo4da84444xoNzUikZ7XtGnTTH5+foOfl0w/s0ceecR06NDBeL3emn3x8DML1ZwLuZtvvtkccsghYfvOPfdcM3LkyJrnrf23iqZkjSPJGkOMSd44kgoxxJjkjCMiktw0ZDROVVVVsWDBAkaMGFGzLy0tjREjRjBv3rx63zNv3ryw4wFGjhxZc/y6devYsmVL2DH5+fkcddRRDX5mLLTk3OoqLy+nurqaTp06he2fM2cOXbp04cADD+SKK67ghx9+iGrbG9PS8/J6vfTu3ZuePXtyxhlnsHz58prXkuln9s9//pNf/epXtG/fPmy/kz+zlmjq9ywa/1bRkqxxJFljCCRvHFEMCZdIcUREkp8Swji1bds2fD4fhYWFYfsLCwvZsmVLve/ZsmVLo8cH/xvJZ8ZCS86trltuuYXu3buH/bE85ZRTeOaZZ5g9ezaTJk3io48+YtSoUfh8vqi2vyEtOa8DDzyQp556ijfffJN//etf+P1+jj76aL777jsgeX5mX3zxBcuWLePSSy8N2+/0z6wlGvo983g8VFRUROX/72hJ1jiSrDEEkjeOKIaES6Q4IiLJr53TDRCJ1P3338+LL77InDlzwgon/OpXv6p5PGDAAAYOHMh+++3HnDlzGD58uBNNbdLQoUMZOnRozfOjjz6agw46iKlTp3LPPfc42LLo+uc//8mAAQM48sgjw/Yn4s9MEl8yxRBIjTiiGCIiEjvqIYxTBQUFuN1uSkpKwvaXlJTQtWvXet/TtWvXRo8P/jeSz4yFlpxb0EMPPcT999/PzJkzGThwYKPH9u3bl4KCAtasWdPqNjdHa84rKD09ncGDB9e0ORl+ZmVlZbz44otccsklTX5PW//MWqKh37O8vDyys7Oj8v9BtCRrHEnWGALJG0cUQ8IlUhwRkeSnhDBOZWRkcPjhhzN79uyafX6/n9mzZ4fdCQ41dOjQsOMBZs2aVXN8nz596Nq1a9gxHo+Hzz//vMHPjIWWnBvAAw88wD333MO7777LT37ykya/57vvvuOHH36gW7duUWl3U1p6XqF8Ph9Lly6taXOi/8zALmFQWVnJb37zmya/p61/Zi3R1O9ZNP4/iJZkjSPJGkMgeeOIYki4RIojIpICnK5qIw178cUXTWZmppk+fbpZsWKFufzyy03Hjh1ryolfcMEF5tZbb605fu7cuaZdu3bmoYceMitXrjR33XVXveXiO3bsaN58802zZMkSc8YZZzi2hEEk53b//febjIwM8+qrr4aVF9+5c6cxxpidO3ea3//+92bevHlm3bp15v333zdDhgwxBxxwgNm1a1fcntcf//hH895775lvvvnGLFiwwPzqV78yWVlZZvny5WHnnog/s6Cf/exn5txzz91jf7z8zHbu3GmKi4tNcXGxAcxf/vIXU1xcbP7v//7PGGPMrbfeai644IKa44Pl4m+66SazcuVKU1RUVG+5+Mb+rdpSssaRZI0hLTm3RIkjyRpDgm1J5jgiIslNCWGce/zxx02vXr1MRkaGOfLII81nn31W89pxxx1nxo4dG3b8yy+/bPr162cyMjLMIYccYt5+++2w1/1+v7njjjtMYWGhyczMNMOHDzerVq1qi1PZQyTn1rt3bwPssd11113GGGPKy8vNySefbDp37mzS09NN7969zWWXXebIH85Izuu6666rObawsNCceuqpZuHChWGfl6g/M2OM+eqrrwxgZs6cucdnxcvP7MMPP6z3/63guYwdO9Ycd9xxe7znsMMOMxkZGaZv375h66IFNfZv1daSNY4kawwxJnnjSDLGEGNSI46ISPJyGWNM2/VHioiIiIiISLzQHEIREREREZEUpYRQREREREQkRSkhFBERERERSVFKCEVERERERFKUEkIREREREZEUpYRQREREREQkRSkhFBERiUObN2/m1ltv5YQTTqBDhw64XC7mzJnjdLNERCTJKCEUERGJQ6tWrWLSpEls3LiRAQMGON0cERFJUkoIRURE4tDhhx/ODz/8wOrVq7nhhhucbo6IiCQpJYQiIiJtpKKigv79+9O/f38qKipq9m/fvp1u3bpx9NFH4/P5AOjQoQOdOnVyqqkiIpIilBCKiIi0kezsbJ5++mnWrFnDH/7wh5r948ePp7S0lOnTp+N2ux1soYiIpJp2TjdAREQklRx11FHcfPPNTJo0iTPPPJOSkhJefPFFHn30Ufr16+d080REJMUoIRQREWljd999N2+99RZjx47F6/Vy3HHHcc011zjdLBERSUEaMioiItLGMjIyeOqpp1i3bh07d+5k2rRpuFwup5slIiIpSAmhiIiIA9577z0Adu3axddff+1wa0REJFUpIRQREWljS5Ys4U9/+hPjxo1j8ODBXHrppZSWljrdLBERSUFKCEVERNpQdXU1F110Ed27d+exxx5j+vTplJSUcP311zvdNBERSUEqKiMiItKG7r33XhYtWsTs2bPp0KEDAwcO5M477+T222/n7LPP5tRTTw07FmD58uUAPPvss3zyyScA3H777W3feBERSTouY4xxuhEiIiKpYOHChRx11FFcccUV/PWvf63Z7/P5GDp0KBs3bmT58uV07NgRoNFCM/rzLSIi0aCEUEREREREJEVpDqGIiIiIiEiKUkIoIiIiIiKSopQQioiIiIiIpCglhCIiIiIiIilKCaGIiIiIiEiK0jqEIhJ3fD4f1dXVTjdDRETiTHp6Om632+lmiCQVJYQiEjeMMWzZsoUdO3Y43RQREYlTHTt2pGvXro2u0ykizaeEUETiRjAZ7NKlCzk5OfpjLyIiNYwxlJeX8/333wPQrVs3h1skkhyUEIpIXPD5fDXJ4N577+10c0REJA5lZ2cD8P3339OlSxcNHxWJAhWVEZG4EJwzmJOT43BLREQkngX/TmiuuUh0KCEUkbiiYaIiItIY/Z0QiS4lhCIiIiIiIilKCaGISAKaPn06HTt2dLoZIpIE5syZg8vlUoVnkRSlhFBEpBUuuugiXC4XLpeLjIwM9t9/f/70pz+xe/fumH7vueeey+rVq2P6HU0JPff09HQKCws56aSTeOqpp/D7/RF9VrInuNWmbeY6BX8m999/f9j+N954o82H2QX/33C5XLRv354DDjiAiy66iAULFkT8WccffzzXXXdd9BuZAkJ/DvVtd999t9NNFBGHKSEUEWmlU045hc2bN/P1119z4403cvfdd/Pggw/We2xVVVVUvjM7O5suXbpE5bNaI3ju69ev55133uGEE07g2muv5ec//3nMk+JEsdi7mBGLR7DEu6RNvi8rK4tJkybx448/tsn3NWbatGls3ryZ5cuXU1RUhNfr5aijjuKZZ55xumkpY/PmzTXbo48+Sl5eXti+3//+9461LVrxUERaRwmhiEgrZWZm0rVrV3r37s0VV1zBiBEj+M9//gPYHpsxY8bw5z//me7du3PggQcC8O2333LOOefQsWNHOnXqxBlnnMH69esBmDlzJllZWXsM37r22ms58cQTgfp71CZPnsx+++1HRkYGBx54IM8++2zNa+vXr8flcrFo0aKafTt27MDlcjFnzhwAfvzxR84//3w6d+5MdnY2BxxwANOmTWvWuffo0YMhQ4Zw22238eabb/LOO+8wffr0muP+8pe/MGDAANq3b0/Pnj258sor8Xq9gB2uNm7cOEpLS/fotXj22Wf5yU9+QocOHejatSu//vWva9YgSxRFm4rw+r0UbSpqk+8bMWIEXbt2ZeLEiY0e98knn3DMMceQnZ1Nz549ueaaaygrKwPgb3/7G4ceemjNscEexilTpoR9z+23397odwQXEN933305+eSTefXVVzn//PO56qqrahLWH374gfPOO48ePXqQk5PDgAEDeOGFF2o+46KLLuKjjz7iscceq/n/Y/369fh8Pi655BL69OlDdnY2Bx54II899ljE/17JrmvXrjVbfn4+LpcrbF9ubm7NsQsWLOAnP/kJOTk5HH300axatSrss958802GDBlCVlYWffv25Y9//GPYjZ8NGzZwxhlnkJubS15eHueccw4lJSU1r999990cdthhPPnkk/Tp04esrCyeeeYZ9t57byorK8O+a8yYMVxwwQUx+lcRkVBKCEUk6Wzb6GHt0hK2bfQ48v3Z2dlhd75nz57NqlWrmDVrFm+99RbV1dWMHDmSDh068L///Y+5c+eSm5vLKaecQlVVFcOHD6djx4689tprNZ/h8/l46aWXOP/88+v9ztdff51rr72WG2+8kWXLlvHb3/6WcePG8eGHHza73XfccQcrVqzgnXfeYeXKlUyePJmCgoKIz//EE09k0KBB/Pvf/67Zl5aWxl//+leWL1/O008/zQcffMDNN98MwNFHH71Hz0Ww16K6upp77rmHxYsX88Ybb7B+/XouuuiiiNvklGJvMQu8dojkfO98ir3FMf9Ot9vNfffdx+OPP853331X7zHffPMNp5xyCr/4xS9YsmQJL730Ep988glXXXUVAMcddxwrVqxg69atAHz00UcUFBTU3Dyorq5m3rx5HH/88RG37/rrr2fnzp3MmjULgF27dnH44Yfz9ttvs2zZMi6//HIuuOACvvjiCwAee+wxhg4dymWXXVbz/0fPnj3x+/3ss88+vPLKK6xYsYI777yT2267jZdffjniNon1hz/8gYcffpj58+fTrl07Lr744prX/ve//3HhhRdy7bXXsmLFCqZOncr06dP585//DIDf7+eMM85g+/btfPTRR8yaNYu1a9dy7rnnhn3HmjVreO211/j3v//NokWL+OUvf4nP56u5iQZ2jcG333477PtFJIaMiEgcqKioMCtWrDAVFRWt+pwF739j/nrtO+aBS940f732HbPg/W+i1ML6jR071pxxxhnGGGP8fr+ZNWuWyczMNL///e9rXi8sLDSVlZU173n22WfNgQceaPx+f82+yspKk52dbd577z1jjDHXXnutOfHEE2tef++990xmZqb58ccfjTHGTJs2zeTn59e8fvTRR5vLLrssrG2//OUvzamnnmqMMWbdunUGMMXFxTWv//jjjwYwH374oTHGmNGjR5tx48a16NzrOvfcc81BBx3U4HtfeeUVs/fee9c8r3s+Dfnyyy8NYHbu3NnsdjrpslWXmSMWHGGGLBhijlhwhLl81eUx/b7Qn8lPf/pTc/HFFxtjjHn99ddN6J/8Sy65xFx+eXhb/ve//5m0tDRTUVFh/H6/2Xvvvc0rr7xijDHmsMMOMxMnTjRdu3Y1xhjzySefmPT0dFNWVtZgWwDz+uuv77G/oqLCAGbSpEkNvve0004zN954Y83z4447zlx77bWNnrsxxowfP9784he/aPK4qHvYGNOjGdvoet47upnvfbj1zWzo9+zDDz80gHn//fdr9r399tsGqInJw4cPN/fdd1/Y+5599lnTrVs3Y4wxM2fONG6322zYsKHm9eXLlxvAfPHFF8YYY+666y6Tnp5uvv/++7DPueKKK8yoUaNqnj/88MOmb9++YTEyVLT+XoiIpR5CEUka2zZ6mDtjNfgNhb3zwW+YO2N1zHsK33rrLXJzc8nKymLUqFGce+65YYUaBgwYQEZGRs3zxYsXs2bNGjp06EBubi65ubl06tSJXbt28c033wBw/vnnM2fOHDZt2gTAc889x2mnndZg4ZWVK1cybNiwsH3Dhg1j5cqVzT6PK664ghdffJHDDjuMm2++mU8//bTZ763LGBNWxOT9999n+PDh9OjRgw4dOnDBBRfwww8/UF5e3ujnLFiwgNGjR9OrVy86dOjAcccdB9ihafEu2DvowweAD1+b9RICTJo0iaeffrre/wcWL17M9OnTa/7/y83NZeTIkfj9ftatW4fL5eLYY49lzpw57NixgxUrVnDllVdSWVnJV199xUcffcQRRxxRs0B4JIwxQO1acj7f/7d3/zFV13scx5+HEyeF4xGZpyuWYIYuMLFz0DQStAvz1PJeHLq5pMmaFZGN0U3W3IrNXw3zR2orkrZkNhzOrcKpU+gHZLhpjlWGR7Hlr0jyR2I7nlBD7h/nnu/1iCgov/S8HtvZ4Lvv9/P5cL4fvt/zPp/P5/1tYfHixYwZM4bIyEisVis7d+7s0Dl+//33SUxMxG63Y7VaKS4u7p2+8SfQ0IHX6esce7qDx/bAhIeEhATj56ioKABjivYPP/zAokWLAvqMf9TW6/XidrsZNmwYw4YNM8qIj48nIiIioA/GxMRgt9sD6n3xxRepqKigoaEB8E2J9ydIEpHud09vN0BEpKv8+cdfNHsu8Y+YgYSEmBhoD+P34+f584+/GHy/rdvqffLJJykqKsJisTB06FDuuSfw0hoeHh7wu8fjITExkdLS0jZl+T8ojR8/noceeoiysjJycnL47LPPAtbkdVZIiO/7P/+HcfBN+7va008/zbFjx9i+fTuVlZWkpqYyb948VqxY0en63G43Dz74IOBbvzht2jRycnJYunQpkZGRfPvtt8ydO5dLly61G1RcuHABl8uFy+WitLQUu93O8ePHcblcd0QyiqLfijBjNgJCADNmPvztQ9aNWtft9aekpOByuViwYEGbabYej4fs7Gxyc3PbHBcdHQ34MnsWFxeza9cuHA4HNpvNCBKrq6uN4Lyz/MGBv38sX76cNWvWsHr1amOdaV5e3k3PcVlZGfPnz2flypU8/vjjDBgwgOXLl7Nnz55batdtsQH3d2A/ezvbOnJs913CDKGhocbP/mDMnzHY4/GwcOFCMjIy2hzXr1+/Dtdx7fUQwOFwMHbsWDZs2MDUqVOpq6tj27ZtnW2+iNwiBYQictewRfann9XC+dNeBtrDOH/aS79wC7bI/t1ab3h4OLGxsR3e3+l0smnTJu677z5stvY/5WVmZlJaWsoDDzxASEgIzzzzTLv7xsXFUVNTQ1ZWlrGtpqaG+Ph44P+B5smTJ3E4HAABCWb87HY7WVlZZGVlkZycTH5+fqcDwq+++or9+/fz2muvAb5RvitXrrBy5UojML12nZfFYqGlpSVg28GDBzl79iyFhYXGqMO+ffs61ZbecvXawatdPUrosDq6vR2FhYU8+uijRjIjP6fTyYEDB27YbydPnkxeXh6bN2821gpOmTKFL774gpqaGl5//fVbapN/vWhaWhrg66fp6ek899xzgC8Aqa+vN/ouXL9/1NTUkJSUxCuvvGJs84+w97j//O91K7bcfJe+wOl0cujQoXb7TFxcHCdOnODEiRPG/+uBAwdoamoKOJfteeGFF1i9ejUNDQ2kpaUFjDSKSPfSlFERuWsMvt/GE/8aBSEmfj9+HkJMPPHvUd06OngrMjMzGTx4MOnp6ezatYsjR45QVVVFbm5uQBKQzMxMamtrWbp0KTNnzuTee+9tt8z8/HxKSkooKiri8OHDrFq1ik8//dRIztK/f38mTpxIYWEhbreb6urqNhkiCwoKKC8v5+eff6auro6tW7cSFxd3w7/l4sWLNDY20tDQQG1tLW+//Tbp6elMmzaNOXPmABAbG8vly5d57733+OWXX/jkk08CslUCDB8+HI/Hw5dffsmZM2fwer1ER0djsViM47Zs2cLixYs79V73Fv/o4PX4Rwl7wpgxY8jMzGTt2rUB29944w12797Nq6++yvfff8/hw4cpLy83ksqAb/rgoEGD2LhxY0BA+Pnnn3Px4sU2U5Svp6mpicbGRo4dO0ZlZSUzZ85k48aNFBUVGdOfR44cSWVlJbt378btdpOdnR2QmRJ8/WPPnj0cPXqUM2fOcOXKFUaOHMm+ffvYuXMn9fX1vPXWW3z33Xe394ZJuwoKCtiwYQMLFy6krq4Ot9tNWVmZcR1JS0sz+lttbS179+5lzpw5TJ48mXHjxt20/NmzZ/Prr7/y0UcfKZmMSA9TQCgidxVn6giezU9iRu4Ens1PwvnPEb3dpDbCwsL45ptviI6OJiMjg7i4OObOnUtzc3PAiGFsbCyPPfYYP/74Y7vZRf2mT5/OmjVrWLFiBaNHj2bdunWsX78+IAvkxx9/zN9//01iYiJ5eXksWbIkoAyLxcKCBQtISEggJSUFs9lMWVnZDevdsWMHUVFRDB8+nKeeeoqvv/6atWvXUl5ejtnsC4jGjh3LqlWrWLZsGY888gilpaVtHomQlJTEyy+/zKxZs7Db7bzzzjvY7XZKSkrYvHkz8fHxFBYW3tL01Z527drBa/X0WsJFixYZ0/78EhISqK6upr6+nuTkZBwOBwUFBQwdOtTYx2QykZycjMlkYtKkScZxNpuNcePGXXfq37Wef/55oqKiePjhh8nJycFqtbJ3715mz55t7PPmm2/idDpxuVxMmTKFIUOGMH369IBy5s+fj9lsJj4+3pg6nJ2dTUZGBrNmzWLChAmcPXs2YLRQupbL5WLr1q1UVFQwfvx4Jk6cyLvvvktMTAzg6y/l5eUMGjSIlJQU0tLSGDFiBJs2bepQ+QMHDmTGjBlYrdY2519Eupep9eoFJSIivaS5uZkjR44Yz6YSuVO9VP8StZ5aWmn/9mrCRKI1sUfWEorcKVJTUxk9enSbEe1r6X4h0rW0hlBERKSLtLS28NOFn24YDAK00sr+C/tpaW3BbLr+1FKRYHHu3Dmqqqqoqqrigw8+6O3miAQdBYQiIiJdxGwyU5FQgbflxo/TAAgzhykYFMGXZfTcuXMsW7asTQIkEel+CghFRES6kNVsxWq29nYzRO4YR48e7e0miAQ1JZUREREREREJUgoIRaRPUZ4rERG5Ed0nRLqWAkIR6RNCQ0MB8HpvvvZKRESCl/8+4b9viMjt0RpCEekTzGYzERERnDp1CvA9q89kMvVyq0REpK9obW3F6/Vy6tQpIiIijGedisjt0XMIRaTPaG1tpbGxkaampt5uioiI9FEREREMGTJEXxqKdBEFhCLS57S0tHD58uXeboaIiPQxoaGhGhkU6WIKCEVERERERIKUksqIiIiIiIgEKQWEIiIiIiIiQUoBoYiIiIiISJBSQCgiIiIiIhKkFBCKiIiIiIgEKQWEIiIiIiIiQUoBoYiIiIiISJD6LzPkiTXpmPRAAAAAAElFTkSuQmCC\n" - }, - "execution_count": 6, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "# Loop by the axes to draw annotations\n", - "for i,ax in enumerate(fig.axes[:-1]):\n", - " ax.axvline(x=.5, c='cyan', ls=':') # Vertical line at .5\n", - " if i == 2: # label on panel 3\n", - " ax.text(.47, .8, 'Label', c='red', fontweight='bold', ha='right', transform=ax.transAxes)\n", - "fig\n" - ], - "metadata": { - "collapsed": false - } - }, - { - "cell_type": "markdown", - "source": [ - "### Querying\n", - "You can query which cycles you wish to plot by using the `query` keyword. `query` accepts two types of inputs:\n", - "1. **List index**: A list of index values\n", - "2. **Slice**: Constructed with `slice()` or `np.s_[]`" - ], - "metadata": { - "collapsed": false - } - }, - { - "cell_type": "code", - "execution_count": 7, - "outputs": [ - { - "data": { - "text/plain": "Text(0.5, 0.98, 'Last Cycle')" - }, - "execution_count": 7, - "metadata": {}, - "output_type": "execute_result" - }, - { - "data": { - "text/plain": "
", - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAtgAAAEzCAYAAAALuHTZAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8o6BhiAAAACXBIWXMAAA9hAAAPYQGoP6dpAABr9ElEQVR4nO3dd1iT19sH8G/C3qgsEVCcOEEUEUfVlorWWu1wD0QcrdpWrbVabdVaq3ZqraNDwb1Xq3XVPUEEVMQtuNjK3uQ57x+85CcKyggEwvdzXbkwycmTO5Gb3DnPGTIhhAAREREREamEXN0BEBERERFpEhbYREREREQqxAKbiIiIiEiFWGATEREREakQC2wiIiIiIhVigU1EREREpEIssImIiIiIVIgFNhERERGRCrHAJiIiIiJSIRbYRETVXIMGDTBq1Ch1h0FERP+PBTYRkQrdvXsX48ePR8OGDaGvrw9TU1N07twZS5cuRWZmprrDU6m///4brq6u0NfXh4ODA+bMmYO8vLwyHSsjIwPLly9Hz549UbduXZiYmKBt27ZYuXIlFAqFymJ+8803IZPJMGnSJJUdk4joedrqDoCISFPs378fAwYMgJ6eHkaOHIlWrVohJycHZ86cweeff45r167hjz/+UHeYKnHgwAH0798f3bt3x7Jly3D16lV8++23iIuLw8qVK0t9vHv37uHjjz/GG2+8galTp8LU1BSHDh3ChAkTcOHCBaxdu7bcMe/atQvnz58v93GIiF5FJoQQ6g6CiKi6i4iIQJs2bWBnZ4djx46hbt26he6/c+cO9u/fj08//VTlz92gQQN0794d/v7+Kj92cVq2bAkdHR0EBQVBWzu/r2b27Nn47rvvEB4eDicnp1IdLyEhAbGxsWjZsmWh20ePHg0/Pz/cvn0bjRs3LnO8WVlZaN68OUaPHo2vv/4aEydOxG+//Vbm4xERvQyHiBARqcD333+PtLQ0rF69+oXiGgAaN26sLK67desGZ2fnIo/TrFkzeHl5Ka9LkoSlS5eidevW0NfXh6WlJXr16oWgoKCXxpOUlITJkyfD3t4eenp6aNy4MRYvXgxJkgq127JlC9q1awcTExOYmpqidevWWLp06UuPHR4ejvDwcIwbN05ZXAPAhAkTIITAjh07Xvr4olhYWLxQXAPAu+++CwC4fv16qY/5rO+//x6SJGHatGnlOg4RUUmwwCYiUoF//vkHDRs2RKdOnV7ZdsSIEbhy5QrCwsIK3X7x4kXcunULw4cPV97m6+urLJQXL16MGTNmQF9fHxcuXCj2+BkZGejWrRs2bNiAkSNH4tdff0Xnzp0xc+ZMTJ06VdnuyJEjGDJkCGrVqoXFixdj0aJF6N69O86ePfvS+ENCQgAA7du3L3S7ra0t7OzslPerQkxMDID8ArysHjx4gEWLFmHx4sUwMDBQVWhERMXiGGwionJKSUnB48eP0a9fvxK1HzBgAD7++GNs2LABixYtUt6+YcMGGBkZ4b333gMAHD9+HP7+/vjkk08K9Sp/9tlneNnovp9//hl3795FSEgImjRpAgAYP348bG1t8cMPP+Czzz6Dvb099u/frxzrrKWlVeLXGx0dDQBF9tTXrVsXUVFRJT7Wy+Tk5GDJkiVwdHSEm5tbmY/z2WefoW3bthg8eLBK4iIiehX2YBMRlVNKSgoAwMTEpETtzczM0K9fP2zevFlZKCsUCmzduhX9+/eHkZERAGDnzp2QyWSYM2fOC8eQyWTFHn/79u3o2rUratWqhYSEBOXF09MTCoUCp06dAgCYm5sjPT0dR44cKdXrLVgNRU9P74X79PX1VbZayqRJkxAeHo7ffvut0FCU0jh+/Dh27tyJJUuWqCQmIqKSYIFNRFROpqamAIDU1NQSP2bkyJF48OABTp8+DQD477//EBsbixEjRijb3L17F7a2tqhdu3ap4rl9+zYOHjwIS0vLQhdPT08AQFxcHID8MdNNmzZF7969YWdnh9GjR+PgwYOvPH7BMIvs7OwX7svKylLJMIwffvgBf/75J+bPn4+33nqrTMfIy8vDJ598ghEjRpSrB5yIqLQ4RISIqJxMTU1ha2v7wpjql/Hy8oK1tTU2bNiA1157DRs2bICNjY2yCC4PSZLw5ptvYvr06UXe37RpUwCAlZUVQkNDcejQIRw4cAAHDhyAn58fRo4c+dJl8QqGhkRHR8Pe3r7QfdHR0ejQoUO54vf398cXX3yBDz/8ELNnzy7zcdatW4ebN2/i999/R2RkZKH7UlNTERkZCSsrKxgaGpYrXiKi57EHm4hIBd5++23cvXu3xOssa2lpYejQodixYwcSExOxZ88eDBkypNBY6EaNGiEqKgpPnz4tVSyNGjVCWloaPD09i7w4ODgo2+rq6qJv375YsWKFcpOcdevW4c6dO8Ue38XFBQBeWMkkKioKjx49Ut5fFnv37sWYMWPw3nvvYfny5WU+DpA/uTE3NxedO3eGo6Oj8gLkF9+Ojo44fPhwuZ6DiKgoLLCJiFRg+vTpMDIywpgxYxAbG/vC/Xfv3n1h+bsRI0YgMTER48ePR1paWqHVQwDg/fffhxAC8+bNe+F4L5vkOHDgQJw/fx6HDh164b6kpCTlbotPnjwpdJ9cLkebNm0AFD38o0DLli3h5OSEP/74o9AuiytXroRMJsMHH3xQ7GNf5tSpUxg8eDBee+01bNy4EXJ5+T6iBg8ejN27d79wAYC33noLu3fvhru7e7meg4ioKNxohohIRf7++28MGjQIBgYGhXZyPHfuHLZv345Ro0bh999/L/SY1q1bIywsDM2bN0d4ePgLxxw5ciTWr1+P3r17o1evXpAkCadPn0aPHj2U230/v9FMRkYGunbtiitXrmDUqFFo164d0tPTcfXqVezYsQORkZGwsLDAu+++i6dPn+L111+HnZ0d7t+/j2XLlqFBgwa4dOnSSwvcffv24Z133kGPHj0wePBghIWF4bfffoOvr2+h3SojIyPh6OgIb2/vl26Ec//+fTg7OyMnJwc//vijclx7gTZt2iiL/4LXXHD80pLJZNxohogqliAiIpW5deuWGDt2rGjQoIHQ1dUVJiYmonPnzmLZsmUiKyvrhfbff/+9ACC+++67Io+Xl5cnfvjhB+Hk5CR0dXWFpaWl6N27t7h06ZKyTf369YW3t3ehx6WmpoqZM2eKxo0bC11dXWFhYSE6deokfvzxR5GTkyOEEGLHjh2iZ8+ewsrKSujq6goHBwcxfvx4ER0dXaLXunv3buHi4iL09PSEnZ2dmD17tvLYBa5evSoAiBkzZrz0WMePHxcAir3MmTOnUHsLCwvRsWPHEsX5PABi4sSJZXosEVFJsAebiEiNli5diilTpiAyMrLQ2GhNsWLFCkyfPh13796FtbW1So4ZHh6Oli1bYt++fejTp49KjklEpEocg01EpCZCCKxevRrdunXTyOIayF+H+pNPPlFZcV1wTA8PDxbXRFRlsQebiKiSpaen4++//8bx48fx559/Yu/evXjnnXfUHRYREakIC2wiokpWMPHP3NwcEyZMwIIFC9QdEhERqRALbCIiIiIiFeIYbCIiIiIiFWKBTURERESkQiywiYiIiIhUiAU2EREREZEKscAmIiIiIlIhFthERERERCrEApuIiIiISIVYYBMRERERqRALbCIiIiIiFWKBTURERESkQiyw1UAIgZSUFHCXeqKKxVwjqhzMNaLCWGCrQWpqKszMzJCamqruUAAAkZGRkMlkCA0NVXcoRCrFXCOqHMw1osJYYFcDMTEx+Pjjj9GwYUPo6enB3t4effv2xdGjR9UdWiFXrlxB165doa+vD3t7e3z//ffqDomoVKpDrp04cQL9+vVD3bp1YWRkBBcXF2zcuFHdYRGVSnXItWfduXMHJiYmMDc3V3coVE1oqzsAernIyEh07twZ5ubm+OGHH9C6dWvk5ubi0KFDmDhxIm7cuKHuEAEAKSkp6NmzJzw9PbFq1SpcvXoVo0ePhrm5OcaNG6fu8Iheqbrk2rlz59CmTRt88cUXsLa2xr59+zBy5EiYmZnh7bffVnd4RK9UXXKtQG5uLoYMGYKuXbvi3Llz6g6HqgtBlS45OVkAEMnJya9s27t3b1GvXj2Rlpb2wn2JiYlCCCF8fHxEnz59Ct2Xk5MjLC0txV9//SWEEEKhUIjFixeLRo0aCV1dXWFvby++/fZbIYQQERERAoAICQlRPv7q1auiV69ewsjISFhZWYnhw4eL+Pj4YuNcsWKFqFWrlsjOzlbe9sUXX4hmzZq98jUSVRRNzLWivPXWW8LHx6dUjyFSJU3OtenTp4vhw4cLPz8/YWZm9sr2REIIwSEiVdjTp09x8OBBTJw4EUZGRi/cX3CqasyYMTh48CCio6OV9+3btw8ZGRkYNGgQAGDmzJlYtGgRvvrqK4SHh2PTpk2wtrYu8nmTkpLw+uuvo23btggKCsLBgwcRGxuLgQMHFhvr+fPn8dprr0FXV1d5m5eXF27evInExMSyvHyiSlOdcq0oycnJqF27dqkeQ6QO1S3Xjh07hu3bt2P58uVlfMVUY6m7wq+JSvpNPyAgQAAQu3bteuUxW7RoIRYvXqy83rdvXzFq1CghhBApKSlCT09P/Pnnn0U+9vlv+vPnzxc9e/Ys1Obhw4cCgLh582aRx3jzzTfFuHHjCt127do1AUCEh4e/Mn6iiqCJufa8rVu3Cl1dXREWFlai9kQVQRNzLSEhQdjb24uTJ08KIQR7sKlU2INdhYlSLHc0ZswY+Pn5AQBiY2Nx4MABjB49GgBw/fp1ZGdn44033ijRsS5fvozjx4/D2NhYeXFycgIA3L17t5Svgqjqq665dvz4cfj4+ODPP/9Ey5YtS/waiNSlOuXa2LFjMXToULz22msljpmoACc5VmFNmjSBTCYr0YSPkSNHYsaMGTh//jzOnTsHR0dHdO3aFQBgYGBQqudNS0tD3759sXjx4hfuq1u3bpGPsbGxQWxsbKHbCq7b2NiU6vmJKlt1yrUCJ0+eRN++ffHLL79g5MiRpXpeInWpTrl27Ngx/P333/jxxx8B5H85kCQJ2tra+OOPP5TFPlUDkgRkJACGFoC8cvqW2YNdhdWuXRteXl5Yvnw50tPTX7g/KSlJ+e86deqgf//+8PPzg7+/P3x8fJT3NWnSBAYGBiVe/sjV1RXXrl1DgwYN0Lhx40KXosbMAYCHhwdOnTqF3Nxc5W1HjhxBs2bNUKtWrRK+YiL1qE65BuQv1denTx8sXryYq/RQtVKdcu38+fMIDQ1VXr755huYmJggNDQU7777buleOKmPJAGnfwT2Tsr/KUmV87zqHaFSM5VmtvXdu3eFjY2NaNGihdixY4e4deuWCA8PF0uXLhVOTk6F2h4+fFjo6uoKLS0t8fjx40L3zZ07V9SqVUusXbtW3LlzR5w/f145E/v5sWqPHz8WlpaW4oMPPhCBgYHizp074uDBg2LUqFEiLy+vyDiTkpKEtbW1GDFihAgLCxNbtmwRhoaG4vfffy/DO0SkGpqYa8eOHROGhoZi5syZIjo6Wnl58uRJGd4hItXQxFx7HsdgV1OpsUJsGCDEqtfyf6bGVsrTssBWg9L8IRJCiKioKDFx4kRRv359oaurK+rVqyfeeecdcfz48ULtJEkS9evXF2+99dYLx1AoFOLbb78V9evXFzo6OsLBwUF89913QoiilzO6deuWePfdd4W5ubkwMDAQTk5OYvLkyUKSpGLjvHz5sujSpYvQ09MT9erVE4sWLSrR6yOqKJqYa97e3gLAC5du3bqV6DUSVQRNzLXnscCuphQKIU4szi+uTyzOv14JZEKUYsYBqURKSgrMzMyQnJwMU1NTlR03LS0N9erVg5+fH9577z2VHZeoumKuEVUO5hpVaWoYg81JjhpAkiQkJCTgp59+grm5Od555x11h0SkkZhrRJWDuUYqJZcDxlaV+pQssDXAgwcP4OjoCDs7O/j7+0Nbm/+tRBWBuUZUOZhrVN3xN1YDNGjQoFRrixJR2TDXiCoHc42qOy7TR0RERESkQiywiYiIiIhUiAU2EREREZEKscAmIiIiIlIhFthERERERCqk0QX2woUL4ebmBhMTE1hZWaF///64efPmKx+3fft2ODk5QV9fH61bt8a///5b6H4hBL7++mvUrVsXBgYG8PT0xO3btyvqZRBVCQ+fZiD4QaK6wyAiIlIJSaq4lWo0usA+efIkJk6ciAsXLuDIkSPIzc1Fz549kZ6eXuxjzp07hyFDhsDX1xchISHo378/+vfvj7CwMGWb77//Hr/++itWrVqFgIAAGBkZwcvLC1lZWZXxsogq3Z24VAxYdR7eawIRHpWi7nCIiIjK5UlaNgb8fh4HrkZXyPFr1Fbp8fHxsLKywsmTJ/Haa68V2WbQoEFIT0/Hvn37lLd17NgRLi4uWLVqFYQQsLW1xWeffYZp06YBAJKTk2FtbQ1/f38MHjz4lXFU1JayRBXhyqMkeK8JRGJGLppYGWO9rztszPTVHVaJMNeIKgdzjaqTyIR0jPILROSTDFib6uHk5z2gr6Ol0ufQ6B7s5yUnJwMAateuXWyb8+fPw9PTs9BtXl5eOH/+PAAgIiICMTExhdqYmZnB3d1d2eZ52dnZSElJKXQhqg4u3HuCoX8GIDEjF852Ztg23qNKF9fMNaLKwVyj6ir4QSLeW3kOkU8yYFfLABvHdFR5cQ3UoAJbkiRMnjwZnTt3RqtWrYptFxMTA2tr60K3WVtbIyYmRnl/wW3FtXnewoULYWZmprzY29uX56UQVYqj12PhvSYQadl58GhYBxvHdkQtI111h/VSzDWiysFco+ro0LUYDP3zAp6m56B1PTPsmtAJja2MK+S5akyBPXHiRISFhWHLli2V/twzZ85EcnKy8vLw4cNKj4GoNPaGPsb49ZeQnSfBs7k1/HzcYKynre6wXom5RlQ5mGtU3fifjcCHGy4hK1fC605W2DKuI6xMKu6MbNX/xFSBSZMmYd++fTh16hTs7Oxe2tbGxgaxsbGFbouNjYWNjY3y/oLb6tatW6iNi4tLkcfU09ODnp5eOV4BUeVZf+E+vt4bBiGAd9vWw/cftIGOVvX4Ls5cI6oczDWqLiRJYOGB6/jzdAQAYKi7A755pyW0K/hzrXp8apaREAKTJk3C7t27cezYMTg6Or7yMR4eHjh69Gih244cOQIPDw8AgKOjI2xsbAq1SUlJQUBAgLINUXUkhMDy43fw1Z784trboz5+GuBcbYprIiKiZ2XlKvDxlhBlcT29VzMs6N+qwotrQMN7sCdOnIhNmzZh7969MDExUY6RNjMzg4GBAQBg5MiRqFevHhYuXAgA+PTTT9GtWzf89NNP6NOnD7Zs2YKgoCD88ccfAACZTIbJkyfj22+/RZMmTeDo6IivvvoKtra26N+/v1peJ1F5CSGw6MAN/H7qHgDgk9cbY8qbTSGTydQcGRERUeklZeRg7LogXIxMhI6WDD984Iz+betV2vNrdIG9cuVKAED37t0L3e7n54dRo0YBAB48eAC5/H/fZDp16oRNmzZh9uzZ+PLLL9GkSRPs2bOn0MTI6dOnIz09HePGjUNSUhK6dOmCgwcPQl+/6q6uQFQchSQwa/dVbLmYP4Zydp/mGNO1oZqjIiIieoYkARkJgKEFIH95D/TDpxkY5ReIu/HpMNHTxu8j2qFTY4tKCjRfjVoHu6rgeqFUVeTkSZiyNRT7r0ZDLgMWvdcGA900ZzUA5hpR5WCuUYWSJOD0j8CjIMCuPdB1WrFF9tVHyfDxv4iEtGzUNdOHv08HNLMxqeSANbwHm4iKl5GThw83BOPUrXjoaMnw6+C26N267qsfSEREVJkyEvKL67TY/J8ZCYCx1QvNjt2IxcSNIcjMVcDJxgT+Ph3UtncDC2yiGig5Mxe+/hcRdD8RBjpa+H1EO7zW1FLdYRERgOM346CnJa/0U9pEVZahRX7PdUEPtuGLubEp4AFm77kKSQBdGltg5XBXmOjrqCHYfCywiWqY+NRsjFwTiOvRKTDV14afjxva1S9+d1Miqhx5Cgm//HcLy4/fhYWxLv79pCusTDm3hwhyef6wkCLGYAsh8OPhm1h+/C4A4IN2dlj4Xmu1r4DFApuoBnmUmIERqwMRkZAOC2M9rPftgOZ1OV6SSN3iUrPwyeYQXLj3FADQu1VdmBqor/eNqMqRy18YFpKTJ2H6jsvYExoFAPj0jSaY7NmkSqyAxQKbqIa4E5eGEasDEJ2chXrmBtgwxh2OFkbqDouoxjt/9wk+3hyChLRsGOlqYeH7bfCOs626wyKq0lKycvHh+ks4d/cJtOQyLHy3dZWapM8Cm6gGCHucjJFrAvE0PQeNLI2wYYw76poZqDssohpNkgRWnryLnw7fhCSAZtYmWDHcFY0sjdUdGlGVFpWUCR+/i7gZmwojXS2sGN4O3arYPCIW2EQaLjDiKXz9LyI1Ow+t6plirU8H1DHmFsdE6pSYnoMp20Jx4mY8gPxxo/P7tYKBrpaaIyOq2sKjUjDa/yJiUrJgZaKHNaPc0KqembrDegELbCINdvxGHD7ccAnZeRI6ONbGau/2ap1VTUTApfuJ+HhTMKKSs6CvI8c3/VphYPuqc2qbqKo6fTseH20IRlp2HppYGcPPxw12tQzVHVaRWGATaai/L0dh6tZQ5EkCbzhZYfkwV+jrsHeMSF2EEFh9JgKLDtxAniTQ0MIIK4a7wsmGE42JXmXHpUeYsfMK8iSBjg1r4/fh7WFmWM4Oo1LsDllaLLCJNNDGgPuYvScMQgD9XGzx4wBntS9ZRFSTJWfmYvqOyzh0LRYA8Habulj0fhsY6/FjmOhlhBD49egd/PLfLQD5n2nff9AGetrl7DAqxe6QZcHMJtIwK07cwfcHbwIARnSsj3nvtIRcrv4li4hqqrDHyZiwMRgPnmZAV0uOr95ujuEd61eJpcSo5pEkCfHx8bC0tIRcxb22qparkDBr91VsC3oEAPioeyN83rOZaj7TSrg7ZFmxwCbSEEIILD54E6tO5i+2P7FHI0zr2Ywf4kRqIoTApsAHmPdPOHLyJNjVMsDyoa5wtjdXd2hUQ0mShAULFiAgIADu7u6YNWtWlS2y07LzMGFjME7diodcBnzTrxWGd6yvuicowe6Q5cECm0gDKCSBr/aGYVPAAwDAl285YdxrjdQcFVE1V47xmenZeZi1+6pyAwzP5tb4aYBz+ceMEpVDfHw8AgICEBMTg4CAAMTHx8Pa2lrdYb3Qqx6bkgUfv4sIj06BgY4WfhvaFm80V3GcL9kdUhVYYBNVczl5EqZuC8W+K9GQy4Dv3m2NwR0c1B0WUfVWjvGZt2JT8dGGS7gbnw4tuQxf9GqGsV0b8mwSqZ2lpSXc3d2VPdiWlupfO/r5XvUBYz7BaP8gRCVnwcJYF6u93SrurE8Ru0OqCgtsomosM0eBjzZewomb8dDRkmHp4LZ4q3VddYdFVP2VcXzmruBHmLU7DJm5CtiY6uO3oW3RvkHtSgiY6NXkcjlmzZpVpcZgP9urfjTsIbauOo+0bAUaWhjB36cDHOpUzWX4XoUFNlE1lZKVC1//i7gYmQh9HTl+H9G+yu1kRVRtlXJ8ZlauAnP/voYtFx8CALo2scCSQS7c1ImqHLlcXiWGhRQo6FU/dOMJHti/ASlbgfb1a+HPke1Ry0i31MerKpM4WWATVUMJadnwXhOIa1EpMNHXxppRbnBjLxmR6pRifOa9+DRM2BiMGzGpkMmAyW80xaTXG0OLq/cQvZJMJkOdLoPxKD1/Gb63Wtvg54EuZdq3oSpN4mSBTVTNPE7KxIi/AnAvIR0WxrpYO7oDWtpWvW1iiaq9EozP3H8lGl/svIK07DxYGOti6eC26NxYtasREGmqPIWEuf9cw4YL+RP0fbs4YtZbzcu8DF9VmsTJApuoGrkXn4bhfwUgKjkL9cwNsN63AxpaGqs7LKIaJztPge/2X8fa8/cBAB0a1MayoW1hbaqv5siIqoeMnDx8sjkE/12Pg0wGfNWnBUZ3cSzXMavSJE4W2ETVRNjjZHivCcST9Bw0tDTCBl932JobqDssohrn4dMMTNoUjMuPkgHkb37x2ZtNoc3dUolKJD41G2PWXsTlR8nQ05ZjySAX9FbBBP2qNImTBTZRNRAY8RS+/heRmp2HlramWDu6Ayw4eYqo0h29Houp2y4jOTMXZgY6+GWQM153qjoTxoiqurvxafDxu4gHTzNQy1AHf3m3R7v6qptDVFUmcbLAJqrijt+Mw0cbLiErV0IHx9r4y7s9TPW5WQVRZcpTSPjh8E38fvIeAMDZ3hzLh7aFXa3quYQYkToERT7FmHVBSMrIhUNtQ/j7uGnsMEcW2ERV2D+XozBlayjyJIHXnaywYphrmWZWE1HZxSRn4ZPNIQiMfAoAGNWpAb58qzl0tTkkhKikDlyNxqdbQ5GTJ8HZ3hyrvdtr9JlYFthEVdTmwAf4cvdVCAH0c7HFjwOcocMxnkSV6sztBHy6JQRP0nNgrKeN7z9ow82ciErpr9P3sODf6xAC8GxujWVD2sJAV7M7i1hgE1VBq07exaIDNwAAw9wdML9fqzIvW0REpaeQBJYdu42lR29DCKB5XVOsGOYKRwsjdYdGVG1IksC3+69jzdkIAMBIj/qY07dljVgjngU2URUihMD3h25i5Ym7AIAJ3Rvhc69mkMk0/48RUVWRkJaNKVtDcfp2AgBgSAd7zOnbksOziEohK1eBKVtDcSAsBgAwo7cTxr/WsMZ8nmn0+eZTp06hb9++sLW1hUwmw549e17aftSoUZDJZC9cWrZsqWwzd+7cF+53cnKq4FdCNYFCEpi9J0xZXM/o7YTpvZxqzB8joqogMOIp+vx6GqdvJ8BARws/D3TGwvfasLgmKoWn6TkY9ucFHAiLga6WDL8OaYsPuzWqUZ9nGt2DnZ6eDmdnZ4wePRrvvffeK9svXboUixYtUl7Py8uDs7MzBgwYUKhdy5Yt8d9//ymva2tr9NtIlSBXIWHqtsv453IUZDLgu3dbY0gHB3WHRVRjSJLAn6fv4ftDN6GQBBpbGWPFMFc0tTZRd2hE1cr9J+kYtSYQEU8yYCrPxp/to+Deupe6w6p0Gl0Z9u7dG7179y5xezMzM5iZ/W/L6T179iAxMRE+Pj6F2mlra8PGxkZlcVLNlpmjwMRNwTh2Iw46WjL8MsgFb7exVXdYRDVGUkYOpm2/jP+uxwHIn1T83butYaSn0R+RRCoX+jAJvv4X8SQ9B/V00uBvtRVNMrSBjIGAsZW6w6tU/OvxEqtXr4anpyfq169f6Pbbt2/D1tYW+vr68PDwwMKFC+HgwN5GKr2UrFyM8Q9CYORT6OvIsXJ4O/RoVrP+CBGp0+WHSZiwMRiPkzKhqy3H12+3wDB3hxp1KptIFY6Ex+LjzcHIypXQytYUa5rdhFWCNmDXHjC0UHd4lY4FdjGioqJw4MABbNq0qdDt7u7u8Pf3R7NmzRAdHY158+aha9euCAsLg4lJ0acSs7OzkZ2drbyekpJSobFT9fAkLRvefoEIe5wCEz1trPFxg1sD1e1mVRMx16ikhBBYf+E+5u8LR65CwKG2IVYMc0WremavfjAx16iQdecjMffva5AE0L2ZJZYPdYWRTmcgIyG/uFbjluXqUvNecQmtXbsW5ubm6N+/f6Hbe/fujQEDBqBNmzbw8vLCv//+i6SkJGzbtq3YYy1cuFA5/MTMzAz29vYVHD1VdVFJmRj4+3mEPU5BHSNdbB7XkcW1CjDXqCRSs3IxaXMIvt57DbkKAa+W1tj3SRcW16XAXCMgf+7CwgPX8fXe/OJ6sJs9/hrZPn94lVyePyykBhbXACATQgh1B1EZZDIZdu/e/ULBXBQhBJo2bYq3334bv/zyyyvbu7m5wdPTEwsXLizy/qK+6dvb2yM5ORmmpqYlfg2kGSIS0jH8rwA8TsqErZk+1o9xRyMN3Sq2sjHX6FWuR6dgwsZgRCSkQ1suw8y3mmN05wYcElJKzDXKzlNg2vYr+OdyFABgWs+mmNijMXPp/3GISBFOnjyJO3fuwNfX95Vt09LScPfuXYwYMaLYNnp6etDT09ztQKnkwqNSMHJNABLSctDQwgjrx7ijnrmBusPSGMw1Ko4QAtuCHuLrvdeQnSfB1kwfvw1zhatDLXWHVi0x12q25IxcjF0fhMCIp9CWy7Do/Tb4oJ2dusOqUjS6wE5LS8OdO3eU1yMiIhAaGoratWvDwcEBM2fOxOPHj7Fu3bpCj1u9ejXc3d3RqlWrF445bdo09O3bF/Xr10dUVBTmzJkDLS0tDBkypMJfD1VvQZFP4eN/EalZeWhR1xTrfDvAwpgfUEQVLSMnD1/tuYadwY8A5I8R/WWgC2oZ6ao5MqLq51FiBkb5XcSduDQY62lj1fB26NKk5k1ifBWNLrCDgoLQo0cP5fWpU6cCALy9veHv74/o6Gg8ePCg0GOSk5Oxc+dOLF26tMhjPnr0CEOGDMGTJ09gaWmJLl264MKFC7C0tKy4F0LV3ombcfhwwyVk5UpoX78WVo9yg5mBjrrDItJ4d+JSMWFjMG7FpkEuAz7r2QwfdWsEeQ3YqplI1cIeJ8PH/yLiU7NhY6oPPx83NK/LIUFFqTFjsKuSlJQUmJmZcaxaDbH/SjQmbw1BrkKgW1NLrBreDga63BWuMjDXara9oY8xc9dVZOQoYGmih18Ht4VHozrqDksjMdc034mbcZiwMRgZOQo42ZjAz8cNdc04xLE4Gt2DTaRuWy8+wMxdVyEJ4O02dfHzQBfoatfMGdVElSUrV4H5+8KxMSD/DKVHwzpYOsQFVib6ao6MqHraevEBvtwdBoUk0LlxHawc3g6m+jwL+zIssIkqyB+n7uK7f28AAIZ0cMC3/VtBi6eliSrUgycZmLDpEsIe56/L/PHrjTHZsylzj6gMhBD45cgt/Hosfz7be671sOi9NuwoKgEW2EQqJoTAj4dvYvnxuwCA8d0aYkYvJy5dRFTBDl2LwbTtl5GalYdahjr4ZZALunNnVKIyycmTMGPXFewKfgwA+OT1xpjyZlN+lpUQC2wiFZIkgTl/X8P6C/cBANN7NcOE7o3VHBWRZstVSFh84Ab+OhMBAHB1MMdvQ11hyyUwicokJSsXEzYE48ydBGjJZVjQvxUGd3BQd1jVCgtsIhXJVUj4fPtl7AmNgkwGzO/XCsM71ld3WEQaLSopE5M2BSP4QRIAYGxXR0zv5QQdLZ7CJiqL6ORM+PhdxI2YVBjqamH5MFf04JmgUmOBTaQCWbkKTNoUjP+ux0FbLsNPA53Rz6WeusMi0mgnbsZhytZQJGbkwkRfGz8OcIZXSxt1h0VUbd2IScGoNRcRk5IFSxM9+I1yQ6t6ZuoOq1pigU1UTqlZuRizNggBEU+hpy3HyuGueN3JWt1hEWkshSSw5L9b+O34HQgBtKpnihVD28GhjqG6QyOqts7eScCH6y8hNTsPja2M4TfKDfa1mVNlxQKbqByepudglF8grjxKhomeNlaPckMHx9rqDotIY8WlZuHTzaE4f+8JAGB4RwfM7tMC+jpcW56orHYFP8L0HVeQJwl0cKyNP0e0h5khl+ErDxbYRGUUnZyJEasDcScuDbWNdLFudAeeSiOqQOfvPsEnW0IQn5oNQ10tLHyvNYdiEZWDEALLj9/Bj4dvAcjfr+Gngc7Q0+YX1vJigU1UBhEJ6Rj+VwAeJ2Wirpk+1vu6o7GVsbrDItJIkiSw8uRd/HT4JiQBNLU2xoph7ZhzROWQp5Awe08Ytlx8CCB/SdkvvJwg55rxKsECm6iUwqNSMHJNIBLSsuFoYYT1vh1gV4vj1IgqQmJ6DqZsC8WJm/EA8je6+LZ/Kxjq8uOLqKzSs/MwcVMwTtyMh1wGzH2nJUZ6NFB3WBqFf6GISuHS/afw8buIlKw8NK9rinWjO8DSRE/dYRFppEv3E/HxpmBEJWdBT1uO+f1aYUB7O250QVQOcalZGO1/EWGPU6CvI8eyIa54swUn5qsaC2yiEjp1Kx7j119CZq4C7evXwupRbjAz4CQQIlUTQmDN2Ugs/Pc68iQBRwsjLB/qiha2puoOjahauxOXCu81F/E4KRN1jHSxepQbXOzN1R2WRmKBTVQCB65G45MtIchVCHRtYoHfR7TjKWqiCpCSlYvp26/g4LUYAECf1nWx6P3WMNHnl1mi8gi49wRj1wUhJSsPjhZG8PdxQ/06RuoOS2OxQiDNJklARgJgaAHIy7az27agh5ix8wokkf9h/8sgF+hqc5c4omdJkoT4+HhYWlpCXsZcC3ucjAkbg/HgaQZ0tGSY3acFRnrU55AQomeUJdf+vhyFadsuI0chwdXBHH95u6G2kW4FR1qzscAmzSVJwOkfgUdBgF17oOu0UhfZf52+h2/3XwcADGpvj+/eaw0tzrAmKkSSJCxYsAABAQFwd3fHrFmzSlVkCyGwKfAB5v0Tjpw8CfXMDbB8mCtPXRM9p7S5JoTAH6fuYeGBGwAAr5bWWDq4LdeNrwQssElzZSTkF9dpsfk/MxIAY6sSPVQIgV+O3MKvx+4AAMa91hAzezuxJ42oCPHx8QgICEBMTAwCAgIQHx8Pa+uSTZpKz87DrN1XsSc0CgDwhpMVfhroDHND9q4RPa80uaaQBOb9cw3rzt8HAPh0boDZfVqwk6iS8Dw3aS5Di/yea2Pr/J+GFvm92mlx+T+LIUkCc/++piyup/VsyuKa6CUsLS3h7u4OGxsbuLu7w9LSEpIkITY2FtJLcu1WbCre+e0M9oRGQUsuw8zeTvhzZHsW10TFeD7X6tSpU2SeZeYo8OGGS1h3/j5kMmB2n+aY07cli+tKJBNCCHUHUdOkpKTAzMwMycnJMDXlrPgK9ewYbOCVQ0ZyFRKm77iC3SGPAQDz+7XECK4NWm0x1yrPs+NCAbzyNPau4EeYtTsMmbkKWJvq4behrnBrUFsdoZMKMNcqT0Gu1alTBwsXLnwhz56kZcN3bRBCHyZBV1uOJYNc8FbruuoOu8bhEBHSbHL5/4aFpMW9dMhIVq4CkzaF4L/rsdCSy/DTAGf0b8ttmIlKQi6XK09Vx8bGFnsaOytXgbl/X1PuHtelsQWWDHaBhTHXkycqiYJcKyrPMrSMMcovEPefZMDcUAd/jmzPL65qwgKbao6CISMFPdgFvdoA0rLzMGbtRVy49xS62nKsGOoKTy68T1QmBaexC3rWCnq1IxPS8dHGYFyPToFMBnz6RhN8/HoTnrYmKoPn8+xhpjbGrjuLxIxc2Nc2gL9PBzSyNFZ3mDUWh4ioAU+lqVERy/Y9Tc/BKL9AXHmUDGM9bfw5sj08GtUp1zGpamCuqc/zS4n9ezUa03dcQVp2HuoY6WLJYBd0bWJZrmNS1cFcU4+CnAiOU2Dy1svIzpPQxs4Mq73dyrXLMHOt/NiDTTXLs0NGAMQkZ2HE6gDcjktDLUMdrB3dAW3szEt+PBUsBUikiQpOY+fkSfhu3zX4n4sEALg1qIVlQ1xhY6ZfquOVdylAIk0kl8vx750MfLMvHELkr8KzbGjbcm2ExlxTDRbYVGPdf5KOYX8F4FFiJmxM9bFhTAc0tjIp3UHKsRQgkaZ7lJiBiZtCcPlhEgBgfLeGmNazGXS0Sv9hXZ6lAIk0kSQJLPj3OlafiQAADHN3wLx3WkK7DPn1LOaaarDAphrpRkwKRqwORHxqNhrUMcR6X3fY1zYs/YFeMq6bqCY7diMWU7ZeRnJmLswMdPDTAOdyzWsoblw3UU2UlavAZ9suY//VaADA9F7N8FG3RipZTpa5phocg60GHKumXsEPEuHjdxHJmblwsjHBOt8OsDIp3enqQjgGu8pirlW+PIWEn47cwsoTdwEAznZm+G2oa9m+wD6H40KrLuZa5UlMz8HYdUEIup8IHS0ZfhzgjH4uql3xirlWfuzBphrlzO0EjFsfhIwcBdrVr4U13m4wM9Qp30GfG9dNVFPFpmTh480hCIx4CgDw9qiPL/s0h562arZlfnYpQKKa6OHTDHj7BeJefDpM9LXx+4h26NRI9WdOmWvlp9FfS06dOoW+ffvC1tYWMpkMe/bseWn7EydOQCaTvXCJiYkp1G758uVo0KAB9PX14e7ujsDAwAp8FaQqB8OiMdr/IjJyFOjaxALrfTuUv7gmIgDA2TsJ6PPraQRGPIWxnjaWD3XFvH6tVFZcE9V0Vx4l4d0VZ3EvPh22ZvrY+VGnCimuSTU0usBOT0+Hs7Mzli9fXqrH3bx5E9HR0cqLldX/eie3bt2KqVOnYs6cOQgODoazszO8vLwQFxen6vBJhbYHPcSEjcHIUUjo3coGf3m3L9csayLKJ0kCvx69jeGrA5CQlgMnGxP8Pakz+rThznFEqnL0eiwG/X4BCWk5aFHXFLsndkZT61JOyqdKpdEVRu/evdG7d+9SP87Kygrm5uZF3vfzzz9j7Nix8PHxAQCsWrUK+/fvx5o1azBjxozyhEsVZPWZCMzfFw4AGNjeDt+927rcs6yJCHiSlo3JW0Nx+nYCAGBQe3vM69cS+jrstSZSlY0B9/HVnjBIAujaxAIrh7eDsZ5Gl28agf9DRXBxcUF2djZatWqFuXPnonPnzgCAnJwcXLp0CTNnzlS2lcvl8PT0xPnz54s9XnZ2NrKzs5XXU1JSKi54UhJC4Jf/buPXo7cBAGO6OGJWn+YqmWVNVRNzrfJcjHyKjzeFICYlC/o6cizo3xrvt7NTd1hUSZhrFU8IgR8O3cSK/58wPLC9HRa827pMy1xS5eP/0jPq1q2LVatWYefOndi5cyfs7e3RvXt3BAcHAwASEhKgUCheGPhvbW39wjjtZy1cuBBmZmbKi729fYW+Dso/bT3vn3BlcT2tZ1MW1zUAc63iCSHwx6m7GPzHBcSkZKGRpRH+ntSFxXUNw1yrWNl5CkzeGqosrid7NsHi99uwuK5GaswyfTKZDLt370b//v1L9bhu3brBwcEB69evR1RUFOrVq4dz587Bw8ND2Wb69Ok4efIkAgICijxGUd/07e3tuZxRBclTSJi+8wp2BT8GAHzTryVGejRQb1BUKZhrFSs5Ixefbb+M/67HAgD6udjiu3dbw4inq2sc5lrFSc7Mxfj1Qbhw7ym05TJ8915rDGzPLzDVDf8qvkKHDh1w5swZAICFhQW0tLQQGxtbqE1sbCxsbGyKPYaenh709PQqNE7Kl5WrwMebQ3AkPBZachl+HNAG77Zlz1pNwVyrOFceJWHCxmA8SsyErpYcX/dtgWHuDjwrVEMx1yrG46RM+PgF4lZsGoz1tLFimCtea8qNXqojnmt4hdDQUNStmz8bXldXF+3atcPRo0eV90uShKNHjxbq0Sb1SMvOw2j/izgSHgtdbTlWDW/H4pqonIQQWH8+Eh+sPI9HiZlwqG2IXRM6YXjH+iyuiVToWlQy3ltxFrdi02Blooet4zuyuK7GNLoHOy0tDXfu3FFej4iIQGhoKGrXrg0HBwfMnDkTjx8/xrp16wAAS5YsgaOjI1q2bImsrCz89ddfOHbsGA4fPqw8xtSpU+Ht7Y327dujQ4cOWLJkCdLT05WripB6JKbnYJT/RVx+mAQjXS386d2e64MSlVNadh5m7LyCfVfyt2P2ammN7z9whpkB148nUqVTt+Lx0YZLSM9RoKm1Mfx8OqCeuYG6w6Jy0OgCOygoCD169FBenzp1KgDA29sb/v7+iI6OxoMHD5T35+Tk4LPPPsPjx49haGiINm3a4L///it0jEGDBiE+Ph5ff/01YmJi4OLigoMHD3LHIzWKTcnCiNUBuBWbBnNDHaz16QBne3N1h0VUrV2PTsHEjcG4l5AObbkMM3o7wbeLI3utiVRse9BDzNx1FXmSgEfDOlg1oh2/xGqAGjPJsSpJSUmBmZkZJ4OowIMnGRi+OgAPnmbA2lQP633dufg+KTHXymZb0EN8tScM2XkS6prp47ehbdGufm11h0VVGHOt9IQQWHr0Npb8l7/a1btt62Hx+22gq83Ru5pAo3uwSbPdik3F8L8CEJeaDYfahtg4xh32tQ3VHRZRtZWZo8BXe8Ow49IjAEC3ppb4ZZALahvpqjkyIs2Sq5Dw5a6r2P7/uTaxRyNM69mMZ4g0CAtsqpZCHyZhlF8gkjJy0czaBOt9O8DKVF/dYRFVW3fj0zBhQzBuxqZCLgM+69kMH3VrBLmcH/hEqpSalYsJG4Nx+nYCtOQyzO/XCkPdHdQdFqkYC2yqds7dScDYdUFIz1HAxd4c/j5uMDdkDxtRWf1zOQozdl5Beo4CFsZ6+HWICycJE1WAmOQs+PhfxPXoFBjoaGHFMFf0cLJSd1hUAVhgU7Vy6FoMPt4UghyFhC6NLfD7iHbc5IKojLLzFPh233Wsv3AfANCxYW38OqQtrEx4NohI1W7FpmLUmkBEJWfBwlgPa0a1Rxs7c3WHRRWElQlVGzsvPcL0nVegkAR6tbTB0iEu0NPWUndYRNXSw6cZmLAxGFcfJwMAJvVojMmeTaDNrZiJVO7c3QSMX38JqVl5aGhphLU+HThnSMOxwKZqwe9sBOb9Ew4A+KCdHRa915qFAFEZHb4Wg8+2X0ZqVh5qGerg50Eu6NGMp6mJKsKekMf4fMdl5CoE3BrUwp8j23NYYw3AApuqtOeXMRrd2RGz+zTnxCuiMshVSPj+4A38eToCANDWwRzLh7rClhtaEKmcEAIrTtzFD4duAgD6tK6LnwY6Q1+HZ15rgjIV2AEBAXB3d1d1LESFSJLA/P3h8DsbCQCY+mZTfPx6Yy5jRFQG0cmZmLQpBJfuJwIAxnRxxPReTlxzl6gC5CkkfP33NWwKyN/MbmxXR8zszc6hmqRMBbaHhwcaN26MESNGYNiwYWjYsKGq46IaLk8hYcauq8r1eOf0bQGfzo5qjoqo9CRJQnx8PCwtLSGXq6eYPXkrHpO3hCAxIxcm+tr44QNn9Gplo5ZYiCpKVcg1AEjPzsPHm0Nw7EYcZDJgztstMIqfXzVOmX4DN2zYgCZNmmD+/Plo0qQJOnfujFWrVuHp06eqjo9qoOw8BSZuCsaOS4+gJZfhpwHOLK6pWpIkCQsWLICvry8WLFgASZIq9fkVksDPh29ilF8gEjNy0dLWFPs+7sLimjSOunOtQFxqFgb/cQHHbsRBT1uOlcPasbiuocpUYA8dOhT79+9HVFQUli5dCiEEJkyYAFtbW/Tv3x87duxATk6OqmOlGiA9Ow++/kE4dC0WulpyrBzmivfb2ak7LKIyiY+PR0BAAGJiYhAQEID4+PhKe+641CwM/ysAvx67AyGAoe4O2PlRJ9SvY1RpMRBVFnXmWoE7cWl4b8U5XH2cjNpGutg8riO/zNZg5TqHYmFhgUmTJuHcuXO4ffs2Zs2ahRs3bmDQoEGwsbHBuHHjcObMGVXFShouKSMHw1cH4MydBBjqasHPxw09W/KPE1VflpaWcHd3h42NDdzd3WFpaVnyB0sSkBaX/7PYJhJiY2Nf6K27cO8J+vx6BufvPYGhrhaWDnbBd++2Vt3kqhLERlSZypNrxeVRadpcjHyK91eew6PETNSvY4hdH3WCq0OtUr+OssRGVZPKVhExMDCAoaEh9PX1IYSATCbD3r17sXr1ari6umLt2rVo0aKFqp6ONExcShZGrA7EzdhUmBvqwN+nA1zszdUdFlHZSRLkGQmY9eVMxCc8Kd24UEkCTv8IPAoC7NoDXacBzz224JR4waTzWbNmAZBh5cm7+OnwTUgCaGptjBXDXNHYykSlr+tVsRFVpoKx1zNnzsSTJ6XLtaLy6PnHvqrN/ivRmLItFDl5ElzszbHauz3qGOup5HW9Kjaqusr1P5Wamgo/Pz94enqifv36+PLLL9GgQQPs2LEDMTExiIqKwtatWxEXFwcfHx9VxUwa5uHTDAz4/TxuxqbCykQPW8d5sLim6q2gCN07CfIzP8O6tJOuMhLyC9i02PyfGQkvNHn+lPidB9HwXXsRPxzKL67fc62HPRM7q7a4LmFsRJXl2bHXCxcuLPUEx5IMLSmujRACf52+h4mbgpGTJ+HNFtbYPLajSorrksZGVVeZerD37t2LjRs3Yt++fcjKyoKbmxuWLFmCwYMHo06dOoXafvDBB0hMTMTEiRNVEjBpltuxqRi+OgCxKdmwr22Ajb4d4VCHu1tRNVdUEWpcio1cDC3ye4cLeokNLV5oUnBKPCAgAI7te2DUlhuISsqCnrYc8/u1woD2dhWzpGUJYiOqLEUVodbW1iV+/LN5VNzQkqLaKCSB+fvC4X8uEgDg7VEfX/dtCS0VLsNXktio6pIJIURpHySXy2Fvb4/hw4dj5MiRaNas2UvbBwYGYuXKlfDz8ytzoJokJSUFZmZmSE5OhqmpqbrDUZvLD5OUqxs0szbBOt8OsDbVV3dYpEHUlmuqGEYhSfmFuaFFsY9VKBT47fA1/HbmEXIVAo4WRlg+1BUtbCv4tZYgNqpZ1JVrqhhGUZLl/Z5tk6MQ+HRLCA5diwUAfPmWE8Z2bVjsF9ryLB9YVZYepNIrU4F94sQJdO/evQLCqRlYYAPn7iZg7NogpOco4GJvDn8fN24dSyqn1lyr4CI0JSsXX+y4ggNhMQDyd4lb9H5rmOjrqPy5iF5FnblWmUXo0/QcjFl7EcEPkqCrJcfPg5zxdhvbl8bGcdQ1U5mGiLC4pvI4Eh6rHLPWqVEd/DmyPYz0VDbflqhqkMtLNyykQAkK87DHyZi4KRj3n2RAR0uG2X1aYKRHfe5ySjWSXC4v1bCQAqUtzCMT0jHKLxCRTzJgZqCDP0e2RwfH2i99THmHsFD1xaqGKtXukEeYtv0KFJJAzxbW+HVIW9UtHUZU3b1iaIkQApsDH2LuP9eQkyehnrkBlg9z5aRgolIqbc9yyINE+K4NwtP0HNjVMoC/j1uJJhBzHHXNxQKbKs3ac5GY8/c1AMD7rnZY/H5raGvxVBmR0ksmR6Zn52H2njDsDnkMAHjDyQo/DXTm0CqiMihNz/LhazH4ZEsIsnIltK5nhtWj2sPKpGTzheRyOWbNmsVx1DUQC2yqcEIILDt2Bz8fuQUA8OncAF/1aQG5CmdbE2mEYlbouB2bio82BuNOXBq05DJ87tUM47o2ZA4RlVFJe5bXnovE3H+uQQigRzNL/DbUtdRDGss6hIWqtzJNcqTyqUmTHIUQ+Hb/daw+EwEAmOzZBJ++0SR/rChXIqAKVi1z7bm82BX8CLN2hyEzVwFrUz0sG+L6ynGfLx6SKxFQxaqOufayvJAkgUUHb+CPU/cAAEM62GN+v1avPOvKXKMC7MGmCpOnkDBz11Vsv/QIAPD12y0wuotj/p3cDY6oaP8/OTIrV4F5e65gc+BDAECXxhZYMtgFFqXcxIKrGBAVrbie5axcBaZtv4x9V6IBAJ97NcOE7o1eOYmYuUbPYoFNFSI7T4FPN4fi4LUYyGXA9x8444N2dv9rUN6NOIg0WGRCOiZsDEZ4dApkMuDTN5rg49eblGkTC65iQFRySRk5GLfuEgIjn0JHS4bvP2iDd9vavfqBYK5RYfxqRSqXnp2HMWuDcPBaDHS15FgxrF3h4hr431hTY2vuBkc1niRJiI2NhSRJOHA1Gm8vO4Pw6BTUMdLFutEdMNmzaZl3iCsYa2pjY8NVDKhGezbPivLwaQbeX3kOgZFPYaKnjbU+HUpcXAPMNSqMY7DVoDqOVSup5IxcjPIPRMiDJBjqauGPEe3RpUkxxTPHYFMFqw65VnBa+XzgRcic38W1vPwzOW4NamHZEFfYmJV/d1OOC6WKVtVz7VXDN64+SoaP/0UkpGWjrpk+/H06oJnNq5fhK+p5mGsEaHgP9qlTp9C3b1/Y2tpCJpNhz549L22/a9cuvPnmm7C0tISpqSk8PDxw6NChQm3mzp0LmUxW6OLk5FSBr6L6iEvNwqA/ziPkQRLMDHSwYYx78cU18L+NOPhHiGqw+Ph4nA6+hlt2bymL6/GvNcSmsR1VUlwD/xtryg98qqmKGr5R4PiNOAz64zwS0rLhZGOC3RM6l6m4Bphr9D8a/RuQnp4OZ2dnLF++vETtT506hTfffBP//vsvLl26hB49eqBv374ICQkp1K5ly5aIjo5WXs6cOVMR4VcrD59mYMCq87gRkwpLEz1sHd8Rrg611B0WUZV39YnA/WZDkGdmD13k4Y8Rrpj5VnPocI14IpUpbvjG5sAHGLMuCBk5CnRpbIHtH3qo7Ist1WwaPcmxd+/e6N27d4nbL1mypND17777Dnv37sU///yDtm3bKm/X1taGjY2NqsKs9u7EpWL4X4GIScmCfW0DbPB1R/06RuoOi6hKy1NI+OnILaw8cReANppbG+L3kW5wqGOs7tCINM7zG77IZDL8eOgmfjt+B0D+5meL3m/NL7akMhpdYJeXJElITU1F7dqF15y9ffs2bG1toa+vDw8PDyxcuBAODg5qilK9rjxKgveaQCRm5KKJlTHW+7rz2z/RK8SmZOHjzSEIjHgKAPD2qI8v+zSHnraWmiMj0lwFwzdy8iTM2HkZu/5/V9RP3miCKZ5NXrkMH1FpsMB+iR9//BFpaWkYOHCg8jZ3d3f4+/ujWbNmiI6Oxrx589C1a1eEhYXBxKToMVvZ2dnIzs5WXk9JSanw2CvD+btPMGbtRaTnKOBsZwZ/nw6oZcRtm0l9qkOunb2TgE+3hCAhLQdGulpY9H4b9HW2VXdYRKVSHXKtKClZufhowyWcvfMEWnIZvnu3FQa51cwOMqpYPBdSjE2bNmHevHnYtm0brKz+tz5z7969MWDAALRp0wZeXl74999/kZSUhG3bthV7rIULF8LMzEx5sbe3r4yXUKH+C4+Ft18g0nMU8GhYBxvHdmRxTWpXlXNNkgR+PXobw1cHICEtB042Jvjn4y4srqlaqsq5Vpzo5EwMXHUeZ+88gZGuFtaMcmNxTRWmxizTJ5PJsHv3bvTv3/+Vbbds2YLRo0dj+/bt6NOnzyvbu7m5wdPTEwsXLizy/qK+6dvb21fZ5YxeZXfII0zbfgUKSeDNFtZYNqQt9HV4apvUr6rm2pO0bEzeGorTtxMAAAPb2+Gbfq2YN1RtVdVcK8716BT4+F1ETEoWrEz0sGaUG1rVM1N3WKTBOETkOZs3b8bo0aOxZcuWEhXXaWlpuHv3LkaMGFFsGz09PejplW5746pq3flIfL33GgDg3bb18P0HbTgphKqMqphrQZFPMWlTCGJSsqCvI8e3/Vu/uPESUTVTFXOtOKdvx+OjDcFIy85DEytj+Pm4wa6WobrDIg2n0QV2Wloa7ty5o7weERGB0NBQ1K5dGw4ODpg5cyYeP36MdevWAcgfFuLt7Y2lS5fC3d0dMTExAAADAwOYmeV/0502bRr69u2L+vXrIyoqCnPmzIGWlhaGDBlS+S+wEgkhsPz4Hfx4+BaA/ElZc/q2hLyMu8sRaTohBP46HYFFB29AIQk0tDTCymHtyry+LhGV3o5LjzBj5xXkSQIdG9bG78Pbw8xQR91hUQ2g0QV2UFAQevToobw+depUAIC3tzf8/f0RHR2NBw8eKO//448/kJeXh4kTJ2LixInK2wvaA8CjR48wZMgQPHnyBJaWlujSpQsuXLig0VuiCiHw3b/X8efpCADAJ683xpQ3m3LGNVExkjNyMW3HZRwJjwUA9HW2xcL3WsNYT6P/5BJVGUII/Hr0Dn75L79TqJ+LLb7/oA1X6qFKU2PGYFclVX1L2WcpJIEvd13F1qCHAIDZfZpjTNeGao6KqGTUkWtXHiVhwsZgPErMhK6WHF/1bYHh7g78QkoarSp9ruUqJMzeHab83PqoeyN83rMZz7hSpWJ3ChUrJ0/ClK2h2H81GnIZsOi9NhjoVvVnihOpgxACGy7cx/x915GjkGBf2wArhrZDaztOpCKqLGnZeZiwMRinbsVDLgO+6dcKwzvWV3dYVAOxwKYiZeTk4cMN+X+kdLXkWDrYBb1b11V3WERVUlp2Hmbuuop/LkcBAHq2sMYPA5xhZlB5Yz0lSVLuUieXc+Ix1TyxKVnw8buI8OgUGOhoYdmQtvBsYa3y52GuUUmwwKYXJGfmwtf/IoLuJ8JARwt/jGyHrk00d4w5UXnciEnBhA3BuJeQDm25DDN6O8G3i2OlDgmRJAkLFixAQEAA3N3dMWvWLH7wU41yKzYVPn4X8TgpExbGuljt7QZne3OVPw9zjUqKBTYVEp+ajZFrAnE9OgWm+trw8+mAdvVrqTssoippe9BDfLU3DFm5Euqa6eO3oW3Rrn7tSo8jPj4eAQEBiImJQUBAAOLj42FtrfqeO6Kq6MK9Jxi3LggpWXloaGEEf58OcKhTMcvwMdeopFhgk9KjxAyMWB2IiIR0WBjrYb1vBzSvW7UnYRKpQ2aOAl/vDcP2S48AAK81tcSSQS6orabdTC0tLeHu7q7sVdPkVY2InrU39DE+334FOQoJ7erXwl8j21forsLMNSopriKiBlVptnWBO3FpGLE6ANHJWahnboCNY9zRwMJI3WERlUtF5Nrd+DRM3BiMGzGpkMuAKZ5NMbFHY7WvUMBxoaROlf25JoTAqpP3sPjgDQBA71Y2+GWQS6Xsjspco5JgDzbh6qNkePsF4ml6DhpbGWODrztszPTVHRZRlfPP5SjM2HkF6TkKWBjr4dfBLujU2ELdYQEA5HI5T1VTjZCnkDD3n2vYcCF/HwvfLo6Y9VbzSvuSy1yjkmCBXcMF3HsC37VBSMvOQ+t6Zlg7uoPaTnMTVVXZeQp8u+861l+4DwBwd6yNZUPawsq05F9E2etFVH4ZOXn4ZHMI/rseB5kM+KpPC4zu4qi8n3lGVQUL7Brs2I1YfLQhGNl5Etwda+Mv7/Yw0ecWskTPevg0AxM2BuPq42QAwITujTD1zabQ1ir5hzdXHiAqv4S0bPj6X8TlR8nQ05ZjyaDCy8cyz6gqYYFdQ+0NfYzPtl1GniTwhpMVlg9zrZSxa0TVyZHwWHy2LRQpWXkwN9TBLwNd0MPJqtTH4coDROVzLz4N3n6BePg0E7UMdfCXd/sXVuxhnlFVwgK7Btpw4T6+2hsGIYB+Lrb4cYAzdErRG0ek6XIVEn44dBN/nLoHAGjrYI7fhrqinrlBmY7HlQeIyi4o8inGrAtCUkYuHGobwt/HDQ0tjV9oxzyjqoSriKiBOlcRWXHiDr4/eBMAMKJjfcx7p6XaVz8gqihlybXo5Ex8vCkEQfcTAQCjOztiRm8n6GqX70sox4aSJquoz7UDV6Px6dZQ5ORJcLY3x2rv9rAw1iu2/cvyjDlIlYk92DWEEAKLDt7A7yfze+Qm9miEaT2bVepuc0RV3enb8fh0SyiepufARE8bPwxog16t6r76gSXAlQeISmf1mQh8uz8cQgCeza3w65C2MNR9edlSXJ5xfDZVNhbYNYBCEpi9JwybA/OXNPryLSeMe62RmqMiqjoUksDSo7ex7NhtCAG0tDXFimGuqF+Ha8ETVTZJEvh2/3WsORsBABje0QHz3mkFrXKcbeX4bKpsLLA1XE6ehCnbQrH/SjTkMmDhe60xyM1B3WERVRnxqdmYvDUEZ+88AQAMdXfA12+34KRfIjXIylVgytZQHAiLAQDM6O2E8a81LPfZVo7PpsrGAluDZeYo8OGGSzh5Kx46WjIsGdQWfdqo5nQ3kSYIuPcEH28OQVxqNgx1tfDdu63Rv209dYdFVCMlpudg7LogBN1PhK6WHD8MaIN+LqrJR7lcjlmzZnEMNlUaFtgaKjkzF77+FxF0PxEGOlpYNaIdujXlN3aiAg+fZmDYXwHIkwSaWBlj5XBXNLYyUXdYRDXSgycZ8PYLRERCOkz1tfHHyPbo2LBO0Y0lCchIAAwtgFIUypwHQZWJBbYGSkjLxsjVgQiPToGJvjb8fdxeWC+UqKazr22IMV0bIi4lC9++2+qVk6eIqGKEPkyCr/9FPEnPQT1zA/j7uKGJdTFfdiUJOP0j8CgIsGsPdJ1WqiKbqLLwE0XDPE7KxIi/AnAvIR0WxrpYN9odLWwrdylAoupiulczyGTgajpEanIkPBafbA5BZq4CLW1N4TfKDVam+sU/ICMhv7hOi83/mZEAGJd+8yeiisYCW4PciUvDiNUBiE7OQj1zA2wY4w5HC66CQFQcrgFPpD7rz0dizt/XIAmgW1NLLB/mCmO9V5Qlhhb5PdcFPdiGFpUTLFEpscDWEGGPk+G9JhBP0nPQyNIIG8a4o65Z2XadIyIiqiiSJPD9oZtYdfIuAGBQe3t8+26rku0oLJfnDwspwxhsosrEAlsDBEY8ha//RaRm56FVPVOs9emAOi/Z6YqIiEgdsvMU+Hz7Ffx9OQoAMPXNpvj49calG6Yll3NYCFV5LLCrueM34vDhhkvIzpPQwbE2Vnu3h4m+jrrDIiIiKiQ5Ixfj1gchIOIptOUyLHq/DT5oZ6fusIgqBAvsauyfy1GYsjUUeZLA605WWDHMlZtjEBFRlfMoMQM+fhdxOy4NxnraWDncFV2bcOlY0lwssKupTQEPMGvPVQgBvONsi58GOpds/BoREVEluh6dgpFrAhGfmg0bU334+biheV2ubkWajQV2NbTyxF0sPngDADC8owO+eacVV0MgIqIqycxAB3IZ4GRjAj8fN07ApxqBBXY1IkT+zOuVJ/JnXk/o3gifezXjGr5ERFRl2ZobYOOYjrAy1YMp5whRDaHRYwpOnTqFvn37wtbWFjKZDHv27HnlY06cOAFXV1fo6emhcePG8Pf3f6HN8uXL0aBBA+jr68Pd3R2BgYGqD/45Cklg9p4wZXE9s7cTpvdyYnFNRERVXmMrYxbXVKNodIGdnp4OZ2dnLF++vETtIyIi0KdPH/To0QOhoaGYPHkyxowZg0OHDinbbN26FVOnTsWcOXMQHBwMZ2dneHl5IS4urqJeBnIVEiZvDcXGgAeQyYCF77XG+G6NKuz5iIiIiKjsZEIIoe4gKoNMJsPu3bvRv3//Ytt88cUX2L9/P8LCwpS3DR48GElJSTh48CAAwN3dHW5ubvjtt98AAJIkwd7eHh9//DFmzJhRolhSUlJgZmaG5ORkmJq+fKJHVq4CH224hOM346GjJcMvg1zwdhvbEj0PUU1XmlwjorJjrhEVxjHYzzh//jw8PT0L3ebl5YXJkycDAHJycnDp0iXMnDlTeb9cLoenpyfOnz9f7HGzs7ORnZ2tvJ6SklKieFKycjHGPwiBkU+hryPHquHt0L0ZF9cnKk5Zc42ISoe5RvRyGj1EpLRiYmJgbW1d6DZra2ukpKQgMzMTCQkJUCgURbaJiYkp9rgLFy6EmZmZ8mJvb//KWJ6kZWPIHxcQGPkUJnraWO/rzuKa6BXKkmtEVHrMNaKXY4FdCWbOnInk5GTl5eHDhy9tH5WUiQG/n8e1qBTUMdLF5nEd4dagdiVFS1R9lTbXiKhsmGtEL8chIs+wsbFBbGxsodtiY2NhamoKAwMDaGlpQUtLq8g2NjY2xR5XT08Penp6JYohK1eBgb+fx6PETNia6WPDGHc0tDQu/YshqoFKk2tEVHbMNaKXYw/2Mzw8PHD06NFCtx05cgQeHh4AAF1dXbRr165QG0mScPToUWWb8tLX0cLE7o3QsI4+dozvyOKaqAJJkoTY2FhIkqTuUIg0GnONahqNLrDT0tIQGhqK0NBQAPnL8IWGhuLBgwcA8k9xjRw5Utn+ww8/xL179zB9+nTcuHEDK1aswLZt2zBlyhRlm6lTp+LPP//E2rVrcf36dXz00UdIT0+Hj4+PaoKWJAzJ2op/bf6E7dXlAP8YEVUISZKwYMEC+Pr6YsGCBfzgJ6ogr8o1Ft+kiTR6iEhQUBB69OihvD516lQAgLe3N/z9/REdHa0stgHA0dER+/fvx5QpU7B06VLY2dnhr7/+gpeXl7LNoEGDEB8fj6+//hoxMTFwcXHBwYMHX5j4WGYZCcCjIOhnxAKPgvKvG3NyI5GqxcfHIyAgADExMQgICEB8fLzq8piIlF6WawXFd0BAANzd3TFr1izI5Rrd90c1hEYX2N27d8fLlvkuapfG7t27IyQk5KXHnTRpEiZNmlTe8IpmaAHYtc8vru3a518nIpWztLSEu7u78oPd0tJS3SERaaSX5Rq/6JKm0ugCu1qSy4Gu0/J7rg0t8q8TkcrJ5XLMmjUL8fHxsLS0ZK8ZUQV5Wa7xiy5pqhqzk2NVwh2viCoHc42ocpQn1yRJ4hdd0jjswSYiIiK1kcvlHBZCGodfFYmIiIiIVIgFNhERERGRCrHAJiIiIiJSIRbYREREREQqxEmOalCwcEtKSoqaIyFSPRMTE8hkMnWHAYC5RpqNuUZUOcqSayyw1SA1NRUAYG9vr+ZIiFSvKi2Jx1wjTcZcI6ocZck1roOtBpIk4ebNm2jRogUePnxYZf5AapKUlBTY29vz/a0Ar3pvq1KvGnOtYjHPKhZzjQow1ypOSd5b9mBXE3K5HPXq1QMAmJqaMlkqEN/filMd3lvmWuXge1uxqsP7y1yrHHxvK46q31tOciQiIiIiUiEW2EREREREKsQCW0309PQwZ84c6OnpqTsUjcT3t+JUt/e2usVbnfC9rVjV7f2tbvFWJ3xvK05Fvbec5EhEREREpELswSYiIiIiUiEW2EREREREKsQCm4iIiIhIhVhgExERERGpEAvsCrR8+XI0aNAA+vr6cHd3R2Bg4Evbb9++HU5OTtDX10fr1q3x77//VlKk1U9p3lt/f3/IZLJCF319/UqMtvo4deoU+vbtC1tbW8hkMuzZs+eVjzlx4gRcXV2hp6eHxo0bw9/fv8LjfB5zreIw1yoGc42ex1yrGOrKNRbYFWTr1q2YOnUq5syZg+DgYDg7O8PLywtxcXFFtj937hyGDBkCX19fhISEoH///ujfvz/CwsIqOfKqr7TvLZC/Q1N0dLTycv/+/UqMuPpIT0+Hs7Mzli9fXqL2ERER6NOnD3r06IHQ0FBMnjwZY8aMwaFDhyo40v9hrlUc5lrFYa7Rs5hrFUdtuSaoQnTo0EFMnDhReV2hUAhbW1uxcOHCItsPHDhQ9OnTp9Bt7u7uYvz48RUaZ3VU2vfWz89PmJmZVVJ0mgOA2L1790vbTJ8+XbRs2bLQbYMGDRJeXl4VGFlhzLWKw1yrHMw1Yq5VjsrMNfZgV4CcnBxcunQJnp6eytvkcjk8PT1x/vz5Ih9z/vz5Qu0BwMvLq9j2NVVZ3lsASEtLQ/369WFvb49+/frh2rVrlRGuxlP37y1zreIw16oWdf/eMtcqDnOtalHV7y0L7AqQkJAAhUIBa2vrQrdbW1sjJiamyMfExMSUqn1NVZb3tlmzZlizZg327t2LDRs2QJIkdOrUCY8ePaqMkDVacb+3KSkpyMzMrPDnZ65VHOZa1cJc01zMtapFVbmmrerAiKoaDw8PeHh4KK936tQJzZs3x++//4758+erMTIizcJcI6oczLWqjz3YFcDCwgJaWlqIjY0tdHtsbCxsbGyKfIyNjU2p2tdUZXlvn6ejo4O2bdvizp07FRFijVLc762pqSkMDAwq/PmZaxWHuVa1MNc0F3OtalFVrrHArgC6urpo164djh49qrxNkiQcPXq00DfOZ3l4eBRqDwBHjhwptn1NVZb39nkKhQJXr15F3bp1KyrMGkPdv7fMtYrDXKta1P17y1yrOMy1qkVlv7elnYFJJbNlyxahp6cn/P39RXh4uBg3bpwwNzcXMTExQgghRowYIWbMmKFsf/bsWaGtrS1+/PFHcf36dTFnzhyho6Mjrl69qq6XUGWV9r2dN2+eOHTokLh79664dOmSGDx4sNDX1xfXrl1T10uoslJTU0VISIgICQkRAMTPP/8sQkJCxP3794UQQsyYMUOMGDFC2f7evXvC0NBQfP755+L69eti+fLlQktLSxw8eLDSYmauVRzmWsVhrtGzmGsVR125xgK7Ai1btkw4ODgIXV1d0aFDB3HhwgXlfd26dRPe3t6F2m/btk00bdpU6OrqipYtW4r9+/dXcsTVR2ne28mTJyvbWltbi7feeksEBwerIeqq7/jx4wLAC5eC99Pb21t069bthce4uLgIXV1d0bBhQ+Hn51fpcTPXKg5zrWIw1+h5zLWKoa5ckwkhRJn70YmIiIiIqBCOwSYiIiIiUiEW2EREREREKsQCm4iIiIhIhVhgExERERGpEAtsIiIiIiIVYoFNRERERKRCLLCJiOiloqOjMWPGDPTo0QMmJiaQyWQ4ceKEusMiIqqyWGATEdFL3bx5E4sXL8bjx4/RunVrdYdDRFTlscAmIqKXateuHZ48eYJbt25h6tSp6g6HiKjKY4FNRFRDZWZmwsnJCU5OTsjMzFTe/vTpU9StWxedOnWCQqGAiYkJateurcZIiYiqFxbYREQ1lIGBAdauXYs7d+5g1qxZytsnTpyI5ORk+Pv7Q0tLS40REhFVT9rqDoCIiNTH3d0d06dPx+LFi/Huu+8iNjYWW7ZswZIlS9C0aVN1h0dEVC2xwCYiquHmzp2Lffv2wdvbG2lpaejWrRs++eQTdYdFRFRtcYgIEVENp6urizVr1iAiIgKpqanw8/ODTCZTd1hERNUWC2wiIsKhQ4cAAFlZWbh9+7aaoyEiqt5YYBMR1XBXrlzBN998Ax8fH7Rt2xZjxoxBcnKyusMiIqq2WGATEdVgubm5GDVqFGxtbbF06VL4+/sjNjYWU6ZMUXdoRETVFic5EhHVYN9++y1CQ0Nx9OhRmJiYoE2bNvj6668xe/ZsfPDBB3jrrbeU7QDg2rVrAID169fjzJkzAIDZs2erJ3gioipKJoQQ6g6CiIgqX3BwMNzd3fHRRx/h119/Vd6uUCjg4eGBx48f49q1azA3N3/ppEd+jBARFcYCm4iIiIhIhThEhKgICoUCubm56g6DiIiqGB0dHe5wSq/EApvoGUIIxMTEICkpSd2hEBFRFWVubg4bGxuuF0/FYoFN9IyC4trKygqGhob840lEREpCCGRkZCAuLg4AULduXTVHRFUVC2yi/6dQKJTFdZ06ddQdDhERVUEGBgYAgLi4OFhZWXG4CBWJ62AT/b+CMdeGhoZqjoSIiKqygs8JztWh4rDAJnoOh4UQEdHL8HOCXoUFNhGVib+/P8zNzdUdBhERUZXDApuomhs1ahRkMhlkMhl0dXXRuHFjfPPNN8jLy6vQ5x00aBBu3bpVoc/xKs++dh0dHVhbW+PNN9/EmjVrIElSqY7FLwyqUfB/smjRokK379mzp9J7/Qp+N2QyGYyMjNCkSROMGjUKly5dKvWxunfvjsmTJ6s+SAIAnDhxAjKZjCs4kcZggU2kAXr16oXo6Gjcvn0bn332GebOnYsffvihyLY5OTkqeU4DAwNYWVmp5FjlUfDaIyMjceDAAfTo0QOffvop3n777Qr/kkFF09fXx+LFi5GYmKjuUODn54fo6Ghcu3YNy5cvR1paGtzd3bFu3Tp1h1ZjPPtFp6jL3Llz1R0ikcqxwCbSAHp6erCxsUH9+vXx0UcfwdPTE3///TeA/B7F/v37Y8GCBbC1tUWzZs0AAA8fPsTAgQNhbm6O2rVro1+/foiMjAQAHD58GPr6+i/0Jn366ad4/fXXARTd47ty5Uo0atQIurq6aNasGdavX6+8LzIyEjKZDKGhocrbkpKSIJPJcOLECQBAYmIihg0bBktLSxgYGKBJkybw8/Mr0WuvV68eXF1d8eWXX2Lv3r04cOAA/P39le1+/vlntG7dGkZGRrC3t8eECROQlpYGIL/3zMfHB8nJyS986K9fvx7t27eHiYkJbGxsMHToUOUSXVQ0T09P2NjYYOHChS9td+bMGXTt2hUGBgawt7fHJ598gvT0dADAb7/9hlatWinbFvSAr1q1qtDzzJ49+6XPUbBecYMGDdCzZ0/s2LEDw4YNw6RJk5RfAJ48eYIhQ4agXr16MDQ0ROvWrbF582blMUaNGoWTJ09i6dKlyt+PyMhIKBQK+Pr6wtHREQYGBmjWrBmWLl1a6vdL00VHRysvS5YsgampaaHbpk2bprbYVNXhQPQ8FthEGsjAwKDQB8fRo0dx8+ZNHDlyBPv27UNubi68vLxgYmKC06dP4+zZszA2NkavXr2Qk5ODN954A+bm5ti5c6fyGAqFAlu3bsWwYcOKfM7du3fj008/xWeffYawsDCMHz8ePj4+OH78eInj/uqrrxAeHo4DBw7g+vXrWLlyJSwsLEr9+l9//XU4Oztj165dytvkcjl+/fVXXLt2DWvXrsWxY8cwffp0AECnTp1e+OAv+NDPzc3F/PnzcfnyZezZsweRkZEYNWpUqWOqSbS0tPDdd99h2bJlePToUZFt7t69i169euH999/HlStXsHXrVpw5cwaTJk0CAHTr1g3h4eGIj48HAJw8eRIWFhbKL2O5ubk4f/48unfvXur4pkyZgtTUVBw5cgQAkJWVhXbt2mH//v0ICwvDuHHjMGLECAQGBgIAli5dCg8PD4wdO1b5+2Fvbw9JkmBnZ4ft27cjPDwcX3/9Nb788kts27at1DFpMhsbG+XFzMwMMpms0G3GxsbKtpcuXUL79u1haGiITp064ebNm4WOtXfvXri6ukJfXx8NGzbEvHnzCp2pevDgAfr16wdjY2OYmppi4MCBiI2NVd4/d+5cuLi44K+//oKjoyP09fWxbt061KlTB9nZ2YWeq3///hgxYkQFvSuk8QQRCSGEyMzMFOHh4SIzM1PdoZSKt7e36NevnxBCCEmSxJEjR4Senp6YNm2a8n5ra2uRnZ2tfMz69etFs2bNhCRJytuys7OFgYGBOHTokBBCiE8//VS8/vrryvsPHTok9PT0RGJiohBCCD8/P2FmZqa8v1OnTmLs2LGFYhswYIB46623hBBCRERECAAiJCREeX9iYqIAII4fPy6EEKJv377Cx8enTK/9eYMGDRLNmzcv9rHbt28XderUUV5//vUU5+LFiwKASE1NLXGcNcmz/ycdO3YUo0ePFkIIsXv3bvHsR46vr68YN25coceePn1ayOVykZmZKSRJEnXq1BHbt28XQgjh4uIiFi5cKGxsbIQQQpw5c0bo6OiI9PT0YmMBIHbv3v3C7ZmZmQKAWLx4cbGP7dOnj/jss8+U17t16yY+/fTTl752IYSYOHGieP/991/ZTlUkSRLp2blquTz796Okisuz48ePCwDC3d1dnDhxQly7dk107dpVdOrUSdnm1KlTwtTUVPj7+4u7d++Kw4cPiwYNGoi5c+cKIYRQKBTCxcVFdOnSRQQFBYkLFy6Idu3aiW7duimPMWfOHGFkZCR69eolgoODxeXLl0VGRoYwMzMT27ZtU7aLjY0V2tra4tixY0W+jur6eUGVhxvNEFUASZIQHx8PS0tLyOUVf6Jo3759MDY2Rm5uLiRJwtChQwuNa2zdujV0dXWV1y9fvow7d+7AxMSk0HGysrJw9+5dAMCwYcPQsWNHREVFwdbWFhs3bkSfPn2KnQh4/fp1jBs3rtBtnTt3LtUp848++gjvv/8+goOD0bNnT/Tv3x+dOnUq8eOfJYQoNKnuv//+w8KFC3Hjxg2kpKQgLy8PWVlZyMjIeOna55cuXcLcuXNx+fJlJCYmKidPPnjwAC1atChTbJVOkoCMBMDQAqiE38cCixcvxuuvv17kEIDLly/jypUr2Lhxo/I2IQQkSUJERASaN2+O1157DSdOnICnpyfCw8MxYcIEfP/997hx4wZOnjwJNze3Mq1bL4QA8L+l1hQKBb777jts27YNjx8/Rk5ODrKzs0t07OXLl2PNmjV48OABMjMzkZOTAxcXl1LHVFaZuQq0+PpQpT3fs8K/8YKhrmrLiAULFqBbt24AgBkzZqBPnz7IysqCvr4+5s2bhxkzZsDb2xsA0LBhQ8yfPx/Tp0/HnDlzcPToUVy9ehURERGwt7cHAKxbtw4tW7bExYsX4ebmBiB/WMi6detgaWmpfN6hQ4fCz88PAwYMAABs2LABDg4OZTpDQgRwiAiRykmShAULFsDX1xcLFiwo9WoWZdGjRw+Ehobi9u3byMzMxNq1a2FkZKS8/9l/A0BaWhratWuH0NDQQpdbt25h6NChAAA3Nzc0atQIW7ZsQWZmJnbv3l3s8JCSKPiiUVDcAC9u0tC7d2/cv38fU6ZMQVRUFN54440yj8+8fv06HB0dAeSP/3777bfRpk0b7Ny5E5cuXcLy5csBvHwMZnp6Ory8vGBqaoqNGzfi4sWL2L179ysfV6VIEnD6R2DvpPyflfD7WOC1116Dl5cXZs6c+cJ9aWlpGD9+fKHfv8uXL+P27dto1KgRgPyVO06cOIHTp0+jbdu2MDU1VRbdJ0+eVBZipXX9+nUAUP5+/PDDD1i6dCm++OILHD9+HKGhofDy8nrl//GWLVswbdo0+Pr64vDhwwgNDYWPj0/1+d2ogtq0aaP8d8E25AVzHi5fvoxvvvkGxsbGykvBsJ2MjAxcv34d9vb2yuIaAFq0aAFzc3Pl/zkA1K9fv1BxDQBjx47F4cOH8fjxYwD5c0wKVsQhKgv2YBOpWHx8PAICAhATE4OAgADEx8fD2tq6Qp/TyMgIjRs3LnF7V1dXbN26FVZWVjA1NS223bBhw7Bx40bY2dlBLpejT58+xbZt3rw5zp49q+xdAoCzZ88qe3kLPtCio6PRtm1bACg04bGApaUlvL294e3tja5du+Lzzz/Hjz/+WOLXBgDHjh3D1atXMWXKFAD5vdCSJOGnn35SFvrPj5PV1dWFQqEodNuNGzfw5MkTLFq0SPmhHRQUVKpY1C4jAXgUBKTF5v/MSACMK2/1l0WLFsHFxUU5ubaAq6srwsPDX/p7261bN0yePBnbt29X9iR2794d//33H86ePYvPPvusTDEVjLf39PQEkP972q9fPwwfPhxA/pfkW7duFTpDUdTvx9mzZ9GpUydMmDBBeVvBGaDKYqCjhfBvvCr1OZ99blXT0dFR/ruguC3opEhLS8O8efPw3nvvvfA4fX39Ej/H8x0OANC2bVs4Oztj3bp16NmzJ65du4b9+/eXNnwiJRbYRCpmaWkJd3d3BAQEwN3d/YWekqpg2LBh+OGHH9CvXz988803sLOzw/3797Fr1y5Mnz4ddnZ2ynZz587FggUL8MEHH0BPT6/YY37++ecYOHAg2rZtC09PT/zzzz/YtWsX/vvvPwD5Ey87duyIRYsWwdHREXFxcS+sAPH111+jXbt2aNmyJbKzs7Fv3z40b978pa8lOzsbMTExUCgUiI2NxcGDB7Fw4UK8/fbbGDlyJACgcePGyM3NxbJly9C3b1+cPXu20GoUANCgQQOkpaXh6NGjcHZ2hqGhIRwcHKCrq4tly5bhww8/RFhYGObPn1/q91utDC0Au/b5xbVd+/zrlah169YYNmwYfv3110K3f/HFF+jYsSMmTZqEMWPGwMjICOHh4Thy5Ah+++03APm9mbVq1cKmTZuwb98+APkF9rRp0yCTydC5c+dXPn9SUhJiYmKQnZ2NW7du4ffff8eePXuwbt065XCnJk2aYMeOHTh37hxq1aqFn3/+GbGxsYUK7AYNGiAgIACRkZEwNjZG7dq10aRJE6xbtw6HDh2Co6Mj1q9fj4sXLyp7xiuDTCZT+TCNqsrV1RU3b94s9ktZ8+bN8fDhQzx8+FD5hTg8PBxJSUklGs41ZswYLFmyBI8fP4anp2ehnnCiUlPvEHCiqkOVk1YUCoWIiYkRCoVCBZG93Msm+r3s/ujoaDFy5EhhYWEh9PT0RMOGDcXYsWNFcnJyoXYdOnQQAF6Y7FPUZKUVK1aIhg0bCh0dHdG0aVOxbt26QveHh4cLDw8PYWBgIFxcXMThw4cLTXKcP3++aN68uTAwMBC1a9cW/fr1E/fu3XvpawMgAAhtbW1haWkpPD09xZo1a15473/++WdRt25dYWBgILy8vMS6desEAOWkTSGE+PDDD0WdOnUEADFnzhwhhBCbNm0SDRo0EHp6esLDw0P8/fffL0zWrPIUCiFSY/N/VrCift8iIiKErq6ueP4jJzAwULz55pvC2NhYGBkZiTZt2ogFCxYUatOvXz+hra2tnFSqUChErVq1RMeOHV8ZS8HvBgChr68vGjVqJLy9vcWlS5cKtXvy5Ino16+fMDY2FlZWVmL27Nli5MiRhV7HzZs3RceOHYWBgYEAICIiIkRWVpYYNWqUMDMzE+bm5uKjjz4SM2bMEM7OziV/w2qYV01yfDYfQ0JClO+1EEIcPHhQaGtri7lz54qwsDARHh4uNm/eLGbNmiWEyJ/w6eLiIrp27SouXbokAgICipzkWNz/T1JSkjA0NBS6urpiy5YtL30dnORIryIT4pkBkUQ1WFZWFiIiIpRLNxERkWr5+/tj8uTJL6yxf+LECfTo0QOJiYnKMwuhoaFo27YtIiIi0KBBAwDAoUOH8M033yAkJAQ6OjpwcnLCmDFjMHbsWAD5k48//vhjHD16FHK5HL169cKyZcuUw/Tmzp2LPXv2FDk8DQBGjhyJ/fv3Iyoq6qVn7Ph5Qa/CApvo//EPJhFRzfbGG2+gZcuWLwxpeh4/L+hVasbALSIiIqJiJCYm4sSJEzhx4gRWrFih7nBIA7DAJiIiohqtbdu2SExMxOLFi19Y8YaoLFhgExERUY0WGRmp7hBIw3CjGSIiIiIiFWKBTfQczvslIqKX4ecEvQoLbKL/V7CDWEZGhpojISKiqqzgc+LZnSeJnsUx2ET/T0tLC+bm5oiLiwMAGBoaKrfqJSIiEkIgIyMDcXFxMDc3h5aW6reLJ83AdbCJniGEQExMzAubIBARERUwNzeHjY0NO2GoWCywiYqgUCiQm5ur7jCIiKiK0dHRYc81vRILbCIiIiIiFeIkRyIiIiIiFWKBTURERESkQiywiYiIiIhUiAU2EREREZEKscAmIiIiIlIhFthERERERCrEApuIiIiISIX+Dz2SlY5y7xD9AAAAAElFTkSuQmCC\n" - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "text/plain": "
", - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAbYAAAGVCAYAAACSMdToAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8o6BhiAAAACXBIWXMAAA9hAAAPYQGoP6dpAABReElEQVR4nO3dd1gU1/s28HuXsnQQpKkoYi8IlgTRGBsJlqAmRkw0ijUxamKLRsVYotiiRhNN+ya2xETFHjV2saDBChZQg4IaBQSV3nfP+wc/9g1WyrIDw/25rr10Z2d2ngPL3ntmzpxVCCEEiIiIZEIpdQFERES6xGAjIiJZYbAREZGsMNiIiEhWGGxERCQrDDYiIpIVBhsREckKg42IiGSFwUZERLLCYCMiAIBCocDs2bOlLoOozBhsVKWsXbsWCoUC586d08v+IiMjMXv2bMTGxpZou/DwcHzwwQdwcXGBSqWCra0tfHx8sGbNGqjV6vIplkgmDKUugEjOIiMjMWfOHHTq1Amurq7F2ubnn3/GqFGj4OjoiEGDBqFBgwZIS0vD4cOHMXz4cMTFxWH69OnlWzhRJcZgI6pA/v77b4waNQre3t7Yu3cvLC0ttY+NHz8e586dw5UrVySskKji46FIoifk5uZi5syZaN26NaytrWFubo4OHTrg6NGjT627ceNGtG7dGpaWlrCysoK7uztWrFgBoOCwZ79+/QAAnTt3hkKhgEKhQEhIyHP3PWfOHCgUCmzYsKFIqBVq06YNhgwZAiEEXF1d0bt376fWyc7OhrW1NT766KMiy2bPno2GDRvCxMQEzs7OeOedd3Dz5s0X/izu3buHYcOGwdHRESqVCs2aNcPq1atfuA2R1NhjI3pCamoqfv75Z7z//vsYOXIk0tLS8Msvv8DX1xdnzpyBp6cnAODgwYN4//330bVrVyxatAgAEBUVhdDQUIwbNw6vv/46Pv30U3zzzTeYPn06mjRpAgDaf5+UmZmJw4cP4/XXX0ft2rVfWKNCocAHH3yAxYsX49GjR7C1tdU+9ueffyI1NRUffPABAECtVuOtt97C4cOH8d5772HcuHFIS0vDwYMHceXKFdSrV++Z+0hISEDbtm2hUCgwduxY2Nvb46+//sLw4cORmpqK8ePHl+THSqQ/gqgKWbNmjQAgzp49+9x18vPzRU5OTpFljx8/Fo6OjmLYsGHaZePGjRNWVlYiPz//uc8VHBwsAIijR4++tLaIiAgBQIwbN+6l6wohxPXr1wUA8f333xdZ3qtXL+Hq6io0Go0QQojVq1cLAGLZsmVPPUfhOkIIAUDMmjVLe3/48OHC2dlZJCUlFdnmvffeE9bW1iIzM7NYdRLpGw9FEj3BwMAAxsbGAACNRoNHjx4hPz8fbdq0wYULF7Tr2djYICMjAwcPHtTJflNTUwHgmYcgn6Vhw4bw8vLChg0btMsePXqEv/76CwMHDoRCoQAAbN26FdWrV8cnn3zy1HMUrvMkIQS2bt0KPz8/CCGQlJSkvfn6+iIlJaXIz4KoImGwET3DunXr0KJFC5iYmMDOzg729vbYs2cPUlJStOuMHj0aDRs2RPfu3VGrVi0MGzYM+/btK/U+raysAABpaWnF3mbw4MEIDQ3F7du3AQDBwcHIy8vDoEGDtOvcvHkTjRo1gqFh8c88JCYmIjk5GT/99BPs7e2L3IYOHQoAePDgQbGfj0ifGGxET/jtt98wZMgQ1KtXD7/88gv27duHgwcPokuXLtBoNNr1HBwcEB4ejl27dqFXr144evQounfvjoCAgFLtt379+jA0NMTly5eLvc17770HIyMjba/tt99+Q5s2bdCoUaNS1VCosJ0ffPABDh48+Mxb+/bty7QPovLCwSNET9iyZQvc3Nywbdu2IofqZs2a9dS6xsbG8PPzg5+fHzQaDUaPHo0ff/wRX3zxBerXr//cQ33PYmZmhi5duuDIkSO4e/cuXFxcXrqNra0tevbsiQ0bNmDgwIEIDQ3F8uXLi6xTr149hIWFIS8vD0ZGRsWqxd7eHpaWllCr1fDx8Sl2G4gqAvbYiJ5gYGAAoOA8U6GwsDCcPn26yHoPHz4scl+pVKJFixYAgJycHACAubk5ACA5OblY+541axaEEBg0aBDS09Ofevz8+fNYt25dkWWDBg1CZGQkJk+eDAMDA7z33ntFHu/bty+SkpKwcuXKp57vv238LwMDA/Tt2xdbt2595nVziYmJxWoPkRTYY6MqafXq1c88HzZu3Di89dZb2LZtG95++2307NkTMTEx+OGHH9C0adMiYTNixAg8evQIXbp0Qa1atXD79m18++238PT01A7p9/T0hIGBARYtWoSUlBSoVCp06dIFDg4Oz6yrXbt2WLVqFUaPHo3GjRsXmXkkJCQEu3btwrx584ps07NnT9jZ2SE4OBjdu3d/6rkHDx6M9evXY+LEiThz5gw6dOiAjIwMHDp0CKNHj37mtXAAsHDhQhw9ehReXl4YOXIkmjZtikePHuHChQs4dOgQHj16VKKfOZHeSDomk0jPCof7P+929+5dodFoxPz580WdOnWESqUSLVu2FLt37xYBAQGiTp062ufasmWLePPNN4WDg4MwNjYWtWvXFh999JGIi4srss///e9/ws3NTRgYGBR76P/58+fFgAEDRI0aNYSRkZGoVq2a6Nq1q1i3bp1Qq9VPrT969GgBQPz+++/PfL7MzEwRGBgo6tatK4yMjISTk5N49913xc2bN7Xr4Inh/kIIkZCQIMaMGSNcXFy023Xt2lX89NNPL20DkVQUQjznWAQRVRoTJkzAL7/8gvj4eJiZmUldDpGkeI6NqJLLzs7Gb7/9hr59+zLUiMBzbESV1oMHD3Do0CFs2bIFDx8+xLhx46QuiahCYLARVVKRkZEYOHAgHBwc8M0332jnsCSq6niOjYiIZIXn2IiISFYYbEREJCsMNiIikhUGGxERyQqDjYiIZIXBRkREssJgIyIiWWGwERGRrDDYiIhIVhhsREQkKww2IiKSFQYbERHJCoONiIhkhcFGRESywmAjIiJZYbAREZGsMNiIiEhWGGxERCQrDDYiIpIVBhsREckKg60MhBBITU2FEELqUoiI6P8w2MogLS0N1tbWSEtLk7qUl4qNjYVCoUB4eLjUpRARlSsGWwURHx+PTz75BG5ublCpVHBxcYGfnx8OHz4sdWnPFB0dDUtLS9jY2EhdChFREYZSF0AFvan27dvDxsYGX331Fdzd3ZGXl4f9+/djzJgxuHbtmtQlFpGXl4f3338fHTp0wKlTp6Quh4ioCPbYKoDRo0dDoVDgzJkz6Nu3Lxo2bIhmzZph4sSJ+PvvvwEAw4YNw1tvvVVku7y8PDg4OOCXX34BAGg0GixevBj169eHSqVC7dq1ERQU9Nz9XrlyBd27d4eFhQUcHR0xaNAgJCUlvbTeGTNmoHHjxvD39y9Dq4mIygeDTWKPHj3Cvn37MGbMGJibmz/1eOGhvhEjRmDfvn2Ii4vTPrZ7925kZmaif//+AIBp06Zh4cKF+OKLLxAZGYnff/8djo6Oz9xvcnIyunTpgpYtW+LcuXPYt28fEhISXhpWR44cQXBwMFatWlXKFhMRlS8eipRYdHQ0hBBo3LjxC9dr164dGjVqhF9//RVTpkwBAKxZswb9+vWDhYUF0tLSsGLFCqxcuRIBAQEAgHr16uG111575vOtXLkSLVu2xPz587XLVq9eDRcXF9y4cQMNGzZ8apuHDx9iyJAh+O2332BlZVXaJhMRlSv22CRWkksFRowYgTVr1gAAEhIS8Ndff2HYsGEAgKioKOTk5KBr167Feq6IiAgcPXoUFhYW2lthuN68efOZ24wcORIDBgzA66+/XuyaiYj0jT02iTVo0AAKhaJYA0QGDx6MqVOn4vTp0zh16hTq1q2LDh06AABMTU1LtN/09HT4+flh0aJFTz3m7Oz8zG2OHDmCXbt2YcmSJQAKQlmj0cDQ0BA//fSTNmSJiKTEYJOYra0tfH19sWrVKnz66adPnWdLTk7Wnmezs7NDnz59sGbNGpw+fRpDhw7VrtegQQOYmpri8OHDGDFixEv326pVK2zduhWurq4wNCzey+D06dNQq9Xa+zt37sSiRYtw6tQp1KxZs1jPQURU3ngosgJYtWoV1Go1Xn31VWzduhX//PMPoqKi8M0338Db27vIuiNGjMC6desQFRWlPZcGACYmJvj8888xZcoUrF+/Hjdv3sTff/+tHTH5pDFjxuDRo0d4//33cfbsWdy8eRP79+/H0KFDi4TXfzVp0gTNmzfX3mrWrAmlUonmzZujWrVquvuBENGLaTRA+oOCf+kp7LFVAG5ubrhw4QKCgoIwadIkxMXFwd7eHq1bt8b3339fZF0fHx84OzujWbNmqFGjRpHHvvjiCxgaGmLmzJm4f/8+nJ2dMWrUqGfus0aNGggNDcXnn3+ON998Ezk5OahTpw66desGpZKfd4gqLI0GOLEE+PccUKsN0OEzgH+zRSgEJzostdTUVFhbWyMlJUVvowTT09NRs2ZNrFmzBu+8845e9klEFUj6A2DnWCA9AbBwBHqvBCwcpK6qQmHMVxIajQYPHjzA3LlzYWNjg169ekldEhFJwax6QU/NwrHgX7PqUldU4fBQZCVx584d1K1bF7Vq1cLatWuLPeCDiGRGqSw4/JiZVBBqPAz5FL47VhKurq78ehwiKqBU8vDjCzDqiYhIVhhsREQkKww2IiKSFQYbERHJCoONiIhkhcFGRESywmAjIiJZYbAREZGsMNiIiEhWGGxERCQrDDYiIpIVBhsREckKg42IiGRFFsG2YMECvPLKK7C0tISDgwP69OmD69evv3S74OBgNG7cGCYmJnB3d8fevXv1UC0RUfm7mZiOiLvJUpchCVkE27FjxzBmzBj8/fffOHjwIPLy8vDmm28iIyPjuducOnUK77//PoYPH46LFy+iT58+6NOnD65cuaLHyomIdEujEVgbGoOe35zA2D8uID0nX+qS9E4hZPglX4mJiXBwcMCxY8fw+uuvP3Od/v37IyMjA7t379Yua9u2LTw9PfHDDz8Uaz+pqamwtrZGSkoKrKysdFI7EVFp3U/OwpQtl3AyOgkA8Fr96vi6vyfsLVUSV6Zfsvyi0ZSUFACAra3tc9c5ffo0Jk6cWGSZr68vduzY8dxtcnJykJOTo72fmppatkKJiHRACIEd4fcwc+dVpGXnw8RIiek9muADrzpQKhVSl6d3sgs2jUaD8ePHo3379mjevPlz14uPj4ejo2ORZY6OjoiPj3/uNgsWLMCcOXN0VisRUVk9ysjFjB2XsfdywXuXh4sNlvl7oJ69hcSVSUd2wTZmzBhcuXIFJ0+e1PlzT5s2rUgvLzU1FS4uLjrfDxFRcRy5loApWy4jKT0HhkoFPu3aAKM71YOhgSyGT5SarIJt7Nix2L17N44fP45atWq9cF0nJyckJCQUWZaQkAAnJ6fnbqNSqaBSVa1j1URU8aTn5CNoTyT+OHMXAFDfwQJf+3vCvZa1xJVVDLKIdSEExo4di+3bt+PIkSOoW7fuS7fx9vbG4cOHiyw7ePAgvL29y6tMIqIyOxv7CN1XHMcfZ+5CoQBGvFYXuz95jaH2H7LosY0ZMwa///47du7cCUtLS+15Mmtra5iamgIABg8ejJo1a2LBggUAgHHjxqFjx45YunQpevbsiY0bN+LcuXP46aefJGsHEdHz5OSrsezgDfx0/BaEAGramGJJPw9417OTurQKRxbD/RWKZ4/6WbNmDYYMGQIA6NSpE1xdXbF27Vrt48HBwZgxYwZiY2PRoEEDLF68GD169Cj2fjncn4j0IfJ+KiZuDse1+DQAwLuta2GWX1NYmhhJXFnFJItgkwqDjYjKk1oj8OPxm/j64A3kqQXszI0x/x13+DZ7/lgAksmhSCIiyWk0QGYSYFYdUJZ9+MLthxmYuDkC528/BgC80dQRC95xR3ULDmB7GQYbEVFZaTTAiSXAv+eAWm2ADp+VOtyEEPj9zB0E7YlCZq4aFipDzO7VDH1b1XzuaRcqisFGRFRWmUkFoZaeUPBvZhJg4VDip3mQmo0pWy8h5HoiAKCtmy2W9PNArWpmuq5Y1hhsRERlZVa9oKdW2GMzq17ip9h96T5m7LiC5Mw8GBsqMcW3EYa1r1slp8QqKwYbEVFZKZUFhx9LcY4tOTMXM3dexa6I+wCA5jWt8LW/Jxo4WpZXtbLHYCMi0gWlssSHH4/fSMTkLRFISM2BgVKBMZ3q4ZOuDWBUxafEKisGGxGRnmXm5mPB3mv49e/bAAC36uZY6u+BlrWrSVyZPDDYiIj06MKdx5i0OQIxSQVfhBzgXQdTuzeBqbGBxJXJB4ONiEgPcvM1+ObwP/guJBoaAThZmeCrfi3QoYG91KXJDoONiKic3UhIw4RN4bh6v+DLid9uWROz/ZrB2oxTYpUHBhsRUTlRawRWn4zBVweuIzdfg2pmRgh62x093J2lLk3WGGxEROXg7qNMTAqOwJmYRwCAzo3ssahvCzhYmUhcmfwx2IiIdEgIgeBz/2LOn1eRkauGmbEBvnirKd57xYVTYukJg42ISEcS03IwbdslHIp6AABoU6calvl7orYdp8TSJwYbEZEO7LsSj+nbL+NRRi6MDBSY+EYjfPi6GwykmhJLx982UJkw2IiIyiA1Ow+zd13Ftgv3AACNnSzxdX9PNHGW8DsadfhtA5URg42IqJRORSfhs+AI3E/JhkIBfPR6PUx4owFUhhJfbK2jbxuorBhsRFSERqNBYmIi7O3toaxCn/JLIjtPjcX7rmN1aAwAoLatGZb6e+AVV1uJK/s/Ovi2gcqMwUZEWhqNBkFBQQgLC4OXlxcCAwMZbk+4/G8KJmwOR/SDdADAAK/aCOzRBOaqCvR2WoZvG5CDCvSbICKpJSYmIiwsDPHx8QgLC0NiYiIcHR2lLktvXtRbzVNr8N3Rm/j2yD/I1wjYW6qwuG8LdG5cQQ/xleLbBuSCwUZEWvb29vDy8tL22Oztq848hi/qrd5MTMfETeGI+DcFANDT3Rnz+jRHNXNjKUum52CwEZGWUqlEYGBglTzH9qzeqr29A9afjsXCfdeQnaeBlYkh5vZpjl4eNXixdQXGYCOiIpRKZZU6/Fjoyd5qnpEFBq8+g5PRSQCADg2qY/G7LeBsbSpxpfQyCiGEkLqIyio1NRXW1tZISUmBlZWE16wQkU5oNBo8ePAAp+7lYdafkUjLzoeJkRLTezTBoLZ12EurJNhjIyL6P8lZ+Zhz6B7+uhIPAPB0scEyfw+42VvorQZeblF2DDYiIgCHoxLw+dbLSErPgaFSgfE+DTCqYz0YGugvXHi5hW4w2IioSkvPyce83ZHYePYuAKCBgwW+7u+J5jWt9V5LVb/cQlcYbERUZZ2JeYRJweG4+ygLCgUwvH1dfObbCCZG0kyJVZUvt9AlDh4pAw4eIaqccvLVWHbgBn46cQtCADVtTLGknwe869lJXRrPsemAbH5qx48fh5+fH2rUKLi+ZMeOHS/dZsOGDfDw8ICZmRmcnZ0xbNgwPHz4sPyLJSLJRN5PRa9vQ/Hj8YJQ69e6FvaN71AhQg34/5dbMNRKTzY/uYyMDHh4eGDVqlXFWj80NBSDBw/G8OHDcfXqVQQHB+PMmTMYOXJkOVdKRFJQawRWHY1G71UncT0hDXbmxvhpUGt81c8DliZGUpdHOiSbc2zdu3dH9+7di73+6dOn4erqik8//RQAULduXXz00UdYtGhReZVIRBKJTcrApOAInL/9GADwRlNHLHjHHdUtVBJXRuVBNj22kvL29sbdu3exd+9eCCGQkJCALVu2oEePHs/dJicnB6mpqUVuRFRxCSGwIew2enxzAudvP4aFyhBL+nngp0GtGWoyVmWDrX379tiwYQP69+8PY2NjODk5wdra+oWHMhcsWABra2vtzcXFRY8VE1FJPEjNxtC1ZxG4/Qoyc9XwdrPDvvEd8G7rWpxBROaqbLBFRkZi3LhxmDlzJs6fP499+/YhNjYWo0aNeu4206ZNQ0pKivZ29+5dPVZMRMW1+9J9vLn8OEKuJ8LYUIkv3mqKDSO8UKuamdSlkR7I5hxbSS1YsADt27fH5MmTAQAtWrSAubk5OnTogHnz5sHZ2fmpbVQqFVQqHr4gqqiSM3Mxc+dV7Iq4DwBoXtMKX/t7ooGjpcSVkT5V2WDLzMyEoWHR5hsYFFyUyUv7iCqf4zcSMXlLBBJSc2CgVGBM5/r4pEt9GOlxSiyqGGQTbOnp6YiOjtbej4mJQXh4OGxtbVG7dm1MmzYN9+7dw/r16wEAfn5+GDlyJL7//nv4+voiLi4O48ePx6uvvooaNWpI1QwiKqHM3Hws2BOFX8PuAADcqptjWX9PeLrYSFsYSUY2wXbu3Dl07txZe3/ixIkAgICAAKxduxZxcXG4c+eO9vEhQ4YgLS0NK1euxKRJk2BjY4MuXbpwuD9RJXLhzmNM3BSO2IeZAIAhdR7i86FvwpTXpVVpnFKrDDilFpE0cvM1+ObwP/guJBoaATgbZeAru914zT4b6L0SsHCQukSSkGx6bERUNdxISMOETeG4er/gOtK3PWtgdvXDsE7IBmq1AcyqS1whSY3BRkSVglojsPpkDL46cB25+RpUMzNC0Nvu6OHuDGg8gMykglDjHItVHoONiCq8u48yMSk4AmdiHgEAujR2wMJ33OFgZVKwglLJw4+kxWAjogpLCIHgc/9izp9XkZGrhrmxAWa81RTvveLC2UPouRhsRFQhJablYNq2yzgUlQAAeMW1Gpb280RtO84eQi/GYCOiCmfflXhM334ZjzJyYWygxMQ3G2JkBzcYKNlLo5djsBFRhZGanYfZu65i24V7AIDGTpb4ur8nmjjzchoqPgYbEVUIodFJmBwcgfsp2VAqgI861sN4nwZQGRpIXRpVMgw2IpJUdp4ai/Zdw5rQWABAbVszLPP3QBtXW2kLo0qLwUZEkrn0bzImbArHzcQMAMAAr9oI7NEE5iq+NVHp8dVDRHqXp9Zg1dFofHskGmqNgL2lCov7tkDnxrwWjcqOwUZEehX9IB2TNocj4t8UAEBPd2fM69Mc1cyNJa6M5ILBRkR6odEIrD8diwV/XUNOvgZWJoaY26c5ennU4MXWpFMMNiIqd/eTszB5SwRCox8CADo0qI7F77aAs7WpxJWRHDHYiKjcCCGw/eI9zNp1FWnZ+TAxUiKwRxN80LYOe2lUbhhsRFQuHmXkInD7Zfx1JR4A4Olig2X+HnCzt5C4MpI7BhsR6dzhqAR8vvUyktJzYKhUYFzXBvi4Uz0YGvArZaj8MdiISGfSc/Ixb3ckNp69CwBo4GCBr/t7onlNa4kro6qEwUZEOnEm5hEmbg7Hv4+zoFAAI16ri0lvNoKJEafEIv1isBFRmWTnqfH1wRv46cQtCAHUtDHFUn8PtHWzk7o0qqIYbERUalfvp2DipghcT0gDAPRv44IZbzWBpYmRxJVRVcZgI6ISy1dr8OPxW1h+6Aby1ALVLYyx4J0WeKOpo9SlETHYiKhkYpMyMHFzOC7cSQYA+DZzxPy33WFnoZK2MKL/w2AjomIRQmBD2B0E7YlCVp4alipDzO7VDO+0qsmLralCYbAR0UslpGZjypZLOHYjEQDg7WaHJf4eqGnDKbGo4mGwEdEL/RlxHzN2XEFKVh6MDZX4vFtjDG3nCqWSvTSqmBhsRPRMyZm5+GLnVfwZcR8A4F7TGsv8PdDA0VLiyohejMFGRE85diMRU7ZEICE1BwZKBcZ0ro9PutSHEafEokqAwUZEWpm5+Zi/Nwq//X0HAOBW3RzL+nvC08VG2sKISkA2H7+OHz8OPz8/1KhR8KWFO3bseOk2OTk5CAwMRJ06daBSqeDq6orVq1eXf7FEFdD524/RY8UJbagNaeeKPZ92YKhRpSObHltGRgY8PDwwbNgwvPPOO8Xaxt/fHwkJCfjll19Qv359xMXFQaPRlHOlRBVLbr4GKw7fwPchN6ERgLO1Cb561wOvNagudWlEpSKbYOvevTu6d+9e7PX37duHY8eO4datW7C1tQUAuLq6llN1RGWj0WiQmJgIe3t7KJW6O9ByPT4NEzaFIzIuFQDwdsuamN2rGaxNOSUWVV6yORRZUrt27UKbNm2wePFi1KxZEw0bNsRnn32GrKys526Tk5OD1NTUIjei8qbRaBAUFIThw4cjKChIJ0cV1BqB/x2/Bb9vTyIyLhXVzIzw3cBW+Lq/J0ONKj3Z9NhK6tatWzh58iRMTEywfft2JCUlYfTo0Xj48CHWrFnzzG0WLFiAOXPm6LlSquoSExMRFhaG+Ph4hIWFITExEY6OpZ+T8e6jTEwKjsCZmEcAgK6NHbCgrzscLE10VTKRpKpsj02j0UChUGDDhg149dVX0aNHDyxbtgzr1q17bq9t2rRpSElJ0d7u3r2r56qpKrK3t4eXlxecnJzg5eUFe3v7Uj2PEAKbz95Ft+XHcSbmEcyNDbCorzt+DmjDUCNZqbI9NmdnZ9SsWRPW1v//m32bNGkCIQT+/fdfNGjQ4KltVCoVVCpO9Er6pVQqERgYWKZzbIlpOZi27RIORT0AALziWg1L+3mitp2ZrsslklyV7bG1b98e9+/fR3p6unbZjRs3oFQqUatWLQkrI3qaUqmEo6PjU6Gm0WiQkJDwwvNu+67Ew3f5cRyKegBjAyWmdW+MjR96M9RItmQTbOnp6QgPD0d4eDgAICYmBuHh4bhzp+CanGnTpmHw4MHa9QcMGAA7OzsMHToUkZGROH78OCZPnoxhw4bB1JQTu1LF97JBJanZeZi4ORyjfjuPRxm5aOJshV2ftMdHHevBgPM8kozJ5lDkuXPn0LlzZ+39iRMnAgACAgKwdu1axMXFaUMOACwsLHDw4EF88sknaNOmDezs7ODv74958+bpvXai0njRoJJT0Un4LDgC91OyoVQAozrWw3ifhjA2lM1nWaLnUgghhNRFVFapqamwtrZGSkoKrKyspC6HqpjCHltYWBi8vLwQGBiIXLXAon3XsCY0FgBQx84My/w90LqOrbTFEukRg60MGGwktf9euH3lfiombArHzcQMAMBAr9qY3qMJzFWyOTBDVCx8xRNVYkqlErbV7fHNkWh8eyQaao2Ag6UKi95tgc6NHPReT3nNkEJUEgw2okos+kE6Jm0OR8S/KQCAni2cMa93c1QzN9Z7Lc86NMpwIykw2IgqIY1GYN3pWCz86xpy8jWwMjHEvLfd0cujhmQ16XqGFKLSYrARVTL3k7MweUsEQqMfAgA6NKiOr971gJO1tLOHFM6QUthjK+0MKURlxcEjZcDBI6RPQgjsCL+HmTuvIi07HyZGSgT2aIIP2taBQlExrkvjOTaqCNhjI6oEHmXkInD7Zfx1JR4A4Olig6/7e6JudXOJKyuqcIYUIikx2IgquMNRCfh862UkpefAUKnAeJ8GGNWxHgwN2CMiehYGG1EFlZ6Tj3m7I7HxbMG3SDR0tMAyf080r2n9ki2JqrZSB1vhCWIi0r0zMY8wKTgcdx9lQaEARnZww8Q3GsLEyEDq0ogqvFIHm7e3N+rXr49BgwZh4MCBcHNz02VdRFVSdp4aXx+8gZ9O3IIQQE0bUyz190BbNzupSyOqNEp9kP63335DgwYNMHfuXDRo0ADt27fHDz/8gEePHumyPqIq4+r9FPReGYofjxeEWv82Ltg3vgNDjaiEyjzcPykpCRs3bsTvv/+Ov//+G8bGxujWrRs++OAD9OrVC8bG+p8BQV843J90IV+twY/Hb2H5oRvIUwtUtzDGgnda4I2mHF1IVBo6vY7t5s2b+P3337Fhwwb8888/sLa2xrvvvovBgwfjtdde09VuKgwGG5VVbFIGJm4Ox4U7yQAA32aOmP+2O+ws+E3tRKWl0/HCpqamMDMzg4mJCYQQUCgU2LlzJzp27IhXXnkFkZGRutwdUaUlhMBvf99G9xUncOFOMixVhljazwM/fNCaoUZURmUOtrS0NKxZswY+Pj6oU6cOpk+fDldXV2zZsgXx8fG4f/8+Nm3ahAcPHmDo0KG6qJmoUotPyUbAmrOYseMKsvLUaFfPDvsmvI6+rWtVmBlEiCqzUo+K3LlzJzZs2IDdu3cjOzsbr7zyCpYvX4733nsPdnZFT3a/++67ePz4McaMGVPmgokqs10R9/HFjitIycqDylCJqd0bI8DbFUolA41IV0odbG+//TZcXFwwYcIEDB48GI0aNXrh+h4eHhg4cGBpd0dUqSVn5uKLnVfxZ8R9AIB7TWt83d8D9R0sJa6MSH5KPXgkJCQEnTp10nE5lQsHj1BxhFx/gClbLuFBWg4MlAqM7VwfY7vUhxGnxCIqF5zdvwwYbPQimbn5CNoThQ1hdwAAbvbm+NrfEx4uNtIWRiRznCuSqBycv/0YEzeH4/bDTADAkHau+LxbY5gac0osovLGYCPSodx8DZYfuoEfjt2ERgDO1iZY0s8D7etXl7o0oiqDwUakI9fj0zB+Uzii4lIBAG+3rInZvZrB2tRI4sqIqhYGG1EZqTUCv5y8hSX7byBXrUE1MyMEve2OHu7OUpdGVCUx2IjK4O6jTEzaHIEzsQWTf3dt7IAFfd3hYGkicWVEVReDjagUhBDYfO4uvvwzEhm5apgbG+CLt5qi/ysunD2ESGIMNqISSkzLwbRtl3Ao6gEA4BXXaljazxO17cwkroyIAAYbUYnsuxKH6duv4FFGLowNlJj0ZkOM6OAGA06JRVRhMNiIiiE1Ow+zd17Ftov3AABNnK3wdX8PNHbihflEFY1s5vQ5fvw4/Pz8UKNGDSgUCuzYsaPY24aGhsLQ0BCenp7lVh9VXqHRSej29XFsu3gPSgUwpnM97BzTnqFGVEHJJtgyMjLg4eGBVatWlWi75ORkDB48GF27di2nyqiyys5TY86fVzHw5zDcT8lGHTszBI/yxmTfxjA2lM2fDpHsyOZQZPfu3dG9e/cSbzdq1CgMGDAABgYGJerlkbxF3E3GxM3huJmYAQD4oG1tTOveBOYq2fzJEMlWlf4rXbNmDW7duoXffvsN8+bNe+n6OTk5yMnJ0d5PTU0tz/JIAnlqDVYeicbKo9FQawQcLFVY/G4LdGrkIHVpRFRMVTbY/vnnH0ydOhUnTpyAoWHxfgwLFizAnDlzyrmyikOj0SAxMRH29vZQKuV/6C36QRombIrA5XspAIC3WjhjXp/msDEzlrgyIioJ+b9bPYNarcaAAQMwZ84cNGzYsNjbTZs2DSkpKdrb3bt3y7FKaWk0GgQFBWH48OEICgqCRqORuqRyo9EIrD4Zg57fnMTleymwNjXCivc8sXJAK4YaUSVUJXtsaWlpOHfuHC5evIixY8cCKHgjF0LA0NAQBw4cQJcuXZ7aTqVSQaVS6btcSSQmJiIsLAzx8fEICwtDYmIiHB0dpS5L5+4lZ2FycARO3XwIAHi9oT0W920BJ2tOiUVUWVXJYLOyssLly5eLLPvuu+9w5MgRbNmyBXXr1pWosorD3t4eXl5eCAsLg5eXF+zt7aUuSaeEENh24R5m77qKtJx8mBoZYHrPJvjAqzanxCKq5GQTbOnp6YiOjtbej4mJQXh4OGxtbVG7dm1MmzYN9+7dw/r166FUKtG8efMi2zs4OMDExOSp5VWVUqlEYGBghT3HVpbzfw/TcxC4/Qr2XY0HALSsbYNl/p6oW928PEp9qap2LpOovMkm2M6dO4fOnTtr70+cOBEAEBAQgLVr1yIuLg537tyRqrxKSalUluvhx9K+oRee/yvsTQYGBhZ7+0ORCZi67RKS0nNhqFRgvE8DjOpYD4YG0gRKWdpCRM+mEEIIqYuorFJTU2FtbY2UlBRYWXEWipIoyxt6QkIChg8fjvj4eDg5OeGXX355aQCn5+Rj7p+R2HSuYMBPQ0cLLPP3RPOa1mVuS1mUpi1E9GL8aEhFaDQaJCQklPsoyGcNTimuwvN/Tk5OxTr/dybmEbotP45N5+5CoQA+fN0Nu8a+JnmoASVvCxG9HHtsZSC3Hps+D4uVdV/FOYyZnafGsoM38L8TtyAEUKuaKZb284CXm52umqETPMdGpFsMtjKQW7Dp+7BYeb6hX72fgombInA9IQ0A4N+mFr54qyksTYx0uh8iqnhkM3iEyk7fQ/zLY3BKvlqDH4/fwvJDN5CnFqhuYYwF77TAG01Lvx/2qIgqF/bYykBuPTagcr+JxyRlYNLmcFy4kwwA8G3miPlvu8POovQX1XPUIlHlwx4bFVFRh/i/iBACv4Xdwfw9UcjKU8NSZYjZvZrhnVY1y3yxdVWZgYVIThhspDfl0fuJT8nGlK2XcPxGwahKbzc7LPH3QE0bU12ULPsZWIjkiMFGeqPr3s+uiPv4YscVpGTlQWWoxNTujRHg7QqlUndTYlX0GViI6GkMNtIbXfV+kjNzMWPHFey+FAcAaFHLGsv8PVDfwVKX5WqV9+FZItItDh4pAzkOHilvZT3HFnL9AaZsuYQHaTkwUCrwSZf6GNO5PowkmhKLiCoe9thIr0rb+8nMzUfQnihsCCuY79PN3hxf+3vCw8VGxxUSUWXHYKMK7/ztx5i0ORyxDzMBAEPbu+Lzbo1hYmRQ5ueuzJc3ENGzMdiowsrN12DF4Rv4PuQmNAJwtjbBkn4eaF+/uk6en9eoEckTg40qpGvxqZiwKQJRcakAgHda1cQsv2awNtXdlFi8Ro1InhhsVKGoNQI/n7iFpQduIFetQTUzI8x/2x3d3Z11vi9eo0YkTxwVWQYcFfl8pTl3dedhJiYFh+Ns7GMAQJfGDljY1x0OliYVqk4iqtjYYyOdK+m5KyEENp29i7m7I5GRq4a5sQFm+jWFfxuXMk+J9TK8Ro1IfhhspHMlOXf1IC0b07ZexuFrDwAAr7hWw9J+nqhtZ6bPkolIRhhspHPFPXf11+U4TN9+GY8z82BsoMSkNxtiRAc3GOhwSiwiqnp4jq0MeI7t+V507iolKw9zdl3Ftov3AABNnK3wdX8PNHbiz5CIyo49NioXzzt3FRqdhMnBEbifkg2lAvi4Uz2M69oQxoYcuEFEusFgI73IzlNj4V/XsPZULADA1c4MS/090bpONWkLIyLZYbBRuYu4m4yJm8NxMzEDADDQqzYCezaBmTFffkSke3xnoXKTp9Zg5ZForDwaDbVGwMFSha/6eaBjQ14ITUTlh8FG5SL6QTombg7HpX9TAAB+HjUwt3cz2JgZS1wZEckdg410SqMRWHsqFov2XUNOvgbWpkaY26c5ennUkLo0IqoiGGykM/eSszA5OAKnbj4EALze0B6L+7aAk3X5TYlFRPQkBhuVmRAC2y7cw+xdV5GWkw9TIwME9myCgV61y31KLCKiJzHYqEwepudg+vbL2H81AQDQsrYNlvl7om51c4krI6KqSjZXxR4/fhx+fn6oUaMGFAoFduzY8cL1t23bhjfeeAP29vawsrKCt7c39u/fr59iZeJgZAJ8lx/H/qsJMDJQYLJvIwR/5M1QIyJJySbYMjIy4OHhgVWrVhVr/ePHj+ONN97A3r17cf78eXTu3Bl+fn64ePFiOVda+aVl52HKlgiMXH8OSem5aORoie2j22NM5/owNJDNS4qIKilZzhWpUCiwfft29OnTp0TbNWvWDP3798fMmTOLtX5VnCvy71sP8VlwBP59nAWFAhjZwQ0T32gIEyMDqUsjIgLAc2xaGo0GaWlpsLW1fe46OTk5yMnJ0d5PTU3VR2kVQnaeGksPXMfPJ2MgBFCrmimW9vOAl5ud1KURERXB40b/Z8mSJUhPT4e/v/9z11mwYAGsra21NxcXFz1WKJ0r91LQa+VJ/O9EQaj1b+OCfeNfr5ChptFokJCQAI1GI3UpRCQRHooE8Pvvv2PkyJHYuXMnfHx8nrves3psLi4usj0Uma/W4IdjN7H80D/I1whUtzDGwndawKdpxfzG6ZJ+czcRyVOVPxS5ceNGjBgxAsHBwS8MNQBQqVRQqVR6qkxaMUkZmLg5HBfvJAMAujVzQtDbzWFnUXHbX5Jv7iYi+arSwfbHH39g2LBh2LhxI3r27Cl1ORWCEAK/hd3B/D1RyMpTw1JliDm9m+HtljUr/MXWxf3mbiKSN9kEW3p6OqKjo7X3Y2JiEB4eDltbW9SuXRvTpk3DvXv3sH79egAFhx8DAgKwYsUKeHl5IT4+HgBgamoKa2trSdogtfiUbEzZegnHbyQCANrVs8NX/TxQ08ZU4sqKR6lUIjAw8Lnf3E1EVYNszrGFhISgc+fOTy0PCAjA2rVrMWTIEMTGxiIkJAQA0KlTJxw7duy56xeHnIb77wy/hy92XEFqdj5Uhkp83q0xhrRzhVJZsXtpRERPkk2wSUEOwZacmYsZO65g96U4AECLWtZY5u+B+g6WEldGRFQ6sjkUSSUXcv0Bpmy5hAdpOTBQKvBJl/oY07k+jDh7CBFVYgy2KigjJx/z90ZhQ9gdAICbvTm+9veEh4uNtIUREekAg62KOX/7ESZujsDth5kAgKHtXTHFtzFMjV88JZZGo+GgDCKqFBhsVURuvgbLD93AD8duQiOAGtYmWNLPA+3qV3/ptrzwmYgqEwZbFXAtPhUTNkUgKq5gbst3WtXE7F7NYGViVKzteeEzEVUmDDYZU2sEfj5xC0sP3ECuWgNbc2PMf7s5ujV3LtHz8MJnIqpMONy/DCrycP87DzMxKTgcZ2MfAwB8mjhgwTstYG9ZuimxeI6NiCoL9thkRgiBTWfvYu7uSGTkqmFubIBZfs3Qr02tMk2JpVQqS3T4kUFIRFJhsMnIg7RsTN16GUeuPQAAvOpqi6X+HnCxNdNrHRxsQkRSYrDJxF+X4zB9+2U8zsyDsYESn/k2xPDX3GAgwZRYHGxCRFJisFVyKVl5mL3rKrZfvAcAaOpsha/7e6KRk3RTYnGwCRFJiYNHykDqwSOh0Un4LDgCcSnZUCqAjzvVw7iuDWFsKP1hP55jIyKpsMdWCWXlqrFo3zWsPRULAHC1M8NSf0+0rlNN2sL+o6SDTYiIdIXBVslE3E3GhM3huJWYAQD4oG1tTO/RBGbGJfxVajRAZhJgVh1gj4qIZITBVknkqTX49kg0Vh2Nhloj4GCpwuJ3W6BTI4eSP5lGA5xYAvx7DqjVBujwGcONiGSDwVYJRD9Iw4RNEbh8LwUA4OdRA3N7N4ONmXHpnjAzqSDU0hMK/s1MAixKEZBERBUQg60C02gE1pyKxaJ915Cbr4G1qRHm9mmOXh41yvbEZtULemqFPTazl0+ETERUWTDYKqh7yVn4bHMETt96CADo2NAei99tAUcrk7I/uVJZcPiR59iISIYYbBWMEAJbL9zDnF1XkZaTD1MjAwT2bIKBXrXLNCXWU5RKHn4kIllisFUgD9NzMH37Zey/mgAAaFXbBsv8PeFa3VziyoiIKg8GWwVxKDIBU7ddQlJ6LowMFBjv0xAfve4GQwMeJiQiKgkGm8TSsvMwd3ckNp/7FwDQ0NECX/f3RLMa1hJXRkRUOTHYJPT3rYf4LDgC/z7OgkIBjOzgholvNISJkYHUpRERVVoMNglk56mx9MB1/HwyBkIAtaqZYmk/D3i52UldGhFRpcdg07N7yVkYsvoM/nmQDgDo38YFX/g1hYWKvwoiIl3gu6me2VuoYGigRHULYyx8pwV8mnKiYCIiXeLX1pRBab+2JjYpA5YmhrCzUJVjdUREVRN7bBLgdWlEROWHF0kREZGsyCbYjh8/Dj8/P9SoUQMKhQI7dux46TYhISFo1aoVVCoV6tevj7Vr15Z7nUREVL5kE2wZGRnw8PDAqlWrirV+TEwMevbsic6dOyM8PBzjx4/HiBEjsH///nKulIiIypMsB48oFAps374dffr0ee46n3/+Ofbs2YMrV65ol7333ntITk7Gvn37irWf0g4eISKi8iObHltJnT59Gj4+PkWW+fr64vTp0xJVREREulBlR0XGx8fD0bHoNWSOjo5ITU1FVlYWTE1Nn9omJycHOTk52vupqanlXicREZVMle2xlcaCBQtgbW2tvbm4uEhdEhERPaHKBpuTkxMSEhKKLEtISICVldUze2sAMG3aNKSkpGhvd+/e1UepRERUAlX2UKS3tzf27t1bZNnBgwfh7e393G1UKhVUKs4WQkRUkcmmx5aeno7w8HCEh4cDKBjOHx4ejjt37gAo6G0NHjxYu/6oUaNw69YtTJkyBdeuXcN3332HzZs3Y8KECeVeq0ajQUJCAjQaTbnvi4ioqpFNsJ07dw4tW7ZEy5YtAQATJ05Ey5YtMXPmTABAXFycNuQAoG7dutizZw8OHjwIDw8PLF26FD///DN8fX3LtU6NRoOgoCAMHz4cQUFBDDciIh2T5XVs+lKa69gSEhIwfPhwxMfHw8nJCb/88stTozOfpNFokJiYCHt7eyiVsvksQkRULvguqWf29vbw8vKCk5MTvLy8YG9v/8L12cMjIiqZKjt4RCpKpRKBgYHF7oElJiYiLCwM8fHxCAsLQ2Ji4kt7eEREVRl7bBJQKpVwdHQs1mHFkvbwiIiqOp5jKwN9zRXJc2xERMXHQ5GVQGEPj4iIXo4f/4mISFYYbEREJCsMNiIikhUGGxERyQqDjYiIZIXBRkREssJgIyIiWeF1bGVQeG17amqqxJUQEemWpaUlFAqF1GWUCoOtDNLS0gAALi4uEldCRKRb5T2jUnnilFploNFocP/+fQghULt2bdy9e7fSvhCKKzU1FS4uLlWirUDVam9VaitQtdpbmrayx1ZFKZVK1KpVS3so0srKSvZ/IIWqUluBqtXeqtRWoGq1t6q0lYNHiIhIVhhsREQkKww2HVCpVJg1axZUKpXUpZS7qtRWoGq1tyq1Faha7a1KbQU4eISIiGSGPTYiIpIVBhsREckKg42IiGSFwUZERLLCYCumVatWwdXVFSYmJvDy8sKZM2deuH5wcDAaN24MExMTuLu7Y+/evXqqtOxK0tb//e9/6NChA6pVq4Zq1arBx8fnpT+biqakv9tCGzduhEKhQJ8+fcq3QB0qaVuTk5MxZswYODs7Q6VSoWHDhpXmtVzSti5fvhyNGjWCqakpXFxcMGHCBGRnZ+up2tI7fvw4/Pz8UKNGDSgUCuzYseOl24SEhKBVq1ZQqVSoX78+1q5dW+516pWgl9q4caMwNjYWq1evFlevXhUjR44UNjY2IiEh4Znrh4aGCgMDA7F48WIRGRkpZsyYIYyMjMTly5f1XHnJlbStAwYMEKtWrRIXL14UUVFRYsiQIcLa2lr8+++/eq68dEra3kIxMTGiZs2aokOHDqJ37976KbaMStrWnJwc0aZNG9GjRw9x8uRJERMTI0JCQkR4eLieKy+5krZ1w4YNQqVSiQ0bNoiYmBixf/9+4ezsLCZMmKDnyktu7969IjAwUGzbtk0AENu3b3/h+rdu3RJmZmZi4sSJIjIyUnz77bfCwMBA7Nu3Tz8F6wGDrRheffVVMWbMGO19tVotatSoIRYsWPDM9f39/UXPnj2LLPPy8hIfffRRudapCyVt65Py8/OFpaWlWLduXXmVqFOlaW9+fr5o166d+Pnnn0VAQEClCbaStvX7778Xbm5uIjc3V18l6kxJ2zpmzBjRpUuXIssmTpwo2rdvX6516lpxgm3KlCmiWbNmRZb1799f+Pr6lmNl+sVDkS+Rm5uL8+fPw8fHR7tMqVTCx8cHp0+ffuY2p0+fLrI+APj6+j53/YqiNG19UmZmJvLy8mBra1teZepMadv75ZdfwsHBAcOHD9dHmTpRmrbu2rUL3t7eGDNmDBwdHdG8eXPMnz8farVaX2WXSmna2q5dO5w/f157uPLWrVvYu3cvevTooZea9amyvj+VBCdBfomkpCSo1Wo4OjoWWe7o6Ihr1649c5v4+Phnrh8fH19udepCadr6pM8//xw1atR46g+nIipNe0+ePIlffvkF4eHheqhQd0rT1lu3buHIkSMYOHAg9u7di+joaIwePRp5eXmYNWuWPsouldK0dcCAAUhKSsJrr70GIQTy8/MxatQoTJ8+XR8l69Xz3p9SU1ORlZUFU1NTiSrTHfbYSGcWLlyIjRs3Yvv27TAxMZG6HJ1LS0vDoEGD8L///Q/Vq1eXupxyp9Fo4ODggJ9++gmtW7dG//79ERgYiB9++EHq0nQuJCQE8+fPx3fffYcLFy5g27Zt2LNnD+bOnSt1aVQK7LG9RPXq1WFgYICEhIQiyxMSEuDk5PTMbZycnEq0fkVRmrYWWrJkCRYuXIhDhw6hRYsW5VmmzpS0vTdv3kRsbCz8/Py0yzQaDQDA0NAQ169fR7169cq36FIqze/W2dkZRkZGMDAw0C5r0qQJ4uPjkZubC2Nj43KtubRK09YvvvgCgwYNwogRIwAA7u7uyMjIwIcffojAwEAolfLpAzzv/cnKykoWvTWAPbaXMjY2RuvWrXH48GHtMo1Gg8OHD8Pb2/uZ23h7exdZHwAOHjz43PUritK0FQAWL16MuXPnYt++fWjTpo0+StWJkra3cePGuHz5MsLDw7W3Xr16oXPnzggPD6/Q36Remt9t+/btER0drQ1vALhx4wacnZ0rbKgBpWtrZmbmU+FVGOhCZtPpVtb3pxKRevRKZbBx40ahUqnE2rVrRWRkpPjwww+FjY2NiI+PF0IIMWjQIDF16lTt+qGhocLQ0FAsWbJEREVFiVmzZlWq4f4laevChQuFsbGx2LJli4iLi9Pe0tLSpGpCiZS0vU+qTKMiS9rWO3fuCEtLSzF27Fhx/fp1sXv3buHg4CDmzZsnVROKraRtnTVrlrC0tBR//PGHuHXrljhw4ICoV6+e8Pf3l6oJxZaWliYuXrwoLl68KACIZcuWiYsXL4rbt28LIYSYOnWqGDRokHb9wuH+kydPFlFRUWLVqlUc7l9Vffvtt6J27drC2NhYvPrqq+Lvv//WPtaxY0cREBBQZP3NmzeLhg0bCmNjY9GsWTOxZ88ePVdceiVpa506dQSAp26zZs3Sf+GlVNLf7X9VpmATouRtPXXqlPDy8hIqlUq4ubmJoKAgkZ+fr+eqS6ckbc3LyxOzZ88W9erVEyYmJsLFxUWMHj1aPH78WP+Fl9DRo0ef+TdY2L6AgADRsWPHp7bx9PQUxsbGws3NTaxZs0bvdZcnfm0NERHJCs+xERGRrDDYiIhIVhhsREQkKww2IiKSFQYbERHJCoONiIhkhcFGRESywmAjIiJZYbAREZGsMNiIiEhWGGxERCQrDDYiIpIVBhsREckKg42IiGSFwUZERLLCYCMiIllhsBERkaww2IiISFYYbEREJCsMNiIikhUGGxERyQqDjagCiouLw9SpU9G5c2dYWlpCoVAgJCRE6rKIKgUGG1EFdP36dSxatAj37t2Du7u71OUQVSoMNqIKqHXr1nj48CFu3LiBiRMnSl0OUaXCYCPSo6ysLDRu3BiNGzdGVlaWdvmjR4/g7OyMdu3aQa1Ww9LSEra2thJWSlR5MdiI9MjU1BTr1q1DdHQ0AgMDtcvHjBmDlJQUrF27FgYGBhJWSFT5GUpdAFFV4+XlhSlTpmDRokV4++23kZCQgI0bN2L58uVo2LCh1OURVXoMNiIJzJ49G7t370ZAQADS09PRsWNHfPrpp1KXRSQLPBRJJAFjY2OsXr0aMTExSEtLw5o1a6BQKKQui0gWGGxEEtm/fz8AIDs7G//884/E1RDJB4ONSAKXLl3Cl19+iaFDh6Jly5YYMWIEUlJSpC6LSBYYbER6lpeXhyFDhqBGjRpYsWIF1q5di4SEBEyYMEHq0ohkgYNHiPRs3rx5CA8Px+HDh2FpaYkWLVpg5syZmDFjBt5991306NFDux4AXL16FQDw66+/4uTJkwCAGTNmSFM8USWgEEIIqYsgqiouXLgALy8vfPzxx/jmm2+0y9VqNby9vXHv3j1cvXoVNjY2LxxMwj9boudjsBERkazwHBsREckKg42IiGSFwUZERLLCYCMiIllhsBERkaww2IiISFYYbEREJCsMNiIikhUGGxERyQqDjYiIZKXCTIKsVquRl5cndRlERFTBGBkZwcDAoNjrSx5sQgjEx8cjOTlZ6lKIiKiCsrGxgZOTU7G+aV7yYCsMNQcHB5iZmRWraCIiqhqEEMjMzMSDBw8AAM7Ozi/dRtJgU6vV2lCzs7OTshQiIqqgTE1NAQAPHjyAg4PDSw9LSjp4pPCcmpmZmZRlEBFRBVeYE8UZi1EhRkXy8CMREb1ISXKiQgQbFc/atWthY2MjdRlERBUag60UhgwZAoVCAYVCAWNjY9SvXx9ffvkl8vPzy3W//fv3x40bN8p1Hy/z37YbGRnB0dERb7zxBlavXg2NRlOi52JQ60bh72ThwoVFlu/YsUPvR0MKXxsKhQLm5uZo0KABhgwZgvPnz5f4uTp16oTx48frvkgCAISEhEChUMhyRDqDrZS6deuGuLg4/PPPP5g0aRJmz56Nr7766pnr5ubm6mSfpqamcHBw0MlzlUVh22NjY/HXX3+hc+fOGDduHN56661yD3d6NhMTEyxatAiPHz+WuhSsWbMGcXFxuHr1KlatWoX09HR4eXlh/fr1UpdWZfz3A8azbrNnz5a6xHLFYCsllUoFJycn1KlTBx9//DF8fHywa9cuAAWfoPv06YOgoCDUqFEDjRo1AgDcvXsX/v7+sLGxga2tLXr37o3Y2FgAwIEDB2BiYvLUp6dx48ahS5cuAJ7dw/n+++9Rr149GBsbo1GjRvj111+1j8XGxkKhUCA8PFy7LDk5GQqFAiEhIQCAx48fY+DAgbC3t4epqSkaNGiANWvWFKvtNWvWRKtWrTB9+nTs3LkTf/31F9auXatdb9myZXB3d4e5uTlcXFwwevRopKenAyj4tDh06FCkpKQ89cf266+/ok2bNrC0tISTkxMGDBigHepLz+bj4wMnJycsWLDgheudPHkSHTp0gKmpKVxcXPDpp58iIyMDALBy5Uo0b95cu25hj++HH34osp8ZM2a8cB+F1xu5urrizTffxJYtWzBw4ECMHTtWG7wPHz7E+++/j5o1a8LMzAzu7u74448/tM8xZMgQHDt2DCtWrNC+PmJjY6FWqzF8+HDUrVsXpqamaNSoEVasWFHin5fcxcXFaW/Lly+HlZVVkWWfffaZZLXp6oP+izDYdMTU1LTIL+zw4cO4fv06Dh48iN27dyMvLw++vr6wtLTEiRMnEBoaCgsLC3Tr1g25ubno2rUrbGxssHXrVu1zqNVqbNq0CQMHDnzmPrdv345x48Zh0qRJuHLlCj766CMMHToUR48eLXbdX3zxBSIjI/HXX38hKioK33//PapXr17i9nfp0gUeHh7Ytm2bdplSqcQ333yDq1evYt26dThy5AimTJkCAGjXrt1Tf3CFf2x5eXmYO3cuIiIisGPHDsTGxmLIkCElrqkqMTAwwPz58/Htt9/i33//feY6N2/eRLdu3dC3b19cunQJmzZtwsmTJzF27FgAQMeOHREZGYnExEQAwLFjx1C9enXth6C8vDycPn0anTp1KnF9EyZMQFpaGg4ePAgAyM7ORuvWrbFnzx5cuXIFH374IQYNGoQzZ84AAFasWAFvb2+MHDlS+/pwcXGBRqNBrVq1EBwcjMjISMycORPTp0/H5s2bS1yTnDk5OWlv1tbWUCgURZZZWFho1z1//jzatGkDMzMztGvXDtevXy/yXDt37kSrVq1gYmICNzc3zJkzp8iRmTt37qB3796wsLCAlZUV/P39kZCQoH189uzZ8PT0xM8//4y6devCxMQE69evh52dHXJycorsq0+fPhg0aFDZfwBCQllZWSIyMlJkZWVJWUaJBQQEiN69ewshhNBoNOLgwYNCpVKJzz77TPu4o6OjyMnJ0W7z66+/ikaNGgmNRqNdlpOTI0xNTcX+/fuFEEKMGzdOdOnSRfv4/v37hUqlEo8fPxZCCLFmzRphbW2tfbxdu3Zi5MiRRWrr16+f6NGjhxBCiJiYGAFAXLx4Ufv448ePBQBx9OhRIYQQfn5+YujQoaVq+5P69+8vmjRp8txtg4ODhZ2dnfb+k+15nrNnzwoAIi0trdh1ViX//Z20bdtWDBs2TAghxPbt28V//8SHDx8uPvzwwyLbnjhxQiiVSpGVlSU0Go2ws7MTwcHBQgghPD09xYIFC4STk5MQQoiTJ08KIyMjkZGR8dxaAIjt27c/tTwrK0sAEIsWLXrutj179hSTJk3S3u/YsaMYN27cC9suhBBjxowRffv2fel6uqLRaERGTp4kt/++fxTX8/7Ojh49KgAILy8vERISIq5evSo6dOgg2rVrp13n+PHjwsrKSqxdu1bcvHlTHDhwQLi6uorZs2cLIYRQq9XC09NTvPbaa+LcuXPi77//Fq1btxYdO3bUPsesWbOEubm56Natm7hw4YKIiIgQmZmZwtraWmzevFm7XkJCgjA0NBRHjhx5ZjtKkheSzzyiKxqNBomJibC3t4dSWf4d0d27d8PCwgJ5eXnQaDQYMGBAkePW7u7uMDY21t6PiIhAdHQ0LC0tizxPdnY2bt68CQAYOHAg2rZti/v376NGjRrYsGEDevbs+dwBFlFRUfjwww+LLGvfvn2JDs18/PHH6Nu3Ly5cuIA333wTffr0Qbt27Yq9/X8JIYoMVjh06BAWLFiAa9euITU1Ffn5+cjOzkZmZuYLr108f/48Zs+ejYiICDx+/Fg7KOXOnTto2rRpqWrTO40GyEwCzKoDeng9Flq0aBG6dOnyzENNERERuHTpEjZs2KBdJoSARqNBTEwMmjRpgtdffx0hISHw8fFBZGQkRo8ejcWLF+PatWs4duwYXnnllVJddyqEAPD/h2yr1WrMnz8fmzdvxr1795Cbm4ucnJxiPfeqVauwevVq3LlzB1lZWcjNzYWnp2eJayqtrDw1ms7cr7f9/Vfkl74wM9bt23ZQUBA6duwIAJg6dSp69uyJ7OxsmJiYYM6cOZg6dSoCAgIAAG5ubpg7dy6mTJmCWbNm4fDhw7h8+TJiYmLg4uICAFi/fj2aNWuGs2fP4pVXXgFQcPhx/fr1sLe31+53wIABWLNmDfr16wcA+O2331C7du1SHRF4kiwORWo0GgQFBWH48OEICgoq8ei80ujcuTPCw8Pxzz//ICsrC+vWrYO5ubn28f/+HwDS09PRunVrhIeHF7nduHEDAwYMAAC88sorqFevHjZu3IisrCxs3779uYchi6Mw4AvfVICnL27s3r07bt++jQkTJuD+/fvo2rVrqY+/R0VFoW7dugAKzu+99dZbaNGiBbZu3Yrz589j1apVAF58jD0jIwO+vr6wsrLChg0bcPbsWWzfvv2l21UoGg1wYgmwc2zBv3p4PRZ6/fXX4evri2nTpj31WHp6Oj766KMir7+IiAj8888/qFevHoCCkYghISE4ceIEWrZsCSsrK23YHTt2TPsGWFJRUVEAoH19fPXVV1ixYgU+//xzHD16FOHh4fD19X3p73jjxo347LPPMHz4cBw4cADh4eEYOnRo5XltVEAtWrTQ/r9wuqrCc9oRERH48ssvYWFhob0VHh7OzMxEVFQUXFxctKEGAE2bNoWNjY32dw4AderUKRJqADBy5EgcOHAA9+7dA1AwhqBwhG9ZyaLHlpiYiLCwMMTHxyMsLAyJiYlwdHQs132am5ujfv36xV6/VatW2LRpExwcHGBlZfXc9QYOHIgNGzagVq1aUCqV6Nmz53PXbdKkCUJDQ7WfpgAgNDRU26spfCHFxcWhZcuWAFBkIEkhe3t7BAQEICAgAB06dMDkyZOxZMmSYrcNAI4cOYLLly9jwoQJAAp6XRqNBkuXLtUG7JPnQYyNjaFWq4ssu3btGh4+fIiFCxdq/1jOnTtXolokl5kE/HsOSE8o+DczCbDQ32jWhQsXwtPTUztoqVCrVq0QGRn5wtdtx44dMX78eAQHB2s/OXfq1AmHDh1CaGgoJk2aVKqaCs+n+vj4ACh4nfbu3RsffPABgIIPpzdu3CjSI3/W6yM0NBTt2rXD6NGjtcsKj3joi6mRASK/9NXrPv+7b10zMjLS/r8wVAo7B+np6ZgzZw7eeeedp7YzMTEp9j6e/KAPAC1btoSHhwfWr1+PN998E1evXsWePXtKWv4zySLY7O3t4eXlhbCwMHh5eT31yaAiGDhwIL766iv07t0bX375JWrVqoXbt29j27ZtmDJlCmrVqqVdb/bs2QgKCsK7774LlUr13OecPHky/P390bJlS/j4+ODPP//Etm3bcOjQIQAFA1ratm2LhQsXom7dunjw4MFTI9pmzpyJ1q1bo1mzZsjJycHu3bvRpEmTF7YlJycH8fHxUKvVSEhIwL59+7BgwQK89dZbGDx4MACgfv36yMvLw7fffgs/Pz+EhoYWGV0HAK6urkhPT8fhw4fh4eEBMzMz1K5dG8bGxvj2228xatQoXLlyBXPnzi3xz1tSZtWBWm0KQq1Wm4L7euTu7o6BAwfim2++KbL8888/R9u2bTF27FiMGDEC5ubmiIyMxMGDB7Fy5UoABZ/eq1Wrht9//x27d+8GUBBsn332GRQKBdq3b//S/ScnJyM+Ph45OTm4ceMGfvzxR+zYsQPr16/XHlZv0KABtmzZglOnTqFatWpYtmwZEhISigSbq6srwsLCEBsbCwsLC9ja2qJBgwZYv3499u/fj7p16+LXX3/F2bNntT1BfVAoFDo/HFhRtWrVCtevX3/uh6EmTZrg7t27uHv3rvaDaGRkJJKTk4t12mDEiBFYvnw57t27Bx8fnyI9vzIpxrnHcqPLwSNqtVrEx8cLtVqtg8pe7EUDKF70eFxcnBg8eLCoXr26UKlUws3NTYwcOVKkpKQUWe/VV18VAJ46ifqsk8DfffedcHNzE0ZGRqJhw4Zi/fr1RR6PjIwU3t7ewtTUVHh6eooDBw4UGTwyd+5c0aRJE2FqaipsbW1F7969xa1bt17YNgACgDA0NBT29vbCx8dHrF69+qmf/bJly4Szs7MwNTUVvr6+Yv369QKAdjCMEEKMGjVK2NnZCQBi1qxZQgghfv/9d+Hq6ipUKpXw9vYWu3btemoQTIWnVguRllDwbzl71ustJiZGGBsbiyf/xM+cOSPeeOMNYWFhIczNzUWLFi1EUFBQkXV69+4tDA0NtYN11Gq1qFatmmjbtu1Layl8bQAQJiYmol69eiIgIECcP3++yHoPHz4UvXv3FhYWFsLBwUHMmDFDDB48uEg7rl+/Ltq2bStMTU0FABETEyOys7PFkCFDhLW1tbCxsREff/yxmDp1qvDw8Cj+D6yKedngkf/+PV68eFH7sxZCiH379glDQ0Mxe/ZsceXKFREZGSn++OMPERgYKIQoGEjj6ekpOnToIM6fPy/CwsKeOXjkeb+f5ORkYWZmJoyNjcXGjRtf2I6S5IVsgo2IiJ5WlmAToiDc2rVrJ0xNTYWVlZV49dVXxU8//aR9/Pbt26JXr17C3NxcWFpain79+on4+Hjt4y8KNiGEGDRokLC1tRXZ2dkvbEdJ8kIhxH9GFuhZdnY2YmJitNc2EBFR1dK1a1c0a9bsqUPnTypJXlSNA8VERFShPH78GCEhIQgJCcF3332n0+dmsBERkd61bNkSjx8/xqJFi54awVtWDDYiItK7wnlyy4MsLtAmIiIqVCGCTcLxK0REVAmUJCckDbbCK94zMzOlLIOIiCq4wpz470wpzyPpOTYDAwPY2Nho5yUzMzPT+zf+EhFRxSWEQGZmJh48eAAbGxsYGLx8WjFJr2MDCoqOj4+X5deTExGRbhR+gW1xOj+SB1shtVr91MzzRERERkZGxeqpFaowwUZERKQLFWJUJBERka4w2IiISFYYbEREJCsMNiIikhUGGxERyQqDjYiIZIXBRkREsvL/AJxvSFx1sy9ZAAAAAElFTkSuQmCC\n" - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "# Querying using indexing\n", - "fig = plot_results_panel_2d(cycle,\n", - " query=[0, 2, 4],\n", - " subplot_kw=dict(figsize=(8,3), gridspec_kw={\"bottom\": 0.25})\n", - " );\n", - "fig.supxlabel('x1', y=0.1)\n", - "fig.suptitle('Cycles 0, 2, 4')\n", - "\n", - "# Last Cycle\n", - "fig = plot_results_panel_2d(cycle,\n", - " query=[-1],\n", - " subplot_kw=dict(figsize=(4,4), gridspec_kw={\"bottom\": 0.25})\n", - " );\n", - "fig.supxlabel('x1', y=0.1)\n", - "fig.supylabel('y', y=0.55, x='-.05')\n", - "fig.suptitle('Last Cycle')" - ], - "metadata": { - "collapsed": false - } - }, - { - "cell_type": "code", - "execution_count": 8, - "outputs": [ - { - "data": { - "text/plain": "Text(0.5, 0.1, 'x1')" - }, - "execution_count": 8, - "metadata": {}, - "output_type": "execute_result" - }, - { - "data": { - "text/plain": "
", - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAtgAAAEVCAYAAADaTZLyAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8o6BhiAAAACXBIWXMAAA9hAAAPYQGoP6dpAABiWUlEQVR4nO3dd1zV9ffA8de97I3KcuDeC0QRNc0sy8xMG2pOxFWplZmZZqVlpratLCsVnDkqtbQcmSNTQUVUxC1uQFD25t737w9+3q84AS9cuJzn43EfeO9933vP58rhnvv+vIdGKaUQQgghhBBCGIXW1AEIIYQQQghhTqTAFkIIIYQQwoikwBZCCCGEEMKIpMAWQgghhBDCiKTAFkIIIYQQwoikwBZCCCGEEMKIpMAWQgghhBDCiKTAFkIIIYQQwoikwDYBpRQpKSnIHj9ClCzJNSFKh+SaEAVJgW0CqampuLi4kJqaaupQADh37hwajYaIiAhThyKEUUmuCVE6JNeEKEgK7HIgNjaWV199lbp162JjY4O3tzc9e/Zk69atpg6tgMOHD9OpUydsbW3x9vbmk08+MXVIQhRJeci17du306tXL6pWrYqDgwO+vr4sW7bM1GEJUSTlIddudvr0aZycnHB1dTV1KKKcsDR1AOLezp07x0MPPYSrqyuffvopLVq0IDc3l02bNjFmzBiOHz9u6hABSElJ4YknnqBr167MmzePI0eOMGzYMFxdXRk1apSpwxPivspLru3evZuWLVvy9ttv4+npyfr16xkyZAguLi48/fTTpg5PiPsqL7l2Q25uLv3796dTp07s3r3b1OGI8kKJUpecnKwAlZycfN+23bt3V9WrV1dpaWm33ZeYmKiUUiooKEj16NGjwH05OTnK3d1dzZ8/XymllE6nU7Nnz1b16tVT1tbWytvbW3300UdKKaWio6MVoA4ePGh4/JEjR9STTz6pHBwclIeHhxo0aJCKj4+/a5zfffedqlSpksrOzjbc9vbbb6tGjRrd9xiFKCnmmGt38tRTT6mgoKAiPUYIYzLnXJs4caIaNGiQCg4OVi4uLvdtL4RSSskQkTLs+vXrbNy4kTFjxuDg4HDb/TdOVY0YMYKNGzcSExNjuG/9+vVkZGTQr18/ACZPnsysWbN47733iIqKYvny5Xh6et7xdZOSknj00Udp1aoV+/fvZ+PGjcTFxdG3b9+7xrpnzx4efvhhrK2tDbd169aNEydOkJiYWJzDF6LUlKdcu5Pk5GQqV65cpMcIYQrlLdf++ecfVq9ezdy5c4t5xKLCMnWFXxEV9pt+aGioAtRvv/123+ds2rSpmj17tuF6z5491dChQ5VSSqWkpCgbGxv1008/3fGxt37Tnz59unriiScKtLl48aIC1IkTJ+74HI8//rgaNWpUgduOHj2qABUVFXXf+IUoCeaYa7dauXKlsra2VpGRkYVqL0RJMMdcS0hIUN7e3mrHjh1KKSU92KJIpAe7DFNFWO5oxIgRBAcHAxAXF8dff/3FsGHDADh27BjZ2dk89thjhXquQ4cOsW3bNhwdHQ2Xxo0bA3DmzJkiHoUQZV95zbVt27YRFBTETz/9RLNmzQp9DEKYSnnKtZEjRzJgwAAefvjhQscsxA0yybEMa9CgARqNplATPoYMGcKkSZPYs2cPu3fvpk6dOnTq1AkAOzu7Ir1uWloaPXv2ZPbs2bfdV7Vq1Ts+xsvLi7i4uAK33bju5eVVpNcXorSVp1y7YceOHfTs2ZMvv/ySIUOGFOl1hTCV8pRr//zzD7///jufffYZkP/lQK/XY2lpyY8//mgo9kU5oNdDRgLYu4G2dPqWpQe7DKtcuTLdunVj7ty5pKen33Z/UlKS4d9VqlShd+/eBAcHExISQlBQkOG+Bg0aYGdnV+jlj/z8/Dh69Ci1a9emfv36BS53GjMH0L59e3bu3Elubq7hti1bttCoUSMqVapUyCMWwjTKU65B/lJ9PXr0YPbs2bJKjyhXylOu7dmzh4iICMPlww8/xMnJiYiICJ599tmiHbgwHb0e/v0M1o3N/6nXl87rmnaESsVUlNnWZ86cUV5eXqpp06bql19+USdPnlRRUVFqzpw5qnHjxgXabt68WVlbWysLCwt1+fLlAvdNmzZNVapUSS1atEidPn1a7dmzxzAT+9axapcvX1bu7u7qhRdeUGFhYer06dNq48aNaujQoSovL++OcSYlJSlPT081ePBgFRkZqVasWKHs7e3VDz/8UIx3SAjjMMdc++eff5S9vb2aPHmyiomJMVyuXbtWjHdICOMwx1y7lYzBLqdS45Ra2kepeQ/n/0yNK5WXlQLbBIryh0gppa5cuaLGjBmjatWqpaytrVX16tXVM888o7Zt21agnV6vV7Vq1VJPPfXUbc+h0+nURx99pGrVqqWsrKxUzZo11ccff6yUuvNyRidPnlTPPvuscnV1VXZ2dqpx48Zq3LhxSq/X3zXOQ4cOqY4dOyobGxtVvXp1NWvWrEIdnxAlxRxzLTAwUAG3XTp37lyoYxSiJJhjrt1KCuxySqdTavvs/OJ6++z866VAo1QRZhwIo0hJScHFxYXk5GScnZ2N9rxpaWlUr16d4OBgnnvuOaM9rxDlleSaEKVDck2UaSYYgy2THM2AXq8nISGBzz//HFdXV5555hlThySEWZJcE6J0SK4Jo9JqwdGjVF9SCmwzcOHCBerUqUONGjUICQnB0lL+W4UoCZJrQpQOyTVR3slvrBmoXbt2kdYWFUIUj+SaEKVDck2Ud7JMnxBCCCGEEEYkBbYQQgghhBBGJAW2EEIIIYQQRiQFthBCCCGEEEYkBbYQQgghhBBGZNYF9syZM/H398fJyQkPDw969+7NiRMn7vu41atX07hxY2xtbWnRogV//vlngfuVUrz//vtUrVoVOzs7unbtyqlTp0rqMIQoEy5ezyD8QqKpwxBCCCGMQq8vuZVqzLrA3rFjB2PGjGHv3r1s2bKF3NxcnnjiCdLT0+/6mN27d9O/f3+GDx/OwYMH6d27N7179yYyMtLQ5pNPPuHrr79m3rx5hIaG4uDgQLdu3cjKyiqNwxKi1J2+mkqfeXsIXBhG1JUUU4cjhBBCPJBradn0+WEPfx2JKZHnr1BbpcfHx+Ph4cGOHTt4+OGH79imX79+pKens379esNt7dq1w9fXl3nz5qGUolq1arz55ptMmDABgOTkZDw9PQkJCeHFF1+8bxwltaWsECXh8KUkAheGkZiRSwMPR5YMD8DLxdbUYRWK5JoQpUNyTZQn5xLSGRocxrlrGXg627DjrS7YWlkY9TXMugf7VsnJyQBUrlz5rm327NlD165dC9zWrVs39uzZA0B0dDSxsbEF2ri4uBAQEGBoc6vs7GxSUlIKXIQoD/aevcaAn0JJzMjFp4YLq15qX6aLa8k1IUqH5Joor8IvJPLc97s5dy2DGpXsWDaindGLa6hABbZer2fcuHE89NBDNG/e/K7tYmNj8fT0LHCbp6cnsbGxhvtv3Ha3NreaOXMmLi4uhou3t/eDHIoQpWLrsTgCF4aRlp1H+7pVWDayHZUcrE0d1j1JrglROiTXRHm06WgsA37ay/X0HFpUd+G30R2o7+FYIq9VYQrsMWPGEBkZyYoVK0r9tSdPnkxycrLhcvHixVKPQYiiWBdxmZeWHCA7T0/XJp4EB/njaGNp6rDuS3JNiNIhuSbKm0W7z/Hy0gNk5erp0sidFaPa4eFUcmdky/4nphGMHTuW9evXs3PnTmrUqHHPtl5eXsTFxRW4LS4uDi8vL8P9N26rWrVqgTa+vr53fE4bGxtsbGwe4AiEKD1L9pzj/d+PohQ826o6n7zQEiuL8vFdXHJNiNIhuSbKC71eMWvjcX7ceRaA/m29md6rOZYl/LlWPj41i0kpxdixY1mzZg3//PMPderUue9j2rdvz9atWwvctmXLFtq3bw9AnTp18PLyKtAmJSWF0NBQQxshyiOlFHO3nea9dfnFdWD7Wnzex6fcFNdCCCHEzbJydby24qChuH6rWyM+frZFiRfXYOY92GPGjGH58uWsW7cOJycnwxhpFxcX7OzsABgyZAjVq1dn5syZALz++ut07tyZzz//nB49erBixQr279/Pjz/+CIBGo2HcuHF89NFHNGjQgDp16vDee+9RrVo1evfubZLjFOJBKaWY+df/vuG/9mh93ni8IRqNxsSRCSGEEEWXlJHDqMUHCDt3HSsLDZ+80JJnW917FIMxmXWB/f333wPwyCOPFLg9ODiYoUOHAnDhwgW02v99k+nQoQPLly/n3Xff5Z133qFBgwasXbu2wMTIiRMnkp6ezqhRo0hKSqJjx45s3LgRW9uyu7qCEHej0yumrDnCin35Yyjf7dGEEZ3qmjgqIYQQ4iZ6PWQkgL0baO/dA33xegZDg8M4E5+Ok40l8wa35qH6bqUUaL4KtQ52WSHrhYqyIidPzxsrI9hwJAatBmY915K+/uazGoDkmhClQ3JNlCi9Hv79DC7thxptoNOEuxbZRy4lExSyj4S0bKq62BIc5E9jr9L/nTTrHmwhxN1l5OTx8tJwdp6Mx8pCw9cvtqJ7i6r3f6AQQghRmjIS8ovrtLj8nxkJ4OhxW7Ntx68yZnk4GTk6Gns5ERLU1mR7N0iBLUQFlJyZy/CQfew/n4idlQU/DG7Nww3dTR2WEALYduIqNhZaOpTyKW0hyix7t/ye6xs92Pa358by0Au8ty4SnV7Rsb4b3w/yw8nWygTB5pMCW4gKJj41myELwzgWk4KzrSXBQf60rnX33U2FEKUjT6fny79PMnfbGdwcrfnztU54OMvcHiHQavOHhdxhDLZSis83n+TbbacBeKF1DWY+18LkK2BJgS1EBXIpMYPBC8KITkjHzdGGJcPb0qSqjJcUwtSupmbx2s8H2Xv2OgDdm1fF2c50vW9ClDla7W3DQnLy9Lz962HWHLwMwOuPNWBc1wZlYgUsKbCFqCBOX01j8IJQYpKzqO5qx9IRAdRxczB1WEJUeHvOXOPVnw+SkJaNg7UFM59vyTM+1UwdlhBlWkpWLi8vOcDuM9ew0GqY+WyLMjVJXwpsISqAyMvJDFkYxvX0HOp7OLJ0eIDJJn4IIfLp9Yrvd5zh880n0Cto5OnEd4P8qOfuaOrQhCjTriRlEhS8jxNxqThYW/DdoNZ0LmPziKTAFsLMhZ69xohF+0nNzqNFdRcWDWtLZQdrU4clRIWWmJ7DG6si2H4iHsgfNzq9V3PsrC1MHJkQZVvUlRSCQsKIS8nGw8mGhUP9aV7dxdRh3UYKbCHM2LbjV3l56QGy8/QE1KnM/MA2Jp1VLYSAA+cTeXV5OFeSs7C10vJhr+b0bVN2Tm0LUVb9eyqeV5aGk5adRwMPR0KGtaW6q52pw7ojKbCFMFO/H7rC+JUR5OkVjzX2YO5AP2ytpHdMCFNRSrFgVzSz/jpOnl5R182B7wb5mWQTDCHKm9X7LzL5tyPk6RXt6lbmh0FtcLF/wA6jIuwOWVRSYAthhpaFnufdtZEoBb18q/FZHx+TL1kkREWWnJnLxF8OseloHABPt6zKrOdb4mgjH8NC3ItSiq+3nubLv08C+Z9pn7zQEhvLB+wwKsLukMUhmS2Emfl++xlmbzwOwOB2tfjgmWZotaZfskiIiirycjKjl4Vz4XoG1hZa3nu6CYPa1SoTS4mJikev1xMfH4+7uztaI/faGluuTs+7ayJZuf8iAK88Uo+3nmhknM+0Qu4OWVxSYAthJpRSzN54gnk7zgAwpks9JjzRSD7EhTARpRTLwy7wwR9R5OTpqVHJjrkD/PDxdjV1aKKC0uv1zJgxg9DQUAICApgyZUqZLbLTsvMYsyycHSfj0Wrgw17NGdSulvFeoBC7Qz4IKbCFMAM6veK9dZEsD70AwDtPNWbUw/VMHJUQ5dwDjM9Mz85jypojrI24AkDXJp583sfnwceMCvEA4uPjCQ0NJTY2ltDQUOLj4/H09DR1WLf1qselZBEUvI+omBTsrCz4dkArHmti5DjvsTukMUiBLUQ5l5OnZ/yqCNYfjkGrgY+fbcGLbWuaOiwhyrcHGJ95Mi6VV5Ye4Ex8OhZaDW8/2YiRnerK2SRhcu7u7gQEBBh6sN3dTb929K296n1GvMbwRQe4nJSJm6M1CwL9S+6szx12hzQWKbCFKMcyc3S8suwA20/EY2WhYc6LrXiqRVVThyVE+VfM8Zm/hV9iyppIMnN1eDnb8u2AVrSpXbkUAhbi/rRaLVOmTClTY7Bv7lXfGnmRlfP2kJato66bAyFBbalZxd7UIRaLFNhClFMpWbkMD9nHvnOJ2Fpp+WFwmzK3k5UQ5VYRx2dm5eqY9vtRVuzLn4zVqYEbX/XzpYqjTWlEK0ShabXaMjEs5IYbveqbjl/ngvej6LN1tKlViZ+GtKFSMTZFKyuTOKXAFqIcSkjLJnBhGEevpOBka0nwUH/pJRPCmIowPvNsfBqjl4VzPDYVjQbGPdaQsY/Wx0JW7xHivjQaDVU6vsil9Pxl+J5q4cUXfX2LtW9DWZrEKQW2EOXM5aRMBs8P5WxCOm6O1iwa1pZm1creNrFClHuFGJ+54XAMb/96mLTsPNwcrZnzYiseqm/c1QiEMFd5Oj3T/jjK0r35E/SHd6zDlKeaFHsZvrI0iVMKbCHKkbPxaQyaH8qV5Cyqu9qxZHhb6ro7mjosISqc7DwdH284xqI95wFoW7sy3wxohaezrYkjE6J8yMjJ47WfD/L3satoNPBej6YM61jngZ6zLE3ilAJbiHIi8nIygQvDuJaeQ113B5YOD6Caq52pwxKiwrl4PYOxy8M5dCkZyN/84s3HG2Ipu6UKUSgJadkMD9nHoUvJ2FhqmfOiL082f/AJ+mVpEqcU2EKUA2HR1xkeso/U7DyaVXNm0bC2uMnkKSFK3dZjcYxfdYjkzFxc7Kz4sp8PjzYuOxPGhCjrzsSnMTQ4jIvXM6lkb8X8wDa0rmW8OURlZRKnFNhClHHbTlzllaUHyMrV07ZOZeYHtsHZVjarEKI05en0fLr5BD/sOAuAj7crcwe0okal8rmEmBCmsP/cdUYs3k9SRi41K9sTEuRvtsMcpcAWogz749AV3lgZQZ5e8WhjD74b6FesmdVCiOKLS8ni1eUHCTt3HYChHWrzzlNNsLaUISFCFNZfR2J4fWUEOXl6fGq4sGCov1mfiZUCW4gy6uewC7yz5ghKQS/fanzWxwcrGeMpRKnadSqB11cc5Fp6Do42lnzyQkvZzEmIIpr/71lm/HkMpaBrE0++7u+LvbV5l6DmfXRClFPzdpxh1l/HARgYUJPpvZoXe9kiIUTR6fSKb/45xZytp1AKmlR15ruBftRxczB1aEKUG3q94qMNx1j4XzQAg9vVYtozzSrEGvFSYAtRhiil+GTTCb7ffgaA0Y/U461ujdBozP+PkRBlRUJaNm+sjODfUwkA9G/rzdSezWR4lhBFkJWr442VEfwVGQvApO6NeenhuhXm88yszzfv3LmTnj17Uq1aNTQaDWvXrr1n+6FDh6LRaG67NGvWzNBm2rRpt93fuHHjEj4SURHo9Ip310YaiutJ3Rsz8cnGFeaPkRBlQVj0dXp8/S//nkrAzsqCL/r6MPO5llJcC1EE19NzGPjTXv6KjMXaQsPX/Vvxcud6FerzzKx7sNPT0/Hx8WHYsGE899xz920/Z84cZs2aZbiel5eHj48Pffr0KdCuWbNm/P3334brlpZm/TaKUpCr0zN+1SH+OHQFjQY+frYF/dvWNHVYQlQYer3ip3/P8smmE+j0ivoejnw30I+Gnk6mDk2IcuX8tXSGLgwj+loGztpsfmpzhYAWT5o6rFJn1pVh9+7d6d69e6Hbu7i44OLyvy2n165dS2JiIkFBQQXaWVpa4uXlZbQ4RcWWmaNjzPJw/jl+FSsLDV/28+XpltVMHZYQFUZSRg4TVh/i72NXgfxJxR8/2wIHG7P+iBTC6CIuJjE8ZB/X0nOobpVGiMdKGmRYQkZfcPQwdXilSv563MOCBQvo2rUrtWrVKnD7qVOnqFatGra2trRv356ZM2dSs6b0NoqiS8nKZUTIfsLOXcfWSsv3g1rTpVHF+iMkhCkdupjE6GXhXE7KxNpSy/tPN2VgQM0KdSpbCGPYEhXHqz+Hk5Wrp3k1ZxY2OoFHgiXUaAP2bqYOr9RJgX0XV65c4a+//mL58uUFbg8ICCAkJIRGjRoRExPDBx98QKdOnYiMjMTJ6c6nErOzs8nOzjZcT0lJKdHYRflwLS2bwOAwIi+n4GRjycIgf/xrG283q4pIck0UllKKJXvPM319FLk6Rc3K9nw30I/m1V3u/2AhuSYKWLznHNN+P4pewSON3Jk7wA8Hq4cgIyG/uDbhluWmUvGOuJAWLVqEq6srvXv3LnB79+7d6dOnDy1btqRbt278+eefJCUlsWrVqrs+18yZMw3DT1xcXPD29i7h6EVZdyUpk74/7CHycgpVHKz5eVQ7Ka6NQHJNFEZqVi5jfz7I++uOkqtTdGvmyfrXOkpxXQSSawLy5y7M/OsY76/LL65f9Pdm/pA2+cOrtNr8YSEVsLgG0CillKmDKA0ajYY1a9bcVjDfiVKKhg0b8vTTT/Pll1/et72/vz9du3Zl5syZd7z/Tt/0vb29SU5OxtnZudDHIMxDdEI6g+aHcjkpk2outiwZEUA9M90qtrRJron7ORaTwuhl4UQnpGOp1TD5qSYMe6i2DAkpIsk1kZ2nY8Lqw/xx6AoAE55oyJgu9SWX/p8MEbmDHTt2cPr0aYYPH37ftmlpaZw5c4bBgwfftY2NjQ02Nua7HagovKgrKQxZGEpCWg513RxYMiKA6q52pg7LbEiuibtRSrFq/0XeX3eU7Dw91Vxs+XagH341K5k6tHJJcq1iS87IZeSS/YRFX8dSq2HW8y15oXUNU4dVpph1gZ2Wlsbp06cN16Ojo4mIiKBy5crUrFmTyZMnc/nyZRYvXlzgcQsWLCAgIIDmzZvf9pwTJkygZ8+e1KpViytXrjB16lQsLCzo379/iR+PKN/2n7tOUMg+UrPyaFrVmcXD2+LmKB9QQpS0jJw83lt7lF/DLwH5Y0S/7OtLJQdrE0cmRPlzKTGDocH7OH01DUcbS+YNak3HBhVvEuP9mHWBvX//frp06WK4Pn78eAACAwMJCQkhJiaGCxcuFHhMcnIyv/76K3PmzLnjc166dIn+/ftz7do13N3d6dixI3v37sXd3b3kDkSUe9tPXOXlpQfIytXTplYlFgz1x8XOytRhCWH2Tl9NZfSycE7GpaHVwJtPNOKVzvXQVoCtmoUwtsjLyQSF7CM+NRsvZ1uCg/xpUlWGBN1JhRmDXZakpKTg4uIiY9UqiA2HYxi38iC5OkXnhu7MG9QaO2vZFa40SK5VbOsiLjP5tyNk5Ohwd7Lh6xdb0b5eFVOHZZYk18zf9hNXGb0snIwcHY29nAgO8qeqiwxxvBuz7sEWwtRW7rvA5N+OoFfwdMuqfNHXF2vLijmjWojSkpWrY/r6KJaF5p+hbF+3CnP6++LhZGviyIQon1buu8A7ayLR6RUP1a/C94Na42wrZ2HvRQpsIUrIjzvP8PGfxwHo37YmH/VujoWclhaiRF24lsHo5QeIvJy/LvOrj9ZnXNeGkntCFINSii+3nOTrf/Lnsz3nV51Zz7WUjqJCkAJbCCNTSvHZ5hPM3XYGgJc612XSk41l6SIhStimo7FMWH2I1Kw8Ktlb8WU/Xx6RnVGFKJacPD2TfjvMb+GXAXjt0fq88XhD+SwrJCmwhTAivV4x9fejLNl7HoCJTzZi9CP1TRyVEOYtV6dn9l/Hmb8rGgC/mq58O8CParIEphDFkpKVy+il4ew6nYCFVsOM3s15sW1NU4dVrkiBLYSR5Or0vLX6EGsjrqDRwPRezRnUrpapwxLCrF1JymTs8nDCLyQBMLJTHSY+2RgrCzmFLURxxCRnEhS8j+OxqdhbWzB3oB9d5ExQkUmBLYQRZOXqGLs8nL+PXcVSq+Hzvj708q1u6rCEMGvbT1zljZURJGbk4mRryWd9fOjWzMvUYQlRbh2PTWHown3EpmTh7mRD8FB/mld3MXVY5ZIU2EI8oNSsXEYs2k9o9HVsLLV8P8iPRxt7mjosIcyWTq/46u+TfLvtNEpB8+rOfDegNTWr2Js6NCHKrf9OJ/DykgOkZudR38OR4KH+eFeWnCouKbCFeADX03MYGhzG4UvJONlYsmCoP23rVDZ1WEKYraupWbz+cwR7zl4DYFC7mrzboym2VrK2vBDF9Vv4JSb+cpg8vaJtncr8NLgNLvayDN+DkAJbiGKKSc5k8IIwTl9No7KDNYuHtZVTaUKUoD1nrvHaioPEp2Zjb23BzOdayFAsIR6AUoq5207z2eaTQP5+DZ/39cHGUr6wPigpsIUohuiEdAbND+VyUiZVXWxZMjyA+h6Opg5LCLOk1yu+33GGzzefQK+goacj3w1sLTknxAPI0+l5d20kK/ZdBPKXlH27W2O0sma8UUiBLUQRRV1JYcjCMBLSsqnj5sCS4W2pUUnGqQlREhLTc3hjVQTbT8QD+RtdfNS7OfbW8vElRHGlZ+cxZnk420/Eo9XAtGeaMaR9bVOHZVbkL5QQRXDg/HWCgveRkpVHk6rOLB7WFncnG1OHJYRZOnA+kVeXh3MlOQsbSy3TezWnT5sastGFEA/gamoWw0L2EXk5BVsrLd/09+PxpjIx39ikwBaikHaejOelJQfIzNXRplYlFgz1x8VOJoEIYWxKKRb+d46Zfx4jT6+o4+bA3AF+NK3mbOrQhCjXTl9NJXDhPi4nZVLFwZoFQ/3x9XY1dVhmSQpsIQrhryMxvLbiILk6RacGbvwwuLWcohaiBKRk5TJx9WE2Ho0FoEeLqsx6vgVOtvJlVogHEXr2GiMX7yclK486bg6EBPlTq4qDqcMyW1IhCPOm10NGAti7gbZ4O7ut2n+RSb8eRq/yP+y/7OeLtaXsEifEzfR6PfHx8bi7u6MtZq5FXk5m9LJwLlzPwMpCw7s9mjKkfS0ZEiLETYqTa78fusKEVYfI0enxq+nK/EB/KjtYl3CkFZsU2MJ86fXw72dwaT/UaAOdJhS5yJ7/71k+2nAMgH5tvPn4uRZYyAxrIQrQ6/XMmDGD0NBQAgICmDJlSpGKbKUUy8Mu8MEfUeTk6anuasfcgX5y6lqIWxQ115RS/LjzLDP/Og5At2aezHmxlawbXwqkwBbmKyMhv7hOi8v/mZEAjh6FeqhSii+3nOTrf04DMOrhukzu3lh60oS4g/j4eEJDQ4mNjSU0NJT4+Hg8PQs3aSo9O48pa46wNuIKAI819uDzvj642kvvmhC3Kkqu6fSKD/44yuI95wEIeqg27/ZoKp1EpUTOcwvzZe+W33Pt6Jn/094tv1c77Wr+z7vQ6xXTfj9qKK4nPNFQimsh7sHd3Z2AgAC8vLwICAjA3d0dvV5PXFwc+nvk2sm4VJ75dhdrI65godUwuXtjfhrSRoprIe7i1lyrUqXKHfMsM0fHy0sPsHjPeTQaeLdHE6b2bCbFdSnSKKWUqYOoaFJSUnBxcSE5ORlnZ5kVX6JuHoMN9x0ykqvTM/GXw6w5eBmA6b2aMVjWBi23JNdKz83jQoH7nsb+LfwSU9ZEkpmrw9PZhm8H+OFfu7IpQhdGILlWem7kWpUqVZg5c+ZteXYtLZvhi/YTcTEJa0stX/Xz5akWVU0ddoUjQ0SEedNq/zcsJO3qPYeMZOXqGLv8IH8fi8NCq+HzPj70biXbMAtRGFqt1nCqOi4u7q6nsbNydUz7/ahh97iO9d346kVf3BxlPXkhCuNGrt0pzzIsHBkaHMb5axm42lvx05A28sXVRKTAFhXHjSEjN3qwb/RqA2nZeYxYtI+9Z69jbanluwF+dJWF94UolhunsW/0rN3o1Y5OSGf0snCOxaSg0cBrjzbgtccayGlrIYrh1jy7mGnJyMX/kZiRi3dlO0KC2lLP3dHUYVZYMkTEBORUmgndYdm+6+k5DA0O4/ClZBxtLPlpSBva16vyQM8pygbJNdO5dSmxP4/EMPGXw6Rl51HFwZo5L7aiYwO3+z/RPZ5TlB2Sa6ZxIyfCr+oYt/IQ2Xl6WtZwYUGg/wPtMiy59uCkB1tULDcPGQFik7MYvCCUU1fTqGRvxaJhbWlZw7Xwz2eEpQCFMEc3TmPn5On5eP1RQnafA6Bt7cp8M6AVns62RXq+B10KUAhzpNVq+fN0Bh+uj0Kp/FV4vhnQ6oE2QpNcMw4psEWFdf5aOgPnh3IpMRMvZ1uWjmhLfQ+noj3JAywFKIS5u5SYwZjlBzl0MQmAlzvXY8ITDbG0KPqH9YMsBSiEOdLrFR//eYz5u6IBGBhQkw+eaVas/LqZ5JpxSIEtKqTjsSkMXhBGfGo2tavYs2R4AN6V7Yv+RPcY1y1ERbb1WBzjVx0iOTMXFzsrvujrw2NNiv8hfbdx3UJURFm5Ot5cdYgNR2IAmPhkI17pXM8oy8lKrhmHjME2ARmrZlrhFxIJCt5HcmYujb2cWDy8LR5ORTtdXYCMwS6zJNdKX55Oz2ebTzJvxxkAfGq48O0Av+J9gb2FjAstuyTXSk9SRg4jF+9n37lErCw0fNbHh16+xl3xSnLtwUkPtqhQdp1KYNSS/WTk6GhdqxILA/1xsbd6sCe9ZVy3EBVVXEoWr/58kLDo6wAM7VCbd55qgrWlcT6gb14KUIiK6OL1DAKDwzgbn46TrSU/DG5Nh3rGP3MqufbgzPpryc6dO+nZsyfVqlVDo9Gwdu3ae7bfvn07Go3mtktsbGyBdnPnzqV27drY2toSEBBAWFhYCR6FMJaNkbEMC9lHRo6OTg3cWDK87YMX10IIIP/L61Nz/iUs+jqONpbMHeDHtGeaGa24FqKiO3wpiWe/+4+z8elUc7Hll5c7lEhxLYzDrP/ypaen4+Pjw9y5c4v0uBMnThATE2O4eHj8r3dy5cqVjB8/nqlTpxIeHo6Pjw/dunXj6tWrxg5fGNHq/RcZvewAOTo9T7XwYn5gmweaZS2EyKfXK+b8fYrBC0O5lp5DYy8nfh/7ED1ays5xQhjL1mNx9PthLwlpOTSt6syaMQ/RyKuIk/JFqTLrCqN79+507969yI/z8PDA1dX1jvd98cUXjBw5kqCgIADmzZvHhg0bWLhwIZMmTXqQcEUJWbArmunrowDo26YGM59rKRtbCGEE19KyGbcygn9PJQDwor83055phq2VhYkjE8J8LAs9z3trI9Er6NTAje8HtcbRxqzLN7Mg/0N34OvrS3Z2Ns2bN2fatGk89NBDAOTk5HDgwAEmT55saKvVaunatSt79uy56/NlZ2eTnZ1tuJ6SklJywQsDpRRf/n2Kr7eeAmBkpzq881QTo8yyFmWT5Frp2XfuOq8uP0hsSha2Vlpm9G7B861rmDosUUok10qeUopPN53gu+35E4b7tqnBjGdbYPWAy/CJ0iH/SzepWrUq8+bN49dff+XXX3/F29ubRx55hPDwcAASEhLQ6XS3Dfz39PS8bZz2zWbOnImLi4vh4u3tXaLHIfJPW3/wR5ShuJ7wREMprisAybWSp5Tix51nePHHvcSmZFHP3YHfx3aU4rqCkVwrWdl5OsatjDAU1+O6NmD28y2luC5HKswyfRqNhjVr1tC7d+8iPa5z587UrFmTJUuWcOXKFapXr87u3btp3769oc3EiRPZsWMHoaGhd3yOO33T9/b2luWMSkieTs/EXw/zW/hlAD7s1Ywh7WubNihRKiTXSlZyRi5vrj7E38fiAOjlW42Pn22Bg5yurnAk10pOcmYuLy3Zz96z17HUavj4uRb0bSNfYMob+at4H23btmXXrl0AuLm5YWFhQVxcXIE2cXFxeHl53fU5bGxssLGxKdE4Rb6sXB2v/XyQzVFxWGg1fNanJc+2kp61ikJyreQcvpTE6GXhXErMxNpCy/s9mzIwoKacFaqgJNdKxuWkTIKCwzgZl4ajjSXfDfTj4Yay0Ut5JOca7iMiIoKqVfNnw1tbW9O6dWu2bt1quF+v17N169YCPdrCNNKy8xgWso/NUXFYW2qZN6i1FNdCPCClFIv3nOOF7/dwKTGTmpXt+W10Bwa1qyXFtRBGdPRKMs999x8n49LwcLJh5UvtpLgux8y6BzstLY3Tp08brkdHRxMREUHlypWpWbMmkydP5vLlyyxevBiAr776ijp16tCsWTOysrKYP38+//zzD5s3bzY8x/jx4wkMDKRNmza0bduWr776ivT0dMOqIsI0EtNzGBqyj0MXk3CwtuCnwDayPqgQDygtO49Jvx5m/eH87ZifaOrJp318cLGT9eOFMKadJ+N5ZekB0nN0NPR0JDioLdVd7UwdlngAZl1g79+/ny5duhiujx8/HoDAwEBCQkKIiYnhwoULhvtzcnJ48803uXz5Mvb29rRs2ZK///67wHP069eP+Ph43n//fWJjY/H19WXjxo2y45EJxaVkMXhBKCfj0nC1t2JRUFt8vF1NHZYQ5dqxmBTGLAvnbEI6lloNk7o3ZnjHOtJrLYSRrd5/kcm/HSFPr2hftwrzBreWL7FmoMJMcixLUlJScHFxkckgRnDhWgYDF+zl4vVMPJ1tWDI8gIaesvi+yCe5Vjyr9l/kvbWRZOfpqepiy7cD/Ghdq5KpwxJlmORa0SmlmLP1FF/9nb/a1bOtqjP7+Zay+6mZMOsebGHeTsSmMnhBKFdTs6lVxZ6lwwPwrmxv6rCEKLcyc3S8ty6SXw5cAqBzQ3e+7OdLZQdrE0cmhHnJ1el557cjrP7/XBvTpR4TnmgkZ4jMiBTYolw6eCGRoJB9JGXk0tjLicXD2uLhbGvqsIQot87EpzF6aTgn4lLRauDNJxrxSud6aGXXUyGMKjUrl9HLwvn3VAIWWg3TezVnQEBNU4cljEwKbFHu/Hc6gZGL95ORo6NVTVeCh/rjai89bEIU1++HrjD518Ok5+hwc7Th6/6+MklYiBIQm5xFUMg+jsWkYGdlwXcD/ejS2MPUYYkSIAW2KFc2HY3l1eUHydHp6VjfjR8Gt5ZNLoQopuw8HdPXR7F0b/5k73Z1K/N1/1Z4OMnZICGM7URsKkODw4hJzsLN0YaFQ9vQsoarqcMSJUQqE1Fu/HrgEhN/PYxOr3iymRdz+vtiY2lh6rCEKJcuXMtgzPJwjlxOBmBsl/qM69oAS9mKWQij230mgZeWHCA1K4+67g4sCmorc4bMnBTYolwI/i+aD/6IAuCF1jWY9VwLKQSEKKbNR2N5c/UhUrPycLW34st+vnRpJKephSgJaw9e5q1fDpGrU/jXrsRPQ9rIsMYKQApsUabduozRsIfq8G6PJjLxSohiyNXp+WTjcX76NxqAVjVdmTvAj2qyoYUQRqeU4rvtZ/h00wkAerSoyud9fbC1kjOvFUGxCuzQ0FACAgKMHYsQBej1iukbogj+7xwA4x9vyKuP1pdljIQohpjkTMYuP8iB84kAjOhYh4lPNpY1d4UoAXk6Pe//fpTlofnzG0Z2qsPk7tI5VJEUq8Bu37499evXZ/DgwQwcOJC6desaOy5RweXp9Ez67YhhPd6pPZsS9FAdE0clRNHp9Xri4+Nxd3dHqzVNMbvjZDzjVhwkMSMXJ1tLPn3Bhyebe5kkFiFKSlnINYD07DzGLg9n24l4NBqY+nRThsrnV4VTrN/ApUuX0qBBA6ZPn06DBg146KGHmDdvHtevXzd2fKICys7TMWZ5OL8cuISFVsPnfXykuBblkl6vZ8aMGQwfPpwZM2ag1+tL9fV1esUXm08wNDiMxIxcmlVzZv2rHaW4FmbH1Ll2w9XULF78cS/bTsRjY6nl+4GtpbiuoIpVYA8YMIANGzZw5coV5syZg1KK0aNHU61aNXr37s0vv/xCTk6OsWMVFUB6dh7DQ/az6Wgc1hZavh/ox/Ota5g6LCGKJT4+ntDQUGJjYwkNDSU+Pr7UXvtqahaD5ofy9T+nUQoGBNTk11c6UKuKQ6nFIERpMWWu3XD6ahrPfbebI5eTqexgzc+j2smX2Qrsgc6huLm5MXbsWHbv3s2pU6eYMmUKx48fp1+/fnh5eTFq1Ch27dplrFiFmUvKyGHQglB2nU7A3tqC4CB/nmgmf5xE+eXu7k5AQABeXl4EBATg7u5e+Afr9ZB2Nf/nXZvoiYuLu623bu/Za/T4ehd7zl7D3tqCOS/68vGzLYw3uaoQsQlRmh4k1+6WR0Vps+/cdZ7/fjeXEjOpVcWe317pgF/NSkU+juLEJsomo60iYmdnh729Pba2tiil0Gg0rFu3jgULFuDn58eiRYto2rSpsV5OmJmrKVkMXhDGibhUXOysCAnyp5UR/jgJYTJ6PdqMBKa8M5n4hGtFGxeq18O/n8Gl/VCjDXSaALc89sYp8RuTzqdMmQJo+H7HGT7ffAK9goaejnw30I/6Hk5GPa77xSZEabox9nry5Mlcu1a0XLtTHt362Pu12XA4hjdWRZCTp8fX25UFgW2o4mhjlOO6X2yi7Hqg/6nU1FSCg4Pp2rUrtWrV4p133qF27dr88ssvxMbGcuXKFVauXMnVq1cJCgoyVszCzFy8nkGfH/ZwIi4VDycbVr3UXoprUb7dKELXjUW76ws8izrpKiMhv4BNi8v/mZFwW5NbT4mfvhDD8EX7+HRTfnH9nF911o55yLjFdSFjE6K03Dz2eubMmUWe4FiYoSV3a6OUYv6/ZxmzPJycPD2PN/Xk55HtjFJcFzY2UXYVqwd73bp1LFu2jPXr15OVlYW/vz9fffUVL774IlWqVCnQ9oUXXiAxMZExY8YYJWBhXk7GpTJ4QShxKdl4V7Zj2fB21Kwiu1uJcu5ORahjETZysXfL7x2+0Uts73ZbkxunxENDQ6nTpgtDVxznSlIWNpZapvdqTp82NUpmSctCxCZEablTEerp6Vnox9+cR3cbWnKnNjq9Yvr6KEJ2nwMgsH0t3u/ZDAsjLsNXmNhE2aVRSqmiPkir1eLt7c2gQYMYMmQIjRo1umf7sLAwvv/+e4KDg4sdqDlJSUnBxcWF5ORknJ2dTR2OyRy6mERgcBhJGbk09HRkyfAAPJ1tTR2WMCMmyzVjDKPQ6/MLc3u3uz5Wp9Px7eajfLvrErk6RR03B+YO8KNptRI+1kLEJioWU+WaMYZRFGZ5v5vb5OgUr684yKajcQC881RjRnaqe9cvtA+yfGBZWXpQFF2xCuzt27fzyCOPlEA4FYMU2LD7TAIjF+0nPUeHj7crIUP9qeQgW8cK4zJprpVwEZqSlcvbvxzmr8hYIH+XuFnPt8DJ1sroryXE/Zgy10qzCL2ensOIRfsIv5CEtYWWL/r58HTLaveMTcZRV0zFGiIixbV4EFui4gxj1jrUq8JPQ9rgYGO0+bZClA1abdGGhdxQiMI88nIyY5aHc/5aBlYWGt7t0ZQh7WvJLqeiQtJqtUUaFnJDUQvzcwnpDA0O49y1DFzsrPhpSBva1ql8z8c86BAWUX5JVSNK1ZqDl5iw+jA6veKJpp583b+V8ZYOE6K8u8/QEqUUP4ddZNofR8nJ01Pd1Y65A/3w9XY1XcxClENF7Vk+eCGR4Yv2cz09hxqV7AgJ8i/UBGIZR11xSYEtSs2i3eeY+vtRAJ73q8Hs51tgaSGnyoQwuMfkyPTsPN5dG8mag5cBeKyxB5/39cHVXoZWCVFURelZ3nw0ltdWHCQrV0+L6i4sGNoGD6fCzRfSarVMmTJFxlFXQFJgixKnlOKbf07zxZaTAAQ9VJv3ejRFa8TZ1kKYhbus0HEqLpVXloVz+moaFloNb3VrxKhOdSWHhCimwvYsL9p9jml/HEUp6NLInW8H+BV5SGNxh7CI8q1YkxzFg6lIkxyVUny04RgLdkUDMK5rA15/rEH+WFFZiUCUsHKZa7fkxW/hl5iyJpLMXB2ezjZ809/vvuM+b39KWYlAlKzymGv3ygu9XjFr43F+3HkWgP5tvZneq/l9z7pKrokbpAdblJg8nZ7Jvx1h9YFLALz/dFOGdayTf6fsBifEnf3/5MisXB0frD3Mz2EXAehY342vXvTFrYibWMgqBkLc2d16lrNydUxYfYj1h2MAeKtbI0Y/Uu++k4gl18TNpMAWJSI7T8frP0ew8WgsWg188oIPL7Su8b8GD7oRhxBm7FxCOqOXhRMVk4JGA68/1oBXH21QrE0sZBUDIQovKSOHUYsPEHbuOlYWGj55oSXPtqpx/wciuSYKkq9WwujSs/MYsWg/G4/GYm2h5buBrQsW1/C/saaOnrIbnKjw9Ho9cXFx6PV6/joSw9Pf7CIqJoUqDtYsHtaWcV0bFnuHuBtjTb28vGQVA1Gh3Zxnd3LxegbPf7+bsHPXcbKxZFFQ20IX1yC5JgqSMdgmUB7HqhVWckYuQ0PCOHghCXtrC34c3IaODe5SPMsYbFHCykOu3TitvCdsHxqfZzmal38mx792Jb7p74eXy4PvbirjQkVJK+u5dr/hG0cuJRMUso+EtGyqutgSEtSWRl73X4bvTq8juSbAzHuwd+7cSc+ePalWrRoajYa1a9fes/1vv/3G448/jru7O87OzrRv355NmzYVaDNt2jQ0Gk2BS+PGjUvwKMqPq6lZ9PtxDwcvJOFiZ8XSEQF3L67hfxtxyB8hUYHFx8fzb/hRTtZ4ylBcv/RwXZaPbGeU4hr+N9ZUPvBFRXWn4Rs3bDt+lX4/7iEhLZvGXk6sGf1QsYprkFwT/2PWvwHp6en4+Pgwd+7cQrXfuXMnjz/+OH/++ScHDhygS5cu9OzZk4MHDxZo16xZM2JiYgyXXbt2lUT45crF6xn0mbeH47GpuDvZsPKldvjVrGTqsIQo845cU5xv1J88F2+syePHwX5MfqoJVrJGvBBGc7fhGz+HXWDE4v1k5OjoWN+N1S+3N9oXW1GxmfUkx+7du9O9e/dCt//qq68KXP/4449Zt24df/zxB61atTLcbmlpiZeXl7HCLPdOX01l0PwwYlOy8K5sx9LhAdSq4mDqsIQo0/J0ej7fcpLvt58BLGniac8PQ/ypWcXR1KEJYXZu3fBFo9Hw2aYTfLvtNJC/+dms51vIF1thNGZdYD8ovV5PamoqlSsXXHP21KlTVKtWDVtbW9q3b8/MmTOpWbOmiaI0rcOXkghcGEZiRi4NPBxZMjxAvv0LcR9xKVm8+vNBwqKvAxDYvhbv9GiCjaWFiSMTwnzdGL6Rk6dn0q+H+O3/d0V97bEGvNG1wX2X4ROiKKTAvofPPvuMtLQ0+vbta7gtICCAkJAQGjVqRExMDB988AGdOnUiMjISJ6c7j9nKzs4mOzvbcD0lJaXEYy8Ne85cY8SifaTn6PCp4UJIUFsqOci2zcJ0ykOu/Xc6gddXHCQhLQcHawtmPd+Snj7VTB2WEEVSHnLtTlKycnll6QH+O30NC62Gj59tTj//itlBJkqWnAu5i+XLl/PBBx+watUqPDz+tz5z9+7d6dOnDy1btqRbt278+eefJCUlsWrVqrs+18yZM3FxcTFcvL29S+MQStTfUXEEBoeRnqOjfd0qLBvZToprYXJlOdf0esXXW08xaEEoCWk5NPZy4o9XO0pxLcqlspxrdxOTnEnfeXv47/Q1HKwtWDjUX4prUWIqzDJ9Go2GNWvW0Lt37/u2XbFiBcOGDWP16tX06NHjvu39/f3p2rUrM2fOvOP9d/qm7+3tXWaXM7qfNQcvMWH1YXR6xeNNPfmmfytsreTUtjC9sppr19KyGbcygn9PJQDQt00NPuzVXPJGlFtlNdfu5lhMCkHB+4hNycLDyYaFQ/1pXt3F1GEJMyZDRG7x888/M2zYMFasWFGo4jotLY0zZ84wePDgu7axsbHBxqZo2xuXVYv3nOP9dUcBeLZVdT55oaVMChFlRlnMtf3nrjN2+UFiU7KwtdLyUe8Wt2+8JEQ5UxZz7W7+PRXPK0vDScvOo4GHI8FB/tSoZG/qsISZM+sCOy0tjdOnTxuuR0dHExERQeXKlalZsyaTJ0/m8uXLLF68GMgfFhIYGMicOXMICAggNjYWADs7O1xc8r/pTpgwgZ49e1KrVi2uXLnC1KlTsbCwoH///qV/gKVIKcXcbaf5bPNJIH9S1tSezdAWc3c5IcydUor5/0Yza+NxdHpFXXcHvh/Yutjr6wohiu6XA5eY9Oth8vSKdnUr88OgNrjYW5k6LFEBmHWBvX//frp06WK4Pn78eAACAwMJCQkhJiaGCxcuGO7/8ccfycvLY8yYMYwZM8Zw+432AJcuXaJ///5cu3YNd3d3OnbsyN69e816S1SlFB//eYyf/o0G4LVH6/PG4w1lxrUQd5GckcuEXw6xJSoOgJ4+1Zj5XAscbcz6T64QZYZSiq+3nubLv/M7hXr5VuOTF1rKSj2i1FSYMdhlSVnfUvZmOr3ind+OsHL/RQDe7dGEEZ3qmjgqIQrHFLl2+FISo5eFcykxE2sLLe/1bMqggJryhVSYtbL0uZar0/PumkjD59Yrj9TjrScayRlXUaqkO0XcVU6enjdWRrDhSAxaDcx6riV9/cv+THEhTEEpxdK955m+/hg5Oj3ele34bkBrWtSQiVRClJa07DxGLwtn58l4tBr4sFdzBrWrZeqwRAUkBba4o4ycPF5emv9HytpCy5wXfeneoqqpwxKiTErLzmPyb0f449AVAJ5o6smnfXxwsSu9sZ56vd6wS51WKxOPRcUTl5JFUPA+omJSsLOy4Jv+reja1NPoryO5JgpDCmxxm+TMXIaH7GP/+UTsrCz4cUhrOjUw3zHmQjyI47EpjF4aztmEdCy1GiZ1b8zwjnVKdUiIXq9nxowZhIaGEhAQwJQpU+SDX1QoJ+NSCQrex+WkTNwcrVkQ6I+Pt6vRX0dyTRSWFNiigPjUbIYsDONYTArOtpYEB7Wlda1Kpg5LiDJp9f6LvLcukqxcPVVdbPl2QCta16pc6nHEx8cTGhpKbGwsoaGhxMfH4+lp/J47IcqivWevMWrxflKy8qjr5kBIUFtqVimZZfgk10RhSYEtDC4lZjB4QRjRCem4OdqwZHhbmlQt25MwhTCFzBwd76+LZPWBSwA83NCdr/r5UtlEu5m6u7sTEBBg6FUz51WNhLjZuojLvLX6MDk6Pa1rVWL+kDYluquw5JooLFlFxATK0mzrG05fTWPwglBikrOo7mrHshEB1HZzMHVYQjyQksi1M/FpjFkWzvHYVLQaeKNrQ8Z0qW/yFQpkXKgwpdL+XFNKMW/HWWZvPA5A9+ZefNnPt1R2R5VcE4UhPdiCI5eSCQwO43p6DvU9HFk6PAAvF1tThyVEmfPHoStM+vUw6Tk63Bxt+PpFXzrUdzN1WABotVo5VS0qhDydnml/HGXp3vx9LIZ3rMOUp5qU2pdcyTVRGFJgV3ChZ68xfNF+0rLzaFHdhUXD2prsNLcQZVV2no6P1h9jyd7zAATUqcw3/Vvh4Vz4L6LS6yXEg8vIyeO1nw/y97GraDTwXo+mDOtYx3C/5JkoK6TArsD+OR7HK0vDyc7TE1CnMvMD2+BkK1vICnGzi9czGL0snCOXkwEY/Ug9xj/eEEuLwn94y8oDQjy4hLRshofs49ClZGwstXzVr+DysZJnoiyRAruCWhdxmTdXHSJPr3issQdzB/qVytg1IcqTLVFxvLkqgpSsPFztrfiyry9dGnsU+Xlk5QEhHszZ+DQCg8O4eD2TSvZWzA9sc9uKPZJnoiyRArsCWrr3PO+ti0Qp6OVbjc/6+GBVhN44Icxdrk7Pp5tO8OPOswC0qunKtwP8qO5qV6znk5UHhCi+/eeuM2LxfpIycqlZ2Z6QIH/qujve1k7yTJQlsoqICZhyFZHvtp/mk40nABjcrhYfPNPM5KsfCFFSipNrMcmZvLr8IPvPJwIw7KE6TOreGGvLB/sSKmNDhTkrqc+1v47E8PrKCHLy9Ph4u7IgsA1ujjZ3bX+vPJMcFKVJerArCKUUszYe54cd+T1yY7rUY8ITjUp1tzkhyrp/T8Xz+ooIrqfn4GRjyad9WvJk86r3f2AhyMoDQhTNgl3RfLQhCqWgaxMPvu7fCnvre5ctd8szGZ8tSpsU2BWATq94d20kP4flL2n0zlONGfVwPRNHJUTZodMr5mw9xTf/nEIpaFbNme8G+lGriqwFL0Rp0+sVH204xsL/ogEY1K4mHzzTHIsHONsq47NFaZMC28zl5Ol5Y1UEGw7HoNXAzOda0M+/pqnDEqLMiE/NZtzKg/x3+hoAAwJq8v7TTWXSrxAmkJWr442VEfwVGQvApO6Neenhug98tlXGZ4vSJgW2GcvM0fHy0gPsOBmPlYWGr/q1okdL45zuFsIchJ69xqs/H+Rqajb21hZ8/GwLereqbuqwhKiQEtNzGLl4P/vPJ2JtoeXTPi3p5WucfNRqtUyZMkXGYItSIwW2mUrOzGV4yD72n0/EzsqCeYNb07mhfGMX4oaL1zMYOD+UPL2igYcj3w/yo76Hk6nDEqJCunAtg8DgMKIT0nG2teTHIW1oV7fKnRvr9ZCRAPZuUIRCWeZBiNIkBbYZSkjLZsiCMKJiUnCytSQkyP+29UKFqOi8K9szolNdrqZk8dGzze87eUoIUTIiLiYxPGQf19JzqO5qR0iQPw087/JlV6+Hfz+DS/uhRhvoNKFIRbYQpUU+UczM5aRMBs8P5WxCOm6O1iweFkDTaqW7FKAQ5cXEbo3QaJDVdIQwkS1Rcbz280Eyc3U0q+ZM8FB/PJxt7/6AjIT84jotLv9nRgI4Fn3zJyFKmhTYZuT01TQGLwglJjmL6q52LB0RQB03WQVBiLuRNeCFMJ0le84x9fej6BV0bujO3IF+ONrcpyyxd8vvub7Rg23vVjrBClFEUmCbicjLyQQuDONaeg713B1YOiKAqi7F23VOCCGEKCl6veKTTSeYt+MMAP3aePPRs80Lt6OwVps/LKQYY7CFKE1SYJuBsOjrDA/ZR2p2Hs2rO7MoqC1V7rHTlRBCCGEK2Xk63lp9mN8PXQFg/OMNefXR+kUbpqXVyrAQUeZJgV3ObTt+lZeXHiA7T0/bOpVZENgGJ1srU4clhBBCFJCckcuoJfsJjb6OpVbDrOdb8kLrGqYOS4gSIQV2OfbHoSu8sTKCPL3i0cYefDfQTzbHEEIIUeZcSswgKHgfp66m4WhjyfeD/OjUQJaOFeZLCuxyannoBaasPYJS8IxPNT7v61O48WtCCCFEKToWk8KQhWHEp2bj5WxLcJA/TarK6lbCvEmBXQ59v/0MszceB2BQu5p8+ExzWQ1BCCFEmeRiZ4VWA429nAgO8pcJ+KJCkAK7HFEqf+b199vzZ16PfqQeb3VrJGv4CiGEKLOqudqxbEQ7PJxtcJY5QqKCMOsxBTt37qRnz55Uq1YNjUbD2rVr7/uY7du34+fnh42NDfXr1yckJOS2NnPnzqV27drY2toSEBBAWFiY8YO/hU6veHdtpKG4nty9MROfbCzFtRBCiDKvvoejFNeiQjHrAjs9PR0fHx/mzp1bqPbR0dH06NGDLl26EBERwbhx4xgxYgSbNm0ytFm5ciXjx49n6tSphIeH4+PjQ7du3bh69WpJHQa5Oj3jVkawLPQCGg3MfK4FL3WuV2KvJ4QQQgghik+jlFKmDqI0aDQa1qxZQ+/eve/a5u2332bDhg1ERkYabnvxxRdJSkpi48aNAAQEBODv78+3334LgF6vx9vbm1dffZVJkyYVKpaUlBRcXFxITk7G2fneEz2ycnW8svQA207EY2Wh4ct+vjzdslqhXkeIiq4ouSaEKD7JNSEKkjHYN9mzZw9du3YtcFu3bt0YN24cADk5ORw4cIDJkycb7tdqtXTt2pU9e/bc9Xmzs7PJzs42XE9JSSlUPClZuYwI2U/YuevYWmmZN6g1jzSSxfWFuJvi5poQomgk14S4N7MeIlJUsbGxeHp6FrjN09OTlJQUMjMzSUhIQKfT3bFNbGzsXZ935syZuLi4GC7e3t73jeVaWjb9f9xL2LnrONlYsmR4gBTXQtxHcXJNCFF0kmtC3JsU2KVg8uTJJCcnGy4XL168Z/srSZn0+WEPR6+kUMXBmp9HtcO/duVSilaI8quouSaEKB7JNSHuTYaI3MTLy4u4uLgCt8XFxeHs7IydnR0WFhZYWFjcsY2Xl9ddn9fGxgYbG5tCxZCVq6PvD3u4lJhJNRdblo4IoK67Y9EPRogKqCi5JoQoPsk1Ie5NerBv0r59e7Zu3Vrgti1bttC+fXsArK2tad26dYE2er2erVu3Gto8KFsrC8Y8Uo+6VWz55aV2UlwLUYL0ej1xcXHo9XpThyKEWZNcExWNWRfYaWlpREREEBERAeQvwxcREcGFCxeA/FNcQ4YMMbR/+eWXOXv2LBMnTuT48eN89913rFq1ijfeeMPQZvz48fz0008sWrSIY8eO8corr5Cenk5QUJBxgtbr6Z+1kj+9fqLakbkgf4yEKBF6vZ4ZM2YwfPhwZsyYIR/8QpSQ++WaFN/CHJn1EJH9+/fTpUsXw/Xx48cDEBgYSEhICDExMYZiG6BOnTps2LCBN954gzlz5lCjRg3mz59Pt27dDG369etHfHw877//PrGxsfj6+rJx48bbJj4WW0YCXNqPbUYcXNqff91RJjcKYWzx8fGEhoYSGxtLaGgo8fHxxstjIYTBvXLtRvEdGhpKQEAAU6ZMQas1674/UUGYdYH9yCOPcK9lvu+0S+MjjzzCwYMH7/m8Y8eOZezYsQ8a3p3Zu0GNNvnFdY02+deFEEbn7u5OQECA4YPd3d3d1CEJYZbulWvyRVeYK7MusMslrRY6TcjvubZ3y78uhDA6rVbLlClTiI+Px93dXXrNhCgh98o1+aIrzFWF2cmxLJEdr4QoHZJrQpSOB8k1vV4vX3SF2ZEebCGEEEKYjFarlWEhwuzIV0UhhBBCCCGMSApsIYQQQgghjEgKbCGEEEIIIYxICmwhhBBCCCGMSCY5msCNhVtSUlJMHIkQxufk5IRGozF1GIDkmjBvkmtClI7i5JoU2CaQmpoKgLe3t4kjEcL4ytKSeJJrwpxJrglROoqTa7IOtgno9XpOnDhB06ZNuXjxYpn5A2lOUlJS8Pb2lve3BNzvvS1LvWqSayVL8qxkSa6JGyTXSk5h3lvpwS4ntFot1atXB8DZ2VmSpQTJ+1tyysN7K7lWOuS9LVnl4f2VXCsd8t6WHGO/tzLJUQghhBBCCCOSAlsIIYQQQggjkgLbRGxsbJg6dSo2NjamDsUsyftbcsrbe1ve4i1P5L0tWeXt/S1v8ZYn8t6WnJJ6b2WSoxBCCCGEEEYkPdhCCCGEEEIYkRTYQgghhBBCGJEU2EIIIYQQQhiRFNhCCCGEEEIYkRTYJWju3LnUrl0bW1tbAgICCAsLu2f71atX07hxY2xtbWnRogV//vlnKUVa/hTlvQ0JCUGj0RS42NralmK05cfOnTvp2bMn1apVQ6PRsHbt2vs+Zvv27fj5+WFjY0P9+vUJCQkp8ThvJblWciTXSobkmriV5FrJMFWuSYFdQlauXMn48eOZOnUq4eHh+Pj40K1bN65evXrH9rt376Z///4MHz6cgwcP0rt3b3r37k1kZGQpR172FfW9hfwdmmJiYgyX8+fPl2LE5Ud6ejo+Pj7MnTu3UO2jo6Pp0aMHXbp0ISIignHjxjFixAg2bdpUwpH+j+RayZFcKzmSa+Jmkmslx2S5pkSJaNu2rRozZozhuk6nU9WqVVMzZ868Y/u+ffuqHj16FLgtICBAvfTSSyUaZ3lU1Pc2ODhYubi4lFJ05gNQa9asuWebiRMnqmbNmhW4rV+/fqpbt24lGFlBkmslR3KtdEiuCcm10lGauSY92CUgJyeHAwcO0LVrV8NtWq2Wrl27smfPnjs+Zs+ePQXaA3Tr1u2u7Suq4ry3AGlpadSqVQtvb2969erF0aNHSyNcs2fq31vJtZIjuVa2mPr3VnKt5EiulS3G+r2VArsEJCQkoNPp8PT0LHC7p6cnsbGxd3xMbGxskdpXVMV5bxs1asTChQtZt24dS5cuRa/X06FDBy5dulQaIZu1u/3epqSkkJmZWeKvL7lWciTXyhbJNfMluVa2GCvXLI0dmBBlTfv27Wnfvr3heocOHWjSpAk//PAD06dPN2FkQpgXyTUhSofkWtknPdglwM3NDQsLC+Li4grcHhcXh5eX1x0f4+XlVaT2FVVx3ttbWVlZ0apVK06fPl0SIVYod/u9dXZ2xs7OrsRfX3Kt5EiulS2Sa+ZLcq1sMVauSYFdAqytrWndujVbt2413KbX69m6dWuBb5w3a9++fYH2AFu2bLlr+4qqOO/trXQ6HUeOHKFq1aolFWaFYerfW8m1kiO5VraY+vdWcq3kSK6VLUb7vS3qDExROCtWrFA2NjYqJCRERUVFqVGjRilXV1cVGxurlFJq8ODBatKkSYb2//33n7K0tFSfffaZOnbsmJo6daqysrJSR44cMdUhlFlFfW8/+OADtWnTJnXmzBl14MAB9eKLLypbW1t19OhRUx1CmZWamqoOHjyoDh48qAD1xRdfqIMHD6rz588rpZSaNGmSGjx4sKH92bNnlb29vXrrrbfUsWPH1Ny5c5WFhYXauHFjqcUsuVZyJNdKjuSauJnkWskxVa5JgV2CvvnmG1WzZk1lbW2t2rZtq/bu3Wu4r3PnziowMLBA+1WrVqmGDRsqa2tr1axZM7Vhw4ZSjrj8KMp7O27cOENbT09P9dRTT6nw8HATRF32bdu2TQG3XW68n4GBgapz5863PcbX11dZW1urunXrquDg4FKPW3Kt5EiulQzJNXErybWSYapc0yilVLH70YUQQgghhBAFyBhsIYQQQgghjEgKbCGEEEIIIYxICmwhhBBCCCGMSApsIYQQQgghjEgKbCGEEEIIIYxICmwhhBBCCCGMSApsIYQQ9xQTE8OkSZPo0qULTk5OaDQatm/fbuqwhBCizJICWwghxD2dOHGC2bNnc/nyZVq0aGHqcIQQosyTAlsIIcQ9tW7dmmvXrnHy5EnGjx9v6nCEEKLMkwJbCCEqqMzMTBo3bkzjxo3JzMw03H79+nWqVq1Khw4d0Ol0ODk5UblyZRNGKoQQ5YsU2EIIUUHZ2dmxaNEiTp8+zZQpUwy3jxkzhuTkZEJCQrCwsDBhhEIIUT5ZmjoAIYQQphMQEMDEiROZPXs2zz77LHFxcaxYsYKvvvqKhg0bmjo8IYQol6TAFkKICm7atGmsX7+ewMBA0tLS6Ny5M6+99pqpwxJCiHJLhogIIUQFZ21tzcKFC4mOjiY1NZXg4GA0Go2pwxJCiHJLCmwhhBBs2rQJgKysLE6dOmXiaIQQonyTAlsIISq4w4cP8+GHHxIUFESrVq0YMWIEycnJpg5LCCHKLSmwhRCiAsvNzWXo0KFUq1aNOXPmEBISQlxcHG+88YapQxNCiHJLJjkKIUQF9tFHHxEREcHWrVtxcnKiZcuWvP/++7z77ru88MILPPXUU4Z2AEePHgVgyZIl7Nq1C4B3333XNMELIUQZpVFKKVMHIYQQovSFh4cTEBDAK6+8wtdff224XafT0b59ey5fvszRo0dxdXW956RH+RgRQoiCpMAWQgghhBDCiGSIiBB3oNPpyM3NNXUYQgghyhgrKyvZ4VTclxTYQtxEKUVsbCxJSUmmDkUIIUQZ5erqipeXl6wXL+5KCmwhbnKjuPbw8MDe3l7+eAohhDBQSpGRkcHVq1cBqFq1qokjEmWVFNhC/D+dTmcorqtUqWLqcIQQQpRBdnZ2AFy9ehUPDw8ZLiLuSNbBFuL/3RhzbW9vb+JIhBBClGU3Pidkro64GymwhbiFDAsRQghxL/I5Ie5HCmwhRLGEhITg6upq6jCEEEKIMkcKbCHKuaFDh6LRaNBoNFhbW1O/fn0+/PBD8vLySvR1+/Xrx8mTJ0v0Ne7n5mO3srLC09OTxx9/nIULF6LX64v0XPKFwThu/J/MmjWrwO1r164t9V6/G78bGo0GBwcHGjRowNChQzlw4ECRn+uRRx5h3Lhxxg9SALB9+3Y0Go2s4CTMhhTYQpiBJ598kpiYGE6dOsWbb77JtGnT+PTTT+/YNicnxyivaWdnh4eHh1Ge60HcOPZz587x119/0aVLF15//XWefvrpEv+SIe7M1taW2bNnk5iYaOpQCA4OJiYmhqNHjzJ37lzS0tIICAhg8eLFpg6twrj5i86dLtOmTTN1iEIYnRTYQpgBGxsbvLy8qFWrFq+88gpdu3bl999/B/J7FHv37s2MGTOoVq0ajRo1AuDixYv07dsXV1dXKleuTK9evTh37hwAmzdvxtbW9rbepNdff51HH30UuHOP7/fff0+9evWwtramUaNGLFmyxHDfuXPn0Gg0REREGG5LSkpCo9Gwfft2ABITExk4cCDu7u7Y2dnRoEEDgoODC3Xs1atXx8/Pj3feeYd169bx119/ERISYmj3xRdf0KJFCxwcHPD29mb06NGkpaUB+b1nQUFBJCcn3/ahv2TJEtq0aYOTkxNeXl4MGDDAsESXuLOuXbvi5eXFzJkz79lu165ddOrUCTs7O7y9vXnttddIT08H4Ntvv6V58+aGtjd6wOfNm1fgdd599917vsaN9Ypr167NE088wS+//MLAgQMZO3as4QvAtWvX6N+/P9WrV8fe3p4WLVrw888/G55j6NCh7Nixgzlz5hh+P86dO4dOp2P48OHUqVMHOzs7GjVqxJw5c4r8fpm7mJgYw+Wrr77C2dm5wG0TJkwwWWzG6nAQ4lZSYAthhuzs7Ap8cGzdupUTJ06wZcsW1q9fT25uLt26dcPJyYl///2X//77D0dHR5588klycnJ47LHHcHV15ddffzU8h06nY+XKlQwcOPCOr7lmzRpef/113nzzTSIjI3nppZcICgpi27ZthY77vffeIyoqir/++otjx47x/fff4+bmVuTjf/TRR/Hx8eG3334z3KbVavn66685evQoixYt4p9//mHixIkAdOjQ4bYP/hsf+rm5uUyfPp1Dhw6xdu1azp07x9ChQ4scU0ViYWHBxx9/zDfffMOlS5fu2ObMmTM8+eSTPP/88xw+fJiVK1eya9cuxo4dC0Dnzp2JiooiPj4egB07duDm5mb4Mpabm8uePXt45JFHihzfG2+8QWpqKlu2bAEgKyuL1q1bs2HDBiIjIxk1ahSDBw8mLCwMgDlz5tC+fXtGjhxp+P3w9vZGr9dTo0YNVq9eTVRUFO+//z7vvPMOq1atKnJM5szLy8twcXFxQaPRFLjN0dHR0PbAgQO0adMGe3t7OnTowIkTJwo817p16/Dz88PW1pa6devywQcfFDhTdeHCBXr16oWjoyPOzs707duXuLg4w/3Tpk3D19eX+fPnU6dOHWxtbVm8eDFVqlQhOzu7wGv17t2bwYMHl9C7IsyeEkIopZTKzMxUUVFRKjMz09ShFElgYKDq1auXUkopvV6vtmzZomxsbNSECRMM93t6eqrs7GzDY5YsWaIaNWqk9Hq94bbs7GxlZ2enNm3apJRS6vXXX1ePPvqo4f5NmzYpGxsblZiYqJRSKjg4WLm4uBju79Chgxo5cmSB2Pr06aOeeuoppZRS0dHRClAHDx403J+YmKgAtW3bNqWUUj179lRBQUHFOvZb9evXTzVp0uSuj129erWqUqWK4fqtx3M3+/btU4BKTU0tdJwVyc3/J+3atVPDhg1TSim1Zs0adfNHzvDhw9WoUaMKPPbff/9VWq1WZWZmKr1er6pUqaJWr16tlFLK19dXzZw5U3l5eSmllNq1a5eysrJS6enpd40FUGvWrLnt9szMTAWo2bNn3/WxPXr0UG+++abheufOndXrr79+z2NXSqkxY8ao559//r7tjEWv16v07FyTXG7++1FYd8uzbdu2KUAFBASo7du3q6NHj6pOnTqpDh06GNrs3LlTOTs7q5CQEHXmzBm1efNmVbt2bTVt2jSllFI6nU75+vqqjh07qv3796u9e/eq1q1bq86dOxueY+rUqcrBwUE9+eSTKjw8XB06dEhlZGQoFxcXtWrVKkO7uLg4ZWlpqf755587Hkd5/bwQpUc2mhGiBOj1euLj43F3d0erLfkTRevXr8fR0ZHc3Fz0ej0DBgwoMK6xRYsWWFtbG64fOnSI06dP4+TkVOB5srKyOHPmDAADBw6kXbt2XLlyhWrVqrFs2TJ69Ohx14mAx44dY9SoUQVue+ihh4p0yvyVV17h+eefJzw8nCeeeILevXvToUOHQj/+ZkqpApPq/v77b2bOnMnx48dJSUkhLy+PrKwsMjIy7rn2+YEDB5g2bRqHDh0iMTHRMHnywoULNG3atFixlTq9HjISwN4NSuH38YbZs2fz6KOP3nEIwKFDhzh8+DDLli0z3KaUQq/XEx0dTZMmTXj44YfZvn07Xbt2JSoqitGjR/PJJ59w/PhxduzYgb+/f7HWrVdKAf9bak2n0/Hxxx+zatUqLl++TE5ODtnZ2YV67rlz57Jw4UIuXLhAZmYmOTk5+Pr6Fjmm4srM1dH0/U2l9no3i/qwG/bWxi0jZsyYQefOnQGYNGkSPXr0ICsrC1tbWz744AMmTZpEYGAgAHXr1mX69OlMnDiRqVOnsnXrVo4cOUJ0dDTe3t4ALF68mGbNmrFv3z78/f2B/GEhixcvxt3d3fC6AwYMIDg4mD59+gCwdOlSatasWawzJEKADBERwuj0ej0zZsxg+PDhzJgxo8irWRRHly5diIiI4NSpU2RmZrJo0SIcHBwM99/8b4C0tDRat25NREREgcvJkycZMGAAAP7+/tSrV48VK1aQmZnJmjVr7jo8pDBufNG4UdzA7Zs0dO/enfPnz/PGG29w5coVHnvssWKPzzx27Bh16tQB8sd/P/3007Rs2ZJff/2VAwcOMHfuXODeYzDT09Pp1q0bzs7OLFu2jH379rFmzZr7Pq5M0evh389g3dj8n6Xw+3jDww8/TLdu3Zg8efJt96WlpfHSSy8V+P07dOgQp06dol69ekD+yh3bt2/n33//pVWrVjg7OxuK7h07dhgKsaI6duwYgOH349NPP2XOnDm8/fbbbNu2jYiICLp163bf/+MVK1YwYcIEhg8fzubNm4mIiCAoKKj8/G6UQS1btjT8+8Y25DfmPBw6dIgPP/wQR0dHw+XGsJ2MjAyOHTuGt7e3obgGaNq0Ka6urob/c4BatWoVKK4BRo4cyebNm7l8+TKQP8fkxoo4QhSH9GALYWTx8fGEhoYSGxtLaGgo8fHxeHp6luhrOjg4UL9+/UK39/PzY+XKlXh4eODs7HzXdgMHDmTZsmXUqFEDrVZLjx497tq2SZMm/Pfff4beJYD//vvP0Mt74wMtJiaGVq1aARSY8HiDu7s7gYGBBAYG0qlTJ9566y0+++yzQh8bwD///MORI0d44403gPxeaL1ez+eff24o9G8dJ2ttbY1Opytw2/Hjx7l27RqzZs0yfGjv37+/SLGYXEYCXNoPaXH5PzMSwLH0Vn+ZNWsWvr6+hsm1N/j5+REVFXXP39vOnTszbtw4Vq9ebehJfOSRR/j777/577//ePPNN4sV043x9l27dgXyf0979erFoEGDgPwvySdPnixwhuJOvx///fcfHTp0YPTo0YbbbpwBKi12VhZEfditVF/z5tc2NisrK8O/bxS3Nzop0tLS+OCDD3juuedue5ytrW2hX+PWDgeAVq1a4ePjw+LFi3niiSc4evQoGzZsKGr4QhhIgS2Ekbm7uxMQEEBoaCgBAQG39ZSUBQMHDuTTTz+lV69efPjhh9SoUYPz58/z22+/MXHiRGrUqGFoN23aNGbMmMELL7yAjY3NXZ/zrbfeom/fvrRq1YquXbvyxx9/8Ntvv/H3338D+RMv27Vrx6xZs6hTpw5Xr169bQWI999/n9atW9OsWTOys7NZv349TZo0ueexZGdnExsbi06nIy4ujo0bNzJz5kyefvpphgwZAkD9+vXJzc3lm2++oWfPnvz3338FVqMAqF27NmlpaWzduhUfHx/s7e2pWbMm1tbWfPPNN7z88stERkYyffr0Ir/fJmXvBjXa5BfXNdrkXy9FLVq0YODAgXz99dcFbn/77bdp164dY8eOZcSIETg4OBAVFcWWLVv49ttvgfzezEqVKrF8+XLWr18P5BfYEyZMQKPR8NBDD9339ZOSkoiNjSU7O5uTJ0/yww8/sHbtWhYvXmwY7tSgQQN++eUXdu/eTaVKlfjiiy+Ii4srUGDXrl2b0NBQzp07h6OjI5UrV6ZBgwYsXryYTZs2UadOHZYsWcK+ffsMPeOlQaPRGH2YRlnl5+fHiRMn7vqlrEmTJly8eJGLFy8avhBHRUWRlJRUqOFcI0aM4KuvvuLy5ct07dq1QE+4EEVm2iHgQpQdxpy0otPpVGxsrNLpdEaI7N7uNdHvXvfHxMSoIUOGKDc3N2VjY6Pq1q2rRo4cqZKTkwu0a9u2rQJum+xzp8lK3333napbt66ysrJSDRs2VIsXLy5wf1RUlGrfvr2ys7NTvr6+avPmzQUmOU6fPl01adJE2dnZqcqVK6tevXqps2fP3vPYAAUoS0tL5e7urrp27aoWLlx423v/xRdfqKpVqyo7OzvVrVs3tXjxYgUYJm0qpdTLL7+sqlSpogA1depUpZRSy5cvV7Vr11Y2Njaqffv26vfff79tsmaZp9MplRqX/7OE3en3LTo6WllbW6tbP3LCwsLU448/rhwdHZWDg4Nq2bKlmjFjRoE2vXr1UpaWloZJpTqdTlWqVEm1a9fuvrHc+N0AlK2trapXr54KDAxUBw4cKNDu2rVrqlevXsrR0VF5eHiod999Vw0ZMqTAcZw4cUK1a9dO2dnZKUBFR0errKwsNXToUOXi4qJcXV3VK6+8oiZNmqR8fHwK/4ZVMPeb5HhzPh48eNDwXiul1MaNG5WlpaWaNm2aioyMVFFRUernn39WU6ZMUUrlT/j09fVVnTp1UgcOHFChoaF3nOR4t/+fpKQkZW9vr6ytrdWKFSvueRwyyVHcj0apmwZEClGBZWVlER0dbVi6SQghhHGFhIQwbty429bY3759O126dCExMdFwZiEiIoJWrVoRHR1N7dq1Adi0aRMffvghBw8exMrKisaNGzNixAhGjhwJ5E8+fvXVV9m6dStarZYnn3ySb775xjBMb9q0aaxdu/aOw9MAhgwZwoYNG7hy5co9z9jJ54W4Hymwhfh/8gdTCCEqtscee4xmzZrdNqTpVvJ5Ie6nYgzcEkIIIYS4i8TERLZv38727dv57rvvTB2OMANSYAshhBCiQmvVqhWJiYnMnj37thVvhCgOKbCFEEIIUaGdO3fO1CEIMyMbzQghhBBCCGFEUmALcQuZ9yuEEOJe5HNC3I8U2EL8vxs7iGVkZJg4EiGEEGXZjc+Jm3eeFOJmMgZbiP9nYWGBq6srV69eBcDe3t6wVa8QQgihlCIjI4OrV6/i6uqKhYXxt4sX5kHWwRbiJkopYmNjb9sEQQghhLjB1dUVLy8v6YQRdyUFthB3oNPpyM3NNXUYQgghyhgrKyvpuRb3JQW2EEIIIYQQRiSTHIUQQgghhDAiKbCFEEIIIYQwIimwhRBCCCGEMCIpsIUQQgghhDAiKbCFEEIIIYQwIimwhRBCCCGEMCIpsIUQQgghhDCi/wMaXaWwmRk0tgAAAABJRU5ErkJggg==\n" - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "# Querying using slicing with the slice() function\n", - "fig = plot_results_panel_2d(cycle,\n", - " query=slice(0,5,2), # (Start, Stop, Step)\n", - " subplot_kw=dict(figsize=(8,3), gridspec_kw={\"bottom\": 0.25})\n", - " );\n", - "fig.supxlabel('x1', y=0.1)" - ], - "metadata": { - "collapsed": false - } - }, - { - "cell_type": "code", - "execution_count": 9, - "outputs": [ - { - "data": { - "text/plain": "Text(0.5, 0.98, 'Last 2 Cycles')" - }, - "execution_count": 9, - "metadata": {}, - "output_type": "execute_result" - }, - { - "data": { - "text/plain": "
", - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAtgAAAEzCAYAAAALuHTZAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8o6BhiAAAACXBIWXMAAA9hAAAPYQGoP6dpAABr9ElEQVR4nO3dd1iT19sH8G/C3qgsEVCcOEEUEUfVlorWWu1wD0QcrdpWrbVabdVaq3ZqraNDwb1Xq3XVPUEEVMQtuNjK3uQ57x+85CcKyggEwvdzXbkwycmTO5Gb3DnPGTIhhAAREREREamEXN0BEBERERFpEhbYREREREQqxAKbiIiIiEiFWGATEREREakQC2wiIiIiIhVigU1EREREpEIssImIiIiIVIgFNhERERGRCrHAJiIiIiJSIRbYRETVXIMGDTBq1Ch1h0FERP+PBTYRkQrdvXsX48ePR8OGDaGvrw9TU1N07twZS5cuRWZmprrDU6m///4brq6u0NfXh4ODA+bMmYO8vLwyHSsjIwPLly9Hz549UbduXZiYmKBt27ZYuXIlFAqFymJ+8803IZPJMGnSJJUdk4joedrqDoCISFPs378fAwYMgJ6eHkaOHIlWrVohJycHZ86cweeff45r167hjz/+UHeYKnHgwAH0798f3bt3x7Jly3D16lV8++23iIuLw8qVK0t9vHv37uHjjz/GG2+8galTp8LU1BSHDh3ChAkTcOHCBaxdu7bcMe/atQvnz58v93GIiF5FJoQQ6g6CiKi6i4iIQJs2bWBnZ4djx46hbt26he6/c+cO9u/fj08//VTlz92gQQN0794d/v7+Kj92cVq2bAkdHR0EBQVBWzu/r2b27Nn47rvvEB4eDicnp1IdLyEhAbGxsWjZsmWh20ePHg0/Pz/cvn0bjRs3LnO8WVlZaN68OUaPHo2vv/4aEydOxG+//Vbm4xERvQyHiBARqcD333+PtLQ0rF69+oXiGgAaN26sLK67desGZ2fnIo/TrFkzeHl5Ka9LkoSlS5eidevW0NfXh6WlJXr16oWgoKCXxpOUlITJkyfD3t4eenp6aNy4MRYvXgxJkgq127JlC9q1awcTExOYmpqidevWWLp06UuPHR4ejvDwcIwbN05ZXAPAhAkTIITAjh07Xvr4olhYWLxQXAPAu+++CwC4fv16qY/5rO+//x6SJGHatGnlOg4RUUmwwCYiUoF//vkHDRs2RKdOnV7ZdsSIEbhy5QrCwsIK3X7x4kXcunULw4cPV97m6+urLJQXL16MGTNmQF9fHxcuXCj2+BkZGejWrRs2bNiAkSNH4tdff0Xnzp0xc+ZMTJ06VdnuyJEjGDJkCGrVqoXFixdj0aJF6N69O86ePfvS+ENCQgAA7du3L3S7ra0t7OzslPerQkxMDID8ArysHjx4gEWLFmHx4sUwMDBQVWhERMXiGGwionJKSUnB48eP0a9fvxK1HzBgAD7++GNs2LABixYtUt6+YcMGGBkZ4b333gMAHD9+HP7+/vjkk08K9Sp/9tlneNnovp9//hl3795FSEgImjRpAgAYP348bG1t8cMPP+Czzz6Dvb099u/frxzrrKWlVeLXGx0dDQBF9tTXrVsXUVFRJT7Wy+Tk5GDJkiVwdHSEm5tbmY/z2WefoW3bthg8eLBK4iIiehX2YBMRlVNKSgoAwMTEpETtzczM0K9fP2zevFlZKCsUCmzduhX9+/eHkZERAGDnzp2QyWSYM2fOC8eQyWTFHn/79u3o2rUratWqhYSEBOXF09MTCoUCp06dAgCYm5sjPT0dR44cKdXrLVgNRU9P74X79PX1VbZayqRJkxAeHo7ffvut0FCU0jh+/Dh27tyJJUuWqCQmIqKSYIFNRFROpqamAIDU1NQSP2bkyJF48OABTp8+DQD477//EBsbixEjRijb3L17F7a2tqhdu3ap4rl9+zYOHjwIS0vLQhdPT08AQFxcHID8MdNNmzZF7969YWdnh9GjR+PgwYOvPH7BMIvs7OwX7svKylLJMIwffvgBf/75J+bPn4+33nqrTMfIy8vDJ598ghEjRpSrB5yIqLQ4RISIqJxMTU1ha2v7wpjql/Hy8oK1tTU2bNiA1157DRs2bICNjY2yCC4PSZLw5ptvYvr06UXe37RpUwCAlZUVQkNDcejQIRw4cAAHDhyAn58fRo4c+dJl8QqGhkRHR8Pe3r7QfdHR0ejQoUO54vf398cXX3yBDz/8ELNnzy7zcdatW4ebN2/i999/R2RkZKH7UlNTERkZCSsrKxgaGpYrXiKi57EHm4hIBd5++23cvXu3xOssa2lpYejQodixYwcSExOxZ88eDBkypNBY6EaNGiEqKgpPnz4tVSyNGjVCWloaPD09i7w4ODgo2+rq6qJv375YsWKFcpOcdevW4c6dO8Ue38XFBQBeWMkkKioKjx49Ut5fFnv37sWYMWPw3nvvYfny5WU+DpA/uTE3NxedO3eGo6Oj8gLkF9+Ojo44fPhwuZ6DiKgoLLCJiFRg+vTpMDIywpgxYxAbG/vC/Xfv3n1h+bsRI0YgMTER48ePR1paWqHVQwDg/fffhxAC8+bNe+F4L5vkOHDgQJw/fx6HDh164b6kpCTlbotPnjwpdJ9cLkebNm0AFD38o0DLli3h5OSEP/74o9AuiytXroRMJsMHH3xQ7GNf5tSpUxg8eDBee+01bNy4EXJ5+T6iBg8ejN27d79wAYC33noLu3fvhru7e7meg4ioKNxohohIRf7++28MGjQIBgYGhXZyPHfuHLZv345Ro0bh999/L/SY1q1bIywsDM2bN0d4ePgLxxw5ciTWr1+P3r17o1evXpAkCadPn0aPHj2U230/v9FMRkYGunbtiitXrmDUqFFo164d0tPTcfXqVezYsQORkZGwsLDAu+++i6dPn+L111+HnZ0d7t+/j2XLlqFBgwa4dOnSSwvcffv24Z133kGPHj0wePBghIWF4bfffoOvr2+h3SojIyPh6OgIb2/vl26Ec//+fTg7OyMnJwc//vijclx7gTZt2iiL/4LXXHD80pLJZNxohogqliAiIpW5deuWGDt2rGjQoIHQ1dUVJiYmonPnzmLZsmUiKyvrhfbff/+9ACC+++67Io+Xl5cnfvjhB+Hk5CR0dXWFpaWl6N27t7h06ZKyTf369YW3t3ehx6WmpoqZM2eKxo0bC11dXWFhYSE6deokfvzxR5GTkyOEEGLHjh2iZ8+ewsrKSujq6goHBwcxfvx4ER0dXaLXunv3buHi4iL09PSEnZ2dmD17tvLYBa5evSoAiBkzZrz0WMePHxcAir3MmTOnUHsLCwvRsWPHEsX5PABi4sSJZXosEVFJsAebiEiNli5diilTpiAyMrLQ2GhNsWLFCkyfPh13796FtbW1So4ZHh6Oli1bYt++fejTp49KjklEpEocg01EpCZCCKxevRrdunXTyOIayF+H+pNPPlFZcV1wTA8PDxbXRFRlsQebiKiSpaen4++//8bx48fx559/Yu/evXjnnXfUHRYREakIC2wiokpWMPHP3NwcEyZMwIIFC9QdEhERqRALbCIiIiIiFeIYbCIiIiIiFWKBTURERESkQiywiYiIiIhUiAU2EREREZEKscAmIiIiIlIhFthERERERCrEApuIiIiISIVYYBMRERERqRALbCIiIiIiFWKBTURERESkQiyw1UAIgZSUFHCXeqKKxVwjqhzMNaLCWGCrQWpqKszMzJCamqruUAAAkZGRkMlkCA0NVXcoRCrFXCOqHMw1osJYYFcDMTEx+Pjjj9GwYUPo6enB3t4effv2xdGjR9UdWiFXrlxB165doa+vD3t7e3z//ffqDomoVKpDrp04cQL9+vVD3bp1YWRkBBcXF2zcuFHdYRGVSnXItWfduXMHJiYmMDc3V3coVE1oqzsAernIyEh07twZ5ubm+OGHH9C6dWvk5ubi0KFDmDhxIm7cuKHuEAEAKSkp6NmzJzw9PbFq1SpcvXoVo0ePhrm5OcaNG6fu8Iheqbrk2rlz59CmTRt88cUXsLa2xr59+zBy5EiYmZnh7bffVnd4RK9UXXKtQG5uLoYMGYKuXbvi3Llz6g6HqgtBlS45OVkAEMnJya9s27t3b1GvXj2Rlpb2wn2JiYlCCCF8fHxEnz59Ct2Xk5MjLC0txV9//SWEEEKhUIjFixeLRo0aCV1dXWFvby++/fZbIYQQERERAoAICQlRPv7q1auiV69ewsjISFhZWYnhw4eL+Pj4YuNcsWKFqFWrlsjOzlbe9sUXX4hmzZq98jUSVRRNzLWivPXWW8LHx6dUjyFSJU3OtenTp4vhw4cLPz8/YWZm9sr2REIIwSEiVdjTp09x8OBBTJw4EUZGRi/cX3CqasyYMTh48CCio6OV9+3btw8ZGRkYNGgQAGDmzJlYtGgRvvrqK4SHh2PTpk2wtrYu8nmTkpLw+uuvo23btggKCsLBgwcRGxuLgQMHFhvr+fPn8dprr0FXV1d5m5eXF27evInExMSyvHyiSlOdcq0oycnJqF27dqkeQ6QO1S3Xjh07hu3bt2P58uVlfMVUY6m7wq+JSvpNPyAgQAAQu3bteuUxW7RoIRYvXqy83rdvXzFq1CghhBApKSlCT09P/Pnnn0U+9vlv+vPnzxc9e/Ys1Obhw4cCgLh582aRx3jzzTfFuHHjCt127do1AUCEh4e/Mn6iiqCJufa8rVu3Cl1dXREWFlai9kQVQRNzLSEhQdjb24uTJ08KIQR7sKlU2INdhYlSLHc0ZswY+Pn5AQBiY2Nx4MABjB49GgBw/fp1ZGdn44033ijRsS5fvozjx4/D2NhYeXFycgIA3L17t5Svgqjqq665dvz4cfj4+ODPP/9Ey5YtS/waiNSlOuXa2LFjMXToULz22msljpmoACc5VmFNmjSBTCYr0YSPkSNHYsaMGTh//jzOnTsHR0dHdO3aFQBgYGBQqudNS0tD3759sXjx4hfuq1u3bpGPsbGxQWxsbKHbCq7b2NiU6vmJKlt1yrUCJ0+eRN++ffHLL79g5MiRpXpeInWpTrl27Ngx/P333/jxxx8B5H85kCQJ2tra+OOPP5TFPlUDkgRkJACGFoC8cvqW2YNdhdWuXRteXl5Yvnw50tPTX7g/KSlJ+e86deqgf//+8PPzg7+/P3x8fJT3NWnSBAYGBiVe/sjV1RXXrl1DgwYN0Lhx40KXosbMAYCHhwdOnTqF3Nxc5W1HjhxBs2bNUKtWrRK+YiL1qE65BuQv1denTx8sXryYq/RQtVKdcu38+fMIDQ1VXr755huYmJggNDQU7777buleOKmPJAGnfwT2Tsr/KUmV87zqHaFSM5VmtvXdu3eFjY2NaNGihdixY4e4deuWCA8PF0uXLhVOTk6F2h4+fFjo6uoKLS0t8fjx40L3zZ07V9SqVUusXbtW3LlzR5w/f145E/v5sWqPHz8WlpaW4oMPPhCBgYHizp074uDBg2LUqFEiLy+vyDiTkpKEtbW1GDFihAgLCxNbtmwRhoaG4vfffy/DO0SkGpqYa8eOHROGhoZi5syZIjo6Wnl58uRJGd4hItXQxFx7HsdgV1OpsUJsGCDEqtfyf6bGVsrTssBWg9L8IRJCiKioKDFx4kRRv359oaurK+rVqyfeeecdcfz48ULtJEkS9evXF2+99dYLx1AoFOLbb78V9evXFzo6OsLBwUF89913QoiilzO6deuWePfdd4W5ubkwMDAQTk5OYvLkyUKSpGLjvHz5sujSpYvQ09MT9erVE4sWLSrR6yOqKJqYa97e3gLAC5du3bqV6DUSVQRNzLXnscCuphQKIU4szi+uTyzOv14JZEKUYsYBqURKSgrMzMyQnJwMU1NTlR03LS0N9erVg5+fH9577z2VHZeoumKuEVUO5hpVaWoYg81JjhpAkiQkJCTgp59+grm5Od555x11h0SkkZhrRJWDuUYqJZcDxlaV+pQssDXAgwcP4OjoCDs7O/j7+0Nbm/+tRBWBuUZUOZhrVN3xN1YDNGjQoFRrixJR2TDXiCoHc42qOy7TR0RERESkQiywiYiIiIhUiAU2EREREZEKscAmIiIiIlIhFthERERERCqk0QX2woUL4ebmBhMTE1hZWaF///64efPmKx+3fft2ODk5QV9fH61bt8a///5b6H4hBL7++mvUrVsXBgYG8PT0xO3btyvqZRBVCQ+fZiD4QaK6wyAiIlIJSaq4lWo0usA+efIkJk6ciAsXLuDIkSPIzc1Fz549kZ6eXuxjzp07hyFDhsDX1xchISHo378/+vfvj7CwMGWb77//Hr/++itWrVqFgIAAGBkZwcvLC1lZWZXxsogq3Z24VAxYdR7eawIRHpWi7nCIiIjK5UlaNgb8fh4HrkZXyPFr1Fbp8fHxsLKywsmTJ/Haa68V2WbQoEFIT0/Hvn37lLd17NgRLi4uWLVqFYQQsLW1xWeffYZp06YBAJKTk2FtbQ1/f38MHjz4lXFU1JayRBXhyqMkeK8JRGJGLppYGWO9rztszPTVHVaJMNeIKgdzjaqTyIR0jPILROSTDFib6uHk5z2gr6Ol0ufQ6B7s5yUnJwMAateuXWyb8+fPw9PTs9BtXl5eOH/+PAAgIiICMTExhdqYmZnB3d1d2eZ52dnZSElJKXQhqg4u3HuCoX8GIDEjF852Ztg23qNKF9fMNaLKwVyj6ir4QSLeW3kOkU8yYFfLABvHdFR5cQ3UoAJbkiRMnjwZnTt3RqtWrYptFxMTA2tr60K3WVtbIyYmRnl/wW3FtXnewoULYWZmprzY29uX56UQVYqj12PhvSYQadl58GhYBxvHdkQtI111h/VSzDWiysFco+ro0LUYDP3zAp6m56B1PTPsmtAJja2MK+S5akyBPXHiRISFhWHLli2V/twzZ85EcnKy8vLw4cNKj4GoNPaGPsb49ZeQnSfBs7k1/HzcYKynre6wXom5RlQ5mGtU3fifjcCHGy4hK1fC605W2DKuI6xMKu6MbNX/xFSBSZMmYd++fTh16hTs7Oxe2tbGxgaxsbGFbouNjYWNjY3y/oLb6tatW6iNi4tLkcfU09ODnp5eOV4BUeVZf+E+vt4bBiGAd9vWw/cftIGOVvX4Ls5cI6oczDWqLiRJYOGB6/jzdAQAYKi7A755pyW0K/hzrXp8apaREAKTJk3C7t27cezYMTg6Or7yMR4eHjh69Gih244cOQIPDw8AgKOjI2xsbAq1SUlJQUBAgLINUXUkhMDy43fw1Z784trboz5+GuBcbYprIiKiZ2XlKvDxlhBlcT29VzMs6N+qwotrQMN7sCdOnIhNmzZh7969MDExUY6RNjMzg4GBAQBg5MiRqFevHhYuXAgA+PTTT9GtWzf89NNP6NOnD7Zs2YKgoCD88ccfAACZTIbJkyfj22+/RZMmTeDo6IivvvoKtra26N+/v1peJ1F5CSGw6MAN/H7qHgDgk9cbY8qbTSGTydQcGRERUeklZeRg7LogXIxMhI6WDD984Iz+betV2vNrdIG9cuVKAED37t0L3e7n54dRo0YBAB48eAC5/H/fZDp16oRNmzZh9uzZ+PLLL9GkSRPs2bOn0MTI6dOnIz09HePGjUNSUhK6dOmCgwcPQl+/6q6uQFQchSQwa/dVbLmYP4Zydp/mGNO1oZqjIiIieoYkARkJgKEFIH95D/TDpxkY5ReIu/HpMNHTxu8j2qFTY4tKCjRfjVoHu6rgeqFUVeTkSZiyNRT7r0ZDLgMWvdcGA900ZzUA5hpR5WCuUYWSJOD0j8CjIMCuPdB1WrFF9tVHyfDxv4iEtGzUNdOHv08HNLMxqeSANbwHm4iKl5GThw83BOPUrXjoaMnw6+C26N267qsfSEREVJkyEvKL67TY/J8ZCYCx1QvNjt2IxcSNIcjMVcDJxgT+Ph3UtncDC2yiGig5Mxe+/hcRdD8RBjpa+H1EO7zW1FLdYRERgOM346CnJa/0U9pEVZahRX7PdUEPtuGLubEp4AFm77kKSQBdGltg5XBXmOjrqCHYfCywiWqY+NRsjFwTiOvRKTDV14afjxva1S9+d1Miqhx5Cgm//HcLy4/fhYWxLv79pCusTDm3hwhyef6wkCLGYAsh8OPhm1h+/C4A4IN2dlj4Xmu1r4DFApuoBnmUmIERqwMRkZAOC2M9rPftgOZ1OV6SSN3iUrPwyeYQXLj3FADQu1VdmBqor/eNqMqRy18YFpKTJ2H6jsvYExoFAPj0jSaY7NmkSqyAxQKbqIa4E5eGEasDEJ2chXrmBtgwxh2OFkbqDouoxjt/9wk+3hyChLRsGOlqYeH7bfCOs626wyKq0lKycvHh+ks4d/cJtOQyLHy3dZWapM8Cm6gGCHucjJFrAvE0PQeNLI2wYYw76poZqDssohpNkgRWnryLnw7fhCSAZtYmWDHcFY0sjdUdGlGVFpWUCR+/i7gZmwojXS2sGN4O3arYPCIW2EQaLjDiKXz9LyI1Ow+t6plirU8H1DHmFsdE6pSYnoMp20Jx4mY8gPxxo/P7tYKBrpaaIyOq2sKjUjDa/yJiUrJgZaKHNaPc0KqembrDegELbCINdvxGHD7ccAnZeRI6ONbGau/2ap1VTUTApfuJ+HhTMKKSs6CvI8c3/VphYPuqc2qbqKo6fTseH20IRlp2HppYGcPPxw12tQzVHVaRWGATaai/L0dh6tZQ5EkCbzhZYfkwV+jrsHeMSF2EEFh9JgKLDtxAniTQ0MIIK4a7wsmGE42JXmXHpUeYsfMK8iSBjg1r4/fh7WFmWM4Oo1LsDllaLLCJNNDGgPuYvScMQgD9XGzx4wBntS9ZRFSTJWfmYvqOyzh0LRYA8Habulj0fhsY6/FjmOhlhBD49egd/PLfLQD5n2nff9AGetrl7DAqxe6QZcHMJtIwK07cwfcHbwIARnSsj3nvtIRcrv4li4hqqrDHyZiwMRgPnmZAV0uOr95ujuEd61eJpcSo5pEkCfHx8bC0tIRcxb22qparkDBr91VsC3oEAPioeyN83rOZaj7TSrg7ZFmxwCbSEEIILD54E6tO5i+2P7FHI0zr2Ywf4kRqIoTApsAHmPdPOHLyJNjVMsDyoa5wtjdXd2hUQ0mShAULFiAgIADu7u6YNWtWlS2y07LzMGFjME7diodcBnzTrxWGd6yvuicowe6Q5cECm0gDKCSBr/aGYVPAAwDAl285YdxrjdQcFVE1V47xmenZeZi1+6pyAwzP5tb4aYBz+ceMEpVDfHw8AgICEBMTg4CAAMTHx8Pa2lrdYb3Qqx6bkgUfv4sIj06BgY4WfhvaFm80V3GcL9kdUhVYYBNVczl5EqZuC8W+K9GQy4Dv3m2NwR0c1B0WUfVWjvGZt2JT8dGGS7gbnw4tuQxf9GqGsV0b8mwSqZ2lpSXc3d2VPdiWlupfO/r5XvUBYz7BaP8gRCVnwcJYF6u93SrurE8Ru0OqCgtsomosM0eBjzZewomb8dDRkmHp4LZ4q3VddYdFVP2VcXzmruBHmLU7DJm5CtiY6uO3oW3RvkHtSgiY6NXkcjlmzZpVpcZgP9urfjTsIbauOo+0bAUaWhjB36cDHOpUzWX4XoUFNlE1lZKVC1//i7gYmQh9HTl+H9G+yu1kRVRtlXJ8ZlauAnP/voYtFx8CALo2scCSQS7c1ImqHLlcXiWGhRQo6FU/dOMJHti/ASlbgfb1a+HPke1Ry0i31MerKpM4WWATVUMJadnwXhOIa1EpMNHXxppRbnBjLxmR6pRifOa9+DRM2BiMGzGpkMmAyW80xaTXG0OLq/cQvZJMJkOdLoPxKD1/Gb63Wtvg54EuZdq3oSpN4mSBTVTNPE7KxIi/AnAvIR0WxrpYO7oDWtpWvW1iiaq9EozP3H8lGl/svIK07DxYGOti6eC26NxYtasREGmqPIWEuf9cw4YL+RP0fbs4YtZbzcu8DF9VmsTJApuoGrkXn4bhfwUgKjkL9cwNsN63AxpaGqs7LKIaJztPge/2X8fa8/cBAB0a1MayoW1hbaqv5siIqoeMnDx8sjkE/12Pg0wGfNWnBUZ3cSzXMavSJE4W2ETVRNjjZHivCcST9Bw0tDTCBl932JobqDssohrn4dMMTNoUjMuPkgHkb37x2ZtNoc3dUolKJD41G2PWXsTlR8nQ05ZjySAX9FbBBP2qNImTBTZRNRAY8RS+/heRmp2HlramWDu6Ayw4eYqo0h29Houp2y4jOTMXZgY6+GWQM153qjoTxoiqurvxafDxu4gHTzNQy1AHf3m3R7v6qptDVFUmcbLAJqrijt+Mw0cbLiErV0IHx9r4y7s9TPW5WQVRZcpTSPjh8E38fvIeAMDZ3hzLh7aFXa3quYQYkToERT7FmHVBSMrIhUNtQ/j7uGnsMEcW2ERV2D+XozBlayjyJIHXnaywYphrmWZWE1HZxSRn4ZPNIQiMfAoAGNWpAb58qzl0tTkkhKikDlyNxqdbQ5GTJ8HZ3hyrvdtr9JlYFthEVdTmwAf4cvdVCAH0c7HFjwOcocMxnkSV6sztBHy6JQRP0nNgrKeN7z9ow82ciErpr9P3sODf6xAC8GxujWVD2sJAV7M7i1hgE1VBq07exaIDNwAAw9wdML9fqzIvW0REpaeQBJYdu42lR29DCKB5XVOsGOYKRwsjdYdGVG1IksC3+69jzdkIAMBIj/qY07dljVgjngU2URUihMD3h25i5Ym7AIAJ3Rvhc69mkMk0/48RUVWRkJaNKVtDcfp2AgBgSAd7zOnbksOziEohK1eBKVtDcSAsBgAwo7cTxr/WsMZ8nmn0+eZTp06hb9++sLW1hUwmw549e17aftSoUZDJZC9cWrZsqWwzd+7cF+53cnKq4FdCNYFCEpi9J0xZXM/o7YTpvZxqzB8joqogMOIp+vx6GqdvJ8BARws/D3TGwvfasLgmKoWn6TkY9ucFHAiLga6WDL8OaYsPuzWqUZ9nGt2DnZ6eDmdnZ4wePRrvvffeK9svXboUixYtUl7Py8uDs7MzBgwYUKhdy5Yt8d9//ymva2tr9NtIlSBXIWHqtsv453IUZDLgu3dbY0gHB3WHRVRjSJLAn6fv4ftDN6GQBBpbGWPFMFc0tTZRd2hE1cr9J+kYtSYQEU8yYCrPxp/to+Deupe6w6p0Gl0Z9u7dG7179y5xezMzM5iZ/W/L6T179iAxMRE+Pj6F2mlra8PGxkZlcVLNlpmjwMRNwTh2Iw46WjL8MsgFb7exVXdYRDVGUkYOpm2/jP+uxwHIn1T83butYaSn0R+RRCoX+jAJvv4X8SQ9B/V00uBvtRVNMrSBjIGAsZW6w6tU/OvxEqtXr4anpyfq169f6Pbbt2/D1tYW+vr68PDwwMKFC+HgwN5GKr2UrFyM8Q9CYORT6OvIsXJ4O/RoVrP+CBGp0+WHSZiwMRiPkzKhqy3H12+3wDB3hxp1KptIFY6Ex+LjzcHIypXQytYUa5rdhFWCNmDXHjC0UHd4lY4FdjGioqJw4MABbNq0qdDt7u7u8Pf3R7NmzRAdHY158+aha9euCAsLg4lJ0acSs7OzkZ2drbyekpJSobFT9fAkLRvefoEIe5wCEz1trPFxg1sD1e1mVRMx16ikhBBYf+E+5u8LR65CwKG2IVYMc0WremavfjAx16iQdecjMffva5AE0L2ZJZYPdYWRTmcgIyG/uFbjluXqUvNecQmtXbsW5ubm6N+/f6Hbe/fujQEDBqBNmzbw8vLCv//+i6SkJGzbtq3YYy1cuFA5/MTMzAz29vYVHD1VdVFJmRj4+3mEPU5BHSNdbB7XkcW1CjDXqCRSs3IxaXMIvt57DbkKAa+W1tj3SRcW16XAXCMgf+7CwgPX8fXe/OJ6sJs9/hrZPn94lVyePyykBhbXACATQgh1B1EZZDIZdu/e/ULBXBQhBJo2bYq3334bv/zyyyvbu7m5wdPTEwsXLizy/qK+6dvb2yM5ORmmpqYlfg2kGSIS0jH8rwA8TsqErZk+1o9xRyMN3Sq2sjHX6FWuR6dgwsZgRCSkQ1suw8y3mmN05wYcElJKzDXKzlNg2vYr+OdyFABgWs+mmNijMXPp/3GISBFOnjyJO3fuwNfX95Vt09LScPfuXYwYMaLYNnp6etDT09ztQKnkwqNSMHJNABLSctDQwgjrx7ijnrmBusPSGMw1Ko4QAtuCHuLrvdeQnSfB1kwfvw1zhatDLXWHVi0x12q25IxcjF0fhMCIp9CWy7Do/Tb4oJ2dusOqUjS6wE5LS8OdO3eU1yMiIhAaGoratWvDwcEBM2fOxOPHj7Fu3bpCj1u9ejXc3d3RqlWrF445bdo09O3bF/Xr10dUVBTmzJkDLS0tDBkypMJfD1VvQZFP4eN/EalZeWhR1xTrfDvAwpgfUEQVLSMnD1/tuYadwY8A5I8R/WWgC2oZ6ao5MqLq51FiBkb5XcSduDQY62lj1fB26NKk5k1ifBWNLrCDgoLQo0cP5fWpU6cCALy9veHv74/o6Gg8ePCg0GOSk5Oxc+dOLF26tMhjPnr0CEOGDMGTJ09gaWmJLl264MKFC7C0tKy4F0LV3ombcfhwwyVk5UpoX78WVo9yg5mBjrrDItJ4d+JSMWFjMG7FpkEuAz7r2QwfdWsEeQ3YqplI1cIeJ8PH/yLiU7NhY6oPPx83NK/LIUFFqTFjsKuSlJQUmJmZcaxaDbH/SjQmbw1BrkKgW1NLrBreDga63BWuMjDXara9oY8xc9dVZOQoYGmih18Ht4VHozrqDksjMdc034mbcZiwMRgZOQo42ZjAz8cNdc04xLE4Gt2DTaRuWy8+wMxdVyEJ4O02dfHzQBfoatfMGdVElSUrV4H5+8KxMSD/DKVHwzpYOsQFVib6ao6MqHraevEBvtwdBoUk0LlxHawc3g6m+jwL+zIssIkqyB+n7uK7f28AAIZ0cMC3/VtBi6eliSrUgycZmLDpEsIe56/L/PHrjTHZsylzj6gMhBD45cgt/Hosfz7be671sOi9NuwoKgEW2EQqJoTAj4dvYvnxuwCA8d0aYkYvJy5dRFTBDl2LwbTtl5GalYdahjr4ZZALunNnVKIyycmTMGPXFewKfgwA+OT1xpjyZlN+lpUQC2wiFZIkgTl/X8P6C/cBANN7NcOE7o3VHBWRZstVSFh84Ab+OhMBAHB1MMdvQ11hyyUwicokJSsXEzYE48ydBGjJZVjQvxUGd3BQd1jVCgtsIhXJVUj4fPtl7AmNgkwGzO/XCsM71ld3WEQaLSopE5M2BSP4QRIAYGxXR0zv5QQdLZ7CJiqL6ORM+PhdxI2YVBjqamH5MFf04JmgUmOBTaQCWbkKTNoUjP+ux0FbLsNPA53Rz6WeusMi0mgnbsZhytZQJGbkwkRfGz8OcIZXSxt1h0VUbd2IScGoNRcRk5IFSxM9+I1yQ6t6ZuoOq1pigU1UTqlZuRizNggBEU+hpy3HyuGueN3JWt1hEWkshSSw5L9b+O34HQgBtKpnihVD28GhjqG6QyOqts7eScCH6y8hNTsPja2M4TfKDfa1mVNlxQKbqByepudglF8grjxKhomeNlaPckMHx9rqDotIY8WlZuHTzaE4f+8JAGB4RwfM7tMC+jpcW56orHYFP8L0HVeQJwl0cKyNP0e0h5khl+ErDxbYRGUUnZyJEasDcScuDbWNdLFudAeeSiOqQOfvPsEnW0IQn5oNQ10tLHyvNYdiEZWDEALLj9/Bj4dvAcjfr+Gngc7Q0+YX1vJigU1UBhEJ6Rj+VwAeJ2Wirpk+1vu6o7GVsbrDItJIkiSw8uRd/HT4JiQBNLU2xoph7ZhzROWQp5Awe08Ytlx8CCB/SdkvvJwg55rxKsECm6iUwqNSMHJNIBLSsuFoYYT1vh1gV4vj1IgqQmJ6DqZsC8WJm/EA8je6+LZ/Kxjq8uOLqKzSs/MwcVMwTtyMh1wGzH2nJUZ6NFB3WBqFf6GISuHS/afw8buIlKw8NK9rinWjO8DSRE/dYRFppEv3E/HxpmBEJWdBT1uO+f1aYUB7O250QVQOcalZGO1/EWGPU6CvI8eyIa54swUn5qsaC2yiEjp1Kx7j119CZq4C7evXwupRbjAz4CQQIlUTQmDN2Ugs/Pc68iQBRwsjLB/qiha2puoOjahauxOXCu81F/E4KRN1jHSxepQbXOzN1R2WRmKBTVQCB65G45MtIchVCHRtYoHfR7TjKWqiCpCSlYvp26/g4LUYAECf1nWx6P3WMNHnl1mi8gi49wRj1wUhJSsPjhZG8PdxQ/06RuoOS2OxQiDNJklARgJgaAHIy7az27agh5ix8wokkf9h/8sgF+hqc5c4omdJkoT4+HhYWlpCXsZcC3ucjAkbg/HgaQZ0tGSY3acFRnrU55AQomeUJdf+vhyFadsuI0chwdXBHH95u6G2kW4FR1qzscAmzSVJwOkfgUdBgF17oOu0UhfZf52+h2/3XwcADGpvj+/eaw0tzrAmKkSSJCxYsAABAQFwd3fHrFmzSlVkCyGwKfAB5v0Tjpw8CfXMDbB8mCtPXRM9p7S5JoTAH6fuYeGBGwAAr5bWWDq4LdeNrwQssElzZSTkF9dpsfk/MxIAY6sSPVQIgV+O3MKvx+4AAMa91hAzezuxJ42oCPHx8QgICEBMTAwCAgIQHx8Pa+uSTZpKz87DrN1XsSc0CgDwhpMVfhroDHND9q4RPa80uaaQBOb9cw3rzt8HAPh0boDZfVqwk6iS8Dw3aS5Di/yea2Pr/J+GFvm92mlx+T+LIUkCc/++piyup/VsyuKa6CUsLS3h7u4OGxsbuLu7w9LSEpIkITY2FtJLcu1WbCre+e0M9oRGQUsuw8zeTvhzZHsW10TFeD7X6tSpU2SeZeYo8OGGS1h3/j5kMmB2n+aY07cli+tKJBNCCHUHUdOkpKTAzMwMycnJMDXlrPgK9ewYbOCVQ0ZyFRKm77iC3SGPAQDz+7XECK4NWm0x1yrPs+NCAbzyNPau4EeYtTsMmbkKWJvq4behrnBrUFsdoZMKMNcqT0Gu1alTBwsXLnwhz56kZcN3bRBCHyZBV1uOJYNc8FbruuoOu8bhEBHSbHL5/4aFpMW9dMhIVq4CkzaF4L/rsdCSy/DTAGf0b8ttmIlKQi6XK09Vx8bGFnsaOytXgbl/X1PuHtelsQWWDHaBhTHXkycqiYJcKyrPMrSMMcovEPefZMDcUAd/jmzPL65qwgKbao6CISMFPdgFvdoA0rLzMGbtRVy49xS62nKsGOoKTy68T1QmBaexC3rWCnq1IxPS8dHGYFyPToFMBnz6RhN8/HoTnrYmKoPn8+xhpjbGrjuLxIxc2Nc2gL9PBzSyNFZ3mDUWh4ioAU+lqVERy/Y9Tc/BKL9AXHmUDGM9bfw5sj08GtUp1zGpamCuqc/zS4n9ezUa03dcQVp2HuoY6WLJYBd0bWJZrmNS1cFcU4+CnAiOU2Dy1svIzpPQxs4Mq73dyrXLMHOt/NiDTTXLs0NGAMQkZ2HE6gDcjktDLUMdrB3dAW3szEt+PBUsBUikiQpOY+fkSfhu3zX4n4sEALg1qIVlQ1xhY6ZfquOVdylAIk0kl8vx750MfLMvHELkr8KzbGjbcm2ExlxTDRbYVGPdf5KOYX8F4FFiJmxM9bFhTAc0tjIp3UHKsRQgkaZ7lJiBiZtCcPlhEgBgfLeGmNazGXS0Sv9hXZ6lAIk0kSQJLPj3OlafiQAADHN3wLx3WkK7DPn1LOaaarDAphrpRkwKRqwORHxqNhrUMcR6X3fY1zYs/YFeMq6bqCY7diMWU7ZeRnJmLswMdPDTAOdyzWsoblw3UU2UlavAZ9suY//VaADA9F7N8FG3RipZTpa5phocg60GHKumXsEPEuHjdxHJmblwsjHBOt8OsDIp3enqQjgGu8pirlW+PIWEn47cwsoTdwEAznZm+G2oa9m+wD6H40KrLuZa5UlMz8HYdUEIup8IHS0ZfhzgjH4uql3xirlWfuzBphrlzO0EjFsfhIwcBdrVr4U13m4wM9Qp30GfG9dNVFPFpmTh480hCIx4CgDw9qiPL/s0h562arZlfnYpQKKa6OHTDHj7BeJefDpM9LXx+4h26NRI9WdOmWvlp9FfS06dOoW+ffvC1tYWMpkMe/bseWn7EydOQCaTvXCJiYkp1G758uVo0KAB9PX14e7ujsDAwAp8FaQqB8OiMdr/IjJyFOjaxALrfTuUv7gmIgDA2TsJ6PPraQRGPIWxnjaWD3XFvH6tVFZcE9V0Vx4l4d0VZ3EvPh22ZvrY+VGnCimuSTU0usBOT0+Hs7Mzli9fXqrH3bx5E9HR0cqLldX/eie3bt2KqVOnYs6cOQgODoazszO8vLwQFxen6vBJhbYHPcSEjcHIUUjo3coGf3m3L9csayLKJ0kCvx69jeGrA5CQlgMnGxP8Pakz+rThznFEqnL0eiwG/X4BCWk5aFHXFLsndkZT61JOyqdKpdEVRu/evdG7d+9SP87Kygrm5uZF3vfzzz9j7Nix8PHxAQCsWrUK+/fvx5o1azBjxozyhEsVZPWZCMzfFw4AGNjeDt+927rcs6yJCHiSlo3JW0Nx+nYCAGBQe3vM69cS+jrstSZSlY0B9/HVnjBIAujaxAIrh7eDsZ5Gl28agf9DRXBxcUF2djZatWqFuXPnonPnzgCAnJwcXLp0CTNnzlS2lcvl8PT0xPnz54s9XnZ2NrKzs5XXU1JSKi54UhJC4Jf/buPXo7cBAGO6OGJWn+YqmWVNVRNzrfJcjHyKjzeFICYlC/o6cizo3xrvt7NTd1hUSZhrFU8IgR8O3cSK/58wPLC9HRa827pMy1xS5eP/0jPq1q2LVatWYefOndi5cyfs7e3RvXt3BAcHAwASEhKgUCheGPhvbW39wjjtZy1cuBBmZmbKi729fYW+Dso/bT3vn3BlcT2tZ1MW1zUAc63iCSHwx6m7GPzHBcSkZKGRpRH+ntSFxXUNw1yrWNl5CkzeGqosrid7NsHi99uwuK5GaswyfTKZDLt370b//v1L9bhu3brBwcEB69evR1RUFOrVq4dz587Bw8ND2Wb69Ok4efIkAgICijxGUd/07e3tuZxRBclTSJi+8wp2BT8GAHzTryVGejRQb1BUKZhrFSs5Ixefbb+M/67HAgD6udjiu3dbw4inq2sc5lrFSc7Mxfj1Qbhw7ym05TJ8915rDGzPLzDVDf8qvkKHDh1w5swZAICFhQW0tLQQGxtbqE1sbCxsbGyKPYaenh709PQqNE7Kl5WrwMebQ3AkPBZachl+HNAG77Zlz1pNwVyrOFceJWHCxmA8SsyErpYcX/dtgWHuDjwrVEMx1yrG46RM+PgF4lZsGoz1tLFimCtea8qNXqojnmt4hdDQUNStmz8bXldXF+3atcPRo0eV90uShKNHjxbq0Sb1SMvOw2j/izgSHgtdbTlWDW/H4pqonIQQWH8+Eh+sPI9HiZlwqG2IXRM6YXjH+iyuiVToWlQy3ltxFrdi02Blooet4zuyuK7GNLoHOy0tDXfu3FFej4iIQGhoKGrXrg0HBwfMnDkTjx8/xrp16wAAS5YsgaOjI1q2bImsrCz89ddfOHbsGA4fPqw8xtSpU+Ht7Y327dujQ4cOWLJkCdLT05WripB6JKbnYJT/RVx+mAQjXS386d2e64MSlVNadh5m7LyCfVfyt2P2ammN7z9whpkB148nUqVTt+Lx0YZLSM9RoKm1Mfx8OqCeuYG6w6Jy0OgCOygoCD169FBenzp1KgDA29sb/v7+iI6OxoMHD5T35+Tk4LPPPsPjx49haGiINm3a4L///it0jEGDBiE+Ph5ff/01YmJi4OLigoMHD3LHIzWKTcnCiNUBuBWbBnNDHaz16QBne3N1h0VUrV2PTsHEjcG4l5AObbkMM3o7wbeLI3utiVRse9BDzNx1FXmSgEfDOlg1oh2/xGqAGjPJsSpJSUmBmZkZJ4OowIMnGRi+OgAPnmbA2lQP633dufg+KTHXymZb0EN8tScM2XkS6prp47ehbdGufm11h0VVGHOt9IQQWHr0Npb8l7/a1btt62Hx+22gq83Ru5pAo3uwSbPdik3F8L8CEJeaDYfahtg4xh32tQ3VHRZRtZWZo8BXe8Ow49IjAEC3ppb4ZZALahvpqjkyIs2Sq5Dw5a6r2P7/uTaxRyNM69mMZ4g0CAtsqpZCHyZhlF8gkjJy0czaBOt9O8DKVF/dYRFVW3fj0zBhQzBuxqZCLgM+69kMH3VrBLmcH/hEqpSalYsJG4Nx+nYCtOQyzO/XCkPdHdQdFqkYC2yqds7dScDYdUFIz1HAxd4c/j5uMDdkDxtRWf1zOQozdl5Beo4CFsZ6+HWICycJE1WAmOQs+PhfxPXoFBjoaGHFMFf0cLJSd1hUAVhgU7Vy6FoMPt4UghyFhC6NLfD7iHbc5IKojLLzFPh233Wsv3AfANCxYW38OqQtrEx4NohI1W7FpmLUmkBEJWfBwlgPa0a1Rxs7c3WHRRWElQlVGzsvPcL0nVegkAR6tbTB0iEu0NPWUndYRNXSw6cZmLAxGFcfJwMAJvVojMmeTaDNrZiJVO7c3QSMX38JqVl5aGhphLU+HThnSMOxwKZqwe9sBOb9Ew4A+KCdHRa915qFAFEZHb4Wg8+2X0ZqVh5qGerg50Eu6NGMp6mJKsKekMf4fMdl5CoE3BrUwp8j23NYYw3AApuqtOeXMRrd2RGz+zTnxCuiMshVSPj+4A38eToCANDWwRzLh7rClhtaEKmcEAIrTtzFD4duAgD6tK6LnwY6Q1+HZ15rgjIV2AEBAXB3d1d1LESFSJLA/P3h8DsbCQCY+mZTfPx6Yy5jRFQG0cmZmLQpBJfuJwIAxnRxxPReTlxzl6gC5CkkfP33NWwKyN/MbmxXR8zszc6hmqRMBbaHhwcaN26MESNGYNiwYWjYsKGq46IaLk8hYcauq8r1eOf0bQGfzo5qjoqo9CRJQnx8PCwtLSGXq6eYPXkrHpO3hCAxIxcm+tr44QNn9Gplo5ZYiCpKVcg1AEjPzsPHm0Nw7EYcZDJgztstMIqfXzVOmX4DN2zYgCZNmmD+/Plo0qQJOnfujFWrVuHp06eqjo9qoOw8BSZuCsaOS4+gJZfhpwHOLK6pWpIkCQsWLICvry8WLFgASZIq9fkVksDPh29ilF8gEjNy0dLWFPs+7sLimjSOunOtQFxqFgb/cQHHbsRBT1uOlcPasbiuocpUYA8dOhT79+9HVFQUli5dCiEEJkyYAFtbW/Tv3x87duxATk6OqmOlGiA9Ow++/kE4dC0WulpyrBzmivfb2ak7LKIyiY+PR0BAAGJiYhAQEID4+PhKe+641CwM/ysAvx67AyGAoe4O2PlRJ9SvY1RpMRBVFnXmWoE7cWl4b8U5XH2cjNpGutg8riO/zNZg5TqHYmFhgUmTJuHcuXO4ffs2Zs2ahRs3bmDQoEGwsbHBuHHjcObMGVXFShouKSMHw1cH4MydBBjqasHPxw09W/KPE1VflpaWcHd3h42NDdzd3WFpaVnyB0sSkBaX/7PYJhJiY2Nf6K27cO8J+vx6BufvPYGhrhaWDnbBd++2Vt3kqhLERlSZypNrxeVRadpcjHyK91eew6PETNSvY4hdH3WCq0OtUr+OssRGVZPKVhExMDCAoaEh9PX1IYSATCbD3r17sXr1ari6umLt2rVo0aKFqp6ONExcShZGrA7EzdhUmBvqwN+nA1zszdUdFlHZSRLkGQmY9eVMxCc8Kd24UEkCTv8IPAoC7NoDXacBzz224JR4waTzWbNmAZBh5cm7+OnwTUgCaGptjBXDXNHYykSlr+tVsRFVpoKx1zNnzsSTJ6XLtaLy6PnHvqrN/ivRmLItFDl5ElzszbHauz3qGOup5HW9Kjaqusr1P5Wamgo/Pz94enqifv36+PLLL9GgQQPs2LEDMTExiIqKwtatWxEXFwcfHx9VxUwa5uHTDAz4/TxuxqbCykQPW8d5sLim6q2gCN07CfIzP8O6tJOuMhLyC9i02PyfGQkvNHn+lPidB9HwXXsRPxzKL67fc62HPRM7q7a4LmFsRJXl2bHXCxcuLPUEx5IMLSmujRACf52+h4mbgpGTJ+HNFtbYPLajSorrksZGVVeZerD37t2LjRs3Yt++fcjKyoKbmxuWLFmCwYMHo06dOoXafvDBB0hMTMTEiRNVEjBpltuxqRi+OgCxKdmwr22Ajb4d4VCHu1tRNVdUEWpcio1cDC3ye4cLeokNLV5oUnBKPCAgAI7te2DUlhuISsqCnrYc8/u1woD2dhWzpGUJYiOqLEUVodbW1iV+/LN5VNzQkqLaKCSB+fvC4X8uEgDg7VEfX/dtCS0VLsNXktio6pIJIURpHySXy2Fvb4/hw4dj5MiRaNas2UvbBwYGYuXKlfDz8ytzoJokJSUFZmZmSE5OhqmpqbrDUZvLD5OUqxs0szbBOt8OsDbVV3dYpEHUlmuqGEYhSfmFuaFFsY9VKBT47fA1/HbmEXIVAo4WRlg+1BUtbCv4tZYgNqpZ1JVrqhhGUZLl/Z5tk6MQ+HRLCA5diwUAfPmWE8Z2bVjsF9ryLB9YVZYepNIrU4F94sQJdO/evQLCqRlYYAPn7iZg7NogpOco4GJvDn8fN24dSyqn1lyr4CI0JSsXX+y4ggNhMQDyd4lb9H5rmOjrqPy5iF5FnblWmUXo0/QcjFl7EcEPkqCrJcfPg5zxdhvbl8bGcdQ1U5mGiLC4pvI4Eh6rHLPWqVEd/DmyPYz0VDbflqhqkMtLNyykQAkK87DHyZi4KRj3n2RAR0uG2X1aYKRHfe5ySjWSXC4v1bCQAqUtzCMT0jHKLxCRTzJgZqCDP0e2RwfH2i99THmHsFD1xaqGKtXukEeYtv0KFJJAzxbW+HVIW9UtHUZU3b1iaIkQApsDH2LuP9eQkyehnrkBlg9z5aRgolIqbc9yyINE+K4NwtP0HNjVMoC/j1uJJhBzHHXNxQKbKs3ac5GY8/c1AMD7rnZY/H5raGvxVBmR0ksmR6Zn52H2njDsDnkMAHjDyQo/DXTm0CqiMihNz/LhazH4ZEsIsnIltK5nhtWj2sPKpGTzheRyOWbNmsVx1DUQC2yqcEIILDt2Bz8fuQUA8OncAF/1aQG5CmdbE2mEYlbouB2bio82BuNOXBq05DJ87tUM47o2ZA4RlVFJe5bXnovE3H+uQQigRzNL/DbUtdRDGss6hIWqtzJNcqTyqUmTHIUQ+Hb/daw+EwEAmOzZBJ++0SR/rChXIqAKVi1z7bm82BX8CLN2hyEzVwFrUz0sG+L6ynGfLx6SKxFQxaqOufayvJAkgUUHb+CPU/cAAEM62GN+v1avPOvKXKMC7MGmCpOnkDBz11Vsv/QIAPD12y0wuotj/p3cDY6oaP8/OTIrV4F5e65gc+BDAECXxhZYMtgFFqXcxIKrGBAVrbie5axcBaZtv4x9V6IBAJ97NcOE7o1eOYmYuUbPYoFNFSI7T4FPN4fi4LUYyGXA9x8444N2dv9rUN6NOIg0WGRCOiZsDEZ4dApkMuDTN5rg49eblGkTC65iQFRySRk5GLfuEgIjn0JHS4bvP2iDd9vavfqBYK5RYfxqRSqXnp2HMWuDcPBaDHS15FgxrF3h4hr431hTY2vuBkc1niRJiI2NhSRJOHA1Gm8vO4Pw6BTUMdLFutEdMNmzaZl3iCsYa2pjY8NVDKhGezbPivLwaQbeX3kOgZFPYaKnjbU+HUpcXAPMNSqMY7DVoDqOVSup5IxcjPIPRMiDJBjqauGPEe3RpUkxxTPHYFMFqw65VnBa+XzgRcic38W1vPwzOW4NamHZEFfYmJV/d1OOC6WKVtVz7VXDN64+SoaP/0UkpGWjrpk+/H06oJnNq5fhK+p5mGsEaHgP9qlTp9C3b1/Y2tpCJpNhz549L22/a9cuvPnmm7C0tISpqSk8PDxw6NChQm3mzp0LmUxW6OLk5FSBr6L6iEvNwqA/ziPkQRLMDHSwYYx78cU18L+NOPhHiGqw+Ph4nA6+hlt2bymL6/GvNcSmsR1VUlwD/xtryg98qqmKGr5R4PiNOAz64zwS0rLhZGOC3RM6l6m4Bphr9D8a/RuQnp4OZ2dnLF++vETtT506hTfffBP//vsvLl26hB49eqBv374ICQkp1K5ly5aIjo5WXs6cOVMR4VcrD59mYMCq87gRkwpLEz1sHd8Rrg611B0WUZV39YnA/WZDkGdmD13k4Y8Rrpj5VnPocI14IpUpbvjG5sAHGLMuCBk5CnRpbIHtH3qo7Ist1WwaPcmxd+/e6N27d4nbL1mypND17777Dnv37sU///yDtm3bKm/X1taGjY2NqsKs9u7EpWL4X4GIScmCfW0DbPB1R/06RuoOi6hKy1NI+OnILaw8cReANppbG+L3kW5wqGOs7tCINM7zG77IZDL8eOgmfjt+B0D+5meL3m/NL7akMhpdYJeXJElITU1F7dqF15y9ffs2bG1toa+vDw8PDyxcuBAODg5qilK9rjxKgveaQCRm5KKJlTHW+7rz2z/RK8SmZOHjzSEIjHgKAPD2qI8v+zSHnraWmiMj0lwFwzdy8iTM2HkZu/5/V9RP3miCKZ5NXrkMH1FpsMB+iR9//BFpaWkYOHCg8jZ3d3f4+/ujWbNmiI6Oxrx589C1a1eEhYXBxKToMVvZ2dnIzs5WXk9JSanw2CvD+btPMGbtRaTnKOBsZwZ/nw6oZcRtm0l9qkOunb2TgE+3hCAhLQdGulpY9H4b9HW2VXdYRKVSHXKtKClZufhowyWcvfMEWnIZvnu3FQa51cwOMqpYPBdSjE2bNmHevHnYtm0brKz+tz5z7969MWDAALRp0wZeXl74999/kZSUhG3bthV7rIULF8LMzEx5sbe3r4yXUKH+C4+Ft18g0nMU8GhYBxvHdmRxTWpXlXNNkgR+PXobw1cHICEtB042Jvjn4y4srqlaqsq5Vpzo5EwMXHUeZ+88gZGuFtaMcmNxTRWmxizTJ5PJsHv3bvTv3/+Vbbds2YLRo0dj+/bt6NOnzyvbu7m5wdPTEwsXLizy/qK+6dvb21fZ5YxeZXfII0zbfgUKSeDNFtZYNqQt9HV4apvUr6rm2pO0bEzeGorTtxMAAAPb2+Gbfq2YN1RtVdVcK8716BT4+F1ETEoWrEz0sGaUG1rVM1N3WKTBOETkOZs3b8bo0aOxZcuWEhXXaWlpuHv3LkaMGFFsGz09PejplW5746pq3flIfL33GgDg3bb18P0HbTgphKqMqphrQZFPMWlTCGJSsqCvI8e3/Vu/uPESUTVTFXOtOKdvx+OjDcFIy85DEytj+Pm4wa6WobrDIg2n0QV2Wloa7ty5o7weERGB0NBQ1K5dGw4ODpg5cyYeP36MdevWAcgfFuLt7Y2lS5fC3d0dMTExAAADAwOYmeV/0502bRr69u2L+vXrIyoqCnPmzIGWlhaGDBlS+S+wEgkhsPz4Hfx4+BaA/ElZc/q2hLyMu8sRaTohBP46HYFFB29AIQk0tDTCymHtyry+LhGV3o5LjzBj5xXkSQIdG9bG78Pbw8xQR91hUQ2g0QV2UFAQevToobw+depUAIC3tzf8/f0RHR2NBw8eKO//448/kJeXh4kTJ2LixInK2wvaA8CjR48wZMgQPHnyBJaWlujSpQsuXLig0VuiCiHw3b/X8efpCADAJ683xpQ3m3LGNVExkjNyMW3HZRwJjwUA9HW2xcL3WsNYT6P/5BJVGUII/Hr0Dn75L79TqJ+LLb7/oA1X6qFKU2PGYFclVX1L2WcpJIEvd13F1qCHAIDZfZpjTNeGao6KqGTUkWtXHiVhwsZgPErMhK6WHF/1bYHh7g78QkoarSp9ruUqJMzeHab83PqoeyN83rMZz7hSpWJ3ChUrJ0/ClK2h2H81GnIZsOi9NhjoVvVnihOpgxACGy7cx/x915GjkGBf2wArhrZDaztOpCKqLGnZeZiwMRinbsVDLgO+6dcKwzvWV3dYVAOxwKYiZeTk4cMN+X+kdLXkWDrYBb1b11V3WERVUlp2Hmbuuop/LkcBAHq2sMYPA5xhZlB5Yz0lSVLuUieXc+Ix1TyxKVnw8buI8OgUGOhoYdmQtvBsYa3y52GuUUmwwKYXJGfmwtf/IoLuJ8JARwt/jGyHrk00d4w5UXnciEnBhA3BuJeQDm25DDN6O8G3i2OlDgmRJAkLFixAQEAA3N3dMWvWLH7wU41yKzYVPn4X8TgpExbGuljt7QZne3OVPw9zjUqKBTYVEp+ajZFrAnE9OgWm+trw8+mAdvVrqTssoippe9BDfLU3DFm5Euqa6eO3oW3Rrn7tSo8jPj4eAQEBiImJQUBAAOLj42FtrfqeO6Kq6MK9Jxi3LggpWXloaGEEf58OcKhTMcvwMdeopFhgk9KjxAyMWB2IiIR0WBjrYb1vBzSvW7UnYRKpQ2aOAl/vDcP2S48AAK81tcSSQS6orabdTC0tLeHu7q7sVdPkVY2InrU39DE+334FOQoJ7erXwl8j21forsLMNSopriKiBlVptnWBO3FpGLE6ANHJWahnboCNY9zRwMJI3WERlUtF5Nrd+DRM3BiMGzGpkMuAKZ5NMbFHY7WvUMBxoaROlf25JoTAqpP3sPjgDQBA71Y2+GWQS6Xsjspco5JgDzbh6qNkePsF4ml6DhpbGWODrztszPTVHRZRlfPP5SjM2HkF6TkKWBjr4dfBLujU2ELdYQEA5HI5T1VTjZCnkDD3n2vYcCF/HwvfLo6Y9VbzSvuSy1yjkmCBXcMF3HsC37VBSMvOQ+t6Zlg7uoPaTnMTVVXZeQp8u+861l+4DwBwd6yNZUPawsq05F9E2etFVH4ZOXn4ZHMI/rseB5kM+KpPC4zu4qi8n3lGVQUL7Brs2I1YfLQhGNl5Etwda+Mv7/Yw0ecWskTPevg0AxM2BuPq42QAwITujTD1zabQ1ir5hzdXHiAqv4S0bPj6X8TlR8nQ05ZjyaDCy8cyz6gqYYFdQ+0NfYzPtl1GniTwhpMVlg9zrZSxa0TVyZHwWHy2LRQpWXkwN9TBLwNd0MPJqtTH4coDROVzLz4N3n6BePg0E7UMdfCXd/sXVuxhnlFVwgK7Btpw4T6+2hsGIYB+Lrb4cYAzdErRG0ek6XIVEn44dBN/nLoHAGjrYI7fhrqinrlBmY7HlQeIyi4o8inGrAtCUkYuHGobwt/HDQ0tjV9oxzyjqoSriKiBOlcRWXHiDr4/eBMAMKJjfcx7p6XaVz8gqihlybXo5Ex8vCkEQfcTAQCjOztiRm8n6GqX70sox4aSJquoz7UDV6Px6dZQ5ORJcLY3x2rv9rAw1iu2/cvyjDlIlYk92DWEEAKLDt7A7yfze+Qm9miEaT2bVepuc0RV3enb8fh0SyiepufARE8bPwxog16t6r76gSXAlQeISmf1mQh8uz8cQgCeza3w65C2MNR9edlSXJ5xfDZVNhbYNYBCEpi9JwybA/OXNPryLSeMe62RmqMiqjoUksDSo7ex7NhtCAG0tDXFimGuqF+Ha8ETVTZJEvh2/3WsORsBABje0QHz3mkFrXKcbeX4bKpsLLA1XE6ehCnbQrH/SjTkMmDhe60xyM1B3WERVRnxqdmYvDUEZ+88AQAMdXfA12+34KRfIjXIylVgytZQHAiLAQDM6O2E8a81LPfZVo7PpsrGAluDZeYo8OGGSzh5Kx46WjIsGdQWfdqo5nQ3kSYIuPcEH28OQVxqNgx1tfDdu63Rv209dYdFVCMlpudg7LogBN1PhK6WHD8MaIN+LqrJR7lcjlmzZnEMNlUaFtgaKjkzF77+FxF0PxEGOlpYNaIdujXlN3aiAg+fZmDYXwHIkwSaWBlj5XBXNLYyUXdYRDXSgycZ8PYLRERCOkz1tfHHyPbo2LBO0Y0lCchIAAwtgFIUypwHQZWJBbYGSkjLxsjVgQiPToGJvjb8fdxeWC+UqKazr22IMV0bIi4lC9++2+qVk6eIqGKEPkyCr/9FPEnPQT1zA/j7uKGJdTFfdiUJOP0j8CgIsGsPdJ1WqiKbqLLwE0XDPE7KxIi/AnAvIR0WxrpYN9odLWwrdylAoupiulczyGTgajpEanIkPBafbA5BZq4CLW1N4TfKDVam+sU/ICMhv7hOi83/mZEAGJd+8yeiisYCW4PciUvDiNUBiE7OQj1zA2wY4w5HC66CQFQcrgFPpD7rz0dizt/XIAmgW1NLLB/mCmO9V5Qlhhb5PdcFPdiGFpUTLFEpscDWEGGPk+G9JhBP0nPQyNIIG8a4o65Z2XadIyIiqiiSJPD9oZtYdfIuAGBQe3t8+26rku0oLJfnDwspwxhsosrEAlsDBEY8ha//RaRm56FVPVOs9emAOi/Z6YqIiEgdsvMU+Hz7Ffx9OQoAMPXNpvj49calG6Yll3NYCFV5LLCrueM34vDhhkvIzpPQwbE2Vnu3h4m+jrrDIiIiKiQ5Ixfj1gchIOIptOUyLHq/DT5oZ6fusIgqBAvsauyfy1GYsjUUeZLA605WWDHMlZtjEBFRlfMoMQM+fhdxOy4NxnraWDncFV2bcOlY0lwssKupTQEPMGvPVQgBvONsi58GOpds/BoREVEluh6dgpFrAhGfmg0bU334+biheV2ubkWajQV2NbTyxF0sPngDADC8owO+eacVV0MgIqIqycxAB3IZ4GRjAj8fN07ApxqBBXY1IkT+zOuVJ/JnXk/o3gifezXjGr5ERFRl2ZobYOOYjrAy1YMp5whRDaHRYwpOnTqFvn37wtbWFjKZDHv27HnlY06cOAFXV1fo6emhcePG8Pf3f6HN8uXL0aBBA+jr68Pd3R2BgYGqD/45Cklg9p4wZXE9s7cTpvdyYnFNRERVXmMrYxbXVKNodIGdnp4OZ2dnLF++vETtIyIi0KdPH/To0QOhoaGYPHkyxowZg0OHDinbbN26FVOnTsWcOXMQHBwMZ2dneHl5IS4urqJeBnIVEiZvDcXGgAeQyYCF77XG+G6NKuz5iIiIiKjsZEIIoe4gKoNMJsPu3bvRv3//Ytt88cUX2L9/P8LCwpS3DR48GElJSTh48CAAwN3dHW5ubvjtt98AAJIkwd7eHh9//DFmzJhRolhSUlJgZmaG5ORkmJq+fKJHVq4CH224hOM346GjJcMvg1zwdhvbEj0PUU1XmlwjorJjrhEVxjHYzzh//jw8PT0L3ebl5YXJkycDAHJycnDp0iXMnDlTeb9cLoenpyfOnz9f7HGzs7ORnZ2tvJ6SklKieFKycjHGPwiBkU+hryPHquHt0L0ZF9cnKk5Zc42ISoe5RvRyGj1EpLRiYmJgbW1d6DZra2ukpKQgMzMTCQkJUCgURbaJiYkp9rgLFy6EmZmZ8mJvb//KWJ6kZWPIHxcQGPkUJnraWO/rzuKa6BXKkmtEVHrMNaKXY4FdCWbOnInk5GTl5eHDhy9tH5WUiQG/n8e1qBTUMdLF5nEd4dagdiVFS1R9lTbXiKhsmGtEL8chIs+wsbFBbGxsodtiY2NhamoKAwMDaGlpQUtLq8g2NjY2xR5XT08Penp6JYohK1eBgb+fx6PETNia6WPDGHc0tDQu/YshqoFKk2tEVHbMNaKXYw/2Mzw8PHD06NFCtx05cgQeHh4AAF1dXbRr165QG0mScPToUWWb8tLX0cLE7o3QsI4+dozvyOKaqAJJkoTY2FhIkqTuUIg0GnONahqNLrDT0tIQGhqK0NBQAPnL8IWGhuLBgwcA8k9xjRw5Utn+ww8/xL179zB9+nTcuHEDK1aswLZt2zBlyhRlm6lTp+LPP//E2rVrcf36dXz00UdIT0+Hj4+PaoKWJAzJ2op/bf6E7dXlAP8YEVUISZKwYMEC+Pr6YsGCBfzgJ6ogr8o1Ft+kiTR6iEhQUBB69OihvD516lQAgLe3N/z9/REdHa0stgHA0dER+/fvx5QpU7B06VLY2dnhr7/+gpeXl7LNoEGDEB8fj6+//hoxMTFwcXHBwYMHX5j4WGYZCcCjIOhnxAKPgvKvG3NyI5GqxcfHIyAgADExMQgICEB8fLzq8piIlF6WawXFd0BAANzd3TFr1izI5Rrd90c1hEYX2N27d8fLlvkuapfG7t27IyQk5KXHnTRpEiZNmlTe8IpmaAHYtc8vru3a518nIpWztLSEu7u78oPd0tJS3SERaaSX5Rq/6JKm0ugCu1qSy4Gu0/J7rg0t8q8TkcrJ5XLMmjUL8fHxsLS0ZK8ZUQV5Wa7xiy5pqhqzk2NVwh2viCoHc42ocpQn1yRJ4hdd0jjswSYiIiK1kcvlHBZCGodfFYmIiIiIVIgFNhERERGRCrHAJiIiIiJSIRbYREREREQqxEmOalCwcEtKSoqaIyFSPRMTE8hkMnWHAYC5RpqNuUZUOcqSayyw1SA1NRUAYG9vr+ZIiFSvKi2Jx1wjTcZcI6ocZck1roOtBpIk4ebNm2jRogUePnxYZf5AapKUlBTY29vz/a0Ar3pvq1KvGnOtYjHPKhZzjQow1ypOSd5b9mBXE3K5HPXq1QMAmJqaMlkqEN/filMd3lvmWuXge1uxqsP7y1yrHHxvK46q31tOciQiIiIiUiEW2EREREREKsQCW0309PQwZ84c6OnpqTsUjcT3t+JUt/e2usVbnfC9rVjV7f2tbvFWJ3xvK05Fvbec5EhEREREpELswSYiIiIiUiEW2EREREREKsQCm4iIiIhIhVhgExERERGpEAvsCrR8+XI0aNAA+vr6cHd3R2Bg4Evbb9++HU5OTtDX10fr1q3x77//VlKk1U9p3lt/f3/IZLJCF319/UqMtvo4deoU+vbtC1tbW8hkMuzZs+eVjzlx4gRcXV2hp6eHxo0bw9/fv8LjfB5zreIw1yoGc42ex1yrGOrKNRbYFWTr1q2YOnUq5syZg+DgYDg7O8PLywtxcXFFtj937hyGDBkCX19fhISEoH///ujfvz/CwsIqOfKqr7TvLZC/Q1N0dLTycv/+/UqMuPpIT0+Hs7Mzli9fXqL2ERER6NOnD3r06IHQ0FBMnjwZY8aMwaFDhyo40v9hrlUc5lrFYa7Rs5hrFUdtuSaoQnTo0EFMnDhReV2hUAhbW1uxcOHCItsPHDhQ9OnTp9Bt7u7uYvz48RUaZ3VU2vfWz89PmJmZVVJ0mgOA2L1790vbTJ8+XbRs2bLQbYMGDRJeXl4VGFlhzLWKw1yrHMw1Yq5VjsrMNfZgV4CcnBxcunQJnp6eytvkcjk8PT1x/vz5Ih9z/vz5Qu0BwMvLq9j2NVVZ3lsASEtLQ/369WFvb49+/frh2rVrlRGuxlP37y1zreIw16oWdf/eMtcqDnOtalHV7y0L7AqQkJAAhUIBa2vrQrdbW1sjJiamyMfExMSUqn1NVZb3tlmzZlizZg327t2LDRs2QJIkdOrUCY8ePaqMkDVacb+3KSkpyMzMrPDnZ65VHOZa1cJc01zMtapFVbmmrerAiKoaDw8PeHh4KK936tQJzZs3x++//4758+erMTIizcJcI6oczLWqjz3YFcDCwgJaWlqIjY0tdHtsbCxsbGyKfIyNjU2p2tdUZXlvn6ejo4O2bdvizp07FRFijVLc762pqSkMDAwq/PmZaxWHuVa1MNc0F3OtalFVrrHArgC6urpo164djh49qrxNkiQcPXq00DfOZ3l4eBRqDwBHjhwptn1NVZb39nkKhQJXr15F3bp1KyrMGkPdv7fMtYrDXKta1P17y1yrOMy1qkVlv7elnYFJJbNlyxahp6cn/P39RXh4uBg3bpwwNzcXMTExQgghRowYIWbMmKFsf/bsWaGtrS1+/PFHcf36dTFnzhyho6Mjrl69qq6XUGWV9r2dN2+eOHTokLh79664dOmSGDx4sNDX1xfXrl1T10uoslJTU0VISIgICQkRAMTPP/8sQkJCxP3794UQQsyYMUOMGDFC2f7evXvC0NBQfP755+L69eti+fLlQktLSxw8eLDSYmauVRzmWsVhrtGzmGsVR125xgK7Ai1btkw4ODgIXV1d0aFDB3HhwgXlfd26dRPe3t6F2m/btk00bdpU6OrqipYtW4r9+/dXcsTVR2ne28mTJyvbWltbi7feeksEBwerIeqq7/jx4wLAC5eC99Pb21t069bthce4uLgIXV1d0bBhQ+Hn51fpcTPXKg5zrWIw1+h5zLWKoa5ckwkhRJn70YmIiIiIqBCOwSYiIiIiUiEW2EREREREKsQCm4iIiIhIhVhgExERERGpEAtsIiIiIiIVYoFNRERERKRCLLCJiOiloqOjMWPGDPTo0QMmJiaQyWQ4ceKEusMiIqqyWGATEdFL3bx5E4sXL8bjx4/RunVrdYdDRFTlscAmIqKXateuHZ48eYJbt25h6tSp6g6HiKjKY4FNRFRDZWZmwsnJCU5OTsjMzFTe/vTpU9StWxedOnWCQqGAiYkJateurcZIiYiqFxbYREQ1lIGBAdauXYs7d+5g1qxZytsnTpyI5ORk+Pv7Q0tLS40REhFVT9rqDoCIiNTH3d0d06dPx+LFi/Huu+8iNjYWW7ZswZIlS9C0aVN1h0dEVC2xwCYiquHmzp2Lffv2wdvbG2lpaejWrRs++eQTdYdFRFRtcYgIEVENp6urizVr1iAiIgKpqanw8/ODTCZTd1hERNUWC2wiIsKhQ4cAAFlZWbh9+7aaoyEiqt5YYBMR1XBXrlzBN998Ax8fH7Rt2xZjxoxBcnKyusMiIqq2WGATEdVgubm5GDVqFGxtbbF06VL4+/sjNjYWU6ZMUXdoRETVFic5EhHVYN9++y1CQ0Nx9OhRmJiYoE2bNvj6668xe/ZsfPDBB3jrrbeU7QDg2rVrAID169fjzJkzAIDZs2erJ3gioipKJoQQ6g6CiIgqX3BwMNzd3fHRRx/h119/Vd6uUCjg4eGBx48f49q1azA3N3/ppEd+jBARFcYCm4iIiIhIhThEhKgICoUCubm56g6DiIiqGB0dHe5wSq/EApvoGUIIxMTEICkpSd2hEBFRFWVubg4bGxuuF0/FYoFN9IyC4trKygqGhob840lEREpCCGRkZCAuLg4AULduXTVHRFUVC2yi/6dQKJTFdZ06ddQdDhERVUEGBgYAgLi4OFhZWXG4CBWJ62AT/b+CMdeGhoZqjoSIiKqygs8JztWh4rDAJnoOh4UQEdHL8HOCXoUFNhGVib+/P8zNzdUdBhERUZXDApuomhs1ahRkMhlkMhl0dXXRuHFjfPPNN8jLy6vQ5x00aBBu3bpVoc/xKs++dh0dHVhbW+PNN9/EmjVrIElSqY7FLwyqUfB/smjRokK379mzp9J7/Qp+N2QyGYyMjNCkSROMGjUKly5dKvWxunfvjsmTJ6s+SAIAnDhxAjKZjCs4kcZggU2kAXr16oXo6Gjcvn0bn332GebOnYsffvihyLY5OTkqeU4DAwNYWVmp5FjlUfDaIyMjceDAAfTo0QOffvop3n777Qr/kkFF09fXx+LFi5GYmKjuUODn54fo6Ghcu3YNy5cvR1paGtzd3bFu3Tp1h1ZjPPtFp6jL3Llz1R0ikcqxwCbSAHp6erCxsUH9+vXx0UcfwdPTE3///TeA/B7F/v37Y8GCBbC1tUWzZs0AAA8fPsTAgQNhbm6O2rVro1+/foiMjAQAHD58GPr6+i/0Jn366ad4/fXXARTd47ty5Uo0atQIurq6aNasGdavX6+8LzIyEjKZDKGhocrbkpKSIJPJcOLECQBAYmIihg0bBktLSxgYGKBJkybw8/Mr0WuvV68eXF1d8eWXX2Lv3r04cOAA/P39le1+/vlntG7dGkZGRrC3t8eECROQlpYGIL/3zMfHB8nJyS986K9fvx7t27eHiYkJbGxsMHToUOUSXVQ0T09P2NjYYOHChS9td+bMGXTt2hUGBgawt7fHJ598gvT0dADAb7/9hlatWinbFvSAr1q1qtDzzJ49+6XPUbBecYMGDdCzZ0/s2LEDw4YNw6RJk5RfAJ48eYIhQ4agXr16MDQ0ROvWrbF582blMUaNGoWTJ09i6dKlyt+PyMhIKBQK+Pr6wtHREQYGBmjWrBmWLl1a6vdL00VHRysvS5YsgampaaHbpk2bprbYVNXhQPQ8FthEGsjAwKDQB8fRo0dx8+ZNHDlyBPv27UNubi68vLxgYmKC06dP4+zZszA2NkavXr2Qk5ODN954A+bm5ti5c6fyGAqFAlu3bsWwYcOKfM7du3fj008/xWeffYawsDCMHz8ePj4+OH78eInj/uqrrxAeHo4DBw7g+vXrWLlyJSwsLEr9+l9//XU4Oztj165dytvkcjl+/fVXXLt2DWvXrsWxY8cwffp0AECnTp1e+OAv+NDPzc3F/PnzcfnyZezZsweRkZEYNWpUqWOqSbS0tPDdd99h2bJlePToUZFt7t69i169euH999/HlStXsHXrVpw5cwaTJk0CAHTr1g3h4eGIj48HAJw8eRIWFhbKL2O5ubk4f/48unfvXur4pkyZgtTUVBw5cgQAkJWVhXbt2mH//v0ICwvDuHHjMGLECAQGBgIAli5dCg8PD4wdO1b5+2Fvbw9JkmBnZ4ft27cjPDwcX3/9Nb788kts27at1DFpMhsbG+XFzMwMMpms0G3GxsbKtpcuXUL79u1haGiITp064ebNm4WOtXfvXri6ukJfXx8NGzbEvHnzCp2pevDgAfr16wdjY2OYmppi4MCBiI2NVd4/d+5cuLi44K+//oKjoyP09fWxbt061KlTB9nZ2YWeq3///hgxYkQFvSuk8QQRCSGEyMzMFOHh4SIzM1PdoZSKt7e36NevnxBCCEmSxJEjR4Senp6YNm2a8n5ra2uRnZ2tfMz69etFs2bNhCRJytuys7OFgYGBOHTokBBCiE8//VS8/vrryvsPHTok9PT0RGJiohBCCD8/P2FmZqa8v1OnTmLs2LGFYhswYIB46623hBBCRERECAAiJCREeX9iYqIAII4fPy6EEKJv377Cx8enTK/9eYMGDRLNmzcv9rHbt28XderUUV5//vUU5+LFiwKASE1NLXGcNcmz/ycdO3YUo0ePFkIIsXv3bvHsR46vr68YN25coceePn1ayOVykZmZKSRJEnXq1BHbt28XQgjh4uIiFi5cKGxsbIQQQpw5c0bo6OiI9PT0YmMBIHbv3v3C7ZmZmQKAWLx4cbGP7dOnj/jss8+U17t16yY+/fTTl752IYSYOHGieP/991/ZTlUkSRLp2blquTz796Okisuz48ePCwDC3d1dnDhxQly7dk107dpVdOrUSdnm1KlTwtTUVPj7+4u7d++Kw4cPiwYNGoi5c+cKIYRQKBTCxcVFdOnSRQQFBYkLFy6Idu3aiW7duimPMWfOHGFkZCR69eolgoODxeXLl0VGRoYwMzMT27ZtU7aLjY0V2tra4tixY0W+jur6eUGVhxvNEFUASZIQHx8PS0tLyOUVf6Jo3759MDY2Rm5uLiRJwtChQwuNa2zdujV0dXWV1y9fvow7d+7AxMSk0HGysrJw9+5dAMCwYcPQsWNHREVFwdbWFhs3bkSfPn2KnQh4/fp1jBs3rtBtnTt3LtUp848++gjvv/8+goOD0bNnT/Tv3x+dOnUq8eOfJYQoNKnuv//+w8KFC3Hjxg2kpKQgLy8PWVlZyMjIeOna55cuXcLcuXNx+fJlJCYmKidPPnjwAC1atChTbJVOkoCMBMDQAqiE38cCixcvxuuvv17kEIDLly/jypUr2Lhxo/I2IQQkSUJERASaN2+O1157DSdOnICnpyfCw8MxYcIEfP/997hx4wZOnjwJNze3Mq1bL4QA8L+l1hQKBb777jts27YNjx8/Rk5ODrKzs0t07OXLl2PNmjV48OABMjMzkZOTAxcXl1LHVFaZuQq0+PpQpT3fs8K/8YKhrmrLiAULFqBbt24AgBkzZqBPnz7IysqCvr4+5s2bhxkzZsDb2xsA0LBhQ8yfPx/Tp0/HnDlzcPToUVy9ehURERGwt7cHAKxbtw4tW7bExYsX4ebmBiB/WMi6detgaWmpfN6hQ4fCz88PAwYMAABs2LABDg4OZTpDQgRwiAiRykmShAULFsDX1xcLFiwo9WoWZdGjRw+Ehobi9u3byMzMxNq1a2FkZKS8/9l/A0BaWhratWuH0NDQQpdbt25h6NChAAA3Nzc0atQIW7ZsQWZmJnbv3l3s8JCSKPiiUVDcAC9u0tC7d2/cv38fU6ZMQVRUFN54440yj8+8fv06HB0dAeSP/3777bfRpk0b7Ny5E5cuXcLy5csBvHwMZnp6Ory8vGBqaoqNGzfi4sWL2L179ysfV6VIEnD6R2DvpPyflfD7WOC1116Dl5cXZs6c+cJ9aWlpGD9+fKHfv8uXL+P27dto1KgRgPyVO06cOIHTp0+jbdu2MDU1VRbdJ0+eVBZipXX9+nUAUP5+/PDDD1i6dCm++OILHD9+HKGhofDy8nrl//GWLVswbdo0+Pr64vDhwwgNDYWPj0/1+d2ogtq0aaP8d8E25AVzHi5fvoxvvvkGxsbGykvBsJ2MjAxcv34d9vb2yuIaAFq0aAFzc3Pl/zkA1K9fv1BxDQBjx47F4cOH8fjxYwD5c0wKVsQhKgv2YBOpWHx8PAICAhATE4OAgADEx8fD2tq6Qp/TyMgIjRs3LnF7V1dXbN26FVZWVjA1NS223bBhw7Bx40bY2dlBLpejT58+xbZt3rw5zp49q+xdAoCzZ88qe3kLPtCio6PRtm1bACg04bGApaUlvL294e3tja5du+Lzzz/Hjz/+WOLXBgDHjh3D1atXMWXKFAD5vdCSJOGnn35SFvrPj5PV1dWFQqEodNuNGzfw5MkTLFq0SPmhHRQUVKpY1C4jAXgUBKTF5v/MSACMK2/1l0WLFsHFxUU5ubaAq6srwsPDX/p7261bN0yePBnbt29X9iR2794d//33H86ePYvPPvusTDEVjLf39PQEkP972q9fPwwfPhxA/pfkW7duFTpDUdTvx9mzZ9GpUydMmDBBeVvBGaDKYqCjhfBvvCr1OZ99blXT0dFR/ruguC3opEhLS8O8efPw3nvvvfA4fX39Ej/H8x0OANC2bVs4Oztj3bp16NmzJ65du4b9+/eXNnwiJRbYRCpmaWkJd3d3BAQEwN3d/YWekqpg2LBh+OGHH9CvXz988803sLOzw/3797Fr1y5Mnz4ddnZ2ynZz587FggUL8MEHH0BPT6/YY37++ecYOHAg2rZtC09PT/zzzz/YtWsX/vvvPwD5Ey87duyIRYsWwdHREXFxcS+sAPH111+jXbt2aNmyJbKzs7Fv3z40b978pa8lOzsbMTExUCgUiI2NxcGDB7Fw4UK8/fbbGDlyJACgcePGyM3NxbJly9C3b1+cPXu20GoUANCgQQOkpaXh6NGjcHZ2hqGhIRwcHKCrq4tly5bhww8/RFhYGObPn1/q91utDC0Au/b5xbVd+/zrlah169YYNmwYfv3110K3f/HFF+jYsSMmTZqEMWPGwMjICOHh4Thy5Ah+++03APm9mbVq1cKmTZuwb98+APkF9rRp0yCTydC5c+dXPn9SUhJiYmKQnZ2NW7du4ffff8eePXuwbt065XCnJk2aYMeOHTh37hxq1aqFn3/+GbGxsYUK7AYNGiAgIACRkZEwNjZG7dq10aRJE6xbtw6HDh2Co6Mj1q9fj4sXLyp7xiuDTCZT+TCNqsrV1RU3b94s9ktZ8+bN8fDhQzx8+FD5hTg8PBxJSUklGs41ZswYLFmyBI8fP4anp2ehnnCiUlPvEHCiqkOVk1YUCoWIiYkRCoVCBZG93Msm+r3s/ujoaDFy5EhhYWEh9PT0RMOGDcXYsWNFcnJyoXYdOnQQAF6Y7FPUZKUVK1aIhg0bCh0dHdG0aVOxbt26QveHh4cLDw8PYWBgIFxcXMThw4cLTXKcP3++aN68uTAwMBC1a9cW/fr1E/fu3XvpawMgAAhtbW1haWkpPD09xZo1a15473/++WdRt25dYWBgILy8vMS6desEAOWkTSGE+PDDD0WdOnUEADFnzhwhhBCbNm0SDRo0EHp6esLDw0P8/fffL0zWrPIUCiFSY/N/VrCift8iIiKErq6ueP4jJzAwULz55pvC2NhYGBkZiTZt2ogFCxYUatOvXz+hra2tnFSqUChErVq1RMeOHV8ZS8HvBgChr68vGjVqJLy9vcWlS5cKtXvy5Ino16+fMDY2FlZWVmL27Nli5MiRhV7HzZs3RceOHYWBgYEAICIiIkRWVpYYNWqUMDMzE+bm5uKjjz4SM2bMEM7OziV/w2qYV01yfDYfQ0JClO+1EEIcPHhQaGtri7lz54qwsDARHh4uNm/eLGbNmiWEyJ/w6eLiIrp27SouXbokAgICipzkWNz/T1JSkjA0NBS6urpiy5YtL30dnORIryIT4pkBkUQ1WFZWFiIiIpRLNxERkWr5+/tj8uTJL6yxf+LECfTo0QOJiYnKMwuhoaFo27YtIiIi0KBBAwDAoUOH8M033yAkJAQ6OjpwcnLCmDFjMHbsWAD5k48//vhjHD16FHK5HL169cKyZcuUw/Tmzp2LPXv2FDk8DQBGjhyJ/fv3Iyoq6qVn7Ph5Qa/CApvo//EPJhFRzfbGG2+gZcuWLwxpeh4/L+hVasbALSIiIqJiJCYm4sSJEzhx4gRWrFih7nBIA7DAJiIiohqtbdu2SExMxOLFi19Y8YaoLFhgExERUY0WGRmp7hBIw3CjGSIiIiIiFWKBTfQczvslIqKX4ecEvQoLbKL/V7CDWEZGhpojISKiqqzgc+LZnSeJnsUx2ET/T0tLC+bm5oiLiwMAGBoaKrfqJSIiEkIgIyMDcXFxMDc3h5aW6reLJ83AdbCJniGEQExMzAubIBARERUwNzeHjY0NO2GoWCywiYqgUCiQm5ur7jCIiKiK0dHRYc81vRILbCIiIiIiFeIkRyIiIiIiFWKBTURERESkQiywiYiIiIhUiAU2EREREZEKscAmIiIiIlIhFthERERERCrEApuIiIiISIX+Dz2SlY5y7xD9AAAAAElFTkSuQmCC\n" - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "text/plain": "
", - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAtQAAAEzCAYAAAARhJRXAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8o6BhiAAAACXBIWXMAAA9hAAAPYQGoP6dpAABlU0lEQVR4nO3dd1hUR9sG8HuX3hFpIk2k2jti1xARSzRNX2PsJTGaGHvvUdSUV2NMTLO+GmOMmnwWLCh2MRaMShEQOyCo9L473x8bNqL0trtw/66LS/fs7O4ziM95mDMzRyKEECAiIiIiogqRqjoAIiIiIiJNxoKaiIiIiKgSWFATEREREVUCC2oiIiIiokpgQU1EREREVAksqImIiIiIKoEFNRERERFRJbCgJiIiIiKqBBbURERERESVwIKaiIjU2t27dyGRSLBlyxZVh0JEVCQW1EREVWTLli2QSCS4fPlyjXxeWFgYlixZgrt375apfVBQEMaMGQN3d3cYGhrCxcUF48aNQ1xcXLk+Nzg4GG+99RZsbW2hq6sLa2trDBgwAHv37q1AL4iINB8LaiIiDRUWFoalS5eWuaCePXs2goOD8eabb+Lrr7/Gf/7zH+zevRutW7dGfHx8md5j8eLF6NmzJ27evIkPPvgAGzduxMyZM5Geno63334bO3furESPiIg0k7aqAyAioprx1VdfoUuXLpBK/x1L6dOnD7p3745vvvkGn332WYmv37NnD5YtW4Z33nkHO3fuhI6OjvK5mTNn4siRI8jLy6u2+ImI1BVHqImIalBubi4WLVqEtm3bwszMDEZGRujatStOnjz5Sttdu3ahbdu2MDExgampKZo3b45169YBUEwveffddwEAPXv2hEQigUQiQXBwcLGf3a1bt0LFdMExCwsLhIeHlxr7woULYWFhgU2bNhUqpgv4+fmhf//+SE9Ph5GREaZMmfJKm4cPH0JLSwsBAQHKY8nJyZg6dSqcnZ2hp6cHe3t7jBgxAklJSSXGExERgXfeeQcWFhbQ19dHu3bt8OeffxZqk5eXh6VLl8LNzQ36+vqoX78+unTpgmPHjpXaXyKismJBTURUg1JTU/HTTz+hR48eWL16NZYsWYLExET4+fkhNDRU2e7YsWMYOnQo6tWrh9WrV2PVqlXo0aMHzp07B0BRCH/yyScAgHnz5mH79u3Yvn07vLy8yhVPeno60tPTYWlpWWK7qKgoREREYNCgQTAxMSmxrbGxMd588038+uuvkMlkhZ775ZdfIITAsGHDlJ/ftWtXrF+/Hr1798a6devw4YcfIiIiAg8fPiz2M27duoWOHTsiPDwcc+bMwZdffgkjIyMMGjQI+/btU7ZbsmQJli5dip49e+Kbb77B/Pnz4ejoiKtXr5b2rSEiKjtBRERVYvPmzQKA+Ouvv4ptk5+fL3Jycgode/78ubCxsRFjxoxRHpsyZYowNTUV+fn5xb7Xb7/9JgCIkydPVjjm5cuXCwAiKCioxHZ//PGHACD++9//lul9jxw5IgCIw4cPFzreokUL0b17d+XjRYsWCQBi7969r7yHXC4XQggRGxsrAIjNmzcrn3vttddE8+bNRXZ2dqH2nTp1Em5ubspjLVu2FP369StTzEREFcURaiKiGqSlpQVdXV0AgFwux7Nnz5Cfn4927doVGjU1NzdHRkZGtU5NOH36NJYuXYrBgwejV69eJbZNTU0FgFJHpwv4+vrCzs4OO3bsUB67efMm/v77b7z//vvKY7///jtatmyJN99885X3kEgkRb73s2fPcOLECQwePBhpaWlISkpCUlISnj59Cj8/P0RFReHRo0cAFN/HW7duISoqqkxxExFVBAtqIqIatnXrVrRo0UI5p9fKygoHDx5ESkqKss1HH30Ed3d3+Pv7w97eHmPGjEFgYGCVxRAREYE333wTzZo1w08//VRqe1NTUwBAWlpamd5fKpVi2LBh2L9/PzIzMwEAO3bsgL6+vnLuNwDExMSgWbNm5Yo9OjoaQggsXLgQVlZWhb4WL14MAHjy5AkAYNmyZUhOToa7uzuaN2+OmTNn4u+//y7X5xERlYYFNRFRDfrf//6HUaNGoXHjxvj5558RGBiIY8eOoVevXpDL5cp21tbWCA0NxZ9//ok33ngDJ0+ehL+/P0aOHFnpGB48eIDevXvDzMwMhw4dKtOos6enJwDgxo0bZf6cESNGID09Hfv374cQAjt37kT//v1hZmZW4dgBKL9PM2bMwLFjx4r8cnV1BaCYax4TE4NNmzYpf3lo06ZNmX6JICIqK26bR0RUg/bs2QMXFxfs3bu30JSGgpHVF+nq6mLAgAEYMGAA5HI5PvroI3z//fdYuHAhXF1di50SUZKnT5+id+/eyMnJQVBQEBo0aFCm17m7u8PDwwN//PEH1q1bB2Nj41Jf06xZM7Ru3Ro7duyAvb097t+/j/Xr1xdq07hxY9y8ebNcfXBxcQEA6OjowNfXt9T2FhYWGD16NEaPHo309HR069YNS5Yswbhx48r1uURExeEINRFRDdLS0gIACCGUx0JCQnDhwoVC7Z4+fVrosVQqRYsWLQAAOTk5AAAjIyMAim3nyiIjIwN9+/bFo0ePcOjQIbi5uZUr9qVLl+Lp06cYN24c8vPzX3n+6NGjOHDgQKFjw4cPx9GjR7F27VrUr18f/v7+hZ5/++23cf369UI7cxR48Xv0Imtra/To0QPff/99kXd5TExMVP795e+jsbExXF1dld9DIqKqwBFqIqIqtmnTpiLnO0+ZMgX9+/fH3r178eabb6Jfv36IjY3Fxo0b0aRJE6Snpyvbjhs3Ds+ePUOvXr1gb2+Pe/fuYf369WjVqpVya7xWrVpBS0sLq1evRkpKCvT09NCrVy9YW1sXGdewYcNw6dIljBkzBuHh4YX2njY2NsagQYNK7NeQIUNw48YNrFixAteuXcPQoUPh5OSEp0+fIjAwEEFBQa/cKfG9997DrFmzsG/fPkycOPGV/atnzpyJPXv24N1338WYMWPQtm1bPHv2DH/++Sc2btyIli1bFhnLhg0b0KVLFzRv3hzjx4+Hi4sLEhIScOHCBTx8+BDXr18HADRp0gQ9evRA27ZtYWFhgcuXL2PPnj2YPHlyiX0lIioX1W4yQkRUexRsm1fc14MHD4RcLhcrV64UTk5OQk9PT7Ru3VocOHBAjBw5Ujg5OSnfa8+ePaJ3797C2tpa6OrqCkdHR/HBBx+IuLi4Qp/5448/ChcXF6GlpVXqFnpOTk7FxvbiZ5cmKChIDBw4UFhbWwttbW1hZWUlBgwYIP74448i2/ft21cAEOfPny/y+adPn4rJkyeLhg0bCl1dXWFvby9GjhwpkpKShBBFb5snhBAxMTFixIgRwtbWVujo6IiGDRuK/v37iz179ijbfPbZZ6JDhw7C3NxcGBgYCE9PT7FixQqRm5tb5v4SEZVGIkQx19SIiIiqwJtvvokbN24gOjpa1aEQEVULzqEmIqJqExcXh4MHD2L48OGqDoWIqNpwDjUREVW52NhYnDt3Dj/99BN0dHTwwQcfqDokIqJqwxFqIiKqcqdOncLw4cMRGxuLrVu3wtbWVtUhERFVG86hJiIiIiKqBI5QExERERFVAgtqIiIiIqJKYEFNRERERFQJLKiJiIiIiCqBBTURERERUSWwoCYiIiIiqgQW1ERERERElcCCmoiIiIioElhQExERERFVAgtqIiIiIqJKYEGtAkIIpKamgnd9JyKqGOZRIlInLKhVIC0tDWZmZkhLS1N1KMW6e/cuJBIJQkNDVR0KEdErmEeJSJ2woNZQ8fHx+Pjjj+Hi4gI9PT04ODhgwIABCAoKUnVoSpGRkejZsydsbGygr68PFxcXLFiwAHl5eaoOjYhII/Loi6Kjo2FiYgJzc3NVh0JEL9FWdQBUfnfv3kXnzp1hbm6Ozz//HM2bN0deXh6OHDmCSZMmISIiQtUhAgB0dHQwYsQItGnTBubm5rh+/TrGjx8PuVyOlStXqjo8IqrDNCWPFsjLy8PQoUPRtWtXnD9/XtXhENFLOEKtgT766CNIJBJcunQJb7/9Ntzd3dG0aVNMmzYNFy9eBACMGTMG/fv3L/S6vLw8WFtb4+effwYAyOVyrFmzBq6urtDT04OjoyNWrFhR7OfevHkT/v7+MDY2ho2NDYYPH46kpKRi27u4uGD06NFo2bIlnJyc8MYbb2DYsGE4c+ZMFXwXiIgqTlPyaIEFCxbA09MTgwcPrkSviai6sKDWMM+ePUNgYCAmTZoEIyOjV54vuBQ4btw4BAYGIi4uTvncgQMHkJmZiSFDhgAA5s6di1WrVmHhwoUICwvDzp07YWNjU+TnJicno1evXmjdujUuX76MwMBAJCQklCu5R0dHIzAwEN27dy9Hj4mIqpam5dETJ07gt99+w4YNGyrYYyKqdoJqXEpKigAgUlJSyv3akJAQAUDs3bu31LZNmjQRq1evVj4eMGCAGDVqlBBCiNTUVKGnpyd+/PHHIl8bGxsrAIhr164JIYRYvny56N27d6E2Dx48EABEZGRkiXH4+PgIPT09AUBMmDBByGSyUmMnIipJXcmjSUlJwsHBQZw6dUoIIcTmzZuFmZlZqXETUc3iCLWGEeXYImrcuHHYvHkzACAhIQGHDx/GmDFjAADh4eHIycnBa6+9Vqb3un79Ok6ePAljY2Pll6enJwAgJiamxNf++uuvuHr1Knbu3ImDBw/iiy++KHMfiIiqmibl0fHjx+O9995Dt27dyhwzEdU8LkrUMG5ubpBIJGVaMDNixAjMmTMHFy5cwPnz59GoUSN07doVAGBgYFCuz01PT8eAAQOwevXqV55r0KBBia91cHAAADRp0gQymQwTJkzA9OnToaWlVa4YiIiqgibl0RMnTuDPP/9UDkQIISCXy6GtrY0ffvhBWdwT1XlyOZCZBBhaAtKaHy/mCLWGsbCwgJ+fHzZs2ICMjIxXnk9OTlb+vX79+hg0aBA2b96MLVu2YPTo0crn3NzcYGBgUObtodq0aYNbt27B2dkZrq6uhb6KmoNYHLlcjry8PMjl8jK/hoioKmlSHr1w4QJCQ0OVX8uWLYOJiQlCQ0Px5ptvlq/jRLWVXA6c+QL4Y7LiTxXUGCyoNdCGDRsgk8nQoUMH/P7774iKikJ4eDi+/vpr+Pj4FGo7btw4bN26FeHh4Rg5cqTyuL6+PmbPno1Zs2Zh27ZtiImJwcWLF5Ur1182adIkPHv2DEOHDsVff/2FmJgYHDlyBKNHj4ZMJivyNTt27MDu3bsRHh6OO3fuYPfu3Zg7dy6GDBkCHR2dqvuGEBGVk6bkUS8vLzRr1kz51bBhQ0ilUjRr1gz16tWrum8IkSbLTAIeXgbSExR/Zpa+c05V45QPDeTi4oKrV69ixYoVmD59OuLi4mBlZYW2bdviu+++K9TW19cXDRo0QNOmTWFnZ1fouYULF0JbWxuLFi3C48eP0aBBA3z44YdFfqadnR3OnTuH2bNno3fv3sjJyYGTkxP69OkDaTGXVrS1tbF69Wrcvn0bQgg4OTlh8uTJmDp1atV8I4iIKkhT8igRlYGhJWDfTlFM27dTPK5hElGe1RlUJVJTU2FmZoaUlBSYmppW62elp6ejYcOG2Lx5M956661q/SwioprCPEpEhah4DjVHqGspuVyOpKQkfPnllzA3N8cbb7yh6pCIiDQK8yiRBpFKAWNrlX08C+pa6v79+2jUqBHs7e2xZcsWaGvzn5qIqDyYR4morJgdailnZ+dy7bVKRESFMY8SUVlxFQQRERERUSWwoCYiIiIiqgQW1ERERERElcCCmoiIiIioElhQExERERFVQq0uqAMCAtC+fXuYmJjA2toagwYNQmRkZKmv++233+Dp6Ql9fX00b94chw4dKvS8EAKLFi1CgwYNYGBgAF9fX0RFRVVXN4iIiIiokqpz155aXVCfOnUKkyZNwsWLF3Hs2DHk5eWhd+/eyMjIKPY158+fx9ChQzF27Fhcu3YNgwYNwqBBg3Dz5k1lmzVr1uDrr7/Gxo0bERISAiMjI/j5+SE7O7smukVEREREZZQvk2Pbhbt467vzyMmXVctn1KlbjycmJsLa2hqnTp1Ct27dimwzZMgQZGRk4MCBA8pjHTt2RKtWrbBx40YIIWBnZ4fp06djxowZAICUlBTY2Nhgy5Yt+M9//lNqHDV5y1wiotqIeZSIyiI48gk+OxiO6CfpAICAt5pjaAfHKv+cWj1C/bKUlBQAgIWFRbFtLly4AF9f30LH/Pz8cOHCBQBAbGws4uPjC7UxMzODt7e3ss3LcnJykJqaWuiLiIjKjnmUiMojKiENIzddwqjNfyH6STrqGepg+aBmeLetfbV8Xp25U6JcLsenn36Kzp07o1mzZsW2i4+Ph42NTaFjNjY2iI+PVz5fcKy4Ni8LCAjA0qVLKxM+EdVhV+8/R2R8WrWMqmgK5lEiKotnGblYe/w2doTch0wuoKMlwahOzpjcyw1mBjrV9rl1pqCeNGkSbt68ibNnz9b4Z8+dOxfTpk1TPk5NTYWDg0ONx0FEmiU2KQOfH4nAoRvx0NWWoqubJezrGao6LJVgHiWikuTmK+ZJfx0UhdTsfABA7yY2mNvXC40sjar98+tEQT158mQcOHAAp0+fhr19yUP9tra2SEhIKHQsISEBtra2yucLjjVo0KBQm1atWhX5nnp6etDT06tED4ioLnmanoP1J6Lxv4v3kC8XkEiAQa3soKtdp2bpFcI8SkRFEUIgKPwJVhwKR2ySYtMJT1sTLOrfBJ1cLWssjlpdUAsh8PHHH2Pfvn0IDg5Go0aNSn2Nj48PgoKC8OmnnyqPHTt2DD4+PgCARo0awdbWFkFBQcoCOjU1FSEhIZg4cWJ1dIOI6oisXBk2nYvFd8ExSM9RjLD08LDCHH9PeNpy4R0R0YvC41Lx2cEwnIt+CgCwNNbDjN7ueLedA7SkkhqNpVYX1JMmTcLOnTvxxx9/wMTERDnH2czMDAYGBgCAESNGoGHDhggICAAATJkyBd27d8eXX36Jfv36YdeuXbh8+TJ++OEHAIBEIsGnn36Kzz77DG5ubmjUqBEWLlwIOzs7DBo0SCX9JCLNJpML/H7lIb48FomE1BwAQLOGppjr74XONTjCQkSkCRLTcvDVsUj8+tcDyAWgqy3FuC6N8FFPVxjrqaa0rdUF9XfffQcA6NGjR6HjmzdvxqhRowAA9+/fh1T672XUTp06YefOnViwYAHmzZsHNzc37N+/v9BCxlmzZiEjIwMTJkxAcnIyunTpgsDAQOjr61d7n4io9hBCIPh2IlYdikBkQhoAoKG5AWb6eeCNlnaQ1vAICxFRtZDLgcwkwNASkFZ86lp2ngybz93FhpPRyqt4/Vo0wJw+nnCwUO36kjq1D7W64P6pRHTzUQpWHgrH+RjFpUpTfW183MsNw32coK+jpeLo1B/zKJGGkMuBM18ADy8D9u2ArjPKXVQLIXD4ZjwCDofjwbMsAEALezMs7N8E7Z2L3wq5JtXqEWoiInXz4FkmvjgaiT9CHwMAdLWkGNXZGR/1aAxzQ10VR0dEVMUykxTFdHqC4s/MJMDYuswvv/EwBcsPhOHS3WcAABtTPczy88SbrRuq1VU8FtRERDUgOTMXG05GY+v5e8iVyQEodu6Y3ttD5ZcqiYiqjaGlYmS6YITasGzrQhJSs/H5kUj8fvUhhAD0daSY0K0xPuzuAkNd9Stf1S8iIqJaJDtPhu0X7uGbk9FIycoDAHRqXB/z+nqhWUMzFUdHRFTNpFLFNI8yzqHOzpPhx9N38N2pGGTmygAoBh9m9fGEnblBTURcISyoiYiqgVwu8Of1x/j8SCQeJSvm/HnammCOvye6u1tBIlGfS5VERNVKKi11mocQipy5+nAEHqdkAwBaO5pjUf8maO1YryairBQW1EREVex8dBJWHg7HzUepAABbU31Me90db7e1r/G9UYmI1N3V+8+x/EAYrt1PBgDYmeljtr8n3mhppzGDDyyoiYiqSER8KlYdjkBwZCIAwFhPGxN7NMaYzo1goMudO4iIXvQ4OQtrAiOw/59F2oa6WpjYvTHGd3PRuN2OWFATEVVSXEoWvjp6G3v+WTyjLZXg/Y5O+LiXK+ob83bZREQvysjJx/enYvDDmTvIzpNDIgHeaWOPGX4esDHVzHt6sKAmIqqg1Ow8fH8qBj+fjUV2nmLnjr7NbTHTzxONLI1UHB0RkXqRywX2XnuEz49EKO8K26GRBRb1b6Lxi7RZUBMRlVNuvhw7Q+7h6xPReJaRCwBo51QP8/p5oY0GLJ4hIqppf919hmX/F4Ybj1IAAA4WBpjn74U+zWxrZp50Fd2tsTgsqImIyqjgbl1rAiNw92kmAMDF0giz/T3Ru4mNxiyeISKqKQ+eZSLgcDgO3YgHoFhb8nEvV4zq7Aw97RqaJ10Fd2ssDQtqIqr239xrg8t3n2HFoXDlKnRLY1186uuO/7R3gLYWv2dEBMjlciQmJsLKygrSOp5L07LzsOFkDDadjUWuTA6pBBjS3hHTXneHlUkNry2p5N0ay4IFNVFdVwO/uWuymMR0rAmMwJFbCQAAAx0tTOjmgvHdXGCsxxRKRApyuRwrVqxASEgIvL29MX/+/DpZVMvkAr9dfoAvjt5GUrpinnRn1/pY0K8JvBqYqiaoCt6tsTx4NiCq62rgN3d1UZ7Ro8S0HKwLuo1fLj2ATC6UoytTfd1graGr0Imo+iQmJiIkJATx8fEICQlBYmIibGxsVB1WlSspj56PScLyA+EIj1Pswd/I0gjz+nrB18tatVPiynm3xopgQU1U19XAb+7qoKyjR5m5+fjxdCy+P/3vbW99vWwwx98DrtYmNR02EWkIKysreHt7K3OMlZWVqkOqcsXl0btJGVh5KBxHwxRX8kz1tfHJa24Y4eMMXW01GaUvw90aK4MFNVFdVwO/uauD0kaP8mVy7L78EP89fhuJaYrLlC3tzTC3rxc6utRXVdhEpCGkUinmz59fq+dQv5xH7zyIw683U7Dl/F3kyQS0pBK87+2IKb7usDDSVXW4NYoFNRFV+2/u6qC40SMhBILCn2BVYASin6QDUGznNMvPE/1bNKiay5Rc9ElUJ0il0lo5zaNAQR69GHIJJm36YvDWW3iWmQcA6Olhhfn9vKrtSp66L/iUCCGEqoOoa1JTU2FmZoaUlBSYmqpogj5RHfRyQg59kIyVh8JxKfYZAMDcUAef9HLDsI6OVbedExd9VgvmUSLVCI5IwNI/byL2WTYAwM3aGPP7eaGHR/UNymjCgk+OUBNRnVEwenTvaQY+PxKJA3/HAQD0tKUY06URPuzeGGYGOlX7oXVo0ScR1V7RT9Lw2cFwBEcmAgDqGepg2uvuGNrBsdq3DtWEBZ8sqImozniWkYv1J6Lwv4v3kCcTkEiAN1s3xIzeHrAzN6ieD60jiz6JqHZ6npGLtcdv438h9yGTC2hLJRjVyRkf93KDmWEVD0AUQxMWfHLKhwrwUiVRzcrOk2HTuVh8dzIGaTn5AIBu7laY08cTTexq4P8g51BXOeZRouqVmy/H9ov3sO74baRmK/Kmr5cN5vX1hIuVcY3Ho+5zqDlCTUS1lkwusO/aI3x5NBJxKYr5fk0amGJuX090davBEY46sOiTiGoHIQRORDzBioPhuJOUAQDwtDXBwv5N0NlVdVfY1H3BJwtqIqqVTt9ORMDhCOUNBuzM9DG9twfebN0QUqkKbzBARKSmIuJT8dmBcJyNTgIAWBrrYnpvDwxu5wAt5s0SsaAmolrl1uMUrDocgTNRihOCib42JvV0xahOztDXqaKdO4iIapGk9Bx8dew2dl26D7kAdLUUC7Un9WwME/2amSet6VhQE1Gt8Cg5C18ejcS+a48gBKCjJcEIH2dM7umKenXsBgNERGWRky/DlnN38c2JaOX6kr7NbTGnjxcc6xuqODrNwoKaiDRaSlYevg2OxuZzd5GbLwcADGhph5m9PXhCICIqghACR27FY+WhCNx/lgkAaNbQFIv6N0WHRhYqjk4zsaAmIo2Uky/D9gv38M3JaCT/c6cu70YWmNfXCy0dzFUbHBGRmrr5KAXLD4Qh5J8bWlmb6GFWH0+8xfUllaJ++45UodOnT2PAgAGws7ODRCLB/v37S2w/atQoSCSSV76aNm2qbLNkyZJXnvf09KzmnhBRAblc4M/rj+H71Sl8djAcyZl5cLM2xqZR7bBrQkcW00RERXiSmo2Zv13HgG/OIiT2GfS0pfiklytOzuiBd9ras5iupFo9Qp2RkYGWLVtizJgxeOutt0ptv27dOqxatUr5OD8/Hy1btsS7775bqF3Tpk1x/Phx5WNt7Vr9bSRSGxdiniLgcDj+fpgCQDGyMvV1d7zb1r7a79RFRKSJsvNk+OnMHXwbHIPMXBkAYKDZHcxqnY+Gvn7cG7+K1OpK0N/fH/7+/mVub2ZmBjMzM+Xj/fv34/nz5xg9enShdtra2rC1ta2yOImoZLcT0rD6cASCIp4AAIx0tfBh98YY27URDHVrdRojIqoQIQT+7+84rD4cgUfJWQCAVg2NsEh/N9rIbwFPbYDMYdwjv4rwTFSCn3/+Gb6+vnBycip0PCoqCnZ2dtDX14ePjw8CAgLg6OiooiiJaq+E1Gz899ht7L78AHIBaEkleK+DI6b4usHSWE/V4RERqaXQB8lYfiAMV+49B6DYh3+2vyfeaG4LydlLwMMkwL6d4u6tVCVYUBfj8ePHOHz4MHbu3FnouLe3N7Zs2QIPDw/ExcVh6dKl6Nq1K27evAkTE5Mi3ysnJwc5OTnKx6mpqdUaO5GmS8/Jx/enYvDjmTvIzlPs3NGnqS1m9fFQyS1vSfWYR4lKF5eShTWBiu1DAcBARwsTezTG+K4uMND9Zx/+rjOAzCRFMc3pHlWGBXUxtm7dCnNzcwwaNKjQ8RenkLRo0QLe3t5wcnLC7t27MXbs2CLfKyAgAEuXLq3OcIlqhTyZHLsu3ce6oCgkpecCANo4mmN+Py+0deJWTnUZ8yhR8TJz8/H9qTv4/nSMchDi7Tb2mOnnAVsz/cKNpVJO86gGEiGEUHUQNUEikWDfvn2vFMhFEULA3d0d/fv3x3//+99S27dv3x6+vr4ICAgo8vmiRlYcHByQkpICU1PTMveBqLZS7ImagDWBEbiTlAEAaGRphNl9PODX1BYSCVef13XMo0SvkssF9oc+wprASMSnZgMA2jvXw8L+TdDC3ly1wdUxHKEuwqlTpxAdHV3siPOL0tPTERMTg+HDhxfbRk9PD3p6nO9JVJQr955j5aFw5Vy/+ka6+NTXDf/p4Agd7txB/2AeJSrs8t1nWHYgTLnrkYOFAeb6e8G/GQchVKFWF9Tp6emIjo5WPo6NjUVoaCgsLCzg6OiIuXPn4tGjR9i2bVuh1/3888/w9vZGs2bNXnnPGTNmYMCAAXBycsLjx4+xePFiaGlpYejQodXeH6La5E5iOj4/EonDN+MBAPo6Uozv6oIJ3Vxgoq+j4uiIiNTTg2eZWBUYgYN/xwEAjPW0MamnK0Z3doa+jpaKo6u7anVBffnyZfTs2VP5eNq0aQCAkSNHYsuWLYiLi8P9+/cLvSYlJQW///471q1bV+R7Pnz4EEOHDsXTp09hZWWFLl264OLFi7Cysqq+jhDVIknpOfg6KAo7Q+4jXy4glQDvtnXAtN7usDHVL/0NiIjqoPScfHx7Mho/nY1Fbr4cEgnwn/YOmPa6B6xMePVG1erMHGp1kpqaCjMzM879ozolMzcfP5+JxcZTMcj45+YCvTytMbuPJzxsi94hh6g4zKNUV8jkAnuuPMDnR24jKV2xjsDHpT4W9m+CJnb82VcXtXqEmohUr+Bk8NWx20hIVZwMmjc0w9y+nujUmHugEhEV50LMUyw/EIawOMU2kc71DTGvrxdeb2LDedJqhgU1EVULIQSCIxMRcDgctxPSAQD29Qww088DA1rYQSrlyYCIqCh3kzIQcDgcR24lAABM9LUx5TU3jPBxhq42F2urIxbURFTlbjxMwcpD4bhw5ykAwMxABx/3csVwHyfoaXPRDBFRUVKz8/DNiWhsPheLPJlQ3h126uvusDDSVXV4VAIW1ERUZR48y8TnRyLx5/XHAABdbSlGd3bGR91dYWbInTuIiIqSL5Nj11+KqXHPMhQ3termboWF/bzgZsM1JpqABTURVVpyZi6+ORGNbRfuIVemWH0+qFVDTO/tDvt6hqoOj4hIbZ2+nYjPDoYpp8a5Whtjfj8v9PTg3Qw1CQtqIqqw7DwZtp6/iw0no5GanQ8A6OJqiTn+nmjW0EzF0RERqa/oJ+lYeSgcJyKeAADMDXUw1dcd73nzplaaiAU1EZWbXC7wx/VH+OLIbTxKzgIAeNqaYG5fL3Rzs+TqcyKiYiRn5mLt8Sj87+I95MsFtKUSjOzkjE96uXFqnAZjQU1E5XI2KgkrD4Urt3GyNdXHtN7ueLuNPbS4cwcRUZHyZHL87+I9rD0ehZSsPACAr5c15vX1gouVsYqjo8piQU1EZRIel4qAwxE4fTsRAGCip42JPRtjTOdGvN0tEVExhBA4GfkEnx0Mx53EDACKK3oL+jVBFzfuxV9bsKAmohLFpWThy6O38fvVhxAC0NGS4P2OTvi4lxu3cSIiKkFkfBo+OxiGM1FJAID6RrqY3tsDQ9o78IpeLcOCmoiKlJqdh43BMfj5bCxy8uUAgH4tGmBmbw84WxqpODoiIvX1ND0HXx27jV8u3YdcALpaUozu4oxJPV1hqs950rURC2oiKiQ3X44dIfew/kS0cj/UDs4WmNvXE60d66k4OiIi9ZWTr9j5aH1QNNJyFDsf9Wlqi7l9PeFUnwMRtRkLaiICoJjnd+hGPNYcicC9p5kAgMZWRpjj7wVfL2vu3EFEVAwhBI6GJWDloXBl/mxqZ4qF/Zugo0t9FUdHNYEFNRHhUuwzrDgUjusPkgEAlsZ6mPa6Owa3s4c290MlIirWrccpWH4gDBfvPAMAWJnoYZafB95uYw8p50nXGSyoiTSAXC5HYmIirKysIJVWXYEb/SQdqwMjcCwsAQBgqKuFCd1cML6rC4z0mB6IqPao6jz6JC0bXx65jd1XHkAIQE9bivFdXTCxR2PmzzqI/+JEak4ul2PFihUICQmBt7c35s+fX+mTwZO0bKw9HoVf/3oAmVxASyrBkPYO+NTXDdYm+lUUORGReqjKPJqdJ8PPZ2Px7cloZOTKAABvtLTDbH9PNDQ3qMqwSYOwoCZSc4mJiQgJCUF8fDxCQkKQmJgIGxubCr1XRk4+fjh9Bz+euYPMf04Erzexwew+HnC1NqnKsImI1EZV5FEhBA78HYdVhyOUd4ht5WCOhf2boK0TF2zXdSyoidSclZUVvL29lSMrVlZWAMp3+TJfJseuvx5g7fEoJKXnAFCcCOb19UKHRhbV3gciIlUqLo8CZcul1x8kY/mBMFy+9xyA4g6xc/w98UZLO86TJgCARAghVB1EXZOamgozMzOkpKTA1NRU1eGQBng54Zf18qUQAsfCErA6MAIx/9yhy6m+IWb5eaJvc1vu3EEai3mUyquowrm0XBqfko01gRHYe+0RAMBARwsfdm+MCd1cYKDLO8TSvzhCTaQBpFJpocuTZbl8ee3+cwQcisClu4qV5xZGuviklyve83aCrjZ37iCiuuXlPAoUn0uzcmX4/nQMNp6KQXae4sZWb7VpiFl+nrA14zoTehULaiINVNLly3tPM7AmMBIHb8QBUKw8H9e1ET7o3ph36CIiesHLubR+fUvsu/YQawIjEZeSDQBo51QPC/s3QUsHc9UGS2qNUz5UgJcqqSq8fPnyWUYuvg6Kwo6Qe8iTCUgkwNtt7DG9tzsamFXPyvPq2s6PqDTMo1RVCvLY/UxtfHYoQrkff0NzA8zt64l+zRtU6/Q45tHagSPURBqq4PJlVq4Mm85FY2NwjPJWt93drTC3ryc8bauv0KiO7fyIiGra45RsrAp6hAN/K67qGelqYVIvV4zp3Aj6OtU7T5p5tPZgQU2koWRygd+vPsRXR28jPlVxabKpnSnm+nuhi5tltX9+VW7nR0RU09Jz8vFdcDR+PBOL3Hw5JBJgcFsHTPdzr7H9+JlHaw8W1EQaRgiBU7cTsepwBCLi0wAoLk3O8HPHwJYNa2wLp5LmcRMRqSuZXOD3Kw/x+dFIJKYpthH1camPBf290NTOrEZjYR6tPTiHWgU4948q6uajFKw6HIGz0UkAAFN9bUzu5YoRPs7VfmmyKJz7R6rCPEoVcfHOUyw/EIZbj1MBKLYRnd/XC683sVHZNqLMo7UDR6iJNMDD55n48uht7PtnL1RdLSlG+Dhhci9XmBvqqiyuorahIiJSN/eeZiDgUAQCb8UDAEz0tfFJLzeM6OQEPW3V7ifNPFo71OpfhU6fPo0BAwbAzs4OEokE+/fvL7F9cHAwJBLJK1/x8fGF2m3YsAHOzs7Q19eHt7c3Ll26VI29oLosJTMPAYfC0evLU8piemArOwRN744F/ZuotJgmIlJ3qdmKHPr6V6cReCseUgnwfkdHBM/ogfHdXFReTFPtUatHqDMyMtCyZUuMGTMGb731VplfFxkZWegSorW1tfLvv/76K6ZNm4aNGzfC29sba9euhZ+fHyIjIwu1I6qMnHwZtl+4h/UnopGSlQdAMcdvXl8vNLev2Tl+RESaJl8mx6+XH+Cro7fxNCMXANDVzRIL+jWBh62JiqOj2qhWF9T+/v7w9/cv9+usra1hbm5e5HNfffUVxo8fj9GjRwMANm7ciIMHD2LTpk2YM2dOZcIlglwu8H9/P8bnRyLx8HkWAMDdxhhz/b3Qw8OKtwonIirF2agkfHYwTLlo28XKCAv7NWEOpWpVqwvqimrVqhVycnLQrFkzLFmyBJ07dwYA5Obm4sqVK5g7d66yrVQqha+vLy5cuFDs++Xk5CAnJ0f5ODU1tfqCJ411PiYJAYcicONRCgDAxlQP0153xzttHaBVQzt3EKkr5lEqzZ3EdKw8FI7j4U8AAGYGOpjq64ZhHZ2go1WrZ7iSGmBB/YIGDRpg48aNaNeuHXJycvDTTz+hR48eCAkJQZs2bZCUlASZTPbK4gEbGxtEREQU+74BAQFYunRpdYdPGioyPg2rAyNwIkJxEjDW08bEHo0xpnMjGOhyfh8RwDxKxUvOzMW6oChsv3AP+XIBbakEw32cMOU1N64zoRpTZ7bNk0gk2LdvHwYNGlSu13Xv3h2Ojo7Yvn07Hj9+jIYNG+L8+fPw8fFRtpk1axZOnTqFkJCQIt+jqJEVBwcHbvdUx8WnZOO/x27jtysPIBeAtlSCYd6O+Pg1N1ga66k6PCK1wjxKL8uTybHj4j2sDYpCcqZirclrntaY188Lja2MVRwd1TUcoS5Fhw4dcPbsWQCApaUltLS0kJCQUKhNQkICbG1ti30PPT096OmxQCKFtOw8fH/qDn46ewfZeXIAgH8zW8z084ALTwJERWIepQJCCARHJuKzg2GIScwAAHjYmGBBfy90deONUUg1WFCXIjQ0FA0aNAAA6Orqom3btggKClKOdMvlcgQFBWHy5MkqjJI0QZ5Mjl8u3ce641HKVedtnephXl8vtHWqp+LoiIjU3+2ENCw/EIYzUYqbW1kY6WJ6b3cMaecAbc6TJhWq1QV1eno6oqOjlY9jY2MRGhoKCwsLODo6Yu7cuXj06BG2bdsGAFi7di0aNWqEpk2bIjs7Gz/99BNOnDiBo0ePKt9j2rRpGDlyJNq1a4cOHTpg7dq1yMjIUO76QfQyIQQCb8ZjzZFIxCYpRlNcLI0wq48n/Jqq7u5cRESa4ml6Dv57/DZ2htyHXAA6WhKM7twIk3u5wlRfR9XhEdXugvry5cvo2bOn8vG0adMAACNHjsSWLVsQFxeH+/fvK5/Pzc3F9OnT8ejRIxgaGqJFixY4fvx4ofcYMmQIEhMTsWjRIsTHx6NVq1YIDAzkXY6oSFfuPcOKg+G4ej8ZAGBprIspvu74T3sHrjonIipFbr4c2y7cxbqgKKRl5wMA/JraYK6/F5wtjVQcHdG/6syiRHWSmpoKMzMzLqapxe4kpmNNYKTyNrcGOloY380FE7q5wFivVv8eS1QjmEdrNyEEjoUlYOWhcNx9mgkAaNLAFAv7N4FP4/oqjo7oVTyzE1WhxLQcfB0UhZ2X7kMmF5BKgCHtHTDV1x3WpvqqDo+ISO2FPU7F8gNhuHDnKQDA0lgPM/24Jz+pNxbURFUgMzcfP52JxfenYpCRKwMA+HpZY3YfT7jZ8Da3RESlSUzLwZdHI/Hr5QcQAtDVlmJ810aY2MOVV/ZI7fEnlKgS8mVy7LnyEF8du40naYo9clvYm2GuvxcvSxIRlUF2ngybzsXi25MxSM9RzJPu36IBZvfxhIOFoYqjIyobFtREFSCEwImIJ1h1OAJRT9IBAPb1DDCrjyf6N28AKS9LEhGVSAiBQzfiEXA4HA+fZwEAWtqbYWH/JmjnbKHi6IjKhwU1UTldf5CMlYfCERL7DABgbqiDj3u54f2OjtDT5q3CiYhK8/fDZCw/EIa/7j4HANia6mO2vwcGtmzIAQnSSCyoicro/tNMfH40Ev93/TEAxfy+MZ0bYWKPxjAz4D6oRESliU/JxpojEdh79REAQF9Hig+7N8aEbi4w1GVJQpqLP71EpXiekYv1J6Kx/eJd5MkEJBLgzVYNMd3PAw3NDVQdHhGR2svKleGH03ew8VQMsvIUC7ffbN0Qs/p4oIEZ8yhpvgoV1CEhIfD29q7qWIjUSnaeDJvP3cW3wdHKGwp0dbPEHH9PNLUzU3F0RETqTy4X+PP6Y6wOjEBcSjYAoK1TPSzs3wStHMxVGxxRFapQQe3j4wNXV1cMHz4cw4YNg4uLS1XHRRpCLpcjMTERVlZWkEprx53/5HKBfdce4cujkXj8zwnAq4Ep5vp7opu7lYqjI6LapjbmUQC4cu85lh8IQ+iDZABAQ3MDzPH3RP8WDSCRcJ401S4VulPizp07sWPHDhw7dgwymQwdO3bE8OHDMXjwYFhYcGVuaWrLHb7kcjlWrFihvGIxf/58jT8ZnIlKxMpDEQiPSwUA2JnpY1pvD7zZuiFvKECkRphH1dej5CysPhyBP/9Zb2Kkq4WJPRpjXFcX6Otw4TbVTpW69XhSUhJ27dqFnTt34uLFi9DV1UWfPn3w/vvv44033oCurm5Vxlpr1JYTQUJCAsaOHYv4+HjY2tri559/ho2NjarDqpCwx6kIOByOM1FJAAATPW181NMVozs78wRApIaYR9VPRk4+Np6KwQ+n7yAnXw6JBHi3rT1m9PbgnWKp1qvUr8GWlpaYPHkyzp8/j6ioKMyfPx8REREYMmQIbG1tMWHCBJw9e7aqYiU1Y2VlBW9vb9ja2sLb2xtWVlU3HUIulyMhIQFyubxaX/M4OQvTd19Hv/VncCYqCTpaEozp3AinZvXExB6Na6yYrkjsRKT51C2PVuR1crnAb5cfoOcXwVh/Iho5+XJ0dLHA/03ugjXvtKyxYpp5lFSpUiPUL3r8+DF++eUXbN++HX///Tfq1asHbW1tJCUloU2bNti6dSuaNGlSFR+l8TR9ZOXF+X4AqnzuX0UugZb3NSlZefguOAabzsUiN1+RfPu3aICZfh5wqm9UJf0oq9p4yZeoujGPlv7+Fckr5X1dyJ2nWH4wDDcfKabJOdU3xFx/L/g1tanRedLMo6RqlfppS0tLw+bNm+Hr6wsnJyfMmzcPzs7O2LNnD+Lj4/H48WP8+uuvePLkCUaPHl1VMZMKFSStsWPHYsWKFQAAGxubKk1ciYmJCAkJQXx8PEJCQpCYmFhlr8nJl2HT2Vj0+PwkNp6KQW6+HB0aWWD/pM745r02NV5MAxXrLxFpLnXNo+V53f2nmZj4vysY8sNF3HyUChM9bczr64mjU7uhTzPbGl90yDxKqlahXT7++OMP7NixAwcOHEB2djbat2+PtWvX4j//+Q/q169fqO0777yD58+fY9KkSVUSMKlWUUmrquf7FVwCLRhpKMsl0NJeI4TAgb/jsOZIBB48U9zi1tXaGHP6eOI1L2uVrjivSH+JSHOpax4ty+vSsvPwzclobD57F7kyOaQSYGgHR0x93R2WxnpV2ofyYB4lVavQlA+pVAoHBwe8//77GDFiBDw8PEpsf+nSJXz33XfYvHlzhQOtTTT5UmVNXVaryDZSxb3m4p2nCDgUjusPUwAAViZ6mOrrjsHt7KGtVc7Y5XIgMwkwtASqsN+1ddssourCPFq2z6lIXinqdTK5wK9/PcCXRyPxNCMXgGJf/vn9vOBpW77vf3XlO+ZRUqUKFdTBwcHo0aNHNYRTN2jyiQDQnKQVlZCG1YEROB7+BIBi66YPujfGuK6NKnaLW7kcOPMF8PAyYN8O6DqjSotqIio75tGacy46CcsPhCEiPg0A4GJphAX9vdDTo/xX9zjXmWqrCk35YDFdt0ml0mrZ1qmqTjBPUrPx3+O38etfDyAXgJZUgvc6OOKT19xgZVKJS5KZSYpiOj1B8WdmEmBsXfH3I6I6S93zKADcSUzHykMROB6eAAAwM9DBlNfcMNzHCTrlvbr3j5qY7kKkChUqqImqWlWMWqTn5OOH03fw4+k7yMqTAQD8mtpgVh9PNLYyrnyQhpaKkemCEWpDy8q/JxFRFamq0d+UzDx8fSIKW8/fRb5cQEsqwfCOTpjymhvqGVXu/hKc60y1FQtqUguVGbXIk8nx618PsPZ4FJLScwAAbRzNMa+vF9o5V+GdO6VSxTSPaphDTURUWZUd/c2XybHz0n3899htPM/MAwD09LDC/H5ecLU2qZIYpVIp5s+frzHTXYjKigU1qYWKjFoIIXA0LAGrAyNwJzEDAOBc3xCz+3hW37ZNUimneRCRWqrM6O/JyCdYcTAc0U/SAQBu1sZY0L8JurtX/QhydU13IVKlKruxC5Wdpi+mqS7lmft39f5zBBwKx193nwMA6hvpYoqvG4Z2cKzw3L7yxkBEqsM8WrTy5rCohDR8djAcp24r9m2uZ6iDaa+7Y2gHx/LvglTBGIhqA45Qk9ooy6hFbFIGPj8SgUM34gEA+jpSjOvigg+6u8BEX6dSn8/V50Sk6co6+vssIxdrj9/GjpD7kMkFdLQkGNXJGZN7ucHMoOK5lHmU6ioW1KQRktJzsD4oCjtC7iNfLiCVAO+0tce01z1ga6ZfJZ/B1edEVNvl5sux7cJdrAuKQlp2PgCgdxMbzOvrBWfLyt8plnmU6ioW1KQSZb0kmJUrw89n72DjqTtIz1Ek/54eVpjt71numwmUhqvPiUiTlGdqhRACx8ISEHA4ArFJijUnXg1MsbC/Fzo1rrodi5hHqa7iHGoVqOtz/8pySVAmF/j9ykN8eSwSCamKnTuaNTTFPH8vdHKtvu3qOPePSDMwj5Z9akV4XCqWHwjD+ZinAABLYz3M9HPHO20doCWt+sXbzKNUF9Xqn/TTp09jwIABsLOzg0Qiwf79+0tsv3fvXrz++uuwsrKCqakpfHx8cOTIkUJtlixZAolEUujL09OzGntR+xR1SbCAEAInI5+g77ozmPX730hIzUFDcwOsHdIKf07qUq3FNPDv/EOeBIhInZWUR5Vt0nIwd+/f6Pf1GZyPeQpdbSkm9miMkzO6Y0h7x2oppgHmUaqbavWUj4yMDLRs2RJjxozBW2+9VWr706dP4/XXX8fKlSthbm6OzZs3Y8CAAQgJCUHr1q2V7Zo2bYrjx48rH2tr1+pvY5Ur7pLgzUcpWHkoXDmKYmagg497uWK4jxP0tLVUGTIRkVopaWpFTr4Mm8/dxTcnopVT5fo1b4A5/p5wsDBUVchEtVqdmfIhkUiwb98+DBo0qFyva9q0KYYMGYJFixYBUIxQ79+/H6GhoRWOpa5fqgQKXxJ8lJyNL49GYn/oYwCArrYUozs546MerjAzrNzOHURUOzGPvjq1QgiBwzfjEXA4HA+eZQEAWtibYWH/JmhflTe5IqJXcGi1BHK5HGlpabCwKJyIoqKiYGdnB319ffj4+CAgIACOjo4qilIzSaVS6JnUQ8DhCGw9fw+5MjkAYFArO8zw84B9PY6iEBGV5MUt8m48TMHyA2G4dPcZAMDGVA+z/DzxZuuGkFbT1A4i+hcL6hJ88cUXSE9Px+DBg5XHvL29sWXLFnh4eCAuLg5Lly5F165dcfPmTZiYFH1r1pycHOTk5Cgfp6amVnvs6iw7T4ZtFxSXI1P/2baps2t9zPX3QrOGZiqOjojUEfNo0RJSs7EmMBJ7rz2EEIq9+Sd0a4wPurnASI+neKKawv9txdi5cyeWLl2KP/74A9bW/95q2t/fX/n3Fi1awNvbG05OTti9ezfGjh1b5HsFBARg6dKl1R6zupPLBf68/hifH4nEo2TF5UgPGxPM7euJ7u5W1XOrcCKqFZhHC8vKleHHM3fwXXAMsvJkABRX+Gb18YSduYGKoyOqeziHugi7du3CmDFj8Ntvv6Ffv36ltm/fvj18fX0REBBQ5PNFjaw4ODjUqbl/56KTsPJQOG49Vowq2ZrqY9rr7ni7rX21rTQnotqDeVRBCMXAxOrDEXickg0AaONojoX9m6C1Yz0VR0dUd3GE+iW//PILxowZg127dpWpmE5PT0dMTAyGDx9ebBs9PT3o6elVZZgaIyI+FQGHInDqtmJLJ2M9bUzs0RhjOjeCgS537iCisqnLebTA1fvPsfxAGK7dTwYA2JnpY7a/J95oaccrfEQqVqsL6vT0dERHRysfx8bGIjQ0FBYWFnB0dMTcuXPx6NEjbNu2DYBimsfIkSOxbt06eHt7Iz4+HgBgYGAAMzPF3N4ZM2ZgwIABcHJywuPHj7F48WJoaWlh6NChNd9BNRaXkoWvjt7GnquKeX3aUgne7+iEj3u5or5x3T4pEhGVx+PkLKwOjMAf/+yEZKirhY96NMa4ri7Q1+HABJE6qNUF9eXLl9GzZ0/l42nTpgEARo4ciS1btiAuLg73799XPv/DDz8gPz8fkyZNwqRJk5THC9oDwMOHDzF06FA8ffoUVlZW6NKlCy5evMjbq/4jNTsP35+Kwc9nY5Gdp9i5o1/zBpjp5wFnSyMVR0dEpDkycvLx/akY/HDmDrLz5JBIgHfa2GOGnwdsTPVVHR4RvaDOzKFWJ7Vx/9TcfDl+uXQf64Ki8CwjFwDQ3rke5vb1QhvO6yOiKlYb82gBuVxg77VH+PxIBBJSFfPGOzSywKL+TbgTEpGaqtUj1FT9Cm4ksCYwAnefZgIAXKyMMKePJ15vYsN5fURE5fDX3WdY9n9huPEoBQDgYGGAef5e6NPMlvmUSI2xoKYK++vuM6w8FK5cIGNprIepr7thSDsHaGtJVRvcC16+mxgRkbp58CwTqw5H4OCNOACKBdyTe7liVCdntZgnzTxKVDIW1FRu0U/SsSYwAkfDEgAABjpamNDNBeO7ucBYzW4kIJfLsWLFCoSEhMDb2xvz58/nyYCI1EZadh6+DVasO8nNl0MqAYa0d8S0191hZaIeC7iZR4lKp17VD6m1J2nZWHc8Crv+egCZXCgT/1RfN1ir6QKZxMREhISEID4+HiEhIUhMTFTeqpeISFVkcoHfLj/AF0dvIyldMU+6s2t9LOjXBF4N1GtOOPMoUelYUFOpMnLy8eOZO/jh9B1k5iruyOXrZYM5/h5wtS76duvqwsrKCt7e3sqRFe7GQkSqdj46CcsPhiM8TnGjKxdLI8zr64XXvKzVcp408yhR6bjLhwpoyur0fJkcuy8/xH+P30ZimmIEpaWDOeb5e8Lbpb6Koys7zv0jqn00JY++KDYpAysPhePYP9PlTPW1McXXHcM7OkFXW71zE/MoUck4Qk2vEEIgKPwJVgVGIPpJOgDA0cIQs/p4oF/zBmo5glISqVTKy5NEpDIpWXlYHxSFrRfuIk8moCWV4H1vR3zq6456RrqqDq9MmEeJSsaCmgq5/iAZKw6F41LsMwBAPUMdfPKaG4Z5lz6CwhEMIqJ/5csU+/N/dew2nmfmAQB6eFhhQT+vYqfLMY8SaSYW1AQAuPc0A58ficSBvxVbNulpSzGmSyNM7NEYpvo6pb6eq8CJiP516nYiPjsQhqh/rvK5WhtjQT8v9PCwLvY1zKNEmosFdR33LCMX609E4X8X7yFPJiCRAG+1tsf03u6wMzco8/twFTgRERD9JA0rDobjZGQiAMVVvqmvu+O9Do6l7s/PPEqkuVhQ11HZeTJsOheL707GIC0nHwDQ3d0Kc/w9K7RlE1eBE1Fd9jwjF+uCorD94j3I5ALaUglGdnLGJ73cYGZY+lU+gHmUSJNxlw8VUOXqdJlcYN+1R/jyaCTiUrIBAE0amGJeXy90cbOs1HuXa+6fXA5kJgGGlgAvaRJROanLLh+5+XJsv3gPXwdFISVLMU/a18sG8/p6wsXKuNzvV548yvnWROqDI9R1yKnbiQg4FI6I+DQAgJ2ZPmb4eWBQq4aQSiu/c0eZV4HL5cCZL4CHlwH7dkDXGSyqiUijCCFwIuIJVhwMx52kDACAp60JFvVvgk6uFR+cKGse5XxrIvXCgroOuPU4BasOR+BMVBIAwERfG5N7umJkJ2fo62jVfECZSYpiOj1B8WdmEmBc/EIdIiJ1EhGfis8OhONstCKnWhrrYnpvDwxu5wCtKhicKAvOtyZSLyyoa7GHzzPx1dHb2Bf6CEIAOloSjPBxxuSerqrd+9TQUjEyXTBCbVi5qSZERDUhKT0HXx27jV2X7kMuAF0txW5Ik3o2hkkZdkOqSpxvTaReOIdaBap77l9KVh6+PRmNzefvIjdfDgB4o6UdZvp5wMHCsMo/r0I4h5qIKqEm51Dn5Muw5dxdfHMiWrmIu29zW8zp4wXH+qrLqZxDTaQ+OEJdi+Tky/C/i/ex/kQUkv+5iUBHFwvM6+uFFvbmqg3uZVIpp3kQkVoTQiDwZjwCDkfg/rNMAECzhqZY1L8pOjSyKPsbVdMAAu9eSKQ+WFDXAnK5wIEbcfj8SAQePMsCALjbGGOuvxd6eFhp3K3CiYhU7eajFCw7EKa8a6y1iR5m9fHEW63LuYibi7CJ6gQW1BruQsxTBBwOx98PUwAokv60193xTlv7Um8iQEREhT1JzcbnRyKx5+pDCKG4a+yEbi74sHtjGOlV4JTJRdhEdQILag11OyENqw9HICjiCQDASFcLH3ZvjLFdG8FQl/+sRETlkZ0nw89nY7HhZDQyc2UAFGtPZvt7omE57hr7Ci7CJqoTWHlpmITUbPz32G3svvwAcgFoSyUY2sERU3zdYGmsp+rwiIg0ihAC//d3HFYfjsCjZMWUuVYO5lg0oAnaONar/AdIpYppHlyETVSrsaDWEGnZefjh9B38eOYOsvMUO3f0aWqLWX08KnQ3LiKiui70QTKWHwjDlXvPAShudjXb3xNvtLSr2rUnXIRNVOuxoNYAJyOfYMbu63iakQsAaOtUD/P6eqKtUzlWmRMREQAgLiULawIjse/aIwCAgY4WPurRGOO6usBAVwU3uyIijceCWgM41DNEclYeGlkaYXYfT/g1teHOHURE5ZSZm4+Np+7gh9Mxyit977S1x0w/D9iY6qs4OiLSZCyoNYCrtTH+N9Yb7ZzrQYc7dxARlVvY41SM3nIJCak5AIAOzhZY2L8JmtubqTgyIqoNWFBrCJ/G9VUdAhGRxmpkaQQtiQT29Qwwr68X/JvZ8kofEVUZFtRERFTrGehqYcuYDnC0MIS+DudJE1HVqtXzB06fPo0BAwbAzk6xYnv//v2lviY4OBht2rSBnp4eXF1dsWXLllfabNiwAc7OztDX14e3tzcuXbpU9cETEVGVcrcxYTFNRNWiVhfUGRkZaNmyJTZs2FCm9rGxsejXrx969uyJ0NBQfPrppxg3bhyOHDmibPPrr79i2rRpWLx4Ma5evYqWLVvCz88PT548qa5uEBEREZEakwghhKqDqAkSiQT79u3DoEGDim0ze/ZsHDx4EDdv3lQe+89//oPk5GQEBgYCALy9vdG+fXt88803AAC5XA4HBwd8/PHHmDNnTpliSU1NhZmZGVJSUmBqalrxThER1VHMo0SkTmr1CHV5XbhwAb6+voWO+fn54cKFCwCA3NxcXLlypVAbqVQKX19fZZui5OTkIDU1tdAXERGVHfMoEakzFtQviI+Ph42NTaFjNjY2SE1NRVZWFpKSkiCTyYpsEx8fX+z7BgQEwMzMTPnl4OBQLfETEdVWzKNEpM5YUNeAuXPnIiUlRfn14MEDVYdERKRRmEeJSJ1x27wX2NraIiEhodCxhIQEmJqawsDAAFpaWtDS0iqyja2tbbHvq6enBz09vWqJmYioLmAeJSJ1xhHqF/j4+CAoKKjQsWPHjsHHxwcAoKuri7Zt2xZqI5fLERQUpGxTXeRyORISEiCXy6v1c4iIaivmUSKqLrW6oE5PT0doaChCQ0MBKLbFCw0Nxf379wEoLiGOGDFC2f7DDz/EnTt3MGvWLERERODbb7/F7t27MXXqVGWbadOm4ccff8TWrVsRHh6OiRMnIiMjA6NHj662fsjlcqxYsQJjx47FihUrSj8ZyOVA+hPFn0REVO48yuKbiMqjVk/5uHz5Mnr27Kl8PG3aNADAyJEjsWXLFsTFxSmLawBo1KgRDh48iKlTp2LdunWwt7fHTz/9BD8/P2WbIUOGIDExEYsWLUJ8fDxatWqFwMDAVxYqVqXExESEhIQgPj4eISEhSExMLP7z5HLgzBfAw8uAfTug6wxAWqt/byIiKlV58mhB8R0SEgJvb2/Mnz8fUuZRIipBrS6oe/TogZK22S7qLog9evTAtWvXSnzfyZMnY/LkyZUNr8ysrKzg7e2tTO5WVlbFN85MUhTT6QmKPzOTAGPrGouViEgdlSePlmsQg4gItbygri2kUinmz5+PxMREWFlZlTxSYmipGJkuGKE2tKy5QImI1FR58mi5BjGIiFCH7pSoTqr9Dl9yuWJk2tCS0z2IqFaq7jwql8vLNohBRASOUNdOUimneRARVYJUKuU0DyIqM/7aTURERERUCSyoiYiIiIgqgQU1EREREVElsKAmIiIiIqoELkpUgYKNVVJTU1UcCRHVdiYmJpBIJKoOo8oxjxJRTSlLHmVBrQJpaWkAAAcHBxVHQkS1XbVtz6lizKNEVFPKkke5D7UKyOVyPH78GEIIODo64sGDB7XqhJeamgoHBwf2S0OwX5qlvP2qrSPUzKOaif3SLOyXAkeo1ZRUKoW9vb3yUqWpqWmt+kEtwH5pFvZLs9TWfpUV86hmY780C/tVOi5KJCIiIiKqBBbURERERESVwIJahfT09LB48WLo6empOpQqxX5pFvZLs9TWflVUbf1+sF+ahf3SLNXRLy5KJCIiIiKqBI5QExERERFVAgtqIiIiIqJKYEFNRERERFQJLKiJiIiIiCqBBXU127BhA5ydnaGvrw9vb29cunSpxPa//fYbPD09oa+vj+bNm+PQoUM1FGn5lKdfP/74I7p27Yp69eqhXr168PX1LfX7oCrl/fcqsGvXLkgkEgwaNKh6A6yg8vYrOTkZkyZNQoMGDaCnpwd3d3e1/Fksb7/Wrl0LDw8PGBgYwMHBAVOnTkV2dnYNRVu606dPY8CAAbCzs4NEIsH+/ftLfU1wcDDatGkDPT09uLq6YsuWLdUeZ01jHmUeVQfMowrMo8UQVG127doldHV1xaZNm8StW7fE+PHjhbm5uUhISCiy/blz54SWlpZYs2aNCAsLEwsWLBA6Ojrixo0bNRx5ycrbr/fee09s2LBBXLt2TYSHh4tRo0YJMzMz8fDhwxqOvGTl7VeB2NhY0bBhQ9G1a1cxcODAmgm2HMrbr5ycHNGuXTvRt29fcfbsWREbGyuCg4NFaGhoDUdesvL2a8eOHUJPT0/s2LFDxMbGiiNHjogGDRqIqVOn1nDkxTt06JCYP3++2Lt3rwAg9u3bV2L7O3fuCENDQzFt2jQRFhYm1q9fL7S0tERgYGDNBFwDmEcVmEdVi3lUgXm0eCyoq1GHDh3EpEmTlI9lMpmws7MTAQEBRbYfPHiw6NevX6Fj3t7e4oMPPqjWOMurvP16WX5+vjAxMRFbt26trhArpCL9ys/PF506dRI//fSTGDlypFqeCMrbr++++064uLiI3NzcmgqxQsrbr0mTJolevXoVOjZt2jTRuXPnao2zospyIpg1a5Zo2rRpoWNDhgwRfn5+1RhZzWIeLRrzaM1iHlVgHi0ep3xUk9zcXFy5cgW+vr7KY1KpFL6+vrhw4UKRr7lw4UKh9gDg5+dXbHtVqEi/XpaZmYm8vDxYWFhUV5jlVtF+LVu2DNbW1hg7dmxNhFluFenXn3/+CR8fH0yaNAk2NjZo1qwZVq5cCZlMVlNhl6oi/erUqROuXLmivJx5584dHDp0CH379q2RmKuDJuSMymAeLR7zaM1hHv0X82jxtKsyKPpXUlISZDIZbGxsCh23sbFBREREka+Jj48vsn18fHy1xVleFenXy2bPng07O7tXfoBVqSL9Onv2LH7++WeEhobWQIQVU5F+3blzBydOnMCwYcNw6NAhREdH46OPPkJeXh4WL15cE2GXqiL9eu+995CUlIQuXbpACIH8/Hx8+OGHmDdvXk2EXC2KyxmpqanIysqCgYGBiiKrGsyjxWMerTnMo/9iHi0eR6ipRq1atQq7du3Cvn37oK+vr+pwKiwtLQ3Dhw/Hjz/+CEtLS1WHU6Xkcjmsra3xww8/oG3bthgyZAjmz5+PjRs3qjq0SgkODsbKlSvx7bff4urVq9i7dy8OHjyI5cuXqzo0onJhHlV/zKN1D0eoq4mlpSW0tLSQkJBQ6HhCQgJsbW2LfI2trW252qtCRfpV4IsvvsCqVatw/PhxtGjRojrDLLfy9ismJgZ3797FgAEDlMfkcjkAQFtbG5GRkWjcuHH1Bl0GFfn3atCgAXR0dKClpaU85uXlhfj4eOTm5kJXV7daYy6LivRr4cKFGD58OMaNGwcAaN68OTIyMjBhwgTMnz8fUqnmjS8UlzNMTU01fnQaYB4tCvNozWMe/RfzaPE0r+caQldXF23btkVQUJDymFwuR1BQEHx8fIp8jY+PT6H2AHDs2LFi26tCRfoFAGvWrMHy5csRGBiIdu3a1USo5VLefnl6euLGjRsIDQ1Vfr3xxhvo2bMnQkND4eDgUJPhF6si/16dO3dGdHS08sQGALdv30aDBg3U4iQAVKxfmZmZryT7gpOdYu2K5tGEnFEZzKOFMY+qBvPov5hHS1CuJYxULrt27RJ6enpiy5YtIiwsTEyYMEGYm5uL+Ph4IYQQw4cPF3PmzFG2P3funNDW1hZffPGFCA8PF4sXL1bb7Z7K069Vq1YJXV1dsWfPHhEXF6f8SktLU1UXilTefr1MXVenl7df9+/fFyYmJmLy5MkiMjJSHDhwQFhbW4vPPvtMVV0oUnn7tXjxYmFiYiJ++eUXcefOHXH06FHRuHFjMXjwYFV14RVpaWni2rVr4tq1awKA+Oqrr8S1a9fEvXv3hBBCzJkzRwwfPlzZvmC7p5kzZ4rw8HCxYcOGWrltHvMo86iqMY8qMI8WjwV1NVu/fr1wdHQUurq6okOHDuLixYvK57p37y5GjhxZqP3u3buFu7u70NXVFU2bNhUHDx6s4YjLpjz9cnJyEgBe+Vq8eHHNB16K8v57vUhdTwRClL9f58+fF97e3kJPT0+4uLiIFStWiPz8/BqOunTl6VdeXp5YsmSJaNy4sdDX1xcODg7io48+Es+fP6/5wItx8uTJIv+vFPRj5MiRonv37q+8plWrVkJXV1e4uLiIzZs313jc1Y15lHlUHTCPMo+WRCKEho7RExERERGpAc6hJiIiIiKqBBbURERERESVwIKaiIiIiKgSWFATEREREVUCC2oiIiIiokpgQU1EREREVAksqImIqERxcXGYM2cOevbsCRMTE0gkEgQHB6s6LCIitcGCmoiIShQZGYnVq1fj0aNHaN68uarDISJSOyyoiYioRG3btsXTp09x+/ZtTJs2TdXhEBGpHRbURER1VFZWFjw9PeHp6YmsrCzl8WfPnqFBgwbo1KkTZDIZTExMYGFhocJIiYjUGwtqIqI6ysDAAFu3bkV0dDTmz5+vPD5p0iSkpKRgy5Yt0NLSUmGERESaQVvVARARkep4e3tj1qxZWL16Nd58800kJCRg165dWLt2Ldzd3VUdHhGRRmBBTURUxy1ZsgQHDhzAyJEjkZ6eju7du+OTTz5RdVhERBqDUz6IiOo4XV1dbNq0CbGxsUhLS8PmzZshkUhUHRYRkcZgQU1ERDhy5AgAIDs7G1FRUSqOhohIs7CgJiKq4/7++28sW7YMo0ePRuvWrTFu3DikpKSoOiwiIo3BgpqIqA7Ly8vDqFGjYGdnh3Xr1mHLli1ISEjA1KlTVR0aEZHG4KJEIqI67LPPPkNoaCiCgoJgYmKCFi1aYNGiRViwYAHeeecd9O3bV9kOAG7dugUA2L59O86ePQsAWLBggWqCJyJSExIhhFB1EEREVPOuXr0Kb29vTJw4EV9//bXyuEwmg4+PDx49eoRbt27B3Ny8xEWKPI0QUV3HgpqIiIiIqBI45YOoCDKZDHl5eaoOg4iI1IyOjg7vIEqvYEFN9AIhBOLj45GcnKzqUIiISE2Zm5vD1taW+7WTEgtqohcUFNPW1tYwNDRksiQiIiUhBDIzM/HkyRMAQIMGDVQcEakLFtRE/5DJZMpiun79+qoOh4iI1JCBgQEA4MmTJ7C2tub0DwLAfaiJlArmTBsaGqo4EiIiUmcF5wmutaECLKiJXsJpHkREVBKeJ+hlLKiJqEK2bNkCc3NzVYdBRESkciyoiTTcqFGjIJFIIJFIoKurC1dXVyxbtgz5+fnV+rlDhgzB7du3q/UzSvNi33V0dGBjY4PXX38dmzZtglwuL9d78ReEqlHwb7Jq1apCx/fv31/jo3oFPxsSiQRGRkZwc3PDqFGjcOXKlXK/V48ePfDpp59WfZAEAAgODoZEIuEOS6SxWFAT1QJ9+vRBXFwcoqKiMH36dCxZsgSff/55kW1zc3Or5DMNDAxgbW1dJe9VGQV9v3v3Lg4fPoyePXtiypQp6N+/f7X/UkFF09fXx+rVq/H8+XNVh4LNmzcjLi4Ot27dwoYNG5Ceng5vb29s27ZN1aHVGS/+YlPU15IlS1QdIlGlsaAmqgX09PRga2sLJycnTJw4Eb6+vvjzzz8BKEYMBw0ahBUrVsDOzg4eHh4AgAcPHmDw4MEwNzeHhYUFBg4ciLt37wIAjh49Cn19/VdGi6ZMmYJevXoBKHpE97vvvkPjxo2hq6sLDw8PbN++Xfnc3bt3IZFIEBoaqjyWnJwMiUSC4OBgAMDz588xbNgwWFlZwcDAAG5ubti8eXOZ+t6wYUO0adMG8+bNwx9//IHDhw9jy5YtynZfffUVmjdvDiMjIzg4OOCjjz5Ceno6AMXo2OjRo5GSkvLKSX779u1o164dTExMYGtri/fee0+5ZRYVzdfXF7a2tggICCix3dmzZ9G1a1cYGBjAwcEBn3zyCTIyMgAA33zzDZo1a6ZsWzDCvXHjxkKfs2DBghI/o2C/YGdnZ/Tu3Rt79uzBsGHDMHnyZGXB//TpUwwdOhQNGzaEoaEhmjdvjl9++UX5HqNGjcKpU6ewbt065c/H3bt3IZPJMHbsWDRq1AgGBgbw8PDAunXryv39qu3i4uKUX2vXroWpqWmhYzNmzFBZbFU1wEDEgpqoFjIwMCh0oggKCkJkZCSOHTuGAwcOIC8vD35+fjAxMcGZM2dw7tw5GBsbo0+fPsjNzcVrr70Gc3Nz/P7778r3kMlk+PXXXzFs2LAiP3Pfvn2YMmUKpk+fjps3b+KDDz7A6NGjcfLkyTLHvXDhQoSFheHw4cMIDw/Hd999B0tLy3L3v1evXmjZsiX27t2rPCaVSvH111/j1q1b2Lp1K06cOIFZs2YBADp16vTKib7gJJ+Xl4fly5fj+vXr2L9/P+7evYtRo0aVO6a6REtLCytXrsT69evx8OHDItvExMSgT58+ePvtt/H333/j119/xdmzZzF58mQAQPfu3REWFobExEQAwKlTp2Bpaan85SsvLw8XLlxAjx49yh3f1KlTkZaWhmPHjgEAsrOz0bZtWxw8eBA3b97EhAkTMHz4cFy6dAkAsG7dOvj4+GD8+PHKnw8HBwfI5XLY29vjt99+Q1hYGBYtWoR58+Zh9+7d5Y6pNrO1tVV+mZmZQSKRFDpmbGysbHvlyhW0a9cOhoaG6NSpEyIjIwu91x9//IE2bdpAX18fLi4uWLp0aaErUffv38fAgQNhbGwMU1NTDB48GAkJCcrnlyxZglatWuGnn35Co0aNoK+vj23btqF+/frIyckp9FmDBg3C8OHDq+m7QrWOICIhhBBZWVkiLCxMZGVlqTqUchk5cqQYOHCgEEIIuVwujh07JvT09MSMGTOUz9vY2IicnBzla7Zv3y48PDyEXC5XHsvJyREGBgbiyJEjQgghpkyZInr16qV8/siRI0JPT088f/5cCCHE5s2bhZmZmfL5Tp06ifHjxxeK7d133xV9+/YVQggRGxsrAIhr164pn3/+/LkAIE6ePCmEEGLAgAFi9OjRFer7y4YMGSK8vLyKfe1vv/0m6tevr3z8cn+K89dffwkAIi0trcxx1iUv/pt07NhRjBkzRgghxL59+8SLp5yxY8eKCRMmFHrtmTNnhFQqFVlZWUIul4v69euL3377TQghRKtWrURAQICwtbUVQghx9uxZoaOjIzIyMoqNBYDYt2/fK8ezsrIEALF69epiX9uvXz8xffp05ePu3buLKVOmlNh3IYSYNGmSePvtt0ttV1XkcrnIyMlTydeL+aOsivt/dvLkSQFAeHt7i+DgYHHr1i3RtWtX0alTJ2Wb06dPC1NTU7FlyxYRExMjjh49KpydncWSJUuEEELIZDLRqlUr0aVLF3H58mVx8eJF0bZtW9G9e3fleyxevFgYGRmJPn36iKtXr4rr16+LzMxMYWZmJnbv3q1sl5CQILS1tcWJEyeK7Iemni+o+vDGLkTVQC6XIzExEVZWVpBKq/9C0IEDB2BsbIy8vDzI5XK89957heYlNm/eHLq6usrH169fR3R0NExMTAq9T3Z2NmJiYgAAw4YNQ8eOHfH48WPY2dlhx44d6NevX7EL98LDwzFhwoRCxzp37lyuS+ATJ07E22+/jatXr6J3794YNGgQOnXqVObXv0gIUWgR3PHjxxEQEICIiAikpqYiPz8f2dnZyMzMLHHv8StXrmDJkiW4fv06nj9/rlzseP/+fTRp0qRCsdU4uRzITAIMLYEa+HkssHr1avTq1avIS/rXr1/H33//jR07diiPCSEgl8sRGxsLLy8vdOvWDcHBwfD19UVYWBg++ugjrFmzBhERETh16hTat29foX3jhRAA/t36TCaTYeXKldi9ezcePXqE3Nxc5OTklOm9N2zYgE2bNuH+/fvIyspCbm4uWrVqVe6YKiorT4Ymi47U2Oe9KGyZHwx1q7aMWLFiBbp37w4AmDNnDvr164fs7Gzo6+tj6dKlmDNnDkaOHAkAcHFxwfLlyzFr1iwsXrwYQUFBuHHjBmJjY+Hg4AAA2LZtG5o2bYq//voL7du3B6CY5rFt2zZYWVkpP/e9997D5s2b8e677wIA/ve//8HR0bFCV0CobuKUD6IqJpfLsWLFCowdOxYrVqwo924TFdGzZ0+EhoYiKioKWVlZ2Lp1K4yMjJTPv/h3AEhPT0fbtm0RGhpa6Ov27dt47733AADt27dH48aNsWvXLmRlZWHfvn3FTvcoi4JfLAqKGeDVmyL4+/vj3r17mDp1Kh4/fozXXnutwvMrw8PD0ahRIwCK+dv9+/dHixYt8Pvvv+PKlSvYsGEDgJLnUGZkZMDPzw+mpqbYsWMH/vrrL+zbt6/U16kVuRw48wXwx2TFnzXw81igW7du8PPzw9y5c195Lj09HR988EGhn7/r168jKioKjRs3BqDYWSM4OBhnzpxB69atYWpqqiyyT506pSy8yis8PBwAlD8fn3/+OdatW4fZs2fj5MmTCA0NhZ+fX6n/xrt27cKMGTMwduxYHD16FKGhoRg9erTm/GyooRYtWij/XnBb74I1C9evX8eyZctgbGys/CqYhpOZmYnw8HA4ODgoi2kAaNKkCczNzZX/5gDg5ORUqJgGgPHjx+Po0aN49OgRAMUakYIda4jKgiPURFUsMTERISEhiI+PR0hICBITE2FjY1Otn2lkZARXV9cyt2/Tpg1+/fVXWFtbw9TUtNh2w4YNw44dO2Bvbw+pVIp+/foV29bLywvnzp1Tjh4BwLlz55SjuAUnsLi4OLRu3RoACi1QLGBlZYWRI0di5MiR6Nq1K2bOnIkvvviizH0DgBMnTuDGjRuYOnUqAMUos1wux5dffqks7F+e56qrqwuZTFboWEREBJ4+fYpVq1YpT9KXL18uVywql5kEPLwMpCco/sxMAoxrbneWVatWoVWrVsrFsAXatGmDsLCwEn9uu3fvjk8//RS//fabcqSwR48eOH78OM6dO4fp06dXKKaC+fK+vr4AFD+nAwcOxPvvvw9A8Uvx7du3C12BKOrn49y5c+jUqRM++ugj5bGCKzw1xUBHC2HL/Gr0M1/87Kqmo6Oj/HtBMVswKJGeno6lS5firbfeeuV1+vr6Zf6MlwcYAKB169Zo2bIltm3bht69e+PWrVs4ePBgecOnOowFNVEVs7Kygre3N0JCQuDt7f3KSIg6GDZsGD7//HMMHDgQy5Ytg729Pe7du4e9e/di1qxZsLe3V7ZbsmQJVqxYgXfeeQd6enrFvufMmTMxePBgtG7dGr6+vvi///s/7N27F8ePHwegWCjZsWNHrFq1Co0aNcKTJ09e2aFh0aJFaNu2LZo2bYqcnBwcOHAAXl5eJfYlJycH8fHxkMlkSEhIQGBgIAICAtC/f3+MGDECAODq6oq8vDysX78eAwYMwLlz5wrtFgEAzs7OSE9PR1BQEFq2bAlDQ0M4OjpCV1cX69evx4cffoibN29i+fLl5f5+q5ShJWDfTlFM27dTPK5BzZs3x7Bhw/D1118XOj579mx07NgRkydPxrhx42BkZISwsDAcO3YM33zzDQDFaGW9evWwc+dOHDhwAICioJ4xYwYkEgk6d+5c6ucnJycjPj4eOTk5uH37Nr7//nvs378f27ZtU05fcnNzw549e3D+/HnUq1cPX331FRISEgoV1M7OzggJCcHdu3dhbGwMCwsLuLm5Ydu2bThy5AgaNWqE7du346+//lKOfNcEiURS5dMu1FWbNm0QGRlZ7C9hXl5eePDgAR48eKD8BTgsLAzJycllmp41btw4rF27Fo8ePYKvr2+hkW6iUql2CjeR+qjKRSYymUzEx8cLmUxWBZGVrKSFeSU9HxcXJ0aMGCEsLS2Fnp6ecHFxEePHjxcpKSmF2nXo0EEAeGVxTlGLi7799lvh4uIidHR0hLu7u9i2bVuh58PCwoSPj48wMDAQrVq1EkePHi20KHH58uXCy8tLGBgYCAsLCzFw4EBx586dEvsGQAAQ2trawsrKSvj6+opNmza98r3/6quvRIMGDYSBgYHw8/MT27ZtEwCUiyyFEOLDDz8U9evXFwDE4sWLhRBC7Ny5Uzg7Ows9PT3h4+Mj/vzzz1cWV6o9mUyItATFn9WsqJ+32NhYoaurK14+5Vy6dEm8/vrrwtjYWBgZGYkWLVqIFStWFGozcOBAoa2trVwEKpPJRL169UTHjh1LjaXgZwOA0NfXF40bNxYjR44UV65cKdTu6dOnYuDAgcLY2FhYW1uLBQsWiBEjRhTqR2RkpOjYsaMwMDAQAERsbKzIzs4Wo0aNEmZmZsLc3FxMnDhRzJkzR7Rs2bLs37A6prRFiS/+f7x27Zryey2EEIGBgUJbW1ssWbJE3Lx5U4SFhYlffvlFzJ8/XwihWKDZqlUr0bVrV3HlyhUREhJS5KLE4v59kpOThaGhodDV1RW7du0qsR9clEgvkwjxwoRGojosOzsbsbGxyq2UiIioam3ZsgWffvrpK3vcBwcHo2fPnnj+/LnyykFoaChat26N2NhYODs7AwCOHDmCZcuW4dq1a9DR0YGnpyfGjRuH8ePHA1AsFv74448RFBQEqVSKPn36YP369cppd0uWLMH+/fuLnG4GACNGjMDBgwfx+PHjEq/I8XxBL2NBTfQPJkgiorrttddeQ9OmTV+ZovQyni/oZXVj4hURERFRMZ4/f47g4GAEBwfj22+/VXU4pIFYUBMREVGd1rp1azx//hyrV69+ZUcaorJgQU1ERER12t27d1UdAmk43tiFiIiIiKgSWFATvYTrdImIqCQ8T9DLWFAT/aPgDl2ZmZkqjoSIiNRZwXnixTs7Ut3GOdRE/9DS0oK5uTmePHkCADA0NFTe+paIiEgIgczMTDx58gTm5ubQ0qr626+TZuI+1EQvEEIgPj7+lZsOEBERFTA3N4etrS0HXUiJBTVREWQyGfLy8lQdBhERqRkdHR2OTNMrWFATEREREVUCFyUSEREREVUCC2oiIiIiokpgQU1EREREVAksqImIiIiIKoEFNRERERFRJbCgJiIiIiKqBBbURERERESV8P9h+GScY9J/swAAAABJRU5ErkJggg==\n" - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "# Querying using slicing with np.s_[]\n", - "fig = plot_results_panel_2d(cycle,\n", - " query=np.s_[0:5:2], # [Start:Stop:Step]\n", - " subplot_kw=dict(figsize=(8,3), gridspec_kw={\"bottom\": 0.25})\n", - " );\n", - "fig.supxlabel('x1', y=0.1)\n", - "fig.suptitle('Cycles 0, 2, 4')\n", - "\n", - "# Last 2 Cycles\n", - "fig2 = plot_results_panel_2d(cycle,\n", - " query=np.s_[-2:], # You can use other list slicing conventions\n", - " subplot_kw=dict(figsize=(8,3), gridspec_kw={\"bottom\": 0.25})\n", - " );\n", - "fig2.supxlabel('x1', y=0.1)\n", - "fig2.suptitle('Last 2 Cycles')" - ], - "metadata": { - "collapsed": false - } - }, - { - "cell_type": "markdown", - "source": [ - "## Plotting 3D\n", - "The 3D plotter has similar functionality as the 2D plotter but will only work with problem spaces where there are exactly 2 independent variable values. Only one dependent value can be plotted at a time." - ], - "metadata": { - "collapsed": false - } - }, - { - "cell_type": "code", - "execution_count": 10, - "outputs": [ - { - "data": { - "text/plain": "" - }, - "execution_count": 10, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "# Simple multiple linear regression cycle\n", - "random.seed(1)\n", - "\n", - "def ground_truth(X):\n", - " return X[:, 0] + (0.5 * X[:, 1]) + 1.0\n", - "\n", - "# Variable Metadata\n", - "study_metadata = VariableCollection(\n", - " independent_variables=[\n", - " Variable(name=\"x\", allowed_values=np.linspace(0, 1, 10)),\n", - " Variable(name=\"y\", allowed_values=np.linspace(0, 1, 10)),\n", - " ],\n", - " dependent_variables=[Variable(name=\"z\", value_range=(-20, 20))],\n", - ")\n", - "\n", - "# Theorist\n", - "lm = LinearRegression()\n", - "\n", - "# Experimentalist\n", - "example_experimentalist = Pipeline(\n", - " [\n", - " (\"pool\", grid_pool),\n", - " (\"sampler\", random_sampler),\n", - " (\"transform\", lambda x: np.array(x)),\n", - " ],\n", - " params={\n", - " \"pool\": {\"ivs\": study_metadata.independent_variables},\n", - " \"sampler\": {\"n\": 10},\n", - " },\n", - ")\n", - "\n", - "# Experiment Runner\n", - "def get_example_synthetic_experiment_runner():\n", - " rng = np.random.default_rng(seed=180)\n", - "\n", - " def runner(xs):\n", - " return ground_truth(xs) + rng.normal(0, 0.25, xs.shape[0])\n", - "\n", - " return runner\n", - "\n", - "example_synthetic_experiment_runner = get_example_synthetic_experiment_runner()\n", - "\n", - "# Initialize Cycle\n", - "cycle_mlr = Cycle(\n", - " metadata=study_metadata,\n", - " theorist=lm,\n", - " experimentalist=example_experimentalist,\n", - " experiment_runner=example_synthetic_experiment_runner,\n", - ")\n", - "cycle_mlr.run(5)" - ], - "metadata": { - "collapsed": false - } - }, - { - "cell_type": "code", - "execution_count": 11, - "outputs": [ - { - "data": { - "text/plain": "
", - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAh8AAAGrCAYAAABg7vUvAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8o6BhiAAAACXBIWXMAAA9hAAAPYQGoP6dpAADtVUlEQVR4nOy9d5xkZ3Xm/33vrZw6p+k8OUmjSZJmFBBREmIBG2N214hgbK8JJu0CZn/Y2IuNTVgv4ACs14sWsGUMGAMSYAQSCgil0fTkHDun6lS56r7v74/33tvVPT0z3T3d0z2jevzBmq5w61bdc9/3Oec85xyhlFKUUEIJJZRQQgklXCUYS30CJZRQQgkllFDCSwsl8lFCCSWUUEIJJVxVlMhHCSWUUEIJJZRwVVEiHyWUUEIJJZRQwlVFiXyUUEIJJZRQQglXFSXyUUIJJZRQQgklXFWUyEcJJZRQQgkllHBVUSIfJZRQQgkllFDCVUWJfJRQQgkllFBCCVcVJfIxDW1tbbzjHe9Y6tMoYYlRsoMSSjZQApTsYLGwrMnHqVOn+C//5b+wcuVKAoEAsViM2267jS9+8Yuk0+mlPr1Z48iRI9xzzz1EIhEqKyu5//77GRwcXOrTumZwPdjBc889x3ve8x62b9+O1+tFCLHUp3RN4Vq3ASklDzzwAK9//etpbm4mHA6zefNm/uzP/oxMJrPUp3fN4Fq3A4C///u/52Uvexl1dXX4/X7a29t55zvfydmzZ5f61K4qPEt9AhfDww8/zJvf/Gb8fj9ve9vb2Lx5M7lcjqeeeoqPfOQjHDp0iP/9v//3Up/mZdHV1cWdd95JWVkZn/70p0kkEnz+85/nwIEDPPfcc/h8vqU+xWWN68UOfvSjH/F//s//4cYbb2TlypUcP358qU/pmsH1YAOpVIp3vvOd3Hrrrfz+7/8+tbW1/OpXv+KTn/wkP//5z3n00UdLhPQyuB7sAGDv3r20t7fz+te/noqKCs6cOcPf//3f89BDD7Fv3z5WrFix1Kd4daCWIU6fPq0ikYhav3696unpueD5EydOqC984QuL8tmtra3q7W9/+4Id793vfrcKBoPq3Llz7mOPPPKIAtRXv/rVBfuc6xHXkx309fWpVCqllFLqve99r1qmt96yw/ViA9lsVv3yl7+84PE//dM/VYB65JFHFuRzrldcL3ZwMbzwwgsKUH/xF3+xqJ+znLAs0y6f/exnSSQS/MM//AMNDQ0XPL969Wo+8IEPAPCyl72MLVu2zHicdevWcffdd7t/Syn54he/yA033EAgEKCmpoZ77rmHF1544ZLnMzo6ygc/+EGam5vx+/2sXr2az3zmM0gpL/tdvvvd7/K6172OlpYW97FXvepVrF27ln/5l3+57Ptfyrie7KCuro5gMHjZ15UwFdeLDfh8Pnbv3n3B47/2a78G6NRsCRfH9WIHF0NbW5t73JcKliX5+OEPf8jKlStnvFmn4/7772f//v0cPHhwyuPPP/88x48f561vfav72Lve9S7XYD7zmc/wh3/4hwQCAZ555pmLHj+VSvGyl72Mb37zm7ztbW/jS1/6Erfddhsf//jH+fCHP3zJc+vu7mZgYIAdO3Zc8NzNN9/M3r17L/v9Xsq4XuyghPnjereBvr4+AKqrq+f1/pcKrkc7GB4eZmBggBdeeIF3vvOdALzyla+c9fuveSx16GU6xsbGFKDe8IY3zOr1o6OjKhAIqI997GNTHn//+9+vwuGwSiQSSimlHn30UQWo97///RccQ0rp/nt6iO1Tn/qUCofD6vjx41Pe84d/+IfKNE11/vz5i57b888/rwD19a9//YLnPvKRjyhAZTKZWX3PlxquJzuYjlLaZXa4nm3Awate9SoVi8XUyMjInN/7UsH1agd+v18BClBVVVXqS1/60qzed71g2UU+xsfHAYhGo7N6fVlZGW94wxt48MEHUUoBYFkW3/rWt3jjG99IOBwGdPpDCMEnP/nJC45xKaHXt7/9be644w4qKioYGhpy//eqV70Ky7J44oknLvpeR33t9/sveC4QCEx5TQlTcT3ZQQnzw/VuA5/+9Kf52c9+xl/+5V9SXl4+p/e+lHC92sGPf/xjfvSjH/E//+f/pKWlhWQyOav3XS9YdtUusVgMgImJiVm/521vexvf+ta3ePLJJ7nzzjv52c9+Rn9/P/fff7/7mlOnTrFixQoqKyvndD4nTpxg//791NTUzPj8wMDARd/r5Piz2ewFzznldSUdwMy4nuyghPnheraBb33rW3ziE5/gXe96F+9+97vndB4vNVyvdvDyl78cgHvvvZc3vOENbN68mUgkwvve9745nc+1imVJPlasWHFBvu5SuPvuu6mrq+Ob3/wmd955J9/85jepr6/nVa961RWfj5SSV7/61Xz0ox+d8fm1a9de9L2OMKq3t/eC53p7e6msrJwxKlLC9WUHJcwP16sNPPLII7ztbW/jvvvu4ytf+coVn9f1juvVDoqxatUqtm7dyj/+4z++ZMjHskw8/97v/Z4C1NNPPz3r93zoQx9SFRUVKh6Pq0gkoj70oQ9Nef69732vEkKo4eHhSx5nen5v48aNateuXXM6/2LU1NSoN7/5zRc8vnbtWvWKV7xi3sd9KeB6soPp57BMb71lh+vNBp555hkVDofV7t273dLrEi6P680OZsJNN92kNmzYsODHXa5YlivgyZMnVTgcVhs3blR9fX0zPj+9pvvFF19UgHrzm9+sALVnz54pz89XXPQnf/InClA/+clPLnjfyMiIyufzl/wuv//7v6+CweAUEdLPfvYzBagvf/nLl3zvSx3Xkx0Uo0Q+Zo/ryQYOHz6sqqqq1KZNm1Q8Hr/ka0uYiuvFDvL5/IzX/tlnn1Wmaar777//ou+93iCUshU5yww/+MEPeMtb3kIwGJzSze7pp5/m29/+Nu94xzv46le/OuU9N9xwAwcPHmTDhg0cPnz4gmO+7W1v4xvf+Ab33nsv99xzD1JKnnzySV7+8pe7oa62tjbuuusuHnjgAUCXVd1xxx3s37+fd7zjHWzfvp1kMsmBAwf4zne+w9mzZy9ZJtfZ2cnWrVspLy/nAx/4AIlEgs997nM0NTXx/PPPl9Iul8H1Ygfnzp3jG9/4BgAPPfQQzz77LJ/61KcAaG1tnZKLLmEqrgcbmJiYYNOmTXR3d/PpT3+axsbGKc+vWrWKXbt2LcCvdf3ierCD0dFRmpqaeMtb3sKmTZsIh8McOHCAr33ta26J75o1axb2h1uuWGr2cykcP35c/e7v/q5qa2tTPp9PRaNRddttt6m//uu/nrFE9bOf/awC1Kc//ekZj1coFNTnPvc5tX79euXz+VRNTY269957pzDimbrZTUxMqI9//ONq9erVyufzqerqarV79271+c9/XuVyuct+j4MHD6rXvOY1KhQKqfLycvVbv/VbM7L3EmbG9WAHjz32mFtWN/1/L3vZy+b8m7zUcK3bwJkzZy56/YFF76B5veBat4NsNqs+8IEPqBtvvFHFYjHl9XpVa2urete73qXOnDkzr9/kWsWyjXzMB1/84hf50Ic+xNmzZ6d0FC3hpYWSHZRQsoESoGQHyxnXDflQSrFlyxaqqqp47LHHlvp0SlgilOyghJINlAAlO1juWHaltnNFMpnkBz/4AY899hgHDhzg+9///lKfUglLgJIdlFCygRKgZAfXCq75yMfZs2dpb2+nvLyc97znPfz5n//5Up9SCUuAkh2UULKBEqBkB9cKrnnyUUIJJZRQQgklXFtYdrNdSiihhBJKKKGE6xsl8lFCCSWUUEIJJVxVlMhHCSWUUEIJJZRwVVEiHyWUUEIJJZRQwlVFiXyUUEIJJZRQQglXFSXyUUIJJZRQQgklXFWUyEcJJZRQQgkllHBVUSIfJZRQQgkllFDCVUWJfJRQQgkllFBCCVcVJfJRQgkllFBCCSVcVVzzg+UuBSkl+XweAI/Hg2EYCCGW+KxKuJpQSlEoFLAsC4/Hg2maJRt4iUEp5a4FhmHg8XgQQpTs4CUGKSWFQgEpZWktWAa4LsmHUgrLsigUCqRSKQCEECilME2TYDCIaZolMnKdw9lwcrkcuVwOw9CBPqUU4XAY0zRLC9B1DqUU+XyeQqFAOp1273nLsvD7/fj9ftcGSnZwfaKYfGYyGSzLwjAMlFIYhkEwGCw5p0uA6458KKUYGRlhfHyc2tpaPB4Pzuy8EydOALBy5UoMw3C9IIcFl4zv+oBDPk+fPk1dXZ1LMgzDYGJigr1797J7926EEBfYQImMXD+QUtLX1wdAeXm5G/FQSrFv3z4aGxupra1FCIFpmni93im2UsK1D6UUyWSS3t5eGhsbp9zfPT09DAwMcMMNN7hrgdfrLe0HVwnXFfmwLIt8Ps/IyAjd3d3U19cDuF6Nw3YdQmJZFpZlkc1mZ9yISsZ37cHxdC3L4tixY1RVVU3xbE3TBHQaDvQGlcvlLmoDJTJy7aE48tnX14dpmlRUVABT1wLn+jqpOSdFO5MNlMjItQcn2pFMJjl+/DjNzc1YljVlLRBCuPuBUopMJgNQIiNXAdcF+XAWj0KhAOCSjOlwvJ7iBch5f/GCVWycxYtQKTS7vOGQTynlJRcKxwYAl4w49iKlJJvNksvlgJk3opINLF8Uk0/gktfqUmuBk66DEhm51lC8ljtrwaVeW7yuO2R0JjIyfT8okZErwzVPPhx2K6UEmBLhmAkXIyUzLUCON1QiI8sbxeTTyeM612b69b7Y9SpefKYvQNPJiBOeL+WJlxecKFYx+byUIzITZloLnDXGiYw43nKJjCw/TCefTnp9PjYAU8mI45hkMplS2n4BcM2Sj+JFYTp7nWnTcR6fDeZCRkp54qWFo2AvXmwuZwcXI6bFmK03VArNLj0cT9dZC6bbgOOYzPS+y6E4Vee853JkxNGWlHB1MRP5hIuvAzD3tcB5Tyltf+W4JsnHTKHV4ot8pcY2HZcjI1AKzV5tXIp8OphL5ONyKJGR5YlLkU+4ckdkpvddjIzkcrkpepJix6RkA4uHS5FPuNAGLrZezBaXStsXkxGHiBYT0pIdTOKaIx/Oje6US810MRd6wZnpOKU88dJhusbnYjd1scZn+vuvFKU88dJiNuQTFt4Rmen4syEjJd3Q4mCmNMvFnJD5RkEvh1Lafn64ZsjHTCKiy4nJ5vL4laCUJ756KCafxb/5TLhU5GMmUnIlKOWJrx5mSz6d5xbTEZnpuDOJmEsVVQuP2QrM5/r4laKUtp8drgnyMRt2W4y5CowWGqU88cJjruQTFjbtMleU8sSLg7mQT1j8yMflPhtmrqgqkZH5Y6bqxkv9XsUOx0zHWmzMloy81JzTZU8+LiYiuhyWasGZCaU88ZVhruTTwcXSLs4xr+bvW8oTXxnmQz7h6kc+LncuUCrvvhJMr26czQZ9MfKxVL9pKW2vsWzJx8XKJ2eDpY58XA6lPPHsMV/yCUsb+bgcSnni2WO+5BOWNvJxORSTkVJ596VRvEbOdS1Y6sjH5XA5MnK9RkaWJfm4nIJ9NnCMavrisxyMbTpKeeILcTkF+2zgXPtUKkUmkyEWi005/nJCKU88M66EfMLU+7/4vcvx3pmtiPmlVlF1JeQTll/k43KYj4bwWkzbLyvyMVsF++XgXLSenh6OHTtGKBSioqLCXcSWM0p54itfbIoxODhId3e360WsWLECgEwmQzgchkIWDBOMZXUrvOTzxAtBPuHSZZbLjYBOR4mMzK668XK41HuWuw3A3NL206OkyxnLZsWdi4L9cnAuzJEjR1i3sgXP8DHGe87Rl40ihcn+/fupqKigsrKSUCi0rC/SpcjIyZMnKRQK7qC85557jnw+z2tf+9olO98rRfGGcyU24Ogoenp6WLduHU8//TTd3d2k02kqKip47rnnqGCMxsI5QuXV+DbcizdSucDfZuFwMTIyMTFBR0cHN998M6Zpkk6neeCBB/jYxz52zRKRhSSfxSRjus5nuW08Rv8BvIe/g4yuIL/lbeANTnn+UmTkxRdfpKamhtraWkzT5Ac/+AGbNm1i69atS/FVrhjz1fjMhOLIR/E9sRzX/bGxMf7u7/6OoaEh3vnOd7J58+YLXnMxMtLb20tfXx+bN2/GMAxOnTrFgQMHePvb3341v8KssSxWJ8erL27YNV/DSKVSHDx4EKUUu3fvpsE7QX3mBGt9fayrNikrK6OsrIzh4WGef/55fvnLX3L48GF6e3vJZrML+bUWBcXh9+LFWSnFQw89xPe///0lPsP5oTjHeaXEI5FI8Ktf/QopJevWrcM0Tfr6+sjlcu7xd+/ezeoqD/5cnMT5A+x94sc8//zznDx5kng87v62yxUOERFCj4f3er0IIeju7uZP/uRPlvr05g2HNDozlq7Ui19OgtPLwXP8YYz+g3jOPo4xcOiyry/2ePP5vFvKLaXkK1/5Cnv37r0KZ73wcNaCK416OVjumo9iPPfcczz66KPs2bOHH/7wh7N6j7MfSClRSrnE9LnnnuPv//7vF/mM548ljXwsJLsFGBgYYP/+/dTU1JBOpwkGg1iGB2V4EaYH4fHhFV5aW1tpbW3FsizGx8eJx+N0d3dz5MgRwuGwGxVxxnAvVzibjsPmk8kkZWVlS3xWc8d8FOwXQ29vLwcPHqSlpYXh4WE8Hg8VFRWsX7/e9QoGBwcxDINo8yZMkUR5A1Q23sZwssDIyAhHjhwhl8tRVlZGZWUllZWVRKPRZblhWZY1RYiaTqcJh8PL8lwvhbmWT84Wy1lwOh2yvBVz8DAqUI6K1M7tvVK6YlTQBDwajS7GaS4qZtu7Yy64ljQfTU1N1NTUkEwmaWtrm9N7i9cC0zRJpVI6tbxMsWQ760KGVqWUnDhxgvPnz7N582ai0SgDAwP6uao1KNMHwiA3YaBGx9z3OaO2nXHb+Xye0dFR4vE4J0+eJJ1OE41GqayspKKigrKysmUVyrYsi0Ag4P6dSqVobGxcwjOaG65EwT4dUkqOHj1KT08PW7Zsoba2lmeffRalFB6PhzvvvBPQC87jjz+uP7+inUKkDgwPXtNHfRTq6+tRSpFOpxkZGSEej3P+/HkAysvLXVtYLuk6JxfuIJFILOsFZybMNBxyoX5bh3yMj49z7tw5YrEYlZWVy+LaTUdh428ga29ABStRsRVzem+xHTgi62vJDhaLfDoQQlAoFDh79iwAVVVV7ucuJ2zYsIE///M/Z2xsjBtuuGFO751pLYhEIgt9iguGJSEfV6pgL0Ymk2Hfvn3k83l27dpFJBIhmUxOCksND7JipV7Qkl2XPJbX66Wmpoaamhr32M4G1NPTQ6FQcMlKZWXlVfUwLSnJW4qcJZESykNepJRTcn/JZJJQKHRVzudKsZDkM51O09HR4aZTin+D4kqH4lSVu+h4L/y9hBCEQiFCoRCNjY2utmJkZITBwUFOnjyJ1+t17aCiogK/3z+vc58rpFJk8xbZgiLkM11vx4Gz6SzHzXU6FpJ8XgqZTEZrfCoqeOGFF8jn89TU1JBKpQgGg8RiMaSUS3/vmF5k3YU5/tlguh0kk8llvfEUYzHJZzH27t2L1+tlfHyc559/nurqajweD52dnVRWVqKUIhgMTvkdlwLt7e3zet/0/WC5E9CrSj4WSsHuYHh4mH379lFdXc327dvdFMlCqZsDgQANDQ00NDSglCKZTLpk5MyZMxiGMWUDCganCsTyliRvSXKFSeKQt5T7uPPvgqX0v6UkW5DkC5KClBQUSAukkkhHB6HghsYyykPea3bBWQgFu4PBwUH2799PfX0969evn/J7zBRyn69aPhaLEYvF3HTd2NgYIyMjdHZ2cvjw4Tml67IFi1xB20Umb5GzFNmCJJu3yFmSnKXIF4ptxLIfsyhIAEXY7+H1W1bMSECX84LjYCHJ58VgWRZdXV2k02m2b9/OwYMHOXfuHOFwmPLycoQQHD58mCeeeIJcLsftt9/OLbfcsuwinLPBTGvBcreDhapuvBz6+vpQSlFRUUEsFqOjo4NkMkksFsPn8zE0NMSPf/xjTp06RVtbG/fddx/19fX4fL4FP5fFxLW2H1w18rGQi41SitOnT3P69GnWr19PU1PTBTX8jgq8GJf7PEvqhd4hCrmCJgS5gkMQJDkVpVAWwQitYCyR5NzQBONnzjGRPIbHY+APRQgEw/gDAQzDnJT0SvS/lf6fUgqJ9mSFUhiGQCr7d0GBAiEMlNBvE4YACfXlQW5o0v0qpofZlruxLaTGx6n2OXfuHJs2bXJLaIvh2MFMn3El4VYhBIFIjEp/hEhNI4l0lqH4GCeHRhk8cZhUJocvGMIXjOAPhjA8PhSCglRIBSgF085JCIVCk0upJEqBEmBZ+jmBgRAKQxgI4LZVVXhN44IFZ7mHWmFhyefFkEql2Lt3L5ZlEYlEqKqqIpVKkc/nyWazGIZBVVUV1dXVPP300ySTSQ4dOkQkEsGyrCkptuUeSXI28ekbz3LWfEzfDxaDeBSn4w3DoK2tjd7eXtcOHHHm1q1b2bt3L6Zp0tXVxcGDBzl58iSRSMS1gfLy8iWPiFwOjgbQQSKRoLq6egnP6NK4KuRjIUVEuVyOAwcOkEgkuPnmm2cUWE4//ng6z+G+BH0DCYbjGXo9/VhSUpBQsBRSKQqWxFIg0Iu+ewRnjxK4m4Zwyl0xIRgjFiwnoiTpdIp0KkX/4CDZbJ5AwE8oFMQfDBIKBPWB7X3HQGAI7M1EohB4DAPszVKhAAlKITFR0iLg83D7qoopv+v0MNty3XgWknxms1n27dtHNpt1U20z4WKRD6UU2YJFVubJWTqFkc1r0pktSHKWJFuwyBeU+29LKgo2GZWAsA+rKDINsxxPdTn+bJZMOkN8LEmqexAlFMFAmHA4SDAUIuD36wMofZ2VAmXp4yr7gNoWwOsBEPb/aRNaVxejvkxH2aYT0OUcal1ogfnF4AjPGxsbKS8v58yZMwBs3boVn89HLBZzI1M1NTWsWbOG4eFhbr31VrZs2UIymSQejzM8PMypU6fweDzuJlRZWXnVUmyzheNoOWtBLpejUCgsW/JxNchnNpulo6PDTcc7+q/m5mZ2795NOp2mubmZri6dit+8eTPZbJb6+npe+cpXIoRwo9xHjx4ln89TVlbm2sByFKBbljXFNlOp1LK1AVhk8rHQIqLR0VE6OjqIxWLs3r17CssrRrG6OVuw+PnRAZI5i7GxHBNpC38ig/Yfna0DTSrs96BACYFAaUKiFBj6eaQEIfTzSoHQZa4CCAbDhAIhKqsgny+QTqVIZ9KM9/VjSUUw6NNagmCYQDAA6M3HsI+B0jlPy/mnfWqGkHhMg5evrcbnmSQbxd6OkxZajuRjIclnPB5n3759VFZWsm3btkumN4rJR96SPHygn0Q2z+EuxdkXe/B5vfonFpMEwhAC6faFsJ9TCmUIO4il7UYV2Y/CIaP6IY/XR8zrIxqLIeoU2XyOVCJFMpVmaGgYhCAQDBEMBgiFQni9fgwh8BgCcOxK2MER/TkSUAhCHoOtzZOE+1oJt1+NNItSihMnTnDu3Dk2b95MQ0MDAwMDrg1UVlZyxx13IITgyJEjKKUIh8O88Y1vJJPJuAt1JBIhEonQ0tKClJKxsTHi8ThdXV1uRZxTBbUcPOLi3xS0xwssOzu4WuRzZGSEjo4OKisr3XS8sxZ4PB62bt2KYRiMjY3R2dkJwM6dO1m/fj2hUMhdU+rq6qirq3MF6PF4nHg8zrlz5y6bcl9MZPIW6bxFNi9J5SwUilU1kWtOA7ho5GMhyyeVUpw/f57jx4+zevVq2traLmm0znOWlDx+fIhUTmLgGLoCqZzsh85pSL28CwEIgYGC4VOYyV5EeSsy1mKfh2YEUtopHQNAIZRdcw8Iw0BKhd/nw+/zUqbKQEAumyOTTpFIJonHR0FAOBgiaAsbvV6PTXh0VESZIKVyN8XtLeVUR6Z6XMs95L6Q5FMpxZkzZzh16hTr1q2jubn5sscqTrs8cybOeCaPADwqh6EslPJoG1AgLQWGAaqAEAbCEChpEY8PE/AHiZXFsHkpIFBKR8oQ0r3+wk6bGQ5pVAqJwOvxU1bhJ2JFEcIgl83qKFkiwcjwEKbHQyQUJhQKEQ6H9HmgsJT+nILSn2EaBneurcEsupeWuw3A4pRPTkcul2Pfvn1kMpkp0bDZ9Pnwer0XdWScTaaiooJVq1aRz+ddj/jYsWNks9kFLcnWDpOcssFk7L8zeUk2XyBt64OkEuxaVUm5LU1w7CCRSLii6eWCq0U+z507x/Hjx1m3bh0tLS3uZ1xO/+XoumaCEIJo/CDl556grWY9udvvYSKho2O9vb0cO3aMQCAwhZBezJ5mQt6ySOUmr7lzrdP2f1PZPDlLkSvo6CwAhtBeqhDcsVanVl7ymo+FVrAXCgUOHjzIyMgI27dvp7Ly8l0onc978sQQg4msji4YAgzlVj3oTUdv7tLQG77WYoDMJTDjJ5DZJCKfRYXrwfTqTcmOfQvbG9V/2p0GMbT3bKAJjtCetEDh9/sJBPyUV5RjFfTvk0wlmUhMMDA4hGEIwuEQ/kCAWCSK1+PBNEAog6bKIGvrLgyfLWdjW0gF+2xSbTPBWXCO9I7TOZLGNASMdFKROoNnWCHqN7pk0eMRIBQC0458wfFTpzly5AiBQIDtO3dQUV6h9ThCIISB17BfaCiEchY3O3KmX2kTWhAGGIYHoQTeUIhQKIiorsaSFplUmmQqxeDQMJ3dvXh9XsKhIOFwhFAoiM/QZGhjQ/QCArqcBafF5HMhBOYXgxMRLSsrY9euXRdEwxayz4fX66W2tpbaWt2HI5VKXVCS7XjEsbJyDK9fk4aCJhIOccjkJVlLbzTZvLS1ZhJL2hE4dzimmozA2fZs2L/h6tow9bEAyWRyym/r2MByEc1eDfJZvE/s3LnTbZ/g4GIkdFY2YOUxTz+CMdaJSA9j1m+jrGwFZWVltLe3UygU3BYNp06dYiKZxB+KEoqWE4jEMH1BcpYibZOLdK7gpnjzdrrVUK4cECWl3liEgWHrvZxYqxsNtW1iVV2E1kpNMpfzfjATFpR8OOx2//79tLW1EYlErsjQnNbRgUCA3bt3zzrXKoTg7AT4R9I2UQAdzjZQEjesrm9srb1wNwoAjx/hi2LIPDJQhml67Hy8m+F3P0dHyLWBaCGA4eoJnVc6nybdlI7C4/NR7vdSXlEJCtKpBOlMmsT4OEMDQ/j9OkVTXxHl5tb6Gb/ncqztd8jn+fPnyeVytLa2XpENjI2NsXfv3sum2maCEIKRVIFDfSMgFZZSGKlBDJmB7ChGIY3yhTENw77+RQs9gvHxcTLZtBYpplOYVZUY9jXXgS9HHCS0Tkg413pSEFJkau61dxYQS0oUhhanBkJUVQtkoUA6nSaVSjI42I+0LALBIPUVMVbGyi4Q0M6k+6mrq5v3771QkFKSSqU4cOAAW7ZsWTRP14mIrlmzZkZbW6gJ13lLks5ZZAsWmYIkndUVS5mCJF0IkPPWkSqrIpFMcrg7ydixM6QyWUzDJBwJuelWbGcE25ExhK0XYpKcazuSOh2LY5f6fULoqFh50MvONu2IXSzcvtSaBId8Hjt2jLKyMmpqahblnBKJBHv37sXv9190n7iSyjcpTBLhVjJjCTJGM2MTXjITY26EIlOwyOclOStCxgyQ9udJj6dI9sVJpzrJFxThcJBIOEwoEsLn9dl2YEfR7fXDcM7RNLT43HV0tX0ooVBSR0MRgoqQj5vbJknWS7bUVilFLpfDsizi8TgrVqy4IkPr7u7m8OHDtLW1sXr16jkd6/RQinMTsNbp9SH0ym+gQCibbAjba7Vvaud7AML0Y63YgcpNIP1lKCelYh9L2EJBe9UAjMlNyBGjKmW/xtEOKHezMoUJtobAoTORaIRINGrfsBapdIpsOk11oZ9f/bLrArGT85s7xpZOp5FSLrnAyPF0U6kUyWTyitIsc0m1zYS8pXime5RwtAILMBEQrsMy+5GBKoQ3qHWfhl7clTWp4VBAe3sbmWyWcChETU2tey2VABxJsJPCsxcRh1g4qRc31QdIWz8iEaCkztoZ2jKF/RrD6yHmjRGJRBEGZHM5spk0a2MW+/btA5jSa6ZQKEwpCVwO3o7Tx8eyLLfZ30JvOoVCgUOHDhGPx9mxY8cFnm4xpm862YJFIifJZ/J4hlM6KlGQkxGKgkW+YFe7WZJsQWlJuPYt3CiXQwz0hwAIhBkgWuEnWlmJLEiSqRTpVJqR4Ti92X4CAR+RcJhAKEQ4GLQ3FU1KbcPC0RS5FXuG8z2E3mAMuGNNtRsBmanqbak3neI0y/j4uNv+f6HhdDRubW1lzZo1F/2M6ZVv2YLFSCrPUMri5MCEm+Jw0112y4N8QZGTEkPuQkTWo7wxVGcSQRJhE1tle5vO+u7zePCXxygrL0MpSTaXI51KkUqmGBwewjRNO+UeJBQM4/V5J70UA7swQWpBugGWnV4xbKW7EAZej+CudZM2ABc6o8u94mnBIx/OrIH5zsawLIsjR47Q39/PTTfd5Db8mi16xzI8czqOJcGyJIapIxESXFFpUS0LSkqUnXaRSmEokEKgPH6UNwBC5+6xNwwQSKH0oqEUypI2rVEo1/VVbu5f2KUz9n7lFLy4xAP0BiaVchmtYRrEYlFuu6mV9uqIK3YaGRmhq6sLKaWbeshkMvh8PpLJJMCSbzzODe7xeOZtA/NJtc2EfX1Z8paBaWphj8BARhuJhxOEy9rwSk01pFQYoFNz9iZiGLoL4h233wa28FgpsJS+Vi6BRWEaBoY5aVn6EKLomuvjGvYDwrZH5YRPXRJbtOEIhVQCv8/HrjV1bGzQjbASiQTxeJyBgQFOnDiBEIJwOEwwGKSysnJRycdf/MVf8K//+q8cPXqUYDDI7t27+bd/+7cZX+uI++DC6MyVIpFI0NHRgdfrvWxEdHrk41en45wZTHLiZA9SwapUAMN5WuiIhL5W2tN0QtxKWnrjUs697uixBIbhkFZbFyacxw2i0QjRWARUDZZVIJlMkkqmGe3pRUpJMBjQRCQUxufzIQzh6ocU2t6UpVMtQoFhCnatrCYWnIwAzqT7Wery4OLN3uPxLPg0cSklx44do7u72+1oPJvzAegeTfPkiWFGxkY5eWKY0UAvvkBAr+92tEGHn5QrOC/gQXoq8JiGSxKV1FFMJxqloEhPaEcshEHAHyDg91NRUYm0CqTTGVKpNCMjY/T1DxDweQmFwgRCQYKBINgRL1OAkJOOjEQhLZ0ivnVlDRH/1CjwSzbtIoRwb/T5bjypVIqOjg6EEOzevXvOCuLxdJ4njg/aFST6wgs7Z+qE1KVUWLIoGSIM2xvV7FLZxubk6nWpq37M8Ua0ENQWphrGZCGkUgjHnQX9CjEZCXFi+kop8nIyRG8IA8PQR3Rsfk1thPZqbTjBYJDGxka322YikWBgYIB4PM7evXvxeDz86le/oqGhgaGhoUXxema78VypDTiptkuFUGeD/V2jxNMWHq9NB+yGKQIwTAPTRFeXCIGJ7c2i1xypsEXIOlWDtFNyhq5IUaooRA44nur0pd4VKCu9ULlXXOjPVtLJ50p3sbOrrdFpQqgI+9jYoIVwhmG4zc7a2tqwLIsXX3wRr9dLZ2cn3//+9+no6CCXy3HPPfewYcOGef12F8Pjjz/Oe9/7Xnbu3EmhUOC///f/PuPrnLXAFX4v4JC+vr4+Dh48SHNzM2vWrJmVrsHZdA73jnNmMMng4ABHjhzRkcJQkBXNTXqjtDed4uueyaTYu28fqfEEm7dspqGuYVLj46RNpMJC25CwU7miiLjocwAhTMKRGKFIjBqlyOXypDOajIwMxxGmwB8IEg6GiEQi+HweXXJtpwEVivbqMCtrpt7fy7Xk3hlydyXO6EzIZDJ0dHRgWdYFHY0vBod8jKXz/PLkELlcnoP7D3Lu/DmEYbB92zbsxRupJI6cS184gzOnjnPm9Flq62q58YYbUA6ZUcKthjSEnW9HFZEQpTmN9kQxTA+hSIRQJEyl3Wwyk9ZR4on+QQpWgUAg4HZYDgQCmtw4a4ahWFMXpbXywjV+udrBxbAo1S7zMbb+/n4OHDhAY2Mj69atm7NYKpO3+OmhflI5y14QdLULpolNLSarSQxHqzEp9tDn68bKtUdsL1qGLeAw7ASNIbSnLO1NyEmvCCeBazNmiUJKUMqyNSGTbNg09bEFBo5cRNphkcqwlx2t5TN+TyEE0WgU0zQ5f/48d955J2NjY/zkJz9hfHyc7du309/fv+Dlf3PZeEDbgFPlMltcSaqtGH1jGfZ3jmIhMZ1oBQpDCu1ZOpu73UtDoMObhtIyYoEAIRGAqQTCoz1Z7IiXow5z1hk3gmUTU4VuWKftRmkPxigiLHbY3jANHQIRAkfEbEllT6cUeL0mL1t78cifaZqYpkldXR0NDQ2sXLmSf/7nfwZ0ueFC4yc/+cmUvx944IFLvt4Rd8/VDmaClJLjx4/T1dXF5s2bqa+fWQc1HQ4Z7hpJ0dE5hkSRyWXJ5/Ja7JvP4zRYUTYB1DxTX7vR0VF6e7qwCpJzZ89RW1eHYYElFIYS5LXLgGk7LmAglNTkReGm4gyctccAJZEY+AM+fH4f5WUVgCKdzpBOJUkkJhgaHMLv9+ry/XCQYDBIeTjALe0XRgGn5/oTicSyqnRZKBuAya7WNTU1bNy4cdbrnBCCbL7A02f6dcfpQoFMNouUFulUhkIhj8fr1U6loe9Hw46E5XMFTpw6xdjIKOlsmvb2Nspi5drlEDoVpqRCCsAuPtApGOFWLgK2xsteIw3wmAamYRDwllFeVuZKF9KpFOl0kt7RERQQdCvhwtSVhdjROnOKsdgOpJTLIv12KSwa+Zitsc13USmGJRWPHh0gnctrdojAMAXC1PuEtL0RpSR5JSlYuqxWb/i6OsUwDLByCCsP/vCk0Efo1h6gc/YOv3BC8zoqotuEKak3LGmHSJ3wrb17uaF1mMw9KqnsXmLae/KaJneurZqSy5vxO9ss1ykFfN3rXse3v/1tTp06tSh9B+a68cyFgF5pqq0Y6VyBx470kStolYclJaYykFh2qFy4m73T08XZKPTeY//DDkbYnVjQ6RL9l9Ol1E2VYSCRGE4UxdBlsQ6JdZN9whE7O4uWJhrSJT36faZhYhiCm9sriPgvfYsWeztVVVUkk0n++I//mN27d8/7N5wtxsbGLnutriT95mD6/Ka5LqiJrMWTJwZRUmIYgrqaWhobm7CkRUNtnXZ4VZGzo7knUkE0GqW8rIJ0NkV1dZVd5qw0KbVFQAKwlKU3LDua5hWGG/lSCnfhkFLqtIrh2KKTvDMIhe1Sa/R1TSaTJJJJevv7UJbilatjnD+XcXVfjoO2XMPtzhrn8XjIZrNXdKziUvuZulpf/v2SJ0/GyQg/CvAHArSvbCNfyLNqzSpMU99nTgzTiVMKBabPpKG2DiuXo6q6mlAo4p6TsL+nEE6KRveAmjyO3TRS6V5NQojJ7A6411/aKXefz4/X56O8ohwpJdlsllQyxcT4OEODA7S0BDh+bMztL+II8Kd3uXXS8C8ZzUdxI5fZLDhXuqg4eOL4IIPjGfdvnTdHrx4e7dGYwl7YsZs52VFRw3ZfVWYco2cPFDLI2o1Q1oYwnJQNLhFxFxs7d+8WwODcbAJDaY2AIXTkw4mcOOJDJ/3jRlbs93qF4GVrqgj7Ln9ZLlZiWTzldjFxuY1ntjbgtME2DGNeqbZiKKV44vgAeSXxeAxd8izcFK0meEphWYq8VcAoePTNL7R3qqMiRc29bIIxmXrTM3Yc8bBAYHo8dqhdtz/XkTBhp+n0caQTCbPsc7DsXLGhO9z6XHXqpDHVlwVYU3v5haN447maIjMpJR/84Ad56KGHLniueFO40pB7cVO54vlNs0VBQsdAgeao1PHPgsSTGWbtijJy/nKC4RB21Fynx+x7UqeOBLFYlDvvuJ1sLmf38AAlJyOkhi3mMaXpRjDd/JvTPFAADlGxQ/tOWk8YTuBFOyGWfTIKQSQa05+JYMuKEBVmlng87jbGclrAZzKZKb/5ciEfDq7UBvL5PAcOHGB8fHxOpfYu0iN0nzrAhFmJr3EjphFgdGwUq2DR3NhEfW2dfa8zmYI3cMkhwE033UR7WzvhWASfR7dqMOz13knAFil/sGvhXCLjVC459qW3Jze3M6nzEXpfsSyJRODz+vFVBqiqqWZ3ezlRkXNnix08eNCduu78Jg4hdcjHSzLycTljm2/4bDr2nBuhM57SIWyHCRgCj6kvvBDCFQcKu7xJ2XoObVd6cTByY3jSw4CkkBpEVbTq6EfRxuWIwITNcB2RkVQA0l54DExD4LFbppv2e6SzmYGtKRGYwqnf1ia6aUWMxvLZbb5LOc10NhvPbGzgSlNt09HROcrAeE6HOoWzLDhLg+Gm2wxD5089pvPL2wtAcbvzyUcR2CkUQ+BVtlTY9W4Am3hoL9eJiOD+23GhhBB2ZKO454ly/+t0zfWYBrtXzk5ku1Tlde9973s5ePDgRZ93HJH5bjxKKc6ePcvJkydn3VRupmM8eXKIjKXFexgmYuw0Zv9+YpkcY9H1SFmriaGd/hJMij3tbQOfLRiUCl0R5S4KgPN6m7AqId13ap0Prkfs1PQL9OsLUmJY+jjKMDAN8NjpWccuhBK0VofZ3KJHwBdPWXaEx6OjoxiGwZEjR6isrGR8fHxZiI4dXEnaZXx8nI6ODkKhELt3757XsLdDx08xMJ4iFASRGWVcRnj0F78gHo8Ti8bYvHkjytYHCme2lnMvW8p1XmLlFRiGnZhVRfdt0b+k0ml1V2PorCs2uXEiIY7D6aTtpVQoafejAkyPiakNA0PAmroI7TVa++XMa8lms27X1Z6eHv1dDx2isrKSvr4+vF7voo0CmMkOPvOZz7Bu3bpZH+Oqkw+lFKdOneLMmTNs2LCBpqameX/Oif4JDveOa09BFYW3wR7aJlHKtE1JulUEwg6FOkRCKSBUg4w0IAppKNPn5Gg5EFocaBkKLCd7or0WIXQJpxAe/frJeJpOx9h/6xCtHXFBuWImJ/JSGwuwpWn2jH56eZ2jcL8auNzGA5e2gXml2pTEePEBjL59WJt+A9V2x5Sne0bTHOoZ0+FLbI0G9gYgACFRmAihK5G0QEwUeaWTG4pARyWknNxn9MucgljbaBSQGdaRtkAlln2tlZK2iFiXVU/xhh3K4kRGbAPUbfx1PPa2VZUEZxH9gqUJub/vfe/joYce4oknnrjsa+ez8RQKBQ4cOMDY2Bg7d+6kvLx8Xuf5zOlhhhIFpNKpWSUV5POofA5VyGKSm7yH3Ms/qdvRt7/lmocW/unrbgDSzu8jbVGxkHZETLlk00ncSaUr44QbAQWv6UEpeaF42bYXpRRBv4eb2yumfC+nG6cjPD5x4gSpVAqPx8P+/fv5u7/7O6qrq3nFK17BW97ylnn9dhfDbLVfxZgvAXU0YO3t7axatWpejtX54SQvxj0UzBDSG0Z5guQnchSyWZSUZLMZ1yHU0WwduTCEDpvq6CQ4lWmWZVcKOOM27HOaTJMLPYVc6rVFT+YybGcTEAaWk2q1pK2L0lE2R1jq7km2RZSHfGxrmWoDAH6/3526nkwmefbZZ6msrCQej/OJT3wCwzB417vexf/9v/93wZ3SmezgNa95jTvhezZY8LQLaGPLZDIXPJ/L5di/fz+pVIpbbrnlou1sZ4Oe0TTPnInbJVyabkgnhiClnRKxOakj7LDzbcX5fWWTC8v0YzXfapeHmeg1x8np2aFVAMOe/2F7w05e0Amvam/H8Xyk60UbQmtEDMdDsvcuS0qCfg93rqma0/dfqjzvbDceJ+0yvSlWsVJ9Lqk2MXAYc98/QmYMz3gP+dbbcNTpyUyeR4/2kc9ZuieLkyPTMXLyuZyblvI4KQp7wqx0BsXZ4dLxiQTDg0O6j0ZFuSa0bgnuZE2/kgox3onoek7bSNMOREWbnabzUGQYKITrBTt2p83QFjdiL0wIGisDtFXPnkQWk9BCoUAmk1k0O1BK8Qd/8Ad873vf4xe/+AXt7e2Xfc9cNR/TGwvOd6z5kZ5xTvRP6MUcu/ICoLwZZJrMRJJMoNZdA5wN3/F+DZRNYPUGpO9lu9JN6I3KSI0hPH7whfDYuhHH05VKOz8CLXI2hEJ4TJwQu7LtSbfx1yk/qyBdQqNQ+D0eXr6uBq956YigUopQKMSaNWtYs2YNb3rTm8jn8zNOer5SzEX7Vaz5mIsNSCk5cuQIfX19V6QBiydzPHViEMsbJRFdiaeiHG+wkiqvxY1btjHQ34PfH8AUAguFxy5AUE4KxCEkFmAoPaLDMCazasD4RIJ0OkVlldbp6aiHXRWHwlAmdnALh8Wa9gwn5XTMZjLCDrqvh16TLHweDy9bO7Wfx0xw5A4tLS20tLTw8Y9/nN/7vd9j586dixINn8kOamtr2bNnD3feeeesjrEokY+ZjG16C+S5dKqcjtFUjseODercuRNqMAy3RboQpl26Cg6VVEqCklhKTyh1y6icfBsgjMmfw41UOPl4h4maerEyHAJh5wiVcsSEmgiZhrA3BXvztRcyhyK5VRCY3LWmGr9nbmmni9X2LxZmu/EUE1DnPJ08/dDQEPv27aO2tnbOqTYVrARfBHJJVKQe109Uil8cH9D80jRtb8QJWAly+Txnzp7BMEx6evvx+TzkC5JkKoPp9WmRqJ3ftyzJgb176e3vo7qiitvvuB1/wK8jIFPa4CrdOyQ7gZmfQABWZsw2J/28VG5vKH2eTDaZE87vpJPAukrG3mxuWzX7EdjTRWbOQLHF0ny8973v5Z/+6Z/4/ve/TzQapa+v76JRq/mkXXp6ejh06NAVVzv1jqV54dwwONFQASAZGYnj9XoI1dxA1hOHgq5w09Ew5z4X9r2sI1g6RTIpPncnT4+cR8RPghlArtiC8kVx73WUTSYN3OFRmC4RdxrSSWnrC5RCSL1xeQynH4XBtpZyKkKXJ1/Tp5lms1l2797NHXfccYl3LQxmIzqeiw2k02n27t0LcEUasHTO4rEjeqCnaZjg8SOFj8REgmw2w6rV7axavZKzp88gUXYKnEmRue27eBEoQ9gRVTUZJFWK8fFxnn3mGZKZNBvWb2DDunW6YsrJ2yk1mc5hMnqiHRTl7k9KgXSIJ2AKnYITeLh9dQ2hWURBp0fC8/k85eXlvOc975nX7zdXjI2NAcypJ9Oip12cYT8nTpy4aAvkuSCTt/j5kQEsa3IQnAKwFJaQdq3+pLDQlBaW1JUIwjAxbE0G2PYhijqNOqflpE0MbTJOLEMqibKEu2BgezCmob1t0zazyV4N+jj2D4GySzR1WFeBMNjZVkZNdO55uaud65/LxgNTyYdpmleeaoutoHDP5xDDx5HNu9yL9cK5OPFEzi5fs390+8bPZLKkEknq6uuJRMNYlm75PdDfz0h8iLGRYYKhsG57bP92+XwBJSU5WdCeq9BesBvBAJBQEBJR1oRI9mlPtbyNSQ+mWC9il1raIXgnUmcVCkUhWwOvaXDHmip8ntnrXpzGTc5vnUqlgMVrNPflL38ZgLvuust97HKzMWaz8UgpOXr0KD09PbNqGHUpTGTyPHFs0I4s6rVASTh9+oz9WYp8oYDP68E0TPL5LD6ff3K/APt6gRaM2gd2OIzjGecTGCqLKuQRuQTKF8Hhk/plwq7IligBUlqus4K9XhgmmMqYJMs4KV1Bc2WI9fWzI5EX038tNi6l/SrGbFNvg4OD7N+/n/r6ejZs2DBvDZglFT891MuEPUhSoYXi4xMTpJNJ/IEAQ8PDeDwmSkEykSQUDCFMw70OgL2+22kYhN2hGDsaCql0molUEitfYHR0zA6O2jEOm8AaDmGxjydseyzYqT2h9LwbwyMwivoHKWB9fZSmivlrAK9WubVjB7fddhubN2+e9fsWLe3itNk+cOAAo6Ojl22BPBtYluSnh/qYyOa0p2AzUqEEmALP5O1rh8Am1b9OEzDHEDTD1VEKXakgJ5/DKZ3Vhqf9EJtv2OkXYYtFJwfD6He6sxqE09DMCb8C0snvAUrQWBGY9QJz4W9xYUvlxUy7zHXjcZpMpVIp9u/fTzqdvuJUm6pei6pe6/59bjjJ0d4Jt925o1hHSfoHBkilEoTCYcrLy5DKwjS8+MvKiA8Ns6KhHiUMUskko6Mj9PX34fP5aG5tIVZWTn1DLb5AkHyhwGTHQWV/NzvdFizDWvkKe3ggrhRECMOthJJKgnTa7esXGYbCa5ouuQXByuowTRVzWyycTb24vC4QCCzaiPf5DGLzeDyX3HgymQx79+5FKTWrhlFKKTo7OwmHw1RVTU1V5vIW/36gj1Q2rxd6IJnOgoBgIEBtRRRMDzlLMDA4QC6T4czZ85iGIByOEIlECIVCKCXp7OxECEFLSwuGYYKtJZLYXWhjzch8DuENcm4oyfCJfbS0tlBRWanXDyntCKtdmmtH18DWHDk8WTgpP7u5mZQEfR5uXTn7tXKmyrerkYKdjegYLp92KdYBbty4kcbGxst+9vj4OMPDwzOOXXjq+ABj6RymaWtxCrrdv5KS2vo6lFQ01NczkUwyODBI/0A/0pIEQyHCwRChSASf10N/3wDj42PU19cTjUQw7HIm5y6oqa6mvW0VycQENbXV7Nm7j1g0RPvKVbrrcVHnU0taCISuehHKbnAIoig+6srOpKQy4mdbS/llfwcHSznd2rGDp556ak7vW7S0Sy6X4+mnnyYYDHLbbbfNO3dbjMePDzKSyunF3QRHsKmYrFTQOXUxtbRJ2T0/bLIhbHn6JKfV9MLJwzrHKa7/d3QbUqnJJmW2yyKVXX5rkxV7RAimTUY8tt6k2HuOBTzcvnpuOo9izGRs0xfjhcR8Nh7DMNi7dy8VFRXs3r17zmWSl0Iik+eJYwPkCxKnLb0QBtIq0NnTDZakorwCyypo78eei+DwUwsI+P34/H5iFeXkCxapZAojlQQB6XSGvt5eIhEdGfGYHvf6O4udgb25OBzCJhx5y9KjGdBVFoYh7MVIn7uuuLKjKUoQ9pvsaJv9ZuPAWdCd81kObbWn41KRj+HhYTo6OuaUhnv44Yf58pe/TDgc5s/+7M9Yu1aTUaUUjx0fIFWw7Hb6MDI6Sl9vH0pBTQRE30Esrw9P5Vr8/gCG4aGutpZ0JkU6lWJ4aIjefJ7BwUFOnTqF1+/HUpL21jY71O5URIAIxlCN2xgZG+XpX/yU0bExOnu7uefuuzFt4m2Yjqh5MnXriI0l2OkXpyoCTMDjMXj5uhp8cyCQV9sRgbmLji9mA/PRAfb19fHRj36UwcFB3vKWt/COd7zDfa7j/AjnR1JuVDqXy9LZ2YmSklA4wuFDh0mlkqxes4YVDSsYGBikraWNbL5AKpVkbCLBwNAQ+XyOw4ePkMtmaGlt4847btcaEKkQThMg0+SmrVsQCB5//HFOnjxBMKinUdfU1bl9roUAbyGB9+RPQCkKa+6BgL7fXfdWapuwJAR9Jnetm9sQvpk0gFcj+lVsB3ONaC8K+RgZGSGZTLJ69ep5q5Sn47kzcbrGMpPlsi7/tBu82OEMnaN12pzrJlCagHicmKZLMd3ahaLoxaSgUP8tpcQUhk1EFIZQqGwKs68DKQysupuQ3gDYHS2FEHiVQhimfZaqeG8CFB7D4GVrqy8rJLsUZgqztba2zvt4CwUn13/27Fksy6KpqYn169cv6IYopeJnR/ptnYeuNBJANpPh/PlOQuEgDc0NxOMjFAoFdy6LbnUs9OjyguVWGhhCEPR5CfrKqK4sAwWZbJZEMsnY6DiDAwP4fD7CoRChSJRgIIAQQo8/x/Zw7WSwYegSasOLJr3O4DFHpCom6/udBsy7V1XNyxYcG5g+Sn05oDgKmsvlpjynlOL06dOcPn16zmm4559/nt7eXjweD4cOHXLJx/Nn4wyMaZG7JSUD/QOMj42yoqGGgc4zGBkwVRYjl0VaKQw7F2+YglBQD/iqrIJ8IcfY2ASFfIFcLkdvdw+hoG7+FQqGwbCdFN0UYrKTpQCvaeA1TD3npygD6P7bkkjh6El00NQw7Koo+3U3NZdTHZlbGnZ6r5fFbKs9H9GxaZpa2C3lFJJUPLF6LjrA48ePc+bMGTKZDL/85S9d8nFmMMGB7jHbCVCkkim6e7qIxcoYHR1hYjzB2NgY2Xye4aH4pCBXCEKBAOFggOqKCvJK0d/XhyUliWSG/v5+zp3r1MM/w2G8Xp87/026q7r2agxD2GlUsyjCDkb385jDx5FKYforyK+5W1fF2LuZ0yXX9MAdq6tmpfMoxvTfdrEJ6HzsYDoWlHxIKTlw4AD9/f14vV5Wr169IMc91j/B0d5xe+6KLnGbFGk4MxlsjxJ0uZTS3mtnZxdKQTAYwO/z2RsFmpSghajO+x3yYqD1AwqBaecBwRYhAWLwMGbvHkwEpukj37DNnlLrlErZHg12y3Q0ibGUwiMMdq+qoDw0f8EtXCgyc8ZoLzUKhQIdHR2MjY0RCASorq5ecE/82TPDJLKFSZEgMD42TndvD9VV1ToCJHQqTro6jMlmbz7TsAcg2k2vnUYNDks0IBDwEwgEqKmqpFCwSKRSJBJJ4t3dWAVJIBggEo4QiYbx+/yalE7mXWwSjF0xUaQZkVpHgpXFyIyytr2dutj8GsNdrNHccot8FKddnIZRExMT82oY9epXv5rDhw8Ti8XYuXMnAMf7xjnaNw5Kdxrt6uzGKuRZ2dKE/9TDBOPdmL5NyHAt0vSDL4bIJAB7BpRpuverx/Bx442b3IZidXU1ZLM5hgaHKRT68fv9RKJhIuEIPp+f8ooy7rh9NyPxOE1Nzbp6RU3qupQrQrdnOCEwTcdWJtO/SihWlAfdOT5zwdUMuc9VdAxMGTDotrvv6uLo0aOsWrWK9vb2OdnsjTfeyLZt2zh//jxveMMbABiayPDUqSF77haMjo7Q399PXX0DRw4f5oknHycaibJt6zby+QItTU1a/+cEpWzRtwA8QrBiRT2379rFxESCmppqPF4PyUSS4aEhPB4P4VCIcCRCKBTEEIKdO7ZRU11JJBKhrr5Of39wI+PSF0O3fRD632itlwkoYbi6ww0NMRrnmH51fturGfmYyQ4AysrKZi0SXlDyMTAwQDKZZMuWLe747yuClaN374957lQKVb0eEaoolldMwlnpnSFu6NB3f/8QtfVV+LwBMukUE4lx8nnJ6dOniEQ0iw0Gg3iGDmAkBynU3QiROkfcoSMXrg4Ed5iUMDxIPNqLNTy6itcmMrqEU5duKbssT89yMfCAHgw1h1LKi+FqM93ZwjRNotEomzZtYs+ePQs6UArg9ECCk/0T4IgJlWJwcJDh4TiNjY3EolF9szv1k7Yo01VXOCTTWfSV0zxuMq2kLPutSNezCYZChEMRhCHIZbMkUwnGRuKcPXOS6upqwuGIni4bCNopQcfrtfvKOMTVMFD5JN5n/o5wfpDbxoLkVn5tXr/FchylPh3F+f7x8XH27t1LJBJh165d80rF3n777Wzfvh2v14vH42FgLMNzp4dRCrK5LF2dnfj9Plra2zEnehAT/Zj5NEb8BFbjzeCP6PvRSNkb3uTv5+x/Xp+P9etWTz6oFBi15LN5kukkyUTKHgRnEA6FiUZj1NXWgTDIWdJNBws7qiGURAiTSRmy06hO24i0JH6fwe5Vs68UKMbVLLufr+gYJu318OHDDA4Osm3btnmlisvLy/mrv/orMpkM4XCYZLbAo0cHUZYuChjo62N8fIym5hZCwSBHjxwlk8qSy+QAwa233orpMbGsgt1czplOK9x9RSBoaW62e0gBSlFRUYGUWrSeSKQYGBygUCgQCoYIhkKsXbMGn8+n0yeWvXbY25LZuBPlC4OUiLpNOkKsPwhhd7uujPrZ2jw3Mu7gapOPmewA4Gtf+9qUNNilsKDko6GhgaqqKtLp9IJsOqOdh3li7xGEZWEqhWzZjVOaiCmQlrM2OCs9IKC/vw/LgpqaKspjFUgrTyhYTjAUoK+3l7raOpLJJP0DA/gz/TQP/xKhcnjGuylsfbstHLQjJFLa3Ul1Et80DajdjDK8KAFW1XqkpcPnUtqiREPgEQbCnOpRl4e83DqtYdB8sZznOaxZs2bOZZazwVg6z69OD9niTYVVkPR0dZHOZmhqbSXg95O3dDWJDorojcVQkEdiysn8+2RptNZdjCcSnDh2jKrqalpaWxGG0pEtZc/hUBJlp+f8AR9ShnjkhUcYHo6zclU7W7dso7e3BykVoXCEcDhIJBTG6/fZsxy0mNCSCoa78eSSvNq7D/+ZCXJWHsy5R8KWUmR2OUzvdNvV1cWRI0dYuXIlK1euvKLojONZJbIFfnF8EAkkkgl6uroor6ikurpGC49D1RBdgUqf0Pyh+1kKTbsQgbCbhtND3uzpwqqowZfzPdwHFB6flzJfGbFYuT17JU0qnWRgcJBC3iIU9BMOhwlHInh9vsnqOeGMldN9Qiy7+kIqnfL1egzuWlc753J7B8URMKfF/mKmXeYKZ8rxxMQEx48fxzRNdu/efUWjIEzTJBwOU7AkjxzsJZnLYxXydHd3o6SkvX0VPp8PYcDmzZvo7e+lkMtz9NgxomXlrF29CkvZLRekAI8ToRT29bf/zxk6CHZa1SQcitgbey35XJ6JRILxxAQDg0OYpiAajREJhYiEwzrK6UgA6jZP/ob272jZWo+Q18Nda2vnfV/MtB/U1dXN+/e9HOZjB9Ox4JoPZ5Kl04NgvuVSqVyBn56VZM0gWGksT1h3gFTOwibwGNpIhD3EwyoU6O7qIl/IE/CZ+H0esJ+3pG7eghCEQkFtPAIKIyZqyKRgCSaSWfpPnSIUjhKJhAgGg7rmWggUptZ9SJAeL6p+s22Y+jsKwDQkhnA6qmofRzes0bNG7prFwLjZYqnK62aDK22tPRMKluTfD/aQzVsoAflcju6uLkzTw6qVK/F6vTpgZUcdwClEku6NYtkNxTQJsNwhXwbw8EM/5Ozp0wRCIX7rP/8n6urq7WuoMM49iRE/g6xej2q5BRCMjo4wODRENpOlr7uP+tfUIox6stksyUSSiYkEff2DmIZBKBwh5JARjwdR1cxNZUmqMxPk179hXsQDlra8brYQQpBIJDh27Bhbt251W0NfKQqW5KcHe0lk8sRHhhkaGKJhRT1lZeVaFCoEwgwgN76R8cSDVAYEKptEZpMUDD+ZXJ5CwSJvl+FPlts7KVy9P+ihg9KNYkkBHgM8pkl5WYTyMr3J5/MFUskkiVSSkZE4QpgEQ0FCobAu43Sq7oQtQBYCj52eu6GxjNp5lNs7KI6AZTIZpJTLgoQWb6RCCDo6OmhqalqQUQoOnjg+wHi2QCGbpbPrPH5/kMbmFSAMLCWhANt33szo6DjHTxwjk8uSTOgKOWXZQ92k5Q57A10hYzqNPoSOVgpdYYC0iwqEpSvZPF4PlZUVVFVVIqUknUqTTCUZGhqir6/XFqBqG/D4fG65tTPl2ukzdPvqKkK++VepLVXF05Vg0UptQef/5xNaLViSnx8ZIOOrRLTcBoUMZrQebBapF4ZJF0UJyGezdHZ14vX6aG9r5/z584yNjQOabBTyOYYG+ggFQxQsLTaUQmFGG8mtvQdvZohg9XpqVYBUMslgfz9SKcLBEMFImEgojMejW6jrSbn21mRor1ZrB0zXY5JKasIjCxjC4K51lYT9V6bzKMZSDRSbCxZylPbTJ4dI5zWJSyaSdHd3UVYWo7a2frJ00XAmRIKQeQLDhygkxhkN+gnHyjE9Hnp7ehFI/D4v0tKqdQtFMpnCkpAvFEil0rqqSQhEdhzP8EnIJhCDR8jXb0H4gtTW1rGyrZ3e3l5u3LIFZbdNFoZJKBYjXBYDqchmM7qcd3iI4YF+gsEQ9ZUxmu//CglSqOj8u1Au1+iXg1QqxYkTJ7AsizvuuOOKhgZOx+PHBhnP5Bjs7yWRTLKyvZVAMAQoPcDPHgqJMogH2jHECP7oCsxINZlkiomJMWqqa3SmVkoKSL2+CGWTF3TEQjDZyVjYDcaK+vjYsjO8Pg8x5SEqc8jqFlKZAsl0kuHhYfoL/QQDfsKRCOFQiEAggDP7ozYW4IbG+YXaQd/7xXbgDBRbLnYgpeTkyZNYlsWqVatYs2bNgh37hbNxukbTJCYm6OrqorKqiurqGt1nCcFkL1JYubKNieQEfr+PtpVtFCyL7p4uHcVEYVj26HJ0O4TJ4gRnYrHdvsHRkHkEHntcgxMZMQxBMBRgKD5ELBolFImQTKSYGE8wMDCEx+shEgoRsvUiTnPLjStirJjlTK+LwbKsKYLd5eSMXgyL1mQMmJfXq5TisWMDjCSzgECGqyfz9TjpEOH8hTAEyVSCrs5uysrKqK2tRUpFVXUN4+Pj9A/0UyhoMVE0HKSqugavz6tLm2yvRlatwTLWooCIMIhEdMOgbCbLRDLB2Ng4/f2DeL0m4XDErgcPauNROsQvUUgnzydxy+w8HpP1DTEayxfWI70WmO5CjFMHON4/wdnhBAKDkeE4A4N91NU1UF5e4XYKdCppHV2H6u0g3PccgYLFCHDSt1IvEB5BfU0dptevIzRS5+hf+YpX8MKeF6ivraO5uUlvMsIAfwQVrsKkQCFai/AEAIXHY3L3va8lm8ni8fnIF7QA1qMnGup+Zx7w+aJEIhGUVGRzOXLZNKtCWZ7bo1uIV1Ul3fHYc+3PsZxtIB6P8/zzz1NZWUmhUFhQ4rHn3Ajnhsbp6uxCAW1t7XbkS7kVLEKBZVe91bZvZiKRYCCZxDp1GqWgvKKMSDSiNThKRz9Q0k27GHbzL8CedoxdHj1JPKSUDA7HOXr0GFXlUTbnO/BkRqBsBd5NbyIW1dHVfCFPOpVmIpEgHh/GECaBYICKWJRbbph/QzXnHGByzU0kEhiGsaC/93xRKBTYs2cPmUyGUCg07xk9M+FE3ziHukeID8cZGB6kqamJaCyKUwnpRLKU1ORsRVMTkUiEZCrF0OAww4PDBAI+6urr8ft8dnpdE1fLJiLOUFLTMN3ePqDHb+hutXoPsQoWHfsOkM9nGR0do6NjLz5fgLf8xzfT2NBIdXUFlqVIZ1KkkimGhofp6e0jGAjQVFPG6vIKpo+hmCssy5qSxlpOKdiLYVHIh5N6mc/G89zZOL1jaVcn4fTg0CJTu5+DIxQ0BMPDowz291PfUEssVoadxNOplVCI4XicoaFhyqIRLKvAmTPn8Po8RCNhIpGIbsqE03lSUbAKuHX4wiQWLScWLQcUqVSaZCrBQF8vKAjYLDYUDuOxDdRj6LJcZbtE1RE/2+YpIroUlqK2f65YiLTLcCLL87agsK+vh4mJcZpbWgkFQ4B0x6Aru5kb2HqOXB6f1JUMkUgY0zLw+Xz4vF4GhwZRg/3aCwlHiEajrFq5kpXt7Tjlr7pBnI7aWCvvgcwIMlCFtCyUPVzQEIJQKOA6Sfo/ukGdtEVqznOmaRAMBLhtXR0bG8ooFAqMjo4yPDzM8ePHyeVylJeXU1VVRWVlJaFQ6LKL0UzDBZeLDQSDQTZs2EA0GuXZZ59dsOOeHJjghRM9dHZ2EolGqa+vd1tjO56pvnclWDpNEomVEYlF6enpJZVMEolGyKRSnBnVFVmRSIRoNIzH62V4eJhcNqvz5Zb+/S1L0d3dwzPP/opwNMadt99JMBTAQPDE449z5uwZmsu83LihgEkekRggV8gjvH6UEng8XsIRk2A4gpSQTqfIZdMce/zfuOUP/pGtW7fyyU9+UjezikbntAlNJx/LqeLJNE3q6upYsWIFzz///IKlYPtH0/zy1CA9XT2kMinaW9t1NEk5IzVs2BoeAQT9PoL19UyMT9DT200kFEYJQdf5TjANouEQ0UiMQDBILpujb6CPmtoaAr6APf9Jkc3mePKJJxkZG+Xmm3fS2tqGlHDo8HGe+uWTWJaFULrkv5DLMtjfT9OKJpQC0xSEQmHCwRBV1VVks3kKuSzB0TO85jW/h1KKT3ziE9xyyy1UVFTMuSfSTI7IcouET8eipF1gfhvP0d5xjvVNaNe1aMS1IwAFYRe0aMY52NPP+MQYLa3NhIIhPcjMrl+TStHX108yOUFTUyPhkaMYmUGs5u1MFHykkgl6erqxFIQCQTckKkxTC0vtTcjJA4IgFo0SjeqoSDqdIZVKMTE+xuDAIIGAj3A4TDQSwe8PoJQk4DV52ZqqRVkIikOtjgJ7uYTZLtXjYS7IW5JfHOsnk8/T3dlJXkqaW9t1E7u8NSnocxU2uBVPvqabMEWBTCbL+UIlVdWVVNnDn6RUZLIZkskk42NjDPT34w8GiITChCIRvF4fCMhJyx4oJhD+Kkx0K30hBEMDg0gkDXUNeviUtPVHYjICY9hpQscLq4362digiajH46G6uprq6mq3N0M8Hmd4eJhTp07h8/moqqqiqqqK8vLyGRejmTQfV9pFeKEQCoVYsWIFqVSKQqFwxZ4dwOBEhh+/cIru3l5qa2qoqqxyZgu6sNAVTo6YOJPJ0t/bS75g4fH4aG1vx2vqnj+FQoFEMkEykSQ+PMTA4BBPPfUUUsBdd9zFjp079BomFAcOH6K7uxfTHKC9pZX1G9bpMl2lh1iO5j2kok3EcgPk67ZiGV49rwP0emIIPKaOoviiEdavruXtH/sn4vE4Tz31FHv27KGxsREhBJWVlS4JvVza2lljHRK6nMiHEILW1lacoWcLkYJNHv53Hnv2KMPZMIWoLtM1TY9OtRbSiK7nEYUMsnE7yh9zRb3dPT1kMhmsgsWKFQ1EIjEEYClJKpkhmZygv7+fTDbPL37xGKMjcRpWNHL//W8FdHOx851dHDt5kkIhT8e+/bS2tGKaAq+d7kVKWtva6Onppawsxuo1q/VIDjvKLtw0nkE4FOCum5r5P1/6HufPn0dKycMPP0x1dTXpdJqysjL3/p/N9bwW9F/TsSiRD5h7vr8znuL5c3GtSkf38hBKoeyGX8IWAoHEKkg6u85TKBRoam7F9JhkC3nXG5WWoqe3h0I+T3tbG77EeTynfgyygBjrJrrjXYSjUWoRpLNpUokk4+NjDPYP4vd7icaihMNh/L6ALueUlt2oyl7U8ml8/gDBYBXVNVVIS5JKJJlIJjnf2YVUEI6Eue+GBky3d+HCotjYUqkUSqllx3Q9Hg/pdHre73/82ABDY0k6z5/HHwiyqkULyQwhtJHY2TctGlN2JZRe6DGDxMs2M5Dtp76hgbJYGYlEgiPHjtJQ38CKxhX4/QEqKqvI5XMkEkkmEkkGBodB6OFssWhU1/GbWlOipMJSkn379vHgg/+EUII3/vqvseuWW+3R23Z5tiNgtKMfln1OFyulFELoKolwmObmZizLYmRkhHg8zokTJ8hkMlOiIs5itJw1H9N7PEz3zOaKZDbPt36xn76hOC0tTUTCepCb7qOgy6KVEigk0rIwDJN8vsB3v/1dunq6aaiv57d+67fwOHlxpfB4vMRi5USiMZBwrrPHrtSTHDl6mKamFYTDISKRCA21tXSfO4/P76WyotytlnrZy+6ivuEEFRWVmOtWkxCG7bwYmCZ4XIG8rqkRQlAT8bGttZJ169bxwgsvUFVVxV133UVdXZ3bNvz8+fMcOXKEaDTqbkIzRUWc6NdybDQHCys+z6XHeejpfQwPDRMKxKhcsxPsYaACMEbOYPQfAApgGBTa7wIUzz37PE/+8kkMDN7whtcTDEXdaidDGEQiYaKRELKujsHBAUYnJshksvT2dHPw8FFW1NUSiUSorKqkLBYlnUxRV1NjR1wVq9asIZfLksnmueHGTQT8Qe0wC11BZQjd7VbJSZK4sUHrPNatW2e39Ffs2rWLW2+9lXQ6zfDwMPF4nLNnz+LxeKYQ0os5Is6xl6sGcDoWpdrFYbqzNbZ4MstjxwewCs4oYceXVXbu3RYRCijk8nR1d+Lz+fTcBSGQlrQnmiry+TydXd14fV7aWtswPSbC0rlcoRSCAgKFaddvhwNBQoEQNaIGq5AnmUqRmJhgJB4HBKFomHAoTCAYwhAC/4kf4e15DhmuIb3lXSiPH0sqPIEglcEQ1bW15HNZmoMFUsO9PHX+JLFYzF1AIrbQ6EpRvJgvN5GZgytZcA71jHL0fB89PT0o4MTxY/T2dLNt61Z8fr9OvSX6ME49gvJGUKvvBtPn2l9/fx9j4+M0N7cQDIYoSMU3H3yQ8+fOEwwEeOfv/A7VVZWAwGN6qKwop7KyAqQkk84wkUwwNDRILp/XdfxhnabzeT2cOnnCzS0fO3aMW2++GaRAYrmNzyybCIHmSTvbK4nMUnBsmqYbFQFNLp3F6PTp03i9Xqqqqtw+Bw6W44IzfcDgfJDN5fn7h59laCJNU1MLgWCAfEHaM5LQInQ73SoUGB4PAkH/8BB9/f06MphOk8nmCBqGnbbFFZaahoFhCLZtvZFzZ0+SyWS54/bbtEYgmWBocIiKikruuOMOKirKqamr15ETSxItK2P7zh16cioKU9nVd0LPc5HCGU6m1zCvCbevqcIwDB544AF++ctfsmnTJhoaGgDdw6K8vJxVq1aRzWbdaJgza2Z6VORi/R2WQ+SjGFdKPpRSfPe5c3QlvFSGY/gqG1G+ENjiUqXA8gSQhhcssMyQrfeQHD95glwqgzfgI51OY9rCYql012FL6iGlBlBdXc22G7dw5NgRNqzfwKq2FlKplC6jV4pdt9wKAh1xsbvdGoZiw6bN4IhRcQZJTu4z5tEf4hk4QKHxZspufC1bmnQE9Dd/8zdpbW3Fsix2794N6JRlU1MTTU1NSCnd9OyZM2c4dOgQZWVlrh04+8lydkQuhkWNfMzG2FLZAj893K870wk1ObJa1zgB4LQpTySSdHV1U1VZQU1NLUrprqGGqXXN6XSaru4uYtEyamprEDbzlFWrUatejUoNIVdst5t/OZX3TusHiWl4CEeiBEMRlJKkMzq1Mjw0RC5vEQl4Wdn9LBITORGHsR5U9Uo8Bvbx9CLTXFvOK9bXYBgG2WyW4eFhhoeHOXfuHKZpukTkYiz2cpBSut4E6M3J6/VO6Xi6lJje42GuGBhP8+PnjjM0NERD4wqOHjnK4IBuJNbU2EhjcxOgME7+DDF8AiGE7l7ZdAtWwaKnt4dcPk9zcytej8/u/SEZGopjWQWyuQzJsVFW1NfauiJbnAYoQxAIBQkEg9TW1JIv5EkkEiQTE4wMDeL1eVm7dh1793Zob+XWXbqsT+oGR1ZBezrOhgaK+liQNXXzJwUhW1vkREVGR0eJx+OMjY0Rj8eZmJggEAiQy+UWLdT6xBNP8LnPfY49e/bQ29vL9773Pd74xjde9n2ONzbfyrdkMsn//fGzjGQUE2PjvNDdw4aN66itnexhoJSOSClHJKxgZHSE0dEEGzdtpqenixs230gkFNKRMiHsfg62q2M7NlWVVfzOu37H6TGIUlBWXoaSkkQyxXhigvFEgvGTp4hGI4SL5v5IJSe1YspCKUFOi0+w3Db+BnesmxyRHovFuPfeey/63f1+Pw0NDTQ0NCClZHx8nHg8TmdnJ4cPHyYajbpEw0lrLddN50oq36SUfOfxDg6dG0CUrePwudPU+MpZj8C00/AohSprgdWvRBRyGJXt5PIFOru7WL92HdIqEInEbJ2GbhDlEAWfx9AtEezU7b2vvYfX3P0aPKYmF7GyGEop0ukME8kJEhNJTp48Q8Du6xKLRgj4A3ZZv6NBk3ZqTyCSfXi6nqegBN4zv+Dlr73PXSOF0E3PLgbDMKisrHRH1afTaZeQFu8nuVxuSu+NxWyxv1BYUvKRtySPHBkgV9BqcyWKBUPKDVkpIB4fYWBwkPr6OsrKynUuzX4eBGPjY/T09lNTXUVFRTm6ilLqPLwC2bhTt9RmchCc0oUpKGnpxciwp096BAITv9dLeTSKopZcLk8ikSQZaiSY7kGYfsYsD+F8Dn9Ah9mkJQn5TXavLHdvNMMwqKurc1sQj42NXcBi55LbgwvzvIlEYlYCxauN+eR5U5kcX39kD+PJFKtWteP3B6iprqKvv4+AL0A0FgOlNT3KG8ZQJiCQngiZXJ6enm5Mw9T5WEeMKUAIk/vuvYfHn3icltYW2leuQhe6qMkyOoGtM1L2e8Dv8xKorKCqshJpWSSSSYLBEG9/5zsp5CXhWJTR8XFikQhejwePnZqTUpIrKLweg1vbtT3oOR5X1t+gmLw6VQR+v59HH32UX/7yl3R0dLBu3TruuOOOK/qc6XA6F//2b/82v/7rv37Z1xcvrvOtehoeHuZ7j79I1ogS8kteOPUChXwewxTU1dZrx0JJVHoUYfgxfEGUEAwO9DE2NkZbWxMbN65z5zJNugeAkPamjb53lUMadPWLlMIuqxUYwiQWjVIei2IpyGWzpJIJksP9JM/1Uog2Eo6VEw5HdDRCCj3GwSYdetAcrK8L01Dmn1f/I8Mw3KjIypUryeVyDA8P09vbSy6X48knn6SyspJDhw4taqXLXEnobCfbXgy5XI4fPPECh/vStLa08vOfP8rwSJyRRIampmbKKyoRwHhigmw6S2VVKxh6mnZ3VzfRWIyV7Su5+ead4AygpGg2mBB2RFwXCUz24bD7AtnpNaHA5/dTEwxSW60rXCaSCRLjCZ4/qtNjDQ0Numt2OAQI3eVUSfBG8XqCeGSaV0W68Aaj8+6BFQwGaWxspLGxESmlu5/k83kOHjxIWVkZ8XicSCSyaHYwX0dkOhY17XKpjUcpxc+P9DOazNq9O4SdwrWFaU6axZL09/cxMT5Bc0sTAX+IfMFyzUcBw0ODjI6MUr+inmg44m4kWoDo1GZrMiOdc5TSzc0jDD2TQTokaDL1IxUgwev1UVnpQ936X7DGO0mKCDJj0dvbg2UpnRsOR7h7QxvhYECLX+1NqPimi0ajlJWVsXr1ajKZjBsVOXPmjBtOr6qquqTiefoodWea6XLDXCMfqVSK//OjZ0nnBe3tK/HYw5lWrVpNZVUlfl+AcDiEROdardWvxgzXIfwR0tGVdJ8/SzgSpb6uDhDunA2HYGzefAM3bL5B24Z93ysEzmBaJ2zqtD5WyukbYnu0CEKhCIFQhOraOt1mPZkgMT7G4MAAHr+XUDBCOBQmFAoQ9Brsai8n6J0crAW4OXqn8+N84ZTXNTY28ra3vY0vfOELvOMd72DDhg3zPubFcO+9917SS78U5moHSinOnz/PU3uPkg7UUltezujoGJFImGQySVmsHKkspFQYQyew+g+TzkNg3cvpjyfJ5TK0tbbhdSItCsCeSIxgIpWkkMsTjcUmvUXbiTEECMPEY/fuceOjtk2YAoKBAAHTwnvoO1jZDPlEHV3m6xkYjGMaWpgejoQJh0OYhr725UEPW5tj7proXPv52oDP56OhocGNKKxbt47BwUF+8pOfcPz4cd7//vfzpS99ac7HvRzmSkIdmKZJNpud/Qfl01iPf45Tx09wLngfLau3Yxom5RUVjCcm7M01BAqG48M8/uQTjMZH2HLTVla1t9HT20dtXR2VFWVF97JA2Yu7ZUlGRuKUl1fgMT22ns+OWggFyh74J3QTMGFozZeGwPR6qCgr52eP/IxfPfM0puHlP7/1fsLhBPm8RSgYIBbVZfa+UAzr5t9jMycIb9mFJbxQ5JzO1ykxDIOKigoqKiro6elh48aNZLNZvve97zEyMsKuXbs4ceLEgqdi52sD07FkkY9nz8QZmMja4U294TsDvvQlFhQKBbq7uynk87StXKlvZGVpYmB7qL29vWQzadrbWvAH/DiDwtwYil15oHO89lJihyiduR1O82PhpnmcwVC4i5Ow8zOGx4OqaCOIwC8lFbKGbC5HKpmg0Zfi0N7nOBeJuDl758JbluVuQM4m5PF4qK+vp6GhAaWUy2JPnTpFOp12RYZVVVVTIhsOay4WmS2nENt80i7ay91DxojS0lJXVFeviWNFRaUOa9vehFIK4QlgNd3MxMQ4vZ3nqamqprzCnv9jezGOulxLEe3raDjktoik4gwqlRScYYA2u1XovK77vZyKGp8fj9dHrLwSaRVIp1Nk0ikG+rsxELTXlVNmBDHNiPtbOCkzxwauZBOa3mgunU5z++23L1gX0SvFfMSGUkoOHz7Mqa5+kpFmIgEdKYjGYuy67TYyqTTVNbV2vl6SHe3l3LGDpLI5Oo8OsuW2u2lpbXMHQipAWXZkUyjOn+/kwX/8J/KFPP/hP7yerdu2FsdD3Oq6SauYnO2hbPGwUgpGuiCdwWNCINVLa2MdmFpTkEgkGR4apq+3l0AgSEUsyj3r2/D5fO61n+6UzHcTsiwLj8dDWVkZZWVl/Nqv/RonT57kve9975yOM1vMl4TONe0ydvCnZPf9hI7cBuqMMyjjFhSKnTu3s7K9jXAshs/vI2/lGR4Z4fDRo4yNjHG+s4t7730tGzasJRSK2MJSJ6oJKEW+YPG1Bx6gu7ObltZm3vrW+/GaBkLoVKkQk71cHOg1wNBOiKXTNpaCA/sPAiaWlIzEh7jpxrvI5XIkk0mSySRDw4N4TA8tNeWs2PpqjPJyPIbh2oBSakEIqWVZhEIhqqurefe7382XvvQlvvOd7yyKBuxKHJFiLAn5ONQzzomBCXthdwa4Kfd2Vwqy2QydXZ0E/H6a29vQnot0RVyyUKCrpwsQtLS24fF43DXDmVIr7ZiqM7PBmVzptF82nXapOAuCKmpipisUDCcVZDeUKVh6AUIpTNPA6zHweQLc0FzFHWuq3XDo0NAQHR0dAFRVVblk5FKbUFlZGeXl5axZs2ZK6eXp06enlF56PJ4Zy6qWW9pltpvO+fPneWbfUVKBGmrKypAKrIKFUHbPBkd0DDgzdgxb7DUSHybbuZc1niRetQHMKjeUXmwLMLVxlHPdlV0tYSnlaoF0lzjhtsIXdiWFdFIq6E3KNMBjGhgo8PgJ+f3IsgqkslCFHDfXGZw5c8YNh9bU1FBdXe2GQx07mO8mNL2CZLmW18025J7NZuno6CCbGic5MYrPSCH868HwIFBUlpejysq1l4pEmAaDhRA9YwXiKcXp7Cj3NjYCgoKltBOinEiT1vOcOnGSicQ4UkoOHjzAju1bmVx5JqNk2EJ2Z92Q9prhEXpzODMO/ok87eUGT5232IaJBx0WDwb1JpDL5UmmkqyM5DnYsQe/3++uA2VlZXozu8JNaKb+DlVVVaxbt24+l2rBMde0i1KKM2fO0HlulCcHNtI5ZrE+EqRcSbt5o4dqu5FkvqAH0tfX16MKBZCSXD5LwO4mK+3yd2lZuJFQFPHhON1dXWQzGc6fPUcyMa6dGyYj8MJ2YKVNOpXSaRjsajahHHIt9ZrEJGf1+334/X4qKyrJWxa5bIqbagVHjx4ll8tN2Q8c0fBMUfLZrgUzaQD9fr8rYF2uWJS0C1yc6Z4bTvLi+RF3gzDsDUBHHXS/hFTfMYb7uok0bKC2tl736FcWQhhYSs/16OruJBQMUV9fpzciKZF2WYwTPnM2GKGEnbsVuE0YgIJSKMumJAI9SMy0Iwr2wqXzygKpBIZSYAj8Rc0FFIpY0MfuVXo6oxMOLY5mDA4OcvbsWVfj4Ries1HMtAn5fD5WrFhBU1OTW3rpNKRywpednZ1UVVVdleZSf/u3f8vnPvc5+vr62LJlC3/913/NzTfffMn3XM7bkVJy5MgRzvf0MhZqIuz1Y1l2rwwMlIE98toeRa/dD7uMVdHX10suMUK76MOTSaD60hQqWjG8AR0mt23Ajazb0Qw9mA49p8d+3BAGwlBaJKq1g3qxsVXxAq2G95pTFwMdGTNcEonQNvTyjS002aOx0+k0Q0NDDA0NuT08HBsoLy+/gJDOdhOaqdHccqt2gdl5vePj47z44ovEysoY7hlAnn8Bj/AgDQNqN6IQFKTumaDs+lohBN6adg5l6xlNjLFu3WpOnzrF6jWrXcG62ycI3fVy/YZ1PPf8s+TzeW688UYs9HW1pDYGRdEka6HXDVMIvEKH7J2OurHyKv7ymTwmikh5Jdsc0TGATWf8fh+bWyq5dWUVlmURj8cZGhriyJEj5HI5Kisrqa6upqamZt6b0Ew2sFx6vRRjNo6IZVkcPHiQeDzOvkIr/3rqeZKpBGeNMf7zNgNh71bSsrRzYL/P5/OxbdsO9u7roKysglQmw/jYBJFIGITddRjcKGZNdRWtLS2cO3uW9pVtdqdkfY9bStuJVOg9RRVFPO1omhN5R8GKxhWcOHECgBWNjaC0llFKvfZ4PSZv2LGa+rIASikSiQRDQ0P09vZy9OhRwuGw65RcKkp+qVTtTF1ul2PF03QsauQjn89PeWw4keWJYwPkndyZnVsTAruZEyTOvkjw7M9oNEGV+5GqVnfJcFhdMklPdw9lFRVUVWkv17JndGAzVF1loI3Tyd8LJxKijKJUisL0OJndydyuLZ62xy0LDENg6CJtVyHthGG9Hg+vXFeje0tMgxDCFYmtWbOGTCbjbkJONMPZhCorK92SqZk2oYqKCiorK1m7di09PT2cPn2aoaEhTp48yVe/+lUSiQRPPfUUt99++wJfSfjWt77Fhz/8Yb7yla9wyy238IUvfIG7776bkZGRGV9f7O0432X6jZDL5di7dy/5fJ5MxWp8WYlzZzvpEEcDpCxbAAoIw6BQKNDT041Uiub21YhTp1FWBuWPoEyvFqRKJ91muZ6tk4YB51iacILtISlBwdJvlEITHyEMvOakeBLl2NEkwTUM7HCt3pxWVkdd4gHaG25ubp7Sw2NoaMj1hJxNqLq6Gr/fP2XhudQmVJx2yefz5HK5ZUU+Zpt26evr48CBA6xcuZKuQpR49qh+v504cdKfypL272ygBIyOxBmNx7n/rW/l8JHD7N2zh8eHhzFMk9Wr1uA0nHM0HwhoamriAx/4IHnLIhoKU8hbrs3pKiU7ZKb0rBchHJuZPJYUUFldxXvf9wecOn2GLVu22F9YD0dVSiAFxIIebm7THrVpmtTU1FBj94dIJp3hY30cO3aMcDg8JVXrrAXKXmcuRkhnKrFsbm5eqEu4YLicDWQyGV588UX93erXkR05izA9IDxYdiRCr8nOoEj9G2ezWbo7O7nhhhu48cZN/PSRn/P8s88wMjzIPffci8M4nIGBGgbvfOc7iI+OUh4rA6XLbZVDPm1H2DD0vqAd5Mk1wD2MUNx//9t4/vk91NTW0t6+irxlYRoGHrv1w+bGMurLAu57o9Eo0WiU9vZ28vm8ux/MNUo+3QZgagHCctQATseikY/pYbaCJXnuzAjR4OSoadO+s4Wdi+vp6aYseY4m/xgGEil6KZQHXRGgvlA93Li6mcrKShQKj7vo29oNTUuZ5KgO9BbkKM9d3UjRZjTJP8QU0aqr3LdDr875CKAi5CMSmN3PGAgE3Prt4k3o2LFjZLNZKioqXBZ8qU3INE38fj9bt24ln8+zfft2HnvsMR599NFFIR9/9Vd/xe/+7u/yzne+E4CvfOUrPPzww5d9X3GPh2LxrOPllpeXY9SsJNGXsG+cyaiUs7lLACE1lTT0YtPV2amFlisaMIRBvv0VkBpChWohX0AZwi2dw9Z7TApJJ4fPTYZUlW0zAlPYHpZypSH6dOwoCdKOjgi7QsYuydTiVkXQ62Fn28U9z+IeHuvWrXM3of7+fo4dO0YoFJriCQkhLhqatyzLtc1EIgEsv14vcPGNRynFyZMnOXv2LFu2bKE34+NsfxxVf6O+lz0eVPVanMnEpqFJh1Iw0N/PRGKClpZmQsEgsmDZTkjBJRSWtHNq9mdJm1f4g0ECSs9fMvWT7tRZd7MyDFcr5mx2OrKhyygNBC2tLbS1ttpdEXV3VUtpo/GbJq9cX+f2fSmGEIJIJEIkEqGtrY18Pu+mavft24dSyrWRqqoqvF7vRaMiThWVg+XU6bgYl4p+jY6OsnfvXq1VqmjiROcoDfX1vOqVr2JwaJBNmzbZ6VEdknTW4GQyRU9PN5WVVVRXVdHb14eyf6eCZd8nOqlvp2wn73epFLFoGWrkNJ4D/4IwvVg33Q+xel0d6ThCNnF1nFhs3Y+U+lp4AwHuvPN2W1vmbhgIBTXRADe1XHwt8Hq9F0TJh4aG5hwlz+VyU5w7p8z2JRf5uJjY0GMa3HtD/dQXSwuSA+S85XTsP0B5NM+233gz4WfOQ3aC/O57UDW1KKU4fvw4ZmGAu+/esaADipYKxZuQ0157cHBwyibkPB+LxdxNyAnfer1e1+jKy8vZvXs3f/zHf7zg55nL5dizZw8f//jH3ccMw+BVr3rVrL4j6AXSIR/FXq6vvJ5fHB/Ui7xUUwigQiLlpLhWCUgmknR1d1NRXk5VVTVSCj08zBNClbXg6XkRs+dFVLgGufa1KNOLKsrdYmuLbO2hrWIXbuWLTuu4shKbcEyKl4VSCNP9C9crl2ChyypvW12Fx5ydWGw2m1CxJ1S8CY2Ojroh91wux/j4OMCibTyJRIKTJ0+6f585c4aOjg5uuummy753po2nUChw4MABxsfHufXWWxnJGXR09gMGwhOC5ltsYTHu6HNhaq1Xd083Vl7SZmu9LAUbN9+AMkx8Pi+t7W3k8nk3cmEIMISJoZT2YkXRZsJkdNTmEAD2bB+94enUjcQQ6NlNpomT1VVKa0Mc5wc7ZbtrVeWsnRKv10t9fb3WLhRtQufOnePQoUPEYjE3PVO8CeXzeUZHRykvLyeXy2EYBhMTE8uKfFxO89Hd3c3hw4dZs2YNRrSax48NuSn5DZs2sFFtQAn9fd1UmlCMxEcZHBygvqGesrJyAOrr69m16zZGRuOsXbvWbm8/WRXpkAMhwGNHuMzOZxCFFCIP9O5Bxu5zHQsn/eYMILXc9K0mrh7TSevpNcFpkKmkwuc1uXPN7IXfxVFypxJyepS8qqqKmpqaC6Lkzn5QKBQQQpBIJKYMmVuuWLr26tLC/PknUZ3PEjca8d74PrZuvRkhBJnXfG4ypFQosH//fjKZDLfccsuymNa40Chur+1sQk5++MCBA0gpXbHp+Pg4IyMj3HTTTW5q64c//OGiebxDQ0NYlqUHbRVh+t8zwUkROBum4+XeeOONRMqr+OG+breqSCiFtMvZJsOreqGwlGJsdJSB/gHq6usoLyvTH2Cn2JwSOKNvH2QTCJnDSvRDWZNNauy0jSEwlU6joYpCXrYGRCrAciIZmlq46TTlxN8dkepkGa7WExlsqI9SF5u/fU7fhMbHxxkaGuL8+fMcPnzY3YQCgQBHjx5lzZo1hEIhpJT87Gc/QwhBLpebV+O6y+GFF17g5S9/ufv3hz/8YcCJCsyMi208qVSKvXv34vV62bVrF8k8PHWiB7dSzV74bXmfmyvLZrKc7+zE6/PS0NyMMgR5KRFAJBJm1807UcChQ4co5PJs3LwRv3+yAk6zRhPD1v44jqG007UFKScrotC25TdNPXJdGI6p6DSAQ2LtTqZOWsdQsLIuSlv1/AjApTYhp9W2k6bt6urCNE1aW1sxDIPR0VGee+65yTTQImAmEjobTHdGHYeys7OTrVu3YgajPLSvh7xUtsDbTsfbQnA374qkv3+QibFxmlpaCAaDmijaRHX12tUotJNz4oXnaW1tob6+HsP2OKSThLVTqFS2I4aPIwyBLGubXH/sNKywtX/CMPAayo1qTIZFlasTks65CoOXra0m4Jv/fTibKHl1dTWWZblrqmnqsu5//dd/5dy5c/P+7MvhYo5IZWUlLS0tsz7OVUu7XIDkINa5X1EY66MmnKN2VYOuYikqI02n03R0dOD3+9m5cyde7+zaU1/r8Hq91NXVUVdX525Cg4ODnDx5klwuRyQSYXBwkEQiwd/+7d+Sz+f56le/utSn7aI43OcMlzt+/Ljr5YbDER7a30065/Rrsf+/3djJ2W8M+wYfHBpkdHSE5uYmwqGgSxQEUJB2IkWCWd6OWTiKCpRhhqp1VANdxm3YCgKdznfGYTs6ECffNqkFERT1CbFFQM6kWiWUrpQywGMfN+r3sPUSIdb5/IZO+aTTatsRqo2MjODxeEgmk5w8eZJTp07xiU98gj//8z9ftGqXu+6665JE41Io3nji8Th79+6loaGB9evXk7cUPz/SQ85xK6We02LlCzizN5SATDpNT4/uXlxXV2ePubc1N0xGLA4fOsyjP/8ZlmWRyqS47fbbtQ4M4YbeLTuFZdlqZCdabhh2NQuTxAQoEp7bIX97czLta+9URaEU0aDP1XksBIo3ISklIyMjDAwMcOjQIaSUVFRUMDAwwMDAAP/1v/5Xdu7cycc+9rEF+/zpmImEfuhDH7rs+4qd0Xw+z759+0in0+zatQvT6+eh/d0oBB4DnCnmlqOvwnZCLEl3Tw/5XJbG5hY8Pq8WCisdnfSYJiiLzNnn+emPnmIwUaC2tpb73/pWvD6vnUoV7nqDUljNuylEG7GEFxFdYc9fAVOYuqRegjANnD4hbi7GXg+kPTQOpR0VwxTc2FR+RU7ITL/d9Cj50NAQXV1dJJNJAoEA8Xicnp4efvazn/HEE0/wwAMPLNjnT8fFHJG3v/3tc/rcq5Z2KYZSinODSbyikRUxhadtN9lg9RTiMTY2RkdHB7W1taxbt+6KO0NeqxBCEIvFGBgYAGDHjh2k02n6+/t5wxvewPj4OB/5yEfYsWPHony+I3zq7++f8vj0v2c6b0doun//foLBILt27cLn8/GrU0OMpvOuuE+h3BwqOLpTA0tKent6yOWyNLe04vX6KVgKYWgBmCH05gRoncaqu6DhBkQghjD9tndid7il2Eu3S+TsdUQ3mnN2myKNgJwMuxpuTteVoCGl1hUIAXeuqZ5RdLxQ8Pv9RKNRjh8/zpo1a4hGowwNDfG5z32Ob33rW6xfv573vOc9i/b5VwKnwVRnZydHjx5l/fr1NDc3I6Xip4d6GM/k7D46aA6oFB6P4eqqRkdH6esfoLa2hsqKKhDKpqy6dFq/VXu0hUIeS0oKUpIvWPYapHsyWDgpFB2p8tp5PmFM6s4cKOX0wLRt1I6OOI+YTiUNEstSFKSFaZi8bO3M4vOFgNNU6ty5c0SjUdavX8/IyAgdHR3cf//9+P1+/t//+3/unJjFwFxJaPF+oJRiYmKCjo4OgsEgt956K4bp4d8P9JDK6ntf36dFwlIlEYYgl8vT1d2Fz+ulrb0d02PoNJdNDHVFvUJ0P4dx8hHURAJRCGAV8kXHstNkSnefBb3OUNZiX09s23LKD2zbALv7qXLJhkCvBwGfidc08NhVUdGgl5uayxfwF7/w9wyHw4yPj5PJZLjpppuQUjI4OMi73/1uDh48yOte97p5dRydLa7EESnGVe/z4TQRGhwc5KY3/hXKkyMbrEIyqeDt7+/n0KFDrF69mubm5mUvnFlMKKU4deoUPT097Nixg3A4TFlZGZ///OeJRqP89V//9axSIPOFz+dj+/bt/PznP3cNWkrJz3/+88u+d3h4mFwuR01NDVu3bsUwDLpGUpwaSLjiYK0z1QJRZejeKYYhKORydHV1EvKYbFq9Bp/Xq3O1jk5D6JvdWeddwRexSU9W6AZjhr2AGIauZjCKXq/Q/VycxcQwtJdsOqJSJgXGhqFph26ZbXfDFAKPYRD0Lfzk4mKMj4+zZ88e2tvbaWtrA+DYsWM89NBD/Omf/im1tbXEYrFFPYf5wjRNRkZGGBwcZPv27e6cimdODzGSKtiDvgAl9TRre/AXSjA0NMjIiB31Coc1oVWOjFDZKZLJsPe6detJJDPkc1m2bt0G2NF6Q+ATHpcQ66Caw3iYVBbjBNId7Y90SdBkRZPDUxQeITC9Jl7Ty41NZZSFFi86K6WeqJzP59m2bRterxfTNPnyl7/Mbbfdxu///u8vSnfbhYCTCnz22Wdpbm5m7dq1CCH4xdEBhpI5rc1SwhVcGXYfFyE8pFJpuru7iEZi1NXVIpwUGNjRSu2ISAQinybihbtX+zmj6lh1y92URUKYhqH78tj/9XkMvIahiYOp72GPKfCYel0xDYHPo0nFlNfYf88kJL5a6O3t5ciRI2zZssWu+FT88Ic/5PTp03z5y19elqXWM2FR0y7TNR9OeaVlWdxyyy34/X67cctk6PL06dOcPXuWG264gZqamsU6vWsGp0+fpru7m+3btxMOh5FS8vGPf5yHH36Yxx57jNWrVy/6OXz4wx/m7W9/Ozt27ODmm2/mC1/4gjtJ92I4d+4cx44dc2cROJGrpooQb93V5r5OKeUKpxzyOT4+zj/+4z/y7GOPcfPNN/Pa1908r6Fk1wsmJiZ48cUXpxCP5557jt/4jd/g05/+NO9973uXJUF3NChdXV3kcjluu+02Ny10uGeMk4NJnEokqWxpoJpsZd3T20Mmm6G5tUUP7nIDV9o3NdFk0ZmfYpoCT8TPG+5+GV5D6L+FftwQuJuKYRNHj2ngsQmn3pT0856i/xqGcJ9z/l4KOMQjl8u5xCOdTvObv/mbKKV4+OGHl1WZdTGUUnR2dgKwevVq14aP9I4xmEgTCXgx0ENFhVD2tdMl7mOjo6RGu9m9vpkVDfUXkAWvIfB6TDyG7sHj2XgfwaePILAo3PYhVHTxokBLgb6+vguIx9e//nU+8YlP8IMf/IC77rprqU9x1rhqaRdnAY3FYmzevNmt3gDcTn+HDx8mHo+zc+fOZXsjXU2cPn2azs5OduzYQSQSQUrJn/zJn/Dd7373qhEPgLe85S0MDg7yx3/8x/T19XHTTTfxk5/85KKvV0oRj8fZvn07J0+evGiZZXGraYd4DAwMcPDgQX70ox9x6tQpzpw5w65du7jtttsW8ysuW0xMTLBnzx5aW1vdRfvFF1/k137t1/jkJz+5bIkH6GjN888/j9frJRqNusRD2o0Ad7RU2BEo3dhJbyICq5Dn6JFDNNYKkokCif6D3HvPa4hFwi/J9KuUkv3795PNZtm+fTter5dMJsN/+k//iXQ6zb//+78v2/VSd5I9yNDQEEKIKa3/NzSUsaGhbMo6AJN7yJkzZ8iOd7KjrZJjx/bSXradtWvXXvoDfbUU7vnson2fpYSTESgmHg8++CAf+chH+P73v39NEQ9Y5LSLY1RDQ0Ps37+f1tZWVq1adcGGk8vl2LdvH1JKNyLyUseZM2c4f/68SzyUUvzFX/wF3/jGN3j00Uevevvk973vfbzvfe+b1WuFEGzbts1t/TydfExfbJwN5ezZs5w+fZpNmzaxdu1azp8/TyQSeclGwBKJBHv27KGlpYX29nYA9u/fzxve8Ab+8A//kA9+8IPLlniA7uy6YsUKYrEYp06dch83DMHmxrIZo14TExN0HNhHXXk5/f39fOqTnyCVSnH21PEp5d4vFUgpOXDgAJlMxiUe2WyW+++/n3g8ziOPPEKZU/21DOHoLXbt2sXTTz8941rgVMPBVEd0ZGSEG264gd/93d/l2LFjtLa28uCDDy5tWiGfxvfTjyLip8jf9UfI5l1X5WP7+/s5ePAgN954o0vgvvvd7/LBD36Qb3/727zyla+8KuexkFhU8gHaez9z5gybN2+mvr5+yqh5IQTJZJK9e/cSjUbZvHnzlG59L1WcOXOGc+fOsX37dpd4fP7zn+erX/0qjz76KJs2bVrqU5w1pqffLrbYHD161NUElJWV8cd//Me84hWvoKWl5fLeznWIRCLBCy+8QHNzMytXrgTg8OHD/If/8B/4wAc+wEc/+tFlTTxA912oqqpieHj4AhuYKerllJa3tLSwcuVKjh07RiqVIpfLuYLrlxIc4pFKpVzikc/necc73kF3dzc///nPl31+3+v1smXLFmbqdDsT+Sx2RG+++WYymQyjo6MUCgUmJiaWvH28efi7eA59B4XA95OPkPndpxb9M51o8I033ug6Yt///vd597vfzYMPPrggQ96WAotGPpyF0fHey8rK3E3HMbTh4WH2799PU1MTq1evXvaL6dXA2bNnXeIRjUZRSvGlL32JL37xizzyyCPceOONS32Ks8JM6beZFpt8Ps/+/fvJ5XLccsstbnOcsrIy7rvvviU7/6VEMplkz549NDU1sWrVKkCLS1/3utfxe7/3e/zRH/3RNXWvTLeBmWZWnD9/npMnT7Jx40bq63UzwnvuuYdjx465Sv6XEpx0hUM8fD4fhUKB3/md3+HUqVM8+uijVFVVLfVpzgnF5bYzrQUzOaJ+v5+PfvSjPPTQQ9x11100NTUt7ZcI17r/VJHFE/o7GBwc5MCBA1M0kA8//DC/8zu/w9e//nVe//rXL/o5LBYWRfPhCEsBbrzxRmKx2JT+80IIurq6OHbsGBs2bGDFihULfRrXJM6dO8eZM2emEI+vfOUrfPazn+UnP/kJ27dvX+pTnDOcjae4NbhjA06zqVAoxM6dOxelOda1hmQyyQsvvEBjY6NLPE6ePMnrXvc67r//fj71qU9dU8QDptrATFGvY8eO0dfXx7Zt26Z0L45EIvx//9//t0RnvXSQUnLo0CESiQQ7duxwh845pZSPPfYYtbW1lz/QMkPxrJLpUS/HEW1ubmbVqlVTbPy1r30tr33ta5fwzCdhrX4N2dd/FTFymsKWty7qZw0ODrJ//342b97sXu9HHnmEd77znfzDP/wDb3rTmxb18xcbC67eyufz/OpXv8Lv9+P1ei8QlgIcP36ckydPsnXr1hLxsHH+/HlOnz7N9u3bicViKKX4h3/4B/7H//gfPPTQQ9xyyy1LfYrzguPtOJuOM5lxZGSE5557jqqqKkZGRvinf/onent7l/p0lxQO8VixYoW7AJ89e5bXve51vOlNb+Izn/nMNSW4LO5wWigUKBQKSCnd7sWFQoGOjg7i8Tj19fV897vf5fHHH1/is15aKKU4dOgQExMTbsTDsiz+4A/+gOeee46f/exnbmToWkGxHeTz+Qsi4F1dXXR0dNDe3k5HRwcPPvigO6toOcJa/3oKuz4Iodm3T58rHJ3k5s2b3VYKjz32GL/1W7/F3/3d3/GWt7xl0T77amHBXU2v18vmzZupqKjgqaeeoru7222UZVkWBw4cIJlMsnPnzmU1g2Apcf78eU6dOsW2bdtc4vGNb3zDLZ+6Vis9nDzvyMgI/f39VFdXI4Sgp6eHI0eOsG7dOkZGRvirv/or4vE4hw8f5i//8i+X+rSXBKlUij179tDQ0OCmIDs7O12v7wtf+MI1RTyK4Zz3uXPnqKurIxQKTelevGPHDt73vvexZ88eampqaGhoeEnqfKYTD2e45Ic//GGeeOIJHnvsMRobG5f6NOcFh2z09/cTCATcXi/Hjx+np6eHbdu28fjjj/PFL36RQqFAOp3mXe961xKf9dLAIR6bNm1yiceTTz7Jf/yP/5EvfvGL3H///ddc9HMmLEqcu6qqikKhwPr16+nu7mbPnj3uUKxAIMDOnTtf0n0bitHZ2ekSj7IyXQHwz//8z3zkIx/h3/7t36658qliWJZFQ0MDuVyOU6dOcejQIQKBAJlMhhtuuIHa2lp3doyUknw+v9SnvCRIpVK88MIL1NXVsWbNGoQQ9Pb2ct999/HKV76Sv/3bv70miYej7zBNk40bN9LX18epU6cIBoNks1mqq6vdsnsnKlKsB3kpQSnF4cOHGRsbY8eOHS7x+NjHPsa///u/84tf/ILW1talPs15wUm3rVy5kq6uLg4cOABMVkQ6aeZiG7jkaI7rGE76acOGDW6E61e/+hVvfvOb+cxnPsNv//ZvXxfEA0CoheiTWoQ9e/bwuc99jte//vW8+tWvJhwOuyOTHbW2aZrU1tZSW1tLRUXFdfNjzhVdXV0cP358Sq77O9/5Du95z3v49re/fc2qmAHuv/9+Nm7cyBvf+EZaWlqwLIt9+/YxPj7ulgtWVlZSW1vLnj176Ovr4+67775mF9j5Ip1O88ILL1BbW+t2fezv7+fee+/l5ptv5mtf+9o1WwH29a9/naeffpo3vvGN7Nq1C6/XS1dXF0ePHiUUCrnj32traxkfH+epp55izZo13H333S+pNcEhHiMjI+zYsYNAIICUkj/6oz/iX/7lX/jFL37BmjVrlvo054XR0VHuv/9+Xve613HfffdRUVFBJpNhz549bhmulJKamhpisRi/+MUvyOfzvOlNb7ouppfPBfF4nI6ODjZs2OC2yH/hhRd4/etfz5/+6Z/y/ve//7q6LxacfJw9e5a/+Zu/4Xvf+x4DAwPceuut5HI5/tf/+l+sW7cOpZQbhnfK5xwiUllZeU16ePOBQzy2bt3qlo794Ac/4F3vehcPPvjgNa1illLy5S9/me9+97s8+eSTbNy4EaUUH/jAB/j1X/91/H4/yWSSgYEB+vv7SSQSVFRUUFdXR01NzUumz4tDPGpqali3bp1bbvra176WzZs3881vfvOaFuE+88wzfPWrX+WHP/whhmGwadMmWlpa+OQnP+mW3Q8NDdHf38/Q0BCBQMBdC2Kx2HW10F4MSimOHDlCPB53iYdSik996lM88MADPPbYY8u2ZfpsMDIywt/8zd/w3e9+l8OHD3PLLbeQSCT47Gc/q2e7GAZjY2PucLxcLkd1dTV1dXVUVVVd0/Y/FzjEY/369a4OsqOjg/vuu4///t//O//tv/236+5+WHDy4UBKyde+9jXe8573sGHDBo4fP86rXvUq3vjGN3Lvvfe6cyicKY0DAwNYlkVNTQ21tbVUVVVdsx7f5dDd3c2xY8emEI8f/ehHvP3tb+frX//6Na9idqCUou//b+/O46Ou7v2Pv76zJJnse0IgEHaQHQIKLoiiQFkSaqkVRLBqbavWpVdLl6v1equ1Lj+0VXtrrYhWayEsCiKyBdksEEjYd8KafSGZbLN8z++PyXxNEGQxmRnC5/l42JLJZL5nhsPMO+d8zjmFhcY0W2FhId27dyczM5PMzEzjN/26ujojiFRVVREV5Tm5NDEx0Vh629bU1dWRk5NDXFwcvXr1QtM0ysvLGT9+PF27duXjjz9uM6c4O51OHn30Ud5//306dOhASUmJcfjVzTffbBRVlpWVGUHEYrEYQSQ6OrrNvfGC59/Hvn37KCsraxY8XnzxRd566y1Wr15Nv379/N3MFqGUYtOmTdxyyy10796dvXv3csMNN5CZmcmkSZOM2obq6mrj86Curo64uDiSkpKIj49vM/8ezlZRUcH27dvp2bOnUdOza9cuvve97/H444/zm9/8pk32/1YLH/D1oWhdu3Zl165dzJs3jwULFnDo0CFuueUWMjIyjKE44KpIwKdPn2bfvn0MHDjQKLpauXIlU6dO5e233+auu+7ycwtb3qFDh+jSpQuVlZUsXryYrKwsVq5cSdeuXcnIyGDy5Mn07t0bk8lEfX09JSUlFBUVUVlZSWRkpPEh1FrHxftafX09W7duJTY2lt69e6NpGpWVlUycOJGUlBSysrLaXE2Ud4Oo+Ph41q9fz/z581m0aBF2u53x48eTkZHB6NGjjSmHsrIyiouLKSkpQdO0ZtO0bWF0VCll7GGSnp6OzWZDKcXs2bN55ZVXWLVqFYMGDfJ3M1vcwYMH6datG/n5+WRlZbFw4UI2b97MtddeS0ZGBhkZGbRv3x5N07Db7cYvJTU1NcTGxhqjo23l38e5gsfevXsZN24cP/3pT3n22WfbZPCAVg4f5+JN+/Pnz2fhwoXs2rWLkSNHkpGRwcSJE42tY9tiAvaeRtg0eKxdu5YpU6bw5ptvtpkq5otx5swZPv30U7Kysli+fDkdOnQgIyODzMxMBgwYgMlkwuFwGEGkvLyc8PBw40MoPDzc30/hspwreFRVVZGZmUl0dDSLFi1qs6M9Z3O73WzatMn4ECovL2fs2LFkZGRw++23GwcpNh0dVUo1Gx29EoPI+YLHG2+8wQsvvMDy5csZNmyYv5vpE0opTp06xYIFC8jKymLjxo0MHjyYzMxMMjIy6NSpk7EnkDeIVFdXEx0dbQSRK/XfS2VlJdu2baNHjx7G5mkHDhxg3LhxzJgxg+eff/6K7N8Xy+fhoynvyIg3iGzbto3rr7+ejIwMJk2aRHJycrMEXFxcjN1uvyIT8NnHIAOsX7+eO+64g//3//4f991331UTPM5WXV3NZ599RlZWFsuWLSM+Pp5JkyYxefJk0tPTMZlMOJ1Ooz6grKwMm81mBJGIiIgr4rVraGhg69atREdHc8011xh921sHs2TJEmw2m7+b6Re6rrN161bjveD06dPcfvvtZGRkMG7cOGPTvcrKSuO9wOVyNRsdvRKmaZVSHDhwgOLiYoYMGUJoaChKKd5++22eeeYZli1bxogRI/zdTL/wTtMuWrTI2POlX79+xi8l3iXo9fX1RhA5c+YMkZGRxjTtlfLvx7sIo1u3bqSmpgKeo0jGjh3LlClTeOWVV9p08AA/h4+mlFIcO3bM+C3oP//5D8OGDTOG4jp06NAsARcXF1NVVUVMTIzxIRSohYqFhYXs2bOnWfD4z3/+Q2ZmJs8//zw///nPr4gPT1+ora3l888/Jysri6VLlxIZGcnEiRPJzMzkuuuuMzYta1ofEBQUZPSBqKiogHwtvcEjKiqKPn36GH35Bz/4gXEk+pU6mtPSvMfHz58/nwULFpCfn8+tt95qTNN6D1Krqqoy3gvq6+uNIBIfHx+Q07RKKQ4ePEhhYSHp6elG8HjvvfeYNWsWS5Ys4aabbvJ3MwOCUoqysjIWL17M/PnzjcM0J02aRGZmpjFq2NDQYIyOVlRUEB4ebgSRQN1H6syZM2zbtq1Z8Dh27Bhjx45lwoQJ/PnPf27zwQMCKHw01XQobsGCBWzYsIFBgwYZQ3FpaWnnTMBRUVHGh1CgJGDvMchNTyPMyclh0qRJ/P73v29zy6daUn19PStWrGDBggUsXryY4OBgJk6cyOTJk7n++uuxWCxGoaK3PiAQl3E3NDSQk5NDZGSkETzq6+u58847qamp4fPPPzcKsEVz3o23vCMie/fuZdSoUWRmZjJ+/HgjzDcdHa2trW02OhoI07RKKQ4dOkRBQUGz4PHPf/6TX/7yl3zyySeMGjXK380MSN4Rr08++YSsrCxWrFhBp06djHqxvn37GqOj3iBSVlZmLOP2TtMGwnuBN3h07dqVjh07Ap4FCGPGjGH06NH89a9/vSqCBwRo+GhKKUVRUVGzobg+ffoYQ3HeTZkCMQF7g0fTQ4Hy8vIYP348v/71r/26fOrLL7/kpZdeIicnh4KCAhYuXEhmZqZf2nIxHA4Ha9asISsri0WLFqGUMlZMjBw5kqCgIHRdp7y83PgQ0jSNhIQEkpKS/Fao6HA42Lp1q3FYlrevTps2jdLSUr744gu/7WdwpfUB75RFVlYWCxYsIC8vjxtvvNGYpk1MTDQOKGu6jNu7n0xiYqJfpmm908unTp0iPT2dsLAwlFLMmzePhx9+mKysLMaMGePzdnldaf2gqqqKJUuWkJWVxeeff05ycrLxeTB48GBj6/6SkhKKi4sDZhl3VVUVOTk5dOnSxdjPqLCwkLFjxzJixAjeeecdv00d+qMPBHz4aEopRXl5uRFEVq1aRY8ePYz6AO9QXCAk4OLiYnbu3NnsGOTdu3czbtw4HnvsMX7729/6NYkvW7aMDRs2MGTIEL7//e8H/BtOUy6Xi3Xr1jFv3jwWLVpEXV0dEyZMICMjg1tuucVYsniuZdxJSUnExsb65B+5w+EgJyeHsLAw47czh8PBPffcw4kTJ1i1apVReOwPV3IfUEpx9OhRI4hs2bKFESNGMGnSJDIyMkhJSTnnMu7o6GjjvcBXhYqHDh1qFjwAFi5cyE9+8hM+/vhjJkyY4JN2nM+V3A/sdjvLli1jwYIFLF26lJiYGGNqZtiwYcZhdqWlpUYQ8S7jTkpK8tk0bXV1NTk5OaSlpZGWlgZ4PiPGjRvH4MGDee+99/w6VeiPPnBFhY+mlFKcOXOGTz75hAULFrB8+XI6duxoDMX169fPbwnYexqhdwtxgH379jFu3DgefPDBgFs+pWnaFfWG05Tb7Wbjxo3G0s3KykrGjh1LZmYmt912mzG8fb5l3PHx8a0SRM4VPJxOJ/fddx/79+9nzZo1xjRcILiS+4BSihMnThjTtJs2bWLIkCHGb8MdO3Y0prp8vYz78OHDnDx5kiFDhhg1PUuWLOHee+/lgw8+YPLkya1y3ct1JfeDuro6vvjiC7KysozibW+92IgRI7BYLOddxp2UlER0dHSrjI6eK3iUlpYyfvx4evXqxYcffhgQU4NevuoDV2z4OFtVVRVLly5lwYIFLFu2jMTEROPNZ8iQIZhMJp8k4HMFj4MHDzJu3DimT5/OCy+8EHBzelfyG05Tuq6zefNmI4gUFhZy++23k5mZyZgxY4wVE629jNvpdJKTk4PNZmsWgh988EHy8vJYs2aNsalSoGgrfUApZQwbL1iwgC+//JL+/fsb9WLe04IdDofRB1prGfeRI0c4fvw46enpxmN+/vnnTJ8+nXfffZcf/vCHLXKdltRW+oHD4WDlypVkZWWxePFizGYzEyZMYPLkydx4441YrVafLOO22+1s3bqVTp060blzZ8Czt8eECRPo2LEj8+bNC7gVmxI+vgNvEZ93xUR0dLQxHHvttddiNptbJQGf6zTCo0ePMnbsWH7wgx8E7PKptvKG05Su62zfvt0Ylj927Jixw+73vvc9Y9SrpTcy8gaPkJAQ+vfvb4Tehx9+mE2bNpGdnW1snxxI2mIfUEpRWlpqBJHVq1fTq1cvI4h4d5b1TtMWFxc3W8adlJR02dO0R48e5dixY8ahaQCrV6/mRz/6EX/961+ZNm1aQI1+erXFfuB0Olm7dq3xS4nT6Wy2w25wcHCrLOP2Bo+OHTvSpUsXwFNwOmnSJBISEli4cGFArtCU8NFC6urqWLFiBVlZWXz66aeEhIQYc4JNh+K+awL2Bo9rrrnGOI3w+PHjjBkzJuCXT7XFN5ymlFLs2rXLWLp54MABY4fdCRMmGKtizt7I6FKXcTudTrZt20ZwcLARPHRd57HHHmPNmjWsWbPGqHAPNFdDH6ioqGi2YqJLly7G6GifPn2MEaqmo6PeZdxJSUkXPU2bn59Pfn5+s+Dx5ZdfMmXKFF5//XVmzpwZkMED2n4/cLvdrFu3ztjSwW63873vfY/MzExuvfVWY8M37zLuoqIi4wTmS1nGbbfbycnJoUOHDnTt2hXwTL9kZmYSHh5ufBYFIgkfrcDhcLB69Wrmz5/P4sWL0TTNGIq76aabsFqtl5WAy8rKyMvLaxY8Tp8+zZgxY7j11lsDfvlUW3/Dacq7u6R3RGTnzp3cdNNNxg67CQkJl7WM2xs8goKCjB1adV3nqaee4rPPPmPNmjXGsGsgupr6AHh+A/WumFi+fDkpKSlG4frAgQONEatLXcZ9ruCxceNGvv/97/OnP/2JBx98MGCDB1xd/cDtdvPVV18ZQaS0tNTYYXfMmDHGqqSmo6N1dXUXXMZdU1PD1q1bad++Pd26dTNuu+OOOzCZTCxdujRg9yABCR+tzuVyNRuKczgcjB8/nszMTEaNGmUMxV0oAZ/rGOTCwkLGjRvH8OHD/bp86mJdTW84TSmlOHLkiLGHRE5ODiNGjDCWbrZr1+6cy7gjIiKMD6GwsDBcLhfbtm3DYrEYH1y6rvPb3/6WrKwssrOzjTehQHW19gHw/JbadIfduLg4Yz+ZoUOHGn+fF1rGfezYMY4cOcKQIUOMfVu2bNlCRkYGzz33HA8//HBABw+4evuBruvk5OQY7wWnTp3itttuM3bY9f59XmgZd9Pg4a0vqqurY8qUKTgcDpYtW2aE0kAl4cOH3G4369evNxJwdXU148aNIzMzk9GjRxtDcWcn4IiICKqqqujZs6exU11xcTHf+973GDhwIHPnzg3InRbB84Z76NAhAAYNGsSrr77KqFGjiI2NDdipgdaklOL48eNGH/jqq68YOnSoscNuamrqOZdxh4aG4nK5CAkJYfDgwVgsFpRSPPvss7z//vusWbOGXr16+fvpnZP0gW+qra1l+fLlRr1YWFiYMU07fPhwzGbzOZdxh4aGYrfbGTx4sHFQ5vbt25kwYQK/+93veOKJJwI2eEg/aE7XdXbs2GFM0x45cqTZDrveU5bPXsYdERFBbW0tycnJRj1RfX09d911F2fOnGH58uXG7ryBxh99QMLHWXRdbzYUV1JSwpgxY4yhOG/VekFBAbt37yY4OJiGhgZiY2NZv349H374IT169OCjjz4KqOVTZ8vOzj7njoozZsxgzpw5vm9QAFFKcfr0aWPp5vr16xk4cKBRqNi5c2fjjSUnJwen04nb7SYkJISCggI2bdrE/Pnzyc7Opk+fPv5+OuclfeDb1dfXs3LlSmOHXavVaizdvOGGG4xp2oMHD3L8+HGsVitutxubzcb69et57bXXePLJJ5k1a1bABg+QfvBtlFLs2bPHGBHZs2cPN998M5mZmUyYMIG4uDg0TaOiooLc3FzMZjMOh4PIyEh2797Np59+SmlpKStWrDBCaSDyRx+Q8PEtdF1n27ZtRgI+efIkt912G/369cPtdvPjH/+Y9u3bU1dXx759+7j77rs5duwYjz/+OK+88oq/my9agFKK4uJiY2O77OxsrrnmGr73ve9x4sQJ7r33XoYOHQp4io6ffPJJFi9eTGJiIvv375fzWtoIp9PZbIddt9vNhAkTiIiIoFevXkyePJmoqCiqq6v59NNPmTVrFlVVVbz33ntMnTrV380XLcAbNL1BJDc3lxtuuIGRI0dSVFTET37yE3r06IHT6aSgoIC7776b7du3c9ttt7F8+XJ/Nz/gSPi4SLqus2vXLmbPns3cuXPp0aMHaWlpZGRkcNNNNzFjxgzi4uJ44403qKurC+jfeMXl8e6wO3/+fH77299iNptJTk5m/PjxTJ48mVWrVvGnP/2JJUuW4HK55JCwNsrlcrF+/XqeffZZ1q9fT7du3Rg8eLBxBHxGRgb33nsv06ZNIyYmhvbt2/u7yaKFKaXIz8/n73//O6+88grt27enXbt2xgq6Z555ht27dxsbH3p/QRFfk/BxiY4fP052djbp6elGAs7Ly6NPnz5s3rw5YA60E61H13Vef/11pkyZwurVq1mwYAGfffYZuq6zbt06rrvuOn83UfjA2rVrATCbzcZ7wYkTJ5gxYwbvvPNOQK9wEy2jurqaf/zjH0yePNnYT2bdunXExsaya9cuY/Wj+CYJH9+RUorly5fTq1cvY+tccfUpLS1l7dq13HHHHf5uivATXdf54IMPuOuuuwK63ku0HqUUeXl51NXVMXz4cH83J6BJ+BBCCCGET8m4oBBCCCF8SsKHEEIIIXxKwocQQgghfOqywscbb7xBWloaISEhXHvttWzevLml2yUCnPQBAdIPhPQBcXkuOXx8/PHHPPHEEzzzzDNs27aNAQMGMGbMGIqLi1ujfSIASR8QIP1ASB8Ql++SV7tce+21DB06lL/85S+AZ3lZamoqjzzyCLNmzWqVRorAIn1AgPQDIX1AXL5LGvlwOBzk5OQwevTorx/AZGL06NFs2rSpxRsnAo/0AQHSD4T0AfHdXFL4KC0txe12k5SU1Oz2pKQkCgsLW7RhIjBJHxAg/UBIHxDfjax2EUIIIYRPXVL4iI+Px2w2U1RU1Oz2oqIi2cP+KiF9QID0AyF9QHw3lxQ+goKCGDJkCKtWrTJu03WdVatWyT72VwnpAwKkHwjpA+K7sVzqDzzxxBPMmDGD9PR0hg0bxuzZs6mpqeHee+9tjfaJACR9QID0AyF9QFy+Sw4fd955JyUlJTz99NMUFhYycOBAPv/8828UHYm2S/qAAOkHQvqAuHxyqq0QQgghfEpWuwghhBDCpyR8CCGEEMKnJHwEGH8d0jR37lzi4uJoaGhodntmZibTp0/3SRvE1/zRD6QPBBZ5LxDQht8LlAgY//rXv1RQUJD6xz/+oXbv3q0eeOABFR0drYqKilr92rW1tSoqKkr9+9//Nm4rKipSFotFrV69utWvL77mr34gfSBwyHuBUKptvxdI+Aggw4YNUw899JDxtdvtVikpKeqFF17wyfV/9rOfqXHjxhlfv/LKK6pLly5K13WfXF94+LMfSB8IDPJeIJRq2+8FMu0SIALhkKYHHniAL774glOnTgEwZ84cZs6ciaZpPrm+8H8/kD7gf/7uAyD9IBD4ux+0dh+Q8BEgAuGQpkGDBjFgwADmzp1LTk4Ou3fvZubMmT65tvDwdz+QPuB//u4DIP0gEPi7H7R2H5DwAXz55ZdMnDiRlJQUNE1j0aJF/m6S39x///3MmTOHd999l9GjR5OamurvJvmE9IGvSR+QPgDSD6QftG4fkPAB1NTUMGDAAN544w2/tSFQDmmaOnUqJ0+e5O233+bHP/6xz67rb4HQByAw+oH0AekDIP1A+kEr94EWqRxpQwC1cOFCv1x72LBh6uGHHza+drvdqn379j4rMvOaPn26io2NVfX19T69bqDwZx9QKjD6gfQB6QNKST+QftB6feCSz3YRrSdQDmk6deoU06ZNIzg42KfXFR6B0A+kD/hXIPQBkH7gb4HQD1qtD7RolGkD8HPS/fOf/6w6duyogoKC1LBhw9RXX33ls2uXl5erBQsWKJPJpPbt2+ez6wYaf/cBpfzXD6QPeFzNfUAp6QdeV3M/aO0+IOHjLIHQ2fylU6dOKjIyUr300kv+bopfSR+QPnA19wGlpB94Xc39oLX7gEy7CEN+fr6/myD8TPqAAOkHovX7gKx2EUIIIYRPycgHYLfbOXTokPH10aNHyc3NJTY2lo4dO/qxZcJXpA8I6QMCpB/4iqaUUv5uhL9lZ2czatSob9w+Y8YM5syZ4/sGCZ+TPiCkDwiQfuArEj6EEEII4VNS8yGEEEIIn5LwIYQQQgifapXwUVJSQnJyMs8//7xx28aNGwkKCmLVqlWtcUkRgKQfCOkDAqQfiHNold1DlFJLly5VVqtVbdmyRVVVVakuXbqoxx9/vLUuJwKU9AMhfUAoJf1ANNeqBacPPfQQK1euJD09nZ07d7JlyxY5I+AqJP1ASB8QIP1AfK1Vw0ddXR19+/blxIkT5OTk0K9fv9a6lAhg0g+E9AEB0g/E11q14PTw4cOcPn0aXddlu96rmPQDIX1AgPQD8bVWG/lwOBwMGzaMgQMH0rNnT2bPns3OnTtJTExsjcuJACX9QEgfECD9QDTXauHjySefZP78+eTl5REeHs7IkSOJiopiyZIlrXE5EaCkHwjpAwKkH4iztEYV65o1a5TFYlHr1q0zbjt69KiKjIxUb775ZmtcUgQg6QdC+oBQSvqB+CbZXl0IIYQQPiU7nAohhBDCpyR8CCGEEMKnJHwIIYQQwqckfAghhBDCpyR8CCGEEMKnJHwIIYQQwqckfAghhBDCpyR8CCGEEMKnJHwIIYQQwqckfAghhBDCpyR8CCGEEMKnJHwIIYQQwqckfAghhBDCpyR8CCGEEMKnJHwIIYQQwqckfAghhBDCpyR8CCGEEMKnJHwIIYQQwqckfAghhBDCpyR8CCGEEMKnJHwIIYQQwqckfAghhBDCpyR8CCGEEMKnJHwIIYQQwqckfAghhBDCpyR8CCGEEMKnJHwIIYQQwqckfAghhBDCpyR8CCGEEMKnJHwIIYQQwqckfAghhBDCpyR8CCGEEMKnJHwIIYQQwqckfAghhBDCpyR8nCUtLY2ZM2f6uxlCCCFEmxXQ4ePw4cM8+OCDdOnShZCQECIjI7n++ut57bXXqKur83fzLpnT6eSaa65B0zRefvllfzdHCCGE8AuLvxtwPkuXLmXKlCkEBwdzzz330LdvXxwOB+vXr+fJJ59k9+7d/O1vf/N3My/Jn//8Z44fP+7vZgghhBB+FZDh4+jRo/zoRz+iU6dOrF69mnbt2hnfe+ihhzh06BBLly71YwsvXXFxMf/zP//Dr371K55++ml/N0cIIYTwm4CcdvnTn/6E3W7nnXfeaRY8vLp168ajjz4KwMiRIxkwYMA5H6dnz56MGTPG+FrXdV577TX69etHSEgICQkJjB07lq1bt35reyorK3nsscdITU0lODiYbt268eKLL6Lr+kU/p1mzZtGzZ0/uvvvui/4ZIYQQoi0KyJGPTz/9lC5dujBixIgL3nf69Ok88MAD7Nq1i759+xq3b9myhQMHDvC73/3OuO2+++5jzpw5jBs3jvvvvx+Xy8W6dev46quvSE9PP+fj19bWMnLkSE6dOsWDDz5Ix44d2bhxI7/+9a8pKChg9uzZF2zj5s2bee+991i/fj2apl34BRBCCCHaMhVgzpw5owCVkZFxUfevrKxUISEh6le/+lWz23/xi1+osLAwZbfblVJKrV69WgHqF7/4xTceQ9d148+dOnVSM2bMML5+7rnnVFhYmDpw4ECzn5k1a5Yym83q+PHj39o+XdfVsGHD1F133aWUUuro0aMKUC+99NJFPT8hhBCirQm4aZeqqioAIiIiLur+UVFRZGRk8NFHH6GUAsDtdvPxxx+TmZlJWFgYAFlZWWiaxjPPPPONx/i20Yh58+Zx4403EhMTQ2lpqfHf6NGjcbvdfPnll9/avjlz5rBz505efPHFi3o+QgghRFsXcNMukZGRAFRXV1/0z9xzzz18/PHHrFu3jptuuomVK1dSVFTE9OnTjfscPnyYlJQUYmNjL6k9Bw8eZMeOHSQkJJzz+8XFxef92aqqKn7961/z5JNPkpqaeknXFUIIIdqqgAwfKSkp7Nq166J/ZsyYMSQlJfHBBx9w00038cEHH5CcnMzo0aO/c3t0Xee2227jqaeeOuf3e/Tocd6fffnll3E4HNx5553k5+cDcPLkSQAqKirIz88nJSWFoKCg79xOIYQQ4koRcOEDYMKECfztb39j06ZNDB8+/IL3N5vNTJ06lTlz5vDiiy+yaNEiHnjgAcxms3Gfrl27snz5csrLyy9p9KNr167Y7fbLCjLHjx+noqKCPn36fON7zz//PM8//zzbt29n4MCBl/zYQgghxJUq4Go+AJ566inCwsK4//77KSoq+sb3Dx8+zGuvvdbstunTp1NRUcGDDz6I3W7/xpLWO+64A6UUzz777Dcez1srci4//OEP2bRpE8uXL//G9yorK3G5XOf92V/84hcsXLiw2X//93//B8DMmTNZuHAhnTt3Pu/PCyGEEG2Rpr7tk9ePPvnkE+68805sNluzHU43btzIvHnzmDlzpvFB7tWvXz927dpF79692bNnzzce85577uH9999n3LhxjB07Fl3XWbduHaNGjeLhhx8GPGe73HzzzcyZMwfwLLW98cYb2bFjBzNnzmTIkCHU1NSwc+dO5s+fT35+PvHx8Rf9vPLz8+ncuTMvvfQS//Vf/3X5L5AQQghxhQrIaReASZMmsWPHDl566SUWL17MW2+9RXBwMP379+eVV17hgQce+MbP3HPPPTz11FPNCk2bevfdd+nfvz/vvPMOTz75JFFRUaSnp3/rfiKhoaGsXbuW559/nnnz5jF37lwiIyPp0aMHzz77LFFRUS32nIUQQoirQcCOfFyO1157jccff5z8/Hw6duzo7+YIIYQQ4hzaTPhQSjFgwADi4uJYs2aNv5sjhBBCiPMI2GmXi1VTU8Mnn3zCmjVr2LlzJ4sXL/Z3k4QQQgjxLa74kQ9vAWd0dDQ///nP+cMf/uDvJgkhhBDiW1zx4UMIIYQQV5aA3OdDCCGEEG2XhA8hhBBC+JSEDyGEEEL4lIQPIYQQQviUhA8hhBBC+JSEDyGEEEL4lIQPIYQQQviUhA8hhBBC+JSEDyGEEEL4VJsPH7KBqxBCCBFYrviD5c5HKYXL5aKurg5N07BarZjNZsxmMyZTm89cQgghRMBqk+FD13WcTidutxtd142vKyoq0DSNxMRELBaLhBEhhBDCD9pU+FBK4Xa7OX36NEVFRfTt2xeTyYTJZELTNCorK1FKERMTg9PpBEDTNCwWixFGLBYLmqb5+ZkIIYQQbVebCR9KKWO0o+l0S1Pery0Wi/Ez3lERh8OBpmmYTCYjhHgDiYQRIYQQouW0ifCh6zoOhwNd142RjnMVmmqa1ux2TdMwm83G198WRprWjEgYEUIIIS7fFR0+vNMsTqcTpZQxvXJ2yDj7Z86naRjx3u9cYaTpqIiEESGEEOLSXLHho+k0C2AED/jmCIfXpYQE733PFUYcDgcNDQ0SRoQQQojLcEWGD+9oh3ea5Vy1HZcz8vFtvi2MNDQ04HA4ACSMCCGEEBdwRYUP794dLpcL4JzBA7595KOlNh1rGkbMZjNKKeO/s8OIt17EYrGct81CCCHE1eKKCR/e2gtd1wGM2o5zacmQcbGatufsMFJfX2/cxxtGvCMjEkaEEEJcbQI+fDRdgXK+aZaz+WLk40IkjAghhBDnFtDh49uKSr+NP0Y+LuRiw8jZe4xIGBFCCNHWBGz4aLpF+qV+ADcNH+f7s7+dL4zoum6EEe+eJRJGhBBCtCUBFz68e3e4XK6LnmY5WyCFjIt1vjDidrtxu93U19dLGBFCCNEmBFT4uNxplrMFQs3HxVJKcfDgQTRNo1u3bs32KvHWhHjv1zSMNDQ0UFtbi6ZpxMTENDuXRsKIEEKIQBYw4eNCe3dcipbYZMxX1q5dy1/+8hc0TePRRx/lhhtuOOf9zhVGioqKcLlchISEoGkab731FlVVVfzxj3/05VMQQgghLonfz5L3jnY0PZvlu4aE1thkrLUcO3aMkpISSkpKOHbs2EX/nPc5Wq1WYx+RU6dOUV1d3YqtFUIIIb47v4586LqOy+X6ztMsZ2saPnRdbzaVEWhGjhzJrl270DSNm2666ZJ+1u12Gyf0appGbW0tiYmJrdFMIYQQosX4JXw03btDKdXidQqapqHrOidOnGDfvn0EBwcTGxuLrutG0AkUaWlpvPTSS5f1s263u9mpvHa7nS5durRU04QQQohW4fPwcXZRaWsUSOq6jlKKQ4cOkZaWRk5ODvv37yclJQWLxcLWrVsxmUzU19fTs2dP4uLiWvT6vnJ2+KitrSUsLMyPLRJCCCEuzKfh47vs3XGxamtryc3NBWD48OHs3LmTw4cPA5CSkkJ0dDRxcXF89NFHHD58mOTkZDIzM0lMTCQmJoawsLCAnJ45F13XvzHyER4e7scWCSGEEBfmk/DREnt3XIzi4mJ27NhBcnIyNTU1BAcHEx4eTlRUFJqmERYWhtlsJj4+npiYGJKTk0lMTCQiIoKysjIOHz6MxWIhNjaW2NhYYmJiCA4ObvF2tpRzjXxERET4sUVCCCHEhbV6+GipvTu+ja7rHDp0iGPHjtG3b19iY2M5efIkSim6du1KaGgoJpMJl8tFaWkpYWFh3HrrreTn59OlSxejTsLtdnPmzBkqKio4ceIEe/bsISwszAgj0dHRzT7s/c07guRVU1NDaGioH1skhBBCXFirhg9d11t0Ce25NDQ0kJeXR0NDA8OHDyc8PNw4zt5bzJqcnIzJZOL06dPGKphu3brRrVu3Zo9lNpuNoBEfH8/x48eJjIykrq6O/fv309DQQFRUlHGfiIgIv07RNB35UEpRU1MjIx9CCCECXquED+80i3c1S2sFj4qKCnJzc4mJiWHw4MHNlp1623E5amtr+dvf/saRI0fo378/Dz74IJqmUVdXR0VFBeXl5Rw/fhyAmJgYI4zYbLaWeWIX6eyaj5qaGqn5EEIIEfBaPHzouk5dXR3w9cFoLR08lFIcP36cAwcO0L17dzp16tTsGucLHxe7vXp1dTWFhYXU1dVx6tQpHA4HISEhhIaGEhoaSvv27VFKUVVVRXl5OUVFRRw4cMBY0uutF7FarS36vM8mq12EEEJciVosfDTdu2PdunUMHDiQmJiYlnp4g8vlYvfu3ZSXl5Oenn7OazQNH5cTfBITE7ntttvIy8vjxhtvJCQk5JzXiIqKIioqis6dO+NyuaisrKSiooKjR4+ya9cuIiIijDASFRXVrD7ju/KOLnkf0+12U1dXJyMfQgghAl6Ljnx4ay3MZnOrbOZlt9vJzc0lKCiIESNGnHclyvnCx8WOfGiaxtixYxk7duxFt81isRAfH098fDzgqUUpLy+noqKCXbt24XC6iIiKISIykvDIaIJsNnQdnLqO261w6Y3/uXXcusKp67jcCofL87XLraPQ0JVOv/bRtIvyPHfvyIfdbgeQmg8hhBABr8XCR9NDzywWS4uHj8LCQnbu3EnHjh3p3r37t44inGu0w+12s2XLFg4ePEhSUhIdOnTw3N74we5y6zi9f9YVxaVlFBQWkdSuPcEhNly68oQC99dhwK00XLrna115/nM33k/XvX8Ow20NxeFuoKakltqjhdTWHsJkNjdO44RhCw3FbDGjKXDrYNIUmEyYUGg0bg1v8gSn1NhQOsSG4nQ6ga/DR21tLYCMfAghhAh4LTry4R1ZaMmRD13XOXDgACdPnqR///4kJSVd9M96RzmKq+pZtuUAK786THVVDYWf/IfB6W50HRQKFGDSQPeMlNQ31LN+wwbKy8pISUlh+IjhmDGhNPV1HFAKNBMajY/x9auA5wE999OVwgRYg4KIDg4iKjIaHUV9XT01NXYqKiooKirAGhRMWGgoNlsooWGhWDQNpWloSqErQFdEh1m5vlsCQLOly4Cxr4m36FYIIYQIVK3ySWU2m3G5XN/5cerr68nLy8PpdDJ8+PCLLqb0btmulKKixsHaAyU4NAuW4DCUpQFrSDhu3RMYPLlDQ7l1NJMnODgaHNTV1uJyu6ix16DcgFUDvfG+WuOUjlJfBw9NQ1cKTYEyKdD1r29HQ2sMCZqm0HQag0aI5xwat6dIt66mltKSYpwFTmy2UEJCQwkLtREcHEKI1cqoXkmYTZ6REG+xqXeUx263X1G7swohhLh6tcrIR0tMu5SXl5Obm0t8fDzp6emXtLmX2+2muLiYw8dPsbPMRIPLRWhoGH379qGwsJhu3brgGRRRmDCha43TGmigQXhYGL179aS4uIROaWmYzF/XiiilULpnZEM3AWiewKEUJs0EKDTlGbVQemM4UQqlaZ77al+Pipg1E0oDi8VMREQ4EeHhKBJwulzU1tZQW1PHqfIKTCaNm7vHUV6sQeOS3rM3GPOGDyGEECLQtdrIx+WGD6UU+fn5HDp0iJ49e5KamnrJv83n5uay4avN/KfQTbfefQkJCmb79jzKK8tJSUnBarU0FqOCrtwoNBqziGfWRNPo3LU7Xbp0B+/nu/d7qrGmROEJIcozFQOga18flqeUhmbWMCnPSInxFDQNTXkfCBqHUUAp3I1/NJstREZEEhkRhVnT6J0UTIypgeLiYg4ePEhwcLARNJxOJ1ar1VhmKyMfQgghAl1AhQ+Xy8XOnTs5c+YMQ4cOJTo6+rKuX155hpPEEVNdh6OhgdLSUvYe2EtDfQNOh4OB/QegmbzTJSYaByNQ6J5RCzSU0kEzoeueaKHjqb8A0DQTmkk1BgtPkNBoHO1wO9FqytHMFrDFeu7vvYfyXEg1lpl4lyd790Ix0RhSmgSI7kkRDOrseZy0tDTcbjeVlZWcPn0al8vFunXriIiIYNWqVQQHB9PQ0NAq59G88MILLFiwgH379mGz2RgxYgSLFi1q8esIIYRo+1pu44kmLqfmo7q6mo0bN+JyuRgxYsRlBw+3rigPTiE2oR0dO6URFR3tWVUSFkaQNYiQEBu60lFKR1eeglaldM+0iqaBSWusGfFM85hNGprmqdXwlpXqyo3b7Tambmj8UU2BuaYQc/kBTKUHoP4MaFpj8AAdz2iJqXwf5vw1mCqPoWlNh1YwQpDSdRIjgkhPi8Fy8DOC1v4v5pP/wWw2ExcXR1JSEhEREVx//fWkpqZy6NAh9u3bx/jx4y/rdbuQtWvX8tBDD/HVV1+xYsUKY7WNEEIIcalavOYDPEttGxoaLvrnTp8+ze7du0lLS6Nbt26XPXWglGL13kIaNCupHVPp1KkjQUFBJCcmceuoUVSUl2M2mTxDEXhGGnQaP/Z1zz4amHQ0ZfJMxHinRfAUmjqdDg4cPIzS3XTr3g1biMUzgqE1PoamoTVOxYBCKXdjYaqGp/xUw91wBsupXEyOKsy15RCZgmYORqnG0ZbGkZdwm5WRPZMwVZ3AuvktTDXFmIt2UPf9uWAJMWo+goODSU5O5vbbb8dqtfLPf/7zsl67C/n888+bfT1nzpxWuY4QQoi2z6/TLrqus2/fPgoKChg4cCAJCQnf6bpf7i/idGWtZxoFcDQ4OH3yFErz7H8RFx9PZWUlmvJOb3hCBXjygmexiwlMjfmBxnoNPIWkJ06cYtfunShdx2q10rNXT2gc8VC6J6y4whM9D6xZICTaCFKNszNYzBbMdUVo9dXoweFgsjaWfHimedwuNxarmVt6JhBkMYElBCxBYLKggsKgcUTm7K3Vvee6tMausudy5syZ7/z3JYQQ4urkt6W2dXV15ObmopRi+PDh3/ko+M1HSjleXgtoaI1TJ6cLC4iOjMBiDaa2tpbamhp0pVNYVEhoWBhhoWGYzJ69OrTGGSiFjknzjHzo0GRPD7BazVitQShdx2K14HA4sFisnoCheVbKmCw2VGSqZ8DEuzJGA01paGiYKo5hqjuDrrtRteW4dG+5qwJNx2wxc0O3eKJCgzztCUukYdT/YCraiTt1OJg958Wcfaic3W732QZjuq7z2GOPsWTJEp9cTwghRNvSatMu3zbyUVZWRm5uLklJSfTu3fuCy2idTidLliyhrq6OiRMnfmML8dzj5ewvrAKlMKFRXl6K2+0iOjqGhoYGampq6dAhFYezgcKCQqwWC5Xl5RQXFhIcEkJoaDgWi4k9e/dSW1ND/wEDSEhI9CyLVV8Xi7bvkIrZbMHldlFaUsqWnBxSktsxfMQINJOGSddQJk99iAmNwuJCbLYwoqKijKW6ekgkblMwaE4IS8JsMqMal/wC9O8QRce45ktm9cQ+6Il9mt129lLbmpoany21feihh9i1a5dPriWEEKLt8em0i1KKI0eOcOTIEXr37m1scX4hy5cvZ/bs2TgcDqqrq3nwwQeN7+0rrGLHSc9Uiq4UhYWFVNurMZut1NTUsG/ffty6GzQTiYkJmExm4hMSiEtIQHe5sNfWYq+uZv++Y+zesxvNpGG1WIi7MQbNbEbTPWMgSnmCRXK7djidLr76z2aqKs/gdrroV3WGmJhYlKlx/ETT+HLdl6xetZogaxDT75lOSocOnj1Cwtvh7vtDzHWVuON7YNJ0YzVNakwo/TpEX9Rrcq4TbVNSUi7qZ7+Lhx9+mCVLlvDll1+2+rWEEEK0TT4LH06nkx07dmC327n22muJjIy86Mdzu93ouo6u680e92iJna1HS9GUhsvt5OSJE7h1nbDwULZs2UJCbCKg0EzKs7Mo4NZ1UJ6lsSaTmYjwCCIiIggNC6Wssowaux2zxcqhw4exhdg8O5GGhWMLaVy+qmlYgiy0a9cep9NJQnw84RGRKLyFpZ5plP37DlLX4MDhdHI0/xgpKe090zsmE1psGigwa417guiKaJuVG7rFX9JrcnbNR2uOfCileOSRR1i4cCHZ2dl07ty51a4lhBCibWuVaZezaz6qqqrYvn074eHhjBgxAqvVekmPO2bMGGpqaqirq+P73/8+AKcr61h/sBhd16lvaODE8eOE2Gx0SEnh3ffe4/TJU8TERjN2zFiCg4Npl9IeR4MDk9ZkL7HGrco1IDoyhlEjR1HvaiAmIhbd5aSm3lMnUl5RAZpGmC2MiMgwQmyhXD/iOvr17U1YeAQWsxkNb/AAXWmkpw+huKiAYJtnt1Tvlu/evT50zXOOjK7rBFnM3NwrCYv54lc+u91ugoKCjK9rampa9UTbhx56iA8//JDFixcTERFBYWEhycnJrXY9IYQQbVerjHw0rfk4efIke/fupUuXLnTp0uWyltGGhIQwdepU4+vS6nrW7isEpaiuquZ0YQEJcQnExsXicjlxNjhwO11UV1ZRWFhMevoQzxbp6OiN+3uYNIXuhsYd1UHTiAgPJ1wL92w0ZvYcBBcTFY1CUV/fQE1jEGko8NSKhIeF4XI6MJtDUHj3DFGYNI3+/frRq3dvrBYzZrMZXfdcxw0ot+4JQM4abAc/4XbbXiI7/wY9pNdFvybnKjhtzZGPt956C4Cbb77ZuM1bxyKEEEJciladdtm1axdFRUUMGjSI+PiLn1L4NmdqHazYXUCDw0VJWRnlZSW0S+lARERE49bkVsaOG8uSTz+lweHk0OGDJCUl0KVLV0xoaJoJi8nk+fA2eYpJPUWlnk3ElO49mA68e5Oa0AgNCcEWEkJcQiwupxu7vZoaex2lZWUAhIeFEx7uWUFjtphRQIgl2PMBrTQ0zRN8TJoJZTKhUFhOfcWIykW0ry7AvcZJ3ZSPLvp1OLvgtLa2tlVXu0jQEEII0VJaZdrF4XAAnumWESNGYLPZWuTxaxpcfLGngAani9OFBdTV1dGlSzeCQ7wf8p4RjS5du9Cr1zXkHzuGJciKNSgIXSnsdbW4dZ0GRwPm2mKC8teCNRR399sgKAyUhrlxyaxnUzDPKbWuxsf1nOeiYbFYiImKISY6Bl0pGurqsdfWcObMGYqKiggJCcEWGkp4WBhBQSGYNIVL1zGh4dJ0LGbPlu7dE2z0KjzlKWYNT7qk18LXNR9CCCFES2nxkY+SkhLy8vIAGDRoUIsFj3qnm893nuZMVS3HT57ApJnplJaGxWRG6TrontELvTEA9ejRHWuQ54C22JhoKsvLqKquol1yO6xWK+aiPEz2U566i5KOqHZDUBroTU6dNXY81zC2YvcGLF13Y9bMnDp9krwdO2ifksKgQYM8J9Laa7DX1lBeXo6maYSHhREeFoYtNAyrxQpKERcRzJBr76Q+WaHVVeAYNPOSXo+m4UMp1eo1H0IIIURLadHwYbfbyc3N5ZprrmHXrl0tNlTvdOus2F1ISUUVJ08eJzI8isR2yY3FoxpabTk4qiE0Dt0aCrpOx46pJLdLwl5dQ2lpGS63G6vVSl1dPWaLlTBbnGfDLi0IPSTKc1YLjbUY3vNWNCgt9uwZktI+BavF82F/4sQJVq5aRbA1iJKSEsrKy9kVFka76DBSXQewWcKI7HgDmFJoaGigrraGM1VnKCwqwmoNorqilPH9U1Ak4ew/7bJek7NrPryn2gohhBCBrkXDR3h4OCNHjiQoKIi9e/de1sm2ZyssKmLR5sNUOaGirIykxCSiY2MbqzEU9rIiTMU7CNMaICwZLWWQp4hUM2ExW7DbqwkKCqJTUgL1tTXY65ycOnUS9DhiE0YSHBbJvvwqSkpW0b9/P5KSkjz1H7oi/+hR1qxdi9J1bhhxPX369kFD48D+AxQXFWFq3CDMYrFiNpkwFW5Db8jHZDFjscWgtxuIzRZMSEgIUTGxOJ0uVnzxORv//Sb/dtXz5JNPcuONNxIXF0dcXNwlnUZ7rk3GfLXDqRBCCPFdtHjNh3f55+WcbGuorwJLMBXVtfz6tfc5WFBGfGwsY8aOITw0vPG8FTh06AhrVn2BqeEMYwelkhKWgNI0CgsLycvNA5NG/379SU6Mx1J2iBBHNVGR7dDbdaeuoRa7vYbdR46ycsUXNDQ4OHTkCPf9eCbB1iCwmDhzpooaux1dd1NaVo7L5QYNktq1JyLqIBazhWHXXkdlWTntO7SjPYcxFR0DTcNtDsat4yk2NXleG1twEPXH8nDaK9HNZnRdJzw8nNOnT7N//37CwsKIjY0lLi6OqKioZuHibE2nXZxOJw0NDTLtIoQQ4orQ4jUfmqahlLrgFuvn/flj6zHvXoCyxbLSeTNHiipxNDRgCbISagszlsYq4NTJk5RXVIOmc7w+kuT4nqBpfLZsGadOniA0LIK+ffuiOWtx15WD24myl6OHdyAoyEZsTAiOVAfWoCCcTidmTXHy5EnMJhNhYRF06NCBbt264nK66d27FxoaCkWvnt1JSozHbDYRHRPj2TNEM+F0pWIJjUW3hFJiSqRo7366de+KRbNgNmn0aR/FY/ffzW+O7CE5OZkpU6aQlJRE586dcTqdlJeXU1ZWxq5du9B13QgisbGxhISENHudmoYPu90OICMfQgghrgitstQWLv5k27OZTvwHqk6x9bSDg84jpHXqiL3WTv++/Tw1Ho1LV5Wmk9alK0fzj6KZTXTqm44KiqC8rBy304XFGkyoLYQgaxBaUDiEJ6A57KjIdsbmYgDtU9ozccJEiouK6du/D3GxcdTU1lJjt1Ntr6NH956EhYVjtlhxut0EBVlRuk5sXCzoCrfLjWYC3e1GMwXhTBxCWWkpr7/2Ki6ni169evHj+35MuygbA1KjIfVmNm7c+I3nbbVaSUpK8kz7KEV1dTVlZWUUFBSwf/9+QkNDjemZyMjIZjUftbW1AFLzIYQQ4ooQcOFD7zCU3COFfFkVQVD7dlgqjuOod3D61Ck6derUeIKsZ9lrSkoyd/7oR5g0E2azmaLiIuz2aiZmTOL4sePExcV7Nh5DQ4vuCrgxmayeRSwamJSGW1dcc01veve+BhoLTkNCbISE2IhLSMDR4KC2toYaezVlJcVYg4I8+3mERxAcEoxJ19CVG0wKTemYNI1Tp07gcjhRwLFj+USGWLmpx8UfP69pGpGRkURGRn5jVGT37t3G61pcXExiYiI1NTXYbLYLHtB3ub788kteeuklcnJyKCgoYOHChWRmZrbKtYQQQrR9rTrtcqk1H0eOHGFdbg2H6kaQ2LM9NlMQZeW51NXVU1JRhtPhxGK1UN/g4ODBw2iaRrduXdBMcOzEcdxuF6mpHbFYrCQnfb31twaNdSKWxokTb7kqmDTPgXTgvZPCYjIBntEVmy0Emy2YhLh4z8Zpu3ezctVK2rVrR8+ePQgLDSMsPJywsHCsFjO6UlzTuzcdUjtQUFjIbaNv5cZuMWgodF3/1jqO8zl7VKSiooLc3FxKSko4fPgwH374IbGxsaxZs4Zbb731kh//QmpqahgwYAA//vGPje3thRBCiMsVMCMfGzZs4NHfPEtNRCdG3zaa7lFxKBTdu/XixPF8unbriiXICrri8OEjrFuXTXVVNQMHDKBHzx5YLFY6dkrDpJnRNNUYMbx7p8O+vXs5feo0gwYPIiYmFlCgmTzFI8q7v6nnZjfeg+g8Z7EowK10XLrOP//5IU6Xk/37DnDNNX0ICQnhTGUlRQUFBIeEEBYWji00lJ8/9Agmk8bo3omEB1ubvRYmk8kIIZcaRjRNM/ZOGTx4MC6Xi5ycHFauXMnLL7/cKuFj3LhxjBs3rsUfVwghxNUpIMJHfX09WUtXUGFNxOxyUl5WZiyX7dv3Gvr2vQZdgcvtRLnB7dI5feo0DqeDTZu+okvXrnTq2AkNE2jNRzbAc77Mxx//m4b6enbv28dDP/9Z41krnvZpJhpPudXQlcKEybPnh1KeFStGiYjC5XYZgUTTIC4unri4eJwuJ9XVNdTW1lBRUYFJ0xjaOZ4gdwRms814Pbznv3hHhTRNw2QyGf9/MbzFppqmYbVa6dOnD0lJSSxbtuxi/3qEEEIIv2mVaRe4+KW2lZWVrPsqB5XSB7P5GA1OBxFR0eg6oOnGuSso0JSG2WKiW9c0QkNt6NUugkODSU5OwmyxGKfKAsaflIKG+gZ0t47SoKG+DrNmwmTx3ktDKW+7PYfCoSnQPV+bTRqe9KHjcrtBd6O0xv3XVeMptoDFbCEmOprYmGiUUrQL00gLc3H48GF27txJdHQ08fHxxMfHY7PZUMozDaPr+jlHRb4tiJy9wZhsrS6EEOJK0qojHxcKH6dOnSJnx25OEQdUYrKaCTaFUFRYiGYCY3jBrdA1hcVsQleKmtpabh55MyVlpdRU21mxYgXXX3+9p86jMURofH0YWufOXRh16y2cPn2aYdddi668UzLNg4dSjZnC5RmdQPOEAQ3P/wcHh5A+bBhbt2ylQ6dOtGvfAZfbE0asjYfFoSA+IoRb+7bDZNLo3r07dXV1lJaWUlpayuHDhwkKCiIhIYH4+HiioqIueVTk7A3G7Ha7LLMVQghxxWi18GGxWGhoaDjn95RS7N+/nyPHT1AanILNaiM+IYHIyGganA20T2nv+SDWv57zMDWeRFtQUEhdXS1D0odw+PBRstesxl3qYu/e/SQkJKErz/krCh1NaSgNTJrGTSNvxIQJR0M9OVtziE+Ip1OnTp6pGbeO0jw1IBoaZvPX26t7akLArStQiilTfsikiZMIsdkwaSZPfYkySkcICbJwS+8kTE2W89psNlJTU0lNTcXtdlNeXk5paSl79+7F4XAQGxtLfHw8CQkJBAUFGSMi5xsVOftQOdlaXQghxJXE5zUfTqeTvLw8qmtqsUd2xuL2FH2mpnbg7qk/oqGhgYSkRDSloWsmNM0zAuByuT3boqORlpaG2WIhOiaaiMhInC4XCQmJaBpYTGY8czRmTIDSARN4Q8yH//yQPXv3YjKb+OlPf0paWmewaI2rdxsnazSMDcXQvOtjVGOogdDQUM8Ai9a450hjdYnFbOLWa5IIsZ5/yavZbCYhIYGEhATjQLjS0lIKCwuNXU690zMRERFomuY5d0YpY1SkoaHBCCGapsm0ixBCiCuKT2s+ampq2LZtGyE2G9URadTXORtXmng+x2NiYz0fsroyRjA0NOrrGjh5+gShtjCSk5M8B78pSGnXjokTJ9JQ30BCUgKgeeo+PHMpniW0mtakDgQKiktQGriVoqi4hNSOaaApzJ6U43kOgK50PIMdygglmuZZmutdTqyUwuV2e1bFaDC8RzJxYRd/PoumaYSHhxMeHk5aWhpOp5OysjJKS0vJy8tDKUVcXBwJCQnExcVhtVqpra3l+PHjxMXFGeHu+PHjl7+V/UWw2+0cOnTI+Pro0aPk5uYycODAVrumEEKItktTLXX0bCO3243L5aKgoIBjx45x3XXXAVBSUkJeXh4dOnTguCuSgsraxg3DPB/kJsCtAKU3rjjxfNLbq+2cOn2K2JhYYmLj0TTvOhbPfRTgcrn5YuVyigqKGH7dCPr07Q1K4Z200d0Kb43o7t17WbrkU5KSE5l21zSCg62YNE+9hq40lNJRuucKZpPmCUCNoUR560IaA5MJzQgjvVMiSU+La7HXUSnFmTNnjFoRu91OREQEdXV1REdHe7aN1zQOHDjAqFGjGDFiBJ9//nmLXb+p7OxsRo0adc42CiGEEJeq1cJHcXExBw8eZMSIERw7doyDBw/Sp08fjtgtHC21N21C44d9Y5En3noNE2UV5ZSVlpCcnExEZGTjvRtrQBo3Bzt65AjzsrKoqjxDWFg4KSntmDFzpvHBqGtgbvwpT12G8hSzesYrPCMvnqEOlGZMtniW3mqapxZENd7P2z4NTN6CWKBdtI1beyfTmqqqqti+fXvjFJQLi8XCvHnz+OKLL5g0aRJ//vOfL2sDMyGEEMLXWnXaxel0smvXLkpLSxk6dCj7y10cLa0yPrRpPKtFV26Ut2LT5AkFRSXFVFWdITW1o+dQNWXUfqKhcDcGirVffklleTlOl4tQWwgdOnQwajBU4/+4G6dNzI0rR77WOIbSONKB0huLTj1FqnrjUlq3rjeOuODZfEzTPMWsKCJCLNzUI7GlX8ZmGhoa2LVrF3FxcfTp0welFHv27GH79u3Y7XYqKysleAghhLhitFrBqa7rNDQ0YLfbGT58OCEhIQwIczMgNebr4frGmgld1z0rR0yewtKdO3fSIdZJ/1HDG/fEoHGCpTE4eIcxNDi0MphDq7YRZrbwyIz/4q6pPyLIGoxRSAKoxm3TvaMm3hEMjDEO5R3coHk0aX65Zn9ufIxgqxmrufU++B0OBzk5OURERNCnTx80TeP06dP86Ec/YvTo0WzduvW8q4qEEEKIQNTi0y66rlNaWkpOTg5Op5PRo0ef88AzpZSxt4V3L4u6ujpyc3MJDg6mX79+WK3WC17P5XKxevVq4uPjGTx4cEs+Fb/zBo+wsDD69u2LyWSisLCQMWPGcP311/POO++02mFyQgghRGtp8V/Zz5w5w+bNm2nfvr2nkPQc0wHe/SuaBo/Kyko2b95MZGQkq1atYtq0aXz66acXvJ7FYuH2229v1eBx4sQJjhw50mqPfy7nCh7FxcWMHz+eoUOH8ve//12ChxBCiCtSi4ePyMhI0tPT6dy5M0CzvT68W4p7963wBo/CwkK2bdtmHB//8ccfk5uby+zZs1t1CenFWLZsGX369KF///588MEHPrmm0+lk27ZthIaGGsGjtLSUiRMn0qdPH9577z0sllabMRNCCCFaVYuHD5PJRExMjPHh6A0f3mkW79fews8jR46wZ88e+vXrR8eOHUlKSiImJobg4GA6d+7s99/uly5damx7fjEjMd+V0+kkJyeHkJAQ+vXrh8lkoqKigoyMDLp06cKHH354UdNRQgghRKBqtdUu3v0xvKMc3mkW7zkluq6zZ88eKioqGDp0KBEREQC0a9eOt99+m3379nHdddedtTrF9+68804++ugjXC4Xd999d6teyzviERISQv/+/TGZTJw5c4bMzEzatWvHv//9b4KCglq1DUIIIURra/GCU8BYfbFy5UqGDRtGaGhos/oOh8NBXl4euq7Tr18/bDab30PGt6mqqkLXdaKjo1vtGt7gERQUxIABAzCZTFRXV5OZmUl4eDiffPIJNput1a4vhBBC+EqrrBFtuteHw+FoFjzsdjubN28mODgYTdO47777+OlPf0pBQUFrNKVFREZGtmrwcLlcbN++HavVagSPmpoapkyZQnBwMIsWLZLgIYQQos1olfDhLSwNCwtjx44d7N+/3zjJdcuWLSQnJ9OvXz+WLVvGvn372LZtG+vXr2+NpgQ8l8vFtm3bsFgsRvCoq6vjzjvvRNd1Pv30Uzk0TgghRJvS4jUfdXV1lJeXExkZyYABAzhz5gwlJSXs2LEDl8tFdHQ0UVFRKKXo168fGzZswGaz0aNHj5ZuSsDzjniYzWYGDBiA2Wymvr6eqVOnUltby/Lly41aGCGEEKKtaPGaj6VLlzJ58mRuvvlmMjMzGTt2LLt27cJsNtOtWzfq6uooKirC6XQSHx+P3W6nQ4cOdOzYsSWbEfDcbjfbtm3DZDIxcOBAY4rq7rvvpqCggJUrVxITE+PvZgohhBAtrlUKTvfv309WVhbz5s3jwIEDpKSk8Itf/ILx48eTlJQEQHV1NcXFxRQVFVFfX098fDyJiYkkJCS0+T0s3G4327dvB2DQoEHGOTgzZszg6NGjrFq1ivj4eD+3UgghhGgdrRI+vHJzc/nlL3/JTTfdxOeff86WLVsYPnw4kyZNIiMjg/bt2wNQU1NDUVERxcXF1NTUEBcXZwSRtra01O12k5ubi67rDB48GLPZjMvl4v7772f37t2sWbOGxMTWPahOCCGE8KdWDR9NKaU4ceIECxYsYOHChWzYsIH09HQyMjLIyMigU6dOaJpGbW2tEUSqq6uJiYkhMTGRxMREgoODfdHUVtM0eAwaNAiLxYLb7eZnP/sZW7ZsITs7m3bt2vm7mUIIIUSr8ln4aEopRUFBAQsXLmTBggV8+eWX9O/f3wgi3bp1Mw6aKy4upri4mDNnzhAVFWUEkStt6anb7SYvLw+Xy8XgwYON4PHII4+wfv16srOz6dChg7+bKYQQQrQ6v4SPppRSlJaWsmjRIrKysli9ejW9evUygkjv3r3RNI2GhgYjiFRUVBAREUFiYiJJSUmEhob68ylckK7r5OXl4XQ6jeCh6zpPPPEEK1asYM2aNaSlpfm7mUIIIYRP+D18NKWUoqKigk8++YSsrCxWrFhB586dycjIYPLkyfTp0weTyYTD4aCkpITi4mLKysoICwszgkhYWFhA7ZbqDR4Oh4PBgwdjtVrRdZ1Zs2bxySefsGbNGrp27ervZgohhBA+E1Dh42xnzpxhyZIlLFiwgM8//5x27dqRkZFBZmYmgwYNwmQy4XQ6KS0tpbi4mNLSUkJCQkhKSiIxMZGIiAi/BhFd19mxYwcNDQ3NgsfTTz/Nv/71L7Kzs6/K/U2EEEJc3QI6fDRlt9v57LPPWLBgAZ999hmxsbFMmjSJzMxMhg4ditlsxu12U1paSlFREaWlpVitViOIREVF+TSI6LrOzp07qaurY8iQIVitVpRS/O///i//+Mc/WLNmDddcc43P2nO2L7/8kpdeeomcnByj/iYzM9Nv7RFCCHH1uGLCR1Pe3T8XLFjAkiVLCAsLY+LEiWRmZjJ8+HCjmLO8vNyoEzGbzUaxakxMTKsGkfMFjz/96U+8+eabrF69mn79+rXa9S/GsmXL2LBhA0OGDOH73/++hA8hhBA+c0WGj6bq6+tZuXIlCxYsYPHixVitViZMmMDkyZO54YYbjKmOiooKioqKKCkpQSllBJHY2FhMppY74kbXdXbt2kVNTQ1DhgwhKCgIpRSvvfYaL7/8MitXrmTw4MEtdr2WoGmahA8hhBA+c8WHj6acTifZ2dnMnz+fRYsW4Xa7GT9+vLHduzcIVFZWGnuJuN1uEhISSExMJC4uDrPZfNnXP1/wePPNN3n++edZvnw5w4YNa8Fn3DIkfAghhPClNhU+mnK5XKxfv5558+axaNEiampqGD9+PBkZGYwePZqQkBCUUlRVVRlBxOFwGNu8x8fHX9I270opdu3aRXV1Nenp6Ubw+Pvf/87TTz/NsmXLGDFiRCs+48sn4UMIIYQvtdnw0ZTb7WbTpk1kZWWxcOFCysvLGTt2LBkZGdx+++2EhYWhlMJutxtBpK6urtk271ar9byPr5Ri9+7dVFVVMWTIEIKDg1FK8d577zFr1iw+/fRTRo4c6cNnfGkkfAghhPClqyJ8NKXrOlu2bDGCyOnTp7n99tvJyMhg3LhxxhH2drvdKFa12+3ExsYadSJNz5tRSrFnzx4qKytJT083gseHH37IE088weLFi7nlllv89XQvioQPIYQQvnTVhY+mvBuAzZ8/nwULFpCfn8/o0aOZNGkS48ePN5bn1tbWGkGkqqqK6OhokpKSSEhI4PDhw1RWVjJkyBBCQkIAmDdvHg899BDz589n7Nixfn6WFybhQwghhC9d1eGjKe/Uyfz581m4cCH79u3j5ptvJjMzkwkTJhAbG4umadTX11NcXExRURGVlZWYTCY6depE+/btsdlsLFq0iJ/85Cd89NFHTJw40d9P67zsdjuHDh0CYNCgQbz66quMGjWK2NhYOnbs6OfWCSGEaMskfJyDUooDBw6QlZXFggULyMvL48YbbyQzM5OJEycSHx9vTLV06NCBiooKiouL+f3vf8/Ro0d54YUXePjhh/39NL5VdnY2o0aN+sbtM2bMYM6cOb5vkBBCiKuGhI8LUEpx9OhRI4hs3ryZ3r1706FDB1599VU6deqEpmksWbKEZ599FpvNxg033MDs2bP93XQhhBAiIEn4uARKKf7617/y29/+ln79+rFhwwaGDh1Knz59+Oijj/jrX//K3XffHVAH2wkhhBCBRsLHJVJKUVpaSnx8vHEmynPPPccdd9zBX/7yFwkeQgghxAVI+GgBuq6jaZoEDyGEEOIiSPgQQgghhE+13IlqQgghhBAXQcKHEEIIIXzqssLHG2+8QVpaGiEhIVx77bVs3ry5pdslhBBCiDbqksPHxx9/zBNPPMEzzzzDtm3bGDBgAGPGjKG4uLg12ieEEEKINuaSC06vvfZahg4dyl/+8hfAs9IjNTWVRx55hFmzZrVKI4UQQgjRdlzSyIfD4SAnJ4fRo0d//QAmE6NHj2bTpk0t3jghhBBCtD2XFD5KS0txu90kJSU1uz0pKYnCwsIWbZgQQggh2iZZ7SKEEEIIn7qk8BEfH4/ZbKaoqKjZ7UVFRSQnJ7dow4QQQgjRNl1S+AgKCmLIkCGsWrXKuE3XdVatWsXw4cNbvHFCCCGEaHssl/oDTzzxBDNmzCA9PZ1hw4Yxe/ZsampquPfee1ujfUIIIYRoYy45fNx5552UlJTw9NNPU1hYyMCBA/n888+/UYQqhBBCCHEucrCcEEIIIXxKVrsIIYQQwqckfAghhBDCpyR8BBg5tE8IIURbJ+EjgPjz0L65c+cSFxdHQ0NDs9szMzOZPn16q19fCCHE1UMKTgOIPw/tq6uro127drz99ttMmTIFgOLiYtq3b88XX3zBqFGjWvX6Qgghrh4y8hEg/H1on81mY+rUqbz77rvGbR988AEdO3bk5ptvbvXrCyGEuHpI+AgQgXBo3wMPPMAXX3zBqVOnAJgzZw4zZ85E0zSfXF8IIcTV4ZI3GRNt16BBgxgwYABz587l9ttvZ/fu3SxdutTfzRJCCNHGyMgH8OWXXzJx4kRSUlLQNI1Fixb5vA2Bcmjf/fffz5w5c3j33XcZPXo0qampPru2EEKIq4OED6CmpoYBAwbwxhtv+K0NgXJo39SpUzl58iRvv/02P/7xj312XSGEEFcPmXYBxo0bx7hx4/zdjIA4tC8qKoo77riDpUuXkpmZ6bPrCiGEuHpI+AgggXJo36lTp5g2bRrBwcE+va4QQoirg+zzcRZN01i4cOFV+Vt/RUUF2dnZ/OAHP2DPnj307NnT300SQgjRBsnIhzAMGjSIiooKXnzxRQkeQgghWo2ED2HIz8/3dxOEEEJcBWS1ixBCCCF8SkY+ALvdzqFDh4yvjx49Sm5uLrGxsXTs2NGPLRNCCCHaHik4BbKzs895cNqMGTOYM2eO7xskhBBCtGESPoQQQgjhU1LzIYQQQgifkvAhhBBCCJ9qlfBRUlJCcnIyzz//vHHbxo0bCQoKanZ2iRBCCCGuPq1W8/HZZ5+RmZnJxo0b6dmzJwMHDiQjI4NXX321NS4nhBBCiCtEqxacPvTQQ6xcuZL09HR27tzJli1b5LwQIYQQ4irXquGjrq6Ovn37cuLECXJycujXr19rXUoIIYQQV4hWLTg9fPgwp0+fRtd12bpbCCGEEEArjnw4HA6GDRvGwIED6dmzJ7Nnz2bnzp0kJia2xuWEEEIIcYVotfDx5JNPMn/+fPLy8ggPD2fkyJFERUWxZMmS1ricEEIIIa4QrTLtkp2dzezZs3n//feJjIzEZDLx/vvvs27dOt56663WuKQQQgghrhCyvboQQgghfEp2OBVCCCGET0n4EEIIIYRPSfgQQgghhE9J+BBCCCGET0n4EEIIIYRPSfgQQgghhE9J+BBCCCGET0n4EEIIIYRPSfgQQgghhE9J+BBCCCGET0n4EEIIIYRPWfzdAF9wu904nU5/N0MIIUSAsVqtmM1mfzfjqtOmw4dSisLCQiorK/3dFCGEEAEqOjqa5ORkNE3zd1OuGm06fHiDR2JiIqGhodKxhBBCGJRS1NbWUlxcDEC7du383KKrR5sNH2632wgecXFx/m6OEEKIAGSz2QAoLi4mMTFRpmB8pM0WnHprPEJDQ/3cEiGEEIHM+zkhtYG+02bDh5dMtQghhPg28jnhe20+fAghhBAisEj4EADMmTOH6OhofzdDCNEGZGdno2marDQU59VmC06vVDNnzuS9994DPOvPO3bsyD333MNvfvMbLJbW++u68847+d73vtdqj38xmj53i8VCbGws/fv356677mLmzJmYTBeflefMmcNjjz0mb37fkffv5IUXXmDWrFnG7YsWLWLy5MkopXzWlqZD46GhoaSkpHD99dfzyCOPMGTIkEt6rJtvvpmBAwcye/bsFm5ly/l/X+zz2bUev73XRd/3QlMUzzzzDDfffPN3bJFo62TkIwCNHTuWgoICDh48yC9/+Ut+//vf89JLL53zvg6Ho0WuabPZSExMbJHH+i68zz0/P59ly5YxatQoHn30USZMmIDL5fJ3865KISEhvPjii1RUVPi7Kbz77rsUFBSwe/du3njjDex2O9deey1z5871d9OuGgUFBcZ/s2fPJjIystlt//Vf/+W3trXU+6FofRI+AlBwcDDJycl06tSJn/3sZ4wePZpPPvkE8PwmmpmZyR/+8AdSUlLo2bMnACdOnOCHP/wh0dHRxMbGkpGRQX5+PgBffPEFISEh3xgFePTRR7nllluAc0+7vPXWW3Tt2pWgoCB69uzJ+++/b3wvPz8fTdPIzc01bqusrETTNLKzswGoqKhg2rRpJCQkYLPZ6N69O+++++5FPff27dszePBgfvOb37B48WKWLVvGnDlzjPu9+uqr9OvXj7CwMFJTU/n5z3+O3W4HPEO+9957L2fOnEHTNDRN4/e//z0A77//Punp6URERJCcnMzUqVONNf7i3EaPHk1ycjIvvPDCt95v/fr13HjjjdhsNlJTU/nFL35BTU0NAH/5y1/o27evcd9FixahaRp//etfm13nd7/73bdew7sZVFpaGrfffjvz589n2rRpPPzww0Y4Kisr46677qJ9+/aEhobSr18/PvroI+MxZs6cydq1a3nttdeM/pGfn4/b7ea+++6jc+fO2Gw2evbsyWuvvXbJr1dbl5ycbPwXFRWFpmnNbgsPDzfum5OTQ3p6OqGhoYwYMYL9+/c3e6zFixczePBgQkJC6NKlC88++2yzXzKOHz9ORkYG4eHhREZG8sMf/pCioiLj+7///e8ZOHAgf//73+ncuTMhISHMnTuXuLg4Ghoaml0rMzOT6dOnt9KrIi6VhI8rgM1ma5boV61axf79+1mxYgVLlizB6XQyZswYIiIiWLduHRs2bCA8PJyxY8ficDi49dZbiY6OJisry3gMt9vNxx9/zLRp0855zYULF/Loo4/yy1/+kl27dvHggw9y7733smbNmotu93//93+zZ88eli1bxt69e3nrrbeIj4+/5Od/yy23MGDAABYsWGDcZjKZeP3119m9ezfvvfceq1ev5qmnngJgxIgR3/iNzPvbmNPp5LnnniMvL49FixaRn5/PzJkzL7lNVxOz2czzzz/Pn//8Z06ePHnO+xw+fJixY8dyxx13sGPHDj7++GPWr1/Pww8/DMDIkSPZs2cPJSUlAKxdu5b4+HgjqDqdTjZt2nRZw/WPP/441dXVrFixAoD6+nqGDBnC0qVL2bVrFz/5yU+YPn06mzdvBuC1115j+PDhPPDAA0b/SE1NRdd1OnTowLx589izZw9PP/00v/nNb/j3v/99yW0SHr/97W955ZVX2Lp1KxaLhR//+MfG99atW8c999zDo48+yp49e/i///s/5syZwx/+8AcAdF0nIyOD8vJy1q5dy4oVKzhy5Ah33nlns2scOnSIrKwsFixYQG5uLlOmTMHtdhu/sIFnD4+lS5c2u77wL6n5uAgul4sjR47QpUuXVq27OJtSilWrVrF8+XIeeeQR4/awsDD+/ve/ExQUBMAHH3yAruv8/e9/N+Zj3333XaKjo8nOzub222/nRz/6ER9++CH33Xcf4AkwlZWV3HHHHee89ssvv8zMmTP5+c9/DsATTzzBV199xcsvv8yoUaMuqv3Hjx9n0KBBpKenA5CWlnZZrwNAr1692LFjh/H1Y489Zvw5LS2N//3f/+WnP/0pb775JkFBQc1+I2uq6ZtPly5deP311xk6dCh2u73Zb2wBze2CinyISQOzb/rj5MmTGThwIM888wzvvPPON77/wgsvMG3aNOPvpXv37rz++uuMHDmSt956i759+xIbG8vatWv5wQ9+QHZ2Nr/85S+NkYXNmzfjdDoZMWLEJbetVy9PvYJ3pK99+/bNhv4feeQRli9fzr///W+GDRtGVFQUQUFBhIaGNusfZrOZZ5991vi6c+fObNq0iX//+9/88Ic/vOR2CfjDH/7AyJEjAZg1axbjx4+nvr6ekJAQnn32WWbNmsWMGTMAz7/H5557jqeeeopnnnmGVatWsXPnTo4ePUpqaioAc+fOpU+fPmzZsoWhQ4cCnqmWuXPnkpCQYFx36tSpvPvuu0yZMgXwvEd27NhRalECiIx8XIDL5WL48OH07NmT4cOH+6TuYMmSJYSHhxMSEsK4ceO48847jWkDgH79+hnBAyAvL49Dhw4RERFBeHg44eHhxMbGUl9fz+HDhwGYNm0a2dnZnD59GoB//vOfjB8//rwrXPbu3cv111/f7Lbrr7+evXv3XvTz+NnPfsa//vUvBg4cyFNPPcXGjRsv+mfPppRqVui2cuVKbr31Vtq3b09ERATTp0+nrKyM2trab32cnJwcJk6cSMeOHYmIiDDeGI8fP37ZbfMptwveGQ1/GeL5f7fv6mBefPFF3nvvvXP2gby8PObMmWP0v/DwcMaMGYOu6xw9ehRN07jpppvIzs6msrKSPXv28POf/5yGhgb27dvH2rVrGTp06GVtCugtevX2D7fbzXPPPUe/fv2IjY0lPDyc5cuXX9Tf8RtvvMGQIUNISEggPDycv/3tb1dO3whA/fv3N/7s3brcO82Zl5fH//zP/zTrM97RqNraWvbu3UtqaqoRPACuueYaoqOjm/XBTp06NQseAA888ABffPEFp06dAjzTyjNnzpT9PAKIhI8LOHLkCFu3bgVg69atHDlypNWvOWrUKHJzczl48CB1dXW89957hIWFGd9v+mcAu93OkCFDyM3NbfbfgQMHmDp1KgBDhw6la9eu/Otf/6Kuro6FCxeed8rlYnhXnjRd7XD27oDjxo3j2LFjPP7445w+fZpbb731sovR9u7dS+fOnQHPb7gTJkygf//+ZGVlkZOTwxtvvAF8e8FZTU0NY8aMITIykn/+859s2bKFhQsXXvDnAkpFPpze7vnz6e2er33kpptuYsyYMfz617/+xvfsdjsPPvhgs/6Xl5fHwYMH6dq1K+BZYZKdnc26desYNGgQkZGRRiBZu3atEQQvlfeDyNs/XnrpJV577TV+9atfsWbNGnJzcxkzZswF/47/9a9/8V//9V/cd999fPHFF+Tm5nLvvfdeOX0jAFmtVuPP3g9+XdcBT5959tlnm/WZnTt3cvDgQUJCQi76Gme/HwIMGjSIAQMGMHfuXHJycti9e7dMrwYYmXa5gC5dupCens7WrVsZOnQoXbp0afVrhoWF0a1bt4u+/+DBg/n4449JTEwkMjLyvPebNm0a//znP+nQoQMmk4nx48ef9769e/dmw4YNxpAowIYNG7jmmmsAjN80CgoKGDRoEECz4lOvhIQEZsyYwYwZM7jxxht58sknefnlly/6uQGsXr2anTt38vjjjwOe0Qtd13nllVeMEHT2vHxQUBBut7vZbfv27aOsrIw//vGPxm9T3mB5xYhJg5RBnuCRMsjztQ/98Y9/ZODAgUahs9fgwYPZs2fPt/bbkSNH8thjjzFv3jxj+Pvmm29m5cqVbNiwgV/+8peX1SZvfc/o0aMBTz/NyMjg7rvvBjwfdgcOHDD6Lpy7f2zYsIERI0YYU42AMXIoWt7gwYPZv3//eftM7969OXHiBCdOnDD+ve7Zs4fKyspmf5fnc//99zN79mxOnTrF6NGjm42gCP+TkY8LsFgsbNq0if3797Nx40af1nxcrGnTphEfH09GRgbr1q3j6NGjZGdn84tf/KJZgeC0adPYtm0bf/jDH/jBD35AcHDweR/zySefZM6cObz11lscPHiQV199lQULFhgjFzabjeuuu44//vGP7N27l7Vr135jpcLTTz/N4sWLOXToELt372bJkiX07t37W59LQ0MDhYWFnDp1im3btvH888+TkZHBhAkTuOeeewDo1q0bTqeTP//5zxw5coT333+/2aoJ8NSB2O12Vq1aRWlpKbW1tXTs2JGgoCDj5z755BOee+65S3qt/c5sgftWwsM5nv/3Uc2HV79+/Zg2bRqvv/56s9t/9atfsXHjRh5++GFj1G7x4sVGwSl4huBjYmL48MMPm4WPRYsW0dDQ8I1pvnOprKyksLCQY8eOsWLFCn7wgx/w4Ycf8tZbbxlTiN27d2fFihVs3LiRvXv38uCDDzZbIQGe/vGf//yH/Px8SktL0XWd7t27s3XrVpYvX86BAwf47//+b7Zs2fLdXjBxXk8//TRz587l2WefZffu3ezdu5d//etfxvvI6NGjjf62bds2Nm/ezD333MPIkSONOrJvM3XqVE6ePMnbb78thaaBSLVRdXV1as+ePaqurs7fTbkkM2bMUBkZGZf8/YKCAnXPPfeo+Ph4FRwcrLp06aIeeOABdebMmWb3GzZsmALU6tWrm93+7rvvqqioqGa3vfnmm6pLly7KarWqHj16qLlz5zb7/p49e9Tw4cOVzWZTAwcOVF988YUC1Jo1a5RSSj333HOqd+/eymazqdjYWJWRkaGOHDnyrc8NUICyWCwqISFBjR49Wv3jH/9Qbre72X1fffVV1a5dO2Wz2dSYMWPU3LlzFaAqKiqM+/z0pz9VcXFxClDPPPOMUkqpDz/8UKWlpang4GA1fPhw9cknnyhAbd++/bztupqdq78dPXpUBQUFqbPfPjZv3qxuu+02FR4ersLCwlT//v3VH/7wh2b3ycjIUBaLRVVXVyullHK73SomJkZdd911F2yLt28AKiQkRHXt2lXNmDFD5eTkNLtfWVmZysjIUOHh4SoxMVH97ne/U/fcc0+z57F//3513XXXKZvNpgB19OhRVV9fr2bOnKmioqJUdHS0+tnPfqZmzZqlBgwYcPEv2FXmXO8bSim1Zs2ab/x73L59u/Fae33++edqxIgRymazqcjISDVs2DD1t7/9zfj+sWPH1KRJk1RYWJiKiIhQU6ZMUYWFhcb3n3nmmW/9+5k+fbqKjY1V9fX13/o8rtTPiyuZppQPtyj0ofr6eo4ePWqs/RZCCHF1ufXWW+nTp883RurOJp8Xvhd4cwhCCCHEd1BRUUF2djbZ2dm8+eab/m6OOAcJH0IIIdqUQYMGUVFRwYsvvviN4mgRGCR8CCGEaFO8G86JwCWrXYQQQgjhU20+fLTRelohhBAtRD4nfK/Nhg/vznoX2m5bCCHE1c37OdF0R1bRutpszYfZbCY6Oto4RyA0NFT29RdCCGFQSlFbW0txcTHR0dGYzWZ/N+mq0Wb3+QBPxyosLKSystLfTRFCCBGgoqOjSU5Oll9QfahNhw8vt9v9jUPPhBBCCKvVKiMefnBVhA8hhBBCBI42W3AqhBBCiMAk4UMIIYQQPiXhQwghhBA+JeFDCCGEED4l4UMIIYQQPiXhQwghhBA+JeFDCCGEED71/wGFz0xpeBmBcgAAAABJRU5ErkJggg==\n" - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "# Plot cycle results with each cycle as one panel using defaults\n", - "fig = plot_results_panel_3d(cycle_mlr); # Add semicolon to supress creating two figures in jupyter notebook" - ], - "metadata": { - "collapsed": false - } - }, - { - "cell_type": "code", - "execution_count": 12, - "outputs": [ - { - "data": { - "text/plain": "
", - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA5QAAAIzCAYAAAB/WFaqAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8o6BhiAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOy9d5Bk2XWf+d3nX9pyXe3NzPSYxsxgHGYw3UMYYUEABBEkFApoV6slFlwSKzOkCDGCoogQJS4hAQuBCgq7UtCEzITAgJbiik6QBCwISwIgBma6p7333VXdXTbtc/fuH/e97Krqqupybed+ERM1VV2Z+aoq8+Q95/zO7willMJgMBgMBoPBYDAYDIZlYt3pCzAYDAaDwWAwGAwGw72JSSgNBoPBYDAYDAaDwbAiTEJpMBgMBoPBYDAYDIYVYRJKg8FgMBgMBoPBYDCsCJNQGgwGg8FgMBgMBoNhRZiE0mAwGAwGg8FgMBgMK8IklAaDwWAwGAwGg8FgWBEmoTQYDAaDwWAwGAwGw4owCaXBYDAYDAaDwWAwGFaESSjvY3bs2MFHPvKRO30ZBoPBcNdh4qPBYDAsjImRhuVgEsrbxMmTJ/lbf+tv8eCDDxIEAbVajZdeeonPfvazdDqdO315S+bw4cO8733vo1KpMDAwwE/91E9x9erVO31ZBoPhHuZ+iI+vvvoqf/fv/l2ee+45XNdFCHGnL8lgMNwn3OsxUkrJK6+8wk/8xE+wdetWyuUyTzzxBP/0n/5Tut3unb48wxrg3OkLeCPwX//rf+VDH/oQvu/z4Q9/mCeeeII4jvmLv/gLfumXfomDBw/yu7/7u3f6Mm/KhQsXePvb3069XueTn/wkzWaT3/iN32D//v28+uqreJ53py/RYDDcY9wv8fG//bf/xr/5N/+GN7/5zTz44IMcO3bsTl+SwWC4D7gfYmS73eanf/qnefHFF/nbf/tvMzw8zHe+8x3+yT/5J3zlK1/hq1/9qinC3eOYhPIWc/r0af6n/+l/Yvv27Xz1q19l48aNvX97+eWXOXHiBP/1v/7XO3iFS+eTn/wkrVaLH/zgB2zbtg2AF154gR/90R/llVde4X//3//3O3yFBoPhXuJ+io9/5+/8HX75l3+ZMAz5uZ/7OZNQGgyGVXO/xEjP8/jWt77Fnj17el/76Ec/yo4dO3pJ5bvf/e47eIWG1WIkr7eYf/7P/znNZpN/+2//7axAULBz505+4Rd+AYB3vOMdPPXUU/Pez6OPPsp73/ve3udSSj772c/y5JNPEgQB69at433vex/f//73F72eyclJPvaxj7F161Z832fnzp18+tOfRkp505/lP//n/8wHPvCBXjIJ8O53v5tHHnmE//Sf/tNNb28wGAwzuZ/i4/r16wnD8KbfZzAYDEvlfomRnufNSiYL/upf/auAHqcy3NuYhPIW81/+y3/hwQcfnPeFNJef+qmf4vXXX+fAgQOzvv69732PY8eO8b/8L/9L72s/8zM/03tRf/rTn+Yf/sN/SBAE/OVf/uWC999ut3nHO97B7/3e7/HhD3+Y/+v/+r946aWX+JVf+RV+8Rd/cdFru3jxIleuXOEtb3nLDf/2wgsv8Nprr9305zMYDIaZ3C/x0WAwGG4F93uMHBkZAWBoaGhFtzfcRSjDLWNqakoB6id/8ieX9P2Tk5MqCAL1y7/8y7O+/vf+3t9T5XJZNZtNpZRSX/3qVxWg/t7f+3s33IeUsvf/27dvV//r//q/9j7/xCc+ocrlsjp27Nis2/zDf/gPlW3b6ty5cwte2/e+9z0FqP/wH/7DDf/2S7/0SwpQ3W53ST+nwWAw3E/xcS4vv/yyMm+vBoNhNdzPMbLg3e9+t6rVampiYmLZtzXcXZgO5S1kenoagGq1uqTvr9fr/ORP/iT/8T/+R5RSAGRZxu///u/zwQ9+kHK5DGjpqRCCf/JP/skN97HYUPMf/MEf8La3vY3+/n6uXbvW++/d7343WZbxzW9+c8HbFi5ivu/f8G9BEMz6HoPBYLgZ91N8NBgMhrXmfo+Rn/zkJ/mzP/sz/s//8/+kr69vWbc13H0YU55bSK1WA6DRaCz5Nh/+8If5/d//ff78z/+ct7/97fzZn/0Zo6Oj/NRP/VTve06ePMmmTZsYGBhY1vUcP36c119/nXXr1s3771euXFnwtsVsUBRFN/xbYfls5ocMBsNSuZ/io8FgMKw193OM/P3f/33+0T/6R/zMz/wMf+fv/J1lXYfh7sQklLeQWq3Gpk2bbtCzL8Z73/te1q9fz+/93u/x9re/nd/7vd9jw4YNa+J+JaXkR3/0R/kH/+AfzPvvjzzyyIK3LYbBL1++fMO/Xb58mYGBgXm7lwaDwTAf91N8NBgMhrXmfo2RX/7yl/nwhz/Mj//4j/Pbv/3bq74uw92BSShvMR/4wAf43d/9Xb7zne+we/fum36/bdv8z//z/8wrr7zCpz/9af74j/+Yj370o9i23fuehx56iC996UuMj48vq8L00EMP0Ww2VxRYNm/ezLp16+Z1AHv11Vd5+umnl32fBoPhjc39Eh8NBoPhVnC/xcjvfve7/NW/+ld5y1vewn/6T/8JxzFpyP2CmaG8xfyDf/APKJfL/OzP/iyjo6M3/PvJkyf57Gc/O+trP/VTP8XExAR/62/9LZrN5ixnLoC/9tf+Gkop/o//4/+44f4K3fx8/PW//tf5zne+w5e+9KUb/m1ycpI0TRf9Wf7aX/trfOELX+D8+fO9r33lK1/h2LFjfOhDH1r0tgaDwTCX+yk+GgwGw1pzP8XIw4cP8+M//uPs2LGDL3zhC2ZM6j5DqMWePYY14U//9E/5H//H/5EwDPnwhz/ME088QRzHfPvb3+YP/uAP+MhHPsLv/M7vzLrNk08+yYEDB9i1axeHDh264T4//OEP87nPfY4f+7Ef433vex9SSv78z/+cv/JX/go/93M/B8COHTt45zvfySuvvAJoy+e3ve1tvP7663zkIx/hueeeo9VqsX//fv7f//f/5cyZM4taN58/f55nnnmGvr4+fuEXfoFms8lnPvMZtmzZwve+9z0jeTUYDMvmfomPZ8+e5XOf+xwAX/jCF/jud7/LJz7xCQC2b98+a4bJYDAYlsr9ECMbjQaPP/44Fy9e5JOf/CSbN2+e9e8PPfTQkjqwhruYO+Qu+4bj2LFj6qMf/ajasWOH8jxPVatV9dJLL6n/+//+v+ddt/HP//k/V4D65Cc/Oe/9pWmqPvOZz6jHHntMeZ6n1q1bp37sx35M/eAHP+h9z1zLZ6WUajQa6ld+5VfUzp07led5amhoSO3Zs0f9xm/8horj+KY/x4EDB9R73vMeVSqVVF9fn/qbf/NvqpGRkeX9MgwGg2EG90N8/NrXvqaAef97xzvesezficFgMBTc6zHy9OnTC8ZH4IbHMdx7mA7lXcpnP/tZ/v7f//ucOXOGbdu23enLMRgMhrsGEx8NBoNhYUyMNNxuTEJ5F6KU4qmnnmJwcJCvfe1rd/pyDAaD4a7BxEeDwWBYGBMjDXcCY690F9FqtfjTP/1Tvva1r7F//37+5E/+5E5fksFgMNwVmPhoMBgMC2NipOFOYjqUdxFnzpzhgQceoK+vj7/7d/8u/+yf/bM7fUkGg8FwV2Dio8FgMCyMiZGGO4lJKA0Gg8FgMBgMBoPBsCLMHkqDwWAwGAwGg8FgMKwIk1AaDAaDwWAwGAwGg2FFmITSYDAYDAaDwWAwGAwrwiSUBoPBYDAYDAaDwWBYESahNBgMBoPBYDAYDAbDijAJpcFgMBgMBoPBYDAYVoRJKA0Gg8FgMBgMBoPBsCJMQmkwGAwGg8FgMBgMhhVhEkqDwWAwGAwGg8FgMKwIk1AaDAaDwWAwGAwGg2FFmITSYDAYDAaDwWAwGAwrwiSUBoPBYDAYDAaDwWBYESahNBgMBoPBYDAYDAbDijAJpcFgMBgMBoPBYDAYVoRJKA0Gg8FgMBgMBoPBsCJMQmkwGAwGg8FgMBgMhhVhEkqDwWAwGAwGg8FgMKwIk1AaDAaDwWAwGAwGg2FFOHf6At7oSCnJsgzbthFCIIS405dkMBgMdwVKKdI0xbIsLMsy8dFgMBhylFJkWQbQO0MaDHcKk1DeIYpAEMcxnU4H27axbRvHcXAcxySYBoPhDU2WZSRJQrvdRghxQ3w0CabBYHijIqUkSRI6nQ5Syhvio0kwDbcboZRSd/oi3mgopUiShCzLUEoRxzFCCKSUKKV6iaRlWbiuO+sAZTAYDPczRVcyTdNZ8VEp1fuvSCYdx8F1XZNgGgyGNwRFMyJNU6SUvTiplEJK2YuBlmXN26QwGG4VpkN5mymq7lLKXoJYJI/F50VwOHPmDM1mk127dvUOTzOrTybBNBgM9xNF1V1KCVyPjTMPQkV8nJyc5NChQ7z44ou97zMdTIPBcL8ysxkBzIpxRQI5s/D2la98heeff54wDHsNiiLJNPHRsNaYhPI2UVTdDx06xNDQEIODg72q+1yKDmVRUSqCRJIkxHEMcMPhySSYBoPhXqWorp85c4Y0Tdm+fTtCCJrNJhcvXqRWq9HX1zdrFMC2bYBefMyyjCzLiKJolsKjOECZEQKDwXCvIqXk6tWrXLx4kTe96U03PT8W/1+cDZVSdLvd3tfnU8CZ+GhYDSahvA3MrLpPTk5SrVaX/MKdK4EtvlbcZ5IkAKaDaTAY7klmVt1brRZJkiCE4NKlSxw8eJBarcalS5eI45harUZ/fz/9/f2zDk1z4+NMWdjMBNTMqBsMhnuJIpYlSUIURUxMTCw7bhWxcW4Hc2aCaWbUDavFJJS3kJmJXyFxXU6St9CLeWZ1fu7jLJRgFhV6g8FguFso4laWZb34KKVk//79XLlyhSeffJK+vj4Aut0uk5OTTExMcOnSpV6sO336NP39/dRqtd4haL4EM03TXrJaxNCig2kKcAaD4W5jPonrcmxP5jvzzSykzUwwpZS9BLOIxSbBNCwHk1DeIhbSui8kU1jsfm7GYglmYWhhBrQNBsPdwlxjiSI+xnHMlStXqFarvPTSS3ie14thpVKJUqnEpk2bUEpx9epVDh06RLPZ5MKFC2RZRl9fX6+DWalUTIJpMBjuSeb6bRQxbLk+mjf7/sUSzCiK6Ha7JsE0LAmTUN4C5lbdZ77olpNQrvTFutQE01hMGwyG2818xTaAc+fOceHCBcrlMi+88ELP+Xo+hBA9o4knn3wSpRStVouJiQkmJiY4e/YsSqkbEszi8LRYgllckxkhMBgMt5uZLtcw23hnuQ2JlZzp5o4CzBwhMDPqhsUwCeUaslDVfSa3okN5M2YmmMX9SSmJ45jvfe97PPLII5TLZZNgGgyGW8p8VfckSThw4ACTk5Ns3ryZLMtmHaAWYm6hrlKpUKlU2Lp1K0opGo1GTyJ7+vRphBC95LKvr49yubxogpkkCYcPH6ZerzM8PGwSTIPBcEuZ63I9N8Ys9/wIqz9DLjajfuHCBaIo4oEHHjAz6gaTUK4Vi9k5z+R2dCiXcp9FgtlsNnvXFMfxrOqTSTANBsNasFDVfWJign379vUkrhcvXmRqampZ9zsfQghqtRq1Wo1t27YhpaTRaDAxMcHVq1c5ceIEtm33Esz+/n7CMLwhwYyiqBfTzYy6wWC4Fcznt7Gc82Nh3jjf9681M+PjzI7lfCMEcyWyhvsbk1CuAfNV3RfiTnQob8ZCHcwoihZdU2IOUAaD4WbMt1sS4OTJk5w6dYqHH364tyZkvvi4mDnZUrEsi3q9Tr1eZ8eOHUgpmZ6eZmJigtHRUY4dO4bnebMksmEY9g5qNxshmJlgmhl1g8GwVJbajIA706FcCvPtUTcz6m88TEK5CmZW3ZVSSxpSvtMdyqU+ZvGin2kxPTfBNEtyDQbDQixUdY+iiNdff51Op8MLL7xAvV7v3eZ2Fdwsy6Kvr4++vj4eeOABsixjamqKiYkJLl++zNGjR/F9HyklnucxNDSE7/u9a1yqCdrMA5SJjwaDYSaL+W3Mx+2YoVwO83VGzYz6GxeTUK4QKSVpmi6pqjSTu61DuVIHMLMk12AwLMRCVferV6+yf/9+BgcHeeaZZ3Cc2W9Bd6rgZts2AwMDDAwMAJCmKVNTUxw9epTJyUm+9a1vEYbhLIms53m96zAmaAaDYaksxW9jPu7WDuViLDajPp/CwySY9y4moVwmMw8LRXVmOQeDu71DeTNMgmkwGBZjvqq7lJJjx45x7tw5du3axebNm1c9Yw637rDkOA6Dg4OEYcj69esZHh7uGfycPXuWgwcPUi6XewY//f39uK7b+xkWMkEzM+oGwxub5Uhc53K3dShXwnwJptmjfn9gEsplUASCQ4cO0dfXx4YNG5b9JL9bDkwzWc0LdSkJ5sjICOvWres5yZoE02C4/yiq7mfPnqXVavHII48ghKDdbrNv3z6klOzevZtKpbLgfdytBTfHcRgaGmJoaAjQBj3FipLTp09z4MABKpXKLBfZmYegxRLMiYkJPM9jYGDAJJgGw31MlmWMjY1x/PhxnnvuuVt+foQ736G8GTdTeLRaLaIoYsOGDWZG/S7HJJRLZGbVvdPpUCqVVvSEXu6B6W4PBnOZL8E8e/ZsL5k0S3INhvuPmVX3OI5pt9sIIRgZGeHAgQNs2rSJRx99dNbBYT7uxoLbfLiuy/DwMMPDwwBEUdTrYB4/fpxOp0O1Wp2VYM48BM1MMEdHR6lWq5TLZWOCZjDch8z028iyjEajccvPj8X330oWcpddDXMTzEajwfj4OIODg2ZG/S7HJJQ3YSGt+0ILt2/G3ZYk3uprKX7e4nC02JJck2AaDPcec12uLctCSsmBAwcYGRnhiSeeYMOGDUu6r5V0KG/FoWa5+L7P+vXrWb9+PQDdbpeJiQkmJyc5evQoURRRq9V6yWW9Xp91CCpGBOaaoC20RNzER4Ph3mC+3ZJrdX5M05RTp05hWRaDg4NUKpUb4sLddN5cKcX5EMyM+t2MSSgXYSGtu2VZK36R3u8dyvmYeeBbaEB7boJZHJxm6udNgDAY7h4WcrmO45jx8fHebskwDJd8n3eb5HWlyWoQBGzcuJGNGzcC0Ol0ehLZS5cukaZpL8EsDkVgZtQNhvuFhfw2itf1SphZRGs2m+zdu7eXSJ09exYhRE8VURiM3etnyLkx2Myo372YhHIBiifofA5ct6tDebteAHdSFnEzi+mZQXiuft4ECIPhzjCfyzXA+fPnOXPmDL7v88ILLyzbqW+lM0J3eywIw5AwDNm0aRNKqVkJ5vT0NNPT01y7dq13GKxWq733naUkmPMtEb/bfycGw/3K3GbEzNfxas+PABcuXODIkSPs2LGDbdu29WJmIQ+9cuUKx48fB+Ds2bN0u10GBgZ6q4/uJaSUi54fYfEZdZNg3j5MQjmHoltWVJXme2O+XR3K4nrudZZz4FtOgmmW5BoMt5eFqu5JknDw4EEmJibYvn07U1NTK3pN3o0Ft7VGCEGpVKJUKrF582Zee+21nonP5OQk586dQynVc4/t7+/vSdkWSjCllL0E08yoGwx3jpvtllzN+bFIRI8dO8YzzzzD0NDQrMeq1+vU6/Xebt3vfOc7OI7DhQsXOHz4MKVSadbqo8KZeqXcjmLecs+PMDvBXGiPukkw1x6TUM5gqbslV6uBX+ptb5ek63Y8xkp/FpNgGgx3BzMlrnD9tTk5Ocm+ffsol8vs2bOHsbExJiYmVvQY8yWUN0sy74eiWyGR3bp1a0/ONtNFVggxK8Esl8uLJpjFCIExQTMYbg9L3S1ZxLPlnouazSavvfYaAG9961sXdcsGeqqFTZs2MTAwQJIkPeOwwpl6PuOwu421OD/CjQoPM6O+9piEkuXvllzNbKPpUK6OhRLMq1evcvr0aZ555pl5q08mwTQYVs7MqvvMOfLTp09z4sQJdu7cyY4dO277jPmt5k5U4IUQVKtVqtUq27ZtQ0rZSzDHxsY4efIktm3P2oFZuI4vFB+TJOGb3/wmL7zwAp7n3XCAMiMEBsPKWc5uyZmvzaW+5i5evMihQ4fYunUrrVZrWdLVIp66rsu6detYt24dQG9l0cTExCzjsIGBAfr7+6nVanfFuelWnB/hxgTzu9/9Llu2bGFoaMjMqK+QN3xCuVDVfTEsy+oFjuWyUAV+oe+9HdzKxyl+1lv1GHOr9IWT7EwHMCGESTANhhWwUNU9iiL2799Pq9Xi+eefp6+vr3eb1Sg4ise8ld9/t3GzA5NlWdRqNWq1Gtu3b0dKyfT0NBMTE1y5coUTJ07gOM4sKVsQBLNioxCCLMt6yWPxNzUz6gbD6ljMb2M+in8vvn8xsizj0KFDXLlyhaeffpqBgQHOnDkzK+bdrPmxEL7vs2HDBjZs2HDDXPeFCxeQUlKv13sJ5nwOsjd7jLXgVhb1Zsa5Ij4WBVEzo7583tAJ5XxV96VwKzqUC71o7ofDEnDLE7hicHu+Cn3xd06SBOCGBHPmAnKDwaBZqOo+NjbG66+/Tn9/P3v27LlhDmc18XE53c375TW73AOTZVn09fXR19fXm5UqEszLly9z9OhRPM+blWAW8bA4DC3XBM0U4AyG2SzFb2M+Zr72FqNwcXVdl5deeokgCHqFupm3vdn9LCWezp3rVkrRarUYHx/vSWSLuFM4yIZheNtGpm5H/Jm59goWnlE3CebCvCETyqVq3RdiOXOQ89127otwoQPF7aj83GpudYeyYKFqX/Hin3k9c3cYzUwwZ1boDYY3KvNV3aWUHD9+nLNnz/LYY4+xZcuWBeOW6VAundVW4Av5a39/P6Ar7ZOTk0xOTnLx4kWOHDnSk8hduXKF/v7+3udmRt1gWD5L9duYj+K1s1iMLCSu27dvZ+fOnb3bFI9xq4tuQggqlQqVSqUnu5/rIOt5Ho7j4HkeURTdMgfZ25lQzp0hXUgiK6UkiiIzoz6HN1xCqZSi0Whw+fJltm3btqI//P3m8novS14LliIfKa7jZgmmZVk3HKDeiMHB8MajKLYdO3aMzZs34/s+Qgg6nQ779u0jTVNefPFFqtXqgvexmvg497ZpmnLu3DmCILjBlfB+naFcLbZtMzg4yODgIKB/h6Ojoxw9epRz585x6NChWW6PfX19eJ4H3DzBhPkdEk2CaXgjUJwXzp07R7lcplarLfu1u1hSOFfiWsw7zncdy7nm1TKfg+zU1BSnTp2i2WzyrW99a80dZAtuRwyGxdeTFMwdBZhrgrbQmpI3SoL5hkooi6p7q9Xi1KlT7NixY0X3s1qX1+IFrpTiwoULnD17dtYw9Mw393uduy2hnMvMBLO41vkSTGMxbbjfmSlxPXHiBOvXrycIAkZHRzlw4ADr169n165dN3UCXKsOZSH5Av2a7HQ6PVfCgYGBnsvhG71DeTMcx6Fer+M4Di+88MINbo+tVotKpdKTs/X19fUOg4uZ/JgZdcMbiZl+GxcuXGDTpk3U6/Vl38/MGcqZFPHOcZyexHW+2y6nKXGr4opt2wwMDDA+Pk6tVuOBBx64ZQ6ytzOhXMne5Pni4xt1Rv0NkVDO1bo7jrOqA89qZoSK60nTlEOHDnHt2jV27NhBp9Ph7NmzHDx4kEqlwsDAwKqvcynXcau52xPKmcyUNsD8S3KVUkxOTjI8PIzneSbBNNwXzIyPxRtkUS2/dOkSjz/+OBs3blzSfa2FguPy5cscOHCAbdu2sX37doQQxHHcm+k5ePBgz0jtwoULrFu3bkHTiLud23Fgmhkf57o9xnHMxMQEk5OTnDx5kna7PeswWCSjMP8Bau6M+uTkJPV6nVKpZGbUDfcFc/02bNte1dlsboy8dOkSBw8eZNu2bTz88MM3PcvcLSq3pTjIHjlyhDiOV+wgezcnlHNZyghBq9WaVeS7nxLM+z6hnM9YYrUuhKvtUCZJwl/+5V/iui4vvvhirx1eHJomJiYYHx9nZGSEOI754Q9/2HshVqvVe6r6ey8llHOZL8GM45gDBw7w0ksv9Q60poNpuFdZyOXasiz27duH67rs2bOHUqm05PtcTXwsrufgwYM89dRTrFu3rpfoRlFEkiQ89NBD7Nq1i2azyfe+9z2mp6c5f/48lmX1kqCBepnQ98ENV3QdM7kdsetOPobneaxfv57169cD868TmJtgFjFxvhGC48ePs3Pnzt6/mxl1w73KQn4bqz1DFiqOLMs4fPgwo6Oji0pcZ3IvGJetlYMs3L6xg1sxqzlfgnnx4kV838fzvPtuRv2+TiiLqvtc450iGKz0ibqaDmWj0WBiYoIdO3bw8MMPI4S24AcQrSv4WcL64Y2sX7+e8fFxDh061Pv/c+fOoZTqSb5m7h9bDbfyxXorO6wzuR2D28WbgBCiJ0suAlEURcRxzFe/+lX+9b/+13z1q1+9pddiMKyWoupevEaLg8qFCxdIkoShoSGefPLJFcmAVhIfO50OBw8eRErJj/zIj1AqlXr302q1+OIXv8jo6CiPP/4473rXu3qS1127duG6bs80Yuz8cVp/+S08S5Bt30Nl865ZowTL4XapOG5HQrlUydnMwyDov0shZzt8+DBxHFOv13sS2Xq9Pss0JMsyPM/Ddd0bZtQbjQYvvvgiR48epVar3bKf12BYLQu5XMPqZf2WZdFqtdi3bx+O47Bnzx7CcOnFr6WuDZn7vXcCIVbmIDtz1vRWxkfr4vexzn2LddMKS7x0yx4Hrj9vXNftxce5M+o/8RM/wa/92q/x7ne/+5Zey63gvkwo51bd5w7Ezuw4reSJupLqlJSSI0eOcPnyZSqVCo8++uisaxCNy9hnvoZIumRbX0QOP9677s2bN/deiEVCevXqVU6cOIHrurMSzFvltLVSej/fPdihnI8sy254Y4HrDmCTk5O0Wq1bfh0Gw0qZecifWWybKcP3fZ8tW7as6DW1kvh45coV9u/fz+DgIO12+4aOaLvdZmpqijiOGRsbu8E2f6ZphFWNsFSFbqfNlXj8hlGC1c70rDW3oxi2mi5oGIaEYcjGjRtv6DZcunSJNE2p1+u9DmaWZQt2MNvtNiMjI8s6PBsMt5ub7ZZcreRVKcXrr7/O9u3blyRxnclyvne141lLfYzlfv9SHGSLeFLMIt4Skg7e65+DiTNs79jY3b8O/qZb81g5xRkS5u9gFmqbe5H7LqGcW3WfL5mZadu8UiOX5bxIO50Oe/fuRSnFQw89xPj4+I33mXYQUQNkoj9y4wtVCDFrwXXhtDUxMcH58+c5dOgQ5XK5l2D29fX1Zl/m436pvsPtTSgXOogW+vhyuXzLr8NgWAkLVd2npqbYt28fQRCwZ88evv/976/aeGwpr30pJSdOnODs2bM8/vjj1Go1rly5csP3DQwM8Nxzz3H58mWeeOKJG5z2Zt1neT2ifwdBLWHzthfZVN00a5SgkHEWSdDAwMAdHSW43TOUq2G+bkO73e4lmOfPn++5BA8ODvbGNIqfr9VqEYbhXZPMGwwzmeu3sZA750olr4XENU1THnnkER588MEVXeftUn7djLWIXQs5yBby2EajwfT0NJ1OZ80dZLFdlN+HsBwSy0d4Sx/tWCmLnSGBnknavch9k1AuVHWfj6XsAVqM5QSTq1ev8vrrr7NhwwYee+wxLl++PG8iJ6ubyTY+g0g7ZEOP9r6+WNJXOG0NDAzw0EMPkSRJ7439+PHjdLtdarVa79C0nEHoteJ2JpSLJc9rxf0cDAz3NzONJYr4qJTizJkzHD9+nAcffJAHH3xw1TNCS5UqRVHE3r17SZKE3bt3U6lUaLVa88Y8y7J49tlnF3ysWYT9ZA+/H1Bga5nrzDnBmV228fFxzp8/3xslKGLlzFGC2zG/c68klHMRQlAulymXy2zZsoUsy/jGN75Bf38/U1NTnD17FoC+vj7CMOSHP/wh5XJ51T/vpz71Kf7wD/+QI0eOEIYhe/bs4dOf/nRP+TMfr7zyCj/90z8962u+7/cWlhve2CwmcZ3LSuLjTBfXIAhW5BBbPPZMFnst3Y4O5Voz91y7d+9egiBACLHmDrJYDvFbXya9uJdjJyd4MVjZ32Q53M9nyPsioVxOICj+HVaeUC7lRTq38r5p06bFb+v4yC1vveFxloPrugwPDzM8PAwwS5q0f/9+pJSzdOqFLfWtPMzcTTuE1upxFgsG7Xb7ng0GhvuThYwl4jhm//79NBoN3vKWt9Df39+7zWoSypnynYUYGxvj9ddf73UeZ7qILvcANO/32wtXsOfrsjWbTcbHx7l27RonT57EcRwGBgaI47g323KruJcTyvkeB2Dr1q04jjNrTOM73/kOv/ALv4CUkg996EP82I/9GD/zMz+zosf5xje+wcsvv8zzzz9PmqZ8/OMf5z3veU9PpbMQtVqNo0eP9j435kAGWNhvYyEKF+ylMtfF9Vvf+taquoxLve398PwWQlCtVtm8eTMwv4PsTMn9chsnqjxMtOVHiC69esfPkFmW0e1279kz5D2fUM5Xdb8ZhQz2VnUooyhi3759RFF0wxLw5R6YVlNdKmZfNm3atOAgNMDIyAjr1q2bd+/RarkfJa+LPY6RvBruJhYqto2Pj7Nv3z76+vrYs2fPDYY1a5FQzvfGqZTi1KlTnDp1ikcffZStW7fOig/LNWJYi9hSHFiq1eoNowRJknDkyBHOnTvXm7/s7+9fUzXE7XIxvJ0J5cwZypljGuVymV/91V/l2Wef5dixYyt+nC9+8YuzPn/llVcYHh7mBz/4AW9/+9sXvJ0Qomc2ZDDczG9jISzLWlKhaaaL61NPPdUr9q+mczj3+q5du0an02FwcHBeD427bYZyucxtFizFQbZonNzMQXahx7iVLHaGbDabACahvN0sVHVfKquVdC30Ii0OagMDAzz77LM3HDyWE0jW8gk+3yD0xMQE+/btY3R0lBMnThAEwaxD01ro1O/HhHKxDmWz2bxng4Hh/mK+qrtSihMnTnD69Ol5E7qCtZK8zqToiDabTV544YV5JV8rcfZb6wPTTMnV2NgY27Ztw7ZtxsfHOXnyJJ1Oh2q12ouVM11OV8L91KG8WWE3iiIGBwf5+Mc/vqaPOzU1BehZ28VoNpts374dKSXPPvssn/zkJ3n88cfX9FoM9wbzuVwvlaXEx1arxd69e7Es6wYX19Xu6pVSIqXk6NGjXLx4kTAMOXLkCOVyedYZ7nYUqm41i8XH1TrIFtyu+AiLnyELQ8d79Qx5TyaUy5W4zsdyJQtzbzs3mCilOH36NCdPnlz0oHY7O5SLUQxCAzz11FMIIZicnGR8fHyWTn3moWklOvV7OaFMsowkA9cWuLa+76Xo34t9bgbDnWChqnu322Xfvn3Eccxb3/rWRdc2rDY+wmxZ1tTUFK+99hq1Wo09e/YsWKxaiWPgrcZxHIaGhno74rrdbm/+snA57evrW9JOtbks1bxotdyK+KiUIs4kSkHg6ph4MwXHrSi4SSn52Mc+xksvvcQTTzyx4Pc9+uij/Lt/9+9485vfzNTUFL/xG7/Bnj17OHjwIFu2bFnTazLcvSzHb2MhbpZQXr58mQMHDrB161YeeeSReeceV1Owi+OYV199lSzLeOGFF3Bdt9ckGB8f59ixY0RR1NtpWKlUZplj3UssJz4u10F2YGAA3/fvqoQyCILb4gdyK7jnrjrLMkZHR7l69SqPPvroil8ga9mhTJKE119/nUajsWDlfeZtl/M4twMhRO/QNDQ0BFzXqY+Pj3P48GGSJJm1iHapwel2JpQAUZqRZJIoVSSpJJGKOJUkmSTJFKlURGmGVNCJ9YG5GWXYFjS6KZYFzW6GJQTdNKPiO3zo2U3k56UlzVAayavhTiGlpNVqceDAAZ5++umevL9YyzE8PDxrZnEhVltBL65FKcW5c+c4duwYO3fuZMeOHTc1kShuu9SD3q2sks9330EQsHHjxt4ajVar1YuVRUV85iqnpazIuFMJZSolUSKJU0k3LT5mpJmik2SkmaQdZ6RS0YmL2CrpJhIhoJtIPvj0Rjb16Z/xZgW3WxEfX375ZQ4cOMBf/MVfLPp9u3fvZvfu3b3P9+zZw65du/id3/kdPvGJT6zpNRnuTopmRLGyY6VJ1kLnxyzLOHLkCCMjI7MkrvPdfqVxS0rJwYMHGR4e5vHHH+/9TK7rUiqVGBgYwHEc2u02+/fvp9vtsnfvXoAbdpjfC6xGrn8zB9nDhw/3Opwzf4+3iqKYsVhCuRa75e8U90xCObPqXiQ7q/mlr3ZGqLjt1NQUe/fupVKpzDuLNJflVqbulEPXXJ16YQ0/Pj7OmTNnEELccGia7+9xs2CgEz1JnOkEMM4TvzjNSKT+9ziVJKkkVYpuIpFK0U0ylIJWnOFYgiOnOqy7OoU4mVD1HRpROuOjTaOrP+9mEt+2SKXEybuOQgkQCgEgBZ4tUEDVd3jPrnW96jssbYbyXpUrGO5dZlbd0zTtrd5QSnHkyBEuXLgwyxzsZqwmPha3T5KEY8eOMTExwXPPPXdTOSLMn1gtJQG9U8ysiG/duhUpJdPT00xMTHD58mWOHj1KEASzYuXMA0sR31f6cyiliFKZ/5cR5bGyk0jSTH/MlOLk2QZZmnGwc1EnwVGGVLrYNlNmbFmCNFN4jiBOJYFrkaSKkmeTSInvWCQSAtciU4pnN9V7ySQsTcGxlgnlz/3cz/GFL3yBb37zm8vuMrquyzPPPMOJEyfW7HoMdy8z/TbGx8fZtGnTmjYkFpO4LuX2N6Nw5O52u2zbto1du3YhhOgpUfbu3ctrr73G+vXrede73kWpVCIIAgYHB9m8eXOvUzc6OsoPfvADoiji4YcfZtOmTasacbqXXLDn24wwOTnJpUuXSJKEP//zP187B9l5mDtjPpdms3lPNyTuiYRSSkmapj0JluM4K5ZjFay2Qyml5Ny5cxw9epSHHnqIBx54YM1NJO4W/ftMa/hNmzfTjVMmpqa5OjbJoTOXmNh3DNtxCas1SpUqQakClk2cKianpjgzkjJxYJRWrBfUNrspji2Y6iSUPIdWlFL2HVpxRsVzaMYpZdeik0oqvkM3kYSuRSIlnm2RSoVjCTIJlgWJVASWRFiCvsAhzhR9gUM7yaj4Fq04JXBtWkmGY1l00gyBIJOSTIFnC6I0peS5xElK6DqkUvHWHXWGa7ONim73gclguBlzRwCKg0Gj0eDgwYOA7sYs53m5Gslrwd69eymVSuzZs2des4j5mNmhXCp3ky1+Ma/T19fHAw88QJqmTE5O9uZ5ZlreDwwMUKlUSKWiFaU0EogSnRTGme4cJpmkk2RkmaKd6E5hO87IpO4SpplCUfz8AlAIBLKXHEoCx2JksotnW6hOgudYCBSBY+HYAtuCNAPHFsSJpOTZtOOMauDQ6KZUfJfpKKHsO0x2UkquzVSUMlD2eMv2/lk//80UHGtVcFNK8fM///P80R/9EV//+td54IEHln0fWZaxf/9+3v/+96/6egx3L/P5bdi2var4Njc+Xr58uSednk/iOpflNhaSJGH//v1MT09TKpUYGhq64Xx4/PhxxsfHeyY1GzdunLX6qDDHGhwcZN++fZw+fZqJiQmeeuqpWSNOAwMDS54Lv9MzlKvFdd3eKEMcx7z5zW9eUwfZucwc05uPIj7e6ULpSrmrE8qZVffiSSWEwLbtVS92XU1CWQSoEydO8OyzzzI4OLjk296JGUo9C6iIUzWrI9iJYs41Yd/FaTIlyJQiSmTe+UsRQDPOsIWgEaW4lmC6m1LOk76q79FIhyj3DXNtqok1FjFx5iIqjXFcj3olRAqbKFZcbcbYFmRS4dqCRCrqgUsiFX2hS5RJ6qFDO8qoBw7T3ZSKrz9WfYepbkrF0weasmcz3UkJHYs41cllIkEgSJXCtkCi8s6iouw7oMCxbASQSgvbFsSpouwKmlFGxfd63czpKOWR4QqPb7pxxizLskUreaZDabidLOZy/eqrr7JlyxYeffTRZb8JriY+Xrx4ESklg4ODPP7447e0iHY73nhv6hCotIw+SuSMbqH+L8kk3USQiX7a1RpxkHB6fJr2lQmuTl4AmdFOFPs7RxBuQH+1RDvOKPkO7bzQ1o51DIzSjMC1SfIOoiPA920yeb2z6FgQpYrQFrQSXZBrRCmeLehkqlfIq/oOE/nH6XZK6Nt0YolrWyR5EqqUVmkooaiHLlIqKr6DVDq2/g+PDePMeV7drhnKl19+mc9//vP8yZ/8CdVqlZGREQDq9XqvM/ThD3+YzZs386lPfQqAX//1X+fFF19k586dTE5O8pnPfIazZ8/ysz/7s6u+HsPdyUJ+G6s9QxbxcabE9cknn1yyf8JyJK+NRoPXXnutV5z7/ve/P+9tH3vsMTqdDsPDw7PUIHO/t9vt0mw2cRyHMAx54YUXiOO4Z2Rz8ODBWXPhAwMDa7I7dqXcjrGpIm7dCgfZuY8DCyeU9/rI1F2bUM4NBEUyCay6ugQrPzAVy2mVUuzZs2fZqzbmSyjnfk1LkTJacUYjVoxMdYkzXY2OZySEqcwTQHTVWiBoximOEEx1EzzbYrKjK8uNPCFr5pXmdpzhW4pj4yAvTqMQ+LZFkkocx0JJBRZYCGIUrqWr3rXAIZGSeuDQTSW1QFezB+tVOkmJhwaHaHRiRBox3miTdhu0Y4k8fxbHLzNQK2M5Hl7ecXQsnch6tkApKPs2qdSPU3yMU0nFt4nTjNC1idIMxxZEUv/OZKalW6lE/1yOlX+vQ5JJQtcmlgrPFaQpBK4glVDyIJVQLzmkeVczlpKNNZ93PjK/PG+xCnwhDb6XA4Lh3mAhl+s0TTl8+DCgDxhbt25d0f2vJD7OtMh3HGdBY7LFuFMdyjjNiFKdGBbzhFGacWIioXGhgT+u8uRQkkhJN8nIMmgnuvAWZwrftuimWk3RSTKtvohTKq5NlCl81yKTCr9UwgnK9A8KOt0OF86fJ0ki4ulJJq8JquWQrhfSVwlpxVANZhfWqnmnsBo4THYSqp5DK8oIPYsoTzalgopvIxW6UDepqHoOUkItcImSjJJr005SbMvSM5EKpJJzJK82nUTPkkeJpORZZBLevLnOuuqNXeelzFAupwC7EL/1W78FwDvf+c5ZX//3//7f85GPfASAc+fOzTq4TUxM8NGPfpSRkRH6+/t57rnn+Pa3v82b3vSmVV+P4e5jsd2Sqz1D2rZNmqZ897vfRQjB7t27lzWTuNQOZbG/8oEHHuChhx7qnYPni3lPPvkkO3fuxPf93vN+vvg7NDTESy+9xMWLF3nyyScRQuD7/qJz4bZt91QVhZHN7eJOrVWaz0G22Wz2EsyZDrI3G/0qKM6PC32PkbzeAm62W3It5FgrOTAVL+5NmzZx/vz5Fe1tXKxDebUR8aevj2Bbgnac4QnJ0UswcfgqjW5CxXfoJCklVyd1rmMhM7BtUEp36AQKJYTu2mU68YvyZKmT6i5gM9YJ2lQ7xrWhHWWUfZdGN8V3bZr5xzTK8F2bTEps2+q9sHXfD3xHvwDLvnYYqwa6el4vecSZw7ZKhfHpBtbkBF5YI4k6nDo3hWUpPD+kUgrxgpDAcxDCwhYghKUlXBYIpQCBa+sgGrgWCHCEg7AUqQRb6M6raykUgrJn04gyqr5LI0qpBQ6T3ZSKZzPZ1t3NqY6u9EepxLUEsdLzkxngWjZ/5dEh3EUWz95sbcjMvaMGw1qzUNV9enqaffv24Xle741upRQHpqXSbrd57bXXsG2bPXv28N3vfndFBbuVzlBmudlWN82IU0WUZMSZ6klIo7T4XJJKbTSjFDSjFEvoQlShvKj4Ds1IJ2yHr2VMO20sT8fMbiLxXSvvBmr3Z0vQM+2q2Lbu4Hk2qZT4tqCTSWwh6OTz3o2uwrUt2lmKJWw6KWwb3oBUiixNaLdadNtNzo5fw7EtWqUS1VKZ2A6pBy5xpjuPnTgjcK1cyi9oRxm2gFam3wtAgQIhoJOk2I5DpiQ2Wurq2ALHcnR3UyocoRUeZU93OauhTlSL30fZ0wnt+mrAs9v75v17LGUkYK0krzfj61//+qzPf/M3f5Pf/M3fXPVjG+5ulrJbcrVnyMnJSVqtFtu3b1+RAuRmSjUpJYcPH2ZkZISnn366J8u82W3nm9ucr4Hx7LPP8uyzzy54bXPnwgsjm4sXL3L48GHK5TL9/f10Op1b7kh6t7hgC3F9X/FcB9nR0VGOHTs2r4PsTO73kam7KqFc6m7J2y15nfnifuqpp6jVapw/f35FT/SFgkEzSvnq0au9w0otcGh2IkoOdJKMaujmXUaXZpwQ5lVpz7boRrJnJCOEwEIhxfXZGDfvAoZ5clj1bFKlqAU2IwrdBZSKcmDT6qaEnpZZhZ6eawxdm3aeXLY7MaHnkMR50plJPMdCSoVjWzhC/2499ERPYAnatsX6oT6UqiOlIooTmq0WnXabq9fGcR0LLwiolcvYnk858GhFepax2Y6pBHqOsuTZxKnEdwRJBp4NqRSUPC3PqgQ2CugLHZJM0Rc6RKmk6uvkMXQtukmGlSfbWf73ixPdzWzEGe/dNUh/aWFjJWPKY7iTLLRb8uzZsxw7dqxXyf7a1762JpKupTA6Osr+/fvZvHlz73C1Ulv8+XZYzvz/752ZYHS6Sya1C+nRcyn7upewPQ/P0h3CkmfRmjEDWM3lnGXfIUp0MSlVCkvouUEL3bWTSlHLY0ctcOnEKaEDrViyrmzrrqDv9iSjU7ksv9lNqQRuLkm1yFJdbMuEwhaQ5UmdkoAASyr9ubJIU70cXSqtlnBdj7DqUuvrJ04y0iRmutnkyvg4nU5MOfTwg4B6tYLnh3iOhWtpyWsmFbbQ4wS2EESpTn6bUarfJzIYsqzr3c5OPlbQSah4No1Ydzm7iU4uswxKroUQUA+cPLa6vOuxIawF3veWcmAyBTfDrWLubsmZyraZrPQMmWVZb/ej53ns2rVrRde5mOS10+n0VHDzdT7nniFvtWlZ4Vrd39/Pgw8+SJIkvS5dYUA2NTXV615Wq9U1XcFxtySUc1nIQXZ8fHyWg2zxu+vv77/vz493TUK5nN2SRTBYzRNtqQGl3W73LJeLF3ccx8DNDQjmY76EMk4zvnL4Ku1E4lrkHUCF71hIpah4FqnUiVKc6tnDdiFZijN81yJOtWtplikQOpnLUoVrgczAtSySLMO1BXGmcB2IM7At3d0MXS1lqocucZ7Qxpmi6tt0U0k50J3Lsu/qanV+kCrktCXPYaodUwlcWt2E0LdJUgVCW0bo6rc+aNmWRa0UkCqwlKTZ6RJ1WkxPT5HEEVgu9UqJthswVC/TjHX3c6bca9Y8ZTfVJhWpouQokvzXm0lwLIElBL6jD0Z6jlIn2HaeWNZCl3ac8dTmGjuHF68OLXZgKiSv93JAMNydzKy6F/IcIQRJknDgwAEmJydnOamuhenEzeKjlJJjx45x4cIFnnjiCTZs2DDr9qtZOzLfbY+ONHj9wpR2Hs20DF8phe8IfM/WM3+2lsxXfYdunFH1nHxG2maqqxPByVztMd0pzMASQt8lTTM8x8FCAYrQs7EQVAM9e90XuMRSqzw6saQW6CJf2XeYzu+7SNImOwlV32Wym0tSY30NUaq0wVimKPsWHSQlBzzHoiQEidTzi91UUQk82pbFtmqZRpRScgRXp5pYacSZS1dxSZG2z2CthHJ9hmolOokidCwSpZ1YpYJa6DCNoh7o+cd6oJPmqu/QTfWIQCct1i4pskyiHJsoTrVBT3K9a/sjO4cYKC8sdzNrlQx3goX8NhZiJfGxOAsKIXjyySd7owUrYaH4eu3aNfbt28f69evZtWvXvK+lO73L3HVdhoeHGR4e7iVilUqFiYkJzp8/DzBr/vJmMtCbcbsSytU+xkwHWaDnIDsxMcGpU6dot9uEYUiWZYyNjc3rIGs6lGuAlJI4jpe8e6zI8LMsW3G7fSkHpmJ328aNG3nsscdu0KWv5IV6w7ykVHzp0FUuT0f4jqCdKBzHwpLavVQpSHIzhVTq2ZZMKsq+lpfWQj3/V3zuOHolRvEbzHIpbJTJ61Jax2K6k+FaiigDJaATSwJXEGf05hp9R5BJQclzyHITnVSqPOmU1ENXd08DfWirlrzeeo7i43QkcSyLyW5KzdeSspJr00mlNtVRgmq5RKkUsm6dIEky4m6b6VaHqDHOybErlAKPjl+iVikRpVrW2k2zfGYp0wdrqX/WTEGS6J+xlaSUfTuXs+WHOUcQS4lnabdY39FzTZvqAbsfvPlag8UOTFEUkaapSSgNa8pcl+siRk5MTLBv3z6q1SovvfTSrJVFq5V03Sw+FrvNsixj9+7dN7wJrnZx99zYOtaM+fqxa/iOxVQ+Fz7ZTRCWpU1nArR6wbUR6O5j4OpZlVqeSPXlcas/1AW5WujQ6Ga9IlnFd2h0E0r5mqHAtWmnel7dSjJcRyfJWb5aCLTKQ88puqRSx8Q4ldQCrfIoe7aOeblctOxpM5yyZzPRTvGEpJUKUIp2mq/lyBShbZGSz5IrrbbIJGwe6iPOJOvXC5rtiCSOmGg0SSanGB1RVEohrh9QKZWwXTfvJCptuBMonCRDeI4uSggLz7ZwbSsvvkGqwPH0zHnouvmcvJ6539wX8ubNNxqVzeR2mfIYDAWL+W0sxHJHnkZGRjhw4EBPhdFsNlelAJkbH5VSnDp1ilOnTrFr165FV+AsJ6FcbvK5ElzXZfPmzb05w0IGeuXKFY4fP47v+7PmL5e7nuRu7VCmudN2N8noJnqsopNkRImiE6ckUtKOJc/v2M4jjzxCFEWcPXuW0dHRBR1k1yKh/NSnPsUf/uEfcuTIEcIwZM+ePXz605/m0UcfXfA2r7zyCj/90z8962u+79Ptdpf12Hc0oSwkrkVVaamLrIsD/a2SdEkpOX78OOfOneOJJ55g48aNN9x2pY8/9wX+zePXuDTZIXAF3VT1DhSW0DKoWOqPzSglcC06scR3bLqJwreFTiJzuVNgW6RK28FLVQSt3FReWWQoPMcijWO8rEMkQiygE2s5ayPKCBzd8Qsdi1aaG00kel1HnEkcWyebrq27pyVPuwwWJjr1UBvh9AUOnURScQVXW7DRt5iO0t6MY8nTHcfQtZjuaqmYNtSxsYISg0EZYekOTNTt0Gq2uXx5hExKSmFAWCpTLoUEnoclwEZR9rTktZIfgKr5gVEntvqxJ7sZoWsx1U1xbYtOIvEcwTseHsK2bv7cW6xD2Wq1AMyBybAmLFR1V0px8uRJTp06xcMPP8z27dtviJtr5WI4H0upoq9lhzJOJd84fo2Sp6X11dwQrOo7XEgV613regGrm+QdQ50QRknaU3rYlo2FLtD5hYtpoDub/SWdCPaVHD0/GLi04xTf1tLRatmmFaWUfP0xcG3a3RTPtUmSDN+zkZlEOHqOHSxC10aIXE6L7hTKTFH1bBIJoWvT6iS4FnRSiQ20kwxLQJRJLARdPciAyNeB2LZOPpUQlEIfuxTQV6/pOcluRLfTptlqc3V6HIVFuRRi+yGu0KZlYVHsC5zrHdtOQsVzmOjoeNxOJa6ti4kCkFJQ8R3e9di6m74/Z1m2qGHHvV6BN9xd3MxvYyGW2qGUUnLkyBEuXbo0y8V1Lfb0FjEujmP2799Pq9XirW99K7Xa4kWb5UhebzVzk72Z60l27NhBlmVMTk4yPj7O2bNnOXjw4Ky1SfV6/aYqv9uRUEZJRidVXGlEeYKo/4tSPW+vVzvp3b2Nrl5/V4w+NKIZc/e+TSfRRpCpVDy4rsRwbl7m+z7VapVWq8XTTz99g4Psf/gP/4EDBw4wPDzM3r17efOb37wi6fA3vvENXn75ZZ5//nnSNOXjH/8473nPezh06NCisbdWq3H06NHe5yv5nd+xhHKhqvtSmNmhXCkLBYRut8u+fftIkoTdu3fPmxysxIlw5m2LYLD33CRnxlpUfIdUSqq+lrYGrk4EZQa2gDjLcO3cEMKxafSSI20204j0x1a+rzFKtWyq6GxKCZYtsJTAUjHBlR9CNIVb2YQlSnq2UkHg6KTRzR1UHQs6iU4iW7FOwJpR3hmUen4zyfI1HZnCQie2hblD4Ao6QMW1sBDUfV1tL37ekmeTZNqqPs0kloBUKqRUYAniOMN3HCy/zHClRjtOcIVkutEm6ra5OjaGa4MXlHEEpFlGxffJ5AyZcHDdNTbJJGXXRqJ/L5aAFMW7H1tPNVjaS2GxhLLZbPacwQyG1TDXWKJIJrvdLvv376fT6fDCCy9Qr9fnvf2tkLwqpThx4gRnzpxZ0yr6YrdtNpv8my++yuVGSl+tihcEVMslfFsgBJQcQEFfySVJdReym2RUA5dWXCSAeg68kysXskyrGoRSZErPfkcpuLZFnBfoGs0mlVKAEIK6b2MJ6CsVIwfa4KwSOD35/8xDRTmfSyz7Tj6TbhEleoYzyRSBZ2Gji3KZY+E7gpJrY1mQZQrLQhuN2YJuqvfktmJJOU9mi1Ugeo4zX/3R1WucpHDY1t9PJ8kgjZlutYnbDaI4QmbjXMliKuUSaRrmMVFR8pw87utOpVSA0PPmhVHRux5dRy24eWfhZiMBZobSsBYs1W9jISzLuqnp2Mxxpz179sx6X19tQll0KKempti7dy+VSoXdu3cvqXu30KaApX7v7cS2bQYHB3vOzsV6kvHxcQ4fPkySJLNcUudbw7GchFLlK5y6idJJYSp1sphIkiyjFWVkChpdPbs+2U5wLMHpixOUXEEwfrE3e18LHLrFzL3UmwgyCXbewOnP3w/6csVLxbf1+TifWx8oe7z00GxH65mFj7kOspVKhV/7tV/j0qVLvO1tb+OTn/wkP//zP7/s3/kXv/jFWZ+/8sorDA8P84Mf/IC3v/3tC95OCDFrbGUl3PaEcrla9/kQQtwSSdfY2Bj79u1jaGiI5557bkE57VpIXk9ebfK9s+N4tqArJZ6lzRT0m7r+KKSFY0Ho6etwHT2XWLgNVvLDUtnTHbierXygk82qbzPd1S597Vx2lbRalKJJkqSL27mKxVZsC+z8Zyq6dApAKhwXpKTXkbQtnSyC6ElyM5W7zAqVf9Sfu7au/KQovSvNFlgKLAtsBHb+d7QEZJmNJQSplDiOTSIVNdemnWhTnUZUGBNlDA8N0IhShjdYjE23UUmXsQzOnb8IlkW1HFIKywRhCJ5DpsBSOjl38qBQSF2f3trHtoEbndEWYjFJVzE/ea8upTXcHcysuhexDuDq1avs37+fwcFBnnnmmUXl/msdH+M4Zt++fXQ6HV588cWbJgWrOXAVMXJ0dJT/8q19jKcVNgyHXJtsohrXOH8xpVoKCRywmiNkXkrkP5jPRFt4uTS15tukPTmqlqfGqcTzbOJEYtkC7YmjD3cxEhS8fuQwFy+ep69/gOGBfpqJxPElcZYnnbKYb9fdx0xqSWoqoT90iVJJvaTnsrWs9nrSWcxZFis/PKCd6njR7GaU8znLwNbGQaV8DrKvpJO9vvxn6euNHTi0Y5mvhErxHR3zXVuQWh7Vuoes9dE6fx6vXKGbZTSujNGNYqolHz8sUa+UcLwAz7WQEq06UVrymmSKR9ZX2LVx8a5JgZmhNNxqluO3sRC2bRNF0YL/PlfiOvc9v+gwrrR7ZlkWU1NTvPrqqzz00EM88MADS76f5Upe7yY8z5u157HdbvcSzGINR5Fc1vv6UbbDVDdjZDpGdFrEqU4O4yyjFUkyKWlGGVIqprsJAkEn0eZinVgSejadfBY8leDl51jHAqlEr+FSdiFDj0d04oyyZ/XGHhrdlMCxmIozPAdUZuFakKS6qCmVbuAAVPNVTW7g8J43DePaN+7pXWgu9plnnsH3ff723/7bvPzyyyRJsia/86mpKYBZu0nno9lssn37dqSUPPvss3zyk5/k8ccfX9Zj3daEslgUev78ebZt27aiZLJgLSVdM/Xrjz32GFu2bLmpc9ZqXAwnupL/7+Aovmsx1UkpuYLJjq6ItGJtthOneuZRAnqRhjaX8XJJVcm3kfL6Xsi+XAZWz+WetcCm0dVVk0ZUSJxSqqU64+E2au41xoNtMJ3RjmVuopPvbMz0Oo3UEvqj0K6BUqn8BaRNf6TSMqxU6sNZnGpprH5B23TiDNuymE7pSQTKvkOjnWhL+ljLT6NMy3VjqXCd6wlfKqGSB4J64JDI3FBC6rmeKMkYqJaIEh97bIItW7fS7kSkcZeRa+MImYDtMVAtodyAdbWydmr0bJpRyua+kGe39i3r77fYganZbFIqle66IG64Nyiq7qdPn2ZoaKhnZjBTgv+mN72JTZs23fQ5tpbxcWJigr1799Lf33/TRLZgNTOUAGfPnuXI2Ut0y5t4cF2JOM3oq1XpJhlCZlybauBMnCDrXiMaHWMqhqA+rH9nto1raafXwLHpZhmhYxNnueRfQehZZFIQhLpAZjkWmZQoJbk6cpl2o4GUkkqpxCB6b61UCqn0ITZOwRKCjtRFNqW0o2tqaafrLNPmO0rpQ4pC5KY4OimMMm3qM9mM8R1oxRm+I2h0tUnOdJTiO0IrRCyLLC4eByyhkLb++yjLxncElgUV38lXmGipbSYL4zGFb2vJ1aZ6lUaUEtpwdaqJSiJOXRjFERnCCeirlrBcn0oY0lZ6d+bcKvti3O8uhoY7i5SSixcv4roufX19a35+lFL2XFznGo3NZObY03KNGbMs4+rVq7RaLZ577rll72W906Y8KyHJdNcwSlM6ibreNUwzWnFIGmyiUV9Hu9PmB2cadA6dZrx5mErg0uxKTqTn8cIygesgpcRzHTKZbxjQW+Z6yWIlcEgz7fatz7IWUaqwgLbUq5W6iT7TWraW9WdSq9ZAF9QQUA20z4bevauVKyBIU4nlWD1X72asXb6TVKvylIIXtvcxUL5xW8BS1s5VKhVc1132rOl8SCn52Mc+xksvvcQTTzyx4Pc9+uij/Lt/9+9485vfzNTUFL/xG7/Bnj17OHjw4KJKpLnctoSyqLp3Oh2OHDky79zPclgLSVccxz39erPZXFRCNt/tV/JCbUQZe6/BI4M64ar4Do1OTNm3mY4yakFhR28z3U4QwGQ7php4dJMM39VyUdfSLyTQ3UWJTsIkuoN5fZ5R76CMMp2MtRNJdesTTHcTSragM3ma0NPJZzXQczTaCVFfQyO3xu+mksDRXUnP1i+0Ys4mcLRktuJZZArqoZbC1kOXkaai4mk31WKvWS10mM5nGwu57mQ3d2ztaHnaVJziOYIoRc9IFjJjJbDyLWueo3dXKgm+DSXfoxb6JLLKlg2CVpyQRh0mptukzatcGR2lWgqY9gIG6xXe9ejQsp6DRXd9sRlKU303rISZVfdTp05RqVQolUq022327duHlHJBCf58rEV8LJLbEydO8Mgjj/SKgEu9/UriYxzHpGnK5SvXmChtx7W0E6mFIs5k3kWz2Dw8iHRbNNojOOU6TuAzOT3JxLUr2K5HWCoRBCEiCLVkPzfVme7q6vVUJ6PsO0y0E6qBRScld1+1eGDbFk4prYSolkKqnoXrWHoNU6ryvY0SK59R1zOPYDkWcSJRjsil/Ndn3Iv1SplUeI6Nklo24Vl6Z3DF106yeaEbW1gIS+/lFXkxz7YFnSijVBiN5VLXwrG2p1DprTJxdJHP0d3NsuuAgHrgIlFsHuonU4r1G/SoR6fdod3p0hgbZ9wCyyvxnjcNQxqj3IWXcc9ksQNTHMckSWIkr4ZlM9Nv49KlS705vJUyX3xcTOI6l5UmlMVjJEnCunXrlp1Mwp3vUGpJqTaiudxIEF2bhjdFJ0qJM0U7zkgymX/U0tNM6k5upooEL+uNWvl5E8G1BRke6wYHSQcG2YJkqtEmG7nM2PgklryGdHwG6mWwffqrJabauknRTSUlX/t5eJaFskRvrEkI1VOpxVIX/pI8HncTSeDatGJJtSR03PQd4kT7ilhCb0jIhEI42hgzCHVcrQb6drXAZbrnJJ4tquhYioJjLePjyy+/zIEDB/iLv/iLRb9v9+7d7N69u/f5nj172LVrF7/zO7/DJz7xiSU/3i1PKOdq3YusezUOrbA2kq5ut8u3v/1tarUae/bsWVZFYCUHpijJ+PrxMWR+u7Lv5IY2NlGm6A8duqnKbel1gnc+g4qfrwnxHNpRiu9atOLCOEHiCJBouaoApND3ryT5HjSFZ+kKu5ZQadOJbhxTtvXcYl+gnVfrgUMzzq7LTGccUmau7aj6DpNtPb/TTCQl16KbV8LjTOD2dmAqUkTPvKcaOMhcIpbkSW43zah4tnZfdSziLNOrUyS5VNbqDTo3ctONqULSG0l8S5FI3TWOMr16JZXguw6hW6NaqYAQxFFCu92i0+myPrnI9//y8qwltDezt54psZmPZrNJuVw2HUrDspjrcl0cdi5fvszBgwfZtGkTjz766LIOLquNj1JKut0uZ8+e5fnnn6evr29Zt19Jh3J6eprXXnsNgGveRuLY1qMAicpdSSFKdIxoRSmlykauBlNsGFpHqTrMgCOIcpfoRrPN1PgV0lRq865SGTsMKfs+aaYIPR139GFCf5zO1x9t2PEQW3fsIFYWYyMXmeqmDAeKTqx3+SZSz7KnUlENtRlZ6OpiW+hoJUXgQDdVlD1tNlbKZxGLOctKngzaQDu9brxW83XRr+RZvUNPmhVFQugvOaRKrzBJVLFrV/WkWqVcfeHZeo7HEYJWnBGnkq5UpN0Mz9FqksDVlfuKb2M5HkNDIUmm2GZBu9OlbieEyRTf/e45PM/rSdEGBgZmOQrP5GYz5mBMywzLY67fhuM4a76HvNilu2nTplmO/ovdvri2pXLlyhVef/11Nm3ahO/7NBqNFV37WnUopVJzHEolcSp7CWErSkkyve83zmcRu6lWqaWZdtQ+e7FDvSQpN8e1J4bUKrU03yqQKXp7ygEkOp55+by6LaAV6dtMJ9p4Ms5EPpIk6KtVGB2FnTu2kklF1O0w1WgRR5NcHVX0VUpM5+vlptqSauAy2Umo+U4+O2/Nmn/UyhSou9q/o5Yr+0JXr9Fb588ZH+udd23d0MnjsWvr5VLVPC7XQz2HPlz1eccjCxcJlrKnd608OH7u536OL3zhC3zzm99cVpcRtHPvM888w4kTJ5Z1u1uaUM6ndV+rhHI1ki6lFNPT04yNjfHII4+wY8eOFc1xLufxpVR88eAIV6cjpIQkzXBsC6kkjUYL2xbYVimv1mj31DjNCB09z6ifsOS7zPSBoxtLXEe7EHq2RZJKbMsiK2ZTldQegUIPNtr5deukk95HL3/hB47udFZ8GymhP3CIczltVLz48uHjVpxQ8nXyGeQOsb5r0ciDQyN3hm3FEikVnUQilMK2LZSS6ClKPYvp2RaWJfAtCxvd9bQs8pUlEGeSWujQTST1kkMzuj5XWfZsJpsRttAHMjd3oxXo6n6W5Xs6E71DU9l13vHEdp7cXOvZW1+9epXjx4/f9NBUPI8XCghmPsiwXNI0vcHl2rIszpw5w9TU1CxnweWwmvg4PT3NoUOHUEqxZ8+eBZOHxVhuwe3SpUscPHiQBx98kK/vP0NXZNQrvp6p9hzSREsVbEt36zzHpptJlF+loUoMWSJXdjh03ZANG2o0ugm+yBifbtFpt7hy9Sq+6xCEIbVyBT8s4bkWnqNlSoVTddV3iDOLiiW4mEqGXJtGJHNH6oTQc5jqJJQ83eEsezaTsVZatFNJYOv1S74jkAqqgUOmFH0lJ5+DdEgybSQ0MRVTdkXPAGc60klto5sSujbTnZTAKRQbujPpWPk8uwBp6SiqlMBzLL13t5C+KoEt9PuBb+tDUCXQLoSFOqTocpY8bSTkOTadWFLyA37y+Z0Erj1rYff58+d7boFFrOzr6+u9ly/FBduYlhmWSlFsm+m3Ydv2TQ11bkZRtFuqxHUuxXlxKUW7mWZmjz/+OJs2beLMmTNr5oI9MjLCtWvXGBgYoFytM9HNjWhSyclrEbFKOJ9dpdnVLqXNbkqmdKIIotex812bKNFz3Emq8NwiedJzhghB4Irc40OPRvm2oJso+h0rV0vYenyrcDv19Do7L19F5woLR2iXaj2DmncQUdiWlY8SQCtOcSyLTpySSogyvRfYcatU61WQWvHQaLXottucPTuG5zhM+iF91RITmU+95PU8RCY7KRXfotnNjSuTPMnMzSiVhFrJRqEbOlGqPUrasXYJb8YZrq3HKGwh6AIiN1ZTUmG5eszirzw6hLdIwphl2YLvp2tlWqaU4ud//uf5oz/6I77+9a/zwAMPLPs+sixj//79vP/971/W7W5pQlm86ObOSgohVlU9h5VX4NM05cCBA4yPj1Ov11f0y4blJ5RfO3qVc+NtPM8mkrqj2IpSroyO0um0ezM4fliiWgkJ/DK+q6sfjiAfKL6ebKaKnrS16tu6G+jZpJnCsfJdlLYgSfMZHCkhl2gJoXWiaaZIMminEkuBsAVK6e9HQSK0Nl2il4iD3u0GumuqFLnxhaLi6UNTsbKkmLnUAcPSO+IcXa2f22mseNelte1E69KjTOE7kGRaciCllqRlslgPoqvySukuwLhFz6ZfZAIn31FZLjqtgZbZPryuzJu3aFnzXHvrmx2a5pqkzKXoUBoMS6U4GBTJZKPRoN1uk2UZL730EmG4dMOomaxE8qqU4sKFCxw5coRNmzZx+fLlFSWTsPT4WBzoLl26xNNPP03sVDgyfprtoWQq0ussukmmVyTJXB6V6YKTcmxsoeeshdAS+yjN8m5dmruwwvp1AzSjlI0bLa5OtRBpxLkrY1jZZZTjM1DVpjR9tRKZFNgOOJY2RAssXWEPgnwlkeUgUZRydUmQu2q7tl63YQtBK/9YzMEXc5aZ1A6uAi3FUqlAIFH5ocay9JylQiehCihbOsYFjoWw9A5M2xLEscTLpa+F62ulZ8rmMt1NqPr6Y8W36aZ6RijJZC9GV30HRD7jqbRiRgC2ZfOux9b1Yv3chd1xHPdWARw/fpxut0utVmNgYIA0TRcszhYjASuxwje8cZlr3ug4zqKGOkvBtm2SJOG73/1ur3C2nEJHcQ64WYxbyMxsLfb0zkyGh4eHOXnqFF8/3aaDR7kUUi2XmW5EeI5Ny27j2YI0NycsYopCmy76rk2U5k2B3BysMA9rRVmumNAz6Ero9UUWAgvtWq3y2cVO7gHSiLQkfyrv7k12Eq28SyQlV+Su0jZSSVxXFz9Vfj4FhSXzdkNu8KibEgoLhURhI7Acl1qfVpgpJYm6Ee12i4mJCeI4Zsr1KJdLZHFIqRTSiXXDpR3ruNzMdHKogCjLCPPH0TJXgSUsSp7+fTuW7sAILCwLkjgj9Jw8/mp1y9sfHmSosvDKJFhah3K1Z8iXX36Zz3/+8/zJn/wJ1WqVkZERAOr1eu888eEPf5jNmzfzqU99CoBf//Vf58UXX2Tnzp1MTk7ymc98hrNnz/KzP/uzy3rsWy55nVupLipMq00oV3IfjUaDvXv34vs+Dz74IOPj4yt+/OVU4H94doKz423qoUsnSghsiKKI0csjYFls3boVhJ7p7HbajE00yJIxlKXf4EcmGwz3VWnG2oynnUh8R2gzG0dLB3pmNq6WwYa2duoLfCefe9Rdx8KsQdiCOFG9gWTb1klfsZvRtQVJbl2fJHpVSCQzSo5Nkuq9a1mmEI5OPoWlsBVYQlfPfUdXxksuJJk+KEWZpB7adBJdBWrFklo+O1pY35c97VJY8iymOzrAdaIMJze+kOjh6yzThhFpJvWONmHhF3s489UgFc9GInIHRsXGms9feXRo3r/RYoemY8eOEUVRz8F1amqKarV6w8HIGE4YlotlWb1Ycv78eY4cOYLv+2zfvn3FyWRxv8txiUvTlEOHDnHt2jWeffZZPM/j0qVLq3r8m8XHKIrYu3cvaZrq+Q3H47997zyeDe04Y6CkO3Ul12ayE1EL3bzSrA8q5VytIZXSs42u6s1ah54NCOqBq7uDoUuSSTYOVOmmFYbXDTHdjlBpxLXJFkxPc/Gyor9aAtdnXV+FVqYPT9PdFNeHbqxVDlki8V0LULiORSrAtgqnaz1iINAVeQtBjF69lGYSx7J70tR2lIEQdDJQiN4OzVYuuSoOK1GmY1qSKSo+ustZcskU9IXWbNfXwKGT6ENdK05xLUE70b+jOANLSWQuDS75Nu0Z605qgXam3bWhyraBhQ/XnucxPDzM8PAwQG+f2vj4OGma9gycimJcMQawFiMBK1naDfAHf/AH/Oqv/ipnzpzh4Ycf5tOf/vSyq++G2898Bdy1OD9OTU3RarXYtm3bkiSu83GzGDc5OcnevXup1+vs2bNnliJvtXt60zTl+9//PnEc8+KLL+I4Dn9xYpy+7gRhp0Oj2ebi1GWkkliOi+24OF5ArezTTRWhY5HkRjNZvuPW8R2yTOo9v0nWm8Uu57OB1+WfFu1IF9PyDW84loUAyr6NVIqarSWgtUBvGNCmkHm3sBih6sS5S7Wea08zPf+YSYmbnx89SxcNA88mU/mqt0ThuCJfo2fRzruo2B79AyHVusSxFM1mm6jbYWJslLErEj8ItPt/KcR1fVSmi3PdJNM7fxNFTQimO1q50Y4TKr7uVgaulY8y6OvqL7nE2fWRg0fWV3hy8839V27HDOVv/dZvAfDOd75z1tf//b//93zkIx8B4Ny5c7Oe8xMTE3z0ox9lZGSE/v5+nnvuOb797W/zpje9aVmPfUf2UK6VZGE5FZ6LFy9y6NAhduzYwc6dO7l48eKa7BG6GSeuNNl7fhLHEWQZeI5+Mo1cPE+93sf64XWkmUIpSeiFVMsB64cGtF692+HipVGak+Ncu3qNWjnA9kIG6mWmE5vKDBOdqY5+8rciqS2TU0ngCuJU5ZWp3ERnRrJX9vSLteo7pPnC7SiTlH29N63k5h3FfD1JxbNp9ioyGRWv2H+Wfwz0/E7Z03KHwNXSL0dcN/PJJISuloIV+yj7At3lrAU2We7smuUvXtR1U55OKikVBy3vug3/1UaKJQQTXS0/03Ix7RJriXy21BK845GhG2ycF2K+Q9OlS5dotVq8/vrrSCln7U8ql8u9tSG3ipUepgx3L0IIkiTh4MGDTExM8Oyzz3L+/PlVzwgt59DVbDbZu3cvruuyZ88egiCg1Wrd0vhYOMcODAzwxBNPYFkW/23/ZaQCx4ayZ+NYeuVHnGbUAzefuXZpJ2lu7JX2ZiDLFYvpTqpl+N0Uz9UjA1qupchsC5QkEdryXSqolwIy5dNfq5MqSRonTDdbRN0Wp06PE3p6bqYvi2m0Y+plL+/46f2Ptd4By9X7IANHm5v5tp7L8bRztq7uQy3UyW1/Wf8sfSWHiekuFVfH5Xru8t2To3q641jKJba+a9Pu6DmeVnxdeWIJQZY7HFpCm1HoMQJ90EszSWBrdUnou0T57rRO/ntt5rb6jW5CLXTZ/dDi9vJzCcOQMAzZuHEjV65c4YknnqDdbjM2NsbJkydxHN1l/dKXvrTsWdy5rGRp97e//W3+xt/4G3zqU5/iAx/4AJ///Of54Ac/yA9/+MNFnQ8NdyerSSiLrt6FCxdwXXfZB+alXEdRHDx69Cg7d+6cd6RqNR3KJEkYGRlhcHCQZ599FsuyeO3MNc6MtamFAZnvMdBXR0rFocNH6LSbXAXIEi5aLoO1MhOOz1C9QjM390pyN1Rb6MQwdPX6i3puQNMXzo5NlXzXrhCCZiypKUWc6MRL5g2LQtWmz3mKvsAlyrJekqnjaNYrEFYDh8lukptH6k0B3TjrGZVphRr4oZ5/rAY62Svnc+PlGfPpzSilWqth+SHDw8NMtyNIOky1OkxNjCGFTbUU4pVK1CplxpRewZRmilro9lY9FWMUk51i97sedSjUJ4nSM+hvf3hp5kqLuWAnSUIURavuUC6lUPH1r3991ue/+Zu/yW/+5m+u6nHhDiWUjuPctg5llmUcPnyY0dFRnn76adatWwesfjHtUipMl6c6/H+HRvEdi6m2XldxfvQaAugbHGbjYD/dLMMRkEjt8CfQVRPLEoRuhWv2KDu2bUMpSaPZottpc+7sBL5rMeGH9FXLTEufSuDRLHZSdmfsO5tZEco17s1YdwCj4kUhFZ6jTXQCT1ep9C4yHVBSCX2hTZLpucpuXgnvJnq+shEXjrB5spnPNja6GQJFK1X0KUUj0ge8LNadBGELUKByOZhna0FDkfQV1bMAh1Qp+l2XRCr6A5s4N/bp5onvpEIPdPfWrQhSmRG6Oji9+7F1DM5j47xUwjCkv7+fK1eu8OKLL9JsNpmYmOgdmv7sz/6M7373u5RKJS5evMjmzZtX/FgLsZLDlOHuZmpqiu9973uUy2X27NmD7/tcvnx51QW3pY4EXL58mQMHDrBt2zYefvjh3pudbdur3rM2X3ycedh6+OGHe27ff3lqjJNXm7nsHVKpzSF81yJNJUIobKElWqX8sNMXukwIqAV6BrKe74Cs5F26orhU8nVXMHBt2lFhdJP15jEFek7dth1q9TpWfx/rlaTb6ZJevsTU9BRyfIzpIKBSKtGRJephSKzU9blyz6aZzz02opTQs5nuJNqxuqMT36lOiu/q7/MdQZQIVKbIlMjN0/ShSQg9zwmz5aigFSHCEthSYFta/RG41qzDnu4kaMnrZCeh5Fq0Uv0zTncSXEvQ7T2mInRsHFvgBIL/4bEbd6ctleLvXavVGBoaYtu2bb3l7d/5znf40pe+xPHjx3nsscf4m3/zb/KP//E/XvZjrGRp92c/+1ne97738Uu/9EsAfOITn+DLX/4y/+pf/St++7d/e9nXYLizrLQhUThmK6V48sknOXjw4KquY76ksFB6jI2N8dxzzy24+2+lHcqLFy9y5coV+vr6ePrppxFCcOZak++cGidw9Q5bP3cjnRi/xpnTJ0nTlOeeG2T91h0kcZfx6RZZ8xoHr1yhvxIw5oYM1Su0E0sb6yS6+5gpEErkXh+Kkutol9YsYv+Bo1RLAcoJ6A+sXqNBxz5d1AtcPXqld/YqpMg7iegkUxfR7LyTafditp7p1vPjvg2tVJ+LW5HuZMZpfl6VUMpNd+qhq9fnhdpkp5Y3Nyq+ox1YSwHNyGFzvY9GN8VRCVONNo2pKUZHrmALGJ+cor8PMquki3/5ero41WfMONNKk0RKMgkI7fr9Y0+sx3eWZpi3FNOye9kF+5YnlPMdRtZCsrCUA1Nh0SyEYM+ePbMkZGu5p20+pjoJXzw4SuDovYyBIzh27gIiiWhnsLNeYyJ3Kp1sx5Rdi+lOQtl3aUYpJVe7EAJkUhL4Hv19LvZAP1JKOp0unXabqVwvPun5VCslWmmJWjnQL9J8JrHi27QiXVlpRllejc7wbEE7H4Ke7OS2x+2Yknv9ANaROsGLUy2PSJTeUSnRO3ek0p1N7Tzo5AvE9R6gsm/TUArf1lUrOz+5ZQocW8uuQs+mVZhDRNeHuqu+zVQ+/9NIJGH+e3QsQST1DrgsX12SoPAcQWALUgGOrTucJdcjziTPbKnx6PrVdw6LYCCEoFqtUq1We4cmx3HYv39/byXOpz71qd4BZq1YyWHKcHfjeR7bt2+ftUbpdowESCk5cuQIly5d4qmnnup14gtWs2cN5j9sFcW9K1euzDpsnRtrsf/CJH2hq91bXT3nsr5q5wcTQaubErj6DbwwFsukJM1na/xQ6Rmf3ECi5OY7H8suWZZLXvPYFGeSkufQSfIOZ6QTwU6iY143zvBcG+UEZMKhb2CYwHNpNFs0O11GxsZxLQvfD6jVKgRBiO16VANHz9vkhbKK76DQSpCZbodCCBR6NCFTiljqjmk31oloO0+C24XRT6INIqJEu8zGUvZmOOuh6El6i1VRaaZnMNNMH4SiRO9ey6SO11hWbgJ0/dA12Ul4ZmsfG+vBsv/WM/++MNu0zLIs+vv7ef/730+z2eS3fuu3+Mf/+B/3Dk+rZSlLu7/zne/wi7/4i7O+9t73vpc//uM/XpNrMNw65js/rqQhMdPF9dFHH6XT6ayJCmTmfbRaLV577bWe0sP3F56nW76p4/VZ83Xr1vX2XU+0Y750YATHtnRDoTDFCRxa3YQ0TUmlIk0SfNfB96rUqlVSqZBpzOR0mzhqcersBIEjEF7IQK1CkgYEnkMryXDyXY2WpbCxOHLsGMePHcPzfXY+9BD91S096Wc1l82XfDuXy+ozZzhDOZZkev1dsfuxkMuGrt2bHy/Oj+1ugifIx7z0z+g7FtNdiW9bOvbbOnG1LXoOslJpczWZKz+S3Clby1dt0sxiYMAnU/0MSsm58+dJpODSlWvEUUq17OOHIfVKBc/3cWwLO5+FT3OpcJRKdj/Uz/ra0mPmUkzL7uXmwB2TvK7FgWmxF2QRQDZv3syjjz56Q5t5tR3Kxaybu0nGlw+PYgFYAt+SnD17ntB1WbdtO2dPn9SLukOPVpxRD12m2jHVwKURFZLShJJn08kABI284tONUlzHRrg+fYMhtXwgudVq0e10mJi4xBUgDEuUyyXKlTIWFrV8lqjqO6RKywVa7a6e50xlL4n0XS3Xcuw8gbNFb4g5yoeYM6UQSu9jU+gB5kwpyF/INgJLCGyhq+C2rQ9TltBS19BFzzo6LlGm6Cu52sE1sGnH2sG1sPJvRoXhRaYPkUrPIvlOfijK5bYWFtORpOoL3dmwBZ00Y6Dk8cIDK99XNZOFgoFlWfzIj/wIn/vc53jb297G3//7f39Z82srZSmHKcPdTalUYseOHbO+VhhGrIbF4uPMSv1CZhSrTSjnVuA7nQ6vvfZar7gXBPpNuNFJ+Maxq7036pKv35Kqvo0F9Jc8okTLoZJMJ1Td3CE7kwLQRl1xbmcfZVoK2k5SfMfuHWY6kTYDi1JtSpPI66s46rkUtc/RSZmXrzSqBTaX0PJbadkMD/bRijM2exsYb7QRacTo+DSkV8mEw2C1jHK1lKyb6hnuKFWEnoVMi5UjilIeL0uuzUQsqLjacKTosPaVXL2vN3Bp5O8D0/ks6VQ3IXC1vNe1teGPPnQrpNQznZnUhyalJJ6j32sDWx/YHFv/nsMiAQ1cUinZWA946wOriyNLWatUr9f5iZ/4iVU9TsFSl3aPjIzc4JS8fv36nlmF4e5m7llrOefHmcY1jz/+OBs3bpx1HytVYMDsM+TIyAgHDhxgy5YtPPLII0taO7LUDmUxa54kCbt37+bcuXMopYiSjC8fGsF3Lbr5mrl2ct2PYtOG9Vza+iA2CfWh9SRSoWSGY9sgFJbjs27QR6o+Nm+CRj5zOD4xQRrFCM+jVinjeAHlUkiWKhIysFxwAyzXQQrt1p9KhW8LMnTsTvI57yjVDv3tPNltdlPKgUMrSvJOZpYry7TJTbGP0sodvX1HKzEqgQ1SG4ZJlc9+5uqSRGolTSoFSkqEpcccgtzsx3XsXP4vsBwbBHi2/runmcR2tFfJusE+lO3jW4prU01UGnHy3CV8G4TrM1gr4fglKqFHnMHmvpCntvQt6zmzWELZbrcJw3BF77d3C3dM8nqrJF1SSo4dO8b58+d58sknF7SBXgvJ63y3zzLJlw6McK0R4bs2U1PTjI5cpt7Xx/C6YSyhq9G+o5/0Zc8hTlL6Sg5pJvJKj6QeunpPmq0XyVZDn1as52mKIeYiAYwzRblSww2rDAxBs90hjSPGJqe4PHoN27GoVysEfpgnmHpliOPoIecwd/NzLF1R9/K1IY6l3VRt7T+ByHc9ZpnEdfVSWF3Zvy5zuO7cqj8qKekofQedWBJ4Ft3c7CeWCtdGG+zkK0tCTwfiiqevpeLra5PKwhH6NmEu7aiFLq04JXQF01JbWk938wQ00Y/xPzw2pF1r14BiT+BCFA5dq50TWuq1LOUwZbj3sG2bTqez6vuYLz5euXKF/fv3s3HjxkXNKFayZ20mM528x8bG2Lt3Lxs2bGDXrl0z7lvxpYMjTHXj3MlZ6c6dEjS6CWFZ0Y0SHSsSSeg5xHnMzPJu45ilZaJ+LhWVMneWtq2egiFO9ZxhO9aJ6HSU4Ns2U7GeN5/q6M5gK58l7MSqZ8LgWTLfN+b0zBhSCev7KqSyzPDQoLa2jzqMTbfI2uMcGr1CXyVg3A1YV68wlTpUAt0FLHv6Y8mzacYpSZbRTkEoSSfJ580zPX+u8n3BADVfuwyWc6O2kqcPU6kQufGOLq4VktfGjF1qnlC0Uz3v0+zo1Urt/BDmOBYCwdt2DmFbq9ufW8wHLXRAX+sZ86Uu7TbcXyxV8trpdNi7dy9SSnbv3j2r81Mc2ldaMIPrZ9CjR49y/vz5Za8dWUpsnZqa4rXXXqOvr4/nnnsOx3HyRCjjK0eu0OwkWEKfjUAXv7JcAhqnGQ/v2EQrSumrlnsjBN1UarMjMmL02rgYqFRLlMol1q0bohsnRJ02080WrekpxjJJuVLC9UvseGA75WpFd2ClopMqKpmik69oS5RuMiQZ+T5JRTmfo+wveXpkKnR7pmPNKKPiu/lspt1bP9LIJa9604EgQvZ8OIqioFUkhbb2/fC9653R1gwH1opvM9lOeuvniuKem5tX+rbejlDJzc22DvfTTSXrN8Bko0OWRFybapNEY2DZ9FdLvGvbFuI4XpYT+mLPt/thj/k9K3m1bZs4jmd9rdvtsm/fvl4lZ7E3r1vVofzq0aucm2gTeg7nL1+hMTXB4Lr19NdqRPl+xDSDbiIJhCKRGUIookQ7WyWZbuFnasaKDs/qVbALSWlRYS+GkrvJdefAerVMJw4YHOyn1U1RacTEdIvp5jU6l0aplgNsP6AWenTypdpxqiv4caYIbG3a4+ZzlXoNicJ1dQcycHUlqR5auVGGlpbqJLhw9tLmFFdTPePUjGS+LiTTi8ljLV+NUyB3aU3yKlWc6p8lznTVK87t+ZM0N/ZR2qWsMBaaaEPF1RWtsmfnTouCdz0yRC0/kK0Ft8PyeamYw9T9y1rMmM+Nb1JKTpw4wdmzZ3u70BajiNsrjZHF458+fZoTJ06wa9euG5Yr/+Wpa1rW7mkzBMexSGTR5RK9Ge8iVkzmux/1fKDDRCeBXA5VBaJUx4k0K2RNEltox2drRrx2Le3+HHrapdB1bOJU4lja+MsWel7HtgTtVJBmikaU4liCVqxwreuy/TQDx7ZwShW2lCu6Yp4ktNptuu02Fy9dxAIaYZlyKSQmJHTd3n63Tu68nSpIUolw9MEocG06cSF91cYVzXwWvpNIyp6l56VcfQ2VQK9WqocOMt91mUqdCHejiMDRow2uLfIupZbNNqOUF3YMsK66uN39UrjZ4Xwt4+NylnZv2LCB0dHRWV8bHR1d8uHfcHexlPhYFM42bNjAY489dsPzcrUKjIITJ04ghODFF19cVrFkKR3KCxcucPjw4RuMfYQQvHapw6TV0GNM3RjHAin1jlo7d/L3HN06KLn5mE6gzXc8xyLJdKEMoJvHomY3I3Qtmt2MkucgSlVq9TpppsjiSO987DSZGuviug6ebRGlEbbwSZXKVyVpWWg71psCOrEeK4gz7Z8RZQpXaKfqkmeRKUE9V4TUi13jgV47UvIdJpodXFvk5pMz5LxR1pvRdIsZT98iy7SqRc9T2kQp1AObZqxn66eLlSjFnGZXz7l3UkWmoJNm+YonncRaQjBQK6FUicGBAZSUtDodnh2CK5cvcvLYESqVyqz1cos9nxYz5bmd58dbxX0jeR0bG2Pfvn0MDQ3xlre85aZBYi0Syrm3//6Zcc6Nd6h6FmcuXCCNI7Zs2Uq1FGq5KHqtRWFCE2W6dd9JJK6AZpQROPpJHrg23URP/nZSRdml59iqHVNF/qLM90D6DqmCWj5DUw8c0qhFv6OI/Ap91QrdVGLJjGvTTWTc4eylSQJbcfrCZYbqZTqxT1/JY3KGs1U1r6zrbqA282knGYHj5GtG9JCya+v5nMDRH0ueNvWouFq+UA2cvFJl50u5LRDkq0m0jK0aOPnOyMLgR89Vlj2bqbaW/E53dWDqKP1m4Dk23TiFfO9b4Gh7/V0bK2wfXNsF2ktJKG/H2pDlHKYM9x5rPUM5VzK1lOfoUvesLYRSirGxMcbGxnj++edv6NqfvNpk34UpSoUM1RXaZMFzcG1B6AhK+eoP19JmF15e5a74+WoMz2Ykhaol8vlr7YZa9V0m29fdWCu+k+9l1DG15Oe7LR1dKPMdnYxpOb9OvLJcCudZWqHhWnopryVBWBYyycDSMcdztGTLyxeD+66DE5QZqtYodWMcIZmcbjLdmKY9eoVS4OGH2l3QsfQ+Yc+xKeVV88CxiKWiXowChDNm3yN9QJvu6k5jo6u7r1GqtEOuVXQ49c9a9m2iROJY+m8Suvmce/5+sW2gxHPb++b7Ey6b2xEfV7K0e/fu3XzlK1/hYx/7WO9rX/7yl/WqGsNdz3IkrzMVak888URP4jqX4nmaZRmuu/yi88TEBNPT09RqNZ5//vlZK0GWwmIdymK+/fLlyzzzzDMMDc1edXZyPOLMRMzWzXrmPPAcmt2klyhGhUdFqlUIcaZjWCbJC24Kx7WQSiDQcaNw/+8m+kzVyONNsUIjFi6Dg4PEaT+eDVONNknUohlFpHFE1G1TLpUJSiVs20Xk50Db0p1EAXSSfPYwUzi2QqUWrp2bkhUyVVsglTYj03HK5hpQD21akbzu4u/pawzzcYDQLcakLJIkw7W1YZlj6Z3vFc9CouczZb67PcnnLZNMIhVIpZUwnmPRTrXqrtUtVocoAg9SJdj9yEae3dYH6PVyxcqko0ePEscx9Xq9tzapWq32CgHF7tDFZihNh3IFrNXakEIDf+rUKU6dOsWuXbvYvHnzkv4ga+3yeny0wesXp5Bpwpnz5/E9ly07HsDvuaY6KAmeBa4Fni3wXAulIHRs4izFd7STlJ8fsjzHIpJ6EW0zr6gUlZWp3MZ4qispe4JWomeDogw8G5LGVYLRH5Iqm3DTm4lLw5Rcm1RZbBke0LKtpMvpMxfoL7mMj0+SxhHjnkdfpcxkHNBXKfUMcxqFg2FXzzY2ugm+Y9GIdFWsm2bY5KYPKFzH1pUtqRBKS2ylzB3IlMCxdZXfK/YWObkkIt8ZWc+7sFVf30/oWbkMVwefJNFVtFasD4bjXYFn69/Plr6Qt+5Ym7nJmdzphHIlhynD3c1CCo61io9jY2O8/vrrDA4O9iRTS2WlMbLVanHhwgUAXnrppRvMKaY6CX92aBTHEr3ds8V+ycm2tqKfjjIqCjpxkstPIbSvrwEqeTYCQcnVMzb10EXmpjRJKqkHLp18nqiVW+NPzzCg6a368N3rSWg3oRq4WiKVu2BrFajA9/KVR6HuWBYziIFr66TU1StCaoF2GawGOgmsl3ymo5RNG9bR6KZscgVXJ5vIJOLUxVEclZIoG8cbAyegVgqIFPpAlEosdLchdCxsW1DzXRAKz3a0QzYCy9KGRK5l0ckLc3rNk6U7qza0M/1e04i0RC7Sa8P5kZ2DWGt0gLlZfGw2m6t2MFzJ0u5f+IVf4B3veAf/4l/8C378x3+c/+f/+X/4/ve/z+/+7u+u6loMd4aimTB3BGWmxHXPnj2LdnuEELNk+UtFKcXZs2c5fvw45XKZTZs2LTuZhIU7lHN3886db7840ebgaBdXb1SjFrrEufFiKhUin0XPMt0p7GZgo5jupFQCm+mOLjIlmcLPnVIdS2Ap/Ttx80ZFxc9HqXJzMH32u26eWK2WaXk+pThFOJ4u2rU6TE6MgbColMvax6NSQghttuPkvz8hFGDlu3EFSknEjD+DjvEWCkUqJRYKpYoCI1QDLeste7oA5+cOrJbQu9MVWqEmZaYT2jTTeyylJHC1W7Zt6Rlz29a+HoGl7yfw9N7fWujSzJsaPV+TTsbW/pBntl7fN+l5HuvXr2f9+vUopeh0OoyPjzMxMcG5c+cQQtDf39/rXgI3TSjvZe6I5NVxnFWbThSLu3/wgx/Qbrd561vfSq1WW9btV9MFmHnYujjZ4cuHr5B225y6cJmNg3XKfYM4tpZ2ho522vMdfehwcrdTR+i1GJYtEELPsjj5hmzX0zM7gaNfhOVAy7JKnt1btKo7hbnxhKuTu9DVOyLL0RTT7S6hlTI5PUUQDNHIJWHtWOLZekckQK1/gP7+QVKZ0Wm1aLc7tKdGGL8C5VKJpBRSKZexLJuKrzXnpVwu5jl6KFulAtsWJKnUqzrifDlsIhkILaa611eYVHybyW7uMtiJtfNXnjinmf7luPkbhSUEtqWDoxTg50l4kHcX6oHD1Zai5llIJRkse/zorqFbUuVZrLqklLrleyiXcphaC86cOTNvsvqOd7zjhv1FhtUztwK/FpLXYr/lD3/4Qx577DG2bNmy7NfEShLKK1eu8Prrr1OtVnFd94ZkMs0kXzuiVymBwnMcsny/ZJTL5kczxZBr6V1igct0OyZ0RG8n2FQ76S2eziQ0uwlhWerZ7vx+Jaq3/kLL4AX1wMlXIWnJaT1wc8t6V6/+8HWlv+QVq5UcOqlACPICnsNEW89BTuTzkK1OSugJurGWk8Y9p1lFxbfyQ58uJhaPv3Gwj0wqhocVV66O0Wq3aLY6NDvjjNkWTr4OynJ8qqXr66Cm8qRbS19dGlGSryuRvU6vl5tVhK4FQlf6O52EkiPwHQvHtvRy8Ezxlh399JdWvkppLovJuUDPUK5WZrqSpd179uzh85//PP/oH/0jPv7xj/Pwww/zx3/8xyuePTfx8c5SJHAzn283k7jOx3Kd/tM05cCBA0xOTvL8889z+vTpFa3+gPlj6+TkJK+99lpvN+/cn2G6k/DfD4yQSkknkQgUUe5H0Y1VfiYChzbW2DEyLErWEK1MJ2PNXO6pd4ZrBVrFs/O1b7oQ5zsWEj0q4Dva6Kzq20ilVWY6Xjq9RsNICoOhA0GVzfV+prsJrkqYmG4xOTnBxZFRKqGHH5apVcp4vo+Xz8Dr9U0S29LFOzdX6wVuvhkhX4ekhE2jE1P2XWIp8R0bpcB1dGy2LUFmaUVJJiWWJfKEWRtNVgL3+u7M7nXVXbE3uOxZel+6pX9/XuFvElgolb9vSMVg2ePdu9Yt+D4qhKBUKlEqldiyZQtSShqNBuPj44yMjHDs2DEATp48yeDgIH19fbO6481m87Yo3G4ld6xD2e12V3UfURQxOTnJunXr2L1797JlC0WFaKUuX8UhsLBtbk6OM3JtnO2bNuAEZb1PJ9LV4qmu1n0XSVUrEyihmOrEVAKXVpToKksi8VydqGkjHJXbNesqfODaCMD2bEDh2k7PHjmTMl8gq2UBcbAOvzpIrARudR1Rpqs+3VSv7+imilRCoiDJFInShhhuqUItKNE/NEQ3ikmiDhOT01y7OoawtLmPF4TUKiWE0FVzKSHwLVIUdcfTjoklvby74pLvjHP0i9vP5z1d/dGx9NLvTCksO3f7ch0a+fcWv7Nih+ZUJyV0LNpSD2ILpUjSFN1IELzj4UFK3q15Wt9MHnOrA8JSDlNrwdatW7l8+XLv85GREd797neb1SS3idVKXuM45siRIyileOGFF6jX6ze/0TwsJ6FUSnHy5ElOnz7NE088QRzHjI2N3fB9f378KufG2lQCh26s5VqJlFiWjS1Er1gEUA89pNKup1Gc0JcbJtRLHt3c+XVEQt3TEtgi2Sos64PcubqQonqOrlb7rk2a5nKR/D3As7UjddV3dCIW5o7Ujp57r/gOUmqlSZJpy/oozbAsiDNtBCRT/XtI85GGQn7qOVoa6+eFxXLg9ubEHcemGnqsW78RR0Cj3SbqdGhMT5JEEVOeT7VcohWUqObroCp5Mu3Zlj5YCuikkkwqlCOIEqlnLyOdBE93UizLur6HOJJs7gt5YtPSC7BL4XbMmK9kaTfAhz70IT70oQ+t6rELTHy8s8yUq9q23ZO4LmU2fO79LDXONptNXnvtNYIgYM+ePXietyqV29wi4kLzkgVxmvGF1y+RZpJMWtgWetYxV1yUHT1rXnIdkomLeOPHEQiCSkrqb8YSglo+q9iXmxnWcvMuPVt4fX+tds6Pe7HOc+y8mG5p6T+5SRnXz3f1wjcjcGhGgo3rSzSjlI0OWpGRdjl5/hKBJbH9Ev3VMl4QUgp8MqUdsVMF9dxHpFB6lF2LKxLKgZcXGHWntJcQ+0Xn1O7FWL1BwOoZtyX5TLn+2fP3Cs+m1U3wc7WdAlqJxHUEKo/jjmMhM92kkQpeemhgWWdLy7Ko1+vU63UeeOABms0mr776KpZlcerUKdrtNtVqlYGBATzPY2pqatXx8VOf+hR/+Id/yJEjRwjDkD179vDpT3+aRx99dNHb/cEf/AG/+qu/ypkzZ3j44Yf59Kc/zfvf//5lP/49N0NZSA5Onz6N53m95a7LpahsrWZxdztOefXAZS5dvEA3injsoR14no9l0XvhxmlGPcidWwMtvyo50IoyhupBvsTVYbodUw08mvm+yEJi2km1c2yjk/YMa4JcXuXmT3RdiBdYQulBYhuCch1Reqm3usQDyHXi2g0RRN4VdC1dWXcdQRRreUA7yqiUQlqOx47+ARrdBFvGXJ1qQXucsxdH6a8EKDdgXV8ZKVxKvu6a+rY2yLDzik+AIpPg5wlx6OWJsWX3VolYAm1nH+gq1MzfWTvOemtNXEvPkGZS/9zdJNMOjqngqc31Ve1RuxlZlvXWHczH7ZC83g5s2+51ErrdLh/84AfZvXs3v/Zrv3ZbHv+NzmriY+EKWDwPVyMxXOqBKUkSXn/9dZrNJi+++CLVapVz587dcNujI9McvjxNLXTzmUbdZdOSem2O0IwyUgWdRNKJU1BKy+iVJEu0PCvNMr3bVkHZ1bF7IC9g9Zf0AaIWOsSpoha4vV28ek+bNqIpe3mV3bsu5Zrq5CY43ZSS79COEqTU5kAB+uAUOAI912mRKb2iROrVjmSZXqWUZhLHtYgyRTWvthfOq5XQ1QeiXHJrCZiOYUgpJqOMkh8iLY+N9QHaUUIatWl2unQnL3FZKcIwpFauEIQhgWOjsHrzUb3VK55NnF5fx1RyBVNSOy52Em0+9M5H117FsRRTnnu9Ag8mPt5u5j5Pi/nuYs94lmU3lbjOx1Lj7OXLlzlw4ADbt2/n4Ycf7l3PahPKQrZ7+PBhRkZGePbZZxkcHLzhe5VSfO3IVe0R4dp6L28C5aAo0jtMtyOqoZbt1xyPSVWm5EhaMkAqSSozHCxs0B4Xro1EqzWSTNIXOHRSqaWeUUrZ1yuLingZena+AzJf25YbNBbnTwU9VUQ9tHuqk26asXGwTiuqMDQ8zGSjA2nE6EQD0qskOHodhxcyUCvTRa8KySSEjkUzgZILAh3P4lRfq16PYs/aqx7ms+WBazMVpfiOoJvq9wypBBY6hnu2jSXyIiFQciwci56Co9hV2Yqv+3g8v72PrQOr9+SwbZtHHnkE0E2x8fFxxsfH+df/+l/zuc99jsHBQf7lv/yXfOADH2Dnzp3Lvv9vfOMbvPzyyzz//POkacrHP/5x3vOe93Do0KEFXx/f/va3+Rt/42/wqU99ig984AN8/vOf54Mf/CA//OEPl63iuGOS15XMCBWSg4mJCXbu3MmlS5dWtUMIbi7TWYhMKr5xfILz16YoBQGbtm7PZaoSJQVWvrjadfKqe955rPgOApHLCKA/dOnGKX2hSyT1C7qb5FXoRK8N6aaK/ur1tRzFAajRqybpJLRIThvthEqgdwCFrkOUL+yOpewNIXu2RZKAb+nOZcXWXcIg1Lb4faXCwVV3EPpKHlHq8GClQjvJ2KQkY1MNsqjDiTOTeLbADUKq5RJxEOq/sZR0M4mvhA5Kbr6s29cLcyueThKD/PBVJLZWvuvSyQNV4OodlpZl6/1DUjuKpUoRui7tacUD/e4sbfutYLEK/O2QvN4J/rf/7X+j0Wjw5S9/eUWvE8PNmc90YrnxUSnFuXPnOHbsGDt37mTz5s189atfvemqm8VYcCxASaxj/w3aY0xvfic/PHKWUqnEnj17eh38uTNC462IV0+PUfFtpFT0hR5SSvrzRLAv1DtpK77DFaWbh2kub0qSDKH07yhTALojaAlBJwVPKiY7CYGTL7p2LKJES15jqeevs9wBNVN6TjuROvYmMj+oZDI3wcmo5SY41dDlrITAzddwzJBKTXWT65/3TIBsWrlTYjc3d0ilInT0+qWq76BUIX3Vye61lh4fUFy3/HfyPU22bVGu1/FKFUreeiabHUQacWWqibh2jVjZDNRK4AQM1is0cpOJTqxNOKS0UEofeD1LELj69/DCjv41db8uWIrk1cRHw1oghOCHP/xhbxXRSnflLpYQztxh+dRTTzE8PHzD7Vda+Cse+9VXX+3NfC40tvKXp8Y4fa1J6Gk/CdvS694soecJk1R34tJMG3i1rc2Utvs0YoWlXBrtGLB6a5NkKnFsgUAr5azcZTp07V5cSqXKz3wZ1VxdVsrHEMq+ntEOPe2O6km0OZBjkSod9/Q+cpWPNkAlcFBKMVQvk2QhAwP9dJKUpNNlqtmm0Rrn8ugo5TDA9UPq1TLCdsiSjDjTzQal9DxlhtAqllzSL1FUAu1VEuYxVCe5Ovm1hCDOJbTNji4WFslikmpDTAUEjk2G0GNdPadsxY7BEm9ZA0+OuQU33/fZuHEjGzdu5DOf+QxCCPbu3cuXvvQlOp0Ov/Irv7Lsx/jiF7846/NXXnmF4eFhfvCDHyyooPjsZz/L+973Pn7pl34JgE984hN8+ctf5l/9q3/Fb//2by/r8e+ZDmWj0eC1114jDENeeuklGo1Gz/hhJaxmz5pSim+fbXJitMnGdf2U6wO4jt17wWZKYaHlqkViVCxs1Q+ndLUpgDiTOLbuaOo2va70ZLnD1WUhqPn6WvvKLklaHL7yNR2JNoBoxZJqkFe/Qy+vgucD1HOko7VAzzJ6QtBIdfWnGenOZCuW+LlDmGvppNK2BBItC1NogwiEzaZ1/cAAW6Sk0+3SarXpNKcZu3qVMPDwwhIO2kGrGmiXrsLJteLpayvls5+eo62mhRB6tUruvtid0cGoBdclbe1ES8miNMOz4PnNt36YebGEstPpIKW8rw5M//Sf/lO+9KUv8eqrr67aTMOwdBxHyyuXqp6YWWh7y1veQn9/fy+uZVm2ItMIWPjAJU5/A/sv/gVZt8F46c/Z+CO/zM6dO2dd68zbJpnkv+8fodHNEEKvycjiDNcRZCl5Iij1CgypCFy9c7GeF7fqtqAbJziOrnyLohsotExVKv3/iQTQsctC0ZYZthBEicKxBe1YJ5mtLMOzLLoKPAfasV79URTapIJyHnNLjgKhqPv5/GXgkkhJ1XdJUm1w0U21oVon1mtOOo0xrOYo3dIAqjxMQlEg0wccvaZEm4l1U4mDnmkMHQspdNc1yaBe0gfIvtDVM5d9JbKsxLqBAaIsI+50mW61aDcmmbh2BcfzqJbL2F7AQK2Ud2Ydxroptq33bT4wWGbXxrWVuhbcTWuVbgcmPt5+pJQcP36cLMt48MEHe92elbDYObTb7c7qfs41x4HVdSgbjYZ2XQ7DeeclC46MTPO9MxO6iNVOeqsvUFK7N9sCqSRS6RgnpaLsu6TuBuoWXLk2TsnV3xO4Np1C+p+p3HAs7zIK6CqFb9ukKH0mlXptW5bv/i2SzCS7bj4W2lrBMeBpib3eR66TzUZXO/PHxRqnfDuBY1lYFpRcB8ur0lev5A6rMa1Wi1arzeVLkzrJ9fVKkiRJ6WLpa49TPSKW6sfp7TEXeq4ykyLfqHDdayMIdbGwHrq9vZTTxTaDZgQKpvNVJJ1YK0+E0B4h73xkaE2MyxaLj0U+snv3bv7lv/yXq36sgqmpKQAGBgYW/J7vfOc7/OIv/uKsr733ve/lj//4j5f9eLcloVyO7fN8XLx4kUOHDrFjx47ewWUtTHVg+QmlUoo/+ov9nBtrMtxXZt26IRzLJskkZU8PLfsWxFIfBoXSbXaRd99sSxBLC4nebeY7Ns0oxbcF04mu8rRjSZib5ygUnVRS9/XaENe6nmxlUukXlJJU86pKPdQDxP2hQ5zpj1Gq6AttOokOBJ1Yv6AmGhGBDY38hdSK9GLaVpLpg1eSYnPdvEcPPSvtIptKgkKC61k4fsBwGJKoAWxgutkk6nRIooQsHiON2pTLJWJK1AM9Z1n39cqTsq9XjNhCYAuLWEoqeZW/1y0IHKZz86FmviOum+jn1PObPHx35buklspi3Z5WqwVw3ySU//k//2d+/dd/nf/+3/87Dz300J2+nDcUM2eEbpYMNhoN9u7d25vtKUxwigXza2U8NhOVxUTdNjLqsn5bP/7DD9/wPTNj/jeOXaEdJ4SenhO3hEAKpWX3QCefpdYO0pbe9eiq3ADH5tSFEay0g+WXGKyXwfEp+TZJCr6rDygVT1fX9TVr6WmW29VLqW2mBTqZtYWFEpClGe0kw3ZcQOaVbdH7mEpJnAk6sQQrQ2YKL99vaeUyLFtYeLalpa+2wlYZYvR72K0R0nAQ9dCPktohjg1RoqiEDu08njW6Kb4FjUgxbAumousO3oFrMdXWO9Y6UptjiFTvBfadXNpaLuEEIZs2CDpRQtLt0Gi1aU2MMj0GpVJIFpYIHUkTwUDJ4x2PDN3wt1orbqbguF8kr2Di4+2kKFR1Oh327dtHmqaUSiX6+1fXNVroDFmsoFu3bh1vetObFk0CVhJfz58/z+HDhwF48sknFzxTjEx1+cuTY/SHDt1UUc9Xt5V9m7GOjnGdJNNquEwvtNUqr6y3McCxIFYQurkqIvfZ8Fxbz64L/X3ad1UQZRJbQDvVyVk7X88UxfkWglTh5e6woWujhKAe6BGmeugSpYpqLsUtFzL/XJp6PYnTa+CqgZ5nDD09oxn6Hp7rsW6gnzSTJHHE2MQkMu5y7uxZwsDF8kr010q0pUct9K4rR7r5nsq2/tjITdWiVObxUn+U6rpSpR5qQ7iSp98PvPxMrdC+Jd0k40ffNEzZX5s0aSkKjrkrYlaDlJKPfexjvPTSS4tKV0dGRli/fv2sr61fv75n+rgc7uq1IVmWcfjwYUZHR2/Yx7Nch665FLbRy7mPJEn4L3/+A75/oUW9WkHYDq6dV0Ac0bMwVgrKjp5TxFa9BbLk7lHFXG/o2vqJ7trESYZXdAbzir3nWMRSL1dtRFm+pkPLwFodrRVvRwmeaxFJHTySTGBZkKb5oll5fQeRn0upwsJ+2XeYEGjZgJJUfO2eZeezjpbQVZok05X9KH/xt6JiJijLh6L151NRSsVzaMQp5UoVyyvR7ES6U2kJxqaadEfG/n/2/jTGsiw9z0Ofvfa895lizIyMnCtr6ip1dVePWSTFpkmp1aLpS0rmxb0wRAqCLmhc2bIsA7Slqx+GQcA/BEEGbMOSNdqCBP8gQEuUSXFosdVsq8lmdVfWPFdWjjFHnPnsca3741vnRGRVzpmVVV3MD2iczqw8Q8Q5e521vu99n5cwUPhhzHyzgR/FRIFLpR181/oorTQrDdUMYQ3QilwwDm4gU0xt4Oypecrt4QORG91swzQcDnFd96Yeyx+WeuWVV/iFX/gF/uv/+r/mqaeemi0sQRDctNP1sO5PTT9jVVXd9EB5vUbbwbof0UgfvH9RFLy022Lu0J/lxFJK+Ox/ct37TtfW1672eG9zROiJFEkOgpowFKCY40zhaOwHVPuW4Kzg3fcv4BiDn7agzHj34jqRCwQRi+0Gg0wTRUY2FNE0h1JI183AlS56IBuh0JeJXxoqxpOMl7//RwxGYz7z5OMcPXbC+h8NkS+gndSTaWXsS0e/Mdsgia9oRg20eZctS7Gew9CrI1JthBabGLLSECjJgJtCHhqhTzaARuDiKJFvGWNIQ896kkTWWzqibhkXskZPN1GDKfV2UgmMI0iYjxtUWlPmBVk2Yas7QJc5RQ1fMl1GvZBgbu6usvduVbfyUN6P2JBPQj1cHx98bW1t8dJLL3Ho0CGefPJJvve9793XrF6Qpsf58+d59913b4uMrZSiKIrbfj6tNa+99hobGxs888wzvPDCCzfkIgyykm++vmGjM2TSVhs5rGUjiUsCM4Mbal2jlEtZi5d6NB1WFKLWGNlmVW6VcKVlWuhaCNHaGBwb+6YBpQy1EQl9VokdaVzUBK6inwmJdZBpjNFklaGBqCxCV9QY6VQ2qgrqnavMBSET7wjtyLNwnf39Y29iVXQHbhuhi1YB7VaTLC94/Ngq/dGEfDJic2MLoyv6UUK7kTA2Ma0oIrOgs2EuU9hRUeEph2GhcRB2SK3lZ9Fmug4bXMBXisQCfRKlqLTmCyfmOH4ffJPTetAKjr/yV/4Kr7zyCt/5znfu22Peqj6WA+XtYPFHoxHnzp3DdV1+5Ed+5EMb9fsR/n0nG67hcMhv/d/P8/1txamTJ7i8vk2EoTuRDcXuuKQV+4xyicMY57VAdOqayPMoKuunROJCXLtJmObh+I4BxyF0RV7qB/Jht2cp0bfrKRpaYj/KWnJ0ytqggKIGxzHU9qxeIYdZmRbIZEBkB/IY1GZGWK1rwSUXte3oGAiVXGBpMJXgelRmmhXJTIrVifdx0mWtadh8oMCTKUXg+8y1msSNFrGv2O2PoMq5vLmDZyq0GzDfkslDuxGLNE05aETO5ruSLyQh3TIRzSvDmaWUxw83eGnz7n1id1I3WxDG4zFpmn4qfDTPP/884/GYX/mVX+FXfuVXZn//EIv/0dT1DoI3my4ebLR97nOfY2lp6br/7l7XyA827abAn3a7zYmf/f/d9LCrlKKb1Zx7c4vQU/Qt4GFvvO89bIUevUlxoKMt64ZyHHRdcuni+6RxwsrKYXkdjmLVGMZZxmQ8ptvt4VQZWzsFc52KqohoN1ILahBJ/RS2IwevcpZDOerucXm7B+WEty+uc/TocUa5UBLzSpQQsvnSGKxXxxxc8/xr83Ijn7yqSaOQ4aEv4TfWGYQLuH7MuBRSbGZqas1M+iqbHtsozKagIJleZqUmDWQzF9o4gIb13bcOeDEN4suH/XgUpR0aYUIWR6wsL3B5Y4d5N+fkfMT58+d59dVXaTabLCwszMK378e6dauJ+qfFQ/lwfXywdfnyZV5++eVrKK73K6t3JssvS15++WUGg8Ftk7HvZP84ldBO/ZLT6+R6B8qy1vxfL63Ry0ocZL84KauZN9u1EvrQUxRlzd7mOr3BEN/3iJOEOE6Jk5hSC0SnnxuWPSWZv6HL3vTgZqd5WaVlIFLv+75dV80UJIHdRypHhiWBpygqifsoaogcaXb5rkw0hT4tt3rnPbz+JbQXEh5JMd48qW0mdmI5ALen2b2hgHBiX1Rpoa/oD2vAYVRBlIicvzUnkViTyZjecMRkcxvf84iTmEYjJYkTlLJEWnuIdG0kSfwB2E4z9NjOKhzlsJdVJIFiklcsN0O+dLJzex+k26zbOVDer4bbf/af/Wf863/9r/n2t7/N0aNHb/pvDx8+zMbGxjV/t7GxcVcRT59Iyev6+jqvvPIKq6urPP7449f9spsuBndLaT34GLeq9fV1vvuDlzhfzvPoyUWKSjoro7xkJfQYFgJwmGbc9Ga3pUwBpxsZm582qmCh1vTHJWkstMHIdaSL7u0f+kTbLhNKX8kh1HHYN1Tb2acxDkwlZI5IvOTwaC/6SjIwx4VAe0a2u747yfE9RySlB3yW3Q9mRk4qUl/RqyT3Mq9qPBeqyk4KQcaFSl6va9HSrlJ4SgBEnuvQ8Xybw9aiqg0rh5YYZQVFNqE/GDGZ7LGzBVEU02qkqCCimYR2IuruB8xmNYuNgB89M29/fvOxHyiHw+Gnxh/0F//iX7yvMSQP687rRk238XjMCy+8gOu6NwU5wH3O2rXT0EceeYRTp07dcs0ta8ML6wWrJ2Qda8Y+dS3QsbyoaYU+w2Laqd5fN1uhR3dSQJmRtOc5fGiRYV4RKMiqktBTGOXR6czRbLXZ3FzHwaGuKnrddXY2IU1SdJrQSFNcR3yPApuwDa/QwzRaHFpoMxgFHD28JMh412FUVLjKYZCJrH5SiSRMFzXKsfYF2+3WRuMrK7V1pMPvKvCbiwSdZZTWuI7YG1xHmniiImGWJ5zag2vbZqWldgIZeyIP813FKJdokHIGepPGWhKKb79pQW3N0LObJmU98KJMaYWKLx9p8qiVJmdZNqMLXrp0CYC5uTnm5+eZn5+/60zb25G8fhrWyIfr44OtQ4cO0Wg0rmlG3I+s3un6OOVzJEnC2bNnCYLby2a93f3j3t4e586dY2Fhgaeeeuqa/e8H72+M4ZuvbzDIKgIljfyp/3pcCFxxWGqMga3emO7WGjUep04eZ5wVlMWEnZ1N9EZNlMQoRxEpg4NMN/NqSkcVkmv/wNorsSFyyBxZ8KM08L3ZYVNrS7SeegyV+C+D6bDEWgZAFHuO41PjYZwAXSlMXuG5AiEzRoCVBkPoKpt5KU2ypitquchVjB1mmcLg4CiF4/rMzc2TlRWHXMXeYIQpc65s7KD0OsoPmWsmBHFKM46oLQizNvuwnU7iyzrqOexqsRIUlfyuf+rJ5fvimzxYt0PBvh+xSv/5f/6f82u/9mt861vfum5e7gfr7NmzfPOb3+Sv/bW/Nvu73/md3+Hs2bN3/PwfK5Tng4fBg1Stp59++qYn5IOU1vsNnZiWMYa3336bt949z054lMV2Ag6EvsLBIXSFDtWKJAdyzuakdWa30mluxx6TQiA6w7wi9R3GpeZQUyA6ie/St/TAflbSCH16luA6KiUnrTsRiuA4FxDEuJTDYV4KLrmokamlNgSeSGljf5pLKZrxjqUaCllRXvcecoEV1X5GTyuU2zQQMpjAIySSpKg1GEOFdLRCT5HbaWw/E8lr78DB2hhNP9eEsWFUTgFEtslQI52ldou00SRwHYbjjDwbMxj0KfJtur5PsxEzqhJaaYrBYS72+fpnlvHukdR7p3WzBeHTsll6WJ+Mul7TbWNjg5dffvmmjbZbPcad1HTD9dprr7G2tvYh28HN6jvne+xNKlYMlKUmCCz1VRu7OTB2smahM3Z9WtvYxC0nhGmTU0eWre/bpzfJ7fpY7UdwhB5Z7dBpxARxk8WlQ3SHY3SZs77Tw2xsgfKYa6W4fsSchT/4jkMax/zo2bNkeU6zkVJrg1KgXduUE9slviPyLkeJVzOvpgAxmYKOiutLYLu2idjLbDMxK2RtnAiCf1TU+K6Na1IycYj9aQPOQynwXA/XFRmuZ+OSfMclryWbc1zUNmTcEgyLGs/6qmoNeA55WfHM4ZjI3/+ei6KII0eOcOTIEYwxs/DtjY0N3nrrLaIomk0vO53ObX+/3uxAmWUZdV1/KiSvD+vBVhAEH2pg3Q+Fmuu69Ho93nvvPU6dOsUjjzxyR8OJ29k/Xrp0iTfffJPHHnuM48ePzx5/evvBCeX3L+xxtZvNJK6+ay0B2MlgrUkCl7VuSb52BS9ucPrIIVF6NBoM84gT80sMRhN0lbO7u4eua94/f55Go0GapHhJQjOaTglFPdeORVXXOiilP7CWTXMfmzbHNg1ksOAqWSfF0qBR1rYg8lJwlk5RRw2UF1L6DUJPJLqR784OyNOIvHFeHcjo9Sh1jatkuhh7DjUOsa+sf1NR1OKDHBeGQ/NNBlnCoeUl9kYZTpWz0x+h93rkNbTTGDeI6DRTK/eX37sMbEQtGHkSpfJjZxZoRvf/aHSrfer98Jj/lb/yV/gX/+Jf8C//5b+k2WzO5PjtdnvWKPyFX/gFVldX+e//+/8egP/iv/gv+PEf/3H+zt/5O/z0T/80/8f/8X/w/PPP87/+r//rHT//x3aghGsPgwepWmfPnr3l5nz6GPfbIzStsix58cUXGQxH7LUeIS9A14ayrvHswa2oDbXR1BUiOTViaK60nsFzpqh2yf0RJPMGDu1IYZhCczSdxKOskA5+JTCaSalJfYes1My3/Vmg64zgOjUiX3M7RdnLZHT675JAJnyhqxhV4tcsao1jjEhmFRa4o8ARfbmjIFUSgWJckeRqu2jUNcS+Q6llw5dX04OzdMDGuZVo1NByFZPK4BhDrUWiG/kSxNsIDmzCsopGHFEpn5X2HOO8opiMGWUZW3vrKMAPI37yiSW8OscYbzb9flATyptBedI0ve/Zbg/r01/X+8wclHRprXnrrbe4fPnyLRttH3yMe1kfpxuiIAg4e/bsdUmH16sXL3W5sCeboulBazCpZpCGyHcZV7VkOVpVhdGatbU1qjInTFoEvkDFQk9R1fXM391JfHRtZnEjzUBJRlks+bVLnQZZGbO8OE9/XODUBVvdIWa4zdrGJvPNBPxI/p12aCaJ3TBJE296aG3Z2CbXkUzdto1RSkOhvArYATp2+tlJfOp6H4bWjuS2YQO3I0+RVUKdLWtDVYs/sqg1ruvNcPy9A77IplW1TNUtSaAYWbBbZl/bNFbJcxWBa3CsP8hVUNfwxOEmh+lyo7234zi0Wi1arRYnT56kqir29vbY3d3l7bffJssy2u32bHrZbDZvuMbd7ED5aYOWPayPt+71QKm1ptvtMh6P+fznP39D28DN6mb7x6lfcnNzky984Qsf8tZOr6GD9397Y8B3390htfCaNBQZfeS7su9ULoGr2J2McHXJ0vIhFhfmyEvJOp+UogAZZBXtRsIg85mbd9jrDVlc6LDXHzHY2qIoKhppTBInNJsJfhBijENibVbtWIis7dlhU7LAm9EBXobdsw0LQ9pw6E7K/Zz1wBWyq6coa59wbpVKG1pKzR63rM2MFNuMLHgx2U8nmD7+Vi7+x25W0wgUo0r21HmFZW7YVASrQNHGsNCIqHRIp9OmqDR5LgkE/eGAfncH40iTUfniw+9lFa5y6U1KPnu0zanFj2Yw8CA8lP/L//K/APC1r33tmr//J//kn8xUFRcvXrxmH/vcc8/xL/7Fv+Bv/a2/xd/8m3+TRx99lP/z//w/7ziDEh6g5PWaJ7WHyOmBcnt7mxdffHFmuL6dTKGDE8q7rRstCAclEMO5RxjuZYJcLmoB6FS19TjJxsBgwICjINcWUW/lq+OiJnIdxlqw8FllwBgmpSayVC1PQV5oyQgy+1CaxHcxODRC+f11ZgRXOwGNPOlWx54gkS01qxlO5a1iTA59l3EpHfGs0rgKJpUcJEvtkJe1ACnsgVLyK13Gdlo6KiW7Z9pZykuLi67FyznFQdfaEHoujiOYaceByJXDY+QrXNu1SgLZVHUi6baLhr6ebb4CTx5LuYpOp01YNlhdkRy2Uy1o6BHPP/88vu8zPz9Pnuf3tHG+nZrKqx9OKB/Wg6ippOtOG20H6142XXt7e2xubpIkCV/5ylduO+dtozfh3KU92pFLz6o2Kg2dNKCqbZ5tqWmEIn0NPYfBJGdz7SpGuRw7fpLNrW0qbSgrTQlIzJKQYOtCchrLoiJ0FeNS03CNkGJd8faErvV8JwFGB7SbTWpjqIqc/nBENhny/oUdosBjHKW0GilZ4dhGmA3Knubm1g6e49DPBHLRzwohrxZmJu9yRI8KZkqXFUy+NjJR9FSN7yk865+sjcELZN1s+A6OcphL/JlKZEpKzCtNZDv6yoFSS5PSsx6lNPBmTcbetHk4KUl8l2FW04p9vnJqnvPv7t52w83zPJaWlmYb7MlkMpPHXrx4EcdxrpHHHmQb3ErB4TjOXctpH9Yf37pVw+1OazKZ8MILL1AUBYcOHbqrwyTceP+YZRkvvPACIHLC633mp1DI6YRyo5/xrTe3rNpBGlz9adbtuJC88XFBv7vN3l6fKAxoz7VnubVVJYqy2lJMp5LOzYkh9sELIo6tpIyLChdNdzBiNJmwvr2D77mEUUyr2SCKIgLfwwHG44x+r0un0yGJQrRxbIavoZN45IUm8R0mlWa56dpm2IE4jsm+ZaphZbaJr+gOJ2ytXyFttFk5vIzW2BxNWf+m+ed5LZaAraEcIselUK/HhdgRinqf3F0f2INO197AcTCuImkkNJOE1UNiV8unFqveDm9tb9pcSs2JAM6e/uigWrdjCbhXBceNIE8H63o+75//+Z/n53/+5+/pueFjmlBOoRNVVXHx4kXef/99nnzyyVuaRw/W/YoO+eCCsL6+zssvv8zJkyfZcefYXh+Shj61lqlhrSEIPTJP4SuD74JC8sOMNmBzKKcHLV9JuLZIkQy+51AYWSBHhcin+nmNpyArhE41trdlpamNZlRolK8pp3lBen+D4dnJom916ZGnAIdGINotLxBNgqfkgyxZkhqjHZTn4DrGdsAEejMu9v2KzdifdaT6WUUayGKR+C49S50d5vVMa14bkQ5M84EmeY3WhnFpSBMYl7ZTX2p8VyBCynEseEfhOg6hqwTdbyBVErjb8QQC9NhKhz/zlGjb67qm1+uxu7tLURS8/vrrXLlyZbbRabVa93VqOf2c3WzD9LD7/rDuV7muS7fb5dVXX72jRtvBuhvKqzGGixcv8tZbb9HpdGg2m7f9vFlZ8xuvrJOXNePCUBqsxFMxzmyTqqgsAALi0KU3GLJz9QqtVoeVQ8sYHJJAoj+SUEBkGINjFEqJd1EhgIjaAAhArDYGXQn+vtIajHjMHcdgKjsFdTySVpu42WZOTzvXI9Y2NqirijRNSZIEv5HSDH0cxyHxwFcQWzS363r2+TWemlK5HbJC28iTeibJPbgp7E0EutOdSBTKXiE+yUGhiUJDf1LKxsgIedFVLgqZPpa1g6dEhusFarYm1haMVtmmXKXFmwkij/vJx5eFnKv1XVNd4zhmdXWV1dVVtNYMBgN2dna4evUqb7zxBmmaztbcqqpuquBoNBoPFRwP676U53nkeX7H95vSYg8fPszS0hJZlt31a7je+rq7u8u5c+fI85y1tTWAG3rRpvcf5RXfemOTwJ3GWoj6ohP7ZFVNO/HpjQt2N9cZ5SWHDi2zvdulqm2juypgsE7hBfiNJSHme9K0D1yHDIdmJIfMViQwsSNLIUVVc9SB3f6IqsjY2NqGusILQtI45pXXXqPX7bKwuMjZr3wZRynrnRSIo+fKtRx7sjZPJ4RTr3ozdMnsnm9KiB0WNT944QXeO3+BRhzzIz/2J1mY79jYEtCI7EIb8JXDBEPsOYSewld2L+uKaq6oReWSVfuwndnedQYf8tibVDQCl36miX0HP4xZTlKMMVRFSa+7h65HLIwv8gffXZutZ/Pz87ftp72d0lrfElr2wz6U+FgOlCAX08svv0xRFHz1q1+9q5P5vUq6Di4IxhjeeustLl26xGc/+1m26ojn39yiEbiMyprEErYiT3w0nmMjQFwl3hblUDH94ncQQaua8rEAYwmuENoLMfEtJt9T5DYcW+SyMv1UyqE2CowgmQFqB4yZgo7kMFdrCWIttYAl8qIkDj2KqiIOfIqiIgym0iuXsnYIPIcst6/FgTiQqeh+nqVLXUu3S1uaoeQYCYQiDRQaCBxlZWGi7Z+U+kCkiM/FCksYsxmXhci+ar2fpzkqJbOodyBTqBG67E1kujsyhsT3+PFHF2aHV9d1Zxf91tYWp0+fRmvN7u4uL7/8MsaY+wKamNb0c/LHAcrzsB5sfXCTbYwhyzL29vZ46qmn7qjRdrDudEJZ1zWvvvoqOzs7fPGLX2Rzc/O27z+FSVS1rEGeqzBaKNRFZfAcxcQ2ygYWO3/h6g7D7g7N+UWWl+at99pnWGgSjxnqPqtEvVEbiTyqLPlU1iGJSWqEHpWlXlf1PpTMUwK/8V2RiQauNM2S0KcyDoebDcZ5hYdmpz9kMBxxaX2bRuTjBBG1NvTyivkgEI9PaBUaluA99ak3ZsAHocDur5siiZ0e+NLAwiY82RwpxMdTGyzldd+TOaXhTqWwsSdIfN/dz0vzlENRaZJQMoETC+R56kiLlY5MD2+Wn3snpZSi3W7Tbrc5ffo0ZVnO5LFvvvkmWZbx3nvvMRqNmJ+fv+YAOV0fHx4oH9b9qDtd24wxvPvuu5w/f57PfOYzrK6ucv78+fs2kDjol3z00Uf57/67/46XXnqJlZUV/qf/6X/ixIkTH7q/4wiH4ndeX2NnmON7yj6WYyXrss5NJjm7Vy/jhRGfOXOU3mBI5AkQ0XMdyu4aTv8iqIBCBaikwygTEOOg0PbQWkt8Ur0PfowDGSQcnm9T6pbk2WYZk8mYza1dttYuMyoqjKnZ2t1jeWGeSSn7uImFmGW1IdaGSSEKjsoOU1wl8SWRr1COI4MMB3zXoxiLz71QUFUFynFEjeHLd0RslReJ3UcCDLOKhqVfR77ELyWBS1Wzv/YmHlXNzBfaiqZ+TVF0iMXAUGvwreolDgIqN+Rzqw5/5se+QLfbnakxXnvtNZrN5mwP2W6372kdrev6pgfUT8NQ4mM5UO7t7c38aAcRynda9ws6URQFL730EpPJhK9+9avsFopvvXaVJNiHP/SyitY0QDXyGJRiPN6zSPruuKQR+XTHhd0UVcShb2VLHkWpCQMHU2lcJYxWz3WotYNScvh0lYOn3NnUznEgdIU+FXrKdrBBYagMeI74emJ/2qVRklUW+5bc6l+TWdb6AM3Lc2BQCWlrGqY9zEXGKs8DjnYw2hDYbLjAVWi7KJU2aqSqp5mRhmZoZReRHDwTTzw/kc0/8XwX5cjkMVbSRWvHPlkpC8C4kE3RpNR4jiXIGvipJxZvGDCrtSYMQzqdDisrK9eAJtbX13nrrbeI43i2MMzNzd3xtGf6eb3RhujTgsR/WB9vFUXBiy++SJ7nHD9+/K4Pk3BnlNfxeMy5c+dQSnH27FmiKGJ7e5uyLG/r/j+4sMeVvYlVO0j2o3JE9aCtLNRoZxa+fXV9jXw45OjRozTSlLISlPs4r4htnMaSJ8CGJHDpjXOakb/vKbQE7UFhaCeO9Y3b/MlQmn+xL5L6xJfctZY91HUSn1rDfBpYSJncnkgiilpzDMPeYESdT9jQsLN+hb3dmPlWSlFGNJOIflbKhi0v8ZQ8n3IcMiRTc5ppKYj9KThNmm65JbEWtSHxwXWV9WIKkVbb0G1tbEawFoCRsVEBvqss6l86/w2b7ZbaqJSFNOBLp/ZD3+/XgfKD5fs+y8vLLC8vY4zh93//95mfn6fX6/H+++/jui5zc3OkacqVK1fuS8Pt29/+Nn/7b/9tvv/977O2tsav/dqv8bM/+7M3/Pff+ta3+Imf+IkP/f3a2tpdYfEf1oOve5W8Tvd34/GYr3zlK7RaLeD+UbCn4LKtrS2++MUv0mq1qKoKrfXsv9/o/t96c4vNgSaykBtPKau2ENXW7k6f7uYajc48q4eXqDQEFtQT+QLCCQKFdh2MC7XnUjuOjf8Q+X+3lsbTMBfLUm9SkYQu3bGozYalgMLyqiaJQgI/YHFuDtcxvP/ee8wvLUEx5sL7PRpJhBcmtJspVe3hK/GYd3yXoSXD9m0TbLpWj2y6QFlpIt/hmc99jkYa055b4OTqYbRxJIu81rQTn7w0tOOAcSkAy+2Jw2pg8yntbRLI6w99xSATtZxxEN4HktEJitBVKAX+bF8tlNrSkrXHpeaxhZATqbwf0z0iQJ7nM7n/K6+8gtZ6NqRYWFi44yHFzSSvRVFQluUPPbTsgXoojTFcuHCBt99+myAIOHXq1F0fJuH+BHePx2O++93v0mw2+epXv0o/1/y7t9ZFGmClRKXep2F1YjESt0LFxsjYoNaaVjQ9vAUzudOUltW3pL/euJQv/9LQhFmMyKWNbTwq3DBhoZkwLMQfk5faehvBtbj5wB7kInfaZZKDXCOcbkTkQDdnc9I6sbvftak17cidZUb2BjmRayhqjW/zhyTxw7EyKZdJIYvEMK9peobRhRdpqpxe5ynSRoOuvbh7EyvTLWRj5WDQtaHShqysiSPIKvFTFlaKIfRCK9kV4KP1WjooR/InKw1fWm2y2rnxxfvBDdPNQBNvvfUWeZ7T6XRmi8ftSLFuh9D1cEL5sO6lpnj5ubk5Dh06dE9rI9y+gmPqYV9ZWeGJJ56Yfc5vd329vDfmu+/tyJf8pLBrnuSHTTcVwyntdDCmv7NJVlY8cvIUGvnCVzZyKA1cxq5D6kv8UCv20VrWYQ2z9bgViddQlCM1HRtoLdRAue1npWygMgEBdScWu59XRJ7QCkNPMapFgp9X0lXXBpqNFNVssLPXY3V1lSLPmYzHTLJt+q5PkiaoNCGOEly7CXSVoqynUlhNM3Jt5NF+5lnf5k127cSxXxiaHgzyyvqBZLIqZG19bTZlJSHkuW0eVlp+fgM0Iw8Hh3bs85NP7hOw4cHEKk39YCsrK6RpitZ6Zkn47d/+bX75l3+ZRqPBf/Pf/Df8zM/8DD/6oz96V88zGo145pln+Et/6S/x5/7cn7vt+7355puzgwTA8vLyXT3/w/pk1O0OE6bZua1Wi7Nnz14j/b4fCreqqvje974HCNxk6in+G3/jb/B7v/d7PP7445w+ffq693+vpynrnFaaUGtNatUOOJJFvrm9TXd3l4XlwyzOtRlkouTq26ld35L/s3gFfyGgxCNIWjgGXEdRK0PuOkSeg+s6pK48/sGm1qSSCd6scWcPm3uTitOPPMKR46dIPLFtKVMxGI7JJmMuX97DdR20cUiiEm0Pg0UlYKBJIR7uKThyuv51JxVLS0vErTnbAKxsI1EOhUU1ZYloYk8xwdAI5HjYtrLdZuhS1YbQlzXHVdKoLKuayJf1Mj3w2BJHNc24lJ/ddwUoudDw+fycw3Dw4cZpGIasrKzMhhTD4ZCdnR02Nzd5++23iaLomiHFrb6vbxU7Bz/80LIHNqEsy5JXXnmFXq/Hl770JV577bV7Bqnc64SyKAref/99Tp8+zSOPPMK4qPnNV9eZWIIeQGUEK1xpg6tcC55RTFCEjpl1kSvbVa41+8ZlazCeS6YkV18koYGiqAyH2h7vXVpD5yMmXoQz2GRt3bDYSuj5McudBqMSFhzoZaIL79ouzcGMyEboinE7cBlVshmZ+jbL2tjMSgfHQG3ksIYBz5PDW+SpWcaap1x7UPWptJ7RFOcil2rjNeY3vkuhYc7UjOOzpIGSkG5332AuWH0jEoXaIQpkERQdu4SGD/N9Y7XW0snPKqG+9vJ97fuphYRnjt48ZPhWHfgPgibG4/Gs8zTtpN9KN3+rDKHhcMjCwsKtPnIP62Fdt86fP88777wzw8u/8cYb9wWLf7PHMMZw/vx53n333ZkM7GDdzoFylFf8/ltbtEKRxLdjC9+JA67ag59Ef3hs98bsba2BF/HoI8dtwLQ7i0iaRSUVGhfDwB4Is6LGdwy53WTUtcZ1XBxE2uq6ErfRiDwUDr7rAA6eDbZuKPmaSwNXfOaB2AjET24sQV5osq6NBol8OQziOBRa0e7M4SVNDvuKrd4QU+VcuLqNT4XxQpbaKSpMaCUR5ZROO6N7Qyv0MDYT0yB5a1hoWeg5RL6Lq5CpZWgjQawXc5pNGXmKYVGhbJB4rTWh75IVckgdFSVfOTXPUiO85j36qCaUB8sYc03TTSnF3Nwcc3NzPPLIIyil+Pt//++zvb3Nr/7qr971gfIb3/gG3/jGN+74fsvLy3Q6nbt6zof18dcHs8xvlUNpjOHy5cu88cYbN8zOvdf943A4JM9zlpaW+MxnPnPNNfbkk0/y5JNP3vC+720NebtrOJFq8koyHisbw1ZWms3NdSbjCY+cPE4cJ5Ra04g8ijxjrv862d6I5PhR+jk0w4BuOU8j8oSGGro2rsinqCV2rtYQuDKpVMrBtUyNpiuTzKb1PabhfsNqyvIY2HiPSaVotlt4cYPFZUV3MKK7u8leb0i32yMIQhqNlCRJSaLQfh9Y6f+M7CoHuoaNTgo9ufWUEqo2DgXynjjAONeYWsCRoS9qF99X9iApa2vi79NeSwv2yUptJ5AVaaAk4cATSKXryDDGcRx+4vEleptXb7k+Oo5Ds9mk2WzOhhTdbpednR3eeeeda2jYCwsL1x1S3A4F+3ZJ6p/UeiAHyn6/z/PPP0+SJDz33HMEQXBPlK5p3a1kYeqXHAwGrKyscObMGcpa8+svrdEbl/iuyJHkA1FbCRPiVXQdysJQGxhX8qWelfaQWRsCF7IKPCXdFulaG+t7EWiCAQJHc+HiRVyjWT1+At910DiUeUZvOCIb93h3d5tAQbffZ2l+jqJyaIUuuQXoZGVNYvN8Ql8IsnJIk4VXa4PRBtd1yGyeZG7phf28xDUwrgCcfUmvPbAO85LYEwmtpxRZbfCMonI8HKfCOLIB8pXCQX5OPQXpaOhEihpD4ooAYUqobUWyKESe3L+yC0ReTzef+5TaduTxk08s3nJ6eKcbpiRJSJKEo0ePXtNJv5lu/naQz9fzSTysh3WrGgwGXLx4kS996UuzTa/ruhRFcU+Pe7P1saoqXn75ZXq9Hl/+8pdptz/ctLnV+qq14bdeXWdnWBD6Mp0LXIM2AtJRYKl7im6vz876VRYXl1haXBQVRSIyp7kkEPXHtMMdefStxHVkD1TdcT5TgTQO5FCOSk1DKYvZ9xjk9lCal3LIshaFSWlx9pUW+X697yFKEpHtJ56iMoY49qmMYS71WUPWLIPAMvKyZmW+zbisWFxcpDfKqIqMncGYYmuXK8olTRLSNCEII0sFF+qrkFlde5D2GGYVDg6jQtN2DJNCDpd5Wc+yKRNf4SpFGspm0LdNwFqbWfMvSiRH+Nh8zLPHO9d5nz76A+WtPOYAx44d4x/9o3/0kb6OG9XnPvc58jzn6aef5r/9b/9bfuRHfuRjeR0P6/7UzQ6DByWozz777A0bvfeyf7x48SJvvvkmruvecbzC9jDnt17dwFNyWFtOnFlk0dYgo7e1Rqnh9MmTaCTGTSEWpHj7Fbj6hxyvCtTmPJ3VZymqWiLbbONuqowb5BWBp9itROE2bdgNRgVpJIq72PcskwM8C7qMfYGfTTMw/cijroWbUWmrktOaZprQ6wV0Wi3CKGIyHtMfTdjY2cNxFEkc0WikRHFC7HuAxuASenJASwORofqW46GNgMiKWjgik1KmkP0CIn+65ssQZZpz3ghcukVNEigKSwAvKontkymni+NAI3RQjjQZleNQGcNzj8wzlwTs3cX66Hkei4uLs1zmyWTCzs4Ou7u7XLhw4Rr57Pz8PGEY3laO+YOIv/so64EcKI0xrK6ucvr06dnh4FYdptupu+kwTT1KWZaxtLREkiQYY/i3b2wymuSkFkrjuc7M+6OnjTElmyhXCVXQQTrKrkJMyp7DuDQEnjMjuGaFwHbGuXRYRnlFWRsubezQakQsHjqK4ziMSsmGNF7A3FwEc/NoXXPx4kXqquTSlcs4BtJGgziOaTQaxL5nQ1lFL6pdZpNGB/FhKtu9aUayeZri6Nuxz+6gJPEQH04ofqXIdxna1z4uRQJb1Fp0/fNnGNeGRJUMWo/SQM0yMOXilqlibHX5vuuQV5DXBq/SFsIjm6DQdygrQ2ihRqGNCok88Sk2Io+vP7lE6N3c62iMuSdJ1wc76UVRzKaXr776KnVdMzc3d91w5YP1aSB0PayPp1qtFj/2Yz92zWf4fgV3X69pNxwOeeGFF4iiaNbgu17dakL5h+d3WOtOZIJmD3TjoiK2BzkNjLKSfq/LXrfL4cNHSJsNBlmF5zqMagGVTcqayBPfdGCbeb4D2ojKoa4Nc5FPjTOD3nSspL8VSJdarAjy91PS6qgQkMPggNy0EXr0p773iRw698YliZXMxoHLcGIlsVVNVcv6GAYuWsv1XxlRf7hK0Ukj3GbM0vwcCsNgJJKwQXeXuioIwphWM6U0Ce04JKv2O+dxoFgvatqRIPGNgbyGqtaz4O+pZaIZ7pNiB0Upa2xe4SsHs/Ym7tZr/MRXHkE5P/uh90lr/ZHDcG5Fwf64POYrKyv8vb/39/jiF79Inuf8w3/4D/na177GH/7hH/Lss88+8NfzsO5P3WhtG4/HvPDCC7iue40E9UaPcacquYPgsqeffppXX331ju4/Liq++doGSSCqsGYgMMV25LPdG7CzuYYKU86cWLHZtA4Dy7eY5DVBbdBagVH4tRYitAtVBZEvxMaOVcx1Io+dzJB6EhHXiqVBN817bFgpaiN06Vn71XBSSERcVpFEPmUtKgitDJ4lvCpHhgeOA4EyhB6koU8j6lB0WrhAdzimyjM2t/dw9CZ4IfOtFMcLmWuljO3zjqaHQZsvWVrYTllDM4RsKL8jg5k1HNs2Ji8JbByecshszrnGUNfSNMxyAfuM83r2XGkgVoJHFlMePyR+xfvRcIvjmKNHj86GFP1+n52dHS5fvszrr79Oo9Egy4QqvrCw8KHn+7RAyx7IgbLT6Xxos32/Nkx3siD0+31eeOEFms0mZ8+e5Y033kBrzXff3eHyG88T9C9SNo/hH/kTAqDxxPTsW5yzY6NBHOVQei6+MjNMe+jJQS4IjZU6iQ4+9t1ZNk6tNUU+ZjjOSJOY5cOrOA6UtWwmSi0EV+0YjNGCxsdlvj2HH8boMqc3HDHa7XLx6hbNNET5IYudFhpFq/8meXeN8NBjZI3jhL5g7WeHNteh1IbIk+535DkYIAkVCslhEyyzi4NIJBzHQVsPZ6UN8epnJPvSbgBbkVzcDTsxFW+khNEqRxD3oecyntFf943Vkafo29gRB3n8KZHra48tstS88ZfBtKbv//3q7ARBwOHDhzl8+PBMN7+7u8va2trMb3s93fxH7aG8UxjFw/rhqWkE0sH6qBpum5ubvPTSSxw7doxHH330ptfNzQ6UF3dGvLHepxl5FnAjeZNzSWA3Lx6eA/2dDcZZwaOnTqJ8D9dRYLT4BTGCiQcrzYKJrtEGslq83XVhUAqKosK361jgOowKUYNMpgTXSkvzq9KEroDGGoGHAVqhj3EEmQ+ihDBGZKiVMTQCwd1LfplAL7RFOzjKgtCUw6So7fRz3xs/7ZS3Qo9eXtNIU7QXcnxhid4ooy4mbPdGVNk2ynVJkoRmo0EYxwSuInRFqhX7Lr6S9bkRula6FVBpbf3vhmbo2aabi8HgOg6+nlC9+X/xJ92XWPnmeUaPfAXTXLnmvXoQE8rp5+xmsSEfR8Pt8ccf5/HHH5/9+bnnnuPdd9/l7/7dv8s/+2f/7IG/nod1d3U7ktfp2ra6usrjjz9+y8/8ne5Bp/mVU3DZzYA716u61vz2Kxv0JuWM6Ko1hK5Lt9dld32NxaVlFhfm5fpPArEBRS6Twqoc5j+DWxZs7Q04tPQUejICP5LXojW+62KsYqzWxkawCW1Vaxko1EYab6VdW/LK0E58RnltJ5v1NQyQ3qwBV818j83ItSAyGVj4ruz10kCks4fmmtSmwerhZSZ5QTGZsDsYUma7bG0q5pspQz9iqdOkn4kdqnsAthP5LuOqJq9qylp+d9rId4TWjsTMKQfluHiOQ2XEBlFqIz5zC3s8GCWS+GK56iQ+P/ro/tT6fnvMlVJ0Oh06nc41Q4o33niDS5cu8f7771+TQJAkyX1ZHz8JwLKPLTbkQUte19bWeOWVVzh9+vRsUqqU4s2tCeeH67R779MbZzTN+3SbJ2k2m3Qn5T7BdYpyj6X7rhxFWckCV1jiXqUNnieRIa7rgLYjdmVwgc29Lrs727QTn3anQeK74Bhq5VBV2mLkRfrqWjlT6MlC2ghdMjfmaJowqWp8DNu9IZQT3r1wmTkGsP1HtE2PQX+T6Nn/F70Js+zIyFf0Mi1T01IkvJNSk1dQlIZSi14+t4HZk0pCa7NSDnmi83cotJ55MwPFjDyolEPs2wxJbexFLpJX5Th0ph6ryLMQITmIK0fuM+1MZaXmM4ebPLVye7Sr6ZfMR7FhOqib9zyPzc1Njh07xu7uLu+++y6TyYR2u81rr71GVVUfqf79bmEUD+uHs+5Hw+3g+miM4Z133uH999/nT/yJP3FbXxg3OlAOspLfenUdY2BUy3RxmMtha892uvcGORjJnj1z+hQ1Qh6UvFuJ+IgCl7o2uIGNSbJ068xX1CVErqJyDAZD7YCy0i8DluMnNGrXOORWGVJYP1JRTbN87bpmZaeCkXft4dCdrXelPagVtSYMBPoQJw6uIzAIlCN+8gPT0fY0AzKWznnsOXz79/89u3s7PPPMMxw+soobBURpk9BT7A1GUGZc3dzBNSXGDfGpxP/eMKLu8ETF4rkOEyN2C9+VeIHEFx9SHCjyShqBZeZwUm3yOXVeTr/qwxPCByV5dV33hh324XD4iQFOfPnLX+Y73/nOx/0yHtY91MH10RjD22+/zYULF3j66adZWVm5xb2l7mT/uLOzw7lz5zh8+DBPPvkkSqlZhuXtXl+/9+YWl/ZGouDIa7SjGBcVe1fXGfT3OHR4lXY7pahl/1RrQ2yjOBrTHMlmysD5PLm+jLvzJsHgMkV8CL38FFpD7Vioj23qZ5WhNoZhVhG4wqkIPUuUtetK4DroWkjStT1kVtowF/vk9XQiKMODoZ0s9i3TY1RCUzn7UW9j8Sz2M03qKyZ1ReD7uJ7L8XYTrQ1FljEcjSlHPc7vbRGHIXmS0mik1LVjI6E0zNqOgKMY59Mokf2DbtNCdxqhmkWalDUESpQkcaBwbPMQB1qez5/+jOTzTutW+ZD3WtMhxVtvvcUzzzyDUord3V22t7d55513WF9f51d/9VeJooh+v39d+8nt1CcBWPZAKa8H60FNKLXWvPXWW1y+fJlnnnnmml/W+rDm5fUJR48cIt9ZpF1fZRIu0WmkDItaLiCbjXaQ3NoMPTbHE5SDlVG5cvi0WPvUEl3TSA6jSeDyzqWrmGLC/OFVsn6XcV7TwTApakIXC3IQeWnoOpSVQ+ArHOSgZmAW+C2dalhdnkObDqtHYLy7RnN3Ql0agrLP5StXaDSa5DomjSK0McS+XKAoYzcs0uUvtSYNpoGw0wxJl34usoJBJlr8YS4ZkiVmliGZlda7ZLtXU0jQXiYB5uNaJrC6rDFMMfpyeCxqmZ4WWha1Sotv6UfPzN/2Z+B+Tyhv9jzX083v7u7yP/6P/yPf+973ePHFF/nt3/5tfuVXfoVTp07d1+e/WxjFw/rhqA924O9Hw226PpZlyYsvvsh4PL6jzN/rra+1lrxJT0mmbuyKJzq29NHIc9npDtjeXCfT8MSRFUal5CT2bINub1zQDGWtbNk1shn59DK5HRUi1RiX+1S+KJBmV+S5VHa9qg00AoXGoW03QUkgNGyJ6TBEsUQ3CRRoyPqlCzTmlzi+sjyLVOpn042JpXFPStLApTuq0AZ6WUUSia/bU4qJlkgnB7FA+J746zeuXublV1+inIypypL/98+fpNCaJFTUNazMN6lNk5VDkBclk/GYza1t8mGX86M+cRKjkwZ+GBF6solLQyEwNqw3KrENwsCViCfPjXnu5/6/1O8do3zsz2LSD28GHtSE8lYU7Lm5uRv+9wdZ586du+1Dx8P6ZNZ0bZpMJrzyyitkWcbZs2fvqGlxO/vHg8kETzzxBMeOHZv9t+nn/Xaurxcvdbm4O541nxqBizGGXneXqtYcO34SPwjIS4PvwtCufdP91CCrZw13z1NQV0SjS1TZiNRUjKvT+GGKsTlrxpFb1+aWT32D4Mwmi0Up0v3MUk/HpfBD8ko8jLnWlh0i6jbDwQmnNLdSX9R7ndAjqwS4OCm1hexoXAXjsrbqEfl+c/yQuBXQnpujKEuqPGMwGjHo7Ul0UiMlSlKajYSxgiBwcZVDJwn2/aKFntkahNwt+bzjXFvVH/u0bCuPzSrDj52ZZ/FjgJZNn8fzPJIkodFocPz4ceq65sUXX8TzPC5evMjCwgK/9Eu/xP/8P//Pd/z4nwRg2cc2ofQ877Yzzm5UtzqUHsx0O3v27DUj5a1BxgvrGRgtBKwTX6LK+kRRE42iGUGtsRsVIbeKpMunrDSdyKMHluAqXeusNrQTj6wUCcE4r0l8ePv8RSIP2keOMd+IeGuvy3ysxIht/UfNSBDLqe/SyyvSwGVvmKONpjsuWQ41w0zPvD6hJ3AgX0kHR7UOM3niZ3EG69TtE8RVwGQyYXN7l9BThElCp5kSRAmxr6iNQxIqesqRrDMDndilthEjlZZpojaGRiBSWFdNgRAQ+yJTayf+rHs1LmrpSpW17arvTw+LWqRlw3y/q5QG4r0MPEVeSz7nTz6+dE336FY1/UJ4EB6hDy46cRyzurrKP/7H/5hnnnmGv/pX/yq7u7sPvZQP657rfkle8zzn3//7f0+j0fgQNv9WJXL3azdc3313m7VuRhq6FIV4Dgsj+bRObRj09tjZ2OTIymGurq3hKYck8GdQm+lkr7RewqySyKVxUc3iRWLfZWdsWHEdemOJIRkWhjTwGWT2sDcuSQMl64iv2BsVNCKPvbFMSgeZzbMt9ieU/+Zf/0suX75CI0n4T37hF+i0WjMcvYF9KWwkUSWN0MUzJc3Bu6iyCemqZAcbmWYOi2om429GPk6QkAQBQzw67RZ7k4LYd+nZzU49O4hK/nCUNqm2exxeaFPiQjFhc2cXqgI/jGmmMSZJSeNAJLyhi6sUzdCRddgYvnJ6nuTQKbLHvnbD9/FBHShvBuSZTCb3lKk6reFwyDvvvDP78/nz5zl37hzz8/McP36cv/E3/gZXrlzhf//f/3cA/of/4X/g1KlTPPXUU2RZxj/8h/+Qf/tv/y2//du/fc+v5WE9uPrg9/t0ovQHf/AHzM3N8fnPf/6Op0zT/aMx5rr7h4N+yYPAtIP3B255KL2wPeJ753dsNiT4nstkkkGV4/oBZ86cwlEuxoBxpUkVBy6lzdKdxl2IT91lZ1RjlMdeeIymvsSuf4hm0mJSyVBiGotR1xpfaVxHE3rO7PdojEB3Km0NB2pf9aGN/K/UAldztDP7/RgjKhJjDNqT4UZt4WtKIWkBysFzJQ1SnsexcXQS6+G5onqb/lyNKGToeBxtd+hnJT4VW3sDJntdzl/ZIA0cjAqIkglBGNooOTP7eWZgH6vMqI0zy5mceixbsXwfnFlOeXr1w9O/B0XBvh6Ux3Vdnn32Wb7+9a+T5zn/5J/8E3Z2dj7S1/LBup/Aso9V8jqVDNxt3UyyMPVLtlqtDy02w7zi119aJ68lG7GsDWUNftBmVGgCV1PmYkae1HIxjgqZrk1KCYsdaYOja4rK4FuyaeTt44tFilVy/v3LdJKYQ4dX8Dzp5jcDB61rWqEAJeZSG80RBxRaM5eGZGVF1t+lqDSHGzFZWeMrmEyxx7VdABDvYeA6ZMkqcfs4eVEx3/IYFS0OH1Zs94Y4Vcb7V7fxTA1+yGK7QVbLfXsTOdTVtQYMbi1St3CaeRa45JV4LvPaELkOeS3Y/aoys8iQxBeiVmLR1HWlSTzR16dWutGxHa6WPaymgYfjSKfsT55ZoJPc/oYX9heDB3GgvNmGaTr9OXv27Ef6Oh7WH4+6HwqOXq/HYDDgzJkzPPLII3d8jXxQ8vrO5oAfXNyjGQnQZnrbslPHUXeHre6AR44fx7g+Bod+VtJyPXILtinrGuO5aGNsdqN0vkMbXdSMPKqJQ+yJh7EVeeBIvqIxMJeG0uhLFFvbu9TZCL95iNCFcV7iOo69VUwqkU3lVU1Va/YGYyrHY1Ibtrt94rQhnktfpK9x4DK20t2xzQJuDN4h6V0m85skZ36SLF2hEXpUtZXvG4kC0cZw8sgSP/Mz/yHdbo8TJ44TBC7gkNhNT6WNBZVp4sBnVFTEHmS1w+JcyqSIODG3wLgoKSYTBpMx69t7BJ7CDWMWWg2MF9BJQ7pZyamFfbDEzeqTcKCcQifutZ5//vlrfD9//a//dQB+8Rd/kX/6T/8pa2trXLx4cfbfi6Lgv/qv/iuuXLlCkiR89rOf5Xd/93ev6x16WD8cNY0EATh69Chnzpy5q+//gxPGD352x+Mx586dQynFc889RxiGN73/jWp3VPBvXl3HVc4MBra23aW/vUFuXJbnO2S1IXEdKl0TuO4M+qUCF4WD5zkYO9woakMr9NjUhvjo0/SGJ2mkKf1coj9mw4lJiaoLLqztcGSpY3OAxYsZh64AEX1ReUxZIcoXAJrsqzXKdSgrmYhmZU3guTPZ6TgXZdqkNHQcx/os3dntuBB1hRCulZXqu1QaWhFUZjq4YOYRb8c+eeVy7HBEVtUsaM36+obAKa9clbilNMEPI+ZaDYoa2zwsZzm9sedSVrJnr7QRdZ9xONQM+dpjS9d9jz4JHvMp1PH48eMcP378I30t0/oogGU/9JLX6005r169yquvvnqNX3JaRaX5zZfXLa3VwXVkiua7Mnnz3X0vZF4JuXVi/TljG70xyCscRzGu5SA1yOSi6U0kv6eX11T5mItX1ji8uEDaaqM1DLNSOiy47G7vMcpymklK2mjgeS61lShUVcX61Ssox+HMqRP2IAqgqWuD40j3yLWeoyiQA+xU9jWX+OS1YS6Wi+zwQpO8bLC0tMQoy8knE7rDIdkkxxjY292h2UhQXkgaeYwLbT2jNc1I9PKSbSTG5l5Wz6JVMEL/Kuqa2PcYl/U+kdBzGFVQY+jlFZ5yKJALOLKStNiTSJInDzU4vXTnG44HQTCEW2+YRqPRJ8Yj9LB++Op6kte7XR+11rz55ptcvnyZKIo4c+bMXT3OQUlYd1TwB+/t0In8GdShNrLWTPKS/uZV8trw9KOnqR1F6Cq0cWiEIt2c0lanXvQ0EDvBVC6fHKBMTyrDYDTh7fMX6bQaeGFMM4nIy4rY98iriv7eLt3BgBPHj+P5Pr7r4JUaT4nE3nWExO0pMI5D4vn8xJ/8UX7w/B9x7PhJzhw/OpuWClxMyKutSCT/041KbCb0dEhc5/QmGX5sGGQVrpJ4KCywp7I0xKg5z+nFJclww5mBLSZWwpZZkm1Za2Ib4J34Ct91cEMPV0Hgh7iNiFp3UA6MxhnZZEh3b4+qzOkGEZ1myuc/M3fD6coHPw8PykN5o7pf6+PXvva1a66TD9Y//af/9Jo///Iv/zK//Mu/fM/P+7A+GVVVFa+++iq7u7s4jsORI0fu+vv/4ITx4Gd36pdcWVnhiSeeuOG14zjOdVUc08rKmt95bZ3QVdSWg7G+tU1vd4fWwhJRNmaQGzodz6rVPPFTRz49C6iZVEKcro3Gsdm7OA4uhksXLtBopEw8j3YcS8M+CcjKGpOPeH99ixNHDqHCxLI0RN3RG8ukc3dU0Io89ibWapDXJKGiKLXN0RUlRmWm/koZflS13BaVSF5rbViIPIZFvQ9enFK1LWwntSDG2HfpWoXdRMvecfrr00bSFVzHmSUYjOMA11V05hcoi5xef0Q+7vPezjZpFNALExZaDQYZJIE8t++KPUveHwEf/ZmnDxF4138fPwkU7I9j//hRAMs+Vsnr/fAIHZxyHvRLfu5zn5sF2e//d8PvvbnJIC8JPAdfCfQh8NQM9sCB21DSOAhC6Yr5lrKXhh6TSUWoRCiQBB6VFnlCpWtGvT02d3c5cvgwjaZ8SAothKqi0nTm5kgbDUajMbu9Ppc3NkmikDBKSOKAtY1t2mlMe2ERR3kzJP8oF3P2YFKShC7DrCLxBCsd+4pBWRO5ilFlCFyZLrqOSHflWnJIwpBmHDHX6ZBNxqytrxN7sLezjalrhnFMs5FSqoROFFIZkabVRjTr2oiUwHGgrsFzlY0jEa9S+4D0dZSXeA5UtQEjgKLJjPYqpu5eXnO4FfLV07fvm7z2PX0w+ve6rq/bpZy+ho8Li/+wPp11tx7KPM85d+4cZVny1FNP8fbbb9/1a5hOKKta829eXac3Lm2ckvx3R0F3krG+doUoSjhx/DA1Smis00xKrWkn4SzqozYwF/vSoU5sBIhVaLRjj2zY5Wj/Beb8iEnnDDuDMfXuNmv4LLYbDLyAcjxglNecOXWSrHKI3altYLpW+gysD7KXlaShSy/Peeyxx1g9+QjNwJtl946LaXNMlCcaQyOQ9aQZelxqPMKJoIsbd0iXjqOUwrfSr+m6KmRBn6zStBKPSX7A3xO4jCyhdlzIpiJHz6JBJhU4Sjr8zQM5wN1CAD1ZVeN5AWFzjsW0g0LTH455vGN4+41XeOdNZ0YLXFhYuG4EzP2mGF6vbuWhfLg+Pqx7reFwyLlz5/B9n+eee47vfOc797SHnG7u67rG932MMbz//vu88847PPnkk7cl0b4RuExrw+++tsEwq/AEkc/6+jrD4ZCTJ06QJBEXLo5ohs5sbczKmlbiM8osbTUTDsco35e8Bq6oxI4eP8VgOGSUTdjavYRSijQWb95kMmY4HHLm5CpRlKAcIVXPN0LKSjPfEDJ/O3bsYyv6k0IIqyN7sJ2UNCKPbrZ/GExCJcMTz2Vi7VYa8Fxm1qiphUAbZgDGZujaaaH4310F2jiWQguToiZmzFAHpHFE74AtqjaGooZ5pXC8kOWlmNos4Jia4XDEZDzm6tpVHGNI05Q4SfCSBM8Te0BRa86emWO5ef29m7xXD6bhdj2a+7Q+KQOJewWWPbAD5f3swE/roOS1KArOnTtHURQf8ktO69vvbPPmxnBGbkUphoXglgd2lC/SJ89STV3KSvIjq9rgT3XogGM/GMqRC8pBuiEb6xtkkwmPnTpBEkWCnHcEe4wjyGPlu5jAZ76ZUNYGx2j2+gPGwz4b63tigHYcVJWTOQ6tyBdIUCxShlZs4UBxKJ4jm//mKxgVFUqJVMEBXHvgE8KhBQZZCMWgkAspbC2wsLjM3nCCKTM2dvuU2TZe4BLHMa1mkyAMbfSJGLRzGz9S1DK9rbWYyWsjVFjlCExIsPguriua+7lYiIrtWHLdFtOArz+5hKvurkP0IA3VN5MrGGM+EQvCw/p0lOd5aK1vawI1rW63y7lz5+h0OnzhC19gNBrdcc7awZpulr7z9vasu51Z2nNeasaDIZfX1lleXKDVmaM2DhpNVWiU41BoaWrVdiM0yg2hrxiWouQY2rV2NK6IfEcgYJf/gGLjTVKl8ZMmcyeeptKafDym2+8z7O1hLLhhNBzRbjYwyGG01nJbVNKpzytNKwktlEEmpZ5yGBUVjgOTQuKajDE2sFvosJHvMskrkkDRddocOfE5+jU0nClRcL/7Psg1sacYl5IJWVQGzxUQRuy7eK6SzEpLUvSUwDHcQDZZDU+AGU0LuZDNl9wXDL6rCFxRyaT2wPy5R1b4U08uo7VmMBhck3fWbDZZWFhgYWGBZrM5m6B83JLXjys25GF9Ompzc5MXXnjhmrije/WZTyeMdV1T1zWvvPIKu7u71/VL3qhudKD8d29t8d7W0BKvJ2xvrlNpw7FjJ8CT6Z5Bsrhdq3CIfHdmB6q0oZMGIq23a5rwKSriUKA0C/MdsrLFineY/mhCNh5xaW0DjCEIQ/b6Y5IKYpvFqZUj+eRA4Iuctp16GA2+Jx7vVmihZ75DUcigIq+k6ZaVGtdxmFQaF5hoQ1EZ8srglQLDqbUMaLTWVkprCHyFMnIAnVL9NQKZrDWka3+IXnuRRhjTf+zP004aNsLEZas0NCKHYVZZcFBl99oObpgy32iSFDVKl+z1RxR7Xa6sb9KIA8Io5ZGVzi0TAz4J6+NwOLxtWN5HWfcKLPtYPZT3i/La6/V44YUXaLfbPPvss9c1Z5+7uMfrawPakceoqGnHPleGhtCFUaFpRoEd1Qv4oRH5DG2HqD8pZxKoxN76jsO4NGigNykJFLxz4TKx5zB/+Ch+ENrNhysTxUB05Y1AaFgSxSHm4qJWBA5sTXKOHTmE4/pk4yGb29vURUUURzQaKZlJaUchGmhF8uFsJz7GOLTtOL/WBgdNXUtHpLIkrlJrmqErGOhIpKmNQLFXI/CKqiaNI3QUEjVauI6hNxhjyozLaxsEjoYgZqmdMvQiWkk4k77mlXgvPVeRl/to58iFUQXgzHInR4UQv5R9bT/x+GEa0Z35Jg/Wg5xQ3kyuAHykB8pbwSge1g93ffDQeLB7fjuwiUuXLvHGG2/w6KOPcuLEiVk39F7WWKUUl/oV1caAKNinM1faMBnssb27x6PHV4nTFE+JREopkeE7OASuZNlGlmgYBdJUjHzHylHlAOc4Ig9zgJwIVykmTojGI7PrRaahOxzRaLRptlpMRmO29npcXt/E930aaUocxzTSREARjpzqXKUIfZfAdQh8aymop/lpGoVIrSJXpPnt0KMCOqlPUdYknig8WpHPpKxoBCJfDVzxaCpEfVLXYkHISi3qEQvsESmbT29c0ghEXhb5LkN7AB2XhqTUeKW2v19FWWnS0GVSGqLAldcRyOZsIQ35kzZDTSlFu92m3W5z+vTpWd7Zzs4OL730EsaYGVn1XtVAt6qbrY/GGEaj0Sdiw/SwfjjL932efvrpa+KO7tcecuqX9Dzvhn7JG9X1DpQvXe7y3vaITuLTG07YWruMF8acOLJCXgvApqg1tZHYDlFJOIyzktBTjC23IrMWq7wy+I6l8Yc+2kArtgfASNbjThLy/vYmrTSiPb9AXRTs9AZ0u3toFJ1mAz+MaTdTqhJ8T6CJvivRSqEnh1nXdcDUKNfBw+A6kruuHEnmVcoB44CSKWzgOigHkbAegAhNrQ2zeA/rt3/z1Rd558IVPvvEo5w48ziJ71BsvUNQDiiqnGC8ho7OEHtKeBwe+MqZxczVWppyRW2II5dxIdCdfuaweihmWNQsO4a9wQhdZrRGl/nOdy7PFBzz8/Mfen8/CRTs8Xh819mP0/okAMt+qHMop4vB9773PR555BFOnTp13W7++a0h5y73aARC2WraQOt25LI5krydWhs6iSeU08QGSie+DZj2KbShHUvXux37DLOC2IOyqvGpeef8ZeabCenckkwSMxsCOylnERyt6CCafj8sdtLfZXO3z+njR9HKJwpc8ELa8+J5LCYTdvojrmzu4HkucZLQSlO8MCQJfLKyJAn92XQ1Kw1xIPTVyDdklUwPi6rGcxyKsiJQMDEC2PFdobcqlxmZS2toLHYotWb1sMM4y8kmQwaDAflkm57vkqQN0jSx9C1vFpQ7qWShG04KQoVMNZTgpY0RM/io0Hzl5BzH5uJ7+gx8Ug6Uvu/f0RfRndatYBQP69NV089aVVU3PVBqrXnttdfY3Nzk2WefZWFhP7D5Xjdc3UnFKzvw5BL0xuJz3Bvl9Ha26I0zHj1xggIFjsPepKQV+fQspGeQl7jKYVxq0sQhq8WXU1YC4Cm1wfMdSut7rI2SzdnJL+OlKVrFcPhRtFEM+n0219dZOXSIRrOF7zrEYcjh5QVGeUmdT9juDRkP+1xZg4V2Cn7E8lxrJoXtTSR6o39AGpsEHsO8JPGEFhv5iqHd1A21wcOh1JJnVtcaZeTgH7oOoedSaOm619rgHZR1GejYDd90ctq0dokk8HAsFdezNOskdClrbUPF96NBfFcxyioMoI2mqDU/+cQyoXf9dWiad3b48GHx9g8GbG1tAfC9732PRqMx21S12+37um4+KA/lw/rjWfPz89dk5cH9OVA6jsOLL77IkSNHbuqXvFF98EB5eW/MH53fxXNht9tna2ON+YUllhYXqbSm5SsqIz7qwHXwHAisx9K3ajKRxwtYRnyHDt2spmHX12boMpxo0kiaW1QFFy9fod1KWVw8ZGmyKUsLc5SVJs/G9AYjRr0ddrc3aCQxfpQw12qSl8baqaoP3wYug7wi9R1RZESSwR77irKCyFdUWrN28X12ooRHz5wGx9nfR1vVRTsWxV85GfD8Cy8xGvQZ9vscO3WKiePjLTyOXs+ogxbEKxS5DFwmmUYbGFeGeceZZQiXU1WckQacMQ6tUABordDFOLASdvhTTy5zqBXy/e9/n1//9V/nscceY25ubrYOLiws0Gq1Hpgl4KNWcHwSgGUfm+T1XuUKWosmfTwe8+yzz37ILzmtjX7Gv3ltE1/BsJQw7dFE5EzDXKN1TT+zE8RcNj2TUhP6AuUJLHxmGi4dekJYjeyXepWPuHp1nSOLC3TmF/CUY8l/Et7digWo05keWuP9cOysrBjsrJPlFU88cgJHeTb3RxDMBojDgDQMabZauAq6/SFVMeHKxhY+NU4Qs9RuUJQRnTSaTVOnpu5BYbN4ao1CNjmVlpyh3jinNoa9UU4z9umPBeHft7r57qSamacd5ZI0O4RpC9dxGAzHVMWYK2vreBj8KKHdSNBxSuC7GA2eEt9k6CnZeBnBPFda8+hSyheO312A6wc/B5+EA2Waph+psftWMIqH9ekqpdQtJ4xZlvHCCy8AcPbsWeL42uaMUmqGK7/Ta6SoNL//7i6Bku54EHlkRcHO+hVc1+UzZ06iUbQ8RW4zeyX6w2eQyxo0qRyWFbMmWj8T6E3XSu67I4n+6GZ23ZlUNKOY7vznbD5kSTHYZX2ny6ljq7h+TOBKxFDiu5Ta0IoDqtBnvtOi0lAVGb3BiPGoy3u7WyRJSBE3aDUaGOPSspuchl2f08hD15BGgfjkXSzIQaOdmlKD5xjptkdyUG6GPns2U7M7KUl8l2Eu2ZAjrVHOPv3R94QgmwSKSWlohIqsEpBaUWo8pdHaIQ4lNqAReCjl0AhAWZuAZyniT660OD6f3Nb75zgOrVaLKIq4cOECzz33HN1ul93dXV555RW01td07SMri7vbeggte1gfZV3vu/VeOBxTv2RZlpw6deoaOMmd1MEDZXdc8Bsvr+EA71/eYjLs0VlcYX6hTd9CdyZFTRwI/dSzao7AddDIpE/br/jADivSYJ9RkVVCoh4W2voeS3Q54cLldVYPLeInInHfs1noo0ktsRpBwpHDQrTGlPT6Q7LRiPO728SBzyRt0G40wLjoyYB+4THfbjEpazqxzzCv6aSRVeiJci8JFLvDnPPnz/PG2+/hUtMd53zu6ScZF+B5DtTgOoZKK1wHkjgmDT3yIXQaEc0wwCiFOv5F9PKTeEFEgUvTVRaU5rJVaTqRop9VMx+p74paxnFkra6spUsUJAI+++LJDofbEf1+n1/6pV9ifX2dlZUVfuu3fouyLNnd3eXll1/GGIMxhr29PZrN5kc2FHgQDbdPArDsh1Lymuf5LKg7SZIbHiYHWclvvrKOr0TyGXryJR54inFpCAOX7UqwyaO8JrIZj3HgMpjIbT+rZrfJlFQVyAZCA+9eXOfE0RW8MKHWRjIi3elUTvDInutSavlZKy1Js0VRceXKZQLf5+jRo/i+Z03KggeavuZIyVQ18gVRv7LYodZtjq3AOMuZjEf0B33yfIuu79NqNFA6oRnHGPalAp7r4iCH1dR12NnrMenv0ZpboBVZHLSn6I9ziUspK9G6G6Fkxb47I7gO8pr5TpNBnrCwuEx3OKHMJ2zs9cnXt4lDHz+M6aQR40okHl37+xvayeyffHThvhzAHqSH8kYLwnA4JElub6P3sB7W7dbN1sjd3V3OnTvH8vIyTz755HU/mwcphnd6jfzem5usdTNqoDspUKbi/QuXWJyfozO3AI6L0QZTi0zKGAh9F+XIYQ0cUl/85q3YR9smWqUlOqioZMMwVYDklaYVe2SFyD1HeUl/Z4v+KOP0iWPUjkfoycYiChT9vCL09jcYk0LjuQrtBDTbAWlrjrquGI9GdIdj1rd3wHFpNxKCMGa+06TShsTzyLX4IIvaCFK/NrhoLl5eZ2W+ieu6ND2otSb1JPJpCihrhC4YhzhwUQ442sVXkFeG2ALKmrGFBQUug7yW2Km8kmw27ZBVNaFBNkShHKRlqiq+1b2JWDS+cmruDj9B+5EGYRh+aHq5s7PD2toab775JkmSzLr2dzO9vB3J60MP5cO6n3W3e8iqqnjllVfodrvEccz8/N0BAWH/QJmXNb/96gYehktXrlKWBUeOHqMRRwwn1jqV76vSmqHHsIJGCN1JSTq1WIU+WVER+g611riuwvcclOOQ+HJ9BZGH1oZq3GdzZ4fTx1YI49RmPIpffJzLPnWqeOhNbVelotOZY5y0WPIcdnsDymzCe5eu8P577/DSK68Seoqf+/P/MSeOHcPg0IxcgewkAdoY5hshWVEx3Nuiqmp0mWGUoi4yiqpGG1C1oqplj53nFXHgUTo+P/Mz/xEX17Z45MQRhqWmEUouZRQ3KStN4IriI/bkOyV2xR7VijxJFAglE30KhMxKTTMS8FkzlPX1+HzMs8c6gBzUhsMhdV0zGAyoqupD6+C5c+fY3d3l8uXLpGk6a7TdTxXH7cTOfRoabh/7gfJOoBPAzC/Z6XQ4efIkb7zxxnX/XVFpfuf1TUDG454RDHHgGzAQ+jCqFJGSDnAQe2ib9SPadCG3tiKPspaMn7LWpIFLUdcMdrepNZw8tkoUC0mrqEW+VdQahXSdQDogdW3wXIei1uiq4MLlK8y1mjQ783ieOyO59iclrb1XGL7/PI32PN2Tf5ZGEgl1K/TojqeTx5ooCPATl0ONNlVdMx6PmWQTNneuyM8Upcy3BbufRB5lLZ2vze1d9nZ2OHxkhUbaAAxJKBuPNHJQgGu16rWBKJTcuLlI/EXt6e8q8tAY5psJTitheXEBTM1gOCYfj9jY3CL2DJcur9FqpJROQuR7/OnPLBH5N7647qQehFwBbq6Bn3aXHkR8ycP6dNbtRisZY7hw4QJvv/02TzzxBMeOHbvhY96pD3NaL1/ucn5rSDvxeb+Gajzg8uYuJ1ZXcKOUKNyP/BgWEuUxLGzkR6kJfPFGlkY8035ZU9X78AkHQ601vn19ZW0wGGmouaDris2rl/Fcj0dPHyfwvVmothe6KCWEbgBfeeAYfFcgE5WSzn9eaSI/wPd8Di3OM8xKqAu29gYU/V3WNjdl3fJjluaadEslG69xhS4zLl5ZY3F+jrTdoTIC0qlqjedAXk1/VvEKjfKabLBLkDSZb6USDeIpqlpy0bQ2pL6LpxzS0MNXEGiF5zr4StQrrnLoxILm70SiYmmEQktMApefemIJ373zdW5KFzz4+ZpOL1utFqdOnZp17Hd3d3n11Vep65q5ubnZAfN2ppd1XV+XMAv70LKHHsqHdT/rbg6U4/GYH/zgB/i+z9mzZ/nBD35wzz7zqq755hsbbPXHbF69jHI9Tp86iass9TTxZ6q10lqr8lLyyCel5nDi24xK4XfIOlTQiHwGuRwQhRitKIqa4bDHhQuXabcSjhw5SprGdn1EGls4uLEHBlp2r9aMfGmIBWJNinxFVUOn1UI3WywsGV566WWyrCBXih+ce4mi0sRJQjNN8Twf35c9sWs0Fy9dIo0jnnvuLO1mQl0bPvf0kwS+5IrXWqwNVa1pBC6l1rRjj7Hb5JnPdBjmMnEcWnnrwEJ3ilLPAJd1bSg16ELT0npf4VEam20pP4c2hobvoh2HpUbATz6xPFvvVlZW+Jt/82/yr/7Vv+Lnfu7nOHTo0Oy9m66DSimefPJJ4jieedCn6+D9UnHcykP5aWm4PVDJ6zVPbDc4d7LZuXLlCq+99trML9ntdq+7GGht+M1X1rmyN7HmZrsBKCqiwLPkVsk/rLUht5ugWgt5q9Za8nHk7InjMAM8mLpi/fIlHCX690Yc4nqSnVPWoByD1oIs1hhcBPbgePLBLyYj1tbXObq8SLPdIXAdG+q6H+5a/+D36RS7ZFt7tA5dZuKfsoRF0ZDnlby+upbYEseR55rvtBkXDY6srLDTG0KVcXlzF1eXaDdgvt2gP86psjFLh4/gBTF5pWcZalkp+WtDu6jJVFaxNy6IPEW/LvGUmkkzosCbASPGpSYJXLJS0Ww0xF/Zyrl69Qp+4DPo91jf3OSzh2PG2xV9FmcUwnupT5Lk9WE9rPtZH5R03SmJcHpt3cmGaXOQ8fz7u4SeS1WL2mJnb48nTh8njGJcF5tHFlgYhE9V70v5W7FLUUMj9HCVQ+w7GBziwGFs88dGNudxXNSzkOzE+nZcat67eIW5RkJzbhHXdelPbF5ltg95mPp8xA8pE8NxUYmvqBB1yQxyUxuasU+tPU43ErSGqiwZjoYMh0MuvL9NEPhkaQNw2N3b5djKYdrtFtqA60hIdhp4TCrNXOQzzCpakdC2f+s3/hXnXnmd0Hf5y/+fX2Ku3SY3Av0JfZkapME+XbtrVRp745K6NvTymgQ9O1SHniKrxFM5LiqePdbhcPvuvOa3sz76vs+hQ4c4dOgQxhiGwyE7OztsbGzw1ltvEcfx7HDZ6XSu+3g3U3A8CGjZw/p0140abncied3a2uKll17iyJEjPP7447dlK7hVKaX43oUeb27ldLfX8eMmR44cYlxpQld8z4GrcMw+ZbWqJW/ROIrYFZ9gJ/YoNbQjIWnPpaGoOGIhujYiOXz197b41X/5f1GOB3zui1/hkUfOzA5nIysLzQo5pJVVTRiItD/wlf2dOThKSKu+a8RiVUsSwef+xFNsrF0ijBLOfvmLuH5INhlx8XKXyFOoMKGThlzd3GV5vkXcmqcZefyJZ78y86V7nnBD0kAaboES4JqnIC+mnnNN6isc5dCMJJvPc1wc23D0XJEEx5HLhjZ0Qo9RoYVFktUHpK8ORV1hjGMtaTU/+cQKSXDtOvSLv/iL/OIv/uIN38PpGnmjdfB+qDhuR8HxaVgfP9YJJdzegVJrzRtvvMHa2hqf//znWVxcnD3GjZDNV7oT2z2uZoTWNPQZF6VIAoqKwHPJKoPnKcnjCdzZ7Uz6mk2lAzWOLnjvwhXmWymt+UWG59+jNynpNDzJ8fEVg1I6Mr28nMlDk8BlVNZkgy7r29Lp96METzlklcZXQvLylPVpNuao9gYELlTxPKFnoTmOku6869ocNOuvMZAE/myDV2vD4bkGlW5waGmRrCgZD4ds7+xQVyKjyEd9AkcTxgmNyKOoJW9yUtU27LumGQcUlSYJZBFwwGZJSobkcCrNsnJWCfx2KGrZTDlAYRSHlxYZ5DWfnw/53KIzCw52HGfW/VlYWMD375z2+vBA+bA+rXWwAz8ej3nhhRfuiEToOM4N18jrVV7W/ObLa2Slpqor1tfWyDWcWF2hUj6q1gxzTRwohpkcBrtjWV+7dhMxzMXfmFvYTlkb2jaOY+qf7iQBtYFOYgmFNpfS0zmXrqxxdHGe1tw8niskwk7iWRiaJxNQKn7v298l9l2e/vwXJHfSSrz6E2keTqWwg0xyz/IKDAbXEZBE4Hp4cZOV9hyjrMSUGWtbuzh1Tq4dRqMR46JmqdMk1w6xnUgKFVFUGwqHZuzwyksvosuSyaRm4/IFVpeesYAeZfPYXPl5reS3ZfPZ0sDDcSQuQKjfmiSSaUQzkinwQhry5VN3L8m70/XRcRyazSbNZpOTJ09SVdWsa//6669TluU108upb/dW66Pruh8ptOxh/fGr251QGmM4f/487777Lk899RRHjhy55jHuJVrpQq/izb1tstGAhaXDLC10RG7qyXoReS5ZXRMoRV1JtAaOg9aGWkNWaOYqzbjWBC7ktSGw/vDAc2RvF0q8RqQ0z7/5JllvG+X69LfXAZl8Zjbfe1zUpKE783wPbRNuYJtYfZsv2RtPb8XXPilqnnziUY4eP0ESeBjl4rsOte5w0jH0RxMGvS7bW9tEjtjOoqzPhJRWHDKxzzvKZWgzqTSeJ+s7ylBadoenHIpKz2LsGqHLpDJCzy5kr5xXZiZ9jZQBBa3Iw2BvjSENXYl8sWC0rNJ8+eQcq507b7xdb4384Dp4ryqOH5bYkHutj+1AqZSaZQDdrKZB3VVVcfbs2Wu8atdbUM5d6vL+zphm5EmGT+Ltd9RrQycOhL6X+IzGNZErUqq2hTW0YpeqZjYxbNkMIIoxF66ssbq8SNqaI/IVtfUoToqKNFCMS5HIHgzZbtjYkWF3h93+iNPHj1M7ciAc5DWBjdJwXSEeOjiUj/159O4F/OYiuWoRGRhOD8aTauavmQVhR9Ltjn3FMNOEvmJSiwRCKSEqdgcDjOvxyMmjDCcZVTZmbXMLp64JophWM0UnCWEQYIDQkyxJx3MI3/03mI3XUUe/SHbix4l9iQhohrIYp76Dg+QkKQUah1S5DMcVDV/IsUfaET/1mUP4rmJlZQWtNf1+n52dHS5evMjrr79Oq9WaXaC3KyGdSro+ypqCTR4eKB/WR1U3k7xer7N+u3UnsrBvv7WJ1gZlStavXCKNY3TpEPkenoL33nuHSZZz4sRJmo2U0ko7s7LG92T9812HYVETuA4MN1DOhG6YELoO40JiMPpZJaTn3N6WNZNhn/WtHVYPH8KLE2qNNP1cya10XUNWglKG3/7W7/GH3/0DlONggB957jkaoYOrHFw7GfVc8BxF7WobZQKuA6WB1FEU2tDxffJaMisvru0SOjXzR47hew47e32K4YDXt7aIopAkkdDsRhJJ91xJ/FQaejz71R/lD37/92gvrfLoo4/Rz2XD1J1UeFbNYWBGcUwjX3D3kUdeg+8YsqomUA6FvdUG0sDjp+4hoxfuveHmeR7Ly8ssLy/POuk7Oztsbm7y9ttvzzxoWZbd8DGm6+ODaPw9rD8+5XkeeZ7f9N9UVcXLL79Mr9fjy1/+Mu32tSDAe2F5XNkdce7qGF1XHD16jFazIY2i0Jc8ydCnNpqm61EbyWesLXVHO0jWuGMorA0gKy3hNa8JfDWbxvWyGuqC9y9e4fTpR+gOxwz3dvns578wi2uKA5GwNkNvXzmiDXOJT1HLn/NS0058xrlA0AZ5OSNfN2Yk7NDuNY3Yq0KXQVZT5AWb3SGrh5cJophsPKLXHzHZ2Mb3fZIkod1qEkcRrqsIlIOjbAauo6iMwXccJlVNEjqM8nK2R05Dl+6kIAlkXyt7YrHCZTWo0hDXmsyut5NS0wiUTTGQYcxKO+LZ4507fg+ne7tb7SFvNL1cX1/nrbfemk0v5+fnr6viuBWUZzwefyr2kB+b5BVuTema+iXn5uZ46qmnPjTJnBqipz7MdzaH/P7b2xImO5YJ4d7Y5oGNyxnwIAk9hvl0MgiugqwUaE9us3TyWtsveE1/b4et7V1OHV0lTFN8V7rckWtBDYGLcRSt0KXGxo9oaMc+RVXR31qjMoYnz5zEdV1LEWQfmKOUBM6qqc8owj/yBEVtaHqSbSbZkSKBGBc1TQt8EDpthW+hEo7djFTGEHsu/XFOd2ud2vF45MQxyeBsNBj6Eafnl+iPM4pszE5vyHh9mzjw8MKYpbkWWvm0610GF1+hwZj+u3+Ie+iLjFUsh02w5FvF2GZu9sZCJhtWhrqsyCvJT/rxRxeu8QAppeh0OnQ6HR555BHyPGdnZ4ednR0uXLiA67qzw+X8/PwNp9gPYkI5JYHdDMrzaZArPKxPVimlWF9fZ3d390Od9Tt5jNvpwL9wcY/X1wdQTHjv0hqrywtEjTaj8ZhJWTPZ3eXFV17DlBOqquLLX/g8jrLWAAsTq12N6zqE2uBe/C4nN34XZ8NB+/8RevlpQl8OV56VJLmBvLb+7g6D4YDjR1eJoshuuiytzoZle64SyqEvsUigwI8oq0o2JdF+3tl+s628JjKkO7GblwOqE1c5XLmyRpHnHD12VLxCriIMI3zXIS9K8mxMvz+ku9Wli0MrbWDSlHYzRQP/8c/8Wf6DHztLI0lRnj977coRynVW1nKgttm/w6wg9hW9cYELjCvwPKgcyCvxOY3yiq+emmexcW9Tvfu5PjqOQ6PRoNFocOLECaqqYm9vj52dHcbjMW+99Rbb29szxcm0+Xs/1sdvf/vb/O2//bf5/ve/z9raGr/2a7/Gz/7sz970Pt/61rf463/9r/Pqq69y7Ngx/tbf+lv8xb/4F+/pdTysj6fuRvI6Go144YUXCIKA55577roe37uVvG73R/z93/wjyrqm0ZojShJ6B8jPzUh85WkgFqXQl2ZS4Ip8PnRdQtfBUZKFrhwHHEkE8D2ZXk5J1sVkyJX1TVYOLZOkTX76G0flMT3FIJdc295EDlejrCbybPPOU4xKjec55KXA04SIqjBIlJGxPktjxOtZHhiipKFHWdcMe112u3usrhwhTQU+2e7MEadtAgv20UXGu5fWCJTG8WMW2g3cIKaTBjKp9RWF9W7WGhpxgGMcOqmL0Zp27IAB5TmAxlHgK4XjGIn7qw2t2LdxTxLDF3mKoYWz/cTji3c1WJhSUW922PtgXW96OV0HX3vttWuml/Pz88RxfFMP5UPJ632qm3WHLl++zOuvv86ZM2c4efLkDRcUkC/NrVHJN9/YJAldMosPHmbSgRkeyNRJAleAEoFHb6xxlbGHzWlchpVvhS5744L+7ibdYcYjJ05QOzJ2744LMUjjcfHiZYI4pdNK8YKIwHOZaJl65rl4COMoYvHQIYzjMCnkAihq6WLnpYTYio/ToahkIShq8d+Utc0205rIU0Jc9YTYmgRym4aelcBqlKswNg9tPMnobV4mTVscXllG18jEtjaiXTfQSWNUM6ZemEc5ht5gRDEZcfXqGgpN31ecVAWVFllW5QV4YCcTmnYcMMxr2mkocmFf5GkYKMuKCofnTrZpR+5NNzdhGHLkyBGOHDmC1pper8fOzg7nz5/n1Vdfpd1uzw6YByM6HlQoLXDD5/m0ELoe1ienqqpiMBigteYrX/nKhzLYbrdupwO/1p3wvfM75IM91rb2OH3sCAQRjdBnUkvsT8+44tMhIY5C2TSF3oFNVGGhYfLnYXeHhjEMTIRef4++e5SlTpOshmboMi40sQcXL1/F0SXHjh0njcWXmQSSy9iOxZ+ZxIrSGDqewC2+/hM/SmAq/MDjK1/6Mo3E5p0lHmW1n3vWjDzyqbe7qAk8h7ysZ57IsqpZ21ynrOH0yRPkFYTKmSlMJMbEJ69TVo60GGYVps7Z643Y3dzmwuU1oiik2ZDQcOO6M1/n0Hb9x0Utvv3aEAVWxuULEdZDPEahC7HvUOMQJz51bTgxn/D5u+i4f7A+SmiZ53ksLS2xtLREt9vl2LFj1HXN9vY277zzDlEU4Xke/+7f/bu7/vxOazQa8cwzz/CX/tJf4s/9uT93y39//vx5fvqnf5r/9D/9T/nn//yf881vfpO//Jf/MisrK3z961+/p9fysD4ZdbO1bWtrixdffJGjR4/y2GOP3fAauBvJ685el7//G88T+hG+lxL7At6a9Pd4b2uH1cPLDGmJ39v6pnsTG5lkCa/dcYFyXTZ2hxTVFYIoYbHTwiiPwJEDn+fC9vY2g36PMydWSZMUHAdjBGgmOYzy3JFlgPiuZOe6Cgo7DS0qua20wRgbi2SMKDdsM1DX+xwR1xFOhufA+tYm+WTMmZPHieNIFCw2ezfyBDK0utRhUmhWVw6xN5xQFxM2d3tQbXLVDZhrpXhhQiOJJboEOUBXWqa2eWlmXvpGKAOS0FXkVYWqK/kOcAXS0wwl16kVydHFdxVfe3yRJLi7o8z0vb8XlZvv+9dVcRz0oDuOQ5qm192vZllGXdcPJa/3WtdbEG7kl7zR/QH2hhm/9+YOoSemZy+0hKvElw5M5KHZ12G3YyFedWKP9dl/l85MVYvHJctL9jauoHF48sxJMVArOfDF1vB85tRxxqMxw/GYjY1NykrTSGNCm8V4dX2DpbkOabtDHEz17RYmEXoHQrfL2QZm6keaEgdDX6BCrgKDg9HSaSpqmaRO7GMOrJ+xP5bbtZ0e3e0NkvYcnfk5RlmNg7E4Z00cTDdbkvkTeSIdaDdTqrTBwqIhywsGgwGXjv5HqN4l6s5JvF6fuVaKISINZFFLA0E5T0Ec2hjGwwGbezucfXSVR5fTa97nqRn+Rou8Uoq5uTnm5uY4c+YMk8lk5uM5f/48vu/PDpdVVT2wA+XNJK8PY0Me1r3UwS+04XA4y5dcXV29p834rQ6Uk6Lid19fY+3qFaqy4LHTJ4gimYoZDA1fNjCnjx0i9r5IWeQcXlklCgPKWjMX+yIfTXyKUg5zWalpHvss+fAKTaW5PPcU5ajHa5tbzDUiukHCfDPmtQsbtOOA5tJRolBIh2kkh9I0nN5KbEZyYLJovIQ/89P/IXmlcT2H/qSe+SQdbdBGgsJdbXCUgCg84+xPCZTDOC/obl4hDiLOrKxgHIc4QMiHsUdlpPmmtf1+MBKH4uCRxgmuchhnBWU2Zrc/pN7bZsPxmW+ljMcx7WbK0EaD5JWm0obIE0J4I/LZ6Y/oba2j4ibKddmblJJjmckB8KefPsRs93cP9SBjldI0pdPpcPz4ceq6Zm9vj9///d/nH/2jf8TW1hZ/+k//af7CX/gL/MIv/MIdP/43vvENvvGNb9z2v/97f+/vcerUKf7O3/k7ADz55JN85zvf4e/+3b/78ED5Q1q3k2VujOG9997jvffeuy1Vx51KXtfW1vhn//ZFVDLPkeVFLl9ZExVFmfP95/+Ind0dNg8d5qd+UsLhO9ZK1bHrYjv2GecScdHTCU+cOclWd0CZjXn17R1aSYATJCy2G1zdEqBiZ/kIYZwwsPEieaWJfQ+tZShRIGq7WskgY0rE1kayGmv757qWW/EwKiaFROWN8/19acPKUBNf8cb5ywSOprO8ShiG9OzecmCzzielJvAkIsl3EZ94GkMjZnF+gcrGNg1HQ/a2rtLFIYpFGuuEsVXZ6X17WCjDnyTwGWQFO5sbVLgoPySrNGVVWu+lphn5DPOKL5yYu+1s3uvV9ED5Uao4dnd3effdd9nZ2eHb3/72hzzo4/EYuDdo2SdFwfGxSl4/KFm4mV/yeiX+QPj1l9aZ1OBagtT0ohJpqaWzIn82GpTaX5gqoKhq2/mR6d4wy7h06SLNZoul5WU8TxYdx3FwHfEmOp6LpxR+s8F8p0mtl6mqkl5/wKC/R7+QbovnKWIlXR3RtcPcATLiFEohWGWfSmuasYeuJeNMG1C+wsWhMhrfl+lmK/TILKhielFOSk0aeqxv77G7vc3i0hKpJanWtXTqp3LZ6QU8zdccWNnspDQ24Fuhlcfy8hKj9hzxqafZ3OtTFBNef6+L70Icp8RxQquZUmksgbFE5yPev7rJU6dW+X989QkcG52itZ5JlKfvu+M4Mz/tjS7qOI5ZXV1ldXWVuq5n08t3332X8XhMFEVEUTSTWd1vT+VUrnCjxx2NRjfMQn1YD+tOan19nZdffnn2ZXSzoOLbqZtJuowx/OsXLvLS6++RhD5Lh4+i/IBhUeFbb05pZOPh5pr2/JJQsB3oT0pc1yErBPJVlEK4LgtwjWGSHsH7yl+mMA6HRc3EkapkOBoz6PW43NshVA5BkBJQgfFm0qt91P0061Fuk0DWh9BXOMh6L/9PyICTQpOE0w2SANYa0T6QojeuaEQu690he5vr+EmDxUPLDIpaMiy1mYF7SqsIycr9x2xGHoNc1C+TUpNEAbnvc6Ldoa41k8mYyXhIf3eT/o4mSlI6jZQwSWlY737o+YwnE7qbV2m3OywtScM08IR2WNWaZ4+3aYaKqqpua328WT1IaNnB53Fdl8XFRX7u536O8XjMP/gH/4Cf+ZmfmW2ePur67ne/y0/91E9d83df//rX+Wt/7a89kOd/WB99ffAwOPVL9vv921Z13K7k1RjDu+++y2/+4F3qxiEOLXToTUocZWWXsaHERTs+RS1Nes/VaC0RGKWNjatrTeTL4a5jcx1PrixSasMxo+kORkyGfS5evozngIobBE7NcFLQSgKGmagmplm13XFJM/LtUMKnP7utaMaiBEl8ta9804YkFFhOKxaA49Rv2bGS1zRweP/iJRJfsbC8amNLxF41zGsCT24912FS7Mv7JQrKIbdxSZPSkDSaqDBl5bBLdzimyodsbu9QFwVBHNNsJKi0QTMKZAgU+VR1RXdzjdDzOH5sldAV8m0jcBlZ+NAwLznUDPn80cZsqHA369z0+/WjVHEsLy+zsbFBu91mfn7+Gg+667r8b//b/8ahQ4fuad/6SVFwfGImlN1ulxdeeIH5+Xmefvrp29I0awMv7jg0/YI0jiwkQjrCgZ24BZ5LYQNTi1rIWYWlSOWVwQHBzEcBk6Imz0ZcurLOyvIicbOFchSDrCT2XbqjYnZRNexFPDUzNyOPSS2eoEGuObm6wjCryPMJr23ukgQuKohZaKe4QUzoCd3KdaRrbowBVyI8fE9Z5LxHVWki1yGrpx1uuViLWhN5roTHegKnCF2Hvd0dBnu7nD5x1GL+ZfFKfJfK7Ps7hawo01gch2bk2NRMUDjUGCL/2gPv6tIcle5w+JAhyzKGwxGT/h4725u00ohxmKDQbO12efTEKj//1TMWKOHM3m+QTc40g3T6/6d1q+ml67rMz88zPz/Po48+yssvv0xd1+zu7vLee+8RBMGs+zM3N3dH2vgbfs5uYageDoecPn36np/nYf3xLWMMb775JpcuXeKzn/0shw4d4q233qIoint63JtJuv7tS+/zwmtvszTXZnFxGc/6eyI/oKjqGV06cB2UAk+5NmtXNmHKcaiMg2ejllDSnAtchVW9Wwy8eHc8VyA0o6yg2VkgjUO6/QF7V9aEMt1I8aOY+VaDQguUZlxOyX/aRidpIk/W8jR0KStDM5JGXNtOFluRi8ahFfsYu8YZ5KA6HA7pbl5lcWGRufl5HGNwfcHoVxp8V56rFXhMypp25DG0BMNBVhH6FqLmSIac1gblK/La0Gg2UEHMoUMr7AxGUOZc2elh1jbAC2g1GihXsb29w/KSeFS1YXbwHWYVR+cSPnd8AZBD2p2ujx+sBwEtg5tTDMfjMYuLi/zVv/pXP/LXMa319fVrMucADh06RL/fZzKZzOi0D+uHtw7uH0ejET/4wQ+IooizZ8/eMBP1eo9xqzV2elB97coe/sJxjsbRDOY16DpELnh+yJe+8HnWNndZXVlCO3J95vX+gEMbYzN4DUHRI8snhO0lMnzrrXSIAp+tccZ8u0Gz1SEbj4TOXxb0I2neF6rBXBKQ25g5IWD7dlggWZZCdN0fGky9nfvKD7lNQo/BuCT2FBNtQJdcuXyVOI44fPgwjpK9ZRK4M084yHcCyPeWq/YzIYtaYETjsqIVywE39WF46UVaccyoeZpjc4uMs5J8MqI3HHNlY4fQ9/DDmLlGwpWtHRYaEe3FZXxP1nzfdamMKOoMsBB4/KnPLOO57h0PKA7WdFD0Ua+R0/Xxg9PL9957j9FoxN7eHktLS/zcz/0c//yf//M7fvxPioLjYz1QTiULU7/ko48+yokTJ277zf2/39lmXDsc8kTz3YgkeLUVCV1LwlsNceRayZFkQUahQ20g9DwUkAZi/s2Ge2zv7PHoyVWiJMV3xEjcsljmVuRZeVcgf7bxGq1IOjjD3Q3644LHTx2jdjwOpS5Z2WRpWdEbjsjGY65ubFPXNWmSEMUJnVaDCsHST6mBU+RzfwqXyPalsEL9qvCVQ15VGLBB3hWDvV32+kPOnDhOiUvkQM8uHnuTkshXDHON6ygcRzZ7EtC9L3VoRgIuin3F2OZdloBGE7qu9XQqdBixkibk9SJUJf3hkO7eLnWt8T2Xx5sVxahHHXz4UHdwQzSdWB48YB6UIUwv9pvJY6fm6KnMamdnZ7YZ73Q6swPm3cpSbxVKO5lMPhWErof18VVRFHS7Xb761a/OpC+e5zGZTO7pca8n6TLG8IevvMOvf+9djq8cwotTcLD+R5fBpCQJXStpcigrTceXxlwaCCiiYaMvoliogqGnKCtDFIvNIFVQaogDya2MfVjf3GbU22P1yAqdVoOiMsy3m2SlxlQ5u70h+bDHm1tWGusnLM83GeaGVuTbjZFkkU0tAXHg0puUhL5ifGDSCMzgZ54r9NR8MuTK+hYnVw+jggQwDPJpBNL+VDPyFFkhB2HJkZMpQxK4eK5sqnylqIxgGgFAywABAABJREFU8GstgeK19XFqDUvtFGNSFhfmqaqK0XhMv9ulP5kQew5FXpCGY3KV0Ahd8lJiqv6DJ5Zm6+UHG3B3o+64VTPsftTtULAfeswf1r3W9SSvVVWxubnJSy+9xLFjx3j00UfvKwV7Mpnwgx/8gEGl6CdHCW0OuDTNZN0TGbtLdGiZ1cPL4kNU1iPoK6pKBga1MTg4qHwAa+dwqwlVcQqWniSrDNlkxNW1dRYX5mm2OviewrghR+cWGE4KymzEdndAsbGF5/m0mg0ajZQkTqw3W0YCbWvxaseexBZZ5VvLxsMJbMceAKsaT0k8STbJ2NhYI2m0WFpeJCsNoe8wLq2KrZjm/8q+dKoEmZSW91EZAhdqI9FRxkhqgvvavyJe+yMMDt5n/p/ow5/FSxxUElLNz+E6hr3+iHw84NLaBoELg7zGHw7Ii5g49JnUNdqIR7SoND/92RUWWrKfu9GA4uDe8WZAnI8rds7zPB577DH+y//yv+T73/8+3/zmN3n33Xc/8tcCH52C42M9UCqluHr1KqPRiGeffZaFhYXbvu8fvb/Hucs9cBz2xgVLQcieBUXMbseiVReAhE8/r2mEisGBYG2lHAaTkkl/nd4455ETxzFeYLNtBOGeFTW+J4G0oSdyqNCTyV/kK4qiYvPqZZRyeezUcdSBD04aeDjKYXmuhTPXpDaGuijpDQZMRn0u7W0ThyF5I2Wu1cDBE4+nkWgT8XT6aCNUrhrrWUSM1a5FzQ93NpnkJZ955ASVo2h5skmZkroi3xU5l3JmF+UUWNQIpTs+zZIU2YIYuJWlFE717dOOV+QLJVGiSTz64xyDYv7wCk8filiJcl5//XWKomB+fp6lpSUWFxc/lNczvZhvtHk6aJq+3ubp4IIwlVktLi5ijGE8HrOzszODRNxOQPf16nYyhB4eKB/WvVQURXzlK1+55u/uBWk/rQ9SXrXWfP/FV/j1F9d55PhRvDDEcxTjXK7pcSEbjaH1K44rh4ZjpNNsm1pTafsUwpMEil62L7Vq2LV3KjNNAsW7l9dwqozO8hGajUQAaZ7IVCNPUTghK4ciar2AriqGozHj0ZD339+VLnWjSbOR4pDQioWkOgUzuJFkQvqugwK0cVBKpqJ+IIqVfNhla7fL4yePghcS+fuZw9P4pnGhwTEUtRHJqxLJaxru57n1Z8RYOXR3xxWBp6hymT4oVw7gsc1Va0Yek0rWqb1RzvEjK1QosvGIq5s7ZNkarUZMGCf8qadXaUYfzuL9YAPu4P9uNb18EBPK6efrkxSrdPjwYTY2Nq75u42NDVqt1sPp5KeklFIURcGLL77I008/zcrKyl09xo3W2N3dXc6dO0drYZnX+wkKY5tsSqxCoceoNHgY2WtOORiRDAcSz8IWXchLTegLxdVTJZgJ4+EuG3sT5prHKMuK7e1tjq+ukKYNDLJmBK5Q+6PAJw7naLbmMEYzGo8Yj8bsXL4KQJKkNNKUOIlxXZdut8eg3+XI6jFC37XARslu9JSDYxw8eyj2lEO332d3c43Dy8sszM3ZHF1pqE1zyVuxJ2qKcBr3YfeCgTTkfFfWUAcHx5FJrO8p6kGfhICxCWlMthkXQtvOK1n7yxriwGd7c8yRxTlanTaj4ZDRaMhoa4sw9EnSBq1GA9eL+MKJOU4tpte8h9cbUBxcJ6f/7oMDik9Cjvk0MuQzn/kMTz311Ef+WuCjU3B8bB7KPM/Z29sD4LnnnrujH+DtjSE/uLBHO/a4YpRkQZY1rVDkSVPKXisUvLAcJqfTNwHiTG+zGna21iiNy5nTJ8kqSJRD1+Y6TqeCg6yeBWYHnktmOzvjUcb6+hpJnLCwtERpHCq7QRHMvctkUu2bnkOPiVbMLywwTNsc8hy29vpkkzGvbe4SeBDFDZpN8SfKAiBdsDjwKEtNEnhkFsU8zAq2165SOy4nTxxDoyT7TGuUEtoXRtnFQy7gWkMayuLWDKWL1bSbs4NgHc/mts15AZUReYU+IJP1lHTur169ilfnHD1xjGMLTb7+meVZN3E4HLK9vc3a2hpvvPEGaZqyuLjI0tISrVbrQxfzzRaH622ebjQ9nFK10jTl+PHj1yDupwHdU7z9FO18o7rVgXI0Gn0qCF0P6+OtD3bg78eB8uBj5HnOD154gX9/acLq0eOkSUhZS9fXdSXHMXBFveDZ20aoUIi3xSDQHa2hbWWmzdClrGs6cUCppUlVVpo0dK38Fd69cAnXGBYPrxIFAZNSi2S0krincSlf+LU2tknmEiZN0maLdllRlTl7vQHd/jpZqZlvpagwZqnTIqvMbF1vhB79A+qO1E4zezubDIYTjh89ihuEYGVnoefguwongMBVlK78LqrakLoutZ4Sts1+t99OIJvW7zmLfrKTy6LSJJFPVstEYFJqslGfze1tjh45QpzEFLVhrpUyziUHeXNvQMst6F54je+svcPCwgJLS0vMz8/flrrjZt70W6kr7kfdioL9cUwoz549y2/8xm9c83e/8zu/w9mzZx/o63hYH01VVcVbb72F1pof+ZEfuevv3xtZAi5dusQbb7zBI2ce46Wui6dKPEeI17VVaBSVlqi0YcGRUFIFBJBYz2CLaaDojiuasb/fjHI61N4K3379Xd7fuED45oif+vEf5dCRo3Ra6cyiVWtZl7U2uI4jE07HQRtFGrapO23AMB5PGI9H7O7uoLdK+sOc3/2tf035/2fvvePjqM/88ffMbN/VrnovluXeJEuyjcFgEww2bjIkJpdyBnIh1eRLIEcCuSQXkhAucIQESCDJL5i0o9lgg+luFBtsq3fZ6m2rtL3OzOf3x+yMV31lNQP7foWXImm1mpV3n/08z/MuhMHqlctw7fVbhesKnz9FvaU9LNnqNFrhcw4gLjENCQZD2BhHFl6ohBMHZBR4XmBpAECcWg4Kgg4TBJApaVAg4HkaNB1OJwgbPnLpq2FtMkNBE9gSChEno+H0CfIBp59DwO+Fsd8IQ0IiDEmJ8Ic4GBISIdPokaGgYR5wggv50Nbdizg5UKJPQV9fAMnJySOozZNdUMyGqaN4HePFzkUmF3ySMScbSlEvKbp1TqaZ7Lf7cKrNBpU8TF+VCUJnvYYBgWBJT8hFp754jWBwkxDWDiaoZYIblUYGt9sLFU2gUCixMCcLHKFgkANs2J6Y5fghDRdPBC0iAcDIabjdbpiNRqQkJcIQnwB5+MUnTl/0Khl8kmHORWpsnEoGd0BwLvQHOSQnGMDyeiSlChQLp8sNi8WKQJBDgl4DWqlBakJcWJB9cTtgcfowYO4HLVchMz0VQQ5hS2kaAZaDRila31/8GYdP2EQEgpxEfQ3xFx1jI7cPg35WyDZiBbdCmqIQksx9wpuHjl7IKB6JKZmQy+S4ZuHFPKDIvJ78/HyEQiFpY1hVVQUASEpKQnJyMpKSkiZdHEKhEEKhkPT18ahfkRb3o1k7i8G0SUlJMBgMI6b8EzWUsQ1lDNONiXJ6o4HYUDqdTlRUVKAroIYsPhNqtTyiJggHIZEe7w0I20lfkANHKDgDLLQcH442ohEIMzaCIUEvGeJ5AEJtoGQXXQZDoSAsRiPUSgVyMjPAhbU3LEfCBmrhj4RARgkyBIYGWB6QKYSPGrkCIV6B5Pg4BFkCNhSA3elCwONAi9UCvVYFj0qIbfKFEHYtZMMB4Sz6jUaA55GRnQW5UgF/iIMm7Lg9RFbgC0GnEjaOGsXFzaOb40FRGGHUo1XJ4AlTcN1hxovTx0Ipo+AOcqAogiABrDYL/G4XsrNzkBCnFpy0FRRCPEGcShjq5WUk4abVWYIGfnAQVqsVzc3NCAQCSEhIkAZww98nx6qPkdQvUR82FeOKiTBRQ+l2u8d1a48GbrcbFy5ckD5vb29HVVUVEhMTkZubi/vuuw+9vb3429/+BgD41re+hSeeeAL33nsvvva1r+HYsWN44YUXcOTIkSldRwxzB/FcIbpgi+eFqbz3Dt9QRqYMlJSU4ExvAL2DLmgU8rCunAkP/SjIGIEJoWCEa9Or5WGKqRDNplcJMoF4jTysdxSzxBVoRBIajH4EOCX0jkEkpGXDoFOHnVQj/Dm8Ec2fmBAQjiNSK2gEWUCv00Cj0SA9NRW+QBDlZz+Gz+sFFwqguakJG65cBz+Jg0GjQkiSbAnn0e5+M3xuJxJSM5AQp4UrzFRxBwSmmjfEgQKFEAXwYYp/iCVQymmhlipl8AbDy5kQJ2W4q2RC9JNKRuPpN0+h7YIJBMBuTaMwAAgzMfweJwZM/chMT0NSgkGoj2q5kNmrlMETZJGUoEeIjUNiCoUbFxsQdNvR3d2N+vp66PV6qT7GhQ0oh//7jregCAQCoChqRusjMP5SYi4GbjPF4Jj1hlKc/CxcuBCBQGBSBya7N4jXao3gCAm7t1II8GHKZ4ATMnjCE/dQkESYQVBggzxk4SwbigacThcsJjNAU9Dp9QhwBDzPgaOFSBBZ+GCjpGmwHAeaDhvgyAUqqddlh9FsQ05WOlQaXfh3AWo5MyQ7UiOnwQHQyIWGVKsQnFt1ChoUTUOrFFbwinC+j0quRUq8DixPwLEhOJxueD1OtA9aoVYqENRqoY+Lg88nxJoYDAakJKcIDrYEQsYaIVDL5eHiITh3xYU1TzqlDIQIBj+yMM9fLZchGHad9YWEqVswzLEnRNBoCk0qL5lUqGUULrR3Q8ZQSE3PAEUz2LI8TZpgjQa5XI709HSkp6eDEAKHwwGr1YrOzk6pOIjUWJ1ON25x4DgO58+fh9/vR0JCwqSMK4ZbO0cG09bX14PjOGl7mZSUNG4xEKm1MY1QDNON6aK8ulwudHV1QZmcDd6rRCIlxGokaMLRH+JHrRxB9qLRg14lxwAoaOWUVDs8QRYaBRVuohh4Ajy0Sjk8gQgWhoqBadAFp9UEhdaA7FQ9PB3liKMDsCesgC4uXjIyEz/axem9N6wX9wq0KHtYL2n3clDJKbCQIzEhCVx8EpLYEHw+L9weNzoHraAYGeLj4qDSaKBUKtFv7INWxiAtIwdKuZCZppaJ5mRhh0OVHBwEQx+OAHq10OTplGF6GENBTgnOhVqFDD6Wh17NwBcUBof+EBc2gOME67Gw26FWwaCj1wiEfEhIy0ScRgVHuEl1hXgQCE7aQZbHNYtTpBy14ZR9i8UCs9ksDb3E749G2R9+eDIajejr68OyZcsmrU2fDMT6ONaEfTrq47lz53DttddKn999990AgFtvvRX79+9Hf38/urq6pO/n5+fjyJEj+P73v4/f/e53yM7Oxl/+8pdYZMgnHKJeMjc3F/n5+Th69OiUtvCRG8pgMIiqqioEg0GsX78edSYfWsxuxMEH9+AAtPGpcAVCUCsEBpxSzsAbIgiwBL4gB4CAUAQUoUCFt4ki9V5GiQMyYcNZkJOBJYuXYNBmxTWbNiFFrxbiRTQXa7CfFRz/JYfpcLat2GyKMUsOHxsxGJSjYFkhsusbYXN6cMUVa2D3hhAa6AJPKOh1Omh0OujUavSaLAj4vMjLy4VCoQRFAXoVBVCAnJEJG8fwcJDlBeZIkOMRp6aHxn2IUSMKUQ5Fw+kPQUYLxpiEUYCWK0FoGQgYSRbRZxmA125FQmo6EuMN8LM8ZBQQ5AS3WFCCZEzGUFAwBBsWJCMnVQekJaGgoACBQABWq1U6Q0ZKnpKSkiCTDW1vhg/gnE4nzp8/j8zMzCkZ+0SD8Z6jnyYGx6w1lDzPo66uDmazWdJLtra2IhAIRPXz/hCHN+pMoCnBmZUIXE4oZHR4Kye4UQkfCRha8BalKADhCBEQCjwIHLYBWAcHkZuViT6TCTRFIxjioZSFtUQyGr4QB41CyLqRNDQqGRzeILyOAVgcbizMzUGIkoGm6SEaI42CkTaBXlawV+Z5AlCCg6oo5vYHQtK2T9oMiocrpeAaG5+QAIVWjyQQuNweOLweGG2DgrZSowJhlOB5An+YZuYKCi9oV5CDPOy+RXiENaA8lDIGQV4w1vGHBNpXkOOF5pzjQYd9XmWUcOAJ8QTqsBmPNmw3LaN4dHf3QKtSICczEzworM4xIMOgGudfcCgoikJ8fDzi4+OxYMEC+P1+qTi0t7dDJpMNKQ6RDR0hBC0tLbBarVizZo2ky7xU44rhwbRutxs2mw39/f1obm6GXC6HTCaD3W4flaYbM52IYTow3ZRXcWhjt9uxYNlKHG33gRAeIY4TXK9ZYUDmCYTp/QEOWgUNd4CDSsbAx3KQh/U/yfIw7V4ubCL1KpnA6FALzankHq2RwTYwCJfVjNTUdCQmGMCbmpE0WI0QT5AoUyAQtwYGjRzBEA+9WqDI6lUyBFlh0xdkubC2JjwcDNcnnlDgwQMUjRDLQqNUgKcYJCYkwOUPguaCsAy64HQaBemDUgai1YPjCQa9QoaZh2Uhoyn4iJCzKaMFYwq1XGCRiMY8kdFKjrDLtzPAQkYJdROUsKVgGDpszCHY7Yd4YTPR3dsHmg0iMycHCrkcFCWwZxiKBicjYCght21Rmg4FKSNrRyRlf968eWBZVmJ31NbWgud5SZuelJQEpVI55OeNRiOamppQWFiI5OTkSWvTJ4PZYHBs2rRp3Aid/fv3j/ozYp5rDJ98tLW1oaWlBStXrpSG0oDwvi+Xj9QeRwOxxrpcLlRWViIuLg7FxcXoGPChoc+JRM4CruUdJHJ+BLKvRHzGSgQ4Pkx5FTTYHo9w/vSFCORh2rt45qOJ4HYd9kSFnwDBgA+9ff1Ys2494hOTwtpDYYnhD+Gi/puhBIOzsLOpaLajV8tAwk79oXD8B8vx0CllCPE8kg063Hr71wAImbzCoIvA5/PD5/XAaLKA51hwhEJaciLcAQ56GS9lmnvCZ11JohUSGGxBnpcov5qwweVFA6CLme8E4UgnShhE/tvNZXj72AkkxGlRVFwCrZJBt8kKr9OOxLCm3hNkAQKQsL+HRiF4dojRKCuyDChIHVonlUqlFCfH8zzsdjusVitaW1tRW1srsTuSk5NH1B+RsZObm4v58+dPWps+WUy0oZxqjvnlwuCY1YaS4zisX79eWqkOz6EcCxxP8G6jGd5ASIjU4AhkMhosKzzBKUKgUtDgOICmw1bGlGADr5ILlCqGAkIshwGzEX6fH8sW5EMmk8NhM4OhgbiwE6wQYg0Y5Az4iIyeBI0c/hALt82EQIjDigV5IDQDXXhzJ76o41Qy8JGbQLmgQeIoCA0eT4Qw2vAhyh/e+nlDF6mxWqWg0VTKhIaQYWjIaEAbp4OMJnB5vMhKTYLLH4J70AqjyYTEOA3sCjUS9HEIhAAQgKdI+MU5Mn/S4WOhkgmGFBQFyAiGvJB1KhkcfhZahdAkyxkaPEvgDwZhNfWDUaiRmZkOZ4BDQYoOhTnxU3p+qFQqZGdnIzs7GzzPY3BwEBaLBS0tLUOoX0lJSejo6MDg4CBKS0uHrOcv1bgiEpE03Xnz5iEUCqGpqQkulwu1tbUghAzZXsrl8hlvKJ988kk8/PDDMBqNKCwsxOOPP461a9fO2O+L4fJAtPVxNLAsi5qaGrjdbiQkJqLKzAFhEy8BFGRMuBmghUZIRgN+VjBx8bOCYVmApyCjeLgDrBCxxAtNmJvlIZcBvqCgH/RyPBgaMFus8LidSE3LglKjhsvPgYECASoOoEIgUIMNcZBxBCzHgQcDNkxXZ3kCGSMMARVyYXunlAumDfKwBlyjkAkZvhoh19GgkYPnCZI0CrBEATlDo7vHjcwkAyhGBo/HifYBC9RqFXS6OKg1GihlSvBEdH8VTCf8oYt1WKcUhnxKGQ1vkAVNC3RcnieQKaihtTS8KRCHiAxF0NZvBMdxyM3ORoCjIJMBnrBcwe4XzHxcfoHStX5+dEZ0MpkMaWlpSEtLAyEETqcTVqt1BPUrOTlZmrwXFRUhMTERwOS16eL/jwYTbYhiA7cYpgOJiYm44oorJL1kpA7uUiHGhnz88cfIy8vDggULYHUH8U69SchZHLRB43fAy9NQefrhZ5dDIRMaPpVcBi9FQc0IOYyinjxOJQMHCEMjDgAFadM36HDAbDIhKSkZifHxCIWzb33+ADweNwyGeMhkwtmTpijp53giMNhEZh4vGt4QYQHAE6EuyygaMgagKQYMLUTr0RQFnuehjdchoFYi5PeAUqphiNPC7vLAOWiDlVEgUa9FMKBBol4Lt58Na9AF+YPTLzhpu/wsZLRgfCYN5DgunDspsEkElhsNf1Dw/dDoDbjl8zeB4wloAGarFUGPA/l5uZArFKCZi/nwLE+gUTASYy7A8sgwqLFhwfh1kqZpKU5u0aJF8Hq90oLi/PnzUKlUEjWWoihUV1dj/vz5yMvLk35+Mtr0yQzgxPuYScrr5cLgmLWGUi6Xo6ioaITtczQT+KNNZrRZ3NCp5IK1vUoGuycInUoOdwhQqgnsnpCQDRn+fmT2jk4pg9Xlg93SD+VAExaQHjiZEujmlcDD0UjgOAx6gtAqGLhDnBQQq1XQcPoJ1DIaNrcPFnM/aEaB7OxsBHgKNCFC/hoB2LDRAx22YFaGN35quZCjo5QJ4bJKmXCIUcmFCbxSRiNEhK/zBFAyNBiKhlImmDywnKCJDPIEQdcABu12LJmfDYVCjRRaKFShQEAIDHe60Dtog1wlhyEuDmqNFgaVSrKQFkPDSVgTSkEw35CFM9iEw5pwwOJ4wV2WhGm6NE3B6/Nj0NgDQ1w8MtJTEOII0vUqfG7x1PQxw0HTtNSwidQvq9UKs9mM5uZmUBSFzMxM+Hw+KJXKqI19CCGXtL3UaDRQKBRYtGgRXC4XrFarFHXz4IMPIjk5GefPn8eSJUum3aL/+eefx913342nnnoK69atw2OPPYYtW7agubkZqamp0/q7Yri8EG19HA6v14uKigoolUrMmzcP77eYEdAEBO10iJe2fyq5oHNRh5s1hqbBh2nzXPggo5HTAAFUMlrKqRUONBCoUTTCGkMOxv5+BANBzM/LBSOTS46n8uR5CNIMlBQLryYLatnFiCRhGygPN2eMxAQRDSwEOpcQDSK6qqoUDNzekGBVHxAOIpIBmMUMQ2IiEhITBAOfpCQ4PQFQbABmuxOwWREiMiQZBGOfBJ0WngAnMTSEY5LggKiU0aBpSBtIjUIu5Kyp5OAhuG4DwuaRpmmoZSz6+/qglDHIm5crGKSFDSrEbUKcSpA8aJUyfG5pKpTyydcLiqJgMBhgMBgk6pfNZoPFYkFHRwd4nkdycjJCoRBYlp2Q+jWVWBJgYtOymCQghulAQkLCiObxUmskICwe+vv7EQqFUFRUhPT0dHgCLI7U9glDNo5AnpgLz+A8qHgPHPol0FAQqKbh9ACaouAM8MiEwILQq+VhdgQDX4iEz3nCBtNossDjtCM7MxMJhjghyo6m4PP58d7Rt2EbHMSCgvm46qqrQTF0uJkUTXFowSlWJmwzNWGtu0bJSHIDp/9iLvrQj4JO3GL3wG7ug0ytQ15mGoIcYEhIAsuyCPg8cLo98Dr6MGChEKfVAjoddFodaJqGTCUwAmU0QFMIu8MKQz+9Ui54g6hlcIUNKF1SEoDACPGGYz8GrRY43F4U5OUiQGjIKcDpZSW9qEYR/hmGho+nwFAUPrc0BTJmcttBjUaD3Nxc5ObmguO4IeyOUCgEnU4HhmHg9/ujTh64lNx08ecj72843G73lOvj5cLgmNPYkGgoXR+3D6BrwCtwy7mwwDksdPaHeOiVAh0zJcw5N2jk8AZ5xIenzQaVDDanBzZjL1QMQW6wBe4QEG86BXvKYmjkFMyDLqQly+ANUeENHSdQwUKCFfKgywOT0Yg4fRySkpLBQzxw0QiEOMEIIihMqaUDkT/C7CG8EdRGmOI4/SHImDDHHIJOUaCUMfD4QxFuXDIMeoNw2a2wu3zIz81BCAwIy4FAoBQoZArINTLkJCTC6RUPTy4Q6wCChEZ8nBYKtQYatRpymbAdFQuSKPjWKmSwe4NC4WIFOpgyfFudSgar3YUBcz/0CUlITU4Str40jU2Lky/pUBQtROqXWq2G3W6HVqtFXl4e7Hb7EOqXOJ0fTv2ajuIQqRHS6/XQ6/WYP38+vF4vdu7ciUceeQS33347tFotOjo6RhzgpoJHH30Ud9xxB26//XYAQiDtkSNH8Ne//hU/+tGPpu33xDD3GK5BE/U9JKzHiQY2mw1VVVXIzMzE4sWL8WFtK5qsASzKpy+a8PhZ6MO1SR9+/YtGEGI90IeHcwAFq8sDlcYDnlHAoFZIukcxt3bQ7Yfd2g8WDObPy0WQo6CSUfAFBX12gOOgSspBiAfiGNGKngHLCwMuLjzoEtxjhc9FV1W9WgYQQK+WgxCBxUFAoFMxoIhg3kPTFKy2AThtVmRkZCAxPg7+4MWw78Q4NTwBOebr9fAFQwj4/XC7PfA4zLCZCGQqNZIMcaDlKhi0Ssn8TDo4eoWa7QgK5mRBipcyfP0hHjoVA1t4YMnScszLyITTz0POEPgIwBEiHQh1KoFSuyLLgNzEqdGcRCiVSmRmZkqN5ZIlS+Dz+Ualfmk0mkkbVwy/3Vj1cSzETMtimClcqiyA4zjU1dVhYGAANE0jPT0dLMfjaKMJhEfY9BGgFHooVu4E4Qn0YY8OvVpweDWoZLD4ADkJwWQdRHKCPnz+k0tnN2ExweB8Ry8oLoD41CzExWkw6L1ouuNzOmCxu+H3eNDVZ8IGigj+HWFjG7VccObXK2URbvsI68CBeI1wO/FsLMZ8GNSCCaROJYPF7sKA2QS13oD0lCS4g4L22xdkQVMAo9LCoNQiMTkVbq8fQb8X3UYrKL4ftEKNFIMOjFINg1aJAAupUVbJxa2iMHgU0wLiVDJJg04DYHkepn4jgsEQli3IAwcG2rC0TKtg4A1w4W0nAQdATglxddcvS0OCRjHuv2U0z5HU1FQwDIP+/n7Mnz8fYmRhU1MTdDqdVB8NBsOk6mM02vSJTMu8Xi8MBsOUHuPlgjlvKMejKxidfnQNeJESpwDLAQky4QWdFNb2JetosC45VAoaSTplmLcOMAwFwhMwDAWbbQD8YA+W52ciLSEOzKnXwXjMgCEHocx4uAxKDAxY4RzsAcMw0MTHIzM+HvF6HUDRGBy0ocPcj2tX5CI5JQUMJWg1GUrQYzIUQEBBZJIJuk2BPy58TqQnmfg8pcO3gfC/i7cNfy7eBwDwHIvGxkawiTxWXlMClUIBUFTE74F0P5T0dYACBZ7wcIR55TabFaGgCcn6JCQnC7b0KqVS+t00PfaB1Ww2o67uPBZfuwRZWVmX9o89BXAch5qaGgQCAaxZswZyuRxZWVkghMDlcsFisaCnpwcNDQ1DqF96vX5aigPHcaM2iRqNBnv27MFPfvITuN1uSfs5XQgGgygvL8d999035Po3b96M06dPT9vvieHyhHhIH+v5FwlCCLq6utDS0oKlS5ciOzsbg54gavq90DDCVFk6iKjDB5EwEyEhbNwVr5EjxF6kGulVDCg+Dkk8h75+ExiKx6BSg8T4OLiggk6pgNXhgd1qBK3QID8zDd4QD42ChtMn0J+c/hBUCjF2SbCJV8goOP2CY2BYWg5QAOGFTFmWF7LeAiFR28iGB2DDNI4BYXvZ3mME63MjIS0TBq0WHn/Y5TXcALIcBzlNgaEAlVwGg9qABEMcFDQFl8eHgM8Dh92OUNAPp0oNXZwOAUoLvUqotXqVDFTYqIKhAY4HGIVwuIuXM/D4ArCbe6FSa5GWlgqAgkpOQU4LuiMdQ8PHCgdRb5BDolaBK+cnTtvzhBCCtrY2dHd3Y82aNRIlcDj168KFC1AqlRL1KyEhYVR2h/jcE2vhRNvLiUzLYrFKMUwHRhuqXUpD6ff7UVFRAZqmsXr1anz00UcghOBYkxkdVo/AnPBxAt0+xEOpYAR2GSVQTTmKklgcBq0aXDAeXrcdbQMWaDVqhDQ6xBviBCaCgkJXdxeUFJCclQOdWgFvcGimI6c1oCAvCz1mNVYtWwR3gA9vFoNDTHcGfWIsSfijV1gECNnBgiu3jBEWEwomLPmSMXA5nRg0G5GRng6DQQ+AgoIR44540GFqrriVTTZo4deqkZmegkGXHwj5YLa7gZAFvZQcieHmMk6jQZAVtmJCnb3o/ipoMcNsQm8QDms//CyQn5sDllBgaIIQR0DTwtlTLRei7bhwbBTHE6xMM2Bx+vTUDYvFgtraWixbtkzKK83Pz0cwGByRPBDp3TFcm3spuekTJRB4vd45OVfPBGa1oRxuOjERXSFdr8Kekuxx77NRJmRZLl06NNRWNG6h/L3YfH3JRdvy+feDMtUjlLYKRGkINw3zJd2e2WyGxdIN7yALlUoFhc+HmzesHBECOhvw+/2orKxDik6FVatKLolOqVenIicjVXpjt1gssJiMaD3fgri4OMlVdTTLZUDImGxsbMSKFSvm5G/AcRyqqqrAcRxKSkqGvMAjN4YFBQUIBoPS4amrqws0TUvFITEx8ZKLQygUgkqlGjUE1+PxQKlUQq1WY8WKFdP62K1WKziOGzWAtqmpaVp/VwyXH8Tn5Wi0xUjwPI+GhgaYzWaUlpYK1DCOxxt1/XAHeQQ4XqJ1CpoawRFaAAEJCYMpf0jQuARZgCIEIUIglysQn5yKhESCYCgIt9sFq3UAgWAAKqUCwUBQ2IClJIOmaOhowdkwTs2ABg29ShikKVQygCKQ00JTpmDCmWphrRAHgAHAEgINLUcoTL0PsDwMks09Ax8rahw5qGQU2rp7wQaDSMvIhlwuQ5AnAh2XgRBxFG5EdcqwNjwiJsXuY6FSKcEzcqTrExAMsXC7PXC4hOm8TimTIps4SiFsb8OUW1dQoHL5AwH09vYiOTEeGn08KJqC2y9qLAUjIHcwTKkN61OvXZICxTSxOgghOH/+PPr7+1FaWjqCOjWc+jUwMACLxYL6+nqwLDuE3TEW9WsibXowGAz/W44eEh7TUMYwU5iszlyMrEtJScGyZcsQCoUAAOUdA2i3emBQy8N0fCFzXKsSY5SEj0o5A28wJHh0cDxomoLOkIi4+ESEQiG43R4MOpzoN1mgkMvAciw0ajXSMzOFa+UIFAwl0d4JIUjUKrFp4yYQwoOi6XBjFzYsC1Psg5zQpAVYLixd4CBnGPjDWb4BNnxmAcBzwjIlyLLwuhwwWweQm5MFSqYEywPeQChcQ8NO1UE+HEHCQ8EILthqGQ2eBxJ0KgAqJCYkguc5eDweuD0eOCz9sIOCRqOFIU4HmVqDOBUjxKNo5EKzrJLB6Q3AajKCp2hkZWWAJRQ4qfG8SI8dHl+VqFPgyoLo9OUTwWQyoa6ubtQzrEKhQEZGBjIyMsDzPJxOJywWC9rb21FXVweDwSDVx4mSB8Zid/j9/iEDuuE1Usyh/DRgzjeU0xHcLRYFEZGGFFdccYX0ZkYIAdGkgM+7RnjzC2+ggKG6vYULF6K6uhpOpxMqlQq1tbXo6emRcgynktMSLUTXseTkZCxZsmTK9sWRURniZMZqtUq6GzGnUWy+GIZBZ2cnWltbsXr1asncYTbBsiwqKytBURSKi4sn3NIoFApkZmYiMzNzVNev+Ph4aTofLfVrYGAAg4ODSEtLk964Im8n0rk+DaG0Mcwtxno+jlcjA4GANHCJNDx7/7wF3mBYW0MEh2bR5CYo5kmGOMhl4egLhoafJZAxNPxBNuwKDSgZCoGQIAHgGTkSk5Kh0XNwOwZhtg1Cp1Ki3zoIl8cLmVKD5IQ4cJBBq5LBFQhFuAYycPs4KSIkDh64HDZok7LgZBmBHua/qAVSySm4/ARKhobHz4KhKQQ5weGbJwBNePT39YHiCRbNzwNP0VCEKWlapWCQFq9WgOWFjSs3xJFQqCP6cJMroxjQDA2lnEGCTokQlwAZBdhdHvg9LvT29YMmBA61BlqdDkpGA5VchlDAh/6+XmSnJkEZZ4BaJuS3KeU0PAEWNCXQ5jgegsNsgEVxXgIyDNPz/kEIQXNzszRImOhQwjDMkCxet9sNq9WK/v5+NDU1QavVSu8B0VK/vF4v+vv7kZKSMur2kqKomIYyhhnDZDSUvb29aGhowKJFi5CbmwuKosAwDMxegu6uQajlDDhe0ESz/EXjr3iNQnDVV8kQ4nho5YzgSK0QHPMZSqB/qpUK0IwMSUnxGHS4YLWYwTByeHx+nG/vgF6ng1qjgUatEbz06YsDNdF8h4RYwZSHEBAieGQQCN9jaKGOMBQgpxnQEaY7HM+DpoWmhQn7c9gdNtidbiyenwvCKKCSUxGadUH+IMR9CFEeKgUDVyAsxeIjNo88CTNGeGi0OhC5GqlpaRhwekGCHvSarQAXgiJs9MPrdFDK5WBDIdiMvdCqhdvLGOFxyZTC9lQpF95jDGphgKhTCfmdWqUMW5alQT5J3eRo6O/vR2NjI1atWoWUlJRxb0vTtJQ8sHDhQil5wGKxoK2tDQqFYsiCYviCZ7QFRSgUQnd3N7Ra7Zja9E9TffxUNJR+v1/63OfzoaKiAnK5HFdccYUUfhvp2gRcpDQORyAQQHV1NSiKwlVXXQWFQgGfzyds9sKuo+Ibb0pKyqi0yqliYGAA1dXVyMvLQ35+/ow0K8ObL9FVtampCcFgECqVCoFAACtXrpyTZjIUCqGyshIymQyFhYWT3s4Od/3y+XxScWhtbZWoX8nJyUhISBi1ONjtdtTV1WHRokVIT08flfplt9ul59h0Izk5GQzDjBpAm56ePiO/M4bLC+PVSNH6PD4+HitXrpSeww19DtT3OaFT0PCzPGjCwc/yUMsYBFiBHhXkeCGiQzooEeiUDEIsjzgVAy5sVx/ihUxbMa82xBH4HTZ43R4sK5gHuVIJEA4Olwd+jxu93T2QMzQ8Wh0SDHHgeVrQ9oQjQgIsjzjKB67+VcQHB+G1FUC9+EZ4gwIVNhDiwvQpABA2lyzPQ84IDtgaJQOHxw+HxQiWkqMgLzNMEaNg97Jh4x7BkdATDIGhaaH2EwIFI+RFahSyi06t4SbXGTaEsPsFbZGX4yFTqKBXaaAycKAJC5vDBad9AD39RuhUcnj8IaQnJ0Gl04OhabCEh0JGQSGjQIEOu3QTqMObhgyDCuvyp6eWEkLQ2NiIgYEBrFmzZtJDzkg367GoX0lJSVKNHI3dEQgEUFNTI0U/RTI7xOcsz/MxDWUMM4ZozpDi4KW3txerV6++yFYDMOgNocoGLIznEGAJ1AoGdh8nGTrqw7FBOjkDT4iHkhG0fWqF4N2hkgn0TK2SCbv8M7ANDMJpsyAnIx0GgwEcx8Hn88HlcsFuNcPK8YjTaSFXaRCv1yHEAwpGjKqTSX4covmOSxy0ReZODjfdCW9U4xQ03AEWdosRngCLgnm5oBghy1HIEmbAERKOHhHo/ACFODUFEECukAGUkKzAiDnlCmHoeJGmy8Ad4JCg18IbUGJeQjJ8gSB8Hi8GnR70GK1QK2XwBTkk6rXQxCeDpi9q+IUIJxp+PycYQtI0OI6HSimYnV2Rn4AknXLsf9Ao0dvbi+bmZhQWFiIpafLbzsjkAY7jMDg4CKvViubmZil5QBzAjVV/xfP06tWrpS3lcG261WodwQ75pGLWKa9Dfnl4ujQZ04nhoGkackc76IoKOHQFONsTQlpaGpYuXSpNDCJdPsWfGQ0ulwtVVVWIj4/HsmXLpAOaWq2WaEOhUEhqTCoqKoZMfRMTE6e8Sezv70dDQwOWLl2KzMzMKd1XtIjczi5atAi1tbUYGBiARqNBdXU14uLipM3eWNTY6UQwGJRcKletWjUtzqlqtRo5OTnIycmRqF9WqxWNjY0IBoNSpptI/XI4HKisrMSCBQuQnS3QrodTv1iWxe9//3s4HI4pPYfHgkKhQElJCY4ePYrdu3dLv/vo0aPYt2/ftP6uGC5PjEXpMhqNqK2txfz58zF//nzpuWdzB3Cy2QIFQ8MV4KGUyeAJATJaCJvWhDeA2jDFSKMUcr60SgZ2j/DR4eegU8ox6BVuNxj+vtUdhMNqhjfIYX5uLvxhp2tvgECr04FWaJCQQsHu8iDo96K1qx/gWWh0Omh1Gug0OjAUhZDPCTroBuFY0F4LZIKfAxQyYTMgp8VNI4UQB2gUNEI8YJDJ4fX5YDf1QqvTIyM9RQjrVoVz2iQHa8FASx7OQuOBcIwUD7VcgSAvmLeJ0U1BTjg08YRALhM2AYRQQo5wkINeJYc7SCEnPQWeQCJULgfMVhuUSiUsAwMwDzqRZNCBUqiQGh8HV1g/6vCxkDNU2OQM2LkoJSK25dIhUpwdDgdKS0un5TASSf0S80utVis6OjpQX18/gvol6rsNBgOWL18ubXvE6xPfc//6178CEHRCMcQwFYyloRyP8hoKhVBdXQ2fz4crrrhiyGDDF+TwbpMF8rB+W6MStJJasZkLO46KrAnhNR2CPtzMxUkOqkL6gFbBoLXbCNbvRnxKJvRxOsGkR8lAplQjQ6dFMMSDcCEMOl3wOe0YsJgRp9VArdUiXh8HigYS1AqECA+DRgaOE7J9g5xgxhMMG0/6gvwQHaY7yEGtoDHoDWLAYkSIp5CbnQ0/T0FGEYFuDwpBioAjQo0NcHw47kMYxHnD2b2+IA+1QqDRqsLRdUo5BY4HNHIGoAC9Sg5QBHEqGWgKUDIqJOjU4EkiAj4fOrt7BOqr14eAvxMOlQb6uDj4aBXkMoG5AQAK+UVzSJc/hEVpcVieOXWDmu7u7hHRSVMBwzBS/RPlY1arFSaTCc3NzdBoNNL34+PjAQC1tbXwer0oKSkZsnSI1KaXl5ejrq4OHR0dU77GywFzvqEEojOdGAsysMhrfBoI9APQY/GW3yNr0XLp+5Gc5rG2kgAkS+GJtoJyuXwI51rc7DU0NIBlWanxGm2qOx4IIejo6EB7e7sURj3b4HkedXV18Hg8WL9+PVQq1RBqbGdn56jU2OlEIBBARUUFNBoNVq5cOeUGfTRMRP1SqVTw+/3SdGo4xGu699570draisbGxhm5TkDIE7r11ltRWlqKtWvX4rHHHoPH45FcX2P49GC0mjOc0kUIwYULF9DZ2YnCwsIh0TFBlsfxJjNUckGHo2BoBCkOSoaHnKYgD4dO61VCXboYfyFMTkVKaLxacTFTlxDoVDL4/QHYjL2QyxVYmJ8LQgFqIlC2lGFHRLmMAgEFnVYLWZwWhoQkUDwLm90Jl92Bvn4zEuM0oOUqZCUvgstlgzZ7JZxhk53IqBCtUiZsHBUM7F7BIMPqdMNiNiIhIRE6Qzy8QYIQz0Elo+EP8eEYEuE+XOEDnzOcp+bwC1RUUf8UZHlwHAEvo4RDpJKBl+WhC+eoqeTCNlcpF7a0Cpnw+va5HXDbBzAvJwsJeh0CIQ4hvxd2lxueAROcVhO0Wi2ITgu1RgulQsglXpltQErc1KfuYo12u90oLS0d4Wo9HaAoSqJ+LViwQKJ+Wa1WtLW1QS6Xg+M46HQ6LFmyZFRqLCEE//d//4cHHngA7777LpYvXz7Gb4shhkvHeBtKj8cjnSWuuOKKIecxnid4p8EIpzcIhqEAIuTxKhmAZihoaBoUhGxJAgKdQojxSFDLwRLAoJEjxIo6bw5xShqtnT1gCIvUjGzotSpJGyhG2DnD5jpulkFqcjLccfFIZwjMA064XG509Vug1yhBKzXQyCl09ZqQmZqEhOQUKBihHgl56sKmlBBALReGZzolDTbEYtDcC7VShfz0dFC0MGgTZAIENCiwhEAlxX3I4A2NQoFViiZqF2M/giwFAj78/3moFYIJkC6iuXb6QgAbQEdPHzJSkqDTG0BTFELBAJwuFwYHbPAHgtBr1VBpdTDE6cJmccL7TIZBhU2Lx6elRgPxHF1cXCw1d9OJSPmYmFUuLijE5AHxXFxcXDyCwSaeFWtqavD5z38eDz74IP7zP/9z2q9zLkCR8cJLphksyw558fM8j7fffhvXXnvtJb8x9rafh+H1b0LtN4JJyAb2/A2IE+iA0TaTXV1duHDhApYtW3bJVMJIx1GLxQK32434+HikpqZOqLskhKCpqQlmsxmrV6+GXq+/pGuYCliWRXV1NViWxerVq0elcUY20BaLBcFgUKJFpaSkTPlw4/f7pan3smXLZqxJGw8DAwOorKyETqeDz+cDMJL6xfM87r33Xrz22ms4ceIE5s+fP6PX9MQTT+Dhhx+G0WhEUVERfv/732PdunUz+jtjmH2ImotInD59Gvn5+YKtfYQ2vLi4eITu4s26frSYXJJuUauUweHxob+nC7n5BVArZPAFWajlQgi1sIFjBZ1kmArrD0+l/Ww4QzfEgYQCaO/uQVpSAuIMCdAoBFt6tUI45AhZu0JjF+CETN0QK5hPBDki6THBhWB3uuH1uuHx+qBSKKCN00Gv1UGuVEqmQRQVdg0KB1/yBHA6HTCaTMjMSIdWp4eMhtDo0eLvCGtDZRT8LA8FTSPAcWBoGhzPg5CLLoYquZDlpgsfnHQqGdx+FmoFDV9QyIzjiXDoFLSmgnlFV78ZrNeF+JQMJOo18AQ4IVycE3ROcoaC0+MDQn5Y7W7QfBBEpsS8VAO+tL4AcaOYOkz2+VFTUwO/3z/qQWU24Pf7cfbsWelxiNQv8T1ArVaDEIIXX3wR+/btw0svvYStW7fO+nXG8OkDIQTBYHDI15qamkAIwdKlS4d83WKxoLq6Gjk5OVi0aNGI192xRhPqeh3QqWSoa7qA+blZAKMQqJgsgSKcF04DYZ0jAAJQDA0KRHLFpyFsQfv6+yBnGGRkZkLGCNpsigA8BBM0jidgGBosRyAT83kZGgGWh4wBAiGhWRxwuOD3efDOu8dgtZihN8Rj+7btgukZTV9sDsMus3JaGIgRLoiO7l4kx+uhNSQIlPwAizglA2+Ih1bBIMDxUMmEjwrpWnDRaRtCOoDouE1RwvUzAFhAMiISr1slo+AN8eH4EQ4+rwd9RpPgIG3QC/F0YQqvWGMVNIFl0Ak24IXD7YNKIYdWq4VGq8VXrixAqn5qbIu2tjZ0dXWhuLh4Ts7Roomky+WCSqWC2+2GXq9HUlLSEIZfXV0dbrzxRtx99924//77PzUeHLPaUHIcN4Ke8NZbb2HDhg2XpLFgWRZnzpyB3FiBYoMdsvwrQeZ/DsBQR7qxmkme59HS0iId1KdzmhGpuxwcHBxTd8lxnLQaX7169awY/gxHMBgcoleMZls8xDXWYoHT6ZwSNdbn86G8vByJiYlYunTpnLzAnE4nysvLMX/+fOTl5Q2hflmtVrjdbvzpT3+S9J0ffPABFi1aNOvXGcOnE6M1lGfOnEFmZiYSExMlGnhhYeGIZqK2x45zHQOQMeEgbZpGkOdBcSwaz1/AimVLEOIARbh5VDAUvEEOShkFf0hoCj1BDhoFDW9QiP5w+TnwAQ86+kzIy0gFo9INyZ8c7aOorxHjPUQtkEohNGYKGYUQCwC8kAXp8cDv84JQFAxxOihUGiTodeGNo2ByE/Q40WcZQEFuFnhaITm2ivetCNOyaFyMHVHJBY2TWi5sL0UdkFJOI8QCMgbgOOGgSMLHKSZskiFnqLCuiUKI58FQFPr6jfB6PcjOzoFSGdbl8wQULURVyRiA5YU8YZYTDpyBQBB+vxeF8SGEPA4olUqJ3TFaZMd44DgO1dXVCIVCKC4unhT7Zbog0ly1Wi1WrFghGe5YLBZYrVbY7XYcOXIE/f39ePvtt/Hcc89JVP0YYpgOBAKBIZ+fP38egUBAclgnhKCzsxPnz5/H8uXLR5UN1XTbUd45CBkDBDmgs+0CklMzoI/TIig2eiEODA34QiyUMgYBVsiSDbK8MCBjBSdVj9cHk8kIjUaL1JQUyWyH8EJ8GyHCR4QdXEGExpInBHKKBgceMpoGzxPIZIKWkAKw/9m/wWQyQqlUYcOGKxFviBfyuLVa6OPiQCgKMkoYkAX8HnT29CMjNRlKrT6stwxBp5LDHZY3eAKstFVUymkEWQIZDfCEkq5JzEH3BbkhbA93gEWcUtCdq+U0ghwPGUNLTuEMRWHQbseA1YK0jAwY9HHgpEGioMXkeCEihOMAigZ4Xqhpfp8XdqcbOUof8vS0dH5MSkqaFGuREILW1lb09vaiuLh4TmKKCCGoq6uDy+VCaWkpFAoFAoGAdH602WyorKzEhx9+iKqqKtx222349a9//alpJoHLoKE8evQo1qxZM+lpgtfrRUVFhRRFsmHDBgAjzXdEp7nhEKf9fr9/xhu5SN2lzWaTKJcJCQno7OwETdMoKiqak0OCmMkkHhIulcIaSY212WyQyWRScZiIGitSU1JSUrB48eI5eYG5XC6Ul5dj3rx5mDdv3qi38Xq9+M53voP33nsPLpcLSUlJkilFDDFMFaM1lOXl5VCr1ejv70dmZiYWL148ohExOf04UN4DBUOFN4fCJlKjlMHlDaC3ox05+QXQqgRTHHEjKaeFxkklF7Z8irCJjJwGWI7APmCFze5ATlYmVGoNmPBBQHQllByyKQKeUBCTdwEiUK2kDWPYwZCIDZho+CA0YsEQj1DAj0GnCwGPCwGOID5OA7lKCzbgg93lRV6OsEGQM4KlPiiAIpRghBOemKvDAdniNFxscjVK4eti40lRCDszijmXF39GalaVYtg20Gc0IRgMIDc7GzzooVmY/ouNrXDIIuB4PvxvwOGaRclYlR0/JLLDYrGA5/khzIfxto0sy6KqqgqEEKxevXpas26jRSgUkp6LY0kRQqEQHnnkEfzzn//E4OAgCCE4dOgQNm7cOOvXG8OnE8Mbyra2NjidThQVFYHnedTX18NqtaK4uHjUsPhOmwdHavqhCjMP1HIGLa1tyEpPhVKjhZKhEOKF+CSWE17TPIFgusXxYMLmNgwAu9MJk8mIxKRkJCYkgiU8ZFS44aIpBMObQJEN4gtdbNhGM9/xhvWangALS38PquqbkJuRgkXLVkEODha7E5zfDbefRbxODaVGBzl4GK025GZmQK2LE2o0ETanQg0WqvKQYz4BeEp0zBY042KciTfEQy2n4QkIH90Bwf01EBJzg4XaLlFf5Qz6LDYE3HYYktMFDXlYbyoO+zhe/BkaQVaotb6g4JLrZ3nkJmqwZXkaHA6HVB+9Xu8Q0xuNRjPmc0KMCDSZTCgpKZkTAzBCCOrr6+F0OlFSUjIqW4/neRw6dAgPP/wwuru74XK58NBDD+Huu++e9eudKcx5Q3nixAkUFhYiISEh6vsZHBxERUUFMjIykJqaioaGBlxzzTVRm+/4fD5UVlZCpVJh5cqVs9rIibTRvr4+yb0zJSUFqampk9ZdThViI5eYmIhly5ZNWyM3GWqs2+1GeXk5MjIysHDhwjltJkX97GgghOChhx7CU089hePHj2PhwoX4+OOPcc0118zy1cbwacVwShchBKdPn4bL5cLy5ctH1fMGQhxeONcNX4gDz1+M1aAooZEDgJaW81hQMB9U2GqeZUUqaHhazpMIC3vBVdViMsMfDCArIwNyhQIknF8pBE8LhyoZLTRoChktGTj4pYaWk5oyKQNyWKOnVTHw+LlhE3QW4Fg4XC64nXYQQqBSqZAYb4Bao4VeoxLyJUW6rYKRDjYhMeMNAENdPEzJw42ecLgBlDIKHAHkYR2SEB+FcKMpDCCFTSOHtgvnwfM8li5ZDLlcDoYSKGF0ONxc+P/hz2nhfsQ4KpoCkrSKETWNEAKn0ykN4NxuNwwGg3R4iowhEtkQDMOgqKho2jXr0UBsJlUqFVatWjXm++qbb76Jf//3f8df//pX7NmzBxUVFViwYEFs4BbDtCEYDA5pjrq6umCxWLBixQpUVlZKQ5fRjKoGvUG8cLYbFIAgJ7AYfEEO5r5uaPQJSEsyCCwLBQ2nXzCK8YxSt3QqGXpNVvgcA0hKy0BSfByCrFBf2HA9lAZzhJKYD8IQTWjMOF4YxLEEYdoqD7mMliKafEFBQuAJCtICt/9isymneFjtLvhcDniDQkamWheHOJ1OGkzRNCVtCQOhi5pHbbgW61UyyXhI2L4CIQ6QMeFrDTM3KOpifrz4HiGjhaZbTgG9Jgs8LgcysnKg1agEmjAtRCURngh6dV6g2grvAcLWVGw49Wo5vliaDeWwXF6v1yvVx8HBQWg0Gqk+xsfHD2mUm5qaYLVaUVJSMm7jOVMghKChoQF2u31cXXtbWxu2bt2KW265BY888gja29sBAAUFBbN5uTOKWW0oR5vAv//++1iyZMmEGTEienp60NjYiMWLFyM3NxeDg4Oorq7Gxo0bJTve8fSSdrsd1dXVSEtLw6JFi+ZEp+dwOFBVVYW0tDRkZGQMOVhEq7ucKsTIgaysLCxYsGDGGrnxqLFarRaNjY3Izc0d4lQ5m3C73Th37px0DaOBEIJHH30Ujz32GI4ePYqioqLZvcgYPhOIbChFJ8++vj6kp6dj1apVo/7MqVYrOq2ecGMl6ANZXqBnCR8plFdUo3DFMlAMAwUjHGYUMhoElNRUycIfeY7FhQsXIGcoFCxYALVCAQJIzZLYRDHhDkxGAaAoqYETG6mLzZnQYNER/5+CcOChwx+lz6mLcRRVVVVgGAaLFi2C3W4fIR1ITU2dUcfpS5EBXCoi884GBgYkamxCQgLa2tqm1e16sgiFQkMct8d6vzx27Bj+7d/+DU899RS+8pWvfKpoXDFcPhjeUPb29qKzs1Nyal++fPmor5NAiMOr1f1wB0PC9o5QIBBYFu3tHUhKiIdaFweaIuHBlKALV8rEzSINT4CDSk6jo6cfCPlhSElHkl4ztNmUhmdC4xTZhLojPmoVTJiKT4cbOkFnLpMBPAfQjHCNNCXa6lxkfBACGE398Hp9yMjMRCgYgsvlhMfrAU0xiIuLg0qjhUGnQYCDlD+pUTBDrjFyi8hyRKrPF3MnLw4FJeMeUW8up9HVZ0LI70NmVhbUSoUwsCOATsEgJEWpEGjkQlSJjKHBUADDCJnBAIWFaTqkTmBWxrIsbDabRK0HIDE7LBYLHA4HSkpK5kQuFtlMlpSUjOm43dnZia1bt2Lnzp34/e9/Pyd9x2xgzhvKU6dOYf78+ROa4URmCRUVFUm5Mk6nE2fPnpUayvGaSaPRiIaGBixYsAC5ubnT86AmCYvFgtraWhQUFCAvL2/I96LVXU4VYs5lfn7+mPTOmYJIje3r68Pg4CAYhkF6enpU1NjphthM5uTkjDklIoTg8ccfx29+8xu89dZbWLNmzaxdXwyfLYgNpdhQcRyHuLg4yGSyEaYTk8E777yDtWvXQq1Wj1sfXS4XKisrJcbCXLzpeTweVFZWSnEUkdcQKR2wWq2S4/R0RTaJEM3B4uLisGLFiln9O4jUWJPJBKPRCADSY5yIGjvdEJtJhUKBwsLCMf8O7733Hvbs2YPf/e53uP3222PNZAwzhuENZWNjIzo7O7F48WLMmzdvDK8MgsPVfegZ8AqmOxwPRXhbKGcYdHV1Qa/XI04XB5oJD7goQe9I0ULjI1DZOfT19gIgyMzMgkIhD0sABNMdGUNJGstgSNwOih85ycxGTtOCMU7YvEzGCMZhgpRAaBwphNkgovkOI5iOyRmgs6cXMoogISUd8VolfEEeBrXACqG5AAYcTrA+N0IcQaJehzh9HBLiDVDIZGBoSvpPwQgDQLn0kQZNAXKaBh2+jYwWKLEMTUMWjmGiKR6NDfUI+P0oLZ5d3w/R18JsNqO3txcsyyI+Ph5paWkTUmNn4lrELODx4pt6e3uxZcsWXH/99fjjH//4qW0mgTmODQFG2uKPBtGB1Ov1jsgSomkaLMuira0NqampI5wPAeEfvr29HR0dHVi5cmXU29DpRk9PD5qbm7FixQqkpaWN+P7wvEubzQaz2TyteZdmsxl1dXVYvHgxsrKypvqQJg2FQgGNRgOXy4UFCxZAr9fDYrFIAbDT6Ro7HkSq7UTN5NNPP42HHnoIb7zxRqyZjGFGQVGUxByIj4/HypUr0dbWNkI3NBkQQsAwDDo6OpCZmTmmtEAcdOXn50On06G3txc5OTmX/HsvBXa7HVVVVWOyJkaLbDKbzVOObIqEKANISkqaE3MwhhE2DOfPn0dKSgry8vJgs9nQ1dWFhoYGKQ8yJSVlCDV2usGyLCorKyGXy8dtJk+dOoVbbrkFDz/8cKyZjGHGIdIvCSE4f/48enp6oFQqx5SqAMAH5y0wOvxDqPUiVdQX4MAwMtgGHaBpIS9SGXatltE0OJYDTQkGW/3GfigVCqSlpSFEaLAB4dwqYyipGVTIaMgZGkqZ0LBBDSgZIXpEKaMBUFDIBLdWMYpIwdCgKEAuo0GL+bnhZo6mBWq9jKHABgNoqK/H8gUaFBWuhEqhGDPXVkwdMJvNsFgs8Fj6JE3iVNhvgp67FuB5XLF2zaz7flAUBb1ej87OTqhUKixbtkzSXra0tIxJjZ1uiFTbiZpJo9GI7du3Y+PGjfjDH/7wqW4mgVneUI5m+1xeXo6UlJQxN4ai+Y5KpUJhYaH0BBaLCsdxMBqNMJvNsNlsUKlUEmXUYDBIK+nBwUEUFRXNmftTa2sruru7UVRUNCm9KDBSkxgKhS7p8NTX14fGxkasXLlySH7dbGJgYABVVVVYuHDhkAPrdLvGjgePx4Nz584hKysLBQUFo94vIQTPPPMM7r//frz22msxrWQMM45QKIR33nkH8+bNkyjgbW1tcLlcKCwsnPT9ieZkg4OD6O/vh8ViAXBRsy0Oprq6utDa2orly5djYGAA3//+9+H1enHXXXfh5ptvnu6HOSrEQdfwuhANIiObzGYzPB7PJR2eHA4HKisrkZ2dPWZdmGmIbtcJCQkjdO1jUWMvxTV2PLAsi4qKConuOxZr5OzZs9i1axd+8Ytf4M4774w1kzHMOEKhEILBoBSftGDBArS0tGDTpk2j3t7o8ONcxwCUMho8AJVMyGZUygSXUhlN4Pf74bDZMGgfBBcKIDEhAanJSUhJToJSIYfLYUdTYwNysrOwoGA+ZIywrZOFN3mzAbfbLbFHli5dOunX+nD2m06nk+pjtGerYDA4hLEwFxR8juNQU1ODQCAwIjppLGqsuISZruY3UrdZWlo65vuL2WzGjTfeiOLiYjz77LNzYqY225jzhrKqqgoGg2HUCZOYCTjc3XC4+Y6o3eE4TnrDtVgs0u1lMhmKi4vnhGMtaqEGBwexevXqUTeok8Gl5l12dnaira0NhYWFSExMnNI1XCqsVitqamqwZMmSUe28IzEV19jxIDaTmZmZY2pHCSH4xz/+gR/84Ac4fPgwrr322kv6XTHEMFk4HI4h087Ozk7YbDYUFxdHfR+RwzbgYn3keV7SI5rNZoRCISgUCgSDQRQVFSExMRH//Oc/8eCDD4JlWWzfvh2PPvrotD/G4eju7sb58+exYsWKaRl0jSUdGE93KcoAxMiguYDX60V5eTmSk5OxZMmScQ95U3GNHQ/iZlJ0Hh+rzlZWVmLHjh348Y9/jHvuuSfWTMYwK3A4HDh37hyUSiWKiorg8/lw9uxZXHfddZO6n9EyysWhttlshtlshtvthlqths/nw8KFC+esLgwODqKqqmravCbGkg6kpqaOOZjy+XyoqKiYExmACDHjkeM4rF69etwGUaTGXopr7HgQpXcWi2XcZtJqtWL79u1YsmQJ/vWvf81JgsNcYM4byrq6OiiVSixcuHDI10XznSVLlozYZEVjvuN0OiV3PLFwJCcnS26qszFdEam6wWBwTOexqWIi3SUAXLhwQcrnmYuwV0CY1tTW1mL58uUT6mWHYzKusePB6/Xi3LlzSE9PH9NRlhCCF154AXfeeScOHDiALVu2TOpaY4hhKhiuEerp6UFfXx/Wrl0b1c9H1kexkRzteS6azvh8Psjlcvh8PiQmJiIQCOA3v/kN3G43fvjDH2Lz5s3T9thGu1axNk13DrCIsSKbIqUDJpMJ9fX1UQ26Zgoejwfl5eWSWdxkDo1jucZOlhrLcRwqKiombCZra2uxbds23HPPPbjvvvtizWQMs4aPP/4YSqVSWjB4PB588MEHUb9Pi8M2nueFGKMx6qOoj+vv74dGo4HH40FcXBxSU1NhNBpRV1eHa665BosXL57uhzgEYm1atGjRqC7fUwXP80MGUxzHISkpaQj7ze12S7FuEw26ZgrioIuiKBQVFU162xeta+x4EONJzGbzuM3k4OAgduzYgdzcXLz44ouzqnufa8x5Q9nY2AiKorBkyRLpNk1NTejr6xtiviN+b/hUaTTYbDbU1NQM0cc5nU5p8uT3+6UXTUpKyoz8gwcCgSEalNlYd0fqLsXDk0wmQzAYRElJyZzQfQGhKNbV1U0L1fZSqbHRNJMAcPDgQXzzm9/E888/jx07dkzpWmOIYbIY3lAajUa0t7dj/fr1E/5sZH2kKGrMKbLX60VVVZWUKSiTyeD1eqX6aLPZoNFokJeXh9TU1BkxOhAz4xwOB1avXj0r2WGRgymz2QyWZaHVauFyubBs2bI5ayZFPfd4rInJ4FKosRzHobKyEgCwevXqMZvJhoYG3Hjjjfjud7+Ln/3sZ7FmMoZZxfD66Pf7ceLECdxwww0Tbs2izSjnOA61tbXweDwoKiqCVqtFMBiExWJBc3MzfvCDH2BgYAD5+fl47rnnkJqaOiOvg87OTrS2ts6a78cI3WW4iXa73cjKypqzjHAxOmkiCn60GM81NikpadRtoqjZNRqNKC0tHfM90eFwYNeuXUhJScHLL788oz4glyNmtaEERgbTtrS0IBQKYfny5QiFQqiurobP5xuRKSMWgomaSdH4ZunSpWMeENxut3SocLlc0x7VIfLdRR3MXNADxImO2+0GwzBgWRZJSUmznnfZ19eHpqamGSuK0VBjfT4fzp07h9TU1HGn/6+++iq+9rWv4R//+Aduuummab/WGGKYCKFQSDrwAJAOMRs2bBj356IdtonGN+np6WPGJgUCAak+DgwMQKvVIjU1VTI9mw7KVXV1NTiOQ1FR0Zy86YrUpZ6eHqhUKvj9/mkxrZgsRBOm3Nxc5OfnT/uBLRpqrEgl43kexcXFYx7YmpubceONN+L222/Hgw8+GGsmY5h1sCw7xMSRZVm8++67uO666yakQEaTUe73+1FVVSU1L8Pvs7e3F3v27EF/fz9SU1Pxs5/9DDqdTjo/ToeWWdyEGY1GFBUVwWAwTOn+LhV9fX1oaGiQaL/i+8B0e1qMB1G3OVPRSdFQY0UmTX9//7jNpMvlwu7du6HT6fDqq6/OCCPxcsesN5TDJ0ytra1wu91YuHAhysvLoVarxzTfAcaeKokvwv7+fhQWFkZtfOP3+6WJjChWFg9Pl+KiJ/Ldxe3oXNEDqqurwbKsxDV3u93S4xR1lyJvfqYOTz09PWhpaUFhYeGQTfNMYTRqbHx8PJxOJ1JTU0eYXERCDOV+5plncMstt8z4tcYQw2gY3lAODAygpqZmTNMJIPpmsr+/Hw0NDVi0aFHUxjfD9TZyuVyqj5fiouf3+1FZWQmVSjVn2YritLm/vx+rV6+GXq+ftcimSDgcDlRUVMxafNNo1Fi9Xo9gMAiZTIaSkpIxD+Wtra3YunUr/u3f/g0PP/zwp96tMIbLExzHgWVZ6XNCCN566y1s2rRpzAN8tPXR6XSiqqpKcnge6zn+2muv4cMPP8TWrVtx9dVXS27TZrMZPM9L56qkpKRJ1zeO41BXVwe3243Vq1fPagxGJERW2bJly5CRkXFJusupIhAIoKKiAhqNBitXrpyVmjMaNZZhGHi9XqxZs2ZMDxSPx4PPf/7zoGkaR44cmRXGzeWIOW8oOzo6YDQa4fF4RqzVxzLfGQ6WZVFXVwePxzOlF2EoFJIm86JjrPiiMRgMEx4qxBfh4sWLZ4TvHg2iCeT2+XywWq0wm80zdngSnSMvxdV2OkAIgc1mQ21tLWiaRigUGpMae/ToUXzpS1/C008/jS9/+cuxyXsMc4bhDaVoQjGa6cRkhm1tbW3o6urCypUrkZycfEnXJm67xMEUMNQxdqLDk5hzKZrOzEVTwvO8lB1WXFw86ht/NLrLqUIcPBYUFMxZJrJIfQ4EAuB5fkxqbEdHB2688cZPfSh3DJc/hjeUAPD222/jyiuvHDMyLppmUnSZFk25LuUMELntipRWiVu9iVhhoVAIVVVVIISgqKhozrR34iJgLFZZZGSTxWKZtsimSIhZwAaDYc5YfqFQCA0NDbBardJzZzRqrM/nw549exAMBvHGG2/MmbTscsCcN5Q1NTXo6+vDihUrhjRh0eqBRIqCXC7HqlWrpo3KyXGcpEcUHWPFyfxoE5nZ5ruPBr/fj4qKCmi12qgnOqLuUpw8TcfhqaOjA+3t7SguLp4zuobf78e5c+eQlJSEJUuWjDgkymQyfPTRRwCARx55BI8//jhuu+22WDMZw5xiOKXL4/Hgww8/xA033DDkdpPRA0VqFafqMh35++12uzSZnyjKSHRRzcvLmxFqZzQQp/8ejwfFxcVRUZKmK7IpEjabDdXV1TNmtBENeJ5HVVUVWJZFcXExKIoaQY1tb2+HzWbD/v37ccMNN3zqQ7ljuPwxWkN57NgxlJSUDDlrRJrvjNdMEkIkB/zpcpkW73e4Y6xIpUxNTR1Re3w+HyorK6Vt3FwxNzo6OtDR0RH1ImC6IpsiIUYniREpc3Uma21tRU9PD0pKSqDVakdQY8XrrKiogNvtxltvvTVn593LBbPeUIoTeJ7nh2hYrr76auk2k6EoVFZWSu5TM/VmN9zMgeM4yTE2MTERbW1tEn1qrp5Q0xHIPdrhaTK6S3ET0t3dPaeOsmIzOVZBEh/nD3/4Q7z22mvw+/3YunUrfvvb30omTjHEMBcY3lCOZjoRrR4oEAiguroaAGZ04k0IkSj14qEiMTFRmswPDAygoaFhXF37TEOUAURjOT8WLjWyKRIWiwW1tbVYunQpMjIyLuWhTBk8z0vu48XFxSP+FuLj/NOf/oQ//elP6Ovrw/r16/Hf//3fuP766+fkmmOIARCeu6FQaMjXTp48iZUrV0pxaNEO20S2gtVqlajvMwWRUm82m2G32yXH2JSUFPA8j8rKSqSlpc2Z8U2kbrO4uPiSt2yjSQcmo7sUo5NSUlLm7G8BQGL0lJaWjjqE9Xq9OHbsGH7605+ipaUFCxcuxL59+3DnnXfOwdVePpiTpE3RlMHv92PJkiXo7OyUvhdtMynaKU+FohAtaJpGUlISkpKSsHjxYskx9sKFC/B6vaBpGvPnz5+TnEvgorFDVlbWlFwChz9O8ZDY2dmJ+vr6cXWXonC5r69vzBfhbECkSiQkJIzZWNM0jdbWVhw5cgS/+tWvsGnTJrz22mtzls8ZQwxjQZxUizFJ0dZH0RgsPj4ey5Ytm9GJN0VRiIuLQ1xcHAoKCiTH2L6+PjQ2NgIAMjMzZyQWJBqIMgC5XI6SkpJL/ltQFAW9Xg+9Xo+CgoIhh6eWlpYJpQNidNKKFSuQlpY2HQ9t0piomQSEx+nz+fCvf/0LmzZtwoMPPog333xzzv79YohhPIimg0D0wzbxDMqyLNatWzfjBipqtRq5ubnIzc2VjATNZjNaW1tBCEFCQsKk49SmC2JWut1ux5o1a6ak24x8nJGssM7Ozgl1l6LbdUZGxrhO/DON9vb2cZtJAJDL5fjXv/4FpVKJtrY2nDt3bpav8vLErG8o7XY7zp07B41Gg8LCQjidTtTW1uKaa66JWg80ExSFyULku7Msi5SUFNhsthlxjJ0IIpVspo0d/H6/NGEbrruMi4vD+fPnYTKZJHrAXCAQCODcuXPSIXqsglRRUYGdO3fiJz/5Cb7//e/HaK4xXDYYTunieR5vv/02Nm3aBKVSGVUzabVaUVtbO21B2JcC0UXVaDQiOzsbTqdTcowVDxWz4RQ4W4HcE+kuTSYTGhsb5/Q9i+d51NTUwO/3j2vAY7VasW3bNixbtgz/+te/ZiXyKoYYosFoG8rTp09j3rx5SE9Pj6o+er1eVFZWQqvVYsWKFXP2/BZdVLOzs8GyLCwWi1Q3ZtLsJhJiRIrP55uxrHRgYt2luAjIzs6eMzNLQGgmOzs7x43ZY1kW//Ef/4HGxkYcO3Zszur55YhZbyhPnToFrVYrrbMdDgfKy8uxcePGqCkKNpsNRUVFc0apHIvvPrzpmqpj7EQQheSLFy9GVlbWtN73eBiuuxR1rosXL0ZGRsac6GwCgQDKy8uh1+uxfPnyMf/WNTU12LZtG+6991788Ic/jDWTMVxWGMt0Yv369VCr1RMelrq7u9HS0iK584kghMDr9UKj0cz4c148pHi9XqxevVoarLEsK03mIx1jRbv96b6uuQrkHs1tmhAiRYPMVmTT8GsSD47jNZMDAwPYsWMH8vPz8fzzz3+mQrljuPwxWpb52bNnkZ6ejoyMjAnr4+DgIKqrq5GRkTEiQszr9UKpVM64fpEQIjUuhYWFEjMqsumKdIwVm67pvi5xS8vz/CXLAC4Fo+kuAUh+F3PF9BP1o+M1kxzH4dvf/jbKy8tx/PjxOdsqX66Y8xxKl8uF06dP48orr4RSqYyKolBUVDRnGS+ibjM1NXXcQ4roGCs2XUqlUmouo3GMnQi9vb1SvuNcTUgIIairq8PAwACSk5MxMDAg6S7FQjgbRSoYDOLcuXPSFmKsv60Yyr1v3z789Kc/jTWTMVx2GM0W/9ixY1i2bBmSk5PHZW6IG8GioqIh9ERCCJ544gkcP34c69evxz333DNjQ59gMIiqqipQFIWioqIxX/+R+YhmsxnA5BxjJ4LD4UBlZeWcT7y7urpw/vx5pKWlwe12X5LucqrgeV4yIyopKRmzSbTb7di5cyfS09Nx8ODBz1wodwyXP0ZrKMvLy6HVapGfnw+GYcZ8rYsU/NFc+F9//XU89dRTyMrKwq9+9asZk7/wPI+mpiZJtzlW4yJG/IjNZaRjrJgfOxWI+Y4KhQKFhYVzYgIECDWnoqICiYmJ4DhuCPtttlgsACTWY0lJyZiLKo7j8L3vfQ8ffPABTpw4MatLnE8KZr2hjDSdEItDVVUV7HY7DAYD0tLSRrhgeTweVFVVzTlFQXTnE+ml0T7RIx1jrVYrKIoacnia7OFOdFGNnG7NNsRDitvtRklJCZRK5RBzjtnKuwwGg9IbyniUNjGU+2tf+xp+9atfxZrJGC5LRFK6RAlAc3Mzent7oVarkZqairS0NOh0Ouk5zLKstH0qKioaoYGx2Wz4j//4D/T39yMlJQVPP/30jLwZilQynU6HFStWRH1IiXSMFTd6kzEDGw6xThcUFCAvL+9SHsq0QDykrF69WmrwZzvvMtpm0ul0Yvfu3dDr9Th8+PBnMpQ7hssfkQ2laL7T29uL8+fPg6KoUZ34CSFobW1Fd3c3Vq1aNWom9je+8Q2cO3cOCoUCv/rVr0aNaZoqxDrt9/snRS8VHWPF4dtUpVWiDEBkc82Vc/PAwACqqqqwcOFCKRd5NiKbhkOMuBuvmeR5HnfffTfeeecdnDhxYk7fVy5nzJkHuHhYoigKJSUluPrqq5Geng6LxYIPPvgAH3/8MTo6OtDf34+zZ88iJSVlzFzF2UBfXx+qqqqwdOnSSdveMwyD1NRUrFixAtdcc40U6dHQ0ICTJ0+itrYWJpNpBNVtOMRAbnEtP5fNZE1NDTweD0pLS6VJtmjOUVBQgCuuuAIbNmxAWloabDYbPvzwQ5w+fRoXLlyAw+HAdMwxom0mL1y4gB07duCrX/0qfvnLX07roe29997Dzp07kZmZCYqi8Morr0z4MydOnEBxcTGUSiUWLFiA/fv3j7jNk08+iXnz5kGlUmHdunU4c+bMtF1zDJc/Is13Fi9ejI0bN2L+/Pnwer04e/YsPvzwQ7S0tMBsNuPMmTPgeX5MQ4WEhATJBXHZsmUzEmvkcDhw9uxZJCcnY9WqVZOaeFMUhYSEBCxevBhXXXWVFCDd0dGBkydPoqKiAt3d3SPYLaPBZDKhuroaS5YsmdM3/fb2dik6KXJbLJpWlJSUYOPGjcjPz4fX60VFRQXef/99yXUyMov0UkEIQX19vTT0G6uZ9Hg82LNnD9RqNV555ZVpbyZjNTKG6UZkfczIyMA111yDFStWAADq6urw3nvvob6+XqoHRqMRa9asGbWZBID169cjKSkJ8+bNw5IlS6b9ekVJDsdxKC0tndRrjKIo6HQ65OfnY926ddiwYQNSU1NhNpvx4Ycf4qOPPkJbWxvcbveE5yq3242zZ88iKSlpRjXlE8FqtaKqqgpLliyRmklAMLvJyMjAqlWrsHHjRkm+1NDQgBMnTqCmpgb9/f0jdLSXCrGZHC+VgOd5/OhHP8Kbb76Jd999d9rfVz5N9XFONpSR0SGj8d2DwSAsFgu6urrgdruhVCqRnZ2N1NTUWXcPjeS7jzXdmsp9O51OafLk8/mG2O1HHgAIIZJ+dKxA7tkAx3Gorq5GKBQa0yVwNIyWdxkZvTLZwhYKhVBeXg61Wj1u5mZHRwe2bt2KsrIy/O53v5v2AvrGG2/gww8/RElJCW6++Wa8/PLL2L1795i3b29vx4oVK/Ctb30LX//613H06FHcddddOHLkCLZs2QIAeP7557F371489dRTWLduHR577DG8+OKLaG5ujgnAP+XgeR7BYFByKhyN4ioyHnp6eqQpbkZGBtLT0xEfHz/qwCQYDKKrqwvZ2dnT3jCIURgzsRH0er1SfXQ4HNDr9VJ9HF4DJwrkng2I2xAxvyxa+/3pzrsUm0mn0ykxSEaD1+vFnj17wLIs3njjjRl5f43VyBimE36/HzzPS87Xw+udyHjo7+9HX18fCCFITU1FRkYGkpKSRh12iee8hISEqPIXJwOPx4PKykoYDIZp3whGOsbabDaoVCqpPg6XVokygJycnDkzawMuul0vX748ag3iaJFNU8277O7uxoULF8bNS+d5Hj/96U/x/PPP4/jx41i0aNGkf89E+DTVx1lvKP/2t79hxYoVWLhw4bhhsxcuXEBPTw+WLVsGnudhMplgs9kk2tds8Kuj5btPF8QgXIvFAqfTCYPBING+Lly4MKlA7pkAx3GoqqoCz/Pj6qMmwlh5l9HqLqNtJru7u7FlyxZs3boVf/jDH2Z8GkdR1ITF4Ic//CGOHDmCuro66Wv/9m//BrvdjjfffBMAsG7dOqxZswZPPPEEAOHvlZOTgzvvvBM/+tGPZvQxxDC3eOutt8AwDEpLSyGXy6OKTdJqtVLTJdLp09LSZsUlsKenB83NzbMShREIBKSaYbPZoNFopPcCm802qUDumYDIIOnv70dJScklN2dTlQ6IzaTD4RjCIBkOv9+PL37xi3C73XjzzTdnJUM5ViNjmArq6+tRX1+PTZs2jWt06HK5UFVVhfj4eOTk5Ej10e/3Izk5GWlpaUhOTp5xxpvdbkdVVdWUI92iAcdxEl10uGOsaMq1YMEC5Obmztg1TASTyYS6urope3+MJR2Iti8Qh4/DGSSRIITgl7/8JZ555hnJx2Cm8Umvj7PKHyWE4OWXX8Ydd9yBhQsXoqysDDfddNOQvECO41BXVweXy4W1a9dKU+iMjAywLAubzQaTySTx3afT6CYSHMehpqYGPp8Pa9eunZUmThSW5+fnS46xJpMJLS0toGkaOTk5CIVCUCqVsz5dYlkWlZWVoCgKq1evnlIhHivvsqurCw0NDdLhKSUlZQSFT2wmVSrVuM1kf38/tm/fjs997nN48skn54zaMRynT5/G5s2bh3xty5YtuOuuuwBcpPHed9990vdpmsbmzZtx+vTp2bzUGOYAp0+fxu9+9ztoNBrs3LkTu3fvxpVXXim93gghkoY6chMnOpmKWsS6ujoQQqQ32aSkpGl9DRBCpPDn4uLiWWniRKaKaLMvTubPnDkDQgjS09MlXdVsv95FUySLxTLlLLfhuZ4+n096rOfPnx9Xd0kIQUNDAxwOx7ibyUAggK9+9asYHBzEO++8MyvNZLSI1cgYxkJLSwvuvfdeDAwMSMyjG264YQhbQWRMzJs3T5InxcfHY8GCBdJZo729HfX19UhMTERaWtqMGAiKdThSIziTYBgGaWlpSEtLG+IYW1NTA5ZlYTAYpOipuTDh6e/vR2NjI1atWjVlBslYeZfl5eUT6i7FZjJS2z4chBD85je/wV/+8pdZayajxeVcH2e1oaQoCgcPHoTD4cDhw4dx8OBBPProo8jNzUVZWRnWr1+PF154AXfccQfWrl07QvMhk8mkF4zoEmgymVBZWSnpFEVB9lQarkAggKqqKjAMgzVr1syJzbtKpUJaWhr6+voQHx+PjIwM2Gw2nDlzZtodYydCKBRCRUUF5HL5tDuCDT88iY20xWIZcXhSq9WorKyEUqnEqlWrxjw0mkwmbN++HevXr8ef//znOXMwGw1Go3HEJictLQ1OpxM+nw+Dg4PgOG7U2zQ1Nc3mpcYwB/jv//5v3H///Xj33Xdx4MABfPWrXwXDMNixYwe2b9+Ol19+Gdu3b8e11147gjFB0zQSExORmJiIxYsXw+FwwGQyoampCaFQSGoup2pBL8Y3DQwMSHrH2YZMJpM2kwqFAgUFBXA4HKitrZUa6ZSUlDEpbtMJsYkbHBxEaWnptJuPqdVq5OTkSANFUTpQUVEx5PCUkJCA5uZm6TrGGoKGQiHcdttt6Ovrw9GjR+dsozsWYjUyhrFw0003oaysDOfOncNLL72E//7v/8Y3vvEN3HDDDdi1axeampqQkpKCm2++eQSdcvhZQ2SEiYPshIQEqbmcqsNxd3c3zp8/P2e5s+LQ3uv1gud5LFy4EKFQCBcuXEBdXd2Y0qqZgtjEFRYWTqtsDLiouxRjY0T2W2Nj4wjpgNlslprJseoeIQSPPfYYHn/8cbz77rtYuXLltF7vVHE518dZd7gRp0V79+7F3r174XQ6ceTIEfz1r3/FY489hkWLFuHQoUNgGAYlJSVjNg2Rb6Tik8hkMqGmpgYApIZrsvo8ke+u1+vnVLTs9/tRUVEBrVYrbeKys7Ml/ZTFYpHs+afiGDsRRHtplUo1bhM3XVCpVGMenjiOg1KpRH5+/pjic4vFgp07d6KwsBDPPPPMZdVMxhBDNFAoFNi2bRu2bduGp556CidPnsTf//53fOUrX5HeBBUKBa699toxDz5inY2Pj8eiRYvgcrlgMpmkA4WoX05JSZkU24BlWdTU1CAQCGDNmjVzSr8Xsy5FBklWVpakn7JYLGhpaZmyY+xE4Hle0ipO1mzjUiCXy5Geno709PQRh6dAIACKorBw4cIx654Yyt3a2orjx49P++EuhhhmGjRNY+3atVi7di0eeughVFdX44UXXsA999yDQCCAz33uczAYDNi+ffu4A/dIRpjP54PZbEZfXx+amprGTByYCKJcq7e3d1w65Uwj0vsjkkGycOFCuN1uWCwW9PT0oLGxccZjjETjm/GauOnCcPabqLvs7OyUKKLj+QgQQvDkk0/ikUcewVtvvYXi4uIZvd5PG+bGMjUCer0eZWVluOeee3D//fdjxYoVOHjwIHbt2oX4+Hjs2rULZWVlWLdu3ZhvkpFPoqVLl0qr/oaGBnAcN4T2NV6DMZt89/Hg8XhQUVEhPZ7I64jcxPI8L1HcGhsbwbLskMPTVPUBojOZGAMw2821eHhKTk5GeXk5AOH50tzcPKrucmBgADt37sTChQvxj3/8Y84cgcdDeno6TCbTkK+ZTCbo9Xqo1WowDAOGYUa9TSxE97MHuVyOzZs347e//S22bduGO+64A0eOHMH3vvc9uN1ubNu2Dbt378Z111035mGAoijo9Xro9XosWLAAHo8HJpMJHR0dqK+vl2rGRNPqQCCAyspKyOVyrFmzZs5eXyzLSlru4QwS0TE2ISFBOjyZzWbpsSYkJEiPdarNn6hL8nq942oVZwri+15iYiJ4nofVapVYLS0tLSN0lxzH4Vvf+hbq6+tx/PjxOTMumgixGhlDtKBpGqtXr8abb76JrKwsPProozh16hSeeOIJ7Nu3D5s2bcLu3buxY8cOJCYmjnmmU6vVyMvLQ15e3gi5kWgElpqaOi6VXRwuORwOrFmzZs6MEwkhaGlpgdFoRGlp6Qgmi06nk1xj/X6/pNVuaWmBTqeTHut4GtVoIcozxjO+mSlEvu9pNBo0NDQgKysLHo8HH3744QjpAAD8+c9/xq9+9Su88cYbWLt27axeb7S4nOvjrJvyjAWj0Tjkwfp8Przzzjs4cOAAXn31VahUKuzcuRM33XTTEE3ReCCEwOFwSOGwwWBQEmQnJSUNuQ+R7z7XomXRiWuyTa3ogiU+Vq/XKzVcqampk6Y1+P1+lJeXS85kc9Vci9pNmqZRVFQEhmEk0wpRaN/Z2Ynf/e534DgOycnJeOutt2aFxjEc0QqqX3/9ddTW1kpf+/KXv4yBgYEhguq1a9fi8ccfByC8UeXm5mLfvn0xw4nPKMxmM5KTk6WhDsdx+Oijj3DgwAG8/PLLsFqtkqZoy5YtUR9mRNqXmG8mNlypqalDGiS3243KykokJCRg2bJlc8bcmEogt7iFiHSMFevjZA9/osY+EAiguLh4TuoNMFS7GUm3FQ/FZrMZAwMD+PWvfw25XI6Ojg6cOnVqVjRdoyFWI2OYCXi9XrAsKzUGokHWSy+9hIMHD6K6uhpXX301du/ejZ07dyI1NTWqM00wGJRqxsDAwJCGK5LqHwqFUF1dDY7jUFRUNOvDJRE8z6OhoQF2ux3FxcWT0nKHQiGpZoiOsWJ9nKy0StyQihr7sSI5ZgOidjOSbjs873L//v0YGBjA6dOncfjw4REaxdnCJ70+XjYN5XgIBoM4duwYXnrpJRw6dAgURWHHjh246aabcPXVV0f1Zj684fL5fEhKSkJaWhoCgQDa2trmjO8uYmBgANXV1cjPz8e8efOmdF+RQbiRjrHRuAT6fD6cO3du1A3pbILjOFRUVAxpJkfDhQsX8N3vfhcXLlyAzWbDhg0bcOzYsVm5RrfbjQsXLgAAVq9ejUcffRTXXnstEhMTkZubi/vuuw+9vb3429/+BuCi5fN3v/tdfO1rX8OxY8fwve99b4Tl86233oqnn34aa9euxWOPPYYXXngBTU1NM+6kGcMnDzzPo7y8HC+99BJefvll9Pb24vrrr0dZWRluvPHGqN/MhzdcYs1QKpVobGxETk4OCgoK5qweiIHccXFxU2ZMiNFU4uEp0jF2IpdA0e2a4zisXr16TjT2wMVNhNlsHle76ff7cccdd+Cjjz6Cy+VCXFwcqqqqZm1DGauRMcwlxObmwIEDOHjwIM6dO4f169ejrKwMu3btkvL/JsLwhktMHIiPj0dLSwvUavWkM3inE+KQy+/3SxmFU7kvm80mbS9pmpaYHRNJq0Tab19f35TcrqcDRqMRDQ0N42o3OY7Dgw8+iOeeew5erxderxcvv/zyrDWVn6b6+IloKCPBsixOnjyJF198EYcOHUIgEMCOHTtQVlaGz33uc1G/iNxuN0wmE7q7uxEKhWAwGJCVlTVrIuXhEDekS5YsQWZm5rTed+S0WrRYjpyyRRZTj8eD8vJypKamYvHixXPaTFZWVgIQXmRjFWm3242bb74ZCoUCR44cQSgUQnNzM9asWTMr13nixAlce+21I75+6623Yv/+/bjtttvQ0dGBEydODPmZ73//+2hoaEB2djZ+8pOf4Lbbbhvy80888QQefvhhGI1GFBUV4fe//z3WrVs3w48mhk86eJ5HTU2NNJlva2vDddddh7KyMmzfvn3MnMrhCAQCMJvN6OnpgdvthkqlQnZ2NtLS0qbkYHqpcLvdqKiokNxsp7MuRTrGWq1WyOVyaTIfHx8/5PAk0m0JIVN2u54KxGbSZDKhtLR0zH8Tnufxwx/+EK+++ipOnDiB7OxsfPTRR7j66qtnrbbHamQMlwsIIeju7sbBgwdx8OBBnD59GqWlpdi1axd2796N3NzcqF4XYs3o6+uTsoCzsrKQnp4+wnl5NhAKhVBVVQUAU4p0Gw2RWm2z2SwxwUQZWWQNjKxLJSUlc0b7BS5GlBQWFiI5OXnU2xBC8NJLL+G73/0uXnrpJWzZsgVVVVXIy8tDYmLirFznp6k+fuIaykhwHIcPPvhAon25XC7ceOONKCsrw+bNm6Pmuy9dulQyrXC5XIiPj5fcvmbDdKK3t1fKcpvpDam46hcPT0qlUjo8yWQyVFRUIDMzc041pOIGQDy0jdVMer1efOELXwDP83j99dfndBIWQwyXG0T3UXFz2dDQMERTlJSUNO5rvLOzE62trVi6dCl4npcm8+JAKi0tbVp0NhNhNgO5eZ7HwMCANJknhEiHJ71ej5qaGjAMMy5jYqYh0vlEjdR4zeR//dd/4cUXX8SJEyewcOHCWb7SGGK4fEEIQX9/P15++WUcPHgQ7733HlatWoXdu3ejrKxsQjaGyCjLycmBXq+XasZ0Jg5EA1HbfikygMmCEAKn0yk9Vp/PJznGJicno7W1FTabDSUlJXMyeBQhNpMTRZS88soruOOOO/Dcc89h586ds3iFn058ohvKSPA8P0RTZLFYsGXLFklTNJzvXlNTg1AohNWrVw/ZaooiZZPJJOlsRLevmXDAEkXLhYWFszYRERHpGGs2m8GyrGSpPd25dZO5JtFwY7wNgBjK7fF48Oabb84pRz+GGC53RGqKXn75ZVRVVWHDhg0S7SstLU06+IhT5v7+fqxevXqImcLwgZQYbxRtoPRkYbPZUF1dPSfa9kgNvslkgt/vh0KhwIIFC5CamjonVNdIOllpaemYGwBCCB544AE8++yzOH78OJYuXTrLVxpDDJ8cEEJgtVql5vLYsWNYsmSJ1FwOZ0X09/ejoaEBS5cuHcIoixxImc1myYU/LS0NCQkJ036m8vl8Q7wuZvvMFqnBdzqdoGka8+bNQ2Zm5oycl6OB2WxGbW3thM3ka6+9httvvx1///vfcfPNN8/iFX568alpKCPB8zwqKiok2ldPT4+kKVq+fDkOHDiAXbt2YdWqVeNSlgKBgOT2NTg4CJ1OJx2eprrKH24vPZcNkcPhQHl5OdLT00HTNCwWi5TfM12OsdGA4zhJ2D5eMxkIBPCVr3wFFosF77zzzpxZc8cQwycRhBB0dHRImqIzZ85g/fr12LVrF2644Qb89a9/xdatW7FmzZpxp8wcx8FqtcJkMklUUbE+Tkc+rslkQn19PZYuXYqMjIwp3ddUILpdK5VKGAwGWK1WuN3uaXWMjQaEELS2tqK3t3fCZvKhhx7CU089hWPHjl12OWoxxHA5gxCCwcFBHDp0CAcPHsQ777yD+fPno6ysDGVlZXjjjTewaNEiXH311WNSKQEMceEXqaJic5mYmDjlTaIoA5hreRLP86irq4PT6URWVhYGBgak8/J0OsZGA4vFgpqaGqxcuXJctt9bb72Fr371q/jrX/+KL37xizN+XZ8VfCobykiI1u4vvfQS/u///g+9vb1YuXIlvva1r2HHjh1RUxJEQbbJZBpC+xpNhxjNNYnB4MXFxXPKMx8cHERVVRUKCgqkDcB4jrHTEfo7GnieR1VVFViWRXFx8ZjNZDAYxN69e9Hd3Y133313RnLUnnzySYl7XlhYiMcff3xMC+lNmzbh5MmTI76+bds2HDlyBABw22234dlnnx3y/S1btkiOXDHEMFcghKCnpwcHDx7E888/j6qqKqSmpuL222/Hnj17kJeXF1Vt4zgOAwMDMJlMI2hfw3WI0UAMwl65cuWcxluIecBxcXFDNgDT6RgbLVpbW9HT0zOu0QUhBL/97W/x29/+FkePHkVRUdG0X0esPsbwWYLD4cCrr76KAwcO4M0334RCocCXvvQlfPWrX0VRUVFUtW0420Ec2KelpSE5OXnSzaXdbkdlZSVyc3NnXAYwHiKjk0pKSiT/EfG8bLFYJGmV+H4wHcPG0SA2kytWrBjXeOb48eP44he/iD/+8Y/46le/OiPX8lmtkZ/6hlJEX18fli9fjq985StISUnBK6+8gvr6emzcuFHSFCUnJ0ctyBZpoiLtS3yxTCTI5jgOdXV18Hg8KC4unrNgcEDQAFRVVWHRokXIzs4e83ZjOcampKRMC0+e53lUV1cjGAyiuLh4TCpZKBTCf/zHf6C5uRnHjh2bkYPm888/j7179+Kpp57CunXr8Nhjj+HFF19Ec3PzqBOvgYEBBINB6XObzYbCwkL85S9/kUTSt912G0wmE5555hnpdkqlcsZDfmOIIVrwPI+1a9ciKSkJN954I1599VVJUyRO5qPVVYsmDmJzSQiR6mM0DoEdHR3o6OhAUVHRnL5GRDqZGJUy1mOPdIwdGBiQ3B/FfLPpOLC0traiu7sbpaWl4zaTTzzxBB566CG8/fbbM2JMFquPMXxWcdddd+GNN97AnXfeiffffx+vv/46kpOTJUOfNWvWRN1cigN7kUofyQabiEpvtVpRU1Mz5xF3IqMsFAqNe26LdIy1Wq0SDTia94NoYbVaUV1dPWEz+f777+MLX/gCfve73+H222+fkWbys1wjPzMNJQCcO3cOpaWlAC5STkVNUWVlJa666ipJU5Senh71ZF7UFFksFsjlcsmwYvgkhmXZIVlFc5VdBlwsSpN1lRXdHy0WCwYGBqa0qQWibyZZlsU3v/lNVFdX49ixYzMW0Lpu3TqsWbMGTzzxhHR9OTk5uPPOO6PK73nsscfw05/+FP39/dKm4rbbboPdbscrr7wyI9ccQwzTgcrKSsn2XtQUHTp0CC+99BKOHz+OxYsXS81ltHFCIn1sOO1LdAiMnMyLOs/+/n4UFxePCOSeTXi9XpSXlyM5OXlSrrIsyw45PE11UwsAbW1t6OrqmrCZ/NOf/oSf//zneOONN7B+/fpJ/55oEKuPMXxW0dbWhvj4eMnrwuv14q233sKBAwdw5MgR6HQ67Ny5E7t378b69euj2joSQuDxeGAymWA2m+HxeJCUlCQNpIafEY1GI+rr67Fs2bI5lQFcanTSaDTgsRxjo4V4ll22bNm458LTp0/jpptuwv/8z//gW9/61oxtdT/LNfIz1VCOBUIIOjs7JU3Rxx9/jCuuuAK7du1CWVkZsrOzo57MR2b3UBQ1xA2xqqoKMpkMhYWFc2Y3D1yMKJnoBTgRIg06bDYbFArFELv9if5mYsSB3+9HSUnJuBOuffv24fTp0zhx4sS0x6qICAaD0Gg0eOmll4YEy956662w2+04dOjQhPexcuVKrF+/Hn/605+kr91222145ZVXoFAokJCQgM997nP45S9/OSN03RhimG6ITeHhw4clTdG8efNQVlaG3bt3R50JKToEioenYDAoHSYSExNx/vx5DAwMzLlDoBidlJaWhkWLFl3ywWM8x9jhzfRYaG9vR2dnJ0pKSsZssAkh2L9/P+677z689tpruOaaay7peidCrD7GEMPo8Pv9ePfdd3Hw4EEcOnQIcrkcO3fuxE033YSrrroq6obL6/VK9dHlckk67dTUVJjNZpw/fx6rVq0aV7s502BZFpWVlaAoCkVFRZd8lhXfD0R2R6RjbLTxfaJp20Q6+7Nnz6KsrAwPPPAA7rzzzhlrJj/rNTLWUA4DIQS9vb04ePAgDhw4gFOnTqG4uFiazM+bN29StK9IzrxKpcLixYuRnJw8Jw6qwMUJ10Si5clC1FBFNtOi5nI0x1iRe+/z+cZtJnmex1133YXjx4/j+PHjM0rx6OvrQ1ZWFk6dOjVkwn/vvffi5MmT+Pjjj8f9+TNnzmDdunX4+OOPh/Dln3vuOWg0GuTn56O1tRX3338/dDodTp8+PWfRAzHEcKlwOBx47bXXcPDgQbz55pvIyMjArl27cNNNN2H16tVRN5diFrDJZILX6wXDMCgoKEBmZuacOKgCgMvlQkVFBbKysiaMDZgMIjVUZrMZgUAAycnJUo0c7fGK1N+Jmsl//OMf+MEPfoDDhw+Pmmc2XYjVxxhimBihUAjHjx/HgQMH8Morr4DjOOzYsQO7d+/Gpk2bomam+Xw+ybfDbrcDAHJycpCXlzdnDqqhUAgVFRWQy+XTHlEiOsZaLJYh0qqxEhZEydZEzWRlZSV27NiBH//4x7jnnntmVG/6Wa+RsYZyHBBCYDKZ8PLLL+PAgQN47733sGLFCqm5XLhw4YRPTnHaHRcXB7VaDYvFApZlx6R9zST6+vrQ1NQ04xMukdYgTp6GO8bSNC3pSCOF3KPdz7333osjR47gxIkTyM/Pn7FrBqZeDL75zW/i9OnTqKmpGfd2bW1tKCgowLvvvovrrrtuWq49hhjmAm63G2+88QYOHDiA119/HYmJidJkfs2aNRPWNpZlUVVVJdUIm80Gt9stTapTU1NnTRrgdDpRUVEhGV3MFESam9hcjuYY29nZiba2NpSUlIzpAE4IwYsvvoh9+/bhwIED2LJly4xdMxCrjzHEMFmwLIsPPvgAL774Il555RV4vV5s374du3btwubNmyf00IiMcMrOzobD4cDg4CDi4uIk9ttssTmCwSAqKiqgUqmwatWqGV2K+P1+6fwoOsaKZ2adTieZSU4k2aqtrcW2bdtwzz334L777ptx86LPeo2cO97lJwAURSE9PR3f/va38a1vfQs2mw2HDh3CgQMH8OCDD2LRokUS7Ws0TZEYyJ2dnS1NuxcvXiwFw7a0tAyhfc1kPIfomlhUVDTjeZc0TSMxMRGJiYlYtGiRJEBvb29HXV0d5HI5KIpCcXHxuM3kj3/8Yxw+fBjHjx+f8WYSgOS2ZjKZhnzdZDJNSA32eDx47rnn8MADD0z4e+bPn4/k5GRcuHDhsioGMcQwWeh0OuzZswd79uyB1+vF22+/jQMHDuDzn/88NBqNZFixfv36EbVNPKAoFAqsXbsWDMNg4cKF8Hq9MJvN0gAsPj4eaWlpMxrPIbomzp8/H3l5eTPyO0RQFAWdTgedTof58+cP2UQ0NzdDqVQiGAxixYoV48ZJvfLKK9i3bx+ee+65GW8mgVh9jCGGyUImk2HTpk3YtGkTfv/73+PUqVM4cOAA/vM//xN2ux1bt25FWVkZbrjhhhGNIc/zaGhogN1ux9q1a6XvR5qAtba2Sj4WorRqJpomMTpJp9NFLXGYClQqFXJycpCTkzNEWtXR0QG5XI5gMIi8vLxxN5ONjY3YuXMn7rzzzllpJoFYjYxtKC8BhBDY7XbJSvrtt99GXl6e1FyuXLkSZ8+ehdvtxoIFC8Y8oIi0L5EWK3LIxcPTdNG+urq60NraitWrV89pZiMhBFVVVXA6nVCpVHC5XDAYDNLkSSyYhBD8/Oc/x9///nccP34cS5YsmbVrXLduHdauXYvHH38cgFDUc3NzsW/fvnEF1fv378e3vvUt9Pb2Tshr7+npQW5uLl555RXs2rVrWq8/hhguB/j9fhw9elTSFDEMI20uN2zYgM7OTrS3tyM9PX3cQG6/3y/VRzGeQ8y6nC7a1+DgICorK7Fw4ULk5ORMy31eKtra2tDe3g69Xg+n0wm1Wi3Vx0jHWDGU+x//+AduuummWbu+WH2MIYapg+d5nD17VjKFNBqNuP7667F7925s3boVFEXh5MmTSExMRHFx8ZhRbZHNVmTiQFpaGuLi4qalifL7/SgvL4fBYMCyZcvmTK4FCJrJqqoqxMXFwev1jukY29LSghtvvBG33XYbHnzwwVmNVfks18hYQzkNcDqdOHLkiJRTlJycDKPRiP/93//FrbfeGvULUKRBmUymaaN9tbe3o6OjA8XFxTAYDJd0H9MBQgjq6+vhdDpRUlICpVKJQCAwxG5fqVTi8OHDEpXr+PHjWLFixaxe5/PPP49bb70VTz/9NNauXYvHHnsML7zwApqampCWloa9e/ciKysLv/71r4f83NVXX42srCw899xzQ77udrvx85//HJ///OeRnp6O1tZW3HvvvXC5XKitrZ2RTM8YYricEAqFcOLECUlT5Pf7QdM0vvCFL+Chhx6Keuso1guTySTRoMTm8lKzH0VTh8WLFyMrK+uS7mO60N3djQsXLki1ejTH2BMnTkClUuE3v/kN9u/fj1tuuWVWrzFWH2OIYXohZnCLzWV7ezsyMjKQlZWFf/3rX0hKSpr2xIFoIUYnJSYmRu3sPVOw2+2oqKiQYu4iHWNFKVl9fT2CwSD++Mc/4otf/CIeeeSRWW+AP8s1MtZQTjP++Mc/4vvf/z42bNiAM2fOICEhQaJ9ibSuaODz+SS3L6fTifj4eKm5jOYARghBW1sburu7xzV1mA2M1kwORygUQnNzM/bt24eKigqkpaXhlltuwcMPPzzrjrhPPPGEFEpbVFSE3//+91i3bh0AIYR23rx52L9/v3T75uZmLFmyBG+//Tauv/76Iffl8/mwe/duVFZWwm63IzMzEzfccAN+8YtfjJuXFEMMn0acPn0aW7duxbJly9DV1QWPx4Pt27ejrKwM1113XdRbRzE422QywWazXVJ8kRiEPdcW/MBFSUJxcfGoLBLR5O273/0u3n33XdA0jZtvvhm//OUvZz2LLlYfY4hhZmA0GrFp0yYQQqDRaNDQ0IBrr70Wu3fvxvbt25GYmBh1cymaJJrN5kuKLxL9P1JTU7F48eI5byYrKyuxYMGCUVkkYrbno48+imeffRY2mw1btmzBfffdhw0bNsz69X5Wa2SsoZxm/OMf/0BOTg42btwIn88naYpee+01qNVqKafoyiuvjLpREmlfZrMZdrsder1emjyNdgATMzb7+vpQUlIyZnbZbIAQIukASktLx5ymEELw+OOP4ze/+Q0OHz4Mu92OM2fORMUnjyGGGD4ZqKqqwqlTp/Cd73wHHMfh9OnTOHDgAF5++WUMDAxgy5Yt2L17N2644Yaot44sy8JqtcJkMg2hfQ2niUbCZDKhrq5uwiDs2YDYTK5evXrcoOr33nsPe/bswWOPPYalS5filVdewY9+9KMZ18THEEMMs4OBgQE8+uij+NnPfgaZTIaWlhYcOHAABw4cQE1NDa655hqUlZVh586dSE1NnVTigMlkkuKLxPoYSRONhNvtRnl5OTIzM7FgwYI5bSYdDgcqKirGbCZF9Pb24oYbbsANN9yA73//+zh8+DCuvvrqGcvkjWEkYg3lLCEYDOLdd9/FgQMHcPjwYdA0jR07duCmm27C1VdfHbVeMhgMSs3lwMAAdDrdEEE2IQTNzc2wWCwoLi6+ZCrYdIAQgsbGRgwMDKC0tHTMzSohBE8//TQeeOCBGQ3ljiGGGC5P8DyPc+fOSbSvvr6+IZqi8cxpIsFxHGw2m9RcymSyIZN5iqLQ39+PxsZGrFy5EikpKTP8yMZHb28vmpubJ2wmT506hZtvvhm/+c1v8M1vfnNOD3gxxBDD7EJknIlZ6eXl5Vi/fj3Kysqwa9cuZGZmRlUTRP8P8Qw5WuKAy+VCeXk5cnJyMH/+/MuimSwoKBiXiWE0GrFlyxZs2LABf/nLXy6rKI3PEmIN5RwgFArh5MmTeOmll/DKK68gFAphx44dKCsrw7XXXhs1J1qkfZnNZthsNqjVatA0jWAwiNLS0jkNB59MM/nMM8/g/vvvx5EjR3D11VfP8pXGEEMMlxN4nkd1dbXUXLa1tWHz5s0oKyvD9u3bo9YD8TwvaRDFbFytVguHw4HCwsI5DQcHLsY4TeS8LYZy/+IXv8C+fftizWQMMXyGQQhBV1cXDh48iIMHD+L06dNYs2aNZAqZk5MTdXMpJg6YTCYEg0EYDAbY7XbMmzcPBQUFs/BoxobT6UR5efmEzttmsxk33ngjiouL8be//S3WTM4hYg3lHIPjOHzwwQdSc+lyubBt2zaUlZVh8+bNUWuKgsEgqqur4XK5QAiBUqmUDCvGon3NFAghaGpqgs1mm7CZnK1Q7hhiiOGTB5Ey/9JLL+HgwYNobGwcoimK1rCC53m0tLSgp6cHDMMMcQdMSkqadeOGaJtJMZT7v/7rv3D33XfHmskYYohBAiEEfX19ePnll3Hw4EG8//77KCwsxO7du1FWVhb1hlG8n8bGRsjlcrAsi6SkJCkbd7oSB6KFuCWdN28e5s2bN+btrFYrtm/fjqVLl+Jf//rXrPttxDAUc+f/GwMAgGEYbNy4EY8//jg6Ozvx+uuvIz09HT/60Y8wb9487N27FwcPHoTH4xnzPnieR1NTE0KhEK666ips2rQJixYtQiAQQEVFBd5//300NTVhcHAQMz0/ECm3VqsVJSUl4zaTL7zwAu655x4cOHBgxprJJ598EvPmzYNKpcK6detw5syZMW+7f/9+UBQ15L/h108IwU9/+lNkZGRArVZj8+bNOH/+/IxcewwxfNZBURSWL1+On/3sZ6iqqkJdXR02btyI/+//+/9QUFCAnTt34s9//jNMJtO4ta2rqwv9/f0oLS3Fpk2bUFhYCJlMhqamJpw8eRK1tbUwm83gOG7GH1N/fz+amppQWFg4bjNZW1uLXbt24d57752xZjJWH2OI4ZMLiqKQlZWFffv24ejRo+jt7cUdd9yB999/HyUlJbjyyivxP//zP2hqahq3Pg4ODkrGMBs3bsQVV1wBvV6Prq4unDx5EhUVFejp6UEwGJzxxyQ2k3l5eeM2k4ODgygrK0NBQQH+8Y9/zFgzGauR0SO2obxMwfM8ysvLJdpXb28vNm/ejN27d+PGG2+UNEU8z6OmpgZ+vx/FxcUj4kV4nh/i9iVO5tPS0pCQkDCtk3lCCFpaWmA2m1FaWjrudvXgwYP41re+heeffx7bt2+ftmuIxPPPP4+9e/fiqaeewrp16/DYY4/hxRdfRHNzM1JTU0fcfv/+/fh//+//obm5WfoaRVFDTDv+53/+B7/+9a/x7LPPIj8/Hz/5yU9QW1uLhoaGGQtdjyGGGIaCEIL29nZJU3T27FlceeWV2LVrF8rKyoZoitra2tDV1YXi4uIRWsxI2pfZbIbf70dycjLS0tKQnJw87YcUo9GI+vp6FBUVjZs11tDQgBtvvBH79u3DT3/60xlpJmP1MYYYPp0ghGBwcBCHDh3CgQMH8O6776KgoECixUbmSVqtVtTU1GDJkiXIzMwccV9er1eqj5eSODAZuN1unDt3Dnl5ecjPzx/zdg6HAzt37kRaWhoOHjw4Y9EZsRo5SZBLwBNPPEHy8vKIUqkka9euJR9//PG4t3/hhRfI4sWLiVKpJCtWrCBHjhwZ8n2e58lPfvITkp6eTlQqFbnuuutIS0vLpVzapxIcx5HKykry4x//mCxbtowolUqybds28vjjj5PNmzeT/fv3E7vdTjwez7j/uVwu0t3dTcrLy8nrr79Ojhw5Qs6cOUM6OjqIy+Wa8OfH+8/tdpOKigry5ptvEovFMu5tn3vuOaLRaMjLL788o3+3tWvXku9+97tD/o6ZmZnk17/+9ai3f+aZZ4jBYBjz/nieJ+np6eThhx+Wvma324lSqST/93//N23XHcMnG7H6OLvgeZ50dnaS3/72t+Tqq68mMpmMrFu3jvzqV78ie/fuJT/+8Y+J0WiMqoYZjUZSU1ND3n33XXL48GHywQcfkPPnz0dVXyf6r62tjRw+fJh0dnaOe7uKigqSlpZG7rvvPsLz/Iz93WL1MYa5QKw+zj7sdjv5+9//Tnbv3k3UajVZuHAh+cEPfkB+/vOfkz179pDW1taoapjNZiONjY3k5MmT5NChQ+T48eOkvr6eWK3WKddHk8lEjhw5Qmpra8e9ndFoJOvWrSPXX3898fl8M/p3i9XIyWHSDeVzzz1HFAoF+etf/0rq6+vJHXfcQeLj44nJZBr19h9++CFhGIb85je/IQ0NDeS//uu/iFwuJ7W1tdJtHnroIWIwGMgrr7xCqqurya5du0h+fv6MP1k+ieB5ntTX15P777+fxMXFkfT0dHL99deTJ598knR2dhK32x11A9jb2ys1ga+++ir56KOPSFtbG3E6nZNuJisrK8kbb7wxYTP50ksvEa1WS1544YUZ/TsFAgHCMMyIpnXv3r1k165do/7MM888QxiGIbm5uSQ7O5vs2rWL1NXVSd9vbW0lAEhlZeWQn7vmmmvI9773vel+CDF8AhGrj3MLnudJb28vefzxx0lOTg5Rq9XkyiuvJA888ACprq6Ouj56PB5iNptJXV0dOXr0KDl06BB5//33SXNzMxkcHLzkZrKjo2Pc21VXV5PMzExyzz33EI7jZuzvFKuPMcwFYvVx7uF0Oslzzz1HrrjiCsIwDCktLSXf+973yPHjxye1WBgcHCTNzc3k/fffJ4cOHSJHjx4ldXV1xGw2X1Iz+frrr5OampoJa/KGDRvIpk2biNvtntG/U6xGTh6Tbign27HfcsstZPv27UO+tm7dOvLNb36TEPLp79hnCvv27SPXXXcdqaqqIg8++CApLS0lMpmMbNq0ifz2t78lra2tk2ou+/v7SXV1NXn77bfJ4cOHyalTp8iFCxeIw+GY8GerqqrIG2+8MWEhOXz4MNFqteSf//znjP99ent7CQBy6tSpIV//z//8T7J27dpRf+bUqVPk2WefJZWVleTEiRNkx44dRK/Xk+7ubkKI8OYGgPT19Q35uT179pBbbrllZh5IDJ8oxOrj5YHnn3+e5Obmko8//pg8/fTTZMuWLUQul5OVK1eSn/zkJ+TcuXOTai6tVitpaGggx48fJ4cOHSInT54kjY2NxGazTfiz7e3tUTWT9fX1JCcnh+zbt29Gm0lCYvUxhrlBrD5eHmhvbydxcXHk5ZdfJgcOHCBf/vKXicFgINnZ2eQ73/kOefvttye1WLDb7eT8+fPkww8/JIcPHybvvPMOqampIUajccI6azabyeuvvz7hwM9qtZJNmzaRDRs2EJfLNeN/o1iNnDwmJaALBoMoLy/H5s2bpa/RNI3Nmzfj9OnTo/7M6dOnh9weALZs2SLdvr29HUajcchtDAYD1q1bN+Z9xgD88pe/xKuvvorCwkLcd999OHPmDFpaWrB9+3a88MILWLx4MbZu3Yonn3wSPT094wqyKYqCXq/HggULcOWVV2LdunXQ6XTo6OjAiRMnUFlZid7e3hGCbEIIWltb0dfXh5KSknEzL9977z18+ctfxhNPPIEvfelL0/Z3mE6sX78ee/fuRVFRETZu3IiDBw8iJSUFTz/99FxfWgyfAMTq4+WDL3zhCzh79izWrl2Lb3zjG3jjjTdgNBpx9913o7KyEldddRXWrFmDX/ziF6itrQXP8+Pen1qtRl5eHtauXYsNGzYgLS0NZrMZH3zwAc6cOYOOjg54vd4RP2c2m1FbWzth5mVPTw+2b9+Obdu24Xe/+92su85Gg1h9jGEqiNXHywfz5s3D+fPnsXv3btx888345z//CaPRiD/84Q/wer344he/iEWLFuGuu+7CyZMnwbLsuPcnl8uRmZkp1Yb58+fD4/Hg7Nmz+PDDD3H+/Hk4HI4R51CPx4Nz584hMzMTBQUFY2rF/X4/vvSlL8Hv9+O1116DTqebtr/FdOKzXiMn5ThgtVrBcdwQgSkApKWloampadSfMRqNo97eaDRK3xe/NtZtYhgJg8Ew5HOKopCfn48f/OAHuOeee9DT0yPlFN1///0oKSlBWVkZysrKkJeXN+YLl6Io6HQ66HQ6FBQUwOPxwGw2o6enB42NjUhISJAE2T09Pejt7UVpaem4zeSHH36IW265Bf/7v/+LW2+9dVas75OTk8EwDEwm05Cvm0wmpKenR3Ufcrkcq1evxoULFwBA+jmTyYSMjIwh91lUVDQ9Fx7DJxax+nj5gKbpIaYJFEUhMTERt912G2677TY4HA689tprOHDgAD73uc8hMzMTu3btwk033YSioqJxGzqVSoWcnBzk5OQgGAxKhhUXLlyATqeT6qPP50NtbS1WrFgxqoGDiP7+fmzbtg3XXnstnnzyyVlpJmP1MYbZRqw+Xl4Y/jdTqVTYuXMndu7ciWAwiOPHj+PAgQO49dZbQQjBjh07sHv3bmzcuHGE+WMkZDIZ0tPTkZ6eDo7jpCzgiooKyGQyqT7K5XJUVFQgMzMTCxYsGPNcGAgE8O///u8YGBjAO++8M+LsO1OI1cjJ4/Ibg8YwZVAUhZycHPy///f/cOLECXR1dWHv3r04evQoCgsLcc011+CRRx7B+fPnJ4wR0Wq1yM/Px7p163DVVVchOTkZRqMR7733Htrb25GZmTnuAejMmTP4whe+gAcffBB33HHHrOWoKRQKlJSU4OjRo9LXeJ7H0aNHsX79+qjug+M41NbWSi/8/Px8pKenD7lPp9OJjz/+OOr7jCGGGOYeBoMBX/nKV3Dw4EGYTCb86le/Qk9PD7Zt24aVK1fiRz/6ET7++OMJN5cKhQLZ2dkoLi7Gxo0bkZubC6fTiY8++ghVVVVITk6GRqMZs86aTCZs374dV1xxBf785z/PWih3rD7GEEMMY0GhUGDLli3405/+hL6+PrzwwgtQq9X49re/jfz8fHzzm9/E66+/Dr/fP+79MAyD1NRUrFixAhs3bsTSpUvBsiyqqqpw+vRpyOVyJCYmjlkfQ6EQbrvtNvT29uKtt95CQkLCTDzcURGrkZPHpBrKS+nY09PTx719ZMce7X3GED0oikJGRga+853v4J133kFfXx++/e1v4/Tp01i7di3Wr1+PX//612hoaJiwuRRpX0lJSZDJZJg3bx6cTic+/PBDfPzxx2hvbx9C+6qoqMBNN92En/3sZ/jud78766Hcd999N/785z/j2WefRWNjI7797W/D4/Hg9ttvBwDs3bsX9913n3T7Bx54AG+//Tba2tpQUVGBr371q+js7MTXv/51AMLf8q677sIvf/lLHD58GLW1tdi7dy8yMzOxe/fuWX1sMVx+iNXHTyZ0Oh1uueUWPP/88zAajXj00UcxMDCAm2++GUuWLMEPfvADfPDBBxNmVIq0r+zsbABATk4OKIqSaF8tLS1DaF9WqxU7d+5EYWEh9u/fP2vNpIhYfYxhNhGrj59MyGQyXHvttfjDH/6A7u5uHD58GImJibj77ruRn5+P22+/HYcOHRqV8h8JmqaRnJyM/Px8qdGMj49HXV0d3nvvPdTX18NisUhDPJZl8fWvfx2tra14++23x41ZminEauQkMVnR5dq1a8m+ffukzzmOI1lZWeOKqnfs2DHka+vXrx8hqn7kkUek7zscjpioeobB8zwZGBgg+/fvJzt37iQqlYosWbKE/PCHPySnT58e0+2rrq6OHDlyZIgN/+DgIGlpaSEffPABOXToELnnnnvI3r17SUJCAnnwwQdn1Pp+Ijz++OMkNzeXKBQKsnbtWvLRRx9J39u4cSO59dZbpc/vuusu6bZpaWlk27ZtpKKiYsj9iRblaWlpRKlUkuuuu440NzfP1sOJ4TJHrD5+euDz+cirr75Kbr/9dpKYmEjS0tLI17/+dfLaa6+NGSPS1dVFXn31VXLhwgXpa06nk7S3t5OPP/6YvPbaa+TRRx8le/bsIStXriRlZWUkGAzO2WOM1ccYZhOx+vjpAcdx5PTp0+See+4h8+fPJ1qtltx0003k2WefHTOmyWq1kjfffJOUl5dLBjzDEwdeeOEFsnXrVnLjjTeSRYsWkf7+/jl9nLEaGT0uKTZEqVSS/fv3k4aGBvKNb3yDxMfHE6PRSAgh5N///d/Jj370I+n2H374IZHJZOSRRx4hjY2N5Gc/+9mots/x8fHk0KFDpKamhpSVlZGkpCSSm5sbVVbRn/70J7JhwwYSHx9P4uPjyXXXXTfi9rfeeisBMOS/LVu2TPbhf2rhcDjIP//5T3LzzTf//+y9d5icV3n3/3n69NmqVe/FsuRuy5YMGF6DDYTX9puE0I0JOARMCOENBPgFSIDYGJM3lAQIBGwSagwYEkIgxNgGRzbYWL1asqRV29Vq6/Snnd8fZ57x7mp700o6n+vaS9qZp5zZnb3n3O17i0QiIVasWCH+7M/+TPzyl7+sOZe//vWvz3Amh1L7+tSnPiVWrlwpTNMUa9asmfYRIQrFbEHZx/MT13XFz372M/FHf/RHYs6cOaKxsVG8+c1vFg899FBtjMiuXbvOcCYHf+VyOfGjH/1IXHHFFcJxHDFnzhzx0Y9+9Gy/PIViRlD28fwkCALx9NNPiw984ANi9erVIhaLiVe96lXin/7pn8SJEydEPp8Xhw4dOsOZHGpqwI4dO8SLX/xikUwmRTweF7//+79/VoNuirEzbodSiPF57ELIwbSrV68Wtm2LdevWDTuYNvLY169fLyzLGvOsote//vXiH/7hH8SWLVvEnj17xB133CGy2aw4duxY7Zg3v/nN4uUvf7k4efJk7aurq2siL/+8J5fLiX/9138Vr3nNa0Q6nRZLliwRr3jFK8TSpUvF0aNHR5SAjoZyf+hDHxK5XE48+OCDA94fCsX5jrKP5zee54lHHnlEvPOd7xTz588XdXV14pZbbhGZTEY89thjI9rHkydPimuvvVbcdNNNIpfLiV/84hfi+9///tl+SQrFjKHs4/lNGIZi+/bt4iMf+YhYv369sG1b3HjjjaKlpUXcd999I866zOVy4m1ve5tYtmyZOHTokNi+fbv4whe+cLZfkmKMTMihnG7GO6toML7vi3Q6Lb7+9a/XHnvzm98sbr311qle6nlPsVgUf/iHfyhs2xYrV64U8+fPF3/8x38sfvrTn54xozIayv3nf/7n0z5HTaG4UFH2cfbg+7743Oc+JyzLEmvXrhWZTEa8+tWvFt/85jdFR0fHAPvY3t4urr/+evGSl7xEFAqFs710heK8RNnH2UMYhuKRRx4RDQ0NYunSpcKyLHHjjTeKz33uc+LQoUMDMpW5XE68853vFIsWLRIHDx4820tXTIBZp/I6kVlFgykWi3ieR0NDw4DHH330UebMmcOaNWt4xzveQWdn55Su/XxE13UOHDjA448/zo4dO/jyl7+M67q84Q1vYNWqVbz73e/mkUce4cCBA7zqVa/i937v97j33ntn5Rw1heJcR9nH2YVhGOzYsYMvfelL7Ny5k//6r/9iyZIlfOQjH2Hp0qW84Q1v4MEHH6S9vZ0/+IM/QNd1/u3f/o1EInG2l65QnHco+zi70DSNw4cP87u/+7scOHCA3bt387KXvYxvfOMbrFq1ile+8pV86Utf4vjx43z4wx/mhz/8IQ8//DDLly8/20tXTABNiFGkPWeYEydOsGDBAjZv3jxARvf9738/jz32GL/+9a9HvcY73/lOfvazn7Fr1y5isRgA3/nOd0gkEixbtoyDBw/yoQ99iFQqxRNPPDHj6nrnGkKIMxRaPc/j0Ucf5fvf/z4PPfQQp0+f5tWvfjXf+ta3lDOpUEwTyj7OPoayj2EYsnXrVr73ve/x0EMPsX//flasWMHTTz9NJpM5SytVKM5vlH2cnQy2kUIIWltb+f73v88PfvADNm/eTDwe5+mnn2bt2rVncaWKSXE206NDcfz4cQGIzZs3D3j8fe97n9iwYcOo599zzz2ivr5ebNu2bcTjDh48KADx3//935Nar0L2FP393/+9KJfL03qfv//7vxdLlixRjfaKCxZlH889wjAU3//+98Xu3bun9T7KPioudJR9PPeIei5/9KMfTet9lH2cfmZdKmkis4oiPv3pT/PJT36S//qv/+LSSy8d8djly5fT1NTEgQMHJr3mCx3TNLnrrrtwHGfa7vHd736X9773vXz0ox/lmWee4bLLLuPmm2/m1KlTQx7/6KOP8rrXvY5HHnmEJ554gkWLFnHTTTdx/PjxAce9/OUv5+TJk7Wvb3/72xNe4z//8z/T2NhIpVIZ8Phtt93Gm970pglfV6GIUPbx3EPTNH73d393WiPvyj4qFMo+notomsYll1zCLbfcMm33UPZxhjjbHu1QjHdWkRBC3HvvvSKTyYgnnnhiTPc4evSo0DRt2qMiiqnhXGi0LxaLIpvNDhiT0t7eLkzTFL/4xS+m7D6KCxtlHxWDUfZRoZAo+6gYjLKPM8Osy1ACvPe97+UrX/kKX//619mzZw/veMc7KBQKvOUtbwHg9ttv54Mf/GDt+HvvvZcPf/jDfO1rX2Pp0qW0tbXR1tZGPp8HIJ/P8773vY8nn3ySw4cP8/DDD3PrrbeycuVKbr755rPyGhVj51xptI/H47z+9a/n/vvvrz32jW98g8WLF/PiF794wtdVKPqj7KOiP8o+KhTPo+yjoj/KPs4gZ9ujHY7xzCpasmTJGbXMQG1gdLFYFDfddJNobm4WlmWJJUuWiDvvvFPcfffdY66pvv/++8+4vuM4A46J5iHNnTtXxGIxceONN4r9+/dP6c/lQmSyfRFCCPGOd7xDLF++XJRKpdpj3/72t2vDkB966CGxdu1acc011wjf9ye81meeeUYYhlGbYXXJJZeIj33sYxO+nkIxFMo+KiKUfVQoBjIT9rGtrW1cfXnKRp4dlH2cOWatQzndfOc73xG2bY95+O39998vMpnMgMG2bW1tA4755Cc/KbLZrPjhD38otm3bJm655RaxbNmyAW9Cxfg51xrtr7zySnH33XeLp59+Wui6LlpbWyd1PYViplH28dxB2UeFYuZRNvLcQNnHmeOCdSjHW1N9//33i2w2O+z1wjAUc+fOFffdd1/tsZ6eHuE4jvj2t789Zeu+EKlUKsIwDPHQQw8NePz2228Xt9xyy4jn3nfffSKbzYqnnnpqTPdqamoSX/rSlya6VCGEEF/4whfE6tWrxV133SVuuummSV1LoTgbKPt47qDso0Ix8ygbeW6g7OPMMSt7KKebidZU5/N5lixZwqJFi7j11lvZtWtX7blDhw7R1tY24JrZbJZrr712zHXaiqGxbZurrrqKhx9+uPZYGIY8/PDDA2ZNDeZTn/oUH//4x/npT3/K1VdfPep9jh07RmdnJ/PmzZvUel//+tdz7NgxvvKVr/CHf/iHk7qWQjHTKPt4bqHso0Ixsygbee6g7OPMcUE6lKdPnyYIAlpaWgY83tLSQltb25DnrFmzhq997Wv86Ec/4hvf+AZhGLJp0yaOHTsGUDtvPNdUjJ1zqdE+m83ye7/3e6RSKW677bZJXUuhmGmUfTz3UPZRoZg5lI08t1D2cWYwz/YCzhU2btw4IJqxadMm1q5dyz/+4z/y8Y9//Cyu7MLgNa95DR0dHXzkIx+hra2Nyy+/nJ/+9Kc149va2oquPx8f+eIXv4jruvz+7//+gOt89KMf5a/+6q8wDIPt27fz9a9/nZ6eHubPn89NN93Exz/+8SmZp3n8+HHe8IY3TOtsToVitqDs49lF2UeFYnajbOTZQ9nHmeGCdCgnM/w2wrIsrrjiitpg2+i89vb2ASnv9vZ2Lr/88qlZ+AXOu971Lt71rncN+dyjjz464PvDhw+PeK14PM7PfvazKVrZ83R3d/Poo4/y6KOP8oUvfGHKr69QTDfKPp6bKPuoUMwMykaeeyj7OP1ckCWvE62p7k8QBOzYsaP2h79s2TLmzp074Jp9fX38+te/HvM1Fec+V1xxBXfccQf33nsva9asOdvLUSjGjbKPiulC2UfF+YCykYrp4Jy3j2dbFehs8Z3vfEc4jiMeeOABsXv3bvFHf/RHoq6uribj/KY3vUl84AMfqB3/13/91+JnP/uZOHjwoPjtb38rXvva14pYLCZ27dpVO+aTn/ykqKurq82mufXWW5Xks0KhOOdQ9lGhUCiGR9lIhWIgF6xDKcT4ht++5z3vqR3b0tIiXvnKV4pnnnlmwPWiobQtLS3CcRxx4403in379o1r+O0NN9ww5JDdV77ylbVj3vzmN5/x/M033zx1PxiFQnHBM1P2UQihbKRCoTjnUHtIheJ5NCGEmKFk6AXJd7/7XW6//Xa+9KUvce211/KZz3yGBx98kH379jFnzpwzju/q6sJ13dr3nZ2dXHbZZfzTP/0Td9xxBwB33HEH7e3t3H///bXjHMehvr5+2l+PQqFQTCXKRioUCsXQKPuoOFe4IHsoZ5L/9//+H3feeSdvectbuPjii/nSl75EIpHga1/72pDHNzQ0MHfu3NrXz3/+cxKJBK9+9asHHOc4zoDjzhVD8A//8A8sXbqUWCzGtddey29+85sRj3/wwQe56KKLiMViXHLJJfzkJz8Z8LwQgo985CPMmzePeDzOS1/6Up599tnpfAkKhWIKUTZyIMpGKhSKCGUfB6Ls4+xFOZTTyESH3/bnq1/9Kq997WtJJpMDHn/00UeZM2cOa9as4R3veAednZ1Tuvbp4Lvf/S7vfe97+ehHP8ozzzzDZZddxs0338ypU6eGPH7z5s287nWv461vfStbtmzhtttu47bbbmPnzp21Yz71qU/xuc99ji996Uv8+te/JplMcvPNN1Mul2fqZSkUigmibORAlI1UKBQRyj4ORNnHWc5ZLbg9zzl+/LgAxObNmwc8/r73vU9s2LBh1PN//etfC+CMevlvf/vbtabthx56SKxdu1Zcc801wvf9KV3/VLNhwwZx11131b4PgkDMnz9f3HPPPUMe/wd/8Afid37ndwY8du2114q3v/3tQgjZbzB37lxx33331Z7v6ekRjuOIb3/729PwChQKxVSibORAlI1UKBQRyj4ORNnH2Y3KUM5ivvrVr3LJJZewYcOGAY+/9rWv5ZZbbuGSSy7htttu48c//jFPPfXUGbN0ZhMTibQ98cQTA44HuPnmm2vHHzp0iLa2tgHHZLNZrr322jFH7xQKxbmLspHKRioUiqFR9lHZx5lEOZTTyGSG3xYKBb7zne/w1re+ddT7LF++nKamptqA3NnI6dOnCYKAlpaWAY+3tLTQ1tY25DltbW0jHh/9O55rKhSK2YOykc+jbKRCoeiPso/Po+zj7Ec5lNPIZIbfPvjgg1QqFd74xjeOep9jx47R2dlZG5CrUCgU5wLKRioUCsXQKPuoOJdQDuU08973vpevfOUrfP3rX2fPnj284x3voFAo8Ja3vAWA22+/nQ9+8INnnPfVr36V2267jcbGxgGP5/N53ve+9/Hkk09y+PBhHn74YW699VZWrlzJzTffPCOvaSJMJNI2d+7cEY+P/p1I9E6hUMwOlI2UKBupUCgGo+yjRNnH2Y9yKKeZ17zmNXz605/mIx/5CJdffjlbt27lpz/9aS3F3traysmTJwecs2/fPh5//PEhSxUMw2D79u3ccsstrF69mre+9a1cddVV/OpXv+LXv/41//t//2/mz5+Ppmn88Ic/HHV9jz76KFdeeSWO47By5UoeeOCBM44Zr0zzUEwk0rZx48YBxwP8/Oc/rx2/bNky5s6dO+CYvr4+fv3rX48avVMoFLODmbKRn/rUp/j93//9WWkfQdlIhUJxJso+SpR9PAc426pAiqnjJz/5ifj//r//T/zgBz8QgHjooYdGPP65554TiURCvPe97xW7d+8Wn//854VhGOKnP/1p7ZjvfOc7wrZt8bWvfU3s2rVL3HnnnaKurk60t7ePe33f+c53hOM44oEHHhC7d+8Wf/RHfyTq6upEW1ubEEKIN73pTeIDH/hA7fj/+Z//EaZpik9/+tNiz5494qMf/aiwLEvs2LGjdswnP/lJUVdXV1Msu/XWW8WyZctEqVQa9/oUCsX5y2y3j9H1lI1UKBQzjbKPyj5OFuVQnqeMxSC8//3vF+vWrRvw2Gte8xpx8803174fr0zzaHz+858XixcvFrZtiw0bNognn3yy9twNN9wg3vzmNw84/l//9V/F6tWrhW3bYt26deI//uM/BjwfhqH48Ic/LFpaWoTjOOLGG28U+/btm9DaFArFhcFstY9CKBupUCjOLso+Kvs4ETQhhDibGVLF9KBpGg899BC33XbbsMe86EUv4sorr+Qzn/lM7bH777+f97znPfT29uK6LolEgu9973sDrvPmN7+Znp4efvSjH03fC1AoFIppQtlHhUKhGBplHxUT4YLooezo6GDu3Lncfffdtcc2b96Mbdtn1FdfSAwnqdzX10epVJqQTLNCoTi3UPZxaJR9VCgUyj4OjbKPisGYZ3sBM0FzczNf+9rXuO2227jppptYs2YNb3rTm3jXu97FjTfeeLaXp1AoFGcNZR8VCoViaJR9VCjGxgXhUAK88pWv5M477+QNb3gDV199NclkknvuuedsL+usMpykciaTIR6PYxjGhIfqKhSKcwdlH89E2UeFQgHKPg6Fso+KwVwQJa8Rn/70p/F9nwcffJBvfvObOI5ztpd0VhlNUnkyQ3UVCsW5hbKPA1H2UaFQRCj7OBBlHxWDuaAcyoMHD3LixAnCMOTw4cNnezlTTj6fZ+vWrWzduhWAQ4cOsXXrVlpbWwH44Ac/yO233147/o//+I957rnneP/738/evXv5whe+wL/+67/yZ3/2Z7VjRhuqq1Aozg+UfVT2UaFQDI2yj8o+KkbhbMvMzhSVSkVcdtll4s1vfrO4++67xZw5cyY8C2e28sgjjwjgjK9IRvnNb36zuOGGG8445/LLLxe2bYvly5eL+++//4zrjiTTrFAozn2UfVT2UaFQDI2yj8o+Kkbnghkb8r73vY/vfe97bNu2jVQqxQ033EA2m+XHP/7x2V6aQqFQnFWUfVQoFIqhUfZRoRidC6Lk9dFHH+Uzn/kM//Iv/0Imk0HXdf7lX/6FX/3qV3zxi18828ubNpYuXcodd9xxtpehUChmMco+KhQKxdBcqPZRoRgvF4RD+eIXvxjP83jBC15Qe2zp0qX09vbyjne8Y0bWcPDgQd7+9rezfPlyYrEYmUyG66+/ns9+9rOUSqUZWcNk+cpXvsINN9xAS0sLjuOwbNky3vKWt5yX/QQKxYWCso9Tj+d5XHzxxWiaxqc//emzvRyFQjFBZoN9VCjOBS6YsSFnk//4j//g1a9+NY7jcPvtt7N+/Xpc1+Xxxx/nfe97H7t27eLLX/7y2V7mqGzZsoVly5Zxyy23UF9fz6FDh/jKV77Cj3/8Y7Zt28b8+fPP9hIVCsU5xvliH/vz+c9/viZmoVAoFArF+Y5yKKeZQ4cO8drXvpYlS5bwi1/8gnnz5tWeu+uuuzhw4AD/8R//cRZXOHa+8IUvnPHYbbfdxtVXX80///M/84EPfOAsrEqhUJyrnE/2MeLUqVN87GMf4y/+4i/4yEc+craXo1AoFArFtHNBlLyeTT71qU+Rz+f56le/OmCzFLFy5Ur+9E//FIAbbriByy67bMjrrFmzhptvvrn2fRiGfPazn+WSSy4hFovR3NzMy1/+cp5++ukR19PT08N73vMeFi1ahOM4rFy5knvvvZcwDCf0+pYuXVq7rkKhUIyH89E+fuADH2DNmjW88Y1vHPM5CoVCoVCcy6gM5TTz7//+7yxfvpxNmzaNeuyb3vQm7rzzTnbu3Mn69etrjz/11FPs37+fv/zLv6w99ta3vpUHHniAV7ziFbztbW/D931+9atf8eSTT3L11VcPef1iscgNN9zA8ePHefvb387ixYvZvHkzH/zgBzl58iSf+cxnxvSaOjs7CYKA1tZWPvaxjwFw4403julchUKhiDjf7ONvfvMbvv71r/P444+jadroPwCFQqFQKM4HzvbckvOZ3t5eAYhbb711TMf39PSIWCwm/uIv/mLA4+9+97tFMpkU+XxeCCHEL37xCwGId7/73WdcIwzD2v+XLFlSmyEkhBAf//jHRTKZFPv37x9wzgc+8AFhGIZobW0d0zodx6nNKGpsbBSf+9znxnSeQqFQRJxv9jEMQ7Fhwwbxute9TgghxKFDhwQg7rvvvjG9PoVCoVAozlVUyes00tfXB0A6nR7T8dlslltvvZVvf/vbiOp40CAI+O53v8ttt91GMpkE4Pvf/z6apvHRj370jGuMFBV/8MEHeeELX0h9fT2nT5+ufb30pS8lCAJ++ctfjmmd//mf/8lPfvIT/vZv/5bFixdTKBTGdJ5CoVBEnG/28YEHHmDHjh3ce++9Y3o9CoVCoVCcL6iS12kkk8kAkMvlxnzO7bffzne/+11+9atf8aIXvYj//u//pr29nTe96U21Yw4ePMj8+fNpaGgY13qeffZZtm/fTnNz85DPnzp1akzXeclLXgLAK17xCm699VbWr19PKpXiXe9617jWo1AoLlzOJ/vY19fHBz/4Qd73vvexaNGicd1XoVAoFIpzHeVQTiOZTIb58+ezc+fOMZ9z880309LSwje+8Q1e9KIX8Y1vfIO5c+fy0pe+dNLrCcOQl73sZbz//e8f8vnVq1eP+5orVqzgiiuu4Jvf/KZyKBUKxZg5n+zjpz/9aVzX5TWveU1tLu+xY8cA6O7u5vDhw8yfPx/btie9ToVCoVAoZhvKoZxmXvWqV/HlL3+ZJ554go0bN456vGEYvP71r+eBBx7g3nvv5Yc//CF33nknhmHUjlmxYgU/+9nP6OrqGlcUfsWKFeTz+SnZfPWnVCpRqVSm9JoKheL853yxj62trXR3d7Nu3boznrv77ru5++672bJlC5dffvm4r61QKBQKxWxH9VBOM+9///tJJpO87W1vo729/YznDx48yGc/+9kBj73pTW+iu7ubt7/97eTz+TPk53/v934PIQR//dd/fcb1ot6iofiDP/gDnnjiCX72s5+d8VxPTw++7w97ru/7dHd3n/H4b37zG3bs2DGscqJCoVAMx/liH9/97nfz0EMPDfj6x3/8RwDuuOMOHnroIZYtWzbs+QqFQqFQnMtoYqRPWMWU8G//9m+85jWvIR6Pc/vtt7N+/Xpc12Xz5s08+OCD3HHHHbXNR8Qll1zCzp07Wbt2Lbt37z7jmrfffjv/8i//wite8Qpe/vKXE4Yhv/rVr3jJS15SKz1dunQpL37xi3nggQcAKYv/whe+kO3bt3PHHXdw1VVXUSgU2LFjB9/73vc4fPgwTU1NQ76Gnp4eFi5cyGte8xrWrVtHMplkx44d3H///cRiMZ588klWrVo1tT84hUJx3nM+2MehOHz4MMuWLeO+++7jz//8zyf+A1IoFAqFYrZz9gRmLyz2798v7rzzTrF06VJh27ZIp9Pi+uuvF5///OdFuVw+4/hPfepTAhB33333kNfzfV/cd9994qKLLhK2bYvm5mbxile8Qvz2t7+tHTNYFl8IIXK5nPjgBz8oVq5cKWzbFk1NTWLTpk3i05/+tHBdd9j1VyoV8ad/+qfi0ksvFZlMRliWJZYsWSLe+ta3ikOHDk3oZ6JQKBRCnPv2cSjU2BCFQqFQXCioDOUs5bOf/Sx/9md/xuHDh1m8ePHZXo5CoVDMGpR9VCgUCoVi9qAcylmIEILLLruMxsZGHnnkkbO9HIVCoZg1KPuoUCgUCsXsQqm8ziIKhQL/9m//xiOPPMKOHTv40Y9+dLaXpFAoFLMCZR8VCoVCoZidqAzlLCIScairq+Od73wnf/M3f3O2l6RQKBSzAmUfFQqFQqGYnSiHUqFQKBQKhUKhUCgUE0LNoVQoFAqFQqFQKBQKxYRQDqVCoVAoFAqFQqFQKCaEcigVCoVCoVAoFAqFQjEhlEOpUCgUCoVCoVAoFIoJoRxKhUKhUCgUCoVCoVBMCOVQKhQKhUKhUCgUCoViQiiHUqFQKBQKhUKhUCgUE0I5lAqFQqFQKBQKhUKhmBDKoVQoFAqFQqFQKBQKxYRQDqVCoVAoFAqFQqFQKCaEcigVCoVCoVAoFAqFQjEhlEOpUCgUCoVCoVAoFIoJoRxKhUKhUCgUCoVCoVBMCOVQKhQKhUKhUCgUCoViQiiHUqFQKBQKhUKhUCgUE0I5lAqFQqFQKBQKhUKhmBDKoVQoFAqFQqFQKBQKxYRQDqVCoVAoFAqFQqFQKCaEcijPMmEY4nkeYRgihDjby1EoFIpZgxACz/MIgkDZR4VCoVAoZinm2V7AhYoQgiAIcF2XUqmEYRgYhoFpmpimiWEYaJqGpmlne6kKhUIx4wRBgOd5FItFNE07wz7quq7so0KhUCgUswBNqLDvjDM46u66Lpqm1bKUkSOp6zqWZQ3YQCkUCsX5jBAC3/fxfX+AfRRC1L4iZ9I0TSzLUg6mQqFQKBRnEZWhnGGiqHsYhjUHMXIeo++jTdPhw4fJ5/OsXbu2tnmKnEvlYCoUivON/i0A8Lxt7O8oRvaxp6eH3bt3c91119WOUxlMhUKhUChmHuVQzhBR1H337t00NTXR2NhYi7oPJspQRmWvhmHUspqu6wKcsXlSDqZCoThXEUIQhiGHDx/G932WLFkyoGoDqDmH/e0jULOPQRAQBAGVSmVAhUdUKqtaCBQKhUKhmB6UQzkD9I+69/T0kE6nx7yxGVwCGz0WXdPzPACVwVQoFOck/VsACoUCnueNyT4OdjAHV3gEQYDv+wMcUNWjrlAoFArF1KMcymmkv+MXlbiOx8kbbrPTPzo/+D7DOZhRhF6hUChmC5HdCoJg3PYRGLHCY7CD6ft+zVmNbGiUwVQBOIVCoVAoJo5yKKeJ/lF3oNbPM1yZ60jXGY2RHMxI0ELX9SEj9AqFQjHT9M8gRsG28drHsdov5WAqFAqFQjG9KIdyGhgcde+/8ZmODdNQ543FwRxcIqscTIVCMd0MF2yD8dnH6FrjZTQHM1qTaiFQKBQKhWJsKIdyChku6t6fmdgwDaa/gxldLwxDXNflqaeeYvXq1SSTSeVgKhSKaWWwyvVo9nEkGzRV9mk4B9PzPPbs2UM2m2XOnDnKwVQoFAqFYhiUQzlFjBR1789MZCjHcs3Iwczn87U1ua47QCFROZgKhWIq6D9bEqbGPkbXnWr6O5iVSqVm01WPukKhUCgUQ6McyilgtKh7f2bDhmkww2UwK5XKiGNK1AZKoVCMxlCzJUcSHBts80Y6drqJVLZHayHo72CqHnWFQqFQXGgoh3IS9I+6CyHGNEj7bGcox3rPyGmMyr+EEGc4mP1nvKkh4gqFoj9DqVxPpX2M7jHTjEcErb/Ij7KPCoVCoThfUQ7lBAnDEN/3Ry1xHcxs2zCNdv3+2YTBDma5XK4dEzmYUXReOZgKxYXLWFsABjPbA25DoUTQFAqFQnGhoxzKcdJ/sxCVQ41nY3Aubpj6oxxMhUIxEiOpXI/GbAy4jddujSSCpnrUFQqFQnE+ohzKcRBF3Xfv3k1dXR1z586d0GZjNm2YYHKO61gczLa2Npqbm2tKssrBVCjOPyKV6yNHjlAoFFi9evW02sdzwX4MFkEbysHs7u7Gtm0aGhqUg6lQKBSKcxLlUI6R/lH3UqlEIpGY0Af+eDdMZ6NHaDIM5WAeOXKk5kyWy2V0XT8jQq8cTIXi3KV/iavruhSLxWm3j9F9zyWGcjDb29tJp9Mkk0klgqZQKBSKcxLlUI7CcLMlI8XC8TJ4w9TV1UVbWxt1dXXU1dVh2/ZULX1MTPeGLHq90eYoyl4GQUAQBMOWgCkHU6E4Nxiscq3r+oTtymD7WCqVeO6550gmkzQ0NBCPxwccCxMrS50tROuOWgQGi6D1t49KBE2hUCgUsxXlUI7AcMISU7FhEkLw3HPPcfDgQZqbmzl06BCFQoFUKkV9fT0NDQ2EYXjOReCHov+Gb7gh4oMdzGjj1H/Gm9pAKRSzh+FUrqfKoWxvb2fHjh3U19eTy+XYv38/juNQX19PfX09yWRyKl/OkMyEsxr97ED1qCsUCoXi3EQ5lMMQ9bgMJXc/2Qyl7/s8/fTTlEolNmzYQCwWQ9d1XNelu7ubrq4u9u3bR7lcxjAMnnvuOerr68lms7WNx1QyExumkWbJDeVg+r6P53m15yPHsv+MN7WBUijODiOpXE/WPoZhyJ49ezh+/DgXX3wxjY2NgMyE9vb20tXVRWtrK/l8HoD9+/fT0NBAfX09pnnufaSNxT7CyA7mYPuoHEyFQqFQzCTn3qfvNBNlyyIV16E+mCcTga9UKnR0dNDc3MwVV1xRcyQBbNumpaWFlpYWAI4dO8aRI0colUocP36cIAioq6urRejT6fQ5sWkYT5R/PA5m/xlv0+FoKxSKgYxF5Xoy9tHzPAqFAkIINm7cSCKRqNlH0zRpbGysOZiFQoFf//rXCCE4ePAgpVKJdDpds4/ZbHbAOI/ZykTsIwx0MMMwrDmYqkddoVAoFDONcij7MdbZkrqujzsCH5W4tre3U1dXx2WXXTZqJN9xHGzbZt26dQghKBQKdHd3093dzeHDh9E0rbZ5qq+vn5BQ0EyU1E6mbEw5mArF7KB/iSswbJXARDOUp06dYu/evei6znXXXVdzmIYT6rEsC4BVq1ZhGAblcrlmH3fv3o3v+2Sz2QEBuNloF6bCPsJABzNqIVAiaAqFQqGYCZRDyfhnS45XidB1XbZv306hUGD+/Pnj+jCP7qNpGqlUilQqxaJFiwjDkFwuR3d3Nx0dHRw4cADTNGulX/X19cRisTGvcTqZyj6k4RzMjo4ODh06VMv6DlZInI0bSYXiXKG/ynX/v7+hGG+GMgxD9u/fz9GjR1m8eDEdHR1jyiwOtimxWIx58+Yxb948hBAUi8Wag9na2ooQYkAALplMjmqXZqqHcrrto+d5/PKXv2TDhg3Ytn2GyI9qIVAoFArFZLjgHcqxRt37o+t6LYs5Gl1dXWzbto26ujo2bdrE4cOHqVQqA44ZqX9mpDVks1my2SxLly6t9Rd1d3dz/Phx9u7dSywWG+BgRhH98dxnsvR3iKeD6PcVXT9SkvU8D9d1a88pB1OhGD/DqVyPxHgqOEqlElu3biUMQzZt2kSxWOTUqVPjXuNgNE0jmUySTCZZuHAhQohaAK6zs5ODBw9iGEZNAK2+vn6AguxMMp1Oa3/7GARBzXmMfqeqR12hUCgUU8EF7VCOJ+ren7FkKIUQHDp0iIMHD7J69WoWL15c+5Ae6tzhNhVjjfQbhkFDQwMNDQ0A+L5PT08PXV1dHDp0iJ07dw5QkM1mszMiYBGtf7oduDAMB2ye+kfoo9+z53kAZziY0SZLoVA8z3Aq16Mx1gqOU6dOsWPHDlpaWli7dm2tbHU8c3rHiqZpZDIZMpkMS5YsIQzDWgDu5MmT7Nu3b4CCbENDw4yNcJqpLChQC6aNVwRNBeAUCoVCMRIXpEM5kah7f0brEepf4rphwway2eyAcwdvmIbbUExmk2GaJk1NTTQ1NdXW1NXVRXd3N/v27aNSqZDJZADo7e2tlUFNNdOdoYyIfo+DiTZH/dcTOZhDZTD7R+gViguVkVSuR2M0+9i/xHXdunXMnz9/wPPj7eueSB+4rus15xFkAK6/guzu3btJJpN4nkcul6OpqWnaAnAz4VBGv4/B91E96gqFQqGYCi44hzIqfTp58iSLFy+ekDjBSD1C3d3dbN26tVbiOrjMdLz9l1MlmmPbNnPnzmXu3LmALDXr6uqit7eX/fv3s2fPnmlRkD3bDuVgxuJg6rp+xgZKOZiKC4Eo2LZ//34WLFiA4zhTah9LpRLbtm0jCAI2btxIKpUa87mDmcq/ycEKsp7n1YJv7e3tHDt2bNoUZGfKoRzLZ91oDiagetQVCoVCcQYXlEMZRd0LhQLPPfccS5cundB1huoRGq7EdTDjcSinc5MRj8eZP38++/bt45prrsH3/SlXkIXZ51AOpr+DGa11KAdz8AZKOZiK843+Ja4HDhygpaVlQsJew2UohypxHW4d4133VGNZFnPmzKG1tZVFixaRzWanTUF2Jh3K8TKSyI/qUVcoFApFxAXhUA6eLWma5oQHb8OZTqHruuzYsYN8Pn9Gietw6xnP2qeLmVCQne0OZX/6y+/DQAfTdV0qlQpCCHp6epgzZw62bSsHU3Fe0N8+Rg7ERG3P4HPDMOTZZ5+ltbV1yBLX/syWgNtgpkNBNmI2O5SDGUuPek9PD9lslkQioXrUFQqF4gLhvHcohxKWmMgcyf70P7+7u5tt27aRzWaHLHEdzGzdMPVnKhVkzyWHcjBDOZiu67Jz506uv/76mjKwymAqzlWGU7k2DGPCNrK/fYxKXH3fH7LEdTDjbQmIXsN0MlTf4VQqyEaCYtPJdN1jqBaCZ599lpUrV9aeVz3qCoVCcf5zXjuUUdR9cP9ItOGZaGQ4Kul67rnnOHjwIKtWrWLJkiUTUkAcyxy06Wa0NQylIBtF50dTkJ2M4z4W8vk83/zmNzl27Bgve9nLpvVe0e9d07SaAmRUAlapVHBdl1/84hf8wz/8A7/4xS+mdS0KxWSJMkvR32j/gMxkgm6Rjevo6GD79u2jlrgOde5Y7zPdjGUtk1WQnc4MZRiG/OAHP2D79u2sXr2a66+/flruExGNJLFtG8uyzuhRz+VyXHfddezbt68mCqdQKBSKc5/z0qEcHHUfLEbQP+M0kQ/yMAzp6+ujWCxyzTXXUFdXN+Zzh9owDbeGiUTrZwLTNGlubqa5uRkYXkE26r2E6dv8PfbYY/zgBz8gl8thmiYvetGLpuU+EUEQDHg/9c9iRuWwhUJhWtegUEyG/pv84cRaJlvFEQQBW7duHbXEdTDjHasUPTebGKuCbHTMdFRXROzdu5dvfOMbdHR0sHfvXt74xjdOy336E4Zh7TN2cAazWCzS1tZ21mZ+KhQKhWJ6OO8cysFR96EGNEcf3hP5IO/u7ubAgQMAYypxHcxsisBPp4Jsd3c3XV1dHDt2DICtW7dOuYIsQCaTIZFI4LruuBz7iRIEwbCZFk3TKBQKJJPJaV+HQjERxjpbcqIOZblcZvv27QBcd911pNPpcZ0/Efs42xzKwQxWkHVdl56entpnied57Nmzh6ampilXkE2n0ySTSbq7u2fEPsLINrJQKBCPx6fs9SkUCoVidnDeOJRjibpH9Hcox3P9w4cPc+DAAebOnUsulxu3Mwlnb2zITBKPx2sqsrlcjt/+9rc0NjZOuYIswAte8AIsy2L//v1cc801U/xKzmSkzRLIDdNofWIKxdkgso+Ds+xDMRGHMipxbWxspK+vb0KBlfHax5koe53qe9i2zZw5c5gzZw4gqyzmzJlDqVSacgXZRYsW8eEPf5gtW7bUAn7TSdRKMtx68/n8uASLFAqFQnFucF44lGONukeM16GMVFxzuRzXXHMNlUqFXC43obXOpgzlTN1H13UWLVo0rIKsZVkDHMzxjCrQNI3rrruObDaL4zjT+Cok/cu5hqJYLCqHUjGriFSufd8f8zzC8TiU/VVcL774Ypqbm2lra5tQMGy2ifLMVEBvzpw5JJPJKVeQBbjooovIZDK0t7dP4yuQRJ/BI2UoVQWHQqFQnH+c8w7leKLuEVEZ7Fg2TD09PWzdupVMJsP111+PZVl0dHRMWrAiwvM8jh07RiqVIpvNnhHZPRczlP0Z3Ps0lQqy/ZnOPqT+RO+z4VAbJsVsYrzBtoixOpTlcplt27bheV5NxTXqXR8t+DIU/ctYI1t54sSJ2tiiSOxr8PHnMv1t5FgUZE3THOBgjqUfcaSs4VQSvWdGcyjPh9+bQqFQKJ7nnHUoJxJ1789oG6b+Ja6DVVwnI5bT/9y+vj62bNmCYRhUKhXCMKSurm6Aoup0MhPO6mjCR5NRkO3PTDqUI22S8/m8ylAqZgXDqVyPhbE4lFGJ65w5c1i7dm3t73IyvY39z/U8j23btlEoFNA0jV27dpHJZGr2IurPPN+Cbv2ZrIJsxEwH3IZ7PSrgplAoFOcn56RDOdGoe390Xa+dP5jBJa6DxQymQlL/+PHj7N69m2XLlrFw4UJAftgOnmXm+z5tbW3DbhRmO+NV0h2PgmwkYBH9PmaDQ1koFGhpaZn2dSgUwzGayvVYGMk+hmHIgQMHOHLkCBdffDELFiw449zouPESrbOnp4ft27eTzWbZsGEDuq5TqVQGiH2FYUgYhrS1tTFv3jzi8fi0zVqcLqKxQ2O9x3gUZBsaGqirq8M0zVlTwaECbgqFQnF+cs45lEEQ0N7eTkdHB2vWrJnwh/1wTmFU4ppOp9m0adOQTtxkMpRCCEqlEnv37uWKK66gsbER13UBiMViNDY2snjxYoIgoK2tjf3793P06FF27949IFNXV1c3ZUp5071hmsz1R1KQPX78OEEQUFdXR6lUIp1OT+tMNxhbD6WKwCvOFmEYUigU2LlzJ5dffvmQKtdjQdf1IW3cUCWug4nuN5mxI08//TSrV69myZIltSyr4zik02nmzZsHUBP86u7u5ujRo1iWVcte1tfXT0kAbqaynxO1WSMpyD777LOUy+WaqrZhGKMGxCbLaNdX9lGhUCjOT84Zh7J/1D2KVE/GcRjsUAohOHLkCM8++ywrV65k6dKlI6rETmSzVCwWefbZZwmCgBe+8IXE4/HahiWfz/Pwww/T19fHddddx+rVq2vZt2uuuQbXdWuO1O7duzl27Bj19fVcdNFFtfKv2diXMtW9O/0VZIUQtazuoUOHaG1trf1cpkJBdijG0kOpIvCKmaa/yrXv+5w6dQqYuKMylI07ffo027dvp6mpiauuumrI0vP+54/XGfN9nz179gBwxRVX1KoUNE0jCAIee+wxDh8+zEUXXcT1119PJpPBMAwuuugi4vF4zZE6cuQIjz32GLZts3btWpqbm6d0FMdUEv2MpspGDVaQLZfLNXGfXC7Hr371qylTkB2KsVRwKIdSoVAozj/OCYcyDEN836+VYJmmOWw51ljpv2HyPI8dO3bQ19fH1VdfXSsnGo6JZCijfqO6ujo0TTtDSKGjo4MjR47g+z4HDx5k9erVAzYZtm3T0tJCS0sLzzzzDIcPH+a5554bcK0oMt/Q0DBmoYbpZjozhpqmkUqlSKVStLe3s2jRImKx2JQpyA6F2jApZhuDWwAiEavRgh8j0b/ktX+J69q1a2sl+iMxVtGziEKhwJYtW2pOajabHfB8Lpfj0KFDtdmNV199de1vWQiBYRi1TF1raytPPPEEnZ2deJ7H/Pnz8TyPbDZby2CmUqlZEYCbaodyMLFYjHnz5pHP5wnDkIULF06pguxgRqvgUAE3hUKhOD+Z1Q5l/6h75JhEpTuTKaeC5x3KsZS4DnfuWF/DwYMHOXToEBdffDGO49Si8P2ZM2cOy5cvp7e3l5UrVw44fzD5fB7f9zFNk0WLFnHRRReRy+Xo6uqqlclORCl1OpjuEtSIaCMzmoJsPB4fsIEa788lCIIRz1EbJsVMMpLK9WRsZGTjohJX13W57rrrakI4Yzl/rAGrtrY2du7cyaJFi1i+fDkPP/zwGcdkMhlWrFjBkSNHWLNmTc2ZHMq2FAoF8vl8TfBr06ZNFIvFWi/24cOHa72IkYM5UqBpulsCpvse8Lx9nA4F2f6oHkqFQqG4MJm1DuXgqHv/XqCoF2QyaJpGe3s77e3to5a4DnXuWDZrruuyfft2isVibTPW2dl5xkYrkop/xStege/7I26WANavX0+xWCQWi7F8+fIBoziWLVuG7/v09PTQ1dXFoUOH2LVrF+l0eoBSav8P/dncQzlWhhKdGKuCbOR4D6cgO/g+w0XgoxlyKkOpmG5GUrmO/j8ZG6nrOoVCgc2bN4+pxHUwY6niiOZXHj16lPXr1zN37tyaXR1sX3Vd5yUveQmlUukMJ2fwfZYtW8YLXvACCoVCrY80cqSiWbh9fX10dXXVlFKjQFNkC6LXOt1VHDPpUA4OhI1HQXasfalj6aGM+j0VCoVCcf4wKx3K0WZLjqRAOBY8z6NUKlEqlcZU4jqYsUTfe3t72bJlC5lMho0bN9Y+zEfaaJmmecambahjGxoaePnLXz7svU3TpKmpiaamJgAqlQpdXV10dXWxa9eumpBNVFY23YPBz5ZDOZiJKsj2ZyxjQ8aaxVEoJsJYVK4nYyOFEPT29tLT08O6detYsGDBhFRiRwq6VSoVtm7dWhP3iYIwQ92n/7imRCIx5HP9icVi3HDDDSOura6urqbeHQWaurq6OHjwIKVSqWYHgiCYVvsY/YxmwqEczT6OpCB75MgRdu3aNaSCbH/G0hKgMpQKhUJx/jGrHMqxzpacTMlrb28vW7duBWD58uXjdibhzOHb/RFCcOzYMfbu3Ttk5nM8/ZdTtclwHId58+Yxb968mpBNV1cXnZ2dADz55JMD+i8dx5mS+4LcyMwWh3IwY1WQjX4uqVRKifIozipjnS05URtZLpfZvn07+XyepqamMfVLDsVIVRzd3d1s3bqVhoaGMzKfQ82wHM1eTtbhGxxoKpfLtQBcpVJh586dA+zjVAp9zWSGcrz2cawKsv0DcGNxKFXATaFQKM4/Zo1DOZ7ZktFmaTzZr8Eqrl1dXZMSrIAzyx+DIGDXrl2cPn2aK6+8csjSnvEK+kx1dLy/kM3cuXN5/PHHueiii+jt7eXYsWPs2bOHZDJZKxWd7HiSmcxQjvc+oRCUvYCiG1D2QopugCuSFJIxsOfS3ZfnVL7IGq2Hw4cP165v2zZ1dXVnbCyjklflUCqmmv4q15Fy8kjv94m0BfRXcW1sbCSXy014vUNVcfS3wWvWrGHRokXDZiRnOujWn1gsxvz585k/fz5PPPEEixYtIggCTp8+zcGDB2vjSSIHczLjSfprA0wnU6G2PZyCbHd3N7t378b3fWzbxrZtent7h1SQVS0BCoVCcX4yKxzKMAxxXXfUqHtE9CEVBMGY+no8z2Pnzp309vbWSlx7e3snnOUcKopeKBTYunUrhmGwadOmYUUeJrJZmm6nrKGhgaamJlasWIHnebUsXVQG2l8dcbzjSWbaoSx5ASU3oOwFlKrOYsUPKVQC3CCQ//rSefSCkFAACDS0ap+RThgIHEsHNF55+QqaUg5hGJLL5dixYwe5XI6nnnrqDAXZaNM/WYfynnvu4Qc/+EFNRGjTpk3ce++9rFmzZthzHnjgAd7ylrcMeMxxHMrl8qTWojj7DFa5HquNHKtDKYTgwIEDHD58mLVr17JgwQJaW1snJeozOEPp+z47duygt7eXa665plZuOty5ZzPoNphEIkFDQwNLliypCX11dXXR2tpamw8cOZjjDcDNlH2cjOLvcEQKslHlS7FYrH1mbNu2bUgF2akQ5VH2UaFQKGYfZ9WhjEpcIxXXsWyUgNoH9lg2PFGJayqVGqDiOtFZktG5/e9/6tQptm/fzoIFC1izZs2IH9xnO/oOQKUPrXAa4nPOeMqyrAFR6GKxWHMwW1tbAQaINAzuaRrMZDdMrh9Q8kKKrl/LIpYjp7HqGLp+wJZWn32cJETHtgxcL8C2DHw/IG6b+CLE1nUCITB0DV2DmGXgBwG6blB2A+KOSb7ik3JMchWfl6xppikly38j4SPTNFm1ahXZbHaAguwzzzzDBz7wAebOncvDDz/MK1/5ypoY0Hh57LHHuOuuu7jmmmvwfZ8PfehD3HTTTezevXvE6H4mk2Hfvn2172fDWATFxBlO5XosjLXkNSpxrVQqA1RcJ2Mfo/P7z9jdsmULsVhsTEra47WRU+1QVioVWltbaWlpOeO5wUJf/ecD7927tzaeJLKRowXgZsqhnOp5wIOJhI/i8Th1dXUsW7bsDAXZv/mbv6FYLPI///M/bNiwgaVLl07oXso+KhQKxezjrDmUE4m6R/TPUA6HEILW1lb279/PihUrWLZs2YDrT2bDFF3H930OHz7MkSNHWL9+PfPmzRvTuePdAE3ppsPNYz/zVbS+44g5lwELRjw8kUiQSCRYsGBBTWa+q6uL9vZ29u/fj+M4tQ3WUGM4Bq/dC6SDWHJlBrHiBRTcEC8IyZV9glDQW/LQNegsuMQtk1zFI1118tKOScUPiVs6fgiWqeH7IaYGlqHj2BZlPyQZM8mXA5LReTGT3rI8v+SGxE0dPwyxLZ0ghFTMJAgFdXGLih9y8bw0F8/LnPHziHqEBm8sC4UCd911F5/4xCe49957ueuuu+js7ByXMmbET3/60wHfP/DAA8yZM4ff/va3vOhFLxr2PE3Tav2ginOb/iWuwLicSRhbyWtnZyfbtm2jsbGRK6+8csB7dbIOZWTnTp48yc6dO1myZAmrVq0a02uYDidxPHzrW9/it7/9LUuWLOHqq68e8dj+84GFEJRKpVr/5ZEjRwaMJxlqDMdsEi2bCiL7OJSCrOu6vO997+ORRx7hC1/4Ar/5zW+44oorxn0PZR8VCoVi9jHjDuVkou4RmqaNWNIVlbj29PQMq+I6FQ7l9u3bayqFYy3jOdsZSq3UjZZvR3PzGD1HQIzuBPdfT7RJiOY8dnZ109bRyZY9B+jJFTHjSWLJDHY8heHEOdHeS1dvmV2Vo5S9AD8QaBoEQmBqGqEAywChaZiaLD41NI1ACFKOiReEZOMWRTeoZQ5TjnQOU45Jb9EnYYMXgqHr+KEgZmoEIWTjBl4AdbXzDXIVn6Rt0lfxidsGvUWfuKXjCemQBqGgPmHxgpVNQ/4MhisdSyaTvOhFL0IIwbZt28jlchNyJoeit7cXYNSMZz6fr23errzySu6++27WrVs3JWtQzBz9Va4jWzdeRrKP/WfjXnTRRSxcuHBIldjJOpRHjx6lt7eXyy67rFbxMNZzz1aG0vM8nnvuOXK5HCdOnKCvr29c46SiANzChQtrZfL9x5NE84Gj/vTzzaEcbqySruu87GUvo7u7mwcffJA1a9aMe8blcCj7qFAoFGefGXUoowju0aNHWbx48aTECIYr6YpKXJPJJNdff/2w5VWT2TD19PQAUgXv6quvnvL5bIOZyg2TSM8nWLQR/fR+3IWb4LnKGcIyJU9mEZ8XrAmqpaUh+YpPIAR9JR8NQXfRJ+nEyIsW4nVwujuPnsvTmz+FQYBuWBi6RrxUImY7GJpGiEATgBAIAX6oEQqBDyBCTFNufDRAr/68krZBEAqycQvXD0k6JiU3wDF18mUPISDvBjgmuICpaQhkaWsoBDHLQAhBJmbhByFx28APZPmrF0IYCkIheyp/59JmLGPozddIcyjz+XxNqCcayTJZwjDkPe95D9dffz3r168f9rg1a9bwta99jUsvvZTe3l4+/elPs2nTJnbt2jVhpU7FzBK1ABw6dIimpibi8fiU28eov61cLg8ocR3MZOxjuVwmn89jmiabNm0atSx+MGcz6GZZFq94xSt4+OGHWbdu3YTL1uH5Mvmh5gNH40kSiQRBENDT00Mmk5k2p2+m1LbHqoI9VcJlyj4qFArF7GDGHMoo6l4qldi7dy9LliyZ1Afc4JKu0UpcB6PrOq7rjuue/e+haRpr1qwZdxZquM3SUJHqqdoARAI1ssw0pJJ9CYXYiyiWymzp2E1lVxu9JR9N0+jMu6RiBrmSTzJmUqp4JBzphNmmLA81dbk2PxRk4iauH5KJyf7DlqY68hWfOXNMOvNFKrlucsUKx4+2IjSTdDJOLB4nnUyBoWMbsvTU0jTKXoBt6pS9EMfSKbgBtqERhlIkJxCgI++v6xoJu9pLa2hoGtIR1TT8IEQzoFSprjmQfZReGBIzDQxdk19aiK7J0lnDhLIfcsPqRhqTQwchouz6cA5loVCYcgXDu+66i507d/L444+PeNzGjRvZuHFj7ftNmzaxdu1a/vEf/5GPf/zjU7omxdTTX+X6ueeeI5VKjdsR689QJa8jlbgOZqIOZXQPwzBYtmzZhF7DYBs5mh2c6vLYTZs2sWnTJgA2b948ZdcdPB+4XC5z/Phxjh49yo4dOwjDkLq6uloGcyrHk8x0yetQuK6L53lTOjZE2UeFQqGYHUy7Qzl4tmTUYzdWhdbh6F/S1b/E9aqrrhpTVHm8Gybf99m1axddXV1cffXVPPPMMxNa91RkKF0/rGYRg37OYkjFC2oZxN6SjwZ0FVwSTtVBdKSDGHMsgjBECwN6KoKOnIuuaYQipC5uUvZDsnGTfCUg6VjkyvLcfNknZhkU3ZCYZRCGsnzV0uWmJ+1Y+KEsUS25AQ2pBMeLRbIpg0RdI5bwOd2bx+3p4UTbKVKOjR1PkE4ncZwY6ZiFF4Sk4wYVLyRpG7US16hUtbco+yHLbkDMrvZR6hqmrpGyDHwBjmngBoKUo5OvPF8qm3ZMekoeGcesPq5T8QWOoREIjdUtKS6ae2bfZET/ft+hyOfzJJPJKdsEvutd7+LHP/4xv/zlL8cdRbcsiyuuuIIDBw5MyVoU08dgleuJjPwYTH/7OJYS16HOH499FEJw6NAhDh48yNq1a2lvb5/w2s92W8BMEYvFaGxspL29nY0bN5LP5weI2JimWXMuJzueZDY4lPl8HmDKspPKPioUCsXsYVodyqFmS06VQxmVdI21xHUw49kw5fN5tm7dim3bbNq0CcdxRhzcPRKDR4G4rsuzzz6LZVk0NTWRD6TTU/FD8iWX7Z0hpd2nKPmCMBT0FD0cS6+pkRbKLqmYjReE2KZBKAS6BjqyDzETs6gEAZm4SaHik4hZFCs+jmVQ9EN8QVXpVEfXNLxQyKyggHTMxAsE2YR0EJMxs+aY5ivSuSyXfWKOSeDL++uAAOKWTiggaWsUy5CJWxQqGvNbmii5AS2GRldfntAvc/TkKbTQw3Hi1QxmklQihi9k/6PrSye1UPHJxGT/Y9ox6S3Jf7vLHpomqAQhliHvG7M0ggCycRMvFGRj0lFO2Sa5SkDc0ukt+cRMg95yQH3CZNOKM+eG9id6Hw+3YZqqGWtCCP7kT/6Ehx56iEcffZRly5aN+xpBELBjxw5e+cpXTno9iunD9/0zVK6nwqGM7GOlUmH79u2USiWuvfZaMpnhAyb9Gc/YEc/zauN0NmzYQDabpaOjY8KZw/4OZRiGHDp0CNd1aWxspK6u7gzHaDoFfKa7x7G/jkA6nSadTrN48eLaeJLu7m6OHj1aUzCdyHxgIQQVX6piU/LwgxA/FARBiBcK/EDghaF8PBD4Qj7mByFCyMoNTYOSG2DqGvmKj2nIVoOF9QlectHz/bEjOZSFQgFgUpn36PUo+6hQKBSzi2l1KKMP4sG9kpqmTXrDpGka7e3ttLW1sXz5cpYvXz6uD/6xOpRtbW3s2LGDxYsXs2rVqtpmZiocynw+zzPPPFPrlfrNniNs6QhpzCQwnTh16SQdJWjIV9B0o9pLaOIGwfMZxJhNvuITt02KFR/T0NAQ/RzEENvQCATVDKCQGT4vxDF0fAEhuiwTRQMNDDR0Q0OEAtMAISBhGfhCOpcVPyQdM8mVfRLV+8Ztk3zZw7EM/KqzGYRyQ2IZGjqQdkypqFpVam2sy1DxUzQ1aeRLLoFbpjtfwO/qQqCRTkgZ+lQyQaDbJB2DIKSmxJp2TAquj21oVEIDgUauHOAYGmVP1ER2NEDoGk61NzNdVXSNW9IBd0ydm9fNHbZvMmI0kZQoQzlZ7rrrLr71rW/xox/9iHQ6TVtbGwDZbLYmZHH77bezYMEC7rnnHgA+9rGPcd1117Fy5Up6enq47777OHLkCG9729smvR7F9BE5Q/1Vrk3TnBKHslAosHnzZurr67niiivGFcAbq33s6+urBfQ2btxYC+hN1D5G5wohcF231u+ZTqfZvXs3vu/XVFMn0984W/D8ADeEXMnDD6VjFwRC/j+wEek5JOPNWJ5LZ3cfJ072cXrPSVzPxY4lSadSmLEk8ViMih8iNEHFk73gXiCvJYCDh1z2Be1oRhe2oeH6sq2g7AYkHIOKL0jYsjIkZmt4AfK4QGBX7aiuQxiCoWmU3IB03OL6QeJlY2kJmGymVNlHhUKhmH1Me8lr/3lkwJRE4H3fp1wuUywWx1ziOtS6RtrwhGHI/v37OXbsGJdeeukZM8kGv66xEm0aT548ye7du1m6dCmLFy+mI1fmqb42ljhlOnsLVPI5jrd1EDfheHsH9Zk0jhMDU/YKhkKQdmQGMRMzKVX7DkuezNIFgRSZsQytWhaq44XV54QgbuuUyj5xXfYlGrqOG4RSYTUM8ULZZ1jxQtnnqMnexTCkOnJDCuRE9y96UignV5a9l/mqimq+7OOYmiwtNXXQpBBOzNRBA8uQpbOpuEPg2CRTGQSCSqVCqVSiuy/HyY4OLEMnmUySjMdJp9NYujw/5ViUih6OIdAQ2AYITa4zFALXFzimRrHskXBs/CAgZpsIITOqQQjXLq+nYZi+ycHviZGyApHgxGT54he/CMCLX/ziAY/ff//93HHHHQC0trYO2Jh1d3dz55130tbWRn19PVdddRWbN2/m4osvnvR6FNOHrutnbLAnax+FELXs1sUXXzymEteh1jWaQ3j8+HF2797NsmXLWLFixRljmSaToSwUCuzcuZNMJsOGDRtqmbxCoUBXVxenT5/m4MGDCCE4duwYYRjS0NAwZcrKYSidurIf0lf2CfIV6aCFovavGwiCQOAJ6bjVnhMCzxdV+yO/9wOBH4Z4gaw08UL5b75QoLurwl6/tdp2IGrtB5oGuiZrPgxNR2gahpnFaMgQC3zyhSLdnXkKhXY0TSMej8tZkIkEtmVhaBqGBUEosAwpcJawDTlWKZq5G7PIRZUf5ep4pWoVSm/JJ2Zp5MsBlqUjPEAIAkPHNDT+15pmbHPge3ckUZ6paglQ9lGhUChmH2dlDqVhGLX5auMliogLIVi+fPmEo9QjbZjK5TLbtm3D9302btw4ZNZpohH4aJO1e/duLrvsMpqbm+ktlHh032litoFhxFmaTFD0QhpKRZ7ZuYd5mkZfroAmQuLxGKlkklQqiWVZmIaGCKsZxDAkactRG7oOhBp+AIauUXQDYtVS2bhl4IYCU9cQQMySDmLCkEqq6FIoRyCze5VAYOpQ8GS02g1C6aAGIaYuy2NTjlRNzSasqkiPRb7ik7AN8m6AaWj0lj3ZF1nySTgmfhDimHKj5BjSkdU0jSAUxKwEiXgMvbGeYsWHwKO7L09XTy9HTpwim3CwYjEaMik8P8TUdUxDRzfkpixuQcUXZGI6eTcg6djk3eqokZJX3Th5XDQ3zZqWsYlEjKZgWCwWp8ShHMtG/NFHHx3w/d/93d/xd3/3d5O+t2JmGWpzPRmHMipxzeVyNDY2smjRogldZyT7GAQBe/fupa2tjSuuuKImMtOfyWQofd9n7969rFixguXLl9cE3TRNI5lM4sQTNM2dT75Q4t/+/d9J9hQ51pWnWHZJJJIkM1mSqQxOLE4owK06gEHVwRNCOooIqFTLOYsVaaPyFR/b1MmXfVIxk92HPQ4Gp/G0HtKOSb7ikXJMim5AMmZRcWXgzPWlAJgXiJpN1DWtZkOj70MhfyaWJsXELEP2f1u6RnWeEroGQXUMklct4y/7AbahUwxkgMwLNbLZOirJNHNbdHLFIn6lQk9vHx2nTqGbFulkAiceJ1UtMY3b8uM+aRt4oeyXrwRC9s170maXvYCkrVN2/drrkUJngiCUWcuyF/CqtfPJJgYG4SK9hJloCRgNZR8VCoViZjkrDuVESrqEEBw9epR9+/axfPnycc0HG4rhNkxdXV1s3bqVpqYm1q1bN+yH40Qi8FEJF8A111xDXV0dnh/w8z2nKFR8TFOvbUaSts5TOw5w7NB+CJZx1ZVX4AuolMv05Qu0dXQSswyceIK6VAInnsCxTcIgxLE0wlCT8x0F+GFYU0+1TZ39h1qpFPrINDSDgKIbELcNvPD5MtGYpRMEoBky0yc3OOALWRpb8gMsXa8ps3qBwDKkM2gbcjRIOm6Q7xVkbL2WycxVN2q56hzJnpJPplq6mqg6w7Yh50gmLLmm+qRDJbCoSycpuiGLdcGpnhy6X+HgsTZsLaTsQ3dXF4YdJ5uM4QUaTnUeZToqlY1ZVAJZKltyAxqSNi9cNfS8yaEYabMEU1fyqriwMU1zQgG3zs5Otm/fTn19PUuXLq3N55sIhiFL7Af3EJZKJbZs2YKmaWzatGnYWYITsY9RVUilUmHFihWsWLECoLYO1w/50dbjdBddNDSOHDnMM1vbyaZzrL+smbmNLbTm8oRdXfTmj2NrAiueIJtK4sQSxGM2QRiiVwNpmtBAk5lFQ5dl8nHT4ET7KU6faiNV10DClCrZ9ZlY1XZJkbK0Y9JX8qpCXzKz11dVxi66AXHHoOz6xC0TNwywDenEWbqGL2SQDxFiaFKx2jJl5YhpyDJ8ebwcl1TxQxK2QckNZICuug7ZR2+QqwSkkknypsOihnpyJQ8jcOnOFyl2dnLsxEksXdB+uotsKoUTd2rjkkxdtkPITOPz45UStvwZSTVs8AJBzJaO7fUrm1jUcGYfZPT7HstYJYVCoVCcX0y7QzkVEXjf99m5cyfd3d21Etft27dPqixs8Jw2IQSHDx/mwIEDrFmzhkWLFo06dmQ8Efi+vj62bNlSy2AlEgmEEPz3nnZO9JSxdPAqAaapY+iyxyVwKwgBwq+ACMgmUwTxGPV1dQgRkC+UqVSKHDvViSHaEaZNcyaJFUuQTsarpU46Gs+Xl3Z29/Dsnp3kCiXmNJ2med5CLFOnp+SRcgzyZdlT4/qi2mMpI+S6LtCQzq4QAj0EgcyE+qF0MoteiKWDKzQMHYJAkyVSaNJBDQWZuBxBEinBpqsiOQnHoLfkkbLlBi1pGxTckJgpo/S2rhEKjWQ1E7qwuY6KH9Iyt4W2ji60vh46cyXCSjfH0Egn41h2jFQqgWPZaBqgg2lo6GikYxY3r2sZtW+yP6M5lIVCYcrmTyouXMZrH4UQPPfcczz33HM123Xs2LFJ2ccoE9+/zLujo4Pt27czd+5c1q5dO2K2frwZStd12bp1K67rkkqlzhAP8sOQn+/ukBnE6t+s53qIwKXix7A0QSXUaG6oJ19J09Ji0NlXQPMrtHX2QHAKNJP6bArTjpHNJBECjOjvX8iAmRf67NqxnY7Tp6mrS7Nw0VLmO9EMXNn7XRezKPkB2ZhJwQ2eD5Q5z//bV5KBs56yR8o2alURhapTWPFDmWkMBAYyg2npsj3B1mXFiFN1MhO2gR+KASJplapQWdmT9y9UAlKOQaESkI7bFCo681uSFN2AJuFz8PBRHN/n0PET6GFAPCn7LtOpJIZpYVsGQRBKxzasBgcFOLqGLwTxahXLRXMzXLqwbsjf4WiiZVPVEqBQKBSK2cdZK3kd62YnKnGNx+M1hdXoGhMtqYKBDqHv++zYsYPe3t5a5nA0xiNtf+LECXbt2sXy5ctZunQpP//5zxFC8JtDXRztKpKwdYpugFUtOfWqpaCLVqwiny+wdMUqMukUfiCqKqYCMGmsS+H6SebO0egrVhBumc6+AvT0ctgXNGYS6FaM5ro0QjOwTR3HNLFNA1MLcWyLuCnV/NLVnpqkU+2lcSx6yh6ZmCUj7tbzvZghYJrSuUSTPTrV/yCQGU0RVoU1AjlapOIHSPdcR0M+F7d1hIBMzMAPZdlsxZeluWUvxDQ0Cm4gezn9EF3TMPoJPRm6vFYqZuGVLBYuWkAYhhRLZQrFIn25Pnq6OkE3qcsk0UyHhmwSN4D/dVEz9YnxyfCP5lAWi0UWLFgwrmsqLmyGC7h5njem84dTcZ0K+wjPj5uIxo5cfPHFY3qPjydD2dvby5YtW8hms1x55ZU89dRTA84NQ8Fj+0/TXXQxdZlJE8DKpYvp6jpNc2M99Q2NxG2TkicdvXwloCmbJFeJsbKxkb5iBS106erNE+ROc+zkSTLJBLYTJ5tJYegmpimrMkzbRtM1DMOWGcNQlvwHITimbAeIHKyUI6sqslWhsGxV8CwbM8m7AelqBjFds6sGvSXZs9hb8jE0KASgE1KoQMLRKHkhMavaWlAVxrGqVRs1R8+Un19RP3sq9rzT6QeCVMzEq2U2QwxN0Nw8h4ZGgQh9enMFyuUyp053EbcNNDtOYyaJMGzqU7HqqCgZ1HNMjXIQ0pB0zhDh6c9YxyopFAqF4vzjrJW8jlbSNbjEdbCK63hk7YcicihzuRxbtmypOaxTOXakv7DPZZddxpw5c2obpWdP5dhzMkfcNqi4gqRjIISMVCNkaVFTQz2NCxYxf95ceoo+mbhFyfWJO3LTYOkatiGvV5+M4cVtGuqzFN0ALfBo78mhFfPs7DhNNm6DadNUl2H9ZZfjlsvU1dVxuuMUjmkgqPY/eiHZmEXRq5Z1lWXPUG/Vyeytfu/6chalHDMio9q2Lfs4nWoJrF4V+Ik7Nq4XYlsygu6YGr4X4thy3Ihj6WgaGJpO3NIB2aMp3VTpkAaeQLdk/07MMmqiP8WKT1jtj5LJBp36dIJ0MsmCliYqfohbLtLdV8Tv62JfxylWz0lgFzV6e0PS6fSYVQdHm+UWqRgqFJPBMAxKpdKox3V1dbFt27YhVVwnK+wTvc8rlQrbtm2jWCxy3XXXjXko/ViVvKNg24oVK1i2bFlNEby/Q/k/Bzo42lUgZsm+azMSFkskWL5kEdm6ehKODEolbAM/kErObnWebsULqUs6lFyTpQvS5CseBiHdfXlct8yhw11YlokTi5NMxLl43Xrmzl9AfbaOnt5uKbITgq7JAJmpa/ihqAmYmaZGEETjlmSgzA8j0bSwNvqoLmZR9mVGsehKJ7Mt7xM3dfoqYS2zmag6nQnboLfokbANChUpjuYFsjy32tpI9FMKBejVuJ5pyM9J25CVKbYuHVHH1KttmgbpRAzXD1lsaHTnigi3RHtnN/gV2nSb+owsoc2mkxRdQdw2uOniFlmqOwxRj/lwlT1T1WOuUCgUitnHrCx57V/ieuWVV9LYeOZ8QMMwcF13wuvSdR3P83jyySdZunQpK1euHFdvx2gZyv4lXP2FfTRNo6ci2L+ng3TSoezJDYLvh1imzFBqusA0LOmMGVByfTKJGH1l2bPTW/RIOkZtbIfsO5SlsgKNhGMQhgbLFsSpeCELCenoLSDcEodPtGNrIZoVo+y6VHwIRFjLfhq6jP8nbJMwFGRjFm4gN2b5sixFzVXnQPaUPOlklnzSMYOyFxKrZjIdU5d9kKaGpmukYiZuIGRZVrVfMpql2VvtSYqu6/rgWHLTFrOiiLyBF0AmZlbHlljV8jKLE30yuyvnUlr0ljwSjkHJA8fQ0ONJFiVThEDcgOvmmfT2dNfUIfuPIYhGuAzFWEpelUOpmCyj9ZgPVeI6+D073pL8wUTXe+qpp8hms2zcuLE2Q3gsjJahDMOQffv2ceLECS6//HKam5sH3Ds6d/OBDrYd7SFh6eTKnhxTVBWMqQQhAtm3HYYamiYIQg2jKvBlmTphdTyQH8qgneuHpB0LPwyZ39xQDXxBX75IpVyiq6sb3/ewHAe/OsLDC8AMpGqroYHnS5vtUXXuPIGmCUKhoWvgh1EwTWBUnUzb0AgQOJZOWB2dJEXUdLqL0q65fkiqqsIatwxK1eBZpXo/NwjRkRUhgqrITxhg6Dq+FxC3TEquT8KqfiZYOn4oVbzRdCxD9k06Jvgh1TYEaMomCcIETc3NuJ5HuVQiXyhS6Omku6ONeDzBK9a34FeKCDs9rH0ciwq2so8KhUJxfjLrSl6HK3Ed6hoT3TCFYcjhw4fxPI+rrrpqwGZmrIzUIzS4hKt/5iBX9njmNCxdKuXYU45Jb7FC0tYpVKSj5QuBqcuNjq5B0pFCDXVxi5IXyp6danlqlKkruAGWqUEoMAxdbjwCsE2NMDSY31iHG2SYOxdyxQpepcip7hymAXuePUR9OolhxahLJwk1rbbx0QypQCgEpONmrf+x4lXnQFZkBD1XlsqtPaVqD1HV+XQDSFgygh6r9udE40bqErZ0lmMmuXJA0jHoLXs1Z1VeR/YGlT2pbhgIcCyZzc3G5cYp5Wj0VDRSjknB9bAMvVrmBYUQNMBFqibecul86hI2ixYuqM0C7erqoqOjgwMHDmBZVs25rK+vH5CxHotDqSLwiskykn10XZft27dTLBbZsGHDsD27k8lQRqM4AObNm8eaNWvGLaQykn2Msp5RsG3woPvIodxypItnDneRjln0Fiuk4hb5SkDcksGrqBQ+HoRUwhBNgKELfF/OSvSrKtR+KKsX/FCKzwQCbMPAF2HVzgkasinCTIq5c5pwvYBisUC+WABC2k+eIB6PE0skSMQTWKZJIGRPuedLZWo57kMG46QDJ+cBa4GGpiNn/CIQmlbtRRfV0n9qfdy2KVsA4tbzM4eFEFUBHwirTQNBtQRWtgcYFKLPArdaVVJ5fvxHOmbSWfLQREiu7FePF1gm+IGGrglEoBECmhAYukE2myGVTmNoUHY9LqrXscMiW7duBagF4Orr6wf87pR9VCgUiguXWTM2JNrE7N27d8i5ZkNdYyIbplKpxNatW/F9H8MwJuRMwvAR+P79koPLdF0/5OfbW8lUTmJ0CxLNyyj5Gpm4SU/RJRO36atG4fMln5ht4IVUy6mozY/0A+lcVgLZM1N2Azmk2pMKqRVflolCiK6BqelUwgDLkH2P2aRDEHfIpJIcPNTK8oXz6OrLU8j10HbqFNlkDM2OUZ9Oopk2MUv2EVmmjgjlnEfb1BBC9i+GQtRKzJK2QdH1cUydgusjEBR8QToUlNyg2oMkMA2NIAifL7eNm7XZlhVPOpFF18c2DPKVAEvXyFfkJjLavJmGjkDOc7MM2V+ZdEw0wKxmCVxf9mIW3YCXXNREXb++SU3TSKfTpNNplixZQhAE9Pb20tXVxZEjR9i1axepVKrmYHqepzZMiilluAqOoVoC+pe4jpYxnKh9DIKA3bt309HRga7rLFiwYEKqnMPZxyjYVldXd0awLbr/rl27+MUz+7AWrKW5oYGy55ONywqHKMtoGXKUhV4tjQ+rf+9lT2YBI+XqaHRR0ZUl+mVPZu7cIMSuzt61TZ2g6nwGoUbMMbGtLA11GQ4cfI7m5mY8z6NQyNPTeRrbsmrOpROPo2uA0GrjQYSm1dYTCoEu5LgQXdPwAx+7qqBtmzoVL0Bo8rPBrgqXSVEeKRIUamCiEQjZ4hBUxXpqIj0h1CVsOaqpWt6bjVsUXdmvWajOAXaFgWHIOcWGBhUPqTKr63hBgGMZ9JVc0o5FvuyTsOWxFy+oZ9MK2TcphCCXy9HV1UV7ezv79+/HcZyafRRCjKqCPdaSaYVCoVCcW5yVklfTNAeITvi+z65du+js7By2xHUwE+mhPH36NNu2baOlpYUlS5awefPmcZ0/+P79I/BRCdfx48fPKOEC+WH8i73tdJ9uJ+F2YuYDtGSaZHYhrhfURlpkYiZ7Dhyi/eRx5sxbAJpG2ReEeoihaXhQmwVpVwUako6JF4akY3Kz5ZjSkdKrzpcrQnSe7z90fdn36PkCQxPEEnEWJeMEIYSBT2++SKVU4PiJNkxdgBWjMZMCyyGTcMiVXRK2hef7MluIjLZLNViNVPW+CcukS1TVYgMZyfcCWa7lBSEgJelBivyIUKBrOpZZFduxNYQGhm5UxxcAaHI2m2VQrAQkHKkSa2paTVTIq/Zl+qGQvVUBXLowzao5Izt7hmHUNkcgs0FdXV10d3ezZ88eXNfFtm2OHDlCQ0MDqVSq9v4WQpw3PUKHDx9m2bJlZzx+ww03nDHfTTF5BpfPDy557V/iunr1ahYvXjyqkzcR+1gsFtmyZQuGYbBp0yY2b9484SqQoTKUx48fZ/fu3axcuZKlS5cO+Rra2tp4eu9hTumNLAmP0Vhfj2PqVFz5Nx2EUOjtYs/e/WSzGdKZDLoubaIfCOksVvu7S57MZuYrQa1FIFUd75GOqiFiJoVyQNyWATlpO6XNkn2TYFkWddkMDY2NMtNXKFIqFOk83UEQ+MTjcRKJBLF4AsdxENWZkzJwptcc4IoX4lgGFS8kZhsU3QBd1yhV2x76ip4URSt5NUGcRFVoKBIqc/qNaPJDMDUZaJTBPkHMlM5swpbtE+mYRa5QIW7JgJtuVstyA9liUa4K9xTcgHTMJld5vsJkSWOCjcuf/yzWNI1MJkMmk2Hp0qUEQUBPTw9dXV0cOnSIQqFQE3BqaGggm80O6DkvFovMnTt3Qu+n2YSyjwqFQnEmY5+ZMIX0j57ncjk2b96M67pcf/31Y3Imo2uMdbMjhODgwYNs2bKFNWvWsH79ekzTrM03mwj9N4Gu6/L000/T2dnJxo0bh8x6bj54mv1tObAcesMEgeHgYeOH0lHyhSBm6hRLZfZs38LBAwfZs30LbsWVTp2QziNAwQ0QAvKVAKpDumX0GmKmgaFpJGwTS9eJmQamXhW9MTS86s+s6AWEQDnQCANByZWDvtENmuqzzJ03j3VrlrNgwQKa03F6czk6Tx7l4KEjlPq66ejpwzQ0cmUf0OgteQhkv6euyVIuQwdDEziGRswyiNs6tqkRszR0kJu3IMQwdArlADSNvpJPGMrZmOhS7MLS5Ty0mG1gGRrZhIWua2TjFkEo5Ky4QApy9JU9dB16Sh6hEPQUPRxL57rl9eP+Hdu2XRuRsGnTJpqbm0kkEvT29vLMM8/w+OOPs3PnTk6cOEFbWxv5fH7SDuU999zDNddcQzqdZs6cOdx2223s27dv1PMefPBBLrroImKxGJdccgk/+clPJryGRYsWcfLkydrXli1baGxs5EUvetGEr6kYO/3to+u6/Pa3v+XYsWNs2LCBJUuWjCljON6WgFOnTrF582YaGhrYsGEDsVhsUn2Y/TOUYRiye/du9u7dyxVXXFET3xmKXGDQFZuPrssZu5omHTxDF7LPW9PYum0Hzz67Typzd3djanJMUczSMTRI2rJKQfYpPj9uIxUza6OK8pWg5jjFLJ2+so9l6PSWA0xDjlHSNensaZpOoRKgIxVXM6kU9U1NrFyxjIWLFpNOpSgWS7SdOMbhQ4foPH2KXL4Pq9q2kHRMdE0jHTPRNFmaL4QU7fFDQaLqzEaK2lGQLF61Z5ap01v2MQ2N3rLMXPeWfKlo7Yb4fojrB/hhiB9q+CKsjncCNPn5F/2MnGrQL26boGmkHAM0aUtDIWcF+2FIS9rhZWtbRq0SamxsZNWqVVx77bWsWrWKWCxGpVJh165d/PKXv2Tr1q20trZy/PjxKVF5VfZRoVAoZidnteT16NGjYy5xHeoaY4nAe57H9u3byefzA2T1o8jp4MHdYyXabI1WwgWw50Qve070kYlbFCoZ/PQCCtm5JOKNBL7A9X0sHUoh2KZJLJnE7OsllkgQt01MXcO2ZGlXEArsqiNmGTr5SkjC1mu9i/lKQMLW8cKwqr4a4hgagdCwoaokK2RkvCJ7i8qBVFUteLIkta8slQd9IYjHYjixGPWNjfh+QKVcIpcvUOk7zYHTp8gkYuTtOA2ZJPmyRjpuSbGemBTb0aqbMF3XquJB0vFN2AYBUNdvplrJC8jEI3n9foPDa9/7JC2Dihdg6lLp0TF1+oCMI0utMo6FFwQkLENmMg2dl69rqY4bmDiR+mQ0ND4MQ/r6+uju7ubEiRP8n//zf9A0jc9//vOcPn2al7/85cP2/47EY489xl133cU111yD7/t86EMf4qabbmL37t3DbsY2b97M6173Ou655x5e9apX8a1vfYvbbruNZ555hvXr1497DYZh1DIJ5XKZ2267jY0bN/JXf/VX476WYvxEtq27u5utW7dSV1fHpk2bxiWKYxgyqz+aMnEYhhw4cIAjR46wfv165s2bV3tuMg5llKGsVCq1FoOh+iX705Er89hzOZYtW0qAwbJli+ktuqRiBrmirMDIuz6pVLUUP+Zg2I5UOxXIXkUh+xhNUwa1HFPa9sieJaszHTNxWaJfV52Hm43JMtFMdZZkOi5Fv2xTVj40Zp1af3dvWfYmSlEyG6GbLKrLUnJDRFChN1egt6eHk22nSMUc7ESCbDIJTqyWYXSqvZxxHQoIMnoZL7DIxm3cQFBXnXmZqY4hSdqR6JlO2QuwDB23GmH0BYSBzIZ6nqwayZU8UjGTXMlDA8qhhqZByfexq5lJywA3oNpfKp1fgIRl8NKLW3Cs4ctXh0LXdeLxOBdffHGtYqOrq4uuri7e//73s2vXLk6cOMG8efP4nd/5HZqahh9BMhzKPioUCsXsRBMTTdGNg0qlMuD7I0eOcPDgQQAuu+yyMWcl+3Pq1Cn279/PC17wgmGP6evrY8uWLaRSKS699NIBGzLP83j44Ye58cYbx7VRi9ixYwee59HZ2TlA8n4wx7tL/PeeNinXHspI8e59+1i8eDGG6QACPwjwg1B+0HshwitxvL2DhS1NHG9rZ8WSxeiWhVnN/FX1HaR4j6ZTDmSvYaGfUE+6Omw72pDELA0/iEQpqv1G5TJHjx5l+YqVhFXlQD8Ma+Valq5Vy6t03CAgbugEyFmUgZDzzAr5AsVigUKxjGFoxOIJ0qkkmhkj4VgcaD1Gc10aI5YkZUvhiJRt1gZ7h4BZzWYYmlYb/+GFUlij4oeYOpQiJzKUSovRNlcDTnV04FgGDQ1NtTlxco1w/YoGVoxS6jpWtm/fTn19PYsWLTrjuc7OTi6//HJuueUWnnnmGTZv3nzGcPaJ0NHRwZw5c3jssceGjYC/5jWvoVAo8OMf/7j22HXXXcfll1/Ol770pUnd//Wvfz3btm3jySefVP1P04TneQMct6hqQ9f1MZe4DnXNhx9+mJe+9KVDBrngeXGcSqXCFVdccUZ2/fHHH2f16tXMmTNn3K/p2LFjHD16lEqlQn19PevWrRt2HQA9RZcfbjlGGAoOtx4lk04QS2RJOCb5skfchLwbko6ZdPUV6evqQLNjGKGH6cRpbmiQ83stHd8PMU3pUOvVShJd02ql+f1FdEIhqx/86qxJPxK8qf6799mDLF20EHRLCtq4fk2ELNVPmXrAv1XbGzfhdE8evBI9+SImIVYsQTadwHESJGIOHZ2dmH2tNNgemh0naFiNZlYDUZGt1zSECNHRCYV8nwhRLSjRqNloaVNl/2ikxp1yTNq6enELvdTPmU+iWgrcf7QTmsD3Q2K2FF17+fq5LG4cfyaxtbWV3t5eLrnkkjOeK5fL3HrrrTQ3N3Pq1Ck+8YlPcOONN477HoNR9lGhUChmBzOeoczlcjz33HOEYcgLX/jCCWVxYPSSrmPHjrFnz54hxXFg4ODu8RJlJovFIldeeeWwkdbeksdPdpyoOpNyFIYbSCcQIaTYjZBS8JYunamkY1DU4qxesYxixcfUZblTgyXFEpIxU/b4WDqGkBuKuGbWypW8QArcFCphv2Halhw5EpPZw0y19EvOUQNDk2quugaWkFFpKxSEgKVV5eA1HTeUcyFLoRT7CUKNeCpDIpOlWQjcSoViUaqmVioujuNgiwDX9WhKy77PuKVT8gIMXaPkh1WnUQ74FtWeyhDZT4lhYBsahq7J+WYIguoavOo8umJV6KfiUy0Jk6NMekoe6xdkpsyZhJFVDGOxGL29vdx33320tLRM2T17e3sBan2dQ/HEE0/w3ve+d8BjN998Mz/84Q8nde9PfOIT/OxnP+M3v/mN2izNEK7rsmfPHoQQXHPNNdTV1U3oOtH7NAiCIR25KPtZX18/bGXFZDKUPT099Pb2smbNmmH7JSMKFZ//2nkSjao9s3SEkKXtkchMvuySjZsU3ZDGTBzHXkDCMTh45DiNSaPWH150A2xDZvEMXWZJNU1DI6yuofq9DkEQ9RPKCgqpBit7Ey1dIwzB0mSgTfYkylmRfnWMkhuE1MflbMlszKwpcBfdgJQtFaebG7KU3BRNc3T6CmUCr0xHd57AO43QTBzLIF4qUglC8ELCeBEjYVWFxoxqoFH2jv9/WIUAAPFkSURBVBq6XIupaYRVBXA/hLilEXQ8Szp/DLd+Jem6RfhhpIItSNoa5YJGypblrDFTrzmjpgFlNyQRMylUAjauaDzDmdR6j2I++5+IzHz8Vb8DExirFIvFKBaLvPGNb+TVr371hN5TQ6Hso0KhUMwOZsShjMqfjh8/zp49e2hubiafz0/YmYThRSeCIGDPnj20t7dzxRVXDOvsTdShjEq4KpUK8+fPH/b6FS/gx9tPEAoIqtnHXEmKQhQDQMh+w4Rt1OaZRYOppWMoe2qOB4KUbVDo1/OTqpaDxm2DkucTs025cdKrsygFJB059qM2VDtuSeGFmnNp0tnnY1T7cjIxk7IbErOlWI9tSpELy9Sr0XzZzwhSUEevKiJSVVK1DB1h2mTqG0lk6jE1yOcL9HR30tfXQ76vl1g8TiIp1RFt0yYMBWiyXMvQq6VctkGhHEhxirJHyjbIl4PqCBLpSPuBIG5L6f66mEW+WzrTQSjIxCwKrk9z2uH6lePPfI/ESOWDhUIBYEpFecIw5D3veQ/XX3/9iKVZbW1tZzixLS0ttLW1Tfje3//+9/nYxz7Gf/7nf7JixYoJX0cxdrq7u9m2bVttczqZ91I0YH6wjRRC0Nrayv79+1m1atWIPZkTcSjDMGTv3r2cPHmSZDI5pHhJfyqez892niRXcTF1Q47HEKAj8ENRVUSVgagghKSt10pWI2cpqM6Y9EJBwjKq7QBypIdhRFUNMniGJsdjCNmyXZstGfjSUXM1ganJMlK9OmoEIZ4XFQul0nQQCkxdthbIeZcQt6MZk1VBnLhFEMheziAU1KcSeGGM+ro6/CCkVCrR1dVFQSQRhU4C28Ep+RiiRDYZp+BKxW9p841q6b9BX7WtoeiGJCydYr6XRNsWvEoRs9iDm5yLbpoEoVZVoJXVJqahoWk61XgmMV2OlsomZHvAuvkZrlx8Zq+5/eRnMY9uRjhpwuRcwgVXD/m7HMmhFEJMuQq2so8KhUIxe5gRhzJScT19+jRXXnklADt37pzUNYfKUBaLclaWpmls2rSJeDw+7PlRT9x4Nkz9+yVTqdSwzkUYCn6x9xS+L6PLelWZNBUzKZR94qZGX8VnTiJBd9HDMQT5ikc67uD5svcxKtGyTapjNWzcQEbCi56MlOeqGctCdRZl3g2wq4O0o9lmhNRGbSSryn91MSnBn46ZnArol8mszi6rZvjStsG+g0dwCznmLVxIU30doaCqnCpwqhlRxzBxQ9nnU3B94pZJwfWpq8tyuqePlqYsPgZ64NLdk6ezowPNsMikEjjxBJlkElEVhpDzKav9lNXSsaRt0Fst5+0pybmXPUVXKtYKCMKQQFBVjBVkYxY3XTxn0n2Tgxlpw5TP5zEMg1gsNmX3u+uuu9i5cyePP/74lF1zLOzcuZPbb7+dv/iLv2DdunW1jZdt2yNmAhQTI1JxPXjwIKtXr2bhwoX8/Oc/x/f9EctER2OwQxjZ4a6uLq6++mrq60cWqhqvQ9m/X3L16tUcP358xOO9IOTft53gVG8RyzAo+wG6DgFyhqQQ4Hkhui4ouR4J25bKptXSd9vQAQ1b+qHVObdyjmMQgmnLYJily1JRA1kFgdAIEXJmpCb/rwMB0tn0Qvn54PmCQEDZF2AIQkIMAZ4mK1F1XedUxyk62ttpbGxi4YL5hEJAKIN6uiyyqM6glBnB6HPH0HXidhqvUkZLxMhk11KplOnLF3H7TtKJTjaVoGjFaMymKFaCWkltypEBxrhtkKsEOIZNQUthaS4VI0MQgC4ErucRr44B0TWdousTt3QqHtiWhuvJXlMvCKlP2Lxg5TA9jZr8OUtvfPhMcxiGMzo2RNlHhUKhmD1Mu0MphODJJ5/Esiw2bdpUKw2c6NDtiMGiPB0dHWzfvp158+Zx0UUXjShEETGeDVNUQhtJ3u/fv3/Y1/A/B07T2pUnbpmIMARNxzINhIBM3OIkUkTG8wOM0GXvoWPYuqDNcqhPpzBth3jMQROy/CoU4IfVEi5BTViiLvG8Yygl8p+fv1byZNYwCIOq2IKGqcudkEAq/vmeIFYto6qLmVRCUctkphyTY+2d7N+9k1zFp7cvxyVXXUPaNugrBSQcnYoncCxZKibl6iEbt3D96pxMPyRpCdwA5tQn6as4LK2vp6/kYgQep/vy5AodtB4/SSYeI5ZIkEkl0JwYjim3f9mYhS9k5tEPpMS9H8jsQChk/1AQCjlaRUC+7PPydS0D5k1OFSM5lMVikWQyOab33Vh417vexY9//GN++ctfsnDhwhGPnTt3Lu3t7QMea29vn7BE/9NPP02xWOQTn/gEn/jEJ2qPK1n86WHXrl10dHSwYcMGstkswJDZxfHS30bm83m2bt2Kbdts2rRpTNUh41GK7enpYcuWLTQ0NLB+/Xo6OztHVNAOQ8FPd5ygvbeMY0mBHKOqVB2E8m+55AZoIuDQkaMQVNBMh4ZsCtOOU59OVBVYpQNoVWdKWoZWG6sROZ2+CLG0atlo1YHUhAzYASA0BDLoJqn2WwoNDanCXY1VgS7Hchi6RrFcYceOnXR2dVNf104ikyWdiFPwfOK2SaniEbdNXF+W41b8kJhpUAmqPYxR32aokYjFsB2H+nqZvXQrZfL5IqVijuc6O3Aci2IiSTqZJAwd0jETPxAkbJMw1NGXbEQrdxLE52BbBmU3JB2XY0Bilk5XGeaaBr3VAF2u5OOYshokVhXhMY2hbZd73Z8SNq1GpBcSzrty2N/pcOXVEVM5VknZR4VCoZhdzMgcyksuuYR0Ol0rrZro0O3+RJudMAw5ePAghw8fZt26dcyfP3/c1xiJ/iVc/UtodV0fMEszYvuxHrYc7ZYqpyW5oSh5PjFT3svQpWx7EAgq+V7a2ztYOn8OhmlTLpfozRWodJ4m0AwyqSR+KMtnTVPghwG2pVNxpUS+F4hqf40gZVv4IiQbe34AeKU6t6zkhjiWVlX203DDEA1w/QBPyI0XerU3JxTVHiY5MNuwLKxyCd2ySVazoPFqGWrcMugt+cQtWYYVs3QqgZwJ5wUhdnWDmLR1QqhmIEPqEg5lz2BhIk7FDxFhQD5fpFAq0dHVg6ZBIhEnFo9Tn06h6yaGFfX86Bi6LGGTkvsa3ZrMsnphyKULsqxonp5ZkKNlKCcriQ8yAPMnf/InPPTQQzz66KOjlgwCbNy4kYcffpj3vOc9tcd+/vOfs3Hjxgmt4Y477uCOO+6Y0LmK8bN06VJWrVo1QBxs8CzKiRC1BbS1tbFjxw4WL17MqlWrxhz0GGvALQq29S+hHan6QwjBI3vbOJUrk6yWh8aqfZNCSGcwFALfLXHk2HEa67LEEnMhcOnsyyN6ezl2EhrTCfpKPk1WSHe1N7yvHJCOGRTdkLhlUHR9YraBW50B6QUhlg4+sk/SF6LmyFq6hhDagJFQhq4RNw1MQ8fWBGEos3t+KMvuTdPC1ASGYZGwTSpeQDJmUSh7pGKWFEjrVwHSU1WK7SlFIj4BCUsnX/GIOXK2rm1qGGaM+gaHOuoJg4ByqUy+WKCtrQ3fD0gmk8STcZKJJJbbS3zvDwiCAOui/42vZcgmdDwfsjGTU/mQtK3hV9snvFB+LoDANDRevr6FpDP8VkBkFuBd+bZR3wdjKXmdrI1U9lGhUChmJzNS8lpXVzdgcxE5lBMd2QHP90A+/fTTlMtlrrvuunGX04y2YRpJ8n7wMHKA1s4Cvz3cJaXoPalImC9Xo9W+j12Nors+dJw+TanisnTxQizLkXPUYg6NDfV4foBbLtFbKGAQcurkCexYjHg8QTwh1QELlQDH0ukteiQcnUJVUt4NwTalgETS0fFDjUxcOnhJ28D1QxxTbrQMXcevqgUWXelsRmqzQghS6TRXXn455XKJljktmLpG2pG9i6mqAxerbtJMXcMNQNMEJa/qsGohZS/ADQVmEKKhExVPxSwDDZlZAINEzEYTdVT8gMBz6eorUM7n2HvqNHUJB2HFaM6m8HWr1icZs6Uwhi5ChKYxNxNn04qp7Zvsz0glXVOxWQJZxvWtb32LH/3oR6TT6Vo5VTabrZVw33777SxYsIB77rkHgD/90z/lhhtu4G//9m/5nd/5Hb7zne/w9NNP8+Uvf3nS61FMP+l0+gzncSqCbrquc+TIETo7O7n00kvHLRY1mn0Mw5A9e/bQ1tbGlVdeOUCtu/8cysE8cfA0rZ1FLEOX4jOm/FerOnSGpuF7FU4e72bxvBZS6QyaCPFCh/pshpIXQODR1ZvHEkVOdnSRyefptuM016XoKVqkYxa9ZY+UI4NeqdqYD1M+HrPoK3nS+avI2Y9lTwbJKr4U9vFDgY4gFCGmUVW+NnQCIW1oKHQ2Xn0Fp0530thQj+M4JKvjkbJxGy8MqYtLle1s3KTkhmQck4IXVEc8+TLg50OdaVAsB9imTskVGJrAj0YDawa6k6ApkaTs+pi6oCdXoJgvcrL9NIsLO6DQQ0xUqBx7Bm3dIlz/eRVbjRA0DcsAXdNkr70mA5HXLm9gbnb41pDxMJJDWS6XCYJg0iWvyj4qFArF7OSszaGE0UtkRiKfz9eutWnTpgldZ6QN0+ASrsEflIPP7c5XeHR/h1Q/FVIcwg8F2YSN5wckLVNuEAKPIPAoIViydAmhJgdL95ZckjGDigtx20DEk8xPpSjm87TMmYPr+RQLBU71dqPrOolEEjsWJ5VKUHblXLNcOSBhG/Ja1eHdstRKPu8HIXHbIBAyW1go+cRMQIiqyENA3DJlr40tNzyNzc2U3ADTkmNJErYp+4MMsNCrWUPpHIZCoCFnX2qaTtnzsQ0d1xekdU32Q0YbOlvOQkvYBq4vM65+IHtDA8usZmcFmgjoyRVxSwVaT7Shi4BTToJsKkHZjuE4NqVAEBdww+omDH1iAYqxEATBiKI8yWRywgGSiC9+8YsAvPjFLx7w+P3331+Lire2tg5Yx6ZNm/jWt77FX/7lX/KhD32IVatW8cMf/nBCM9YUM89Q75loVu9EKZfLVCoVwjBk48aNEwp2jGQfy+UyW7duJQzDIfvVhzv36cOdbD3aTdI2KFV84o5Zc+A8P5DKzaUSvuexaPFCUskUYRgSBNR6JRO2gR8aLJgX43jg0eDYaKaFVy5y7MRJTAQ9sQT16SRF4mQcm0IlkDMmKz6pmJwxmY5ZNcGb3pJHyunvdMrxH0VfvpZ8xSdu6xS9oDoLUmb5nGSK5em0VIjVqDqdUrE7ckqdasVHwtEJqj3rfijVawu9soLD0Kp2X4BtIvvuQ9m2UPEC4qZB0QtIxW3yFZ95TQ3kKj5z5+n0tJZJFZ6jO8zSV7HpO9RKKpkgHotjOw5eICi7IQKNYtVpLrkBa+enWTN38qONIkZyKKdKtEzZR4VCoZidzJjK64CbVp2/iTiUQgiOHj3Kvn37AFi7du2EndLhNj1DlXANpn+GsuwF/Pv2k5Q8Hz+Q5VuF0Cduyoygret4QiACl+NHW7F0jblzm3FsC13TKLlSVKdYkaWq/Tc3GjLz19hQTzqTxdShUCxRKhTI93bRfbqdWCyOE4+TSaVwfSlKUfR8Svkcp72A+XOa6K2K2UinTqfiCznOUmjELKOmkOqHgmy1/zEdSeDXxCBM+io+xd4uTvfkWblkAR4mmZhB2Zelsl41w+mHgnTcpEODbEyW8mUTFkU3qGVuk5Fqrd1PbKcko/ahD6YuVQmzmTR6Nk1Li8B1XfKFIoVCgZ7O0ximQRDA5c0GiWl8N4dhKGdlTnOGcixjYYfq03n1q189pXL8irPLZEpeu7q62Lp1K4ZhsHLlygm/L4ezj9HIkcbGRtatWzfk38RQFRw7j/ew+cBpMrGq+FfMpKfgVrOFPrYBBw4dgdDHSaSIxRJUXF+O9PBDDFNmPUOkTkwYaOg6hJpGUzZLmMkwZy4Ui2XKxQI9fX245XYsO0Y6mYBEgkwyjh9IYbLO3hy+W8LSG6piZ1IIrFAVwMmXfWKmRq4SUJ+ya7MnI6Xt3rJXs2GJqt2OOwanOnrp7uqgsWkOjXUZXA/QQK+K9YCQr0NQq9LRAEOXIkJRCW7ClMG/dMwkqPanR1lP16+OLvEF9UvW49Y1YeORjrWgF4pUKiWOd/XgmBqe0EnHbXoKZepTMfrKPosaEmxcPowIzwQZrYJD07QRhfLGgrKPCoVCMTs5KxnK4STtRyMIgppa7FVXXcXTTz894Tlp0Tr6nx+VcB0/fpzOzk7a29vJZDJDKrdF5wah4Kc7T+IGgSzhNDQZvbZ0OfbCMekue+CWOHL0OPPnNtPT24eh6Zi6hq5p5LpO09vXx9yWFkI7SSZmUXID0o7B0QBaLIOeqpPZV/ZJJRJg2jJ7WHHx3BL5XIHjPT1oukYykSSXy7F77140wLv0cpYsWkDRlRnLXDkkbuvkKwFCyHmZScug6Mt1u4FUmg2FkNF0IcePeEGIl+/ll7/6H0r5PjpPr+WFmzbQW91g9fRzhJO2QaEsCANZ8hof0J8pFV2lE1sVl7Ck2I6hawRCCnNoGrieLKvNuwFJx8DHpKGhgXSmDsuAXKGIkWvHKnfz+OOPk06naWxspKGhgUwmM+mMYUT0Xh1pwzSVkviKC5uJlLwKITh8+DAHDhxgzZo1kxqLAEM7lK2trezbt49iscihQ4dIJBKsXLly1HMPtOd48uBp6hOy9DMblzYuE5OK0CY+zx48SiaVwBcOtilnS1qGTkdXN6c7OshkMzQ2NqMBgSfLUCs+aIag7AWYBnge2I6D5TjUNdTj+YJKqUiumKen7SQnQkE6kSQQATt2bKdYrLBmzUouvvgSkrYc75GKmQShdNhOhLIPMQjlfN+KJ+f7lv2AlG3I7KGlU67a1kLR5cknN3P6dBfNzU38r5f8LwzTRNc0KmF1RmZF2tli2UWIkJIf0qBrFFy/Wikig5KVqOe9OmPXC6L5v9TGQ1lGVTm2fi4GOgaCdCKGHwoWa1Aoluk8fQrXdamcPEq3adFcl+aqlgxChMDwqqzjZbQKjlQqNWX2WKFQKBSzi7PiUML4N0yFQoEtW7YMUIsdjwrhUPTf9PQv4QL4p3/6JwoFKYLw53/+52ecG0XgHz/QQVfBxdZ1hC43dbYph2WnYxbFik8l18PxU10sX7wQrBh6Lkdf2SOehNO9Pezeu4fe3j56erq56qqrAUHcNgiFIGVK56ouaVJwQzJxq+aoyqyhjS905s7LUiy7aMKnN5ejrb2NU+3tGLpGZ0cbC+Y2k445hKEgHZN9jzFLr5VmlfwQ09ApVOSmJ+f5OIZG2ZczzHxkxrBccfHKJYIwxC/l0ZAZSDcISTmy/8gxDcqeVG2shFL0p+CFgEATIdrhx4jnjxMsvBarZS2aJsUhjBDZ2yNkr48XVgeFeyGZuNkvQ+CRtOXrn1OfZV6ih7UXXUQikaCrq4uuri6OHj0KyIHX0ddkRnpE74vpFuVRXHgMV/I6Hvvo+z47duygt7eXa665hrq6Ok6fPj2pPsz+s37DMGT37t2cOnWKefPm8aEPfYgTJ07wy1/+kq9+9atn/F30z1Ae7Sqw+WAHjilVq2PV8UXJah82XpnDx44xr6mJuoYGOjo6CEJpAz0/4MD+fZzqOE02kyZ5ZZJ4LC7VWoWGVi0zRROUq1UNZU86YpVAYBtatf8wgRcIRODRly/QfrydE20dhEFA69ETLF6yglgshmlUS/aRjptOSFh13ISQgmNCk1UgQkRlqoKEY8p5j1qAVy4jfBevVAKknfX8kIRlUglkYCxfCUg5Fqc8QV3KGJD93LdzG09t3cGaFcvYsPF6bEM6l3pVbjYMI0fTJ+GYVNyQhKPXxN8qflCdkSmIJxxMyyYeN6lvqKdSKnF5s8bhg8/y7N7dZLPZWgBusiX7YxEtUw6lQqFQnJ+cNYfSNM0x9wi1t7ezY8cOFi5cyOrVq2tR0MkKV0QbpsElXI8++mhNNGi4Neq6zt6OCl09vWQcQ36YWyaBkJsaw4AwCOk5fZJCqcK6VUvQDBvL1GkLNept2ZMYsy0CLDTdINCkYxaGQvYlaoIATQ7eDp8fF1Ift3ADQX3cpugFZONV5zJuk6vozGtpwbTjaIZJvuSRzdZx8FArMdvAiSfIplPEYnEsXcM2NGxLx6pWEpm6Xr2/zBQKAV4oHWU/hExjExdfehm5vhwXrVmJH8jB3rr2vCKipkFY7au0tOosTk2KBRVPHaHu1BbyoUnq0M/pyq6szb/MOCZ5N5DDyf0Qu7qGhCVHhGRiZvVfOUIkE5fzJnc8cxhd14nFYsyfP5/58+cjhKCvr4+uri5OnDjBvn37SCQSNeeyrq5uxJlpg4mi78NtiKZSEl+hGE8PZS6XY8uWLcTjcTZt2oRty5E5/R3CiRApWZfLZbZs2QJIxcxTp05V+xqDmp0cTKTy2t5X4ue72qoOmsA0dFw/xNJlz2RvdxftpztZvHABiWRKqmCjoWmyFNQx5cglU5PzJOOWiW3pEEI0CkmKzejEqsE3x5TCOZah44UysOWHQpaUajYN9Q6pVBpfCDo7u1kwfx7HTraBCHFicZLJBPF4HMs08ULZ0oBhICK7GIRYpoFf7XEMhFSIDYQgnUxy9VVXceL4URYuWkI2GSesOp7ShpvV3noTP4CUrVUrNkw8X2Dj8/P//m+KxQJdp9pYu/Yimpqa0TQwDSh7IQlHzh6Wwj5BzX4mHYO+shwTUnB9TE3DAzm32NIpeoJXXrGMpU1JhBAUi8VaAO65557DNGX1R2NjI/X19bX30VgZy1glhUKhUJyfnJUeShibMxiGIc8++yytra1ccsklZ8yNGu/g7cHouk5nZ+cZ/ZI33HADXV1d9PT0cMsttwx57tGeCrs7XFYuM+mteFWBBzkmJFfx0IKAY8ePYZsWS5csqZY9gQgFcVMDIahPWri+yZWXrqWzp4+W5ia5qbB0vCBA12REv+SH6H4IWnXemi/QDfDCkLipEQiNdEyWkNbFTcq+oKUhS/qqDcQsKSiRtA06ewvglzna1okeegjdwCQkVyiRTcbxqoISoaZh63JDqGtSWELT5AYwaVusXL2GhC03Nbqu0Vf2SdpyU5NyTMpuQNI2qARSqELTNFKOjhdCNpNFM0zqRYFybOnzcy+rGceYpZOrBFiGRt4NqyMIBL4vBYX8UBCTdV5cv6KRTNyS6xxUaqVpGtlslmw2y7Jly/A8j+7ubrq6uti7dy+e540rOj9SORdMXQ+lQgFj76E8ceIEu3btYunSpaxcuXLAe3gqKjhKpRJPPPEETU1NXHzxxRiGwZIlS/i///f/smfPHm644YYhe9h1XSdXCfm3LccRCNxqj3Wu2nfYU6yQ6+6gJ19kxeJFCNNG16RojKZptQoHz9e47JL1HG9upqmuHttxMDWNQAOj+qVrstUAqIlyGULOsbUMQ86UJFKd1QkJsQybKy67DCFA06Qj6rkuuUKRYj7PqVOnicdsAgGeWwHdIG6btTm/+aqt7yvJ1yP73qWi7PJlS2lZsIhEdS6wY8m5wLYZlbHK0lxNl5UstiMDdqahoWGRTMYpF/I4lkFdJoVl6sSqY5KycR0/hPqEiRtQ7aeUrQNedU5vWJ2/qWvgBiExE/wQrl3WwNImaaM0TSOZTJJMJlm0aBFhGNLT00NXVxdHjhxh165dpNPpmoOZyWRGHTczUg9lPp8nkUioDKVCoVCcp8zaktdKpcK2bdtwXZeNGzcOmf2ZTIYyDEPy+Tye53HVVVcN6JM0TXPEBv7TuTLPHM9jmwIQ1CUsqWQatyhVfPBcDrYeoyGbob6pmQANEQi8IOD0qTa2bNvBmhUrSGezmIZGXX09dXV1ALVIvmUZeFXlwNr8bSGqvZpyjqWl65QCuVERgZTf90OImTKjl3Jk9Fz2Pwpa6tOU/QRzmpvozlfwSzlOnu7h1MkTtIYajekEWFJ6v+RJNUU3ELVStYRj4IdyEyP/tXDDkGxMiu1kqqI9qapKYsoxyfswB+guSmexYtZjrfsDtHwHNK1Cq/ZVUhWfEAKSDoDAD2S2t+QJktWZblFZ2OUL61hW3RwN5VAOxrIs5syZw5w5c0aNzjc0NAyYCRjdY6SMZj6fHzA2QaEYKxMJuPWfj3v55ZfT3Nw87muMhBCC3t5eurq6WLt2LYsWLRqwzpe85CW85CUvGfb8ghvw9KmAlVnpzCSq/YZJx6SvUKLrVDuVEC5asZyiL8iYBr1ln7BS4Mkt26lLONQ1NpOOW7hYLF60mGLFAwG5skfCtii6PmgabiANpOtLWyV7wI2q4ir4ocxk+nLcLhpSVTUQGjqyNNc2wDHjpJNxgrABDUEun6e9rY3O0x1oGtixBJlkgrKIk447tR7QKEuYq/ik48/bvr5qIC8fZQ3LPrapU6gIDB1EAJVAYAWQK8kxSGUv5PY3vYm9+59j5dJFGHYMHaj4MsjmBtJplmNBpHiPXnWiTV06kaEme/NDIX+uXUKwqjnOVUvP1AKI0HW9Vr0B8vM3so87duwgDEPq6+tr9nGwuI4QYkw9lAqFQqE4PzmrDuVwJV1RCWpDQwNXXnnlsCquEy3pikq4fN9n8eLFQ4ruDEfR9fmP7ScpewLPlxsZ3xc4Val4r5jjRFs7i+e2kM7WSQdRCEQo8D2Pn/z053S0n6T12AkWLVmMMGwSpk6h4pOs9iI6pl4b9m3oELd1HEN+UIeaQISghXJMh6GBF8iZY0VX9s6U3KAqXQ+OoeEiMKsbjLglI9hN6Tg5PSST72PBoqX4XoXO3jx+oYfdHR1kEw6aHaepLkXJNatZBZ+EZVAIquI9ocCMxqTYBmHVefUjsZ1Q4OhCDg23ZaZThOAl5uE5c+VIkYpPzJICHOmYnCsZs3T+f/b+O1rS7KzvxT/7zW/lk2Of07knd5igmRFKSAgNSAbrgsERWYYlLtdcG8OVL75r/a6v77r+wwEDNssCE2QZLWMM2GDJoCxLghlJMx1mOkx3T+fTJ8fKb9h7//7Yb1V3z3Tunu6xVN+1RqUTquo951Q/tZ/n+YZEkrnPQjEw9+089lR/jqe3Xvqb3UxDeTleP52XUnYPz5dP5y8397kenQvMgWl6evqmr6GHHq4H27aJ4/iqX2u1Whw8eBCt9RvycS/H7dZHKSVHjx5lZWWFUqnE1NTULd2/Fad8+dUllDJNT+gag6+871BrNFiZmyXI59k2PkqioJIz0Rjl0OE/ffYrnDz6Cm6uyNTUJuzRCUqhy3ojohh4pmnzXWrthEJgdOWFwM6aTKOvNrcxOe+Si+xGKyHvuyb2w7OziCSbKDX1J8qM1BJptnuJUvSVy8zPL7BtyzSpVLSaTer1OvHKIkuOT7GQR4YhhVyIQneNy8qBQ6I0Zd8lltLQXLXCd+1sEwkCQaI1jtAkSjHou9Tj7GejyNNPPU6tneLYHRqrTa1tTIqiVCG0ofDGUhG6No0kpeCboVveNxEjvmM+H9iCt02Vb+lv6Ps+Y2NjjI2NobWmVquxurrKwsICJ06cIAiC7gCuUql0hw09jXkPPfTQw3cn7hvl9WqULq01586d4+TJk+zcuZOpqanrUmRuZwJ/uV4yl8vdko4ulYrPHJqjEUu0MA2doTRZrDcTGusrrFZrbJnahBfk8BxBIjW+ZaFsjUwFJG20kuikTZRIKqGZYPsZHaybhRY4VJsJlhC0E0khb1z+XEsgAS8LAzc7UvO7s7VAZxNrmdnTR1Kb6BGtsom2whEWwlYorZFaYNsWjh0yGQQgLGSaUKs3aLUaXJiZwbYEjpejkM+hwxDPcWglyhyKhKYrodLguRZSGh2T0IaS5juWoatKheNZXUOgKDWOio1IUggus+Nvmcn+Risxk/3IRK+kNriWzbt3DnWpbVobC/5baShfD9u2bzidz+fzSClptVpXtb7vaYR6uJu4Vm1bXl7m0KFDjIyM8OCDD163ft1OluXleslt27axsrJyS/ePU8mfvTLHWjNGCEikBGGucXVtnfn5OYZHRuivVNBa4FoCJTWBY4x6SFooYSHjJlIZnbSJyMgijbKhWzlnPl/ws6GT79JKTR1pRoq859CIJcXwsiY0YzjU2mk3a9LUW/Nx53Yto69WWwlCK5NhmffBcqhUKrTjlCRuU6s32dhY4KKU5HI58vkc+VwOy/OxhYDMbMyyBEJZJuJEmXgQqSBwYVWYOBAtjFwhkSa2KUkVJd80pnnPRmpN4FggzGbTc0yOr9FRXsrWzHum8fQdm2ZsGtEnx1xc5/broxCCUqlEqVRi8+bNpGnalQ+cPHmSdrtNqWTyLJvNJq7rvuF9u6cx76GHHnr4zsZbhvKapimHDx9mbW2NJ554gr6+vpt6jJvVCF2eX9lpVo8cOXJLGqOvnVyiGSXkPAsZWQhM49SKEpYX5mklkm1bNhMpQWDBWtNoK+ux0Ri6rs9zP/AcL+3fz7atWynlfdIkppzzieKEUujSjlVGozIOfhdS6LetbuB259DTmUTH2WRdSrqbTV8IlM7osxoEmkSZsGyJER3FqSJVhnKVSEUiM/2kTPA9m1yhSF+lzLDUpHFErV6nWVtnZXmRMPAJcnmK+TzCcfEdm3pktESNLLeyGpnrbCRmGl9tpxR9s4n0HHOg8h1jfV/0zXazHJoIkYLvdJtSpU3TLLI4lvc+OkAxuPSy7fz97qShfD2uNp0/d+4cjUaDF154gSAIutvLSqWC4zh3RUP5ta99jX/+z/85L730EnNzc/yX//Jf+OEf/uFrfv9Xv/rVq9IO5+bm3qA37uGti5sZuGmtOX36NKdPn+bBBx9kcnLyho97qwO3Tn7l8PAwDz30EHNzc7dUH6XS/PeXZ7m43sK1LNqp+VwapSyvLFNdX2d8YpJCIUc71Ti2RsosEiNROI7Fu977fnLF5/H9HNNTm1iv1ikVckSJac6UNrRWqczwSgO+Y2pEx/CmGBhqfjk0zWcluzX5upJK6NLKNqKt2FD2G7GpT43Y5OI2IpMt2VIWnmNRb2exIJHEdWxsL8fAYB6pBkmSmFazyepGnfnFZYTtUC7kcLyAgXLBZPl6Dq0sWqSd6SnbqUajSSTkMRpJK4tXsi1ACBwbbCEQ2UBQaQgc44Bd9G1SDaXQyfTzLlKZJlNrjWPZfP9kzMx8clfro+M4DA0NdWnWzWaThYUFNjY2OHTo0BX02YGBATzP69XHHnrooYfvcLwlKK/1ep0DBw7g+z7PPvssvu/f1GPcLKWrQ+FaWlq6Qi95K6Y+L55d5bWFOoErMKZ/FkJrlExYnL2A5wc8OLXJaBZ9Q2Et+g61tmkqN7Lt48DoJE886VBvtvnvf/o54lTy9JNPMjA0iCU75hKCom8cTfOOMd/p78RnZJu8om9oXB2Hv2K22Sz55uASekaD6VkWqYbQNYcw37XN1tSxqSaa0DaxHqFrIkPyWTN7uQ4yEg79g4Pkkn48odhoNElaDWYubuAIbZrLYh6lcvTlXKLUHOKasSSwNc1UUQjNdZvmM8WxzIFKIBCYsPLOlsJ3LLQNjjCxJjlXkCjN49MVNg9ceSjpOEzezQPT5ehM5/v7+5FS8sgjj3Sn8ydOnCCKIv7kT/6EZrPJ8vLyLdNvL0ej0WD37t189KMf5cMf/vBN3+/48ePdDQHA8PDwbT1/D28dXN4MJknCyy+/TL1e521ve9sVf+vr4Wbro9aa8+fPc+LECXbt2tXVS95KfdRa84UjcyxU2+Q8iyhROBbEccLy8iJxnDK9eQuu62ZxHEbz6NiCdiwzbWHKwEA/ux9/mqhZ48++9DXq6yts3fkgj+7aQS1S5DyHujQRHK3IxHtEKVhoYqlxLMMKcSyR1T9h3FgtCylNpq2UJpJEZiY2qVLku5tOB6mzLaFU5GyNADPkUqob5+Q5FpA50boBrucxNNhHvZ1gyYTljTq0VplfXGKgmGPN8RnqK1Ft62yL2KH6a3JaGzMisrikjMHRjmNDE05Scp5NM1aEnqARKzwn+7ktSFLQKCxMw20ou/A9Z3+VHS/8PhPBCIub/vCm/o63g1wux/DwMOfPn+cd73hHVz4wMzPDsWPH2L9/P9/61rfI5/PEcXzL7rEd9OpjDz300MNbF/fd5XVubo7Dhw8zPT3Njh07bskF7mY2lJdTuDr5lR3c7IHp5EKN50+tUAic7qawHklSKTlx6jQjgwNU+gcRwpg9KA0530Ep6MsMeyqh29UJzqWa2voqC6sbkEacmZmlb3CQRjvFyh7AcUzshkLgWNljZvEZxhTHBG3HiaGB1eNLRhCdZrAYOKx3aLRNM4FvxqZ5TJTGt82EvzPRr+RckmzSbZpCh0akLhlO+A61SNFXLlEPcgwO26zVGsi4xeziKiqdx/N8ivkc+XwePwhAmMOYYwkKvnm52cI21K3UbEWbySXqlqGiJaZhbicUPOOgOFIKeHLzG7fWb8aG8mromPJcbTp/9OhRvvSlL/FP/+k/5dd+7df4sz/7M/bs2XPLz/Hcc8/x3HPP3fL9hoeHu6ZOPfzPictzG+HSwK1arXLgwAEKhQLPPvvsG8yiroebqY+dYdvy8vIbmCG3wgD5xskl5tabhK5hH+Q8G1vA0vxFfD9getsktmU0hFgCrTSesEiVIvQuOZRGqSJwLGbXqywvzNFOUi6eO822bVsJXCtz0rbZaJlmq5EoQsemGpkhWq2dEnpGdxh6NhuRJHAFLSnxHWOMYzIcyeJETFOqtdkWmlbXbFaNBayREFhCgG0iTRTZtjCTFyiFod5qGMj5JNqjv1QkkgolEzZqDaJWkzNnV/Fdl3oYUiwUUJaPk7nUWpmDdzsxOZVGBuBeVndNU1lrSzxH0IpBoLD1JR1lhxWy1kp4bDRkz/O/D0CuvUC4egzGN9/0a+dW0THksSyLvr4++vr62LZtG3Ec02g0+NM//VNeeOEF+vv7+Tf/5t/wkY985Jafo1cfe+ihhx7eurivG8qlpSVmZmbYvXv3bU0Nb0Tp6lC4hoaGupb3r7//jTRGC9U2f/7aMuXQ6W7eau0U2W7QjBVbpyZw/BwaaCYSSxiKqRAic+MzTqWpMoY4UmuKvoU1MMhoZY5Y5tkyMYoQFmFg04xSPNscrByhaaeKdqyw3RRhGT2OrQWWNi6Fjg0KTaFDGw0yrVHoEmUNbCuW5DzbZDxmh62cZ7PRlmiEMdvxLOJsQxpLjWuJrjujeVyTsVkOzOS+4DnESlHK55C5kFLFbPAazSbNVouF1VlcC9oJbFSreEGeUs7PHBjN5rHg26RKUAkNVbccuCSZbirK8ihbqbHdf//DI+ZQ9zp0Drxvth39tRwMc7kcP/MzP8Nv/MZv8Ed/9Efk83l27Njxpl7L67Fnzx6iKOKRRx7hH//jf8zb3/72e/r8Pdx9OI5Du93mm9/8Jlu3bmXr1q23/Bq/UX1stVocOHAAy7J45plnrhi2waUsyRvhW2dWeHVuA8+xiVJJ4FisbdSwhCCXzzM5Pk6qFLZtWBK2ECjLbOOEMNmutrDRQM4TtCzBUKXI2vAgG+vrbN68mb5CQCo1vqOJUknBt4lTSWAZnWboCpLUGO3EqZEBRIlpIjub0CjV2JkrrAUkSoM2WketzXVFKs2yMs19W6mJetpoRhQCl0ZipAitrIFtJ6Y+RYkxU4syumpbKhOZ5Lj0V/qw+vpQStFut6jV66wsLZKkqXmPaLco5XPYlk2poxXtDA0DB6lMBq+UmrxvgwZLaBzLmAgVA5so0ZQDY8Yz1R/y9l1jJMe/D/fUF2j6wyTDj97Sa+dWcS3TMs/z+NCHPsRnPvMZPvCBD/AjP/IjN71hv1vo1cceeuihhzcf96WhbLfbzM3NkaYpzz777DVdCm+Ea1G6rkXhutr9r3dgqrUSvnB0Hq01qQbPEaRSUVtZoNZoUvQsCoUCjiOIY2Us61OFsEzDJFONbQlaiTTT9ZYk9C0iCeVykfe+//3YAlw/6G42+/LG7t7XipnZOVyh8TwPS0CUSDxbECuTr6Yg09WYzDatTUOotTF/8GwLjSDnmTf6ku1mjZzZCISuxapSuNlhy4IuDTURKstoM4dKzzFUL2ELcwC0wbesS5ofIUi1TSn0iNIy045gZaPOysIci2tVbLnMRdtnsJxHOwF9pRzrLfN7aSVg22BnlC0s8GyB7Vg4tsU7dwx2t5uvR4diei8ayhu5vFYqFZ555pk39Toux9jYGJ/4xCd44okniKKI3/zN3+Td73433/zmN9m3b989u44e7i6klJw/f54oinjiiScYHBy8rce5HuV1ZWWFQ4cOdfWSVxuW3AyD49D5NV44tUwpcDIKvs2Z2SWa1TVaKUxV+qi2InK+a7IbXYdmkprmM9NTx6nEzfTfjm02tY7j8K53v5s0jsnncoDAtkw9CrPNabu6QaNRZ3R0FIGpGVqb3EVUSrh+HGV5uIM7L6uNpr6BqbeWgFSC7Zjs347jtKGYpvgZg6KcDzIGhZ1JDi5JAmqtS1tR37GIElP34w4dv0tjtVG2x9DQCM04xROSU+cv4kRtTpw+S+DaeKHRpoe50Jj3AAplWB2Wwhbmc55t9OWB23EEN/rK/rzP9z00imVZtH/ot4jWzvKNV87waPDmNnE3qo/1ep1CocBjjz32pl7H5ejVxx566KGHe4d7TnntHGSCIKBUKt12MwlmAp8kyRWfu1wveSNzn+sdmBKp+Owrc1TbCRaG8lRrRizPz6KwmBwf59zMDL5rkUoIfKP/y3mOaYoQaEAqM7lOEoXrWDQjhevYzC6tUWlF2H7IUMWmpQS5wOSQOUJzbuYirqXZsnka1zbmC6GjiKSxjk+kwhGCKIsZiRJJkBk/+K5NPTLus+3YbB+TVBN45ho9x8LRFsoWeLYgdM01CyDVxhgiTk2j2UokOc+hkRkL1SJzu9HqZEKaQ2QzMVS1Tm6l1NBXzLM8D7u2bEIqTbvVYKPWpL2+zsqSJgzy5PI5XD8gb3s04yynrkvTTdg3VWF64NqvEaXUPQnLvpmG8l67GO7atYtdu3Z1P3722Wc5deoU/+pf/Sv+w3/4D/f0Wnq4M3Qor81mk4MHD6KUwnXd224m4eqU1cudtB944AE2bdp0S/e/HK/OVfnm6eWuuU3RtzhzYRYZNRkanWB5/iKNWNJfCozJjWdo7aFnmBiBZ9OIMypqbJgZjXaKtmzWak1iOY8f5tDCxrJtXMfoGx0BcwsLRM0mw2MT5HIhqTSRSYmSeFogLnwLZ+FFUhyETkkGHsTpbEizuu9aFkorfM9ICXKOjZRQ8l0SNEXfRQhjegOXTMMqHefZLOYo7zuk2YBOaXCzWJCO1rIVp+S9LBYkc2M1FH8TjeQX+xgZz7FRaxJFLeYWl0hkSiEMcf2AgXKRppYUQ7fbxG60EvKeMRFyLJM9aQvBD+4aInCzOiUsdP9WUi7cM0nAtdCrjz300EMP39m4ZxtKrTVnzpzh1KlTPPDAAwDMz8/f0WPatk273e5+3KFwCSHeoJe8Gq7VUGqt+fKxBRqRMZFRSlNvNJmfmyXIFdg0PkKtESHInFx9m2pbUvQc2qk0GsWMPmphZ/SkLIPME7gDA1RKJdZrdaJGjaOLS5TyPrafo5wLuDC/RF8xpNA3iGXZ1LJYjUgJAt8nTSU5x8RwFByjAyp4Ro+U92xiqSn4VqZNNFTXQqbD6RxGTDNotheNWJL3LCKpjYOghLxvk0pNOfRIlaKv65jo0Eo0xcChGZlmc7XeAhkTB3kCx6aWme7EaUqsMLlpCAqFIkGuiGcLGs0W7VaTer3KxvIi675PKZ+nqXKUcgGRVExWQt52Fd3k5bgTE5xbgZTymmZRSqm3jC3+U089xTe+8Y37fRk93AaWlpZ4+eWXGRsbY3JykhdeeOGOHu/1lFcpJUeOHGFlZeWmnLSvN3A7s1Tnm6eXTRyQ0riW5uy5C9gCNm3ZQuC6LC8ISkGnGTNNWDEwzVc+sEklWb1S5DLaqGcLdBCyfes0axt14qjF6ZUVQs/FDUIqhTyLq2vYQjM4NkE+DIx7qmc2nznXpRElFGXERuqRs1I2mjFBn2K1FlMMXBqRNA7UcUrOtbL727SizAxHmhzfRGrQilRqXEshpciilzSWZeKaHFtgIRCOhQXdCCOlBb4w28OiZ7O6sU5/pYzSJh4klVAKbJa1MemxLZv+ShEhikip0FKyXq+TtpucOb9O6Nqs+znKxTwNPHzHSDAQGEZMqvi+R0YYKLyxRt1prNLN4FqSgA569bGHHnro4Tsb96ShlFJy8OBBNjY2eOqppyiXy8zNzd1W6PbluJzSdTMUrqvd/2oHpm+dWWVmrYlr20ilaNRrLM7PMTI0zEB/H6nSlAKHi9kBqdbqOLmmlAL3UsRH04Rv19sJoecQZ1Qv27bxPZcwCBECpJLU6nWqG1Vm59bwbaO5JI2otjTF0KPaSs32rpWQD5xsym0m/HnXpp1KPAtiKXEtkFJQcCwkgnJmL98x2ylngeB532I5NcHjl2ey5X2HtWZistzaCaFr0UqUsfeXGs8WoKHgOVRrVf7gP/5HqvU6zz7zNE89/QweNpaliRONa0MsTQNai9Ku420xDEktl4m+fhrtBBm1qTUbROtrzCMoF/O8a3KcJEmu6/p7rxrK6z1Ps9lEa/2WODAdPHiQsbGx+30ZPdwiTp48yenTp3n44YcZHx+n3W6jlDIUzdvcwF++YbyRXvJquFZ9nF1r8uVj8wgBsYI0bnPuwgyVYoHB4RFcxyJWGscyTI/QNsMuw+bQ+K6dxQaB1KaZNDpIi1Qap2mlHSaG/Yw5oanVzfBpfn4OgcbJ5RFJRGxbFAKPKM0GelJRDF3ao49TQFIjpDDxINVEUQw96m2TMbnWjDKHbFOjTX3NzHzczPzGFkTSuGTLxDA4EAqlNI6dUWQdi3piHrORmPzLzva1GStcC37/D/+IC+fPsmXLVv7yD/8wacfYx7SgpikVGte2SBV4rk1q24wO9qN0P+NK02g2aTUbrK0skyQxuTBHmMsZyYVls2/rAFuH3lh/tNb3pEbeDIPjrZDT26uPPfTQQw9vDu5JQ2lZFuVymYcffrhrGX6rGWlXQ+cxzp49e1MUrqtd1+sPTMfmqnzzzAqlwGWtGdGqrrK4vMa26Sm8IAQhEEKDEHhmJE1fziORmr7wysiMUuiaBtBzqGWuhPWM+lVtJgSeocL6rkOSSFqtFmNjIya3q15ndWWZNInZCHIU8zna5CkEPnEiDd2pQxtLlNEmZTln9SghcAUbUYJvCdraaG6iDt1LQ963qCeQd427YSlwSaVxdI0v0xLZFkSpBjSr6xs8/8ILuLbNE297GwPlEifOzLC8soJEcOTwYZ56+hkC1yJVmoJnYwF9odttaDtUsVZinAlbicRxbFyngBPm8RxBrdHmqVGbjeUF/uLMa+Tz+W7uY7lcvuJwdC83lNc6MDUaDYA7bijr9TqvvfZa9+MzZ85w8OBB+vv7mZqa4hd/8Re5ePEin/rUpwD45V/+ZbZs2cLDDz9Mu93mN3/zN/nyl7/M5z//+Tu6jh7uPcIw5Omnn6ZYLAJ0X2tSShzn9sp0Z+C2srLCwYMHGR0d5cEHH7zpfy9Xq4/LtYj/duhipunWxM06F+bmmRgZwsuVsC2LaiulEDg0UgFas96MKQbZMCyLUsp5Ds1YETjCaCpt0TW4STLjrk7sUaI0nutQbzQZ7K+QL5aImi02qhvES/M4bkCxkEflCxRyOcPYKPeRFj9AwQYpNQOBIJWavoJNkkr6chZRarIc41SaaKJEmoxhpcm5hgHiWBpbGO8exzJRJ75j6lb+MmfqWpTiC8V//9I3aFXXeGzfk0xPjjG3vMbMzAxRojl34SKrG1VyuQK+a1NtxgTRMvVayECYY61lhoRrLdNcx5HCdgAtsDyfvlxIIVU4KFarDVrtJgvLq4wWHML+NktLKX19fVe8Xt7sWKUOrlcftdY0Go3ua/t20auPPfTQQw9vXdwzDeW2bduuaot/p49brVap1Wo3ReF6PV5vWjG73uL515aNk2srpro8z0YzYdf2rUTKwrIEtVaKn23sEgVxopC2wBLGNdC2jSFOzjd5Z+XQIU4l5ZxHIo2DaSuW5Hw7C892OD87T9ys0z8yTqGYJ0oU5T6fQnkAgaRWq9NoNllYWsb3XPL5AoVCnkIYgrAo+OYQZFxTNTnfJZXamAhp0wy2U3MwNImPRifZilPWqw3WXjnK5PgIlb5BLEuYDaMA1za3UmksLF46/ipnThzDcgNGB/vJP7qH7Vsm+PboJM31ZbY/vAdLCNazJnqjlSI11GOJYwmUEig0GmF0nJbAsQSWhYkasIx5xffsGuHJzSYrtNVq8elPf5pqtcqePXuwbbsbmD0wMPCWaShd173p/NRr4cUXX7wiiPsf/IN/AMBP/MRP8MlPfpK5uTnOnz/f/Xocx/z8z/88Fy9eJJfL8dhjj/HFL37xqmHePby1sWnTpitqUee1lqbpHTWUaZqyf/9+HnzwQSYnJ2/5/lrr7pZ0oxXzp6/MGs12Kmmsr7C8utZ1ug46ekHfodFOyTmCepQy3J8zRjaBQ23xPMX2RWruEIXRray3zHZvo5VQzAZwxY7BTxbTpOImZy8uMD0+jO3nCUMHJVym+irUoxQVN1mtNllbnyFVUC7m8YIclVIBqSxsG+LUGPAoDY5tHGU9xwIBLiAAR5ioEAuNJcz9VBpz/NVXGegrMzE5hR+YjWXZcZFKU8l1dJUOR48d58Thg5m5kMX05AcZGaiwaXKcCzMXmZ4cp1QsGlptoumb+zre4ivk1x2q3o8RlgZpRhI3y9LUwtBp26lpXhux7DavQwN91KMi05Mu4fzL/PEfv8DevXvxPI9KpdKtkZ2a9J2goezVxx566KGHty7umYby9TlrjuPc0Yay1Wpx+vRppJS84x3vuCkK1+vROTABbDRjvvLqIpYFrXbEwsUZXM/jkZ1bkAhydnZYymI4fMciBTSaRCqEMEYMUitD84wVnp1RvjyzsfMck9GW9x2k0pQCmwszs5DGTG7aRD70aSWS0LO6zWYzUvT399GMioyMWqxW66RRizMXZnGEwvVD+sslgjCHYwnW1tYYHhrEtWyEWRCAoJu3FmfRJs04RSYx3z74Mq3qOpWhUT78oedoJm43x7KU5W3mPZtEKSqlPH4QYqEplEqUAxcVlPmpv/Xj1JotKqVyN08ukdKYRWBcYLEtmlkjXe3SaxNKmUti3je/15FSwOPTlwYDn/70p/n//r//D4Cf+7mf4yMf+QgrKyvMzc1x/PhxPM9Da83a2tobtpd3EzdqKPP5/B2bA7373e++4t/I6/HJT37yio8//vGP8/GPf/yOnrOHtyY6mX63WyOllBw/fhzgtoZtnWsA0yxEUvP5w8bxWivF0vwscZSwc9sWHM/rulQXAtNolUKXBSEo+UaDXgldkiSmr3WeuFWn4rdptkYo+TlipankPVqxpHwZu6MRpbRr6yysrLN9agJle11X1XzWWOV9lwZ5Nk2UaUYpQiasVGs019e4OL9AIQzwwxzFQh7LdlhfW6NYLOJ6fpZDKXFtmzjbjtbbiYlYilJcoXjl6AmW5i+SK5T5gQ+8j/6h0a4Jmm0L4kQjLOMUWygWCXM52u02fX19WJbAFTY/+iM/QqNWJV8s4Tpm0Bi6AlGboaBqiNSnFC8irUHcwAFtoqDsLG6q7Lqk0jA8Eqkohw6J1PTnPMbTOX7q//h5ms0m73nPe/iN3/gNVlZWWFlZ4cyZM93c0pWVFQYGBm57OHEj3AvTsl597KGHHnp46+K+5lDe7mGpQ+Eql8vYtn1bzSRc2lDGqeQzL52itnCGVgKzdShW+hkfHSKWELhZY+gaLWIhsEkSTWiZ7DLHUqjGEsqrIJyAJJUIoJUoPNum3tb4LiY2xLXZiFI8JOcuzhG6NuMTmwh8Bykh7znZ5Nszh4mcS5KaXMlWohgdKFNr5xkdHWGt1kInLeZXN0hbF/na89+ivrrE1PYH+Cs//EGiRGf5koamlSpNITROr0nc4uLyEnbSQimJam7Qakf0lTyaUUo+C8ruOLuGns3U9gf5/nwZiWB60yS1yDjgOo5NLlfAbD7BsSxswPEsfEtQCh1SBZWcQyw1lcChlaquUZBnW123x/c+MHRF3uTi4iJpmqK1Znl5mVKpRKlUYsuWLSRJwunTp1lcXOTIkSNIKenv7+9O52/3dXE1XG8CX6/X78ituIcerobbrZHNZpMDBw50X6+3SzXsNJSNdsxnDs2y/8iraCnBsijm84xvmsJyjM5cY3TVyjITrFSarWaiFIEQzM7NkwsD7LAfR7ZJvTKe66EwGm6pNKFnms+cb5Omio2VBVqtiF1bN2F7Pk5miFPOuaTtBmVHkGBTCh0SCaXAJZEWU/kQqTRSptRqDRqNBjMzq+zff4CZ8xeoDAzw137sR8EPCRwTD5L3TQNbyfvU2imupTl1bhYLiXICkrjNSq1N34Bio5XFg8RmkymUYXEMj4zyvg/8IGnUYnB0AgvBeuZYjV8ABBuNhMA1Lt3uyBPoWhUdDuKWtxDFipxv004UgWcRZc7gcWriQhJp+B1KGXOgd+0a4tDzR4jjGKUUc3NzhGHI5OQkk5OTSClZWlri6NGjnDlzhqNHj1Iul7vsjrsxBOvgZiivbwUNZQ899NBDD28O7ntDeSumE5db3j/44IOEYciRI0du+xosy5hAfP7IAs2ZI+iFI6QxjE0/TX54kHZijCQ2WpK8bxuzncCh3jZam1SDZWn0qa8SVE+TBkPoB34A23EQCAx5yri9pspkhjXjmJnz56k1WkyMDFPqH8B2bDaaxhRivZmSzwKzA9cmSnV2f7oHrnIWfj1SyRHLkJGhQU6fu0BtZYFICs6dPMbBozsZHSiz5gYMV4pstBT5wBgFxc0qswvLTE9N4QYh506fYmpqir5KCa0h55psy4IrUNpsKFWWX5mbmkJmfzOlwXctmokk7zndzeNGO6Or1VM0mlpbdmletm2Rao2XUV2LvoMQ4CN4985B8q/Lm/zoRz/K+fPnkVLyUz/1U1d8zXVdSqUSzWaTPXv2UK/XWVlZYX5+nhMnTpDL5bray0qlckfby+u5GHam7/civqSH70xc7bVzOw3l8vIyhw4dYmxsjJ07d/LFL37xtnWYVpan+6evzHHg1dfY/9JL1BttHn30YbZt34mwstxdIYCMGqtNbq1tCWIFidS88OIBDh14CccPee5976E8MILtBkhp4aNppArXEUSJxhVw7sIFlhaXGRgcYHLTFJZtIZRGCsMIUY11rNVTIDRWZSvkB7CFRghwbCNNEIDneHiuy9BAH0ma8rnPfoY4arI81+LQoUNs2zJNmCtQKhYQItsAKo2nY87PzDIx1M/Qu9/D0SOvUCiW2bV1GoUmJ8zvxQZsoU0z7Bp37a2bxk38kWfcubtad8fK9OJGhiA1OMMPcXzDY/v0JuraoejZWRyTuQ1dw1SxhCAVKosmsanFKe/aOcR4JWTwve/lJ37iJzh+/Dh/7+/9vTe8fkqlEkIInn76aVqtFisrK6yurnL27Fkcx+kO3/r7++9oeyml7PojvB4d07I71VD20EMPPfTw1sU9pbxe8cTZm9fNHnaklBw+fJjV1VWefPJJKpUKa2trd0SbtSyLY8spntWkXV/HTtoMFStQLoJj4TvCRHP4TlfHUmt33FZTLAEbjTaDzQXWY5sc69Q21shXhomUCbJOU6OnEUJhCcEXvvolDr9ymFKpzLYf+RGKgduliUapsa1vJQov0x/5jkW9bZrLass4EDazbV4zazbjVDExOsK2rdu5cOE8jz72GA9vn2aj1qDdrHJyZZF8EFIPQ1Qas1ZrMrVpAscLmJ6aZmpqGq0hVSLTJAri7BoSKfFtTaI0gWMBgtCxUAJCt6Mj6mxRHeLUGPy0EnOIirJpepRqlNa4KOJUEXo2tSzLst5OeXK6j039b9zyjY6O8olPfOKaf8OOhlIIQbFYpFgssnnzZpIkYW1tjZWVFY4ePYqUkr6+vu7hKQzDW3qt3AzltYce7iYcx7lpnbnWmrNnz/Laa6919ZIdeuAt1ch2FVQCuQG0hpeXFBW3TdKs02w2CX2X/r4yvmuhNdiWQGuTuquFQCuwss85lkAqxeLiPI1WGzuKWFxdp29wBzK7byQNtTNOFZaweOnQK3z96/8D23H5vve9z1DmpSJ7BkPjb7VwopbJlMy1iO0Uz7VotLLBVTsh57s0Wkm2eTQDwT1PvI0DL36TkfFJHt+3m1ozplGvMbewSM73CHI5LEuwurrG6OgolXIJpTXf+73f2/25UqWxhZE5OJnm27YEWmkCWxiX2izXsuibQVwxcNAaXNtCCMwW1jPb1rwjQIgunbUUuiSpiXvSGnzHxrYglZowMFEhuycrPDJRBsDzPP6f/+f/ueaf83KN+eXbS6UU6+vrXWrskSNHKJfL3QbzVgdk12Nw3C3Tsh566KGHHt66uK8bSri5hrJD4XIch2effbZrNHCj4O0b4dWFBifWUirRBVrWBLu2jdO2Q4LiqDFWsARWtknLuaaZ6mwHKzmX8xrKoU9z8FFKK6+wFk6TLw9Sj6RxNWwazeVGKybn2ZyfX+T8+Rmk5dBuR6xubDA4OIBjCWxL4GS/E882B0Q301qGmfOgZwtiqbAExNJoItupsbPXWPzgD/1l2lEb3/OwbJtKn487OEA7imm3miwvr4A2VvftRg1LK8JCHqUzUyGp8D2bVqIohNlBLPCptRNDgW2bLepqMyLv2VQTk1spE2FcGVMwZxBN4NjEKiF0MoOi7PeZSE0Ymg1sKXBoRJKJSsiTN8ibvBauZcrjui7Dw8MMDw+jte5uLxcWFjhx4gRhGHapXzezvew1lD3ca9zshjJNUw4fPsz6+no3lgnMEO+WauTaGZxv/TrImPSxv8bX65tYi4CVJYIg5N1vfzuW67Bt6xZsBMLOtpG2ZeI9hEBbIIRGa4FnCwJHsPvhB6mtrZAvFNg2vQkv2yIqDZ5jhN4am3q9zvmzp4jbTRzXY2N9FdvaihCmQbOF2Xh6hT6SeBDXgrZbJnA7tFWHRpRSCLJ4kMA4yhYDY/bz7ne+nUd276G/mKMZSwYHCjSjEkOjgrVqnfrGOs0owhKwXq3RThTlYp4UQc418VCFwOT3FgPX1MXOBtIWme5SECWGeePYVsbisDMtvUuUKHwnG9i5FrExDCfNImLQRjZgW6bmB7Yww7zMOXusHPDMtoGbfg1dqz5altWVB4DxJFhdXWVlZYVz585h23a3Pvb19XW1mNfCjeqjbdt3bFrWQw899NDDWxf3raHsbJVudGC6nML1wAMPXPHmeCc6zAurTf7itSUCSyEtl507p6hnLnrVVtrNejSOrhLXstAobCGMCUOWsxYrRTDxCNHog5Q6zn8hxEpTCh2ixGRVnr4wh4pbPPHMOzh6aD+VwRGmJiapthJyvkO9Zaz020lKzndJlMK37YzGZWOhTOSH0girY3AkkFpjIUz+pGOhtI/n2rRiE09Sj1ICx2FhrUrgeZQHhnGFZHm9RnN5ifMXZ6kUc/hhnkqxmLnGOkhtmmapNH15nyRV9BfM9RV8lzg1kSKJVEgNaJ1tWh2qsaTgO1RbEiEsqpmTYzOShEsHkPUV3MknUXY/lZzL+x8avm26qFLqhvd9/fYyTdPu4enYsWOkqbHb70znX7+97GS59RrKHt4s3C7l9fJh2zPPPPOGQ/ut1Ehr5RSsnwUl+fPDr3GAENCs1iN2bttGW2qKgUszSggdTbOdEvoOzSghcB3ascT3jGGN7zqkyrASxic38eM//ldRWuO5xpTGsgRKmi1mqqC+vsb80hJP7NtLksQ4lsUDO3fiOw5Kq65Dq+dYpDIgP/4gqYKSwNSq0CPVinJWsyp5w5qo5FwSaWQCsdSM9BWIU0UpMHruQuCQSoVO2iiZsGVqk2Ge1Oq0GxssLS1SzPms+zmGKkUaEUb2EBnznkYs8VybRGkcxwU0KjUGP83oUnZwwbdZa0TGwbYtCR2LWislVZpYatLI3OflV1/j9PEjbH/gER7etY21lnmejZZxyf3eB0awrVvbHN4M1T8MQyYmJpiYmEApxcbGxhXby1Kp1G0wr7a9vJEkIJ/P3xM37h566KGHHu4P7hvlFa5P6boahev16OSk3Wr491oj4r996zWWFufQGnZMTSC1pi/0iKWiknNpp4p8YNOOJYFj04olnmsRSYWjjXNprCyiWBrjHscmjlNDQVVm4yiVxhGa8+dncFGMTk8Teg57H3kQxzY5bmXHohmnWWZlmk2+zeGh2jZ5bhtNMxnvHCqakSTnG7MG3zGT65xrmsBS0NmgmpiSnANnz5+nFHj0DY6Yhq+dMj2Ro96WuEKytF6jUW9wcX6ZvO/iBCGVYgHPD7BtgS0sFAobG9e2cWwL13GwMv2QyJxufcdM4gueRRSn5FzBkoTANaY77toZkuNfRCOwNy7QeOxv894Hhsl5t/8yvJ3YEMdxrtheNhoNVlZWWFxc5OTJk93tZUd72XEovp4pT4/O1cPdxo2ilTrDtvHxcXbt2nXNTdTNbijV8IOIoQd4cdnjhdowq/UZImWxa3qclqS76SuEbratc6m3jRt1LcvXrbWznN1WgmXbVFsJYU7TSBQ538SB5NxLA7S1RkyjusbKWpUtU5Moy+HH/sqP0YwlBd+mFiUUPBOZ0WngQtfKMnctWqnGdyzaqezS/13LuK9attlomg2gxrZMpJMtAGGaWaE1C/NzyCRh8/Q0YeghpaaUz5nIJamo1us0G3VmZmawBNTzBYrFArg5SoEL2Ua2Q2ctBMaFdcBziFOV5RQryp2MX8do1F1b4KCxLYtC6LCyVuX3/v1voR2PF7/9bX7u//iHlAqFLALK4gOPjBJ613ZSverf9Dbqo2VZ9PX10dfXx/bt22m3213tZWd7ebn20nXd624oe/Wxhx566OE7H/dtQwnXnp5fi8J1tfvDjTOwLkcrTvntLx5ibmmVwaERluYXaMQSWyhOnDmHYws2TU0Rep4JyA6cTNtiGjbfsUlSkzfpuTZzsxcJcwXyhTy5MCRSmGYxVmiZcu7CRYo5n8rgGLZld91MEwmebWJGcp6D0ibTTCqo5FxiqSiHLu1UUs4ZI6BiYBsNZ2BTbcksry2lEBjDoHzgUGvFFHxDJdUy4fyFGfpKBQaGzGRbaSiHDrJ767BpxEcqzZiS1OtNavU68wtzRhdZzGN7IYN9RWqJzhrbS9Svgm/TTBQ5xxyWHDvb3tqCejMmsMFGk3MtHNHGFjGWlsSywNNb+5jsuzUt4+txpzmUQggKhQKFQoHp6WnSNO1qL1999VWSJKFSqQAQRdFVjSeazWbvwNTDXce16qPWmjNnznDq1CkeeughJiYmbvkxrorSBK/s+Lt8o3mWtcVFKv2DWOurKK3pCx1On7tA1GoyPrmJcjHfdZ+OpaIUuERSUgxdothoFleERWtjjYtRm/5ykaYOKIYezVhR8Bzq7YSNlQXq7YRd26ZpS5E1qUl3oFYMXKoZfbWaNbHVTv1pXdoAmqgPU1trkWkuZaq7jtEKjS2M+6znWrRbKb4Np89fJHQtysPjeJ7LejOh6DlUM2frttQUCyW8XJ4BAc1Wm0ajzsLCMu04opjP4QU5+stFtOVkRmoKzxYk0pgEacAWFgJj5NPRXiqZIiyBZ+nMGVyiEaioCbaDZwk8R6C04O3bBhkq3rprtdb6jjeDQRBcdXt57tw5jh49SqlUot1uE0XRVYe7zWazx+DooYceevgOx33loFztsNNsNvnmN79JFEU888wz12wmO/eHmzediOOE3/jsCyytbbB5eppioYDKNH/HT53hwIEDfOvAy5w/f571VgwINprGZa+ZSCwhTDNpGa3Lrq2bmRwfJfQE6yuLzJw7xerSHI1albjd4PyFc/SV8gwMj+A5Nu3UmEs0Y4VSUIsM5anaTkikotZOkUrTThQWhk7q2gKpoODbgKAUOKCNllNmtNpEGqv9zja1GStazSanzl6gXK5Q6BsiThXtRNJMUlqJotlOSKQmTiVk7omB61CplNg6PcGu7Tt4YOs0ucBHRzXOnD7N+uJFFhaX8Uhpxyk5zzyXbVm0UkWqQWqbWAkazRYzCytU+vuptiVKKtYLO0kmnqbZ/xCVx/8yezdVbuNVcyXutKF8PRzHYWhoiAceeIBnn32WJ554outO+OKLL/L8889z4sQJVlZWuq+7RqNxx7EhX/va1/jQhz7E+Pg4Qgj+63/9rze8z1e/+lX27duH7/ts3779DTlsPfzPg2sxOF5f29I05dChQ5w/f56nnnrqus0k3FpDeWqhyp98+zXmFhYZGhlneGgQhYUlNBfnF9n/4rf49kv7OX7sKFJqfNu4nZqmxzidKqUJXQutFFMTo2zaNEkpF7C6tsb8zBnOX7hA3Nig2WyysnARATy0fTOO61LJGcpoX85DAZXQywZtbjYIc69wuS6FrjG9Cc3Xc66NEOY6bGFMcBzbOL76tjHIyXk2Sarwbc1rZ89TDl36hkap5DwzrMtikjzHbEEtSxApidIAFrbnMzI8wtD4JNu3bkV4OeKoxdFT55g5f45TF+ao1xtsNBMSKWklikYkUVpTj8wWrx4rlFK8du4ipWKJRoKREHh5PvSX/xd2PvwYH/rwjxHmclRbCQ+MFtk2fHsDq7tdHzvby+3bt/PUU0/x7LPPMjY2hpSSU6dO8Y1vfIOjR48yPz9PkiTApfp4Jy7YvfrYQw899PDWxn2lvL6e0nU9veTV0Pn6zRyYms0mn/rcN1lvCXZt24LI9Ii+ZUxwfEujtMSWkkTqbMtn9I21ttENbjSTLNojoRS4VCNJIZ9HuAFDQyPUG02TV7ayipYJvuPguzaWTvEdv5vVhm0OYIFjDmAdAwYhrK7ZTqowZjsyu8X8j20J0wDqSzpKxxI4loXjGdpVs7HB8sI8m8ZGKZfLpMpoP6NUdV1ic9kWsxiYoPDuttN3WG8YzU9bW1T6+0llP8NI6o0mzUad8xfWQAhKhQJhPk+ukIfs8JZITVprMD+/wNZNYzh+3jjWthN832Vj07sJHZvv2TtGkiQIIbp62ts5+NzKdvpW0dleCiG4cOEC3/M938Pa2hqrq6scP36cOI555ZVXOHPmDOPj43f0XI1Gg927d/PRj36UD3/4wzf8/jNnzvCDP/iD/PRP/zSf/vSn+dKXvsRP/uRPMjY2xvd///ff0bX08NbA6+tjo9HgwIEDeJ7Hs88+e82YhsvRydq9Ec4uVfmdL+xHpzEDY5soFkOqrQTbtqi2UtCaWHigY5qpadLWWjFF32Gjaaj5682EvGuxHqUUvIy5EARgu/QPDNBoxyRRk+W1KjJaQAuH/lyOjXqTYj4kSgWuLYhSiS0EicqGeNIY1aRaZywLY/Cltdk6WoCTUfOlFibKQ1s4wiJREs83dbbgGJMzV6ecuzDDUKXE0NAQthBITaYZh1LoGlfWrNYqDbYFUhln6zgzZYtTzfTYAFGqmRSwUW/QbjZYXFxASkmhkMMP8vSXi938zGYscUXK6bMzDFUqlPr7zHuj1kgteWLfHh5+5FHynkWtnbB1MM++TeXbbgzvdkP5evi+z/j4OKdOneLRRx8FTE70+fPnOXbsGMvLy3zmM5/B9/07upZefeyhhx56eGvjLUF5vRUK1+XoNCE30gitrKzwR/9jP7NJns2bRqjHioIvaMYJCDMd3rJ1q+n1LIvNm6exhMhoriafLE4VxcAymzkHTp45T6UYAv0UOk1nLuTceg2tJIWBEUJHsLRWY2V1lVRb9JcL+EGevnIBhcgor4IgO7QIAdosMbMG02iAbAGRNHrJVtJpCi9plYw2KSbnOVxcWCaqrzEwMkFfJU8kFYFtkShN3rdIlTBUVwWVnNN1rI1T2TURynu2MSKyLeJUs7Awz4ULF9ixcxcjo2O04hRLpcbYZ2WFMxfm6C8G2H4eG8nq2jqbJibI5fMmjVMISqGLJQSB6/CeXUOUcl7X7ObyA69lWd3/bgZKqRs6EN4pOk1rZ3s5NDSE1ppms8mpU6d47bXX+NznPsdXvvIVfu3Xfu22DizPPfcczz333E1//yc+8Qm2bNnCv/yX/xKABx98kG984xv8q3/1r3oHpu8Q2LZNHMcALC0tcejQISYmJq6pl7zWY9yoPp5bWOM3/+wlPNdhYHIT+dCjlRlrXZQw4AicQj9P7X2UjXqL7VumqEdZ5E9mPFPLaKfVzPn0xPmL5FxB2j9sNJftlLzvUa03UXFMrjJIORewvFFjvTrPuVRTKeZx/JC+Up62tnAdizSVWQyJcbMGcSV91bFoRJLAs6nHMXnfYaOjPc9yg40bq9k8yqjFuZlZRocHKZQqSKlIspGdUiYWxHMsklTju5ahrzqWYYtYFrHUODaZ27bRrzfqNY4cPsLU9CY2bdrE0JBCy4T1ap2oVefUyjKh7xLmCriuzdLSMqNDgwwM9GeUVIFSkPMdlILAdZFaMZnz+d4HhlBKdf+Gt1Mf70U+rpQS13XJ5/NUKhW2bdtGFEV8/etf5+LFixw4cICRkRH+4T/8h/zCL/zCLT9+rz720EMPPby1cV8bSsdxSJKEQ4cO3VAveS1cj9KltWbp23/EyYN/TiP/LrZt2U69nVL0bapRQsF3aSYgEESpYNu2HUSpQmIRxwmOZQMmUButSVOjm9z/0iGOHz9GLlfgPe96JwT9lEObczOziDhibGITpXxArZ2yY3PZGFSomKW1GvXGIudm5xgo5RFeyHBfiXpK12wnH1zKo0xSoz1MNZRci1RBJbRJs2l3nBraV5S5Fp65OE/abtA3MkFfKd8NyV5vGXrqelMSehaNyByS0kThCAtpyez3BY5j4QgILQdbwOraGr/xa79qGutigf/jF/8RlbxHK3bYMpGjEUtGtWRlo0attkEUJzi2zVq1TiOR9BXzRKnO9J0pT23pZ2rgkp6mY6rUGSy8/vAkhLju9vLNnsDD1R0MhRDk83n+zt/5O3zxi1/kIx/5CI8++ig7d+58U6+lg+eff573ve99V3zu+7//+/n7f//v35Pn7+Hu4lqU187Q4vTp0zz88MO3vAm/EeX1S19/nn/5e19kYHiE97znPdiZ5i/nOWits7gkKAYe+enNWBYmQ1KA1IJyziWVmnJgE2WGZidPneHAt7+JxuLpp54gP72Fcugwv7hMc2OdkdERyqUSiVRsKxaIpSKNY6q1Go36BmvLC+TCkDCfp5DPY9seSohLTaRtE6emiWxlcSH1yDSR9czQrNZOjd6ynXTzg+NmnYsLS0yMjRLm8mgNCSClifBoZMyNjilapyGtZvr0ajshcG1qbYVjAWhSpfn13/hNVqs1RBrz0z/795keG6YWWwz091OPSvRbsFGts16rErXbaATNdpv20hojfUVqkSbv2dRbpi6b67F5/6MThs6bDd06tbKztb4ZdsebyeDo4Fou2L7v8773vY/Dhw8zPj7OL/zCL9wzp9defeyhhx56uLe4rw2l1prTp09TKBRumsL1elyL0qWU4vjBb5J//t9xprWZgebzpOPbKQY5pIa+zE6+4IFUJnexQwltxcbCvZ2auJB2KjHGgCbAut5s05YWq3MLHDr6Kk898Tizs3M4tsXEpim8zHG1mGl+KnkXqVxKRWNZj4xZWa8Rt+q8urxMMfRY8/MM95dYbxrDisMnzjLSX8YNixmdzDSH1XZKzrVpJxrfNuYODpoLM7OINGF6ejqbcOvssGdiS1KpyHl2l/6qtXE8FA60Ytl1aMx3jX7M7fpGFe2GEDWotWK0kkSJwMuoZznPRmCxoRM8FFObp1AdZ8S1ZVYX5ykVcjT9HNvHB96QN9k5YFxusHT54anTXF7r8HQ3TCduhOs5GIJxMezv7+eDH/zgm3odl2N+fp6RkZErPjcyMkK1WqXVar0h+qSH/zmxtrbG+vo6b3vb2yiVSrd8/+sxOI6dPMP/79/9F5ZW1ri4sMzU5i1Mb96MpUEjEEKTAqlMu1R8KUFoTYxAWBqZAlqZKBDbRIDEUUQUJ1Q3Njh87FXGJiZZXFih1WoyMbkJP/BBgJvZrXq2hZfLEYShYWMkMe1mk41anbm1VSzbplgokMsXKORzaAQra0tsKJicGCVVgkrOJVVQznkopSiHHaMz47AaNTZYW1tj++ZJgsD82zCMEI3l2KZeZtEi3ducYaZ0hnY530Zr41ptIq8UOVewtrGBajcRXkjS2KCVDJDzHdqJxHMs0EajLpOIwZERyqHP4lqVtL7O4cVFSvmADT9HIZ/HsTykhvc/NEo5dLt/w06N6wzcOv/diN1xLzaUndfX9WKVisUib3/729/U67gcvfrYQw899HBvcd80lEtLS6ysrFAqlXjiiSduuym4GqUriiIOHjxIu9HgrHiKmDpS5LG1MNlpnkUz1viOQGoLzyajGtlorSnmTANWcG0SpQhdo82xBKRS8eBDD3Ly1GusrK7yF8+/QJyk7NyxnYHBYZQQ1COJYwuaUYprG+2N5wjSLHdN2R7DQwPAIONKUqvVaTXqXDh/Hse2+LOX9nP08CsE+SI/8bf+Ju7AkNksxuaAYm4FjVijleTi7By2JRgZnSRRFiqWWWabud7AdRDCHNyE0LiuOUDlPNuEZ2fB2+XQIU415dChmUjyno0eHmNqYpzZhQX27t6DxEalGm1DlEpC1+bszBy2iimPTBCGIa1YMjaaJ04VKo2pNxokrQb+ygovvDDL4OAgQ0NDlEqlN/zdX3946mwvr3V4ul7+2d3CjRrKzoGphx7uBJ14GjCvqXPnzqGU4h3veMdtDdvg6htKpRQHXznCfz04S6FviNVqA8v1sB0PqTSqo9rWGq0tYmm2eEqDJcyG0hIamRoaqlTGmEunpnkZnZyicOI1zl64yMbLR4hiyaO7H2N8fBPKtolT04A6jjE581yLKE5MvFAiCX0HvDwT4xXqUYJII5bWq1Rrc7RTxdLcLF//ixfQacRzH/ohntizx2gTLYu2NPrLlKyJU4rZuXniqM34xCT5XEicSnzHJs6MhWKp8WxBLDVuljFsWZpUgp29b7m2iYJKpcKxLKQGzzNskWee3Me3vvVtRkaG2LJ1K45tIRDYno0lBMurqzQ3lpmanKBYyJMq2JILUVoj05R6o0GtXmdpbhXLdnliSx++bCCl/4a6c7X62Gkur7a9vFf1sXNtV0Oj0ei5YPfQQw89fIfjnm8oO1vJ06dP09/fT7FYvKM3vNcfmKrVKvv376dYKrNc2km6I4+1cR5Km0iEi2tZtGKF71rU2oYuud5MGSwHJg7Dd6g3U/KuoJGY7LNEanzXmEOEro070EdfIcdsGhMlEZ4tmBwbRQijhRG2CfS2BCiAzFgCzGHl9WY7fpgnyBfo05qo3WZmZpY4TUmq6xw9cpgnnngSt1Cg4DsIAV5GS1NJxMXZi4S+z9joGLFUeI6gFUvymelOIaNqFQKH9eznW8+oXOvNhLxn0YrNgSrKstpSJfBtC8sSVFcWOXv6JEIIDr74TX7oQz+A65mGu+jbnLlwEQ9F3+g4oWe0Uh2HRLTGdjyCgsOPv+MhhvMOKysrLC8vc/DgQQAGBgYYHBxkYGDgDYfmG20vkyQhSZLu52/X2OdGuBFtrBPcfS8xOjrKwsLCFZ9bWFigVCr1pu//k2NxcZGXX36Z/v5+2u32bTeT8Mb6GMcxL+4/wDfONpicmmJwaJijx47RV+lj89REtrYDs6O0cG2Ba2nTJHUMarQ2zaVlmjbHsk0xy0zH8rmQkZFBjh0VJHGbOIrYvGkSqY3pTpwoPMcmSlOCzCTM1Ku0GxtyKT7EpdaGLZNjVNspjk555cgx2s06wg04fuwYY+OTlIt5pOOaaxRZkwucuTiLIzT9w+OEYWAiR/xL0UfrWR7mess0tPVIY1mGjSKV6kaM5H2TB1wM3Ev3baZ4tuDFQ0dJtMXFhWXOzswxNTFOOzEa09MX50lbNSrD4/hBSLWV4tiAFiaGyrVxcwU2VSrU2wnjBcHOkuT48eNEUURfX193APf6f9fXqo+Xa9M7Gtw0TW9Je3kruFFDWa/XGRwcvOvPez306mMPPfTQw73FPW0o0zTllVdeYWNjg7e97W1XWIvfLi6ndM3Pz/PKK6+wdetWzsV5NpYb2IUhZmqSAa9EznMAje8YM5pi6KCBvCdoJylF3xg45Dyb9XZCKfCyLLQO5dRhPdMl7nh4NxvVKv3Dozzz9NuQGnzbtIieZez0bWEiP4Qwk36y4GsyupRlmSBux7aIEkXg2SRewLve/U6+8OWvUs7n2LR1J6vr65y5OE85H+AGOYYqRVpxysrCLPlSH2MjQyilKXouUmoqOYtUQjnnIGWWa5kqKqFDK5HGgTE2pjvt1DS6idJIBa4jiJKE0HOot1JAYIdFVLuBFeSx0LSy3M7zMzPYlsXE5CSWZWNnbrOWRXebkSrNk5sHmKiYN/HR0VFGR0fRWrOxscHy8jLnzp3jyJEjlErGdXFwcLDrrvr6v/Xlzr4nT56k3W7T19d3R8Y+N8L1NpQdc557PYF/5pln+O///b9f8bkvfOELPPPMM/f0Onq4e9Bad/WSjzzyCI7jcPz48Tt6zMvrY61W48WXXuLVDZfKyCSB52LbLtu2bMZyXBzLIlXZBk4ZR1XLMi6qlhDYtiBNFcICpMJxLJS2zOAsc0JNlcazBLt27ODsayfBtnnu/e/Fc2yzOczqrtTgOYaab/J3ReayqjP6qu7SWCuZTrMSuqTK4V1PP87Fs6fQSrFvzx500mZ2ZgXbcSjmC+QKeTzX5eLsHHnXZmh0jNDtZPq6RImhscaJkQN0YpdUVv86dSvnGz17KXRpxZJi4NLKGsV2N09YmumgShGOj28L2okxNDozM4eKW/SPTJAPfaK0Q9+3iFLZNTUqZtmaY5WQD+2dxM5MiJrNJktLSywuLnLixAlyuRyDg4MMDg5SqVRuyO6Yn59ndnaWhx566Ja16beCTn28FrW2Vx976KGHHr7zcc8ayjiOeeGFF66wvF9aWqLdbt/R43as9U+ePMnZs2d57LHHON9yOTy7TDFw+OM//RJnThyl0D/Ej/3lH8L1fALPRmmFo63Mfr5jQgHFwOgMKznPNGOhkx0qjPNpMbA5fWGevGfxof/lxxgqF4yJg2tdit3IYjg6t83Y6G/i1Di1pkoTZHQp83zgO1Y3a23vnr08vmcPidK4jkU7VkxZioXVGjpp8urp8wSWRrsB+VzIejOmGHisN0wzXGtLAtc4wrqORZoYClSqwLYFlhCErmn89GUHQgtBqjV+ziZOJOXQwR0Z48MffI4TZ87zticep5kCOuHsxVlcx2VsbNTEA3gW9ezn75gB1SLJZH+OPVfJmxRCUKlUqFQqbN++nXa7zfLyMsvLy5w5cwbHcbqHp4GBgSsaOq01J06cYHl5mSeffJIgMIHft2tccSPciDZ2Nyhd9Xqd1157rfvxmTNnOHjwIP39/UxNTfGLv/iLXLx4kU996lMA/PRP/zT/5t/8Gz7+8Y/z0Y9+lC9/+cv8/u//Pp/97Gfv6Dp6uD/QWnPw4MHusK1UKrG6unrTGZLXgm3bRFHEwsIChw4dYlYMkuRyeI7NRivm5LHDfP35b+HZ8N73P8fW6Uk2WgmhZ9NoJYCgFqWUNNQbCb5rqPwdh+kwM7HJ+y71ZkLed5mZX6a+vsJ7n/sQYwN9NGKJEFDPsmsbkTSbyVQSOBbN2NTFZmxMaVqJxLMt2onCtiBKTUObKo3WmrHxCf73v/e/YwtTM11HECeSJGqzXq2zOD9nsiY9h1yhgiMgUcq4akuNY5uGzck0nI4Ftm0hMcO9VCkCJ3PG9kxzHXoWWkPomjoU+jZWpv/86N/667zwzW+xc/t2JibGsYELFy9iy4Sp6anMhdpsdW0hUNnjmPcZ0ywPlwKee3TMxEJxyfQrn8+zefNm0jTtsjteeeUVlFL09/czNDTEwMAAvu9f8Xefn5/n1VdfZffu3QwODt6yNv1WcC8YHL362EMPPfTw1sY9ayg9z2Pz5s2Mj49fQdW5PGftdmBZFufOnSNNU55++mkWWvDyhSXKOZdWJFk4f5p2qhGrS8wurbB98ybqWcNVi1MUFo0owXJTtDYHFtsSmXsoJFLgOgKlBL4FFy7M4KiUsalpAt8zAduBzfLqGqHnkDh5SuFlGY9t02RVL8t67NBNi4HDWpbhVs2asGZkrq3TZKYKQs9GacHkcIWVNcjX61QGBlBSsbCwgJKStTBHsZDHIodjm1gQjYkhiaQxG6pnuZrVdkohsKm2ZNfNsOA7NBLjnBgnEscyNF3fETz55JM88eQT2MKiHbWZmZmhnM8zPjJCitnwthJFOefSiFJzGI0lec/h+x4cuSlTiCAImJycZHJyEqUUa2trLC0tceLEiSuoXwMDA5w9e5a1tTWeeOKJK+hLt2tccSPcjIbyThvKF198kfe85z3dj//BP/gHAPzET/wEn/zkJ5mbm+P8+fPdr2/ZsoXPfvaz/NzP/Ry/8iu/wuTkJL/5m7/Zs8T/nxRCCMbHx3nooYe6FNe7VR/X19eZm5ujUZwiimyKtmUomYHDhdkFGhurtLyA2uoS0fhYlsFrmr9FBTlP0IoSQtdkIxZD7zJ6akoh8Lo01bMXF5AZxXO4UuzS7edWqngoklyBUhbl0Ylb6hiChVmz6TuCZmziQtLUZO0KYfSQrm3Taps61cgcXk1tdWmnPpWKxfJ6laH+MrEUrK2tc2FugUIY4oc58vkcge+TKo3vmN+DobPGWV2OKQQua82sqY4Ujm2kDBrz/FFiKLq1yNTwgdFN/JUf3UwzlkRxyoXZWbSUbNo0STvV2I42tF7Pph5JQteiHqU4liDOmuV3PzCcMWiuDsdxGBkZYWRkBK011WqV5eVlLly40GV3dAZw1WqVkydPsmfPHvr7+7uvg1vRpnf+/83gXgzcevWxhx566OGtjXtqyrNp06au6QSYN8k7mcA3m03W19dxXZdnnnmG9bbiGyfnjKV9akxnnnjySb79rW8ysWkTO6fG0ZDRnBQFzzVug5bRyziWIFHZpk5qLI0xppCQpgkXL84R+C4DwxMgjDmOKwTHXzvJi99+AdvxeM+738PI6Aj5zBGwHJpssb7LHAOTVFEKHeOu6ts0ojTLUZP4rkU9MuY71bYx32knhj66tLxCrbbB2NgkYRDgWhaVvgG0SqnW6jTrNZYWF8mHPmG+SDmfx3F90+gqqOQ82qnKTHdM1EgtSgld0wC6tkUrNn8PqTVpajQ+7cQ0oisbddaX5nDCAmOjwzQTRehYtFKFa0MqNYFrYQmBYzl830MjhN6tW9ZblsXAwAADAwNd6tfy8jKLi4scP368e/hutVr4vn/Txj6dgcGtbi+vN4GXUtJqte74wPTud7/7in8br8cnP/nJq97nwIEDd/S8Pbx1MDo6eoXB2J3WRykl8/PzNJtNvPEHWF9PyHkWUinyvoPS8PijD7KyMEvge2zbvp1SzjV0+dAl1ZqCbxs6feiQpoq+vJ/RVF2kgnJGUy36NhdmLiKSmKmpacLAI1GaSugxv7TIV7/wBaI05Zknn6Sw6wHKoXHZLocuidIUA+PKms+er7MR1F0joEyqIBWF0CZJzX2jy1xYRdrm3MU5pseGCQpFs22UCiUl9UaDer1ObX0FLIe+coHIz9FfytNKJKXA7TaorTjFd4xRmS3AAlKlCD2HZnwplqQTRxK4Ns1EAYoLF+fQCDZPTxGl+pImNPte3zVMF41GYyQP739kjOFicNN/VyEE5XKZcrnczXtcWVlhaWmJs2fPopRicHCQJElI0xTHufJt/kba9FutjzcauN0NymuvPvbQQw89vLVxX2NDbpSRdj2srq5y4MABPM9jfHycWFt85uUZEqm6gdfNlmTP3r3sePARCoFDO9WENsbdLwurDmxBo15j0HNwXUOHlapziNAIAY1mk9nZWYqFEgODg8adTxvaVCJgbnGZjXqEZcXML61QGRjsagjRgBDYCvOBzMwstDH6sRAUffNncHwHNLi+QGuB43ZCvDWLiws0mi02T21CYuPaVmZmYdOIbAYHB6i3y4y5sLhaI4paHFtcJecKnLBAfymP6wfZQQk8S5jm2ndAiMtMNzSWEIbm5RqNUDl0Wdmos7Y4R1jqY2Swn3pkGvBmolBag2MRJYbyVm2nPLNtgPHKnZsfdKhfYRiyvr5OPp9nenqa9fX1K6hfnen866lfN2Nccfn3Xm17eb0DU6PRAOi5GPZwx3j9Jr/jYK21vuXoh1arxYEDB5BSsqJzrC62yWcbxpxr04gVoWfRPzbB3/7IT5ja6Fk02llWbUZDjVNIoibLa1X6SwVaiRl6tRKF7wiiRIHWnLtwAc9xGJvYhO8bmYBjCSIpWVleZq1aQ6UpF2bn2L5zF6kyPj5Sa0wlsgBTewBsS5CkhgKbKI1vWSTaOFKn0gy60iyvUUlFY2OdpeVlNk2MUSgYx2XLEqYhdG0C32VksI9UKqJWk41qneryAqtLmkI+R5ovmMxLS5D3jB5QaSMPUNqwRKTS9HXiSUIXpaEUZm+hWnPxwiw532PTxDhSQ+gZDX0pcFCYWy3AtW1syzT2uzdV2DlyZw7Rvu8zPj7ebSwfeOABWq0Wp06d4pVXXumyOwYHB8nlctfVpt/M9vJW6iPcH9OyHnrooYce7i3ue0N5O5SuCxcu8Oqrr7Jr1y5qtRpxKvn8kXkE4FhWd1vWyZQMPYd6pMh7dneybBxObdxCH7Jd59UzM+Q8CyfIM1wpYnkBOc9meXWd1aUFhoeGGejv6+pgpFIIS6CVYNe2LawszuJ5PpsmJ4yToTSmPJFS+LYgyvSTzcRY1jczemk9SQldsxnMe8Y0J+87xFISug7tOGF5fhYlUx4Y9tCuheN6pErRl3OIpdl+RtnmsZ0qxof6aMUlhoYFG/U67WaTi/OLpKmkkM/hBzn6ygVSLchlU/dC4FDL6Lj1jIYWpSmuZbG6UWNxfpbRkRHK5Qoiy5CzhOiGnKcaQtciSjXbhwvsm6rctdeJlJKXX36ZKIp48skncV2XiYkJtNbUajWWlpaYmZnh6NGjV1C/SqXSLR2ermVcIaV8w5S/g15D2cObhc4h/Xqvv6thbW2NAwcOMDw8zJr0OXjmAru2mdpnXJ/Nv/NqOzMii8xt5+ONrhY6pr+vzOxiyuryEjNzCwyUclhejqG+ItWWxtYpp89fpL9coFgZwHaMhtt3LBqRxHUs+kfGmZjcRKvVZsu2HcQqo69aFklimsZGmpBzjS7zkqNqRxrgGofqwDV1O6OoGofYmPXVFarVGo7rkSiot1MCz6LVzqipmVvsRtM8Rmr5DA3nacYDKBlTqzWYW1olnZ3H8Xz6y0UsN6CvGBp9fKaHzzkWjchEighMQ+i7NvVmxOrCLJYfMj42apgmtkU9VljC5OQmqYlDaceSnGfRjFI29ed4cvPAHb9OOs7pFy5c4Mknn+xGGO3cubPL7lheXua1117D9/2ua2xfX99V2R2d116nFt5oe3kj07JerFIPPfTQw3c+7mlDeXnOGtw6pUspxauvvsrc3ByPP/44/f39HD16lBfO1UgDh8CxMht7Cwtj/+7YDlpoypmzazmXufv5Nu1EMtpfohHnGR0TLK3X0XGL0zPz+JYiwcHRKcWBESp9FXPQCi7FbjQiScG3GRwZ4Uc+/OErdI8FX1xhvuO7FjL7eiINhSxKFEXfoRlLCr6bOf453UPMSq3FxvI8sbZ4YPUrNE6vUsjnWH/0o4SBTyPT4zTjjsOiae4AQs/CEhZepYTVV0IqTZrEbNTqtBo1zq4tUwg9GmGBvlKBVgw5z8poWRaNOMUWgvWNdeYXlpgcH8PyQ5SGRqYL3ejoQ9uGNttMFKHv8K6dQ3ctTFtKycGDB5FS8vjjj2cGF5deT6VSiVKpxLZt24jjuHt4On/+PJZldZvL/v7+K+4LN6Z+dQ5USZIQBEGmq73yANZoNPB9/w2P3UMPd4rO6/JqtMVrYWZmhmPHjrFr1y5U2MeXXzxFztagoZLRSw39vuOaqq64TZRxg44SSSkwNXPH9ARxKlFJzOpGjXZjnZMri+R8j1YUMzbQR6lvANc2RjP5bJsXeoa+OlAp8gMf+H6U1ti2hVLge4aOmvdsYqUo+Q5RqimFLu1EZreZw2piHFaNe6pNO1XkfIc4TVleWiCOYk6+dpJv/sWfE+QLfOwn/w5WpZ9i6NCMzM9Rj8wgsRmZeJA4lTi2he0E2I7H2PAg1WYEacTSeg2SFebnbfrLBVqtkFIhR5S9VTmWee/IBw6rGw3Wl+Zxc0UmR4eoR0Y6EEtlXLM9MywsZIO6jl6+L+/xvoduTl9+PWitOXnyJHNzczzxxBNvGGzlcjmmpqaYmppCSsnq6ipLS0scOXKENE2vYHd0zM06eL2W8lra9DiOs8isN9ZH6OVQ9tBDDz18N+C+byhvtqGM45iDBw8SxzHPPPMMuVwOgCNLMWdWI7ZuEqx3ptutmNBzaEcpnmUOLq5jo5VCKYHKtHSeI9Dort5xrL+M1CVGh4c4PzODFUVo26G+ssCZeo3+coGqDCnng67ZTqfJvHyS3ZmsF/xL5jv1tiTnm5iOjoNg4Fqk2tBOpdaUM2pUOefSbLZYX7yIH+bZ3Beizs5TICFqJPjJOrEzjCWEifuQgBBEiSR0bENryybzHZ1PMXCItM3gQD/tch9jSDZqDdrNBmfPreLYFoVigXyugOuFeL7N2vo66yvL7JyexA1DXEvQzvSfzVgSejbNOMWyzHWkSvOhB4dvSzd5NaRpyoEDBxBCsG/fvhseqjv05/HxcZRSrK+vs7y83KV+VSqV7nT+Zqlfq6urrK2tMTIy0p3OX/59HTrX3Wqge/juxbVejzdTI5VSHD9+nNnZWfbt20di5/izw3OmRkgFQhNLjciiijqf79zawrA6bAuiRCKERmlhqKfZ9wnPZ2Q4QDPI0uIi6+vr+J7Lysoa1VqdYqlEPp/HDQMQYAsLKZR5DDShJUiUMQi7dAuBYyG1yCiihlmitKmPWkPo2CAMJVcgCF2NVprFuVlsYMvUFH/0+7+HlCn1tWVOnz7N258dQSlNIdOKFgIbEOR9B0sIXNsM36Q2jq1SagZLIVKFDPT1kUpJu9WkWqtTW1mkuqwI83nKxSLCyVEOXeqNJtXluUzv3Y/SUAwtky+sNbYnMr2ph1RG8ymVpr/g8wOPjuE5d1YntdYcP36cxcVFnnjiiRvSSm3bZmhoiKGhIbTW1Ot1lpeXmZub49VXXyWfz3djm8rl8k3Vx2azydzcHENDQ1fdXgoh7ktsSA899NBDD/cW/1M0lLVajQMHDlAsFq9oLF6dq3J2LaHgmoOBMZ2RWVSHJOcYs5nQdWgnEteGVpxiW1YWzG1cHzRkukEFWjE3O4dtweT0FjzHJk5SWo0atXqddmORVd+jVCjS0nnKudA0g6FDLBXl7kQ9u4Zs65fzbGot04RVM3OGatuYPzTTFNe2jBGQZfRPc3MXGewfoK+/DywL0b8Fe/UEfmkYysNILGzLaHQsj+wg5mbX4BGlklJgqLWFrLkMMpdBxxLE2iLMFSgUSxRTiU4iVjfq1OuL1KOUUuBSbSdsmRxDOT5Ca6LUaEqVAt+1cQTYwug5U6V5bLKPsfLdCY1OkoQDBw7gOA67d+++rkbnarAsi/7+fvr7+9m5cyetVovl5WWWlpY4depUl/o1ODhIX1/fGx6/4455+PBhdu7cyejo6FWpX+vr63cUPN9DD9fDzdTIJEk4ePAgURTxzDPP0FY2f/LSBdCaVmoGPa1I4TqCJKOhtpPOrfl8OzHNZBKZ5lIBtmW2bEbzTbdRWlxcotVqMjI2SS4MiJOUOGqxXq2zvLKG1IK+cgHHDxkoF7PNXIe26rDWjClmTqod52sjQzBOr6ZWm+bSpGgIpM4cVtMUV2hOn5uhlPMp9g/huDaPP/NOvvqFP6MwNMaOnTupthI8x5ir0TXWMc1rK+kwTS5lDOdci3pbZY7eoIXGDXLkLY/hkRHWag1I2swsrkAyi7ZdpIzp7x/Ez5eIU5W5v7o0kpSca2KTfFuY9xyhEVm+5/c+OEIld2c1Q2vNsWPHWF1d5cknn7zC7fpmIISgWCxSLBbZsmULcRx3Y0kOHjwIwMDAQLdGXo3dEUURL7/8cjf66XJmR+c1q5TqaSh76KGHHr4LcM8pr1c8eUZ5vZ7pxOLiIi+//DLT09Ns3769+31z6y3+x4lFhAWtROJ2p98ZpdR3SDVUchZJqsj7FlIq8p6ZWAsBUoGwNKnUCCCKYhYW5vH9gOGRYTRmIyeEhV8oExQrJGlK1GyxUa+xsLKCZdkUCwUKhQKFMIcURjMpMBRSIQSl0AKdmTPo7NqUIufZKG1osOb3A416jdn5RSZHR3HDHLawqEUp+cf+KtXaBoVimXpbUgwE681MC9U0kSONKMVzBLGUmemDJsiCuouBiyXAtayua6KFRaqVaURdh75SgUYsWV2cZ63WJB94nJ2ZI/A98vk8fpijnA+pZ5rLTgTKWjNh8+DV8yZvB3Ecs3//fnzf57HHHrvlZvJqCMOQTZs2sWnTpi71a3l5mWPHjhHHcTfTrUP92tjY4MCBA2zfvp3JyUngjdSvNE351V/9VTY2Nm7LOKWHHm6EG+nM6/U6+/fvp1Ao8PTTT9NMNJ95eQZHGEOvnOewoowBj8wo+EppQtdBakXg2khlojqkMkY7GnCEyee1bNNIKgFaSWZnZ0ErJicnCQOToZgLPFzHpq9cpp2kqDhidaNGa3WJxYUFBkp5WkGOwUqJVqwoBkYrXghcmpmzajsxcUmJ1Lgd3r4A27KIU3OdrUTh6JTXzl5kuFIkLPcb9kckec87386ePY+SC0KEZYEAjUBlP3Mrq1n1tokYuZy94bs2UaqwbAFYpEqS8x2aUUohNNEo/aU89bbPtko/C8urrK2uEAYhy8urtOo1LD/HcKYrzfsutXaK61hEUqOU7lJf375jiKmBO2uulFIcPXqUjY0NnnjiiTdQVW8HnucxNjbG2NgYWms2NjZYXl7m7NmzHDlyhHK53G0uC4UCcRzz0ksvUS6XefjhhxFCXCEd6GjTf/u3fxswTq899NBDDz185+K+byjh6qYTWmvOnDnDqVOnePTRRxkdHe1+rdpK+OwrcwgEkRSgodpOyXt217RhrWWMGNYaMQXPRHEUAhPdETgWkVT4rkUqIefZVOs1VhfmGOzrY3BgAI1AoFHKNMJSGVtC7Vj4pSK5Qh5bCGqNJu1Wk5m5eSyt8YIc5VKepZVVZBwzMTVNIQxM9IZndJOhnzWStqGTea6FlJpGdZ215RV2Tk/gh3kcR5BKRV/OI5KKcrkvs8l3MhMfm3o7wXNN5IhjmU2DRmcUNnVF7EetLbsbgULg0IgScp45qLmOIEolK4vzJEnMzm1bCHyHOE5pNRvUag02Fi+yIWzKxQI6yVMq5kikoj/v8b0PDN+VhiqKIvbv308ul+PRRx+97bDt6+FG1K8gCGi3291czNejc00f//jHOXXqFMeOHXtTrrOH7y5c7d/P9XTmS0tLHDp0iKmpKXbs2EErkXz+8BxSmuxEqQWubSMyXbkQhrqKsBBCYykbk40ksABhCWzbNJ525m5qCY1UQBpzfmaG0PcZGZ3M9JKanGshNXh+Jz7EI/XMcCpWmiSK2KjVaFbXeW15kVyYIyoUiNotTq2ssHl6GtsvkfMcY/YF2GQDL0t0m99EaRwVcWHmIpuGByj19XevseDbCGCoUsbKnKptYeimOc9BSrq000rONVr60EFpQSkw0VGe3XF01eQ88z2V0EWSRaNIo+9cXV2lXVtl+/QkQS6HjaZab9Jq1pmbnUUA9VyOQqGA7+XBcXAyau0jE0X2TvXd0WtEKcXhw4ep1+s88cQTb3C1vhsQQlCpVLqbx3a73dWmnz59Gtd1kVJSKBR44IEHrkqN1VrzH//jf+Sf/JN/whe/+EUefvjhu36dPfTQQw89vHUg9PXCne4y0jS94nCklOLzn/8873nPe654Y5RScvjwYdbW1ti3bx+lUqn7tTiVfOblOWqtBI2mulFlZW2NLZunzXTbEbRiReDY1C8L4y4FHvXo8im103U9vLiwQrO6SrFviNHBCu1EkvPM1DpwzITcd22SVHbpnY4tSKUxw+lQsxrNNq1mg+OvneKFv/hzJBaPPvQAb3vHu+nLdJeXm+7Uum6LCc2NVZbWa2yfniTFyQwkUnK+TZwqXNsyByXLHP8EHQ6awLIMDdW2BKlW2AhSDU7HXdYWtBLzszRik3HZiiW+a34GALRmZnYWR2j6h0Yp5X0a7Ssz1+rtBJW0qdYbNBs1UIpcLs8P7p7g4S3jd3y4abfb3an3Qw89dF+atE4cTaFQoNVqAW+kfiml+PjHP85nPvMZvvrVr7J169Z7fp09fOdBKUWSJFd87vnnn2fLli1XDNS01pw9e5bXXnuNRx55hLGxMeJU8kcvXWC5EeHZWa1yLJqtmJnzZ9m8fTteZhbj2aameI6gHUu8rE6EnnEhDT3jRp3zTA0SMub0hVlG+suEpb6uE3QnY7Gz8bu8ptazmtGIOjRWhVCSjVqd1ZVlvvyVr9BsNhkdGeaDH/ohSoWQKMsONiZlzhUmZbLd4PzsApNjw3i5Ao4FSptcJjtzUQ08s+nMd+7rm+vKeXZW7yySjLZv9OeSwDERJzk/e1/wzXAucAVRorFtQBsn09rGOsvrG2yf3oQUjrnWJMW1TWalQJMmCevVGipqUW1FVHIBVpBneqTCj71tK+4d6CaVUrz88su022327dt3X6j27Xabb3/7290mMoqibizJ0NAQYRiiteY//+f/zN/9u3+XP/iDP+ADH/jAPb/OHnrooYce7i3uK+W1I9xP07TbjLTbbfbv349lWTzzzDNXNClaaz53ZJ6Lqw1yvksiJUpjtoeITBMJYeb2WvCMVrKSc1EKyqFxLazkMkdB3+bC3DztRp2B4TEGyvlLTV7rSlpn12TnMt1N5/vyvtnyFajixQv05z2EZSPbTUMduniOdc+nXMjTokg5DJDKXFc7SamvLtJoRezaOoXEIrQsWnGKYwvaSeY0KjVS6WyTmEWNREaz04n76LjP1uI0O0SZZjLOaGQSky1pWQLHd7AskLYGKTk/c5GCZzE0OkHg2ETSbELbiSLnGc2VYwtsN4/tBYyPjrBRb7GrAml1ia9//RTFYrF7sCgWi7e0sWy1Wrz00kv09/fz4IMP3hf6aLVa5dChQ2zfvp3p6ekrqF/nzp3jyJEj/MZv/EZX3/mNb3yj10z28Kbi9ZRXKSVHjhxhZWWFp556inK5TCoVnz00y0rNRGmYiKLs1rWNAZhttImhZ9NKJIFjoisC16KVGIpnK0ovUT19h0YskVGDc7OLbB4fxvLzlzWP5rajzy5k9NGcZ9OIpKGoZsOrJDP7abTaXJi5QCmfx3IchFY02jFL8xeZFw6DlSJNL2S4UugO/2rtlGZ9ncXldaYmJ/CCADBmL0qqjM4qyQfuFQMwc9+EIIticmyjN1eAb1uZY6x72ZAxY3FEqdHNp1l8kLBop5LG+ior1QY7tkwTK0HomuGcbVkoZWitOd9BKpgaG6bWThmzNMsbprnsr5/jmy8sdGn1V4vsuB6klBw6dIgkSd7gdn2vEMcxBw4coFwu88gjj3QNd5aWllhcXOTEiRN89rOfZW5ujs9//vP83u/9Xq+Z7KGHHnr4LsE93VBKKd+gB/rSl77Ek08+SalUYn19nQMHDjA0NHTVDdXXTyxy8MIG+UwvmPMcltY3qK2tMjY5lR1eFBamyRQYGhfabO8ABAIhQGvJ3Ow8qUyYnJjA8zy0AtsWpEphC4tUKZMpmZqGrJ0YmmwjMhvMenTpAJVXNaIDv0dBbrAaTHOgPUG10eZtj+8lKJRJY2NaEbcaaGFRLuYJwhwbq6tYtsXY+Di+66GUoaupzAxDad0N17aEiSJxLIilxsuuKXANpTfIri1wrW6wuNJ0o1Ti1GRyti7bAAS25uTZGco5n76hYQq+OajYtsB3LCwhCF0zVQ9dG43RfNqWIPRsHp0oA3QjO5aWllhZWcFxnG5z2d/ff8Pg6/379zM0NMSuXbvuSzNZq9V46aWX2Lx5M5s3b77q9zSbTX7mZ36Gr33ta9RqNQYGBrqmFD30cKe42obypZdeYnBwkOnpadrtNgcOHABg3759+L6PUpovHZtnZq2ZmXTpK26TJOW1kyfYvmMnruNkdFadObeCQuBk5l6GbdGJINKsriyzurrOpk0T+EEON8ub7Xzdti6rU4qMNSEysYDGqBgtlDaa43/7iU+wMD9PsVTme97+LEtLyzz2yMNMbd7SNfVpNWokqaJUzBPmCrRaDRqNJhOTk4SB2X5Zgks/p778ujVKCSzLSBRsYfSgGFYvSmnzs2bvB+YxzH0todGIzH3IUG1tyyKVksWFOdpRzNSmSSzbpVOetMpouRqcy343UtH9HgF838NjDBXcbmTH0tISSqkrmA/X2zamacrBgwfRWrN3795byiS9W0iShJdeeokwDK8pRUiShH/xL/4Fn/70p1lbW0NrzR//8R/zrne9655fbw899NBDD/cW91VDCZdcDC9evMjRo0fZuXMnU1NTb2gqjs5WeW2pQSXnkGbbRqmM0U1NKwq+oR35liCWhiKaKEP/TLRCaHNIEAKSNGF2dhbXdRgenUAJkylpWwKZaBxL09YqayKNHqez5VPamO2A0e6AoBw6sLZOoNZRSjKYzvPO7/kxs31VRo0pPZswV0AITb3eotWsMTM7j2cLXDtHs9Gk5SpKOa+rcexsRzdaqdFNZu6xRt/joIFyaJq7oZIgcMzGt3Pbafxc29x6ttFIOdnnkqjFK4cO8uS+IR575OE7auReH9mxtrbG0tISr776KnEcdw9PQ0NDV2yd6/U6L730EmNjY+zYseO+NpPT09PXbCa11vzKr/wKX/nKV/jKV77Cjh07+OY3v9lrJnu4a7iehnJjY4P9+/czODjIww8/3D3Qv3B6mXMrDfKeQyO+NOAq+MbROfRcEiVMLUuN7rrWukRHzfvmfnnPOGLnfYd6K2ZteYFqM2L7ls2kWNgWNGOz8WwlZvMYJSYSRKad6wcplRnKpSZ7txWnhL5DtdGmurYGjkfUrDM+tYV3fM/bqbdTHNsidgJGRvJEyQAyTahWa8zOL4DWuL5Ps9killDJB5eus93RgqeGzh9lQ7TUtLOubdHOvrcRpRR9h2pkDMxqHYftWGFZmBqfyuz312GhRGwsL9BMJFOTk0RSoGVmtpOobgZvwXdYb6f4jkUjNoNMN9uCft/Do4yWjWnO5brtarXazcs9evQo5XK5u728PIaow4awbZu9e/feFYOyW0WnmQyC4Lq69i996Uv80i/9Er/927/Nj/7oj7J//362b99+j6+2hx566KGH+4F7uqG82gT+a1/7GsVikdXVVXbv3s3g4OAb7jez1uSPD1wkzN7sC75DI0kpeg6rtQZrC7Ns2rId1+IKvaFjd6bQJpJDWJpmo83s7EUKxSJDQ4OZ+Y7ZSgphTHA6DqmdKXbHrKFza1vm+x3Lyg5QFkpKCue+iK5eJNz6NOnIbnKeybc0t5rAtREC0qjFqddOMTzYx8jwEPWNDTY21oiaDfoqZUaGBhkdHqKYz+HaJgvOse+unrBarbJ//34mJiaucM+929Ba02g0upP5arXapcbm83mOHTvG1NQUW7duvS/NZL1e58UXX+xew9WgteaXfumX+OVf/mW+9KUvsWfPnnt7kT18V0BrTRzHV3zu8OHD3UiHHTt2MD09fUv/TrTWfO5zn+Od73ynYWFk5b6TEfh6RFHEwYMHsSyL3bt331Wd3r//9/+eT37yk3zf930f/+f/+X9eszHpXINt2+zcuZP19XWWlpZYW1vrZiUODw/fMq3+VtChd3Zii97MrWDH9GZpaYnV1VV832doaIi+vj5Onz59V92ubxVJklzhuH2tv9mXv/xlfvzHf5xPfOIT/PW//td7jtc99NBDD99luK8NZZIkfPWrX8VxHJ566qmrZlWtN2P+y/4ZNNBOJJ5jNDM536YZpThacuLMeR7ZtZ1qO6YUemZy/TpTh3LOZXl1g9rKAn2DQ0yNDSEV5Hxjo59zbbTANH1A4Jjmz3M62z0ra+zMds+5YvNndIk3g6WlJV555RW2bdvG9PT0FV9rtVrdxuvyw9PQ0BClUumuvUmvrq5y6NAhtmzZcs2N3JuFDjV2dnaWtbU1bNtmdHT0pqixdxudZnLTpk1s27btqt+jteZf/+t/zT/7Z/+Mz33uczz55JP37Pp6+O7C6xtKrTXPP/889XqdvXv3MjQ0dFuP+4UvfIGnnnqKMAy7uvWroZP329/ff99MsRqNRlend/kmFsz7RafxWl5exnGcbn3s7++/a9fbMQcrFos88sgj9/T30Ik0WlhYYH5+Hri02bwRNfZuo9NMep7H7t27r/l7+NrXvsaP/uiP8iu/8iv87b/9t3vNZA899NDDdyHuW0PZyU9LkoQdO3YwNTX1hu/XWvON15aptxP8rMHzHRvbAse2cSxI44iXDx5gemoTI0MDlIsFPMfGsS1cW+BYFo4FZ8+e5ezZszz66KO3fTC7U8zMzHD8+HEeeeQRRkZGrvu9SZKwsrLC4uIiKysrV0Rd3MnhaXFxkcOHD7Nr1y4mJiZu6zHuFB2t7ObNmymVSt0m+nrU2LuNDtV2cnLyus3kr//6r/NP/sk/4U//9E955pln3rTr6aEHMNs5MLq5Q4cOsb6+Tn9/P3v37r2tx9Na85WvfIWBgQHGx8fp6+u76oG/M+jqDJnuR1Owvr7OwYMHb4o10aHVLy4usrS0RJqm3brRcWO+HXT03AMDA/fNHKxjTJfP55menmZlZYWlpSXq9Xo3D3JoaOgKauzdRpqm7N+/H8dx2LNnzzXfb/7iL/6CD3/4w/yzf/bP+NjHPtZrJnvooYcevktxTxvKzgS+k5+2adMmarUaw8PDV20ob/RYnfDk+fn5buMVBAHDw8MMDQ1RLpfRWnP06FHW1tbYs2cPxWLxTfrprn+tp06d4sKFC+zZs4e+vlvLIrtck7i0tESSJLd1eJqdneXYsWM8+uijDA8P386PcsdYXV3l4MGD7Nixg02bNnU/fz1q7O24xl4PjUaDF198kYmJCbZt23bVx9Va8zu/8zv8o3/0j/jMZz7DO9/5zrvy3D30cD3EcdwdtoVhSLlcptlssnv37lt+LKVUt3bMzc2xtLQE0KWMdgZT58+f59SpUzz88MM3HHS9WegMul5fF24GWmtqtVrXbbTRaNDX19cdwIVheFOPs7GxwYEDB7pDpvvRHHXcrvv6+njooYeuuIZrUWNvxzX2eri8mdy9e/c1WSPf/va3+Ut/6S/x//6//y8/+7M/22sme+ihhx6+i3HPN5QnTpzgtdde4+GHH2Z8fJyDBw9SLpfZsmXLTT9Op5F8vR5IStl9w11aWuq+wTqOw759+276YHE3oZTqNrR79+6lUCjc0eNdfnjqTK0rlUq3ib7Wz3ju3DlOnz7N7t276e/vv6NruF0sLy/z8ssv88ADDzA+Pn7d770T19jrodNMjo+PX3MLorXmd3/3d/mFX/gF/uRP/oT3vOc9t/VcPfRwq5idne1u6Xbt2sX58+dZWVlh3759N/0Ylw/b4FJ9VEp19YiLi4skSYLnecRxzJ49e+5bXbhw4QInT57kkUceuSuDrmtJB66nu+zIALZu3foGKcK9QrPZ7Lr6PvDAA9dt0DrU2Ntxjb0e0jTlwIEDWJbFnj17rllnDxw4wAc/+EH+r//r/+Lnf/7ne81kDz300MN3Oe5pQ1mtVnn++efZu3cv5bKJmzh8+DC+77Njx46begytNUoppJTX1QNVq9WuO56UEqUUg4ODlEolvvGNb+B5Hj/0Qz/0pmpSOrS1OI7Zu3cvQRDc9ee4ke4S4LXXXuPixYvs27ev+7l7jcXFRV555RUefvjhK0Labwav39DeLjW22Wzy4osvMjo6ek1HWa01v//7v8/P/uzP8od/+Id8//d//y1daw893C6klHzlK19h69atXTr6zMwMs7OzPPXUUzf1GJfXx04jebXXecd0ptVq4bourVaL/v5+hoaGOHToEMvLy3zwgx+8qkna3YLWulub9uzZ86Y4Jl+uu7yWdGBhYYEjR47c1KDrzUKj0eCll15iZGSEnTt33rLxUsc19k6osVLKbgb09ZrJV155hR/4gR/g53/+5/nFX/zFXjPZQw899NDDvae8ttvtK6g5x44dQwjBAw88cFP37zSH12smV1ZWePnll68wW6lWqywuLvJbv/Vb/OEf/iGO4/AzP/MzfOxjH3tTmsooijhw4ACu677pLoEdXE136TgOcRzz+OOPX5/umzQRKyfRQw+CfXd/HwsLCxw+fPiuUG1vlxp7M80kwB/90R/xsY99jP/0n/4TH/zgB+/oWnvo4VbRbreveG3Oz89z5syZm9LvXl4fhRDXpEA2m00OHjzYzRR0HIdms8ni4iJf/OIX+aVf+iWiKOK9730vv/zLv0wul7trP18HSimOHDnCxsYGe/fuvaoh25vxnJ3B1OLiImmaks/nqdVqPPTQQ9dtJpVSvPLKK0xNTd2yZOFG6Oi5r8eauBXcDjVWStnNOL1ePMnRo0d57rnn+N/+t/+N//v//r97zWQPPfTQQw/APc6hvNohx7btN0SJXA0dPdCNmsmO8c2DDz54xQGhXC5TLpcZGxvDtm2UUszNzfG1r33tpiijt4J6vc6BAwe6Oph75RLoui6jo6OMjo52qUv1eh3btvn2t7/NwMAAw8PDb9RdJk2C33kf1voZ5Ohuor/xWbDujtvq7Owsr776Ko899thdMUMSQlAoFCgUCmzZsuUKauy5c+euSo3t6JJGRkau20z+t//23/jYxz7G7/7u7/aayR7uCzq16fKPO9TV6+Fmh20d45vR0VF27tzZrU25XI7NmzczNTWF67pEUcT6+jp/8Rd/QT6fZ3h4mOHhYQqFwh03EUmScOjQIaSUPPnkk2+q+dblsCyLgYEBBgYG2LVrF8ePH2dmZoYgCDh69Chzc3PX1F1+9KMf5Q/+4A/o6+vjhRdeuGuGZp34pqmpKbZs2XJXGrQgCJicnGRycvIKauzhw4evSo2VUnLw4EG01uzbt++azeTx48f54Ac/yE/+5E/2mskeeuihhx6uwD3dUIKhWl3+lKdOnaJer1/TdOJaeqCrfd+JEyeYm5tj9+7d15wir6ys8O/+3b/Dtm1+6qd+iiAIuk6Ba2trFAqF7uHpdlz01tbWOHjwYHc7ej/edDtU2zRN2bt3L67rUq/Xuz9nR3fZ0RXlNk4SfuoStbP1vx5AF2+Nlno1zMzMcOLECXbv3s3AwMAdP96NcDVqbKVSoVqtMjw8/AaTi8vxZ3/2Z/zNv/k3+Z3f+R3+yl/5K2/6tfbQw9WQJMkVDeXq6iovv/wy7373u695n5ttJufm5jh69Cg7d+68pvFNmqb81m/9FrOzs/yNv/E32Lx58xVRHa7rdutjpVK55frWbrc5cOAAQRDct2xFrTUnT55kbm6OvXv3UiqVbigdGBwc7G6PP/WpT/HhD3/4jq9jY2OD/fv337P4pqtRY0ulEnEc4zgOjz/++DUN3k6dOsUHPvABfvzHf5x//s//+X2JlOmhhx566OGti/veUJ49e5bV1dWrmk5cy3zn9UjTlMOHD9NoNNi7d+9tU7SSJOnSoTqOsZ2mq1wu3/Dw1KF27tq1i8nJydu6hjvFzQRyt1otlpeXWVxcNE106PH00X9Mbu0Y6Zb3EP/Ip+EOG+GOc+TtuNreDWitWVlZ4ZVXXsGyLJIkuSY19ktf+hJ/9a/+VX7913+dv/bX/lpv8t7DfcPrG8qNjQ1efPFF3vve977he29l2Hb69GnOnz/Po48+etu6yM62qzOYgisdY2/UHHZyLjumM/ejKVFKcezYse57ztWotlfTXX7qU5/i937v95iamuJrX/vaHWtLO4PHbdu23bLD+d1Ch/ocRRFKqWtSY8+ePctzzz3Hhz70IX71V3+110z20EMPPfTwBtz3hnJmZoa5ubk3BMbfrB6o3W5z8OBBXNflscceu+38sddDStnVI3YcYzuT+avpUM6dO8epU6fua87l5flljz766E298Xd0l0uLC9TmTpEGAwxl9N/bzbs8e/YsZ86cYd++fV3zpXuNdrvNiy++yMDAAA888MAbDomO4/DCCy8A8C/+xb/gX//rf81HPvKRXjPZw31FmqZXUFwbjQZ//ud/zvvf//4rvq9jvtNpPq/VTEopr9Aq3qnL9OXPv76+zuLiYtcx9npRRh0X1enp6btG7bxVSCm7g8d9+/bdlEna5ayHEydOEAQBo6Ojd5R3ubKywqFDh9i5c+d9GzwqpTh48CBpmrJv3z6EEG9wjT1z5gwrKyt88pOf5P3vfz//9t/+214z2UMPPfTQw1VxzxvK10/g5+b+/+3deVxU1f8/8Newg+y7KMqiIiqyg7ikJokrg6UtWoCZlUWllqaWWmlq5ac0tUxL0azcADEtd8FUFGUXEERAZJlh3/eZ8/vD39yvoywDMgzo+/l48Cju3Llz7jicue97znm/C5CdnS2VdELWKVySTK4mJiZyveP9aDIHkUgEY2Nj7s58ZmYmN31KUQFUVxTkbqneZavrLlsgGQm5f/++QjPKSoJJQ0PDFt8LyXl++umnOHHiBOrr6zFlyhT88MMPXBInQhTh0YCyvr4eERERmDx5Mte/PTpzo7V+r6GhAQkJCQAAJycnuWW0ZoxxU+oldSANDQ25demlpaVISUl5bF17d5IsAxCJRNwygI7qbMmmhxUVFSEpKQn29vbo27dvZ07liYnFYi77uIuLy2PvheQ8d+3ahV27diE/Px9eXl744osv8MILLyikzYQQQnq2bk3K05JHk07IGkxKUr1L6obJ8473o8kcJBljMzIyUFtbCyUlJdjY2CikziXwf4kd+vXr90RZAh89T8lF4r1795CcnCy17vLRc5WUAMjPz4ebm1uXjYR0VH19PVcYvLXAWklJCXfv3sXJkyfx9ddfY8KECThx4oTC6vAR0hrJNFJJmSRZ+0dJYjB9fX0MGzZMrmsVeTwedHR0oKOjA1tbWy5jbH5+PlJTUwEAFhYWcikLIgvJMgBVVVW4urp2+r3g8XjQ1dWFrq4ubG1tpdZdpqenP7bu8tF/G0nppBEjRsDMzKwrTq3D2gsmgQfnWVdXhz///BMTJkzAhg0bcOrUKYX9+xFCCOn5FD5CWVpaiqSkJDz33HMyrwe6d+8eMjMzu6wQdmc0NTVxU4ZMTExQUlKCqqqqLs8Y2x7JVDJ5J3aor6/nRmgfTVqho6ODO3fuQCgUwtXVtVtKALSkoaEBN2/e5C6iW7vYjo2NxcyZM7F69WosWbKEprmSHkMkEqG5uZn7XSwW48yZM5gwYQLU1dVlCiaLi4u5Ehc2NjYK+XwzxpCWlgaBQID+/fujsrISpaWlXL9hamraaomfrlRXV4fY2Fjo6OhgxIgRcpvF0l69S6FQiNTUVIV+Z4nFYiQmJqK+vr7NBDzFxcWYNm0ahg0bhj///LNbSl4RQgjp3RT+TSEZoZRlPZAkoUJJSQnc3NykplSKxWLU19fLpWbao+rq6hAXFwctLS0uzfqgQYOkgq709PQnzhjbnsLCQi4JUFelsW+NhoYGLC0tYWlp+X/rLouKEBsby61ztbOzU9gobUNDA2JiYqCnp9dmMJmYmAhfX198+umnFEySHk9JSYlLKqWiotJuMHn//n2kp6dj2LBhUlMqJfVb5dEPPUokEiEpKQm1tbXw9PTk+oTm5mYuGdjNmze5jLEmJiYwMDDo8nZVV1cjNjaWWxIhz/NWVVVF37590bdvX6mlA6mpqVzeAHnUsJSVpI5me8FkaWkpfH19MXjwYBw4cICCSUIIITLp9hHKR9cIVVVVISoqCqNHj4a6unqrd5Altcuam5vh5OQklVChqqoKa9euxd27d+Hv74+XXnpJbu2XrNs0NTVt8yJFkjFWkm5fXV2dCy5lyRjbnry8PNy+fRsODg4Ku+PNGMOtW7dQWloKY2NjlJaWcusuJXfnuypJUlsaGxtx8+ZNbhSitfdWUpQ7KCgIa9asoWCS9DiPjlAyxnDhwgUMGzYMxsbGbc7ckIwIOjk5SU1PZIzhhx9+wIULFzB69Gh8+umncpsC29jYiPj4ePB4PDg5ObX69/9wfcTCwkIAHcsY256KigrExcWhf//+CivfBDzIdn3nzh2YmZmhurq6U+sun5RYLOaSEbm6ura6lra8vBwzZ86Eubk5QkNDu60+KCGEkN5PoQElY4y7ACkvL4eenh7MzMxgamoqFTDW1NQgPj4effr0wYgRIx67a3rt2jUsW7YMtbW1sLe3x4EDB+TSdkl2Psn0UlkvUh7OGFtcXAwejyd18dTRaViSLKqOjo4KW/cnuUiprq6Gq6sr1NXVpZJztFTvUh4XT42NjYiJieE+G629l2lpaZg6dSrefPNNfP311xRMkh5JLBajqakJwP+tJ09LS0NeXh40NTVhamoKMzMzaGtrc5/h5uZmJCUloa6uDk5OTo/N0iguLoa/vz8EAgGMjY2xZ88euWQXra2tRVxcHLS1tTFixAiZg8KHM8ZK6sd2JBnYoyT9tK2tLQYOHNiZU+kSkqUZzs7OXIDfXr3Lru6XZA0mKysr4efnB11dXRw/flymDLiEEEKIhMJygEsulng8HlxdXTFu3DiYm5ujqKgIly9fxvXr15GdnY2CggLcuHEDJiYmrdZVtLW1hY2NDYyMjDBmzBi5tDc/Px/x8fGwt7fvcNp7ZWVlmJqaYsSIEXjuuee4kh4pKSmIjIxEUlIShEKh1MhESyQFubOzs+Hq6qrQYDIxMRE1NTVwc3Pj7mRLknPY2tpi1KhRGDt2LMzMzFBSUoIrV64gKioKGRkZqKioQFfcx5A1mMzIyMCMGTPw+uuvY/369V160Xbp0iXMnDkTFhYW4PF4OHbsWLvPiYiIgIuLC9TV1TFo0CAEBwc/ts+OHTtgZWUFDQ0NeHp6Ijo6usvaTHq+h5Pv2NnZYfz48bCxsUFtbS1u3LiBK1euID09HYWFhYiOjoZYLIa7u3uLU/4NDAzg4OAAAwMDDBs2TC4zGioqKnDjxg0YGxtj5MiRHRph5PF4MDAwgJ2dHcaMGQN3d3doa2sjOzsbkZGRiI2Nxf3799HQ0NDusYRCIRISEjB06FCFBpNZWVlc6aSHR4s1NTUxYMAAuLq6Yvz48bC2tkZtbS1iY2Px33//ITU1FcXFxVJ5BjqLMYbk5GTupl9rwWRNTQ3mzJkDTU1NHDt2rMuDSeojCSHk6aeQEUpJYp7W1gM1NjaiqKgIOTk5qK6uhrq6Ovr37w9TU9NWs4dWVlaiqKgI1tbWXZp4gTGGrKws3Lt3DyNHjoSRkVGXHlvS7sLCQtTV1Uml23/4AoAxxq0fba0gd3cQiURISEhAU1NTq1kCW/Lwusvi4mIoKytLlV7p6L9ZU1MTYmJioKmp2WbNzezsbEyZMgV8Ph9bt27t8qQc//77L65cuQJXV1e8+OKLCAsLg5+fX6v7Z2VlYcSIEXj33Xfx1ltv4fz581i8eDFOnjwJHx8fAMChQ4fg7++PnTt3wtPTE1u2bMGRI0eQlpamsOnNpHuIxWI0NjZyZUFamuIqmfGQm5vLJYDp27cvzM3Noa+v3+INk4aGBuTk5MDS0rLLAwZJKQx5jAjW1tZy/WNFRQV0dXW5/vHRPjA3Nxfp6ekKrQXMGMPdu3eRm5sLV1dX6OjoyPS8lko2tVXXU5Z2JCcno7KykptB0pLa2lrMmTMHzc3N+Pfff+WSnZv6SEIIefp1e0C5f/9+jBgxAoMHD241uYSkBEVubi6GDRsGsVgMoVCIkpISbtpXd2QJFIvFuH37NoqLi+Hs7CzzxUFn1dTUcNO+Kisroaenx037ysjI6FBBbnkQiUSIj4+HWCxuc31Ue1qrdynruktZg8n79+/Dx8cHU6ZMwU8//ST3otw8Hq/di6VPP/0UJ0+exK1bt7htr776KsrLy3Hq1CkAgKenJ9zd3bF9+3YAD94vS0tLfPDBB1ixYoVcz4Eo1unTp6GsrAw3NzeoqqrKVDapT58+XNAlmU5vZmYGAwMDuX/mc3NzkZaW1i2lMBoaGrg+o6SkBFpaWtx3QUlJCbKzs+Hk5KSwxDeSGSQFBQVwdXXtdHD2pEsHJMFkRUWF1AySR9XX1+OVV15BdXU1Tp061S01lKmPJISQp1O3pnBjjCEsLAwLFy7E4MGDwefzMWvWLKl6gSKRCLdu3UJVVRU8PDy4u9B9+/ZFc3MzSkpKIBQKcfPmTaipqXVpopuHiUQiJCYmoq6uDh4eHt0SxPXp0wfW1tawtrbmMsYKhUKkp6dDSUmJy7Cqrq7e7WsAm5ubERcXBx6PB2dn5yfK/tdavcucnBykpKRwF08mJiaPTeGTBJMaGhptBpMFBQWYPn06nn/+eezYsUPuF9ayioqKgre3t9Q2Hx8fLF68GMD/TeNduXIl97iSkhK8vb0RFRXVnU0lChAVFYWtW7dCS0sLM2fOhJ+fH0aPHs39vTHGuDXUD4/ESTKZStYi3rp1C4wxLggxMjLq8pkbmZmZyMnJgYuLS7cEcZKZKv3795fKGBsdHQ3GGMzNzcEY42a+dCdJUqSioqJWpx7L6tG6nnV1ddy53rlzp811l4wxpKSkoKKios2RyYaGBrz++usoKyvD2bNnuyWYlBX1kYQQ0vt0a0DJ4/EQGhqKiooKHD9+HKGhofj+++8xYMAA8Pl8eHl54fDhw1i4cCE8PDweW/OhoqICMzMzmJmZcVkChUIh4uLiuHWKpqamT5yCvqGhAfHx8VBWVoa7u3u3ZCp9lIaGBszMzJCfnw99fX307dsXJSUliI6O7vKMse1pampCbGwsVFVV4ejo2KUZIh+9eJIE0kVFRY9dPGlqaiIuLg7q6uoYOXJkqxeNQqEQ06dPh5eXF3bv3i3Xou4dJRAIHhvJMTMzQ2VlJerq6lBWVgaRSNTiPrdv3+7OphIF+OKLL7Bq1SqcO3cOISEheP3116GsrIwZM2Zg+vTpCAsLw/Tp0zFx4sTHZkwoKSnB0NAQhoaGsLOzQ0VFBYRCIW7fvo2mpiYuuDQ2Nn6ivwlJ+abS0lJuvWN3U1FR4UYm1dTUYGtri4qKCiQlJXGBtImJCYyMjOT+9y8J4srKyuDm5tblycc0NTVbLdn0cL1LAwMDpKWlce1o7SZoU1MTAgMDkZ+fj/PnzytsRLc11EcSQkjv0+1Fpng8HvT19eHv7w9/f39UVlbi5MmT2LNnD7Zs2YIhQ4YgPDwcysrKcHV1bTVoePiLVDKFUigUIjExEQC4gKuj6/NqamoQFxcHXV1duRbCbk99fT1iY2PRp08fbiSuf//+3PqpoqIiLj3/k2SMbU9jYyNiY2OhoaHRZhDXVdqqdykSiaCurg5ra+tWk/oUFRVh5syZcHR0xN69e3tUMEmILNTU1DBt2jRMmzYNO3fuRGRkJH7//XfMmzePu/hXU1PDxIkTWx2BkvSz+vr6GDJkCKqqqiAUCpGRkYFbt25x65dNTEw6NNugubkZiYmJaGhogLu7u0Kn30tqXUpmkPTr14/LGFtUVIT09PQnzhjbHrFYzK1VbCuI6yqqqqowNzeHubn5Y/UuGxoawOPxMHjw4Fb7vebmZixYsAB3797FxYsXuzQnACGEkGeXwqsW6+rqgs/n4+OPP8aqVaswYsQIhIaGwtfXF/r6+vD19QWfz4enp2erX5IPT6G0t7dHWVkZCgsLkZKSApFIJDXtq60Ao7y8HPHx8ejXrx8GDRqksNISNTU1iI2N5c7n4XY8PBIrFou5KW6pqalobm6Wunh60qLUDQ0NiImJ4coAdHdwLbl4MjY2RkxMDIAHn5e0tLQW112WlpZi5syZPboot7m5OYRCodQ2oVAIXV1daGpqQllZGcrKyi3uY25u3p1NJT2AqqoqvL298cMPP2DatGlYuHAhTp48iQ8//BDV1dWYNm0a/Pz8MGnSpFZHxng8HnR1daGrq4tBgwahpqYGQqEQ2dnZSE5O5vqMRxOBPaqhoQFxcXFQVVWFu7u7wv6+mpububXcj84gkWSMNTAwwODBg7np9JJzNTAw4M71SYM/sVjMBbVtrVWUF8n3nqGhIcRiMYqLi7lZLenp6Y+tuxSJRHj33XeRnJyMixcvKixxUXuojySEkN6n25PytEYgEEh9GdTV1eHs2bMICQnB33//DQ0NDcycOROzZs2SWlPUFsYYKioqUFhYiMLCQjQ2NsLY2BhmZmYwMjKSOoZk3dGgQYMwYMAAuZyjLCQFuTsa1DLGUFVVxZ1rbW0tF3CZmpq2eaHYkvr6esTExEBPTw/Dhw9XWHAtWbuppKQEJycnKCsrc0krJIlI7t27h61bt0IkEsHY2BinT5/u8Pl2BVkTTvzzzz9ISkrits2dOxelpaVSCSc8PDywbds2AA8uXAcMGICgoCBKOPGMKiwshLGxMXdTRyQS4dq1awgJCUFYWBiKi4u5bMY+Pj4yZ4GWJAIrLCxEVVUVF3CZmppKBUjV1dWIi4vjSo8oauaGZMaEmppah6ff19XVcecqyRgr6R87mjVbssa+oaEBLi4uCulvAOm1mw9Pt5UsHSgsLERpaSk2btwIVVVVZGdn4+rVq7C0tFRIe6mPJISQp1OPCSjb0tjYiAsXLuDo0aMIDw8Hj8fDjBkzMGvWLIwbN06mL/NHA666ujoYGRnBzMwMDQ0NyMzMxIgRIxSacry0tBQJCQmwtraGlZXVEx2rpqaGu6B4OGOsLFkC6+rqcPPmzRZHSLuTSCRCbGysVDDZkoyMDLz//vvIyMhASUkJxo4diwsXLnRLG6urq5GRkQEAcHZ2xvfff4+JEyfC0NAQAwYMwMqVK5GXl4f9+/cD+L+U+O+//z7efPNNXLhwAR9++OFjKfEDAgLwyy+/wMPDA1u2bMHhw4dx+/ZtuWfSJL2PWCxGTEwMjh49irCwMOTl5eGFF14An8/H1KlToaurK9NxHg24JH2Guro6UlNTYWlpCVtbW4X1B3V1dYiNjYWOjs4Tz5iQlKYqLCx8LGNse9nDJdmuRSIRnJ2dFbLGHnjwnSapRdrW2s36+nosXLgQ165dQ1VVFXR0dBAfH99tI5TURxJCyNOvVwSUD2tubkZkZCSOHDmC8PBwNDQ0YMaMGeDz+Xj++edlnnZUXV0NoVCI+/fvo6mpCXp6eujXr1+7077kRTJCOnToUFhYWHTpsR++W11WVoY+ffpwF0/a2tpSF081NTWIiYmBqakp7OzsFBpMxsXFAXhwEdJaMFldXY0XX3wRampqOHnyJJqampCWlgZ3d/duaWdERAQmTpz42PaAgAAEBwcjMDAQ2dnZiIiIkHrOkiVLkJKSgv79+2P16tUIDAyUev727dvx3XffQSAQwMnJCT/++CM8PT3lfDaktxOLxUhMTMTRo0cRGhqKzMxMTJo0CXw+H9OnT2+1TuWjGhoaUFhYiNzcXFRXV0NDQwP9+/eHmZnZE2Uw7azq6mrExsZy2Wy7sl96OGNscXExVFVVuZFLfX19qcBVMt2WMfbE2a6fhCSYFAqFcHNza/XfRCwW49NPP8Xff/+NiIgI9O/fH9euXcO4ceO6rW+nPpIQQp5+vS6gfJhIJMLly5e5aV9VVVWYOnUq+Hw+vL2927zwkSRTqKiogL29PZe0oqqqCvr6+jAzM+uSdTayyMvL42q5yXuEtKmpSeriSV1dnbt4UlFRQWxsLCwsLBS6hlQyAiC5aGstmKytrcXs2bMhFovxzz//KCTbJCE9lST7qGTkMiUlBRMmTICfnx9mzJgBIyOjNv/G7927h7t378Le3h5isZgbzZPckDIzM0OfPn3k3k9IlgFYWlrCxsZG7rWHS0tLuRqQjDEugZGuri4SExOhrKzc5owJeZPUuxQIBO0Gk59//jmOHDmCiIgIDB48uJtbSggh5FnRqwPKh4nFYqk1RUVFRfDx8eHWFD0cbDQ1NSExMRFNTU1wdnaWGtWsr69HYWEhhEIht87GzMxMpqminSGpKefo6AhDQ8MuP35bHs4YW1hYiObmZq58R1fXretImyQJN9oaAZAU5a6pqcGpU6dkntZHyLNIEoRIgsv4+HiMHTsWfD4fvr6+MDMz4wI1yehXQUEBnJ2dpWoUPnpDSlLeSJapop1RUlKChIQEhaxtf3gNvlAoRH19PdTU1DBo0CCYmpoqZKorYwwZGRnIz8+Hm5tbq2s/GWP46quvsG/fPly8eBH29vbd3FJCCCHPkqcmoHyYWCxGbGwsN+0rNzeXW1M0fPhwhISEwNfXFyNHjmxzylJDQwOKioogFApRVlYGbW1t7uKpo0kcHiW5MMjLy4OLi4tCA6KKigrExMTA3NwcSkpKKCoqQlNTE3dnvisyxspCJBIhISGBW5vU2ms2NDRg3rx5KCoqwtmzZ6Gvry/3thHytGCMITs7GyEhIQgNDUV0dDS8vLzg6+uLyZMnY8+ePZgyZQrc3d3bnOUhEolQXFwMoVDITRWV9I9dUR9XKBQiOTkZ9vb26Nu37xMd60lIsl2rq6tDT08PxcXFqK6u7tKMsbJgjOHu3bvIy8trN5jctGkTdu7ciQsXLsDBwUHubSOEEPJseyoDyodJUrsfPXoUf/31F/Ly8uDg4IA333wTM2bMgIGBgUwXPk1NTVxw+fC0r5bWIcrSJklhcBcXlycOTp9EWVkZ4uPjYWtry40AtJUx1sTERC7p8cViMeLj49Hc3AwXF5dWg8nGxkb4+/vj/v37OHfunFzqqO3YsYNbm+Po6Iht27bBw8OjxX0nTJiAyMjIx7ZPmzYNJ0+eBAAEBgZi3759Uo/7+PhwGQsJURTGGHJzcxEaGopDhw4hPj4epqammD9/PubMmYOBAwfK1LeJRCKUlpZCKBSiqKhIqrzRo+sQZZGbm4v09HQ4ODgotLyFpB6wjo4Ohg8fzp1HV2aMldXdu3eRm5sLV1fXVqf3M8bwww8/4IcffsD58+fh5OTU5e2g/pEQQsijnvqAUiI/Px/Dhw/HvHnzYGJigmPHjiE5ORnjx4/n1hQZGxvLdPHU3NzMTROVTPuSXDzp6uq2myHw1q1bqKmpgYuLi8IKgwMPssrGx8djyJAh6N+/f6v7tZYx1sTEpEsSdIjFYiQkJKCxsREuLi6tTiVramrCggULkJaWhgsXLsjlQvPQoUPw9/fHzp074enpiS1btuDIkSNIS0trcX1raWkpGhsbud9LSkrg6OiIX3/9lUsiERgYCKFQiL1793L7qaurc0XqCVE0sVgMDw8PGBkZYerUqfj7779x6dIljBw5Enw+H3w+X+Z11WKxGGVlZVxwyRjj+kdDQ8M2g0vJ6Gl2djacnJwU+jdSV1eHmJgYrlRKa+f+cMbY0tJSaGpqcv1je98Hsrp79y7u378PNze3NoPJ7du3Y9OmTThz5oxcEpNR/0gIIaQlz0xACQA3b96Em5sbgP+bcipZUxQXF4cxY8Zwa4rMzc1lvjMvWVNUVFQEVVVVLmHFo9O+mpubuSmdTk5OCqtdBgDFxcVITEzscFZZSfbHoqIilJaWPtFILSB7MNnc3Ix33nkHCQkJuHDhgtwKWHt6esLd3R3bt2/n2mdpaYkPPvhApvpmW7ZswZo1a1BQUMCNVAQGBqK8vBzHjh2TS5sJ6QpxcXEYOXIkV+u1uLgY4eHhOHr0KC5evAg7OzsuuJS1nBBjDGVlZdxonkgk4kbyjIyMpBLbSNZ5FhQUwMXFBTo6OvI83TbV1tYiJiYGxsbGHcoq29zcjJKSEu5m45OO1AJAZmYmcnJy2g0md+3ahS+//BL//vsvvLy8Ovw6sqD+kRBCSEueqYCyNYwx3Lt3j1tTdP36dYwaNQq+vr7g8/no37+/zHfmJRcTRUVF4PF4UtkQ4+PjoaKiAkdHR4Wlmwf+r0TJsGHDnigwezhBR0lJCdTU1KTS7bf3nklKHNTX18PV1bXVYFIkEiEoKAhRUVGIiIjo8rIqEo2NjdDS0sLRo0elCm8HBASgvLwc4eHh7R7DwcEBXl5e2LVrF7ctMDAQx44dg5qaGgwMDPD8889j/fr1cpmuS0hXkwSFx48fR2hoKM6ePQsrKyvw+Xz4+fnJXBOSMYbKykoIhUIUFhaisbGRW6dtaGiIO3fuoLS0FK6urgopTSIhKZ1kZmaGIUOGdHqEsa2MsY8G063JysrCvXv34Orq2mqAzRhDcHAwVq5ciRMnTuC5557rVHvbQ/0jIYSQ1lBA+QjGGPLy8hAaGoqQkBBcvXoVLi4u3J15KyurDk37kmQIbGpqgoaGBuzs7GBsbKyQDKoAIBAIkJycDAcHhy4tUSJZQ/VwMC1Zc9lSxljJ2ta6uro2g0mxWIzFixfj4sWLuHjxolwzPebn56Nfv364evWq1B3+5cuXIzIyEtevX2/z+dHR0fD09MT169el1hQdPHgQWlpasLa2xt27d7Fq1Spoa2sjKipKYaUHCOmsiooKnDhxAqGhoTh16hT69u0LX19fzJo1C87OzjIHl5JawEKhELW1tVBWVoatrS0sLCwUkkEVAKqqqhAbG4t+/frB1ta2y7LWPpwxtrCwEA0NDTA2Nub6yJbOVzL1t71g8sCBA/jkk09w/PjxFus9dhXqHwkhhLSGAso2MMYgFAoRFhaGkJAQXLp0CSNGjOCCy8GDB7d7wSG5262jowNNTU0UFRWhubm51Wlf8pSfn4/bt29j5MiRMDY2ltvriMVilJeXc+uKHs0Yq6SkxK0jdXV1bXXqr1gsxvLly3Hy5ElERETA2tpabm0GnvyC6Z133kFUVBQSExPb3C8zMxO2trY4d+4cJk2a1CVtJ0QRqqur8e+//yIkJAT//PMPDA0NMXPmTMyaNQvu7u7t9m3Nzc2Ij4/n+oiSkhJUV1fD0NCQmyraXUsDKisrERsbiwEDBsDGxkZur8MYQ01NDRdctpQx9t69e8jMzISrq2urGcAZYzhy5AiCgoIQEhICHx8fubUZoP6REEJI6xQ377IX4PF4MDc3x6JFi/Duu++ipKQE4eHhCAkJwYYNGzBkyBBu2ldLa4okBbn79+/P3e22s7NDZWUlCgsLkZ6eLjXtS57lOSRZE52cnORe71JJSQmGhoYwNDTEkCFDuIyxWVlZuHXrFlRVVcHj8eDi4tJmMPnZZ5/h+PHjuHjxotyDSQAwNjaGsrIyhEKh1HahUNju1OCamhocPHgQX331VbuvY2NjA2NjY2RkZNAFE+nVtLW1MWfOHMyZMwe1tbU4c+YMQkJC8NJLL0FLSwu+vr7w8/ODl5fXY31bY2MjYmNjoaamBg8PDygrK2Pw4MGora1FYWEhdwNMX18fZmZmci3PUV5ejri4ONjY2GDgwIFyeQ0JHo8HbW1taGtrw8bGBnV1dVwG8bS0NKirq6OxsREjRoxos5zUsWPHEBQUhIMHD8o9mASofySEENI6GqHsBMYYysvL8ffffyMkJARnzpzBwIEDueDSwcEBN27cQHV1NQYNGtTqBYpk2pdkWmxdXR0MDQ25i6eumvaVk5ODu3fvwtnZWaE1GxljiI+PR2VlJTQ0NFBVVQU9PT1utFaybooxhi+//BK///47Ll68iKFDh3ZbGz09PeHh4YFt27YBeBDYDhgwAEFBQW0mnQgODsa7776LvLy8dtf+5ObmYsCAATh27Bh8fX27tP2E9AT19fU4f/48QkNDER4eDmVlZW7kcuzYsbh37x6ysrJgbm4uVY6jpeNI+kdJeQ5JrUtNTc0uaWtZWRni4uIwePBgWFpadskxOyszMxNZWVnQ1dVFZWUlNDU1uf7x4YyxJ06cwPz583HgwAHMmjWr29pH/SMhhJCWUEDZBSorK3Hy5EmEhITg1KlTMDY2hkAgwP/+9z8EBATIvF5SMg1KKBR22bSvrKwsZGdnw8XFBXp6ep06RldgjCE5ORmVlZVwdXWFuro6GhoapNLtq6ur4/jx49xUrosXL2LEiBHd2s5Dhw4hICAAv/zyCzw8PLBlyxYcPnwYt2/fhpmZGfz9/dGvXz9s3LhR6nnjxo1Dv379cPDgQant1dXV+PLLL/HSSy/B3Nwcd+/exfLly1FVVYWkpCS51PQkpCdpampCREQEQkJCcOzYMdTX10NJSQmzZ8/Gpk2bZB51lPQXQqEQZWVl0NbW5oLLztZ+LCkpQUJCAuzs7NCvX79OHaOr3L9/HxkZGVxf3VLG2IiICGhoaODbb79FcHAwXn755W5tI/WPhBBCWkIBZRf7+eefsWTJEowdOxbR0dEwMDDgpn1JpnXJoq6ujsuGWFlZCX19fS64lOUCjDGGzMxM3L9/v82kDt2hpWDyUU1NTUhLS0NQUBBiY2NhZmaGl19+Gd999123Z8Tdvn07V7jbyckJP/74Izw9PQE8KNRtZWWF4OBgbv+0tDQMHToUZ86cwQsvvCB1rLq6Ovj5+SEuLg7l5eWwsLDA5MmTsW7dOpiZmXXnaRGicFFRUZgyZQqGDRuGnJwc1NTUYPr06eDz+Zg0aZLMo45NTU1ccFlSUtKp8kVFRUVITEzEsGHD0Ldv3yc9tSciWZLg4uLS4iwSSZK3999/H+fOnYOSkhJefPFFrF+/Xq6JylpC/SMhhJBHUUDZxQ4cOABLS0uMHz8edXV13JqiEydOQFNTEzNnzoSfnx9Gjx4tc6AkmfZVWFiI8vJy6OrqcuVIWroAk9TYzM/Ph6ura6u1y7oDYwwpKSkoLy+Hm5tbq3ecGWPYtm0bvv32Wxw/fhzl5eWIjo6Wac0NIaR3iI+Px9WrV/Hee+9BJBIhKioKISEhCAsLQ2lpKXx8fODn54fJkyfLPOrY3NyM4uJiCIVCFBcXQ0NDgwsuH54m+jChUIhbt25hxIgRCg9cJMGks7MzDAwMWt3v0qVLmDNnDrZs2QJ7e3scO3YMK1askPuaeEIIIaQ9FFB2k8bGRpw7dw4hISE4fvw4lJSUMGPGDMyaNQvjxo2Teb1kY2MjF1yWlpZCW1tbqtYlYwxpaWkoKiqCi4tLp6eCdQXGGFJTU1FaWgo3N7dWR1YZY/jll1/w1VdfybUoNyGkZxKLxbh58yaOHj2KsLAw5Ofn44UXXoCfnx+mTJnSZnKah4lEIpSUlHDBpYqKChdcSmrjFhQUIDU1FQ4ODjAxMZHzmbUtLy8PaWlp7QaTV69exYsvvohvv/0W77zzTpeVMyGEEEK6AgWUCtDU1ITIyEgcPXoUx44dQ1NTE2bMmAE+n4+JEyfKvG5EMu2rsLAQJSUl0NTUhJKSEhobG+Hm5qbQ4uAdCSb37t2LVatW4eTJkxg3blw3t5QQ0pOIxWIkJCRwwWVmZia8vb3B5/Mxffp06OnpyVwLWLIGUVIbt0+fPqioqICjo6NcSyfJQpLFtr3M2zdu3ACfz8e6desQFBREwSQhhJAehwJKBROJRLh8+TIXXFZVVWHatGng8/nw9vaWeU1RY2MjEhISUFVVBcYY1NXVuYQVrU37khfGGG7fvo2SkpJ2g8nuKspNCOl9JFPmjx49itDQUKSmpmLixInw8/PD9OnTYWRkJHNwmZ6ejtzcXCgrK4PH40nVApY1cVpXkTWYjIuLw4wZM/D5559j6dKlFEwSQgjpkbr3W5Q8RllZGePHj8e2bdtw7949/PPPPzA3N8eKFStgZWUFf39/hIaGoqamptVjiMVi3L59G01NTRgzZgwmTJiAIUOGoKGhAbGxsfjvv/9w+/ZtlJWVQd73DyRTbouLi+Hq6tpmMHn48GF8/PHHCAkJkVswuWPHDlhZWUFDQwOenp6Ijo5udd/g4GDweDypn0fbzxjDmjVr0LdvX2hqasLb2xt37tyRS9sJedbxeDwMHz4ca9euRXx8PG7duoXx48fjt99+g62tLWbOnIndu3dDKBS22bfl5OSgoKAAbm5umDBhAhwdHaGiooLbt28jMjISSUlJKCwshEgkkvs5FRQU4Pbt23B0dGwzmExKSoKvry+WL18ut2CS+kdCCCFdgUYoeyixWIyYmBhu2ldeXh68vb3h5+eHqVOncmuKxGIxEhMTUV9fDxcXl8fKi4jFYpSWlnLrLiV35s3MzGBgYNCld+YZY0hPT0dhYSHc3NzaHF0NDQ3Fu+++i0OHDmH69Old1oaHHTp0CP7+/ti5cyc8PT2xZcsWHDlyBGlpaTA1NX1s/+DgYHz00UdIS0vjtvF4PKmkHd988w02btyIffv2wdraGqtXr0ZSUhJSUlLkVnSdECKNMYasrCyEhIQgNDQUN27cwOjRo+Hr6ws+nw8LCwsuAMvMzEROTg5cXFweW4vJGENlZSXXP9bX18PY2BhmZmYwNjbu8gzTAoEAycnJcHJyarMeY0pKCqZOnYqgoCCsWbNGLsEk9Y+EEEK6DOuE7du3s4EDBzJ1dXXm4eHBrl+/3ub+hw8fZnZ2dkxdXZ2NGDGCnTx5UupxsVjMVq9ezczNzZmGhgabNGkSS09P70zTnkoikYjFxcWxzz77jA0bNoypq6uzadOmsW3btjFvb28WHBzMysvLWU1NTZs/VVVV7P79+ywmJob9888/7OTJkyw6OpplZ2ezqqqqdp/f1k91dTWLjY1lp06dYkVFRW3ue/DgQaalpcXCwsLk+r55eHiw999/X+p9tLCwYBs3bmxx/7179zI9Pb1WjycWi5m5uTn77rvvuG3l5eVMXV2d/fXXX13WbtK7Uf/YvcRiMbt37x774Ycf2Lhx45iKigrz9PRkX3/9NfP392efffYZEwgEMvVhAoGAJSYmsnPnzrHjx4+zy5cvszt37sjUv7b3k5mZyY4fP87u3bvX5n6xsbHMzMyMrVy5konFYrm9b9Q/EkII6SodHp46dOgQli5dirVr1yI2NhaOjo7w8fFBYWFhi/tfvXoVr732GhYsWIC4uDj4+fnBz88Pt27d4vb59ttv8eOPP2Lnzp24fv06+vTpAx8fH9TX13c+Un6KKCkpwcnJCevXr8etW7cQGxsLJycnrFq1Crdu3cIff/yBP/74A8XFxW1O+1JSUoKhoSGGDh2K5557Dk5OTty0r4iICCQlJUEoFHZ42hdjDHfu3IFQKISrq2ubyYD+/fdfLFiwAMHBwfDz8+vQ63REY2MjYmJi4O3tzW1TUlKCt7c3oqKiWn1edXU1Bg4cCEtLS/D5fCQnJ3OPZWVlQSAQSB1TT08Pnp6ebR6TPDuof+x+PB4PAwYMwOLFixEZGYl79+7h9ddfx86dO3HkyBFcvHgRu3btQkZGRpv9I4/Hg46ODmxtbeHl5YVRo0ZBX18fOTk5iIyMRGxsLHJzc9HY2NjhNkrKlIwcObLNZEAZGRmYMWMGXn/9daxfv15uayapfySEENKVOhxQfv/991i4cCHmz5+PYcOGYefOndDS0sKePXta3H/r1q2YMmUKli1bBnt7e6xbtw4uLi7Yvn07gAfByJYtW/D555+Dz+dj5MiR2L9/P/Lz83Hs2LEnOrmnEY/Hw7Bhw1BZWQkPDw+cOnUKEydOxN69e2Fra4sZM2Zg165dEAgE7V486evrw87ODmPHjuWmqGZkZCAiIgIJCQkoKChAc3Nzm+1h/7/mpUAgaDeYPH/+PAICArBr1y7MmTOn0++BLIqLiyESiR6rMWdmZgaBQNDic+zs7LBnzx6Eh4fjwIEDEIvFGD16NHJzcwGAe15HjkmeLdQ/KhaPx4OFhQVMTU3B4/EQERGBgIAAXLlyBW5ubvDy8sKmTZuQmpra7nryPn36wNraGqNGjcKYMWNgZGSE/Px8XLp0CTdv3kROTo5MQX1hYSEXTLZVpiQ7OxszZszgyoPIM1EQ9Y+EEEK6Uoe+sTpzVzMqKkpqfwDw8fHh9qe7mp2zfv16/P3333B0dMTKlSsRHR2N9PR0TJ8+HYcPH4adnR2mTJmCHTt2IDc3t93gUldXF4MGDcLo0aPh6ekJbW1tZGdnIyIiAnFxccjLy3vszjxjDHfv3kV+fj5cXV3brHl56dIlzJ07F9u3b8drr73WZe9DV/Ly8oK/vz+cnJwwfvx4hIaGwsTEBL/88ouim0Z6Aeofe47Zs2fjxo0b8PDwwNtvv41///0XAoEAS5cuRVxcHMaMGQN3d3esW7cOSUlJEIvFbR5PU1MTAwcOhIeHB8aOHQszMzMUFhbi8uXLiI6ORnZ2Nmprax97XmFhIZKSktqteZmbm4vp06dj2rRp2Lp1a7dnnZUF9Y+EEEJa06Fvrc7c1RQIBG3uT3c1O0dPT08q6Q2Px4O1tTU++eQTXLlyBZmZmZg9ezZOnDiB4cOHY9KkSdi6dSuys7PbDS61tbW5aV9eXl7Q19dHbm4uLl26hJiYGNy/fx8NDQ3IzMxEXl4e3Nzc2gwmr1y5gpdffhn/+9//EBAQ0C2p742NjaGsrAyhUCi1XSgUwtzcXKZjqKqqwtnZGRkZGQDAPe9JjkmeXtQ/9hxKSkpSiWV4PB4MDQ0RGBiIv//+G0KhEJ999hnS0tLw/PPPw9nZGatXr0ZsbGy7waWGhgYsLS3h5uaG5557DhYWFigtLcXVq1dx7do1ZGZmorq6GkVFRUhKSsKIESNaTHIjUVBQgGnTpmHixInYsWNHtwST1D8SQgjpSj3vNih5YjweD5aWlvjoo48QERGBnJwc+Pv74/z583B0dMRzzz2HzZs3486dOzJP+/L09MSYMWNgbGwMgUCAS5cuISsrCxYWFm1eAEVHR2P27NnYsGEDFi5c2G111NTU1ODq6orz589z28RiMc6fPw8vLy+ZjiESiZCUlIS+ffsCAKytrWFubi51zMrKSly/fl3mYxJCFE9PTw/z5s1DaGgohEIhvv76a+Tm5mLatGlwcHDAihUrcP369XaDSzU1NfTv3x8uLi4YP348BgwYgMrKSly7dg3x8fEwNjaGlpZWq/2sUCjE9OnTMWrUKOzevRvKysryON0W2039IyGEkK7SoYCyM3c1zc3N29yf7mrKF4/HQ9++ffHee+/h7NmzyM/Px6JFixAVFQUPDw94eXlh48aNSElJaTe4lEz7MjIygoqKCqysrFBZWYkrV67g+vXryMrKkpr2FRsbi1mzZmHt2rV4//33u70o99KlS7F7927s27cPqampWLRoEWpqajB//nwAgL+/P1auXMnt/9VXX+HMmTPIzMxEbGwsXn/9ddy7dw9vvfUWgAfv5eLFi7F+/XocP34cSUlJ8Pf3h4WFhVwTDJHegfrH3klbWxsvv/wyDh06BIFAgO+//x6lpaV48cUXMXToUHzyySe4fPlyu8nKVFVVYWFhgf79+wMALC0twePxcOPGDVy5cgXp6emoqKjg+tni4mLMnDkTjo6OCA4O7rZgUoL6R0IIIV2lQ0W2Hr6rKfmCkNzVDAoKavE5Xl5eOH/+PBYvXsxtO3v2LHfH8uG7mk5OTgD+767mokWLOn5GpFWSGpRvvfUWFixYgPLychw/fhwhISHYvHkzrKyswOfz4efnhxEjRrQ48piVlYWcnBy4ublBR0cHwIO1Y0VFRSgsLMTdu3dx6dIlFBUV4e+//8by5cuxZMmSbg8mAeCVV15BUVER1qxZA4FAACcnJ5w6dYqbPpiTkyN1jmVlZVi4cCEEAgEMDAzg6uqKq1evYtiwYdw+y5cvR01NDd5++22Ul5dj7NixOHXqFNVYI9Q/PgW0tLQwa9YszJo1C/X19Th37hxCQ0Px2muvQVVVFTNnzoSfnx/Gjh0LVVXVx55fUlKCxMREDB8+nBu5E4lEKCkpQWFhIWJjY5Geno6oqCjcvn0bgwYNwoEDB7q83qUsqH8khBDSZTpaZ+TgwYNMXV2dBQcHs5SUFPb2228zfX19JhAIGGOMvfHGG2zFihXc/leuXGEqKips8+bNLDU1la1du5apqqqypKQkbp9NmzYxfX19Fh4ezhITExmfz2dGRkZswIABMtVy27VrFxs7dizT19dn+vr6bNKkSY/tHxAQwABI/fj4+HT09J9aFRUV7I8//mAvvvgi09LSYra2tmzJkiXs0qVLXI3K69evs5MnT7ZZ0628vJx9++23bNCgQUxFRYXZ2dmxw4cPK/r0COkW1D8+nRobG9np06fZ22+/zUxNTZmRkRELCAhgYWFhrKysjNXU1LDk5GT2999/s4yMjDZrAYeHhzNnZ2emrq7OTE1N2dq1axV9eoQQQsgT6XBAyRhj27ZtYwMGDGBqamrMw8ODXbt2jXts/PjxLCAgQGr/w4cPsyFDhjA1NTU2fPjwVgt3m5mZccW9VVVV2Z49e1hycjJbuHAh09fXZ0KhsMX2zJ07l+3YsYPFxcWx1NRUFhgYyPT09Fhubi63T0BAAJsyZQorKCjgfkpLSztz+k+9qqoqdvjwYfbKK68wHR0dNnDgQDZ16lRmZWXF7t+/L1NR7lWrVrGqqip25MgRqc8HIU876h+fbk1NTezixYvsvffeYxYWFkxfX5/5+voyXV1dFhkZ2Wb/WFBQwDw9PdnkyZNZVVUVu3DhAgsJCVH0KRFCCCFPhMdYOwvnFMDT0xPu7u5cLTaxWAxLS0t88MEHWLFiRbvPF4lEMDAwwPbt2+Hv7w8ACAwMRHl5OdVu66C6ujoEBQXhwIEDGDBgAGpra+Hr6ws/Pz94eXlJTdXKyMjA1KlTMXfuXHzzzTc9MvU9Ib0d9Y89h0gkwk8//YSPP/4YgwYNQl5eHnx8fODn54fJkydL1eWtrq7Giy++CDU1NZw4caLNmr2EEEJIb9Ljrvg7U8vtUbW1tWhqaoKhoaHU9oiICJiamsLOzg6LFi1CSUlJl7b9aaSkpISMjAxcvnwZSUlJ2LVrFxobGzFv3jwMHjwYH374IS5evIiMjAzMmDEDL730EgWThMgJ9Y89i7KyMpKSkrBz507cunULZ86cwcCBA7FmzRpYWVlh3rx5OHLkCIRCIV5++WUoKSnh+PHjFEwSQgh5qvS4Ecr8/Hz069cPV69elUo1vnz5ckRGRuL69evtHuO9997D6dOnkZyczCUDOHjwILS0tGBtbY27d+9i1apV0NbWRlRUVLdn1+ttGGOPJdVpampCREQEQkJCEBYWhuLiYsyZMwd//vknBZOEyAn1jz1PS/2jWCxGfHw8jh49irCwMKSnp8PW1hY3b96Erq6uglpKCCGEyMdTd+W/adMmHDx4EGFhYVKZ5V599VX4+vrCwcEBfn5+OHHiBG7cuIGIiAjFNbaXaClDq6qqKl544QXs3LkTeXl5+PHHH7Fv3z65BpM7duyAlZUVNDQ04Onpiejo6Fb33b17N8aNGwcDAwMYGBjA29v7sf0DAwPB4/GkfqZMmSK39hOiaNQ/dr2W+kclJSW4uLhgw4YNSElJwZEjRxAeHi7XYJL6R0IIIYrS4wLKztRyk9i8eTM2bdqEM2fOYOTIkW3ua2NjA2NjY2RkZDxxm591KioqeP/996Guri631zh06BCWLl2KtWvXIjY2Fo6OjvDx8UFhYWGL+0dEROC1117DxYsXERUVBUtLS0yePBl5eXlS+02ZMgUFBQXcz19//dXpNu7fvx9GRkZoaGiQ2u7n54c33nij08clRIL6x96Hx+PhxRdfhL29vdxeg/pHQgghCqXIjECt8fDwYEFBQdzvIpGI9evXj23cuLHV53zzzTdMV1eXRUVFyfQa9+/fZzwej4WHhz9xe4n8eXh4sPfff5/7XSQSMQsLizY/Ew9rbm5mOjo6bN++fdy2gIAAxufzu6yNtbW1TE9PT6pMilAoZCoqKuzChQtd9jrk2Ub9I3kU9Y+EEEIUqceNUALA0qVLsXv3buzbtw+pqalYtGgRampqMH/+fACAv78/Vq5cye3/zTffYPXq1dizZw+srKwgEAggEAhQXV0N4EF2vWXLluHatWvIzs7G+fPnwefzMWjQIPj4+CjkHInseksiEk1NTcydOxd79+7ltkmy406YMKHTxyXkYdQ/kodR/0gIIUThFB3RtqYjtdwGDhz4WFFuAFzB6NraWjZ58mRmYmLCVFVV2cCBA9nChQvZhg0b2MCBA2UqDr53797Hjq+uri61j6RenLm5OdPQ0GCTJk1i6enpXfq+PIvy8vIYAHb16lWp7cuWLWMeHh4yHWPRokXMxsaG1dXVcdv++usvrlh8WFgYs7e3Z+7u7qy5ubnTbY2NjWXKyspcjT8HBwf21Vdfdfp4hLSE+kciQf0jIYQQReuxAaW8HTx4kKmpqclcHHzv3r1MV1dXqvC3QCCQ2mfTpk1MT0+PHTt2jCUkJDBfX19mbW0t9SVNOu5JL5g2btzIDAwMWEJCQpv73b17lwFg586de6L2uri4sA0bNrCbN28yJSUllpOT80THI6S7Uf/Ye1D/SAghRNF65JTX7vD9999j4cKFmD9/PoYNG4adO3dCS0sLe/bsafU5PB4P5ubm3I+ZmRn3GGMMW7Zsweeffw4+n4+RI0di//79yM/Pp2LhT6i3JSJ56623EBwcjL1798Lb2xuWlpZPdDxCuhv1j70H9Y+EEEIU7ZkMKDu75qS6uhoDBw6EpaUl+Hw+kpOTuceysrIgEAikjqmnpwdPT0+Z17GQlqmpqcHV1RXnz5/ntonFYpw/f16qFt+jvv32W6xbtw6nTp2Cm5tbu6+Tm5uLkpIS9O3b94naO3fuXOTm5mL37t148803n+hYhHQ36h97F+ofCSGEKNozGVAWFxdDJBJJ3UEHADMzMwgEghafY2dnhz179iA8PBwHDhyAWCzG6NGjkZubCwDc8zpyTCK73pSIRE9PDy+99BK0tbXh5+f3RMcipLtR/9j7UP9ICCFEkVQU3YDewsvLS+pu7+jRo2Fvb49ffvkF69atU2DLng2vvPIKioqKsGbNGggEAjg5OeHUqVPcBWpOTg6UlP7v/sjPP/+MxsZGzJ49W+o4a9euxRdffAFlZWUkJiZi3759KC8vh4WFBSZPnox169Z1ST3NvLw8zJs3T661OQnpKah/VCzqHwkhhCjSMxlQPsmaEwlVVVU4Oztz60kkzxMKhVJTgoRCIZycnLqm4c+4oKAgBAUFtfhYRESE1O/Z2dltHktTUxOnT5/uopb9n7KyMkRERCAiIgI//fRTlx+fEHmj/rF3ov6REEKIojyTU147u+bkYSKRCElJSdzFkbW1NczNzaWOWVlZievXr8t8TNL7OTs7IzAwEN988w3s7OwU3RxCOoz6RyIv1D8SQsjT6ZkcoQQerDkJCAiAm5sbPDw8sGXLlsfWnPTr1w8bN24EAHz11VcYNWoUBg0ahPLycnz33Xe4d+8e3nrrLQAPMhwuXrwY69evx+DBg2FtbY3Vq1fDwsKC1ok8Q9q7809Ib0D9I5EH6h8JIeTp9EyOUAIP1pxs3rwZa9asgZOTE+Lj4x9bc1JQUMDtX1ZWhoULF8Le3h7Tpk1DZWUlrl69imHDhnH7LF++HB988AHefvttuLu7o7q6GqdOncJvv/0GKysraGhowNPTE9HR0a22a8KECeDxeI/9TJ8+ndsnMDDwscenTJkih3eJEPIs6s7+UUNDAzt27KA+khBCCOmleIwxpuhGPM0OHToEf39/7Ny5E56entiyZQuOHDmCtLQ0mJqaPrZ/aWkpGhsbud9LSkrg6OiIX3/9FYGBgQAeXCwJhULs3buX209dXR0GBgZyPx9CCOlK1EcSQgghvdszO0LZXTpaINzQ0FCqOPjZs2ehpaWFOXPmSO2nrq4utV9vuVDqyEgEABw5cgRDhw6FhoYGHBwc8M8//0g9zhjDmjVr0LdvX2hqasLb2xt37tyR5ykQQroQ9ZHSqI8khBDS21BAKUedLRD+sN9++w2vvvoq+vTpI7U9IiICpqamsLOzw6JFi1BSUtKlbZeHQ4cOYenSpVi7di1iY2Ph6OgIHx8fFBYWtrj/1atX8dprr2HBggWIi4uDn58f/Pz8cOvWLW6fb7/9Fj/++CN27tyJ69evo0+fPvDx8UF9fX13nRYhpJOoj5RGfSQhhJBeiRG5ycvLYwDY1atXpbYvW7aMeXh4tPv869evMwDs+vXrUtv/+usvFh4ezhITE1lYWBizt7dn7u7urLm5uUvb39U8PDzY+++/z/0uEomYhYUF27hxY4v7v/zyy2z69OlS2zw9Pdk777zDGGNMLBYzc3Nz9t1333GPl5eXM3V1dfbXX3/J4QwIIV2J+khp1EcSQgjpjWiEsgf77bff4ODgAA8PD6ntr776Knx9feHg4AA/Pz+cOHECN27ceKzWWE/SmZGIqKgoqf0BwMfHh9s/KysLAoFAah89PT14enrKPLpBCOm9qI+kPpIQQojiUUApR09SILympgYHDx7EggUL2n0dGxsbGBsbc0XEe6Li4mKIRCIuS6SEmZkZBAJBi88RCARt7i/5b0eOSQjpOaiP/D/URxJCCOmtKKCUoycpEH7kyBE0NDTg9ddfb/d1cnNzUVJSwhURJ4SQ3oD6SEIIIaT3o4BSzpYuXYrdu3dj3759SE1NxaJFix4rEL5y5crHnvfbb7/Bz88PRkZGUturq6uxbNkyXLt2DdnZ2Th//jz4fD4GDRoEHx+fbjmnzujMSIS5uXmb+0v+25nRDUJIz0B95APURxJCCOmtKKCUs44WCAeAtLQ0XL58ucWpXMrKykhMTISvry+GDBmCBQsWwNXVFf/99x+uX7+OmTNnwsLCAjweD8eOHWu3fREREXBxcYG6ujoGDRqE4ODgx/bpaBr7lnRmJMLLy0tqfwA4e/Yst7+1tTXMzc2l9qmsrMT169fbHd0ghPQM3dVHfvvtt5g9e3aP7B8B6iMJIYT0YorOCkS6zj///MM+++wzFhoaygCwsLCwNvfPzMxkWlpabOnSpSwlJYVt27aNKSsrs1OnTnH7HDx4kKmpqbE9e/aw5ORktnDhQqavr8+EQmGH23fw4EGmrq7OgoODWUpKCnv77beZvr4+EwgEjDHG3njjDbZixQpu/ytXrjAVFRW2efNmlpqaytauXctUVVVZUlISt8+mTZuYvr4+l9GRz+cza2trVldX1+H2EUKeXj29f5Qcj/pIQgghvQ0FlE8pWS6Yli9fzoYPHy617ZVXXmE+Pj7c7x1NY9+ebdu2sQEDBjA1NTXm4eHBrl27xj02fvx4FhAQILX/4cOH2ZAhQ5iamhobPnw4O3nypNTjYrGYrV69mpmZmTF1dXU2adIklpaW1qm2EUKeDT21f2SM+khCCCG9D48xxhQ7RkrkgcfjISwsDH5+fq3u89xzz8HFxQVbtmzhtu3duxeLFy9GRUUFGhsboaWlhaNHj0odJyAgAOXl5QgPD5ffCRBCiJxQ/0gIIYR0nWdiDWVRURHMzc2xYcMGbtvVq1ehpqb22PqTZ0lrKecrKytRV1fXqTT2hJDehfrHllH/SAghhMhGRdEN6A4mJibYs2cP/Pz8MHnyZNjZ2eGNN95AUFAQJk2apOjmEUKIwlD/SAghhJAn8UwElAAwbdo0LFy4EPPmzYObmxv69OmDjRs3KrpZCtVaynldXV1oampCWVm500XHCSG9B/WPj6P+kRBCCJHNMzHlVWLz5s1obm7GkSNH8Mcff0BdXV3RTVKo9lLOP0nRcUJI70L9ozTqHwkhhBDZPFMB5d27d5Gfnw+xWIzs7GxFN6fLVVdXIz4+HvHx8QCArKwsxMfHIycnBwCwcuVK+Pv7c/u/++67yMzMxPLly3H79m389NNPOHz4MJYsWcLt017RcULI04H6R+ofCSGEkE5RdJrZ7tLQ0MAcHR1ZQEAA27BhAzM1Ne10rbCe6uLFiwzAYz+SNPMBAQFs/Pjxjz3HycmJqampMRsbG7Z3797HjttWGntCSO9H/SP1j4QQQkhnPTNlQ5YtW4ajR48iISEB2traGD9+PPT09HDixAlFN40QQhSK+kdCCCGEdNYzMeU1IiICW7Zswe+//w5dXV0oKSnh999/x3///Yeff/5Z0c0jhBCFof6REEIIIU/imRmhJIQQQgghhBDStZ6JEUpCCCGEEEIIIV2PAkpCCCGEEEIIIZ1CASUhhBBCCCGEkE6hgJIQQgghhBBCSKdQQEkIIYQQQgghpFMooCSEEEIIIYQQ0ikUUBJCCCGEEEII6RQKKAkhhBBCCCGEdAoFlIQQQgghhBBCOoUCSkIIIYQQQgghnUIBJSGEEEIIIYSQTlFRdAMIIbIRiURoampSdDMIIYT0MKqqqlBWVlZ0MwghzygKKAnp4RhjEAgEKC8vV3RTCCGE9FD6+vowNzcHj8dTdFMIIc8YCigJ6eEkwaSpqSm0tLToYoEQQgiHMYba2loUFhYCAPr27avgFhFCnjUUUBLSg4lEIi6YNDIyUnRzCCGE9ECampoAgMLCQpiamtL0V0JIt6KkPIT0YJI1k1paWgpuCSGEkJ5M8j1Ba+0JId2NAkpCegGa5koIIaQt9D1BCFEUCigJIYQQQgghhHQKBZSEkKdGcHAw9PX1Fd0MQshTICIiAjwejzJsE0JIOygpDyGkywUGBmLfvn0AHtRHGzBgAPz9/bFq1SqoqMiv23nllVcwbdo0uR1fFg+fu4qKCgwNDTFy5Ei89tprCAwMhJKS7PfxgoODsXjxYrqgfUKSf5ONGzdixYoV3PZjx45h1qxZYIx1W1senpaopaUFCwsLjBkzBh988AFcXV07dKwJEybAyckJW7Zs6eJWdo0fztzu1tdbMnmozPu2Nz107dq1mDBhwhO2iBBCng00QkkIkYspU6agoKAAd+7cwccff4wvvvgC3333XYv7NjY2dslrampqwtTUtEuO9SQk556dnY1///0XEydOxEcffYQZM2agublZ0c17JmloaOCbb75BWVmZopuCvXv3oqCgAMnJydixYweqq6vh6emJ/fv3K7ppz4yCggLuZ8uWLdDV1ZXa9sknnyisbV3VHxJCSHehgJIQIhfq6uowNzfHwIEDsWjRInh7e+P48eMAHowY+fn54euvv4aFhQXs7OwAAPfv38fLL78MfX19GBoags/nIzs7GwBw5swZaGhoPDZa99FHH+H5558H0PKU159//hm2trZQU1ODnZ0dfv/9d+6x7Oxs8Hg8xMfHc9vKy8vB4/EQEREBACgrK8O8efNgYmICTU1NDB48GHv37pXp3Pv16wcXFxesWrUK4eHh+PfffxEcHMzt9/3338PBwQF9+vSBpaUl3nvvPVRXVwN4MN1u/vz5qKioAI/HA4/HwxdffAEA+P333+Hm5gYdHR2Ym5tj7ty5XA060jJvb2+Ym5tj48aNbe53+fJljBs3DpqamrC0tMSHH36ImpoaAMD27dsxYsQIbt9jx46Bx+Nh586dUq/z+eeft/kakgL0VlZWmDx5Mo4ePYp58+YhKCiIC3hLSkrw2muvoV+/ftDS0oKDgwP++usv7hiBgYGIjIzE1q1buc9HdnY2RCIRFixYAGtra2hqasLOzg5bt27t8Pv1tDM3N+d+9PT0wOPxpLZpa2tz+8bExMDNzQ1aWloYPXo00tLSpI4VHh4OFxcXaGhowMbGBl9++aXUjaOcnBzw+Xxoa2tDV1cXL7/8MoRCIff4F198AScnJ/z666+wtraGhoYG9u/fDyMjIzQ0NEi9lp+fH9544w05vSuEENI5FFASQrqFpqam1J338+fPIy0tDWfPnsWJEyfQ1NQEHx8f6Ojo4L///sOVK1egra2NKVOmoLGxEZMmTYK+vj5CQkK4Y4hEIhw6dAjz5s1r8TXDwsLw0Ucf4eOPP8atW7fwzjvvYP78+bh48aLM7V69ejVSUlLw77//IjU1FT///DOMjY07fP7PP/88HB0dERoaym1TUlLCjz/+iOTkZOzbtw8XLlzA8uXLAQCjR49+bOREMmrS1NSEdevWISEhAceOHUN2djYCAwM73KZnibKyMjZs2IBt27YhNze3xX3u3r2LKVOm4KWXXkJiYiIOHTqEy5cvIygoCAAwfvx4pKSkoKioCAAQGRkJY2Nj7uZDU1MToqKiOjVVcsmSJaiqqsLZs2cBAPX19XB1dcXJkydx69YtvP3223jjjTcQHR0NANi6dSu8vLywcOFC7vNhaWkJsViM/v3748iRI0hJScGaNWuwatUqHD58uMNtIg989tln+N///oebN29CRUUFb775JvfYf//9B39/f3z00UdISUnBL7/8guDgYHz99dcAALFYDD6fj9LSUkRGRuLs2bPIzMzEK6+8IvUaGRkZCAkJQWhoKOLj4zFnzhyIRCLuJhzwoMbkyZMnpV6fEEJ6AlpDScgzorm5GZmZmbCxsZHrOsZHMcZw/vx5nD59Gh988AG3vU+fPvj111+hpqYGADhw4ADEYjF+/fVXbn3T3r17oa+vj4iICEyePBmvvvoq/vzzTyxYsADAg6C0vLwcL730UouvvXnzZgQGBuK9994DACxduhTXrl3D5s2bMXHiRJnan5OTA2dnZ7i5uQEArKysOvU+AMDQoUORmJjI/b548WLu/62srLB+/Xq8++67+Omnn6CmpiY1cvKwhy8obWxs8OOPP8Ld3R3V1dVSIys9mqgZKMsGDKwA5e75PM6aNQtOTk5Yu3Ytfvvtt8ce37hxI+bNm8f9uwwePBg//vgjxo8fj59//hkjRoyAoaEhIiMjMXv2bERERODjjz/mRgCjo6PR1NSE0aNHd7htQ4c+WP8nGZHv16+f1LTLDz74AKdPn8bhw4fh4eEBPT09qKmpQUtLS+rzoaysjC+//JL73draGlFRUTh8+DBefvnlDreLAF9//TXGjx8PAFixYgWmT5+O+vp6aGho4Msvv8SKFSsQEBAA4MHf47p167B8+XKsXbsW58+fR1JSErKysmBpaQkA2L9/P4YPH44bN27A3d0dwINprvv374eJiQn3unPnzsXevXsxZ84cAA/6yAEDBtDaTkJIj0MjlIQ8A5qbm+Hl5QU7Ozt4eXl1yzq+EydOQFtbGxoaGpg6dSpeeeUVbsomADg4OHDBJAAkJCQgIyMDOjo60NbWhra2NgwNDVFfX4+7d+8CAObNm4eIiAjk5+cDAP744w9Mnz691cyuqampGDNmjNS2MWPGIDU1VebzWLRoEQ4ePAgnJycsX74cV69elfm5j2KMSSUDOXfuHCZNmoR+/fpBR0cHb7zxBkpKSlBbW9vmcWJiYjBz5kwMGDAAOjo63MVuTk5Op9vWrUTNwG/ewHbXB/8Vdd+60m+++Qb79u1r8TOQkJCA4OBg7vOnra0NHx8fiMViZGVlgcfj4bnnnkNERATKy8uRkpKC9957Dw0NDbh9+zYiIyPh7u7OFZjvCEliIMnnQyQSYd26dXBwcIChoSG0tbVx+vRpmf6Nd+zYAVdXV5iYmEBbWxu7du3qPZ+NHmjkyJHc//ft2xcAuCnmCQkJ+Oqrr6Q+M5JR49raWqSmpsLS0pILJgFg2LBh0NfXl/oMDhw4UCqYBICFCxfizJkzyMvLA/BgSn9gYCDVmySE9DgUUBLyDMjMzMTNmzcBADdv3kRmZqbcX3PixImIj4/HnTt3UFdXh3379qFPnz7c4w//PwBUV1fD1dUV8fHxUj/p6emYO3cuAMDd3R22trY4ePAg6urqEBYW1up0V1lIMq4+nOWzqalJap+pU6fi3r17WLJkCfLz8zFp0qROJ+xITU2FtbU1gAcjUTNmzMDIkSMREhKCmJgY7NixA0DbSTlqamrg4+MDXV1d/PHHH7hx4wbCwsLafV6PUpYN5Mc9+P/8uAe/d5PnnnsOPj4+WLly5WOPVVdX45133pH6/CUkJODOnTuwtbUF8CCzakREBP777z84OztDV1eXCzIjIyO54L6jJMGF5PPx3XffYevWrfj0009x8eJFxMfHw8fHp91/44MHD+KTTz7BggULcObMGcTHx2P+/Pm957PRA6mqqnL/LwnmxGIxgAefmS+//FLqM5OUlIQ7d+5AQ0ND5td4tD8EAGdnZzg6OmL//v2IiYlBcnIyTW0nhPRINOWVkGeAjY0N3NzccPPmTbi7u8PGxkbur9mnTx8MGjRI5v1dXFxw6NAhmJqaQldXt9X95s2bhz/++AP9+/eHkpISpk+f3uq+9vb2uHLlCjcdDQCuXLmCYcOGAQA3IlBQUABnZ2cAkErQI2FiYoKAgAAEBARg3LhxWLZsGTZv3izzuQHAhQsXkJSUhCVLlgB4MMooFovxv//9jwtsH13npqamBpFIJLXt9u3bKCkpwaZNm7hRD8nNgl7DwAqwcH4QTFo4P/i9G23atAlOTk5cMigJFxcXpKSktPm5HT9+PBYvXowjR45wUw8nTJiAc+fO4cqVK/j444871SbJellvb28ADz6nfD4fr7/+OoAHAUx6ejr32QVa/nxcuXIFo0eP5qZ5A+BG+EnXc3FxQVpaWqufGXt7e9y/fx/379/n/l5TUlJQXl4u9W/ZmrfeegtbtmxBXl4evL29pUY6CSGkp6ARSkKeASoqKoiKikJaWhquXr3arWsoZTVv3jwYGxuDz+fjv//+Q1ZWFiIiIvDhhx9KJVGZN28eYmNj8fXXX2P27NlQV1dv9ZjLli1DcHAwfv75Z9y5cwfff/89QkNDuRFGTU1NjBo1Cps2bUJqaioiIyMfy9C5Zs0ahIeHIyMjA8nJyThx4gTs7e3bPJeGhgYIBALk5eUhNjYWGzZsAJ/Px4wZM+Dv7w8AGDRoEJqamrBt2zZkZmbi999/l8oWCjxYV1ldXY3z58+juLgYtbW1GDBgANTU1LjnHT9+HOvWrevQe61wyirAgnNAUMyD/3bTGkoJBwcHzJs3Dz/++KPU9k8//RRXr15FUFAQN7oeHh7OJeUBHkx/NDAwwJ9//ikVUB47dgwNDQ2PTbFuSXl5OQQCAe7du4ezZ89i9uzZ+PPPP/Hzzz9z07cHDx6Ms2fP4urVq0hNTcU777wjlRkUePD5uH79OrKzs1FcXAyxWIzBgwfj5s2bOH36NNLT07F69WrcuHHjyd4w0qo1a9Zg//79+PLLL5GcnIzU1FQcPHiQ60e8vb25z1tsbCyio6Ph7++P8ePHc+uy2zJ37lzk5uZi9+7dlIyHENJzMUJIj1VXV8dSUlJYXV2dopvSIQEBAYzP53f48YKCAubv78+MjY2Zuro6s7GxYQsXLmQVFRVS+3l4eDAA7MKFC1Lb9+7dy/T09KS2/fTTT8zGxoapqqqyIUOGsP3790s9npKSwry8vJimpiZzcnJiZ86cYQDYxYsXGWOMrVu3jtnb2zNNTU1maGjI+Hw+y8zMbPPcADAATEVFhZmYmDBvb2+2Z88eJhKJpPb9/vvvWd++fZmmpibz8fFh+/fvZwBYWVkZt8+7777LjIyMGAC2du1axhhjf/75J7OysmLq6urMy8uLHT9+nAFgcXFxrbbrWdbS5y0rK4upqamxR78Go6Oj2QsvvMC0tbVZnz592MiRI9nXX38ttQ+fz2cqKiqsqqqKMcaYSCRiBgYGbNSoUe22RfLZAMA0NDSYra0tCwgIYDExMVL7lZSUMD6fz7S1tZmpqSn7/PPPmb+/v9R5pKWlsVGjRjFNTU0GgGVlZbH6+noWGBjI9PT0mL6+Plu0aBFbsWIFc3R0lP0Ne8a01G8wxtjFixcf+3uMi4vj3muJU6dOsdGjRzNNTU2mq6vLPDw82K5du7jH7927x3x9fVmfPn2Yjo4OmzNnDhMIBNzja9eubfPf54033mCGhoasvr6+zfPord8XhJDej8fYQ4uHCCE9Sn19PbKysrjaZIQQQp4tkyZNwvDhwx8bUX8UfV8QQhSl5817I4QQQgh5xpWVlSEiIgIRERH46aefFN0cQghpFQWUhBBCCCE9jLOzM8rKyvDNN988lkCKEEJ6EgooCSGEEEJ6mOzsbEU3gRBCZEJZXgkhhBBCCCGEdAoFlIT0ApQ7ixBCSFvoe4IQoigUUBLSg6mqqgIAamtrFdwSQgghPZnke0LyvUEIId2F1lAS0oMpKytDX18fhYWFAAAtLS3weDwFt4oQQkhPwRhDbW0tCgsLoa+vD2VlZUU3iRDyjKE6lIT0cIwxCAQClJeXK7ophBBCeih9fX2Ym5vTTUdCSLejgJKQXkIkEqGpqUnRzSCEENLDqKqq0sgkIURhKKAkhBBCCCGEENIplJSHEEIIIYQQQkinUEBJCCGEEEIIIaRTKKAkhBBCCCGEENIpFFASQgghhBBCCOkUCigJIYQQQgghhHQKBZSEEEIIIYQQQjqFAkpCCCGEEEIIIZ3y/wA6bjJSrPM+MgAAAABJRU5ErkJggg==\n" - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "# Change wrap to 3 and Adjust dimensions\n", - "plot_results_panel_3d(cycle_mlr,\n", - " wrap=3,\n", - " subplot_kw=dict(figsize=(12,6))\n", - " );" - ], - "metadata": { - "collapsed": false - } - }, - { - "cell_type": "code", - "execution_count": 13, - "outputs": [ - { - "data": { - "text/plain": "
", - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA5QAAAIzCAYAAAB/WFaqAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8o6BhiAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOz9eZRt11Xfi3/W7k7fVHv7RtJVcy3J6ixZ9wrb5PeMbWw/YwbDySM89EzAjySicRiPEDwg4WFiRzEZxHlhAB4voADDCZjGgCHoGcsNthTJlnX7vm+r6t6qc6pOv5u1fn+svU+dqlt91W21PsMepap7ml3NmWfNOb/zO4VSSmEwGAwGg8FgMBgMBsMysW72BRgMBoPBYDAYDAaD4fbEJJQGg8FgMBgMBoPBYFgRJqE0GAwGg8FgMBgMBsOKMAmlwWAwGAwGg8FgMBhWhEkoDQaDwWAwGAwGg8GwIkxCaTAYDAaDwWAwGAyGFWESSoPBYDAYDAaDwWAwrAiTUBoMBoPBYDAYDAaDYUWYhNJgMBgMBoPBYDAYDCvCJJR3MNu3b+ejH/3ozb4Mg8FguOUw8dFgMBjmx8RIw3IwCeUN4uTJk/zkT/4kd999N+l0mmKxyDPPPMNnP/tZWq3Wzb68JXP48GHe9773kc/n6e/v50d/9Ee5cuXKzb4sg8FwG3MnxMfXXnuNf/7P/zlPPPEErusihLjZl2QwGO4QbvcYKaXkhRde4EMf+hBbtmwhl8vx0EMP8Wu/9mu02+2bfXmGNcC52RfwZuCv//qv+chHPkIqleLZZ5/loYcewvd9vvnNb/LzP//zHDx4kM997nM3+zIX5cKFC7zzne+kVCrxqU99inq9zq//+q+zf/9+XnvtNTzPu9mXaDAYbjPulPj4N3/zN/y//+//y1vf+lbuvvtujh07drMvyWAw3AHcCTGy2WzyYz/2Yzz99NP803/6TxkeHuaVV17h3/ybf8NXvvIVXnrpJVOEu80xCeV15vTp0/xv/9v/xrZt23jppZfYsGFD99+ee+45Tpw4wV//9V/fxCtcOp/61KdoNBq8/vrrbN26FYCnnnqK7/u+7+OFF17g//w//8+bfIUGg+F24k6Kj//sn/0zfuEXfoFMJsNP/dRPmYTSYDCsmjslRnqex7e+9S12797d/drHPvYxtm/f3k0q3/3ud9/EKzSsFiN5vc78+3//76nX6/yX//JfZgSChB07dvCzP/uzALzrXe/ikUcemfNx7r//ft773vd2P5dS8tnPfpaHH36YdDrN0NAQ73vf+/jOd76z4PVUq1U+/vGPs2XLFlKpFDt27OD5559HSrno9/Knf/qnfPCDH+wmkwDvfve7ue+++/jjP/7jRe9vMBgMvdxJ8XHdunVkMplFb2cwGAxL5U6JkZ7nzUgmE37wB38Q0ONUhtsbk1BeZ/7qr/6Ku+++e84X0mx+9Ed/lH379nHgwIEZX//2t7/NsWPH+N//9/+9+7Uf//Ef776on3/+ef7Vv/pXpNNp/uf//J/zPn6z2eRd73oXf/iHf8izzz7Lf/pP/4lnnnmGX/zFX+Tnfu7nFry2ixcvMjY2xtve9rZr/u2pp57ijTfeWPT7MxgMhl7ulPhoMBgM14M7PUaOjIwAMDg4uKL7G24hlOG6MTk5qQD1Az/wA0u6fbVaVel0Wv3CL/zCjK//zM/8jMrlcqperyullHrppZcUoH7mZ37mmseQUnb/e9u2ber/+D/+j+7nn/zkJ1Uul1PHjh2bcZ9/9a/+lbJtW507d27ea/v2t7+tAPX7v//71/zbz//8zytAtdvtJX2fBoPBcCfFx9k899xzyry9GgyG1XAnx8iEd7/73apYLKpKpbLs+xpuLUyH8joyNTUFQKFQWNLtS6USP/ADP8B/+2//DaUUAFEU8Ud/9Ed8+MMfJpfLAVp6KoTg3/ybf3PNYyw01PyFL3yBd7zjHfT19XH16tXu/9/97ncTRRHf+MY35r1v4iKWSqWu+bd0Oj3jNgaDwbAYd1J8NBgMhrXmTo+Rn/rUp/i7v/s7/t2/+3eUy+Vl3ddw62FMea4jxWIRgFqttuT7PPvss/zRH/0Rf//3f8873/lO/u7v/o7R0VF+9Ed/tHubkydPsnHjRvr7+5d1PcePH2ffvn0MDQ3N+e9jY2Pz3jeZDep0Otf8W2L5bOaHDAbDUrmT4qPBYDCsNXdyjPyjP/ojfumXfokf//Ef55/9s3+2rOsw3JqYhPI6UiwW2bhx4zV69oV473vfy7p16/jDP/xD3vnOd/KHf/iHrF+/fk3cr6SUfN/3fR//8l/+yzn//b777pv3vskw+OXLl6/5t8uXL9Pf3z9n99JgMBjm4k6KjwaDwbDW3Kkx8stf/jLPPvssH/jAB/jt3/7tVV+X4dbAJJTXmQ9+8IN87nOf45VXXmHXrl2L3t62bf7xP/7HvPDCCzz//PN88Ytf5GMf+xi2bXdvc8899/Diiy8yMTGxrArTPffcQ71eX1Fg2bRpE0NDQ3M6gL322ms8+uijy35Mg8Hw5uZOiY8Gg8FwPbjTYuSrr77KD/7gD/K2t72NP/7jP8ZxTBpyp2BmKK8z//Jf/ktyuRw/8RM/wejo6DX/fvLkST772c/O+NqP/uiPUqlU+Mmf/Enq9foMZy6AH/qhH0Ipxf/9f//f1zxeopufi3/4D/8hr7zyCi+++OI1/1atVgnDcMHv5Yd+6If40pe+xPnz57tf+8pXvsKxY8f4yEc+suB9DQaDYTZ3Unw0GAyGteZOipGHDx/mAx/4ANu3b+dLX/qSGZO6wxBqob8ew5rwl3/5l/yjf/SPyGQyPPvsszz00EP4vs/LL7/MF77wBT760Y/yO7/zOzPu8/DDD3PgwAF27tzJoUOHrnnMZ599lj/4gz/g+7//+3nf+96HlJK///u/5x/8g3/AT/3UTwGwfft2vvd7v5cXXngB0JbP73jHO9i3bx8f/ehHeeKJJ2g0Guzfv58/+ZM/4cyZMwtaN58/f57HHnuMcrnMz/7sz1Kv1/nMZz7D5s2b+fa3v20krwaDYdncKfHx7Nmz/MEf/AEAX/rSl3j11Vf55Cc/CcC2bdtmzDAZDAbDUrkTYmStVuPBBx/k4sWLfOpTn2LTpk0z/v2ee+5ZUgfWcAtzk9xl33QcO3ZMfexjH1Pbt29XnuepQqGgnnnmGfX//D//z5zrNv79v//3ClCf+tSn5ny8MAzVZz7zGfXAAw8oz/PU0NCQ+v7v/371+uuvd28z2/JZKaVqtZr6xV/8RbVjxw7leZ4aHBxUu3fvVr/+67+ufN9f9Ps4cOCAes973qOy2awql8vqR37kR9TIyMjyfhgGg8HQw50QH7/61a8qYM7/v+td71r2z8RgMBgSbvcYefr06XnjI3DN8xhuP0yH8hbls5/9LP/iX/wLzpw5w9atW2/25RgMBsMtg4mPBoPBMD8mRhpuNCahvAVRSvHII48wMDDAV7/61Zt9OQaDwXDLYOKjwWAwzI+JkYabgbFXuoVoNBr85V/+JV/96lfZv38/f/EXf3GzL8lgMBhuCUx8NBgMhvkxMdJwMzEdyluIM2fOcNddd1Eul/nn//yf82//7b+92ZdkMBgMtwQmPhoMBsP8mBhpuJmYhNJgMBgMBoPBYDAYDCvC7KE0GAwGg8FgMBgMBsOKMAmlwWAwGAwGg8FgMBhWhEkoDQaDwWAwGAwGg8GwIkxCaTAYDAaDwWAwGAyGFWESSoPBYDAYDAaDwWAwrAiTUBoMBoPBYDAYDAaDYUWYhNJgMBgMBoPBYDAYDCvCJJQGg8FgMBgMBoPBYFgRJqE0GAwGg8FgMBgMBsOKMAmlwWAwGAwGg8FgMBhWhEkoDQaDwWAwGAwGg8GwIkxCaTAYDAaDwWAwGAyGFWESSoPBYDAYDAaDwWAwrAiTUBoMBoPBYDAYDAaDYUWYhNJgMBgMBoPBYDAYDCvCJJQGg8FgMBgMBoPBYFgRJqE0GAwGg8FgMBgMBsOKMAmlwWAwGAwGg8FgMBhWhHOzL+DNjpSSKIqwbRshBEKIm31JBoPBcEuglCIMQyzLwrIsEx8NBoMhRilFFEUA3TOkwXCzMAnlTSIJBL7v02q1sG0b27ZxHAfHcUyCaTAY3tREUUQQBDSbTYQQ18RHk2AaDIY3K1JKgiCg1WohpbwmPpoE03CjEUopdbMv4s2GUoogCIiiCKUUvu8jhEBKiVKqm0haloXrujMOUAaDwXAnk3QlwzCcER+VUt3/J8mk4zi4rmsSTIPB8KYgaUaEYYiUshsnlVJIKbsx0LKsOZsUBsP1wnQobzBJ1V1K2U0Qk+Qx+TwJDmfOnKFer7Nz587u4am3+mQSTIPBcCeRVN2llMB0bOw9CCXxsVqtcujQIZ5++unu7UwH02Aw3Kn0NiOAGTEuSSB7C29f+cpXePLJJ8lkMt0GRZJkmvhoWGtMQnmDSKruhw4dYnBwkIGBgW7VfTZJhzKpKCVBIggCfN8HuObwZBJMg8Fwu5JU18+cOUMYhmzbtg0hBPV6nYsXL1IsFimXyzNGAWzbBujGxyiKiKKITqczQ+GRHKDMCIHBYLhdkVJy5coVLl68yFve8pZFz4/JfydnQ6UU7Xa7+/W5FHAmPhpWg0kobwC9VfdqtUqhUFjyC3e2BDb5WvKYQRAAmA6mwWC4LemtujcaDYIgQAjBpUuXOHjwIMVikUuXLuH7PsVikb6+Pvr6+mYcmmbHx15ZWG8CambUDQbD7UQSy4IgoNPpUKlUlh23ktg4u4PZm2CaGXXDajEJ5XWkN/FLJK7LSfLmezH3VudnP898CWZSoTcYDIZbhSRuRVHUjY9SSvbv38/Y2BgPP/ww5XIZgHa7TbVapVKpcOnSpW6sO336NH19fRSLxe4haK4EMwzDbrKaxNCkg2kKcAaD4VZjLonrcmxP5jrz9RbSehNMKWU3wUxisUkwDcvBJJTXifm07vPJFBZ6nMVYKMFMDC3MgLbBYLhVmG0skcRH3/cZGxujUCjwzDPP4HleN4Zls1my2SwbN25EKcWVK1c4dOgQ9XqdCxcuEEUR5XK528HM5/MmwTQYDLcls/02khi2XB/NxW6/UILZ6XRot9smwTQsCZNQXgdmV917X3TLSShX+mJdaoJpLKYNBsONZq5iG8C5c+e4cOECuVyOp556qut8PRdCiK7RxMMPP4xSikajQaVSoVKpcPbsWZRS1ySYyeFpoQQzuSYzQmAwGG40vS7XMNN4Z7kNiZWc6WaPAvSOEJgZdcNCmIRyDZmv6t7L9ehQLkZvgpk8npQS3/f59re/zX333UculzMJpsFguK7MVXUPgoADBw5QrVbZtGkTURTNOEDNx+xCXT6fJ5/Ps2XLFpRS1Gq1rkT29OnTCCG6yWW5XCaXyy2YYAZBwOHDhymVSgwPD5sE02AwXFdmu1zPjjHLPT/C6s+QC82oX7hwgU6nw1133WVm1A0moVwrFrJz7uVGdCiX8phJglmv17vX5Pv+jOqTSTANBsNaMF/VvVKpsHfv3q7E9eLFi0xOTi7rcedCCEGxWKRYLLJ161aklNRqNSqVCleuXOHEiRPYtt1NMPv6+shkMtckmJ1OpxvTzYy6wWC4Hszlt7Gc82Ni3jjX7dea3vjY27Gca4RgtkTWcGdjEso1YK6q+3zcjA7lYszXwex0OguuKTEHKIPBsBhz7ZYEOHnyJKdOneLee+/trgmZKz4uZE62VCzLolQqUSqV2L59O1JKpqamqFQqjI6OcuzYMTzPmyGRzWQy3YPaYiMEvQmmmVE3GAxLZanNCLg5HcqlMNcedTOj/ubDJJSroLfqrpRa0pDyze5QLvU5kxd9r8X07ATTLMk1GAzzMV/VvdPpsG/fPlqtFk899RSlUql7nxtVcLMsi3K5TLlc5q677iKKIiYnJ6lUKly+fJmjR4+SSqWQUuJ5HoODg6RSqe41LtUErfcAZeKjwWDoZSG/jbm4ETOUy2GuzqiZUX/zYhLKFSKlJAzDJVWVernVOpQrdQAzS3INBsN8zFd1v3LlCvv372dgYIDHHnsMx5n5FnSzCm62bdPf309/fz8AYRgyOTnJ0aNHqVarfOtb3yKTycyQyHqe170OY4JmMBiWylL8NubiVu1QLsRCM+pzKTxMgnn7YhLKZdJ7WEiqM8s5GNzqHcrFMAmmwWBYiLmq7lJKjh07xrlz59i5cyebNm1a9Yw5XL/DkuM4DAwMkMlkWLduHcPDw12Dn7Nnz3Lw4EFyuVzX4Kevrw/Xdbvfw3wmaGZG3WB4c7McietsbrUO5UqYK8E0e9TvDExCuQySQHDo0CHK5TLr169f9h/5rXJg6mU1L9SlJJgjIyMMDQ11nWRNgmkw3HkkVfezZ8/SaDS47777EELQbDbZu3cvUkp27dpFPp+f9zFu1YKb4zgMDg4yODgIaIOeZEXJ6dOnOXDgAPl8foaLbO8haKEEs1Kp4Hke/f39JsE0GO5goihifHyc48eP88QTT1z38yPc/A7lYiym8Gg0GnQ6HdavX29m1G9xTEK5RHqr7q1Wi2w2u6I/6OUemG71YDCbuRLMs2fPdpNJsyTXYLjz6K26+75Ps9lECMHIyAgHDhxg48aN3H///TMODnNxKxbc5sJ1XYaHhxkeHgag0+l0O5jHjx+n1WpRKBRmJJi9h6DeBHN0dJRCoUAulzMmaAbDHUiv30YURdRqtet+fkxufz2Zz112NcxOMGu1GhMTEwwMDJgZ9Vsck1Auwnxa9/kWbi/GrZYkXu9rSb7f5HC00JJck2AaDLcfs12uLctCSsmBAwcYGRnhoYceYv369Ut6rJV0KK/HoWa5pFIp1q1bx7p16wBot9tUKhWq1SpHjx6l0+lQLBa7yWWpVJpxCEpGBGaboM23RNzER4Ph9mCu3ZJrdX4Mw5BTp05hWRYDAwPk8/lr4sKtdN5cKcn5EMyM+q2MSSgXYD6tu2VZK36R3ukdyrnoPfDNN6A9O8FMDk69+nkTIAyGW4f5XK5932diYqK7WzKTySz5MW81yetKk9V0Os2GDRvYsGEDAK1WqyuRvXTpEmEYdhPM5FAEZkbdYLhTmM9vI3ldr4TeIlq9XmfPnj3dROrs2bMIIbqqiMRg7HY/Q86OwWZG/dbFJJTzkPyBzuXAdaM6lDfqBXAzZRGLWUz3BuHZ+nkTIAyGm8NcLtcA58+f58yZM6RSKZ566qllO/WtdEboVo8FmUyGTCbDxo0bUUrNSDCnpqaYmpri6tWr3cNgoVDovu8sJcGca4n4rf4zMRjuVGY3I3pfx6s9PwJcuHCBI0eOsH37drZu3dqNmYk8dGxsjOPHjwNw9uxZ2u02/f393dVHtxNSygXPj7DwjLpJMG8cJqGcRdItS6pKc70x36gOZXI9tzvLOfAtJ8E0S3INhhvLfFX3IAg4ePAglUqFbdu2MTk5uaLX5K1YcFtrhBBks1my2SybNm3ijTfe6Jr4VKtVzp07h1Kq6x7b19fXlbLNl2BKKbsJpplRNxhuHovtllzN+TFJRI8dO8Zjjz3G4ODgjOcqlUqUSqXubt1XXnkFx3G4cOEChw8fJpvNzlh9lDhTr5QbUcxb7vkRZiaY8+1RNwnm2mMSyh6WultytRr4pd73Rkm6bsRzrPR7MQmmwXBr0CtxhenXZrVaZe/eveRyOXbv3s34+DiVSmVFzzFXQrlYknknFN0SieyWLVu6crZeF1khxIwEM5fLLZhgJiMExgTNYLgxLHW3ZBLPlnsuqtfrvPHGGwC8/e1vX9AtG+iqFjZu3Eh/fz9BEHSNwxJn6rmMw2411uL8CNcqPMyM+tpjEkqWv1tyNbONpkO5OuZLMK9cucLp06d57LHH5qw+mQTTYFg5vVX33jny06dPc+LECXbs2MH27dtv+Iz59eZmVOCFEBQKBQqFAlu3bkVK2U0wx8fHOXnyJLZtz9iBmbiOzxcfgyDgG9/4Bk899RSe511zgDIjBAbDylnObsne1+ZSX3MXL17k0KFDbNmyhUajsSzpahJPXddlaGiIoaEhgO7KokqlMsM4rL+/n76+PorF4i1xbroe50e4NsF89dVX2bx5M4ODg2ZGfYW86RPK+aruC2FZVjdwLJf5KvDz3fZGcD2fJ/ler9dzzK7SJ06yvQ5gQgiTYBoMK2C+qnun02H//v00Gg2efPJJyuVy9z6rUXAkz3k9b3+rsdiBybIsisUixWKRbdu2IaVkamqKSqXC2NgYJ06cwHGcGVK2dDo9IzYKIYiiqJs8Jr9TM6NuMKyOhfw25iL59+T2CxFFEYcOHWJsbIxHH32U/v5+zpw5MyPmLdb8mI9UKsX69etZv379NXPdFy5cQEpJqVTqJphzOcgu9hxrwfUs6vXGuSQ+JgVRM6O+fN7UCeVcVfelcD06lPO9aO6EwxJw3RO4ZHB7rgp98nsOggDgmgSzdwG5wWDQzFd1Hx8fZ9++ffT19bF79+5r5nBWEx+X0928U16zyz0wWZZFuVymXC53Z6WSBPPy5cscPXoUz/NmJJhJPEwOQ8s1QTMFOINhJkvx25iL3tfeQiQurq7r8swzz5BOp7uFut77LvY4S4mns+e6lVI0Gg0mJia6Etkk7iQOsplM5oaNTN2I+NO79grmn1E3Ceb8vCkTyqVq3edjOXOQc9139otwvgPFjaj8XG+ud4cyYb5qX/Li772e2TuMehPM3gq9wfBmZa6qu5SS48ePc/bsWR544AE2b948b9wyHcqls9oKfCJ/7evrA3SlvVqtUq1WuXjxIkeOHOlK5MbGxujr6+t+bmbUDYbls1S/jblIXjsLxchE4rpt2zZ27NjRvU/yHNe76CaEIJ/Pk8/nu7L72Q6ynufhOA6e59HpdK6bg+yNTChnz5DOJ5GVUtLpdMyM+izedAmlUoparcbly5fZunXrin7xd5rL6+0seU1YinwkuY7FEkzLsq45QL0Zg4PhzUdSbDt27BibNm0ilUohhKDVarF3717CMOTpp5+mUCjM+xiriY+z7xuGIefOnSOdTl/jSninzlCuFtu2GRgYYGBgANA/w9HRUY4ePcq5c+c4dOjQDLfHcrmM53nA4gkmzO2QaBJMw5uB5Lxw7tw5crkcxWJx2a/dhZLC2RLXZN5xrutYzjWvlrkcZCcnJzl16hT1ep1vfetba+4gm3AjYjAsvJ4kYfYowGwTtPnWlLxZEsw3VUKZVN0bjQanTp1i+/btK3qc1bq8Ji9wpRQXLlzg7NmzM4ahe9/cb3dutYRyNr0JZnKtcyWYxmLacKfTK3E9ceIE69atI51OMzo6yoEDB1i3bh07d+5c1AlwrTqUieQL9Guy1Wp1XQn7+/u7Lodv9g7lYjiOQ6lUwnEcnnrqqWvcHhuNBvl8vitnK5fL3cPgQiY/Zkbd8Gai12/jwoULbNy4kVKptOzH6Z2h7CWJd47jdCWuc913OU2J6xVXbNumv7+fiYkJisUid91113VzkL2RCeVK9ibPFR/frDPqb4qEcrbW3XGcVR14VjMjlFxPGIYcOnSIq1evsn37dlqtFmfPnuXgwYPk83n6+/tXfZ1LuY7rza2eUPbSK22AuZfkKqWoVqsMDw/jeZ5JMA13BL3xMXmDTKrlly5d4sEHH2TDhg1Leqy1UHBcvnyZAwcOsHXrVrZt20YUSkbPVRm/MsHVSzUuXbrUlZtduHCBoaGhGaYRY8EYdVnn7tTdK7qOG8mNODD1xsfZbo++71OpVKhWq5w8eZJmsznjMJgkozD3AWr2jHq1WqVUKpHNZs2MuuGOYLbfhm3bqzqbzY6Rly5d4uDBg2zdupV777130bPMraJyW4qD7JEjR/B9f8UOsjdKJbJWZ8jFRggajcaMIt+dlGDe8QnlXMYSq3UhXG2HMggC/uf//J+4rsvTTz/dbYfvb+/nQvMCD4YPMjExwcjICL7v893vfrf7QiwUCrdV9fd2SihnM1eC6fs+Bw4c4Jlnnuk6A5sOpuF2ZT6Xa8uy2Lt3L67rsnv3brLZ7JIfczXxMbmegwcP8sgjjzA0NES71eHEd0cZPTsFgO1kuOvhLZQ2eHz7299mamqK8+fPY1lWtxr+S8EvcVVe5Y/v+mOy1tKvfS5uROy6mc/heR7r1q1j3bp1wNzrBGYnmElMnGuE4Pjx4+zYsaP772ZG3XC7Mp/fxmrPkImKI4oiDh8+zOjo6IIS115uB+OytXKQheufUJ7zz/FzF36OD7gfYJe1a00fe64E8+LFi6RSKTzPu+Nm1O/ohDKpus823kmCwUr/UFfToazValQqFbZv3869996LENqCP1Qhnxz5JFfDqzyx7Ql2rtvJxMQEhw4dYt26dUxMTHDu3DmUUl3JV+/+sdVwPV+s17PD2suNGNxO3gSEEF1ZclKB6nQ6+L7PSy+9xG/+5m/y0ksvXddrMRhWS1J1T16jyUHlwoULBEHA4OAgDz/88IpkQCuJj61Wi4MHDyKl5Hu+53vIZrNaETDWZPTcFOV1OVzPpl5tc/F4laHNWwHYuXMnrut2TSNeGn+JM9kzoOBzxz7HD/f98IxRguVwo1QcNyKhXKrkrPcwCPr3ksjZDh8+jO/7lEqlrkS2VCrNMA2JogjP83Bd95oZ9VqtxtNPP83Ro0cpFovX7fs1GFbLfC7XsHpZv2VZNBoN9u7di+M47N69m0wms6xrS1gsdtzskYCVOsj2zppez/j4X8f/K1ejq3yl/BX+sfjH1+15YPrvxnXdbnycPaP+oQ99iF/5lV/h3e9+93W9luvBHZlQzq66zx6I7e04reQPdSXVKSklR44c4fLly+Tzee6///4Z1/Di1ItcCa9gYfH747/PL2/45e51b9q0qftCTBLSK1eucOLECVzXnZFgXi+nrZWSfH+3Y4dyLqIouuaNBaYdwKrVKo1G47pfh8GwUnoP+b3Ftl4ZfiqVYvPmzSt6Ta0kPo6NjbF//34GBgZoNpszOqJRKFFS4Xo6brsph3bdJ4qmLfQT04hiscgnz30Sy7eQQvKi/SKPn32c8GDYHSVY7UzPWnMjimGr6YJmMhkymQwbNmy4pttw6dIlwjCkVCp1O5hRFM3bwWw2m4yMjCzr8Gww3GgW2y25WsmrUop9+/axbdu2JUlce1nObVc7nrXU51ju7ZfiIJvEk2QW8Xpw1j/LV+pfAeBC6gL7/H08mXryujxXQnKGhLk7mIna5nbkjksoZ1fd50pmem2bV2rkspwXaavVYs+ePSiluOeee5iYmJjx76EK+a/j/xWBQCJ5qf4Sz/rPUhbla563d8F14rRVqVQ4f/48hw4dIpfLdRPMcrncnX2Zizul+g43NqGc7yCa6ONzudx1vw6DYSXMV3WfnJxk7969pNNpdu/ezXe+851VG48t5bUvpeTEiROcPXuWBx98kGKxyNjY2Izb5Eop0nmPiZEGmbxLrdJmcFOeVNbtfk8JLzde5pR/qvt5mzbnd5znI/mPUKlUmJiY6Mo4kySov7//po4S3OgZytUwV7eh2Wx2E8zz5893XYIHBga6YxrJ99doNMhkMrdMMm8w9DLbb2M+d86VSl4TiWsYhtx3333cfffKZrxvlPJrMdYids3nIJvIY2u1GlNTU7RarTV3kP398d/HxiYiQijBC5UXeFv+bdc1Hi90hgS6Jmm3I3dMQjlf1X0ulrIHaCGWE0yuXLnCvn37WL9+PQ888ACXL1++JpF7sfYiV6IrM772++O/z89kf2bBpC9x2urv7+eee+4hCILuG/vx48dpt9sUi8XuoWk5g9BrxY1MKBdKnteKOzkYGO5seo0lkviolOLMmTMcP36cu+++m7vvvnvVM0JLlSp1Oh327NlDEATs2rWLfD5Po9G4JublSinufXwd5w+P47cjhjcXufuRIWz72hj/pckvzfhcofiryb/iR/p/pDsn2Ntlm5iY4Pz5891RgiRW9o4S3AhDiNsloZyNEIJcLkcul2Pz5s1EUcTXv/51+vr6mJyc5OzZswCUy2UymQzf/e53yeVyq/5+P/3pT/Nnf/ZnHDlyhEwmw+7du3n++ee7yp+5eOGFF/ixH/uxGV9LpVLdheWGNzcLSVxns5L42Ovimk6nV+QQmzx3Lwu9lm5Eh3KtmX2u3bNnD+l0GiHEmjrIXvQvdruTAEooDnYOsq+9j0cyj6zltzSDO/kMeUcklMsJBMm/w8oTyqW8SGdX3jdu3Djvffe39s/4XKHY09qDyC3vTdd1XYaHhxkeHgaYIU3av38/UsoZOvXElvp6HmZupR1Ca/U8CwWDZrN52wYDw53JfMYSvu+zf/9+arUab3vb2+jr6+veZzUJZa98Zz7Gx8fZt28f/f39PPHEEzNcROe6X//6HP3r80ShxHFnxvfe2//k4E/yvZ3vnXHfze7mGZ/P1WWr1+tMTExw9epVTp48ieM49Pf34/t+d7blenE7J5RzPQ/Ali1bcBxnxpjGK6+8ws/+7M8ipeQjH/kI3//938+P//iPr+h5vv71r/Pcc8/x5JNPEoYhn/jEJ3jPe97TVenMR7FY5OjRo93PjTmQAeb325iPxAV7qcx2cf3Wt761qi7jUu97J/x9CyEoFAps2rQJmNtBtldyv9TGiStc3p59O23VRkaSqdoUg+VB8tb1Pb8tdIaMooh2u33bniFv+4Ryrqr7YiQy2OvVoex0Ouzdu5dOp3PNEvC5Dkz/1/D/xY8PzHxjzdt5wnq4qupSMvuycePGeQehAUZGRhgaGppz79FquRMlrws9j5G8Gm4l5iu2TUxMsHfvXsrlMrt3777GsGYtEsq53jiVUpw6dYpTp05x//33s2XLlhnxYaHupmUJLG/m482+zfbUdranti/repMDS6FQuGaUIAgCjhw5wrlz57rzl319fWuqhrhRtvg3MqHsnaHsHdPI5XL88i//Mo8//jjHjh1b8fP87d/+7YzPX3jhBYaHh3n99dd55zvfOe/9hBBdsyGDYTG/jfmwLGtJhaZeF9dHHnmkW+xfTedw9vVdvXqVVqvFwMDAnB4at9oM5XKZ3SxYioNs0jhZyEF22B3m+U3PA7p7/PqZ13nXQ++6rt8LLHyGrNfrACahvNHMV3VfKquVdM33Ik0Oav39/Tz++OPXHDzmuq8jHIacoWuuvyZqK7q++a559iB0pVJh7969jI6OcuLECdLp9IxD01ro1O/EhHKhDmW9Xr9tg4HhzmKuqrtSihMnTnD69Ok5E7qEtZK89pJ0ROv1Ok899dSckq+VOPut9YGpV3I1Pj7O1q1bsW2biYkJTp48SavVolAodGNlr8vpSriTOpSLFXY7nQ4DAwN84hOfWNPnnZycBKC/v3/B29XrdbZt24aUkscff5xPfepTPPjgg2t6LYbbg7lcrpfKUuJjo9Fgz549WJZ1jYvranf1SimRUnL06FEuXrxIJpPhyJEj5HK5GWe4G1Gout4sFB9X6yCbcKPiIyx8hkwMHW/XM+RtmVAuV+I6F8uVLMy+7+xgopTi9OnTnDx5csGD2nIrU9frBZsMQgM88sgjCCGoVqtMTEzM0Kn3HppWolO/rRPKKADlg+WCpTs4S9G/J/vcDIabwXxV93a7zd69e/F9n7e//e0Lrm1YbXyEmbKsyclJ3njjDYrFIrt37563WLUSx8DrjeM4DA4OdnfEtdvt7vxl4nJaLpeXtFNtNks1L1ot1yU+KgWyAyiw9WF5MQXH9Si4SSn5+Mc/zjPPPMNDDz007+3uv/9+fvd3f5e3vvWtTE5O8uu//uvs3r2bgwcPsnnz5nnvZ7izWI7fxnwsllBevnyZAwcOsGXLFu6777455x5XU7DzfZ/XXnuNKIp46qmncF2XVr3DyMWrTFUmGRs7iu/73Z2G+Xx+hjnW7cRy4uNyHWT7+/tJpVK3VEKZTqdviB/I9eC2u+ooihgdHeXKlSvcf//9K36BrGWHMggC9u3bR61Wm7fy3nvf5TzPjUAI0T00DQ4OAtM69YmJCQ4fPkwQBDMW0S41ON3QhBIgaoP09UEn8hHK159HHZ0cyhAh2yglEWETUBDWQNiIYBIlHEQwCcKCqAVOgeiufzLjeRaboTSSV8PNQkpJo9HgwIEDPProo115f7KWY3h4eMbM4nystoKeXItSinPnznHs2DF27NjB9u3bFzWRSO671IPe9aySz/XY6XSaDRs2dNdoNBqNbqxMKuK9q5yWsiLjpiWUMtRxLvJBtuL42QYZQNgEFSDCRs/nvr5N1AIERC3Uth+BnN4JuljB7XrEx+eee44DBw7wzW9+c8Hb7dq1i127pheX7969m507d/I7v/M7fPKTn1zTazLcmiTNiGRlx0qTrPnOj1EUceTIEUZGRmZIXOe6/0rjlpSSgwcPMjw8zIMPPohSirELVU7vv0pzqoPjpth4z70M3ZXj4MEDtNtt9uzZA6BnDPNlooaDbblk8h6DmwtY1q2baK5Grr+Yg+zhw4e7Hc7kb2OtHGTnIilmLJRQrsVu+ZvFbZNQ9lbdk2RnNT/01c4IJfednJxkz5495PP5OWeRZrPcytTNcuiarVNPrOEnJiY4c+YMQohrDk1z/T4WDQYy6CZ/+rDS0UlgFIDq6H+POgjZARXqw4wKEWEbJRQiqIHlsLF6mLwawqmBcouIYArplrCCSZRbhGAKZZcQqoWy0lgqQAkPUCAEguTaQ5Tl6c/cEtHGD3er77C0GcrbVa5guH3prbqHYdhdvaGU4siRI1y4cGGGOdhirCY+JvcPgoBjx45RqVR44oknFpUjwtyJ1VIS0JtFb0V8y5YtSCmZmpqiUqlw+fJljh49SjqdnhErew8sSXxf8fehVJwEtnTRLCmoRU2QASJqomREduI46TBEnH4NlNRFNCXjDmMSzyQIW8dZ4el/szP68Zw8SB9lpxEyQFlZBCGq77FuMglLU3CsZUL5Uz/1U3zpS1/iG9/4xrK7jK7r8thjj3HixIk1ux7DrUuv38bExAQbN25c04bEQhLXpdx/MRJH7na7zdatW9m5cydCCDptnzMHr9KuBwxsKNBuBlw4VqE0lCOdTjMwMMCmTZuo1WpcGbvKnq+fYuTMJI7jkMtnue/xjTy8664VJ1K3kwv2XJsRqtUqly5dIggC/v7v/35NHGTnY/aM+Wzq9fpt3ZC4LRJKKSVhGHYlWI7jrFiOlbDaDqWUknPnznH06FHuuece7rrrriUbAi3nea4nS01WZ1jDb9qIDFvUJyeYrIwxcXE/Fw5PkHItysUMxUKGUj6FY4GQbbypCsOtM1gXLiCCBkoI3QG0XPAr+qAS1sAtIIJaNxlUdgFkE+UUEFELZWf1Qcb2EDJEWQ5CRShhg/TxyWAJC+WVQXaQbj8iqiOdAiJogJ1ByBoIFxE1AYEQoT5UWS6EPsrLIaI2ys6BCpD974DMhhk/ixt9YDIYFmP2CEByMKjVahw8eBDQ3Zjl/F2uRvKasGfPHrLZLLt3757TLGIuejuUS+VWssVP5nXK5TJ33XUXYRhSrVa78zy9lvf9/f1aHqsCRFgDKXV3MGrr5FC2dFIYNkBGEMWdwij5vKk7jEjoFsRU/N9xcihDhJ3CaY4irTT4EcpOIZSlC2eWi8JBqEDHwagNTg7CBsopIcJJcAqIoIpyClj+BMrOIcIJSA3C4DMzvv/FFBxrVXBTSvHTP/3T/Pmf/zlf+9rXuOuuu5b9GFEUsX//ft7//vev+noMty5z+W3Ytr2q+DY7Pl6+fLkrnZ5L4jqb5TYWgiBg//79TE1Nkc1mGRwc7MbKoBPRaQTkyimEJcjkPRrVNn4rnLH6qFgs0pkS5Owmjz+9mU7Q5srlCoe+c4YrjXP0D5a6ydZS58Jv9gzlanFdtzvK4Ps+b33rW9fEQXY+esf05iKJjze7ULpSbumEsrfqnvxRCSGwbXvVi11Xk1AmAerEiRM8/vjjDAwMLPm+N2WGstvt87v/F7KD8FsUoxNYlQwWIUqFOqFC6QMOAhHWUMLWSZ7lIvwqtlugP5iizy0hCpNE5QKd+hj1tkNnYoJTHUEuZeNlS7iWxJZtRHtUy0lViBKeTg69vvhjPyJqx0lgTSeF/iS4BayginJLWEEF5Rax/Ik4SayirAxC+fpxZQcQIEN9QEKCnQUBys3rRqTjohTxNcT3cTI6ofUKWMFU/FxVZOkhVP/j1/4oo2jBSp7pUBpuJAu5XL/22mts3ryZ+++/f9lvgquJjxcvXkRKycDAAA8++OB1LaLdiDfeRZ9DyWkZqOzMSAidyGcoajFYCBGZBkHo06rupzHWonZqlIkQ7pJ1antfJp8CL9evE0g3B0ED3LyWmrpF/bhxx1BZKYRwUE4aQQgknUUnvp0HYQOcPCKcQlopXFUHMaSTQreEFUzESWMFnIK+vfAgCsHKIoQCtwQopNunC3h2AYSemVQb/1ewZh4hbtQM5XPPPcfnP/95/uIv/oJCocDIyAgApVKp2xl69tln2bRpE5/+9KcB+NVf/VWefvppduzYQbVa5TOf+Qxnz57lJ37iJ1Z9PYZbk/n8NlZ7hkziY6/E9eGHH16yf8JyJK+1Wo033nijW5z7zne+M+O+bsomlXOpTbRx19u0GwG2bZHKOlCbeYaMQomSCjfl4KULeE6GZq3DI09uph3UqVQqHDx4cMZceH9//5rsjl0pN2JsKolba+Ugu9DzwPwJ5e0+MnXLJpSzA0GSTAKrri7Byg9MyXJapRS7d+9e9qqNuRLKa76mJEQdrLCGG01C86JOfroJYSwTVaHu3imFiBooLKxwSnfv/Io+dPjjKCcfJ0ta+ombh6CBI9IMdo5gV1oIJcHxIIqwLL0/TBe9Y9dFy9MHCrcPVAflleMksIQVNkjnh8hkG6jBe5CdKZqBRac+TrUlEUGd8+cU+YxNqtBP2rXASoEM4iQzQllpQOqOpApRbhmhQn2QkW2kU0REHd2pjFrQk0QKQizpYwldvReWB2GAcrKIyEc5WX3NIoPA13ItFaCcPKgAnH4EAdLrR8gOMrsZue775/z9LVSBT6TBt3NAMNwezOdyHYYhhw8fBuCBBx5gy5YtK3r8lcTHXot8x3HmNSZbiJvWoYw6cXcwSQj1LGGufQi3chUReNPJovQhbIGKIKzHF+GDlY47fBmdBDo5RFhH2QUdq+w0ropwcymKORs1VKbTbnDm/CU6fsjEpI/NJKlsiXy6TTrbRypsgFPUBTS3hAgqKKeok8FuUliEqK47i7IDdkq/h7gFkBLp9qPkJSKnDEiUW4Koo5UYYSNOQhvxD0JeI3kVURPsWPLqxEqR/ichc+36jaXMUC6nADsfv/VbvwXA937v9874+u/93u/x0Y9+FIBz587NOLhVKhU+9rGPMTIyQl9fH0888QQvv/wyb3nLW1Z9PYZbj4V2S672DGnbNmEY8uqrryKEYNeuXWSz2SXff6kdymR/5V133cU999zTPQf3xjzbsbj7rUOc2neVymgDx7XZsnOA8nCWC2Mz42+hL022lGL8Up1M3qNebTO8tUixL0efXZh3Lty27a6qIjGyuVHcrLVK8+0rThLMXgfZxUa/EpLz43y3MZLX68BiuyXXQo61kgNT8uLeuHEj58+fX9HexgU7lO0R7HP/TSeEQR1PpdnqH8a6dEHLRJ0ihE2UGydKdhpUhBA2KLAEKASgUNiIqANun06SvD7dfXT7EFEsMW1XkXaqWxHX84hpCGsIKz09MxNFKMvRnUshUMLRyioro5/LLcTV6xIiCrDSfRTcDvncVtK1CSoVQSnv0OyETF44icQhl3FJZfJk0x6ul9a/Y2GhhIUC3VkEXSW3PECg7AwgYpkW+jmxEDIgJIWF1Ie4OHnudhz9CX2N/lXd3Qwn4u5mW38vQurnJEJZKeT6D4A9dxdyKWtDeveOGgxrzXxV96mpKfbu3Yvned03upWSHJiWSrPZ5I033sC2bXbv3s2rr766ooLdimcoVaQ7hGGcGMqZiaHozha2tGIjagAKghoI0dPNq6GcIiKcQjkl+jsHcWrbIRBxt7CjY6IKUMJF2Cn0DGJaP57laOmqndVqCSutpavC1s9puRBWQaQQso5j2biyzoZ1WxBIWp2IVqvBVD3gytWzCMsll2uSyRbI4eN4ZYh8lFPQ7wV2RieTwu2aixH6aMOceD4T/f1ZbtzFJA2Wg8JFuI6OoURd6auy8vF7RXnWzyOvFSOZjTC469pfBksbCVgryetifO1rX5vx+W/8xm/wG7/xG6t+bsOtzVJ2S672DFmtVmk0Gmzbtm1FCpDFlGpSSg4fPszIyAiPPvpoV5Y5331Lg1ke/p4ttBs+jmuTLXpzrm/KlVLsfHojp/aO0WlFbLirzD2PrcO2rRmPP3suPDGyuXjxIocPHyaXy9HX10er1brujqS3igt2777i2Q6yo6OjHDt2bE4H2V7u9JGpWyqhXOpuyRstee19cT/yyCMUi0XOnz+/oj/0eQNJMIV96Uv6gCADnfh1pvBFHhE24mr0ZDxjWIur3zWdbEXt+CADwrJQSoAltFRVxSYzMkJZWSDQBwQVErl9CEaRTglbtbXsKX5swnqcnNXBySKiuk42gwa4WYTsoOwMIgpQdmq6o2nZ2iHV1sl2JDIou0OxfwMFJUFuoOP7tJo1Gs0WlatjCCdFLm2TzpXJpizsVD6+jiy0tRxVRG2Uk9fPa6VBxbIvFaCcnJZHu9pdV3oDCOnrjmPcRe3OYUYtwNbGPypemBt29PcYTBJt+kFIzV9BN6Y8hpvJfLslz549y7Fjx7qV7K9+9atrIulaCqOjo+zfv59NmzZ1D1crtcWf6xA0I15e+SaidTHuDjbZ1DhK6vQ3EZ41HQvj2Kg7epNxB6+pC3JRU8tGE9m7cHQhyy0jkCi3HMffMoQNApHDimrgrNOqjx6pqO4SFiGYjCWpcUyMC1M69joIGemYSKTHHa34QGG5EIQIFEJFoEIyKYeMm6G/XEBFBVp+RLs+xVSlydVLTex0gVwmRSZfJJtOIWwPIbweMx09U47l6OQ5LhBKK42jmmANTHc5w56PdgEhJ7XUNYwVICrUnUkh9M8DUF4/asMH4u/nWpZyYDIFN8P1YvZuyV5lWy8rPUNGUdTd/eh5Hjt37lzRdS4keW21Wl0V3Fydz9lnyOT7S2UcUplr957Ppn99nr51OaJQ4riLG84krtV9fX3cfffdBEHQ7dIlBmSTk5Pd7mWhUFjTFRy3SkI5m/kcZCcmJmY4yCY/u76+vjv+/HjLJJTL2S2ZBIPV/KEtNaA0m82u5XLy4vZ9H1jcgGAu5kwoow7W5b9CRU2EcFHCAiTSyoCSes6lR5Kp3LJ277OzWo5kpXVV3nIhChACiAQQgfAQtFF4CNXUzqYy0AcdOoTK1QcpO9cjNdUHKiF9PUMTtcAuxOY5cSLrFBDBlK7qB5M6CW1XIVVA+HXwclqiioXuOTp61sfxSFsOXrZInwqJpIXfrlFv+lQnJ7nUici6V0hl+8inmqQKwzjx4bA7Rxkf5IQ/jnTyiLCClBG2bKJUFpSKO5gSZbmABXYWhdBzR91E2+n5eTaQ/U+higu/QSx0YEokr7dzQDDcmvRW3RN5jhCCIAg4cOAA1Wp1hpPqWphOLBYfpZQcO3aMCxcu8NBDD7F+/bQEcrVrR+a8b3U/YuLbKCvdLZSBRApPyzyJZ/6kr2WdYUsnk914NTFDNir8iu46+nWEm9WJmJ2ia3Bj51BYSKcMCD3jrXyU1w9BQ8v/g0lw87EktahjVK8k1Y8lqUFNy/lpx+qIAGXnUVGLwCqBnUKJnC502VmI2givRNaqkc1vZSCYIrS20qmNUfctqqOnGYlS5LwQLzdELiXxckNYshl3RwOwcoAeU1DUiZw+UEp/H7Iz/TNKuqgQz9qHYCsIkuS8oa89rCHXvRvSQ9f+bnr+JsxaJcONZj6/jflYSXxMzoJCCB5++OHuaMFKmC++Xr16lb1797Ju3Tp27tw552tpLXw4hBBLSibnwnVdhoeHGR4e7iZi+XyeSqXC+fPnAWbMXy4mA13K9d+IhHK1z9HrIAt0HWQrlQqnTp2i2WySyWSIoojx8fE5HWRNh3INkFLi+/6Sd48lGX4URStuty/lwJTsbtuwYQMPPPBA93nnqqIvlbnmJa1Lf45oXYjnCju64ozAUr6+rfLj5CdECW3CoJx83J0rdecBhQpRtouQga4gKxVLnARCtcByEVGdjhBcqB1jW+otuLR0py5qXtv5szydbDqF+CBV1vMz7gBCtmL5bFMf0sIpVErLTKVbwvKrSLeEE46BsBDBBNIt69vZBaywiXIyWCIglSuRyYZIMYQKfZrtgFZjipFKQHTlBJ6XI5/tkM4VyVqd+HCjD0IiagMWNh2EinRVXQbT0l0nB1FbHyBlS89PSh9peVjdn2eEzG5FDf+DRX9/Cx2YOp0OYRiahNKwpsx2uU5iZKVSYe/evRQKBZ555pkZK4tWK+laLD4mu82iKGLXrl3XvAmudnH3NbG1PYYY+VuwUoigCk4Byx/XooiwBqTjmb80OiEU2jhGCC37J+omhNIdQER1bQqWJIThlE78/GTGfBLsDI6sI1QJIhXHZXR31I4lrm5RJ2len47Pbl+c0Ja1U2pSiHNycUewEHc49fUrlSalJnUMlnWw4sTWSsXFxDKCEOkOYKuATN9WsrIDw+sJ2lM0OyGd+jiXJ0OEvEwqUySbdshkC3iuVosIFEQNbOVAaCEcoWcssXQia7lawSJiyavjIqSP8rJ6Z6/bB2ENldsG/U8u+Lu7UaY8BkPCQn4b87HckaeRkREOHDjQVWHU6/VVKUBmx0elFKdOneLUqVPs3LlzwRU4y0kol5t8rgTXddm0aVN3zjCRgY6NjXH8+HFSqdSM+cvlrie5VTuU0zt8W1r5ErUhbCJkG8IGnvQZjhoMbXkH3HcfnU6Hs2fPMjo6Oq+D7FoklJ/+9Kf5sz/7M44cOUImk2H37t08//zz3H///fPe54UXXuDHfuzHZnwtlUrRbreX9dw3NaFMJK5JVWmpi6yTA/31knRJKTl+/Djnzp3joYceYsOGDdfcd6XPf80LfOT/QzTOx4lOKz5I6BkYoSQuHT0nGbRiiWldf5RtpEjHJjOePgCIFKgI5WR0d47YSEcAKpZV2Sm+W/t79rUP8J64GypkC+w0IpzScrCgElfRW/qjbKCslJ7dsfShQ1ppLKKusY1y+hAEKLcfoTqx3LRBaBdxGEW5G7V7ateCPofwqygnixVUwMpiyQZYKQoZQT47wBAQhBGtVptmo87k5ctEUUQmmyObTZPN5ki5GZSwCaWjV5Cg4lnT+gyZsBVUkG58mLNzWGFVrxBR+jnV+vdqudgiLNShbDS0sYU5MBnWgvmq7kopTp48yalTp7j33nvZtm3bNXFzrVwM52IpVfQ17VBGHZ1MOjmIolg10Ua5JWzOI+31iLAajwPo9RZJQiiCjjYbkwoRy/GFCvS/IXVRjKArk1deP36jTqeTwrXqhCKDJVtgJeMAeW1sZme1MY+t46KIZbT0nknsrE5oRRkhVGxoFqKcUtfghlYDJVytMBGWnofEAvR+SEG84gihY7gd6ZUhjoWbylJMO4hSCaVs/E6TRqtNo1nnSvUqtojIZArkMoJQpbAJ9LhCPFvelb76cYIbjKMs3ZHESiGI4sH8CNxiLHVd+P05iqIFDTtu9wq84dZiMb+N+Vhqh1JKyZEjR7h06dIMF9e12NObxDjf99m/fz+NRoO3v/3tFIvFBe87n+T1ZjA72UvWkxSLRbZv304URVSrVSYmJjh79iwHDx6csTapVCotqvK7IQll2MGRDWhd7iaJImzquBw24uRRr3YSYVV7lPgT3TV3JLvOnRJCNrur58jf1109l0qlKBQKNBoNHn300WscZH//93+fAwcOMDw8zJ49e3jrW9+6Iunw17/+dZ577jmefPJJwjDkE5/4BO95z3s4dOjQgrG3WCxy9OjR7ucr+ZnftIRyvqr7UujtUK6U+QJCu91m7969BEHArl275kwOVuJE2HvfbjAYfxVqx1BuQRs4OMXY7CGtXVeFj8SByAfbjWWuab0bzC5gB+OxOUNV3zdqxDLY6TlDnTTpVR2KiIZq8t3OUSJh8Yq/j7epx/V9iLTJTuRrmazq6DmaqAGWNz2vGTbBSmFFLX074ccmPR2dnBL2OLdmUKpNaBVACaRb1gmvW4w7nTlEFICIk2gh9KFMRQhLgQzw7BReBkqFYQiatFWKTqNCrdWhOj5GJFIUsi4RLlKGSDuPpSKkU8Ai0i6xRLo7KgOkW0DI2F5f2Hrf5KYPxfb4i7NQQlmv17vOYAbDaphtLJEkk+12m/3799NqtXjqqacoleb+u70eklelFCdOnODMmTNrWkVf6L71ep1zL/8nUv450vl+cmmPdK6ILTxCGfHl3Hd4yG/wVHa3LnS5/QjZBLfclegT1mIZaCuONUF3BlDHWRdBByyPydEql07WCP0A4XgoL2BoeCMg9HqjnpEDelyzRTDVY15TAL+qv+7H7qtBG7x8LCdNg7BRVgplRUQi051VRM6ag5RtbeAT1bqyU+UUe4zH4jGAsEIqVSLlhFDeiopatAJFq1FjoubjdzqMBCkKwRUymTxZK8RO5kXtfOy47QEBehhf6blzK147svED4JUX/d0tNhJgZigNa8FS/Tbmw7KsRU3Heseddu/ePeN9fbUJZdKhnJycZM+ePeTzeXbt2rWk7t18mwKWetsbiW3bDAwMdJ2dfd9nYmKCiYkJDh8+TBAEM1xS51rDsayEUqnYjK3Z0z1s67Oz9BFhXRfIgkkAhD8BwmFg9CShlcc67emzYDAZq/9acXz09flXhdrMrFuE7Oj3hbChjR+DKd3wCafAG0Cuf/eMy+stfMx2kM3n8/zKr/wKly5d4h3veAef+tSn+Omf/ull/8z/9m//dsbnL7zwAsPDw7z++uu8853vnPd+QogZYysr4YYnlMvVus+FEOK6SLrGx8fZu3cvg4ODPPHEE/PKaddE8jp5BK58M5a5tkCk452KnjZ1EC7YAomNsrMgFDhxJ9IpIqIW0i3qF4iT75kvrGjJaWIYEU7qg0hUR9l59tRfIxIKWyquRBWuuFfZIXaihA1YcaIFghRKSZ3IKhl3TiPAiT8CBLryLyL9QhbaYbZbTbe0dEqoCKUisCxQQh+YLD1XqbpdgzCebQxQZPXPwsnMlNR6RTLBJOn+dZSDKaQ9hN+4Sq0jSHGVixfO4lqQyuTI5fJkMmksJ40iiruPAoELlqW/XxWh+p9C5e5e8u9vIUlXMj95uy6lNdwa9Fbdk1gHcOXKFfbv38/AwACPPfbYgnL/tY6Pvu+zd+9eWq0WTz/99KJJwWoOXEmMHB0d5cx3/4S7UqM4xY10amNcqQOXz+JlioykzhEyxf7O6zwSPkjajmcQrbSWi7olLUP1+nVX0tLrMohl8Agnjr0KVETYbnHl7FUsFVHsTxG2m1y52safmoDMkH4M4eqClJ0FIj0GoCJ9uFDxISNqo1L9iKCu/z3QO3VF11QtNvfxx4EUHnVAxYlvARLDM+VrsxwVIL3B6ceXQc8cZJ+W1jpFCKd0shpOIiyXrBuQLecZKEsunK+RzduoqEHl6hRX/BZOukQu65HOlsmkbYSbiyWvurAp45+nLD4I5UeW9LszM5SG681y/Dbmw7ZtOp3OvP8+W+I6+z0/6TCutHtmWRaTk5O89tpr3HPPPdx1111LfpzlSl5vJTzPm7HnsdlsdhPMZA1Hklz295VIOxI7nMBqXwApppPDqKONImWo46aS2jRNWHFjJTfdYAlbWpVGGBfNpI79SH3OViGB0A2IxE9DOXlENKXvnyj2gioID4iVevjxaJmMNxCgz9xIlFVAbfqw9jXpYb6CmxCCxx57jFQqxT/9p/+U5557jiAI1uRnPjmpk+dktnM+6vU627ZtQ0rJ448/zqc+9SkefPDBZT3XDU0ok0Wh58+fZ+vWrStKJhPWUtLVq19/4IEH2Lx586JW9atxMfSiq3DxdS0z9SsIKweJYURUj/+YW4Cr51+EpQ89It7fCFoyKmX8AvCJvH6sqKXngsK6nuGJ3QetYBLplmh3LrCvfYiSDKhbNqUo5HjmBLvDx3Q1PWppGZbsoERKy7SEE9vf2925G20xL2I5rV7boSxb71pLuphOVn8UFq5q6p+nX9W70fwJcEpx1T2n53Tihd3SSmMlkloVxpLaSM8SqcSYyI87jh28/AB9qQ6TEw7btmzG7zRotiMmxy9zObTJeRIvO0g+FeHlh7HjvW0imkJltqEG5ra/n4+FDkz1ep1sNnvLBXHD7UFSdT99+jSDg4NdM4NeCf5b3vIWNm7cuOjf2FrGx0qlwp49e+jr61s0kU1YzQwlwNmzZ5m4eIBHh6bIZnegog75wn0MyBZBaNGYGuENeRRPKXwh+faVb/Jo5gmy2Qy2JfS8uF+LZa9NsHNaRZGs/HByem4wnqtEZAhaLdodl2zOQ2LjpEHJGqEf6a6mUiBCXRSTLZJYqA3H9CFFiAiwddLpZBFK6c5eYobT3a2r5yyVX9EdyrAWJ4NTYMdzopanu62Wq5UiwkZIBZaNEEl3RYKd1sU4p6ClWI4bdzlDXcSTAaFIk0l5ZAqbGAwnCcjRqY9S60Bz5AS+8sh5Ci/XRy4lSKULCBo6OV//vyz593anuxgabi5SSi5evIjrupTL5TU/P0opuy6us43Geukde1quMWMURVy5coVGo8ETTzyx7L2sa2HKc8OJApDNnu5hGytskpM+ebfG1qEQVZ6k1WzSmrpEc7TNaOsKlldgkz9FeGov5FyEk+2OLBBFepxBSRCWNmlTShfXVKiTSunr+ClbceOiEY8WtHRjAQeEQCXr9wS6I4nSpmUyig0rI3TDBZA+QgkI23E3sonyijqmW1l9Xh1+x5zmZUtZO5fP53Fdd9mzpnMhpeTjH/84zzzzDA899NC8t7v//vv53d/9Xd761rcyOTnJr//6r7N7924OHjy4oBJpNjcsoUyq7q1WiyNHjsw597Mc1kLS5ft+V79er9cXlJDNdf8VdSjDKYb9l8G+NzaLKUCnZ8dXd29iEatd1d3CTkW7p4ZNvVg6ClCWi0IilN4LaSkV76WU2tFQhTq5lPFco2xzVE7gqohJ26YQSeqOTSGapCJ8BoIq0i12n1skiVcYV9WjaUMbZad09dzyYiOgbDwbNPt5+1DyMqFd7BpViHAKEjt/t6S/53iORzp5LH8CnCxWUNcJt9KdBCVClEK/wBG6G2q5gIMUEJLG9nKk0yWyxQDFVqKgTqMt6TSucmk8QowexMsUyKWnSOeHcO7+4LL+BpPu+kIzlKb6blgJvVX3U6dOkc/nyWazNJtN9u7di5RyXgn+XKxFfEyS2xMnTnDfffd1i4BLvf9K4qPv+4RhSOXqJd6+4SKe6yCjFkrZ3e6j50Yczk3SqncIbRsX2GedYePk3URXKqRdm0wmSy6bIpO2EJaj51+6hj5Z7fDq6N20OCWQDexUmlQKGnVBviioNz0QLla6rBMrYceGX4kk1dYdT2HphJOk4+npA5TlxEmdA1GIsD0gQlgpnZwCyvK0E7VTiAuGjk5YHa2o0NJcKz40uRDPfIuwruNtvBalV6GinJKW4jqFeKWU3lcsnYI+MLl9OEpi920hpyIU6wg6bVqtJs1mk6mJKaSokE8L5KYPU/AtMvbSOjELHZh83ycIAiN5NSybXr+NS5cudefwVspc8XEhietsVppQJs8RBAFDQ0PLTibhFuhQRm09Py5buO1zpBAwPq6LXtKPZw478UdfjwckCZmK4m0EWoVhEenxLEKE8Mg6EZmBYQb7A0K5iXazysXLksnqVcau2hRSEV5ukJxXJ5Ub0F1JOx+bRObi+KwNzbB0YU1hxSuVhN7fLmwtZcXrNlGssIaVLiH8GsrNx3veUzrZFG583Rkd552M/v7csm6KeKUe9ckEqvQQlN86549uKQqOtYyPzz33HAcOHOCb3/zmgrfbtWsXu3ZNN1d2797Nzp07+Z3f+R0++clPLvn5rntCOVvrnmTdq3FohbWRdLXbbV5++WWKxSK7d+9eVkVgRQemqI0z+jfx4UBo6ZWM4t1nHZQ7ALKlK9lRHemWcdR5lFfAChs9uycz8V5ITy/txtYzL8IGJVAi0i8iYhlpvBftofQD9NtlIEJZNsrvMHq5Qt9QHmmlEbKpO39RfXqHm1vE8meu67D88XhtxwTYRYSc0hX/qKXNe6Svl34TIkUKIVpIO6+vwynFErH+WLqlO43SKSAiv2tyoQ9pep4SYevdaE4Wwsn4IBhb/0eTKDI4og1CYEUdfUBTPrabpuQKVCGrDX78kGazQbPV4tCV7XQmXp+xhHYxe+teic1c1Ot1crmc6VAalsVsl+vksHP58mUOHjzIxo0buf/++5d1cFltfJRS0m63OXv2LE8++STlcnlZ919Jh3Jqaoo33ngDATwycB5PdIA0qLZ+I5cWqBbK8jhS+xYCRVEpGkLgEXB1sMbbvIdptANajRqXrtRQ0QSZbI5cLkM24+B5ujOJndNVaiejk007iydqrL+njyunLtGY8kh7bYrDLvlMEyhoaWly2HAysaur3umryGpTMjLx6o9MdycmUSNetzTVNXHQc5BVwMFTNUDFUli9K7N3565e4xQX61IDcZezf1qxESXSVz3WoLudnu52Wg5EdYTsYKsWhIFOeGUHYemDkXAKeK7AzQxRKgVIsR2/3WBSDnCxXmTy1VfxPG9aitbfP8NRuJfFZszBmJYZlsdsvw3HcdZ8D3myS3fjxo0zHP0Xun9ybUtlbGyMffv2sXHjRlKpFLVabUXXvmYdSiW7iWH3YywpJeroXeTS10oz2dGO+pHu9CF9lJ2hr3YaO+jHsjJdIxoldKMB4cRnz0x32wBEOv5aXqxoc/RcuJXSZzk7jYU2mLRFRDbfh2CMjVvuR6mARiug06hwoRpgqyt42T4KqSlShWFSfkXPtfsTeg4yrE/vXo/3Aks3p939vb54o0EfQjYJrTwp2uAOdZsdotvgqcTNkmQTQqjjq5LT3VCvXyfJ6Q2o9e+b93exlD29a+XB8VM/9VN86Utf4hvf+MayuoygnXsfe+wxTpw4saz7XdeEci6t+1ollKuRdCmlmJqaYnx8nPvuu4/t27evaI5zWc+vJJz/c6zWZT2TGPlxxVlSr9ewLJtsxoklWVE899jBJ6e1+m5fPFdY0ImbndUvcDte5i08/ZiWjYhkjxufAgRCWDjKYqszrJNNIQjcCD+KX9xESDsbP7c+JCXOh9LrQ0QdpFdGhE2kU0QEDe14GNW1rCycAit2irVSWtZgeVhhDSElVtTU1XHh6tlMKeK9kEL/HKx4wbiwECKaToTRnQnl6he+7nJOLy2XTh7RqujgFdb0jFPY0bErrkwJKw1RB8/L4zlpind/H8N9b+vaW1+5coXjx48vemhK/o7nCwhmPsiwXMIwvMbl2rIszpw5w+Tk5AxnweWwmvg4NTXFoUOHUEqxe/fueZOHhVhuwe3SpUscPHiQu+++m+qJ/w87nIRcOXY0deN4CSht+DWc2koprFPzA9Y7FqGbYr1ysB2HUrpFsbCedf4kHZWmVZug3mgyMTYCboZ8OkUmXySXTWHZru74KQVumWJfSPqtdxM0GtheitHRE1r5ETtgC78Cdi7ucOZ0cc0pIMIJsPMIVY8r2clOy2SWs2fO0h3Qs4leP3QmCKxCnEQmpg56ryXx/I5+3rqOr7IeS7gifRhTke5oKglWWo8eiHwcR1NxYS4iUGlE0gmNmrqwlxTnwqp+Tr8KVhorqpJO50jd848YtjMzFnafP3++6xaYxMpyudx9L1+KC7YxLTMslaTY1uu3Ydv2ooY6i5EU7ZYqcZ1Ncl5cStGu18zswQcfZOPGjZw5c2bNXLBHRka4evWqfj0Ws7jRVQjbCNkk1zqO2+ogLh/XI1BK6URJKd1RBPQ5KYi3CLS0aq67uiiKnf3jJkXiZm3ndCNAZHBlA2UlCVjSeIgbE04u3nueimfQPUgaHkqiJftWHM9iFYqw4oaJGyezEUK2cNws5YILxQLrlKLt6/Vy1WYbf+IMwklTyFRJ58rkogmsdN/0NcVx2gqmYllqfGYmjBPecSKnrH+uXr+eg3eK2vHaTncbOPqMaYOUunljufHomVbMqY3v12fyeYiiaN7307UyLVNK8dM//dP8+Z//OV/72te46667lv0YURSxf/9+3v/+9y/rftc1oUxedLNnJYUQq6qew8or8GEYcuDAASYmJiiVSiv6YcMKEspLfwP1k+CksWmjUKiwzsjoGK1WCyUlUtnkcmnSuRL5jAdORg8S48TS0pSuitsFIJiWmLqxftvJxTruaZdWZEe/MFUI6BeCEAIkWDLEJpYkAFZsXKM7nAr9P0t7Vliuzk3tHKBizbjU8ioV6sNU4hSbDD0rUEJhWSJ2cU3HJkJJpzGP8Kd6pFsFPRBt5fValGTeKTEqsmKrfycefPb6EEoS2QUQ1Xgw2pr+GUQt/Rxdm/xJZPEtqP4nEXCNvfVih6bZJimzSTqUBsNSSQ4GSTJZq9VoNptEUcQzzzxDJpNZ0eOuRPKqlOLChQscOXKEjRs3cvny5RUlk7D0+Jgc6C5dusSjjz7KYLbJmcNvgNwOfmxmE7b0TLfy49nukO8tfQCQnDtzhoHiEPlsuhvvlFvSBxG3SDqcIjWwnr5wisjegF8fpe471MfPMDri6Bnr3AC5lEUq349FhJdK4aXyKFyisax2Y3XTOumMYw9OPp6viTuRltudqyRq6I+0ATues7QRUfwxWQmiFJJ4T6SVRQlLu9Mq4v2W6HgrRLz30tKHGWGD6uh4GsXS1zCRvlZ7RglKEFTBKWKplo7hMtAKFyQ4JRTEuy6VTjZBzxZt/IA+PHLtwm7f97urAI4fP0673aZYLNLf308YhvMWZ5ORgJVY4RvevMw2b3QcZ0FDnaVg2zZBEPDqq692C2fLKXQk54DFYtx8ZmZrsae3NxkeHh7m9KkTVKp/Q9Gtk8nkSOfyZBp1XViqVXWiI6PYgDGOXaiu2aKIkpnASW0GlpiHJZ0+Fe/5VTZYDkpYKGwiK6dnF92SPr+5+bjLFyvJYgMy5fbpsS07HxuPeXpnupUBEcRJZrxL1NIFAwXYVoQQkZ4njw0fERZpzybtFOnrLyOj9bQ6bVrNNhMTk1z2fdLeFNlsgVy6Sjqb000Ny9HJYbyZQBtFKmTUwVZpQOrOo+XFctdYTWHp86wQQhftkvGzsK4TT38Stf49kF64+LuUDuVqz5DPPfccn//85/mLv/gLCoUCIyMjAJRKpe554tlnn2XTpk18+tOfBuBXf/VXefrpp9mxYwfVapXPfOYznD17lp/4iZ9Y1nNfd8nr7Ep1UmFabUK5kseo1Wrs2bOHVCrF3XffzcTExIqff1kV+Cuv6GTS60f4DUIy+O0Ol0ZGcSzFls1bEEIHn2arTXPyClevRKRt3V3s1C5hFddh+ZOxFKoR74fsaImpCmJpVKhNdaJQJ2Uq1AchGeodleikUjseWqjQR6l4z5jlda2RRdTqymmxvHjPWgpCvTtNxC6EWpcey4SFrWOTrY0jpCWwVERk5bW0wC3F0qxyrHfvizuN5WlpQbynUu+KzMf7KdMgG7F8AhL3WL1mJQ1RhFICSwh9wCIexibS61hUbLxBiMxuQW6Yu+Ky0KHp2LFjdDqdroPr5OQkhULhmoORMZwwLBfLsrqx5Pz58xw5coRUKsW2bdtWnEwmj7scl7gwDDl06BBXr17l8ccfx/M8Ll26tKrnXyw+djod9uzZQxiG7Nq1i4ynUCf/iEh4ev4mOxDvk8xjdSbAK3dl98KfACePLVu6WixDsONkC6ETNERsuhMi3QEs5ZMqbiItW6jBIWS7Sr0j8OtjXJ60sEcu4uYGKaQiUoV1eNQQKOywilDDcZKa0/E12fVrpREi0FV8Kael+sLS14QdV8NdiEKwXf29OTktKUPgqiYIqavnyWoQtxRLbIs6XibxPV57pLz+WFWSdD1j11enDFFsdZ9U+aMGQkls1YFIxHJYLce1okZ33Yl0y7oiX3oY8vM7X3uex/DwMMPDwwDdfWoTExOEYdg1cEqKcckYwFqMBKxkaTfAF77wBX75l3+ZM2fOcO+99/L8888vu/puuPHMVcBdi/Pj5OQkjUaDrVu3LkniOheLxbhqtcqePXsolUrs3r17hiJvtXt6wzDkO9/5Dr7v8/TTT+M4DvbYlwmvFmi2PNrNKa6eqdKuR7g2hJ2IoaEUdqasvTtiKT2Wg+5QqtgAUe/JFVFrWp7v6t3hiZxUqxu0oSJEWgwnYnMbJ0kuy3FxT8cULfGvxI813uMVok0kZbcZktL+G7YeKZC2h1SOTmhFGLu46ngqorbuooZtbMsj7ylymTJDfXlCHJrNOo1Wh8tXJomiCTIZj2w2Ry6bJuVpw0sl9Do+hKX3DRN3WpO5TKcEMt4BT4C0M/os6fXsW5dtVOkhVP/bFv3d3YgZyt/6rd8C4Hu/93tnfP33fu/3+OhHPwrAuXPnZvzNVyoVPvaxjzEyMkJfXx9PPPEEL7/8Mm95y1uW9dw3ZQ/lWkkWllPhuXjxIocOHWL79u3s2LGDixcvrskeoUWZPKz3TSZdQkcfEk9fGKWvVGRoeB0qCpEo0m6WVDaCgXXIsEOj1aEzcp6xiQbiyiHcTIl8eoJ0fpCUXdGV52Q9iD8BTlEPFTtZLQ+1YsdWK61fpEnCZWV0pcrJo4SjX+xxgiaiTvxiauuOZ1Dvzm4qp4AVJvvPqjM+iqCCdEqxZKuIFTVRdhZLdohEnABaaX0IsjJYKKRbmjYNIkR6fSADLamVoU4mideMCEfLaJ187GJbxAqm9GM0R/X8ZDCuJbCJU2J8wFNCf5Tr36cT5CUw16Hp0qVLNBoN9u3bh5Ryxv6kXC7XXRtyvVjpYcpw6yKEIAgCDh48SKVS4fHHH+f8+fOrnhFazqGrXq+zZ88eXNdl9+7dpNNpGo3GdY2PiXNsf38/Dz30kD5gnfsTXR0WKW0gY3n6wCB9pNuPJTsot1/PPHq6ECWdDFZUA2t97CKdgyCWKYWduLIstSuqEAi07EqgsFN9lFISVepjSIW0OhHtZpVqM8CfOImws4ioRT0o43aqsYRqsmsippxkPVMyZ5PsLytOjyWoJJ4G3RUjKjWou61eP6pTwbeL2jQnKbI5pa5iIymuaQlsIn1NaelrvO8XYekim5I6VlquVmgIq+vS7ZNF2BmUl9GdCK8/XsnUB2FNF+GCSfDKqPX/v2X9rjOZDJlMhg0bNjA2NsZDDz1Es9lkfHyckydP4jgOSilefPHFZc/izmYlS7tffvllfviHf5hPf/rTfPCDH+Tzn/88H/7wh/nud7+7oPOh4dZkNQll0tW7cOECrusu+8C8lOtIioNHjx5lx44dc45UraZDGQQBIyMjDAwM8Pjjj2uDydFXoXYCJ12imArxnAL1qxN0ahO0laJTu8z4uEe5fJFUbih2vR/CDurdxFA3B3RKoKWqISrVrxNQrx8R1oisApUzF6hUHFLuZULPJuPWgFhJYmf1mIIdjzIhUG7s1O/1dRUkusNX6M6N6+Qy6WTGclkrD1GTCAdLgLRzWCqIk9VAbwqQLd1kCWv6Y7yf1wmmKBSKFNOghofwW1M0O9BqTjE+MYktJOlskXzWI5MrouREvGc4MY+MFXNd35AJlBuv57MzWCo29xEBOEXdnVwCC7lgB0FAp9NZdYdyKYWKr33tazM+/43f+A1+4zd+Y1XPCzcpoXQc54Z1KKMo4vDhw4yOjvLoo48yNKStfFe7mHZJFabmebj4RS0dCqoop0B17AwKwYahIuW+jSDbhMLVBw88BAJlOViuTd7Jcnl0nHu2biOSekl1rdXh6nmtF8+nq6RzfeTlFMIrxA6qhR7ZU1LNH48ln/G6jjBZ19EhEjaoAGl5+sXqJDOccbUqpR1bp010BrQc1e1HyMb0ISheT6Lcgt6F6ehDkFTgqCmEKmopmOVhxcu7LRFXxiypuwy2he4uxH+Wlt55qUQyCD0QG1T0QzyDJKIWkZ3HZjKeK40NfVDayMPOYoV1oo0fgtS1Ns5LJZPJ0NfXx9jYGE8//TT1ep1KpdI9NP3d3/0dr776KtlslosXL7Jp06YVP9d8rOQwZbi1mZyc5Nvf/ja5XI7du3eTSqW4fPnyqgtuSx0JuHz5MgcOHGDr1q3ce++93Tc727ZXvWdtrvjYe9i69957u27favRrMHUE3KI2qZFlCPQqDSUDULHckwhiW3fp9gGTRE4JLcPv1/bwbhxrnJx2O3XzuitoZ/TXRSqW4MfJJgCCjGuRKZXpKwukHKbVaXHxUsDU5BTj4xGZdJ1MtkA+08LL9OlDhdsHUUPPHQU1cLVkDDs3PQfpV6adZe0MIpqK1RRtpFLYsUOsUFFX4qqcslZ3uWW08Es7tOoZpmSXr6PdZO1Mt8imDX9KMxLeyMqTooYgiuckvbi6H+8UtjO6Um85qA0fXHLRba7fLehRgsHBQbZu3dpd3v7KK6/w4osvcvz4cR544AF+5Ed+hH/9r//1sp9jJUu7P/vZz/K+972Pn//5nwfgk5/8JF/+8pf5z//5P/Pbv/3by74Gw81lpQ2JxDFbKcXDDz/MwYMHV3UdcyWFidJjfHycJ554Yt7dfyvtUF68eJGxsTHK5TKPPvqovoapk9hjL+lRoli1VqtM0WoKMqUclgBLpsh4UBws0KmPc3k8who9gJMdoJC6qk1trNj4UemZR4j07kcRG9DYBcZOX+XSaUEm06FRTyGDq6Qz6ymX6nH3cVI3NIKa9gOJwvix9Mo5cHV866rHYnMct6wLXN3xp7yeHxcZUmjzIiusxSMGndgUJ1npEXRXMenCY3vaa8MpIoJJvEyRlDNFubwJ/EnakUe7XqEy1eLK6AiRsBDVcaCPXDbCcsszDTOdXHy2tLXhkIo7s1EbueWH4pGExVmKadnt7IJ93RPKuQ4jayFZWMqBKbFoFkKwe/fuGRKytdzTNid+Bc7/uV6AHTaRIs3Y+aPUfYsUdQrFHYhgXK/qaI8T2ToRw4uNGZycftNHgozwvBSe20epz0KpDbRaLZrNJpVqlcudgEyqSjZXJJdpkMqUsWQndmxtxCY6tWltu6M/IlKkqWtZSTAxrXl38rGOPqflClYaIh8l9DJX7eAaxQ5actrEp9tpLEMUxEGjjhTxOhNs4t0fsYmQdm4VYb0nEdZyNuWW9M/QLiBkLZZANOLFtPHgtop0N0Pp7qeyUiAclOXqXZZ2Hkv6RP1v11bOqyQJBkIICoUChUKhe2hyHIf9+/d3V+J8+tOf7h5g1oqVHKYMtzae57Ft27YZa5RuxEiAlJIjR45w6dIlHnnkkW4nPmE1e9Zg7sNWUtwbGxubcdhStZOo8e+CNwDhFJGd14YR7gbwp2JzmlrsyBrEBSMQSiJkoGdrVErPjSdGEnaxxxU10MmmCkCUdDIZV7+x07qj6WTizzMQtbDsFLmUwrMlG4by2G6aVmOKRnuKS+MNlOWQyaTJ5ovkMhlc2wavqFcaue6seUstA+va2Sd7hWWIpUIc1QEi7bRoZ/X1uHlEoOcj9V7fAqi2LprJDkok8/NlBDIu+MUxWCZVfB9l51BhG6lsLCJ9PULow5ul1RwqUboMPA25Lcv+Xff+fmGmaZllWfT19fH+97+fer3Ob/3Wb/Gv//W/7h6eVstSlna/8sor/NzP/dyMr733ve/li1/84ppcg+H6Mdf5cSUNiV4X1/vvv59Wq7UmKpDex2g0GrzxxhtdpUcqlZr3vsvtUPbOmg8NDXX3XavOOJz/M5TlafWYU9Ar2JSFZ7UIhN4Xbtl63rFQyFMoFBiUEZ1Q0qpXqLUCxs+fRFlpiukrpPMDZNMdbCcuwFkOCguJoDraJJ1VeLk8aSSXzmRo12OX00TiGpvx6G5hXp89nayONVYaEQbx3vF4hYiIu6J2FlDTscvJg98kFCktS7VTOkm00/ocG28mUFYq3ssbe43EcVa5pe7IE6oTK0fa4GTIWAGZgX76lERGinMXzuOIDpUrFxnzO3iZEtlsimy+RNpzEbFxpBIOkKyIaqOG/wFkNi7597gU07LbuTlw0ySva3FgWugFmQSQTZs2cf/991/TZl5th3JB6+awBRf+snvw6ag0F8+dwXbybN86yLGTZ1FRR3f/woZ2UfUr4BW7LXsRVFFOHk81QKh4XUgaQj3PmEsJspkyor9IEOk/xla7xcVqBdRobJWfJZvL4woRy61ClFfWrltuCdWuE5CFqBNLRVuxo1UzrmLHjoJhLTa8aINlaZdaKRCWpYvnsaxMS/GjeJbJAhwkDpblgOUhLRtLRUiyWERIqw9LdbryK+n2xetSijrJtDMg67FeXrvECiV1t9JKQdRCxPs7hRC6Q+vk9W4gK4MVtVCpQdTQu1b8e+5lvmBgWRbf8z3fwx/8wR/wjne8g3/xL/7FsubXVspSDlOGW5tsNsv27dtnfC0xjFgNC8XH3kr9fGYUq00oZ1fgW62WXgkSF/fSaV3Rlf4UXH5xeubQzgNjhHYZEJAahKiFdMp6BjBZ92G5INtYFvpgIjv69rKj44XUSaLwp8DKIZSexUS1dRIpk3nE6WRTS+8DlFXWC7GdEnAJ6eRJ2SGF8nqKUQ25YTNB4yr1jk178jJXxywyToCXGySfkqTyQwjZBregC3F2DkGnu2hbWbnYXC2HFBMEdgGErU3GeuRlyi3rGVInr51Yndx0lzOs6tisQkiMfaRC2K5We1hprf6w0yghCUQWnOz0Oqdk9tLp10XCzBbU8Ori5FLWKpVKJT70oQ+t6nkSlrq0e2Rk5Bqn5HXr1nXNKgy3NrPPWss5P/Ya1zz44INs2LBhxmOsVIEBM8+QIyMjHDhwgM2bN3Pfffctae3IUjuUyax5EATs2rWLc+fOafVI1IYLfxHHs3Y8+9hAuSUK2TEm7RS0rtBRGbLpKYr9Q4iwg7L0vGPKtUn1DdNXjpBiM+3mJPWmT6UywSU/IucqMvkS2bRFKlPAkhLH8Ql8hYMiwsa2O0gK8b7dVCzdj00iPb0GbzrJTCSphTjJ1DJ77S7ro9zstJ9HrMBQVhqpXHCLejuAHasqLDeW+6MLhUoCYfxRF+wUqVh+m9JfsxyUyMT/7WnVCz7C1f4cxfI6sl5EQIZ2bYy6r7h68Tg+GQophZsdIpe1cdNF7Uab2wYDTy3rb2ahhLLZbJLJZFb0fnurcNMkr9dL0iWl5NixY5w/f56HH354XhvotZC8znl/GcGFP4f2KNgp6lNTXLw8SrmvyPDwelBCV5TjN3xt497pmSOMzRW8Poha+CKnW/ypojZxcLKxqUM2TvzSuKJDuZilnHdQQ/34rRqNjqQ+eYWrY5dxHZtMvkg2nSKTK2IJgUCA5emKup3TL0CRjx0HUygVIWwHhUJYtpZbSdBdxlhyECW7IZvxnOXU9I7IZMmrkjiyhhIDWGEjnqtsx060cbdT6qqSQHblbNrBVoHjalMvQn1b5aNEdoaxT2jl8LgM1kZt7y88nZBaHnLDB6cltKsk2RM4H4lD12rnhJZ6LUs5TBluP2zbptVqrfox5oqPY2Nj7N+/nw0bNixoRrGSPWu99Dp5j4+Ps2fPHtavX8/OnTu7j62URJz/M1SnGr9GFSiFRYgdVkGmQLWAVGw4k51enUSAskpIKtpl0M6gNaLx92zHhwnLi01xbD17KTztHmunEX5Ddz/DcR2/gpr+KBvaeVAGREqvFNFOqCHS0omYm99If85HDQwzHDZptCM69auMVCRi9CBOpp9CepxUYZh0NAG91vX+ePdwhQxxpV78LaIe0zQ7qw9HThElhD6UJe6v+iccG6FZ0/Plc+y6tIIJQpUmRV0nn8lqJSLdrLS1qZpa/32xpHjlJPNB8x3Q13rGfKlLuw13FkuVvLZaLfbs2YOUkl27ds3o/CSH9pUWzGD6DHr06FHOnz+/7LUjS4mtk5OTvPHGG5TLZZ544gkcx9H3jUK4+CUdy4SLwsECbcZFRGZoPRuY5OwpH0/VGdy8hXI/sTpB7+zWhzoVO2i3yeSKZLIRDA0TBW3qrQ6t+iQTk02EnCCby+MVbFojHeqVCCUhlbUolYI4tug9jVYYaJdUqZ39IULaBb2xwBvQyW/cPJg2IStMN1P8xLxnEkUaWwTdgqOyU7Hzfyb2BbFj52o7nluP5f92vudxZyrfRNTQOzPxY5+OEF9lEbaN9Mo40ic/sI1C1EKK9QTNcZodRacxRmUiwrW0M7i660P0+f6ynNAX+nu7E/aY37aSV9u28X1/xtfa7TZ79+7tVnIWevO6bh3Ky38N9VPg5JgYPcv4ZJONw/0UimWdgIGWaYWt+NDj64Xdsh2vBQmQIoWlQpSVxQIip4gjmO4yumX9onKK0yY6sQmOCBukcn2kUg1kQeKFdbLREO36OFevTqEun8HNlimkBXaqhCObOnmM2vFAdYCyUyBld02JrgqFKCcVz9xox0Fp92FJrV+3VJwUy2bPXGUJW17truzQ8tZJ9L7KuOup2vpshKUDg60DBY62qVak9SHSSuu5SSvd/dkIJVFOAaUmCJ0iWDZYRb15U0VEG94PXnnFv+PZ3AjL56ViDlN3LmsxYz47vkkpOXHiBGfPnu3uQluIJG6vNEYmz3/69GlOnDjBzp07r1murEa/1l0Nog8fiTMqyGQ1Bo52KxVuPAOexwrG9XxgqF267aiuJaBRJ97jG8cHmcj0k/kdFVvOO1py6sQGElZKF+0sJ47RVpx8OjiqDrJvuiModVIqVEt/FG2E5VDIuRSyWxi0BH4Q0mw2aDTbXLl4CRDkMg0yuRy5dAfXzcUVfd1lFSK27peBfk8I2/GohJa+WkG968Sq3LJ2f3W0cZruRGpjCC3z6gcirXqREcopIf02kcjq70t4sfNrU8tqwynk0Dshs7SD8EIsdjhfy/i4nKXd69evZ3R0dMbXRkdHl3z4N9xaLCU+JoWz9evX88ADD1zzd7laBUbCiRMnEELw9NNPL6tYspQO5YULFzh8+PA1xj5CCLK1V0CO6vVFnUmEcHUtzbLjOb+IwlCZDXQIZZ6+4QJg6Xn0+Jyp92Cgi/O2F3cL9RnNdvKUcopScStK+rR9SasxSSDbkI8I2jbZkkMmY2OnPa0aw0LIjn7+sKaLeWFDm9igPUIQPt39j04OoaK4iaI9Maww2TU+pWNcc1zHcF8X5bp+IInLrAzASYEM9YaAOfan6+R1ep5SJ5mV7pymsrO4qgZqQG84ELY+7woXIQRefhAvp6B/ECklnVaDy+73cPXSFQ4ePUU+n5+xXm6hv6eFTHlu5PnxenHHSF7Hx8fZu3cvg4ODvO1tb1s0SKxFQnnN/a98C2qniOwSIxdO0/Ijtm7eTCqb1weWeMm0bSn0wLM2hhCyAbjx3GJGzxLaOYSq6dGbxNpddpBCV2ik8LDiXUJ6RUZRrw/x+hAqIHAL/NX4F/AV/HjfPyZfuIfBqEUnsujUr1JrQVg5Q2RlGL98Ei8/TN4bR6T7sPyKnu30J7SLqj8B8ZAzVg5kQye7shN3DZPFtVHsbBib+qAIrDy2sLp6duEU4u5nBqWElltZnu62uvoFL92SNvhxilihXiXSXfAdVPXPDAmRRNgeImhiQTyQrp0VZfkxyO9Y8e93LpaSUN6ItSHLOUwZbj/WeoZytmRqKX+jS92zNh9KKcbHxxkfH+fJJ5+8pmsvp47A+Le1OkK29Ufl6wOS8JBWNt55S9yBC+M5wlDPFUZ6n5nDCNJeF+9dLGoXPid2C+x+XoSwqrt7shUX4No6ZlkijmGhdu1LZhxVBAgikdb7G5NuILGcX/pgydggIgVh/DFo49kZvKygXOhH+Sna0qVVrzA1WWN8tI7t5snltbugFC6RXdLmQ3Y+lt6mp6W4sseJNTY6U3ZWx0HL0/t8sYF2PKfpgPQR8SyoVsC0kMIBJMrNxQW7MogQlbsbBnev6Hc8mxsRH1eytHvXrl185Stf4eMf/3j3a1/+8pfZtWvXqq7FcGNYjuS1V6H20EMPdSWus0n+TqMownXdZV9TpVJhamqKYrHIk08+OWMlyFJYqEOZzLdfvnyZxx57jMHBwRn/nmoexmsdg75tsemYdn8WdpzYSYUUjnbqByylxwBQAcrJYMlAxzQi3akUkS4+2em4sZDSCZ2di89+BbJ2m0z/IAPlDuGmLbQaVepNn/pUlSsTDRrNgEw2Rz6bJpV2wBJxLHW0PBSBoIkuEDb19aB0siiS24X6GpI5ShUSOWUspteLaNOe2GPEr2rVSmcC5WjzRWVnsOS08k0/j4x3t8v4caPuGjuSXeeALWRcpNNFva65kKtnL5WTxRIRmc3v4q7BXdyFXi+XrEw6evQovu9TKpW6a5MKhUK3EJDsDl1ohtJ0KFfAWq0NSTTwp06d4tSpU+zcuZNNmzYt6Rey5i6v1YMw8W06vuTixTNYboa7tg9jO6l4XUgu1ncLJB5SpHSlGBU7//nx/GL8USZy1pY+6IQ6ybSCSte+WM8Lxu39qBYbNuidZUcbrzMpW3jAXv84T2QeRjk5PDvE699KkYCWP8zFc6dRqUEmq+Ncbkty6QqpbB/5dIVUrk87a/W6d0WTsUxsUtvXR1P6RRu1YqMcpQtfjl4VIlSk5yyF0F1PkdKuisJBiBBFQctZnT6958cb0N3P2FVWOSUtAXOyejZI2NPP5+p1JtJO46pxsDZiBRPI3HbU4DtW/Ludj5udUK7kMGW4tZlPwbFW8XF8fJx9+/YxMDDQlUwtlZXGyEajwYULFwB45plnrjGnUH4FceGvtMFBMKljo39Vd9mCq3pXcVgFCtqgJpaf4iQOpy44NgoIRAGUpQ3IktUbMnFfbcb7HOtaip8UqYLYATWs9Lhhl+LYWoJwEmUVECoxs1Fxoayn8+n1x8qJTM++Xx/cctz9K0E4hUiVyYaTZIY3MxBMElob6NRGqXUk1ZETtCMPT3SoTNjkPIWbKeqYaXm62k8yM5TVc5ZOCYVAuC666xqbnclO3HlsdSv8OEVEOIkUHmlR1462fjWWtrZAiFjquvwdfHOxWHys1+urdjBcydLun/3Zn+Vd73oX/+E//Ac+8IEP8N//+3/nO9/5Dp/73OdWdS2Gm0PSTJg9gtIrcd29e/eC3R4hxAxZ/lJRSnH27FmOHz9OLpdj48aNy04mYf4O5ezdvLPn21X9HNn6d+ngATKONx1dZFMBiQvp3039Dyzh8bh6kAA3lnsWsPxqXOz3tWxU6Y6hsvXPQbmpeMd3IY6jiTlYrtvdc4IK+XyRQqrGxSBL2gPLzdNq1jhfqWIJSOfyFHJpMtk8jq2ltfr8hpbbx6oMofTsNyKegQcd4y1Xj2GpEIWt/9vN67lwrzw9A5+4XMfu/jpmqvjcGcXeH0G8Si82A4pNIZWlC3BCRbHkNYVy9aoo5ZV7/Ewmp6W4+bu0eVmM53msW7eOdevWoZSi1WoxMTFBpVLh3LlzCCHo6+vrdi+BRRPK25mbInl1HGfVphPJ4u7XX3+dZrPJ29/+dorF4uJ37Ln/aroAMw5bjbNw6S+ptyLGLp4i37eR4b6srhaHdV1pD1ux5XsnrhbH1WSl9IslWZnhuPq15mhzhVBktVLLLurVIo6urmNntQOXnYmTyUzc4cwi/at8p/U6ZRnRtCyO1V7hEfd+HJqxW2odZaewpY9SMNhfgIEyURjSaLVpNepcHG2BqpDJ5shmJdlcjpSw9UxPbG8vkLqakwxYCgdkMlfZALeALRsIazDuevasMgkmdOcxnNDfg2oBOsnU5SKFQukAmTy2HcVBMELZenWI8vpRaozILmvJV2oYufEH4hmBtWWh6pJS6rrvoVzKYWotOHPmzJzJ6rve9a5r9hcZVs/sCvxaSF6T/Zbf/e53eeCBB9i8efOyK58rSSjHxsbYt28fhUIB13WvTSZliLr4P7SRhGJasumVdZfP7cNSY0T2oE423RKiUwUrGxuVxTt33TwibGCLABHUEDILykeI2L5dqen1F3ZezyE6fQgRaSdUFeikU3biDmBTP3Yw1TMPnsOjjhLr4yS0gOVf7fmY1wU2K55nt9O6c2mn49GAYnwQ6gMk0u3DVhHZ0mayhCg1xMTVMZpNm3azRnW8jrAmyKUd0vkyWU9gp2Kpa+/OtmAyHiNIuq/aCVcnlSk9z2TrOKTcMipsEVp5/f6TGF5IHzX0PZAaWNbvdyEWknOBnqFcrcx0JUu7d+/ezec//3l+6Zd+iU984hPce++9fPGLX1zx7LmJjzeXJIHr/XtbTOI6F8t1+g/DkAMHDlCtVnnyySc5ffr0ilZ/wNyxtVqt8sYbb3R3887+HpRfhfN/AirEki2deKkO2C5E7bjbFnFRXuVIcA5bwVZ7B6UInRiGNZSdzBSWsIKrM2SgyE48iw4IK173IVBe7JbqlWMJaSleU1TAUSNY7hB9ORWv5KjSCj3a9QkmKh3Cy5ewU3kK+TSZbIFMyu0qTbASpYetZ+QtT28VsDN6ztHJYAV1LBEhOlOxusLXSaHSZ09lo8+IwtHzlIn0VgW62xk2ug0RYrNL3BJ0V+lNIu08Nm3dtZX6folLrOiuNglR6WHUhg/Ne7YUQpDNZslms2zevBkpJbVajYmJCUZGRjh27BgAJ0+eZGBggHK5PKM7Xq/Xb4jC7Xpy0zqU7XZ7VY/R6XSoVqsMDQ2xa9euZcsWkgrRSl2+uofAzjhc+CJXJhpMjl9meMM2ijk7Nnmodvc/Kk9LR5VXIh3v1aFTBa+o95dZGS1RcNJdFyvtwiBQWLqKLNL6c1ub5yjLjecI9WJsLYsNOBicpRM1iSwLVyqmRIcj7T08lHlE72kTFiJsggpxha8r6ygcoJS1KaWLqKE+/HaLRieiMTnOlatXcC3I5MvkMx6ZXAlbiPjwFGr3LBV25ytV3GH0KeARId3B2Mm12F2Aq/XqWoqhA4SlJWROFqtbHZqIE9HpBbjSzukOrnCAEBn5iLjKHq1/r+54XAcWk8dc74CwlMPUWrBlyxYuX77c/XxkZIR3v/vdZjXJDWK1klff9zly5AhKKZ566ilKpdKKHmc5CaVSipMnT3L69GkeeughfN9nfHz82hte/v+gdjKOe01w9dw2wuoa80iR0duF3H5AgtcPYbL7NnGFboBbwlaj3fVI07sg81oKmswhxlIuLRENYmlYlHhS6Nhjp/Q1uCUUaIk/kkDk4gJfHGPtvD50WGkdq7D0HDhKdyaT/bcyiguGgZ4Zkh1Ech9XG60JJ4fluNipPBs2DCOVQ7tVo9HqUJmscakdkknVyOQK8TqoEnbUiRPfuj7wRY1YgttCS9hiGa6T6/5MhF/VRmxJAhpMQXYL9D2+or+L+bgRM+YrWdoN8JGPfISPfOQjq3ruBBMfby69clXbtrsS16XMhs9+nKXG2Xq9zhtvvEE6nWb37t14nrcqldvsIuJ885IJKurA2T8GGWERm9HErvZ0JkDkY0lonm/XX0YJCwTskwd4RnwPYOndtombdVTXCaI/nWhNG9fk4wQuVmPYsYEkKnaJFvGIlSSwiqRUhPIGdcLqlciKKTLDm+gPpgjF+tgxNeTqpRN0VJp8xiaT6yeX8XBSudh1Oh+b9vTFWwjKCNkmcvLYjIIXm5h1k8KksFiC2IBMyHacbMbxWUVIr4wVxco32QGvP04y41V6ThqCSQQKO6zHyrq2fk8QsYTYideZDP8vOnYvEcuyKJVKlEol7rrrLur1Oq+99hqWZXHq1CmazSaFQoH+/n48z2NycnLV8fHTn/40f/Znf8aRI0fIZDLs3r2b559/nvvvv3/B+33hC1/gl3/5lzlz5gz33nsvzz//PO9///uX/fy33QxlIjk4ffo0nud1l7sul2mnwVUs7g4bROde4tKFS3Q6HTbf/SBpz4k7df70bp7YsVW5/RDWCEReH3wKQwg/3gvpV8Er6RdNrA/HyeKqJkKGsW48ow9UdhYiH+yUtlK2bH0wiq2RD/kn6AiBAkJLgIIDwWkezL1dJ6ICQCItn0jZXfdULE9Xuhxd2UllC6S9Ov1921HBFM3AoVMbY3zcRo2cxskMUEhF2snQiWLHrka8H6gdG2KEKJGO91bqhBg7qwOepWVbggiFHQcWPZspvX5E1EJ6ZUTQjNeaNFHCizX5sZwhagI2rqoj+z+gD0rXiSiKuusO5uJGSF5vBLZtdzsJ7XabD3/4w+zatYtf+ZVfuSHP/2ZnNfExcQVM/g5XIzFc6MD00uRLvFZ/jV/Y+AuEYci+ffuo1+s8/fTTFAoFzp07d819VfUAqrJXdyOTSnEwGUtdp7oJoCUC3fGL6nHCp/SaItWK7eKTLqAkFPr7k96glqB6091HITv6OaIG2AXtcOrkpzt+8Vyi7oTm9c5LJx/vxc1pua2K9AGDjJZbOSlEhDaxkGHX9EfPXwZoF+xAdw2Sin/U0N9jOBWvhprUUv6ggsLClVVQQ9jhBNlMjqwbQt96Ir9Jsx3SbtcZudxEYpFNp8nkiuQyaVwnixDRrBnQIDbs6ehDVNQktPLYTOmDYdTU9vkb37/mKo6lmPLc7hV4MPHxRjP7fJbMdyd7xqMoWlTiOhdLjbOXL1/mwIEDbNu2jXvvvbd7PatNKBPZ7uHDhxkZGeHxxx9nYOBaxYBSCi79TXdeWzlZlF/TZmZBE5wSolNBeSXGmoe5EF2iGGp12rg8R0VcZb3qiwvwNiBjQxwZm3cFOtHqkcurOIGbnlnM6vOXlepZESIRQs9BomTsMKvic69uKjhRk1zfRvJBHTU8hN+coNGxaNcuc/WqRdrq4OWGyGUs0vlBbOIZxtgfBFUnEHn9NpAa0IVBty9ej5K4WcfNGyfbNdkRYQVEWn9PwkVIPW6GiuLOq9VNiqWdI1SOlrxabuwWm9WeIYnkdeh7IL/6ESPbtrnvvvsA3RSbmJhgYmKC3/zN3+QP/uAPGBgY4D/+x//IBz/4QXbsWL4HyNe//nWee+45nnzyScIw5BOf+ATvec97OHTo0Lyvj5dffpkf/uEf5tOf/jQf/OAH+fznP8+HP/xhvvvd7y5bxXHTJK8rmRFKJAeVSoUdO3Zw6dKlVe0QgsVlOvMhVERq7G84VzmDk85x15YN2K5Ndx+OsLtteVQ0PQPoFBACIqcU68EHEGErfmHHi2FlPIMT1QlFBlQL3IG4QpO077VBA04e/KruygX64wdSuxjPBNjSJ7LTWJFPKbVueumr9BFWCkFAJFIIy0GJdNxhLM3oMCZrTEj1k3PaZPP30B828aMNtOtXaLRtqheOI0WKXMbVsoZMB8d2EUJLMyyVgmAK4cRLu53C9IB1ItuVsUmG9HWvVIVx8oienRLaEENZekZAYndNiZS6SCt9P6WBt6/ob2GpLFSBvxGS15vBP/kn/4RarcaXv/zlFb1ODIszl+nEcuOjUopz585x7NgxduzYwaZNm3jppZcWXXWzEPONBXRkh89c/gyT0SRPu09jHbHIZrPs3r2728GfPSMk21dh9Bta7oQCb0DHG28glrz268TNLSK4otcqxTvERBg7ryqpv6Yg3nmBQx1k7AJoZ7QCw0rFM+ip2Dk1F0u2+hAycQEMtGqCOAnt6XzqvWlT4JVwOdt1p9ZmP/G8ZfIxmIjnMmM5blSjIRRfnfwLni6+i0FR0kZmSB3TUUinD4Ge90RdJbLi2SAnT3fZtwLbsikU8xRzLoPrNhM2x6n7Nn59lPFxi5To4OUHyXuSdGEQR7V08U614lkqGXcWQAlPz3+KEDX0zjV1v05YiuTVxEfDWiCE4Lvf/W53FdFKd+UulBD27rB85JFHGB4evub+Ky38Jc/92muvdWc+5x1bGfsaTJ2Iz5ABYCGVA1ix0VhcQFM+3/KPkJKKuuOQD0Oats2ZcB87uVcXyuJxK2U5KGUhRATJecvOTM+hq0Cv+IhasYFNU5v0JO6rYR3lZLGjBpZy4lUdaW3uY3lopYbUzYWko4nCyw/jZXzo60eFLZptn06jysRESDR6GTedJ5d2yOTLpByBiiSO6OjkNerE899SxzLQ85RKxslh2DWFBEerNWSIEHZsspOJu5LJ9et9khIPS6DvKwKkU9R70j29Ior8vajB71nR77mX2QW3VCrFhg0b2LBhA5/5zGcQQrBnzx5efPFFWq0Wv/iLv7js5/jbv/3bGZ+/8MILDA8P8/rrr8+roPjsZz/L+973Pn7+538egE9+8pN8+ctf5j//5//Mb//2by/r+W+bDmWtVuONN94gk8nwzDPPUKvVusYPK2FVe9aUIlP5O9rVIxQHNzGUzEvG1V+6j2kBEWBDJHUHMLbF18PDGZB6plJEAdJOY8WyKqFCvftMjCCdsn7auG2vD0DxLh/ZjF/w9a4mPJ/ZSDGYQqa0W6rMFLGCKaTrdA0oRDAOpEkpLb/tmu6EjTix0w6uRIGuwivZTfCUncW1we3fTAFAbaLVbtFsNpmYauKPTeClMuSyHr5MkU306GFNS8lieYUVVJHJvJKV0v+OFUvRYjv/sKWTZ39yRkXKippacy/bRCJDs7T2JjyzWSihbLVaSCnvqAPTr/3ar/Hiiy/y2muvrdpMw7B0HMdBSrlk9URvoe1tb3sbfX193bgWRdGKTCNg/gPXFytfZCqaQiD4zYu/yb9d/29nVO5n31fJAHH+T1HBVOwqGK8IEilQTW04Q5wAqlA7vCrA7QMC8NLgt7vri3RyGYKwkLhapSHiziDozqAQsRzU1jFEuIioDiKOM8Kj05gikg6pNDiptI7JVibeh6sPQL4qACKeuwzjj74275GBdg+M2igr032+A/WXGQkusKf2Td5deDfgx8VFbRAhrJReF2KlEbKBEJ6WaYkswlL6o/JjRUrYNSpzchvoywWo/iGGwg6tdodWo8bEZBv/ynFSnkMmWySXtkjlB6bdwYOrCCuO/YV7oe+tK/p7WIxbaa3SjcDExxuPlJLjx48TRRF33313t9uzEhY6h7bb7Rndz9nmOLC6DmWtVkMpRSaTmXNeMkFV98PYN+O5P706ww6mdKE9ascjQ/HWAOGy2VkPCGwkoWtR8jtkrKHYxTXZXZ6Kx5xsQOlCnnCAljZNFAHgovc0pgCpV3LEiauWzZa1+kFk41GtgWnznnBq+ixppyGKDdWSzqZwdMHLzZFz8+QKffQjCXyfZqNOs9WkcukSlgpxU9pMJwraOFbcoJEd3RgJw9ioLYgVK5aeg1SRnssk1PsmlQ9WWRtWen1xN3N6P6XVmgAUdljRc5uxC60l9Ao9teF9a2JctlB8TPKRXbt28R//439c9XMlTE5OAtDf3z/vbV555RV+7ud+bsbX3vve9/LFL35x2c93QxLK5dg+z8XFixc5dOgQ27dvZ8eOHV3Jw2pNdWD5CaVSigtv/HeiqdNkCusZGhyaPsw4uXifmRcfmIQenCZut8eufW5ccdFzPimsoE5kpbTZgpVFyEldDYr02hARtVAU9QsptkOWIo1FiLRzcRJaBKIeyddAfPAZ0G6Fbj9CtrrzRtIpIpoTRFZGS7GsrK5gWSl98LK8uCJkdavcIpYMCOFOO2dFbXByZFMOmcw6Bvt8QmxajUnqDR8/6DAyHlJvXySdzZHPdnDdPqzYpELE5hUKibAslOXoYGdlQU7vJMLVSXFXihDbYgNUcu/AdeaXoq4VC3V7Go0GwB2TUP7pn/4pv/qrv8r/+B//g3vuuedmX86bit4ZocWSwVqtxp49e7qzPYkJTrJgfs2Mx2I6ssMLV17QhlnARe8i1Y3VOWVpScxXl16EoK4r7FEbvXojVnJggWzorlxYAzuNI6eAfgiugpPnyqUT1Ds2+YwgnR8i46HHAqSvO3KWpw8IKopln4lCRK/+6CahQgAWCovRM1Wqo1NEkUUmJ9iwY5BMzgIRxPOVNsgIW7QRYR1hSx377LjrmcQbW++01MU2l4bq8HrnKL4lOBqe5620GbbL+uAXtcHRypNEAitFGkdNgTWkXWedvN63aetVADoONwBLX76KEEIb7+SyWXJpFzW8kShoUm9FtJtTnL/Swho7QypbIJ9VRORBTKFSQ6gN37/iv4fFWEzBcadIXsHExxtJEltarRZ79+4lDEOy2Sx9fX2retz5zpDJCrqhoSHe8pa3LJgErCS+nj9/nsOHDwPw8MMPz3umUM2LMPp18AZBNsHrg6CmXf5bY3FhrgnKQsgIATyZeZynkDrhUiET1Tp+u4l0cnp/t1uKjXDiXbhCxAmk9usQqoN2jdYz2iKK90iqFsrKxsmZF8+T5xBinMjpQ5v3JCZnZd3gcIqoYII/qf8dj7l3c0/u8dhYLNkDWUIo3flEShwvS8nzKPavAxnQ7oRMVq/S6ShOnz2P42UpZASZXD9Ztzk9IuaWwJ/22ND72Sd1Y0a2YolrqIt+SsZJcRRfb0ho5RHiSpxoS/SsqKXvu+l/1dLiNWApCo7ZK2JWg5SSj3/84zzzzDMLSldHRkZYt27djK+tW7eua/q4HG7ptSFRFHH48GFGR0ev2cezXIeu2SS20ct5jCAIOP7an5Ke/BbZQpmUTfziCmK3wniAV0Vge/rQpCAeBEIfbiShSKMQsetrvHsn7IDtxZItL07qUriiBYi4i5eBaBLsDFZYjz82YqlBWydjKkCpeC8ZNnqRrBvPMHp6hjLe7ybdIpKq7oQqLcdVSiJsR1+tbWuLeunrA1PUiuVftXhH5JTeV9l1DdMOrm4wiZ3PU0g3uODb5LMuWDbN2lWqoy0sL00u5ZIp9pNNe1hO/HOw0np1iJWN5az5brdAge5yIvQMEHrPUTT0D/AvQOoGyI0WOjDV63Vs215wxvJ24cCBAzz77LP8wi/8Ag8++GA3sHiet2Cly7A2JH9jYRgumFDOVWjrZS1WI82+/59c+RMmo8kZX/vc2Od4Kv/UjK91Z4Qm9sDUER27VKDdR5Verh1v4o4NEIhjqUTaeVQUEFLk8pkTRMqiL2/R8C3ql44TiAzFtCKVH8aOqig13LP6Q68EIV4RImQs1Ypnz4X0qVY9xi51cNMl0jlFdSJEnW5x1yMbsAh08ic74Ohupa5yd+Jxg6kepURsJd+ziuTQ1DdRQtEXSeqWw77aN3l3+UN6zZGVir93bfKAU0Sqq0i7qF0V3VLcmS3GHc2Mno+XxGqNes8MaEnLcF29a1PYOcoZH3J9rB8I6PgBrXaH9tQojY7EVj6nau8kN9Gkry+1ot17i7HYDOVarA25FTDx8cZz5coV9u3bx7p169i5cyevvfbamu7qBV30OH36NCdPnlySM7ZlWfi+v+Tnk1Jy6NAhRkdHeeSRR3jjjTfm9UVQ/hRc+CtAxrFAz4zjlUGMEljx68jOosI2YShxbL3XG+zY0TWNE03RUbZe/2bn4+5eetoFVQbak4Ok+BbL5C0rLvZ7cZLp6AaHldJqNjuLiKZQSmHJNhDH9TiRVbZeB7cvusxYOMqX5RTbMjv5/7P33zGSZdl9LvrtfUycEyd8pKnKLN/ejGuOq6YbSiLnDZ1I6lIX774nkiIESAAliqIAQhIIPOGCuAIewUsBuoIoiRRJCaSk+ygNecVLSUOj4UxzTE/PdLWvru7yVenD2+P2fn/sHZFZ3eWrurqnWQsYnMnsjMiojIgVe631W9/P9RuWKlu90o5jr32TLQqLXkZerpDGU/YfeJTJuM9onNLf2iLNNaVwSBjViIIRXlBD5hNL3p4NRuzgIRuaf5vAqAcdD1SOtmd1jaHEKtdYQ5l9+Qy18K1QunvNonut4Pipn/opXn75ZZ555pm7dp83ineloLwZLP5oNOLEiRM4jsO3fuu3vu2gfjfMv2/lwDUcDnn12f+bA/kzLB85Rnf7ApkuIpKW0W8nLdNByvpmTygdGbDDzEZDxYYahQZc460jfdCOsWjEMwNNaYhawi2gdU5GiEJYbbjx3DHSAd+AeYRj5Qti90pqJqMiMXnC2noIHKMpn3XZlcBRMSZpJeZ3W2yy0KlZalap1ZqnaKdm5Q5NU/h5DQPSKTQReWymnyoxJNfcyCW0Bs/zicoNauUA5UTEwx2GsaS/c5GN1KdUyPCjBUoFhV+sIdXIJAJtukUIz3pRRkbTLyOEnqArj0HtSdSFF+/J/sr1EsJ4PCaKovfFHs1zzz3HeDzmF37hF/iFX/iF+ffvY/HfmbhaIXi96eLeRtuHP/xhFhcXr/pzd5oj39q06/V6nDx/kkKxYF7n9mHHKn7bbaWUuFkLsfanRvaUdmxebJnp3IzQl3QspMfmS52hkaS54uyFixTDEiv7VlF5TlmC1geIpyNG4wm9XpfJ1GGSbpNmDUphm6BYtZYfJWRmpE27hOiW6ZqPt9BKUwqGpJSoVsZMp0X0tAtBxRR/jsmFqQ4NeMI11Fc1y31+wyhFvKZdP6gxTtt8PX0dP8+ZCkmoc84m52nHF2m4dsqgdqWvOAWcfICQoV05mFFqq0ZG65ZME8+xu1Nuhbk5N1g7Em0KaKGBkplaCIdCVKEQTNCNFXo7F2hly+TRQ5w9e5ZXXnmFcrlMs9mcm2/fjbx1o4n6+2WH8n5+vLdx6dIlXnrppSsornfLq3eW39I05aWXXmIwGNw0GftWzo8zCe1sX3L2PrlaQalVChf+o4GFwa7aQobG3kgb2CFOQJ4mXN7sMuz38DyPKAqJigFhWMRRKUoGOLqHlst2Klg2eXBP4WameOaMqp2CgfSIAMiNw8CsqMUzQxO7EoVwcPQU8K26zQc1sqtIEzLpcmL4ZRQa1JiX4zf4sPNha8exx2vcb5gdzZkdiRuZYlWGyKyFEBpPD/CigEog0Av7iNOM8XjKeNSltTXB8TzCYkgUlYnCIlI6lhqOncR6prnoXgnbwasi0y2EkPbvYaeawX64C3uTe+NmCsq71XD723/7b/P7v//7fOELX+DAgQPX/dl9+/axubl5xfc2Nzdvy+LpPSl53djY4OWXX2Z1dZVHHnnkqh92s2Rwu5TWvfdxo9jY2ODkC8/wROlVFhYeNsWTY9Ht3j7TOfaqttOy23GZ2YSIeFZ0Gg28rwegGwam45UMqUvsTjoFGRozpkc45pAgPVDS0FEdu5AtZkaxAo22tFRpwQ6W+Cdc6/ETIrKR9Yg0Rt8ybqFmUluvsusVaYETs2JZJjuGsppav0sd26lnbAew5nlAYIhfwjXro9JBC5fcraClC24TqVKC6kFCFaOX9pPHI4aTmOmoz+XOFC06RGFhvgvkFiqm2zabCnj2gBgso5a+GzBJ+d0uKIfD4ftmP+gnfuIn7qoNyf249bhW0208HvP888/jOM71QQ7cGTRidvtZfpxNQ//6A3+d//Xo/3rDnCt0QnX0ZfTSftPx9momv3l1s2vu1XaLpznxtWvzaJveVLLcCKgt7jfTRlGAdIKQAYGrCBo1mrWIyxs7SKHJ85y1jS5adAjDiCiCYlTGF85cWq+9mgGSBTWk2GCSBPj+hMFIUqrESK9p5KjCNfJb4eKJsbH8yM00Vdj1BSEEKI2Q1vJISGJSCrKEIkZJ89kihMvEca0kN0M7VkXiRog8JpMVIyfz6mYFwivP/YRF2jXT0qyPqd7F7m55PjHTSistI7HSr9zupNrVC6EzcrfOtPydPP7QQ4A53M7oghcvXgSgXq/TaDRoNBq37Wl7M5LX90OOvJ8f720sLy9TKpWuaEbcDa/eWX6c8TmKxSLHjx/H9/2buv3Nnh87nQ4nTpyg2WzyxBNPXHH+fRsJW2u4/PvWSs7aVswk+LlRpbmqDxrS4SYXNwd4IuXI0WNk8YjBNGNrp02WtQiDACkFiiIgLGtjaveqB3N/xpm13Sz34lZhRsLODczG0FF9hBaWqZGjNeQiQAvPngvVnkEAvDF5mSQfEWLGKC+PvsKT7hE8NzRzAjkjryqT34UwuWzWJEMZCyms5RPmx4VwCNyMQq1GozxBySWmwzajBHo759nIPEJfEEQNSkUfP6ggRYpyq0i9C2WjYOyoDAW7beyllNlL1as/cFf2JvfGzVCw74at0t/5O3+Hz372s3z+85+/ql/uW+P48eP88R//MT/zMz8z/94f/uEfcvz48Vv+/e8qlOetxeBeqtaTTz553Qp5L6X1bkMnZqG15o033uDi2df56NIlqsUFs4fjBAgxJLe+kHjW+LXQNBCbQgPyxFyzicEoZyOrge8bzXY+Am+/6ZK4JWTctZrwru2etMEr4+kB6CX7Rjd0VNwSZENj9JpN7fTSLipbOZlQZiHZHF7sYcaf0bsMYj936wjRm9ubKNspUl4NkY1QTnmP0ewEpGuQ/bPmgE6Nt1o23uO7abyMTGHaQWuNm/VA+WZyIHyEGJu/m0pwXJdqtUi1UjKgjMmQ4SSmNxiwvpMSej2CYolScUxYrCG1RhcWyFd+eN6Bul1S763G9RLC++WwdD/eG3G1ptvm5iYvvfTSdRttN7qPW4nZgevVV19lfX39bWsH14vCzh/ipdugl6wvovUyEzPPRyz1VO36TXoNtrfW6U49aqUCtaWju8Vn3DV4/Ky7p7lUwWeMFzaoRS56qUk67jKKNZPuGq0tKLiKoNSk6DuE5QZCa6qLEaNuhfZmwngAhVKJxaM1C3hQdm/c/N1y7aFkaCW57txAfFd+utvsqruL/GTlh8yBLevvXm0+NyCIjs2VQ0tztfAzckOjFQ7arVofOc8QCskwdiTWpsRaUhmfyer8oDkrglEj8/dUGqGmjMpPI9gtEoMgYGVlhZWVFbTWc/Ptzc1NTp06RRAE8+llrVa76c/X6xWU0+mUPM/fF5LX+3Fvw/f9tzWw7oZCzXEcer0eZ86c4ejRozzwwAO3NJy4mfPjxYsXef3113n44Yc5dOjQ/P5n17dNKLf/DEYXjcSVDAPH0SZ3OgXIY5RbRqeXOHs5ph5JGvseQMcd/KhKVOijm4dJxz2GiabfaZFkgrNnzxFFJYpRRLHoIX17ZvWboKbmbJiN5t6UJmd1dovMuUflrBgtQR5buzeBdnzIMzMQ0Rk5gq9MTjCVAk9rciGR+ZST2Wk+IB7chfa4RQvzKSKmI7RfNgMQN4I8NzYe0kE5IVIrI8/ViV2hMPuaMh8RVvdTzHroxUfJJ21GiUM83GatC64+g1+sERUkYamK5/nmCCswhTo5SgZ25Uqjlr/bfjbd3bjROfVu7Jj/1E/9FL/927/N7/3e71Eul+dy/Gq1Om8U/tiP/Rirq6v8k3/yTwD4u3/37/Kd3/md/NIv/RLf933fx3/4D/+B5557jn/1r/7VLf/+d62ghCuLwb1UrePHj9/wcD67j7u9IzSLNE154YUXmIwGfNuhSxTUGJQHeb5bWKnUFHBamw/yPDGHkdwmApXbPUlrG2I18EJsk7lWruSZN7Tym0gdW3LrZJeiJctGDhAuGGKrV929JlfuLu5OFtvzyaLpPnUs7Gds5Kz5EC19pJqitJVY4M5tRQQYeakARBkthDn84FwBvpjTCP2a9Yw0SUl5VVuIRjj6MsgyQk/tXzYzfyfX7n/axKXsvyMIK4Rugq7tR6VDxpOU8XTEzvoWqXaIQo985fsppz6Rr+fT73s1obwelCeKotuelt+PP79xtdfMXkmXUopTp05x6dKlGzba3nofd5IfZwci3/c5fvz4VUmHV73dzrO4o9Nk0hY58wlayfpNhtZTzeZIIVBKs7G+xiTOqJUCXLdgfRyN75l2K0Zy6jevsP5IZR1XYwnYU7zSPurhEJrLqLjDKJHEgy02BwK5tYYXLVAuKJaOLNFc7JHRJPTHuJFvgRHV+ZVshMJDqhjt1EzTzi1b6JmV+/sNg9q3iHk1h6HNABUVc/ByQktldAwUwwKJZD5FeNEez7eu3cns7ClEK1YybCFowjdXbPHmhGbHXfomN+/19a19iHh4AHmNw7cQgkqlQqVS4ciRI2RZRqfTod1u88YbbzCdTqlWq/PpZblcvmaOu15B+X6Dlt2PdzfutKBUStHtdhmPx3zkIx+55trA9eJ658fZvuTW1hbf8i3f8rbd2tl7aO/tde9VYxHilCHrml3qWQNr5jcuC4zGHUapz77lJo3GEjqfkM2J/4Zi6kU1Gn4fKZpMBzuU64tMhh1a2302kpgwKhOGIVGpYgp2ra03pbUzUgndTkAWd/DCkGrVWNnNJ5pWjecpA3SUcdsCFAemGFRTKt4CoQoxp0vIXIkvI7a3PCb9NtIrsLg/xi9ZuE6hOpeh7u5VGimmTCzEJx/YotLsdc7gQGYVwMB2nOIilSCDapXFPCWOY0bjIYNhn+12n4KrKERNSgEUSouItGPWTNIuuv5RqNw+Ofh6cS92KP/Fv/gXAHzqU5+64vu//uu/PldVXLhw4Ypz7NNPP81v//Zv8/M///P8o3/0j3jooYf43d/93Vv2oIR7KHm94pe6u5Ml13XZ2dnhhRdemC9c34yn0N4J5e3GtRLCTAIRFYs8fWgbZ9Izeyz52B5wYgP10am1AdFAamUJmZWnjizi2KDq0Yk17h6iAZmNgcC8MYSLyBMLzcktlCZDOSUEG+SO9S+z+HhzTSzCfjZZnBhpVz42BNdsbGSq2dBMVPOxhf2MjRxWjdE6xSU100dhOuBC+pZGWEQkI9OZysZWWz5Cy5K5rQxNp1x65sAnA1NsytCAc9wSWghSiuYwJQNbiOYot4ScT0RjW4hOUG4ZkcdzQpmUDqVKRDnyUcsHyCZtOs6jrE/qvP7cc3ieR6PRII7jOzo430zM5NX3J5T3417ETNJ1q422vXEnh65Op8PW1hbFYpFPfOITN+3zpsZr0HrWyEt1D7wFIIXCgsmBXgP01JDz7GEpnfS5tLGFLxVHjhyitbOFIDaFl0pAC7uT7SLyzBRUlgjrqAFKW8WHtREy3esMWahT9nNK5RoLOmOS5ExGfTrjKUn7HI4XUi7myEIVJ59a8urQ+EGmfXCKeAxB7jPdeidAZF0rJR0BLoKZFBZAm4miyncPgUgQrin43Bxtb6PxEKRksoon9XyfyNC4p6agzae2EN3Nz2aHyTNNRtfKY/fAiMzVWjH5NVj6dlT/3E033FzXZXFxcX7Ankwmc3nshQsXEEJcIY/dyza4kYJDCHHbctr78ec3btRwu9WYTCY8//zzJEnC8vLybRWTcO3zY7c94P/69WfobyUce+QAPP52Ce0MCjknYU/W4PJ/NTkoNVR7ks7unrlXRscdNlsDht02QSGkUasBGUq4/JfeZzlaeJgPBo/ZJldipo+jDXJpvB2L0SEWsiGJ8piMWowmY/rtTYTjEYWBLTKLCCfn8uku7ctj8lwjnQELB6qsPqjnZ0/tNyCfkooSxXyC9pZ3FWppF+lV+CvF77wSYKYmXDyTcP70RbLcQege7c2IRz9awAuqCJXP8yD2TJs7ZRy1ZSFARgYssoEprnVsWSFY2I5vm48zMKbJTX4UUiiWYfEAKksYTWMmwx5rrRS2TiG9CJkPmYojeMt/gXdqJHAzKwF3quC4FuRpb1xtz/tHf/RH+dEf/dE7+t3wLk0oZ9CJLMu4cOEC586d47HHHrvh8ujeuFvWIW9NCBsbG7z00kuGnFi5jOhumDe5zqy0NTNFpUzIyK22e2YNos0LHbWrfxcekFoQg/G38ZgaG5BsFwuv8UyRKQOkGtrrGFRuqFWqgmBsO8+phfqYq5kaFizB1X5gWwNx7ZQN7Mf17N/NNwRXodBSorW0fmcJyJLxUvMqkA3QfnV3vzLtorzyngNL1yxnZzOarDGyFdKDLDYFaTo208N8jKZo/p3S+Pxo4YFKjLRL5aaIlALwjcxB5wZSoVO0Y7r/bv0Jmgd+hKYwz3uv16PdbpMkCa+99hqXL1+eH3QqlcpdnVrOXmfXOzDd777fj7sVjuPQ7XZ55ZVXbqnRtjduh/KqtebChQucOnWKWq1GuVy+6d+rswniwu+gs6nJXToFa4GBGhnVgxpZYmEKbpHxsMeFyy3q1SrLyysY+ZHplOOWzMFAa9OzmxFPhdgFVQhwtLX6yCfmgQhThBrStbB7j5LQUYSVkEYlQKka40nMaDxia3OdPMsIo4hisUhUCvC9ClpIMiKTwz3rjel6Jt3n0kpgDZ3bNBuLb9n3rtpDVtVMHN0yMjPgB2n3JB3VRegQkRiPTiFzC5FwAccoRkRmbUmy+fqCcma+mE07MbX+cE7JUhoL6P3fD9JHKXXbVNcwDFldXWV1dRWlFIPBgFarxdraGidPniSKonnOzbLsugqOUql0X8FxP+5KuK5LHL8dBnajmNFi9+3bx+LiItPp9MY3ukZcLb/ubLf49//7n9I5n1OuRLzyzBrb50f8lb/3cUq14Kq31+kQ1v4rM89H/LpRv/lNA3X06+Rxl0sbHUgHLC3vo9/dNjk0U5ybvslafI5Oss7D/hEK2rOAHGOrhIgNjV9naL+GpzK8wiGqakrOAeJhm9E0o9PaZCMDJ4f2ZYgil0IYkMYJvY0WjQVJWC3a/DLLURolI0BaSFhuc1Fi8mBuV7LyIWnu0lvbwCu4VCNNrlxG3Q69DZfFA8bvV9icbnY2PZSeopyiPXN7pmByTA4Wud1Jzydz2I7eA9sh3qPcs+ti0i1SCRzKxSWWgCTJaXc7DEeaZ9cPQusr83zWaDRuep/2ZkIpdUNo2Tf7UOJdKSjBvJleeuklkiThk5/85G1V5ncq6brCfFtrTp06xcWLF/ngBz/IsrcG61+y+4oDs9+STyxpyxrBqtySW1PAB3LbObE4fKF3OyhaAQGgyGRoCik3MsWUUzRF2Mx6ZAboERJHZAi0AeFogRA5oA3lK1fMdmuEdCG3E8ZsCl4RkcWmW5NNEZ75HaZ4nKGjY3IZWA18yUi23AqS3OxR6j2SLq9uOuteDa1zhFMyICAp0dKxtieR9Y6sWO/IMp6+AM4SIuvZSekAcBEiewtgooxIBrtQILeCTHeMd5AagRui9n16vijtOM78Tb+9vc2xY8dQStFut3nppZfQWt8V0MQsZq+TPw9Qnvtxb+Oth2ytNdPplE6nwxNPPHFLjba9casTyjzPeeWVV2i1Wnz0ox9la2vrpm+vtUZf/n1LL/VNUafsKoBKLOjGkgCt7LW3dZbN9pjVhYhyc8kUn14VT/VJhc27bsnmXet95paMMsINEToll2VyxBxTbySlGUhpHot0dwnb+cQcRrIR0osokVIq74dsSKJ8psNtBqMhve0L4FeoBNrkurRrvOCyoQVVTHatSNzIrD+4ptm4my/3XjN7yDI4fWa7QIDWEoFrTbjLbytI54Vo2jIHs6RvJpQ6t2ALW9R6JTvxLYGeousfgeggcH3/3FsJKSXVapVqtcqxY8dI03Quj3399deZTqecOXOG0WhEo9G4ooCc5cf7BeX9uBtxq7lNa83p06c5e/Ysjz/+OKurq5w9e/auDSRm6wHPf+UVpjsO+w5UKZYLqFyxdanPhdd2ePz4lXlcCIHOU7jwWZhs2Qkb4Fh5q4U0xtMxFy51CAOX/Qc/wHjQRYmigdjg8uzoa7hCkpJycvI8Hy5+1EB1ZICT99BKIdOhgeuoXR9J5RSROjX7h5UULVbJ4jGbawPSeJ2uyvGnQ6RTRCQJWb5gFW4Fc8aUPo6eIOfDgsBOCqWFSTqGHiuEaWxlGUkW4DiCXAtjBacFWptcrd3QquGKlnpdwsl6CMSuXZOaopzQTEndIujUnBm1dRuw1FhUDF7N5uqiedxIsyqglYFi5zG+X6TkpXRqn+Dpj30v3W53rsZ49dVXKZfL8zNktVq9ozya5/l1C9T3w1DiXSkoO53OfB9tL0L5VuNuQSeSJOHFF19kMpnwyU9+khKbcP4PzGEm7YO/h9xqvXI8tWFqxdQgmM1hqAJxG/yqvZ39kHdDuw8UglII4aC1sDRUAdoUn1q6CHzjUWm76rkooGRg9mRsB0cj7Q6jsQwxbxiLl89H4O/6pcnUekXO9i3n+5UtED4F3Tfek2kbnKKZjgofOTMdF3biKszE9WvTl+mlW/zF2vdai5HQFqIlI9O1JC3tmm5VQgktHLQXmQOQ4+7ZwfTMocwCJmYwIO1EkI8NMZYchEKt/OA1DWaVUhQKBWq1Gvv3778CNLGxscGpU6cIw3CeGOr1+i1Pe2av12sdiN4vSPz78e5GkiS88MILxHHMoUOHbruYhFujvI7HY06cOIGUkuPHjxMEATs7O6RpelO31ztfhtF5a3ERg1sixzHvWW1zCbZDL3zW19cZjFIOHlglLJbNXrVXgXSEkkWcbADOgkHnuyXE1Mi/ZtYfMjUEal91EaJuJ3/Gf9IoLMZor2Q75BZO5lcNrKxgVgd0YcECbhbwdYIXHqOSx+QcYjpsM5zkOGxwbq1LOegQlJpEhRZuYGRdOIG5Sg/0BHAQuVGqiCtWCIxiw1xLNm8WLeU1wnOc+aRxVoCaBp61CNHKqjUwnyHCsX/joim6vRkEqGygRYVFWPz2+XNztwrKt4bneSwtLbG0tITWmi9+8Ys0Gg16vR7nzp3DcRzq9TpRFHH58uW70nD7whe+wC/+4i/y9a9/nfX1dT772c/yQz/0Q9f8+c9//vN813d919u+v76+fltY/Ptx7+NOJa+z8914POYTn/gElUoFuHsU7Bm4bHt7mw984AOc/8LLu49ZiDlT52q3lxt/AOm6PRvGdm0qx6jcPIbdTS5v9mjWSywsHgRStFNAo0AWeWP8Kmt6iCuM+P7Z6cs8Fn4EfwZmlAUc3TFny8xS+tOuUUmkbdPEmu0l5jFuIWJxv0NvQ5FNp2jHZToaoqTP+tY6nUmZcjimGNUouAm5CGzRVjOwnvkeeHluUyKyCdot4/sZ5UaJ9nqHNAtQWYr0KxTrZXQhMkBLr25hO3VEPiJzyrh6G+0esJ6/5V17j7SNdkKklcLKHONyIK3/uwDtFADXkFuFxPjoOWb9wjfnzWnxSWL1IFLK+RkRII7judz/5ZdfRik1H1I0m81bHlJcT/KaJAlpmn7TQ8vu6Q6l1prz58/zxhtv4Ps+R48eve1iEm5P0vXW24/HY7785S9TLpf55Cc/iZd34OLnDN5ep3bnJ5l3PYx2fELu1pFqDe0fsR/qNXOY8St7FpevXGA2WvgKXj4AysZGxC3T3zlPnPmUiwI/WrD7MaX5bqPQKZqyeaPJwEgZnNB6RJZsB7y6pxOeGkiF3uMV6TesR6TZ0VFeDZIumTD3Mzfdnk1WlZXt5mPr6TZg6DicHPwZPSn44PgkS+FDiKRlisnM7BhJNQQco0PXCqFTpBojMLun2oIljN+m2RtFZVayizHqFdIU3dIuXdc/ho4OX/N5fOuB6XqgiVOnThHHMbVabZ48bkaKdTOErvsTyvtxJzHDy9frdZaXl+8oN8LNKzhmO+z79+/n0Ucfnb/Obza/6uE5xOb/MLuHSQu8Kk62Y/5jYn0nM5P78lGHyzsDdDbh6NEH8YSlqmI62ngltJyQy7KRmvo1UAa4IIQtsFRqr1Nyp2QMrZ391gO4aIvQIiKxIJsZ0CYxTTORmAmpyAeGiJ1b39t8AsLDETFRVCIqOZzqtVhdWSWOY4bjCds7Exx3QFQsEkUOxbCIlK7dbbTTWOnZRmLVPqaK2XV0q7uHuaSNdoq4eQ+pK2aFwPTiTSHq2IOaW4J0aP4O+WjuxYuwfsRuBFpYL0qJ9uvolR+cE7CBewItm+2D7d+/nyiKUErNVxI+97nP8XM/93OUSiX+wT/4B/zAD/wA3/Ztt+fxNhqN+NCHPsRP/uRP8iM/8iM3fbvXX399XkgALC0t3dbvvx/vjbjZYUKv1+P555+nUqlw/PjxK6Tfd0PhlmUZzz77LGDgJp7rc/CRdd58foPJMCGeZjT3lzj4SPNtt6+mryEmQwirFtxYsnJ3QCvaO1vsdLqsLDcoVxch74Jb5uT4i3RdzbF0kT8bfJlQ5UyEoamORcJL8St8S/ETaCcHkZDJIkgHLcu2mWUbbdJIUbVTtPkpQiQd/EKJow8JLp7zUMmIYLHGwWNF3FKR6bjPYJTQ7l5E4yNlxiivEeYKx+5Valuoaa82l/zPQGdHHx7helWmXdMYPHDYJar4phiVoSn0MNRrA9+Zkjqmmab9ujkrehXzd3ICa1UiTeFuG3ciG1pLlK5tUlo6bT6wHubT3XNnYZlReBzZH73t+SkUCuzfv38+pBgOh7RaLba2tnjjjTcIguCKIcWNPq9vZDsH3/zQsns2oUzTlJdffpler8fHPvYxXn311TsGqdzphDJJEs6dO8exY8cMMjobwaX/DNnEHnK0kW5hMfLCny/7SjEh1aFpPXlV8wIvNM0b1m/aoq6x+7WaGk18PiJzK9a4ej9ba2/Sn2jK/oRLWw6eWscrLVEpdCmUl/H1AE3Tklxn3pBlc3WtWffsa6eEUENLck0s8S81XRuhbJfMTjbRaOmRC8/s2wjHdMSFPRw5kfVNszICr8Hzw/9BR0p8rfli/Ap/pXDEgHTmBaltCzkF+6au4OoJwinOF7Nl0pknMKPBT+bSV5FN7FS1M5+mqvJD6MbHrvs83qgD/1bQxHg8nneeZp30G+nmb+QhNBwOaTbf/qFxP+7HzcTZs2d5880353j5kydP3hUs/vXuQ2vN2bNnOX369FwGtjdupqDU6RC9/ofg1sz7eJ7zGgi9YX0nR+DViIdbXNzoGcrq0YdNQedWLcG0ArGBT7j5AKU940vphCYf4xkJqxtaOI1jlR3SKDikB9LsPYrZodGr2L1H421mdjI1yKL5Wrh2P1MbpYjKdotBa8MhBRTEhKhep1mW5HKZeLjFINZ0t86xnhcoFXIKpSVKgbRwicSsL6jUEBtRtuDDFMJgyK1CkokivlWgIDzzOWF32fWsSWkPR1oGRvkiHNBjO/mdFZ7GU04tfieEy1c8R+/UhPKK14HWVzTdpJTU63Xq9ToPPPAAUkr+5b/8l+zs7PA7v/M7t11QfuYzn+Ezn/nMLd9uaWmJWq12W7/zfrz78VYv8xv5UGqtuXTpEidPnuSBBx7g6NGjd916ZDgcEscxi4uLPP744/PX/qd//INUmiEb53pUGiGf+L4HqTSvnGbp3uvU0pdQ+qhVrwWQp3bnOWVtfYfJZMrBQw8SBqHJJV6F3nSLL+WvUZI5ffFJVkTIhtdgMUsZuR6lPCMQBVvAVYwCTGO9yV2T34REi5JRxc1ANl7VWN1ZMGJYr/NQeUqmGrgyQXghIh/jVypUoxFKNpiOOmxs9ZkMtjndbVEMfMKoQqkY4gcREoX2GkBmrjrBiZocfXyKoolUpoFnvH8929iToKemQAREPsTR2oAgsbAdGYLQKGk9L8XMHi8y/wY79NF+w1JnLZxS+OYzR7hWAitQK9+LWh/cMD8KISiXy5TL5fmQotvt0mq1ePPNN6+gYTebzasOKW6Ggn2zJPX3atyTgrLf7/Pcc89RLBZ5+umn8X3/jihds7hdycJsX3IwGLB//34efPBBUCnds79CLZ11mBN2jU3Vnt0cA5MR5LhqaMETlv462xFSE8A33Rb783NIjxMh2CIj4MKF82TK59ChZaT0WCBnEmdMRj22Bznpzhk0IU6/g1NfoiCN745QU0tEtR3sbGxNWe1EM4+Zwyi0QkjHJquC8cN0i8Y4F4+CHoAAmXaM5DRpm0OQ7ptujrUYGWctXhy/hINGobmcrrGWbbO/cAhzB6YQ1cLuYvoN0DlTSiDEfFKqvSoahRDhHG2vRWT/TTXrg1k1BalfR+3/gXlyuVbc6oGpWCxSLBY5cODAFZ306+nmbwb5fPjwtaeo9+N+XCsGgwEXLlzgYx/72PzQ6zgOSZLc0f1eLz9mWcZLL71Er9fj4x//ONXq2323bpRftVZw8bMw3TIHImV3yZVGaI3CFmlOSL/fY22ty+Jik2ZzCchAWgKsv2AKqULDTB3dGsQ9o/rI+kbyGnesT++V/o5uPgBZmcurZNqzMisjvyIdWPz+xO6sW0iESkwjTiWmM69StD+7zkiGTWDTYPRRKK+BVBPC6gphPoKFRdJph9FUMR3vcKmV4jqXKRYjwmKRMCggHQPHwJntB5XmzTaRdgGBkw9Al03h7RSsvUjBNi+tN6VTMbvqTmEPiM1FkNLWCf+j+zt8R/NHaS683Yz6XhSUN9oxBzh48CC/9mu/9o4+jmvFhz/8YeI45sknn+Qf/+N/zLd+67e+K4/jftyduF4xuFeC+tRTT12z0Xsn58cLFy7w+uuv4zjO2+wVipUCf/F/ubblgp5uwqXfNSs/ad80gGKzMpWNt7i40cch4ciRB/GEhdQICUi+PHkBEAwcyddGX+PTS/8LqJhUSVOQOUXDr3BL1uPcx1MtkCs2R5YQcc/4PVqmBlqBdq2qwUG7AWiJ8H08NMaNYOZrnllgZEqxWCbw+5TLDcLQZzyeMh53WG+vI6QgDIqEpRJRUER61rMdbUFjhr1hvlcwV52BkIg8NRLdfIySRVw6Vqpr1xmSlh04dOa+50YCO5zDHhGeBfvYXVO3Yn+Hb4vWFL38F6DQRKneLedH13VZWFiY+zJPJhNarRbtdpvz589fIZ9tNBoUCoWb8jG/F/Z372Tck4JSa83q6irHjh2bV+036jDdTNxOh2m2ozSdTllcXDQdAa159c3/L3+09mv8P2rfz8PhMQvbmXXnrSZb2o62dJF6gkLaF69jZUgG+GCofwMLoJiYQi4dWUPsAVol9HfOUwhrHNpfRwtNng3B8Sn6mtCv06hDlisuXLxAkikuX76I1hCVS5SKIcXIx3GLcwNsgLW8xecHX+SHKt9P0UJ2tLD+km7R+Kj5VSN38OqIpEUiSsZvzbV0LLdoOkbSN3RZHISa8tLoOVwUnlJMHYeqynh2/Cw/LEq7b+qZ96UbIVLTCXL1xEjJtLO7O6QyK9mNDYVMGxqZQO3ajngV8pUfnqOfrxVa6zuSdL21k54kyXx6+corr5DnOfV6/armynvj/UDouh/vTlQqFb7927/9itfw3TLuvlrTbjgc8vzzzxMEwbzBd7W4oXH35hdgfNHsSSZmkkY2BLeIzMZINCod0O4O6HY7HNy/j6hUhKxnp3G2AafHtkM/BlFA6oQEqwZxqxa80DSwML+xBxaWkTo1PPI9Un6ze6PdmilG/Rm2fiY3rVhStVV3uGV7LdlmWoRIWlYSOwSVGUy9KCCkpc3qHPBBOnhhnWrRo1ZfQCEZD4f0B2OG7RFJ0qdY9AmjKuUwxQ0ahnDt1cwE0okQ2QZa1kwTUmszrVDpbgFqC88rSbE9e1sD6Hlp8EXayQa/5l3k58Tb86BS6h2H4dyIgv1u7Zjv37+fX/mVX+GjH/0ocRzzq7/6q3zqU5/iq1/9Kk899dQ9fzz34+7EtXLbeDzm+eefx3Ecnn766Stsba52H7eqktsLLnvyySd55ZVXbun2OhvBpd83BZ90yJ2KJbrWmQy2ubTRoRpqFlceMnnHLRuVghPQm6xzZvIKvtbkUvDa6GUOeQc5Fj7IzI9RoOZARe3VEZMWibCNM+sTOfN7nBFRjTzUFpvzid4I7UVG6WYLTLOHKAAHIY3XbYZhfDh+SNkvU6lUUcIhHplGW7+1yVbmUPS13UHX+FFz9/fn1opOxwa2o2awnQTlVYFtUmmanTObPLy6HaZERlUoPTNM0SDQdvBTgGyyW2h6lV2rpXyCLj8C1Q+Y+70LDbcwDDlw4MB8SNHv92m1Wly6dInXXnuNUqnEdDplNBrRbDbf9vveL9Cye1JQ1mq1tx2279aB6VYSQr/f5/nnn6dcLnP8+HFOnjxpsM2b/4MXtn6XVAi+OniGB8OHDZTG0rBMcTlb5lWAQDs5GUO7wzL7DWr3NpbgimM7QE4IKmcwTonHQ4rFIisri+a+rJel0ClobUmuCk86BDKlXqsTBh5xohiPunTbQ3bWz+KFVUoFSVBZpCAznhn9GeNkk6+PT/Ad0UetV2SMkoHpuAuD69cyROicXBYR2hxSQBjZg8DIDwDErlG2citEWZXUEVTRJFJQEgWUX7Oel3b5WhbMNFRgCm8ycANkNjI0rtmhLjEL1SLvWvBPbA5vThGRjcj3fwbCG0MTZs//3ers+L7Pvn372Ldv31w33263WV9fn+/bXk03/07vUN4qjOJ+fPPEzAJpb7xTDbetrS1efPFFDh48yEMPPXTd9811jbsHp6H7opWVKigsWtBB0+6e11BijUubA7JkzMEjD1PwxB7qq7DKA2u3pGJTUIkxktxaJsUw83vMpuD4Rk4qfIQ2/r6OGqGwBwqkyaEz/P5s98atoQXmgIUySgih7R5mZoE3ykwDdW6720a+L4QwXpPSNc1Cb3bomhV6lbkHZPvsRc6cjHEZ4lfqHHssJBUO4+EWF7YzXFcShiHFUpUoDJCOTy5CtIzs7rhnpVsV4zMsZ37DdWsNYlYrzK6RBhy6asLZ6Rt8vVLh1fir/Gh8lqOFo1c+V/dgQjl7nV3PNuTdaLg98sgjPPLII/Ovn376aU6fPs0v//Iv8+/+3b+754/nftxe3IzkdZbbVldXeeSRR274mr/VM+jMv3IGLpsBeW42tMrh4u+aaaQToNFWhVCi2+2wvtFhealJo7locmShYXexK5CNeHb6Ep5WxFJSUJpMwJ90/m/i7Nt4tPCYPW/6SLRVLyh7ne0j5nPWxlv9JLVfN7JQzwAdmdtvGCDlFbuIs73IfIRGGgijKBhWh1NCkFKorhKWE/TSKlkyYThJiIdtWp0MT+xQiBqUC0PCyjJO1r0StpO00W4RmXXRWYyrE1ApQsxgO8rsQAoH7TrADPLoms8eq3gzYJ+B3eGc7Yh2odBA7/vu3eflLu+YSymp1WrUarUrhhQnT57k4sWLnDt37goHgmKxeFfy43sBWPau2Ybca8nr+vo6L7/8MseOHZtPSqWU+MMXuTD4b2zlbeoqpy16XBh+gyOlD8+nbiRt24Xvg182ElMpkCo2L3BlLT/IjVQJZQ5OtqgyPosOrfYWOztt/KBCWGmAG9n6NEfNlrGlRGINsHVqLEa0Bq9EIKcE0SEa2ZhU+0wHWwxjQe/SG2z4U6aFNWLpcH78PKPihyilUwPMSTuWANu1ktwxCAcnn+AyNYcxZRDVJoEZVL9Z3h6jnYinww9zPPqEmS4KB4QysgitzQFHSEOila6VY3mgE6aUEUJeSS/UZrFaa42QwvhOqtRQGdUYVfswuvaRm3peZx8y78SBaa9u3nVdtra2OHjwIO12m9OnTzOZTKhWq7z66qtkWfaO6t9vF0ZxP74542403PbmR601b775JufOneMDH/jATX1gXKug1EkPcfF3zYFoti+Y9y0VuwVumWzSQiuByMccOvowrkh2SYZOCUjt15n1l8yt1UdO7sQooayMNgMEigyhJALHgmsECI2cFaR5PPdem19FwfpEFiCZsHExYdrrIYMSq4d93Khq8p0X7SFWa6OW0CnaraNYQ3kNs29ksfRGvj8jsiZor053s8PrL4wRJGjXZ7zW4bwu8ujxA1TLPloGxKM2w6mgv3OJjcyj5OekqmAkXIR7rEEGtqk3Ng1G6dr90T2EWBWDV+YbvT/jUiHk1bCIg8Nvtn+Tf7z/H1/xfN0ryavjONfssA+Hw/cMcOLjH/84zzzzzLv9MO7HHcTe/Ki15o033uD8+fM8+eST7N+//6bu41bOj61WixMnTrBv3z4ee+wxpJRzD8ubfn+t/QEMz5p8k/ZxhUJnI7bWO3R7Aw6t7CMq2ZwkC/N1AVQOXoWUnKlbxFWKWGgEKamQfG30DR7wHsXRGqmMRFboGJDIfIzUqSmoZAGhx8YyTk3sOlY6l9cbj9tdFYj2GzbPGAq/9uoG3rOnqPT1AC3Lu6qPbKb66JgCLh/jegE114HyYZZ0ziROGI+G7PQz0tZZfD+gFKUUoxKBzK16zeR9ITRSmCGOyIZ24jh7DLNCt2sUKNbnHJWYwYaV6cKe3XW/hl79IfMZYeNG/pB3GrMhxalTp/jQhz6ElJJ2u83Ozg5vvvkmGxsb/M7v/A5BENDv96+6fnIz8V4Alt1TyuveuFcTSqUUp06d4tKlS3zoQx+64o8VpBcJB8/x37yX8TV0pUNRaf7H5EV+Inhod4dn1uGYyae8Ku54A4U771Ize3En7T1XQ3JVTonti6cYTODoap3tXoJMB2hdhWxMLkMECbkOkHlMJgMkiXnjg5kkgvU8U8a2RKe4zYOUtELrA3yl/e/p5i4Omo4UfHH7C3zMf5pSMcYvlMzysgzsZMAAeWBMLgpWYlWye0m7cgiZdlBuybxxncBIrHARQs9BOmQThGfe5GpuIms8JJUs4qsBQiUGpz97DDP/NmK0U7CaeR/I0P4iavm7r/pcXuv5hXemoHzr77mabr7dbvPP/tk/49lnn+WFF17gc5/7HL/wC7/A0aNHb3CPtxa3C6O4H98c8dYO/N1ouM3yY5qmvPDCC4zH41vy/L1aftUqR1/+L8xMrXFc22Uv2mIuZDLY5vJGC09MWF55HFfZYjNpm257akiwMyLsbs401iBuPmSKtLvhESqfoJ0Qnccgi8b30akgychkGSly02HXKRoLaPDMniRODfIJJ09M2DqzzjTxCf0OWxebPPUdAqdYt93rmaTUQsHcEiLeQZDzwuCPWA0fZMVpGqADxmdYENvJpmKwMyRNc6oNn1wVEFKyvSM5ljr4RQMuK1QOEFQyNCtk6ZTReMJ4e4vtXk6rf5ZiMSSKoBh4OK7dpfRKcyuUmTebzLpoWaA/vciZ+HX+rLkIQpCT8/nh5zmfnOewv7vPfa8mlDeiYNfr9Xf0MdxsnDhx4qaLjvvx3oxZbppMJrz88stMp1OOHz9+S02Lmzk/7nUmePTRRzl48OD8v81e7zfz/tI7z8LwjKU1J+CV0XqdVnuA0AlHDh/E9yyUS7hW5hranFmCbMj31o1V2yTRPLf2Zb5aPIGnNC0R81ryBk8EHyBHobUwjTYBSrhWQGemeCAQagoIywlx7YDBAz1GSx/JFI2HEPa/68wAwVB2wpnPgZOpNEWodusINZkXkUjXylEduzolgRgBRL4gcgMWG2WyNGYYaybDPp3uAKlzglKFUhQQRhWUmJA7BZAu2rFOC/MCt2KkuW4Rkfd217SENP+2PT7nBlg5MWfL4N5Dy2a/x3VdisUipVKJQ4cOkec5L7zwAq7rcuHCBZrNJn/zb/5N/vk//+e3fP/vBWDZuzahdF33pj3OrhU3Kkr3erodP378ypHyZIPy6Mus6R266TZagIdkLDRx3uGi6nOIyNqHZJbcmqH9BVAxym+g6e8SXL266b57dbMP49chG5KJEhsXXicj4uiBEk6xidd5HeUsQNxBuVU78q/ipl1yp2wLuTLEO2itkGkbpZZtwWd3Z0SA0GMQLpfTi3SyTQpCoJVGCMl5cYaHJ4/RaSVIt0AUFiiWahRDD+lGRvLqlIG+0dbrnHxvZ0rncy80ZtNEx9njIekbWYFfN1NMr2a8JN2y+VpaKJEQCOmYfUnrizkvVr2ykSA4hvCKdMlXvs90zm4yZh8I92JH6K1JJwxDVldX+Tf/5t/woQ99iJ/+6Z+m3W7f36W8H3ccd0vyGscxX/rSlyiVSm/D5t8ohBBvLyg3/wRGl+y+5NjuXOdmCqgk7e6Q7a0Oy/sOsL6+bhQaXhFQ1oIpMyTYPNnNlW7NwsIqkPbRThEn30bLfei4jfbK+Lnx0yXpohxjT6LcEk7WQTllmO6gvApO3poTT3EiyEeMRpLNs9soAipVSZJV6G6N2FxvsvKAkcKCNrtHaLN/iUK7FXbcV/hG+hon1WX+X9W/aiA7lgI7AwOJtI/0i4TeJnleI/CG9McupWCII7XZzZQ+Qo/AWoN45NTKAeNOSqm+gi8TBhNJt73JeiKIQoegWCUqagpB2UxO3YpRh9hrqoacrj9MqRAyO0Z7wiNRV8Kc7lVBeT0gz2QyuSNP1VkMh0PefPPN+ddnz57lxIkTNBoNDh06xD/8h/+Qy5cv82//7b8F4J/+03/K0aNHeeKJJ5hOp/zqr/4qf/Inf8LnPve5O34s9+PexVs/32cTpa985SvU63U+8pGP3PKUaXZ+1Fpf9fywd19yLzBt7+2BGxelg9Ow/YxVTmTgFIjjMeNEEnouB48+iCPBQGMUoGxeTUyjLhub4jLtg1tGpFu8XniDRq4YSEkty/ja9Os8GTyEEBHoGCXM+SvDJ9euGVIIEEIyZ4Oo3P5tNTO/TKFzIDe7iNp4ocOeq3Dn0lqUQmtlXQSEmQ5KxwwrtACZm/tVuYXtJBa2MzFFYDbAKVSoyT61ygF00mOaF5gONum0J7TWz6BkmYKvmExCwoJnOSYp2rI1ZutauI59HOZ3GRBayRaeNdOMqz4GjbfvTd8rCvbVoDyO4/DUU0/x6U9/mjiO+fVf/3VardY7+ljeGncTWPauSl5nkoHbjetJFmb7kpVK5e3JJh3Ahf+IVFMayufbKp9AqIRcOjjWE3EJzxx+8rGVdI2sDGFk/RZHZEqaInK2Y+kEtlsfAopJ5nH50lmCsMnhfUsIx/jrpE4VqXJyr2newNYzkkITRyUQLEA2YaMTQ57ghfvQmUkSIpmYAo0U6+6JozVNt4mrMmLHIVAZuRexvxZQ8A4bzP3Uobd9hs3MpxQogtIiLhPQmTXn9pEqs4lAglLgzqaJxoR7DtKRAcYT00w3NRao40R2AhqhhYPOUxJKBoXtlI1MzG8g1My4Owe3bNRrwiXf9z1mB+sWYpYM7kVBeb0D02z6c/z42ymL9+N+3GrcDQVHr9djMBjw4IMPGlukW3yPvFXyqnuvwc5X9kwV91zjFhutCdPBJocOPkTo5WyRQdIFp2qgZY7F32MJpnrmP6mtekIaCI/okFBCaQl+HYk2V60haCJVhpJ1Ou0tumPN/iWXXAaIdESGi0hHCCHnaHidjHFESsHXuBKk5yDcGJ2OIRXmceXG3mi2J2ngaiUuBqfIEEyyPifzSzwujxh5lU52kfh+nYUDCWtnFxh0JgxwcBzBwiMHcH3PEBSFNGAy6VvibAmyAako4uoxQWmJIBjBwmGyeMx4EjOZ9NloX0bLgHIo8UuLlPwcETSQaYdm+XH+t4P/nxs+j++FgnIGnbjTeO65567Y+/nZn/1ZAH78x3+c3/iN32B9fZ0LFy7M/3uSJPz9v//3uXz5MsVikQ9+8IP80R/90VV3h+7HN0fMLEEADhw4wIMPPnhbn/97J4xvfe2Ox2NOnDiBlJKnn36aQqFw3dtf87HGO3DxPxtORNIDr8S4e4mLmwNCOaXaOISjpyAiuzplc6NwwHHMeUr6prjz6qAS1sWURAxJhCRSOSPHoZQNOK82eFAuov0qTtJlmLgMts9Srq8i0oEZUqixIcGq2HjdkqOdgin6XENznfvpCtdAckTBgBydYFd2mg3RXglPDRHMJLBl671eMUAxp2TOi3Z1wcB2UpRXQ+7Z41R+00hr/QahmhKEh6lnY7J8ge2tNdJcsbl2DoEmLJaIAo+g1MAl3rUE8Wrz9azdFbTM7I6i0eEKet/Vp3fvhR3zGdTx0KFDHDp06B19LLN4J4Bl3/SS16tNOdfW1njllVeu2JecR57Axd8BnSOki0PIt0QPwLwjIzC7kI4tFj1TVDq+pZ8WIO0jhMDXIwNHyHvGGycfzg8ng0nG1vo56s0VmtUikEI2BeHhiZR2a0A8HVOMSpRKEa7jgchAOOR5yqXLGwghOXjkIaRjukIKiVaZwfFbbLwkZ6nwCH8leACEhyRDCQ+ppkYym08IqiuEpRi9tEQ2HTCcxIyHXSZTI9naaXUoFiuEBYHwIkv4MtNE5VWRSXc+VTRkra4ly1qQhnQhTRBuEZHa2yZtMqdEQB/IjWxWuOa5mBWrOkYLk9x09QNQfvSWXwP3gmAINz4wjUaj98yO0P345ourSV5vNz8qpXj99de5dOkSQRAYW6TbiL2SMBW3YfPzRnmhlJky2mZYlk64uD5CqgkHjn0QV2YgyzjigsG151O769KzgIm+pRf29xBiI0iHIEO+En8ONy/jXOgTlhuUAgcvqCCyGLwQnU3ZbA8YD7ocPHiEwJdoEaDz2Ei8VIbCAXKE8ChUCohClWF/jOMXIDPd68pCGfwq5OM5ZGLXqqTM+vgk2+6QqsqZSIdX+1/k0cYBZNbBfHROMG19h4Kb8qFvW6B1fps4K1Cp5tQP1iEd7N63W7Q08II99Bi4jpYl0/m3k0c3KFAuOlRUjsIhng4YjmO6nQ4bSU5Y6FGM6jjLT1O5xnTlra+He7VDea24W/nxU5/61BXvk7fGb/zGb1zx9c/93M/xcz/3c3f8e+/HeyOyLOOVV16h3W4jhGBlZeW2P//3Thj3vnZn+5L79+/n0UcfveZ7RwhxVRXHLHQ2gYu/t8vX8Eq0dzbYavdZXSjRHYc4Wd8oNPY26Ga50THTRqQdVEjz71x0Fnl4/GEcH3w/ICj4+H7IQfeAsZHLJ3RGgvb2WRaWj1IrgnJK6KRnFGRpG+VWjALOq5rdba+KzIeGFJtPzbCADOUUjQ2cV7FF4MKupZKKjeSVHO0vvm1lylC1y4jErhBYD3Kp2iACpB4bEJmYsJVt03AXcKVnYTsRjiuRhRqBdFho1pjGKZNhl9YgIds5jVOoUAn7hKUmIV1Lvu6aAjzrW+ib8ZBXB37EqGiuEu8FCva7cX58J4Bl76rk9W7sCO2dcu7dl/zwhz88N7Kfh1aw/gcGriMDEB65tt6SOJjRvjA1paX8GXJrYDtEwS4cIZ+QisD8iBOZzo5jOjCt3ojOzjbL+w9Qnr1IdGY8tFXMQqNKpRwxHg0Z9tq0Ni/hF4qUIh/Xj2hvr1MoVlleqCAc5mhnN+tbb7U+SpbR2cAQAvMuSkYI3SeXIVIP7W7i1JKvMjQOoHELRWpBhXq9znCUsLV5mUxGbLY6pBmUiiOCqEK5mOJ6jbmnpAHp1NA6R7iRATLqHO14u0hqNUZbqa9yy5AMyTHAndm+1QyFvyt97aLDA6il2+sY3yv9e57nV+1Szh7Du4XFvx/vz7jdHco4jjlx4gRpmvLEE0/wxhtv3PZjmE0otcoQF/8TOunYnRploNdCEk8nXLy8STEssP/AYYTIjGJDp2TM8mYVUJYAmxnfSZ1CYXZtGnm8V+fc5HVOsk4UbvKE/2Gmwz7bO5rQWadQXqLk92kNcmQ24NCRh/H0GKSxBMGr4qQ9c1hKujYHtRFumQ8dj3j1axoVd8m9iIefqlJuRkZOJkwOQ4YwU00AzyQvkwnoOw4a2NBjTqUXebTwkGk46gxwQSdoL8KXU/Y9dtR0zGdev671hZtZSgGgmVmDuHoEzoI9fFUt3KKMTHrm8JX3CT2PsOpDpUmmHCbjHuvOh1h/5TRCnJnTApvN5lUtYO42xfBqcaMdyvv58X7caQyHQ06cOIHneTz99NM888wzd3SGnB3u8zzH8zy01pw7d44333yTxx577KYk2tcEl2kFl/+LaZY5PiqD9a1NRsMxhw8dIQwjeuOzpE7NNOgKDchmq1KD3QacVzaNNrcIWR8lfEKR8h0HPspkMGAUJ4y6I7QQ7BR3iMpTxuOY0XDA/oMPEQUBWkgEOSJYROoE5S7iZmPyQgPSAbkTIeIumVtCxm3DCkk64FtrJc9Cdxy7v+2E5qwnfIRW5MLfA/VRdoVAmbOgzg1jRJlpoc5TslTi+rl5TMKlk6zz2cF/4YPuAxyvfY/llFhvYa3w9BQhmhT9jLC5TKOZk6lVJqMhw9GE9to6GoiiCVEYUow8XGl8NYWKzdkyvPbO9L1quF2N5j6L98pA4k6BZfesoLybHfhZ7JW8JknCiRMnSJLk7fuSs9j4HKL7ksGvJy2k1Dh5H/S+3TdvNjbd8iw2U7Q8BteCa7T9sBbSGLMq48ljdN0OSmvWNjaZTGIOHn2IILDjdm0mirnGwHEcScFTFKImdZWSKcF40KHbHxN3NtEiJBCaYeIQiQmOXzOoeq9mDh5+DSftoQtl2wEvotMhSvqQDVDCgTwxHTSrORdOaA84BrJjTMG7COmwv+aiFg6TTdoMY5j21mhvJBR8n6AYUixVKBZ8cEPrbRkaT0snADsJhcxIX7UyZrJSomVIRgHcoiG5WpkDOjWL1eSoYBm18kPmgHYbcS8Xqq8nV9BavycSwv14f4TruqaYu4kJ1Cy63S4nTpygVqvxLd/yLYxGo1v2Wdsb84Jy449ME84tmUOPDEBNGAxHbK5fpNFcplEvA5ntyY1BS3w5QeVTSM3eEPnA+k0OrJKjb+yV0iHIAJX1+PLwWQIFE6E5577B8YPfjtI5w3HMsNfhYmeEQBGWGoyGI4qlKj7aTkxT8BpIHUOhgVQxOqgjswlRs87HvrtIkiziuiCkQKVDszYgc2sN4lsqbAjZiGHepZobSVmU5wwdh2m8BsFD1retbDrhTmABFD5iRpvVyjQYHQ+Ea/H9maF3k6OdMkKnxKJiphwz+rX13ZzRCZGenWiOwavgpV3c1Y9TWv1+HlCKwWBwhd9ZuVym2WzSbDYpl8vzCcq7LXl9t2xD7sf7I7a2tnj++eevsDu60z3z2YQxz3PyPOfll1+m3W5fdV/yWnFNa6X1/w7918EzxOvLGy2Ezjh66CCeB+RT49CmYhBVu1tprD3wTA6YWzD5hs+Ry8hAEN0INx9TbixQziewvI/ppMdgFNPauIBSgkLgk4xauCqiEIT2wRrbDWnXs1wBODWz3+f4RgUna5Bn4JQRaQxOhMymNrdNzNl3ZtGkRkg9xdETRG6ngSpHOL4lrBZt4ywAoWhtppx5fo04hmLJ4cGnVqk0XL6UnkSheS4/ywfyLiVv0Z53Kzj5zhwYaSS4I7C8E68oqJTq6CxgmrlMRi06vZSdrcs4foVS5BE0HyGofYTrZb/3Qn4cDoc3Dct7J+NOgWXv6g7l3aK89no9nn/+earVKk899dTVl7N3vgqdF0z3JB+CV0eqS2QiNC9ef3dUj/XhmReZM9PutGdphV0EBVw9BBQkHTIKbFx8k0yGHFup4fg+JGbkr9OhpfONjM+P1XoLNUHLEJcpmfCI4xGL+w7hu4LBaEprZ5vLSU5U7FKMypSjCV6hhtQWHCE0FBoIpRCBjwS0ClEatEpRtntufHlScGtGCmvNv3O3gqO7KDdC5BO8Qol6QUE5QOEwHXYZxtDevMiGDigXlJ0SDJFBzXSxpA+6b/7G0oU0RrglRNIjo0iBIQJtOl1OiFADs09kpQh6//eCX3n783WTcS8nlNeTKwDvaEF5IxjF/fjmjrcWjXu75zcDm7h48SInT57koYce4vDhw/Nu6J3kWCklxeQMdAdWnhmb/KcTtjoxvU6L5QOPUInCOSzBTO6M0iOngBa+lbdjCjWhTXGplZlk5jEgUPmEi+klBukmAgg1vDJ+gQ8XHid0Qjw9Zjru0KyWKFeqTMYjhr0tdrYu4Hs+URRRDIsEUdnQDKUBXAgpEK6PlAVQBWTgoPLUFHkqRWnrsyscHJ2DWzTeuYUFfrz+47xx+jwPHFlBekVEPjaNuWxkmmn5xMIsUjutdMz3Zl6V1sPNyMrs5DFrG9uPvA/Sw1VDZB4gcsfsLbklg713ygg1BlnctVpRGbqwhN73PfPnp1qtUq1WOXbs2NzvrNVq8eKLL6K1npNV71QNdKO4Xn7UWjMajd4TB6b78c0Znufx5JNPXmF3dLfOkLN9Sdd1r7kvea24WkGpW1+H3uvgN5iOu1y41KIcOiyvHEbmU5Mz8gQpMlNwZUNr4WH4HCR2IqlGIEO0ilF4aJUi/LJVw9VM8enWQCfIoM546xxeWGepUWaS5EwGO7TafTyZE5ZqRKFHMaoaXofjW+m/j8hTHCcAjN2G1pihhPBQ2jHrBFogpQYhkcKq93TOoO8w3Orj+RkLSw6VfQu7uc/SqUk6jOOQC8+/zmToU44Sei2PM8+dYt+3LXJp8jqZEHhK8bXxi3xX5bvmPI5URkjhGSkv0vy9pN3tdIqG6lqoEYouwcIBGtmAjEWmozbDqeLZc4u8+R//K/nEYflgje/6n5+k2rjynPZeoGCPx+Pb9n6cxXsBWPZN7UM5SwbPPvssDzzwAEePHr16N7//BrSftYeh3Ozx6AztVVF6+0qCq+1yQ2akWCqxHSLbKcqNLEEkAxIRofOEaR6wcekNCsUGhxcjhG+KLeVVTVHplI2006/aznYFYX17RNJiqztl3Nvk4IEHCD1jQhv5ChYOkMZDRuOE8XCLS9sxjutavHyFsOAivCIimxr6q5qCU8RVUzO1zMcoQlBTcgqIPCYTDiJLELKA0lOUCMzBzpUWFW2oXULnhI0yoUqBgyTxiOEopj/osTlJKHgDilFEMXLM9NKajmuvYfDMXh3iPqkIDQ1W+pg9VWxHf0i++J3o6M7sNd4rBaXnebf0QXSrcSMYxf14f8XstZZl2XULSqUUr776KltbWzz11FM0m7tQqzs9cMm0zULyLPA4pF1wi6i4xdr2ADXtcOjwIxTkFAj2WIAY6w/Snjkk5ROQZTPZdGaKjxDyFBwPlSdoaYrQZ6YnmAhBLgSO1igUJ+KTPKY/wPbGNgtLB6hXIpAugR9Qb66Qp0OGE8V0uM3lwRRXXaJQWqQcKMLKPpy0b/YkrTm3TLtI2yxUboRIe+ROhJN0UE6ISPvksoDQAxAOLikSgaNn3sIOyMCsFAhjdyRUhnZcS8guGoNvC1oznpXmswaVm4ORxuziC0Pc1W7ZfL5YU/H5nrr0zTRXAygj31r9fvN3vErM/M727duH1prBYMD29jYAzz77LKVSiWazSaPRoFqt3tW8ea92KO/Hn89oNBpXeOXB3SkohRC88MILrKysXHdf8lrxNnDZ8DxsfQGER7/X4vJ6i6XFBs3GIrCnEPQKaOmjhLfbYJOeYXxIK4+XATrpopwQsjbCK89t2ci65hybj5mksHbpPGG5zv7FBkL6FKKMWmMZncfm/DjqsbEzRm+2CcIy5aJDsdzAy2JrTTRgmhQYbF5Gu2WaixoZVnGSvqFqpz2UW51LZCGmvZWz+fqIPPXwvJT1Cz6Pf7RIbWWW+5rGD9NrMFrbotsv0GhoFBG12pTxUPPi4Eu4CBw0QmtOT1/l44VHiLxFRDJG6BxHjxA0za67G+36TJKjnZLZQ3drZmXSq+IAUW0Vb/H7eeN/O8351/qoXHH+RI/Xv3GZ7/jrB1haXqDZbFKpVO7ZSsA7reB4LwDL3jXJ653KFZRSbGxsMB6Peeqpp96+LzmLyRpc+s/mw1tNLIZ5AE4RJx+gcgWZRcxnM0mWPfxkE0t2tWbZOrEk1wwtQySK3lixuXGBZnOVZrOGEI5ZAvYaaJWSuw0cMlShgVD5rrTJa6CyKWtbI7J0ysrhx/BdiRZGNpBIF1+D50dUCyVq1TIKj8nQdF5aW5eYqgKVQFMoL1MO2jhhw+7imIIVN8LN+iALOGqExkHr1HjJaQ89bQMKHdul7KwFfs3YlLhlRNy21LEJBVdQqBVoVprkwmMy6jOcKLY2LpMql3LRJYxqlIrKeKjpHI2LxjXTDWn86rQTIXRGXn4c3Xz6tp//va+D90JBGUXRO7rYfSMYxf14f4WU8oYTxul0yvPPPw/A8ePHCcPwbfcxw5Xf6ntE5wly83NkFAw4wS+QxlMuXu7iuYLVo0/iCAXSWn94VWsjYg4deGV8fR4lFneBE2lnD3iiYvKOUzKQG6/GsvbJ3DpRnjJyPYp5SjLJaXfPsbL6IFGAhaPFpoOvExy/RtVPqdaaLKmU8TRlMuqz2ZuQbZ+hEEaUixlRqUJBa4RvSIl4VaQt4lyVQ6Fk/lZ4Bj+vFFkucUlQSGQ6mBek2qvu+u0mLVMApn1rf2QKUWH+iEb+lU2NtFdNwCnvfg7pKakuIMjsHr4tLoULjmMQ++RoHFOk1j4EpWM39fwJIahUKgRBwPnz53n66afpdru0221efvlllFLzvctGo0EQXL1Ivdm4Dy27H+9kXO2z9U44HLN9yTRNOXr06BVwkluJvQWljttw8f8HWrCzdYZ2P+bQvgpRtXFFAYhTtMoMz+xPzsiuSCzqAmQBlaemAaUS8CuWtGrPqW4R0h6DiWZn4yz1hYM0So6RpKZttFOGvINwI0qhoFRaYWkxJskEo0GX7ihhs3UO1wsoRVPyaYE3nj3DsK/w3TZRo8K3fJePHzUMOCho4KQ9cr+ESE2R2blwjizVLCwmIEvEwx6b5x0aiwKNh5SpOc/qFOF5CAHT2MfxXZKpJnFS3hCXUELgIEglBFrxcn6ZT7p1tFdDqm3jP5l2bZ7t2kbbdBe6o1K0E0I2NmdfNUYvfDtnT/tcfL1NWPJwPYcsyRltZTiTCnEc89JLL6G1RmtNp9OhXC6/Y0OBe9Fwey8Ay74pJa9xHM+NuovF4rWLyaQHF/+TlROk1v7DUrPyCcIJcPSOpULZvZ50AF5o5a1FkwicyHTonWj+tZMNEFrRXj/F6spRSoFjdPD5wMgG8ilaeDhMQLhIlZjJn8hAa9Is5vLly7hegYOrB3A8az0iHAZ6wG+2/j3fUfokH4i+xRwmpKFthbVViuRofZA0GdMfTekPumxspQR+n2K5QjkcE4RV66lWNoAh1zMOaBZCNOjusNlOWF4oodw6IhuQyQgx7YEbIDNjTgtqDhya0V/dtE+p0qQc9lCLx0gnHYaTjFFvg/bmFK9QpBS6uEEdn6HxokzaKNckI7wyev+nbUK4s7iXO5TXSgjD4ZBisfiOP4b78ecrrpcj2+02J06cYGlpiccee+yqr829FMNbfo+s/QFyfBEpFCruEOcO6xfOUKovs9ysWFsy41mGcAFtpK1gKIUIUlkybDO/YX7Wb9pJXAOVJyi3itSp9aWc8hebP2I9HguodMjGdpds0mP50FEKbmYaU2lv9+oEhrAtfNBjhHCJvJyoHrFQK5LlGaPxmPGoTbe1jiMhjKqUQo+wvGB+t1e004EQoac4bh10wnjqsb5xnqByACE9chGYRpioIJVCuAZQJt0qvdaY7sYUL8zZd7hovCrV1BSP+Qhm6xRuCZH1jFw264OQODo2MjgKc2CZUbHMZLIlZNYzgIul77i155BdS4NCofC26WWr1WJ9fZ3XX3+dYrE43728nenlzUhe7+9Q3o+7Gbd7hsyyjJdffplut0sYhjQajdt+DPM983wKl36PXLusXb5IkuQcPrCfQriHZj2XgLbNPrTuo8Xu13s5HrkM0SpHOI5pSgkHnCJJnLN9SZOnPbSbkage+1Yeolz0TR7OJ6YIzYZGCTIHhHXBLeKLMX6jRr0yIhcLTAc7DCYZbzx3nn5HUCwLwGew0+fsySKPPBWZx6Y0+E0cMnCaqHRKq6NwHIWWVSQ5SruoLCHPM4QjIbfsjnxIYylk5QBsXIrxky5ZXuTwAx6HKp8hzQekjo+rMjLhcrRwEC1CQJOKCE9Ik/+U2vWdxJxjjRd6FZEOdwmzpWPo5idJT62hlUYak0+kI9EaylGVxx5fmefBEydO0G63uXTpElEUzRttd1PFcTO2c++Hhtu7XlDeCnQCmO9L1mo1jhw5wsmTJ6/+g3kMa//F/P+ZvEhI+/8xMoNkRELR/DfPopn9mimgvJqRv7o1S3at2GsZnSes7wyAnOXVY0RhAbMTmKKFi1YJIBAoBArIQWcI4UGeMkk1m5fPUiw3WWqUwXPnJFeRdnlu/HVKasJXx8/yhHcQx2sgs5bpiKdttBshsx6+V2SxLKGyRK4yRuMJo9GYtdYGSnpU7MEpCl0cvziftHZb22y1O6ysLFMqVYw5rSyhNEb+ICS5ctDCQ+oM7UQ45FYanKL9OkIrlF9HKIUfLVKPBA2dkynBZNRjMEqZbm+S6RIbaxcISxWiIMH1QvLVH7ZenXce90KuANfXwM+6S/fCvuR+vD/jZq2VtNacP3+eN954g0cffZSDBw9e8z5vdQ9zFqr1deifQhYaSH2ezjCnv3OOhZWjVIvCFGHJ7JA065bPQDsjk1uzGFdkiHwAmSFNo1xQmd3xVkjHMwbaM8WYViAc0ixj7fIOOA6rhx/F9QxFELvXg5BmUqm1JXQL5l6PatfyyfVDqq5Htb4PlQ6YJJJJf5PNTorYegk3WqBS2CGsLuPnbZP7kjajWLO1fp5abZFGPUSIxE56jeqCJDby2HzE+TMZp750itEkIvCnvLmwwLd9/wGkH5jPDycErczEQLhmp154COGjpYcSvjksSYlyGhZc1kCo1EjbtEY7EXrlB0zj8xZjRhfc+/qaTS8rlQpHjx4lTVPa7TbtdptXXnmFPM+p1+vzAvNmppd5nl+VMAu70LL7O5T3427G7RSU4/GYb3zjG3iex/Hjx/nGN75xx3vmKs/g0u+TjLa4eHkTzxEcPnoM13FMjvIN9RS/vgvbURNyp4aTj8DfZ/x6bVGZOyVIOkaan/Vtfh2SpC6vfukMnW2Fyqco4fHYx5colyKbO6X5WaQla2vwZh6WhrRqlBIpyCKOTokqdaKy4k21RbmcGSGZmpKR0d1co72VGHWH59icm5Moh7WL56gshHSnMBpopIA0Danua6K9KloZFZ9QKThVpI459vFHqSyuM5kuUYpimoeXcdQYXTiEyKe7BHENaOORLnWCm2egyoh8YmFmEzOpzWO0MCRx7ZZAaHSwz+RKITj4SINSPWDYmeIVHNI4p9wIOfCw2Suf5UEpJY899hhhGM530Gd58G6pOG60Q/l+abjdU8nrFb/YHnBu5bBz+fJlXn311fm+ZLfbvXoy0Aou/ScYntv1/nICSKe2axODEyDziZnY2a64eaN55o0nJOako+0kTYB0STPNpUvrIBwUHn5QNvIkYTwitRIglTHWRhu5ks7QFjPfH+dsblyi0TxCs1YyhwQV2w5MTF96nJq8wkS6hPmEF7MLPCVDg2TOJwZskxt/TKGtB6eQOEJTrjSoRCP0ygrxcIfBVDJoX2AjcSkVcoLSAtm0x3CacXj/IkHgQG506jgFnHyC9qwtiVOCtIOSJWS6Q+oUcFSKkI6V9SprVD61nfcR2i3hMqZUrlAu5UymIZfX1vF8n253yPZ0k0nlYwROzMJCf04hvJN4L0le78f9uJvxVknXrZIIZ++tWzkwqck6bD1jYBA6JRNFOu02K4cfN40za0NEsGD3ymckQktZdWpzSakQWyhpu64ygnxkdrbzAcIzOYN5N70E2YA499i8/CZ+scm+ZoRwpd1/LENiyKprr53l0tmMgjth38OH2LcqzJ5kOjDT0Xxi876VxqoU6VWJvIwoepAmOUmcMRqP6A1GbLTP4/kFSlECAjqtDvv2HaZatXYnGAiE4/qQjw2pOumRUOaNL3+NOAkoBmOy3GXS3ubCax5Hnlyyyo7QQNjcsqVrzyaPRi6LzpBpF2TRNB91bgzH84n18BxA8zgUb2xhcNXn8ybyo+d5LC8vs7y8jNaa4XBIq9Vic3OTU6dOEYbhvLis1WpXvb/rKTjuBbTsfry/41oNt1uRvG5vb/Piiy+ysrLCI488clNrBTcKKSVu6wtMxi9yabNPreSwsHzY0kgLZldcuvYM6exCvGSAFB0yHdqi01gn5W4NnScIv2kgaF7NNOm8MttvnKOzrQjCEYkK8XTK+hsDVg/3EG5k8qgTmvOsG1inAktalQXzu6VtyAnXNOGsX29QqdFa61Eo+kZmr3MqzSKTTNC7fAElAyqhwAkbDFqXCCvLHD5Q4HItp3NpnSQvcexRwfKDRu2mZQmdj1CiAPmEXLoIUhaPLSGFRAthro5npf4ORr46mzzGBrqjt8idBUQ23ONtGVlfc88Ay7Be6CpFHfp+UzQDlWbI//MfHuf3/o+v090es3ykyl/+209Rblw5zJjlyGvlwbuh4rgZBcf7IT++qxNKuLmCUinFyZMnWV9f5yMf+QgLCwvz+7g6svm/weiCNdEe2E56/y2HlyHCLSDzsXmT7e20u0WzV2l16rMO0TSTbFw8TVBqsm+hzKkzAyNXcOoQD9BOZMxhvTIitaSrzEB5SAe0ejHd9jr79x+mXPTQwjPSKOGZw4/w+PrgCyQCHDSxgK+NvsYHCk/gCsdgmIUwt5sd7GYwCKdoaIVOA6ly/PIqC+UElpbJkimD4Yh2a4csy3Edl+4gpqgLlIo+wi2aN3ChbmRXfh0nG6ELVWQWc4E2f9T5Q74/+jT1wioys4TYtG8Mb5OOsSPJeoBj4EAqQwhJQUxpLjzIQtonKX6UTf/puXGwEGLe/Wk2m3ied8uvo/sF5f14v8beDvx4POb555+/JRKhEOLaOfIqofMp4sJ/QucT8jxnbX0DV49Z3X+EtNfjzZMJIp9QatZZXPGQfmk3r6bWkDvrz31612SLNEuoOE+gshgtS6aBV2iYJta8GDXXfuKzuXaRWvMwC40SQvh2f6hh8qRf5/yLF3j5y318d0KcFmhvnIRvf4h9B2YrCtZjOO3v5nXhAIk5uAkDHCt4HoWSQ6O6jEqHDBNBf+cyo8TBFxOGoxEyHxJWlnGx9ib5GBzP2JJ4RdJhzHjioXDI44BcO7ha0el4HMAHGRlEv1s3kjBv1893BuhRWprDnxOa3Ur7NzS08QEUltC3IXWdxa3mRyEE5XKZcrnMkSNHyLJs3rV/7bXXSNP0iunlbG/3RvnRcZx3FFp2P/78xc1OKLXWnD17ltOnT/PEE0+wsrJyxX3cibVSMXmT6egFtgZT9i81qNWXbGEXWbVGYAo86Zlchx1OMEGQ4uRTUHV0PkTJAqipaSjpxA45ckt+zuiPQ5Kkg/YrVCKf8VhDkpHLKi5TM4W051uR9XfPoW7ZSO3dsqVOlxFJ2w4PuuBVeexjVZ7/QkoyHJFmPsuHijz41AN4nkJxhOloQLs3YLS9g6KIk8S0xyFLh31WH/4gYvZvzUbGXk6NwXVxdGr3FGPD7hAuOo/RbojOTb4TaoJwzW65ge7EFuKYkxEghTByVrTJnVrvSl+18T0WaoJa+A6IDl/x/Bx6rMnf+effQ54pHPfqefBqOfKtefBOVRzfLLYhdxrvWkEppZx7AF0vZkbdWZZx/PjxK3bVrppQdr4KgzftiH9P57zQMC8+f3atgxoRCyPxNHKEzEhe1eyamA6RiulPHTbXztFYPESzGhqojziPciuobIxyykhlddxZf45N1p4x2d5ojUlGOxw4+CCBm6GltCS/ANQAcJmqPqcnLxMIcDRkQuBmI05NX+MJ7wjaK1mt+IwSWzXX2ddOhMwHIAtIPQYECCMbGPZ7FBzNoSMPkk6GDCYZra01LmeSctEjjKqUI43n+1aiFRiJlgNf7H+Dkcj5Un6Sv+wdQzkBUufkoma8i5yKaRLJotkXFQrtuuhsSCINmU2FB5EHf4D90mf//v0opej3+7RaLS5cuMBrr71GpVKZv0FvVkI6k3S9kzEDm9wvKO/HOxXXk7xerbN+s3ErsjC99t9BKaaZx6WLa4TFEmqaMx7CxukpKsuRrs/gbAetG+w7ZDvfM4VHNrKEwgETcl51vgxJwKHpMtKxthtuaORd7swX11y7gyntnTWW9x2kEgpzkMo7c/ksuKCnnH+tjZQ50g0peILRxOX8yR77jh69UhIrPdu1tnYes11PnZqf0cnckkMETaadc0xUyOEDNbQsMOlv0xmkbG2/gl8IiaIixWJIIYgQKgE3ohjEuJ6D54wZT0PK4YhJHLCwECOFgqyDFi6onFyAkB6oBOGXEPnI7EnqifmZfGJhE9bnUytwS+jVH7htj16484ab67osLS2xtLQ076S3Wi22trZ444035jto0+n0mvcxy4/3ovF3P/78hOu6xHF83Z/JsoyXXnqJXq/Hxz/+cas62I07YXmowQWC3pfp53D44ArFqAZkVm6agqxZmWnFSPaltAUQoJXdBJQolaARRi02IzvLwDBA3BCSAeNEkGWXkK5L6GRMpy4qmVJcbuA6OYiSXdGqAplRvGm7pqQStN1TN7Z5I1OY2d1OkXaJ6jWOf7em39+HK0ZEC4tI1QUdIbM+WZKR9NfZv+8gYcFjMI4ZD7vsbE3wPJ+oGFIqC4phCSEdu4pgrOGEhYohXMMW8SJ0OkC5ZudRuSUDgPRKyKSDlgXTtBMSR09xlESoGSyzZOz2nJJ1DzB2Vjo8CAvHr/lcXauYnJ3tbnSGvNb0cmNjg1OnTs2nl41G46oqjhtBecbj8fviDPmuSV7hxpSu2b5kvV7niSeeeNskc74QPdvD7L0Gm39ouh6WXCqSHYNsTzp2Ytkz3eZsiBQujhoz9w+ToX3RhmaULn1QKVvtId32JvtWj1IpWZsNnZFSROU5uV8xxEOLhNZe0yLk6+RpyqV1A/BZOfIkrisMRVArU2xqDXggwFGCR0pPkeYTciFxycmEy5LbNHuL+ch6SA5NMZkNDTU1HdouTWylFWZnUzsh+bTHxc0+oZuyePAhnHyAV6oSBX304jHSSY/RJGU83KGzNcL1Q0qhS7GyROjlnNcd0mQdIR26kzdohessOhVAWJlvgpIhpMO5DUrmlpCqj84Unp5AnqIOfuaKHSApJbVajVqtxgMPPEAcx7RaLVqtFufPn8dxnHlx2Wg0rjnFvhcTyhkJ7HpQnveDXOF+vLdCSsnGxgbtdvttnfVbuY+b6cDrna9A90UGE8H22mnqCwdpVgu8MR4x7fVIEk297qJEgelY0d5O2XfYA8czhyTpgZztL+Y8N/wzBo5A6QkvZxf5kP8BA5cAoxhBgxuhlWKrPWA4HLKyesRMvPKU3VUD7GHMNQciDYFvaIehMyGduvjOwPy8tQYh6RgJbNw2Hrfz77etdLZtSItqgNIO62uniZOMwwdX8R0XHJ8wKNCQHmkyZTRJGA37bK/1cWSPYqlMqSgoRk0+8t3w1f96DilyRtOQ/UcrHHziKNIBLUpo4aLyKVoUIB+ROxVEbCaeIumicZBqMi92hYrtCsEQtfQpCJZv+TnfG3czPwohKJVKlEolDh8+TJZldDodWq0W4/GYU6dOsbOzM1eczJq/dyM/fuELX+AXf/EX+frXv876+jqf/exn+aEf+qHr3ubzn/88P/uzP8srr7zCwYMH+fmf/3l+4id+4o4ex/14d+J2JK+j0Yjnn38e3/d5+umnr7rje7uS12S4xfqX/nd0nrFYi3CEx/rrZxhPC5SKMY1Dq3jOyErwp1aKalatjATVBxmYglKExi9X6N3zoFY2R6X0hgk7W5c59PBBqtGYy2dGeHpEebnMIx8JAWUUIk5oFHkyBGWhPDMbkjy2U9LM8iu0yY1KmyKTHCdqUg9zENbGyC1BntLqjOh12+xfWSWMiqAyGvUKjUqAEj6TQZthrGitv8G6KlAOISgtEoUCN2jskm11Yqav5FCo4GjQThOlc7RTQ2vIZQTanpGFh9IC5ZpiWXu1K+BmZp2gD06IWvnMbUEeZ1TU6xV7b42rTS9nefDVV1+9YnrZaDQIw/C6O5T3Ja93Ka7XHbp06RKvvfYaDz74IEeOHLlmQgFb/ccbsPb7xgA6m8wlQ9qzMizrpWM8d0xnRiYdFK7F2VfstWwPICV03GZ9e0g6aXP40IOGNKg1pG20E1J0JqxdOk85cgmjOsXANYQ/PTJwicmUtcsb+GHAvsUFhMwRaYJ2Q4OAdosIO/4XKsaVId8WfRJEAMRGg68TTHfeLDlDjpaRWUB2y+YqIvMzZIBrvCSdMtPpkItrA6rliMXlFSu3sp0rr2p2tsMGtVBSa+TkWjIZ9hiME3rra6TK4evlZxhIF1fnTIXDs+Pn+L7y9xgftnyM8OvIrI8O6pAOUV7RUgshzVIkGcnCXwDXAHyu9aYqFAqsrKywsrKCUoper0er1eLs2bO88sorVKvVeYG516LjXpnSAtf8Pe8XQtf9eO9ElmUMBgOUUnziE594mwfbzcbNdOD16CJ684tsdxP67XWWVx+gFGhj/cEZlNyPL7ZQYgFPDBjnPpHfB7lscqZbmVuBkLaZOB5nBs8hJFSV4muDL3N0WqNU2YejrTQrH5OJIptr54kzycGDB/ALZaMKKRivMWOlkVqQRAJOnX0PDHn9OfBcxTAL8dycxiErcyo0zMHJr5urVzHTTS/atYDKJmaCqTPyPOXy5jqOSjh86AHz2JzAfk4YD2HPq1BjSq2yD50MmCSCyahNZ6fN9vpZgkKB4z+4SD5KKZTrLCwJQzjMhginhFBjpGf2ObUbIrTxGVZI0twjo0BOgHBCBDnCjxA6R0UPQPOTt/WcX/HcvoPQMtd1WVxcZHFxkW63y8GDB8nznJ2dHd58802CIMB1Xf70T//0tl+/sxiNRnzoQx/iJ3/yJ/mRH/mRG/782bNn+b7v+z7+1t/6W/zWb/0Wf/zHf8zf+Bt/g/379/PpT3/6jh7L/XhvxPVy2/b2Ni+88AIHDhzg4YcfvuZ74HYkr/3uDpe/9E8pFwqEJZ+cAhdObtFrZRS8Cd0th3h8ngNPHjHrQDOrJL+6x6+3jeMI4t46a3lKKXQoVpfwHW3yFClaeGxvt+h2hxw48BDFYpFqU7D8YEqea4JQIqUwDTcntI033+5oOiZnaozaQ2O+RmOUa5rZBHG+PiVDezX7lkp4bG1vMRzHHDz0EIWgCOTgOEAKThGpEqLGAaJ8jN53gGTcZjhRDHsbbG1JQn+NsNQgCgYEYRmwE2Vhp5fSN7Jfr4TORminjM5GKBGi8ylx7qBVRiarSJ2bv50A7dbMpFf66P3fa4rf24jZc38nKjfP866q4ti7gy6EIIqiq55Xp9MpeZ7fl7zeaVwtIVxrX/JatwfIJy2cjT8wbwgBSGse7dkPMddStrwapjNjiir8BlpvouyOy5zC5dXJ0gkX13o4Imf16BO4QtvOT2pf7Cmrhx9iMhkxHo3Z3tokzzPCYolSVEA6BbY3L1GuLbFQK4JXtHLVsvEqs5JY3KpZNJ4vHJcRWXt38VgGoMe7BCyUXUZODKAnG1utfMfIHbIO2q0w6V/k8maPpXpItV5BZH3zN5EO5JkpZq1mXWRjtFvEVVNK5SqlUgpLDc6MztIe9tBaoDQkUnM2Ps9lf8BK0beWJLm1CQDcMlI64OUMBhN22ttUDn4KVXkcved5ni3DXyvJSymp1+vU63UefPBBJpPJfI/n7NmzeJ43Ly6zLLtnBeX1JK/3bUPux53E3g+04XA495dcXV29o8P4jQpKlY5RF3+ftbVN4iTlwOFHKAQBs4NHIio0qwUG7QV6rQkaH9dVVFYPmTvwG7twHjUFr8GJ3p+wIyDSip7jUFITvjE+zeHtFm6xQSXo4EVN2hsvIwo1jqyUkH64O0mMW7ax1zINwLhlisq0zcMfWcBjxKUzEzw3ZeXhZQ496JgCMpuYx6RzSwuUtmvtgtTWQDwBEZDEQ86v9YgKIcsrD+OQgyiaA5XXAHK7HpHbzw2F8CsUPYy8Sbok8YjhOGMybDFyFXmyxla3QbkwIYjqyGxg8+3E7JQ7AY6agl8mGe2wvjmgWRI4rkAkLWM3lQ4QwkEd+KsIDfIO1fz30lYpiiJqtRqHDh0iz3M6nQ5f/OIX+bVf+zW2t7f5nu/5Hv7aX/tr/NiP/dgt3/9nPvMZPvOZz9z0z//Kr/wKR48e5Zd+6ZcAeOyxx3jmmWf45V/+5fsF5Tdp3IyXudaaM2fOcObMmZtSddyq5HVjfZ2Nr/8Kq1XNwtJB1tcuMhnm9FoppVqIdCPcJGdnR9EcpkTVpl2dapg84DcgG5K7VSrFLuGxx5kONulPcjqtlxB+jUqoKZSXGLTeZJI5HF2p4hUL1tIuouDbZptK7MqUtmq6zMrjFdbXCVN95ZaAbWGTKjZDi3w054Ngz6XmLNkjlyW2Lr/KVAUcXangBAW7XjWzQamYFQenYKefPkIrCsU6hSKwsECWZozHY4bDIe1uD+hRKoYUy1VKIThuGdTYAtV6CK+CTPtorwhxn/XNFgWZEhWqiGyCzhOUExpFh1dBpANYeBpKR2/6+XtrzArKd1LF0W63OX36NK1Wiy984Qtv20Efj8fAnUHL3isKjndV8vpWycL19iWvFlJKpE4QF/4DMLJF1+zNo8xhQmlwpH3TyTmYAeMKaTrG+cT8rKNBKSbJkMsXL1CMKuzft4BwXFOEIdFaooSLkBIpPKKSR7G8yIJKSdKc0aDHdmdIlg1w3ApCekyICJGoQhOpDBZe6sxAGkiNjFXnlvSaoV1DF9RuCVCgw3lHx9BdYyPnzSdGCpuN7O7mGO2WGHQ22Nxus7zUpFIq2b+D6YyLfGQIjFnPSFTT3q4xt/AQ+djKLXwW3AKPFB/Bz6aMHR8vHjPRLsO1c5wVO5SKAcViSBjVcEjmJMPuGDobZ1g++EFKT/7PKC3mWvWZRHn2vAsh5vu013pTh2HI6uoqq6ur5Hk+n16ePn2a8XhMEAQEQTCXWd3tncqZXOFa9zsaja7thXo/7sctxMbGBi+99NL8w+h6RsU3E9eTdGmtSc78n2y8+TzCiziy2sTxhbUAMbRrX8YUCgkPPBbQa4HKc4qVEtVmBlpAMto1msZDM+LU9CwFINYCFxgj6EVdDix/G6PRgE5vQNy+jJQhFc9nnIcUNUi/bnKPLeDwqyaPuxXAwCkkmgc+cpAHnnJsJ943haTjmQOOV5ofkMwBrLrH/80UrPHgMpc2ejRKDo2l/dYs2zP5FXYPX47d25nB3PyqhRAZf0m/ENFwp1A7jFK5OTyNYtZ2+uRbQ5MfS3VKRQ/PrzCzEZlMRlxcG1CvVVhYXEQAyimgEKBS8sYnUU4Vsuym8uP14l5Cy/b+HsdxWFhY4Id/+IcZj8f863/9r/mBH/iB+eHpnY4vf/nL/KW/9Jeu+N6nP/1pfuZnfuae/P778c7HW4vB2b5kv9+/aVXHzUpetdacPn2a7qnf5dGFmKi2AknHnAPzPo4QeGKMyYEZjtCm0aZikydJQRTQdiCxEa/xZnKObyt9En/xGBWdkOtDTAYdusMJ7UvnyfGoliTTPMBJ+shC3XI59gwhkvaV17Rj1Xk25+Wj3eLTUvlxS3YSWTePq9Cw+5amOZiKMpcvnkU6ZQ6u1nG8ImQjtFOCdAbfGZjzdjY2Q5xsNin1jMzWCXHVmEqpRCWEl2o7VFIfJwnotjdZjzVR4FEsVSlFDn6halZL3RpZnnFpo4fjBKweOIx0C+hsYnYt8xHKNcWkClbIaseRdqhwO3lu9vn6Tqo4lpaW2NzcpFqt0mg0rthBdxyH3/zN32R5efmOzq3vFQXHe2ZC2e12ef7552k0Gjz55JM3pWkWWrE/+zI6KUJQtsRUQ8qaH3JmlK1ZJ2XPVeRTU1vmEyuLGtEfpWyvX6CxuEKjEphiLDF7lzqegW86tkPSRrtlZNoGr0og+vS1ws27LK0cQ6R9+tOYwbmX0U6JcgBBeZEokGingNQTwEGI1JCrtIdQCdoNELmdQKoMLYPdrhKxXUROzFWlxgRWa5QIaLc6tNtDVg8+QDEsoIS1LXFLxtvMaxgs9Pxaw2hfK5i3lsZIbFPKxaN8d3AALXxDHRMGzayXNZNJzHjUZ7OToDbP4IdVytGEVDn0O1usHHiE8LEfB+HMu+x7JcozD9LZ/5/FjaaXjuPQaDRoNBo89NBDvPTSS+R5Trvd5syZM/i+P+/+1Ov1W9LGXytutFA9HA45duzYHf+e+/HnN7TWvP7661y8eJEPfvCDLC8vc+rUKZIkuaP7vZ6kq3f6v7J56uuUK/vYt9Qwu+FY78Q8MTs4wiUXBaKoQFC2klTHwmNm0ikB5DlKCnSW8D/VfpBx3kVL1+YvlwpFfCcnJkYlQ5abZbxCifGgw9ZaB6GmBKU6pcAlrDRwdWKKw3xs1hVUbAu7id3HmYJjc75fM5NHuwtkrspOGi2ATRsfuOGwz9p6n4XmAo1G3f4lpNnRnBWo+RT8yByW/Lol15bN58BsT0kYy6XZJFSqKaVShVIwRO9bJh1tM4glk+4Ftjch9DTFqILjSNqtbRaa+2hUfPM40wHSducpHUYufQKNKdJuNT++Ne4FtAyuTzEcj8csLCzw0z/90+/445jFxsYGy8tX7p8uLy/T7/eZTCZzOu39+OaNvefH0WjEN77xDYIg4Pjx49f0RL3afdwox84K1az1Ih9YVRSCQyYf+XUkQ5yoTLk+pdPKCQojktilvuQSllx7JnVAKZTWaC1AZXxh8EcMkh0OuUsc9lZA+jjEOH5AMtkmLDepV8sMJ1N2WjtcTnJKxSFhuUYlSvA8YyuivYaho3p1yAwUctb0epvyLWnZa9sMK7KWpdFaCBAZcQprly/hB0VW9u/bXUt0Igs7s0X6jIdhhxy7q1mxaeJlQ5OX0y4dMr7e+2OkW+H/Xf1hZOMgWTJmNJkyHrW4vHMB6QaUQgev2KC3cxmv2GRlsWL27rMJQhZwdAZ+hFQa7S2Srf5lpOPe8oBib+R5/jaf3nciZvnxrdPLM2fOMBqN6HQ6LC4u8sM//MP81m/91i3f/3tFwfGuFpQzycJsX/Khhx7i8OHDN//kbv4RBTEgF4um8JuZtzqVXV25ysC32nAnMBNKx1L0/AClL5PLClLAdjel195m/4GHKUXB3NtGezV0PkF5NaSKwW+Y6aA3A+XU0OmQte0x+bTL/iOPUhAZurSfcjZGLS8wHXUZjmNa25fYzHKiYokoKlAs1XCFnR5mM8uRvpkizhNCZ48Utmg76r45VAEIB50lbLcHTIdtDh16iMCJ0QRIe1uZtOa/AyERMymEE+zxSdtrdRIgE0NtFCI1k9MZzloWiYKMYrTCYh4T55rxsE+n3SXJc3zXZ50PU+ln1OtvP2jsPRDNJpZ7C8y9MoTZm/168tjZcvRMZtVqteaH8VqtNi8wb1eWeiNT2slk8r4gdN2Pdy+SJKHb7fLJT35yLn1xXZfJZHJH93s1SZfWmsun/ozpyd9hcekwtZIEhJWYzsBlJesb6Vs/x7r1NyvZ4q1mJ25F0CnKC9B5iigUKWpF0V+0REPjv6txae2s0+pOWNl/gFKpDjqmVG6yqCZMEpgMdmj1M/LtU7jFBtWgS1jdR0H37P5R104ezY672dssmq9lYORTc5WKxfOr3a55b5jQ3r7I/v1HKQf2M2Yu3xqYQ1M2NPeVTawnsd1lF8LIbmf0WGEBF7P9IzeynzXGEsUv7aMZ5dBokuU549GIdrdPPOmDLBEnKb1piZKIcbwyZFNzHyvfj7T58q0NuNtRd9yoGXY34mYo2Pd3zO/HncbVJK9ZlrG1tcWLL77IwYMHeeihh+4qBXsymfCNb3yDoujykX0bOO6eAYVKQQRIN+HA40fxz7eYThS1yGHpcB3pgpGcKpRWaJuXzmUX6KYthBD82eYXkKO/xIGH6oymMdsbl6k1FmlUI3A8igUFjVXS6ZDhJGPc36C1keH7LlGpQqkUEQQlA7pxzPkm1RHrr7dIYk1z34j6Pqt884zXuVlVmk0sk3kOm07GrG1sUq1ENBcWbDNvZgVSRKQjew4150Rjj1KxP2fvSxbsWTvCNPUqfLX73+lJB9SQk/kaj3tP4AYu1bBGtZahcJkOW3SHGb2NC+SiQCXr0x96REGC61t5Lgq0h1Qx90STuQABAABJREFUevWv4kdGFXatAcXes+P1gDjvlu2c67o8/PDD/L2/9/f4+te/zh//8R9z+vTpd/yxwDun4HhXC0opJWtra4xGI5566imazebN33j7GUTrWYSQiLQFwZIlu87G/1XTkZkvRFdMh3nm72VJekJIVNLl4uaULO5z8PAxAk/bDrSh86lsgpY+Umd2pzFFy4K9FsnShEuXtnEcwerhR3Acx2CghTaTQeEQlguEFSNbjRMjjW0NJ6zvXMYrFKmUEoqlOiHCSmEztN+wU8UaaLUrhXVKFj3tgnTRWcyl7SE6mbBy5Ek8maJlzZpjlxFWgiC0MsWn9A1y2S2Z5OCaHUvtFs1+pzSTUgAtHFNw7vXWTLumOE17ICS+lPQnPbSAoyt1xqWPspYf5LXXXiNJEhqNBouLiywsLLzNr2f2Zr7W4Wnv0vTVDk97E8JMZrWwsIDWmvF4TKvVmkMibsag+2pxMx5C9wvK+3EnEQQBn/jEJ6743p0g7WfxVsqrUoqTL30N58L/yeqBBygWXCtdMv5hc3Ps1JBIC4zQomQp2TO/ycpu8Rm3DIUv6SC8KmJOVG3NyarKKbGz/hqDWHJ4f5VCceZXWTSofCeg6KcUF1dpNnOSfB/j0YjhcMzWuXM4nkcpiimVKoSeQPo1uyNfM/8o1/rXSteuBig7FUjB9dH5lO1+yqC9xb6DjxL52k4ah5b4PTDT2XyEKULj3X2jmeR1Vngm3V3IhhuZ7zsFc19gVRyJvd8ReBVcNTKk6GmLlf2H8UTKcBTT3bnM9nSKH1UpFX0Kh3+QomekX299Dvc24Pb+70bTy3sxoZy9vt5Ltkr79u1jc3Pziu9tbm5SqVTuTyffJyGlJEkSXnjhBZ588kn2799/W/dxrRzbbrc5ceIEK4slHnZPIbRjrZEKxr/RiXD1gEz5BE6PQ48s7KoZ1ASIQE3JCdBqinAKQM6fjp8jFhIlYBIO+OpLb7K5cYDKAc3+/UcolyNA2zxWAK3wCiH1gqZejVBaMx6NGY1GrF/eRiCIopBiVMJzfL7xRxcYtCZoLTjjwGPHj3DwwQo4wpwbhQP4tjlmmn6Dfo+19R7LiyvU6gu24IzsJLZmJK9eHWbnxbRvp5xdU8imPbt+EMPMa1PntLMha+PX8BxJkCu+1P0Kjy4cRPpV20QLkJYoOx5doNJYpVqtMByN6Q2GbGyN8fwC5SgkKlUJCw4sfCuUH7riObzagGJvnpz93FsHFO8FH/OZZcjjjz/OE0888Y4/FnjnFBzv2g5lHMd0Oh0Ann766Vv7B/RehZ0vo/06nrhM7lTA7hOS9uceO0ZrbjXnyR7tuV81yHavii/GrG12KMiY1SMP4aiJgfqkXZRTNAcpp4jMDJ5YZH3bhRmD8JhOu6yvb1IsFllabJhpXja2h4ypLbxmJrNmbzGQI4Jmg2a1TyaWmfQ36Y8n9HcuoUVIuewTRlWiMDB1o+MZCeycChuZIs8pkiVDLq1t48qclYNHcRyF1qZLrzGHRS2VfcymABYqRTtmL2l3X9PSs4RjDkXkaOEhdIqWTVPgenUEyspkMXI4JJvrlxjHPocO7sOtHqG6+oNUbTdxOByys7PD+vo6J0+eJIoiFhYWWFxcpFKpvO3NfL3kcLXD07WmhzOqVhRFHDp06ArE/cyge4a3n6GdrxU3KihHo9H7gtB1P97deGsH/m4UlHvvI45jTjz/DWr9P+LIoRW8gvUuEx44rjloSN9KmwogIHMqKO3sAZo1zNTPM11v5VbRKkX4dYROd/1/3RLkUzJRYOPimyjtcGh/E88PTUd7JhlF2iuQZ6AVvnTwI49aZQGVlRnHOZNBm831LiKfUCg1qYSCoLKMq8a2STgr+HoW6NMFt4xOuqxvD4gnfVYPHCYIHMOq0DYnCs8ciOYTB0tJdGeTx9D+ey2op1A3X/sVux1QNtNL4e3i+f2ilc3WIBvT7id0WpvsXzlAsRhCLglKTRayIakoMult0M7+/+x9d3hc5ZX+e+/0Pupdsty7ZEm2Mc0mFIObDAmksQayYVMw2QQSEsiGbEhC2MASCJCQ8gOTtjQbbDDd2KYZbKvLarZ6m977zL3f749bNJJVRlYzMO/z8AhJo9EdeebMd855SyraW/2Qd36AtLQ0ZGRkIDU1NSF2x3ja9InYFdOBiVyw52JDuWHDBrz22mvDvvb2229jw4axs+qS+PQgFouhra0NLMvioosuOuf337EkAb29vWhpacGSRfNRQD4GIlIAEn6hwGdLshGwMj2ogAuQ5fA1SEgTMABRJxhaByrGObvSMRfaGRtI1AKKlkDPMPBJJPAvOg3ThwYsWl0InYFngtBKcFmWMu4jZKI/CA0GWqMWWgMLAiAU8MPrD8Fud2DgTAgeuw+EUkKlisDvl6OzugN5CysgiXl4Jppr2OLFY+2C2RlGfoYGGqMRYDgWBVenFbwmUg0uY1PLybOEM6DwkZaCO0DGRGkUaDUOt78Oj1ECPcvCJ5FCx3pwfKAZF+Qu5R5j1INAIASTyYSMFCMMaZw3iCLFgHQdjRidi5DHBE8wBnP/GYQpIyIRA9KZAaSnp59FbZ7sgmI2TB2F6xgvdi4+ueDTjDnZUAp6ScGtc1LNZKAPML/LU60YMLQaLMvwga7cih2E8Loalgt2FQJeBeEx//VgwIsQ0UAnlyMnfxFosIBUCUJiIBLuoASZARRheGMIFkSiASgWIGp4fV6YTVakpGYiLUUvUquIVMdtAGUGrvGT8x9lRn4jaADFeEGkWkhjAegMGdDpoyAkFcFgEH6/FzarFdZYEApNKvQqCip9NqQxoUnmaKwxvxl9JifUCgqZ2XmgEAZinKEOoiEQmXbI/TXqAJHqQUccQ+Y8FE914zMrqZhwOOOcYukoT5NlfABFgaIkXHGRcdtdzgmsFRFWjuJcIyQyKdjszRCI9/F5PcXFxYhGo+LGsLa2FgCQlpaG9PR0pKWlTbo4RKNRRKNR8evjUb/iLe5Hs3YWgmnT0tJgMBjOmvJP1FAmN5RJTDcmyulNBEJD6fF4UF1djXxZG4qzCCiFeijyQ4z+4GOTovz2MBqAlIpxmV+sepgWnVAyECbCufuxUVDg89UkvCGaVIZwlEHfoBUqhRpndJ04GazFteobQLECVZThGlnhczAAJLxzNEeVpRUaaOVRaA2ZSGdCCIYJgj47rJ4IGGsbZEo99Bo/1No0yGMBUBI1v0WQg436MGgygWUJCvKyIZVLOSorn0PMPVYXd/gLO+I2qxogEr95pIaMeqQqbmAomv4IzSwfN0UrgYgXoGgQhGG32eD0hlCQXwClhqOcQZbC04YNkIGFLGM+9MU3ooBSwul0wmazobW1FeFwGCkpKeIAbuT75Fj1MZ76JejDYlMwrpgIEzWUPp9vXLf2RODz+XDmzBnx887OTtTW1iI1NRWFhYW4++670d/fj7/97W8AgG9/+9t4/PHHcdddd+Eb3/gG3n33XTz//PM4ePDglK4jibmDcOAWXLCF88JU3ntHbijjUwbKy8uR4j8Kp60ObgmLeZIs3ima5eoVJQVF0YiBH8LxZ07IU0BYBqw0BYQJAfI0/jyYAleoER6JBDqGhV8igY5l4NVFMU8bhkyhG2LXRUf5KOXNduQG3mFVDYqNQKUxQqWOAFnZ8Ay0wxQGFCoWLp8KUoqB06OExx2AIS0VFIlwZ2AmBFZmhN3cA5c3jIJsI1efYl7ed8TDpwnw9Y9EuEEaLePrvJKvg1qeiaGL07tzme6ECWNQYYcEgJeiQYHATUvQ7u/DBTKOjeP1hDFgciEnMx96YypHyZWncBtRqQ6SmB8aQxo0uihApcGTcT2s7hh6e3tx6tQp6PV6sT7qdLqzmrKJFhThcBgURc1ofQTGX0rMxcBtphgcs95QCpOfRYsWIRwOT+7AFHYAPc9xL1o2BlAyyBHiLeOFF0CEt1CODJlMgJ/yUFLuRQEaXq8bJpMZcppGqiEdNBsSqVKEjYKFDDSJAqD5jZ6EM5iQKAEmAIc7BKdtEFnZRdBpZSC0gjPU4QNcCZ+hRiRaADH+c5bnr3M5kaAojjZA0QCRAZQUKokKKkMW0tkYQhEWAZ8LNl8IEXsnZHIV9NooNDo9SDCEvkE3jHoj7zBKgVDs0GPls9xYeRpHX5UZOT2oVMdNmCSCRjQGUGqu0MhSQbEBjtLAhrkmE4Tfcsq5mBFZCijGgxilhqm3DYSWoTA3AzRNgc2/jjusjQGZTIbs7GxkZ2eDEAK32w2bzYbu7m6xOAjUWK1WO25xYBgGp0+fRigUQkpKyqSMK0ZaO8cH0546dQoMw4jby7S0tHGLgUCtTWqEkphuTBfl1ev1oqenB4tzJSigQwCdzk2S5WkQIz9IFFCkDTU8vNkNRTkRo7VckyczAFEvWAlH9SRSHReNITZXQ01W0GNCn8WHNJ0UdLoOnZZqeCU0+nz1KNCs4JpYeXwj5+Dv38E3Z+4hnaRMA4TtoCQqqKURqFOMSDMSRJk0BAIBeL0+WO2dkEkoaHQp0KqVkCpkGBg0gZJokZ+fCYlEGaf55B87iQ1Fg4hRUryzrEzLb2xlcTRWLW/glsLRY2U67lBF87oqiubYXmBApCrYBjrhDVGYl2uETMXThmkFQNz8Pw6/0Sy8CpBqIAHOouxbrVZYLBZx6CV8fzTK/sjDk8lkwsDAAJYvXz5pbfpkINTHsSbs01EfT548icsuu0z8/I477gAA3HTTTdizZw8GBwfR09Mjfr+4uBgHDx7ED37wAzz66KPIz8/HX//612RkyKccgl6ysLAQxcXFOHTo0JS28PEbykgkgtraWkQiEWzYsAEq30kQVwNe9R9GLGLHDVnfhCYa5gdSbkCihIT1gyZhrqniySUsaHBEE4qLURMMDcFgje4SFIZW4sShbkSjYVCUBNmEgizDAKVGCiLlmypZCm+2Y4wz2+EkW1TEGWe2oxfjPKiIAynpGhg0A4gwKhjUIfgDUhgMYVhtA3A4+qDSGqDVqKFSaWA19yEYiKCgsAgKuYK7eFrPudJKBdMdXj5Aorzzt5Aj7OfNd7hhmkiBjTp5yYQbgATz310JRhYBy0ogoWOIMnIU5emAZSw89n6Y7CHkZxuh0XOPmzuT8md3iuZqLi3lqLlZV0JvKII+HViwYAHC4TBsNpt4hoyXPKWlpUEqHd7ejBzAeTwenD59Grm5uVMy9kkE4z1HP0sMjllrKFmWRWNjIywWi6iXbG9vRzgcTuwOYkGgdy8APluMlgAgILQcLCF888jyHwnXXFIAl0VGuBcJIQBYDNotCLrcyM0vhNXcDwp8Ng+tBBv1g0hUoBnOgp7TDeq4mA3+4GN2hBD2mpFXsBgqaQSEUovmN9wkic+QlAhiYil3bQCEUG0uZDskRnYMZUlyv4NI9VDRPihT9EjTyxAjRgT8HgT8LvTbTaBIBEpVCjRybiJNMz5OE8m4eVqrBwRS0KIWUsrTV1Vc7Ait5mmzSoCNcFRXNsy5kInUVwUIeLdHEuEKBokhysrR298PuVyH3JwCUBQLNm09oM5P+PlAURSMRiOMRiMWLlyIUCgkFofOzk5IpdJhxSG+oSOEoK2tDTabDWvXrhV1medqXDEymNbn88Fut2NwcBCtra2QyWSQSqVwuVyj0nSTphNJTAemm/IqDG1cLhfKVs5Huns/d/8RH79p9AJSJf+5CmDiNIUSbhNHKBm/mUznBlQSNUdxlaWAhtCQxYaaUnkqnE47zBY/crIzYTCk4x33a3BLpJAQgiPhRtyoXgZKkco1UzIjd4CQG0T2A+fCrQIYwXU1yh9qWJ6qSgNsEDK5BgY6BkNKEUjEDX9UiqDbjH6zB5IYZ2yWoWNAWAZg7Px9evmIkAAAljusMNHhm8eYlzcBEuJGXLxOyANAAiAoHh65w46SOzTSOoANg5WmwDTQjVBYgoLCPMikcgAUd9+CmQ/4jaxhBaBfOupzQaDsz5s3D7FYTGR3NDQ0gGVZUZuelpYGhUIx7OdNJhNaWlpQUlKC9PT0SWvTJ4PZYHBs2rRp3AidPXv2jPozQp5rEp9+dHR0oK2tDatWrRKH0gD3vi+Tyc7pPoUa6/V6UVNTA51Oh7KyMkj8ZwBnHU6zLjhiDsQkNKr8J3Gp4Yq4pioESNQgrKCr9IOVKLitJCUDRbHckIrln7cUBYqw0KhYFCxkYO+RgiYsNCla5C/SwNrngVojgS6VW0Jwxossp2Uk4DeghGs242PmhGWBTI+8hWG4rLkYPGNFOCyB3kBh9cYFMKSrEQoF4fcH4LAOIBIjkIKBMS2LGwpKaTF2iTOHFLxGDPzmUQ0x95LE+MEc4RmBiEsL4K4RUm57m1uch85GJ2TSKMJROVTyEHIWFsNl64XNFUJhjhFKjY6ryyD83yvKmwC5h6i5qeWAYXidVCgUYpwcy7JwuVyw2Wxob29HQ0ODyO5IT08/q/4IjJ3CwkLMnz9/0tr0yWKiDeVUc8zPFwbHrDaUDMNwkx9+pToyh3LsH2aAgVd4Bz65aLYgZOuwhOIOCyQa5/LH28BTKn7KQoNlojhuasRx+iNUFnwJGlUKTFYPGEoKVqIHSAysLAU0OIdYwRgHiIGVp4GNhdBv9oMwEeQVr4ZUQkBoLdeQyYwcdVT4KOW45qDjMiR5sxuxqZMahrZ+/BRKyJKkmCDnwMpz0qUSKfRaLRgiR8DfC316IRB1w2QPgDbXQa5Jh07lglqbCikCAAgoiuboaXyRgKgp5RpfURMKitc0RfjberjGNubkriXqEItbJBJC36AdOiWFtJxC0IwLRL8USFs3peeHUqlEfn4+8vPzwbIsnE4nrFYr2trahlG/0tLS0NXVBafTiYqKimHr+XM1rohHPE133rx5iEajaGlpgdfrRUNDAwghw7aXMplsxhvKJ554Ag8++CBMJhNKSkrw2GOPYd26qf29kzj/kXB9HAWxWAz19fXw+XxISzUiLXyM64EoKZd5TQhPX4qrlbRgc0+JOkcpQiBEBkQ9YMHRPilaCioW4n/ez3/0gVBS2K1meHwBFOVkQKWWwxPuQUegCRq+AwtGTOgNtqJQWQzEYoCU4bST4Oz0Oc0QzTe8/AEGYYDi3WWlGn5angYgCsjSACoKSpEOrYIBTcvg9PdAZSyAVELB7vUjbO2CUqWEVhODVqOCXKrkXBEpOUDCXEQIE+AOQ8LmMern3V4FaUCMp+IqRbMdRD282ZuLowhHHGAhxeBgBwgTQ2H+PEhJEICUO5zJ9UNmPvxkH1mXjfbPdxakUimysrKQlZUFQgg8Hg9sNttZ1K/09HRx8l5aWorU1FQAk9emC/+fCCbaECUHbklMB1JTU3HBBReIesl4Hdy5QogN+eSTT1BUVISFCxcCITPQ9zIIJUOt+zAoACqWQXWwHuXqUmikafzZUw2KDiFKaQDQYGVGTiYlNfD1RcIPjyhwCwUKHo8TZrMF+YtzsHJtCthYBN3NTnSfsoBhAJmcQsHSDGQWavmfI0MfWf4cKQ7XhIaT8MsSCpREhhWXzMe8VVmIRSlo9VJIFZzzqlKng0QRhDvAQqUG1FoDAj4nrHYPVHIblNp06JUOKLTpoPmNI+f4L5juKHgmoIT7fYTlaz9v+sgEOEYeG+AinZgAVm2aD7miA71n/NAqgIVlRZBoI7C6YygoLIZSIcXQwoXfhEp1/JY2FWBDIOp8IOuKUf/9BNA0LcbJLV68GIFAQFxQnD59GkqlUqTGUhSFuro6zJ8/H0VFReLPT0abPpkBnHAfM0l5PV8YHLPWUMpkMpSWlp5l+5zQBH7gVcDTGkeN4twFIdNDznrAkrRhroIcLWC442ssYEGPyY1ueTUIRdDi/wBFmhuggBeEMQJ8Rg8d8/AZky5uexhzgUjViAWs6Bu0QyEHsnMLIKFCIAxXMCiWgEjAZ67RoFgGRKIQaaNgQyC0EhQJiZmSXIZkhPuc1zByVFglR7uV8EYPJArCH/isrig8bgdyC5dDrZQBVAbSCItwOAaf3wuHz4sB6wCUShnUOgN0GhkUylTQYECkgqGOEB5uACEAJZHx9x/j+O+Ici6zJCoGjHO0XAlCwQB6B9xI0euRlpnHPT5VHkjOtml9rtA0LTZsAvXLZrPBYrGgtbUVFEUhNzcXwWAQCoUiYWMfQsg5bS/VajXkcjkWL14Mr9cLm80mRt3cf//9SE9Px+nTp7F06dJpt+h/7rnncMcdd+DJJ5/E+vXr8cgjj2Dz5s1obW1FZmbmtP6uJM4vJFwfRyAQCKC6uhoKhQLz5s0DO/A2EPICtIZ/s1eJByJuGyiPayj5rR3LWdwTiRYMAVhaBULRoCSEozbyBxguj4wGQ6QYGDQjFokir3ABFFKuflV7GxCiACVLEKJpqFmCY8F6FMryAPlIHWK8uY5rqAGT6Yaor0JUSIwfcrE+7oADAp/PA7PFgexUPfSpRiAWQEZ6PmJBF3xhGiGvGd12GkpJGEptBrQqCiotp2sHpNzfAjT32Cgp1zwyNB8zFeZzL7n8OU6vb+Sn9AaAohGjgN5+E6QSJXIK5kFKxdHFFKlc4yzTg5vka4G8bdx9TxIURcFgMMBgMIjUL7vdDqvViq6uLrAsi/T0dESjUcRisQmpX1OJJQEmNi1LSgKSmA6kpKSc1Tyea40EOAbH4OAgotEoSktLua1n1Af0vAhQEnQFW2Fl3FARgjBNQ8swqArU4lJVmViTKIqCNOYEQ3KAiI2TCTBebiAvbPZIGIRSwG4ZhN3tR35OATR6I8DG4HSyGOgJQaHUQa2k4ffE0NPmhSE7DQoFnzbAhkVGG6RKbtgl0wJRHy8L8PG0U25ZQEed0Bp5J1aZUtRhRrwm9A56odNQyMgpBkXCSDUawbIR+Pxh+H0e9LpCoCgX1GottDoJtGo9aJriKbsAIB1qlCmpKI1A1BtHy+WvRaKGhPFg+QU5WL6eBWEZWGxOhDxuFBUshIIOgoCPxYv7GURcPMOQ4ZiIudt405/EoVarUVhYiMLCQjAMM4zdEY1GodVqIZFIEAqFEk4eOJfcdOHn4+9vJHw+35Tr4/nC4JjT2JCEKF2W9wFfO+8uyL+Z81mQYIJgZAbImSggz+T0LYKgV/goS0HIZ0XPoBMBjRmDdBAalkUzBrHGfwYxWouAxwypJAdK+ACZhjPOkahAxfyARI6Qz4FBkwU6nRbp6ekclYGNgZLQ3FZPogQV9YnbPYHfDqkgqtaDjjr4bZ8zLnJDCiAM8DpF8BpMzriH3yLyFvWDNj9iQQeK8udDLglzBz7CAmChlMuhpCVISy0AG3bBF5Yg5DGhz0FBToWg0qZAo5JBpVKDlshH2Vo6hjaREq7x5XSWKq5plOoR9FrQa3IhI0WLlPRszqiIloLNuYbbJswQBOqXSqWCy+WCRqNBUVERXC7XMOqXMJ0fSf2ajuIQrxHS6/XQ6/WYP38+AoEAtm/fjoceegi33HILNBoNurq6zjrATQUPP/wwbr31Vtxyyy0AuEDagwcP4qmnnsJPfvKTafs9Scw9RmrQBH0PISRhBzi73c5Z3efmYsmSJTC3HQEbqAMylgJRu+g+yNUV4XOhzoz4esQFCgRMwAq/XwmNPAZKboyLX+IMImIBO3pNHsglERQWLYSEhESXQIMiB/NYD6K0FDLCIAIaOZI0XrMY5fSIYLhDCcvGaRmNXLMmNG9iE2cAQLgpNgGn66EkcDqssNh9yMvOhVafxh3m+PcAqSoNRrkf0C9AZiyAQDCCQMAHs8UH1myDViWDSpcOjQKQKI1DTa6Qexlx8HRZB0+3DZ9l0BML2NFr9kAtjSAzdz6omJPftrLc45IoOIqcoDNNLQe086fleaNQKJCbmys2lkuXLkUwGByV+qVWqydtXDHydmPVx7GQNC1LYqZwrrIAhmHQ2NgIh8MBmqa5ZpKNAf2vcnVHosapaA8iFI0wRUCDgoem0Rpsw6X6L/DMhhTQAQuCjAI+5yDUhkzOOFEqNEncR0aig62/Bb6IBPNz9ZBpePMdqR4I2QEG0KjCiLIaaDRR+LxSxMIhKNQGiBFEgr5bGE4Rhv8Y4z6yUc54kuF1l3xOOvizZNBjRr/ZhTSDAilpubysQQYwPtAUDb2ahl5tAJCKUNALXzAGt6UL5pgEWiWg1GVCq6IhU6aIVF+QMMfAY6P8MoLw5pjgKLOgefMiGiwbQ7/JDCYaQ968lZDRMRCaY4Zw8SO8vIJEwUkRaG7jmbOD0/ZP8TmSmZkJiUSCwcFBzJ8/X4wsbGlpgVarFeujwWCYVH1MRJs+kWlZIBCAwWCY0mM8XzDnDeW4dIVAP+A7AyhzeI0Kr9OhFDztKRNwEISkKkCZyU0xBAcuwk3aHXYbekxS5OSuwgGmHtaYEgwFUKCxDz34csFXYLc70G/yQSpRQG80wmicB53OCJoGbA4XeixdyJtXjvTMNBDw2k1Kym38IAFFEbCgOWIDxT1puBxKPo+HonnCFw1C8R+HfZ//yP8nfI+AQizGoKm5GYyUxYoNKyGVK8FSGLq94NTK/wwFCjpQ0FEU0lgCl8sNq92GVpsdYWcEaekZSEtNR0ZmJhQKJf/ziLvG4SDghPCNPY1YsnoJjHl5IMCot50pMAyD+vp6hMNhrF27FjKZDHl5eSCEwOv1wmq1oq+vD01NTcOoX3q9flqKA8MwozaJarUa119/PX72s5/B5/OJ2s/pQiQSQVVVFe6+++5h13/FFVfg2LFj0/Z7kjg/IRzSx3r+xYMQgp6eHrS1tWHZsmUcdTxsh8pzHA5wlCwu+oIdisCQp3GNkSKdo5fKeSoXTzVipSnQ69xwsBmwmPsQY+XQq11Q69OgIV5IZAaEvBb0md0wqCikZy/gHKGlGs49VarGGmkh1qQs5YZ9EiW3BaRlXDNKScHpEfl8NMICLM+WoLnBl9i0SbVxzqxe3hCC09g4TO1w+hgU5aRAqdFy36dkHH2VUEOaRVoCWqqG1pgCrT4FhJYjFPDCG4zA4XJhIByFWumFRqeHVh2GXGHkPHZkem4qL5GD01Ay3P2RCCBPRTjsR++gB1q1AplZhdzPSFT8BjUMyJS8mY+RuyZFOpD1hWl7nhBC0NHRgd7eXqxdu1akBI6kfp05cwYKhUKkfqWkpIzK7gCGm5VMtL2cyLQsGauUxHRgtKHauTSUoVAI1dXVoGkaa9aswccff8xtdwYOAt7TotP15dpLsEa+CKyUN1yk5NBRaoCnsxKWgVxtgN7AwuoOIGbrgFKlhU7LQKs1QkYIIpQeg71dIFCjKD8NEoWGX3QYgZgXMl0q1Go7PF41tGo3XB4pjIYQFGql2HRyJjw6jnUn+nRoucGeVMO7qiq4Oink79Jy7jqlGrg9HphNHmRl5cBg0PMSLN50h4qjmvKGOEpdJpTqIJCZh2jABl+IRshrgtVGQS3th0KbBp3KA6VaxzWVAHefLMMNzqJBXovJpRKwIQf6zB7QJISCgvmQULxJkVCXKQlAq7kGlzCARAIgBmIoB4yrzv0JEwer1YqGhgYsX75czCstLi5GJBI5K3kg3rtjpDb3XHLTJ0ogCAQCyMvLm5bHOdeY1YZypOnEhHQFdR4w/5Zx79PjawYA5BYuG/Z1wbil16JG6fodOKM4g309EdBIAQUKLFh8CAu+UFSGBUsWiLo9i8WCrkErYr0xKJVKBIM6rFzzVWRmZYlN1EQfpwuhUAg19TVQKnOwevXqSdMpaQCpWQakZhViMf/GbrVaMWC2ouV0B3Q6neiqOprlMgAMDAygubkZK1euPCsIdTbAMAxqa2vBMAzKy8uHvcDjN4YLFixAJBIRD089PT2gaVosDqmpqedcHKLRKJRK5aghuH6/HwqFAiqVCitXrpzWx26z2cAwzKgBtC0tLdP6u5I4/yA8L0ejLcaDZVk0NTXBYrGgoqICKSkpIGwMVM9e0Kybc7COeYcGbSJlFUN6STEPkgYQAgEFwkYhl8mQk2EESTciFI3A6/XBYbdiMByBXGFDOBxBaloq0lPTQNESgNJzWzy5gbsvmYw7bFAycMY0HEXWR7xoDbdgjaqEd0IUIkNiPDU3wm0pmRDPRhE0jgHRZZClVTD3tiMcjaEoL4t7fbP8hJsC1ySLjWg8nZaLR6EiTqgUaqikDGDIQiwWgd/vg8/vhMfaBch0fN5lNtTSKCg5v82VqjlbfUgQijgx2N8HozET6UYV9/eMp/FKlHz0CM3Rw0ADeVv55nTqIITg9OnTGBwcREVFxVnUqZHUL4fDAavVilOnTiEWiw1jd4xF/ZpImx6JREBR1Jgh4UkNZRIzhcnqzIXIuoyMDCxfvhzRaBQAQCwfgfK0cayGqBeQ6qCKupGnXsBRSxXqoaFY1A+WTwOQUBJkpqiRmapBNBKD3++Fz+WA3dIPWqYCG4tAqdYgNzsTtJSXEtBKcNs8LXSpQObCeehvs8PlVUCllSJv5TxIZTQIZeTNdoycTErKGZYRiRDhxA+sQPGNHW9qQ7gEBLARON0BuOwm5OcVQy3nvi/koYsDOibAGf+wfP6lIIcgDGSqNKSoAaSmIYuNwef3w+/zodfkBuCBVqOCVmuARi0FLVMPsQh5Yx8m5ES/yQ4ZzSA7J4/LaWe5PE2KCQ5RXUV5Gv+5IgPIunxaniNmsxmNjY2jnmHlcjlycnKQk5MDlmXh8XhgtVrR2dmJxsZGGAwGsT5OlDwwFrsjFAoNG9CNrJFCDuVnAXO+oZyO4G6hKAiIN6S44IILoNVqEYlEsDNlJxgypKVT0kqkSodMCwTd3qJFi1BXVwePxwOlUomGhgb09fWJOYZTyWlJFILrWHp6OpYuXTpl++L4qAxhMmOz2UTdjZDTKDRfEokE3d3daG9vx5o1a0Rzh9lELBZDTU0NKIpCWVnZhFsauVyO3Nxc5Obmjur6ZTQaxel8otQvh8MBp9OJrKws8Y0r/nYCneuzEEqbxNxirOfjeDUyHA6LA5d4wzMy+Bb3pi41gCU+jiLKhHldIK/FiQV5Y5rgkJuqRAY2GuRikEgEFK/5pmgFVBIWqvQ0EKMKNqcfXqcZKoUOPns/gj4vdCoaakMmFHQUlEzHWeuLESBxm8WoEx8GP8aAvwl6WotFkswhcxshG5JWcT8nZkHSvMaRAggLhqXRPzgIsBTyipZARjN8JAdvOS8Y9/BbRM6JltePy1MwlFUMbjJPSSCVMDAo02BIiYCh5Aj6nPD6wnAN9oMhFHQqDzRaLdQaAimthC8UhaXfBGN6IVL1cu5QJuS4CfmV4A94QmObsWFSbtjjgRCC1tZWcZAw0aFEIpEMy+L1+Xyw2WwYHBxES0sLNBqN+B6QKPUrEAhgcHAQGRkZo24vKYpKaiiTmDFMRkPZ39+PpqYmLF68GIWFhaAoChKJBKrYAFibCxKpeohaGh+nJNQPqYEzbpRqwTJhUFItKBKBwFaQKdQwSikYU9Phczthttohl1IIB3zo7ToDtVYLjVoFlVoDiiIAaFBgkTdPhoysNETDBAoVDamS5uoWZBCdrSmePirhDRRpQcvIgtN9x/jPGYDiBnImhxsBrwu585ZDKWV5524vn2vp5redbhCpho/7EMx3pJxeE4gzlJSDjoWg12pgULJgs7IQDtjhCQAOex8GByhoNHKoNQZoNQQyuRLRSBS9A04olVpkZ2eCEjaQUm47SWjOSJPIUwAmyjW5LMM1zvk7ecnA1DA4OIjm5masXr2aj9cbGzRNi8kDixYtEpMHrFYrOjo6IJfLhy0oRi54RltQRKNR9Pb2QqPRjKlN/yzVx89EQ2kNWXFPzz34bvZ3kcakobq6GjKZDBdccIEYfpsjy8GdWXcOW0mP1gSEw2HU1dWBoihcdNFFkMvlCAaDsFqtouuo8MabkZExKq1yqnA4HKirq0NRURGKi4tnpFkZ2XwJrqotLS2IRCJQKpUIh8NYtWrVnDST0WgUNTU1kEqlKCkpmfx2doTrVzAYFItDe3u7SP1KT09HSkrKqMXB5XKhsbERixcvRnZ29qjUL5fLJT7Hphvp6emQSCSjBtBmZ2fPyO9M4vzCeDVSsD43Go1YtWrV0BuZsw5w1ABSPSSsCzGW5qfram4KLUyjpTxliZ+AQ2YAy4TByoygEQMl0QAQLOK5DEeWjcJkjyAYCCC3eBVUciliLAW/zwWvPwR7bz9Ay6HXBqHRpUAjYUDJ0zhaFr9xdNAsOgMtiEgkqPZ+gIVpN4KKBfjmMcgfYoQhIcu7egt6RS1iQSd6zV6oJBFkFi3ijNQk+uHGPRIV50BLCTEfvCMhI+TIjXRqdQ7lXtJKSEgAWiUFrUoDkipDiJEg5LXB4fTAauoBJdODjfpgTM9Gil4BEIE2JuMaW8Gplg0Dcj77Ul0AZGyclucFIQTNzc1wOBxYu3btpIec8W7WY1G/0tLSxBo5GrsjHA6jvr5ejH6KZ3YIz1mWZZMayiRmDImcIYXBS39/P9asWYP09HTxe3TEhuzYR2CZRZAQvkaGeQdmwegx6uJqZcwPhlYBTBCUVAOKhIdqI6Xl5AMyI5xOGyxWH3KyCqA3GEHYKHyBEAI+LwYtHoC1cnmQKhk0OiMkiEKuVkOuCPKGYwHuo2C6E/XwEXYuvgl08RTYIZ0mt3H0ABIdSNSLPpMLbDSA/KKFkEsJQPE1SKoDwHIGOkBc3Aev4aMl4NgUvCEOG+XeL5gAV79jXhCpHnTMA6U6BUqFH0grRjTih98fhN/ngNPSDVquAWIBKDRpyE1XcppIYQMZsXMmlLHQUHMsRJGABTIv4yRsU0R/fz9aW1tRUlKCtLTJ6zDjkwcYhoHT6YTNZkNra6uYPCAM4Maqv8J5es2aNeKWcqQ23WazncUO+bRi1imvw345P12ajOnESNA0jTfwBo54j4BECa7svhJZWVlYtmyZODGId/kUfmY0eL1e1NbWwmg0Yvny5eIBTaVSibShaDQqNibV1dXDpr6pqalT3iQODg6iqakJy5YtQ25u7pTuK1HEb2cXL16MhoYGOBwOqNVq1NXVQafTiZu9saix04lIJCK6VJ4L1Xc0qFQqFBQUoKCgQKR+2Ww2NDc3IxKJiJluAvXL7XajpqYGCxcuRH4+t1EYSf2KxWL4/e9/D7fbPaXn8FiQy+UoLy/HoUOHsHPnTvF3Hzp0CLt3757W35XE+YmxKF0mkwkNDQ2YP38+5s+fLz73SMgCauB1EAln8U5LFJCyPm66HXXx+kYntzETPobtgFQLNmwHpDpIYryTdtQed7DSgg1Z0G/xgIr5UViwADL4AaKBlPHDoFXDoKZAMo0I+p3wBWKwDZyGiaGg1aqgVuuh0aohoWlUeY9xPmSEwMG4cTrShcXyIo5uRUU4jTwiXDQU4Q0fSBSQpyAU8qNnwAODToPMzAWgBLdVEECRwhngCIcjip/igxEds7n7Cg+ZvMmMHDVWouFjSxT8QUrCu+D6QMmNUEU9UGUUIiXmg9OtgMNuhkKhgMtuQcBlhlKXAZ2SQKHLBh11882pc0gLCgCFX+YPbFODQHF2u92oqKiYlsNIPPVLyC+12Wzo6urCqVOnzqJ+Cfpug8GAFStWiNse4fqE99ynnnoKAKcTSiKJqWAsDeV4lNdoNIq6ujoEg0FccMEFwwYbJBYANfAKGMi5s6FUy5vgaLkBnJR3UpVqQCIusFJ+WCU3cCaLIk2T+8hKdXAMtsHpZzEvRw+FlmNpUBI9dCoJdNpcZDEhBKOA3+uEzRWEyeqEUqWHTquEWmeEgqLASIwwt9vgdcegVEaQvSADCjCcyQ4b5g0nA7wO08c3k15AqgYTdqDf5IQEEeQWzIOECvK69IjwV+R1ijK+7g0N6sQhW8zPvU8wYX4oxt+OxDina4rwjSgAmpM2yJRyGFXpMBIGvmAEg/1dkMpTEQ4G0NYTgV7tgUarh4YEOWNIwoKj/SqHIvOibhDDCiBlzZSfK729vWdFJ00FEolErH+CLtxms8FsNqO1tRVqtVr8vtFoBAA0NDQgEAigvLx82NIhXpteVVWFxsZGdHV1TfkazwfM+YYSSMx0Yiz4KB+O0kcBAEeDR7GjeAdWFK8Qvx/PaRbWzKNBsBSeaCsok8mGca6FzV5TUxNisZjYeI021R0PhBB0dXWhs7NTDKOebbAsi8bGRvj9fmzYsAFKpXIYNba7u3tUaux0IhwOo7q6Gmq1GqtWrZpygz4aJqJ+KZVKhEIhcTo1EsI13XXXXWhvb0dzc/OMXCfA5QnddNNNqKiowLp16/DII4/A7/eLrq9JfHYwWs0ZSekihODMmTPo7u5GSUnJsOgYwkRA+l/j6KK0FEJmb5iouf8XKETCYYBvxFiZEYQwgCwFNMUANJe9C5mBe+OX6REJhdA/6IJcJkVO4RLQFAGg4b4vUYHTLcpAAVBr9FBrJSBpeoRjFAIeGxxuN2yWPoQ1MvRJ2hClaWhZBj6JFI2e97EwcyHoqHOMqBA7IFEh4DVj0GJDRooRRqMaFOMfvr0U9ZKCfT2/XRA2j8LWEjRAhfitZYy/Dy03MZdxmwgIOiVRU6QEQMHhCcPmCiAvfz402hSwTBi+QBRBnwt9Vj9gPgO1Rg2tloJWrYZEqgIQBVIqANXUWQVCjfb5fKioqDjL1Xo6QFGUSP1auHChSP2y2Wzo6OiATCYDwzDQarVYunTpqNRYQgj+7//+D/fddx/eeecdrFixYozflkQS547xNpR+v188S1xwwQXDzmOEsEDfASDsAk1LwJ3xaY4uT0sAqDktuMwAQlgwQrakPB0UFeUzEoWsxCBiEj2n52akmJeXCqnSOMzxX3R+leqhlnigSs9EhtGDCFQIuk1w+6JwWbpAyY3w93tg7qUgl0QQYeRwmuxYcdECyOQhMQ2AY0Gw3CCMogCpHpFYDL0DLqhUauRkFYOiaUDIsYzfONLqYXEfkBu4LegwCqybq5dRL/dzsQiG505y9XdIA2kAFXXCF6Zh6e9AenoOUgw6gFAIRhn4fW5Y7S6YIkEoVAbotEpodEbIKZr7GyLG5U3mbpnyc0I4R5eVlYnN3XQiXj4mZJULCwoheUA4F5eVlZ3FYBPOivX19fjiF7+I+++/Hz/60Y+m/TrnAp/6hvLV6KtgwBUUCSXBG7I3sAEbACTeTPb09ODMmTNYvnz5pKiE8Zu9JUuWiI6j3d3dOHXqFIxGIzIzMyfUXRJC0NLSImph9Hr9JP4C04NYLIa6ujrEYjFUVFSIL4KJqLECLSojI2PKh5tQKCROvZcvXz5jTVo8RlK/HA4HampqoNPpYDKZYDKZzqJ+sSyLu+66C2+99RaOHDkihuPOBL785S/DarXi3nvvhclkQmlpKd544405MUhKYvYRf2AaTRs+DP2vAoFerikKc02ZhPFwmznedZVrvFQctVSiBBH0kmwIlFTNOfSJ31cBTAiBCGDu64AmNQsZRi0oiYT7vlTDU2lV3LZPquWNHbjPKXkKlLIIlKpFSEUE4RhQ7foYLlYCKQicNPexGz54Y24YZPHaxriPMgNcHjcsZjeysotg0Gv4g1WUaxYZYeMYb+Cj5yfsav4QxZsCUTR3faJRj9B4erjbRlz8VtHH/W5CAUwIRKqF09IFh49BUbYBCjW3raBpOfTKGPRKLTIzUxAJuOEN0/Dae2EyyaBTxCBPWQBlzgpopshiYFkW9fX1CIVCw2r0TCOe+hUKhXDixAnIZDKEw2EcPXpUjCUR3ucIIXjhhRdwxx134MUXX8Tll0+PuUYSSYzEWBpKq9WKuro6FBQUYPHixWe/7gZe5x1d9ZAjAALCU0aVXK6jVAFEI2BBg7AMKIpz8Qcd5WoCuC0TSBSRGMHAQBdoiQqFhdn8uZYS6aRiwyRP4TSCgmZQngIZE4YsrQB6JgSGZMNpsaCzj4VEEgaRSaFSROGxxuAcsCKz0Aggxv1uSsIxKiQyIBZFKEpg6uuE3pCBjBQVQJEhEzLGz8U4sUG+NkeG4j6kGrHGAgRE0JVLDQAoQCob0lFS/KZToh5qphl+Qxr1wxuIwWLqR0ZmJnR6HX//aqgRhiozBxlRD8IkByGPGV6/B05rNyQyFbQaNTQaNRTLrgdFT62mdXR0oKenB+Xl5bN2jpbJZMjKykJWVpZoIun1eqFUKvHxxx9Dr9cjLS1tGMOvsbER27dvxw9/+EP86Ec/+sx4cFBkvDTMaQbDMGfRE958801cfPHF56SxsIasuO7MdWCooYJCgcI/F/4ThbJCkZo4VjPJsiza2trEg/p0TjPidZdOp3NM3SXDMOJqfM2aNbNi+DMSkUhkmF4xkeZeWPsLj9Hj8UyJGhsMBlFVVYXU1FQsW7ZsTl5gHo8HVVVVmD9/PoqKioZRv2w2G3w+H/785z+L+s4PPvgAixcvnvXrTOKzCUHEH4/jx48jNzcXqampIg28pKTkrGaCtVcB1g+5zSTD28aTMKIxoON0C5YsW8VRPSkF3/QpwMb8IJQSFBvkm0k+8iPm4+lebrgDBA5zJ1KyimFUUyO2f54ROkRPnPmOELyt4YK4JZxLIpHI4YpawbAEoWAQwWAA4SADLRRQa418JmQqKCYo2vfbPTF4HX3IyFsEjSwW97v5+6aV3EGHUHxOJMM1xWyY1//w2iQmKDa7oGW8bT0fuUQIr+Vhhr5HcR8JJYV5sB9efxBFBXmQKxS8pTdvuQ/+sCXGiUQBSoJoNAS/P4Ru6kLYPAwUCoXI7hgtsmM8MAyDuro6RKNRlJWVTYr9Ml0QaK4ajQYrV64UDXesVitsNhtcLhcOHjyIwcFBvPXWW3j22WdFqn4SSUwHwuHwsM9Pnz6NcDgsOqwTQtDd3Y3Tp09jxYoVo8qGiP0kYP2Ij8mI4nR7F/Ky06DWGvhYIznABMBCztFiJUqAcDWTG1LJuaaMkiEU9GHQZIFWo0Z6RqZotjPMTVv8KAWEzHEI8XZCveE++pwBnHy7G3I5BUgAJhaF1xlB1iI5suenQqdRQaPVQ0IPZZd7A1FYBjqRkpGLVJ2M00lG3dzGMebht4he3h02GGdeJuHdvlnRFRYSFZf/KNVxeeiyoe0l2AC/3Qzzrt38Y6NouJxOWGxO5OVkQqM1Ahiqn0NmQXxtpjhjNZaJwh+MIOB1oje6CD7ZIvH8mJaWNqklEyEE7e3t6O/vR1lZ2ZzEFBFC0NjYCK/XKw78wuGweH602+2oqanBhx9+iNraWtx88834zW9+85lpJoHzoKE8dOgQ1q5dO+lpQiAQwGu1r+GPuj8iSkWHHJYgwQP5D6BUVQpgbPMdYdofCoVmvJGL113a7XaRcpmSkoLu7m7QNI3S0tI5OSQImUzCIeFcKazx1Fi73Q6pVCoWh4mosQI1JSMjA0uWLJmTF5jX60VVVRXmzZuHefPmjXqbQCCA7373u3jvvffg9XqRlpYmmlIkkcRUMVpDWVVVBZVKhcHBQeTm5mLJkiVnNSIkMAB0PANCK3gLeDX3UaoBG/agrWMAixfkg5brxKaKZUIgkIFCFJREmFrzmkVKBkKisNjc8LrsyM4rhFbNZzAKjoPgD04gfIYkIP5P/EEKJO57cZN1Sgpu2i4FYcPwh2Lwe53w+MKg2BCUmhToNVL4gjGE/E7k5hdDKSU85SrK3x8gZlayIV4fOpLyOkrjKWwq2Vic2Y/QCPM/wxv3sJDCYh5EJBJGTl4R5yYr3FZsooX7l/FbTYbf7gaAnM1AWsWwyA6r1QqWZYcxH8bbNsZiMdTW1oIQgjVr1kxr1m2iiEaj4nNxLClCNBrFQw89hH/+859wOp0ghGD//v3YuHF6jIiSSGJkQ9nR0QGPx4PS0lKwLItTp07BZrOhrKxs1LB44m0Hup/nt2xBQKJFV0cL0rPyuRrHZ+UykIGwUVASGSgxhiM6lJ9IS+F1OTBotiAjPRXGlFT+dhK+lsp4yjxfk+PNdkZ+jPrFARxLadD0QQusJkCrjcAfUECriWD+2vkAnHAHCJiIF3JVCvQaGWKQw2k3ISunEHqtKq5JpLgtJSQQt6lcUDr3dcJiqCbH0WgZf5xbtYbf2qr4940411l6qAF12fph80SRn6mDUp8FKurhaLMxP9+8xviBnSxOoxrg9JhsENDOB8m/Fm63W6yPgUBgmOmNWq0e8zkhRASazWaUl5fPiQEYIQSnTp2Cx+NBeXn5qGw9lmWxf/9+PPjgg+jt7YXX68UDDzyAO+64Y9avd6Yw5w3lkSNHUFJSgpSUlITvx+l0orq6Gjk5OcjMzERTUxMuvfTShM13gsEgampqoFQqsWrVqllt5ATa6MDAgOjemZGRgczMzEnrLqcKoZFLTU3F8uXLp62Ri6fGWq3WcamxPp8PVVVVyMnJwaJFi+a0mRT0s6OBEIIHHngATz75JA4fPoxFixbhk08+waWXXjrLV5vEZxWEEEQikWGfHzt2DF6vFytWrBhVz0uYEEj709ybt1DKxek4d5A4fboN8xcshISfJrNMlDerYUEJpjUY+siyMZjNVkTCIeTk5kIuF2oSf5+UJG6DFx0ynhGoslI1b/AgbClHNGtyAx8lIjR8/PelapBYAOEYDZ/XBZfbB5YASoUCOmM6tGolZCojT68VTCM0/CZSxTWLgrYIEr7xBXd9YPnDjZADxzeihD9QAfztJfzUXQqGZdB6ugOEZbFoyXLIZbzJD0WB01sJ/y/8jPA7+YaVogFFJn+b4f/OHo9HHMD5fD4YDAbx8BQfQySwISQSCUpLS6dds54IhGZSqVRi9erVY76vvvHGG/i3f/s3PPXUU7j++utRXV2NhQsXJgduSUwbIpHIsCzznp4eWK1WrFy5EjU1NeLQZTSjKhK2A+1PgdMU8rroWBBd/VakG5TQpuSARNxgpXzUkdwAOubldZAeblsX4fSCTmsPbM4wcnNSodWlc+wPCa+3FnTXtGz48ExoRiEDEIXIZhAGYhT3MRCQoLO6E047C602isKVhUhNZ7ns3KgXEaJAwG2BwxMCG/VDIlNDr1NBo9FBoeBrtUiJlYvUf4rxg0h1vIGPgdOT03H5kyQKrpYR/v0B4KaB8e8RwmY1CkJJYTMPwOkJoCg/CwoVH00lbCLFASIvPYhxjJZhDafcCMz/d16jPoRAICDWR6fTCbVaLdZHo9E4ZELHy8VsNhvKy8vHbTxnCoQQNDU1weVyjatr7+jowNVXX40bbrgBDz30EDo7OwEACxYsmM3LnVHMakM52gT+/fffx9KlSyfMiBHQ19eH5uZmLFmyBIWFhXA6nairq8PGjRtFO97x9JIulwt1dXXIysrC4sWLZ0WnNxJutxu1tbXIyspCTk7OsINForrLqUKIHMjLy8PChQtnrJEbjxqr0WjQ3NyMwsLCYU6Vswmfz4eTJ0+K1zAaCCF4+OGH8cgjj+DQoUMoLS2d3YtM4nOB+IZScPIcGBhAdnY2Vq9ePfrPmN4FvO0gUjUolgu9ptgIiEQFio2CSJSor63CkuUlkEkpEIo7OFASJSjwU2Ow3GEGLCIxzvQHtAyLFi6ATK6GeKjgGy1u8i3l2aJCMyblGye+sQLFm1vENVegx/9/0AAfR1FbWwuJRILFixfD5XKdJR3IzMycUcfpc5EBnCvi884cDodIjU1JSUFHR8e0ul1PFtFodJjj9ljvl++++y6+8pWv4Mknn8TXv/71zxSNK4nzByMbyv7+fnR3d4tO7StWrBj1dUKYEND9HBDxiuQGjkVBo6u7A0ZjGgxaFVjwDRCtAEWCXKMl6s59IBINbAPt8IYo5GfpIddm8M2m0CjpOZqp8FFsRkd8lGg5CqlE0J0rhppNigEoCViGBUXToIQLjmuiTCYTAoEgcnOyEY1F4PP64Pf7IaEpaHR66DQKqDQGUPHNnDQ+gsQLIlVzA0CRAkvz+lAud5IzKdMOd2Hlm1pWooFtsAu+YAz5+bmQyZVcU0gYPo6KNzoTdZrMkOERxRvGUQD0ywFVzrj/5rFYDHa7XaTWAxCZHVarFW63G+Xl5XMiF4tvJsvLy8d03O7u7sbVV1+N7du34/e///2c9B2zgTlvKD/66CPMnz9/QjOc+Cyh0tJSMVfG4/HgxIkTYkM5XjNpMpnQ1NSEhQsXorCwcHoe1CRhtVrR0NCABQsWnGXmkqjucqoQci6Li4vHpHfOFARq7MDAAJxOJyQSCbKzsxOixk43hGayoKBgzCkRIQSPPfYYfvvb3+LNN9/E2rVrZ+36kvh8QWgohYaKYRjodDpIpVIsW7bsnO/37bffxrp166BSqcatj16vFyc+qULMrUBebgHyF6XCkD67E1+/34+amhoxjiL+jTdeOmCz2UTH6emKbBIgmIPpdDqsXLlyVt/8BWqs2WyGyWQCAPExTkSNnW4IzaRcLkdJScmYf4f33nsP119/PR599FHccsstyWYyiRnDyIayubkZ3d3dWLJkCebNmzfqc48QFuj6P8DfJVJaBQds0Ap093ZCr02BXq8BaCk3LxPjfYRmjiAWYzEw0A+WpZCfnwOpjGc8gDetoaVDm0kmzDVQJDTUnEnkPA1WxusQ5XwjF681ZId+5zDzHTnARMBSMpj7uxAhMuRnGSFRpXBNoTwFJOaHPyKF32OHy8cCJAKVNg16vQ46fSokMjnfzEm55pFWcL+LlvPDPRmnQafiPxcaQP4jJQFDaDScakEoFEHpmgooZ7GRE3wtLBYL+vv7EYvFYDQakZWVNSE1diauRcgCHi++qb+/H5s3b8aVV16JP/7xj5/ZZhKYY5dXYGyXrngIDqSBQOCsLCGaphGLxdDR0YHMzMyznQ/B/cN3dnaiq6sLq1atSngbOt3o6+tDa2srVq5cOapL58i8S7vdDovFMq15lxaLBY2NjViyZAny8vKm+pAmDblcDrVaDa/Xi4ULF0Kv18+Ya+x4EKi2EzWTf/rTn/DAAw/g9ddfTzaTScwoKIoSmQNGoxGrVq1CR0fHWbqhyYAQAolEgq6uLuTm5o4pLbBaraj6pA5d7zNwDnhwkrXAmKlB5W3lyFuYuBxhKnC5XKitrR2TNTFaZJPFYplyZFM8BBlAWlranJiDSSQS6HQ6nD59GhkZGSgqKoLdbkdPTw+amprEPMiMjIxh1NjpRiwWQ01NDWQy2bjN5EcffYQbbrgBDz74YLKZTGLGQVEUCCEghOD06dPo6+uDQqEYU6oCABh8Bwj2c5uzmI/f2AkGZAFIJXL4PFZIJBQ0Kinn8MqEhiiqlASRSBiDAyYo5DJk5WWBQgSIRritIS2FqCenFVzDKFHyVHsjT7EnXKYjKP4jhmietJz7eZp3VKVlPH1eOqyZC4VjaDjVDJnxAqxcXQqJXBVHTeXaUC3/XyYh8Hq9sFgsaLZa4bf6RU1iRuq5s98EPTfLUihfe8Gs+35QFAW9Xo/u7m4olUosX75c1F62tbWNSY2dbghU24maSZPJhK1bt2Ljxo34wx/+8JluJoFZ3lCO1AgBnOlERkbGmBvDQCCA6upqKJVKlJSUiE9goagwDAOTyQSLxQK73Q6lUilSRg0Gg7iSdjqdKC0tnTP3p/b2dvT29qK0tHRSelHgbE1iNBo9p8PTwMAAmpubsWrVqmH5dbMJh8OB2tpaLFq0CAUFBeLXp9s1djz4/X6cPHkSeXl5WLBgwRhTTYKnn34a99xzD1599dWkVjKJGUc0GsXbb7+NefPmiRTwjo4OeL1elJSUTPr+BJdrp9OJwcFBWK1WAEOabWEw1dPTg/b2dgR7dKh7awApWRrQUhr2AS8KlqTh3+69eLof6lkQBl0j60IiIPzhyWq1wmKxwO+POzxNQjrgdrtRU1OD/Pz8MevCTENwu05JSTlL1z4WNfZcXGPHQywWQ3V1tUj3HYs1cuLECezYsQO//OUvcfvttyebySRmHNFoFJFIRIxPWrhwIdra2rBp06ZRb08C/YD1A15jLWTmEp6eScBAilAoDIvdBafThVCEhdGYipT0TKSmZUImU8Lp9uBUUyty8goxf8FCULSM395Jh3TaMwyfz4eamhrRBX+yr/WR7DetVivWx0TPVpFIZBhjYS4o+AzDoL6+HuFw+KyMx7GoscISZrqa33jdZkVFxZjvLxaLBddccw3KysrwzDPPzImZ2mxjzhvK2tpaGAyGUSdMQibgSHfDkeY7gpMrwzDiG67VahVvL5VKUVZWNicca0EL5XQ6sWbNmlE3qJNB/OFpMrrL7u5udHR0oKSkBKmpqVO6hnOFzWZDfX09li5dOqqddzym4ho7HoRmMjc3d0ztKCEE//jHP/DDH/4QBw4cwGWXXXZOvyuJJCYLt9s9bNrZ3d0Nu92OsrKyhO8jftgGDNVHlmVFPaLFYkE0GoVcLkckEkFpaSk+fL4LjR/0IT2PG7p5nSFI5TRuf+yqGW0Went7cfr0aaxcuXJaBl1jSQfG010KMgAhMmguEAgEUFVVhfT0dCxdunTcv/lUXGPHg7CZFJzHx6qzNTU12LZtG37605/izjvvTDaTScwK3G43Tp48CYVCgdLSUgSDQZw4cWLSWaejZZQLQ22LxQKLxQKfzweVSoVgMIhFixahqKgIXmcIH796Gi5LAOl5OlywbSFU2pmloTudTtTW1k6b18RY0oHMzMwxB1PBYBDV1dVzIgMQIGQ8MgyDNWvWjNsgCtTYc3GNHQ+C9M5qtY7bTNpsNmzduhVLly7Fv/71rzlJcJgLzHlD2djYCIVCgUWLFg37umC+s3Tp0rM2WYmY73g8HtEdTygc6enpopvqbExXBKpuJBIZ03lsqphIdwkAZ86cEfN5ZivsdSQsFgsaGhqwYsWKCfWyIzEZ19jxEAgEcPLkSWRnZ4/pKEsIwfPPP4/bb78de/fuxebNmyd1rUkkMRWM1Aj19fVhYGAA69atS+jn4+uj0EiO9jwXTGeCwSBkMhmCwSBsLRTa3nfBmK6BVC6Fy+zH/JJMfOXHG6bt8Y28VqE2TXcOsICxIpvipQNmsxmnTp1KaNA1U/D7/aiqqhLN4iZzaBzLNXay1FiGYVBdXT1hM9nQ0IAtW7bgzjvvxN13351sJpOYNXzyySdQKBTigsHv9+ODDz5I+H1aGLaxLAtCyJj1UdDHDQ4OQq1Ww+/3QynToOZlJ5x9IUhkErAMwcLSTNzwowsgkc5MgyXUpsWLF4/q8j1VsCw7bDDFMAzS0tKGsd98Pp8Y6zbRoGumIAy6KIpCaWnppLd9ibrGjgchnsRisYzbTDqdTmzbtg2FhYV44YUXZlX3PteY84ayubkZFEVh6dKl4m1aWlowMDAwzHxH+N7IqdJosNvtqK+vH6aP83g84uQpFAqJL5qMjIwZ+QcPh8PDNCizse6O110KhyepVIpIJILy8vI5ofsCXFFsbGycFqrtuVJjE2kmAWDfvn341re+heeeew7btm2b0rUmkcRkMbKhNJlM6OzsxIYNEzd18fWRoqgxp8iBQAC1tbVipqBUKkUgEEB/7yDe3tME0xk/aIpGWq4WO3dXoGDh9NPjhcw4t9uNNWvWzEp2WPxgymKxIBaLQaPRwOv1Yvny5XPWTAp67vFYE5PBuVBjGYZBTU0NAGDNmjVjNpNNTU245pprcNttt+HnP/95splMYlYxsj6GQiEcOXIEV1111YRbM6GRZFkuTmmsZpJhGDQ0NMDv96O0tBQajQaRSAQnDrXizb80QaYBpDIJKCIBE6Gw695LULAk7az7mSq6u7vR3t4+a74fAvvNYrHAarXC7/dDp9PB5/MhLy9vzjLCheikiSj4iWI819i0tLRRt4mCZtdkMqGiomLMDafb7caOHTuQkZGBl156aUZ9QM5HzGpDCZwdTNvW1oZoNIoVK1YgGo2irq4OwWDwrEwZoRBM1EwKxjfLli0b84Dg8/nEQ4XX6532qA6B7y7oYOaCHiBMdHw+HyQSCWKxGNLS0mY973JgYAAtLS0zVhQTocYGg0GcPHkSmZmZ407/X3nlFXzjG9/AP/7xD1x77bXTfq1JJDERotGoeOABOLOc1tZWXHzx+DrGRIdtgvFNdnb2qLFJTIxF3xkbrBYbGKkf3oAbGo0GmZmZounZdFCu6urqwDAMSktL5+RNV6Au9fX1QalUIhQKnZPucqoQTJgKCwtRXFw87Qe2RKixApWMZVmUlZWNeWBrbW3FNddcg1tuuQX3339/splMYtYRi8WGmTjGYjG88847uPzyyyekQCaSUR4KhVBbWys2L/H32XSsH/sePQFjlhoME0PQH4LPFUHF9WlYWlYgRv1M9bwnbMJMJhNKS0thMBimdH/nioGBATQ1NYm0X+F9YLo9LcaDoNucqeikRKixApNmcHBw3GbS6/Vi586d0Gq1eOWVV2aEkXi+Y9YbypETpvb2dvh8PixatAhVVVVQqVRjmu8AY0+VhBfh4OAgSkpKEja+CYVC4kRGECsLh6dzcdET+O7CdnSu6AF1dXWIxWIi19zn84mPU9BdCrz5mTo89fX1oa2tDSUlJcM2zTOF0aixRqMRHo8HmZmZZ5lcxEMI5X766adxww03zPi1JpHEaBjZUDocDtTX149pOgEk3kwODg6iqakJixcvTtj4ZqTeRiaTifXxXFz0QqEQampqoFQq5yxbUZg2Dw4OYs2aNdDr9bMW2RQPt9uN6urqWYtvGo0aq9frEYlEIJVKUV5ePuahvL29HVdffTW+8pWv4MEHH/zMuxUmcX6CYRjEYjHxc0II3nzzTWzatGnMA3yi9dHj8aC2tlZ0eB75HPc6gvjbLz6A0+SHXCVFOBhFdrER23Yvh8vrgMViAcuy4rkqLS1t0vWNYRg0NjbC5/NhzZo1sxqDEQ+BVbZ8+XLk5OSck+5yqgiHw6iuroZarcaqVatmpeaMRo2VSCQIBAJYu3btmB4ofr8fX/ziF0HTNA4ePDgrjJvzEXPeUHZ1dcFkMsHv95+1Vh/LfGckYrEYGhsb4ff7p/QijEaj4uZScIwVXjQGg2HCQ4XwIlyyZMmM8N0TQSKB3MFgEDabDRaLZcYOT4Jz5Lm42k4HCCGw2+1oaGgATdOIRqNjUmMPHTqEr371q/jTn/6Er33ta8nJexJzhpENpWBCMZrpxGSGbR0dHejp6cGqVauQnp5+TtcmbLuEwRQw3DF2osOT1+tFTU2NaDozF00Jy7JidlhZWdmob/yJ6C6nCmHwuGDBgjnLRBaoz+FwGCzLjkmN7erqwjXXXPOZD+VO4vzHyIYSAN566y1ceOGFY0bGJdJMCi7TginXmFnmXS4c+lcTXCY/Mgp1uOLGlUjN1oq/S9h2xUurhK3eRKywaDSK2tpaEEJQWlo6Z9o7YREwFqssPrLJarVOW2RTPIQsYIPBMGcsv2g0iqamJthsNvG5Mxo1NhgM4vrrr0ckEsHrr78+Z9Ky8wFz3lDW19djYGAAK1euHNaEJaoHEigKMpkMq1evnjYqJ8Mwoh5RcIwVJvOjTWRmm+8+GkKhEKqrq6HRaBKe6Ai6S2HyNB2Hp66uLnR2dqKsrGzO6BqhUAgnT55EWloali5detYhUSqV4uOPPwYAPPTQQ3jsscdw8803J5vJJOYUIyldfr8fH374Ia666qpht5uMHiheqzhVl+n43+9yuURd+kRRRoKLalFR0YxQOxOBMP33+/0oKytLiJI0XZFN8bDb7airq5sxo41EwLIsamtrEYvFUFZWBoqizqLGdnZ2wm63Y8+ePbjqqqs+86HcSZz/GK2hfPfdd1FeXj7srBFvvjNeM0kIER3wp8tlWrjfkY6xApUyMzPzrNoTDAZRU1MjbuPmirnR1dWFrq6uhBcB0xXZFA8hOkmISJmrM1l7ezv6+vpQXl4OjUZzFjVWuM7q6mr4fD68+eabc3bePV8w6w2lMIFnWXaYhuWSSy4RbzMZikJNTY3oPjVTb3YjzRwYhhEdY1NTU9HR0SHSp+bqCTUdgdyjHZ4mo7sUNiG9vb1z6igrNJNjFSThcf74xz/Gq6++ilAohKuvvhq/+93vRBOnJJKYC4xsKEcznUhUDxQOh1FXVwcAMzrxJoSIlHrhUJGamipO5h0OB5qamsbVtc80BBlAIpbzY+FcI5viYbVa0dDQgGXLliEnJ+dcHsqUwbKs6D5eVlZ21t9CeJx//vOf8ec//xkDAwPYsGED/vu//xtXXnnlnFxzEkkA3HM3Go0O+9rRo0exatUqMQ4t0WGbwFaw2Wwi9X2mIFDqLRYLXC4XdDqdWDdYlkVNTQ2ysrLmzPgmXrdZVlZ2zlu20aQDk9FdCtFJGRkZc/a3ACAyeioqKkYdwgYCAbz77ru499570dbWhkWLFmH37t24/fbb5+Bqzx/MSdKmYMoQCoWwdOlSdHd3i99LtJkU7JQnoihMB2iaRlpaGtLS0rBkyRLRMfbMmTMIBAKgaRrz58+fk5xLYMjYIS8vb0ougSMfp3BI7O7uxqlTp8bVXQrC5YGBgTFfhLMBgSqRkpIyZmNN0zTa29tx8OBB/PrXv8amTZvw6quvzlk+ZxJJjAVhUi3EJCVaHwVjMKPRiOXLl8/oxJuiKOh0Ouh0OixYsACBQAAWiwUDAwNobm4GAOTm5s5ILEgiEGQAMpkM5eXl5/y3oCgKer0eer0eCxYsGHZ4amtrm1A6IEQnrVy5EllZWdPx0CaNiZpJgHucwWAQ//rXv7Bp0ybcf//9eOONN+bs3y+JJMaDYDoIJD5sE86gsVgM69evn3EDFZVKhcLCQhQWFopGghaLBe3t7SCEICUlZdJxatMFISvd5XJh7dq1U9Jtxj/OeFZYd3f3hLpLwe06JydnXCf+mUZnZ+e4zSQAyGQy/Otf/4JCoUBHRwdOnjw5y1d5fmLWN5QulwsnT56EWq1GSUkJPB4PGhoacOmllyasB5oJisJkIfDdY7EYMjIyYLfbZ8QxdiIIVLKZNnYIhULihG2k7lKn0+H06dMwm80iPWAuEA6HcfLkSfEQPVZBqq6uxvbt2/Gzn/0MP/jBD5I01yTOG4ykdLEsi7feegubNm2CQqFIqJm02WxoaGgYFoTtdYbgdQShNSqhT5v5uiS4qJpMJuTn58Pj8cDhcIh1IzMzc1acAmcrkHsi3aXZbEZzc/OcvmexLIv6+nqEQqFxDXhsNhu2bNmC5cuX41//+tesRF4lkUQiGG1DeezYMcybNw/Z2dkJ1cdAIICamhpoNBqsXLkSUqkUIX8EDpMfcqUUablTd7JOBIKLan5+PmKxGKxWq1g3ZtLsJh5CREowGJyxrHRgYt2lsAjIz8+fMzNLgGsmu7u7x43Zi8Vi+Pd//3c0Nzfj3XffnbN6fj5i1hvKjz76CBqNRlxnu91uVFVVYePGjQlTFOx2O0pLS+eMUjkW331k0zVVx9iJIAjJlyxZgry8vGm97/EwUncp6FyXLFmCnJycOdHZhMNhVFVVQa/XY8WKFWP+revr67Flyxbcdddd+PGPf5xsJpM4rzCW6cSGDRugUqkmPCz19vaira1NdOcDgNYTg3hvbwtCvggUahkurFyMlRfNnHZPOKQEAgGsWbNGHKzFYjFxMh/vGCvY7U/3a3GuArlHc5smhIjRILMV2TTymoSD43jNpMPhwLZt21BcXIznnnvucxXKncT5j9GyzE+cOIHs7Gzk5ORMWB+dTifq6uqQk5MjRoiZu9x4/ak6OM1+SGQ0VmzIx2VfWQZaMjPnGEKI2LiUlJSIzKj4piveMVZouqabZSJsaVmWPWcZwLlgNN0lANHvYq6YfoJ+dLxmkmEYfOc730FVVRUOHz48Z1vl8xVznkPp9Xpx7NgxXHjhhVAoFAlRFEpLS+cs40XQbWZmZo57SBEcY4WmS6FQiM1lIo6xE6G/v1/Md5yrCQkhBI2NjXA4HEhPT4fD4RB1l0IhnI0iFYlEcPLkSXELMdbfVgjl3r17N+69995kM5nEeYfRbPHfffddLF++HOnp6eMyN4SNYGlpqUhPdNsCeP7BTxAORKFPV8HrCEEqo/HFH6xDet70u9FFIhHU1taCoiiUlpaO+fqPz0e0WCwAJucYOxHcbjdqamrmfOLd09OD06dPIysrCz6f75x0l1MFy7KiGVF5efmYTaLL5cL27duRnZ2Nffv2fe5CuZM4/zFaQ1lVVQWNRoPi4mJIJJIxX+sCBT/ehZ9lCf756w9h6nQhNVuLSCiGoDeCzd9YjRUbpn/oxrIsWlpaRN3mWI2LEPEjNJfxjrFCfuxUIOQ7yuVylJSUzIkJEMDVnOrqaqSmpoJhmGHst9lisQAQWY/l5eVjLqoYhsH3vvc9fPDBBzhy5MisLnE+LZj1hjLedEIoDrW1tXC5XDAYDMjKyjrLBcvv96O2tnYYRWEuILjzCfTSRJ/o8Y6xNpsNFEUNOzxNdqMnuKjGT7dmG8Ihxefzoby8HAqFYpg5x2zlXUYiEfENZTxKmxDK/Y1vfAO//vWvk81kEucl4ildggSgtbUV/f39UKlUyMzMRFZWFrTaIVpWLBYTt0+lpaXDNDDdTTa8/PhJpOVoIZFyGkxztwc7vlOGBaXTq+MTqGRarRYrV65M+JAS7xgrbPQmYwY2EkKdXrBgAYqKis7loUwLhEPKmjVrxAZ/tvMuE20mPR4Pdu7cCb1ejwMHDnwuQ7mTOP8R31AK5jv9/f04ffo0KIoa1YmfEIL29nb09vZi9erVwzKxg94Invqvo5BIKaj13ADF0uPBhu2LcNHOxdN67UKdDoVCk6KXCo6xwvBtqtIqQQYgsLnmyrnZ4XCgtrYWixYtEnORZyOyaSSEiLvxmkmWZXHHHXfg7bffxpEjR+b0feV8xpx5gAuHJYqiUF5ejksuuQTZ2dmwWq344IMP8Mknn6CrqwuDg4M4ceIEMjIyxsxVnA0MDAygtrYWy5Ytm7TtvUQiQWZmJlauXIlLL71UjPRoamrC0aNH0dDQALPZfBbVbSSEQG5hLT+XzWR9fT38fj8qKirESbZgzrFgwQJccMEFuPjii5GVlQW73Y4PP/wQx44dw5kzZ+B2uzEdc4xEm8kzZ85g27ZtuPHGG/GrX/1qWg9t7733HrZv347c3FxQFIWXX355wp85cuQIysrKoFAosHDhQuzZs+es2zzxxBOYN28elEol1q9fj+PHj0/bNSdx/iPefGfJkiXYuHEj5s+fj0AggBMnTuDDDz9EW1sbLBYLjh8/DpZlRzVU0BgVkCul8Ls5ZojPFYZCJRUPT9MFt9uNEydOID09HatXr57UxJuiKKSkpGDJkiW46KKLxADprq4uHD16FNXV1ejt7T2L3TIazGYz6urqsHTp0jl90+/s7BSjk+LNbATTivLycmzcuBHFxcUIBAKorq7G+++/L7pOxmeRnisIITh16pQ49BurmfT7/bj++uuhUqnw8ssvT3szmayRSUw34utjTk4OLr30UqxcuRIA0NjYiPfeew+nTp0S64HJZMLatWuHNZMAIFdJodLJEfBwtPRIiDuDaQzTWx8FSQ7DMKioqJjUa4yiKGi1WhQXF2P9+vW4+OKLkZmZCYvFgg8//BAff/wxOjo64PP5JjxX+Xw+nDhxAmlpaTOqKZ8INpsNtbW1WLp0qdhMApzZTU5ODlavXo2NGzeK8qWmpiYcOXIE9fX1GBwcPEtHe64QmsnxUglYlsVPfvITvPHGG3jnnXem/X3ls1Qf52RDGR8dMhrfPRKJwGq1oqenBz6fDwqFAvn5+cjMzJx199B4vvvI6dZ03LfH4xEnT8FgcJjdfvwBgBAi6kfHCuSeDTAMg7q6OkSj0TFdAkfDaHmX8dErky1s0WgUVVVVUKlU42ZudnV14eqrr0ZlZSUeffTRaS+gr7/+Oj788EOUl5fjuuuuw0svvYSdO3eOefvOzk6sXLkS3/72t/HNb34Thw4dwve//30cPHgQmzdvBgA899xz2LVrF5588kmsX78ejzzyCF544QW0trYmBeCfcbAsi0gkIjoVjkZxFRgPfX194hQ3JycH2dnZMBqNZ93+xJsdOPF6O8LBGGRKKdZcVoQLK6fPRU+IwpiJjWAgEBDro9vthl6vF+vjyBo4USD3bEDYhgj5ZYna70933qXQTHo8HpFBMhoCgQCuv/56xGIxvP766zPy/pqskUlMJ0KhEFiWFZ2vR9YxgfEwODiIgYEBEEKQmZmJnJwcpKWlnTXs6qi34K09DfC5QqAkFOavysDW/1gDuXJ6lhd+vx81NTUwGAzTvhGMd4y12+1QKpVifRwprRJkAAUFBaJZ21xAcLtesWJFwhrE0SKbppp32dvbizNnzoybl86yLO69914899xzOHz4MBYvnt6tNfDZqo+z3lD+7W9/w8qVK7Fo0aJxw2bPnDmDvr4+LF++HCzLwmw2w263i7Sv2eBXJ8p3ny4IQbhWqxUejwcGg0GkfZ05c2ZSgdwzAYZhUFtbC5Zlx9VHTYSx8i4T1V0m2kz29vZi8+bNuPrqq/GHP/xhxqdxFEVNWAx+/OMf4+DBg2hsbBS/9pWvfAUulwtvvPEGAGD9+vVYu3YtHn/8cQDc36ugoAC33347fvKTn8zoY0hibvHmm29CIpGgoqICMpksodgkjUYjNl0CnT4rK0ukfRFCMNjhgsfOubzmLZo+A5y+vj60trbOShRGOBwWa4bdbodarRbfC+x2+6QCuWcCAoNkcHAQ5eXl59ycTVU6IDSTbrd7GINkJEKhEL785S/D5/PhjTfemJUM5WSNTGIqOHXqFE6dOoVNmzaNa3To9XpRW1sLo9GIgoICsT6GQiGkp6cjKysL6enpIuPNMeiDudsNuVKKouXpkMqnR1PocrlQW1s75Ui3RMAwjEgXHekYK5hyLVy4EIWFhTN2DRPBbDajsbFxyt4fY0kHEu0LhOHjSAZJPAgh+NWvfoWnn35a9DGYaXza6+Os8kcJIXjppZdw6623YtGiRaisrMS11147LC+QYRg0NjbC6/Vi3bp14hQ6JycHsVgMdrsdZrMZJ0+ehFwun1ajm3gwDIP6+noEg0GsW7duVpo4QVheXFwsOsaazWa0tbWBpmkUFBQgGo1CoVDM+nQpFouhpqYGFEVhzZo1U6Iej5V32dPTg6amJvHwlJGRcRaFT2gmlUrluM3k4OAgtm7dii984Qt44okn5ozaMRLHjh3DFVdcMexrmzdvxve//30AQzTeu+++W/w+TdO44oorcOzYsdm81CTmAMeOHcOjjz4KtVqN7du3Y+fOnbjwwgvF1xshRNRQx2/iBCdTQYvY2NgIQoj4JptdnIbcBdPXaBFCxPDnsrKyWWniBKaKYLMvTOaPHz8OQgiys7NFXdVsv94FUySr1TrlLLeRuZ7BYFB8rKdPnx5Xd0kIQVNTE9xu97ibyXA4jBtvvBFOpxNvv/32rDSTiSJZI5MYC21tbbjrrrvgcDhE5tFVV101jK0gMCbmzZsnypOMRiMWLlwonjU6Oztx6tQppKamIisri9Po5UyvyYpQh+M1gjMJiUSCrKwsZGVlDXOMra+vRywWg8FgEKOn5sKEZ3BwEM3NzVi9evWUGSRj5V1WVVVNqLsUmsl4bftIEELw29/+Fn/9619nrZlMFOdzfZzVhpKiKOzbtw9utxsHDhzAvn378PDDD6OwsBCVlZXYsGEDnn/+edx6661Yt27dWZoPqVQqvmAEl0Cz2YyamhpRpygIsqfScIXDYdTW1kIikWDt2rVzYvOuVCqRlZWFgYEBGI1G5OTkwG634/jx49PuGDsRotEoqqurIZPJpt0RbOThSWikrVbrWYcnlUqFmpoaKBQKrF69esxDo9lsxtatW7Fhwwb85S9/mTMHs9FgMpnO2uRkZWXB4/EgGAzC6XSCYZhRb9PS0jKbl5rEHOC///u/cc899+Cdd97B3r17ceONN0IikWDbtm3YunUrXnrpJWzduhWXXXbZWYwJmqaRmpqK1NRULFmyBG63G2azGS0tLYhGo2JzOVULeiG+yeFwiHrH2YZUKhU3k3K5HAsWLIDb7UZDQ4PYSGdkZIxKcZtuCE2c0+lERUXFtJuPqVQqFBQUiANFQTpQXV097PCUkpKC1tZW8TrGGoJGo1HcfPPNGBgYwKFDh+ZsozsWkjUyibFw7bXXorKyEidPnsSLL76I//7v/8Z//Md/4KqrrsKOHTvQ0tKCjIwMXHfddWfRKUeeNQRGmDDITklJEZvLqToc9/b24vTp03OWOysM7QOBAFiWxaJFixCNRnHmzBk0NjaOKa2aKQhNXElJybTKxoAh3aUQGyOw35qbm8+SDlgsFrGZHKvuEULwyCOP4LHHHsM777yDVatWTev1ThXnc32cdYcbYVq0a9cu7Nq1Cx6PBwcPHsRTTz2FRx55BIsXL8b+/fshkUhQXl4+ZtMQ/0YqPInMZjPq6+sBQGy4JqvPE/juer1+TkXLoVAI1dXV0Gg04iYuPz9f1E9ZrVbRnn8qjrETQbCXViqV4zZx0wWlUjnm4YlhGCgUChQXF48pPrdardi+fTtKSkrw9NNPn1fNZBJJJAK5XI4tW7Zgy5YtePLJJ3H06FH8/e9/x9e//nXxTVAul+Oyyy4b8+Aj1Fmj0YjFixfD6/XCbDaLBwpBv5yRkTEptkEsFkN9fT3C4TDWrl07p/R7IetSYJDk5eWJ+imr1Yq2trYpO8ZOBJZlRa3iZM02zgUymQzZ2dnIzs4+6/AUDodBURQWLVo0Zt0TQrnb29tx+PDhaT/cJZHETIOmaaxbtw7r1q3DAw88gLq6Ojz//PO48847EQ6H8YUvfAEGgwFbt24dd+AezwgLBoOwWCwYGBhAS0vLmIkDE0GQa/X3949Lp5xpxHt/xDNIFi1aBJ/PB6vVir6+PjQ3N894jJFgfDNeEzddGMl+E3SX3d3dIkU0Pz9/zH9TQgieeOIJPPTQQ3jzzTdRVlY2o9f7WcPcWKbGQa/Xo7KyEnfeeSfuuecerFy5Evv27cOOHTtgNBqxY8cOVFZWYv369WO+ScY/iZYtWyau+puamsAwjNhwTTStnk2++3jw+/2orq4WH0/8dcRvYlmWFSluzc3NiMViww5PU3XEFZzJhBiA2W6uhcNTeno6qqqqAHDPl9bW1lF1lw6HA9u3b8eiRYvwj3/8Y84cgcdDdnY2zGbzsK+ZzWbo9XqoVCpIJBJIJJJRb5MM0f38QSaT4YorrsDvfvc7bNmyBbfeeisOHjyI733ve/D5fNiyZQt27tyJyy+/fMzDAEVR0Ov10Ov1WLhwIfx+P8xmM7q6unDq1CmxZkw0rQ6Hw6ipqYFMJsPatWvn7PUVi8VELfdIBongGJuSkiIeniwWi/hYU1JSxMc61eZP0CUFAoFxtYozBeF9LzU1FSzLwmaziayWtra2s3SXDMPg29/+Nk6dOoXDhw/PmXHRREjWyCQSBU3TWLNmDd544w3k5eXh4YcfxkcffYTHH38cu3fvxqZNm7Bz505s27YNqampY57pVCoVioqKUFRUdJbcSDACy8zMHJfKLgyX3G431q5dO2fGiYQQtLW1wWQyoaKi4iwmi1arFV1jQ6GQqNVua2uDVqsVH+t4GtVEIcgzxjO+mSnEv++p1Wo0NTUhLy8Pfr8fH3744VnSAQD4y1/+gl//+td4/fXXsW7dulm93kRxPtfHWTflGQsmk2nYgw0Gg3j77bexd+9evPLKK1Aqldi+fTuuvfbaYZqi8UAIgdvtFsNhI5GIKMhOS0sbdh8C332uRcuCE9dkm1rBBUt4rIFAQGy4MjMzJ01rCIVCqKqqEp3J5qq5FrSbNE2jtLQUEolENK0QhPbd3d149NFHwTAM0tPT8eabb84KjWMkEhVUv/baa2hoaBC/9rWvfQ0Oh2OYoHrdunV47LHHAHBvVIWFhdi9e3fScOJzCovFgvT0dHGowzAMPv74Y+zduxcvvfQSbDabqCnavHlzwocZgfYl5JsJDVdmZuawBsnn86GmpgYpKSlYvnz5nDE3phLILWwh4h1jhfo42cOfoLEPh8MoKyubk3oDDNduxtNthUOxxWKBw+HAb37zG8hkMnR1deGjjz6aFU3XaEjWyCRmAoFAALFYTGwMBIOsF198Efv27UNdXR0uueQS7Ny5E9u3b0dmZmZCZ5pIJCLWDIfDMazhiqf6R6NR1NXVgWEYlJaWzvpwSQDLsmhqaoLL5UJZWdmktNzRaFSsGYJjrFAfJyutEjakgsZ+rEiO2YCg3Yyn247Mu9yzZw8cDgeOHTuGAwcOnKVRnC182uvjedNQjodIJIJ3330XL774Ivbv3w+KorBt2zZce+21uOSSSxJ6Mx/ZcAWDQaSlpSErKwvhcBgdHR1zxncX4HA4UFdXh+LiYsybN29K9xUfhBvvGJuIS2AwGMTJkydH3ZDOJhiGQXV19bBmcjScOXMGt912G86cOQO73Y6LL74Y77777qxco8/nw5kzZwAAa9aswcMPP4zLLrsMqampKCwsxN13343+/n787W9/AzBk+XzbbbfhG9/4Bt59911873vfO8vy+aabbsKf/vQnrFu3Do888gief/55tLS0zLiTZhKfPrAsi6qqKrz44ot46aWX0N/fjyuvvBKVlZW45pprEn4zH9lwCTVDoVCgubkZBQUFWLBgwZzVAyGQW6fTTZkxIURTCYeneMfYiVwCBbdrhmGwZs2aOdHYA0ObCIvFMq52MxQK4dZbb8XHH38Mr9cLnU6H2traWdtQJmtkEnMJobnZu3cv9u3bh5MnT2LDhg2orKzEjh07xPy/iTCy4RISB4xGI9ra2qBSqSadwTudEIZcoVBIzCicyn3Z7XZxe0nTtMjsmEhaJdB+BwYGpuR2PR0wmUxoamoaV7vJMAzuv/9+PPvsswgEAggEAnjppZdmran8LNXHT0VDGY9YLIajR4/ihRdewP79+xEOh7Ft2zZUVlbiC1/4QsIvIp/PB7PZjN7eXkSjURgMBuTl5c2aSHkkhA3p0qVLkZubO633HT+tFiyW46ds8cXU7/ejqqoKmZmZWLJkyZw2kzU1NQC4F9lYRdrn8+G6666DXC7HwYMHEY1G0drairVr187KdR45cgSXXXbZWV+/6aabsGfPHtx8883o6urCkSNHhv3MD37wAzQ1NSE/Px8/+9nPcPPNNw/7+ccffxwPPvggTCYTSktL8fvf/x7r16+f4UeTxKcdLMuivr5enMx3dHTg8ssvR2VlJbZu3TpqTuVoCIfDsFgs6Ovrg8/ng1KpRH5+PrKysqbkYHqu8Pl8qK6uFt1sp7MuxTvG2mw2yGQycTJvNBqHHZ4Eui0hZMpu11OB0EyazWZUVFSM+W/Csix+/OMf45VXXsGRI0eQn5+Pjz/+GJdccsms1fZkjUzifAEhBL29vdi3bx/27duHY8eOoaKiAjt27MDOnTtRWFiY0OtCqBkDAwNiFnBeXh6ys7PPcl6eDUSjUdTW1gLAlCLdRkO8VttisYhMMEFGFl8D4+tSeXn5nNF+gaGIkpKSEqSnp496G0IIXnzxRdx222148cUXsXnzZtTW1qKoqAipqamzcp2fpfr4qWso48EwDD744AOR9uX1enHNNdegsrISV1xxRcJ892XLlommFV6vF0ajUXT7mg3Tif7+fjHLbaY3pMKqXzg8KRQK8fAklUpRXV2N3NzcOdWQChsA4dA2VjMZCATwpS99CSzL4rXXXpvTSVgSSZxvENxHhc1lU1PTME1RWlrauK/x7u5utLe3Y9myZWBZVpzMCwOprKysadHZTITZDORmWRYOh0OczBNCxMOTXq9HfX09JBLJuIyJmYZA5xM0UuM1k//1X/+FF154AUeOHMGiRYtm+UqTSOL8BSEEg4ODeOmll7Bv3z689957WL16NXbu3InKysoJ2RgCo6ygoAB6vV6sGdOZOJAIBG37ucgAJgtCCDwej/hYg8Gg6Bibnp6O9vZ22O12lJeXz8ngUYDQTE4UUfLyyy/j1ltvxbPPPovt27fP4hV+NvGpbijjwbLsME2R1WrF5s2bRU3RSL57fX09otEo1qxZM2yrKYiUzWazqLMR3L5mwgFLEC2XlJTM2kREQLxjrMViQSwWEy2109LS5kQnJTSTLMuOuwEQQrn9fj/eeOONOeXoJ5HE+Y54TdFLL72E2tpaXHzxxSLtKysrSzz4CFPmwcFBrFmzZpiZwsiBlBBvlGig9GRht9tRV1c3J9r2eA2+2WxGKBSCXC7HwoULkZmZOSdU13g6WUVFxZgbAEII7rvvPjzzzDM4fPgwli1bNstXmkQSnx4QQmCz2cTm8t1338XSpUvF5nIkK2JwcBBNTU1YtmzZMEZZ/EDKYrGILvxZWVlISUmZ9jNVMBgc5nUx22e2eA2+x+MBTdOYN28ecnNzZ+S8nAgsFgsaGhombCZfffVV3HLLLfj73/+O6667bhav8LOLz0xDGQ+WZVFdXS3Svvr6+kRN0YoVK7B3717s2LEDq1evHpeyFA6HRbcvp9MJrVYrHp6musofaS89lw2R2+1GVVUVsrOzQdM0rFarmN8zXY6xiYBhGFHYPl4zGQ6H8fWvfx1WqxVvv/32nFlzJ5HEpxGEEHR1dYmaouPHj2PDhg3YsWMHrrrqKjz11FO4+uqrsXbt2nGnzAzDwGazwWw2i1RRoT5ORz6u2WzGqVOnsGzZMuTk5EzpvqYCwe1aoVDAYDDAZrPB5/NNq2NsIiCEoL29Hf39/RM2kw888ACefPJJvPvuu+ddjloSSZzPIITA6XRi//792LdvH95++23Mnz8flZWVqKysxOuvv47FixfjkksuGZNKCWCYC79AFRWay9TU1ClvEgUZwFzLk1iWRWNjIzweD/Ly8uBwOMTz8nQ6xiYCq9WK+vp6rFq1aly235tvvokbb7wRTz31FL785S/P+HV9XvCZbCjjIVi7v/jii/i///s/9Pf3Y9WqVfjGN76Bbdu2JUxJEATZZrN5GO1rNB1iItckBIOXlZXNKc/c6XSitrYWCxYsEDcA4znGTkfo72hgWRa1tbWIxWIoKysbs5mMRCLYtWsXent78c4778xIjtoTTzwhcs9LSkrw2GOPjWkhvWnTJhw9evSsr2/ZsgUHDx4EANx888145plnhn1/8+bNoiNXEknMFQgh6Ovrw759+/Dcc8+htrYWmZmZuOWWW3D99dejqKgoodrGMAwcDgfMZvNZtK+ROsREIARhr1q1ak7jLYQ8YJ1ON2wDMJ2OsYmivb0dfX194xpdEELwu9/9Dr/73e9w6NAhlJaWTvt1JOtjEp8nuN1uvPLKK9i7dy/eeOMNyOVyfPWrX8WNN96I0tLShGrbSLaDMLDPyspCenr6pJtLl8uFmpoaFBYWzrgMYDzERyeVl5eL/iPCedlqtYrSKuH9YDqGjaNBaCZXrlw5rvHM4cOH8eUvfxl//OMfceONN87ItXxea+RnvqEUMDAwgBUrVuDrX/86MjIy8PLLL+PUqVPYuHGjqClKT09PWJAt0EQF2pfwYplIkM0wDBobG+H3+1FWVjZnweAApwGora3F4sWLkZ+fP+btxnKMzcjImBaePMuyqKurQyQSQVlZ2ZhUsmg0in//939Ha2sr3n333Rk5aD733HPYtWsXnnzySaxfvx6PPPIIXnjhBbS2to468XI4HIhEIuLndrsdJSUl+Otf/yqKpG+++WaYzWY8/fTT4u0UCsWMh/wmkUSiYFkW69atQ1paGq655hq88soroqZImMwnqqsWTByE5pIQItbHRBwCu7q60NXVhdLS0jl9jQh0MiEqZazHHu8Y63A4RPdHId9sOg4s7e3t6O3tRUVFxbjN5OOPP44HHngAb7311owYkyXrYxKfV3z/+9/H66+/jttvvx3vv/8+XnvtNaSnp4uGPmvXrk24uRQG9gKVPp4NNhGV3mazob6+fs4j7gRGWTQaHffcFu8Ya7PZRBpwIu8HicJms6Gurm7CZvL999/Hl770JTz66KO45ZZbZqSZ/DzXyM9NQwkAJ0+eREVFBYAhyqmgKaqpqcFFF10kaoqys7MTnswLmiKr1QqZTCYaVoycxMRisWFZRXOVXQYMFaXJusoK7o9WqxUOh2NKm1og8WYyFovhW9/6Furq6vDuu+/OWEDr+vXrsXbtWjz++OPi9RUUFOD2229PKL/nkUcewb333ovBwUFxU3HzzTfD5XLh5ZdfnpFrTiKJ6UBNTY1oey9oivbv348XX3wRhw8fxpIlS8TmMtE4IYE+NpL2JTgExk/mBZ3n4OAgysrKzgrknk0EAgFUVVUhPT19Uq6ysVhs2OFpqptaAOjo6EBPT8+EzeSf//xn/OIXv8Drr7+ODRs2TPr3JIJkfUzi84qOjg4YjUbR6yIQCODNN9/E3r17cfDgQWi1Wmzfvh07d+7Ehg0bEto6EkLg9/thNpthsVjg9/uRlpYmDqRGnhFNJhNOnTqF5cuXz6kM4Fyjk0ajAY/lGJsohLPs8uXLxz0XHjt2DNdeey3+53/+B9/+9rdnbKv7ea6Rn6uGciwQQtDd3S1qij755BNccMEF2LFjByorK5Gfn5/wZD4+u4eiqGFuiLW1tZBKpSgpKZkzu3lgKKJkohfgRIg36LDb7ZDL5cPs9if6mwkRB6FQCOXl5eNOuHbv3o1jx47hyJEj0x6rIiASiUCtVuPFF18cFix70003weVyYf/+/RPex6pVq7Bhwwb8+c9/Fr9288034+WXX4ZcLkdKSgq+8IUv4Fe/+tWM0HWTSGK6ITSFBw4cEDVF8+bNQ2VlJXbu3JlwJqTgECgcniKRiHiYSE1NxenTp+FwOObcIVCITsrKysLixYvP+eAxnmPsyGZ6LHR2dqK7uxvl5eVjNtiEEOzZswd33303Xn31VVx66aXndL0TIVkfk0hidIRCIbzzzjvYt28f9u/fD5lMhu3bt+Paa6/FRRddlHDDFQgExPro9XpFnXZmZiYsFgtOnz6N1atXj6vdnGnEYjHU1NSAoiiUlpae81lWeD8Q2B3xjrGJxvcJpm0T6exPnDiByspK3Hfffbj99ttnrJn8vNfIZEM5AoQQ9Pf3Y9++fdi7dy8++ugjlJWViZP5efPmTYr2Fc+ZVyqVWLJkCdLT0+fEQRUYmnBNJFqeLAQNVXwzLWguR3OMFbj3wWBw3GaSZVl8//vfx+HDh3H48OEZpXgMDAwgLy8PH3300bAJ/1133YWjR4/ik08+Gffnjx8/jvXr1+OTTz4Zxpd/9tlnoVarUVxcjPb2dtxzzz3QarU4duzYnEUPJJHEucLtduPVV1/Fvn378MYbbyAnJwc7duzAtddeizVr1iTcXApZwGazGYFAABKJBAsWLEBubu6cOKgCgNfrRXV1NfLy8iaMDZgM4jVUFosF4XAY6enpYo0c7fEK1N+Jmsl//OMf+OEPf4gDBw6Mmmc2XUjWxySSmBjRaBSHDx/G3r178fLLL4NhGGzbtg07d+7Epk2bEmamBYNB0bfD5XIBAAoKClBUVDRnDqrRaBTV1dWQyWTTHlEiOMZardZh0qqxEhYEydZEzWRNTQ22bduGn/70p7jzzjtnVG/6ea+RyYZyHBBCYDab8dJLL2Hv3r147733sHLlSrG5XLRo0YRPTmHardPpoFKpYLVaEYvFxqR9zSQGBgbQ0tIy4xMugdYgTJ5GOsbSNC3qSOOF3KPdz1133YWDBw/iyJEjKC4unrFrBqZeDL71rW/h2LFjqK+vH/d2HR0dWLBgAd555x1cfvnl03LtSSQxF/D5fHj99dexd+9evPbaa0hNTRUn82vXrp2wtsViMdTW1oo1wm63w+fziZPqzMzMWZMGeDweVFdXi0YXMwWB5iY0l6M5xnZ3d6OjowPl5eVjOoATQvDCCy9g9+7d2Lt3LzZv3jxj1wwk62MSSUwWsVgMH3zwAV544QW8/PLLCAQC2Lp1K3bs2IErrrhiQg+N+Ain/Px8uN1uOJ1O6HQ6kf02W2yOSCSC6upqKJVKrF69ekaXIqFQSDw/Co6xwplZq9WKZpITSbYaGhqwZcsW3Hnnnbj77rtn3Lzo814j5453+SkARVHIzs7Gd77zHXz729+G3W7H/v37sXfvXtx///1YvHixSPsaTVMkBHLn5+eL0+4lS5aIwbBtbW3DaF8zGc8huCaWlpbOeN4lTdNITU1FamoqFi9eLArQOzs70djYCJlMBoqiUFZWNm4z+dOf/hQHDhzA4cOHZ7yZBCC6rZnN5mFfN5vNE1KD/X4/nn32Wdx3330T/p758+cjPT0dZ86cOa+KQRJJTBZarRbXX389rr/+egQCAbz11lvYu3cvvvjFL0KtVouGFRs2bDirtgkHFLlcjnXr1kEikWDRokUIBAKwWCziAMxoNCIrK2tG4zkE18T58+ejqKhoRn6HAIqioNVqodVqMX/+/GGbiNbWVigUCkQiEaxcuXLcOKmXX34Zu3fvxrPPPjvjzSSQrI9JJDFZSKVSbNq0CZs2bcLvf/97fPTRR9i7dy9+9KMfweVy4eqrr0ZlZSWuuuqqsxpDlmXR1NQEl8uFdevWid+PNwFrb28XfSwEadVMNE1CdJJWq01Y4jAVKJVKFBQUoKCgYJi0qqurCzKZDJFIBEVFReNuJpubm7F9+3bcfvvts9JMAskamdxQngMIIXC5XKKV9FtvvYWioiKxuVy1ahVOnDgBn8+HhQsXjnlAEWhfAi1W4JALh6fpon319PSgvb0da9asmdPMRkIIamtr4fF4oFQq4fV6YTAYxMmTUDAJIfjFL36Bv//97zh8+DCWLl06a9e4fv16rFu3Do899hgArqgXFhZi9+7d4wqq9+zZg29/+9vo7++fkNfe19eHwsJCvPzyy9ixY8e0Xn8SSZwPCIVCOHTokKgpkkgk4uby4osvRnd3Nzo7O5GdnT1uIHcoFBLroxDPIWRdThfty+l0oqamBosWLUJBQcG03Oe5oqOjA52dndDr9fB4PFCpVGJ9jHeMFUK5//GPf+Daa6+dtetL1sckkpg6WJbFiRMnRFNIk8mEK6+8Ejt37sTVV18NiqJw9OhRpKamoqysbMyotvhmKz5xICsrCzqdblqaqFAohKqqKhgMBixfvnzO5FoAp5msra2FTqdDIBAY0zG2ra0N11xzDW6++Wbcf//9sxqr8nmukcmGchrg8Xhw8OBBMacoPT0dJpMJ//u//4ubbrop4RegQIMym83TRvvq7OxEV1cXysrKYDAYzuk+pgOEEJw6dQoejwfl5eVQKBQIh8PD7PYVCgUOHDggUrkOHz6MlStXzup1Pvfcc7jpppvwpz/9CevWrcMjjzyC559/Hi0tLcjKysKuXbuQl5eH3/zmN8N+7pJLLkFeXh6effbZYV/3+Xz4xS9+gS9+8YvIzs5Ge3s77rrrLni9XjQ0NMxIpmcSSZxPiEajOHLkiKgpCoVCoGkaX/rSl/DAAw8kvHUU6oXZbBZpUEJzea7Zj4Kpw5IlS5CXl3dO9zFd6O3txZkzZ8RaPZpj7JEjR6BUKvHb3/4We/bswQ033DCr15isj0kkMb0QMriF5rKzsxM5OTnIy8vDv/71L6SlpU174kCiEKKTUlNTE3b2nim4XC5UV1eLMXfxjrGClOzUqVOIRCL44x//iC9/+ct46KGHZr0B/jzXyGRDOc344x//iB/84Ae4+OKLcfz4caSkpIi0L4HWlQiCwaDo9uXxeGA0GsXmMpEDGCEEHR0d6O3tHdfUYTYwWjM5EtFoFK2trdi9ezeqq6uRlZWFG264AQ8++OCsO+I+/vjjYihtaWkpfv/732P9+vUAuBDaefPmYc+ePeLtW1tbsXTpUrz11lu48sorh91XMBjEzp07UVNTA5fLhdzcXFx11VX45S9/OW5eUhJJfBZx7NgxXH311Vi+fDl6enrg9/uxdetWVFZW4vLLL0946ygEZ5vNZtjt9nOKLxKCsOfagh8YkiSUlZWNyiIRTN5uu+02vPPOO6BpGtdddx1+9atfzXoWXbI+JpHEzMBkMmHTpk0ghECtVqOpqQmXXXYZdu7cia1btyI1NTXh5lIwSbRYLOcUXyT4f2RmZmLJkiVz3kzW1NRg4cKFo7JIhGzPhx9+GM888wzsdjs2b96Mu+++GxdffPGsX+/ntUYmG8ppxj/+8Q8UFBRg48aNCAaDoqbo1VdfhUqlEnOKLrzwwoQbJYH2ZbFY4HK5oNfrxcnTaAcwIWNzYGAA5eXlY2aXzQYIIaIOoKKiYsxpCiEEjz32GH7729/iwIEDcLlcOH78eEJ88iSSSOLTgdraWnz00Uf47ne/C4ZhcOzYMezduxcvvfQSHA4HNm/ejJ07d+Kqq65KeOsYi8Vgs9lgNpuH0b5G0kTjYTab0djYOGEQ9mxAaCbXrFkzblD1e++9h+uvvx6PPPIIli1bhpdffhk/+clPZlwTn0QSScwOHA4HHn74Yfz85z+HVCpFW1sb9u7di71796K+vh6XXnopKisrsX37dmRmZk4qccBsNovxRUJ9jKeJxsPn86Gqqgq5ublYuHDhnDaTbrcb1dXVYzaTAvr7+3HVVVfhqquuwg9+8AMcOHAAl1xyyYxl8iZxNpIN5SwhEongnXfewd69e3HgwAHQNI1t27bh2muvxSWXXJKwXjISiYjNpcPhgFarHSbIJoSgtbUVVqsVZWVl50wFmw4QQtDc3AyHw4GKiooxN6uEEPzpT3/CfffdN6Oh3EkkkcT5CZZlcfLkSZH2NTAwMExTNJ45TTwYhoHdbhebS6lUOmwyT1EUBgcH0dzcjFWrViEjI2OGH9n46O/vR2tr64TN5EcffYTrrrsOv/3tb/Gtb31rTg94SSSRxOxCYJwJWelVVVXYsGEDKisrsWPHDuTm5iZUEwT/D+EMOVrigNfrRVVVFQoKCjB//vzzoplcsGDBuEwMk8mEzZs34+KLL8Zf//rX8ypK4/OEZEM5B4hGozh69ChefPFFvPzyy4hGo9i2bRsqKytx2WWXJcyJFmhfFosFdrsdKpUKNE0jEomgoqJiTsPBJ9NMPv3007jnnntw8OBBXHLJJbN8pUkkkcT5BJZlUVdXJzaXHR0duOKKK1BZWYmtW7cmrAdiWVbUIArZuBqNBm63GyUlJXMaDg4MxThN5LwthHL/8pe/xO7du5PNZBJJfI5BCEFPTw/27duHffv24dixY1i7dq1oCllQUJBwcykkDpjNZkQiERgMBrhcLsybNw8LFiyYhUczNjweD6qqqiZ03rZYLLjmmmtQVlaGv/3tb8lmcg6RbCjnGAzD4IMPPhCbS6/Xiy1btqCyshJXXHFFwpqiSCSCuro6eL1eEEKgUChEw4qxaF8zBUIIWlpaYLfbJ2wmZyuUO4kkkvj0QaDMv/jii9i3bx+am5uHaYoSNaxgWRZtbW3o6+uDRCIZ5g6YlpY268YNiTaTQij3f/3Xf+GOO+5INpNJJJGECEIIBgYG8NJLL2Hfvn14//33UVJSgp07d6KysjLhDaNwP83NzZDJZIjFYkhLSxOzcacrcSBRCFvSefPmYd68eWPezmazYevWrVi2bBn+9a9/zbrfRhLDMXf+v0kAACQSCTZu3IjHHnsM3d3deO2115CdnY2f/OQnmDdvHnbt2oV9+/bB7/ePeR8sy6KlpQXRaBQXXXQRNm3ahMWLFyMcDqO6uhrvv/8+Wlpa4HQ6MdPzA4Fya7PZUF5ePm4z+fzzz+POO+/E3r17Z6yZfOKJJzBv3jwolUqsX78ex48fH/O2e/bsAUVRw/4bef2EENx7773IycmBSqXCFVdcgdOnT8/ItSeRxOcdFEVhxYoV+PnPf47a2lo0NjZi48aN+H//7/9hwYIF2L59O/7yl7/AbDaPW9t6enowODiIiooKbNq0CSUlJZBKpWhpacHRo0fR0NAAi8UChmFm/DENDg6ipaUFJSUl4zaTDQ0N2LFjB+66664ZayaT9TGJJD69oCgKeXl52L17Nw4dOoT+/n7ceuuteP/991FeXo4LL7wQ//M//4OWlpZx66PT6RSNYTZu3IgLLrgAer0ePT09OHr0KKqrq9HX14dIJDLjj0loJouKisZtJp1OJyorK7FgwQL84x//mLFmMlkjE0dyQ3megmVZVFVVibSv/v5+XHHFFdi5cyeuueYaUVPEsizq6+sRCoVQVlZ2VrwIy7LD3L6EyXxWVhZSUlKmdTJPCEFbWxssFgsqKirG3a7u27cP3/72t/Hcc89h69at03YN8Xjuueewa9cuPPnkk1i/fj0eeeQRvPDCC2htbUVmZuZZt9+zZw/+8z//E62treLXKIoaZtrxP//zP/jNb36DZ555BsXFxfjZz36GhoYGNDU1zVjoehJJJDEchBB0dnaKmqITJ07gwgsvxI4dO1BZWTlMU9TR0YGenh6UlZWdpcWMp31ZLBaEQiGkp6cjKysL6enp035IMZlMOHXqFEpLS8fNGmtqasI111yD3bt34957752RZjJZH5NI4rMJQgicTif279+PvXv34p133sGCBQtEWmx8nqTNZkN9fT2WLl2K3Nzcs+4rEAiI9fFcEgcmA5/Ph5MnT6KoqAjFxcVj3s7tdmP79u3IysrCvn37Ziw6I1kjJwlyDnj88cdJUVERUSgUZN26deSTTz4Z9/bPP/88WbJkCVEoFGTlypXk4MGDw77Psiz52c9+RrKzs4lSqSSXX345aWtrO5dL+0yCYRhSU1NDfvrTn5Lly5cThUJBtmzZQh577DFyxRVXkD179hCXy0X8fv+4/3m9XtLb20uqqqrIa6+9Rg4ePEiOHz9Ourq6iNfrnfDnx/vP5/OR6upq8sYbbxCr1TrubZ999lmiVqvJSy+9NKN/t3Xr1pHbbrtt2N8xNzeX/OY3vxn19k8//TQxGAxj3h/LsiQ7O5s8+OCD4tdcLhdRKBTk//7v/6btupP4dCNZH2cXLMuS7u5u8rvf/Y5ccsklRCqVkvXr15Nf//rXZNeuXeSnP/0pMZlMCdUwk8lE6uvryTvvvEMOHDhAPvjgA3L69OmE6utE/3V0dJADBw6Q7u7ucW9XXV1NsrKyyN13301Ylp2xv1uyPiYxF0jWx9mHy+Uif//738nOnTuJSqUiixYtIj/84Q/JL37xC3L99deT9vb2hGqY3W4nzc3N5OjRo2T//v3k8OHD5NSpU8Rms025PprNZnLw4EHS0NAw7u1MJhNZv349ufLKK0kwGJzRv1uyRk4Ok24on332WSKXy8lTTz1FTp06RW699VZiNBqJ2Wwe9fYffvghkUgk5Le//S1pamoi//Vf/0VkMhlpaGgQb/PAAw8Qg8FAXn75ZVJXV0d27NhBiouLZ/zJ8mkEy7Lk1KlT5J577iE6nY5kZ2eTK6+8kjzxxBOku7ub+Hy+hBvA/v5+sQl85ZVXyMcff0w6OjqIx+OZdDNZU1NDXn/99QmbyRdffJFoNBry/PPPz+jfKRwOE4lEclbTumvXLrJjx45Rf+bpp58mEomEFBYWkvz8fLJjxw7S2Ngofr+9vZ0AIDU1NcN+7tJLLyXf+973pvshJPEpRLI+zi1YliX9/f3kscceIwUFBUSlUpELL7yQ3HfffaSuri7h+uj3+4nFYiGNjY3k0KFDZP/+/eT9998nra2txOl0nnMz2dXVNe7t6urqSG5uLrnzzjsJwzAz9ndK1sck5gLJ+jj38Hg85NlnnyUXXHABkUgkpKKignzve98jhw8fntRiwel0ktbWVvL++++T/fv3k0OHDpHGxkZisVjOqZl87bXXSH19/YQ1+eKLLyabNm0iPp9vRv9OyRo5eUy6oZxsx37DDTeQrVu3Dvva+vXrybe+9S1CyGe/Y58p7N69m1x++eWktraW3H///aSiooJIpVKyadMm8rvf/Y60t7dPqrkcHBwkdXV15K233iIHDhwgH330ETlz5gxxu90T/mxtbS15/fXXJywkBw4cIBqNhvzzn/+c8b9Pf38/AUA++uijYV//0Y9+RNatWzfqz3z00UfkmWeeITU1NeTIkSNk27ZtRK/Xk97eXkII9+YGgAwMDAz7ueuvv57ccMMNM/NAkvhUIVkfzw8899xzpLCwkHzyySfkT3/6E9m8eTORyWRk1apV5Gc/+xk5efLkpJpLm81GmpqayOHDh8n+/fvJ0aNHSXNzM7Hb7RP+bGdnZ0LN5KlTp0hBQQHZvXv3jDaThCTrYxJzg2R9PD/Q2dlJdDodeemll8jevXvJ1772NWIwGEh+fj757ne/S956661JLRZcLhc5ffo0+fDDD8mBAwfI22+/Terr64nJZJqwzlosFvLaa69NOPCz2Wxk06ZN5OKLLyZer3fG/0bJGjl5TEpAF4lEUFVVhSuuuEL8Gk3TuOKKK3Ds2LFRf+bYsWPDbg8AmzdvFm/f2dkJk8k07DYGgwHr168f8z6TAH71q1/hlVdeQUlJCe6++24cP34cbW1t2Lp1K55//nksWbIEV199NZ544gn09fWNK8imKAp6vR4LFy7EhRdeiPXr10Or1aKrqwtHjhxBTU0N+vv7zxJkE0LQ3t6OgYEBlJeXj5t5+d577+FrX/saHn/8cXz1q1+dtr/DdGLDhg3YtWsXSktLsXHjRuzbtw8ZGRn405/+NNeXlsSnAMn6eP7gS1/6Ek6cOIF169bhP/7jP/D666/DZDLhjjvuQE1NDS666CKsXbsWv/zlL9HQ0ACWZce9P5VKhaKiIqxbtw4XX3wxsrKyYLFY8MEHH+D48ePo6upCIBA46+csFgsaGhomzLzs6+vD1q1bsWXLFjz66KOz7jqbCJL1MYmpIFkfzx/MmzcPp0+fxs6dO3Hdddfhn//8J0wmE/7whz8gEAjgy1/+MhYvXozvf//7OHr0KGKx2Lj3J5PJkJubK9aG+fPnw+/348SJE/jwww9x+vRpuN3us86hfr8fJ0+eRG5uLhYsWDCmVjwUCuGrX/0qQqEQXn31VWi12mn7W0wnPu81clKOAzabDQzDDBOYAkBWVhZaWlpG/RmTyTTq7U0mk/h94Wtj3SaJs2EwGIZ9TlEUiouL8cMf/hB33nkn+vr6xJyie+65B+Xl5aisrERlZSWKiorGfOFSFAWtVgutVosFCxbA7/fDYrGgr68Pzc3NSElJEQXZfX196O/vR0VFxbjN5IcffogbbrgB//u//4ubbrppVqzv09PTIZFIYDabh33dbDYjOzs7ofuQyWRYs2YNzpw5AwDiz5nNZuTk5Ay7z9LS0um58CQ+tUjWx/MHNE0PM02gKAqpqam4+eabcfPNN8PtduPVV1/F3r178YUvfAG5ubnYsWMHrr32WpSWlo7b0CmVShQUFKCgoACRSEQ0rDhz5gy0Wq1YH4PBIBoaGrBy5cpRDRwEDA4OYsuWLbjsssvwxBNPzEozmayPScw2kvXx/MLIv5lSqcT27duxfft2RCIRHD58GHv37sVNN90EQgi2bduGnTt3YuPGjWeZP8ZDKpUiOzsb2dnZYBhGzAKurq6GVCoV66NMJkN1dTVyc3OxcOHCMc+F4XAY//Zv/waHw4G33377rLPvTCFZIyeP828MmsSUQVEUCgoK8J//+Z84cuQIenp6sGvXLhw6dAglJSW49NJL8dBDD+H06dMTxohoNBoUFxdj/fr1uOiii5Ceng6TyYT33nsPnZ2dyM3NHfcAdPz4cXzpS1/C/fffj1tvvXXWctTkcjnKy8tx6NAh8Wssy+LQoUPYsGFDQvfBMAwaGhrEF35xcTGys7OH3afH48Enn3yS8H0mkUQScw+DwYCvf/3r2LdvH8xmM37961+jr68PW7ZswapVq/CTn/wEn3zyyYSbS7lcjvz8fJSVlWHjxo0oLCyEx+PBxx9/jNraWqSnp0OtVo9ZZ81mM7Zu3YoLLrgAf/nLX2YtlDtZH5NIIomxIJfLsXnzZvz5z3/GwMAAnn/+eahUKnznO99BcXExvvWtb+G1115DKBQa934kEgkyMzOxcuVKbNy4EcuWLUMsFkNtbS2OHTsGmUyG1NTUMetjNBrFzTffjP7+frz55ptISUmZiYc7KpI1cvKYVEN5Lh17dnb2uLeP79gTvc8kEgdFUcjJycF3v/tdvP322xgYGMB3vvMdHDt2DOvWrcOGDRvwm9/8Bk1NTRM2lwLtKy0tDVKpFPPmzYPH48GHH36ITz75BJ2dncNoX9XV1bj22mvx85//HLfddtush3Lfcccd+Mtf/oJnnnkGzc3N+M53vgO/349bbrkFALBr1y7cfffd4u3vu+8+vPXWW+jo6EB1dTVuvPFGdHd345vf/CYA7m/5/e9/H7/61a9w4MABNDQ0YNeuXcjNzcXOnTtn9bElcf4hWR8/ndBqtbjhhhvw3HPPwWQy4eGHH4bD4cB1112HpUuX4oc//CE++OCDCTMqBdpXfn4+AKCgoAAURYm0r7a2tmG0L5vNhu3bt6OkpAR79uyZtWZSQLI+JjGbSNbHTyekUikuu+wy/OEPf0Bvby8OHDiA1NRU3HHHHSguLsYtt9yC/fv3j0r5jwdN00hPT0dxcbHYaBqNRjQ2NuK9997DqVOnYLVaxSFeLBbDN7/5TbS3t+Ott94aN2ZpppCskZPEZEWX69atI7t37xY/ZxiG5OXljSuq3rZt27Cvbdiw4SxR9UMPPSR+3+12J0XVMwyWZYnD4SB79uwh27dvJ0qlkixdupT8+Mc/JseOHRvT7auxsZEcPHhwmA2/0+kkbW1t5IMPPiD79+8nd955J9m1axdJSUkh999//4xa30+Exx57jBQWFhK5XE7WrVtHPv74Y/F7GzduJDfddJP4+fe//33xtllZWWTLli2kurp62P0JFuVZWVlEoVCQyy+/nLS2ts7Ww0niPEeyPn52EAwGySuvvEJuueUWkpqaSrKyssg3v/lN8uqrr44ZI9LT00NeeeUVcubMGfFrHo+HdHZ2kk8++YS8+uqr5OGHHybXX389WbVqFamsrCSRSGTOHmOyPiYxm0jWx88OGIYhx44dI3feeSeZP38+0Wg05NprryXPPPPMmDFNNpuNvPHGG6Sqqko04BmZOPD888+Tq6++mlxzzTVk8eLFZHBwcE4fZ7JGJo5zig1RKBRkz5495P+z995hcp3l3f/ntOltu3ovluUmF9mSA4bXYIPhtf2SEFPiQsAQMCGEKyaGN4EEiI2x8wslAQIBm4QaQ4x5geCAsQEjd6tXq65W0tbZnZ0+pzy/P845o9nV9qaV9HyuS9dKs+ecObM7uuf5Pvd9f+9du3aJ9773vSKVSon29nYhhBC33nqruOeee6rH//73vxe6rosHH3xQ7N69W3zyk58c0vY5lUqJxx57TGzbtk3cdNNNoqGhQSxatGhMs4q+9rWviT/4gz8QqVRKpFIpce21155y/O233y6AAX+uv/768b78s5ZMJiO+853viLe85S0iEomI5cuXi7/8y78Uv/3tb6vi8rnnnjtFTA7l9vW5z31OrFixQui6LlavXj3tI0IkktmCjI9nJ5VKRTz++OPive99r2hubhYNDQ3i9ttvF48++mh1jMjOnTtPEZOD/2SzWfHYY4+JdevWiWAwKJqbm8UnP/nJ0/3yJJIZQcbHsxPbtsWLL74o7rnnHrFq1SoRCoXEm9/8ZvFv//Zv4vjx4yKXy4lDhw6dIiaHmhqwfft28ZrXvEZEo1ERDofFH/3RH53WTTfJ2Bm3oBRifIpdCHcw7apVq0QgEBBr164ddjCtr9gvuOACYRjGmGcVveMd7xD/8i//IjZv3ix2794t7rjjDpFMJkVbW1v1mNtvv1284Q1vECdOnKj+SafTE3n5Zz3ZbFb853/+p7jllltEPB4XixcvFm984xvFkiVLxNGjR0e0gPaHcn/84x8X2WxWPPLIIwPeHxLJ2Y6Mj2c3pmmKJ598UnzgAx8Q8+bNE6lUStx4440ikUiI3/zmNyPGxxMnTogrr7xSXHfddSKbzYpf//rX4kc/+tHpfkkSyYwh4+PZjeM4Ytu2beITn/iEuOCCC0QgEBDXXnutaGlpEQ888MCIsy6z2ax4z3veI5YuXSoOHToktm3bJr785S+f7pckGSMTEpTTzXhnFQ3GsiwRj8fFt771repjt99+u7jpppum+lbPegqFgvjTP/1TEQgExIoVK8S8efPEn/3Zn4lf/OIXp8yo9Idy/9Vf/dW0z1GTSM5VZHycPViWJb74xS8KwzDEmjVrRCKREG9961vFd77zHdHV1TUgPnZ0dIirr75avPa1rxX5fP5037pEclYi4+PswXEc8eSTT4r6+nqxZMkSYRiGuPbaa8UXv/hFcejQoQGZymw2Kz7wgQ+IhQsXigMHDpzuW5dMgFnn8jqRWUWDKRQKmKZJfX39gMefeuopmpubWb16Ne9///vp6emZ0ns/G1FVlf379/P000+zfft2vva1r1GpVHjnO9/JypUr+dCHPsSTTz7J/v37efOb38wf/uEfcv/998/KOWoSyZmOjI+zC03T2L59O1/96lfZsWMH//M//8PixYv5xCc+wZIlS3jnO9/JI488QkdHB3/8x3+Mqqr85Cc/IRKJnO5bl0jOOmR8nF0oisLhw4d5y1vewv79+9m1axevf/3r+fa3v83KlSu54YYb+OpXv8qxY8f427/9W3784x/zxBNPsGzZstN965IJoAgxirXnDHP8+HHmz5/Ppk2bBtjofvSjH+U3v/kNzz333KjX+MAHPsDjjz/Ozp07CYVCAHz/+98nEomwdOlSDhw4wMc//nFisRjPPPPMjLvrnWkIIU5xaDVNk6eeeoof/ehHPProo3R3d/PWt76V7373u1JMSiTThIyPs4+h4qPjOGzZsoUf/vCHPProo+zbt4/ly5fz4osvkkgkTtOdSiRnNzI+zk4Gx0ghBK2trfzoRz/iv/7rv9i0aRPhcJgXX3yRNWvWnMY7lUyK05keHYpjx44JQGzatGnA43fffbdYv379qOffd999oq6uTmzdunXE4w4cOCAA8atf/WpS9ytxe4r++Z//WZRKpWl9nn/+538Wixcvlo32knMWGR/PPBzHET/60Y/Erl27pvV5ZHyUnOvI+Hjm4fdcPvbYY9P6PDI+Tj+zLpU0kVlFPg8++CCf/exn+Z//+R8uuuiiEY9dtmwZjY2N7N+/f9L3fK6j6zp33XUXwWBw2p7jBz/4AR/5yEf45Cc/ycsvv8zFF1/M9ddfT2dn55DHP/XUU7z97W/nySef5JlnnmHhwoVcd911HDt2bMBxb3jDGzhx4kT1z/e+970J3+O///u/09DQQLlcHvD4zTffzK233jrh60okPjI+nnkoisJb3vKWad15l/FRIpHx8UxEURQuvPBCbrzxxml7DhkfZ4jTrWiHYryzioQQ4v777xeJREI888wzY3qOo0ePCkVRpn1XRDI1nAmN9oVCQSSTyQFjUjo6OoSu6+LXv/71lD2P5NxGxkfJYGR8lEhcZHyUDEbGx5lh1mUoAT7ykY/w9a9/nW9961vs3r2b97///eTzed71rncBcNttt/Gxj32sevz999/P3/7t3/LNb36TJUuW0N7eTnt7O7lcDoBcLsfdd9/Ns88+y+HDh3niiSe46aabWLFiBddff/1peY2SsXOmNNqHw2He8Y538NBDD1Uf+/a3v82iRYt4zWteM+HrSiS1yPgoqUXGR4nkJDI+SmqR8XEGOd2KdjjGM6to8eLFp9QyA9WB0YVCQVx33XWiqalJGIYhFi9eLO68805x7733jrmm+qGHHjrl+sFgcMAx/jykOXPmiFAoJK699lqxb9++Kf25nItMti9CCCHe//73i2XLlolisVh97Hvf+151GPKjjz4q1qxZI6644gphWdaE7/Xll18WmqZVZ1hdeOGF4lOf+tSEryeRDIWMjxIfGR8lkoHMRHxsb28fV1+ejJGnBxkfZ45ZKyinm+9///siEAiMefjtQw89JBKJxIDBtu3t7QOO+exnPyuSyaT48Y9/LLZu3SpuvPFGsXTp0gFvQsn4OdMa7S+99FJx7733ihdffFGoqipaW1sndT2JZKaR8fHMQcZHiWTmkTHyzEDGx5njnBWU462pfuihh0QymRz2eo7jiDlz5ogHHnig+lhfX58IBoPie9/73pTd97lIuVwWmqaJRx99dMDjt912m7jxxhtHPPeBBx4QyWRSvPDCC2N6rsbGRvHVr351orcqhBDiy1/+sli1apW46667xHXXXTepa0kkpwMZH88cZHyUSGYeGSPPDGR8nDlmZQ/ldDPRmupcLsfixYtZuHAhN910Ezt37qx+79ChQ7S3tw+4ZjKZ5MorrxxznbZkaAKBAJdddhlPPPFE9THHcXjiiScGzJoazOc+9zk+/elP84tf/ILLL7981Odpa2ujp6eHuXPnTup+3/GOd9DW1sbXv/51/vRP/3RS15JIZhoZH88sZHyUSGYWGSPPHGR8nDnOSUHZ3d2Nbdu0tLQMeLylpYX29vYhz1m9ejXf/OY3eeyxx/j2t7+N4zhs3LiRtrY2gOp547mmZOycSY32yWSSP/zDPyQWi3HzzTdP6loSyUwj4+OZh4yPEsnMIWPkmYWMjzODfrpv4Exhw4YNA3YzNm7cyJo1a/jXf/1XPv3pT5/GOzs3uOWWW+jq6uITn/gE7e3tXHLJJfziF7+oBt/W1lZU9eT+yFe+8hUqlQp/9Ed/NOA6n/zkJ/m7v/s7NE1j27ZtfOtb36Kvr4958+Zx3XXX8elPf3pK5mkeO3aMd77zndM6m1MimS3I+Hh6kfFRIpndyBh5+pDxcWY4JwXlZIbf+hiGwbp166qDbf3zOjo6BqS8Ozo6uOSSS6bmxs9xPvjBD/LBD35wyO899dRTA/59+PDhEa8VDod5/PHHp+jOTtLb28tTTz3FU089xZe//OUpv75EMt3I+HhmIuOjRDIzyBh55iHj4/RzTpa8TrSmuhbbttm+fXv1P/7SpUuZM2fOgGv29/fz3HPPjfmakjOfdevWcccdd3D//fezevXq0307Esm4kfFRMl3I+Cg5G5AxUjIdnPHx8XS7Ap0uvv/974tgMCgefvhhsWvXLvHe975XpFKpqo3zrbfeKu65557q8X//938vHn/8cXHgwAHx0ksvibe97W0iFAqJnTt3Vo/57Gc/K1KpVHU2zU033SQtnyUSyRmHjI8SiUQyPDJGSiQDOWcFpRDjG3774Q9/uHpsS0uLuOGGG8TLL7884Hr+UNqWlhYRDAbFtddeK/bu3Tuu4bfXXHPNkEN2b7jhhuoxt99++ynfv/7666fuByORSM55Zio+CiFkjJRIJGcccg0pkZxEEUKIGUqGnpP84Ac/4LbbbuOrX/0qV155JZ///Od55JFH2Lt3L83Nzaccn06nqVQq1X/39PRw8cUX82//9m/ccccdANxxxx10dHTw0EMPVY8LBoPU1dVN++uRSCSSqUTGSIlEIhkaGR8lZwrnZA/lTPL//X//H3feeSfvete7OP/88/nqV79KJBLhm9/85pDH19fXM2fOnOqfX/7yl0QiEd761rcOOC4YDA447kwJBP/yL//CkiVLCIVCXHnllTz//PMjHv/II49w3nnnEQqFuPDCC/n5z38+4PtCCD7xiU8wd+5cwuEwr3vd63jllVem8yVIJJIpRMbIgcgYKZFIfGR8HIiMj7MXKSinkYkOv63lG9/4Bm9729uIRqMDHn/qqadobm5m9erVvP/976enp2dK7306+MEPfsBHPvIRPvnJT/Lyyy9z8cUXc/3119PZ2Tnk8Zs2beLtb3877373u9m8eTM333wzN998Mzt27Kge87nPfY4vfvGLfPWrX+W5554jGo1y/fXXUyqVZuplSSSSCSJj5EBkjJRIJD4yPg5ExsdZzmktuD3LOXbsmADEpk2bBjx+9913i/Xr1496/nPPPSeAU+rlv/e971Wbth999FGxZs0accUVVwjLsqb0/qea9evXi7vuuqv6b9u2xbx588R999035PF//Md/LN70pjcNeOzKK68U73vf+4QQbr/BnDlzxAMPPFD9fl9fnwgGg+J73/veNLwCiUQylcgYORAZIyUSiY+MjwOR8XF2IzOUs5hvfOMbXHjhhaxfv37A429729u48cYbufDCC7n55pv56U9/ygsvvHDKLJ3ZxER22p555pkBxwNcf/311eMPHTpEe3v7gGOSySRXXnnlmHfvJBLJmYuMkTJGSiSSoZHxUcbHmUQKymlkMsNv8/k83//+93n3u9896vMsW7aMxsbG6oDc2Uh3dze2bdPS0jLg8ZaWFtrb24c8p729fcTj/a/juaZEIpk9yBh5EhkjJRJJLTI+nkTGx9mPFJTTyGSG3z7yyCOUy2X+5E/+ZNTnaWtro6enpzogVyKRSM4EZIyUSCSSoZHxUXImIQXlNPORj3yEr3/963zrW99i9+7dvP/97yefz/Oud70LgNtuu42Pfexjp5z3jW98g5tvvpmGhoYBj+dyOe6++26effZZDh8+zBNPPMFNN93EihUruP7662fkNU2Eiey0zZkzZ8Tj/a8T2b2TSCSzAxkjXWSMlEgkg5Hx0UXGx9mPFJTTzC233MKDDz7IJz7xCS655BK2bNnCL37xi2qKvbW1lRMnTgw4Z+/evTz99NNDlipomsa2bdu48cYbWbVqFe9+97u57LLL+N3vfsdzzz3H//7f/5t58+ahKAo//vGPR72/p556iksvvZRgMMiKFSt4+OGHTzlmvDbNQzGRnbYNGzYMOB7gl7/8ZfX4pUuXMmfOnAHH9Pf389xzz426eyeRSGYHMxUjP/e5z/FHf/RHszI+goyREonkVGR8dJHx8QzgdLsCSaaOn//85+L//t//K/7rv/5LAOLRRx8d8fiDBw+KSCQiPvKRj4hdu3aJL33pS0LTNPGLX/yiesz3v/99EQgExDe/+U2xc+dOceedd4pUKiU6OjrGfX/f//73RTAYFA8//LDYtWuXeO973ytSqZRob28XQghx6623invuuad6/O9//3uh67p48MEHxe7du8UnP/lJYRiG2L59e/WYz372syKVSlUdy2666SaxdOlSUSwWx31/Eonk7GW2x0f/ejJGSiSSmUbGRxkfJ4sUlGcpYwkIH/3oR8XatWsHPHbLLbeI66+/vvrv8do0j8aXvvQlsWjRIhEIBMT69evFs88+W/3eNddcI26//fYBx//nf/6nWLVqlQgEAmLt2rXiZz/72YDvO44j/vZv/1a0tLSIYDAorr32WrF3794J3ZtEIjk3mK3xUQgZIyUSyelFxkcZHyeCIoQQpzNDKpkeFEXh0Ucf5eabbx72mFe/+tVceumlfP7zn68+9tBDD/HhD3+YTCZDpVIhEonwwx/+cMB1br/9dvr6+njsscem7wVIJBLJNCHjo0QikQyNjI+SiXBO9FB2dXUxZ84c7r333upjmzZtIhAInFJffS4xnKVyf38/xWJxQjbNEonkzELGx6GR8VEikcj4ODQyPkoGo5/uG5gJmpqa+OY3v8nNN9/Mddddx+rVq7n11lv54Ac/yLXXXnu6b08ikUhOGzI+SiQSydDI+CiRjI1zQlAC3HDDDdx55528853v5PLLLycajXLfffed7ts6rQxnqZxIJAiHw2iaNuGhuhKJ5MxBxsdTkfFRIpGAjI9DIeOjZDDnRMmrz4MPPohlWTzyyCN85zvfIRgMnu5bOq2MZqk8maG6EonkzELGx4HI+CiRSHxkfByIjI+SwZxTgvLAgQMcP34cx3E4fPjw6b6dKSeXy7Flyxa2bNkCwKFDh9iyZQutra0AfOxjH+O2226rHv9nf/ZnHDx4kI9+9KPs2bOHL3/5y/znf/4nf/mXf1k9ZrShuhKJ5OxAxkcZHyUSydDI+Cjjo2QUTrfN7ExRLpfFxRdfLG6//XZx7733iubm5gnPwpmtPPnkkwI45Y9vo3z77beLa6655pRzLrnkEhEIBMSyZcvEQw89dMp1R7JplkgkZz4yPsr4KJFIhkbGRxkfJaNzzowNufvuu/nhD3/I1q1bicViXHPNNSSTSX7605+e7luTSCSS04qMjxKJRDI0Mj5KJKNzTpS8PvXUU3z+85/nP/7jP0gkEqiqyn/8x3/wu9/9jq985Sun+/amjSVLlnDHHXec7tuQSCSzGBkfJRKJZGjO1fgokYyXc0JQvuY1r8E0Tf7gD/6g+tiSJUvIZDK8//3vn5F7OHDgAO973/tYtmwZoVCIRCLB1VdfzRe+8AWKxeKM3MNk+frXv84111xDS0sLwWCQpUuX8q53veus7CeQSM4VZHycekzT5Pzzz0dRFB588MHTfTsSiWSCzIb4KJGcCZwzY0NOJz/72c9461vfSjAY5LbbbuOCCy6gUqnw9NNPc/fdd7Nz506+9rWvne7bHJXNmzezdOlSbrzxRurq6jh06BBf//rX+elPf8rWrVuZN2/e6b5FiURyhnG2xMdavvSlL1XNLCQSiUQiOduRgnKaOXToEG9729tYvHgxv/71r5k7d271e3fddRf79+/nZz/72Wm8w7Hz5S9/+ZTHbr75Zi6//HL+/d//nXvuuec03JVEIjlTOZvio09nZyef+tSn+Ou//ms+8YlPnO7bkUgkEolk2jknSl5PJ5/73OfI5XJ84xvfGLBY8lmxYgV/8Rd/AcA111zDxRdfPOR1Vq9ezfXXX1/9t+M4fOELX+DCCy8kFArR1NTEG97wBl588cUR76evr48Pf/jDLFy4kGAwyIoVK7j//vtxHGdCr2/JkiXV60okEsl4OBvj4z333MPq1av5kz/5kzGfI5FIJBLJmYzMUE4z/+///T+WLVvGxo0bRz321ltv5c4772THjh1ccMEF1cdfeOEF9u3bx9/8zd9UH3v3u9/Nww8/zBvf+Ebe8573YFkWv/vd73j22We5/PLLh7x+oVDgmmuu4dixY7zvfe9j0aJFbNq0iY997GOcOHGCz3/+82N6TT09Pdi2TWtrK5/61KcAuPbaa8d0rkQikficbfHx+eef51vf+hZPP/00iqKM/gOQSCQSieRs4HTPLTmbyWQyAhA33XTTmI7v6+sToVBI/PVf//WAxz/0oQ+JaDQqcrmcEEKIX//61wIQH/rQh065huM41b8vXry4OkNICCE+/elPi2g0Kvbt2zfgnHvuuUdomiZaW1vHdJ/BYLA6o6ihoUF88YtfHNN5EolE4nO2xUfHccT69evF29/+diGEEIcOHRKAeOCBB8b0+iQSiUQiOVORJa/TSH9/PwDxeHxMxyeTSW666Sa+973vIbzxoLZt84Mf/ICbb76ZaDQKwI9+9CMUReGTn/zkKdcYaVf8kUce4VWvehV1dXV0d3dX/7zuda/Dtm1++9vfjuk+//u//5uf//zn/OM//iOLFi0in8+P6TyJRCLxOdvi48MPP8z27du5//77x/R6JBKJRCI5W5Alr9NIIpEAIJvNjvmc2267jR/84Af87ne/49WvfjW/+tWv6Ojo4NZbb60ec+DAAebNm0d9ff247ueVV15h27ZtNDU1Dfn9zs7OMV3nta99LQBvfOMbuemmm7jggguIxWJ88IMfHNf9SCSSc5ezKT729/fzsY99jLvvvpuFCxeO63klEolEIjnTkYJyGkkkEsybN48dO3aM+Zzrr7+elpYWvv3tb/PqV7+ab3/728yZM4fXve51k74fx3F4/etfz0c/+tEhv79q1apxX3P58uWsW7eO73znO1JQSiSSMXM2xccHH3yQSqXCLbfcUp3L29bWBkBvby+HDx9m3rx5BAKBSd+nRCKRSCSzDSkop5k3v/nNfO1rX+OZZ55hw4YNox6vaRrveMc7ePjhh7n//vv58Y9/zJ133ommadVjli9fzuOPP046nR7XLvzy5cvJ5XJTsviqpVgsUi6Xp/SaEonk7OdsiY+tra309vaydu3aU7537733cu+997J582YuueSScV9bIpFIJJLZjuyhnGY++tGPEo1Gec973kNHR8cp3z9w4ABf+MIXBjx266230tvby/ve9z5yudwp9vN/+Id/iBCCv//7vz/len5v0VD88R//Mc888wyPP/74Kd/r6+vDsqxhz7Usi97e3lMef/7559m+ffuwzokSiUQyHGdLfPzQhz7Eo48+OuDPv/7rvwJwxx138Oijj7J06dJhz5dIJBKJ5ExGESN9wkqmhJ/85CfccssthMNhbrvtNi644AIqlQqbNm3ikUce4Y477qguPnwuvPBCduzYwZo1a9i1a9cp17ztttv4j//4D974xjfyhje8Acdx+N3vfsdrX/vaaunpkiVLeM1rXsPDDz8MuLb4r3rVq9i2bRt33HEHl112Gfl8nu3bt/PDH/6Qw4cP09jYOORr6OvrY8GCBdxyyy2sXbuWaDTK9u3beeihhwiFQjz77LOsXLlyan9wEonkrOdsiI9DcfjwYZYuXcoDDzzAX/3VX038BySRSCQSyWzn9BnMnlvs27dP3HnnnWLJkiUiEAiIeDwurr76avGlL31JlEqlU47/3Oc+JwBx7733Dnk9y7LEAw88IM477zwRCAREU1OTeOMb3yheeuml6jGDbfGFECKbzYqPfexjYsWKFSIQCIjGxkaxceNG8eCDD4pKpTLs/ZfLZfEXf/EX4qKLLhKJREIYhiEWL14s3v3ud4tDhw5N6GcikUgkQpz58XEo5NgQiUQikZwryAzlLOULX/gCf/mXf8nhw4dZtGjR6b4diUQimTXI+CiRSCQSyexBCspZiBCCiy++mIaGBp588snTfTsSiUQya5DxUSKRSCSS2YV0eZ1F5PN5fvKTn/Dkk0+yfft2HnvssdN9SxKJRDIrkPFRIpFIJJLZicxQziJ8E4dUKsUHPvAB/uEf/uF035JEIpHMCmR8lEgkEolkdiIFpUQikUgkEolEIpFIJoScQymRSCQSiUQikUgkkgkhBaVEIpFIJBKJRCKRSCaEFJQSiUQikUgkEolEIpkQUlBKJBKJRCKRSCQSiWRCSEEpkUgkEolEIpFIJJIJIQWlRCKRSCQSiUQikUgmhBSUEolEIpFIJBKJRCKZEFJQSiQSiUQikUgkEolkQkhBKZFIJBKJRCKRSCSSCSEFpUQikUgkEolEIpFIJoQUlBKJRCKRSCQSiUQimRBSUEokEolEIpFIJBKJZEJIQSmRSCQSiUQikUgkkgkhBaVEIpFIJBKJRCKRSCaEFJQSiUQikUgkEolEIpkQUlBKJBKJRCKRSCQSiWRCSEEpkUgkEolEIpFIJJIJIQWlRCKRSCQSiUQikUgmhBSUpxnHcTBNE8dxEEKc7tuRSCSSWYMQAtM0sW1bxkeJRCKRSGYp+um+gXMVIQS2bVOpVCgWi2iahqZp6LqOrutomoaiKCiKcrpvVSKRSGYc27YxTZNCoYCiKKfER1VVZXyUSCQSiWQWoAi57TvjDN51r1QqKIpSzVL6QlJVVQzDGLCAkkgkkrMZIQSWZWFZ1oD4KISo/vHFpK7rGIYhBaZEIpFIJKcRmaGcYfxdd8dxqgLRF4/+v/1F0+HDh8nlcqxZs6a6ePLFpRSYEonkbKO2BQBOxsZaoejHx76+Pnbt2sVVV11VPU5mMCUSiUQimXmkoJwh/F33Xbt20djYSENDQ3XXfTB+htIve9U0rZrVrFQqAKcsnqTAlEgkZypCCBzH4fDhw1iWxeLFiwdUbQBVcVgbH4FqfLRtG9u2KZfLAyo8/FJZ2UIgkUgkEsn0IAXlDFC7697X10c8Hh/zwmZwCaz/mH9N0zQBZAZTIpGckdS2AOTzeUzTHFN8HCwwB1d42LaNZVkDBKjsUZdIJBKJZOqRgnIaqRV+fonreETecIud2t35wc8znMD0d+glEolktuDHLdu2xx0fgRErPAYLTMuyqmLVj6F+BlNuwEkkEolEMnGkoJwmanfdgWo/z3BlriNdZzRGEpi+oYWqqkPu0EskEslMU5tB9Dfbxhsfxxq/pMCUSCQSiWR6kYJyGhi861678JmOBdNQ541FYA4ukZUCUyKRTDfDbbbB+OKjf63xMprA9O9JthBIJBKJRDI2pKCcQobbda9lJhZMg6kVmP71HMehUqnwwgsvsGrVKqLRqBSYEolkWhnscj1afBwpBk1VfBpOYJqmye7du0kmkzQ3N0uBKZFIJBLJMEhBOUWMtOtey0xkKMdyTV9g5nK56j1VKpUBDolSYEokkqmgdrYkTE189K871dQKzHK5XI3pskddIpFIJJKhkYJyChht172W2bBgGsxwGcxyuTzimBK5gJJIJKMx1GzJkQzHBse8kY6dbnyX7dFaCGoFpuxRl0gkEsm5hhSUk6B2110IMaZB2qc7QznW5/RFo1/+JYQ4RWDWzniTQ8QlEkktQ7lcT2V89J9jphmPCVqtyY+MjxKJRCI5W5GCcoI4joNlWaOWuA5mti2YRrt+bTZhsMAslUrVY3yB6e/OS4EpkZy7jLUFYDCzfcNtKKQJmkQikUjOdaSgHCe1iwW/HGo8C4MzccFUixSYEolkJEZyuR6N2bjhNt64NZIJmuxRl0gkEsnZiBSU48Dfdd+1axepVIo5c+ZMaLExmxZMMDnhOhaB2d7eTlNTU9VJVgpMieTsw3e5PnLkCPl8nlWrVk1rfDwT4sdgE7ShBGZvby+BQID6+nopMCUSiURyRiIF5Rip3XUvFotEIpEJfeCPd8F0OnqEJsNQAvPIkSNVMVkqlVBV9ZQdeikwJZIzl9oS10qlQqFQmPb46D/vmcRQArOjo4N4PE40GpUmaBKJRCI5I5GCchSGmy3pOxaOl8ELpnQ6TXt7O6lUilQqRSAQmKpbHxPTvSDzX6+/OPKzl7ZtY9v2sCVgUmBKJGcGg12uVVWdcFwZHB+LxSIHDx4kGo1SX19POBwecCxMrCx1tuDft98iMNgErTY+ShM0iUQikcxWpKAcgeGMJaZiwSSE4ODBgxw4cICmpiYOHTpEPp8nFotRV1dHfX09juOccTvwQ1G74BtuiPhggekvnGpnvMkFlEQyexjO5XqqBGVHRwfbt2+nrq6ObDbLvn37CAaD1NXVUVdXRzQancqXMyQzIVb9nx3IHnWJRCKRnJlIQTkMfo/LUHb3k81QWpbFiy++SLFYZP369YRCIVRVpVKp0NvbSzqdZu/evZRKJTRN4+DBg9TV1ZFMJqsLj6lkJhZMI82SG0pgWpaFaZrV7/vCsnbGm1xASSSnh5FcricbHx3HYffu3Rw7dozzzz+fhoYGwM2EZjIZ0uk0ra2t5HI5APbt20d9fT11dXXo+pn3kTaW+AgjC8zB8VEKTIlEIpHMJGfep+8042fLfBfXoT6YJ7MDXy6X6erqoqmpiXXr1lWFJEAgEKClpYWWlhYA2traOHLkCMVikWPHjmHbNqlUqrpDH4/Hz4hFw3h2+ccjMGtnvE2H0JZIJAMZi8v1ZOKjaZrk83mEEGzYsIFIJFKNj7qu09DQUBWY+Xye5557DiEEBw4coFgsEo/Hq/ExmUwOGOcxW5lIfISBAtNxnKrAlD3qEolEIplppKCsYayzJVVVHfcOvF/i2tHRQSqV4uKLLx51Jz8YDBIIBFi7di1CCPL5PL29vfT29nL48GEURakunurq6iZkFDQTJbWTKRuTAlMimR3UlrgCw1YJTDRD2dnZyZ49e1BVlauuuqoqmIYz6jEMA4CVK1eiaRqlUqkaH3ft2oVlWSSTyQEbcLMxLkxFfISBAtNvIZAmaBKJRCKZCaSgZPyzJcfrRFipVNi2bRv5fJ558+aN68Pcfx5FUYjFYsRiMRYuXIjjOGSzWXp7e+nq6mL//v3oul4t/aqrqyMUCo35HqeTqexDGk5gdnV1cejQoWrWd7BD4mxcSEokZwq1Lte1//+GYrwZSsdx2LdvH0ePHmXRokV0dXWNKbM4OKaEQiHmzp3L3LlzEUJQKBSqArO1tRUhxIANuGg0OmpcmqkeyumOj6Zp8tvf/pb169cTCAROMfmRLQQSiUQimQznvKAc6657LaqqVrOYo5FOp9m6dSupVIqNGzdy+PBhyuXygGNG6p8Z6R6SySTJZJIlS5ZU+4t6e3s5duwYe/bsIRQKDRCY/o7+eJ5nstQK4unA/3351/edZE3TpFKpVL8nBaZEMn6Gc7keifFUcBSLRbZs2YLjOGzcuJFCoUBnZ+e473EwiqIQjUaJRqMsWLAAIUR1A66np4cDBw6gaVrVAK2urm6Ag+xMMp2itTY+2rZdFY/+71T2qEskEolkKjinBeV4dt1rGUuGUgjBoUOHOHDgAKtWrWLRokXVD+mhzh1uUTHWnX5N06ivr6e+vh4Ay7Lo6+sjnU5z6NAhduzYMcBBNplMzoiBhX//0y3gHMcZsHiq3aH3f8+maQKcIjD9RZZEIjnJcC7XozHWCo7Ozk62b99OS0sLa9asqZatjmdO71hRFIVEIkEikWDx4sU4jlPdgDtx4gR79+4d4CBbX18/YyOcZioLClQ308ZrgiY34CQSiUQyEuekoJzIrnsto/UI1Za4rl+/nmQyOeDcwQum4RYUk1lk6LpOY2MjjY2N1XtKp9P09vayd+9eyuUyiUQCgEwmUy2DmmqmO0Pp4/8eB+MvjmrvxxeYQ2Uwa3foJZJzlZFcrkdjtPhYW+K6du1a5s2bN+D74+3rnkgfuKqqVfEI7gZcrYPsrl27iEajmKZJNpulsbFx2jbgZkJQ+r+Pwc8je9QlEolEMhWcc4LSL306ceIEixYtmpA5wUg9Qr29vWzZsqVa4jq4zHS8/ZdTZZoTCASYM2cOc+bMAdxSs3Q6TSaTYd++fezevXtaHGRPt6AczFgEpqqqpyygpMCUnAv4m2379u1j/vz5BIPBKY2PxWKRrVu3Yts2GzZsIBaLjfncwUzl/8nBDrKmaVY33zo6Omhra5s2B9mZEpRj+awbTWACskddIpFIJKdwTglKf9c9n89z8OBBlixZMqHrDNUjNFyJ62DGIyinc5ERDoeZN28ee/fu5YorrsCyrCl3kIXZJygHUysw/XsdSmAOXkBJgSk526gtcd2/fz8tLS0TMvYaLkM5VInrcPcx3vueagzDoLm5mdbWVhYuXEgymZw2B9mZFJTjZSSTH9mjLpFIJBKfc0JQDp4tqev6hAdvw6misFKpsH37dnK53CklrsPdz3jufbqYCQfZmRCUQghsy570IqbWft+/LpzciCiXywgh6Ovro7m5mUAgIAWm5KygNj76AmKisWfwuY7j8Morr9Da2jpkiWsts2XDbTDT4SDrM92CUgiBZU4+PsLQAnNwj3pfXx/JZJJIJCJ71CUSieQc4awXlEMZS0xkjmQttef39vaydetWksnkkCWug5mtC6ZaptJBdjoFpeMIdj7dxo6n2+jPZGlcGuK81TZGYGpK0YYSmJVKhR07dnD11VdXnYFlBlNypjKcy7WmaROOkbXx0S9xtSxryBLXwYy3JcB/DdPJUH2HU+kg6xuKTQdHdnXzwn8fpK8nhwgVuXhtiXjd1I2TGqqF4JVXXmHFihXV78sedYlEIjn7OasFpb/rPrh/xF/wTHRn2C/pOnjwIAcOHGDlypUsXrx4Qg6IY5mDNt2Mdg9DOcj6u/OjOchORriPxisvtbPpsVdQdZVK2ebgS328vPAQV75pxbQ8n/97VxSl6gDpl4CVy2UqlQq//vWv+Zd/+Rd+/etfT8s9SCRThZ9Z8v+P1mawJrPp5se4rq4utm3bNmqJ61DnjvV5ppux3MtkHWSnK0PZfSzLk9/bTSFbQQsIeg6UeeoHu7nhzovRtOkpSfVHkgQCAQzDOKVHPZvNctVVV7F3796qKZxEIpFIznzOSkE5eNd9sBlBbcZpIh/kjuPQ399PoVDgiiuuIJVKjfncoRZMw93DRHbrZwJd12lqaqKpqQkY3kHW772E6Vn8HXulF9t2aFwQJ5OxcWyHwzu6p01QgrtJUft+qs1i+uWw+Xx+2p5fIpkstYv84cxaJlvFYds2W7ZsGbXEdTDjHavkf282MVYHWf+YifY3jkb7oQy5vhItS5KUyyWKZZ2OwxlyvSWSjZEpfz4fx3Gqn7GDM5iFQoH29vbTNvNTIpFIJNPDWScoB++6DzWg2f/wnsgHeW9vL/v37wcYU4nrYGbTDvx0Osj29vaSTqdpa2sDYMuWLVPuIKsHVBxLeK9DYFsCIzg15a7DYdv2sJkWRVHI5/NEo9FpvQeJZKKMdbbkRAVlqVRi27ZtAFx11VXE4/FxnT+R+DjbBOVgBjvIVioV+vr6qp8lpmmye/duGhsbp9RBVtNVFAUcWyAECEugaiq6cfpiZD6fJxwOT5lDrkQikUhmB2eNoBzLrrtPraAcz/UPHz7M/v37mTNnDtlsdtxiEk7f2JCZJBwOV11ks9ksL730Eg0NDVPuILv6irkc3tHNiYMZSqUiwYjOha9eOA2v6CQjLZbAXTCN1icmkZwO/Pg4OMs+FBMRlH6Ja0NDA/39/RPaWBlvfJyJstepfo5AIEBzczPNzc0A/OY3v6G5uZlisTilDrJLLmhkzpIUxw/2YVkmpik4b/1cIonA6CdPEL+VZLj7zeVy4zIskkgkEsmZwVkhKMe66+4zXkHpu7hms1muuOIKyuUy2Wx2Qvc6mzKUM/U8qqqycOHCYR1kDcMYIDDH6iDbsjjJG999EQe2dnL82HHmLk+x8tI50/paasu5hqJQKEhBKZlV+C7XlmWNeR7heARlrYvr+eefT1NTE+3t7RPaDJttpjwztaHX3NxMNBqdUgfZcCzAG959EbufPU7H8S5EoMyVb14+rfHe/wweKUMpKzgkEonk7OOMF5Tj2XX38ctgx7Jg6uvrY8uWLSQSCa6++moMw6Crq2vShhU+pmnS1tZGLBYjmUyesrN7JmYoaxnc+zSVDrIATQsTNC1MsHNneUYWKv77bDjkgkkymxjvZpvPWAVlqVRi69atmKZZdXH1e9dH23wZitoyVj9WHj9+vDq2yDf7Gnz8mUxtjByLg6yu6wME5kj9iNFkkMuvX8qxYwG6u7unzYzHx3/PjCYoz4bfm0QikUhOcsYKyonsutcy2oKptsR1sIvrZMxyas/t7+9n8+bNaJpGuVzGcRxSqdQAR9XpZCbE6mjGR5NxkK1luowtBjNayWsul5MZSsmsYDiX67EwFkHpl7g2NzezZs2a6v/LyfQ21p5rmiZbt24ln8+jKAo7d+4kkUhU44Xfn3m2bbrVMlkHWZ+ZjI8jvdfkhptEIpGcnZyRgnKiu+61qKpaPX8wg0tcB7u4ToWl/rFjx9i1axdLly5lwYIFOI6g63iadE8fHce7qrPMLMuivb192IXCbGe8TrrjcZD1DSz838dsEJT5fJ6WlpZpvw+JZDhGc7keCyPFR8dx2L9/P0eOHOH8889n/vz5p5zrHzde/Pvs6+tj27ZtJJNJ1q9fj6qqpDv76e5Mk+7qp62tDcdxcByH9vZ25s6dSzgcnpbM13Rm0/yxQ2N9jvE4yNbX15NKpdB1fcYF5XDIDTeJRCI5OznjBKVt23R0dNDV1cXq1asn/GE/nCj0S1zj8TgbN24cUsRNJkMphKBYLLJnzx7WrVtHQ0MDxWKJQ9u66DicwbYd4nX1XHLJavLlPvbt28fRo0fZtWtXNVNniAiiYqAbGg1zY0QSwQndS+3rmS4mO2NtJAfZY8eOYds2qVSKYrFIPB6ftpluPmPpoZQ78JLTheM45PN5duzYwSWXXDKky/VYUFV1yBg3VInrYPznm8zYkRdffJFVq1axePFiTNPk6N5uju5OUy7ZhKJRVl20hHCdwksvvURvby9Hjx7FMAzq6+uJBOLYBR1N00k2hkk1T/z/40xlPycas0ZykH3llVcolUpVV21N00bdEJsso11fxkeJRCI5OzljBGXtrnu5XKa3t3dSwmGwoBRCcOTIEV555RVWrFjBkiVLRnSJnchiqVAo8Morr2DbNq961asIh8MIIeg5luPY/l4SDRGMoEb6eJbWXWmWrkuhqipXXHEFlUrFdUnde4K9zx+gmKsQDIZomp/ksv+1nJb5DbOyL2Ukx7+JUOsgK4Qgn89Xy2NbW1tpa2ubEgfZ4RhLD6XcgZfMNLUu15Zl0dnZCUxcqAwV47q7u9m2bRuNjY1cdtllQ5ae154/XjFmWRa7d+8GYN26ddUqhVxfmSO7etANjcZ5Yfp7ihza3sUlr12Mpmmcd955hMNh+vr6ONHWxTO/2k1fV5FAwCBZH+eiVy9m2Zp5s3JUhf8zmqoYNdhBtlQqVc19stksv/vd76bEQXY4xlLBIQWlRCKRnH2cEYLScRwsy6qWYOm6Pmw51lipXTCZpsn27dvp7+/n8ssvr5YTDcdEMpR+v1EqlUJRlAFGCpWSBUIQDLu/jkgiSClfwal5iYFAgJaWFo7vLDJvjk6iKUg2m+X4gTTPPPkyDYtPGtnU19ePaXD0bOihnAyKohCLxYjFYnR0dLBw4UJCodCUOMgOh1wwSWYbg1sAfBOr0TY/RqK25LW2xHXNmjUsWLBg1PPHanrmk8/n2bx5c1WkJpPJ6vcqJYtKySLV5P6/itWFyHQX3LiJ+/o1TaOhoYHsCYdUtMKylREKxTwnDqd58andHOs+QDKZrPZfxmKxWbEBN9WCcjChUIi5c+eSy+VwHIcFCxZMiYPscIxWwSE33CQSieTsZFYLytpdd1+Y+KU7kymngpOCciwlrsOdO9bXcODAAQ4dOsT5559PMBis7sL7BMM6iqJQypsYQY18pkzj/BiafqpwNcs2gZBOMBgkGAwiigEWrqlnzsoo6XSa9vZ29u3bNy6n1OlkuktQffyFzGgOsuFweMACarw/F9u2RzxHLpgkM8lILteTiZF+jPNLXCuVCldddVXVCGcs5491w6q9vZ0dO3awcOFCli1bxhNPPDHg+8GwTiBkkE0XiSaDZNNF9zEvbtZimg6qqhAIGAQCKdQFQYyQxoWXz60KqcOHD1d7EX2BOdJG03S3BEz3c8DJ+DiVDrJDIXsoJRKJ5Nxk1grKwbvutb1Afi/IZFAUhY6ODjo6OkYtcR3q3LEs1iqVCtu2baNQKFQXYz09PacstBrnx5m/qp6OwxnyGYdkY4QlFzShqqc+R+O8GPu3dKJqJRzbQdEUUk3RqpBaunQplmXR19dHOp3m0KFD7Ny5k3g8PsAptfZDfzb3UI6VoUwnxuog6wvv4RxkBz/PcDvw/gw5maGUTDcjuVz7f59MjFRVlXw+z6ZNm8ZU4jqYsVRx+PMrjx49ygUXXMCcOXOqcbU2vsZSIZZc0EDr7jS97QWCUZ1lF7cQirgbO7XPk2wIoxkqfV0FdF2lmKswd0VztZLBn4Xb399POp2uOqX6G01+LPBf63RXccykoBy8ETYeB1n/5zLahutYeij9fk+JRCKRnD3MSkE52mzJkRwIx4JpmhSLRYrF4phKXAczlt33TCbD5s2bSSQSbNiwofphPtRCS9VUll7YxJwlSWzLIRIPYAR1CoXCKccuOr8R2xF0tWbRdJ1lFzXTvCgx4Bhd12lsbKSxsRGAcrlMOp0mnU6zc+fOqpGNX1Y23YPBT5egHMxEHWRrGcvYkLFmcSSSiTAWl+vJxEghBJlMhr6+PtauXcv8+fMn5BI70qZbuVxmy5YtVXMffxNmqOdRFIV5y+uonxOnUrIIRQxCUWPI45sWxjlv/Vxa96RxLIelFzWxdG3TKfeWSqWq7t3+RlM6nebAgQMUi8VqHLBte1rjo/8zmglBOVp8HMlB9siRI+zcuXNIB9laxtISIDOUEolEcvYxqwTlWGdLTqbkNZPJsGXLFgCWLVs2bjEJpw7frkUIQVtbG3v27Bky8znczr2qKsRSA8uuhnrtuqGxct0cll3UjIIrRkcjGAwyd+5c5s6dWzWySafT9PT0APDss88O6L8MBifnGluL4zizRlAOZqwOsv7PJRaLSVMeyWllrLMlJxojS6US27ZtI5fL0djYOKZ+yaEYqYqjt7eXLVu2UF9ff0rmc6gZlv7fI/EAkfipGbLaYxVFYf7KeuYur/N6K0ePCYM3mkqlUnUDrlwus2PHjgHxcSqNvmYyQzne+DhWB9naDbixCEq54SaRSCRnH7NGUI5ntqS/WBpP9muwi2s6nZ6UYQWcWv5o2zY7d+6ku7ubSy+9dMjSnvEa+gx37FgWSkNRa2QzZ84cnn76ac477zwymQxtbW3s3r2baDRaLRVNpVKTckecyQzluJ9HOGAXwcqDXSBs5QmHSsxvziEaypRzneSKRzjWdwmHDx+uXj8QCJBKpU5ZWPolr1JQSqaaWpdr3zl5pPf7RNoCal1cGxoayGazE77foao4amPw6tWrWbhw4bAZybHGyOGduBVgYnEnFAoxb9485s2bxzPPPMPChQuxbZvu7m4OHDhQHU/iC8zJzAeu9QaYTqbCbXs4B9ne3l527dqFZVkEAgECgQCZTGZIB1nZEiCRSCRnJ7NCUDqOQ6VSGXXX3cf/kLJte0x9PaZpsmPHDjKZTLXENZPJTDjLOdQuej6fZ8uWLWiaxsaNG4c1eZjIYmmqRVnGzvBU9imuD18PQH19PY2NjSxfvhzTNKtZOr8MtNYd0Z9pNlZmtORVUcAqgO39sYooVg5hl1CsLDgVMLMgyihmDhwTcGovAloAhA1qiJCqEFz1VhpCzTiOQzabZfv27WSzWV544YVTHGT9Rf9kBeV9993Hf/3Xf1VNhDZu3Mj999/P6tWrhz3n4Ycf5l3veteAx4LBIKVSaVL3Ijn9DHa5HmuMHKugFEKwf/9+Dh8+zJo1a5g/fz6tra2TMvUZnKG0LIvt27eTyWS44oorquWmw507FZtuE6XjSIZcb5lgRMexBZFIhPr6ehYvXlw1+kqn07S2tlbnA/sCc7wbcDMVHyfj+DscvoOsX/lSKBSqnxlbt24d0kF2Kkx5ZHyUSCSS2cdpFZR+iavv4jqWhRJQ/cAey4LHL3GNxWIDXFwnOkvSP7f2+Ts7O9m2bRvz589n9erVI35wT8Xu+2T5t+5/4//1/z+ijVFUBt6rYRgDdqELhUJVYLa2tgIMMGmIRCIjPtekF0x2Gey8JxSLYOVQqlnFEtg5sMoszL9M6MgLqKorBnFK7le7DEbcFY9aEIQFig6KitDCIExQVBSriNCjKFY/wkigmP04c2+AkPtzUFW1atqzcuVKksnkAAfZl19+mXvuuYc5c+bwxBNPcMMNN1TNgMbLb37zG+666y6uuOIKLMvi4x//ONdddx27du0acXc/kUiwd+/e6r9nw1gEycQZzuV6LIy15NUvcS2XywNcXCcTH/3z/TiXy+XYvHkzoVBoTE7a442RUyko9zx/nB2/a8Os2KiqghPNsXr1yZ/DYKMvfz5wOp1mz549mKZZnfM4lg24mRKUUz0PeDCKohCNRgmHw6RSKZYuXXqKg+w//MM/UCgU+P3vf8/69etZsmTJhJ5LxkeJRCKZfZw2QTmRXXef2gzlcAghaG1tZd++fSxfvpylS5cOuP5kFkz+dSzL4vDhwxw5coQLLriAuXPnjunc8S6ApnLR0W628/P+nwPwcN/DvIt3jXh8JBIhEokwf/78qs18Op2mo6ODffv2EQwGqwusocZwnHLvtlkjEF1RqNh5hF1GMfsRwkatpBGKilLuBC0KZgaMpPc1BXYRR4ugCAuhBsCp4KCjqAbCiKPYRYSeQLH6wYihmH1gJKCSdq9j5xBq1BWTagiEhWOkUEQFJ1CP4pQQqUug7pJTfh5+j9DghWU+n+euu+7iM5/5DPfffz933XUXPT0943LG9PnFL34x4N8PP/wwzc3NvPTSS7z61a8e9jxFUar9oJIzm9oSV2BcYhLGVvLa09PD1q1baWho4NJLLx3wXp2soPTj3IkTJ9ixYweLFy9m5cqVY3oNUy0Sx0o+U2bv8yfQgxoN8+OU8ib7d3fSfSxPY1PjkOf484FbWloQQlAsFqv9l0eOHBkwnmSoMRyzybRsKvDj41AOspVKhbvvvpsnn3ySL3/5yzz//POsW7du3M8h46NEIpHMPmZcUE5m191HUZQRS7r8Ete+vr5hXVynQlBu27at6lI41jKe052h/E76Owjc52+z2tgd3s1ree2Y78dfJPhzHvt6e+jrPk7bKy9xIJ8mEdVIxYMkozqxkEqkuw0l14Ny4Fk3s+iYuL1NjpspdCyEGnS7nVQdBYFAR8HC0ZMoThkC9W7pqp5AMfsQRgLV7K1+tZQYmlJBKDoIC6GFUYSNY9ShiDIY9Sh2zss8ZhCeyBR6BKXSi9BCqFQQioEiLAg0IOa8bsifwXClY9FolFe/+tUIIdi6dSvZbHZCYnIoMpkMwKgZz1wuV128XXrppdx7772sXbt2Su5BMnPUulz7sW68jBQfa2fjnnfeeSxYsGBIl9jJCsqjR4+SyWS4+OKLqxUPYz33dGQoKyULs2wTb3BFXyhq4Nhglcf2c1AUpboBt2DBgmqZfO14En8+sN+ffrYJyuHGKqmqyutf/3p6e3t55JFHWL169bhnXA6HjI8SiURy+plRQenv4B49epRFixZNyoxguJIuv8Q1Go1y9dVXD1teNZkFU19fH+C64F1++eVTPp9tMFO1YPKzk47XN6ig8GTySd7P+2ufzOs/9PsQ82C7vYg4ZbCy4NgoZi8KCk2VHhr1OEpdP1Z9lGK2k2yfRs+JDCdsg6AOjqpRLoYIBEIomgZCoDi2+1wKKMJ0/y4q7i2oAfdbKoAGwkHoMRA2IlAHThmhx1GsAqhBFLMfEGh2FkUJgigjVAMFB4QGqoPQo+51jBQ4plve6njlrsICYaMoDuDgzLkF1KHfNyPNoczlclWjHn8ky2RxHIcPf/jDXH311VxwwQXDHrd69Wq++c1vctFFF5HJZHjwwQfZuHEjO3funLBTp2Rm8VsADh06RGNjI+FweMrjo9/fViqVBpS4DmYy8bFUKpHL5dB1nY0bN45aFj+Y07XpFk0GiTeESbfnSDVFyWfKBMIq8fqJuV77ZfJDzQf2x5NEIhF3Y66vj0QiMW2ib6bctsfqgj1VxmUyPkokEsnsYMYEpb/rXiwW2bNnD4sXL57UB9zgkq7RSlwHo6oqlUplXM9Z+xyKorB69epxZ6GGWywNtVM9ZQsAqwh2ga29P2VBKUfAcYg6DoZwiDlpeo/8G82OerLMVI+D2e+Wj1YKiEAUbMs1rHEc0FQEqptdNOrAKSGMFLqVJVY3l7jZjzCaMfPddPaZWOV+Wo8eQ1cdQpEk0XCQSCyOrgJKyDXLUTW3VFULuJlMNQhWyRV2joXQIq5ZDgqgg6ohlCggcFSBEAqK6v0uhIUiFLAr7nUqFYQR8/ooQ6BobnZUVRGKBpiA+/zOnDdAqGnIH6OfXR9OUObz+Sl3MLzrrrvYsWMHTz/99IjHbdiwgQ0bNlT/vXHjRtasWcO//uu/8ulPf3pK70ky9dS6XB88eJBYLDZuIVbLUCWvI5W4DmaigtJ/Dk3TWLp06YRew+AYOVocnKoNt0BI5/LrlvLyrw6T6y0RjhksnB8l0Tg1mbTB84FLpRLHjh3j6NGjbN++HcdxSKVS1QzmVI4nmemS16GoVCqYpjmlY0NkfJRIJJLZwbQLysGzJf0eu7E6tA5HbUlXbYnrZZddNiYzlPEumCzLYufOnaTTaS6//HJefvnlCd33lGQo7fLALKJdRLHynptpv5ttq/Qi8AViFMx+rtMjXO68ClsPIhDYjqCzrYumpOUKK6eMY9S7gs6ocw1qAlG3t9GIuf9Wwyh2GaGEagReABAIPeGWnAbqUKw8RqSRWOEoJS3J4vowRTtAKdtFX6ZMV+cxlECMeCRIOJogEtJQjSQ4FYSeRHEKbhbRF7Zmxs1Kmn0II+mKTzUMWAjFQKgGGHGEY4EeQqlmMbNeiWvmZB+lngQrizDibtZVCbrXSV4AqQuH/T3U9vsORS6XIxqNTtki8IMf/CA//elP+e1vfzvuXXTDMFi3bh379++fknuRTB+DXa4nMvJjMLXxcSwlrkOdP574KITg0KFDHDhwgDVr1tDR0THhez+dbQEN82K89u1rKOZMgmGdF19+fkqvX0soFKKhoYGOjg42bNhALpcbYGKj63pVXE52PMlsEJS5XA5gyrKTMj5KJBLJ7GFaBeVQsyWnSlD6JV1jLXEdzHgWTLlcji1bthAIBNi4cSPBYHDEwd0jMXgUSKVS4ZVXXsEwDBobG4mpfSiVXhSniFbO0lR5AfVYD4qTB+GgVHpcUWf1ewLJFUZK1cVUgKIgFNUzm/H6EI06NKufxsgStx9RC2GXCxSdjJshVHRQNLf8VAujOL5RTRlh1LnGOdUexpgr9LQwipl1s4eO7ZWJuosWv0TV0uIodh6MFBE1R7hpAfVWHlttoZTtJlcRpDsO027phMOGl8EMEQhH0bA8kxzvHqwswkidFJVmL8JIQqUHRaius6sSdEtjdf811KGIivcaCm4fpdWP0CLu+WoYxe4Dox6n5doRf3f++3i4BdNUzVgTQvDnf/7nPProozz11FMsXbp03NewbZvt27dzww03TPp+JNOHZVmnuFxPhaD042O5XGbbtm0Ui0WuvPJKEonEmM4fz9gR0zSr43TWr19PMpmkq6trwpnDWkHpOA6HDh2iUqnQ0NBAKpU6RRhNtYGPbmjE67TqtaezVLTWRyAejxOPx1m0aFF1PElvby9Hjx6tOphOaD6wEAi7jOoUoOK4lRrCcmO2UwbHcg3KHKvme6b7uYBw3bRRXBM1RXfbHlQDKhmILYV5J2PMSIIyn88DTCrz7v/MZHyUSCSS2cW0Ckr/g3hwr6SiKJNeMCmKQkdHB+3t7Sxbtoxly5aN64N/rIKyvb2d7du3s2jRIlauXFldzEyFoMzlcrz88svVXqnuQ79nTvn3GNFGYmGNYLSesN0OpTioGuAgtLjbI2jUodiemLSyrsGMlQPFQCi4H/yoKFhun6GwXfElvAygXUCoQTRsFIS7sHB/MqBYCDSvx1AHBI4eRxEmItDgZgeNpCsq9ahnmBPxMpghFMtys4fC7ZN0MEBVEIqXwTQSaHaZSKKJqFNENNVjlbIUyg6lfDfHe2wU1SEYShKNhglH4gQMB6HHARsRqAe75N1DDkcNEVCPgwDFzrii0i66fZSKg9uo6SD0MKAg9KQrOrUoinCFsLPwLe4iaQRGM0nxM5ST5a677uK73/0ujz32GPF4nPb2dgCSyWTVyOK2225j/vz53HfffQB86lOf4qqrrmLFihX09fXxwAMPcOTIEd7znvdM+n4k04cvhmpdrnVdnxJBmc/n2bRpE3V1daxbt25cG3hjjY/9/f3VDb0NGzZUN/QmGh/9c4UQVCqVar9nPB5n165dWJZVdU2d6Fie2YSwTTRRdh2sq4LORHMs6nWT+kab5fUGphknl+miP3OIjqNdHDUrxCM68ViceEQnFAqh2CW3YMQqAc5JsQgsyO0n2LoYdMVtXbDLoIXdKhcj5m7GaVFXPOrhk+0CogJKALDdpnbHAVX1zkvCoE24sbQETDZTKuOjRCKRzD6mveS1dh4ZMCU78JZlUSqVKBQKYy5xHeq+RlrwOI7Dvn37aGtr46KLLqKlpeWU8yeyM+4vGk+cOMGuXbtYsmQJixYtQhTb0YKdFMtLKeW66O1TKBw8SrEcotU8ROOCJmKJiGtUo7gC0dFTKMLtX1TsvJsxtAsoigGiDI6DUAIoiolQg16vYsDL4EURdgFLCbvZTEVDcSqgCLcHERPwXFiVIIpieue6YlHBRARSbomq//y6V5pqxKtiUzWzaGrQLZNVQ94PQUNo7t+FaoCw0EMJkkGLZCxCM1CulCkWiuSzPfR0HkfTdELRBOFwmGgsgaZ5mWgjjmMVsBVv11s1AOFmc3HcBZIaBLPkZlYd0xWWQrgjR4SNaL4GgkOPBRj8nhgpK+AbTkyWr3zlKwC85jWvGfD4Qw89xB133AFAa2vrgIVZb28vd955J+3t7dTV1XHZZZexadMmzj///Enfj2T6UFX1lAX2ZOOjEKKa3Tr//PPHVOI61H2NJgiPHTvGrl27WLp0KcuXLz9lLNNkMpT5fJ4dO3aQSCRYv359NZOXz+dJp9N0dXWx9bm9FPpMelstVl9cZOGyuVPmrIxwM3mqXXTHDpW8jJ1juSLLsb2vtVk97+/4GT4vAyjsmmMq1WsjbEL5HHOzvfDKC6Ao1QoThMDdCHPjjaFo1AlBXVxDRAWmrZHP5yj0d3O8PYdAIxwJEY1EiYbDGIEAoIHmOl+bBFEUFfSIKx71mJtpDLj98u5Ypj6v6qXX66PvBTUCIuuKSn9zzlHdjcb5N7hVMTWMZMozVS0BMj5KJBLJ7OO0zKHUNK06X228+DviQgiWLVs24V3qkRZMpVKJrVu3YlkWGzZsGDLrNNEdeH+RtWvXLi6++GKampowi70oJ/4b9AhhtUIosgy7tZ1suQk7d4Kegkqu7wCRhiDhaJhILOZm7QJOjUCMee6lXl8gOopiV4WhYmURWphCupv2NgfHLGFEwjhCgBJ2y0L1mLvoEb7zqruAUETZdUu1+90RH6LkikNhVnevHT3mzoWsZg9TKFY/th5Fs/oRaotbYqrHUSoZRCDuzqRUg4AKqg6OhtA1ECbBcJhQMEyqoRlh5ilWoJRLk+krke44ghpKEQvphGIN7utWdFANr7fT8hZCJTASbubWiFfLhJWKWyqrVnoRqYsgObw7YC2jORgWCoUpEZRjWYg/9dRTA/79T//0T/zTP/3TpJ9bMrMMtbiejKD0S1yz2SwNDQ0sXLhwQtcZKT7ats2ePXtob29n3bp1VZOZWiaTobQsiz179rB8+XKWLVtWNXRTFIVYNEosEkQvqvTli6RPdOF09fPy8UMcXQr1TVFSiSjJeIRYJIiC7WbbhDVI0JU8R+sSoIKdA9XAzKZpbytjZtOo4RQtHCdwYiV0VjzR1e/2YNs5V3TZRbdH3S66hl9OBRQDcHAdqr3MHr5Q9H4mXouBQwBH0d3456YXXREpKu7mmF3xMopF96tVQlEDBBSTQDJBXTyIo7ZQLuXIl2xy/b10dnQSMDRCkQTRSJBQJOY+vxFzRaERd68bqHPv16h3r2+k3J58Peb+W3Uds1EUwATb9u6lAItugcDAz17fL2EmWgJGQ8ZHiUQimVlOi6CcSEmXEIKjR4+yd+9eli1bRn9//6R2OodbMKXTabZs2UJjYyNr164d9sNxIjvwfgkXwBVXXOHOIbNMlLafIMysu5usGlilCululXAsQKESZ05jgnwuSkMqAAEo5vrp7T6BooeJhoOEovVEIwFUPeTukmthV9wRwC19skANUclnadufxy5mEXqcUv8JCgLEyhwYETf7qATc0lY1DNi4IysdFMedG6kIb9SGnfcWPEWEFvKym24GEy3kZlADdSCOYWlJFNvLZFoZt4+x0ufuhptpd6Fm5RBa1C3JVUMowsTRY6jChGADEaNEJFZHg53DYhGl/nZyFY38iVcoizCGyNObThAJqwRCSVdIe8ZBQksAlrtwEmUwkihWHoKNiDnXjfn3N9JiCaau5FVybqPr+oQ23Hp6eti2bRt1dXUsWbKkOp9vImiahhDilB7CYrHI5s2bURSFjRs3DjtLcCLx0a8KKZfLLF++nOXLlwNU7wO7DEe+C+UerD1pFhoOzYv6CEZSOMUSqXATYaVMthO6j/TSTpBYxCAcTRINBzCCES8W6tXNMhQ8czEdu5yn9UCJbFcGPRjFyfaRrwRonpuHuiYvk5dwM3l6ws3gGQmo9HhiM+OKTCvvxlMr74nNkic2TTdmCstrJbBxVFdYuuLt5AYhesA9Xo96GcWIW2bqGaxhJMDbIFPNfsKRBGGjH+oW4Zj9FMo6pUIPPT15rBOtCAJk0icIR5OEQw6q6lafuPfhuPeHAC3iCm3NddBG6F6pqwlGyH0tLa9zeycH4f++xzJWSSKRSCRnF9MuKKdiB96yLHbs2EFvb2+1xHXbtm2TKgsbPKdNCMHhw4fZv38/q1evZuHChaOOHRnPDnx/fz+bN2+uZrAikYj7AXz8JyjFowjFQLEqCM3AcUARFSCIqggsJQSUUANJEnU6qVQ9QtiUCjnyRZNM9xE6LJ1oQBCINROL6ATCCa8/0B2PAZDPBynme4k3NKBSpliIo/S2Y5oaQdGL0BOoVsbLVFa8bKTbg+n2VQbdxRCAaqF4wyIVpwyoIPK4ZbIlt3/RthFCQVUctxwXv0zXPGmSo3smOXqsmsFUKz3uVyeLUKOeE6srjoUeR3MsIvWL3f7Llrn09xwnnYFKoYvetEBXWglGkkSCOuFIAiMQRCiKu9OuuAskYaQQC/7PqH2TtYwmKPP5/JTNn5Scu4w3PgohOHjwIAcPHqzGrra2tknFRz8TX1vm3dXVxbZt25gzZw5r1qwZMVs/3gxlpVJhy5YtVCoVYrHYqeZBjgXHfwxmDqEEsCwNVXWwMdCoYIkQhlIgUTeXRLwfR1uNme8iV9HI9R6ns1MjpNmE4o1EQxrhaAoVT1wCKA6lgkO+r0Q4EccwwCZF3+F28oUAsZTtZvCcspuZs/Jg1Lllo0bKFZO+2DQS4G+YVdJe+WifK0Kt3EmRqXobcaqfyfTEpupvzIXdKhA97mYsvR54gm4VyMn7SLn3oSfB6kc14sSUHLHYfBqtPGWrgWNH92OZAbqPH8RyFCKRMMFQmEg0QdBQUfSw1xIRAk62N7hC13IFrbAgdRE0XD7k73A007KpagmQSCQSyezjtJW8jnWx45e4hsPhqsOqf42JllTBQEFoWRbbt28nk8lUM4ejMR5r++PHj7Nz506WLVvGkiVL+OUvf+me2/k05A6DHkUxC6AZKI5FULeJJoLk0n2US4Jyf5ZANEY4olZ3shUE4XiIcMyE5jnYpQy5kqCc7+ZYn4ouDmFEm4iGFMLxFgzNQVFUFDQcW0FoYYRTpGRHUbA8gxt/xEafVxKaRugp1/xH80pq1YCXpQwjsEEooHhlsg64KU3HNfQRAsUpoioqilNyx5ioeH1BAqFHQDgII+XNtEy4xhJeLyiq4Zapqrq7gFJUt7RVUV2hi4ECKIE4umHRsmAhwrEolYoUCgWy2T46ezKEdEEwWkc0CMFYI5oo48x705j6JmsZTVAWCgXmz58/rmtKzm2G23AzTXNM5w/n4joV8RFOjpvwx46cf/75Y3qPjydDmclk2Lx5M8lkkksvvZQXXnhhwLlCOHDiF644Q0dRBfGGKJ1Hc1SKgn7bIBpWCCSbPMGXQjWzBONNBM1+aFiFXeqjYGqUst10Zh3ECW/TKRQkHEsQ1DVUVbhxxVFx0MCxEYCqOtWMImrQFbd61P1qJL3nrHNjlFHvuqEaKVc8GqmTIrO2R9FIgplGoGE4OUA9KTatvCsm7ZI3+7fsldHaXhWI7Qo/x3YzicK/D9MTnebJ+9KjaE4RB52W5iYQ9ZiWoJjPkC9X6E/vx9EjxEMQiDYRC2TRwg2eAPb6LLWwO8s41ARzhnfCHutYJYlEIpGcfZy2ktfRSroGl7gOdnEdj639UPiCMpvNsnnz5qpgncqxI7XGPhdffDHNzc3VhZLo2wV9W1xHPbOMo0VRFTfjh2LQMt9BM1IUioeIpJppmSswwkF33qQePdlb49ZsoYUbSAZNqGug2cxRsjRK/SfI5DTSXVtRgynCqk0gHCCf7gMtjGNZRJIaRiTqCrsBJjt+9rDPK1FN14hMd06ko0dRqCAIoGAjtABgApq32625i0HdXRQpashdNKlBV5xq3q63FnRfh6IjtLD3d8N9aYoKQnHdahXNdZjVwyhm3nOWLYFw3GwDGooqCEVTRCJxRNN8HKtEoWRSyvXQ3mujdO7Gil+AGopST4Z4PD5m18HRZrn5LoYSyWTQNI1isTjqcel0mq1btw7p4jpZYx//fV4ul9m6dSuFQoGrrrpqzEPpx+rk7W+2LV++nKVLl1YdwQeI0fYnUHKH3JJLLECnYV4MRdE4ciBHKKLTvLiJWEL3hFaNoAq4/YFauJ64niceW0qjlcN0dIq5NIVihb7egyhagEgwQCQpyKWzaCUNy3KIJh3CUa+nEQ2ouBtijgWoXgltsNpW4Jar1ohN2+tRrN5LAQIpMHOgJ1CsEzhqBKzMyUymEfMEXRTKvV5GM+/Ge+GNeBKWFxsdrzfTxh/Z5JbV4vWnKziKjaMEUbQAKDoB3SQQTpJ0ijjKIsr5NPmSINd3gs6ySsRoJxCrJxrIEYqmUH2hu/CmqknQUPg95sNV9kxVj7lEIpFIZh+zsuS1tsT10ksvpaGhYchrVCqVCd+XqqqYpsmzzz7LkiVLWLFixbh6O0bLUNaWcNUa+yiKguF0wYnnIVQHdsHtW6TsZR/d0kwtkqJlkUmmkmTeogB6KOn1HSZdceeb2xgxbzGjeAsM13whpNsEw8tJ2SVssZBSroNcCUKpTkpCI6QWCcVSWIpnWOE43nrEm7/mGfSIQL1bwhpIoZg5tzTV8jOYPe5Xq88Vn07Rc3K1EVoEVZhYShRNUdwMqF1y79tyM55uqatvkpNwHWL1BDhlt0TW6+VUhYXQvJ13tc59HiPpZi/1OKrVhqIGUMw0wkigmn0ILY7iFFC1ILGISiy6iEYcTKJ0Rv4X6d5+2tracBxnwBgCf4TLUIyl5FUKSslkGa3HfKgS18Hv2fGW5A/Gv94LL7xAMplkw4YN1RnCY2G0DKXjOOzdu5fjx49zySWX0NTUVP2ecMAsW27vZMeT0P08aDGoZL3exByqHqJxboCCEyaViJJIehuBju0JKrs6kxYt4vUjxsGpoBhJAk6ZQP18kqKCwzxK+X7yxTJ6rB+lXEFxFBL1YRxNQ9esk+6uiuYZ1bjjlFD8XkRf3Kk1//ZLah0vttueWZjlZiodC1tLoCg9bobTKnmGOaUao5+wl6HUqlUavnFa1eRH0b3XGXKvoXuvVwtWDcs0hepGnit8LdAiqMImHG8iHLWgqRnbLFMoFSnkcnSkC9idGUKhEGLha0kWHOLx4edyjsUFW8ZHiUQiOTuZdSWvw5W4DnWNiS6YHMfh8OHDmKbJZZddNmAxM1ZG6hEaXMJVmzkQlQxd+pd5LCf4Y+3NrqlCuRdbi3uCzS1hcoSGqmgoiurNnnRwjHp3OHXV3MYfzxFxRZoacKd+qDooitdDGUIXNpHUfKJOBdEyh/mlfvJFi2J/O1YlyNEDuwjG6okGFUKxOnRFuGM9hHDHiOBd10i4C5RAnSsOjYRbJqtHvHEhXh+kkUA1exFaDFWUEUrULR/zzIIcox5FlL2ZlvmqI2y1j9JIeGK1VhwW3dEn+GNLHBwjheKYWGoSBc9B1sqDGkCxc15GMwco3o69jr7kbcwLNjBvPtVZoP4Ygv3792MYRlVc1tXVDchYj0VQyh14yWQZKT5WKhW2bdtGoVBg/fr1w/bsTiZDKYSgra0NgLlz57J69epxG6mMFB/9rKe/2VY76L7zaD9HtvTTe0DFPLSZ+YktaKEklHohkKiWYDqVPIpmoNklECE3E4jwhJdnfuN4TqnC/7cnsjzjMFd8hlCxicQbicRtaJqLubBCsVggn8+Ry1U4fryDcCRMJBIiEo5gGH6GUHHFpagRk26g8V6N6jmk4glBvHgKrgusAtje+CLh3VutMU7MM+rxxKvQ3HOECZrhzZIMudlOI+71cyZO9nP6pbXlLtdbzcy417bynqu2dVKUCkA4aJpOPF5HPBYHNEyzRNq4mM5ymENbtgBUN+Dq6uoG/O5kfJRIJJJzl1kzNsRfxOzZs2fIuWZDXWMiC6ZisciWLVuwLAtN0yYkJmH4HfjafsnBZbrCrnD80Fc5FuhEMwUHRC/LbcPNtpV7IZCk1NvJ0QNlKoU8RjiKFSojhOtYqniZP0VYCL0eRMnL1BW8GZRFT0yVvIUCoCiu0PT6cBQcjFAddSGTcDRJ4cgr1M9dQSnXTU/Gwuncix5KEgsphGL1hAy8fh4LdE/cCxDe4kcYCcD2MpDlqqgTWhDFzgIC3ckBcbdMVQujOMXqAs8Xh8JIuo6svljV4+64DzWIYve7r8vKervxBdzyVtdqXwjbnWep6KDHEQpeyaziusuqBoqVw5nzJgiezHYrikI8Hicej7N48WJs2yaTyZBOpzly5Ag7d+4kFotVBaZpmnLBJJlShqvgGKoloLbEdbSM4UTjo23b7Nq1i66uLlRVZf78+RNy5RwuPvqbbalU6pTNtv6eIvteOoFZEsSTr2Ae305XMU7LQqtqiGNaIY7taqe/18QIOGhRm3jS8USjawjmzp3Nupk6M+tl+7Juv6FdANXL+qlBr3XAy9wpGmBjBEIYgQCJZD37979CY3MzplUhkyvQ2d2HYQSq4jISDtaUwSu4QlF4AtMBp3aupOqN3jBcMasEEHbFNTertjDYgDd2xOs1d19XTebV21jD2+Aj0ACi5PVxFt3SWjPr9WlmEWoYQ+nwXLnznuguUxXgjukK03LWFe1mv1e2W8BoWEfLnNfSgvsZnc1mSafTdHR0sG/fPoLBYDU+CiFGdcEea8m0RCKRSM4sTkvJq67rA0wnLMti586d9PT0DFviOpiJ9FB2d3ezdetWWlpaWLx4MZs2bRrX+YOfv3YH3i/hOnbs2CklXOBZqh//KS/2PI6CikDwTP/vWd54q1viGajHKhc4sNvEzPWiBaMUevsoWSb24gKK5riGNJgIJQBUqqVLwoi74sxIVBdIil2u7pgrTsldOFgFd8QHZW80RwFHMYhGQkSiS2gQJpYtKOb6yBYqZE4cxSJAPCgIxRuIBArooYRr2qNHUZyK2/MoAFVxeygVFaHEXXGoRRGi1+3fcUzAc4QVuOVjAu8eOdn3o6nujj2qKw6hWl7mbvKr3vMG3OymHkW1MmhKoFpCi112HWqxcfQoqrBw6q+A5MhDrDVNqy6OwM0GpdNpent72b17N5VKhUAgwJEjR6ivrycWi1Xf30KIs6ZH6PDhwyxdeupYgGuuueaU+W6SyTO4fH5wyWttieuqVatYtGjRqCJvIvGxUCiwefNmNE1j48aNbNq0acJVIENlKI8dO8auXbtYsWIFS5YsOeU15DIlykWL5vpOmoyd6HqYcq6E5cRRMRF6mNYdJ+hsMwlHVPJZKHebxFOCRNJ3Jw26mUk97M1UjLjjNar9iXF3VJGerBn/ka0pMY14mb+gG5cVjUBAJ5Gso6HewnYUioUs+UKRzu5eLMsiHA4SicSIRUIEgkEUcFsXsFyHbX+kkj8+xC9ltfMoioou8qC2eM6w8ZMZxqpJT8F7PX5bRMV1YXUsz6zHG5HkWK5YFrbbhylcZ1qn0o+jRgFvPIni97h78y19852gP/rEMxCKLYeW1wz4nSYSCRKJBEuWLMG2bfr6+kin0xw6dIh8Pl81cKqvryeZTA7oOS8UCsyZM2dC76fZhIyPEolEcipjcyOZYmp3z7PZLJs2baJSqXD11VePSUz61xjrYkcIwYEDB9i8eTOrV6/mggsuQNf1k/PNJkDtIrBSqfDiiy/S09PDhg0bhs56djxBV9dvOFI5QsSqoOHQa3ZwqPwKOK5raSGvUMyWMBJNBCIGgUQdZtGhkHNfpyIsFOF4mT8Hxex3r+2UvNlqticYdYQeQ6hBhBbyBJoCqjdHElCsrJutFHkQNqqdBwG6BvFkE/PmzmHR8ouYP38BaqSZbH8/h46maTu8n86+EsX+ThwlgGJmXA+dci8g3JJTxd2pF4qOI3R38aSFEHrUvSc9BEJxs5xOBaHqbjZSwe0TFQ6KlUN4/UhCMUDRcLQoimq4fZ2q5o4eETamEkcThWrJLKqGava6Zj2VtCt6m18z7t9xIBCojkjYuHEjTU1NRCIRMpkML7/8Mk8//TQ7duzg+PHjtLe3k8vlJi0o77vvPq644gri8TjNzc3cfPPN7N27d9TzHnnkEc477zxCoRAXXnghP//5zyd8DwsXLuTEiRPVP5s3b6ahoYFXv/rVE76mZOzUxsdKpcJLL71EW1sb69evZ/HixWPKGI63JaCzs5NNmzZRX1/P+vXrCYVCk+rDrM1QOo7Drl272LNnD+vWraua75x6zypB5wTN4hm3p9ty45qmVBCKhlUqk+mpEImpBCJhoqkQlYpKIeu4oze0sCuW9Jgr6IyEJ6qSroAyEp44S3oi0ze/CbszJbWgKzY1zXWUVXU3Piq6m7VDRaNMLJqgpbGOZUtXsGTRAmKxFOVigSNtJzh08AjHO9L0Z3OYIgBobukqqvv8iuLeD6LqzGprcQ4WdpLXDM8Z1r+viPtVDbjlq4ru3ie44lNY7vG2DU4BsLx+eNvNkDqiWu2Pormbd2rI/apHAcX9WYCb1RS2OwpFWBCeBwtuOlmyOwSaptHQ0MDKlSu58sorWblyJaFQiHK5zM6dO/ntb3/Lli1baG1t5dixY1Pi8irjo0QikcxOTmvJ69GjR8dc4jrUNcayA2+aJtu2bSOXyw2w1fd3TgcP7h4r/mJrpBIuH9G7FXq38py5h4BjU9E0QgJMRWFz/7MsSjYiCKDhZRXtMrYaQthlLBFA1QOe+6njlUqF3PJSLej2TupRz9gmjur92zVjCLrzLDXXhVAQdK8hHFBVhFlEKLqXwTRQ7JxXOtvnmepUCAVDhEIBaGjAsSvki2VK+X5OpE1E1ysEQgkS4RyhWCMhs98zDXJ7dxSzF6GAJooIUiD8sSMWjhFzzXYC9V6Gts4tlTVS1bElvlmPanoOs2YfQouCKFbt84UaQpBF6Cn3Z22kXJGqRd2sqBpALLj55Ly5CeK7T/pD4x3Hob+/n97eXo4fP87/+T//B0VR+NKXvkR3dzdveMMbhu3/HYnf/OY33HXXXVxxxRVYlsXHP/5xrrvuOnbt2jXsYmzTpk28/e1v57777uPNb34z3/3ud7n55pt5+eWXueCCC8Z9D5qmVTMJpVKJm2++mQ0bNvB3f/d3476WZPz4sa23t5ctW7aQSqXYuHHjuExxNE1DCDGqM7HjOOzfv58jR45wwQUXMHfu3Or3JiMo/QxluVyuthgM7pccTH1djqWpJ2k74qDZvWjxZpoaK6h6HaLch6rHCeglypUQoXARywmiKTaKquLGNbd3HMUrExV4cxUdry+xpkzUixPuLMeCZ4rjj/nIQMDN1tlKENXsg2CTK+aMpPc1AWYPgUCSgO5Ql1qIsPIUKgqlfB/pvn6szhPowSixSJBwNEk4CKoW9MpzXfMyW43QoxzhV8XfssZu4w3JG2scYUuuwLMLbobVLnplu37LQAW3zNZ0e9QV3Y15WggqXl9lpQ/hKOh4VSpOwctmlrxZkxXPSMhz50a4Qnb+/3avMw5UVSUcDnP++edXKzbS6TTpdJqPfvSj7Ny5k+PHjzN37lze9KY30dg4vrFNIOOjRCKRzFYUMdEU3Tgol8sD/n3kyBEOHDgAwMUXXzzmrGQtnZ2d7Nu3jz/4gz8Y9pj+/n42b95MLBbjoosuGrAgM02TJ554gmuvvXZcCzWf7du3Y5omPT09AyzvByPyrdD2E0BlZ2Ebh802Cn19hKMxAqqgSW/motBahO2KrbZdx+g45qArJcpOFC3Yz9qN5xEO6t4iSVA1fhCmZzxTqhGXnlGPkXSzh0YKnIIrxJyKKzK9ERzlUpHWo22sXLHccw705rB5ZhGge4ufgJdJDKIgvJJbm4oFhXyWXKFIueAaPcQiAcLRJNGgg2bE6GjbRyjeQiqqnHR41eMoTtlzhPVdCgWoGopj4yiaN+tSc+dXKrrXH+obSWictMtX6OruQmgBmhoaPPFsu9cSDk7LtZA4b9y/36HYtm0bdXV1LFy48JTv9fT0cMkll3DjjTfy8ssvs2nTplOHs0+Arq4umpub+c1vfjPsDvgtt9xCPp/npz/9afWxq666iksuuYSvfvWrk3r+d7zjHWzdupVnn31W9j9NE6ZpDhBuftWGqqpjLnEd6ppPPPEEr3vd64bc5IKT5jjlcpl169adkl1/+umnWbVqFc3NzeN+TW1tbRw9epRyuUxdXR1r164d9j4ARDmNc+i7OBWTQ6/sxwjGaaoPEa6rR1QyWEoE1c7S3iboPNBG2QyjqwVMVWf52jgNc+a5fYRquMaEx40DrrmY6mbsVBV/1NLAOGedNO5RDc9ZNcDBA7uYt2AZId2u6cmMnSxLNTOeyKz96vYh2kqUYraTbEmhXOjFdALEIzrBSIpoJEAgGCXd08nj9q/poQsHwTvq30Gj7gst/z6pud8aUx/hPeaYtNqd/DbzOG+q+0PqMLwS3wwYcfJ9J0hnLRbOSXrlrXmvdLZGRDo26N7IlUVvcctdPSxh8X+P/19uSt7ExtjGYX+Hra2tZDIZLrzwwlO+VyqVuOmmm2hqaqKzs5PPfOYzXHvt8DMtx4qMjxKJRDI7mPEMZTab5eDBgziOw6te9aoJZXFg9JKutrY2du/ePaQ5Dgwc3D1e/MxkoVDg0ksvHXanVVR6ofWRqoPe2vAFrA2tZl/HERY2zSEccUuybNvyRodYzF+ziEiii1IlRThQIl2JoNsZFBqh0u/2SwrLzdApGqC58xxx3CydqLiloHbOE5Uns31u1jDtzZnMg2KgYiEUze37UVUQAa9UzVuw+G6xvshDQREFQCGoOATjIVKJKEI0Uiqb5AsFent7aC9XCAV7se0gmlnG0ZtQnYo7Q9IugKJ7X1WghDvTTfF8Ivw5agpCCbr3pWoIB9Acz2yn7GY77TyOEiAgSiiKftLZsNKLqLt0ysQkjOxiGAqFyGQyPPDAA7S0tEzZc2YyGYBqX+dQPPPMM3zkIx8Z8Nj111/Pj3/840k992c+8xkef/xxnn/+eblYmiEqlQq7d+9GCMEVV1xBKpWa0HX896lt20MKOT/7WVdXN2xlxWQylH19fWQyGVavXj1kv2QtwszhHP0xQiiohk4wmSQc0gnXNyNst7+cchaMeloWZgmEl1LuS0OgHlt0oIUjrtmMHnbFkub1BqKCZXp9jL4BjX8fvvuqBoo7w9Y15vE36lwDHFsEUHBqZkv6Rjh1XoazwTPCqXMznUbKy3Qm0Co5YqkWYlYeoTVRKfZRKAuK2Q56uhwCuqDPKFAIdKALga5qvJT9Pdcn3+iZ7wQ8M7SQJ5J98yBvA1R152EKLcIz/ZvoFiVeLLzA65M3uMcH6sGuYGkJFLrd3kjf4RbFdadVDe++vT7Klv81QEwCPN7/OM8VnuNw5TDro+vRlaGXDaPFx0KhwJ/8yZ/w1re+dczvo9GQ8VEikUhmBzMiKP3yp2PHjrF7926amprI5XITFpMwvOmEbdvs3r2bjo4O1q1bN6zYm6ig9Eu4yuUy8+bNG15M2iU48p9uL5Cw3MyZ1Qd6AoMsQpl30mzBdwBUAqg6NCyZX90pz7yyE1tPVi3hXUOcGmMcu+AZ43gugOigCITujho5WVJa7/Yl1ohM1exCUXS3z1BPofiZTOGa2hR6c3QcLWCbJtFkmOaFEfSAhuKYCEWtGv8oThlFNYgEHCKhOE2pMBY6hVyOznSGvkw/ff15IuEQkUiUSCRMIOA5FqK42UovC+mOQPHmXVa8UUrtHz0AAPJbSURBVCBm3hud4pvtWDi6WzLrGHUIkcM26hBY3kiVHCI0B9HyunH9bkdjpPLBfD4PMKWmPI7j8OEPf5irr756xNKs9vb2U0RsS0sL7e3tE37uH/3oR3zqU5/iv//7v1m+fPnoJ0gmTW9vL1u3bq0uTifzXvIHzA+OkUIIWltb2bdvHytXrhyxJ3MigtJxHPbs2cOJEyeIRqNDmpcMON4qIVr/C6ecQdEMHEe4rs9obkm7HnTHgOhhwELRE9S3mDAnAaLCseNlFOFUZ0y6MyfLXlVF2TP7snA3rKyqjqxWeTglqnMcVf2k8PSqOBRMhPBiuKKcrJBwbMolhc4jHeRzFuGITvPiFOGocEtNHdstmxWWu5HnmAQjDQRDJnWpOhzbpFAs8Xzu525xhqqiCofD5hE6ckdoji12+8r1qFtiqyfcvk4/8+gb6ehRjhb30m51ERSCPeV9XG5eTp1aB6o3D9NxXBds1XAFtaICtjfj0oRgnfu1bh00XjXg92MJi4fTDwPQYXXwy+wveWPijUP+LkcSlEKIKXfBlvFRIpFIZg8zIih9F9fu7m4uvfRSAHbs2DGpaw6VoSwUCmzZsgVFUdi4cSPhcHjY8/2euPEsmGr7JWOx2LDiQggHjv3MW+AE3Z4V2/TMILLYasw1nwnPgUoahxCikkUJxk8ubLxB2bYS9GYu1rn9kL4w1OOuq6kRPzkL0sq6CynLW0AIr5dIcW3o3RmXNk6gAcUp4egpNLoGZTLTYCSpZDo5uq+CU3LFXbG/B8sULDwvidBc51RheCVSesgVhXrMLWnVouhWlniyjnx/F5HUXEJqhVxFo5DtobNLENAhHE0RiwQIRRLoqoPQ6twMa6De7acMpFAq/rxNr0fU7HWdXc00Qg2hKmUcYaNi4r+dRaAOMf/mSfdNDmakBVMul0PTNEKh8fUdjcRdd93Fjh07ePrpp6fsmmNhx44d3Hbbbfz1X/81a9eurS68AoHAiJkAycTwXVwPHDjAqlWrWLBgAb/85S+xLGvEMtHRGCwI/TicTqe5/PLLqaurG9f5o1HbL7lq1SqOHTs24vHCMeHI93Hyx1G0EMIsev2QFogKjnBQbBshFOxKETUY8bKHunuMFkRRHGzV25jUvdmS3ixfd46j5cUBb+6jsD0HVq91QNHc7yne96C60YVjomK5ztS2N69RcUtmbcuhbV8v2Z4iRihAX3+eSqnCkrUNGMHAyQpV1ZsdqeqACpp7vqpq6JpGeymNQEVFUFRVAkLwUv9+1nTZBKMp4sEioXgjhp07paQWLYIwM7xQeIG442ChEHQEW7PP8prE/4KK53Zr5VAV5eQoFafk9nB6o6RcUdkAc15/yu/o8f7H6bK6AFBQeLjnYV4ff/2QWUrHcWZ0bIiMjxKJRDJ7mHZBKYTg2WefxTAMNm7cWC0NnOjQbZ/BpjxdXV1s27aNuXPnct55541oROEzngWTX0LrW97v27dv+NfQ/ivIHfSMILwFkOYtMgIpFE7g6Cmwy+TMAB1Hd2MSIhZoJxSvIxLUCATCKIqCppg4tlPtKXR37eMowvSyj5WaWZR+di9SnUmJncc181U8kQmK4t2TKFMRrugWxsBMZi4fRJQ7CNc1YJAnXwpRyXRgl2IYet7NgNolbxi3jVDdDIJj1Lvi0qgHp0RFiZMQZQKxZhrMDKJ+CaKcoWAalHOddHcpONYRd/ZlJEgomiQUVEALowiBCKTc6xsp19RHi6I4fvbABsdCcWw0pwjYKGY/zoK3QHDqP9hHEpSFQoFoNDqm991Y+OAHP8hPf/pTfvvb37JgwYIRj50zZw4dHR0DHuvo6JiwRf+LL75IoVDgM5/5DJ/5zGeqj0tb/Olh586ddHV1sX79epJJ13VzqOzieKmNkblcji1bthAIBNi4ceOYqkPG4xTb19fH5s2bqa+v54ILLqCnp2dEB20hHJwjP0Lkj6PqQYRdQVU1hLDRsD3n6QIVW+XE0QMUKwqhoEIw2kA8rBGM1KE6BRxUVKcMap0rkLSgW+aqGW42UQt4AtEA7OrmmisuhdeW6Pg35X5VhNeqaCGEiuKPNvL7F4VFuWBT7s8Rrwujqw52NECxr59SLoqhlDznWK8CxSl740hKrui13ZFPIUVwnfJmKuRJJhtRsXAUnRatAasiKOSzpLMlKt0HMYwQ0WiJSDROWLVRPYfYNqeXTqsLFMXNuQrBLvMgl1mXEA/OBbMfRw1jiG7Q5nrusZ6LbHWEiWfCM2gDrjY76b56QYfVwa+yv+INiTec8jsdrrzaZyrHKsn4KJFIJLOLGZlDeeGFFxKPx6ulVRMdul2Lv9hxHIcDBw5w+PBh1q5dy7x588Z9jZGoLeGqLaFVVXXALE0f0fMidD9X7ePDiHo7wyG3/BWv71FY9GQcurvaaZyznLChUCiWKeb66O6uEFAtwrEEimOhOCUUoYFlemNBSq6Ac0y3lxIbx4ijChMRqAO74mYL7aI7b9IuuqWiVXdAy92ld0w0xXQXXIrwRKbjijY1S9lKEHIEFTWB4uSwRBTFySG0OIqVcQWs2XdSyGphVCrumA88Mx9h42j1gKgKYCVYT0wvEI0uosEuYdqNFAs58vk8md4uFEUhHI4QDocJx+rQNcUTrgpoAYTQvXutADEEvW5fqFNB1F8xpX2TtYyWoZysJT64GzB//ud/zqOPPspTTz01askgwIYNG3jiiSf48Ic/XH3sl7/8JRs2bJjQPdxxxx3ccccdEzpXMn6WLFnCypUrB5iDDZ5FORH8toD29na2b9/OokWLWLly5Zg3Pca64eZvttWW0I5U/SGEwDn2M0SxHYwYwrFBDyMcxy3XVwPgCPIli/ZjR4glG2iJBSmaCqVsNyeyCprTRiDaiFrpww42Q6XHrQAp97klp1beFUpW4WQZrBY6uQnm+GZj/ixH2+shd3DbDxzAwEFHaCHQdLfnEAsIgVrAFiGE7WCrrjCzCaKKMhgNbsw3Eu54EsOb62gkTvZ4mz1gJGmwwFabaVaj3szJIqARCNhEQnU01glsR5AvFCjk85xobwfbJBSNEQ2HUYNBGow5nLA70VAI6PXM1RJubycCAvUIpwNLTbibm34PqOq1WqgGLHyL+zMbhC1sEmoCWzv5PlRQht0oGEvJ62RjpIyPEolEMjuZkZLXVCo1YHHhC8qJjuyAkz2QL774IqVSiauuumrc5TSjLZhGsrwfPIwcQGQPQdcmzwyh4PbQVLJe2ZEn5mwbjRLpni4q5RILFi4hHNCx0EgFQyTrGhF2hUKpQjGXwRIax050EgoFiUZCRMIWgVDYKy0Nu6WgehzVzladXFEDgIWjeQPBjQTYpicyXTGq2HlQNTRRcU13fLFpWQgtQCyuEk8a9PcUUHQD4Wi0LImjRVKu6NTdhYnQIt54Dt0tyUWpcYoVqHYRRZRRbA2hKe7jiuIKYkUFXUPXVeKBCPGUirBLlEyHcrabvmyJnq5dqKE64kGHYLyFiJ51s7xWFqFGgAqWo6EqDiK8GNHyv8b1HhgPI5V0TcViCdwyru9+97s89thjxOPxajlVMpmslnDfdtttzJ8/n/vuuw+Av/iLv+Caa67hH//xH3nTm97E97//fV588UW+9rWvTfp+JNNPPB4/RTxOxaabqqocOXKEnp4eLrroonGbRY0WHx3HYffu3bS3t3PppZcOcOuunUM5GNH+JKL/kJs9rGYRHU+0uf2ThbJFT287zXMWk4xHsYVKImiSSNTRZJcomVDM9tBbCFLqOUYulyQR6iUYbyEselECyZO9h2baE3M9Xi+i35PY54nPnNeTWPRitZfpdCpeL6fjjSmqeMY4NsFEnGRTie4TeXStjGVp1LUECdU1A5b7GeCUwah3R3UYdW61iG/ao3tOsFoYXRTcDKvptSw4BbcaxTZBCDRFIxFWScQaEGaJijAo5nrJ5QtUuvsox2xCKpRU0ITJGxM3oArfhMj2zG0V73PB/+qVDTdfA5H5Q/6egmqQbyz+xpjfLyMJylKphG3bky55lfFRIpFIZienbQ4ljF4iMxK5XK56rY0bN07oOiMtmAaXcA3+oBx8rih3w4n/xh3nYXvDrCueG2DZXbA4JpZtYVoOuiiyeNFiDM3GUQzUSga0OKrIIvQYsbAgGptPLlegsXkOtlUhn8/R3duFpilEwlGi4RKRaAzNzruZSCvjZhfNXkpmiEK6G0uJkEgpBGOuO6xvZiP0OrCyWKorgoQWRbHzrgurlccIR1i0KkBvt45TyROMJ0k1aJQLJj3H+rBsjWhCp35uEkXTESg1pWNeSapVwFEDqE4JocZRzIxbrlvp9cStZ7bjlNz7xwI9Tli3CEWSpEQFy1lMKd9LtmDSf+IIlqMSC3cSiqaIBIsYgRCaKKASQsx9g9cTNT3Ytj2iKU80Gp3wBonPV77yFQBe85rXDHj8oYcequ6Kt7a2DriPjRs38t3vfpe/+Zu/4eMf/zgrV67kxz/+8YRmrElmnqHeM/6s3olSKpUol8s4jsOGDRsmtNkxUnwslUps2bIFx3GG7Fcf7ly7cxOi5wXQo4hKHtWIIOwSiuqWvQpFp1QsUDEtFi5cSDQWc69j254AFShalLBmEQ4vpGwdRQ/UETRU8gWTvhNHsYRBPNJPOJoiGsqjB1OeqVmq2oNoF3rJZAwwjxFI1BOL+qLT++qJUEP0gzLfPU+LuWJQi6I5ReatrCccUygWFEJhSM2tQzgmx48UsUq96JEgLfMVtEC05jPBdq8vLFdkiiKOFvc216KeeNU8AyBvhIlddHsfrRxKME7Q7CfYOJeU2U+b42D3dmIrKgnbJisyvHzsNywPriQcCRMMBNxKFLvkZiQdf5ZlHuouhtTUxYiRBOVUmZbJ+CiRSCSzkxlzeR3wpJ74m4igFEJw9OhR9u7dC8CaNWsmLEqHW/S8+NtdPPPfu0nEUqQ2JFE4dcFXm6EUVhGO/MAtrxIWKEEQZW94dcmb+WVRNKHt6DEcJUh9czNGIESp4NBzvINyEWLxHMm5zeiVNMJIoJZ7EIrAoES8roFUMoqjGG55aK5Ed28Os7OPUChMLFIkHI0TUsoUSgbH97aSy6roahfpcJLFKwuEUvWoVp/nAFvEQXcdFav9j3UoouyWzToljFgDLeEcQmtAMTOU7SCtWw/Qm9YIGkU6RRS7mKF5xSIUu4SjRVBEBaGEUTBxjCSCbhzD7WcURn11nIkw+7wxJl6G1XRFpmqlEVoIlTJCaOgqxOIpYnEV0dJCpVKhkM+Rzefp7s6gahqKsOgKbmSeEmP8E0XHhuM4CCGmPUM5lrGwQ/XpvPWtb51SO37J6WUyJa/pdJotW7agaRorVqyY8PtyuPh4+JXjPP6d58EyOO+SpSgXnxp/h6zg6HkZ2p9A8doBFCOJKKdRAgmE2YejhDjR+gqWBalYiEgkhFUo0NVeIN9XIBgNUT8nQigS8ASXjUBDVQSJZB2JhIOgmXKxQK5Qor8/Q3unSSjQQziaIBbJEYrU4VRKHHrFptDTiyV0QsHjzF0xl/qmUs3YjySY/VhqFNXqh3BD1aUbsxeMBLqdoWlBsprhdMq9HNydp+9EH7Yw0BSbQibJsrUNqKrmGa3htrQ7AlSBIxxUz+jHLb21EIqOVamgGVFUxQLNHS/lbk7640DKYNSxo++35FWNgICK51Z7KNDKfHM5mePHsNUwQaUMgQRWKY0ernfvP7YUWl47offFcIxWweG2MgxvlDcWZHyUSCSS2clpyVAOZ2k/GrZtV91iL7vsMl588cUJz0nz76P2fMdxePqXL/Hb7x1AFyGscJknW3dRKVlcecOKIc8Vjg1HH3U/4FGqZjeoIbAzXmlVD/0ljY5jh0g1zSeX6QXFoFKBtoN9lPoVtIAg1w8Vs4/m5U1odgFhJAmIowhtjjdHMoFm9hENJ4gFFERLI2YpT6Fkkc/n6Ok7jqooFHsU8j0q9S1BFDVCPp2lu8NgYczPQPYjtDCa1YuCqPZBqmS93kzXNAJhIYwEimPiBBroO9xFT0+AukYFR2lEK/Rxok2jaX4agknUSo8rhM0e15HVziEcB1WUQEm519Oj7Cnt5ne53/OO1C1EAym3dFaP1pTOuqYcigpYBe+eC6DHCKkVgvUN1CVjOEqQYqGfA91B+jNhDj79NPF4nIaGBurr60kkEpPOGPr479WRFkxTaYkvObeZSMmrEILDhw+zf/9+Vq9ePamxCDC0oNy76wA//uJLmFmNaCLA8z8/SKazyJvftw5VU4c9V2R243T8BhFocEcdGXVu2X0ghbByVOwAJ1r3YERSpIImQjMQZp721jz93Vk0Q6O/q4hVzDNvRR26Bqg6qii6ozDsImCgiAqhUJBQyICGOmyrTL5QplDIcaK9D+GcwMoH6DtRIVEfIxpUyGZ0Oo70kmxegCa8DKJjgVGPItpdgzFhe0LOE512wR3hYZe97GGRfF4h25UhHA9jBMCsqGQ7MxTmh4jVRdyZkloAzLI7ssPsc0tanRwo9WBl6etR2PH0fvr7FKIxh/OuWkrLogiguz2QuGWsroGOYFX4AiJGPQiBQEFFUGc0Mje4AMFiSsUcHV1phFnmYFuFoJ4hlGhGb3oVKUcwginruBmtgiMWi01ZPJZIJBLJ7OK0CEoY/4Ipn8+zefPmAW6x43EhHIraRY9fwnVwWw8GEeatqENRFHo78mz/3VGueMNytw/Fo7oD3/4rKHe7PTYquA6CIXdBoifBytPZZ5JLH2TO/BXEQw75nIpq9lGsJKnk+4nXJ3BsC93QyGZs6ss2asgtf6ooCXeOmNGAYmdd8xnP4EGp9GEEEqTUfpKJFjAL5E2Vw53HMC2bnp4CuhHEsaBQsBFG3F146HFwTBw9giq6QQugOK4rrGL1uxlVs++koY8SQMHGdhRU1cYigobAJIbqOFhaEgPbnY9pl1yHVqsAqoYqyijYKLZbomzbDi9lfodJia2FF9kYfy2gukY+mu452fqz3kww3H5P93VnXIFb6UUYMVdcJ+eSK6xgzXlriEQipNNp0uk0R48eBdyB1/6fyYz08N8n023KIzn3GK7kdTzx0bIstm/fTiaT4YorriCVStHd3T2pPszaWb+O47Br1y52bGpFlAIsXFGPpqsUcxUO7+qi50SOpgWJAa/JzyY5ucOI9l/jqEG33F6Lui7VRhzFMekvKbS3HaK+cQH19Qm6utIIx6JiBsln0oRiUTTNQaCQzxQp5SxidQHAQVFUVFFxn9Tx+9QL1VJRTQ2SiCgkog0Ix6RswYmDHViVErn+PKgGuqJRLhrYZhEtEPDij2vA43gGam4PpePGRhy3bBTHNV1zHDB0bCePaYYIRA1soSJUB9t2sBUv7uieOZARd8d+6HE0pxOhN4DZR8WOsut3W8j26UTDZYo5g72/30MscR7RuIprFoT7fJoBVoVlgSUs0+a45bJO0RWq3uamIiqEw2FCAQ3DSJFMpSgWK7QHrqbzlSOYu/aTTCarG3CTLdkfi2mZFJQSiURydnLaBKWu62PuEero6GD79u0sWLCAVatWVXdBJ2tc4S+Yent72bJlCw0NDSxeFKdr96HqMW6VkvAs5ZUB54YLWyF93BWOdsFbMNjuYkbRsR2H4x0ZyqU8C5ZcRCggQA2i0YGjN6CWckAA1cmBGkCjjKMoKE4BHHcRoio2jjdoW+gxFGHhBBrd2WiB+pO7/VYGEYgRU/ppmd+CUj4GRhxhZ8lUFMqVTg4eLBGNBIjEUkRDQVAMbCWEUINeWa7wjDFsFMXwzHWEO7IEh0QCwmGbSn+/u54pqjQsjKIbuA6Iio7QIoCCohoIVGxheIswFaEG2J97iYxSIurYbCvt4tLAasLBFhTTLfNVrH6EHnMXRarrYCu8xZswUrhusW7plwikEPNvxjm+E1VVCYVCzJs3j3nz5iGEoL+/n3Q6zfHjx9m7dy+RSKQqLlOp1Igz0wbj774PtyCaSkt8iWQ8PZTZbJbNmzcTDofZuHEjgUAAGCgIJ4LvZF0qldi8eTMA5523hrbnd+L/N3CF48mJGz6+y6uTP4Y4+hgOCopj4agBFKeMoxgodpmudJbeng5a5i8mEYu4FQqKgq0aoCg4BN05lBjuXF6CCM2LV4BQdBzVwJ3xGHY38tSg51ztubkqbnZPUTVChk1TSwPFtIWDiqJY5PrLBKJFjraWPOOzKJFIGF030EQZxSl5rtjOSZdsLeCa5mhujEIJEI0HCCVC5PoKaMEgdrlCOBknEg+6Jj9ejzjCK1sVJhU1QUTYEGggezRNb2+AUNjBIkowbFEoCvo6CkQTCbck1i56brBZCHjzKA2/DDfuGg1pYff7ig5UUOwCqqGiO3niK/+IeHwlK4SgUChUN+AOHjyIruvU19fT0NBAXV1d9X00VsYyVkkikUgkZyenpYcSxiYGHcfhlVdeobW1lQsvvPCUuVHjHbw9GFVV6enpGWB5fzSQZvczx+hs7UcPaFimzbrXLhlQzgWgFw8RL7wMTas9S/ik5xoYBbOfiq1wrO0YqmGwZPESdF2lWIQjO45yvNWivqmLZZcsIZropjcNhlbCcjSa5mgYQXfRBRoaJqqTR7Hd5xeqjoL7PRx/t9/vf3RnUzbMLVCpzCPX1YOlpFixyqFhyTysUg/Zskq2+wgdlk5IsxEiQLnQTyCScs/XDG8MWwhFWAhF80qtVGKpMgvOn0/34eOUK0HmLXJoWdmMava7Zju+KLSLVcdZG81dXOoxHFHmN+ZOQKFX0wgLh+etA1yjJ73zs255q9nvOc5mObkrb3sjU/yZlyBaroWA6yA8uNRKURSSySTJZJKlS5dimia9vb2k02n27NmDaZrj2p0fqZwLpq6HUiKBsfdQHj9+nJ07d7JkyRJWrFgx4D08FRUcxWKRZ555hsbGRs4//3wK/Sab57XScbSfYEinXDRZfnELDXNjp5yr2xnE4e/juj1XQA+jmBl3VEi5h+PdeSqFNIsWrSJoOAhH4eiOw7QezhIIWIQvTZKqN+hqL6OqJSxbJ1FnEE5GcMd86IDmOrH6Dqaal8nD8VSugdu46JmGqRBrEDQvh67WDI6j07wgwbzlCYQiKBSyZPMFero70QJhECalsomhgaKFPVOeiJdhjJ50iq2kMYIJVl4Q4MgBFSvfj55KsGhFGCOguSY4WhCckisMvfjubtpFQAjUQABFUbAsDVXXsS0wHQ01EPIMfSzQUq6gDTS4rQnemCgCKferb+yjBnA/IyrYSghVmND8BoivBNz4GI1GiUajLFy4EMdx6OvrI51Oc+TIEXbu3Ek8Hq8KzEQiMeq4mZF6KHO5HJFIRGYoJRKJ5Cxl1pa8lstltm7dSqVSYcOGDUNmfyaToXQch1wuh2maXHbZZdTXu8Yxi85r4Pp3XczWp45QLlksu7CZy14/cNaVKHYQyvyeAhH8WV84ZfdD3cxRqMCJo/uJJRtobqxHUUzsisme3x+g64QFosKxTAWzcJDzX7WMUDxLqQSRmEayMQqK7c1iM905aA7u8yBcoamoJzOhVgGhBlGdSvUcRQ8zb0UQa1EKsNECQRRRRgvMJWQXEY3N2KUe+vICO91G2wkIcIRArIl40CEUb0HDG0MiKu5OP65DbF2LRWrO+e48SW8WpFDr3TEeXjmuMBLVrwGRBVpQK2n2mq1g9iOAoKJgAjsKW1kfuZyQoiGMJCAQug5CoKgqQtG9LGzMFZr+tRvWQ3xV9Xc52mLHMAyam5tpbm5GjLI7X19fP2AmoP8cI2U0c7ncgLEJEslYmciGW+183EsuuYSmpqZxX2MkhBBkMhnS6TRr1qxh4cKFKIpCvE7jze9dx3M/20+mp0jL4gQb/vcqNH3g/z/VztJU+v/Z+/NgydKzvBf9fWvMlXPmnueaq7qrx1IPqpYEEsgIGQlzdG0fcxwnIGSfA5cw99hAyIEd/gffcNxw+CDAEIF9CazA5hoLM1gWBoQmS0JqSd01dE1d87Cr9pQ753kN33f/+FZm7aquuaqrG5FPRPeqzJ251sqda7/re9/3eZ/na0h26KTJTkHYAztN2K1xda2GTZfFHU/qGUIrx/nvnObimz622aDS8zjTO8YT738C1+3R7nq4Vp/szBhW2AQnBX4LDIGI+nF4jO0+otg6SQVbOomWFsIRFhAxPlugMJVFRvpHhmECEYlkDlRIpASdVpOVtQ02NytsKIOUZ5NI5Uh7PWw3D1FLx/ywEYv41PEKY+x7toE0JzGiplb3DhpxEhrbgqherEatMGQXAxP8BvmxBPPbTa5eDDBkEz90mZyxmVjM6UTUGCSitk4mB11TYcZiPxZggYjQfscRmB5K1QgzT8LEK7f9vg3DGLI3QN9/B/Hx2LFjSCkpFArD+HizuI5S6p5mKEcYYYQRRvjexDuaUN6O0jWgoBaLRQ4cOHBbFdcHpXQNKFxhGLK4uDi8iQ6w89kpdj57a882Fbbhyn+FqIdQsRCPCvVCRkVU2hGltRXGp7Yzlk/pmz4R9Y0mtU2fbM6g51ukzJB6uUu/ss743BTSbyHstE7QhBt34hIgTJSZ0jQvBfp/EmEMbDoMhPT1NmwPZ4iUcLBFhDKdeBGiF1LK1IbWZmKClGpRq+fZsTRL14/oNTfZbESo0nFMt0DGK5FIT5Cw2rESawVlpTCinjb7loGutqtQdxhVhHKKunNq64VZgIeQIVg2RSPFdnsRZRgYKiIUJillYsoIIet6BlP1Y3/JvqbPqgBl52Kqb1EvTtM7UJPXFQrvJaHcipur81EUDRfPW6vzW8V97kTnAr1gWlpauudzGGGEO8E0TXzfv+XPut0uR44cQSn1Fn/crXjQ+BhFESdPnqRcLpPNZllcXLzh5xPzWT72Uwdu+34VdhDXPo8YdBGFo4W2rAydToOr1ypk0gmmpnch8FFWkajb5soFSSIREYg8KbdDrZagem2Dhae3ke1VEE7xOsXT1/YfVriCcrIQ1nXy5td0ly6It70KOBno1+OktqVHE6IOppnCFF2d7EUDNW4tSGZKn0y2gLG+xtziLpAB7XaPVqtJqdTHccp4ySzppCKRzGIib+gaGjLQ4j3S1zRXGWgqqpI6Zsa2IBGOFiNzUoigyVPfv4/C5GVqNYtM2mfuySUs1QAxSEhtnThD7FXp688TNLUAXFSPxYJasTBcm9Dw8Ivfd1/XgOu6zMzMMDMzg1KKZrNJpVJhfX2dM2fOkEgkhgW4fD4/LIqMZsxHGGGEEf564h2jvN6K0qWU4vLly5w9e5Y9e/awuLh4R4rMg1Tgt85LJpPJ+5qjUzLU9iBBE1NI3SUMm7oK3KuyVunQbpaZX9xJKhHPDsoQsFDCJwwdgshGqi79UCd6zaZButsAJ4kRd/WMoIKyc9riQwiE6oKIk03DQcgQZbgIQhRGnFhKULZeuAlLL+YEcUdTxFQrU88WGRYgUCrCECHCsEl6NklvkTGhCMKIdqtBp9OjfG0ZDJNUokIqmSHpKUzb0cmrMK4vbgbJrplAyEgnwEIgMcFyUXaSKXOJDyd26s6BsBGyG/tnNuKuZiy6E1T0vKhfiRVeWyBsDBGgDAc189Gh36RSCqXUfSWUN8M0zbtW51OpFFEU0e12byl9P5oRGuFR4naxbXNzk6NHjzI1NcUTTzxxx/j1IF6WW+cld+7cSblcvq/3y8hHXflDDH9Tx4QwAMtCKqg3yqyvrTM1OUEuX0QIiRI2QkmkkcAQkn6UwLYDeoGHUiGNpovf7WM6RYTytXej7INbgKhPaOWwlQ/2JIRtnWyGLZ1UhU1w4znDG+YNazd4TeKX4w5jJR5d2IztQWqaPRo2sb0criUpFheQQYd2L6LTrrO+UUGGEYlkknQqRTKZwrENwNRUfcPWcVIIGMRqY+BV7KGoIp2C/l3FiejC07tYkP24IxmAkdb3GtNFFzBV3IntXP+cdlZ7ZVqZ2DMzgQpbrKsGm8m/wZx5f/OQWyGEIJvNks1m2bZtG2EYDscHzp49S6/XI5vVgkydTgfbtt9y3x7NmI8wwggjfG/jwVfhD4mbF0xhGHL06FEuXrzICy+8wNLS0l3nLe5nRkgpxZUrV3jttdfYsWMHTz/99P3PGK3+2fUKt+EiEWB6REGH5bUyQWeTxaVdpKyYltov64VE2CI7liRXtOk0AvptSbPs0/NtVi60OH2kQ78Taspo1NcduaCJstI4sqU7ln5FKxr6FQRoxddBhVrECaLparl9M4kyE3pruCjh6k5nTLMCNGVVRVp0QvURYUuLTwRtLANyqSQzs7Ns37GbmdkFTCdDud7l/OV1Ll/dpFzv0A1AKaE7qSrQM45hC2XYWokWA0c1EULoZBETEXWHIhnKSDAQ2xGgxXZQKDurF16mi5ASFPrcZQ81/UN60Rdj8P09TEJ5MwbV+f379/P+97+f559/Htd1CcOQV199lW9961ucOXOGzc3N4YL9UcxQfu1rX+PjH/84s7OzCCH44z/+4zu+/qtf/ar+3d7038PaRYzweHEvBTelFOfPn+fw4cPs3buXp5566q7FsPstuFUqFb75zW+SyWR4+eWXcV33vuKjkhFc/n1U6zIIA5OeLoKFHcrrVyivLrM4O04un9bFJBkgoh5KRViWz9hcFoIu3VaE3+zg9xT1jRrHX92gsdkYinRhJuL4kMBAEgkPUDqpQunOIOj5QhWPJKgI7GI8f1jUnUO7oDuTTiFORnM6ORskaVYKW3R18jboDgYNDNMk48HUxBjbF6ZZmJsklTDpNMssXz7H8qVTbGys0qmuI2Wk34uhjyEMCLuABVEPqYRWqRWxHQhx0U/EtV5h6o6mYYHh6XOwM4AAK6+T1sHntIvx8xkQFldVlZ/lK/yF++1HGh8ty2JiYoK9e/dy8OBBXn755WEx7ujRo3zjG9/gxIkTrK6uDrvso/g4wggjjPC9jXcF5bXVanH48GFc1+WVV17Bdd172se9UroGFK5SqXTDvOT9iPqojb+E+psxbSnQKqbKoOdLlq9u4iVsZhaewiQEoxhXjWOhHieH7dd56vu2ceWNiyxf9LFFn+J8HicBjUqba+cVO59xtbQ+Ip4njAiEpkspuxjbZ+TiTl5u6E05qKwLvxx7pLXj+ccAZbraR9JMYiiJsmOqquVBv04ovFjwJhnPQcbiOHZG79/KkjR7eGNjTOS7BCTotms0OwG12lWksEknEyRTWVKewnCLiMjX3m1RC58kRtRGuVlEVIe4I6mpsj22KufqhWKoqVqGQgpX02jtNIb0kYVXhqISw+8llpd8lAumrRhU54vFIlEU8dRTTw2r82fOnKHf7/O5z32OTqfD5ubmfdNvt6LdbvPss8/yyU9+kk984hP3/L7Tp08POwQAk5OTD3T8Ed492JoMBkHAG2+8QavV4uWXX77hu74T7jU+DoptZ86cYe/evcN5yfuKj0ohlz+H6qxo6mnYQ2IRBj7rpQpR2GNp2xKWbWuGBUY8921jRB0wXJ44kCHhCdYvXqNRM5iZF3i5FN1GlSunAtLpCMNNY8hm7P3YQWFgDuJItGXOUMTdPRHPUgr3emyRERjJuEuYjj0nM3GSquMudkGrsIo4CbIzsRVUKn5fApSOXm4igevYFAqTSL9JJzDotUqsVQRGaRU7OU7GrZDITuEE1biLWAUriSVbCOXoQqUQDEcojAQE3dhipK7PM2rpuB22YvZLF10T9gEZv19bmyjp8x+Ny5Rsl6/Ir/C/if/tnr7HB0EymWRycpIrV67wgQ98YDg+cPXqVU6dOsWhQ4f4zne+QyqVwvf9+1aPHWAUH0cYYYQR3r14x1VeV1dXOX78OEtLS+zevfu+VODupcO4lcI18K8c4F4XTKp+Eja+omlQfgWcHEZYJ4pCrlx8k8L4NBPFor6hD/zKrIxeeDhjei7HKZI0O+x75Qn60SEalSzpdECoPDyvjd82UH4TJSwiJMJ0EAqMmBYGUiu6IpG2niVUdlFTWZ1CnAwOxHAyiKCqabP9ckyjraKsnO4gWlqBVZqu1kO0sxgqRDpjCBUng6ofm4+3tojt5LCDOlauQDbZQJrj+O0yrZ6iWbnKel+RSNh4yQzpVBrX1b9rZWXBsFBi0Hk0AIGIFMp04nPSliEDCXxl5zD8qp7d9CsobxYmPvCW7+bt6FDeCgNRnkF1fiCC0ul0OHnyJF/60pf4V//qX/Ebv/Eb/Nmf/RnPPffcfR/jox/9KB/96Efv+32Tk5Pk8/n7ft8I7x5s9W2E6wW3RqPB4cOHSafTvPLKK28Ri7oT7iU+Doptm5ubvPDCCxQKhft6/wBq9Yuo9rIuuMX+jBKLKytl3ITL4vwSwjAAhRKatqliWw+tCB1gehl2Pesi7BB1ZoNkvoAheliJFNJv4QfjuKJBaCUx+nWEncKMGvr9QT2endyyNT0Iq7qzp3TSekPSaVjxSAJa3Eap6wI3ItIPB88JE0Qs6iO2KMnGs/MYGSDCSIyRToSks0XGpE8/UHTbNeptn43KRUw7QTrZxktnSBIRCQcMU+/TcHT30kpvsQWpDwV/MFOxwE9Md4W4szmYo6wPKbznUjm+EOhOnC98/qz/Z/yf/J/3fO3cLwaCPIZhUCgUKBQK7Ny5E9/3abfb/Omf/imvvvoqxWKRX//1X+cnf/In7/sYo/g4wggjjPDuxTtKed3c3OTEiRM8++yz7Nmz574lxe9G6RpQuNLpNC+99NJbjO3vZcGkuiuw9mVNLxr4hwVt6h2FEbWZmV1gIp8AITWlKWzryrHs6kWK9AE7rmonQSiUnUdGik5Pz+V1Oi6pjIXhpDHQM42EXeSAEha2UUFHCwJFfiwGJONKdpxsWlkEAuno7qtyigjp605m2EGZaT2raDgIvwYIjKAKSJ24yRAjbKEr5PE5E+lZRhTK1rQqvdXHM1RIIpljvJBmfn6eHUuzFLJJIr/D+rXzXLp4Blt1aDVrRL06g0WYMlwQBtLOgDCRdhEESLuIUlInsrKPslKaImsmUHM/Fi/kbsTg+3u75ehvp2CYTCb5mZ/5GYQQ/OEf/iGf/exn2b179y328PbhueeeY2Zmhr/xN/4Gf/mXf/lYjz3C2wPLsuj1enz7299mfn6eAwcO3FcyCXePj91ul29/+9u0220OHjx4QzIJ170k7wa5/g1k9SjKMOPuoEWnWUMJk1TKY35hCWEaCEMnY0JYIEwEBhg2wjD17LWwNM004eBLj15X4Ycpup0I3AKJZALhanq8tDJEYUggkijpI80kamCbEflgJnij9R3Oh9f0nLdhxecm4pgstdetDHRcj3o6nkZtIIgti0Is1dZz6f0qILSiKyJ+naETO2HE7zf0MZQ+hsAk4RgU8mMszM+yfeceJiYnkJhsbFQ4f2mZnq9od3z60tXz8E4+prEW0fTdgj5XO6+PZ2ViCqwT308MnXDKUL827KJSO/g0xzDi27sSij/q/RHtqH1f18/94HaiZY7j8PGPf5xdu3bxcz/3c3zzm9/kgx/84Nt2HrfCKD6OMMIII7z9eEcor71ej9XVVcIw5JVXXrmtSuHdcDtK1+0oXLd6/50WTMpvwPLndDKoBAgXGQVc22jSbTeRZo5MOh1XvHuaBiV7aPGFSC9QsPSiw0zEczlpxqYh7CXwOx2CyCI3nmR614z2urTGtPqf6bKxukyAjes62oQ76hMaDkbUB9PGIIqPpXSVWwm9aEMBke4AoFBWWm+NvH7eziIivQgTqqoXdbEdiQjjBRKx2M7Av810EVEYi+0AWCgTwEQgNfXMjEi7OdLZHkpso9cucXW1Sqe+zuamTcq5hpuaIJ2QOKmxWDXWw4jasfJhFAtOKJRhg3BQwo7nJm9N8xtQTB9HQnk3ldd8Ps/Bgwff1vPYipmZGX7zN3+TF154gX6/z2/91m/xwQ9+kG9/+9scOHB7Fc4R3t2IoogrV67Q7/d54YUXGB8ff6D93InyWi6XOXr0KJOTkzz55JO3LJbcC4NDbn4Htf4VhJ1D+BWwslTXz7NR7eGqNmOFBVS/irDTyKCOsFLIqIUwEsh4dEBG/XgbIQyLdMGmMO3gt3x6nQA3abPtyXFMO6ZKmh5KSir1Hu1Wh6npaaQyQCRASoSRoBJV+Er/EF7fYX7sJ3GFBZajrUOMLb6UwogLc27ctUzqYqCpFWEjkUREHfAK1zuAQ1GfmL7q13RyFw66h62406mtnoi9fE3DI21HpKcmUEEHXzmsLp+n17e5eukUwkyRSdokUhlSXkJbmRjE5yziDql9nRJLFHdf42IlEhKTXJl8jpPXfvOG76mrunyt9TU+mrv/Dt+94G7xsdVqkU6neeaZZ96W498Ko/g4wggjjPD48Ngpr4OFTCKRIJvNPnAyCboCHwTBDc9tnZe8mcJ1M+60YFIygCv/RS8iAIRJ2OuwvFrFFCGzs/OsXLukZ1pUoGdcVKDpSshY+yZWgjUSuipuuBC0cBIOuakNlMqSTigKU2O4ThvIQtQhVDYrVy8jsdm2NBfTXwMilUREfSLDQUQ+kWFjyn6c7PXA9PScpZHQiyDDhbCn5yOlj7KS8fm4ccKmkCIR23NE6EwxBEyE7OluZtjWncKwpa1Bwka81QqJ0q9SLpsov0N6vEAiqT+vIMJJjgNVphafBBnS7vTotOtcrXcRqoyXTJJK9kkmLEzHiWdE01rQJ6ZuqfGDkNl12+9QSvlYzLLvJaF83CqGe/fuZe/evcPHr7zyCufPn+fTn/40//E//sfHei4jPBwGlNdOp8ORI0eQUmLb9gMnk3BrBsZWJe19+/axsLBwX++/YV/VY6j1r8Xz3S2kmWNj5QLNjmRpbozL1wQqbGKkx1FBE8NK68dWChW2MEwPFbQwzES8dVFBA9uCzHgHUfRwbIv8eJ50KtQxVAYgLDY2Vmh1AhZmJ0kkPVQUIA0HFYYow+a19rcRGATK52jvBC94z2AIG4wopomG2qNSynguPp6nJAIzG1sh5UGsIZ0i5kDcR/pbfIe10ix2NrYFSW5hjRj6fmAkaG5W6HRtUskK6YkJCBoIK4sbNhBWgom8TSK9i16rRrvrUymtUIoCEok0qYRFIjuOK1oxBbYSK9BWYo/L1lDxGmHC4t9k1s3zL6b/BV3ZBeD0mdNsX9rO+9Lve+Br6W64m0/vKD6OMMIII3xv47F1KJVSXLx4kfPnz7Nv3z6Ah1ZbM02TXq83fNztdjl8+DBCiLfMS94Kt0solVJw7fPXxQ9URKfTZmV1hUwqweT0NoJeQ3ct+5uxOmBVCyiEPT3Pony9sDDMmGZlaQdJ02ZszCWdzdNp1Wh1fK5ePoXt5ch4ZcxEnmrpNHZyjJmxJMI0Y2+xLJbsgeOhZEBkpHSSaWT1PKWR1d5nZlr7UloZnaANk8CbbDnsLGZY02OfW+YqlZnQIj5WZuj9aKhAz1fKPoHIYQRdDCeP6tc59mqNxtoGPd8hnb7Knpe3MTZpa+uS0MeUfW3eLSCbTZHNJFCGQ7/TotXxqTUbrGwEeIkGyWSWVKpLIlHAiDqo1DbU+Pff8Tt8GBGc+0EURbcVi5JSvmtk8V966SW+8Y1vvNOnMcIDoFQq8cYbbzAzM8P8/DyvvvrqQ+3vZsprFEWcOHGCcrl812Ib3LngJutnUev/Mxb7CglUgmvLl5DYbN8+jWl7GKKMtOJjOHlNSbVzKOmDndFFOzuDivpgp5FRF4RHKgmL23bTaVVodUI21i+zaXukPYtEqkCjukyIxdLcGJabgqiDMD3MsAV2kmrvKheDC2SiiK5hcrbxLZ629+CEdXCyGFET4WTi+J7WWzMVM0kGnpSO9sRF6OTRdOJ5y4EaqxUzQ+LkUVggLKJIICMTy1II2+PC0RXOHSnrRFPY7HmPYNv+aZ1s2gWUqiCtDIZhkcyMk8wIlAoJQui0azQ6IeUrFxFWkoxXI5EqknR18q39hdH3mKgH8z8KiQls4AczPzj8rtLtNC+lXyJpPnjx9m643UjAAKP4OMIII4zwvY3HklBGUcSRI0eo1+u89NJL5HI5VldXH8h0eyu2UrruhcJ1q/ffcsG08XVoXop9vwKqjR7rayUmJqcZK4xr9VQ7B/JaLJgwMNuuxcquZXByWsDHzkC/jbTTqLAHpothGnh2Gs9LMiYEYbBIu92k3mjSq60ghEdCBbT6ghQ1DCemWVlabAcrix3VUVYWFTRRZgYVdZHChchHCgcRhmBmMIh0B4EA5WgRn4HYTmRksNUmykpq0R0rqwVw7AyGX9bqqn4TZadQ/RZnj1WpXGsiMZjalsN2TFYvNXHcDG4Smo2AU99e55WP70AYJkppFUch+ygnh4h/T8KvkvByeFaAKs4j/SatnqLbabCy4gPreKksLH2cYhDcUfX3cSWUdzpOp9NBKfWuWDAdOXKEmZmZd/o0RrhPnD17lgsXLrB//35mZ2fp9XpIKVFKPXAHfmuHcVBsMwyDgwcP3rXYBrePj7K9jLz2eZQwENKn0w9ZuXoJL1VgZnoMDFczIoQNykcKPW+tTA+hAlpEpIWDMjwgBDuFCgMQKRQBws5imwG5sQVyxRDFNtrtBvVGh+rqGhEmmZRJs2+QMfpYTkYnVHYGZI9X/ZM4UtI0DdJSUjHhbOcQT2VeAb9BZGURPa2MPYx3N6ivxuI3hoOluhgyhDBEJ47EIjw2hH6sutpFWWnWTl/mwhkfmy6JQoG5bS7nj5aw7RDDdon6PuePbDA2kyaTd0Ao1oxVkuRI48W2KCFCJHHMACcxQ74YEak5ep0WrU6PUrlCGAQkPI900sNLZ3GFgZj8IGT3vOW7Uko9lhh5LwyOd4NP7yg+jjDCCCO8PXgsCaVhGORyOfbv3z+UDL9fj7RbYbCPS5cu3ROF61bn9RZKWPUN2PifupLe32Sj1qdVWWd+YRfphKaJgoEhIgJcTW11ixAFWtFV9jQlKmxpSpRfJbIy0K+BnUaEseS9X49nLn0sM4GK+vS6HaamZrEcl3arzWa5xkoQkEw0SKazpJNdHDenPdxiJUBheYioCbaHGbZRlocKGkjh6WMbLkJ1NA1V9BCGpWcerQxhVGNjxaFbXcVNJZjZFmA5er5SmR4i7IFhIaIeV0+XKF2q4zoglcnGuau46RQJq4Np5zCNEMNxCfo+/cAmYQkiK4tkA+WOI1SAdIp6VtPOI6JOLLrTwbRscmnIpQoo4eD3GqwnPsTaRoO//PJX2TwbkkgkeOYDizz3fTtvWBw9zg7l7RZM7bYWu3jYhLLVanHu3Lnh44sXL3LkyBGKxSKLi4v84i/+IteuXeN3fud3APiVX/kVtm/fzv79++n1evzWb/0WX/7yl/nCF77wUOcxwuOH53m8973vJZPJAAyvtSiKsKwHC9ODglu5XObIkSNMT0/zxBNP3PPfyy3jY3cdden3EBiIsEu9E7C5eoni5AKFjKMFdgJtZ+TQRKlphF/RBbigyjXZ4vObv8f78x/hSXe7TiqDFghPdxotL55ldDXLw9TJqbBcet11MoVJ8rkkrVafZr3B+rpPwrFIprJk0govmaIW1WgZBhZQNwQ2sGqEPGua4I0jwj7SHYOoT2jl9Dy5kUFEAcJMYSgJVhIV+tQ3BeebZRzbYGKpQCqFnluMOmCn42JijuqVFc4db5OwO4SkaK+vcrGVwTba2K6HafSRJvTaffrNGpn8OOXuBV73DlHvXOUjqb8LQXlI9cdMgWyDsDCBlCtIJfNQ8OhLh26rTKvbZ235DMuXi1ypN9j+1BE+8GP7cdzr4k1vt63SAHeKj0op2u328Np+UIzi4wgjjDDCuxePbYZy586dt5TFf9j9NhoNms3mPVG4bsbNohWqfQXWvwxOgajf4Np6C/wq8zv24opYdCdoaEXCqINJHxX1EFhD4QVEbL5tZUAFWrk07CPcMYTsabW+sBVXwZtgpymvXabWDlicKZBIpSDqkRrLQNHDlyadZp1Wp015Yx3LSZBKJUmn03jJLIYgFgWKKJfAb1dJ5hLkilpN1ZARClCyg1KapQv6H8tvrFBd7tBN9ImkRXMzyd6Di5imC5gow9GiFVJSWgNh2uB6uEafWtXEDbv4kUdGtAhkGocawsmRMBpABiOoIVSEETZQwkEMRHeEQpkeCBPFQIZ/QCPzsec+zPzE+2l/d5WTf3KVfidAqRbnvrvJ2dPnefKVOcbGxhgbG3vXJJS2bd+zf+rt8Nprr/GhD31o+Pjnfu7nAPiJn/gJPvOZz7C6usqVK1eGP/d9n5//+Z/n2rVrJJNJnnnmGb74xS/esI8R/mpgYWHhhlg0uNbCMHyohDIMQw4dOsQTTzzB/Pz8fb9fKTXskqp+FXnlD1BGAhX12Kx0qFdLzMzvJpUwwfJQQTsWrGkRGbrTJ5LTsZBNjjdKn6dnCI43vs4TU3s1i2OLHRN+9cZtv0KjqyivXWRsajv5pADHI2GEUFxEBk2aXUWvVebq1QomPh9If4iMZ5JMFzAN3U00lKJR6dGqdrETNhMzJpg2SggkDhKFwkJJAwkIYbF8tsLGBYWX6BBJg821kCdfWSSZFmAW9NykMw7Sp1JNEIU1SBdxRERPZem2fSKVJOoqnIRFvyuxLXAzBVAh3/JP4UaSM+YGz/cuMenOQ9DWnUrp62KlYWgrETsTextncYMGbmECV1Q4eczm64efJIrqXDhU4+yJK7z8vyxQLBYZGxsbxqTHZat0OzyKGcpRfBxhhBFGePfisc1Q3uyzZlnWQ3Uou90uFy5cIIoiPvCBD9wThetmDBZMALJf4XPHf5pd7jZ2GjtYXi6RcC1mdzyLKSIQSYi6OlGMVVtNIhQKFfU40zvLjsROHMx4QdBGChclewgzgVD+cB4TW4s+RHaBtWuX6YcmiwvT2PE8kBZbaICdxlFtnOI4+bCNnJmk1yzT6gVsXjtPH4eUa5HMjnHtZJWVCx1NzbJt9h6YYmn/OEJJUAKlApQyUFEPJSzapTLVjZBU2ieRzmOqNrVSl/b6GtmZKURQiReGTZSVIZGQ1MsGiVREP/JAtnELU0wlA1YvtzDpY3k5nnl5Ehxd7VdY+nenIoSQQ2qYnuXMIPx6bGtSR5kZhGqjEnMw/goA3/rcOYJeSHbMA6BV61M+ZZL+oTSrq6ucPn0ax3FQSlGtVsnlcm/bwuluCWUqlXpocaAPfvCDN/yN3IzPfOYzNzz+1Kc+xac+9amHOuYI704MPP0eNEZGUcTp06cBHqjYNjgH0MnCyqlrNI/9J4Rsk5v06KsmQeCzuGMvrmMjMTCQmtquQpSTR4h1IitPq9ahXhE05DlOOSVsW3FV9HizfYy93jPaBskt6tjn5LX1kpOHoMlm3adZXWVqbjdJJ9KJlV9nVbUQ3RWmk7vIGW1yuQWmgja9wKDTKlOrhZTXV7C9DGnPobkJV46V8H2JaQgmljI88fI8ggjTcDBjqxHpN5BWCtmvsnKhTsL1Seaz2IZPddOnurJOcs+svhcIW28NE9uO4uQ70u4iASSSDjO7Clw+vk6zJnATJgtPz5MpJtgIK1zyLxCZBiaCb/aP8WOJbTr2i1glXFjXraoGW+lrexAVcOWi4Dsn3kMql0YYgl47YONURPZ/L1Cr1bh48eLQaqZcLjM2NvbAxYm74XGIlo3i4wgjjDDCuxfviG0IPBzldUDhyuVymKb5QMkkXO9QqqjPuTP/itXOKSqdCxiNgLFcnsnJOVA9TcdSAxW/CKwsIvS1B5qwOONf5outr3EgavC+zEGUDHQ3UHYQhgNRUyu9hjVqFehUakSGR2hWMNwUS/PTmFasEGhl9NYtxt5ieU39snMYUZdkfpZk0EBNzRJ2Nmn2DDYvXWb5dEjS6yOdDBZNzh9VTM6aePk8qEAntTLQCoaENPwEvX6E4WoVyZ7MgGzRj1KooI0y0xhBrOga1JjdVaTXvES7ZmIZdVIZj6WdFqlChoW9GcJ+SHoii5fUCbXCQFk2kXBRdj7+bB5EfT3TKduxQFAjVqltajuA2R8Z+k32uwHCEMNEzTAEUQjbt29n+/btBEHAhQsX2NjY4MSJE0RRRLFYHFbnH/S6uBXuVIFvtVoPpVY8wgi3woPGyE6nw+HDh4fX64NSDQcJ5ZWTy6z/z/8vpqwilcHqpatMbsuw9+klhCW0X64wdWdPSSQCoQIUgtpajSvHWwQ9n1JYZSy3jerTl7HciK93XmO3tx/TTKItMJK0610qaz7QJTB7IPrMLT2J65ixOmtEaGf4k9Lv0UfxfyQWcaxcnHDlSJghidQSRRkRhhGtVpN6tcnp1zYRUmJ5DkJJVi50GJ+pMbl9SjNG7AwETQwvj+E3aEkXwjLCzOBZbfzIw3NqhGEW2a8hTBdUHyEMUILpeYvysk2vVaUXeSQTfeb3bWdmQTA5v4OgWcHJ5MlkJciAo82vY0cKSygMpbjmX2ajd5lJbzuEHa04G3ViMaC+/uyRj7Yh0XYna/2D+EEDKw49hilQEibHpti5extRFFEqlTh58iQXL17k5MmT5HK5IbvjURTBBrgXyuu7YYZyhBFGGGGEtwfveEJ5P6ITWyXvn3jiCTzP48SJEw98DoZhIKMQtfzHvFb7CiECpfo0xio8UdwLMvaPDGp6XsavxIqudQwjg0lAqEy+3fwmPnCoe4xn0y/jiYQWbxDEM5cOyIDVK30uvXGNvq9QYRevkOU935/CHMwdWal4fiYDqhPP0fR1x1NF+udKJ5mCCDs9QzHp0y5b2PZ5pJnHMjp0ug6OqHLtWopp2cLLTmNFlVjptUKlGdLvLJMbSxC2u3SUi/RDvEySTNFBGjYoRWRkEFIhzAz5Kcmel3dTXWsgRERhJksmDcpyKY6HKKuo50OFpq+p2JdOoHRH0kwigg7KsIBQe2QKA2Vltf+l4SJn/qZe2MXY+9IM185W6TZ9bRunFHtfnB7+3LZtstksnU6H5557jlarRblcZm1tjTNnzpBMJhkbG6NYLJLP5x+qe3knFcNB9f1x2JeM8L2JW107D5JQbm5ucvToUWZmZtizZw9f/OIX72sOc9VfpRE12Ovt1f6uKqJ36j9jqxJ22qPdrOA6Lra0MAyFkj4GoFSIoSTKMDFUhMLCos/qmS4i8nGLFqq3QaKeYmwtT2NhEykbXOydZ5ezCIZNfbPGiW+t4Xf6+H6Ak7R47kM7cW2BpumHIATHO0fpyj5KwJHOMV7KvAzKAgyteIpW1rYch3zRwVQZDNFEOBaKiG6oiPyQ5ZUudqFBKp3FEULPvKuAdphgbe0SieIU7VKXejOBinwMK0t2zEOZHlIpwNKzpDLCTud48hWT9avjiKhNamwbxfEIrDTZbAsKE3FiaBFGPZb7l1GGwJWKrmmSiiLOhMtM+vnYFqQce1s2h58HGej5+6AOMz/M3LNzmJ/7Jp2Gj2kbhP2IbU9NkMonhtdPNptFCMF73/teut0u5XKZSqXCpUuXsCxrWHwrFosP1b2Momioj3AzBqJlDztDOcIII4wwwrsXj5XyesOB45vXvS52oiji+PHjVCoVXnzxRfL5PNVq9aFos4ZhkO0d5lz1AteiGqYQ9IXB4ehNnhev4MRzkNgZTW2yMxDWh2qrCpPL7depySZ5GdEWcKz+dV7K/6C27jDizqawiCLJheN1+j0brBArWaDbiNhYhbkdSieLUV97osl27CHZ0J3NoAFWAvxWLGvfjrt9PgiLdFYADjKQSCeLofpEZpFk1qXUDAhLZ3ESKTLJNv0goteqMb+0jbkZyeU3q3QbfRJjDov7iiQToZ65jHyUcHS31fRQUZ9kziOVdxCGixAR0rAwZIB0xxDS16I7UQ+cPCLsIE0PizUQ2tcSJXV+Hfa1sqzfiLuUVdTE+yG9/Ybv5wOf2EuvFXDoi5dAwQs/tJ0P/fiTN7xmMEMphCCTyZDJZNi2bRtBEFCtVimXy5w8eZIoiigUCsPFk+d593Wt3AvldYQRHiUsy7rnOXOlFJcuXeLcuXPDeckBPfBeY6RUkl+48gtsBBv80Z4/Iik8xv1XMaRPs2Nhhk2S6TGkoYgGXrZcF35RQoFSKGHp/E9ZhP02pu1gG1C0JwmtCJsFdiVnEcJg2szpwpvsce3NTaJeG9OVZDyToK8oXSiRzw+KSIpQSY41X8VBYUrF8c5rPO/swrbTEPRjJkgzFszRW8/rY7sOst/GsFKYVpee5TA+ZtBsdSiXVjFtj3QqAYZFtVJmanKKpcU0l06VqK71sByPxX2TFKc9wERGARJNSZXCARlhJrPM740Qxjh6EtNEq9hmARWruBpYRsSPjv/v9GSLqysbTE/kMZwk02Yhju++TiqV1PeQwXy+ndSib2MvQvEAu4rw8Z9+ni/97gn63ZDt75ngx372PRjG9Xvt1hlzz/OYn59nfn4eKSW1Wo1yuczFixc5ceIEuVxumGDeb4HsTgyORyVaNsIII4wwwrsX72iHEu4toRxQuCzL4pVXXhkKDdzNePtusJpvkO0f46u1I+RlRNMy8aKIrtHjROcIz6dfBhVTrcykrhI7xViMYQzFMv+zf5yEUjQNk7SMeD04zbP+UyTcKZ0oWRnwqwSBplBJbLIpC2G6tPttAl/qWRnD1FsA4QIKrEFncmCY7eoZGsPQMvlCgAopjFvsfjbDlVNloqCP5xnsfmGaqZkMmA6B36PV6VMplwkihWV61Jp9Uqkke17egUGojy197b8WdRBOBhE2kY6e55RWBoKa3vZLSCuNIWtIw0PQ1e8Tvj4nlBbuECGRkUKZKQQRSlhc61/keP8sP5R8n+60hk1Uagk1/oG3XiOWwQ9/8hl+6CeeAsAw39ohvJ0oj23bTE5OMjk5iVJq2L1cX1/nzJkzeJ43pH7dS/dylFCO8Lhxrx3KMAw5fvw4tVptaMsEuoh3PzHy682vc7F/EYDfL3+WnwhmSUSbhGaKSPYwozRhF8BmbDp3nTlhmPHMn6FFt4gTESuBkzZobPbwDAcvHCdAsnt8kplsAa06IwAJyqHRDOn6glQiie3Y+H2fXlddP44wOdF+nQYBtlL0hcCJ+hz1z/KCeOJ6Eulk4mQyC0EDy8vx9MtNjr2qMKI6gUqy5+kES/sWIOogGaPTqlKtNfH7XUxh0G1XMVSXHU/mMfcHuuAX6sSIoIZh5zCCOlhpbd1kuKhQMzBU2CNUaEVtJcFKYKi+juNRD4wE40Ya7CK9sMOMNY9rOXSaPY6+ep52tUOqkOapg9N42VRclEwCASTnYeoHht/Zgb+xjec/vISMFKZ17/HRMIzheABoTYJKpUK5XOby5cuYpjmMj4VCYTiLeTvcLT6apvnQomUjjDDCCCO8e/GOJZSDrtLdFkxbKVz79u274eb4MHOYqnWRaPXL9FSKrBLU7CzTMqRtWxTCEIGpqUVmQs+0GDZEUm8FoHwaZpuObBAJgYmiblpYKuKcrPGUmkDZBZAdlJ2jvnGO0PDwrB5RlMYMaphWglymD0jwmzHFqQd2Ss9NGol4zaUr25rOFel/E4Eyho+X9k8xtjRB2GqQyGVJuCGYFgRNTNOjW7+EbSfZNpehJ126jQ02Sh3UymXcVIF00iWVyeOYDEWDlFNEqBDccUzlgzWBEXaQdlZ7S2KhpD8U/hHKByuJ4WuPTCOoIoSIPS7TqKjJl5v/k1ZU46y9wB5zN8odQ839rTgRvc21cotEcgAp5V0r6Td3L8MwHC6eTp06RRiGFAqFYXX+5u7lwMttlFCO8HbhQSmvW4ttBw8efMui/V5jpFSSf7/x72NpHcmpi79Bx/oICkgmGjz98g5a62VCkaIwJijMpFF+E2EnUUEbYSZQUVdvYyEyA5+5JwtYb1ZpVENMQzK7Z4zpxVw8DxnHqCigUm+hLB+UDcqi0zOQkSBdzOvXCgeQnAqWkUDLMLCBlmly1r/AC5lXdNFtIGDjjmuKqTMGqk9xaZH3jrdpNSQJV5EqpHRh0ExjqIh2TxGEirnF7SgMus06lUbAxsY5rESObLKOl5kkIVrx2EMjZpW0EVYCoQKwLEAgowhl6gRTWmmEXyW0shi9Mjg6LmImwW8gZIih+gSdLt/6b5eQfptuL0HQqvGN9RY/8P+YxUxk9By+nYXZj+nfx03XjmndOgbeqwq253nMzc0xNzeHlJJ6vX5D9zKbzQ4TzFt1L+82EpBKpR6LGvcII4wwwgjvDN4xyivcmdJ1KwrXzRj4pN2v+bfqlam/+VlWVssIIv727D+gutGguuljCJ/cZJ5C0tCLmLAVm1e3Y9/IXkxBUhSlxydSH0OIAGm68QyRw4w9GSv0hYTSZWXlClK5PP/907z5WgW/1SYUGbY/lSG/MBuLQuR04uXkYhXULMKvxZTQwfxjVc8cRrHtiAr0OSm9MErnAsin42q+DbJPIDKsLF/AcPIsTOYQdopU0CA1s52JoEFfztBtrNNsB1RLyxh2moxn4mUKeK6NMCwQoe48mBbCtDENG5SNxETIkEgJTY0VCZB9IiOLEfUIRRpLbaIsDxG1ueBfwo+qJBQcbn+L3eaUXiBZD06FehDbEMuybuhettttyuUyGxsbnD17dti9HMxeDhSK7yTKM6JzjfCocTdrpUGxbXZ2lr179962E3UvHcqt3cmnWi12NZt8NTrMHjHFxOw+6LZpuRksv06kxlH9GkYihwoaGHZGb600KqjrrV9DCAvPbvHk++YImg0MN43r+Loe5td0DOtV2Kh16NZLPP3yEtdOrrKxqnDNFrmdkyzutnXnM2yCleZvZX6AqvIxZB9puJiqT8qaiDt/dhyfnZjBYYDqAwaoADfp4qYESKkLWIaFUgYrKyv4oWRxaRuWo9kgXipPUQYEEXTaDVqtLuWrV1HCIJNqk0pnSSUFhp3TRT+coTqr4WR0smqnULJPZIwjVB9pFSD0kSKJkAqEixQ2GCbry4pexycIkriOT6eXxAmbbKxFzCyFYLqw8LcZKvDcIx4kPhqGQaFQoFAosGvXLnq93nD2ctC93Dp7adv2HTuUo/g4wggjjPC9j3esQwm3r57fjsJ1q/fD3T2wtkIFHTZe+7c0KivMTY2zsrpBZXWDy282ESokkhb1chf15CzFcaVVVqUfq63GN3blowDTcumv+WSSHsl0kqSXjBmfCsImfghr1y5hJbLMTOQQtseLH5qk2zOwbYXtJhh6VhKhnOKwM4j0UU4Boi7KLkLYQFmxxYaV3ZJ0VuKks6yTTV+bihM16PUFK9eukMwWmJoY06bjSukKOwrlFHBkhDOxRE6GSDlDu92i026ytrqGkH0S6SLphMDLTmLLmj62X0XZWcw4wbWiljYCjwKkYaNUhMLGD1pEwiNSFgiPb/SO0hcmoVD0ZYND6SwHUtvu/8LZgof1oRRCkE6nSafTLC0tEYbhcPbyzTffJAgC8vk8AP1+/5bCE51OZ7RgGuGR43bxUSnFxYsXOX/+PE8++SRzc3P3vY+b8d+r/x2AnZ02+zptaqaBsq6xw99Ht+2zciYk6HZQhoMobRIEE8xul9reI46PKuqDndPWRFYG26iwXumT6a2QzBZJWYGOPVEb7AzSb7Cy0UD5dWa3PYFNh70H97K9UUbZOVwr9rT0a+DorecU8fw6uFN6ttyZgKClxwOCRlz8a8TWTcGw+AfxaEEUgOWC3yISLutXzxMZKZZmMhi2E8fPDPR1F9FWPXKZJLmUAypPp9ej3W6xWVpjze/gJvNkkjbJzDiu5esZ+ChOapWPMGws5FA0SAoTiYWKk1UURCRQsoof2JhC0fddhFD4gYNUji4aTv0geFP3fQ0ppR66M5hIJG7Zvbx8+TInT54km83S6/Xo9/u3LO52Op0Rg2OEEUYY4Xsc7ygH5VaLnU6nw7e//W36/T4HDx68bTI5eD/cu+hEGPhc/Mav0KqXWFjcRiqVwTAUtfUOluiQLnoUxyOiQNJev6aprUFFV56j9nDOMMJGSljYtofJmXmkmWS11ODMhRWurVepNds0OyFXlq+QzBSZnRpDmLpqLgxB0vOxHQFRQ9O+gpoWYggaICMtAKSMeEHkooUdtEKesrWfnHIKoKS25JA+yhrIzHsQtWh3uqxePUuxkGF6LKlFccKO/hxRRx8r8jUtTOm5R8NKkskWmZrbxfZd+5he2o/tJim3BBcuXODCSpPK5hqdKKE9Jc2U7pYaFkRdBCGmCLHo0e+1aGxeoVjMYwQ1zvbPEQYVpJIklGTTsvnl6FtI9eAzsPDwCeXNsCyLiYkJ9u3bxyuvvMILL7wwVCd87bXX+Na3vsWZM2col8vD667dbj+0bcjXvvY1Pv7xjzM7O4sQgj/+4z++63u++tWvcuDAAVzXZdeuXW/xYRvhrw5ux+C4ObaFYcjRo0e5cuUKL7300h2TSbj3hPL/mv6/+NfZf8jPtp/h6e5z/JDz/fzI2I9hi4hGJcRvt0kVs2QLFsL2qK7WkcpGKIkyEghk3D1TKDMJUjExs42FhXnMRJ5qpcq5yyWuLF9hsxHQ7nS4uFJHAHPbn8G2LU1XReHkZ3A9U9NVkeCO6a6iU9TxMS686SKf1EmqioXNQMdAIXRSJ+y4G+nFr02B9AlUgmtXzoKbZ2E6h+EW44Q0pbdmQqt8C0MnzERgQNI1mJicZvv8ONt27CHvKdq9gJVLx7h46SqbK2fptNsov6bfF3Xi2ctIq4ObJpZsIKVi8+qbZLMZbNmgOO2QzQS4Th/H7pNMdEikDCYmI8g/Dbl9d7+IboFHHR8H3ctdu3bx0ksv8corrzAzM0MURZw/f55vfOMbnDx5krW1NYIgAK7Hx4dRwR7FxxFGGGGEdzfeUcrrzZSuO81L3gqDn9/LgqnT6XDhL/8dGVVhdvteLFMQSUmoXMAmkCk8ICSNIeqEKqfnGu20nqV0tB1GZGSor1yl3UngGG2yM9NMjcHk5AR+r0mzG1Epb+JHCtt0wUjQC01cN4EQKqZH2dcV/Ig0VUuFaG8MPz7jMH7tFigVU2m1ZD1SghnPFw1FfQT1epe19QozU0tkc7nrlfqoH89ptsFKa0GcAdXWzsXU2gzCL4OVwTM6mKk05XMNmjULL9/Hnneo1K6AEKTSWdLJBMmUh2kOzi2g1o7YXFtncmYX2aShqbDN00jDIqsUfcPg27lJXOXT9bskrARCiAda+NxPd/p+MeheCiFYXl7m/e9/P9VqlUqlwunTp/F9n2PHjnHx4kVmZ2cf6ljtdptnn32WT37yk3ziE5+46+svXrzIj/zIj/DTP/3T/O7v/i5f+tKX+If/8B8yMzPDRz7ykYc6lxHeHbg5PrbbbQ4fPozjOLzyyiu3tWnYioHX7t0w3e3DqcP0/DxPT+/ASRYgbHHRMLBkDTBwqBGSxrPqRKQhqKCcvN7aOW0XZCRpVUrUKhaWaJMeH2Mi78LYNkK/RbMT0aqXKPUiHENiJcfodaokk9nY89fWBbWBSNjAf3GgdCriOXJhaUsmNUgYY2EzJdEU1xBMW8c+I63fY6QBSSd0Wbl6mUx2iqmJiZiqKm9MVAV6nxDH3fi4pk5IcYvYkY81to3NN65SWc/huBJ7m0djfYMoikilUqQ8l2R2DHsw3xm16EmX1SvnSOcnmSho26S0Ay98ZBtHvr5J1GlgJsd47gM5zOIeouIriAdMDB91QnkzXNdldnaW8+fP8/TTTwPaJ/rKlSucOnWKzc1NPv/5z+O67kOdyyg+jjDCCCO8u/GuoLzeD4VrKwZJyJ1mhC73L/OLl36Rn7z8BM/bm4xN70BEDTCyGGEbIaAwbtOq+jQrfRQBwkiQn8zorqAYVMb7RFae0qV1rpz1sagRRC6F8gUWntpOwq7jJDIY9UtIpViYSBIaKXqNda5UwDEivPQ46aSNlylgoPSCJ1Yv1AshoR9jAHGCOUgGZV+rvEZd3QkIO3rr13XS22+Alaa2uUyp7rM4U8TL5GPl1oROVO14vtIuADG1VgWaUqv6sYjQoPPYJYxMvvnHx+k1+khlYIiQTnmCFz48RTe06DVLlMstNlfPY3rjZDyDQFk0amWmZhfJpLQyrkDwZPYVnsy/H5RETv8In/Tmh2I3Wxe8hmEM/7sXSCnvqkD4sBgkrYPu5cTEBEopOp0O58+f59y5c/z5n/85X/nKV/iN3/iNB1qwfPSjH+WjH/3oPb/+N3/zN9m+fTv/9//9fwPwxBNP8I1vfINPf/rTowXT9whM08T3dYGpVCpx9OhR5ubmbjsvebt93C4+dts+X/+DN1k5eYrF7J8zvi3NvienMdwMKuyAncVUK7j5CZKVMpWyhevU6PkuC9tAODlE2AA7g/K18FZzY4OLp3oov4EfJUmvXmDuySWy2TqWk8Fur9L3I2aKCSwvT7dRYm1NIuQlvFSBtGfiZYqYsXI0sou234jjI3ADfdV0tV2I6ekYaGtVauyMpsraWc0AsTIQNWh1FOurlyiOz1DMxXPoSoEUYISxaq2jk1jTu+4DLH1duJP9mJHhAwavf+Esy2cqGMIAQ7FyscsP/K+7kaZFp1Wj1u6zvnkey/HIphMYlku5tMHY2AzFsbE47ltARH52jg/+3WnAQKmIyMogZ38EJaUuHvJg8fFx+ONGUYRt26RSKfL5PDt37qTf7/P1r3+da9eucfjwYaampvin//Sf8gu/8Av3vf9RfBxhhBFGeHfjHU0oLcsiCAKOHj1613nJ2+FOlC6lFL968VcJO2/Sc1cYn/7bsUdZDvwaws5iqza5yW3YRkBl08LEJzeZIV9UWuABhdLpH1HYZ325i2mCHyTptnpUSworWWdh/xTrK5fp9U2W5saxvTyEdXLZvUwFNdqBRa+xznoJxOolnPQE2YTCy01jq0YstqNni2prFTbXIlxXMrVjAsdBL25UAGYxTg7zeuvkQfaQdp7y6nkaHcnSTB4nPRZ3HjNx5zENfiX2OWvo5FRFgAlG/PsTEWBr5UXDYvnNTaqbEEUelimJIpf+xQa1xnYKRUUyvZNi0CSQM3QaJar1FlHQw7Iseq0KZtQkkSpiql7c+ayjJr8PI7t9yLUeiCoNCgtSyuECeKAEfKfu5dtdgYdbKxgKIUilUvyDf/AP+OIXv8hP/uRP8vTTT7Nnz5639VwG+Na3vsWHP/zhG577yEc+wj/+x//4sRx/hEeL21FeB0WLCxcusH///vvuhN9pDvMLn3mD068eZ8/0X9KuCdS5kPkFm5wrkHYKQymkkcJN2szv387m1Rqhn2F83GFivoAQMp73DlBWHiV9NtYs/F6A6RbptxpUSxDIDZ754A7KpTXKtR6z01OkMwWQPunMbiZCn24Q0mnWKNd7+KULJBJJUimPVCqF65ialm9YIAO6HYPSpQ0kLlNzPl6hGKug5mI2SU4X2uK5ywHLpN7yqZRWmJqeI5300HYlIUShnqsMu5oSGzTi91avz3Da2jYJM6ktSYRJu9ajdGkV27SwrS69wMMIaiyfrbPziQSJYpFipklEkW6rSr1Ro9vrY4kIv5egVengZWcwZVULk4XNOC4HCMPFXvpbCCc7LLoNYuWgaz2Ii3eLj28Xg2PrtXSr47iuy4c//GGOHz/O7Owsv/ALv/DYlF5H8XGEEUYY4fHiHU0olVJcuHCBdDp9zxSum3E7SpeUki+e/CJvBl/jB5oNzqo6m0GJcXsSiOK5HB/fyKKkJD83Q346roqHbTAdCPsow0JG/XiOUmLSo9UKaJeb+IGmSp15vUdPlknmkiwtzWKajq48W3mdtLljpJyAVGoPY7JPP4R2o0SlHRJunsRyc+SSVbzcNNXzFznylzUcs0237zFx+grP/fAzuEZde1qGtZh21Y19KQMiZbO6sowfGCwuLWLbLhDp+UoVaTqaDPT7VOw5qVPk4fwjVhIRNOLErzqkwgog7bXp9D1cp48f2kS9Nhh6hhMzjWVCN3QIVcj84iKBVHTadVY2e7B+HjeZJ5fs4I3vwx5//1u+P7hRYGnr4mmQXN5u8fQoRCfuhjspGIJWMSwWi3zsYx97W89jK9bW1piaulGkY2pqikajQbfbfYv1yQh/NVGtVqnVarz88stks9n7fv/tGBzdps+5w6d5Yu7rZLNgOTatapfKaplMcUK7QwqBKUKkDMjmk6RyRc0yFQKhAqQ0gD4oUCpACBMlA3xfUb9aIgwkKFg+08dInscbUywtzuE6sbWJETMLTBvPdrW6MgZB4NPudGk165TK69iWQSqTJZPy8NsGr/3ZebrtCMNUvOk4HPwRj9xkQcdapwAM5iyjoW/wZj2kVqsxu7CbZCIRNztFTHX19GymW9BjATEjRVNUe7poF/VjhofUcVeY+P0ufT+BbQd0uikc16fTT6L8NtjjQ89JE4VU0O1HzEyNYyTydOtrbNYFauMNLC9HxqvhpTK4rqltmBZ+DOEUht/hIMYNCm6D/+7G7ngcHcrB9XUnW6VMJsP73ve+t/U8tmIUH0cYYYQRHi/esRnKUqlEuVwmm83ywgsvPHBScCtKV7/f58iRI3ze+i/8cKuOKSW2ErzW/CY/nPmB2GC6DYaHLULUoFtnptECOAWQAdJ2UVEApo1QEZZrkC6kuHJmBQO0sA4CGfbobFrsfaKAEFFcaXb0IkS4erFiOPGMkInrgDs2Q3FcEUZztFtNmq0OG5eucObrHS3UIzK4iZDSusHVE9fY8fxcnOi6sRCODVGLUMLatasI02Tb3DSG0ddUMBmBldD/tpPxTFAipsAOZjbjz2smtbCPXQTZ09TXqI2TLZBwVgkjG8/toZRBwvHJ5NBy/KGPMj1KKxfpBhbbZrNYSY9E2CaTnmVqvEfPj2h3OlTaARebBRKlVxkfH2diYoJsNvuW7/3mxdOge3m7xdOd/M8eFe6WUA4WTCOM8DAY2NOAvqYuX76MlJIPfOADD1Rsg1t3KKWUnHnzKHvGv0omGeG6CVARplCYQmKoEIXAUAohJEL6ICMMFaGEqbcYCBWhlEDJKFaQ9skXTa6daoIM8DwDJUGqgMqlTd737JOYZqjZqzK4Ti21XPD7Oj5FPWwrSd5T5LNzKL9J2xd0miVWVhusvrFJp22STkcEkY6Fb35nhZc/Mh/Htbj4N5xBD1ldW6HbC1iYn8H10rEKq6fjsaGtjhCuPhfD0swPYV4vvin01rB0bDYsUBFeoYgwLtLtu1impO87GEKRyOX1LKhlACaVSolSucfi/BJeKgsqwPN2UVQRYbhAq92k3WqxUStjmQIx+T6y3RRF761x51bxcZBc3qp7+bji4+DcboV2uz1SwR5hhBFG+B7HY+9QDrqSFy5coFgskslkHuqGd/OCqdFocOjQIfq5NuOtb+CUXcy2B3bA5fFzVFIvUgyVVvEL6nrh4JfBndRbKwthlcjIgGyizBSG6g8pp9O7Zznx3U38PphCoWKhHcfNI6yUnscxYpEHYiEHpeLkEk1bHUJgKUkuZZFLF+h30lw0zhAphZQBvpREkUGlErIQmdh2BhBxcirxI1i+do2Um2Rqehah4oVRqKmzWnQnE/tZ5hB+Obb92Go1ktavFwkQ3Vh8IgSRoF1v0PEToAxEZKGkwDQknW4CN2MRmQnWr13Aly6Ls3lMO6npYoajk2oUCcciYbuMPfNJ5pwZyuUym5ubHDlyBICxsTHGx8cZGxt7y6L5bt3LIAgIgmD4/IMK+9wNd6ONDYy7Hyemp6dZX1+/4bn19XWy2eyo+v5XHBsbG7zxxhsUi0V6vd4DJ5Pw1vjo+z5HDr9GtvYFtu/Lc+XNGu1mgFSKdD7J2OIEyrB1804JMG2kcLRnIzYohcS6Ht+EQpjxbUTA+JyNmy7RakiUEkihMEyBMJKYphEnkT0dT8PBPHg7pqU2Y2ppc0hbFU6OtKiTTm9nMqhz7VCPlFfFDxI4Voueb+O3K/j+JI4dXhfYUSESi7VrlwmVzdJMHjORvE5jDSoxnbUS002r8T2hE8dA4qKcC0H3upWIkxvuo19dRYiIdKJHpAwEIAyJ3+4M7Ucqa+eotCTbZrK4nqufH4j9yAjLTpBPW+TzCyi/SctaYlU8xenTp+n3+xQKhWEB7ua/69vFx62z6YMZ3DAM72v28n5wt4Sy1WoxPj7+yI97J4zi4wgjjDDC48VjTSjDMOTYsWPU63VefvnlG6TFHxRbKV1ra2scO3aMHTt24ImvUjk5DyeLmAoiBGq6Szhp6VkbGYKTwxArREY2np/JQdAgMlN6oeHkMcMtCqh2FtdosLCrwMaFq3Qjj4QVEgqP8ZlEbKzt6+o3YVzljkV2BvOKA7EdFcTCEjF1NerhJF2yeahVBF4ioN+3cBJdrITH8rmjWF6ejGfi5aZQQZurqzUKuSRjk/MIAhBZXVV3Yz9LuxBvx0D19LxT2I6psx3dmY26WiVR9fUCKqb6YiaxRRPLELh2h27fI5Ho0u0nELJLGDmsXr2AMkwW5ucxDUMv5gyL6yIa2lCcsQ9AahEbfaOfnp5GKUW9Xmdzc5PLly9z4sQJstksExMTjI+PD9VVb/6utyr7nj17ll6vR6FQeChhn7vhTh3KgTjP467AHzx4kP/xP/7HDc/9xV/8BQcPHnys5zHCo4NSajgv+dRTT2FZFqdPn36ofW6Nj81mk0Ovf5c5DrE0m6bieFw7U6XTBcOKEKaFaYEw7GHXUQgTqXSnTRgmUkYMxcMMAy2QE8c5YYERMrtnlnr5Mr1AYduCIDRZWCjqxE1Fev6bUFNJVaTjlbwet4aPnTHdLYzHE3DGKE7XuXTCx0kI+kEaKUOMVIJLy6tYlkk6nSGdSmLZLqsryxhWhvnpcQzb00W9Ia21oBNbOxuPAyRjCr8DmPo5O+5m2vl4vj0PYUsnl2EHKRIYIkIqQRSZOJZPP0hg0gNrjs2V8zR7iqXZAnYi3pf+UiDsbUme9ZymkZonu+3vkjPMYVwplUpsbGxw5swZkskk4+PjjI+Pk8/n78ruWFtbY2VlhSeffPK+Z9PvB4P4eDtq7Sg+jjDCCCN87+OxJZS+7/Pqq6/eIHlfKpXo9XoPtd+BtP7Zs2e5dOkSzzzzDJPiLMGVK8xe3oudamF4OUTUolXOoa5FsD1CU6IMEBYKPQuIUkRWFiVDhDOGIE7GZFfPI0YdpJVjfHGDWj2D2+0SkWH3HhvTdqleWSYzNYkt4g6gX43Fdlrx4qQf+6H58QImjD3UIjATCBXyxPc9xZEvnqVVj3CckMkdizz9cpFIJOg2Vmn0DGqXThLgkXYlXnIC+pvgDGw/YlEJIwmqE3uxdbSohQjix0bsGbdlIUgYP44psrLH+I4lnNc36fU8Ek6PUNpMzUAyZ7Ny5SyOYzM1NY2IWmCk4hnMLCKMP3dYg9R2GHv5Ld+bEIJ8Pk8+n2fXrl30ej02NzfZ3Nzk4sWLWJY1XDyNjY3dkNAppThz5gybm5u8+OKLJBIJgAcWrrgb7kYbexSUrlarxblz54aPL168yJEjRygWiywuLvKLv/iLXLt2jd/5nd8B4Kd/+qf59V//dT71qU/xyU9+ki9/+ct89rOf5U/+5E8e6jxGeGeglOLIkSPDYls2m6VSqdyzx+7tYJom/X6f9fV13jh6lP3580y6PYSV4dqJMwgD5pYgiNL4rQrXziTZsb+PsFIov4kpFCKoI8ii/CYYCVTQ0myMoKdjhd8EJz3syuXG2uTnTfxqjyBMMbvNpjiToXx5leRYEc8bdChb17dGQitXG07spzsodhl6iwH47H1hinatT22jicJkfCbJ8z+wB8cOafUknWaFq6slkH0My2Mi7aFETPE3HZ2oYqETYVvv17C30FljqxE7cT2plKGeP0eBkdJMEytFbjKNl8tRL/cxhKTTT+O6UNyxjZXVFXq+zeLiHJZta9qsEavTqgicWGF2YFXizcDi39bUYa6LfqVSKbZt20YYhkN2x7Fjx5BSUiwWmZiYYGxsDNd1b/je19bWePPNN3n22WcZHx+/79n0+8HjYHCM4uMII4wwwrsbjy2hdByHbdu2MTs7ewNVZ6vP2oPAMAwuX75MGIa8973vJS2vwcp36UVZhLxKaGdJGT0CMjhmhSA0NB3T9CBsYooIghYqjOeXlMQQpr75I4B+LB6hCEmwenWZUDq89yPbMKwE7WqD04fK+BevEUmbsYnL7HxhCVe0485mPRa6qcU000GyeeMWvwZWmnw+4n2f2E+31sRwE6QzJhgWllJkiktE1U1azQxjY3kiqVhfXyeMFKlknXQyQyrVxbIcIIgFJKLrEvixr6YI6rH6a3XoH4ed1UqJRhJUF7BI5+Dljz/F8W9co9NymJjM8uTBCa6sbpBO5ZmamkUQan+3qKs7omFTJ7Vh7OE5/7d0B/QuSCQSzM/PMz8/j5SSarVKqVTizJkzN1C/xsbGuHTpEtVqlRdeeOEG+tKDClfcDfcyQ/mwCeVrr73Ghz70oeHjn/u5nwPgJ37iJ/jMZz7D6uoqV65cGf58+/bt/Mmf/An/5J/8E371V3+V+fl5fuu3fmskif9XFEIIZmdnefLJJ4cU10cVH2u1GqurqxyYLZOniTJzqLBNs2mRSHTxZQbb7NGKkgTdNthzqKAJVhpDlojsJDJo6yKY30A4WZ0EOoMOW7y1s5TXLlBrSZ59eYJEZoqgVeHM0TZX3jhHL0iSy5ZYem4H2Uw97tDVY8ppY0uS6ULQ2mKnRJxYhjgJh/d+ZJpGcwYj6pAaH9MFLTNHxqlj5gp0G2fwclM49KjXq5TXL+N4mdgzN43juFrZdUBxtTPQr+jiXr+sY2G/rItu/WYc/2UcTx3we2CnMWSL9//YHk795Sk2VhS5vGTPS0s0aheIIliaX8CUHVAZXVQ0M7rYZ3o61mKB6AMGYu6jOkm/DSzLYmpqiqmpKZRSNBoNNjc3WV5eHrI7BgW4RqPB2bNnee655ygWi8Pr4H5m0wf/vhc8joLbKD6OMMIII7y78VhFeRYWFoaiE6Bvkg9Tge90OtRqNWzb5uDBg9hhGa79BQiTRFIh3DT9ZgelkkjfJ5RZUlkvTp58vZBAEGFrKpdhI9SAqqp9xrSwgyIIQtZWrmHaLnOz4ximBNlm+XSFoNUiVUiCVGxu+KQuVll6chJQsddjeF1e3y6A7GtD8LCjZxiDlhbQiRNdW7Wwx2OxCGxNx8WgXC5RbzRZnJvDS7h6oTOWxQ8VzWaDarPDWmkTx02SzXgk0zkSlolwUrra7o7pxM8paOqrndMLQSt5XUhItuMvLIIgpDDh8oGPT4Odxm+XubK2SiFlUJwcdCaTmr41EPqxkvr3Zmd1Mmkl7/t7NQyDsbExxsbGhtSvzc1NNjY2OH369HDx3e12cV33noV9lFIP1L28UwU+iiK63e5DL5g++MEP3vC3cTM+85nP3PI9hw8ffqjjjvDuwfT09A0CYw8bH6MoYm1tjU6nw8HdimSvhDIyCBmg7Cy5sRQrlyQpU9IPHMAnkZ9AoFBOHqFCpJXVMdEuoGQfkRi7rp6qYloqAdLKs3rtCr3AYnFxGjuRAumzds2kttElWZggZ0TUyibGqRL7P7BdC4Y5WgANK6v3O6DFWkk9e466PhdpxV1DN0vWDsDI6+6lo7eNvkVp9RLjU9vIpfUIQkEGhHKWVqtFp9WgVGnhmAovUyTt9UmmxzSd1cnrOBzTWbUHZQCGqe8HUQBWKqa+xvYkdhaXBs/94BMge0RSsbq6holkZnEHhuyCG1uYDJJnM6E7sMSz9lEfsfBjCG/mnr9XIQS5XI5cLjf0eyyXy5RKJS5duoSUkvHxcYIgIAxDLOvG2/zdZtPvNz7ereD2KCivo/g4wggjjPDuxjtqG3InD8m7oVKpcPjwYRzHYXZ2Flv04cpn9SJABdimw9Mvpjn5Wojs11BGir1PZyhMZXSiZiZA+UjTo9nqYNrjeAlLLySGc456XqjTabGyuko2nWFyYlw/r3TFOux1cBMK2/RRhiDh+kT9tq60C0Mvigaqg4NG3WCBZCT0osLOAgoG1Cjb0u8zNTVLCVhd22DFv8xTC8+TMBWYDiKeh3SNJs7YBOO5BoGYoddYo9Ht0yyfIDJSZFMWifQYac9GmG68UHLjY2V1B9GwGcroDxQOY/VX3ALd5iZXVxtM5B3yYzNxN9MC2UFX71U8F5RGhA3U1IcgufCwl8iQ+uV5HrVajVQqxdLSErVa7Qbq16A6fzP1616EK7a+9lbdyzstmNptnYCPVAxHeFjcPIM2ULBWSt239UO32+Xw4cNEUcRsYhWvtYI00wi/prdhg13PTyP9FuVShGv1Gd8xweJOB4mBCFtIw8NQPdqdkHZjPU6+unFSFG9lhyA0WLl2DsPy2D43heEkYiVVi7DfBcA2Q5SERELRbcfej3C9A6l/A3GsjOmoqj/0ZWQQt6xBopeIY5RWqF2+Umf10iZjYwXS6axWWBU6GbQsk3whQX5sGhX5tDo+nVadq+stjPUqyVSGdEqSSqUxMXXiaBh6pnxAUbXiEQVzTB/fKaLtSfIAhFJwZeUaCSfFzOwiEOpzVZFWDSfSgj4K/dmEDSKEsZcQ+f0PcLVch+u6zM7ODhPLffv20e12OX/+PMeOHRuyO8bHx0kmk3ecTb+X7uX9xEd4Z0TLRhhhhBFGeLx4xxPKB6F0LS8v8+abb7J3716azab2iVz+Y/3DLfLuualxXvxBj27XwLF93Ew+rixnwK8QmRmmcga1tmJj+SSRkSabMvEyU6Q8A2EmadRKrG5UmZqYIF8cjy1A4nkbYeLlcqxfqiFsExlBFJokMmmdpAkzlrG3QPZiafq2XiSFHb0Y8rsxBWqgeNi7Pm9pJ4mCLldXylwTV3g1eQQryvBc4oUtYjv9uPvZR9lFLNkhXZwjHXZQYoJeu0qr06eyscxGGJFMpkklHZKZIhYB2ClE0I4psM149rGuZ0plF4RLq1FhZaXE5PQ0+VwW0LOnevYy0p9TBuAk9Xlkn4CxRyd+EEURb7zxBv1+nxdffBHbtpmbm0MpRbPZpFQqcfXqVU6ePHkD9Subzd7X4ul2whVRFL2lyj/AKKEc4e3CYJF+p+vvVqhWqxw+fJjJyUnG7A38C68iJvYh4q6aCGpg5/DcOk9/aC+9qp7B9twewklCEM9A+xWyuTEIr7K+UcVYu4qbHieTgGR2EsOv0gst1q+dJ5EZZ6qQAsuMZ7gTEDVJpk1sq6d1vkxF5PuMz2V0IUpYOg5aCQjaOv75zWF8ZkjHz2lKqpPV26Eqqx5bOHN8jQvf3UQpxaZqsn52lZc+th9L9ON91XUy168gnCwZxyczOc5UsUPPl3Q6DRqVKhtrEUnHJJEdJ+2CkxyHoHqdEmt6IFsME18VguER9BpcWauR8WByehGiemwX1dNFxEGH007GiXhK7ye1DTH5/rt8m3fHQDl9eXmZF198cWhhtGfPniG7Y3Nzk3PnzuG67lA1tlAo3JLdMbj2BrHwbt3Lu4mWjWyVRhhhhBG+9/FYE8qtPmtw/5QuKSVvvvkmq6urvOc976FYLHLq5Em8ylcgFydm0o+V+nSF2kraZJKgu29hTLHyiawchF0S2RlmUm3UzDS9xjqNnqCydo5VlcAzfTqhw/xEilShqEV2BnOPlp45XHxigqjfpbopMc2IsaUJprYVdEWdQIvwEA1tR3RV34/VBbt6G7bihV79+tylnSPqlFheb+AaPc565ygEEa93vsvT9iKmldPvszy9KBOxoA6m/qxWCiEMvOwkXtZEqQjfD2m36lRaPdY3L2Mn0mSTHbx0EU/E9NtwsBhsAQbN5jqljXVmp+dJe4CSugM5mAe1shDUrn8uKwUzP3xPc5P3giiKOHLkCFEU8Z73vAfbtoc/E0KQzWbJZrPs3LkT3/eHi6crV65gGMYwuSwWize8F+5O/RosqIIgIJFIIKV8ywKs3W7juu5b9j3CCA+LwXV5K9ri7XD16lVOnTrF3r17mcv5NE+/Shtd7BjQ7nHGNaXfGUPIAG98Nu76pVDS14WqqIuyCjgEjM/vZTzq0/MlrWaFzbpPsHEOy00R+m3yxVkmitnYzigEKxNvU0wsOrQaIeWVFkpCZizHwr7xWJxsIHoziIe9IX1Vq7C2dSIYdfU2jO07Iq1CraKAldUy516rapIEDpYZUFpTXH7jGjtf2BnPeg6o/WmduJqJWCDNJuEZJFyT4vgsYa9O2zfoNta5VDbwjDUSmXHSiQ5eMqt/Z0qzQ4j0ufitTZbXGxTTJoWJhZi5YccjE/K62JCd1Ym2nYGghkiMw/yP3nfn+WYopTh79iyrq6u88MILbylsJZNJFhcXWVxcJIoiKpUKpVKJEydOEIbhDeyOgbjZADfPUt5uNt33fYQQt4yPMPKhHGGEEUb464B3vEN5rwml7/scOXIE3/c5ePAgyaSezUt3X8ftnobirriaHfuFWclYPdCJZeFdkBFKSJSSKBTCdDUL1UwjhMLLzePlIqLJGVaXL9HpmziW4upGh3TzPF5mjGyihuUVEYEW2UlYDfa8tES/rsUcPLcLlqE9HreI8GjxiYxeFJmJ61L1MoqVXkOUrWlUyi7S77VYXmmSSbpU8n069TqRYeCGXY73L/Cs8URMywpiFcKBOqIXz+ykrwsChVWwc7hmD3dsjGK+R6im6bRqNNt9KlcvgzBIZ7KkUx7JpINhOFSqDcrlBrMLe0l5tl4oRbHibdhGmamY2hvboKgI5j7+QHOTt0IYhhw+fBghBAcOHLjronpAf56dnUVKSa1WY3Nzc0j9yufzw+r8vVK/KpUK1WqVqampYXV+6+sGdK6HXRiOMMLtrsd7iZFSSk6fPs3KygoHDhygkOihlv80/mEfqUCoAIVAyD4KA6F8vZU+SsRb9FyfwkBsZR8Ik4RrkHCmGR+XbGyUqNXq2HaCaqVMu9nQ8SOdIpGwY6aIgWEJdj6/wOzOFlLZeEmB4TjXlVMHcRCdgGql1Zgqaqbi0QBPU0UtDxBgJoik4NrKNfo9QRSYhJGDbSu6voMpQqp1LaSGFato21n9XsMETC1WNvAJNlNAiJWaIueF5PLjTMmAVrdPu9ngWqmFki0dGzM50kkD0ynSaTdZXmsxOVakMDYRs1fiEQKl9P5FeH3edEB9TUygFv82hune4pu8dyilOH36NBsbG7zwwgt3pZWapsnExAQTExMopWi1WmxubrK6usqbb75JKpUa2jblcrl7io+dTofV1VUmJiZu2b0UQrwjtiEjjDDCCCM8XvyVSCibzSaHDx8mk8nckFio6nESvbP0jKy+mTvF69XsoK0XCsMuXhdpOKiwDcLCUDL2UWPL3GBEGAlW11YAk53b5jEthyDwabQ6tFsNNjb6uG6ddDpHJtXF9YoYKsQbm44r52PXBW/CNspMXxe+Ceo64Rts/VqsNNjSdh6qBZh0ul1WV9YoFMcp5HP8Wf0LRAhCAcpQfKt3hP2p57CMeN7TiruTW2YeiXqx1Uk7TmhjdcGgpVVj6ZNNu2QzKVSUputDt7nJxnoDEZ6LDbwbzMzuJOVGoGw9F6XMLfOflv69DQR5ii9Acv6RXBtBEHD48GEsy+LZZ5+944zOrWAYBsVikWKxyJ49e+h2u2xublIqlTh//vyQ+jU+Pk6hUHjL/gfqmMePH2fPnj1MT0/fkvpVq9Ueynh+hBHuhHuJkUEQcOTIEfr9PgcPHsQz2sjz/xkFmKqLkiFG1EEZDobsowwXQ3bibVc/H3WRMTVTYepk0rB0XMVAi+MIkDqZbHe7LM1N4XpJZOjT7vp0mlWuVUtYIsDLjJNJGHjZcQgaeJlYCdaKaasDJVU7GxcC03prJXWcMZyYcTGI0VFsKdInUDbrV89juXnml1JcSNRJyCb9wCOdaNLzXcaKgZ6VV+3BbzKegfQ0C8NOX+8Y+pU4djZjGr9EKMh4NhnLg8lx+p0qzZ6gsbnMmi/w7Iier5gYL1DIaB9hol5cNGzG957GjfYnQvsRi7kfQbjFh7oulFKcOnWKSqXCiy++eIPa9b1ACEEmkyGTybB9+3Z83x/akhw5cgSAsbGxYYy8Fbuj3+/zxhtvDK2ftjI7BteslHI0QznCCCOM8NcAj53yesPBY8rrnUQnNjY2eOONN1haWmLXrl3D16n2Mqz+qR5RCTpgTGua0aC6bef0gsQtQtQnMrP6sZXRi6UBBRYDCABBv99ndW0dL+EyOTmJMCKQXWxTMJZ1GMtNIKOAdqdPu1nharmHYRqkUhnS6QzJZAqhQlot2Li8QRgq8pOSibmsZoDauVitMItOBNNxchZXqpVBs9WhtL7MxNQi2ZTNiioR+VUwTXJRRMs0ccMWl4PL7DImtliOxNL0hqsT24GYhOHpz2hn0JX52HtNRbpaLwOEmSZp9UhmdlMMWqysV/HbZUwnxcbKeWpuYjh76SbzWgxoaDuSRfhlVGbXLf0mHwS+73Po0CFc1+WZZ56572TyVvA8j4WFBRYWFobUr83NTU6dOoXv+0NPtwH1q16vc/jwYXbt2sX8vE6Sb6Z+hWHIr/3ar1Gv1x9IOGWEEe6Gu82Zt1otDh06RDqd5r3vfS+mbCEv/j5q8Pdvp5BqE2Ultcq0pVkRykyCilCmh5IBynDj7qCLQMWJ1aDLBsSJwsrKOpFULCwsYMVejYadJmP2yGSLTIVd2r6i09xkZTNCrJdwMxNkvS7J7CRm1CGQadZPXqXbs0inW0ztnMIIe3EyGcSCPApU7BEp+8M5837ksHr1LF52kqmCVux+8cNdvv2FENvs0vdtphfcWGWbmKLqQdiO6abNLfTT9PVCm+zFc+9AFOl5xyCm3AZ13NQYrtOAwk5qlTXK5RpewqNeLtFodsl4Ai87TVLW4uM0YnZMH019tSHsIGY+jMjseKhrQkrJyZMnqdfrvPDCC2+hqj4IHMdhZmaGmZkZlFLU63U2Nze5dOkSJ06cIJfLDZPLdDqN7/u8/vrr5HI59u/fjxDihtGBwWz6b//2bwNa6XWEEUYYYYTvXbzjHUq4teiEUoqLFy9y/vx5nn76aaanp6//zK/Bld8HBCZ9JCKmeaZiEYUs+Jtg56FfJjIzulpsZRGqp5Ms2YuppyGYaVrNBtdWqowXJyiOjSOEYqh6iohpXwLDgEw2QSbtoTDpdhq0Oz6l9WUiaWArg2tv+oS9PhKHymVJ1J1jZimhzy+MzcCjSNNUla/NwlVIudGlWq4wPb+PTCoBwmZKJvnA+P+CinpIw8KUfZRw2WZMXrccMV09uyOs2ARcxVS1MPZ0615XX7WzOhG0BjTctJ5VEg4q7LG6XsEPAha27cNyPKKwT6vTpd1qUFppYZsNvHSebLKJl85hyADlTsDsxx/J3GS/3+fQoUMkk0mefvrpBzbbvhPuRv1KJBL0er2hL+bNGJzTpz71Kc6fP8+pU6felvMc4a8XblWQuNOcealU4ujRoywuLrJ7926IOsgrf4ySIcKwUMrEMCFSJkKYKMNAIFCGqbeY15OogdCMETMQRBz7DM3c8MOIa8tXsV2PxfkJrRatQrBcIAQjnpt0sqTskFQ6z4QK6PYj2s0qpVqXcP0ctuuxfqpDsxJhGvq4tZrBEy/OaMaIiAteRGifxii2Cwlp+Q6rK1coFhcZK2aHRbPiwhwf+vEJ6qUOlmMzNu3p7iqxDYkMdWFRRvE2fItKK4YzZKnc8J6hRYp+bblSoVrtMbOwm1QygcKg027QaPWprawgMUknOyTTadJpF9M09OdREooHEOMPV3STUnL8+HFarRYvvPDCW1StHwWEEOTz+WHnsdfrDWfTL1y4gG3bRFFEOp1m3759t6TGKqX4z//5P/NLv/RLfPGLX2T//odTsh1hhBFGGOHdDaHuZO70iBGG4Q2LIyklX/jCF/jQhz50w40xiiKOHz9OtVrlwIEDZLPZ4c9UFNuD9GsA1OoNGrUyi9t2aG/JuBKM5UHQJDKTscpfHmOYUDVuEL9pbF5hvdpjdjxFqjAbzyKmNYXJ9HSV2fBiGft4/meo9GqBClDCpNxe47tHzmKdT2AmLFxH0uva5HKS93z0mfj4ubeI7+DXWK/06DXXmVrYg2f6KCujq+pmUiedg6q9YcSLvYHEfmxLIgcdx5iqpgLA1omz4erPFP9OMGOhCDP+LIBUgrWVZSJlMzddwHDziLB5/TwtXXXv9BStToNWs0ukFKlUErH4dynOP/PQi5terzesej/55JPvSJI2sKNJp9N0u9ry4Gbql5SST33qU3z+85/nq1/9Kjt2PFzHYYQRQMfDIAhueO5b3/oW27dvv7GgphSXLl3i3LlzPPXUU7qrFPWRF34H1S0hTFd7RhoOQa/NxSvX2L1zG8J0UJGvfx71wHRRYQ8lHITSQjdahTQW+rJSELbpBAYb186Tyk8zkXdjH8ZGTIuv3+DLqDt/8XZQrDI9VNDl8uk6G8tlaht93BRYjoGMLCwkz3xoN6k08TFbW/al913vSCprlxmLmRuaZh+h/RwtCAOwvVi4J31jJzL+HEPhMETsARlcp9jaqZiSm4ln72MfYBF7EauIUq1Nq7bBzOJuEkaojxPGrBAZgIKeH9FpVWl0FVG/juUVyCUFXnEH7t5PYpgPLt4lpeSNN96g1+tx4MCBd4Rq3+v1+O53vztMIvv9/tCWZGJiAs/zUErx+7//+/yjf/SP+K//9b/ywz/8w4/9PEcYYYQRRni8eEcpr4PB/TAMh8lIr9fj0KFDGIbBwYMHb0hSlFKw/EfQvByrA/YxRISMwut+jwKwkigU0kqDVFrNkGiocqicmAZr5SmvXabW8lmYKZBITcRJXnYouqNpnbnrIjt+RT+OtwQ1sNKIqMM3g0PUoyZjxh7y2SQ9XwE9NquCSxcvkc7lSSe7JLyiFshwxpBhl5VSh6jfZmbbEzgiRBkpvaAzBnYj6KRSRnrWMowpYEHnuviOndUqtFbuOgVWtmMxokEiLMGIPdYGFFgREUq4du0KwsgwPzuFYemZIOXkIexq8Z2oC4ZNMmWSTBhMTs4RdKuUrGdZLitOXPw6mUxmuLDIZDL3RQHtdru8/vrrFItFnnjiiXeEPtpoNDh69Ci7du1iaWnpBurX5cuXOXHiBP/+3//74XznN77xjVEyOcLbipspr1EUceLECcrlMi+99BK5XA4lQ+Tl30f1Sjp5k10w9FZYHkIGKNPTVh1mChV1NOU1aKMMDyE7sRVH6/oMYEwPrXcklfXzFKa2k08KneCFjetJpZ2NHw9mJAesiaQuYhkORD7H/3KVtUsNlAoJfIFtKIxEGoMWzabNypXz5GZmyCTaeNnpLYqodSr1HvXqGlNzSyQTcRIllO76DYpjTnz8YZKbiRkYg/Ow4hEHpWNi2LmRAus3YgZJM46VA0VXE8Iu6+Uu/XaJuaV9OCK2eAqacQc3jOnFSRK0SUwvUfTrhEzTaZRo9uCNlTmsyreHtPpbWXbcCVEUcfToUYIgeIva9eOC7/scPnyYXC7HU089NRTcKZVKbGxscObMGf7kT/6E1dVVvvCFL/B7v/d7o2RyhBFGGOGvCR5rhzKKorfMA33pS1/ixRdfJJvNUqvVOHz4MBMTE7fsUKnVv4DN72ypQKdp1zYoVVtsm5/S9KvIR2KgYssHMUgyhakrzYauOEcSVldX8MOIhfl5bMe9Ls4z7Pb5wwWR3sbekWHruuhCfC6b9Pnc5u8iNwvMnp4lzRwJx6fTsZjf4TK5d4xus0KrE2AKhZfOkPRSVGpVhLCYm53BtN3riTGSoQohMX0LEz3vaW9JEjtgJGMhiMG5ebEsvqU/k4pneKQPVlLPQFoZRNgkwGNt+QyGm2dmsoCwM/Hvy9YLLyFiFUZxXb3VdPW5WCkovgdgaNlRKpUol8tYljVMLovF4l2Nrw8dOsTExAR79+59R5LJZrPJ66+/zrZt29i2bdstX9PpdPiZn/kZvva1r9FsNhkbGxuKUowwwsPiVh3K119/nfHxcZaWluj1ehw+fBiAAwcO4LquVqy++t+RrctbGArXtyrwefPMefbt2YUwHSDUVNco0MquyJj9MGBbhHGsDNko12hUS8zOLZH0nOviW2xhQIjBHLrcsjWJfTxACOqbbb7xR2cxLYUwTPx2nyCA/IRLJC2KEza73jtDr9ug2eqCDPDSWTKpBO12n06nxfzCPK6buM7SiKIhHfdGZkYUMzbkdQaHUtcpvAPvXCwgvB7vMUDE4w0Kff7CQsmAa6sbhH6XuYUlbMsg5ggT31C4IVYP9jeI4cKE+R9FudNDy45SqYSU8gbmw526jWEYcuTIEZRSPP/88/flSfqoEAQBr7/+Op7n3XYUIQgC/s2/+Tf87u/+LtVqFaUU/+2//Te+//u//7Gf7wgjjDDCCI8X7+gMJVxXMbx27RonT55kz549LC4uviWpUNWj0Dil/clUCO5Y7KmWI5JxlVn6SMNDxYmgUEFMWdKiO6gIpCAIQlZXVjAtm22zExhGpBPUmL6KsHRnExtUF60Q2I/ne6ROpEBX6VFgF/hO7b/TMmzEZIPlvsWulXFslWJ2h8fSM5PYDmRTHpMKet0W9WaXjbVllGGT8SSdTpuU29ZU06C2RfQmF1uP5LTojp2PxYYKsWZGUS9axIxOKIXQCaUwNBVLWJraKszhY2VYYNi0uiFHjh4nP/+DPLn/mYdK5G627KhWq5RKJd5880183x8uniYmJm7oOrdaLV5//XVmZmbYvXv3O5pMLi0t3TaZVErxq7/6q3zlK1/hK1/5Crt37+bb3/72KJkc4ZHhTjOU9XqdQ4cOMT4+zv79+4cLerX+VVTzPGLYYUzpDuGw+5bCFD7SsLFkJ1adbmhxsrgTKcLmsMCkrDTKb7Ky0SDsVlncthvHCGJa6cDDcUCXH8TGcPAB4oTOiv2AtRhO6Cscq48UKTynh5QJLLNBJJPMLhhsf36RZDIkl51karxPL5C0m3VK6ytICV7CottpY8oeVrKACFrx+Tb0NmihzETcMdxSRDOdeGY9jQiaMeOkjrLTW7xz2zGzxYRwS8HNziL7FVY26oiww8LcIiZdCCSYLiLqxeewhclierF/L2DaEPYQCz+KSM4B3DC33Wg0hn65J0+eJJfLDbuXW22IBmwI0zR5/vnnH4lA2f1ikEwmEok7zrV/6Utf4pd/+Zf57d/+bf7O3/k7HDp0iF27dj3msx1hhBFGGOGdwGPtUN6qAv+1r32NTCZDpVLh2WefZXx8/C3vU61LcOn/F9OM4vmamJ7VaVe4ulJjz855pOEiwz7CdBBqIHsfV94JAUG30+HaygqZTJrJiYlY0ZD4dbGvYyzvPhRpuO1WJ6DlqMkfVj5LzzQQStExLMbMHD8x8Y+wLCP2OVO60yeg1ZWcO3eOfHGK8clpKrUW1VqDZscnmytSHJ9ibGIGL5mJxSKsWGTi0aHRaHDo0CHm5uZuUM991FBK0W63h5X5RqMxpMamUilOnTrF4uIiO3bseEeSyVarxWuvvTY8h1tBKcUv//Iv8yu/8it86Utf4rnnnnu8JznCXwsopfB9/4bnjh8/PrR02L17N0tLS/f1d6KU4s///M/5vu/7PhzHYRDuBx6BN6Pf73PkyBEMw+DZZ599JHN67Uaf3/h//QX1UgfXs/H7AY5n83/8fz7IzI7Cbc/BNE327NlDrVajVCpRrVaHXomTk5P3Tau/HwzonQPborezKzgQvSmVSlQqFVzXZWJigkKhwIULFx6p2vX9IgiCGxS3b5dMfvnLX+bv/b2/x2/+5m/y9//+3x8pXo8wwggj/DXDO9qhDIKAfr9PFEW8973vvaVXlepX4Op/iymmWwUXUhDUMcwEtqoTsQS9TYSTxxjaWVTi6nEF5RRo1Upc3WgzNTFFYXIpVilMAzJO+oi7e2gRHmHohM643t3DsK//J/T2q/X/zu/YX7/hvA0MfmTxw0zb0zc8XyqVOHbxGDv3fJylpSUA0guwiJ4jLJVKrJdKvHnp1HDxNDExQTabfWQ36UqlwtGjR9m+ffttO3KPCkII0uk06XR66He2ubnJysoKFy5cwDRN+v0+m5ubd6XGPmoMksmFhYU7JpP/9t/+Wz796U/z53/+56NkcoTHhkEnq9Vq8fzzzzMxMXHf+xjYOQRBgGVZw7n1W2Hg91ssFh+pKFYq6/K/fuq9/NdPf4dmpUs6n+Dj/88Dt0wm2+32cE5v0InNZrMsLi4SBMEw8XrttdewLGsYH4vF4iM734E4WCaT4amnnnrbxcESicRQUXpgabS+vs4bb7wBaMuj9fX1u1JjHzUGyaTjOHdMJr/2ta/x4z/+4/zar/3aKJkcYYQRRvhrinesQznwTwuCgN27d7O4uPiW1yulYO2LsVdYAjDiuT5z2Lnr9EMOHznG3MI2imNTpDJ5PStk2HEyaKOwuHjpEpcuXeLpp59+oIXZnaCUYj1cZ+uvMmEkKFg3LpiuXr3K6dOneeqpp5iamrrjPoMgoFwus7GxQblcvsHq4mEWTxsbGxw/fpy9e/cyNzf3QPt4WAxmZbdt20Y2mx12L+9EjX3UGFBt5+fn2blz5y1fo5Ti3/27f8cv/dIv8ad/+qccPHjwbTufEUYA3Z0DPTd39OhRarUaxWKR559//oH2p5TiK1/5CmNjY8zOzlIoFG654C+VShw7dmxYZHo7kgIZSTpNHy/tYFpvjV+1Wo0jR47cE2tiQKvf2NigVCoRhuEwbgzUmB8Eg3nusbGxd0wcbCBMl0qlWFpaolwuUyqVaLVaQz/IiYmJG6ixjxphGHLo0CEsy+K555677f3mm9/8Jp/4xCf41//6X/NTP/VTo2RyhBFGGOGvKR5rQjmgdA380xYWFmg2m0xOTt4yobzbvgbmyWtra8PEK5FIMDk5ycTEhFZAVIqTJ09SrVZ57rnnyGQyb9Onu/O5nj9/nuXlZZ577jkKhbdW5u+ErTOJpVKJIAgeaPG0srLCqVOnePrpp5mcnHyQj/LQqFQqHDlyhN27d7OwsDB8/k7U2AdRjb0T2u02r732GnNzc+zcufOW+1VK8R/+w3/gn/2zf8bnP/95vu/7vu+RHHuEEe4E3/eHxTbP88jlcnQ6HZ599tn73peUchg7VldXKZVKAEPK6KAwdeXKFc6fP8/+/fvvWuh6uzAodN0cF+4FSimazeZQbbTdblMoFIYFOM/z7mk/9Xqdw4cPD4tM70RyNFC7LhQKPPnkkzecw+2osQ+iGnsnbE0mn3322duyRr773e/yoz/6o/zLf/kv+dmf/dlRMjnCCCOM8NcYj71DeebMGc6dO8f+/fuZnZ3lyJEj5HI5tm/ffs/7GSSSN88DRVE0vOGWSqXhDdayLA4cOEAikeD0d1d58zsrCARPvjLH7gPTdzrUQ0NKOUxon3/+edLp9EPtb+viaVC1zufzwyT6douny5cvc+HCBZ599lmKxeJDncODYnNzkzfeeIN9+/YxOzt7x9c+jGrsnTBIJmdnZ2/bBVFK8Z/+03/iF37hF/jc5z7Hhz70oQc61ggj3C9WVlaGXbq9e/dy5coVyuUyBw4cuOd9bC22wfX4KKUcziNubGwQBAGO4+D7Ps899xzFYpHVCzVe/4uL9DsBi0+Oc+AHt92ym/gosby8zNmzZ3nqqaceSaFrMDpwP3OXgzGAHTt2DEcRHjc6nc5Q1Xffvn13TNAG1NgHUY29E8Iw5PDhwxiGwXPPPXfbOHv48GE+9rGP8c//+T/n53/+50fJ5AgjjDDCX3M81oSy0WjwrW99i+eff55cLgdo0QnXddm9e/c97UMphZSSKIruOA/UaDSG6nhRFCGlpLNqc/RPN5GxLlAiZfPxnz7A3hdnHsnnuxkD2prv+zz//PMkEolHfozbLZ4Gc5cA586d49q1axw4cGD43M0IVMBr7dd4OfUyhnj0C8iNjQ2OHTvG/v37bzBpvxfc3KF9UGpsp9PhtddeY3p6+raKskopPvvZz/KzP/uz/MEf/AEf+chH7utcRxjhQRFFEV/5ylfYsWPHkI5+9epVVlZWeOmll+5pH1vj4yCRvNV1PhCd6Xa72LZNt9vFDFK89gcluo0Q0zIRAl75W3v44N994pF+zq3nOohNzz333NuimLx17vJ2owPr6+ucOHHijoWu5dNlrrxZJpNPsP998488yW6327z++utMTU2xZ8+e+xZeGqjGPgw1NoqioQf0nZLJY8eO8Tf/5t/k53/+5/nFX/zFUTI5wggjjDDC46e89nq9G6g5p06dQgjBvn377un9g+TwTslkuVzmjTfeYGFhYTgf12g0+N3/9zdZPVfHy5vYtk2nGrHnhRl+/J++8mg+4Bb0+30OHz6Mbdtvu0rgALeau7QsC9/3ec973nNHuu/vlX+P3yj9Bv9i5l/wQ7kfeqTntb6+zvHjxx8J1fZBqbH3kkwC/OEf/iE/9VM/xX/5L/+Fj33sYw91riOMcL/o9Xo3XJtra2v8/9u787ioqv9/4K9hG/Z9EwXFDVGRHcQlNUlcGTS10gLMrCwrszK11MpcKj9lLmVWimblBohLuYumIi6sAoLsss2w78swc35/+Jv7ZZTdgUF9Px8PHuWdO3fOHYYz933POe93RkZGu9bvNu0feTxei1Mga2pqEBMTw9UUVFNTQ01NDU7vi8btU/ehacCDuro6GmsBTW0+PtgxGWoaik2WJZVKkZCQgPLycjg7OzebkE3Rmt6YEolEaGxshI6ODiorKzF06NAWg8lrx+7hyP8iH5SnZEB/R3Ms/t9Ehb0nsvXcrc2a6IjOTI2VSCRcjdPWypMkJiZiypQpePfdd7F27VoKJgkhhADo5oAS+L+kEzIpKSkQi8UYNmxYq8+TrQdqK5iUJb6xt7d/5AIhaPVlFGSWQc9UEw0NDSjNr4Z+bzWMD+jb5pTRjqiqqkJ0dDS3DqarswQ2RzZ1qaqqCqqqqmhsbISJiQnMzc0fWXdZK63F7NTZqJBWwErdCn/1/wuqPMVcLOXl5eHu3btdkgwJaN/U2NraWty6dQvm5uat3v0/fvw4Xn/9dezfvx8zZ85UeFsJaYtYLIZUKuX+XVhYiOTkZIwZM6bV57X3Zpss8Y2lpSUGDx4s1zdd+DsB18LuwchSG2KxGBWlNZBKJJj4rjWselvC3Nwcurq6jx1EiMVixMbGQiKRwMnJqUuTb7WEMYbk5GTk5ORAU1MTdXV1za67rKmsxxpBMCSN0gfZv/HgP7M+cMeYWXaP3Q5Z+SYbGxvY2toqPEBrz9RYiUSCmJgYSKVSuLi4tBhMJicnY8qUKViwYAE2bNhAwSQhhBBOt5cN4fF4ctlQZRf8LXl4PVBLF0uMMaSkpCA/Px8uLi7NJr4Z4mmF/IwyVJXUAwzQ1tHCmKlDYG6uicLCQqSkpEBXVxfm5uYwNzfvVBa90tJSxMTEcKOjyvjSlU21lUqlGD16NNTV1VFVVQWRSISsrCwkJCTA0NCQW1cUVhOGSmklACBPnIfzFecVMkqZk5ODlJQUODo6wsTE5LGP1xwNDQ1YWVnByspKbgTi7t27aGhogKGhISoqKtoMJk+dOoXXX38de/bsoWCS9Biym0GtaW8wmZ+fj8TERAwePLjZxDf9R5gj6lwmykW1UNNQhYpUHY7P2WLgoN4oLCzEzZs3oa6uzvWPhoaGHe7f6urqEB0dDU1NzVZHwroSYwz37t2DUCiEh4cH9PX15ZYOpKSkcEsHpNV8SCQPgknZuaqo8FCcV/XY7SgvL0dUVFSXlm9qOsW36dTY7OxsJCYmQl9fHw0NDVBTU4Orq2uLv4+0tDRMnz4d8+fPx/r16ymYJIQQIqfbRygbGhrkAsrMzEyUlJQ0m3SipeQ7D2tsbMSdO3dQXV0NZ2dnaGtrN/vakkYprp9MxZ3/7oPH48FxQl+4T+4PFZUHxxSLxdx0KFnGWFnQZWBg0OaXqGxqp52dHfr06dPu90SR2lOQu7a2FkVFRRCJRBCWCfFjrx9Ro1IDAOCBh17qvR57lFKWObIzWW0VgTGG4uJixMfHQ0VFBWKxuMWpsefPn8crr7yCX375BfPmzaOLJaI0D49QlpeX49atW5g4ceIj+7aUfKe5/dLT05GdnQ0HBweYmpq2+PpJkXm4fvweaqvF6D/CDBNeGgq+9oPZDLLRLlmpDkA+Y2xbwaGszqUs6YwyZm5IpVIkJSVx3znNTbVtuu5SmFeI098VQCJm3AglALy8fCQ8pw3sdDtkNx4HDBjQ4QzniiKb+lxfXw+pVNri1NjMzExMmTIFM2bMwNatW5XyeyOEENKzKT2gzMnJQX5+Ptzd3eX2a+96oLq6OsTExEBdXR0jRozodP2xh0kkEm49oixjrOzOfHPrULKyspCWltZlUzvbo2n9MgcHh3Z98Z8rPYcvhV8+sn29wXqMsRjTqYuHzMxMZGRkwMXFhUu+1N3q6upw69YtmJiYYMiQIY8k51BTU8P169cBAJs3b8a2bdsQGBhIwSRRqsbGRi5ABB4ka7l69SomTZKfMSBLviMLPlsKJiUSidxaxcfNMt309cvKyiASibiMsa2VMpJlUe3bt2+XTO1sD4lEwt14lGX9botUKkXEP0kI+T4G0sYH31v9nA0we7krzM3NOvV9U1xcjNjYWAwePFhpNx6lUiliYmLQ2NgIFxcX8Hi8R6bGZmRkoLi4GEFBQZg0aRJ+/vlnCiYJIYQ0q9sDyofvwOfn5yMzM1Mu6UR7p3DJMrmamZl16R3vh5M5SCQSmJqacnfm09PTkZ+fL5e9trt1tiB3vbQeEVURkODBSHB1VTVqK2thWWgJqVja4rrL5shGQu7fv99qRtmuJgsmjY2Nm30vZL/PTz/9FCdOnEBdXR0mT56MH374gUviRIgyPBxQ1tXVITw8HJMmTeL6t4dnbrTU79XX1yM2NhYA4OTk1OlSEm1hjHFT6mV1II2Njbl16SUlJUhMTGx2XXt3kS0DkEgkcHZ27nAgWCqsRs69EqioS8A3aURRUVG7SzY1VVhYiPj4eNjb26NXr67JLt4WqVTKZR93cXF55L2QlabatWsXdu3ahby8PHh5eeGLL77ACy+8oJQ2E0II6dm6fQ3lw2RlPWTaG0zKUr3L6oZ15R1vFRUVmJiYwMTEBHZ2dqioqIBIJEJqaipqamqgoqKC/v37KyShT2fIEjv07t27w1kC+Sp8jNcf/38b/n88zOxYq+suHz5XWQmAvLw8uLm5KWwkpKPq6uq4wuAtBdYqKipIS0vDyZMnsX79eowfPx4nTpxQWn1OQloim0YqK5PU3v5RlhjM0NAQQ4cO7dK1ijweD3p6etDT08OAAQNQU1MDkUiEvLw8JCUlAQCsrKy6pCxIe8iWAairq7e6TrA1RhY6MLL4v+mxAwcObHHdpaxk08O/G1nppOHDh8PCwuKxz6sz2gomgQe/z9raWvz1118YP348NmzYgFOnTint90cIIaTnU/oIZUlJCeLj4/Hcc8+1ez1QVlYW0tPTuULYjDGUFlSjrkYMI3MdaOl1zZ34h89DNmXIzMwMxcXFqKys7PAd68clm0rWlYkdgAeBmmyE9uF6l3p6elySC1dX124pAdCc+vp63Lp1i7uIbuliOyoqCjNmzMDq1avx4Ycf0jRX0mNIJBK5JDxSqRRnzpzB+PHjwefz2xVMFhUVIT4+HjY2Nujfvz94PB4qS2pRUVwLXSNNGJg2v8ZckWRZVAsKCtCnTx9UVFSgpKSE6zfMzc1bLPGjSLW1tYiKioKenh6GDx/eZbNY2qp3KRQKkZSUxH1nKYNUKkVcXBzq6urg6ura4ihtUVERpk6diqFDh+Kvv/7qlpJXhBBCnmxK/6aQjVC2Zz2QLKFCcXEx3NzcoK+vD6mU4UpIMuIu30djgwT6plrwCXBA70FdN9pUW1uL6OhoaGtrc2nWBw4cKBd0KSJjbFtEIhGXBEhWCL2raGpqwtraGtbW1ly9y8LCQkRFRXHrXO3s7JQ2SltfX4/bt2/DwMCg1WAyLi4Ovr6++PTTTymYJD2eiooKl1RKTU2tzWDy/v37SElJwdChQ7kplUmRebh0KAm11Q3ga6ljzMzBGPFc1yWCkUgkiI+PR01NDTw9Pbk+obGxkUsGduvWLS5jrJmZGYyMjBT+t1hVVYWoqChuSURX/q2rq6ujV69e6NWrl9wSiaSkJC5vgI2NjVISlAEPvjvj4+PbDCZLSkrg6+uLQYMGYf/+/RRMEkIIaZduH6F8eI1QZWUlIiIiMGrUKPD5/BbvIMtqlzU2NsLJyYlLqHAvqgAnd8WAr6UGvo46SguqYdpbD/M/HwU1dcVP85Kt2zQ3N2/1IkWWMbawsBBFRUXg8/lccNmejLFtyc3N5eo7KuuON2MMd+7cQUlJCUxNTVFSUgKxWAwTExPu7ryikiS1pqGhAbdu3eJGIVp6b2VFuZcsWYI1a9ZQMEl6nIdHKBljuHDhAoYOHQpTU9NWZ27IRgSdnJy46YllhTX4e+M11Nc2wsBEC5WldVBVU8HcT0bCrI+ewtvf0NCAmJgY8Hg8ODk5tfj337Q+okgkAtCxjLFtKS8vR3R0NPr06aO08k3Ag2zX9+7dg4WFBaqqqjq17vJxSaVSLhmRq6tri2tpy8rKMGPGDFhaWiIkJEQp9UEJIYQ8mZR6+5ExBg0NDRgYGODq1aswMDCAhYUFzM3N5TLwVVdXIyYmBjo6OnBycpK7a1omqoGkUQpdowf765loorK0FtXl9Qqf2iXLziebXtraRYq6ujpXH7FpxljZxVbTi6eOTsOSZVF1dnZW2ro/2UVKVVUVRo4cCT6fL5ecQ1bnrLV1l4rQ0NCA27dvQ1dXF8OGDWvxd5KcnIzp06dj0aJFFEySHqvp51K2BMDS0hLx8fHQ0tKCubk5LCwsoKury+3b2NiI+Ph41NbWwsPDQ65sUpmoGrWVDTDupQtVNRUYmmtDlF2BMlG1wgPKmpoaREdHQ1dXF8OHD281KGw6JdTe3p7LGJucnIyGhoYOJQN7mKyfHjBgAPr27fu4p9VpsqUZrq6uXIDf0XWXj6u9wWRFRQVmzZoFExMTBAcHUzBJCCGkQ5SWA1x2scTj8eDq6oqxY8fC0tIShYWFuHLlCiIjI5GZmYn8/HzcvHkTZmZmzdZV1DHgg6fCQ32NGIwx1JTXQ1NbHVq6il1HmZeXh5iYGNjb23c47b2qqirMzc0xfPhwPPfcc1xJj8TERFy6dAnx8fEQCoXtKmB+7949ZGZmwtXVVanBZFxcHKqrq+Hm5sZdfMiScwwYMAAjR47EmDFjYGFhgeLiYly9ehURERFITU1FeXk5FDEwLgsmdXR0Wl0flZqaiunTp+PVV1/F119/rdCLtsuXL2PGjBmwsrICj8fD0aNH23xOeHg4XFxcwOfzMXDgQAQFBT2yz44dO9CvXz9oamrC09MTN27cUFibSc/XNPmOnZ0dxo0bh/79+6OmpgY3b97E1atXkZKSApFIhBs3bkAqlcLd3f2RGry6hprQ0FJDdXk9AKC6vB4ammrQMVBswFBeXo6bN2/C1NQUI0aM6NAII4/Hg5GREezs7DB69Gi4u7tDV1cXmZmZuHTpEqKionD//n3U19e3eSyhUIjY2FgMGTJEqcFkRkYGVzqpaTIbLS0t2NjYwNXVFePGjYOtrS1qamoQFRWF//77D0lJSSgqKpLLM9BZjDEkJCSgqqqq1WCyuroac+bMgZaWFo4ePdquciodQX0kIYQ8/ZQyQilbL9l0PRCfz+fW6DU0NKCwsBDZ2dmoqqoCn8+HmpoaqqurH8keOtjNEunxIty7XQBJoRQ6BnyMnT0EGpqKOTXGGDIyMpCVlQUnJyeYmJg81vFUVFRgbGwMY2NjLmNsYWEh0tLScOfOHbl0+00vABhj3PpRd3d3pSW+kUgkiI2NhVgshpubW6ujB62tu1RVVZUrvdLRUVqxWIyoqChoa2u3GkxmZmZi+vTpmDVrFr799luFJ+Worq6Go6MjXn/9dcyaNavN/TMyMjBt2jS8/fbb+PPPP3H+/Hm88cYb6NWrF3x8fAAABw8exLJly7Bz5054enpiy5Yt8PHxQXJystKmN5Pu07QsiKx/VFNTg6WlJSwtLbkZDzk5OcjKyoKqqiqMjIy46ZRNb5iY9taD++T+iDyZBmFWOdT5anCZ2Be9+hsqrL2yUhiKGBFsLmNsYWEhCgoKkJycDH19fa5/fLgPzMnJQUpKilJrATPGkJaWhpycHLi6ukJPr+VRYHV1de53+vC6y7bqeranHQkJCaisrGw1mKypqcHcuXMBAMePH3/khoQiUB9JCCFPv25fQ7lv3z4MHz4cgwYNajG5hKwERU5ODoYOHQqpVAqhUIji4mJu2lfTLIGSRimykopQX9MI0956CpvKJZVKcffuXRQVFcHZ2bnViwNFqK6uhkgkQmFhISoqKmBgYMBN+0pNTe1QQe6uIJFIEBMTA6lU2ur6qLY0vXgqLCzs8LpLsViM27dvQ0tLixvtbc79+/fh4+ODyZMn46effuryotw8Hg+hoaHw8/NrcZ9PP/0UJ0+exJ07d7htL7/8MsrKynDq1CkAgKenJ9zd3bF9+3YAD94va2trvPfee1ixYkWXngNRrtOnT0NVVZW7WdOeskk6OjrcWkTZdHoLCwsYGRlxpUby0spQXlgDPWNN9BlsrLBR+pycHCQnJ3dLKYz6+nquzyguLoa2tjb3XVBcXIzMzEw4OTkpLfGNbAZJfn4+XF1dO106qenSgcLCQu5GQXuXDsiCyfLycrkZJA+rq6vDSy+9hKqqKpw6dapbaihTH0kIIU+nbh2hZIwhNDQUixYtwqBBgyAQCDBz5ky5eoESiQR37txBZWUlPDw8uLvQvXr1QmNjI4qLiyEUCnHr1i1oaGhwFxS2w80UOpVRIpEgLi6OW5fUHUGcjo4ObG1tYWtry2WMFQqFSElJgYqKCjfSx+fzu30NYGNjI6Kjo8Hj8eDs7PxY2f8eruvZ0rpLMzOzR+6Yy4JJTU3NVoPJ/Px8TJs2Dc8//zx27NjR5cFke0VERMDb21tum4+PD5YuXQrg/6bxrly5kntcRUUF3t7eiIiI6M6mEiWIiIjAjz/+CG1tbcyYMQN+fn4YNWoU9/fGGOPWUDcdiZNlMpWtRbxz5w4YY1wQ0qu/CXoPVFygxRhDeno6srOz4eLi0i1BHJ/PR58+fdCnTx+5jLE3btwAYwyWlpZgjHEzX7qTLClSYWFhs1OPO+LhUdra2lruXO/du9fqukvGGBITE1FeXg5XV9cWg8n6+nq8+uqrKC0txdmzZ7slmGwv6iMJIeTJ060BJY/HQ0hICMrLy3Hs2DGEhITg+++/h42NDQQCAby8vHDo0CEsWrQIHh4ej0zTUVNTg4WFBSwsLLgsgUKhENHR0dw6RXNz88dOQV9fX4+YmBioqqrC3d29WzKVPkxTUxMWFhbIy8uDoaEhevXqheLiYty4cUPhGWPbIpteqq6uDkdHR4UWSX/44kkWSBcWFj5y8aSlpYXo6Gjw+XyMGDGixYtGoVCIadOmwcvLC7/++muXFnXvqIKCgkdGciwsLFBRUYHa2lqUlpZCIpE0u8/du3e7s6lECb744gusWrUK586dQ3BwMF599VWoqqpi+vTpmDZtGkJDQzFt2jRMmDDhkRkTD0+nLy8vh1AoxN27dyEWi7ng0tTU9LH+JmTlm0pKSrj1jt1NTU2NG5nU0NDAgAEDUF5ejvj4eC6QNjMzg4mJSZf//cuCuNLSUri5uSk8+ZiWllarSwdk52pkZITk5GSuHS3dBBWLxQgMDEReXh7Onz+vtBHdllAfSQghT55uX0PJ4/FgaGgIf39/+Pv7o6KiAidPnsTu3buxZcsWDB48GGFhYVBVVYWrq2uLQUPTL1LZFEqhUIi4uDgA4AKujq7Pq66uRnR0NPT19bu0EHZb6urqEBUVBR0dHW4krk+fPtz6qcLCQoVkjG1LQ0MDoqKioKmp2WoQpyitrbuUSCTg8/mwtbVtMalPYWEhZsyYAUdHR+zZs6dHBZOEtIeGhgamTp2KqVOnYufOnbh06RL++OMPzJ8/n7v419DQwIQJE1ocgZL1s4aGhhg8eDAqKyshFAqRmpqKO3fucOuXzczMOjTboLGxEXFxcaivr4e7u7tSp9/Lal3KZpD07t0bjDGUlZVxWVQfN2NsW6RSKRISElBRUdFqEKcora27rK+vB4/Hw6BBg1rs9xobG7Fw4UKkpaXh4sWLj50TgBBCCAGUXDYEAPT19SEQCPDRRx9h1apVGD58OEJCQuDr6wtDQ0P4+vpCIBDA09OzxS/JplMo7e3tUVpaCpFIhMTEREgkEi7gautudVlZGWJiYtC7d28MHDhQaaUlqqurERUVxZ1P03Y0HYmVSqXcFLekpCQ0NjbKXTw9blHq+vp6riSHMoJr2cWTqakpbt++DeDB5yU5ObnZdZclJSWYMWNGjy7KbWlpCaFQKLdNKBRCX18fWlpaUFVVhaqqarP7WFpadmdTSQ+grq4Ob29v/PDDD5g6dSoWLVqEkydP4v3330dVVRWmTp0KPz8/TJw4scWRMR6PB319fejr62PgwIGorq6GUChEZmYmEhISuD7j4URgD6uvr0d0dDTU1dXh7u6utL+vxsZGbi33wzNIZBljjYyMMGjQIG46vexcjYyMuHN93OBPKpVyQW1raxW7iux7z9jYGFKpFEVFRdyslpSUlEfWXUokErz99ttISEjAxYsXlZa4qC3URxJCyJOn25PytKSgoEDuy6C2thZnz55FcHAwjh8/Dk1NTcyYMQMzZ86UW1PUGsYYysvLIRKJIBKJ0NDQAFNTU1hYWMDExETuGLJ1RwMHDoSNjU2XnGN7yApydzSoZYyhsrKSO9eamhou4DI3N2/1QrE5dXV1uH37NgwMDFqt79jVZGs3VVRU4OTkBFVVVS5phSwRSVZWFn788UdIJBKYmpri9OnTHT5fRWhvwol//vkH8fHx3LZ58+ahpKRELuGEh4cHtm3bBuDBhauNjQ2WLFlCCSeeUSKRCKamptxNHYlEguvXryM4OBihoaEoKirC5MmTIRAI4OPj0+4s0LJEYCKRCJWVlVzAZW5uLhcgVVVVITo6GkZGRhg6dKjSZm7IZkxoaGh0ePp9bW0td67l5eXQ19fn+seOZs2WrbGvr6+Hi4uLUvobQH7tZtPptrKlAyKRCCUlJdi4cSPU1dWRmZmJa9euwdraWintpT6SEEKeTj0moGxNQ0MDLly4gCNHjiAsLAw8Hg/Tp0/HzJkzMXbs2HZ9mT8ccNXW1sLExAQWFhaor69Heno6hg8frtSU4yUlJYiNjYWtrS369ev3WMeqrq7mLiiaZoxtT5bA2tpa3Lp1q9kR0u4kkUgQFRUlF0w2JzU1Fe+++y5SU1NRXFyMMWPG4MKFC93SxqqqKqSmpgIAnJ2d8f3332PChAkwNjaGjY0NVq5cidzcXOzbtw/Ag5T4w4cPx7vvvovXX38dFy5cwPvvv4+TJ0/KpcQPCAjAL7/8Ag8PD2zZsgWHDh3C3bt3uzyTJnnySKVS3L59G0eOHEFoaChyc3PxwgsvQCAQYMqUKdDX12/XcR4OuGR9Bp/PR1JSEqytrTFgwACl9Qe1tbWIioqCnp7eY8+YkJWmEolEj2SMlWUPb4ks27VEIoGzs7NS1tgDD77TZLVIW1u7WVdXh0WLFuH69euorKyEnp4eYmJium2EkvpIQgh5+j0RAWVTjY2NuHTpEg4fPoywsDDU19dj+vTpEAgEeP7559s97aiqqgpCoRD379+HWCyGgYEBevfu3ea0r64iGyEdMmQIrKysFHrspnerS0tLoaOjw1086erqyl08VVdX4/bt2zA3N4ednZ1Sg8no6GgADy5CWgomq6qqMGvWLGhoaODkyZMQi8VITk6Gu7t7t7QzPDwcEyZMeGR7QEAAgoKCEBgYiMzMTISHh8s958MPP0RiYiL69OmD1atXIzAwUO7527dvx3fffYeCggI4OTlh69at8PT07OKzIU86qVSKuLg4HDlyBCEhIUhPT8fEiRMhEAgwbdq0R+pUtqS+vh4ikQg5OTmoqqqCpqYm+vTpAwsLiy6pVdiWqqoqREVFcdlsFdkvNc0YW1RUBHV1dW7k0tDQUC5wlU23ZYw9drbrxyELJoVCIdzc3Fr8nUilUnz66ac4fvw4wsPD0adPH1y/fh1jx47ttr6d+khCCHn6PXEBZVMSiQRXrlzhpn1VVlZiypQpEAgE8Pb2bvXCR5ZMoby8HPb29lzSisrKShgaGsLCwkIh62zaIzc3l6vl1tUjpGKxWO7iic/ncxdPampqiIqKgpWVlVLXkMpGAGQXbS0FkzU1NZg9ezakUin++ecfpWSbJKSnkmUflY1cJiYmYvz48fDz88P06dNhYmLS6t94VlYW0tLSYG9vD6lUyo3myW5IWVhYQEdHp8v7CdkyAGtra/Tv379LX08qlaKkpISrAckY4xIY6evrIy4uDqqqqq3OmOhqsnqXBQUFbQaTn3/+OQ4fPozw8HAMGjSom1tKCCHkWfFEB5RNSaVSuTVFhYWF8PHx4dYUNQ02xGIx4uLiIBaL4ezsLDeqWVdXB5FIBKFQyK2zsbCwaNdU0c6Q1ZRzdHSEsbGxwo/fmqYZY0UiERobG7nyHSYmJkpZJyULJqVSaasjALKi3NXV1Th16lS7p/UR8iySBSGy4DImJgZjxoyBQCCAr68vLCwsuEBNNvqVn58PZ2dnuRqFD9+QkpU3as9U0c4oLi5GbGysUta2N12DLxQKUVdXBw0NDQwcOBDm5uZKmerKGENqairy8vLg5ubW4tpPxhi++uor7N27FxcvXoS9vX03t5QQQsiz5KkJKJuSSqWIioripn3l5ORwa4qGDRuG4OBg+Pr6YsSIEa1OWaqvr0dhYSGEQiFKS0uhq6vLXTx1NInDw2QXBrm5uXBxcVFqQFReXo7bt2/D0tISKioqKCwshFgs5u7MKyJjbHtIJBLExsZya5Naes36+nrMnz8fhYWFOHv2LAwNDbu8bYQ8LRhjyMzMRHBwMEJCQnDjxg14eXnB19cXkyZNwu7duzF58mS4u7u3OstDIpGgqKgIQqGQmyoq6x8VUR9XKBQiISEB9vb26NWr12Md63HIsl3z+XwYGBigqKgIVVVVCs0Y2x6MMaSlpSE3N7fNYHLTpk3YuXMnLly4AAcHhy5vGyGEkGfbUxlQNiVL7X7kyBH8/fffyM3NhYODA15//XVMnz4dRkZG7brwEYvFXHDZdNpXc+sQ29MmWWFwFxeXxw5OH0dpaSliYmIwYMAAbgSgtYyxZmZmXZIeXyqVIiYmBo2NjXBxcWkxmGxoaIC/vz/u37+Pc+fOdUkdtR07dnBrcxwdHbFt2zZ4eHg0u+/48eNx6dKlR7ZPnToVJ0+eBAAEBgZi7969co/7+PhwGQsJURbGGHJychASEoKDBw8iJiYG5ubmWLBgAebMmYO+ffu2q2+TSCQoKSmBUChEYWGhXHmjh9chtkdOTg5SUlLg4OCg1PIWsnrAenp6GDZsGHceiswY215paWnIycmBq6tri9P7GWP44Ycf8MMPP+D8+fNwcnJSeDuofySEEPKwpz6glMnLy8OwYcMwf/58mJmZ4ejRo0hISMC4ceO4NUWmpqbtunhqbGzkponKpn3JLp709fXbzBB4584dVFdXw8XFRWmFwYEHWWVjYmIwePBg9OnTp8X9WsoYa2ZmppAEHVKpFLGxsWhoaICLi0uLU8nEYjEWLlyI5ORkXLhwoUsuNA8ePAh/f3/s3LkTnp6e2LJlCw4fPozk5ORm17eWlJSgoaGB+3dxcTEcHR3x22+/cUkkAgMDIRQKsWfPHm4/Pp/PFaknRNmkUik8PDxgYmKCKVOm4Pjx47h8+TJGjBgBgUAAgUDQ7nXVUqkUpaWlXHDJGOP6R2Nj41aDS9noaWZmJpycnJT6N1JbW4vbt29zpVJaOvemGWNLSkqgpaXF9Y9tfR+0V1paGu7fvw83N7dWg8nt27dj06ZNOHPmTJckJqP+kRBCSHOemYASAG7dugU3NzcA/zflVLamKDo6GqNHj+bWFFlaWrb7zrxsTVFhYSHU1dW5hBUPT/tqbGzkpnQ6OTkprXYZABQVFSEuLq7DWWVl2R8LCwtRUlLyWCO1QPuDycbGRrz11luIjY3FhQsXuqyAtaenJ9zd3bF9+3aufdbW1njvvffaVd9sy5YtWLNmDfLz87mRisDAQJSVleHo0aNd0mZCFCE6OhojRozgar0WFRUhLCwMR44cwcWLF2FnZ8cFl+0tJ8QYQ2lpKTeaJ5FIuJE8ExMTucQ2snWe+fn5cHFxgZ6eXleebqtqampw+/ZtmJqadiirbGNjI4qLi7mbjY87UgsA6enpyM7ObjOY3LVrF7788kv8+++/8PLy6vDrtAf1j4QQQprzTAWULWGMISsri1tTFBkZiZEjR8LX1xcCgQB9+vRp95152cVEYWEheDyeXDbEmJgYqKmpwdHRUWnp5oH/K1EydOjQxwrMmiboKC4uhoaGhly6/bbeM1mJg7q6Ori6urYYTEokEixZsgQREREIDw9XeFkVmYaGBmhra+PIkSNyhbcDAgJQVlaGsLCwNo/h4OAALy8v7Nq1i9sWGBiIo0ePQkNDA0ZGRnj++efx9ddfd8l0XUIUTRYUHjt2DCEhITh79iz69esHgUAAPz+/dteEZIyhoqICQqEQIpEIDQ0N3DptY2Nj3Lt3DyUlJXB1dVVKaRIZWekkCwsLDB48uNMjjK1ljH04mG5JRkYGsrKy4Orq2mKAzRhDUFAQVq5ciRMnTuC5557rVHvbQv0jIYSQllBA+RDGGHJzcxESEoLg4GBcu3YNLi4u3J35fv36dWjalyxDoFgshqamJuzs7GBqaqqUDKoAUFBQgISEBDg4OCi0RIlsDVXTYFq25rK5jLGyta21tbWtBpNSqRRLly7FxYsXcfHixS7N9JiXl4fevXvj2rVrcnf4ly9fjkuXLiEyMrLV59+4cQOenp6IjIyUW1N04MABaGtrw9bWFmlpaVi1ahV0dXURERGhtNIDhHRWeXk5Tpw4gZCQEJw6dQq9evWCr68vZs6cCWdn53YHl7JawEKhEDU1NVBVVcWAAQNgZWWllAyqAFBZWYmoqCj07t0bAwYMUFjW2qYZY0UiEerr62Fqasr1kc2dr2zqb1vB5P79+/Hxxx/j2LFjzdZ7VBTqHwkhhLSEAspWMMYgFAoRGhqK4OBgXL58GcOHD+eCy0GDBrV5wSG7262npwctLS0UFhaisbGxxWlfXSkvLw93797FiBEjYGpq2mWvI5VKUVZWxq0rejhjrIqKCreO1NXVtcWpv1KpFMuXL8fJkycRHh4OW1vbLmsz8PgXTG+99RYiIiIQFxfX6n7p6ekYMGAAzp07h4kTJyqk7YQoQ1VVFf79918EBwfjn3/+gbGxMWbMmIGZM2fC3d29zb6tsbERMTExXB9RXFyMqqoqGBsbc1NFu2tpQEVFBaKiomBjY4P+/ft32eswxlBdXc0Fl81ljM3KykJ6ejpcXV1bzADOGMPhw4exZMkSBAcHw8fHp8vaDFD/SAghpGXKm3f5BODxeLC0tMTixYvx9ttvo7i4GGFhYQgODsaGDRswePBgbtpXc2uKZAW5+/Tpw93ttrOzQ0VFBUQiEVJSUuSmfXVleQ5Z1kQnJ6cur3epoqICY2NjGBsbY/DgwVzG2IyMDNy5cwfq6urg8XhwcXFpNZj87LPPcOzYMVy8eLHLg0kAMDU1haqqKoRCodx2oVDY5tTg6upqHDhwAF999VWbr9O/f3+YmpoiNTWVLpjIE01XVxdz5szBnDlzUFNTgzNnziA4OBgvvvgitLW14evrCz8/P3h5eT3StzU0NCAqKgoaGhrw8PCAqqoqBg0ahJqaGohEIu4GmKGhISwsLLq0PEdZWRmio6PRv39/9O3bt0teQ4bH40FXVxe6urro378/amtruQziycnJ4PP5aGhowPDhw1stJ3X06FEsWbIEBw4c6PJgEqD+kRBCSMtohLITGGMoKyvD8ePHERwcjDNnzqBv375ccOng4ICbN2+iqqoKAwcObPECRTbtSzYttra2FsbGxtzFk6KmfWVnZyMtLQ3Ozs5KrdnIGENMTAwqKiqgqamJyspKGBgYcKO1snVTjDF8+eWX+OOPP3Dx4kUMGTKk29ro6ekJDw8PbNu2DcCDwNbGxgZLlixpNelEUFAQ3n77beTm5ra59icnJwc2NjY4evQofH19Fdp+QnqCuro6nD9/HiEhIQgLC4Oqqio3cjlmzBhkZWUhIyMDlpaWcuU4mjuOrH+UleeQ1brU0tJSSFtLS0sRHR2NQYMGwdraWiHH7Kz09HRkZGRAX18fFRUV0NLS4vrHphljT5w4gQULFmD//v2YOXNmt7WP+kdCCCHNoYBSASoqKnDy5EkEBwfj1KlTMDU1RUFBAf73v/8hICCg3eslZdOghEKhwqZ9ZWRkIDMzEy4uLjAwMOjUMRSBMYaEhARUVFTA1dUVfD4f9fX1cun2+Xw+jh07xk3lunjxIoYPH96t7Tx48CACAgLwyy+/wMPDA1u2bMGhQ4dw9+5dWFhYwN/fH71798bGjRvlnjd27Fj07t0bBw4ckNteVVWFL7/8Ei+++CIsLS2RlpaG5cuXo7KyEvHx8V1S05OQnkQsFiM8PBzBwcE4evQo6urqoKKigtmzZ2PTpk3tHnWU9RdCoRClpaXQ1dXlgsvO1n4sLi5GbGws7Ozs0Lt3704dQ1Hu37+P1NRUrq9uLmNseHg4NDU18e233yIoKAhz587t1jZS/0gIIaQ5FFAq2M8//4wPP/wQY8aMwY0bN2BkZMRN+5JN62qP2tpaLhtiRUUFDA0NueCyPRdgjDGkp6fj/v37rSZ16A7NBZMPE4vFSE5OxpIlSxAVFQULCwvMnTsX3333XbdnxN2+fTtXuNvJyQlbt26Fp6cngAeFuvv164egoCBu/+TkZAwZMgRnzpzBCy+8IHes2tpa+Pn5ITo6GmVlZbCyssKkSZOwbt06WFhYdOdpEaJ0ERERmDx5MoYOHYrs7GxUV1dj2rRpEAgEmDhxYrtHHcViMRdcFhcXd6p8UWFhIeLi4jB06FD06tXrcU/tsciWJLi4uDQ7i0SW5O3dd9/FuXPnoKKiglmzZuHrr7/u0kRlzaH+kRBCyMMooFSw/fv3w9raGuPGjUNtbS23pujEiRPQ0tLCjBkz4Ofnh1GjRrU7UJJN+xKJRCgrK4O+vj5XjqS5CzBZjc28vDy4urq2WLusOzDGkJiYiLKyMri5ubV4x5kxhm3btuHbb7/FsWPHUFZWhhs3brRrzQ0h5MkQExODa9eu4Z133oFEIkFERASCg4MRGhqKkpIS+Pj4wM/PD5MmTWr3qGNjYyOKioogFApRVFQETU1NLrhsOk20KaFQiDt37mD48OFKD1xkwaSzszOMjIxa3O/y5cuYM2cOtmzZAnt7exw9ehQrVqzo8jXxhBBCSFsooOwmDQ0NOHfuHIKDg3Hs2DGoqKhg+vTpmDlzJsaOHdvu9ZINDQ1ccFlSUgJdXV25WpeMMSQnJ6OwsBAuLi6dngqmCIwxJCUloaSkBG5ubi2OrDLG8Msvv+Crr77q0qLchJCeSSqV4tatWzhy5AhCQ0ORl5eHF154AX5+fpg8eXKryWmakkgkKC4u5oJLNTU1LriU1cbNz89HUlISHBwcYGZm1sVn1rrc3FwkJye3GUxeu3YNs2bNwrfffou33npLYeVMCCGEEEWggFIJxGIxLl26hCNHjuDo0aMQi8WYPn06BAIBJkyY0O51I7JpXyKRCMXFxdDS0oKKigoaGhrg5uam1OLgHQkm9+zZg1WrVuHkyZMYO3ZsN7eUENKTSKVSxMbGcsFleno6vL29IRAIMG3aNBgYGLS7FrBsDaKsNq6Ojg7Ky8vh6OjYpaWT2kOWxbatzNs3b96EQCDAunXrsGTJEgomCSGE9DgUUCqZRCLBlStXuOCysrISU6dOhUAggLe3d7vXFDU0NCA2NhaVlZVgjIHP53MJK1qa9tVVGGO4e/cuiouL2wwmu6soNyHkySObMn/kyBGEhIQgKSkJEyZMgJ+fH6ZNmwYTE5N2B5cpKSnIycmBqqoqeDyeXC3g9iZOU5T2BpPR0dGYPn06Pv/8cyxbtoyCSUIIIT1S936Lkkeoqqpi3Lhx2LZtG7KysvDPP//A0tISK1asQL9+/eDv74+QkBBUV1e3eAypVIq7d+9CLBZj9OjRGD9+PAYPHoz6+npERUXhv//+w927d1FaWoquvn8gm3JbVFQEV1fXVoPJQ4cO4aOPPkJwcHCXBZM7duxAv379oKmpCU9PT9y4caPFfYOCgsDj8eR+Hm4/Ywxr1qxBr169oKWlBW9vb9y7d69L2k7Is47H42HYsGFYu3YtYmJicOfOHYwbNw6///47BgwYgBkzZuDXX3+FUChstW/Lzs5Gfn4+3NzcMH78eDg6OkJNTQ13797FpUuXEB8fD5FIBIlE0uXnlJ+fj7t378LR0bHVYDI+Ph6+vr5Yvnx5lwWT1D8SQghRBBqh7KGkUilu377NTfvKzc2Ft7c3/Pz8MGXKFG5NkVQqRVxcHOrq6uDi4vJIeRGpVIqSkhJu3aXszryFhQWMjIwUemeeMYaUlBSIRCK4ubm1OroaEhKCt99+GwcPHsS0adMU1oamDh48CH9/f+zcuROenp7YsmULDh8+jOTkZJibmz+yf1BQED744AMkJydz23g8nlzSjm+++QYbN27E3r17YWtri9WrVyM+Ph6JiYldVnSdECKPMYaMjAwEBwcjJCQEN2/exKhRo+Dr6wuBQAArKysuAEtPT0d2djZcXFweWYvJGENFRQXXP9bV1cHU1BQWFhYwNTVVeIbpgoICJCQkwMnJqdV6jImJiZgyZQqWLFmCNWvWdEkwSf0jIYQQhWGdsH37dta3b1/G5/OZh4cHi4yMbHX/Q4cOMTs7O8bn89nw4cPZyZMn5R6XSqVs9erVzNLSkmlqarKJEyeylJSUzjTtqSSRSFh0dDT77LPP2NChQxmfz2dTp05l27ZtY97e3iwoKIiVlZWx6urqVn8qKyvZ/fv32e3bt9k///zDTp48yW7cuMEyMzNZZWVlm89v7aeqqopFRUWxU6dOscLCwlb3PXDgANPW1mahoaFd+r55eHiwd999V+59tLKyYhs3bmx2/z179jADA4MWjyeVSpmlpSX77rvvuG1lZWWMz+ezv//+W2HtJk826h+7l1QqZVlZWeyHH35gY8eOZWpqaszT05OtX7+e+fv7s88++4wVFBS0qw8rKChgcXFx7Ny5c+zYsWPsypUr7N69e+3qX9v6SU9PZ8eOHWNZWVmt7hcVFcUsLCzYypUrmVQq7bL3jfpHQgghitLh4amDBw9i2bJlWLt2LaKiouDo6AgfHx+IRKJm97927RpeeeUVLFy4ENHR0fDz84Ofnx/u3LnD7fPtt99i69at2LlzJyIjI6GjowMfHx/U1dV1PlJ+iqioqMDJyQlff/017ty5g6ioKDg5OWHVqlW4c+cO/vzzT/z5558oKipqddqXiooKjI2NMWTIEDz33HNwcnLipn2Fh4cjPj4eQqGww9O+GGO4d+8ehEIhXF1dW00G9O+//2LhwoUICgqCn59fh16nIxoaGnD79m14e3tz21RUVODt7Y2IiIgWn1dVVYW+ffvC2toaAoEACQkJ3GMZGRkoKCiQO6aBgQE8PT1bPSZ5dlD/2P14PB5sbGywdOlSXLp0CVlZWXj11Vexc+dOHD58GBcvXsSuXbuQmpraav/I4/Ggp6eHAQMGwMvLCyNHjoShoSGys7Nx6dIlREVFIScnBw0NDR1uo6xMyYgRI1pNBpSamorp06fj1Vdfxddff91layapfySEEKJIHQ4ov//+eyxatAgLFizA0KFDsXPnTmhra2P37t3N7v/jjz9i8uTJ+OSTT2Bvb49169bBxcUF27dvB/AgGNmyZQs+//xzCAQCjBgxAvv27UNeXh6OHj36WCf3NOLxeBg6dCgqKirg4eGBU6dOYcKECdizZw8GDBiA6dOnY9euXSgoKGjz4snQ0BB2dnYYM2YMN0U1NTUV4eHhiI2NRX5+PhobG1ttD/v/NS8LCgraDCbPnz+PgIAA7Nq1C3PmzOn0e9AeRUVFkEgkj9SYs7CwQEFBQbPPsbOzw+7duxEWFob9+/dDKpVi1KhRyMnJAQDueR05Jnm2UP+oXDweD1ZWVjA3NwePx0N4eDgCAgJw9epVuLm5wcvLC5s2bUJSUlKb68l1dHRga2uLkSNHYvTo0TAxMUFeXh4uX76MW7duITs7u11BvUgk4oLJ1sqUZGZmYvr06Vx5kK5MFET9IyGEEEXq0DdWZ+5qRkREyO0PAD4+Ptz+dFezc77++mscP34cjo6OWLlyJW7cuIGUlBRMmzYNhw4dgp2dHSZPnowdO3YgJyenzeBSX18fAwcOxKhRo+Dp6QldXV1kZmYiPDwc0dHRyM3NfeTOPGMMaWlpyMvLg6ura6s1Ly9fvox58+Zh+/bteOWVVxT2PiiSl5cX/P394eTkhHHjxiEkJARmZmb45ZdflN008gSg/rHnmD17Nm7evAkPDw+8+eab+Pfff1FQUIBly5YhOjoao0ePhru7O9atW4f4+HhIpdJWj6elpYW+ffvCw8MDY8aMgYWFBUQiEa5cuYIbN24gMzMTNTU1jzxPJBIhPj6+zZqXOTk5mDZtGqZOnYoff/yx27POtgf1j4QQQlrSoW+tztzVLCgoaHV/uqvZOQYGBnJJb3g8HmxtbfHxxx/j6tWrSE9Px+zZs3HixAkMGzYMEydOxI8//ojMzMw2g0tdXV1u2peXlxcMDQ2Rk5ODy5cv4/bt27h//z7q6+uRnp6O3NxcuLm5tRpMXr16FXPnzsX//vc/BAQEdEvqe1NTU6iqqkIoFMptFwqFsLS0bNcx1NXV4ezsjNTUVADgnvc4xyRPL+ofew4VFRW5xDI8Hg/GxsYIDAzE8ePHIRQK8dlnnyE5ORnPP/88nJ2dsXr1akRFRbUZXGpqasLa2hpubm547rnnYGVlhZKSEly7dg3Xr19Heno6qqqqUFhYiPj4eAwfPrzZJDcy+fn5mDp1KiZMmIAdO3Z0SzBJ/SMhhBBF6nm3Qclj4/F4sLa2xgcffIDw8HBkZ2fD398f58+fh6OjI5577jls3rwZ9+7da/e0L09PT4wePRqmpqYoKCjA5cuXkZGRASsrq1YvgG7cuIHZs2djw4YNWLRoUbfVUdPQ0ICrqyvOnz/PbZNKpTh//jy8vLzadQyJRIL4+Hj06tULAGBrawtLS0u5Y1ZUVCAyMrLdxySEKJ+BgQHmz5+PkJAQCIVCrF+/Hjk5OZg6dSocHBywYsUKREZGthlcamhooE+fPnBxccG4ceNgY2ODiooKXL9+HTExMTA1NYW2tnaL/axQKMS0adMwcuRI/Prrr1BVVe2K02223dQ/EkIIUZQOBZSduatpaWnZ6v50V7Nr8Xg89OrVC++88w7Onj2LvLw8LF68GBEREfDw8ICXlxc2btyIxMTENoNL2bQvExMTqKmpoV+/fqioqMDVq1cRGRmJjIwMuWlfUVFRmDlzJtauXYt3332324tyL1u2DL/++iv27t2LpKQkLF68GNXV1ViwYAEAwN/fHytXruT2/+qrr3DmzBmkp6cjKioKr776KrKysvDGG28AePBeLl26FF9//TWOHTuG+Ph4+Pv7w8rKqksTDJEnA/WPTyZdXV3MnTsXBw8eREFBAb7//nuUlJRg1qxZGDJkCD7++GNcuXKlzWRl6urqsLKyQp8+fQAA1tbW4PF4uHnzJq5evYqUlBSUl5dz/WxRURFmzJgBR0dHBAUFdVswKUP9IyGEEEXpUJGtpnc1ZV8QsruaS5YsafY5Xl5eOH/+PJYuXcptO3v2LHfHsuldTScnJwD/d1dz8eLFHT8j0iJZDco33ngDCxcuRFlZGY4dO4bg4GBs3rwZ/fr1g0AggJ+fH4YPH97syGNGRgays7Ph5uYGPT09AA/WjhUWFkIkEiEtLQ2XL19GYWEhjh8/juXLl+PDDz/s9mASAF566SUUFhZizZo1KCgogJOTE06dOsVNH8zOzpY7x9LSUixatAgFBQUwMjKCq6srrl27hqFDh3L7LF++HNXV1XjzzTdRVlaGMWPG4NSpU1RjjVD/+BTQ1tbGzJkzMXPmTNTV1eHcuXMICQnBK6+8AnV1dcyYMQN+fn4YM2YM1NXVH3l+cXEx4uLiMGzYMG7kTiKRoLi4GCKRCFFRUUhJSUFERATu3r2LgQMHYv/+/Qqvd9ke1D8SQghRmI7WGTlw4ADj8/ksKCiIJSYmsjfffJMZGhqygoICxhhjr732GluxYgW3/9WrV5mamhrbvHkzS0pKYmvXrmXq6uosPj6e22fTpk3M0NCQhYWFsbi4OCYQCJiJiQmzsbFpVy23Xbt2sTFjxjBDQ0NmaGjIJk6c+Mj+AQEBDIDcj4+PT0dP/6lVXl7O/vzzTzZr1iymra3NBgwYwD788EN2+fJlrkZlZGQkO3nyZKs13crKyti3337LBg4cyNTU1JidnR07dOiQsk+PkG5B/ePTqaGhgZ0+fZq9+eabzNzcnJmYmLCAgAAWGhrKSktLWXV1NUtISGDHjx9nqamprdYCDgsLY87OzozP5zNzc3O2du1aZZ8eIYQQ8lg6HFAyxti2bduYjY0N09DQYB4eHuz69evcY+PGjWMBAQFy+x86dIgNHjyYaWhosGHDhrVYuNvCwoIr7q2urs52797NEhIS2KJFi5ihoSETCoXNtmfevHlsx44dLDo6miUlJbHAwEBmYGDAcnJyuH0CAgLY5MmTWX5+PvdTUlLSmdN/6lVWVrJDhw6xl156ienp6bG+ffuyKVOmsH79+rH79++3qyj3qlWrWGVlJTt8+LDc54OQpx31j083sVjMLl68yN555x1mZWXFDA0Nma+vL9PX12eXLl1qtX/Mz89nnp6ebNKkSayyspJduHCBBQcHK/uUCCGEkMfCY6yNhXNK4OnpCXd3d64Wm1QqhbW1Nd577z2sWLGizedLJBIYGRlh+/bt8Pf3BwAEBgairKyMard1UG1tLZYsWYL9+/fDxsYGNTU18PX1hZ+fH7y8vOSmaqWmpmLKlCmYN28evvnmmx6Z+p6QJx31jz2HRCLBTz/9hI8++ggDBw5Ebm4ufHx84Ofnh0mTJsnV5a2qqsKsWbOgoaGBEydOtFqzlxBCCHmS9Lgr/s7UcntYTU0NxGIxjI2N5baHh4fD3NwcdnZ2WLx4MYqLixXa9qeRiooKUlNTceXKFcTHx2PXrl1oaGjA/PnzMWjQILz//vu4ePEiUlNTMX36dLz44osUTBLSRah/7FlUVVURHx+PnTt34s6dOzhz5gz69u2LNWvWoF+/fpg/fz4OHz4MoVCIuXPnQkVFBceOHaNgkhBCyFOlx41Q5uXloXfv3rh27ZpcqvHly5fj0qVLiIyMbPMY77zzDk6fPo2EhAQuGcCBAwegra0NW1tbpKWlYdWqVdDV1UVERES3Z9d70jDGHkmqIxaLER4ejuDgYISGhqKoqAhz5szBX3/9RcEkIV2E+seep7n+USqVIiYmBkeOHEFoaChSUlIwYMAA3Lp1C/r6+kpqKSGEENI1nror/02bNuHAgQMIDQ2Vyyz38ssvw9fXFw4ODvDz88OJEydw8+ZNhIeHK6+xT4jmMrSqq6vjhRdewM6dO5Gbm4utW7di7969XRpM7tixA/369YOmpiY8PT1x48aNFvf99ddfMXbsWBgZGcHIyAje3t6P7B8YGAgejyf3M3ny5C5rPyHKRv2j4jXXP6qoqMDFxQUbNmxAYmIiDh8+jLCwsC4NJql/JIQQoiw9LqDsTC03mc2bN2PTpk04c+YMRowY0eq+/fv3h6mpKVJTUx+7zc86NTU1vPvuu+Dz+V32GgcPHsSyZcuwdu1aREVFwdHRET4+PhCJRM3uHx4ejldeeQUXL15EREQErK2tMWnSJOTm5srtN3nyZOTn53M/f//9d6fbuG/fPpiYmKC+vl5uu5+fH1577bVOH5cQGeofnzw8Hg+zZs2Cvb19l70G9Y+EEEKUSpkZgVri4eHBlixZwv1bIpGw3r17s40bN7b4nG+++Ybp6+uziIiIdr3G/fv3GY/HY2FhYY/dXtL1PDw82Lvvvsv9WyKRMCsrq1Y/E001NjYyPT09tnfvXm5bQEAAEwgECmtjTU0NMzAwkCuTIhQKmZqaGrtw4YLCXoc826h/JA+j/pEQQogy9bgRSgBYtmwZfv31V+zduxdJSUlYvHgxqqursWDBAgCAv78/Vq5cye3/zTffYPXq1di9ezf69euHgoICFBQUoKqqCsCD7HqffPIJrl+/jszMTJw/fx4CgQADBw6Ej4+PUs6RtN+TkohES0sL8+bNw549e7htsuy448eP7/RxCWmK+kfSFPWPhBBClE7ZEW1LOlLLrW/fvo8U5QbAFYyuqalhkyZNYmZmZkxdXZ317duXLVq0iG3YsIH17du3XcXB9+zZ88jx+Xy+3D6yenGWlpZMU1OTTZw4kaWkpCj0fXkW5ebmMgDs2rVrcts/+eQT5uHh0a5jLF68mPXv35/V1tZy2/7++2+uWHxoaCizt7dn7u7urLGxsdNtjYqKYqqqqlyNPwcHB/bVV191+niENIf6RyJD/SMhhBBl67EBZVc7cOAA09DQaHdx8D179jB9fX25wt8FBQVy+2zatIkZGBiwo0ePstjYWObr68tsbW3lvqRJxz3uBdPGjRuZkZERi42NbXW/tLQ0BoCdO3fusdrr4uLCNmzYwG7dusVUVFRYdnb2Yx2PkO5G/eOTg/pHQgghytYjp7x2h++//x6LFi3CggULMHToUOzcuRPa2trYvXt3i8/h8XiwtLTkfiwsLLjHGGPYsmULPv/8cwgEAowYMQL79u1DXl4eFQt/TE9aIpI33ngDQUFB2LNnD7y9vWFtbf1YxyOku1H/+OSg/pEQQoiyPZMBZWfXnFRVVaFv376wtraGQCBAQkIC91hGRgYKCgrkjmlgYABPT892r2MhzdPQ0ICrqyvOnz/PbZNKpTh//rxcLb6Hffvtt1i3bh1OnToFNze3Nl8nJycHxcXF6NWr12O1d968ecjJycGvv/6K119//bGORUh3o/7xyUL9IyGEEGV7JgPKoqIiSCQSuTvoAGBhYYGCgoJmn2NnZ4fdu3cjLCwM+/fvh1QqxahRo5CTkwMA3PM6ckzSfk9SIhIDAwO8+OKL0NXVhZ+f32Mdi5DuRv3jk4f6R0IIIcqkpuwGPCm8vLzk7vaOGjUK9vb2+OWXX7Bu3ToltuzZ8NJLL6GwsBBr1qxBQUEBnJyccOrUKe4CNTs7Gyoq/3d/5Oeff0ZDQwNmz54td5y1a9fiiy++gKqqKuLi4rB3716UlZXBysoKkyZNwrp16xRSTzM3Nxfz58/v0tqchPQU1D8qF/WPhBBClOmZDCgfZ82JjLq6Opydnbn1JLLnCYVCuSlBQqEQTk5Oimn4M27JkiVYsmRJs4+Fh4fL/TszM7PVY2lpaeH06dMKatn/KS0tRXh4OMLDw/HTTz8p/PiEdDXqH59M1D8SQghRlmdyymtn15w0JZFIEB8fz10c2drawtLSUu6YFRUViIyMbPcxyZPP2dkZgYGB+Oabb2BnZ6fs5hDSYdQ/kq5C/SMhhDydnskRSuDBmpOAgAC4ubnBw8MDW7ZseWTNSe/evbFx40YAwFdffYWRI0di4MCBKCsrw3fffYesrCy88cYbAB5kOFy6dCm+/vprDBo0CLa2tli9ejWsrKxoncgzpK07/4Q8Cah/JF2B+kdCCHk6PZMjlMCDNSebN2/GmjVr4OTkhJiYmEfWnOTn53P7l5aWYtGiRbC3t8fUqVNRUVGBa9euYejQodw+y5cvx3vvvYc333wT7u7uqKqqwqlTp/D777+jX79+0NTUhKenJ27cuNFiu8aPHw8ej/fIz7Rp07h9AgMDH3l88uTJXfAuEUKeRd3ZP2pqamLHjh3URxJCCCFPKB5jjCm7EU+zgwcPwt/fHzt37oSnpye2bNmCw4cPIzk5Gebm5o/sX1JSgoaGBu7fxcXFcHR0xG+//YbAwEAADy6WhEIh9uzZw+3H5/NhZGTU5edDCCGKRH0kIYQQ8mR7Zkcou0tHC4QbGxvLFQc/e/YstLW1MWfOHLn9+Hy+3H5PyoVSR0YiAODw4cMYMmQINDU14eDggH/++UfuccYY1qxZg169ekFLSwve3t64d+9eV54CIUSBqI+UR30kIYSQJw0FlF2oswXCm/r999/x8ssvQ0dHR257eHg4zM3NYWdnh8WLF6O4uFihbe8KBw8exLJly7B27VpERUXB0dERPj4+EIlEze5/7do1vPLKK1i4cCGio6Ph5+cHPz8/3Llzh9vn22+/xdatW7Fz505ERkZCR0cHPj4+qKur667TIoR0EvWR8qiPJIQQ8kRipMvk5uYyAOzatWty2z/55BPm4eHR5vMjIyMZABYZGSm3/e+//2ZhYWEsLi6OhYaGMnt7e+bu7s4aGxsV2n5F8/DwYO+++y73b4lEwqysrNjGjRub3X/u3Lls2rRpcts8PT3ZW2+9xRhjTCqVMktLS/bdd99xj5eVlTE+n8/+/vvvLjgDQogiUR8pj/pIQgghTyIaoezBfv/9dzg4OMDDw0Nu+8svvwxfX184ODjAz88PJ06cwM2bNx+pNdaTdGYkIiIiQm5/APDx8eH2z8jIQEFBgdw+BgYG8PT0bPfoBiHkyUV9JPWRhBBClI8Cyi70OAXCq6urceDAASxcuLDN1+nfvz9MTU25IuI9UVFRESQSCZclUsbCwgIFBQXNPqegoKDV/WX/7cgxCSE9B/WR/4f6SEIIIU8qCii70OMUCD98+DDq6+vx6quvtvk6OTk5KC4u5oqIE0LIk4D6SEIIIeTJRwFlF1u2bBl+/fVX7N27F0lJSVi8ePEjBcJXrlz5yPN+//13+Pn5wcTERG57VVUVPvnkE1y/fh2ZmZk4f/48BAIBBg4cCB8fn245p87ozEiEpaVlq/vL/tuZ0Q1CSM9AfeQD1EcSQgh5UlFA2cU6WiAcAJKTk3HlypVmp3KpqqoiLi4Ovr6+GDx4MBYuXAhXV1f8999/iIyMxIwZM2BlZQUej4ejR4+22b7w8HC4uLiAz+dj4MCBCAoKemSfjqaxb05nRiK8vLzk9geAs2fPcvvb2trC0tJSbp+KigpERka2ObpBCOkZuquP/PbbbzF79uwe2T8C1EcSQgh5gik7KxBRnH/++Yd99tlnLCQkhAFgoaGhre6fnp7OtLW12bJly1hiYiLbtm0bU1VVZadOneL2OXDgANPQ0GC7d+9mCQkJbNGiRczQ0JAJhcIOt+/AgQOMz+ezoKAglpiYyN58801maGjICgoKGGOMvfbaa2zFihXc/levXmVqamps8+bNLCkpia1du5apq6uz+Ph4bp9NmzYxQ0NDLqOjQCBgtra2rLa2tsPtI4Q8vXp6/yg7HvWRhBBCnjQUUD6l2nPBtHz5cjZs2DC5bS+99BLz8fHh/t3RNPZt2bZtG7OxsWEaGhrMw8ODXb9+nXts3LhxLCAgQG7/Q4cOscGDBzMNDQ02bNgwdvLkSbnHpVIpW716NbOwsGB8Pp9NnDiRJScnd6pthJBnQ0/tHxmjPpIQQsiTh8cYY8odIyVdgcfjITQ0FH5+fi3u89xzz8HFxQVbtmzhtu3ZswdLly5FeXk5GhoaoK2tjSNHjsgdJyAgAGVlZQgLC+u6EyCEkC5C/SMhhBCiOM/EGsrCwkJYWlpiw4YN3LZr165BQ0PjkfUnz5KWUs5XVFSgtra2U2nsCSFPFuofm0f9IyGEENI+aspuQHcwMzPD7t274efnh0mTJsHOzg6vvfYalixZgokTJyq7eYQQojTUPxJCCCHkcTwTASUATJ06FYsWLcL8+fPh5uYGHR0dbNy4UdnNUqqWUs7r6+tDS0sLqqqqnS46Tgh5clD/+CjqHwkhhJD2eSamvMps3rwZjY2NOHz4MP7880/w+XxlN0mp2ko5/zhFxwkhTxbqH+VR/0gIIYS0zzMVUKalpSEvLw9SqRSZmZnKbo7CVVVVISYmBjExMQCAjIwMxMTEIDs7GwCwcuVK+Pv7c/u//fbbSE9Px/Lly3H37l389NNPOHToED788ENun7aKjhNCng7UP1L/SAghhHSKstPMdpf6+nrm6OjIAgIC2IYNG5i5uXmna4X1VBcvXmQAHvmRpZkPCAhg48aNe+Q5Tk5OTENDg/Xv35/t2bPnkeO2lsaeEPLko/6R+kdCCCGks56ZsiGffPIJjhw5gtjYWOjq6mLcuHEwMDDAiRMnlN00QghRKuofCSGEENJZz8SU1/DwcGzZsgV//PEH9PX1oaKigj/++AP//fcffv75Z2U3jxBClIb6R0IIIYQ8jmdmhJIQQgghhBBCiGI9EyOUhBBCCCGEEEIUjwJKQgghhBBCCCGdQgElIYQQQgghhJBOoYCSEEIIIYQQQkinUEBJCCGEEEIIIaRTKKAkhBBCCCGEENIpFFASQgghhBBCCOkUCigJIYQQQgghhHQKBZSEEEIIIYQQQjqFAkpCCCGEEEIIIZ1CASUhhBBCCCGEkE5RU3YDCCHtI5FIIBaLld0MQgghPYy6ujpUVVWV3QxCyDOKAkpCejjGGAoKClBWVqbsphBCCOmhDA0NYWlpCR6Pp+ymEEKeMRRQEtLDyYJJc3NzaGtr08UCIYQQDmMMNTU1EIlEAIBevXopuUWEkGcNBZSE9GASiYQLJk1MTJTdHEIIIT2QlpYWAEAkEsHc3JymvxJCuhUl5SGkB5OtmdTW1lZySwghhPRksu8JWmtPCOluFFAS8gSgaa6EEEJaQ98ThBBloYCSEEIIIYQQQkinUEBJCHlqBAUFwdDQUNnNIIQ8BcLDw8Hj8SjDNiGEtIGS8hBCFC4wMBB79+4F8KA+mo2NDfz9/bFq1SqoqXVdt/PSSy9h6tSpXXb89mh67mpqajA2NsaIESPwyiuvIDAwECoq7b+PFxQUhKVLl9IF7WOS/U42btyIFStWcNuPHj2KmTNngjHWbW1pOi1RW1sbVlZWGD16NN577z24urp26Fjjx4+Hk5MTtmzZouBWKoYk9otufT1Vx/a/XlvTQ9euXYvx48c/XoMIIeQZQSOUhJAuMXnyZOTn5+PevXv46KOP8MUXX+C7775rdt+GhgaFvKaWlhbMzc0VcqzHITv3zMxM/Pvvv5gwYQI++OADTJ8+HY2Njcpu3jNJU1MT33zzDUpLS5XdFOzZswf5+flISEjAjh07UFVVBU9PT+zbt0/ZTXtm5Ofncz9btmyBvr6+3LaPP/5YaW1TVH9ICCHdhQJKQkiX4PP5sLS0RN++fbF48WJ4e3vj2LFjAB6MGPn5+WH9+vWwsrKCnZ0dAOD+/fuYO3cuDA0NYWxsDIFAgMzMTADAmTNnoKmp+cho3QcffIDnn38eQPNTXn/++WcMGDAAGhoasLOzwx9//ME9lpmZCR6Ph5iYGG5bWVkZeDwewsPDAQClpaWYP38+zMzMoKWlhUGDBmHPnj3tOvfevXvDxcUFq1atQlhYGP79918EBQVx+33//fdwcHCAjo4OrK2t8c4776CqqgrAg+l2CxYsQHl5OXg8Hng8Hr744gsAwB9//AE3Nzfo6enB0tIS8+bN42rQkeZ5e3vD0tISGzdubHW/K1euYOzYsdDS0oK1tTXef/99VFdXAwC2b9+O4cOHc/sePXoUPB4PO3fulHudzz//vNXXkBWg79evHyZNmoQjR45g/vz5WLJkCRfwFhcX45VXXkHv3r2hra0NBwcH/P3339wxAgMDcenSJfz444/c5yMzMxMSiQQLFy6Era0ttLS0YGdnhx9//LHD79fTztLSkvsxMDAAj8eT26arq8vte/v2bbi5uUFbWxujRo1CcnKy3LHCwsLg4uICTU1N9O/fH19++aXcjaPs7GwIBALo6upCX18fc+fOhVAo5B7/4osv4OTkhN9++w22trbQ1NTEvn37YGJigvr6ernX8vPzw2uvvdZF7wohhHQOBZSEPCMy7ohw/WQKMu4oJ/DQ0tKSu/N+/vx5JCcn4+zZszhx4gTEYjF8fHygp6eH//77D1evXoWuri4mT56MhoYGTJw4EYaGhggODuaOIZFIcPDgQcyfP7/Z1wwNDcUHH3yAjz76CHfu3MFbb72FBQsW4OLFi+1u9+rVq5GYmIh///0XSUlJ+Pnnn2Fqatrh83/++efh6OiIkJAQbpuKigq2bt2KhIQE7N27FxcuXMDy5csBAKNGjXpk5EQ2aiIWi7Fu3TrExsbi6NGjyMzMRGBgYIfbpExSJkV0VTSkTNotr6eqqooNGzZg27ZtyMnJaXaftLQ0TJ48GS+++CLi4uJw8OBBXLlyBUuWLAEAjBs3DomJiSgsLAQAXLp0CaamptzNB7FYjIiIiE5Nlfzwww9RWVmJs2fPAgDq6urg6uqKkydP4s6dO3jzzTfx2muv4caNGwCAH3/8EV5eXli0aBH3+bC2toZUKkWfPn1w+PBhJCYmYs2aNVi1ahUOHTrU4TaRBz777DP873//w61bt6CmpobXX3+de+y///6Dv78/PvjgAyQmJuKXX35BUFAQ1q9fDwCQSqUQCAQoKSnBpUuXcPbsWaSnp+Oll16Se43U1FQEBwcjJCQEMTExmDNnDiQSCXcTDnhQY/LkyZNyr08IIT0BraEk5BkQsjUSp/fFcv/28XfErPc9u+W1GWM4f/48Tp8+jffee4/brqOjg99++w0aGhoAgP3790MqleK3337j1jft2bMHhoaGCA8Px6RJk/Dyyy/jr7/+wsKFCwE8CErLysrw4osvNvvamzdvRmBgIN555x0AwLJly3D9+nVs3rwZEyZMaFf7s7Oz4ezsDDc3NwBAv379OvU+AMCQIUMQFxfH/Xvp0qXc//fr1w9ff/013n77bfz000/Q0NCQGzlpqukFZf/+/bF161a4u7ujqqpKbmSlJztRcgJfZn2JL/p+gRkmM7rlNWfOnAknJyesXbsWv//++yOPb9y4EfPnz+d+L4MGDcLWrVsxbtw4/Pzzzxg+fDiMjY1x6dIlzJ49G+Hh4fjoo4+4EcAbN25ALBZj1KhRHW7bkCFDAIAbke/du7fctMv33nsPp0+fxqFDh+Dh4QEDAwNoaGhAW1tb7vOhqqqKL7/8kvu3ra0tIiIicOjQIcydO7fD7SLA+vXrMW7cOADAihUrMG3aNNTV1UFTUxNffvklVqxYgYCAAAAP/h7XrVuH5cuXY+3atTh//jzi4+ORkZEBa2trAMC+ffswbNgw3Lx5E+7u7gAeTHPdt28fzMzMuNedN28e9uzZgzlz5gB40Efa2NjQ2k5CSI9DI5SEPOUy7ojkgkkAOL0vtstHKk+cOAFdXV1oampiypQpeOmll7gpmwDg4ODABZMAEBsbi9TUVOjp6UFXVxe6urowNjZGXV0d0tLSAADz589HeHg48vLyAAB//vknpk2b1mJm16SkJIwePVpu2+jRo5GUlNTu81i8eDEOHDgAJycnLF++HNeuXWv3cx/GGJNLBnLu3DlMnDgRvXv3hp6eHl577TUUFxejpqam1ePcvn0bM2bMgI2NDfT09LiL3ezs7E63rTs1skbsyt8FAPgl/xc0su5bV/rNN99g7969zX4GYmNjERQUxH3+dHV14ePjA6lUioyMDPB4PDz33HMIDw9HWVkZEhMT8c4776C+vh53797FpUuX4O7uzhWY7whZYiDZ50MikWDdunVwcHCAsbExdHV1cfr06Xb9jnfs2AFXV1eYmZlBV1cXu3btemI+Gz3RiBEjuP/v1asXAHBTzGNjY/HVV1/JfWZko8Y1NTVISkqCtbU1F0wCwNChQ2FoaCj3Gezbt69cMAkAixYtwpkzZ5CbmwvgwZT+wMBAqjdJCOlxKKAk5CknzCrr0HZFmTBhAmJiYnDv3j3U1tZi79690NHR4R5v+v8AUFVVBVdXV8TExMj9pKSkYN68eQAAd3d3DBgwAAcOHEBtbS1CQ0NbnO7aHrKMq02zfIrFYrl9pkyZgqysLHz44YfIy8vDxIkTO52wIykpCba2tgAejERNnz4dI0aMQHBwMG7fvo0dO3YAaD0pR3V1NXx8fKCvr48///wTN2/eRGhoaJvP60n+KfkH+Q35AID8hnz8W/Jvt732c889Bx8fH6xcufKRx6qqqvDWW2/Jff5iY2Nx7949DBgwAMCDzKrh4eH477//4OzsDH19fS7IvHTpEhfcd5QsuJB9Pr777jv8+OOP+PTTT3Hx4kXExMTAx8enzd/xgQMH8PHHH2PhwoU4c+YMYmJisGDBgifms9ETqaurc/8vC+ak0gdTtauqqvDll1/KfWbi4+Nx7949aGpqtvs1Hu4PAcDZ2RmOjo7Yt28fbt++jYSEhCduajsh5NlAU14JecpZ9DXs0HZF0dHRwcCBA9u9v4uLCw4ePAhzc3Po6+u3uN/8+fPx559/ok+fPlBRUcG0adNa3Nfe3h5Xr17lpqMBwNWrVzF06FAA4EYE8vPz4ezsDAByCXpkzMzMEBAQgICAAIwdOxaffPIJNm/e3O5zA4ALFy4gPj4eH374IYAHo4xSqRT/+9//uMD24XVuGhoakEgkctvu3r2L4uJibNq0iRv1uHXrVofaokyy0UkeeGBg4IGHX/J/wRTjKVDjdc9X0qZNm+Dk5MQlg5JxcXFBYmJiq5/bcePGYenSpTh8+DA39XD8+PE4d+4crl69io8++qhTbZKtl/X29gbw4HMqEAjw6quvAngQwKSkpHCfXaD5z8fVq1cxatQobpo3AG6Enyiei4sLkpOTW/zM2Nvb4/79+7h//z7395qYmIiysjK532VL3njjDWzZsgW5ubnw9vaWG+kkhJCegkYoCXnK2Q43h4+/o9w2nwBH2A5XfnmNpubPnw9TU1MIBAL8999/yMjIQHh4ON5//325JCrz589HVFQU1q9fj9mzZ4PP57d4zE8++QRBQUH4+eefce/ePXz//fcICQnhRhi1tLQwcuRIbNq0CUlJSbh06dIjGTrXrFmDsLAwpKamIiEhASdOnIC9vX2r51JfX4+CggLk5uYiKioKGzZsgEAgwPTp0+Hv7w8AGDhwIMRiMbZt24b09HT88ccfctlCgQfrKquqqnD+/HkUFRWhpqYGNjY20NDQ4J537NgxrFu3rkPvtTLdrLyJ/IZ8MDwYFWZgyG/Ix63K7guKHRwcMH/+fGzdulVu+6effopr165hyZIl3Oh6WFgYl5QHeDD90cjICH/99ZdcQHn06FHU19c/MsW6OWVlZSgoKEBWVhbOnj2L2bNn46+//sLPP//MTd8eNGgQzp49i2vXriEpKQlvvfWWXGZQ4MHnIzIyEpmZmSgqKoJUKsWgQYNw69YtnD59GikpKVi9ejVu3rz5eG8YadGaNWuwb98+fPnll0hISEBSUhIOHDjA9SPe3t7c5y0qKgo3btyAv78/xo0bx63Lbs28efOQk5ODX3/9lZLxEEJ6LkYI6bFqa2tZYmIiq62tfexjpccLWcSJZJYeL1RAy1oXEBDABAJBhx/Pz89n/v7+zNTUlPH5fNa/f3+2aNEiVl5eLrefh4cHA8AuXLggt33Pnj3MwMBAbttPP/3E+vfvz9TV1dngwYPZvn375B5PTExkXl5eTEtLizk5ObEzZ84wAOzixYuMMcbWrVvH7O3tmZaWFjM2NmYCgYClp6e3em4AGACmpqbGzMzMmLe3N9u9ezeTSCRy+37//fesV69eTEtLi/n4+LB9+/YxAKy0tJTb5+2332YmJiYMAFu7di1jjLG//vqL9evXj/H5fObl5cWOHTvGALDo6OgW29VT1DTWsONFx1lIYQj3c7zoOKtprOmy12zu85aRkcE0NDTYw1+DN27cYC+88ALT1dVlOjo6bMSIEWz9+vVy+wgEAqampsYqKysZY4xJJBJmZGTERo4c2WZbZJ8NAExTU5MNGDCABQQEsNu3b8vtV1xczAQCAdPV1WXm5ubs888/Z/7+/nLnkZyczEaOHMm0tLQYAJaRkcHq6upYYGAgMzAwYIaGhmzx4sVsxYoVzNHRsf1v2DOmuX6DMcYuXrz4yN9jdHQ0917LnDp1io0aNYppaWkxfX195uHhwXbt2sU9npWVxXx9fZmOjg7T09Njc+bMYQUFBdzja9eubfX389prrzFjY2NWV1fX6nko8vuCEEI6gsdYk8VDhJAepa6uDhkZGVxtMkIIIc+WiRMnYtiwYY+MqD+Mvi8IIcpCaygJIYQQQnqY0tJShIeHIzw8HD/99JOym0MIIS2igJIQQgghpIdxdnZGaWkpvvnmm0cSSBFCSE9CASUhhBBCSA+TmZmp7CYQQki7UJZXQgghhBBCCCGdQgElIU8Ayp1FCCGkNfQ9QQhRFgooCenB1NXVAQA1NTVKbgkhhJCeTPY9IfveIISQ7kJrKAnpwVRVVWFoaAiRSAQA0NbWBo/HU3KrCCGE9BSMMdTU1EAkEsHQ0BCqqqrKbhIh5BlDdSgJ6eEYYygoKEBZWZmym0IIIaSHMjQ0hKWlJd10JIR0OwooCXlCSCQSiMViZTeDEEJID6Ourk4jk4QQpaGAkhBCCCGEEEJIp1BSHkIIIYQQQgghnUIBJSGEEEIIIYSQTqGAkhBCCCGEEEJIp1BASQghhBBCCCGkUyigJIQQQgghhBDSKRRQEkIIIYQQQgjpFAooCSGEEEIIIYR0yv8DqgwLf9dAbWsAAAAASUVORK5CYII=\n" - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "# Change wrap to 3, Adjust dimensions, adjust scatter plot and line colors, shapes, and sizes\n", - "fig = plot_results_panel_3d(cycle_mlr,\n", - " wrap=3,\n", - " subplot_kw=dict(figsize=(12,6)), # Panel configurations\n", - " scatter_previous_kw=dict(color='rebeccapurple', marker='o', s=10), # Previous data point\n", - " scatter_current_kw=dict(color='limegreen', marker='^', s=10, alpha=1), # Current cycle data\n", - " surface_kw=dict(color='orange'), # Theory surface\n", - " );\n" - ], - "metadata": { - "collapsed": false - } - }, - { - "cell_type": "markdown", - "source": [ - "### Change the Viewing Angle\n", - "* You can change the viewing angle by supplying the `view` keyword with a tuple of elevation and azimuth degrees.\n", - "* Azimuth is in reference to the XY plane.\n", - "* Note that the default viewing angle is not a (0,0) elevation, azimuth. In the case above it is (30,-60).\n", - "
\n", - "\n", - "
\n" - ], - "metadata": { - "collapsed": false - } - }, - { - "cell_type": "code", - "execution_count": 14, - "outputs": [ - { - "data": { - "text/plain": "
", - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA3sAAAIzCAYAAAC5sQBWAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8o6BhiAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOy9eZhdV3Wn/e59zh1qrlJpnmXJkufZxpYb23SMwYEQaJrukA6OSSCTITj0Awl84ctggtuBfDTpdEMIBD8h7YSQgElMAjGDMUZCHmVbtmXZmuex5qo7nLP398fe+5xTsuSxqiSV1stjVHWnc+6te/fda63f+i1lrbUIgiAIgiAIgiAI0wp9ok9AEARBEARBEARBmHgk2BMEQRAEQRAEQZiGSLAnCIIgCIIgCIIwDZFgTxAEQRAEQRAEYRoiwZ4gCIIgCIIgCMI0RII9QRAEQRAEQRCEaYgEe4IgCIIgCIIgCNMQCfYEQRAEQRAEQRCmIRLsCYIgCIIgCIIgTEMk2JtmLF26lJtvvvlEn4YgCMJJiayRgiAIx0bWx+mJBHuTyObNm/n1X/91zjjjDKrVKp2dnVx99dV87nOfY2xs7ESf3svmmWee4c1vfjPt7e3MmDGD97znPRw8ePBEn5YgCKc402GNfPDBB/mt3/otLr30UkqlEkqpE31KgiBMA0719dEYw5133snb3vY2Fi1aRFtbG+eddx6f/OQnqdVqJ/r0TiviE30C05Vvf/vbvOtd76JSqXDTTTdx3nnn0Wg0eOCBB/jIRz7CU089xRe/+MUTfZovya5du7jmmmvo6uriU5/6FMPDw3zmM5/hySef5MEHH6RcLp/oUxQE4RRkuqyR//qv/8qXvvQlLrjgAs444ww2bdp0ok9JEIRTnOmwPo6OjvLe976XK6+8kt/4jd9g9uzZrF27lj/4gz/g+9//Pj/4wQ8kOTZFSLA3CWzdupVf+IVfYMmSJfzgBz9g3rx52XW33HILzz//PN/+9rdP4Bm+fD71qU8xMjLCI488wuLFiwG44ooreOMb38idd97Jr/3ar53gMxQE4VRjOq2Rv/mbv8nv/u7v0tLSwgc+8AEJ9gRBeE1Ml/WxXC7zk5/8hNWrV2eXvf/972fp0qVZwHf99defwDM8fRAZ5yTwp3/6pwwPD/PlL3953Ic0sGLFCj70oQ8BcO2113LhhRce83FWrVrFm970pux3Ywyf+9znOP/886lWq8yaNYs3v/nNPPzwwy96Pv39/dx6660sWrSISqXCihUruOOOOzDGvORz+ad/+ife+ta3ZoEewPXXX8/KlSv5h3/4h5e8vyAIwtFMpzVyzpw5tLS0vOTtBEEQXg7TZX0sl8vjAr3AO97xDsC1CAlTgwR7k8C//Mu/cMYZZxzzTX4073nPe3jiiSfYsGHDuMsfeughNm3axC/90i9ll/3qr/5q9oG74447+L3f+z2q1So//elPj/v4o6OjXHvttfzt3/4tN910E3/+53/O1Vdfzcc+9jE+/OEPv+i57d69mwMHDnDZZZe94LorrriCxx577CWfnyAIwtFMlzVSEARhopnu6+O+ffsAmDlz5qu6v/AqsMKEMjAwYAH78z//8y/r9v39/bZardrf/d3fHXf5b//2b9u2tjY7PDxsrbX2Bz/4gQXsb//2b7/gMYwx2c9Lliyxv/zLv5z9ftttt9m2tja7adOmcff5vd/7PRtFkd2xY8dxz+2hhx6ygP2bv/mbF1z3kY98xAK2Vqu9rOcpCIJg7fRaI4/mlltusfK1KgjCq2U6r4+B66+/3nZ2dtq+vr5XfF/h1SGVvQlmcHAQgI6Ojpd1+66uLn7+53+ev/u7v8NaC0Capnzta1/j7W9/O21tbYCTUyql+IM/+IMXPMaLNbh+/etf5/Wvfz09PT0cOnQo++/6668nTVPuv//+4943uD1VKpUXXFetVsfdRhAE4eUwndZIQRCEiWS6r4+f+tSn+N73vsf/+B//g+7u7ld0X+HVIwYtE0xnZycAQ0NDL/s+N910E1/72tf48Y9/zDXXXMP3vvc99u/fz3ve857sNps3b2b+/PnMmDHjFZ3Pc889xxNPPMGsWbOOef2BAweOe9/Qh1Kv119wXbDNlV4VQRBeCdNpjRQEQZhIpvP6+LWvfY3f//3f51d/9Vf5zd/8zVd0HsJrQ4K9Caazs5P58+e/QD/9YrzpTW9izpw5/O3f/i3XXHMNf/u3f8vcuXMnxKXIGMMb3/hGPvrRjx7z+pUrVx73vqExeO/evS+4bu/evcyYMeOYVT9BEITjMZ3WSEEQhIlkuq6P9957LzfddBNvectb+MIXvvCaz0t4ZUiwNwm89a1v5Ytf/CJr167lqquuesnbR1HEL/7iL3LnnXdyxx13cPfdd/P+97+fKIqy2yxfvpzvfve7HDly5BVlZpYvX87w8PCr+tAvWLCAWbNmHdOp6cEHH+Siiy56xY8pCIIwXdZIQRCEiWa6rY/r1q3jHe94B5dddhn/8A//QBxL6DHVSM/eJPDRj36UtrY23ve+97F///4XXL9582Y+97nPjbvsPe95D319ffz6r/86w8PD4xyUAN75zndireWP/uiPXvB4Qad9LP7Lf/kvrF27lu9+97svuK6/v58kSV70ubzzne/knnvuYefOndll3//+99m0aRPvete7XvS+giAIx2I6rZGCIAgTyXRaH5955hne8pa3sHTpUu655x5p/TlBKPtif2XhVfPP//zP/Nf/+l9paWnhpptu4rzzzqPRaLBmzRq+/vWvc/PNN/OXf/mX4+5z/vnns2HDBs4++2yefvrpFzzmTTfdxFe/+lVuvPFG3vzmN2OM4cc//jFveMMb+MAHPgDA0qVLue6667jzzjsBZ5v7+te/nieeeIKbb76ZSy+9lJGREZ588kn+8R//kW3btr2o/e3OnTu5+OKL6e7u5kMf+hDDw8N8+tOfZuHChTz00EMi4xQE4VUxXdbI7du389WvfhWAe+65h3Xr1nHbbbcBsGTJknF9M4IgCC+H6bA+Dg0Nce6557J7924+9alPsWDBgnHXL1++/GVVLoUJ4AS5gJ4WbNq0yb7//e+3S5cuteVy2XZ0dNirr77a/q//9b+OObLgT//0Ty1gP/WpTx3z8ZIksZ/+9KftWWedZcvlsp01a5a98cYb7SOPPJLd5mjbXGutHRoash/72MfsihUrbLlctjNnzrSrV6+2n/nMZ2yj0XjJ57FhwwZ7ww032NbWVtvd3W3/23/7b3bfvn2v7MUQBEE4iumwRv7whz+0wDH/u/baa1/xayIIgmDtqb8+bt269bhrI/CC4wiTh1T2TiI+97nP8Tu/8zts27aNxYsXn+jTEQRBOKmQNVIQBOHYyPooHA8J9k4SrLVceOGF9Pb28sMf/vBEn44gCMJJhayRgiAIx0bWR+HFEEucE8zIyAj//M//zA9/+EOefPJJvvWtb53oUxIEQThpkDVSEATh2Mj6KLwcpLJ3gtm2bRvLli2ju7ub3/qt3+JP/uRPTvQpCYIgnDTIGikIgnBsZH0UXg4S7AmCIAiCIAiCIExDZM6eIAiCIAiCIAjCNESCPUEQBEEQBEEQhGmIBHuCIAiCIAiCIAjTEAn2BEEQBEEQBEEQpiES7AmCIAiCIAiCIExDJNgTBEEQBEEQBEGYhkiwJwiCIAiCIAiCMA2RYE8QBEEQBEEQBGEaIsGeIAiCIAiCIAjCNESCPUEQBEEQBEEQhGmIBHuCIAiCIAiCIAjTEAn2BEEQBEEQBEEQpiES7AmCIAiCIAiCIExDJNgTBEEQBEEQBEGYhkiwJwiCIAiCIAiCMA2RYE8QBEEQBEEQBGEaIsGeIAiCIAiCIAjCNESCPUEQBEEQBEEQhGmIBHuCIAiCIAiCIAjTEAn2BEEQBEEQBEEQpiES7AmCIAiCIAiCIExDJNgTBEEQBEEQBEGYhkiwJwiCIAiCIAiCMA2RYE8QBEEQBEEQBGEaIsGeIAiCIAiCIAjCNESCPUEQBEEQBEEQhGmIBHuCIAiCIAiCIAjTEAn2BEEQBEEQBEEQpiES7AmCIAiCIAiCIExDJNgTBEEQBEEQBEGYhkiwJwiCIAiCIAiCMA2RYE8QBEEQBEEQBGEaIsGeIAiCIAiCIAjCNESCPUEQBEEQBEEQhGmIBHuCIAiCIAiCIAjTEAn2BEEQBEEQBEEQpiES7AmCIAiCIAiCIExDJNgTBEEQBEEQBEGYhkiwJwiCIAiCIAiCMA2RYE8QBEEQBEEQBGEaIsGeIAiCIAiCIAjCNESCPUEQBEEQBEEQhGmIBHuCIAiCIAiCIAjTEAn2BEEQBEEQBEEQpiES7AmCIAiCIAiCIExDJNgTBEEQBEEQBEGYhkiwJwiCIAiCIAiCMA2RYE8QBEEQBEEQBGEaIsGeIAiCIAiCIAjCNESCPUEQBEEQBEEQhGnIKRnsGWPo6+vDWnuiT0UQBOGkIqyPxpgTfSqCIAgnFdZa+vv7ZX0UTitOyWDv4MGDzJgxg4MHD0rAJwiCUODIkSPMmDGDAwcOyPooCIJQoL+/n56eHvbt20eapif6dARhSjglg72wgXn22WcZHh6WDI0gCMJRPPfccwwODsqGRhAE4Sg2b97M4OAgzWbzRJ+KIEw6p2SwF9i1axebNm1icHCQJElO9OkIgiCcNOzatYuxsTGefPJJxsbGpMonCILg2bVrF41Ggw0bNjAyMiLrozCtOaWDPXAf2FqtxoYNGxgdHZUPrCAIgkdrzfbt2xkcHGTDhg2SFBMEQfBordmxYwdDQ0M8+eSTNBqNE31KgjApnPLBHuQbmpGREUZHR0XWKQjCacvXvvY1Zs6ciTEGpVR2+ZYtWxgaGhJZpyAIQgGtNVu3bmVoaEhkncK0JD7RJzARFDc0mzZtYtmyZbS3t6P1tIhlhVeBUmrc+0IQppLbb7+db3zjG2zcuJGWlhZWr17NHXfcwapVq457nzvvvJP3vve94y6rVCrUarVXdOzLLruMyy67jNbWVoaGhgCytXDLli2cccYZtLW1EcfTYvkXXgWyPgpCTvgsbNu2jaVLl9LW1kalUhGl2GlCf9JPYhNmlmYC03N9nHbf9jt27GD+/Pns2rWLZcuWHTPgO3z4MIcPH2blypVTck67du3CWsuiRYum5HjGmGxTNxUB7xNPPMEZZ5xBe3v7pB8rSRIef/xxLrroIqIoOu7tlFJUKpVp94EVTg1+9KMfccstt3D55ZeTJAkf//jHueGGG3j66adpa2s77v06Ozt59tlns99fzft3+fLl/Pu//zu/8iu/wlNPPQWQqR127drFwoUL2bVr13HXh1qtxtNPP80ll1zyio/9aujv72fv3r2cffbZU3K8qV4ft2zZQmtrK3Pnzp30YwE89dRTLFy4kK6uruPeRtZHQXghu3btYtGiRWzatImVK1ceN9h74oknWL58+Yuu5RNF2PNcfPHFU7JeTfX6eODAAQYHB1mxYsWkHwtg+/btxHHMggULADDW8Gtbfo0xO8bfL/97YhVPy/Vx2gV74LLYmzdvZunSpcf8Y9XrdQYHB6fsDxmkpVN1PGstW7ZsYdmyZVNyzL6+PtI0nbLnd/jwYaCwETYJ1PZBbS/0XIbFvQbW2mn1YRVOHb7zne+M+/3OO+9k9uzZPPLII1xzzTXHvZ9SakKCAmMMSZJw/vnn8/jjj/Pkk09m12mtX3R9sNZy+PDhKfvsNJtNBgYGpu36ODw8jNZ6yp7fwMAAc+bMGXc8mzZgZCtU50KpU9ZHQTgOSim2bt3KihUrjhvsHDly5Lj7y4kmrMfh3KbieFO5PtbrdYaGhqZsLRoZGaFcLmfHe2DoAbY2tgLwvcHv8eauN0/L9XFaBnuB45Viw2VT+YecyrJw8flN9XOc9GMAJTuEGngK1dwPo7sgbYCpQ7kDeq8A/0EVhJOFgYEBAGbMmPGitxseHmbJkiUYY7jkkkv41Kc+xbnnnvuqjxsyz93d3YyMjAD56JqTaX2cyuOdiPXxRKzFtjmIGnoOO7zdBXqqBGf8srtO1kdBeFFe7DMbrpuSPc8Ur1fTfX0sPj9jDX918K/QaCyWLx/8Mm/seiMRx1eNnapM62BPmAYkYzC2G8b2wNhu9FgfCxuPow/sBZ2CaULUCkpBfHzZkiCcKIwx3HrrrVx99dWcd955x73dqlWr+Ou//msuuOACBgYG+MxnPsPq1aszWd5rYcmSJezevRuADRs2AE6ueay+vXq9jrX2FfcKvloajQbGmCk7XnAkPd7zn2jSNKXZbE7+87MWavvoGHuUaNtPSSoWVOTWxjSBOMaYCtTrlMvlyT0XQRCEk5wfD/2YrfWt2e97m3u5d+Be3tz15hN4VpODBHvCyYNJobYfantgdDfUD0OjD3QFSF0Fz0ZYNFbh5JtowGepy90n7NQF4XjccsstbNiwgQceeOBFb3fVVVdx1VVXZb+vXr2as88+m7/8y7/ktttum7DzaWtrY2ho6CXP57777puwY74cpvp4L/X8J5KDBw+yZcuWCX9cZRNazH5a0920mr1Yqylh2D/YYJ8uAQpjFFpbmrqdvTt/RFtbG1dfffWEn4sgCMKpxNcPfx0gq+SlpHz9yNcl2BOECcNaaA5kFTvG9rtAT1eBxAdygI5AaUjrYI3LVKNwAZ4BVXb/mgTi7hP1bAThmHzgAx/gnnvu4f7773/F1blSqcTFF1/M888/P6HndMYZZ7Bv3z5+5md+5piVrdHRUX784x/zpje9aUKPezz279/P5s2bWb169ZQcL0kSvv/97x/3+U8069evp6uri2XLlk3I49nmEAw9ByM7YHgzqBhsG9ilELWxdfOzzJw1j47OLkib7nqloG0JFyx6k0g4BUEQgPfOfi9XjV017rLlleUn6GwmFwn2hKkhrY8P7MZ2ARGQ4oI14zYkGvezTUCXyQI7m7rAz+Jubw3okgv2bMP9Xuk9cc9PEApYa/ngBz/IN7/5Te67775XtdFP05Qnn3ySn/3Zn52EM3zxnr0T0a8xXXv2Xuvzs9Zia/tRQ5uwA89Bsx90DCi3HkaRC+p8dlphUKrkr7egvfqh3JWdgwR8giCc7lzadimXtl067jI7TT0fJNgTJh5roH7QSTHH9rjAziTucqzrs7MG4ja3WUkSF9PpMljtbqt8RS88HgqiKiR1tPXyTeUudrfXEuwJJw233HILd911F9/61rfo6Ohg3759AHR1ddHS0gLATTfdxIIFC7j99tsB+OM//mOuvPJKVqxYQX9/P5/+9KfZvn0773vf+07Y8xBODNYk2OGtqKHnsUPPg1JYmzqpuwrmAcYFfVa7NTKqusvAJ8aM/90ny8o9J+bJCIIgCCcUCfaE10xkRomGN0F92FXumiPOHVPhq3RNiNtxkV0KaQqliruzTX1Fz78VbeKy0ZGv6pmmC+R0yf1rDBaFwrrrrd/cxC1Q6pjy5y4Ix+Lzn/88ANddd924y7/yla9w8803A24maNHau6+vj/e///3s27ePnp4eLr30UtasWcM555wzVactnEBsMgKDz2FHtsHQZlAlbOhVLrXn6gelXNCHBu2VDyExltaxKGxIqulKfvvKzBP47ARBEIQThQR7wisjbTgDlTH/X72fBbVHKR1aDK1VJyeKWtwGw+KDuUKfnbEQxYXfEyfFVAon58QFfqrkAkabukAP64JAm2CDKUsm/SxBqds/hiCceF6ODORoQ5LPfvazfPazn52kMxJONpw884Afj7DN9yzHft20rjqX1t366dc+VCVfV3UUHsivl/6BVYQK7z9dAtNwy235xcd+CIIgCNMTCfaE42Otk2Nmgd1hvyEpk8kxdRlL5PYZwVQlC/SCpMjbfJskNwsAn532wRqJswcn8psYv7nJzFhCcBdhiHB9e6mrAFoLpc6peU0EQRBeJdak2JHtLsAbes7nsFK3toUqr7UFpQMQldxah7/c1PO11aRezu417db9a23iAkAAUoja0KXWqXyqgiAIwkmCBHtCTnM477GrH3IDy4lB+Z4PG+dVOpsUqnaggqQyBHbWy4wiX5UzTS/PLLn7Zm6bJT8HyvfxRaXCCSkv58Rnp3XBmCDxfSm+4lfqnopXSBAE4RWhTI3SyF7MzsdheIuTZ9rUVe3iNlzvXVRYZ02uZgh9yUkjDwZN6ip8qELCqxAMWouyiV8rfaKsIlU9QRCEo7HGONOr0Z2uaNC29ESf0qQgwd7pikmgttcHd/vcGz0YqGS38RsJEv9zCWeXqY4yCrBYk+ZyTOtHIegq2YgE6zc0IShMmxBXcqc4rJd/hg0PrgpIBNYPI1aKXKjpK4I2dT2BIlESBOEkwFqLrR927pnDO+k98iDVlnbQPW69iit58soGp+ESrp+56StyXtGgS34t9FJNvOlKFOf9zSY8RhlIsTYlWylt6tbRUtcJejUEQRBOIqwhauzHHuqH0e0wus+txzqGudef6LObNCTYOx2wFhpHcjnm6C5IxnBjD0Jw1oC4Nf9ZxYWqWuI3G7rg8IbfiFiUTV3Qpn1VzjRz0xXbdIYs1kJcdo9jktxwxRp3Hdr/3nSBZByy1T5QxGWpneTJb4JUDKbmnoNkrgVBOEFYk2JHdzp55uBzYBKnqDR4iWUxqNOF4CwoJFS+DuooD9KUcm6bSnsFRHAqDj9rf5DUr58JVkdYXXLrqDFuLS1LsCcIwumHTevOGX50J4ztpffgw+ioDKUFfv+o80LENHYslmBvOpKO0Wr2og7eD419UB8EM+Y3BgrSGkS+fyNU0XTZ93v4AEv5vjjwv5fyLDRxLrc0TXI3OO+eaRNvA44PFCm4a6b5mAWM27Dosjdl0fkGxvqKIMpvemL/2Kl3oMPfxrr7l2XsgiAIU4dNaxBGIwxvAV3BmqZ3IvZjEII6wc2Y8QPQ/bqWrbdeIZF66aUKPxcMWEKFzzb9Wh3Wvmqht9m4xJrRzq3Y+gogInMXhMCuXbvo6OhgZGTkRJ+KMAnYxqBrRRrdAyNbodHn9rs2dYkza7FFVYXyknnstFaISbB3qmNSqO3zw8qdO6auHWR2cwv09+M2GNXCzLo0zxJbvBQozgMo42fYQSHgCjPv/JynKPa3SbO+PaV8Ntp6OWc4N2uOqhBGPtDT+XiGLPMd3DXjwmOVXDXQ96coVXIbGeMz37rkRi6M6/UTBEGYeGz9CHh5JqPbvdulnyGqCyMRwP2cqR3CRkOBMoWgLs3XR2XcqASb+t+VV0H4r+nQ96wgS8gplRllkXoZvtauD0X7iqARmbsgFJk1axadnZ08++yzJ/pUhNeAtTb3lxjdASOhHQm3PibDhd5lAINVkdtS2uATEfkCRQUVV6flQHWQYO/Uwlpo9LvRB6O7nTvm2O7ctMR4BzZvoqJs6uWXylfNGmSVMsircnGcG52EGXfB6ltX8sxHqNIFO+80cTFaNgqhCcS+D89nr3XsLqOBCzwLfSdZxtoHdpkUVIP156rJs9gq8nudxN0/GBbEMl9PEISJx1qDHd2NGnzWyTPTUb9G+TXVUuhn9nNEQ4LK2CyRZRW5NN1GuDVO5S6axlfnVOSUF0GeaX2yzibu9lHFS99VLj1S4fEa/udwHmVf9bOoqigfhJOH22+/nW984xts3LiRlpYWVq9ezR133MGqVauOe58777yT9773veMuq1Qq1Gq1V3TshQsXsmXLFowxlMsu0bJhw4ZX/iSEKceaxHtM7HCyzNpB32/n+6BN3Xk/ZD3LXhpvDG7/WXb7yGBuVXCBmO6O7hLsncykNd9nt9tlL0Z2FDK9vo8tyCdDSTqq5r1uJoW4lGd/rc8cK0s2GkGX3MbB+kAtZJmtz1Yr31+SNNz9ooo7VticxO72Nhi26FJ+bO0rgEGWhJ8hhcmDxpB5tj5TXTSJCRW+8Jx1hLXGfTzDbW1zWuusBUGYWmxaxw5vQQ1uwg5vxQ03b0JS9/J04wI2FflNBH6dVIWfvVwdhbIJiipZUBeqemE+HvigriDPJPLqBb9+Jg0XUCrlqoGqlK+lYTafr+qpYNCitDte3InSonwQTh5+9KMfccstt3D55ZeTJAkf//jHueGGG3j66adpa2s77v2Orsap1zBb11rLsmXL2Lt3L93d3QwODgJw4MCBV/2YwsRikzG3/x3Z4ffCe30LkjezMgnEfm0NLUnZnf3+ldDvbDLFvFO2HTXDOZZgT5gKTAr1A+4NXdsPI9shHSNzvFTKD9gtSCJ1nF+f9W2AxVtvoxk3KiFU+EJlTHl5pvGVtcjPzwtVvCi4wqWuwpaNVfABWRYYpm6Ib8h4Z/P2wsMZMgMWEl8xbHGP68/YBZ0hk13JNzBpw8mjlPKuc8plZUJ/IEYkSoIgvCZsox+GnsOObIfh7aBjl8CyiUtopYXAKySysoRZ2EGEOaJeRRH5xJc1vkfEr5uZPLPQqxfGLARjFh25zUzkjVaUH6uQNo66bUFyr/KxC86gxasrxLxKOMn4zne+M+73O++8k9mzZ/PII49wzTXXHPd+Sinmzp074eezcOFCduzYAbiePoCf/OQnxw0mG40G69evJ4qiY14/kQRZ4Zo1a15TcPtKj7d27dopOV6j0SBNUx544AEiM0wlPUA5OUA1OQA2QSnjljzTQClIVBWtjPvdWkxUARuhGAVKTqaJcaNLlcGoEtomaBo0aSFNmoBmbPAQxifbNAmD5TJD2x7AWssVV1xBpVKZ9Oc+lUiwdyKwFpqDPrDb68rRjQHytETk5EKq5L/UEzCxC7YyOabNq1vGW3D74EyFqlsI1rLh5qHq5jca2eDepvu3WMULmWGsN02J88dSKu8XSZsoDFaHgVC4Y+iy22zYpjMRyDZHoSfQO2/aiMx1LlT4YjUuU+3uW6gWqgib9b6UJNgThCli//YB/v1vnmC4v87yC+fwM794LlGsT/RpvXKshdHd2NEt2KFt0DySB2pAliDThTU0W8MK8h9FNtsuk1Za6yfUuESZJcKqUKkLioQECMPSTZ5oM0GWebTEM0g1kzzphsmrd2EtT1OU0u7sQuBY7p7kF1MQXhsDAwMAzJjx4t/lw8PDLFmyBGMMl1xyCZ/61Kc499xzJ/RcLr74YtauXcuqVauOG+w88cQTLF26lNbW1gk99rFIkoTHH3+clStXovXkr7XGGB577LHJP561qMZBBvY+RTKwhXntVVRzIEtaYatY3eqDPeucM3UZqyoo28CmKSpyCgtjQZsxrG5xt0/9PlO7tVenY1gsNqrQf8St9TM6WzC6hMI50HfOugDT7mTEUxHETzUS7E0FpkmpeQAO9juXoNphMCN+cxFBMuIqdto7BCn/JR7suI1vIg0W20G6o/Abh2DjHWbWBTdNcjmRLsiFbBijYH2glxbcM5vjxyiE7LH2x88qil62ZFOsit3PoWdQB+fNJvnIhlDFCwYs3nI8qrhzSBN/HhWyymIYuG6tN3OJxkukQq9iRfpRBGGyObhrkM/86j00GykmtTyzbjf7t/fznk+8/kSf2gv4bv93WTe8jk8s+ES2YbNpw8ky+59hcf27sOt5rCokv5QtBHUh8VaUZPpRMiooDULQ59e6KGSCfZAFbu0OASB+GHpQWaDB1vO12vgeafyar0pezZC4YDCTdUZe5RFk714NYZyTsVXecCCch8zYE05ijDHceuutXH311Zx33nnHvd2qVav467/+ay644AIGBgb4zGc+w+rVq3nqqadYuHDhhJ1PWC9mzpx53GBHa013dzddXZP/2Wo0Gtn5TEUQkiROmdXb20scT1yIYNOm85sY2Qm1AzC8FVCoZIhRBukoL4ZKp1t/TcMVOOJ2v8c17veoCsRgdL4fzMaHxRC3uLUvrfmWJe3WwMRL5nXMyFA/SsW0dXa5y5Ixt/+euwLVMsvNSZ2GJi0S7B0DYw0GQ6xexctjjeuvy3rtjtB7aAOGCKrzfNCi881AccYcFGSMYdRBkET6oCf1Df7KbyBMmLUUZEIAGovCZhuBoEsu9tL54CwbnA65aUo5q9pBKQ/u0ka+0QGCE6fF9YlgNUQ6P06o8AXzFl3xzzv0/IXn7IPTcF6ZrCnKg0KlXRCaJi4TEyRQKoL4+Bp/QRAmhrX/8lwW6AFg4aHvbOHtH7iMjp6WE3tyBcbMGP/f3v+PITPEm1uv5nLb7YK8ke0+KKqjjVczhBl3IXjL1ic/EsGVyMh6j7P1k6Pk6P42tjH+thYnO1dBZkkeUIbgMgoGLN512CRODUGSOxgHOX32nRRuW88VGNZkybLhdJAW1YE2qVT2hJOaW265hQ0bNvDAAw+86O2uuuoqrrrqquz31atXc/bZZ/OXf/mX3HbbbZN9msIrxCajziVzbDcMb3PmgmGvii80RK2ARRUVY5l6Iqx73uwq7BcJBQ6fGAuu8GH/aAtJuEzZpn1hIdyWfB8bzKymuUJMgr1j8Ildn+BIcoT/s/T/vLRmuTnsxx54d8zRnbjqlXestNq7Vaq8EpcFer7aFYVm+/SoqlvigrtShXyIbqE3LmQfsibTBChnv6vimAVTMFXJNgepqxhmYxNU7oaZBqfOKA8KM3dNvANS1T2cTd0HV7eQOR8plcuNTJNMlhTc66x1IxyyD18wPmi620SFSmRwt7MpyoSqpd9YlXsKH1pBECaLRi05zuXpMS8/EVhr+dc9X2bF4F7mNups7ft/uKz33RB6kbWFJPFrMgVVBAT77SzBlskzTb7uAVmfc5aAauRrahYMeqmmrvpRMbgElfH9dtl6XjBSyfqW/fqZpvk6mDYLygZ/bkS4fuo4X9tR1BnhntH7uFBdwDXtq6f9JkY4dfnABz7APffcw/333/+Kq3OlUomLL76Y559/fpLOTni5WGuh2Q8jfgRCbb/bD+uyr6wFJRu4fS5+H6yd30O2Vw0zSO142Xxm/qfG72NtAolP3MVhrUxzVRhhX1vOlGjKWp/D861ASkOpA5UVPaYnEuwdxcaxjfxw8IcArBtex5UdV+ZXpk3XYze2x7tjbnVBjyqTvamCwyX4rKzrs1NhrEEIvjKpYtm94YyfYad9IEPDvcnjCtmbP7gHBQdLFZO5uRlflYvdBkBlw9JLhQ+MKpxbkIrG/tyTwjw8PxohfNiy8yz2+IUsTArGuDl7ShXkQz54Mz7TPW48ROyTO36TqP24hqTuXpcoBJQhwIx8Wd/18NlQxVRWJJyCMEWcu3oh9//jxux3HSlmLeqkZ/bk9628GNY0scNbUUPP0RjcyL79X+ZMW8caw77oINvr21lSWeLWSgP4WUvuzl5BECp92RoVkmRekZAFYT7zTCEADLNEbVg3vblKyErbxOejlLs+VA+LxlRhyHpxfII1YP13S7hfGIeT2YnrXOqpnexzc7yFprI8PfIEl7RdSkelZwr+CoLw8rHW8sEPfpBvfvOb3HfffSxbtuwVP0aapjz55JP87M/+7CScofBiWGvcCISxXTC6F0a25Ql/0/DJrUJCDTteYRaUWyEgy2YtA8G7QhWSZsUCiSk4E4d9rC6s55p8PQ7zTSNfJTRNLHHe02wjd16l7il41U4sEuwdxZcOfImICGtS7trz57xudhVVO+CyFY3+8f1qac0HSCoP1LLgy8tswrBy6zcQ2r8JQ6lZ67y6lblnmly+EwIqQuajWJUL8/BMIcgMvSRgQ4ClQh9fkIamBUllyJQE7bMPWsddZwtVuYIZjK/S2axPJASYwXAlZMhDT0qwKY/B1gsZ8/ChxW+srM9ke1e6sEDEZVTSJJM3xWI+IAhTxdmvW8Av/O5V3P0XD1MbbbJoVS/vve1adDT1Bi22OezcM4c2u7VZlbG2yYahR6hRp6wsiVZY4MHBNSyZuYR8ZmdUUFl4FQXBjMWvpVEpX1uLPcfZehyCwWDvrdxmJwRy2YxSt3GxWTXQb2DS4gYmbIT82q6DmYv//kiKt/XrpEm9MgL/WO45DTf72VLagcWSAj9pPMWNaur/PoLwYtxyyy3cddddfOtb36Kjo4N9+/YB0NXVRUuLk4TfdNNNLFiwgNtvvx2AP/7jP+bKK69kxYoV9Pf38+lPf5rt27fzvve974Q9j9MFmzacem10jwvsxvb6pJNPOCWjXo4elBBF472wdvpkV5bw19k6nCktwhiEMAg922+G/WVQRgT1W+oeJ/RFh+JCMAA0SaGX2ikmrI58bBn25Hraz9gDCfZyklG29P2Y0f3f5Y3NBt3NBK32saP+VZZUlkE64uU+vknfhGoVEHTDFLIP6EJVzY86QJPpi43Jy84mddU93UL2Zqfwhh8nz/SPP87AJc0/WP4D4OxnGW+aYiyokGXxG5hQEg+Ol6kPGr1sMg/8NJhaHugRnpfCqMhJlY6WOxmT3zY7D1/KN6EnrxCoaj8QPh0tPD+fmfEz+6xNIbX+w2qgJBIlQShy6NChSbPMXv22lVz1c2diUjulLpzWWuzYPtTw89iRnX6zEXtFg4HIqQoMlqpqoWpT6lqjUWjl1QLG9/+GdTVU1rIB6DpPOhGBreE2DbgKX1TNE3VRMHHxa2fqx8BEZbfUB6m5qbt/g0Rdl/2aWwjaggzfmPFKjCAjDdJ90/CbmtB77R8rW1ObrDm8DgBlLalS/Lj2BJc1DzKrNGvK/laC8FJ8/vOfB+C6664bd/lXvvIVbr75ZgB27NgxziClr6+P97///ezbt4+enh4uvfRS1qxZwznnnDNVp33aENkxGHwWW9/jCx0Dfk9WcvuzzB/Ck5ml2MIaS0El5hVpmfLLF0mCSiIrcnglRZjJbJJxQSHG7z/DKBtrXAtQ2Mtm+1ObVwSLCT0VFwoTNsuvnQ5Fg1My2HvwwQfp6XkN0hSbUE4OwOGHvDvmQWgOsnHgXpbXR2m1FmssjUjz0PCDLKkshWCioqzTCAenn/BlbAuZCZO62Uw2BGM2l+aE5tK4SlaxCm/+zBQlIhuzEKph2puVpE2fjQgfBp8BzjIfeabZ4svlYYMQyumZlDMcq5Sfm/LHMnW/+SiTGQlYjnLLLIOK0MpntbU3aQhBYuSz1aYOmRzTb36CXDWrHPqFIEilMkc5fHU0BLKWRzqeYHB4iCs6rhAZpyAcxde//nVmzJhBpVJhz549E/74SimiePL7ZK1JsCPb3XDzoed9EsvLHYMMc1xSzHJp55Vc2nm1m1EatYJt5BLNQuO+ylQGkI1ECMkyVUiqRV7CmQ0p926ckG9ErJcgBWUFab7GWvzYhaOMVnQYq+Ml72lx7l4jf342KDL8g+GdOMc5fJbBNhjoH+NZ8wwag7IRGsughm/1fYv3zZbqh3Dy8HLcDu+7775xv3/2s5/ls5/97CSd0emLtdb1143tgpGdqKHtLK6vh/27XXEgOP9mxnwF34kXJPnTfA8X9rbWFtRdod/O39cbYdlgUFUca4P/Max/xvg2pbCvDoUKXUjkRePPKwp70sTvSeN8bFemyEgh7pqEV/bk4pQM9r71rW9x1VVXUa26cQF9fX3Hv7G10OjL3TFrB2k/sIl0ZBgOr3BZCgyoMosri0nRlG0ToyJSpVgQ9ZL3s/lMRHGfY31fXib7CWYFvopnvBmAl9m44byh0T7JJZRZVS7xFT9bCMaKPWzWVxhT91jYXM4Zsrw6RmFRJvWP5d/QwREucyzCb0pSv9kILqD4jU5h04MeX6WD7IWwxm9CggU5+HNujs9+hzl6YcSEVfk5mWDyEjIx/m+Xzdhz1ubbkz3sLx9iYOww57RfSHtZ+lGEk4/bb7+db3zjG2zcuJGWlhZWr17NHXfcwapVq170fl//+tf5xCc+wbZt2zjzzDO54447XnFPym/+5m/y53/+56RpSn9/PwCPPfZYdv3JbCttkxHs4POooU3YkR0QVbGm4QKguCWXy2dydUXW71HcjIT+uBDIAZl8PVsLwzgb/PqU5ut0kM1T/Dn0lxT787SXDvnzCH3aGF8l9Gtxtpb59TAbn+DXtzA+Ia3nsiTTdIGgCvKluCAbDdLS8FoYGrWIcwcvZMgMUm5pIUoNZX0mb+h8wyT/1QRBOFWwJoXaPlexG93lTFWU3wdaA80alsKaifHVtgLZmupVZ9ncZZ8AC2qGYGQ1znnd7zGVARvl63kYcZNV7Qrre6jMEdRv3mdCl8kqgAQPCgpqt1BECLJ6nPOntbkM1SZQmf4KsQkP9l7tJueV8Cd/8icsWbKEm266iWq1ypYtWwB4+umnAajVau6Goztg7z+TlXpNPR+2mDXPh6xExHkt53Be9dzCRkD7YLDQd0eJrNE0SIiKIwLgKCfJ0N9m/NgEOz5oUjG53bfJj2sbZI3/YeNAmjempv6NTqFvD0BpbHDizByLfPk766XzcqKQXU59tloXyuzELhgLEtQoyiprAJnjnEkK1cDCxikMtlTlfCM1TgLa9K+jd+TM+llCIOrPLwyNVxpr4aHhta7lRcPa+pO8UZ+S+QphmvOjH/2IW265hcsvv5wkSfj4xz/ODTfcwNNPP01b27FHhaxZs4Z3v/vd3H777bz1rW/lrrvu4u1vfzuPPvroi86fOhaHDh0iSRLOOecc1qxZw6JFi9i0aRMADz30EOAGAx9rjlSSJFhrWb9+/St70q8Ga0lG91Ea3MS2++6nlBx0Gw1vApXqKpGtMcYoA6rOXNuNoeyWK9vAqCqQYk2K9puG1FgiDcYqNA1QJQwR2tQwuoLy7sC79+wmooGh5EwxbQOrqijceAkVhQQcKK0xVqOpY1UJTBOlFKmqEtkxDLGTi9oUoyru3IjRCmqjw9RqMfVGA2M0WlvfetLEqhIWi7YWo0r+HEto3ztoVQllmxhbQmuTx4phFpQ/r4iUwT5L58FeOkozqJQjkpqG8pUMdQ+xnvxvWS6XOeussyb/bysIpyF7G3u5Y88dfGT+R1hQXnCiTweb1p1L/OhOF9w1hl1LTkhemaYzAswCKuvGxYSgKhtj4PeZRe8Ik7pxWyFQDEWCoJgIXhFA1m+XKRiaucILv9fMVBpHGQraUETwSbBQqdMhqWe8Wo5cLeZbf9yeP3K3Nd7/Qsc+4eZmGEqw9yp4NZucV0Oj0cD44OKSSy5h7dq1dHV10d/fn2WxH1jzKAsaz2BVTGpjYlUDYzGUsMqw8ZlniFUTo2IMEbGtYbJMg8UYRaQSt/lQoGyT1FbQ2kkerbVoBSkxkXe0DBsRm200IhKj0bZJX3+fkzziNiIRTVJV8m/1hNTELlGMIqIBVpGqEhEpxqh8FJ8FTUKqKl6yk2Bs5EbhERHTwKJ5bss2tLIkJiLSKdZqtJ8JlaoyGoMxhkilftOh0DRJjdtYkKbeiybC2JhI1Ult7D1nDNZYtFIkVrNzx3YMOvejsaAwbgNjm+6ctZv/ZyxoUlLKRKqJNZbNLVtoMa3Mb8xHY7Lr3BQHJ/M8GB3gYOtBrP+A/2j0MYZ+8A06zfjm2vnz58tmRjihfOc73xn3+5133sns2bN55JFHuOaaa455n8997nO8+c1v5iMf+QgAt912G/feey9/8Rd/wRe+8IXXdD4zZ87Mgr2zzjqLDRs20NXVdcxgr9lscujQockbGGxTovpuSrXtRGM7SOqDDCdjtMUzUKVWQGNNjNIxVsWo1HC/WcM+e4j/rG+kJepB0QSrMboFbRpYq1CR9kqKMkoZrDEoSqAjt+aoGEuEMjA0HFGtVonQWF1GmQSIsaqMsi4IU77Pzv0M1ihnz505vJWxVqOs8utcHai6fmmjsFELyjSo1zSlcplqJcaoKpoEi0KpKpmLchS5QBCNUWW0rYGKsdaiiDBRFZXWsKqMJsX6UQ3KJs5dToGODLZuOHJokDiFcrXCvFXL6Tzq71gqlSbn7yoIAncevJMHRx7krw/8NZ9Y+IkpP75tDGaSTGoHXBVPebOotOGkjUWDk6xxzSu8/F7QPZgpBFwFg71MgulbcDAueAsGWBayMVpKkY2TUWFkjB/tVZTjh8fOVGre0T2o3HRRPady1ZpJXSCXFV282VZ2XOv7+tw5K5RPKPrHqvSiMvnn9GXCg71Xs8l5rQQzggULFrB9+3Yuv/xyHnzwQS563Rto2bkVsC4QMWOgywwO1xgdPMScuQtQvh/MfWnX8tKvSdwXuOu2x2JQNnWbCxIwDawtoSLlMr6+md/qKoqG91Bxb+ZDh/vQtk7PzLnufE3qNjHKuk2Kbbr+Ot2KIsGa1Bme6Nh9kZtRtwnxow2s0q6Njhhl3bgCd9zUBUemwbade1iyaCFKGS8FchUy5ZtlDTHa1NxGRvkssbXumUYVdFonm4WHz5LbJlZX3PlaF5KiFNt27GLO7F4qLZ1u8+EtbVWk/ete9xsmi7Vuk6aiyF1nGxxKh3h+6HnKRFwy+2KqcdVn4htuI+blsI8NPkRqFdrPSRmIIzYv2sxv9PzGuPdDHEu1Tzi5GBgYAGDGjONnENeuXcuHP/zhcZe96U1v4u67757Qc+nsdMmRJUuWHPOzMjo6ytatW1+VHfrxsMkoduh51NBz2JHtTllQTaBUYjjupFZv0DtrJlnTvTHeBEWzu3aEAwMHwRqeK23hDT2rnBOyUs40JRn1/cP4zUwr0ITUuqyzNYBXGxgwps6Bw4P09nSjlZd2pmNedRC5rHfU6iSVQTaf1nNXt6TunICtwkmHTH6/bEPipU9mjLFag5ZqmRk93e58TS2XEJlGvnkK50iQcEZgGzQTTd/+UUhj2mZ00tbubxP6rHXZb4aq9M6o8ezTm5nRM4OeWT20XnLpC8x6bKgKCoIwoexp7OHb/d8G4DsD3+HmWTezqLJo0o7n+u0Ouqrd2F43vNw088qb9equ0CM3zl3YOrVZ7P0njAusrPbmftmIhFBlCDL3ooTTy96NV3LFZX8c/18Y55UZ7fl1K6xv3njFWvKg0lcXifxcUuODyOJxo1DFS8cHpNlM52C2ZQp7+jqQupgzqx5qN6v5NGDSd8UvZ5Mz0YQNTHtHF3HHHGgcBhMMViLiWoLWimql4t98Ljhxb1yX8aindf6u75+4uuNKVpXPIDNQIcgVyxC1uTeeMUCVzFEyMVDK39iRjtCUqJbDF7x2/Sd+aPqPhu6nzw7z8zPeiUq9QUD2AVNgW31fXhOM8hkPn5FJgzTS947oCsY4mWmlHDtpU+QlrNbb3WYuSBUvb22S9X+EDEkaDAd8HyEl9xoQu3NQ+QdKYSlXWqhWK5Aqd1sd54+pYn+/uvs3GMbg5gQ+OnA/kYWmTXjGPMOV5Svy+6mS2xzZMj3V2aQNJ9OttLTQVZ3NgtYFdHR0jPv7y2ZGOJkwxnDrrbdy9dVXv6gcc9++fcyZM2fcZXPmzMlsyU81bP0QDD6HHd7qNiKqhDXetTKMnNERViVOdh4GjvvAxT2I4aejD6OsS8o9VXuWS5Or6FRl8vl3vl8vk5QDSaHnLswnteA2L2HEQpD6hA2NYlwfXHY/nx3O+uwgk7jr8lHHSN1xwqaGyGfJ03xNtLjHN03cGujPPXPXjHwvoKVZt2x8ZA9DB0ewShG3DLHqol6653S79VTHPmB0/c+lkqWls0JXb5mWnlmT5soqCMIL+crOv2Huv15E6WAHzZnDfPkdd/KHZ05cdc+axK2lo7v88PLDbn8UWmCSYW9KEtaywkgX43uVgawi5vfEucNvMJGy7r8sUPLXl0L1zCfkSi1ZxcytQaFCVjDay0wJ/XqtKBQSrCsOhPOAQrBKXnkMSclgyoI/D6/IGOfzEEwEbULm5G7DGhu+V3x7ki5BaZIULCcZkxrsvdxNzqRS6oaxA5ANswWCy0qQMKXBvjq4a8ITY8/Qn/azZvDHrOhdRBS1+GAr9NJV3Js7DQ2s/rHTYHxSzGAoLKERv9Dsbw1H0sM8MfYURim21bazrDQnf6OHTU/4MKbhQ6EK8p/gAJdnYbKePUtucGK9sQAc1SuIf+PrPONTGHXgegf987FFJ83Qz2fz4C1rKCm4bIYgNdtQhYZZIFIcahzmudFNlICmVqwfeZSLWy+kErXniwpOMnVD58+QJgmbnt/Cqvkr0IvfCe1LJ/LdIggTzi233MKGDRt44IEHTvSpTCrWGuzITmeuMrwTkn4vy6GQaU79mkD2s6XhqvdK47K6yvdmNNjV3MXu5l40rs/NanhocB0/032df1wfsGXOlPngdPezN5MKmV2/9qpsgwG5u5zPRocEoPJJrTDHDnxWueLXJlu43me0jT8Ha9wGQ3uJE4W1NgqVPNxmw3i3u2CGkM3vi9i/c5ihQ0O0zWhDaxg41GDnpj66Z3e521mVr8+Z053CYk+bjLUgnAzsGt3Nc7enzNl8EcoqrLJse+YAW/98O8s6lryqx7TJGAxtZUbzcdhxxJkM6pJbr0zdrzEFKWRmJBX66XywFySLKuLIgRGeun8z9ZEROmZ2cMG1Z9DSHta8qt9KhspccdxX6N3D7039scKIrHGGfr7fTum8Ly6cVwqZM7FNnWFKcc8b+u+CYaEqmAxCnmDLknvB0AW/psdO+ZH5cVhQvirpx/UkzYR63VCpxlCWYO81c1JscsrdZHOKwhgAa7DZwMfQNIrfgCTUDDw8+hjaWsbSYTaObeLcjssgOPdkQVJo9iz5L93UvfGywereFS4rm/sKYuQDQZvy0OgjWKWJrWXN0E9YOvO/eFvwdPx90zAAsjBGIWiabdM9rnYbDhWGWEal/EOaDVxv+NfDS4WCnXewrwVnb2uCG1LYTIUZJsHwxTsnefMVG0r82pLNqgoum2EDk807IducPDT8Uywqcy9v0uSxsSe4svUyd0EUXttwv7KTogJUZ0/wm0UQJpYPfOAD3HPPPdx///0sXLjwRW87d+5c9u/fP+6y/fv3M3fu3Mk8xVfF2HCDXc8dIaLOwgWDlOrPY4e34frMUrcGZDPhCkFPWAeUXxtRKGuyvmi3zoUNRcrGkWcBiKylod0i/WztaX5GXe8ez3ilQFoIzpwmiExeFBJx1kse04YvrgU1hM+Kp83CRsJXAMP6pX2vngpZYuPWptTk62IakmH+caOyk/uHjHfINIdzyeSbfg0OGe2w0dIRaaOOtZpIu0C43FKiUWvk9wE/Q9BvjHwlUnH6yJME4WTg2cf20L55LiZOsJGFVNG+bQ7PPrqHZde+vGDP1vtcv93YPhjaDMkgypRoT7fDqK9YBWfLzNQOMpdz5WduhmqaDvJMJ48fHYH7vraJSNXQpAwNDDJ4+Fne8O4LiMP6qVKXfMsCOW+SVzReMSmUWvM1FsjCieLsUGvztRJ8da2EqzhSkHN6+T7KV+b8cUN1Mey9beQV7CHADEUXb/hXnLEX+vZMvgdupoa+vUOMDhoG9u2jc0aF2bM6wtlMayYt2Hslm5xJpTwzD74IfWk+QxHeILqcv6GBx8aeILFNytZNqls3+gir2i8mDhleXQYSvyHwFTDAZUa8q5FtkM2ws9YbAOCzuikYRV/az7O157KAc1+ynx31nSwpzfff5WGWXgj0dKFc7j/UxjfBRqU8IEPls52i0Ffi9dmowofHu26Gx7UmHyERhqCr4JYZzp084PVZcYVBZZnxZh5YhmyLDrruJP9b+E3UsBlFo4msJQVQmsHmkN8HlvKA1Ju02DBwPmqFuHVi3yuCMEFYa/ngBz/IN7/5Te67776X1f921VVX8f3vf59bb701u+zee+/lqquumsQzfeUc2b6DH/31v8DIZjpajrCvp5uLr51Hpapdz0bawC8YuXRGpXkFzDIuCLNYv175TYlyvXHWGLqeXsbioQhlDWlcZfmqDubPme0Dw0I2WYWKmiWT54SEVHAkLmST87mnxUALtxamdbIRDWGjUqzUGVPIchcloiEo9EoJv9FRIZNoQx9KWFstmUty6h8zVBW9eqKlvYpVI9THauhIUx9rMmdhex5QKr/ugztPk6KMcQGmBHuCMGXMMnOoqAqVUhtKK2xkqScJc9J5x7y9tcYZqIzuhtHtbgRCtreKoDmcua+7BHeSB1FApmQIP5tQDMCvMb6YAYR5dnu29JEmKaVSirGa1CiG+0fpOzDIrHmtuORb2GMFdVpQDITHDm6WYY/niylhP6os+Xgt/7P2yoUwVzTMjM6KCfVcRhoqdSHhFoK5kFQDt88M6jTTyI8TRuKosPdOCq+T5fCuQYYOJ8QtLUSliL69g9S2WJb3TvCb4SRkwoO9V7PJmVSqs8jmMFlFmEGXzw+JfWUsBatoKsvDIw+hbYpF0dAKY4Z5emwDF1TOzMvCYZ6SjvwHSRf6NxKv3HGVNWVDudm/cZMmRBEPja5HW0uKxSiNBR4aWsuS3ncWPsRHVwdN4QNdlGr6c9JR/sEyxjffug+LVZrdzb3Mj+eigxZbax/02nwhyex1Y5xFL7nkNcg8o1JWJcWfu/vg+w926q8b5+TkA0/rg1cV8a4Z7ySbt6cruaQpHMvk2u6soVZF2Lhzst4xgvCaueWWW7jrrrv41re+RUdHR9Z319XVRUuLG/R60003sWDBAm6//XYAPvShD3HttdfyZ3/2Z7zlLW/h7//+73n44Yf54he/eMKeB1CQZz6HHd3NjnsfpdoYpqW7hNYV+vcNs/3p/ay8LBgRpGSGKc46ON90REFR4NcCk2b9eFlSyyeR9u0Yom/LGDNbZ6LiMkMHDUNDKT0/NzsPDEPviYVsrExU9etUWN9DRTHKA8Awpy4bFuw3BKFSp0LQB5kENKoUBgzHeVCnvIw+m1Hq1yxbfD5pXh3Eyz+Nn/1kQlbeX0bklSYpsxb1MDJkOLT7CM2moXdOC0vOneOfn8XZiQczGBdkK39fCfYEYepYctZMWjrKjA01iGJNmhiq7SWWnDMTwPUrj+5xvXYjO1z1Tmu3jzQNt7bEYY6c7xNGO3ffrE3Hqx4sEFpvgN21nRhdYVFlPnliKfTb+T7pYDAFXpzgjFi0KuwxM48GnSewwj4um2dq86KGabqfs9akpLDn8/102hctbEG1AYQZy9arO9waWnXHS0PQG56vX+OCOs+7LGfHCb2BoQ8x69Nrksn2bMLoQI0kUc4M1DTRpTJHDkcsn5B3wMnNhAd7L2eTM6WUZ7g/flLzjavuzWpDk2f4YJnUXW/rLC4tIDXDpCoiQVG2hg5aC29iVz3LSsQ2Ad1CNrMkVMj8BsYqRV62DhuMiDnRTMbKC2mqiAhLgmJ+NINcKtTMsyKpb67VxYpelEuUwoBhlM8mU7jOldmfqm3ih/3f5We63sA5bReTlcKDY5EtfrCDhhuyD4vxmWttC5uWyA+p9L112lvaKnzF1G9KssHyYSGr5Blp74iaW/tGhYpl6GUhewyFgbIEe8LJy+c//3kArrvuunGXf+UrX+Hmm28GYMeOHeNGH6xevZq77rqL3//93+fjH/84Z555JnffffcJ6XdWtokZeAY1uMkZrCiNxWVbhwcSSiWFiiKUtkSlhNGB0A8XHkBlsVj2RY/v2c3WQJ1niQFCX7XPLNdGjRstEzv1RLmqSBoJjVpK3F5QN+D7AI3PSAd5pgrn4Y1QwF9f8nNIyVUNxd6T4KiprN+I+Q3DuL7AQh9yJlsK8s6wlvpKnQnrn3aJRR0XNiHka65phhef0LOntGHZ+bOZv6KbtJnQ0hpnIyay4DVIVrFus4Qb10DlNEhXC8JJQtesVt77R9fyd3esYfDwGL1zNe/+4AJ67E+xm3dA/TDE3tQvbTBeYp4nwF2SO8nWSGVCcaLg1xBac6ylbmp8d+DfGNMxvzbrVyg5jfr4pLkP5uYv72HDT3ZhbeQc1rWlo7tMz9wOv+44nwSbDSf3AVpQRwCZA2cwuQp7tKxI4PeA2bqowTuqu4BT5+ufH9tgKa6hofgQAkP/uMXWI+3Vatle3KvVCP3T4b7hdUoxacrYcJPRwYS4VkM1Epq2m+4zT0BccgKY8GDv5WxyphQdOdfMtE72BjC+8hYCk5AZUIqS1fx898/6SpZ2lSo/siG7b1QBG+SY+YeStJFnVLI3G+S656bLTnhJ44Wt53Jh+8VkjpPEPpvjM8VAbnYSejx0niUPAVnIEEP2IbQqcn1wvtpnlGbt0BoA1g0/zKrWC4my84nzjVKxchmCPm/JmxuzBEmU38goiwqzVorOSkEOUHR7ivzxMglVIZDMHJnCuYQNUN5oq9Im1ipsWTYywsnLy3GDve+++15w2bve9S7e9a53TcIZvTS20Y8d3IQ+tIHFtZ/CvgvdQF7rE2Feit7WVWFkYASdVrDGomxCtct/YWZ9JL5aH6SVWWbWyyxDP69SWBUMU/za56VMrZ0VtDY0alCqGOqjTTq6K1RadL7JKPaw2KN7WELPnZdfpnWyPrdMIeHX2dCXnFXqyB8LSyb1z65Ps01Edrlt5MFq6MkrbLRcIOklm5hcFp+ZKhi3UbHN/HdvAlOpANUWf1noG/dKChWebzhfN+NPB9tzQRAyNm/eTG9vL7VajUOHDgGQJMlrekxrLTT6OGPxPv6fT8c0+w5TKingEPT5gkCouAWzlKhKpgowPmGFTwiFtSLbJ3kM+Trng7knRp6gZprUSXli5HEurZ7r96tBSun3h0rR2q655j+fzeP3b6V/YJiZc1q5/NoziGMfSPn126Ly89QF8ykd5+tM2szXrqIpSyaVx627NnGVutCvHAoskU9MmcQXMQvBqQrS+ARseXy1MCjQgrGiLpMPSA9Oyz5I1eUs+Tc23ERHlpZ2RaNuadShEbUxb1nXa/rbnypMiozzpKPcA8kQITBSgA1ftOkYEI3vRyMEVT5LEPlMQaiuFTMVwTkubGJC+RhfmdIxyhrXsxdGNxCc3Ap666A5xuSZ6CjIgtLCz00gBEyMDzaNH83gr1NhwdCaZ4eeYiQdQivFkBlm4+iTnFs9O88U6XBujK+w2UJmB8ZnVrzT6LEySO52Qcdd0FFDntHK7HLDxitUAaO89B8kA1mPpN+Ilbpf5ZtBEAQArMWO7nLjEUZ3uf4RXYL6KDa4PGabDpX9fObFc6gNDdN3JCHWKTNmt7LsvPl5cidI28McpaTBeOfLQnIsyB1DoIO/jVbMWdhO/8pedjw3jBmp0dLWwjlXLiTSfqOQKRHiTL0QRhaMNzoJmyavTEi8i50FV6kru3+tIavaaZ91TpO8Zy+s9aFSFzLuwRQAXACaupmref+IDw7x63tQaIQEV0g66pCdhqxqp2N+MvQTdtSe57/Ouglt/OarqIoIGfS04XpalMJE7ZP3vhGEU5hKpUK1WqWlpYU9e/YA8OCDD2bXP/fccwBs2bLluKNLkmaDvVsfY0gdIW7sRSf96GQEo2LnYWAamKgNhXObtD5BYxhD00CZJiZqdS1FJkXRxKoKRkVEZszFQz5Zk6YuCXakr99tKU0d61Vqia3zaO1h9GgrcTNi/dDjLOiaSRR1uK2XhcjWsbrslhhbx+gK5toD7EqfJFaLGWnMY+hggjY1wJBat388dOQQsW1ifRFC2aZ7TsbtX905lzFqpDCzGYrjcIwaIzJjWGtRPmBLifzM5jGUaVCrjdBIFIcOHsSi0bbpZlwrgzVNrG5BkWKNQhHmj7q11c2XNhhr0VkSzK3l7n4J1lg0hpFBQ70xQmuPIqqXqJQ0TdPC3oN76BsdHwotXrx4Yt5sJxGT6sZ50lCZ6YZOpnWXSdYlLHWy+UThS9ZC5kwZ9Mpakc3oyFwtbZblzm24TWFTZN394xKYhv+wB9mR9c34PkOcZURCRc2Xt6O4cH5H2d+Gcna2cSpkqKMImybOTclnS1KTsG7kQTeMHYO28NPBn3J267loSyHw9BseW9iAhOtsYbBlkHwCwf3NhkzOODlmqAKSZ7yDXW4mRwjy1pDtCdVKk2evsspADEnTLZDlGZP0ZhGE0wTbxG7/J/9zsaoe5DVp/jv4z21Ea0eFS65fTv8RQ0SdrlktRJUKJGNkvb74bLJtkklrgnlK6HfzfWqKo2TxIUhUKasuX8S8FQ2S2hitPd1UK8VevSQf2kviA0DfkK8jbwBQfNw8uWaP7uVLG4V11ObBqI7IZ+pV86pbkNaPy0b7XupMEpq7Y+a9zG6zMtgcxJDQXZqVKz7CKIfw+lgYSYZ5ePhBlLI8M/oU57as8n8I3N8lbZKPXSD7u9nTZHaUcGpy++23841vfIONGzfS0tLC6tWrueOOO1i1atWL3u/rX/86n/jEJ9i2bRtnnnkmd9xxBz/7sz/7io69cOFCdu/ejbWWCy64gDVr1nD55Zfz0EMPAVCtullsIyMjebBnGpSSg5Sb+4ibh1gy9hyVA52oOMaQ0rSaSFksxo+9Skh13cnQbRNjI1TUxJKiTR2ANGmicZJOpTVWOWM94wMnkzTQpCSpwqqYesMpxzRN0jRGW8OzZgPsb6flSCexiajGDTbM3MLZs85Bk2AsJAqggbGGiIQxnfKMeobIGraabaw059BGF5Gpuf2idWqNRq2O0WBtwwVZKFLVQOMrgFoDDd+W3SDVGk2Csk2scd4RTZocsjuYoxa5+9kEQwmtLFbV0KZOkoJJU5qNGoYYpSzW1l1AqCIsdbRtkFJCa4u1Bm0bWCKMrhOZBqmK3VbdNlC2CURYPYa2iXtMLCYyaJUyVgNdMpgkRbW300xrpCN5UD9d5zSfHsFeuTevUEVVYNSPN/CNnGEguQpNnwbXWBoMS3w1Kwp9eX4TpIOjmt+4UNisZKYpLgiyWXY4OMFBbusdTGJ8oBcqfDYEm5APiNSFjHaxETY4Z7qKns36RRJ21PcwaEayVjoDDDLKrrGtLK6eSWb4Es4t9JYUB12G+VPhXEJTrrE+xoszSeeu5l5SGiwpL/OvU7kQEEf+9fY9M6EKGDLcmVygcNywAfIYFbuRGoIgvHp0GUrt0BiAzDTEubaBchWwbJxBkCoCKErVMrMWlCCNyCTkQbJtvLGSLnyWdeyDp4JhU1QBDNY2ffCV5iqCQh9d54wK+YiFRkFSGYIyP/IgPG5wS1YQRsO4+1jvSFyQmIc1J0iOzDGuD0FjkKlHZZew05DJ7FU4J7/GGf8dkiWqoiy4tEpzd98/0cTw3t6b0FkfduoCyiCP0opH+x8CpdDWsnb4p5zdcibaBGWFl6dmDqQ+ALUaK8oH4STmRz/6EbfccguXX345SZLw8Y9/nBtuuIGnn36atra2Y95nzZo1vPvd7+b222/nrW99K3fddRdvf/vbefTRR19zX3OplJvvL1q0iJ07d3L++eejDj0Ag5tcIiuMI6DC5n7FrFkznQ9F2sgkiQQjOevNRkhdpT9uI1MumZpbM6OqU5alDTdXLhup4K9HQzpGYmOef36IeXPnulso/9imwdpt9xMf7qLZ0iSNa6R1Td9Ag5mrZlMpe/MUDdkIBGX5yegjMOTWR6tjtle3cUPXjWDHQFdI04TnBw8zf8FCIuUlpmG+qIohGXX/RqE9B69W8M8nqCUUrBlexyND67ihZyaryme4x4lb/Z7V9ef19Q8xMjzEvLmzXcuVbeb7zKjkztsmzoE9KLxIsgJCfbTG3p0NklqNlrYSc5bMJKqUnSoD4+7nZzuP9oyw+dm9KGOYObubrkuvo3XOmePeCxLsncpUeska71FOI6yOtrGFrCqV3Rb/RQ/jmketLlT4vOwwDNfN+t5CP591za6hclXs/bM2l4h6N9DcPrboKOQ/GJGvsKmCnjszGojAZ4wITpvWbVwWVhfz5s4baFiLVtbtp6xifnmBG81gfFWzmKWGfOOmbb6ByYIvfzsdYbP5eZYEyz39/wIm4Zdnv5+WYHYQHO7CDD4dudex2DNTrFZm7pt+86dLUJ2PjXvYv30OZ+rT460rCJNKuQfqR3I1g02woUcD678oi0mpQkIo9XJIRf75BvI1EF/d8uMWQqN9GHOQDdwNx05xRlchMVTK1rBM5p31t0HufmkKUsvwuN7VMjwuFNaT2CkfCo5z1sZs37CPI/tHqVRKLDp3Np3dlYLiIPTfFYKrYN4SVBpp6tQcYUSPwlft/PeKl5duHH2G/nQQLDwz9jTntl+UKxls6N2rMNw8wuNjTzpnaKUYSAfZNLaRs9ouJHNett6oIBgo+DE+UtkTTma+853vjPv9zjvvZPbs2TzyyCNcc801x7zP5z73Od785jfzkY98BIDbbruNe++9l7/4i7/gC1/4wuSc6Ng+tz6GBH7YL4Y2FMAFgZC1rNigjAj7M69cQHl1WVE55fvOCEZ0hbYYIEugQb6WFlwzX9/2BjaXB2jr9vmlFosaq5AmBkrGj94KirESNVvj4aFHKPtRV4kyPFvbyKVtV9Dr1wwVziMcP+uT86q18Pyt9X1zwXnZFzP83rmWDPPI8CNYpVgztJaVMxahIp90C54QOnaBlQoqr5Ag9MULY1whJuvT86O9lFvvm2M1Nj9xmL4DDUqlJs0kojaWcMZ5vU4xEpQVpgG6Smt3G70LWom0Zc68WdAzZ0LeJqcCp8eOudybB1nW+v1J+NL2X8xhYxH6PTJHyCSf5RQc1sLnIMx5UtZvWjgqSHQBm7IJBi+3zAwIQsUrhaL1bWapHSp4QeZZcDwK8qgsuxwWCheU2dRLmay7roRmZXVFLnPK5ub5/pMw3iDMK7Hk8wAxQDhPyExa8AGotzC32p3jkyOPUW+OorXm0dHHuLrt0kK1kHxjYsLzjvPFK1QBFW4T2rIAWua7/0quB8U2m9T08MS/RwThdKTcnSdw/Pe4AjJVQVivMqVA6B92a5GJSq4nOUjRQ9BXnG2XWXaHDU6a3zZIKbNeNZXPA8Unh+IKmVOl9hJHYnd+oWcZyPreCmthkE1m56Bj10No8UFYA1SVZx7cxY6n95OmCqUMe7cNsfpty2ltrxTcNcmVH6r41VlQJ1gKz9VJQ5UxbkOjI2xaZ83wWtzkLMNPRx/m7NZz0Ph1jyQ7xuOjj9OwKSWlsChiYN3wQ5zVegGhHxxbc9n7ILPXikS3YiuzJuPdIgiTwsDAAAAzZhy/PWPt2rV8+MMfHnfZm970Ju6+++7JO7FSN+7zXvKJmIKBCfjPu85/Nkle5TNNn+wJhn2h8l8lc/bNRiT4tUzHjHcOjvI1xSfX3f7Nrb+d7T10t4MdHqPUUqY+mtLSUaZcDWqo4J/gDGGGm6NAgsVitEYbiLEMmkF66SaM7DLBZCsbhxPWc/JAN63l6oZsbrNPxqUJj489ThNDDPQ3D7O5vo0VravIe7S9J0Qm4w8FipR8tIOv4OnCHjfcLzUM9TcZOFyjo7dMHGvGxiI3NH1pJ22dvlpqGvnjmyZKK+fwrEtQ6piUt83JyOkR7EWxCx5qh93vxfkd7gbkMsOyD0IKkh181UxFBamhyT8E2by7UJHysiCcPFNZi8pMVPybO3OkTJ1ESYWNSdg0QeZsl73Rg+zUFj6EhYy330wp44PSTMKk82HpYQOmC88hq9qFzRn+Q1ghm18Szjl8GEOQFowLrCYxDR4ZWgeRwmJ5dPghLms5n0rsZ0kRjX+9osgFf1EHtC6E6mwX2FVmHfX3EQRhUij1FDLUuKqXNahgZpJV8I+STnp77G/0303VwFt73kFwGXabnfClHRQIoWfN9yGHzZKK/BDf0FNn83U3m8uk8y/9ICmNI7Ke5pCYU8E1LlQFvbtmJs/Mq3JZzx6aRmLY/dwBlI6ptrpRMkNDCXs2H2LFRQvJZPOhkldIHI5TPGRSzUK/MxqUQfk1fFP9efrNIBXcbNUxM8zTY89wXuuF/jWrgq2DiuktzWRZdSkap76wFrpLXf57KhjE+OdXmQ0dZ6I6z+Tg4Q3MkDmkwimCMYZbb72Vq6+++kXlmPv27WPOnPGVmDlz5mTjvSaFUjdZoBCCHzSZW2XWfuLXCJ+02ru1n53P7CdpNuld0MMZFy6kFPl9WkhIBZVEFjj6fVX2s/dHMNYrEUJAZFxyR0U06oa+fSOM9fdhVYV5Z3Qzf2k7cVTwcrB+TJdVzIx7+NCcD5D7K1h3fZA6BsVA0Q242C6kKvk6l5lKka+LXlpZs6M8Nvo4FuNmSWvFmtEHWd6y0hsHevO+NHg4FH0gyvlrnQ1k96qFzBfDBcYG99pr7dQZGkVaDDozN/fgSRHUIUDUelwDnunI6RHsAcSdwIGC62b4MAG+cZQwJ84khdJxIFT0fJlZ+aDQNPPsTHhz6dh/SF2vnx03VDLCBYGhad/3a6SpTxAFqZTNP3SZ81rJV9/M+De9u5IsA1+cYRWHn33lMQu2fPVQhwDUyxSCzDKTUhaCtPB71o/o+kSsv+7J0acYsnUi5U6/qVIeG32MKztf785V+wWoZSa0zneVu+q8gsmCIEwN27ZtY9myZS+4/Nprrz3mSIRpS3Um401EYmw6mql1yAxbfOUvC2QSdiUH2F7fSYs17G7uZUFpdr6JCDL1YCYV1sDQz1E0LcFAqv066Ktm2XiCUp5RzoLMKD9G1FKo+vlscwj6wmYkq0Z62ZEKzxeIIkwtcQYKGiKVklon8zSJzQPJEDwq3Oth6/nzCAEwfiOR9fvFkKaoMKKGlCdrTwHW5fh9sfGJ0Q2c13Kuf51zC/izqis5q/W8vGoI5BXQGNqXojrOwLYtQ8fVCX9rCKcvU7k+3nLLLWzYsIEHHnhgQh93Qqj05hJGn3QJpuUqc/AtGPOhOLhnlGcf2oOijlVldj57hCTVnHtZN9ncOds46r74tUMVkmZ+j5kW93xkAUwziXh6zXaG++q0tpUZHbUMHBhGqS4fICVkLsWRD66SkKwqBnOF4EqB9YYmLrg6epRCULyRJ+2yGXshKEvYVt9BDTdSwR1J0Z/0caCxhznRbK/KcOukDcaF2eib0DMdqqDBJyPKjwegIjq6S7R1aIaONIjLlkYtZea8Nlo6Wt1rjCIbHZG67yE3xD2F8ukldT99gr1yD9ncJZt6Pa//gGYN8VGenVHFAC1c5xtVQ7UtSISy/pRQjoZ8Nl3sGz59Tx4KlC9HB6mkKXyBZw39Oj9eMaMT7mcaXi9N4cNhnRtn4t04If8Ahs2H9X19UfGcyT/EYVOVBXp5+TurbPpSv5M3kfW/bG1sw2LBKj9IHh5Ld3Nl93lQnesCu9PsAyacnCxatIi9e/dmv+/bt4/rr7/+uP0i05bKzDzZFLkZRUql2PAlnwQZe5CWq0yyvnb4p2gLFs26oTX8p563FZJQ9hh9dDVy9+AGwXxKWYONfQIs0i4LbZpg8i/3TfWtzI9n0x615ZW6TLKZ5gFrOJbxvYD4TQOQOSqDq1x6VUS1pUTP7HYO7TqCtSVMUiculZi5oJssgPOyqUzSGTLHNn+cbNMWxjGk9UztYf3xrmm7mn3VAWISEjQx0B1158Gc9WqLkIEOmz8VOYOEtqXQuRLVtsjPNiXrKhCEiWKq1scPfOAD3HPPPdx///0sXLjwRW87d+5c9u/fP+6y/fv3M3fu3Ak9p3FUZ5KpnbKkjvK5pKCuKsjRVUzf/sOkzSZdvWWaaQtK1zm86zDmkm50UDNlY7uCvDPILsm9H/yez4060Pn+0Csmhg6PMTZUo7WrSrkEUcUyNjjK0JEG1c5QtSu2IdlCIt+Qz2c2+XOISu7XzOAq7JELa18mrQzqNJN/R1hXjVvRejZvi1oxxrqlX0VUrWF2PAvioplVicwYLKi9rHFBbii2ZP4WxUAvBq2pVBVnXLiQ3Zv7aI7VmDG7k0Vn96JVKEb455fNBPRJOTjtHN1Pn2CvOguf2sBa7bIJQOYWp+JCZqGoV6aQJUlzvbL1HxCtChLIsnsvhY2B3/g4WVRMNpvO+I1QMHUJIwZMocwPZD2CYTBlJlky5G6WBeMA37uirMESuT66MKAybEgyI4UgNw0BXGHBsT5TnkkG/HX4TZrFf/Ctew2IQMONve/icByTtMym2TKHtNTN7Mo8iE+vD5Vw8hNFUbZJqNVqvP3tb+eqq67iD//wD0/siU0xOm7BRK2Q9uHWPBe0GELyx3/uw8bAKyF2pQfY19iL9RKd3c1d7GnuZ351IZkRShYM+U1C6PcoOp35UTM2JNYo+0DN+tE1dfam/Xxn4DssLy3mLTN+3qsPIiD0eBzVs5c5eUbkgWCo9JUgqWHDzDsvGb3wmoVsWANH9o3S0lbijIsXM2Nua/44pumTbEG+H+VrX+h5JCqs+2FjFWOxvrrXZHZ5LrPVQrfG6iqYmj9/L18NstAgWa3ORrUvxnasQFd6J/ndIAiOyV4frbV88IMf5Jvf/Cb33XffMauIR3PVVVfx/e9/n1tvvTW77N577+Wqq66akHM6JqXOgqJK5cEJfilUlqxXj5IXQVg/I8712trUUKpaVLav8/8XeRdjk/iRU35fpiz51tz5JphMDh8KChE6VkRRikkttuT2llpbdKmcn1MwuBsXXPngJwsofeXMKyaUSfyoMF0I7sJ6HlQL/lxTN+bAKT/yNTYGzigvIrhyuu+Q0Xw+ahZo2iwXRxzW6SDpz6t/mb+FNV7ibyBNSRJFrWbpnlmhUm2lc1YXOhRTdMkn6kILlnuuyhjnjn+aObqfPsFeuTcLYlT4Ms7mMIXNgu9Nweuc8RLLoBeOfAneJC7IU3Hu1qm8JDLMayo6yXm77WL2x71ZQzCn8qqaDkYpoQ8vSDULm44g8cwaWAsBoZdWEkwTKGy6dOTOJ6sk+g9ssf8wy5yEPpmQacbdNmSjdMlVBVoWcLDSS++C/0jPzLm8eG5OEE4+fuVXfoWhoSHuvfdetNYvfYfpRtwJzSFcT4PrhXCJbN+3Z0JiSGducuuGHybC+hypIrKWdaOP8o7qAvc4RSMV5eWTmdsvRwWAka9OBaln6LlzMqM1w2uJrGVLfTv7mweZE/f48yoqD3w/ifUD0UOAarWPpXxm2qR+7dZ5Bc5aKtWIS69fzlg6Qotu9efnh8Gn/t+w0ck2EF4elElMvUw/mFypsA5rbKg6Zt8fPhDN1vVGnkhsXwSdq1Ady1FR1b/CgnBimIz18ZZbbuGuu+7iW9/6Fh0dHVnfXVdXlxtnANx0000sWLCA22+/HYAPfehDXHvttfzZn/0Zb3nLW/j7v/97Hn74Yb74xS9OyDkdC6UUttTpXDlDUp6Qr9K+KBeSRs5JeN7iVg5ujxk8kpAySqWUsOjM2c6JMiSYio6bITmWOa+HhL+BNHGz9zJndJVJKztnVOmd38murXWao3W0Tuie20X37PY8SZ+NnElcckkDQcIZkmCZr0PYG4b9YPF8Cl4VwT00HXOPlY0rC8Gk/56Awt42yCkh85sI+9LMdKUQmCnc3jqq4BKAYQ8b3DWbJLbM7i0D9B+sEWk3/H3WqGXuklayHvOgwojK7rGL5ocS7E1TKr3ghwUbtB98aXNLbevdeQhVM/+hsnUIzm5AlnkJ0sZQDVNhQ4S7LGQhYm+VG2bzBXcla51kiajQpBrlFbvwhkwauVtTZrAS+vOKlT//cxRBMwxA91sE5aSVBK14FkSGzUshIMwGqhez4xoqM6BlEbTMgep8J8f0j1+LGnmWShBOIT75yU/y3e9+lwcffJCOjtPHmWsclRlQ35cZRFmlXHASRqwYSyYxsi4ju6yynHZVJiEi9l/Ys6tL/aaiOEuvBGYMgsGT8RUtTC4dtWPerdKva5m7nWV/eoTtta2UAXTE2uG1vL3nbRD6Z7KRDMpvTozLCmezUSP/c7mw3kWoIMGCTJI+UD/C/z1yF1d3vp4LWy8qKB7Ig8MwVqe4ZuqyO0axhyUK3w8RFuuXXxcAjw6lJElCtb2VckVDqQ3VuhLbcSaqbXEmzxSEE81krY+f//znAbjuuuvGXf6Vr3yFm2++GYAdO3aMCy5Xr17NXXfdxe///u/z8Y9/nDPPPJO77777Nc/Ye0nK3TC6x1fcIPNJUIUAKLTvWGjvKnP+689g79ZBmk1L72zN3GXedC6MZQnmV8Y/joFcadBK1t7j1QEqUz54h02borVi1esW09Y7TGN4kGpLifkr5xBFoRoWZJDBA8KvYaH9KDsBkz0m1lf1ghMylnwkQqEal7UGhaDKB5NZH6O/XxZ0Fl8r/5yDM7xWPsdngIgDu0bYumEvaT2hY3YPqy6ZRbniZ2Bbsj3s6ECd4SPDtHe1Epcq1OqGgUND9Mxto9ISWq6i/H4AuuwNwawrAJ1GnD7Bno6dRrfZhxsboH1/SNAqh+Cq5t4cOmirTb7RMQVJZGZyEsrNobcv9k2wiqKrpgry0Ew2Gt78BVfNbJh44bziUvYYmTMRoUwd5R+mEHCmruxvCZVEn0EJFcosOCwElaFaqHyWJqpAqRfaFkLrAijPznv8BGGa8E//9E/88R//Mf/2b//G8uXLT/TpnDiqvTAYsr0tqGQMFda6TLpuXfXJjzG4pPUiaDvfrSdp061TxD6ww29qvFQyOG3aQtLJ1KHQ+2KDHD2sT35Q+bqRdUTWYrRrqt9W28r+5CBzSnPJJO1ZP7JlXMY4OG6GJFha98+p6WVKPhD0JgDrxh4mUYaHhn7KOS3nUQrGNFr7MTchqUb+/aC9+YrCPS/bZJxUVSm3uVAlMAnbnzrMvp2DjNXbSVpmc+FbrmOOf+9J9U44mZjM9fHlDK0+lhHMu971Lt71rndN6Lm8JGFmZUjUmwSrNFZFvqqncpM544xMOno76ZjR6tengutmSBiFypUKRQabr5lZMj+XoCsKQVKY4awrxLFl6VkzIG3xhi6+qqa9r0RoMQoGLaGwEBXWRl1y+9XEK8h873ZWqcM95+GBOvt3DxOpJjMXdtPeFWbmBT+HoIKIfYBIXhnMfg4eF76iGMVgvWGKVvQdrPPMgztIkyZxVGHP5j5UWuO8/7DcPU6WhIwwaQ1rrBujQEqEpWm0V6yG0WfhuKoQ9BnQrW7Q/WnE6bWDL3VB4zAQZJXe6lYXgjntf7dNMDrfMKQ+OxE2IuFDkrlV+jeTqftsjHdvCxprvBwz6JczN6aosCDgA8LwGCHoCz15YRPkgz5TMEpRthCMOvv0LCDMNkSFKmCQP6nYu2MudAYq1XlQap3iP4wgTC0bNmzgpptu4nd/93c599xzMxlRuVx+0VlP05LKzELSyW00XJFK+TWxCjTy9SX8a4PEPMgzg8wm9B6HtSYoE5L8i96SJZ2UipxhViYbdYmohjLsrG3FKHcEDTS1ZvPos8zpmufX4tATmKVu881HkPBk5+ETbEGmlPoKHJaBtJ9nxjYSYRmjzpNjT3BJ6wU+G28yFUOW6bYNwM+C0v64QapqTf4aYLHe9fjA4W4efrKTZnkppdZ2Du0cZvDbh3jHB5YRxVLNE04eZH0sUO7NgzkFKOtFDyFZH3rPfDUpcgUAkyYMHBrG2Ii2Dqi2VfN1xARjqRa310wbuCDEK6SK1TebeOVDqJQd1fJDwjifhyAtD2MVsoJECPzCDLsmqGp+XagGGusHq+dtPv0HR3jsvt2MjSSUooQtG45w2fVL6OyO8yJEVgAJHhfetTPyktTMtKuZVziJfCDrFBcD+wdp1BI6e9rdeakGfQdGqTcslXJ4Lu57o7UlotrewnDfGNVKyuiopmdW1aklgNxEkYJqxBVy0qjjtBq7AKddsNcDKkKHGSchI2zqZPbWWW8GXopTuF02eNgHadlj+FJ2cfBvaKaNXGCpsv5A/wHKAjH/GEblTkRFyVNRp5wZpaiC3LOweSr2HgZ5aeqzSuG5xd3QMtcPK1/g5sicjn1KwmnNww8/zOjoKJ/85Cf55Cc/mV1+2o1eABfshcHBft1SIdALUs5MfuSzt1E5/3IveedJ5S28g523DdnVsI4WTAeC2QkUArNi4qtEmZh39/4iI7ZBZBOsjjA2Ym7ck2ewMylm6iTzwXVN+cuisj9fr1wwLvjMM+VuPX5o5JFM7W4VPDi8jgtazye2ZJnkMNsqyxSrEDhWvNNoMZBVblPVvpyhwWUkM1cxsL3EwaFNzF/uKgVdM6sMH6lRG2nQ1iWjE4STB1kfC1R6IWg00WTyxHEOkqlfj5xyIUkN2x7fzeF9Y6RpREt7zNLz5tEzywdXWREA97g28a0wvvoXkv2Ask1XnFAap0rz66vywZzyfXJByaXLjFNPqIhczRYkmX4/GkaNWbIqnrIpNtzPOrOszU8cpj7WpK2zjFYxg31Ntm7Yy4XXLM6TbSHQg7wValwFMRRVfF+1b4XKA1nrYjIb+9a61FXuoti5awJZf7O1lNuqzF+h2b99kLTZoGtuldkLW9BRXKjo+b105iDvqntGn15VPTjdgr3qTBgArHNKGjfqIAuU/BwmQqYilN39mywzWAmSo8KbO+iDM2va0OcXsryFD6Q66vFDABcknuOyJBAyH5mjZuakFD5koUfEHccq5TLyrXNc1a5lnht/oE+vP7kgHIubb7456w053RgdHQVgYGCAKHJrVKmhwNacu2YzwWIZG6u5oMUOoWhiVQlrmyibYPUIytTcxqI+hjI1TGTQpuEc6LRBmbrLVNsmylqMrqBsDUvZu9UlWF2mURvDGMNYveHWX6tBNbFEtKgOWtIEpRUYjUGRGkjqQ4ALQK2vDtqGQdkGEHr2NFYlKJtgdAVta2AiDAYLjDaaRI0GozZh4+jTgEWpCG0NY7bOhoEnWFk5H03i2gOVwlIjmGpZUhQpxqRo5V4f4nZs2xmkrcug4vp0htkEtQZGW1KTMHBkmHJLzJEDI3TOqDLWGKXZX5uwv2+apgwPD1MqlY55vVLq9O1PFV4Wp/P6+ALKM3D7s4bbU6nYT42x4xPsyjq3SRSHd/VzeO8o1Y52dKyp9Q+y45mDdM9c5PqFgWz+WzY8PM76fLMAziRYtDfbs35WXJBIugSWsYqxwTrYBi0dXejI5H16quT+TRI/8sDmUk7tr8v67XzBwlonUQ09hLpCbSwl9gkzqzQ6NjRGvQwVCv18BZ+IYMKVGWGFPkRvFBj6nLWX3QOzFvewc/MwI/1DoDSWiGVndlIqhX037ry8I2drq2bZOTNJleFvDv5f5tZncGP7271BjHaPnck4g2mixcRdk/iGOTk5vXb+1Zk0vYOQDZlpVcg4WMgrYjXyACtIhAol+PBhsU3yYM7mkh8dQ1IH5Tci2uSPEeSYkFfmgp2txvfdRQX5Uag4hqqfTz8H17cwOqLaBa0LMaXZ7Nq+jDOXvxUdn15/YkE43bn//vs555xzKJfLbNiwAYAHH3wwu/6JJ54Y9y/ArLEhyskh16qvFIqUnbv3uaDMJijlqmGp1U4IkCbOqU5HGKPQymKNcbfXMcZqtHUbFa1S5yhnFFolGBWjbYI7SoyyDRITsXvXdqdGVzGKhJQKEU2sSVHaDTpPbQmtUvf42qKsITXKFRytcq3XqXFLJyq7zAVrFmsVSrk1dc/uHWhraSg4o7yMGobIz7yyCuwI7LK7iWyDlMhZemffEYaUEpGy1PRsavFcxqIFGF2FQwC7/X/QbDYZHBxEoanMbLB76xAmtVTaNfOXwpMbHp/Qv3+j0WDLli3HdU5sbW3l8ssvn9BjCsJ0RUUlbNwO9UNke7VgJBXkncEMxDumN8dqWBtTKmmMtZRaYhp1Q5KklKLEmbAEE78grYRC8j8YpkDWM516uWYoNihNo6HZ/MReRo4MYVF09I6x/PweSuVi31xBhm6dp0NmEJOGFiEvVwdscM0Mo7lQzJhdYeeRIRp1S6QSjLF0zur0j+/lkdm8PJ3JQbPnY8Nzi8AGv4qgrAsmLoqW9jIXXreIfZsP06gbunsrzDuj2xdRGqDSXMqZGSTCc6MbOZL2MWj6uKSxjzlRtws+jVd/BPf6qEKjsoikunRy3iwnMadVJPBEspsfH/wy/7H8M7SYDl8qV3m1TIUBj4nPTHjNdMi8oP0bLpTUQxZD41yIfGk+VNwyrbAtfHDChgH3eDaU08vuOCZIBciyHZlzUXYsnBtmda6TYrbOd7ry8IFOElK1fVJfS0EQTk6MMdTrdYwxzJ49m8HBQc4555wsuLvyyitZs2YNr3/964l9MsjsSaD/cVAlGo0627Y8z8pVq1zSK8yvsw2I2nzWNAVV9lnhYOFdJxtdQ4yb5xRGw3hrbWX8Gue/tA0MDQ9w6PARli1Z6I+jyExdwnqbradld06+YpiZZBlv0502yPuifbbZNPx5pWBSjIXnNj3LimXL0bECIs5hpTtt5eVHQYppvQQqjGKwEcQVaF0MXStRbUvz+VnHYf369XR1dbFs2TKuu86wd0s/jVrCjHltdM+aeDnRAw88wKpVq5g1a9Yxr7fWviyDDEEQPKUOaBwh9MIpLFZ78zzbcLcJa5dtUmkrg1Y0xuqoOGZsxNLZW6IU+eQ9XpJpmj5gzKtbPgpz61fc4gz/wkzjTAXm1rY9mw/St6+f9q4K1sYc3D1EW3vKolXzyaqGygdfikIwGYLHcrYOEwxZjEVT2G/alBUXzWFsxHBg1wgqajJv2SyWXzibbBa10oWewOBJAfk81Gb+3IKrqHb938r6XmcDmJT2jhZWXDTfF1VCT3aYC+j7FMMxlcaYBuuG1xGhiAz8dGgtPz/j59yxyl3Qusj917YIFbcx3HjquKqH6cxpFex98eBfMz9SPNZ8hKvUtbk0M8wRURFuyG3QK/s+kmAbmxmbRHnZPrzJg6wy9HZkhiqF4ZVAbkurfUm+EByGvhnre0tCZjaqOvvftoVu7EHLPIyK+O7Ad7mmYzlt0emnPxaEk5n777+fT3/60zzyyCPs3buXb37zm7z97W8/7u3vu+8+3vCGN7zg8r1792bDjV8u1113HZs3byZJEmbPns3zzz9Pe3v7i9+p3INb21zCyAa3YLyTmwWCq1rW34e/jXZf7llmOxknzQkOmLk7ZggQU9BlN2ogNXmWV8WFNdErJoK7poFseHnWz+zPzXipUziHYn+00vlaT+olWF5hEfnzCxuTMCfQpn6joaDc7Yabt5+Japn7qpv7o1izcOVpZnAhCKc65RkwtscHNF4WGPrr0qaTSAJ+gWLm/A5GBhoc3nOEZg3au1tZenZXVl3KArZsJFZQcxXGHISgMIzZCmtuZp4CY0MjlEqaqOSOX4phdCjJq2zg1rAw6gbv32AK+1eb4NY8V9xQBCl9HqRZ/BD3ckpJl6i2lV0fXeZzYfLEWzCrUT7AzFRsYR9t/Uw/5wKvQiKRFGPg0N5hktoIcaXKzPntzmMjmMfYYGxTdvc3lk215+gzQ1hrORKXeErv48KZ57O0azUqlpFggdMm2Fs/sp5HRx+lQ0ccTg5zIDrAMrvAfSiyuUy+kbQomQwGLuOGnIdmUZ3fL8s++4BQ+2DO4ppd8ZbdoSJogvST/MMbPjiVXmidBy0LnZFK6YX9FfcN/IDbdt/GL/T+Ar8997en4BUUBOHlMjIywoUXXsiv/Mqv8J/+03962fd79tln6ezszH6fPXv2ZJzeC6nO9AGO22RYpXIb7aBYyNzfIAsMQ19GNgomBGiQDTLPrleudyQEj9ZdZq1PemXZ6+CiFhQO1vdoFLPIhYCMyFfz/IbF97Jk55A5ZBYMEcJYiOIQdO3X8xD0tc6FjpVuuLlfg19diCcIwilNpdf/4AIoG0ZdHe2z4KtjCs3Ss3uZvaiVxFZobVXEUcG5Mxt9FZwqvUGLbXqzJ5UFTioYtoQAUflRCViq1Yj+RPmOpIRmYqm0VgtBUWE0mC5nlTrXR1ccch5u13TeM2FdVM6A6rn1Oziw6xAHoyN0q25qmw7R3gmLz57rgzmTB3rhOyBzp/equcznwitBSIGS3x8nWGPZtvEIe7cOoVWCtTHDR4ZZdu5MVDYPW+WyUBVD+wL+rvEdHu3qYbBUxSpFSsrfjN3PH/S+MHl6OnPaBHtfOvAlNJqBKGa+arKRDbzOXjQ+2xBmKmXDxckzFmHTEeRFMH4DEQZghg1RNphdeXkQZOYtWRYFiDtcI3/bImeiUpmVB4HHwVjDFw98EYB/OvJP/Lfe/0ZvqfdF7yMIwtRx4403cuONN77i+82ePZvu7u6JP6GXojyTvIJWcnP2sqpdAlGLT3oFWU2abxDSBsQhqAuOnc08AWb9bKW0MHMJ8koeujB6Ic7X4mz0w/i5daRNIByPfAOTjaYJcp9i1Y5cxqQiN5rGQlb5077/pmUpqnMVtm0JOmyGBEE4van0klXcohZAodIESqEap8HWfDCns2R+a2e7CwTTGplKLCTMgtHK0QqGMN7F/27D4JmQ7NJeWWYS5i2fwfCQZbh/FK0Mnb2dzF3WnasngrGLKnhFhLl7wegvK054N9GwPuLXeiyDBwapRTVMbBiKDtPTaGWor+n2v2HdBjKDwyzxh1v/rXfGjEIfnU8UolHWPc7wYJ3Du/qptFVoaalQG7Mc2jNI78IZdM2wbi5e68L8v3IPSinObavTWt867s/1uvbXTcKb4NTmtAj2nh17lkdHH0WhGI5LYEcZ1H3sau5jYXkeuYumHy6O8mVmL02KYpeR1l7CmW0q/IYkk3d6+WUIDn3fndUKhbfErc4suGPOz7Mrr4D7Bu9jR2MHAKlN+b+H/69U9wRhGnDRRRdRr9c577zz+MM//EOuvvrqKTmuKrU5N0lcP5fKRsOE3q5iMAYuk6tdP4kOhlGp75Hz62joNda+KheqZ2E2lXH3VSry627RrbjgLpwNSy8YVoVALyTrfKO+O0/fDxPuGzY7wQnOJC6brLVTTXSeiWo/A1rmZfJMqeAJwulJ6GcdGxvLTY5MK1Hdm/thsDYladZoxq045+AUZRI3UxODSpvYuNW5GBvr+9LKmLSBNmNYXXHigzTBqsjntRpo40e4GAO2gVVljJ9712zU0XEFkybuMVSMrpRYftEMBvvaiLSmtaeNKGrSbPpCg02wuCqkpYE2da+cSNw6qMtum5rUXdClY4w1KGVopikmdcZbpmwY60+gnGCNZqRZI4oNjXrNOSWnTawx7nlETXRay75PME1niqVibFpzoyS0C/KsbZKmFmOhMTpCkqS0tGhMmpJG3Rwcms3c8lVUFpwNcWH+swFqzsH4ba1vg2OMhh4bGzvm3zdJnLnY8a631lKpTD/557QI9oyf13TgwAEAnnrqKQDWrl2LUooBNcDrWl5HSkp7MsKC5Hmw0LdrgKaqkVJC4wdAolzy2EZEKiElJiLx+V83ANLYiEgbUmPRyos0vcOcsSW0TjFGkUbtNKNehtIV1HUvz+3t8fKiFNjl/3uFzxXD5zo/h9IKqywGw9cPfZ0zN59Jh3VSo7BYhec/2TQaDZ544onMxn0yeTnPbc6cOSxfvnzSz0UQJop58+bxhS98gcsuu4x6vc6XvvQlrrvuOtatW8cll1wy6cdXSmFLPWAPui/hLPAquKwF45LMsTjId0IA6CVJ4TLjK31QqAj6YE3j3d8UNpvDFOVmKmkxmeazxWFoufKy+Kx32pvCBElV5ginvKTzqCCyZS79pQosfTe6VRQRgnC6kiSunywMjYfcufjHP/7xuNsuGtuFUgZDRGTr7N6zF0OEJrgDByV6glKaJiVimtk6apXGGEusUufki/NzSFWlMN7FjT2w1qJJSVWZiBStLFu27QSlMRYiEgwxGgOkGD/O5uAAaBUSYm4Ndde5fjgnGlNYm7pRdH7va6xGaeVCWWPRWrN58xYiGhgbsXfuZmx/lfJgK2jNUPsRaqWI57eOoXCGLiYFotifX0qqSkS2ibEK5RVzLm+nXA8gDYwtuUDQKg4lJXb0z+fg5h4a5RnUhjSVdo3ZMUj50EMT/rffsWPHca+77rrrqFan1+zTUzLYW7duHf/hP/wHyuVy9jvA/v37Aejt7WVgYIAzzzwzC0Cu4Ap357SJefYvGB0dZuac+SgMFovKssfggrEy0ASjUMpideQLdgZLCU3d2XiD0wnH3ai4g7S6AFOZgynPJMxgqe/cSRlYtGjRa37u25JtHDxycNxlqUo5sugIl7Vc5n5PU9avXz/u+U8mjz/+OIsXL35pE4gJIEkSHn/88Rd9btMxKyNMb1atWsWqVauy31evXs3mzZv57Gc/y1e/+tWpOYlqL9T2AcYZtARLcFMvBGN+JpNNyG21jZPqhOpZZrQSepyD86Z3G45CcBhMsPxcJ2vdZcEYJlQLVZQV7xwmPy7426euWmiDeye5XIkI2pagOldA2zKwmsFN33NObYIgnFZs3LiR2bNnY63NArsjR45k15933nk8/vjj3HDDDePGl9ht/VA/AMby/PMbWbhoKdVqq5NoRj4wMA0I/c1aQ3PUq7d0oW/OuQK7Id8lX8kL8zsLxlC4ZFnSHOH557ew6qxznEtmSG5ZC74a55Jhfu4p3rzK+L68ICMNbvO24ZNhYd5dmIfqqn2p0Tz3/CbOWrmSSCWM2JQf7P8ucUsLUV8nWqcMzRpAzZ7DOe3nuHM3yq/rKfhKIsG9PvJrf2bgYiBqh0oPtC9l12HLwUG49NJLWXjFAD+95zmG+2u0nVnhdW85k3nLuif07//UU86Nc+XKlce8frq6FZ+Swd4999wD5BW9iy++mEcffZTzzz+fNWvWMHfuXLZs2cLMmTMza/Eifbt6qTfqdLR3AnX3xveSy8wynCDrzPSY/sOSus1OqcuNPKjOh9YF+Yf9GBw+fBhr7XGtsF8JM+1MvtT1JUbNaHaZVpoLWi8g9gMuQ7bqeM9/oomiiO7ubnp6eib9WM2mc4d6sec2XT+swunFFVdcwQMPPDB1ByzPIJM8Wl/Jg7zCZ4JcHS/FDDJPC3EJkjFcL13ogwtS+DLZeJvYu6ipOOuhUypyDnDBPdMUTFVMMF/xwWOo1IUZqWGobxY44s6x1I7qWIbtWIlqXTBeBeDXR0EQTj+6u7tJkoRGo8F1113HQw89xDnnnMOaNWsAaGs7jrt5uQdG92Trjmv59UkwZb3bpXV7QZt4dUJMzTY40jzC/HimX1shG2ejVL6GZokz7zZpbaaoyJJvob/Ypl4F4UcxWO8Zkc1wNoUZgH7t1DofTRNmRPsePbfWenMqL0UFQEVUrObK9quotzex811hxOgSiyqLyPu0IXMp1dolCAm9e0Dc7tzkWxZC22JUIdFmhraDOgzAnCVd/NxvXEJtNKHSEhPFL+5fIbx8Tslg77bbbmPevHn81m/9FuVy+RWXW025B+wucodNm8uTggwIk5uolHuhOss5Y7YugFI3TIE88lgopTin9ZwTcmxBEKaO9evXM2/evKk7YHmG3zzUvQFnWAv9Ohh660LAFazHIx8IKp8Uy4I1v7HRftMSKnoK78zp5U3Gu6ypMMIhzhNt2o+yCZXBsO4qfz626Sp6SkF1NqrjDOg4E1Xuzm4mCIIQmDt3LkeOHKFSqbyyeWvlHoIxlZuU1czXocz4xAdwhfmiP+z7DhtrW3jv7JvopkI+iqBUCL58cBcSa2EendIoXfKGUl4Vkc3PK/hH6IoP4EKwGNw1G644Efqng3lVMGApGgoqX41MfH+1T/rFOuKyztd5ebxP4invUg/uHNLgaeGDs3IvtJ/hXOVbF6JepBhyNDrStHaIOdZEM+HB3iudL3UiMFHIKngXzqK1d9TqzFNaFrjArjo3D/oEQRBeBsPDwzz//PPZ71u3bmX9+vXMmDGDxYsX87GPfYzdu3fzN3/zNwD8z//5P1m2bBnnnnsutVqNL33pS/zgBz/g3//936fupKszXWHPmHzjoHwm2TT9hsQ7qdng0umrdtnMpjADKjgcezMACu5s2WVhDl5wivMuyISqna8choG7hJv7Y+kStCz24xHOQEUi3xaEU4ETOYf0VVOekQdE3oMviL5yR0q/jvmg6lDjAFtrz2OU5qHhB3ljx3/0AWJcKCr4AM4mTg4fmv/8iBhrG6gw+zNININUNJtB5x2QDV66rsiMrXQIPnVBHqqdUs364xZn4oX7BSOuqOwCwjDXNDsH7QNTA+2LXOWudRFU57rZea+CxCb89rbf5s3db+ZtPW971X8q4YVMeLD3audLTRVD6RB7dI2ebKbdLCfHbJnvArz4GLY+giAIr4CHH3543Obkwx/+MAC//Mu/zJ133snevXvHNYg3Gg3++3//7+zevZvW1lYuuOACvve97x1zgzNZqFInVkd+g+H75ogyG/GsqlfIOjsjgKY3XPHzoMK8uqjsMtfu0fPNQpALeaMVGzYxCvK+vzAY3c9nUrhjxW2o9iXQuRLbsgAtiThBOOU45eaQAlRmeBVDikG5dcvg1QU++RTGKvjxXD8deQiDxirLptFnuLz1ErpLfoxDFnxZP6pGuRE2pknWNmRdYGVUkHyGNTaMM/Au75Zc/qlwj2FLhcARnEIj8b2CwSE5BG3KPY/gRF+cM50WqoDWy1TDqLDWhVCZNWFGgP8+8O+sH13P5tpmru+8ntZI9uMTxYQHe692vtRU8f/u/H95KnmET7R/mMUrf/6EyTEFQZi+XHfddS/aN3rnnXeO+/2jH/0oH/3oRyf5rF6czJGzXnOyoUzuEypvvsqWFns9bC5jUuC+UnzWOWxMssHsPgscssYq2MOFmXe+oT9I6VXkstKlWdC5EtWxAlWZkZ/vVL9AgiBMCKfcHFKAcjcuudXwfW2+Ny2TlENmWgUcauzjubHn0FoT+aDqwdHHuKHzjYA3a8E62eS4xwhz8NJMKeHalk0e6JlmLuvMBqgHiafvt47CUPM4l3HaQiXRBHfjqLDOO9WF62ryMvlqN1TnuKpdy0JUuWNSXt7EJnzpwJfciDQzzDf6vsEvzfylSTnW6chp1f349OjTrBtZx7BOuLf6qAR6giAIRaq9ZIPJs4HjQXIUpJkUgjmvYwqN+iHbDO7yMICd0PSvyGzBwxw8q7CZa6cfINy+FDXvelj+q+gzfgk984pxgZ4gCKcfF110EfPmzeONb3wjP/nJT6b02Eo5ZUFY35RJXD9y1m9nc6mlafLM2DOkWqOtRVlFouHZsWdITWGNTJs+6RUSazYPxoKnRKZ8OMbImxC04XuoU98PmLkbByWGyc8vGL8EdUWYgRr67SqzGY5XwLzrYeVvopa9BzXvBlTX2ZMW6IGr6u1r7sP6/3314FcZTUdf+o7Cy+KUNGh5tfzVgb8ichNA+FHpR/Qn/XTH3Sf6tARBEE4OvPmUsuSmKuNcOcO4Be/KSdigRM5+Wykv9wwz70J/ifKtIoWgLvTfaY1VVeg+B9WxHFoXobw8U9JxgiCc6DmkGeUZ0BxEp2lm1uLklaFK5nvnrObijiuYWV6ANg2MjlHK0kqFKCoDaUGSWfLLqPESSuulnAXDwJBkC1U8QkAImYuxDck3X6kLwWEIIrMA0OQjGnQFqrOhbbGTZlbmgLEcef570L4cFU1NiGCxfOnAl8ZdNmSGuLvvbn5x5i9OyTlMd06bYC9U9QIJCX9/+O/5jTm/cQLPShAE4SSi2gsqRmu/IbAJWX9J2ixkmcOMpjCCIcyG8gPMQ6BnvXkAeBOBlKZNiKMSqjIT1bGMRns3B+p9rJh39Yl73oIgnLScFHNIASq9MLwZpRKsLgPKJbkIzphe1hlVaDdwdstKvEY9l1fqKO9lVqVCQsy7FadNXC+eN7Ky2o1eCMYv2t/HGj/KpmjaMt4gxjlm6twQptTmPCpaF7t+u3LPC/vtglvoFLOkvIRWPb5HrzPqPM6thVfKaRPsfavvW+N+t8ryjSPfkGBPEAQhUJ6JtQnWhqZ9m5umRDFujl4jd3grznjSOpstlZmqqBLQzAwL0tbZ/F7/F5ndvpqPLbkVALt/P6j+E/J0BUE4NZnyOaTgxi8EqaXCJ7vKPhlWL/TbeVOTsMU2TfezJpdUZsoIP7vZDzUnmAf6PmirIj96oTB/NKvaeTdNSnlfHmH+qHJ9hm0+sGtdiIqPM0PwBKNQfHbpZ0/0aUxrTptg790z381ZLWcB0N/fT39/P68783Un+KwEQRBODvZs6aNvzxBdgzXSNIxEiPKZdwEdOYe2bNZeMF0J/SGpv10McSuqdSG240xU2xK+3f8vrBsZRQ1/n3fXf4WllaUv69z2N/cTE9Nb6p3gZy0IwqnIlM8hBR/sOaWCzYaj+2QYfoRXkFcSDFfCzD0/086mLiA0qXceDgGhT5QFJ+LgklmUyodRCyp21btgfKX9+lyZmwd3LfNRkcyrExwTHuy91HypE8XSytJsY7F7bDe7k91c0XHFCTsfQRCEk4Xn1+/j4X/fSqOWsKi1SRzVaZyZUC77jQYR2fy7UMkDn22uOLmQ9jOiSl3QsRzVuTKz5VZA0zT58sEvA6DRfOXgV/ijhX/0kueW2IRf3/LrtOpW/nbF36KDkYAgCKckp+QcUoDKzLy6hjdPSQvz8kKFLww8Txt5oAe5rD3I44MjZ5htp5Q3bcEpKUwTZTU2GLNE+EDPJ+JaF2aDy6nOcSYygnAMJjzYe6n5UoIgCMLJQ5oYnlqzC6UV85f30FqbxdCenfTtH2LOwja/uQkumv5OWaO/D/BaFubjEY4jFfp2/7c5nBx2xyTlewPf472z3ksLLS96fv/W/28cSA4A8KOhH/GGzpeePWhSQ200QWtFta30cl8KQRCmgFNxDimAispYXXW/BLMp66tukI+i0XjTFuX78rw8M4r94PIwKkGDqTkZp4rp39/Pob1DGBPRPaudWQtasFqhMFBud4PL2xa54K7UPWHz7YTpz4QHey81X0oQBEE4eUiaKWnTUGlxXwdp1AUobOI3KNb4nrvg+BY5uVLrElTXSmhbgtIv/VXy1UPOSCHCbYxSUr526GvcHN98/HOzCV8+8GWU/99f7f8rru249kWre7WRJs+v30ff/hF0pJm/vIcl58xEa9kYCcLJwKk4h7Rv/wj7tvXTMWRo1EFZL9eMSwW5pu/lCyYnwXQF6wLANPXraYRv+st+Hjg0wJYnD1IbtegY9uyKOaN0JvPOP5ed25ewcvlbUVH0gvNKE8PhvcOkzZSuWW20doh0U3ghp03PniAIgvBCytWYWYs62fLEAbAwMlqiI7K0doeKm5cMxe1OntlxppcMvbLg6Z0z3snOxs5xl13dcTW8yCilYlXPYtnW2PaS1b1tTx1k37Z+ume1kSSGbRsO0NpRZs6Srld0voIgCAAHdw2y9l+eY/DwGHNb6lSoMXvmCC3zZvhAz+J67PCVOz87zwQDlyi/XRhdYxNQFS/z1Bw40MbOwytom7ecBrM4uHuMgQ1tzFt9JkbtPOZ5NRspj9y7le1PHyJNUrpntXHFjcuZuWDy5uEJpyYS7AmCIJzGKKW49PplgNvURC0z6Wqv0jmjBVoWoDrOwLavQL/GgbrHm5e0f3T/ce/zj0f+EXA9fgAGwzcOf+O4wZ4xlsHDY7R1Vqm0lqgAowN1Rofqr+ncBUE4fdm8fj9DfWPMX95NO/MY3fYY/fvHmDk3qB3Kbjh6mImnYzC+chl5k6vUy96xbjh7pRfaljhpZmUWhzY+x4GRncynB3Dr8kup5HZuPMzmJ/bTO6eNUiVi/45BHv/Rdv7ju8990WTcwMFR7ntuLUlquPaMK+md3y6S0GmOBHuCIAinOa2dFV7/n86iUUuoN0ZZ/8Bu1Mr3oLTrdztR24DfnvvbbKltGXdZcFU+FlorKq0xR/YO09ZdIU0MxljKFfmqEwTh1VGvJZQrMUopErqxSpMmxgV0KszEa3iTFW/gov34A2uh1AktC6B1EbQtQpVeOD9u0Vm9bH58P/u3DaBjhUksKy6a86LnNTbcAAuVVrdOt3dXGRmokzQMpcoLJZ/gAr1H12zm/269G6sMHXtnctGVZzB7sSgfpjPyDSgIgnAasWvXLgAeeuihY15vjGFEz+en6x6ekvNpNpvU63XWrl17zOsXsnDc78MMs5Zj3xZgdCxh34ERtm51IyA6Z5XZsneAHYfG9/kd7/lPNKOjo/T397Nv374pO97GjRvHuR0WaWlp4YILLpiScxGE6cCcJV3sfu4IAwdHiSjTZqG1O3YDzkn8wHRyA6vqTGhbCi3zoXUBKqq+5DEWnjmDa955Fs8+vJe0aVh89kzOft18kvT4Q85bO8soBaNDDcrViOG+GvPO6D5uoAdwaM8Q6/Y/zPDsQygUj4w8wpytMyTYm+ZIsCcIgjDNaTQa2c99fX0ALF68GK1faHTSaDR45plnWLp06ZSc28DAAPv375/Q452xosnoYAOlFR0zqsSl/HkaY3jyySeP+/wnmm3bttHa2srs2bMn/VgAGzduZPbs2XR2vrB6ABAdw+RBEITjc+bFc2nWErY9dRBop31WC71zvaxdRVCdD23zXOWuOvdlGVYdjVKKJefMYsk5s8ZfkR7/PovPmsnhPcNs3XCQob6U3vntXPSGpS96nJFklEdHH8W2uz7oh8ce5trm1a/4fIVTCwn2BEEQpiljY2MAPPLII9ll559/PmvWrGHOnDnE8Qu/AkJlaKoGFmutOXLkyJQdL0kSnnzyyeM+/4lm//79dHZ2Ttnz27x5MzNmzGDWrFnHvN5aK47ZgnAcDh9242EefPDB8X1sZeg937o550eW89xgD2l9Honu9sPPAXb7/yYOYwzglAjH6quzHZbecxLSxNLSOcqmbRtg2/Ef798Gv0+9NEb5UDtWW9LU8K/1bxCtu949nl8bHn744Snp46vVaiRJwrp16yb9WOC+35RSWdLzWFx00UVUKpUpOZ+pQoI9QRCEacayZcsol8usX78egAsvvDD7WRAEQcgpJj+2bHE9wosWLTpusPP06DBLFy2ltbV10s8tSRIGBgZYuHDhhCgRdgw+z2C8h+reHlSqqM0ZYMfCGou63wu44LK/v3/CjvdSHDp0iOHhYRYtWjTpxwLXxhDHMXPnzj3m9dbaKXneU40Ee4IgCNOIL3zhCwwNDWGM4ZJLLuGRRx6Zkk2JIAjCqUQI8h5//PHssksuuYR169Yxb9684276n332WWbNmkVX1+T3uTUaDZ5++mnmzZs3IRLs/zXnf3F42eFxl/XGvbRFbYALLjds2MDcuXOnRPnQbDZJkoT58+dP+rHAtTGUSqXjHm+6Kh+mX/gqCIJwGvPOd76TQ4cOkSTJtJOiCIIgvFaUUkRRlAV5c+bkrpfTvae1LWpjcWXxuP9CoCdMXyTYEwRBmEYcr1dLEAThdOfpp59m1qxZ1Gq1LMibqn5aQThRSLAnCIIwwdx///383M/9HPPnz0cpxd133/2S97nvvvu45JJLqFQqrFixgjvvvHPSz1MQBOF0YsGCBQwNDQES5AmnDxLsCYIgTDAjIyNceOGF/O///b9f1u23bt3KW97yFt7whjewfv16br31Vt73vvfx3e9+d5LPVBAE4fShq6uLsbExSqXSiT4VQZgyJNgTBEGYYG688UY++clP8o53vONl3f4LX/gCy5Yt48/+7M84++yz+cAHPsB//s//mc9+9rOTfKaCIAhTiygfBGFqkWBPEAThBLN27Vquv/76cZe96U1vYu3atVN6HrWRJkNHaqTN6edGJgjCycGpqnxo1lMGj4zRrJkpPa4gvFZk9IIgCMIJZt++feMc4cA5xA0ODjI2NkZLS8ukn8OOjYd59qE9jAyNse/QKIcvGaJ3fsekH1cQhNOLG2+8kRtvvPFl376ofAA4++yzeeCBB/jsZz/Lm970psk6zXEc2TfMhgd2MdxfY+fuIRbO7KPr8skfvSAIE8G0DPb27NkDwGOPPXbMOSm1Wo1arcYjjzwyJeczPDwMwOjo6JQczxiXdTre859oms0mzz777JRo4F/Oc+vt7WXx4sWTfi6CMF3oPzjCU2t2goKOngrbtqY8+cBOVr9tJeXqtPyaEAThFOF4yodbb711So7fbKRs+Mku+g+O0DOnDbPDsunh/cxbMoue2TK2QDj5mVbf4iGY2rdvH+AsyI8VEPT395Om6ZRZlBtjsNZO6fEOHz583Oc/0fT19dHd3T0lg5vTNH3J59bWJouvcGoxd+5c9u/fP+6y/fv309nZOSVVvZGBOvXRhLnLumjUG7R0RYwM1BgbbkiwJwjCCeVEKx9qIw2G+2v0zGmjXI1p6Ypp1BJGB+oS7AmnBNPiWzxUe5544gkALrzwQtatW8fChQuJ4xc+xSiKqNVqU1b9GR0dxVo7ZcdLkoSNGzce9/lPNJs3b2bOnDn09PRM+rFCFfHFnpu1Fmul50g4dbjqqqv413/913GX3XvvvVx11VVTcvxyNSYqacaGG0QlaIwZStUS5ZZp8RUhCILwqilXYirVmJGBOuVqTLNmiDo0JUmECacI08KgJQR55557LuCCOUEQhBPF8PAw69evZ/369YAzGFi/fj07duwA4GMf+xg33XRTdvvf+I3fYMuWLXz0ox9l48aN/J//83/4h3/4B37nd35nSs63d34HZ5w/m+H+Ovu3D4KFsy6bR0tbeUqOLwjC/8/encfZUZWJ//+cqrpL751e0p19hRASIBAImwgMGQEXxBV1RsCFcQRmxn2ZRX/qjCt+hVHH0RkF0QFFHMURBXFBQZZACJAEkpB97fS+3qVu1Tm/P86p292QAFk76Tzv1ytK3773Vt1enr5Pnec8j9ibsa58yFSmOP6MSSgFbZt6KeY0U09ooGmK7GkWR4ej9rJEKpUq7xFrbGwkl8tRUyO/eEKIsff4449z4YUXlj/+0Ic+BMBVV13FLbfcwq5du8qJH8CsWbO4++67+eAHP8hNN93E1KlT+e///u/D1nzA8xTzz5rCxOm19PcOsvLZHqbPbzosxxZCiBcz1pUPANOOb6R2QgVD/UW8Fd0cf0YLnqcO2/GFOBBHZbL38MMP8+53v7u8Z2vatGls27ZtjM9KCCGsCy644EVLifc0I+qCCy5gxYoVh/CsXpznKZqn1lLVELB+h1RHCCEOjcHBQdavX1/+OKl8aGhoYPr06Xzyk59kx44d3HrrrYCtfPjGN77Bxz72Md797nfz+9//njvuuIO77777sJ53XXMldc2VrN2akkRPHFWOymTvpz/9KcuWLeP888/fY1OQKIoACMOwvJ9vpEKhgDGGMAwP+bk+/3wO9/H29PoPhVKpdFheX6lUAuw+yGw2u8fPf/SjH+Xqq6/mpJNOwvM8ampqUEoCsxBgmxzB3uND0ujqcMWrUqk0ZvH4cMRHrfVhi49g9yzn8/k9Hs8Yw1e+8hVOPPFELrnkEnzfl/goDrsjufJhZHzcUxO4OI6J4/iw/U4nxwjD8LBsUTrc8TH5eh6u+BjHMVrrvR7vN7/5DatWreLaa68lk8kAjIsYqcxR2Mmira2NSZMmcdttt1FZWck555zDQw89xFlnncUjjzzC6aefzvLly6VJxzEol8vxjne8Y9Rt27Zto7a2dlz8wgrxUjo7O2lubua2225j6dKlPPTQQ+UYCbB48WKeeOIJiY/HIImP4ljX09NDQ0ODxEexR3uLkVOmTDmq4+Mha9DyzW9+k5kzZ5LNZjnzzDNZtmzZoTpUmdYaz/N4/PHH5Rf1GFVRUcFtt93Gf//3f5dvmzZtGnV1dQwMDIzhmQkxdpIrtEopuRB2DJP4KMQLSXwUiYqKilHxEWyMPNrj4yEp4/zxj3/Mhz70If7zP/+TM888kxtvvJGLL76YtWvXMnHixIN+vKS0TynFOeec84LsW2vNc889R19fHwsWLDhsc9hyuRwrVqxg0aJFh3X2WxRFPPzww5x99tmHZfQCwJYtW+ju7mbRokWH7erHrl272LhxI8cdd9wLfq6MMcybN48PfehDDA0N8Y1vfANjDP39/XIFWxxzktKcM888s9zYKmGMYefOnWzevJl58+bR1HR4GrNorVm+fDlTp05l0qRJh+WYMDbxsbe3l2eeeYbTTz+ddPrwdDjt7+9n9erVTJw4kdmzZ4+KecYYzj77bP7t3/6N3/3ud3zxi19Eay3xURyTkvh4xhlnlEv3Rurt7eXZZ59l0qRJzJgx47D9fjz77LN4nse8efMOy/FgbOJjGIY8/vjjzJ8//7CM8AIoFousXr2aIAiYP3/+qL+Lxhj+4i/+gltvvZUbb7yRa6+9ljiOj+r4eEjKOM8880zOOOMMvvGNbwD2j/q0adP4u7/7Oz7xiU8c8PM/v4xTyjbFnuxpOR7Gx5K8EHszsozzla98JY8//jhLlizhsccekxgpRpGyTnGsGVnGecEFF7Bs2TLOOOMMqQgTLzCe4uNBL+MMw5Dly5ezdOnS4YN4HkuXLuXhhx8+2IdDKSW/pGKP9lSyBONjSV6Il8P3fTzPY9myZRIjxQvsrWRJyjrFscLzPLkQJvZoPJW9H/Q12s7OTuI4pqWlZdTtLS0trFmz5qAcI+mWlMvlWLx48R47FC1btoz/+7//49prr6W1tfWwZuBhGPKhD32ID37wg8yZM+ewHTcRxzHPPvss8+fPP6wD5o0x3HXXXWzevJkPfOADh+24YEt5n332Wb773e/ymc98hvr6+lHntWLFCnbv3s0nPvEJ8vk8Tz31FCeffDK1tbVH1dUZIV5Ksv8kl8sxODjIggULXvBGZteuXXzxi1/k2muvZe7cuYc1TgB87nOf45xzzuGiiy46rMeFsYuPAE899RTf//73ueGGG/bY6e9Q0VqzY8cO/v3f/533vOc9nHDCCeXPJfGxUCjwhS98gQceeIAvf/nLUtYpxqUkFuZyOYaGhvYYH4vFIp/61Kd4zWtew5IlS/bY+ftQuv322xkcHOQ973nPYY0TMLbxsbu7m3/5l3/hM5/5zGHbTpDo6uri+9//PnPnzuWyyy4b9TljDE888QQ/+MEP+N73vsf73ve+oy4+HvQyzp07dzJlyhQeeuihUQMvP/axj/HHP/6RRx999ICPsWXLFmbOnPmS95swYQI9PT0HfLz9EQQBcRyPydWiIAh485vfzJ133lmuRT9cKisry63bD7d0Oo3neRQKhZf9mL6+Pmpraw/hWQlxeG3bto3p06e/5P0qKyspFAqHbTzLSEopstks+Xz+sB97LONjKpUqt/4eC3V1dfT19e3TYyRGivHk5cbHVCpFNpsdsxWcsXovNZbxEez7uMM1huH5mpqa6Ozs3KfHHC3x8aAne2EYUllZyZ133snll19evv2qq66it7eXu+6664CPobVm586dVFZWytK7eNmMMQwODqKUKs+XkpU9Md5IfBT7Y0/xUSl11Fy5FuLlkPgo9kcSH8FerKyvrz+q4uMha9CyZMkSvv71rwP2l2v69Olcf/31B6VBixBCCCGEEEKIF3dI+qp+6EMf4qqrruL0009nyZIl3HjjjQwNDfGud73rUBxOCCGEEEIIIcTzHJJk74orrqCjo4NPfepTtLW1sWjRIu65554XNG0RQgghhBBCCHFoHJIyTiGEEEIIIYQQY+vw9nQVQgghhBBCCHFYSLInhBBCCCGEEOOQJHtCCCGEEEIIMQ5JsieEEEIIIYQQ45Ake+KY8s1vfpOZM2eSzWY588wzWbZs2Yve/yc/+QknnHAC2WyWk046iV/96lejPm+M4VOf+hSTJk2ioqKCpUuX8txzzx3KlyCEEIeMxEghhNizozY+GiGOET/60Y9MOp023/ve98w//dM/merqagOYU0891Tz66KMvuP+f//xn4/u+edOb3mROO+00k81mDWDOPPPM8v2/+MUvmrq6OnPhhRcaYNS/iy+++HC/RCGE2G8SI4UQYs+O5vgooxfEMePMM8/kjDPO4LzzzuPKK6/kP/7jP/jkJz/JzJkzee6551i7di0TJ04s3/+KK65gaGiIuro6zj33XM455xyuuuoqCoUCu3fvZtWqVZxxxhl8+MMfZtWqVezevZubbrqJk046iZtuuokrrriCCRMmjOErFkKIl09ipBBC7NlRHR8PWtooxBGsWCwa3/fNz372M7NkyRJz3XXXGWOMufLKK83ChQuN7/smCAKzZMmS8hWXadOmma997Wujnueyyy57wdWXdDptrrrqKvP617/eGGPMeeedZ5YsWWJaW1tNNps1F110kVm3bt3hfLlCCLFP9hYjlyxZYioqKgxgpk6dOuoK9vNj5M033/yC+AiYFStWlGOk1tpMnz7dVFZWSnwUQhwVjvb4KHv2xDGhs7OTOI5paGhg+fLlLF26FICenh5Wr17NmWeeyXnnnccpp5zCxRdfTHt7O21tbbS0tIx6ntraWpRSZDIZ/uVf/gWAxx57DID777+fiRMn8uijj/L444/z5S9/mUcffZSqqiouvvhiCoXC4X3RQgjxMu0pRv74xz9m+fLltLa2ctlll+H7fjk+AnuMkdlsloaGhlExMrnP/fffT01NDVu3bqW2tpZ7771X4qMQ4oh3tMfH4IAeLcRRpre3lziOy79cjz/+OM3NzZx77rnccccdbNy4kd7eXhYvXozWeo/PYYxBKcXnPvc5AE455ZTy58477zweeeQRUqkUH/zgB+nq6ip/rqKigosvvph77rnnEL5CIYTYfyNj5Ac+8AFOPvlkUqkUQ0ND7Nq1izAMWbx4MT/96U/3+HilFL29vWityzFy8uTJACxevJgtW7bQ1NTEzp07Of/888uPk/gohDjS7S0+zps3jyeffJKBgQGmTJnCaaedtsf3kEop8vn8qPeQSXwESKVSzJgxg56eHt74xjeW30NWVFQA7HeMlJU9cUxoamrC9306OzvLt4VhSFtbGzNmzGDNmjVs3bqVT3/60+UrNFpr1q9fP+p5li9fDkBdXR3Nzc0A/Nd//RerVq3C931e+9rXUiqVeNWrXkVXVxdnnHEGu3bt4qyzzuI973kPt99+++F70UII8TI9P0aWSiWWL19OXV0dcRxz//33M2XKlFFXsJubm9m9e/eo5ykUCmitaWpq4rzzzgPgzjvvxPd93vrWt9LZ2UljYyPTp08H4I477pD4KIQ4or1YfGxtbWXNmjVs27ZtVJXYnt5DFgoF8vk8NTU15fh43333ld9DlkolGhsbecMb3lB+D5nEx127du13jJRkTxwT0uk0ixcv5vHHH8f3fXbv3k17ezvGGBYvXszDDz/MjBkzmDNnDqtXr2bnzp0YY/j2t79dfo4bbriBtWvXsnjxYu655x7uuOMOMpkM1157LUuXLiWOY772ta8BcOmll5LJZAjDkNbWVorFIrfffjuTJk16We16hRDicHp+jFy/fj1xHJcbB8ydO5fJkyeX42Nvby9BEPC73/2u/ByPP/44AH/xF3/BnXfeSV1dHQDvete7iOOYm266CYBVq1YxZcoU0uk03d3dEh+FEEe0F4uPZ599dvk95PTp01mxYgW//OUvX/AecmR8/MlPfkJdXR1KKb7//e9z8cUXE8cxAE899RSXXHJJ+T3ktGnTeOKJJzjrrLP2P0Ye8K6/w+Qb3/iGmTFjhslkMqOaaOzNHXfcYebNm2cymYxZuHChufvuu0d9Xmtt/uVf/uVlNdHYl2N/5zvfMa94xStMfX29qa+vNxdddNEL7n/VVVftU4vVfTn+njaAZjKZ/X7t+3r8888/f48bUF/96lfv1+v/4x//aF772teaSZMmGcD87Gc/2+uxE3/4wx/MqaeeatLptJkzZ465+eabjTG2bW4mkzGzZ882p59+uqmqqjKAOe644wxgZs2aZd7ylreYs846y8ydO7d8bjfccIP58Ic/bDKZjPF936xcubJ8rA9/+MPlJi1/+Zd/aebMmWMA8//+3/8zgKmqqjI1NTUGMM3NzebPf/6zueaaa0x9fb3ZvXv3S74WIV6OsYyP+3p8iZEHL0YezPhozHCMbGxsLDcd8DzPeJ5nGhoazOzZs83kyZPL8XH+/PkmCIK9xsi1a9eWz/+cc84x73znOw1gmpqazBve8AYDlI8j8VEcKhIfJT4eyvj485//vPwect68eWby5Mnmf//3f1/yPWQYhqa+vt4Apqamxpxxxhnlx3zve98rv4cMgsAA5oILLtjvGHlUJHsjZ1usXr36JV9oMtviy1/+snnmmWfMP//zP5tUKjXqTXoy2+LnP/+5eeqpp8xll11mZs2aZfL5/AEd+x3veIf55je/aVasWGGeffZZc/XVV5u6ujqzffv28n2uuuoqc8kll5hdu3aV/3V3dx+U137zzTeb2traUc/d1tY26j4v97Xvz/G7urpGHXvVqlXG9/1RvzD78vp/9atfmX/6p38q/+K81C/rxo0bTWVlpfnQhz5knnnmGfP1r3/d+L5v7rnnHmOMMV//+tfLs1EaGxuNUsq0trYawJxwwgnmqquuMrNnzy6/mWltbTVNTU0GMNOmTTM/+MEPyuc8MDBgPvrRj5pUKmUA4/u+Oe2008q/oK2trebOO+80CxcuNBMmTDATJkwwZ5xxhgnD0EyePNl84QtfeNHXIsTLMZbxcX+OLzHy4MXIgx0fjTHm6quvHvUm6oQTTjCAqaysNGeffbaZM2eOmTp1avlC2R133LHXGPmBD3ygfFEtk8mU37TMnTvXzJw500yaNMksWLBA4qM4ZCQ+Snw8lPHxpJNOMul02gBm4cKF5fj4iU984mW9hzz++ONHvYdMnqe2trb8HrKystLMmDHDzJ8/f79j5FGR7I1sc2qMMXEcv+gLfetb32pe85rXjLrtzDPPNO973/uMMfaqRGtrq/nKV75S/nxvb6/JZDLm9ttvP6BjP18URaampsZ8//vfL982sk3/S9nX4998882mrq5ur8+3L699f47/fF/72tdMTU2NGRwcLN+2L69/pJfzy/qxj33MLFiwYNRtV1xxxairPkuWLDHnnXeemT59ulFKmYaGBgOYv/3bvzVxHJt0Ol1O2o477jgzY8aMPV5p+vSnP21e8YpXmHQ6bVKplGlubjZBEBillPF937S1tZXb9QZBYG688UYDmN/+9rfmyiuvNJdddtk+fw2EeL6xjI/7c/znkxh5cGLkwYyP1113nfn6179efhMDmDe+8Y0mjmMzZcoUM2vWrHJ8NMbsNUZOnz7dpNNp09jYaF71qleV3/QA5pprrjFbt26V+CgOKYmPEh+NOXTxUSlVTtYefPDBcnxMVh9f7D3kv/zLv5iKigrT0NBgqqury/GxsrLSpFIp09bWZjo6OgxgPvShD5kNGzbsd4w84vfshWE4qlU+gOd5LF26lIcffniPj3n44YdH3R9sB5vk/ps2baKtrW3Uferq6jjzzDNHPef+HPv5crkcpVKJhoaGUbcnbfrnzZvH+9///lFdGw/0+IODg8yYMYNp06bx+te/ntWrV5c/93Jf+8F6/d/97nd529veRlVV1T6//v3xUt/75DV96EMfYsuWLdx+++0MDg4C8OCDD/L+97+fyspKfvWrXwHQ3d3N29/+doy9MMJnPvMZ7r33XjZs2MBll13Gk08+SRiGfPjDH6a9vZ1SqcRVV11FHMf86U9/4oEHHiCOY5qbm3nf+95HU1MT69evp6Wlhba2toPymsWxayzj4/4e//kkRh6+GPly4+PSpUu5/vrrufXWW0mn0wCsW7eO97///QwNDZXv393dzSc/+Uk2b978gvi4fPlyuru7CcOQa665hnvvvZeOjg6uvvpqAP7yL/+SdevWSXwUh4zER4mP+2J/4+Ppp58OwGc/+9lyfLzlllsAGBgY2Gt8fO655ygUCgwODvKv//qvdHR08MUvfhGlFKVSia1bt/JXf/VXALzuda9j9uzZ+x0jj/hkL5lt8fxZFS/2Qvc022Lk/ZP/f6nn3J9jP9/HP/5xJk+ePOoH6JJLLuHWW2/ld7/7HV/60pf44x//yKWXXlrenHkgx583bx7f+973uOuuu/jhD3+I1ppzzjmH7du379NrPxivf9myZaxatYr3vve9o25/ua9/f+zte9/f308+n3/Ba7riiiv46le/iud5rFq1iieffJJ77rmn3GnT93127dpVfq6enh6uueYa5s+fz6tf/WrCMMT3fT7ykY+U7/PmN78ZgOuvv55Xv/rVAHzta1+js7OTrq4uJk2adMCvUwgY2/i4v8d/PomRhy9GSnwUxxKJjxIf98X+xMcbbriBVatWAZTjY0tLS3nsQmVlZfm5nh8f+/v7mTBhAnEc89d//dcAfOxjH+N1r3sdAK94xSvI5XIAZDIZtm/fvt8xUubsHUJf/OIX+dGPfsT9999PNpst3/62t72t/N8nnXQSJ598MnPmzOH+++/noosuOqBjnn322Zx99tnlj8855xzmz5/Pt7/97fJMj8Plu9/9LieddBJLliwZdfuhfP374/rrr+c3v/kNv/zlL7n22mupra3l/e9/PwBf+tKXuPrqq7nyyiuZMmUKX/va18odN8Fe0WppaaGxsbF8W3t7O7W1tVx55ZVcdtllXHjhhaxdu5Yvf/nLzJ07l4svvpif/vSntLa2HvbXKsSRRGLkkR8jJT4KMTYkPh4d8XHr1q387//+L9u3b2fNmjXU1tZy4403ApQHpycxcsuWLaMeX1dXx+zZs8sxUinFq171Kn71q1/xN3/zN+UYed9993HXXXftd4w84lf2ktkWz5/ls3v37r2+0NbW1he9f/L/L/Wc+3PsxA033MAXv/hFfvOb33DyySe/6H1HLs2OdCDHT6RSKU499dTyc7/c136gxx8aGuJHP/oR73nPe17yHPf2+vfH3r73tbW1VFRU7PU1TZgwgYULF/KpT32KRYsW8eSTTwJQX18PwNatW0ddwQZYu3Yt/f39lEqlUbffd999LFmyhKeffpo3velNaK254YYbWLx4MQ888ACpVIrf/e53owKqEPtjLOPj/h4/ITHy8MdIiY/iWCLxUeLjvtjf+Lh7924WLFjADTfccMTGyCM+2UtmW4yc5aO1ftEXevbZZ4+6P9gvXnL/WbNm0draOuo+/f39PProo6Oec3+ODfDlL3+Zz33uc9xzzz3lWt4Xs7el2f09/khxHLNy5cryc7/c136gx//JT35CsVgsL02/mANZmn6+l/rev9hresc73sHq1at59NFHy7NRNm3axJNPPsmtt97KLbfcwic/+UmuvPJKwJY7bNy4kfb2dj72sY+xZs0a/uM//oM77riDj3zkI9x77720t7dz++23E4Yh5557Lt3d3bz//e9ncHCQr371q3z+858vn8dDDz1EOp1+wfkLsTdjGR/39/ggMRLGJkZKfBTHEomPEh/3xYHEx7PPPpvrr7/+sMTIq6++mp07d9Lf318+j5eMjy+7lcsYSmZb3HLLLeaZZ54xf/M3f2Pq6+vL7WDf+c53mk984hPl+//5z38uz/559tlnzac//ek9ts6tr683d911l3n66afN61//+r2OXtiXY3/xi1806XTa3HnnnaPawg4MDBhjjBkYGDAf+chHzMMPP2w2bdpkfvvb35rTTjvNHHfccaZQKBzwa//MZz5j7r33XrNhwwazfPly87a3vc1ks1mzevXqfX7t+3P8xCte8QpzxRVXvOD2fX39AwMDZsWKFWbFihXl+XUrVqwwW7ZsMcYY84lPfMK8853vLN8/aZ370Y9+1Dz77LPmm9/85gta577Ya/rDH/6wx65JV111lTHGdoE6//zzR53jH/7wB7No0SKTTqfN7NmzR7UITnz9618vd6ZbsmSJeeSRR8zdd99tUqmUeeyxx0x/f7+ZPXu2+eAHP/iCxwrxYsYyPu7P8SVGWgcjRkp8FOLFSXyU+Hi44qMx5rDFyK9+9av7FB+PimTPmD3/MUicf/755S9k4o477jDHH3+8SafTZsGCBXsditnS0mIymYy56KKLzNq1aw/42C/Wpt8YY3K5nHnVq15lmpubTSqVMjNmzDDXXHPNC+aY7O/xP/CBD5Tv29LSYl796lebJ554Yr9f+74e3xhj1qxZYwDzm9/85gXPta+v/3C+uRgL1157rTn++OPNO97xDnPSSSftMVgL8VLGMj7u6/ElRh68GCnxUYiXJvFR4uOxHh+VMcbsdU1TCHFI5fN5Fi5cyLZt21i+fDknnXTSWJ+SEEIcESQ+CiHEnu1LfDzi9+wJMZ5t2LCBnTt3orVm8+bNY306QghxxJD4KIQQe7Yv8VFW9oQYI2EYsmTJEhYtWsS8efO48cYbWblyJRMnThzrUxNCiDEl8VEIIfZsX+OjJHtCjJGPfvSj3HnnnTz11FNUV1dz/vnnU1dXxy9/+cuxPjUhhBhTEh+FEGLP9jU+ShmnEGPg/vvv58Ybb+QHP/gBtbW1eJ7HD37wAx544AG+9a1vjfXpCSHEmJH4KIQQe7Y/8VFW9oQQQgghhBBiHJKVvaPcrbfeSmNjI8VicdTtl19+Oe985zvH6KyEEGLsSXwUQog9k/h47JBk7yj3lre8hTiO+cUvflG+rb29nbvvvpt3v/vdY3hmQggxtiQ+CiHEnkl8PHZIsneUq6io4B3veAc333xz+bYf/vCHTJ8+nQsuuGDsTkwIIcaYxEchhNgziY/HDkn2xoFrrrmG3/zmN+zYsQOAW265hauvvhql1BifmRBCjC2Jj0IIsWcSH48N0qBlnFi8eDFvfvObedWrXsWSJUvYvHkz06ZNG+vTEkKIMSfxUQgh9kzi4/gXjPUJiIPjve99LzfeeCM7duxg6dKl8osqhBCOxEchhNgziY/jn6zsjRN9fX1MnjyZKIq49dZbueKKK8b6lIQQ4ogg8VEIIfZM4uP4J3v2xom6ujre9KY3UV1dzeWXXz7WpyOEEEcMiY9CCLFnEh/HP0n2xpEdO3bwV3/1V2QymbE+FSGEOKJIfBRCiD2T+Di+SRnnONDT08P999/Pm9/8Zp555hnmzZs31qckhBBHBImPQgixZxIfjw3SoGUcOPXUU+np6eFLX/qS/KIKIcQIEh+FEGLPJD4eG2RlTwghhBBCCCHGIdmzJ4QQQgghhBDjkCR7QgghhBBCCDEOSbInhBBCCCGEEOOQJHtCCCGEEEIIMQ5JsieEEEIIIYQQ45Ake0IIIYQQQggxDkmyJ4QQQgghhBDjkCR7QgghhBBCCDEOSbInhBBCCCGEEOOQJHtCCCGEEEIIMQ5JsieEEEIIIYQQ45Ake0IIIYQQQggxDkmyJ4QQQgghhBDjkCR7QgghhBBCCDEOSbInhBBCCCGEEOOQJHtCCCGEEEIIMQ5JsieEEEIIIYQQ45Ake0IIIYQQQggxDkmyJ4QQQgghhBDjkCR7QgghhBBCCDEOSbInhBBCCCGEEOOQJHtCCCGEEEIIMQ5JsieEEEIIIYQQ45Ake0IIIYQQQggxDkmyJ4QQQgghhBDjkCR7QgghhBBCCDEOSbInhBBCCCGEEOOQJHtCCCGEEEIIMQ5JsjfOzJw5k6uvvnqsT0MIIY5IEiOFEEIcSyTZO4Q2bNjA+973PmbPnk02m6W2tpZzzz2Xm266iXw+P9an97L813/9F+effz4tLS1kMhlmzZrFu971LjZv3jzWpyaEOMqNhxg5UqlU4sQTT0QpxQ033DDWpyOEEEIQjPUJjFd33303b3nLW8hkMlx55ZUsXLiQMAx58MEH+ehHP8rq1av5zne+M9an+ZJWrFjBrFmzuOyyy5gwYQKbNm3iv/7rv/jlL3/JU089xeTJk8f6FIUQR6HxEiNH+vrXv87WrVvH+jSEEEKIMkn2DoFNmzbxtre9jRkzZvD73/+eSZMmlT933XXXsX79eu6+++4xPMOX7z/+4z9ecNvll1/O6aefzq233sonPvGJMTgrIcTRbDzFyER7ezuf/exn+fjHP86nPvWpsT4dIYQQApAyzkPiy1/+MoODg3z3u98d9SYmMXfuXP7hH/4BgPPPP59TTjllj88zb948Lr744vLHWmtuuukmTjrpJLLZLM3NzVxyySU8/vjjL3o+vb29fOADH2DatGlkMhnmzp3Ll770JbTW+/X6Zs6cWX5eIYTYV+MxRn7iE59g3rx5/PVf//XLfowQQghxqMnK3iHwf//3f8yePZtzzjnnJe/7zne+k2uuuYZVq1axcOHC8u2PPfYY69at45//+Z/Lt73nPe/hlltu4dJLL+W9730vURTxwAMP8Mgjj3D66afv8flzuRznn38+O3bs4H3vex/Tp0/noYce4pOf/CS7du3ixhtvfFmvqauriziO2bp1K5/97GcBuOiii17WY4UQYqTxFiOXLVvG97//fR588EGUUi/9BRBCCCEOFyMOqr6+PgOY17/+9S/r/r29vSabzZqPf/zjo27/+7//e1NVVWUGBweNMcb8/ve/N4D5+7//+xc8h9a6/N8zZswwV111Vfnjz33uc6aqqsqsW7du1GM+8YlPGN/3zdatW1/WeWYyGQMYwDQ2Npp///d/f1mPE0KIkcZbjNRamyVLlpi3v/3txhhjNm3aZADzla985WW9PiGEEOJQkjLOg6y/vx+Ampqal3X/uro6Xv/613P77bdjjAEgjmN+/OMfc/nll1NVVQXAT3/6U5RSfPrTn37Bc7zYleSf/OQnnHfeeUyYMIHOzs7yv6VLlxLHMX/6059e1nn++te/5le/+hVf/epXmT59OkNDQy/rcUIIMdJ4i5G33HILK1eu5Etf+tLLej1CCCHE4SRlnAdZbW0tAAMDAy/7MVdeeSU//vGPeeCBB3jlK1/Jb3/7W3bv3s073/nO8n02bNjA5MmTaWho2Kfzee6553j66adpbm7e4+fb29tf1vNceOGFAFx66aW8/vWvZ+HChVRXV3P99dfv0/kIIY5t4ylG9vf388lPfpKPfvSjTJs2bZ+OK4QQQhwOkuwdZLW1tUyePJlVq1a97MdcfPHFtLS08MMf/pBXvvKV/PCHP6S1tZWlS5ce8PlorfnLv/xLPvaxj+3x88cff/w+P+ecOXM49dRT+Z//+R9J9oQQ+2Q8xcgbbriBMAy54ooryrNHt2/fDkBPTw+bN29m8uTJpNPpAz5PIYQQYn9IsncIvPa1r+U73/kODz/8MGefffZL3t/3fd7xjndwyy238KUvfYmf//znXHPNNfi+X77PnDlzuPfee+nu7t6nK9dz5sxhcHDwoLwpGimfz1MsFg/qcwohjg3jJUZu3bqVnp4eFixY8ILPff7zn+fzn/88K1asYNGiRfv83EIIIcTBIHv2DoGPfexjVFVV8d73vpfdu3e/4PMbNmzgpptuGnXbO9/5Tnp6enjf+97H4ODgC9p3v+lNb8IYw2c+85kXPF+yj2VP3vrWt/Lwww9z7733vuBzvb29RFG018dGUURPT88Lbl+2bBkrV67ca3c7IYR4MeMlRv793/89P/vZz0b9+/a3vw3A1Vdfzc9+9jNmzZq118cLIYQQh5oyL/ZXUOy3X/ziF1xxxRVUVFRw5ZVXsnDhQsIw5KGHHuInP/kJV199dflNQeKkk05i1apVzJ8/n2eeeeYFz3nllVfygx/8gEsvvZRLLrkErTUPPPAAF154YbmccubMmVxwwQXccsstgG0rft555/H0009z9dVXs3jxYoaGhli5ciV33nknmzdvpqmpaY+vobe3l6lTp3LFFVewYMECqqqqWLlyJTfffDPZbJZHHnmE44477uB+4YQQx4TxECP3ZPPmzcyaNYuvfOUrfOQjH9n/L5AQQghxMIxdI9Dxb926deaaa64xM2fONOl02tTU1Jhzzz3XfP3rXzeFQuEF9//yl79sAPP5z39+j88XRZH5yle+Yk444QSTTqdNc3OzufTSS83y5cvL93l+W3FjjBkYGDCf/OQnzdy5c006nTZNTU3mnHPOMTfccIMJw3Cv518sFs0//MM/mJNPPtnU1taaVCplZsyYYd7znveYTZs27dfXRAghEkd7jNwTGb0ghBDiSCIre0eQm266iQ9+8INs3ryZ6dOnj/XpCCHEEUVipBBCCLFvJNk7QhhjOOWUU2hsbOQPf/jDWJ+OEEIcUSRGCiGEEPtOunGOsaGhIX7xi1/whz/8gZUrV3LXXXeN9SkJIcQRQ2KkEEIIsf9kZW+MJZv56+vrufbaa/m3f/u3sT4lIYQ4YkiMFEIIIfafJHtCCCGEEEIIMQ7JnD0hhBBCCCGEGIck2RNCCCGEEEKIcUiSPSGEEEIIIYQYhyTZE0IIIYQQQohxSJI9IYQQQgghhBiHJNkTQgghhBBCiHFIkj0hhBBCCCGEGIck2RNCCCGEEEKIcUiSPSGEEEIIIYQYhyTZE0IIIYQQQohxSJI9IYQQQgghhBiHJNkTQgghhBBCiHFIkj0hhBBCCCGEGIck2RNCCCGEEEKIcUiSPSGEEEIIIYQYhyTZE0IIIYQQQohxSJI9IYQQQgghhBiHJNkTQgghhBBCiHFIkj0hhBBCCCGEGIck2RNCCCGEEEKIcUiSPSGEEEIIIYQYhyTZE0IIIYQQQohxSJI9IYQQQgghhBiHJNkTQgghhBBCiHFIkj0hhBBCCCGEGIck2RNCCCGEEEKIcUiSPSGEEEIIIYQYhyTZE0IIIYQQQohxSJI9IYQQQgghhBiHJNkTQgghhBBCiHFIkj0hhBBCCCGEGIck2RNCCCGEEEKIcUiSPSGEEEIIIYQYhyTZE0IIIYQQQohxSJI9IYQQQgghhBiHJNkTQgghhBBCiHFIkj0hhBBCCCGEGIck2RNCCCGEEEKIcUiSPSGEEEIIIYQYhyTZE0IIIYQQQohxSJI9IYQQQgghhBiHJNkTQgghhBBCiHFIkj0hhBBCCCGEGIck2RNCCCGEEEKIcUiSPSGEEEIIIYQYhyTZE0IIIYQQQohxSJI9IYQQQgghhBiHJNkTQgghhBBCiHFIkj0hhBBCCCGEGIck2RNCCCGEEEKIceioTPa01vT09GCMGetTEUKII0oSH7XWY30qQgghhBhjR2Wy19HRQUNDAx0dHZLwCSHECN3d3TQ0NNDe3i7xUQghhDjGHZXJXvIGZu3atQwODsoVbCGEeJ7nnnuO/v5+4jge61MRQgghxBg5KpO9xPbt21m3bh39/f1EUTTWpyOEEEeM7du3k8/nWblyJfl8Xlb5hBBCiGPQUZ3sgX1DUygUWLVqFblcTt7QCCGE43keW7Zsob+/n1WrVslFMSGEEOIYc9QnezD8hmZoaIhcLidlnUIIASilyv+9ceNGBgYGpKxTCCGEOIYEY30CB8PINzTr1q1j1qxZVFdX43njIpcVL6G7bZDOnQPUN1UycXodYH8mRv5cCHEsS2Lhxo0bmT17NlVVVQTBuAj/4iUM9RfZuaGHbGXAlOMa8Twl8VEIIY4h4+6v/datW5k8eTLbt29n1qxZe0z4urq66Orq4vjjjz8s57R9+3aMMUybNu2wHE9rXX5TdzgS3qeffprZs2dTXV19yI8VRRFPPfUUixYtwvd9lv92E3d/50nCfESQ9rjwbSdy/lvmo5Qik8nIGxohRti+fTtTp05l+/bte40PhUKBZ555htNOO+2wnFNvby+7du1i/vz5h+V4hzs+bty4kcrKSlpbWw/5sQBWr17N1KlTqaurY9vaLm7/wkP0dxXwfMUJSybz1o+cSSoTSHwUQohjxLhc+vI8jw0bNmCMKV/BHPmvWCzS39+/x88din+5XI6hoaHDdjxjDBs3btzr6z/Y/3p6eojj+LAcC2yyDtCze8gmeoWIito0Wht+f9tqtq7pwhgj+zeF2APP8140Phhj6OrqOmzxqlQq0dfXN27j4+DgIIVC4bC9vr6+PkqlEgA/vfExejvyVNSkCVI+qx/ezrJ7Nkh8FEKIY8i4W9kbaWSC8PzbR/7/WJ7LoTrW4T7myOMejmMopejaOUiYj6isTeP7Hn51mv7uPB3b+pl+QuMhPxchjmZHUnw8nMcbi/g4FrG4mIvo68iRrQgIAo8g8CjmS3RsGzhs5yGEEGLsjcuVPXFsqG+uJEh7FHMljDG2lDPlU99cOdanJoQQYypTmaKiJk2xEGGMISrZxjx1Eh+FEOKYIsmeOGpNnF7H+W+x+3z6uwuUSprFfzmLOYtaxvjMhBBibHme4vXXLiZbnWagu0BuIGTG/CbOft1xY31qQgghDqNxXcYpxr+L3rGQOae00LF9gPrmSuaeahM92Y8ihDjWzT9zCu//6lK2rekkU5ni+NMnkUr7Eh+FEOIYIsmeOOrNXNDMzAXN5Y/ljYwQQlgTp9UycVpt+WOJj0IIcWyRMk4hhBBCCCGEGIck2RNCCCGEEEKIcUiSPSGEEEIIIYQYh2TPnjiqmbgAue32X34XzHjbWJ+SEEIIIYQQRwRJ9sRRwxgDhU5qoo2w89eY4g4I+8CvBhWDX4VSShoQCCGEEEIIgSR74ghm4hDyOyC3A3LbILcTTMCEaC0MRmByoALAgDGQqhvrUxZCCCGEEOKIIcmeOCIYY6DUOyKx2w5RHtBAAKYIJkSNTO6MAc+zH2MgLcmeEEIIIYQQiaMy2fvWt77F3Llzx/o0xAEwumT32CX77QqdEA+BXwkmgrgIKmWTOaVAa5vToVFgbwMwypZwmhhS9WP2eoQ4UvzmN7+hpaVFypmFEEIIcXQmew0NDZx11llks1kAoiga4zMSL8WEfa4kczvk22yiF1TZJM3EoCPwfHdnbf8pAyj7z8TgBXY1L7kPvr0NA7oE6Qlj8+KEOILU1dUxZ84cKisr2bRp01ifjhBCCCHG0H6NXvjCF77AGWecQU1NDRMnTuTyyy9n7dq1L/qYW265BaXUqH9JsravrrjiCv7nf/6HUqkEwPLlywEIw3C/nk8cXEbHmNwOTOejmG0/w6y5CTbeCrvug75nIb/b3lG5RE5rm8wp3+Z26BGfNy75M+ClQYFCo5LkT3n2/kZDpmFMXq8QzzeWMfLMM8/koYceolgslmPiunXr9ut1CCGEEOLotl8re3/84x+57rrrOOOMM4iiiH/8x3/kVa96Fc888wxVVVV7fVxtbe2oNzwqKcXbD8YY4jgGYP78+axataqc9OVyuf1+XrHvPFPAG3wOUxywK3fhoN1jp3zQMegQUtXYFTpjV/H8lP04SeaUP+LzIxM5BcTuv/3hxM9EoDKUV/0UkK4fqy+BEKMcCTFSa828efN46KGHCILhUN/X17ffzymEEEKIo8t+JXv33HPPqI9vueUWJk6cyPLly3nlK1+518cppWhtbd2fQ76o2tpaAE455RSefPJJnnrqKQAefvjhPb5ZKpVKRFHEgw8+eNDPZU+KxSIAXV1dB+05V6dWo9GcVDrpBZ9L9urs7fUfEKNJxT1kdCfpuIMg6qO12EH7k5V0+gqPmNik8DyN0QrlxShdIvIq8bCJmmeKGJVCqzQeJYzWdmSC8tFGEVAgJo1CoTAYE+NhiLwsnolQJmbL5s2YIIM2Hr4pEntV7O55CICJEyfKnk4xpo60GDl79mza2toAysnk3uKD1hpjzGGLj1EUEYbhQTterjdiw6P9lAqapplZpp1cNep1HtL4uAeFQoHu7m527NhxyI8F9mLn6tWrRyX4I1VUVHDqqacelnMRQggx9g7Knr3kSnFDw4uX0Q0ODjJjxgy01px22ml8/vOfZ8GCBQfjFACorKwEYPHixTz++OMcf/zxeN4LK1W7urro7Oxk3rx5B+3YL2b79u0YY5g2bdpBeb5BPcinuj6FNppXNb2KWq921Oe11qxYsWKvr3+fxHm8Yht+YReq1Imf34bBt/vrjMaYanbv6qG+YQLZbAbiPEZVoJTBoFA6RKHRfhWKGIxGxSHGT9sGLLqIwXMVnR4Yg9IFe3+j7QqeLoGfRqs0Ki6yY/sQTS2tKC+FUQoV5dBVM6lvsd/PTCZzYK9ZiIPsSImRYOPjo48+utf4UCwWWbVq1WGLj729vezateugHK+/M8/3/98jDPXa8tUtTwySVXWc95bhiz8HNT6+DBs3bqSqqoqWlpZDfiyA1atXM3XqVOrqXHdiYyAexAu70Olm/Eztiz+BEEKIceWAkz2tNR/4wAc499xzWbhw4V7vN2/ePL73ve9x8skn09fXxw033MA555xT/sN0MKXTaQAaGxv3eHUzDEP6+/tpbm4+qMfdm66uLowxB+14d7XfRWjsm5n7uI+/bf7bUZ9PGtbs7fXvjTEGwi7XRGUXDG2BKOdKKD0IFFRkbMdMpWwihs9u5VNZUUllRRpiz5VsajAeRIO2ZNOrABPajpo6BN+VYMYKvIzbqwfEIRBAUO26ckZABH4WvIC4CEYFVFbX4HuBa+7iQcN0lPv6GmOkE6E4YhxpMdL3bSOkvcWHXC6HUuqwxUetNR0dHQfleI/94klyfSGZbIDyFGEhYtkvNvOad51OpiIF7H983F87duygqqrqkH89jTGYYg/Vpo0GnaOuqCHfjolDlM6D8lCtV6LS9RIfhRDiGHLAf+muu+46Vq1a9ZIlOGeffTZnn312+eNzzjmH+fPn8+1vf5vPfe5zB3oax4yBeIDbu25HuyYmP+76MW9vfDt1wb7PmCsPLc/vhKGtUOgCUwCVtgleNGgTsWRvndaANzzbTmv7OeX+mdh10MSNSXDz70iaqBibAHpBcgL2di8FpuQ+r8FPfixdN04V2FMY2cgFZe8bF20yKZ04xRFKYuThUxgMAYXy7NUjz1dobSjmo3Kyd7QzRkPYgyl0QrEDCp3oYheq1I9RaepyzxH0NqFLWZQxEFTaeK5SKNnXLIQQx5wDSvauv/56fvnLX/KnP/1pn688p1IpTj31VNavX38gp3DM+XHXj8nrfPnjoilye9ft/G3L377Io0YMLR/aDnk31y6/066wqQB0EZuUuUQuaYSi3DiEJFnzA3sfUxpupILCJI1S8IbHI4BLBD33fLEbr+C5Fb5kZIZLCJUbt6B8e5uO7fGMcfcvle9tkz3cZAZfZuyJI5LEyMNrzqIWHvq/5yjmI3xfEcWaSbMmUF2/f52fx5KOI1SpGwqdmLAbCu3E+U5UNIjyPIxKo0yI1q483kuVL8QZY1xoTGOMvVhnArt3UVb1hBDi2LJfyZ4xhr/7u7/jZz/7Gffffz+zZs3a5+eI45iVK1fy6le/en9O4Zi1fGj5y7pNmRiGtmHCXVDogMGNLtnKArHLmNzoAxjuiJl0wDR6xIpdsqJmgGQWngE0KM8memA/9tK4zMwOPB+5imciUMmbLve83ohkUrvZeYw4psm4oenalngmq3rlTM+ds4xdEEcQiZFj4+RXTufSd53CfT9chY41U+ZM4MpPvxLPO/SNWPaX0SVMoRNV7MIUOyDsw+R3oeMinhtPY/AhzoEKUF5yUU5jdATKx/NsXDTaNrAyykO52Gtwc0wzUv0ghBDHov1K9q677jpuu+027rrrLmpqaspd3urq6qioqADgyiuvZMqUKXzhC18A4LOf/SxnnXUWc+fOpbe3l6985Sts2bKF9773vQfppYw9bTSeOrQb/r8242v0RD2jbpsQTMCU+u1eu1wbanAjM4sPw/a14Pt25S4ugJ8eLofUyiVabtyBiV3Jpiu9NK5EMynBHFXCmZRs2qvIqvwYGLUySGCPbQ/qEkQ1osRT25JRkuMHw5WfJnLJoLJJo/Ltf2OHqNs5eynb5AUFqX0vYxXiUJEYOZoxhlIxJpXxD2kHTKUUF/3VQl755vmEhRKVtZnD0nHz5dBRARV2YYpd9gJcsRNTGrIlmV7KxlGj0cpH6SJKZUliqcHYa29+2sXGGGO0LYTw0kA0fIEMVY6LxsQQl2zozhyePZhCCCGOLPuV7H3rW98C4IILLhh1+80338zVV18NwNatW0d1Ouvp6eGaa66hra2NCRMmsHjxYh566CFOPPHE/TvzI8z/9fwf3+v4HrfOuZUav+aQHSfrZWkNJkKhbXivXW67XfXy0zYBCgfcXPIkMXNlO0l5JNqtuCUfG1eyOaLc0ri9dEA5efP98oflkk2SNTYz+jnLs/Tcz0B5r13Cc3vxPNdkZcRsPWOAaMScPZdIKh+Msl06dQR+hb1fUI3yRj63EGNLYuSw51a08f1P/4n+rjzV9Vmu/PR5nLBk8iE9Zirjk8ocvpiwubiZGekZtkwyLriVug5MsZu63mVUDYXoQoMdJaN8lA4xOsKoNJ4XuJmkJbdSp1BeGqN8263YxGB8W5IJNvnTEeDZ25QCrdE6sqFS+aAMxmgX1pVd5cs0HravhxBCiCPHfpdxvpT7779/1Mdf+9rX+NrXvrY/hzviFXWRb+3+Fr1xLz/p+gnvnvjug/r8JhqC3A7IbbN77oq7baLkZWxny7jg9t7hcrkY4/m2BLM8tHxE4qeTVTHsbbrk7psc0JVsKs/+024vHd7wc+I+Dyg0aLfXTrkh6K7E03bsdAmcl3KPjW0ymiRoOra3eb4r9XTH9DIjrlanbDIYGTvCAeNer4Lg0CXXQuwPiZFWb8cQ3/7IbykVYwCG+gp85+O/459uewONk6rH+OwOjImGoNDB0z33c8v2r/D22tex2JsCOsR4aZQxaM8jCNtRfiVJgDbalOOcSvbYaew+aBRKuT3NymBMhDHK3U9h3IU0g0vgsEmdjdnpEVXxbh+fn3YjbICsJHtCCHEsOvR9p48BP+/5OX2xnaN1W9dtvKXxLfu9umeMhkL76PEHcQ78KvsGIQ5tAhQkK2baPTIpj9QM72dLPu8PJ3dmxCpekpSVV+lGJIdG2ZJN41bpjBp+PElJp03elNbDjVKUcuMSRuyrS/YHKt+t4kUu0UvKSIdXCYf3EfqjV/18V67pueRy5CplSuZGCXEk2rSyg7AQlz82BqJQs+HJ3UdFsmeMwZQGUMVOTLETU7DdL40uoqIhwGNl14+ZWcqzovgrTm36azw/Y5MyE4G2nY2NCjC4igSVwsY3363auf3RxsN4vk3pXJLnqQA8D+X246FSthGLClBojA5taFWBK4OPUNh9e0r5dq8frgw0JXv2hBDiWCTJ3gjGGJb9egMP/99zGG04beksznvTCS+6ub+oi3y/4/v2jzuQ1/l9Wt0zccGt2u2A3Fab4PkVrpQSl+iNaBmuR5Y3Jo1Ukg37CdcdM9kLV17VwyV/enhVzGhXojliP1+5JNMMJ3dJsuVeZ3m/HzEo2xDAvmFxIxnKXTRjbLLpPi6fk89woxjX2MW4N0gEw/c3EcOrhMn5gPECe946AmknLsRhsXFlO/fe8jSDvQXmnDyR11xzKpnKvY80yFTs+U9MpvLI+tNjuxX3EeZ3ogpd+GGfHWsQ9mG8wDY9MWDiEsozbtaoz5bCJrqKO/GUot/keLa4nhMrTnTVEraE0igXS6MQPIPyMigToPVwlYLyfJQKXIi0MU/hg9I2YdNFMMaNlHBNsVx3YqXcvmoUJi6BNvY2V5ZvdAiZ5sMyQF4IIcSR58j6izvGHrtnI3f+v0fRsS0R3LG+Bx1rLnzbgr0+5u7eu+mNe8sfGwz/0/U/vKPpHWS90e2+jTFQ7LSJXX778F67ZPSACd1etOQB0fDnyuWUyiZSSWJl3HiCkSt1I5M7tF2hS8o09ci9c0kylay64VbSjFs5dMkgSWOUESWfyp1DHNt9dO7p7Om6z49svJKs4umiOx72OPYdEQ8M/Jk6v46TsyeM2Oun3GseXsUzRtvnNm5F0MSQlk6cQhxqO9Z3818f/z1hIUIpaNvcS29Hjnd97vy9NkE5/vRJTJvXwI7netDa4HmKlpl1zD9rymE+e0vrGFPspjLegel4GB11Exd78MJeDIYf9/yUrPF4Q91lbmqMGxVDbBM9ZWxSpjyMLvFo30N4nk+ydvno4KPMT81FeZ5dWUvGHmhjq+JVavhCHLFN4PxU+WKhZez9lC2P7+8apGt7N1HsU99cRfPUyuFZp8peFDNGY1SMUh7as/v47J5AH4WPl206vF9oIYQQRwxJ9kZ49NfriWNDRZW9Ul3IlXjk7vUvmuxNTU/lzKozR91WF9TZshs3tLxicDlB2AbrfmeTHZVxJT4FW54JkDQ1SZIcNSLRUv5wYpfsnTNuzxrJOAS36uUaq5ikAybxiL178ejky5Tc3jiXuCVlk4H7OEkcvREfmxj8EeMb3Ow82zjAreKpEeMWdAy+N1xumnT91EnHTp/2qIflQ0+QwWNuajqVQSXlzp24vX7JKp4XuNfmkmPly8qeEIfBU/dvpVSMyVQEKKUohTFrlu2kvytPXVPlHh8TpHyu//rF3HfrSnZv6aN5ai2vuupk0plD+6fH6BgTdtvyy0IHhL2YfJuNyXGRxnADdOfQJBeffDaH22gLd5E1hu2lHUzPziDpOGzcRS6VxEKj6Qh3slt3uNjogTLk4wE2RVuYkz3OxVSNMhFKZWyppVL2glVsS9lVeWSCG03jpVFJJ01dYrB7iPVPdlPKhyhf0dvWR1SqJ5wSMjMzzY5Y0CVAo1TKJpjKQ2nbnVN5gT2uXBATQohjliR7Ixm7+lbIueHd2m2mfxFLqpewpHqJXbULeyC/w67Ybfof2147qCSTa7N/fHULbtPZcPnkqH1yrpwS93mdDCFn+LZklW9kCWcy7sFE4GUwWrtCTnf/JDnULkFLVsqSY5Y7YLrGJ8mPhY5HrOJ5toV3+VzclWXA4NtRCMZ74V68kSWwhhHn6/bu+WkeHXqs/AbqycJKzslcSHkfX9IR1LUbR6VHXBk3NnFMy14UIQ41Y+yw7kK+hDJ24EqQ8uDFQyQVVWkue//iQ3NOOoJiF6bYOTzOIOyDUi9GZWyZpDFoPJQp2jmj5ZJwe/FMqTQGwyMDf8YzoIzikaHHmFYxC2UMxsS2aN4LyvuWjYmp9+s5t/Z8tLEVFdooAgyt6WnDJZRuFIIZ2XnYNZdSXgpMbBM990VU7nE6tglcb0eR/FBMQ3MFBkNxMM+Tg6tY07ua19VdwtzsPMAOVDdJtYQxtkOnl7L/jZYYKYQQxzBJ9kaYenwDzz3RVi7JAZhy3J6viJo4tOMPctvdfrvtz9uXliRySbLjVuBGNjkp77VzV3WNW7VLumYqhpMdZZMxQ4pnH93JjrUdGHyOP62RmQsnDa/qjdy/l6yqlUuGnndOySqfu3pdLvFM9tO5ZMzNcRjRWCV5Ptv4xTx/L56JKHflVGl77jrGzt1LDb/RwtAWdbCxuLH8RnJF/mkWVZ9OJb57Y+bm7OliuWSJWFPMl0hnPIJMrYxdEOIwmH1yM7/5flye5AJQ31xJbVPFIT+2iUNMsdM1SumFQhum2IWJinbcgQpQxo4z2L5+gHXL2ygWDNOOq2XBWS0QZFAqjXYXyRR2TIHy0mjlsbWwnu6wHYDI89gRtbG9uIWpqUmg7Gqb9uyKmXHVCemgikWp0/B0ZFcSvQyeMmjl2b8PaFAZNwrBJaYYlJey5+yqPwy48QtuYqkbv+C5kk+l3PkSEHmKzU3P4WvNssGHmZudZ8c0GIPRBWzpu6FUhFIaUim3J1DKOIUQ4pglyd4Iuzf34flJIgQoaN9mu2yaUr8de5B3IxCiPEmrbDukvACqinKil4wWGJkIebYzmr1/MvwWm8wkiV55lS52OdnovXPPPNrGmsfaCHxNFHus+MN28FLMnN/wvJXCZP9e2j7H81cOy7PzMpRX4Ui5rp3KnZ9xQ83d18NTwwmtjty+EbvXT+mY4QHquEYvanivYbmjpjd8fsrjkf6H8Fz78Njz0DpixcBjnFu9ZHhfYvJ1UgFDvUP07MgTD3SSyfo0H9eCXLMW4tDbtqYbP/DQ2thrUQoGevPkBkKqajMH5Rh2Rl0HqtiFKXZAOIDJ77Tz5rDloxofFefsA/wKwA4YR0e0b+nn0V9vxfdiYu2x8akdRMWQRUtPANwe6KS7sG8boIBmxcBjbpyBvXCkTMyKwceZWv86lB+4i3G47pluPIK2e+qMK5csl8vH9mKeHY2Q/D2x8Vb5ycUx+1wqWeFzMd4YgzIG5duxM/XNGXZv9RnoKWKUYlfzJgwFfKAn7mVtuJ75mdl2PAOKsGDo2lYkt6uTVEWO5tYsTVMbUFLGKYQQxyxJ9kYo5Er4gUdFlU91po/KVDuT657BrG+HsNuuSikFcdGWDyooJzS4/07GAXjJl9b+8S5nj0milOxFA3t/oyFIShZHdLFMOq258svNqzvtkZQG42EMbFndwcx5dW5Fzp6Dh7FllcmqnSmNXvUzxiaf5c8nLcFdcpes8pkRq4C40Qp6ZPmndg+J3dcH11TFc4kmrqmLobz3MGnM4qXQpkQlKfK+R4DCoDEmcq/Fw75BU6BShMWY3Zt60CVNJpuiVCixaU2B9HHFg/ZmUwixZ8V8hOd7ZKt8lFJEpRitoZgr7fPvny7l7NDxQhepznU0DqwhWvcMqtTnxhSAZ2K0SqF0EeWn3YUjF0vwbOI0soOw8ti8ps+OGVAGpewFtS1rejnlL4xN7Fzc0smMOnfR7YTK+dRFTWjl4esIbWBKZrIbZO727BnPJoOehy7P//RtMghutELJ7rszNpYbHaFcpYPyU+ikWzEGfLfaaJS7cGhjZDIo3egSNROyzF00kY6tAxTiiI7JG9AK8GxHzkf6H2Re43RwHT53b+6kNFSgdmIa8Nm9fYh07UQmSPWDEEIcsyTZA0xpEPI7OPfsbayNn2ZCdTex9jFaMeOERggHsfvHXElhMrpg5N4xNeKPqY5H773DreIl/1SSiPkYDH27BwlzQwSVtUxoDlD+iFW3ZJWtfH9LodF4+LYYyN7o3sCoZP+dP+Lba8xwsprsr0tW4pIS0mR/XXKqyRB09wYG5dsVSzfbabgE1aBw+/V07O5f4a6aM6Ic1B1bKcC+GXpj/evsG52gxp4H2JJNt5+FuFTuNhoWS+QHCkBAqVgiW+nR2Zsh1y/JnhCH2nGntfKnn64hzEd4gUccaSbNnkB9856bsxhjIBqyDVKKnZhil50hGvbaJiJGozF4g32k4k5M3GQbiriGJfaiT5qhgZihvl48X9HQnEGlsyg/SaaSuZ1pt0IGntLl/cqx9t2Cm03OlJfGeK57sNagNMrLML/qJOYD2ngoE9rnc7HdGLcH2k+RxLukDF0l1Rrl5A+U2xOd7LuzlRvu74M2tiwz6WZcnrFn3G2Aid1KHUBAfXNAfXMF6wobKfaGRMojAAKj6S/1sDvqoDU7g7gYMtCfAwWlUJGtUsTFmHxYIdUPQghxDDvmkj2jY7ywg8riGsz2dhja7JIXn9NOB3+ogt0bQRvF5LmNLDhr0nBik2Rao7pkJ0PLA8oDzZOh5W7Vy17J9YYfnDRaMbD12U7at7RhtEaTo3VmDTPmT7RvGFRSQulm5SmfmQuaee7xHXYDvmvrPfPEevt8yWN0ZNf2khVHPXKVEJtUeSPHG7hVPM/u97Arj/6IxDBZxUterxm9F08pN/cuKc/EDWTXdjSDl8x8im1i51UOX2XXJVfemewD9GxiCXYFNUk8jSLMl8gPlhjq06S8IQp+TClTc8g7+wkh4IQlk3nD353O3f/1JKUwYtoJjbzzn19hZ8mFfTahK3RBsR0d9qOK7bY00cuiTAkdxygVu6TGxcu4BHFkmzyV58LZ1XzlBXTsGmTbqjaiUkikPZpaKphz6jS8lFuVU4FN8tyFphnzatm2thvjeWgdkApips+vs+ExGXugNcqtpKmku69rugKBvS2Jo27Ui/JSNqbqZFSO7+7nYeIiAAof5XnD++4Az0/b2Iixt3m+67bpSkJ1DCozomeMu5DmKZQK0CjXbRNmZ+dwyYTXEGHwdQljDL6fpSVowWhNXIrI90fkeg2eLlAYiEhnPLzK5sP6cyKEEOLIclS+S/7mN7/JOeecQxDY0y8UCnu9r4nybp/dTju0vNBNRV8XNflBGJoNpQGX+Ph4Hpx64XT0uY0YL4MfpCDO26TEGzHIHFxZpRpOxJISzWRoefkEbGJnymU0SclmhsG+Iru39JBJK9IV1eTyio5tvTS0VlE7IT18f60hZd8cnXjmJIqDeXZt7iUwHjNOmMC0eRPcKp5LNNG2KUAyNL3c1TJJ3nAllXr4fL3McImpl6bcGCV2q20kQ9BdiaXyyomhGVkuqqPR+/68kaWj7rm8ZL9LMgPQDUiPS24PTvI6RpS6apvoZaorUINF0BG5oqZiUsthaRAhxNHinnvuYfbs2QRBQHd3NwBa65d41EszRnPWxU2ced7JRIPtBKofhu4gXhuidBGUh8Gz++sMKM8rl27b5Cdp0mTjgdF2bh2uRNMkVQRGo/wsWmt2rO1E65DaCRnCKEXX7jy1uwZonZq1q2G+557flqK3zJrAKecr1i3fjgk1Ta0VLDx3ml2Bc4PRbSWD23+sDCYejtl2f15sVyXdHmilAuy+wMiu8Knh8vpk351tVmXjq8GuyiWrj+WRN3gu0YvK5aMqaZBlYlvy6eGOp8rJLG4voW8Uc9OzMCqwjWDw8NB2FVRrhgY0qWwF6Ww/JtaEcZFsdS2N06cd8PdeCCHE0euoTPYmT55MZWUlvm8TqBUrVgDwxBNPALBp0yYAtq35EzU992JUGq0CfFPExBHFyBCWIjo6O/DiIfDs5z00JtYoz2CUvZJrPx+4bm+2dNIzIUYN2TcbpoRRWbePxK50KRWjVdHuq9MhuXwRfI+OznY8XQSj0X6BoZ4CuVwe5cUMdRu0UZiwQFdHN6GusCtm2uCZItrPo9D07x6gbWs/RiuMgrbNHTxTXWLinEZXDeSh4jwGn67uTnwitMrYN1XufEGhvTyeKaEN9nV7drCvp4toVWFLjdxVduUFxKqAZ+wV7CS5NdrgEREb6OvtIzfQZ1uV+yn7hkTn0aRdHqjBRPZqtcqjdNEN/KW8GqnQaK8CZSJbVUqM8QJbRmVK9PRq/IymsjEgW+nhFQPyWZ+NGzeO+vmoqamhqUm6z4ljU2NjI5WVlXiex9atWwF45JFHyp/fsGEDYOOk53kveHwpLBLEfWxZeR9+1I1X6saL+vDiQYxKoUyMUbZJi2ciNGk8Zey1JRSeDssrdQaDMT4eBVABWvkoNMYkcdSnUIyJSiW62tvxCO2ePZVDhyFDgwMEnqa3RxPpkLgQ0tvZTrqiyj6fl8PTJTu0XGmKBcOGlR0YHeH70NeVY/kftjBnSQu+CdEGFAajfDq7OvFNRGx8fM9eFNNqwMZAAtebyq7UKVPCkLJ7AQFtNB4aTQbPizBaoYjt61X2fsb4eKZIGBaJjQfdGoO9zW6pttUTxngoSi4B9VHGoI19PfbrbZNRpTU99LCGrZzpnQrGQ2HHQhgvoL87T0yRqkYPRQoPhZ8psa1jCNO/ofz9TaVSTJ069dD9AAohhDiivPAv/cvwhS98gTPOOIOamhomTpzI5Zdfztq1a1/ycT/5yU844YQTyGaznHTSSfzqV7/an8Pzhje8gd/+9rcUizb5OOusswCYNWvWqPsN5hVhKSIslQjDkFIxT1QKKZUijNaExTylsESxFBGGIWExT1gqUgwjwmKRYrFAGBYphiXCYkgxDAmLRcJSTBiWKJZK9v5RibAU2vuWSvbzpRJhsUipWCBCoWNNMSwShnnCKCYslvD8COVF9O4OGegq0Lvbnk9ktH2+YoFiqUAYxfZcikV2b+ylFEKQCchmFcpodq4fIgwjSsUCxWKeYmTfAJSS8y9F9vyTjyPtXm/B/n8ptv9dLBKGUfnc8wOD9LYP0tORp5ArUCrmKBYjwmLJPTZPsWT3rkSlAsVSSDGGMCwRFvL2axTF9utQyFMqliiW3MdhgTB0X6dC3r1WKBaLhMWce6ymWCgSFXKEYYyfMYSFEKWMXVT0KvEqFENDQ6P+JT8XQoyVsYyRZ5xxBqtWrSIMQxYtWgTA6aefXv58UhExNDhAoXcrpa6n0e0P4u28i9SWW6jY9t+0Fv6A6rgf0/0Euv85wqFuimFIMSxQDIuUCjnCgvt9LhUoFguUCkOE+SLFkiYsxfZ+xZz73TYUw5iwGNrHhkXCkrZxqxSBjlw80YSlEsVikTgukMpAX1dEf1eR/o48YSFPKYoplmIbj/MFwmLOxp6Spn3LAPmhiFRGkcp6oFJ078gx2DtIGBYpRZGLWRAWbCJWiiMb88MCYcHGHnv+JcIwZ2NX6F6r+ztRKuYpFEv0duXo3j3I0MCQe00xxTCiVChQLOQJw5BYK6IoolTMu7gZUYg0pSROFmzcLYYxpUKeYpijVCza+BjaxxULRYpRxKN6Oev0GjaEz9m4HsUUwoiwMAR+Ca1j4tjDeAptSvhZGCxlRsXHXC63zz9TQgghjl77tbL3xz/+keuuu44zzjiDKIr4x3/8R171qlfxzDPPUFVVtcfHPPTQQ7z97W/nC1/4Aq997Wu57bbbuPzyy3niiSdYuHDhAb0IpWxp5YQJdhv6rFmz2LVrF/MXnYO//knXPMWHqB+8FL0DRfr7upnS2mJLevyMLZeJhmyJY5A0E/FA58DP2o910e0nc2MSTGz3+wVVbuWqBCYAz83U0yGYEm1dOSCmdWIzxAU7P85LQ5wn3w071/ehlO1yV1Orqamoo3VSvdtLmHKdLAOIC+xK96O8PKl0gNYKEwV4KsWUyZPs+AcvS6wjBgbWMamlGc/3Iai0zxWVbNmkF9jzi5PXlpQsub2GXopC/wBbnm1nsC8ApalpgNYTWklXuteqi7Z0yfcZWL+JxoY6Kqvqh0tbky6l7rxHlWQme/uCLMQhnTv66O8uojyfhtZq6ib4kKqyJV3ajZDwUrS0GLp2drF+3W4mNDRQM3kOjWeeUf7+J5KZfUKMlSMtRqbT6fJ/z5gxgx07drBgwXy8Dd8BwKgURBqooxTXMzi0gUmTWlDJHjLfrrhrY2x3SYCg0u4nMwatY1eSae+H0bbZCTa+Krf31w43L4GfLd/WP5Cjp7PA5MnT3IpYbFe0dBFTHKDQ2wYqxpiAyposlZk6Jk1qtvv7VAqPGK18PKPJ7d6B7w0RBGli4+GrCBNHTGycSPWENBoPopDB/h4mt7bgBZ4d5eD24hmVcquUPiSz8ry02zbsQ1zAGI0xAVuf6aRvdx5fRaSrssw4sZnquqxbPSyBZ1/jzh3byWTSNDRMAL/SfR21ff0o8NMoHdlVT13Elt27/YvKJ9c9SPuukE5vO931nXgY1gZrWdJynu1Yql0DGeUxYUKBDc9upLK6konNVTRMn0LqhNNG/SxIfBRCiGPLfiV799xzz6iPb7nlFiZOnMjy5ct55StfucfH3HTTTVxyySV89KMfBeBzn/sc9913H9/4xjf4z//8z/05jZemfEjVcV/Xz5iensG81BRGjiewXSKTWUiuy6Y/PPPI5nTJXrskiWG4+Up57ELyfLFLBnW5q5rd64YtxYncUPKkC5uOSacDJs5oIJO1m/vDXI6o5PaQmNgmY8lGfhPTPL2BnZvbCPOlclfPqbMmUN4LWN4/qG1SVd7zFo1I9JK9fMlrSTpour16Gtq39DDYG1PTUAkmpq9jkK7aFJPm1tjEEVMeL6GM21viuXlUOh6R2AHYIcQ2YXazCb0ADHTs6GHjyl60tglnd1sfx506idrm5OvpEnUMvleicVIN7YPdTD1+AkHD5BckekIcCY6GGKm8FLu2xuxctwUdGSbNqGHqCRPtrDe0S3aMG9qNi1kRxii8IGV/tY1xXTMDlKdsomM0RutyMxKt3TgaY+OCnd6SdK90oxBUyo0usLcplUZ5AemUR8OkDJXVafAriKMSJo4xcQnlubl4bq+xQdM8pRY/3Uc+V7Shw8TUN1dRWV8FlFzzqdg2ryp317QXupQK3H7ikiuttK9duyZZRnl2N56XpmdHPz3t/VTWVZEK0vR2ldi1oYu5iyZSbvLi5vIZHdvZeZ59jUaXQPlu7x/oZD+j8lBeCo2LqWhyfZrnnuxkcKDE+hNXQGxQvqJXD7Bm6FnmV8wBVzaqdURdY4qGyRmaWiZQW1MJFTJfTwghjnX7Vcb5fH19fQA0NOz9D8vDDz/M0qVLR9128cUX8/DDDx+MU9irdbqDZ/PP8Mfe3xK5lSu7ByPGNgxIkiPXUhuXXBgN6nmDwoHygPGk8YkK3JBe96bBTzpghvZj1xjFtvFOZtklT6mprK0gLkUYXaJUiom1Iludts+pGJ28KcW0ec3MP3MyldWKVDpgxoKJnHDGJNdGPBnirlG4DpvJYHKjhxPX5Mq87waujzyW6/BZyMf4aR/lgx9oPD9FseAGrbuudfYNnBvbkCTROhkGr0bc18eOWnCNCtTw17xz+wCx8ahryFLbkCYshHTvypfflA0/rzs/P8BXGo8YUvUH6adEiEPrSIyRax/bxcP3dNK9o5futj6efayNLc922QV+3IUtz8YIu/cuRuGhggwYhYkjl6h4w81IdMk1FnHNR8AmjcZ24VTJiJo4tEmQ6wqslAEduhl5QTluZSoVnq8olTziyBAOFamqSZqWpFxojMoXkeom1rB46UzqGlOkU4qJ0yZw2kVz7T5sbefd2bEutklU0jUzOVe7aucas3hJ06sIm4AOD10vFUNAEQS2GVWmQhEWXJLo2WZVpjyWJ7B7onX8vMYsoN3oCKV8FL7r0On2V6uAnrYBCoN54mmDDNT0UAo8u9BqDA8PPGj3PXue6ySq8LzAJdm2cQsZSfaEEOJYd8ANWrTWfOADH+Dcc8990VKjtrY2WlpaRt3W0tJCW1vbgZ7CXhljuGvoj1Sg0LrAqsIaFtWcbhMv11LbJnOR/QOr7MDcYq7ExhVb6dpdIF2RZdZJTTRPqceOI0iePBou6dRubEB51RCXQPmuG2UytHzEqqKxm/+Heot0bu/DRCHpmjrmnNJEQ1OW8niEpOTRJY5KKeaeMpG5C6tteaa72l7uuOl5qMi+gSmPQyBJsNyAdh3bq9rlUQx6xEpcBCagoraS3u5BKsIisTEjklBdTrqGRyv4w6udJh6xQpisFrpS1LjkOuAlnToVcey5uVi2jAnS9g2k1oyaA4hvn0dHrsmMJ29kxFHhSI2RKx/YxtBglolNWYzxyA2E7FzfwaS5dbaBip/C4LtxAwqb1PnoGDat2kHblj48z2fy3EamntDiLnolowqSEQRu1pxKu9Boyl0n7Wq/vU3p2K2aJWMJbCwpDEV07ihSyA3gZzLMObGW5un1qCBtVxVjW8Lo+Rm3ImaYOKOalqnz7UqZ8srdKhUeigBDCYjAMyh8G2dMaBMm47tETLkunTa+qyCwDWhim1SlKzKgfMJCSCrQFHMxja2VeL7vEmDjxj34aOUNJ4xeyjV4wY3kAc+NnrED2E151qB2K5goxVB6wHb5NOUoTsEUCeMcaa/GzQHMkHT+VCZGeR5KYqQQQhzzDjjZu+6661i1ahUPPvjgwTifg2pZbhmro52cbuxV2UdyT7CwapEtF0rKED0PYl1OeIyG1Y/spH93L16Qob8nz5pHdpA+P0VdYzIoPXlT4+bgKW3/+o5MzsAmOsneCGNc2ZAHxr4B2rF5iE3PdOH74KUCcv0lcv1FPCpHrJYxvBKn3LfL6OcljskQd+2uCseY8tVxtwrnpXDvVkas4sWAnWk1KlnzM7TMqKeQi8n39WFI0zy5mqZJWftOw7jn0tGoVTpwbdTx3ZV27OtVSXmWS9jKIxyyNEyqpbe7m1x/iTAKCFKKuqaM+34ErnzVjqpIVlCVcqMs0jIqWOyfzZs3v6ChE8D555/P/ffff1CPdaTGSK0NQ2Ed2rTZDpUk5enY+OHqEZRxSYqdMcCmVe1sfabDlnKaiA1PtqF8n6lzquxcOWxykwwj94K0m1EXYZRN6oZn1IW2tFGB8lNolNurnGagO2TNY+2USpqKKp/CUERPZ5GZC4NyMmhXsVxc1LEb35BCeT7amPKKn/I8lPHRJBfHwMY9ZctQGbmaF5fPHTy8wA159zwXOgMmtFaTGyjQtStHFBpqmqqZPKcW7fYwKlc1YUwJpbWbwRfY47sLZDYh9tzqorHlmJ5vO53GNk7XNVfTvn2Ihs2TOHvnRIpFj2nH1zPtuAkjxkAoFIF9vSbG4KFUYPflZRoP40+UEEKII9EBJXvXX389v/zlL/nTn/70kq2cW1tb2b1796jbdu/eTWtr64Gcwov6747/pj/w8Y0hBvImz8rc08zS07F/6O1esGQ/HCpFMR/S1zFEpiJFkM6Q0opC/wA9u3PUJfPcjNvjlyRyevT8KJucuRlT5dJFf/gxOgI/Rc+uIRSaipoUCo+wZOja0c/chfXDg8WTWXle1h0rcvvjhsum7KCnZP6fPZZJ9iC65M2ex8jE0L0R8tMuCcWWW3n2DVA67THnpGaKQ7Xg+2QzHkolZa9x+aq03XvnhqWX9z66PTpJGVRcslfxkwQ0dkmiMbROr0JrRe/uPlIqxeTpWRpbq4cfa0x5f1+yWmqSJFiSPbGfpk2bxq5du8oft7W1sXTp0r3up9tfR3KMPPGsyfzumTryA0V8T6O1z6TZjeAqH4wOsQO/7f48bTRKR7Rv70d5AdmqDMYY8v1DdO0cYtpx9eDSxiQOKRfHbHmmtqMLlO9+tV1jEZSbC+riBqA8j96OPFEYUlVXge8ZjOcx0JWnMFQgU5V93ow6e4FNqcBW4cdxuQrBDk53q4zGxX0VuHOIXAMWOydPJzPxVDAiYYxdXmjLODWglGHKcQ00TZmAMTHZbAYVxG5F1LPloMQ2YfQ88Hx0HNsKBzy3bTvZ921LNg0GozXGt59XKkVtk2LWwibatvajI0PrrFqmzqoEFdg9GAq0Kbk4mewD9F0Ca/CyMlBdCCGOdfu1Z88Yw/XXX8/PfvYzfv/73+/xCvnznX322fzud78bddt9993H2WefvT+n8LLExJRSdaS9FIGfIU2GyJRQumTfXLh8yO61s6tunlIozxBHNmEyxqCUwQtGlDwq3OBw9zEagtTw55MERUGyp82MXIlzK2t+Knmj4mGMh9aGVMqMKLkcUR7qSqDs1exkhS/Zi5ckb3bvnXGlQipOVteGG8LYpHPEKl7yIxCXbKKXDFc3EZ6nqKjNUlEV2EQvae6iI3fflLuq7J6nvBLpViVN0pAleU0jGsO4K+j5gQLpjEfLjAnMPaWFpinVrrxr+E1W+XwxbsXBoLxsef+MEPvK931aW1tpbW2lvr6ev/3bv+Xss8/m//v//r+D8vxHQ4xccO5U/uLK86ifWEF1Q5YTlkxhxoKJ2ItEBrvSpUZUCADKIxX4xBobEwxo7eGn7MUm437fy/vuMO425Vab7AUvY0bvlVNGu31ntkmJMRrf1zZExz7G2GTJ8w2+r+zwc1xSpSN3rq4ENDbk4xx39/6a3njAJa7u9ZQbcLlGUkqVmzyZOOLh/gfZFu5Aecrtn9PuPm5Pn6s0UHh4nk+mKqCiOoCUS7S84ZVCpdSoxBYFnpeUuNr9fMrzbKmnjsvVELbc1MMYKOZCdKxpmlzDzAUNTD1uAsr3yl83rWOIY5Tnu22OyfcOVLq+/DURQghx7Nqvlb3rrruO2267jbvuuouamprynpK6ujoqKuzq15VXXsmUKVP4whe+AMA//MM/cP755/PVr36V17zmNfzoRz/i8ccf5zvf+c5Beikv9L2Z37OD19f8u0uwAojz9JV60O7Kbrkc05XDpFOGKXNq2Lamh2Ixj44N9Y0ZmqfV2Cd1K4B24q5bHSsnZ+4Ptkr2sOFW/XD3Sa7k2qRp8pw6end3098dohQE6YCpx09wiZBny5k8b0R5aLKKB3bFLBou7Sw3cRmxmqgNpNwKoU46gboVs2SPYnnsAq7EMmlIgDtuyXYRVYy4fwwqbf8/KtlOo8rt4dOl4b042iXCySqddvscXdOa/q5Bdm3sp1BQ+JQIOnJMP34ClVUemCLllULjVgK9lLvwbzCp2oP3gyKOae9+97sZGBjgvvvu2+OQ8f1xNMRIpRSnLp1DNPN0VKkPnYyL0THG821nSO3iDgbl2REKU+bVk39sgMHuPCWdprIixZTZtZg4citgaaBkm7C4Zk0qWbnT9jabGAWgS258g3YrdT4mtkPHm6fWsH1DPz0dBVJBBMZn8okTSFdm3XUu19UySXyMJrk49kTuKTaWNhMMeFxSf4nb72xX5XDJIV7gZnZq0Jqd4U4eHXqCdYV1XJWeYSfe+IG9RGdijFGuBDVly1STxC/Z46c1dlkxWQG0z6vd6iVeyiW0QBy5kk3PvQ7wXPMu7SpNigXY8VwfuYEiHgY/7dE6O2BCc8aG1qS81jMu6dUoXBdUFCZVd0h+boQQQhxd9ivZ+9a3vgXABRdcMOr2m2++mauvvhqArVu3jnrjdM4553Dbbbfxz//8z/zjP/4jxx13HD//+c8PeH7US1FKYTINEHZTLmtMVrcwLqFKSiztUt+ckydRUV3JYPcQXibNtDk1VFS6/WPEoCrclWHXiXLkXj0duzl9yWs3NjEEt/KWdqteMfWNaRaeO4O27SHoEg2tNTS1upl+5aTKNWuJ3b6OwDU/iWObCJb38SVNWOxVcoVxYyUYsdroVsJ0yHBzGtc8oNy50yWkIxu2eGp49TBJvBTuqjduhc+uUpbCmHVP7aKnrZdUYJi5oIWWmRNcomrK90MbetryRBHUN9g3eX1dEQOdOSorK+z3wsvYx5Wb6YAytrmN7EURB8O//uu/cu+997Js2TJqamoO2vMeTTHSyzZjSn0QF93vsz+8f09Hdueal4xa0LRMrSDwp9DVVkCrgMlTs9Q2pTHKw/O88ngB5S4QKaXcGIIkBrjkaOSFJVf5YEs7bQKVrsxyyiunsf25fnRUoHpCNZNm1dn9c2ATL9dgyyZatiHLkMnz1NCTeBieyz/HkpqzafArXHMVF4OUD7iOlV4K5Xk8PLSMABiMB1hdeJaTKk5wewjdipvv9v25qghjjF1hTEpSTbJSh1tt9FzyO1zxYHTMtjW9bF/fg1KaidObmL2wHhWky6WXSbI40J0nP5inZkIlnqfIDRTp2tFNfdNEbPMZ384NNKE9Fy/p6Knt9ywjZe5CCCH2M9l7OQNZ99Tk4C1veQtvectb9ueQBybTAGHPcNOQcjt/194fNwMuKbVRiqnHTQBdBSpj36DAiFVAlxgmiWOS/JT3oinsmAW7t04ZRXm1zR8xi84YaptqqW22w3rLe9pgRPLmEj/PYMcXqOHE0hux947UiPJOe/XYJJ1AscN5d23qozgwSLY6oGVmC55KVvWU3bunI5fcZSmXchkzukyUwL0GlyS6N4FK29KldSu62P5cP5VVEQNDHmse302Q8WicWOk6gLoVSS9FbDyXY9rhyMqL0XFpeBW23DXVdy+jBNo1k0nXH5qfFXHM+OlPf8pnP/tZfv3rXzNnzpyD+txHVYzMTMD0Jh0k7e96UlaplFf+XTRuNp4XpGia3kjzNI3WHorQlmgqn+HGLDZhMXgYE2GIUMYmgxrPVQC4ckTPlczrEnaPoG02YrQmU+kze1ErHpFLvNzePD+ww8nLlQkG5duLaMv7l9nbPLt6t2zwES6ecHl5v6C9e2SrBHwPhc+O4jZ2hdtB272BDw08zILM3HIVhvK8cpJX7vLpGTu+we2ZTvbz2SYp2DmAuFJ9N5Jh+3P9bHh6F8rz8BRsWtlBkNZMn99ik0Wl7J8WY9C6ZP92eCmg5CYC2eHp9s+Pdsm0Z8vbTcmummr3t0M6cQohhGA/9+wdddL1gIaoaMuEklU9E7mOnK7JCPGIhEtRGCzS2TZEb0fObq4HynPyXGmTbXYynCjahEaNKIV08+h0ieHRDa40qpycMaIEE/eGZsTqWrnsKGkoM+K+yWBib+SeOD1cphpHYDxWP9zGU/dvZf2Tu1j54C5W/Xm7LbtCP6+LqEey16b8uWQWX3IcA+WZhCqwbwzRRLGia9cA6QqPTGWaytoKomJI7+7BcunmcGOXFDUT0kRFTS6nyfWHeF6JypqsS3LtnhY83z02+Xq6ZDeQEiWx/1atWsWVV17Jxz/+cRYsWEBbWxttbW10d3eP9akddibdCMrD89PuYlXkSgR9uy9WuflvSruVNIUxilKhSG/bAL3tBUol2wnTJImXqyIwbl9xMgDdJKXdSSfJpEy73NDF/u4rM3wfhSuRdHuQyzPxyjPqXBMWrRmKB3gy9ySxC1OYmA2F9XSXOl0TFD0cX32XtJmIP3b8CYNC+3Ym6mDcx6qB1fb4yXlr7Y7lucTXUG7cUm64gkuQfZsIlvc6+higa0cfaKiqyZKtyaICTef2/vLX2l16AwyVNZX4aZ+hvjyFXEgpD3VNVXb/oWvMZftc6eHvpVH2Ih4Gk2mio9TB99q/R5T8PRJCCHHMGdfJ3sbiRv5p2z+RCyrsH3jPAy/L8Jw9hssg9fAfZVD0dAyx5vE21j62k7WP7WDjyp3EJum4OWI4ePKxdnv5yiWYhmQ0gzIxBt8mggZbRlk+VnLfEat4SRIKrgQzSchwpaDKNYBJmrK4JNLN4zNe2l5Zdw1bujpy7NrYTZBWVFRXEKQC2jZ30dsxwPAsO9c4xgtsQhZHw6uY5VEVI1f4XCKmld0nomyDAN+zpUrG2GYMSplyIxd0ieH5gZrGliytMxsJggA/o2hqraa6oWrUmz9bZpp8v1KQDIyXTpziADz++OPkcjn+9V//lUmTJpX/vfGNbxzrUzssSgXNz7+xnJuuu4c7btrIUJ+9eJUsSNoCA5vkGFc0iVHuulRMYajI2uXtrF2+i7WP72Ldsm0Uh0rlYeFGuxLJJBFzJYy2cUngmrBE5aHmeLYjsY0dyRiEjA2HSXKYjGswsWu4kiR+qjy+oKhD0l6WNAEZExCQIvCy5Ci4PXY21hq7TGbPIYLeuM+ehk6+AD7buzvseZtkNdFmkMn8PeX2ARqTjEpQ5Y+Tvy82WcXGLG3wfZ+S8VzSaRNPP7Cx0hj7N8omjx7VdT6TZ9VRUZXG8wLqJ1ZS11zhVk49F7bd16q8l9t+j1AKlW7iP3f/J//d8d/8uvfXh+xnSQghxJHtgOfsHcn+o/0/WJZbxkmqhSuSfWmuE5oy0fAqnQKbwNl9azouseWZTopFqGvKYqISPTsHqW3KM3Fqlds/p4ZXq+LI7Y8bmbwl3TeTlbdklIK7IuwnTUwiCqEhKsSkMiGZjB5O/Iy2CV65o1pyNVm5VTvXsEUF2LqeCLwK9zg3C9DLUCrkMLpEKluBxiNIa0rFAmFRDSeM5Rl4hvIQduVBFLqv24hOnEk7cW3n9BlXZumrmClzJ7D+qV4Ge/OUIqibkKFlZoM9n6SzJhq0Hdo8cXoVnheyaWUnnVthx8Z+Zp/UTH1z9fDx/MzwvsDYrVpK8wFxAK6++ury3rljTRxrnvhpH/077Crm1mcN1QPruPAtc8nUVLnVO4PWdnRAUpKpjEZrjVKwc8MAA10FahpTGAP9PUV2bepj9sJGiG05oecaTRk3ey65zSaMEe4GktEqxl3kUtiEUbuqBV1SFIYi/CAiU2EvbNn9c8Hw2AHXMbMh1cj7mt+HMqFbKfNQJsLgmk0pH1TJXqByq5dhSTPvwXPAh1RaYUgx0FfiuFMaYaYtmwRcdYdB+anhvXvlRNRHodHGuL17KRTJyp52F758Js+tp7NtiIGePOCRSvtMPa4esCuUGB9jSm4/o6FuYjV+JsP6Fdtp2zZE28Yeps1rpHWWbVCVlH5qbYftKM+3ZbEqy864g3v67gHgu+3f5dL6SwnUuP6TL4QQYg/GbeTfkd7BstwyAG7pu4s3mL8g7WftSpuO8JJxAcmqFqqcRMVhSKmoSWfTeEpDCrTxCItuRc+UhhO98mwot0iqo+GVrPIAXzViFS8efiyGrl0DbFozRByGpNKG6cc30DTNNR8ZuScwSfR8N/IhTjpkjkjQsAmaSkog3fy8mgkZ0tkUucGIikqPqFgklUlR01Bpu3ImoydcQwYMEATDr83L2HOJQ/e8GXdVuuT296mkZooZC1pIV1TQ39mHylQwZVYt1bVp1xQmGXeRNHnxGewvsPGpdvJ5j4pqxWBvjvVP7eLkV84hnU4aOrivs18B6RZ6g4rh2YBCiH3SvmWA3u0lUumAVMrHV8z7ZwAAVzRJREFUaENfX5q2zQPMPLnG7dVLShQDdBJvAPwAhaE4VCDIgOcptEnhB5r8UIjRkV1l8uwqvDF2tp6nPIyyDVhMUjDghpSjY7v3zpYWYIea29mluf6I9U/tojg0hOf7NE+pYfr8iYCxCaPyyiWjutzUynMrbK4qQpnyUHWTdCkGV56qyWQVVbVpejoLeCpFXApRSlHbWGVLOOOwXHShfDd7zzWNUm7FU2s3Q88dK9m7h3tV9k+LpmFSNadcMIeOrV0YE9M8uZbGKXV2z6LRGGXHTdgB6xE6iln3xA4Gu4qkK7OUwiLrn+6gsjZNTaNrFIayMwzxbYW/1phUPTd33IyHR0xMe9TOr3t/zesmvO4w/IQJIYQ4kozbMs77a+/Hx74JGKDA8tIG9xnjSh2TgbwRxG7lzXWjDFIe2eoMhaEQHZco5GyDk0xVcnU4Kd9MyhtdiWV5IK9b1YuHS5Qwxu05cat+RpMfKrJ1TS+lUFNV46OjElvW9pIfLDJcT5Xs43Orb/aSNy4jo7z6lcz2cw1bFF65o15Vlc+JZ08nXZEiDkPS2RQnnjOTymp3//Koh8i+YfFdoqeTJNatGio1PJA92d/n2WMY9wZPKcXkWdWccMYU5p02iepat+ro2pPbNyd++Ws/1Fcgn9dU1WfJpBWVtZXkB4z9GqTrof5kaLkQ5rwHNfc9mKmX0x/MPYQ/OUKMb0YbG4aS0j8FQ4UatDZ27AF2P67y0sNxS7nVK+VjdExVbUAUakqhohRqdBxSVRO4vWduQLixCZCduee5pjXGXb/xbZIXJwmR3T+HtgPSk+HgW57ZzUBvnorqNH7gs3PzAD27+1wSaSsx7FgEW6KZ7AMs75/zgnLiZ1yZ+6j9zUaj/BQLXjGL2gkZSsUIpeC4UyYzcXqtPeeko6bnuVLUZC+h3Seok+dxF/Rs5HaNVIzNEo1bgVP41E+s4PjTWzn+9Kk20TPDe/uSVUT7DYJCIabQX6SiOiCVUVTWZIhKhqHe/PB5lctf7b5KlKLT09zTdw8xcfn7/t3278rePSGEOAaNy5W9tcW1bKjYUP7YYPht4QkWZ+eTLu+Pc3/wy/PnkuYmCuWnmbmgmS1PFykM5tCqksmzqmmaWAEU3MqdD3HejT9wq3ZxshLnusaZGPyUvWrr/njbPXJ2dbA4WKJY1FTWZtnctIKm7HRMm08xV6CiKl2+Ok55X0syQ88Mr5Il7bq9YLh0E4VWnm1yYDT4VbaniQ9GK4JshkzGtVZXydX0JIFMGtAkr8UvvykqdyaNS0Dg9uwNz3ZCKXJ9Q/S35zBeippGTXWNbYSAezOGcQmitquEqXQK31MUix6l9EQ6ehvoz09gwcxLUFNkX54QB9vE6TVUN/nkumN0pNHaEFHLxOlJo6nAVoVr93sP2D8Vphwypsypp5CPGOgcJIoDmibVMHmO/X01bsSMwrereUnpt7GJoJ11F7uqbhdLjRnem+cStqgQURgMSaV8coMxHppSQVMYjNx9bNMWg4fnu4QyucDmEiFN8hrcap/CPcauJNrOnzE6jlCBh+8HBGlFttpe8LIdNX37ec913cQlmMorJ8w2sbNfHLsy59l9fMlFO5coxsUSnW1FdFwiW5OhvtnuIbclnDYhtiuBPkprAt/HT3lEoSGTAh3ZhDVI+yiVAlN0JaK4ERf2lT2nOsppZ6Ij6mB7uJ0Z6RmH4KdKCCHEkWpcJnvdupuUTqF8Vb4t78cMRv00eLUkndHsOwLcXjIo73kjpqbW54QlLRSGYrqDPK3VNajyuAMo76dzM/PKw9S9pKGIK98sj11I9sQl3eAgVVlBkPLYldrC5rrnaM90sbDrHIK0GpG8udU2lQxHT0onPVfKmazM4ZrQ+Bgv5Zp+RkCKvp48q/68maFBQyqlKOSHeOaRLZxx8RzSlVm3Mpga3f0z2V/nur4NN4hJRiMkn7Ntvw2KoZ5B1j3ZTn4gwlOaVEXAcadOprYxWz4XPLuqQLoOKqdQ3zKZcNMAqx8fwGiDH3gsumAmDZPrD/JPhRACIEj7nPbWejqfyLJ9XQ/1Eyu59OrjyGQeAFKgYhvrlC43GNHGNVhyHTlTWcPxi1oZ6h+ikPeprPYIPLfPT9k9frb0uzS8AuUHriQy2WPn23EK5VUtO5NPm9gmOukAbRS97YMEgV0di6IAm+/YEvPyQHMTY7Az7uz+QtxKnu2eiedjoqKLx8kKmn1OYo+VD+ygtyNHECjComHdsp3U1M2grjkNDDdbMdiGNXaVziZ7JjbgGZf4JQmXsefiys2V0cTFEs892U737iK+V0L5KWYtaKB5Wi2Y2N4fO0pBu4tvQSZgynGNbF7dzkBPDqWgcVIdjZOq3RD14SHvOnm9wOk1l/LT1qtHJXxZL0tD0PCyxoIIIYQYP8Zlsnd2xdl8cscnWbp0KUFgX+Kdz/0j/7fzf3lH0zvtFdnkiq9Kxg4kzU/cildcJAh84rqQOzt+zCn6OC6qXWpXsIy28968pNzRlVEGyb43dzXcdd9Ubv/JcGdL212zqiZg8qwalvv3EyuPwYoe/Lk5qmsrGC4zMiP2B7rnTfawEdn9dG6WU3l/G8Z2fzP2Tc7uze0Uh0qk0hWkUoYoLDHYW2RoUJOuSLp9Jo1TkivjwfCqoR+40RH6hZ9LrmwbTfvWAYb6NBOa7Qpgf1dI26Y+apsbIN0AVTOgcjJUTEb5NnltD3fx0F/8gteeeAWmL6CuqZJZJ08c0V1OCHGwVdT6vOtfzycIAjav7uDhnz3BtPRmslU+006ciI0p9kKVIQbSbm6eW6lThjj26N4dMtBbxKNEdX2WyXOaCFK+3cOWxAuSxArX8MUlSTomGXOTJGy4/b/JyIeK6gBFjHFNW1JpDx1HNul0Zfo2wbQJnN23psvHVr6P0REmjsuJoC1jTcoxPbo68vR3DxH4EGQ8ohLkB0P6Ogapm1hnV/JwHTRJrg+q4Rl/boXPuBE0yjVsIY5cYmUf39M2RF/nEDUNFaSCFAN9MTs3dNM0uQY/5V5LEsexTa8GeotkKwKmHdcEniJb4dE0uQ4vUOArlPbQqWq8oAKVacbLNtHVsZG67CQmpVsOy8+SEEKII9u4TPZitw+kUCjg+z7dUTd3DvyWV+gcK4ZWMjs+DhOXCCO7h05hyoOAjQlBh3ZsgZ/l0cFlGGLW5tdwSmYxdX4tmAjjZez+CBOh4tCWa5YiVFzAeIFr8Fmyw3Fjg/Y0pVJom5yoADxb2jnU0k5uaBAPCIxiTfUqTorn23MoD1o3YEoYAlshqiO8OGeTOaMxOgR3VdsQYeICxkDJaFRYpBSW0Mazu/hUZLf8xbZLXlgs2kU6HeHpvG1JrpSdSehaemsd4umiHdyrgLjgSjdTaF0CHRPFMYWiRnmGks5S0E20F6ro6ZvJ9CmvKCeFAIQxkAfgP9v/k/sG76NpciNXL7wagGKxsNfvbRRFo763e+J5HqmUNHARYk+SlZ1CocBAd5H7fvg0uf6YKTNTDHQP8NzyDmqnG+JijtgD8DCeRumim/GpwPNp2z5Ib3sfFTVZlAroaS/gZwaYOMV1z01Kw5OOlMqmPcRDJGNdjPKIY43WJaKSqxTAQ0UhRqUJMh71rdWk07b8u1iAKNJEpQhV7sTp9u4R2tvwXMx0DaaMxvjKlrXrguuiqSjFBi8uUiyEGGOIlU8K8JRdoYxiQxSVUKboenAl8cbGfbt6Zy/I2b1xBqNs11JTKqAoYVTaPncUUgyTsQy2s6fyDVHJkC9qMslrMQrccPju3YN0tRXxlCbWUFFXT+30KejqicSZJsg0QrpxuLLDKXo9hKWIfD6/15+BTCZzUH+mhBBCHLnGRbLX1dUFwJo1awB49NFHAXjwwQcB+E39b+jOKjSKx4aWk+2tIoNm/fr1eG7fmzaB3UpmPHxCQDHgRaytfRZbvONzf/sfOTE3Hx9NTAZPRag4svtSvACNT2AKaFJugS0m1r7d2mY8BnvaXWrpo5Qh0rCs7lGMD77ba9FuOlm25VEmhM34KkLj47mrxTEp94ffw1d2r4rtvKmJVQaP2C7SKTscftOmTShiBkseKjCEuQI6jIlij8q6mPaubbR1p91zKns8FeAZO8suJnBlVQqfEjFpfJKRDnbPY2x8Yq+GNW0ZdvTP4rm1lah0BqUgzGkmVwzxxz/9ac/ft6CL+1rvAwU/6v4RrataqTAVL+t7nnxv92TKlCksWLDgZT2PEONZGNqZnjt27Cjf9sgjjwD2d6hrS8j2zYNUN/n0DEGlHzPY1UvFxIANmzah8fCUcTHHdr80xq5rdW7TmFKJXDSIAkqFmKFNfQyEKXdxyQ1a1z6eb2OoZ0q2LNRdnErupw2s37jZjndA4aHRpMgVQoYGi+R8u9pVinxStQM891wfPsZeNDP2GbX28b3hxwP2mMqgtcLzYpunuS6g69c/h6cMhbxHkDEUhkJyERij8NMe+aiT9ev68FRcjsO2wMJ23IyNZz9nPHxlKzqM2xpgCFwfTA8fW2IaDsbkC0WGhgYJ0opi3qO6HjZvXU+g7NdHKYhVlkKpirZtGQq6AZOppxhXMbTR0DKUoarRAB3u356tXLlyr5+rqqri3HPPPZAfKyGEEEeRozLZu+mmm3jta19LRYVNDLZt2wZATU0N3d3dLF68mOXLl7N06VL6TB9feO4LlLRHyfNImxJ9zX3MyE1h+rQZQGSvVgeVtjTR7THBS3FP/+8JhiACYmVoy+xk6ZSLqA/qbPlnXMA2R0k6VPpAiO2a6Wbd+ZW0796F1prWlka3901BXKTgefyx/X78WKOUIlYKDVS0pFhQc6J9DleyZLtZumN6KXflGrtS6KfsCmBcBC9NrCOeW7uG44+bg+enKcUeW6p2sGPjEOiYTKXP/CUt1DVW2+eKQzf3L7blqSYcnqs3cq8drmFLxWSomgKVUyHdzP1//COLFi3ijJo6nvjtJtav2I3BMHNBM6dfPJt0Zs8/Zp/d/ln8Pp+YmNiL6Tq1i/dOfO+Lfu9LpRK/+93vRpXoPp8dhCz7UsSx6Ve/+hULFiygoqKCxx9/HICBgYHy5xctWsSKFStYunQpO5/rpWf1cmoaK6ipn0U2Wkvga/xAc8L8+TYBMaFNXuxGYLT2UJSoq8jTua2H6gkpjFbk+gs0TWuiZXrFcPdJ5duKgLhgL3Jhm55oPJSOMF6KoYFeOjo7mTXDNQ7xMygTuX2CEbu39tPVlsNXmvpJdbRMrUT5aVveqQ3G82yhqApAh+VRpHbvm3LHSduk0g1WX7tuLfNPONFe4NMeO6vb2ba2h7AQkc7A9AWtTJ5dZ+OjTi6s2S6h2hiUMhgT2GRP+ShdshX3nuv8iW9L6f00O7dtIZOpoOGEOrpa+tm+oZc4VjRObea4M+ZS2TQNlW3ApBtRmQko5VEYKhH9diPpbEC2yq4OdmzrZ+G502iZUfei3/8HH3yQefPm0dzcvMfPS3wUQohjy1GZ7M2dO5df/OIXFAoFKioqWLRoEQ899BBTpkxhy5Yto0pUftr9U0qmhKd8Cl6KTFTgqegppjHVJkwal9j4YIrYzfhpIhPzbO4ZUmi3F8TuS1tZWMN51We5fXlmxLDvouvMGdiunMSuBDNJmDy3P5DynLmsn+V9Te8hpjR8X63IlAczufl5KmUfr7Xbl+eDKblGL24cQzKmSnnD+wjxQClSAcxa0EzD5CZMHFJRFVBZk3ZNVpIGMJ6bo+e5ciV3/EwTVE23CV7FFFSqaq/fFz/wOOOSOZxywQyMMaSzwV733m0rbuPevnvLDQQ0mts6b+OtjW+l1q89kB8PIY5pLS0t9Pf3UywWOf/883n00Uc54YQTeOihhwDKF8kAphzXwHGntbL28V34gx7TJkS0zqgjzvTbbpzJuAWGm6+gApQKaGqtpDAwRF97Dk3AhImVNLRWAgbPC9yEGLePLen6q2LXtdI1TnF7kT1tVwE9z3cz6mwHTc/3aZ1ZR8v0eiBGpbIoHaFH7BlWyrP78lzdhN1LPfo45e6iI7pn2vvYktQpxzVS3VhBHMakMz7VDTXDpZrl+2s3u8+NVfDUiG3UHkaN3Nfnzkulif0a4srJ+M0nMnFqE42vaCAyVWQq03jecHwcGSnTFQENLdXs2NBNWIgp5kvU1GepmZA9BD8xQgghxrOjMtl7zWtew3vf+96XdXVyUdUiLi1dCsDc0hoa8t0YnUGFjOhsqbGrWtrOkVM+QRxzUeoiOrq6KRVL+BgqajKc2HwSdhXP7b0DO/cuSZhMZJ8LvzyawL4BcOMZdES5ayeGQCkCVTnc3dJL25U8cGMhRswDVCnsaIQkmXPHSDp/uvOxDWF8O0vQRECAn0rR0JKCWI1IQrXbI+Iay/gZu1pX0QoVUyDbWh5YvC/S2Zf+sdoR7njBbTExHaUOSfaEOACLFy9m27ZtaK33uq814Qcef/GOhUw7oYmwu4aWoIe65jQbNg7YZEx5mLjk9gPbBMbeFtrZbknzEoPb9+wSH5NciNJ2oLl2jVKMTQRtd8wI47mmLJ6tTjAkM+s8u+PPNW1RgY8yCp00VzEeylPlVSp7ncteLEs6CJdn0BnX0EUpe/0sGQOTNIoBwFDbUIWnzOjXgjfqWpr9X7cy5lYv7TJiBlK1eOl6yDZBphmVbYKgmr7cU9TV1eE1zwJsu5qX2lHseYo5i1pIZX162nPUNlYw/YRGKmtlr50QQoh9s9/J3p/+9Ce+8pWvsHz5cnbt2sXPfvYzLr/88r3e//777+fCCy98we27du2itbV1f0/jJS2pXsKS6iUAmNQfoWcFvX399Gu7zw/Plv4QF4c7w7k/9lU7mvEHa6mq84lKUNgZ4VWnoCGySVIyT08pl4glSRjl8h/7piOwbyiSsQVe2q7MuavX5RU2zIhun+5NUHnOXXLFOnQrfMlgcvfGxU9GQNhh50Z5qCQJ9F1CaCKX6AVAZIeWV04f7pCZfvHyoJfSs3uIDU/tJj8Y0jipmrmntu418Tur5iwePPGF++6kC6cYD46W+AiQSvuceNYUdNSIXreMUlgCL3CJVOTmwCWD0UsYIhSK7vY8g70F6idWoLXPUG+Ozl2DtE63q//JCAQ7OF27ZCmwZY5J2HQdNUeuiJUTNONu8ZRdJXQXzZKZdiYZo4AHrqRTuYYtw90xVTlpG/mcZuTohfL9KVca2JU8e5ttcmzn62k/g5eqRWUaIduMyjRiMk14qSpe6rJYbiBk/Yo2ejtz1NRnmXtqCzUT9r5HOZ0NmLvo0H7vhRBCjH/7newNDQ1xyimn8O53v5s3vvGNL/txa9eupbZ2eOVm4sSJ+3sK+y7dAChUuXzH7bVLEq1kpc5ArD3CMCZTqfCUwc9UYIYG7BshlRkeu4AenolXLolMBpO7Df14tmOnwSV6ZnilLplHZYxdYUvOpzxsOHaPCyiPRlDp4c9pbUcjgE0gVRrjjUwC0y6JDaBiKlS22FW7isl2RtVBkusPWfvwTgZ6CmQrArp2DlDMRyy6cMZeEzhJ7MR4dTTGRy/IYlK1UOqxnSsxrutusg/NK48dwIMwH+KlUni+rVTwUxDl8hhThecPt0ghKWlMZtRhUJ5BGQ9tXEdkN5vP6BJGxXb6gAsPtoLDMKhzVPm1Iyo67DBxnYw7AFtyqmPMC8o1DcqVbBKFqBFJnUG5kk/fvjYFOqjAC6rwsi2ozARMphGVnYjvv7CM8uVEsTjSrHxwK7s29FBRnaZ75yBDfQXOuHgOmUrpHCyEEOLQ2e93+5deeimXXnrpPj9u4sSJ1NfX7+9hD0ymEbdpDuOlRqzMuQTNKLvK52Xxg4Bs2pAbKOAHVYRRhOdpUmlvVFJoi3LcvrzyTDzcnj5l94zoCOMxnMwlg26Vb1cUcSWU5dl/DJd1okc0gHHlnZ5nz9O4stPkccYDz06Fiv0aTN2JUDMDKqdAqv6QJld9HXn6u/K0zqxDKUW6IqB9Wx/5wZLdHyjEMeSojI9gV/tztuph5Apa0lhFGc+OW0GTqUwRdZSISyGxDohLhnR1xg5PLw9lt90yTZI8eimUicv7+ZKVNoxxoc+UB7Ir1/nS83yeHHqaB/t/z1sa3kZrZqKbc4cr+UyhlCnPvbMjdMoFlyhjXEnqiEoMsHE0qESlG/HStcOll5kmfH90zDrQyJnvL9G5PU/j5BrS2YDaRk37tgH6OnNMnH5gFRVCCCHEiznse/YWLVpEsVj8/9u78/ioqrMP4L87+2TfyUJCwhaQnUDYiqikBtSKfUVRKASrVKG2sijVtoq8vFZQVMCi1WLBqIi4oqgsoqEIyBIIEhLCkoQtG5B9mcxk7nn/mJkrAwkkIcmEye/7+fCB3Lkz59zJ8Mx97jn3Oejbty+ef/75ti0BrQuwJVBCZbvyq0yVtC9abjs7sCVMskBotBfO5UioLq+DUAkEh3rCN9A+7UZY7Aua2xYeti1HcMlIoUoHQGO/Z88xaqiyP09le8yRIKrtiafVvki6pP0l0ZMcVTHNttdUa+39tk/rtHXYltAZQgCPCAhdJ5w7/V/0DkuA1EDFypYm2d8+WRZQqyXIVsfV+jZpnsgtuDQ+AoAuAJKUA0DYCpoAkNQaW4Im2y6U2e5T0yEwFKipllFdVgVZCPgFeSIw1NNeN0UCoLYlfXKdvdCLBrKw33Mnqez31Mm2fE8IW6wQtsXWHSOIQlKhTjbjp8rdkCVgd9Ve3KO7A3Ds4XhN2OZb2u7BE8pNdpKkgqRS2xcetyV2stYfhafD0LPbPVDrG7fUy3WTbO+JbLUXpJKFfZF3zm4gIqLW1WbJXlhYGP71r39hyJAhqK2txapVq3DLLbdgz549GDx4cJv0QdIYIDSeEGqT7UqtvXiJ7YqvY1qlPZmS62D0MqLLTV6w1NRAUmlh9LTflSFbYCsqYB99E/hlRA/ikpE5x9RNtW3U0DGiBw0gTLbCLmpH5UtHWbdLX9Oe6MFeSMVRMVTnZ0/sOtumZOoDnUft7AuPtyX/UE8ERdSiMLcMGp0aslVGz8GhMHpyVI/oWtpDfAQAyRAMIcu2+33t69HZcj77yJykst3LB9tadFG9gmCqsFXgNHhooNJoIFRqCKsVArbpmCq1xn7HnhWAxjbVUlhtIU2CbZqopLLdc3dJ9UsBWzXNIzUZqEINdBDIMZ1Akfk8OulD7YVUbPcoSxIgJDWg8YKk9YXKEGQ7Fl0gJH0g1JcUmhJ1dTCrCiCp2276pIevDuHdjchNPw+1VoU6sxUR3QPgF9JwdWMiIqKW0GbJXmxsLGJjY5WfR44ciZMnT+K1117De++911bdAHRBkMSFX5YtcBREgWxLvGTZlqQBgEoNrUoFrVoLqA32e+RsI4NwjJgJqz3RE/YCLBr7z5L9CvYl69U57hlxTLtUqWBbUsFiSzQdVTGF/T5A2J4KXSfAI9SW3HlEQFIbUCvX4p3z7+Ber3vRqR3c+6b30GDQbdE4e7wYpioLfIM90LlHgKu7RXRDaC/xUeiDAHt1TCHUACy2ETNIELLt7jjHtEgJaghZwOittS/PINmSOKstYbPdeGerbvlL5UvH/XG2wimO255tVTslSEJtWwsPtoTPCiv2VuyBvUILNCoNfqreiwneUwGtP1SGAMAQAkkfCJXOtkYdAJSer0JFgQkqlYSAcOsvF+quolauRXpNOgZ7DG7xKe8qlYQ+IzvDJ9CIyhITjN46RMUGQqtrerVjIiKipnDp0gvx8fH48ccrKzK2Kp0fINtKiSuFVaD+peCKbK/Y5ri/zn7l+ZdkDrb76y6trAl7FUwJtmIpVgsg1f2ygLpSoVNlTzKtv4z2KY/ZK21qvABDlG3EzrOz7T6SeuZCbizZiPcvvI/zlvNY0HlBK79pjePho0fPuDBXd4PILbgiPkr6QNtMB2G1J3mOJRCE/VY3DSSVbEvIJEfxlUsXErdNTrAtgWC1TVBQqWzLM9inu0uSPXG0J3xQqe2VPqE8buuMGkcsZ3FSK6NU44NKrQ7FKqBCU4X4yLHorOtc7zGcP1uOrH15qK2xLfXg38kTNw3vDKPX1WcZrDm/Bu9eeBcruqzAEK8hLfOGXkKrU6NrvzYsSEZERAQXJ3tpaWkIC2vj5EDr88sN+o5RNLXednJjtVfTVNkXMbfW2itdSkCd2V6LRXvJyZA9CVSmYNoTRvvUIucF1R1zlmR7oqeynSzpQwCPMMAj0jZqp7n2tJ5auRarz68GAGwp24KHgh9ClD6qpd8pInIhV8RHlVprj5EqpbIlZDMktQqA2n7Pne1eYsmewMlW+0ifSm1L8GQrJElAJakhO5YzcCxELglb0RTJXrwKgFBpUafyheTdFSpDACR9EIQ+CJLWB2GWAvQs7QHZEWMBGFVGBGoCGzyGM0cvwmoVCInyhSwLnD9dhgvnKhAZ2/BzyurK8NHFjwAA/y76N+I841gtmIiI3EKzk73KykqcOHFC+TknJwdpaWkICAhAVFQUnnnmGZw7dw7JyckAgGXLliEmJgZ9+vSByWTCqlWr8P3332PLli3XfxRNoQ+0nahIgLLOnWOapYRLlk2wrb/kVLET9oIoSqVN+2OXJoyONfBUkn2ET0Co1LaFztUGe2Jnm44JfadmLVq+sWQjiq3FAAAVVFh9fnW7Gd0johs4PgIQugBIEBCybT09lUZjKygCGZC0tscgQwirLSFSaQFRd8non32tUskWXyUAUNuLUml8oTL42xcet91XZ7lQgeLabGg6j1T64EizwnRhmBEyo9F9l2WBOousTI9UqWzr9Fnr5Ks+b93FdTAL2/T9wzWHkVqV2iqje0RERG2t2cne/v37nRYBnjt3LgAgKSkJa9asQX5+Pk6fPq08bjabMW/ePJw7dw4eHh7o378/vvvuu3oXEm5V+gDYzkTsBVkk+Zc16SSNfWUEC6AywL4iMJQFzaGyTbWUNLbROdlyyXILEurMZuSfMqG6rAY6vRqhPSNhDOmKapMZddoQhHYfet3dv3RUDwCssHJ0j6iduWHjIwBo/fDL2gX2hcehhmQflRP2UTbbfXq2apqSvdqkJFQQkhYwBEGlD7QvZ2BbeBwqI7IPFOBs1kWodSr0HOyL8G6egFTZYl1XqSQEhnkh98h5SJKEujorNDo1vAMarrrpGNWT7SsDqqDi6B4REbmNZid7t9xyyyWL215pzZo1Tj/Pnz8f8+fPb25z181aJ+P00YuoLq2GZ0k1hNpeLMWxoLqjIIqj6qUk2UfwLn1M2IusOEb0YC/AIiAkPY5lmHHsaADMUieUVfoiuNAft0/rD4sx56rvVVWZCWUXa6DVqREY7g3VVcpx51vyUWotddomIJBZk8lkj6iduNHiIwDkZZegtLAKqloVrHWwTcmUbMmPkFQQos6+vIEKEgRkjSdUGi+ojCGQdAEQhkBI+mCo1forXlsCkL7zDPZ8YxvttNYJ5B0vwW2T+0C6xuoHZlMdigsqIUkSAkK9oNVffTZE1E1BEBC4eK4SBg8dOvcMQEBow9Pjvy//HiZhUn6WIeNwzWGcMZ9hTCUiohueS+/ZayuyLHDw+1wcP1AAWRaI1NfB09eMqGgrVJIVkOw37gszAK29Sibs96Y4lk2wAJLe/rMMaH1tUzGNEYBnJCrKtEg9dgAGLw08ffQwWmUU5pajILsUMDTct8JTZdi3+STKL9RAo1Oja/8QDLotGmpN/QvUReujsanXJmXKEWA7GfPT+LXEW0VEHdDJtEIc+D4HZpMVUl05OnuZYY0F1DodoDFA0gVApfd1Xnhc5bx0wdXGwIQQOLY/HxqdGoFhXhBCIO9kKU5lXEB0nHeDz6ssNWHPNydQdLockICwaD/E39EdHt4NF1vR6tToPjAUMX1tFT6vdvEMAMb6joVRZbTdW2jnofJAuC78qs8DALNsRqm1FCFaFl4hIqL2qUMke6VFVchJPw+fQCM8vHWQSgJRXXoSleU18PHTQymyIiT7ouW19kXMHcsfaGyFVDyjAGM4YAyHpL78ZKPaPvXplxMLe+HxBvtlrZOR9n0uKkpM6BTti9pqC44fLEBIpA+iegc1+Dy91YgTOy+gpKgaXn569BnZGWj4fImIqEHWOhmZe/OgUkkI7+qHmho9jqf3QWfLrxHdtxdU6pb5mrgsPOLSlUcbkrknD/nZpejUxQdCAGePF8M/NR8DbulylXYEjh/IR35OGbR6NWKHhCEwrOEA6aP2wTi/cU07GLsX8l7Azoqd+KznZ/BR+zTrNYiIiFpTh0j26iwyrHVW6Ay26T9C4w3IMmSrvdCKsADQ2Eb0JABaL9uInUeErZiKLuCa9254BxgQ0SMAJw4WoqbCDFO1BUER3giN9sPZgtJ6n2M21aG60gwffwNUKglGLx1Kz1ejpsrSYDtWq4yU9RnI3HPOXsJcIC+7FOOS+kPv0XaLBBORe6izWFFnsUJnsH0dqDUaXDRFotbq32KJniRJ6D6oE/Ztysb5s+WwWgQ8fPSI7BkAoOF4V1FcDYOnFhqtLXbrDGpUlJoa3B8ADm0/hd1fnUCd2Qohy8g5XITE6QMQFN6yV8Rya3OxtWwrAGD9xfV4JOSRFn19IiKiltAhkj2fACP8Qzxx/mwFvP0NMF9QI9xHCw9P+zIK+k6AZzRgDLON2mmucRNJPVRqFUZNiIW3vwFFZ8rh5W9A/9FR8PIzAAX1P0dn0MDTT48L5yqg99DCVGWBSiVddYrShXMVyP65EL5BRnj5GWGqtuDM0Ys4e7wY3QZ0anK/iahj0xu1CIn0QfbPRRACqKqogUZnuz+uJfUdFQm1RoXTmReg0WvQa0gYIroHoLCwsMHn+AZ7Ii+7FObaOggZMNda4RvYcHy21llxeMcZSBIQ3t0f1jor8k+W4mRaYYsne6uLVkMNNayw4sOLH2JS4CR4qznFgoiI2pcOkewZPLUYOq6bMmVSHxgNdWcDdL3uBHTBkFT13x/XnHbix3dv9P5qjQqDbo3G/i3ZuJBXAY1Wjdih4Yjo7t/gc+rMVljrBLR6269Op1dDyDLqzNbr7j8RdUwDb42GJEkoOlMODx89wgMN6NTFt0XbUGtU6DsqEn1HRTb6Ob3jw1FRXIPCU2WQJAldegehx+CG1x601tmXXrAXcVFr1LaqnJaWjY+5tbnYWr5V+dkkm/DRxY84ukdERO2OWyZ7ubm5AGzlzy+dfunRVUBvEaiTPVFuicLeQ7kAclu9P9XV1QCA8vLyeh/37maFJsQKtUZGrUcB9u1v+Eq32WRFnaoa2Rkl0HuqUVtthdFHg7zibJTuOQMAShXAy4+/tZjNZmRkZECjaf2PU2OOLSgoCDExMa3eF6IbUX5+PoAr/w+pQoBgfxkyZFRWarFnz5426Y/ZbIbJZGqwPV2EjEBP2zqoGr9SHEo/cNXXk/WVyDtaheLii6gzC0gqCcXV57BnTymAlomPn+o+BXSAStguFMqQsbZoLfrl9Lti38rKSpSVlaGoqKhZbTVVdXU1srKykJ2dXe/jBoMB/fpd2U8iInJPbpXs5eTkAABqamoAAJ07d4aqnlG7kpISFBcXIzKy8VeYr0deXh4AIDz82tXdGsP/gWCkbTuHymITgiO06H9LOEK7/nIVXpZllJaWNnj8La2iogIhISHw9Gy4vHlLsVqt1zw2o7Hp03CJ3JnV+svIlmPaZEP/h8xmM44ePdpm8dGRCLVUe0ETQ5H23RmcP1MJjVaNHkOD0WPIL9UyWyI+3lV3F8ItzvE8UBWIyIArj+HUqVPw8PBAcHBws9pqqurqagQHB8Pbu/4ppWr11ZeuICIi9+IWyZ4jyTOZbDfu9+7dG7t27UJoaGi9o01CCFRVVbVY8nUt5eXlEEK0WHvh4cBNg7vDYqqDVq+GSu18wlJXV4f09PQGj7+lZWVlISgoCP7+DU8/bSkWiwVHjhy56rEJZSFooo7NkeQdOPDLaNiAAQOwe/fuBv8POUaG2io+qtVqlJSUtGh7XXtGwVJrhVqjumIZm5aIj+EIx824uVH7FhUVwcfHp83ez+zsbAQEBDSYXDI+EhF1LK0/7NNK/P39odXaqk/W1tYCsCV5HYVKJUHvob0i0SMi0ul00Gg0SpLXrVs35bG2mNrtapIkQWfQNLheKRERUUdxQ34TLlmyBGPGjFFOWnr16uXiHhERtQ9fffUVunfvDpVKpSR5AQEBLu4VERERucINmewNGDAAKSkpMJvNru4KEVG7EhUVhbNnz6K2tpZJHhERUQd3QyZ748aNQ2lpqau7QUTU7gwYMADl5eUdYromERERXV2zk73//ve/+M1vfoPw8HBIkoQvvvjims9JSUnB4MGDodfr0b17d6xZs6a5zRMRtVuMj0RERNQeNDvZq6qqwoABA7By5cpG7Z+Tk4M777wTt956K9LS0jB79mw88sgj2Lx5c3O70GRCCFSV16KqzAzZympkRNQ6bsT4CACmKgsqik2wWhgfiYiI3EGz6/KPHz8e48ePb/T+//rXvxATE4NXXnkFgK1y5o8//ojXXnsNiYmJze1Go8lWGVn78nA66yJKS8oga03o36cWHj76Vm+biDqWGy0+AsCZrIvI2p+HqnIT8i9U42JcJQLDvNqkbSIiImodbXbP3u7du5GQkOC0LTExEbt3726T9s+dLMHxg4XQ6jQweutQmleLo/vz2qRtIqKrcXV8LDtfjYzdZ1FnkeEdoEdthYz0H8/AXFvXJu0TERFR62izZK+goACdOnVy2tapUyeUl5ejpqam1duvKquFkAU8ffXQGdTQe6lRWlgNWeZ0JSJyLZfHx/JamKot8A/xhFavgdFXjaqyWtRUsOIxERHRjeyGrMbZHHqjBgJAndkKIQQsNVYYvXVQqVixjog6Np1BA7VWpSR35hoZWoMaOmOzZ/oTERFRO9BmyV5oaCgKCwudthUWFsLHxwdGo7HV24/oHoDwrv64mF+J4rxq6D01iB0S1urtEhFdi6vjY0CYF2L6hqCy3ITC3HJACMQOCYfRU9fqbRMREVHrabPLtiNGjMA333zjtG3r1q0YMWJEm7SvM2gwaGw0ivMrkZ9XgApTMQJCWXyAiFzP1fFRpZLQe1gEQiJ9UFFWhcMZxYjqFdgmbRMREVHrafbIXmVlJdLS0pCWlgbAVjo8LS0Np0+fBgA888wzmDZtmrL/Y489huzsbMyfPx9Hjx7FG2+8gfXr12POnDnXdwRNoNWp0amLL4KjvKD3VLdZu0TUsdyI8VGlkhDc2QehMb4w+DA+EhERuYNmj+zt378ft956q/Lz3LlzAQBJSUlYs2YN8vPzlRMbAIiJicHXX3+NOXPmYPny5ejcuTNWrVrVKmXF6+psFeTMZjNkWb7icZPJBCEEzOa2KT5waX/aur36jr81WCyWNjk+i8UCAKiurobBYKj38aeeegrTp09Hv379oFKp4O3tDUnivZnUdtpzfLRarQAajg/V1dXK423BYrG4LB63RXyUZbnN4iNgW0+2pqam3vaEEHj55Zdx0003Ydy4cVCr1YyPRERuThJC3HDlKAsKChAWFoa1a9fCw8MDI0eOxK5duzB8+HD89NNPGDJkCFJTU3EDHhpdp+rqakyePNlp25kzZ+Dj48OTGuoQLly4gODgYKxduxYJCQnYtWuXEiMBIC4uDgcOHGB87IAYH4mIOh63qsYpyzJUKhX279/PE5kOymg0Yu3atVi1apWyLTIyEr6+vqioqHBhz4hcxzGCJUkSL4R1YIyPREQdj1vU1XZM7ZMkCSNHjrzi6qQsyzh+/DjKysrQp08feHp6tkm/qqurcfDgQQwcOLDN2gRs05R2796NESNGQKNpm1/xqVOnUFxcjIEDB7bZ1eH8/HxkZ2ejR48eCAkJcXpMCIHY2FjMnTsXVVVV+Oc//wkhBMrLy3kFmzocx9TFYcOGQavVOj0mhEBeXh5yc3MRGxuLoKCgNumTLMtITU1F586dERbWdpWRXREfS0tLkZGRgSFDhkCna5sKp+Xl5Thy5AhCQkLQtWtXp5gnhMCIESPwwgsvYNu2bVi8eDFkWWZ8JCJyQ24xjZPTNqk+9U1ZAmzTliIiInhCQ27p0mmcN998M/bv34/4+Hjs27ePMZKccFonEZH7u+GncUqSxGmbVK/6piwBtmlLnLJEHYFarYZKpcLevXsZI+kKRqOx3vjIaZ1ERO7jhpzG6agmV11djbi4OKjVV5YJ37t3L7766ivMmjULoaGhbXqF0mw2Y+7cuZgzZw66devWZu06WK1WZGZmonfv3vW+N61FCIENGzYgNzcXs2fPbrN2AdtU3szMTLzzzjtYuHAh/Pz8nPp18OBBFBYW4umnn0ZNTQ0OHTqE/v37w8fHh1evya047s+rrq5GZWUl+vTpc0Wil5+fj8WLF2PWrFno3r17m8YJAFi0aBFGjhyJsWPHtmm7gOviIwAcOnQI7777LpYuXQqVqu2utcqyjHPnzmHFihV4+OGH0atXL+UxR3w0mUx48cUXsWPHDrz00kuc1klE5CZuyGmcp06dQnR09DX38/f3R0lJSet3qB4ajQZWq9UlV9M1Gg0mTpyITz75RLlXp614eHgopdvbmk6ng0qlgslkavRzysrK4OPj04q9ImpbZ86cQVRU1DX38/DwgMlkarPlWS4lSRIMBgNqamravG1XxketVgur1eqS9xwAfH19UVZW1qTnMEYSEd3YbshkT5Zl5OXlwcPDg1OTqNGEEKisrIQkScr6UhzZI3fD+EjNUV98lCSJI3tERDe4GzLZIyIiIiIioqu74Qu0EBERERER0ZWY7BEREREREbkhJntERERERERuiMkeERERERGRG2KyR0RERERE5IaY7BEREREREbkhJntERERERERuiMkedSgrV65EdHQ0DAYDhg0bhr179151/48//hi9evWCwWBAv3798M033zg9LoTAc889h7CwMBiNRiQkJOD48eOteQhERK2GMZKIyL0w2aMO46OPPsLcuXOxYMECPPnkk8jIyMCwYcMwePDgek9odu3ahQcffBB9+/ZFnz59cOLECdx5550YPny4sv9LL72EFStWoHfv3jCZTNi2bRt69uwJSZIwbty4tj5EIqJmY4wkInI/khBCuLoTRG1h2LBhGDp0KEaPHo1p06bhjTfewDPPPIPo6GgcP34cWVlZCAkJUfafNGkSqqqq4Ovri1GjRmHkyJFISkqCyWRCYWEh0tPTMXToUMybNw/p6ekoLCzE8uXL0a9fPyxfvhyTJk2Cv7+/C4+YiKjxGCOJiNwPR/aoQzCbzUhNTUVCQgJeffVVzJgxAw8//DDGjx+PmpoaVFRUICIiwmna0u7du5GQkIAPPvgAs2bNwsCBAxEdHY1jx46hrKwMkZGRKCgowN/+9jcAgF6vR8+ePTFs2DCsXr0aN910E6ctEdENoaEYGRMTg/T0dJSWliIuLs5phO/yGJmWloaff/75ihiZkJAAwBYje/TogdDQUMybNw/h4eGMj0RErYzJHnUIFy5cgNVqRUBAgHJCAwAlJSU4cuQIhg0bhtGjR2PAgAFITExEUVERCgoK0KlTJ6fX8fHxgSRJ0Ov1ePbZZwEA+/btAwCkpKQgJCQEe/bswf79+/HSSy9hz5498PT0RGJiIkwmU9seNBFRI9UXIz/66COkpqYiNDQUd999N9RqtRIfAdQbIw0GAwICApxipGOflJQUeHt74/Tp0/Dx8cHmzZsZH4mIWpnG1R0gakulpaWwWq3Kycf+/fsRHByMUaNGYf369cjOzlauYMuyXO9rCCEgSRIWLVoEABgwYIDy2OjRo/HTTz9Bq9Vizpw5uHjxovKY0WhEYmIiNm3a1IpHSETUfJfGyNmzZ6N///7QarWoqqpCfn4+zGYz4uLi8Omnn9b7fEmSUFpaClmWlRgZHh4OAIiLi8OpU6cQFBSEvLw8jBkzRnke4yMRUevgyB51CEFBQVCr1bhw4YKyzWw2o6CgAF26dMHRo0dx+vRpLFiwQLmCLcsyTpw44fQ6qampAABfX18EBwcDAP79738jPT0darUad911FywWC26//XZcvHgRQ4cORX5+PoYPH46HH34YH374YdsdNBFRI10eIy0WC1JTU+Hr6wur1YqUlBREREQ4jfAFBwejsLDQ6XVMJhNkWUZQUBBGjx4NAPjkk0+gVqtx//3348KFCwgMDERUVBQAYP369YyPREStiMkedQg6nQ5xcXHYv38/1Go1CgsLUVRUBCEE4uLisHv3bnTp0gXdunXDkSNHkJeXByEE3nrrLeU1li5diqysLMTFxWHTpk1Yv3499Ho9Zs2ahYSEBFitVrz22msAgPHjx0Ov18NsNiM0NBS1tbX48MMPERYW1qhy5kREbenyGHnixAlYrValsEr37t0RHh6uxMfS0lJoNBps27ZNeY39+/cDAG677TZ88skn8PX1BQA89NBDsFqtWL58OQAgPT0dERER0Ol0KC4uZnwkImpN4gbxz3/+U3Tp0kXo9XoRHx8v9uzZc9X9169fL2JjY4Verxd9+/YVX3/9tdPjsiyLZ599VoSGhgqDwSDGjh0rjh07dt1tv/322+JXv/qV8PPzE35+fmLs2LFX7J+UlCQAOP1JTExskWNfvXr1Fa+t1+ubfexNbX/MmDFXtA9A3HHHHc06/u3bt4u77rpLhIWFCQDi888/b7Bthx9++EEMGjRI6HQ60a1bN7F69WohhBDr1q0Ter1edO3aVQwZMkR4enoKAKJHjx4CgIiJiRH33XefGD58uOjevbvSt6VLl4p58+YJvV4v1Gq1OHz4sNLWvHnzBACh0+nEr3/9a9GtWzcBQLz66qsCgPD09BTe3t4CgAgODhY7d+4UM2bMEH5+fqKwsPCax0LUGK6Mj01tnzGy5WJkS8ZHIX6JkYGBgcJoNAoAQqVSCZVKJQICAkTXrl1FeHi4Eh979+4tNBpNgzEyKytL6f/IkSPF1KlTBQARFBQkfvvb3woASjuMj0REreOGSPbWrVsndDqd+M9//iOOHDlyzS+DnTt3CrVaLV566SWRkZEh/v73vwutVut0kr548WLh6+srvvjiC3Ho0CFx9913i5iYGFFTU3NdbU+ePFmsXLlSHDx4UGRmZorp06cLX19fcfbsWWWfpKQkMW7cOJGfn6/8KS4ubpFjX716tfDx8XF67YKCAqd9GnvszWn/4sWLTm2np6cLtVrtdELRlOP/5ptvxN/+9jfx2WefNepkJjs7W3h4eIi5c+eKjIwM8frrrwu1Wi02bdokhBDi9ddfF15eXgKACAwMFJIkidDQUAFA9OrVSyQlJYmuXbsqJzOhoaEiKChIABCRkZHivffeU/pcUVEhnnrqKaHVagUAoVarxeDBg5UkLzQ0VHzyySeib9++wt/fX/j7+4uhQ4cKs9kswsPDxYsvvnjVYyFqDFfGx+a0zxjZcjGypeOjEEJMnz7dKcns1auXACA8PDzEiBEjRLdu3UTnzp2VC2Xr169vMEbOnj1buaim1+uFRqMRAET37t1FdHS0CAsLE3369GF8JCJqRTdEshcfHy/++Mc/Kj9brdarfhncf//94s4773TaNmzYMPHoo48KIWxXbUNDQ8XLL7+sPF5aWir0er348MMPr6vty9XV1Qlvb2/x7rvvKtuSkpLEhAkTGvX8pra/evVq4evr2+DrNeXYm9P+5V577TXh7e0tKisrlW1NOf5LNeZkZv78+aJPnz5O2yZNmuR0VTw+Pl6MHj1aREVFCUmSREBAgAAgHnvsMWG1WoVOp1OSth49eoguXbrUeyV+wYIF4le/+pXQ6XRCq9WK4OBgodFohCRJQq1Wi4KCAlFbWyvUarXQaDRi2bJlAoD47rvvxLRp08Tdd9/d5PeA6HKujI/Naf9yjJEtEyNbMj7+8Y9/FK+//rrQ6XRKvPuf//kfYbVaRUREhIiJiVHioxCiwRgZFRUldDqdCAwMFLfffruSFAIQM2bMEKdPn2Z8JCJqZe3+nr1L1/5xUKlUSEhIwO7du+t9jmPtn0slJiYq++fk5Dit/QPYCm4MGzbM6TWb0/blqqurYbFYEBAQ4LTdUaY/NjYWM2fOdKraeL3tV1ZWokuXLoiMjMSECRNw5MgR5bHGHntLHf8777yDBx54AJ6enk0+/ua41u/ecUxz587FqVOn8OGHH6KyshIA8OOPP2LmzJnw8PDAN998AwAoLi7Ggw8+CGG7MIKFCxdi8+bNOHnyJO6++26kpaXBbDZj3rx5KCoqgsViQVJSEqxWK/773/9ix44dsFqtCA4OxqOPPoqgoCCcOHECnTp1QkFBQYscM3VcroyPzW3/coyRbRcjGxsfExIS8PjjjyM5ORk6nQ4AcOzYMcycORNVVVXK/sXFxXjmmWeQm5t7RXxMTU1FcXExzGYzZsyYgc2bN+P8+fOYPn06AODXv/41jh07xvhIRNTK2n2y51j75/K1fK72ZVDf2j+X7u/4+1qv2Zy2L/eXv/xFWTjWYdy4cUhOTsa2bduwZMkSbN++HePHj4fVanV6bnPaj42NxX/+8x9s2LAB77//PmRZxsiRI3H27NkmHXtLHP/evXuRnp6ORx55xGl7Y4+/ORr63ZeXl6OmpuaKY5o0aRJeeeUVqFQqpKenIy0tDZs2bVIqbarVauTn5yuvVVJSghkzZqB379644447YDaboVar8eSTTyr7TJw4EQDw+OOP44477gAAvPbaa7hw4QIuXryIsLCw6z5OIsC18bG57V+OMbLtYiTjIxFRx8N19lrR4sWLsW7dOqSkpMBgMCjbH3jgAeXf/fr1Q//+/dGtWzekpKRg7Nix19XmiBEjMGLECOXnkSNHonfv3njrrbeUNY/ayjvvvIN+/fohPj7eaXtrHn9zPP7449iyZQs2btyIWbNmwcfHBzNnzgQALFmyBNOnT8e0adMQERGB1157Tam4Cdiu+Hfq1AmBgYHKtqKiIvj4+GDatGm4++67ceuttyIrKwsvvfQSunfvjsTERHz66acIDQ1t82Mlak8YI9t/jGR8JCK6sbX7kT3H2j+Xr+VTWFjY4JdBaGjoVfd3/H2t12xO2w5Lly7F4sWLsWXLFvTv3/+q+3bt2lWZvnKp62nfQavVYtCgQcprN/bYr7f9qqoqrFu3Dg8//PA1+9jQ8TdHQ797Hx8fGI3GBo/J398fffv2xXPPPYeBAwciLS0NAODn5wcAOH36tNMVbADIyspCeXk5LBaL0/atW7ciPj4eP//8M+69917IsoylS5ciLi4OO3bsgFarxbZt25xOOImaw5XxsbntOzBGtn2MZHwkIup42n2y51j759K1fGRZvuqXwYgRI5z2B2xfMI79Y2JiEBoa6rRPeXk59uzZ4/SazWkbAF566SUsWrQImzZtwpAhQ655jGfPnq13+kpz27+U1WrF4cOHlddu7LFfb/sff/wxamtr8bvf/e6afWzo+JvjWr/7qx3T5MmTceTIEezZs0dZXy8nJwdpaWlITk7GmjVr8Mwzz2DatGkAbNPBsrOzUVRUhPnz5+Po0aN44403sH79ejz55JPYvHkzioqK8OGHH8JsNmPUqFEoLi7GzJkzUVlZiVdeeQX/+Mc/lH7s2rULOp3uiv4TNcSV8bG57QOMkYBrYiTjIxFRB+TiAjGN4lj7Z82aNSIjI0P84Q9/EH5+fkq57KlTp4qnn35a2X/nzp3K2j+ZmZliwYIF9ZYW9/PzExs2bBA///yzmDBhQoNLLzSl7cWLFwudTic++eQTp7LZFRUVQgghKioqxJNPPil2794tcnJyxHfffScGDx4sevToIUwm03Uf+8KFC8XmzZvFyZMnRWpqqnjggQeEwWAQR44cafKxN6d9h1/96ldi0qRJV2xv6vFXVFSIgwcPioMHDyrr1x08eFCcOnVKCCHE008/LaZOnars7ygt/tRTT4nMzEyxcuXKK0qLX+2Yfvjhh3qryiUlJQkhbFXyxowZ49THH374QQwcOFDodDrRtWtXpxLqDq+//rpSmS4+Pl789NNP4uuvvxZarVbs27dPlJeXi65du4o5c+Zc8Vyiq3FlfGxO+4yRNi0RIxkfiYjoWm6IZE+I+r8MHMaMGaN82TisX79e9OzZU+h0OtGnT58GFw3u1KmT0Ov1YuzYsSIrK+u6275amX4hhKiurha33367CA4OFlqtVnTp0kXMmDHjinWemtv+7NmzlX07deok7rjjDnHgwIFmH3tT2xdCiKNHjwoAYsuWLVe8VlOPvy1PLlxh1qxZomfPnmLy5MmiX79+9Z7MEl2LK+NjU9tnjGy5GMn4SERE1yIJIURrjx4SUf1qamrQt29fnDlzBqmpqejXr5+ru0RE1C4wPhIRXb92f88ekTs7efIk8vLyIMsycnNzXd0dIqJ2g/GRiOj6cWSPyEXMZjPi4+MxcOBAxMbGYtmyZTh8+DBCQkJc3TUiIpdifCQiahlM9ohc5KmnnsInn3yCQ4cOwcvLC2PGjIGvry82btzo6q4REbkU4yMRUcvgNE4iF0hJScGyZcvw3nvvwcfHByqVCu+99x527NiBN99809XdIyJyGcZHIqKWw5E9IiIiIiIiN8SRvRtccnIyAgMDUVtb67T9nnvuwdSpU13UKyIi12N8JCKijo7J3g3uvvvug9VqxZdffqlsKyoqwtdff43f//73LuwZEZFrMT4SEVFHx2TvBmc0GjF58mSsXr1a2fb+++8jKioKt9xyi+s6RkTkYoyPRETU0THZcwMzZszAli1bcO7cOQDAmjVrMH36dEiS5OKeERG5FuMjERF1ZCzQ4ibi4uIwceJE3H777YiPj0dubi4iIyNd3S0iIpdjfCQioo5K4+oOUMt45JFHsGzZMpw7dw4JCQk8kSEismN8JCKijooje26irKwM4eHhqKurQ3JyMiZNmuTqLhERtQuMj0RE1FHxnj034evri3vvvRdeXl645557XN0dIqJ2g/GRiIg6KiZ7buTcuXOYMmUK9Hq9q7tCRNSuMD4SEVFHxGmcbqCkpAQpKSmYOHEiMjIyEBsb6+ouERG1C4yPRETUkbFAixsYNGgQSkpKsGTJEp7IEBFdgvGRiIg6Mo7sERERERERuSHes0dEREREROSGmOwRERERERG5ISZ7REREREREbojJHhERERERkRtiskdEREREROSGmOwRERERERG5ISZ7REREREREbojJHhERERERkRtiskdEREREROSGmOwRERERERG5ISZ7REREREREbojJHhERERERkRtiskdEREREROSGmOwRERERERG5ISZ7REREREREbojJHhERERERkRtiskdEREREROSGmOwRERERERG5ISZ7REREREREbojJHhERERERkRtiskdEREREROSGmOwRERERERG5ISZ7REREREREbojJHhERERERkRtiskdEREREROSGmOwRERERERG5ISZ7REREREREbojJHhERERERkRtiskdEREREROSGmOwRERERERG5ISZ7REREREREbojJHhERERERkRtiskdEREREROSGmOwRERERERG5ISZ7REREREREbojJHhERERERkRtiskdEREREROSGmOwRERERERG5ISZ7REREREREbojJHhERERERkRtiskdEREREROSGNK7uABE1zGq1wmKxuLobRETUDul0OqhUvG5PRA1jskfUDgkhUFBQgNLSUld3hYiI2imVSoWYmBjodDpXd4WI2ilJCCFc3Qkicpafn4/S0lKEhITAw8MDkiS5uktERNSOyLKMvLw8aLVaREVF8XuCiOrFkT2idsZqtSqJXmBgoKu7Q0RE7VRwcDDy8vJQV1cHrVbr6u4QUTvEid5E7YzjHj0PDw8X94SIiNozx/RNq9Xq4p4QUXvFZI+oneKUHCIiuhp+TxDRtTDZIyIiIiIickNM9ojohrdmzRr4+fm5uhtE5AZSUlIgSRKrIRORW2CBFiJqMdOnT8e7774LAEqFuGnTpuGvf/0rNJrWCzeTJk3CHXfc0Wqv3xiXHrtGo0FAQAD69++PBx98ENOnT2/SWlhr1qzB7NmzebJ5HRy/jxdffBFPP/20sv2LL77Ab3/7W7RlIepLp9p5eHggPDwco0aNwp/+9CfExcU16bVuueUWDBw4EMuWLWvhXrYc66Hn26wt9YCmtXWtaY8LFizALbfc0vwOERG1MxzZI6IWNW7cOOTn5+P48eOYN28enn/+ebz88sv17ms2m1ukTaPRiJCQkBZ5revhOPbc3Fx8++23uPXWW/HEE0/grrvuQl1dnau71+EYDAYsWbIEJSUlru4KVq9ejfz8fBw5cgQrV65EZWUlhg0bhuTkZFd3rUPJz89X/ixbtgw+Pj5O25588kmX9a2l4iER0aWY7BFRi9Lr9QgNDUWXLl0wc+ZMJCQk4MsvvwRgG22555578MILLyA8PByxsbEAgDNnzuD++++Hn58fAgICMGHCBOTm5gIAtmzZAoPBcMUo1xNPPIHbbrsNQP3TON98801069YNOp0OsbGxeO+995THcnNzIUkS0tLSlG2lpaWQJAkpKSkAgJKSEkyZMgXBwcEwGo3o0aMHVq9e3ahjj4iIwODBg/HXv/4VGzZswLfffos1a9Yo+7366qvo168fPD09ERkZiVmzZqGyshKAbQrZQw89hLKyMkiSBEmS8PzzzwMA3nvvPQwZMgTe3t4IDQ3F5MmTUVRUdK1fSYeVkJCA0NBQvPjii1fd78cff8To0aNhNBoRGRmJP//5z6iqqgIA/POf/0Tfvn2Vfb/44gtIkoR//etfTu38/e9/v2obfn5+CA0NRXR0NG6//XZ88sknmDJlCh5//HElGb148SIefPBBREREwMPDA/369cOHH36ovMb06dOxfft2LF++XPls5Obmwmq14uGHH0ZMTAyMRiNiY2OxfPnyJr9fHUFoaKjyx9fXF5IkOW3z8vJS9k1NTcWQIUPg4eGBkSNHIisry+m1NmzYgMGDB8NgMKBr165YuHCh00Wd06dPY8KECfDy8oKPjw/uv/9+FBYWKo8///zzGDhwIFatWoWYmBgYDAYkJycjMDAQtbW1Tm3dc889mDp1aiu9K0TkzpjsEbm5nPQi/PT1MeSkuyYpMBqNTlest23bhqysLGzduhUbN26ExWJBYmIivL29sWPHDuzcuRNeXl4YN24czGYzxo4dCz8/P3z66afKa1itVnz00UeYMmVKvW1+/vnneOKJJzBv3jykp6fj0UcfxUMPPYQffvih0f1+9tlnkZGRgW+//RaZmZl48803ERQU1OTjv+222zBgwAB89tlnyjaVSoUVK1bgyJEjePfdd/H9999j/vz5AICRI0deMeLgGG2wWCxYtGgRDh06hC+++AK5ubmYPn16k/vkKrKQcbDyIGQht0l7arUa//jHP/D666/j7Nmz9e5z8uRJjBs3Dvfeey9+/vlnfPTRR/jxxx/x+OOPAwDGjBmDjIwMnD9/HgCwfft2BAUFKRcFLBYLdu/e3aypf3PmzEFFRQW2bt0KADCZTIiLi8PXX3+N9PR0/OEPf8DUqVOxd+9eAMDy5csxYsQIzJgxQ/lsREZGQpZldO7cGR9//DEyMjLw3HPP4a9//SvWr1/f5D7RL/72t7/hlVdewf79+6HRaPD73/9eeWzHjh2YNm0annjiCWRkZOCtt97CmjVr8MILLwCwLXg+YcIEFBcXY/v27di6dSuys7MxadIkpzZOnDiBTz/9FJ999hnS0tJw3333wWq1KhfIAKCoqAhff/21U/tERI3Fe/aI3NhnK/Zgc/Ih5efEaQPwP38e1iZtCyGwbds2bN68GX/605+U7Z6enli1apWyPtT7778PWZaxatUq5X6a1atXw8/PDykpKbj99tvxwAMPYO3atXj44YcB2BLG0tJS3HvvvfW2vXTpUkyfPh2zZs0CAMydOxc//fQTli5diltvvbVR/T99+jQGDRqEIUOGAACio6Ob9T4AQK9evfDzzz8rP8+ePVv5d3R0NP7v//4Pjz32GN544w3odDqnEYdLXXqy17VrV6xYsQJDhw5FZWWl04hEe7WxeCMWnlqI57s8j98E/qZN2vztb3+LgQMHYsGCBXjnnXeuePzFF1/ElClTlN9Jjx49sGLFCowZMwZvvvkm+vbti4CAAGzfvh0TJ05ESkoK5s2bp4yc7d27FxaLBSNHjmxy33r16gUAyih2RESE0zTCP/3pT9i8eTPWr1+P+Ph4+Pr6QqfTwcPDw+mzoVarsXDhQuXnmJgY7N69G+vXr8f999/f5H6RzQsvvIAxY8YAAJ5++mnceeedMJlMMBgMWLhwIZ5++mkkJSUBsP1/XLRoEebPn48FCxZg27ZtOHz4MHJychAZGQkASE5ORp8+fbBv3z4MHToUgG3qZnJyMoKDg5V2J0+ejNWrV+O+++4DYIuRUVFRvJeQiJqFI3tEbionvcgp0QOAzcmHWn2Eb+PGjfDy8oLBYMD48eMxadIkZRoiAPTr109J9ADg0KFDOHHiBLy9veHl5QUvLy8EBATAZDLh5MmTAIApU6YgJSUFeXl5AIAPPvgAd955Z4MVODMzMzFq1CinbaNGjUJmZmajj2PmzJlYt24dBg4ciPnz52PXrl2Nfu7lhBBOhSG+++47jB07FhEREfD29sbUqVNx8eJFVFdXX/V1UlNT8Zvf/AZRUVHw9vZWTkRPnz7d7L61lTpRh7fz3wYAvJX/FupE293DuGTJErz77rv1/v4PHTqENWvWKJ89Ly8vJCYmQpZl5OTkQJIk3HzzzUhJSUFpaSkyMjIwa9Ys1NbW4ujRo9i+fTuGDh0KDw+PJvfLUSTG8dmwWq1YtGgR+vXrh4CAAHh5eWHz5s2N+v2uXLkScXFxCA4OhpeXF95+++0b4nPRnvXv31/5d1hYGAAo06YPHTqE//3f/3X63DhGXKurq5GZmYnIyEgl0QOAm266CX5+fk6fwy5dujglegAwY8YMbNmyBefOnQNgm6Y+ffp0rqlHRM3CZI/ITRWeKm3S9pZy6623Ii0tDcePH0dNTQ3effddeHp6Ko9f+m8AqKysRFxcHNLS0pz+HDt2DJMnTwYADB06FN26dcO6detQU1ODzz//vMEpnI3hqIx5aUVGi8XitM/48eNx6tQpzJkzB3l5eRg7dmyzizdkZmYiJiYGgG0U56677kL//v3x6aefIjU1FStXrgRw9QINVVVVSExMhI+PDz744APs27cPn3/++TWf1158U/wN8s35AIB8cz6+Lf62zdq++eabkZiYiGeeeeaKxyorK/Hoo486ffYOHTqE48ePo1u3bgBsFTBTUlKwY8cODBo0CD4+PkoCuH37diXpbirHSb/js/Hyyy9j+fLl+Mtf/oIffvgBaWlpSExMvObvd926dXjyySfx8MMPY8uWLUhLS8NDDz10Q3wu2jOtVqv825FoybJtCnJlZSUWLlzo9Lk5fPgwjh8/DoPB0Og2Lo+HADBo0CAMGDAAycnJSE1NxZEjR26o6dpE1L5wGieRm+rUxa9J21uKp6cnunfv3uj9Bw8ejI8++gghISHw8fFpcL8pU6bggw8+QOfOnaFSqXDnnXc2uG/v3r2xc+dOZYoVAOzcuRM33XQTAChX0vPz8zFo0CAAcCrW4hAcHIykpCQkJSVh9OjReOqpp7B06dJGHxsAfP/99zh8+DDmzJkDwDY6J8syXnnlFSXpvPzeKp1OB6vV6rTt6NGjuHjxIhYvXqyMFuzfv79JfXEVx6ieBAkCAhIkvJX/FsYHjIdGapuvocWLF2PgwIFKUSCHwYMHIyMj46qf2TFjxmD27Nn4+OOPlal0t9xyC7777jvs3LkT8+bNa1afHPdmJiQkALB9RidMmIDf/e53AGyJxbFjx5TPLVD/Z2Pnzp0YOXKkMm0ZgDIqTq1j8ODByMrKavBz07t3b5w5cwZnzpxR/r9mZGSgtLTU6ffZkEceeQTLli3DuXPnkJCQ4DRCSETUFBzZI3JTMX1DkDhtgNO2xKQBiOnr+iUKLjVlyhQEBQVhwoQJ2LFjB3JycpCSkoI///nPTkU1pkyZggMHDuCFF17AxIkTodfrG3zNp556CmvWrMGbb76J48eP49VXX8Vnn32mjMwZjUYMHz4cixcvRmZmJrZv335FNcXnnnsOGzZswIkTJ3DkyBFs3LgRvXv3vuqx1NbWoqCgAOfOncOBAwfwj3/8AxMmTMBdd92FadOmAQC6d+8Oi8WC119/HdnZ2XjvvfecKjsCtvv4KisrsW3bNly4cAHV1dWIioqCTqdTnvfll19i0aJFTXqvXWVfxT7km/MhYBtJFRDIN+djf0XbJav9+vXDlClTsGLFCqftf/nLX7Br1y48/vjjyoj0hg0blAItgG06n7+/P9auXeuU7H3xxReora29YspwfUpLS1FQUIBTp05h69atmDhxItauXYs333xTmY7co0cPbN26Fbt27UJmZiYeffRRp+qNgO2zsWfPHuTm5uLChQuQZRk9evTA/v37sXnzZhw7dgzPPvss9u3bd31vGF3Vc889h+TkZCxcuBBHjhxBZmYm1q1bp8SRhIQE5TN34MAB7N27F9OmTcOYMWOU+4CvZvLkyTh79iz+/e9/szALEV0fQUTtSk1NjcjIyBA1NTUt8nrZhwvF7o1ZIvtwYYu83tUkJSWJCRMmNPnx/Px8MW3aNBEUFCT0er3o2rWrmDFjhigrK3PaLz4+XgAQ33//vdP21atXC19fX6dtb7zxhujatavQarWiZ8+eIjk52enxjIwMMWLECGE0GsXAgQPFli1bBADxww8/CCGEWLRokejdu7cwGo0iICBATJgwQWRnZ1/12AAIAEKj0Yjg4GCRkJAg/vOf/wir1eq076uvvirCwsKE0WgUiYmJIjk5WQAQJSUlyj6PPfaYCAwMFADEggULhBBCrF27VkRHRwu9Xi9GjBghvvzySwFAHDx4sMF+tQfVddXiqwtfic/Of6b8+erCV6K6rrrV2qzvs5aTkyN0Op24/Ktv79694te//rXw8vISnp6eon///uKFF15w2mfChAlCo9GIiooKIYQQVqtV+Pv7i+HDh1+zL47PBQBhMBhEt27dRFJSkkhNTXXa7+LFi2LChAnCy8tLhISEiL///e9i2rRpTseRlZUlhg8fLoxGowAgcnJyhMlkEtOnTxe+vr7Cz89PzJw5Uzz99NNiwIABjX/DOqD64oYQQvzwww9X/H88ePCg8n47bNq0SYwcOVIYjUbh4+Mj4uPjxdtvv608furUKXH33XcLT09P4e3tLe677z5RUFCgPL5gwYKr/o6mTp0qAgIChMlkanCflv6+ICL3IwlxyU0rRORyJpMJOTk5yrpLRETU8YwdOxZ9+vS5YjT6Uvy+IKJr4T17RERERO1ESUkJUlJSkJKSgjfeeMPV3SGiGxyTPSIiIqJ2YtCgQSgpKcGSJUuuKChERNRUTPaIiIiI2onc3FxXd4GI3AircRIREREREbkhJntE7RRrJxER0dXwe4KIroXJHlE7o9VqAQDV1dUu7gkREbVnZrMZAKBWq13cEyJqr3jPHlE7o1ar4efnh6KiIgCAh4cHJElyca+IiKg9kWUZ58+fh4eHBzQans4RUf0YHYjaodDQUABQEj4iIqLLqVQqREVF8YIgETWIi6oTtWNWqxUWi8XV3SAionZIp9NBpeIdOUTUMCZ7REREREREboiXg4iIiIiIiNwQkz0iIiIiIiI3xGSPiIiIiIjIDTHZIyIiIiIickNM9oiIiIiIiNwQkz0iIiIiIiI3xGSPiIiIiIjIDf0/wQX6RksZ+tAAAAAASUVORK5CYII=\n" - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "# Change the viewing angle to 0 elevation, 0 azimuth.\n", - "fig = plot_results_panel_3d(cycle_mlr,\n", - " wrap=3,\n", - " subplot_kw=dict(figsize=(12,6)), # Panel configurations\n", - " scatter_previous_kw=dict(color='rebeccapurple', marker='o', s=10), # Previous data point\n", - " scatter_current_kw=dict(color='limegreen', marker='^', s=10, alpha=1), # Current cycle data\n", - " surface_kw=dict(color='orange'), # Theory surface\n", - " view=(0, 0), # Degrees (elevation, azimuth)\n", - " );" - ], - "metadata": { - "collapsed": false - } - }, - { - "cell_type": "code", - "execution_count": 15, - "outputs": [ - { - "data": { - "text/plain": "
", - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA5QAAAIzCAYAAAB/WFaqAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8o6BhiAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOy9d5hcd33v/zrT+2zvvWjVLVm2bMlgG67p3GCSQCAJjgkhBUNwyI8SHvKQC8S+xiSEQC4lYCtATAsYE0MAgy1LsmRbxVbX9qbV9j47O/Wc3x+z52hmd2Z32s4Wf1965lntzJwys3M+83l/P01SFEVBIBAIBAKBQCAQCASCFNGt9QkIBAKBQCAQCAQCgWBjIgSlQCAQCAQCgUAgEAjSQghKgUAgEAgEAoFAIBCkhRCUAoFAIBAIBAKBQCBICyEoBQKBQCAQCAQCgUCQFkJQCgQCgUAgEAgEAoEgLYSgFAgEAoFAIBAIBAJBWghBKRAIBAKBQCAQCASCtBCCUiAQCAQCgUAgEAgEaSEEpWBF6urquPfee9f6NAQCgWDdIeyjQCAQxEfYx1cOQlBuMDo7O/mLv/gLGhoasFgsuFwubrvtNr70pS8xPz+/1qeXNJcvX+aNb3wjDoeDgoIC3vOe9zA6OrrWpyUQCDYwm8E+vvjii3zgAx9g3759GI1GJEla61MSCASbgI1uH2VZ5tChQ/zO7/wO1dXV2O12du7cyec+9zl8Pt9an94rHsNan4AgeX7+85/zjne8A7PZzD333MPOnTsJBAIcO3aMj370o1y8eJFvfOMba32aK3L16lVuv/123G43DzzwAB6Phy984QucP3+eF198EZPJtNanKBAINhibxT7+4he/4Jvf/Ca7d++moaGBtra2tT4lgUCwwdkM9tHr9fLe976XW2+9lb/8y7+kpKSEEydO8OlPf5rf/va3PP3002IBbg0RgnKD0N3dzbve9S5qa2t5+umnKS8v1x6777776Ojo4Oc///kanmHyPPDAA8zNzXH69GlqamoA2L9/P6973es4dOgQf/7nf77GZygQCDYSm8k+/tVf/RUf//jHsVqtfPCDHxSCUiAQZMRmsY8mk4nnnnuOgwcPave9//3vp66uThOVd9111xqe4SsbkfK6Qfj85z+Px+PhW9/6VowxUGlqauLDH/4wAHfccQc33HBD3P20tLTwhje8QftdlmW+9KUvsWvXLiwWC8XFxbzxjW/k1KlTy57P1NQU999/P9XV1ZjNZpqamnjooYeQZXnF1/LjH/+Yt771rZqYBLjrrrvYsmULP/zhD1fcXiAQCKLZTPaxtLQUq9W64vMEAoEgGTaLfTSZTDFiUuXtb387ECmlEqwdQlBuEP77v/+bhoaGuBfTYt7znvdw7tw5Lly4EHP/yZMnaWtr44//+I+1+973vvdpF/ZDDz3EJz7xCSwWC88//3zC/Xu9Xu644w6++93vcs899/Cv//qv3Hbbbfzd3/0dH/nIR5Y9t4GBAUZGRrjpppuWPLZ//35eeumlFV+fQCAQRLNZ7KNAIBBkm81uH4eGhgAoKipKa3tBllAE657p6WkFUN72trcl9fypqSnFYrEoH//4x2Pu/+u//mvFbrcrHo9HURRFefrppxVA+eu//usl+5BlWft/bW2t8id/8ifa75/97GcVu92utLW1xWzziU98QtHr9UpfX1/Cczt58qQCKN/+9reXPPbRj35UARSfz5fU6xQIBILNZB8Xc9999ynia1ogEKTLZraPKnfddZficrmUycnJlLcVZA8RodwAzMzMAOB0OpN6vtvt5m1vexvf+973UBQFgHA4zA9+8APuvvtu7HY7EEk9lSSJT3/600v2sVxh849+9CNe/epXk5+fz9jYmHa76667CIfDHDlyJOG2aicxs9m85DGLxRLzHIFAIFiJzWQfBQKBIJtsdvv4wAMP8Jvf/Ib/+3//L3l5eSltK8guoinPBsDlcgEwOzub9Db33HMPP/jBDzh69Ci33347v/nNbxgeHuY973mP9pzOzk4qKiooKChI6Xza29s5d+4cxcXFcR8fGRlJuK1aG+T3+5c8prZ9FvVDAoEgWTaTfRQIBIJsspnt4w9+8AM+9alP8b73vY+/+qu/Suk8BNlHCMoNgMvloqKiYklO+3K84Q1voLS0lO9+97vcfvvtfPe736WsrCwrHbBkWeZ1r3sdH/vYx+I+vmXLloTbqgXhg4ODSx4bHBykoKAgbvRSIBAI4rGZ7KNAIBBkk81qH5966inuuece3vKWt/C1r30t4/MSZI4QlBuEt771rXzjG9/gxIkTHDhwYMXn6/V6/vAP/5BDhw7x0EMP8dOf/pT3v//96PV67TmNjY386le/YmJiIqVVpsbGRjweT1rGpbKykuLi4rhdwF588UX27NmT8j4FAsErm81iHwUCgSDbbDb7+MILL/D2t7+dm266iR/+8IcYDELKrAdEDeUG4WMf+xh2u50/+7M/Y3h4eMnjnZ2dfOlLX4q57z3veQ+Tk5P8xV/8BR6PJ6Y7F8Dv/d7voSgK/+f//J8l+1Nz5+Pxzne+kxMnTvCrX/1qyWNTU1OEQqFlX8vv/d7v8eSTT9Lf36/d99vf/pa2tjbe8Y53LLutQCAQLGYz2UeBQCDIJpvJPl6+fJm3vOUt1NXV8eSTT4oSqXWEpCz3lxesK372s5/xB3/wB1itVu655x527txJIBDg+PHj/OhHP+Lee+/l61//esw2u3bt4sKFC2zbto1Lly4t2ec999zDd77zHd70pjfxxje+EVmWOXr0KK95zWv44Ac/CEBdXR133nknhw4dAiJtn1/96ldz7tw57r33Xvbt28fc3Bznz5/nv/7rv+jp6Vm2fXN/fz979+4lLy+PD3/4w3g8Hh5++GGqqqo4efKkSHkVCAQps1nsY29vL9/5zncAePLJJ3nhhRf47Gc/C0BtbW1MHZNAIBAkw2awj7Ozs+zYsYOBgQEeeOABKisrYx5vbGxMKgIrWCXWqLusIE3a2tqU97///UpdXZ1iMpkUp9Op3HbbbcqXv/zluOM2Pv/5zyuA8sADD8TdXygUUh5++GFl69atislkUoqLi5U3velNyunTp7XnLG77rCiKMjs7q/zd3/2d0tTUpJhMJqWoqEg5ePCg8oUvfEEJBAIrvo4LFy4or3/96xWbzabk5eUpf/RHf6QMDQ2l9mYIBAJBFJvBPj7zzDMKEPd2xx13pPyeCAQCgaJsfPvY3d2d0DYCS44jyC0iQrnJ+dKXvsTf/M3f0NPTQ01NzVqfjkAgEKwbhH0UCASC+Aj7KEgFISg3MYqicMMNN1BYWMgzzzyz1qcjEAgE6wZhHwUCgSA+wj4KUkW0RtqEzM3N8bOf/YxnnnmG8+fP88QTT6z1KQkEAsG6QNhHgUAgiI+wj4J0ERHKTUhPTw/19fXk5eXxgQ98gH/8x39c61MSCASCdYGwjwKBQBAfYR8F6SIEpUAgEAgEAoFAIBAI0kLMoRQIBAKBQCAQCAQCQVoIQSkQCAQCgUAgEAgEgrQQglIgEAgEAoFAIBAIBGkhBKVAIBAIBAKBQCAQCNJCCEqBQCAQCAQCgUAgEKSFEJQCgUAgEAgEAoFAIEgLISgFAoFAIBAIBAKBQJAWQlAKBAKBQCAQCAQCgSAthKAUCAQCgUAgEAgEAkFaCEEpEAgEAoFAIBAIBIK0EIJSIBAIBAKBQCAQCARpIQSlQCAQCAQCgUAgEAjSQghKgUAgEAgEAoFAIBCkhRCUAoFAIBAIBAKBQCBICyEoBQKBQCAQCAQCgUCQFkJQCgQCgUAgEAgEAoEgLYSgFAgEAoFAIBAIBAJBWghBKRAIBAKBQCAQCASCtBCCUiAQCAQCgUAgEAgEaSEEpUAgEAgEAoFAIBAI0kIISoFAIBAIBAKBQCAQpIUQlAKBQCAQCAQCgUAgSAshKAUCgUAgEAgEAoFAkBZCUAoEAoFAIBAIBAKBIC2EoBQIBAKBQCAQCAQCQVoIQSkQCAQCgUAgEAgEgrQQglIgEAgEAoFAIBAIBGkhBKVAIBAIBAKBQCAQCNJCCEqBQCAQCAQCgUAgEKSFEJSCNUVRFGRZRlGUtT4VgUAgWFcoikI4HBb2USAQCBYh/Mf1hWGtT0DwykB1jGRZ1m7hcJhwOIxer8dsNqPX69HpdEiStNanKxAIBDlDdYyibaP6U5IkzT7q9XphHwUCwSuKxfYx2n9UFAWz2YzRaBT2cY2RFCHtBVlCUZS4jlEoFOLatWsUFxej1+u150qShCRJGAwGTUjqdLqY3wUCgWCzEM8+hsNhhoeHsdvtmM1m7bmqfdTpdBiNRu0+g8EgHCeBQLDpSLSwNjk5iaIoOJ3OmOerNtBkMgGg0+m0hTedTiRg5hoRoRSkTCLhqF786uMQueAVRaGtrU0TlIsdIdUIqPtsbW2lrKwMl8slHCeBQLDhWC4jQ7WN0Tayr6+Pmpoa7HZ7XPuo0+k0u9rf34/RaKSsrEzYR4FAsOFYLiNjcQqrJEkMDw8jSRJ5eXlx7Z3qPyqKwtjYGB6Ph9raWi04IcgNQlAKErJYOKoOkeoULRaO0Svq6n0A4XA45jmJUB8fGBjA7XZjtVoJhUJiRV4gEKw7kllYi35utH2MZwsTZWWEw2EMBoO2zdjYGFarlYKCArEiLxAI1i2J7GO0D6mynH2M9i8ToT4+NzfH8PAwVVVVWklVtP0UrB5CUAq0Czt6RT0d4bgSiZ63+H5FUTSjoigKwWBQCEuBQLAmpJqRof5MJBwTHSMcDjM9Pc3c3FzMze/3k5+fT0NDA0VFRUBs1FK1j6rjJISlQCDIJalmZKRqH1Mler+hUEgTlqJPx+oiBOUriESFzV6vl8nJSUpKSmKen65wzBbq8VWHLRAIiBV5gUCwKsQTjqFQiFAoxMDAAKWlpTG2MF37GAwGNbHo9XrxeDzMzc1x6dIlTCYTdrsdu91OUVERtbW12Gw2RkZGOH/+PBaLBb1ej81mW2Ifo5uciRV5gUCQTZZbWFNrwK1Wq/bcbAvHZLdfvLin2mdVWIo+HauHEJSbkOXy0xenGQDMzc3R29tLeXk5kH3hmGrfJ9UYqSx2nBavyAvHSSAQJEuqqfyKotDR0UFpaalmb5IhWjhG3wKBQIxwLCkpwefzUV9fT1lZ2ZL96HQ6Ghsbqaur4+rVq7S2tuLxeLBYLFRUVMRkc4BYkRcIBOmTTkZGf38/1dXVOByOVbE1qfqQi/1HIKZPx+LghLCP2UEIyg1MqoXNi1eMVNTOq6t9UaWywhTvuWJFXiAQJMtKrebVW3SaaryIoyzL2j7j2ZdAIBATcYwWjmazGZvNpglHVUSqXVtVrl69isGw/NexXq+ntraWiYkJJEmiu7ubjo4O6urqqK6u1uy4WJEXCAQrkSgjQ/1/KqVO8fzKXBGvZGq58irVh4x+zaKcKjsIQbkByFZh80rH2ChEGwUQK/ICwSuZVDMy0k1VDQQCMYJRvQWDQcxmsyYWS0tLsdvt2Gy2JcIxG0iShNvt5oYbbmB4eJiuri46Ozupq6ujpqZGO+biFXlJEiNHBIJXGtlqrpjMcVaTbJ5Hoqw3YR8zQwjKdcTi1XRZlgkGgwwNDVFUVKQ1YYDcFDZni0xTXhOxOJUhEAjQ1tZGS0sLFotFCEuBYBORSDiOjIxgs9m0WWSwfEbGSscIBoN4PB5NPHo8HgBOnjwZIxzLysq0/68UXUyGVDM4JEmirKyM0tJSxsbG6Orqoru7m+rqaurq6jCbzUscp7a2NoqKiigoKBCOk0CwiUiUkTE5OYkkSdjt9qwIx7Ugk5TXlZ4XbR/7+/vR6XRUVFSIPh1pIARljkm11Xw4HObKlSu86lWv2vAOwGqeu2oY+/v7aWxsFCvyAsEGJdWMjK6uLhoaGrRGNckeIzpVNfoWCoWwWCyaWCwvL2d6eppbbrkFu92+Wi87bSRJori4mOLiYiYnJ+nq6uLZZ5+lqqqK+vp6rFar5jgNDQ1ht9vj1qELBIL1T6oZGYODgxiNRlwuF7C+hWM2SCdSqtrHqakpzZ6KztmpIwTlKpFqYXOi1aLF9T2vBJKNUMbbDtAEpEhlEAjWL9lqNb/YVi4+RrLCsaKiQktVjY44KorClStXshKFXO69SOW5iexYfn4++/btY2Zmhq6uLo4ePUpZWRkNDQ04HI64I5kWlwsIBIK1J1s9MjZCBHIlUvUJM3mt0SOZRJ+O1BCCMkNWOz89Fx/e1T7GaqW8JjpO9Pscb+SIWJEXCHJDqhkZ6aTyq9e5z+dbIhq9Xi+hUAir1RojHB0OBzabTWtksx7ItGlZNC6Xiz179jA3N0d3dzfHjx+nuLiYcDgc1z6KztkCwdqw2j0yovtNrBbryVak6z9Gbyv6dKSHEJRJEt1ZVL3wvV4vwWAQi8WStcLmxajbbaSmOYnIlXBdHL1Y7Dgt7nwoEAgyI55w9Pv9zM3NYbPZEtrH6Fuyx1H3G327dOkSsizHCMf8/Hwt4pgN4bgRbbDdbmfnzp00NTXR3d3N8PAw7e3t6HQ6CgoKltjH6BV54TgJBNkjXkbG5OSklpKuPgey2yMjV9fverGPmZzHYjGq/l90zk4OISgXkUyreZWBgQE8Hg87duxY9bSC9XKx5oJsRCgXs9hxil5xEivyAkFyJGo1Hy8jY3Z2lkuXLnHw4MG0OgaqEUev1xvTJCccDmujOGw2G2azmYqKCqqqqlYl4pgLu7CcfV98/HTso8ViYdu2bYyMjOBwOHjppZew2+00NjZSXFyccEVeOE4CQfKkmpFx6tQp9u/fr9V/C/8xPrlKeU10HPU+0Tl7eV6xgjLVwuZ4EUe1pmY1o1ybYXUpnZTXTI6z3Hu2nLAUK/ICQYR4GRmppvIbDAatZm+54yRKVV0ccSwsLNREZPQ+p6amsFgs6yp9NR2ymfK6HFVVVWzfvp3+/n4uXryI0WikoaGBsrIy7X1VHSf17y+EpUBwnVR7ZKg/F0cc1Xq91fYho2fpbnayGaGMR6JyASEsXwGCMluFzfHIZW76Rl9hgtTEcbYjlPH2v3hFfnJyEr1eT35+vnCcBK8IksnIiP6STSWVP3rMkaIozM/PxwhG9f+KomCz2bSoYyLhuNLr2Mjk6vzVv6XBYKC+vp6amhoGBgZob2+nvb2dhoYGKisrNfsXvSI/PT2Nz+ejpKTkFe84CV4ZpJKRkW6PjNUWe6+06zQbNZTJsFhYzs/PMz4+TmVl5Su2T8emEZSrXdgcj1yt/Ky2cF1vH/xMUl5T3S46leHq1asYjUbsdrtYkRdsKrKRkZHscVThODk5STgc5sUXX8Tr9WrCUY04FhUVYbfbsVqtGa3Q52Jhbz2RTYdJr9dTU1NDVVUVQ0NDdHV10dHRQV1dHdXV1THlAJOTkwwMDJCfny9W5AWbiuiMjOha4mwJx0TkynZtdPsYz+YFg0FtcTI/Px+32609lgtBGX0sSZIIBoOcO3eOkpKSV2zn7A0pKGdmZnj55ZfZv39/3FbzV69eZW5ujpaWlqwVNscjl47MRjYIuV59z2R71UESOfKCjYqiKBw9epRdu3ZhNpuXZGTMzMzQ3t7OTTfdlFJGRjSyLDM/Px8TaVS/3FXhaLFYAKirq8uKcFxrcpWNksx5ZNthUod5l5eXMzIyQldXF11dXdTU1FBbW4vJZNKep37vRXfOfqU5ToKNzdmzZ3G73ZSWli4RjrIsc+LECW666SYsFktWhGMicpXltpH9x3A4TDAYZHZ2lo6ODjweD3Nzc/j9fkwmEzabjba2NgoLC2lqalr1lNflUD8r0amwr6Q+HRtSULa3t/O2t72Nrq4u7QMQ7RTpdDpkWV7VuWGQuwt1s3wIV9thyoagjF59FDnygo2Ioii89a1v5Ze//CVbt25dYh+NRqP2eV4JVTjGq3GUJCkm4lhSUoLdbsdisaDT6Zifn+fEiROUlJSs6uvd6A4TrJ9FN0mSKC0tpaSkhImJCbq6uujp6aG6uhqj0ZjQPorO2YKNxMc+9jHe+MY3cu+99wKxGRl6vR5ZlrWU79UkuixgtdgoolWdnKB+x6jCcX5+HkmSMJvNmEwmioqKqK2txeFwaDZJlmW6u7t58cUXMZlMOJ3OtM4hEx9S/cwsto+vpM7ZG1JQWiwW/H5/QudeFZSrTS4F5UZ2mFI591TqIONtm8mFqjafUFlsGMSKvGAjIEkSJpOJYDCI0Whc8ng8+5iscHQ4HJSWlmoRx5XECWR+Xa5ELmvZ18MxclEjJEkShYWFFBYWMjU1RVdXF6Ojo5jNZrxeb0xXyngNzl4pK/KCjYnJZMLv9ydcVNtsPuR6Qm3EpgpG9af6XaN+z+Tl5VFZWYnD4aCtrQ2Xy0VtbW3cfZrNZrZu3Up9fT1nzpxhdHSUkydP0tTURH5+fkrnloltTeQ/wiujc/aGFJRmsxm/379s+k4uLtJcGR1Y/RXszWDUshWhXIxYkRdsNFQbuRhVOIbDYbq6urQv8ugv81SFYyLU6yIXgvKVRK5TuvLy8rjxxhtpbW1lcHCQY8eOUVpaSkNDA06nc1lhudlX5AUbk0T2USVXPmQu+nCslWhVF+FVwRgtHqPr6ZP5rknWfpjNZvLz83E4HJjNZk6dOkVeXh6NjY0UFBQkdc7ZXqyL7tOhRiw3a+fsDSkorVar1m1Lre2IJhcXqXockfKaHKmsvqfy/MXbroagVFkulUGsyAvWE1arlStXrlBSUoIkSdoXupo+pK4Su1wuysvLtVTVbH5+oyOUq81GXxBL9fxz2XRCxWQykZeXx5YtW+jp6eHEiRMUFhbS2NhIXl7eK3JFXrAxUbPcErGZfMhcHENNV1X7l6jCMRQKaaOfHA4HBQUFKXfwVknFdhgMBrZs2UJdXR29vb2cOXMGl8tFY2MjhYWFCbfLRsrrcqhp1Gqt7mbr07EhBaXZbAbA5/PFFZSbLV1ho6dFpHPua5Xymmw6WDzHSazIv7J58MEH+clPfsKVK1ewWq0cPHiQhx56iJaWloTbHDp0iPe+970x95nNZnw+X1rn8Dd/8zf8z//8D11dXXz84x/n85//PPv378ftdmvCUZIkjh8/zrZt23ISOdwMDlMuWE8pr/FQ7aPNZmP79u00NjbS09PDyZMncbvdNDQ0UFhYGHdFPnrhTdhHwVpjNpsJBAIJH99MPmQ2r7VwOBwjGNWfgUAAr9eLy+XCbrdTUVGhZbvkej5w9PtpMplobm6mrq6Onp4eXnrpJZxOJ01NTRQUFCx5b3JlWzdrn44NKSjV7oGJDMJmMgYqq3mc9fThXcsOXYtz4FdCPZa6TW9vL4FAgKamJuE4vQJ59tlnue+++7j55psJhUJ88pOf5PWvfz2XLl3Cbrcn3M7lctHa2qr9nsln5jWveQ1veMMb+Nu//Vs++clP8ju/8ztLnhMMBoGIQFjNL3v1dWyWOWubQbRms0bIbDbT0tJCQ0MDfX19nD17FqvVSkNDA6WlpZrTpArLqakpenp6uOGGGza84yTY2CST8poLHzJXqbWpHkONOC5OV/X5fBgMBhwOR0wjto6ODiorKykvL18X57/YrhiNRk1Y9vb28vLLL2O322lqaopZBMumfUz2PFUdEQ6HeeGFF7jxxhuxWCwbsk/HhhaUiVbxN1sN5Wb40s1VymsmpGtM1G18Ph+BQGBT58gLEvPLX/4y5vdDhw5RUlLC6dOnuf322xNuJ0kSZWVlWTkHVUB++tOfTugwRQu9XAjK9egwrTdSbVyWiX3M9gq80WiksbGR2tparl69yuXLl2lvb6ehoYHy8nLN/qmt/zfTirxgY2KxWJidnU34eC5rKNcyQqko1+cGR4tHr9eLTqfTooz5+flUVVVht9sxmUxL9pnrKORyLCfsjEYjTU1NmrA8e/YsNpuNpqYmioqKVj3lNRHqdlNTUxu6T8eGFJTqm5woQrmZ8t9VNrLDtF5a4q9EJgZBPb7aBXaz5sgLkmd6ehpgxWYAHo+H2tpaZFnmxhtv5IEHHmDHjh0ZHXu5FfjoZjmriUh5TY1UF91SJRtt/Zc7R4PBQF1dHTU1NVy7do3Ozk7a29upr6+nqqpKs4+qsy46ZwvWCpPJtGzKay59yFxkcMiyjM/nW9IcR22QE92MraysLK2a+vWSupvMeRgMBm0RrK+vj3PnzmGz2bTsnXTIRoYcoNnBjdinY0MKSoisMC0XodxMgjIXx1krh0yWZYLBoFYXu9ZNeTJxaKLHjmzWHHlBcsiyzP33389tt93Gzp07Ez6vpaWFRx55hN27dzM9Pc0XvvAFDh48yMWLF6mqqkr7+MvVYeYyFXWzNJ3IZVqt6vhFD/CurKyksrIyowHr6nuUro1L1j7qdDqqqqqorKxkaGiIrq4uOjs7Y1LLEtnH6DpLgWC1sFqty9apb2QfMhAIxAjHiYkJ/H4/x48fj5kbXFRUpHVWXe/X23LvUTxbmKx9NBgMNDQ0UFNTQ39/P21tbbS1taHX6ykuLk5ZUGfqPwJaRke0fdwofTo2pKCUJEmbIxSPjWwMEh1nMxCdWhE9ewigqqqKhoYGLXVirQRlphHOxXOtFhsGsSL/yuC+++7jwoULHDt2bNnnHThwgAMHDmi/Hzx4kG3btvH1r3+dz372s2kff7mmE5Ik5dRG5mq00kYjGAxq9jAUCnH58mXm5+eRZRmr1arVKeXn59PT00NXVxeNjY1pZ1LkuiRAkiTKy8spKytjbGxMe31tbW3U1dVpqXPR9nGjrcgLNiYrRSg3gg8ZCoXiRhwDgQBms1mzH3l5eczPz7Nnz551lZq6WqTjxxkMBurr6xkYGMDtdnPx4kVMJhNNTU1ap/TVOG406ucteh+JGkCu13KqDSkoYfm2z7msoRQpr0sJhUIxonF6ehpZlnn++edjZg+pqRU6nY7Ozk6OHj1KRUVF2sddLymv8RAr8q8cPvjBD/Lkk09y5MiRlKOMRqORvXv30tHRkdE5iLb464fFDS5U2+j3+zGZTDgcDgBKSkooLCzEZrPFOH56vZ7a2loGBwfp6Ohgfn6e8fFxCgoKUrIbmUYo4y2YJYMkSRQXFxMIBOjp6WFmZoZnn32Wqqoq6urqtNlz8Ryn9b4iL9iYrGQf15MPKcuyJhajxaPP58NoNGr+VElJiSYio6/Ta9euEQgENryYzNX1X1ZWxvbt2+nv7+fSpUt0dHTQ2NioNRpLRDb8x0QLaOp9671z9oYVlMtFKDeTs5SL42RShLySo6QaOq/Xy+233x7XmTEajezZs4fZ2Vna2toAaGtro6GhQUuFXe3XAtkRpCs5a2JFfvOiKAof+tCHePzxxzl8+DD19fUp7yMcDnP+/Hne/OY3Z3Qu62lw92YRlCsdQ1EU/H5/zGKax+NZ0uCioKCAmpoaHA4HRqMRgCNHjlBUVKSJy8VIkkRFRQVlZWUcPnyYa9euMTIyQmNjI+Xl5UmvoGdCNuyj2WzmpptuYmZmhq6uLo4ePUp5eTn19fU4HA5t/6odXe8r8oKNyUr2cS18SFmWtSyuaOE4Pz+v2Q91lmN1dTUOhyPu2Lx4rOcFt2TIRdOy6OPo9Xrq6uqorq7m6tWrXLlyRROWZWVlcfefC/8R1vcsyw0pKCVJWrHpxGZK51rrL1DVUVqcrjo3N7eiowSRpiN9fX0rXixOp5MdO3Zw+PBhvF4vR44coaamhvr6+qQM52pGGJMhWYMAYpblZuS+++7jscce44knnsDpdDI0NASA2+3GarUCcM8991BZWcmDDz4IwGc+8xluvfVWmpqamJqa4uGHH6a3t5c/+7M/y+hcXmlt8XONmoWx2CaGQiFsNtuStvpqFC4Ryb5Harr89u3b8fv9tLW10dnZSVNTU0JHZ/ExMnG2smUfXS4Xe/bswePx0N3dzfHjxykpKaGhoQGXyxV3RV7dXrWRwj4K0mUt51BGLzzNz88zODjItWvXtPIfNYvL5XJRXl6Ow+HAbDZn1EF0s9SYJ0OmgjJ6WzU7RBWWra2tmrBcvJCXS/8R1mefjg0pKCG5Loap/oFSZbNEKKNR8/IXr7KrjlJ0ekUyjhKktzp24403MjMzQ0dHB88++yy1tbVa3c1yrHXKa6rbL16RP3v2LAUFBVRVVYkV+Q3GV7/6VQDuvPPOmPsfffRR7r33XoAlCyuTk5O8//3vZ2hoiPz8fPbt28fx48fZvn17RuciUl6zg5qFoSgK/f39miOoZmGo9rCiogKHw7EkXTUVUrnO9Xo9VVVVVFRUaI6OKiwTpWZlKihXwz46HA527dpFU1MTPT09PP/88xQUFNDQ0KB1R45eke/t7WVubo5t27atixV5wcYkV015AoHAklmOc3NzhMNhbDab9rOysnLDNMhJxGYQrYl8OJ1OR01NDVVVVQwMDNDe3h4jLNXPy1oENKKF5fT0NJcvX+bWW29dkz4dm1pQ5rIt/mp/2LP9WtT0CrULWCgU4vjx4/h8vhhHqby8XItA5iIHP9rpcbvd7Nu3j8nJSU1Y1tXVUVdXFxMBjX5N6z3lNRHqcf1+f0wqg1iR3zgkc40ePnw45vcvfvGLfPGLX8z6uZjNZubm5hI+vpmyOLJxXSyXhaF+WQeDQS0LQ53HthZE26loR6e/v5/Lly/T2dlJc3Pzki6F2YhQrpZ9tFqtbNu2jcbGRnp6ejhz5gwOh4PGxkaKioo0p0ldhV8vK/KCjUkyTXlS8bmiF+KjfwaDQSwWi+ZPqbMc1YWnixcvapkMq8V6rzFPhlymvC63rU6no7q6msrKSq5du0ZHRwednZ00NDRk7H9mur0kSYTDYQKBwJr16diwgnK5FXj1j7Lag7ujhetqfpllKpKiV8lUZ0lNr7Db7Vo6xdatW1PKy0+FZF9DPMORn5/PzTffzMTEBB0dHfT29mrCMl5X1XTJdcrCcvtQv9BkWdYc8nQaYghemZjNZiYnJxM+vhG6GKZCus5fslkYR44coaGhAbvdvubnHw+dTkdtba0mLC9cuIDFYqG5uVkTZOsp5TURJpOJLVu2UF9fT39/P+fPn8dsNtPQ0EBZWdkS+6h+v+n1+pTr7QWvXJYbOweJ7WM4HI7pG6HajuiMBbvdrjUcXNwgJ95xNnIGx3ok09eajH1URyNVVFQwODhIZ2cnwWAQq9Wath+YLf8xeo5ldLlAJmnTybJhPVSTybTsHErIzZw1WD+Du8PhcIyjFL1KFt2GXm3+oKarzs7OMjU1teIA9lyR6ENfUFDA/v37GR8f14RlfX09NTU1GAyGdTE2JNMLNnoRRF2VF2MXBKmykboYZkoi+xidhREtHBdnYZSVlWm2cS07Iaay6JboudHNJPr6+jh//jxWq5Xm5uakyhOWI5cZIEajkYaGBmpra7WU3vb2dqxWqybqo+2jiE4KUsFisWiRnESfHb/fz8jISIx49Hq9GAwGTSwWFhZmlLHwSqtvTJd0Rhbl4jg6nY7KykrKy8s5d+4co6OjHDlyhMbGxpi5wcmQzYAExNrHXC0obFhBudKcNcidoFztSCjEilZFUeI6SvPz8xiNRs05StZRWk/pusk8t7CwkIKCAsbHx2lvb6e7u1ubYbnWDlM2DYJAkC7LdcGGzVVDCZGo4/j4+JKUM0mSNOGYn59PVVXVqmVhrBaLbVIyTo9er6e+vl4TlmfPntUaQ6W7cLYWJQHRTTEGBwe5fPkyU1NT2Gw2rc5cIEgVtWRKURR8Pt+SWY4ejwcAr9eL3W7H7XZTUVERk9GVDXJlhzeraFUjxi6XKysZg+luq9PpcDqdQGT8U2dnp5YKW1VVlZTdy0am41r7jxvWGi+XsiBJUs5WxmF1L9ZAIEA4HGZsbCzGYQK0boJut1sr6laHRa83Vuo+GP14MucvSRJFRUUUFhYyNjZGe3s7Xq8Xs9msdUtNlfWU8rr4vASCVEgmQrkRBWW8WqWZmRlkWWZqaiphFkY2WM3rcLX2bTAYaGhooKamhvb2dmZmZnjxxRdpbm5OOSNlLe2jGglQ6/2vXbtGZ2enJjY3+oy9VwIPPvggP/nJT7hy5QpWq5WDBw/y0EMP0dLSknCbQ4cO8d73vjfmPrPZvGy66nJMT09z6NAhnnnmGcLhMLt37+bLX/6yluqu1jNOTk4SCoUybo62Ehu9aVmuUGsCx8bGYjLwvF4vkiRhsVhoamrKaI65epxMxKher6eiooLy8nKGhoaWCMvl7NRq+Y9wPVq52mxYQblS2+dcNoPIxsUana4anbYaDAa1LndqZE51lDZjJCud1Ibi4mKKioq4dOkS165d0+qdqqurUx78vR5SXjfj31WQW9bL2JB07XB0umq0PVSHeaszbsvKyjCbzeh0OrZt27YKr2D9kY6dMhgMVFVVcfXqVQoLCzlz5gxut5umpiby8/OT2sd6yOBQFEUbOTI+Pk5XVxfd3d3ccccdGyrq/Erk2Wef5b777uPmm28mFArxyU9+kte//vVcunRp2dpkl8tFa2ur9num39FPP/00JSUlGAwGHnnkEW666aYln0u1VGi1yYUdzlWAIVuiNV7p1vT0tJaZEG37HQ4HFouF0dFROjo66O7uRqfTJW3T4r2GbEQ3JUmivLycsrIyhoeH6ezspKurS8saiScsV1NQ5ooNKyjXwwp8OoJSTVdd3BRCzc1XLxZ1Jpfdbufs2bNUVlZSVla2Wi9lVcl2yms8JEnShv5WVlZqxiXZXHa1gHmtHaZ4BiFXq0uCzcN6qaFcaXU8maZhdrudvLy8hOmq8/PzhEKhVX8dq81q1wip9qmpqYna2lp6eno4deoU+fn5NDU1kZeXt+L2mTrz8bpzp7oPdZRSUVERRUVFTE9PY7FYMtqvYPX55S9/GfP7oUOHKCkp4fTp09x+++0Jt5MkKWu+T35+Pk888QRtbW0cOnSIm2++OeGYiI2YwZGI9RihjJ7HuTjqGO0Ll5WVEQqFqKyspLKycsl+ousYr169ypUrV+jp6dEyVVKxWZnYuHgLbupnt7S0lJGRkRhhWVNTEyMsRcrrGpLMCnwuUgmWW4EPBAJx29DLsqw5Si6XS5thlihdNRdGZz3l2GfahVC9gIeGhujo6KCrq4vGxkYqKioSXmzq6880pWujGwTB5mAl+7gWNZRquupim7hS07BkWI8OUyrkYtEt2mExGo00NzdrwvLkyZMUFBTQ1NSE2+1OuP16LAlwOBwZ7VOwNkxPTwOsmHrt8Xiora1FlmVuvPFGHnjgAXbs2JHRsc1mM6FQKGH/i1wuuOUi8LHW9lGNOs7Ozsb8VOdwRjdIczqdS3zhoaGhFW2HOkJpZGQEnU7HuXPncDgcKaX3ZxqhTHSOkiRRWlpKSUlJTDRVjVgaDIZVT3nNBRtWUC7X5RVyu8IUDoeZnZ1d0iQnEAjEzCAqKCjQZhCl8sHZ7NGp6Ne3GikHg4ODMcJSHUS7eNvF55Iqq2EQ1MipQJAKK5UErKZ9VBQFr9fL3NwcPp+P/v5+enp6tKZh2e6uuh4cplySzaY66piOuro6uru7efHFFyksLKSpqQmXy5WV46qIBTeBiizL3H///dx2223s3Lkz4fNaWlp45JFH2L17N9PT03zhC1/g4MGDXLx4kaqqqrSPr0a0fT5f3HTbzRShzKX/qDY5WjxpwOv1xpQqqEEUdR5nMvtN5XUUFxeze/duuru7OX36NPn5+TQ3NydcLEv3OKluK0kSJSUlFBcXMzY2pvml9fX12uOZsNb2ccMKSovFoq1wxWM1DMLii0WNNp48eVJrJe1wOCguLqaurg6Hw5G1LnQb2WHK1bnHu6AlSaKioiKhsFyctrweU14FglRJd85aKqjpqvGyMCCSrqooClardVWbhm0WQZmLbtuJjmEymWhpaaGuro6uri6ef/55iouLaWpq0roXrocaSlESsDm47777uHDhAseOHVv2eQcOHODAgQPa7wcPHmTbtm18/etf57Of/Wzax1cFpd/vjysoN1sX7NU4RjgcXpKq2tnZiSzLWq1jMhl42UZ9rQaDQcvC6O7u5oUXXqC4uJjm5uaEWQ2Zprwm6+9H9/4YGxujs7OTmZkZrFYroVAobd2w1v7jhhaUq9mUJxgMLqnrUQVkdGHw2NgYO3fupLCwcNUultU2OuupPmi1Voii8+wHBgZoa2ujq6uLpqYmSktLtc/KWqZ0qfOChKAUZMpKc9ZSTela3ChB/X8wGMRisRDyGBm8NI+kGGjYVcXe19Sj1+s5d+4ceXl562bGbSaslg1Odb+KotAf7OcfO/6Rz1R9hgZLQ9LbrWRbzWYz27Zto76+nq6uLk6cOEFJSQlNTU1rMjZkNfYhWFs++MEP8uSTT3LkyJGUo4xGo5G9e/fS0dGR0TlEC8p45CpCuZZzepMlXtRx8Zg6SZJwuVzaTM61vkaj7ZS6WFZbW0tXVxfHjx+nrKyMpqYmbDab9rxMgwrp+G7RwvLChQuMjIxw+PBh6urqqK2tTbnmXKS8pkm2aihlWcbr9S5xlPx+P2azWUvJUhtCLE5XvXr16qqvvGz01ddU64NWM+VAp9NRXV1NZWUlV69e5fLly1r7ecg8Qpmpw6WeYzRiBV6QKis15Um04LbSjFs1C6O0tFRrGjZxzcv3/+/zzIzPI0nQdWaCkA9ufWuTaIufAqksun176tt0+bv45sg3eaDmgaS3S/YYFouF7du309DQQGdnJ8ePH0eSpGU/UyshUl5f2SiKwoc+9CEef/xxDh8+rKX5pUI4HOb8+fO8+c1vzuhcDAYDOp0uYRbHemlalq1jJEv0WKbo20pRx3PnzuF2u7VshmyTiu1K9FzVptXV1dHR0cGxY8eorKyksbERi8WSFUGZ7raSJGG1WikqKqKqqoqOjg56enqora2lrq4uaWEZDodFhDIdUm2Lv7ijlHrReL1edDqd5igVFhZSU1ODw+FY8kccCg7hDXsp0ZVo923klIXNRioXtFrArQrLtrY2AEZHRykpKUnLMGQjQqmem0CQCcnYR5/Px8TERIw9jDfjdqWUpfNH+5kZn6egwo4kScyMz/Pi/3Sx/82NQlCuAiOGEZ71PgvA4dnDdPo6abQ0rrhdOg6PxWJhx44dNDQ0cOzYMS5evMjExASNjY3LjnpIdHwxp/eVy3333cdjjz3GE088gdPpZGhoCAC3243VagXgnnvuobKykgcffBCAz3zmM9x66600NTUxNTXFww8/TG9vL3/2Z3+W0blIkrRsnflmq6FcfIxkoo7RtY7JRB3Xy3W40nnYbDZ2795NQ0MD7e3tHDlyhJqamoyDCtkoCVDHAxYWFjIxMbFEWK40GimVtNvVYFMKylAoRDgcZnx8nOnpac1RCofDWjdBdTSHOsdmpQ9CSAnx11f/GoNk4Du130EvRQqJN0uXrvWySpZphDJV9Ho9tbW1FBQU8Nxzz3Hx4kUtFTaVltNq8xwhKAXrgWj7GG/G7fT0NLIsMz09rdnDdGfcBgNh4Po1rjfoCIdkFFnJWUrXarOax0j1/XnW9Sx69IQJo0fPt0a+lVSUMhPbarVaMRgMbN26lbGxMZ577jnKy8tpbGyMSRtbDpHy+srmq1/9KgB33nlnzP2PPvoo9957LwB9fX0xf9/JyUne//73MzQ0RH5+Pvv27eP48eNs3749o3ORJGnZxo65rKFc7eOEw2HC4TADAwNJRR3NZvOqnk+6JLJdiSYjrITD4WDv3r1MT09rEUuIvF/pkO0u2AUFBezfv5/JyUk6Ojp49tlnqampob6+PqGwjNe1OJdCf8MKSrXpRHd3N1arNSZM7/f7te6rRUVFKXeUisevZ37NSGgEgGdmn+Eu113A2qQsnPae5rGJx3ig4gHMuvV58UeTy6Y86V7QOp0OnU7H7bffTl9fH+fOncNut2stp1cyUNnqEquei2Bj8uCDD/KTn/yEK1euYLVaOXjwIA899BAtLS3LbvejH/2Iv//7v6enp4fm5mYeeuihtNK6/H4/P//5z3nmmWdwOp3ceuutPPDAAzGrziUlJdhsNgKBALt27Ur3pWrU7yjm3OF+pke96I06At4Qu++oQW/Q5cwxWy+r45mQjO3o8fVwyXpJ+z1MmMOzh+nyda1YS5mNObs2m41du3ZpqbDHjh2joqKCxsZGLcqUiGykvMZL6RIlARuDZK7Rw4cPx/z+xS9+kS9+8Yurcj7LlQVsxAilWq6weDyHKppHRkZwOp0pRR3XC6s5VsntdrNv3z5GR0c5ffo0x48fp76+ntra2pT0wmp1wc7Pz+fmm29mcnKSzs5OTVjW1dUtEf+bpoYyXUcqVS5dusSDDz7Is88+y+DgIPfccw9f/OIXsdvtFBQUaEXBra2t5OXlUV1dnfExQ0qIQxOHkIj8UR6ZeITXOF+DXtLnPOVVVmS+PPplegI9/Gz6Z7wj/x2rfuxssF4jlIuPazAYaGhooKamht7eXl5++eWkZhmth6Y+grXn2Wef5b777uPmm28mFArxyU9+kte//vVcunQpYYrg8ePHefe7382DDz7IW9/6Vh577DHuvvtuzpw5s2xL/XgoisLnPvc5amtrCQaDfPSjH+XgwYNLsjD6+/uXbWqWCltuLuOu9+zg+Sc7CPrDbNtfwV3viZy3SHnNLjIyZcEyzHaz9vc06UworPz6syEo1e3tdruWNtbZ2cnRo0epqqqioaFBa3gSb3sRoRSsF0wm07KCcj3XUIZCoZjyLVVAqjPO1XKFyspKAC5evMjevXuzffrrlnTsnDpSZNeuXXR0dNDb20tDQwPV1dVJ2ZxspbwmIj8/n5tuuompqSk6Ozs5cuQI1dXV1NfXa8IyG4t2mZA1QZmOI5UOFouFpqYmysrK+M1vfsMzzzyTcDBttlaYoqOTANeC17QoZa67dB2bO0ZPoAeA7058l99x/07GUcr1tLq72k15ErHYUTEYDDQ2NmrC8syZM7jdbpqamsjPz4+7PWQuKDOZxydYe375y1/G/H7o0CFKSko4ffo0t99+e9xtvvSlL/HGN76Rj370owB89rOf5amnnuIrX/kKX/va11I6vsVi4cyZMwwPD1NWVsab3/zmuJGjbEYOJUnixrvq2Pu/alEU0OmkmMdymcGhKApD3dPMjM1jc5uobC6IOZ9MWA9dXutMdfz58J/zmte8JuXUtNVYQXc4HNxwww3Mzs4ucXIWC8tspbxG20gxp1eQDpIkrYsI5Ur+4+ImaerN5/NhMpm0rJNETSMBZmdnX1FlB5nM6QUoKiqiuLiYkZER2tvb6e7upqmpiYqKimXtVzbsazLNd/Ly8ti3bx/T09NaxFK1uWvtQ2ZNUKbjSKVDQ0MDn/70p/nZz37Gk08+mfDNi+swKTIoYZDDoOjAuHyBq8oT00/Eve8u1105dZhkReaR8UfQoUNGZkae2RBRyo2Q8prIGBiNRpqamqitraWnp4dTp06Rn59PU1MTeXl52vPUz9pqtdVfT6JfkDzqrNzlotsnTpzgIx/5SMx9b3jDG/jpT3+a9nFVseHz+eLWuK2GwxRJPVx6nFxmcLz8TB8nf9lFYD6Ewahn56sque3tWzbE9aN+Z6nlG7Ozs3g8HkKhEPX19VRUVGS0/0z/DsvZV6fTyZ49e5idnaWjo0NrdBG9ep6pwwUiQinIHstFKNeihjI66rh4VJ0adczLy9PE40oNWqKPsdFZzZTXxdupKfSlpaWUlJRo88tVYVlWVhb3Pc12DeVKuN1ubrzxRmZmZrTFPKPRSFFRUczzclkSsGo1lMk4UpmQzJy1JQZB0kVuOiOEw+CfWRCYgBICOQSSHqyFECVUP1j8Qbr8XTG7ajI3RXaZwxqh5+ae06KTAApK1qKUq81az6HMdFuj0RgzJPfkyZMUFBTQ1NSE2+3OWg3lZjD+ggiyLHP//fdz2223LZu6OjQ0RGlpacx9paWlWhfEdFCd+OW6GOYqpStXTcumRr2ceaoHnU6itNbN3IyfC88NUL+7hMqmpVkFa40663hmZgaAM2fOaF3HnU4nDoeDsrIy9Hp9jEMD6dmZbKa8JsLpdLJ3715mZmaWCMtMxWA2Gp8JBCrLNXZcjQW3ufAcXxv7Gn+c/8c4Q048Hg8jIyN4vV6OHz+eUtQxFV6JkwgyiVAu3k9FRQVlZWUMDAxw5coVurq6aG5upri4OOY42Uh5TWd7l8ul2dyTJ0/S2trK3NwcDQ0NK9a1Z5tVEZTJOlKZoDblScSKBkGvB71r6f3BAHhGQAmCHkBml+xgl3QDGPPAlhfz9FzWCIWUEIX6wph6GZfeRUAJYGZ9C8pkWcuU12S2VYfk1tXV0d3dzQsvvEBRURGVlZXodLqMBeVadugSZJf77ruPCxcuaN3jcok64mO5OWsbrenEcscA8E77CfhC5JVEIrI2p4nZCR/emfRnJy4+RjosbtGvRh59Pp826xigpqaGvLy8JfWuBoOByspK+vr6uHjxIgAzMzNLVqKTOY9MbGsq27tcLm688Uatg+Kzzz6Loihpd1AEMadXkF1WSnmFzCPi0VHHH8z9gP/W/Tf9g/28bfJt2O12jEYjer2erVu3phR1TJX14Ef8fPrn1Jnq2GHdkdb2qQQlJq55megZwOowUd1SiN6w8t9QtW+JAlTV1dVUVFTQ39/PhQsXsNlsNDc3U1hYGLN9umT6WXO5XFitVioqKpiamuLo0aNUVlZSW1ur1YeuNqsiKHPhSC03QwgycJiMJnCXL70/FIC5URjqi0Qy5RAoEtK1iyhWBfJcYEmufXqqqB/S1zhfw2ucr1mVY6ymwcllymsmDlMqF7PZbGbr1q2asDx79iyyLDM7O5v2cF+RzrV5+OAHP8iTTz7JkSNHqKqqWva5ZWVlDA8Px9yn1kCmy0pz1jZTW3yIXL/uYhs2l5nJYS95xTY8Uz6sDiN5Jdmr4Z8KTeHSu9BJ8a9TWZbxer2aaFR/hsNhbDYbTqdTS1tzOp0YjUZCoRBHjhyhuLg44QwxnU5HXV0dZWVlHD58mJdeeomioiKam5s1QboS2Wh4lqp9UjsoTk1N8cILL/DSSy9RV1eX0rBuFdEFW5BNVopQQvK+y0q1jnqHnqfsTwFw1n6Wv932t1Sbq5mYmKCtrW3VMvlgfaS89gZ6eXjkYcoN5Xyn7jsYpNSkRyo+5GDrHGfOXUEOShiMOrbcVM5r37VjRVGZzDH0ej11dXVUVVXR29vLSy+9hNvtprm5Oecpr4n2Ybfbqaurw+Px0NnZyUsvvcQdd9yR0X6TJeuCMhVHKhOWW12CVXBkDCZwV0Zu0ccZCKLIIRi/CPIcyAogg2QFWwFYisCaB/rM3upMRdn3Jr7HHtsetlm2ZbSf1Wa9prwmwmKxsG3bNoqKinjppZc4ceIEpaWlNDY2Ju3oqax1y2dB5iiKwoc+9CEef/xxDh8+TH19/YrbHDhwgN/+9rfcf//92n1PPfUUBw4cSPs8VEG5UbsYpnMMu9vM7b/fwtH/amVmfB6T1cAtb2mkuCq9BZ7FTIYn+Yuev+B3836XPy/6c0KhkCYYVfE4NzeHTqfD4XDgdDopKyvD6XRmNLIqGnUfBw8epKenh+PHj1NZWUljY2PC7qoq2RCU6W6fl5eHTqdj+/btDAwM0NvbqwnLZAdxC0EpyCbL2Uetb0WcrCE1VT26u6rH4wEi3Y/tdjv5+fkxtY7fvPYIfo8fJECW+NbVQ/xD49+/YtJRvz3+bXToGAwN8vTs07ze9XoAfLKP+6/ez7vz380dzsxFz7wnQPfJGcwGK2X1Bfi9QVpfHKRhZwmNe0qX3TYVQag2bayurqanp4eTJ08umxGUDNmuMVcbpgUCgY1XQ5mOI5UJyxkDyGGXLqsdOa8QKheJZ78X5kZgshOujUdqNQlHhKY1H6wFYC0Cm5slnSwWkanROT9/nq+Pf53amVoerX10yer6WnfoyubxVzvlNRFGoxGj0citt95KZ2cnx48fp6ysjMbGxqS7HIumPBuf++67j8cee4wnnngCp9Op1UG63W6tnuGee+6hsrKSBx98EIAPf/jD3HHHHfzTP/0Tb3nLW/j+97/PqVOn+MY3vpHRuZjN5ldUyitA/a5iSmtdzE76sLnMOPOXF1nJoKZ7fn/y+/gUHz+c+CF17XUY5g1ayqrT6aSwsBCHw4HVak3pek2n4YTZbGbHjh3U1tbS3t7O0aNHqauro76+PqFAy7QkADKvEc/Pz6eyspLx8XGtNX9dXR21tbUrCstsnINAoJJMhNLj8RAIBGKijn6/X7vuHQ4H+fn5OJ1OrFZr3O/v6eAMP5j6AYoxcu0qOpnDoae5MvyHlJkLc1ZjvtrHSERvoJffen4beR4Sj44/ymudr8UgGfjZ9M+44r/CV8a+wm2O25aNXMY7RigUwuv14na7kSSJeU+AUEAhvyBS8mGxm5ga9uKdXbnsIZ33yGQysWXLFmprazl27Bitra1MT0/T1NSU8nSLbEUoF+/DYDBsPEGZjCOVTdR0rpSa8qwCCS9Wsw3MdVBQF3u/bxZ84zA7CGOXwDcT6TprtIIlH+wlYMkDe3FkH2T+Bfro+KNISPQGeznqOZqVlaBUiH5//H7/knQwk8lEc3MzRUVFOamDTHSOmaYrSJKE1Wpl586d2ny25557jvLychobG+N221y8D7H6vrH56le/CsCdd94Zc/+jjz7KvffeC0BfX1/M3/ngwYM89thjfOpTn+KTn/wkzc3N/PSnP824/nylOWvroS1+tog+hs1lxuZKvqZclhUmBj0oskJemQ2/37ck8jglT/Hr0K9BAlmSuVR1iQ+UfiCrNU+p2C71uQ6Hg7179zI1NUVrayt9fX3auKPFtmQtUl6jt4+2sYWFhRQUFDAxMUF7ezs9PT3U19dTU1OTUFiq9lEISkE2iBaUatQx+gZoc6gdDoc259zhcKSUrt020E1IF4y9U1I43X2Bt267M2diLxsRsHT49vi3kZBQFv6pUcrbHbfz3YnvAjAaGuVXM7/iLe63xN2HoigEg0HGx8dj/Mf5+XktI6SlpQVnnhuzXcf0uA+LzYp3NoDRYki67CHd98dsNmMymdi6dSuTk5M899xzVFRU0NjYmLT+WS1BmUuyJiiTcaSyifpHWq4t/rpM6bI4I7e8utj7/bPguQZzEzDaAz3jkSinyY7UP4Vizwe7H+xFEcGZ5MiT8/PnOTN/BgAdOh4Zf4RXO16dsAYoW6g1BbOzs4yMjDA/P8+xY8cIBALYbDYcDgcul4uKigrm5+d5+eWXycvLo7CwMCOjtxbpsur20ReyzWZj165dmrA8duzYigZmrY2BIHOSsQWHDx9ect873vEO3vGO7I3/WWnOWk5rKBWZ8/Pn2WbZlnLtTLLHSHc4+MToFP/zzfNcvTJFOCzjLNWx4w1uCkvdOBwOLX39oa6HUKTIMWRkfuH/Bffq7sXE6jTRSESi1NO8vDz279/P2NgYra2t9Pb20tzcTHl5eVYcykxTXuNtL0mSJizHxsbo6OiIEZaLUw1FBsfG58EHH+QnP/kJV65cwWq1cvDgQR566CFaWlqW3e5HP/oRf//3f09PTw/Nzc089NBDvPnNb07rHPr6+jhx4gRXrlzhypUrzM3Ncfvtt8dEHWtqarh06RL79+/PeI56ra6eNz38N5jsOkw2I3JYYXJkjp3v3ZuzOea5INHrOD1/OqaRJMAZ7xmmwlPMyrNAJHJ5aOIQb3C9AT16rR5VFY9er5dLly5htVq1Dtjl5eU4nU5MJhNXr17lpZdeIj8/n8aDTsYu6iNlD2YDN72pkaotK9eoZqNLq8ViYefOndTX12uZI9XV1TQ0NKw4N3g1xirlek5vVlNec4n6x/H7/XEFZS4dpqy8drMTzC1QGHWfooBvCgLHUeYnYbIVBl6AuSkwmcHsXohkOiKRTWshWN0Q9YFSo5MKCjJyylHKl7wv0env5Pfzfz/hc9TZaYsjj7Is43A4MBgMGAwGdu7cid1uX7ICbTQaqaqqoquri7a2NgwGAz6fb8WaoMWsVXRT3T6es2O329m9e7cmLI8ePUpVVRUNDQ1LXl84HBY1lKuI6qwu5o477ogr8jY6K0Uoc7XgdoELfOPqN/jLor/kXfnvWpVjLIeiKPj9/hjb5PF4mJ+fp/dFHz0ve7G7TFgMJuaGQwT689n35r3a9n7Zzwu2F1BQMGBAQSGgBPjZzM+4p+CejM8/W38HSZIoLi6mqKiIa9eu0dbWRnd3N1u2bMlK9od6jFR5evpp6o2R6y6RfVPPe3R0NEZYVldXa8JSLLitLrmwj88++yz33XcfN998M6FQiE9+8pO8/vWv59KlSwmF2/Hjx3n3u9/Ngw8+yFvf+lYee+wx7r77bs6cOZNWFsf3vvc9/uu//gu/309LSwtvfvOb2bt375Ko45UrV7JybRZWOqhtKabz5RECJggFwhSVuqnfVYwkhXPatFCWFc4f6afn4hhGk57tByqp31W8qsf9Tu13NOGo4tK5+MOeP9SEpoLCaGiUfz//72yf3K41l3E6nRQUFODxeNiyZQvFxUvPVa/X09DQQFVVFZ2dnZjzRtn+BjeVpfXkFThxFSafIZmtsW92u509e/YwMzNDe3s7R44coba2lvr6+oTR7WzYt0Q+ZK5YtTmUq43qjC83Z23Dp3RJEljzkYq2RH5vbo78lGWYH1u4TYBnEMYuw7wHQsGIqLS6kK15jA/+FrtJxu9wEFwQ4Rd9F5cIynivIagEeWD4AUZDo9xou5EGc4PWBjtaPKqNKNSVo4qKCq0RhU6nY2RkhN7e3mVbF6vpAhaLRRNeK12Ai8lll9fFrGQM1ALp6MHfi1euhMO0ulRXVzM4OKj9PjQ0xF133cXtt9++hme1eqizeuMR1z6G5yE4E1nIUlhU2y1FGkoAKNp/0O6UFn5X71rYXhcY51l+jCsY5L+HHuFtltuw6qyR5mUS17eP3j9EzkGSrv/UTkNaaHzG9e2D0+hC0+CfQJYVvPNerVGGZ87L3KyHYDiI1VGI3ZmPy+WisrISh8PB8Aunsdpk3IWRRUk5NM9g13TM22KQDLx27rVYii0xq8z7bfvjvrfpkoztSiZSKEkSlZWVlJWV0dfXx7lz53A6nTidzowzOFLdvtffy99f/Xu2mLfwTt65rH0785tuXvxlZN7ztlcVMzAwQHd3N42NjVRVVQn7uMrkwj7+8pe/jPn90KFDlJSUcPr06YTH+dKXvsQb3/hGPvrRjwLw2c9+lqeeeoqvfOUrfO1rX0v5HD7+8Y/z8Y9/nA996EOEQiH2749/HWfLh9Trdfzvv7qR5x5vY7BrClehldvubsZVaGVubi6nKa8vP93Hi7/oQm/QEQrKDPVM8zrjTmq2Fq6wl/Rx6p049c6YESqds50UKoWYMCEhodPp0Ol0lOeVc2P9jdjt9phrfWBgYMWmZiaTiW3btjE0NITeJNHac5Y66rC5E9eVR5ONCOVi++RyubQu1+3t7Tz77LPU19fHrRnfDHN6N6ygVGtX1kPTiVwUVcccQ6eLRCTtJbFPlOVIRNM3AfOj6PxTfNV1P765IbgWAIMB7C7yfOXgOQzmInAWgxw/FP/ziZ8zGhpFQuJfu/+VP5j8A+bn5zGZTJp4rKurw+l0Lpmdli4mkwm73c62bdtobW3lyJEjCWuCFrNWHWKT3V5RFP7L91+8ZvtraPQ3LhGWosvr6qLX67VRHD6fj7vvvpsDBw7wD//wD2t7YqvEck15VJsS87nVWwEdBMbBPw7+KfBPgDwL/pnrGytEhB7ygtiTQNIRaTqmXxB8CugkRsbP0xI8xxYJJBnOz3+a/babFgSnKhYVCEf9rqbjK0SOgRR5TJZAtyAygZAcxj/vIzwzi9M7R8/h3zDvm0dCwWK1YjObybeYseabMZmM6HXXwOgAyQm+PFDyKCmaoleeRw5bQJII+sO4CmMzB/SSnju8d7DTuTNn87yiib7+U3E+9Xo99fX1WvZHT08PZrOZubm5lNP40rWPj44+CkCrv5VOS2fCfZx4sp0fPvw8sqwgAW2nBvnDTx6k8QY7HR0ddHV1UVpaumT7te5euZlYC/s4PR1ZvFlubMaJEyf4yEc+EnPfG97wBn76059mdGyLxcL4+HjCx7MZLLA5TbzunqXR1Fw2zFEUhbZTQxjNevJL7SiKwlD3NL0Xx7IiKBVFwTcXjJhrvbwk8LDYd3zI+VDSTcxSeY8kSaK5uRlJkmhtbaW/v1/ryLqSD7laPmBeXh4333wz4+PjtLW10dvbS0NDQ0wGRjZ8UFjbOb0bVlCuNGdt3dZQpklSx9DpIqNKbAVAEwC2hRvhIHgnYH4c/JPgHYWJXuiZRpmYhNBVRv7nPLNhPZ6whUkF/rPyMXDKKHodL+tf5p6Ge9iXvy+tRhSpNpxwu93cfPPNMTVBW7ZsoaysLOG+1mPKazTHPcf595F/57TnNF+p/8qSwd8OhyPjeg1Bcvzpn/4ps7OzPPXUU5s26pHsnLWYz73eDNaKyC0aJRwRl+otMBERmcEZkBaG1csSKAsLXxIoYZmz4ZcWdKJCWCfxguckN1j2YNYZ0YSkDtAvbKvoI/cjR8RpGBRJIRAO45v34/fP4/f78ft9hAJh9JIOvdmMAuQX5VNuKcOkN0YFP3UL+yOy/6AHQh5QBkGC/bt9GMf7mJoIEwjbKW8s4MAbXDDXC+ZiMKzObOGYtzaN749UbJXRaKSlpQVFURgZGeG5556jqqqKxsbGFet6VNKxj73+Xp6afgoFBR06DrsO8wE+EPe5h39wCUVWMBgj39tyWOHZH17m/3vDWyktLWVoaIjW1lb8fj9Xr16loqJi016364Fc2EdZlrn//vu57bbblk1dHRoaorQ0duSD+pnIhOVKAiBOUEJRInZQDkXmkoeDkUW4DOaP56o0C67b+sXmJlMRMz8/z9ysl8tHRxjvu0wwGMRVoaPx5gLy8l1avaPD4Uja3sQj1fNU68pHR0djfMh4C1Pqa1ntoEJhYSG33noro6OjWjOyxsZGKisrM45QhsOR7+FsjKdKlw0vKFdagc/FeWyIomq9EZylyPbiSDqYwcOsNMsss3jMYyBP0hMK4DSEKDQH6PM9T83AKaqBIBDCwNPuf+TG5k9GajXtxWBJTvyk2hZffb1qbU1hYSHXrl3jypUr9PT00NLSEndFcy0jlCsZA0VR+MZwZAzEGe8ZXp57mT32PTGDv19++WVmZmawWq1pDf4WJMfnPvc5fvWrX/Hiiy/idGZnRuF6JJuDu5H0YCmO3KJRFAjOgn8sslDln4iIzOAsw+FexpUJQjowICEBQXy0+9vZad0K6EG3IEbDCuiMyAQJBoN45/34/AECfh8+nx8lFMJkMmM2m7BaLLjd+VisJkwGEzMzM4wND+O22q6fk0QkuKmEF6KaMii6BX0pE0nPlXC6Tdx0Vw2j17wQlimsMuCwXoL+S5F9GSxgdOL0DiBNBkBfD6YCMDpXHPeUKsmmvKZrpwwGA/n5+dTX19PW1saRI0dWHDWSyXHV6CREGhldM1/jRe+L3Oq4dclzQ4Hw9ezphVTnYCCs/V5eXg5AW1sbXV1ddHV10djYSGlp6Zo6UJuRXNnH++67jwsXLnDs2LFVO8ZyLFcSAHF8SEkCyQA6Q8QuKArMT8L0JMhBCAeILITpwOiKjIZboXliwoW9LBLtT229pZzn/7uD0f4ZwqHI7N763cnVUKq9MhZHHmVZZrjVz+DFAPklDpwuJ4EJGTfV7NxZnZXXkIkPWVJSQlFREQMDA1y+fFnzIfPz8xNulw7JLrqp51RcXMzQ0BDt7e10d3cTDAYzPj6s7ZzeDSsoYWWHacPXUC6QSRfD6Nb38QZvV1RUYKqr4+zZs+x/7Wu1bb83PMvp6W5MPh82nw/r/Dx9gS6Y6ADvKfDPRRb+bXkLNZuFYFeFZn6kaVAaxHudOp2OqqoqysrK6O3t5fTp0xQWFrJlyxYcDkfMtms9NiQRxz3Hafe3A5Fuu98c+SZfqf+K9nheXh7FxcWEQiGmpqZ49tlnqauri0mJEGTOj3/8Yz7zmc/wP//zPzQ2Nq716awqyQjKeIO7U0KSwOSK3Bb5ngXBWVp6K5ga66a22IU+OIc55KPRUAUohOQgPn8A/7wff8CPzzdP0B9ERsZitmC2mHE5XRQXmjBbzOglNXopLUQKgFAIkJB1OtAbIqIkHCbyoG6hnlOO1H3qIBLyJCpVF2x2E7UtxuvPkRfScBUZQj4I+bAEB9BPhmD+wsJxDGBwgckdEZjmArAUgTF2rrBP9vH07NO8zvU6jNLaLhCp9tHhcHDjjTcyOTmZdEpYOvbx8MzhJd0dD88cjiso9762jt/85wXCoesR7r2vrVtyDmazmf379zM4OEhHRwednZ3s2rVLS9UUZEau7OMHP/hBnnzySY4cOUJVVdWyzy0rK2N4eDjmvuHh4Yz/5ssFJCAJH1KSFrLBFiHL4BmCiUsQmotENGVd5Ke5CJzlYC+AqBE4uRCUiqKw+44ajGYDvZciTXm23lJOZVP+km0W+47q/6N9x7KyMpqbm7Hb7Xzv9GHsTj3l1RFxOjYwy0jfzJL95orF76VOp6O6upry8nJ6eno4deoURUVFNDc3az5ktjv9J3OO5eXllJaWcu3aNS5cuMC5c+doaWmhpKQk5XNZD3N6haDMkFxFQlcSlIFAQBONiXLW6+rq4uasxzOqHyn5CO8vfH/MfVadFXQLQlEOR1Jo/VMwNwq+SRgaiKTBeefAZI9EMC35KDNBpOkQzNZGRGeaeewGg0Fr0NDZ2cnx48eprKykqakJs9m85jWUyzlj3xj+Rky33egopYosy9hsNm644QZtPltvby+33357VufdvVK5cOEC99xzDx//+MfZsWOHljJlMpmWreHZqCy3Aq9+1lfTdpmMTva776ZrvIs9VXs0u9Q5O8381AChuWGsOh8Oswm72Ua+3YnFZMBiMSGpTXvUpjzq/xVQo4voIj91igxhOZKCJukWmvnoI+IwBBiU64181DCY1jxIiWyjLAhQWY7cJ4cjNecLx5fkiHBFZ1iIfAYhPBaJyNIVieAig04PBnekVtNcwP/4jvHI7E8Jyn7elv/2uO9TuqvvqbJ42/z8fG655ZaYlLDm5ua4ZQXppLw+1vQY46FIjdrc3ByXL1/mnVvfGfe5b3rfHoKBMC/8ogNJkjjwv5t53Xt2LTkHvV6PTqejsrKS8vJyrl69mnI3cEF8cmEfFUXhQx/6EI8//jiHDx+O21V2MQcOHOC3v/0t999/v3bfU089xYEDBzI6F6vVumyEMu1ggU4HrorILZpgAKavwvC5SOo9MpLfg2WqHeWqBaxF4CgDqyv1YyZBxEeR2HGwkh0HK7X7F/uO6pgOk8mkicfa2tpl6x1NNj3TgwGUBTsb9Iew2rO7gJas/Vnub2YwGGhqaqK6upqOjo4YHzIXKa/xUAMmly5doqysjIsXL9LV1UVzc3NKY/TWw5zeTS0oN0sNZfQxFEXB5/MtEY+BQGDJjJ5Uc9ajLwi9pCfPkJf4yTo9OIojt8Lm2MeC/kiNpncEArMw3g3+K3BuGIIhsFgjxtPmBFsZuMvBWQJGU1LvpdlsZvv27dTW1sakbmVSB7maNZSz8izd/u4lq/VnvWeXCEp1HwUFBezfv5/p6emM6g4E1zl16hRer5fPfe5zfO5zn9Pu36xjQ5ZbgY+OUGYTRVHwer2abZqYmGBubo7nnntOmz/rdOVRXlG11D4pCgRmIumzgXEITIN/GgJToPgjUUlJdz2dFQkkCVmvBz0RR04hkj5LmEhKrbTQ8EcfaeyjClJp4WfkXbjeJEjtYKtbEIjoIuJS0qFobWgXGgUpREStvBAxlYgI29A4BCbxTV/m6uQh7pSDDEx+lkC5B5MpH8z5YCyMRDTN16MDq53yGm/b6JQwtaygu7ublpYWCgsLl912JSpMFVSYIk71VGCK+fA8dn38Mgm9QcfbP3Qzb//QzQn3t9jGqo6YqKXMDrmwj/fddx+PPfYYTzzxBE6nUxOtbrdbm898zz33UFlZyYMPPgjAhz/8Ye644w7+6Z/+ibe85S18//vf59SpU3zjG9/I6FxSrqHMFKMJihoitwWkUAjf1SeRFSv6mT649iIwH/GTdOaIjXCUgasMbCVgSn3xJDpCqc4Gj+c7quJxse8YDIRpPz1E38wwJbWuuA18qrY78U7IDHZPIUkSeSV2WvZXLHleumR70c1sNrNjx44YH7KkpGTZbVY6ZjYEqTpSrq+vj7Nnz+J0Omlubl6SnhuP9TCnd8MKSrWGcl0M7l6l48iyrDlnXq+XM2fOaDnr0TN61NWjZFojxyMbHzZFUfiPif9gv30/2y3bwV0VuUFkvubALti3DwJz4BmJRDLnx2DiCgy/DH4PmKwoo/NIPgWqrGApAEdRwjoEu93O3r17tdSt6ZlpxsfHKS0tTdnJWM2UV5fexZNbn8Qnxzr3xYbY2oXF6YeSJG3qGr9cc++993Lvvfeu9WnkjOWalkHmDlM4HF6SEuXxeAC0AeF5eXkEg0FuvfXWlVNrJSkyW9fsBhal24X94BuFwORCF9oZCE5DYBY9kSYukRe1sJ+YrzY9KAEILdRQygvP0a7XhXClFCUwMVxvwiFFomIS4cjvWtdZrqfJLtwdiVICYZmX/OcIhIIoksJ8eJaLk8+x17YLZvu0QCmSDp1iotA7CCMmMOVH0uLMhZFoaBZZzuFRxVl5eTm9vb289NJLuN1uWlpacLlcGdvH1RjaLcguubCPX/3qVwG48847Y+5/9NFHtWP39fXF/J0PHjzIY489xqc+9Sk++clP0tzczE9/+tO0ZlBGs5z/CLnr4I/NhVK+A6KzkGQZ5qdg5irM9EWimoEJUEKgs4KrHKz5kZp2d3WkXjPKvkb7jrOzkRmQzz//vOY7OhyOpHzHoD/ET798hq5zIyiygtFi4M4/2Mq+18VGll3FZva9pQJDMOKvlDfk4S5a/YZmmWKz29i7dy9TU1OcP3+e+fl5+vv7qaysTMnWJOqwmsr2qo01GAxaB1g1PbegoIDm5mZcrsTR6/VgHzesoIT1k/KajQhlKBRibm4uZvVobm4OSZIwGo1IkhSTs77WH5zFvDT/EocmDnHYc5hHah5BJ10/vxhnwmSHgkVpLkZjxHnzzcCVk0j9PTDTA6PnwTMZiQJYFrrX2ksjdZr2Yk1o5ufnE94e5l97/pW/GP8LJp+bZMuWLSnloa92/rxL78KlXz6VJZ5ByGXLZ8HmIpkaoWRtl9/vXyIevV4vRqNRy4qorq7G4XBgs9m0z+zk5CRjY2OZ1wHrzWCvityiUcIER7uZmXoRCmojUc3gdORnWI4IN0kGTKBbiEQapIjDpuW9StdTYhUikc5waMFBizT0kWU5ks4lE+lIKxOJikIkXTb6ElXAR4BTc6dBTyR9V1Z4fv4EO2zbMUkGro9EAfwzmIJDMHFu4XzCETFpdIDBiWIpQrEWgrkQJWRe1bT+6CHhXV1dPP/885SWlqaUehWPbDg768FhEmRGMvYmXjT0He94B+94xzuyei7JpLzmRFAS533R6SJ1lvYCKN99/f5QCDzDMNkN8yMw1kno8pPMzUwwi5VZJOYwE8RGmAKsJXU4iiLprTt27KCgoCCla+jKi4N0nh3BmW/GaNYzM+7j2E/a2HZrJTZn7EK/I99MXV32opIqw8Fhvpb/NT4a/ih55K34/GR9OUVR+Jvev6HYWMynKj9Fc3Oz1iBHbdxTXFyc9L4g/eBMvO2NRiPNzc3U1tZqtrikpISmpqaY3iEq68E+bmpBuV5TXtWc9WgHbXHOek1NDU6nE6vVSl9fH7Ozs1RUZHaxzoZn6Qn0sMu6a+Unp4CiKHxr/FtISPQEenhu7jle7Xh1ajvR6cCWh1K4BZQCaNl3/bFQMNJB0jMWmbE52BOJaIYDoLci2wt4bPBBgsYxLpWf548s93Dx4kXNKOTl5a14+GykvIoVeMF6wmKxMDk5mfDxeCvwasrqYvEYCAS0lNVUUupXvSRA0iOZi/Gba6HktugXEuk26xuLrOwHJiPps8EZCM1ff45hIWQpRY0XkSMdZ5GDRBr7yCiypGnPiBhdSHlVuB4VXciQRVHo9fcSVAKgKJH+tnod8/I8g4EBak1VaGpUjoQ2I7YjqjutHI7MFGYafEMwvZB6GwxSOjuI3DMTaQpkKYostpmL0Rmtcd8i72yAn3/jDG0vX8VVbKH4o1UUli91SKIxmUxs3bqV2tpaOjo6uHjxIgaDgUAgkFY992oKSrHgJkgHk8mUtQW3dJEkieC8zPkjVyMC4sZSbK7ENjUgy8yGLXh01czKeXiUCrw6L6Y8BUd4CqfeQ4Eyi5M5rOFupMmLKD47V2ZOo2v9X+iKt4CpENxlYC0Gy/IZUN6ZiOA2WSJSwWI34vcGmZ8NxAjK1bTz35n4Dv3Gfr7r+S6fL/z8kscXX//JCsqTcyc5OXcSgHcXvhsbNkwmE/v376e/v58LFy5gt9uT8iEzbYizXIdW1RbX1dVpvUPKy8tpbGzEZrPF7GPx9rme07uhBaXFYlkx5XU1u2fB8kYnut4x2kHz+/0xOetlZWU4nc6Ezlm2zv/h4Yc5NneM79R+h0pT5cobJMlL8y9x0XcRiHQw/db4t7jNfltMlDIRiep6YjAYwVAC9jg57gEvh4ceZyDQS/H0PK1X/wVbcxG3F+XTPdDOyV8/T3FpC817DmBfZih5NlK6xAq8YD2xUsqrJElL6mkWp6wWFRVRX1+P3W5PK6U+Vwt7S44hSQsdWOOlz/oiq/sBdczJbORneD4SbdTp0caNqDZMWmjeo/4elq834gnKoFdrLfWgKDRZmnin7h2EJQVJkZABs6SjzFCOljIrSYAeJeRfmA0nRUQuMigLHWulBeEqLZxXKAiyH+YGgGswfb1pkayzRLrMWvLAGEmdVUyF/Nv9z3K1bQJFVhjpmeOf//znfOLbb8OZv3I9ltVqZdeuXTidTm1ebkNDA7W1tSl9HkTKq2C9sdLYkFxEKCcG5zj6jXH8nlFAwllg4a/++bUUVTmz4jvineHl4V/wkyuPMjln4d5QEOamIn0uDHqw2sGx0KHaXhLpiWGvjkRGJYniaicGo47ZCR9mm4HZCR9FlQ5chblphDUUHOIXM78A4MXAi7T72mm2NK+w1cooisI3Rr6BDh0SEo+MPsJ9+vuQJAmdTkdtbS2VlZV0dXVx8uRJiouL2bJlS4yAW7w/SD3ldfTqDB0vD2M06wiHlreRRoOJQnslzroiJueHOHbsmFZzabFY1oV93NCCcrmi6lzM94HrwjU6Zz3aAITD4ZicdTXymKpzlqlT1uXv4sjcESCy4vOJsk/EPUaq71V0dFLtYLo4SrncftNdXVKRjRb+3f8kY+WVyMjo0PGfBX4+XP4HVDQM8kLvIxQMXOO5X/0z1ZZ8GpvqMJndkZoDezHYirRmQOsxpSvXK0yCzYPFYtFW4ONlRQQCATo6OnC5XDidTqqqqrSsiGx9Ma3LOb16CzhqgJrY+5VwJJrpHQf/KIRmI5kRIS8oCymvirIgBgFCEYFpWAhd6hdsuiyj1+uoMlVHnqMsiEK9Gn7UR6KgC91lFYWopkESSAslAPLCsXQShKVI6r8ko1PFLcr1JkR6IoI47Aff8MJjMqOD85QprbhrrPiDFub9Trx+OxcPX+SWu29M+r2zWCzaan1rayt9fX1ax21FUvDLfmz6xDVTIuVVsN5QAxKJvvtzUUP5xL+dxu+RkXSRDAXPpI//+Nwz7P+j/Kz4jorVybcMx+htbOK70gz/u/79FOrywTMKU1fBMwBzwzDRC1dfhqAP9CawRzr019vLeNVbg5z9rRePp4jCykLe/P4bMJozlw7hkMzF5wYY6ZvG6jSx81VVS+ouvzvxXe3/OnQcmjjEP1b84/KvOQlf7uTcSS7NX9J+f2bmGd7qfOvCaKoIBoOBLVu2UFNTQ0dHB8eOHaO6uprGxsYlWRrppLxeeK6fb33ysDYqyVli4M7bQxhcS9/b6TEv3/zE0wx0RDKOmm4s452fuJn+gR6OHj1KTU0NDocjYQaHaMqTBMnOWcv2l1B0M4qRkRE8Hg9HjhzRZnw5HA5t5Sgb9Y7ZcMoOjR9Cj54wYX41+yveU/CerEQpw4TjdjBt9bWmnvZK6gLq6OxRegO92u8yMj+e/DH3FN/Dj70/5xF+zl/t/Svutvx/kW5e1yapr62kzpGH3j8F092AjNLXgc5gAJcPHAsF7ysMJY5GluW0myJF70M4TBufI0eO8PDDD3P69GkGBwd5/PHHufvuuxM+//Dhw7zmNa9Zcv/g4GBas9ZGRkY4fPgwTz/9NENDQ7zvfe/jj/7oj2K6QJeVldHe3k5zczNFRUUpHyNZct0FO7Md6cFcHLmx9fr9isLU6G8oLSkEaxh845E6zbAH/F4iabEhUNS0WTkiAPVy5D6J63WX6NDGn0gRgYgUjpy/orWvJTKiZGFbSbfQMEiO3JRIXWckNVe53t1WUjsO6RYe0xMKhdBLIezWGeyWWXTuYRQF3L4plLZTKOosTfNCgw9zIZIpL+HYkIKCAm699VaGh4dpa2ujp6eHJ8ufpFvp5nvN38MgxbeB2RKUi2txxYKbIF1WasqzGhHKaN9xdnaWvrbRhTWqSKaBIivMjYfZu3dvVnzHl+df5oLvQiSDAZnHJh/jQ8UfAldp5EZUaVEwCLPDMNkF84MwO4o00sqtZg87/pePecDtLMY82wqXSyPzNG3lS8ejJIGiKBx7vI2zz/QBIIdlei+O87YP3ojdHYm2DgeH+cXML5AXbKKMzHNzz9Hub6fZnDhKmYxNeHT00SX3/cT3E94pLR1rZLFY2LlzZ0xHWDVLQ7VHqaa8yrLCdz5zjHD4+udrdjTEb//zIr/zV/uWPP+HX3iegY5JLWGl/cwQz36vnd/7cGQSgDpizmQyEQqFMvZF02VDC8rlUl6jI5SZEAgEYlb11Y6rajMKvV6PxWJh165dCWf0ZEqm+4yOTgJISAmjlKlikAw83vA4ASU2dcShW75GZzlSeb35hnz22PYgKzLTM9PYbXbcZjdz4Tm+N/49AL4z9h1+d8vvsm/fPsbHxyPDvAeu0dTURGX1wchK5Ew+RrMZimsi8zUn2ojUVrEQMZAjtUrWwrhCc7VSXkVTno3H3NwcN9xwA3/6p3/K7/7u7ya9XWtra0wXt3TbmJ88eZLPf/7zmEwmiouLed/73sf+/fuXfMl0dXXlROythzm9GSFJhPUOZEc9LG7fHvZF6jT9kVEhBKcjs3lDnsg4Ef2CuFSUheY9qjg0AKGF9FpdJMIoRe5SU13lcAh/IIROD3arE5QQiqJD0YTmQt0lCz8V+fr/F2o8i0odmJ0Sfs+CIJV16A1QWuOGkB+Uicj5R95FIDIeRbHkR9JnrfmRESf+ABLXV+HLysooKSnhRN8Jjs0dA+DHAz/mD6r+IO5bmK0ac6Nx6Ww7YR8F6ZCMoMzEriTqlaH6jk6nk9JaN3MTYyBJkaQHvURFQ35Wurur2WM6dMgL/56YeoI/zP9DCg1LR39gNEJBVeQWzfwczrkRnDN9kY6zc6MwdDLSw0IJg9kMcz7QF0J4H9jLwVG17MzxuWk/rScHsTlNOPIthMMyo1dn6D4/ys5XRY7vV/xUGavwK358Ph8mkwmT3kRQCa742leyCfvs+yJz1aNoDjUvu53T6YzxIfv6+iI+ZGWlFhVN1hb55oLMe5amW49dm437/N5LYyhKZLwSREa59FwYBSIjd2666Sba2tro6+vTyhJqampybhs3tKBMNkKZDGq942Lx6Pf7sVgs2sp+aWkpTqcTk8mEJElcu3aN4eHhhLnV2SITw/bLmV/G/C4j8+vZX/O3pX+LUTJm/KEz68yYSVxInko6aaqvc7dtN/+v/v8BkUjP7prdFBQU8M2Rb2pjOubkOX48EYlaFhYWcuDAAYaGhrQV9paWlusOj9EcmYvpLl96ML8XPNeup6YZdBFnUGdADgbQWeM3xUiWcDgsIpSbgDe96U286U1vSnm7kpKSpBpIrcRb3vIW3vKWt/C1r32NH/zgBxw8eDDu83LVxXDdpbwmIBySmZvxY3eb0euXXoeLX0coGGakd56Az4zNVU9x9e7r56KEI0LNNw6hqUjqbGAmMpeXAJE5I0BYRlFkJBm88z58817mfX788/P4A0F0OgkFCafDQVlZMYoSighH7VR0C0JSezeup+QqCiaTjjvfvoMXf9XOxIgfs0Pilte3kOeyLgjY0IIwXagPVRaipr4JmBuDWR3IMobpaQpmZ5E7OiNC05wH5kKeDf0Qo6IjKMkcGj9E/XA927ZsW+IQixpzwXpjuYAEJG8fl+uVofqO0fWOqu8I8M6/LeVfPvALfDNhFCRchVbu/uubsvL6hkJDkehkFCFCPD37NO/IT6FjrtUO1nooqo+9f24KphZE5uUXITwFbUcgMB/pkG2xgSM/0pnfWRbp0O2sAKuLcEhGCSvoLZEIn04XWQBT0z8Bakw1fLvu2wAcPXqUPXv2JCW0k/E3/6zkz5bc19fXx6g0uuL+VR9ycHBQiwzW1tauuF00VocRe54Z77RaPx+hrDYv7vNdBVbmpv3XU2t10pL0YIvFgtvtpq6ujvb2dnp6erTxI7liQwvK5Yqq1Q9UPIOg1jtGpx6o9Y42mw2n00l+fr7WBj/eqqhKrjqBZXKMd+a/c0mKQL4hH8M6/fMnMgbfG/seR2aP8JW6r8TkuquohmQ2PMv3xr+npeEqKHx37Lv8XsHvYdfbkSSJ8vJySktL6evr49y5c0iSRGlp6fInZraBuW7p/YqCPH8JnTkI8/kLq3K6SPRBMkWaCiXBYqdLnU0keGWwZ88e/H4/O3fu5B/+4R+47bbbVt5oGdZD04lcCErIPEJ55cVr/ORfTuGbC2J1mvj9v7mZ5n2J040j9T9XGWifRJbBYNKxZV8ZDbsXosqSHqylkVs0sowcmGJuvJ+5qX78M8PMT08Txkh/bx9mixmrxYq9qBCLyYLZoEeWdAyODNPW1onb7VyIdoaAhcwJ3UJDIIgIWUWOjB2RAEUiv8jCG969i96BAWw2G8UFzoXIaCjyPDmMlmobJlKziQzGhdRavR4ZBZ0kRTrl+idgFoaVMaShn/BGvR6vpGPeMMGg/ocEjjSTX9pEw7absdpdCy9b1FAK1hfp1FBmu1dGYbmD195Xji1cgs1qo3Fv6ZJxHOlSZijjnyr/iTl5jkuXLlFfX4/NamOfbWlKZVrY8yK3yt1INILFAnV1MDMC072R+syZQRjrhZ6zke7aBhM43DjNLpoafXRfAV+wjBlPAY78PCqb8+MeKp599/v9zM7OEgqFqKioyDjNM5XAhyRJVFRUUFZWRl9fH1euXEFRFGZmZpadFRm9/Xs/cwff+NhvCfgitju/0sRdfxx/turb7tvHN//uGU1wW2xG3vSnN8Q8Ry0JKC4upqioiOHhYdrb28nLy8OaYbAjWdanokiSZNo+B4PBmLTV2dlZ5ubmAGI6ZTkcDux2e8rz0nI2/DYDigxFvM71uiydTXpkOg9yOjTNv4/8Oz7Fx9MzT/M6d/zXI0kS573nmZfnY+73yB4uz1/mJsf11T+dTkddXR2VlZU8//zzXL16lXA4THNzc2oXoCShWPORbPmRZj/RhEMQCizUQ0V1iYyDcJhemZSXl/O1r32Nm266Cb/fzze/+U3uvPNOXnjhBW688ca09xvdlCceuVgMy0VztExF6/ighx9+/gV83hBGs57ZCR/ff+h5PvRvryevOH7mycSgh4H2KfJK7JgsBmYnffRcGKO8IQ+r47pDGA6HtfnCMzMz2vePXq/H6azEWbwVW6WJrq4u7njVLUiBCfCNQmAKwmGQwpglqCtoZtbrobe3Gz9GRn02ivNdC7WUYSIpr8GFUSYLolJSFkac6EGnoISV691k5YXIpBxa6FZL5Ln6hSilTop0r9UByEih8PVj6fQgyZyceQlJ0oEs4VBk7OF5BnVP8brKMkZGfkPbLx8nv6iCsvJGDLNhLPM65LkSJEsxkn75cTPxECUBgmxisVhQFIVQKJRwFI7P5+Pq1aua/6jOBs9mrwyzTc+WbSXkL06nzxBJkjTxKPkl9lj24HRknkqbCGWhDhR3aeQWTSgIM9dguh88A+hmBrm1zIvNcZnpDh+1pVYa67dQNNwOnqJI2qy9HFyVoNejKApTU1OMjY1ptlQdZaXT6ejs7KSlpUXrOZCOTUjnO0r1IV0uF6dOneL555/X5sWv5ENu2VfOp77/dnovjhFS/EyFr2rjWRbTcnMF93/tTVw41o9Or2Pva+soqkycBaKWJRQXF2c+AzoFNrSgtFgsTE9Pa78Hg8GYlSNZljl16hRGozFmvuPi4duZsFFW4NfLMdI9h++Pf5+AEkBC4psj3+S1rtcuiVKqaasHHAf4XtP3CCkh7TGTZKLaHD/0r34+ysrKmJ+f5+jRo9TW1tLQ0LBsdHrxseN+oeiTv8REyusrk5aWFlpaWrTfDx48SGdnJ1/84hf5zne+k/Z+TSbTimNDcjm4ezUFZSZcbZvANxfC6oyk/+sNOnyeIAPtk5qgXHyMUFBGVhSM5ogNMlsNzEx4mRyfYnwqELN4GRGPkbS3uro6nE4nFotF26fH46G7uxvJYAVDJdhim6VJxsh5uYGK4jHOnTvHZY+OzoCJbdu2LeuIRrIcIkJwev4U+jwXVFcuiM7QQjfZUOT/sioaQyCFIRSOpL/KIYLhawR0E1DcuNBZNkil0YfHW4SEgk4Og05HqVSAxVlDjaOSuXkv14auceniGWxWC2Y90D+LosgoRjsYrGDKizQEMhcjWYoi70EChH0UZBN11Mb8fGTxOV6vDPUadTgcMbPBs2nLNpMPGU3AF6L7wigzo/NYnSbqdpbiqL+eGmoHDvi9MN4Dc4ORm2cEf38rs+FxZgkwixEvOozk0z9ejDu/kfzyJmp27MCxEAHW6/Vak7De3t6E57MSmXxH6fV6DAYDBw4coL29PWkfMq/YTt6ddiYnJzl79tqyx6hsKqCyqSDh4/HsY64X3LIuKFPtcJgOiqLQ399Pb28vk5OT/PM//zO33HLLknpHg8HA9u3bKSwsXLer4+vlGKtJque++G81HZrmB+M/0Lp99Qf6E0Yp1Quo1pxaTruiKJhMJpqbm6mrq6O1tTWmm9dKjsxqpXSJFfhXJvv37+fYsWMZ7SOZCGWuBOVqR98zsY9WuxGdXiIckjEY9cihSBt/iz2xI2BzGQla5rjSOYoZI9OjXkwuhfauadz5roTiUT3XFWfvJkCSJAwGA7fddhs9PT2cOnVq2RlpEfuhB50eWTKD0YnOnHokJDjXjV+ZRle2R7tvH3exXPKcE2jZBePj45w7d45gMIjJvo3KysqoHgcLIlYJR+pD5RCSbvU6xQrWnrXugq0oCj/96U954YUXKCwsZN++fXz5y1/G7XbH9MpQF4V2796d8jFSYSOUTaWKHJa5/Pw1rrZOYLYZGOmfYWZ8nhtfV4fFdt2u+tEzayphxmdhVipillkCzgC2sA+nNEO+MkmNPsClqZPsxo9jcgCmjkO/ZaEusxQpr5xydy2l+/fRNTDE9PQ0ly9fZtu2bVgsyc3L9M8HGe6ZJSyt3PAnHqpNt1qt7N69O2UfcrOUBGRdUKbb4TAVvvWtb/GXf/mXFBYWUllZSWFhIdu3b19S73jt2jUMBsOqOuS5MgYbnUxSXn808SN8Sqxj/M2Rby4RlJl0Eoze1uVycfPNNzM2NqZ182pubqa8vDzh/jPtYqg69mttEATrg5dffpny8jiNoVJAraFMtPKaS0G5mjYyU2epcU8pDbuL6Tw7QsgfRgG23FRO3c7IOJVwOEw4HGZ0dJShoaFI5NE7x/f2fJ1gSObdxz9Iw/YKdr+6jqIy97J24Nz8OT47+Fn+qeqfqDHVJHxeItS/pV6vp7GxkcrKStrb2zl27Bh1dXU0NDQkrCXKZAU+E/tWWFhIRUUF09PTdHd309PTw5YtWygpKUGn0xNpcbtyJoiY07s5WOsu2JIk8f/+3/+jrKyMYDDIP/7jP3LnnXcuSVH0+Xw5+XxtpMZlyTLvCTLSP0NeiQ2L3YgsKwx2T9LTOoDJLWtiXU1bdTqdFBQUUFtbqwWDogk++yzs2QOKF2b6YfZaJIV2rAt6z4AcQmfQ0WDL49pUL0w18Xzrr6lqvAnbtiYclnxchvi1jZ0vD/Pvf/c03pkASDD6Lom33bcvpfdssX1M1YcUgjIB6XY4TIV3v/vd/NEf/RH/+q//yokTJ/iTP/mTuM8TTSeSY70L1mJDMS2Wlpj7Es3QTPe1xOtCWFRURGFhIdeuXYvpCFtYuLTldqZdDIWg3Dx4PB46Ojq037u7u3n55Ze1Zg1/93d/x8DAAN/+dqSD3b/8y79QX1/Pjh078Pl8fPOb3+Tpp5/m17/+dUbnkUwXw1w5MrmwX+kKJr1Bx3s+fRsv/KKLsYFZnEUGGvbn0dp6JabmfmZmhsLCQoqLi7lguMDI2DAABe8O85r8GyKdCpdBURS+PvZ1RsOj/Mf4f/D35X+v3Z8si5+rjqyqqanh8uXLDAwM0NzcTGVl5ZL3IhNBmY0urQ6Hg5tuuomrV69y8eJFuru7aWlpSbp2LN4cSsHGY627YAM89dRTyLKMxWLhlltuiVvvlgv/ETaHD7n4OIGAH693jrn5aZTxEHPeeWaG/Viveqk0Fy4rHhMhGQyRusq8RQutOh3MT8PMNZSpPpSJaXaUmZgbucb5zi9wuPMZzBTz0eb/g2QvXthHDTiKCQbC/PvfPc28ZyEyqcDT379IzbYibvxfdSm95nj2sf+8hxP/OcXc7Dzn6sa54U0l7Ni1bYkPmY2SkPUwp3dD1lDa7XZg9ecIJUOu6pA28krscueejNPztoK38baCtyV1nEwcpkSd3iorKykrK6O3t5eXXnqJ/Px8tmzZEtPCOtPVIfUzJBymjc+pU6diUrQ+8pGPAPAnf/InHDp0iMHBQfr6+rTHA4EAf/u3f8vAQhfO3bt385vf/CZumlcqmEymnA/ujncMWJ8LYqFQSKuXmpmZwVA+i8vtxWQyMTMbmTtWXFyM0+nkpZdeoqGhgcLCQhRF4Tt930EX6VjDt2cP8dqCO4m0VU3MmfkzXPRdBOBpz9PcE7iHWlNtyq8h3nPdbje33HILQ0ND2or41q1bKSgoWHHbZMjU4VHto06no6amhoqKCi1lt7CwkC1btuBwLD+7OF6UVJQEvHLIdhdsiPiQicoCcuE/wsb2ISPiMYDP58Pr9XL27Flt3F7YKDE7KGNzWrCSR+Othdx4Vz1ma+qyY9lz1+mQnIXgLITSbfj69Ui3/S/yjUZGhh7jubYuHF4vP25/nteX7sLFBZibBIOO8SkbBaYOgo58/AE3nmAZiuSk99JoyoJysR269PwA3/+/JwiHwkg6Cc84WIxzBEJLfchsRSjXek7vhhSUKskIyo16oS4+xkYn0y6vq73tSilder2ehoYGqqqq6Ozs5MSJE1RUVNDU1ITFYhEprwKNO++8c1mbcOjQoZjfP/axj/Gxj30s6+ex0tiQXDblycVK/3LXfygU0tKs1JvXGxGP2pDxhRnDarOOaKL3e3zuOF2BLu33vmAfj44/SqO5kTuddyY8t0fGH9GGjOvQ8e3xb2tRymy8RnUcUklJCT09PZw+fTqmvjJbJQHpbh8diTAYDDQ1NVFdXU1nZyfHjx+nvLyc5ubmhHVP6yGlS5B7VqsLtiRJyy66baYIZTZ8yKvtE3RfGEHRBSndYsEX8GppqwaDAbPZTElJCbW1tTidTpQw9LWOMzM+j9VuonprYVpiMhW0OY2ShF/2c2jqMWYLC5krLOanNXO4B1ooLyun+UAz5tA8jv5ufI9+F5NxDKdzgAL9CQx6KCjYiXKuCxxl4K4FRwmSOfGs+Xj28fyRPsKhMBZ7pKlawBei68wkf/zJu+np7ebEiROazRMpr+uAlVK6NvLKz2I2coQyF6gzG1c7pctkinRWrK2tpa2tTevmlY0IpVhtF2ST9dCUB1bfRi5Oq00kHs1mc1LicbljAPxo6kcA2hzfECH+c/I/0Ut6dlt3U2BY2onv7PxZLToJECbM056n+dPAn+JUMm/lf+G5fn7+jZfwTPmo3V7M739kP5Wvjq2vXMuU10Tbm81mtm/fTm1tLe3t7Rw5ciRhd8TFKV1iTu8rg9Xqgg3L+5C58B/V46y3pjyKomhzHmdnZzl/5Cov/GiQcEhBkqCoxsbb/79dmnhsb2/HaDRSXR3VSV8PDbvSq3NN9BpS4cnJJ5kITwAgI9OtdGO50UK4P8zRo0dpaGigbssN3PwHOv7nkbPodBKKrFBcY2P/nftBHoW5Yeh+BkIzkffPaAV7CTiqwF4K7kqkhbEmSxoq6iWi33FFAUknxfUhF2eSpIMQlBmSTI1QLlK61psxSJfVOkai/YbDYbxeL06nU5sDlWlqVa6imzabjT179jA1NUVrayter5fR0VEKCgrSuqiXMwZCZArSwWw2I8syoVAobiqMTqcjFArF2TK7rKb9CgaD2uioS5cu4fF4mJ+fXyIeXS5XwllzqfLOvHeyy7pL+/3i/EXOzJ8BBb4/+X0+UPyBJds49A72WfcR4vr7bZEsGKXI3yWTDI6+K+M89sBzBP1hdAYdrSev8R+fPsoH//X1Wn3llStXmJ6eZnJyctnmYqkcNxVWcnbsdjt79uxhenqatrY2rTtiTU2NJiLXg8MkWB9kows2LF8WkKsFt1yl1iY6xmLxqJYABINB7HY7Noudl/97FBQdDnekwc7UQICBs34a35G36ue93Lknep4kSfxoIrLwp5YmyMj8zPMzvrDnC0xMTHDlyhWuXr3K3je3ULWlkNNHrmBx6Hnb+16F1W4Clk4KUObnYGYw0hRo6gR0e1CMBpSJaaQhL0qtLVKfac1j3131nPlND/Oe4EKwAPa/sRG9IXI+qg85PT3N2bNnmZ+fp7e3l+rq6qz5kBt+bEguMZvNy6Z0iZTX9YVqqKIHfOt0OiRJorm5merq6rTfy2hDkg7ppnTl5eWxf/9+fvvb3zI8PMzo6ChbtmyhtLQ05S5hwlkSZBO10YTP50tYW7GRHCZ1znD0TRWPEBElFRUVMQtUq8FBx0EOOg4CMC/P886pdwIRh+Xx6cd5V/67lkQpm8xN/FPVP8Xd38z8jPb/sBJeMl83mnjv45UXrxEMyFgckdSqUCDMta5JJoY8FFe5cLvd7N+/n6NHjzI0FGmrH6++cjkWp6ymSrL2ze12c9NNNzE+Pk5rayu9vb00NTVRWVkpbKRAIxtdsCVJWjYokcsMjlx2215OPKrdVuvq6nA4HOj1embG5wmHWjGa9Ug6Cb1OIiiFmR6fT3i8iSEPJ/+nG99cgPLGfPJLbAQDYfLL7JTVLd8JOxOi/cAPl32YHn9PzOM7bTsBKCgo4MCBAwwMDHDp0iXsdjt731KCyWRaEJPxkax2sDZBaVPM/XJ/P5L/NMgKDJyCgIcGm5X3/pmP0y8MMet103Drjbz2XUtTtN1uNzU1NVpvhd7e3g3rQ2ZdUK7U4TCbLFdQDZunKQ+sz6YWiZBlGa/XqwnHsbEx/H4/k5OTSwZ8W61WbW5Qf38/drs9bse1lchUUGaS0iVJEjqdjj179jA7O8vly5e1jrCpdDAULfEF2UQVWn6/P6aBlMp6TnlVxaNqQ2ZnZ/H5fNqcYafTSXl5OU6nE51Ox5EjR6iurl52iPRq8MT0E8zKs9fPWwkmjFImQn1vfjv7W/5t9N/4Zs0346bNqiy2cQaTDlBAASSQ5UhamsGkj9nGYDDQ3NyM1+tdUl+ZzDlmmvKayqxNtcP24OAg7e3t9PT0EA6HRVOeTcB66YINK0coN/LYkGjxGAgE6Orq4tKlSzHisbCwMEY8xsOeZ8aZb2FqxItOLyGHIt8ZpbXumNegMjUyx6OfOsr0qBcUCAU7cRfbKK52YrYauflNDWzZl3h+qByW0emX2ppUr/MDzgMccB5I+LgkSVRVVVFWVkZnZyc9PT3Y7Xb8fn/SpRAqik6HLr8CqXpvzP0tzbDlLV7wDMHcKAwcR9GbQNKDzgCmPHBXAJGMyxtuuIGBgQEuX75Md3c3W7du3VA+ZNYF5UodDrPJSnPWNksN5Xru8qooCl6vd4nzJ0kSDocDlyuyQh4KhbjhhhviOgTFxcUUFhbS29tLW1sbNpuN2tralIRlNgRlpilder2e6upqysvLtQ6GRUVFNDc3J9XBcK1XlwSbC7W5yXp3mAKBwJLI42LxWFlZidPpjCsYw+Hwap6+RrzXcMp7asl9J70nU963LMl8fezrTIQnlhWk8ezU3tfUcfTHV5idjCyuSsANd9aSV2xbsm30/MrWK208/dQRmlrqaWpqXDYCudopr/GQJImKigrKysro6+vjypUrnDt3jm3btmVtfIQg96yXLtiwfGPHjVRDGS0eo/2wUCiEzWZDURQcDofWTTmVbvJ6vY53fuwWHnvgBHNTfnQ6iRvurGHf6+viPv/lZ/qYHvViz7MQCoQJjIeYGZ9n+4FKZsa8nHu2j/qdRRjNsfZmtH+G7372OINdU9jdZu7+633ccEeN9vqSfR8gNT/QYDDQ0tKC3+9namqKI0eO0NjYSF1dXdI2a9lmaRYbWBqgqCF2G1kG7zhMdiFP9qHzzCHNFFHl0lF+43Z6RmZS7oK91j5k1gXlSh0Os8l6aDrxSkp5VRQFn8+nGSz1p2qsXC4XFRUVuFwubDabdt69vb14PJ5lX4dOp6O+vh6Px8P09DTHjh2jvr6e+vr6pIzfWqW8xts+uoNhR0cHx48fp6qqisbGxoQrX4mMwXr52ws2Hnq9HoPBsK5SuhaLx5mZGfx+P1arFafTicvlWlY8LsdaLLp9rvxzjIfGY+7LNyxdUfZM+ZgZmwcJ8krs2JyxaVUvWV5iJDQCsCRtdiUbkF9q56/++XU88/2LzE7MU7u9mDv/YPuyI5kmBubpOOxjasxE3/OttO7pZd9t2+POr4Ts2Md0nR2dTkd1dTVXrlwhPz+fkydPagt1yURXBeuL9dIFG5bvw7FeayhV8RgtHKPFo8vloqioiPr6ek08qteM2+1e+QBxqN1exIe/+gZGeqexOEyU1rri2heAgC+EJIEkgbKQLQGRyKPFYSLgCxH0h2MEpWfaz1f/5mk8kz4URcEz5ec/P3ucgjI71S2RmY2eKT9Tg35sThPu4uxf93q9nrKyMgoLC7X6ypaWFkpKSla0fenYR0mnA0cxOIqRp/XoDPNIeZGmRnq/j8YKA9WleXR293Di6GEqqqpoat6KeR13wd7QNZQmk2nNayij56ytpvOfa2dp8YqXarzC4TAOhwOn00lZWRnNzc3Y7fZlP8ipnLtOp6OkpISSkhIuXbrEwMAAW7duXfGiXsuU10Tbm81mduzYoXXzOnLkCPX19dTV1S2JBoimPILVYC1X4AOBADMzM4TDYTo7O/H5fFkTj9Es7vKaSyw6C5WmymWfMz3mpfXkIHPTfkDCVWBh6y0V2N2RxaWgHORp+9NISCgohJVwwihlou+ZkmoXf/DRxOld0dvOTvo48l+XmRmfx1lgJTguM9mq47K7LeH8ylymvMZD/Zw2NTVRV1enjRppamqK6QAqEKSCyWRa13Mo1UX8xRkcoVBIS1tdLB4THSPT12JzmqjbWbzi8+p3FvP8k53MTfvRSRKyDFargVAgzNToPFVbCrDYr9t7/3yQF3/RyczEvHauav5+64uDVLcUMtEb4FfHL+D3hrHYjOz9X7VsP7DU7ibyA8MhmbPP9kXqyiud7Lq9Bp0u/oJbYWEhBw8e5OrVq1y8eJHe3l62bdsWt2wketts2kfJbAGzBTOw/YZiaho9kS7YR4+m5EOKpjwpYLVaVxSUuYoerqagzFXK69jYWEz6arTRKi4uprGxEYfDkfF4DLXdu/qa1IHX0a8zLy9PK5q+ePEifX19bNu2LWHYfy1TXtXXkuh9cTgc3HjjjUxOTnLlyhX6+/u1RhPqNuthdUmwuZAkaVlBmc0Ft8WNHtTh1mq6ld1up6GhAYfDkfU6x1x8YWZyjMGuKeY9QYqrXaDA6NVZhvumtZb6x/zHmNZPa8+XkXl86nHe5XwXDp1Dq3/M9HtAtXGTQx6mx+YprXOj00lY7EZGr86ytWE3Af00p0+fpqioiJaWFi0CuBYpr4u3h8hn1mKxaAt1uUp3FmxOlpvVq9rH1Q4WqNd1tsRjInK14Na8r4w3vW83z3z/MkFfiOqtBeSX2gn4w1RuyefWtzbG1EiOD3jwTPpQZSQokREbEhjNBmYn5+l/aR6300JBuYPZCR+nftVNQYWNgnI7iqJgMpm093Hx30qWFR578Djnj15Po9538hrv/P9ujXlu9LahoMx4Z5hAbwH9/mkG+47RtK2G5ubmuA3fVts+OhwO9u7dy+TkJK2trfT19dHU1ERVVdW68iE3tKBcqSlPLrtnreYfM9uCMjrtTI0+QqQ43u12L+nylS6qMZZlGVmWYwy3+r5JkkQ4HNYEWfSFqRZNl5aWaqmj1dXVNDU1LXFK11JQRjs7y5Gfn8+tt97K8PAwbW1tWjev4uLidWEMBJuP5Wxkugtu8Wp1AoEANpsNp9NJXl4e1dXVOJ1ODAYDL7zwAsXFxUk3F0iX9VpnHvSFMZj0EfsigcGoIxSQNbtRSCFb/Fti0tHsOjs6Sac5teFweIl9TBV1W6NFj8Gkw+8NYnWY8HmDGE06LDYT1VWR+sro+ZUNDQ1rmvKqbg+x9t1ut6+6sy/Y3CxnH1czWLBYPE5OTjIwMJA18biYXPfhuPmNDex7fT3hkIzRpNfSXK0O45KGO+GwjCPfTGVzAQPtEyhyZF6jzWXihtdUMz3mJeiTcdSY0enAVWhmuGcWz6SPokoniqIQCoUSvsaOl4Y4f6wPg1GP0Rw5lzO/7eGWNzdRt+N6xFX9OyuKwvNPtnPxuasYTHqCgRB5M06mi+c4Mhipr6ytrY2xZ7lacMvPz+eWW26J8SFbWlri+pDRQZtcseEFZTgcXnbO2mqvYOYi3SqTD2ooFIpx/GZmZvD5fFraWV5eHhUVFZw7d46bbrop7eiB+oUfHYFUsdvt9PX10dnZSUNDA2azWeuMCtc/+IFAgEAgoDUTUTEajWzbto3q6mouX77M0aNH2bJlS0y9T6bvfyYOUypiVpIkysrKKCkpob+/n/Pnz2t/B1FDKcg2y5UFrBShjNdifrF4LCgooLa2FofDkbCpy2ov7K1lymsyuEtsjA96mJ3wIisQDIawugzaDNA99j3QDo6gQ2vglcg+qs5vOg6Muk1pjYumvWW0vjjI5IgXnU5ix8FKCisiKV0WiyVmfuWRI0cyHsOSqcOlCmphDwXZZLnRc9mK/CwWjzMzM3g8Hk08yrKM1WqlsbERu92esXiMx1pcNzqdhG6h07TJYsBkif/9YHdbMFuM3Pi6WpyFFkb7Zygot/O2D+7F5jYSDAax2E0M9I1QUVtE2KfDajeRX+zEbDZr9jEcDjM3N6eJwi5/F+OhcQyTxchhBYMt8jccftUFGDMzO/mqmPNQbdTctJ/u86O4iqw48izIYZmhnmkKrA1s2WHSssy2bt1KcXExkiRxLHiMOqku7fcqlZTZaB/y6tWrXLhwAbvdTjAYXPOgxIYWlCvNWdPpdASDwVU9h1w5M8nsPxQK4fF4YgSk1+vFbDbjcrlwOp3anLbo9ytV0a06h2r0cfG5Raew6nQ6ysrKcLvdtLa28uKLL9Lc3ExZWRkzMzNMT09rUVKPx4PJZKK8vDyuA+FwOLjpppsYGRnhypUr9PX1sX37dvLy8jRjsBY1lMlGKKPR6XTU1tZSUVFBd3c33d3dmEwmvF6vaDQhyAqSJC3buCxa6MUTj/Hmk60kHhMdZzM0LkvlNUQvrBXX2PHP5zF2dQZJkqjfVURprRu9PmInzWYzt912G52dnZw6dYra2lrq6uqYn5+PsZFq9+yamhrC4TB6vT6l163aSJ1ex6vubqGiMZ+5KT/OfAt1O4uX1BSp8yuHh4c5d+4c3d3d2ucgVbLhlK+1syTYfKzUlAdSu+7jiUe198Ti8iFVPLa3twPgcrkyf0ErnNtqkar9jbaPzkITNTsLGGifZNutZRy8u4m6HUWYLJE0/5LKfF73rn0c/elFeq8MY3VYuPVNLbhKzIyMjGj+4/T0NOFwmIKCAgKhAJ/o+wQjoRG+3vAfGM16fHNBwuVzXPnfz6D3G3GXvT/mnK5HKBctgEX5+EVFRVp95fnz53G5XATqA3w1+FVu0t/Eq3l1Wu+fLMspB3N0Oh01NTWaDzk5OUlbWxvbt2/HbrendR6ZsqEFpdoxM9EKUy4cmXSMTqrEex3hcBiPxxNjtObm5jCZTJp4LCsry8qQ7+iLf3GkQRWNkiRpDk6iWThlZZHZQ5cvX+bSpUvo9Xrcbjcul4vGxkZcLpe24hSdBhstFCVJorS0lKKiIrq7uzl58iSlpaVUV1dn9BpzkfIaD6PRyJYtWwC4du0ax44do7q6msbGRq1uSiBIl3hz1qK7Nfv9fl5++WVmZ2eXHW6dCblKt1qrCOVK9tFoMtCwu4T6nSXodDr0Bt0SWxEIBCgoKCAcDtPf3093dzeSJOF0OnG73VRVVeF2u2NqGtW5jMlG7qJtnN6go3lv4llw0edfVlZGT08PZrM5bn1lMmQqKFUBHc16jUgLNg4r1ZgDCbMrosVj9CL+cuIxHrkqzVoP9nFx9ppqjyoa8imvywMi9nKxrWi5uQxLHgz2jjLjnWRG38PRo73Y7Xbcbrf2PjudTiRJ4tdTv2YgOICExFO2/+Z3//rNPPFvp7l4+wuggGwJ8oz5V/wJf6IdQ7WPdreZ6q2FtJ68hs8bxO8Nkldip6IhUrKhCrny8nI6Ojr4P33/B0xwilP0+HuoM9el9R6lax/V+cKdnZ0YjUaee+45qquraWhowGg0iqY8yZLMnLVc1lCuFupFODAwECMeDQaD1i2xuLhYE2SZkKx4VKOQ8cSjz+eLiTzOzMwgy7J2rqWlpUxPT3Pt2jXsdjt1dXUxqzPRRepqpHKx06TX67XGNq2trZw6dUo7/1QvTPVYmQrKTC5cvV5PQUEB9fX1tLa2ah1h6+vr096nYO04cuQIDz/8MKdPn2ZwcJDHH3+cu+++e9ltDh8+zEc+8hEuXrxIdXU1n/rUp7j33nszOg+z2czg4CCdnZ0AMY0eLBaLtuqarVqdeOSqOVouHKaVnKPoBTD1vVxsj4LBIJOTk5qNnJ6eJhAIaKOXmpqa8Pv99Pf3YzQaqampiSveojNEFi+8xSPTtNPS0lK2bdum1VfW1tZqC18rkY0aI7G4Jsg2ZrMZr9cb9zH1elKvsZXEY0lJSVppq7ns9bGaRPuM8Uqf1HOI9h3jBSDC4TBTU1Mx2RlerxeLxYK70k21qxGdTsfVq1cBKC8vj8maCCthHp14VOua/V8T/8UfvuYP+ZN9N/He4X8FFBTgu2Pf5fcLfh+73q6df+R8JG77nS3YnGaGe6dwuC3sur1myagSo9HIfM08fT2RZj86RceXu7/Mw1seTtkHzUYGB8DWrVtpbGykra2No0eP0tzcTFNTU9r7TZUNLSgNBgN6vX7ZphMbZTCtiizLeL3emFmPHo8HRVEYGRnB6XRSV1eH0+nEYrFk/CWtFjQDzM/PayI9WedIHQ0QffGrkQ63201paalWFxS9beX/z957x7dZXv3/H1mWZVu2vPee8kyc5cQZBEpKKPAQWn6FsJIwUmYZeQqFllFKSwhJaWgSNhmUtkB4CrTQsglZznYS7xXveG/JU9L1+yPf6+aWLNmSrGE75/166QWRb93D1n3uc851zudERSEuLg5lZWU4fPgwUlJSEBERYbASyX+vOp1OcCiMy7y8vLyQk5ODhoYGFBcX4+DBg0hPT0dIyMTy1hz+t7P1hrZHORY3KL6+vpg/fz46OztRWVmJ6OhoobSbmD5oNBrMnj0bd9xxB372s59NuH1NTQ2uvvpq3HPPPfjb3/6Gb775BnfddRciIiKwcuVKq4//1ltv4f3338fZs2dRUFCAZ599Fj/+8Y8NgseBgQGcPn0a0dHRtlyixUzXkldjp2h4eFiwlcJKn6gqYzznSBw8Dg4OwsvLC0qlEv7+/oiLixMEjMTExcWhqqoK+fn5iIuLM5jJK7aP3Ia7ubmNWwY7WUEfrrBq3F9p3M9u7nc5WVEe6jEn7I1cLkd3d7fBe+LgkTGG4uJiDAwM2CV4NIWz7KO9j2Hc+qTX6wX7yI85kX3U6/Xo7+8f0/rk7u4uVK/xlinjSrvo6Gg0NDTg9OnTCA4ORmpqKjw9PfFt37doGm0SttMyLd5tfxdqvRp6/BAPaPQafNj1IdaGrBWug9sTubcMi66eOBB7s+1NuMENeuihl+iRr83HP/P/ieWpy632QSfrywMQfMh58+ahs7PT4O/hDKZ1QAlM3FTtjKy1rTcrY8xgTAfPevFSJ19fX8TExMDd3R1FRUWYM2eOzec4UWY9MDAQZ86cQUpKCsLCwkyuPup0OoPMel9fn+AccXXYhIQE+Pr6WmRkFQoF5s6di7a2NpSXlwszJ8XzfrgREme/TGXj/fz84O7ujri4OJw5cwYBAQFIS0uzqJbcGlEdU9hDodV4H0FBQQgICHDIihHheH7yk5/gJz/5icXbv/baa0hISMCf/vQnAEB6ejoOHjyIP//5zzYFlH5+frj++uvR29uLG2+8Eb/4xS/GbOOMzLgzjzMZWz9RZj04OBhVVVUYGRlBfHw8pFKpSedIXJXR29sLjUYDmUwGpVIJPz8/REREQKlUWtSGwMXIoqKiUFZWhubmZkHRz1TiTbxaaaoMdrIBpbG95f2VXMbe1PxK8e9msgHleCWDxPRiKlVwDA4O4siRIwgODjZYeeTiWIGBgUhNTZ30yDRzTJeWALFqv/G+AgMDUVpaCsYYUlJSIJfLTVavDQwMjKlek0gkUCqVUCqVSEhIgFKptGixhOtQhIWFobKyEocPH0ZiYiK+kX5jeFwwfKP+Bv5u/mP2UTZYZnB+1tiSLm0XzgycMXxTAtSH1OPs2bPw9/eHSqUyO+pOjD3HKnECAwOdXuY8rQNKiUQyoeyzMxwZSwJXcd+SOIBkjAmlTpGRkVAqlfD29jb4YnPlKkuxpexg7ty5aGlpQXl5Odra2pCamgqdTmdSNIdnjqKioqBUKic9lDwsLAxBQUGoqanBsWPHEB0dLdR/822My2CNVyu5MYiLi0NERAQqKytx6NAhQfZ+vLKsyQaUk80uAaYNCvUIXTzk5+djxYoVBu+tXLkSDz/8sE37+/nPfw4A+Pe//21WdGs6VnDY6xjjOUfGJf0SiQQpKSkIDQ1FSUkJ2tvbkZaWBrlcPkY0x83NTXCOEhMT4efnJ6ha24pSqcSCBQvQ1NSEkpIS+Pn5jelhFCfeeEUHt49iG2krpkpOeX9lSEgI6urqxu2vtEcGnkR5Zg6uruA4ePAgfve73+Hw4cMYGRmBu7s7HnnkEWHlkQePBw8eRHBwsEMFc5w5L91SrG19ioiIQEBAAMrKynD06FGkpKQgKChoTIJNp9MJfeFRUVFIT0+HQqGYlG3gVRNdXV0oKyvDjyQ/wlUJV8FX+cPCRJh7GEJloRjUDQq2xM3NDd7SH+yUtTYq0D0Q7yS9g35dP2pra+EmdUNsTCwyvDIgiZdMOOpOjCMCSlcwrQNKYOKmalc4TIwxg1ltYqUvHjyGh4cjJSUFCoXCoi+BOYNjreKqOdGcgYEBMMYQGhqKtrY2HD58GG5ubvD39zcQzTEe6WEveGNxREQEysvLcfjwYaSmpiI8PHzcbDwPLMXGwMPDA5mZmYiOjkZpaSmampqgUqkMSmrFTPZmtNcKpSmDQ9n3i4OWlhaEhYUZvBcWFmZQBWALE9nHyfYPW4KrS14n2xcOXFASHx4eRlBQENra2nDy5EkAEEb+iEVzHPG7lEguzOQNDQ0VymDj4+OF1VK+zXj95/ZcoRQjlUqRmJhoML/SuL+SSl4JMa6u4AgJCcHPf/5zZGdno6ysDK+//rrJ7ZzV3+jKFUp79YVrNBr4+flheHgYJSUlAC60JAUEBBiI5jgq6AkMDMSiRYtQX1+PcyXn4B7ijtTUVANdEV93X8Pr1AN66G3+GyR7XiiLlTEZ5FI5UhQpF37gAWRkZCAmJkZoDUhJSUF0dLTJ67dXyaupfTjTRlJAaSe6u7vR3t4uBJHiAbXGWS9rEX/ZLcmsG9eui5lINIdnvxljOHfuHEZHRxEaGmowdNuR+Pj4YO7cucLg1sbGRovKYE1l0P38/LBw4UI0NzejvLwcDQ0NSE9PH5NttEfJqyNWKAlisnh6ek44Z83RAaWzWg/EdtHS4JGfn5jR0VGDlUdj0Zy4uDjI5XI0NDRArVbD398fYWFhTnlwe3h4ICMjw2QZrPg6jfvP+d9gsj2U4yGXy5GVlYXY2FiUlpYK/ZWRkZGT7jMn+3hxY+8KDpVKBZVKhR07dqCwsNDsds4SdnRW0DpR8GhsI8frCzcpmvP/dDMSExPR3t6O5uZmeHl5ISoqyin3r5ubG+Lj4xEeHo6KigocOnQISUlJiImJEY5vruJtMjbKnG3lmhjt7e3CqLu0tDQEBwcbbGevhJurE2zTOqDkJa8TZeDtycjIyJgZQ6Ojo2hsbIS/v79d5fb5zc9HaAwODhpkoy3JrFsimpOammpypTQ8PBw1NTU4ceIEoqOjLVb0myy8lCo4OBjnzp0TymDFx+cGQKPRoLe3F52dnQaBt3hVMzIyEqGhoaiursaRI0cQFRWFlJQUoY/JHiWv9u6h5OfjagNBOIfw8HC0trYavNfa2gqlUjkpUaaJWgIAxzvrjnKYxM6RRCLB0NCQ1aJiE4nmBAQEmBXNCQkJQUtLixDYpaWlOU1Ai/cwNjU1obi4GH5+fiaPL04ecmwJLK1JmimVSoP+yrq6OgCTy5RTQHlx44oKDmB6K1Qbtz6NjIyMERWbSHF1MqI5ISEhiIqKQklJCVpaWpCeno6AgAC7X6cpPD09MWvWLKEM9vz580hLSzM4vkQiwejoqGD/ufilLfZxvM9IJBKEhoYiODgYdXV1OH36NAIDA6FSqQSNj8kuSkwV+zitA0rA9Jw1zmQdGa1WayCW09fXh6GhIXh5eQmlTjExMSgpKZn0zTJe5ojPliwoKIBKpRKyG6acI3HgOFnRHDc3NyQlJSE8PBwlJSXIz8+HSqVCaGiozddpDe7u7kKGu7S0FAcPHkR4eDjc3NyEa+QN3X5+foiJiYFWqx3TX8n3pVKpEB0djbKyMhw4cADJycmIiYkRbubJrFA6IqAkLh7y8vLwn//8x+C9r776Cnl5eZPa72TmrNkLezhME2XWQ0JCUFpaiqSkJCEb7mjRHIlEgoiICAQHB6OiogL5+flITExEbGysU+5l4zLYQ4cOISwsDF5eXoITqNVqhXFNmZmZcHd3tymbba2TJe6vrKmpQX9/P4qKipCenm7V/EoOlbwSjsCSgHK62Ef+X2P7CECwUXq9XkjMO1o0B/ihSqy+vh6nTp1CREQEUlJSJqW7YQ3iMthTp04hICAAfn5+0Gg0gn/s7e0NPz8/JCYmIiAgQGgVsMYntMR/c3NzQ0JCgtAacOjQIcTGxiIpKckhFRyu0OCY9gGlp6enXUpetVot1Gq1QQDJl/G54mpkZCR8fX3H3Ay8h89SLBn0aiy3nJubi4aGBhQVFSEiIgJJSUljSlcdIZoDXFBjnT9/Ps6fP4/i4mKhzMpR/ZTAD8F8b28vent7MTAwIKwEy2QyxMTEmGzoFpe6mTIKCoUC8+bNQ3t7O0pLS9HQ0ICEhASXZ4cooJxZqNVqVFVVCf+uqakRMpOxsbF44okn0NTUhHfeeQcAcM8992D79u147LHHcMcdd+Dbb7/FBx98gM8++2xS5zHeCqW45NWR2CKYw/9rqahYRkYGQkNDUVpaio6ODqSnp4Mx5hTRHJlMhszMTERGRhpk4x3ZJmC8ctDb2wvGGFpbW+Hm5obw8HDk5OSMSR6Ky2BNJd7MYavDI5VKERsbi6qqKshkMqvnV4qvl+zjxYujKjjG8x8B55Sj2rIKaq2oWExMDAIDA1FcXIxjx44hMzMTXl5eY6rXHCGaw8tQQ0NDhTFxKpXKoW0C4uCYvxhj6OrqQldXF4KCgqBSqeDv72/gH/PnjSVjmIyPZ+m1cI0P3hpw4MABADOjgmPaB5S29FDqdDqo1WqDslWNRiOsBPr6+iI8PBy+vr4WZ6onEs2ZzKBXfnO4u7sjNDQUzc3NaGxshFQqFYJHR4vmSCQSREVFGWTjk5OTER0dbZf+QV66yl8ajQaenp4Gs9qUSqXQ21lTUwOtVjtGwVXcX8mNgqnAMiQkBEFBQaitrUVJSYlQUmzLw8kePWhTJcNE2IcTJ07gsssuE/69YcMGAMDatWuxe/duNDc3o76+Xvh5QkICPvvsMzzyyCN4+eWXER0djbfeessmwQkxXInUFPyecLXDNJFzNNEsM+BCaader0doaChaW1tx6NAhSCQSwTlytGgOAAQEBCAvL8/ubQLcNnHbKA6O/fz8hNYFPz8/yGQyNDY2CiNOVCqVgU0z1X9uSTZ+MjaOHycrKwvx8fFCfyUXqbBkv1PFYSJcgysqOICp0UNpD1Gx0dFRDA0NITg4GC0tLThx4gQACK1PoaGhSE5Odqhojre3N+bMmSNMEzh//jzS09Pt0iYwMjJi4D9yXRCePIyPj4efnx88PT2FMtiqqiqTZbDG/aZiH9IctthHX19fLFiwAG1tbTh9+jRKSkqQlZWFoKAgq69/vAoOEuWxgoky8DyTK1Zb1Wg0cHd3F4LHkJAQKJVKAzUoaxB/AQHziquWOEeWiOakpaVhcHAQtbW18PLyQnx8vNNKCORyObKzs9HR0SH0DqWnpxuI5owHvz7x6iMvq+DBcXJysrByYApeBsuzXampqQbZLlNGwVQ23s3NDYmJiVAqlTh58iQOHjyIxMREA+VES6AVSsKYSy+9dNwgavfu3SY/U1BQYNfz8PLycnkGXpxws9Q5MicqBkwsmpOQkADgwqqwm5sbYmNjbSqztAV7tAmMjo6OcY546Sov7Tc1XooTExNjMJstISEBcXFx46rBivtMTe1zMj0+4h514/5KLlIxkRNFCbeZxVSp4PDy8sLIyIjZgMDZPZT2UFzV6XSCz2tKNCcyMlIQFRseHkZ4eLhNQYyt1zrZNgF+fWIbOTQ0BIVCAaVSidDQUKSkpJgVwQwKCkJeXh7q6upQUFAgbC/2N8WJN65hMl7izVb7KJFcGJvn4eGB4OBgnDp1yuzopfGYKv7jjAgouYqhXq/HwMCAEDj29PRAq9WioKBA6COJj4+Hr6+vxTXg4yEOGoeHh4WGZ8B02YG9RXN4iVV+fj7S09MNlP4cTXBwMPLy8gTRnNjYWCQmJo4JxLRarYHj19vbi9HRUYPZm7aUVfj4+GDevHlCtourwYqHyHKjO1E2XiaTQSaTYc6cOSgtLRX2FRoa6rTsOa/bF+Ps7BIx8xivxxxwbAZe7ByNjo4aqM2ayqzz8xEjdh7GE81RKpVjbE9ERASqqqpw5MgRJCUlITY21mn3k6VtAuLSVf4S970HBwfbJLfPy6q4GiwXpRCrC1qaeAMmJzxm3LMp7q+sq6uzyIkyZR/5vojpx1Sq4DC3IAE4zz7qdLox9tHYRpryIc2J5vC+cKVSabYvPDw8HI2NjThz5gzCw8ORmprqFNFFwPI2AS68KPYf+fVNprWL9zNyNdjDhw8jKSnJYKyHqcSbudXKyfZAMsYQHR2N5ORks6OXxsOcfXQ2Dvv27NixA5s3b0ZLSwtmz56Nbdu2ITc312771+v1qKioQFdXF7788ku4u7sjOTlZKHPy9fUVHIply5bZLXg0lVkPCAhAdXU1pFIpwsLCzJYd2Fs0x8vLC3PnzkVTUxOKiooQEhIClUrltNVKqVSKlJQUIRvf0tKC+Ph4ADAQveCZMXHp6mQVcAHDbNe5c+dw9OhRxMTEWF0Gyx0pXrLW2NiIoqIiKJVKpKenGwSppqCxIcRURZxwM4W9MvDjZdb9/PxQVlYGDw8PxMXFCfbJ0aI57u7uSEtLQ1hYGIqLi9Ha2orMzExBWc/R8DaBkJAQYbZuXFyc0LvU29uL/v5+oVrG2uuzBH9/fyxcuBCNjY0oLCxEYGAgUlNTrS6DnWzJq6nPWjK/ksMYs8szg5gaTJUKjonso70qOMZrffL29sbw8DDKy8uFuYnjtT6ZE83x8/OzSjSH91YGBwcbLEwYj7RwJMZtAny1VK1Wjyld9fPzMyhdtUcyycvLC7Nnz0ZHR4dQhpuWlgZ/f39hG7GfKB7DJA4sJ9v2xPdpbvRSVFTUuPufKqJlDgko33//fWzYsAGvvfYaFi5ciK1bt2LlypUoLy+3m0Lo448/jm3btsHHxwfZ2dmIi4vDggULDMqAhoaGDMoqLMXasoPU1FQEBASgtLQU3d3dUKlUAGBwUzhKNEciuaD0FxwcjNLSUhw+fBjp6ekOV2IVl+b29vZCIpFgeHhYcBzDw8MnLF21FzKZDCqVyuIyWOMyL7HDw41seHg4qqqqcPjwYcTExCA5Odns32my2SlgrEEwpdRGENbi6elp9wy8taJiERER8PX1RVFREbq7u5GVlQVvb2+DzLMjRXO402K8WunoBA6vPuFVGQBw7tw5SKVShISEIDY2Fn5+fvDy8nLog5/bNHEZbGJiIuLi4sbNxoud2sk4TBPZR1NOlHF/pV6vd1qilLh4mEiUx1b7yP9r6jluXL0ml8uxePFilJSU4MSJE8jIyEBwcLDQGuRo0RzxwkRhYSFCQ0ORmprq8PtNvMDC29DOnz+P5uZm+Pv7Izw8fNzSVXsSHByMwMBA1NXV4eTJk8KxxYm98cpgJ7uoYGxfzbUGBAYGmvz8VFmQcEhA+dJLL2H9+vW4/fbbAQCvvfYaPvvsM+zcuROPP/64XY7x5JNP4vnnn8ddd92F0NBQ/PjHPx6zjSUPQ3sMemWMwcfHBwkJCaivr8f3338P4IJTxTMrjhbN8fT0RE5ODpqbm4VsvEqlslumW9y3JC7N9fHxEUQv+MpjRUUFmpub4ePjY7fjWwIfItvc3Izy8nI0NTUhLS3NYEXClONkqlxAJpMhPT0d0dHRghKXuUwR9VASU5XJik7YQ1QMuFCCmZiYiLq6Ohw+fFjYhrciOFo0RyqVCsqC4tXKiaoPLMVc6SqXpOelq97e3qitrUV9fT08PT0tLqu3B+Iy2NLSUiEbL+6fMlUGy//mky15nQjuRLW1tRkMAQ8KCqKWAMIh2GMOpbWKq6buBTc3N8TExKCxsREFBQWQSqXQ6XROE80RL0w4oo2Kl66K/Udx6SoPkJVKJdra2lBRUQGZTIbg4GCn+UXGZbCHDh0aIzxprgx2sosK5uaQ89aA2tpanDx5EiEhIUhNTR3TGqDX66dEBYfdA8qRkRGcPHkSTzzxhPCem5sbVqxYgfz8fLsdR6lUAhg/Ay/Oboodp8kqrg4ODhpkjvr7+wXRnJCQEGi1WrS2tgozd5z1h5ZIJIiMjERQUBBKS0uRn58vlHxZg16vF1ZX+c0vLl2dqDR39uzZglPARXucWWYWGRmJkJAQVFdX48iRIyb7O7VarTDQtrOz0yDLJHZSuBJXa2srysrK0NDQgPT0dIOSCHuVvE4Fg0DMLKyRxZ9IVMzYLppzjiYSzfH390dLSwt8fHyQmZnp0PFDxvj7+2PRokVCiXxCQgLi4+OtcgZ46Zk4wcZLV3n1SUREhKC6aoy4TaC1tRXp6elOE8UADMtgz549KwzZFv8dePlxb28venp6hPdtWam0xj5ykQruRPH+St6qQBD2xNPTE6Ojo2afv8YJN3sork4kmhMfH4/29nbo9XpkZmY6dPyQMZ6enpgzZw6am5sn1UY1PDxs4D/ysR2WlOaK2wTsOU3AUsRlsGVlZcLChNjnAwCNRoOenh709PRArVYL3wtrz5N/zpx9k0qlwnzliooKHDx4EPHx8QatXTO25LWjowM6nW5MEBMWFoaysjJ7Hw4eHh4ma+DFN/vw8LDZm99S0Rxx6apYNCc8PBwqlWqMaE5CQgKKiopw9OhRZGVlCQGwM5DL5Zg9ezZaWlpQWloqNDybWi00Ll3lzhEvPePCQNaq4IaGhiIwMFAoM4uPj0dCQoLTnAKZTIa0tDQhG3/w4EGEhIRAr9cLcy29vLzg7++PiIgIBAYGmp09JM4U1dTU4Pjx40ITu1wud0jJKz8uZeCJyTBeQMkdfa1WO8aGip2j8RRXedmSOMFmiWhOYmKi4DCkp6cjPDzcvhc+Drz3OzQ0FMXFxWhra0NmZqZZpWouSS8OIMWq27aUrvr6+gqzhc+cOSM4bs6q6HBzu6B+GxYWJmTjQ0JCIJPJhPJj8epBXFwcJBKJTUO/bbGPbm5uBv2VfAZhTEyM04RDiJkPT6JwlVAx3GfUarUYHR012/o0nqiYeCSaNaI5ycnJqK2txYkTJ5zuO/GkfGBgoEVtVOLSVX6d/Pc5kbCkOTw8PCY1TcAecOHJuro6nDhxAgEBAfDx8RGSAQCEBGJWVhYCAgJsto/AxMGfp6cnZs2ahbi4OJSWlqKpqUmYeGCPRQ17MO0ts1wuF1YIjTPrjDF4eHigpqYGKSkpkMlk4waPWq12jGKWraI5CoUCCxYsQG1tLY4fP25TJnwycMGawMBAg2GyQUFBY0qztFqtQemqvUrPuChGRESEQTZePPfHEYyMjAirj1wVjDGG8+fPw9PTE3FxcYJUs5iJZg9JpVIkJycLyon79+9HcnKyXRS2popBIGYWPOFmLrPu6emJhoYGKBQKeHt7j5tZ55UL4gSbraI5MpkMWVlZaG1tRWlpKdrb25GWlubUPjk/Pz9htfLYsWOIj49HbGysgQNoXLoaEhJik+qqKSQSCWJjYxEaGiqI9qSkpCAyMtKhtkCr1RqsPvLVg/b2dri5uSE6OhqzZs0as3pgqv/ckvOcTDk/76/s7+/H0NCQQX8l9ZgTk4UnyYeHh+Hp6Tmm9Ukul6OxsRFBQUEICAgQvvfA2ODRnqI5EokECQkJCA4ORmFhITo6OpCVleW0Si/ghzaqlpYWQXRRpVKNGWvEnwE8+cTHGtkj8WPpNAF7Yqp9gTGG3t5edHd3IywsDPPnz4evr++E9hGYOFAUC6FZgp+fHxYuXChMOKivr4ePj8+UqHCze0AZHBwMqVQqZBQ5ra2tDslC19XVoaKiAiMjIybLsRYsWICSkhIUFBQgOztbWCkUl3WKM0dyuVzIHE1WNIdnWYOCglBcXCwYBWfNRNPr9RgaGkJgYCBGR0dRVFQEABaXrtoLfgPU19ejoKBAaHi2h/NornfJeAXZx8cHWq0W1dXVqKiowPDwMBISEgyu27jpmpfBGGebvLy8MGfOHHR2dqK0tBRDQ0OTCpK5kz8VDAIxs+jp6UFjYyO6u7uFB6A4g5qVlYXKykoUFBQYrBQal3U6SjQnLCwM/v7+KC4uRn5+PjIzM51W/snbF7y9vYUSy3PnzsHd3R3+/v7CzLbJCqdNhKenp8PaBMROLg8e+XPO+BkgkUjQ2NiI6upqDA4OIjU11aAM1ri/kr9nSkZfjD36w/mz1N3dXeivTE1NderKNjHz4N/bsrIyzJ8/f4yoGFelLioqQlxcHBITE4XvsjNEc3x9fbFw4UJUVVXh6NGjSE5ORkxMjNOSz8PDw5BKpQgPD0dLSwv2798PiUQiBI/2Ek4bD/E0Ad7KZc82AeMKvb6+Pri5uQnXKG5faG9vR3l5OUpKSsaMOTHVf25J4s3agJIfKyIiAqGhoaipqUF1dTW8vLyEBTDANXN6JcwBR124cCFyc3Oxbds2ABd+YbGxsXjggQfsJsrDeeONN/DUU08hOzsbb775JkJCQkyWHVRUVKCxsRF+fn5CMCku6+ROkqP6eXQ6HSorK3H+/HmLZICthTtH4sw6dwD59SkUCrS1taGrqwsqlQoRERFOXxUbHBxEaWkp+vv7BZEMa85hopvf399/Qgewr68PZWVlGB4ehkqlQkhIyJhzMBajMOc06fV6HD9+HD09PQgJCUFaWprVCQO9Xo8vv/wSl112mZAx5ceXy+XUO0TYzLFjx3DLLbcAAHbt2oWcnByT36empiaUlZXB29sbMpnMoC+c20ZHiuYwxtDY2IjKykpERkY6pPecl66KbaS4dNXX1xf9/f1oaGgQnEdnJ3m0Wi2qqqrQ1NRkU6kb718VV2iIZff5a7zn3PDwMCorK9HW1mZ26Lh4JUdsH019N1paWlBTU4O8vDzLfxFG5OfnC4IZer0edXV16OzsxMKFC6kElrCZwcFBXHrppSgtLcW2bdtw/fXXm7zfuru7hYQ8V6geHh4WEtfcRjpKNAcAurq6UFxcDIVCgYyMDLv7qrxyQVy+Ojw8LPS++/n5QavVoqamBoGBgUhLS3O4gr8xjDE0NDSgqqrKpjYB8Vxj/hoaGhIq9LgPOd5zTqfToba2FrW1tYiIiEBycrLJajfgh2TaePZxaGgI+/btwxVXXGHzd4crqA8NDQn9lcAPM9adhUMCyvfffx9r167F66+/jtzcXGzduhUffPABysrKrBaIsYTu7m7cddddOHz4MN566y1ER0cL6l1i0Rxvb28hgufZBWcHVJ2dnSguLoavry8yMjJsviHFZQfcAGi1WsE5Gs8BbGtrQ2lpqTBn0ZmiGMCFm62lpQUVFRXw9fVFenq6wVw0jvjm5w4SN3D8xrfVyeUlsJWVlVAqlUIfrKnteDmqucCyuLgYbm5u0Ol0OH/+/JiG6YnQarX4+uuvcfnllws3PwWUhL3QarV47rnnsGXLFjz33HO47rrrhISaWDTH29sbWq0WAKBSqRAaGur0755Go0FxcTG0Wu2kes+NHQfevqBQKAyCK1OS9P39/SguLnaJKAant7cXJSUlYIyZbRNgjBmIp/HyM96iwV+2Ornd3d0oLS0FALOS9eLEm7ls/Pnz59HQ0ICFCxdafQ6cQ4cOCX2vHJ1OB7lcTpUdxKRgjGHv3r24++67cf311+Opp55Ce3s7fHx8xojmSCQXxqPFx8cjLi7O6cmM0dFRlJeXo729fVK952LbwZ8B4soF8UKL8TWOjIygrKxMWJgIDw93uh89NDSE8vJydHd3m20TMNYH6enpMRBP4/6jreW5AwMDKC8vR29vr9AKNd7ChHF1EGdwcBDff/89Vq5cafPvsaSkBFKpFGFhYSgtLcXw8LCwmu3MSQsOCSgBYPv27di8eTNaWlqQk5ODv/zlL5N6oEzEK6+8gldffRXl5eXQ6XTC8fiNwRuCR0dHUVJSgp6eHmRnZ5ud6+JIRkdHUVZWhs7OTqSnp08YZIvLOvnNz0VluNPAs2OWPlzFhiklJcXuK6aWnkNlZSVaWlqQkJCA0NBQk8qJ/MafzM0/3jlUVVXh/PnziIuLG1MGC0xsFAoLC+Hp6YmUlBT09vYKZbCWGtuRkRF8++23+PGPfywcmwJKwp58+eWX2LRpE/bv3w+tVou7774b69atM8iu85msNTU1qK2tRWpqqlPV9Th6vR61tbWoqamxqPdcXNYp7psW93by67Q0W8tXwc6dO4eYmBgkJSU5PXDR6/Wor6/HuXPnEB4ejri4uDHXCWDM6qM9Vw30ej0aGhpQXV2N4ODgMWWwHJ54M247AYDGxkY0NzdjwYIFNp/HgQMHDIau8+NRQEnYg4qKCjz99NP497//jaGhIeTl5WHTpk0GgRV3zFtbW1FSUiII87ni+8d7z4OCgizqPeeBlbg8F4DB9U1UuWCMqxcm+DnwyprU1FTodDqD6gw+2k7sQ9p77m97e7swfz0tLc1kAlK8MGGceNNoNDh06BCuuOIKm8+hqKgIcrkcKSkpYIyhubkZtbW1WLRokcnFGkfhsIDS2bzyyisYGRmBr68vtmzZgpCQEOzcuRORkZFjtmWMoampCRUVFUKTryucdq7CKpZmFpeuivs7pVKpgWPk5+dnl8xDR0cHSkpKhDIKZ335dDqdcI0dHR1C47NCoUBgYKDDbn5zTKYM9uzZs1AoFEhKShK247Mwvb29kZ6ePu5KCy95EGeo+LEmat4nCEv4/PPPcfz4caSkpGD37t0oLS3Fnj17kJuba3L7rq4uFBUVQalUIjMz0yVD5fv6+lBUVAR3d3dkZmYKFQTi0lVuI3lZpzi4sse9o1arUVJSgtHRUWRkZDhcUIwj7vHv7OxEZ2enEEAFBgYKDpI1yomTYWhoCJWVlWhvb7e6DLahoQFtbW2YP3++zcf//vvvDRLAFFAS9qS6uhpvvPEG5syZg++++w5/+9vf8NJLL+GWW24xaUMGBwdRWFgInU6H7Oxsu82ztYbh4WGUlJSgv7/foPdcLLrF/yuu7OI20sfHZ9L2UbwwwRVHneGviJOI3d3daG9vx+joKKRSqYF9NFYXdxTiMtjIyEgkJyebfGaKE2/cPqrVahw5cgQ//vGPbT6+sQ/Kz8nDw8Opq+gzJqAU09fXh/vuuw9ffPEF3njjDVxxxRUmv+RqtRpnz56Fu7s7srOznRrJc3h5FReHGBwcNChd5TeFo3qXAMOVQq6gZ+/+TlMrCB4eHgbX2NnZifr6ekRFRSE5Odnp5STiMlg/Pz+oVCqT/ZDG2aaioiJBwU0MFwGqq6tDdHS0yVp74ELpxIEDB7By5UqDY1BASTgCnU6HzZs34/e//z2efPJJ/PKXvzT50B0ZGUFJSQn6+vqQnZ3ttGDK+BzKysrQ1tYGHx8fjI6OGkjSi50jRwVWjDHU1dWhuroaUVFRDunvFM9t6+npGdMbrlQqMTw8jOrq6nHbBBxNV1eXMP7LkjJYNzc3NDQ0oKurC3PnzrX5uN999x3mzJkjzIKjgJJwFIwxfPrpp7j99ttx5ZVX4qWXXjIZMOr1epw7d04QiHJFlZdOpxMqSrivotFohNJVcQWKI/2p9vZ2lJaWwsfHxyG2SavVGviPvMVLnEB0c3NDVVUVADhlmoApBgYGUFZWhr6+vnFLccWJN7VajZMnT+Lyyy+3+binT58e44Pq9XrIZDIKKO0BYww7d+7Eww8/jLvuugvPPPOMSWdep9OhvLwcra2tyMjIcEiPJ8ecIqmXl5cghBEaGor09HSXrAh0dnaipKQEXl5eyMjIsFmNVjzY3NTNz7NHpkokNBoNSktLMTAwgLS0NLOzjxyJuAw2Pj4e8fHxJstgh4aG0NPTg5qaGkRHRyM+Pt7kA4VfU29vL1JSUsaotKnVauTn5xtkqCigJBzNwYMHccsttyA9PR2vv/46QkJCxmzDRRAqKysdPg+NMQaNRmNgO3jpqpeXF9RqNby9vZGdne1U+XyORqNBSUkJhoeHkZGRYXO7hF6vH2MfjYUh+Oqj8b0vTv6ZWyl0NOJS3JCQEGEerzGjo6Po7u5GU1MT3NzcMGfOHJtt2TfffIMFCxYIlR7UEkA4mvr6etxyyy1oa2vDO++8g+zsbJPbdXZ2oqioCP7+/sjIyHCY78YYM0g88bYgAPDx8cHQ0BCAC8GUKVvuaEZHR1FRUYHW1tZJBdj8OWC8AMGnE3D/0VRvuHGbgL2mCVh7/lwNVi6XIy0tzWSFGp/f2dbWhpaWFlx22WU228dTp04hKCgIcXFxBvunFUo7U1xcjBtvvBEKhQK7du1CfHy8ye14XXxYWBhUKtWks57GsvvinkDjvh4e6Go0GhQVFQllFM4c4srRarWorKxEc3OzRRLV/OYX161rNBqLbv7x9nn+/HlUVFQgMDAQKpXKJfX5vb29KCsrw+joqNA71NPTI1yr2AmMi4uDt7f3uLOHeL2/VCpFenq64JD29fXh+PHjBhkqLiVNASXhSDo7O3HnnXfi+PHj2LlzJ5YuXWry+9bf34/CwkLIZDJkZ2fb5X7kzpG4PEusSCru65FIJFb3njsCscpgREQEUlJSxn1gGwtD8OvkwhDilzUPfi6YI5FIkJGR4RLhoKGhIVRUVKCjowOJiYkIDg42UJhVq9VCn39ERASCgoKsHvrN+eqrr5CXlyesFFFASTiD0dFR/O53v8PLL7+M559/HnfccYfJ79vIyAiKi4uhVquRnZ0trKRPBnHpKn+NjIyYTTyJ+74dnfwbD74w4e3tbVEbFReY5HZD/BwQ9z5a0xsunibAxwu5avW4rq4OkZGRiImJwcDAgOBDip8DISEhQgA+0RgmU5w4cQJhYWGIiYkxOD4FlA5Ao9Hg4YcfxocffohXX30V//M//zNuXbxWq8WsWbOsqovnfT1i54ivyokDyIl6AsWiGImJiWZXvRxNV1cXSkpKIJfLkZGRMWH/krFzZA9hiJGREaE+39nzl/h19vT0oK2tDQMDA8L8paCgoDFO4HhN12K44Eh1dbXQOzs0NITTp0/jsssuM9hOIpE4dL4TQQAXvmvbtm3Db37zG2zYsAGPPvqoyYeQTqdDWVkZ2tvbkZGRYVX1AM/Gim2kuHSVB5CWlK6a6j13NgMDAygpKcHg4CAyMjKE/iXxdXL7wYUhxLL09ugNF4sXObtNgF9nT08P2tvbBYEghUKB4OBgwRE0HoMEjD+GyRxffPEFli1bJlTNUEBJOAvGGL7++mvcdtttWLJkCbZv325WeKW+vh5VVVVISEhAQkKCxd9xvV4/ZlWOJ+aNFyAmWuww13vuTMwtTPDrFC9AcIFJcfBojxYGxhhaW1tRXl7u9DYB8XV2dHSgq6tLKNEX20feymbNGCZTHD16FNHR0YiKihLeo4DSgTDG8I9//AP33nsvbrnlFvzhD38wmWUX18Wb6yfkkvRix4H3QIoz65OZSdTb24uioiJ4eHggMzPT5vLTycBXBFpbW+Hj4wOdToeBgQHhOu15849HZ2cnSktL4eHhgfT0dLuv3IpLLLih02g08Pb2NhC/OH/+PFpaWsYtg7XUKHDZ67a2NoSHh6OzsxOXXnqp8HMeULpiZZa4ODl+/DhuuukmREdHY+fOnWYl6XlAx1foTN0HYueor69PKF0V243J9PUMDQ2hpKQEGo0GmZmZLlHr5sm/mpoaeHl5wc3NDRqNBjKZbIwytSP7/JzRJsDL+8Xy+/w6+ezf7u5u1NbWIjQ0FCkpKSaTipaMYTL1mS+++AKXXnqpYA8poCScTUtLC2699VacO3cOe/bswbx580xu19fXh8LCQsjlcmRlZY15hvOqBbH/2NfXJySsxQGkrYl5nU4nzLN1hC6GpbS2tqKsrExIjms0GgAYswDhyNEWvE2gubkZSUlJDmkTMF5l5Qk2cZUeb6UarwzWkjFMpsjPz0d8fDwiIiKE9/R6PTw8PJzaY37RBJSciooKrF69Gnq9Hnv27EFKSorJ7cQqhwkJCQa9PeJZNuKb396Zcp1Oh8rKSpw/f94pTd/G9fm9vb2QSCRQKBQYGBiATCZDZmamS5qddTqdEOhzZV5bbxReSiIuXxWvsnIDYMrI8bEgWq1WUIM1xpLZQ5zu7m6cPXsWQ0NDmDNnjqAuSwEl4Qp6e3tx991349tvv8Vbb72Fyy+/3OT3dmBgQCjPV6lUgmgCt5GMsTGZdXuXbzPG0NjYiMrKSmGFzpEPT7HdEPeG+/j4YGRkBDqdzqlKh2LEgmL+/v5IS0uz2XaIe/3F5f2+vr6CbfT39zf59+RlsJ2dnUhKSkJ0dLTFarDjDRL/6quv8KMf/UiwyRRQEq5Ap9Nh48aN2LhxI55++mncf//9Jr9/Wq0WZWVl6OjoEMZ6iANIXrUgtpGmeqYnS1dXF4qLiwUVf0f6E+Y0Qvgq3MDAAGJjY5GcnOySe9ZebQK8nU2cYOPzf8X20ZSKrrgMNioqCklJSeOqwVqaeDt8+DCSkpIM2kAooHQSQ0NDePTRR/HOO+9g69atuOGGG4Q/lrikkwccfJxFUFCQYACcNc4CuLBCV1xcDF9fX2RkZNilnNSc0yAuQfP39xeMnE6nQ3V1NRoaGpCYmIi4uDiXGIX+/n6UlpZiZGQE6enpQqmZOcTiOeLs+mR7PBsbG1FVVYWAgACoVCqTpRSWlsG2tLSgrKwMOp0Ofn5+SEtLE4wwBZSEs9Hr9XjrrbewYcMG3HPPPXjqqaeEh55xSWdnZ6cwYF5cCu6scRaAYe95VlbWuCN6LGUiYQj+4rN/xX3frizFHRkZQUVFBdra2ixuExCX94sVZsXOkbWryZ2dnSgrK4ObmxvS0tJMJiEtzcbzOb0rVqwwaDEg0TLCFTDGsH//ftx6662YNWsWXnvtNcEPEY/76evrQ2dnJ4aHhyGVSg3so7PGWQA/jPbo6Oiwa++5qd5wsTI1txvcDnZ3d6O4uFiounNFKa4tbQLiEXfcj9TpdAY9nv7+/latsmo0GpSVlUGtViMlJQURERETqsGOl3g7cOAA0tLShAUOV6lgX5QBJXDhF/7+++/jF7/4BebPnw8PDw88+OCDGB0dNSjpVCqV6Onpsaku3p6Mjo6itLQUXV1dVvcvAT/c/PyG6O/vN5htya91Iieot7cXxcXFcHNzQ2ZmpkuEg8QBXXBwMFQqlXAzcwVFcQA5OjoqZNfHU5i1lpGREUFxMSEhAXFxcSZvXlOzh8TfIT6Edv78+aisrERjYyNiYmKQkpLiEqNLEABQUFCA66+/HgqFAvHx8fif//kfhIeHjyld1Wq1KC0tRUBAgMsUqo17z61NePGSJfFLLBAknm05HkNDQygtLUVfXx/S09NdolINmG8TMBZR6+npwcDAgJBIFJf426PHs66uDjU1NRaXwZoKLPmc3iuuuEL4m1JASbia9vZ23HjjjSgqKsLSpUuRlZWFBQsWwM3NzUBYzMPDQxi14yqFauBC+WlpaSmCgoKEVVNL4W1e4uoM8WxL457A8fYzFRYmxmsT4AsQYl+Zj7jjPuRk2tk4jDG0tbWhvLwcXl5eSEtLM+lPW9J//v333yMrK0tIbFBA6WQYYwgJCRHKZmJiYvDcc89h4cKFJm+0ierinUVzczPKysoQGhoKlUplVjzD1M0vnm1pyc1vDt5nWldX51I1Md5H1d3djYCAAKEkzd3dfUx23ZE3VU9PD8rKyqDVapGWlobg4OAx24yXbWpqakJjYyMWLlwI4MIqbFlZmdl9EYQzWLVqFb7++mv4+/sjODgYd911F26++WaTTvzw8DCKi4uh0WjspnJoC7z3XCaTISsry+wcWb6KIBbA4Iqk3HbY2hvOGENzczPKy8sF582RPULm4H1UDQ0Nwpw2sYiauM/Tkec3ODiIiooKdHV12VQGOzAwgP379+PKK68csz0FlISr2LJlCx5//HGEh4fD19cXK1aswG9/+1v4+vqO+U7q9XpUVVWhsbERaWlpJleknAH3mdRqNbKysszOkRVXdYnbvIx7w23tge/p6UFJSQmkUikyMzOtEsC0F4wxNDU1oaKiAp6envDy8kJ/f7+gpGu8AOGov5dWq0VNTY0wg92WMtjvvvsOOTk5QiUIBZQuoKWlBWFhYRgdHcWTTz6JV199FZs3b8att95qti6eq47askpoL4aGhlBcXIyBgQFkZmbC09NzzGwiewpgmKOvrw/FxcUAgMzMTLuUmo0HdwTF2fXBwUF4enpidHQUcrkcKpUKQUFBLulh4qumgYGBSE1NNVsGa1zm1djYiNbWVsyfP1/YTq/XQyqVusQRJQjgQgY+ICAAUqkUf/3rX/HAAw9gzZo1eO6558yuNNXV1aG6utqlCtXGvechISFCmS4v6QQcLwwxPDyM0tJS9PT0OGXMCWMMg4ODBuWrarUaHh4egs1JTEw0GdA5g46ODpSXl0MqlSItLc1k0sGUfVSr1Thy5IjBnF4aq0S4mt7eXshkMnh7e+PIkSO4+eabkZCQgLfeesvsvd7R0YGioiIEBQUhPT3dqQqcHOPe84SEhDEJNl7VJbaP9m7zEutiJCQkID4+3uF2aWRkxMB/5GW6UqkUIyMjiI6Odqpathi1Wo3y8nKbymC//fbbKTGn96IOKMUwxvDf//4X69atw49+9CNs3brVbIDEVwnNqRw6ErEwRGtrK9RqNQAYlGaZE0xwBOJSs7i4OCQmJtrtCzyRcpa4Rl+r1aK6uhqNjY0uXTUVl8GOV9IhLoNtaGhAV1eXgWocBZTEVKOsrAyrV6+GVCrF7t27kZSUZHK73t5eFBYWwsvLC1lZWXbp+bYUcW94W1sburu7AQBeXl4ICAgwUKZ2hn3k0vVlZWUICAhAWlqa3X4fxpUovLyfPwvE2XXjNoHU1FSn/l044ll5fPC4KRsnzsar1WqcPHkSK1asMNgPQAElMXXo7u7G+vXrcfDgQezcuRPLly83+d0cHh5GUVERBgcHkZ2d7dQZslxQpre3Fx0dHWhvb4der4dMJhPsIy/pdJZf29vbi5KSEkgkEru2UYkrUXiCbXBwEAqFwqCCjVfq8TYBmUyGjIwMl7Vztba2oqKiwqoy2G+//XZKzOmlgNKIpqYm3HLLLWhqasKePXuQk5NjcruBgQEUFhaCMeawunjxzS8eFi2Xyw0agWtrawEAWVlZLrkJgAtlmsXFxdDr9cjMzLTaSBpfqzXKWWK4Cqter0d6erpLFGmBCyUd/DxUKpVB6Sq/1u7ubvT09KCrqwsBAQGYNWuWUOZFASUxFRkaGsKGDRvw97//HX/5y19w/fXXm7wfeV9lZ2cnsrKyHFa6PZEwhI+PD1paWtDd3e2UVUJzjIyMoKysDF1dXVCpVDYN2h4eHjbo7enr6xMqUcS9PeM5gnxcUVdXl8sUaQHDMtjk5OQxYw34tXZ3d6O7uxtarRaXXHKJgX2kOb3EVEOv1+PVV1/Fr3/9azzwwAP4zW9+Y3K1izGG2tpanDt3DklJSYiLi3PI93h0dHRMdYZOpxNWH5VKJfr7+9HQ0OC0VUJT2GNhgiuNixcgGGNj1PvH6x215zSByaDVanHu3Dk0NDQgOjoaSUlJBt8jfq3ch+zu7sbSpUuF3ncKKKcQWq0Wzz33HLZs2YI//OEPWL9+vck/irguXqVSTfrhzG9+8Q1hiTCE+GZ0pHGaCHH2OSYmBklJSWZvRkcoZ4nPo76+HufOnUNYWBhSU1NdJhTCVwX435ALYmi1WgMj5+/vD3d3d6HMizFGASUxJWGMYe/evbj77rtx/fXXY9OmTWYHRp8/fx5lZWWIiopCSkrKpB5ufEVOHEAODQ0JwhDjye/z2ZmuVGAFfpjLxtWczfXii9UieRDJr1VsM2wtQ2tvb0dZWRk8PT2RkZHhMqGQjo4OlJaWws3NDaGhoUIgOTg4aNDHxJ8FvMwLAKlgE1OWgoICrF69GqGhodi5c6fBwHkxPT09KCwshEKhQGZm5qSqBowFt3hvuKenp0HvoylBGS626O7ubrb33BnwhQnG2LijPXh5vzjBplar7dYHL54m4EotC7VaLajBhoeHgzEmtLXxvyt/eXt7G5TBUkA5hWCM4bvvvsOtt96KBQsW4JVXXjG72tXR0YHi4mIEBgZaXBc/kTDEeDe/ObgghYeHB7Kyssw6eY5GrVajuLgYWq0WmZmZ8Pf3d5pylpjBwUGUlZWhr68PqampNq0K2IK4VLe7uxt9fX1CxigoKAjx8fHw8/MzORCeZ95HRkag1Wpd1qdLEBNRXV2Nm266CYODg9izZw/S0tJMbqfRaFBYWAgAmDVrlkXOCheGMF595PN/ucNgTW+4ce+5KUEKZzAyMiLI+KtUKkRERECr1Ro4gnwGsHF23Z69Pa5qE+CJAZ5d7+npgU6nA2MMPj4+iI+PR3Bw8JigX2wf9Xo9ent7ERMT4/DzJQhb6O/vx3333Yf//ve/eP3113HllVea9D+4gn93d7eBUudEiEfccfsonqfNX5YGqc6ee24O8WgPvkoIwGCllSfljRcg7FnG76o2AbFWiDiZKJFI4OHhgdjYWISHh49JponLYIELcUlsbCwFlFOJ1tZWrFmzBmVlZdizZw9yc3NNbjdRXbzxzc/7AY1XHyf7hdXpdKioqEBzc7NdVk1tgT/sa2tr0dHRAalUCr1e71TlLA6vSS8vL4evr68w49Ge+xcHy1wIg5fq8pdCoRDUYPV6PdLS0gwknnt7e3H06FEcPnwY+fn5OHnyJB588EFs2rTJbudKEPZmZGQEjz/+ON5880386U9/wi233GLyntbr9aisrERTUxPS09MRERFh8HM+31IcVPHh3+Ls+mSFIRhjaGhoQFVVlVBK5OySJl7yXl9fj/Pnzwtzfvm4KrHNcIbt5m0COp0O6enpdg+0jedc9vb2wt3dXejZCggIgK+vL4aHh1FeXo7u7m6DMljGGIaHh3Hq1Cnk5+cjPz8fR44cQUZGBg4ePGjXcyUIe8IYw65du/DQQw/hjjvuwLPPPmu2Z/j8+fMoLy8XqrvEgYC4YoG/BgYGDEbccZsx2QDCEXPPrWVoaAitra2ora2FVqsFYwwymcwgeHRWn6e4TSAlJcXugTav1hPbR16qK/aXAQhlsDExMUhMTBQSjDqdDqWlpYL/mJ+fj/b2dnR1dTl1YYkCSgvQ6XTYvHkznnvuOTz55JP45S9/aVZopa6uTnBWvL29BSdpcHDQITe/OfiqqZ+fHzIyMhxaOmlKOYvPuPT29haGn7tyVWB0dNRALMfWzA1jTBDC4K+RkRGDOZfjZcr0ej0aGhrw3nvv4auvvkJ8fDyKiopQXFyM+Ph4LF68GEuWLMHSpUuRkZHhkn4GgrAGxhg+/fRT3H777bjyyivx0ksvmZWBb29vR1FREQICAhAcHCyUsKrVagOHwdHDvzUaDYqKiqDX6x3eez5eeb9SqRQcRVevCtijTcC4FI33wnt7e48pzzJ3ne3t7Thw4AA2bdqE+fPno6KiAidPnoSvr6+BfeTzowliqlNcXIzVq1fDy8sLu3btQkJCgsnt1Go1CgsLIZFIEB0dLag2G1csOHrcz+joKMrKytDZ2enw3nMeLIsDqqGhIfj6+kKpVEKr1aKtrQ3R0dFOF8EUY682Ae4v8xfvhff390dAQICgFWLO9+vv70dRUREef/xxqFQqdHR04OjRoxgZGcGCBQuwZMkSLFu2DIsWLXL6+C4KKK3g4MGDuOWWW5Ceno7XX38dISEhAC6sToodBl56IJPJEBERgaCgIGHArTPhQhBckMIe5ZPGylk8U2ZOOYt/hq8KcGVcV8gyAxeU2EpLSyGRSMat0eeIG7359QIwcI5Mla+K0el0KCsrE7JHR44cQW9vLwIDA9HQ0IB169bh6aefdpkzSRD2oL6+Hrfccgva2trwzjvvIDs7G8AP95DYRmq1WqFvLiQkxGkVC2LEvef2GnNiPMONVyx4eHgY2Avj8v6Ojg6UlJRAoVAgIyPDZe0K1rYJcFVdsYPElWaN+x/NwZ8PYvtYXl6OjIwMFBcXY8mSJdixYwfS09MpwUZMWzQaDTZs2IAPPvgAO3bswKpVq4TybZ5YEwdUABAQEIDw8HCnViyIcUTvubhaj18vF1ITJxTFPqJGo0FxcTFGRkaQmZnpMrFFa9sEeDWK2D6K/WX+Gq/yhjGG7u5uHDlyBIcPH8aRI0dw8uRJZGZmorS0FFFRUdixYwcuvfRSl6wmi3FoQLljxw5s3rwZLS0tmD17NrZt22a2ZBQA9u7di6eeegq1tbVISUnBpk2bcNVVVwk/Z4zhmWeewZtvvomenh4sWbIEr776KlJSUhx1CWM4f/48Vq9ejdLSUqSnp2PZsmXIzc0dIwzh4eEhLJNbUxdvbxhjaGlpQVlZGUJDQ6FSqawK5uyhnMUZGBhASUkJBgcHkZGR4bLfibhGPyoqymDukFhJsaenR+j1NM4ejXfzi8uzuAEwzh7l5eVBqVTiwIED0Gq1+NGPfuTMXwExRZhpNnJ4eBi//OUvsWfPHuTl5SE6Oho///nP4enpaWAzfHx8hBWx5ORkxMbGuiyZIu49z8zMtKok3jig6u3tFSoWxCVLlojHiKsoUlJSxiifOovx2gTE6oL8ueDm5mbgHE20smyqPOv8+fOYPXs2Fi9ejKVLl2Lp0qWIjIxETU0NDhw4gLVr1zrr8okpxEyzj3q9Hq+88goee+wxzJkzB1KpFI8++qhQ0SWuzuju7kZJSQlCQkKQlpbmspW5oaEhlJSUQKPRWF1lZiwUxAMqXrEgrtabyNYxxlBfX4/q6mpERka6dLXSXJuAXq8XqhLF/eHGCbbx/GV+neIEW0lJCZKSkgT7uGzZMqSmpkKtVuPtt9/GQw89NCWSbQ4LKN9//32sWbMGr732GhYuXIitW7di7969KC8vN7lSdvjwYVxyySXYuHEjrrnmGvz973/Hpk2bcOrUKWRlZQEANm3ahI0bN2LPnj1ISEjAU089hcLCQpSUlDhN7e3ee+/F3r17ERYWBnd3d6xYsQK//e1vTR5fXBfPB6a66o/OBSkGBwfNZnjE5Uri7Lq9lLP4MfhQXT6HzFWKi1w8aGBgAL6+vhgaGjKpLjjeagFjDD09PThy5IjgHJkqz5o3b57Ls0fE1GIm2si///3vuOuuu5CcnIyRkRFkZGTgz3/+s1DNYUzP/1M59PHxQWZmpstKGMWCFOP1nvNqFG4jxeX9lgZUE9HZ2YmSkhJ4eXkhIyPDZYqLvOyttbUVSqUSOp0OarUanp6eBv2P4zmDfMX25MmTBv2Po6OjyM3NNSjPUiqVVKFBCMxE+1hfX4/ExESoVCoMDw8jLCwMf/7zn5GZmWnyuz80NITCwkKMjo4iOzvbZWPhxH4bT8KbsnHiOencRoqFgrgPORk7r9FoUFJSguHhYWRkZLisjUq8MOHt7Q2pVIr+/n5IpdIxCbbx/GWdToeSkhIcOnRIsI/Nzc3IyckxSLBFRERMefvosIBy4cKFWLBgAbZv3w7gwi8/JiYGv/zlL/H444+P2f7GG2+ERqPBp59+Kry3aNEi5OTk4LXXXgNjDJGRkfjf//1f/OpXvwJwIUsQFhaG3bt3Y/Xq1Y64jDHwfhCJRILjx4/jpptuQkxMDN5++22Eh4eb/czZs2fh5uaG7OxslzkIvLSosrISsbGxiI+PHyNN72jlLM7g4KCQ9crIyHCKLLNY+IO/9Ho9PD09hZr9jIwMs/1fwNjyrPz8fIPsEXeQVCrVlMgYEVOXmWgjh4eH4ebmBplMhubmZtx22204d+4c9uzZg3nz5pn8zOjoKEpKStDT04Ps7GyXOQjAD73nSqUS6enpGB0dNUiwiQdjcxs5Xj+grWi1WlRVVeH8+fNISkpyygquOXVBb29vjIyMQCqVIj093WxygO/DVHmWn58flixZIiTY5syZQwk2Ylxmon3kJZAKhQLDw8N47LHHsGvXLmzduhU33nijyXucMYZz584Jq64xMTEuCyx47znXxPDw8DCwj3ychTh4tLd6P+CaNipzAoyenp5gjEGr1SIhIQFxcXFmr5fv48SJE4L/ePToUWi1WuTm5gqrj4sWLZpw5vpUxCEB5cjICLy9vfHhhx/iuuuuE95fu3Ytenp68Mknn4z5TGxsLDZs2ICHH35YeO+ZZ57Bxx9/jDNnzggDYAsKCpCTkyNss3z5cuTk5ODll1+292VYRG9vL+6++258++23ePvtt/GjH/3I5JeAZ8Cbm5uRlpY2RuXQGXAZ/vb2drS2tgp9njzb7EzlLODCzdXU1ITKykqEhobafV6kWF2Qj+/gzc/8xY3dyMgIKioq0NbWhqSkJERFRcHd3V3IHonLD8TlWcuWLZs22SNi6nCx2EidToeNGzdi48aNePrpp3H//febFTRrampCRUWFSZVDZ8DH/XR1daG5uRkjIyMG5Zw8y+7Mioquri6UlJQI5bj2nBdpqbqgu7v7mDaB+Ph4wZGqq6szsI+lpaVITk42KM+a7AxS4uLiYrGPjDF8/PHHuPPOO3Httddi8+bNZu/x7u5uFBYWQqlUOlxo0RS8nLO7uxvnz5/HwMAAABiUc5qak+5I+MLEwMCA3duojMWCesYRYDRuE0hOToZSqQRjDF1dXQbtTwUFBfD39x+TYJsJAmMOCek7Ojqg0+nGKEOFhYWhrKzM5GdaWlpMbt/S0iL8nL9nbhtX4Ofnh7///e946623cNNNN+Hee+/Fk08+OcbpkEqlwqiI4uJidHV1Wd3PaA3jKWf5+fkhPT0dvb29aGpqgp+fH+Li4pweEHEls+DgYCFoy8jIGDcDbo6J1AWjoqKE/ihT18kdtqCgILz66qv4+OOPERoaipKSEiF7tGTJEtx1111YtGgRfH19KYAkbOZisZFSqRS//e1vsWzZMtx6663Yv38/XnvttTEPfm4L/P39UVhYiO7ubmRnZztMnIavFIjLV8XjfhITEzE6Oora2lp4enoiLi7OJUJigYGByMvLQ1VVFY4cOYKkpCSbbbU5dUGuuJucnGy2ncHNzQ2JiYkIDg7GZ599hp/85CfIyMhAVVUVWlpahPKs3/3ud1i6dKnTZv4SM5OLxT5KJBL89Kc/xZw5c3DLLbdg+fLl2LNnDzIzM8dsGxAQgLy8PBQXF+PIkSPIyspyaDUH15MQi026u7vD398fkZGRkMlkqK2thUQiQUxMjEsq77y8vDB37lw0NTXh7Nmzk1qYmEiAMTo62qwAo0QiQXh4OAICAnDy5EksWrQI8fHxQpCZnJyMJUuWYP369Vi2bJlL298ciWukNmcYbm5u+MUvfoFFixZh9erVOHToEHbt2mVy6HJISAgWLVqEoqIiHD16FLNmzbJLXfxEyllRUVFjlLMiIyMRERGBoqIidHR0IDMz0yXqgp6enpgzZw6am5tRVFSE4OBgqFSqcTM2E6kLJicnW6Qu2NXVZVCederUKQQHByMsLAwnTpzAQw89hD/+8Y8zIntEEK5AIpFg+fLlKCgowLp167B48WLs2rULeXl5Y4IOHx8f5ObmoqKiQpg1aA/JeuM5l2KxBD8/PyQlJZmcAxwZGYni4mLk5+cjKyvLJeqCUqkUKpUKYWFhKC4uRmtrKzIzMycszR9PXTA6OhoBAQHjKuvyJJ24POvYsWPQarWYM2cOjh49iiVLlqCkpGRalmcRxFQhPj4e+/btw1NPPYXLLrsML774ItasWTMm6JDJZJg9ezYaGxtRUFBgkdKoJej1ekE8h9tIrifh5+cnJPuM1UgjIiJQWVmJI0eOuGzsEU9GBgUFobS0FPn5+ROW5gOGAozd3d2CGndAQIAQmE5k17RaLYqKigwqNNra2pCXl4eioiL4+PgIAeXFYB8dElAGBwdDKpWitbXV4P3W1lazfYbh4eHjbs//29raalAu2traalC+4EpmzZqFY8eO4cEHH0ReXh5ee+01XH311WO+SJ6enpg3bx5qampw7Ngxq+vijZWzent7DVbjwsPDkZaWZpFylr+/PxYtWiQ4cCqVyiXlmxKJBJGRkQgMDERZWRny8/ORlpYmOJNardbAOeIBM88excbGTiiGwWetmSrP4quPS5cuFcqz+Jw6CiYJe3Mx2sjg4GD861//wp///GesWrUKjz32GDZs2DDmnuW9eoGBgSgpKUFnZydUKpVVpfjGozv6+/sNZn3Fx8dPKJYAXLDVc+fORUNDA06dOoXY2FiXlOMCP9jqc+fO4ejRo0hMTBT6dSZSF0xNTbVIXbCzs9MgwVZQUICAgAAsWbIEV155Jf7whz8gJycHHh4eaG9vR0FBgcuEQoiZy8VoH2UyGTZu3Ijly5dj7dq1+P777/Hyyy9DqVQabMdXBHk1R1dXF7Kzs60qNeXl/WIfEoCwABEZGQmlUjnhSh+vvAsJCUFxcTHa29uRkZHhkv5oLy8vzJkzB+fPn0dRUZHBqBOxz8xfYgHGuLg4iwQYeYKN+5DHjh0DYwwLFy7EkiVLcN9992HhwoVQKBQYHR3Fv/71L6dOoXA1DhXlyc3NxbZt2wBccOZjY2PxwAMPmG2oHhgYwL///W/hvcWLF2PWrFkGDdW/+tWv8L//+78AgL6+PoSGhjpVlMcSGGP461//igceeABr167F73//e7M3WHd3t5DJMKdy6AzlLODC4NaSkhL4+/sjPT3dZYGUuOHaw8MDUqnUoByNvyYKmLVaLYqLiw0CSP7w4P2PS5YsofIswiVczDbyyJEjuPnmm5GQkIC33nrL7Crk4OAgioqKxlU5NDXHbXh4WHAWuI2c7JxLtVqNoqIiMMaQlZXl0kCqs7MTxcXFYIxBLpdDo9FYrS7I+yKN5z+mpKQI/T2XXHKJywJo4uLmYraP58+fxy233IKGhgbs2bMHc+bMMbmdTqdDeXm5ULVgSv1WXK3AbaRGozHwp7h6/2Ts4+joKEpLS9HV1YWMjAy7zD23lYGBARQVFUGtVkOhUGBgYEDwmcXXPFGCraOjw6D/8fTp0wgKCjLof8zJyXHZpIKphkPHhqxduxavv/46cnNzsXXrVnzwwQcoKytDWFgY1qxZg6ioKGzcuBHABcnn5cuX44UXXsDVV1+N9957D88///wYyecXXnjBQPL57NmzTh0bYg1lZWVYvXo1pFIpdu/ejaSkJJPbcZXD3t5eoc/PFcpZwIXS2dLSUvT09Njcz2gt5tQFfXx8oNPpMDIyMuFcNnPlWTqdTsgeLVu2DAsXLqTyLGJKcLHbyO7ubqxfvx4HDx7Ezp07sXz5cpP3pV6vx7lz51BXV4fU1FSEhoYaJNj6+vqEagVuI5VKpUN6HsXnMpl+Rmswpy7o5eUFqVQKjUaDqKgopKamjruKa648a+7cuYKAzpIlSxAWFkb2kXA5F7t91Gq1+OMf/4gXX3wRv//973H33Xeb9flaWlpQWlqK8PBwJCUlGaj39/b2GlQrcBvpqAWD5uZmm+ee2wrvD+czcnl/uKenJ9RqNfz9/ZGZmTnu31iv16OmpsbAPlZUVCA1NVWwjcuWLUNiYiIl2MzgsIASALZv3y4Mpc3JycFf/vIXLFy4EABw6aWXIj4+Hrt37xa237t3L5588klBHvnFF180OZT2jTfeQE9PD5YuXYpXXnkFqampjrqESTM0NIQNGzbg73//O7Zt24af/exnBg9rcalSc3Mz1Go1ANcqZzHG0NzcjPLycoSFhSE1NdWuRsEadUHgQklKaWmpULrl7e0tlGcZq2cFBQUZzO6ZPXs2lawSU5aL3Ubq9Xq8+uqr+PWvf40HHngAv/nNbwxsjbhUqa2tDV1dXWCMCeX93FZYUt5vT3p6elBUVAS5XI6srCy79p5boy4IXFhlKS4uBgCkpaUhICBAWJUwLs8CLqz8cPXV3Nxcp//uCMJSLnb7yBjDvn37cOutt2LevHl49dVXDfq4ebKpt7cXHR0daGtrg06ng0wmQ2BgoIF6vzODID73fGBgAJmZmXYVDzInwKhQKITZuOJ+z+HhYZSVlaG7uxspKSmIiIiAm5sbtFotCgsLDeY/dnZ2jkmwhYaGkn20EIcGlLawY8cOwYDMnj0b27ZtQ25urslt33zzTbzzzjsoKioCAMybNw/PP/+8wfbr1q3Dnj17DD63cuVKfP755467CCMYY9i7dy/uvvtuXHPNNcjNzUVkZCSCgoIMlLO4KERNTQ08PDzs7qhYy+DgIIqLizE0NISsrCz4+/vbtB+ePeru7haGgXN1Qe4cmVMX5AwNDeHgwYO45557kJ2djdraWlRWViI1NVUoP1i2bBmVZxEzmploHwHg1KlTuOmmmxAYGIi1a9fC3d0daWlpBuX9vMydS9a7SiSHo9PpUFFRgebmZqhUKkRGRtrkeJhSF5RIJGMSbOOtPvLxRvfccw/8/PygVqtx9uxZBAcHjynPcoVaLUE4g5lqH9va2rB27VoUFxfjsccew/DwMJYsWSIkm3h5v1KpRG9vL86fPw+VSuUSkRyOuHUpOjraZmXTiQQY+WsiEceGhgY8++yzqKiogEKhwJkzZyCRSLBo0SJhASI3N9chc4UvFqbUk+X999/Hhg0b8Nprr2HhwoXYunUrVq5cifLycpP12Pv27cNNN92ExYsXw9PTE5s2bcIVV1yB4uJiREVFCdtdeeWV2LVrl/BvZzcMSyQSVFdXw9fXF++++y6+++47/OIXv8DNN99sUjkrLCwM5eXldlU5tAUvLy/MmzcP9fX1OHnyJOLi4iZc7jenLsjVwngz+UT9TDx7JC4/6OjowMKFC3Hw4EFkZmaiqamJ+h+Ji4aZah8BoKmpCXK5HEePHkV5eTmuvPJKLF261OQoi/DwcEEkJz4+HomJiS6xAVw8yFiQYqKKCL6iIFYXlMvl8Pf3t1hdkJfeiu1jZWUl5s2bh5KSEri7u2Pfvn1YtGgRJdiIi4KZbB/7+vqgVqvR3NyMX/3qV5g1axZ+/OMfmxxlERkZidDQUBQVFaGrqwvp6eku6fGTSCSIjY1FUFAQCgsLcfToUYt6z+0hwMgYQ1tbmyAwlp+fjzNnziA2NhYSiQTl5eXYunUrbr/9dkqw2ZEptUK5cOFCLFiwANu3bwdw4aEZExODX/7ylyabsI3R6XQICAjA9u3bsWbNGgAXMkw9PT34+OOPHXnqE/LNN99Ap9Nhzpw52LhxI95880386U9/wi233GLWcWhtbUVJSQnCwsKsVjm0N2q1GoWFhZBIJMjKyhIk6ydSF+SviZqfTZVnSSQSoTyLZ48UCgW6u7vx9ddf44YbbnDW5ROEy5nJ9rGkpASlpaVYtGgRvvjiCzz00EO444478Oyzz5oN0Pr7+3H27Fmh7NSVPVDmes/HUxcMCAgQViEnqkQZHR0dk2Dr7OzEvHnzDMqzQkJCoNPp8O6775ocO0AQM5WZbB/7+vrwf//3f1i8eDHa29tx6623QqVS4Y033jCrczEyMoLi4mKo1WpkZ2fbXGFmD3h/Ym1tLRITExEfHy/4veL+cJ5gs1aAUa/Xo7q6WtDPyM/PR1VVFdLT0w0q2OLj4+Hm5oaPPvpIKGcl7MeUCShHRkbg7e2NDz/8ENddd53w/tq1a9HT04NPPvlkwn309/cjNDQUe/fuxTXXXAPggkH4+OOPhfkyP/rRj/CHP/xhzGBtZ8IYw6efforbb78dV155JV566SWzM8UGBwdRWFgIrVaLWbNmjTt7zNHo9XpUVFSgsbERAQEBQjBprbogYwzt7e1j1LNCQkKE0ize/0jZI4K4uOwjABQXF2P16tXw8vLCrl27kJCQYHI7nU6HsrIyYXXQlQ4CYwznz59HeXk5FAoFZDLZmJJdS9UFNRoNjh8/LgSQx48fh1QqNeh/XLBgAZVnEQQuPvvY1dWFO++8E0ePHsXOnTuxbNkyk3aAMYb6+npUVVWNCeRcQU9Pj7Aw4ePjg/7+fgNFbp5kmyg5ODo6irNnz+Lw4cOCD9nT02OQYFu6dCmCgoLIPjqRKRNQnj9/HlFRUTh8+DDy8vKE9x977DF8//33OHr06IT7uO+++/DFF1+guLhY+EK+99578Pb2RkJCAqqrq/Gb3/wGPj4+yM/Pd+mKHwDU19fjlltuQVtbG9555x1kZ2eb3I6XN9XX1zt1eKxYXZD3P/LyLK1WC7lcjrS0NAQGBlpcnnXkyBHk5+ejsrISaWlpBtkjewzoJYiZyMVoHzUaDR555BHs3bsXO3bswKpVq8zaGa4sGBERgZSUFKedO+8PFyvOipNgycnJiIyMnDDB1tbWZpBdP3PmDMLCwgz6H2fNmkUJNoIwwcVoH/V6PbZv344nnngCGzZswKOPPmrWPvT19eHs2bPw8vKaUO3UnpgTYHR3d8fIyAhiYmKQmJg4YYJNrVYLCbYjR47g2LFjkMlkQv/jkiVLkJubO6Z9jHAuM+bp9MILL+C9997Dvn37DG4W8Wyh7OxszJo1C0lJSdi3bx8uv/xyV5yqQGxsLL799lv87ne/w+WXX46NGzfi9ttvH+N8uLm5ITk5GYGBgSgsLERnZycyMjLsXhc/kbpgUlKSIByk1WpRUVGBs2fPQqVSISIiQriRxdkjXp7V1dWFefPmYcmSJdi0aROWLFmC4OBguvkJwglMR/uoUCjw+uuv47LLLsO9996L77//Hs8//7zJ8tCIiAj4+fmhsLAQx44dw6xZs6BQKOx6PuOpC/r7+yM6OtqgfLW+vh7l5eUYHBw0EAvj5VncPubn56O6ulooz3rwwQeF8iyyjwTheKajfXRzc8ODDz6IxYsX4+abb8b+/fuxc+dOREREjNlWqVRi0aJFKCsrw5EjR5CZmemQkXDDw8MG9rG/vx8eHh7w9/dHcHCwQU98R0cHiouLMTg4aNB7zhhDa2urYBsPHz6Ms2fPIjIyEosXL8ZPf/pT/OlPf8KsWbNcHtQThkyZgDI4OBhSqRStra0G77e2tiI8PHzcz27ZsgUvvPACvv76a8yaNWvcbRMTExEcHIyqqiqXGwQAkMlk+MMf/oDly5djzZo12LdvH7Zv3w4/P78x2wYGBiIvLw/FxcU4cuTIpOviJ1IXNNXwzXF3d0dGRgaCg4PxySef4MMPP8SCBQtw+vRpoTyLZ48efvhhKs8iiElwsdpHiUSCm266CfPnz8fq1avxox/9CHv27DEp8+/t7Y0FCxaguroaR48enZTyKjC+umBAQACSk5PHVReMi4tDUFAQ8vPzsX79elxyySWorKwUyrPmz5+PxYsXY8uWLVi6dOmElR4EQZjmYrWPADB//nwcP34c99xzD/Ly8vDWW2/h8ssvH2NL3N3dkZWVhfPnz6OwsBBRUVFISUmxuSpsPAFGLp4zngBjcHAw8vLyUFJSguuvvx7p6eno7e1Ffn4+zp07h8zMTCxZsgSPPPIIli5dSgm2acCUCSg9PDwwb948fPPNN0INvF6vxzfffIMHHnjA7OdefPFF/PGPf8QXX3yB+fPnT3icxsZGdHZ2msziuAqJRIIrrrgCBQUFuO2227BkyRLs2bMH8+bNG7Oth4cHcnJy0NDQgJMnTyIhIQEJCQkW3WhcXbC7uxs9/284trXqgrw8yzi77uvrixMnTuD222+n7BFB2JmL2T4CQEpKCg4fPoxHH30Ul1xyCbZu3Yobb7xxjK1yc3NDSkoKAgMDUVRUhM7OTotVDkdHR8ck2GxRF+TlWYcOHcKRI0dw8uRJxMTEYOvWrbjiiivwwQcfYMGCBVSeRRB24mK3j35+fvjb3/6Gt99+GzfffDPuuecePPXUUybtXmRkpEE1R3Z2tkXVHBMJMKampk4owAhcaBM4c+aMgQ8ZFhaG/fv3Iz09HRs3bsTll1+OgIAAso/TjCnTQwlckH1eu3YtXn/9deTm5mLr1q344IMPUFZWhrCwMKxZswZRUVHYuHEjAGDTpk14+umn8fe//x1LliwR9uPj4wMfHx+o1Wo8++yzuP766xEeHo7q6mo89thj6O/vR2FhoUvknydCp9Nh48aN2LhxI5555hncd999ZjNIfX19wnUYqxyaUxc0Ho49US29Xq9HVVWVQX9PdXU1MjIyDPof4+Li8M4778DPzw8//elP7fo7IQiC7CNwwa59/PHHuPPOO3Httddi8+bNZp2h4eFhYbh2dnb2mKqPoaEhoTfcVnVBxhhaWloM7OPZs2cRFRWFxYsXC/YxKysLR48exf79+y1SnCQIwjrIPl6gsLAQq1evhlKpxK5duxAbG2tyO71ej8rKSjQ1NSEtLQ2RkZEGPx8dHR3TH26LAGN/fz+OHTsm9D8eP34ccrkceXl5Qn/4ggUL0N7ejpdeegmbN292yZgTYvJMqYASALZv3y4Mps3JycFf/vIXLFy4EABw6aWXIj4+Hrt37wYAxMfHo66ubsw+nnnmGfzud7/D4OAgrrvuOhQUFKCnpweRkZG44oor8Nxzz7lstqMlMMawf/9+3HrrrZg9ezZeffVVs6piWq1WUDmMj48HAMEAiNUFuXrWRKIOo6OjOHPmDA4dOiT0P/b29mL+/PnCzb9kyRIqzyIIF0D28QK1tbW4+eab0dPTgz179iAzM9Pkdowx1NXVCcO1vb29hVVIri4YEBAgOEgTOYncCeO9Pfn5+aipqRHKs7i6YFxcHNlHgnAyZB8voFar8dBDD+Gjjz7Ca6+9hquvvtqsPero6EBhYSECAgIQHBwsrEJqNBp4e3sbBJATtS0xxtDc3GxgHwsLCxETE2OQYMvMzKQKthnIlAsobWHHjh2CEZk9eza2bduG3Nxck9vu3r0bt99+u8F7crkcQ0NDwr8ZY3jmmWfw5ptvoqenB0uWLMGrr76KlJQUh16HMR0dHVi3bh3OnDmDXbt2IS8vT7iZTakLMsbg5eWF6OhoBAQEwNfXd8LskVqtHpM98vDwMFDPovIsgpi+zFT7ODo6iieffBI7duzAiy++aDB30VhdkJdnubu7IyoqCkFBQRYl2EZGRnD69GmDEUf9/f1YsGCBwfxHKs8iiOnJTLWPjDG8++67uP/++7FmzRo899xzQsLMWICxu7sbIyMjkEgkCAsLQ1hYmCDAOB56vR7l5eUGFRp1dXXIysoyGN8RGxtL9vFigE1z3nvvPebh4cF27tzJiouL2fr165m/vz9rbW01uf2uXbuYUqlkzc3NwqulpcVgmxdeeIH5+fmxjz/+mJ05c4Zde+21LCEhgQ0ODjrjkgzQ6XRs8+bNzNPTk914443s+uuvZ1988QX7+OOP2VdffcWOHz/OKisrWXt7O2tra2Pffvst++abb1hbWxvTaDQGL7Vazaqqqthf//pXdu+997KcnBwmlUpZbGwsu+mmm9j27dvZmTNnmFardfp1Xmxs376dxcXFMblcznJzc9nRo0fH3f6DDz5gKpWKyeVylpWVxT777DODn+v1evbUU0+x8PBw5unpyS6//HJWUVHhyEsgpgEz3T7q9Xr2n//8hwUFBbHLL7+c3XTTTeydd95hn3zyCfvvf//L8vPzWWlpKWtubmbd3d3syJEj7D//+Q+rq6szaR+bm5vZJ598wh577DF2ySWXMG9vbxYQEMCuuuoq9vzzz7P9+/ezgYEBptfrnX6tFxNkHwlnMNPtI2OMlZWVsezsbJaWlsZuv/129sILL7B///vf7NNPP2UHDhxghYWFrKGhgfX29rKioiL2r3/9i5WUlDC1Wj3GPnZ1dbFvv/2W/fGPf2RXX301CwoKYp6enmzZsmXs17/+Nfv0009ZV1cX2UcnMBVt5LQPKHNzc9n9998v/Fun07HIyEi2ceNGk9vv2rWL+fn5md2fXq9n4eHhbPPmzcJ7PT09TC6Xs3/84x92O29LOX/+PAsNDWUymYwFBgayvLw8lp+fz7q7u8c4RBqNhvX397OCggL2/vvvsz/96U/s+PHjbPv27eyWW25hiYmJzM3NjWVnZ7O7776b/fWvf2U1NTV08zsZax9ihw4dYlKplL344ouspKSEPfnkk0wmk7HCwkJhm6n2ECOmBjPdPjLG2OLFi5lEImFKpZLl5OSw3bt3s46OjjEOEXeKKisr2b/+9S/27LPPssLCQrZnzx52zz33sNmzZzM3NzcWHx/Pbr75ZrZjxw529uxZSrA5GbKPhLO4GOzjhg0bmFQqZT4+Piw9PZ098cQTrLm52aR91Gg0rKmpiX3++efsj3/8Iztx4gT76KOP2KOPPsqWLVvGvLy8WGBgILvmmmvYxo0b2YEDB9jg4CD5kE5mqtrIaR1QDg8PM6lUyj766COD99esWcOuvfZak5/ZtWuXsCoXHR3Nrr32WlZUVCT8vLq6mgFgBQUFBp+75JJL2IMPPmjvS5gQvV7PDh48yAYHB1lXVxe7/vrrWVhYGPvss88MDIJarWbd3d3su+++Y88//zy7/vrrmY+PD3N3d2eLFi1iv/71r9m///1vyh5NAax9iN1www3s6quvNnhv4cKF7O6772aMTc2HGOF6Lgb7yBhjJ06cYF1dXWx0dJQ988wzzNvbm23ZsoX19/ePSbadOHGCbdu2ja1du5ZFRUUxmUzGVCoVu+eee9jf/vY3VldXR/bRxZB9JJzBxWIfy8rKWH19PdPr9Wzv3r0sICCA3XHHHay9vX1Msq2iooLt3r2b3XfffWz27NlMJpOx8PBwdsstt7BXXnmFFRUVMZ1O55LrIH5gqtpI2wbQTBE6Ojqg0+nGNEiHhYWhpaXF5GdUKhV27tyJTz75BO+++y70ej0WL16MxsZGABA+Z80+HYlEIsGSJUvg6emJgIAAfPDBB3jqqadwww034KmnnsLnn3+OZ599FldddRUiIyPxs5/9DIcOHcK8efPwzjvvYPny5fjxj3+MF154Addccw31+riYkZERnDx5EitWrBDec3Nzw4oVK5Cfn2/yM/n5+QbbA8DKlSuF7WtqatDS0mKwjZ+fHxYuXGh2n8TM52KwjwAwb948BAQEwN3dHc888ww+/fRTvPTSS1i9ejW+/vpr/PnPf8YNN9yAuLg4LFu2DHv37kVERAS2bduGO+64A9HR0Xj11Vdx8803U6+PiyH7SDiLi8U+qlQqxMTEQCKR4P/7//4/nDhxAsXFxbj00kvxn//8B2+99RbuvPNOZGVlIS0tDVu3bgUAPPbYY3juuecgk8nw6quv4t5770VmZqbNcysJ+zCVbeSUmUPpLPLy8pCXlyf8e/HixUhPT8frr7+O5557zoVnZhlubm64//77kZeXh0suuQTvvPMOrrzySqxevRo7duxAenq6gXrWqlWroNVqXXjGhJjxHmJlZWUmP9PS0jLuA2oqPsSI6cl0t48SiQSXXXYZCgoKsHTpUtxwww244oorsGzZMjzxxBOYN28e5HK5EDT+9Kc/NRDUIFwL2UdiKjPd7SMAJCYmYv/+/VizZg1uuOEGLF26FMuWLcPatWuRl5cHpVJpkFR76KGHJhwvRziPqWwjp3VAGRwcDKlUitbWVoP3W1tbER4ebtE+ZDIZ5syZg6qqKgAQPtfa2mowvLa1tRU5OTn2OXE7MHfuXNTW1sLf339cpUI3Nzd4eHg48cwIgpgKXMz2MTQ0FAUFBdBqtWPmTxpDzhJBXHxczPbRw8MD7777LrZt24aQkJBxtyX7SFjKtF679vDwwLx58/DNN98I7+n1enzzzTcGWaTx0Ol0KCwsFG7+hIQEhIeHG+yzr68PR48etXifziI4OHhC2XvCenbs2IH4+Hh4enpi4cKFOHbsmNlt33zzTSxbtgwBAQEICAjAihUrxmy/bt06SCQSSCQSREVFAQDuv/9+g23Ge4iFh4eP+9ATP8Qs3Scx87nY7aNCoZgwmCSsh+wjMRO42O2ju7v7hMEkYRsXq42c1gElAGzYsAFvvvkm9uzZg9LSUtx7773QaDTCrKA1a9bgiSeeELb//e9/jy+//BLnzp3DqVOncOutt6Kurg533XUXgAslUw8//DD+8Ic/4F//+hcKCwuxZs0aREZG4rrrrnPFJRJO5P3338eGDRvwzDPP4NSpU5g9ezZWrlyJtrY2k9vv27cPN910E7777jvk5+cjJiYGV1xxBZqamgy2u/LKK9Hc3Izm5mbk5ORg3rx5ws8meojl5eUZPKAA4KuvvhK2n04PMcK5kH0k7AnZR2ImQfaRsDcXtY20RlloqrJt2zYWGxvLPDw8WG5uLjty5Ijws+XLl7O1a9cK/3744YeFbcPCwthVV13FTp06ZbA/Po8lLCyMyeVydvnll7Py8nJnXQ7hQqxVzzJGq9UyX19ftmfPHuG9tWvXslWrVgn/fu+995hcLme7d+9mJSUl7Be/+AXz9/cX5lnddttt7PHHHxe2P3ToEHN3d2dbtmxhpaWl7JlnnjEp+ezv788++eQTdvbsWbZq1SqSxScYY2QfCftB9pGYaZB9JOzJxWwjZ0RASRD2wBYZcWP6+vqYp6cn+/e//y28t3btWubn58dCQkJYamoqu+eee9gLL7xg8UOMsQtDaVNTU5mHhwfLzMw0O5SWHmIEQTgCso8EQRDmudht5EUdUG7fvp3FxcUxuVzOcnNz2dGjR81uu3z5cgZgzOuqq64Stlm7du2Yn69cudIZl0LYgaamJgaAHT582OD9Rx99lOXm5lq0j3vvvZclJiYaZHX+8Y9/CFmfjz76iKWnp7MFCxbQwHRiSkP2kRBD9pEgfoDsI2HMxW4jL1pFF17n/Nprr2HhwoXYunUrVq5cifLycoSGho7Z/p///CdGRkaEf3d2dmL27Nn4+c9/brDdlVdeiV27dgn/lsvljrsIYkrxwgsv4L333sO+ffsMlNFWr14t/H92djZmzZqFpKQk7Nu3D5dffrkrTpUgxoXsI2FvyD4SMwWyj4QjmO42ctqL8tjKSy+9hPXr1+P2229HRkYGXnvtNXh7e2Pnzp0mtw8MDER4eLjw+uqrr+Dt7T3GIMjlcoPtAgICnHE5hB2YjIz4li1b8MILL+DLL7/ErFmzxt02MTERwcHBgtQ4QUw1yD4SxpB9JIgLkH0kTHGx28iLMqAcGRnByZMnsWLFCuE9Nzc3rFixAvn5+Rbt4+2338bq1auhUCgM3t+3bx9CQ0OhUqlw7733orOz067nfjFjjRTz7t27BZll/jKep8QYw9NPP42IiAh4eXnhqquuQmZmptUy4i+++CKee+45fP7555g/f/6E19HY2IjOzk6DOVUEMVUg+zh9caSN9PPzg0KhwP/93/8JPyf7SFxskH2cvpAP6WBcXHLrEiZb53z06FEGYEzN/HSpc56OvPfee8zDw4Pt3LmTFRcXs/Xr1zN/f3/W2tpqcvtdu3YxpVLJmpubhRdXwOK88MILzM/Pj3388cfszJkz7Nprr2WhoaHMw8PDYvWsF154gXl4eLAPP/zQ4Fj9/f2MMcb6+/vZr371K5afn89qamrY119/zebOnctSUlLY0NCQg35bBGE7ZB+nJ86wkfPmzWMA2BtvvEH2kbgoIfs4PSEf0vFMmYByz549LDAwcMwvaNWqVezWW2+167EmaxB+8YtfsOzs7Am3q66uZgDY119/bfO5EhewVop5165dzM/Pz+z+9Ho9Cw8PZ5s3bxbe6+npYXK5nK1bt85i9ay4uDiTzfbPPPMMY4yxgYEBdsUVV7CQkBAmk8lYXFwcW79+/RjDRBDjQfaRmAhn2Uh3d3cWFBRE9pGYUjjLRpJ9nJ6QD+l4pkxAOTAwwPz8/NgHH3wgvNfa2src3d3Zt99+a9djTUbaV61WM6VSybZu3WrRsYKDg9lrr71m66kSzLa/165du5hUKmWxsbEsOjqaXXvttayoqEj4OTfWBQUFBp+75JJL2IMPPmjvSyCISUH2kRgPspHExY6zbCTZx+kH2UfnMGV6KL28vHDzzTcbKFy9++67iI2NxaWXXmrXY3l4eGDevHlW1zkDwN69ezE8PIxbb711wuNM2TrnaUZHRwd0Oh3CwsIM3g8LC0NLS4vJz6hUKuzcuROffPIJ3n33Xej1eixevBiNjY0AIHzOmn0ShKsg+0iMB9lI4mLHWTaS7OP0g+yjc5gyASUArF+/Hl9++SWa1EuEAQAA9MRJREFUmpoAXGiKXbduHSQSid2PtWHDBrz55pvYs2cPSktLce+990Kj0eD2228HAKxZswZPPPHEmM+9/fbbuO666xAUFGTwvlqtxqOPPoojR46gtrYW33zzDVatWoXk5GSsXLnS7udPjE9eXh7WrFmDnJwcLF++HP/85z8REhKC119/3dWnRhA2QfaRsCdkI4mZhrNsJNnHmQ/ZR+uZUgHlnDlzMHv2bLzzzjs4efIkiouLsW7dOocc68Ybb8SWLVvw9NNPIycnB6dPn8bnn38uZBvq6+vR3Nxs8Jny8nIcPHgQd95555j9SaVSnD17Ftdeey1SU1Nx5513Yt68eThw4MCMnyVkjXLWpZdeOkY5SyKR4Oqrrxa24Q8A/oqKigIAm6SYOTKZDHPmzBFklvnnJrNPgnAmZB+nJ462jxKJBOvWrbNZrp5DNpKY7jjLRpJ9tB9kH2cQrq65NeaVV15hqamp7P7772dXXHGFq0+HmABrlbM6OzsNlKyKioqYVCplu3btErZZu3Ytu/LKKw22mzt3LnvggQeEbXQ6HYuKijLbUG2MVqtlKpWKPfLII4yxHxqqt2zZImzT29vL5HI5+8c//mHDb4IgHA/Zx+mFs+xjV1cXy83NJRtJXPSQjZw+kH2cWUy5gLKnp4d5e3szDw8P9t5777n6dAz4/vvv2TXXXMMiIiIYgDENvqb47rvv2Jw5c5iHhwdLSkoy+OJztm/fzuLi4phcLme5ublj5KSnMtYqZxnz5z//mfn6+jK1Wi28t3btWrZq1SqD7d577z0ml8stlmJ+9tln2RdffMGqq6vZyZMn2erVq5mnpycrLi4WtnnhhReYv7+/INW9atUqlpCQwAYHB235VRCEw5nK9pExspHGOMs+MkY2kiAYm9o2kuyjIWQfZxZTLqBk7MIf1pT8s6v5z3/+w37729+yf/7znxYZg3PnzjFvb2+2YcMGVlJSwrZt28akUin7/PPPhW2szdBMJSajdsbJyspi69evN3hv7dq1zM/Pj4WEhLDU1FR2zz33sI6ODrZt2zaLpZgffvhhYduwsDB21VVXsVOnThkcR6/Xs6eeeoqFhYUxuVzOLr/8clZeXm7dL4EgnMxUtY+MkY0U42z7yBgjG0kQbOraSLKPP0D2ceYxJQPKH/3oR+yXv/ylq09jXCwxBo899hjLzMw0eO/GG29kK1euFP492QyNK6EBvwThfKaDfWSMbCTZR4JwDdPBRpJ9JPs403B3QdumWbq7u7Fv3z7s27cPr7zyiqtPZ9Lk5+djxYoVBu+tXLkSDz/8MABgZGQEJ0+eNFADc3Nzw4oVK5Cfn+/MU3UJb7/9NrKzs5Gbm2vw/urVq4X/z87OxqxZs5CUlIR9+/bh8ssvd/ZpEsSUYKbZR4Bs5HiQfSQI65hpNpLso3nIPk49ppzK67p167Bp0yaoVCpXn86kaWlpMTmjpq+vD4ODgzbNxplKBAcH26ycpdFo8N5775lUPDMmMTERwcHBgroWQVyMzDT7CMxsG0n2kSCcy0yzkWQfTUP2cWoypQLK2tpa9Pb24le/+pWrT2Xasn//fvzP//wPIiMjIZFI8PHHH0/4mX379mHu3LmQy+VITk7G7t27x2xjStqZBvwShPMg+2gfnGUjT58+TfaRIJwI2cjJQ/aRsJUpFVDONMLDw01mX5RKJby8vCaVoTGHRqPB7NmzsWPHDou2r6mpwdVXX43LLrsMp0+fxsMPP4y77roLX3zxhbDN+++/jw0bNuCZZ57BqVOnMHv2bKxcuRJtbW004JcgCJuZ6TbyzjvvJPtIEIRNkH0k+zitcHUT53QFFjZUZ2VlGbx30003jWmonsxsHHuc42Sbvq1RzmKMsbKyMgaAffnll2POZ2BggF1xxRUsJCSEyWQyFhcXx9avXy9IOxMEMT0gG3nBRpJ9JAjCGLKPZB9nGhRQWkF/fz8rKChgBQUFDAB76aWXWEFBAaurq2OMMfb444+z2267TdieSz4/+uijrLS0lO3YscOk5PN4s3EmgyXGYNmyZeyhhx4yeG/nzp1MqVQyxuwj7UwQxMUB2cgfIBtJEIQYso8/QPZx5jGlVF6nOidOnMBll10m/HvDhg0AgLVr12L37t1obm5GfX298POEhAR89tlneOSRR/Dyyy8jOjoab731lsHS+4033oj29nY8/fTTaGlpQU5ODj7//PMxTdaOYqKm7+7ubrNN32VlZU45R4IgpgdkIw23IRtJEASH7KPhNmQfZxYUUFrBpZdeCsaY2Z+bakS+9NJLUVBQMO5+H3jgATzwwAOTPT2CIAiXQjaSIAjCNGQfiZkMBZQXORM1fUulUrs3fRMEQUwXyEYSBEGYhuwjwSGV14ucvLw8A9lmAPjqq68E2ebJjAaZyrS3tyM8PBzPP/+88N7hw4fh4eEx5vdBEMTFC9lIspEEQZiG7CPZRwEX93ASdma6NX27ks8++4zJZDJ2/Phx1tfXxxITE9kjjzzi6tMiCMKBkI20HLKRBHFxQfbRcsg+GkIB5Qzju+++YwDGvLj08tq1a9ny5cvHfCYnJ4d5eHiwxMREtmvXrjH7HU/aeTpz3333sdTUVHbzzTez7OxsNjQ05OpTIgjCgZCNtA6ykQRx8UD20TrIPv6AhLFxOoQJYoYzODiIrKwsNDQ04OTJk8jOznb1KREEQUwZyEYSBEGYhuzjD1APJXFRU11djfPnz0Ov16O2ttbVp0MQBDGlIBtJEARhGrKPP0ArlMRFy8jICHJzc5GTkwOVSoWtW7eisLAQoaGhrj41giAIl0M2kiAIwjRkHw2hgJK4aHn00Ufx4Ycf4syZM/Dx8cHy5cvh5+eHTz/91NWnRhAE4XLIRhIEQZiG7KMhVPJKXJTs27cPW7duxV//+lcolUq4ubnhr3/9Kw4cOIBXX33V1adHEAThUshGEgRBmIbs41hohZIgCIIgCIIgCIKwCVqhJAiCIAiCIAiCIGyCAkqCIAiCIAiCIAjCJiigJAiCIAiCIAiCIGyCAkqCIAiCIAiCIAjCJiigJAiCIAiCIAiCIGyCAkqCIAiCIAiCIAjCJiigJCYkPj4e69atc/VpEARBTDnIPhIEQRAXOxRQTjOqq6tx9913IzExEZ6enlAqlViyZAlefvllDA4Ouvr0LOLNN9/E8uXLERYWBrlcjoSEBNx+++2ora119akRBDGNmQn2Uczo6CgyMjIgkUiwZcsWV58OQRAEQZjE3dUnQFjOZ599hp///OeQy+VYs2YNsrKyMDIygoMHD+LRRx9FcXEx3njjDVef5oQUFBQgISEB1157LQICAlBTU4M333wTn376Kc6cOYPIyEhXnyJBENOMmWIfxWzbtg319fWuPg2CIAiCGBcKKKcJNTU1WL16NeLi4vDtt98iIiJC+Nn999+PqqoqfPbZZy48Q8t55ZVXxrx33XXXYf78+XjnnXfw+OOPu+CsCIKYrswk+8hpa2vD73//e/z617/G008/7erTIQiCIAizUMnrNOHFF1+EWq3G22+/beAscZKTk/HQQw8BAJYvX47Zs2eb3I9KpcLKlSuFf+v1erz88svIzs6Gp6cnQkJCcOWVV+LEiRPjnk9PTw8efvhhxMTEQC6XIzk5GZs2bYJer7fp+uLj44X9EgRBWMNMtI+PP/44VCoVbr31Vos/QxAEQRCugFYopwn//ve/kZiYiMWLF0+47W233Yb169ejqKgIWVlZwvvHjx9HRUUFnnzySeG9O++8E7t378ZPfvIT3HXXXdBqtThw4ACOHDmC+fPnm9z/wMAAli9fjqamJtx9992IjY3F4cOH8cQTT6C5uRlbt2616Jo6Ozuh0+lQX1+P3//+9wCAyy+/3KLPEgRBcGaafTx27Bj27NmDgwcPQiKRTPwLIAiCIAhXwogpT29vLwPAVq1aZdH2PT09zNPTk/361782eP/BBx9kCoWCqdVqxhhj3377LQPAHnzwwTH70Ov1wv/HxcWxtWvXCv9+7rnnmEKhYBUVFQafefzxx5lUKmX19fUWnadcLmcAGAAWFBTE/vKXv1j0OYIgCM5Ms496vZ7l5uaym266iTHGWE1NDQPANm/ebNH1EQRBEISzoZLXaUBfXx8AwNfX16Lt/fz8sGrVKvzjH/8AYwwAoNPp8P777+O6666DQqEAAPzf//0fJBIJnnnmmTH7GC8rvnfvXixbtgwBAQHo6OgQXitWrIBOp8P+/fstOs///ve/+M9//oM//elPiI2NhUajsehzBEEQnJlmH3fv3o3CwkJs2rTJoushCIIgCFdDJa/TAKVSCQDo7++3+DNr1qzB+++/jwMHDuCSSy7B119/jdbWVtx2223CNtXV1YiMjERgYKBV51NZWYmzZ88iJCTE5M/b2tos2s9ll10GAPjJT36CVatWISsrCz4+PnjggQesOh+CIC5eZpJ97OvrwxNPPIFHH30UMTExVh2XIAiCIFwFBZTTAKVSicjISBQVFVn8mZUrVyIsLAzvvvsuLrnkErz77rsIDw/HihUrJn0+er0eP/7xj/HYY4+Z/HlqaqrV+0xKSsKcOXPwt7/9jQJKgiAsZibZxy1btmBkZAQ33nijMJe3sbERANDd3Y3a2lpERkbCw8Nj0udJEARBEPaCAsppwjXXXIM33ngD+fn5yMvLm3B7qVSKm2++Gbt378amTZvw8ccfY/369ZBKpcI2SUlJ+OKLL9DV1WVVFj4pKQlqtdouzpeYwcFBDA8P23WfBEHMfGaKfayvr0d3dzcyMzPH/Oz555/H888/j4KCAuTk5Fi9b4IgCIJwFNRDOU147LHHoFAocNddd6G1tXXMz6urq/Hyyy8bvHfbbbehu7sbd999N9Rq9Rj5+euvvx6MMTz77LNj9sd7i0xxww03ID8/H1988cWYn/X09ECr1Zr9rFarRXd395j3jx07hsLCQrPKiQRBEOaYKfbxwQcfxEcffWTwev311wEA69atw0cffYSEhASznycIgiAIVyBh4z0ZiSnFv/71L9x4443w8vLCmjVrkJWVhZGRERw+fBh79+7FunXrBOeDk52djaKiIqSnp6OkpGTMPtesWYO//vWv+MlPfoIrr7wSer0eBw4cwGWXXSaUnsbHx+PSSy/F7t27AVyQxV+2bBnOnj2LdevWYd68edBoNCgsLMSHH36I2tpaBAcHm7yGnp4eREdH48Ybb0RmZiYUCgUKCwuxa9cueHp64siRI0hJSbHvL44giBnPTLCPpqitrUVCQgI2b96MX/3qV7b/ggiCIAjCUbhOYJawhYqKCrZ+/XoWHx/PPDw8mK+vL1uyZAnbtm0bGxoaGrP9iy++yACw559/3uT+tFot27x5M0tLS2MeHh4sJCSE/eQnP2EnT54UtjGWxWeMsf7+fvbEE0+w5ORk5uHhwYKDg9nixYvZli1b2MjIiNnzHx4eZg899BCbNWsWUyqVTCaTsbi4OHbnnXeympoam34nBEEQjE1/+2gKGhtCEARBTHVohXKG8/LLL+ORRx5BbW0tYmNjXX06BEEQUwayjwRBEAQxeSignMEwxjB79mwEBQXhu+++c/XpEARBTBnIPhIEQRCEfSCV1xmIRqPBv/71L3z33XcoLCzEJ5984upTIgiCmBKQfSQIgiAI+0IrlDMQLuLg7++P++67D3/84x9dfUoEQRBTArKPBEEQBGFfKKAkCIIgCIIgCIIgbILmUBIEQRAEQRAEQRA2QQElQRAEQRAEQRAEYRMUUBIEQRAEQRAEQRA2QQElQRAEQRAEQRAEYRMUUBIEQRAEQRAEQRA2QQElQRAEQRAEQRAEYRMUUBIEQRAEQRAEQRA2QQElQRAEQRAEQRAEYRMUUBIEQRAEQRAEQRA2QQElQRAEQRAEQRAEYRMUUBIEQRAEQRAEQRA2QQElQRAEQRAEQRAEYRMUUBIEQRAEQRAEQRA2QQElQRAEQRAEQRAEYRMUUBIEQRAEQRAEQRA2QQElQRAEQRAEQRAEYRMUUBIEQRAEQRAEQRA2QQElQRAEQRAEQRAEYRMUUBIEQRAEQRAEQRA2QQElQRAEQRAEQRAEYRMUUBIEQRAEQRAEQRA2QQElQRAEQRAEQRAEYRMUUBIEQRAEQRAEQRA2QQElQRAEQRAEQRAEYRMUUBIEQRAEQRAEQRA2QQElQRAEQRAEQRAEYRMUUBIEQRAEQRAEQRA2QQElQRAEQRAEQRAEYRMUUBIEQRAEQRAEQRA2QQEl4VIYY9Dr9WCMufpUCIIgphSMMeh0OrKPBEEQxJTG3dUnQFwccMdIr9cLL51OB51OB6lUCrlcDqlUCjc3N0gkElefLkEQhNPgiTWxbeT/lUgkgn2USqVkHwmCIIgph4RR6pOwE4wxk46RVqvF+fPnERISAqlUKmwrkUggkUjg7u4uBJJubm4G/yYIgpgpmLKPOp0Ora2tUCgUkMvlwrbcPrq5uUEmkwnvubu7U2BJEARBTClohZKwGnOBI8+q858DFxwgxhgqKiqEgNLYEXJzc4NUKhX2WV5ejvDwcCiVSnKcCIKYdoxXkcFto9hG1tfXIzY2FgqFwqR9dHNzE+xqQ0MDZDIZwsPDyT4SBEEQUwIKKAmzGAeO3CHiTpFx4CjOqPP3AECn0xlsYw7+86amJvj5+cHLywtarZYy8gRBTDksSayJtxXbR1O2cKKqDP6Zjo4OeHl5ITAwUEjG8XYBgiAIgnAFFFASgmMkzqjbEjhOhLntjN9njAnOFWMMo6OjFFgSBOESrK3I4P81FziaO4Y1iFctuX2USqVCuwBBEARBOBMKKC8ijJ0i7hgNDAygu7sboaGhBtvbGjjaC3587rCNjIxQRp4gCIdgKnDUarXQarVoampCWFiYgS2cavZRLHLm7u5ucTBLEARBEJOFAsoZyHiKgeJsOkej0aCurg4REREA7O8YWZt95+VhHGPHyTgjT44TQRCWYm0pP2MMVVVVCAsLE+yNI7B0v+PZRwDQarVCYEnK2QRBEIQzoIByGjNe4Gjcw2OcURc7GFx51dFOh60Ok/jzlJEnCMISzFVkGAeO4jJVUyuOer1e2Kej7Is1Sbfx7CMA4fx5YEnK2QRBEISjoYByGmCuf8fUiuNEwg/jHWO6QBl5giA41lZkuLpU1dHw6xErZ4+MjNDIEYIgCMJhUEA5hTDOpuv1eoyOjqKlpQXBwcGCCANge+DoCiZb8moOY8dpZGQEFRUVUKlU8PT0pMCSIGYQ5gLHtrY2eHt7w8PDQ9h2vIoMa3GWDZlsBYe5fYqrOioqKhAcHIzAwEAKLAmCIAi7QQGlk7FWal6n06GsrAxLly6d9g6AI8+dO44NDQ1ISkqijDxBTFOsrcg4d+4cEhMT4e3tTfe5GXhg2dLSAoVCYbIPnSAIgiBshQJKB2Gt1Ly5Mizj/p6LAWsy8MafAyAEkDRyhCCmLsajiox7HPk2wPgVGca2cjpijx5KSz9rPJLJuF2AIAiCIKyFAspJYq1ioLX9O85wkhx9DEeVvJo7jvj3bGrkCGXkCcI5WFuRYUsp/0y5lx1R8mruOKScTRAEQdgTCigtRKwsyh2jgYEBjI6OwtPTc9KBozn456aTaI45nBW4TjRyxFj5kCCIyWEqcBweHoZGo4G3t7dZ+yh+Tfb4jmYm2GC9Xj+ufRQrZ5PAGUEQBGEpFFAaYYnUPKepqQlqtRqZmZkOVwycCc6MpdhjhdIYY8dJrAxLGXmCsAxTgSO/l4wrMvr7+1FSUoLFixc71D6KFZ8dgTPswnjnb3x8e6xQmnrPlHI2jRwhCIIgLOGiDSjtITXv7n7h1+fIVS5nPcQd6ZDZUvI6meOM9zsbL7CkjDxBXMBURYa1pfzu7u5Cz54jmSn3qzNKXif6rLFyNv/7U2BJEARBjMeMDyjHCxyNe3islZp3dGacH4Nfx3THGkfE3iuUpvZvnJHv7u6GVCpFQEAAOU7ERYElFRniIMSaUn7xmCNnXMd0xpm/J2tGjohnWfb29mJoaAihoaEkcEYQBEEYMGMCSmul5q0VfjCFRCKBXq+31yWMe5zpXtJlDGMMg4OD0Gg00Ov1iIiIEFZ8J1Pyau3nxBn5xsZGyGQyKBQKysgTMwp7VGRYizMSbs48jjPhQmJqtRojIyMICwuDp6en8DNHrVCagn8Xuru70dTUhICAAFLOJgiCIAyYlgFlX18fTp8+jdzcXJNS842NjdBoNFCpVHYJHM3hTEdmujpMjDEMDQ0BAOrr66HRaIQXYwwKhQIAUFFRgYSEBMTGxk7qWJP5GzPGBAdJr9fTLEtiWsIYw4EDB5CdnQ25XD6mIqOvrw+VlZWYP3++VRUZ1jLTAj1HXcvo6Cj0ej06OjrQ1tYGtVoNjUYDrVYLLy8vyOVylJeXIzo6GgkJCU4PKMWIR46IlbNp5AhBEMTFzbQMKCsrK7Fq1SqcO3fOpNS8m5sb9Hq9sOLlKJyZgZ8OjIyMCMEid4q4YwRcSAQoFAoEBwdDoVDAy8tLcEi6urpQVVWFmpoaoXfHWuwRUI4nqU+BJTEdYIzhmmuuweeff460tLQx9lEmkwnfZ0cyUyo47IVOpxtjG/kKJAD09vbCz88PkZGRUCgUUCgUQrA2MDCA6upqHDhwAO7u7sJnrGUyNpIrxJJyNkEQBGHMtAwoPT09MTw8bNa55wGlo7lYS7q0Wq3BSiN3kEZGRiCXy+Hj4wOFQoHIyEj4+PhAIpHg2LFjyM7ONrk/iUSCkJAQBAcHo6OjAydPnsTRo0cRHx+PuLg4yGQyi85rsgElF58Qn5fYcaKMPDEdkEgk8PDwwOjoqMl7x5n2EZj8fWnJcZzVy24JfKSUceA4NDQEd3d3wT6GhIQgPj4eCoUCx44dQ0pKCvz8/Ezu09fXFzk5Oejv78exY8dQXl4OtVqNxMREeHt7W3xu9lzdJOVsgiAIgjMtA0q5XI7h4WGzD0dniUE4yzEDHF/yamr/er3eZOA4NDQk9Br6+PggNDRUcJJMrXoMDg5adA4SiQTBwcEAgMzMTNTX16O2thZxcXGIj4+fMLC01wqlqfOijDwxneA20hTOWjnk94UzAkpXIO4DFwePAwMDcHNzE1YZAwICEB0dDYVCAQ8Pj0mdr6+vL7y9vREeHo6+vj4cPHgQERERSEpKsiiwnGxAacrWkXI2QRAEMS0DSi8vL2H+mYeHx5ifz7RSK0c/jLkj0NbWZuAcDQ4OCo6Rj48PAgMDERMTAx8fH5O/9/GwRhIfAAIDAxEREYHOzk5UV1ejrq4OcXFxiIuLM3tsRwWUHGPHSTwEnDLyxFRivIDSWQk3ZypUO3rsEWMM3d3daG9vNwgeeR84t5Hh4eFQKBTw9PS0yhZYe/5eXl5ISEiARqNBdXU1Dh48iPDwcCQlJQl96eaO48iRI8bK2TTLkiAI4uJgWgaUcrkcADA0NGQyuKCSV9MwxjA8PDymFIs7RrW1tVAoFFAqlYiIiLDJMTJ3XGvhxwwKCkJQUBC6urpQXV1tsGJp/Le3R8mrrSNHKCNPTBUkEolFAaWzVg6dUY5qr2OY6wMHgNraWvj6+prsA7cH1iTd+LYKhQKzZs1CUlISzp07h0OHDiEsLAxJSUnw8fEZ97PWYo19BAxnWYoTb2QfCYIgZh7TMqDk8unmhAlmWkAJWO+Uccl5Y+dIp9PB29tbyKjzEtPy8nLk5uY64tStwtx1BgYGIjAwEN3d3aiqqsL333+P2NhYxMfHCwkGe6xQWuMc8mPxz9TV1WFkZATJycnkOBEuRS6Xj2sfgQsBglQqddg58O++o22xLfeYtX3gx48fR05OjlX9is5EoVAgOztbCCwPHz6M0NBQJCcnGwSWjih5HQ+J5IdZlj09PaitrcXs2bNJ4IwgCGKGMa0DSj6OwpiZ1kM53kOXO0bGwePo6Cg8PT2Fcizew+Pt7T3Giezr63P4g93akldz2wcEBGDBggXo6elBVVUV9u/fj5iYGEFOfzLY6mzxzwwNDWFkZEQY0UClXoSrkMvlZu2jONBzRkDpypJXe/WBO6PtwJptzZ2Pt7c3srKyxgSW4hVLV4wckUgkGB0dRX9/PylnEwRBzECmZUDJHXVzGfiZ1kMJXJCc7+/vHxM4Dg8Pw8PDQwgcw8LCkJiYaNYxcgWO+B35+/tj/vz56O3tFVYsQ0JCJrVPS0u6zMEz+DwjT7MsCVcxUckr4JxSVGcdx1zgaM8+cEdjbdJtPLy8vJCZmYnExETU1NQgPz9fqEaxFXvZR3HJNSlnEwRBzAymRsRhA56enuOuUE7XgFKv149RDhwdHUVBQQGkUqmQRQ8KCkJsbKygHDhZpspYkolWKI3x8/PDvHnz0Nvbi9LSUgwNDaGkpASJiYnCSrY1x56MQyMeO0KzLAlXYukKpSMx7jW2B6b6wLu6utDe3o7a2lqhnN/efeBT7X619Hy8vLyQkZGBxMREVFdXAwCKiorGHVFiDmfYR3GfJUEQBDF9mJYBJZ+zNl4GfqoHlIwxDA0NjSlX1Wg0kEgkwoqjUqlET08PVCoVQkJCppxjYykTqQNyrA0oOX5+fkhKSkJxcTGGh4exf/9+REdHIyEhAV5eXhbtwx6iPsarwjTLknAF4/VQSiQSp9pIW49jaR+4QqGAr68vkpOTp+39ZK+SV3N4enpCpVKhoaEBXl5eOHr0KIKCgpCcnGxxYGnvOb8AKWcTBEHMFKZlQAlceEC6WhbfkuPwIMKUcqBerxccI4VCgdDQUEE5UPwQbWpqgkwmm7YPVmcKF7m7u2POnDno7+9HdXU1Dhw4gKioKCQmJk4YWNqrpMsUlJEnnMl49hGYWm0Bxn3g4soM3gfu4+Njtg98cHAQMpls2t9DzurTVKlUSE5ORk1NDY4dO4bAwEAkJSXB399/3M+bSphZe3xz10jK2QRBENObaRtQjrdC6SpnaXR01GQfD3eMeDY9ICAAPj4+8Pb2tsgJcnSv5lR6UNu6Qsnhn/P19UVOTo5BYBkZGYnExESzSo2OyMCbOj/KyBOOZrweSsC5syj5cXQ6HQYGBibsA+ezHC3tA3dWL/tUaguwxUaIz18ulyMtLQ0JCQmora3F8ePHERAQgKSkJAQEBNj1uBxL7SPwQ58vzbIkCIKYHkzLgNKSOWuODCh1Oh00Gg26u7uh0+lw+vRpaDQaA8eID7nmgeNkMrsz4QFqT8EJc5haYeSBpVqtFgaAR0REICkpaUxgac8eoYmgjDzhSCwJKB1lI8V94Hq9HpWVlRgZGcHAwADc3d2FYNHefeDTGWtLXidzDLFdkcvlUKlUQmB54sQJ+Pv7IykpCYGBgWM+70z7CBjOsuSf5zaS7CNBEMTUYVoGlIBlKobWPMBModfrMTAwYFI50N3dXSihDA4ORlxcHHx8fCCTyWw+njmcqSbrCGw598muUBrj4+OD2bNnQ6PRCIFleHg4kpKSoFAoANin5NXazxtn5M+cOYPAwEBER0dTRp6wGWeUvFrSBw5cmJEYFxcHhUIBuVxu9+/zdLePHGt+L5NZoTT1WQ8PD6SmpiI+Ph51dXU4deoUlEolkpKSEBQUBMA19pGfLw8s6+rqoNFokJ6eTgJnBEEQU4gZHVBa6mRwx8i4FGtgYMBAIMff3x9RUVGC5Pzw8DAOHz6MqKioKTWnbDozmZJXSxwehUKBWbNmCXPaDh06hPDwcCQmJjqlpMsc/LjDw8MGI0coI0/Yglwuh0ajMftza1YoJ9MHzucgmiujtAfOuC+m0r032ZLX8T7r4eGBlJQUxMfHo7a2FgUFBYLg0WQDyskmePksS61WS8rZBEEQU4xpG1COl4E3N7ibO0amlAMZYwbKgeYEcsSIA1dHPsyc8aB01kw6R5+HpcdRKBTIzs42GAAOwOyoBUuYrMMk3gfvcdPr9YLjP1XmihJTH7lcju7ubrM/NxdQivvAxXbS1j7wi62/0Vac+TuyxEbKZDIhsKyrq8Pp06cBXAg4bX3eOcI+8me6VCqFXC6f1L4JgiAI25m2HqqHh8e4cygBoLu7W8isc+dIq9XCy8vLYNA1Vw609mHnzMHd091hsgZbA2hbHB1vb29kZWUhKSkJBw4cwNmzZ9Ha2oqkpCT4+vpata/JZvD5PngShPdZOkNgiphZWFLyOjAwgObmZgP7aO8+cGeI/8wU+2hN0s3eLQHmkMlkSE5ORnx8PA4fPozz58+jr68PycnJCA4Otmp/9ki8mrOPtDpJEAThWqZtQMnnrHGBHONVRwCoqKgQMuqRkZFCWZZ41XIymFsJdQTTWeXV3LnzIeVarVYQyJnMdU7GYeEr0XPnzkVbWxvy8/MREhKCpKQkKJVKi49vrww8QUwGXpI/Xh+4RqOBr68vfHx8HNYH7oxgbyYHE6OjoxgaGoKvr69BAtNRLQHmcHd3h7e3N2JiYsAYw9mzZ+Ht7Y2kpCSL5yPba4XS0c9agiAIwnqsCig3btyIf/7znygrK4OXlxcWL16MTZs2QaVSmf3M7t27cfvttxu8J5fLbS4t3L9/P7788kucPXsWJ0+eRG1tLa6++mohcAwJCUF8fDwKCgowd+5csyMi7IEzVyhnAn19fVCr1QYvrVYLiUSCiIgIJCcnA3DuCqXx5728vJCRkYHExEScO3cOR44cQXBwMJKSkiYcAG7Pki7j8yKmPlPBPlZWVmLv3r348MMP0draip/97Gd4+OGHhRVH3gdeW1uL8PBwREVF2XQcS5lJJa+OPAZXxu3v7zewj8PDw5BIJPD390dKSsoY5VVrmax9lMlkiI6ORmxsLBoaGlBUVARPT08kJydPGFjayz46QviOIAiCmBxWBZTff/897r//fixYsABarRa/+c1vcMUVV6CkpERQ9DOFUqlEeXm58O/JPNSKi4vR0tKC0NBQzJ07F4888gjCwsLG7NPRo0MAKnk1BV91FDtFfX19GB0dxenTp+Hj42NQSqdQKKDX63Hu3DkcPHgQoaGhkzq2vVQIPT09hcCypqYGR48eRVBQEJKTk80GlvYqeaUVyunJVLCPzc3NKCwsRFRUFJRKJTZt2oTU1NQx+2xsbHTaHEpn2OHpVBY+Ojo6JrEGAGfPnhXsY2BgIGJjY4UV4/r6epw8eRIBAQHQ6XQ2i/JMVlSHf97d3R0JCQlCYFlcXAwPDw8kJycjNDTU5HEcVcExXZ6NBEEQMxmrAsrPP//c4N+7d+9GaGgoTp48iUsuucTs5yQSCcLDw207QyPuvfdeAMAdd9wBf39/s/udSQGls45hLeJyY+NVR29vb8E58vX1RX19PZYuXWrS0ZDL5cjOzkZCQgJKS0uh1+tRWlqKpKQkq+bTTcZh4gIPxp/39PREenq6EFgeO3YMgYGBSEpKgr+//5h9OMJh4r1CxNRmKtjHSy65BJdccgnefvtt7N692+zqqDN6G4GZU/Jqa4np4ODgGPs4PDwMuVwu2MfY2FgUFxdj4cKFJitq3N3dkZycjNjYWNTU1KCjowPl5eVIS0uzqs/bngk3jlQqRXx8PGJiYtDQ0ICSkhJUVVUhKSlpTKLXHquL5hJuZB8JgiBcy6R6KHt7ewFgwjIctVqNuLg46PV6zJ07F88//zwyMzMnc2iLBnc7w5FxVgbe0dcy3v5NrTrysSru7u4mVx3FfS69vb1obGyc8KHv4+ODtLQ0HDlyBAMDA/j+++8RHx+P+Ph4ixyRyQaUAMwGhHK5HGlpacIA8OPHjyMgIABJSUnCSARaoSTETGX76KxVvZlU8joeplYd+dgWsQCceNVRTHFx8YS2w8PDAyqVCvX19ZDJZMjPz0d4eDiSk5Mtau2wR0BpzjaJA8vGxkaUlpYKgWV4eLjwfaMec4IgiJmJzQGlXq/Hww8/jCVLliArK8vsdiqVCjt37sSsWbPQ29uLLVu2YPHixSguLkZ0dLSthx9X5RVwzgolMHMy8BxLVx158GiPQeXiz3OnZd68eeju7kZlZSXq6+uF8qrxlCbtEVBO9Hm5XA6VSiUElidOnIC/vz+SkpIc4jDxlVNieuFq+8hFy8zhLPs401Rexb2OYjvJVx19fX2hUCgQFxcnqIc7wn4nJycjNTUV1dXVOHjwIKKiopCUlARPT0+zn3HECqUxUqkUcXFxQmBZXl4uBJa2luqKoYCSIAhiamJzQHn//fejqKgIBw8eHHe7vLw85OXlCf9evHgx0tPT8frrr+O5556z9fDw9PQUVgBMMZMCSsD+GXjGGIaGhqDRaNDZ2Qm9Xi+sDPJVR19fX7Orjs4494CAACxYsACdnZ2orKxEbW0tkpKSEBMTY9KpcEZAyfHw8EBqaqowp+3UqVPQ6XTo7++f1BB3cphmBlPBPl5MCTdHHIPPLFar1dDpdCgqKhJ+pzyxFhQUZHbV0VpsGXnEWwWqqqqwf/9+xMbGIjEx0WSrgD17KCfCzc0NsbGxiI6ORlNTEyoqKjA6Oip872y1cdQSQBAEMTWxKaB84IEH8Omnn2L//v1WZ9FlMhnmzJmDqqoqWw4t4OnpOW4GfiaVdE32GDqdzmQ5lk6ng7e3t5DVTklJgY+PDzw8POz+gLZ1xppEIkFwcDCCgoLQ1taGyspK1NTUIDk5GZGRkWNW82w9b/5dsdbR8fDwEAaAf/vttygvL0dzczOSk5MRGBho1fno9Xq79GESrmUq2Udz94QzeyinumAOH61ibCNHRkbg6ekJHx8fAEBERARCQkKEEUP2wtq/g/Hf1MfHBzk5Oejr60NlZaXZVgFnrFAa4+bmhpiYGERFReHw4cPo6OjAwYMHkZiYOMZ+WwIl3AiCIKYmVgWUjDH88pe/xEcffYR9+/YhISHB6gPqdDoUFhbiqquusvqzYqZCD6WzjmNNMDY0NDTGMRocHIRMJhOy6pGRkcKwcqlUCo1GgxMnTiAoKMgh52/N78ec0yKRSBAWFobQ0FA0NzejqqoK586dQ0pKitCj48wVSmNkMhnc3NywYMECdHR04PTp01AoFEhOTkZQUJDFc9qAsUEtZeCnB1PJPnp6el40PZTWHEO86ihOrkkkEsE+BgcHIz4+Hj4+PkKJ/f79+xEYGOiUMVQTYc7OKZVKoVWgoqJiTKuAI3soJ8LNzQ1yuRyxsbFwc3PDuXPnUF1djaSkJKsCSwooCYIgpiZWBZT3338//v73v+OTTz6Br68vWlpaAAB+fn7w8vICAKxZswZRUVHYuHEjAOD3v/89Fi1ahOTkZPT09GDz5s2oq6vDXXfdNakTtySgnCkOEzA2KDO16qhWq6HX64VeR6VSKQSPjlh1dAUSiQSRkZEIDw9HU1MTysvLhcByMqI4kw0ogQvODpfO56WwZ86cgbe3N5KTkxEcHDzhnDbA+lVSYmow3ezj6OjopI5hCa4KKC1ZdeTBo4+Pj91XHV1JQEAAcnNz0dnZiYqKCqFVYLLXOFnRMcYYpFIpoqKiEBkZiebmZlRXV///7P13mGR3eaeN3+dUzlXdXZ1z7p6o0cxIoywRJIzZ1YIDWBgwBuNdG5uV19o1y772Zdj1jxd7wTZr2VgWAl5wABYHkpBQGE3QJEkTejrnnCvnc87vj+pTququzmFmxLm56hJdc+qECs/5PunzZHosKyoq1rV92tgQDQ0NjZuTTTmUTz75JAAPPPBAzvNf/epX+chHPgLAyMhIjsFfXFzk4x//OFNTU3g8Hm6//XbOnDlDe3v7tk78ZlIx3M3jKIqCLMsEg0EGBwfXzTrabLYtOSQ3U5Z1I9uqpVTl5eWZAduCIGxKRj8bdbG03bEj6nuv1+tpaGigpqaGkZERrly5gtVqpaGhYdUB4JpDeWtzK9nHt5IojyRJJBIJRkZGcrKOoihmFFbzZR03w246m9stec1HvlaBRCKxLbXVnejBVI8riuIKx7K/v5/6+noqKytXPT8tQ6mhoaFxc7Lpktf1eOmll3L+/uIXv8gXv/jFTZ3URngrik6kUqm8CquSJGE0GvF4PLdk1nE3F5SqXH1lZSWXLl1ifn6e8+fP09zcvGJO5HrnuN3oO6xceOr1eurr6zMDwK9du4bZbKaxsXGFY6k5lLc2N5t9vBlaAnYy4LZW1lEUxYyY2K2addzIuW62kiK7VaC7u5vh4WFOnTqV0yqwUbbb350vw6lWnJSVlTE1NbXCsVwuBCdJktYSoKGhoXETsq05lDeSjcji36yDuzfb6zg4OIjb7aa6unqXrmL32ekM5XL0ej0ulwubzYbRaOTChQsUFBTQ3Ny8oazlTkTfYXVnUK/XZ/qZRkdH6ejoyJTHFhcX79icNg0NSNvHZDKJLMt51Zlv9oDbar2OatbR4XBQVFREXV0di4uLBAIBDh48uAtX8NZAEAQ8Hg/z8/NUV1fntAqsVjGxnN3swRQEgbKyMkpLS5mens70yNfV1VFVVZX5Dms2UkNDQ+Pm5JZ1KDcSgb8ZSrpWyzrKsozNZsNms+FyuSgvL8fhcOSVe99t5/hmiu5uV1hHp9PR3NxMTU0NAwMDnD17luLiYpqamrDZbKu+drsLlY1mF7MHgI+OjnL9+vVMD5HFYtnyaBYNjWzUns14PJ5XSOZmEeWRZTmvfUwmk1gslkxwzev1YrPZ8mYdg8Hgbl8GsHuVFpsVLYOt2WzVoVveKmCxWGhubl5XlG27PZQbsbGCIFBaWkpJSQkzMzM5jmV1dfWKAIk2p1dDQ0Pj5uCWdShvph5K9aYWjUYJh8OZodfBYJBYLIbRaMxE1VXH0Wq1btiBuZkcvq2wVzf87Ai4yWSira2N2tpa+vv7OX36NOXl5RnHLd9rdyJDudF9ZDuWY2NjdHZ2ZgIH+c7lVv8OaOwtJpMJgFgslteh3OuAm6IoebOOkUgEURQzjmNxcTH19fXYbLZN9Tq+FZyK3f6NZ79H2a0Cw8PDvP7667hcLpqamlZtFdhuyetmbGx2qe7s7Cx9fX0MDg4iSdJb4rPW0NDQeKtxyzqUG5mztpMLppmRAH1vTCOnFMoaXRRUGQmHw8RiMfr6+rh+/Xom62i323G5XFRUVGR6HbfLrX4T3e2S19Vea7FY2L9/f2b49yuvvEJlZSUNDQ2ZRfd2j6u+Hja/KNTpdNTU1FBVVZXT49TQ0EBZWdmWz0fjZxv1u71aW8BOVz2EfDE6X50gGkpQUGanap+DSDSCz+cjkUgwNTW1IutYXFyM3W7HbDZv67e3V0rbNwPbzVDm6/FuaGigurqawcHBNVsFdlKUZ6MIgkBxcTFer5fZ2Vlee+01zp8/n8lYahUdGhoaGjcHt7RDuduiPGrWcbhrmhe/1UNgPoosS+gM0HSPi/rDRZnelMrKyk1lHTfDjV4wRYIJTn67C99shIpGD3c92oROtzt9LIqiIKcURrvnSSUlCsscOAtXZhRXe+1qCx6bzcahQ4cIBoP09vZy8uRJqqurqaurw2g07lg511b3IYpiZtFUW1tLT08PfX191NfXU1pauuXz0vjZRBXsWs1G7pR9TCQSzE4t8vzXrjM9FERRJGRFpnyfhf0PlqAoChaLhYaGhk1nHTfKXmTv1zqGJMmc/Zc+xnoXcHut3PcLLVidplW3X85mS14VRWF6yE8ypuAoMOOtdG74tatdh8FgWLNVYLXKic2wnbYCQRAyJbnt7e0MDQ0xODhITU0N1dXVWgWHhoaGxg3mlnUoNyLKs5kFUyqVyisCIcsy468nCS7EKKlN9zj6p+Moiy4OHz7Ma6+9hsvlwm63b/hYM8kZuuJd3Ge/b0Pb78XNcrVFTSyS5C/+00+YnwghCHDx2UEGr83yq//P3ZvKOm6URCxF72k/A4lrKLKCs9DC3Y+2UFbn3tBx1jsnh8PBkSNH8Pl8Gceyrq4Oh8Ox4wqGW9mHTqejqqqKiooKJiYm6O/vR1EUGhoatrVvjZ8tBEFY00ZutiVAkqS8CqvJZBL/iMLMcIjCCitms4l4WEZeFGht3M/MwgTxeByXy7Wh48iSTO9r0/jnohSU2mg4XLwp9dO9RlEU/v5/nuWNF0cQdQKKAq+/MMx//ptHMNsMm9rXRq9z4lqMmXPXkVIKZpuBI2+ro/V4+YZeu94xVmsVqKurA7anQL0TKrEAXq+X0tJS5ufn6evrIxqNcuTIkS3vV0NDQ0Nj+9yyDuV6ojyrLZjUrOPyhZHa62i324nb4vQU9/Co51FsNhsvTXYx0zmMbzyJLMURRIFELJU5zmYXM5+f/jyXopd4uvpp6k31G3rNjVowvf78MHNjadEL9QyuvDTK1K/6kSWZKyfHiIYSVDZ5OPRgDSbL9r5SI9cXWBiL03bYjt6oY3rYz2s/HeTdH7tt3dduJoLudrs5duwY8/Pz9Pb2Mjg4iCiKSJK0pTKq7S6WYOWctsrKyk1L+2towJsO5Wo2crWS1/V6Ha1WG4ExBSkqUlhayv67a+g1zjD8agehWQlfIoTeIGJxGJGS8qbsoywr/PCpy1w9OYYsK+j0IsceruOhx9rX/A3cyAqO6eEAb7w4AoAspc9hfiLEa88P0X5XBa89P4RvOoKn1MaRt9fgKlrZz7q54/mZ609Q32LC4bbgmwlz+eVhKpo8ODxrV3Jsxj4ubxU4ffo0AMlkMqdVYDPsRBUIkKkEKSoqoqCgAEmStrxPDQ0NDY2d4ZZ1KDcyuDuVSuHz+VYsjhRFyfQ6ut1uKisrc3odPz3xac6Ez9Cua+d28XYsdgP+2QiSpCCKArKkUN7kyRxnM5H+z0+lnUmAZ+af4Y/L/3jd1+z2gmmtm3w0lEAQBRQ59/iTAz66zk8QCSQwWvS88eIIiWiKu9/bnHd/+Z5Tx6fIsozZbAYgHkmBAAZT+qtpdZqIBOKkkhJ6w/qO3mYXLIWFhRQUFGREH06ePEljYyMVFRWbchB3Qs4+3z7UxZPmVGpsFpPJtGbJqyRJBIPBjIhYdtbRarVmbKTa62gymXjxW51cOTmKLCmI4ixzw1Fa7ygn5IsRDSbQG0SSCZnSWhcWlxEhvHHb9caLw5z/4QCCAGabEVEUeO35IfbdU0lp7eoZzhv524gGV2aARVEgsBDl5X/qYnrIj8VhYG48SHAhysO/dnBF0G2t9yeRSBCPxzP9jNFQAimlYFsqqbW5zfimw8TCyR11KFXUVoGFhQXOnz/P2bNnqampoa6uDoNhcxnYnVLSzr4GQRC0PkoNDQ2Nm4Bb2qFURXmAFVlHn8+XcSgdDgc2my3jOK7V69gb6+VM+AwAT88/zRHLEWRFweo0pftIZNCbRJJRCVlWNuXszafm+VHwR5m/T4ZPMhAfWDdLeSMXTPWHinOcSUEAk9WAIimEfHFK61wIgkDQGGOka56j0RRma+5CQ+2/CYVCmQWs+v/VqHVNTU1a3dGdXkiGfDEMJh3BhRi17UUbcia3GgEXBAGn04nNZqOhoSGTsWxsbKSsrGxD+9ypkldtxprGTmE0GonH45mso/q7C4VCBAIBYrEYr7/+ekYkp6SkJNPrmG+RPjnoo+PMOBa7AavTRDSUoPPcJI4CC1a7EaNJRyolYy/QYTCLBOdjGxb/CSxEeeOFYZIJCbPNQCySRG/UodMJhP2rBw5V9iJDme8YpXUuzHYD8XAS9Z9lSaGgxMbVV0YprnaiM4jY3RKzY0EWJkOU1bvz7j8WixGJRHLsYyKRyAjTNDc34ygwYzALLE6HcXgs6f8WWLC7zRs6/63aKLWl4/bbb6e/v5+XX36Zuro6ampqNtQXq94DtutQbqdPXUNDQ0Nj99i0df+TP/kTjh07hsPhoLi4mEcffZTu7u51X/ftb3+b1tZWzGYzBw4c4Ic//OGWTliSJE6ePMm3vvUtysrKuPfee3nxxRc5f/48w8PDxONxPB4PJSUlFBYWcs8993Do0CEaGxspLS3FbreveVP76sJX0ZFeTHXEOngt+hqiKGBzmmg4XEzT7SV4SmyIuvRNbTMO5f+Z/T85f4uIPDP/zLqvu5ElXbX7ivjF/3IcnSH9nlldJn79T+7HZDOka2CzFlGCKCCKAqlUCr/fnxmH0dvbSzgc5tKlS0xMTABQWlrKkSNHuP/++7njjjsIBAKcPHkSgydBeauNZFwiuBCjvMHD0Yc3VhYMW3e+1cVOaWkpd999N/X19fT09HD69Gmmp6fXff93uuRV49bkRttHgCtXrvDVr34VRVF44okn+MY3vsHp06fp6+sjFApht9uprKxEr9dz7733cuTIEZqbmykvL8fpdK6a8YmHk6SSUvq3D5itBqSkRCKWwmQ1UHvAS/PtpZTVudEb0k7GRm3X4lQYSVIwWfRISRlRJxANJjCa9RSVr92ffiPto8Vu5GN/cj82dzpjqNOL/MLjx6hsKQBBQJLSWTVJUhCXKg1kWSYYDDI5OUlPTw+XL18G4MKFCwwNDZFIJCgoKGD//v3cd9993HfffRgMBk6fPs2sf5zyAxYMRh3+uQiOAgt3/FwDFvv6SuLbVdCGN1sFbrvtNmZnZzl58iRDQ0Prlp1uR51WZS37qDmZGhoaGjeWTWcoX375ZX7rt36LY8eOkUql+PSnP8073/lOrl+/vurg+DNnzvCBD3yAP/mTP+Hnf/7n+da3vsWjjz7Ka6+9xv79+zd90h//+MepqakhHo/z2GOPceTIEZxOZ87NZmxsbE0V2HxkZycBBASenn+aT7d9jq5zk8yMBNEbRGRJ4fCDZYiisOHFzHxqnhdDL+Y8JyPzSvgVkkoSg7B2+ZB6DP9shI6z4wQXYhSW29l3V8WGFhPb4Y53N3DkHbVEAnEcHjOiTsQ/F6HgnI2J/kUUZFKpFNWH7Lz2xkUikUimH9XhcOD1ellYWOD48eN5b/xOp5Njx44xNzfHtWvXKGiC+qoyCguKcBZaMRg3VtK0nQVTdoZR7V9Uh39fv36d/v7+zPDvfMfYCWdQkqS8+9AWSzvD0NBQRlwkm/vvv5+XXnppR45xM9jHz33uc8zMzCBJEvfccw/33HMPNTU1OY5iKBRiaGhoU9+twnI7do+ZhckwDo+ZkC+GzW2m+fZSpof9zAwHMJr1JGIpGm8rwV1sJTrp21BLgN4gYrUbqTvgZbhjjmRcwmDS8dBj7bi8a/cdZl9DPJqk4/Q4c2NBbG4T7Scq8JTkf983w1rvU+1+L//Ptx8luBjD6jRhMOpIJiQqmwoY6phBERQSsSRFNWaGprrpHApnZm86HA5KSkoIBALcc889ectI9Xo9+/fvp7a2lq6uLgprjFSWuikpKsfhsW5Y/Ge79jH7fVBbBWZnZ+nt7WVoaIiGhoZVWwWy+x+3ihZw09DQ0Lh52bRD+eMf/zjn72eeeYbi4mIuXbrEffflVy398z//cx555BF+//d/H4DPfvazPPfcc3z5y1/mr//6rzd1fJ1OR3d3N9FoFKvVyvve9768g5jz9jbKEigSKDLISVAUEC2wdBM/Gz6bs7mCwvXYdez1Im//1X1cPzNBIp6iuq2Q/fdUZo6zEYfyu77vopC7nVt086XKL63rTKo38Wgowal/7mF2NIjJqmey30doMca9v9Cy7TEe612D3iBitAnMzc9lyrGcLRFCShRB1lNc46LlaBlOlwOHw5Ej3DAzM4PP51t3MVNUVERzczN9fX1MzA4z55+kxdiSkYvfyDVsN0OZjSiK1NTUZIZ/X758GbvdTnNzMx6PJ2fb3eqh1Ng5qqqqmJyczPw9NTXF29/+9lXt1la40fYR4J/+6Z+AdHniXXfdRX39ygz/VsaGOAosvPPDB3jhmx1EAgmchRYefH875Y0e3vnhA7zx4jDB+RhFVQ6OvK0WnU7ccMCtpMZFZXMBI13zVLUXIiVk9t1TyW0P1Wzo3BRFQZYVzv9wgP43ZjDZ9EwM+FiYDPHQr+zD5tqakMxGEXUiFqeeQNCXKVm11gWxBmKkogIlxTZa7yij0OvGbrdjsVgytiqRSNDb27tuL6Ddbmf//v289NJLBCKLzPZO0dTURIW1YsN2b7szfpf3L6ozIqemptZsFdAcSg0NDY23NtvuofT7/QAUFBSsus3Zs2d5/PHHc557+OGH+ed//uctH1cV0NnUnDVRB6g3bTNIEiQDEI+DLPMr4l2csHsBAzjKwWDALtpx6Vy4WqCqZaVjs1H5/UZTIyesJ3KeKzWUUmuqXfe16jFmRgLMjQUprXUi6kRi4SSTAz4Cc9EdicJLkkwimkJvEonHYzm9PKFQCEmSMkIdBQUFVFdX43jEseOz5YxGI8eOHWN4eJjXX38dj8eTd9D2crbrUK72Wp1OR319PVVVVQwNDXHx4kU8Hg9NTU2ZcQjbndEGqy+YtAzlzqDT6TIzPWOxGI8++ignTpzgj/7oj3btmDfKPsLaojyqTcn53koxkKJgcIGQf+Feu6+IX/2jewj749icxox4lqfExoPvb1+x/UYDbnqjjhP/rpGyBjfxcBK7x0xNe/5qgHzXoigKIV+M8b5F3CVWrA4jspye1zgzEqDugHfd/ayHIivEwklEvYAkJ1f0gycSCSwWSybzWFZWxvET9i2romZfX+Yclt7LO++8k+npaXp6ehgaGqKlpYWioqI136/dso+CIFBWVkZJSQkTExP09PQwMDBAU1MTxcXFOUGFnS55vZHzmTU0NDQ03mRbnoAsy3zqU5/i7rvvXrM0a2pqipKSkpznSkpKmJqa2vKx15uztqGFjE4HujczTXqgiUYILkJkGuQoyCGQx9PZTIsXnGVgfHOBsNEI/EOOh3jI8dCGri0fmQgxQkb8YSdupqrSY3ghxbf/8iTBxSjoUpS1Wyir8+BwOCgtLc0IG21nMPVmtlWduMrKSvr7+zl79ixlZWU0NTVlFGGXs1Mlr6thMBhoamrKDP8+d+4cXq+XpqYmLUN5i/HRj36UYDDIc889t2vv+Y20j7C2ErZ6zTm/GZ05XcXh74T4PMQDYLCC0Q0GBxg9YPJgMOpwr1OGqrKZ/kajWU/z7aUb2nb5MTL/H8gykJve13JkWSYSiRANJnn+Hy7jm4kiSUmK6o1UtXsywbWamhrsdvuWgmtbseOiKGacuJGREa5cuYLD4aClpWXVmZ+7bR+Xtwp0dHRkHEurNf192Y5DuVpLgIaGhobGjWdbDuVv/dZvce3aNU6dOrVT57NhVIdyvQj8lnB40o9s4nEITMDsJSAFsgyJOELvBEpBCVSWg2lt2fatot6Ei6udeGucTA36MZl1JGIS9YeKcRVt7LjZSo/qfyORCEg6Jq7G0CsiBV43yaiCzm+jrakVq3P7pWJjqTH6dH0c5ei62y5f9BiNRtra2qipqaGnp4dXXnklowi7fPG2WxH45RiNRlpbWzPDv8+cOYPT6dzScbPRHMq94XOf+xzPPvss58+fXzfrvR1upH2EjTuUORhs4N6X/v+KBMFhCI+ArwOSkfTzeisYbUuOph30LjB50g6nmFu+vy07vAkURcHuNlPVWkjPxSnCgQTJmIS3ykHJGiNHskmlUoTD4ZzMYzgcBmDsaojovI6iMifIOgS/nuripjXHmWwEWZKZGwsSmEoSmI+t66gvt1OiKFJbW0tFRUUmyFVSUpLjxK322s2wmdeqrQIVFRWMjIxw+fJlrFbrtscfaRUcGhoaGjcvW3Yof/u3f5vvf//7nDx5ksrKyjW3LS0tZXp6Oue56enpTPnZVllvwbSjCxmTCbx1QK6oh+g/hzLfB70/BDmVjvALAjgqwFkJthKwbK8cVY3ym20G7vkPzXSdmyDsj+MpsdF6RzmibmUZUCy2smQ1Ho9jNptxOBw5mcfZ0QBXf3yKg8fK0elFZFlhdiRAYD62bYdSVmS+EP0Cs7ZZHkk9glvvXnP71aL1VquVw4cP4/P56O7u5uWXX6axsZGqqqr82ZZNshWVVrPZzL59+6irq+Py5cv4/X46OjpoaGhYNYu6FrIs73j5sEYu3/3ud/njP/5jfvSjH9HQ0LBrx7kV7COkv3Or9u4JOnDWpx8A0WkIDkJ4HOILEJ0HQV7KBIrpMlmdGYx2EK1gcKILpdDFgyDFQbc7fYyqfRRFgWOP1C0JB4WwOU20HC/D6lgpWrZacC1bTKy6uhqHw4EOA90vPEtpVQGFJWkHcnLAT2Ausi2HUpZkOs6MM3hthvGRGBdS/ey7q5LyRs/6L16GwWCgpaWF6upq+vr6OHXqFNXV1dTX12faQ/baPur1+kyrQE9PD36/n0uXLtHU1LSlAJym8qqhoaFx87Lp1auiKHzyk5/ke9/7Hi+99FJe1cTlnDhxgp/+9Kd86lOfyjz33HPPceLEidVftAH21KFcBcFZiGz3QHPzm0/GorDQDzO9ED8NqUR6vIbeArZi8NSkezQ34WiqjpbDY+bYI2+KbMiy/OZ8x1CQUDC0er+jI3+/o96UnvcWiySxOU3EI0l0Bh0G0/YHRr8ceplJeRIBgX/0/SOfKPrEuq9Za3Hgdrs5fvw4s7OzdHd3Mzw8THNzMyUlJXsWgV+O1WqlvLwcnU5HIpHg5MmTKxZzG0HrEdpdrl27xoc+9CH+63/9r+zbty9TUmo0GtfscdwMN5N9NJvNq7YEqN/1TdlIS0n6AZAKLzmXwxCbBklO27hUBJJh0hOpJAyhEHbfLPSOgs4ARhfo0s4mBmc6s2nypLOeWyT7d2sw6Tl4X1Xmb0VRiEaj6/Y7qsG1fP2OkiSj0wvEI6n0pSclUBT0G1SfXo3ZsSAjnfPYC8zYo3qklEL3xUm8VY5Mb+py1rNTFouFAwcOUFtbS3d3NydPnqShoYHq6updL3ldDYPBkBHEstlsvPrqq5lWAXW+5UbPYT3hIg0NDQ2NG8OmHcrf+q3f4lvf+hb/8i//gsPhyCzKXC4XFku69PJDH/oQFRUV/Mmf/AkAv/u7v8v999/Pn/3Zn/Hud7+bf/iHf+DixYt85Stf2dbJr+dQ7sViPG+PkNkC5fvTDxVJAt84BMZg9CLEpiAppUvELB5wloKrElxVYHHkPYYkSW86j1klWYIgsOhc5Ou2r/NE8RPc1nRbTr/jwlSIyS4/s8Y41a2FK2TmXUUWPDVGwr740jBygfrDxXhKt5dZlRWZv5v/u3Tfp6DwXd93+WX3L6+ZpdzIZ6aqCxYVFTE+Pk5nZyeDg4NIknRDFkzq641GI4cPH8bv99Pb28vLL79MbW0tdXV1G8o8aiVdu8vFi+mRNp/73Of43Oc+l3l+J8eG3Gz2cS3RMtikQ5mN3gae/emHIkFoBEJDEB4DKZJ+ThAQFAFFEEBUQEpCZGZJ8GdpiK2gA+R0ZlO0gMkJegeYXEsOZwHo13c60iqv6X7HFZUZ0ST+UYFEQMDhstJ6vIa6trLMbzISTDDaNc+sNE9Zg3tF2alOJ1LaYiUyJjI54EcAyho8VDRtPpOYTSKWQl6avQnpGb+xUIJETNqyQ6nicDg4evQoc3Nz9PT0MDw8jMPh2FLlxGaOuxqqM7i8VaC0tJTGxsYV5bmr7UOzjxoaGho3J5t2KJ988kkAHnjggZznv/rVr/KRj3wEgJGRkRzDf9ddd/Gtb32Lz3zmM3z605+mqamJf/7nf97SjDUVtYdyNYdyr3p3NnwcnQ4Kq9OPurvefD7kh8AozPdC/8sQnAdSJGQjIb2boN7OTFAhZipiamoKg8GAw+HAbrdnso4Wi4X/OvFfWYgs8H3x+9zpuDOz+7HuBV78++sEFmMIApTWuXn4IwdyZPRFUaS0xURLTSPRYAKLzUhZoxtR3N6N+uXQy4wlxzJ/J5XkulnKzSxcBEGgtLic0tJShoeH6enrYXBwMPP+bIatlHRlk+2Qulwujh49yuLiIj09PYyMjFBfX091dfWaEXYtAr+7fOQjH8nYqN3iZrGPwJqiZbCDVRyCDhx16QdAdAZCAxAeQxBjCAogC+lWAFEERQBBWXpOSjuYSgKkBIQC6X9TAJT0tohgsqeFgQxOMDqQRAehpIFgFOYXFojFYpw8eRJBEHKyjna7nZ6zcwQC83hc6eqL/guLeEsLcXv1BBai/OSZa8wM+1EAV5GVt32wnbI6d84lFlSZaD9QjRzXozeIlDV4Mo7gVrE6TRjNegJzEaSkgn82QkGpbcNzJTeCy+nhzjvvZHJykiuvX8Ng0lFSUkJRUdGm9rNd+5ht17NbBdTy3MrKSurr69d0eLUecw0NDY2bly2VvK5Hvmj/L/7iL/KLv/iLmz3cmtwUJa+bUDHMh2JzEtM1EDKUELQFCdqDhObniftGMDOPgwmMLGKITLEvUoPRVYogVYBUAEoVKCY648Ocj5wH4FT4FH3xPhpNjQCc//EAIX+ckhonUkphom+RrvMT3P6O3FI8QRSoaPTsaLT3+eDzmCfcWEeKEGSBaPkizwnPrVv2upFzGO9b4IW/7yAwH8VdbMP+njBfrvgiv5/4fc6cOUNFRQWNjY0bluzfbgQ+34LL4/Fw/Phx5ufnM/L+ak/RasO/lz+/XSELjb3lZrOPq2UoYRerOCzF6YcXUrZxQoEXwFYE8al0L6WgAwTQienKDbLstCCCrLzpcIoKiVSC2LyfWDxOJB4jEY2RSCTQiwImmxO33ooYVWjYdxiLzYtg8qRHn5jcxCISs2NBnEWWpSCahckBH4tTYdxeKx2nx5ka9FFc7UQUBWZGAlz6ySA//4nbVlyWp8y6Yv7sdigss1PZ4uHiTwaYnYjj2S/RcqwMnX51p2mjdiqwEOX5/+8qkwM+UNJZ2IAvhMEsMDPwKs23l9Lc3LzhXsadqOBYbtusVisHDx6kvr6e3t5eTp48SU1NDXV1dXlbBTSHUkNDQ+Pm5ZZWANmtkteIHOGJ8Sf4SOFHOGpdW5lUEAQWJ6N0hSZwFVkpq3evuu1qJVn5+x3vQ6/Xk4ynOPfCdYL+EHW3V2DST4GvDyY6oe80xBc4xXMcZxo/IlGbh2/HPs8fNP8lssFE2BfDbDMgCAJ6g4AoCkSCq2ctdpIPxz9BU28noUCEWCyGJ+zhUOnag8o38pkFF2P84G/fwDcTxuYyMdYzT99THcQeS3K28Cy/1/J7mQVKXV0dtbW165ac7sSCKd/rBUGgqKiIwsJCZmZm6O3tZWhoiIaGBsrLy3MWSNqCSWMnMZvNLC4urvrvW6nikCWZ7guTDF+fR6cXabq9dM15kYLBxnysmu6pZkxmgaqqCLroCETG032YgpDORgoCChCLxYkl48TjCWLRGLFYHCmVRG80YDFbsRjMuF1OLBYzRl06kzfWP8v0TD+dnOI9dY9gEQ1pp1QnopNNFIo+ZMmGOVFAAhtGUUAU09cd9sfR6cWME2eyGggt5r+n7DRhf5z5iRBWpxFbXI8gwNSgj8Jy+5q2aD07JUsyz371Mv1XZrA6jIx2zZNKSlicBlJxmYGXktS16Hj11VcpLS2lqakpU469GjtR8rqabbPb7dx22205rQL57LZW8qqhoaFx83JLO5Rms3ndktet3Ai/5/se12LX+PLsl3m6+mnEVYZ8A3SdnuXC90cRlDGMJh13/Hwj9/1CS45Yjvpftd/Rbrdjt9szJVk2my1vqWMskuRfv/wafVcmkVIyQ+ei/NzHD1Fz2x2ZbXp8l/nh5edxLJqwyXFKwvPEev+Rwd4QdbY2KmrijL0uopgbiCQLEEQbhWWbKwfdKskJkSKpmIpyBb/Pj8NUSGrYAAfe3Cbf57Pe5zU97MM3E8Zb6UDUifiNC8hjeszTbp6zPccnjJ/gtttuY3Fxke7ubkZGRmhsbKSysnLVRc1WSrpkWWHo2izhQJyIHMVRtHqpmiAIOG0emqoPEEn66e/vZ3BwkKamJkpKSjLfV82h1NgpdqPktfPcBBd/PIioF5ElhdnRADp9C1UthXm3H+/28eo35ziX8iHqRBpuK+Y//M696EoEIgsj9E0/jz4whS0cIxqNoyhgMhswG03YHVYKCouwmvTodUbSPZcsqcrKKIpMx8UpRjpnWIwnSZpsnA6/wdsPH2NpIiUGMU55ZYyp/imS0QEURaax3Exxqg/67NS64wSsixiiHlKCFSWmp/RQ66bek62yOBXGPxulrMFFVJjHU2JjaihA422pnLLXbBu5kYBbyB9nctCXHielgKwoCKKAIILVZSQWSKKPu7jn3hZ6e3tzRjEZDPlt2FZLXicHFpkbDyKJq2fKVaxmOzWlzZQUhpmYGWF4eDinVUCzjxoaGho3L7e0Q2k0Gjc3uHsDROQIf7/49wAMJYY4FT7Fffb78m47Nx7ktR9NIEsKrkIj4UCck9+9TkScxuSRVvQ72u32zDyujXDlpRGGOuawuU0opAguxnjhW9f5yGfvzezDZHVT0/BzpJS0AmEUkGQdBsMvQyjFUbqIRS6RHHmdIl2ExnuraIkdgGtV4KwAR21a+GIL75VvJkz/5RkSMYniKid1B705fZeCKKDILGUgICJFiaR8QOOb2yw73kbOwWDSo9OLJBMSRrPAYHAYRQeyMf0efH3u6zxR/gQej4c77riD6enpjDBFS0sLXq93S8fNRkrJ/POXL3Lt9CippIxoULjzvZW0t+ff/trpUZ595grxSBKL3ci7fv0QtjKZzs5O+vv7aW5uzju4W1N51dgqZrN53ZLXzTqUg1dn0Rl1maDU1KCPse6FvA6lLCu8+M0e4iGJwnIbiWiC66+OgS1EcZuOpJjkiyX/F3Ohmb+o+P/h1S1glecQY3Pp0lhIi8XKAiipdDZTENIOpSwwOxVMZ9/0EnFjCF3MwOQbQeZrQhS6HKS9KZnycicmvY5oOIneIOIusWGx6CEVoaZOJh6OMD80iaxA7QEHzS1z0Hd5afyJHYwOTLERiBWAZF11/ImkSPzBxB/woONB3uV8F7Fwkt5LUwR9MVyFFpqPluaK7QgAStpGAsHFOIloEt9chFJb/nEkG7KPRh06nUgyLmGy6BEQ0k6lICBLCoIAJoseq9XKoUOH8Pv9KxRh89mhzQZmz36/l59+8xrxSApRr1B5yMrdd+ffz8TAIv/y5YssTofRGXSceE8jB+5N91iqFR357KOGhoaGxs3BLe1QbnTO2mZuQt/zfY+wnB5mLSLy9PzT3GO7B1EQM/Md1Yxj/xvTxMJxjHaBWCyKwSwS8Sm4rF5uv7sBo9G4rXKc4GIMUDAYRRJJAavdSNgfJ5WUMSxJ1tcYa/hS5ZdW3Yez+T4eTskE5qPoEmEc4jTCQj/Mj8LANUjNAQJ6FuF8P3hrwFEDziowr66855+L8OI/dDI/EUKnE+m5MEUkFOfAPW9K9hdXO5no9zE3vkAkmqDD8Rrddee4J9WGV+/Nu9+NOFAVjR7qDnjpe32aQCqInNIRbB8jWrYIKPzb4r/xseKPUaAvSAv3lJZSXFzM2NgY165dw2az0dLSgtvtzjnuZr4n18+OcfWVEUw2A44CPXMTfi78yzgPvCeBxZ7b/zM7FuCHT71BPJLE5jIRXIzx/b99g4/9rwe47777GB0d5cqVK0iSlBmkrqGxXYxG47oZys0GLNJBovRrFEVBkdPZL5VEIpGxj3PTPhZmAuhNEI2E0en1oIBBsXH8+EH+LfZvROYjRIhw1d3Pu5zvSu9EkdLjSIIjEJkAJaSecbqUVRRBgHhcQpEFwlYfggSSWUIXF7nm6+R+57ElB1RE1Al4Kxwgy+keTUEERQZBwKDX0X64lHBTEaQULHY9OkFOjz+RIsAshMAR6UM3NQkB25IirR1MtqXxJy4wujiZeIPzkfNcj13nbuO9nPvuECOdc4i69GzfuYkQ97y3Gd3S3ODCcns6KzmyyHRPjOnYOGa7kVe+082Rt9fScKg4/2ewzj3FYjdy+MEazn6/j2gwgcGsQ4kqJGMSUlKmtr2YlqNlme1dLhfHjh1jbm4uZxRTaWlpzniZzdzL5idDvPCtDmRJxlNqJbgYYfBigMFrs9QfyL2uVFLiX758kelhP44CC4lokpPf6aKk5k5OnDjB9PQ0fX19RKNRPB7PpjO2GhoaGhq7zy3tUK5V8pqdodwoUTnK3y/+PUpaYhAZmaHEEN/u+zZNwaZMv6PVasXhcFBWU4TJOkUqJuEudSwppOqpaSzdsBjMWnhKbAiCQDyaQlZk4pE4lS0F6A2bi9Lq9CKeEhtgA4qhIqvmNJmEqV5SF/4FBAP0vwahnwARMHnB4YGCanAtPRxeEARGuxZYmAxTVp9Wg12cDtN9fpL2Oysy/UhFFQ4OP1hNx4UU3b4prtecJlqxwLcWvsXvFv/uque73sJFb9Dx879xhCsnR+idHiJqHKTgdhPOQCsOqwO32Y1eyP1qi6JIdXU15eXlDA4OcuHChcwsNJvNhizLq5Z75cM3G0GWFczW9GtMNj3JuExwIbrCoZwZCRAJJigsS3+eLq+IfzbK3HgQt9dGbW0tlZWVvPzyywwMDLCwsEBzczMul0sT5dHYMhaLZVX7CFvroWw6Usq57/czPewnlUyhNwvonDEuX76cHtERj2M2m3E4HHgKHbgKrcyOBSn0OkgmZAwGgcr6YkSzyDcnv5k+DwSemX+Gdzjekf7dCjqw16cfALE5CA1CeASiC5BSQBSw2kykxCSJIChmEX3UiKRPcpU3uEM5hFkykC6TFZaUZUUQ5LRTipB2KkURQQa7VZ/eLn1C6awoS2q0ioIsCmm1WgSQopCKQ3wmkzGVdCLdc0/xTiVMhBlOjX4WebSG2uoiBIOLUMTKSOc8i1NhiirSY6EsdiOHH6rh4vMpul9TqKh2Ulrnwjcb4Y0XhymtdeWoccPG72cn/l0z7mIbMyN+jGY9qaREX+cIriIrP/erd2Ky5to6QRDwer2ZUUxdXV0MDQ3R0tJCQUHBpjOU/tkIyXgKu8ecVmS36omEEvhnIyu2DS7E8M1GcHjMmCx6TBY985Mhpof9tBwto7S0lJKSEs6fP4/P5+PUqVOZVgH13DU0NDQ0biy3tEO50QzleqjzHaeCU3gkDwbZgLxUh6QTdCCwar/j1L8LcvafB/HPRjCY9Nz175sob9wZJcCD91cxOeij48woiUSK8toi3vGr+3f2BmowIJQ0gvsOOPZAOvoP4J+FhQHwjcD8GPReBMUHGMFdguQTsSCiExpRqEJnSPdUybJCdjdoUYWDRor4ZuD/kND7AfhX/7/yKwW/kjdLudEFk9Gs5+g76zlKPR/gISCtnnmw9uCaQ+r1ej1NTU1UVVXR19fH6dOnqaqqIpVKbWpGW2GZHVEnEA0lMFn0xEIpbC4jzsKVWV2r04TeIBKLJLHYjMQj6dI7q+PNxaJer0en03HgwAEWFxc5f/48hYWFNDQ0UFiYvz9NQ2Mt1moJgI2XvGaLiWEPUtSuMNUfQBQUyltc2IpEHA5XZoxRtpDKI79u5Nv/+1X8czFEnUDzsVIOP1TD9/zfJSAHAFBQmE5N81zwuTezlNmYi9KPomPpzGFwAMKjFJZNUXDIiP8NHfqoAcWcILxvDpNdTwIJs85I2nEUSCvJ6tLlsupYEt3S3yJLWcu0o4qsB6T034pCulaF9GtkaWn8iQLS0pOiyPVoFz45gCBJ2ASRwYWX2Wc4gcswBSK4zClcFgndRA/IxUvjT5zYjW7KqgTMdiFz33B4LPhnw0RDCWwuU46936hjJ4oC++6qZN9dlZnn3JeT6bYLx0oFVRVBEKisrKSsrIyhoSEuXbpEQUEBLpdrUxUcnhIbRouesC+O3WMiGkqhN4gU5Onft9iN6A06YpEkRoueVDL9ncw+T0EQsFgsFBYWYjQa6ezsZGBggPr6esrKylbsU0NDQ0Njb7mlHUqz2bxqSVd2qU42yWQyRygnGAwSiUQwGAzY7Xb+0PGHOFyODfc77r+/HL07QVlBDa4iK6V1+XtftoLeoONdv36IqkM2ZqfnuPuhozs6o2xNXN70gzcFgIhGwD8G8z2U+LoZcr5ObPRF9GYdlpAV79E2DH0z4K4FVw3Y0pL0vVIvPfqezG4UFL45/01+3frrBINBXC5Xjhz/Vh3mzUTRzWYz+/fvp6amhp6eHubm5kgmk0iStKFZkK13VHD7O+p5/YUh4pEYJquOe365Lu/nU9NexP57qrhycoRIIIGoEzn6jroVisCKomA0GmlpackM/+7t7dUcSo0tsZZ9hPwOpRpcW0tM7NDd9dz98OpiYtlUtxVy+y+5aKw4gNGip7KlAJ1O5IeTP1yx7Y8DP87vUGajt4Jnf/qhSNxT+hCNjW8w2nmW9pZKbDb9m86hzJs9l4KwlJ1ccgZZKntFZGnoJWrPJbK49LSQEQBCXtpKFHKdT0QUQeJ0+AyCoiDoRISURNgeIGwLIMyLmMw64lEJZ7EFuyUO4aXZvIIAkoQnFqK9dBBb4DpGewELAYFidwEiFUxPR9Dr9Tnlp1tlM2X9Op2OhoaGTOCtv78fo9FILBbbUODNU2Lj4Y8c4sdfvUxgPgaiQuu9BVS3rrRlZpuB+3+pjef/v6ssTKVL/mvbi3LaJ+DNOb3V1dVUVFQwMjJCb28vxcX5S4M1NDQ0NPaOW9qhVG9w+VCdC9VRUBdH2SVZdrudkpISHA7HlvsdBUHAXqjP6UnZSURRoKjShmwM750zuRoWK1iaobSZ0n0/z+Hrc3ScGSERGaWiNcChQgkmuqDrZSAMggOcxVwJvkipbYig203Y4UDWwff93+e2rttwOBz09vbi9Xppbm7etjz9Zl/rcDi4/fbbOXfuHOFwmJMnT9LU1ERFRcWa+xJFgZ//jds48lAt4UCcmcAolXX5HT9RFHjPJ47QdFsp/rkInhIbLcfKV+w/u9/XZDLR1taGJEmbuh4NDZX1RHkAQqEQw8PDGfuoBte2IyaWjSiKmOw6Go+U5Lz+j0r/iNHkaM62dca65S9fG0EH9hoczUWE/S5s+/ZDaCA9kiQ2tyToIy+J3+iWHEg5nVkUl5xIQS1/XcpGKjrQKWlnUlSzmyKCKKYdSmXpGjIOJSCLOLAhCnK6UtYgouhkCg4YcYzYifhTFNdbqWoowmBI7y99LEDUYXMbcFcYkHx+/FNz6HUS7gID4xcuYra5iFLAuKWMhkMPogiGTX8O50LnKNIXbanf0Gg00t7ejsFgYGxsjFdeeYXa2lrq6urWHcV0+9vrqG0vYn4yRCC6gM6WWPXcjz/SgLfSyeTAIhaHkfY7KzBZcu932fZRp9NRV1dHdXX1ploVNDQ0NDR2h1vaoTSbzfj9/kxJ1vLIuqIojI2N4XK5cLvdVFVVYbfbd/QGJAjCnggD3IhjzE+EGO9bREpJFFU4qGj0IOrejHDXtBdR014EHMk8J8sy4XCY4NQ4gaHLBP19VOOgNOjFGEyhJ4VCAcXOdo5XJRDcdmRHM72j45w6dQqXy7Xl/tPtzJI0Go0UFxdjNpvp6enJ9A8VFRWtPmNPEKhoSpfXBi9NrBn91+nFnPKzfORTMdT6gzS2iirKs1xMLDu4Fg6HcbvdOxJcy0e2eEr2PmtNtdSaanf0GJnSWIBUFIL9EBqB2AwoybQDKrDkFEqgiKT7JCHdaylmOZpS2rlcmpOpCDKCKC71WaYFfSKRJAsTIRIxmbc530VBiR2jYUmJlqUsqFcCvZjJliqKQDQaJp5IEIsniMbCxCJJHAV6xAIdesGMw2nB6bFjMZgQdQKCIDI938XQi+cw2bxYcJMKN6Gzlq37OS2kFnhi5AlKDCU8oTyx5c/VYDDgdrupq6uju7ub0dHRdUcxARSWOygsdzAwECUYTK15jLr9Xur25xdrA80+amhoaNzMbMmhPHnyJF/4whe4dOkSk5OTfO973+PRRx9ddfuXXnqJBx98cMXzk5OTlJaWbvr4g4ODPPvss7zwwgv4fD5+4zd+gw9+8IPY7XYcDgfFxcU0NDRw+fJl9u3bh9Pp3PQxNspeOJR75bRm45sJ03F6jHg0hV4vMjcWRJaUJQcyjeo8BgKBTPlwKBRCp9Nht9tx1t1OteMBCpe2ObxvHyyMgH8U5odg6BKEn8dEnP1mN9V6O68PhgjiZdwkUt56YMMLhsB8lNB8Cim5OZERFbUcrKysjJKSEkZGRrhy5QpOpzMjkLMWOzEjLd8+NFGeW48bbR/9fj//+q//yv/9v/8Xv9/Pgw8+yB/+4R9mxMQ8Hg9VVVWMjIzg8Xiorq7e9DE2SnbrwW6OfFhhH/WWrNJYeUnQZxKSQUgG0gquyeibDqZa/qoAyCCqpbzp7KWgOqGyDDqIxVJM9C4SCicwmkWCY1ESsRSVDQWIYnqsiYJEVJaILQaJxWLEYzFisTiyAmazAbPZgsvhwuWG6YlZ2lvq38x6ZpfsCiIlxaUUeYoYGR9DH5xg6uIsJcXlYKsAeyU6ex2i0bHiffnm3DdJKSkmfTOcmX+Nd1nftuX3VxAE3G43x48fZ2ZmJifwVlxcvKad2i37qKGhoaFxc7AlhzIcDnPo0CE++tGP8t73vnfDr+vu7s5x7rba+/D666/z3e9+F5vNRmlpKf/lv/wXWlpaVtzQtjJnbbNsRXp/s9wIh2JhKkwkmKC0Nu1ILc6GGbw+hc6Zm+nIOI9OZ0aUw2Kx5Jzz2NhYeiFgMEBJQ/qRTSoJCyM4Q6OUv3EGH1fpvfw8I5eNlNOMnkocTW04ahrBVYGQlWGWZYXnvnGViz8ZIBQIMXL6HL/8X+6iuGpzQYTs7KYoitTW1lJRUcHAwADnzp2jpKSEpqYmrNb8o1S2kx1VX68eW+PW5kbbR5/Px5NPPonX68VisfC//tf/4o477ljR7zgxMbHr9nEvxjusG3ATRLDXph/ZSElI+iHpg0QQUn5IhtPPpaLp2ZdLFbFpIR8h4/DFIkkikSROtxVRgKQuhW8ximluAYkU8ViUaCyBKMvoTWYsVhMOl4sSrwWzyYBoWBqBoghEYrGs8lqWVGiX+jhlCfRpxVmdQY+3yEs8FicYDLEwd43CwmkM4nUMegP24mKwlCE4qtHZq1mUA3xn4Tu4Xq+h/Pu30xlLEHRc5hd+x0LLsfJNvcfZ9k0QBEpKSvB6vYyNjdHR0cHg4CAtLS05vfCrvX6r5HMotbEhGhoaGjcHW3Io3/Wud/Gud60jnpCH4uLinNl/W+W9730v733ve/n85z/P2bNnaW1tzbvdXjiUb4WS13y9fJFImEAwgDQRJhaNsjgbxmjR46xPrOk8bun4VhtY24A2BF0d1nic29va+Om3X+YfnzuFSRim7HIPhw9ZabLrUfRGcJaAp5qrl+HVf5tFb3ShMwhMD/r557+8wMc//9CmziufYEUqoTB0NsZgh0API3TvG+XgnY00NDSsKJve7BzL5WgO5VuHG20fa2pqOHPmDGfOnOG9730vJ06cyPtb2Mtg2F7Yr033X+sMoMsqk81GUZaymYsQ9xMbV5AtHjAJKKkoiUSAeDyKEkqQSiaJRhPISRmjx4HLYcHpclFSbMFsMqZ9UGWpDFZYGkeyNMsTUVjqzeRNfSBV9EdYmpupZk5FUJAQ9QKNdfUMD0zy+k+HkeJgspuoblig6eACiq+DlGjgZPwCzeMJrD9oIxoxkrDGWPQH+ef/c4nf/IIbl3f1OcMr346V9k2RYeJqnIHTEIvN01PzCvvvraSlpQWbzbbu6zeLKsqjoaGhoXHzsac9lIcPHyYej7N//37+6I/+iLvvvntb+1trbAjs3YLpVnZaZVlOjwMAenp6CIVChEIhkhGQBZnAtB6L1Up5qYcDd1dT1bJ5xdG1zn35AlBdFC5Mhhl+A5yeE0hijO6JEFNRB95PP4DbJsPiKPhGmI6+jJdeCl1GZoUYslhOZMJLdLwFyzrCOvmOm/33D/72dTpfncBo1pGMScT9BgqL5xgfH6e+vp7q6urMAme75Vjqd0hbMP3sstP2cafGhmyHrcwD3ixr/cbjchyDYEAUNvnbFAQwOlEMDiJE8BsDkHIxsJBWCZdiJQSVIMJMBKctid4Qp7rBRHWjGTEVTfdgCsKSaixvzrhEHWEiZFReEUAQlzKgAqT7OwVQ9Kj9mioKQrr8VlaY7I0iiiYMBRALRujriGMrMFFe5wFZYcB3lmafmSLPNaLlSQIpF/FoJYnFNmbGApt2KJe/z+d/3M+L/3A93WYqKwTnBIqKo8zNnaayspKGhoZMP/xOlbwuPwetJUBDQ0Pj5mBPHMqysjL++q//mqNHjxKPx3nqqad44IEHOHfuHEeOHFl/B6uwEYfyVnb2so+xXVJJif7LM/jng1gKBAwOKadsFdKzELMzj/65KFODPlJJmcIyOyW1Wx+JslnHLjAfJRpKl9wKggO7w8FY/ywvP3+G4w/sp6yiHaFyH+buOqakq0RTVoKpEfTSAoWuAKbBH8KojCIKIJjAWQGeWvBUIxhXiv4sX6wEF2MMXp3F7jZhdZhQFIXZsSA2pYTGQx66u7sZHh6mubmZsrIyreRVY8vsln1cb2zIXgXDYGPzgLfLcqcnpaT46MhHOWQ5xBMlT6z72pHOeWbGF9GZZOylQo64G6SvobS0lKamJmw2G/FIirGeBWLhFM5Cc1q0zKhLO5EpPyR8EA8sldKG0hlPKQJyYikTKWREfwRFYUl+dmkWsJIWCErJ6Wyljjd9S0EgEk+SiMWxOYwYjHqsFjMLkz6GBkfRm1MUFxfxIddjjARn6TEs4BDtFBpT6PRjCPZpXPEYyckmBEctOlsFwjoOdz771nF6DFEU8JSks5GzYwEiU3oeec9d9PT0cPLkSerr66mpqUGW5XVVYddD66HU0NDQuHnZE4eypaWFlpaWzN933XUX/f39fPGLX+Qb3/jGlvdrNpvXdChv9exhNps9hizLmQXR4oKfU38/xHRfGEUBs03PsX9fxf673hxEfurUKerr63MyZG6vFfcmotg7ic1lwmQxEFyM4fCYiYckissKaT1Qm3Hm2trauP0ddVw/M8bEwCKxmB2Hq4QTH7wd3b01JOQEg/FBmlMl4BuD2W4YP4Mi6tOKj3oLOCqhoGFFSVZmrbf09VGW6tIEBIqKiigsLGRiYiIjTJFKpbadodSi7T+b7KZ9XGtsyF4E3GD3beRqZbXPBp5lPDnORHKCD3g+QJXxzbmGiqIQiUQIBoMEAgEu/WiEvlcXkVIKeqOe5hNF3P0fGjLO44ULF6isrMyZCWuxG2k6kkc0SRTB6Ek/7HlOOBVJO5sJHyQDKP5pJGMQdFZQYukEJiyNPFFFepYesoAggMWgw6A3EgvHMRr1yEkwWyyUlxXhD4VZ8M1TWlbOgbpGYo0DTPb7IAGKXqD2QBEeR4zY+GXikXMYbVYshVXgqEBnr0c0uVeccr6SVUHM/VwVJf2c3W7nyJEjLCws0N3dzcjICFarddX+yo2yvORVURSth1JDQ0PjJuGGjQ05fvw4p06d2tY+1nMo30qiPGsdI9t5VBVXw+EwOp0Oh8PBbE+SxdEU3go3JosR33SE3lcC3PuuQoxmPclkEti9srTN7FfNMpTUuLjtoVpef2GIqSE/FpuRYw830HqghsZUNYODg1y4cIGSkhJ++Q+O03dpltcvXuah99xJ48G04MST00/yjwv/yDcavkFD1X6o2p97rMA8+Cdg9AzK8CWEVC1KsAQEE3Z3LS3HSrj80hixSBIpJeEpttF0e3oBKQgCFRUVlJaWMjw8TE9PD729vZhMJhyOlWqL67FW9F1zMn/22An7aDKZkGWZVCqVd1SSKIqkUmuPctgJ9sqhTCgJLoQucLftbhQUnll4BgEBEZGnZ57mE/pPZGxkKBRCURTsdjtS2MDYlSgOtx1ngZWIP8HE1QjCI1YcFZv/La+L3pp+WNN2SjYFWJwqhKZ7QE6lRYLiviWHMwRKJC0SJAWRBSkd7DKINB4uoff1CXzzEXSiSHmjh9rmQsDLYiDI5OQk8/p52u8so6zGzdjwFIVeF00Hy5mbjDDcNUMilsJg1FHZGKK0dgxp+hySwQHWUgR7DaK9GlFnylvyevjBGp77+hXmxoPIsoLZauDAPW867QUFBdx5551MT09z9erVzIgar9e7JZumZSg1NDQ0bl5umEP5xhtvUFZWtq19mEymNUu63oolr5Ikpec8ruI8OhwOamtrcTgcmM1mBEHg7Ggfev0cFmu61NPqMBKPJomGEhjNK78CiqLQe2mKqUE/BpOesgYXqaSMTidS1uDGbN38HM/NlLyq2x97pJ6q1kLC/hjOQmtGuVWv19PU1ERlZSU9PT1cfP0cdQ11VCvWTI/nXHKO7y5+F4CnZ5/mf1b9z5Xn5CwEZyFwAHneidDcjFBcjOKbg8AIjzwQwu0KMjXow+yycPxoJR537oJGp9NRX1/P0NAQFouFs2fPUlZWRlNTE2azecPvj7ZY0shmJ+yjxWIBIBaL5XUo96KCA/Ym6AbwHd93+LvFv+P33L9HMBpkNjULgITEi5EXOR46Tr2tnrKyMpxOJ1arFVEUGbgyA/I4DpcFAQGr08jcRIiwf/Vg5eSAj/43ZlAUhbJ6N6JOQJHBW+3AWWDZ+kWIejAVpR9L6A2GjP1MjfURjF5FKG3AWxDEVjpFYH4Roy5CQaFhqQcTPB4XHoeN6Zl5hoYHcLkLKKox4S12EovIDHfOkkopOAqtRINJxvrmcBSasNmNacXbZAgl2IckiEgGD3p/EqxVKMqbaupH3laL3iDSdW4CUS9y8L5qmm/P/c4KgkBpaSmTk5MoisLVq1dxOBy0tLSsO4ppOZqN1NDQ0Lh52ZJDGQqF6Ovry/w9ODjIG2+8QUFBAdXV1fzBH/wB4+PjfP3rXwfgS1/6EnV1dezbt49YLMZTTz3FCy+8wE9+8pNtnbzJZFq3pOtWFuVRncf5+XlisRjnz59f13nMR0GZDVEUCPlimKwGgotRiiqd2FymzDVk8/rzw5z6Xg/JuEQinpbOr2jyYDTrKalxcuLfNWG25Xcq02VIIIpbz6ply9OX1blX3c5isXDo0CEWFxfp7OwEYGZmhsrKSr45903kpXrVFwMv0h/rp8HcsOq+sku6BHcRuIswAPe2ZG0TXATfIArK0pw6EfQG0DlBUairq6O5uZne3l5eeeUVampqqKury7uYX44mif/W4WayjwDxeDxv1vxWL3lVy1Z9Ph9xIc43578JAvzd3N+lbYhIRoxHFmSuV1znXSUr1Xc9JTYsdgP+uSh2j5mwL47FZsBTalux7XhinES/gWefukbYF0NKKSQTKYqrndjdFpxFFu78+QYKy/LVuqaRZSXHPm7qvdHbSRlL0RccBMBVCqpbpkgJ5PgCSsKPsjQKpcQWoKBkkcnxAWKxBAF/AKdFIJmQsBeY0OnB6tbjn44Sj0jY7MKS2qyy1NKpQGwWfXgaY7SXVE8vWEoQHNWI9joO3V/DoftrNnTqBQUFHDhwgMHBQc6fP4/X66W5uXnVUUwr3zdtTq+GhobGzcqWHMqLFy/mDOJ+/PHHAfjwhz/MM888w+TkJCMjI5l/TyQS/N7v/R7j4+NYrVYOHjzI888/n3eY92ZQRSdWk4u/lXooVedRzTpmZx7VTNdGnMd8NB8t5fZ31nL5pVFCizEKyuw8/GsH0BtWKopKKZlLzw0iigLFNU6mBnwEF2IgpKPvU0N+Rrrmab49t3dIURRee36Is//aRzIu0XC4mHd8aD8Wu3HTJa+bjUJ7PB6OHTvGT3/6U3p7e+mc7OS7tu8iLzUj6dCtmqXMPu5676ng8IAjtw9IURQILaD4xxFDVVhcbg42VBAocdHdN8bJ0VEaGxupqqpa87q06Ptbh5vJPgKrtgXsVeZwJ2yk6jxm28fsstUL9gvExfR1+vQ+7rffj1nIrRA4bjued9+eEhsP/Uo7L/59J6HFGCarnvt+sZWiZeWuE6kJPjX8KR788Qex+EoprnayOB0muBglFknSeKSE6aEAPRcnOfGephXHGeqY4/mvX8M/H6Wk2skjv34wc4ytqlFnI+iM6KylYM21zQagrk3mzMs/IiaHGF8IEEgZSPkVHAVJEv4gBoMek4k3m8ZZmrmpLAXPUikUoxGkOARHUYLDSOIZJKMLLKVL4j6VCGL+JYVq3wwGA83NzVRXV9Pb28upU6eoqqqioaEBo9G45nXvxOgRDQ0NDY3dYUsO5QMPPLDmAuGZZ57J+fuJJ57giSfWVtnbCjeD6MRWFkuSJGV6Hpc7jw6HA6fTmeM8Li4u0tPTs+VB54IgcP8vtXLw/ipioSSeUhsWe/6bdyopI6Vk9EYRRVaQl4QWZElGpxcREEjGpRWvu/STIX789BUUWcFo1nP5pRFkSeHRT94OpNcp85MhFFnB5bViMO7OeIy77rqLJwefJCWnlsa+CemSt8CL+FI+3Hp33tdtVaVVEARwFCLZS8FZRq9ukiZzE05bIcdchcwuzNLT28PwYD/NLa2UlJblPc5qDqUWfb/1uFnso06nQ6/Xr+lQ7lWGcjPHWc95dDqdlJeX43A4sFqthKUw/33gv6crBwABgZ5YD9+o/QZ6YWO3uPYTFVS1FhKYj+IoMOctW/1u7LtISPT5BzlgKF66LhB1IlIy7egZzTpioeSK1471LPBP/+85oqEEJpuBwWuz/N8vXeTDf3xvZhv/bIRELIXdY86xzzthA0RRBIOLhuZjJBIJzixcYbA7iWXOjsNl5cBdXuwHLAipAHJ8EVKhpdLXIKTi6XdWt3Qe6lxNRV7q9VxE8XeSQgeWErCWo3PWIpq9mePLskwiIjHSOYfRoqe42sWBAweorU2LrGUrwuYbnaSpYGtoaGjc3NywHsqdwGg03vAeyuw5a/lu/Ks5j3q9flNlq9uN8AuCQEHp6mVYKkazjsrmArovTKIokEqk56QZzXr8sxF0BhFXUe5ia3LQx2s/HSIaTmJ1GBF0Akaznr7Xp0klJRKxFD1nFugKhpEV8FY6uOPdDZmS2+XXme898M2GGbg8A0DdgeKMVH326wAMBgOPNT5G6XwpMzMzBINBvF4vtd5aHLrVBTa2G/1WFIVXY6/yhzN/yB+U/wHv8bwHLA6KKxwUldUyMTFBZ1c3g0PDtLS0UFBQkPN6TZRHYzdYa7TSXvVQrhV0UxQl0xO+3HlU7WO285jvN3Ih9GZ2EkBBYTI1yfXYdQ5aDm74PB0eMw5P/r7nOXGOlxMvAxCqn2J+ZAHznIlUMoUsKVicBkK+OPFICm9Vrp3xz0U494N+AvNRzHYDggI2p4n58RCzowFsXoGJjgjTFzpIxCWcBRaOPlxHcbUz7/uVzx7Ewkl6XpskHklRXu+moqkg72sjRKitrOW9Hyrl8sVOBntGqKz1UH97FXqTCahguTunyBKhyCu4LAIUOyDhh1QAkuH0Q0qBoIAiQXgSopNIcxeQdDawlYG1Gv+Yn1dfniUWkNEZRNruKOedHzqIw+Hg6NGjzM/PZxRhm5qaKC8vz7lOzaHU0NDQuLm5pR1Ki8WyrkO5V4I5iqLkqK1ux3nMd4y9Gk0iCAIP/Uo7gk5krHue4mon7uJ0RlGnEzlwXxkVTW+WfaaSEmPdC+gNOnQ6Ab1BJBWXkGUFk9WAqBMZ7wow1R+mvtWFIMBE3yJXTo5w9JFaIP05iaK46nVOD/v57hfPsTiTHnviKbHxvk8dp7TWnXPukH6vig3FvFN5D/0TUyzOB4gOLGCq1DPbNktJSUne930jJa9rvW+yIvN1X7on7u9m/o53ud+VyY6IokhlZWVGEfbSpUsUFhbS3NyM3Z528rWSV42dRhCENR3KvcpQqnY4n/MYDAYBVjiPNpttw7/Hu+138/5r76elrSXTr2wSTOwz79uxa3jB8gICAgoK88f6GIibqOh5Dw6jhYqmAiw2A3JSpulIKS3HcoVpJgfSs3x1ejFtH1NyuiJCJ6I36JgdCTDVE6WmvhCb28zCZJCLPxngwQ+0ojOk7aJer1/VPkbDCb79Z+cY7Z4HBcw2Aw9/5CD7767K2a5X18unZz/NFyxf4KByG7qoA4+xiumBBV4MvUxLWxM1NTV5xoPokHQuFJsHQ1HtiuPLySByfBEl4YdEIJ3ZTKWFfQj0Q2CQxBuX8Co2zNXVLIS8XH0lSUVjAQfvqwagsLCQEydOMDk5mRnF1NLSQlFRWpxIcyg1NDQ0bm5uaYdyPVGe3RbMCYVC+Hw+AC5cuEAkEtm285iPvXIoVaxOE+/++CFSCQlRn76BxyNJRJ2IyZL7lZFSClJKpnZ/EdNDfkL+OIqkYLLqOfauOhRFJuSLI4qgN6b3ZbLpWZwOZ65NkqRMhjCfY3f233pYmApTVJmO/M+NBzn9Lz2873ff7InKdigXZ8Kc+l4X/rkIBoMOSTLjcdm4fv16Zn6l05kb/d+OQynLMt2WbgYTgwDMpGb4ke9H6SxlFnq9noaGBiorK+nv7+fMmTNUVFTQ2NioOZQau8JaNnI3A26yLGfmPCYSCXp6ejLnsR3nMR9GwUhzrJkTlhObUlbeKEEpyGvG11BQ0KFD0StMPXAV96MneL/n/ej0IrFwEkVRMNsMK64lGZMoqXUxOeBjYTKELCnoDCL776mgqMrO+KlppJSCxZG2rXaPmbA/TiycxFFgQZZlJEla1T5efWWU0a553MVW9AaRxekwL/3jdVqPl2f65BVF4Vnrs0hI/PXoV/jga/+Z8f5FjCY9ybhIsa6QsdFxRkdHaWlpobi4eEWGcLXPSDQ4EA35qz8UKUFscYaBqShOu4TdIFNeOIiLENLoBKn5OxEddYhGN4IgUF5eTklJCSMjI1y+fBmn00lLy5uBgtW0EjQ0NDQ0biy3vEMpSdKac9YkaWW/32bJLltV+3pU51HNMFVXV+PxeDCZTDt+g7tRN0x9Vp/jaj2XRrMOt9dKJBDn6CN1DF6dRU7JHLi/ktsfrkGSJDxFdnrCk8xMz1JUVEAiJlHZZM8s/tTsRSKRIJFIYDKZ6HtjipmRAHa3Gd9cFL0pfS6RQJxUQmKib5FUUspZMKlMDvjwz0Yob/AgCAK+mTC+MYlHPnoPQ8ODvPrqq5SXl9PU1ARyemzAeEeYurIQzvaVZWbrIcsyLzlfQkRERkZAWJGlzMZkMtHe3k5NTQ09PT2cPHmSgoICbbGkseOs1RawUxnKbOcxe84jpJ1HQRAoKCigoqICq9W6a/Zxt5xji2jh0cijmAvNWG1vKpLeb78P3VLAbTXVawBXsZX5yRC3PVTF4LU5Qr44tQeKePD9rciyhMNtRRBhdHCSsqpiIsEkDrcZV4EDg0mXYx9Vp3xycJGhjjn0Bh2+mXRwTm/UEQ0mSCVlfLMRFqfDeCvT9uxi+CKjhlEARkdnuNrbS3tdA3qDjlgkiW8yytG3HSIq+ejo6GBkZITW1lZsVhtDHXMMveEnWWukunpzgTdBZ8TkKSdCJf5pkZS5gEQ8hX8uQn3pAXSOAuT4InIiiGByIxgc6HQ66urqqKysZGBggFdffZWioiJN0VVDQ0PjJuaWdijXm7MmiiLJ5EqBhLVYy3lUI+terxeHw5EZHP7yyy9TWFi4pkrddtmLweAbRV2EqmW+FS0uUlKKwFyUw2+rorq1CG9leiEpiiJHH2wl6lPouTzK7Ngw1Y3FtN9VTiAQwO/3EwgEMotQo9HI+BtJXv/xVVJJGUEAR4GFZDzF9IifWDhJKiFhthk498N+Tvx8I6Luzci9IAgo8pvZSkiLCilyWqSkpaWFqqoquru7efH5lxm/AIvjSfy+EP6+yzz8YWHFLLX1uBq5yoxxJjNEXUFhJjXDq6FXucdxz6qvs9ls3HbbbSwuLnLlyhVisRgjIyNUVlZq2UqNbSMIwprCZVup4FjNeRQEAbvdjsPhoKKiIjPnURAELly4gNvtxmZbOYZjp9hNR0Mv6DmROEGduQ5vgXf9F5B+n1RH0FttIx51MzcWoOV4KaV1LiqaCtDp0qX+TQcr8D+c4PKpfjpfH8Jb6ubgA00kUjHmFt60kcFgMG1Twy6++ucvEw2n7202pxFQmBnxEw0lScZSWBxGLjzbz4Pv34fZauArM19BUAQUQUFEpDvWQ7uQHqOUroBJa+1UVVVRWlqaqaCYv65nqitGMBCi3xogFTBw96Mtm3q/RZ1I830uhs8mmBkLoNMJNN1Wyr57qhCMenTG/PMoDQYDLS0tVFdXc/36dRRFobu7m/r6+g2NYtLQ0NDQ2DtuaYdSnbO2WgR+vVJR1XnMVhNcy3nMdxPNFuXZLfa65HU52Yuj5QtQQRCw2E203VGBIoHOoEOvz5V1sNhF7nhPPWUtVmZn50gIIS5deRWdTofL5cLpdNLQ0IDT6SQakHjyK8+DAG6vlUQ8RWA+irfCwcTAIjq9SGmdm5q2IoY6Zmk9VkZhuSPn/SmtdeHwWJgc9GEw6UjEUhy4pyqTzbRardx2222cHLnKaFcHVpceW6FIPCrxyv/touFQSSbzsBHqDHX83MLP0dDWgLA0WVwv6Dlo3ZggiMfjoaqqiunpaYaGhhgeHqa5uTkTldfQ2CpGo3HLPZSq87hcbXUt5zEfe9kDfiNYzz4ajHrqDxZTt78YURTR6cUVAaODD1TirtAzMzlHOOmnZ/QNescEHA4HLpeLyspKXC4XVquVJ//z80RCCdxeK7KsEJiLUlbvZqJ/EUVR8JTYaLq9jJnhAOO9C8Sa5+iIdiAgoENHvCjITOEonX1DlLtKiIWTVLUW4vKms68Gg4HW1lb0CQcXv3kGRZSwFerRyTpef3GY5qPlFFdtrpLDU2nk0O+0k/ALGMx6qlsL846tyofFYqGhoQGfz0cgEODkyZOZ1gEt8KahoaFxc3BLO5QbmbOm3uDzOY/hcBiDwYDT6dyQ85gPdbvdFLfYS6divcWRKp6jCuksv6ErikIsFsvJPAYCAWRZTi9AGwtwOGrw+/1MTExgs9mora3NRJznxxaRUjJmWzrqbjCKgELj4RJMNgPeCgdWl4lUUiayVN6lHlc9l8JyByf+XRO9l6aIx5KU1nloPbYy66jDhN1mx+4x4Pf7SCkxIsG0A7paiW8+TJg4Gj7KI0WPbOKdzkVRFGw2G/v372dsbIyOjg6sViuHDx/e1cy3xlsbdVZvPrJ7KNdzHp1OJ5WVlRm11U1lqPZIHG0vHMps+6g+ss9BtY+CIGTGXyy3kclkksXFxYyN9Pv9JBIJ7HY7hVVO6pylxONxRkdHMRgMVFdXY7Val46vEFyMYTLrEQTQLY3y8JTacBSY0el1eEps6PQiocUoUlKmzFDGLxf+MoMjgxSXFGP0GBHeY2RfbxX4DXhKbLTfWbHCwVNSOowGC+5SE4uLi0hylERQJhLMf79dC0VRcHuteJo962+cB1mW0el0HD16lLm5Obq7uxkeHmbfvn2Ul5dvaZ8aGhoaGjvHLe1Q6vV6dDrdipKubOcxEAhw7ty5HXEeV2MvFjO7sX91cZRKpQCIRqMZJ32ji6NEIpF5n9UFUjKZxGaz4XK5KCkpoampCbvdnvPaiooKampq6Orq4syZMzQ1NVFWVkZBqQ2by4x/LoLdbSYeTqI36KjZV0ginmJxJowkKYQWY5RUO3EvRdWXvz+lte4cFdh8FJbZ0elFpLhAKiEjRUX01iD9Qz00Nzdv2JHbiYHbqiiPKIpUV1dTXl7O8PCw5kxqbIt8ojyq8zg/P08ymeTixYs75jzmYy/s424E3bKdR0gHLlVbqR5Pp9OtCLRlI0kSPp8vx3mMRqNYLBacTidut5uamhocDgd6fe7tuKamhr6+Ps6ePUtNTQ11dXXodDoqGj30vjaN3qRDSqXbAsoa3MgpmaFr84T9MaKhJDaXmaIKB4UGB79b+rs8f+157mi7A4fDAeVA29rXX1Bmx+4yEV5IgSKSDCuIhhgjU30UVVsy+gEbfS+3YyPV1wuCgNfrpaioiLGxsV0RYdLQ0NDQ2DxbdihPnjzJF77wBS5dusTk5CTf+973ePTRR9d8zUsvvcTjjz9OR0cHVVVVfOYzn+EjH/nIVk8BALvdzunTpxEEgWg0mpN5NBqNiKJIfX39jjmP+djtBdNO7H+9yHpBQQGXL1+mqamJkpKSvNlHSZJyIuuBQCCzOHK5XBQUFFBXV4fD4cg7nHo5NpuNI0eOMDMzQ3d3N+Pj47S2tvLob9/Ov3z5EiF/HL1R5P5fbKP5WBkF5XYuvzRCyBenqrWA299Rj8mazmxuxalrPlrG7FiAKy+PkIwqNLSV8MAHWpnxj3Ly5EkaGxuprq5ed787odC6fB96vT6zgNS49bhZ7KPBYGBkZIQrV65gMplyMo9WqxVFUXbUeczHXs273I6NVM9vuRMJ6fMvKiqir6+PRCJBbW0tOp1uxW9eluWcqgy/358TyHS5XJSVleF0OjcUKDIYDLS1tVFRUUFHVwevz7zO/Y3383MfP8x3/vd5ZkYCCKLAwfurOfHzjcQiSfQGkdnRIIVldg7eX01h+Zvqq5tVsi4ss/Pg+/fx8nc6CU4G8BQ5eccHDyJbA5w5c4bKykoaGxs3dC074VBm20JBEKioqNCEejQ0NDRuErbsUIbDYQ4dOsRHP/pR3vve9667/eDgIO9+97v5zd/8Tb75zW/y05/+lI997GOUlZXx8MMPb/r4jz/+OD/5yU/w+/389//+3/nKV75Cc3NzTuZxcnKS6elpvN6NCSlsld0u6dqqaM5qiyMgp2RVEASOHDnC1NQU3d3dzMzM0NzcjCRJeUVz1L5HtX9qOwIJgiBQUlJCYWEhg4ODnD9/nsrKSj72/95PaDGB3WXCUZAWX/JWOnnbY/uQUvLS3Ms3Fxhbef9FUeCe/9DC/nsqePGnL/PIe45jtZupopi5uTm6uroyMvper3fVz2E7I0dU8i24bmTfrMb2uNH28amnnuKpp57i4sWLnD17FovFwrvf/e4c5zEajXLu3DlKS0u3cokbZq8ylJs5hmob1f8u39dy+9jU1ERxcTHXr19ndnaW1tZWTCZTTmVGMBhEFEWcTidOp5P6+npcLte2A5lOp5M3at/gWwvfQuqRaLG18P7/fpyoL61yXVCWHruiN+i46983I6UkdPq0fcy2TVv5DFqPl1PdVsTJF06z71AzVbUVQAVVVVV0dXXxyiuv0NjYSFVV1ZoO43ZtpDZWSUNDQ+PmZssO5bve9S7e9a53bXj7v/7rv6auro4/+7M/A6CtrY1Tp07xxS9+cUsLpsOHD3PffffxiU98gm984xucOHFixTZ7Nbj7Rpa8LldcXb5d9qJotbIsRVGIRCIoikJxcTEzMzOcOXMGURRxu905ojm7VWKk1+szZa/d3d28NnWB5uZm7J43FQDVaLRgEDLXqpbjbnXBIggCNrcJq0ePyfKmY1xUVMRdd93F6OgoV69exeVy0dramrfMa6cylPkccy36fmtyo+1jbW0tn/zkJ3nmmWe45557+NSnPrViGzUQthMBkbW40SWv2+0Lh7SSeDwep7CwkJmZGS5dugSkx6K43e4c0Zydfi8XU4t8Z/E7AFypvsLB0EEuXDxHbW0ttZW1b6pZZ9lHRVEysyvV69vq52x1GLEV6Jf62tPY7XaOHj3K7OwsXV1dmTEjqwVvd6rkdTmafdTQ0NC4OdizHsqzZ8/y9re/Pee5hx9+OO9CZyN86EMfQlEUPvWpT606GuSt4lBm738jkXXVyVrNeVxLNMflctHS0oKiKAwMDJBMJikuLsblyi/tvtPY7XaOHDnC9PQ0PT09jI2N0dramu77WXad2QvEtQZvr4f6Pi5/vSiK1NTUUFZWlpHRz1fmtZ1jZ+9Di8D/7LLT9lHd1w9+8INM399yshWqd3NhvheiPJAbVNuo86ieXzbJZDIn85gtmuN0OqmpqcFkMjE6OkooFMLtdlNSUrJr7+E/LPwDKSX9Gb4SeYVfr/91jlYcpauri8nJyUwFRfZ1qvcMSZIytmU7n/NqLQVer5fCwkJGRka4fPkyHo+HlpaWnMCb+nnshkOpoaGhoXFzsGcO5dTUFCUlJTnPlZSU5PThbRZBEDCZTGuqvO7FQma3eoTUxZEkSSiKQjQazZR5bjSyvhHRnObmZmw224rXl5aWMjg4yMWLF6msrKShoWGFcMRuIAgCpaWlFBUVMTAwkCmDzT6+umAKh8P4/X7m5+dzHO/NLJzWe43RaKStrW3VMq+dFOXJRusP+tlhN+wj5BflUclWqN7Nxfpu20fVUYrFYpsWFVtPNMfj8awqmuP1epmamso4dq2trVv+nFZDzU7KpN8/HTq+OvdVPlf5OY4fP874+DgdHR2ZCors40uKxHBoGEvYQiAQyDy/FcdyraCZKIrU1tZSXl5OX18fZ86coaqqisbGRgwGw5Zscr7jaw6lhoaGxs3LLa3yCmvPWdsrMYjdFs0xGo04nU5ef/11WlpaKCoqAvIvjrIdx+2K5oiiSENDA6WlpVy/fp2zZ8/S0tJCcXHxtq51o+j1epqbmykvL6ezs5NTp05RWlqKKIqZaxQEISN4UVVVRSqVysnQbgR1sbTe9svLvNT+Slj5WWwWbcGksRusF3CD3R15BHsjKub1euns7KShoYGKioq8AbadFs0RBIGysjKKioro6enh7Nmz1NfXb0jIa6M863+WhJJAWPqfhMTLoZdZSC1QoC+gsrKS4uJi+vr6OH36NCUlJVgsFoLBIN+RvsMp2ymeCD1Bvb2effv2odfrcxRTN8pGnFCj0Uh7e3sm8Hby5EmampoyPbpayauGhobGW5c9cyhLS0uZnp7OeW56ehqn07mtqK7ZbN7y4O6dYrOZ0PUWR7BSjv748eOMjo5y7do1ysrKaGhoWFG6uhuiOZBWYz169CgTExN0dHRkyqx2U7I9lUplFn1+v59IJEIymWRsbAyDwUBVVRVtbW3YbLacRUV2qVt2hmItNhuxX17mpaplbgfNofzZZrfs41oZyuyS191kK4I56n83KirW3t5OcXExnZ2dzM3N0dbWhqIoeyKaYzAYMvMQr1+/ztTUFG1tbTvSJvCg80F0gg6FN98Du2jHLtgztlG9RkVRmJ6eRhRF7KV2XhVfRUbmjYo3eHf5uwFyymA3E3jbTBWGw+HICbwNDw8Du+NQamhoaGjcHOyZQ3nixAl++MMf5jz33HPP5RXT2QzrReBvdIZyK4uj1URz9Ho9xcXFTE5OMjY2hk6nyziPuy2ao8q0Z0fjGxsbqays3JH+QbV0VX2Ew2HMZnPOrDan05np7RwcHCSVSlFfX59TipbdX5lKpXLe151Uac0u87py5Qpzc3N0dnZmyry28h5oKq8/u+ymfcwud8xG/U3sto1cL+C2Xl/4erMeIS2aI8syxcXFTE9PZ0ZJqX3huymao+LxeDhx4sSOtgmUGEr4Bc8vEI1GcxzIV4KvIIoiLpcr07rgcrkwGAyMjY3x5PSTJG1JEODZwLN8uOjDVBor8/afbyTwtlkbKQgCxcXFFBUV0d/fT39/P2+88Qatra3YbLZNvw+aQ6mhoaFxc7PlO10oFKKvry/z9+DgIG+88QYFBQVUV1fzB3/wB4yPj/P1r38dgN/8zd/ky1/+Mk888QQf/ehHeeGFF/inf/onfvCDH2zrAtaLwO9VD2X2DXo7i6ONiOa0trYSjUYZGhrCYrFQW1u77SzkRjGZTBw4cCAzVmNycpK2trYc0Zy1UK8vO/uolq6qznFjY2Mmc5APtQy2q6uLM2fO0NzcnCOKkS1KsVwNNt+iaDuLFaPRSHl5OYlEglAolCnzqqys3NQ+tQXTW4ubxT5aLJZVA26wN20B+UTF1hPNWU1UDNYXzamrqwPS77koilRXV2O1Wnf1GlV2ok0gmUzmBNcCgQCpVCpj/6uqqnA6nas6x44yB+cj59/sXUTgmdln+EzFZ9J/Z9lHNWOZ3We6mo3ciiMuiiKVlZX09/djMpk4ffo01dXVNDQ0bOqepQXcNDQ0NG5utuxQXrx4kQcffDDz9+OPPw7Ahz/8YZ555hkmJycZGRnJ/HtdXR0/+MEP+M//+T/z53/+51RWVvLUU09tSRI/G5PJRCKRyPtvu71YynYa4/F4jpricrGc1RZH2xHNUUuszp49S1tb267P28ymqKiIEydOZERzqqurqa+vX9GbmUqlchZ+fr+fZDKZWfyVl5fnLV1dD7vdzu23356ZnamqwWarC2aPFFkrGr8TM9IMBsMKGf22tjYKCws3tA9V4j8bTZTn1uVmsY9r9ZjD7lZxZDuPyWQyx05vVHFVkiSCweC6ojlOp3OF7SkrK6Ovr49XX32VhoYGqqur9+z3tNE2AVmWM9enPrL73ouKimhoaMDhcGw44PQj/4+IK3FExHTfpSLxk8BPeMzwGHXFdZntNhN4247wmOoM7t+/n+rq6oywmRp428hnks8+qtegoaGhoXHj2bJD+cADD6wZIXzmmWfyvub111/f6iHzslclr2tF1j0eD/39/eh0OkpKSlZVXN1p0RyLxcKRI0cYHx/n2rVreL1eWlpa9ixbqdPpMqILau9QbW0tQI7ohdlsxuVy5ZSubuT61iNbFGNgYIBz585RVVW16TLYnXAo1X2pZV7Dw8O8/vrrFBQU0NLSsm6Zl5ahfGtxM9nH1QJusHNVHGv1hbtcLrq6ujAajdTU1GTs026L5uj1elpbWykpKaGjo4Pp6Wn27du3pZLLraC2CXi9Xrq7uzlz5gw1NTVYLJbM9QWDQfR6/ZaubzXudtxNTMmq2lFACkr0d/QTmAzQ3Nyc05e7kTLY7djI7Oym0+nk2LFjzMzM5MyvXC/wpijKjtwzNDQ0NDR2h1te5XU9UZ6tDO5eTzRnuRx9c3MzHo+Hzs5OFhcXM8qfoVBo10VzBEGgsrKSoqIiOjs7OXPmDG1tbbuuxJpdmuv3+xEEgXg8nlk4lpaWrlu6ulMYDAZaWlo2XAa7vMxru3Mkl0fvRVGkrq6O8vJyent7OX36NDU1NWv2Uy13KJd/7zQ0toLZbF61JQC2FnTbrKhYWVkZDoeDa9eusbi4yP79+7FarYTD4T0RzVF7G5dnK3c7gKNWn6hVGQADAwPodDq8Xi/V1dW4XC4sFsuOZtqqjdX8WtGv5T7phURlgt7eXs6cOUN9fT01NTWZ92A1+7gTs0qX20dBECgpKcHr9TI0NMRrr71GUVERLS0tq5Ymq1UgGhoaGho3J7e8Q7kRWfy1bobrLY6Wl2at1vdot9upq6tjZGSEl19+GUgvqtTI826L5pjNZg4fPszk5GQmGt/S0rKtSHc22X1L2aW5drs9I3qhZh57enqYnJzEbrfv2PE3gqouODk5SXd3N+Pj4ytEIPItnFYrp9ooq2UXTSZTTplXdn/l8u+jlqHU2A3Wso+wvkO5E6JikC69ra+vZ3h4mDNnzmS2cTgcOJ3OXRfN0el0tLS0rMhWZpfIb4fVSletVmtO6arVamVoaIiRkRHMZjPFxcV7VrZpNBrZt28fFRUVdHZ2MjExsSI7mK8MVv3Mt1vyuhxRFKmvr6eiooKenh5OnTq1auBNawnQ0NDQuLm55R3KtSLw6s1GvaHtlOJqNBrNKcsKBoMZ0Ryv10sqlWJ6epqysjKampr2rFRHEATKy8spLCyks7OTs2fPZkq+NoMsy5nsquo8Zpeurleae+jQoUxJkyras5dlZuXl5Xi9Xvr7+3n11Vfz9nemUqnMQPP5+flMv+1WFinrZTjVMq/p6Wm6u7sz/ZUFBQU5+9BKujR2mrUqOCC3z3w9UbHldnGrojlut5upqSnsdjv79u3b1fFDy3G73dx5552ZEvm6ujpqa2s35SypqtvZATa1dFWtPikrK8uori4nu01genp6U73WO4Hb7eaOO+5gbGyMK1euZMrysz8HtfzY7/fj8/kyz28lU7mefVSF3pb3V1ZUVKy4h2toaGho3Jzc8g6l0WjM2yOUHXWPx+OrKgpuVDQnu3Q1WzSntLQ00yOX/fq6ujquXbvGuXPn2L9/P06ncwevem1MJhOHDh1iamqKzs7OzFy0fNnC5aWr6uJILT1ThYGcTuemSleLi4spKCjIlJnV1tZSV1e3Z4sCg8FAa2trJhp/6tQpvF4vsixn5lpaLBbcbjdlZWUUFBRk+is3OptNZSOCFYIgUFpaitfrZXh4mEuXLuWUeeVbMGkReI3tspZDqS70U6nUChu6UcVVtS88O8C2EdGc+vp6uru7M4JipaWlO3vha6D2fhcXF9PR0cHMzAz79u1bVak6kUisEBbLVt3eSumqw+HIzBa+fPlypv99ryo6VPXbkpISenp6OH36NF6vF4PBkCk/NhgMmbEkNTU1CIKQyRRuxjZtVNDH5XJx/Phxpqenc4TNPB6P5lBqaGho3OTc8g6lyWTKZAiXR9YVRcFoNDI4OEhTUxMGg2FN5zGVSuUoCm5HNMdms3Hs2DGGhoa4cOHCliLh20EVrCkoKMj0Fba0tFBYWLiiNCuVSuWUru5U6ZkqilFWVpYTjfd4PDt0lflJJBKZ7KPf7ycUCqEoChMTE5jNZmpqaigpKVmxeMv+/mQHGtZjM4sdnU63osyrtrY207OkobGTqAG31UTFzGYzo6Oj2Gw2rFZrTpBtOWrlQnaAbauiOQaDgf379zM9PU1nZyezs7O0trbuaZ+cy+XKZCvPnz9PbW0t1dXVmZm42Q6yWrrq9Xo3rbq6GoIgUF1dTXFxcUa0p6mpifLy8l21BalUKif76Pf7URSF2dnZzJiPgwcPYjabV6hhL+8/32n7mB14Gxoa4uLFi3i9XpLJ5Ip7rtZjrqGhoXHzICi3uFX+pV/6JXp6enjuuedyIqeq05hIJLh+/TrxeJwDBw5kMoXZZZ3ZojkmkykjCqGWL213keP3++no6ECv12cEKfYCta8nEAgwPT3N4uIiQKZ0VX1sVFV2u+cyMjLCwMAApaWlGQd/J/abr3dJzSCrD7vdTiqVor+/n/HxcWpqaqirq8u7SMkWclIXTWstnLq6upBlmfb29k2fv9/vp7OzE5/PR0tLC7W1tTk9niaTSYvMa2yZr33ta3zyk5/kypUrOByOHPuofqd7e3szwR41U7i8rDOfaI5qI7crmhOPx+no6CAUCrFv3749K/9Ur9Hv9zM3N8fs7CyyLKPX63G73RnbsRP3gI2gtglYrdYdaxPIvkbVeVTvc6rytnoPEASBsbEx+vv7KSwspLm5OW85shqUWF7+vBrT09P09/dz1113bfr8Y7EYPT09TExMUFxczMGDBzP9lZIkYTQaVxU609DQ0NDYO255h/IrX/kK/+N//A8OHDjA3/7t3+L1evPK0ff09DA2NobL5co4k9llneoCabf6eSRJore3l4mJCZqbm3P6Q3YCtbczO7KuLgDV67PZbMzMzLCwsEBLSwtlZWV7nhWLRqN0dnYSDAYzIhmbOYfl5bmBQCBzjeoCab0FYCAQoKuri3g8TktLC16vN+/ctWwxirUWTZ2dnQiCQGtr64avIxtJknjuuecwmUyYTCba2tpwu92aQ6mxbc6fP89jjz0GwFe/+lUOHz6c9/s0Pj6ecWYMBkNOX3i287hbojmKojA2NkZvby/l5eW70nuulq5m28js0lWHw0EwGGR0dJSampq8c3V3m1QqRV9fH+Pj41tqE1D7V7MrNGRZznx+6mOt+1w8Hqe3t5eZmRnq6+vzKuJmB96Wj2FaztTUFIODg5w4cWLjb8QyXnnllUx2tLm5mfLy8kwFktZ7rqGhoXHjueUdSoDFxUU+9rGPcebMGZ566ikqKysz6obZojlWqzVTwtrW1obL5dpzh2p+fp6Ojg4cDgft7e1bHqmRTCZXLI5SqVRmcbTWAnBmZobOzk6cTidtbW17KooB6cXI1NQUPT09OBwO2tracuaiqWQPNVcXSPF4PFOeq0bXt7LIVUtge3t7cTqdq86KVKPx2T23y4/V0dGBwWCgubl5c2/EEqlUiueff54HHniA8fFxBgYG8Hq9NDU14Xa7NYdSY1ukUik++9nP8qd/+qd89rOf5dFHH80E1LJFc6xWK6lUCoCWlhaKi4v3/LsXDofp6OgglUptq/c823aoNlKtXMh2rux2+4prDAaDdHR0IMsy+/btw+Vy7cSlbQq/38/169dRFGXVNgFFUXLE09S5nWqLRnYFylY+x8XFRTo7OwFobW3NERHLPgd1CbFaGezExASjo6Pccccdmz4HldOnT9PY2IgkSfT09GAymTLfUc2h1NDQ0LjxvCUcSoC/+qu/4sknn6S7uxtJkviLv/gL7rjjjsziQRXNSSaTXL9+HZ/Px4EDB/LeJHebZDJJV1cX8/PztLW1ravCml3WqS4AVVGZ7LKszZSuJpNJuru7mZ2dXaGot1ckk0l6e3uZmpqirq6O4uLivMqJy8vPdrLEKZlM0tfXx8TExLplsLByDinA1atXMZvNNDU1bekcEokEL7zwAu94xzvQ6XSZMi+bzUZra6vmUGpsm5/85Cd8/vOf5+TJk6RSKT7xiU/wkY98JKc6Q53JOjg4yNDQEM3NzXlH3Ow2siwzNDTE4ODghnrPs8s6s/ums3s7N1u6Kssyw8PDDAwMUFVVRUNDw547LsvbBGpqalZcJ7Ai+7iTc39lWWZ0dJT+/n6Kioq2VAY7NjbG5OQkx44d2/J5vPLKK7S1tVFUVIQkSQwMDBAMBjl+/LjmUGpoaGjcBLylHMpEIoHD4eBP//RP8Xq9PP3005SXl6/YVlEUxsfH6enpyYyUuBGLdlWFVVX4MxgMOaWr2f2dOp0uZ2Hkcrl2RBFwbm6O69evY7PZaG9vz5sp3A0kScpc49zcXEYYwmazUVBQkLnWnR76vRrbKYO9cuUKNpuNhoaGLR07Fovx0ksv8fDDD2eOqS7Q9ur6Nd7a/PjHP+bChQs0NTXxzDPP0NnZyde+9jWOHz+ed/uFhQWuXbuG0+lk3759N2SofCAQ4Nq1a+j1evbt25epIMguXVVtpFrWme1cLReV2QqhUIjr16+TTCZpb2/fdUExlewe//n5eebn55FlGZPJREFBQSbItlxdfLeIxWL09vYyOzu76TLY0dFRZmZmOHr06JaP//LLL+cEgNXyV7PZrDmUGhoaGjcBbxmHMptAIMB/+k//iWeffZavfOUrvPOd78y7sAiFQly5cgW9Xs+BAwf2zJnKRi2vUpUEo9FoTumq6kDuVu8S5GYKm5qadjwrsVoGwWg05lzj/Pw8IyMjVFRU0NjYuOdiC9llsC6XKzPSI9922TMrr127hsvloq6ubkvHjUQivPLKKzz88MM5x1AUZUcWxRoa2UiSxBe+8AX++I//mM985jN88pOfzLsoVwXNAoEABw4c2DNnavk5dHV1MTMzg91uJ5lMEovFMqJbqgOZr3R1p1AUheHhYfr7+6moqNiV/k61PUMt71/eG+50OonH4/T396/ZJrDbLCws0NXVBWysDFYURUZHR1lYWODIkSNbPu6LL77IbbfdhtvtzhxDdbA1h1JDQ0PjxvOWdCghfcN5+umn+dSnPsXHPvYx/vAP/zBvRk+SJLq7u5menqa9vX3d8tPtsJoiqcViyQhhFBcX09bWdkMyAvPz81y/fh2LxUJ7e/uW1WizB5tnjyZRF39qdD1f6VQ4HKazs5NIJEJrayvFxcXbvawtnb9aBltbW0ttbW3eMthYLIbP52NwcJDKysqMQutmCYVCnD17lne84x05+9ccSo3d5NSpUzz22GO0tbXxN3/zN3i93hXbKIrC6Ogovb29uz5LVlEUwuFwju1QS1ctFguhUAir1cqBAwd2RAF1s4TD4YxieHt7+5bbJWRZXmEfY7FYpjdcfdhsthW//ezg32qZwt0muxTX6/XS3Nyct8w2mUyyuLjI+Pg4oihy2223bdmW/fSnP+XYsWOZnlpNBVtDQ0Pj5uIt61CqdHR08Mu//MvYbDa++tWvUltbm3e76elprl+/TklJCS0tLduOei6X3c/uCVze16M6uuFwmGvXriFJEgcOHFh10PZukkql6O3tZXJyksbGRqqqqtZcBKiLwGxVwXA4nBlNki1Lv9Ebv5op7OnpoaCggJaWlj0XDoK0MEZXVxfJZDLTO+Tz+TLXmr0IrKmpwWq1Zr43m1k4BQIBLly4wNve9rbMc+qsQM2h1NhN5ufn+fVf/3UuXLjA008/zT333JP3+xYMBrl69SoGg4EDBw7syO9RzcpljybJViRV/6v+Bjbbe74bqA52X18fZWVlNDU1rVlJoQaelpfo6vX6HOfR5XJtqiJDFcwRBIH29vYbIhyk9nrPzc1RX19PUVFRjsJsKBTK9PmXlZVRWFi4phrsWjz33HOcOHECu90OaA6lhoaGxs3GW96hhLSj9qlPfYrvfOc7PPnkk7znPe/Je0OLRqNcvXqVVCrFwYMHMzevjaD29WQvjtSsXLYDuV5PXLYoRn19/ZazXttlYWGB69evYzKZaG9vX7d/afniaCeEIRKJREY4aCPO7U6iXqfP52NmZoZIJIIgCLhcLgoLC1csApeXwW506DekF4dvvPEGDz74YOY5dV/bnfGnobEesizzl3/5l3z605/m8ccf5/d///fzOjeSJNHV1cXs7Czt7e2bqh6QJCnHNqoBmex5sU6nc0Olq/l6z/eaSCTC9evXiUajtLe3Z2ZnZl+naj+SyWRO9tHtdu9Ib3S2eNFetwmo1+nz+Zidnc0IBNlsNoqKijKBRPU+sJkxTPl49tlnuffeezNVM5pDqaGhoXFz8TPhUEL6BvT3f//3/Mf/+B957LHH+NznPpc3yi7LMgMDA4yMjKzaT6hK0mcvHNQeyOzI+lbl2iGdHbt27RpGo5F9+/Ztufx0O6gZgenpaex2O5IkEYlEMte5lvT+TjI/P09nZydGo5G2trYdz9yqWdbs8SThcBir1ZojfjExMcHU1NSaZbAbnc22/PquXbvG/fffn3lOdShvRGZW42eTCxcu8IEPfIDKykqefvppSktL826nOnRqhi7f70D9PakOpFq6mm03tqPYHIvFuH79OuFwmH379t0QtW41+Dc4OIjFYkEURcLhMAaDYYUy9W72+e1Fm4Ba3q/ayGAwmLlOdfbv4uIiQ0NDFBcX09TUlDeouJExTPle8+yzz/LAAw9k7KHmUGpoaGjcXPzMOJQqPT09vP/970eWZb72ta+tOuohW+Wwrq4up7dHLV3Ndh5dLteOR8olSaK3t5eJiQmam5t3fbRHtjCE+hAEAZvNRiQSwWAwsG/fvhsizqFKxY+MjGSUebe6SEulUpnourpIys6yqovBfD23fr+fzs5OUqlURg12OeuNGVnO7OwsXV1d3HvvvZnnNIdS40bg9/v5xCc+wQsvvMBTTz3F2972trzf20gkkinPb2lpIZVK5WQfFUVZUdq/0+XbiqIwNjZGb29vJkO3m45btt3I7g232+0kEgkkSaK5uZny8vI9ryrIFhRzu920trZu2XZk9/pnl/c7HI6MbXS73Xk/T7UMdn5+noaGBiorKzesBrvaeyZJEs899xwPPfRQxiZrDqWGhobGzcXPnEMJ6Zve7//+7/P1r3+dL33pS/zSL/1S5maWXdKpOhzqOIvCwsLMImkvxznMz8/T0dGBw+Ggvb19R8pJV1s0ZJegud3ujDCEJEn09/czOjpKfX09NTU1N+RGHgwG6ezsJJFI0NbWlik1W41s8Zzs6Pp2ezzHxsbo6+vD4/HQ0tKSV3Fxo2Ww09PT9Pf3c9ddd2We0xxKjRuFLMs89dRTPP744/zmb/4m/+N//I9MsGx5Sef8/DySJGEymXJKwfdqnAXk9p7v378/I9yyHZZnWdWeQNVuqA919m923/eNLMVNJBL09PQwMzOz4TaB7PL+bIXZbOdxs9nk+fl5urq6EEWR1tbWvEHI5YG31eyjOqf37W9/e06LgSZapqGhoXHz8DPpUEL6hvSP//iP/MZv/AZHjx7FaDTyO7/zOySTyZySTqfTic/no6+vj7q6Ourq6m7IDSyZTNLZ2cnCwsKm+5eAjDCE6lgFg8Gc2ZYbHfzt9/vp6OhAFEX27dt3Q4SDsh26oqIiWlpaMpFrVUEx24FMJpOZ6PpaCrObJZFIZBQX6+rqqKmpyZshyR76nS8aPzk5ydDQECdOnMg8p26/k0PKNTQ2w+uvv8773vc+bDYbtbW1vOc976G0tHRF6WoqlaKzsxOPx3PDFKqX955vNuCVTCZXVGdkCwRlz7Zci1gsRmdnJ4FAgLa2thuiUg2rtwksF1Hz+XxEIpFMIDG7xH8nejyHh4cZHBzccBlsPsdSndP7zne+M/OZag6lhoaGxs3Fz7RD6fV6M2UzVVVVfPazn+WOO+7IuyAKBAJcvXoVk8nE/v37b1jmaHJykq6uLoqLi2lpaVlVPCMYDOaUZsXj8ZzZli6Xa8uzLdU+0+Hh4V0fJbAWah/V4uIiHo8nU5Km1+tXRNd3sxTO5/PR1dVFKpWitbWVoqKiFdusVeY1Pj7O2NgYd9xxR2Z7zaHUuNH8+3//73n++edxu90UFRXxsY99jF/5lV/Ju4iPx+N0dHQQDoc5cOBAZl7gXqP2nhsMBvbv37/qHNlQKJTjPIbD4YwiqWo7ttobrigKk5OTdHd3U1hYSGtra97y+d1GkiT6+voYHR3F5XIhimKOiFp2n+dunl80GqWnp4eFhYUtlcFGIhFOnjzJI488smJ7zaHU0NDQuDn4mXUoIS0uUVJSQjKZ5DOf+QxPPvkkX/jCF/jgBz+YdyGRSqUyqqNbyRLuFLFYjI6ODiKRCPv27cNsNucsjlTBhJ0SwFiNQCBAR0cHAPv27duRUrO1UBeC2dH1aDSK2WwmmUxiMploaWmhsLDwhvQwqVnTgoICmpubVy2DXV7mNTY2xvT0NEePHs1sJ8syOp3uhixENTQg3dvr8XjQ6XR84xvf4Ld/+7f50Ic+xGc/+9lVM03Dw8P09/ffUIXq5b3nXq83U6arlnQCK5Spd/q3Fo/H6ezsxOfz7cmYE0VRiEajOeWroVAIo9GYsTn19fV5Hbq9YG5uju7ubnQ6Ha2trXmDDvnsYygU4tVXX82Z06uNVdLQ0NC4ufiZdiizURSFH/3oR3zkIx/hoYce4ktf+tKqDpKaJVxN5XA3yRaGmJ6eJhQKAeSUZq0mmLAbZJea1dTUUF9fv2OLFbUMLTvTCmSuUc0+GgwGUqkU/f39jI2N3dCsaXYZ7Fqld9llsKOjoywsLHD77bdn/l1zKDVuNrq6unj/+9+PTqfjmWeeoaGhIe92fr+fq1evYrFY2L9//55m2bN7w2dmZlhcXATAYrHg8XhylKn3wj4qisL09DRdXV14PB5aW1t37P1YXomilver94Ls8v7lbQLNzc03pPpBLYMdGBigtLSUpqamvDYuuww2FApx6dIl3v72t+fsBzSHUkNDQ+NmQXMolzE+Ps5jjz3G+Pg4X/va1zh8+HDe7SKRCFevXkVRFA4cOJCZ07iTKIpCJBLJcapCoRAmkymzYDAajQwNDQGwf//+G9LTCGmxnI6ODmRZZt++fZsetL38Wn0+X6YMLbt8db2FoKrCKssybW1tN0SRFtJlsOp5tLS05JTBqte6uLiIz+djYWEBj8fDwYMHM2VemkOpcTMSi8V4/PHH+da3vsVf/MVf8L73vS/v71Htq5yfn2f//v15y8B36nyWz8UVRTHHcZyammJxcXFPsoSrkUgk6OrqYmFhgZaWFkpLSzftCMXj8Rxl6kAgkKlEUQNsqkjQasRiMbq7u1lYWLhhirSQWwbb2Ni4YjyXeq2Li4ssLi6SSqW47777cuyjNqdXQ0ND4+ZBcyjzkEql+OxnP8uf/umf8rnPfY6Pf/zjebNMsizT19fH2NgYLS0t2745J5PJFbL0GxGGyM4SNjQ0UFNTc0NustnR56qqKhoaGlZd3EiSlKOm6/f7kSQJp9OZ40BuxaGSZZmRkREGBgYoKSmhubn5hgmFqFkB9TNUBTFSqVROFsHtdqPX6zNlXoqiaA6lxk2Joih8+9vf5hOf+ATve9/7+PznP5+3vBtgYmKCrq4uKioqaGpq2lbVgJqRy3YgY7EYdrs9xz7mE5RRZ2feSAVWIJOtdLlca472kGU50+epOpHqtWbbjK2qjaujisxmM+3t7bsSEN0Ic3NzdHZ2IooixcXFGUcyGo1mrlV9GI3GTH8loKlga2hoaNxEaA7lKiiKwosvvsgHP/hBjh07xl/91V+tmu2am5ujo6ODgoIC2traNtSruJ4wRLYs/UYXYaoghdFoZP/+/asu8nabUChER0cHqVSKffv24Xa7M6M7slVmjUbjiuj6TpapRqNRurq6CAQCNDc3bykrsBWyS3UXFxcJBAKZ3qDCwkJqa2txuVx5B8KrkfdEIkEqlbphfboaGuvR39/PBz7wAaLRKF/72tdobW3Nu104HObq1asAHDx4MK9QznLUcT/Ls4/q/F/VqdpMb/jy3vOCgoKNX+wOkkgk6O7uZm5ujpaWFsrKykilUjmBRHUG8PLZuDvZB3+j2gTUwIBaoeHz+ZAkCUVRsNvt1NbWUlRUtMLpz7aPsizj9/upqqra9fPV0NDQ0FgfzaFch+npaT70oQ/R1dXF1772NY4fP553u3g8zrVr14hGoxw4cGBFyWf2fMvsfsDl2cft9rVIkkRPTw+Tk5M7kjXdCurNfmhoiLm5OXQ6HbIs50Sc1Uzrbp+b2sPU3d2Nw+GgtbV1Qwvazew/21lWhTDUUl31YbPZMmqwsizT2tqamaGpKAp+v59z585x5swZzp49y6VLl/id3/kdPv/5z+/YuWpo7DSJRIL/9t/+G3/7t3/Ln/3Zn/HYY4/l/U3Lskxvby/j4+O0tbVRVlaW8+/qfMtspyqZTOZk5HZi/q+iKIyOjtLX10dlZeWaVRS7hVryPjIywsTERGbOrzquKttm7IXtVtsEJEmira1txx3t5XMu/X4/er0+09Pq8XhwOBzE43G6u7tZXFzMKYNVFIV4PM5rr73G2bNnOXv2LK+++irt7e2cOnVqR89VQ0NDQ2NraA7lBpAkiS984Qt89rOf5TOf+Qyf/OQnVxVaGR4ezixWrFZrZpEUjUZz5luqC4bdigirWVOXy0V7e/uulk4mEokcYYhAIJCZcWm1WjPDz29kViCZTOaI5VRXV295JIAqhKE+EolEzpxLt9u9amBAlmVGR0f5h3/4B5577jlqa2u5du0aHR0d1NbWctddd3H33Xdzzz330N7efkOEhTQ0NoOiKHz/+9/n137t13jkkUf43//7f2O32/NuOzs7y7Vr1/B4PBQVFWVKWEOhEAaDIcd53M1xP+FwmGvXriHL8q73nq9V3u90OjOVKs3NzVRUVNywdoWdaBNQlWaz7WM4HMZqtebYx7VGVs3OzvLKK6/w+c9/nqNHj9LT08OlS5dwOBw59lGdH62hoaGhcePRHMpNcOrUKR577DHa2tr4m7/5G7xeL5DOTmYvGNRZXwaDgbKyMgoLC3E6nXt+81OFIFRBip0on8wu1VUXR+pg7OzenuwFQ3ZWQFXG3ekRJhtlcXHx/9/encdFVe5/AP8My7DDgGwCsiMCsomAgIoLP7E0sVu5oYDX3EpzKc3bLdFMUbOuG6lZsliGWm7pLTUTcwFURAUGEBXUFFCRUdmEmXl+f/CacxnZERiW7/v1mldx5pkzz4HxO+c55/t8H2RlZYHH48HZ2bnJ4kFisbjO1XUAcidH9aWv1iaRSJCdnc3dfUxOTsbTp09hYGCAe/fuISIiAsuXL1fYySQhbeHu3bsIDQ3Fw4cPER8fD1dXVwD/+zdUO0aKxWJu3pyRkVGHZSzUVnvueVstc1I7Y0F2rLKlO2rHi5fT+x8/fgyhUAgtLS04OzsrbLpCS6cJyKrq1h5AyirNvjz/sSGy74fa8TEnJwfOzs7IzMxEQEAAoqOj4eTkRBfYCCGkk2rXAWV0dDS+/PJLFBYWwt3dHVu2bGkwZRQA9u/fj88++wz5+flwcHDAunXr8Prrr3PPM8YQGRmJnTt3QiQSISAgANu2bYODg0N7HUIdDx48wKRJk5CVlQUnJycMGTIEPj4+dQpD8Pl8rppe//79ufTGjsYYQ2FhIbKzs2FsbAxHR8cWDeZqD6hkJ4SMsTpze5pzNbu8vBxCoRAVFRVwdnZW2O9EKpUiPz8feXl5MDc3h729Pfc7qV1JUSQScXM9BQIB9PX1m6w0+3J61oULF5CcnIyqqip4e3sjICAAQ4YMgZ+fH3R1dXH27FmIxWKMGDGiI38FpJPobjHyxYsXmD9/PuLi4uDn5wcLCwu88847UFdXl4sZ2tra3B0xe3t7WFpaKuxiSu255y4uLi1KiX95QPX06VMuY6F2+mpzisfUzqJwcHCoU/m0ozQ2TUD2fVBSUsJ9LygpKckNHpu6syyRSJCVlcUNIJOSkvDgwQO4u7vD398fgwcPxuDBg2FmZoa8vDycPXsW4eHhHXX4hBBCWqHdBpR79+5FWFgYtm/fDl9fX2zcuBH79+9HTk5OvXfKLly4gKFDhyIqKgpjx47Fnj17sG7dOly5cgX9+/cHAKxbtw5RUVGIi4uDjY0NPvvsM6Snp0MoFHZYtbe5c+di//79MDExgYqKCoKCgvDvf/+73vdnjOHBgwfIycmBhYUF7O3tFXaFVVaQoqKiAi4uLvUWGKqdrlT76rqsUJBs8Kitrd3q45Cth5abm8utQ6aoiouy4kHl5eXQ0dFBZWVlvdUFG7tbwBiDSCRCcnIyd3JUX3qWl5eXQtZ9I51Xd4yRe/bswbvvvgt7e3tUVVXB2dkZ//nPf7hsjpeJRCKkp6dDW1sbLi4uCkthlEgkyM3NxYMHDxqdey7LRqm9dIcsvb+5A6qmFBcXQygUQkNDA87Ozm0657slqqurkZ2djaKiIujq6kIikaC0tBTq6upy8x8bm+spu2ObmpoqN/+xuroaPj4+3AW2QYMGQVdXlzI0CCGki2q3AaWvry+8vb2xdetWADVXcvv06YP58+dj2bJlddpPnDgRZWVlOHr0KLdt0KBB8PDwwPbt28EYg5mZGT788EN89NFHAGquLJuYmCA2NhaTJk1qj8OoQzYfhMfj4dKlS5g8eTL69OmD77//Hqampg2+5vr161BSUoKrq6vCThBkqUW5ubmwtLSEtbV1ndL0YrG4ztId7TEQqqiogFAoRFlZGZydndttnbraahf+kD2kUinU1dVRWVkJHR0dODs7Nzj/C6ibnpWUlAShUAg7OztuADlkyBA4OjpSehZpVHeMkS9evICSkhJUVVVRUFCAadOm4fbt24iLi4OXl1e9r6muroZQKIRIJIKrq6vC5lkD/5t7rqurCycnJ1RXV8tdYKuoqODS+2UxsrH5gK0lFotx8+ZNPHjwAHZ2dh1yB1c2naF2fKysrISmpiaqqqqgrKwMJyenBi8OyPZRUlKC5ORkLjsjNTUVenp6CAgI4C6weXp60gU2QgjpRtplQFlVVQVNTU38/PPPGD9+PLc9PDwcIpEIhw8frvMaS0tLLF68GAsXLuS2RUZG4tChQ7h27Rpu374NOzs7pKWlwcPDg2sTGBgIDw8PbNq0qa0Po1mePn2K2bNn488//8T333+PESNG1PvFL7sCXlBQgH79+tWpctgRZGX4Hz16hKKiIm6ep+xqc3MWxm5LjDHcv38fubm5MDY2bvP1ImtXF5Qt3yEr/PHyUiVVVVW4ceMGHj58CDs7O5ibm0NFRQUSiQRCoVBufk/t9KwhQ4Zg8ODB6N27N11dJ83WU2KkRCJBVFQUoqKisHz5crz//vsNFjS7f/8+bty4wa1h29EXZGTL/Tx58gQFBQWoqqqSS+eUpex2ZEbFkydPIBQKuXTctlwvUlYsqHa6rmw6Q+1jVlFRqTNNwNraGurq6lwhutrxMSsrC/b29lz66pAhQ155DVJCCCGdW7tURnn8+DEkEglMTEzktpuYmCA7O7ve1xQWFtbbvrCwkHtetq2hNoqgp6eHPXv24LvvvsPkyZMxd+5cfPrpp3VOOpSVlbmlIjIzM/HkyZMWz2dsCdnC2LVPFmR34fT09ODk5ISnT5/i/v370NPTg5WVVYcPiHg8HiwsLGBoaMgN2pydnRu9At6QpqoLmpubc/Oj6jtO2Qlbr169sG3bNhw6dAjGxsYQCoUQi8Vceta7776LQYMGQUdHhwaQpNV6SoxUVlbGv//9bwwZMgRTp07FX3/9he3bt9eZPy2LBQKBAOnp6SgpKYGrq2u7FaeRLd1RO3219nI/tra2qK6uRn5+PtTV1WFlZaWQQmIGBgbw8/PDzZs3kZycDDs7u1bHalk1btlDdoFNVnHX3t6+wekMSkpKsLW1haGhIY4dO4bXXnsNzs7OuHnzJgoLC+Hh4QF/f3+sWLECgwcP7rA1fwkhhHQOiim12c0oKSlh1qxZGDRoECZNmoTz588jJiam3kWXjYyMMGjQIGRkZCAlJQVubm5tUrK+9jqXshMkJSUl7mqzubl5nYWxzczM0Lt3b2RkZODx48dwcXFRSHVBdXV1eHp6oqCgABkZGTA0NISjo2Oj86maqi5ob2/frOqCT548kUvPunLlCgwNDWFiYoLLly9jwYIFWL16NZWnJ6SVeDweAgMDkZaWhoiICPj7+yMmJgZ+fn51Bh3a2trw8fHBjRs3uLUGXx4gt8bL61yKRCJu6Q49PT3Y2dnVuw6wmZkZMjMzkZSUhP79+9c797y9KSsrw9HRESYmJsjMzERRURFcXFyaTM0vLy+Xi4+1q3FbWFhAX1+/0cq6sot0ly9f5tL7L168CLFYDE9PT6SkpCAgIABCobDRQmWEEEK6v3YZUBoaGkJZWRlFRUVy24uKihqcZ2hqatpoe9l/i4qK5NJFi4qK5NK7FMnNzQ0XL17EBx98AD8/P2zfvh1jxoyp80Wrrq4OLy8v5OXl4eLFi3BwcECfPn2a/YXMGENZWZlc5dXad+NMTU3Rr1+/Zi2MLRAIMGjQIO4EztHRUSHpmzweD2ZmZjAwMEB2djaSkpLQr18/7mRSLBbLnRzJBsyy1CxLS8smi2HI1lqrLz1Ldvdx8ODBXHqWbJ06GkySttYTY6ShoSGOHDmC//znPwgJCcHSpUuxePHiOv9mZXP1DAwMIBQKUVxcDEdHxxal4r+8dMfz58+5dHd9fX1YW1tDV1e3yTRMdXV1DBgwAPfu3cOVK1dgaWmpkHRc4H+x+vbt20hJSYGtrS2srKygpKQEqVRaZ364bMAsEAjQt29fCASCRtN1GWMoLi6Wu8CWlpYGfX19BAQEYPTo0fjiiy/g4eEBPp+PR48eIS0trV3X8CSEENI1tGtRHh8fH2zZsgVAzcm8paUl5s2b12DBifLycvz666/cNn9/f7i5uckVnPjoo4/w4YcfAgCePXsGY2PjDi3K0xyMMezevRvz5s1DeHg4Pv/88wYLEJSUlCAjI6PRKodisVjuZOHp06eQSqV1lu541YHPo0ePIBQKIRAI4OTkpLCBVO11K/l8PpSVleXS0WSPpgbMYrEYmZmZcgNI2cm1bP5jQEAApWcRhejJMTI5ORlTpkyBjY0NvvvuuwbvQlZUVCAjIwPV1dVwdXWtd/Aiy1aonZ3x4sULrlqzLEa+6jqXpaWlyMjIAGMM/fv3V+hAqri4GJmZmWCMQU1NDWVlZVBWVq6zfEdjA1/ZvMiX1390cHDgCugMHTpUYQNoQgghXUe7LhsSHh6OHTt2wMfHBxs3bsS+ffuQnZ0NExMThIWFwdzcHFFRUQBqSuIHBgZi7dq1GDNmDBISErBmzZo6JfHXrl0rVxL/+vXrHbpsSEtkZ2dj0qRJUFZWRmxsLOzs7OptJ6ty+PTpU26e38tX12XruDW0MHZbqaqqQlZWFkQiUavnM7ZUQ9UFtbW1IZFIUFVV1eS6bA2lZ0kkEvj6+nLVV319fSk9i3QKPT1GlpSUYObMmTh37hx27dqFwMDAev9dSqVS3L59G3fu3EHfvn1hbGwsd4Ht2bNnXLaCLEbq6uq2y5zH2n15lfmMLSFbeqN2fJRdYFNWVkZZWRnMzc3Rt2/fRu/iisViZGRkyA0gHz58iAEDBnAFdAICAmBiYkLxkRBCSIu024ASALZu3cot2u3h4YHNmzfD19cXADBs2DBYW1sjNjaWa79//358+umn3KLd69evr3fR7m+//RYikQiDBw/GN998g759+7bXIbyyyspKLF68GHv27MGWLVvwj3/8Q+7LunaqUkFBAUpLSwGAS1WSnSR15MkgYwwFBQXIycmBiYkJ+vbt26YnZy2pLgjUpOxlZWVxqVuamppcelZSUpJcelavXr3kFsd2d3enlFXSafX0GCmVSrFt2zZ8/PHHmDdvHj755BO5WFM7vf/hw4d48uQJGGNcer8sVjQnvb8tiUQiZGRkQE1NDf3792/TuecvF1QTiUSoqqqCjo6O3B1IWdbLs2fPkJmZCQDo168f9PX1uTmUly9f5gaQFy9eBFBzZ1xWfdXHx6fDf3eEEEK6n3YdULZGdHQ0d4Ll7u6OLVu2wMfHp962O3fuRHx8PDIyMgAAXl5eWLNmjVz7iIgIxMXFyb0uODgYv//+e/sdxEsYY9i/fz9mz56NsWPHwsfHB2ZmZujVqxeePXsGFRUV7sRITU0NeXl54PP5bX6i0lIVFRXIzMxEZWUl+vfvD4FA0Kr9yKoLlpSUcIuBy6oLyk6OGqouKFNZWYlz585hzpw5cHV1RX5+PnJzc9G3b18uPWvIkCGUnkW6te4YHwHgypUrmDx5MgwMDBAeHg4VFRX069dPLr1flub+4MEDlJeXK6xIjoxEIsGNGzdQUFAAR0dHmJmZtWpgJhaL61xg4/F4dS6wNXb3Uba80Zw5c6Cnp4fS0lJcv34dhoaGcus/enh4KKRaLSGEkO6tU32z7N27F4sXL8b27dvh6+uLjRs3Ijg4GDk5OTA2Nq7TPjExEZMnT4a/vz/U1dWxbt06jBo1CpmZmTA3N+fajR49GjExMdzPHb2gMo/Hw61bt6Cjo4MffvgBp0+fxqxZszBlyhQIBAJoaGjInYiYmJggJyenTasctoaGhga8vLxw9+5dpKamwsrKCra2to0O2BqqLqitrQ09PT306dOnWfOZxGIx0tPT5dKzHj9+DF9fX5w7dw4uLi64f/8+zX8kPUZ3jY8AcP/+faipqSElJQU5OTkYPXo0Bg8eXO9SFqamplyRHGtra9ja2iokBsiKBxkZGSEzMxOPHj2Cs7NzkxkRsvWAZRfZSktLoaamBoFAwK3H21Raviz1tnZ8zM3NhZeXF4RCIVRUVJCYmIhBgwbRBTZCCCHtrlPdofT19YW3tze2bt0KoOZLs0+fPpg/f369RSpeJpFIoK+vj61btyIsLAxAzRV4kUiEQ4cOtWfXm3Tq1ClIJBJ4enoiKioKO3fuxFdffYXQ0NAGTxyKioogFAphYmLS4iqHba20tBTp6eng8Xjo378/V7K+qeqCskdT1QXrS8/i8XhcetbgwYO59KySkhL88ccfmDBhQkcdPiEK153jo1AoRFZWFgYNGoTjx49jwYIF+Oc//4mVK1c2OEB7/vw5rl+/zqWdKnKOaENzz2un7MoeFRUV0NbWhr6+PncXsqlMlOrq6joX2IqLi+Hl5SU3/9HIyAgSiQQ//PADwsLCaDBJCCGkQ3SaAWVVVRU0NTXx888/Y/z48dz28PBwiEQiHD58uMl9PH/+HMbGxti/fz/Gjh0LoOaE6dChQ+Dz+dDX18eIESPwxRdf1FlYuyMxxnD06FFMnz4do0ePxtdff93gmmIVFRVIT0+HWCyGm5tbo2uPtTepVIobN27g77//hr6+PjeYbGl1QcYYHj16JDf/8erVqzAyMuJSs2TzHyk9i5CeFR8BIDMzE5MmTYKGhgZiYmJgY2NTbzuJRILs7Gzu7mB9d2o7CmMMDx48QE5ODrS0tKCqqlonZVeWvtrUBbaysjJcunSJG0BeunQJysrKcvMfvb29oampSRkahBBCFK7TDCgfPHgAc3NzXLhwAX5+ftz2pUuX4syZM0hJSWlyH++99x6OHz+OzMxM7mp1QkICNDU1YWNjg1u3buGTTz6BtrY2kpKSFHrHDwDu3r2L0NBQPHz4EPHx8XB1da23nSy96e7du+jbty/Mzc075CSidnVB2fxHWXqWWCyGmpoa+vXrBwMDg2anZyUnJyMpKQm5ubno16+f3PxHGxsbuqJOSD16YnwsKyvDokWLsH//fkRHRyMkJKTBOFNQUIDs7Gz07t0bDg4OHdZ32fzw2hVna18Es7e3h5mZWZMX2B4+fMhVp05KSsK1a9dgYmIiN//Rzc2NLrARQgjplLrNt9PatWuRkJCAxMREudSn2muvubq6ws3NDXZ2dkhMTMTIkSMV0VWOpaUl/vzzT6xYsQIjR45EVFQUpk+fXufkQ0lJCfb29jAwMEB6ejqKi4vh7Ozc6FXu1miquqCdnR1XOEgsFuPGjRu4fv06HB0d0bt3b+5kr7q6GtevX5dLz3ry5Am8vLwQEBCAdevWISAgAIaGhnR1nZAO0BXjo5aWFnbs2IHhw4dj7ty5OHPmDNasWVNvemjv3r2hp6eH9PR0XLx4EW5ubtDS0mrT/siWJqodH8vKyqClpQWBQAALCwu59NW7d+8iJycHFRUVcsXCpFIpbt26xcXHpKQk3Lp1C05OTggICMAHH3yAIUOGwNramuIjIYSQLqHTDCgNDQ2hrKyMoqIiue1FRUUwNTVt9LUbNmzA2rVr8ccff8DNza3Rtra2tjA0NMTNmzcVfsIEAKqqqvjiiy8QGBiIsLAwJCYmYuvWrdDT06vT1sDAAH5+fsjMzERycjJcXV1bXXkVaLq6oIWFRYPVBVVUVODs7AxDQ0McPnwYP//8M7y9vXH16lUuPWvQoEEYPHgwFi5cSOlZhLyCnhofeTweJk+ejIEDB2LSpEkYMWIE4uLi6l0GRVNTE97e3rh16xZSUlJeqfIqUDPwe/78udwAsrq6Grq6utDX14e9vT0EAkGDczytrKzQq1cvJCUlYebMmRg6dChyc3ORnJwMkUiEgQMHwt/fHxs2bMDgwYObzPQghBBCOqtOM6Dk8/nw8vLCqVOnuDlCUqkUp06dwrx58xp83fr167F69WocP34cAwcObPJ9/v77bxQXF6N3795t1fVXxuPxMGrUKKSlpWHatGkICAhAXFwcvLy86rTl8/nw8PDAvXv3kJqaChsbG9jY2DTrRERWXbCkpIRbHLul1QVl6VkvX13X0dHB5cuXMX36dHz11Vdwc3NTeMocId1FT46PAODg4IALFy5gyZIlGDp0KDZu3IiJEyfWiVVKSkpwcHCAgYEBMjIyUFxcDCcnp2Zlc1RXV9e5wKakpMTNfbS0tISurm6jcY0xhtLSUly6dAnnz59HcnIyUlNT0adPH2zcuBGjRo3Cvn374O3tXae6NyGEENJVdZo5lEBNWfzw8HDs2LEDPj4+2LhxI/bt24fs7GyYmJggLCwM5ubmiIqKAgCsW7cOy5cvx549exAQEMDtR1tbG9ra2igtLcXKlSvx1ltvwdTUFLdu3cLSpUvx/PlzpKenK6Q8flMkEgmioqIQFRWFyMhIvPfeew3Ov3n27Bl3HC9XOWyouuDLi2M3VRlRKpXi5s2bcvN7bt26BWdnZ7n5j1ZWVoiPj4eenh7efPPNNv2dEEIoPgI1ce3QoUOYMWMGxo0bhy+//LLB1NYXL14gMzMT5eXlcHV1rZP1UVlZyc0Nly3foaGhIRcftbS0mrzAVlhYKBcfr1+/DnNzc/j7+3PxsX///khJScFff/3VrIq8hBBCSFfSqQaUALB161Zu4W4PDw9s3rwZvr6+AIBhw4bB2toasbGxAABra2vcuXOnzj4iIyOxYsUKVFRUYPz48UhLS4NIJIKZmRlGjRqFVatWKWxtx+ZgjOGvv/7C1KlT4e7ujm3btjVYdVEsFnNVDq2trQGAG0DWri4oK1HfVFGH6upqXLt2DefPn+fmPz59+hQDBw7kikMEBARQehYhCkDxsUZ+fj6mTJkCkUiEuLg4uLi41NuOMYY7d+7g5s2bsLCwgKamJncX8sWLF9zyHbIBZFODaKlUitzcXK5CdVJSEvLy8uDi4iJXodrKyoriIyGEkB6j0w0oWyM6Opo7yXJ3d8eWLVvg4+NTb9vY2FhMnz5dbpuamhoqKyu5nxljiIyMxM6dOyESiRAQEIBt27bBwcGhXY/jZY8fP0ZERASuXbuGmJgY+Pn5cScp9VUXZIxBQ0MDFhYW0NfXh46OTpPVBUtLS3Hx4kWuAuulS5fA5/O5+Y8BAQGUnkVIF9Zd42N1dTU+/fRTREdHY/369XLrLkokErn0Vdn6uCoqKjA3N0evXr2adYGtqqoKV69elVvi6Pnz5/D29pZb/1FfX5/iIyGEkB6ry6/RsHfvXixevBiRkZG4cuUK3N3dERwcjIcPHzb4Gl1dXRQUFHCPl6/ir1+/Hps3b8b27duRkpICLS0tBAcHy51UdQRDQ0McOXIECxYswBtvvIEZM2YgLCwM586dw5kzZ3Dz5k2IxWJYWFjA398f/v7+UFVVRWFhIVRUVOoMJhljKCgowIEDB/DRRx9h8ODBMDc3x7x583Dnzh28/fbbuHDhAh49eoT//ve/+OSTTxAYGEjFdNpBdHQ0rK2toa6uDl9fX1y8eLHR9vv370e/fv2grq4OV1dX/Pe//5V7njGG5cuXo3fv3tDQ0EBQUBByc3Pb8xBIF9Cd46OqqirWrl2L/fv3Y/ny5Rg/fjzeffdd/PLLLzh9+jQyMjJQWloKQ0NDDBw4EIGBgTA0NERBQQEYY3UGk4wxPHv2DH/88QdWrlyJ1157Debm5vjHP/6Bc+fOwd/fHwcOHEBJSQn++usvrFu3Dm+88QZla7QDio+EENLFsC7Ox8eHvf/++9zPEomEmZmZsaioqHrbx8TEMD09vQb3J5VKmampKfvyyy+5bSKRiKmpqbGffvqpzfrdXA8ePGDGxsZMVVWVGRgYMD8/P5aUlMRKSkpYWVlZncfz589ZWloa27t3L/vqq6/YpUuX2NatW1loaCiztbVlSkpKzNXVlc2ePZvt3r2b5eXlMalU2uHH1ZMlJCQwPp/Pdu3axTIzM9nMmTOZQCBgRUVF9bY/f/48U1ZWZuvXr2dCoZB9+umnTFVVlaWnp3Nt1q5dy/T09NihQ4fYtWvX2Lhx45iNjQ2rqKjoqMMinVB3j4+MMebv7894PB7T1dVlHh4eLDY2lj1+/JiVlpbWiY+lpaUsNzeXHTlyhK1cuZKlp6ezuLg4NmfOHObu7s6UlJSYtbU1mzJlCouOjmbXr19nYrFYIcfVU1F8JISQrqdLDyhfvHjBlJWV2cGDB+W2h4WFsXHjxtX7mpiYGKasrMwsLS2ZhYUFGzduHMvIyOCev3XrFgPA0tLS5F43dOhQ9sEHH7T1ITRJKpWyc+fOsYqKCvbkyRP21ltvMRMTE3bs2DG5E6bS0lJWUlLCTp8+zdasWcPeeustpq2tzVRUVNigQYPYxx9/zH799Vf25MkTGkAqWEtP8idMmMDGjBkjt83X15fNnj2bMdY5T/KJ4vWE+MgYY5cvX2ZPnjxh1dXVLDIykmlqarINGzaw58+f17nYdvnyZbZlyxYWHh7OzM3NmaqqKnN0dGRz5sxhP/74I7tz5w7FRwWj+EgIIV1Pp1k2pDUeP34MiURSp4CEiYkJsrOz632No6Mjdu3aBTc3Nzx9+hQbNmyAv78/MjMzYWFhgcLCQm4fL+9T9lxH4vF4XIVGdXV17Nu3D9u2bcOECRMwa9YsDB48GCkpKdz8R3V1da66YGhoKKKjo+Hv74/PP/+8w/tO6qqqqkJqair+9a9/cduUlJQQFBSEpKSkel+TlJSExYsXy20LDg7GoUOHAAB5eXkoLCxEUFAQ97yenh58fX2RlJQkt3g96Tl6QnwEILe8UmRkJAIDAzF16lScPn0as2bNQnp6OleBtaKigpv/uGXLFhw/fhw3b97Etm3bFNJ3Io/iIyGEdE1dekDZGn5+fvDz8+N+9vf3h5OTE3bs2IFVq1YpsGfNo6SkhPfffx9+fn4YOnQo4uPjMXr0aEyaNAnR0dFwcnKSWyctJCQEYrFYgT0mtbXmJL+wsLDRE/jOeJJPuqauHh95PB6GDx+OtLQ0DB48GBMmTMCoUaMwZMgQ/Otf/4KXlxfU1NS4OY9vvvlmh8/9JA2j+EgIIV1Tlx5QGhoaQllZGUVFRXLbi4qKYGpq2qx9qKqqwtPTEzdv3gQA7nVFRUVyi3sXFRXBw8OjbTreBgYMGID8/HwIBIJGKxUqKSmBz+d3YM8IIZ1BT46PxsbGSEtLg1gsrrP+5MuaWouXEEIIIY3r0lVe+Xw+vLy8cOrUKW6bVCrFqVOn5K6yN0YikSA9PZ07ObKxsYGpqancPp89e4aUlJRm77OjGBoaNln2nrRcSyoM7ty5E0OGDIG+vj709fURFBRUp31ERAR4PB54PB7Mzc0BAO+//75cm8ZO8k1NTRsdFNQ+yW/uPkn319Pjo5aWVpODSdJyFB8JIYS8rEsPKAFg8eLF2LlzJ+Li4pCVlYW5c+eirKyMW0stLCxMbj7G559/jhMnTuD27du4cuUKpk6dijt37uDdd98FUJMytXDhQnzxxRc4cuQI0tPTERYWBjMzM4wfP14Rh0g6UEuXWUhMTMTkyZNx+vRpJCUloU+fPhg1ahTu378v12706NHcMgweHh5y876aOsn38/OTO4EHgJMnT3Ltu9JJPulYFB9JW6L4SAghpF6KrgrUFrZs2cIsLS0Zn89nPj4+LDk5mXsuMDCQhYeHcz8vXLiQa2tiYsJef/11duXKFbn9SaVS9tlnnzETExOmpqbGRo4cyXJycjrqcIgCtbTC4MvEYjHT0dFhcXFx3Lbw8HAWEhLC/ZyQkMDU1NRYbGwsEwqFbNasWUwgELDCwkLGGGPTpk1jy5Yt49qfP3+eqaiosA0bNrCsrCwWGRlZb1l8gUDADh8+zK5fv85CQkKoLD5hjFF8JG2H4iMhhJD6dIsBJSFtoTXLLLzs2bNnTF1dnf3666/ctvDwcKanp8eMjIxY37592Zw5c9jatWubfZLPGGP79u1jffv2ZXw+n7m4uLBjx47JPU8n+YSQ9kTxkRBCSEN69IBy69atzMrKiqmpqTEfHx+WkpLSYNvAwEAGoM7j9ddf59qEh4fXeT44OLgjDoW0gfv37zMA7MKFC3LblyxZwnx8fJq1j7lz5zJbW1u5K98//fQTd2X84MGDzMnJiXl7e9OC6aRTo/hIaqP4SAghpCE9tqKLbC7I9u3b4evri40bNyI4OBg5OTkwNjau0/7AgQOoqqrifi4uLoa7uzveeecduXajR49GTEwM97Oamlr7HQTpVNauXYuEhAQkJibKVY6svc6Zq6sr3NzcYGdnh8TERIwcOVIRXSWkURQfSVuj+EgIId1Xly/K01pff/01Zs6cienTp8PZ2Rnbt2+HpqYmdu3aVW97AwMDmJqaco+TJ09CU1OzzgmTmpqaXDt9ff2OOBzSBl5lmYUNGzZg7dq1OHHiBNzc3Bpta2trC0NDQ24pBkI6G4qP5GUUHwkhhDSkRw4oq6qqkJqaiqCgIG6bkpISgoKCkJSU1Kx9fP/995g0aRK0tLTkticmJsLY2BiOjo6YO3cuiouL27TvPVlLytXHxsZypehlj5fXm2OMYfny5ejduzc0NDTw+uuvw8XFpcXLLKxfvx6rVq3C77//joEDBzZ5HH///TeKi4vl1vEjpLOg+Nh1tWeM1NPTg5aWFn755RfueYqPhBBCgB46oHz8+DEkEglMTEzktpuYmKCwsLDJ11+8eBEZGRlcKX2Z0aNHIz4+HqdOncK6detw5swZvPbaa5BIJG3a/56opeXqAUBXV5crRV9QUIA7d+7IPb9+/Xps3rwZ27dvR0pKCrS0tFBYWIhvv/222cssrFu3Dp999hl27doFa2trFBYWorCwEKWlpQCA0tJSLFmyBMnJycjPz8epU6cQEhICe3t7BAcHt8NvipBXQ/Gxa+qIGOng4IAffvgBO3fupPhICCHkfxQ9iVMmLi6OGRgYsMrKSrntISEhbOrUqW36Xq9aXGDWrFnM1dW1yXa3bt1iANgff/zR6r6SGi0tVx8TE8P09PQa3J9UKmWmpqbsyy+/5LaJRCKmpqbGIiIiml1h0MrKqt5iJJGRkYwxxsrLy9moUaOYkZERU1VVZVZWVmzmzJlcCXxCmoPiI2lKR8VIFRUV1qtXL4qPhBBCOJ2mKM8777yDDz74AEeOHOHm3Tx8+BDHjh3DiRMn2vS9XmUuSFlZGRISEvD55583+T6154JQcYHWk6Xg1b7y3ZwUvNLSUlhZWUEqlWLAgAFYs2YNXFxcAAB5eXkoLCyUS+vT09ODr68vdHV161ypl0lMTJT7OT8/v9G+a2ho4Pjx400cISGNo/hIGtORMdLf3x8eHh7YtGlTnf1RfCSEkJ6p06S8amhoYMqUKXIVAH/44QdYWlpi2LBhbfpefD4fXl5eLZ4rBwD79+/HixcvMHXq1Cbfh+aCtI3WpOA5Ojpi165dOHz4MH744QdIpVL4+/vj77//BgDuda1N6yOkI1F8JI2hGEkIIUSROs2AEgBmzpyJEydO4P79+wBqigZERESAx+O1+XstXrwYO3fubPZcOZnvv/8e48ePR69eveS201yQzsXPzw9hYWHw8PBAYGAgDhw4ACMjI+zYsUPRXSOkVSg+krZEMZIQQkhb6VQDSk9PT7i7uyM+Ph6pqanIzMxEREREu7zXxIkTsWHDBixfvhweHh64evUqfv/9d+5q7N27d1FQUCD3mpycHJw7dw4zZsyosz9lZWVcv34d48aNQ9++fTFjxgx4eXnh7Nmz3X6ttZZUFhw2bFidyoI8Hg9jxozh2shOkmUPc3NzAGhVCp6MqqoqPD09uVL0ste9yj4J6UgUH7um9o6PPB4PERERrU5TlqEYSQghpNUUPYnzZd988w3r27cve//999moUaMU3R3ShISEBMbn89muXbtYZmYmmzlzJhMIBKyoqKje9sXFxaygoIB7ZGRkMGVlZRYTE8O1CQ8PZ6NHj5ZrN2DAADZv3jyujUQiYebm5g0WnHiZWCxmjo6ObNGiRYyx/xWc2LBhA9fm6dOnTE1Njf3000+t+E0Q0v4oPnYtHRUfnzx5wnx8fChGEkIIUYhON6AUiURMU1OT8fl8lpCQoOjuyDlz5gwbO3Ys6927NwPADh482ORrTp8+zTw9PRmfz2d2dnZyJwYyW7duZVZWVkxNTY35+PiwlJSUtu98O2lpZcGX/ec//2E6OjqstLSU2xYeHs5CQkLk2iUkJDA1NTUWGxvLhEIhmzVrFhMIBFw1wGnTprFly5Zx7VeuXMmOHz/Obt26xVJTU9mkSZOYuro6y8zM5NqsXbuWCQQCdvjwYXb9+nUWEhLCbGxsWEVFRWt+FYS0u84cHxmjGPmyjoqPjFGMJIQQojidKuUVqKki99Zbb0FbWxvjx49XdHfklJWVwd3dHdHR0c1qn5eXhzFjxmD48OG4evUqFi5ciHfffVeuql1r1g7rLDpyAfSgoKAWpeCVlJRg5syZcHJywuuvv45nz57hwoULcHZ25tosXboU8+fPx6xZs+Dt7Y3S0lL8/vvvdRb3JqSz6MzxEaAYWVtHxsfi4uIWpylTjCSEENJmFD2irc+IESPY/PnzFd2NRqEZV9+XLl3KXFxc5LZNnDiRBQcHcz+/6hVsRXrV9epSUlIYgDp3G3766SfuivjBgweZk5MT8/b2ZmKxuE37T0hX1BXiI2MUIyk+EkII6Sk6zTqUQM0V08TERCQmJuKbb75RdHdeWVJSktzVaQAIDg7GwoULAbR+7bDu4vvvv4erqyt8fHzktk+aNIn7f1dXV7i5ucHOzg6JiYm0Xh3psbpbfAQoRjaG4iMhhJCuolOlvHp6eiIiIgLr1q2Do6OjorvzygoLC+tdw+vZs2eoqKho1dphnUlbLIBeX0XIl9VeAJ2Qnqq7xUege8dIio+EEEJ6ik41oMzPz8fTp0/x0UcfKborXdZff/2FN954A2ZmZuDxeDh06FCTr0lMTMSAAQOgpqYGe3t7xMbG1mlTX+l7WgCdkI5D8bFtdFSMvHr1KsVHQgghPUKnGlB2N6ampvVendbV1YWGhsYrXcFuSEcXxaAF0AkhrdXdY+SMGTMoPhJCCOn+FD2Js6tCMwtO9O/fX27b5MmT6xSceJW1w9qij69aFGPLli3M0tKS8fl85uPjw5KTk7m2gYGBLDw8XG7/2dnZDAA7ceJEnf6Ul5ezUaNGMSMjI6aqqsqsrKzYzJkzudL3hJCugWJkTYyk+EgIIaS7owFlCzx//pylpaWxtLQ0BoB9/fXXLC0tjd25c4cxxtiyZcvYtGnTuPa3b99mmpqabMmSJSwrK4tFR0czZWVl9vvvv3Ntmlo77FU052RpyJAhbMGCBXLbdu3axXR1dRljjL148YIpKyvX2U9YWBgbN27cK/eRENJ9UIz8H4qRhBBCeopOVeW1s7t8+TKGDx/O/bx48WIAQHh4OGJjY1FQUIC7d+9yz9vY2ODYsWNYtGgRNm3aBAsLC3z33XdyqUkTJ07Eo0ePsHz5chQWFsLDw0Nu7bD21lRRjJKSkgaLYmRnZ3dIHwkhXQPFSPk2FCMJIYT0BDSgbIFhw4aBMdbg8/UVahg2bBjS0tIa3e+8efMwb968V+0eIYQoFMVIQgghpOehAWUP11RRDGVl5TYvikEIIV0FxUhCCCGkcVTltYfz8/OTK2sPACdPnuTK2r/K0iCd2aNHj2Bqaoo1a9Zw2y5cuAA+n1/n90EI6bkoRlKMJIQQ0gRFT+IkbaurFcVQpGPHjjFVVVV26dIl9uzZM2Zra8sWLVqk6G4RQtoRxcjmoxhJCCGkOWhA2c2cPn2aAajzkJWmDw8PZ4GBgXVe4+Hhwfh8PrO1tWUxMTF19ttY6fuu7L333mN9+/ZlU6ZMYa6urqyyslLRXSKEtCOKkS1DMZIQQkhTeIw1UkGBkG6uoqIC/fv3x71795CamgpXV1dFd4kQQjoNipGEEEKaQnMoSY9269YtPHjwAFKpFPn5+YruDiGEdCoUIwkhhDSF7lCSHquqqgo+Pj7w8PCAo6MjNm7ciPT0dBgbGyu6a4QQonAUIwkhhDQHDShJj7VkyRL8/PPPuHbtGrS1tREYGAg9PT0cPXpU0V0jhBCFoxhJCCGkOSjllfRIiYmJ2LhxI3bv3g1dXV0oKSlh9+7dOHv2LLZt26bo7hFCiEJRjCSEENJcdIeSEEIIIYQQQkir0B1KQgghhBBCCCGtQgNKQgghhBBCCCGtQgNKQgghhBBCCCGtQgNKQgghhBBCCCGtQgNKQgghhBBCCCGtQgNKQgghhBBCCCGtQgNKQgghhBBCCCGtQgNKQgghhBBCCCGtQgNKQgghhBBCCCGtQgNKQgghhBBCCCGtQgNKQgghhBBCCCGtQgNKQgghhBBCCCGtQgNKQgghhBBCCCGtQgNKQgghhBBCCCGtQgNKQgghhBBCCCGtQgNKQgghhBBCCCGtQgNKQgghhBBCCCGtQgNKQgghhBBCCCGtQgNKQgghhBBCCCGtoqLoDhBCOo5EIkF1dbWiu0EIIaQTUlVVhbKysqK7QQjpYmhASUgPwBhDYWEhRCKRortCCCGkExMIBDA1NQWPx1N0VwghXQQNKAnpAWSDSWNjY2hqatKJAiGEEDmMMZSXl+Phw4cAgN69eyu4R4SQroIGlIR0cxKJhBtM9urVS9HdIYQQ0klpaGgAAB4+fAhjY2NKfyWENAsV5SGkm5PNmdTU1FRwTwghhHR2su8Kmm9PCGkuGlAS0kNQmishhJCm0HcFIaSlaEBJCCGEEEIIIaRVaEBJCCEviY2NhUAgUHQ3CCHdQGJiIng8HlXZJoR0W1SUhxDSaUVERCAuLg5AzfpolpaWCAsLwyeffAIVlfYLXxMnTsTrr7/ebvtvjtrHrqKiAgMDA7i5uWHy5MmIiIiAklLzrwfGxsZi4cKFdEL7CmR/j6ioKCxbtozbfujQIbz55ptgjHVYX2qnJGpqasLMzAwBAQGYP38+vLy8WrSvYcOGwcPDAxs3bmzjXrYdybUVHfp+yu7Nf7+m0kMjIyMxbNiwV+sQIYR0cnSHkhDSqY0ePRoFBQXIzc3Fhx9+iBUrVuDLL7+st21VVVWbvKeGhgaMjY3bZF+vQnbs+fn5+O233zB8+HAsWLAAY8eOhVgsVnT3ehx1dXWsW7cOJSUliu4KYmJiUFBQgMzMTERHR6O0tBS+vr6Ij49XdNd6lIKCAu6xceNG6Orqym376KOPFNa3toqHhBDSFBpQEkI6NTU1NZiamsLKygpz585FUFAQjhw5AqDmrtH48eOxevVqmJmZwdHREQBw7949TJgwAQKBAAYGBggJCUF+fj4A4MSJE1BXV69zt27BggUYMWIEgPpTXrdt2wY7Ozvw+Xw4Ojpi9+7d3HP5+fng8Xi4evUqt00kEoHH4yExMREAUFJSgtDQUBgZGUFDQwMODg6IiYlp1rGbm5tjwIAB+OSTT3D48GH89ttviI2N5dp9/fXXcHV1hZaWFvr06YP33nsPpaWlAGrS7aZPn46nT5+Cx+OBx+NhxYoVAIDdu3dj4MCB0NHRgampKaZMmcKtQUfqCgoKgqmpKaKiohptd+7cOQwZMgQaGhro06cPPvjgA5SVlQEAtm7div79+3NtDx06BB6Ph+3bt8u9z6efftroe8gWn7e2tsaoUaPw888/IzQ0FPPmzeMGvMXFxZg8eTLMzc2hqakJV1dX/PTTT9w+IiIicObMGWzatIn7bOTn50MikWDGjBmwsbGBhoYGHB0dsWnTphb/vnoCU1NT7qGnpwcejye3TVtbm2ubmpqKgQMHQlNTE/7+/sjJyZHb1+HDhzFgwACoq6vD1tYWK1eulLtwdPfuXYSEhEBbWxu6urqYMGECioqKuOdXrFgBDw8PfPfdd7CxsYG6ujri4+PRq1cvvHjxQu69xo8fj2nTprXTb4UQ0tPQgJIQ0iJ5GQ+RfOwG8jIUM/DQ0NCQu/J+6tQp5OTk4OTJkzh69Ciqq6sRHBwMHR0dnD17FufPn4e2tjZGjx6NqqoqjBw5EgKBAL/88gu3D4lEgr179yI0NLTe9zx48CAWLFiADz/8EBkZGZg9ezamT5+O06dPN7vfn332GYRCIX777TdkZWVh27ZtMDQ0bPHxjxgxAu7u7jhw4AC3TUlJCZs3b0ZmZibi4uLw559/YunSpQAAf3//OndOZHdNqqursWrVKly7dg2HDh1Cfn4+IiIiWtwnRZEyKdJK0yBl0g55P2VlZaxZswZbtmzB33//XW+bW7duYfTo0Xjrrbdw/fp17N27F+fOncO8efMAAIGBgRAKhXj06BEA4MyZMzA0NOQuPFRXVyMpKalVaZKLFi3C8+fPcfLkSQBAZWUlvLy8cOzYMWRkZGDWrFmYNm0aLl68CADYtGkT/Pz8MHPmTO6z0adPH0ilUlhYWGD//v0QCoVYvnw5PvnkE+zbt6/FfSL/8+9//xtfffUVLl++DBUVFfzzn//knjt79izCwsKwYMECCIVC7NixA7GxsVi9ejUAQCqVIiQkBE+ePMGZM2dw8uRJ3L59GxMnTpR7j5s3b+KXX37BgQMHcPXqVbzzzjuQSCTcRTigZo3JY8eOyb0/IYS8CppDSQhptgObU3A8/hr3c3CYO/7xgW+HvDdjDKdOncLx48cxf/58bruWlha+++478Pl8AMAPP/wAqVSK7777jpvfFBMTA4FAgMTERIwaNQqTJk3Cnj17MGPGDAA1g1KRSIS33nqr3vfesGEDIiIi8N577wEAFi9ejOTkZGzYsAHDhw9vVv/v3r0LT09PDBw4EABgbW3dqt8DAPTr1w/Xr1/nfl64cCH3/9bW1vjiiy8wZ84cfPPNN+Dz+XJ3TmqrfUJpa2uLzZs3w9vbG6WlpXJ3Vjqro0+OYuWdlVhhtQJv9HqjQ97zzTffhIeHByIjI/H999/XeT4qKgqhoaHc38TBwQGbN29GYGAgtm3bhv79+8PAwABnzpzB22+/jcTERHz44YfcHcCLFy+iuroa/v7+Le5bv379AIC7G29ubi6Xcjl//nwcP34c+/btg4+PD/T09MDn86GpqSn32VBWVsbKlSu5n21sbJCUlIR9+/ZhwoQJLe4XqbF69WoEBgYCAJYtW4YxY8agsrIS6urqWLlyJZYtW4bw8HAANf8eV61ahaVLlyIyMhKnTp1Ceno68vLy0KdPHwBAfHw8XFxccOnSJXh7ewOoSXONj4+HkZER975TpkxBTEwM3nnnHQA1MdLS0pLmdhJC2gzdoSSENEtexkO5wSQAHI+/1u53Ko8ePQptbW2oq6vjtddew8SJE7mUTQBwdXXlBpMAcO3aNdy8eRM6OjrQ1taGtrY2DAwMUFlZiVu3bgEAQkNDkZiYiAcPHgAAfvzxR4wZM6bByq5ZWVkICAiQ2xYQEICsrKxmH8fcuXORkJAADw8PLF26FBcuXGj2a1/GGJMrBvLHH39g5MiRMDc3h46ODqZNm4bi4mKUl5c3up/U1FS88cYbsLS0hI6ODneye/fu3Vb3raOImRjfFnwLANhRsANi1nFzStetW4e4uLh6//7Xrl1DbGws99nT1tZGcHAwpFIp8vLywOPxMHToUCQmJkIkEkEoFOK9997DixcvkJ2djTNnzsDb25tbXL4lZIWBZJ8NiUSCVatWwdXVFQYGBtDW1sbx48eb9feNjo6Gl5cXjIyMoK2tjW+//bZLfC46Mzc3N+7/e/fuDQBcivm1a9fw+eefy31uZHeOy8vLkZWVhT59+nCDSQBwdnaGQCCQ+xxaWVnJDSYBYObMmThx4gTu378PoCalPyIigtabJIS0GRpQEkKapeiOqEXb28rw4cNx9epV5ObmoqKiAnFxcdDS0uKer/3/AFBaWgovLy9cvXpV7nHjxg1MmTIFAODt7Q07OzskJCSgoqICBw8ebDDdtTlkFVdrV/qsrq6Wa/Paa6/hzp07WLRoER48eICRI0e2umBHVlYWbGxsANTcjRo7dizc3Nzwyy+/IDU1FdHR0QAaL8pRVlaG4OBg6Orq4scff8SlS5dw8ODBJl/XWfz3yX9RUFUAACioKsBvT37rsPceOnQogoOD8a9//avOc6WlpZg9e7bcZ+/atWvIzc2FnZ0dgJrKqomJiTh79iw8PT2hq6vLDTLPnDnDDexbSjawkH02vvzyS2zatAkff/wxTp8+jatXryI4OLjJv29CQgI++ugjzJgxAydOnMDVq1cxffr0LvG56MxUVVW5/5cN5qTSmnTt0tJSrFy5Uu5zk56ejtzcXKirqzf7PV6OhwDg6ekJd3d3xMfHIzU1FZmZmV0qtZ0Q0vlRyishpFlMrAQt2t5WtLS0YG9v3+z2AwYMwN69e2FsbAxdXd0G24WGhuLHH3+EhYUFlJSUMGbMmAbbOjk54fz581w6GgCcP38ezs7OAMDdESgoKICnpycAyBXokTEyMkJ4eDjCw8MxZMgQLFmyBBs2bGj2sQHAn3/+ifT0dCxatAhAzV1GqVSKr776ihvYvjzXjc/nQyKRyG3Lzs5GcXEx1q5dy931uHz5cov6oiiyu5M88MDAwAMPOwp24DWD16DC65ivtbVr18LDw4MrBCUzYMAACIXCRj+zgYGBWLhwIfbv38+lHQ4bNgx//PEHzp8/jw8//LBVfZLNlQ0KCgJQ8xkNCQnB1KlTAdQMXm7cuMF9boH6Pxvnz5+Hv78/l+INgLu7T9rHgAEDkJOT0+DnxsnJCffu3cO9e/e4f69CoRAikUju79mQd999Fxs3bsT9+/cRFBQkd6eTEEJeFd2hJIQ0i01/YwSHucttCw53h01/xS+vUVtoaCgMDQ0REhKCs2fPIi8vD4mJifjggw/kCqmEhobiypUrWL16Nd5++22oqak1uM8lS5YgNjYW27ZtQ25uLr7++mscOHCAu8OooaGBQYMGYe3atcjKysKZM2fqVOlcvnw5Dh8+jJs3byIzMxNHjx6Fk5NTo8fy4sULFBYW4v79+7hy5QrWrFmDkJAQjB07FmFhYQAAe3t7VFdXY8uWLbh9+zZ2794tVzEUqJlXWVpailOnTuHx48coLy+HpaUl+Hw+97ojR45g1apVLfpdK8ql55dQUFUAhpo7wgwMBVUFuPy84wbErq6uCA0NxebNm+W2f/zxx7hw4QLmzZvH3Vk/fPgwV5QHqEl91NfXx549e+QGlIcOHcKLFy/qpFfXRyQSobCwEHfu3MHJkyfx9ttvY8+ePdi2bRuXuu3g4ICTJ0/iwoULyMrKwuzZs+WqggI1n42UlBTk5+fj8ePHkEqlcHBwwOXLl3H8+HHcuHEDn332GS5duvRqvzDSqOXLlyM+Ph4rV65EZmYmsrKykJCQwMWRoKAg7jN35coVXLx4EWFhYQgMDOTmZTdmypQp+Pvvv7Fz504qxkMIaXuMENKtVVRUMKFQyCoqKtpkf7fTi1jS0Rx2O72oTfbXmPDwcBYSEtLi5wsKClhYWBgzNDRkampqzNbWls2cOZM9ffpUrp2Pjw8DwP7880+57TExMUxPT09u2zfffMNsbW2Zqqoq69u3L4uPj5d7XigUMj8/P6ahocE8PDzYiRMnGAB2+vRpxhhjq1atYk5OTkxDQ4MZGBiwkJAQdvv27UaPDQADwFRUVJiRkRELCgpiu3btYhKJRK7t119/zXr37s00NDRYcHAwi4+PZwBYSUkJ12bOnDmsV69eDACLjIxkjDG2Z88eZm1tzdTU1Jifnx87cuQIA8DS0tIa7FdnUC4uZ78+/pUdeHSAe/z6+FdWLi5vt/es77OWl5fH+Hw+e/mr9OLFi+z//u//mLa2NtPS0mJubm5s9erVcm1CQkKYiooKe/78OWOMMYlEwvT19dmgQYOa7IvscwGAqaurMzs7OxYeHs5SU1Pl2hUXF7OQkBCmra3NjI2N2aeffsrCwsLkjiMnJ4cNGjSIaWhoMAAsLy+PVVZWsoiICKanp8cEAgGbO3cuW7ZsGXN3d2/+L6wHqi9uMMbY6dOn6/x7TEtL437fMr///jvz9/dnGhoaTFdXl/n4+LBvv/2We/7OnTts3LhxTEtLi+no6LB33nmHFRYWcs9HRkY2+jeaNm0aMzAwYJWVlY0eR1t/ZxBCuj8eY7Um/RBCup3Kykrk5eVx65IRQgjpeUaOHAkXF5c6d9VfRt8ZhJCWojmUhBBCCCHdVElJCRITE5GYmIhvvvlG0d0hhHRDNKAkhBBCCOmmPD09UVJSgnXr1tUpIkUIIW2BBpSEEEIIId1Ufn6+ortACOnmqMorIYQQQgghhJBWoQElIT0E1d8ihBDSFPquIIS0FA0oCenmVFVVAQDl5eUK7gkhhJDOTvZdIfvuIISQptAcSkK6OWVlZQgEAjx8+BAAoKmpCR6Pp+BeEUII6UwYYygvL8fDhw8hEAigrKys6C4RQroIWoeSkB6AMYbCwkKIRCJFd4UQQkgnJhAIYGpqShceCSHNRgNKQnoQiUSC6upqRXeDEEJIJ6Sqqkp3JgkhLUYDSkIIIYQQQgghrUJFeQghhBBCCCGEtAoNKAkhhBBCCCGEtAoNKAkhhBBCCCGEtAoNKAkhhBBCCCGEtAoNKAkhhBBCCCGEtAoNKAkhhBBCCCGEtAoNKAkhhBBCCCGEtMr/A7QUURN06Q1JAAAAAElFTkSuQmCC\n" - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "# Change the viewing angle to +20 elevation, +60 azimuth\n", - "fig = plot_results_panel_3d(cycle_mlr,\n", - " wrap=3,\n", - " subplot_kw=dict(figsize=(12,6)), # Panel configurations\n", - " scatter_previous_kw=dict(color='rebeccapurple', marker='o', s=10), # Previous data point\n", - " scatter_current_kw=dict(color='limegreen', marker='^', s=10, alpha=1), # Current cycle data\n", - " surface_kw=dict(color='orange'), # Theory surface\n", - " view=(20, 60), # Degrees (elevation, azimuth)\n", - " );\n" - ], - "metadata": { - "collapsed": false - } - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 3", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 2 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython2", - "version": "2.7.6" - } - }, - "nbformat": 4, - "nbformat_minor": 0 -} diff --git a/docs/cycle/cycle_scoring.ipynb b/docs/cycle/cycle_scoring.ipynb deleted file mode 100644 index ee048bd39..000000000 --- a/docs/cycle/cycle_scoring.ipynb +++ /dev/null @@ -1,420 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "source": [ - "# Scoring\n", - "This notebook shows how to use autora.cycle scoring tools.\n", - "\n", - "We'll be using the [Iris toy dataset](https://scikit-learn.org/stable/datasets/toy_dataset.html#iris-plants-dataset) from sklearn to create a simple logistic regression cycle. This model will classify samples into different species of irises based on flower measurements. The dataset will be split between a training set and test set; the test set will be withheld for the scoring metrics." - ], - "metadata": { - "collapsed": false - } - }, - { - "cell_type": "code", - "execution_count": null, - "outputs": [], - "source": [ - "# Uncomment the following line when running on Google Colab\n", - "# !pip install autora" - ], - "metadata": { - "collapsed": false - } - }, - { - "cell_type": "code", - "execution_count": 1, - "metadata": { - "collapsed": true - }, - "outputs": [], - "source": [ - "import random\n", - "import numpy as np\n", - "from sklearn.linear_model import LogisticRegression\n", - "from sklearn.model_selection import train_test_split\n", - "import sklearn.pipeline as skp\n", - "from sklearn.preprocessing import StandardScaler\n", - "from sklearn.metrics import f1_score, accuracy_score, precision_score, recall_score, roc_auc_score\n", - "from sklearn.datasets import load_iris\n", - "from functools import partial\n", - "\n", - "from autora.variable import VariableCollection, Variable\n", - "from autora.experimentalist.sampler import random_sampler\n", - "from autora.experimentalist.pipeline import Pipeline\n", - "from autora.cycle import Cycle, cycle_default_score, cycle_specified_score, plot_cycle_score" - ] - }, - { - "cell_type": "markdown", - "source": [ - "### Importing Data\n", - "Data is split where 33% is reserved for testing." - ], - "metadata": { - "collapsed": false - } - }, - { - "cell_type": "code", - "execution_count": 2, - "outputs": [], - "source": [ - "# Import and split data\n", - "X, y = load_iris(return_X_y=True)\n", - "X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=.33, random_state=1)" - ], - "metadata": { - "collapsed": false - } - }, - { - "cell_type": "markdown", - "source": [ - "### Cycle Setup\n", - "1. **Theorist** - Uses sklearn's `Pipeline` to create a logistic regression estimator with a scaling pre-processing step.\n", - "2. **Experimentalist** - Uses autora's `Pipeline` to create a random sampling experimentalist with the training dataset's independent variables (`X_train`) as the condition pool.\n", - "3. **Experiment Runner** - Creates an oracle that uses the full dataset to match experimental independent variables (flower measurements) and returns the dependent variable (species)." - ], - "metadata": { - "collapsed": false - } - }, - { - "cell_type": "code", - "execution_count": 3, - "outputs": [ - { - "data": { - "text/plain": "" - }, - "execution_count": 3, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "# Set up cycle and run\n", - "# Variable Metadata\n", - "random.seed(1)\n", - "study_metadata = VariableCollection(\n", - " independent_variables=[\n", - " Variable(name='sepal length', units='cm', value_range=(4.3, 7.9)),\n", - " Variable(name='sepal width', units='cm', value_range=(2.0, 4.4)),\n", - " Variable(name='petal length', units='cm', value_range=(1.0, 6.9)),\n", - " Variable(name='petal width', units='cm', value_range=(0.1, 2.5)),\n", - " ],\n", - " dependent_variables=[Variable(name=\"species\", allowed_values=[0,1,2])],\n", - ")\n", - "\n", - "# Theorist\n", - "clf = skp.Pipeline([('scaler', StandardScaler()), ('lr', LogisticRegression())])\n", - "\n", - "# Experimentalist\n", - "# Note that the pool is only the training split\n", - "experimentalist = Pipeline(\n", - " [\n", - " (\"pool\", X_train),\n", - " (\"sampler\", random_sampler),\n", - " ],\n", - " params={\n", - " \"sampler\": {\"n\": 5},\n", - " },\n", - " )\n", - "\n", - "# Experiment Runner\n", - "def oracle(xs, X_truth, y_truth):\n", - " l_idx = []\n", - "\n", - " for condition in xs:\n", - " l_idx.append(np.where((X_truth[:,0] == condition[0]) &\n", - " (X_truth[:,1] == condition[1]) &\n", - " (X_truth[:,2] == condition[2]) &\n", - " (X_truth[:,3] == condition[3]))[0][0]\n", - " )\n", - "\n", - " l_return = y_truth[l_idx].ravel()\n", - " return l_return\n", - "\n", - "experiment_runner = partial(oracle, X_truth=X, y_truth=y)\n", - "\n", - "cycle = Cycle(\n", - " metadata=study_metadata,\n", - " theorist=clf,\n", - " experimentalist=experimentalist,\n", - " experiment_runner=experiment_runner\n", - ")\n", - "\n", - "# Run cycle 20 times\n", - "cycle.run(20)" - ], - "metadata": { - "collapsed": false - } - }, - { - "cell_type": "markdown", - "source": [ - "### Scoring Metrics\n", - "We can score the models in two ways:\n", - "1. Estimator's default scoring metric - Sklearn estimators have a default scoring method.\n", - " -`LogisticRegression()` default is [accuracy_score](https://scikit-learn.org/stable/modules/generated/sklearn.metrics.accuracy_score.html#sklearn.metrics.accuracy_score)\n", - "2. Scoring functions - Sklearn has many available [scoring functions](https://scikit-learn.org/stable/modules/model_evaluation.html#the-scoring-parameter-defining-model-evaluation-rules). It is up to the user to determine what is compatible with their model.\n", - "\n", - "Autora has two functions to return scoring metrics of each cycle:\n", - "1. `cycle_default_score` - Uses the estimator's default\n", - "2. `cycle_specified_score` - Uses the one of Sklearn's scoring functions\n", - "\n" - ], - "metadata": { - "collapsed": false - } - }, - { - "cell_type": "code", - "execution_count": 4, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Default scorer - accuracy: [0.74, 0.8, 0.84, 0.86, 0.88, 0.84, 0.84, 0.84, 0.92, 0.94, 0.9, 0.92, 0.96, 0.96, 0.96, 0.96, 0.96, 0.98, 0.96, 0.96]\n", - "\n", - "Specified scorer - accuracy: [0.74, 0.8, 0.84, 0.86, 0.88, 0.84, 0.84, 0.84, 0.92, 0.94, 0.9, 0.92, 0.96, 0.96, 0.96, 0.96, 0.96, 0.98, 0.96, 0.96]\n", - "\n", - "Specified scorer - precision: [0.77, 0.82, 0.85, 0.87, 0.9, 0.87, 0.87, 0.86, 0.93, 0.94, 0.91, 0.93, 0.96, 0.96, 0.96, 0.96, 0.96, 0.98, 0.96, 0.96]\n" - ] - } - ], - "source": [ - "results_default = cycle_default_score(cycle, X_test, y_test)\n", - "print(f'Default scorer - accuracy: {results_default}\\n')\n", - "\n", - "results_specified_accuracy = cycle_specified_score(accuracy_score, cycle, X_test, y_test)\n", - "print(f'Specified scorer - accuracy: {results_specified_accuracy}\\n')\n", - "\n", - "results_specified_precision = cycle_specified_score(precision_score, cycle, X_test, y_test, average='weighted', zero_division=0)\n", - "print(f'Specified scorer - precision: {np.around(results_specified_precision, 2).tolist()}')" - ], - "metadata": { - "collapsed": false - } - }, - { - "cell_type": "markdown", - "source": [ - "Note that the \"default scorer\" and \"specified scorer 1\" results should be the same because the `LogisticRegression` estimator's default is the `accuracy_score` function." - ], - "metadata": { - "collapsed": false - } - }, - { - "cell_type": "markdown", - "source": [ - "### Plotting\n", - "These scores can be plotted using autora's `plot_cycle_score`.\n", - "* The plotter will use the estimator's default scorer unless a `scorer` keyword is supplied with a sklearn scoring function.\n", - "* Additional parameters for scoring functions are supplied with the `scorer_kw` as a dictionary.\n", - "\n", - "Below are several examples." - ], - "metadata": { - "collapsed": false - } - }, - { - "cell_type": "code", - "execution_count": 5, - "outputs": [ - { - "data": { - "text/plain": "
", - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAdMAAAEmCAYAAAA5oXoHAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8o6BhiAAAACXBIWXMAAA9hAAAPYQGoP6dpAAA7SElEQVR4nO3deVxU9f4/8NfMwDAsAiK7oggiqCEaCuFSXUVBy8zrNbJFxbT0at3Ccim39JemFVcrc8sF9VrozcwWMSOXa6AoqGmisoggsisMi2wz5/cHMsVXVGAGzszwej4e83hcz5z5zPs8LvHinPM5n7dEEAQBRERE1GJSsQsgIiIydAxTIiIiLTFMiYiItMQwJSIi0hLDlIiISEsMUyIiIi0xTImIiLTEMCUiItISw7QRgiBAqVSC61kQEVFTMEwbUVpaChsbG5SWlopdChERGQCGKRERkZYYpkRERFpimBIREWmJYUpERKQlhikREZGWGKZERERaYpgSERFpiWFKRESkJYYpERG1WL6yEjN2JuLfh69CrW6/q8aZiF0AEREZpqxbFXhpyylcL6pAzB+5yLpVgdX/6AsTWfs7T2t/R0xERFpLzS/DhA3xuF5UASdrM8ikEuw7m41Zu5NQVasSu7w2xzAlIqJmuZhdgrCN8chVVqKHoxW+mzUE6198FHKZFIf+yMO0qDOoqK4Vu8w2xTAlIqImS7x+CxM3n0RReTUe6WyNPa8FwdlGgZF9nLF1ykCYm8rwv5RCTNqSgJI7NWKX22YYpkRE1CT/SynAS18moLSyFgPdO2L39MdgZynXvD/Eyx67pgXCWmGCM9dv44XNJ1FUViVixW2HYUpERA916I9cvLL9DO7UqPB4TwfsmBoIa4XpPfv5d+uIr159DJ0s5fjjphLPbYxHbkmlCBW3LYYpERE90Ldnb+Cf/0lCtUqNUY84Y/Mkf5jLZffdv4+rDfbMCIKLjQJpBeWYsDEOmUUVbVhx22OYEhHRfe06eR0Re85DpRYw/tEu+Gxif5iZ3D9I63k6WGHvjCB062SBrFt38I8NcbiaV9oGFYuDYUpERI1afzQNC/dfhCAAk4O64aNmPkPapaMF9r4WBG+nDsgvrULYxnhcuFHSihWLh2FKREQNCIKAjw5dxqqYywCAWX/zxNJn+kAqlTR7LEdrBaJfewx+XWxwu6IGEzefRMK1W7ouWXQMUyIi0lCrBSw98AfWHUkDAMwL9cE7IT6QSJofpPVsLeT4z/THENjdDmVVtZi09RSOXsnXVcl6gWFKREQAgFqVGu/893dExV+HRAIsf/YRzHzSUydjW5mZIGpqAIb5OKKyRo3pO87gpws5OhlbHzBMiYgIVbUqvP7VWXyTdAMyqQSRz/nh5ce66fQ7FKYybHjJH0/1dUGNSsDs3UnYeyZLp98hFoYpEVE7d6dahek7EnHwYi7kMim+ePFRjOvfpVW+S24ixafP90fYADeoBeCd//6O7b9da5XvaksMUyKidkxZWYNJW0/h+NUCmJvKsGXKAIT0cW7V75RJJfhwvC+mDu4OAFj6/SV8/msKBMFwW7gxTImI2qlb5dV4YfNJnM64jQ4KE+yaFoChXg5t8t0SiQSLnu6Ffw33AgB8/PNVfHjwssEGKvuZEpFRySm5g/NZxWKXoffUAvDvw1eRkl8GO0s5dkwNwCOdbdq0BolEgrdG9EQHhQn+34/J2Hg8HbcrqjHMx1En40slEoxs5bPsehLBUP8MaEVKpRI2NjYoKSmBtbW12OUQURPdqVZh2CdHkdMO1oLVFWdrBXZNC0QPRytR6/gqIRPvfnsBukwkc1MZkpeH6m7AB+CZKREZje1xGcgpqYSNuSm8RA4HQ+BobYYFo3rBzc5C7FIwMaAr7CzliIrLQHWtWidjmpm23Z1Mnpk2gmemRIanpKIGQ1f/CmVlLT6Z4Ifx/q0zG5WoMZyARERGYePxNCgra9HTyQrP9u8sdjnUzjBMicjg5SsrsfXus4pvj/SGrAVryBJpQ/QwXbduHdzd3aFQKBAYGIiEhIT77ltTU4Nly5bB09MTCoUCfn5+iImJabDP0qVLIZFIGrx8fHxa+zCISESf/pqCyho1+ne1xYjeTmKXQ+2QqGEaHR2NiIgILFmyBElJSfDz80NISAjy8xtfAHnhwoXYuHEjPvvsM1y6dAkzZszAuHHjcPbs2Qb79enTBzk5OZrXiRMn2uJwiEgE14vK8XVC3ZJ0c7VckJ2opUQN08jISEyfPh3h4eHo3bs3NmzYAAsLC2zdurXR/Xfu3Il3330Xo0ePhoeHB2bOnInRo0fjk08+abCfiYkJnJ2dNS97e/u2OBwiEkHk4auoVQt4vKcDgjw7iV0OtVOihWl1dTUSExMRHBz8ZzFSKYKDgxEfH9/oZ6qqqqBQKBpsMzc3v+fMMyUlBa6urvDw8MCLL76IzMzMB9ZSVVUFpVLZ4EVE+u/STSUOnL8JAJgb4i1yNdSeiRamhYWFUKlUcHJqeH/DyckJubm5jX4mJCQEkZGRSElJgVqtxuHDh7Fv3z7k5PzZxicwMBDbt29HTEwM1q9fj2vXrmHo0KEoLS29by0rV66EjY2N5uXm5qabgySiVvXxz1cgCMBTfV3afPUeor8SfQJSc6xduxZeXl7w8fGBXC7H7NmzER4eDqn0z8MYNWoUJkyYgL59+yIkJAQ//fQTiouLsWfPnvuOu2DBApSUlGheWVnG0RKIyJidzriFXy/nQyaVYM6InmKXQ+2caGFqb28PmUyGvLy8Btvz8vLg7Nz4WooODg7Yv38/ysvLcf36dVy+fBlWVlbw8PC47/fY2tqiZ8+eSE1Nve8+ZmZmsLa2bvAiIv0lCAJWHbwMAHhugBs8HLjaEYlLtDCVy+Xw9/dHbGysZptarUZsbCyCgoIe+FmFQoHOnTujtrYW33zzDcaOHXvffcvKypCWlgYXFxed1U5E4jpyJR9nrt+GmYlU03WESEyiXuaNiIjA5s2bERUVheTkZMycORPl5eUIDw8HAEyaNAkLFizQ7H/q1Cns27cP6enp+N///ofQ0FCo1WrMnTtXs8/bb7+NY8eOISMjA3FxcRg3bhxkMhkmTpzY5sdHRLqnVgtYHXMFADBlkDucbRQP+QRR6xN1ofuwsDAUFBRg8eLFyM3NRb9+/RATE6OZlJSZmdngfmhlZSUWLlyI9PR0WFlZYfTo0di5cydsbW01+9y4cQMTJ05EUVERHBwcMGTIEJw8eRIODm3To4+IWtf3v9/E5dxSdFCYYOaTnmKXQwSAC903igvdE+mn6lo1giOPIfNWBd4e2ROzh/ESL+kHg5rNS0TtW/SZLGTeqoC9lRnCB3cXuxwiDYYpUTtz/GoBXtl+GhdulIhdSrNUVNfi09gUAMDrw3rA0oztmEl/8KeRqB358fcc/Ovrs6hVC8i6XYGD/3rcYDqsbI/LQEFpFbp0NMfEgK5il0PUAM9MidqJPaez8PpXSahV102TuJpXhu/OZYtcVdOUVNRgw9E0AMCckT0hN+GvLtIv/Ikkage2nriGud/8DrUATAxwwzt317GNPHwV1bVqkat7uPXH6hp/ezt1wDN+bPxN+odhSmTEBEHAp7EpWPbDJQDA9KHdsWKcL6YO7g7HDma4cfsOvkp4cCMIseUpK7E9rq7x9zshbPxN+olhSmSkBEHAyoOXEXn4KgAgYkRPvDu6FyQSCczlMrx+d+Wgz35NQXlVrZilPtCnsXWNv/27dcTwXo5il0PUKIYpkRFSqQW8++1FbDqeDgBY9HRvvDHcq0Hj7OcHuqFbJwsUllVj22/XxCr1gTIKyxF9ur7xtzcbf5PeYpgSGZkalRpvRZ/DVwmZkEqA1eP74pUh9z6TaSqTIuJut5WNx9Jxu7y6rUt9qPrG3096OyDQg42/SX8xTImMSGWNCjN3JeLA+ZswkUrw6cT+eG7g/fvzjunril4u1iitqsX6Y2ltWOnD/XGzRNP4+x02/iY9xzAlMhLlVbWYuv00fknOh5mJFJsnDcDTfV0f+BmpVIK5d4MqKi4DOSV32qLUJvn4UN1i9mP8XNHHlY2/Sb8xTImMQElFDV7acgpxaUWwlMsQNTUAf/Np2mSdJ70dEOBuh6patWaFIbElXLuFI1cKYMLG32QgGKZEBq6gtAphm+JxNrMYNuam+M/0x/BYM+4vSiQSzA2tOzvdc+YG0gvKWqvUJhEEAatj7jb+HugGd3tLUeshagqGKZEByy6+g7CN8bicWwp7KzNEv/YY+rnZNnucAe52GO7jCJVawCd3H6URy6+X2fibDA/DlMhAXSssx4T1cUgvLEdnW3PsnREEH+eWtwx8O8QbEknd+r0Xs8VZBF+tFvDR3Xul4YO7w8majb/JMDBMiQxQco4SEzbE42ZJJTzsLbF3RhC6a3k5tJeLNcb61U1YWn030NragfN/afz9BBt/k+FgmBIZmLOZt/H8ppMoLKtCLxdr7JkRBFdbc52MHTHCGyZSCY5fLUB8WpFOxmyq6lo1PjlcF+IznvCEjYVpm34/kTYYpkQGJC6tEC9+eQold2rwaFdbfD39Mdhbmels/K6dLDTtzVYfugxBEHQ29sNEn85E1q07cOhghvDB7m32vUS6wDAlMhCxyXmYsu00KqpVGNyjE3a+EtgqZ2+vD+sBc1MZzmYW4/ClPJ2P35iK6lqsjU0FALwxrAcs5Gy1TIaFYUpkAEru1GD27rOorlUjuJcTtkweCEuz1gkcR2sFpg5xBwB8dOgKVOrWPTutqlVhzp7zKCyrQlc7C4QNZONvMjwMUyIDEJ9WhDs1KnS3t8T6lx6FwlTWqt/36uOesDE3RUp+Gfafbb0G4neqVZi+IxEHL+ZCLpPi/z37CBt/k0HiTy2RAfgttRAA8LiXPUxlrf+frY25KWY+WTebNvLwVVTVqnT+HcrKGkzaegrHrxbA3FSGLVMG4PGeDjr/HqK2wDAlMgD1YTq4h32bfefkIHc4djBDdvEdfHVKtw3Eb5VX44XNJ3E64zY6KEywa1oAhnoxSMlwMUyJ9Fx28R2kF5ZDKgEe82y7NmTmchn+FVzfQDwVZTpqIJ6nrETYxnhczFbCzlKOr6Y/Bv9udjoZm0gsDFMiPVd/VurnZgtrRds+e/ncADe4d7JAUXk1tp7QvoF41q0KTNgQj5T8MjhbK7DntSA80pkdYcjwMUyJ9Fzc3TAd0oaXeOuZyqSIGFm3CP7m4+m4pUUD8ZS8UvxjQxwyb1WgWycL7J0RhB6OVroqlUhUDFMiPSYIAk6k1q1ENMiz7cMUAJ72dUHv+gbiR1NbNMbF7BKEbTqJPGUVejpZYe9rQXCzs9BxpUTiYZgS6bGreWUoLKuCwlSKR7vZilKDVPpni7ao+OvNbiB+OuMWJm46iVvl1ejbxQbRrwbBkQvYk5FhmBLpsRN3L/EGdO8EM5PWfbb0QZ7o6YCA7naorlVj7S9NbyB+/GoBXt5yCqVVtQjobof/TAtER0t5K1ZKJA6GKZEe+01zv7TtZvE2RiKRYN7ds9O9iTeQ1oQG4jEXczEt6gwqa9R40tsBUeEB6NDGE6iI2grDlEhP1ajUOJVed7+0LZ8vvR//bnYI7lXXQDzy5wc3EP8m8QZm7U5CtUqNp3xdsOnlATCXi3dmTdTaGKZEeup8VjHKq1Wws5SjlxZNv3VJ00D8Qg4u3Gi8gfiO+AzM2XseKrWACf5d8OnE/lwikIwef8KJ9FT9/dIgz06QSiUiV1PHx9ka4/p1BlDXou3/WnckFYu/+wMAED7YHavG94VMT2onak2ih+m6devg7u4OhUKBwMBAJCQk3HffmpoaLFu2DJ6enlAoFPDz80NMTIxWYxLpq99EfL70Qd4a0ROmMgn+l1KIuLS6GgVBwKqYy/joUF1z7zeGe2Hx07315o8AotYmaphGR0cjIiICS5YsQVJSEvz8/BASEoL8/PxG91+4cCE2btyIzz77DJcuXcKMGTMwbtw4nD17tsVjEumj8qpanM0sBqB/YepmZ4EX6huIx9S1aFv83R9YfzQNAPDuaB9EjOgJiYRBSu2HRBCE1m1W+ACBgYEYOHAgPv/8cwCAWq2Gm5sbXn/9dcyfP/+e/V1dXfHee+9h1qxZmm3jx4+Hubk5du3a1aIxG6NUKmFjY4OSkhJYW+vHvSpqX45czkf49tPoameB43P/JnY59ygorcLjq4/gTo0K/dxscS6rGBIJ8MGzvnghkP1Iqf0R7cy0uroaiYmJCA4O/rMYqRTBwcGIj49v9DNVVVVQKBo+7G1ubo4TJ060eMz6cZVKZYMXkZhOaLrEiPtIzP04dDDDK0O6AwDOZRVDJpVgTVg/Bim1W6KFaWFhIVQqFZycnBpsd3JyQm5ubqOfCQkJQWRkJFJSUqBWq3H48GHs27cPOTk5LR4TAFauXAkbGxvNy83NTcujIzGJeLFFZ8RoudZcrz7hAWdrBeQmUmx8yR9j705MImqPRJ+A1Bxr166Fl5cXfHx8IJfLMXv2bISHh0Mq1e4wFixYgJKSEs0rKytLRxVTWzOGIM0vrcTl3FIA4q3H2xTWClMc/NdQnFowHMG9nR7+ASIjJlqY2tvbQyaTIS8vr8H2vLw8ODs7N/oZBwcH7N+/H+Xl5bh+/TouX74MKysreHh4tHhMADAzM4O1tXWDFxkmiURi8BNf4tPqFmro42oNOz1feq+jpZzLAxJBxDCVy+Xw9/dHbGysZptarUZsbCyCgoIe+FmFQoHOnTujtrYW33zzDcaOHav1mET64kSKfj4SQ0T3ZyLml0dERGDy5MkYMGAAAgICsGbNGpSXlyM8PBwAMGnSJHTu3BkrV64EAJw6dQrZ2dno168fsrOzsXTpUqjVasydO7fJY5JxEQTB4M9E/0oQBM390kEMUyKDIWqYhoWFoaCgAIsXL0Zubi769euHmJgYzQSizMzMBvdDKysrsXDhQqSnp8PKygqjR4/Gzp07YWtr2+QxifRZRlEFbpZUQi6TYqB7R7HLIaImEvU5U33F50xJLDtPXsei/RfxmIcdvn6VtyaIDIVBzeYlMna/8X4pkUFimJJBEQTBKB5/aYxKLWjWutXn50uJ6F4MUzIY9SFqTBOO/uqPmyVQVtaig8IEvp1txC6HiJqBYUoGwdiDFPhzCcHHPDrBRMb/NIkMiaizeYmayphDtJ6+tlwjoofjn7+k14z1/uj/VVmjwumM2wB4v5TIEDFMSW+1lyAFgDMZt1Fdq4aztQKeDpZil0NEzcQwJb3UHu6R/tVvf5nF216OmciY8J4p6aX2Fii/6Xn/UiJ6MJ6ZkuhS80uhrKwB0L4u7dYrrqjGhewSALxfSmSoGKYkGkEQ8PmvKQiOPI4J6+NRo1KLXZIo4tOKIAiAl6MVnKwVYpdDRC2gVZhWV1fjypUrqK2t1VU91E4IgoAPD17Gxz9fBQBcySvFfxNvtLvLu8Cfz5fyrJTIcLUoTCsqKvDKK6/AwsICffr0QWZmJgDg9ddfx4cffqjTAsn4qNQC3tt/ERuPpwMABnnW3Sdc+0sKKmtUYpYmiri7zcD5fCmR4WpRmC5YsADnz5/H0aNHoVD8eVkqODgY0dHROiuOjE+NSo2IPeew+1QmJBLgw7/7YuuUgehsa45cZSV2xGeIXWKbunG7AtcKyyGTShDoYSd2OUTUQi0K0/379+Pzzz/HkCFDGlyW69OnD9LS0nRWHBmXyhoVZu5KwnfnbsJEKsGnz/fH8wFdoTCV4c1gLwDAF0fTNJOR2oO41LqzUr8uNuigMBW5GiJqqRaFaUFBARwdHe/ZXl5e3i7vedHDlVfV4pWo0/glOQ9yEyk2TfLHGD9Xzft/f7QLejhaobiiBpvvXv5tD05wCUEio9CiMB0wYAB+/PFHzb/rA/TLL79EUBAbGlNDJRU1eHnLKfyWWgRLuQzbwwdimI9Tg31kUgneHukNANhy4hoKSqvEKLVNqdXCX54vZZgSGbIWLdqwYsUKjBo1CpcuXUJtbS3Wrl2LS5cuIS4uDseOHdN1jWTACsuq8PKWBCTnKGFjboqoqQHo52bb6L4hfZzg52aL81nFWHckFUuf6dO2xbaxK3mlKCqvhrmpDP27dhS7HCLSQovOTIcMGYLz58+jtrYWvr6++Pnnn+Ho6Ij4+Hj4+/vrukYyUDeL7+C5DfFIzlHC3soM0a89dt8gBequcMwLqTs7/c+p68i6VdFGlYqj/qw0oLsd5CZ85JvIkDX7v+CamhpMnToVEokEmzdvRkJCAi5duoRdu3bB19e3NWokA5RRWI4JG+KRXliOzrbm2DsjCD7O1g/93KAe9hjqZY8alYB//3K1DSoVD1uuERmPZoepqakpvvnmm9aohYzE5VwlJmyMR3bxHXS3t8SeGUHobt/0Tijv3D07/fZsNq7klrZWmaKqrlXj1LVbAHi/lMgYtOja0rPPPov9+/fruBQyBueyihG28SQKSqvg49wBe14LQmdb82aN0beLLUb7OkMQgI8OXWmlSsV1LqsYFdUqdLKUw8e5g9jlEJGWWjQBycvLC8uWLcNvv/0Gf39/WFo2POt44403dFIcGZb4tCJMizqN8moV+ne1xfYpAbCxaNmzk3NGeuPQH3n4JTkPiddvw7+bcU3QqX8kZlAPe0ilfJyMyNBJhBa06ejevfv9B5RIkJ5u2M8JKpVK2NjYoKSkBNbWD7/PR8CRy/mYsSsRVbVqDPLshM2TBsDSTLsOf/P++zuiz2QhoLsdol99zKieYf7H+jicuX4bq8b7ImxgV7HLISIttei33bVr13RdBxmwH36/iTe/PodatYDgXo74/IVHoTCVaT3uv4K98O25bCRcu4VjVwvwpPe9C4UYotLKGpzNKgYADPLk/VIiY6D1fHxBENplD0qqE306E298dRa1agHP+Lli/Uv+OglSAHC1Ncekx7oBqLt3qlYbx89ZwrVbUKkFdOtkATc7C7HLISIdaHGY7tixA76+vjA3N4e5uTn69u2LnTt36rI20nNbTlzDvG8uQC0AEwO64t9h/WAq0+3zkv/8Ww9YmZngj5tK/HghR6dji4Ut14iMT4t+80VGRmLmzJkYPXo09uzZgz179iA0NBQzZszAv//9b13XSHpGEASs/SUFy3+4BAB49XEPrBj3CGStMJHGzlKOVx/3AAB88vMVo2ggzudLiYxPiycgvf/++5g0aVKD7VFRUVi6dKnB31PlBKT7EwQBK35Kxub/1f1/PGdET8we1qNVJweVVdXiidVHUFRejRXjfPFCoOFO2MkvrUTAB7GQSICkhSPQ0VIudklEpAMtOjPNycnBoEGD7tk+aNAg5OQYx6U4updKLeDdby9ognTx073x+nCvVp9la2VmgtnDegAA1sZeNegG4vUt1/q4WjNIiYxIi8K0R48e2LNnzz3bo6Oj4eXlpXVRpH9qVGr86+uz+CohC1IJsHp8X0wdcv9HpHTthcCu6GxrjjxlFaLiMtrse3WN90uJjFOLHo15//33ERYWhuPHj2Pw4MEAgN9++w2xsbGNhiwZtsoaFWb9Jwmxl/NhKpNgTVh/PNXXpU1rMDOR4a0RPfH23vP44mgang/oChtzw2qmLQgC75cSGakWnZmOHz8ep06dgr29Pfbv34/9+/fD3t4eCQkJGDdunK5rJBGVVdUifNtpxF7Oh5mJFJsmDWjzIK03rn9neDlaoeRODTYdTxOlBm2kF5Yjp6QSchMpBrrbiV0OEelQi59j8Pf3x65du5CYmIjExETs2rUL/fv3b/Y469atg7u7OxQKBQIDA5GQkPDA/desWQNvb2+Ym5vDzc0Nb731FiorKzXvL126FBKJpMHLx8en2XURUFxRjZe+PIX49CJYmZkgamoA/ibiwgkyqQRv310Ef+uJDOSXVj7kE/ol7u5Z6YBuHXX2LC4R6YcWhelPP/2EQ4cO3bP90KFDOHjwYJPHiY6ORkREBJYsWYKkpCT4+fkhJCQE+fn5je6/e/duzJ8/H0uWLEFycjK2bNmC6OhovPvuuw3269OnD3JycjSvEydONO8ACfmllXh+00mcyyqGrYUp/jMtEI95dBK7LIzs7YR+bra4U6PC57+mil1Os/B+KZHxalGYzp8/HyrVvTMqBUHA/PnzmzxOZGQkpk+fjvDwcPTu3RsbNmyAhYUFtm7d2uj+cXFxGDx4MF544QW4u7tj5MiRmDhx4j1nsyYmJnB2dta87O35y6s5sovvIGzjSVzOLYVDBzNEvxoEvwc09W5LEokE80LrrjTsPpWJzCLDaCCuUguIS6ubycswJTI+LQrTlJQU9O7d+57tPj4+SE1t2tlCdXU1EhMTERwc/GcxUimCg4MRHx/f6GcGDRqExMRETXimp6fjp59+wujRo++pz9XVFR4eHnjxxReRmZn5wFqqqqqgVCobvNqr9IIyTFgfh2v1Tb1fC4K3nrUIC/LshKFe9qhVG04D8QvZJSitrEUHhQl8O9uIXQ4R6ViLwtTGxqbRzjCpqan3tGO7n8LCQqhUKjg5OTXY7uTkhNzc3EY/88ILL2DZsmUYMmQITE1N4enpiSeffLLBZd7AwEBs374dMTExWL9+Pa5du4ahQ4eitPT+TaZXrlwJGxsbzcvNza1Jx2BsknOUeG5jPG6WVMLDwRL/nRkE92Y09W5Lc0Pqzk73n8vG5Vz9/+OnfhbvIM9OrbJSFBGJq0VhOnbsWLz55ptIS/tzRmVqairmzJmDZ555RmfF/V9Hjx7FihUr8MUXXyApKQn79u3Djz/+iOXLl2v2GTVqFCZMmIC+ffsiJCQEP/30E4qLix/4yM6CBQtQUlKieWVlZbXaMeirpMzbCNsYj8KyavR2scae14LgYtO8pt5tybeLDZ7q6wJBAD42gAbiJ1L4SAyRMWvRc6arV69GaGgofHx80KVLFwBAVlYWHn/8cXz88cdNGsPe3h4ymQx5eXkNtufl5cHZ2bnRzyxatAgvv/wypk2bBgDw9fVFeXk5Xn31Vbz33nuQSu/928DW1hY9e/Z84OVnMzMzmJmZNaluYxSXWohpO86goloF/24dsXXKQIN4hnPOiJ6IuZiLX5LzcSbjFgbo6eMmd6pVSLx+G0BdM3AiMj4tvswbFxeHH3/8Ef/85z8xZ84cHDlyBL/++itsbW2bNIZcLoe/vz9iY2M129RqNWJjYxEUFNToZyoqKu4JTJms7hGD+y0xXFZWhrS0NLi4iPNspL775VIepmw/jYpqFYb0sMfOVwIMIkgBwMPBCs8NqPtjbnXMFb1tBXjm+i1Uq9RwsVHAQ08vmxORdpoVpvHx8fjhhx8A1M2qHDlyJBwdHfHxxx9j/PjxePXVV1FVVdXk8SIiIrB582ZERUUhOTkZM2fORHl5OcLDwwEAkyZNwoIFCzT7jxkzBuvXr8fXX3+Na9eu4fDhw1i0aBHGjBmjCdW3334bx44dQ0ZGBuLi4jBu3DjIZDJMnDixOYfaLhw4fxMzdiWiulaNEb2d8OXkAbCQt+hihWjeGO4FuYkUCRm3cPRqgdjlNOqvj8S09jrGRCSOZv3mXLZsGZ588kk8/fTTAIALFy5g+vTpmDx5Mnr16oWPPvoIrq6uWLp0aZPGCwsLQ0FBARYvXozc3Fz069cPMTExmklJmZmZDc5EFy5cCIlEgoULFyI7OxsODg4YM2YMPvjgA80+N27cwMSJE1FUVAQHBwcMGTIEJ0+ehIODQ3MO1ejtPpWJ9/ZfgCAAz/ZzxUcT/HTei7QtuNiYY8ogd2w6no7VMVfwhJcDpHo2wYdLCBIZv2a1YHNxccH333+PAQMGAADee+89HDt2TLMowt69e7FkyRJcunSpdaptI8begm3z8XR88FMyAODFwK5YPvYRvQug5rhdXo3HVx9BaVUt1j7fD2P7dRa7JI3b5dV49P8dhiAACe8Nh2MHhdglEVEraNaZ6e3btxs8ynLs2DGMGjVK8++BAwe2y5mwhkIQBPz7lxR8GpsCAJjxhCfmhXob/KXHjncbiH9y+CoiD1+FmYn+nGFfzFZCEICeTlYMUiIj1qwwdXJywrVr1+Dm5obq6mokJSXh/fff17xfWloKU1PDmLzSHv14IUcTpO+EeGPW33qIXJHuTB3SHVHxGbheVIEZu5LELucegzx5iZfImDUrTEePHo358+dj1apV2L9/PywsLDB06FDN+7///js8PT11XiRpr0al1jyPOfNJT6MKUgCwNDPB6n/0xcZj6VCp9WtWr5XCBOGD3cUug4haUbPCdPny5fj73/+OJ554AlZWVoiKioJcLte8v3XrVowcOVLnRZL29pzJQkZRBTpZyo0uSOsN83HCMB+nh+9IRKRjzQpTe3t7HD9+HCUlJbCystI8jlJv7969sLKy0mmBpL071Sqs/aXu8u7sYT1gZWZYj78QEem7Fv1WtbFpfKFuOzv9XIGmvYuKz0B+aRU625rjhcCuYpdDRGR09GfaI7WKkjs1WH+0bg3lt0b0hJkJm1ITEekaw9TIbTqehpI7NfBytMK4/vrz/CURkTFhmBqxfGUltp7IAFD3KAxbfxERtQ6GqRH77NdU3KlRoX9XW4zozVmuRESthWFqpDKLKvBVQiaAukbahr7KERGRPmOYGqnIw1dQqxbweE8HBHl2ErscIiKjxjA1Qsk5Snx3/iYAYG6It8jVEBEZP4apEfr40BUIAvBUXxc80rnxZ4KJiEh3GKZG5kzGLcRezodMKsGcET3FLoeIqF1gmBoRQRCwKuYyAOC5AV3g4cClHYmI2gLD1IgcvVKA0xm3YWYixRvDvcQuh4io3WCYGgm1WsDquy3WJg9yh4uNucgVERG1HwxTI/H97zeRnKNEBzMTzHyCPWWJiNoSw9QI1KjUiDx8FQDw2hMe6Ggpf8gniIhIlximRiD6dBauF1XA3kqO8MHdxS6HiKjdYZgauDvVKnwaW9f4+/VhXrBk428iojbHMDVw2+PqGn936WiOiQFs/E1EJAaGqQErqajB+qOpAICIET0hN+H/nUREYuBvXwO24XgalJW18HbqgLH92PibiEgsDFMDla+sxLbfrgEA3mbjbyIiUTFMDdSnv6agskaNR7vaIriXo9jlEBG1awxTA3S9qBxfJ2QBAOaFsvE3EZHYGKYGKPLwVdSqBTzR0wGBHmz8TUQkNoapgbl0U4nvztU1/n6Hjb+JiPQCw9TAfPxz3WL2Y/xc2fibiEhPMEwNyOmMW/j1buPvCDb+JiLSGwxTAyEIAlYdrGv8HTbQDd3tLUWuiIiI6okepuvWrYO7uzsUCgUCAwORkJDwwP3XrFkDb29vmJubw83NDW+99RYqKyu1GtMQHLmSjzPX6xp//4uNv4mI9IqoYRodHY2IiAgsWbIESUlJ8PPzQ0hICPLz8xvdf/fu3Zg/fz6WLFmC5ORkbNmyBdHR0Xj33XdbPKYhUKsFrI6pu1c6ZbA7nKwVIldERER/JREEQRDrywMDAzFw4EB8/vnnAAC1Wg03Nze8/vrrmD9//j37z549G8nJyYiNjdVsmzNnDk6dOoUTJ060aMzGKJVK2NjYoKSkBNbW1toepta+O5eNf319Dh0UJvjf3L/B1oL9SomI9IloZ6bV1dVITExEcHDwn8VIpQgODkZ8fHyjnxk0aBASExM1l23T09Px008/YfTo0S0eEwCqqqqgVCobvPSFIAiaFmsznvBkkBIR6SHRml8WFhZCpVLBycmpwXYnJydcvny50c+88MILKCwsxJAhQyAIAmprazFjxgzNZd6WjAkAK1euxPvvv6/lEbWOi9lKpBWUQ2EqxeRB7mKXQ0REjRB9AlJzHD16FCtWrMAXX3yBpKQk7Nu3Dz/++COWL1+u1bgLFixASUmJ5pWVlaWjirW3/1w2ACC4lxOs2PibiEgvifbb2d7eHjKZDHl5eQ225+XlwdnZudHPLFq0CC+//DKmTZsGAPD19UV5eTleffVVvPfeey0aEwDMzMxgZmam5RHpnkot4PvzdasdPcsWa0REeku0M1O5XA5/f/8Gk4nUajViY2MRFBTU6GcqKioglTYsWSaTAai7t9iSMfXZyfQi5JdWwcbcFI/3dBC7HCIiug9RrxtGRERg8uTJGDBgAAICArBmzRqUl5cjPDwcADBp0iR07twZK1euBACMGTMGkZGR6N+/PwIDA5GamopFixZhzJgxmlB92JiG5Lu7l3hH+7pAbmJQV+SJiNoVUcM0LCwMBQUFWLx4MXJzc9GvXz/ExMRoJhBlZmY2OBNduHAhJBIJFi5ciOzsbDg4OGDMmDH44IMPmjymoaisUeHgxVwAwLP9XEWuhoiIHkTU50z1lT48ZxpzMQczdiXB1UaBE/OGQSplz1IiIn3Fa4d6qr7N2ph+rgxSIiI9xzDVQ8rKGsRerlv+cKwfZ/ESEek7hqkeirmYi+paNbwcrdDLpYPY5RAR0UMwTPXQgbuXeJ/t3xkSCS/xEhHpO4apnslXViIurRAA8IwfZ/ESERkChqme+f73HKgFwL9bR7jZWYhdDhERNQHDVM/UL9Qwls+WEhEZDIapHkkvKMPvN0ogk0ow2tdF7HKIiKiJGKZ65MDdRe2HetnD3kr/Ft4nIqLGMUz1hCAImoUaeImXiMiwMEz1xIXsElwrrGsCPqL3/dvFERGR/mGY6on9Z+vOSkf0dmYTcCIiA8Mw1QMqtYDvf797iZfPlhIRGRyGqR44mV6EgtIq2FqwCTgRkSFimOqB/WfZBJyIyJDxN7fIKmtUiLnbBJyXeImIDBPDVGRHLuejtKoWrjYKDHS3E7scIiJqAYapyNgEnIjI8DFMRVRypwa/XqlrAv5sPzYBJyIyVAxTER262wS8p5MVfJzZBJyIyFAxTEX03fn6DjFsAk5EZMgYpiLJU1YiLq0IAJuAExEZOoapSL4/fxMCm4ATERkFhqlI6tutPcsOMUREBo9hKgI2ASciMi4MUxHUP1s61MsendgEnIjI4DFM21hdE/C6Wbx8tpSIyDgwTNvY7zdKkFFUAXNTGUb0dhK7HCIi0gGGaRurv8Q7orcTLNkEnIjIKDBM21CDJuCcxUtEZDQYpm0oPu3PJuBDvdgEnIjIWDBM29D+uxOPnmITcCIio6IXv9HXrVsHd3d3KBQKBAYGIiEh4b77Pvnkk5BIJPe8nnrqKc0+U6ZMuef90NDQtjiU+2rQBJyzeImIjIroM2Cio6MRERGBDRs2IDAwEGvWrEFISAiuXLkCR0fHe/bft28fqqurNf8uKiqCn58fJkyY0GC/0NBQbNu2TfNvMzNxn+c8cjkfZVW16GxrjgHdOopaCxER6ZboZ6aRkZGYPn06wsPD0bt3b2zYsAEWFhbYunVro/vb2dnB2dlZ8zp8+DAsLCzuCVMzM7MG+3XsKG6A1V/iHePHJuBERMZG1DCtrq5GYmIigoODNdukUimCg4MRHx/fpDG2bNmC559/HpaWlg22Hz16FI6OjvD29sbMmTNRVFR03zGqqqqgVCobvHSp5E4NjlwuAMBZvERExkjUMC0sLIRKpYKTU8PFC5ycnJCbm/vQzyckJODixYuYNm1ag+2hoaHYsWMHYmNjsWrVKhw7dgyjRo2CSqVqdJyVK1fCxsZG83Jzc2v5QTUi5mIOqlVqeDt1QC8Xa52OTURE4hP9nqk2tmzZAl9fXwQEBDTY/vzzz2v+t6+vL/r27QtPT08cPXoUw4cPv2ecBQsWICIiQvNvpVKp00CtX6jhGZ6VEhEZJVHPTO3t7SGTyZCXl9dge15eHpydnR/42fLycnz99dd45ZVXHvo9Hh4esLe3R2pqaqPvm5mZwdrausFLV/KUlYhPZxNwIiJjJmqYyuVy+Pv7IzY2VrNNrVYjNjYWQUFBD/zs3r17UVVVhZdeeumh33Pjxg0UFRXBxaXt253VNwEfwCbgRERGS/TZvBEREdi8eTOioqKQnJyMmTNnory8HOHh4QCASZMmYcGCBfd8bsuWLXj22WfRqVOnBtvLysrwzjvv4OTJk8jIyEBsbCzGjh2LHj16ICQkpE2O6a/qL/Fy4hERkfES/Z5pWFgYCgoKsHjxYuTm5qJfv36IiYnRTErKzMyEVNow869cuYITJ07g559/vmc8mUyG33//HVFRUSguLoarqytGjhyJ5cuXt/mzpmkFZbiQXQITqQRP9WWYEhEZK4kgCILYRegbpVIJGxsblJSUaHX/NPLwVXwam4K/eTtgW3jAwz9AREQGSfTLvMZKEAQcqG8C3p/LBxIRGTOGaSs5/5cm4MG92ASciMiYMUxbSf2i9mwCTkRk/PhbvpW8PbIngjw7oZOlXOxSiIiolTFMW4mJTIonerIBOBFRe8DLvERERFpimBIREWmJYUpERKQlhikREZGWGKZERERaYpgSERFpiWFKRESkJT5n2oj6tf+VSqXIlRARkT7o0KEDJBLJfd9nmDaitLQUAODm5iZyJUREpA8e1kWMLdgaoVarcfPmzYf+JfIwSqUSbm5uyMrK0qqVmz4y5mMDeHyGzJiPDTDu49PnY+OZaQtIpVJ06dJFZ+NZW1vr3Q+GrhjzsQE8PkNmzMcGGPfxGeKxcQISERGRlhimREREWmKYtiIzMzMsWbIEZmZmYpeic8Z8bACPz5AZ87EBxn18hnxsnIBERESkJZ6ZEhERaYlhSkREpCWGKRERkZYYpkRERFpimLaSdevWwd3dHQqFAoGBgUhISBC7JJ1Yv349+vbtq3moOigoCAcPHhS7LJ3Jzs7GSy+9hE6dOsHc3By+vr44c+aM2GXpTGlpKd58801069YN5ubmGDRoEE6fPi12WS1y/PhxjBkzBq6urpBIJNi/f7/mvZqaGsybNw++vr6wtLSEq6srJk2ahJs3b4pXcDM96PgAYMqUKZBIJA1eoaGh4hTbTA87trKyMsyePRtdunSBubk5evfujQ0bNohTbBMxTFtBdHQ0IiIisGTJEiQlJcHPzw8hISHIz88XuzStdenSBR9++CESExNx5swZDBs2DGPHjsUff/whdmlau337NgYPHgxTU1McPHgQly5dwieffIKOHTuKXZrOTJs2DYcPH8bOnTtx4cIFjBw5EsHBwcjOzha7tGYrLy+Hn58f1q1bd897FRUVSEpKwqJFi5CUlIR9+/bhypUreOaZZ0SotGUedHz1QkNDkZOTo3l99dVXbVhhyz3s2CIiIhATE4Ndu3YhOTkZb775JmbPno0DBw60caXNIJDOBQQECLNmzdL8W6VSCa6ursLKlStFrKr1dOzYUfjyyy/FLkNr8+bNE4YMGSJ2Ga2moqJCkMlkwg8//NBg+6OPPiq89957IlWlGwCEb7/99oH7JCQkCACE69evt01ROtTY8U2ePFkYO3asKPXoUmPH1qdPH2HZsmUNtun7zynPTHWsuroaiYmJCA4O1myTSqUIDg5GfHy8iJXpnkqlwtdff43y8nIEBQWJXY7WDhw4gAEDBmDChAlwdHRE//79sXnzZrHL0pna2lqoVCooFIoG283NzXHixAmRqmo7JSUlkEgksLW1FbsUnTl69CgcHR3h7e2NmTNnoqioSOySdGLQoEE4cOAAsrOzIQgCjhw5gqtXr2LkyJFil3ZfDFMdKywshEqlgpOTU4PtTk5OyM3NFakq3bpw4QKsrKxgZmaGGTNm4Ntvv0Xv3r3FLktr6enpWL9+Pby8vHDo0CHMnDkTb7zxBqKiosQuTSc6dOiAoKAgLF++HDdv3oRKpcKuXbsQHx+PnJwcsctrVZWVlZg3bx4mTpxocAuo309oaCh27NiB2NhYrFq1CseOHcOoUaOgUqnELk1rn332GXr37o0uXbpALpcjNDQU69atw+OPPy52affFrjHUbN7e3jh37hxKSkrw3//+F5MnT8axY8cMPlDVajUGDBiAFStWAAD69++PixcvYsOGDZg8ebLI1enGzp07MXXqVHTu3BkymQyPPvooJk6ciMTERLFLazU1NTV47rnnIAgC1q9fL3Y5OvP8889r/revry/69u0LT09PHD16FMOHDxexMu199tlnOHnyJA4cOIBu3brh+PHjmDVrFlxdXRtc9dMnPDPVMXt7e8hkMuTl5TXYnpeXB2dnZ5Gq0i25XI4ePXrA398fK1euhJ+fH9auXSt2WVpzcXG55w+CXr16ITMzU6SKdM/T0xPHjh1DWVkZsrKykJCQgJqaGnh4eIhdWquoD9Lr16/j8OHDRnNW2hgPDw/Y29sjNTVV7FK0cufOHbz77ruIjIzEmDFj0LdvX8yePRthYWH4+OOPxS7vvhimOiaXy+Hv74/Y2FjNNrVajdjYWKO4r9gYtVqNqqoqscvQ2uDBg3HlypUG265evYpu3bqJVFHrsbS0hIuLC27fvo1Dhw5h7NixYpekc/VBmpKSgl9++QWdOnUSu6RWdePGDRQVFcHFxUXsUrRSU1ODmpoaSKUN40kmk0GtVotU1cPxMm8riIiIwOTJkzFgwAAEBARgzZo1KC8vR3h4uNilaW3BggUYNWoUunbtitLSUuzevRtHjx7FoUOHxC5Na2+99RYGDRqEFStW4LnnnkNCQgI2bdqETZs2iV2azhw6dAiCIMDb2xupqal455134OPjY5A/m2VlZQ3Owq5du4Zz587Bzs4OLi4u+Mc//oGkpCT88MMPUKlUmjkLdnZ2kMvlYpXdZA86Pjs7O7z//vsYP348nJ2dkZaWhrlz56JHjx4ICQkRseqmedCxde3aFU888QTeeecdmJubo1u3bjh27Bh27NiByMhIEat+CJFnExutzz77TOjatasgl8uFgIAA4eTJk2KXpBNTp04VunXrJsjlcsHBwUEYPny48PPPP4tdls58//33wiOPPCKYmZkJPj4+wqZNm8QuSaeio6MFDw8PQS6XC87OzsKsWbOE4uJisctqkSNHjggA7nlNnjxZuHbtWqPvARCOHDkidulN8qDjq6ioEEaOHCk4ODgIpqamQrdu3YTp06cLubm5YpfdJA86NkEQhJycHGHKlCmCq6uroFAoBG9vb+GTTz4R1Gq1uIU/AFuwERERaYn3TImIiLTEMCUiItISw5SIiEhLDFMiIiItMUyJiIi0xDAlIiLSEsOUiIhISwxTImqRjIwMSCQSnDt3TuxSiETHMCUyYrm5uXj99dfh4eEBMzMzuLm5YcyYMQ3WjiYi7XFtXiIjlZGRgcGDB8PW1hYfffQRfH19UVNTg0OHDmHWrFm4fPmy2CUSGQ2emRIZqX/+85+QSCRISEjA+PHj0bNnT/Tp0wcRERE4efIkpk6diqeffrrBZ2pqauDo6IgtW7YAqOsItHr1avTo0QNmZmbo2rUrPvjgg/t+58WLFzFq1ChYWVnByckJL7/8MgoLC1v1OIn0AcOUyAjdunULMTExmDVrFiwtLe9539bWFtOmTUNMTAxycnI023/44QdUVFQgLCwMQF2XoA8//BCLFi3CpUuXsHv3bjg5OTX6ncXFxRg2bBj69++PM2fOICYmBnl5eXjuueda5yCJ9Agv8xIZodTUVAiCAB8fn/vuM2jQIHh7e2Pnzp2YO3cuAGDbtm2YMGECrKysUFpairVr1+Lzzz/H5MmTAdQ1Fx8yZEij433++efo378/VqxYodm2detWuLm54erVq+jZs6cOj5BIv/DMlMgINbUZ1LRp07Bt2zYAQF5eHg4ePIipU6cCAJKTk1FVVYXhw4c3aazz58/jyJEjsLKy0rzqwzwtLa0FR0FkOHhmSmSEvLy8IJFIHjrJaNKkSZg/fz7i4+MRFxeH7t27Y+jQoQAAc3PzZn1nWVkZxowZg1WrVt3znouLS7PGIjI0PDMlMkJ2dnYICQnBunXrUF5efs/7xcXFAIBOnTrh2WefxbZt27B9+3aEh4dr9vHy8oK5uXmTH6N59NFH8ccff8Dd3R09evRo8Grsvi2RMWGYEhmpdevWQaVSISAgAN988w1SUlKQnJyMTz/9FEFBQZr9pk2bhqioKCQnJ2vujQKAQqHAvHnzMHfuXOzYsQNpaWk4efKkZqbv/zVr1izcunULEydOxOnTp5GWloZDhw4hPDwcKpWq1Y+XSEy8zEtkpDw8PJCUlIQPPvgAc+bMQU5ODhwcHODv74/169dr9gsODoaLiwv69OkDV1fXBmMsWrQIJiYmWLx4MW7evAkXFxfMmDGj0e9zdXXFb7/9hnnz5mHkyJGoqqpCt27dEBoaCqmUf7eTcZMITZ2pQERGqaysDJ07d8a2bdvw97//XexyiAwSz0yJ2im1Wo3CwkJ88sknsLW1xTPPPCN2SUQGi2FK1E5lZmaie/fu6NKlC7Zv3w4TE/46IGopXuYlIiLSEmcFEBERaYlhSkREpCWGKRERkZYYpkRERFpimBIREWmJYUpERKQlhikREZGWGKZERERaYpgSERFp6f8DP4QNAytdBcQAAAAASUVORK5CYII=\n" - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "text/plain": "
", - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAdMAAAEmCAYAAAA5oXoHAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8o6BhiAAAACXBIWXMAAA9hAAAPYQGoP6dpAABAzUlEQVR4nO3deVhU9f4H8PewDIMgIIJsIggipOIGQrh2lcQlM/OqoaXiUpq2SKlZat26aVpyNTW3xK3cKvOaJabkclUQ91wAEVQUAQGFYREYZs7vD2SKH6g4M3BmhvfreeZ54nDmO+/zSHw453zP9yMRBEEAERERacxE7ABERESGjsWUiIhISyymREREWmIxJSIi0hKLKRERkZZYTImIiLTEYkpERKQlFlMiIiItsZjWQhAEyOVycD0LIiKqCxbTWhQWFsLW1haFhYViRyEiIgPAYkpERKQlFlMiIiItsZgSERFpicWUiIhISyymREREWmIxJSIi0hKLKRERkZZYTImIiLTEYkpERBq7Ky/FlC1n8J8DV6FSNd5V48zEDkBERIbp1r0SvLr+JG7mlSDmchZu3SvB4n92hJlp4ztPa3xHTEREWrt2twgjVsfhZl4JnGwsYGoiwa5zGZi29SzKKpRix2twLKZERPRULmUUYNSaOGTJS9GmhTX+O60nVo3pCqmpCfZfzsakTadRUl4hdswGxWJKRER1dubmPYSvi0decTk6uNlg5xshcLaVoX97Z0SP7wZLc1P8LyUXY9cnoOCBQuy4DYbFlIiI6uR/KTl49dsEFJZWoJtnM2yd/CzsraTq7/f0ccB3k4JhIzPD6Zv3MXpdPPKKykRM3HBYTImI6In2X87CxI2n8UChRO+2jtg8IRg2MvMa+wV4NMO2159FcyspLt+RY+SaOGQVlIqQuGGxmBIR0WP9fO423vz+LMqVKgzs4Ix1YwNgKTV95P7tXW2xc0oIXGxlSM0pxog1J5CeV9KAiRseiykRET3Sd/E3EbnzApQqAcO7tsTy8C6wMHt0Ia3i7WiNH6aEwKN5E9y69wD/XH0CV7MLGyCxOFhMiYioVqsOp2Lu7ksQBGBciAe+fMpnSFs2a4If3giBr1NT3C0sw6g1cbh4u6AeE4uHxZSIiKoRBAFf7k/CopgkAMC0f3jjkxfbw8RE8tRjtbCRYccbz6JTS1vcL1EgfF08Eq7f03Vk0bGYEhGRmkol4JM9l7HyUCoAYPYAP8wM84NE8vSFtIpdEym+n/wsglvbo6isAmOjT+Jw8l1dRdYLLKZERAQAqFCqMPPHP7Ep7iYkEuCzlzpg6nPeOhnb2sIMmyYEoa9fC5QqVJi8+TR+u5ipk7H1AYspERGhrEKJt7adw09nb8PURIKokZ3w2rMeOv0MmbkpVr8agMEdXaBQCpi+9Sx+OH1Lp58hFhZTIqJG7kG5EpM3n8G+S1mQmprgmzFdMaxLy3r5LKmZCb5+pQtGBbpDJQAzf/wTG49fr5fPakgspkREjZi8VIGx0Sdx9GoOLM1NsX58IMLaO9frZ5qaSPDFcH9M6NEaAPDJL1ew4o8UCILhtnBjMSUiaqTuFZdj9Lp4nLpxH01lZvhuUhB6+Tg2yGdLJBLMe+EZvNPPBwDw1e9X8cW+JIMtqOxnSkRGJbPgAS7cyhc7ht5TCcB/DlxFyt0i2FtJsXlCEDq42TZoBolEghnPt0VTmRn+/Wsi1hxNw/2ScvT1a6GT8U0kEvSv57PsKhLBUP8MqEdyuRy2trYoKCiAjY2N2HGIqI4elCvRd8lhZDaCtWB1xdlGhu8mBaNNC2tRc2xLSMeHP1+ELiuSpbkpEj8boLsBH4NnpkRkNDaeuIHMglLYWprDR+TiYAha2FhgzsBn4G7fROwoCA9qBXsrKTaduIHyCpVOxrQwb7g7mTwzrQXPTIkMT0GJAr0W/wF5aQWWjOiE4QH1MxuVqDacgERERmHN0VTISyvQ1skaL3VxEzsONTIspkRk8O7KSxH98FnF9/v7wlSDNWSJtCF6MV25ciU8PT0hk8kQHByMhISER+6rUCjw6aefwtvbGzKZDJ06dUJMTEy1fT755BNIJJJqLz8/v/o+DCIS0dd/pKBUoUKXVnZ4vp2T2HGoERK1mO7YsQORkZH4+OOPcfbsWXTq1AlhYWG4e7f2BZDnzp2LNWvWYPny5bhy5QqmTJmCYcOG4dy5c9X2a9++PTIzM9WvY8eONcThEJEIbuYVY3tC5ZJ0s7RckJ1IU6IW06ioKEyePBkRERFo164dVq9ejSZNmiA6OrrW/bds2YIPP/wQgwYNgpeXF6ZOnYpBgwZhyZIl1fYzMzODs7Oz+uXg4NAQh0NEIog6cBUVKgG92zoixLu52HGokRKtmJaXl+PMmTMIDQ39K4yJCUJDQxEXF1fre8rKyiCTyapts7S0rHHmmZKSAldXV3h5eWHMmDFIT09/bJaysjLI5fJqLyLSf1fuyLHnwh0AwKwwX5HTUGMmWjHNzc2FUqmEk1P1+xtOTk7Iysqq9T1hYWGIiopCSkoKVCoVDhw4gF27diEz8682PsHBwdi4cSNiYmKwatUqXL9+Hb169UJhYeEjsyxcuBC2trbql7u7u24Okojq1Ve/J0MQgMEdXRp89R6ivxN9AtLTWLZsGXx8fODn5wepVIrp06cjIiICJiZ/HcbAgQMxYsQIdOzYEWFhYfjtt9+Qn5+PnTt3PnLcOXPmoKCgQP26dcs4WgIRGbNTN+7hj6S7MDWR4L3n24odhxo50Yqpg4MDTE1NkZ2dXW17dnY2nJ1rX0vR0dERu3fvRnFxMW7evImkpCRYW1vDy8vrkZ9jZ2eHtm3b4tq1a4/cx8LCAjY2NtVeRKS/BEHAon1JAICRge7wcuRqRyQu0YqpVCpFQEAAYmNj1dtUKhViY2MREhLy2PfKZDK4ubmhoqICP/30E4YOHfrIfYuKipCamgoXFxedZScicR1KvovTN+/DwsxE3XWESEyiXuaNjIzEunXrsGnTJiQmJmLq1KkoLi5GREQEAGDs2LGYM2eOev+TJ09i165dSEtLw//+9z8MGDAAKpUKs2bNUu/z/vvv48iRI7hx4wZOnDiBYcOGwdTUFOHh4Q1+fESkeyqVgMUxyQCA8d094Wwre8I7iOqfqAvdjxo1Cjk5OZg/fz6ysrLQuXNnxMTEqCclpaenV7sfWlpairlz5yItLQ3W1tYYNGgQtmzZAjs7O/U+t2/fRnh4OPLy8uDo6IiePXsiPj4ejo4N06OPiOrXL3/eQVJWIZrKzDD1OW+x4xAB4EL3teJC90T6qbxChdCoI0i/V4L3+7fF9L68xEv6waBm8xJR47bj9C2k3yuBg7UFInq0FjsOkRqLKVEjc/RqDiZuPIWLtwvEjvJUSsor8HVsCgDgrb5tYGXBdsykP/jTSNSI/PpnJt7Zfg4VKgG37pdg3zu9DabDysYTN5BTWIaWzSwRHtRK7DhE1fDMlKiR2HnqFt7adhYVqsppElezi/Df8xkip6qbghIFVh9OBQC8178tpGb81UX6hT+RRI1A9LHrmPXTn1AJQHiQO2Y+XMc26sBVlFeoRE73ZKuOVDb+9nVqihc7sfE36R8WUyIjJggCvo5Nwad7rwAAJvdqjQXD/DGhR2u0aGqB2/cfYFvC4xtBiC1bXoqNJyobf88MY+Nv0k8spkRGShAELNyXhKgDVwEAkc+3xYeDnoFEIoGl1BRvPVw5aPkfKSguqxAz6mN9HVvZ+DvAoxn6PdNC7DhEtWIxJTJCSpWAD3++hLVH0wAA815oh7f7+VRrnP1KN3d4NG+C3KJybDh+Xayoj3Ujtxg7TlU1/vZl42/SWyymREZGoVRhxo7z2JaQDhMJsHh4R0zsWfOZTHNTE0Q+7Lay5kga7heXN3TUJ6pq/P2cryOCvdj4m/QXiymRESlVKDH1uzPYc+EOzEwk+Dq8C0Z2e3R/3iEdXfGMiw0Kyyqw6khqAyZ9sst3CtSNv2ey8TfpORZTIiNRXFaBCRtP4WDiXViYmWDd2EC80NH1se8xMZFg1sNCtenEDWQWPGiIqHXy1f7KxeyHdHJFe1c2/ib9xmJKZAQKShR4df1JnEjNg5XUFJsmBOEffnWbrPOcryOCPO1RVqFSrzAktoTr93AoOQdmbPxNBoLFlMjA5RSWYdTaOJxLz4etpTm+n/wsnn2K+4sSiQSzBlSene48fRtpOUX1FbVOBEHA4piHjb+7ucPTwUrUPER1wWJKZMAy8h9g1Jo4JGUVwsHaAjveeBad3e2eepxAT3v082sBpUrAkoeP0ojljyQ2/ibDw2JKZKCu5xZjxKoTSMsthpudJX6YEgI/Z81bBr4f5guJpHL93ksZ4iyCr1IJ+PLhvdKIHq3hZMPG32QYWEyJDFBiphwjVsfhTkEpvBys8MOUELTW8nLoMy42GNqpcsLS4ocFraHtufC3xt992PibDAeLKZGBOZd+H6+sjUduURmecbHBzikhcLWz1MnYkc/7wsxEgqNXcxCXmqeTMeuqvEKFJQcqi/iUPt6wbWLeoJ9PpA0WUyIDciI1F2O+PYmCBwp0bWWH7ZOfhYO1hc7Gb9W8ibq92eL9SRAEQWdjP8mOU+m4de8BHJtaIKKHZ4N9LpEusJgSGYjYxGyM33AKJeVK9GjTHFsmBtfL2dtbfdvA0twU59LzceBKts7Hr01JeQWWxV4DALzdtw2aSNlqmQwLiymRASh4oMD0redQXqFC6DNOWD+uG6ws6qfgtLCRYUJPTwDAl/uToVTV79lpWYUS7+28gNyiMrSyb4JR3dj4mwwPiymRAYhLzcMDhRKtHayw6tWukJmb1uvnvd7bG7aW5ki5W4Td5+qvgfiDciUmbz6DfZeyIDU1wb9f6sDG32SQNP6praiowMGDB7FmzRoUFhYCAO7cuYOiInEf+CYyRsev5QIAevs4wNy0/ouNraU5pj5XOZs26sBVlFUodf4Z8lIFxkafxNGrObA0N8X68YHo3dZR559D1BA0+r/y5s2b8Pf3x9ChQzFt2jTk5OQAABYtWoT3339fpwGJ6K9i2qONQ4N95rgQT7RoaoGM/AfYdlK3DcTvFZdj9Lp4nLpxH01lZvhuUhB6+bCQkuHSqJi+8847CAwMxP3792Fp+deU/GHDhiE2NlZn4YiocpWjtNximEiAZ70brg2ZpdQU74RWNRC/hiIdNRDPlpdi1Jo4XMqQw95Kim2Tn0WAh71OxiYSi0bF9H//+x/mzp0LqVRabbunpycyMurv/gpRY1R1VtrJ3Q42soZ99nJkoDs8mzdBXnE5oo9p30D81r0SjFgdh5S7RXC2kWHnGyHo4MaOMGT4NCqmKpUKSmXNeyi3b99G06ZNtQ5FRH858bCY9mzAS7xVzE1NENm/chH8dUfTcE+LBuIp2YX45+oTSL9XAo/mTfDDlBC0aWGtq6hEotKomPbv3x9Lly5Vfy2RSFBUVISPP/4YgwYN0lU2okZPEAQcu1a5ElF374YvpgDwgr8L2lU1ED98TaMxLmUUYNTaeGTLy9DWyRo/vBECd/smOk5KJB6NiulXX32F48ePo127digtLcXo0aPVl3gXLVqk64xEjdbV7CLkFpVBZm6Crh52omQwMfmrRdumuJtP3UD81I17CF8bj3vF5ejY0hY7Xg9BCy5gT0ZGo6e+3d3dceHCBezYsQMXLlxAUVERJk6ciDFjxlSbkERE2jn28BJvUOvmsDCr32dLH6dPW0cEtbZHwvV7WHYwBV8M71in9x29moPXt5xGqUKFoNb2WD8uEE0b+L4vUUN46mKqUCjg5+eHvXv3YsyYMRgzZkx95CIi/DX5qGebhpvFWxuJRILZA3wxfFUcfjhzG5N7e8Hb8fH3O2MuZeHtbedQrlThOV9HrBoTAEupeH8QENWnp77Ma25ujtLS0vrIQkR/o1CqcDKt8n5pQz5f+igBHvYIfaaygXjU749vIP7TmduYtvUsypUqDPZ3wdrXAllIyahpdM902rRpWLRoESoqdPPcGRHVdOFWPorLlbC3kuIZLZp+65K6gfjFTFy8XXsD8c1xN/DeDxegVAkYEdASX4d34RKBZPQ0umd66tQpxMbG4vfff4e/vz+srKo3Jd61a5dOwhE1ZlX3S0O8m8PERCJymkp+zjYY1tkNu85lYPH+JGyZGFzt+ysPXcOXDxuLR/TwxLzB7fQmO1F90ujPRTs7OwwfPhxhYWFwdXWFra1ttdfTWLlyJTw9PSGTyRAcHIyEhIRH7qtQKPDpp5/C29sbMpkMnTp1QkxMjFZjEumr4yI+X/o4M55vC3NTCf6XkosTqZUZBUHAopgkdSF9u58P5r/AQkqNiCCi7du3C1KpVIiOjhYuX74sTJ48WbCzsxOys7Nr3X/WrFmCq6ur8OuvvwqpqanCN998I8hkMuHs2bMaj1mbgoICAYBQUFCg9TESaaKoVCF4z/lV8Ji9V0jPKxY7Tg3zd18UPGbvFYauOCZUKFXC3J8rv/aYvVdYc+Sa2PGIGpxEEASNmxXm5OQgObnyL1FfX184Oj7dQtXBwcHo1q0bVqxYAaByZSV3d3e89dZb+OCDD2rs7+rqio8++gjTpk1Tbxs+fDgsLS3x3XffaTRmbeRyOWxtbVFQUAAbG/24V0WNy6Gku4jYeAqt7Jvg6Kx/iB2nhpzCMvRefAgPFEp0drfD+Vv5kEiAz1/yx+hg9iOlxkejy7zFxcWYMGECXFxc0Lt3b/Tu3Ruurq6YOHEiSkpK6jRGeXk5zpw5g9DQ0L/CmJggNDQUcXFxtb6nrKwMMln1h70tLS1x7NgxjcesGlcul1d7EYnpmLpLjLiPxDyKY1MLTOzZGgBw/lY+TE0kWDqqMwspNVoaFdPIyEgcOXIEv/zyC/Lz85Gfn4///ve/OHLkCN577706jZGbmwulUgknJ6dq252cnJCVlVXre8LCwhAVFYWUlBSoVCocOHAAu3btQmZmpsZjAsDChQur3fN1d3ev0zGQftLiYoveEKPl2tN6vY8XnG1kkJqZYM2rARja2U3sSESi0aiY/vTTT1i/fj0GDhwIGxsb2NjYYNCgQVi3bh1+/PFHXWdUW7ZsGXx8fODn5wepVIrp06cjIiICJibaTbufM2cOCgoK1K9bt27pKDE1NGMopHcLS5GUVQhAvPV468JGZo597/TCyTn9ENrO6clvIDJiGlWhkpKSGmd/ANCiRYs6X+Z1cHCAqakpsrOzq23Pzs6Gs7Nzre9xdHTE7t27UVxcjJs3byIpKQnW1tbw8vLSeEwAsLCwUP9RUPUiwySRSCCRGPYM0rjUyoUa2rvawN5K+oS9xdXMSopmep6RqCFoVExDQkLw8ccfV1sJ6cGDB/jXv/6FkJCQOo0hlUoREBBQrZm4SqVCbGzsE8eQyWRwc3NDRUUFfvrpJwwdOlTrMYn0xbEU/XwkhogeTaNFG5YtW4awsDC0bNkSnTp1AgBcuHABMpkM+/fvr/M4kZGRGDduHAIDAxEUFISlS5eiuLgYERERAICxY8fCzc0NCxcuBACcPHkSGRkZ6Ny5MzIyMvDJJ59ApVJh1qxZdR6TjIsgCAZ/Jvp3giCo75d2ZzElMhgaFdMOHTogJSUF33//PZKSkgAA4eHhT901ZtSoUcjJycH8+fORlZWFzp07IyYmRn0JOT09vdr90NLSUsydOxdpaWmwtrbGoEGDsGXLFtjZ2dV5TCJ9diOvBHcKSiE1NUE3z2ZixyGiOtLqOVNjxedMSSxb4m9i3u5LeNbLHttf560JIkOh0T3ThQsXIjo6usb26OhoNgcn0sJx3i8lMkgaFdM1a9bAz8+vxvb27dtj9erVWociehRBEIzi8ZfaKFWCeq1bfX6+lIhq0qiYZmVlwcXFpcZ2R0dH9QIKRLpWVUSNacLR312+UwB5aQWayszg7/Z0DSOISFwaFVN3d3ccP368xvbjx4/D1dVV61BE/5+xF1LgryUEn/VqDjNT9v8kMiQazeadPHky3n33XSgUCvTt2xcAEBsbi1mzZtV5OUGip2HMRbSKvrZcI6In06iYzpw5E3l5eXjzzTdRXl4OoHIhhdmzZ2POnDk6DUiNm7E9R/oopQolTt24D4D3S4kMkVaPxhQVFSExMRGWlpbw8fGBhYWFLrOJho/G6IfGcGm3yrGUXLy6/iScbWSIm9O3URwzkTHR6saMtbU1unXrhlatWmHfvn1ITEzUVS5q5BpTIQWA43+bxdtYjpnImGhUTEeOHKluvv3gwQMEBgZi5MiR6NixI3766SedBqTGyRgWrH8ax/W8fykRPZ5GxfTo0aPo1asXAODnn3+GIAjIz8/H119/jX//+986DUjG79rdQshLFQCMo4Xa08ovKcfFjAIAvF9KZKg0KqYFBQWwt7cHAMTExGD48OFo0qQJBg8ejJSUFJ0GJOMlCAJW/JGC0KijGLEqDgqlSuxIoohLzYMgAD4trOFkIxM7DhFpQOPnTOPi4lBcXIyYmBj0798fAHD//n3IZPxlQE8mCAK+2JeEr36/CgBIzi7Ej2duN6pLu1WOXeOqR0SGTqNi+u6772LMmDFo2bIlXF1d8dxzzwGovPzr7++vy3xkhJQqAR/tvoQ1R9MAAN29K+8TLjuYglKFUsxoojjxsBk4ny8lMlwaFdM333wT8fHxiI6OxrFjx9Rt0ry8vHjPlB5LoVQhcud5bD2ZDokE+OJlf0SP7wY3O0tkyUuxOe6G2BEb1O37JbieWwxTEwmCvezFjkNEGtL40ZiAgAAMGzYM1tbW6m2DBw9Gjx491F/b2NggLS1Nu4RkNEoVSkz97iz+e/4OzEwk+PqVLnglqBVk5qZ4N9QHAPDN4VT1ZKTG4MS1yrPSTi1t0VRmLnIaItJUvS4A2hhnZlLtissqMHHTKRxMzIbUzARrxwZgSKe/1nF+uWtLtGlhjfwSBdYdbTx/gB3jEoJERoGraVO9KyhR4LX1J3H8Wh6spKbYGNENff2cqu1jaiLB+/19AQDrj11HTmGZGFEblEol/O35UhZTIkPGYkr1KreoDK+si8fZ9HzYWprj+8nPort37YUjrL0TOrnboaRciZWHrjVw0oaXnF2IvOJyWJqbokurZmLHISItsJhSvbmT/wAjV8chMVMOB2sL7HjjWXR2t3vk/hKJBLPDKs9Ovz95E7fulTRQUnFUnZUGtbaH1Iz/KxIZsnr9P7gxPjNIlW7kFmPE6jik5RbDzc4SP0wJgZ/zk5sGdG/jgF4+DlAoBfzn4NUGSCoetlwjMh6cgEQ6l5Qlx4g1ccjIf4DWDlbYOSUErR2s6vz+mQ/PTn8+l4HkrML6iimq8goVTl6/B4D3S4mMgUbF9NChQ3Xab9++fXBzc9PkI8hAnb+Vj1Fr4pFTWAY/56bY+UYI3Owsn2qMji3tMMjfGYIAfLk/uZ6Siuv8rXyUlCvR3EoKP+emYschIi1pVEwHDBgAb29v/Pvf/8atW7ceuV/Pnj2NpscpPVlcah7GrItHwQMFurSyw47XQ+DYVLN///f6+8LURIKDidk4c/O+jpOKr+qRmO5tHGBiwtshRIZOo2KakZGB6dOn48cff4SXlxfCwsKwc+dOlJeX6zofGYhDSXcxfkMCisuV6O7dHN9NDIZtE80XIfB2tMY/u7YEACyKSTK6WwYn1PdL2XKNyBhoVEwdHBwwY8YMnD9/HidPnkTbtm3x5ptvwtXVFW+//TYuXLig65ykx/b+eQeTN59GWYUKoc+0QPT4brCyMNN63HdCfSA1M0HC9Xs4cjVHB0n1Q2GpAudu5QPAIx8TIiLDovUEpK5du2LOnDmYPn06ioqKEB0djYCAAPTq1QuXL1/WRUbSYztOpePtbedQoRLwYidXrHo1ADJzU52M7WpnibHPegCovHeqUhnH2WnC9XtQqgR4NG8Cd/smYschIh3QuJgqFAr8+OOPGDRoEDw8PLB//36sWLEC2dnZuHbtGjw8PDBixAhdZiU9s/7Ydcz+6SJUAhAe1Ar/GdUZ5qa6nSD+5j/awNrCDJfvyPHrxUydji0WtlwjMj4a/eZ766234OLigjfeeANt27bFuXPnEBcXh0mTJsHKygqenp746quvkJSUpOu8pAcEQcCygyn4bO8VAMDrvb2wYFgHmNbDRBp7Kyle7+0FAFjye7JRNBDn86VExkejG1tXrlzB8uXL8fLLLz9ytq6Dg0OdH6EhwyEIAhb8loh1/7sOAHjv+baY3rdNvS7QMaFna2w6cQM38krww+nbGB3cqt4+q77dLSzF1ewiSCRAiBcnHxEZC43OTGNjYxEeHv7Yx17MzMzQp08fjYOR/lGqBHz480V1IZ3/Qju81c+n3le6srYww/S+bQAAy2KvGnQD8aqWa+1dbdDMSipyGiLSFY2K6cKFCxEdHV1je3R0NBYtWqR1KNI/CqUK72w/h20Jt2AiARYP74gJPVs32OePDm4FNztLZMvLsOnEjQb7XF3j/VIi46RRMV2zZg38/PxqbG/fvj1Wr16tdSjSL6UKJaZsOYO9f2bC3FSC5eFdMbKbe4NmsDAzxYzn2wKobCBe8MDwGogLgsD7pURGSqNimpWVBRcXlxrbHR0dkZlpHDMuqVJRWQUiNpxCbNJdWJiZYO3YQAzuWPPfviEM6+IGnxbWKHigwNqjqaJk0EZabjEyC0ohNTNBN097seMQkQ5pVEzd3d1x/PjxGtuPHz8OV1fXpxpr5cqV8PT0hEwmQ3BwMBISEh67/9KlS+Hr6wtLS0u4u7tjxowZKC0tVX//k08+gUQiqfaq7Syaniy/pByvfnsScWl5sLYww6YJQfiHbwvR8piaSPD+w0Xwo4/dwN3C0ie8Q79UrXoU6NFMZ8/iEpF+0Gg27+TJk/Huu+9CoVCgb9++AConJc2aNQvvvfdencfZsWMHIiMjsXr1agQHB2Pp0qUICwtDcnIyWrSo+Ut769at+OCDDxAdHY3u3bvj6tWrGD9+PCQSCaKiotT7tW/fHgcPHvzrIM20X42nsblbWIqx6xOQlFUIuybm2BQRhE6P6UXaUPq3c0Jndzucv5WPFX9cw6dDO4gdqc54v5TIeGlUZWbOnIm8vDy8+eab6vV4ZTIZZs+ejTlz5tR5nKioKEyePBkREREAgNWrV+PXX39FdHQ0Pvjggxr7nzhxAj169MDo0aMBAJ6enggPD8fJkyerH5SZGZydnTU5NAKQkf8Ar357Etdzi+HY1ALfTQyGr550NpFIJJg9wA/h6+Kx9WQ6JvX0Qqvm+r+KkFIl4ERq5UxeFlMi46PRZV6JRIJFixYhJycH8fHxuHDhAu7du4f58+fXeYzy8nKcOXMGoaGhf4UxMUFoaCji4uJqfU/37t1x5swZ9aXgtLQ0/Pbbbxg0aFC1/VJSUuDq6govLy+MGTMG6enpj81SVlYGuVxe7dVYpeUUYcSqE7he1dT7jRC9KaRVQrybo5ePAypUhtNA/GJGAQpLK9BUZgZ/N1ux4xCRjmm19pu1tTW6deuGDh06PHWrtdzcXCiVSjg5OVXb7uTkhKysrFrfM3r0aHz66afo2bMnzM3N4e3tjeeeew4ffvihep/g4GBs3LgRMTExWLVqFa5fv45evXqhsPDRTaYXLlwIW1tb9cvdvWFnquqLxEw5Rq6Jw52CUng5WuHHqSHwfIqm3g1pVljlffDd5zOQlKX/f/xUzeLt7t28XlaKIiJxaXwz8fTp09i5cyfS09NrtF7btWuX1sFqc/jwYSxYsADffPMNgoODce3aNbzzzjv47LPPMG/ePADAwIED1ft37NgRwcHB8PDwwM6dOzFx4sRax50zZw4iIyPVX8vl8kZXUM+m38f46ATISyvQzsUGmycGwcFaf3vR+re0xeCOLvj1z0x8tT8Z347rJnakxzqWwkdiiIyZRmem27dvR/fu3ZGYmIiff/4ZCoUCly9fxh9//AFb27pdwnJwcICpqSmys7Orbc/Ozn7k/c558+bhtddew6RJk+Dv749hw4ZhwYIFWLhwIVSq2tdstbOzQ9u2bXHt2rVHZrGwsICNjU21V2Ny4louXv32JOSlFQjwaIZtrz+r14W0ynvPt33YQPwuTt+4J3acR3pQrlQ3OO/OYkpklDQqpgsWLMB//vMf/PLLL5BKpVi2bBmSkpIwcuRItGpVt3VTpVIpAgICEBsbq96mUqkQGxuLkJCQWt9TUlICE5PqkU1NKx8xeFTz6KKiIqSmptb6XCwBB69kY/zGUygpV6JnGwdsmRgEW0vNm3o3JC9Ha4wMrGwgvjgmWW8biJ++eQ/lShVcbGXw0tPL5kSkHY2KaWpqKgYPHgygsigWFxdDIpFgxowZWLt2bZ3HiYyMxLp167Bp0yYkJiZi6tSpKC4uVs/uHTt2bLXZwUOGDMGqVauwfft2XL9+HQcOHMC8efMwZMgQdVF9//33ceTIEdy4cQMnTpzAsGHDYGpqivDwcE0O1ajtuXAHU747g/IKFZ5v54RvxwWiidSwHiN6u9/DBuI37uGwnjYQ//sjMfW9jjERiUOj35zNmjVTT+hxc3PDpUuX4O/vj/z8fJSUlNR5nFGjRiEnJwfz589HVlYWOnfujJiYGPWkpPT09GpnonPnzoVEIsHcuXORkZEBR0dHDBkyBJ9//rl6n9u3byM8PBx5eXlwdHREz549ER8fD0dHR00O1WhtPZmOj3ZfhCAAL3V2xZcjOum8F2lDcLG1xPjunlh7NA2LY5LRx8cRJno2wYdLCBIZP4mgwbWx0aNHIzAwEJGRkfjss8+wfPlyDB06FAcOHEDXrl3rbQJSQ5HL5bC1tUVBQYFR3j9ddzQNn/+WCAAYE9wKnw3toHcF6GncLy5H78WHUFhWgWWvdMbQzm5iR1K7X1yOrv8+AEEAEj7qhxZNZWJHIqJ6oNGZ6YoVK9RL+H300UcwNzfHiRMnMHz4cMydO1enAUl3BEHAfw6m4OvYFADAlD7emD3A1+AvPTZ72EB8yYGriDpwFRZm+nOGfSlDDkEA2jpZs5ASGbGnPjOtqKjA1q1bERYWVuMZUWNhrGeme/+8g+lbzwEAZob5Yto/2oicSHeKyyrQ58tDyC0qf/LOIhjf3ROfvNhe7BhEVE+e+szUzMwMU6ZMQWJiYn3koXqiUKrw1f5kAMDU57yNqpACgJWFGRb/syPWHEmDUqVfs3qtZWaI6OEpdgwiqkcaXeYNCgrC+fPn4eHhoes8VE92nr6FG3klaG4lNbpCWqWvnxP6+hnn1RIi0m8aFdM333wTkZGRuHXrFgICAmBlVf3ZuY4dO+okHOnGg3Illh2svE86vW8bWFsY1uMvRET6TqPZvP9/4QSgcvF7QRAgkUigVCp1Ek4sxnbPdPWRVHyxLwludpb44/0+sDBjL00iIl3S6BTl+vXrus5B9aTggQKrDqcCAGY835aFlIioHmhUTHmv1HCsPZqKggcK+LSwxrAu+vP8JRGRMdGomG7evPmx3x87dqxGYUi37spLEX3sBoDKR2HY+ouIqH5odM+0WbNm1b5WKBQoKSmBVCpFkyZNcO+e/nbwqAtjuWc6b/clbIm/iS6t7LBraneDX5yBiEhfabRUzP3796u9ioqKkJycjJ49e2Lbtm26zkgaSM8rwbaEdACVjbRZSImI6o/O1l3z8fHBF198gXfeeUdXQ5IWog4ko0IloHdbR4R4Nxc7DhGRUdPpIqZmZma4c+eOLockDSRmyvHfC5X/DrPCfEVOQ0Rk/DSagLRnz55qXwuCgMzMTKxYsQI9evTQSTDS3Ff7kyEIwOCOLujgZit2HCIio6dRMX3ppZeqfS2RSODo6Ii+fftiyZIlushFGjp94x5ik+7C1ESC955vK3YcIqJGQaNiqlKpdJ2DdEAQBCyKSQIAjAxsCS9Ha5ETERE1DvrT+JG0djg5B6du3IeFmQne7ucjdhwiokZDo2I6fPhwLFq0qMb2xYsXY8SIEVqHoqenUglY/LDF2rjunnCxtRQ5ERFR46FRMT169CgGDRpUY/vAgQNx9OhRrUPR0/vlzztIzJSjqYUZpvbxFjsOEVGjolExLSoqglQqrbHd3Nwccrlc61D0dBRKFaIOXAUAvNHHC82sav7bEBFR/dGomPr7+2PHjh01tm/fvh3t2rXTOhQ9nR2nbuFmXgkcrKWI6NFa7DhERI2ORrN5582bh5dffhmpqano27cvACA2Nhbbtm3DDz/8oNOA9HgPypX4Oray8fdbfX1gxcbfREQNTqPfvEOGDMHu3buxYMEC/Pjjj7C0tETHjh1x8OBB9OnTR9cZ6TE2nriBu4VlaNnMEuFBrcSOQ0TUKGnUNcbYGUrXmIISBXot/gPy0gpEjeyEl7u2FDsSEVGjpNE901OnTuHkyZM1tp88eRKnT5/WOhTVzeqjqZCXVsDXqSmGdmbjbyIisWhUTKdNm4Zbt27V2J6RkYFp06ZpHYqe7K68FBuOXwcAvM/G30REotKomF65cgVdu3atsb1Lly64cuWK1qHoyb7+IwWlChW6trJD6DMtxI5DRNSoaVRMLSwskJ2dXWN7ZmYmzMw4m7S+3cwrxvaEyisDswew8TcRkdg0Kqb9+/fHnDlzUFBQoN6Wn5+PDz/8EM8//7zOwlHtog5cRYVKQJ+2jgj2YuNvIiKxaXQa+dVXX6F3797w8PBAly5dAADnz5+Hk5MTtmzZotOAVN2VO3L893xl4++ZbPxNRKQXNCqmbm5u+PPPP/H999/jwoULsLS0REREBMLDw2Fubq7rjPQ3X/1euZj9kE6ubPxNRKQnNL7BaWVlhZ49e6JVq1YoLy8HAOzbtw8A8OKLL+omHVVz6sY9/PGw8XckG38TEekNjYppWloahg0bhosXL0IikUAQhGqTYJRKpc4CUiVBELBoX2Xj71Hd3NHawUrkREREVEWjCUjvvPMOWrdujbt376JJkya4dOkSjhw5gsDAQBw+fPipxlq5ciU8PT0hk8kQHByMhISEx+6/dOlS+Pr6wtLSEu7u7pgxYwZKS0u1GtMQHEq+i9M3Kxt/v8PG30RE+kXQQPPmzYULFy4IgiAINjY2QlJSkiAIghAbGyt07ty5zuNs375dkEqlQnR0tHD58mVh8uTJgp2dnZCdnV3r/t9//71gYWEhfP/998L169eF/fv3Cy4uLsKMGTM0HrM2BQUFAgChoKCgzu+pT0qlSgj7zxHBY/ZeYcFvV8SOQ0RE/49GZ6ZKpRJNmzYFADg4OODOncrZpR4eHkhOTq7zOFFRUZg8eTIiIiLQrl07rF69Gk2aNEF0dHSt+584cQI9evTA6NGj4enpif79+yM8PLzamefTjmkIfvnzDpKyCtFUxsbfRET6SKNi2qFDB1y4cAEAEBwcjMWLF+P48eP49NNP4eXlVacxysvLcebMGYSGhv4VxsQEoaGhiIuLq/U93bt3x5kzZ9TFMy0tDb/99hsGDRqk8ZgAUFZWBrlcXu2lLwRBULdYm9LHG3ZN2PibiEjfaDQBae7cuSguLgYAfPrpp3jhhRfQq1cvNG/evNam4bXJzc2FUqmEk5NTte1OTk5ISkqq9T2jR49Gbm4uevbsCUEQUFFRgSlTpuDDDz/UeEwAWLhwIf71r3/VKXdDu5QhR2pOMWTmJhjX3VPsOEREVAuNzkzDwsLw8ssvAwDatGmDpKQk5Obm4u7du+pm4fXh8OHDWLBgAb755hucPXsWu3btwq+//orPPvtMq3GrVnOqetW2iL9Ydp/PAACEPuMEazb+JiLSSzr77Wxvb/9U+zs4OMDU1LTGGr/Z2dlwdnau9T3z5s3Da6+9hkmTJgEA/P39UVxcjNdffx0fffSRRmMClWsNW1hYPFX+hqBUCfjlQuX96JfYYo2ISG9pdGaqC1KpFAEBAYiNjVVvU6lUiI2NRUhISK3vKSkpgYlJ9cimpqYAKu8tajKmPotPy8PdwjLYWpqjd1tHseMQEdEjiHrdMDIyEuPGjUNgYCCCgoKwdOlSFBcXIyIiAgAwduxYuLm5YeHChQCAIUOGICoqCl26dEFwcDCuXbuGefPmYciQIeqi+qQxDcl/H17iHeTvAqmZaH/3EBHRE4haTEeNGoWcnBzMnz8fWVlZ6Ny5M2JiYtQTiNLT06udic6dOxcSiQRz585FRkYGHB0dMWTIEHz++ed1HtNQlCqU2HcpCwDwUmdXkdMQEdHjSARBEMQOoW/kcjlsbW1RUFAAGxsbUTLEXMrElO/OwtVWhmOz+8LEhD1LiYj0Fa8d6qmqNmtDOruykBIR6TkWUz0kL1UgNukuAGBoJ87iJSLSdyymeijmUhbKK1TwaWGNZ1yaih2HiIiegMVUD+15eIn3pS5u1VrbERGRfmIx1TN35aU4kZoLAHixE2fxEhEZAhZTPfPLn5lQCUCARzO42zcROw4REdUBi6meqVqoYSifLSUiMhgspnokLacIf94ugKmJBIP8XcSOQ0REdcRiqkf2PFzUvpePAxys9W/hfSIiqh2LqZ4QBEG9UAMv8RIRGRYWUz1xMaMA13Mrm4A/3+7R7eKIiEj/sJjqid3nKs9Kn2/nzCbgREQGhsVUDyhVAn758+ElXj5bSkRkcFhM9UB8Wh5yCstg14RNwImIDBGLqR7YfY5NwImIDBl/c4usVKFEzMMm4LzES0RkmFhMRXYo6S4KyyrgaitDN097seMQEZEGWExFxibgRESGj8VURAUPFPgjubIJ+Eud2QSciMhQsZiKaP/DJuBtnazh58wm4EREhorFVET/vVDVIYZNwImIDBmLqUiy5aU4kZoHgE3AiYgMHYupSH65cAcCm4ATERkFFlORVLVbe4kdYoiIDB6LqQjYBJyIyLiwmIqg6tnSXj4OaM4m4EREBo/FtIFVNgGvnMXLZ0uJiIwDi2kD+/N2AW7klcDS3BTPt3MSOw4REekAi2kDq7rE+3w7J1ixCTgRkVFgMW1A1ZqAcxYvEZHRYDFtQHGpfzUB7+XDJuBERMaCxbQB7X448Wgwm4ATERkVvfiNvnLlSnh6ekImkyE4OBgJCQmP3Pe5556DRCKp8Ro8eLB6n/Hjx9f4/oABAxriUB6pWhNwzuIlIjIqos+A2bFjByIjI7F69WoEBwdj6dKlCAsLQ3JyMlq0aFFj/127dqG8vFz9dV5eHjp16oQRI0ZU22/AgAHYsGGD+msLC3Gf5zyUdBdFZRVws7NEoEczUbMQEZFuiX5mGhUVhcmTJyMiIgLt2rXD6tWr0aRJE0RHR9e6v729PZydndWvAwcOoEmTJjWKqYWFRbX9mjUTt4BVXeId0olNwImIjI2oxbS8vBxnzpxBaGioepuJiQlCQ0MRFxdXpzHWr1+PV155BVZWVtW2Hz58GC1atICvry+mTp2KvLy8R45RVlYGuVxe7aVLBQ8UOJSUA4CzeImIjJGoxTQ3NxdKpRJOTtUXL3ByckJWVtYT35+QkIBLly5h0qRJ1bYPGDAAmzdvRmxsLBYtWoQjR45g4MCBUCqVtY6zcOFC2Nraql/u7u6aH1QtYi5lolypgq9TUzzjYqPTsYmISHyi3zPVxvr16+Hv74+goKBq21955RX1f/v7+6Njx47w9vbG4cOH0a9fvxrjzJkzB5GRkeqv5XK5Tgtq1UINL/KslIjIKIl6Zurg4ABTU1NkZ2dX256dnQ1nZ+fHvre4uBjbt2/HxIkTn/g5Xl5ecHBwwLVr12r9voWFBWxsbKq9dCVbXoq4NDYBJyIyZqIWU6lUioCAAMTGxqq3qVQqxMbGIiQk5LHv/eGHH1BWVoZXX331iZ9z+/Zt5OXlwcWl4dudVTUBD2QTcCIioyX6bN7IyEisW7cOmzZtQmJiIqZOnYri4mJEREQAAMaOHYs5c+bUeN/69evx0ksvoXnz5tW2FxUVYebMmYiPj8eNGzcQGxuLoUOHok2bNggLC2uQY/q7qku8nHhERGS8RL9nOmrUKOTk5GD+/PnIyspC586dERMTo56UlJ6eDhOT6jU/OTkZx44dw++//15jPFNTU/z555/YtGkT8vPz4erqiv79++Ozzz5r8GdNU3OKcDGjAGYmEgzuyGJKRGSsJIIgCGKH0DdyuRy2trYoKCjQ6v5p1IGr+Do2Bf/wdcSGiKAnv4GIiAyS6Jd5jZUgCNhT1QS8C5cPJCIyZiym9eTC35qAhz7DJuBERMaMxbSeVC1qzybgRETGj7/l68n7/dsixLs5mltJxY5CRET1jMW0npiZmqBPWzYAJyJqDHiZl4iISEsspkRERFpiMSUiItISiykREZGWWEyJiIi0xGJKRESkJRZTIiIiLfE501pUrf0vl8tFTkJERPqgadOmkEgkj/w+i2ktCgsLAQDu7u4iJyEiIn3wpC5ibMFWC5VKhTt37jzxL5EnkcvlcHd3x61bt7Rq5aaPjPnYAB6fITPmYwOM+/j0+dh4ZqoBExMTtGzZUmfj2djY6N0Phq4Y87EBPD5DZszHBhj38RnisXECEhERkZZYTImIiLTEYlqPLCws8PHHH8PCwkLsKDpnzMcG8PgMmTEfG2Dcx2fIx8YJSERERFrimSkREZGWWEyJiIi0xGJKRESkJRZTIiIiLbGY1pOVK1fC09MTMpkMwcHBSEhIEDuSTqxatQodO3ZUP1QdEhKCffv2iR1LZzIyMvDqq6+iefPmsLS0hL+/P06fPi12LJ0pLCzEu+++Cw8PD1haWqJ79+44deqU2LE0cvToUQwZMgSurq6QSCTYvXu3+nsKhQKzZ8+Gv78/rKys4OrqirFjx+LOnTviBX5Kjzs+ABg/fjwkEkm114ABA8QJ+5SedGxFRUWYPn06WrZsCUtLS7Rr1w6rV68WJ2wdsZjWgx07diAyMhIff/wxzp49i06dOiEsLAx3794VO5rWWrZsiS+++AJnzpzB6dOn0bdvXwwdOhSXL18WO5rW7t+/jx49esDc3Bz79u3DlStXsGTJEjRr1kzsaDozadIkHDhwAFu2bMHFixfRv39/hIaGIiMjQ+xoT624uBidOnXCypUra3yvpKQEZ8+exbx583D27Fns2rULycnJePHFF0VIqpnHHV+VAQMGIDMzU/3atm1bAybU3JOOLTIyEjExMfjuu++QmJiId999F9OnT8eePXsaOOlTEEjngoKChGnTpqm/ViqVgqurq7Bw4UIRU9WfZs2aCd9++63YMbQ2e/ZsoWfPnmLHqDclJSWCqampsHfv3mrbu3btKnz00UcipdINAMLPP//82H0SEhIEAMLNmzcbJpQO1XZ848aNE4YOHSpKHl2q7djat28vfPrpp9W26fvPKc9Mday8vBxnzpxBaGioepuJiQlCQ0MRFxcnYjLdUyqV2L59O4qLixESEiJ2HK3t2bMHgYGBGDFiBFq0aIEuXbpg3bp1YsfSmYqKCiiVSshksmrbLS0tcezYMZFSNZyCggJIJBLY2dmJHUVnDh8+jBYtWsDX1xdTp05FXl6e2JF0onv37tizZw8yMjIgCAIOHTqEq1evon///mJHeyQWUx3Lzc2FUqmEk5NTte1OTk7IysoSKZVuXbx4EdbW1rCwsMCUKVPw888/o127dmLH0lpaWhpWrVoFHx8f7N+/H1OnTsXbb7+NTZs2iR1NJ5o2bYqQkBB89tlnuHPnDpRKJb777jvExcUhMzNT7Hj1qrS0FLNnz0Z4eLjBLaD+KAMGDMDmzZsRGxuLRYsW4ciRIxg4cCCUSqXY0bS2fPlytGvXDi1btoRUKsWAAQOwcuVK9O7dW+xoj8SuMfTUfH19cf78eRQUFODHH3/EuHHjcOTIEYMvqCqVCoGBgViwYAEAoEuXLrh06RJWr16NcePGiZxON7Zs2YIJEybAzc0Npqam6Nq1K8LDw3HmzBmxo9UbhUKBkSNHQhAErFq1Suw4OvPKK6+o/9vf3x8dO3aEt7c3Dh8+jH79+omYTHvLly9HfHw89uzZAw8PDxw9ehTTpk2Dq6trtat++oRnpjrm4OAAU1NTZGdnV9uenZ0NZ2dnkVLpllQqRZs2bRAQEICFCxeiU6dOWLZsmdixtObi4lLjD4JnnnkG6enpIiXSPW9vbxw5cgRFRUW4desWEhISoFAo4OXlJXa0elFVSG/evIkDBw4YzVlpbby8vODg4IBr166JHUUrDx48wIcffoioqCgMGTIEHTt2xPTp0zFq1Ch89dVXYsd7JBZTHZNKpQgICEBsbKx6m0qlQmxsrFHcV6yNSqVCWVmZ2DG01qNHDyQnJ1fbdvXqVXh4eIiUqP5YWVnBxcUF9+/fx/79+zF06FCxI+lcVSFNSUnBwYMH0bx5c7Ej1avbt28jLy8PLi4uYkfRikKhgEKhgIlJ9fJkamoKlUolUqon42XeehAZGYlx48YhMDAQQUFBWLp0KYqLixERESF2NK3NmTMHAwcORKtWrVBYWIitW7fi8OHD2L9/v9jRtDZjxgx0794dCxYswMiRI5GQkIC1a9di7dq1YkfTmf3790MQBPj6+uLatWuYOXMm/Pz8DPJns6ioqNpZ2PXr13H+/HnY29vDxcUF//znP3H27Fns3bsXSqVSPWfB3t4eUqlUrNh19rjjs7e3x7/+9S8MHz4czs7OSE1NxaxZs9CmTRuEhYWJmLpuHndsrVq1Qp8+fTBz5kxYWlrCw8MDR44cwebNmxEVFSVi6icQeTax0Vq+fLnQqlUrQSqVCkFBQUJ8fLzYkXRiwoQJgoeHhyCVSgVHR0ehX79+wu+//y52LJ355ZdfhA4dOggWFhaCn5+fsHbtWrEj6dSOHTsELy8vQSqVCs7OzsK0adOE/Px8sWNp5NChQwKAGq9x48YJ169fr/V7AIRDhw6JHb1OHnd8JSUlQv/+/QVHR0fB3Nxc8PDwECZPnixkZWWJHbtOHndsgiAImZmZwvjx4wVXV1dBJpMJvr6+wpIlSwSVSiVu8MdgCzYiIiIt8Z4pERGRllhMiYiItMRiSkREpCUWUyIiIi2xmBIREWmJxZSIiEhLLKZERERaYjElIo3cuHEDEokE58+fFzsKkehYTImMWFZWFt566y14eXnBwsIC7u7uGDJkSLW1o4lIe1ybl8hI3bhxAz169ICdnR2+/PJL+Pv7Q6FQYP/+/Zg2bRqSkpLEjkhkNHhmSmSk3nzzTUgkEiQkJGD48OFo27Yt2rdvj8jISMTHx2PChAl44YUXqr1HoVCgRYsWWL9+PYDKjkCLFy9GmzZtYGFhgVatWuHzzz9/5GdeunQJAwcOhLW1NZycnPDaa68hNze3Xo+TSB+wmBIZoXv37iEmJgbTpk2DlZVVje/b2dlh0qRJiImJQWZmpnr73r17UVJSglGjRgGo7BL0xRdfYN68ebhy5Qq2bt0KJyenWj8zPz8fffv2RZcuXXD69GnExMQgOzsbI0eOrJ+DJNIjvMxLZISuXbsGQRDg5+f3yH26d+8OX19fbNmyBbNmzQIAbNiwASNGjIC1tTUKCwuxbNkyrFixAuPGjQNQ2Vy8Z8+etY63YsUKdOnSBQsWLFBvi46Ohru7O65evYq2bdvq8AiJ9AvPTImMUF2bQU2aNAkbNmwAAGRnZ2Pfvn2YMGECACAxMRFlZWXo169fnca6cOECDh06BGtra/WrqpinpqZqcBREhoNnpkRGyMfHBxKJ5ImTjMaOHYsPPvgAcXFxOHHiBFq3bo1evXoBACwtLZ/qM4uKijBkyBAsWrSoxvdcXFyeaiwiQ8MzUyIjZG9vj7CwMKxcuRLFxcU1vp+fnw8AaN68OV566SVs2LABGzduREREhHofHx8fWFpa1vkxmq5du+Ly5cvw9PREmzZtqr1qu29LZExYTImM1MqVK6FUKhEUFISffvoJKSkpSExMxNdff42QkBD1fpMmTcKmTZuQmJiovjcKADKZDLNnz8asWbOwefNmpKamIj4+Xj3T9/+bNm0a7t27h/DwcJw6dQqpqanYv38/IiIioFQq6/14icTEy7xERsrLywtnz57F559/jvfeew+ZmZlwdHREQEAAVq1apd4vNDQULi4uaN++PVxdXauNMW/ePJiZmWH+/Pm4c+cOXFxcMGXKlFo/z9XVFcePH8fs2bPRv39/lJWVwcPDAwMGDICJCf9uJ+MmEeo6U4GIjFJRURHc3NywYcMGvPzyy2LHITJIPDMlaqRUKhVyc3OxZMkS2NnZ4cUXXxQ7EpHBYjElaqTS09PRunVrtGzZEhs3boSZGX8dEGmKl3mJiIi0xFkBREREWmIxJSIi0hKLKRERkZZYTImIiLTEYkpERKQlFlMiIiItsZgSERFpicWUiIhISyymREREWvo/dZ+ymKS7qY8AAAAASUVORK5CYII=\n" - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "# Default\n", - "plot_cycle_score(cycle, X_test, y_test,\n", - " figsize=(5,3));\n", - "# Specifying Scorer - Plots should be the identical.\n", - "plot_cycle_score(cycle, X_test, y_test,\n", - " scorer=accuracy_score,\n", - " figsize=(5,3));" - ], - "metadata": { - "collapsed": false - } - }, - { - "cell_type": "code", - "execution_count": 6, - "outputs": [ - { - "data": { - "text/plain": "
", - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAdMAAAEmCAYAAAA5oXoHAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8o6BhiAAAACXBIWXMAAA9hAAAPYQGoP6dpAAA/U0lEQVR4nO3deVhU9f4H8PfMwDDIKrIrggiKIm6YBNJyiytqmWmpaYlaVprLTSpNE9ebtJKmpqVpLllYGtdccOG6pKgoKC64sCkugIKyCwwz5/cHOr+4osLMwGGG9+t55nn0cOY771PIh3O+m0QQBAFERESkNanYAYiIiAwdiykREZGOWEyJiIh0xGJKRESkIxZTIiIiHbGYEhER6YjFlIiISEcspkRERDpiMa2FIAgoKioC17MgIqK6YDGtRXFxMWxsbFBcXCx2FCIiMgAspkRERDpiMSUiItIRiykREZGOWEyJiIh0xGJKRESkIxZTIiIiHbGYEhER6YjFlIiISEcspkREpLWKKhVm/nEG8/48hyqVWuw4ojEROwARERkmtVrAB5uSse10NgCgXKnCwsF+kEgkIidrfLwzJSIirXwWewHbTmfDRCqBVAL8knAVS/+bJnYsUbCYEhFRva2Nv4wfDmYAAL54tSvmvuQLAPh6zyVsTrwmZjRR8DEvERHVS+zZHMz98xwA4KPQjhjSsw0A4HrBXXx/IAPTN5+Go7UZnvJ2EDNmo+KdKRER1VnilTv4168nIQjAiN5t8d6z7TVfmx7qg4HdXFGlFjBhQxJSbhSJmLRxsZgSEVGdZOaVYtza46ioUuM5H0csGORbY7CRVCrBV0O7IqCdHUoqqjD2pwTcKLgrYuLGw2JKRESPlVdSgTFrEnCnTImubWywdGQPmMgeLCFmJjL8ENYL3o6WyC2qfk/hXaUIiRsXiykRET1SWWUV3lp7Alfyy+BmZ44fRz+BFvKHD7mxMTfFT2/2hqOVGS7llmD8+kRUVKkaMXHjYzElIqKHUqkFTPnlFJKvFsC2hSl+GtsbDlZmj31fa1tzrBn7BCzkMhzJyMf0309DEIRGSCwOFlMiIqqVIAiYs/Us9p7PhdxEilVhvdDewbLO7/d1tcHyN/xhIpUg5tQNfLnrYgOmFReLKRER1WrFgQxsOJoFiQRYPLw7ennY1buNpzs4IHKIHwDgu/3p2HD0ir5jNgkspkRE9ID/nLqOz2MvAAAiXuiM/n4uWrc1tJcbpoZ0AADM/s9Z7E3J1UvGpoTFlIiIaohPz8OHvyUDAN4Kboc3g9vp3OaU570wvJcb1AIw+ZeTOHW1QOc2mxIWUyIi0riYU4x31ydCqRIwwM8ZnwzopJd2JRIJ/j24C57u4IC7ShXe+uk4ruSX6qXtpoDFlIiIAAC5ReUYuyYBxeVVeMKjJaKGdYdUqr8dYExlUnz3ek/4ulojv7QSY9Ycx+3SSr21LyYWUyIiQnG5EmPWHMeNwnJ4OlhgZVgvKExlev8cSzMTrBnzBFrbmmtWVCpXGv4cVBZTIqJmTqlS472fk3A+uwj2lmZYO7Y3bFvIG+zzHK0VWPvmE7BWmCApqwD/+vUkVGrDnoPKYkpE1IwJgoCPN5/BX6l5aCGXYfWYXnCza9Hgn+vlaIWVYb0gl0mx61wuFmxLMehFHVhMiYiasW/2pmJz0jXIpBIsG9kTXdvYNtpnB3i2wtfDugEAfoq/jB8PZTbaZ+sbiykRUTP1a0IWvo1LBQD8++Uu+IePY6NnGNjNFTMH+FRn2H4e207faPQM+iARDPm+uoEUFRXBxsYGhYWFsLa2FjsOEdXDttM3sOHoFRh4F1zDE4DErDtQqQVM+ocXPgztKF4UQcDcreew9sgVyGVSdG9rq7e2v3/DHy0tGq7/976HL/tPRGRgbpdW4uPNZ1BSUSV2FIMxpEdrfNC3g6gZJBIJZg/0RXZhOXan5CIh87be2laq1Hpr61FYTInIaHy3Lw0lFVXwcbbC5Oe8xY7T5Nm2MEWgZ6saG3yLRSaVYPkb/jicloficv39MmRtbqq3th6FxZSIjML1grtYd28R9RkDOuGZDg4iJ6L6kkkleNpA/79xABIRGYXFey+hskqNJz3t8LS3vdhxqJlhMSUig5d2sxi/J14DAEzr59MkHltS88JiSkQG7+vdl6AWgH92dkLPti3FjkPNUJMopsuWLYOHhwcUCgUCAgKQkJDw0HOVSiXmz5+P9u3bQ6FQoFu3boiNja1xzty5cyGRSGq8fHx8GvoyiEgEyVcLsPNsDiQS4CMRp3dQ8yZ6MY2OjkZ4eDjmzJmDpKQkdOvWDaGhobh582at58+aNQvff/89lixZgpSUFIwfPx6DBw/GyZMna5zn6+uL7OxszevQoUONcTlE1Mi+2FW9gfWQHm3QwclK5DTUXIleTKOiovD2229j7Nix6Ny5M1asWIEWLVpg9erVtZ6/fv16zJw5EwMGDICnpycmTJiAAQMG4Ouvv65xnomJCZydnTUve3sOSCAyNodS83A4LR9ymRTvh3AqDIlH1GJaWVmJxMREhISEaI5JpVKEhITgyJEjtb6noqICCoWixjFzc/MH7jxTU1Ph6uoKT09PvP7668jKynpojoqKChQVFdV4EVHTJgiC5q50ZEDbRlmcnehhRC2meXl5UKlUcHJyqnHcyckJOTk5tb4nNDQUUVFRSE1NhVqtxp49e7BlyxZkZ2drzgkICMBPP/2E2NhYLF++HJmZmXjqqadQXFxca5uRkZGwsbHRvNzc3PR3kUTUIGLP5uD0tUK0kMsw6TkvseNQMyf6Y976Wrx4Mby9veHj4wO5XI5JkyZh7NixkEr//1L69++PoUOHomvXrggNDcWOHTtQUFCATZs21drmjBkzUFhYqHldvXq1sS6HiLRQpVLjy90XAQDjnvKEvaWZyImouRO1mNrb20MmkyE3N7fG8dzcXDg7O9f6HgcHB8TExKC0tBRXrlzBhQsXYGlpCU9Pz4d+jq2tLTp06IC0tLRav25mZgZra+saLyJqujYnXUPGrVK0bGGKt59qJ3YcInGLqVwuh7+/P+Li4jTH1Go14uLiEBgY+Mj3KhQKtG7dGlVVVdi8eTMGDRr00HNLSkqQnp4OFxcXvWUnInGUK1VYtLd627CJ//CClaJx1l4lehTRH/OGh4dj5cqVWLt2Lc6fP48JEyagtLQUY8eOBQCEhYVhxowZmvOPHTuGLVu2ICMjA3/99Rf69esHtVqNadOmac758MMPceDAAVy+fBnx8fEYPHgwZDIZRowY0ejXR0T6teHoFWQXlsPFRoE3nnQXOw4RgCaw0P3w4cNx69YtzJ49Gzk5OejevTtiY2M1g5KysrJq9IeWl5dj1qxZyMjIgKWlJQYMGID169fD1tZWc861a9cwYsQI5Ofnw8HBAcHBwTh69CgcHAxzAWUiqlZUrsSyfdXdNVNDOkBhKhM5EVE1bg5eC24OTtQ0Re2+iG//m4b2DhbY9f7TMJGJ/nCNCEATeMxLRI1LEARk5ZdBpTas36NvFVdg1aFMANXLBrKQUlPC70aiZkSlFhDxn7N4+st9+NevJx//hiZk2b40lFWq0K2NDUJ9ax/tTyQWFlOiZuJupQrjNyRiw9Hq1cC2nc7GgUu3RE5VN1dvl+HnY9Ubf3OLNWqKWEyJmoHbpZUYueoo9qTkQm4iRR+vVgCAeVvPobJKLXK6x/tm7yUoVQKCvezRx4vrbFPTw2JKZOSy8svw6vJ4nMwqgI25KX4eF4Dlb/jD3tIMGXmlWH04U+yIj3Qxpxh/nLwOgFusUdPFYkpkxM5cK8SQ5YeRkVeK1rbm2DwhEE942MFaYYqP+1fv8fttXCpyCstFTvpwX+2+CEEA+ndxRjc3W7HjENWKxZTISO2/eBPDfziCvJJKdHKxxpb3guDl+P/7fQ7p0Ro929qirFKFyJ3nRUz6cIlX7mBPSi6kEuCDvrwrpaaLxZTICP124ireWnsCZZUq9PFqhU3vPgkn65pbF0qlEswf1AUSCfCfUzdwLCNfpLS1EwQBn8dWb7E21N8NXo6WIiciejgWUyIjIggClsSl4qPfT0OlFvByd1esGdP7oevXdmltg5G92wIA5mw9hypV0xmMdODSLSRk3obcRIp/ceNvauJYTImMRJVKjZl/nMXXey4BACY82x5Rw7pDbvLof+Yf9u0I2xamuJBTjJ+PZTVG1MdSqwV8uat6i7XRge5wtTUXORHRo7GYEhmBssoqvLs+Eb8kZEEiAeYP8sX0fj6QSh8/H7OlhRwf3uuP/Hr3ReSVVDR03MfafiYb524UwdLMBBOe5cbf1PSxmBIZuPySCoxceQxxF27CzESK5a/7IyzQo15tjOjdFr6u1igqr8KXsRcbJmgdKVVqfH1v4+93nvaEnYVc1DxEdcFiSmTAruSX4pXl8Th1tQC2LUyx8e0A9OtS/6X2ZFIJ5g/yBQBsSryKU1cL9Jy07jaduIrL+WVoZSHHW8Hc+JsMA4spkYFKvlqAId/F43J+GVrbmuP38UHwd7fTuj1/dzsM6dkaggDM+c9ZqEVYCP9upQrfxlVv/D35OS9YmIm+SyRRnbCYEhmgfRdu4rUfjiK/tBK+rtb4470gvUwd+bi/DyzNTJB8rRC/JV7VQ9L6WXvkMnKLKtDa1hwjAto2+ucTaYvFlMjARB/Pwrh1J3BXqcJT3vaIfjcQjv8zh1RbjlYKvH9vGsrnsRdRWKbUS7t1UVimxHf3Nv4O/2cHmJlw428yHCymRAZCEAQs2nsJ0zefgUotYEjP1vhx9BOw1POj0NFBHvB2tMTt0kp8s/eSXtt+lO8PpqOovAodnCzxco/Wjfa5RPqgUzGtrKzExYsXUVVVpa88RPQQC3ecx6K91f2JE//RHl8P7fbYOaTaMJVJMfel6sFI645cxvnsIr1/xv9Ku1msWXD/o1AfyOowpYeoKdHqX2JZWRneeusttGjRAr6+vsjKqp7oPXnyZHz22Wd6DUhEQFG5EqsPXwYALHi5Cz4Kbdg9Pft42eMFPxeoBWDOf85BEBpuMNLuczl4eVk8ypVq9HJviZBOjg32WUQNRatiOmPGDCQnJ2P//v1QKP6/ryYkJATR0dF6C0dE1Y5l3IZKLcDT3gKjnnRvlM+c+UInmJvKkHD5NrYm39B7+2q1gKg9l/DO+kSUVFShdzs7rBjlz42/ySBpVUxjYmKwdOlSBAcH1/jG9/X1RXp6ut7CEVG1Q6m3AKBRN8ZubWuOif9oD6D6EXNJhf66c4rKlXhn/QnNNJgxQR74eVwA7C3N9PYZRI1Jq2J669YtODo++CimtLSUv1USNYBDaXkAGreYAsC4pzzh3qoFcosqsOS/qXppM+1mCV5edhh7z9+E3ESKr4Z2w9yXfGEq43hIMlxafff26tUL27dv1/z9fgFdtWoVAgMD9ZOMiAAA2YV3kX6rFFIJENi+VaN+tsJUhjkDOwMAVh/KRPqtEp3aq+4fPYyMW6VwtVHg9/GBeNW/jT6iEolKqzH1CxcuRP/+/ZGSkoKqqiosXrwYKSkpiI+Px4EDB/SdkahZO5RafVfatY0tbMxr30qtIT3n44TnfRwRd+Em5m49h3Vv9q73Eyi1WsCiuFTNY92AdnZY9npPPtYlo6HVnWlwcDCSk5NRVVUFPz8/7N69G46Ojjhy5Aj8/f31nZGoWbv/iPcp78Z9xPt3ES92hlwmxV+pedidkluv9xaVK/H2upr9oxvYP0pGpt53pkqlEu+++y4iIiKwcuXKhshERPcIgoDDIvWX/p2HvQXeedoTS/elYcG2FDzTwQEK08evUJR2sxjvrEtERl4p5CZSRA72wyt8rEtGqN53pqampti8eXNDZCGi/3Extxh5JZUwN5WhR1tbUbO894/2cLVR4Nqdu1hx4PGj9nfdmz+akVfdP7p5fBALKRktrR7zvvzyy4iJidFzFCL6X/f7SwM87URfq7aF3ASfvFA9GGn5/nRcvV1W63lqtYCo3Rfx7r35owHt7LB1cjD82tg0ZlyiRqXVACRvb2/Mnz8fhw8fhr+/PywsLGp8fcqUKXoJR9Tc3e8vDRbxEe/fDfBzRlD7VohPz8eCbSn4IaxXja8XlSsx9ddTiLtwE0B1/+gnL3TitBcyehJBi3XC2rV7+Ia9EokEGRkZOoUSW1FREWxsbFBYWAhra2ux41AzVVGlQvd5e3BXqULs+0/Bx7lpfC+m5haj/+K/UKUWsPbN3nimgwMA9o9S86bVnWlmZqa+cxDR/ziZVYC7ShXsLeXo6GQldhwNbycrjAnywKpDmZi39Rxi338a+y7exAebklFSUQVXGwW+H9WLj3WpWdF576b7N7Zc+YhIv+73l/bxsm9y/77+FeKNmFM3kJFXitdXHcXxy3cAcP4oNV9ad2SsW7cOfn5+MDc3h7m5Obp27Yr169frMxtRs9bU+kv/zkphihn9fQBAU0g5f5SaM63uTKOiohAREYFJkyahT58+AIBDhw5h/PjxyMvLw9SpU/Uakqi5KSxT4vS1AgBAsIiLNTzK4B6tse30DRzLvI0Fg7qwf5SaNa0HIM2bNw9hYWE1jq9duxZz5841+D5VDkAiscWezcH4DYlo72CBuA+eFTvOQ6nUAlRqoUE2KScyJFrdmWZnZyMoKOiB40FBQcjOztY5FFFzd7gJP+L9O5lUApm0afXnEolBq18nvby8sGnTpgeOR0dHw9vbW+dQRM2dpr/U20HkJERUF1rdmc6bNw/Dhw/HwYMHNX2mhw8fRlxcXK1Flojq7tqdMmTmlUImlSDA007sOERUB1rdmb7yyis4duwY7O3tERMTg5iYGNjb2yMhIQGDBw/Wd0aiZuX+I95ubWxgrWj8LdeIqP60HjXg7++PDRs2IDExEYmJidiwYQN69OihVVvLli2Dh4cHFAoFAgICkJCQ8NBzlUol5s+fj/bt20OhUKBbt26IjY3VqU2ipuRQWj4APuIlMiRaFdMdO3Zg165dDxzftWsXdu7cWa+2oqOjER4ejjlz5iApKQndunVDaGgobt68Wev5s2bNwvfff48lS5YgJSUF48ePx+DBg3Hy5Emt2yRqKtRqwWAGHxHR3wha8PPzE7Zv3/7A8Z07dwpdu3atV1u9e/cWJk6cqPm7SqUSXF1dhcjIyFrPd3FxEZYuXVrj2JAhQ4TXX39d6zb/V2FhoQBAKCwsrM+lEOns7PUCwX36NqFzxE6hskoldhwiqiOt7kxTU1PRuXPnB477+PggLS2tzu1UVlYiMTERISEhmmNSqRQhISE4cuRIre+pqKiAQqGocczc3ByHDh3Sqc2ioqIaLyIx3L8rDfBsxZ1WiAyIVv9abWxsat0ZJi0t7YHt2B4lLy8PKpUKTk5ONY47OTkhJyen1veEhoYiKioKqampUKvV2LNnD7Zs2aKZ36pNm5GRkbCxsdG83Nzc6nwNRPr019/W4yUiw6FVMR00aBDef/99pKena46lpaXhgw8+wEsvvaS3cLVZvHgxvL294ePjA7lcjkmTJmHs2LGQSrX/LX7GjBkoLCzUvK5evarHxER1U65U4fjl2wCAp5roEoJEVDutKtAXX3wBCwsL+Pj4oF27dmjXrh06deqEVq1a4auvvqpzO/b29pDJZMjNza1xPDc3F87OzrW+x8HBATExMSgtLcWVK1dw4cIFWFpawtPTU+s2zczMYG1tXeNFjSc+PQ+nrhaIHUN0SVfuoFyphqOVGbwdLcWOQ0T1oPVj3vj4eGzfvh3vvfcePvjgA8TFxeG///0vbG1t69yOXC6Hv78/4uLiNMfUajXi4uIQGBj4yPcqFAq0bt0aVVVV2Lx5MwYNGqRzm9T4DqXmYeTKYxi6Ir7ZF9S/7xLT1LZcI6JH03o/U4lEgr59+6Jv374AgIKCAq3aCQ8Px+jRo9GrVy/07t0bixYtQmlpKcaOHQsACAsLQ+vWrREZGQkAOHbsGK5fv47u3bvj+vXrmDt3LtRqNaZNm1bnNqlpKLyrxEe/JwMAlCoBE39OwrbJwWhpIRc5mTjuF1P2lxIZHq2K6eeffw4PDw8MHz4cADBs2DBs3rwZzs7O2LFjB7p161bntoYPH45bt25h9uzZyMnJQffu3REbG6sZQJSVlVWjP7S8vByzZs1CRkYGLC0tMWDAAKxfv77GHfHj2qSmYc5/ziK7sBwerVoAAC7nlyF80yn8OPoJSJvZ4ukFZZU4c70QAIspkSHSegu2n3/+GUFBQdizZw+GDRuG6OhobNq0CVlZWdi9e3dDZG003IKt4W0/nY2JG5MglQC/TwiCmYkUQ76LR0WVGh+FdsTEf3iJHbFR7TyTjQk/J8Hb0RJ7wp8ROw4R1ZNWfaY5OTma6SPbtm3DsGHD0LdvX0ybNg3Hjx/Xa0AyPjeLyvFJzBkAwHvPeqFn25bwdbXBgkFdAABf776I+HuPPJuLv/iIl8igaVVMW7ZsqZk+Ehsbq1kgQRAEqFQq/aUjoyMIAqZtPo2CMiV8Xa0x5fn/37Jv2BNuGOrfBmoBmPLrSeQWlYuYtHHdX6yBU2KIDJNWxXTIkCEYOXIk/vnPfyI/Px/9+/cHAJw8eRJeXs3r8RzVz8aELOy/eAtyEykWDe8OuUnNb8H5g7rAx9kKeSWVmLQxCUqVWqSkjefq7TJcyS+DiVSCAM9WYschIi1oVUy/+eYbTJo0CZ07d8aePXtgaVk9Jy47OxvvvfeeXgOS8bicV4p/bzsPAJgW2hHeTlYPnGMul2H5G/6wMjPB8ct38OWui40ds9HdH8Xbo60tLM20HmBPRCLSagBSXb3wwgtYtWoVXFxcGuojGgQHIOlflUqNYd8fQVJWAZ70tMPGcU8+csRu7NlsjN+QBABY8YY/+nWpfcENYzDx5yRsP5ON90O88X5IB7HjEJEWGnQl7YMHD+Lu3bsN+RFkIL4/mIGkrAJYmZngq6HdHjv1pV8XF4wLbgcA+Oi3ZFzJL22MmI1OrRZwOJ1brhEZOm5LQQ3u7PVCfLPnEgBgzku+aNOyRZ3eN72/D/zdW6K4ogoTNiShXGl8g9tSsotQUKaEpZkJurnZih2HiLTEYkoNqlypwtToU6hSCwj1dcIrPVvX+b2mMimWjeyJVhZypGQXYe7Wcw2YVBz3d4l50tOOW64RGTD+66UG9dWui0i9WQJ7SzMsHOxX7zVnnW0U+HZED0gkwK/Hr+K3E8a1o8/hND7iJTIGLKbUYI6k5+PHw5kAgM9f8UMrSzOt2unjZY/wewNzZsWcxfls49i8vVypQsK9LdeCOb+UyKCxmFKDKCpX4sPfkiEIwGtPuOH5TrqtizzxH154tqMDKqrUmLAhEUXlSj0lFc+Jy3dQWaWGk7UZ2jtwyzUiQ9agxXTmzJmws7NryI+gJmr+nym4XnAXbnbmmPViZ53bk0ol+GZYd7jaKHA5vwzTfz+NBpzV1Sj+SrsFAAj2cuCWa0QGTusZ4qmpqdi3bx9u3rwJtbrmKjWzZ88GAMyYMUO3dGSQdp3Lwe+J1yCRAFHDuuttIYKWFnJ894Y/hq6Ix86zOVh9+DLeujd9xhBp+ku9ueoRkaHT6qfcypUrMWHCBNjb28PZ2bnGb9USiURTTKn5uVVcgRlbqhexf/fp9njCQ79PJrq72SLixc6Y/Z9ziNxxHt3dbODvbnhPP26XVuLcjeq+Xy5uT2T4tCqm//73v/Hpp59i+vTp+s5DBkwQBMzYchq3Syvh42yFqf/0fvybtDDqSXccv3wHfybfwMSfT2L7lGCtBzeJJT49D4IAdHSygqOVQuw4RKQjrfpM79y5g6FDh+o7Cxm4TSeuYu/5m5DLpFj0WneYmcga5HMkEgkih/ihvYMFcorK8X70KajUhtV/ephbrhEZFa2K6dChQw1+A3DSr6z8Msz/MwUA8EHfDvBxbtg1jS3NTLD8DX+Ym8rwV2oeFselNujn6ZMgCJrFGrjlGpFx0Ooxr5eXFyIiInD06FH4+fnB1NS0xtenTJmil3BkGFRqAR/8dgqllSr09rDDuKc8G+VzOzhZIXKIH96PPoUl/01Fz7a2eLajY6N8ti6ybpfh2p27MJVJ0Lud4fX3EtGDtNo1pl27h4+glEgkyMjI0CmU2LhrTP2sOJCOz3ZegIVchtj3n4abXd3W3tWXWTFnsOFoFlq2MMW2KU+hta15o35+fW04egWzYs6idzs7bHo3UOw4RKQHWt2ZZmZm6jsHGajz2UWI2n1vEfuBvo1eSAEg4sXOOH2tEKevFWLiz0mY0d9HL+22d7SEfQMMbOISgkTGR+cJgPdvbDnpvPmpqKpexL5SpUZIJycM7dVGlBxmJjIsG9kTLy45hFNXCzD8h6N6aVdhKsV3r/fEcz66rd70dyq1gPj0fABcQpDImGhdTNetW4cvv/wSqanVAz86dOiAjz76CKNGjdJbOGravtmTigs5xWhlIUfkkPovYq9PbnYt8P0of3y28wKK9bDUYFmlCtmF5Xh7XSK+eKUrXvHXzy8KZ68XovCuElZmJuja2kYvbRKR+LQqplFRUYiIiMCkSZPQp08fAMChQ4cwfvx45OXlYerUqXoNSU3P8cu38f3BdADAwiF+cLASf57nk56tEDOxj17aUqrUmP77aWw5eR0f/JaMvJIKvPtMe53bPXTvEe+T7VvBhFuuERkNrYrpkiVLsHz5coSFhWmOvfTSS/D19cXcuXNZTI3cndJK/OuXkxAE4FX/Ngj1dRY7kt6ZyqT4amg32FuZ4YeDGYjceQF5JRWY0b8TpFLt78APcUoMkVHS6lfj7OxsBAUFPXA8KCgI2dnZOoeipksQBHz4WzJuFJajnb0F5r7kK3akBiOVSjBzQCfMHFA9oGnlX5n44LdkKFXqx7yzdncrVUi8cgcAF2sgMjZaFVMvLy9s2rTpgePR0dHw9m6YJeSoaVj1VybiLtyE3ESKpSN76G0R+6bsnafbI2pYN5hIJfjj5HW8tfYESiuq6t1OwuXbqFSp4WqjgKe9RQMkJSKxaPWTcN68eRg+fDgOHjyo6TM9fPgw4uLiai2yZBySsu7g89gLAIDZL3aGr2vzGUAzpGcbtLSQ470NSTh46RZGrjqGNWOegJ2FvM5t/H0JQY5+JzIuWt2ZvvLKKzh27Bjs7e0RExODmJgY2NvbIyEhAYMHD9Z3RmoCCsoqMXnjSVSpBbzY1QWvB7QVO1Kj+0dHR/z8dgBsW5gi+WoBXl0Rj2t3yur8/vtLCHJKDJHx0WoFJGPHFZBqEgQBb69LxN7zufBo1QJ/Tg6GlcL08W80Umk3SxD24zHcKCyHk7UZ1r0ZgI7OVo98T15JBXr9ey8A4PgnIU1i9DMR6U+d70yLiopq/PlRLzIuPx7KxN7zuZDLpFg6smezLqQA4OVoic3vBaGDkyVyiyowdEU8jl++/cj33F+owcfZioWUyAjVuZi2bNkSN2/eBADY2tqiZcuWD7zuHyfjcTLrDj7bWd1PGvFiJ3ThQgMAABcbc/z2bhB6ubdEUXkV3lh1DHtSch96/qHUWwA4JYbIWNV5ANJ///tf2NlV73Cxb9++BgtETUdhmRKT7vWTvuDngjeedBc7UpNi08IU698KwORfkrD3/E28u/4EFg72w2u9a/YnC4KgmV/KKTFExol9prVgn2l1AXhnfSL2pOSirV0LbJsSDOtm/nj3YapUasz84ww2nbgGAPgotCPee7a9ZsRuxq0SPPf1AchlUpya80+0kBv/dCKi5kar0byxsbE4dOiQ5u/Lli1D9+7dMXLkSNy5c0dv4Ug8aw5fxp6U6n7SZSN7spA+golMis9f6Yr3nq1ebvDLXRcx788UqNXVv6fenxLT092WhZTISGlVTD/66CPNQKMzZ84gPDwcAwYMQGZmJsLDw/UakBpf8tUCRO48DwD45IVO8GvDftLHkUgkmNbPB3MGdgYA/BR/GVN+PYmKKtX/T4nhI14io6X1fqadO1f/0Ni8eTMGDhyIhQsXIikpCQMGDNBrQGpchXeVmLgxCUqVgP5dnBEWyH7S+hjbpx1aWZrhg02nsO10NgrKlEi+VgAACPZ2EDccETUYre5M5XI5ysqqJ6vv3bsXffv2BQDY2dlxaowBEwQB035PxrU7d+FmZ47PX+3KlXq08FI3V6we8wRayGU4lJaH4vIqWCtM4MeR0ERGS6tiGhwcjPDwcCxYsAAJCQl44YUXAACXLl1CmzbibBBNulsbfxm7zuXCVCZhP6mOnvJ2wK/vPKlZbjCovT1kOuw2Q0RNm1bFdOnSpTAxMcHvv/+O5cuXo3Xr1gCAnTt3ol+/fnoNSI3j9LUCfLqjup905oBO6NrGVtxARqBrG1tsmRCEMUEe+KBvB7HjEFED0qqYtm3bFtu2bUNycjLeeustzfFvvvkG3377bb3bW7ZsGTw8PKBQKBAQEICEhIRHnr9o0SJ07NgR5ubmcHNzw9SpU1FeXq75+ty5cyGRSGq8fHx86p2rufh7P2morxPGBHmIHcloeNzbps7b6dHLDRKRYavzAKSioiLNnMvH9YvWZ25mdHQ0wsPDsWLFCgQEBGDRokUIDQ3FxYsX4ejo+MD5GzduxMcff4zVq1cjKCgIly5dwpgxYyCRSBAVFaU5z9fXF3v37tX83cSEUxJqIwgCPt58Gldv30Wblub44tVu7CclIqqnOleYli1bIjs7G46OjrC1ta31B64gCJBIJFCpVHUOEBUVhbfffhtjx44FAKxYsQLbt2/H6tWr8fHHHz9wfnx8PPr06YORI0cCADw8PDBixAgcO3as5oWZmMDZ2bnOOZqr9UevYOfZHJjKJFg6sidszNlPSkRUX6IuJ1hZWYnExETMmDFDc0wqlSIkJARHjhyp9T1BQUHYsGEDEhIS0Lt3b2RkZGDHjh0YNWpUjfNSU1Ph6uoKhUKBwMBAREZGom3b5rdt2KOcvV6If2+r7if9uH8ndHezFTcQEZGBqnMxfeaZZ2r9sy7y8vKgUqng5ORU47iTkxMuXLhQ63tGjhyJvLw8BAcHQxAEVFVVYfz48Zg5c6bmnICAAPz000/o2LEjsrOzMW/ePDz11FM4e/YsrKwe7LuqqKhARUWF5u/NYXpPUXl1P2mlSo1/dnbCm308xI5ERGSwtBqAtGbNGvz2228PHP/tt9+wdu1anUM9yv79+7Fw4UJ89913SEpKwpYtW7B9+3YsWLBAc07//v0xdOhQdO3aFaGhodixYwcKCgqwadOmWtuMjIyEjY2N5uXm5tag1yA2QRAwY/MZXMkvQ2tbc3zFflIiIp1oVUwjIyNhb//g0miOjo5YuHBhnduxt7eHTCZDbm7Nratyc3Mf2t8ZERGBUaNGYdy4cfDz88PgwYOxcOFCREZGQq1W1/oeW1tbdOjQAWlpabV+fcaMGSgsLNS8rl69WudrMEQbjmVh+5lsmEglWDqyB2xasJ+UiEgXWhXTrKwstGvX7oHj7u7uyMrKqnM7crkc/v7+iIuL0xxTq9WIi4tDYGBgre8pKyuDVFoztkwmA1B9x1WbkpISpKenw8XFpdavm5mZwdrausbLWJ29XogFf6YAAD7u74Mebbn/LBGRrrQqpo6Ojjh9+vQDx5OTk9GqVat6tRUeHo6VK1di7dq1OH/+PCZMmIDS0lLN6N6wsLAaA5QGDhyI5cuX49dff0VmZib27NmDiIgIDBw4UFNUP/zwQxw4cACXL19GfHw8Bg8eDJlMhhEjRmhzuUajrLIKk+71k4Z0csRbwQ/+QkRERPWn1eTLESNGYMqUKbCyssLTTz8NADhw4AD+9a9/4bXXXqtXW8OHD8etW7cwe/Zs5OTkoHv37oiNjdUMSsrKyqpxJzpr1ixIJBLMmjUL169fh4ODAwYOHIhPP/1Uc861a9cwYsQI5Ofnw8HBAcHBwTh69CgcHJr3QuOL41JxOb8MrjYKfDWU/aRERPqi1ebglZWVGDVqFH777TfNYghqtRphYWFYsWIF5HK53oM2JmPcHPxSbjEGLP4LVWoBP47uhec7OT3+TUREVCdaFdP7Ll26hOTkZJibm8PPzw/u7saxXZexFVNBEDD8h6NIyLyNf3Z2wsqwXmJHIiIyKjqtsefh4QFBENC+fXsu19eE/XHyOhIyb0NhKtVsXk1ERPqj1QCksrIyvPXWW2jRogV8fX01I3gnT56Mzz77TK8BSTeFZUosvLcbzJTnvdGmZQuRExERGR+tiumMGTOQnJyM/fv3Q6FQaI6HhIQgOjpab+FId1/tvoi8kkq0d7DAuGBPseMQERklrZ7NxsTEIDo6Gk8++WSNEaG+vr5IT0/XWzjSzelrBdhw7AoAYMHLXSA30ep3JyIiegytfrreunWr1u3RSktLOd2iiVCpBcyKOQtBAF7u7oqg9g+uWEVERPqhVTHt1asXtm/frvn7/QK6atWqh65cRI1rY0IWTl8rhJWZCWa+0EnsOERERk2rx7wLFy5E//79kZKSgqqqKixevBgpKSmIj4/HgQMH9J2R6ulWcQW+iK3edefD0I5wtFI85h1ERKQLre5Mg4ODkZycjKqqKvj5+WH37t1wdHTEkSNH4O/vr++MVE+RO8+juLwKvq7WeONJ45j7S0TUlNX7zlSpVOLdd99FREQEVq5c2RCZSAdHM/KxJek6JBLg3y93gUzKPmwiooZW7ztTU1NTbN68uSGykI6UKjUiYs4CAEb0bssdYYiIGolWj3lffvllxMTE6DkK6Wr1oUyk3iyBnYUc00I7ih2HiKjZ0GoAkre3N+bPn4/Dhw/D398fFhYWNb4+ZcoUvYSjurtRcBeL41IBADP6+8C2hWFvNkBEZEi0Wui+to3BNQ1KJMjIyNAplNgMcaH7CRsSsfNsDp7waInodwIhZV8pEVGj0erONDMzU/Pn+7WYizWIZ9/Fm9h5NgcyqQQLXu7CQkpE1Mi0Xl/uxx9/RJcuXaBQKKBQKNClSxesWrVKn9moDsqVKsz5zzkAwJt9PODjbBh30kRExkSrO9PZs2cjKioKkydP1qx4dOTIEUydOhVZWVmYP3++XkPSwy3fn46s22VwtlbgXyEdxI5DRNQsadVn6uDggG+//RYjRoyocfyXX37B5MmTkZeXp7eAYjCUPtPMvFKELjqIyio1vnu9Jwb4uYgdiYioWdLqMa9SqUSvXr0eOO7v74+qqiqdQ9HjCYKAOVvPobJKjac7OKB/F2exIxERNVtaFdNRo0Zh+fLlDxz/4Ycf8Prrr+scih5v59kcHLx0C3ITKea/5MsBYEREItKqzxSoHoC0e/duPPnkkwCAY8eOISsrC2FhYQgPD9ecFxUVpXtKqqGkogrz/0wBAEx4pj087C0e8w4iImpIWhXTs2fPomfPngCg2Qzc3t4e9vb2OHv2rOY83i01jMV7LyGnqBzurVpgwrPtxY5DRNTsaVVM9+3bp+8cVEcXcoqw+vBlAMDcl3yhMJWJG4iIiLSfZ0qNT60WMOuPs1CpBfTv4ox/dHQUOxIREYHF1KBsTrqGE1fuoIVchogXO4sdh4iI7mExNRAFZZWI3HkBAPB+iDdcbc1FTkRERPexmBqIL3ZdxO3SSnRwssTYPg/faICIiBofi6kBOJl1B78kZAEA/v2yH0xl/N9GRNSU8KeyAfhs5wUIAvBKzzbo3c5O7DhERPQ/WEybuPPZRTiWeRsyqQQfhnIheyKipojFtIlbG38ZANCvizNcbDjoiIioKWIxbcIKyioRc+o6AGBMkIe4YYiI6KFYTJuw6ONXUa5Uo5OLNXq5txQ7DhERPQSLaROlUgtYf/QKAGBMkDvXOSYiasJYTJuouPO5uHbnLmxbmGJQ99ZixyEiokdgMW2i1h65DAAY/oQbF7MnImriWEyboNTcYhxOy4dUAox60l3sOERE9Bgspk3QuiPVfaUhnZzQpmULkdMQEdHjsJg2MUXlSmxOugaA02GIiAwFi2kT8/uJayirVKGDkyUC27cSOw4REdVBkyimy5Ytg4eHBxQKBQICApCQkPDI8xctWoSOHTvC3Nwcbm5umDp1KsrLy3VqsylQqwWsuzfwKCzQg9NhiIgMhOjFNDo6GuHh4ZgzZw6SkpLQrVs3hIaG4ubNm7Wev3HjRnz88ceYM2cOzp8/jx9//BHR0dGYOXOm1m02FQdSb+FyfhmsFCYY3IPTYYiIDIXoxTQqKgpvv/02xo4di86dO2PFihVo0aIFVq9eXev58fHx6NOnD0aOHAkPDw/07dsXI0aMqHHnWd82m4r76/AO9XeDhZmJuGGIiKjORC2mlZWVSExMREhIiOaYVCpFSEgIjhw5Uut7goKCkJiYqCmeGRkZ2LFjBwYMGKB1mxUVFSgqKqrxamyZeaXYf/EWJBIgLJDTYYiIDImotz95eXlQqVRwcnKqcdzJyQkXLlyo9T0jR45EXl4egoODIQgCqqqqMH78eM1jXm3ajIyMxLx58/RwRdq731f6bAcHeNhbiJqFiIjqR/THvPW1f/9+LFy4EN999x2SkpKwZcsWbN++HQsWLNC6zRkzZqCwsFDzunr1qh4TP15pRRV+P1E9HWY0p8MQERkcUe9M7e3tIZPJkJubW+N4bm4unJ2da31PREQERo0ahXHjxgEA/Pz8UFpainfeeQeffPKJVm2amZnBzMxMD1eknS1J11BcUYV29hZ42ttBtBxERKQdUe9M5XI5/P39ERcXpzmmVqsRFxeHwMDAWt9TVlYGqbRmbJmseu1aQRC0alNMgiBg7b0Vj8IC3SGVcjoMEZGhEX3IaHh4OEaPHo1evXqhd+/eWLRoEUpLSzF27FgAQFhYGFq3bo3IyEgAwMCBAxEVFYUePXogICAAaWlpiIiIwMCBAzVF9XFtNiXx6flIu1kCC7kMr/q3ETsOERFpQfRiOnz4cNy6dQuzZ89GTk4OunfvjtjYWM0AoqysrBp3orNmzYJEIsGsWbNw/fp1ODg4YODAgfj000/r3GZT8tO96TCv+LeBlcJU3DBERKQViSAIgtghmpqioiLY2NigsLAQ1tbWDfY5V2+X4Zkv90EtAHvDn4GXo2WDfRYRETUcgxvNa0w2HL0CtQA85W3PQkpEZMBYTEVyt1KFX49XT8EJC/QQNwwREemExVQk/zl1HYV3lWjT0hzP+TiKHYeIiHTAYioCQRA0A4/CAt0h43QYIiKDxmIqgoTM27iQUwyFqRTDermJHYeIiHTEYiqCtffW4R3cozVsW8jFDUNERDpjMW1kNwruYte56qUOuQ4vEZFxYDFtZBuPZUGlFhDQzg4+zg03h5WIiBoPi2kjKleq8EtCFgBgDO9KiYiMBotpI9p+Ohv5pZVwsVHgn52b3tKGRESkHRbTRlK9O8xlAMAbT7rDRMb/9ERExoI/0RvJyasFOH2tEHITKV57gtNhiIiMCYtpI1l7b5GGgV1d0cpSvI3IiYhI/1hMG8HN4nLsOJMNgAOPiIiMEYtpI9h4LAtKlYCebW3h18ZG7DhERKRnLKYNrLJKjZ+PVU+H4SINRETGicW0ge08m41bxRVwsDJD/y4uYschIqIGwGLawO4PPHo9oC3kJvzPTURkjPjTvQGduVaIpKwCmMokGBnQVuw4RETUQFhMG9D9RRoG+LnA0UohbhgiImowLKYNJL+kAluTbwAAwgI9xA1DREQNisW0gcSey0FllRp+rW3Qs62t2HGIiKgBmYgdwFiN7N0WHZysoFILkEgkYschIqIGxGLaQCQSCZ7wsBM7BhERNQI+5iUiItIRiykREZGOWEyJiIh0xGJKRESkIxZTIiIiHbGYEhER6YjFlIiISEecZ1oLQRAAAEVFRSInISKipsDKyuqRC/CwmNaiuLgYAODm5iZyEiIiagoKCwthbW390K9LhPu3YaShVqtx48aNx/4m8jhFRUVwc3PD1atXH/k/wRAZ87UBvD5DZszXBvD6xMI7Uy1IpVK0adNGb+1ZW1s3qW8KfTLmawN4fYbMmK8N4PU1NRyAREREpCMWUyIiIh2xmDYgMzMzzJkzB2ZmZmJH0TtjvjaA12fIjPnaAF5fU8UBSERERDrinSkREZGOWEyJiIh0xGJKRESkIxZTIiIiHbGYNpBly5bBw8MDCoUCAQEBSEhIEDuSXixfvhxdu3bVTKgODAzEzp07xY6lV9evX8cbb7yBVq1awdzcHH5+fjhx4oTYsfSiuLgY77//Ptzd3WFubo6goCAcP35c7FhaOXjwIAYOHAhXV1dIJBLExMRovqZUKjF9+nT4+fnBwsICrq6uCAsLw40bN8QLXE+Puj4AGDNmDCQSSY1Xv379xAlbT4+7tpKSEkyaNAlt2rSBubk5OnfujBUrVogTto5YTBtAdHQ0wsPDMWfOHCQlJaFbt24IDQ3FzZs3xY6mszZt2uCzzz5DYmIiTpw4geeeew6DBg3CuXPnxI6mF3fu3EGfPn1gamqKnTt3IiUlBV9//TVatmwpdjS9GDduHPbs2YP169fjzJkz6Nu3L0JCQnD9+nWxo9VbaWkpunXrhmXLlj3wtbKyMiQlJSEiIgJJSUnYsmULLl68iJdeekmEpNp51PXd169fP2RnZ2tev/zySyMm1N7jri08PByxsbHYsGEDzp8/j/fffx+TJk3C1q1bGzlpPQikd7179xYmTpyo+btKpRJcXV2FyMhIEVM1nJYtWwqrVq0SO4ZeTJ8+XQgODhY7RoMoKysTZDKZsG3bthrHe/bsKXzyyScipdIPAMIff/zxyHMSEhIEAMKVK1caJ5Qe1XZ9o0ePFgYNGiRKHn2q7dp8fX2F+fPn1zjW1L9PeWeqZ5WVlUhMTERISIjmmFQqRUhICI4cOSJiMv1TqVT49ddfUVpaisDAQLHj6MXWrVvRq1cvDB06FI6OjujRowdWrlwpdiy9qKqqgkqlgkKhqHHc3Nwchw4dEilV4yksLIREIoGtra3YUfRm//79cHR0RMeOHTFhwgTk5+eLHUkvgoKCsHXrVly/fh2CIGDfvn24dOkS+vbtK3a0h2Ix1bO8vDyoVCo4OTnVOO7k5IScnByRUunXmTNnYGlpCTMzM4wfPx5//PEHOnfuLHYsvcjIyMDy5cvh7e2NXbt2YcKECZgyZQrWrl0rdjSdWVlZITAwEAsWLMCNGzegUqmwYcMGHDlyBNnZ2WLHa1Dl5eWYPn06RowYYVCLpz9Kv379sG7dOsTFxeHzzz/HgQMH0L9/f6hUKrGj6WzJkiXo3Lkz2rRpA7lcjn79+mHZsmV4+umnxY72UNw1huqtY8eOOHXqFAoLC/H7779j9OjROHDggFEUVLVajV69emHhwoUAgB49euDs2bNYsWIFRo8eLXI63a1fvx5vvvkmWrduDZlMhp49e2LEiBFITEwUO1qDUSqVGDZsGARBwPLly8WOozevvfaa5s9+fn7o2rUr2rdvj/379+P5558XMZnulixZgqNHj2Lr1q1wd3fHwYMHMXHiRLi6utZ46teU8M5Uz+zt7SGTyZCbm1vjeG5uLpydnUVKpV9yuRxeXl7w9/dHZGQkunXrhsWLF4sdSy9cXFwe+KWgU6dOyMrKEimRfrVv3x4HDhxASUkJrl69ioSEBCiVSnh6eoodrUHcL6RXrlzBnj17jOautDaenp6wt7dHWlqa2FF0cvfuXcycORNRUVEYOHAgunbtikmTJmH48OH46quvxI73UCymeiaXy+Hv74+4uDjNMbVajbi4OKPpV/xfarUaFRUVYsfQiz59+uDixYs1jl26dAnu7u4iJWoYFhYWcHFxwZ07d7Br1y4MGjRI7Eh6d7+QpqamYu/evWjVqpXYkRrUtWvXkJ+fDxcXF7Gj6ESpVEKpVEIqrVmeZDIZ1Gq1SKkej495G0B4eDhGjx6NXr16oXfv3li0aBFKS0sxduxYsaPpbMaMGejfvz/atm2L4uJibNy4Efv378euXbvEjqYXU6dORVBQEBYuXIhhw4YhISEBP/zwA3744Qexo+nFrl27IAgCOnbsiLS0NHz00Ufw8fExyO/NkpKSGndhmZmZOHXqFOzs7ODi4oJXX30VSUlJ2LZtG1QqlWbMgp2dHeRyuVix6+xR12dnZ4d58+bhlVdegbOzM9LT0zFt2jR4eXkhNDRUxNR186hra9u2LZ555hl89NFHMDc3h7u7Ow4cOIB169YhKipKxNSPIfJoYqO1ZMkSoW3btoJcLhd69+4tHD16VOxIevHmm28K7u7uglwuFxwcHITnn39e2L17t9ix9OrPP/8UunTpIpiZmQk+Pj7CDz/8IHYkvYmOjhY8PT0FuVwuODs7CxMnThQKCgrEjqWVffv2CQAeeI0ePVrIzMys9WsAhH379okdvU4edX1lZWVC3759BQcHB8HU1FRwd3cX3n77bSEnJ0fs2HXyqGsTBEHIzs4WxowZI7i6ugoKhULo2LGj8PXXXwtqtVrc4I/ALdiIiIh0xD5TIiIiHbGYEhER6YjFlIiISEcspkRERDpiMSUiItIRiykREZGOWEyJiIh0xGJKRFq5fPkyJBIJTp06JXYUItGxmBIZsZycHEyePBmenp4wMzODm5sbBg4cWGPtaCLSHdfmJTJSly9fRp8+fWBra4svv/wSfn5+UCqV2LVrFyZOnIgLFy6IHZHIaPDOlMhIvffee5BIJEhISMArr7yCDh06wNfXF+Hh4Th69CjefPNNvPjiizXeo1Qq4ejoiB9//BFA9Y5AX3zxBby8vGBmZoa2bdvi008/fehnnj17Fv3794elpSWcnJwwatQo5OXlNeh1EjUFLKZERuj27duIjY3FxIkTYWFh8cDXbW1tMW7cOMTGxiI7O1tzfNu2bSgrK8Pw4cMBVO8S9NlnnyEiIgIpKSnYuHEjnJycav3MgoICPPfcc+jRowdOnDiB2NhY5ObmYtiwYQ1zkURNCB/zEhmhtLQ0CIIAHx+fh54TFBSEjh07Yv369Zg2bRoAYM2aNRg6dCgsLS1RXFyMxYsXY+nSpRg9ejSA6s3Fg4ODa21v6dKl6NGjBxYuXKg5tnr1ari5ueHSpUvo0KGDHq+QqGnhnSmREarrZlDjxo3DmjVrAAC5ubnYuXMn3nzzTQDA+fPnUVFRgeeff75ObSUnJ2Pfvn2wtLTUvO4X8/T0dC2ugshw8M6UyAh5e3tDIpE8dpBRWFgYPv74Yxw5cgTx8fFo164dnnrqKQCAubl5vT6zpKQEAwcOxOeff/7A11xcXOrVFpGh4Z0pkRGys7NDaGgoli1bhtLS0ge+XlBQAABo1aoVXn75ZaxZswY//fQTxo4dqznH29sb5ubmdZ5G07NnT5w7dw4eHh7w8vKq8aqt35bImLCYEhmpZcuWQaVSoXfv3ti8eTNSU1Nx/vx5fPvttwgMDNScN27cOKxduxbnz5/X9I0CgEKhwPTp0zFt2jSsW7cO6enpOHr0qGak7/+aOHEibt++jREjRuD48eNIT0/Hrl27MHbsWKhUqga/XiIx8TEvkZHy9PREUlISPv30U3zwwQfIzs6Gg4MD/P39sXz5cs15ISEhcHFxga+vL1xdXWu0ERERARMTE8yePRs3btyAi4sLxo8fX+vnubq64vDhw5g+fTr69u2LiooKuLu7o1+/fpBK+Xs7GTeJUNeRCkRklEpKStC6dWusWbMGQ4YMETsOkUHinSlRM6VWq5GXl4evv/4atra2eOmll8SORGSwWEyJmqmsrCy0a9cObdq0wU8//QQTE/44INIWH/MSERHpiKMCiIiIdMRiSkREpCMWUyIiIh2xmBIREemIxZSIiEhHLKZEREQ6YjElIiLSEYspERGRjlhMiYiIdPR/iFBIzlvcGXMAAAAASUVORK5CYII=\n" - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "# Precision\n", - "plot_cycle_score(cycle, X_test, y_test,\n", - " scorer=precision_score,\n", - " figsize=(5,3),\n", - " scorer_kw=dict(average='weighted', zero_division=0));" - ], - "metadata": { - "collapsed": false - } - }, - { - "cell_type": "code", - "execution_count": 7, - "outputs": [ - { - "data": { - "text/plain": "
", - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAdMAAAEmCAYAAAA5oXoHAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8o6BhiAAAACXBIWXMAAA9hAAAPYQGoP6dpAAA+IklEQVR4nO3dd1RUZ/4G8GdmKIMgoPQmSBGiQUQNiCVFiaC7xDRbEgtGE43GGIwaY9skP+Om6JpEYold140pxnQsrBoLiIIlKipFRRCQIl1gmLm/P5DZEFBxZuDODM/nnDkn3Llz53v3sD689773/UoEQRBAREREGpOKXQAREZGhY5gSERFpiWFKRESkJYYpERGRlhimREREWmKYEhERaYlhSkREpCWGKRERkZYYps0QBAFlZWXgehZERNQSDNNmlJeXw8bGBuXl5WKXQkREBoBhSkREpCWGKRERkZYYpkRERFpimBIREWmJYUpERKQlhikREZGWGKZERERaYpgSERFpiWFKREQaq6ypw5xvzmDh7j9QrVCKXY5oTMQugIiIDFNplQITNyfhVFYJACCzoBJfju8LS/P2Fy0cmRIR0QMrKK/B6HUJOJVVAhsLU1iayXAsowgvbTiO0iqF2OW1OYYpERE9kJyS2xi9NgEX88phb2WOna/2w7+n9IONhSlOZZVg9LoEFJTXiF1mm2KYEhFRi10prMSoNQnILKyEm60FvpkahgBna/TysMXOV/vB3socF/PKMWptAnJKbotdbpthmBIRUYuk5pZh5Jr6kPS2t8Q3U8PQ1d5S/X6AszW+nRoGN1sLXCmsxMjVx3ClsFLEitsOw5SIiO7rVNYtjFmXiMKKGjzkYo2dr4bB1daiyX5ed0LW294SN0qrMXJNAlJzy0SouG0xTImI6J4SMorw0vrjKL2tQO8utvhqSj84dDS/6/6uthb4emoYHnKxRmFFDcasS8SprFttWHHbY5gSEdFd/fdiPiZuSkJlrRIDfO2w7eVQ2HQwve/n7K3M8dWUfujdxRaltxV4cf1xHMsobIOKxcEwJSKiZv105gZe2ZqMmjoVwh9ywoYJjzzQM6Q2HUyx7eVQDPC1Q1WtEhM3nUB8an4rViwehikRETXxVVIWZn51CnUqASN6uWL1S70hN5U98HEszU2wYcIjeLK7E2rrVHh1WzJ+OnOjFSoWF8OUiIgaWX84E2/v+gOCALwQ2gUrRvWCqUzzuJCbyvDFi70xopcr6lQCZn51Cv9JytJhxeJjmBIREQBAEASs3H8Z//dLKgDg1Ue9sfTphyGTSrQ+tqlMin+N6oUXQ7tAEID5u/7A+sOZWh9XX7S/BRSJiKgJQRCw9JdUrD9yBQDw1tBumP6ELyQS7YO0gVQqwf89/TCs5CZYeygT//dLKsqr6zAr3E+n3yMGjkyJiNo5pUqoHyneCdIlUd0xY3DrBJxEIsHbkQGYE+EPAPg0Pg3v/5wKQRB0/l1tiSNTIqJ2rLZOhZivT+Pns7mQSoB/PtcTo/p6tOp3SiQSTH/CF5ZmMvzjpwvYePQKKmvq8MGzgTq5pCwGjkyJiNqpaoUSU7cn4+ezuTCVSbDqhd6tHqR/NnFAV3z8fE9IJcDOk9cx86tTqK1Ttdn36xJHpkRkVEqqanH8SrHBXzZsC5uPXUViZjHMTaRYM64PnvB3bPMaRvb1gJW5CWZ+dQq/nM1FVU0dRj+iu0B/3N9Ro0d6HpRE4G9cE2VlZbCxsUFpaSmsra3FLoeIWkgQBDzzxTGcvl4idikGw8rcBBsm9EWot52odRy8dBNTtyejWqHbkWnSO0PgaC3X6TGbw5EpERmNuHN5OH29BOYmUgS62Yhdjt6ztjDFm+HdEOgu/v9Wj/s74t+TQ/FZfDoqa+p0dlwTLZ6PfRAcmTaDI1Miw1OnVGHoyt+RWVCJmYN9ETPUX+ySqB3hBCQiMgq7UnKQWVCJTh1MMflRb7HLoXaGYUpEBq9aocS/9l8GALz2uC+s5ffvakKkS3oRprGxsfDy8oJcLkdoaCiSkpLuuq9CocB7770HHx8fyOVyBAUFIS4urtE+//jHPyCRSBq9AgICWvs0iEgk2xOvIbe0Gi42cowL8xS7HGqHRA/TnTt3IiYmBkuWLEFKSgqCgoIQERGBmzdvNrv/woULsXbtWnz++ee4cOECpk6dimeeeQanTp1qtF+PHj2Qm5urfh05cqQtToeI2lh5tQKxB9IBAG8M8WuTxyCI/kr0MF2xYgWmTJmC6OhodO/eHWvWrEGHDh2wcePGZvfftm0b3nnnHQwfPhze3t6YNm0ahg8fjuXLlzfaz8TEBM7OzuqXvb19W5wOEbWxLw9fwa0qBbztLfF8H3exy6F2StQwra2tRXJyMsLDw9XbpFIpwsPDkZCQ0OxnampqIJc3fmbIwsKiycgzLS0Nrq6u8Pb2xosvvoisrLu3+6mpqUFZWVmjFxHpv8KKGmy403nkrQj/NnsMguivRP3NKywshFKphJOTU6PtTk5OyMvLa/YzERERWLFiBdLS0qBSqbBv3z7s2rULubm56n1CQ0OxefNmxMXFYfXq1bhy5QoGDRqE8vLyZo+5bNky2NjYqF8eHm23nBYRaS72QDoqa5UIdLPBsIedxS6H2jGD+zPu008/hZ+fHwICAmBmZoYZM2YgOjoaUun/TmXYsGEYOXIkevbsiYiICPz6668oKSnB119/3ewx58+fj9LSUvXr+vXrbXU6RKSh7FtV+Hdi/RWnuZH+Bt/CiwybqGFqb28PmUyG/Pz8Rtvz8/Ph7Nz8X5kODg7YvXs3Kisrce3aNVy8eBFWVlbw9r77c2W2trbo1q0b0tPTm33f3Nwc1tbWjV5EpN9W7k9DrVKF/j52GOjLOREkLlHD1MzMDH369EF8fLx6m0qlQnx8PMLCwu75WblcDjc3N9TV1eG7777DiBEj7rpvRUUFMjIy4OLiorPaiUg8afnl2JWSDQCYE8FRKYlP9Mu8MTEx+PLLL7FlyxakpqZi2rRpqKysRHR0NABg/PjxmD9/vnr/48ePY9euXcjMzMThw4cRGRkJlUqFuXPnqvd56623cOjQIVy9ehXHjh3DM888A5lMhrFjx7b5+RGR7n2y9xJUAhDRwwnBXTqJXQ6R+Avdjx49GgUFBVi8eDHy8vLQq1cvxMXFqSclZWVlNbofWl1djYULFyIzMxNWVlYYPnw4tm3bBltbW/U+2dnZGDt2LIqKiuDg4ICBAwciMTERDg4ObX16RKRjp7JuYc/5fEglwFtcf5f0BBe6bwYXuifST4Ig4IUvjyMhswjP93HHJyODxC6JCIAeXOYlImqpI+mFSMgsgplMilnhfmKXQ6TGMCVqZ87llGLylhM4cLH5JTv1lSAI+CjuEgDgxX5d4N6pg8gVEf2P6PdMiajtnLxajOhNJ1BeU4fka7fw+9wn0NFAOqz8di4Pf+SUwtJMhulP+IpdDlEjHJkStROH0wowbkMSymvqAAC3qhT48vAVkatqmTqlCp/sqR+VTh7kDXsrc5ErImqMYUrUDsSdy8PLm0/itkKJx7o5YMWo+ok76w9norCiRuTq7u/b5GxkFt5p/D2oq9jlEDXBMCUycrtSsjF9RwpqlSoMD3TGl+P74plgNwS62aCqVqluX6avqhVKfBqfBgCY/oSvwVyWpvaFYUpkxLYlXEXM12egVAl4vo87PhsTDDMTKSQSCeZG1j+j+e/ELGTfqhK50rvbllDf+NvVRo6X+rHxN+knhimRkfriYDoW/XAeADCxvxc+eq5noxZlA33t0d/HDrVKFVbuTxOrzHsqq1bgi4P1I+dZ4d3Y+Jv0FsOUyMjUP0JyUf0YyeuDfbEkqjuk0sbr19aPTgMA1F8KvpzffItCMa3/PRO3qhTwcbDEs73dxC6H6K4YpkRGRKUSsOTH8/jiYAYAYP6wAMweeveF4Ht52CKihxNUAtSzZfVFYUUN1h+pn208h42/Sc/xt5PISNQpVXjrmzPYmnANEgmw9JmH8epjPvf93FtD/SGVAHsv5ONU1q02qLRlVv03HVW1SgS52yCiBxt/k35jmBIZgZo6JabvSMGuUzmQSSVYOboXXgxt2WQdP6eOeK63OwDgo7hL0Ifluq8XV+Hfx68BAOZGBrDFGuk9himRgauqrcPkLSex53w+zGRSrH6xN0b0erD7i7Oe7AYzmRQJmUU4kl7YSpW23Mr9aVAoBQzwtcMANv4mA8AwJTJgZdUKjN+QhMNphbAwlWHjxEcwVINLom62FurHTj6KuwSVSrzR6eX8cuw6Vd/4e25EgGh1ED0IhimRgSqqqMHYdYk4ee0WOspNsH1yCAb6aT6Km/6EDyzNZPgjpxS/ncvTYaUP5pM9lyAIwLCHnRHkYStaHUQPgmFKZIDySqsxam0Czt8og52lGb56pR/6eHbW6ph2VuaYPMgbALB87yXUKVW6KPWBpGTdwt4L9Y2/Zw/t1ubfT6QphimRgckqqsLItceQUVAJFxs5vp4ahh6uNjo59uRBXdHZ0gyZhZX4NjlbJ8dsqYbnYwHg+T7u8HXs2KbfT6QNhimRAbmcX47n1xzD9eLb8LTrgG+mhsHHwUpnx+8oN8Vrj9c/TvNpfBqqFUqdHft+DqcVIjGzGGYmUrwRzlEpGRaGKZGB+CO7FKPXJuBmeQ38nTrim1fDWqVB9kv9POFqI0duaTW2JVzT+fGbo1IJ+GhP/ah0XD9PuNlatMn3EukKw5TIAAiCgKnbk3GrSoEgdxt89Uo/OFrLW+W75KYyzHqyfmQYezAdZdWKVvmeBoIgYOmvqTiXUwYrcxP1yJjIkDBMiQzApfxy5JTchoWpDNsnh6KTpVmrft+zwW7wcbBESZUC63/PbLXvUaoEzN/1BzbcWTZw4d8egh0bf5MBYpgSGYAjafULKYR07dwm/TxNZFLMiahv0bb+yBUUlOu+gXhtnQpvfHUKX524DqkE+Oj5nhgT0kXn30PUFhimRAbg6J1ViQa24WpAET2cEeTeOg3EqxVKTN2ejJ/P5sJUJsGqF3pjVF8PnX4HUVtimBLpudo6FY5fKQaANl1a788t2v59/BquF+umgXhFTR0mbkrCfy/ehLmJFOvG98XwQBedHJtILAxTIj13+noJqmqVsLM0Q4Bz2z57OcDXHgN97aFQCvjX/staH6+kqhYvrj+OxMxiWJmbYOukEDzh76iDSonExTAl0nMNl3j7+9o3afDdFhrunX5/KgeX8jRvIH6zvBpj1iXizPUS2HYwxY4poQj1ttNVmUSiYpgS6bmGMB3gI07wBHnYYtjDzhAE4JO9mjUQz75VhVFrEnAxrxyOHc3x9ath6Oluq9tCiUTEMCXSY+XVCpy6XgKgbe+X/tXsOw3E913IR8oDNhDPLKjAqDUJuFpUBfdOFvhmahi6OXGpQDIuDFMiPZZ0pRhKlQBPuw7w6Kz71Y5aytfRCs/3aWggfrHFDcQv3CjDqLUJuFFaDR8HS3wzNQyedpatWSqRKBimRHqsoVG3PjTIfiO8G8xMpEjMLMbhtPs3EE/JuoUx6xJQWFGLHq7W+PrVMLjYcJlAMk4MUyI9diy9CEDbPl96N262FhjX0EB8z8V7NhA/ll6Il9YfR1l1Hfp6dsKOKf24shEZNYYpkZ66WV6NS/nlkEiAMD2Z9fra4z6wMjfBuZwy/Hout9l99l/Ix8TNJ1BVq8QgP3tsfTkENhatv2oTkZgYpkR6qmFU2sPVutXX4m0pOytzTFE3EL8MxV8aiP9wOgevbk9GbZ0KET2csH5CX3QwMxGjVKI2pRdhGhsbCy8vL8jlcoSGhiIpKemu+yoUCrz33nvw8fGBXC5HUFAQ4uLitDomkT7Sp/ulf/byoK6wszTDlb80EN9xPAuzdp6GUiXg2WA3xL7QG+YmMhErJWo7oofpzp07ERMTgyVLliAlJQVBQUGIiIjAzZs3m91/4cKFWLt2LT7//HNcuHABU6dOxTPPPINTp05pfEwifSMIgijr8baElbkJpj/hCwD4dH99A/Evf8/EO9//AUGo70f6ycggmMhE/+eFqM1IhJbOcf+LkpISfPvtt8jIyMCcOXPQuXNnpKSkwMnJCW5ubi0+TmhoKB555BGsWrUKAKBSqeDh4YHXX38db7/9dpP9XV1dsWDBAkyfPl297bnnnoOFhQW2b9+u0TH/qqysDDY2NigtLYW1tXWLz4VIVzILKjB4+SGYmUhxdslQyE31a4RXU6fE4E8OIafkNnp52OL0nWdhpz3ug7kR/pBI2n6lJiIxafSn49mzZ9GtWzd8+OGH+OSTT1BSUgIA2LVrF+bPn9/i49TW1iI5ORnh4eH/K0gqRXh4OBISEpr9TE1NDeTyxk2RLSwscOTIEa2OWVZW1uhFJKaGUWmfLp30LkgBwNxEhlnhfgCgDtK5kf6YFxnAIKV2SaMwjYmJwcSJE5GWltYo2IYPH47ff/+9xccpLCyEUqmEk5NTo+1OTk7Iy8tr9jMRERFYsWIF0tLSoFKpsG/fPuzatQu5ubkaH3PZsmWwsbFRvzw82ArKkGl4sUWvNNwvHeinX5d4/+zZ3u4IdLMBALw3ogdee9xX5IqIxKNRmJ44cQKvvvpqk+1ubm53DSxd+fTTT+Hn54eAgACYmZlhxowZiI6OhlSq+f2Z+fPno7S0VP26fv26DiumtmQMQapUCTiWUT+TV98mH/2ZTCrB16+GIWH+YIwP8xK7HCJRaZRA5ubmzV4KvXz5MhwcHFp8HHt7e8hkMuTn5zfanp+fD2dn52Y/4+DggN27d6OyshLXrl3DxYsXYWVlBW9vb42PaW5uDmtr60YvMkwSicTgLzP+kVOK8uo6dJSbqEd++srCTMZVjYigYZg+9dRTeO+996BQKADU/wOWlZWFefPm4bnnnmvxcczMzNCnTx/Ex8ert6lUKsTHxyMsLOyen5XL5XBzc0NdXR2+++47jBgxQutjEukDdcs1HzvIRGi5RkQPTqMwXb58OSoqKuDo6Ijbt2/jscceg6+vLzp27IilS5c+0LFiYmLw5ZdfYsuWLUhNTcW0adNQWVmJ6OhoAMD48eMbTWo6fvw4du3ahczMTBw+fBiRkZFQqVSYO3dui49JxkMQBKO4tPtnR/X0+VIiujuNliaxsbHBvn37cPToUZw5cwYVFRXo3bt3oxm0LTV69GgUFBRg8eLFyMvLQ69evRAXF6eeQJSVldXofmh1dTUWLlyIzMxMWFlZYfjw4di2bRtsbW1bfEwyLoZ+WffPbtcqcfJqfYszhimR4Xjg50wVCgUsLCxw+vRpPPzww61Vl6j4nCmJ5XBaAcZtSIKLjRzH3h5sVH8oEBmzB77Ma2pqii5dukCpVLZGPUTt2p+XEGSQEhkOje6ZLliwAO+88w6Ki4t1XQ/RPRnjPdI/09clBIno3jS6Z7pq1Sqkp6fD1dUVnp6esLS0bPR+SkqKTooj+rOGEDXWEdutylqcv1H/yFl/X/1ouUZELaNRmD799NM6LoPo3ow9SAEgIbMIggB0c7KCY0f5/T9ARHpDozBdsmSJrusguidjDtEG+tpyjYjuT6uuvcnJyUhNTQUA9OjRA8HBwTopiqiBIAjtIkgB3i8lMmQahenNmzcxZswYHDx4UP18Z0lJCZ544gl89dVXD7SkINHdGPNEo7+6XlyFa0VVkEklCPXm/VIiQ6PRbN7XX38d5eXlOH/+PIqLi1FcXIxz586hrKwMM2fO1HWN1I61l1HpsYz6UWmwhy2szLW6YEREItDo/7VxcXHYv38/HnroIfW27t27IzY2FkOHDtVZcdS+tZcgBYAj6fVdYvrzEi+RQdJoZKpSqWBqatpku6mpKVQqldZFUfuSfasKN8uqAbSvS7sNVCoBx3i/lMigaRSmgwcPxhtvvIEbN26ot+Xk5ODNN9/EkCFDdFYcGb/vT2XjsY8PYtinh3GrslbsckRxMa8cRZW16GAmQy8PW7HLISINaBSmq1atQllZGby8vODj4wMfHx907doVZWVl+Pzzz3VdIxmp7YnXEPP1GShVAooqa7Hm94x2dWm3QcMs3tCunWFmonmTeyISj0b3TD08PJCSkoL9+/fj4sWLAICHHnpIo64x1D6tPpiBD+Pqf3cG+NrhaHoRNh+9iuj+XeFs074WLDiawedLiQydxtMGJRIJnnzySTz55JO6rIeMnCAI+GTvJcQeyAAAzHjCF7OHdsPINQk4ee0WPvtvGj54JlDkKttObZ0KxzPr17hmmBIZLo2uKc2cOROfffZZk+2rVq3CrFmztK2JjJRKJeAfP55XB+nbwwLwVoQ/JBIJ5g0LAADsPHEdVworxSyzTZ3KuoXbCiXsrczg79RR7HKISEMahel3332HAQMGNNnev39/fPvtt1oXRcanTqnCnG/PYkvCNUgkwPtPP4ypj/mo33/EqzOe8HeAUiVgxb7LIlbathrul/b3sYdU2v7uFxMZC43CtKioCDY2Nk22W1tbo7CwUOuiyLjU1Cnx+n9O4buUbMikEqwYFYRx/Tyb7Dcnon50+tOZGziXU9rWZYriCB+JITIKGoWpr68v4uLimmz/7bff4O3trXVRZDxu1yoxZWsyfjuXBzOZFKtf7I1ngt2b3be7qzVG9HIFAHyy91JblimK8moFzmTX/9EwwI9hSmTINJqAFBMTgxkzZqCgoACDBw8GAMTHx2P58uVYuXKlLusjA1ZWrcDLm0/gxNVbsDCV4cvxfTHwPqER82Q3/HI2FwcvFeB4ZpFRr1N7PLMYSpUAL7sOcLO1ELscItKCRmE6adIk1NTUYOnSpXj//fcBAF5eXli9ejXGjx+v0wLJMBVX1mL8xuM4l1OGjnITbI5+BH08O9/3c552lhgT4oHtiVn4aM8lfDs1zGifPWXLNSLjofET4tOmTUN2djby8/NRVlaGzMxMBikBAPJKqzF6bQLO5ZShs6UZ/jOlX4uCtMHMwX6Qm0qRfO0W4lNvtmKl4mLLNSLjoVGY3r59G1VVVQAABwcHFBUVYeXKldi7d69OiyPDk1VUhZFrjyHtZgWcreX4+tUwPOzWdLLavThayxE9oCsA4OM9l6BUGd96vfll1Ui7WQGJBAjzMd5L2UTthUZhOmLECGzduhVAfR/TkJAQLF++HCNGjMDq1at1WiAZjrT8coxcewzXi2/D064DvpkaBl9HK42ONfVRH1jLTXApvxw/nsnRcaXiaxiVBrrZwLaDmcjVEJG2NArTlJQUDBo0CADw7bffwtnZGdeuXcPWrVubXcyBjN+5nFKMXpeI/LIadHOywjevhsGjcweNj2fTwRRTH69/DnX53suorTOubkRH77Rc4/1SIuOgUZhWVVWhY8f61Vr27t2LZ599FlKpFP369cO1a9d0WiDpvxNXizF2XSKKK2vR090GO18Jg6O19uvrRvfvCseO5si+dRv/ScrSQaX6QRAE9ch0gA/DlMgYaPyc6e7du3H9+nXs2bNH3RD85s2bsLa21mmBpN8OXS7AuA3HUV5Th5CunfHvyaHoZKmby5YWZjK8PsQPAPD5f9NRWVOnk+OKLaOgEnll1TAzkaKvVyexyyEiHdAoTBcvXoy33noLXl5eCA0NRVhYGID6UWpwcLBOCyT9FXcuF5O3nEC1QoXH/R2wJToEHeVNm8ZrY8wjHvC064DCihpsOnpFp8cWS8Oo9BGvTpCbykSuhoh0QaMwff7555GVlYWTJ082WglpyJAh+Ne//qX+OTs7GyqVcd3ronrfJWfjtX+nQKEU8LdAF6wb1xcWZroPBlOZFDFPdgMArD2UaRQNxPl8KZHx0fg5U2dnZwQHB0Mq/d8hQkJCEBAQoP65e/fuuHr1qlYFkv7ZmnAVs785A5UAjOzjjs/GBrdqU+uonq54yMUa5TV1WHMoo9W+py3UKVVIzKyffMTnS4mMR+v9C4j6iRZkXGIPpGPxD+cBABP7e+HD53pC1srdTqRSCeZG+AMANh+7irzS6lb9vtb0R04pyqvrYC03QQ/XB3v+loj0V6uGKRkPQRDwz98u4uM99QvQzxzsiyVR3dusbdjj/g4I8eqMmjoVPo1Pa5PvbA1/brnW2n+EEFHbYZjSfalUAhb9cE59ifWd4QGIGerfpmvmSiQSzI2sH51+ffI6Mgsq2uy7dUl9v5RdYoiMCsOU7qlOqcJb35zB9sQsSCTAB88E4pVHfe7/wVbQ16szhgQ4QqkSsNwAG4jfrlUi5VoJAN4vJTI2rRqmLR25xMbGwsvLC3K5HKGhoUhKSrrn/itXroS/vz8sLCzg4eGBN998E9XV/7uP9o9//AMSiaTR688To6hlauqUmL4jBbtO5UAmlWDl6F54IbSLqDW9FeEPiQT45WyuwTUQP3G1GLVKFdxsLeBlp/nqUESkf0SfgLRz507ExMRgyZIlSElJQVBQECIiInDzZvPdQnbs2IG3334bS5YsQWpqKjZs2ICdO3finXfeabRfjx49kJubq34dOXJEJ+fUXlTV1mHylpPYcz4fZiZSrH2pD0b0chO7LDzkYo0RQfUNxD/aY1gNxP93v9TOaNvKEbVXrRqmFy5cgKen5z33WbFiBaZMmYLo6Gh0794da9asQYcOHbBx48Zm9z927BgGDBiAF154AV5eXhg6dCjGjh3bZDRrYmICZ2dn9cvenpfVWqr0tgLjNiThcFohOpjJsHniIwjv7iR2WWoxT/rDRCrB75cLkJBRJHY5LdZwv/R+DdKJyPC0uDn4s88+2+KD7tq1CwDg4eFxz/1qa2uRnJyM+fPnq7dJpVKEh4cjISGh2c/0798f27dvR1JSEkJCQpCZmYlff/0V48aNa7RfWloaXF1dIZfLERYWhmXLlqFLl+YvUdbU1KCmpkb9c1lZWYvO0xgVVdRg3IYkXMgtg7XcBJsnhaB3F/1a8q6LXQeMDemCbYnX8NGei9g1rb/ej/SKK2tx/kb971V/rsdLZHRaHKY2Nrp/Jq6wsBBKpRJOTo1HPU5OTrh48WKzn3nhhRdQWFiIgQMHQhAE1NXVYerUqY0u84aGhmLz5s3w9/dHbm4u3n33XQwaNAjnzp1TL9D/Z8uWLcO7776r25MzQLmlt/HS+uPIKKiEvZUZtk4KRXdX/Vxr+fXBvvg2ORunskqw70I+hvZwFrukezqWUT8qDXDuCIeO5iJXQ0S61uIw3bRpU2vW0WIHDx7EBx98gC+++AKhoaFIT0/HG2+8gffffx+LFi0CAAwbNky9f8+ePREaGgpPT098/fXXePnll5scc/78+YiJiVH/XFZWdt9RtbG5VlSJF9cfR/at23CxkWP75FD4OGjWi7QtOFrLMWmgF2IPZOCTvZcw5CEnvX5u8yiXECQyai0O09Zgb28PmUyG/Pz8Rtvz8/Ph7Nz8SGPRokUYN24cJk+eDAAIDAxEZWUlXnnlFSxYsKDR8oYNbG1t0a1bN6Snpzd7THNzc5ibt9/RwuX8cry0/jhultfAy64Dtk8OhXsn/Z9t+sqjPtiemIXL+RXYfSoHz/VxF7uku/pf/1I7kSshotbQ4jANDg5u8X2plJSUFu1nZmaGPn36ID4+Hk8//TQAQKVSIT4+HjNmzGj2M1VVVU0CUyarX2D9brOHKyoqkJGR0eS+KgFns0swfmMSSqoUCHDuiK0vh8Cxo/a9SNuCjYUppj3ug3/+dhEr9l3G34NcYG6if11YsoqqkFVcBROpBCFdGaZExqjFYdoQdroWExODCRMmoG/fvggJCcHKlStRWVmJ6OhoAMD48ePh5uaGZcuWAQCioqKwYsUKBAcHqy/zLlq0CFFRUepQfeuttxAVFQVPT0/cuHEDS5YsgUwmw9ixY1vlHAzV8cwivLzlJCpq6hDkYYst0Y/AtoNuepG2lQlhXth45ApySm7jP8ezMHFAV7FLauLonfulwV1sYWUu6sUgImolLf5/9pIlS1qlgNGjR6OgoACLFy9GXl4eevXqhbi4OPWkpKysrEYj0YULF0IikWDhwoXIycmBg4MDoqKisHTpUvU+2dnZGDt2LIqKiuDg4ICBAwciMTERDg4OrXIOhujApZuYui0ZNXUq9PPujPUTHjHIf+gtzGR4I9wPC74/h8//m47n+3ro3Xmw5RqR8ZMIbO3SRFlZGWxsbFBaWgpra/2czaqNX87mYtbOU1AoBQwOcMQXL/Y26CbVCqUKT644hKtFVYh5shtmDvETuyQ1lUpAn//bh1tVCnw7NQx9vTqLXRIRtQKN/oRXKpX417/+ha+//hpZWVmorW3csLm4uFgnxZHufXPyOuZ9dxYqAfh7Txf8a3QvmMoMe4lmU5kUMUP9MfM/p7Du90x4O1jCRE9m9uaX1eBWlQKWZjIEediKXQ4RtRKNwvTdd9/F+vXrMXv2bCxcuBALFizA1atXsXv3bixevFjXNZKOnM0uwdzvzkIQgDGPeGDpM4F6/TjJg/h7oAvWHMzAhdwyzNhxSuxymgjp2tng/2ghorvT6DKvj48PPvvsM/ztb39Dx44dcfr0afW2xMRE7NixozVqbTPGepn3pfXHcSS9EH8LdMGqF1o+O9tQnM0uwYdxF1GjUIldSiPmplLMHuqvdytJEZHuaDQyzcvLQ2BgIADAysoKpaX13Tv+/ve/qxdOIP1yJK0QR9ILYSqT4O1hAUYXpADQ090W/57cT+wyiKgd0ui6k7u7O3JzcwHUj1L37t0LADhx4kS7XvxAXwmCgI/31C/P+GKoJzw66/+CDEREhkSjMH3mmWcQHx8PAHj99dexaNEi+Pn5Yfz48Zg0aZJOCyTt7TmfhzPZpehgJsP0J3zFLoeIyOjo5NGYxMREHDt2DH5+foiKitJFXaIypnumdUoVIlb+joyCSrw+2Bezh/qLXRIRkdHRydPt/fr1Q79+vFelj3adykFGQSVsO5hiyqPeYpdDRGSUNLrMu2zZsmabd2/cuBEffvih1kWRblQrlFi57zIAYPrjvrCWm4pcERGRcdIoTNeuXYuAgIAm23v06IE1a9ZoXRTpxvbEa7hRWg1naznGhXmKXQ4RkdHSKEzz8vLg4uLSZLuDg4N6li+Jq7xagS8OZgAAZoX7GfRygURE+k6jMPXw8MDRo0ebbD969ChcXV21Loq0t/7wFRRX1sLb3hLP63GfTyIiY6DRBKQpU6Zg1qxZUCgUGDx4MAAgPj4ec+fOxezZs3VaID24oooarD+cCQCYPdQfJlzGjoioVWkUpnPmzEFRURFee+019SL3crkc8+bNw/z583VaID242AMZqKxVItDNBsMedha7HCIio6fVc6YVFRVITU2FhYUF/Pz8jGb1I0N+zjT7VhUGf3IItUoVtk4KwaPd2MOViKi1aXX9Ly8vD8XFxfDx8YG5uTnYGlV8n+5PQ61ShTBvOwzyYzNqIqK2oFGYFhUVYciQIejWrRuGDx+unsH78ssv856piNLyy/FdSjYAYG6kv1EuZk9EpI80CtM333wTpqamyMrKQocO/1s0ffTo0YiLi9NZcfRglu+9DJUADO3uhGC2+yIiajMaTUDau3cv9uzZA3f3xo9c+Pn54dq1azopjB7M6esliDufB6kEeCuC6+8SEbUljUamlZWVjUakDYqLi41mEpKh+SiuvsXas73d0c2po8jVEBG1LxqF6aBBg7B161b1zxKJBCqVCh999BGeeOIJnRVHLXMkrRDHMopgJpNiVrif2OUQEbU7Gl3m/fjjjzF48GCcPHkStbW1mDt3Ls6fP4/i4uJmV0ai1iMIAj5qaPzdrwvcO7HxNxFRW3vgMFUoFJg5cyZ++ukn7Nu3Dx07dkRFRQWeffZZTJ8+vdk1e6n1xJ3Lw9nsUliy8TcRkWgeOExNTU1x9uxZdOrUCQsWLGiNmqiF6pQqfLz3EgDg5UHesLfi/WoiIjFodM/0pZdewoYNG3RdCz2g71KykVlQiU4dTDFlUFexyyEiarc0umdaV1eHjRs3Yv/+/ejTpw8sLS0bvb9ixQqdFEd3V61QYuX+NADA9Cd80ZGNv4mIRKNRmJ47dw69e/cGAFy+fLnRe1x1p21sT7yG3NJquNjI8VI/Nv4mIhKTRmF64MABXddBD6C8WoHYA+kAgDfDu7HxNxGRyNjo0gB9efgKblUp4ONgiWd7u4ldDhFRu8cwNTCFf2r8/RYbfxMR6QX+S2xgYg+ko6pWiZ7uNohk428iIr3AMDUg2beq8O/ELADA3IgATvYiItITDFMDsvJO4+8BvnYYyMbfRER6Qy/CNDY2Fl5eXpDL5QgNDUVSUtI991+5ciX8/f1hYWEBDw8PvPnmm6iurtbqmPrucn45djU0/o4IELkaIiL6M9HDdOfOnYiJicGSJUuQkpKCoKAgRERE4ObNm83uv2PHDrz99ttYsmQJUlNTsWHDBuzcuRPvvPOOxsc0BJ/suQSVAET2cEaQh63Y5RAR0Z9IBEEQxCwgNDQUjzzyCFatWgUAUKlU8PDwwOuvv4633367yf4zZsxAamoq4uPj1dtmz56N48eP48iRIxod86/KyspgY2OD0tJSWFtb6+I0tXIq6xae+eIYpBJg75uPwteR/UqJiPSJqCPT2tpaJCcnIzw8XL1NKpUiPDwcCQkJzX6mf//+SE5OVl+2zczMxK+//orhw4drfMyamhqUlZU1eumTVf+tX6Dhud7uDFIiIj2k0QpIulJYWAilUgknJ6dG252cnHDx4sVmP/PCCy+gsLAQAwcOhCAIqKurw9SpU9WXeTU55rJly/Duu+/q4Ix0r6iiBgcvFwAAXn3MR+RqiIioOaLfM31QBw8exAcffIAvvvgCKSkp2LVrF3755Re8//77Gh9z/vz5KC0tVb+uX7+uw4q18+sfuVCqBAS62cDX0UrscoiIqBmijkzt7e0hk8mQn5/faHt+fj6cnZtfkGDRokUYN24cJk+eDAAIDAxEZWUlXnnlFSxYsECjY5qbm8PcXD97gf5w+gYAYEQvV5ErISKiuxF1ZGpmZoY+ffo0mkykUqkQHx+PsLCwZj9TVVUFqbRx2TJZ/ULvgiBodEx9db24Ciev3YJEAkQFMUyJiPSVqCNTAIiJicGECRPQt29fhISEYOXKlaisrER0dDQAYPz48XBzc8OyZcsAAFFRUVixYgWCg4MRGhqK9PR0LFq0CFFRUepQvd8xDcWPZ+pHpWHednCylotcDRER3Y3oYTp69GgUFBRg8eLFyMvLQ69evRAXF6eeQJSVldVoJLpw4UJIJBIsXLgQOTk5cHBwQFRUFJYuXdriYxqKH+9c4n26FzvDEBHpM9GfM9VH+vCcaWpuGYZ9ehhmMilOLAyHjYWpKHUQEdH9Gdxs3vaiYeLR4ABHBikRkZ5jmOohlUrAj6dzAHAWLxGRIWCY6qGT127hRmk1Opqb4IkAR7HLISKi+2CY6qEf7oxKIx92htxUJnI1RER0PwxTPVNbp8Ivf+QCAEZwFi8RkUFgmOqZw2kFKKlSwKGjOcJ87MQuh4iIWoBhqmd235nFG9XTFTKpRORqiIioJRimeqSypg77LuQB4CxeIiJDwjDVI/su5KNaoUJXe0v0dLcRuxwiImohhqke2X1nFu9TQa6QSHiJl4jIUDBM9URRRQ0OpxUC4CVeIiJDwzDVE7/caQLe090G3g5sAk5EZEgYpnqiYS3ep9i3lIjI4DBM9cD14iok32kCzjAlIjI8DFM90NAEvL+PHRzZBJyIyOAwTEUmCAJ2n7rTISaIywcSERkihqnIUnPLkXazAmYmUkQGOotdDhERaYBhKrIfztSPSgf7O8JazibgRESGiGEqIpVKwE93ZvE+HcyJR0REhophKqITV4vVTcAf92cTcCIiQ8UwFdEPd2bxsgk4EZFhY5iKpLZOhV/vNAF/OpizeImIDBnDVCS/X65vAu7Y0Rz9vNkEnIjIkDFMRdJwiTcqiE3AiYgMHcNUBBVsAk5EZFQYpiLYdyFP3QQ80I1NwImIDB3DVAS7T9Vf4h3Ri03AiYiMAcO0jRVW1OBIekMTcM7iJSIyBgzTNvbrnSbgQe426GpvKXY5RESkAwzTNtbQIeYpjkqJiIwGw7QNZRVVISWrBFIJENXTRexyiIhIRximbejHOx1i+vvYswk4EZER0YswjY2NhZeXF+RyOUJDQ5GUlHTXfR9//HFIJJImr7/97W/qfSZOnNjk/cjIyLY4lbsSBAG773SIeYrPlhIRGRUTsQvYuXMnYmJisGbNGoSGhmLlypWIiIjApUuX4OjYtJPKrl27UFtbq/65qKgIQUFBGDlyZKP9IiMjsWnTJvXP5ubmrXcSLZCaW470hibgD7MJOBGRMRF9ZLpixQpMmTIF0dHR6N69O9asWYMOHTpg48aNze7fuXNnODs7q1/79u1Dhw4dmoSpubl5o/06derUFqdzVz+crr/EOySATcCJiIyNqGFaW1uL5ORkhIeHq7dJpVKEh4cjISGhRcfYsGEDxowZA0vLxo+ZHDx4EI6OjvD398e0adNQVFR012PU1NSgrKys0UuXVCoBP57530INRERkXEQN08LCQiiVSjg5OTXa7uTkhLy8vPt+PikpCefOncPkyZMbbY+MjMTWrVsRHx+PDz/8EIcOHcKwYcOgVCqbPc6yZctgY2Ojfnl4eGh+Us3VebUYuaXV6ChnE3AiImMk+j1TbWzYsAGBgYEICQlptH3MmDHq/w4MDETPnj3h4+ODgwcPYsiQIU2OM3/+fMTExKh/Lisr02mg/nBn4tEwNgEnIjJKoo5M7e3tIZPJkJ+f32h7fn4+nJ3vPUmnsrISX331FV5++eX7fo+3tzfs7e2Rnp7e7Pvm5uawtrZu9NKVRk3AuVADEZFREjVMzczM0KdPH8THx6u3qVQqxMfHIyws7J6f/eabb1BTU4OXXnrpvt+TnZ2NoqIiuLi0/UIJhy4XoPR2fRPwUDYBJyIySqLP5o2JicGXX36JLVu2IDU1FdOmTUNlZSWio6MBAOPHj8f8+fObfG7Dhg14+umnYWfXOKAqKiowZ84cJCYm4urVq4iPj8eIESPg6+uLiIiINjmnP2uYxcsm4ERExkv0e6ajR49GQUEBFi9ejLy8PPTq1QtxcXHqSUlZWVmQShtn/qVLl3DkyBHs3bu3yfFkMhnOnj2LLVu2oKSkBK6urhg6dCjef//9Nn/WtKKmDvtT6y9h8xIvEZHxkgiCIIhdhL4pKyuDjY0NSktLtbp/uislGzFfn4G3vSXiZz/G3qVEREZK9Mu8xqxhFu+IXm4MUiIiI8YwbSV/bgLOtXiJiIwbw7SV7L+QzybgRETthOgTkIzV6Ec84OdkhZo6ldilEBFRK2OYthKJRII+np3FLoOIiNoAL/MSERFpiWFKRESkJYYpERGRlhimREREWmKYEhERaYlhSkREpCWGKRERkZb4nGkzGtb+LysrE7kSIiLSBx07drznGusM02aUl5cDADw8PESuhIiI9MH9uoixBVszVCoVbty4cd+/RO6nrKwMHh4euH79ulat3PSRMZ8bwPMzZMZ8bgDPTywcmWpAKpXC3d1dZ8eztrbWq18KXTLmcwN4fobMmM8N4PnpG05AIiIi0hLDlIiISEsM01Zkbm6OJUuWwNzcXOxSdM6Yzw3g+RkyYz43gOenrzgBiYiISEscmRIREWmJYUpERKQlhikREZGWGKZERERaYpi2ktjYWHh5eUEulyM0NBRJSUlil6QTq1evRs+ePdUPVIeFheG3334TuyydysnJwUsvvQQ7OztYWFggMDAQJ0+eFLssnSgvL8esWbPg6ekJCwsL9O/fHydOnBC7LI38/vvviIqKgqurKyQSCXbv3q1+T6FQYN68eQgMDISlpSVcXV0xfvx43LhxQ7yCH9C9zg8AJk6cCIlE0ugVGRkpTrEP6H7nVlFRgRkzZsDd3R0WFhbo3r071qxZI06xLcQwbQU7d+5ETEwMlixZgpSUFAQFBSEiIgI3b94UuzStubu745///CeSk5Nx8uRJDB48GCNGjMD58+fFLk0nbt26hQEDBsDU1BS//fYbLly4gOXLl6NTp05il6YTkydPxr59+7Bt2zb88ccfGDp0KMLDw5GTkyN2aQ+ssrISQUFBiI2NbfJeVVUVUlJSsGjRIqSkpGDXrl24dOkSnnrqKREq1cy9zq9BZGQkcnNz1a///Oc/bVih5u53bjExMYiLi8P27duRmpqKWbNmYcaMGfjxxx/buNIHIJDOhYSECNOnT1f/rFQqBVdXV2HZsmUiVtV6OnXqJKxfv17sMnRi3rx5wsCBA8Uuo1VUVVUJMplM+Pnnnxtt7927t7BgwQKRqtINAML3339/z32SkpIEAMK1a9fapigdau78JkyYIIwYMUKUenSpuXPr0aOH8N577zXapu+/pxyZ6lhtbS2Sk5MRHh6u3iaVShEeHo6EhAQRK9M9pVKJr776CpWVlQgLCxO7HJ348ccf0bdvX4wcORKOjo4IDg7Gl19+KXZZOlFXVwelUgm5XN5ou4WFBY4cOSJSVW2ntLQUEokEtra2YpeiMwcPHoSjoyP8/f0xbdo0FBUViV2STvTv3x8//vgjcnJyIAgCDhw4gMuXL2Po0KFil3ZXDFMdKywshFKphJOTU6PtTk5OyMvLE6kq3frjjz9gZWUFc3NzTJ06Fd9//z26d+8udlk6kZmZidWrV8PPzw979uzBtGnTMHPmTGzZskXs0rTWsWNHhIWF4f3338eNGzegVCqxfft2JCQkIDc3V+zyWlV1dTXmzZuHsWPHGtTi6fcSGRmJrVu3Ij4+Hh9++CEOHTqEYcOGQalUil2a1j7//HN0794d7u7uMDMzQ2RkJGJjY/Hoo4+KXdpdsWsMPTB/f3+cPn0apaWl+PbbbzFhwgQcOnTIKAJVpVKhb9+++OCDDwAAwcHBOHfuHNasWYMJEyaIXJ32tm3bhkmTJsHNzQ0ymQy9e/fG2LFjkZycLHZprUahUGDUqFEQBAGrV68WuxydGTNmjPq/AwMD0bNnT/j4+ODgwYMYMmSIiJVp7/PPP0diYiJ+/PFHeHp64vfff8f06dPh6ura6KqfPuHIVMfs7e0hk8mQn5/faHt+fj6cnZ1Fqkq3zMzM4Ovriz59+mDZsmUICgrCp59+KnZZOuHi4tLkj4KHHnoIWVlZIlWkWz4+Pjh06BAqKipw/fp1JCUlQaFQwNvbW+zSWkVDkF67dg379u0zmlFpc7y9vWFvb4/09HSxS9HK7du38c4772DFihWIiopCz549MWPGDIwePRqffPKJ2OXdFcNUx8zMzNCnTx/Ex8ert6lUKsTHxxvNfcW/UqlUqKmpEbsMnRgwYAAuXbrUaNvly5fh6ekpUkWtw9LSEi4uLrh16xb27NmDESNGiF2SzjUEaVpaGvbv3w87OzuxS2pV2dnZKCoqgouLi9ilaEWhUEChUEAqbRxPMpkMKpVKpKruj5d5W0FMTAwmTJiAvn37IiQkBCtXrkRlZSWio6PFLk1r8+fPx7Bhw9ClSxeUl5djx44dOHjwIPbs2SN2aTrx5ptvon///vjggw8watQoJCUlYd26dVi3bp3YpenEnj17IAgC/P39kZ6ejjlz5iAgIMAgfzcrKioajcKuXLmC06dPo3PnznBxccHzzz+PlJQU/Pzzz1Aqleo5C507d4aZmZlYZbfYvc6vc+fOePfdd/Hcc8/B2dkZGRkZmDt3Lnx9fRERESFi1S1zr3Pr0qULHnvsMcyZMwcWFhbw9PTEoUOHsHXrVqxYsULEqu9D5NnERuvzzz8XunTpIpiZmQkhISFCYmKi2CXpxKRJkwRPT0/BzMxMcHBwEIYMGSLs3btX7LJ06qeffhIefvhhwdzcXAgICBDWrVsndkk6s3PnTsHb21swMzMTnJ2dhenTpwslJSVil6WRAwcOCACavCZMmCBcuXKl2fcACAcOHBC79Ba51/lVVVUJQ4cOFRwcHARTU1PB09NTmDJlipCXlyd22S1yr3MTBEHIzc0VJk6cKLi6ugpyuVzw9/cXli9fLqhUKnELvwe2YCMiItIS75kSERFpiWFKRESkJYYpERGRlhimREREWmKYEhERaYlhSkREpCWGKRERkZYYpkSkkatXr0IikeD06dNil0IkOoYpkRHLy8vD66+/Dm9vb5ibm8PDwwNRUVGN1o4mIu1xbV4iI3X16lUMGDAAtra2+PjjjxEYGAiFQoE9e/Zg+vTpuHjxotglEhkNjkyJjNRrr70GiUSCpKQkPPfcc+jWrRt69OiBmJgYJCYmYtKkSfj73//e6DMKhQKOjo7YsGEDgPqOQB999BF8fX1hbm6OLl26YOnSpXf9znPnzmHYsGGwsrKCk5MTxo0bh8LCwlY9TyJ9wDAlMkLFxcWIi4vD9OnTYWlp2eR9W1tbTJ48GXFxccjNzVVv//nnn1FVVYXRo0cDqO8S9M9//hOLFi3ChQsXsGPHDjg5OTX7nSUlJRg8eDCCg4Nx8uRJxMXFIT8/H6NGjWqdkyTSI7zMS2SE0tPTIQgCAgIC7rpP//794e/vj23btmHu3LkAgE2bNmHkyJGwsrJCeXk5Pv30U6xatQoTJkwAUN9cfODAgc0eb9WqVQgODsYHH3yg3rZx40Z4eHjg8uXL6Natmw7PkEi/cGRKZIRa2gxq8uTJ2LRpEwAgPz8fv/32GyZNmgQASE1NRU1NDYYMGdKiY505cwYHDhyAlZWV+tUQ5hkZGRqcBZHh4MiUyAj5+flBIpHcd5LR+PHj8fbbbyMhIQHHjh1D165dMWjQIACAhYXFA31nRUUFoqKi8OGHHzZ5z8XF5YGORWRoODIlMkKdO3dGREQEYmNjUVlZ2eT9kpISAICdnR2efvppbNq0CZs3b0Z0dLR6Hz8/P1hYWLT4MZrevXvj/Pnz8PLygq+vb6NXc/dtiYwJw5TISMXGxkKpVCIkJATfffcd0tLSkJqais8++wxhYWHq/SZPnowtW7YgNTVVfW8UAORyOebNm4e5c+di69atyMjIQGJionqm719Nnz4dxcXFGDt2LE6cOIGMjAzs2bMH0dHRUCqVrX6+RGLiZV4iI+Xt7Y2UlBQsXboUs2fPRm5uLhwcHNCnTx+sXr1avV94eDhcXFzQo0cPuLq6NjrGokWLYGJigsWLF+PGjRtwcXHB1KlTm/0+V1dXHD16FPPmzcPQoUNRU1MDT09PREZGQirl3+1k3CRCS2cqEJFRqqiogJubGzZt2oRnn31W7HKIDBJHpkTtlEqlQmFhIZYvXw5bW1s89dRTYpdEZLAYpkTtVFZWFrp27Qp3d3ds3rwZJib854BIU7zMS0REpCXOCiAiItISw5SIiEhLDFMiIiItMUyJiIi0xDAlIiLSEsOUiIhISwxTIiIiLTFMiYiItMQwJSIi0tL/A+rfA+DPdp1TAAAAAElFTkSuQmCC\n" - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "# Recall\n", - "plot_cycle_score(cycle, X_test, y_test,\n", - " scorer=recall_score,\n", - " figsize=(5,3),\n", - " scorer_kw=dict(average='weighted'));" - ], - "metadata": { - "collapsed": false - } - }, - { - "cell_type": "code", - "execution_count": 8, - "outputs": [ - { - "data": { - "text/plain": "
", - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAdMAAAEmCAYAAAA5oXoHAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8o6BhiAAAACXBIWXMAAA9hAAAPYQGoP6dpAAA9HklEQVR4nO3deVxU5f4H8M8wMOyLsm+CgGIqoqISqFlJgprXzNTU0jDtaloZpaa5tPzSvLe8tpioqaldy0rrtokpuaEgCmUuqGwKIjuyDTAMM+f3Bzk3rqjADJyZ4fN+vc7rxpkzz3zP6+J8OM95nudIBEEQQERERG1mInYBREREho5hSkREpCWGKRERkZYYpkRERFpimBIREWmJYUpERKQlhikREZGWGKZERERaYpg2QxAEVFZWgutZEBFRSzBMm1FVVQV7e3tUVVWJXQoRERkAhikREZGWGKZERERaYpgSERFpiWFKRESkJYYpERGRlhimREREWmKYEhERaYlhSkREpCWGKRERtVm1ogGLvj6L1789hzqlSuxyRGMqdgFERGSYyuT1iN6ejLPXKwAA6UXV+HTmINhZmIlcWcfjlSkREbVafkUtJm9KxNnrFehiZQZbc1MkZ5dh6uYklFQrxC6vwzFMiYioVbKKq/HExkRkFFXD3d4CX88NwxfP3Q9Haxku3KjE5NhEXL9ZI3aZHYphSkRELXY+rwKTYhORV14LPydrfDMvHAEutujraY+v54bB08ESWSVyTIpNREZR53lYCMOUiIhaJCmrFE9uTkKpvB59Pe3w1Z/heYufsw2+mReGABcb5FfUYVJsIs7mlotXcAdimBIR0T0duliImduSUa1oQGj3rvhizv1wsjG/7Th3e0t89fcwBHvZ42aNEtO2JOFERokIFXcshikREd3VvtTr+PvnKVA0qBFxnyt2zBoC27uM2O1qLcO/59yPoQGOkNerEL39NOLOF3RgxR2PYUpERHe0LSEbMV+dhUot4PGBnoh9aiAszKT3fJ+NuSm2PTMYUX3cUK9S4/l/p+Cr07kdULE4GKZERHQbQRCw7pfLeOvHiwCAWUO7470ngmEqbXlsmJtK8fG0AZgyyBtqAVi89w9sPpbZXiWLios2EBFRE2q1gDd+uICdidcAAK880hMLHg6ARCJpdVumUhO8OzEIDlZm2HQsC6t/voTyGiUWRQa2qT19xStTIiLSUKrUWLjnd+xMvAaJBHh7fB+8MLKHVsEnkUiwdMx9WBLVCwDwyZFMLPv2PFRqQVdli45hSkREAIDaehWe23kG35+9AVMTCdZP6Y+nw3x11v68B/2xekIQJBLgi+QcvPjFb6hvUOusfTGxm5eIiFBRq8TsHadx+upNWJiZYOP0EDzUy0XnnzMttBvsLc2wcM9v+OlcPirrlIh9KgTW5oYdR7wyJSLq5Iqq6vDk5iScvnoTtham2PVsaLsE6S1j+7lj68zBsDST4nh6CZ7aegrlNfXt9nkdgWFKRNSJ5ZbVYFJsItLyK+FkY449z4VhsG/Xdv/cB3o6499zQmFvaYbfcsoxZVMSCivr2v1z2wvDlIiok7pcUIWJG0/iWmkNvLpY4pu5YejtYddhnz+wWxd89fcwuNia43JhYy1XS+Qd9vm6JBEEwXiGU+lIZWUl7O3tUVFRATu7jvvFIiLtncgowVdncmFEA0XbzbErxaioVaKnqw12PRsKVzsLUerILavBU1tP4VppDZxsZAjzd9JZ2/83vi/srdr/+aoM02YwTIkMU2WdEiP+cRg3a5Ril2IwBnRzwPZnBsPBSiZqHUVVdZixNRmXCnT7pJnkZSPh0gF/JBj28Ckior/YdDQTN2uU6O5kjafv9xG7HL1nZ2mGsUHusJTde3nA9uZi2/hc1P3nClCtaNBZuzYWHRNzDFMiMgoFFXXYmpANAHhtdC9E9nETuSJqLVsLM0we7C12GW3CAUhEZBTWH7qCOqUaIT5dMKq3q9jlUCfDMCUig5deWIWvzjQ+kWTZmF5GteYrGQa9CNMNGzbA19cXFhYWCA0NRXJy8h2PVSqVeOutt+Dv7w8LCwsEBwcjLi6uyTFvvPEGJBJJk61Xr17tfRpEJJK1cZehFoBRvV0R4tP+cySJ/pfoYbpnzx7ExMRg1apVSE1NRXBwMCIjI1FUVNTs8cuXL8emTZvw0Ucf4eLFi5g7dy4mTJiA3377rclxffr0QX5+vmZLSEjoiNMhog52+moZDqUVQmoiweIo/tFM4hA9TNetW4c5c+YgOjoavXv3RmxsLKysrLBt27Zmj9+1axeWLVuGMWPGwM/PD/PmzcOYMWPw/vvvNznO1NQUbm5ums3JSXfzlohIPwiCgNU/pwEAJg/yRoCLjcgVUWclapjW19cjJSUFERERmn0mJiaIiIhAYmJis+9RKBSwsGg6Z8jS0vK2K8/09HR4eHjAz88P06dPR05Ozh3rUCgUqKysbLIRkf47cKEAv+WUw9JMipcjeohdDnViooZpSUkJVCoVXF2bjrxzdXVFQUFBs++JjIzEunXrkJ6eDrVajYMHD2Lfvn3Iz8/XHBMaGorPPvsMcXFx2LhxI7KzszF8+HBUVTU/GXjNmjWwt7fXbN7ehjk0m6gzUarU+EfcZQDA7OHdO2RiPtGdiN7N21offPABevTogV69ekEmk2HBggWIjo6Gicl/T2X06NGYNGkS+vXrh8jISPz8888oLy/HV1991WybS5cuRUVFhWbLzc3tqNMhojbaczoXWSVydLWW4bkH/MQuhzo5UcPUyckJUqkUhYWFTfYXFhbCza35CdfOzs747rvvIJfLce3aNVy6dAk2Njbw87vzPyYHBwf07NkTGRkZzb5ubm4OOzu7JhsR6S+5ogHrD6UDAF58OAC2Fu2/9irR3YgapjKZDCEhIYiPj9fsU6vViI+PR1hY2F3fa2FhAU9PTzQ0NGDv3r0YP378HY+trq5GZmYm3N3ddVY7EYnn0+PZKKlWwMfRCtNCuWwgiU/0bt6YmBhs2bIFO3bsQFpaGubNmwe5XI7o6GgAwIwZM7B06VLN8adOncK+ffuQlZWF48ePIyoqCmq1GosXL9Yc8+qrr+Lo0aO4evUqTp48iQkTJkAqlWLq1Kkdfn5EpFsl1QpsPpYJAHh1VCBkpqJ/jRGJvzbvlClTUFxcjJUrV6KgoAD9+/dHXFycZlBSTk5Ok/uhdXV1WL58ObKysmBjY4MxY8Zg165dcHBw0Bxz/fp1TJ06FaWlpXB2dsawYcOQlJQEZ2fnjj49ItKxD+PTIa9XoZ+XPcYGsbeJ9AMfwdYMPoKNSD9ll8jxyLqjaFAL2D0nFOE6fO4lkTbYP0LUyZTX1GPzsUzklNaIXUqrvXfgMhrUAh4MdGaQkl5hmBJ1IgUVdZi8KRGrf76EWTtOo0GlFrukFvs9txw/ncuHRAIs4bKBpGcYpkSdRHaJHBM3nsSVwmoAQEZRNb5JuS5yVS0jCALW/Lls4OMDvHCfO2+/kH5hmBJ1AufzKvDExpPIK6+Fr6OVZpGDfx26gtp6lcjV3dvhy0U4lV0GmakJYkb1FLscotswTImMXGJmKZ7cnIRSeT36eNjh67nheGVUT3h1sURhpQLbTmSLXeJdqdQC1u5vXDYwOtwXng6WIldEdDuGKZER++VCAWZuT0a1ogGh3bvii+fuh7OtOcxNpVgUGQgAiD2SiTJ5vciV3tne1Ou4XFgFe0szPP9ggNjlEDWLYUpkpL46k4u5n6egvkGNR3q7YsesIbD7y7J74/p5oI+HHaoUDdhwuPmlNsVWp1ThXwevAADmP+QPeysuG0j6iWFKZIQ2H8vE4m/+gFoAngjxwsbpA2FhJm1yjImJBK+NbhwVuyvxGnLL9G+qzPYTV5FfUQdPB0vMCPMVuxyiO2KYEhkRQRDw7v5LWP3zJQDAcw/44Z9P9IOptPl/6sN7OGNYgBPqVWqs+/MKUF/clNfjkyONV8wxj/S87Y8BIn3CMCUyEg0qNV7bew6xRxvXrX1tdC8sG3MfJBLJXd936+r0u9/zcOFGRbvX2VIbDmegqq4Bvdxs8dgAT7HLIborhimREahTqjB/dyr2nMmFiQR49/EgzB3h36L39vW0x/j+HhAE4N39l9q50pbJLavBzsRrABrDXmpy9z8IiMTGMCUycFV1SkRvP40DFwohk5rgk+kD8eSQbq1q49VRgTCTSnA8vQQJ6SXtVGnLrTt4BfUqNcL9HTGiJx9QQfqPYUpkwEqrFZi25RQSs0phLZPis+jBiOrb+iepeHe1wlP3Nz4X9N24NKjV4j3/4sKNCnz3ex4AYOnoe3dTE+kDhimRgcorr8Wk2EScy6tAV2sZvnjufoQHtH3x9wUPBcDG3BTn8yrx47l8HVbaOu/uvwRBAMYFeyDIy160Oohag2FKZIDSC6sw8ZOTyCqRw8PeAl/PDUM/Lwet2nS0McfcEY3LDL534DLqGzp+EfyE9BIcTy+BmVSCRaMCO/zzidqKYUpkYH7LuYlJmxJRUFmHABcbfDMvHP7ONjppe9aw7nCxNUdOWQ3+feqaTtpsKbVawJr9jYvZTw/1QTdHqw79fCJtMEyJDMjx9GJM//QUymuUCPZ2wNd/D4OHDteqtZKZYmFE40LyH/2agao6pc7avpcf/riBCzcqYWNuihce5rKBZFgYpkQGIu58PmZ9dho19SoM7+GE3bND0cVapvPPmTzIC37O1iiT12PzsSydt9+cOqUK/zzQuJj93BF+cLQx75DPJdIVhimRAVCq1Fj8zR9QqgSMDXLHpzMHwdrctF0+y1RqgsWRjQs5fHo8G0WVde3yObfU1Ddgzs4zuH6zFi625pg1rHu7fh5Re2CYEhmA33PLUVnXgC5WZvhw6gCYm7bv0nqRfVwxsJsDapUqrI9Pb7fPKa+px1OfnsLx9BJYmkmxfkp/WMna548EovbEMCUyALcWUggPcOqQ1YAkEgmWjrkPALDndC4yi6t1/hmFlXWYsikJqTnlsLc0w7/nhGo1tYdITAxTIgOQkNEYpsM7MGwG+3ZFxH2uUKkF/DPusk7bvlYqxxOxJ3G5sAoutub46u9hGNiti04/g6gjMUyJ9FxlnRK/55YDAIb16NgrtyVRgTCRAHEXCpBy7aZO2kzLr8QTsYnILauFj6MV9s4LR6CbrU7aJhILw5RIzyVllkKlFtDdyRpeXTp27mUPV1tMCvEGAKzdfwmCoN0yg2eulmHypkQUVynQy80WX88Ng3dXziclw8cwJdJzt7p4h4l0P3HhIz1gbmqC5KtliE8ranM7Ry4X4amtp1BV14BBPl2w5+9hcLG10GGlROJhmBLpuVuDjzq6i/cWd3tLzXSVtXGXoGrDIvjfn72B2TvOoE6pxoOBztj1bCjsLc10XSqRaBimRHosr7wWWSVymEiA+/0cRatj7gh/OFiZIb2oGntTrrfqvbuSruGlL39Dg1rA34I9sPnpQbCUte/UHqKOxjAl0mMn/rwqDfZ2EPVKzt7SDAsealzib93BK6itV93zPYIg4ONf07Hiu/MQBODp+32wfkp/yEz5tUPGh7/VRHrsuAhTYu7k6TAfeDpYoqCyDp+dvHrXY9VqAf/3Uxre++UKAODFhwPw1vg+MOmAObJEYmCYEukptVrAiVuDj3o4i1wNYG4qxSujGhfB/+RIBm7K65s9rkGlxqJv/sDWhGwAwIpHeyNmVCAf8k1GjWFKpKcu5leiTF4Pa5kUA7o5iF0OAOCx/p64z90OVXUN+ORIxm2v1ylVmPfvVOxNvQ6piQTvTwrGs1xrlzoBhimRnro1JeZ+P0eYSfXjn6qJiQRLohof2r3j5DVcv1mjea2qTolntifj4MVCyExNEPtUCCaGeIlVKlGH0ot/oRs2bICvry8sLCwQGhqK5OTkOx6rVCrx1ltvwd/fHxYWFggODkZcXJxWbRLpo1tTYobqwf3SvxrR0xnh/o6oV6mx7s97oqXVCkzbcgpJWWWwMTfFzllD8EhvV5ErJeo4oofpnj17EBMTg1WrViE1NRXBwcGIjIxEUVHzk8OXL1+OTZs24aOPPsLFixcxd+5cTJgwAb/99lub2yTSN3VKFZKvlgEAhos0v/ROJBIJXhvd+Ii2b3/PQ3xaISZtSsS5vAo4Wsvw5XP3izqNh0gMEkHb9cG0FBoaisGDB+Pjjz8GAKjVanh7e+OFF17Aa6+9dtvxHh4eeP311zF//nzNvokTJ8LS0hKff/55m9r8X5WVlbC3t0dFRQXs7Ox0cZpErZKQXoKntp6Cq505kpaO1MvBOwt2p+LHP/I1P3vYW2DX7FD4O9uIWBWROES9Mq2vr0dKSgoiIiI0+0xMTBAREYHExMRm36NQKGBh0XQJMktLSyQkJGjVZmVlZZONSEzHM4oBAMMCnPUySAFgUWQgTP+c6uLvbI1v5oUzSKnTEjVMS0pKoFKp4Ora9N6Kq6srCgoKmn1PZGQk1q1bh/T0dKjVahw8eBD79u1Dfn5+m9tcs2YN7O3tNZu3t7cOzo6o7W7dL9W3Lt6/8nG0xnuTgjEttBu+nhsODwdLsUsiEo3o90xb64MPPkCPHj3Qq1cvyGQyLFiwANHR0TAxafupLF26FBUVFZotNzdXhxUTtU5ptQIXbjT2jujb4KP/9dgAT6yeEISu1jKxSyESlahh6uTkBKlUisLCwib7CwsL4ebm1ux7nJ2d8d1330Eul+PatWu4dOkSbGxs4Ofn1+Y2zc3NYWdn12QjEsuJzFIAQC83WzjbmotcDRG1hKhhKpPJEBISgvj4eM0+tVqN+Ph4hIWF3fW9FhYW8PT0RENDA/bu3Yvx48dr3SaRPkhIv3W/VL+vSonov0zFLiAmJgYzZ87EoEGDMGTIEKxfvx5yuRzR0dEAgBkzZsDT0xNr1qwBAJw6dQp5eXno378/8vLy8MYbb0CtVmPx4sUtbpNIXwmCIPoj14io9UQP0ylTpqC4uBgrV65EQUEB+vfvj7i4OM0AopycnCb3Q+vq6rB8+XJkZWXBxsYGY8aMwa5du+Dg4NDiNon0VXaJHDcq6iCTmiC0O+dqEhkK0eeZ6iPOMyWx7Ey8ipX/uYAwP0d88dz9YpdDRC1kcKN5iYzZcXbxEhkkhimRnmhQqZH050heDj4iMiwMUyI9cfZ6OaoUDbC3NENfT3uxyyGiVmhzmDY0NODQoUPYtGkTqqqqAAA3btxAdXW1zooj6kwS0huvSocGOEJqop9LCBJR89o0mvfatWuIiopCTk4OFAoFHnnkEdja2mLt2rVQKBSIjY3VdZ1ERi/hL+vxEpFhadOV6UsvvYRBgwbh5s2bsLT873qcEyZMaLJYAhG1TLWiAb/llAPQ7/V4iah5bboyPX78OE6ePAmZrOl6nL6+vsjLy9NJYUSdSVJmKRrUAnwcreDd1Urscoioldp0ZapWq6FSqW7bf/36ddja2mpdFFFnk5Dx55QYjuIlMkhtCtNRo0Zh/fr1mp8lEgmqq6uxatUqjBkzRle1EXUax7keL5FBa1M373vvvYeoqCj07t0bdXV1mDZtGtLT0+Hk5IQvvvhC1zWSEcstq8GrX5+Fs605PnxyAEw64SjW/IpaZBbLYSIBwv0ZpkSGqE1h6u3tjbNnz2LPnj04e/Ysqqur8eyzz2L69OlNBiQR3c3lgirM2HYKhZUKAEBUXzc82s9D5Ko63q2F7YO8HGBvZSZyNUTUFq0OU6VSiV69euHHH3/E9OnTMX369Paoi4xcyrUyzPrsDCpqlbA0k6JWqcK6g1cQ1ccNptLOtZbIrfulw9nFS2SwWv2tZWZmhrq6uvaohTqJw5eKMP3TU6ioVWJgNwccjHkAXazMkFUsx7e/da7R4Gq1gBMZXI+XyNC16RJg/vz5WLt2LRoaGnRdDxm5b3+7jjk7z6BOqcaDgc749+z74dXFCvMe9AcAfBCfjvoGtchVdpxLBVUoqa6HpZkUA7t1EbscImqjNt0zPX36NOLj4/HLL78gKCgI1tbWTV7ft2+fTooj47I1IRtv/3gRADBhgCf+8UQ/mP3ZpTsjzBefHs/G9Zu12HM6B0+H+YpYace5tepRqF9XyEw7V/c2kTFpU5g6ODhg4sSJuq6FjJQgCPjngcv45EgmAGDW0O5YPva+JiN3LcykeOHhAKz4zwV89GsGngjxhqVMKlbJHUbzyDXeLyUyaG0K0+3bt+u6DjJSDSo1ln93Hl+ezgUALIoMxPMP+kMiuX0KzJTB3bDpWBau36zFrqSreO4B/44ut0PVKVU4fbUMADC8B9fjJTJkWvUrFRcXIyEhAQkJCSguLtZVTWQk6pQqzN+dii9P58JEAqx5PAjzHwpoNkgBQGZqgpdG9gAAbDySiao6ZUeW2+FSr91EnVINF1tz9HS1EbscItJCm8JULpdj1qxZcHd3xwMPPIAHHngAHh4eePbZZ1FTU6PrGskAVdUp8cz2ZBy4UAiZ1ASfTB+IqUO63fN9EwZ4ws/ZGjdrlNiWcLX9CxXR8b8sIXinPzCIyDC0KUxjYmJw9OhR/PDDDygvL0d5eTn+85//4OjRo3jllVd0XSMZmOIqBZ7cnISkrDLYmJvis1mDEdXXvUXvNZWaIOaRngCALcezcFNe356liurWYg2cEkNk+NoUpnv37sXWrVsxevRo2NnZwc7ODmPGjMGWLVvwzTff6LpGMiC5ZTWYFHsSF25UwtFahi+fu7/VS+SN6euO+9ztUK1oQOyxzHaqVFw35fU4f6MCADCUg4+IDF6bwrSmpgaurq637XdxcWE3byd2qaASEzeexNXSGnh1scQ388LR19O+1e2YmEiwKLLx6nTHyasoqjS+RUJOZJZAEICerjZwtbMQuxwi0lKbwjQsLAyrVq1qshJSbW0t3nzzTYSFhemsODIcp6+WYXJsIoqqFAh0tcXeeeHo7mR97zfewUOBLhjYzQF1SjU2HM7QYaX6QbPqUQBH8RIZgzZNjfnggw8QGRkJLy8vBAcHAwDOnj0LCwsLHDhwQKcFkv47dLEQ83enQtGgxiCfLtg6c7DWC7ZLJBK8GhmIaVtOYXdyDuY84AevLsbx0GxBEDTzS4fzfimRUWjTlWnfvn2Rnp6ONWvWoH///ujfvz/effddpKeno0+fPrqukfTYNynX8ffPU6BoUOPhXi7Y9Wyozp58Eu7vhKEBjlCqBHwYn66TNvXBtdIaXL9ZCzOpBKF+XcUuh4h0oE1XpgBgZWWFOXPm6LIWMjBbjmXhnZ/TAACPD/TE2on/XR5QV14dFYgTGSexNzUPc0f4w8/Z8Odj3poSM7BbF1jJ2vxPkIj0SJu++dasWYNt27bdtn/btm1Yu3at1kWRfhMEAe/uv6QJ0jnDu+O9J4J1HqQAMKBbF0Tc5wKVWsC/DhnH1WlCeuMCJ1xCkMh4tOnbb9OmTejVq9dt+/v06YPY2FitiyL9pVILWPbtOcQebZyysiSqF5aNabrOrq7FPBIIAPjh7A2k5Ve22+d0hAaVGiczSwFwfimRMWlTmBYUFMDd/fZJ+M7OzsjPz9e6KNJPigYVXvgiFV8kNy4P+O7jQZh3h3V2dam3hx0e7df4+/b+L1fa9bPa2x95Faiqa4CdhSn6eTmIXQ4R6UibwtTb2xsnTpy4bf+JEyfg4eGhdVGkf+SKBszecQY/nyuATGqCDdMG4skWLA+oKy8/0hMmEuBQWiF+y7nZYZ+rayf+HMUb7u8EaTtezRNRx2pTmM6ZMwcLFy7E9u3bce3aNVy7dg3btm3Dyy+/zEFJRuimvB7TPz2F4+klsJJJse2ZwRgd1LLlAXXF39kGEwd6ATDsq1PNerzs4iUyKm0aSrho0SKUlpbi+eefR31949qpFhYWWLJkCZYuXarTAklcBRV1eHrrKaQXVcPBygzbnxmMAd26iFLLiyN74Lvf85CQUYLEzFKE+TuKUkdbyRUNmqtqzi8lMi5tujKVSCRYu3YtiouLkZSUhLNnz6KsrAwrV65sUxEbNmyAr68vLCwsEBoaiuTk5Lsev379egQGBsLS0hLe3t54+eWXm6zG9MYbb0AikTTZmhswRXeXXSLHE7EnkV5UDVc7c3z19zDRghQAvLtaaZ48894vlyEIgmi1tMWp7FIoVQK8u1rCx7Htq0MRkf7Rai6DjY0NBg8ejG7dumH//v1IS0trdRt79uxBTEwMVq1ahdTUVAQHByMyMhJFRUXNHr9792689tprWLVqFdLS0rB161bs2bMHy5Yta3Jcnz59kJ+fr9kSEhLadI6d1YUbFZgUexLXb9bC19EK38wNR09XW7HLwoKHAmBhZoKUazdx5LJhPUP31qpHnBJDZHzaFKaTJ0/Gxx9/DKBxTd5BgwZh8uTJ6NevH/bu3duqttatW4c5c+YgOjoavXv3RmxsLKysrJqdxwoAJ0+exNChQzFt2jT4+vpi1KhRmDp16m1Xs6ampnBzc9NsTk78Amup5OwyPLk5CSXV9ejtboev54bDu6t+LOXnYmeBmWG+ABqvTtVqw7k61TxyjevxEhmdNoXpsWPHMHz4cADAt99+C0EQUF5ejg8//BD/93//1+J26uvrkZKSgoiIiP8WZGKCiIgIJCYmNvue8PBwpKSkaMIzKysLP//8M8aMGdPkuPT0dHh4eMDPzw/Tp09HTk7OHetQKBSorKxssnVWv14qxNNbT6GqrgGDfbvgi+fuh7OtudhlNTF3hD9szE1x4UYl4i4UiF1OixRW1iG9qBoSCRBuYPd6ieje2hSmFRUV6Nq1cU3RuLg4TJw4EVZWVhg7dizS01u+Sk1JSQlUKtVtj3NzdXVFQUHzX5LTpk3DW2+9hWHDhsHMzAz+/v548MEHm3TzhoaG4rPPPkNcXBw2btyI7OxsDB8+HFVVVc22uWbNGtjb22s2b2/vFp+DMfnP73l4bud/19ndOSsU9pa6WWdXl7pYy/DssO4AgPd/uQyVAVyd3roqDfK0RxdrmcjVEJGutXmeaWJiIuRyOeLi4jBq1CgAwM2bN2Fh0b7PZjxy5AhWr16NTz75BKmpqdi3bx9++uknvP3225pjRo8ejUmTJqFfv36IjIzEzz//jPLycnz11VfNtrl06VJUVFRottzc3HY9B320M/EqFu75HQ1qAY/198Cmp0NgKZOKXdYdzR7eHQ5WZsgsluPb3/LELueeEjJ4v5TImLVpaszChQsxffp02NjYwMfHBw8++CCAxu7foKCgFrfj5OQEqVSKwsLCJvsLCwvh5ubW7HtWrFiBp59+GrNnzwYABAUFQS6X47nnnsPrr78OE5Pb/z5wcHBAz549kZHR/HMxzc3NYW6uX12ZHUUQBHwYn4F/HWqcu/lMuC9WPtq7XZcH1AVbCzPMHeGPd/dfwvpDV/C3YA/ITHW/NrAuCILw3zDllBgio9Smb5/nn38eSUlJ2LZtGxISEjQB5ufn16p7pjKZDCEhIYiPj9fsU6vViI+Pv+NDxmtqam4LTKm08QrqTlMlqqurkZmZ2ewSiJ2ZWi3gzR8uaoJ0YUQPrBqn/0F6y8wwXzjbmuP6zVrsOaO/vQmXC6tQXKWAhZkJQnzEm1pERO2nzX/Kh4SEYMKECbCx+e8jscaOHYuhQ4dqfrazs0NWVtZd24mJicGWLVuwY8cOpKWlYd68eZDL5YiOjgYAzJgxo8lCEOPGjcPGjRvx5ZdfIjs7GwcPHsSKFSswbtw4Tai++uqrOHr0KK5evYqTJ09iwoQJkEqlmDp1altP1+goVWq88vVZfHbyKgDgjXG9sTCiZ7uvs6tLljIpFjwUAAD4+Nd01ClVIlfUvFv3S4d0d4S5qf52nRNR27XrwxRbMql+ypQpKC4uxsqVK1FQUID+/fsjLi5OMygpJyenyZXo8uXLIZFIsHz5cuTl5cHZ2Rnjxo3DO++8oznm+vXrmDp1KkpLS+Hs7Ixhw4YhKSkJzs6ckgAAdUoVFuxOxaG0IkhNJHh/UjAeG+Apdllt8uQQb2w+loW88lrsSryGOQ/4iV3SbW7NLx3O+6VERksitOMyMra2tjh79iz8/PTvC+5uKisrYW9vj4qKCtjZ2Yldjk5V1ikxe8cZJGeXwdzUBJ9MH4iR97ne+4167KvTuVi89w90tZbh2OKHYGOuPw/cVjSo0P/Ng6hVqrD/peG4z924fp+IqJH+fOtQu6utV2HaliScz6uErbkpPp05CKF+hj/n8fGBnog9momsEjm2JWTjxZE9OvTzG1RqVNY1oLymHhW1SpTXKlFZq0R5jRJZxdWoVargZGOOXm7iryBFRO2DYdqJbD+ZjfN5lehqLcPOWUPQ19Ne7JJ0wlRqgoWP9MSLX/yGLceycJ+7HUy1HEQlQECdUt0YjjVKVNQqUVFb3+Tn8prG0KxSNNyzvQd6OBnU/Wgiap12DVN+eeiP8pp6bDySCQBYPvY+ownSWx4NcscnhzNwqaAKc3aeEaUGW3NT2FmawcHKDPZ/+V8nG3NMD/URpSYi6hiiD0CijrHxSCaq6hrQy80W4/sb5mCjuzExkWD140FY/VMaFA1qnbQpMzVBFyuzxoC0lDUJSPtbgWnZ+L92lmYwk+rnPFcian/tGqb79++Hp6fxfXEbmvyKWs0UmMVRgZAayDzS1hrYrQu+mRcudhlE1Anp9E/p3NxczJo1S/PzsGHDOu3KQvpk/cF0KBrUGOLbFQ8FuohdDhGR0dFpmJaVlWHHjh26bJK0lFFUha9TGlcHWjK6F+9jExG1g1Z1837//fd3ff1eqx1Rx3vvwBWoBeCR3q5cyo6IqJ20Kkwfe+wxSCSSuw4s4pWP/vgt5ybiLhTARAIsjgwUuxwiIqPVqm5ed3d37Nu3D2q1utktNTW1veqkVhIEAWvjLgEAJg70Qg9XLhhARNReWhWmISEhSElJuePr97pqpY5z9EoxkrLKIDM1wcuP9BS7HCIio9bibt4//vgDixYtglwuv+MxAQEBOHz4sE4Ko7ZTqwWsjbsMAJgZ5gMPB0uRKyIiMm4tDtMBAwYgPz8fLi4u8PPzw+nTp+Ho2HRdV2tra4wYMULnRVLr/PDHDaTlN66/+/yDAWKXQ0Rk9Frczevg4IDs7GwAwNWrV6FW62aVGdKt+gY13v+l8WHffx/hhy7WMpErIiIyfi2+Mp04cSJGjBgBd3d3SCQSDBo0SPMw7v/FKTLi+SI5BzllNXC2NcesYd3FLoeIqFNocZhu3rwZjz/+ODIyMvDiiy9izpw5sLXlCFF9Ilc04KNf0wEAL47sASsZHwpERNQRWvVtGxUVBQBISUnBSy+9xDDVM58ez0ZJdT18Ha3w5GBvscshIuo02nTpsn37dl3XQVoqrVZg87HGR6y9MiqQTzAhIupA/MY1Eh8fzoC8XoW+nnYYG+QudjlERJ0Kw9QI5JbV4N9JOQCAJVG9YGKkj1gjItJXDFMj8K+DV1CvUmNogCOG93AWuxwiok6HYWrg0vIr8e3veQAar0qJiKjjMUwN3D8PXIYgAGOD3NHPy0HscoiIOiWGqQFLzi7Dr5eKIDWR4JVRXMyeiEgsDFMDJQgC3t2fBgCYMtgbfs42IldERNR5MUwN1KG0IqTmlMPCzAQvjewhdjlERJ0aw9QAqdQC/nmg8cHf0UO7w9XOQuSKiIg6N4apAdqXeh1XCqthb2mGuSP8xS6HiKjTY5gamDqlCv862PiItecf9Ie9pZnIFREREcPUwHyedA03Kurgbm+BmeG+YpdDRERgmBqUyjolPj6cAQBYGNEDFmbNP0+WiIg6FsPUgGw+moXyGiX8na0xcaCX2OUQEdGf9CJMN2zYAF9fX1hYWCA0NBTJycl3PX79+vUIDAyEpaUlvL298fLLL6Ourk6rNvVdUWUdtiZkAwAWRfaCKR+xRkSkN0T/Rt6zZw9iYmKwatUqpKamIjg4GJGRkSgqKmr2+N27d+O1117DqlWrkJaWhq1bt2LPnj1YtmxZm9s0BB/+mo5apQoDujkgso+r2OUQEdFfSARBEMQsIDQ0FIMHD8bHH38MAFCr1fD29sYLL7yA11577bbjFyxYgLS0NMTHx2v2vfLKKzh16hQSEhLa1Ob/qqyshL29PSoqKmBnZ6eL09TK1RI5ItYdRYNawJfP3Y/7/RzFLomIiP5C1CvT+vp6pKSkICIiQrPPxMQEERERSExMbPY94eHhSElJ0XTbZmVl4eeff8aYMWPa3Ka+++jXDDSoBTwY6MwgJSLSQ6ZifnhJSQlUKhVcXZt2W7q6uuLSpUvNvmfatGkoKSnBsGHDIAgCGhoaMHfuXE03b1vaVCgUUCgUmp8rKyu1OS2dqlOqEHc+HwDwwsMBIldDRETNEf2eaWsdOXIEq1evxieffILU1FTs27cPP/30E95+++02t7lmzRrY29trNm9vbx1WrJ0jl4shr1fB08ESA7t1EbscIiJqhqhXpk5OTpBKpSgsLGyyv7CwEG5ubs2+Z8WKFXj66acxe/ZsAEBQUBDkcjmee+45vP76621qc+nSpYiJidH8XFlZqTeB+tO5xqvSsf3cIZFIRK6GiIiaI+qVqUwmQ0hISJPBRGq1GvHx8QgLC2v2PTU1NTAxaVq2VNq4eIEgCG1q09zcHHZ2dk02fVCnVCE+rfGPgjFB7iJXQ0REdyLqlSkAxMTEYObMmRg0aBCGDBmC9evXQy6XIzo6GgAwY8YMeHp6Ys2aNQCAcePGYd26dRgwYABCQ0ORkZGBFStWYNy4cZpQvVebhuLI5SLU/NnFG+xlL3Y5RER0B6KH6ZQpU1BcXIyVK1eioKAA/fv3R1xcnGYAUU5OTpMr0eXLl0MikWD58uXIy8uDs7Mzxo0bh3feeafFbRqKH/9o7OJ9lF28RER6TfR5pvpIH+aZ1tarMPDtg6hVqvD9gqHo5+UgSh1ERHRvBjeat7M4fLkItUoVvLtaIsiTXbxERPqMYaqnfvqzi3dMELt4iYj0HcNUD9XUN+DXS43rCD8a5CFyNUREdC8MUz10+FIxapUqdOtqhb6e+jFNh4iI7oxhqod+OncDABdqICIyFAxTPfPXLt6xXKiBiMggMEz1zK+XilCnVMPH0Qp9PNjFS0RkCBimeubWKN6xHMVLRGQwGKZ6RK74SxdvP3bxEhEZCoapHom/VARFgxrdnazR251dvEREhoJhqkd++qNxFO+YIDd28RIRGRCGqZ6oVjTgyOViAMBYLtRARGRQGKZ6Ij6tEIoGNfycrHGfu63Y5RARUSswTPWEZhQvF2ogIjI4DFM9UFWnxJErf3bxchQvEZHBYZjqgV8vFaG+QQ0/Z2sEurKLl4jI0DBM9cCPf3bxPsqFGoiIDBLDVGRVdUocvTWKtx9H8RIRGSKGqcgOpRWiXqVGgIsNerraiF0OERG1AcNUZFyLl4jI8DFMRVRZp8SxKyUAOIqXiMiQMUxFdOhiYxdvDxcb9OQoXiIig8UwFdFfF2ogIiLDxTAVSUWtEsfSb63FyzAlIjJkDFORHLpYCKVKQE9XG/RgFy8RkUFjmIrkp3O3RvFybikRkaFjmIqgokaJ47e6ePu5iVwNERFpi2Eqgl8uFkCpEtDLzRYBLuziJSIydAxTEfy3i5cDj4iIjAHDtINV1CiRkN64UMMYTokhIjIKDNMOduBiARrUjV28/s5ci5eIyBgwTDvYrYUaHuVVKRGR0dCLMN2wYQN8fX1hYWGB0NBQJCcn3/HYBx98EBKJ5LZt7NixmmOeeeaZ216PiorqiFO5q/KaepzI+LOLl/dLiYiMhqnYBezZswcxMTGIjY1FaGgo1q9fj8jISFy+fBkuLi63Hb9v3z7U19drfi4tLUVwcDAmTZrU5LioqChs375d87O5uXn7nUQL/XKhEA1qAfe528GPXbxEREZD9CvTdevWYc6cOYiOjkbv3r0RGxsLKysrbNu2rdnju3btCjc3N8128OBBWFlZ3Ram5ubmTY7r0qVLR5zOXf14jl28RETGSNQwra+vR0pKCiIiIjT7TExMEBERgcTExBa1sXXrVjz55JOwtrZusv/IkSNwcXFBYGAg5s2bh9LSUp3W3lo35eziJSIyVqJ285aUlEClUsHV1bXJfldXV1y6dOme709OTsb58+exdevWJvujoqLw+OOPo3v37sjMzMSyZcswevRoJCYmQiqV3taOQqGAQqHQ/FxZWdnGM7qzAxcKoFIL6ONhh+5O1vd+AxERGQzR75lqY+vWrQgKCsKQIUOa7H/yySc1/x0UFIR+/frB398fR44cwciRI29rZ82aNXjzzTfbtVbNQg3s4iUiMjqidvM6OTlBKpWisLCwyf7CwkK4ud19zVq5XI4vv/wSzz777D0/x8/PD05OTsjIyGj29aVLl6KiokKz5ebmtvwkWqBMXo+TmY3dzFz1iIjI+IgapjKZDCEhIYiPj9fsU6vViI+PR1hY2F3f+/XXX0OhUOCpp5665+dcv34dpaWlcHdvPsjMzc1hZ2fXZNOlW128fT3t4OPILl4iImMj+mjemJgYbNmyBTt27EBaWhrmzZsHuVyO6OhoAMCMGTOwdOnS2963detWPPbYY3B0dGyyv7q6GosWLUJSUhKuXr2K+Ph4jB8/HgEBAYiMjOyQc/pftxZq4OPWiIiMk+j3TKdMmYLi4mKsXLkSBQUF6N+/P+Li4jSDknJycmBi0jTzL1++jISEBPzyyy+3tSeVSvHHH39gx44dKC8vh4eHB0aNGoW3335blLmmpdUKnMxsHMXLLl4iIuMkEQRBELsIfVNZWQl7e3tUVFRo3eW7+1QOln17Dv287PH9gmE6qpCIiPSJ6N28xu6nczcAcG4pEZExY5i2o5JqBRI5ipeIyOgxTNtR3PkCqAUg2Mse3l2txC6HiIjaCcO0HWlG8XKhBiIio8YwbSfFVQqcym7s4h3dl2FKRGTMGKbt5NdLhY1dvN4O7OIlIjJyos8zNVaTQrwR4GIDRYNa7FKIiKidMUzbiYmJBCE+XcUug4iIOgC7eYmIiLTEMCUiItISw5SIiEhLDFMiIiItMUyJiIi0xDAlIiLSEsOUiIhIS5xn2oxbj3itrKwUuRIiItIHtra2kEgkd3ydYdqMqqoqAIC3t7fIlRARkT6oqKiAnZ3dHV+XCLcuw0hDrVbjxo0b9/xL5F4qKyvh7e2N3Nzcu/6fYIiM+dwAnp8hM+ZzA3h+YuGVaRuYmJjAy8tLZ+3Z2dnp1S+FLhnzuQE8P0NmzOcG8Pz0DQcgERERaYlhSkREpCWGaTsyNzfHqlWrYG5uLnYpOmfM5wbw/AyZMZ8bwPPTVxyAREREpCVemRIREWmJYUpERKQlhikREZGWGKZERERaYpi2kw0bNsDX1xcWFhYIDQ1FcnKy2CXpxMaNG9GvXz/NhOqwsDDs379f7LJ0Ki8vD0899RQcHR1haWmJoKAgnDlzRuyydKKqqgoLFy6Ej48PLC0tER4ejtOnT4tdVpscO3YM48aNg4eHByQSCb777jvNa0qlEkuWLEFQUBCsra3h4eGBGTNm4MaNG+IV3Ep3Oz8AeOaZZyCRSJpsUVFR4hTbSvc6t+rqaixYsABeXl6wtLRE7969ERsbK06xLcQwbQd79uxBTEwMVq1ahdTUVAQHByMyMhJFRUVil6Y1Ly8vvPvuu0hJScGZM2fw8MMPY/z48bhw4YLYpenEzZs3MXToUJiZmWH//v24ePEi3n//fXTp0kXs0nRi9uzZOHjwIHbt2oVz585h1KhRiIiIQF5entiltZpcLkdwcDA2bNhw22s1NTVITU3FihUrkJqain379uHy5cv429/+JkKlbXO387slKioK+fn5mu2LL77owArb7l7nFhMTg7i4OHz++edIS0vDwoULsWDBAnz//fcdXGkrCKRzQ4YMEebPn6/5WaVSCR4eHsKaNWtErKr9dOnSRfj000/FLkMnlixZIgwbNkzsMtpFTU2NIJVKhR9//LHJ/oEDBwqvv/66SFXpBgDh22+/vesxycnJAgDh2rVrHVOUDjV3fjNnzhTGjx8vSj261Ny59enTR3jrrbea7NP331NemepYfX09UlJSEBERodlnYmKCiIgIJCYmiliZ7qlUKnz55ZeQy+UICwsTuxyd+P777zFo0CBMmjQJLi4uGDBgALZs2SJ2WTrR0NAAlUoFCwuLJvstLS2RkJAgUlUdp6KiAhKJBA4ODmKXojNHjhyBi4sLAgMDMW/ePJSWlopdkk6Eh4fj+++/R15eHgRBwOHDh3HlyhWMGjVK7NLuiGGqYyUlJVCpVHB1dW2y39XVFQUFBSJVpVvnzp2DjY0NzM3NMXfuXHz77bfo3bu32GXpRFZWFjZu3IgePXrgwIEDmDdvHl588UXs2LFD7NK0Zmtri7CwMLz99tu4ceMGVCoVPv/8cyQmJiI/P1/s8tpVXV0dlixZgqlTpxrU4ul3ExUVhZ07dyI+Ph5r167F0aNHMXr0aKhUKrFL09pHH32E3r17w8vLCzKZDFFRUdiwYQMeeOABsUu7Iz41hlotMDAQv//+OyoqKvDNN99g5syZOHr0qFEEqlqtxqBBg7B69WoAwIABA3D+/HnExsZi5syZIlenvV27dmHWrFnw9PSEVCrFwIEDMXXqVKSkpIhdWrtRKpWYPHkyBEHAxo0bxS5HZ5588knNfwcFBaFfv37w9/fHkSNHMHLkSBEr095HH32EpKQkfP/99/Dx8cGxY8cwf/58eHh4NOn10ye8MtUxJycnSKVSFBYWNtlfWFgINzc3karSLZlMhoCAAISEhGDNmjUIDg7GBx98IHZZOuHu7n7bHwX33XcfcnJyRKpIt/z9/XH06FFUV1cjNzcXycnJUCqV8PPzE7u0dnErSK9du4aDBw8azVVpc/z8/ODk5ISMjAyxS9FKbW0tli1bhnXr1mHcuHHo168fFixYgClTpuC9994Tu7w7YpjqmEwmQ0hICOLj4zX71Go14uPjjea+4v9Sq9VQKBRil6ETQ4cOxeXLl5vsu3LlCnx8fESqqH1YW1vD3d0dN2/exIEDBzB+/HixS9K5W0Ganp6OQ4cOwdHRUeyS2tX169dRWloKd3d3sUvRilKphFKphIlJ03iSSqVQq9UiVXVv7OZtBzExMZg5cyYGDRqEIUOGYP369ZDL5YiOjha7NK0tXboUo0ePRrdu3VBVVYXdu3fjyJEjOHDggNil6cTLL7+M8PBwrF69GpMnT0ZycjI2b96MzZs3i12aThw4cACCICAwMBAZGRlYtGgRevXqZZC/m9XV1U2uwrKzs/H777+ja9eucHd3xxNPPIHU1FT8+OOPUKlUmjELXbt2hUwmE6vsFrvb+XXt2hVvvvkmJk6cCDc3N2RmZmLx4sUICAhAZGSkiFW3zN3OrVu3bhgxYgQWLVoES0tL+Pj44OjRo9i5cyfWrVsnYtX3IPJoYqP10UcfCd26dRNkMpkwZMgQISkpSeySdGLWrFmCj4+PIJPJBGdnZ2HkyJHCL7/8InZZOvXDDz8Iffv2FczNzYVevXoJmzdvFrskndmzZ4/g5+cnyGQywc3NTZg/f75QXl4udlltcvjwYQHAbdvMmTOF7OzsZl8DIBw+fFjs0lvkbudXU1MjjBo1SnB2dhbMzMwEHx8fYc6cOUJBQYHYZbfI3c5NEAQhPz9feOaZZwQPDw/BwsJCCAwMFN5//31BrVaLW/hd8BFsREREWuI9UyIiIi0xTImIiLTEMCUiItISw5SIiEhLDFMiIiItMUyJiIi0xDAlIiLSEsOUiNrk6tWrkEgk+P3338UuhUh0DFMiI1ZQUIAXXngBfn5+MDc3h7e3N8aNG9dk7Wgi0h7X5iUyUlevXsXQoUPh4OCAf/7znwgKCoJSqcSBAwcwf/58XLp0SewSiYwGr0yJjNTzzz8PiUSC5ORkTJw4ET179kSfPn0QExODpKQkzJo1C48++miT9yiVSri4uGDr1q0AGp8I9I9//AMBAQEwNzdHt27d8M4779zxM8+fP4/Ro0fDxsYGrq6uePrpp1FSUtKu50mkDximREaorKwMcXFxmD9/PqytrW973cHBAbNnz0ZcXBzy8/M1+3/88UfU1NRgypQpABqfEvTuu+9ixYoVuHjxInbv3g1XV9dmP7O8vBwPP/wwBgwYgDNnziAuLg6FhYWYPHly+5wkkR5hNy+REcrIyIAgCOjVq9cdjwkPD0dgYCB27dqFxYsXAwC2b9+OSZMmwcbGBlVVVfjggw/w8ccfY+bMmQAaHy4+bNiwZtv7+OOPMWDAAKxevVqzb9u2bfD29saVK1fQs2dPHZ4hkX7hlSmREWrpw6Bmz56N7du3AwAKCwuxf/9+zJo1CwCQlpYGhUKBkSNHtqits2fP4vDhw7CxsdFst8I8MzOzDWdBZDh4ZUpkhHr06AGJRHLPQUYzZszAa6+9hsTERJw8eRLdu3fH8OHDAQCWlpat+szq6mqMGzcOa9euve01d3f3VrVFZGh4ZUpkhLp27YrIyEhs2LABcrn8ttfLy8sBAI6Ojnjsscewfft2fPbZZ4iOjtYc06NHD1haWrZ4Gs3AgQNx4cIF+Pr6IiAgoMnW3H1bImPCMCUyUhs2bIBKpcKQIUOwd+9epKenIy0tDR9++CHCwsI0x82ePRs7duxAWlqa5t4oAFhYWGDJkiVYvHgxdu7ciczMTCQlJWlG+v6v+fPno6ysDFOnTsXp06eRmZmJAwcOIDo6GiqVqt3Pl0hM7OYlMlJ+fn5ITU3FO++8g1deeQX5+flwdnZGSEgINm7cqDkuIiIC7u7u6NOnDzw8PJq0sWLFCpiammLlypW4ceMG3N3dMXfu3GY/z8PDAydOnMCSJUswatQoKBQK+Pj4ICoqCiYm/LudjJtEaOlIBSIyStXV1fD09MT27dvx+OOPi10OkUHilSlRJ6VWq1FSUoL3338fDg4O+Nvf/iZ2SUQGi2FK1Enl5OSge/fu8PLywmeffQZTU34dELUVu3mJiIi0xFEBREREWmKYEhERaYlhSkREpCWGKRERkZYYpkRERFpimBIREWmJYUpERKQlhikREZGWGKZERERa+n89DnDTfuKKKgAAAABJRU5ErkJggg==\n" - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "# F1\n", - "plot_cycle_score(cycle, X_test, y_test,\n", - " scorer=f1_score,\n", - " figsize=(5,3),\n", - " scorer_kw=dict(average='weighted'));" - ], - "metadata": { - "collapsed": false - } - }, - { - "cell_type": "code", - "execution_count": 9, - "outputs": [ - { - "data": { - "text/plain": "
", - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAdMAAAEmCAYAAAA5oXoHAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8o6BhiAAAACXBIWXMAAA9hAAAPYQGoP6dpAAA75UlEQVR4nO3deVyU5f4//tewzCKr7IuIbImagqLgUp4Wjqjlkp607Uj4y5OJdox+buXeJ9FOmR7xaGWaS6Z+UsnjAhmlpqGoiLkrakIIyCK7DMPM/f0DnJqPqDgzcM8Mr+fjMY8j99xzz/s6D+Pldd3XfV0SQRAEEBERkd6sxC6AiIjI3DFMiYiIDMQwJSIiMhDDlIiIyEAMUyIiIgMxTImIiAzEMCUiIjIQw5SIiMhADNMmCIKAiooKcD0LIiJqDoZpEyorK+Hk5ITKykqxSyEiIjPAMCUiIjIQw5SIiMhAoobpoUOHMGzYMPj4+EAikSA5Ofmhnzlw4AB69eoFmUyG4OBgfPXVV/ecs3LlSnTq1AlyuRxRUVHIyMgwfvFERESNRA3T6upqhIWFYeXKlc06//r163juuefw9NNPIysrC1OnTsUbb7yB1NRU7Tlbt25FQkIC5s2bh8zMTISFhSEmJga3bt1qqWYQEVEbJzGVLdgkEgl27tyJkSNH3vecGTNmYM+ePTh79qz22EsvvYSysjKkpKQAAKKiotCnTx8kJSUBADQaDfz8/DBlyhTMnDmzWbVUVFTAyckJ5eXlcHR01L9RRETUJpjVPdP09HRER0frHIuJiUF6ejoAoK6uDidPntQ5x8rKCtHR0dpzmqJUKlFRUaHzIiIiai6zCtOCggJ4enrqHPP09ERFRQXu3LmD4uJiqNXqJs8pKCi473UTExPh5OSkffn5+bVI/UREZJnMKkxbyqxZs1BeXq595ebmil0SERGZERuxC3gUXl5eKCws1DlWWFgIR0dHKBQKWFtbw9rauslzvLy87ntdmUwGmUzWIjUTEZFxCYKA8jsqFFcpUVxV1/C/lUqUVDf8uaiyDiXVSpRU1eGHhL9AatPy/UazCtN+/fph7969Osf279+Pfv36AQCkUikiIiKQlpamncik0WiQlpaGyZMnt3a5RERtQml1HQorao1yLbVGQEl1HUqqlCiuagjEosbQ/POxek3z5s6WVCvh7aQwSm0PImqYVlVVITs7W/vz9evXkZWVBRcXF3Ts2BGzZs1CXl4eNmzYAACYOHEikpKSMH36dIwfPx4//vgjtm3bhj179mivkZCQgNjYWPTu3RuRkZFYtmwZqqurERcX1+rtIyKyVBqNgMPZxdh8LAf7LxRC3cxwMyZHuQ3cHGRws5PBzUEKN3sZXBv/7Gong7uDFO3bSVulFlHD9MSJE3j66ae1PyckJAAAYmNj8dVXXyE/Px85OTna9wMCArBnzx688847WL58OTp06IA1a9YgJiZGe87YsWNRVFSEuXPnoqCgAOHh4UhJSblnUhIRET26kiol/vfk79h8LAc5pTXa4272UkgkEoOvbyUB2rdrCEY3+8aAvPvnPwWnq52sVYZvm8tknjM1JXzOlIjoD4Ig4Nj1Umw+loOUswWoU2sAAA4yG4zq5YtXovzR2ctB5CrFZVb3TImIqPWU16iwPfN3fH3sBq4WVWuPh3VwwqtR/ng+zBvtpIwRgGFKRBaksKIWGddLkXu7Bk4KW7i0k8K5nRQudlK0b2cL53ZSkxoaNEWCIOBUbhm+PpqD3b/ehLK+oRfaTmqNEeG+eDWqIx73dRK5StPDMCUisyQIAnJKa3Dseikyrpfi+G+luFFS89DP2cts0N7OFu3bSRtftmhv1/jnxtD9cwg7t7OF3Na6FVokriplPZJP5eHrYzm4kP/HKnChXg54ta8/Rob7wEFuK2KFpo1hSkRmQaMRcPlWJTIawzPjeiluVSp1zrGSAF19HPGYhwMqlfW4XV2H2zV1uF2jQllNHTRCQ2hUKeuRW3qn2d/dTmrdGLZNh7BzO9vG3u8fgaywtTbKhJyWdjavHF8fy8F3WXmoqVMDAGQ2Vni+hw9e7dsRPf2czaIdYmOYEpFJUqk1OJtXjuO/3e153kb5HZXOObbWEoR1cEZkgAv6BLggwr89HO/Te9JoBFTUqnC7RoXS6jqU1dQ1/q8KpTV//Hy7RtUYwircrqmDWiOgpk6Nmro7yCtrfgDLbKx0wtVRbgsrExthzi29gzN55dqfg9zt8EqUP0b38oVzKz1SYik4m7cJnM1L1PpqVWqcyinTDtmevHEbd1RqnXPaSa0R4d8efTq5IDLABeF+zi06BCsIwp96uCptT7fJEK5WNfaC66BSm8+vVVtrCQY/7o1XozoiKsCFvVA9sWdKRKI6m1eODem/Ydfpm6hVaXTec1LYok8nF0Q19jy7+TjC1rr1uncSiQSO8oZepb9r8z4jCAKq69T3BG9FrerhH25lchtrPNPFA272XE7VUAxTImp1yno19p7Jx4b0GziVU6Y97uEgQ2RAQ3hGBrgixMMeVlbm1VOSSCSwl9nAXmYDP5d2YpdDrYRhSkSt5vfbNfj6WA62Hs9FaXUdgIZhxiGPe2NcP39E+LfnMCOZJYYpEbWou2u4bki/gR8vFuLuEq7eTnK8EtkRYyP94OEgF7dIIgMxTImoRZTfUeHbk79j09EbuF78x+o5A4Jd8fe+/oju4gmbVrz/SdSSGKZEZFTnbpZj09EbSD51Uzsb10Fmg9ERHfBaX38Ee9iLXCGR8TFMichgdfUa7DvbMKHo5I3b2uOdPR3w937+eKGnL+xk/HVDlot/u4lIL4Ig4GpRFZJP3cSW4zkormqYUGRjJcHgx73w977+iORzi9RGMEyJqFnUGgEX8itw7HopjjcurFDSOCMXADwdZXgl0h8vR/rBw5ETiqhtYZgSUZOU9Wqc+b1cu5B85o3bqFTW65wjs7FCZIALXo7siL929WzVBRWITAnDlIgAANXKemTm3NYuIp+VW6bdfusuB5kNendqj8gAV0QGtEd3X2duaUYEhilRm1VWU4fjv91GxvUSZFwvxdmbFVBrdNeUdbOXNiwi37gWbqiXI6zNbEUiotbAMCVqI6qU9Th2rQSHs4vxS3YJLhVW3nOOr7OicSm/hrVwA93sOIGIqBkYpkQWSqXWICu3DIevFONIdjGycstQ/396nsEe9ogMcEFkp4bw9HVWiFQtkXljmBJZCEEQcKmwUhuex66Xajd7vsvftR0GBLthQJAb+ga6wJW7hRAZBcOUyIzlld3BkezixlcJiquUOu+72knRP9gNTwS7on+QG3cxIWohDFMiM1Jeo0L6tRJtgF7705q3AKCwtUZkgAueCHbDgGA3hHo5mN0WZkTmiGFKZCamf3sa3578HX++7WltJUGPDk7a8OzZ0RkyG2vxiiRqoximRGbgWlEVtp34HUDDpKG74RkV6AJHua3I1RERw5TIDCRn3QQAPNXZHV/FRYpcDRH9X1y6hMjECYKA77LyAAAjw31FroaImsIwJTJxWblluFFSA4WtNf7a1VPscoioCQxTIhOXfKqhVzqomyf3BCUyUQxTIhOmUmuw+9d8ABziJTJlDFMiE3Y4uxgl1XVwsZPiiRA3scshovtgmBKZsO8ah3if7+HNvUKJTBj/6yQyUTV19fj+fCEAYGRPDvESmTKGKZGJ2n++EDV1avi7tkNPP2exyyGiB2CYEpmou7N4R4T5cE9RIhPHMCUyQSVVShy6UgwAGMEhXiKTxzAlMkF7zuRDrRHQ3dcJQe72YpdDRA/BMCUyQTvvDvGG+4hcCRE1B8OUyMTcKKnGqZwyWEmA4WEMUyJzwDAlMjHfNe4Q0z/IDR6OcpGrIaLmED1MV65ciU6dOkEulyMqKgoZGRn3PVelUmHhwoUICgqCXC5HWFgYUlJSdM5Rq9WYM2cOAgICoFAoEBQUhA8++ACCINznqkSmQxAEJN/dIYYTj4jMhqhhunXrViQkJGDevHnIzMxEWFgYYmJicOvWrSbPnz17Nj777DOsWLEC58+fx8SJE/HCCy/g1KlT2nOWLFmCVatWISkpCRcuXMCSJUvw0UcfYcWKFa3VLCK9nc2rwLWiashsrBDTjTvEEJkLiSBily0qKgp9+vRBUlISAECj0cDPzw9TpkzBzJkz7znfx8cH77//PuLj47XHRo8eDYVCgU2bNgEAnn/+eXh6euLLL7+87zkPU1FRAScnJ5SXl8PR0dGQJhI9kg92n8eXh6/juR7eWPlKL7HLIaJmEq1nWldXh5MnTyI6OvqPYqysEB0djfT09CY/o1QqIZfr3kNSKBQ4fPiw9uf+/fsjLS0Nly9fBgCcPn0ahw8fxpAhQ+5bi1KpREVFhc6LqLWpNQL+e7rhfil3iCEyL6JtjlhcXAy1Wg1PT92hLE9PT1y8eLHJz8TExGDp0qUYOHAggoKCkJaWhh07dkCtVmvPmTlzJioqKhAaGgpra2uo1Wp8+OGHePXVV+9bS2JiIhYsWGCchhHpKf1qCW5VKuHczhZ/ecxd7HKI6BGIPgHpUSxfvhwhISEIDQ2FVCrF5MmTERcXByurP5qxbds2fP3119i8eTMyMzOxfv16fPzxx1i/fv19rztr1iyUl5drX7m5ua3RHCIddyceDe3uDamNWf2nSdTmidYzdXNzg7W1NQoLC3WOFxYWwsvLq8nPuLu7Izk5GbW1tSgpKYGPjw9mzpyJwMBA7TnTpk3DzJkz8dJLLwEAunfvjhs3biAxMRGxsbFNXlcmk0EmkxmpZUSPrlalRsrZAgAc4iUyR6L981cqlSIiIgJpaWnaYxqNBmlpaejXr98DPyuXy+Hr64v6+nps374dI0aM0L5XU1Oj01MFAGtra2g0GuM2gMiIfrhQiCplPXydFejt317scojoEYnWMwWAhIQExMbGonfv3oiMjMSyZctQXV2NuLg4AMC4cePg6+uLxMREAMCxY8eQl5eH8PBw5OXlYf78+dBoNJg+fbr2msOGDcOHH36Ijh07olu3bjh16hSWLl2K8ePHi9JGouZIPtUw8WhEuA+srLhDDJG5ETVMx44di6KiIsydOxcFBQUIDw9HSkqKdlJSTk6OTi+ztrYWs2fPxrVr12Bvb4+hQ4di48aNcHZ21p6zYsUKzJkzB5MmTcKtW7fg4+ODN998E3Pnzm3t5lErKq2uww/nC3G1qArDw33QzcdJ7JKaraymDgcvNzxbzYUaiMyTqM+Zmio+Z2oe8sruIPVsAVLPFeD4b6XQNP5NtraS4M2BgXj72RDIba3FLbIZvj52A+/vPIsu3o7Y988nxS6HiPQgas+U6FEIgoDsW1VIPVeA1HOFOJNXrvN+Nx9HuNnLcPByEf5z4CpSzhZg8egeiAxwEani5vnu1N1nS7moPZG5YpiSSdNoBJz+vQyp5wrx/bkCXCuu1r5nJQF6d3JBTDcvDOrqCT+XdgCA1HMFmJN8FteKqzHms3S81rcjZgwOhYPcVqxm3Nfvt2uQ8VspJBJgOMOUyGwxTMnkqNQaZFwvRcrZAuw/X4iCilrte1JrKwwIdsXgx73wbBdPuNnf+0hTTDcv9A10ReLeC9hyPBebjuYg7cItfPjC43gm1LTWu93VuOJRVIALvJ0UIldDRPpimJJJuFOnxqErRUg9V4C0C7dQfkelfc9eZoOnOrsjppsXnurs3qweppPCFotH98DwcB/M2nEGN0pqMP6rExge5oN5w7rCtYkQbm2CICC5cRNwPltKZN4MmoBUV1eH69evIygoCDY2lpPLnIDUsqqU9ci+VYUrhZW4cqsKlwoqcex6CWpVfzwL7GonxV+7eiKmmxf6B7tCZqP/RKI7dWp8+sNlrPn5GjQC0L6dLeYN64YR4T6QSMR7DOX8zQoM/ffPkFpb4fjsaDgpTG8YmoiaR68ErKmpwZQpU7RL9F2+fBmBgYGYMmUKfH19m9zxhdqe8jsqZN+qxJXCKly51fDKLqzEzfLaJs/3dVYgppsXBj/uhQj/9rA20vOWCqk13hvaBc/38Mb0b3/FxYJKTN2aheSsPHz4Qnf4OoszvPpd4/KBz4R6MEiJzJxeYTpr1iycPn0aBw4cwODBg7XHo6OjMX/+fIZpG3O7uq4xLBuCM7vxz4UVyvt+xsNBhhBPe4R4OCDYwx7hfs7o5uPYoj3FHh2c8d8pT+Czg1fx77RsHLhUhEFLD2LGkFC8FuXfqoslaDSC9n7pyJ6ceERk7vQK0+TkZGzduhV9+/bV+eXXrVs3XL161WjFkek6/lsplv1wGZcKKlFcVXff83yc5Aj2dECIh33Dy9Mewe4OcGonTk/M1toKk58JweDHvTFz+684ceM25n53DruybmLx6B4I9rBvlTqOXS9FfnktHOQ2eKqzR6t8JxG1HL3CtKioCB4e9/4CqK6uFvUeFLWOq0VVGL/uOCqV9dpjHdorGsOyoacZ4mGPYA97k3wcBQCCPeyx7c1+2HTsBpbsu4gTN25j6PKf8fazwXjzL0GwtW7ZZavvDvEOfdzbLBaWIKIH0ytMe/fujT179mDKlCkAoA3QNWvWPHSRejJvFbUqTNhwApXKevT2b495w7ohyMMO7aTmNwHNykqCcf064dkunnh/5xkcuFSEj7+/jN2/5uOjv/VAjw7OLfK9yno19p7JBwCM4BAvkUXQ6zfgokWLMGTIEJw/fx719fVYvnw5zp8/j19++QUHDx40do1kIjQaAQlbs3CtqBreTnKsei0C7g7iP2JiKF9nBda93gffZd3Egv+ew8WCSoxceQQTBgbi3b92Nvreoj9dLEJFbT28HOXoG+Bq1GsTkTj0+i3xxBNP4PTp06ivr0f37t3x/fffw8PDA+np6YiIiDB2jWQilv1wGT9cuAWpjRU++7tlBOldEokEI3v64oeEv2B4mA80AvDZwWt48bN05JbWGPW77g7xDucOMUQW45GfM1WpVHjzzTcxZ84cBAQEtFRdouJzpvdKOZuPiZsyAQBLx4RhVK8OIlfUslLPFWDa/55GRW09HOU2+NeLYYjp1vSm9Y+i/I4KfT78AXX1Gux9+0l09eHfLyJL8Mg9U1tbW2zfvr0laiETdamgEgnbTgMA/r8nAiw+SIGGJQn3/vNJ9OzojIraery58STm7zoHZb3aoOumnM1HXb0Gj3nao4u3g5GqJSKx6TXMO3LkSCQnJxu5FDJFZTV1mLDhBGrq1Ogf5IpZQ0LFLqnVdGjfDtve7Id/DAwEAHz1y2/426p05JToP+z7xybgvpz5TmRB9JqAFBISgoULF+LIkSOIiIiAnZ2dzvtvv/22UYojcdWrNZjyzSnklNagQ3sFkl7pBZsWfmTE1NhaW+G9oV3QN9AFCdtO40xeOZ77989Y8rceGNrd+5GuVVBei6PXSwAAI7hDDJFF0Wtt3gfdK5VIJLh27ZpBRYmN90wbJO69gM8OXYPC1hrb3+rf5u/v3Sy7g7e/OYUTN24DAP7e1x/vP9el2c+Jfn7oKhbtvYg+ndrjfyf2b8lSiaiV6dUzvX79urHrIBPzXVYePjvU8I+if73Yo80HKQD4OCvwzT/6Yun+y1h14Co2Hr2BzJzbSHqlFwLc7B76+T8P8RKRZTF4zE4QBBiw8QyZoLN55Zj+7a8AgElPBeH5HhySvMvW2gozBofiq7g+cLGT4tzNCgxbcVi7zu79XCmsxPn8CthYSfDcIw4PE5Hp0ztMN2zYgO7du0OhUEChUKBHjx7YuHGjMWsjEZRUKfHmxpNQ1mvwVGd3vDuos9glmaSnOntg79tPIjLABVXKerz9zSm8t/MMalVNz/ZNbny29KnOHmhvJ23NUomoFegVpkuXLsVbb72FoUOHYtu2bdi2bRsGDx6MiRMn4tNPPzV2jdRKVGoNJn2dibyyOwhws8Pyl3oabRs0S+TlJMfmN6Iw5ZlgSCTA5mM5GLnyCK4WVemcJwgCvsviDjFElkzvCUgLFizAuHHjdI6vX78e8+fPN/t7qm11AtL8Xefw1S+/wV5mg+T4/gj24HOQzfXzlSK8szULxVV1aCe1xqIXumNkz4Z7oyd+K8XfVqfDXmaDE7OjubA9kQXSq2ean5+P/v3vnY3Yv39/5OfnG1wUtb5tJ3Lx1S+/AWhY4YhB+mieDHHH3refRN9AF9TUqTF1axZmbv8Vd+rU2HmqYYg3ppsXg5TIQukVpsHBwdi2bds9x7du3YqQkBCDi6LWdSrnNmbvPAsAmBodgkFGWDavLfJwlOPrN/rin8+GQCIBthzPxciVR7CncYcYDvESWS69Ho1ZsGABxo4di0OHDmHAgAEAgCNHjiAtLa3JkCXTdauiFhM3nUSdWoNBXT3x9jP8x5AhrK0keOevjyEqwAVvb8nCpcJKAIC7gwz9g9xEro6IWopePdPRo0fj2LFjcHNzQ3JyMpKTk+Hm5oaMjAy88MILxq6RWoiyXo2Jm06isEKJEA97LB0bzl1MjKR/sBv2/vMJDAhu2GLtxYgOnMxFZMH0moBk6drCBCRBEDBrxxlsOZ4LR7kNdk1+Ap2asfAAPRqNRsCFggo85ukA2za2FCNRW6LXf9179+5FamrqPcdTU1Oxb98+g4uilrfpWA62HM+FRAL8++WeDNIWYmUlQTcfJwYpkYXT67/wmTNnQq2+9+F0QRAwc+ZMg4uilpVxvRQLdp0DAEyPCcVTnT1EroiIyLzpFaZXrlxB165d7zkeGhqK7Oxsg4uilnOz7A4mfX0S9RoBz/fwxsS/BIpdEhGR2dMrTJ2cnJrcGSY7O/ue7djIdNSqGiYcFVfVoYu3Iz76Ww/uqUlEZAR6hemIESMwdepUXL16VXssOzsb7777LoYPH2604si4Fvz3PH79vRzt29ni879HoJ1UryejiIjo/9ArTD/66CPY2dkhNDQUAQEBCAgIQJcuXeDq6oqPP/7Y2DWSEew89Tu+yciBRAIsf6kn/FzaiV0SEZHF0Ktr4uTkhF9++QX79+/H6dOntbvGDBw40Nj1kRFcKazEezsaVjia8kwIBj7mLnJFRESWxWjPmZaVlcHZ2dkYlxKdJT1nWlNXj+FJR5B9qwoDgl2xYXwUFw8gIjIyvYZ5lyxZgq1bt2p/HjNmDFxdXeHr64vTp08brTgyjCAImL3zLLJvVcHDQYZlY7mlGhFRS9ArTFevXg0/Pz8AwP79+7F//37s27cPQ4YMwbRp04xaIOlvy/Fc7DiVB2srCVa83BPuDjKxSyIiskh63TMtKCjQhunu3bsxZswYDBo0CJ06dUJUVJRRCyT9nLtZjnmNCzP8/4M6IyrQVeSKiIgsl1490/bt2yM3NxcAkJKSgujoaAANw4pNrYxErauiVoVJX2eirl6DZ0M98OZALsxARNSS9OqZjho1Cq+88gpCQkJQUlKCIUOGAABOnTqF4OBgoxZIj0YQBMz49lfcKKmBr7MCn4wJ404wREQtTK+e6aefforJkyeja9eu2L9/P+zt7QEA+fn5mDRp0iNda+XKlejUqRPkcjmioqKQkZFx33NVKhUWLlyIoKAgyOVyhIWFISUl5Z7z8vLy8Nprr8HV1RUKhQLdu3fHiRMnHq2RZmrdkd+w72wBbK0lWPlqLzi3k4pdEhGR5RNa0NChQ4WbN2/e9/0tW7YIUqlUWLt2rXDu3DlhwoQJgrOzs1BYWNjk+dOnTxd8fHyEPXv2CFevXhX+85//CHK5XMjMzNSeU1paKvj7+wuvv/66cOzYMeHatWtCamqqkJ2d3ey6y8vLBQBCeXl58xtrAk7eKBWCZu0R/GfsFtYdviZ2OUREbUaL7mfq4OCA06dPIzCw6Xt2UVFR6NOnD5KSkgAAGo0Gfn5+mDJlSpO7z/j4+OD9999HfHy89tjo0aOhUCiwadMmAA072hw5cgQ///yz3nWb43Omt6vr8Ny/f8bN8lo8190bSa/05Lq7REStRLRNFuvq6nDy5Ent5CUAsLKyQnR0NNLT05v8jFKphFwu1zmmUChw+PBh7c+7du1C79698eKLL8LDwwM9e/bEF1988cBalEolKioqdF7mRKMRkLAtCzfLaxHgZofFo7szSImIWpFoYVpcXAy1Wg1PT0+d456enigoKGjyMzExMVi6dCmuXLkCjUaD/fv3Y8eOHcjPz9eec+3aNaxatQohISFITU3FW2+9hbfffhvr16+/by2JiYlwcnLSvu4+9mMuVh28ip8uFUFmY4WVr/SCg9xW7JKIiNoU0cJUH8uXL0dISAhCQ0MhlUoxefJkxMXFwcrqj2ZoNBr06tULixYtQs+ePfGPf/wDEyZMwOrVq+973VmzZqG8vFz7uvvYjzk4eq0En3x/CQCwcEQ3dPUxj2FpIiJLIlqYurm5wdraGoWFhTrHCwsL4eXl1eRn3N3dkZycjOrqaty4cQMXL16Evb29zj1Zb2/vezYu79KlC3Jycu5bi0wmg6Ojo87LHNyqrMWUb05BIwCje3XAmN7m1aMmIrIUooWpVCpFREQE0tLStMc0Gg3S0tLQr1+/B35WLpfD19cX9fX12L59O0aMGKF9b8CAAbh06ZLO+ZcvX4a/v79xGyAytUbAP7/JQlGlEo952uODkd14n5SISCQtujv0e++9BxcXl/u+n5CQgNjYWPTu3RuRkZFYtmwZqqurERcXBwAYN24cfH19kZiYCAA4duwY8vLyEB4ejry8PMyfPx8ajQbTp0/XXvOdd95B//79sWjRIowZMwYZGRn4/PPP8fnnn7dkU1vdsh8uI/1aCdpJrfGfV7nRNxGRmPT6DZyYmAhPT0+MHz9e5/jatWtRVFSEGTNmAGi4F/kgY8eORVFREebOnYuCggKEh4cjJSVFOykpJydH535obW0tZs+ejWvXrsHe3h5Dhw7Fxo0bdbZ+69OnD3bu3IlZs2Zh4cKFCAgIwLJly/Dqq6/q01STdODSLaz4MRsAkDiqO4I97EWuiIiobdPrOdNOnTph8+bN6N+/v87xY8eO4aWXXsL169eNVqAYTPk505tld/Dcv3/G7RoVXuvbEf8zsrvYJRERtXl63TMtKCiAt7f3Pcfd3d11HlMh41KpNZi8ORO3a1R43NcRs5/r+vAPERFRi9MrTP38/HDkyJF7jh85cgQ+Pj4GF0VNW7LvIjJzyuAgt8F/XomA3NZa7JKIiAh63jOdMGECpk6dCpVKhWeeeQYAkJaWhunTp+Pdd981aoHUIOVsAdYcbhg+//jFMHR0bSdyRUREdJdeYTpt2jSUlJRg0qRJqKurA9DwuMqMGTMeOumIHl1OSQ2mfXsaADDhyQDEdGv6OVwiIhKHQQvdV1VV4cKFC1AoFAgJCYFMJjNmbaIxtQlIEzeeRMq5AkT4t8eWf/SFrbVZLVxFRGTxDHo40d7eHn369DFWLXQfmTm3AQCzhoQySImITJBeYfr0008/cLWdH3/8Ue+CSFdRpRK3KpWQSIAu3uL3komI6F56hWl4eLjOzyqVCllZWTh79ixiY2ONURc1upDfsB1cgKsd7GRc5YiIyBTp9dv5008/bfL4/PnzUVVVZVBBpOt8Y5iyV0pEZLqMegPutddew9q1a415yTbvbs+UW6sREZkuo4Zpeno65HK5MS/Z5p2/2Rim7JkSEZksvYZ5R40apfOzIAjIz8/HiRMnMGfOHKMURkCtSo2rRQ3D5uyZEhGZLr3C1MnJSednKysrdO7cGQsXLsSgQYOMUhgBlwsroREAFzspPBws4xleIiJLpFeYrlu3zth1UBP+PMTLjb+JiEwXVwAwYec5+YiIyCzo1TNVq9X49NNPsW3bNuTk5GjX572rtLTUKMW1dXd7pl28HUSuhIiIHkSvnumCBQuwdOlSjB07FuXl5UhISMCoUaNgZWWF+fPnG7nEtkmjEXCxoBIA0NXb6SFnExGRmPQK06+//hpffPEF3n33XdjY2ODll1/GmjVrMHfuXBw9etTYNbZJubdrUKWsh9TGCoHudmKXQ0RED6BXmBYUFKB79+4AGha7Ly8vBwA8//zz2LNnj/Gqa8PuDvE+5mnPxe2JiEycXr+lO3TogPz8fABAUFAQvv/+ewDA8ePHLWYbNrFpVz7iYg1ERCZPrzB94YUXkJaWBgCYMmUK5syZg5CQEIwbNw7jx483aoFt1XmGKRGR2dBrNu/ixYu1fx47diz8/f3xyy+/ICQkBMOGDTNacW2Z9hlTH04+IiIydUbZ06tv377o27fvPcefe+45rFmzBt7e3sb4mjajrKYON8trAQChfCyGiMjktejMlkOHDuHOnTst+RUW6e4Qr5+LAo5yW5GrISKih+E0URPEnWKIiMwLw9QEcUNwIiLzwjA1QRfy7658xDAlIjIHDFMTU1evQfatxjDlAvdERGaBYWpirtyqhEotwFFuA19nhdjlEBFRM7RomL733ntwcXFpya+wOHeHeLtwD1MiIrOhV5gmJiZi7dq19xxfu3YtlixZov151qxZcHZ21ru4tuiPxRo4xEtEZC70CtPPPvsMoaGh9xzv1q0bVq9ebXBRbdn5/IZNAzj5iIjIfOi9a0xTqxq5u7trF8CnRycIgs4wLxERmQe9wtTPzw9Hjhy55/iRI0fg4+NjcFFt1c3yWpTfUcHGSoIQT3uxyyEiombSa23eCRMmYOrUqVCpVHjmmWcAAGlpaZg+fTreffddoxbYlty9XxrsYQ+ZjbXI1RARUXPpFabTpk1DSUkJJk2ahLq6OgCAXC7HjBkzMGvWLKMW2JZwGUEiIvOkV5hKJBIsWbIEc+bMwYULF6BQKBASEsKNwQ2k3RCcM3mJiMyKQVuw2dvbayciMUgNxw3BiYjMk14TkDQaDRYuXAgnJyf4+/vD398fzs7O+OCDD6DRaIxdY5tQWatCTmkNAM7kJSIyN3qF6fvvv4+kpCQsXrwYp06dwqlTp7Bo0SKsWLECc+bMeeTrrVy5Ep06dYJcLkdUVBQyMjLue65KpcLChQsRFBQEuVyOsLAwpKSk3Pf8xYsXQyKRYOrUqY9cV2u6WNDwSIy3kxzt7aQiV0NERI9Cr2He9evXY82aNRg+fLj2WI8ePeDr64tJkybhww8/bPa1tm7dioSEBKxevRpRUVFYtmwZYmJicOnSJXh4eNxz/uzZs7Fp0yZ88cUXCA0NRWpqKl544QX88ssv6Nmzp865x48fx2effYYePXro08xWxclHRETmS6+eaWlpaZMrIIWGhqK0tPSRrrV06VJMmDABcXFx6Nq1K1avXo127do1uVwhAGzcuBHvvfcehg4disDAQLz11lsYOnQoPvnkE53zqqqq8Oqrr+KLL75A+/btH6kmMXAZQSIi86VXmIaFhSEpKeme40lJSQgLC2v2derq6nDy5ElER0f/UZCVFaKjo5Gent7kZ5RKJeRyuc4xhUKBw4cP6xyLj4/Hc889p3NtU8YNwYmIzJdew7z/+te/MHToUPzwww/o168fACA9PR25ubnYu3dvs69TXFwMtVoNT09PneOenp64ePFik5+JiYnB0qVLMXDgQAQFBSEtLQ07duyAWq3WnrNlyxZkZmbi+PHjzapDqVRCqVRqf66oqGh2G4yhXq3BpUJuCE5EZK4euWeqUqmwYMEC7N27F6NGjUJZWRnKysowatQoXLp0CU8++WRL1Km1fPlyhISEIDQ0FFKpFJMnT0ZcXBysrBqakpubi3/+85/4+uuv7+nB3k9iYiKcnJy0Lz8/v5Zswj2uFVejrl4DO6k1Orq0a9XvJiIiwz1yz9TW1ha//vorvL298T//8z8Gfbmbmxusra1RWFioc7ywsBBeXl5Nfsbd3R3Jycmora1FSUkJfHx8MHPmTAQGBgIATp48iVu3bqFXr17az6jVahw6dAhJSUlQKpWwttZdqm/WrFlISEjQ/lxRUdGqgXr3fmmotyOsrLiHKRGRudHrnulrr72GL7/80uAvl0qliIiIQFpamvaYRqNBWlqadvj4fuRyOXx9fVFfX4/t27djxIgRAIBnn30WZ86cQVZWlvbVu3dvvPrqq8jKyronSIGGBSccHR11Xq3pAhdrICIya3rdM62vr8fatWvxww8/ICIiAnZ2djrvL126tNnXSkhIQGxsLHr37o3IyEgsW7YM1dXViIuLAwCMGzcOvr6+SExMBAAcO3YMeXl5CA8PR15eHubPnw+NRoPp06cDABwcHPD444/rfIednR1cXV3vOW4qznMZQSIis6ZXmJ49e1Y7jHr58mWd9ySSRxumHDt2LIqKijB37lwUFBQgPDwcKSkp2klJOTk52vuhAFBbW4vZs2fj2rVrsLe3x9ChQ7Fx40Y4Ozvr0xTRCYKgHeblTF4iIvMkEQRBELsIU1NRUQEnJyeUl5e3+JDvrYpaRC5Kg5UEOLdgMBRSbr1GRGRu9LpnSsZzrnGIN9DdnkFKRGSmGKYi4zKCRETmj2EqMq58RERk/himIuOG4ERE5o9hKqKaunpcL64GwGFeIiJzxjAV0cWCSggC4GYvg7uDTOxyiIhITwxTEXGIl4jIMjBMRcSZvEREloFhKqI/ZvI6iFwJEREZgmEqErVGwMX8hj1Mu3GYl4jIrDFMRXKjpBp3VGrIba0Q4GYvdjlERGQAhqlI7g7xdvZyhDX3MCUiMmsMU5H8MfmI90uJiMwdw1Qk3BCciMhyMExFwg3BiYgsB8NUBCVVShRWKAE03DMlIiLzxjAVwYXGR2I6ubaDvcxG5GqIiMhQDFMRnM8vB8AhXiIiS8EwFcHdmbxdOMRLRGQRGKYi4OQjIiLLwjBtZbUqNa4WNe5hyjAlIrIIDNNWdqWwCmqNgPbtbOHlKBe7HCIiMgKGaSu7O/moi7cjJBIuI0hEZAkYpq3s7mMxXPmIiMhyMExbmXZNXt4vJSKyGAzTViQIgnZN3i7smRIRWQyGaSv6/fYdVCrrIbW2QpA79zAlIrIUDNNWdK5xiDfE0x5SG/5fT0RkKfgbvRWd5xAvEZFFYpi2oj82BGeYEhFZEoZpK7rAZQSJiCwSw7SVlNeokFd2BwCHeYmILA3DtJXcvV/q66yAk8JW5GqIiMiYGKathEO8RESWi2HaSrTbrnGIl4jI4jBMW4l2Q3CGKRGRxWGYtoK6eg2u3GpY4L4bh3mJiCwOw7QVXC2qgkotwEFmgw7tFWKXQ0RERsYwbQV/HuLlHqZERJaHYdoKznMmLxGRRTOJMF25ciU6deoEuVyOqKgoZGRk3PdclUqFhQsXIigoCHK5HGFhYUhJSdE5JzExEX369IGDgwM8PDwwcuRIXLp0qaWbcV8XOJOXiMiiiR6mW7duRUJCAubNm4fMzEyEhYUhJiYGt27davL82bNn47PPPsOKFStw/vx5TJw4ES+88AJOnTqlPefgwYOIj4/H0aNHsX//fqhUKgwaNAjV1dWt1SwtQRDYMyUisnASQRAEMQuIiopCnz59kJSUBADQaDTw8/PDlClTMHPmzHvO9/Hxwfvvv4/4+HjtsdGjR0OhUGDTpk1NfkdRURE8PDxw8OBBDBw48KE1VVRUwMnJCeXl5XB0NCwAb5bdQf/FP8LaSoJzC2Igt7U26HpERGR6RO2Z1tXV4eTJk4iOjtYes7KyQnR0NNLT05v8jFKphFwu1zmmUChw+PDh+35PeXk5AMDFxeW+16yoqNB5GcvdId5gd3sGKRGRhRI1TIuLi6FWq+Hp6alz3NPTEwUFBU1+JiYmBkuXLsWVK1eg0Wiwf/9+7NixA/n5+U2er9FoMHXqVAwYMACPP/54k+ckJibCyclJ+/Lz8zOsYX+i3XaNQ7xERBZL9Humj2r58uUICQlBaGgopFIpJk+ejLi4OFhZNd2U+Ph4nD17Flu2bLnvNWfNmoXy8nLtKzc312j1/rEhuIPRrklERKZF1DB1c3ODtbU1CgsLdY4XFhbCy8uryc+4u7sjOTkZ1dXVuHHjBi5evAh7e3sEBgbec+7kyZOxe/du/PTTT+jQocN965DJZHB0dNR5Gcsfa/I6Ge2aRERkWkQNU6lUioiICKSlpWmPaTQapKWloV+/fg/8rFwuh6+vL+rr67F9+3aMGDFC+54gCJg8eTJ27tyJH3/8EQEBAS3WhgepUtbjRkkNAPZMiYgsmY3YBSQkJCA2Nha9e/dGZGQkli1bhurqasTFxQEAxo0bB19fXyQmJgIAjh07hry8PISHhyMvLw/z58+HRqPB9OnTtdeMj4/H5s2b8d1338HBwUF7/9XJyQkKRest53exsVfq6SiDq72s1b6XiIhal+hhOnbsWBQVFWHu3LkoKChAeHg4UlJStJOScnJydO6H1tbWYvbs2bh27Rrs7e0xdOhQbNy4Ec7OztpzVq1aBQB46qmndL5r3bp1eP3111u6SVrcdo2IqG0Q/TlTU2Ss50xn7fgV32TkIv7pIEyLCTVihUREZErMbjavOdE+FsPJR0REFo1h2kLq1RpcLGjYw5STj4iILBvDtIX8VlINZb0G7aTW8He1E7scIiJqQQzTFnKucYg31MsB1lbcw5SIyJKJPpvXUv21qye+ndgPKjXndxERWTqGaQtpJ7VB705NL6xPRESWhcO8REREBmKYEhERGYhhSkREZCCGKRERkYEYpkRERAZimBIRERmIYUpERGQgPmfahLsb6VRUVIhcCRERmQIHBwdIJPdfzY5h2oTKyoYF6v38/ESuhIiITMHDtuTkfqZN0Gg0uHnz5kP/JfIwFRUV8PPzQ25urkH7opoiS24bwPaZM0tuG2DZ7TPltrFnqgcrKyt06NDBaNdzdHQ0ub8YxmLJbQPYPnNmyW0DLLt95tg2TkAiIiIyEMOUiIjIQAzTFiSTyTBv3jzIZDKxSzE6S24bwPaZM0tuG2DZ7TPntnECEhERkYHYMyUiIjIQw5SIiMhADFMiIiIDMUyJiIgMxDBtIStXrkSnTp0gl8sRFRWFjIwMsUsyilWrVqFHjx7ah6r79euHffv2iV2WUeXl5eG1116Dq6srFAoFunfvjhMnTohdllFUVlZi6tSp8Pf3h0KhQP/+/XH8+HGxy9LLoUOHMGzYMPj4+EAikSA5OVn7nkqlwowZM9C9e3fY2dnBx8cH48aNw82bN8Ur+BE9qH0A8Prrr0Mikei8Bg8eLE6xj+hhbauqqsLkyZPRoUMHKBQKdO3aFatXrxan2GZimLaArVu3IiEhAfPmzUNmZibCwsIQExODW7duiV2awTp06IDFixfj5MmTOHHiBJ555hmMGDEC586dE7s0o7h9+zYGDBgAW1tb7Nu3D+fPn8cnn3yC9u3bi12aUbzxxhvYv38/Nm7ciDNnzmDQoEGIjo5GXl6e2KU9surqaoSFhWHlypX3vFdTU4PMzEzMmTMHmZmZ2LFjBy5duoThw4eLUKl+HtS+uwYPHoz8/Hzt65tvvmnFCvX3sLYlJCQgJSUFmzZtwoULFzB16lRMnjwZu3btauVKH4FARhcZGSnEx8drf1ar1YKPj4+QmJgoYlUtp3379sKaNWvELsMoZsyYITzxxBNil9EiampqBGtra2H37t06x3v16iW8//77IlVlHACEnTt3PvCcjIwMAYBw48aN1inKiJpqX2xsrDBixAhR6jGmptrWrVs3YeHChTrHTP3vKXumRlZXV4eTJ08iOjpae8zKygrR0dFIT08XsTLjU6vV2LJlC6qrq9GvXz+xyzGKXbt2oXfv3njxxRfh4eGBnj174osvvhC7LKOor6+HWq2GXC7XOa5QKHD48GGRqmo95eXlkEgkcHZ2FrsUozlw4AA8PDzQuXNnvPXWWygpKRG7JKPo378/du3ahby8PAiCgJ9++gmXL1/GoEGDxC7tvhimRlZcXAy1Wg1PT0+d456enigoKBCpKuM6c+YM7O3tIZPJMHHiROzcuRNdu3YVuyyjuHbtGlatWoWQkBCkpqbirbfewttvv43169eLXZrBHBwc0K9fP3zwwQe4efMm1Go1Nm3ahPT0dOTn54tdXouqra3FjBkz8PLLL5vdAur3M3jwYGzYsAFpaWlYsmQJDh48iCFDhkCtVotdmsFWrFiBrl27okOHDpBKpRg8eDBWrlyJgQMHil3afXHXGHpknTt3RlZWFsrLy/Htt98iNjYWBw8etIhA1Wg06N27NxYtWgQA6NmzJ86ePYvVq1cjNjZW5OoMt3HjRowfPx6+vr6wtrZGr1698PLLL+PkyZNil9ZiVCoVxowZA0EQsGrVKrHLMZqXXnpJ++fu3bujR48eCAoKwoEDB/Dss8+KWJnhVqxYgaNHj2LXrl3w9/fHoUOHEB8fDx8fH51RP1PCnqmRubm5wdraGoWFhTrHCwsL4eXlJVJVxiWVShEcHIyIiAgkJiYiLCwMy5cvF7sso/D29r7nHwVdunRBTk6OSBUZV1BQEA4ePIiqqirk5uYiIyMDKpUKgYGBYpfWIu4G6Y0bN7B//36L6ZU2JTAwEG5ubsjOzha7FIPcuXMH7733HpYuXYphw4ahR48emDx5MsaOHYuPP/5Y7PLui2FqZFKpFBEREUhLS9Me02g0SEtLs5j7iv+XRqOBUqkUuwyjGDBgAC5duqRz7PLly/D39xepopZhZ2cHb29v3L59G6mpqRgxYoTYJRnd3SC9cuUKfvjhB7i6uopdUov6/fffUVJSAm9vb7FLMYhKpYJKpYKVlW48WVtbQ6PRiFTVw3GYtwUkJCQgNjYWvXv3RmRkJJYtW4bq6mrExcWJXZrBZs2ahSFDhqBjx46orKzE5s2bceDAAaSmpopdmlG888476N+/PxYtWoQxY8YgIyMDn3/+OT7//HOxSzOK1NRUCIKAzp07Izs7G9OmTUNoaKhZ/t2sqqrS6YVdv34dWVlZcHFxgbe3N/72t78hMzMTu3fvhlqt1s5ZcHFxgVQqFavsZntQ+1xcXLBgwQKMHj0aXl5euHr1KqZPn47g4GDExMSIWHXzPKhtHTt2xF/+8hdMmzYNCoUC/v7+OHjwIDZs2IClS5eKWPVDiDyb2GKtWLFC6NixoyCVSoXIyEjh6NGjYpdkFOPHjxf8/f0FqVQquLu7C88++6zw/fffi12WUf33v/8VHn/8cUEmkwmhoaHC559/LnZJRrN161YhMDBQkEqlgpeXlxAfHy+UlZWJXZZefvrpJwHAPa/Y2Fjh+vXrTb4HQPjpp5/ELr1ZHtS+mpoaYdCgQYK7u7tga2sr+Pv7CxMmTBAKCgrELrtZHtQ2QRCE/Px84fXXXxd8fHwEuVwudO7cWfjkk08EjUYjbuEPwC3YiIiIDMR7pkRERAZimBIRERmIYUpERGQghikREZGBGKZEREQGYpgSEREZiGFKRERkIIYpEenlt99+g0QiQVZWltilEImOYUpkwQoKCjBlyhQEBgZCJpPBz88Pw4YN01k7mogMx7V5iSzUb7/9hgEDBsDZ2Rn/+te/0L17d6hUKqSmpiI+Ph4XL14Uu0Qii8GeKZGFmjRpEiQSCTIyMjB69Gg89thj6NatGxISEnD06FGMHz8ezz//vM5nVCoVPDw88OWXXwJo2BHoo48+QnBwMGQyGTp27IgPP/zwvt959uxZDBkyBPb29vD09MTf//53FBcXt2g7iUwBw5TIApWWliIlJQXx8fGws7O7531nZ2e88cYbSElJQX5+vvb47t27UVNTg7FjxwJo2CVo8eLFmDNnDs6fP4/NmzfD09Ozye8sKyvDM888g549e+LEiRNISUlBYWEhxowZ0zKNJDIhHOYlskDZ2dkQBAGhoaH3Pad///7o3LkzNm7ciOnTpwMA1q1bhxdffBH29vaorKzE8uXLkZSUhNjYWAANm4s/8cQTTV4vKSkJPXv2xKJFi7TH1q5dCz8/P1y+fBmPPfaYEVtIZFrYMyWyQM3dDOqNN97AunXrAACFhYXYt28fxo8fDwC4cOEClEolnn322WZd6/Tp0/jpp59gb2+vfd0N86tXr+rRCiLzwZ4pkQUKCQmBRCJ56CSjcePGYebMmUhPT8cvv/yCgIAAPPnkkwAAhULxSN9ZVVWFYcOGYcmSJfe85+3t/UjXIjI37JkSWSAXFxfExMRg5cqVqK6uvuf9srIyAICrqytGjhyJdevW4auvvkJcXJz2nJCQECgUimY/RtOrVy+cO3cOnTp1QnBwsM6rqfu2RJaEYUpkoVauXAm1Wo3IyEhs374dV65cwYULF/Dvf/8b/fr10573xhtvYP369bhw4YL23igAyOVyzJgxA9OnT8eGDRtw9epVHD16VDvT9/+Kj49HaWkpXn75ZRw/fhxXr15Famoq4uLioFarW7y9RGLiMC+RhQoMDERmZiY+/PBDvPvuu8jPz4e7uzsiIiKwatUq7XnR0dHw9vZGt27d4OPjo3ONOXPmwMbGBnPnzsXNmzfh7e2NiRMnNvl9Pj4+OHLkCGbMmIFBgwZBqVTC398fgwcPhpUV/91Olk0iNHemAhFZpKqqKvj6+mLdunUYNWqU2OUQmSX2TInaKI1Gg+LiYnzyySdwdnbG8OHDxS6JyGwxTInaqJycHAQEBKBDhw746quvYGPDXwdE+uIwLxERkYE4K4CIiMhADFMiIiIDMUyJiIgMxDAlIiIyEMOUiIjIQAxTIiIiAzFMiYiIDMQwJSIiMhDDlIiIyED/D73ZAAI3gW4tAAAAAElFTkSuQmCC\n" - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "# ROC Area Under Curve\n", - "plot_cycle_score(cycle, X_test, y_test,\n", - " scorer=roc_auc_score,\n", - " figsize=(5,3),\n", - " scorer_kw=dict(average='weighted', multi_class='ovr'));" - ], - "metadata": { - "collapsed": false - } - }, - { - "cell_type": "code", - "execution_count": 10, - "outputs": [ - { - "data": { - "text/plain": "Text(0.5, 1.0, 'Accuracy Over 20 Cycles')" - }, - "execution_count": 10, - "metadata": {}, - "output_type": "execute_result" - }, - { - "data": { - "text/plain": "
", - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAdMAAAE8CAYAAACb7Fv6AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8o6BhiAAAACXBIWXMAAA9hAAAPYQGoP6dpAABhvElEQVR4nO3deVhU1f8H8PfMMAub7IsguwqiiIqKa+5RGi6poZkLlpVfSY3S1FwzsyzNMstv5VZfzX3NRJHcF1AREcEFAVFkV2SHYeb8/uDHhXEGZGBgBvi8nofn8Z67zHtG4MO995xzeYwxBkIIIYTUGV/bAQghhJCmjoopIYQQUk9UTAkhhJB6omJKCCGE1BMVU0IIIaSeqJgSQggh9UTFlBBCCKknKqaEEEJIPVExJYQQQuqJiikhhDSQpKQk8Hg8bNu2TdtRSAOjYkp0ys8//wwejwdfX19tR2mSkpOT8eGHH8LZ2RlisRjW1tYYPXo0Ll68qO1oSrKzs/Htt9/ilVdegZWVFUxNTdGrVy/s3r1b5fYlJSX47LPPYGdnB319ffj6+iI0NFSt1zxz5gzefPNN2NraQiQSwdraGv7+/jhw4IAm3hJpwaiYEp2yY8cOODs7IyIiAvHx8dqO06RcvHgRXl5e+OuvvzB27Fj8/PPPmDNnDm7fvo3+/ftjw4YN2o6o4PLly/j8889hbm6OxYsXY9WqVTAwMMCECROwbNkype2nTZuGdevWYdKkSfjhhx8gEAgwfPhwXLhwoVavt2zZMgwaNAgxMTH44IMPsGnTJsybNw/5+fkYO3Ysdu7cqem3SFoSRoiOSEhIYADYgQMHmJWVFVu+fLm2I1UrPz9f2xEUPH36lNna2jIbGxsWHx+vsK6wsJD179+f8fl8dvHixUbNVVRUxGQymcp1CQkJLCkpSaFNLpezwYMHM7FYrPAZh4eHMwDs22+/VTi2m5sb692790tz7N27lwFg48aNY6WlpUrrQ0JC2NGjR2v7tmotMTGRAWBbt27V+LGJbqFiSnTGypUrmZmZGSspKWEzZ85k7dq1U7nds2fP2Ny5c5mTkxMTiUTM3t6eTZ48mWVmZnLbFBUVsWXLlrF27doxsVjMbG1t2ZgxY7hCc/r0aQaAnT59WuHYqn75TZ06lRkaGrL4+Hj2+uuvMyMjIzZq1CjGGGPnzp1j48aNYw4ODkwkErE2bdqwuXPnssLCQqXccXFxbPz48czS0pJJJBLWvn17tmjRIsYYY//++y/3h8SLduzYwQCwS5cuVfvZrV69mgFgf/zxh8r1CQkJTCAQMD8/P8YYY1evXmUA2LZt25S2DQkJYQAUisvjx49ZYGAgs7a2ZiKRiHl6erLNmzcr7Ffxmf7111/s888/Z3Z2dozH47Fnz55Vm1uVH3/8kQFg0dHRXNu8efOYQCBgz58/V9j2q6++YgBYcnJyjcf08PBg5ubmLDc3t8bt8vLymIGBAZs9e7bSukePHjE+n8+++uorru1l34vVFdO4uDg2duxYZmZmxsRiMfPx8WGHDx9W2Ka0tJQtX76ctW3blonFYmZubs769u3LTp48WeN7INqhp4WTYUJU2rFjB958802IRCJMnDgRv/zyC65evYoePXpw2+Tn56N///6Ii4vD9OnT0a1bN2RlZeHIkSN4/PgxLC0tIZPJ8MYbbyAsLAwTJkzAnDlzkJeXh9DQUMTExMDNzU3tbGVlZfDz80O/fv3w3XffwcDAAACwd+9eFBYWYubMmbCwsEBERAQ2bNiAx48fY+/evdz+0dHR6N+/P4RCId5//304OzvjwYMHOHr0KFatWoWBAwfCwcEBO3bswJgxY5Q+Fzc3N/Tu3bvafEePHoVEIsFbb72lcr2Liwv69euHf//9F0VFRejevTtcXV2xZ88eTJ06VWHb3bt3w8zMDH5+fgCA9PR09OrVCzweD0FBQbCyssLx48fx7rvvIjc3F3PnzlXYf+XKlRCJRPj0009RUlICkUhU688ZANLS0gAAlpaWXNuNGzfQvn17tGrVSmHbnj17AgCioqLg4OCg8nj379/HnTt3MH36dBgbG9f42kZGRhgzZgx2796NdevWQSAQcOv++usvMMYwadIkALX7XlTl9u3b6Nu3L+zt7bFgwQIYGhpiz549GD16NPbv38/9/y9fvhyrV6/Ge++9h549eyI3NxfXrl1DZGQkhg0bVuP7IFqg7WpOCGOMXbt2jQFgoaGhjLHyy31t2rRhc+bMUdhu6dKl1Z7ByeVyxhhjW7ZsYQDYunXrqt1G3TNTAGzBggVKx1N1Brp69WrG4/HYw4cPubZXXnmFGRsbK7RVzcMYYwsXLmRisZjl5ORwbRkZGUxPT48tW7ZM6XWqMjU1Zd7e3jVuM3v2bIUzvoULFzKhUMiePn3KbVNSUsJMTU3Z9OnTubZ3332XtW7dmmVlZSkcb8KECczExIT7DCo+U1dXV5WfS21kZ2cza2tr1r9/f4X2jh07ssGDByttf/v2bQaAbdq0qdpjHj58mAFg33//fa0ynDhxggFgx48fV2jv3LkzGzBgALdcm+9FVd9PQ4YMYV5eXqy4uFhh+z59+ihcjfH29mYjRoyoVWaifdQBieiEHTt2wMbGBoMGDQIA8Hg8BAQEYNeuXZDJZNx2+/fvh7e3t9LZW8U+FdtYWlrio48+qnabupg5c6ZSm76+PvfvgoICZGVloU+fPmCM4caNGwCAzMxMnDt3DtOnT4ejo2O1eaZMmYKSkhLs27ePa9u9ezfKysrwzjvv1JgtLy/vpWddFetzc3MBAAEBAZBKpQo9WU+ePImcnBwEBAQAABhj2L9/P/z9/cEYQ1ZWFvfl5+eH58+fIzIyUuF1pk6dqvC51JZcLsekSZOQk5Oj1FmqqKgIYrFYaR+JRMKtr07F+33Z51Nh6NChsLOzw44dO7i2mJgYREdHK/w/1OZ78UVPnz7Fv//+i7feegt5eXncZ5mdnQ0/Pz/cv38fKSkpAABTU1Pcvn0b9+/fr1Vuol1UTInWyWQy7Nq1C4MGDUJiYiLi4+MRHx8PX19fpKenIywsjNv2wYMH6NSpU43He/DgAdzd3aGnp7m7GHp6emjTpo1Se3JyMqZNmwZzc3MYGRnBysoKAwYMAAA8f/4cAJCQkAAAL83t4eGBHj16KPwS37FjB3r16oW2bdvWuK+xsTHy8vJq3KZifUVR8fb2hoeHh8JQlN27d8PS0hKDBw8GUP6HQE5ODn799VdYWVkpfAUGBgIAMjIyFF7HxcWlxhzV+eijjxASEoLff/8d3t7eCuv09fVRUlKitE9xcTG3vjoVl4Zf9vlU4PP5mDRpEg4dOoTCwkIA5f8PEokE48eP57arzffii+Lj48EYw5IlS5Q+z4oezBWf5xdffIGcnBy0b98eXl5emDdvHqKjo9V6PdJ46J4p0bp///0Xqamp2LVrF3bt2qW0fseOHXj11Vc1+prVnTlUPQuuSiwWg8/nK207bNgwPH36FJ999hk8PDxgaGiIlJQUTJs2DXK5XO1cU6ZMwZw5c/D48WOUlJTgypUr+Omnn166X4cOHXDjxg2UlJSoPIMDyu/bCoVCtGvXjmsLCAjAqlWrkJWVBWNjYxw5cgQTJ07k/hCpeA/vvPOO0r3VCp07d1ZYrstZ6YoVK/Dzzz/j66+/xuTJk5XWt27dmjtjqyo1NRUAYGdnV+2xPTw8AAC3bt2qdZ4pU6bg22+/xaFDhzBx4kTs3LkTb7zxBkxMTGp9DFUqPs9PP/2Uuyf9ooo/nF555RU8ePAAhw8fxsmTJ/H777/j+++/x6ZNm/Dee+/VKwfRPCqmROt27NgBa2trbNy4UWndgQMHcPDgQWzatAn6+vpwc3NDTExMjcdzc3NDeHg4pFIphEKhym3MzMwAADk5OQrtDx8+rHXuW7du4d69e9i+fTumTJnCtb84kYCrqysAvDQ3AEyYMAHBwcH466+/UFRUBKFQyF1yrckbb7yBy5cvY+/evSovCSclJeH8+fMYOnSoQrELCAjAihUrsH//ftjY2CA3NxcTJkzg1ltZWcHY2BgymQxDhw59aY662LhxI5YvX465c+fis88+U7lNly5dcPr0aeTm5ip0QgoPD+fWV6d9+/Zwd3fH4cOH8cMPP8DIyOilmTp16oSuXbtix44daNOmDZKTk5UuPdfme/FFFd8LQqGwVp+nubk5AgMDERgYiPz8fLzyyitYvnw5FVNdpN1btqSlKywsZMbGxgodXqq6ePEiA8B27drFGNNcB6ScnBwmEAjYxx9/rLB+7Nix1Q6NeVF0dLTS8BK5XM5GjBihdIzadECqMHLkSNa5c2fWvn175u/vr7RelaysLGZtbc1sbW3ZgwcPFNYVFRWxgQMHVjvO1MvLiw0aNIhNmDCBtW7dWmlc6LRp05hIJGK3bt1S2jcjI4P7d0UHpL1799YqM2OM7dq1i/H5fDZp0iSVn0WFK1euKI0zLS4uZm3btmW+vr61eh0ALCAggEmlUqX1J06cUBpnum7dOqanp8fGjBnDLCwslMan1rUD0sCBA5m5uTl78uSJ0n5VP88XO3wxxrihVUT30Jkp0aojR44gLy8PI0eOVLm+V69esLKywo4dOxAQEIB58+Zh3759GD9+PKZPnw4fHx88ffoUR44cwaZNm+Dt7Y0pU6bgjz/+QHBwMCIiItC/f38UFBTg1KlT+M9//oNRo0bBxMQE48ePx4YNG8Dj8eDm5oa///5b6f5fTTw8PODm5oZPP/0UKSkpaNWqFfbv349nz54pbfvjjz+iX79+6NatG95//324uLggKSkJx44dQ1RUlMK2U6ZMwbhx4wCUDzOpDQsLC+zbtw8jRoxAt27d8N5778HT0xNpaWnYtm0b4uPj8cMPP6BPnz5K+wYEBGDp0qWQSCR49913lS5nf/311zh9+jR8fX0xY8YMeHp64unTp4iMjMSpU6fw9OnTWn5iiiIiIjBlyhRYWFhgyJAhCveKAaBPnz7cmZyvry/Gjx+PhQsXIiMjA23btsX27duRlJSEzZs3v/S1AgICcOvWLaxatQo3btzAxIkT4eTkhOzsbISEhCAsLExpBqS3334b8+fPx8GDBzFz5kylqxy1+V5UZePGjejXrx+8vLwwY8YMuLq6Ij09HZcvX8bjx49x8+ZNAICnpycGDhwIHx8fmJub49q1a9i3bx+CgoJq/RmTRqTtak5aNn9/fyaRSFhBQUG120ybNo0JhULuL/Xs7GwWFBTE7O3tuYkSpk6dqvCXfGFhIfv888+Zi4sLEwqFzNbWlo0bN07hrC0zM5ONHTuWGRgYMDMzM/bBBx+wmJiYWp+ZMsZYbGwsGzp0KDMyMmKWlpZsxowZ7ObNmyoH6sfExLAxY8YwU1NTJpFImLu7O1uyZInSMUtKSpiZmRkzMTFhRUVFtfkYOYmJiWzGjBnM0dGRCYVCZmlpyUaOHMnOnz9f7T73799nABgAduHCBZXbpKens1mzZjEHBwfu8xwyZAj79ddfuW3UPTPdunUr97qqvl78/IqKitinn37KbG1tmVgsZj169GAhISG1eq0KYWFhbNSoUcza2prp6ekxKysr5u/vrzRhQoXhw4fXOGHGy74Xq5u04cGDB2zKlCnM1taWCYVCZm9vz9544w22b98+bpsvv/yS9ezZk5mamjJ9fX3m4eHBVq1apXIGJ6J9PMYY00YRJ4SoVlZWBjs7O/j7+9fqrIs0nDFjxuDWrVs0TzR5KRoaQ4iOOXToEDIzMxU6NZHGl5qaimPHjqnsXUzIi+jMlBAdER4ejujoaKxcuRKWlpZKkyGQxpGYmIiLFy/i999/x9WrV/HgwQPY2tpqOxbRcXRmSoiO+OWXXzBz5kxYW1vjjz/+0HacFuvs2bOYPHkyEhMTsX37diqkpFa0WkzPnTsHf39/2NnZgcfj4dChQy/d58yZM+jWrRvEYjHatm2r8gn2GzduhLOzMyQSCXx9fREREaH58IRo2LZt21BWVoZr166pPbMO0Zxp06aBMYaHDx9yvaoJeRmtFtOCggJ4e3urHKyvSmJiIkaMGIFBgwYhKioKc+fOxXvvvYcTJ05w2+zevRvBwcFYtmwZIiMj4e3tDT8/P7WGPBBCCCHq0Jl7pjweDwcPHsTo0aOr3eazzz7DsWPHFGYdmTBhAnJychASEgKgfDxajx49uCnY5HI5HBwc8NFHH2HBggUN+h4IIYS0TE3qnunly5eVpuDy8/PD5cuXAQClpaW4fv26wjZ8Ph9Dhw7ltlGlpKQEubm53Nfz58+RmZkJHfk7gxBCiI5rUjMgpaWlwcbGRqGtYj7RoqIiPHv2DDKZTOU2d+7cqfa4q1evxooVK5Tad+7cyT0EmhBCSMs0atSol27TpIppQ1m4cCGCg4O55dzcXDg4OGDQoEGwsLDQYrLqSaVShIaGYtiwYdVO5q5tup5R1/MBlFFTKGP96Xo+QLsZm1QxtbW1RXp6ukJbeno6WrVqBX19fQgEAggEApXb1NS9XSwWq3xslVAo1NlvmgqUsf50PR9AGTWFMtafrucDtJOxSd0z7d27t8KDooHyx1317t0bACASieDj46OwjVwuR1hYGLcNIYQQomlaLab5+fmIiorinpqRmJiIqKgoJCcnAyi//Fp1SrUPP/wQCQkJmD9/Pu7cuYOff/4Ze/bswccff8xtExwcjN9++w3bt29HXFwcZs6ciYKCAgQGBjbqeyOEENJyaPUy77Vr1zBo0CBuueK+5dSpU7Ft2zakpqZyhRUAXFxccOzYMXz88cf44Ycf0KZNG/z+++8KT6wPCAhAZmYmli5dirS0NHTp0gUhISFKnZIIIYQQTdFqMR04cGCNw09UzW40cOBA3Lhxo8bjBgUF0TP/CCGENJomdc+UEEII0UVUTAkhhJB6omJKCCGE1BMVU0IIIaSeqJgSQggh9UTFlBBCCKknKqaEEEJIPVExJYQQQuqJiikhhBCteJ5ZhDKpTNsxNKJJPTWGEEJI01daXIbQLbFIis6C2EAPQwM94exlqe1Y9UJnpoQQQhpN/rMSHPguEknRWQCAksIy/PNzNGLOpWg5Wf3QmSkhhJBGkfU4H8c23kT+sxKFdsaAszvvIjerCL1Hu4HH52kpYd1RMSWEENLgkmOzEfJrDKTFlfdI9cQClJVULt84mYy8p8UYMrUD9IQCbcSsM7rMSwghpEHFXnyCYz9FKxRSC3sjTFrui95j3BS2jb+WgSM/RKE4X9rYMeuFiikhhJAGwRhD+JEEnP7zDuTyysdtOnQww5ufdoORmQTd/Jzw6nsdIdCrLEep8c+x/9vreJ5ZqI3YdULFlBBCiMbJyuQ4tS0W1/5JUmjv0Kc1RgR5Q6RfeZexXXcbjJzbBWLDyrac9ELsX3MdaQnPGytyvVAxJYQQolHFBVIc/TEK98LTFdp9R7pg0GQPCATKpceurSnGze+OVpYSrq0oT4pD399Awo3MBs9cX1RMCSGEaExuVhEOfHsdKfdyuDa+gIehgZ7oPtwFPF71PXVNbQwwdn532Li04tpkUjmO/3oLN8MeNWTseqNiSgghRCMyHuZi35rreJZWea9TpK8H/9ld4O5rW6tjGLQSYdTHXeHaxaqykQEX9t7H+d33FO696hIqpoQQQuotKToLB9dGoii3lGszNpdg7DwftHE3U+tYQpEAfu93gvdgB4X26NOPEfLfW5CW6t4UhFRMCSGE1EvM2cf455dolJXKuTYrR2OM/cwH5naGdTomn89Dv7faod9b7YAqV4YTb2bh0LobKKxStHUBFVNCCCF1wuQMF/fH4+xf98CqXH119rLA6OCuMDQR1/s1vAc74PUPvKAnrCxXGUm52L/mGp6lFdT7+JpCxZQQQojayqQynPj9NqJCkxXaO71ij9c/9IJIorkJ9ly7WGFUcFfoGwu5ttysYuxfcx1P7udo7HXqg4opIYQQtRTll+Lw91F4EJmh0N77TTe8MrE9+CqGvtSXrYsJxs7vDlMbA66tpLAMh3+4gftX02vYs3FQMSWEEFJrzzOLlCZTEOjx8ep7HdHtVacah77Ul4mVPsbO90HrtiZcm7yM4eTm27gekgTGtNfTl4opIYSQWil5xsfhdVF4nlHEtUkMhRg1twvadbdplAwSQyFGzumCdt2tFdqvHErA+d3xYPJqdmxg9NQYQkizVlJUhjtXUpH7QIQbJ5LBF+jm00jkMplOZywpkiIzwgCQl3FtrSwl8P+oi8Kl18agJxRg2PSOMLbQR+SJh1z7nYtpEFvo44ZQs59h99edX55JY69GCCE6hskZjm28idT45wDEuHrv4Uv30S5dz1h5CdfGpRVG/Kcz9I1F2knC56H3GDcYW0hw7q+7XG/ikmw9XP1bs58hFVNCSIt250rq/xdSokmuXa0wLNATeiLtn0F3esUeRmZinPj9tsKzURsb3TMlhDRLpcVluHIoQdsxmhW+UI5urzvCb0YnnSikFZy9LPHmJ91g69bq5Rs3EDozJYQ0S9ePP1SYJadVuxJMmD0UQqGwhr20RyqV4p9//sHw4cN1MmNFvu7DncDnN1yP3bqycjTGyLneWvsM6cyUENLsPM8sQlRY5WQCRuZiGLvo1vRzpHmhYkoIaXYuH4iHvKxyzGGv0S7g6c5VSdIMab2Ybty4Ec7OzpBIJPD19UVERES120qlUnzxxRdwc3ODRCKBt7c3QkJCFLZZvnw5eDyewpeHh0dDvw1CiI5IufcMD6o8TLp1WxO4dLHUYiLSEmi1mO7evRvBwcFYtmwZIiMj4e3tDT8/P2RkZKjcfvHixfjvf/+LDRs2IDY2Fh9++CHGjBmDGzduKGzXsWNHpKamcl8XLlxojLdDCNEyuZzh/J77lQ08oP9b7Rt0Vh5CAC0X03Xr1mHGjBkIDAyEp6cnNm3aBAMDA2zZskXl9n/++ScWLVqE4cOHw9XVFTNnzsTw4cOxdu1ahe309PRga2vLfVla0l+lhLQEcRefIPtxPrfcoU9rWDkaazERaSm01pu3tLQU169fx8KFC7k2Pp+PoUOH4vLlyyr3KSkpgUQiUWjT19dXOvO8f/8+7OzsIJFI0Lt3b6xevRqOjo7VZikpKUFJSQm3nJubC6D8srJUKlX7vTWGily6mg/Q/Yy6ng+gjOooLSrDlcOVQ2GEEgF8hjsq/BxrO2NNdD2jrucDGi5jbXoG85iWZgZ+8uQJ7O3tcenSJfTu3Ztrnz9/Ps6ePYvw8HClfd5++23cvHkThw4dgpubG8LCwjBq1CjIZDKuGB4/fhz5+flwd3dHamoqVqxYgZSUFMTExMDYWPVfqMuXL8eKFSuU2nfu3AkDg8adJosQUjc5d8TIT6ycjadV+xK0cqMevKT+Ro0a9dJtmlQxzczMxIwZM3D06FHweDy4ublh6NCh2LJlC4qKipS2B4CcnBw4OTlh3bp1ePfdd1Vuo+rM1MHBAampqbCwsKjnO20YUqkUoaGhGDZsmE6OSQN0P6Ou5wMoY209zyjC3q+uQy4r/3VmbCnBW4t8IPj/B0rrQsaX0fWMup4PaLiMtTmW1i7zWlpaQiAQID1d8Tl06enpsLW1VbmPlZUVDh06hOLiYmRnZ8POzg4LFiyAq6trta9jamqK9u3bIz4+vtptxGIxxGLlJ8ILhUKd/aapQBnrT9fzAZTxZcIPx3GFFAD6jW0HiQH9TDcEXc8HaCej1jogiUQi+Pj4ICwsjGuTy+UICwtTOFNVRSKRwN7eHmVlZdi/f3+Np+D5+fl48OABWrdurbHshBDd8SjuKZKis7hle3dTGgpDGp1We/MGBwfjt99+w/bt2xEXF4eZM2eioKAAgYGBAIApU6YodFAKDw/HgQMHkJCQgPPnz+O1116DXC7H/PnzuW0+/fRTnD17FklJSbh06RLGjBkDgUCAiRMnNvr7I4Q0LLlMjgt7K4fC8HhAv/E0FIY0Pq3OzRsQEIDMzEwsXboUaWlp6NKlC0JCQmBjU/6Q2eTkZPD5lfW+uLgYixcvRkJCAoyMjDB8+HD8+eefMDU15bZ5/PgxJk6ciOzsbFhZWaFfv364cuUKrKysGvvtEUIa2O3zT/D0SQG37NnPDpZtjLSYiLRUWp/oPigoCEFBQSrXnTlzRmF5wIABiI2NrfF4u3bt0lQ0QogOKy6QIuJoIrcs0teD78jq+08Q0pC0Pp0gIaTxJMdm49S2WNy/mv7yjXXctWNJKC6oHE/YY4Sz1h5UTYjWz0wJIQ2PMYYbJ5Nx+eADAMDdK2kQG+jBsaNuDv16mWdpBbh15jG3bGpjAK+BbbSYiLR0dGZKSDMnl8lx9q97XCGtcGHvfchkci2lqp+L++Ihl1cOhek7ti0EevTrjGgPffcR0oyVFpfhn19u4fa5FKV1z9IKVbbruoe3s/EwJptbdvA0h5NX0zzDJs0HFVNCmqmCnBIcXBupUHh4fB70xJUP9ow4mojifN2da/VFMpkcF6sOheHz0HdcWxoKQ7SOiikhzVD2k3zs++Yash5VPkFFTyzAiP90Rq8qPV5LCssQ8XeiqkPopJizKXiWVsgtd+pvBws7GgpDtI+KKSHNzOM7T3Hg20jkP6ucb9rARIQ3P+kGp04W6DTQHqY2lQ9wiDmXguwn+aoOpVOK86W4WqXwiw300NOfhsIQ3UDFlJBm5M6VVBzdcBOlRWVcm7mdIcZ91p17rqdAwEffcW259UzOcHFfPLT0zItaiziagJLCyvfV4w0XSIx0e45Y0nJQMSWkGWCM4eqxRIRtU5zwvY2HGd6c5wNjc8XnADt7WcKxozm3/Cj2KR7eyoauyn6Sj5jzT7hlM1sDdBpgr8VEhCiiYkpIEycrk+PfP+IUZgMCAI9etngjyBtifdXDyfuOawcev7LjzoV99yEr072hMowxXNx7H6zqUJjx7SAQ0K8vojvou5GQJqykqAx//3QTdy6nKbT3eMMFg6d2qHHspXlrQ3hVObt7nlGkMBGCrki6lY1Hcc+4ZadOFnBqopNNkOaLiikhTVTe02Ic+PY6Ht+pLDR8Pg+Dp3RAzzdcajVcpMcbLhAbVp65Xj2WhKK80gbJWxeyMjku7qscCsP//6EwhOiaehXT4uJiTeUghKghMzkP+765pvDEFJFEgDc+8kaHPrV/dq/EUAjfKj1iS4vKEH5Ud4bK3DrzGM8zirhlr4FtYGZrqMVEhKimdjGVy+VYuXIl7O3tYWRkhISEBADAkiVLsHnzZo0HJIQoehiTjYNrI1H4vPIM0shMjDfn+cChg3kNe6rWsb8dzO0qC1Ts+RRkPdb+UJmivFJcPZbELUsMheg+wllreQipidrF9Msvv8S2bduwZs0aiESVT2jo1KkTfv/9d42GI4Qoun0+Bcd+joa0RMa1WToYYdxn3WFhX7fJC/gCPvqNa8ctM1Y+b6+2h8qEH0lQGOLT098FEkMaCkN0k9rF9I8//sCvv/6KSZMmQSConJbM29sbd+7c0Wg4Qkg5Jme4fOgBzuy4q9Cr1bGjOcZ80g2GpuJ6Hd/B0xzOnS255ZS7z5B4M6tex6yPrMf5iL1QORTG3M4QHfvbaS0PIS+jdjFNSUlB27bKHQDkcjmk0qYzxychTQWTAf/+cReRIQ8V2j3722HEfzpDJNHMkxT7jm0LvqCy09LF/fGQSRt/qAxjDBf23kPVE+N+49uBT0NhiA5T+7vT09MT58+fV2rft28funbtqpFQhJByxQVSZF7Vx4PrmQrtvUa7YuDb7hotMKY2Bug8qPKZoLmZRbj57yONHb+2EqOykHI3h1t27mxZp3vBhDQmtf+kXbp0KaZOnYqUlBTI5XIcOHAAd+/exR9//IG///67ITIS0iKVFEpx5PubKH1W+WPK1+NhyNQOaN/DtkFes/sIF9wNT0NRXvlVpmvHk+DRuzUMWolesqdmlBSV4eL+KkNhBDz0HUtDYYjuU/vP2lGjRuHo0aM4deoUDA0NsXTpUsTFxeHo0aMYNmxYQ2QkpEW6cTIZOemVw0LEBnoYNadLgxVSABDrK04eLy2W4crhBzXsoTl5T4tx8LvryM2qHHLXebCDwqT8hOgqtc5My8rK8NVXX2H69OkIDQ1tqEyEEACJ0ZUdgAxMRBj9cddGGWPp2c8OMWdTkJ1SPjwm7lIqvAa04SbKbwiZj/Jw7KebKKgy3MfARITuw50b7DUJ0SS1zkz19PSwZs0alJWVvXxjQkid5T0tVpiQwaO3baNNVsDn89DvrcqhMmDA+T33GmyozMPb2Tj4XaRCITUyE2Pk7C7VzitMiK5R+zLvkCFDcPbs2YbIQgj5f8m3FZ/g4uBp1qiv38bdDK5drLjl1PjneBCZWcMedXP7fAqObVQcN2vRxghj59d93Cwh2qD2n32vv/46FixYgFu3bsHHxweGhop/LY8cOVJj4QhpqR7GVBZTvlAOK6eGu8RanT5j2yIpJgvysvIz0ksH4uHc2QJ6QsFL9nw5xhjCDyfg+gvDfRw7msNvRieNDfchpLGo/R37n//8BwCwbt06pXU8Hg8ymUypnRBSezKpXGHyerGlDHz+yyet1zQTK310GeKAyBPJAIC87GJEnXqE7q871+u4MqkcYX/E4f7VdIV2z352eGVie3q0GmmS6jQ3b3VfVEgJqb8nD3IULnvqW2mvj4LP687QrzIs5nrIQxTklNT5eMUFUhz5MUqpkPYa7YqBk9ypkJImi75zCdExyVUu8YIHiK2090eqSKKHXqMqh8qUlchw5VDdhsrkZhXhwLfX8eR+DtfG1+Nh2HRP+LzmXKtHxhGiq+pUTM+ePQt/f3+0bdsWbdu2xciRI1XOikQIUV/V+6XWTsYQiLQ74XyH3q0VhsXcuZKG9KRctY6RnpSLfd9cw7O0Qq5NbKCHkbO7oH3Phhs3S0hjUbuY/u9//8PQoUNhYGCA2bNnY/bs2dDX18eQIUOwc+fOhshISIuRm12kUHAcOjRuL15VeHwe+o1vp9B2YU/tnyqTEJWJQ2sjuVmVAMDYQoI35/nAvr323x8hmqB2B6RVq1ZhzZo1+Pjjj7m22bNnY926dVi5ciXefvttjQYkpCVJvv1UYdmhoznSb2spTBV27UzR1sca8dczAABpCc9x/1r6S2djij79GOf33AOq1F1rJ2OMmOXdaFMUEtIY1D4zTUhIgL+/v1L7yJEjkZiYqJFQhLRUVS/x6hsLYeWgO2Mte49xg0Cv8lfG5QMPIC1VfT+XyRku7LuP87sVC6lzZ0uMDu5GhZQ0O2oXUwcHB4SFhSm1nzp1Cg4ODhoJRUhLVD4kpvLM1MHTHDwtDImpTitLfXQZVvkznv+sBDdOJittV1Yqw4nfYnDzlOITZ7wGtsHrH3pBKK7/OFVCdI3al3k/+eQTzJ49G1FRUejTpw8A4OLFi9i2bRt++OEHjQckpKV4cj8HZaWVzw916mShxTSqdfNzQtylVBT+/9R/N048RLuelTMlFeWV4p9fopGWUKWDEq/8WaneQxyoxy5pttQupjNnzoStrS3Wrl2LPXv2AAA6dOiA3bt3Y9SoURoPSEhL8bDKFII8HuDYQfeKqUiih95j3BC2LQ4AUCaVI+JIImAFPM8owvFNt5GbWfmkG4GQj2GBnnDrZq2tyIQ0ijoNjRkzZgwuXLiA7OxsZGdn48KFC3UupBs3boSzszMkEgl8fX0RERFR7bZSqRRffPEF3NzcIJFI4O3tjZCQkHodkxBdUfV+qY1LK0iMhFpMUz33nrawdm7FLcdfy0RekhCH1kUpFFKJkRCjP+5KhZS0CGoX06tXryI8PFypPTw8HNeuXVPrWLt370ZwcDCWLVuGyMhIeHt7w8/PDxkZGSq3X7x4Mf773/9iw4YNiI2NxYcffogxY8bgxo0bdT4mIbrgeWYRctIrh8Q4dtS9s9IKPD4P/d9SHCrzPE6CkoLKmZpMrPQxdr4PbF1NGjseIVqhdjGdNWsWHj16pNSekpKCWbNmqXWsdevWYcaMGQgMDISnpyc2bdoEAwMDbNmyReX2f/75JxYtWoThw4fD1dUVM2fOxPDhw7F27do6H5MQXfDiU2J08X5pVbauJmjXw6badWM/84GpNT3Um7Qcat8zjY2NRbdu3ZTau3btitjY2Fofp7S0FNevX8fChQu5Nj6fj6FDh+Ly5csq9ykpKYFEIlFo09fXx4ULF+p8zIrjlpRUzjeam1veeUIqlUIqlVa3m1ZV5NLVfIDuZ9SlfEm3Kh8Erm8shKmtROH7TxcyvqiHvxMSojIhk1Z2mnLpYolBk9tDT8TTqcy6/DlW0PWMup4PaLiMQuHLb7moXUzFYjHS09Ph6uqq0J6amgo9vdofLisrCzKZDDY2in/d2tjY4M6dOyr38fPzw7p16/DKK6/Azc0NYWFhOHDgADfBfl2OCQCrV6/GihUrlNpPnz4NAwPd/us6NDRU2xFeStczajsfkwFP4owAlPd05bUqxPGQ4wrbaDtjdYzbCZETW/4HrpFLKUptE3HylO6ON9fVz7EqXc+o6/kAzWesTZ8gtYvpq6++ioULF+Lw4cMwMSm/H5KTk4NFixZh2LBh6qdUww8//IAZM2bAw8MDPB4Pbm5uCAwMrPcl3IULFyI4OJhbzs3NhYODAwYNGgQLC9283CaVShEaGophw4bV6q8mbdD1jLqS71HcM6ScjOGWew/zgptP+XATXclYk8zHubh0+SKGjx6qsxmbwueo6xl1PR+g3YxqF9PvvvsOr7zyCpycnNC1a1cAQFRUFGxsbPDnn3/W+jiWlpYQCARIT1d8FFN6ejpsbVVPUWZlZYVDhw6huLgY2dnZsLOzw4IFC7iz5LocEyg/2xaLxUrtQqFQZ79pKlDG+tN2vpQ7Ody/eTzA2ctKKY+2M9bEqk0rCA2ZTmesQBnrT9fzAdrJqHYHJHt7e0RHR2PNmjXw9PSEj48PfvjhB9y6dUutGZBEIhF8fHwUZlOSy+UICwtD7969a9xXIpHA3t4eZWVl2L9/P3cKXp9jEqItVYfE2LqaQGKo27+oCCHK1D4zBQBDQ0O8//779X7x4OBgTJ06Fd27d0fPnj2xfv16FBQUIDAwEAAwZcoU2NvbY/Xq1QDKh9+kpKSgS5cuSElJwfLlyyGXyzF//vxaH5MQXZKTUYjnGZVjM3V5SAwhpHq1Lqb37t1DTk4OevbsybWFhYXhyy+/REFBAUaPHo1Fixap9eIBAQHIzMzE0qVLkZaWhi5duiAkJITrQJScnAw+v/Lkubi4GIsXL0ZCQgKMjIwwfPhw/PnnnzA1Na31MQnRJU1tSAwhRLVaF9PPPvsMXl5eXDFNTEyEv78/+vfvj86dO2P16tUwMDDA3Llz1QoQFBSEoKAglevOnDmjsDxgwIBaDb+p6ZiE6JKHMZUT2xu0EsFSh54SQwipvVoX02vXrilcTt2xYwfat2+PEydOAAA6d+6MDRs2qF1MCWmpykplSLn3jFt27GRBE8ET0kTVugNSVlYW2rRpwy2fPn1a4bmmAwcORFJSkkbDEdKcpdzLUZjwwInulxLSZNW6mJqbmyM1NRVAeQ/Za9euoVevXtz60tJSMMaq250Q8gKFp8TweXDoYKbFNISQ+qh1MR04cCBWrlyJR48eYf369ZDL5Rg4cCC3PjY2Fs7Ozg0QkZDmSXFITCuIDWhIDCFNVa3vma5atQrDhg2Dk5MTBAIBfvzxRxgaGnLr//zzTwwePLhBQhLS3OSkFyo8rox68RLStNW6mDo7OyMuLg63b9+GlZUV7OzsFNavWLFC4Z4qIaR6Vc9KASqmhDR1ak3aoKenB29vb5XrqmsnhCirOr7U0EQEC3saEkNIU6b2dIKEkPqRlsqQci+HW6YhMYQ0fXWaTpCQlyktKkNiTBbKiqhIvCjl7jPIymhIDCHNCRVTonGZj/Jw7KebKHheCp7QEDn9C2Flb6LtWDqj6v1SPp+HNh3MtZiGEKIJdJmXaNTD29k4+F0kCp6XAgCYlIcrB3T3YdGNjTGmcL/U1s0EYn36m5aQpk7tYurs7IwvvvgCycnJDZGHNGG3z6fg2MZoSEtkCu3Jt58qTejeUuWkFyI3q5hbpl68hDQPahfTuXPn4sCBA3B1dcWwYcOwa9culJSUNEQ20kQwOcPlQw9wZsddMLnqWbAu7L0PmUyucl1LQkNiCGme6lRMo6KiEBERgQ4dOuCjjz5C69atERQUhMjIyIbISHSYTCpH6NZYRIY8VGj37GcHj7623PKztELcPpfS2PF0TtUzdCMzMcztDGvYmhDSVNT5nmm3bt3w448/4smTJ1i2bBl+//139OjRA126dMGWLVtont4WoLhAiiM/RuH+1XSF9l6jXTFwkjt6vuEMnl7l90HE0UQU50sbO6bOKC0uQ8r9HG7ZsSMNiSGkuahzMZVKpdizZw9GjhyJTz75BN27d8fvv/+OsWPHYtGiRZg0aZImcxIdk5tVhAPfXseTKsWBr8fDsOme8HnNGTweDxIjIVq1rbwFUFJYhohjLbczUsq9HMjLKv+4oEu8hDQfancjjIyMxNatW/HXX3+Bz+djypQp+P777+Hh4cFtM2bMGPTo0UOjQYnuSE/KxbGNN1GUV3mWKTbQw/CZXrBrp/jkEyMnKfDUDM8zyuehjTmbgk797Vvk5U2FITECHtp40FNiCGku1D4z7dGjB+7fv49ffvkFKSkp+O677xQKKQC4uLhgwoQJGgtJdEdCVCYOrY1UKKTGFhKMne+jVEgBgMcHer/pyi0zOcPFffdb3G0AxhiSqxTT1m1NIZLQkBhCmgu1f5oTEhLg5ORU4zaGhobYunVrnUMR3RR9+hHO77kPVKmD1k7GGDHLGwatRNXu59jRHI4dzZF8+ykAIDn2KR7GZMPZy7KhI+uMZ6mFyHtaZUgMzXpESLOi9plpRkYGwsPDldrDw8Nx7do1jYQiuoXJGS7su4/zuxULqXNnS4wO7lZjIa3Qd1w78PiVnW0u7otXmFKvuXt4m4bEENKcqV1MZ82ahUePHim1p6SkYNasWRoJRXRHWakMJ36Lwc1Tiv/nXoPa4PUPvSAUC2p1HPPWhvAaYM8t56QX4taZxxrNqssUhsSYi2HW2kCLaQghmqZ2MY2NjUW3bt2U2rt27YrY2FiNhCK6oSivFIfX38CDG5mVjTyg77i26P9WO/D56g3r6PGGC8SGlXcWrh5LQlFeqabi6qzS4jKFXs9ONCSGkGZH7WIqFouRnp6u1J6amgo9PepQ0VzkpBdi35rrSEvI5doEQj5em9EJXYY61qkYSAyF8PWv7IxUWlSG8KPNf6jM4zvPIJfRkBhCmjO1i+mrr76KhQsX4vnz51xbTk4OFi1ahGHDhmk0HNGO1Pgc7F9zHbmZRVybxEiI0R93hVs363odu2N/O4VhMbHnU5D1OL9ex9R1Ve+X8vV4sHenITGENDdqF9PvvvsOjx49gpOTEwYNGoRBgwbBxcUFaWlpWLt2bUNkJI0o/noGDq+PQnFB5dAXE2t9jJ3vA1vX+j9GjS/go9+4dtwyY+Xz9jbXoTIvDomxoyExhDRLav9U29vbIzo6Gjt27MDNmzehr6+PwMBATJw4EUKhsCEykkbAGENU6CNcOhCv0G7raoLh//GCvtHLe+zWloOnOZy9LJB0q7zIpNx9hsSbWXDtYqWx19AVT58UIP9Z5SxQdImXkOapTn8iGxoa4v3339d0FqIlcpkcF/bcx62zihPRu3WzxtBpHaAnql2PXXX0HdcOybFPuXuJF/fHw6mjBQTC5vWIXRoSQ0jLUOfrTbGxsUhOTkZpqWJvzJEjR9Y7FGk80hIZTv4ew50lVug6zBG9x7gpjA3VJFMbA3gNasMNucnNLMLN04/Q7dWaJwRpaqpe4jW2kMDUhobEENIc1WkGpDFjxuDWrVvg8Xjcva6K3p0ymaym3YkOKXhegmMbo5GZnMe18XhA/4D28BrYpsFfv8dwZ9y9ksY9SebaP0nw6NW6VpNANAWlRWVIja/sqOfUiYbEENJcqX1Nbc6cOXBxcUFGRgYMDAxw+/ZtnDt3Dt27d8eZM2caICJpCE+fFGD/N9cVCqmeiI/XZ3ZulEIKAGIDIXxHVg6VkRbLEH74QaO8dmN4fOcZ5FUelk5TCBLSfKldTC9fvowvvvgClpaW4PP54PP56NevH1avXo3Zs2c3REaiYSl3n2H/t9cV5orVbyXCmE+6waVz486X69nPDhb2Rtxy7KVUhQLflD2MyeL+LdDj05AYQpoxtYupTCaDsbExAMDS0hJPnjwBADg5OeHu3buaTUc07m54Go78GIXSojKuzczWAOPm+8DaqVWj5+Hzeej3VuVQGTSToTKMMTz8/4n9AcCuvWmtp14khDQ9at8z7dSpE27evAkXFxf4+vpizZo1EIlE+PXXX+Hq6vryAxCtYIzh+vEkhB9RnHHIvr0pXvvACxJD7Q1rauNuBtcuVkiIKp+28Mn9HDyIzERbn/pNEKFN2SkFKMipMiSGLvES0qypfWa6ePFiyOXlT/v44osvkJiYiP79++Off/7Bjz/+qHaAjRs3wtnZGRKJBL6+voiIiKhx+/Xr18Pd3R36+vpwcHDAxx9/jOLiysuVy5cvB4/HU/h68XmrLY1MJsfp/91RKqTtfW3g/1EXrRbSCn3GtgVfr7JzzqUD8SiTNt3ObMk0JIaQFkXtM1M/Pz/u323btsWdO3fw9OlTmJmZqd1Tcffu3QgODsamTZvg6+uL9evXw8/PD3fv3oW1tfJZyc6dO7FgwQJs2bIFffr0wb179zBt2jTweDysW7eO265jx444depU5ZtswXMGlxaVIeS3GDyKfarQ3n24M3r6u+hM71ITK310GeKAyBPJAIC87GJEnXqE7q87azdYHT2sMiSmlaUEJtb6WkxDCGloap2ZSqVS6OnpISYmRqHd3Ny8Tr+U161bhxkzZiAwMBCenp7YtGkTDAwMsGXLFpXbX7p0CX379sXbb78NZ2dnvPrqq5g4caLS2ayenh5sbW25L0vLlvMQ6qrynxXjwHeRCoWUx+dh0GQP+I501ZlCWsHndWfoVxkWcz3kocKl0qaipKgMqQ+qDomx1LnPmhCiWWqdsgmFQjg6OmpkLGlpaSmuX7+OhQsXcm18Ph9Dhw7F5cuXVe7Tp08f/O9//0NERAR69uyJhIQE/PPPP5g8ebLCdvfv34ednR0kEgl69+6N1atXw9HRsdosJSUlKCmp/KWdm1v+pBSpVAqpVFrdblpVkau6fNmP8xHy39soyKmcVEMoEWDY9A5o08GsUd7XyzK+iCcAerzhhHM77wMAykpkuHQwHgPfaa8T+Wor6VYmWJUhMfYeJnV+jYbKqEmUUTN0PaOu5wMaLmNtpsrlMTW7TW7evBkHDhzAn3/+CXNz8zqHe/LkCezt7XHp0iX07t2ba58/fz7Onj2L8PBwlfv9+OOP+PTTT8EYQ1lZGT788EP88ssv3Prjx48jPz8f7u7uSE1NxYoVK5CSkoKYmBiuF/KLli9fjhUrVii179y5EwYGTW/GmuJMAbJv6IPJKs+GBGI5LLoXQdRKrsVkL8cYkHHJANLcyp6v1n0KIDLR7dxVPb0lRuHj/z/D5jPYDc0HnzryEtJkjRo16qXbqF1Mu3btivj4eEilUjg5OcHQ0FBhfWRkZK2OU5dieubMGUyYMAFffvklfH19ER8fjzlz5mDGjBlYsmSJytfJycmBk5MT1q1bh3fffVflNqrOTB0cHJCamgoLC93sOCKVShEaGophw4Yp/NV053Iazu+6D1al9pjbGeK1DzvCyEysExlfJjX+OY7+EM0t27i2wsi5nTV+qbSu+WrCGMOOxREozC2/IuDQwQyv/6eTTmXUNMqoGbqeUdfzAQ2XsTbHUrtnzujRo+uSRYmlpSUEAoHSg8bT09Nha2urcp8lS5Zg8uTJeO+99wAAXl5eKCgowPvvv4/PP/8cfL7yLWBTU1O0b98e8fHxSusqiMViiMXKhUYoFOrsN02FioyMMYQfScD14w8V1jt4muO1GZ0g0tdeJyx1P0fHDpZo62ON+OsZAID0hFw8vPkM7XrY6ES+mmQ+yuMKKQA4d7bUyLGb0veiLqOM9afr+QDtZFT7N+yyZcs08sIikQg+Pj4ICwvjCrRcLkdYWBiCgoJU7lNYWKhUMAWC8utn1Z1g5+fn48GDB0r3VZsTmVSOf/+Mw70IxT9MOvRpjQGT3CEQNL0nsfQe44bEm1mQlZWfYl86EA9nb0sIG+AJNpr04pAYRxpfSkiLoNXfssHBwfjtt9+wfft2xMXFYebMmSgoKEBgYCAAYMqUKQodlPz9/fHLL79g165dSExMRGhoKJYsWQJ/f3+uqH766ac4e/YskpKScOnSJYwZMwYCgQATJ07UyntsaCWFUhzdEKVUSH1HumDQZI8mWUgBoJWlProMc+CW85+VICo0WYuJaqfqkBgTa32YWje9e+6EEPWpfWbK5/NrvHelTk/fgIAAZGZmYunSpUhLS0OXLl0QEhICG5vyy3nJyckKZ6KLFy8Gj8fD4sWLkZKSAisrK/j7+2PVqlXcNo8fP8bEiRORnZ0NKysr9OvXD1euXIGVVfN78HRZIQ+Hv7+JnLQiro0v4GHwlA5w91V9qbwp6ebnhLhLqSh8Xn7ZNPLEQ3To0xpGZhItJ1OtuECKtIRcbplmPSKk5VC7mB48eFBhWSqV4saNG9i+fbvKHrEvExQUVO1l3RefQqOnp4dly5bVeKl5165damdoijKT85Bx2QDy0spCKtLXw+sfeqFNM5lQXSTRQ+8xbgjbFgcAKCuV4/LBBxg2vaOWk6n2KO6pwpAYR5r1iJAWQ+1iqqqL8Lhx49CxY0fs3r272h6zRHMexT3FP79EQ15aedZubC7BG0HeMLczrGHPpse9py1unUlBRlL5Gd+9iHSkJTwvf/BqfTGGgkJD7Lp6VSPHKymoHNumJ+TDvp1pvY9JCGkaNNbFs1evXnj//fc1dThSjZKiMoRuuY2y0sqxL1aOxhgxqzMMTRp36Etj4PF56P9WO+xfc51ry80qrmEPdfGRW6jJ45WzdzeDno53liKEaI5GeqcUFRXhxx9/hL29vSYOR2pw7VgiivIqz4AcO5ljdHDXZllIK9i6msC9V9O6B9zU8hJC6kftM9MXJ7RnjCEvLw8GBgb43//+p9FwRFFOeiGiTz/mlgUGcgyb3gEiSfOfyH/gJHeY2RrgeUbRyzeuJblcjkePH8GhjYPKMcp1weMBdu3NmvTj4wgh6lP7t/D333+vUEz5fD6srKzg6+sLM7Pm0fFFV13cHw+5rLKDi6lHCQTCpjn0RV16QgF8XnPW6DGlUin++SceA4a31/lB6IQQ3aZ2MZ02bVoDxCAv8yjuKZKis7hlu3Ym4FnnaTERIYSQCmqf1mzduhV79+5Vat+7dy+2b9+ukVBEkVwmx4W997llHg/oPdZNIx1aCSGE1J/axXT16tUqnw9qbW2Nr776SiOhiKLb55/g6ZMCbtmznx0s7JvXEBhCCGnK1C6mycnJcHFxUWp3cnJCcrLuT/fW1BQXSBFxNJFbFunrwXekqxYTEUIIeZHaxdTa2hrR0dFK7Tdv3tTZx5U1ZVePJaK4ymQAPUY4Q99YpMVEhBBCXqR2MZ04cSJmz56N06dPQyaTQSaT4d9//8WcOXMwYcKEhsjYYj1LK0DMmRRu2dTGAF4D22gxESGEEFXU7s27cuVKJCUlYciQIdDTK99dLpdjypQpdM9Uwy7sjYe8ylyvfce2hUCvZQyFIYSQpkTtYioSibB79258+eWXiIqKgr6+Pry8vODk5NQQ+VqshzHZCs/GdPA0h5MXXUYnhBBdVOepc9q1a4d27dppMgv5fzKZHBf3VRkKw+eh37h2NT76jhBCiPaofc1w7Nix+Oabb5Ta16xZg/Hjx2skVEsXcyYFz9IKueVOr9g3u6fBEEJIc6J2MT137hyGDx+u1P7666/j3LlzGgnVkhXnS3H1WOVQGLGBHnq+oTwUiRBCiO5Qu5jm5+dDJFIemiEUCpGbm6uRUC1ZxNEElBSWccs9/V0gMaJ5YwkhRJepXUy9vLywe/dupfZdu3bB09NTI6Faquwn+Yg5/4RbNrM1QMdX6LF2hBCi69TugLRkyRK8+eabePDgAQYPHgwACAsLw19//aVyzl5SO4wxXNx7H6zqUJjx7SAQ0FAYQgjRdWoXU39/fxw6dAhfffUV9u3bB319fXTu3BmnTp3CgAEDGiJji5B0KxuP4p5xy06dLODUkYbCEEJIU1CnoTEjRozAiBEjlNpjYmLQqVOneodqaWRlikNh+Hwe+o5rq8VEhBBC1FHva4h5eXn49ddf0bNnT3h7e2siU4sTffoxnmcUccteA9vAzJaGwhBCSFNR52J67tw5TJkyBa1bt8Z3332HwYMH48qVK5rM1iIU5pbiWpWhMBJDIbqPcNZeIEIIIWpT6zJvWloatm3bhs2bNyM3NxdvvfUWSkpKcOjQIerJW0fhRxNQWizjln1HukBiSENhCCGkKan1mam/vz/c3d0RHR2N9evX48mTJ9iwYUNDZmv2sh7nIe5C5VAYcztDePaz02IiQgghdVHrM9Pjx49j9uzZmDlzJs3JqwGMMVzYcx+sciQM+r3VDnwaCkMIIU1OrX9zX7hwAXl5efDx8YGvry9++uknZGVlNWS2Zi0xKgsp93K4ZRdvSzh4mGsvECGEkDqrdTHt1asXfvvtN6SmpuKDDz7Arl27YGdnB7lcjtDQUOTl5TVkzmZFJpXj4v4qQ2EEPPQZS0NhCCGkqVL7mqKhoSGmT5+OCxcu4NatW/jkk0/w9ddfw9raGiNHjmyIjM3OzX8fITermFv2HuwAU2sDLSYihBBSH/W6Qefu7o41a9bg8ePH+OuvvzSVqVkreF6Ca/8kccv6xkJ0H+6stTyEEELqTyO9XQQCAUaPHo0jR45o4nDNWvjhBEhLKofC9BrlBpF+nZ/RTgghRAdQ19FGlJmch7jLqdyypYMRPPq01mIiQgghmkDFtJEwxnB+zz2g6lCY8e3A5/O0F4oQQohGUDFtJPHXM5Aa/5xbdutqBfv2ZlpMRAghRFO0Xkw3btwIZ2dnSCQS+Pr6IiIiosbt169fD3d3d+jr68PBwQEff/wxiouLFbZR95gNraxUhksH4rllgR6fhsIQQkgzotViunv3bgQHB2PZsmWIjIyEt7c3/Pz8kJGRoXL7nTt3YsGCBVi2bBni4uKwefNm7N69G4sWLarzMRtD1Klk5D8t4Za9hzqglaW+1vIQQgjRLK12I123bh1mzJiBwMBAAMCmTZtw7NgxbNmyBQsWLFDa/tKlS+jbty/efvttAICzszMmTpyI8PDwOh8TAEpKSlBSUlnscnNzAQBSqRRSqbRe77EwtxTXQx5yy/qthOg8xK7ex63Yv77HaUi6nlHX8wGUUVMoY/3pej6g4TIKhS9/+AiPsaqzwzae0tJSGBgYYN++fRg9ejTXPnXqVOTk5ODw4cNK++zcuRP/+c9/cPLkSfTs2RMJCQkYMWIEJk+ejEWLFtXpmACwfPlyrFixQuXrGRjUbzKF3Aci5N4Tc8tmXkUwbFNWr2MSQghpPKNGjXrpNlo7M83KyoJMJoONjY1Cu42NDe7cuaNyn7fffhtZWVno168fGGMoKyvDhx9+yF3mrcsxAWDhwoUIDg7mlnNzc+Hg4IBBgwbBwsKirm8RjDHsXnkNQPk9XWNLCca91w88DfTglUqlCA0NxbBhw2r1V5M26HpGXc8HUEZNoYz1p+v5AO1mbFKzBZw5cwZfffUVfv75Z/j6+iI+Ph5z5szBypUrsWTJkjofVywWQywWK7ULhcJ6/Yc8uZ+D3MzKzlGefewgEovqfDxV6puxMeh6Rl3PB1BGTaGM9afr+QDtZNRaMbW0tIRAIEB6erpCe3p6OmxtbVXus2TJEkyePBnvvfceAMDLywsFBQV4//338fnnn9fpmA0p7lLls0rBAzx6N34GQgghDU9rvXlFIhF8fHwQFhbGtcnlcoSFhaF3794q9yksLASfrxhZIBAAKL+kWpdjNpTS4jLEX6/sQezoaQ4jM0mjZiCEENI4tHqZNzg4GFOnTkX37t3Rs2dPrF+/HgUFBVxP3ClTpsDe3h6rV68GAPj7+2PdunXo2rUrd5l3yZIl8Pf354rqy47ZWOKvZ6CsVM4td+hj16ivTwghpPFotZgGBAQgMzMTS5cuRVpaGrp06YKQkBCuA1FycrLCmejixYvB4/GwePFipKSkwMrKCv7+/li1alWtj9lY7lyqnINXbKgHl86Wjfr6hBBCGo/WOyAFBQUhKChI5bozZ84oLOvp6WHZsmVYtmxZnY/ZGJ6lFSD1QeXUge172kIg1PpkU4QQQhoI/YZvAHeqPBkGADrQk2EIIaRZo2KqYXKZHHcup3HLlg5GsHIw1mIiQgghDY2KqYYl336KwtxSbpk6HhFCSPNHxVTD4qp0POLr8dC+Z+N2fCKEENL4qJhqUGFuKZKis7hl1y5WkBjq9kwhhBBC6o+KqQbdi0iDXF753ADqeEQIIS0DFVMNYYwh9mLlJV4jMzHaeJhrMREhhJDGQsVUQzKS8vAstYBb9ujdGnwNPB2GEEKI7qNiqiEKk9qjvJgSQghpGaiYaoC0VIb7VyufVGPvbgoTK30tJiKEENKYqJhqQMKNTJQWy7hlGltKCCEtCxVTDah6iVckEcC1q5UW0xBCCGlsVEzrKTerCCl3c7jldj1sIBQJtBeIEEJIo6NiWk9xSpPa0yVeQghpaaiY1oNczhSeW2rW2hDWzjSpPSGEtDRUTOsh5c4z5D8r4ZY79GkNHo/GlhJCSEtDxbQeqnY84vN5cPe11WIaQggh2kLFtI6KC6RIiKqc1N7JywIGrURaTEQIIURbqJjW0f2r6ZCVybnlDn2p4xEhhLRUVEzrqOpzSw1aieDUkSa1J4SQloqKaR1kPspDZnIet+zeyxZ8AX2UhBDSUlEFqIOqw2EAem4pIYS0dFRM1SSTynE3Io1btnU1gZmtoRYTEUII0TYqpmpKjM5CSUEZt9yhL52VEkJIS0fFVE1Vx5bqifho62OtxTSEEEJ0ARVTNeQ9LUZy7FNuua2PNUQSPS0mIoQQoguomKrh7pU0gFUu06T2hBBCACqmtcYYU3hCjImVPlq3NdFiIkIIIbqCimktpcbnIDeziFvu0JcmtSeEEFKOimktxV2sPCvl8QB3X+rFSwghpBwV01ooLSpDfGQGt+zgaQEjM7EWExFCCNElVExrIf56BspKq0xqTzMeEUIIqYKKaS1UHVsqMRTCpbOlFtMQQgjRNTpRTDdu3AhnZ2dIJBL4+voiIiKi2m0HDhwIHo+n9DVixAhum2nTpimtf+211+qU7WlqAdIScrnl9r42EAh14mMjhBCiI7Q+48Du3bsRHByMTZs2wdfXF+vXr4efnx/u3r0La2vl2YUOHDiA0tJSbjk7Oxve3t4YP368wnavvfYatm7dyi2LxXW7x0mT2hNCCHkZrZ9irVu3DjNmzEBgYCA8PT2xadMmGBgYYMuWLSq3Nzc3h62tLfcVGhoKAwMDpWIqFosVtjMzM1M7m1wmx53wykntrRyNYdnGWO3jEEIIad60emZaWlqK69evY+HChVwbn8/H0KFDcfny5VodY/PmzZgwYQIMDRWf3HLmzBlYW1vDzMwMgwcPxpdffgkLCwuVxygpKUFJSQm3nJtbfln3YUwWinIrz4Lb+1pDKpXW+v01pIocupJHFV3PqOv5AMqoKZSx/nQ9H9BwGYVC4Uu34THG2Eu3aiBPnjyBvb09Ll26hN69e3Pt8+fPx9mzZxEeHl7j/hEREfD19UV4eDh69uzJte/atQsGBgZwcXHBgwcPsGjRIhgZGeHy5csQCARKx1m+fDlWrFih1L5h/n7wnpuWL/AZ7Abng//yz5QQQkgzMmrUqJduo/V7pvWxefNmeHl5KRRSAJgwYQL3by8vL3Tu3Blubm44c+YMhgwZonSchQsXIjg4mFvOzc2Fg4MDSrKFqJjH3q2rNYaMeqVh3kgdSKVShIaGYtiwYbX6q0kbdD2jrucDKKOmUMb60/V8gHYzarWYWlpaQiAQID09XaE9PT0dtra2Ne5bUFCAXbt24Ysvvnjp67i6usLS0hLx8fEqi6lYLFbZQYlVDi1Fx372OvkNJBQKdTJXVbqeUdfzAZRRUyhj/el6PkA7GbXaAUkkEsHHxwdhYWFcm1wuR1hYmMJlX1X27t2LkpISvPPOOy99ncePHyM7OxutW9etJ66RuRht3NXvwEQIIaRl0Hpv3uDgYPz222/Yvn074uLiMHPmTBQUFCAwMBAAMGXKFIUOShU2b96M0aNHK3Uqys/Px7x583DlyhUkJSUhLCwMo0aNQtu2beHn51enjB16twaPT5PaE0IIUU3r90wDAgKQmZmJpUuXIi0tDV26dEFISAhsbGwAAMnJyeDzFWv+3bt3ceHCBZw8eVLpeAKBANHR0di+fTtycnJgZ2eHV199FStXrqzzWFOP3jS2lBBCSPW0XkwBICgoCEFBQSrXnTlzRqnN3d0d1XVC1tfXx4kTJzSWrY2HGVpZ6mvseIQQQpofrV/m1XU04xEhhJCX0YkzU11TcdYr55fA0lXMTeKgS6RSKQoLC5Gbm6uzPet0PaOu5wMoo6ZQxvrT9XxAw2Y0NjYGj1d93xmtTtqgqxISEuDm5qbtGIQQQnTE8+fP0apVq2rX05mpCubm5gDKOz+ZmJhoOY1qFRNLPHr0qMb/YG3S9Yy6ng+gjJpCGetP1/MBDZvR2LjmedmpmKpQ0XvYxMREZ79pKrRq1Yoy1pOu5wMoo6ZQxvrT9XyAdjJSByRCCCGknqiYEkIIIfVExVQFsViMZcuW1XmSh8ZAGetP1/MBlFFTKGP96Xo+QLsZqTcvIYQQUk90ZkoIIYTUExVTQgghpJ6omBJCCCH1RMWUEEIIqScqpips3LgRzs7OkEgk8PX1RUREhLYjAQBWr16NHj16wNjYGNbW1hg9ejTu3r2r7Vg1+vrrr8Hj8TB37lxtR1GQkpKCd955BxYWFtDX14eXlxeuXbum7VgcmUyGJUuWwMXFBfr6+nBzc8PKlSurfVpSYzh37hz8/f1hZ2cHHo+HQ4cOKaxnjGHp0qVo3bo19PX1MXToUNy/f19nMkqlUnz22Wfw8vKCoaEh7OzsMGXKFDx58kQn8r3oww8/BI/Hw/r16xstH1C7jHFxcRg5ciRMTExgaGiIHj16IDk5WWcy5ufnIygoCG3atIG+vj48PT2xadOmBs1ExfQFu3fvRnBwMJYtW4bIyEh4e3vDz88PGRkZ2o6Gs2fPYtasWbhy5QpCQ0MhlUrx6quvoqCgQNvRVLp69Sr++9//onPnztqOouDZs2fo27cvhEIhjh8/jtjYWKxduxZmZmbajsb55ptv8Msvv+Cnn35CXFwcvvnmG6xZswYbNmzQWqaCggJ4e3tj48aNKtevWbMGP/74IzZt2oTw8HAYGhrCz88PxcXFOpGxsLAQkZGRWLJkCSIjI3HgwAHcvXsXI0eO1Il8VR08eBBXrlyBnZ1dIyWr9LKMDx48QL9+/eDh4YEzZ84gOjoaS5YsgUQi0ZmMwcHBCAkJwf/+9z/ExcVh7ty5CAoKwpEjRxouFCMKevbsyWbNmsUty2QyZmdnx1avXq3FVKplZGQwAOzs2bPajqIkLy+PtWvXjoWGhrIBAwawOXPmaDsS57PPPmP9+vXTdowajRgxgk2fPl2h7c0332STJk3SUiJFANjBgwe5Zblczmxtbdm3337LteXk5DCxWMz++usvLSRUzqhKREQEA8AePnzYOKGqqC7f48ePmb29PYuJiWFOTk7s+++/b/RsFVRlDAgIYO+88452AqmgKmPHjh3ZF198odDWrVs39vnnnzdYDjozraK0tBTXr1/H0KFDuTY+n4+hQ4fi8uXLWkym2vPnzwFUTsyvS2bNmoURI0YofJa64siRI+jevTvGjx8Pa2trdO3aFb/99pu2Yyno06cPwsLCcO/ePQDAzZs3ceHCBbz++utaTqZaYmIi0tLSFP6/TUxM4Ovrq5M/OxWeP38OHo8HU1NTbUcBAMjlckyePBnz5s1Dx44dtR1HiVwux7Fjx9C+fXv4+fnB2toavr6+NV6u1oY+ffrgyJEjSElJAWMMp0+fxr179/Dqq6822GtSMa0iKysLMpkMNjY2Cu02NjZIS0vTUirV5HI55s6di759+6JTp07ajqNg165diIyMxOrVq7UdRaWEhAT88ssvaNeuHU6cOIGZM2di9uzZ2L59u7ajcRYsWIAJEybAw8MDQqEQXbt2xdy5czFp0iRtR1Op4uejKfzsVCguLsZnn32GiRMn6szE7d988w309PQwe/ZsbUdRKSMjA/n5+fj666/x2muv4eTJkxgzZgzefPNNnD17VtvxOBs2bICnpyfatGkDkUiE1157DRs3bsQrr7zSYK9JT41pombNmoWYmBhcuHBB21EUPHr0CHPmzEFoaGij3kNRh1wuR/fu3fHVV18BALp27YqYmBhs2rQJU6dO1XK6cnv27MGOHTuwc+dOdOzYEVFRUZg7dy7s7Ox0JmNTJpVK8dZbb4Exhl9++UXbcQAA169fxw8//IDIyMgaH0KtTXK5HAAwatQofPzxxwCALl264NKlS9i0aRMGDBigzXicDRs24MqVKzhy5AicnJxw7tw5zJo1C3Z2dg12tYzOTKuwtLSEQCBAenq6Qnt6ejpsbW21lEpZUFAQ/v77b5w+fRpt2rTRdhwF169fR0ZGBrp16wY9PT3o6enh7Nmz+PHHH6GnpweZTKbtiGjdujU8PT0V2jp06NCovRFfZt68edzZqZeXFyZPnoyPP/5YZ8/2K34+dP1nB6gspA8fPkRoaKjOnJWeP38eGRkZcHR05H52Hj58iE8++QTOzs7ajgeg/Heknp6eTv/8FBUVYdGiRVi3bh38/f3RuXNnBAUFISAgAN99912DvS4V0ypEIhF8fHwQFhbGtcnlcoSFhaF3795aTFaOMYagoCAcPHgQ//77L1xcXLQdScmQIUNw69YtREVFcV/du3fHpEmTEBUVBYFAoO2I6Nu3r9KQonv37sHJyUlLiZQVFhZyz9WtIBAIuDMDXePi4gJbW1uFn53c3FyEh4frxM9OhYpCev/+fZw6dQoWFhbajsSZPHkyoqOjFX527OzsMG/ePJw4cULb8QCU/47s0aOHTv/8SKVSSKXSRv/5ocu8LwgODsbUqVPRvXt39OzZE+vXr0dBQQECAwO1HQ2zZs3Czp07cfjwYRgbG3P3okxMTKCvr6/ldOWMjY2V7uEaGhrCwsJCZ+7tfvzxx+jTpw+++uorvPXWW4iIiMCvv/6KX3/9VdvROP7+/li1ahUcHR3RsWNH3LhxA+vWrcP06dO1lik/Px/x8fHccmJiIqKiomBubg5HR0fMnTsXX375Jdq1awcXFxcsWbIEdnZ2GD16tE5kbN26NcaNG4fIyEj8/fffkMlk3M+Qubk5RCKRVvM5OjoqFXehUAhbW1u4u7s3eLbaZpw3bx4CAgLwyiuvYNCgQQgJCcHRo0dx5swZnck4YMAAzJs3D/r6+nBycsLZs2fxxx9/YN26dQ0XqsH6CTdhGzZsYI6OjkwkErGePXuyK1euaDsSY6y8C7iqr61bt2o7Wo10bWgMY4wdPXqUderUiYnFYubh4cF+/fVXbUdSkJuby+bMmcMcHR2ZRCJhrq6u7PPPP2clJSVay3T69GmV339Tp05ljJUPj1myZAmzsbFhYrGYDRkyhN29e1dnMiYmJlb7M3T69Gmt51NFG0NjapNx8+bNrG3btkwikTBvb2926NAhncqYmprKpk2bxuzs7JhEImHu7u5s7dq1TC6XN1gmegQbIYQQUk90z5QQQgipJyqmhBBCSD1RMSWEEELqiYopIYQQUk9UTAkhhJB6omJKCCGE1BMVU0IIIaSeqJgSQggh9UTFlBDSJPF4PK0/RzMpKQk8Hg9RUVFazUG0j4opaZYuX74MgUCAESNG1Gn/5cuXo0uXLpoNpabMzEzMnDkTjo6OEIvFsLW1hZ+fHy5evKjVXC+TlpaGjz76CK6urhCLxXBwcIC/v7/CJPgtMQtp3miie9Isbd68GR999BE2b96MJ0+ewM7OTis5SktL6zyB+tixY1FaWort27fD1dUV6enpCAsLQ3Z2toZTqq+695WUlIS+ffvC1NQU3377Lby8vCCVSnHixAnMmjULd+7cabSMupSFtAANNusvIVqSl5fHjIyM2J07d1hAQABbtWqVwvqtW7cyExMThbaDBw+yih+HrVu3VvswgYcPH7KRI0cyQ0NDZmxszMaPH8/S0tK44yxbtox5e3uz3377jTk7OzMej8cYY+z48eOsb9++zMTEhJmbm7MRI0aw+Pj4at/Ds2fPGAB25syZarepmLj9xo0bSvtVTNxeMSH433//zby8vJhYLGa+vr7s1q1bCsc6f/4869evH5NIJKxNmzbso48+Yvn5+dx6Jycn9sUXX7DJkyczY2Pjaidmf/3115m9vb3CvlWzVXjZ58gYYz///DNzdXVlQqGQtW/fnv3xxx8K6wGwgwcPVvv51CZLYGAgGzFihMK60tJSZmVlxX7//XfGGGMymYx98803zM3NjYlEIubg4MC+/PJLxpjq/4Nbt26x1157jRkaGjJra2v2zjvvsMzMzGpzkuaBLvOSZmfPnj3w8PCAu7s73nnnHWzZsgVMjec5BAQE4JNPPkHHjh2RmpqK1NRUBAQEQC6XY9SoUXj69CnOnj2L0NBQJCQkICAgQGH/+Ph47N+/HwcOHODupRUUFCA4OBjXrl1DWFgY+Hw+xowZU+3zFY2MjGBkZIRDhw6hpKSkzp9FhXnz5mHt2rW4evUqrKys4O/vD6lUCgB48OABXnvtNYwdOxbR0dHYvXs3Lly4gKCgIIVjfPfdd/D29saNGzewZMkSpdd4+vQpQkJCMGvWLBgaGiqtNzU1BYBafY4HDx7EnDlz8MknnyAmJgYffPABAgMDcfr06Vq939pmee+99xASEoLU1FRu3d9//43CwkIuz8KFC/H1119jyZIliI2Nxc6dO2FjY6PydXNycjB48GB07doV165dQ0hICNLT0/HWW2/VKjdpwrRdzQnRtD59+rD169czxhiTSqXM0tJS4RFbLzszZazyDLOqkydPMoFAwJKTk7m227dvMwAsIiKC208oFLKMjIwaM2ZmZjIASmeIVe3bt4+ZmZkxiUTC+vTpwxYuXMhu3rzJrVfnzHTXrl3cNtnZ2UxfX5/t3r2bMcbYu+++y95//32F1z5//jzj8/msqKiIMVZ+Zjp69Oga31N4eDgDwA4cOFDjdrX5HPv06cNmzJihsN/48ePZ8OHDuWXUcGZa2yyMMebp6cm++eYbbtnf359NmzaNMVb+KDyxWMx+++03lfu++H+wcuVK9uqrryps8+jRIwag0R9HRxoXnZmSZuXu3buIiIjAxIkTAQB6enoICAjA5s2b633suLg4ODg4wMHBgWvz9PSEqakp4uLiuDYnJydYWVkp7Hv//n1MnDgRrq6uaNWqFZydnQEAycnJ1b7e2LFj8eTJExw5cgSvvfYazpw5g27dumHbtm1qZ+/duzf3b3Nzc7i7u3OZb968iW3btnFnw0ZGRvDz84NcLkdiYiK3X/fu3Wt8DVbLs//afI5xcXHo27evwn59+/ZV+Jw1kQUoPzvdunUrACA9PR3Hjx/nHsIeFxeHkpISDBkypFbHunnzJk6fPq3wWXp4eAAovwJAmi/qgESalc2bN6OsrEyhwxFjDGKxGD/99BNMTEzA5/OVftlWXPLUBFWXFf39/eHk5ITffvsNdnZ2kMvl6NSpE0pLS2s8lkQiwbBhwzBs2DAsWbIE7733HpYtW4Zp06aBz+dz768+7yM/Px8ffPABZs+erbTO0dGxxvdVVbt27cDj8XSiY486WaZMmYIFCxbg8uXLuHTpElxcXNC/f38AgL6+vlqvm5+fD39/f3zzzTdK61q3bq3WsUjTQmempNkoKyvDH3/8gbVr1yIqKor7unnzJuzs7PDXX38BAKysrJCXl4eCggJu3xfHCYpEIshkMoW2Dh064NGjR3j06BHXFhsbi5ycHHh6elabKzs7G3fv3sXixYsxZMgQdOjQAc+ePavTe/T09ORyV5z9Vr3fV914xytXrnD/fvbsGe7du4cOHToAALp164bY2Fi0bdtW6Uudnsjm5ubw8/PDxo0bFT7bCjk5OQBq9zl26NBBaQjQxYsXa/yc65IFACwsLDB69Ghs3boV27ZtQ2BgILeuXbt20NfXr/VQmm7duuH27dtwdnZW+ixf9scIaeK0epGZEA06ePAgE4lELCcnR2nd/PnzWffu3Rlj5fcMDQ0N2ezZs1l8fDzbsWMHs7OzU7hnumPHDmZoaMhu3LjBMjMzWXFxMZPL5axLly6sf//+7Pr16yw8PJz5+PiwAQMGcPuputcqk8mYhYUFe+edd9j9+/dZWFgY69GjR433/LKystigQYPYn3/+yW7evMkSEhLYnj17mI2NDZs+fTq3Xa9evVj//v1ZbGwsO3PmDOvZs6fKe6YdO3Zkp06dYrdu3WIjR45kjo6OrKSkhDHG2M2bN5m+vj6bNWsWu3HjBrt37x47dOgQmzVrFvc6Tk5O7Pvvv3/p/8GDBw+Yra0t8/T0ZPv27WP37t1jsbGx7IcffmAeHh6MMVarz/HgwYNMKBSyn3/+md27d4+tXbuWCQQChXvfNX1+tc1S4eTJk0wkEjGBQMBSUlIU1i1fvpyZmZmx7du3s/j4eHb58mWup++L90xTUlKYlZUVGzduHIuIiGDx8fEsJCSETZs2jZWVlb308yNNFxVT0my88cYbCh1UqqrokFLRgefgwYOsbdu2TF9fn73xxhvs119/VSimxcXFbOzYsczU1LROQ2NeFBoayjp06MDEYjHr3LkzO3PmTI3FoLi4mC1YsIB169aNmZiYMAMDA+bu7s4WL17MCgsLue1iY2NZ7969mb6+PuvSpQs7efKkymJ69OhR1rFjRyYSiVjPnj0VOjIxxlhERAQbNmwYMzIyYoaGhqxz584KQ4pqW0wZY+zJkyds1qxZzMnJiYlEImZvb89GjhypUAgbY2hMbbMwVl7gnZycVH7/yGQy9uWXXzInJycmFAqZo6Mj++qrrxhjqjuB3bt3j40ZM4aZmpoyfX195uHhwebOncvkcvnLPzzSZPEYU+NOPSGkSTlz5gwGDRqEZ8+eccNBiLL8/HzY29tj69atePPNN7UdhzRB1AGJENJiyeVyZGVlYe3atTA1NcXIkSO1HYk0UVRMCSEtVnJyMlxcXNCmTRts27YNenr0K5HUDV3mJYQQQuqJhsYQQggh9UTFlBBCCKknKqaEEEJIPVExJYQQQuqJiikhhBBST1RMCSGEkHqiYkoIIYTUExVTQgghpJ7+DzBvqqhFd9RAAAAAAElFTkSuQmCC\n" - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "# Customization\n", - "fig = plot_cycle_score(cycle, X_test, y_test,\n", - " x_label = 'Autora Super Cool Cycle',\n", - " y_label= 'Accuracy Score',\n", - " scorer=accuracy_score,\n", - " figsize=(5,3),\n", - " ylim=[.74, 1],\n", - " xlim=[0, 19],\n", - " plot_kw=dict(linewidth=2.5, color='tab:purple'),\n", - " );\n", - "fig.axes[0].grid()\n", - "fig.axes[0].set_title('Accuracy Over 20 Cycles')\n" - ], - "metadata": { - "collapsed": false - } - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 3", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 2 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython2", - "version": "2.7.6" - } - }, - "nbformat": 4, - "nbformat_minor": 0 -} diff --git a/docs/cycle/cycle_scoring_bms.ipynb b/docs/cycle/cycle_scoring_bms.ipynb deleted file mode 100644 index bb45b8878..000000000 --- a/docs/cycle/cycle_scoring_bms.ipynb +++ /dev/null @@ -1,360 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "source": [], - "metadata": { - "collapsed": false - } - }, - { - "cell_type": "markdown", - "source": [ - "# Simple Cycle Scoring Example with BMS and Random Sampling\n", - "The aim of this example notebook is to use the AutoRA `Cycle` to recover a ground truth theory from some noisy data using BSM and random sampling. We will evaluate the model with AutoRa's scoring and plotting functions." - ], - "metadata": { - "collapsed": false - } - }, - { - "cell_type": "code", - "execution_count": null, - "outputs": [], - "source": [ - "# Uncomment the following line when running on Google Colab\n", - "# !pip install autora" - ], - "metadata": { - "collapsed": false - } - }, - { - "cell_type": "code", - "execution_count": 1, - "outputs": [], - "source": [ - "import matplotlib.pyplot as plt\n", - "import numpy as np\n", - "import logging\n", - "\n", - "from autora.cycle import Cycle, cycle_specified_score, plot_cycle_score, plot_results_panel_2d\n", - "from sklearn.metrics import r2_score\n", - "from autora.experimentalist.sampler import random_sampler, nearest_values_sampler\n", - "from autora.experimentalist.pipeline import make_pipeline\n", - "from autora.variable import VariableCollection, Variable\n", - "from autora.skl.bms import BMSRegressor" - ], - "metadata": { - "collapsed": false - } - }, - { - "cell_type": "markdown", - "source": [ - "## Ground Truth and Problem Space\n", - "The ground truth we are trying to recover will be an oscillating function with a parabolic component.\n", - "The space of allowed x values is reals between -10 and 10 inclusive. We discretize them as we don't currently have a sampler which can sample from the uniform distribution." - ], - "metadata": { - "collapsed": false - } - }, - { - "cell_type": "code", - "execution_count": 2, - "outputs": [ - { - "data": { - "text/plain": "" - }, - "execution_count": 2, - "metadata": {}, - "output_type": "execute_result" - }, - { - "data": { - "text/plain": "
", - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAioAAAGdCAYAAAA8F1jjAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8o6BhiAAAACXBIWXMAAA9hAAAPYQGoP6dpAABK0UlEQVR4nO3dd1QU5+M18Lt0UGnSJIKKUexdEHshYi/xq0ZNAko0iRp7b6hRUcDYa+zRWGOJxhprVMTeUFEUxUKxslIXdp/3D1/3FyIgIMvsLvdzzp7jzs7M3nEol9mZZ2RCCAEiIiIiLWQgdQAiIiKi7LCoEBERkdZiUSEiIiKtxaJCREREWotFhYiIiLQWiwoRERFpLRYVIiIi0losKkRERKS1dL6oCCEgl8vBceuIiIj0j84Xlbdv38LKygpv376VOgoREREVMJ0vKkRERKS/WFSIiIhIa7GoEBERkdZiUSEiIiKtxaJCREREWstI6gCFQQiBjIwMKJVKqaOQljE0NISRkRFkMpnUUYiIKAt6X1QUCgViYmKQnJwsdRTSUhYWFihVqhRMTEykjkJERP+h10VFpVIhKioKhoaGcHZ2homJCf9yJjUhBBQKBZ4/f46oqChUqFABBgb8NJSISJvodVFRKBRQqVRwcXGBhYWF1HFIC5mbm8PY2BiPHj2CQqGAmZmZ1JGIiOhfisSfj/wrmXLCrw8iIu3Fn9BERESktVhUqECsW7cO1tbWUseAn58funTpInUMIiIqICwqVCgePnwImUyGq1evauX6iIhIO7Go6AmFQiF1hAKhL9tBREQFg0VFC719+xZ9+vRBsWLFUKpUKcybNw/NmzfHsGHD1POULVsWP//8M7799ltYWlpiwIABAIA//vgDVatWhampKcqWLYu5c+dmWrdMJsPu3bszTbO2tsa6desA/N+Rip07d6JFixawsLBAzZo1ERoammmZdevWwdXVFRYWFujatStevnyZ4zaVK1cOAFC7dm3IZDI0b94cwP99VDNz5kw4OzvD3d09VzmzW997ISEhKFWqFEqWLIlBgwYhPT09x3xERLrq6dOnWLFiBcaMGYOAgAD89ddfevVHn15fnvxfQgjJBn6zsLDI9RguI0aMwJkzZ/Dnn3/C0dERU6ZMweXLl1GrVq1M84WEhGDKlCkICAgAAFy6dAk9evTA1KlT0bNnT5w9exYDBw5EyZIl4efnl6e8EydOREhICCpUqICJEyeiV69eiIyMhJGREcLCwuDv74/AwEB06dIFBw8eVGfIzvnz5+Hh4YG///4bVatWzTS42tGjR2FpaYkjR47kOl9O6zt+/DhKlSqF48ePIzIyEj179kStWrXQv3//PP0fEBFpM7lcjnHjxuHXX39FRkZGptdKlSqF4OBg9O7dW/fHDxM6LiEhQQAQCQkJH7yWkpIibt26JVJSUoQQQiQmJgoAkjwSExNztT1yuVwYGxuL7du3q6e9efNGWFhYiKFDh6qnlSlTRnTp0iXTsr179xZffPFFpmmjR48WVapUUT8HIHbt2pVpHisrK7F27VohhBBRUVECgFi1apX69fDwcAFA3L59WwghRK9evUS7du0yraNnz57Cysoq2+16v94rV65kmu7r6yscHR1FWlpapum5zZnV+sqUKSMyMjLU07p37y569uyZbbb/fp0QEWm7hw8fiooVK6p/xzRo0EAMGzZM9O3bVzg5Oamnd+7cWbx+/VrquJ+EH/1omQcPHiA9PR0eHh7qaVZWVuqPRP6tXr16mZ7fvn0bjRo1yjStUaNGuHfvXp7vc1SjRg31v0uVKgUAiI+PV7+Pp6dnpvm9vLzytP5/q169eoEOX1+1alUYGhqqn5cqVUqdnYhI1925cweNGzfG3bt34eLigmPHjiE0NBTz5s3DmjVr8OjRI8yYMQPGxsbYs2cPGjdujMePH0sdO9+K1Ec/FhYWSExMlOy9C1qxYsXyvIxMJoMQItO0rM7fMDY2zrQM8O6WBJqQ1XbkNmdW/p39/bo0lZ2IqDDFxcXBx8cHT548QeXKlXHkyBF89tlnmeYxMTHBxIkT0a5dO3To0AHh4eFo2LAhjh49iooVK0qUPP+KVFGRyWT5+uVemNzc3GBsbIwLFy7A1dUVAJCQkIC7d++iadOmOS5buXJlnDlzJtO0M2fOoGLFiuojDPb29oiJiVG/fu/evTyft1O5cmWEhYVlmnbu3Lkcl3l/xCS3R3Y+ljOv6yMi0nVpaWn48ssvER0djQoVKuDkyZOwt7fPdv7atWsjNDQUbdq0we3bt9GsWTMcO3YMlStXLsTUn44f/WiZEiVKwNfXF6NHj8bx48cRHh4Of39/GBgYfPSEqJEjR+Lo0aP4+eefcffuXaxfvx6LFy/GqFGj1PO0bNkSixcvxpUrV3Dx4kX88MMPHxyB+JghQ4bg4MGDCAkJwb1797B48WIcPHgwx2UcHBxgbm6OgwcPIi4uDgkJCTnO/7GceV0fEZGuGzFiBM6ePQtra2vs3bs3x5LynqurK06ePIkaNWogNjYWzZo1w40bNwohbcFhUdFCv/zyC7y8vNChQwd4e3ujUaNGqFy58kdvmFenTh1s27YNW7ZsQbVq1TBlyhRMnz490xU/c+fOhYuLC5o0aYLevXtj1KhRef5YqkGDBvj111+xYMEC1KxZE4cPH8akSZNyXMbIyAgLFy7EihUr4OzsjM6dO+c4/8dy5nV9RES67M8//8TSpUsBAJs3b87yvMXs2Nvb49ixY6hduzaeP3+OFi1a5HqwzOfPn2PgwIFISUnJT+wCIRP/PRFAx8jlclhZWSEhIQGWlpaZXktNTUVUVBTKlSun03fFTUpKwmeffYa5c+fC399f6jh6R1++TohIPz179gw1atTAy5cvMXLkSISEhORrPa9fv4aPjw8uXLgAGxsb7Nu3Dw0bNsx2/sePH+OLL75AREQEfH191eNYFbYidY6Krrhy5Qru3LkDDw8PJCQkYPr06QDAowZERFri+fPn2LdvHyIjI2FmZoY6dergiy++KNArGIF3FzH4+vri5cuXqFWrFmbOnJnvddnY2ODIkSNo27YtQkND0axZMwQFBWHo0KEf3EX+ypUr6NKlC6Kjo+Hi4oIJEyZ86qbkG4uKlgoJCUFERARMTExQt25d/PPPP7Czs5M6FhFRkZacnIzJkydj0aJFH1yJ6ODggMDAQPj5+X3wiz+/5s6di7///hvm5ubYvHkzTE1NP2l9VlZWOHToEPz9/bF9+3aMGDECv//+OwYOHIjatWvj5cuX2LZtG9asWYOMjAy4u7vjyJEjcHFxKZDtyQ9+9ENFHr9OiCg3nj17Bh8fH9y8eRPAu/MCGzRogKSkJBw+fFh9pWLjxo2xdetWODs7f9L7Xbx4EV5eXsjIyMCKFSvUt0opCEIILF26FOPGjct22I4vv/wSK1askPyPZBYVKvL4dUJEH/P06VO0aNEC9+7dg5OTE9asWYO2bduqX09PT8fChQsxdepUJCYmwsnJCbt27UKDBg3y9X6JiYmoU6cO7t27hy+//BI7duzQyFD4cXFxWLlyJfbv34+HDx+iWLFi8PLywnfffYdmzZoV+PvlB4sKFXn8OiGinCQkJKBBgwa4c+cOypQpgxMnTqBs2bJZznv//n107twZ4eHhMDMzw8aNG9GtW7c8vZ8QAn379sX69etRunRpXLt2Dba2tgWwJbqpSFyerONdjDSMXx9ElB2VSgU/Pz/cuXMHpUuXzrGkAED58uURGhqKjh07IjU1Fd27d8f8+fPz9J7z58/H+vXrYWBggE2bNhXpkgLoeVF5P0CYVHdMJt3w/usjrwPfEZH+Cw4Oxu7du2FiYoKdO3fmWFLeK1GiBHbt2oUff/wRQggMHz4cw4cPz9WtPPbs2YORI0cCeHdRxcdGJC8K9PqjHwCIiYnBmzdv4ODgAAsLC92/3TUVGCEEkpOTER8fD2tra/XNF4mIAODatWuoX78+0tPT83UyqxACwcHBGDt2LACgW7duWLt2LUqUKJHl/Js2bYKfnx8yMjIwYMAALF++nL+zUASKihACsbGxePPmTeGHI51gbW0NJycn/kAgIjWFQoH69evj+vXr6NKlC3bu3JnvnxGbN2+Gn58fFAoFXFxcsHjxYnTs2FG9vsTERMycOROzZ88GAPTu3Rvr1q3jUd7/T++LyntKpTLXd9+losPY2Fh9w0YiovcmT56MGTNmoGTJkggPD4ejo+Mnre+ff/6Br68voqKiALw7l8XT0xNJSUk4ceKE+n5lw4YNw9y5cwtsHBZ9UGSKChERUW5cvHgRDRo0gFKpxLZt29C9e/cCWW9SUhJ+/vlnLF68GElJSZleq1ChAoKCgtClS5cCeS99wqJCRET0/6WmpqJu3bq4desWevbsiS1bthT4e8jlchw/fhz37t1Tjz7eoEEDHt3NBosKERHpjDdv3uD+/fswNjZGxYoVC3zso3HjxmHOnDlwdHREeHg4SpYsWaDrp7zjh2BERKT1QkND4ePjA1tbW9SrVw81a9aEra0tvv76a9y9e7dA3uPcuXMIDg4GAKxYsYIlRUuwqBARkdZSKpWYMGECGjZsiMOHD0MIAScnJ9jY2CAlJQWbNm1ClSpVMHz4cKSmpub7fZKTk+Hn5weVSoU+ffrwbvVahEWFiIi0klKphJ+fHwIDAwEAfn5+uH//PmJiYvDy5UucP38eHTp0gFKpxPz589GgQYN8HV0RQmDgwIGIiIiAk5MTFi5cWNCbQp+ARYWIiLTS2LFjsXHjRhgaGuK3337D2rVr4ebmBgCQyWSoX78+9u7di3379sHOzk49QNu+ffvy9D6rVq1SD1n/+++/F/kh67UNiwoREWmd9evXY+7cuQCA3377DV9//XW287Zv3x7Xrl1D48aNIZfL0alTJ8yYMSNXQ9b/9ddfGDRoEABgxowZaNGiRcFsABUYFhUiItIqt27dUg9XP3nyZPTq1eujyzg7O+Po0aPq++tMnjwZ3bp1w4sXL7Jd5tChQ+jWrRvS09Px1VdfqYe6J+3CokJERFpDpVKhf//+UCgUaNu2LaZOnZrrZU1MTLB06VKsWrUKJiYm2L17NypVqoTVq1dDoVCo50tKSkJAQADatWuHtLQ0dO3aFRs2bOBosFqK46gQEZHWWLx4MX766SeUKFEC4eHhcHFxydd6Ll68iH79+uHGjRsAABsbG3h6ekKlUiE0NBRv374FAHz77bf49ddfYWJiUmDbQAWLRYWIiLRCdHQ0qlatisTERCxZsgQDBw78pPWlp6dj4cKFmDt3LmJiYjK99vnnn2PmzJno3r07b0iq5VhUiIhIckIIdOjQAfv370ejRo1w6tSpAvsoJiMjA+fPn8ft27chk8lQrVo11KtXjx/16AgWFSIiktzvv/+OPn36wMTEBNeuXUOlSpWkjkRagnWSiIgk9eLFCwwdOhTAu6t8WFLo31hUiIhIUsOHD8eLFy9QvXp1jBkzRuo4pGVYVIiISDIHDx7Exo0bYWBgoL6smOjfWFSIiEgSb9++xffffw8AGDp0KDw8PCRORNrISOoARESkvR4/fow9e/bgzp07MDQ0RLVq1dCpUyc4Ojp+8rpHjRqF6OholCtXDj///HMBpCV9xKt+iIjoA2/fvsX48eOxYsUKZGRkZHrN1NQUvr6+mDRpUr4HZNuzZw+6dOkCmUyGo0eP8h47lC0WFSIiyiQ6Ohrt2rVDeHg4AKBx48Zo0qQJMjIycOzYMVy6dAkAUKJECQQFBWHAgAF5GpPk8ePHqFOnDl68eIFRo0YhODhYI9tB+oFFhYiI1J4/f46GDRsiMjISzs7O2LBhA1q1aqV+XQiB06dPY8yYMTh37hwAwMfHB2vWrIGzs/NH1y+Xy9G4cWPcuHEDtWrVwrlz52Bqaqqx7SHdp9GTaU+dOoWOHTvC2dkZMpkMu3fvzvS6EAJTpkxBqVKlYG5uDm9vb9y7d0+TkYiIKBtJSUno0KEDIiMjUbZsWZw7dy5TSQEAmUyGJk2a4PTp05g/fz7MzMxw6NAh1KhRA7t27cpx/cnJyejWrRtu3LgBJycn7NmzhyWFPkqjRSUpKQk1a9bEkiVLsnw9KCgICxcuxPLlyxEWFoZixYrBx8cHqampmoxFRERZGDJkCM6fPw9bW1scPHgwx/NPDA0NMXToUFy+fBl16tTBy5cv8eWXX+Kbb77Bo0ePPpg/KioKLVu2xN9//w0LCwvs27cPrq6umtwc0hOF9tGPTCbDrl270KVLFwDvjqY4Oztj5MiRGDVqFAAgISEBjo6OWLduHb766qtcrZcf/RARfbqdO3eiW7dukMlkOHbsGJo3b57rZRUKBQICAjBnzhwIIWBsbIwePXqgadOmMDIyQmhoKH777TekpaXB2toae/fuRePGjTW3MaRXJCsqDx48QPny5XHlyhXUqlVLPV+zZs1Qq1YtLFiwIMv1pKWlIS0tTf1cLpfDxcWFRYWIKJ9iY2NRtWpVvHr1CuPGjUNgYGC+1nP+/HlMmDABR48ezfL1Fi1aYM2aNShbtuwnpKWiRrJxVGJjYwHgg2vxHR0d1a9lJTAwENOmTdNoNiKiomTMmDF49eoVateu/Uk/Xz08PPD333/j3Llz2LVrF27evImMjAy4u7ujW7duaNq0KWQyWQEmp6JA5wZ8Gz9+PEaMGKF+/v6IChER5d0///yD3377DTKZDCtWrCiQIewbNGiABg0aFEA6IgmH0HdycgIAxMXFZZoeFxenfi0rpqamsLS0zPQgIqK8y8jIwKBBgwAA/fv3R/369SVORPQhyYpKuXLl4OTklOmzTLlcjrCwMHh5eUkVi4ioyFiyZAlu3LgBW1tbzJo1S+o4RFnS6Ec/iYmJiIyMVD+PiorC1atXYWtrC1dXVwwbNgwzZsxAhQoVUK5cOUyePBnOzs7qE26JiEgzYmNjMWXKFADA7NmzUbJkSYkTEWVNo0Xl4sWLme7f8P7cEl9fX6xbtw5jxoxBUlISBgwYgDdv3qBx48Y4ePAgzMzMNBmLiKjIGz16NORyOerXrw9/f3+p4xBli0PoExEVMSdPnkTz5s0hk8kQFhbGc1NIq0l2jgoRERW+9PR0DBw4EADw/fffs6SQ1mNRISIqQubPn49bt27B3t6eJ9CSTmBRISIqIp48eaIe0C0oKAg2NjYSJyL6OBYVIqIiQAiBAQMGICkpCY0aNcK3334rdSSiXNG5kWmJiPTdrVu3sGPHDty6dQsA1EPQ16hRI9/rXLJkCQ4cOAAzMzOsWLECBgb8O5V0A6/6ISLSEq9fv8aQIUOwcePGLF/38PDAjBkz8MUXX+RpvdeuXUODBg2QmpqKhQsX4qeffiqIuESFgkWFiEgLREZGonXr1oiKigIAdOzYEc2bNwcAnD59Gvv27UN6ejoAoEOHDpg/fz7Kly//0fVGR0fDy8sLz549Q5s2bbB//37eGJB0CosKEZHEnj17Bk9PTzx58gTlypXDli1b4OHhkWme+Ph4zJo1C0uWLEFGRgZMTU0xfvx4jB07NttBMp89ewZvb2/cvn0bVatWxT///MMTaEnn8ENKIiIJJScno3Pnznjy5AkqVaqE0NDQD0oKADg4OGD+/Pm4efMmvL29kZaWhqlTp6Jq1arYuHEjUlNT1fMKIbB3717Ur18ft2/fxmeffYYDBw6wpJBO4hEVIiIJ+fr6YsOGDShZsiTCwsJy9XGOEALbt2/H8OHD8ezZMwCAra0tGjduDAsLC1y+fBl3794FAFSuXBn79u2Dm5ubRreDSFNYVIiIJLJnzx506dIFBgYGOH78OJo2bZqn5d++fYv58+dj5cqVePLkSabXzM3NMXjwYEydOhUWFhYFGZuoULGoEBFJ4MWLF6hatSri4+MxduxYzJ49O9/rysjIwNmzZ3Hjxg2kpqbCzc0NLVu2hJWVVQEmJpIGiwoRkQT69++PVatWoUqVKrh06RLvGk+UDZ5MS0RUyK5evYrVq1cDAFauXMmSQpQDFhUiokIkhMCwYcMghMBXX32FRo0aSR2JSKuxqBARFaLdu3fj5MmTMDMz+6TzUoiKChYVIqJCkpaWhlGjRgEARo0ahTJlykiciEj7sagQERWSBQsW4MGDByhVqhTGjh0rdRwincCiQkRUCOLi4jBjxgwAQGBgIIoXLy5xIiLdwKJCRFQIJk+ejLdv36JevXr45ptvpI5DpDNYVIiINOzq1atYtWoVAGD+/PkwMOCPXqLc4ncLEZEGCSEwfPhwCCHQs2dPXo5MlEcsKkREGrRnzx6cOHECpqammDNnjtRxiHQOiwoRkYYkJiZi+PDhAHg5MlF+sagQEWnIxIkT8fDhQ5QpUwbjxo2TOg6RTmJRISLSgDNnzmDRokUA3t3Ph5cjE+WPkdQBiIi0QXp6Ok6dOoWbN28iIyMDbm5u8Pb2RokSJfK8rri4OHz11VcQQqBv375o3bq1BhITFQ0sKkRUpAkhsHr1akyZMgUxMTGZXjMxMUH79u0xduxYeHp65mp96enp6N69O548eQJ3d3fMmzdPE7GJigyZEEJIHeJTyOVyWFlZISEhAZaWllLHISIdkpycjK+//hq7du0CADg4OKBJkyYwMTHBxYsXce/ePfW8rVu3xsyZM1GvXr1s16dQKPD1119j+/btKFGiBM6fP49KlSppfDuI9BnPUSGiIiktLQ0dOnTArl27YGJigrlz5+Lx48fYsWMHfv/9d0RERODGjRvo27cvjIyMcPjwYdSvXx//+9//cP78efz3b7x79+6hZcuW2L59O4yNjbF161aWFKICwCMqRFTkCCHQv39/rF69GiVKlMD+/fvRuHHjbOePiopCQEAANm7cqC4oVatWRbNmzVCiRAncuHEDhw4dglKphKWlJbZu3Yo2bdoU1uYQ6TUWFSIqcpYtW4aBAwfCwMAA+/fvh4+PT66WCw8Px+zZs7Fjxw6kpqZ+8Hrbtm2xaNEilC9fvqAjExVZLCpEVKRERESgZs2aSEtLw5w5czBmzJg8r+P169c4cOAAbty4gZSUFLi6usLHxwdVq1bVQGKioo1FhYiKDJVKhRYtWuDUqVPw8fHBgQMHIJPJpI5FRDngybREVGSsWrUKp06dQrFixbBixQqWFCIdwKJCREWCXC7HxIkTAQAzZszgfXeIdASLChEVCcHBwXjx4gXc3d0xePBgqeMQUS6xqBCR3ouJicEvv/wCAAgMDISREQflJtIVLCpEpPemT5+O5ORkNGjQAF26dJE6DhHlAYsKEem1iIgI/PrrrwCAoKAgnkBLpGNYVIhIr02cOBFKpRIdO3ZEkyZNpI5DRHnEokJEeuvcuXP4448/YGBggFmzZkkdh4jygUWFiPSSEAJjx44FAPj6+qJatWoSJyKi/GBRISK9tH//fpw6dQpmZmaYNm2a1HGIKJ9YVIhI7yiVSowbNw4AMGTIELi4uEiciIjyi0WFiPTO2rVrcfPmTVhbW6sLCxHpJhYVItIr/x4qPyAgADY2NhInIqJPwaJCRHolMDAQ8fHxqFixIgYOHCh1HCL6RCwqRKQ3wsPDMXfuXABASEgITExMJE5ERJ+KRYWI9EJGRgb69u2L9PR0dOzYER06dJA6EhEVABYVItILISEhuHDhAqysrLB8+XIOlU+kJ1hUiEjnHT58WH0C7bx58+Ds7CxxIiIqKCwqRCQJhUKBdevWoXXr1nBwcIClpSWqVauGH374AQcOHIBKpcrVem7fvo0ePXpApVLBz88Pfn5+mg1ORIVKJoQQUof4FHK5HFZWVkhISIClpaXUcYgoF65fv47evXsjPDw823nc3Nzwww8/oF+/fihZsmSW84SFhaFTp06Ij49Ho0aNcPToUZiammoqNhFJgEWFiArV8ePH0bFjRyQlJcHOzg4jRoxA69atYWlpiZs3b+Lo0aPYtGkT3rx5AwAwMzNDjx490KVLFzRt2hSWlpa4ffs2Vq9ejaVLlyIjIwO1atXC4cOHYW9vL+3GEVGBY1EhokJz/fp1NGnSBHK5HK1atcKWLVtgZ2f3wXzJycnYvHkzlixZgitXruS4zh49euDXX3/l9z+RnmJRIaJCERsbi3r16uHp06do2rQpDh06BDMzsxyXEULg3Llz2LJlCw4dOoSIiAgAgIWFBVq0aIEhQ4agdevWhRGfiCSiFUVlyZIlCA4ORmxsLGrWrIlFixbBw8MjV8uyqBBpPyEEOnfujL1796Jy5co4c+ZMvoa2T0lJQUpKCqysrGBoaKiBpESkbSS/6mfr1q0YMWIEAgICcPnyZdSsWRM+Pj6Ij4+XOhoRFZANGzZg7969MDExwdatW/N9/x1zc3PY2tqypBAVIZIfUfH09ET9+vWxePFiAIBKpYKLiwt++umnXN31lEdUiLRbXFwc3N3dkZCQgMDAQN7NmIjyRNIjKgqFApcuXYK3t7d6moGBAby9vREaGprlMmlpaZDL5ZkeRKS9pkyZgoSEBNStWxejRo2SOg4R6RhJi8qLFy+gVCrh6OiYabqjoyNiY2OzXCYwMBBWVlbqh4uLS2FEJaJ8uHbtGlatWgUAWLBgAYyMjCRORES6RvJzVPJq/PjxSEhIUD8eP34sdSQiysbIkSOhUqnQs2dPNGrUSOo4RKSDJP3zxs7ODoaGhoiLi8s0PS4uDk5OTlkuY2pqypEniXTA8ePHcfToUZiYmGD27NlSxyEiHSXpERUTExPUrVsXR48eVU9TqVQ4evQovLy8JExGRJ9CCIEpU6YAAAYMGICyZctKG4iIdJbkHxiPGDECvr6+qFevHjw8PDB//nwkJSWhb9++Ukcjonz6+++/cfr0aZiammL8+PFSxyEiHSZ5UenZsyeeP3+OKVOmIDY2FrVq1cLBgwc/OMGWiHTDv4+m/Pjjj3B2dpY4ERHpMsnHUflUHEeFSLvs378f7du3h7m5OR48eJDt+WZERLmhc1f9EJH2+vfRlEGDBrGkENEnY1EhogLz559/4tKlSyhWrBjGjBkjdRwi0gMsKkRUIFQqFSZNmgQAGDJkCOzt7SVORET6gEWFiArE5s2bcfPmTVhZWWH06NFSxyEiPcGiQkSfLD09XX1uypgxY/J9d2Qiov9iUSGiT7Z69Wo8ePAAjo6OGDp0qNRxiEiPsKgQ0SdJTk7G9OnTAQCTJk1CsWLFJE5ERPqERYWIPsmsWbMQExODMmXKoH///lLHISI9w6JCRPkWERGBoKAgAMD8+fN5w1AiKnAsKkSULyqVCgMHDkR6ejrat2+Pzp07Sx2JiPQQiwoR5cvcuXNx7NgxmJmZYeHChZDJZFJHIiI9xKJCRHl29uxZ9V2RFy5cCDc3N4kTEZG+kvzuyURU+IQQiI2NhVwuR6lSpfJ0Q8+7d++ia9euUCqV6N27N7777jsNJiWioo5HVIiKkOfPn2Ps2LEoXbo0nJ2dUalSJVhZWcHV1RXfffcdDh48CIVCke3yp0+fRuPGjREfH4/atWtj+fLl/MiHiDRKJoQQUof4FHK5HFZWVkhISMjTX4VERc3+/fvh6+uLFy9eAAAMDAxQvHhxyOXyTPNZWVmhQ4cOaNOmDapXrw4bGxvcu3cPGzduxPr16yGEQO3atXHw4EE4ODhIsSlEVISwqBAVARs2bEDfvn2hUqlQvXp1TJ8+HW3atIGZmRlev36NS5cuYdeuXdi5cydiY2NzXJevry8WLVqEEiVKFFJ6IirKWFSI9NyxY8fg4+ODjIwM+Pv7Y+nSpTAxMclyXqVSiXPnzmHXrl04d+4cbt26hcTERDg7O6NZs2b48ccf0aBBg0LeAiIqylhUiPTYvXv34OHhgTdv3qBXr17YtGkTzykhIp3Ck2mJ9JRSqYSvry/evHkDLy8vrFmzhiWFiHQOiwqRnlq8eDFCQ0NRokQJbN26FWZmZlJHIiLKMxYVIj306NEjTJgwAQAQHBwMFxcXiRMREeUPiwqRHpoxYwaSk5PRpEkT3tGYiHQaiwqRnomKisK6desAALNnz4aBAb/NiUh38ScYkZ6ZOXMmMjIy0Lp1azRs2FDqOEREn4SXJxPpkQcPHsDd3R0ZGRk4e/YsvLy8pI5ERPRJeESFSI+8P5ri4+PDkkJEeoFHVIj0xIMHD1CxYkUolUqEhoZyBFki0gs8okKkJ2bMmAGlUok2bdqwpBCR3uARFSI9cP/+fbi7u6vv1ePp6Sl1JCKiAsEjKkR6YObMmVAqlWjbti1LChHpFR5RIdJxkZGRqFSpEo+mEJFe4hEVIh3HoylEpM94RIVIh/37aEpYWBg8PDykjkREVKB4RIVIh72/0qddu3YsKUSkl3hEhUhH8WgKERUFPKJCpKOmTZsGpVKJ9u3bs6QQkd7iERUiHXT9+nXUqlULQghcvHgRdevWlToSEZFG8IgKkQ6aOHEihBDo0aMHSwoR6TUWFSIdc/LkSezbtw+Ghob4+eefpY5DRKRRLCpEOkShUGDgwIEAgP79+6NixYoSJyIi0iwWFSId8ssvv+DWrVuwt7fHzJkzpY5DRKRxLCpEOuLWrVuYPn06ACAkJAS2trYSJyIi0jwWFSIdIJfL8eWXXyIlJQXe3t745ptvpI5ERFQoWFSItFxGRgb8/PwQERGBzz77DJs2bYJMJpM6FhFRoWBRISpEKpUKaWlpSEtLy9X8KSkp6NOnD3bt2gVjY2Ps2LEDDg4OGk5JRKQ9WFSINCw9PR2rVq1C48aNYWZmpn6ULVsWnTp1wpw5c3D69Gmkpqaql1Eqlfjrr79Qt25dbNu2DUZGRti6dSsaNGgg4ZYQERU+jkxLpEE3b95Ez549cevWrY/Oa2JiAhcXF1hYWCA6OhoJCQkAAAcHB2zduhXNmzfXcFoiIu1jJHUAIn114sQJdOzYEYmJibC3t8fYsWPRuXNn2NvbQ6FQ4M6dO7hw4QLOnDmD06dPIz4+Hvfv31cvb2NjA39/f4wfP55X+BBRkcUjKkQacPnyZTRt2hRJSUlo3rw5tm3bBnt7+2znF0IgKioKsbGxSExMhJOTE6pUqQIjI/4tQURFG4sKUQF78+YNatSogcePH8Pb2xt79+6FmZmZ1LGIiHQST6YlKmCDBw/G48ePUb58eezYsYMlhYjoE7CoEBWgrVu3YtOmTTA0NMTGjRthZWUldSQiIp3GokJUQBITEzF8+HAAwIQJE3gpMRFRAWBRISogQUFBiImJgZubGyZOnCh1HCIivcCiQlQAoqOjERwcDAAIDg6GqampxImIiPQDiwpRAZg1axZSU1PRtGlTdO3aVeo4RER6Q2NFZebMmWjYsCEsLCxgbW2d5TzR0dFo3749LCws4ODggNGjRyMjI0NTkYg0IiYmBmvXrgUAzJgxgzcMJCIqQBobTUqhUKB79+7w8vLC6tWrP3hdqVSiffv2cHJywtmzZxETE4Nvv/0WxsbGmDVrlqZiERW4efPmQaFQoFGjRmjSpInUcYiI9IrGB3xbt24dhg0bhjdv3mSafuDAAXTo0AHPnj2Do6MjAGD58uUYO3Ysnj9/DhMTk1ytnwO+kZRev34NV1dXJCYmYt++fWjfvr3UkYiI9Ipk56iEhoaievXq6pICAD4+PpDL5QgPD892ubS0NMjl8kwPIqksWbIEiYmJqFGjBtq1ayd1HCIivSNZUYmNjc1UUgCon8fGxma7XGBgIKysrNQPFxcXjeYkyk5ycjIWLFgAABg3bhzPTSEi0oA8FZX3P4xzety5c0dTWQEA48ePR0JCgvrx+PFjjb4fUXZWrVqFFy9ewM3NDd27d5c6DhGRXsrTybQjR46En59fjvO4ubnlal1OTk44f/58pmlxcXHq17JjamrKMSpIcgqFAiEhIQCAMWPG8C7HREQakqefrvb29jneqj4vvLy8MHPmTMTHx8PBwQEAcOTIEVhaWqJKlSoF8h5EmvL777/j8ePHcHJygq+vr9RxiIj0lsb+DIyOjsarV68QHR0NpVKJq1evAgA+//xzFC9eHK1bt0aVKlXwzTffICgoCLGxsZg0aRIGDRrEIyak1VQqFebMmQMAGD58OO+OTESkQRq7PNnPzw/r16//YPrx48fRvHlzAMCjR4/w448/4sSJEyhWrBh8fX0xe/bsPB1G5+XJVNh27tyJbt26wdraGo8ePeLXHRGRBml8HBVNY1GhwiSEgIeHBy5evIiJEydixowZUkciItJrvNcPUR4cPXoUFy9ehLm5OYYOHSp1HCIivceiQpQH72/v8N133xXYieVERJQ9FhWiXDp58iSOHz8OY2NjjBo1Suo4RERFAosKUS5NmzYNAODv7w9XV1eJ0xARFQ0sKkS5cOrUKfXRlPHjx0sdh4ioyGBRIfoIIQTGjBkDAOjXrx+PphARFSIWFaKP+P333xEWFoZixYphypQpUschIipSWFSIcpCUlISxY8cCACZMmABnZ2eJExERFS0sKkQ5mDhxIp4+fYqyZctixIgRUschIipyWFSIsnH48GEsWLAAALBkyRLe04eISAIsKkRZiImJUd8VedCgQWjXrp3EiYiIiiYWFaL/ePnyJdq1a4fY2FhUqVIFwcHBUkciIiqyWFSI/uX27dto0qQJrl69CgcHB+zduxfm5uZSxyIiKrKMpA5ApCkpKSnYu3cvzpw5g9jYWKSmpsLBwQGlS5eGm5sb3NzcUKZMGaSnpyM6Ohrbt2/Hr7/+CoVCgVKlSuHIkSNwc3OTejOIiIo0FhXSO0IIrFq1ChMnTsTz58/zvHybNm2wdu1aODk5aSAdERHlBYsK6ZXU1FT4+flh69atAIAyZcqga9euKFu2LExNTREXF4fHjx/jwYMHePDgAR4/fgwzMzPY2dmhUaNG8Pf3R8uWLSGTySTeEiIiAlhUSI+kp6ejW7du2L9/P4yMjDB79mwMHToURkbZf5kLIVhKiIi0GIsK6Y3x48dj//79MDc3x759+9CyZcuPLsOSQkSk3XjVD+mFnTt3Yu7cuQCAjRs35qqkEBGR9mNRIZ0XFxeHfv36AQBGjhyJL7/8UuJERERUUFhUSOeNHTsWCQkJqFOnDgIDA6WOQ0REBYhFhXTa6dOnsX79eshkMixbtgzGxsZSRyIiogLEokI6SwiBoUOHAgC+++47eHh4SJyIiIgKGosK6aw9e/bg8uXLKF68OGbOnCl1HCIi0gAWFdJJKpUKAQEBAIChQ4fC3t5e4kRERKQJLCqkk3bu3Inr16/D0tISI0aMkDoOERFpCIsK6RwhhPrqnmHDhsHW1lbiREREpCksKqRzTp48icuXL8Pc3BxDhgyROg4REWkQiwrpnPcj0Pr5+aFkyZISpyEiIk2SCSGE1CE+hVwuh5WVFRISEmBpaSl1HNKwO3fuoHLlypDJZIiIiECFChWkjkRERBrEIyqkU+bNmwcA6NSpE0sKEVERwKJCOuP58+fYsGEDgHf39CEiIv3HokI6Y+nSpUhNTUX9+vXRuHFjqeMQEVEhYFEhnZCSkoIlS5YAeHc0RSaTSZyIiIgKA4sK6YSNGzfi+fPnKFOmDLp16yZ1HCIiKiQsKqT1VCqV+pLkoUOHwsjISOJERERUWFhUSOvt378fERERsLS0hL+/v9RxiIioELGokNZ7fzTl+++/51g5RERFDAd8I6126dIl1KtXD0ZGRoiKikLp0qWljkRERIWIR1RIq70/mtKzZ0+WFCKiIohFhbRWZGQktm3bBgAYMWKExGmIiEgKLCqktWbMmAGlUol27dqhTp06UschIiIJ8BwV0kqRkZGoVKkSlEolwsLC4OHhIXUkIiKSAI+okFaaNm2a+mgKSwoRUdHFokJaJywsDBs3bgTwrrAQEVHRxaJCWkWlUuGnn34CAPj5+aFevXoSJyIiIimxqJBWWbVqFS5cuIASJUogMDBQ6jhERCQxFhXSGrdv38bw4cMBAFOnToWTk5PEiYiISGosKqQVUlJS8NVXXyE5ORne3t4YNmyY1JGIiEgLsKiQ5BQKBXr16oXr16/DwcEBv/32GwwM+KVJREQsKiSx58+fo3379tizZw9MTU2xbds2fuRDRERqRlIHIP2VmpqKpKQkGBoawsLCAiYmJgDeXdkTFRWFbdu2Ye7cuXj58iUsLCzwxx9/oFmzZhKnJiIibcKiQgXq/PnzWL58Of755x88ePAAKpVK/ZqpqSnMzc0hl8szTa9WrRo2bdqEGjVqSBGZiIi0GIsKFYg3b95g8ODB2LRpU7bzpKWlIS0tDQBgbGwMLy8v9OvXD3369IGREb8UiYjoQ/ztQJ8sOjoaPj4+uHPnDgwMDPD111+jT58+qFmzJuzs7KBUKpGcnAy5XI7k5GRYW1ujZMmSMDY2ljo6ERFpORYV+iTx8fFo1aoVIiMjUbp0aezYsQOenp6Z5jE0NISJiQmsra2lCUlERDqLRYXyTaVS4ZtvvkFkZCTKli2LU6dOwcXFRepYRESkRzR2efLDhw/h7++PcuXKwdzcHOXLl0dAQAAUCkWm+a5fv44mTZrAzMwMLi4uCAoK0lQkKmBBQUE4fPgwzM3N8ddff7GkEBFRgdPYEZU7d+5ApVJhxYoV+Pzzz3Hz5k30798fSUlJCAkJAQDI5XK0bt0a3t7eWL58OW7cuIF+/frB2toaAwYM0FQ0KgDXrl3DpEmTAACLFi1ClSpVJE5ERET6SCaEEIX1ZsHBwVi2bBkePHgAAFi2bBkmTpyI2NhY9Rgb48aNw+7du3Hnzp1crVMul8PKygoJCQmwtLTUWHb6P0IING/eHKdOnUK3bt2wfft2yGQyqWMREZEeKtSRaRMSEmBra6t+HhoaiqZNm6pLCgD4+PggIiICr1+/znIdaWlpkMvlmR5UuHbs2IFTp07B3Nwcv/zyC0sKERFpTKEVlcjISCxatAjff/+9elpsbCwcHR0zzff+eWxsbJbrCQwMhJWVlfrB8yIKV1paGkaPHg0AGDt2LFxdXSVORERE+izPRWXcuHGQyWQ5Pv77sc3Tp0/Rpk0bdO/eHf379/+kwOPHj0dCQoL68fjx409aH+XN2rVr8ejRI3z22WfqwkJERKQpeT6ZduTIkfDz88txHjc3N/W/nz17hhYtWqBhw4ZYuXJlpvmcnJwQFxeXadr759ndmM7U1BSmpqZ5jU0FQKFQIDAwEMC7oykWFhYSJyIiIn2X56Jib28Pe3v7XM379OlTtGjRAnXr1sXatWthYJD5AI6XlxcmTpyI9PR09SilR44cgbu7O2xsbPIajTRsw4YNiI6OhpOTE7777jup4xARURGgsXNUnj59iubNm8PV1RUhISF4/vw5YmNjM5170rt3b5iYmMDf3x/h4eHYunUrFixYgBEjRmgqFuWTUqnEnDlzAABjxoyBubm5xImIiKgo0Ng4KkeOHEFkZKR6aPV/e39FtJWVFQ4fPoxBgwahbt26sLOzw5QpUziGihY6cOAAIiMjOcYNEREVqkIdR0UTOI5K4WjdujWOHDmCUaNGITg4WOo4RERURLCo0EfdunULVatWhYGBAe7fv4+yZctKHYmIiIqIQh3wjXTT4sWLAQCdOnViSSEiokLFokI5ev36NdavXw8AGDp0qMRpiIioqGFRoRytWbMGycnJqF69Opo1ayZ1HCIiKmJYVChbSqVS/bHPkCFDeE8fIiIqdCwqlK19+/bh4cOHsLW1Re/evaWOQ0RERRCLCmVrwYIFAIABAwZwuHwiIpIEL0+mLN24cQM1atSAoaEhHjx4wLskExGRJHhEhbL0/mhK165dWVKIiEgyLCr0gfj4eGzcuBEAMHz4cInTEBFRUcaiQh9YtmwZ0tLS4OHhAS8vL6njEBFREcaiQpmkpqZi6dKlAN4dTeElyUREJCUWFcpk8+bNiI+PR+nSpdGtWzep4xARURHHokJqQgjMnz8fAPDTTz/B2NhY2kBERFTksaiQ2r59+3D9+nUUK1YM/fv3lzoOERERiwq9I4TA1KlTAQCDBw+GjY2NtIGIiIjAokL/359//onLly+jePHiGDVqlNRxiIiIALCoEICMjAxMmTIFwLtzU+zs7CRORERE9A6LCmH58uW4fv06rK2tMXLkSKnjEBERqbGoFHHx8fGYNGkSAGDWrFkoWbKkxImIiIj+D4tKESaEwNChQ5GQkIA6depgwIABUkciIiLKhEWlCFu+fDm2bNkCQ0NDLF26FIaGhlJHIiIiyoRFpYgKDQ3FsGHDAABz5syBp6entIGIiIiywKJSBP3zzz9o27YtFAoFunTpghEjRkgdiYiIKEssKkVIUlISfv75Z7Rq1QoJCQlo3LgxfvvtN954kIiItJaR1AGoYL169QoPHjzAq1ev8Pr1a7x58wavX7/GlStXcPDgQcjlcgBA9+7dsXbtWhQrVkzixERERNljUdEDN27cwJo1a7Bt2zY8e/Ysx3nLlSuHGTNmoFevXjySQkREWo9FRYclJydj5MiRWLFiBYQQ6ulOTk5wcHCAjY0NrK2tYWNjA1dXV7Rr1w716tXj1T1ERKQzWFR01PPnz9GmTRtcvnwZANC1a1f069cPLVq04Mc5RESkN1hUdFBCQgK8vb1x/fp12NnZYfPmzfD29pY6FhERUYFjUdExQgh8++23uH79OpycnHDixAm4u7tLHYuIiEgjeHmyjlm5ciX+/PNPmJiYYN++fSwpRESk11hUdMjdu3cxfPhwAEBgYCDq1q0rcSIiIiLNYlHRIcOGDUNKSgpatWqlHv6eiIhIn7Go6IjDhw/jwIEDMDY2xrJly2BgwF1HRET6j7/tdIBSqcSoUaMAAIMGDUKFChUkTkRERFQ4WFR0wJYtW3Djxg3Y2Nhg8uTJUschIiIqNCwqWk6lUiEwMBAAMGrUKNja2kqciIiIqPCwqGi5vXv3Ijw8HJaWlhg0aJDUcYiIiAoVi4oWE0Jg1qxZAN6dm2JlZSVxIiIiosLFoqLFQkNDcf78eZiZmfFyZCIiKpJYVLTY0qVLAQC9e/eGg4ODxGmIiIgKH4uKloqPj8f27dsBAAMHDpQ4DRERkTRYVLTU6tWroVAo4OHhwaHyiYioyGJR0UJKpRLLly8HAF7pQ0RERRqLihbav38/oqOjYWtrix49ekgdh4iISDIsKlpoyZIlAAB/f3+YmZlJnIaIiEg6MiGEkDrEp5DL5bCyskJCQgIsLS2ljvPJIiMjUaFCBchkMkRGRsLNzU3qSERERJLhERUt8/7clLZt27KkEBFRkceiokVSUlKwZs0aALwkmYiICGBR0SpbtmzB69evUbZsWbRp00bqOERERJJjUdESQggsXrwYAPDDDz/A0NBQ4kRERETSY1HREmFhYbh8+TJMTU3h7+8vdRwiIiKtwKKiJd4fTenVqxfs7OwkTkNERKQdWFS0QFxcHLZt2wYAGDx4sMRpiIiItAeLihb49ddfkZ6ejgYNGvC+PkRERP/CoiKxjIwM9dgpPJpCRESUmUaLSqdOneDq6gozMzOUKlUK33zzDZ49e5ZpnuvXr6NJkyYwMzODi4sLgoKCNBlJ6/zxxx94+vQpHBwc8L///U/qOERERFpFo0WlRYsW2LZtGyIiIvDHH3/g/v37mX4Zy+VytG7dGmXKlMGlS5cQHByMqVOnYuXKlZqMpTWEEAgMDATw7i7JpqamEiciIiLSLoV6r58///wTXbp0QVpaGoyNjbFs2TJMnDgRsbGxMDExAQCMGzcOu3fvxp07d3K1Tl2+18/+/fvRvn17FC9eHI8ePYKtra3UkYiIiLRKoZ2j8urVK2zatAkNGzaEsbExACA0NBRNmzZVlxQA8PHxQUREBF6/fp3letLS0iCXyzM9dNWsWbMAvBvgjSWFiIjoQxovKmPHjkWxYsVQsmRJREdHY8+ePerXYmNj4ejomGn+989jY2OzXF9gYCCsrKzUDxcXF82F16BDhw7hzJkzMDExwfDhw6WOQ0REpJXyXFTGjRsHmUyW4+PfH9uMHj0aV65cweHDh2FoaIhvv/0Wn/Jp0/jx45GQkKB+PH78ON/rkopSqcSoUaMAvDs3xdnZWeJERERE2skorwuMHDkSfn5+Oc7j5uam/rednR3s7OxQsWJFVK5cGS4uLjh37hy8vLzg5OSEuLi4TMu+f+7k5JTluk1NTXX+pNO1a9fi5s2bsLGxwaRJk6SOQ0REpLXyXFTs7e1hb2+frzdTqVQA3p1nAgBeXl6YOHEi0tPT1eetHDlyBO7u7rCxscnXe2i758+fY+LEiQCAyZMn89wUIiKiHGjsHJWwsDAsXrwYV69exaNHj3Ds2DH06tUL5cuXh5eXFwCgd+/eMDExgb+/P8LDw7F161YsWLAAI0aM0FQsSQkhMGDAAMTHx6NKlSoYOHCg1JGIiIi0msaKioWFBXbu3IlWrVrB3d0d/v7+qFGjBk6ePKn+6MbKygqHDx9GVFQU6tati5EjR2LKlCkYMGCApmJJas2aNdi9ezeMjY2xadMmnf8Ii4iISNMKdRwVTdCVcVROnDgBHx8fKBQKBAYGYty4cVJHIiIi0nq8108h+Ouvv9C+fXsoFAp069YNY8aMkToSERGRTmBR0aC4uDgMHjwYHTt2RHJyMtq0aYPffvsNBgb8byciIsqNPF/1Q1mTy+W4f/8+IiMjcffuXRw7dgynTp1CRkYGgHfjpfzyyy+ZRuElIiKinLGo5JMQAseOHcOGDRtw5swZ3L9/P8v5GjRogJkzZ6Jly5aFnJCIiEj3sajkw8mTJzF48GDcvHkz03R7e3t8/vnnqFChAmrXro0OHTrg888/lyglERGR7mNRyQMhBObMmYMJEyZACIFixYrB19cXnTp1Qv369Tl4GxERUQFjUcmDOXPmYPz48QCAfv36ISQkRG9H0CUiItIGvPwkl1avXq0uKXPmzMHq1atZUoiIiDSMRSUXbty4oR7ufvz48RwHhYiIqJCwqHxEeno6fH19oVAo0LFjR8ycOVPqSEREREUGi8pHzJ49G1euXIGtrS1WrlwJmUwmdSQiIqIig0UlBzExMQgMDAQALFmyBE5OThInIiIiKlpYVHIwdepUpKSkoGHDhujZs6fUcYiIiIocFpVs3LlzB6tXrwYABAUF8SMfIiIiCbCoZGPy5MlQKpXo3LkzGjVqJHUcIiKiIokDvmVj9uzZMDIywuTJk6WOQkREVGTJhBBC6hCfQi6Xw8rKCgkJCbC0tJQ6DhERERUgfvRDREREWotFhYiIiLQWiwoRERFpLRYVIiIi0losKkRERKS1WFSIiIhIa7GoEBERkdZiUSEiIiKtxaJCREREWotFhYiIiLQWiwoRERFpLRYVIiIi0losKkRERKS1jKQO8Kne3/xZLpdLnISIiIjyqkSJEpDJZNm+rvNF5e3btwAAFxcXiZMQERFRXiUkJMDS0jLb12Xi/SEJHaVSqfDs2bOPNrL8kMvlcHFxwePHj3P8T9RV3D7dp+/byO3Tffq+jdy+T6f3R1QMDAxQunRpjb6HpaWlXn4Bvsft0336vo3cPt2n79vI7dMcnkxLREREWotFhYiIiLQWi0oOTE1NERAQAFNTU6mjaAS3T/fp+zZy+3Sfvm8jt0/zdP5kWiIiItJfPKJCREREWotFhYiIiLQWiwoRERFpLRYVIiIi0lpFuqjMnDkTDRs2hIWFBaytrbOcJzo6Gu3bt4eFhQUcHBwwevRoZGRk5LjeV69eoU+fPrC0tIS1tTX8/f2RmJiogS3ImxMnTkAmk2X5uHDhQrbLNW/e/IP5f/jhh0JMnntly5b9IOvs2bNzXCY1NRWDBg1CyZIlUbx4cXTr1g1xcXGFlDj3Hj58CH9/f5QrVw7m5uYoX748AgICoFAoclxO2/ffkiVLULZsWZiZmcHT0xPnz5/Pcf7t27ejUqVKMDMzQ/Xq1bF///5CSpo3gYGBqF+/PkqUKAEHBwd06dIFEREROS6zbt26D/aVmZlZISXOu6lTp36Qt1KlSjkuoyv7D8j654lMJsOgQYOynF8X9t+pU6fQsWNHODs7QyaTYffu3ZleF0JgypQpKFWqFMzNzeHt7Y179+59dL15/T7OiyJdVBQKBbp3744ff/wxy9eVSiXat28PhUKBs2fPYv369Vi3bh2mTJmS43r79OmD8PBwHDlyBPv27cOpU6cwYMAATWxCnjRs2BAxMTGZHt999x3KlSuHevXq5bhs//79My0XFBRUSKnzbvr06Zmy/vTTTznOP3z4cOzduxfbt2/HyZMn8ezZM3z55ZeFlDb37ty5A5VKhRUrViA8PBzz5s3D8uXLMWHChI8uq637b+vWrRgxYgQCAgJw+fJl1KxZEz4+PoiPj89y/rNnz6JXr17w9/fHlStX0KVLF3Tp0gU3b94s5OQfd/LkSQwaNAjnzp3DkSNHkJ6ejtatWyMpKSnH5SwtLTPtq0ePHhVS4vypWrVqprynT5/Odl5d2n8AcOHChUzbduTIEQBA9+7ds11G2/dfUlISatasiSVLlmT5elBQEBYuXIjly5cjLCwMxYoVg4+PD1JTU7NdZ16/j/NMkFi7dq2wsrL6YPr+/fuFgYGBiI2NVU9btmyZsLS0FGlpaVmu69atWwKAuHDhgnragQMHhEwmE0+fPi3w7J9CoVAIe3t7MX369Bzna9asmRg6dGjhhPpEZcqUEfPmzcv1/G/evBHGxsZi+/bt6mm3b98WAERoaKgGEhasoKAgUa5cuRzn0eb95+HhIQYNGqR+rlQqhbOzswgMDMxy/h49eoj27dtnmubp6Sm+//57jeYsCPHx8QKAOHnyZLbzZPezSFsFBASImjVr5np+Xd5/QggxdOhQUb58eaFSqbJ8Xdf2HwCxa9cu9XOVSiWcnJxEcHCwetqbN2+Eqamp2Lx5c7bryev3cV4V6SMqHxMaGorq1avD0dFRPc3HxwdyuRzh4eHZLmNtbZ3pCIW3tzcMDAwQFham8cx58eeff+Lly5fo27fvR+fdtGkT7OzsUK1aNYwfPx7JycmFkDB/Zs+ejZIlS6J27doIDg7O8aO6S5cuIT09Hd7e3upplSpVgqurK0JDQwsj7idJSEiAra3tR+fTxv2nUChw6dKlTP/3BgYG8Pb2zvb/PjQ0NNP8wLvvSV3ZVwA+ur8SExNRpkwZuLi4oHPnztn+rNEW9+7dg7OzM9zc3NCnTx9ER0dnO68u7z+FQoGNGzeiX79+Od5AT9f2379FRUUhNjY20z6ysrKCp6dntvsoP9/HeaXzNyXUpNjY2EwlBYD6eWxsbLbLODg4ZJpmZGQEW1vbbJeRyurVq+Hj4/PRmzr27t0bZcqUgbOzM65fv46xY8ciIiICO3fuLKSkuTdkyBDUqVMHtra2OHv2LMaPH4+YmBj88ssvWc4fGxsLExOTD85RcnR01Lr99V+RkZFYtGgRQkJCcpxPW/ffixcvoFQqs/weu3PnTpbLZPc9qe37SqVSYdiwYWjUqBGqVauW7Xzu7u5Ys2YNatSogYSEBISEhKBhw4YIDw/X+M1X88PT0xPr1q2Du7s7YmJiMG3aNDRp0gQ3b95EiRIlPphfV/cfAOzevRtv3ryBn59ftvPo2v77r/f7IS/7KD/fx3mld0Vl3LhxmDNnTo7z3L59+6MnfOmS/GzzkydPcOjQIWzbtu2j6//3+TXVq1dHqVKl0KpVK9y/fx/ly5fPf/Bcysv2jRgxQj2tRo0aMDExwffff4/AwECtHeI6P/vv6dOnaNOmDbp3747+/fvnuKzU+4+AQYMG4ebNmzmevwEAXl5e8PLyUj9v2LAhKleujBUrVuDnn3/WdMw8a9u2rfrfNWrUgKenJ8qUKYNt27bB399fwmQFb/Xq1Wjbti2cnZ2znUfX9p+u0LuiMnLkyBwbLwC4ubnlal1OTk4fnLn8/moQJyenbJf57wlEGRkZePXqVbbLfKr8bPPatWtRsmRJdOrUKc/v5+npCeDdX/SF8YvuU/app6cnMjIy8PDhQ7i7u3/wupOTExQKBd68eZPpqEpcXJzG9td/5XX7nj17hhYtWqBhw4ZYuXJlnt+vsPdfduzs7GBoaPjBFVY5/d87OTnlaX5tMHjwYPVJ9Xn9q9rY2Bi1a9dGZGSkhtIVLGtra1SsWDHbvLq4/wDg0aNH+Pvvv/N8FFLX9t/7/RAXF4dSpUqpp8fFxaFWrVpZLpOf7+M8K5AzXXTcx06mjYuLU09bsWKFsLS0FKmpqVmu6/3JtBcvXlRPO3TokFadTKtSqUS5cuXEyJEj87X86dOnBQBx7dq1Ak5W8DZu3CgMDAzEq1evsnz9/cm0O3bsUE+7c+eO1p5M++TJE1GhQgXx1VdfiYyMjHytQ5v2n4eHhxg8eLD6uVKpFJ999lmOJ9N26NAh0zQvLy+tPBlTpVKJQYMGCWdnZ3H37t18rSMjI0O4u7uL4cOHF3A6zXj79q2wsbERCxYsyPJ1Xdp//xYQECCcnJxEenp6npbT9v2HbE6mDQkJUU9LSEjI1cm0efk+znPOAlmLjnr06JG4cuWKmDZtmihevLi4cuWKuHLlinj79q0Q4t0XWbVq1UTr1q3F1atXxcGDB4W9vb0YP368eh1hYWHC3d1dPHnyRD2tTZs2onbt2iIsLEycPn1aVKhQQfTq1avQty87f//9twAgbt++/cFrT548Ee7u7iIsLEwIIURkZKSYPn26uHjxooiKihJ79uwRbm5uomnTpoUd+6POnj0r5s2bJ65evSru378vNm7cKOzt7cW3336rnue/2yeEED/88INwdXUVx44dExcvXhReXl7Cy8tLik3I0ZMnT8Tnn38uWrVqJZ48eSJiYmLUj3/Po0v7b8uWLcLU1FSsW7dO3Lp1SwwYMEBYW1urr7T75ptvxLhx49TznzlzRhgZGYmQkBBx+/ZtERAQIIyNjcWNGzek2oRs/fjjj8LKykqcOHEi075KTk5Wz/Pf7Zs2bZo4dOiQuH//vrh06ZL46quvhJmZmQgPD5diEz5q5MiR4sSJEyIqKkqcOXNGeHt7Czs7OxEfHy+E0O39955SqRSurq5i7NixH7ymi/vv7du36t91AMQvv/wirly5Ih49eiSEEGL27NnC2tpa7NmzR1y/fl107txZlCtXTqSkpKjX0bJlS7Fo0SL18499H3+qIl1UfH19BYAPHsePH1fP8/DhQ9G2bVthbm4u7OzsxMiRIzO16uPHjwsAIioqSj3t5cuXolevXqJ48eLC0tJS9O3bV11+tEGvXr1Ew4YNs3wtKioq0/9BdHS0aNq0qbC1tRWmpqbi888/F6NHjxYJCQmFmDh3Ll26JDw9PYWVlZUwMzMTlStXFrNmzcp09Ou/2yeEECkpKWLgwIHCxsZGWFhYiK5du2b65a8t1q5dm+XX678PjOri/lu0aJFwdXUVJiYmwsPDQ5w7d079WrNmzYSvr2+m+bdt2yYqVqwoTExMRNWqVcVff/1VyIlzJ7t9tXbtWvU8/92+YcOGqf8vHB0dRbt27cTly5cLP3wu9ezZU5QqVUqYmJiIzz77TPTs2VNERkaqX9fl/ffeoUOHBAARERHxwWu6uP/e/8767+P9dqhUKjF58mTh6OgoTE1NRatWrT7Y9jJlyoiAgIBM03L6Pv5UMiGEKJgPkYiIiIgKFsdRISIiIq3FokJERERai0WFiIiItBaLChEREWktFhUiIiLSWiwqREREpLVYVIiIiEhrsagQERGR1mJRISIiIq3FokJERERai0WFiIiItBaLChEREWmt/wdlRp6galEQIQAAAABJRU5ErkJggg==\n" - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "def ground_truth(xs):\n", - " oscillating_component = np.sin((4. * xs) - 3.)\n", - " parabolic_component = (-0.1 * xs ** 2.) + (2.5 * xs) + 1.\n", - " ys = oscillating_component + parabolic_component\n", - " return ys\n", - "\n", - "study_metadata = VariableCollection(\n", - " independent_variables=[Variable(name=\"x1\", allowed_values=np.linspace(-10, 10, 500))],\n", - " dependent_variables=[Variable(name=\"y\")],\n", - " )\n", - "\n", - "plt.plot(study_metadata.independent_variables[0].allowed_values, ground_truth(study_metadata.independent_variables[0].allowed_values), c=\"black\", label=\"ground truth\")\n", - "plt.legend()" - ], - "metadata": { - "collapsed": false - } - }, - { - "cell_type": "markdown", - "source": [], - "metadata": { - "collapsed": false - } - }, - { - "cell_type": "markdown", - "source": [ - "## Experiment Runner\n", - "We create a synthetic experiment that adds noise." - ], - "metadata": { - "collapsed": false - } - }, - { - "cell_type": "code", - "execution_count": 3, - "outputs": [ - { - "data": { - "text/plain": "" - }, - "execution_count": 3, - "metadata": {}, - "output_type": "execute_result" - }, - { - "data": { - "text/plain": "
", - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAioAAAGdCAYAAAA8F1jjAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8o6BhiAAAACXBIWXMAAA9hAAAPYQGoP6dpAABUIklEQVR4nO3dd1xV5R8H8M9lXUAZBsgolovcmqmB5cptqWmaWopmKoYTF7hwpKDi1sBcaJTlSE1NzUzzl+LWVHCigAvE2CAg9z6/P/h5fyJDwHs598Ln/XrdF9xznvOc7+EwvjznGTIhhAARERGRFtKTOgAiIiKiojBRISIiIq3FRIWIiIi0FhMVIiIi0lpMVIiIiEhrMVEhIiIircVEhYiIiLQWExUiIiLSWjqfqAghkJqaCs5bR0REVPHofKKSlpYGCwsLpKWlSR0KERERqZnOJypERERUcTFRISIiIq3FRIWIiIi0FhMVIiIi0lpMVIiIiEhrGUgdQHkQQiA3NxcKhULqUEjL6Ovrw8DAADKZTOpQiIioEBU+UcnJycGjR4+QmZkpdSikpUxNTWFvbw8jIyOpQyEiopdU6ERFqVTi7t270NfXh4ODA4yMjPifM6kIIZCTk4OEhATcvXsXtWvXhp4en4YSEWmTCp2o5OTkQKlUwtHREaamplKHQ1rIxMQEhoaGiImJQU5ODoyNjaUOiYiIXlAp/n3kf8lUHH5/EBFpL/6GJiIiIq3FRIVKbMiQIejVq5fUYRARUSXCRIWIiIi0FhMVIiIi0lpMVLTUjh070LBhQ5iYmMDKygodOnRARkYGzp49i44dO8La2hoWFhZo06YNLly4kO9YmUyGtWvX4qOPPoKpqSnq1q2L8PBw3L59G23btkWVKlXg4eGBqKgo1TGzZ89GkyZNsHbtWtUoqX79+iElJaXIGJVKJQICAuDq6goTExM0btwYO3bsUO1PSkrC559/DhsbG5iYmKB27drYtGmT+r9YRESEkBDAxSXvY0XCREULPXr0CAMGDMCXX36Ja9eu4dixY+jduzeEEEhLS4Onpyf+/vtvnDp1CrVr10a3bt2QlpaWr4558+Zh8ODBuHTpEt5++20MHDgQI0eOhJ+fH86dOwchBEaPHp3vmNu3b2Pbtm3Yu3cvDh48iIsXL+Lrr78uMs6AgABs2bIFISEhiIiIwIQJE/DFF1/gr7/+AgDMnDkTkZGROHDgAK5du4bg4GBYW1ur/wtGREQIDARiYvI+VihCx6WkpAgAIiUlpcC+p0+fisjISPH06VMJIiu78+fPCwAiOjr6lWUVCoUwMzMTe/fuVW0DIGbMmKF6Hx4eLgCIDRs2qLZt3bpVGBsbq977+/sLfX19cf/+fdW2AwcOCD09PfHo0SMhhBCenp6iZ8+eQgghsrKyhKmpqTh58mS+eIYNGyYGDBgghBDi448/FkOHDi3FlUtDV79PiIheFBwshLNz3seKhC0qWqhx48b48MMP0bBhQ/Tt2xfr1q1DUlISACA+Ph7Dhw9H7dq1YWFhAXNzc6SnpyM2NjZfHY0aNVJ9bmtrCwBo2LBhvm1ZWVlITU1VbXNycsKbb76peu/u7g6lUokbN24UiPH27dvIzMxEx44dUbVqVdVry5YtqkdKo0aNwk8//YQmTZpgypQpOHnypBq+OkREVBgvLyA6Ou8jUHEeBTFRKaHyvOH6+vo4fPgwDhw4gHr16mHVqlVwc3PD3bt34enpiUuXLmHFihU4efIkLl26BCsrK+Tk5OSrw9DQUPX582UDCtumVCrLFGN6ejoAYP/+/bh06ZLqFRkZqeqn0rVrV8TExGDChAl4+PAhPvzwQ0yaNKlM5yMioqIJIZCYmIinT5+qtlWUR0FMVEqovG+4TCZDq1atMGfOHFy8eBFGRkbYtWsXTpw4gbFjx6Jbt26oX78+5HI5njx5opZzxsbG4uHDh6r3p06dgp6eHtzc3AqUrVevHuRyOWJjY1GrVq18L0dHR1U5GxsbeHp6IiwsDMuXL8d3332nlliJiAi4ceMGhg4dCisrK1hZWcHU1BQNGjTAokWL4OOTCWdnwNdX6ihfT4Ve60edfH3zkpTyuOGnT5/GkSNH0KlTJ1SvXh2nT59GQkIC6tati9q1a+P777/Hu+++i9TUVEyePBkmJiZqOa+xsTE8PT0RFBSE1NRUjB07Fv369YOdnV2BsmZmZpg0aRImTJgApVKJ999/HykpKThx4gTMzc3h6emJWbNmoVmzZqhfvz6ys7Oxb98+1K1bVy2xEhFVZkIILFmyBNOmTcOzZ8/y7YuIiMDUqVNRs+Z3CA1dj7Zt20oTpJqwRaWEXn72p0nm5uY4fvw4unXrhjp16mDGjBlYsmQJunbtig0bNiApKQnvvPMOBg0ahLFjx6J69epqOW+tWrXQu3dvdOvWDZ06dUKjRo3w7bffFll+3rx5mDlzJgICAlC3bl106dIF+/fvh6urKwDAyMgIfn5+aNSoEVq3bg19fX389NNPaomViKiyUiqVaN9+HCZPnoxnz56hW7duOH78OLKyshAfH4/169fjrbfeQlRUFNq1a4egoCAIIaQOu8xkQpejB5CamgoLCwukpKTA3Nw8376srCzcvXsXrq6uXBX3FWbPno3du3fj0qVLUodS7vh9QkS6QgiBkSNHYt26dQCAatWW499/x6r6HT6XmpqKCRMmYOPGjQCA0aNHY8WKFTq5CKvuRUxERFRJLVmyBOvWrYNMpgcrqzAsWDCuQJIC5LXMr1+/HkuWLAEArF69GkOHDkVubm55h/zamKgQERFpuZAQwNb2N0yZMgUAsHz5Mjx58nmx3RFkMhl8fHzw448/Ql9fH1u2bMHnn39eoE+LtmOiQgDyHv1Uxsc+RES64JtvHuDx48GqRz9jxowp8bEDBgzA9u3bYWhoiG3btqFv377Izs4GUPjUGy9uE0Lg9OnT6r2YUmKiQkREpMUUCgWqVBkE4F84OjbFihUrCn3cU5xPPvkEu3fvhlwux549e9CzZ09kZmYWOvXG820BAUpMnDgR7733nqTrtDFRISIiKoP09HRcvXoVt2/fhkKh0Nh5Fi5ciJs3j6JKlSr444+fIJfLy1RPt27dsH//fpiamuLQoUN4//338eWXtwvMteLrCzg5PYODw5dYtmwZAOSbxby8MVEhIiIqhfDwcHTr1g2WlpZo2LAhateuDSsrK4waNQqPHj1S+7lmzZoFAFizZg3q1KnzWvV9+OGHOHToEKytrXHx4kUEBb0Db+/F6N8/GUDe0OfatY/AyqolTp3arOrbMm7cuNe9lDLj8GSq9Ph9QkQloVQq4efnh0WLFqm2VatWDVlZWaqp66tWrYo5c+Zg/Pjxrz0UODk5GU2aNEFMTAwGDhyIsLCwUj/yKcqDBw8wcOBAHD9+HEDe0i0uLi5ISkpCYmIigLxrCwsLQ7du3dRyzrJiiwoREdErKBQKfPnll6okxdPTEzdv3kRiYiLS0tJw5MgRtGzZEunp6Zg4cSI+/fRTpKWllajuwjq0CiEwfPhwxMTEoGbNmggODlZbkgIAb775Jv78809s3LgRDRo0gEKhQFRUFBITE2FmZoavv/4aERERkicpAACJVm1Wm5SUFAFApKSkFNj39OlTERkZKZ4+fSpBZKQr+H1CRMVRKpXC09NTABD6+voiLCxMCCFEcLAQzs55H4UQQqFQiODgYGFkZCQAiAYNGoj582PylSmMs7MQQN7H59auXSsACAMDA3HmzBkNXdn/xcbGiv/85z/i4sWLWve7kIkKqcWmTZuEhYWF1GEIT09P0bNnz1Idw+8TIirOokWLVEnDjh07VNsLSzCEECI8PFzY29v/L7GxE8D5AmVe9HLCc+LECSGXywUAsXjxYrVey8vn0gV89EPlIjo6GjKZTG1ztai7PiKiwvzxxx/w/d+QmJUrV6JPnz6qfb6+KHR14vfeew+nT5/+3yOVOMhkrdG9+74iz/HiWnJRUVHo2bMnsrOz0atXL/j4+Kj1egobjqztmKhUEDk5OVKHoBYV5TqISPc9efIEX3zxBZRKJYYOHQqvl6aBLW6xWkdHR/z999/o2LEjhMhASEhPrFmzptjzRUZGol27dnjy5AmaNWuGsLAwta/NU1Rypc2YqGihtLQ0fP7556hSpQrs7e2xbNkytG3bFuPHj1eVcXFxwbx58zB48GCYm5tjxIgRAICdO3eifv36kMvlcHFxUa3z8JxMJsPu3bvzbbO0tERoaCiA/7dU/PLLL2jXrh1MTU3RuHFjhIeH5zsmNDQUTk5OMDU1xSeffIJ///232Gt6vqJy06ZNIZPJVMuODxkyBL169cL8+fPh4OAANze3EsVZVH3PBQUFwd7eHlZWVvD29ta5KaOJSFrBwQLOzqMQHx+PevXqYc2aNaXuzGphYYH9+/dj2LBhUCqVGD16NPr06YMHDx4UKHvgwAG8//77uHfvHtzc3LB3715UqVJFXZejUlxypa0MpA6gPAkhkJmZKcm5TU1NS/xN7uPjgxMnTuDXX3+Fra0tZs2ahQsXLqBJkyb5ygUFBWHWrFnw9/cHAJw/fx79+vXD7Nmz8dlnn+HkyZP4+uuvYWVlhSFDhpQq3unTpyMoKAi1a9fG9OnTMWDAANy+fRsGBgY4ffo0hg0bhoCAAPTq1QsHDx5UxVCUM2fOoEWLFvjjjz9Qv359GBkZqfYdOXIE5ubmOHz4cInjK66+o0ePwt7eHkePHsXt27fx2WefoUmTJhg+fHipvgZEVHnNmrUVmZk7ABhgy5YtMDExKVM9hoaGWLduHWrVqoWZM2fil19+wcGDB9G3b1+0aNECmZmZ2LdvH/766y8AeY+N9u3bBysrKzVejY6TupPM6ypNZ9r09HQBQJJXenp6ia4nNTVVGBoaiu3bt6u2JScnC1NTUzFu3DjVNmdnZ9GrV698xw4cOFB07Ngx37bJkyeLevXqqd4DELt27cpXxsLCQmzatEkIIcTdu3cFALF+/XrV/oiICAFAXLt2TQghxIABA0S3bt3y1fHZZ58V25n2eb0XL17Mt93T01PY2tqK7OzsfNtLGmdh9Tk7O4vc3FzVtr59+4rPPvusyNjYmZaIXnT//n1hYmIpAIiPPpqjtnovX74s3N3dC/0bYWBgICZMmCAyMjLUdr6Kgo9+tMydO3fw7NkztGjRQrXNwsJC9UjkRe+++26+99euXUOrVq3ybWvVqhVu3bpV6umdGzVqpPrc3t4eAPD48WPVeVq2bJmvvLu7e6nqf1HDhg3ztYi8rvr160NfX1/13t7eXhU7EemGwuYW0cQxLxNC4KuvvsLTp8l499138csvfiWu+1VlGjZsiBMnTuD48eOYPHkyevXqhc8++wyBgYGIiorC0qVLYWpqWvbgK6hK9ejH1NQU6enpkp1b3cry/FImk0G8NBlxYf03DA0N8x0D5M3KqAmFXUdJ4yzMi7E/r0tTsRORZrw4OuXl/hS5ubmQyWT5/iF51TEltW7dOhw8eBByuRxbtmxR/T4pSd0lKbN2rQyBgR/A1/cDvDDBbT4hIXl1+PrqVl8STalULSoymQxVqlSR5FXS/ik1atSAoaEhzp49q9qWkpKCmzdvvvLYunXr4sSJE/m2nThxAnXq1FH9QNvY2ORbi+LWrVul7rdTt27dAst+nzp1qthjnreYlLRl51VxlrY+ItItL49OefToESZPnqz6HWlsbIwmTZpg4cKFqn9ACxvRUppWljt37qiGAy9YsAB169YtMp6SxFyYkgwP1sUhxJpUqRIVXWBmZgZPT09MnjwZR48eRUREBIYNGwY9Pb1XJjsTJ07EkSNHMG/ePNy8eRObN2/G6tWrMWnSJFWZ9u3bY/Xq1bh48SLOnTsHLy+vAi0QrzJ27FgcPHgQQUFBuHXrFlavXo2DBw8We0z16tVhYmKCgwcPIj4+HikpKcWWf1Wcpa2PiHTLi6NTwsLCUKOGG4KCgnD37l0Aea0q//zzD3x9fVGjRg2sX78eI0eKAiNaSvpHX6FQYOjQocjIyMAHH3xQYBG+koyWKUkZdSU8lQkTFS20dOlSuLu746OPPkKHDh3QqlUr1K1b95UL5r3zzjvYtm0bfvrpJzRo0ACzZs3C3Llz8434WbJkCRwdHfHBBx9g4MCBmDRpUqkfS7333ntYt24dVqxYgcaNG+P333/HjBkzij3GwMAAK1euxNq1a+Hg4ICePXsWW/5VcZa2PiLSPUIIzJs3D4MGDUJWVhqAFrCx2YX4+HjExMRg/fr1qFWrFhISEjB8+HD06dNHtaDecyX9oz937lwcP34cVapUwaZNmwo8VlIXdSU8lYq0fXlfX2WYQj89PV1YWFjkG4lD6lNRvk+IKpoVK1aoRsV06TJNODnlFpj6PScnRyxevFgYGhoKAMLFxUVcuHChVOfZt2+f6jybN29W4xWQOrBFRQtdvHgRW7duRVRUFC5cuIDPP/8cANhqQESVxsGDBzFhwgQAwPz583HgwHzExOgXaGUwNDTEpEmTcOrUKdSoUQPR0dHw8PBAWFhYic5z9uxZDBw4EAAwatQoDB48WK3XQa+PiYqWCgoKQuPGjdGhQwdkZGTgP//5D6ytraUOi4hI4+7du4f+/furpq738/N75THvvPMOzp07h65duyIrKwuDBg3C2LFj8fTp0yKPOX/+PDp16oTU1FS0bt0ay5YtU+dlkJowUdFCTZs2xfnz55Geno7ExEQcPnwYDRs2lDosIiKNE0Jg5MiRSElJQcuWLREcHFziUZPVqlXD3r17MXPmTADAqlWr0LBhQ+zfvz/fdAcKhQIhISFo3bo1kpOT4eHhgX379kEul2vkmuj1MFEhIqISUceEaq8SFhaGAwcOwMjICJs2bSo2eSgsHn19fcydOxf79u3Dm2++iaioKHz00UeoU6cOPD098cUXX8DV1RWjRo1CZmYmOnbsiAMHDsDMzExzF0WvRSbES7Nq6ZjU1FRYWFggJSUF5ubm+fZlZWXh7t27cHV1feWIGaq8+H1CVFBhk465uOQN9XV2zhuVom7PFwBMTEzE/PnzMW3atGLLvyqetLQ0zJ07F8HBwcjIyMi3T0/PCn36zMTWraM1NsKH1KNStKjoeC5GGsbvD6KCCpt/RFPzezxvGenWbTQSExPRpEkTTJ48+ZXHvSoeMzMzLF68GI8ePcKuXbsQEBCAwMBA2NjshVJ5H2fOjGOSogMqdIuKQqHAzZs3Ub16da5ESUX6999/8fjx43wz+BJVduU5jXtey8gvAPpAX18fZ8+eRdOmTTV2Pk5Rr1sqdKIC5E27nJycjOrVq8PU1LTEnbKo4hNCIDMzE48fP4alpaVq8UUiKl9LliRiypR6UCrjMW3aNMyfP1/qkEiLVPhFCe3s7ACAq+dSkSwtLVXfJ0RU/q5enQilMh5vv/22asQO0XMVPlGRyWSwt7dH9erVS7z6LlUehoaGfNxDVEYleYTyqjKHDh1CaGgoZDIZNm7cyA7tVECFf/RDRESaUZJRQMWVSUtLQ4MGDRAbG4tx48Zh+fLlGo23KOyzot0qxagfIiIqmzt37mDp0qUYMWIERo0ahdWrV+PBgwcAXn8l4AkTJiA2Nhaurq6S9ksp6QrLJA22qBARUQFJSUmYNGkSQkNDoVQq8+0zMDBA//79MWfOHNSoUaNM9e/YsQN9+/aFTCbD0aNH0aZNG3WEXSZsUdFuTFSIiCifW7duoWvXroiKigIAtG/fHh988AFyc3Nx9OhRnDx5EgBgYmKCuXPnYsKECaXq6xUVFYV3330XycnJ8PPzw4IFCzRyHVQxMFEhIiKV+/fvw8PDA/fu3YOzszN++OEHtGrVKl+Zc+fOYcqUKTh69CgAwMPDA1u2bEHNmjVfWf+TJ0/g4eGBW7duoUWLFvj7779haGiokWuhikGjfVSOHz+Ojz/+GA4ODpDJZNi9e3e+/UIIzJo1C/b29jAxMUGHDh1w69YtTYZERFTplHSNnuTkZHTp0gX37t2Dm5sbTp8+XSBJAYB3330XR44cwfr162FmZoaTJ0+icePGWLduXbEzPScnJ+Pjjz/GrVu34OzsjN27dzNJoVfSaKKSkZGBxo0bY82aNYXuX7RoEVauXImQkBCcPn0aVapUQefOnZGVlaXJsIiIKpWXO4sWlrgIITBs2DBERETAwcEBhw4dgq2tbZF1ymQyDBs2DJcvX0abNm2QkZGBESNGoH79LnBwuFggKbpw4QLc3d1x6tQpWFpa4sCBA5xkkUpGlBMAYteuXar3SqVS2NnZicWLF6u2JScnC7lcLrZu3VrielNSUgQAkZKSos5wiYgqjOBgIZyd8z4Kkfc5kPfxufXr1wsAwtDQUJw9e7ZU9SsUChEUFCSMjIwEAAFAGBu3F7NmzRLz5s0T3bp1EzKZTAAQDg4O4tKlS+q6NKoEJEtUoqKiBABx8eLFfOVat24txo4dW2Q9WVlZIiUlRfW6d+8eExUiolJ4OXGJiooSpqamAoBYuHBhmeu9efOmaNHicwHIVAnLi68BAwaIx48fq+ciqNKQbGbauLg4ACjQtGhra6vaV5iAgADMmTNHo7EREVVkXl7/H4YrhMCYMWOQmZmJtm3bYtKkSWWut3bt2jh9Ogx3787Dr7/+ioiICCgUCtSpUwe9evWCm5ubmq6AKhOdm0Lfz88PPj4+qvepqalwdHSUMCIiIt21e/du/PbbbzAyMsLatWuhp/f6XRddXV0xbtw4NURHJOHMtM8XgYuPj8+3PT4+vtgF4uRyOczNzfO9iIio9DIyMlQJRfv2k9GpU51XjgwiKm+SJSqurq6ws7PDkSNHVNtSU1Nx+vRpuLu7SxUWEVGlMW/ePNy7dw8uLi6IiJhWbtPIl3S4NBGg4UQlPT0dly5dwqVLlwAAd+/exaVLlxAbGwuZTIbx48fjm2++wa+//oorV65g8ODBcHBwQK9evTQZFhGR1invP96RkZFYsmQJAGDVqlWYNs30lev2qAvX1qHS0OjMtMeOHUO7du0KbPf09ERoaCiEEPD398d3332H5ORkvP/++/j2229Rp06dEp+DM9MSUUVQkpWI1UUIgfbt2+PYsWPo0aMH9uzZo9kTvoRr61BpcAp9IiItUJ5/vL///nsMHjwYJiYmiIyMhIuLi2ZPSPQamKgQEVUiiYmJePvtt5GQkIDAwEBMnTpV6pCIiiVZZ1oiIip/fn5+SEhIQL169TBhwgSpwyF6JSYqRESVRHh4OL777jsAQHBwMIyMjCSOiOjVmKgQEVUC6enp8PT0BAAMGTIErVu3ljgiopJhokJEpEUyMzOxfPlytGrVCtWqVUO1atXw3nvvYfHixcUuL/Iq48aNw61bt+Do6IilS5eqMWIizWJnWiIiLfHXX3/hiy++wP379wvdb2hoCG9vb8ycORNvvPFGievduHEjhg0bBplMhqNHj6JNmzbqCplI49iiQkSkBX788Ud06NAB9+/fh7OzM1avXg17+ysAruCNN9bivffew7Nnz7B8+XLUqlULISEhUCgUr6x33759GDFiBABg5syZTFJI5zBRISKS2O+//47BgwcjNzcX/fv3x9WrV+Ht7Y1ZsxrA2bkB5s8fgfDwcBw6dAgNGjRAUlISRo0ahRYtWuDUqVNF1rtr1y7069cPCoUCnp6emD17dvldFJGa8NEPEZGEIiIi4OHhgdTUVAwaNAihoaHFrmCcm5uL4OBgzJw5EykpKQCAXr16YcSIEWjbti02bZLjm2+uwMlpCU6f/h4A8PHHH2Pnzp0wNDQsl2siUicmKkREEsnKysI777yDa9euoXXr1vj9998hl8tLdOzjx4/h5+eHjRs3vrRHH8D/Hwn5+Phg4cKFMDAwUF/gROWIj36IiCQyY8YMXLt2DXZ2dti5c2eJkxQAqF69OjZs2IBZsyJgZjYO5uZ2/9ujgExmgiZNPsGpU6ewZMkSJimk09iiQkQkgRMnTuCDDz6AEAL79u1D9+7dy1TP88UMnZwEzp//F9nZ2bC1tWVyQhUGW1SIiMqZQqGAt7c3hBD48ssvy5ykAHmLGDo7A35+MlhbW+PNN99kkkIVChMVIqJytn79evzzzz+oVq0aFi1aVOLjQkLyWlBCQv6/zcsLiI7W/IrLRFJhokJEVI6SkpIwffr0/72bg+3brUp8bGBg3mOewEDNxEakjZioEBGVo7lz5+Lff/+FoWE9JCV5lSrpeP6Yx9dXc/ERaRsmKkREpVDY45eSunbtGlavXg0AGDVqOZydDUuVdPAxD1VGHPVDRFQKz0fZODvnJQ0lJYRA165dcejQIfTo0QN79uzRVIhEFQpbVIiISqGsj1/279+PQ4cOwdDQEEuWLNFMcEQVEFtUiIg0LCcnB/Xr18ft27cxZcoULFy4UOqQiHQGW1SIiIrwOv1RXrRy5Urcvn0btra2L4z4IaKSYIsKEVERytof5UXx8fGoXbs20tLSsHHjRgwdOlSdIRJVeGxRISIqgjqGA/v5+SEtLQ3NmjWDp6en+oIjqiTYokJEpCF//PEHOnbsCACwtT2B2bM9OLSYqJTYokJEpAFpaWkYNmwYAMDMzBvx8R6cUZaoDJioEBG9IDc3Fzk5Oa9VhxACY8aMQWxsLFxcXDB3biBnlCUqIyYqRFTpJScnY+7cuahfvz6MjIwgl8vh5OSEkSNH4s8//0Rpn5CvWrUKmzdvhp6eHjZu3Ijx46tyRlmiMmIfFSKq1A4cOABPT08kJCQUWaZZs2aYMWMGevbsCZlMVmx9+/btQ69evaBQKLBkyRL4+PioO2SiSoUtKkRUaW3YsAHdu3dHQkIC6tati7CwMNy/fx8JCQk4ePAgRowYAVNTU5w/fx6ffPIJWrRogUOHDhXawiKEwIYNG9C7d28oFAoMHjwYEyZMkOCqiCoWtqgQUaW0d+9e9OzZE0IIDBs2DGvWrIFcLi9Q7smTJ1i2bBlWrFiBjIwMAECDBg0wdOhQtG7dGmZmZrh69Sq+/fZb/PnnnwCA/v37Y8uWLTA0NCzXayKqiJioEFGlExkZiffeew9paWkYOXIkgoODIZPJEBICBAbmdXp9uT/J48ePERgYiODgYGRlZRVar5GREebMmYMpU6ZAT48N1kTqwESFiCqVp0+fomnTprhx4wbatGmDw4cPq1o+SjITbXJyMn788Ufs2rULV65cwdOnT+Hk5ITOnTvD29sbrq6u5XYtRJUBExUiqlSmTp2KRYsWwcHBAZcuXYKNjY1qX3EtKkQkDbZNElGlce7cOQQFBQEAevYMQfPmNvkWHPTyQqmHERe2cKG6FjMkIraoEFEloVQq0bJlS5w7dw79+/dHePjW115wECj8cZE6FjMkojxsUSGiSmHbtm04d+4cqlatiuXLl6tlwUGg8IUL1VU3EbFFhYgqgezsbLz99tuIjo7GvHnzMGPGDKlDIqISYosKEVV43377LaKjo2Fvb89J2Ih0DBMVIqrQkpKSMG/ePADAvHnzUKVKFYkjIqLSYKJCRBVaYGAgkpKSUL9+fXh6ekodDhGVEhMVIqqwYmNjsWLFCgDA48cLsX69gcQREVFpMVEhogpr5syZyM7OhlzeFgkJ3RAYKHVERFRaTFSIqEK6dOkSvv/+ewDA+PGL4Ows43BhIh3E4clEVCF16tQJhw8fRv/+/bF161apwyGiMmKLChFVOAcOHFAtNjh//nypwyGi18BEhYh02svr6uTk5KjmShk7dixq1KghXXBE9NqYqBCRTnk5MQkMzFtX53lH2TVr1uDGjRuwsbHBzJkzJYuTiNSDiQoR6ZSXE5MX19W5d+8eZs+eDQBYsGABLCwspAuUiNSCiQoR6ZSXF/zz8spboXjkSIERI0YgNTUVLi4tMW/eUFWrCxHpLo76IaIKYePGjRg2bBjkcjmsrC7h4cO34eycl8QQke7iNI1EpPPOnDkDb29vAHnr+ZiZvY3AQHDeFKIKgC0qRCQJpVKJAwcO4KeffsI///yDp0+fwsnJCe+//z569OiBZs2alaiee/fuoUWLFoiLi0P37t2xZ88e6Ovrazh6IiovTFSIqNxFRUXB09MTJ06cKLLMu+++i1GjRqF///4wNTUttExkZCS6d++O6OhoNGjQACdOnODvAaIKhokKEZWrM2fOoGvXrkhMTESVKlUwfPhwdOzYEebm5oiIiMCRI0ewZ88e5OTkAAAsLS0xePBg9OjRA61atYJcLkdMTAw2btyIoKAgPH36FLVq1cKRI0fg5OQk8dURkboxUSGicnPjxg20atUK//77L1q0aIHt27cXmlwkJCQgNDQUISEhuHPnTr59crkc2dnZqvcdO3ZEWFgYqlevrvH4iaj8MVEhonKRkJCA5s2bIyYmBs2bN8eff/6JqlWrFnuMUqnEoUOH8PPPP+P333/Ho0ePAAD6+vrw8PDAmDFj8Omnn0Imk5XHJRCRBLQiUVmzZg0WL16MuLg4NG7cGKtWrUKLFi1KdCwTFSLtJ4RAnz59sGvXLtSqVQsnT56EjY1NqetISEhAZmYmbG1tYWJioqFoiUibSD7h288//wwfHx/4+/vjwoULaNy4MTp37ozHjx9LHRoRqUlYWBh27doFQ0NDbN++vdRJCgDIZDJUr14dLi4uTFKIKhHJW1RatmyJ5s2bY/Xq1QDymnodHR0xZswY+JZgEgS2qBBpt/j4eLi5uSElJQXz58/HtGnTpA6JiHSIpC0qOTk5OH/+PDp06KDapqenhw4dOiA8PLzQY7Kzs5GamprvRUTaa8aMGUhJSUGzZs0wZcoUqcMhIh0jaaLy5MkTKBQK2Nra5ttua2uLuLi4Qo8JCAiAhYWF6uXo6FgeoRJRGVy4cAEbNmwAAKxcuRIGBv+fDPvlVZCJiAojeR+V0vLz80NKSorqde/ePalDIqKXhIQAzs4C/ftPgBACAwcOhIeHR74yL6+CTERUGEnX+rG2toa+vj7i4+PzbY+Pj4ednV2hx8jlcsjl8vIIj4jKKDAQiI39HcBxGBsbI7CQbMTXF1yPh4heSdIWFSMjIzRr1gxHjhxRbVMqlThy5Ajc3d0ljIyIXsfUqQJGRjMAAF9//XWhj2i9vPJWNvbyKufgiEinSP7ox8fHB+vWrcPmzZtx7do1jBo1ChkZGRg6dKjUoRFRGTk4/IqcnHOoUqUKpk6dWuLjXu63wn4sRCT58GQAWL16tWrCtyZNmmDlypVo2bJliY7l8GQi7aJUKtGkSRNcuXIF06ZNw/z580t8rItLXr8VZ+e81paX3xNR5SN5iwoAjB49GjExMcjOzsbp06dLnKQQkfbZvn07rly5AgsLC0yaNKlUx/r65iUlz/utvPyeiCofrWhReR1sUSHSHrm5uWjQoAFu3LiBuXPnYubMmap9ISH/7zzLfilEVFJMVIhIbUJDQzF06FBYWVnhzp07+X4m+RiHiMpCKx79EJHuy8rKgr+/PwBg6tSpBf5x4GMcIioLtqgQkVosX74cEyZMwJtvvolbt25x4UAiUgu2qBDRa1u2LBUTJ+aN7pk9ezaTFCJSG7aoENFrs7T0R0rKXBgYuOHp06v51vQhInodbFEhotcSFxeHrKwlAIChQ+czSSEitWKiQkSvxcfHB9nZGWjRogXWru0tdThEVMEwUSGiMjt8+DC2bt0KPT09fPvtt5DJZFKHREQVDBMVIiqTtLQ0fP311wDyZpdu1qyZxBERUUXERIWISk0IgREjRuD27dt46623MG/ePKlDIqIKiokKEZXamjVr8NNPP8HAwAA///wzR9wRkcawez5RJSOEwKVLl3D+/HmkpqbCwcEB9erVQ4MGDaCn9+r/XX744QeMGzcOALBw4UJ4eHhoOmQiqsSYqBBVIr/++iv8/PwQGRlZYJ+dnR0++eQT9O7dG23atIGhoWG+/VlZWZg7dy4CAgIAAMOHD8eECRPKJW4iqrw44RtRJfDs2TOMGTMGa9euBQCYmpri/fffh5WVFWJiYnDlyhWkpaWpyltaWqJ9+/Zo2LAhLC0tcfv2bezcuRNxcXEAgPHjxyMoKAj6+vqSXA8RVR5MVIgqOKVSiQEDBmDbtm2QyWSYNGkSpk+fDgsLC1WZnJwcHDlyBDt37sSvv/6KhISEQutydHTEsmXL0KdPn/IKn4gqOSYqRBXctGnTEBAQAENDQ+zYsQM9evQotrxCoUB4eDjOnDmDyMhIbN2ajsxMe9jYtMH9+92wcaMRAgPzVkH28iqniyCiSouJClEFtnXrVgwcOBAAsHnzZgwePLjUdYSEIF9i4uICxMQAzs5AdLR64yUiehkTFaIKKi4uDvXq1UNSUhL8/PywYMECtdT7cuJCRKRJnEeFqAISQuDrr79GUlIS3nnnHcyZMwchIXmtISEhr1e3l1deSwqTFCIqD0xUiCqg/fv3Y9euXQAM0LXrRhgaGiIwMO+RTWCg1NEREZUcExWiCuDF1hIhBGbOnPm/PT4IC2sMIO9RjbNz3kciIl3BRIWoAnixtWT37t24dOkSjI3N8NZbU1SJSWGPbF5+HKSux0NEROrCzrREFcDzDq5TpigREtIEV65cwcyZMzF37txij3t5BA9H9BCRtmGLClEF8Ly1xMZmJ65cuQILC4sSTW//8uMgPh4iIm3DFhWiCkKhUKBRo0aIjIzEnDlzMGvWLKlDIiJ6bWxRIaogtm3bhsjISFSrVk21ujERka5jokJUAeTm5mL27NkAgEmTJuVbx4eISJcxUSHSQS+Pzvnxxx9x8+ZNWFlZYcyYMZLGRkSkTkxUiHTQi8ORnz17phrdM2XKFJiZmUkcHRGR+jBRIdJBL47O+f777xEVFQUbGxt4e3tLHRoRkVoZSB0AEZWel1feKycnB25u8wAAvr6+qFKlisSRERGpF1tUiHRYaGgooqOjYWdnBy+uEkhEFRATFSIdlZ2djW+++QYA4OfnB1NTU4kjIiJSPyYqRDpq/fr1uHfvHhwcHDBixAipwyEi0ggmKkRapiQLA6anp6tG+syYMQPGxsblExwRUTljokKkZV4celyUZcuW4fHjx6hVqxa++uqr8guOiKicMVEh0jKvWhjw8ePHWLRoEQBg/vz5MDQ0LMfoiIjKFxclJNIxQ4YMwebNm9GsWTOcOXMGenr8f4OIKi7+hiMqRyXpf1Kco0ePYvPmzZDJZFi9ejWTFCKq8NiiQlSOXFzy+p84OwPR0aU7NjMzE02bNsXNmzfx9ddfY82aNZoIkYhIq/DfMaJy9Kr+J0URQmD48OG4efMm7O3tsWDBAs0ESESkZdiiQqQDVqxYgfHjx0NfXx9HjhxBmzZtpA6JiKhcsEWFSEIl6bOyceNGTJgwAQAQFBTEJIWIKhW2qBBpSEhI3lwovr5Ap0538MMPP+DMmTNIT0+HTCZDnTp1sH17IyQmusPJqSFiYvKvEZqUlITp06cjODgYAODl5YVvv/0WMplMisshIpIEExUiDcnrOJuBqlWnIDMzBEqlssiycnlVvP9+S9SqVQumpqa4e/cufv/9d2RmZgIApk2bhnnz5nGUDxFVOkxUiDQkMPAhZs3qgmfPrgAAOnXqhB49esDa2ho5OTm4fv06zp8/j/DwcKSmphZaR6NGjbB06VJ8+OGH5Rk6EZHWMHh1ESIqraSkJGza1A7Pnt2EnZ0dvv/+e3To0KHQsgqFApGRkQgPD0dcXBzS09NhZ2eHDz74AO+++y4f9RBRpcYWFSI1y83NRffu3fH777/DyckJf/31F1xcXKQOi4hIJ/GBN5GazZw5E7///jtMTU2xZ88eJilERK+BiQqRmoSEAPb257FwYd6CgZs2bUKTJk3UUu/rTLtPRKTL+OiHSE2cnXMRG9sCwEUMGDAAP/74o1rqfZ1p94mIdB1bVIjUpGXLNQAuwtS0GpYtW6a2ess67T4RUUXAFhUiNUhJSUGNGjWQmJiItWvXYsSIEVKHRERUIbBFhUgNFi9ejMTERNStWxdffvml1OEQEVUYGktU5s+fDw8PD5iamsLS0rLQMrGxsejevTtMTU1RvXp1TJ48Gbm5uZoKiUgj4uLiVI96FixYAAMDTk9ERKQuGvuNmpOTg759+8Ld3R0bNmwosF+hUKB79+6ws7PDyZMn8ejRIwwePBiGhoZcwp50SlBQEDIzM/Hee++hZ8+eUodDRFShaLyPSmhoKMaPH4/k5OR82w8cOICPPvoIDx8+hK2tLQAgJCQEU6dORUJCAoyMjEpUP/uokJQSExPh5OSEjIwM/Pbbb+jatavUIRERVSiS9VEJDw9Hw4YNVUkKAHTu3BmpqamIiIiQKiyiUlm1ahUyMjLQpEkTdOnSRepwiIgqHMkepsfFxeVLUgCo3sfFxRV5XHZ2NrKzs1Xvi1rMjUjT0tPTsXLlSgCAr68v1+QhItKAUrWoPP9lXNzr+vXrmooVABAQEAALCwvVy9HRUaPnIyrKunXrkJiYiFq1auHTTz+VOhwiogqpVC0qEydOxJAhQ4otU6NGjRLVZWdnhzNnzuTbFh8fr9pXFD8/P/j4+Kjep6amMlmhcpednY0lS5YAAKZMmQJ9fX2JIyIiqphKlajY2NjAxsZGLSd2d3fH/Pnz8fjxY1SvXh0AcPjwYZibm6NevXpFHieXyyGXy9USA1FZffVVGB48eAALCwcMHjxY6nCIiCosjfVRiY2NRWJiImJjY6FQKHDp0iUAQK1atVC1alV06tQJ9erVw6BBg7Bo0SLExcVhxowZ8Pb2ZiJCWk2hUOCnnxYCAPT0JvL7lYhIgzSWqMyaNQubN29WvW/atCkA4OjRo2jbti309fWxb98+jBo1Cu7u7qhSpQo8PT0xd+5cTYVEpBY7duxAbu4t6OlVw6xZnCqfiEiTuNYPUSkIIdCkSRNcvnwZs2fPhr+/v9QhERFVaFzrhyqVkBDAxSXvY3Hbijpu9Oj9uHz5MqpWrYoxY8ZoOFoiImKLClUqLi5ATAzg7AxERxe9rfDjBIyMPJCTcwpTpkzBwoULyyVmIqLKjC0qVKn4+uYlJL6+xW8r7Dhb22PIyTkFuVyOCRMmaD5YIiJiiwpRSQgh0LZtWxw/fhze3t5YvXq11CEREVUKbFEhKoHffvsNx48fh7GxMaZOnSp1OERElQYTFaJXUCgU8PPzAwCMHTuWMyETEZUjJipEr7B582ZcuXIFlpaW8C2uIwsREakdExWiYjx+/BiTJ08GAMyYMQPVqlWTOCIiosqFiQpVGCWZD6W0xo8fj8TERDRp0gRjx45VX8VERFQiHPVDFUZJ5kMpjZ9++gkDBgyAnp4ezpw5g2bNmr1+pUREVCpsUaEKoyTzoZTUuXPnMHTo0P/V68skhYhIImxRIXrJzZs30a5dOzx8+BDdunXDr7/+Cn19fanDIiKqlNiiQvQ/Qgjs3r0bHh4eePjwIerVq4cff/yRSQoRkYQMpA6ASFOuX7+O0NBQnDx5EnFxccjKyoKtrS3eeustuLq6okaNGnBycsKzZ88QGxuLHTt24OTJkwAAI6PmGDJkPywsLCS+CiKiyo2PfqjCSUtLw6RJk/Ddd9+V+lhDQ0OYmPggNXUOnJ3laumUS0REZccWFapQHjx4gM6dOyMiIgIA8PHHH+PTTz+Fi4sL5HI54uPjce/ePdy9exd37txBbGwsTExMYG1tjVatWmHgwIH49VcHBAaqp1MuERG9HraoUIXx5MkTeHh44NatW7C3t8fWrVvRpk0bqcMiIqLXwBYVqhAUCgUGDhyIW7duwcXFBceOHYOzs7PUYRER0WviqB+qEGbPno3Dhw/D1NQUe/fuZZJCRFRBMFEhnfTidPnnz5/HggULAADr1q1DgwYNpA2OiIjUhn1USCc9ny7fyUkBW1t3nD17FgMGDMCPP/4odWhERKRGbFEhnfR8uvxWrdbh7NmzMDc3x5IlS/KV0cQihUREVL7YokI6Kz09Ha6urnjy5AlWrFhRYHVjdS9SSERE5Y8tKqSzVq5ciSdPnqBWrVr4+uuvC+xX5yKFREQkDbaokE5KTk6Gq6srkpOT8cMPP2DgwIFSh0RERBrAFhXSScuWLUNycjLq16+Pzz77TOpwiIhIQ5iokM7JyMjA6tWrAQD+/v5c3ZiIqAJjokI6Z9OmTUhMTETNmjXRu3dvqcMhIiINYqJCOkWhUGDp0qUAAB8fH7amEBFVcExUSKf88ssvuHv3LqysrDBkyBCpwyEiIg1jokI6QwiBxYsXAwC8vb1hamoqcURERKRpTFRIZ/znP//B2bNnYWxsDG9vb6nDISKicsBEhXTG89YUT09PVK9eXeJoiIioPDBRIY1S13o7165dw759+yCTyeDj46OW2IiISPsxUSGNCgzMW28nMPD16vnqq7wFBxs16oE6deqoITIiItIFTFRIo9Sx3k5cXBxOnvz+f59PVlNkRESkCwykDoAqNi+vvNfrWLVqFYAcyOXumD27lVriIiIi3cBEhbRaeno6goODAQBbt07GJ59IHBAREZUrPvohrbZx40YkJSWhdu3a6NGjh9ThEBFROWOiQlorJydHNV3+xIkTOV0+EVElxESFtFZoaChiYmJgZ2eHwYMHSx0OERFJgIkKaaXs7Gx88803AAA/Pz+YmJhIHBEREUmBiQpppQ0bNuDevXtwcHDAiBEjpA6HiIgkwkSFtE5ycjJmz54NAJg2bRqMjY2lDYiIiCTDRIW0jr+/PxISEvD2229j+PDhUodDREQSYqJCWuXKlStYs2YNAGDlypUwMjKSOCIiIpISExXSGk+fPsUXX3wBhUKB3r17o2PHjlKHREREEmOiQlrDx8cHly9fho2Nzf+mzSciosqOiQpphXXr1iEkJAQAEBYWBgcHB4kjIiIibcBEhSQlhMCqVaswcuRIAMCsWbPQqVMniaMiIiJtwUSFJBMREYFevXph7NixEELA29tbNSyZiIgI4OrJpGZZWVnYv38//vOf/+DatWtITU2Fvr4+TE1NYWZmBhMTEyQnJyMqKgrXr18HABgYGCAgIAATJ06ETCZDSAgQGAj4+gJeXhJfEBERSUomhBBSB/E6UlNTYWFhgZSUFJibm0sdTqUlhEBYWBh8fX3x8OHDEh1jYGCAHj16YM6cOWjQoIFqu4sLEBMDODsD0dGaiZeIiHQDW1ToteXk5GD48OHYsmULAMDBwQGffvopGjVqBGtraygUCmRmZiI1NRWZmZmwtLSEg4MD3nvvPbzxxhsF6vP1/X+LChERVW5sUaHX8uzZM/Tr1w+7d++Gvr4+5syZg0mTJkEul5e4Dj7qISKiojBRodcyceJELF26FHK5HLt370aXLl1KXQcf9RARUVE0NuonOjoaw4YNg6urK0xMTFCzZk34+/sjJycnX7nLly/jgw8+gLGxMRwdHbFo0SJNhURqtnfvXixduhQA8MMPP5QoSQkJyUtM/jdlCoC8lhRnZz7qISKigjTWR+X69etQKpVYu3YtatWqhatXr2L48OHIyMhAUFAQgLzWkE6dOqFDhw4ICQnBlStX8OWXX8LS0hIjRozQVGikBo8ePYKnpycAYPz48ejTp0+JjgsMzGs9CQz8/2MeLy8+8iEioiKIcrRo0SLh6uqqev/tt9+KatWqiezsbNW2qVOnCjc3txLXmZKSIgCIlJQUtcZKxRs0aJAAIJo1a6a6f8HBQjg7530sSknKEBERPVeuE76lpKTkG+URHh6O1q1b51sht3Pnzrhx4waSkpIKrSM7Oxupqan5XlS+Tp48ie+//x4ymQzBwcGq+/dia0lRvLzy+qGwBYWIiEqi3BKV27dv55sqHQDi4uJga2ubr9zz93FxcYXWExAQAAsLC9XL0dFRc0FTAUqlEmPHjgUAfPnll2jevLlqH/uaEBGRupU6UfH19YVMJiv29XzG0ecePHiALl26oG/fvhg+fPhrBezn54eUlBTV6969e69VH5XO7t27cf78eZiZmWHBggX59rG1hIiI1K3UnWknTpyIIUOGFFumRo0aqs8fPnyIdu3awcPDA999912+cnZ2doiPj8+37fl7Ozu7QuuWy+WlmqOD1EepVGLOnDkA8jrQVq9eXeKIiIiooit1omJjYwMbG5sSlX3w4AHatWuHZs2aYdOmTdDTy9+A4+7ujunTp+PZs2cwNDQEABw+fBhubm6oVq1aaUMjDdu9ezcuX74Mc3NzjB8/XupwiIioEtBYH5UHDx6gbdu2cHJyQlBQEBISEhAXF5ev78nAgQNhZGSEYcOGISIiAj///DNWrFgBHx8fTYVFZSSEwDfffAMAGDduHN54441C50QhIiJSJ43NTBsaGoqhQ4cWuu/FU16+fBne3t44e/YsrK2tMWbMGEydOrXE5+HMtOXjr7/+Qtu2bWFiYoJ79+7BysqKM8oSEZHGcQp9KpFPPvkEu3fvhpeXF4KDgwFwjR4iItI8Jir0Snfu3EGtWrUghEBkZCTq1q0rdUhERFRJlOuEb6SbVq9eDSEEOnfuzCSFiIjKFRMVKtTzjrLLlqVi/fr1AMCRPkREVO746IcK9byjbLVqK5GUNA5ubm6IjIwsMMSciIhIk/hXhwrl6ws4OSlhYLASQN6QZCYpRERU3tiiQkXau3cvevToAUtLS9y/fx9VqlSROiQiIqpk+C8yFWn58uUAgOHDhzNJISIiSTBRoUJdvnwZf/75J/T19TF69GjOQktERJJgokKFWrZsGYC8id6cnJwQGJjXuTYwUOLAiIioUmGiQgU8evQIP/zwA4C81bKBvM61zs55H4mIiMpLqVdPpopvzZo1ePbsGTw8PPDee+8ByJsin9PkExFReWOLCuWTkZGhWsvneWsKERGRVJioUD6bN29GYmIiatSogZ49e0odDhERVXJMVCqY1xmdo1AoVEOSx48fD319fbXGRkREVFqc8K2CeT71vbMzEB1dumN/+OEHfPHFF6hWrRpiY2NRtWpVTYRIRERUYmxRqWDKOjonNzcXc+bMAQBMmjSJSQoREWkFtqgQQkKAGTNC8e+/Q2FtbY07d+7AzMxM6rCIiIjYokLAggWZ+Pff2QCAKVOmMEkhIiKtwUSlEnq5w239+gsAxKBaNUd4e3tLGRoREVE+fPRTCb3Y4fb332+iYcOGyMnJwc6dO9G7d2+pwyMiIlJhi0ol9LzD7eTJzzB06FDk5OSgS5cu+OSTT6QOjYiIKB8mKpWQl1fe0OVbtybj5MmTsLCwwJo1ayCTyaQOjYiIKB8mKpXUhg0bsGLFCgDAli1bUKNGDYkjIiIiKoiJSiUjhMCyZcswfPhwAMD06dPRo0cPiaMiIiIqHBMVHVaa6fKVSiVOnDiBzp07w8fHB0IIjB49GvPmzdN4nERERGXFUT867MXRO3fvCly/fh1Xr17FnTt3kJiYiOTkZCQnJyMpKQn//PMPHj9+DACQy+VYtGgRxowZw34pRESk1QykDoDKztcXCAjIRvPmwWjYcD0iIiKKLW9mZoY+ffpg+vTpqFWrVjlFSUREVHZMVHSYh8dlmJp+hh07rgMAjIyM8M4776BmzZqoXr06LC0tVS8nJyd4eHjAyMhI4qiJiIhKjomKjjp27Bg+/vhjpKenw87ODv7+/ujfvz8sLS2lDo2IiEht2JlWSxXXUfbChQuqJKVdu3a4cuUKvLy8mKQQEVGFw860WurFjrLR0f/fnpKSgiZNmiA6Ohoffvgh9u3bB2NjY6nCJCIi0ii2qGip59Pc+/rm3+7t7Y3o6Gi4uLhg586dTFKIiKhCY4uKDtm+fTv69esHfX19HD9+HB4eHlKHREREpFFsUdERT58+xcSJEwEAfn5+JU5SSjMpHBERkbZhi4qOmD9/PmbMmAFHR0fcuHEDJiYmJTquqL4uREREuoAtKjogLi4OAQEBAIDAwMASJylA0X1diIiIdAFbVHTApEmTsGTJErRo0QKnTp3itPdERFRpsEVFyz158gTBwcEAgNmzZzNJISKiSoWJipZbsWIFMjMz8c4776BLly5Sh0NERFSumKhosbS0NKxatQoAMH36dLamEBFRpcNERYtt2bIFKSkpqFOnDnr16iV1OEREROWOiYqWEkJgzZo1AIDRo0dDT4+3ioiIKh/+9dNSR48exbVr11C1alV4enpKHQ4REZEkmKhoqeetKYMGDVINu+Yss0REVNlwHhUtFBsbC1dXVyiVSly9ehX169cHwFlmiYio8mGLihZau3YtlEol2rVrp0pSAM4yS0RElQ9bVLRMdnY2HB0dkZCQgB07dqBPnz5Sh0RERCQZtqhome3btyMhIQFvvfUWevbsKXU4REREkmKiomWed6L18vKCgYGBxNEQERFJi4mKFjl37hxOnToFQ0NDfPXVV1KHQ0REJDkmKlrkeWtKv379YGtrK3E0RERE0mOioiUWL05AaOhWAHkz0RIRERETFa2xYME6ANkwMmqOli1bSh0OERGRVmCiogWePXsG4FsAwMCBY7hKMhER0f8wUdECu3fvRnLyA1SvXh0hIf2kDoeIiEhrMFHRAitXrgQAjBw5EnK5XOJoiIiItIdGE5UePXrAyckJxsbGsLe3x6BBg/Dw4cN8ZS5fvowPPvgAxsbGcHR0xKJFizQZkta5cOEC/v77bxgYGMDLy0vqcIiIiLSKRhOVdu3aYdu2bbhx4wZ27tyJqKgofPrpp6r9qamp6NSpE5ydnXH+/HksXrwYs2fPxnfffafJsLRKYGAggLwhyQ4ODhJHQ0REpF3Kda2fX3/9Fb169UJ2djYMDQ0RHByM6dOnIy4uDkZGRgAAX19f7N69G9evXy9Rnbq81s/169dRr149CCFw5coVNGjQQOqQiIiItEq59VFJTEzEDz/8AA8PDxgaGgIAwsPD0bp1a1WSAgCdO3fGjRs3kJSUVGg92dnZSE1NzffSVYGBgRBCoGfPnkxSiIiICqHxRGXq1KmoUqUKrKysEBsbiz179qj2xcXFFZiB9fn7uLi4QusLCAiAhYWF6uXo6Ki54DXo1q1bCAsLAwBMnz5d4miIiIi0U6kTFV9fX8hksmJfLz62mTx5Mi5evIjff/8d+vr6GDx4MF7naZOfnx9SUlJUr3v37pW5LilNnjwZCoUC3bp1Q/PmzaUOh4iISCuVenneiRMnYsiQIcWWqVGjhupza2trWFtbo06dOqhbty4cHR1x6tQpuLu7w87ODvHx8fmOff7ezs6u0LrlcrnOD+E9evQo9uzZA319fQQFBUkdDhERkdYqdaJiY2MDGxubMp1MqVQCyOtnAgDu7u6YPn06nj17puq3cvjwYbi5uaFatWplOoe2y8nJwfjx4wEAXl5eqFu3rrQBERERaTGN9VE5ffo0Vq9ejUuXLiEmJgZ//vknBgwYgJo1a8Ld3R0AMHDgQBgZGWHYsGGIiIjAzz//jBUrVsDHx0dTYWlcSAjg4pL3sTCzZs3C5cuX8cYbb8Df379cYyMiItI1GhuefOXKFYwbNw7//PMPMjIyYG9vjy5dumDGjBl48803VeUuX74Mb29vnD17FtbW1hgzZgymTp1a4vNo2/BkFxcgJgZwdgaio/PvO3bsGNq3bw8hBHbu3InevXtLESIREZHOKNd5VDRB2xKVkBAgMBDw9QVenGg2KioK7u7uSEhIgIfHl3jwYEOBMkRERJQfE5VyEBkZic6dO+P+/fto2rQpnjw5jnv3qhba6kJERET/x0UJNejZs2dYs2YNWrRogfv376Nu3brYv38/pk3LS1J8faWOkIiISLuxRUXNsURFReHWrVs4duwY9uzZo1qEsX379vj5559hbW0taYxERES6pNTDk+n/bt++jR9//BEnT57ExYsX8fjx4wJl7OzsMGPGDHh5eUFfX1+CKImIiHQXE5UyuH79OiZNmoT9+/cX2GdjY4OaNWuiadOm+Oijj9C+fXsYGxtLECUREZHuY6JSSt9//z2GDx+umrSua9eu+Oijj9C8eXO4ublJ/viJiIioImGiUgobNmzAV199BQDo1KkTVq1ahTp16rzyuKKGLBMREVHx2Jm2hHbu3Il+/fpBqVRiwoQJCAoKgp5eyQZNFTcJHBERERWNw5NL4NatWxg8eDCUSiW++uorLFmypMRJCpDXksLhyERERKXHFpVXyM3NRevWrREeHo527drh8OHDHL1DRERUTtii8gpLlixBeHg4zM3NERoayiSFiIioHDFRKcaiRfHw85sHAFi+fDl++82pwMrIr1otmYiIiMqOj36KYWY2CunpITAyao6srNNwdZUV6BTLjrJERESawxaVIly/fh2ZmesAAKNHB0EmkxXaKZYdZYmIiDSHLSpF+PTTT7Fz50706NEDe/bsUVu9REREVHKc8K0IixYtgpGREWbOnCl1KERERJUWW1SIiIhIa7GPChEREWktJipERESktZioEBERkdZiokJERERai4kKERERaS0mKkRERKS1mKgQERGR1mKiQkRERFqLiQoRERFpLSYqREREpLWYqBAREZHWYqJCREREWouJChEREWktA6kDeF3PF39OTU2VOBIiIiIqLTMzM8hksiL363yikpaWBgBwdHSUOBIiIiIqrZSUFJibmxe5XyaeN0noKKVSiYcPH74yIyuL1NRUODo64t69e8V+EXUVr0/3VfRr5PXpvop+jby+11fhW1T09PTw1ltvafQc5ubmFfIb8Dlen+6r6NfI69N9Ff0aeX2aw860REREpLWYqBAREZHWYqJSDLlcDn9/f8jlcqlD0Qhen+6r6NfI69N9Ff0aeX2ap/OdaYmIiKjiYosKERERaS0mKkRERKS1mKgQERGR1mKiQkRERFqrUicq8+fPh4eHB0xNTWFpaVlomdjYWHTv3h2mpqaoXr06Jk+ejNzc3GLrTUxMxOeffw5zc3NYWlpi2LBhSE9P18AVlM6xY8cgk8kKfZ09e7bI49q2bVugvJeXVzlGXnIuLi4FYg0MDCz2mKysLHh7e8PKygpVq1ZFnz59EB8fX04Rl1x0dDSGDRsGV1dXmJiYoGbNmvD390dOTk6xx2n7/VuzZg1cXFxgbGyMli1b4syZM8WW3759O95++20YGxujYcOG+O2338op0tIJCAhA8+bNYWZmhurVq6NXr164ceNGsceEhoYWuFfGxsblFHHpzZ49u0C8b7/9drHH6Mr9Awr/fSKTyeDt7V1oeV24f8ePH8fHH38MBwcHyGQy7N69O99+IQRmzZoFe3t7mJiYoEOHDrh169Yr6y3tz3FpVOpEJScnB3379sWoUaMK3a9QKNC9e3fk5OTg5MmT2Lx5M0JDQzFr1qxi6/38888RERGBw4cPY9++fTh+/DhGjBihiUsoFQ8PDzx69Cjf66uvvoKrqyvefffdYo8dPnx4vuMWLVpUTlGX3ty5c/PFOmbMmGLLT5gwAXv37sX27dvx119/4eHDh+jdu3c5RVty169fh1KpxNq1axEREYFly5YhJCQE06ZNe+Wx2nr/fv75Z/j4+MDf3x8XLlxA48aN0blzZzx+/LjQ8idPnsSAAQMwbNgwXLx4Eb169UKvXr1w9erVco781f766y94e3vj1KlTOHz4MJ49e4ZOnTohIyOj2OPMzc3z3auYmJhyirhs6tevny/ev//+u8iyunT/AODs2bP5ru3w4cMAgL59+xZ5jLbfv4yMDDRu3Bhr1qwpdP+iRYuwcuVKhISE4PTp06hSpQo6d+6MrKysIuss7c9xqQkSmzZtEhYWFgW2//bbb0JPT0/ExcWptgUHBwtzc3ORnZ1daF2RkZECgDh79qxq24EDB4RMJhMPHjxQe+yvIycnR9jY2Ii5c+cWW65NmzZi3Lhx5RPUa3J2dhbLli0rcfnk5GRhaGgotm/frtp27do1AUCEh4drIEL1WrRokXB1dS22jDbfvxYtWghvb2/Ve4VCIRwcHERAQECh5fv16ye6d++eb1vLli3FyJEjNRqnOjx+/FgAEH/99VeRZYr6XaSt/P39RePGjUtcXpfvnxBCjBs3TtSsWVMolcpC9+va/QMgdu3apXqvVCqFnZ2dWLx4sWpbcnKykMvlYuvWrUXWU9qf49Kq1C0qrxIeHo6GDRvC1tZWta1z585ITU1FREREkcdYWlrma6Ho0KED9PT0cPr0aY3HXBq//vor/v33XwwdOvSVZX/44QdYW1ujQYMG8PPzQ2ZmZjlEWDaBgYGwsrJC06ZNsXjx4mIf1Z0/fx7Pnj1Dhw4dVNvefvttODk5ITw8vDzCfS0pKSl44403XllOG+9fTk4Ozp8/n+9rr6enhw4dOhT5tQ8PD89XHsj7mdSVewXglfcrPT0dzs7OcHR0RM+ePYv8XaMtbt26BQcHB9SoUQOff/45YmNjiyyry/cvJycHYWFh+PLLL4tdQE/X7t+L7t69i7i4uHz3yMLCAi1btizyHpXl57i0dH5RQk2Ki4vLl6QAUL2Pi4sr8pjq1avn22ZgYIA33nijyGOksmHDBnTu3PmVizoOHDgQzs7OcHBwwOXLlzF16lTcuHEDv/zySzlFWnJjx47FO++8gzfeeAMnT56En58fHj16hKVLlxZaPi4uDkZGRgX6KNna2mrd/XrZ7du3sWrVKgQFBRVbTlvv35MnT6BQKAr9Gbt+/XqhxxT1M6nt90qpVGL8+PFo1aoVGjRoUGQ5Nzc3bNy4EY0aNUJKSgqCgoLg4eGBiIgIjS++WhYtW7ZEaGgo3Nzc8OjRI8yZMwcffPABrl69CjMzswLldfX+AcDu3buRnJyMIUOGFFlG1+7fy57fh9Lco7L8HJdWhUtUfH19sXDhwmLLXLt27ZUdvnRJWa75/v37OHToELZt2/bK+l/sX9OwYUPY29vjww8/RFRUFGrWrFn2wEuoNNfn4+Oj2taoUSMYGRlh5MiRCAgI0Noprsty/x48eIAuXbqgb9++GD58eLHHSn3/CPD29sbVq1eL7b8BAO7u7nB3d1e99/DwQN26dbF27VrMmzdP02GWWteuXVWfN2rUCC1btoSzszO2bduGYcOGSRiZ+m3YsAFdu3aFg4NDkWV07f7pigqXqEycOLHYjBcAatSoUaK67OzsCvRcfj4axM7OrshjXu5AlJubi8TExCKPeV1lueZNmzbBysoKPXr0KPX5WrZsCSDvP/ry+EP3Ove0ZcuWyM3NRXR0NNzc3Arst7OzQ05ODpKTk/O1qsTHx2vsfr2stNf38OFDtGvXDh4eHvjuu+9Kfb7yvn9Fsba2hr6+foERVsV97e3s7EpVXhuMHj1a1am+tP9VGxoaomnTprh9+7aGolMvS0tL1KlTp8h4dfH+AUBMTAz++OOPUrdC6tr9e34f4uPjYW9vr9oeHx+PJk2aFHpMWX6OS00tPV103Ks608bHx6u2rV27Vpibm4usrKxC63remfbcuXOqbYcOHdKqzrRKpVK4urqKiRMnlun4v//+WwAQ//zzj5ojU7+wsDChp6cnEhMTC93/vDPtjh07VNuuX7+utZ1p79+/L2rXri369+8vcnNzy1SHNt2/Fi1aiNGjR6veKxQK8eabbxbbmfajjz7Kt83d3V0rO2MqlUrh7e0tHBwcxM2bN8tUR25urnBzcxMTJkxQc3SakZaWJqpVqyZWrFhR6H5dun8v8vf3F3Z2duLZs2elOk7b7x+K6EwbFBSk2paSklKizrSl+TkudZxqqUVHxcTEiIsXL4o5c+aIqlWriosXL4qLFy+KtLQ0IUTeN1mDBg1Ep06dxKVLl8TBgweFjY2N8PPzU9Vx+vRp4ebmJu7fv6/a1qVLF9G0aVNx+vRp8ffff4vatWuLAQMGlPv1FeWPP/4QAMS1a9cK7Lt//75wc3MTp0+fFkIIcfv2bTF37lxx7tw5cffuXbFnzx5Ro0YN0bp16/IO+5VOnjwpli1bJi5duiSioqJEWFiYsLGxEYMHD1aVefn6hBDCy8tLODk5iT///FOcO3dOuLu7C3d3dykuoVj3798XtWrVEh9++KG4f/++ePToker1Yhldun8//fSTkMvlIjQ0VERGRooRI0YIS0tL1Ui7QYMGCV9fX1X5EydOCAMDAxEUFCSuXbsm/P39haGhobhy5YpUl1CkUaNGCQsLC3Hs2LF89yozM1NV5uXrmzNnjjh06JCIiooS58+fF/379xfGxsYiIiJCikt4pYkTJ4pjx46Ju3fvihMnTogOHToIa2tr8fjxYyGEbt+/5xQKhXBychJTp04tsE8X719aWprqbx0AsXTpUnHx4kURExMjhBAiMDBQWFpaij179ojLly+Lnj17CldXV/H06VNVHe3btxerVq1SvX/Vz/HrqtSJiqenpwBQ4HX06FFVmejoaNG1a1dhYmIirK2txcSJE/Nl1UePHhUAxN27d1Xb/v33XzFgwABRtWpVYW5uLoYOHapKfrTBgAEDhIeHR6H77t69m+9rEBsbK1q3bi3eeOMNIZfLRa1atcTkyZNFSkpKOUZcMufPnxctW7YUFhYWwtjYWNStW1csWLAgX+vXy9cnhBBPnz4VX3/9tahWrZowNTUVn3zySb4//tpi06ZNhX6/vtgwqov3b9WqVcLJyUkYGRmJFi1aiFOnTqn2tWnTRnh6euYrv23bNlGnTh1hZGQk6tevL/bv31/OEZdMUfdq06ZNqjIvX9/48eNVXwtbW1vRrVs3ceHChfIPvoQ+++wzYW9vL4yMjMSbb74pPvvsM3H79m3Vfl2+f88dOnRIABA3btwosE8X79/zv1kvv55fh1KpFDNnzhS2trZCLpeLDz/8sMC1Ozs7C39//3zbivs5fl0yIYRQz0MkIiIiIvXiPCpERESktZioEBERkdZiokJERERai4kKERERaS0mKkRERKS1mKgQERGR1mKiQkRERFqLiQoRERFpLSYqREREpLWYqBAREZHWYqJCREREWouJChEREWmt/wI/cDdneHwDQQAAAABJRU5ErkJggg==\n" - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "def get_example_synthetic_experiment_runner():\n", - " rng = np.random.default_rng(seed=180)\n", - " def runner(xs):\n", - " return ground_truth(xs) + rng.normal(0, 1.0, xs.shape)\n", - " return runner\n", - "\n", - "example_synthetic_experiment_runner = get_example_synthetic_experiment_runner()\n", - "\n", - "plt.scatter(study_metadata.independent_variables[0].allowed_values[::5,], example_synthetic_experiment_runner(study_metadata.independent_variables[0].allowed_values[::5,]), alpha=1, s=1, c='b', label=\"samples\")\n", - "plt.plot(study_metadata.independent_variables[0].allowed_values, ground_truth(study_metadata.independent_variables[0].allowed_values), c=\"black\", label=\"ground truth\")\n", - "plt.legend()" - ], - "metadata": { - "collapsed": false - } - }, - { - "cell_type": "markdown", - "source": [ - "## Theorist\n", - "We use a common BMS regressor with a common parametrization as the theorist." - ], - "metadata": { - "collapsed": false - } - }, - { - "cell_type": "code", - "execution_count": 4, - "outputs": [], - "source": [ - "bms_theorist = BMSRegressor(epochs=800)" - ], - "metadata": { - "collapsed": false - } - }, - { - "cell_type": "markdown", - "source": [ - "## Experimentalist - Random Sampler" - ], - "metadata": { - "collapsed": false - } - }, - { - "cell_type": "code", - "execution_count": 5, - "outputs": [], - "source": [ - "n_cycles = 9\n", - "n_observations_per_cycle = 50\n", - "\n", - "random_experimentalist = make_pipeline(\n", - " [study_metadata.independent_variables[0].allowed_values, random_sampler],\n", - " params={\"random_sampler\": {\"n\": n_observations_per_cycle}}\n", - ")" - ], - "metadata": { - "collapsed": false - } - }, - { - "cell_type": "code", - "execution_count": 6, - "outputs": [], - "source": [ - "%%capture\n", - "# %%capture will supress printing of warnings from BMS.\n", - "logging.disable('CRITICAL') # Removes BMS run progress INFO print-outs.\n", - "\n", - "random_experimentalist_cycle = Cycle(\n", - " metadata=study_metadata,\n", - " theorist=bms_theorist,\n", - " experimentalist=random_experimentalist,\n", - " experiment_runner=example_synthetic_experiment_runner\n", - ")\n", - "\n", - "random_experimentalist_cycle.run(n_cycles);" - ], - "metadata": { - "collapsed": false - } - }, - { - "cell_type": "markdown", - "source": [ - "## Evaluating Results" - ], - "metadata": { - "collapsed": false - } - }, - { - "cell_type": "markdown", - "source": [ - "#### Scoring the models of each cycle\n", - "We will test the performance of the models against the ground truth. Here we generate the ground truth values across the value range as the test set." - ], - "metadata": { - "collapsed": false - } - }, - { - "cell_type": "code", - "execution_count": 7, - "outputs": [], - "source": [ - "X_test = study_metadata.independent_variables[0].allowed_values.reshape(-1,1)\n", - "y_test = ground_truth(X_test)" - ], - "metadata": { - "collapsed": false - } - }, - { - "cell_type": "code", - "execution_count": 8, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "[0.994244272938371, 0.9958028271781731, 0.994493719396887, 0.9969328594804331, 0.9954537487709832, 0.9967720207897841, 0.9950749157731527, 0.9957246653727153, 0.9959339920921304]\n" - ] - }, - { - "data": { - "text/plain": "
", - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAeUAAAEmCAYAAABcTIh4AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8o6BhiAAAACXBIWXMAAA9hAAAPYQGoP6dpAABe3UlEQVR4nO3deVyU5doH8N/MwMywDCD7KggouLIKobaYJC4poZV5LJWyjh2so5xX0zLz2HHJU75a+madU1pYRyuUjloQUZomyq4ooqKyDbvIsMMsz/vHMKPkIIszPDPD9f185g8e7nnmGhSuee7nvq+LwzAMA0IIIYSwjst2AIQQQghRoqRMCCGE6AlKyoQQQoieoKRMCCGE6AlKyoQQQoieoKRMCCGE6AlKyoQQQoieoKRMCCGE6AlKyjrEMAwaGxtB9VkIIYT0BSVlHWpqaoK1tTWamprYDoUQQogB0IukvGfPHnh5eUEoFCI8PBwZGRk9jpVKpdi0aRN8fHwgFAoREBCA5OTkbmOampqwcuVKeHp6wszMDJMmTUJmZma3MRwOR+Pjn//8p3pMfX09Fi1aBCsrK9jY2OCll15Cc3Ozdt88IYQQ0oX1pHzo0CHEx8fjnXfeQU5ODgICAhAVFYWamhqN49evX49PPvkEH330EQoKCrB8+XLExMQgNzdXPWbZsmVITU1FQkIC8vPzMX36dERGRkIsFqvHVFZWdnt8/vnn4HA4mD9/vnrMokWLcOnSJaSmpuLYsWP47bff8Morr+juh0EIIWRoY1gWFhbGxMXFqb+Wy+WMq6srs3XrVo3jXVxcmN27d3c7Nm/ePGbRokUMwzBMa2srw+PxmGPHjnUbExwczLz11ls9xhEdHc08/vjj6q8LCgoYAExmZqb62I8//shwOBxGLBb36b1JJBIGACORSPo0nhBCyNDG6pVyZ2cnsrOzERkZqT7G5XIRGRmJ9PR0jc/p6OiAUCjsdszMzAynT58GAMhkMsjl8vuO+aPq6mocP34cL730kvpYeno6bGxsEBoaqj4WGRkJLpeLc+fO9RhbY2NjtwchhBDSV6wm5bq6Osjlcjg5OXU77uTkhKqqKo3PiYqKwo4dO3Dt2jUoFAqkpqbi8OHDqKysBACIRCJERETg3XffRUVFBeRyOQ4cOID09HT1mD/64osvIBKJMG/ePPWxqqoqODo6dhtnYmICW1vbHmPbunUrrK2t1Q8PD48+/ywIIYQQ1u8p99euXbswcuRI+Pv7g8/nY8WKFYiNjQWXe+etJCQkgGEYuLm5QSAQ4MMPP8TChQu7jbnb559/jkWLFt1zdd1f69atg0QiUT/Kysoe6HyEEEKGFlaTsr29PXg8Hqqrq7sdr66uhrOzs8bnODg4ICkpCS0tLSgpKUFhYSEsLS3h7e2tHuPj44OTJ0+iubkZZWVlyMjIgFQq7TZG5dSpU7hy5QqWLVvW7bizs/M9i81kMhnq6+t7jE0gEMDKyqrbgxBCCOkrVpMyn89HSEgI0tLS1McUCgXS0tIQERFx3+cKhUK4ublBJpMhMTER0dHR94yxsLCAi4sLbt++jZSUFI1jPvvsM4SEhCAgIKDb8YiICDQ0NCA7O1t97JdffoFCoUB4eHh/3yohhBDSKw7DsFtu6tChQ1iyZAk++eQThIWFYefOnfjmm29QWFgIJycnLF68GG5ubti6dSsA4Ny5cxCLxQgMDIRYLMbGjRtx8+ZN5OTkwMbGBgCQkpIChmHg5+eHoqIirF69GkKhEKdOnYKpqan6tRsbG+Hi4oIPPvgAy5cvvye2mTNnorq6Gnv37oVUKkVsbCxCQ0Px9ddf9+m9NTY2wtraGhKJhK6aiVZcqpDgveQrWDvDH2Nc6f8UIcbGhO0AFixYgNraWmzYsAFVVVUIDAxEcnKyevFXaWlpt3vB7e3tWL9+PW7cuAFLS0vMmjULCQkJ6oQMABKJBOvWrUN5eTlsbW0xf/58bN68uVtCBoCDBw+CYRgsXLhQY2xfffUVVqxYgWnTpoHL5WL+/Pn48MMPtf9DIKSP/vXbDfx2tRYcAF+8GMZ2OIQQLWP9StmY0ZUy0bYp7/2C8ttt4HCAM2sfh4u1GdshEUK0yOBWXxMyVFVJ2lF+uw0AwDDA4RxxL88ghBgaSsqEGIisknoAAJej/PrbrDLqQEaIkaGkTIiByCq+DQCYH+wOCz4Pxbdakdl1jBBiHCgpE2IgskuUCfjhUQ6YPcEFAPBNFhWoIcSYUFImxAC0dMhQUKmspR7qOQzPhipLuP6QX4nmDhmboRFCtIiSMiEG4HxZA+QKBm42ZnC1MUOI5zB421ugtVOOHy5orulOCDE8lJQJMQCqe8chnsMAABwOB0+HugOgKWxCjAklZUIMgGrldajXMPWx+cHu4HKArJLbuFHbzFZohBAtoqRMiJ6TKxjkljYAuHOlDABOVkI8OsoBAPBtdjkboRFCtIySMiF67kpVE5o7ZLAUmMDfuXtlONWCr8M55ZDJFWyEZ1QYhsG16ib6WRLWUFImRM9ld01dBw23AU9VOaTLtNFOGGZuiurGDpy6VsdGeEblq3OleOJ/f8OHadfYDoUMUZSUCdFzWV37k0M9be/5Ht+Ei6eC3AAA32bTgq8HIVcw2HvyOgDgUFYZFAqqlkYGHyVlQvScqpLX3Yu87vZMiHIKO7WgGvUtnYMWl7H5pbBGXVu8urEDOaVULY0MPkrKhOixSkkbxA1t4HE5CPSw0ThmjKsVxrlZQSpnkJRLTSoGav+ZmwAAPk/5Z/F4Pu3/JoOPkjIhekx1lTzaRQQLQc/tz1ULvr6hJhUDcq26Cb8X3QKXA7w5yx8A8GN+FU1hk0FHSZkQPZZ9n/vJd5sb4Ao+j4vCqiZcqmgcjNCMyv4zxQCA6WOc8VzYcFgKTFDV2I7cMprCJoOLkjIhekxT0RBNbMz5mD7WCYCypSPpO0mbVN2beulkLwhNeYgc7QgAOH6his3QyBBESZkQPdXcIUNBhaoJxf2vlAHgma4p7KS8CrRL5TqNzZh8m1WGNqkc/s4ihI9Q/pxnjVd24frxYiVNYZNBRUmZED2VV9oABQO42ZjB2VrY6/gpvvZwsRZC0ibFz5erByFCwydXMPgyvQQAsHSSFzgc5T7wR0Y5wFJggkpJO3LLGliMkAw1lJQJ0VN9nbpW4XE5mB+salJBZTf74tfCGpTWt8LazBTRgW7q40JTHqZ1TWH/QKuwySCipEyInrqzyKtvSRkAng5RJuVT12pR0dCmk7iMyRfpxQCA58I8YMbndfueego7n6awyeChpEyIHurehKL3+8kqXvYWCB9hC4ZR1sMmPSuqacKpa3XgcoAXHvK85/uPjnKABZ+HCkk78sobBj9AMiRRUiZEDxVWNaK5QwaRwAR+zqJ+PVe14Ovb7HLas3wfX5xR3kt+YowT3IeZ3/N95RS2ckX7DxdoCpsMDkrKhOgh1dR1kOewe5pQ9GbWeGdY8HkoudWKjJv1ugjP4DW2S5HYNZOwZJJXj+PurMKuog84ZFBQUiZED2UW9/9+soo53wRPTnAFQAu+evJtVjlaO+XwcxIhwtuux3GP+SmnsMUNbcijVdhkEFBSJkQPZRd3rbweQFIGgGcnKhd8/ZBfieYOmdbiMgYKBYMvuxZ4LblrG5QmQlMeHldNYdMqbDIIKCkTomcqGtpQIWlXNqEYbjOgcwQPHwZvBwu0SeU4fqFCuwEauBNXa1ByqxVWQhM8FeTa6/jZ450BAD/k0xQ20T1KyoToGVX/5DEuVjDn99yE4n44HI66peO3NIXdzb7fiwEAz4UN79PP9zE/R5h3TWGfL5foODoy1LGelPfs2QMvLy8IhUKEh4cjIyOjx7FSqRSbNm2Cj48PhEIhAgICkJyc3G1MU1MTVq5cCU9PT5iZmWHSpEnIzMy851yXL1/G3LlzYW1tDQsLC0ycOBGlpaXq7z/22GPgcDjdHsuXL9feGyekB+qp6z4WDenJ/GA38LgcZJXcxvXaZm2EZvCKappx6lodOD1sg9JEaMrD4/5USIQMDlaT8qFDhxAfH4933nkHOTk5CAgIQFRUFGpqajSOX79+PT755BN89NFHKCgowPLlyxETE4Pc3Fz1mGXLliE1NRUJCQnIz8/H9OnTERkZCbH4Tp/Z69evY8qUKfD398eJEydw4cIFvP322xAKu5cyfPnll1FZWal+bN++XTc/CELucmeRV9/3J2viaCXEo6McANDVsorqXnLkaCd42N67Daons7tWYR+/UElT2ESnOAyL/8PCw8MxceJE7N69GwCgUCjg4eGB1157DWvXrr1nvKurK9566y3ExcWpj82fPx9mZmY4cOAA2traIBKJ8P3332P27NnqMSEhIZg5cyb+8Y9/AACee+45mJqaIiEhocfYHnvsMQQGBmLnzp0Dfn+NjY2wtraGRCKBlZXVgM9Dho7mDhkmbEyBggHOvTkNTla917y+n+SLlVh+IAeOIgHOrH0cJjzWJ8dY09guRcSWNLR0yvHVsnBM9rXv83PbOuUIfjcVbVI5vo+bjAAPG90FSoY01n5DOzs7kZ2djcjIyDvBcLmIjIxEenq6xud0dHTcczVrZmaG06dPAwBkMhnkcvl9xygUChw/fhyjRo1CVFQUHB0dER4ejqSkpHte76uvvoK9vT3GjRuHdevWobW19b7vqaOjA42Njd0ehPRHbultKBjAfZjZAydkAHjc3wm2FnzUNHXgt2u1WojQcH2XVY6WTjlGOlpikk/P26A0MePz8DjVwiaDgLWkXFdXB7lcDicnp27HnZycUFWluYdpVFQUduzYgWvXrkGhUCA1NRWHDx9GZaXyl0QkEiEiIgLvvvsuKioqIJfLceDAAaSnp6vH1NTUoLm5Gdu2bcOMGTPw008/ISYmBvPmzcPJkyfVr/WnP/0JBw4cwK+//op169YhISEBzz///H3f09atW2Ftba1+eHh4PMiPiAxBWQ+wP1kTvgkXT3U1WhjKU9j92QbVE9UU9jGawiY6ZFBzWbt27cLIkSPh7+8PPp+PFStWIDY2FlzunbeRkJAAhmHg5uYGgUCADz/8EAsXLlSPUSgUAIDo6GisWrUKgYGBWLt2LZ588kns3btXfZ5XXnkFUVFRGD9+PBYtWoQvv/wSR44cwfXr13uMb926dZBIJOpHWRk1myf9o6rkFeL1YPeT7/ZMqHLP8s+Xq1Hf0qm18xqSk1drUXyrFSKhCeYFu/X+BA2m+jnCzFS5CvsCrcImOsJaUra3twePx0N1dfe+r9XV1XB2dtb4HAcHByQlJaGlpQUlJSUoLCyEpaUlvL291WN8fHxw8uRJNDc3o6ysDBkZGZBKpeox9vb2MDExwZgxY7qde/To0d1WX/9ReHg4AKCoqKjHMQKBAFZWVt0ehPSVTK5AbqkyKU98wJXXdxvtYoXxbtaQyhkk5Yp7f4IR2n+mGACwINRjwNvMzPi0CpvoHmtJmc/nIyQkBGlpaepjCoUCaWlpiIiIuO9zhUIh3NzcIJPJkJiYiOjo6HvGWFhYwMXFBbdv30ZKSop6DJ/Px8SJE3HlypVu469evQpPz563SOTl5QEAXFxc+voWCemXwqomtHTKIRKaYJRj/5pQ9ObZUFWf5bIhN/V6vbYZJ6/WgsMBFkd4PdC5VLWwj+fTFDbRjYF9ZNSS+Ph4LFmyBKGhoQgLC8POnTvR0tKC2NhYAMDixYvh5uaGrVu3AgDOnTsHsViMwMBAiMVibNy4EQqFAmvWrFGfMyUlBQzDwM/PD0VFRVi9ejX8/f3V5wSA1atXY8GCBXjkkUcwdepUJCcn4+jRozhx4gQA5Zapr7/+GrNmzYKdnR0uXLiAVatW4ZFHHsGECRMG7wdEhpSsrv3JwcOHgdvPJhS9mRvghnePX0ZhVRMuihsx3t1aq+fXZwnpym5Q0/wdMdyu79ugNJnq7wChKRflt9uQL5ZggruNFiIk5A5W7ykvWLAA77//PjZs2IDAwEDk5eUhOTlZvfirtLRUvUALANrb27F+/XqMGTMGMTExcHNzw+nTp2FjY6MeI5FIEBcXB39/fyxevBhTpkxBSkoKTE1N1WNiYmKwd+9ebN++HePHj8e///1vJCYmYsqUKQCUV9M///wzpk+fDn9/f/ztb3/D/PnzcfTo0cH5wZAhSVXJS1uLvO5mbW6KqLHK20LfZg+dtQ5N7VJ8m6V8v0snjXjg85nzTdRT2MdpCpvoAKv7lI0d7VMm/RGxNQ2VknZ8/XI4Jvn0fQ9tX/12tRaLP8+AldAEGW9FQmjK0/pr6Jv9v9/ExqMF8HW0ROqqRwa06vqPjl2owIqvc+Fha4bfVk/VyjkJUTGo1deEGCtxQxsqJe0w4XIQqKPCFJN97eFqLURjuwypBdW9P8HAKRQMvuiauh7oNihNHvd3hNCUi7L6NlwUUy0Col2UlAnRA6r7yWNdB96Eojc8LgfzQ+4s+DJ2v12rxc26FuU2qKCBbYPSxJxvgql+NIVNdIOSMiF6QFU0JOQB61335umupHy6qA4VDW06fS22fdG1DerZUA9YCLT7QUe1CvsHWoVNtIySMiF6QL3IS4v7kzXxtLPAQ962YBggMdt4K3zdrGvBr1dU26D61g2qP1RT2KX1rbhUQVPYRHsoKRPCsqZ2Ka5UKf+w62Ll9R+p+yxnl0OhMM6rPFVJzal+jvC0s9D6+S0ENIVNdIOSMiEsyy1tgIIBPGzN4KiFJhS9mTneGZYCE5TWtyKj6162MWnukKnrfC+d5KWz16EpbKILlJQJYZlq6nqiju8nq5jzTfDkBGVCMcYFX4dzytHcIYO3gwWm9KM9Y3897u8IgQkXJbdoCptoDyVlQliWXaK8Wg3R8f3kuz0TqpzC/jG/Ck3t0kF7XV1TKBh1neulk7y0XhntbndPYVMtbKItlJQJYZGyCUUDACB0kK6UASB4uA28HSzQJpXj+AXjSSini+pwo7YFlgITzAt21/nrzZpAU9hEuygpE8Kiy5VNaO2Uw0pogpGOloP2uhwOB8+G3lnwZSxUV8nPhLrDUsvboDSZ1jWFXXyrFQWVNIVNHhwlZUJYlNU1dR3sqf0mFL2ZF+QGHpeD7JLbKKppHtTX1oXiuhb8eqUGwIN3g+orC4EJHvNzAEBT2EQ7KCkTwiJdNqHojaOVEI+NUiYUY2hS8WV6CRgGmOrngBH22t8G1ZM7q7CraAqbPDBKyoSwhGEYZBerioYM3v3ku6kWfB3OEUMmV7ASgza0dMjU3aCW6HAblCbTRjuBb8LFzboWXK5sGtTXJsaHkjIhLBE3tKGqUdmEIoClvryP+zvC1oKP2qYOnLxay0oM2nA4pxxNHTJ421vgkZEOg/ralgIT9YwDTWGTB0VJmRCWqOpdj3WzhhmfnTaKfBMuYrqaNagKbhgahrmzDWpxhOeg35sHgNm0CptoCSVlQliiWuTFxv3kuz0Tqtw69PPlatxq7mA1loE4XVSH613boFRdsAabagr7Rl0LCqtoCpsMHCVlQliiulJmOyn7O1thgrs1ZAoGSXkVrMYyEKpuUE+HuEMkNGUlBkuBCR6lKWyiBZSUCWFBY7sUV6qVV1SDWcmrJ6oFX99mlRnU9GvprVakFaq2QWm/G1R/zO5ahX2cprDJA6CkTAgLcksbwDCAp505HEW6b0LRm7kTXME34aKwqgkXxYZTBOPL9GIwDPDoKAd4Owxe8RVNpo12VE5h19IUNhk4SsqEsCC7qztTCMtT1yrW5qaYMdYZgOE0qWjpkOFQV6xLJ3uxGwwAkdBUvfKbprDJQFFSJoQFmer7yezsT9ZEteDr+zwx2qVylqPp3ZFcMZraZRhhb4FHB3kbVE9mT1B+sKEpbDJQlJQJGWRSuQJ5ZQ0AgFA9uJ+sMsnHHm42Zmhsl+Gngmq2w7kvhmHUC7xeeIidbVCaTBvtBD5POYWtWjNASH9QUiZkkF2ubESbVNmEwpfl+6B343E5mB+s2rOs31PYZ67fwrWaZljweXg6lJ1tUJpYCU3xyChlD+cfjKj7Fhk8lJQJGWSqrVAhLDSh6M3TIcpV2KeL6iBuaGM5mp7t+70YADA/xB1WLG2D6sksWoVNHgAlZUIGWXYJu/Wu72e4nTkivO3AMECinrZ0LKtvRVqhcnp9sLpB9UfkGOUU9vXaFlytNvzuW2RwUVImZBAxDIPMYv2o5NUT1YKv77LLoVDo35WeahvUwyPt4TuIPaj7ykpoiodHKqewj9MqbNJPlJQJGUTlt9tQ09QBUx4HAR42bIej0cxxLrAUmKC0vhXnbtazHU43rZ0yHMpU3u+O1YNtUD25086RkjLpH0rKhAwiVb3rsa7WEJqy04SiN2Z8HuYEKJOKvi34OpIrRmO7DJ525nhslCPb4fQocowTTHkcFNU04yqtwib9wHpS3rNnD7y8vCAUChEeHo6MjIwex0qlUmzatAk+Pj4QCoUICAhAcnJytzFNTU1YuXIlPD09YWZmhkmTJiEzM/Oec12+fBlz586FtbU1LCwsMHHiRJSWlqq/397ejri4ONjZ2cHS0hLz589HdbV+bxMh+k9f6l33RlV284eLlWhql7IcjdLd26AWR3jp3SK5u1mbmeLhrr3Tx2kVNukHVpPyoUOHEB8fj3feeQc5OTkICAhAVFQUampqNI5fv349PvnkE3z00UcoKCjA8uXLERMTg9zcXPWYZcuWITU1FQkJCcjPz8f06dMRGRkJsVisHnP9+nVMmTIF/v7+OHHiBC5cuIC3334bQuGdcoerVq3C0aNH8e233+LkyZOoqKjAvHnzdPfDIEPCnUVe+p2Ugzxs4OtoiXapAsf0JKmkX7+Fq9XNMOfz1Pe99dlsmsImA8GwKCwsjImLi1N/LZfLGVdXV2br1q0ax7u4uDC7d+/udmzevHnMokWLGIZhmNbWVobH4zHHjh3rNiY4OJh566231F8vWLCAef7553uMq6GhgTE1NWW+/fZb9bHLly8zAJj09PQ+vz+JRMIAYCQSSZ+fQ4xXQ2sn47X2GOP5xjGmprGd7XB6tfdEEeP5xjEmZs9ptkNhGIZhXv4ik/F84xiz/kg+26H0SUNrJ+P75nHG841jzNWqRrbDIQaCtSvlzs5OZGdnIzIyUn2My+UiMjIS6enpGp/T0dHR7WoWAMzMzHD69GkAgEwmg1wuv+8YhUKB48ePY9SoUYiKioKjoyPCw8ORlJSkHp+dnQ2pVNotNn9/fwwfPrzH2FTxNTY2dnsQopJTehsMA3jZmcNBJGA7nF7FBLuBx+Ugp7QBRTXs3hctq2/Fz5eVt4+WTGK3G1RfdZvCpqtl0kesJeW6ujrI5XI4OTl1O+7k5ISqqiqNz4mKisKOHTtw7do1KBQKpKam4vDhw6isVP6HF4lEiIiIwLvvvouKigrI5XIcOHAA6enp6jE1NTVobm7Gtm3bMGPGDPz000+IiYnBvHnzcPLkSQBAVVUV+Hw+bGxs+hwbAGzduhXW1tbqh4eHx0B/PMQIZauLhujf/mRNHEVCTPVTJpVvWd6zfOBsCRTqbVAiVmPpD1qFTfqL9YVe/bFr1y6MHDkS/v7+4PP5WLFiBWJjY8Hl3nkbCQkJYBgGbm5uEAgE+PDDD7Fw4UL1GIVCAQCIjo7GqlWrEBgYiLVr1+LJJ5/E3r17Hyi+devWQSKRqB9lZfq1cpWwS7XyWt/vJ99NteArMVsMqVzBSgxtnXIc7NoGtUQPi4XczxNdq7CvVjezPttADANrSdne3h48Hu+eFc3V1dVwdnbW+BwHBwckJSWhpaUFJSUlKCwshKWlJby9vdVjfHx8cPLkSTQ3N6OsrAwZGRmQSqXqMfb29jAxMcGYMWO6nXv06NHq1dfOzs7o7OxEQ0NDn2MDAIFAACsrq24PQoA/NKHQ85XXd3vc3xF2FnzUNXfg5JVaVmJIyhND0ibFcFtzTPXX321QmlibmWKKb1chkQs9z7IRosJaUubz+QgJCUFaWpr6mEKhQFpaGiIiIu77XKFQCDc3N8hkMiQmJiI6OvqeMRYWFnBxccHt27eRkpKiHsPn8zFx4kRcuXKl2/irV6/C01N5ryokJASmpqbdYrty5QpKS0t7jY0QTQoqGtEuVcDG3BQ+etSEojemPC5igrqaVGQP/swPwzDY31XnenGEJ3h6vA2qJzSFbfhkgzhLZDJor6RBfHw8lixZgtDQUISFhWHnzp1oaWlBbGwsAGDx4sVwc3PD1q1bAQDnzp2DWCxGYGAgxGIxNm7cCIVCgTVr1qjPmZKSAoZh4Ofnh6KiIqxevRr+/v7qcwLA6tWrsWDBAjzyyCOYOnUqkpOTcfToUZw4cQIAYG1tjZdeegnx8fGwtbWFlZUVXnvtNUREROChhx4avB8QMRpZXVuhQobrXxOK3jwT6oF/n76JtMs1qGvugL3l4C1SO3ujHleqm2BmylNPpRua6WOc8SYvH1eqm1BU06yXpUHJvWqbOvB9nhiJOWJMH+OEVU+MGpTXZTUpL1iwALW1tdiwYQOqqqoQGBiI5ORk9eKv0tLSbveL29vbsX79ety4cQOWlpaYNWsWEhISui3IkkgkWLduHcrLy2Fra4v58+dj8+bNMDW900kmJiYGe/fuxdatW/H666/Dz88PiYmJmDJlinrM//7v/4LL5WL+/Pno6OhAVFQU/u///k/3PxRilLK66l2HGND9ZBU/ZxEC3K1xvlyCpFwxlj3s3fuTtERVLGResBuszfSrG1RfWZubYrKvPU5cqcUP+ZV4fdpItkMiPeiQyZF2uQaJ2eU4cbUW8q7a750yOVZGjgSHo/sP1ByGebDeYu3t7fdsQSJKjY2NsLa2hkQiofvLQxjDMAjbkobapg588+cIhI0wjNXXdztwtgTrky7Cz0mE5JUPD8ofp/LbrXhk+69QMEDqqkcw0slwVl3/0TdZZVjz3QX4O4uQvPIRtsMhd2EYBnllDUjMKcfR85WQtN2pYBfgYYOng90wJ8AVNub8QYlnQFfKCoUCmzdvxt69e1FdXY2rV6/C29sbb7/9Nry8vPDSSy9pO05CDFZZfRtqu5pQTHC3ZjucAZkT4Ip3jxXgSnUT8sUSTHC30flrHjhbCgUDTPa1M+iEDADTxzjhTS4HhVVNuF7bbFDrCoxVpaQNh3PEOJxTjuu1LerjzlZCxAS7YX6wOyu3Gga00Osf//gH9u/fj+3bt4PPv/PpYdy4cfj3v/+tteAIMQaqrVDj3PS3CUVvrM1MMWOccufBN4PQpKJdKsfBTOVuCEPbBqWJjTkfk7tWYf+gJ2VLh6K2TjmO5Jbjhc/OYdK2X/DPlCu4XtsCoSkXTwW6IuGlMPy+9nG8McOftXv/A7pS/vLLL/Hpp59i2rRpWL58ufp4QEAACgsLtRYcIcZAtchropfhTVvf7ZkQD3yfV4Hv8yqwfvYYnX7A+D5PjIZWKdyHmWHaaKfen2AAZo93wcmrtTieX4nX6L7yoFEolD3ME3PK8UN+FZo7ZOrvhY2wxdPB7pg53hkioX6sWRhQUhaLxfD19b3nuEKhgFSqHx1lCNEXdyp5Gd4ir7tN8rGDm40ZxA1tSLlUhehAN528DsMw2Gfg26A0mT7WCW8eoSnswVJ6qxWJOeU4nFuOsvo29XEPWzPMD3bHvCB3DLczZzFCzQaUlMeMGYNTp06p9/WqfPfddwgKCtJKYIQYA0mrFFe6+ukaelLmcjl4OsQdu9Ku4duscp0l5Yyb9SisUm6DWhA6XCevwQYbcz4m+drjt6u1+OECXS3rQlO7FD/kVyIxW4yMrh0PAGApMMGs8c6YH+yOiV62er0tcUBJecOGDViyZAnEYjEUCgUOHz6MK1eu4Msvv8SxY8e0HSMhBiunVHmVPMLeYlD39+qKKin/fr0O5bdb4T5M+1ca+7u2QT0V5AZrc/2YUtSW2eOd8RtNYWuVXMHg96I6JOaUI+VSFdqlykIfHA4wxdce84PdETXWGWZ8w1jPMaCkHB0djaNHj2LTpk2wsLDAhg0bEBwcjKNHj+KJJ57QdoyEGCzVIi9Dv0pW8bA1xyQfO5y5fguJ2WL8NVK7iUXc0IafCpSld5dO8tLqufXB9DHOePPIRRRWNeFGbTO8aQp7wIpqmvBdthhJuWJUNbarj/s4WGB+iDtigtzgYm3GYoQD0++kLJPJsGXLFrz44otITU3VRUzEgFVJ2pGUJ8YLD3nCQsBqbRq9kNV1P9mQ6l335plQd5y5fgvf5ZThtcd9tToVeOBsCeQKBhHedvBzNuxtUJoMs+Bjko8dTl2rww/5lVjxOF0t90dDayeOnq/Ad9nlOF8uUR+3NjPF3ABXzA9xR4C79aDso9eVfv/VNDExwfbt27F48WJdxEMM3NvfX0RqQTWqJO3YOHcs2+GwSipX4Hx5AwAg1MBXXt9txlgXbBBcQll9G87evIVJPvZaOW+7VI6DGcptUEsne2nlnPpo9ngXnLpWh+P5VZSU+0AqV+DklVok5pQj7XINOrvqUPO4HEz1c8D8YHc8PtoRAhPDmJ7uzYAuZaZNm4aTJ0/Cy8tLy+EQQ1bf0olfC2sAAN9ll+Nv00fpzTYDNlzqakIxzNwUPg4WbIejNWZ8Hp4McMV/MkrxbVa51pLyf/MqcLtVCjcbM0QayTYoTaaPdcZbSRdxubIRN+taMMLeeP5vaNOlCgkSs8X473kx6po71cfHuFhhfog7ogNdjWKdxh8NKCnPnDkTa9euRX5+PkJCQmBh0f0/1dy5c7USHDEsxy9UQNZVK7a5Q4bE7HIsnTyC5ajYo6537TnMoKfTNHk21B3/ySjFjxcr8ffosbB6wA9fDMOoF3gZ0zYoTWz/MIUdN/Xe7aVDlaoJxHfZ5SisutN/2t6Sj+hAZZWtMa7GXbJ4QEn5L3/5CwBgx44d93yPw+FALpc/WFTEIB3OFQMA/J1FKKxqwhfpJVgc4aXX2w90KUu9P9l4pq5VAj1sMNLREtdqmnHsfCX+FP5gW5cyi2+joLIRQlMuFkw0zG5Q/TFLNYV9gZJyu7SrCUROOU7e1QSCz+Micowj5ge745FRDjDlsdZpeFANuPY1IXcrrmtBbmkDuBxg7/MhmLP7NG7WteDk1VqDa0yvDQzDqCt5hRpgZ6jecDgcPBPqji0/FOLb7LIHTsqqblAxQW6DVvifTVFjnbE+6SIKKhtRXNcCryE2hc0wDHLLGpCYXY6j5yvQ2H6nylaghw3mh7hjzgSXIfF/4Y9oeSzRiiNdV8mTfe3hZW+BBV09ePedKR6SSbm0vhV1zR3g87gY72aYTSh6ExPkjveSryC3tAFFNU3wdRzYaumKhjYkX6oCACwxwm1Qmtha8BHhbYfTRXU4PoSmsDtkcuz7vRjfZJXhxl1NIFyshYgJcsM8lppA6JMBzwecPHkSc+bMga+vL3x9fTF37lycOnVKm7ERA8EwDJLylEl5XrCyytPiCC9wOMBvV2tRVNPMZnisUE1dj3c33CYUvXEQCTDVT/mB69us8gGf56tzym1QD3nbwt/ZuO8X3m3WeBcAwA/5Q6NBhULBIP7QeWz7sRA3uppAxAS54cBL4Tj9xuNYw2ITCH0yoKR84MABREZGwtzcHK+//jpef/11mJmZYdq0afj666+1HSPRczmlDSi51QpzPg9RY5WdhIbbmatX0H6ZXsxidOxQT10b0f5kTZ4NdQcAJOaIIZX3/7ZWu1SO/2Qou04ZY7GQ+4ka6wQel4NLFY0oudXS+xMM3HvJhTieXwlTHgebY8Yha/0T+N8FgZgy0t6oF/b114CS8ubNm7F9+3YcOnRInZQPHTqEbdu24d1339V2jETPHclVXiVFjXWGOf/OHZHYrj+y32WXo7F9aDUquXvltTGb6u8Ie0s+6po7cOJKbb+ff/R8BepbOo1+G5QmdpYCRHjbAQCOG/nVcsLZEnzy2w0AwD+fDsCicE9YUnEhjQaUlG/cuIE5c+bcc3zu3Lm4efPmAwdFDEenTIFjXf1hY4K6NyiI8LHDKCdLtHbK8U2m7nvw6ouG1k5c65qyN/akbMrjqv/dv+1nn+W7t0E9/5AnTIbI6tq7DYUp7F8La/DO9xcBAH97YhSeCtJNIxNjMaDfAg8PD6Slpd1z/Oeff4aHh/FvZyB3nLhSg4ZWKRxEAkzysev2PQ6Hg6WTlPuUv0wvUW91MHaqJhTe9hawM8LiBn/0TKjyd/6XwhrUNXf0+XnZJbdxqaIRAhMunhsC26A0UU1hXxQ3ovRWK9vhaN1FsQRxX+dAwQDPhLhjxeNDY0HbgxhQUv7b3/6G119/Ha+++ioSEhKQkJCA5cuXY+XKlfif//kfbcdI9JhqgVd0gKvGK52YIDdYm5mitL5VXe3L2GUZSf/kvhrlJEKAhw1kCgZJXavw+2KfqhtUoBuGWQy9rS+Acgr7IW/lPnZjm8KuaGjDi/sz0dopxxRfe2yZN97oiujowoCS8quvvoqDBw8iPz8fK1euxMqVK3Hx4kUcOnQIf/7zn7UdI9FTkjYpfr6sTLQxwZqnpMz4PDwXprwKUk1VGjvVIq+JRlTvujeqBV/fZJWBYXqfEamUtCH54tDaBtUTY5zCbmyXInZfJmqaOjDKyRL/93zwkCn+8aAG/FOKiYnB6dOncevWLdy6dQunT59GdHS0NmMjeu6H/Ep0yhQY5WSJMS49b2V54SFPcDnA6aI6XK1u6nGcMeiUKXC+rAEAEGKERUN6MifAFQITLq5WN+PCXd17evLV2VLIFQzCRtgafdnE3kSNdQaXA+SLJUYxhS2VKxD3VQ6uVDfBUSTAvtiwBy7DOpQMKClnZmbi3Llz9xw/d+4csrKyHjgoYhhUBUNigtzvOy3lPswc08cot0oZ+9XyxQoJOmQK2Frw4T2EqjRZCU0xc5zy3/ibXhZ8KbdBdXWDGuJXyQBgbynAQ12rsH+4aNhXywzD4K0j+Th1rQ7mfB4+XzoRbjaG19OYTQNKynFxcSgru/cXTywWIy4u7oGDIvqvrL4VGTfrweEA0YGuvY6P7WrFdzinHJJW490eld11Pzl4uPE1oeiNasHXf89XoF3ac/37YxcqcaulEy7WQkwfM7S2QfXEWKaw9/xahG+yysHlALv/FIRxRlrNTpcGlJQLCgoQHBx8z/GgoCAUFBQ8cFBE//33fAUA4KERdnDtwyfhsBG2GO1ihXapAoeySnUdHmuySpT7k42x3nVvIrzt4GZjhqZ2GVK6ymb+EcMw6jrXQ3UblCYzximnsC+US1BWb5hT2Em5Yrz/01UAwN/njsXj/vSBayAG9BshEAhQXV19z/HKykqYmNCGcGPHMAwO5ygLhvS0wOuPOByOupjIF2dKIBtA9Sd9xzAMstWLvIZeUuZylU0qgJ6nsHNKbyNfLAHfhIuFYQ/WxMKY2FsKED6iawrbAK+Wz964hTXfXQAAvPKIN16I8GI3IAM2oKQ8ffp0rFu3DhLJnQUdDQ0NePPNN/HEE09oLTiin/LFElyvbYHAhKu+j9gXcwNdMczcFOKGNvWqbWNScqsVdc2d4Jtwh+y03fxgZVI+c/2Wxiu+/WdKACi30NkO0W1QPZk1wTCnsItqmvHnhGx0yhWYOc4Za2f4sx2SQRtQUn7//fdRVlYGT09PTJ06FVOnTsWIESNQVVWFDz74QNsxEj2jWuD1xBgniPqxqlJoylNfHe0/Y3yV3zK7SmtOcLOGwMQ4m1D0xsPWHJN97cAwQGJO9yYV1Y3t+LEr4Qz1bVCazOhahX3egKaw65o7ELs/A5I2KYKG2+B/FwQO2f7p2jKgpOzm5oYLFy5g+/btGDNmDEJCQrBr1y7k5+cPqKLXnj174OXlBaFQiPDwcGRkZPQ4ViqVYtOmTfDx8YFQKERAQACSk5O7jWlqasLKlSvh6ekJMzMzTJo0CZmZmd3GLF26FBwOp9tjxowZ3cZ4eXndM2bbtm39fn/GRCZX4GjX/eR5fZy6vtsLEZ7gcTk4e6MelysbtR0eq1RT10NpK5Qmz4Qo/wZ8l10OxV1V3L46WwKZgsFEr2FDdibhfhxEAoSNUO5tN4Sr5bZOOZZ9kYWy+jYMtzXHvxeHGm1HtME04BvAFhYWeOWVVx44gEOHDiE+Ph579+5FeHg4du7ciaioKFy5cgWOjvf24V2/fj0OHDiAf/3rX/D390dKSgpiYmJw5swZBAUFAQCWLVuGixcvIiEhAa6uruquVgUFBXBzu5NIZsyYgX379qm/FgjuLYm4adMmvPzyy+qvRaKB9Yw1FqeK6lDX3Ak7Cz4eHunQ7+e7WJthxjhnHL9Qif2/F+O9pyfoIEp23OkMNXSKhmgyY5wzRN+boPx2G87euIVJvvbokMnxtXob1AiWI9Rfs8e74OyNevyQX4k/P+rDdjg9kisYrDyUi7yyBtiYm2J/7MQhUVJ2MAzoSvmLL77A8ePH1V+vWbMGNjY2mDRpEkpKSvp1rh07duDll19GbGwsxowZg71798Lc3Byff/65xvEJCQl48803MWvWLHh7e+PVV1/FrFmz1NPmbW1tSExMxPbt2/HII4/A19cXGzduhK+vLz7++ONu5xIIBHB2dlY/hg279wpHJBJ1G2NhMXT2nmpyJEc5dT0nwHXAFXpUC76S8sSob+nUVmisamjtVPeNHirlNXsiNOVhToBym9y32cop7OMXKlHX3AlnKyGmj6VVuT2JGucMjgFMYW/54TJSLlWDz+PiX4tD4e1AfZC1ZUB/Vbds2QIzM+U2mPT0dOzevRvbt2+Hvb09Vq1a1efzdHZ2Ijs7G5GRkXcC4nIRGRmJ9PR0jc/p6OiAUCjsdszMzAynT58GAMhkMsjl8vuOUTlx4gQcHR3h5+eHV199Fbdu3brn9bZt2wY7OzsEBQXhn//8J2QyWY/vp6OjA42Njd0exqS5Q4afCpRbXR6k00uI5zCMc7NCh0yBg5nGsT1KNXXt42BBC5gAPNu1Z/mH/Eo0tkvVRWNeiPCkcov34SgSIqyrPOuPelpIZP/vN/HZaeWakPefDRhS5WQHw4B+O8rKyuDrq+z2kZSUhKeffhqvvPIKtm7dilOnTvX5PHV1dZDL5XBy6v7J2cnJCVVVmvc5RkVFYceOHbh27RoUCgVSU1Nx+PBhVFYq/wOLRCJERETg3XffRUVFBeRyOQ4cOID09HT1GEA5df3ll18iLS0N7733Hk6ePImZM2dCLr9T9OD111/HwYMH8euvv+LPf/4ztmzZgjVr1vT4frZu3Qpra2v1w9g6ZiVfrEK7VAFvewsEuA/8nqBye5RyCjMh3Ti2R9HUdXcB7tYY5WSJDpkCm44W4EK5chvUUO0G1R+zu1ZhH8/X/DeQTakF1dh0TFmLYs0MP8wN6L1wEOmfASVlS0tL9VXlTz/9pN4GJRQK0dbWpr3oNNi1axdGjhwJf39/8Pl8rFixArGxseBy77yVhIQEMAwDNzc3CAQCfPjhh1i4cGG3Mc899xzmzp2L8ePH46mnnsKxY8eQmZmJEydOqMfEx8fjsccew4QJE7B8+XJ88MEH+Oijj9DRobk9nWqbmOqhqeqZITuS27U3OcjtgatVPRngAntLPiol7Ui5dO+ed0OT1bXyeqgv8lLhcDjdFnwBwNwAV7rv2AczVFPYZQ0ov60/U9gXyhvw+n9yoWCAhWEeeFWP73kbsgEl5SeeeALLli3DsmXLcPXqVcyaNQsAcOnSJXh5efX5PPb29uDxePcUIqmuroazs+b9rw4ODkhKSkJLSwtKSkpQWFgIS0tLeHt7q8f4+Pjg5MmTaG5uRllZGTIyMiCVSruN+SNvb2/Y29ujqKioxzHh4eGQyWQoLi7W+H2BQAArK6tuD2NRJWnHmevKD2LaaFIuMOHhT0ayPapDJsf5riYMoUP8fvLdngpyg8ld22OoznXfOIqE6inhH/Xkarn8dite3J+FNqkcj4xywKbocUOujOxgGVBS3rNnDyIiIlBbW4vExETY2Skr0WRnZ2PhwoV9Pg+fz0dISAjS0tLUxxQKBdLS0hAREXHf5wqFQri5uUEmkyExMVFjhyoLCwu4uLjg9u3bSElJuW8Xq/Lycty6dQsuLi49jsnLywOXy9W4KtzYfZ8nBsMoK1V52Jpr5ZyLHvKECZeDzOLbuCjuvbOQvroobkSnTAE7Cz5GDKEmFL1xEAkw1V/5uxLqSdug+mP2eNUUNvv3lSVtyjaMdc0d8HcWYc+fgmhdgA4NaEuUjY0Ndu/efc/xv//9792+/stf/oJNmzbB3t6+x3PFx8djyZIlCA0NRVhYGHbu3ImWlhbExsYCABYvXgw3Nzds3boVgLITlVgsRmBgIMRiMTZu3AiFQtHtXm9KSgoYhoGfnx+KioqwevVq+Pv7q8/Z3NyMv//975g/fz6cnZ1x/fp1rFmzBr6+voiKigKgXMB27tw5TJ06FSKRCOnp6Vi1ahWef/55jau0jZ2qYIg2rpJVnKyEmD3BBd/nVWD/mWK8/0yA1s49mLK76l0Hew69JhS9WRPlB5lcgfgn/NgOxaDMHOeMjUcvIa+sAeKGNtY6LXXKFHj1QDau1TTD2UqIfbET+1UwiPSfTj/uHDhwoNcVyAsWLMD777+PDRs2IDAwEHl5eUhOTlYv/iotLe22QKu9vR3r16/HmDFjEBMTAzc3N5w+fRo2NjbqMRKJBHFxcfD398fixYsxZcoUpKSkwNRU+Z+Jx+PhwoULmDt3LkaNGoWXXnoJISEhOHXqlHqvskAgwMGDB/Hoo49i7Nix2Lx5M1atWoVPP/1Uyz8l/Xe5shGFVU3g87h4crx2F3aopjT/m1eBumbN9+r1XVbx0K133ZuRTiLsiw3D+AdYGDgUOVoJMdFTNYXNztUywzBYe/gCzly/BYuuNowu1tSGUdc4DMMwvQ8bGJFIhPPnz9/3Xq4xa2xshLW1NSQSiUHfX97yw2V8+tsNzBjrjL0vhGj9/NF7fsf5sgb87YlReG3aSK2fX5cYhkHoP37GrZZOJL46acjvUSbas//3m9h4tABBw21w5C+TB/31d/58FTt/vgYel4PPloTiMb+hd9uODXRjgNyXXMHg+zztT13fTVVMJOFsCaQGtj3qZl0LbrWomlAY7gcvon9mjncBhwPkljagokG3u1r+6Lvscuz8+RoA4N3ocZSQBxElZXJf6ddvobqxA9Zmppjq3/+ymn0xa7wLHEQC1DR14MeL+rHatK9U+5MD3IduEwqiG05WQvVq/sGshX2mqA5rE5VtGF99zAd/CqcWm4OJkjK5L9UCr9kTXHSWdPgmXDwf7gkA2Pe7YW2Pyu66nxxCRUOIDswaP7jtHK9VN+HPB7IhUzB4coILVk+nBXqDjZIy6VFbpxzJXaX+5ulo6lrlT+HDYcrjILe0AXllDTp9LW3K6lp5TfuTiS7MHKecws4ZhCnsmqZ2LN2XiaZ2GUI9h+H9ZwKoDSMLdJqUn3/+eYNe4DTU/VRQhZZOOTxszXS+gMlBJMCcCcqV3V901UnWd7dbOnG9tgUANaEguuFsfWcKW5e3dlo7ZVj2RRbEDW0YYW+BT6kNI2sGlJQVCs2LcRQKBUpL7zQY+Pjjj++7R5noN9XUdUzgg5fV7IvYycp62McuVKCmqV3nr/egVE0ofB0tMYyaUBAd0fUUtlzB4PX/5OJCuQS2FnzsWzqRmqqwqF9JubGxEc8++ywsLCzg5OSEDRs2dGvgUFtbixEjqFeqMaht6sCpa3UAdLfq+o/Gu1sjxHMYpHIGX53V/+5RmTR1TQbBzHHKpJxdchuVEu1OYTMMg01HL+HnyzXgmyjbMHpRVTpW9Sspv/322zh//jwSEhKwefNmfPnll4iOjkZn552euDrc9kwG0dHzFZArGAR42Axqr1RVMZGvzpWiQya//2CW3VnkRUmZ6E63KWwt18L+/PdifJFeAgDYuSCQ/i/rgX4l5aSkJHzyySd4+umnsWzZMmRlZaG2thZz5sxRd06iMoPGQTV1resFXn80Y5wznK2EqGvuGNRtIP3VIZPjQle97lDqJ0t0TBdT2MkXq/CP48o2jG/O8le/BmFXv5JybW0tPD091V/b29vj559/RlNTE2bNmoXWVv1pM0YGrqimCfliCUy4HDw5YXB/UU15XLwQodoeVay3My8XxRJ1EwovO+006CCkJzPHK7vmZZXcRpXkwddb5JbexspDuWAY4PmHhuPlh4dm1UV91K+kPHz4cFy+fLnbMZFIhJ9++gltbW2IiYnRanCEHaqr5EdHObDS//a5iR7gm3BxoVyCXD3dHqWqdx3qRU0oiO65WN/ZAfHjxQe7Wi691YplX2ShXarAVD8HbJwzlv4P65F+JeXp06dj37599xy3tLRESkoKhEKh1gIj7FAoGCTlVgAAYoIHd+paxc5SgOgA5faofb8XsxJDb1SVvEKpaAgZJNqYwm5o7cTS/Rm41dKJsa5W2P2nYJhQG0a90q9/jb///e94++23MW3aNFy7dq3b90QiEVJTU/HLL79oNUAyuDKL6yFuaINIYILI0U6sxbGka8HXj/mVWpmu0yaGYdTboUKoMxQZJLPumsKubuz/70SHTI4/J2TjRm0LXKyF+HzpRFgIBtS9l+hQv5LysGHDMGHCBFy4cEHj90UiER599FGtBEbYoZq6njnemdXiAePcrBHmZQuZgsFX50pYi0OTG3UtqG/phMCEi3Gu1JKQDA4XazMED7cBw/S/nSPDMHjjuws4d7MeIoEJ9sVOhJMVzWzqowHNWzz//PP47LPPtB0LYVm7VI7jXb/sMUHuLEcDxE72AgB8fa4U7VL92R6l2goV4G4DvglN/ZHBo5rCPt7PpLwj9SqS8ipgwuXg4+dD4O9MlRb11YDmLmQyGT7//HP8/PPPCAkJgYVF983mO3bs0EpwZHD9UliDpnYZXK2FCB/B/r3SJ8Y4wdVaiApJO46er8AzoR5shwTgTr1rmromg23WeBf84/hl9RR2X652v8ksw0e/FAEAtsSMx5SRVGVRnw3oY/7FixcRHBwMkUiEq1evIjc3V/3Iy8vTcohksBzOUU5dRwe56UUhehMeFy9EeAEA9p/Rn+1RqkVeEykpk0HmamOGoH5MYZ+6Vos3j+QDAF573BfPTtSPD7akZwO6Uv7111+1HQdhWX1LJ05cqQEw+AVD7ue5iR7YlXYVlyoakVVyGxNZLtRxq7kDN7qaUAQPp6RMBt/s8S7ILW3AD/lVWDq557LGhVWN+MuBHMgUDKIDXRH/xKhBjJIMFN0QIwCA4xcqIFMwGOtqhZFOIrbDURtmwUdM14eE/XqwPUq16nqkoyVszKloPxl8M7vuK2eW1KOmh1XY1Y3teHFfJpo6ZAgbYYvtT0+gvcgGgpIyAQAcVnWE0qOrZBXV9qjkS1U67ynbG1VSDqWpa8ISNxszBHp0TWFraOfY0iHDi/szUSFph7eDBT59IQQCE2rDaCgoKRMU17Ugt7QBXA4wt6tohz7xd7ZChLcd5AoGCWfZ3R6lup8cQkVDCItm97AKWyZX4LX/5OJSRSPsLPjYvzSMZnQMDCVlot6bPGWkAxz1dO/i0q7tUf/JYG97VLtUjvxyZRMKWuRF2KSqhZ1ZfGcKm2EYbDx6Cb8U1kBoysVnSydiONVlNziUlIc4hmGQlMdOR6j+iBztBPdhZmholeL7rngH20WxBJ1yBewtBRhuS3/sCHvch5kjoGsKO/mScgr7X6du4MDZUnA4wM4FQQj0sGE3SDIglJSHuJzSBpTcaoU5n4fpY9krq9kbHpeDJV3bo9jqHpWpakLhSU0oCPtmd10tH79QieMXKrHlh0IAwPrZYzBjnDOboZEHQEl5iDuSWw4AmDHWGeZ8/a6D+2yoB8xMeSisasLZG/WD/vrZXUVDaJEX0QczxynvK2cU12PVN3kAgKWTvPBi160eYpgoKQ9hnTIFjl1QLhR5So+nrlWszU0xr6tz1f4zNwf1tbs1ofCkpEzY52FrjgB3azCM8nc5crQj3n5yDM3iGDhKykPYiSs1aGiVwlEkwGRfwyi9t7Rre1RqQTXK6lsH7XWv17bgdqsUAhMuxlITCqInVB+mx7tZ48OFQeDpQSU+8mAoKQ9hqgVe0YGuBvPLPNJJhIdH2kPBYFC3R6mmrgM9qAkF0R+LI7zw2ZJQ/OeVh/T+9hPpG73467Jnzx54eXlBKBQiPDwcGRkZPY6VSqXYtGkTfHx8IBQKERAQgOTk5G5jmpqasHLlSnh6esLMzAyTJk1CZmZmtzFLly4Fh8Pp9pgxY0a3MfX19Vi0aBGsrKxgY2ODl156Cc3Nzdp74yyStEnx82VlWU1DmLq+m+pq+WBGKVo7ZYPymlnFVDSE6B8el4Npo51gSX2RjQbrSfnQoUOIj4/HO++8g5ycHAQEBCAqKgo1NTUax69fvx6ffPIJPvroIxQUFGD58uWIiYlBbm6uesyyZcuQmpqKhIQE5OfnY/r06YiMjIRY3H0rzYwZM1BZWal+/Oc//+n2/UWLFuHSpUtITU3FsWPH8Ntvv+GVV17R/g+BBT/kV6JTpoCfkwhjXAyrjdtUP0d42pmjsV2m3mOta6qiIaFUNIQQoksMy8LCwpi4uDj113K5nHF1dWW2bt2qcbyLiwuze/fubsfmzZvHLFq0iGEYhmltbWV4PB5z7NixbmOCg4OZt956S/31kiVLmOjo6B7jKigoYAAwmZmZ6mM//vgjw+FwGLFY3Kf3JpFIGACMRCLp0/jB9MzeM4znG8eY//u1iO1QBuSzUzcYzzeOMZEfnGAUCoVOX6u2qZ3xfOMY4/nGMaahpVOnr0UIGdpYvVLu7OxEdnY2IiMj1ce4XC4iIyORnp6u8TkdHR0QCrtXnTIzM8Pp06cBKHs9y+Xy+45ROXHiBBwdHeHn54dXX30Vt27dUn8vPT0dNjY2CA0NVR+LjIwEl8vFuXPneoytsbGx20MfldW3IuNmPTgc4Kkg/Sur2RdPh7rDgs/DtZpm/F50q/cnPADVqutRTpawNjfV6WsRQoY2VpNyXV0d5HI5nJy6F61wcnJCVdW9hdYBICoqCjt27MC1a9egUCiQmpqKw4cPo7JSubVHJBIhIiIC7777LioqKiCXy3HgwAGkp6erxwDKqesvv/wSaWlpeO+993Dy5EnMnDkTcrmyhGNVVRUcHR27vbaJiQlsbW17jG3r1q2wtrZWPzw89LN36X/PVwAAIrzt4GJtxnI0A2MlNMXTIe4AdL89KpvqXRNCBgnr95T7a9euXRg5ciT8/f3B5/OxYsUKxMbGgsu981YSEhLAMAzc3NwgEAjw4YcfYuHChd3GPPfcc5g7dy7Gjx+Pp556CseOHUNmZiZOnDgx4NjWrVsHiUSifpSVlT3IW9UJhmFwOEdZMMTQFnj90eKuBV9phTUoudWis9fJKlauvKZ614QQXWM1Kdvb24PH46G6urrb8erqajg7ay4T5+DggKSkJLS0tKCkpASFhYWwtLSEt7e3eoyPjw9OnjyJ5uZmlJWVISMjA1KptNuYP/L29oa9vT2KiooAAM7OzvcsNpPJZKivr+8xNoFAACsrq24PfZMvluB6bQsEJlzMNPBSfD4OlnjMzwEMA3yZrpvtUe1SOfLFyiYUtMiLEKJrrCZlPp+PkJAQpKWlqY8pFAqkpaUhIiLivs8VCoVwc3ODTCZDYmIioqOj7xljYWEBFxcX3L59GykpKRrHqJSXl+PWrVtwcVGWrouIiEBDQwOys7PVY3755RcoFAqEh4f3963qDdVq5SfGOEEkNPz7o6rtUd9klqG5Q/vboy6USyCVM3AQCeBha5hT/YQQw8H69HV8fDz+9a9/4YsvvsDly5fx6quvoqWlBbGxsQCAxYsXY926derx586dw+HDh3Hjxg2cOnUKM2bMgEKhwJo1a9RjUlJSkJycjJs3byI1NRVTp06Fv7+/+pzNzc1YvXo1zp49i+LiYqSlpSE6Ohq+vr6IiooCAIwePRozZszAyy+/jIyMDPz+++9YsWIFnnvuObi6GubiKJlcgaNd95NV5SoN3SMjHeBtb4GmDpl6Wl6bslT1rqkJBSFkELCelBcsWID3338fGzZsQGBgIPLy8pCcnKxe/FVaWtptgVZ7ezvWr1+PMWPGICYmBm5ubjh9+jRsbGzUYyQSCeLi4uDv74/FixdjypQpSElJgamp8sqQx+PhwoULmDt3LkaNGoWXXnoJISEhOHXqFAQCgfo8X331Ffz9/TFt2jTMmjULU6ZMwaeffjo4PxgdOFVUh7rmTthZ8PHwSAe2w9EKLpeDJV1Xy/vPFEOh0G73qOxiqndNCBk8HIZhoQfeENHY2Ahra2tIJBK9uL/8+n9y8d/zFVg6yQsb545lOxytae6QIWJLGpo6ZPjixTA8Oko7HzgUCgbB/0hFQ6sUSXGTqT8tIUTnWL9SJoOjuUOGnwqUW7liDHzV9R9ZCkzwTKhy+9m+37W3PepGXTMaWqUQmnIx1pX9D1WEEONHSXmISL5YhXapAt4OFpjgbnxdjhZHeILDAU5cqcWNWu3UJ1fVuw70sIEpj35VCCG6R39phogjucpFUDGBbka5YMnL3gKP+ymLvWhre1RmMdW7JoQMLkrKQ0CVpB1nritLURp6wZD7WTrZCwDwbVYZmtqlD3w+VbvGECoaQggZJJSUh4Dv88RgGGVFKg9bc7bD0ZkpvvbwdbRES6cc32U/2Pao2qYOFN9qBYcDBA+npEwIGRyUlIcAVcGQmCB3liPRLQ6Hoy4m8sUDbo9SN6FwFMHazPCLrBBCDAMlZSN3ubIRhVVN4PO4mD3ehe1wdG5esBtEQhMU32rFiauae3L3hWrqOpSmrgkhg4iSspFTXSU/7u84JNoOmvNN8NxE1fao4gGfJ6vrSpmSMiFkMFFSNmJyBYPv87qmro2krGZfLI7wApcDnLpWh6Kapn4/v10qx0VqQkEIYQElZSOWfv0Wqhs7YG1misf8jKOsZl942JojcrSyTOv+M8X9fv75sgZI5QwcRQK4D6MmFISQwUNJ2Ygd7tqb/OQEFwhMeCxHM7hU26MSs8WQtPVve9TdU9fGuKebEKK/KCkbqdZOGVIuKstqGktHqP6I8LaDn5MIbVI5vs0q69dzVSuvaeqaEDLYKCkbqdSCarR0yjHc1nxI7rPlcDiI7bpa/iK9GPI+bo9SKJg7SZkWeRFCBhklZSOlWnX9VJBxltXsi+hAN9iYm6Ksvg1pl6v79Jzrtc2QtElhZsrDaBdqQkEIGVyUlI1QbVMHTl2rA2B8HaH6w4zPw3MThwPo+4KvTGpCQQhhEf3VMUL/PV8BuYJBoIcNRthbsB0Oq16I8ASPy8GZ67dwpar37VFZVDSEEMIiSspGKKlr6nooLvD6IzcbM0SN7fv2KNX95BBPSsqEkMFHSdnIFNU0IV8sgQmXgycnuLIdjl5YOmkEAGX7yobWzh7H1TZ1oETVhIKSMiGEBZSUjYxqgddjfg6wteCzHI1+mOg1DGNcrNAuVeBgZs/bo1T1rv2cRLASGn9JUkKI/qGkbEQUCgZJuRUAjLtvcn9xOBx1MZGE9BLI5AqN41SLvOh+MiGELZSUjUhGcT3EDW0QCUzUZSaJ0twAV9ha8CFuaMPPPWyPyqKiIYQQllFSNiKqBV6zxrtAaDq0ymr2RmjKw5/ClNujPtfQPaqtU45LXU0oaJEXIYQtlJSNRLtUjuP5lQBo6ronzz+k3B6VcbMelyok3b53vrwBMgUDJytqQkEIYQ8lZSPxS2ENmtplcLMxQ/gImn7VxNlaiJnjnAEAX/xhe9Sd0pq2Q7YCGiGEfZSUjcThHOXUdXSgK7hcSio9iZ2s3B6VlFeB+pY726OyiruKhtDUNSGERZSUjUB9SydOXKkBMLTLavZF8HAbTHC3RqdMgf9klAL4QxMKWuRFCGERJWUjcPxCBWQKBuPcrDDSScR2OHqNw+Fg6SQvAMrtUVK5AtdqmtHYLoM5n4fRLvTzI4Swh5KyETis6ggVSFfJfTF7ggvsLQWoamxHyqUqdb3rQA8bmFATCkIIi/TiL9CePXvg5eUFoVCI8PBwZGRk9DhWKpVi06ZN8PHxgVAoREBAAJKTk7uNaWpqwsqVK+Hp6QkzMzNMmjQJmZmZPZ5z+fLl4HA42LlzZ7fjXl5e4HA43R7btm17oPeqbcV1LcgtbQCXA8wNpLKafSEw4WFReFf3qN+Lka0qGkL3kwkhLGM9KR86dAjx8fF45513kJOTg4CAAERFRaGmpkbj+PXr1+OTTz7BRx99hIKCAixfvhwxMTHIzc1Vj1m2bBlSU1ORkJCA/Px8TJ8+HZGRkRCLxfec78iRIzh79ixcXTUntE2bNqGyslL9eO2117TzxrVEVVbz4ZEOcBQJWY7GcCwKHw5THgdZJbfxU4GymEioF91PJoSwi/WkvGPHDrz88suIjY3FmDFjsHfvXpibm+Pzzz/XOD4hIQFvvvkmZs2aBW9vb7z66quYNWsWPvjgAwBAW1sbEhMTsX37djzyyCPw9fXFxo0b4evri48//rjbucRiMV577TV89dVXMDXVXOtYJBLB2dlZ/bCw0J9WiAzDIClPmZRpgVf/OFoJMXu8CwCguUMGLgcIGm7DblCEkCGP1aTc2dmJ7OxsREZGqo9xuVxERkYiPT1d43M6OjogFHa/IjQzM8Pp06cBADKZDHK5/L5jAEChUOCFF17A6tWrMXbs2B5j3LZtG+zs7BAUFIR//vOfkMlkPY7t6OhAY2Njt4cu5ZQ2oORWK8z5PEwfS2U1+2tp1/YoAPBztoKImlAQQljGalKuq6uDXC6Hk1P3hOLk5ISqqiqNz4mKisKOHTtw7do1KBQKpKam4vDhw6isVFazEolEiIiIwLvvvouKigrI5XIcOHAA6enp6jEA8N5778HExASvv/56j/G9/vrrOHjwIH799Vf8+c9/xpYtW7BmzZoex2/duhXW1tbqh4eHR39+HP12JLccADBjrDPM+SY6fS1jFOhhg0APGwB0P5kQoh9Yn77ur127dmHkyJHw9/cHn8/HihUrEBsbCy73zltJSEgAwzBwc3ODQCDAhx9+iIULF6rHZGdnY9euXdi/f/99qzfFx8fjsccew4QJE7B8+XJ88MEH+Oijj9DR0aFx/Lp16yCRSNSPsrKe2wQ+qE6ZAscuKD9kxATT1PVA/eOpcZg+xgnLHh7R+2BCCNExVpOyvb09eDweqqu7d+2prq6Gs7Ozxuc4ODggKSkJLS0tKCkpQWFhISwtLeHt7a0e4+Pjg5MnT6K5uRllZWXIyMiAVCpVjzl16hRqamowfPhwmJiYwMTEBCUlJfjb3/4GLy+vHuMNDw+HTCZDcXGxxu8LBAJYWVl1e+jKiSs1aGiVwlEkwCQfe529jrEb52aNTxeHwtNOf9YKEEKGLlaTMp/PR0hICNLS0tTHFAoF0tLSEBERcd/nCoVCuLm5QSaTITExEdHR0feMsbCwgIuLC27fvo2UlBT1mBdeeAEXLlxAXl6e+uHq6orVq1cjJSWlx9fMy8sDl8uFo6PjAN+x9qgWeEUHuoJHZTUJIcQosH4jMj4+HkuWLEFoaCjCwsKwc+dOtLS0IDY2FgCwePFiuLm5YevWrQCAc+fOQSwWIzAwEGKxGBs3boRCoeh2rzclJQUMw8DPzw9FRUVYvXo1/P391ee0s7ODnZ1dtzhMTU3h7OwMPz8/AEB6ejrOnTuHqVOnQiQSIT09HatWrcLzzz+PYcPYvf8oaZPi58uqsprurMZCCCFEe1hPygsWLEBtbS02bNiAqqoqBAYGIjk5Wb34q7S0tNv94vb2dqxfvx43btyApaUlZs2ahYSEBNjY2KjHSCQSrFu3DuXl5bC1tcX8+fOxefPmHrc9aSIQCHDw4EFs3LgRHR0dGDFiBFatWoX4+HitvfeB+iG/Ep0yBfycRFQWkhBCjAiHYRiG7SCMVWNjI6ytrSGRSLR6f/nZT9KRcbMea2f6Y/mjPlo7LyGEEHYZ3Orroa6svhUZN+vB4SjvJxNCCDEelJQNzH/PVwAAIrzt4GJtxnI0hBBCtImSsgFhGAaHc5QFQ6isJiGEGB9KygYkXyzB9doWCEy4mDFO8z5uQgghhouSsgFRdYSaPtaZ6jQTQogRoqRsIGRyBY523U+eR1PXhBBilCgpG4hTRXWoa+6EnQUfU0ZSWU1CCDFGlJQNxJEc5dT1nABXmPLon40QQowR/XU3AM0dMvxUoGxlSauuCSHEeFFSNgDJF6vQLlXA28ECE9yt2Q6HEEKIjlBSNgBHcpV7k+cFud23/zMhhBDDRklZz1VJ2nHm+i0AQHQgTV0TQogxo6Ss577PE4NhgDAvW3jYmrMdDiGEEB2ipKznfrzYtcArmK6SCSHE2FHrRh3SRuvG5g4ZUi5WIXK0E6zNqYoXIYQYM0rKOqSrfsqEEEKME01fE0IIIXqCkjIhhBCiJygpE0IIIXqCkjIhhBCiJygpE0IIIXqCkjIhhBCiJygpE0IIIXrChO0AjJlqC3hjYyPLkRBCCGGbSCTqtakQJWUdampqAgB4eHiwHAkhhBC29aWQFFX00iGFQoGKioo+fTrqSWNjIzw8PFBWVmYQVcEoXt0ytHgBw4uZ4tWtoRwvXSmzjMvlwt3dXSvnsrKyMoj/wCoUr24ZWryA4cVM8eoWxasZLfQihBBC9AQlZUIIIURPUFLWcwKBAO+88w4EAgHbofQJxatbhhYvYHgxU7y6RfHeHy30IoQQQvQEXSkTQggheoKSMiGEEKInKCkTQggheoKSMiGEEKInKCnruT179sDLywtCoRDh4eHIyMhgO6Qe/fbbb5gzZw5cXV3B4XCQlJTEdkg92rp1KyZOnAiRSARHR0c89dRTuHLlCtth9ejjjz/GhAkT1AUMIiIi8OOPP7IdVp9t27YNHA4HK1euZDsUjTZu3AgOh9Pt4e/vz3ZY9yUWi/H888/Dzs4OZmZmGD9+PLKystgOSyMvL697fr4cDgdxcXFsh6aRXC7H22+/jREjRsDMzAw+Pj549913MRjroikp67FDhw4hPj4e77zzDnJychAQEICoqCjU1NSwHZpGLS0tCAgIwJ49e9gOpVcnT55EXFwczp49i9TUVEilUkyfPh0tLS1sh6aRu7s7tm3bhuzsbGRlZeHxxx9HdHQ0Ll26xHZovcrMzMQnn3yCCRMmsB3KfY0dOxaVlZXqx+nTp9kOqUe3b9/G5MmTYWpqih9//BEFBQX44IMPMGzYMLZD0ygzM7PbzzY1NRUA8Mwzz7AcmWbvvfcePv74Y+zevRuXL1/Ge++9h+3bt+Ojjz7S/YszRG+FhYUxcXFx6q/lcjnj6urKbN26lcWo+gYAc+TIEbbD6LOamhoGAHPy5Em2Q+mzYcOGMf/+97/ZDuO+mpqamJEjRzKpqanMo48+yvz1r39lOySN3nnnHSYgIIDtMPrsjTfeYKZMmcJ2GAP217/+lfHx8WEUCgXboWg0e/Zs5sUXX+x2bN68ecyiRYt0/tp0paynOjs7kZ2djcjISPUxLpeLyMhIpKensxiZcZJIJAAAW1tbliPpnVwux8GDB9HS0oKIiAi2w7mvuLg4zJ49u9v/Y3117do1uLq6wtvbG4sWLUJpaSnbIfXov//9L0JDQ/HMM8/A0dERQUFB+Ne//sV2WH3S2dmJAwcO4MUXXxxwox5dmzRpEtLS0nD16lUAwPnz53H69GnMnDlT569NDSn0VF1dHeRyOZycnLodd3JyQmFhIUtRGSeFQoGVK1di8uTJGDduHNvh9Cg/Px8RERFob2+HpaUljhw5gjFjxrAdVo8OHjyInJwcZGZmsh1Kr8LDw7F//374+fmhsrISf//73/Hwww/j4sWLEIlEbId3jxs3buDjjz9GfHw83nzzTWRmZuL1118Hn8/HkiVL2A7vvpKSktDQ0IClS5eyHUqP1q5di8bGRvj7+4PH40Eul2Pz5s1YtGiRzl+bkjIZ8uLi4nDx4kW9vocIAH5+fsjLy4NEIsF3332HJUuW4OTJk3qZmMvKyvDXv/4VqampEAqFbIfTq7uvgCZMmIDw8HB4enrim2++wUsvvcRiZJopFAqEhoZiy5YtAICgoCBcvHgRe/fu1fuk/Nlnn2HmzJlwdXVlO5QeffPNN/jqq6/w9ddfY+zYscjLy8PKlSvh6uqq858vJWU9ZW9vDx6Ph+rq6m7Hq6ur4ezszFJUxmfFihU4duwYfvvtN6212dQVPp8PX19fAEBISAgyMzOxa9cufPLJJyxHdq/s7GzU1NQgODhYfUwul+O3337D7t270dHRAR6Px2KE92djY4NRo0ahqKiI7VA0cnFxuefD2OjRo5GYmMhSRH1TUlKCn3/+GYcPH2Y7lPtavXo11q5di+eeew4AMH78eJSUlGDr1q06T8p0T1lP8fl8hISEIC0tTX1MoVAgLS1N7+8jGgKGYbBixQocOXIEv/zyC0aMGMF2SP2mUCjQ0dHBdhgaTZs2Dfn5+cjLy1M/QkNDsWjRIuTl5el1QgaA5uZmXL9+HS4uLmyHotHkyZPv2cJ39epVeHp6shRR3+zbtw+Ojo6YPXs226HcV2trK7jc7umRx+NBoVDo/LXpSlmPxcfHY8mSJQgNDUVYWBh27tyJlpYWxMbGsh2aRs3Nzd2uLG7evIm8vDzY2tpi+PDhLEZ2r7i4OHz99df4/vvvIRKJUFVVBQCwtraGmZkZy9Hda926dZg5cyaGDx+OpqYmfP311zhx4gRSUlLYDk0jkUh0z/15CwsL2NnZ6eV9+//5n//BnDlz4OnpiYqKCrzzzjvg8XhYuHAh26FptGrVKkyaNAlbtmzBs88+i4yMDHz66af49NNP2Q6tRwqFAvv27cOSJUtgYqLfqWfOnDnYvHkzhg8fjrFjxyI3Nxc7duzAiy++qPsX1/n6bvJAPvroI2b48OEMn89nwsLCmLNnz7IdUo9+/fVXBsA9jyVLlrAd2j00xQmA2bdvH9uhafTiiy8ynp6eDJ/PZxwcHJhp06YxP/30E9th9Ys+b4lasGAB4+LiwvD5fMbNzY1ZsGABU1RUxHZY93X06FFm3LhxjEAgYPz9/ZlPP/2U7ZDuKyUlhQHAXLlyhe1QetXY2Mj89a9/ZYYPH84IhULG29ubeeutt5iOjg6dvza1biSEEEL0BN1TJoQQQvQEJWVCCCFET1BSJoQQQvQEJWVCCCFET1BSJoQQQvQEJWVCCCFET1BSJoQQQvQEJWVCCCFET1BSJoSwpri4GBwOB3l5eWyHQoheoKRMCLmvqqoqvPbaa/D29oZAIICHhwfmzJnTrVkKIUQ79LsqOCGEVcXFxZg8eTJsbGzwz3/+E+PHj4dUKkVKSgri4uJQWFjIdoiEGBW6UiaE9Ogvf/kLOBwOMjIyMH/+fIwaNQpjx45FfHw8zp49ixdffBFPPvlkt+dIpVI4Ojris88+A6DsDrR9+3b4+vpCIBBg+PDh2Lx5c4+vefHiRcycOROWlpZwcnLCCy+8gLq6Op2+T0L0BSVlQohG9fX1SE5ORlxcHCwsLO75vo2NDZYtW4bk5GRUVlaqjx87dgytra1YsGABAGXbyW3btuHtt99GQUEBvv76azg5OWl8zYaGBjz++OMICgpCVlYWkpOTUV1djWeffVY3b5IQPUPT14QQjYqKisAwDPz9/XscM2nSJPj5+SEhIQFr1qwBoGxk/8wzz8DS0hJNTU3YtWsXdu/ejSVLlgAAfHx8MGXKFI3n2717N4KCgrBlyxb1sc8//xweHh64evUqRo0apcV3SIj+oStlQohGfe3qumzZMuzbtw8AUF1djR9//FHdDP7y5cvo6OjAtGnT+nSu8+fP49dff4WlpaX6ofpQcP369QG8C0IMC10pE0I0GjlyJDgcTq+LuRYvXoy1a9ciPT0dZ86cwYgRI/Dwww8DAMzMzPr1ms3NzZgzZw7ee++9e77n4uLSr3MRYojoSpkQopGtrS2ioqKwZ88etLS03PP9hoYGAICdnR2eeuop7Nu3D/v370dsbKx6zMiRI2FmZtbn7VPBwcG4dOkSvLy84Ovr2+2h6b42IcaGkjIhpEd79uyBXC5HWFgYEhMTce3aNVy+fBkffvghIiIi1OOWLVuGL774ApcvX1bfOwYAoVCIN954A2vWrMGXX36J69ev4+zZs+qV2X8UFxeH+vp6LFy4EJmZmbh+/TpSUlIQGxsLuVyu8/dLCNto+poQ0iNvb2/k5ORg8+bN+Nvf/obKyko4ODggJCQEH3/8sXpcZGQkXFxcMHbsWLi6unY7x9tvvw0TExNs2LABFRUVcHFxwfLlyzW+nqurK37//Xe88cYbmD59Ojo6OuDp6YkZM2aAy6VrCGL8OExfV3MQQkgPmpub4ebmhn379mHevHlsh0OIwaIrZULIgCkUCtTV1eGDDz6AjY0N5s6dy3ZIhBg0SsqEkAErLS3FiBEj4O7ujv3798PEhP6kEPIgaPqaEEII0RO0coIQQgjRE5SUCSGEED1BSZkQQgjRE5SUCSGEED1BSZkQQgjRE5SUCSGEED1BSZkQQgjRE5SUCSGEED3x/8NnolKtRSgQAAAAAElFTkSuQmCC\n" - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "# Calculate the r2 scores and plot them\n", - "scores = cycle_specified_score(r2_score, random_experimentalist_cycle, X_test, y_test)\n", - "print(scores)\n", - "plot_cycle_score(random_experimentalist_cycle, X_test, y_test,\n", - " scorer=r2_score,\n", - " figsize=(5,3));" - ], - "metadata": { - "collapsed": false - } - }, - { - "cell_type": "code", - "execution_count": 9, - "outputs": [ - { - "data": { - "text/plain": "
", - "image/png": "iVBORw0KGgoAAAANSUhEUgAABOQAAAN+CAYAAAC1m9S3AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8o6BhiAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd3hUZdrH8e9MeockkwJJ6L2XJFQrAvbeUFEEWVfUVXRVFsvrKqJrWeu6a8Oy9oplRVEUQSAh9N4hocxk0klP5pz3j4GBSICgJJPy+1zXXHHmnDNzz1xyz5z7PM/9WEzTNBEREREREREREZEGYfV2ACIiIiIiIiIiIi2JCnIiIiIiIiIiIiINSAU5ERERERERERGRBqSCnIiIiIiIiIiISANSQU5ERERERERERKQBqSAnIiIiIiIiIiLSgFSQExERERERERERaUAqyImIiIiIiIiIiDQgFeREREREREREREQakApy0qBM06SoqAjTNL0dioiINBDlfhGRlke5X0Tk2FSQE4+ZM2eSnJxMWFgYMTExXHTRRWzatKnGPuXl5UyZMoWoqChCQ0O59NJLcTgcdX6N/fv3ExERwf79+092+CIi0kgp94uItDzK/SIix6aCnHjMnz+fKVOmsGTJEubOnUtVVRWjR4+mpKTEs8+dd97JV199xccff8z8+fPZu3cvl1xyiRejrj87d+7EYrGwcuVKb4ciIiINRLlfRKTlUe4XEW9QQU485syZww033ECvXr3o168fb775JpmZmSxbtgyAwsJCXn/9dZ555hnOOOMMBg0axKxZs1i0aBFLlixp8Hjtdju33XYbHTt2JCAggMTERM4//3x+/PHHBo/lWFavXs3IkSMJDAwkMTGRf/zjH94OSUSkyWoKub+8vJwbbriBPn364Ovry0UXXeTtkEREmrSmkPt//vlnLrzwQuLj4wkJCaF///68++673g5LRBoxX28HII1XYWEhAJGRkQAsW7aMqqoqRo0a5dmne/fuJCUlsXjxYoYMGXLEc1RUVFBRUeG5X1RUdFJi27lzJ8OHD6dVq1Y8+eST9OnTh6qqKr777jumTJnCxo0bT8rr/FFFRUWMHj2aUaNG8e9//5s1a9Zw44030qpVKyZPnuzt8ERE6kVLz/0ul4ugoCBuv/12Pv30U2+HIyLSIFp67l+0aBF9+/bl3nvvJTY2lq+//prx48cTERHBeeed5+3wRKQxMkVq4XK5zHPPPdccPny457F3333X9Pf3P2Lf5ORk85577qn1eR566CETOOJWWFj4h+I7++yzzbZt25rFxcVHbMvPzzdN0zQnTJhgnnvuuTW2VVZWmjabzXzttddM03S/zyeeeMLs1KmT6e/vbyYmJpqPPvqoaZqmuWPHDhMwV6xY4Tl+zZo15tixY82QkBAzJibGvPbaa02n03nUOP/1r3+ZrVu3NisqKjyP3XvvvWa3bt1+71sXEWn0WnruP9z1119vXnjhhSf+ZkVEmhjl/iOdc8455oQJE07oGBFpOTRlVWo1ZcoU1q5dywcffPCHnmfatGkUFhZ6bllZWX84try8PObMmcOUKVMICQk5YnurVq0AmDRpEnPmzGHfvn2ebV9//TWlpaVceeWVnvgef/xxHnjgAdavX897771HbGxsra9bUFDAGWecwYABA8jIyGDOnDk4HA6uuOKKo8a6ePFiTjnlFPz9/T2PjRkzhk2bNpGfn/973r6ISKPX0nO/iEhLpNx/pMLCQs9sIxGR39KUVTnCrbfeytdff80vv/xCQkKC5/G4uDgqKyspKCjwfPkBOBwO4uLian2ugIAAAgICTmp8W7duxTRNunfvfsz9hg0bRrdu3XjnnXe45557AJg1axaXX345oaGh7N+/n+eee44XX3yR66+/HoBOnToxYsSIWp/vxRdfZMCAATz22GOex9544w0SExPZvHkzXbt2PeIYu91Ohw4dajx28IvfbrfTunXrur9xEZEmoqXnfhGRlki5v6aPPvqIpUuX8p///Keub1dEWhiNkBMP0zS59dZb+fzzz5k3b94RhaRBgwbh5+dXo3nqpk2byMzMZOjQoQ0aZ11NmjSJWbNmAe7C4bfffsuNN94IwIYNG6ioqODMM8+s03OtWrWKn376idDQUM/t4I+Dbdu2neC7EBGRE6HcLyLS8jTV3P/TTz8xYcIEXn31VXr16lXn9yAiLYtGyInHlClTeO+995g9ezZhYWHY7XYAIiIiCAoKIiIigokTJzJ16lQiIyMJDw/ntttuY+jQobUu6FBfunTpgsViqVMD1/Hjx3PfffexePFiFi1aRIcOHRg5ciQAQUFBJ/S6xcXFnH/++TzxxBNHbIuPj6/1mLi4OBwOR43HDt4/2qhCEWmcduWW8OnyPQxu15pTutq8HU6L05Ryv4g0L4ZhUmUYBPj6eDuUFqcp5v758+dz/vnn889//pPx48ef0OuKSMuiEXLi8fLLL1NYWMhpp51GfHy85/bhhx969vnnP//Jeeedx6WXXsopp5xCXFwcn332WYPGGRkZyZgxY3jppZcoKSk5YntBQYHnv6OiorjooouYNWsWb775JhMmTPBs69KlC0FBQXVeLn3gwIGsW7eO9u3b07lz5xq32npaAAwdOpRffvmFqqoqz2Nz586lW7dumq4q0gQUllXxfnoml728iFOf/Jnnf9zC24t3ejusFqkp5X4RafqqXQaLtubw4Oy1DH38R95Ly/R2SC1SU8v9P//8M+eeey5PPPEEkydPrvsbFZH6YRhQnO3+2wipICcepmnWervhhhs8+wQGBvLSSy+Rl5dHSUkJn332mVdGer300ku4XC5SUlL49NNP2bJlCxs2bOD5558/YvrspEmTeOutt9iwYYOnZwS438u9997LPffcw9tvv822bdtYsmQJr7/+eq2vOWXKFPLy8rj66qtZunQp27Zt47vvvmPChAm4XK5ajxk3bhz+/v5MnDiRdevW8eGHH/Lcc88xderUk/dhiMjxncCXcbXL4KdN2dz63nKSZ/zAtM/WkLErH6sFRnaJ5sL+bRsgYKlNU8n9AOvXr2flypXk5eVRWFjIypUrWbly5Un5HESkbgzDwOFwYNTxRKy8ysUP6x3c/fEqBs/4gXGvpfH24l04iir4eZOznqOVo2kquf+nn37i3HPP5fbbb+fSSy/Fbrdjt9vJy8s7eR+GiByXJ/e7qmHBUzD7VvffRliU05RVaZI6duzI8uXLmTFjBnfddRf79u3DZrMxaNAgXn755Rr7jho1ivj4eHr16kWbNm1qbHvggQfw9fXlwQcfZO/evcTHx3PzzTfX+ppt2rTh119/5d5772X06NFUVFTQrl07xo4di9Vae207IiKC77//nilTpjBo0CCio6N58MEHdcVMpCEZhvtLeHcGJAyGkXdDLf9mtzj288my3Xy+Yg/Z+ys8j3eJCeXSQQlc1L8tcRGBDRm5/EZTyf0A55xzDrt27fLcHzBgAHBi/ZBE5PczDIMZM2aQlpZGamoq06dPP/LfrGFQWuDgpyyDb9c5+GljNiWVh4otkSH+nNUjlrG94xjWOaqB34Ec1FRy/1tvvUVpaSkzZ85k5syZnsdPPfVUfv755z/2IYhInRye+89I6c2dHbdhKcl2nweU5kBoDIZh4HQ6sdlsx/wt1xAspn4ZSgMqKioiIiKCwsJCwsPDG+Q1i4uLadu2LbNmzeKSSy5pkNcUkUakONt9ZazYAaGxcOGLEBoDQEFpJV+t2ssny3azaneh55DWwX5c2L8tlw5MoHfbcCwWi7eibxaU+0WkoTkcDiZOnIjdbicuLo7XX3/ds9J9UXkV89bb+Xb+QuZnB1NuHhqjEB8RyJhecYztHcfgdq3x9dGEot9LuV9EGtrhuT8+Lpb3/jyIsIKN7ovyI6ZilOQw49lXSEtPP/rFmgakEXLSbBmGQU5ODk8//TStWrXiggsu8HZIIuINQZEQ0x1MExIG4wqMYsGmbD5etpu56xxUutzD132tFk7vHsNlgxI4vVsM/r46CWuKlPtFBNz9xHr16oVpmqSmphIQ2opPl+3mf2v2sWBLzoHc7y4StfMvYuygrpw9sBP9EiJ0EaYJUu4XEaiZ+1NShxAydhqU5bnPBxY+Q9W2X2mftZ0v7f6kpaXhdDo9F2t+q8pl4DJMAv3qb0EfFeSk2crMzKRDhw4kJCTw5ptv4uur/91FWhzDgIXPgGMD28MG8knpeXz2j5+xF5V7dukeF8blgxO5sH8bokMD3MeU5kBwdK1TW6VxU+4XEcMwmDlzJqvWbya89xlsTxhJ8mM/UuU6NDGoky2Ec8J3crZlMT06d8IceTnOnFxM01RBrglS7heRg7l/7dq19O7dm2nTpmH18XXPjCl2T1v1ryogta0v3ZxRdB2YgmEYGIbhGSW3v7yK+ZudzF3vYN7GbO4/twdXJifVW8zKVNJstW/fXr16RFq4kgIH36wu4OOcM1lakQjsAKBVsB8X9W/LZYMS6N024tABdew3J42Xcr9Iy7a/vIpPl2zho32R7O9xA1h84cCCDF1iQjmnTzzn9o2na2zYgQsw52AERTLjsZnH7jcnjZpyv4g4nU7S0tJwOBxYLBZyc3MPjX4LjoaEwVh2Z9D5tHN4cvK1vPLqa9x00030SR5Or9FXM3dDNou35XpmzwAs2pargpyIiEhdmabJ8sx8Plyaxder91FaORwAKyandovh8sGJnNkjhgDfWoafl+a4i3HFjhrNX0VEpPEqrazmxw3ZfL16Lz9tclJZbUB4ewBaWcoYf3ofzuvXxl2EO5zVCqExOB0O0tLSsNvtx53CJCIijZPNZiM1NdVzccVmsx3aaLW6L7SX5mANjmb35iz+t6OK3ITzWFuWCLPXeXbtEB3C6J6xnNUzlgFJres1ZhXkRESkWXDur+Cz5bv5KCOLbc4Sz+MdooK5vG8kl6Z2IbZV8LGf5MDVM88IueDoeo5aRKQJaIip/Cf4GhXVLn7ZnMOXq/byw3oHZVWHVkftGB3CuX3iGJYQSGqPpOOOdjvmSZyISAvVEKuRnszXsFqtTJ8+vdbnM02Tdfv28/26fOas28BmRzHEDfVs758YwVk94xjTK5ZOttAGa12gVValQXljtSURab5chskvm518uDSLHzY4qDbcX2lBfj6c2zeeKwYnkty+9Yl9qaqH3Emn3C/ShDXEVP46vka1y2DJ9jy+XLWHOWvtFJVXe7YlRgZxXt82nNc3np7xJ746dkOceLY0yv0iTZdhGMyYMaNep/Kf8Guc4G90o9rFiq27mLO1nDnr7WTllXm2+VotDOkYybDEYC7u3Yr4+ASv/O7XCDkREWlysvJK+Tgji4+X7WZf4aEFGvontuLK5ETO6xtPWKDf73vyA1OYRESEhpnKf4zXME2TVbsL+WLFHr5evY+c4grPYbHhAZzXtw3n92vzh1dHtVqth6ap6sKMiLRwB/ux1edU/hN6jTpeuHEZJuk78pizZh9zVmzFUXHofCDQz8qpXW2M6RXHmd1jiQj0cT/nz+7nNEZMxZmT26AXZlSQExGRJqHKZfDDegfvpWeycGsOB8d3twr24+IBbbkyOZHucboCLyJyUjXEVP5aXmO7s5jZK/cye+UeduaWenZtHezH2X3iuaBfG5LbR+JjPYnTigwDSrJh2VuwZ5kW9xGRFqshpvIf6zWOGLV8jAs31S6DtB15/G/NPr5bZyenuPLAs/gRaqngzPA9jB11Fqf260yw/2ElsAMrr5rFDiq2LeSln3P5aem6Bl3cR1NWpUFp6LqInKidOSV8sDSLT5ZlHfYFC8M6RXFVShKje8YS6FfLAg3SaCj3izRxDdRDLse5j6+2VPDFyr2s2l3o2RRkqeKsuBIuOutMRnaLwc+nHmI4OPpi569QuBsCQiE0Fi58UaOmfyflfpGmzVs95Gqdygo1RshVD5vK4p35B4pwDvJKDp0jtAr246weMZzNIoaX/0JA0sDaL64YBsYvT7L15w/4dVcFTyyqJjQsnLi4OF5//fUGWdxHI+RERKRxOOyEr7La4PuVW3lvZQGLtud6drGFBXD5oASuTE6kXVSIF4MVEWlB6nEqf0l5FZ+lbWbelnx+2V6E60AvUB8LjOwYzkUVX3OWzzJCwiMh6Syoj2IcHBp9UZbvvh/USov7iEiLVmMq/0lmGAYOhwNwj5RzOp1ERUWRm5uLYRi1TmV1Db+LtA07+HpLKXMe/6lGEa51sB9jesVxTp94hnaKcl+4MfpC6WVHv5hkteLsPp6/P/sjG7NyMCmhdevWDbq4jwpyIiJSd/U1SuLAyISd2zbxftVIPtnTmtxK91eUxQKndrVxVXISZ/aop5ERIiJyVCd7lIRhmKTvzOOTZVnMXpZJFYdGOQeVOrg4YjN3dtqDrX1vIBL2RNZ/cezwabNtB8HA691FSE1XFZEWqr5GyBmGwSOPPMJ7772HaZokJCQQGBhIRUUFgYGBpKSkkJKSQnp6OikpqWzfb+XFxWv5du2+GrNlIkP8GdMrjnP7xDOkYyS+vz1HqMPFJFtMLN0GjaSgOo3zk5OZPHkysbGxDdZDTlNWpUFp6LpIE1ZPK+1VuQzmLt/Me98tYGFxG8/jsT77uTJqO1dccR0JCYl/+HXEe5T7RZquk7nS3s6cEj5bvpvPVuxhd/6h1e6iDSejzSUMqlzGh6vKubt/Ef07xeHfOgkufAEs1oZZYEGLOZxUyv0iTVd9rrLqcDi49tprSU9PxzRNAgICsNls5OTkYLPZaNe+PVMffY4ftxQwb2sBjqJDi/m0Cvbj7N5xnNunTe1FuN/Bm6tsa4SciIjUzUleaW9vQRnvp2fywdIsnPsrgDZYMDkluphxiXmcWTUf38RB0KbtyXsPIiJyQv7oSnv7y6v4ZvU+Plm2m4xd+Z7HwwJ8OadPHPvX/Ejq3jcZ2tbK7pB4KkIhulUWfmU5EB7rLo75NNApi1bZFhEB6neVVZvNxogRI8jMzPSMkAsICKAsoDUFcX2p6DKCSR9u8uwfHujLmF5xnNevDcMOTkc9iepzau7xqCAnIiJ1U9eV9o4xwsAwTOZvcfLukkzmbXRwoFUQ0aEBXDGoLVf3DiYxIgBCoqHsGD0fRESkQdR1pb3DRxiAhSXbc/l42W6+XbuP8ioDAKsFRnaxccnAtozpFUegnw/GJX1w2K/EWpZHx6Ru9MnaRPSC6VhKc8EnAMryVCQTEWlgvyf313V0mdVq5YEHHmDSpEms3+VgQ2kIny7dhVlYhR9QDQT5WRndK47z+7ZhZNdoAnwbaAG3Bh4prYKciIjUjdUKI6ZCzmaI7lr7l9RRprXmlVTycUYW/03bRVbeoWlKQztGcc2QJEb3jMPfSr1MiRURkd/ParUybdo0Nm7cSPfu3Ws94To4tWnB8vWE9D4TZ2jHGlNSO8eEctmgBC4e0JbY8MAjjn/t9TfcJ30pKUwf6Y+lcI97gxZVEBHxihPJ/Sc6rTW3uIKvVu3lX9+kk22EHtrgqsbq2MAp7UN46W83ExLodzLf0vHVU3ueY1FBTkRE6sYwYOEzx/6SOmxaq5mVwcotO3lnVRFfr95HZbV7hER4oC+XDUpkXGoSnWMO+xIuzj6pU2JFROSPMwyDmTNnHvWEq6LaxceLNvOBw0ZJ13FQZYX8MsICfDm/fxsuH5RA/8RWWCyWWp//8GlRm5YvpCohiAD/EAhqDYOu14UZEREvOF7uhxOb1lpW6WLuBgdfrNjD/M3OAytqh4JpELR/N2F5G6nakUF0eDAzn3i74YtxcNLb89SFCnIiIlI3dfmSCo6mPD6ZL9fl83buQNau3eDZ1LttOOOHtOf8fm0I8q9l2Hldp8SKiMjRneTpNkc74dpoL+LDpVl8vmIPBaVVEOpefKeNtYi/XjaSs/vEE+h3/ClGh0+L6jYwBb+OAbBnmft7IOQEToS0IIOItGAne2GCuhTbjjet1WWYLNmey+cr9jBnrZ3iimrPtt5twwlxrqdg9Y8MG9ALS1wU6cWtSU1NPaF+bif1fXvhXEQFORERqZvjfEll5ZXy3yW7+HBpPwrKqgDw97VyXt94xqcm0S+yCkuI7egnSlare9SdTqhERH6fephuc/gJ18CUofy0q5wPPvmVlVkFnn3iIwK5bGBbzugQTL/OCe6TIsPAKLLjLDWxxcQe9UTJarUyffr0QydUcOLfA16YZiQi0lic1BVRD1zcsEVHHbeHnCd/ZzuwBVuwHoglbcNO/rc+j7lbCrAftkJq21ZBXDygLRcNaEPnmDAMYzhO50We5z7RwtpJXwnWC+ciKsiJiLRkJzKioJYvKcMwWbg1h7cX7+THjdmYBxZpSGgdxLWpSVzRM4jIqFj3VNeFdThR0gp3IiK/Xx2n25zIiAKr1cqFN9xKfqcxfLYpj7c/WwuAr9XCWT1juSI5kVO62PCxWjzP7bDvI3rDW2yb/yFpe6rZmXg50++//5hFuRojIk70e8AL04xERBqLuoxmq1PeP+zihjVhMNP/Ng1nTu4xj7ECsZveIXfHaj6pHMKrO2LIMUM828MDfTmvXxsuHtCWQUmtsVoPtS/4be4/5si4Ws5Z6mUl2AY+F1FBTkSkpfo9IwoOfEkVV1Tz2fJM3ly0k+3OEs/mkV2iuX5oe07vGo3Pr0/D3AyI6Q6ODVCSrRMlEZH6VIfpNnUdUVBSUc1Xq/bybloma/YUeh5vHxXMVSlJXDowAVtYQK3PvWnZAqb32YdvWR7tfQ2+W77w5JwoHY1aHohIC3a8qaN1Hkn2m4sb1rK8Y+btKpfBz6u28MmvofxYdDnVB8pLpquaqsyVJBl2Pn72QRLbxv+xN3iUc5a6rgTbmKkgJyLSUv2OEQW7ckt4a9EuPs7IYv+BPhChAb5cNiiBa4e0O7RIw+ELNJgmxPaEbItOlERE6lMdptscb0TBJvt+3k3bxefL93jyvL+PlTG947g6JZEhHaJqjHCo7bkd9lwyomFwfCQ7C6HbwBH1e6Kklgci0oIdMfX/9y6+EBQJMT3cv91r+81+YJTapqIAPl6+hy9W7iGnuBJoB0BsRSY5GzMwd2UQ6Crn7HHjaBt/Ei7EHOWc5XjvuylQQU5EpKWq44gC0zT5dWsus37dwbxNh6aldowO4fph7bl0UAKhAb/5Ovntc4+YCmV5OlESEalvh0+3qWWKT20jCsqrXMxZa+e/S3aRsSvf81Tto4IZl+oeDRcVGlDbq9Vw+HPvTErh6tsnEVluOWYPuZNGLQ9EpAU7fPrnb6en1mkkmWG4W8w41kNsD/dv98PydmFJBV9++jYf7/Bnddmhc4boUH8u6t+G0oxPWbM2jXOGpDDptb974jkpuf8Y5yxHtDxoYiymefDUSqT+FRUVERERQWFhIeHh4d4OR6R5OV4/uNq2H+OY8ioXX6zYwxu/7mCzo9jz+OndbFw/rD2ndLEddZREneKRFkO5X6T+HLUv0IEpPmbWUopb9yBk7INYfXxrHFPpG8p7S7P4cGkWeSWVAPhYLYzuGcs1qe0Y1unoo+FOOB5pcZT7RerP0XLtwempS5YsoXfv3syYMQNfX9/j5+bibJh9q3sUWmgsXPgiRrCNJTty+WhpFt+u3UdFtbt05IvBmd0iuTy1M6d2s+HnY63/3N9Mzys0Qk48fvnlF5588kmWLVvGvn37+Pzzz7nooos8203T5KGHHuLVV1+loKCA4cOH8/LLL9OlSxfvBS0ibsfrB3e07bWMKLAXlvPOkp28l5ZJfql7tdRgfx8uH5TA9cPa09EWWreYNFpBRKReHbMvUGkOZtZS9m1dxe6CpSxcVskd9z8GWFi4NZe3F2cxb6MD48Cl+fiIQMalJHFFciKx4YG/O6amPlpBRKSxqzX3A5Tm4Cx2sWTJElauXElGRgYAM2fOPH5uPmwUmiN6CB+nFfDRsnVk5pV6dukWWs4VYau5qEc4UaPurHGuUe+5v5meV6ggJx4lJSX069ePG2+8kUsuueSI7f/4xz94/vnneeutt+jQoQMPPPAAY8aMYf369QQG/v4fbiJyEhyvH1wd+sWt3VPI6wt38NWqvVQfOENr2yqICcPbc/ngRCKC/BryHYmIyHEcsy9QcDTFrXuwu2ApGXYLP27fgP83aXy2qYLtOYcW4xneOYrrhrRnVI8YfH2az6gDEZHm6ojcn+0gdtM7kLUUW0wP+vbuSUZGBr6+vqxZs4b169fTs2fPY45cc2Fhvm08720bzryfCzDMLYC7V/T5/dpwZXIi/dqEYSkb2exGqXmTCnLicfbZZ3P22WfXus00TZ599lnuv/9+LrzwQgDefvttYmNj+eKLL7jqqqsaMlQR+a3j9YOrbbthYJQ4+THT4LWFO0nbkefZPaV9JDeOaM+oHrE6QRMRaaSO2RfIaiVk7IN8tdSH/5X4U9K+O0/96s7zwf5WLh+UyHVD2x9ajEdERJqEI3J/kAk7fwXnRqx7l/PoGeMwuZ7Va9ZSUVHBvffeS2pKCn+69hJs7Xt42hcA7Cko46OlWXyUkcW+wnLP48ntW3NlchLn9Ikj2P+wslEzHKXmTSrISZ3s2LEDu93OqFGjPI9FRESQmprK4sWLj1qQq6iooKKiwnO/qKio3mMVaZFqW2Hut70WDm4PiqQs384n33zDG1tD2FEZAYCv1cK5feKYOLIjfRNaeff9SJOm3C/SMGpbYc4wDBzZ2WwssPDW4l38XD4Yotz7d/TN4RwWkbEmE9+KziSNfRKHw6F+b3JSKPeLNIwauT86CuuCpzHzd2KWF2IJjMDHuZHHpr/A+swc7r33XvbsziLMfwXbc14nPbA9Z/zft8xZvZtvNhXy8yanp3VBq2A/Lh2YwNUpiXSOCfPum2whVJCTOrHb7QBHzAuPjY31bKvNzJkzefjhh+s1NhE54Lcr69XSM87pCuOdN97hnZ3h5LvaABBuKWVcqw1cH7ON+Da9oM3dXnwT0hwo94s0nMP79pSUVzH5sdfIKAqjIrA1ABYLnN7VxsAdrzGoYA5LsqoYUFnJAMcS3pr0HbPzOpM6ZGjN/nMiv4Nyv0jD8eT+4mzM3RnsKyiBMoOyaj86JAzGGhpD9+7RlJeXU5m/l57hVZRUR/D9/nb8ZdqnGMFRnuca2jGKq1ISGdMrjkA/Hy++q5ZHBTmpV9OmTWPq1Kme+0VFRSQmJnoxIpEW4jc947ZlZfHaskI+XbabSpe7aJfok8dE/x+5PGgpIZRDWSzsLqu1v5zIiVDuF2lYjqJy3l68k3cW76SoMgkCweqq5PLBCfz5zJ4EuYqZNHEPX+ZFUlhYwCPJZcQEA6VOSpz+pKVZa/afE/kdlPtFvKBGv9BgFpfH89TN44m1Wsl1OgkIDMTSaQT/CO7PjvABGJYDJaDKEqKKtvDvu68luXs7776HFkwFOamTuLg4ABwOB/Hx8Z7HHQ4H/fv3P+pxAQEBBAQE1Hd4IvJbB3rGZWzaxb8dI/jh5bWeTf0iSvlTRDpjukfhU50E2cXgqgSfgNr7z4mcIOV+kYaxbm8hry3Ywder91Llcs85CrNUELI3g7M6hfDw5RcemMYaRErqENLS0jhn9IUYlQupLNnGboIIsSUd2X9O5HdQ7hfxggP9Qhcuq+SnrWtISR2CLSaW/eVVfLu1lL19J1BiBrHtwO4uxxZ8dy6mW3Apw4ekMKiriubepIKc1EmHDh2Ii4vjxx9/9BTgioqKSEtL489//rN3gxORGgzD5IcN2fxn3XCWZfYC3FOWRvWIZfIpHRmcGIGl7NRDhbcDfeUoy9OqSSIijZxpmvyyJYdXf9nOwq05nseT27dm4ogOnNk9hrzc4TX6wv221xymQW7mJgYmdOHcvHz1kBMRaSp+2yMasPr4csf9j3GN00muK5AHZq/j8xV7KK10AUEE+1m5aEBbxqUkQkE7una9hfx85f7GQAU58SguLmbr1q2e+zt27GDlypVERkaSlJTEHXfcwaOPPkqXLl3o0KEDDzzwAG3atOGiiy7yXtAi4lFR7WL2ir3855dtbHOWAODvY+XSQW2ZNLIjnWyHraR3+JTUg/+taaoiIo1WZbXBV6v28uqC7Wy07wfAx2rhnD7x3DSyQ43FeGqbenp4rzmwYuvQ66j7iohII3SUHtHVLoMfNjiY9etO0nbkeXbvEhPKdUPbcfGAtoQF+rkfTHD3F1XubxxUkBOPjIwMTj/9dM/9gz0grr/+et58803uueceSkpKmDx5MgUFBYwYMYI5c+YQGBjorZBFBCiuqOa9tF28vnAHjiL36mZhgb5cN6QdNwxvT0yY/o2KiDRVxRXVfJCeyWsLdmAvKgcg2N+Hq5KTmDC8PYmRwV6OUEREGsRvekTn5ezjg/Vl/HfxLvYWur8ffKwWxvSK5boh7RnSMRKLxeLloOVYLKZpmt4OQlqOoqIiIiIiKCwsJDw83NvhiDRpucUVvLVoJ28t3kVhWRUAceGBTBzRgatSEg9dCRPxMuV+kTo6bCpSbmnVETk+JiyACcM7MC4liYhg5Xhp3JT7RerGMAxPS4FjTiE9MEJuw5ZtvFk+ki/sUVRUGwBEhvgzLiWJa4YkER8R1ECRyx+lEXIiIk3FgRO1vRVBvPLzRj5YmUN5lftLuGN0CDef2omLBrTF31e9IEREmpwDJ1q7t2/gtfLT+WCvzZPjk1oHcPOpnRmZGEDb+Fj1/BERaSYMw2DGjBmkpaWRmprK9OnTDyzG4y7SRUVFkZubS1RUNPO35PD6plNYtL3XwaPp3TacG4Z14Ly+8QT6+Xj1vciJU0FORKQpMAx2zHmel1ebfFbQiWrcX7h92oZzy2mdGd0rDh+rhqSLiDRV27N28/ISfz7Pv/hAjjfo0zYCW84K7L98x+vfl/FuYCBDhgzxnLCJiEjT5nQ6SUtLY9++ffzyyy9MmjSJ2NhYZsyYwZIlSyitdFEW34/StikUme42ND5WC2N7xzFhWHsGtWutaalNmApyIiKN3EZ7ES99v45v1nfCwH0CNjRgJ7fEb2bENX/DEqamrCIiTdVGexEv/bSNb1bvxTC7ADDcfxu39LPSadglTLrpcfbszsJutxMfH09aWhpOp1MNuUVEmoJaVkU9nM1mIzk5mffee4/i4mJeffVVbrrpJhYuW8uOkF5UdE3GEhAMJoQF+DAutR3jh7WnbStNS20OVJATEWmkVmUV8OJPW5m73nHgEStnhmUxJSqDgaGFkJgMITavxigiIsdxlJOxNbsLeWHeFr735HgY1SWCKVVvMsCyBcpjMUIuIzU1FdM0iY6OJigwgDNSemOLjvLGOxERkToyDANntgPbxrex7llWY1XUw1mtViZPnszChQvJz89n/upt7P1uJ5u7X4eJBQvgX5FPb/8cZt1zMxEhWqytOVFBTkSkkVm2K5/nf9zC/M1OACwWOKd3PLec2pFerSohaBKU5R31SpuIiDQSB/rCsTvDczK2Zu9+nvtxMz9syAYOy/Gnd6JXXBgsWAS7iyBhMNbQGKZPn+7uIxTZmrLvHyU0fwOWhc/UemInIiLed7Av3KZlC3iwv5Mu8eFYdme4L86Exhyxf0xMDB2HncvC3EByQhPZtjEPsDAwIZTJp3Rm3rvPs27tWp5/Zr9aFjQzKsiJiDQSadtzeWHeVhZuzQHc/SEu7N+GW07rTOeY0Jo71/JlLiIijUxpjrsYV+xg7ZbtPLttMT9sLgDAaoEL+rVhyumd6RIbduiYkXfXGFFnBff01OJswgo2Qkm2+zmPcmInIiLedbAvnMOeS5qtmnZJrQhIGOzO64epchl8s3of/56/jY0VXSDU/fv/nD7x3DSyA30TWuFwOHhx3TocDodaFjRDKsiJiHiRaZos3p7Lcz9sIW1HHgC+VguXDkzgltM70S4qxMsRiojI7xYczbrwETy7y4+5RUlAAVYLXNi/Lbee0ZlOttAjj7Faay+0BUe7R9kdHG33mxM7ERFpHGw2G6mpqaSlpbEzMQW/yya78/qBkW2lldV8kJ7F6wt3sKegDIAQfx+uTE7ixhHtSWgdXOtzpaamYrOpXU1zYjFN0/R2ENJyFBUVERERQWFhIeHh4d4OR8SrFm3L4dkftpB+oBDn52PhisGJ3HxqJxIjg49ztEjTodwvLdE2ZzHPzN3MN6v3Ae6pqRf2a8OtZ3Q5ctRzXR2nObhIY6LcLy2ZYRg4nU5sNptnimleSSVvLtrJ24t3UlBaBUB0qD8Thnfg2tR2RAT71fm5pHnQCDkRkQa2eFsuz/6w2TMizt/HylUp7kJcG62YJCLSpO3OL+W5H7bw6fLdGAcue5/frw1/OfMPFOIOOtroORERaVSsVqtnaqm9sJxXF2znvbRMyqpcALSPCuamUzpy6cAEAv186vxc0ryoICci0kDStufyzx82s2R7zULcn0/rRHyECnEiIo2OYbh7tpnUmG5UG+f+Cl76aSvvpu2iyuWuxI3qEctdo7vSI16jg0REmgrDMHA43Ctgx8bG/u5RaTtySvjP/G18uny353uhd9tw/nxqZ8b2jsPHajlpMUvTpIKciEg9W56ZzzPfb/Ys1uDvY+XKZHchTiPiREQaKcOAX56E1R+57/e9Ak756xFFueKKal75ZTuvLdhOaaV75MOwTlHcPaYbA5NaN3TUIiLyBxiGwSOPPMJ7770HwDXXXMP999+PFWptGVDbdNJN9v28+NNWvlm91zNSOrVDJFNO78zILtFYLCrEiZsKciIi9WTtnkKembuZeRuzAfdiDVckJ3Lr6Z1ViBMRaexKc2DXIvcIOYDMRTVWNq1yGXyQtovnftxMTkk1AP2CnNzTu4ThF5+tHm8iIk2Q0+lk4cKF2O12LBYLCxYswJntIHbTO55FdYwRU3Hm5BIVFcXMmTM9Cy5cNOFWXvppO3PW2T3Pd0b3GG45rROD20d68V1JY6WCnIjISbbZsZ9nvt/s+TL2sVq4ZEBbbj+zixZrEBFpKoKjod0wKNztvp84FAwD0+Xi2/XZPDlnIztySwFoH1TOPdGLOdtnKZbyWCi9XL3eREQau1oWyrHZbIwYMYLMzEwAhg8fDiU5mFlLsZRkY2Yt5dkZ9zMvfS29evVi7dq17C7zZde+SF5/cRHgXsTn7N5x3Hp6F3q2UcsCOTqtsioNSqstSXOWmVPMP+es5Yt1uZim+8v4ggONvDva/mAjb5EmTLlfmqyDPeQMA1a8w4otu3gk93SWF7gvrkT5lPGXVgu4JHIXwYl9sGZvhNiecMYD4KPr3tKyKfdLo2YYsOApz6g3Rt7tKcod7CFnGAavv/46S9PTmJpsclqnEIpb92Dcy8vYZ3cQ2LY71d3HYLe4R79ZLXB+33huPaMLXWLDvPnupInQLwURkT8ou6ic53/cwgfpu6g23T0hxvaKZerobnTVl7GISNNltUJYHHv3ZPHE4mBmF54LQJCflZtGdmSS9UvsC+fz7dZKNmb1Y/qw7lgd62HhMzVO7kREpJEpzXEX44od7r+HtSSwAvFhPjiKIT09HbvdwTNLY+k9/v+ISupGu/RnWbsLzLgeAFhMk/4Vy7gtfAGnxZ+F1dbfe+9LmhQV5EREfqeC0kpenr+NtxbtpLzKACycErSdu9usp+/FD0OoinEiIk1ZSUU1/5m/jf/8sp2K6o5YMLm0bQF/ve4SYlsF49g3jlUfzSLOJx/2fkxVVmcCqguPOLkTEZFGJjjaPTLu4Ai54Gj344eNnLO1HURqSgpp6emkpKay2xrPX99ezs8VPSAOTMOFdVc6vctXM7XNUuLKrFRtDyFgsPK/1I0KciIiJ6is0sWsRTt4+edt7C93N/IelNSKv8atYEjZgppf6iIi0uQYhsnnK/bwxJyNZO+vACClfWsePDOe3p3aHeo1FOJDvzYBWEqsxIb445fYD5yb9D0gItLYWa3ukcy/XTn1sJFz1j3LmH7H8yzcdR2zMpxc/PJiAHwsYO5Mo+DXD4gOhJ4XXcjO/B3Ehvji13GY8r/UmQpyIiJ1VO0y+ChjN8/9uBlHkfsErXtcGPeM7cbp3WKwmEOh+DLQSuYiIk3Hb5p6r91TyIOz17I8swCAxMgg/nZ2D8b2jsNiqZngraExdD7tKiq3/0plTD9377jygpondyIi0ugYhoHT6cRms2E9PF8fNnJuc8Rw/jl7N9+ucwDuhdouHtCWW07ryH9fXsYvziQGDhzII48+Sn7eVGzBFqyhMcr/UmcqyIlIy1DLKkp1ZZomc9baefK7TWzPKQEgoXUQd43uyoX92mK1Wg7uCCverrU5rIiINDzDVU1u5iaikrphrW2RhcOmJuXHpPLk/rN4f2kWpgnB/j7cekZnbhzegUA/n9pfwGqFkXfxr1/y+emz5aSseILp06fXPLkTEZEGVV1dzcaNG+nevTu+vkfmfsMwmDFjBmlpaaSmptbM21YrO3v+mWez1jL71zxM01HrQm1/+9vfKCkpYe3atTzxhHK//D4qyIlI83eMVZSOZ+nOPGZ8s4GVWQUARIb4c9sZnRmXmkSA729O0I7RHFZERBqW4apm/qMXEJK/nrWte3Lq/V8eWZQrzcGVtYz398Xz1Pr2FLiyADi/Xxv+dk534iOCjvs6zpxc5qWvxW53kJaWhtPpJDY2tj7ekoiI/NZvLrpXV1czZswY1q5dS+/evfnuu++OKMo5nU7S0tKw2+018ra9sJznftzCRxlZuAwTgLG94rjzrK50i6vZGzo3N5d169bhcCj3y++ngpyINH+/o1C2zVnM499uZO569xD1YH8fJo3syE0jOxAW6Ff7QUdrDisiIg3jsBOz3MxNhOSvJ5RSyF9PbuYmbB161dh9dZ4f0zMvZ02Ru/DWPS6M/7ugF0M6RtX5JW02G6mpqZ6RFjab7aS+JREROYoDF93NrKUUt+5ByNgH2bhxI2vXrqW4uJi1a9eyceNGevfuXeOw3+Ztv5AIZv5vA28u2klFtQHA6d1sTD2rG30SImp9aeV+ORlUkBOR5u8ECmXO/RU89+Nm3k93XxmzWuCqlCTuGNWFmLDAY7/O0ZrDiohI/fvNaOio4XewtnVPyF9PSeueRCV18+xaWFbFU99t4r9puzDNIMICfLjrrK5cO7Q9vj4nlrutVivTp0+vvReRiIjUn9IczKyl7Nu6it0FS1m4rJJb7/s7vXv39oyQ6969+xGHHczbmXvtfL25hFOfmu9ZqC25fWvuHdudwe0jj/nSyv1yMqggJyLNXx0KZeVVLl5bsJ2Xf95GSaULgFE9Yrjv7O50jgk7Yv9jvpamqYqINLzfjIa2lhdw6v1f1ughZ5oms1fu5dFvNpBT7F6c5+IBbfnbOT2whQX87pe2Wq2aqiQi0tCCoylu3YPdBUvJsFv4aesarsnL5btP32FjVg7de/SstYdclcvgw6VZPPfjFpz7a1mozVK3FdqU++WPUkFORFqGoxTKDMPky1V7+cecjewtLAegb0IEfzunxwlNWRIRES+rZTS01Wr1TFPd7izm/i/WsmhbLgCdbCE8clFvhnVSewERkSbJaiVk7IMsXFbJT1vXkJKSim3j21j3LKN3wmCwHjZV1TAwS5x8v8vgie82sd3pXqgtMTKIu87qxgX92hxaqE2kgaggJyItVsbOPB75ZgOrDizY0CYikHvGdtcXsohIU3SU0dCV1Qb/mb+NF37aSmW1QYCvldvP7MJNIzvi76spRiIiTc5h/UKtPr7ccf9jXON0YgsysX51+5F9ow2DZV++xMzVIWSUuke0HVyo7ZrUdvouEK9RQU5O2EsvvcSTTz6J3W6nX79+vPDCC6SkpHg7LJE6y8or5fFvN/LNmn0AhPj7cMvpnZk4ogOBfj7HOVpERBqt34yGztiZx7TP1rAluxiAU7vaeOTC3iRFBXsrQhER+SN+0y+UkXcfmjpqGEeMlN6ZU8ITX6/i240dAQi0VDNpWCJ/OqvP0RdqE2kgKsjJCfnwww+ZOnUq//73v0lNTeXZZ59lzJgxbNq0iZgY9c2Sxq2kopp//byVVxfsoLLawGqBK5OTmHpW1z/UO0hERBqBw0ZMFFa4eGLORt5LywQgOtSfB8/vxfl94+vcG0hERBqh3/QLNYqzcZZZDi2scGCkdKElguf/t5G3F++kymVixeTy1lu4s79J3Fnna/E1aRQspmma3g5Cmo7U1FSSk5N58cUXATAMg8TERG677Tbuu+++4x5fVFREREQEhYWFhIeH13e4IoC7T9znK/bwxJyNZB9o3Dq8cxT3n92dHhGVWhFVpJ4p90u9O2zExBzf03lwaxdPvr9ycCLTzulOq2D/A7saWhVPpAEo90u9OCzfG20HMeOXCtLS00lNTWX69Om4TPjvkl089+MWCkqrAPfo6PvGdiG6Yq9nkR+RxkD/J0qdVVZWsmzZMqZNm+Z5zGq1MmrUKBYvXlzrMRUVFVRUVHjuFxUV1XucIodbnpnPw1+t9/SJa9c6gOnn9uKsHjFYFj5dY7i7inIiJ4dyvzS40hyyd6zlocwhfFuaBFTQMTqEGRf3IbVDa5xOJ0agDYAZM2aQlpbmOXlTUU7k5FDul3p3cCT0iKlQloez2EXaUzdht9tZkpbGZ0u28K9F+9ie416woWNUIA+e35tTutqU+6VR0v+FUmc5OTm4XK4jlnaOjY3FbrfXeszMmTOJiIjw3BITExsiVGkJDAOKs91/a5G9v5ypH63kkn8tYlVWASH+PtzXzc73bV5jdO47WEqcNYa7U5rTwG9ApPlS7pf6YhgGDocD47Dcb5omH20oZ9TWy/i2tBu+FpNbT+vE//4yktQOrZkxYwYTJ05kxowZOBwO0tLSsNvtpKWl4XQ6vfhuRJoX5X6pL4Zh4LDvw/jlSZh9Kyx8BoKjscXEkpqaSqt2Pcjvew13f7mV7TklRIX4M9x/F0Hzn2XBx68o90ujpYKc1Ktp06ZRWFjouWVlZXk7JGkODg5Vn32r++9hJ2ZVLoNXf9nOGU/N57Ple7BY4PJBCfx0Sx9u9v+OgNJ97gKcBffIuNBYT9NXETk5lPulPhiGUaO4ZhgGWXmlXPd6Ovd8uoaiah/6xAfz5a0juHtsdwL9fHA6nTVOwsDdfiMuLo7U1FRsNpuX35VI86HcL/XBMAxmPPooD986jq0/v4952MX0ovJqqvpczI6uV7HXCMffx8qfT+vER9f3onD5/3DY9yn3S6OmKatSZ9HR0fj4+OBwOGo87nA4iIuLq/WYgIAAAgLULF9Ost80cz24pPmCLU7+78t1bHO6h6n3S2zF3y/oRb/EVkeuuhQS42n6qh5yIieXcr/Uh8OLa0vS0njx+7W8/OteyqpcBPhamXpWVyaO6ICvz6F8brPZSE1N9UxTio2NZfr06eohJ1IPlPulPjizHbTP+pjTbDmUFPlSmZiET5vBvL+6hKd/WOnpEze2Vxx/O6cHSVHBGIZBamoq6WlLOD2lN7G2KKb/5SacpZOwxcQq90ujoUUd5ISkpqaSkpLCCy+8ALivWCQlJXHrrbdqUQdpOL9Z7nxPnyk88s1G5qxzT52OCvHn3rO7c9nABKxWS83jVIATaXDK/XIyHBwh98uKTRR1Px+HEQpAaodIHr+0Lx2iQ456nApwIg1PuV9OBqPIztZnzsZSko0ZYiP33Nd4+NdSNtr3A9AtNowHz+/J8M41Z7sYrmpK5vyd0Pz1WFyV4BMAicnqGy2NikbIyQmZOnUq119/PYMHDyYlJYVnn32WkpISJkyY4O3QpCU5sKR55f5sXlu+nxf+uYCyKhc+Vgvjh7bjjlFdiQjyq/240JiGj1dERP4wwwTbyKvJLN9MhcskxN+Haef0YFxKUs2LL79htVqP6H8rIiJNgzU0hs6nXcXuzSt5suw8vvrUPVsrIsiPu0Z3ZVxKUo2R0Z7jyvIIK9gI+/fBfru7Tc1ui2dmjUhjoIKcnJArr7wSp9PJgw8+iN1up3///syZM0c/dKXBLdqexwOzN3qmp6Z0iOSRC3vTLS7My5GJiMjJtnlfIX/9eAWr9rpz/sgu0cy8pA8JrYO9HJmIiNQXwzDYZ3fwNZfw/O6+lFQaWCwwLiWJu0d3o3WI/9EPDo52t6nJMiE4yj1CTn2jpZHRlFVpUBq6Lr/LYVNNHcWVPPrNBr5atReA6NAApp/bnYv6t8ViOfoICRHxHuV+qdVx2ggYhsE+RzafrS/ihR82UWlaCfN18cCF/bl8cKJyvkgjp9wvtTleG4GD26Oiorjt0ReYVxBNRWAkAP0TW/HIhb3pkxBR1xdzf88ERUJZntrWSKOjEXIi0rgd6BfnylrG266zeHp7AsUVLqwWGD+0PXeedZTpqSIi0nj9phfob3v6GIbBXY88zbd50ZQHxQBWzgzayox2K4jrMQRUjBMRabyOcsHlYC/QgwvtTJ8+vUZR7uD2hctWU9btHDItXSEQfKrLmHZOD248recxWxQc4fB2NZqmKo2QCnIi0riV5rBmy3b+ljmaNZVxgIv+ia149KLe9G5bx6tjIiLSuBxltWyAapfB0/9bzRcl3TCDfLC6ynm0xx6u9v8VS6KmG4mINGrHuOBy+GrZaWlpOJ3OGq2P7I5s/relGHvnqzAtgVhMk9Z5azkn0eDG0y45sWKcSBOggpyIeM9xpivtL6/i6R+zeXvreRhYCPd1ce+5fbk6tZ2+kEVEmijDMHAWu7C1HYR1z7IaPX022fdz98erWLOnEKw+hBXt5LzYIq66/q9Yyq7SdCMRkcbuKBdcDMPAMAxSUlJIT08nNTUVm83mOWzN7kL+9vlW9rU5BYBoawmv3TyK+IBkrZItzZYKciLiHce4emaaJt+ts/PQl+twFFUAFi7sFcn9F/THFhHk3bhFROR3qzFdKSWF6Xc8jzU0hmoTXvl5K8/O3UKlyyA80JeHzu/J8LaDiImJcZ+IabqRiEjjd3AxhYO/8YOja+T+5ORkXn31VWJjY7Fare4L8N9v5u3FOzFMCAv05eZhbZh8Rk/8fH28/W5E6pUKciLiHUe5emYvLOeB2WuZu969pHm7qGAeubA3p3S1HecJRUSksasxXSk9HWfZn9hfXsrdH69iZVYBAKN6xPDYxX2ICQ/0brAiInLirFb3hfbDZsE4HQ5P7l+6dCk333wzVquV79fZeXD2OuxF5QBc2L8N08/tQUyY8r+0DCrIiYh3/ObqmREYxbtLdvHEtxsprqjG12rh5lM7cesZnQn009UxEZEm5SgtCWw2G6mpqe5REimpzN5UzNPfL6ei2iAs0JeHzu/FpQO1araISFNUYwXVw0Y1H577U1NTMQLCuPmdZcxZZwegfVQwj17UhxFd1CNUWhaLaZqmt4OQlkPLn0sNB07YtuwPYNoX68jYlQ/AgKRWPH5JX7rFhXk5QBE5GZT7W5g6rKC6fEsWj8/b48n7p3S18cSlfYhXWwKRZkO5v2Wpywqqjuxs5m4v48nvNrP/wAX4yad05PYzu+gCvLRIGiEnIl5TacC/lhTw0k9bqXKZhPj7cM/Y7lw7pB0+WrRBRKRpOsYKqqZp8m5aJo/9byNlVS5C/H24/7yeXJWcqFFxIiJN2PFWUN2eU8p9n2/3XIjpl9iKxy/pQ494FWul5VJBTkS8YlVWAfd+upqN9v0AnNk9hkcu6k2bVhodISLSpNXS0BtgX2EZ93yymgVbcgAY2jGKf1zWl8TIYPdxx1l5W0REGq/fTks9uIJqlcvglV+289yPW6isNgjx9+GvY7px3dD2+FgtNae5KvdLC6Mpq9KgNHRdyqtc/HPuZl5dsB3DhKgQfx66oBfn943X6AiRZkq5vwU6rLhmWizMXrmXB2evpai8mgBfK/ed3Z3rh7bHenA09HGmuYpI06Pc3/L8tri2bm8h93yymnV7iwA4rZuNGRf3oe2BC/DHm+Yq0txphJyINJilO/O455PV7MgpAdwrKT10fi8iQ/y9HJmIiJxUViuExpBXUsn9X6zhf2vcjbv7JUTw9BX96RwTWnP/Y0xzFRGRpsFqtRIbG0tFtYsXf9jEyz9vo9owiQjy46Hze3LxgJqL9hxvmqtIc6eCnIjUu9LKav7x7UbeWrwLE4gJC2DGxX04q6e+cEVEmqufNmbz109WkVNcia/Vwu1nduGW0zrh61PL6IejTHMVEZEm4sDI6NV5ftz9yWo2ZxcDcHbvOB6+sBcxYYFHHHK0aa4iLYUKciJSr9J35HH3xyvJzCsD4MqEfP424XIiQgK8HJmIiNSH0spqZnyzgXfTMgEIKM9jbCsHt54+9uhTkaxW9zRV9ZATEWl6DIPK+U/zwvIq/pXTF5dpwae6lFND7Lw07uyj5n6r1cr06dPVQ05aLBXkRKRelFe5ePK7Tbzx6w5ME+L9Sng88htObV0G5mhAU5FERJqblVkF3PnhSk9rgqicVbD6S7bFRON0XnfsqUgHprmKiEjTsm57JnfNj2NjeSQA0UWbMFZ8QXZUOE7nFcfM/QenuYq0RCrIichJt3xnLnd/tJLteeUAXDEogftbzyXcUaapSCIizVC1y+DFeVt4Yd5WXCbEhQfy5GV9+PnD5aTZozUVSUSkGapyGbw0bwsv/LQVlxFJpE85f++TzYrNxaRFhSv3ixyHCnIictJUVLv45/ebeeWXbRhYiA2o4vGrhnB6jzgw+mgqkohIM7Qrt4Q7PljJiqwCADr65PHpX66gdUgAwzUVSUSkWdqavZ87PlzJ2j3uFVTb++Tz0a2nEhPblnNAuV+kDlSQE5GTYsO+Iu78cCUb7fsBC5eEruWhpDVEJA5z76CpSCIizYppmny6fA8PzV5LSaULH1cFweu/JNiSQ2XxaAiJ1VQkEZFmxjBM3lq8k8e/3UhFtYG1upzgDV8RYsnBtJ4FVitWUO4XqQMV5ETk9zmwkpIrMIpXf93JM99vptJlEBnsx2PdtjG2epmmp4qINDOGYeB0OvEPbcUDX6zj6zX7AEhpXcLtpf9iR5tcdiZerilKIiLNyMHcX+0fyj2fruHXrbkAtLUW4pz7T6rKi0gZN065X+QEqSAnIifOMGDBU2Rt38hd2WNJzw8BYFSPGGZe0hdbyCgovVTTU0VEmhHDMJgxYwbz1mSS3ekcSkx/fDG4s9Mebg6ch7XUJLldR/wum6wpSiIizcTB3P/dxlyyE0+nEl8sRhUDLTspWzWXCj+T1jFJTJ6s3C9yolSQE5ETZpY4+Xh1AQ/vPZ8S058QfysPnd+bywcnYLFY3DtpeqqISLOyz+7gyx0mzg4XgGmlnV8hz9lm0z/IgNiekA0BCYOV/0VEmpHtmXv4cm8IzsSBAASU2Ala9RHlYb706d2bdRYLqampmqIq8juoICciJyS/pJJpX2QxZ89wwD1N6emJ55AYHerlyEREpL5k5ZVy++fbccYMAqCrTw6fnppNmMOEhGQYMRXK8jQyWkSkGVm6PYc73s7AGdENq+mir5+d/tF2MsL9SE1NZdq0aeTm5mrxBpHfSQU5EamzX7fmMPWjlTiKKvC1WrjrtLZMPqM3Pr4+3g5NRETqyTer93HfZ6vZX15NWKAv085M4qrhZ2OFmqtna2SciEizUO0yeGHeVl6YtwXD9CfJN5+n4n9m8HWPQmhMjRVUNTJO5PdTQU5Ejqui2sXT32/mlV+2A9AxOoTnrhpAn4QIL0cmIiL1pbSymr9/tZ4PlmYBMDCpFc9dNYDEyOBDO6kIJyLSrGTllXLHhytZtisfgEvb5vNwxP8IbdffnfNVhBM5aVSQE5Fj2pq9n9vfX8n6fUUAjEtJ5P7TbAS3CvNyZCIiUl827Cvi1veWs81ZgsUCt5zaiXH9WhHfKtDboYmISD2ZvXIP93++lv0V1YQF+PLoRb0YEu9DcPAoTzFORE4e/YsSkVqZpskH6Zmc98JC1u8ronWwH69cO5DHouYQ/O1fYMFT7tVWRUSk2TBNk/fSMrnopV/Z5iwhJiyAd25MoXzpx/zppknMmDEDQ7lfRKRZKa2s5p5PVvGXD1ayv6Kawe1a883tw1n99SwmTrqJGc+9ijK/yMmngpwAMGPGDIYNG0ZwcDCtWrWqdZ/MzEzOPfdcgoODiYmJ4a9//SvV1dUNG6g0iKLyKm57fwX3fbaG8iqDEZ2j+e6OUxjd3gd2Z0Cxw/23NMfboYqIyElSXFHNXz5Yyd8+X0NFtcHp3Wx8+5eRdAk3SEtLw263k5aWhtPp9HaoIiJykmyy7+eCF3/lo4zdWCxw+5ld+GDyEAKqS5T7ReqZpqwKAJWVlVx++eUMHTqU119//YjtLpeLc889l7i4OBYtWsS+ffsYP348fn5+PPbYY16IWOrL8sx8bn9/Bbvzy9wLN4zuxp9O6YjVagHDHxIGu4txCYPdjbxFRKTJW7+3iCnvLWdHTgk+Vgv3jOnGTSPdud8ItpGamkpaWhqpqanYbDZvhysiIn+QaZp8sDSL//tyHRXVBjFhATx7VX+GdXL/vrfZlPtF6pvFNE3T20FI4/Hmm29yxx13UFBQUOPxb7/9lvPOO4+9e/d6mnj++9//5t5778XpdOLv71+n5y8qKiIiIoLCwkLCw8NPdvjyBxiGyX9+2c7T32+i2jBJaB3E81cPYGBS69/uWHNVPRGR41Dub7xM0+S99Ewe/mo9ldUGbSICeWHcAAa1i6yxn2EYNVbVExE5HuX+xmt/eRXTPlvD16v3AXBqVxtPX9GP6NCAGvsp94vUL42QkzpZvHgxffr0qbGizpgxY/jzn//MunXrGDBgQK3HVVRUUFFR4blfVFRU77HKicspruDOD1eyYIt7Cuq5feN57OI+RAT5Hbmz1apV9UTkmJT7m4aSimr+9vkaZq/cC8AZ3WN4+vJ+tA458iKbVavqichxKPc3Dev2FnLLu8vZlVuKr9XCXw8bEf1byv0i9UsFOakTu91+RDI+eN9utx/1uJkzZ/Lwww/Xa2zyx6Rtz+X2D1bgKKog0M/Kwxf04orBiVgsR34pi4jUhXJ/47c1ez83/3c5W7OL8bFauHdsNyaNqP2ETESkLpT7GzfTNPlwaRYPfrmOymqDtq2CeGFcLbNhRKTBaNxpM3bfffdhsViOedu4cWO9xjBt2jQKCws9t6ysrHp9Pak7wzB56aetXP3qEhxFFXSyhTB7ygiuTE5SMU5E/hDl/sbty1V7ueDFX9maXUxseAAfXteNySM6qBgnIn+Icn/jVVbp4u6PV3PfZ2uorDY4rZuNWVd1o39ChLdDE2nRNEKuGbvrrru44YYbjrlPx44d6/RccXFxpKen13jM4XB4th1NQEAAAQEBR90uXmAY5Dr3MfXr3cw/MEX1kgFteeSi3oQEKCWIyB+n3N/4GIbBXruD/6Tn8M6STACGdYzi+fa/Er38FcgeDCPvVm9QEfndlPsbwAn2cjYMg4xNWdw/ZyebHcVYLTD1rK7kLfyAqbe6F2uYPn26+sOJeInOvpsxm8120lbDGTp0KDNmzCA7O5uYGHf/sLlz5xIeHk7Pnj1PymtIAzAMMr58iVszYrFXhxBgqeaRXg4uv2wsFh8fb0cnIiL1wDAMpj3yD77MtVEW7L6I1s/PzltXDMTvm2eg2OFePbs0Rz1CRUQaK8OABU+583XC8S+iGIbBxIdfYn5pAoaPP75VpYwO282lPQZy0zNp2O120tLScDqd6hMn4iUqhQsAmZmZrFy5kszMTFwuFytXrmTlypUUFxcDMHr0aHr27Ml1113HqlWr+O6777j//vuZMmWKroQ1EaZp8vpPa7lqSXvs1SF0stqZHTeLKyw/YCnL9XZ4IiJST75dvo1P9nemLDgOs6KEkGVv41rxOXnluE/qQmPdf4OjvR2qiIgcTWmOuxh3+EWUo6h2Gdz/6XJ+quiI4eOPa99Gghc+T2bGjwCkpqYSFxdHamrqSRvAISInTiPkBIAHH3yQt956y3P/4KqpP/30E6eddho+Pj58/fXX/PnPf2bo0KGEhIRw/fXX8/e//91bIcsJKK6o5t5PVvPNmn2AlQsitjMz7idC/Px0EiYi0kyZpsnrC3cw89stuHyDCCxzErN5NmH+laSmDsEWEwsxd5/Q9CcREfGS4Gj37/bdGdB2EJiGe9Tcb3J3TnEFt723gsXb3Rfco5zLidg9n6DocFJTU4mNjWX69Ok4nU5sNpumq4p4kcU0TdPbQUjLUVRUREREBIWFhYSHh3s7nBZhi2M/f/rvMrY7S/C1Wnjg3B6M7xuMJTgKyvJ0EiYi9U65v+GVVlZzzyer+Xr1PsDdK/QvI2JpG2sjNzdXJ2EiUu+U++uBYUBxNix/C/YsO2Lq6sqsAv7832XsKywnxN+HJy7tQ3KcL1FRUcr9Io2QRsiJNGOzV+5h2mdrKK10ERceyEvXDGRQu8OWNlevIBGRZmdnTgl/emcZmxz78bVaePD8nlw3pJ1nBW31ChIRaaKsVvdtz7Ij+n++n57JQ7PXUeky6BgdwiuXdaBzUrynWKfcL9L4qCAn0gxVuQwe+98GZv26E4BhnaJ4/uoBRIeq35+ISHP208Zsbv9gBfvLq7GFBfDyNQMZ3D7S22GJiMjJcvjU1YTBVPpH8tBnq3k/PQuAMT1jearNz4T9+i/YpRW0RRozFeREmpmc4gqmvLuctB15ANxyWifuGt0NH6vFy5GJiEh9MU2Tf8/fzj++24hpwqCkVvzr4nbExrbydmgiInIyWa3uIltpDk5XGH9+PZ2MXflYLHDXWV25on0FoYvSoCRbK2iLNHIqyIk0I6sz8/nTO0vZt7+KEH8fnr6iP2N7x3k7LBERqUcl5VXc+X4G329yX4i5OjmRhyO/w3/ec0f0FxIRkabPAH7ZVsy0/61hX2E5YYG+PH9VfxZ+/AoTn1nC1GST0zrFYNHibSKNmgpyIs3EJxmZ/O2zVVQaVjqGVPDKTaPoHHeUBrqGoVX1RESagd15JVz41P/INYKxYPLwBb0Y3zcEZi89or+QYRhaVU9EpCk67Le7AUx4+F/8UpaIafWlY3QIr10/mBCjhKfT0rDbHTyzNJbe4/+PqKRuyvsijZgKciJNXJXL4NGv1/PW4l2AlVHBW3mmXTrhoSOAWgpyhgELnvL0ndDICRGRpiljZx43vb2UfCMYS2UJ7XfPZUyn5CP6CxEcjWEYzJgxg7S0NFJTU5k+fbpOzkREmoLDfru72g7mIefpzK/oAFYIK9rJq7dcREdbKIYrkDNSevNTuklK6hBaJ3ZjxmMzlfdFGjEV5ESasLySSv7832WefnF3ds7mtsBfsSYeY3h6aY77JO03IydERKTp+GhpFtO/WEOVyyTSWkr0js8ZObAnNputRn+hgyOhnQ4HaWlp2O120tLScDqdWnFPRKQpOPDbfX9RPrfvjOCn/dkARDuXc3476JAQD4aBdeEz3NlxGzcNGkTI2Gk4c3KV90UaORXkRJqoDfuKuOntDHbnlxEa4MuzV/ZnVHcblJ577KmotYycEBGRpsFlmDz+7QZeXbADgHP7xPPEpb0pKTyl5pQkq7XGxRabzUZqaqpnpITNZvNG+CIiUlcHp6kGRZIVOZSJm21srmhNgK+Vf1zahyFtBh/K+8XuBRwsJdmEWSxQlqe8L9IEWEzTNL0dhLQcRUVFREREUFhYSHj4UfqbyXF9t3Yfd364ktIqg3ZRwbw2fjBdYsPq/gTqISciDUi5/+QoKqvklrfTWbijEIC/nNmFO0Z1wWKp2yra6iEnIg1Juf8POGyaanrwSCav7kJBmYuYsABeHT+Yfomtjrr/4S1plPdFGjeNkBNpQkzT5MUft/D0D1sAGB5VzEt/PpNWoYEn9kS/GTkhIiKN0GEXT7Lyy7jgqW/JN4PwweCZKwdw4YCEE3o6q9Wq6UoiIo2cYRjk7tpAdNZSPrNHc19OElW4iLKW8vktp9G2dciRB9XSqsD9sPK+SGOmgpxIE1FW6eLuj1fxzZp9ANwQvoz749fhy+nACRbkRESkcTtstMOykJFMWt2VfDMIS8V+2u3+niFtUrwdoYiInGSHFuBZQrv+qXxTPQgA/+z1xDp/xbfyFKCWghzogrtIE6SCnEgT4CgqZ9JbGazZU4ifj4W/99jD1Za16gEnItJcHWji/aW9NXfntKPSrHYv3rDzc0YO7K1eQCIizZDT6WRxegZbbaeytroXAP1891GdPZ8h6gMn0uyoICfSyK3dU8iktzKwF5UTGeLPv68dREq7VlB6oXrAiYg0U2ZQFP+qGMuTTvdUo7N6xPDMFf0oLTpFvYBERJopa1A4OX3GUWmEYsXgicv6cenAs3E6z1fuF2mGVJATacTmrndw+/srKKty0ckWwqwbUkiKCnZv1JB0EZFmqcplcP/n6/hws7sYN2lEe6ad0xMfq4WwIPUCEhFpjrY7i7lh1lKyjVDCAnz4z3UpDOvsHhGnPnAizZMKciKNkGmavLpgOzO/3Yhpwsgu0bw4biARQX7eDk1EROpRUXkVU95dzoItOVgt8H8X9GL80PbeDktEROpR+o48Jr+TQUFpFQmtg3hzQjKdY8K8HZaI1DMV5EQamSqXwQNfrOWDpVkAXJOaxP9d0As/Hw1RFxFpzvYUlHHjrKVscuwn2N+HF64ewJk9NCpCRKQ5+3LVXu7+aBWVLoN+ia14bfxgbGEB3g5LRBqACnIijUhReRW3/Hc5C7e6R0Y8cF5PbhjWHovF4u3QRESkvhgGa7fvYsKH23DuryAmLIA3bkimd9sIb0cmIiL1xOVy8c9v1/Diwj0AjOkVy7NXDiDI38fLkYlIQ1FBTqSR2FtQxo1vLmWj3T0y4sVxAziju0ZGiIg0a4bBL5+9zJ+Xt6XE8KN7XBhv3JBMm1ZB3o5MRETqSXW1iwv+723WV7t7Qk8Y3p77z3X3ChWRlkNz4EQagXV7C7n4X7+y0b4fW1gAH92UyhkJFjAMb4cmIiL16LMlG7kxI4kSw4+hIft4eWxr4sI1VUlEpLkqr3Lxp7fSPMW46Kz5TB4cqWKcSAukgpyIl/28KZsr/r0YR1EFXWND+eLPQ+m9/VWYfSsseEpFORGRZsg0TV7+eRtTv9xBNVYuiNjOBNcX3H73fcyYMQNDuV9EpNkpLKvi+jfS+XFLPlYMfJe+w/6M2bzyyivK+yItkApyIl70QXomE9/KoKTSxbBOUXx88zDa+pfA7gwodrj/luZ4O0wRETmJXIbJ/325jifmbARg8sgOTL/ydF7MMKjI20N62hKcTqeXoxQRkZPJXljOlf9ZTNqOPEIDfHn24q60t+QQEBBAenq68r5IC6QeciJeYJom//xhC8//uAWAS/pE8fhlA/GvyoegSEgY7C7GJQyG4GgvRysiIidLeUUVd76/lG835mMB/nZONy7oFkZUZGvuTIaQ/AJKWrfBFh3l7VBFROQkMAyDpZsyueOLbewrLCcq2I9ZEwYTZS3DMAwcDgc2m42oKOV9kZZGBTmR+mQY7hFuwdFgdQ9IrXYZ3P/FWj5YmgXA7Z2yudN4E8sHFeATAInJMGIqlOXVOE5ERJoGwzBwOp3YbDb3VIQD3wP7y6u46cXZLMkLwRcX8Zk/8MHDz/BFYCBnpvbhjk7BVBe2xS8iBEtZHoTGePutiIhIHR2e+wGcTidRUVFMffQ5viluh8s3iAhLGZHL3+HO+U9gsVjYvXs3cXFxBAYGkpubS2ysFnQTaUlUkBOpL4bh7gF3cKTbyLspqza57f3l/LAhG6sFHhnbjmt2vwVFe2G/HUJjYbfFXYzTiZiISJNjGAYzZswgLS2N1JQUpp8SgHXPMnJsqVy/bgDr8kIIsVRwd8XLvLPNztqd2cTFxfGTBW4aNIgwi1Wjo0VEmpjDc39ycjIWi4X09HSiew3nF6M7hq8/ASV2orZ8gdOexb59+4iNjcVisRATE8OQIUM8hTwRaTlUkBOpL6U5NXrB5efYmfjJDpZnFhDga+X5qwcwpkcMLBgMWSYER7lHyOlETESkyXI6naSlpWG329m0fCFVCUFklxqM3xTPjsoyov2reTPxO5x7/QiOTqR3aAyBgYGkpA4hZOw0jY4WEWmCDs/9CxcuBMDuG8s6sxemjw8hxbu5xObEN3ow6ekGUVFR7tyfnMzN112KrX0PrMr7Ii2OCnICwM6dO3nkkUeYN28edrudNm3acO211zJ9+nT8/f09+61evZopU6awdOlSbDYbt912G/fcc48XI2/EgqM9veB2Rw3l+nc2s81ZQnigL6/fkExy+0j3fiPvdhfvgiJ1IiYi0sTZbDZSU1LYtHwh3QYMZ7stghvS2uKoDqZtqyD+e2MyHYKHYgRF0jMnl6ioKHJzc93TW61WjY4WEWmCbDYbycnJLFy4kGHDhrHNjGFLRRJYrIzpGcP9Zw6kbbx7OurBqay5OU5sG9/GuuQR2O2eTaNzAJGWRQU5AWDjxo0YhsF//vMfOnfuzNq1a7npppsoKSnhqaeeAqCoqIjRo0czatQo/v3vf7NmzRpuvPFGWrVqxeTJk738DhohqxVG3s2mnZmM/2ArjqIS4iMCeevGFLrGhtXc7+AJmE7ERESaNCsw/ZQAqhKCWNO6NVct70ZhdTVdY0J5e2IqcRGBQBhW8PQKUs8gEZGmz2KxALDeaMPSqgSwwBWDE3js4j74+hwqtHlyf6gP7FnmmU1DaY7OBURaGBXkBICxY8cyduxYz/2OHTuyadMmXn75ZU9B7t1336WyspI33ngDf39/evXqxcqVK3nmmWdUkDuK5Zn5THh7I4XlLrrGhvLWjSnERwR5OywREaknRnE2VdsXkVYUwZ+2JFFmVjMwqRVv3JBMq2D/4z+BiIg0OQ6Hg18WLGBP5AC2VCUA8KdTOnLf2d09hbojHDabRi1rRFomFeTkqAoLC4mMjPTcX7x4MaecckqNKaxjxozhiSeeID8/n9atWx/xHBUVFVRUVHjuFxUV1W/QjciCTdlMfjuNMpeVAa1KmXXTmbQKDfR2WCIi9a6l5n7DMJjx7CuU2gP5JPxSqvDllC7R/Pu6QQT76yeXiDRvLTn3/+c/r7AjYgCuDqcC8NcxXZlyepdjH3hgNs3Blbg1XVWk5dG/eqnV1q1beeGFF/jTn/7kecxutx8xrebgfbvdXuvzzJw5k4iICM8tMTGx/oJuRL5ZvY8b38qgzGVlZNAO3m37Oa1oGT9KRERaau53Op18tymf90OvoQpfTu/citeuT1YxTkRahJaa++2ObGbvDcbV2V2Mu+u0RHcxzjCgONv992gOtq5RMU6kRdK//Gbuvvvuw2KxHPO2cePGGsfs2bOHsWPHcvnll3PTTTf9odefNm0ahYWFnltWVtYfer6m4P30TG59fzlVhsm5cYW83nEhwUn9NQxdRFqMlpj7AeZuL2N34plg9aGLby7/uT4Vf1/91BKRlqEl5v5ql8ET8/eRH9kTTIOR/juZMrq3uwi34CmYfav777GKciLSYumSbTN31113ccMNNxxzn44dO3r+e+/evZx++ukMGzaMV155pcZ+cXFxOByOGo8dvB8XF1frcwcEBBAQEPA7Im+CDIOXf1jDE/N2A3B1ShKPXtATn/JRGoYuIi1KS8r9hmHgdDr5YuN+Zn67CbBwWT8bj18+Fl9fH2+HJyLSYFpa7t+zz8EjP+7h+/UOfK0W/m9sZ8aNONe9YnZxtrs3nBZsEJFjUEGumbPZbNhstjrtu2fPHk4//XQGDRrErFmz3F8mhxk6dCjTp0+nqqoKPz8/AObOnUu3bt1q7R/XkpguF0++/g7/2u7+rG85tSN/HXugiau+fEVEmiXDMHj00Rl8tdPAGTMYgD+f1ol7xnQ7ehNvERFp/AzjqL3dDMPg4Ucf41NHFMVhSfj7WPjXNYMY1fOw1j5asEFE6kBDdgRwF+NOO+00kpKSeOqpp3A6ndjt9hq94caNG4e/vz8TJ05k3bp1fPjhhzz33HNMnTrVi5F7n2maPPzFck8x7r64DO4ZGaWTMRGRZi47O5svd1kOFeOGt+XescdYUU9ERBq/40w3zdpr55NsG8VhSViMKp6+sEvNYhwcWrDhwhfdfzVTRkRqoRFyArhHum3dupWtW7eSkJBQY5tpmgBERETw/fffM2XKFAYNGkR0dDQPPvggkydP9kbIjYLLMJn++Ro+WJoNwCNtlnBdvzBdBRMRaeZM0+SVpbnk2AYAkOqfxV/PPdvLUYmIyB9WmnPU6aal5ZXc99VWSkITsLqqGBuyg3MHX1D78xxcsEFE5Cgs5sFqi0gDKCoqIiIigsLCQsLDw70dzh9S5TK4++NVzF65F6sF/nFpHy7rHqh+cSIiv9Gccj+AYZj831freHvxLgDuOSOJm0f1OqLVg4hIS9Zkc//BEXIHp5seGOFWUlbJhOe/ID0/hFAfF89c2oNR/Tsp94vI76YRciK/Q0W1i9vfX8F369xNXJ+9qj/n9W3j7bBERKSeGYbJ9C/W8n56JhYLPH5JH65MTvJ2WCIicrIcnG56WA+54opqJryxmKX5IYRZKniz3Y8M6jpEF+FF5A9RQU7kBJVXufjTO8uYv9mJv6+Vl68ZyJk9Yo9/oIiINGkuw+TeT1fzybLdWC3w5GX9uHRQwvEPFBGRpuWw6ab7y6u4YdZSlmUVE+br4p12P9C/a3u1qBGRP0wFOZETUFbp4qa3M1i4NYcgPx9eHT+YEV30ZSwi0iwcY1U9l2Fy98er+HzFHqwW+OeV/bmwf1svBSoiIieLYRg4nU5sNtsR00/3l1cx/o10VmQWEB7oy3+v7k7f+BR3sU6j40TkD1IWEamj0spqJr61lIVbcwj29+GtG1NUjBMRaS6Osare4cU4H6uFF64eqGKciEgzYBgGM2bMYOLEicyYMQPjsNxfXFHNDQeKcRFBvrw3cBN9M6bBire9GLGINCcqyInUQUlFNRNmLWXRtlxC/H14+8YUUjpEejssERE5WWpbVQ93Me6vnxwqxr149QDO7Rvv5WBFRORkcDqdpKWlYbfbSUtLw+l0Au4L8TfOSmdZZgHh1gre7b2C3kULjviOEBH5I1SQEzmO4opqbpiVTtqOPMICfHl7YiqD26sYJyLSrARHu1fTC411/w2OxjjQM+6z5e5i3PNXDeDsPirGiYg0FzabjdTUVOLi4khNTcVms1FW6WLimxmk78wnzFrJO3Ef0rtsGcT2rPEdISLyR6mHnMgx7C+v4vo30lmeWUBYoC/vTEylf2KrY/YZEhGRJug3q+oZWJj22Ro+WbYbH6uF567qz9m9Y3E4HLX2GRIRkabHarUyffp0Tw+5SpfJ5HcyWLw9l9AAH94ckEX3vHKMhGFYR94FZXn6/S8iJ40yichRHGziujyzgIggP96bNORQMe4ofYZERKQJMgwoznb/d2gMBhamf7GGDzOyPAs4nNM77qh9hkREpOkxDAOHwwFAbGwsVYbJn95ZxoIt7n7Rb9yQzP9WFzDxyzJm/FKBsr6InGwaIScCR4x4c09TXcqKzAJaBfvx34mp9G4b4d63tj5DB5ZFFxGRpsMwDJzZDmwb38a6ZxkkDMYccRcPfLme99MPFeMu6NcGh8NBWloaDvs+Ni1bgDPbQWycpq+KiDQ1Bwtxr776Kunp6aSmpvLXe6dx6/srmL/ZSaCflTduSKZdcDVp6enY7XkUVC3B+em9xFRmYklMdo+o1ig5EfmDVJATMQz45UnYtQjaDaN0yJ3c+OYylu3Kdy9vPiGZ3hEV7v2s1kN9hnZnqIeEiEgTZRgGjzzyCOvS5jEzJY+O8ZGQlcEjs1fwbroDiwUeHNOB8w8s4GCz2UhNSaF91sektnVi2/g2xPxVJ2QiIk3Iwdz/ww8/sHfvXlq1asWStHRu/W86P2zOJ8DXytMXdCalfWswDc5I6c28NINAVzG7fv0UV2t/4gGLLsiLyEmggpxISTas/ghKsinLd3DjhiGk7yomLMCXd25Mpvf2Vw8V3w5eDTusz5BOxkREmh6Hw8H7773LtUkOLEVWqiOsPGe5gTfWuqcvjfDbySdPvUzWglSmT5/u7jN0x2SqPlmGf1UBlj3LNEJaRKSJcTgcvPvuu+zcuRMAEwuRY2/nh835+PlYOM1nMy8//BLLU1KYfkoAd3bcxjXdezDprfVkOCxgqSSsdQ/CdEFeRE4CVRJETPefctOPSXnjWLKrmNAAX96amEK/yOojp6eCuwgXGqNinIhIExYZaDA4HkqqLLxUdT4vbncX1/56RhL5y7/FbreTlpaG0+kEwBoaQ0Cn4Vi0yp6ISJPlcrkwTROLxULw8OvY4orGaoG/n92Rvcu+pzJvN5uXL6Bq+yIsJdnEVGZyemo/vi3uycLIqwgZ+6DOAUTkpNAIOZHQGMp7XcnkReH8WplIsL8Pb05IZmBSa/c0VU1PFRFpdmJjYxl7yXXs2/khKyJO4z95QwH42zndmTSiA3lpqaSlpZGamorNZnMfpBHSIiJNWmxsLNdddx3vvPMO9D2f4jaDAXjysn5c3D+OuGSTkPwCSlrF49dxKOxZjiVhMHdcPZVrcnK1yraInFQW0zRNbwchLUdRUREREREUFhYSHh7u7XAAqKw2uPmdDOZtchLk5y7GpXaMOrTDbxZ8EBGRE9MYcz+4ewn954e1PDEvC4A7R3XlL6O6eLY5nU6dfImI/E6NOfc/+fUqXl60F4BHLuzFdUPbQ3E25hdTqCrci19EGywXvgAWq84BRKTeaISctGjVLoM7P1jBvE1OAnytvH7D4JrFODg0PVVERJoNwzB4a/4GTzHu5lM7cfuZnT3brVYrsbGx3gpPRETqgWEY/GvuOk8x7r6zu7uLcQDB0VgSk/G3HJgZE6L2NCJSv1SQkxbLMEzu/XQ136y142dx8Ur/nQzrMMbbYYmISD0zDIObHn6RH8s7gMXK9UPbce/YblgsFm+HJiIi9cQwDG58+F/8XNEBgFtP78TNp3Y6tIPaEohIA1OWkRbJNE0e+nIdny7fgw8GL9i+5NSK+YcWbRARkWbrf8u2Ma+sPVistMrfwM2p0SrGiYg0c7PTt/JzeRIAkbmrubZfqyN30sJtItKANEJOWhzTNHl8zkbeWbILiwWe6rOXsWaRFm0QEWkBVmTmc89X2zCtPoQXbufitmXExqgtgYhIc7ZsVz7TvtkGFh8iCjZzUWI1Mcr9IuJlKshJi/PivK38Z/52AGZc1IeLk8+G0os1NF1EpJnb7NjPhDeXUlrpYlinKJ44ZyBt42O1aIOISDO2yb6fG99cSnmVwaldo5kxdiBt4pT7RcT7VJCTFuWNhTt4eu5mAO4/twfjUt3D1rVog4hI85aVV8p1r6dRUFpF/8RWvDp+MCEB+hkkItKcZeWVMv6NNArLqhiY1IqXrx1EsL9yv4g0DrosIC3Gp8t28/ev1wNw56iuTBrZ0csRiYhIQ8jeX861r6fhKKqgW2wYb05IVjFORKSZyymu4LoDub9rbChv3JCsYpyINCoqyEmL8MN6B/d8uhqAiSM6cPuZnb0ckYiI1CvDgOJsikoruP6NpezKLSUxMoi3J6bQKtjf29GJiEg9MAwDh8NBUVklN8xKZ2duKW1bBfH2janK/SLS6OgSgTR7adtzmfLeclyGyaUDE5h+Tg+tpici0pwZBix4ivLM5Uzedwkb8kKIDg3gvxNTiQ0P9HZ0IiJSDwzDYMaMGSxJW0pBv6vY44ogMsSfdyamEBeh3C8ijY8KctKsrdtbyKS3MqioNhjVI5YnLu2D1apinIhIs1aagytrGVN3pLCkNIRQfytvTkimXVSItyMTEZF64nQ6WZKWxtbIIVS4Igj0tfLGDcl0tIV6OzQRkVqpICfN1o6cEq5/I539FdWkdIjkxXED8PXRLG0RkebODIri4aJz+V9pFP4Wg1euS6F32whvhyUiIvXIZrPhN+AiKqrisWDy4rgB9E9s5e2wRESOStUJ8bjgggtISkoiMDCQ+Ph4rrvuOvbu3Vtjn9WrVzNy5EgCAwNJTEzkH//4h5eiPTZHUTnXvZ5GTnElPePDee36wQT6+Xg7LBERaQAvzd/O25lRWIBnrhzIsC42b4ckIiL17P2lWaysigfgsYv7MKpnnJcjEhE5NhXkxOP000/no48+YtOmTXz66ads27aNyy67zLO9qKiI0aNH065dO5YtW8aTTz7J//3f//HKK694MeojFZZVcf0b6ezOL6N9VDBv3ZhCeKCft8MSEZEG8OHSTJ76fjMAD53fk/P6t/VyRCIiUt/mrnfwwBdrAfjLmV24OrWdlyMSETk+TVkVjzvvvNPz3+3ateO+++7joosuoqqqCj8/P959910qKyt544038Pf3p1evXqxcuZJnnnmGyZMnezHyQyqqXfzpnQw22vdjCwvgnYmp2MIC3A2+S3MgOBqsqkOLiDRHP6x3MO2zNQDcclonxg9th8PhwGazYVXuFxFplpZn5nPb+8sxTLhycCK3n9FJuV9EmgRlKKlVXl4e7777LsOGDcPPzz26bPHixZxyyin4+x9aMnzMmDFs2rSJ/Pz8Wp+noqKCoqKiGrf6YhgmUz9axZLteYQG+PLmhGQSI4M9q+0x+1b3X8OotxhERKRhc/9Bq7IKuPXACdllgxK466wuzJgxg4kTJzJjxgwM5X4RkXrljdyfmVvKpLcyKK8yOL2bjUcu7Mljjz2m3C8iTYIKclLDvffeS0hICFFRUWRmZjJ79mzPNrvdTmxsbI39D9632+21Pt/MmTOJiIjw3BITE+slbtM0efSbDXyzeh9+Phb+c90gerU50MC7NAd2Z0Cxw/23NKdeYhAREbeGyv0HZeWVMvGtpZRXGZza1cbMS/qQk5NDWloadrudtLQ0nE5nvcYgItLSNXTuLyyt4oY308krqaR323BeHDeQ/Lxc5X4RaTJUkGvm7rvvPiwWyzFvGzdu9Oz/17/+lRUrVvD999/j4+PD+PHjMU3zd7/+tGnTKCws9NyysrJOxts6wmsLdvDGrzsAeOryfgzvHH1oY3A0JAyG0Fj33+DoozyLiIicDA2V+wEKSiu5fla6ZxGfl64ZiJ+PFZvNRmpqKnFxcaSmpmKzaWEHEZH61JC5v7La4E//zWC7s4Q2EYG8fn0yIQG+yv0i0qRYzD9SbZFGz+l0kpube8x9OnbsWGMa6kG7d+8mMTGRRYsWMXToUMaPH09RURFffPGFZ5+ffvqJM844g7y8PFq3bn3ceIqKioiIiKCwsJDw8PATfj+1mb1yD3/5YCUA08/pwU2ndDxyJ/WQExHxmvrI/eDuG3rd6+mk78ijTUQgn08ZTmx4oGe7YRg4nU71ERIR8YL6yv2maXL3x6v5dPluQgN8+fjmofSIDfX81jdAuV9EmgQt6tDM2Wy2331l6GDPhYqKCgCGDh3K9OnTPYs8AMydO5du3brVqRhXH37dmsPdH68CYOKIDrUX48BdhAuNacDIRESkPhmG+4QsfUceYQG+zJqQUqMYB2C1Wo9otSAiIk3bi/O28uny3fhYLbx0zUB3MW7BU+7WNAmDsY68W7lfRJoEXTIQANLS0njxxRdZuXIlu3btYt68eVx99dV06tSJoUOHAjBu3Dj8/f2ZOHEi69at48MPP+S5555j6tSpXol5s2M/N7+zjCqXyXl945l+Tg+vxCEiIg3vye838dWqvfhaLfz7ukF0iwvzdkgiIlLPZq/cw9NzNwPw9zFJnNo5Sv2iRaTJUkFOAAgODuazzz7jzDPPpFu3bkycOJG+ffsyf/58AgICAIiIiOD7779nx44dDBo0iLvuuosHH3yQyZMnN3i82fvLmTBrKfsrqklpH8nTV/TDarU0eBwiItLw3kvL5OWftwHwxKV9a/YNFRGRZmnpzjz++vFqACZ3yOGa3X93j4wLilS/aBFpktRDThrUyeglUVpZzVWvLGH17kI6RIfw2Z+H0TrkyB54IiLSOJzMPkILtji5YdZSXIbJnaO68pdRXU5SlCIicjKdzNyflVfKhS/9Sl5JJWO7t+Zfvs9iLXG4i3AXvuguwqlftIg0McpW0qS4DJPb31/J6t2FRIb4M+uGZBXjRERaiK3Z+7nl3eW4DJNLBrTl9jM7ezskERGpL4YBxdnsL61g4ltLySuppE/bCP55VTLWxN+MiDvYL1rFOBFpQrSogzQpj36znh82OPD3tfLq+EG0jw7xdkgiItIA8koqufHNDPaXV5PcvjUzL+2DxaJWBSIizZJhwIKncGUt4y+Oi9nsDCMmLIBXxw8mKNAPRt6tEXEi0uSpICdNxpu/7mDWrzsB+OcV/RnULtK7AYmISIOoqHbxp3cyyMwrJSkymP9cN5gAXx9vhyUiIvXlwEINT2T1YF5hGAG+Fl4dP5i4iAOraR8cESci0oSpICdNwg/rHfz96/UA3Du2O+f2jfdyRCIi0hBM0+S+T9ewdGc+YYG+vHHDYCLVqkBEpHkLjuZjRvFKYVsAnry0L/0SW3k3JhGRk0zje6VJ+GbNPgwTrk5J5OZTO3o7HBERaSAv/bSVz1fswcdq4V/XDKRzTJi3QxIRkXqWkVnA39YnAHD76Z24YECClyMSETn5NEJOmoSnLu9HcvtILh+coJ5BIiItxNer9/LU95sBePiCXozsYvNyRCIiUt+y8kr50zvLqHKZnN07jjvO6ubtkERE6oUKctIk+FgtjEtN8nYYIiLSQEzT5JNluwG4cXgHrh3SzssRiYhIfTMMkz+/u4zckkp6tQnn6Sv6YbXqYryINE+asioiIiKNjsVi4ZXrBvN/5/dk+rk9vB2OiIg0AKvVwt/O7kGXmFBeHT+YYH+NHxGR5stimqbp7SCk5SgqKiIiIoLCwkLCw8O9HY6IiDQA5X4RkZbnj+R+l2Hio5FxItLMaYSciIiIiIiINBoqxolIS6CCnIiIiIiIiIiISANSQU5ERERERERERKQBqSAnIiIiIiIiIiLSgFSQExERERERERERaUAqyImIiIiIiIiIiDQgFeREREREREREREQakApyIiIiIiIiIiIiDUgFORERERERERERkQakgpyIiIiIiIiIiEgDUkFORERERERERESkAfl6OwBpWUzTBKCoqMjLkYiINLywsDAsFou3w2hwyv0i0pIp9yv3i0jLU5fcr4KcNKj9+/cDkJiY6OVIREQaXmFhIeHh4d4Oo8Ep94tIS6bcr9wvIi1PXXK/xTx46UKkARiGwd69e0/oSmFRURGJiYlkZWW1yB8zdaHP6Pj0GR2fPqPj+6OfUUsdJaHcXz/0GR2fPqPj02d0fMr9v49yf/3QZ3R8+oyOT5/RsZ2Mz0cj5KTRsVqtJCQk/K5jw8PDlSyOQ5/R8ekzOj59Rsenz+jEKPfXL31Gx6fP6Pj0GR2fPqMTo9xfv/QZHZ8+o+PTZ3Rs9f35aFEHERERERERERGRBqSCnIiIiIiIiIiISANSQU4avYCAAB566CECAgK8HUqjpc/o+PQZHZ8+o+PTZ9Rw9Fkfnz6j49NndHz6jI5Pn1HD0Wd9fPqMjk+f0fHpMzq2hvp8tKiDiIiIiIiIiIhIA9IIORERERERERERkQakgpyIiIiIiIiIiEgDUkFORERERERERESkAakgJyIiIiIiIiIi0oBUkBMREREREREREWlAKsiJiIiIiIiIiIg0IBXkREREREREREREGpAKciIiIiIiIiIiIg1IBTkREREREREREZEGpIKciIiIiIiIiIhIA1JBTkREREREREREpAGpICciIiIiIiIiItKAVJATERERERERERFpQCrIiYiIiIiIiIiINCAV5ERERERERERERBqQCnIiIiIiIiIiIiINSAU5ERERERERERGRBqSCnIiIiIiIiIiISANSQU5ERERERERERKQBqSAnIiIiIiIiIiLSgFSQExERERERERERaUAqyImIiIiIiIiIiDQgFeREREREREREREQakApyIiIiIiIiIiIiDUgFORERERERERERkQakgpyIiIiIiIiIiEgDUkFORERERERERESkAakgJyIiIiIiIiIi0oBUkBMREREREREREWlAKsiJiIiIiIiIiIg0IBXkREREREREREREGpAKciIiIiIiIiIiIg1IBTkREREREREREZEGpIKciIiIiIiIiIhIA1JBThqUaZoUFRVhmqa3QxERkQai3C8i0vIo94uIHJsKcuIxc+ZMkpOTCQsLIyYmhosuuohNmzbV2Ke8vJwpU6YQFRVFaGgol156KQ6Ho86vsX//fiIiIti/f//JDl9ERBop5X4RkZZHuV9E5NhUkBOP+fPnM2XKFJYsWcLcuXOpqqpi9OjRlJSUePa58847+eqrr/j444+ZP38+e/fu5ZJLLvFi1PVn586dWCwWVq5c6e1QRESkgSj3i4i0PMr9IuINKsiJx5w5c7jhhhvo1asX/fr148033yQzM5Nly5YBUFhYyOuvv84zzzzDGWecwaBBg5g1axaLFi1iyZIlDR6v3W7ntttuo2PHjgQEBJCYmMj555/Pjz/+2OCxHM2mTZs4/fTTiY2NJTAwkI4dO3L//fdTVVXl7dBERJqkppD7D7d161bCwsJo1aqVt0MREWmymkLuP1jU++3NG+dJItI0+Ho7AGm8CgsLAYiMjARg2bJlVFVVMWrUKM8+3bt3JykpicWLFzNkyJAjnqOiooKKigrP/aKiopMS286dOxk+fDitWrXiySefpE+fPlRVVfHdd98xZcoUNm7ceFJe54/y8/Nj/PjxDBw4kFatWrFq1SpuuukmDMPgscce83Z4IiL1oqXn/oOqqqq4+uqrGTlyJIsWLfJ2OCIi9Uq53+2HH36gV69envtRUVFejEZEGjONkJNaGYbBHXfcwfDhw+nduzfgvjLl7+9/xFX+2NhY7HZ7rc8zc+ZMIiIiPLfExMSTEt8tt9yCxWIhPT2dSy+9lK5du9KrVy+mTp3quQp14403ct5559U4rqqqipiYGF5//XXP+/zHP/5B586dCQgIICkpiRkzZhz1ddeuXcvZZ59NaGgosbGxXHfddeTk5Bx1/44dOzJhwgT69etHu3btuOCCC7jmmmtYsGDBSfgUREQap5ae+w+6//776d69O1dcccUfeNciIk2Dcr9bVFQUcXFxnpufn98fePci0pypICe1mjJlCmvXruWDDz74Q88zbdo0CgsLPbesrKw/HFteXh5z5sxhypQphISEHLH9YMFw0qRJzJkzh3379nm2ff3115SWlnLllVd64nv88cd54IEHWL9+Pe+99x6xsbG1vm5BQQFnnHEGAwYMICMjgzlz5uBwOE7oRGvr1q3MmTOHU0899QTesYhI06LcD/PmzePjjz/mpZde+p3vWESkaVHud7vggguIiYlhxIgRfPnll7/jXYtIi2GK/MaUKVPMhIQEc/v27TUe//HHH03AzM/Pr/F4UlKS+cwzz9TpuQsLC03ALCws/N3xpaWlmYD52WefHXffnj17mk888YTn/vnnn2/ecMMNpmmaZlFRkRkQEGC++uqrtR67Y8cOEzBXrFhhmqZpPvLII+bo0aNr7JOVlWUC5qZNm44Zx9ChQ82AgAATMCdPnmy6XK7jxi4i0ly0tNyfk5NjJiYmmvPnzzdN0zRnzZplRkREHDduEZHmpKXlfqfTaT799NPmkiVLzPT0dPPee+81LRaLOXv27Lq8VRFpgTRCTjxM0+TWW2/l888/Z968eXTo0KHG9kGDBuHn51ejeeqmTZvIzMxk6NChDRpnXU2aNIlZs2YB4HA4+Pbbb7nxxhsB2LBhAxUVFZx55pl1eq5Vq1bx008/ERoa6rl1794dgG3bth3z2A8//JDly5fz3nvv8c033/DUU0/V+T2IiEjTyv033XQT48aN45RTTqlzzCIicqSmlPujo6OZOnUqqampJCcn8/jjj3Pttdfy5JNP1vk9iEjLokUdxGPKlCm89957zJ49m7CwME9fuIiICIKCgoiIiGDixIlMnTqVyMhIwsPDue222xg6dGitCzrUly5dumCxWOrUwHX8+PHcd999LF68mEWLFtGhQwdGjhwJQFBQ0Am9bnFxMeeffz5PPPHEEdvi4+OPeezBHho9e/bE5XIxefJk7rrrLnx8fE4oBhGRlqop5f558+bx5Zdfei6+mKaJYRj4+vryyiuveE4QRaTxK6t08eNGB91iw+gSG+btcFqcppT7a5OamsrcuXNP6LVFpOXQCDnxePnllyksLOS0004jPj7ec/vwww89+/zzn//kvPPO49JLL+WUU04hLi6Ozz77rEHjjIyMZMyYMbz00kuUlJQcsb2goMDz31FRUVx00UXMmjWLN998kwkTJni2denShaCgoDovlz5w4EDWrVtH+/bt6dy5c41bbT0tjsYwDKqqqjAMo87HiMjJZRgGDodD/w6bkKaU+xcvXszKlSs9t7///e+EhYWxcuVKLr744hN74yJy0tQ195dXufhunZ3b3l/BoEfncut7K3g3LbOBopTDNaXcX5uVK1eeUAFPRE6uxv6bXyPkxKMuQ8IDAwN56aWXvN6k+qWXXmL48OGkpKTw97//nb59+1JdXc3cuXN5+eWX2bBhg2ffSZMmcd555+Fyubj++us9jwcGBnLvvfdyzz334O/vz/Dhw3E6naxbt46JEyce8ZpTpkzh1Vdf5eqrr+aee+4hMjKSrVu38sEHH/Daa6/VOtrt3Xffxc/Pjz59+hAQEEBGRgbTpk3jyiuv1IpLIg3IMAycTic2mw2AGTNmkJaWRmpqKtOnT8dq1fWppqCp5P4ePXrUuJ+RkYHVavWsWi4iDeNEcn+Vy2Dhlhy+Wr2Xuesc7K+o9mxLaB1EfERgg8cvbk0l97/11lv4+/szYMAAAD777DPeeOMNXnvttXr4VETkaA7m/qioKGbOnNmof/OrICdNUseOHVm+fDkzZszgrrvuYt++fdhsNgYNGsTLL79cY99Ro0YRHx9Pr169aNOmTY1tDzzwAL6+vjz44IPs3buX+Ph4br755lpfs02bNvz666/ce++9jB49moqKCtq1a8fYsWOP+g/b19eXJ554gs2bN2OaJu3atePWW2/lzjvvPDkfhIgcl2EYNU7CJk2aRFpaGna7nbS0NJxO51FXWZPGpankfhHxvrrk/mhbDOk78vhy1V6+XbuPgtIqz/HxEYGc2yee8/q1oV9CBBaLxYvvpmVrSrn/kUceYdeuXfj6+tK9e3c+/PBDLrvssj/+IYhInRye+3v16sXatWtxOBy/6ze/aZq4DBNfn/r7vWcxT6RTpsgfVFRUREREBIWFhYSHhzfIaxYXF9O2bVtmzZrFJZdc0iCvKSKNh8PhYOLEidjtduLi4nj11Vd57bXXSEtLIzk5mcmTJ2Oz2cjNzeX/2bvvqLjq9I/j77kz9M4wDCSQXoH0wJCYZizRtbv2ronZdfW3rmVXI3bFqOtG3dVdNbFETYzrWmLvMZ0B0iEhPaEEhqH3MnPv748JE0ggFULJ8zonB2EK3zlHPnfmuc99viaTqdU32tX1DtL2lbB2dzEjo4K5aKRcfnIiJPuFEKdbW9mfYrXSf9w0/IZPZdnucgor692PCfP34qIREVw8qhfj+oSgKFKEOxWS/UKI06159pvNZuLi4sjMzMRisTBnzhyKi4sxGo1tvu8vr2lk9e4iVuyws3yHnfvOG8I146M7bL3SISd6LFVVKSoq4h//+AfBwcFceumlnb0kIcTxUlWoKQLfMDjFLiSj0UhsbCyapmGxWDCbzSQlJWGz2Zg/fz6zZs2irq4Ob29vEhMTSUpKosGpsX5/KWt2F7N2TzGbcspwqK7zV+fHmKUg14VJ9gvRfTW/xPRUO1APz/4qnR++CVdTZpjA1+X1sLEQAMVZxyCvKh675UImDAzr0E4I0XEk+4Xovjoq+xMTE1sU4ebOnUtKSkqL9/0Pz3mEzPxKlm+3s2KnnQ3ZpajNWtZW7SySgpwQJyM7O5v+/fsTFRXFe++9h8Eg/7sL0S2oKqx8CXLTIWo8TH7wpItyqqoyd+5cMjIyiIuLY86cOe4DvaIopKamkpeXR35BAWGDx1K0u4FN/1nF5gNVNDhbNpBHhfgwcaCR6cPCT/klio4j2S9E93T4JaanMuunKfs3ZO3FJ+4C1gaO4u1XVrpv16mNGGxbqcpcjslpx7N3LwbdfT7FRe3zgVCcfpL9QnRPHZH9zd/3GwwGzGaz+7LVvLw88kurCY2ZSG6eP5888yMV9S03fBgU7s+UwSamDAnD0t/YHi+zTZJUosfq16/fcW1UIYToYmqKXMW4Kpvra00R+J9cEcxut2O1WrHZbOh0OoqLi92zI+oNfgSNvYjs6Ab8/HpTbfChGrDlVALgq2vg/FH9mDgwjAkDjUSH+rbXKxQdSLJfiO6pKa9Pdb5neW0j/12znSU2M9XDRoNOgfxKDIqOqUNMXDIqkvVfLWRd5hrqghx4e0eSkJDAW2+9RVpaWpcd/C2OTrJfiO6pvbK/+XMd/r7fqWpk1xgwjLmcugF6fHzDqQVqAepVPHEwPbY3U4eGM2WIid7BPu35Eo9KCnJCCCG6Ft8wV2dcU4ecb9hJP5XJZMJisWC1WhmbMIEtxRr/sWayYoedPUXVQB8Ict3Xz1PPuCh/dq76mtp9G+kdaGDOX96WDR+EEOI0aJ7XFovFvTPq8ah3OFmWZWfpxjx+ySqkwaGCf28AzEol/3dJIheNiCCECvAN49JRc9w78BUXF6OqKnfeeads9iOEEKfZqWT/0Z5rZMJZrM5tYNkv61m+o5CKOicQCQfPrw8M9aQ8aw2N+zcR5dPIU/ct6JTcl4KcEEKIruHg3DjVJxT70JsxjbkFxT/8pC9X1TSNPUXVmKfcgHfoVJYcqOL999e5b9crOsb1CWHS4DAmDQ5jZGQASm0RyQW+WEsMp/ymQAghxLE1zQ4yGo3MmjWLWbNmYTabj9mhpmka6/aX8tmGPL7ZnE957aEdUoeY/blsdC/OivJi5MAo0FSqv38arXQbuuh4lMkPuj94mUwmbDYb8fHx7g45yX4hhOhYJ5v9bdE0ja35lQROuBYtYDIf2apZ/Mlm9+2eODh/RDRnDwtn8pAwQn0MJCX9TIatnkRLIqYwI1QVtsv86hMhBTkhhBDHrT2Hrh72xLDyJbScNJbvrmZemo4Ei2uDhaP9lsPXU9vgZO2eIpZl2Vm2vZDc0toW94/yaeAsz12cPcCPsy6ZSYCvl+sGpwN+fQZsW3lk8ji2XfEcw4bHyCVLQghBx2V/0+ygw4dsJz0yB6pa39hnX1E1n67P5bN1OeSVH9oh1RzoxWWje3P56N4MjwxAp9O5f8fLzyZxVvFH9An1JhLQHRyF4HA4SEpKIiMjg4SEBJ577jliYiT7hRACOjj7n32WrHUrsVU58fL2cW/AcLTfd/h6ahocrN5VzK9ZNn7NKsRWUd/i/sFaJYWbfkOXn0lMVBCP3fc2ZpMJR0UBjya9QkZGJrGxsdxx+22w8h+Qt+6U51efKCnICSGEOC7tOXT1CAfnxjWWH8CvNI/6kuBjXjbUtJ6V6zMIGzENz/7jWLu7mHrHocGsngaFxAFGzh5qYnIvHc73rkApKUSrD8fvwiuBCFcx8NenYcMiNMXA7l07eX7jrwwdN9m9M5MM+RZCnKk6Mvub5v3k5eWRn59PREQEqdYUqr9/moCyLPcHo/I6J19vOcCn63JZn13mfrwHTi4d24crx0aROMCIXtEd8TtsNhvzF39Obd9yzupbi//4YQT6hqGqKklJSbz33nvo9Xp27tzJqlWrmDJlimS/EOKM16HZX2ijX84nTI2wsyangSW5UaSkQFJSEpmZma3+vqb1rFqXgXGk633/mt3FrhEFB/l66jlrUBjnDAtneIjG1RedR0l2NgaDgbgZf8IUZkRd8Xd2/vIhwVvy2LjRi507d7I3I5XkhHIGRQTSuHs1HmNuQQmMaJfXeixSkBNCCHFc2nPo6hEOzo3z0DSqQ4LwCtWRcNhlQ4da28PIzK/ki/Q9fFQUTd3QsexoALbbAegd7MP0YeGcPcxE4gAjvp6uQ52tIJ8fDzjoZ1DZV+YgqEbDHIirGGjbBooB1dHApgN6tucWU1C1nMrKSrZu3SpDvoUQZ6zm2Z9qTaF4/zZMfYe3S/dA07wfTdMwGo14e3tzdsII/Eu30VhVxIqtBXy6N4Wfd5a5d75WdOBbkQ37UumjlPK3+97EbD76rFENHS9Z4VtbEJ8+OZvAmiLsVU4yMjIwGAw0NDTgdDopKSlh+XLJfiGEaJ79KSkpbN26td06iE2+Oiy9Deiq9Ewd6M8WDzNRw+LIyMhw74Zqs9lQFIWwsDC2FVTxRdpuFhVFUzdsLDR73x8V4sM5w8KZPtyMpX8o3h56APLz89HpdHh6emIymfi///s/irO3E7BnNYbaEsabIcjQSL3TyV5bBav31+F0OEi3lbAv502S7vvDKY3OOV5SkBNCCHFc2nPo6hEUBSY/iK6miKk+ocQUtexMqGtwcG/ya6QdqKcubAg1mqfrcT4m0DTC9dXcet5YzouJYHC4v/tSpRbrDzezL/pqfli/iqFjJ2EKP1hM9A2D6HgAdOHD2Fanp2L5R5SUlpGdnU1gYKAM+RZCnLGasj/VmsL98Rphq5+E7Ph2uaRHURSSkpJabLBQ7PDk2a++ZGmuH0UOH6AUgFClhj9eMJbLRvXirX++hHW/HUvCsY9FZrOZG264gVWrVjHprLMw71wMeesw9R5HosUCQGxsLD4+PixZsoSyMsl+IYRoyv6mkQIPPfSQa6RAO5ykUPzDGTTtOhr3rGFA/wnMG34rxjATc+fOxWq1Mi7ewhP/WUJ6fgP1YUOoPon3/c2zf+LEibz77rukpVq5b7xKlL+J/DInl1x3Ad4+vixZsoTkFY2Y/Bpwegbxf/yPxv+tx2vgWR1++apOk/2hxWlUUVFBUFAQ5eXlBAYGdvZyhBAnqMNmyB18bpvNBrjeBGTnF7KlSOXrjTms2VtGdUOzlnQPhalDw5k+zMQIo8KQvr2Oaz1trv/ghhL4hpFvs3HLLbdQXFxMdXU1ffr0YcqUKdIlcQok+4Xo3lRVpXj/NsJWP4muuhD8zXDZa+Af3i7PvWN/Hj9uL+GHHRVkHqhw3xbiY0DJWYdz1xqi/OHtBfMx++tdm/8UHf8lpe7s99FQvvozVNnA34x6yT+x1+rcGztI9rcvyX4hujdVVdm6dSsPPfQQNpuNiIgI3n777XY5SaE6Hdj3bUP1CcUUbmb/ARsbCx18kbaHdQfqqGk89L7fx0PB0jeQC0dGMdKkZ+gJvu9vvpN2ZISZBa8+D35hmMLNR2T/yIGRJCeUMzgyEF07HuvaIh1yQgghTo6qunYj0gF+p9bSraoqzzzzDIs++RxnRAxeAy3UBvVDUw4dpnxoxLtkB/GRXrz6yJ/w8fI44d+jKErrbyIUxX2wNZvNTJkyBavVSnx8PLNnzz6lXZ+EEKInUH1C0aLGQ246lUFDqa5oxOyrnnQ2OlWN5dsLefqDH9nXGAj6g3mvOvEr24OxYgdnD4tA3wdSC8CSkIAp633IW4cSNR7zCXQtuLNfVV1z6XLTIWo8in845kDXc0j2CyHEkYxGo/sKmZiYGBwOB6p68tkPB9/3P5vMok+/whkZh+eAeGoDokHRu+/T9L5/XIQnvfSVrP/Cyo58C1efwEmSpuxXVdX9GhIsFkz9Y93PcUT23zkL844P0TVt8OB79JEIp0o65MRpJWfKhOi+Wgx3TUggaYonyuZPXDeOvAam/PWkinIl1Q18snYHr366gmr/3uj0h4pwaoUN76Iswhvy+ei1uXh6eJyWIdsd2Ql4JpLsF6L7ap798ePH40cNCz76Ag0dN9xwA4899tgJ5eT+4mr+m57Dp+vyKKioc//cYd+Hc9cqgst3UnwgG5PJRL9+/ViwYAGKohzR3XbSXQvNOqJRlBbfq3Bk9h9+f3HcJPuF6L6aZ/+4ceOoqalh6dKl6HQnl/1N9hdX80nKLhZ8l0adf2TL31mah1fRdqJ1JSx6/j4UfxOqhru77VQ69A5/b9/8ezgs+1UVtaoQe42GKbxjT8xIh5wQQojj0ny46/b1q2jspcerutB14/41rg8sx/nhqLS6gR8yC/hmSz5rdhfjVDUI6osO0JUfIKhqH6HV+9HKDpCXm4tdp+Pdd97h0UcfPS0FsjY76YQQ4gzTPPtXrV5NQ0MDBbZCNE1j1apVxzVjrbbByXcZ+XycloN1b4n75yG+HkTU51K0fCEVhQfoHRWNV6SJ+ooS7HY7ERERmEwmDAbDEd1tJ9210KwjGlWFlS8d6pib/GDL13LY7R09S0gIIbqK5tm/Zs0aGhoaKCw8sewH0DSNnYVVfLelgO8zC9iWf3AswcFinK54HyE1OQRX72ffZisVVZXc9LswzClPo0QnoE66v11mWDd/b9/aDrLNX4sKJL86v0N2mD2cFOSEEEIcl+abOgwdm4DHIE+oOViQ6zvR/eGore6y8tpGfsgs4OvN+azeVeQqwh0U2yuQC+MiiI8w0CdkLCaTCbvdjs1m48EHH6SsrIzU1NROGa4t3XJCiDNZ8+yPj3dtgFNQUADApEmT3B+OWsvKjLxylqRls3TDASrrHQDodDBlsIlr46M5Z2gYHmvm0TAwiIbwKfjOeIyt27K4//77sdvteHt7U1xc7Mr9g5v/tGu3Wk2Rq9hWZXN9bXZiyT03LyfNNTfvsNuFEKInO5Xs1zSNrfkVfLsln+8yCthjr3Y/r17RYekfipq9gYL070kYMZRnX3+WrCxX9jsrCogLqsJRno+nLh2ltsS9+U97vRdvXmw8fPOeprl5KSkp7h1fO/LzhxTkhBBCHBdFUZgzZw5ZWVkMGzbMdUAce1uLGXKHn3G6/68P8+t2O19uOsDy7XYanIcGtMZEBnLRyEguGhFJvzA/4NBBHWDBggWkpKSgaRpms7n9d3Y9Dq2dQZOinBDiTNJa9s+ePRvAPWOteVaOTpjI4HOv57/puS02aIgO9eGacdH8flwUvYJ9XD+sKoS8dXg1lqMr3AzVRXz++efk5OQAHJn7zbvb2oNvWKtdd02vp2ln2WkDw9GdhllCQgjRVZxo9ickWLj89nv4LtPGd1vy2Vdc434uT73CpMFhXBAXwbnDzTRWlTJz5rNU2QvYsKEGu93uzn4dGlUhw/EI8nfncntfudK82Nj8ONP0epp2lj0dnz+kICeEEOK4qKrq3o7cXZwKjGhxH7vdToo1lZxGf3Ly/Fmc/DO1zXZJGhzuz6WjenHRyEgGmPyPeP6mg3psbCwZGRnYbDbMZjMvvPACMTExp70YdrQzaEIIcSZoLfsjI1vO/SksLGTZ5n3khSaSWRWD9uVWwPUhbEZcBNfHR5M4wIii6Fo+uW8Yau9x7PptCda8EjK3v8KWjEz8/f0JDQ3lzjvv7Njcb6Pr7lD225iXZibulicx9R0ul6sKIc4Yx5v9v23azQH/OLaXDeSd19e4b/MyKJw9NJwLR0QwfVg4Ad6HNmNTfUwkJCSwaNEiKisrefXVV8nMPJT9w2cvQBfo0WGzOxVFabXrrin7T+fnDynICSFED9XmpZYnOaD6aMUpTdPYnFvO5+vt7I6bSR0HD7qNKlEhPlw6qheXju7FUHMAOp3umM+vaRpxcXHodDosFssJHQzb8xLTts6gCSFEV9VWBp5sNh4t+8trGvl8Qy6LU7PZM/BK92OGhPtzXUIfrhjTmxA/z7afXFGwD7uFp1/5he25xYSbM1tk/4mcADnp7G+l66559idYLBilGCeE6OI6MvtTrSkU79+Gqe9wNJ2OrIJKvtmcz1ebD7B/0NXux3h7KEwfFs6FcZFMHxaOn5fh0OcO9dDnDkVRuPPOO1m5ciUlJSVkZh6W/RGRx525J/v6Wuu6O/x9/+loBpCCnBBC9EBtXmp5kgOqVVVFVVXi4+NJS0tzF6dySmr4YkMen2/MazYfwoMQHwPnDAnh+gkDGR0dTGFhIWjVaJp/mwW5ww+Cc+bMobi4+IQOsO19iWlbZ9CEEKIraisDTyYbVaeD4uztGKMGt8jmsLAw1u0vZbE1m683H6De4eqC9vZQOGdwCJfFGTln1AB0Oh02m438ikOXN7XGFG5m6LjJlDkk+4UQ4mS0Z/Y7HA6ysrIYMmQIFovFfel+xa/zWKRN4qvy/uxuNhPOy6AwsV8g0weHcIVlEL6eBmw2GxUldnzCTSir5rX6ucNsNjNlypQz/n2/FOSEEKIHarOj4bAB1mpVIfZa3VEPOi3nQyTw6utvsN6ucsMCKyl7Du2W5+2hcH5MBJeNjmTVJ/NJ/TCFjzfE8qWPD0uWLAE46jbprR0Ej9UdcfhZsY64xFR2XBVCdBdtZeDhP7fZbCiK0mb2q04Hy5+9FL/SrWSExDDnkS/ILihidW4DF7+25tAuecCwiABusPTh0pGR/Gvei7z6cQo/x8bi00HZ31o3hGS/EOJMdlzZn7KW7etXMXTMRBR962UgR2MD111yLqs2ZBEbN4J3lnyO34hz+MfGnWTsbJqhWY2nXmHqUBMXj4zk7KEmXn3pBZZ8nsKW2Fh8fbz58YvFlNQpzLr+ch4YtLfVjXEk+12kICeEED1Qm5daNhtgrfYeyysvv8yytAwSLIltnlVyzYWzklPvTW6eHx8t2OKeC6fTwcSBRq4YE8WMWDMB3h7YbDbmWVPYuHEjqamp+Pr6UlZWBnDMbdJP5CDY2lkxucRUCHEmaysDD98t7+WXXyYzM5PExNazvzh7O36lW/Gnhn1l5Tz0UQrf76qhusEJuDoiLhnVixssfRgTHezuhktJ6djsb6sbQrJfCHEmO2b2p6zlyrC9lC+8id++jmXaY18dWZRTVYo/n8ONkbvxN07kV4/JTP3HyoM3hqFHZVJYNZdMm8j5cZEEHpwJ1zz701Kt/C1Rz+Oj6kjPh59Wr+MP8WcRoNO12DiniWS/FOSEEKJHarPlummAdVUh1SteZ1Lpx3j76/jOSqsflvJKq1mYkkf2iDuo1LxcP2xU6Wf05apxUVwxNorIQC/sdjt+nnrAdfCPi4sjPT0dDw8PPD09CQsLw2AwtNgm/VS1dVZMLjMSQpyp2sr+pp/bbDZefvllFi5ciMHg+hjQWvb7Rgzke5+LWO0Yynb9QNhaCcBAkx83WvpyxZheNFSVYTIFuccQnI7sbyv35RJTIcSZ7FjZn5X2GyXvXINnYyO1eenY923DPHCE+/F1jU5+3biTz3YO5Dfzv3FgoClFE/qFcsnICH430JOQMDP2omL8D77nh5bZHxHowVizgzBvA2d5KXj3HoffBY9DbckpbdDQk7NfCnJCCNFDNT/rdESbt6LgX5ZFVLAn0EBd6Aj3h6UGh8ov22wsScthxY5CNHSAF76eCpeO6s3V46MY2ycEnU7X5hmr5ORkADIyMkiIj2f2jVeAXxjmiMh2O1i2dVZMLjMSQpzJjpb9iqKQmZmJwWDA4XAQFxfXolCWV1bLh2v38e7y7dTxO9CDQdExIy6Cmyx9SRwQiqZpreb+4dk/fvx4rrjiCkwmE5GR7ZP9R+uGkOwXQpzJ2sx+IKrwV7z9nDgdsCLXg2E+oaiqhnVvCZ9vyOW7LQVU1juAvgAMIZsrzAVcds0sevWOdj/nsbI/M2MLWm+VvhEa/aLimfq7J12deIdtnHOienL26zRN0zp7EeLMUVFRQVBQEOXl5QQGBnb2coToUY62u1JycjIpKSnExcWRnJyMQVFg5UtoOWlUBQ/Db/Jd7K8P4KP0XD5dl0txdYP78YbSfZird7P4+QfpG9Wrxe+02WzMnDmTgoICIiIiePvtt1u+GSi0Ycp6HyVv3QltInGqr1l0LZL9QnScE8n+pg9OKSkpxMbGcu+99xIREcHaPaUsXLuPX7bZUA9+MlDqygkr3857j91JzIAo9/MeLfebfq/NZmP+/Pmkpqa2y6Dt43m9ouuR7Bei4xx39s+5F/3X95K/ayP5pbV8FnQHHqMv46cd5eSV1bofZw7wRN2zlquc3zI9uIDh067C/5Ln4eClrced/W+9xY4Nqxk6dhJJjz4q2X8M0iEn3FasWMHf//531q1bR35+Pp9//jmXX365+3ZN03jiiSeYP38+ZWVlnHXWWfznP/9h8ODBnbdoIQTQ+lkrcLV4q6rqnu2Qnp4OwNy5c1EmP0hjeQG/fb+Uj/75LWuqI93PFx7gxZVje1OU+hVZGSuwWCxER4ZDVWGLlvNjnrHy10PeOvcmEs2HubaH7n5WTAghTsXJZH/Tpauvv7mAq+b8k9re8ZRpPu7nnDDAiG9eGgUZP5JoSWBInwhsNpv7Q9CxZvY0dUykpqa266Dt5s8vuS+EOJOdSPbr0Hjo3AR+LRnKfz3i2FwZAKkFAPh7GbhoRCRXjO3N+D7BzJ2bwmprKGf188e3ci+V3z+N3wWPo+gNx5/9aWkUFJRQ5kiV7D8OUpATbtXV1YwaNYo77riDK6+88ojbX3zxRf75z3+ycOFC+vfvz2OPPcaMGTPYunUr3t7enbBiIUST1nbQW7BggXuAd79+/UhLS8PDw4OMjAw27szlhz3V/C8tm+KaPgDo0Jg2KJjrJwxi+rBwDHoFdcZQ7PZbMYUZW922/JizG5ptItHaMFchhBAnr63sb+qAi4mJIT09HYPBQEZGBna7nVq9P/9Zkcsn1bGovbxAA18PhavGR3PLhL4MCg9AVROw26/BaDQyd+7cIy5ROtbMnp4waFsIIbqq48r+devwiB7Jt+W9+Oy3ITQ4Xe3POk1lhCOTYXVbuPueF+kb1dv9vElJSRTv34Zx9RMU7NpM7rp1rFrXwF8efU6yv4NIQU64XXjhhVx44YWt3qZpGq+88gqPPvool112GQDvv/8+ZrOZL774guuuu+50LlUIcZjDD4CqqrJixQpKSkpYvHgx0dHRDBk6DF2vWMoGTub3726haV6B2auRa4MyuTbGl97n39viklL32aiqg9uVt9LpdtQzVk2bSNQUndIwVyGEEEdqLfuXL1/O1q1bSU9P55ZbbuHWW28lIzOTqHHncN/nO1i7vwJNA/ReeNaXMTagkjcfuo0grQJ8/YBDuW6z2docpH20ToWeMGhbCCG6qqNl/7rt+xlz5V2E3vo6tTpvKgCcGkPN/kwOb+DcHU9hrNmLZgqnt7+uRQe0oiiY+g6ncmsMuWXppBfoWLZrCzdK9ncYKciJ47J3714KCgo499xz3T8LCgrCYrGwdu3aNgty9fX11NfXu7+vqKjo8LUKcSZqfgA0Go0kJyezf/9+Ghoa8PAP4UBQHI19LTR6BoJ68EH5W6nP/BkMZfzxq/9S6fREBVo9dJ5Kp5uitOtlqqLrk+wX4vRoLfv37t1LeXk5QUFBZGzbwWX3Pku6qZAfiutgn+tv0ZmzidDiLXz272R8vb0ISHvVNV7gsFmfp9Lt0FMvLxJtk+wX4vQ4PPufevY5djtC4ex78Y6OY9vB+wV46entyKdq84/s+K+VjVWVGM8J4JZzxuA0j+a5V+eTmpbWctanouB3weOsWtfAsl1bSLAkSvZ3ICnIieNSUOC6zvzwPy6z2ey+rTVz587lqaee6tC1CXFGUdU2u82adzSkpqZS7RkKcWfDoEQaFVfcB3rrqd7yM/a1n1Nt2weATdMYMuYsRo4cyYQJE1ofvi2dbuIESPYL0b7aHGatqig1RZhNJmx2O6mpqdTU1KD4heAZ/3v2DJ/O879ku+7rqKd26zLKUr/AUXqAPE1j6pSVTBk7jCfHFjM4MhBdKx3Q0u0gjpdkvxCn6LD3+UfbuMFut1Pi9OYf/9vAp1WxaInj8ATQVHrrK3n4mqmMMMKMc+8lLy+P2lrXBg73fFzMm+l1hPWpISc3j4CAgCNmfSp6A3959DlulOzvcFKQEx1qzpw53H///e7vKyoqiI6O7sQVCdGNqSqsfOmIOW7NNTpVUg40UhB3Ix4jgtw/H2z0ZPbZQxlv1nPBufdClR0PDw8aGly7qRYWFrJv3z4URWl7AKt0uonjJNkvRPtpbXi3oijgdMCvT4NtG0THY5p0P73jLGzyGU3ogARQDNQDUSE+XBkXyht/u5WSnL3oGhrQNNfQgsLCQjbtCsBqNtC3TzBerXRAS7eDOF6S/UKcgsPe56uT7if5uSNneFbW1DPzqdfZUhtErW+E67EGb9SqItRdaxios7Hknf8QGRlJfn4+4Mrx5u/7t+4vYqDBdVtISEibmzRI9nc8KciJ4xIR4fpjt9lsREYe2onRZrMxevToNh/n5eWFl5dXRy9PiO7vKJ1vbjVFbc5xK66qZ7E1mw+t+7FV1IMuCEVTCSjbydRIjVceuA/l4Jm2G264gVWrVpGYmMgPP/zA3r17CQgIoF+/fjKAVbQLyX4hjk+bnW/N2AttbF+3EltB8aEuBpMJfn0GNixC1XmwrCKKBVvXsFY3DsMg1+MilEqeuH4K58dGokOjMv3KVrO/b7/+7ItOxOOq2a5jinRCiJMk2S/E8Wk1+w97n2/ft809D9pqtZK2PZvvdlaxaPUuGnVDwRfQnJw9OIybJvbn+4WvsFWfS2JioruQZjabW33fHxjgz5jBvRk6dhKz//AH93w4cfrptKZTZEI0o9Pp+Pzzz7n88ssB16YOvXr14sEHH+SBBx4AXGe9wsPDee+99457U4eKigqCgoIoLy8nMDCwo5YvRPfSdEYsJw3Mw2H646Bv5XxJKx1yu4qqeXvVPj5bn0u9wzUcLszfi5sS+3B9fDTUVbTZ5m4ymVBVlaysLIYMGUJpaam0pYsOIdkvxJGaOt9SUlKIi4sjOTkZg8Fw+J1QV/ydXb8twZrnYF/01SQ9+ihKTRF1n/0f/9vnxTt109ijuj586RUdF42I4MqYYKaM6CfZLzqVZL8QR2oz+5u9z1d7j+PZ5XV8+NES1F4jCUu8nAL10N9QmKOQgYW/EhnZh3lzn3GfdG/z8tZCGyZfHapPKFlZWQyzf4NzXwoeAyaiTPmrnIjpRNIhJ9yqqqrYtWuX+/u9e/eyceNGQkND6dOnD3/5y1949tlnGTx4MP379+exxx6jV69e7qKdEOIk1RS5inEFm+HAekAH5zxx5MHx4Bw3rcrGqr2VvP1eOr/tsLtv9q4txBJcw5t/+wPengfjPcjniF/XvAVdURTi4uKAI2dECiGE6Dh2u52UlBQ2btxIeno64JrB1aIwVlOEkreOwZGB9OkTRPnUKyitaWBRSikLtl5FBb4ABHgbuCGhD7dO7Eev4CNzHyT7hRCiKzhq9h+c15xlq+PrfW/juPBxVK9AClRQdDB9UBDjtjyLpcFKXYAf4x9KcR8z2rrEVAHM2z+A3HSUqPHEjbkFNm/A0Fjm2syn2RU34vSTgpxwS09P5+yzz3Z/3zQD4tZbb+W9997jb3/7G9XV1cyePZuysjImTZrE999/j7e3d2ctWYiewTfM1Rl3YL2rM862tdWDY4ND5auNecz/IZWsStffnU4HUwYEk/3Te1Ts2UBxRATlpVfhLR+whBCi62k2nsBkMhEXF0d6ejoGg4GMjIwjZ3g27XCdk8aXOxVeeP5ryo2xONADvhjqSjGVZrLo2f9jQHSvTntZQggh2ta8e62t7A8PD2d9TjkL1+TxXUY+jeYEAPQNVYSWbuOcft7ce+HN/Lw2j0q9F9nOEAY26DnmO/7DR96MvcV1XGm64uawuaHi9JKCnHCbNm0aR7uCWafT8fTTT/P000+fxlUJcQZQFNdlquhcxbjoeFSfUOw2GyaTieoGJ0tSc3h71V4KKuoAb3x1DVwTupvbr72G6Kgokgt+xVqTLzPghBCiqzps7IAy+UGSk5MByMjIIDExEaPRiO1g9iuKAopC5sDZvLojgR/rKsHo6oQYbPKhd8VW7Bk/kmiJp1/viM58ZUIIIdrQ2sY8zbM/3jKBVTl1LPjgZ7YVNbgfN65PMNOjDXz95hvYC/LJsEfA7FvZ1+dqfli/iqFjJ2EKP44T8E0ndpoKcH7h7k68o86uFqeFzJATp5XMkhDiKA52Tqg+oSQ/N5dV67bgNWIGe5QoquodABh9DdzRO5er1e8JGzzePffheAaDC9FZJPuFAKoKYek9ri4FfzNc9hr4h7vz22g0Mneua0e9hAQL593wR95YsZflzUYTBFbuZaKxgdefuBedTie5L7o0yX4hXJsgzpw5k4KCAiIiInj77bcxm82UVNWxYFkWn24pcm3IBnjSyCW9Krn9iouJ6R2EzWbjjTfeYNmyZUyfPp3HH38c4MSz/3g2jxOdQjrkhBCiq1AU8A9n/fb9fJbjTemQG6HRADgYaPIjsnwrxanf8XltNWv89QwbV0/SFNdsCNmaXAghurjDuxQOXibUlN82m40Uq5VsRxC7CiN5Z0EqADo0Ast2cm3j10z33UmNEouOP6Moesl9IYTo4kwmExaLxd0hV6Xz5fWlGXySnkttoxOAYK2cm5QfuUb3K+E+MXgGnUdycjJr164lKyuLiooKDAYDqqpiMBhOPPsPfsYQXY8U5IQQ4jRrq5tt64EK/rN8N99sPoAaGgOArngP50SqPHX91fxh9kscyMmhoKCAoshIyp2pR84bEkII0SWpgH3ozZjG3ILiH96iS8HhVFmd10DeiNuo1FybMuhRuWyEiYz/vUpj3hbGx+QRoBhQyrZRnL0dU//YTnolQgghTsSsWbM465Lr+SSjnHNfXkHTNYrDIgKYeVZfAr++i8EVKTSisSZPY3iVE6vVyr59+8jLy0Ov15OZmUlWVpZ7Qx7RM0hBTgghThNVVbHZbMyfP5/U1FT3HIkNOWW8vmw3v2YVuu87sV8g2d8voC43k4L8CBTdNVgsFjRNIywsDC8vL2JjYzEajZ34ioQQQhzLEdmfkEDSX2aj+IdTr2p8ui6PN5bvJrukBvBBcdYTX7mcmd6/khh0Oa+OGY61oZxcnARRS5nfQMZGDe7slyWEEOIoVFWloKCAp978mFXFPlT7R7tvO3uoiTsnD2DCQCM6nY68yDe5csZkSkpK0Qfu5Zc7wWKxoKoqdXV1VFVVMWTIEIYMGdKJr0h0BCnICSHEadA00HXFihVkZ2fjHxDALxk5bPrPKtJzKgHXdua/GxHJXdMGMjwigGT7b1gdxVgsFsxmM0lJSdjtdkJCQnjsscfIyMhg7ty5JCUlyfwgIYTogg7P/sAAf/rlfELFfzfyqeF3vHWgn3t2UKifJ7dP7EvVqoWc07iUqGBPAsqySPrLv7DX/oGQ4CBeePyvWDfuJvX5FyT7hRCii3I4nMx+5t+sLvGl3m8I+AOqk4DS7ZwbBf+49YEW+a3oDZQ5vLDX6jAH6lAUxf2+PygoiAcffJA9e/bwwguS/T2NFOSEEOI0sNvtWK1WiktKUE1DqB51CcUBvdmXU4lB0fH7sVH8cdpA+of5uR/TdCBufmlr05yhzMxMbDYbVqtVLlsVQoj21k4DsJuyv6SkBIDoiFD2m4dxzp7JFKt+QD0Rgd7cOWUA1ydE4+tpQJ32FNXf6/Ev3YYuOh6dfzjmQMWV+Zl7KbAVSvYLIUQHONVN0lRV49uMfF7+IYvd9QPAD3A04G/fTMPm7/DSO9iZH4HdfkuL/Dabzdx4442sXLmSyZMnYzabW8wX3bdvH4WFkv09kRTkhBDiNAgLC6PXuPPYXRpAo6+ZRsBTr+Oa+Gj+OHUgUSG+RzymrY0aDh8OazKZTsMrEEKIM4SqwsqXDm2+MPnBlkW5EyjWNeX1mrT19Bt5AbsMfVlf5xriHe3TwF0zxvD78dF4GfTuxyh6AwEXPnnE75DsF0KIjtPU0dyUsYd3oh2tWOdUNb7Zks+/ftnJzsIqADxwEly4gXP7GLjnvlm8/bbOPbLm8PxWFIVHH3201eeX7O/ZdJrWNFJQiI4n25+LM42maazcUci8H7exMa8aAC+DwvUJffjj1IFEBHmf1POe6hk8IU4nyX7RrVQVwtJ7oMoG/ma47LVDu9Mdq1jXjKqq7M0t4Kvtlbyzai8V9a5CXD+jL3dPNHN5whA8PE7s3Lhkv+hOJPtFd2Kz2Zg5cyYFBQVERETw9ttvu0+Mt1WsUx1Ovl63g1dX2dhtd73PD/Q2cO3ocO46ZxiNNRXuvD6V/Jbs77mkQ04IITqApmms2V3MvB+3sy67DABvReWmiQOYPXUg4QEnV4hr0lb3nBBCiFPkG+YqtjUV3XzDDt1WU+T6eZXN9bWm6FCxrpnymnrumPs+G2tDcRpceT/Q5Mf/TR/MxSMjMehP7gOVZL8QQnSMo3WiNY0fKCgowGq1UlhYyLZSePGzVWyrdO2MHeTjwR1n9aNozSesXbAWdUvLLrtTyW/J/p5LCnJCCHECjucMlXVPMf/4aQepe10zg7x0Dm4K2MAfeu0hfNpL4H9qxTghhBAdSFFcnW8HLxlVAbvN5sr9pmJdThqEDwOf0BYPrap3sHDNPt5cvouKxl5gAK+6Eh69cjw3TBqGXtF1zmsSQghxVM03UmgqxtkOZn9TsS4lJYXw2Anc8/lu0veXAT4E6Oq507SV22+dSY1DYeYra92FO5n3Jo5FCnJCCHEcVFXFZrMxf/589/yHpKQk0FSKs7dj7DOUjPwq/v7DdlbuLALA06BwQ3w0f/L+kfCirUd2WgghhOiaFAX8w3E4HCQlJZGRkUFiYqKr22HS/Th/forq3an4GV5CP/Vv1DhUFq7Zxxu/7aa8zgFAkK6OgOyVnDfUyI2TbkSRYpwQQnRpTZ1orWX/5bf9ia/Ko8jUhcP+Mrx0Dm4LyeAPpq14hA/EL9iEn06ReW/ihEhBTgghjqFpbsSKFSvIzs4mICAAq9WKrSCfrPl3UlJWyiKf61mvDgRAh0ZIcSbnR2k8fskMFGLaZbc+IYQQp4+qqiQlJfHee+9hMLjeMtvtdoxeTtK+XoiPs4KKzO1sKJ/EBxm1FFU1ABCoq+PJqxK4ZFQvSoonycwfIYToRpqyf+F772IO0LPK4MNfFqXyZUYRGMLRVCfTGlbwVO80+kSE8dae3nzz6ToS1s8lKSmpRZedZL84FinICSFEM61dkto0N6KkxHUJanBwMLGxseTlF/Bu1XhWesajqQpoKv2w47H9J0pzd5KRH4HdfrurVb2VGUNCCCG6hrayPyMjA4PBgMPhIDY2FlVV2bq/kF9311ITPZUvvK6kOqUcAI+GckL3/oSp0c5Zf5mEh0EvlyoJIUQX1lb2Z2Zs4f/i9RT1PY9vA65ge2Yx6HTU7lhN5apF3H5xGUE+BnZXhPP1umpy8vJRtRT3JaqS/eJ4SUFOCCEOamsHpeZDXseNG0dprYOfiv355JMDqHoLAIMq11G0ZTUGTydjxo4ls7GCmJgYHA4HqqrKGTIhhOiijpb9iYmJAMTGxuLn58esO+8kdPT5rB3yMg7vEAB0deWYClJ5on8mpj47KfEbiKOxQbJfCCG6sFazHwjzVokaO50v6q/DrhgB8K8tIHDvMuzbrESFqKiKB7Y6HaWOKnR1peTn5xMQEEBDg2S/ODHyf4oQQhx0+A5KdrsdcM2TmDNnDk888xweoy/la208JWEjUVGw9AngvcvNTDY5qSnYy969e/Hy8iImJoYvvviC6dOn8+yzz6Kqaie/OiGEEK05Vva/8MIL/PnPf+bXbTay+l7BSsdAHN4hBHkpxOv3Y/j+WdiylEEehUQG6vGyb+bqi86W7BdCiC7siOwvtLH1m39x7avf8X3jcOyKkQhDFddXL8Zn9b8JcZby6aef8uUvayBqPPlVsHpfA9tzilEUhQ0bNjBt2jTJfnFCpENOCCEOanW7c1WlvtzG7fM+J7XGhMPDF/SeeNcWcnZIOa//8c8oisLg6Eje/+BDioqKWLx4Mb169cJms6HT6Vi5cqXssiSEEF1Ua9nftJHPW2+9xW+ZOdQMOhdbv4sA8MDJn88bxh2TBlBWZGPKkn+wI7+EbzbVkRilZ/W+Brbtt+Mn2S+EEF1W8+wfkzCB/6zK5f30AagoeNFAhD2dx6PSiTbaiBnjZF+0hbi4OFf326z5XDFjCttzitEbGgFwOBwUFRXJ+35xQqQgJ4QQBx2+3blO0/jp07d4bksgexv7ggd41pfz2OWjOHfoOMzh4e6WdEVRMBgM6HQ69Ho9iYmJFBYWAjB58mTZZUkIIbqow7MfIDk5mZ9SM8kNHYs64ApQwVOv45rR4dx3YRxGf28AKg5mPzodb27zp3LI+XyU/RPhZp1kvxBCdGGKovDII4/wwcrtvLYqj6L0QkAh0bGO2Oz/sjJHISCggn6DetG3jwmPq2Yfet+vN1Du8ESnKBiNRs477zx+/vlndDrJfnFipCAnhBAHNR/smnmgkuSvNpGyvw8AQVRhLEhjyoBgbpx83RGzIcxmMzfeeCMrVqxg7NixPPvss9x///3u22SWhBBCnGaqelw7XB8+1Hvzrhw+zfWhLOZG0Lk27BnqUcI7D1xF7xC/Fo89PPvnPPsss+8vdt8m2S+EEKdXaxs1tCYrv5w5/9vIhrwqAPqEeKGs/4SSHCuLihvo06cP1SFReAT7oYuOb7FBW2vv+4uLJfvFidNpmqZ19iLEmaOiooKgoCDKy8sJDAzs7OWIM4jD4SArK4thw4a5uhkO0zTYdeX6DJwxF7Hb6Rri6qWozDRm8IdRBuribsIU3vZB1uFwkJSUREZGBomJie7B4EKc6ST7xWmnqrDyJdScVOyefTFeMReDh2crdzs01HtMwgT84q/k3dX7qHe45v/005fy/I1nkTCsr2S/ECdIsl+cbk2ZnpKSQv/+/Zk3bx6eni2zv67Ryeu/7uT1ZTtRUTDg5L4Zw7njrH689MLzWK1WEhISuPPOOzGHm1BqS1o9sSPZL9qDdMgJIXqcw8+MORwOZsyYQUZGBnFxcfzwww9HFOX25xXw5V4V+6DrwekBwBVjevPgeYPp7WkB3zCCjnGQLS4uJjMzE5vN5h4MLvMjhBDi9GiR/TVFqDmp7Nywmv3Fv/DWO2ks+frXI7LfbrezNjWN/R792FYxFOfyPQCM7xvCHyeYmT6y/zE/YEn2CyFE52me/Xa7nZSUFFauXMnPP//Mpk2bWLZsmTv7U/eW8PBnm9ljrwYUPO1Z9CtJ46r7XsXH06PF+AJ39jfrjGtOsl+0BynhCiF6lKYzY3fccQdz5sxxd8ZlZGRQVVVFRkYGWVlZze6v8em6XK77YCv28PGg9yBCqeSLP03k5WtH0zvUz3UgPo4zXk3DYSMiIg5tCiGEEKLDHZH9XsHYPfuyv7iOtTmNrNqQ1SL7ATRNY53NSU7crVQPvRCnwYeBJj/m3zKeT/44gXNHDzyubgfJfiGE6ByHZ39ISAj9+/envr4eVVXZvn07WVlZlNc2MuezLVzz5lr22KsxBXgx3WsPg23LmDw21p3biqIc9yWnkv2iPUiHnBCiR2k6M7Zx40bS09MBeOaZZ4iLi3N3yA0bNgyAdftLefrrrWzKKQMgOsSHu8/qxdUTBqPX60/4dx8+GFza1oUQ4vRoNfufTuatd9JYlZFFbNwId/YDbM4t49mvt5G6rwTwJtTXwAPnD+Xa+D4Y9CeW3ZL9QgjROVrL/pdeeolNmzaxfft2RowYQY4awh3zllNYWQ/A9Ql9ePjCYQR4Tcduv+akc1uyX7QHKcgJIXoUk8lEXFwc6enpGAwGMjIyKC4u5v3336e4uJiYmBiKqh3M/W4LSzceAMDPU8890wdz+1n98PY48UJcc01n1oQQQpw+rWZ/SSmvvv2RO/sNBgMHymr5+w/b+XxDHgDeHgqzJw/gD1MH4ud18m+LJfuFEOL0ay37S0tLWbJkCXvzCvl4l8pdizcCMCDMj7lXjsAywOh+/KnmtmS/OFWyqYM4rWS4qzgdmg9ZTUhIQKfTkZqayviERMInX8try3ZT0+BEp4Orx0Xx4IyhhAd4d/ayheixJPvF6dBW9lssFu7760O8tXIfb63YTV2ja8OGK8f05sEZQ+kV7NPJKxeiZ5LsF6dDa9n/U5Yde59zqMMDRQd/mDqQe88ZfMon3oVob1KQE6eVHJhFRzl8I4em71VV5c477yS7wY+62Etp8AoGYGyfYJ64JIYIzwZpMxeig0n2i45yrOzPLyjAZ+hkGoZfSGFVIwAJ/UL404QIpozoJ9kvRAeS7Bcdpa3sL66q5/q/f0Z58GAABhi9efm6cYyKDj7iMUJ0BfJ/ojhhr7/+Ov369cPb2xuLxUJqampnL0mc4ZoGus6cOZPk5GRUVXW3kDd4BFA56noqxt5Cg1cwYf6e/OPqUfx3diJfvvdai8cIIYToPo7IfqcDpboQs4+GOdzEgPFnUzvhj+RGn0thVSNRIT68dsUA4mw/81LSnyX7hRCiGzo8+x0OBzabjV93FHPT4u2uYpymMsqjgG/+PJkRQXXkH8jjmWeekff9osuRGXLihHz88cfcf//9vPHGG1gsFl555RVmzJjB9u3bCQ9vfUtoITqa3W7HarVSUFCA1WrFZrPhUOGzbZX8+7fd1DuD0evgtrP6ce+5Qwj09nBvUd70GNmqXAghupfm2Z9qTaHq2yfx3fkVJbog/m6YzVf1w9D8wMdDz93TBjBLtxRd5ipKc/fwVYGnZL8QQnRDzbM/JSWFB+Y8xpe5Xmh94wEYYvbnkenRTIm7EFb+g12/LWH1/no+WuPAzz9Asl90KdIhJ07IvHnzuPPOO7n99tuJiYnhjTfewNfXl3feeaezlybOBKoKVYWur80033Y8ISGBJ//zEee89Csv/7yTeofKhAFGvvvLFB67OJZAbw/3YxISEggJCSEhIUG2KhdCiC5KVVVsNtsRHQ3Ns39afBz56V8xvyiG6bb/45O8EDTNNSdu2YPTuMcSjHd+Gp6NZVh66+kXHiDZL4QQXdjxZL8xdhJL62PR+sajqU5C8lN5+5ohTBs1AKW2hMY9a9BVFzLIu5RQbxU/Pz/JftGlSIecOG4NDQ2sW7eOOXPmuH+mKArnnnsua9eubfUx9fX11NfXu7+vqKjo8HWKHkpVYeVLkJsOUeNh8oPQbGbEnDlzyNqfz6vLc/hpRyl4gaGxmicuG8FNk4eh0+lazI4AaBqhKaM0hWhfkv2ivTRdmmS1WrFYLCQlJbWYFzRnzhyKi4tJ31/Kzf8dTKEhEoBY/yqevulcxvUzuj7UFTox9R6HLjedXHwpb2yU7BeinUn2i/ZyrOz/8/1/5amlm/lssx18wVF6gKqf/821vz+P3pGuzjfVJ5T68JFo2fvZV+rExxiGTtFL9osuRQpy4rgVFRXhdDqPaO81m81kZWW1+pi5c+fy1FNPnY7liZ6upshVjKuyQW46alUhtmqN+fPnY01NI2DsRWTo+lFV70SHRmjRFn7XR+XGSVe5i3HJycmkWlM4O2EE18/6P9LS0igtLSUtLU1a14VoR5L9or20NpIAYP78+aSmphIXP4mqwefz9eZ8MERicNQyxSeHtx66B4OHhzv7U1JSGBEXy72zHuXlJY9QUlom2S9EO5PsF+3laNm/LCObooG/o1LzAmC43kb93k8Zd+W5PPfcc+7CXfJzc7GmrCMhdhKX3n0H3o8+hs1mk+wXXYoU5ESHmjNnDvfff7/7+4qKCqKjoztxRaLb8g1zdcblpqP2Hscz897gl19/5UCtHuKvx9HQG3AyKjqYZy6NwewZ32IXJbvdTqo1hQv9tzK+JBO/9R5YEhKwpqZisVikdV2IdiTZL9pL06VJVquVhIQE3njjDZYtW0a+rRCPuBlsrRqGujkfRQc3JPThlrGhDIq+skX2p6SksHHjRtLT01E1GB+fQFpammS/EO1Msl+0l9ay/9fflpMXOgZ1yGWgKUQEeDLv2jEkDgjFbr/oiPf9ruzfRFr6OqrwJSFBsl90PVKQE8ctLCwMvV7vPkPRxGazERER0epjvLy88PLyOh3LEz2dorguU60pwlbRyKI/XUBFn0l4Jf4OnaLgiYPHLxvFDZa+KIruiIebTCbOThjB+OJMegXo8Svdxuwbn2DWnXdiNptl+3Mh2pFkv2gviqKQlJSE3W7H4XAwffp0inRB+E69j8bQKADG9QnmqcviiOsddMTjTSYTcXFxpKWloSgKGRkZPP/888yePVuyX4h2Jtkv2svh2T/tshuoHX0NhrB+AAw2FPPJfdcS7Ov6/+3wbjfJftFdyP+J4rh5enoybtw4fvnlF/fPVFXll19+YcKECZ24MnHGUBTwD2fNvkoazvkb3qMvRqcoTO7jw8o553PThH6tFuNcD1X485ynKfUfyIEKJwt/yWTmnx9iwYIFp/lFCCGEOKZmm/goioLZbKa8zknj2OsIuPwJ9KFRBHopvPj7EXzyx4mtFuPAlf3PPPMMQ4cORVVVsrKyePjhhyX7hRCiC2q+kYOiKISZwvlog53Gs+93FePqq5gz2cgPT9/kLsa1RrJfdBfSISdOyP3338+tt97K+PHjSUhI4JVXXqG6uprbb7+9s5cmzgD2ynqe+irTNSvILxRDfQVnB9p4849/Pq4zXcUlpby2yZtqewBb99kwR3iCbH0uhBBdy2Gb+KhnPcCSdXm88H0Wat8EAIYa7Cz+63UY/b2P+XSlpaUEBgZiMpmw2+3k5eVhlewXQogu5fCNHG770/08+L/NWPeWgN6AX9keLoms5M4Lrz6u9/2S/aI7kIKcOCHXXnstdrudxx9/nIKCAkaPHs33338voSY6lKZpfL4hj6e/3kpZTSOKDm6b2JebR4fSt3fEcbedm0wmEiyJpKRArH843t7eMkdCCCG6mmab+OzYtYs5W1axLrcKgOGRATwwtTfTR154QtmfmJgIQEREhGS/EEJ0QU0bOeQXFPD99jI+enUFNQ0qPh4Kj140nHP6jSM8PFyyX/QoOk32/RWnUUVFBUFBQZSXlxMYGNjZyxFdRNMW5s2HsR68gbz8PB754QDLdxQBEKrUELLjG6aNGujeAv1kfpfRaKS4uPjI3ymEaHeS/aI1bWW/6nRQ/M0zvLfTizeLRuDQFDxwYsxfy4UDfXnsUcl+IboDyX7Rmray3+Fw8GDSE/xSYaYyaCAA4UoVQVlLmTJmuLzvFz2SdMgJIU6LNj94Hdae3nSwVR1OFi1+h+ezTFSrHuhUJ3G6bJybfsBuO8B2xwHshTbMEZEntI6mWURw5ABYIYQQ7euEs19VufuZf/FL+RAavIIB6KUV4Zf1DYX7tpNaFHVSlxtJ9gshxOlzMtn/p2de5xfHaJxBvqA6GanLpnHjdxzIyyWlvlyyX/RIUpATQnS4tg6+cKg9vaCgwD3XoVbvz9/+u47U7F4ADFV3U7/uS1RvL0bGxRLbax+W3nZMWe9D+F9dmz0IIYToUk40+z39Q3j00/V8VzcEvECrLsVv+7cEGcqoqqykoKCAsLAwjEZjJ78yIYQQbTlW9qdaU2goySPVqmG32wkIMfLo/9bzY/0g8AC1NI/ArZ/hCFAk+0WPJwU5IUSHa+2Dl9lsRlVVVFUlISGB1NRUEhIsfLuzmhd/2EBtoxNfvZO/hqfRp3Qdr/h4kWBJZM7/zcT52XY8G8vQ5a1zzRryD+/slyiEEOIwJ5L9aQUOnvxqOUVVDYBGaHEGgfuX4+ehEBc3goyMDCIjI/H29qa4uFg6HYQQootqrejmzn6ng/vGq/iXlVEd0ovcGj0PvL+SfcU1ABjtGwncvxzfQA/i4uIk+0WPJwU5IUSHM5lMWCwW95kyk8nU4uxZfHw8T/79n/x9WQ7vfL0NgAkDjLx4ZRzR3omoPqHEFR2c+wAYBp7l3n0P37DOfXFCCCFadTzZ/+w/XmPeilze+WgjAIPD/Zl7ZRzRPvEYjQ9SXFyM0Whk7ty5LZ5HCCFE12QKM3J/vIZfqavoZgozurN/+7qVPD66kN4Do3i9NpE33rKiatAryJsXrxrJ4MDxGI0PSfaLM4Zs6iBOKxnueuY6fJaEzWZj5syZ5BfY8IqZTmnUWdSqenz0Ko9cFMeNif1QFF1bT+bqjPMNk8tVhegGJPvPXG1nfwFew6Zh7z2ZRp0BHRr3TB/MPdMH4WXQH/N5hBBdn2T/GaqqEO2Lu2ksP4BHUC90l7+OrVpj5syZ2AryuX5cEN+FXstOLQqAy0b34unL4gjy8TjiPb5kv+jppENOCHFaNB+qCq7Oidj4Sey1h1DsHwUqWLyz+XvfNPqMtEBbxTjXk8llqkII0Q20lv0x8ZPZaw+i2D8aAEN5Lv0KV3PTfX9vtRjX2vMIIYToonzD0EXH46k7dDWLyRcSEix8t6ua14Mn4tT06BpriMpfxSP3PXKoGLfypUNXwUx+ULJf9HhSkBNCdKjWzmxpmsbnGw7wjTqGan8HPh56Hh6cy83KMpRouQxVCCG6u7ay/6O0HL5xjqLa34m3h8JIXTY1OV8xPSEOU5gM7BZCiO7Mnf2T7kepLXF3utkr6tjZ+3zya4oA6KVU4L/rc8YM639os4aaIlcxrsrm+ipzosUZQApyQogO09ouS6U1jSR9nsH3mQUAjOkTzLxrRtM/1AdqLpXLUIUQoptrLfsPlNfx8KdbWLXL9WEsoV8oL141kj4hXlR/n4d/6TZ0q+bB5AflGCCEEN1QW7urfrsln0c+30JZTSNeBoU5Fw7jhvgoHntsIxkZGcydO9d1X98wV2eczIkWZxApyAkhOszhO+x9bt3J3F9yKKqqx6DouO+8IfxhygAM+oMfvpqdBZOZEUII0T01z/4Uq5W3ftnKa6vyqKp34O2h8LcZw7ht4sE5oVWFBJRlQXUhWk4aRfu3Yew7XHJfCCG6mcN3V92bm8/rKXY+W58HQGyvQF69bjSDwgOw2WxkZmZis9lISUlh69atxMTEoEx+UOZEizOKFOSEEB3GFGZkekIcP6fraRx5JQ8s3QXAELM/864ZTVzvoFYf19YZNiGEEF2f0WgkNjaWBr0vZXFX8Pwv+wEY3zeEv189iv5hfofufLAjQstJ47fd1cxb8jcSLImS+0II0c0YQ0O4Z1QdIVVlrA8axy2Ls8grq0PRwV3TBnLvOUPwVICqQkxhRiwWCykpKdTV1fHQQw+RmHgw++UyVXEGkYKcEKJ9Ne2O5BOKsmoe0yPKWDruZvbX+qDTwaxJ/Xng/KF4e7Q+uBuO7Kyz2+0y0FUIIbqwpq5mo9HIc8/NZVVOPYXDbqDR6YGXQeGvM4Zy+1n90R++YY+iwOQHKdq/jXlL/kZ+gU1yXwghuonm2f/PuY+TWLWPL/0uZ1HDuWgNdUSH+vDyNaMZ3y+0xaYNStR4kh6Zw9ZtWTz00EPYbJL94swkBTkhRPtpdqB1mobxRqael22/w4GeyAAPHp3RnwvHDjxm14PJZMJisbg75Ewm02l6AUIIIU5U867mQbGj+LU8nIo+YwEYbvblqQsGMH5otOsS1dYoCsa+w0mwJEruCyFEN9E8+2NjY1m/M4eP+z6ITe0DwMUxRp67eiyBPp6uBxy2aYNSW0JMTAyJiZL94syl0zRN6+xFiDNHRUUFQUFBlJeXExgY2NnLEe2tqhCW3kNeWQ33FV9Bak0EAOOVnQzxqGTzuuO/BFVmyAnRc0j292w2m42ZM2eS3ehPTdyVODz80FQnoQdSuHiABxvWrzuu7JfcF6Jnkezv2ZqyP7+gAM/hZ1MQcRaa3gO9o5Yp3jnYN/7SMvubnbgnarx7Ex/JfnEmkw45IUT78Q3jK/10HskzU6l6ojgbMO36kvKqHNLQUVpaetzt6IqiSMu6EEJ0A35BIThGX0WFw9XZ4FlXgse6jzB6NZBiO/7sl9wXQojuw2QyMTLhLPbbgigO6AtA35ptKDtXkOuoPTL7D44oOHzTBsl+cSaTgpwQol3UNDh46sutfLwxGoBYsy/DyzPIarSTMHkKmqaRlpYm7ehCCNGDZOSV8+clG9hzsBh39agwfHasZ32QQkKCZL8QQvRUv+2w84NuPJUBDXjqHNyl/4oJyi+sTryGKnxbz35FAdm0QQg3KcgJIU5ZVkEF9yzewK7CKnQ6GGnIx/HLlwTEj2P+/Pnus17Sji6EED2DqmrMX7mHl37cTqNTwxzoxZiGDLYt+g/x8fGS/UII0ROpKnXlhTy33M77KdkAhOhquLH0TS6KKCLi3JtIuPAJ0CmS/UIcB/nrEEKcNE3T+CBlP5e+tppdhVWEB3jx2pVDcKz/nNyc/aSmpqIoivuf2WyWg7IQQnRVquqaBaqqR/15fnktN71tZe53WTQ6NWbEmll43VB2r/6G/Px80tLSJPuFEKKbUFUVm82G2iz7W/sZqkrWt//i0ld+dhfjrh0dTui6t1mSVsLTG8OpHf8nFL1Bsl+I4yQdckKIQ1T1iLkObSmtrue+j9L5bVcZABP7B/Hq9eMI8fVgXl0dBQUFhIWFYTQaT8PChRBCnCxVVbEX2jBlvY+St67FsO3Dh3B/G3IjD3+6hYp6Jz4eeu6bGsXtU4cyd+5csrNdH9Di4+Pl8lQhhOjimopu8+fPJzU11b0BA+DePbXpZ5qm8e9vUvnX2v40aHrC9DW88PsRrP76v+Tu3wvA4DGXYQqXWXBCnAgpyAkhXNrY+ag16/eXcMsbv1GleaGgMt4jj/Kv/sMbhRZmzZqFt7c3kZGReHt7U1xcLINahRCii1JVleTkZLavW8njo+0MjgxEl5vuOjnjH+76mptOXUUxz1j1LCrZCIBRV800/V6+fOU1dv8US0ZGBgEBAYSEhDB79mzpihBCiC6sKftXrFhBdnY2AQEB7g0YAKxWKwUFBVitVrbtzeUP76wi1xkE6LEoWUyzf8JPH09hS0amZL8Qp0AKckIIl4Mfuqiyub42fRhrRtM03lm1h7nfZeHQvFCqi+m1/wdKawvdOynNmjWLxMRE91k16ZIQQoiuy263Y7VasRUUYzU56BsdhFf4MPAJdd3BN4xdwRO5e4eR7fWun3nvXUlI6QY2ayqlpaVomkZcXBw6nQ6LxSInYYQQootryv6SkhIAgoODiY2NxWg0oigKFosFq9VK1LhzuOmDTEqdQeBsxJS3EmfZOt4pbCTcnCnZL8QpkoKcEMLFN8zVGdfUIecb1uLm8tpG/vbJJn7YagNgeN0mNnz+Jp5DBnLWlCmkp6e7D8ZJSUkyyFUIIboBk8nk/uC1Lyoej2gn2LbBqnlokx7gk/UHeDxlKHWNKtRVUrvsDTxrD3DW9dej1+tdlzklJDDnz7MortNhCpeZQUII0dWZTCYsCQlsX7+KQaMuoqa2joyMDObOnUtSUhJ/e3gOyUs38n56AaDiLM3Da90ifnfRNPT66dSlphIfH8+sWbNkXpwQp0CnaZrW2YsQZ46KigqCgoIoLy8nMDCws5cjDtfGDLktueX8afE6ckpq8dA5eSjoF0bkL2VOSgA+YX1YsGABiqJgCjOi1JYc1ww6IcSZQ7K/a1NV1XUSxUdD+erPUGWj0ieKJN09fJnp6p7wrdhP/ucvoNaUMWrUKD7++GPMZjP2Qhth2xbi2LsWjwETUab8VfJfCAFI9ndpqoq64u807llDffhIbnxjPfkFNiIiInhm3r95+uccNmSXAVC/9RdqVn/AqNjh7uy32Wy89eabZKT+xgjL2Tz62GNSkBPiJEiHnBDiEEVpcZmqpml8aM3mma+20uBUiQrx4fVhGYysPMBv9TH4mXQkWBJdZ8XguGfQCSGE6DqauhtQVYgaT8bOPdy973z215SgV3Q8cN5g7CvWsTjQGwIjOOecc9zdECZfHbuWf4yuuhAtO5tBY29FCYzo7JckhBDiaGqKUPLW4dVYhmdZFmcnjODXVB3h42Zw86JtVNU7CPA2MF7dzprt3xAYFtoi+9FUgjbPZ2ZYFVmbdmIrmEVkr96d/aqE6HakICeEaFVtg5NHPt/C5xvyADgvxsxLV40iwGsKRdnnMPnawcSUlB66LLWq8Jgz6IQQQnRdmk7HR17X8OTerTQ4NXoH+/DP68cwrm8IjsmPcMUVl2M0GomMjHR3QthrNKx5DvoZVPaVOQiq0TBLI4wQQnRtzUbV6KLGc9dV95L32SY+3WwHHIzrG8Kr140mIuActl417YjsV2pLGGVsIEgPXl4NritkkIKcECdKCnJCiCPsLarmrg/XkVVQiV7R8dAFQ7lz8gA0TTtiG3R3e/oxZtAJIYTouqrrHTz6RYb7JMw5w8L5xzWjCPb1RFVV5s6d2yL7m5jCzeyLvpof1q9i6NhJmMJlqLcQQnR5iuK6mqWmiL01Ptz9Zipb8ysA+NO0gdx/3hAUHUe8729i6jccrfd4Gkoy0UJjMfUb3lmvRIhuTQpyAnCF7TfffMPGjRvx9PSkrKzsiPtkZ2dz1113sWzZMvz9/bn11luZO3cuBoP8b9ST/JBZwIP/3URlvYMwfy9eu2EMiQOMABQWFrbYBt1utx/aUanZgV1myAkhRPexw1bJnxatZ1dhFXpFx99muE7CKIoOOLQbX2vZrygKSY8+Khv5CCFEd6MofLnbwZxPV1Pd4CTUz5OXrx3N1CEmAGw2W9vZrzcw7bGvKM7ejrHPUBS9fB4U4mTIX44AoKGhgauvvpoJEybw9ttvH3G70+nkoosuIiIigjVr1pCfn88tt9yCh4cHzz33XCesWLQ3h1PlpR938Mby3QCM7xvC6zeOxRzo7b5P8934LBYLJpOp5ZMcNoNOCCFE1/b5hlwe+SyD2kYn5kAvXrthLPH9Qlvc51jZ755BJ4QQoutTVerKC3l6WSGLU3MASOgfyj+vG0NE0PG/71f0Bkz9Y0/r0oXoaWSXVdHCe++9x1/+8pcjOuS+++47Lr74Yg4cOOB+0/3GG2/w0EMPYbfb8fT0PK7nl92WuqaS6gb+76P1rN5VDMAdZ/Vnzu+G4aE/stPBvRufdEIIIY6TZH/X0+BQefabrby/dj8AkwaF8cp1ownz92r1/pL9QogTJdnfBakq+79/lbtSjWytM6LTwT1nD+LecwZjkPf9Qpx20iEnjsvatWsZMWJEizPgM2bM4K677iIzM5MxY8a0+rj6+nrq6+vd31dUVHT4WsWJyTxQzuz315FXVouvp54XrxrJxSN7tXl/6YQQQhyLZH/XVlBex58WrWN9dhkAf54+iHvPHYL+4CWqrZHsF0Ici2R/1/fjhp08sKoflaonRn0tL18ziimjBrd5f8l+ITqWFOTEcSkoKDgijJu+LygoaPNxc+fO5amnnurQtYmToKpQXcjSjBIe+nY/dY0qfY2+vHXzeIZGBHT26oQQ3Zxkf9ekqirfrdvFo9/upbTWQaC3gZevHc05w+XDlhDi1En2d02qqpKXX8Cbaw7w4Tob4Mk430Jet5QSMeLKzl6eEGc06TvtwR5++GF0Ot1R/2VlZXXoGubMmUN5ebn7X05OTof+PnEcVBXHb38n+ZV/cu/SvdQ1qkwdEsYXf5pIsK4GVVU7e4VCiG5Osr/rcTqdXPv4W9z9SRaltQ5CdDUsvXsiZw81YbPZJPuFEKdMsr/rUVWVOU/PZcrjnxwsxsEdZ/Vl8f9dgG7U9UjyC9G5pEOuB3vggQe47bbbjnqfAQMGHNdzRUREkJqa2uJnNpvNfVtbvLy88PJqfR6NaB8nOtuhuPAA96wMYm1tHAB/Mm7gvitn8vy8F1tsay5zIoQQJ0uyv+OdSPbXNDj484eppDmiQQFLzUrOqfwW78aJJCe/ItkvhGgXkv0d70Tf9/+wfjefVAxCM/mjNtRiWPcRM//vn7z42gLJfiG6ACnI9WAmk+nIXTBP0oQJE0hOTqawsJDwcNcumj/99BOBgYHExMS0y+8QJ05VVZKTk4/7gLrtQDnX/CuVSi0aH62OR3ibqGqNoprb29zWXAghRNdyItmfU1LD7A/S2ZZfCaqTa8sXcrXuRxr9g6G6SLJfCCG6iRPJfk3TeHf1Xp75OgvN059G+36Klj6Pv1aN3W6X7Beii5BSuAAgOzubjRs3kp2djdPpZOPGjWzcuJGqqioAzj//fGJiYrj55pvZtGkTP/zwA48++ih33323nAnrRK0dUNvy01Ybv//PGio1L5SaYnTfP8N7v2UzL10BnYLFYiEiIqLVbc2FEEJ0HW1mv6pCVaHrK7B2dzGXvb6abfmV6B01+FnnE7T/V6pUH3bVBoNfmGS/EEJ0E21lv6qqLUYP1DY4uf+/m3j6621oKBjyNlL6SRKe9aUYjUZMJpNkvxBdhHTICQAef/xxFi5c6P6+adfUZcuWMW3aNPR6PV9//TV33XUXEyZMwM/Pj1tvvZWnn366s5YswH1AtVqtJCQkoKoqqqq2OFumaRr//m03L/24HU2DSKWSwH1f4Agz4u3tTYIlEbPZTFJSkmxrLoQQ3UCr2e90oKyaB7npaL3H877H1Tz9zTacqkZcr0BiS7eQ4a/ya90YMm16ho2bjDkiUrJfCCG6iday3+FwMHfuXHfX3K1/uo8/friBrfkV6BUd4w3ZVJasoc/4MSiKwuTJk4mMlOwXoqvQaZqmdfYixJmjoqKCoKAgysvLCQwM7Ozl9AhNZ8Xeeust0tLSWrSw1zU6+dv/NvPlpgMA3JzYl0cvGkZZSTFGo5Hi4mI5EAshOpxkf/s7PPunJ8Rx34DdNFQV81j5pfy3dDAAl4/uxfO/H4mnXofdbpfsF0KcNpL97e/w7I+NjSUjIwObzYb/wPGUDL+cijonRj9PXrthLJb+IZL9QnRh0iEnRDenKAqKopCWlnaohb3QhqY6mf3pPjbnlWNQdDx+8XBmDPTFQ6+450TIvAghhOieDs/+ZakaV8QlcP+uKDbURaDoYM6Fw7njrL4UFRVhMpkk+4UQops7PPs1TSMmNhZbyAj2R01Cq3MyMiqIf98wBo9G1+ghyX4hui4pyAnRA5jCjExPiGNZqkZCQgI263+5M60XNocvwT4evH7DGH5d8gYzn5PdlIQQoqcwGo3ExsaiaRoDxk3lkrRBVGleeOJg/m2JTB5sOqGNf4QQQnR9zbN/bLyF1Q19KYoKA+DqcVE8fWkML734vGS/EN2A/GUK0d2pKsqqedw3YDeL7xpHwoVXcW1KX2wOXwZ5lfHFbUMJqreRkpJyXJs/CCGE6PpUVWXu3LlkZGQQGjeFH9URVGleKNVF9N3xCUMCVbZu3SrZL4QQPUjz7B8QN5b0wMnsUcNAdRJ5YAX3nWVi987tkv1CdBPSISdEd1dTBLnpUFXI4qJYnl+5Fw0PJvsf4F+WMv61cCEpVit1dXWYzWbZTUkIIbo7VaV4/zas1hT2eg0kk1hoVIlUKgjK/pKJ40bx1ltvkZqaKtkvhBA9hKoeOtGSW2sgqzEOZ2ENXjiI3P8t02N7M3/+fMl+IboRKcgJ0Y2pqoq9yklQ5HieyPXg49IhAAwzFPL2PRdTWgepr86isTQPn5BePP/CC8TExABgs9lksKsQQnQnqopacYCaZS8TUJlDyKhp1DhdmR5SnMn5vev44xuvATBr1ixyc3Pp3bs3L0j2CyFEt6WqKnl5eTz//PPs3bsXu19/ymPOA70HwbpaPrvvfPy0RFRVPSL7hw0bJrupCtGFSUFOiG5KVVWSk5NZk7aBsriryVcDQVPx2/ED+sZ9lNb/DqMxhHtG1RFSVUZ1aC9ihg8DkJlCQgjR3agq6ooXKf3t3zQ4HPxZfYA0dRg6NMx5K2nc9gvr8iNQ7voDISEhVFRUkJ+fT1hYGMOGSfYLIUR3pKoqzzzzDK+++irl5RWETb8Dn4G/A8CjcBuRRavx0yZjNptpaGhokf1Dhgxh7ty5kvtCdGEn9RdptVrbex1CiBNkt9tZuX4rO/pcQr4aiK+ugb94fcuAxr0kWiwYjUb+OfdxQqp20ytQz9SBvii1JdjtdqxWq8yVEEKI7qSmiMZdyyls9OEGx1OkqcPwpp4+e7/G70A6EQcvTTIajTz22GNs374dRVHw9vamuLhYsl8IIbohu93Or7/+SlVtA8ZLH8Jn3GUAKFk/oVu9gMRxozGZTKiqekT279ixQ3JfiC7upDrkJkyYwKBBg7j55pu58cYbGTBgQHuvSwhxDPn1nuQMuxan5kEY5SyM/IyYUB033v4ixr7DsdvtLEvdgre/jvE6J0EhMQT4hmHyBYvF4j5bJnMlhBCiG/ANIzPsAmbuMlNKAKGUY9zxLaXZWZjNZvdlqXa7nYyMDDw8PHA4HMTFxblzXrJfCCG6F5PJROLZM9gz6Gr0pv6gOuiVu4yG3FWE9Ilm9uzZKIqCzWY7IvuHDRsmuS9EF3dSBbkPP/yQRYsW8cwzz/Dkk0+SmJjIzTffzDXXXENoaGh7r1EIcZCqqtjtdjbandy7ZBN1mgeDwnxYGJdF72IFosZj6jscFAWTyUSCJZHvrFAXOoLxFzwOioICJCUlyTwJIYToJlRV5eM1O3gyfQj1qAw1evDOHRfzzr93Y20ow2KxEBMTg3Iw+xMTE9GhYYkbyJxnn3HnvGS/EEJ0H6qqsipzP795JqA31RPgqfDmzYn8smQz1ooILBYLZrMZwJ39mqYxYMAAnnnmGQwGg+S+EF2cTtM07WQfXFRUxJIlS1i8eDEpKSl4enpywQUXcNNNN3HppZfi6enZnmsVPUBFRQVBQUGUl5cTGBjY2cvpVlRVJfnZZ1m2p5w95mmgU+itr+DbpCsJ8vZw7bbqGwbNDrZNBTw5CAshOpNk/8lzOp1c+8R80hujQKfDv2IfV0aU8eSjcwBazXjV6aD6+6fxL92GLjoeJj/Y4tgghBCng2T/yVNVlTuf/Ce/1vZF03viWVfKZSF5vPDYX4HWs9/hcJCUlERGRgaJiYkyM06IbuCU/kLDwsK45557WLNmDTt37iQpKYmsrCyuvfZaIiIimD17NqtWrWqvtQpxxlJVlYyMLWQVVbEnYjroFDxz0gje9BF1lWWuD1r+4Ud84FIUBbPZLAdjIYTohhodTv68cBXpjmjQ6ajd/D261fNZn7oWu93eZsYrtSUElGWhqy6E3HTXCRshhBDdgqqqPPe/tfxSPxBN70lDzha8VvyTbWkrj5r9xcXFZGZmYrPZZGacEN1Eu31K9/HxwdfXF29vbzRNQ6fTsXTpUqZOnUp8fDxbt25tr18lxBlFVVWefvY57vjPL6z2nQrANQ1LGV+1mkRLvMyDEEKIHqi2vpHznviIb3ZUoWkqNas/xJn6EWZT2LFnAfmGQdR48De7vvqGnb6FCyGEOGkOh5NLHn+PBevLQKdQn/kLDT++jDk08JjZbzKZsFgsREREyMw4IbqJU7pktbKykv/9738sWrSI5cuXoygKF154IbfccguXXHIJiqLw+eef88ADDxARESG7swppXT8Ju7MPcOmLX1HtH4WiOXnG9CvXjYugaPitmMKl+00I0fVJ9p+Y8ppGbn17DRvzqkB1oE9bRJRqY/r06cyePfv4Op9VtdVRBkIIcbpI9p+YukYndy20smxXKQD6jK/oXbmNc04g+2VcjRDdy0lt6rB06VIWLVrE119/TV1dHfHx8bzyyitcd911GI3GFve96qqrKC0t5e67726XBQtxJimsqOOez3e5inHOBs733cf1sx9G8Q/HLAdZIYTocQ6U1XLrO6nsLKzCEwe99n/D2dNimT371RMbQdA0ykAIIUSXV1LdwJ3vp7NufykKKr1yfuG8+Ehmz37ihLK/6XJWIUT3cFIFuSuuuILo6Gjuu+8+brnlFoYOHXrU+48aNYobb7zxpBYoxJlqt72KW99JJbe0FqOfJ/MuG87kuMvkbJcQQvRQWQUV3PZOGgUVdZgDPHj3tokYDYnS6SCEED3Y/uJqbns3jb1F1QR46XnjpngGBSZI9gtxBjipgtyvv/7KtGnTjvv+CQkJJCQknMyvEuKMtCG7lDveS6O0ppF+Rl/ev8NCH6NvZy9LCCFEB0ndW8LMhWlU1jkY7F/He73+R+9dG2WHVCGE6ME25ZRxx3tpFFc34Kerx5zxOb8uSWNC0w6pMn5AiB7tpApyJ1KME0IcP1VVWZq6i0e+2UNto5NRUUG8fVs8Yf5enb00IYQQHeSnrQXcs2g99U6N+Gh/5vt/RHBdDuRWuz6IyaWnQgjR4yzfbuOPH66ntlFlaLgvrFhIce4erPWl2O12zCYTrHzJtVt21Hg5QSNED3RSBTkhRPtTVZU7nvo3v9X1AZ2eqUPC+PeN4/Dzkj9TIYToqT5bl8MDn2xCQ0cffRkLZ56Lr9UKuQ2yQ6oQQvRQX2zI5f6PN6CiEK2U8vHss/lX9SqsjppDO6TWFLmKcVU211c5QSNEjyOf9IXoIv79Uya/1fUDnY6gsh3cN74PPh5yFkwIIXqqd1fv5amvtgI6vPI34l+Uwp5do4iZdD9KbYlcoiSEED3QoexXGFa9jiTdeyi/bSfpkSewFxUfmh3nG+Y6MdPUIScnaITocXSapmmdvQhx5pDtz4+kaRqv/rKTV37eCUBo0WaC9/6Mj7c3iYmJJDXNkBBCiG5Ksr8lTdN4+eed/PMXV+7HGmxoGz6lvq4Ob8l+IUQPIdnfkuZ08tK3m3h9dT4AI/V53Fv4KOHeTryM0Qy6/3uUwIiWD5IZckL0aPJXLUQnUlWNJ7/MdBfj7j1nEAvvvRhvLy9yc3NJSUnBbrd38iqFEEK0F1XVeOLLTHcx7oHzhvDlU7fy4gsv4CXZL4QQPZKj0cGc/3zkLsY9eN5g3vjT78h2GClpMGDNdWKvaaVPRlFcl6lKMU6IHkkuWRWikzQ6VR78ZBNLNx4A4PGLh3HRYH9CQkKor6+noKCAsLAwjEZjJ69UCCFEe3A4Vf72v818tiEPnQ7+enYfZk/tT1FREUOGDJHsF0KIHqje4eQvi1L5LjcEBZWnwldx/bgx2Ko1PtwfgW1PMREDTVwfZurspQohTjMpyAnRgVRVxW63uwazgvu/G5wady9azy9ZhehQ6ZX9C4uemMen3t7ExcXh7e1NZGQk3t7eFBcXYzabO/mVCCGEOF6tZX9QiJH7/ruJ7zIK0OtgkmEP37z6bz59wXWZqmS/EEJ0b61lv39QKHctWseKnaV46lQeNnwEW7dwwe/TQKeQk5uHT1AkXt4+kvtCnIGkICdEB1FVleTkZKxWK/Hx8eh0OlJTUxmbMIFdEdNZs6cEnepAn/IuVeV72VVQQGSEmWBDAyPixqDT6Q7tsiSEEKJbaC37U9LWUTHyWnKdQSiohO/8mpQtv+Ht7U1BQQFms5n6+nrGjh0r2S+EEN3JwRlvqk8oyc/NbZH9a9M3UhJ7DTYtAC+tnruUL/l1cyGZ+xUO5GcSHh6O0+nEZDKRmJgouS/EGUgKckJ0ELvdjtVqpaCggFWrVgFQXFnLHruZmpoSFGcD/hsXUW/bhik6GlOYkVv727FE2YkY50n1vW9ijoiUod5CCNGNHJ79quJBdt8LaXQG4aXXEbH7W6r3rQPAZDJhNBrJzc0lOzubMWPG8OabbxIZKdkvhBBdnqrCypcgN53q4GGkWtdRUGBj1apVOAw+ZPe/BKcWgK9Ww9MNL9NHPUDlsEsodXgREurKfkVRGDp0KA899JDkvhBnIPmrFwDs27ePmTNn0r9/f3x8fBg4cCBPPPEEDQ0NLe63efNmJk+ejLe3N9HR0bz44oudtOKuz2QyER8fT0hICBMnTmT8pLOpscyixi+SQG8DF/ntoY9XHTfeeCMffPAB33/6IVdP7I8/NWT98iEfLfhXZ78EIYQQJ6h59o+fMJnKcbfSGDoAD5y8e9t4zo2JZFhUKDfecAMffPABH3zwAX369KGqqor333+ff/7zn539EoQQQhyPmiLITYcqG/6l25g6PpaQkBBGTZhK6ehbcAb2wptG/ua1lChnLlUhw5nz7D9455133NlfXV3N//73Px577DFUVe3sVySEOM2kQ04AkJWVhaqqvPnmmwwaNIiMjAzuvPNOqqureemllwDX1uXnn38+5557Lm+88QZbtmzhjjvuIDg4mNmzZ3fyK+iadDodAHU6b9L9J1BXW43Rz5MPZ1kYaj4Pu/0mTCaT64yYqlJrHk3u5s2kF+hYtmsLN9rtMktCCCG6GZ1Oh1PvzY+OYRSrfgR46Xn/jgmMiQ4mcYoXjVE+eAzwRjGbUYFx48axZcsWDAYDGRkZ2CX7hRCi6/MNg6jxkJuO1nscNbvraPQM5PvGGKo0L8L9Pfhw5iSWvLWJb3blMsKSyDS9AbPZjKqqkv1CCCnICZcLLriACy64wP39gAED2L59O//5z3/cBblFixbR0NDAO++8g6enJ7GxsWzcuJF58+ZJQa4V7suWqhr5rLwvjXXVRAZ58+EsCwNN/gAtD7qKgt8Fj7NqXQPLdm0hwSKzJIQQoltRVex7M1m+JpX9Ay/HqfoR4mNg0Z0TiOkVCFWFKHnr8Gosg7x1UFOE4h9OcnIyABkZGTJHSAghugtFgckPolYVkrG3gJ9TnyF38O9RNS+igrxY8seJeDRUkpqWRkFhFbVpae6im6Iokv1CCCnIibaVl5cTGhrq/n7t2rVMmTIFT09P989mzJjBCy+8QGlpKSEhIUc8R319PfX19e7vKyoqOnbRXYjRaKRS86J83DUoXkFEh/iw+M5EokN923yMojfwl0ef48aDOzTJLAkhRHd0Rma/qqKu+Dv7ly2lfPgtOL0i8aGRJbMnMTQy0HWfZt0URI13fQ8YDAbmzp3r3p1Psl8I0R2didmvAs++8hYffPED9WfdheIdRJCulv/ddTYRwb6oqjcWiwWr1XrEhj2S/UIIKciJVu3atYt//etf7u44gIKCAvr379/ifk0dXgUFBa0W5ObOnctTTz3VsYvtotbvzOPA8GtRPPzxrCvl31eNpHewNzab7agHXUVRpF1dCNGtnZHZX1NEwY71/K3uNoq8euPRWMU7dyQwNDIIVVUPfeCa/KBr7pBvmKu74iDJfiFEd3cmZr/dbufntEzqJ/0JxTcYj2o7i++dfrAY58r+OXPmUFxc3Or7f8l+Ic5sUobv4R5++GF0Ot1R/2VlZbV4TF5eHhdccAFXX301d9555yn9/jlz5lBeXu7+l5OTc0rP113stFVy92c7cXj441VXwu9DchjeN5Lk5GRmzpxJcnKyDG4VQvRYZ2L2250B3Fp4Dft0vQlQK7g0YB+W4X1RVbVl9gP4h7coxgkhRE9wJmZ/kcOLwtjrUXyD0ZXlcZUxj+EDolpk/9y5c6UDTgjRKumQ6+EeeOABbrvttqPeZ8CAAe7/PnDgAGeffTYTJ07krbfeanG/iIgIbDZbi581fR8REdHqc3t5eeHl5XUSK+++tuVXcNMCK8XVDQyLCOCVy0YxpG+vQzPlCgqwWq0yuFUI0WOdadlfWFnHDW+nsqvKm4gAD/51ZSLjhl6LoijYbDbJfiHEGeFMy/6MvHJuejuVOjwYFu7LK3+4kCF9e0v2CyGOmxTkejiTyXTcA0Lz8vI4++yzGTduHO++++4RZ3EmTJhAUlISjY2NeHh4APDTTz8xdOjQVi9X7WlaXHLUyhkuVVVZmbGPez/fRVltI3G9A/ngDgshfq6ZeyaTqc0ZEkIIIbqmY2W/rbyWa99cw76SOiKDvPnozkT6hfm5b5fsF0KI7udY2b85p5QbF1iprHcyOjqYhXckEOTj4b5dsl8IcTx0mqZpnb0I0fny8vKYNm0affv2ZeHChej1evdtTd1v5eXlDB06lPPPP5+HHnqIjIwM7rjjDl5++eXj3mW1oqKCoKAgysvLCQwM7JDX0hGa2s6bDqpJSUktDs6qqnLf0/P4qnoAqt6LUVFBvD/T0uLA3HQ/GdwqhDjT9NTst1fUct7cbyjTfPDTNfD1/efS3xTQ6vNI9gshzjQ9Nfszcsu48rXlNGAgXKnip0cvJ8j3yM5AyX4hxLFIh5wAXJ1uu3btYteuXURFRbW4ralmGxQUxI8//sjdd9/NuHHjCAsL4/HHHz/uYlx3dqzLTVdk7HMX43xqCph36ZgjinEgg1uFEKI7OVr2l1Y3cP1baynTfFDqyumV/TW+6kTgyIKcZL8QQnQfR8v+bfkV3LjASgMGDGXZGA/8SF3lNIJ8j8x4yX4hxLFIqV4AcNttt6FpWqv/mhs5ciQrV66krq6O3NxcHnrooU5a8enV1HYeERFxRNv55uwS/vzpdlS9F77V+VwVVkD/qNZn6gkhhOg+2sr+8ppGblyQwq6iWnxoYGD2N0wZM1wuSRJCiB6grezfXlDJDfNTKK9zEKarYvCBn5gYP1ayXwhx0uSSVXFaddfWdWi97XxzdgnX/3sZ1XgzUJfPm7PPZ0DfKGlLF0KIZnpS9lfUNXLj/BS25FWg1VYQvfNTPp7/KpGRkZL9QgjRTE/K/p22Sq59ay0l1Y047XsZkP0Ni99bINkvhDglcsmqEMfp8LZz185KVqrxZhQ7eFF9hSDNgqL06cRVCiGEaE/Ns7+q3sHt76SyJa8CtbYC51ePsbOqnNLSUnr37t3JKxVCCNFemmf/rsIqrp+fQkl1Iw223dj/+xh1vp6S/UKIUyblfCFaoaoqNpsNVVVbvb2pGFdRrxKn28Ob+r9j9NFhNBpP80qFEEK0l6Nlf22DkzveS2NddhmKo44r9jzH/AkFPDsjhGFDh3TCaoUQQrSHo2X/vqJqbpifQlFVA161doo/fRJnbSW+vr4MGSLZL4Q4NVKQE+IwTTsrzZw5k+Tk5CMOzpl5Zdwwfy1lNY2YlCouK3qPCiWYkKl/QAmQ2XFCCNEdHS37Gxwqf/wwndS9Jfh7GRi6+2MuMubSz+THHeePwFBf1nkLF0IIcdKOlv15ZbXcsCCFwsp6hpr9MW5eDPXV+Pj4EBsbS2lpaSeuXAjRE0hBTojDtLazUpMdBRX8/l+/UVHnJFSrwLhlCW9tgKe3RFE0/DaQGRJCCNEttZX9DqfKnz9az/IdRejURqbVrUJfX8GOmkCqNB9qQmPBN6yTVy+EEOJktJX9hZV13Dg/hQNldXjWl9Jnz1ICvRRCQkLw8/NjxIgRspmDEOKUyQw5IQ7TtLOS1WptsbPS3oMt63V4oK84QHjOt4yKGUKm1sjQcRZM4bKtuRBCdFetZb+qajz86Wa+z7Rh0Br5W92/GK3bTemYgby+KZYG40jGX/C4nIwRQohuqrXsL61u4KYFVvYV16BWFmH77AmWOmsYOnQoY8eOZcSIESQnJ8tmDkKIUya7rIrTqrvstnT4zko5JTVc8+Za8svrCNHVEp65mNHDB/PMM89QWlraYudVIYQQLXXH7NfpdDz11VbeW7MPPSrJHu8ww7mCWn0g5iHjKJn0FMa+wyX7hRCiDd0m+50OirO3Y+wzlOpGjRsXWNmcW46hsZqqpU9Tkr2D0NBQxo0bxwsvvEBMTIxkvxCiXUiSCNFM01BXALPZjKIoHCir5fr5KeSX1zHQ5Mf3D13I6OGDycjI4IUXXsBoNGK329vcAEIIIUTX1lr2z/tpB++t2QfAiyMPcM0QhSJ9OLkVGst3V+PwCu68BQshhDhlqqpiK8iHlf/AtOYp6pe/zMz30ticW06orwfX+m8jUFeHv78/AQEBJCQkyAZuQoh2JZesCsGhA/Li+f/kt7QMEiyJJCUlUVTVwA3zU8gtraWf0ZfFdyZCbTmZmZkUFBSwfPlyKisr2bp1KxaLhaSkJDljJoQQ3YSqquTn5/Pqq6+SmZlJYqIr+xes2su/ft0FwNOXxfJ7y4XY90/igY//Sk1xLvsKt9Nv1a1MnTpVcl8IIbqZ5tmft30DT4wpom9EMH/YG0RqVSkB3gbeH53FoKJ1DJrkyWub+hIcEkphYSGzZs1yHysk+4UQp0oKcuKMp6oqzzz9NL12L2aMVwk+/gF8Z4Wd2Qe4+7Pd7CuuITLQkw9nJmAO9Eb19yQ+Pp7FixdTVlZGTk4OAQEB7kGwZrPMkhNCiK5OVVWeeuop3nvvPYqKiggKCgLgnd+28dyP+wC466ze3GTpA4qCse9wxsVbeP/97dhshdTU1uHl5SW5L4QQ3YjqdPDS0w/z7/f+i72omOCgQM43mXjF4wpWVPXG11PPyzPCiN29ABrLOauvFz+XhJFdUscnn3yCh4cHgGS/EKJdSFlfnPFsNhvff/YBvdQDBOrrGOZfyYTxo3jgy73sKqzCT9dAQNo7vPv6PBwOB3a7nVmzZtGnTx+Cg4MBCAkJabEBhBBCiK7NZrPxwQcfkJOTQ21tLeXl5YTETmHuz/sBGOFhY+Wbj5KcnNwi+/v3709QUBBOp5O4uDjJfSGE6C5UlarvnmJ87nvc3LeQ+tpaPBor+NB4N99WDsRDr2OKksWryY/z2+5qND8TEeMv5qGn/05AQAAeHh44HA7JfiFEu5EOOSE0FdXpJDXPiaW3nn16M9bQ88k4UEGIj4GwTR9RnL2D5ZV29+WpCQkJTJo0ibS0NOLj45k9e7Z77pAQQoiuT1VVnE4nmqah0+kIG2Yh1WMETqfGRTFG9n78b/Jyc1FVlaSkJDIzM0lISGDy5Ml4eXkRFxcnu+wJIUR3UlOEh20TRh8VS5TCs2d7ciDmOr7URaHTwZMz+rP4hdfJzc3lJbUXq2oiSc1cT3yCBxaLBZ1OJ9kvhGhXUpATZzZVxbzjQz64OohfM2pJ3hoEFyaRd6CaAG8DH8y08OnbKSzOTGtxeWpqairz58/nj3/8o+ywKoQQ3YmqolYV8vaCBXh6ehIYGEhI/zg8z7uXBqfG9GHhvHTtKC5eWEdBQQGBgYFkZGRgs9kk+4UQoptSVRVbRSPbchqgTs+Ocg8qh83gS78rAXj6/GiunTiYd+oOZX9Kxh7JfiFEh5KCnDiz1RSh5KYz2L+OvuP8SY+fw8+lQfh46Hnv9njiooIxzp7NqlWrKCkpoaqqyn15qnTECSFEN6OqsPIlGnevYnjeLmqrK/EMicDr/Pupx8C4viG8fsNYKkqL8Pb2JjIykoCAAOLi4tDpdJL9QgjRDamqSnJyMsuXL2ff3j14qwrFpol4x90CwF8CfuVmXTi2IpNkvxDitJKCnDiz+Yahhg/HmbOOR+pu5uf6cDz1OubfMp5xfUMBMJvNTJkyBavVKpenCiFEd1ZTBDlpeJZs54KIMnYlePJG5N+oV7wZYPTm7VvH4+Opx8tkIjExEavVisViYc6cORQXF0tnhBBCdEN2u52UlBS2bt1KeXk5HtEjCJr6RzSdjhuDNnNvSDrkmTGNvVWyXwhxWklBTpzRVODZNXq2l13Lau8E9DqN164fy6TBYe77KIpCUlISdrtdDshCCNGd+YaBOQYOrKcaH34adD86QwR+ugY+mDWNYF9PoPXcl930hBCiezKZTMTFxZGelkp43wE4L3gQnd5Af30JTyUq6A6YIWo8in+4ZL8Q4rSSgpw4s6iqq0PCNwwUBbvdztf7VQrNk0DTePyC/pwfF3nEw+SALIQQ3Zeqqoc+YE1/jPLKau63hrDHMBAftZoFt4yjd4hfi8dI7gshRPfWPPuTn32G4c5M5umup0LvA7Ys3nnqGgxRvVt8NlBAsl8IcdpIq484cxycHcTSe1xfVZUfdtdQaE4AYIJXDjdPGd7JixRCCNGemmYHzZw5k+TkZJzoeLHxatboRuOpNfCc94dY+vgd+4mEEEJ0G4dnf0VJIQt9rqNCH0zvxv1EbH4Xbw8DKAr4h7u+CiHEaSYdcuLMUVMEuelQWQD7VvO198U88dVeAGYlRvLIpRfK5ahCCNHD2O12rFYr+fn5rFixAs9RF7N4QxE6NP7R6zcuGnUWin94Zy9TCCFEO2qe/b+tXE1a4GT2NoYQRhnXlL1P+aVXSyecEKLTSUFOnDl8w6D3ONj8X1ZURHBf1m40TeGWCX1JujQWnU7X2SsUQgjRzkwmE/Hx8SxevJjy4CH8Z80BAB67KIZLxiS4L1MSQgjRczRl/6LFH1Ea83vU/GoCvA18cNNEQv2nYwqXDdqEEJ1PCnLizNA0O27MzWzI2skf8y+iUVO4OCaUJy+RYpwQQvRETfODZs2axY8b95E3+HIAbhhr5o7JAzp3cUIIITpE8+z/fJ9CmXkUOtXJCxcPYfig/p29PCGEcJOCnOj5mmbH5aazK2git+ddQo1mYLKxinnXzUBRpBgnhBA9TdP8IKvVyuDxU7APvRww0F9fytNXXtDZyxNCCNEBmme/75iLKTOPBWCqTzYXjL24k1cnhBAtSUFO9HhqVSGNu1dTXOvglqxIyhoNjOrlxxt3noenp/wJCCFET2Sz2VixYgUl1Q3srIymwcOV/Uv+cD4Gg76zlyeEEKIDNGV/gT6cyoYo0MHdk3rzwO9kVrQQouuRVBI9mqqqJL/yFgtTDnBD7pUcaPRnQJgf786ciJ+PZ2cvTwghRAdQVZW33nqL7NwDGOKvot4jkH76IhYOS8fHQ4pxQgjREzVl/95yJxWxvwedDmXPamrWfdnZSxNCiFZJQU70aHa7nbVp6/i77lb2aREYfQ0svCOBUD8pxgkhRE9lt9tJTUvDY8LN2HwGEEwV7/r8k+CCla55okIIIXocu93Omg1bcU6chc7Di8bsTZT89AarVq3Ebrd39vKEEOIIUpATbpdeeil9+vTB29ubyMhIbr75Zg4cONDiPps3b2by5Ml4e3sTHR3Niy++2EmrPT5GYxi1I6+mMaQ/HjhZeIeF6FDfzl6WEEKIDmQymTCMuZyq8BHocfKGcQn9A4E+E127qgohhOhxfANDsMdcheYdhEdNEb4bl2AONzF58mRMJlNnL08IIY4gA7SE29lnn80jjzxCZGQkeXl5PPjgg1x11VWsWbMGgIqKCs4//3zOPfdc3njjDbZs2cIdd9xBcHAws2fP7uTVH0nTNJK/y2KvMwSDouPd2ycQFxXc2csSQgjRwT7fcIBNjZEAPP/7USQO+w9ogH84yAwhIYTocZyqxn3/3USJ6kuIr4HPH7gSrznnA2A2m2V+nBCiS5KCnHC777773P/dt29fHn74YS6//HIaGxvx8PBg0aJFNDQ08M477+Dp6UlsbCwbN25k3rx5XbIg99aKPby7eh8AL109ksGBKqqqygFZCCF6MOueYh7+bDMAd00dwJQ+3qh+Jsl+IYTowZ77dhs/byvE06Cw4Jbx+Kg1mKQQJ4To4iShRKtKSkpYtGgREydOxMPDA4C1a9cyZcoUPD0PzV+bMWMG27dvp7S0tNXnqa+vp6KiosW/02HpxjzmfpcFwCMXDmPL1+8yc+ZMkpOTUVX1tKxBCCHOVJ2V/fvslfzhgzQanRoXxkVQn/Y/yX4hhDhNOiv7P1y7j7dX7QXgpatG8u0H/5bsF0J0C1KQEy089NBD+Pn5YTQayc7OZunSpe7bCgoKMJvNLe7f9H1BQUGrzzd37lyCgoLc/6Kjoztu8Qet3V3Mg59sAmDmpP5cNswfq9VKQUEBVqtVhroKIUQH64zsr6ipZ+YbP1FW62RUUA0PT40gNVWyXwghTpfOyP41u+w8tjQDgHEeB4g3K/K+XwjRbUhBrod7+OGH0el0R/2XlZXlvv9f//pXNmzYwI8//oher+eWW25B07ST/v1z5syhvLzc/S8nJ6c9XlabdhVW8ocP0ml0avxuRARJvxuOyWTCYrEQERGBxWKRoa5CCNHBTnf2O1WNexensbvai0h9BfMjvyY6SC/ZL4QQp9Hpzv6ckhru+nA9Gjq88jdTt8HVSCDZL4ToLmSGXA/3wAMPcNtttx31PgMGDHD/d1hYGGFhYQwZMoThw4cTHR1NSkoKEyZMICIiApvN1uKxTd9HRES0+txeXl54eXmd2os4TvbKem57N42KOgdj+wTz0lUjsdsLMZlMJCUlYbfbMZlkjpAQQnS005n9AH//YTvLdpXjpai82W85Pqa+4Bcm2S+EEKdRh2a/qkJNkWunbEWhqt7BrIXplNc5CFOqMRWvJS42Vt73i/9n777DojrTPo5/5wy9wzAMCNgLAlYENJZYkpiyiW7KpldLzKasMdkkBE1TZNOTfTdlo6ZuTO/NFGNXqiUCYleKMAy9l5lz3j+QiSh2pej9uS6uXZh2Zi7zO3Pu53nuR4guRRLqHGc0GgkLCzvmz6E94Q7V0nOhoaEBgFGjRrF69Wqamprs9/n1118ZMGAAvr6+Z//NHENto5Vp76WSV1ZHT4Mbb90axYvP/cvePwJkhyUhhDgXfb0pnzdX7Qbg2WuH8luBDze9kU7CwkRAsl8IIbo8VYU1L8A398GaF1CtNuZ8spnt5iqMns589dDlDI4YSEZGBomJkv1CiK5DUkoAkJyczH/+8x82b97M/v37+f3337nxxhvp06cPo0aNAuCmm27CycmJadOmkZmZySeffMKrr77KnDlzOvTYbarGAx9t5o+8CrxdHHj7jhHYaiukf4QQQpzjtuSW88gXf+6oOirYid9TMigoNEv2CyHEuaK2GPLSoNoMeWm8suwPfsky46jX8ebNw3Cy1pCZmYnZLNkvhOhapCAnAHBzc+PLL79k0qRJDBgwgGnTpjF48GBWrVpln3ru7e3NL7/8wt69e4mKiuKhhx7iiSeeYObMmR167PO/z+K3bWb0qBgyP+XDN1/BYDBI/wghhDiHFZbXMu3dFBqtKp6V+2hI/VyyXwghzkVu/hAyAjxMfK+fwL/XHgAgYP9yfvzgdcl+IUSXpdNOp2O/ECepsrISb29vKioq8PLyOvknOKx/xNtr9/LM91kAPNi4GKcDm1lf35cX3nwfY4BJ+kcIIUQncLrZr6pqqzyva2hi3NNfYVHd0VUW4pO6GH8fD95//31MJsl+IYToDM5o9gMZu/cxdUkGVvTod67Ee+9yDAaDZL8QosuStBJdh6qirn6ehk9noK5+nuVZhcz/obkYFxeYynVemVzZo5anhhZizH4fBekfIYQQXZ2qqixYsIBbbrmFBQsWYLPZePiT9OZiXFMtDhuWUFlaRE5ODosWLQIk+4UQoqs7PPtLahuZ8dlurOhxLN6JkvEdFRUVkv1CiC5NdlkVXYZaXcSulR+jqzGzd18tDzIYTYMbo0OZaciE/WHYivegd/dFl5/ePJPOI6CjD1sIIcRpMJvNfPjhhxQWFrJnzx78YqbwQ1YJOjR65P1G9EWjSU5OpqamhpSUFCwWCyaTqaMPWwghxGk4NPt379nLVsN4Ciob8dTVE1K0msirrpTsF0J0eVKQE12GpVYjOb+JcC8X5jbcSo1OZXQfA89MjURHODRW4VCeB401EBzVvKxVCCFEl6dpGvX19ZTovHlpRQ7oFB69NIwpA6J48803MZvNAMTExEjvICGEOEe0ZH91r/Gk5lbh6qjnk3suwld3gWS/EOKcIHN6RZdhDDBxIPhKHtU/RJHOQG+nCl6f2h1HvQJ1pWDZDs4e4B0CUbeDTFkXQoiuTVUxueuYOuUqvE2heF/+EKpOYVI/X+6+sA+KopCeno6Hhwfdu3dnxowZslxJCCG6OFVVQVO5acpF+A0aj9uIvwLw+MU9CO/mLdkvhDhnSHKJLkTHvr7XsEvpia++nndGmvE2BDbf1LL7kmcg9BwN7rJUVQghujRVhTUvoHz3AE9faqT7jc+gc/PBR1fHKzeNQKfTYTQaiY2NJSgoiHHjxslyJSGE6OJUVSVhwQJ+e/JSxrjuwOuiWQBEOpi5ecwAAMl+IcQ5Q5asii7jpV938FOGGUe9jjdvGkqPgX/9cxacosDYh1vtwCqEEKILqy2GvDSoNvPsRj3FOm/cnfR8ft9kPF2dAFAUhfj41aHm4gAAwhRJREFUeNlZTwghzhEWi4XtG9cSG1TN0w3/oEHnRFQ3Fz665zZ7xkv2CyHOFVKQE13CF+l5/GfFLgD+dfVgYiNCjryTosgmDkIIca44OPP5y62lvFsyEIBXbhhG3wDPVndTFEVmRwghxDnCaDTSf9gYXi6fRK4uiEDnJv57x0ScHFtftkr2CyHOBTKcILqELXnlANw7oQ/XRLVRjBNCCHFuURQy+swgrnAcAA9M6sfF4XLxJYQQ5zJFUTCMu5FtzpE46XW8cdc4/L1cO/qwhBDirJAZcqJLePqqCMb09eeigXIxJoQQ5wNN05j3bRYNVo0JA4zMntSvow9JCCHEWaaqGmn7ygB4ekokw3r4dfARCSHE2aPTNE3r6IMQ54/Kykq8vb2pqKjAy8urow9HCCFEOzjV7DdX1pPwwzbmT4nE283xLB6hEEKIM+1Us9+mavy2zczkiMCzeHRCCNHxZIacEEIIITolk5cL/75xWEcfhhBCiHakV3RSjBNCnBekh5wQQgghhBBCCCGEEO1ICnJCCCGEEEIIIYQQQrQjKcgJIYQQQgghhBBCCNGOpCAnhBBCCCGEEEIIIUQ7koKcEEIIIYQQQgghhBDtSApyQgghhBBCCCGEEEK0IynICSGEEEIIIYQQQgjRjqQgJ4QQQgghhBBCCCFEO5KCnBBCCCGEEEIIIYQQ7cihow9AnF80TQOgsrKyg49ECCHan6enJzqdrqMPo91J9gshzmeS/ZL9Qojzz4lkvxTkRLuqqqoCIDQ0tIOPRAgh2l9FRQVeXl4dfRjtTrJfCHE+k+yX7BdCnH9OJPt1WsvQhRDtQFVVDhw4cFIjhZWVlYSGhpKbm3tefpk5EfIZHZ98Rscnn9Hxne5ndL7OkpDsPzvkMzo++YyOTz6j45PsPzWS/WeHfEbHJ5/R8clndGxn4vORGXKi01EUhZCQkFN6rJeXl4TFcchndHzyGR2ffEbHJ5/RyZHsP7vkMzo++YyOTz6j45PP6ORI9p9d8hkdn3xGxyef0bGd7c9HNnUQQgghhBBCCCGEEKIdSUFOCCGEEEIIIYQQQoh2JAU50ek5Ozvz5JNP4uzs3NGH0mnJZ3R88hkdn3xGxyefUfuRz/r45DM6PvmMjk8+o+OTz6j9yGd9fPIZHZ98Rscnn9GxtdfnI5s6CCGEEEIIIYQQQgjRjmSGnBBCCCGEEEIIIYQQ7UgKckIIIYQQQgghhBBCtCMpyAkhhBBCCCGEEEII0Y6kICeEEEIIIYQQQgghRDuSgpwQQgghhBBCCCGEEO1ICnJCCCGEEEIIIYQQQrQjKcgJIYQQQgghhBBCCNGOpCAnhBBCCCGEEEIIIUQ7koKcEEIIIYQQQgghhBDtSApyQgghhBBCCCGEEEK0IynICSGEEEIIIYQQQgjRjqQgJ4QQQgghhBBCCCFEO5KCnBBCCCGEEEIIIYQQ7UgKckIIIYQQQgghhBBCtCMpyAkhhBBCCCGEEEII0Y6kICeEEEIIIYQQQgghRDuSgpwQQgghhBBCCCGEEO1ICnJCCCGEEEIIIYQQQrQjKcgJIYQQQgghhBBCCNGOpCAnhBBCCCGEEEIIIUQ7koKcEEIIIYQQQgghhBDtSApyQgghhBBCCCGEEEK0IynICSGEEEIIIYQQQgjRjqQgJ4QQQgghhBBCCCFEO5KCnBBCCCGEEEIIIYQQ7UgKckIIIYQQQgghhBBCtCMpyAkhhBBCCCGEEEII0Y6kICeEEEIIIYQQQgghRDuSgpwQQgghhBBCCCGEEO1ICnJCCCGEEEIIIYQQQrQjKcgJIYQQQgghhBBCCNGOpCAnhBBCCCGEEEIIIUQ7koKcEEIIIYQQQgghhBDtSApyQgghhBBCCCGEEEK0IynIiXalaRqVlZVomtbRhyKEEKKdSPYLIcT5R7JfCCGOTQpywi4xMZHo6Gg8PT0JCAhg6tSpbN++vdV96uvruffeezEYDHh4eHDNNddgNptP+DWqqqrw9vamqqrqTB++EEKITkqyXwghzj+S/UIIcWxSkBN2q1at4t577yUpKYlff/2VpqYmLrnkEmpqauz3efDBB/nuu+/47LPPWLVqFQcOHODqq6/uwKM+e/bt24dOp2Pz5s0dfShCCCHaiWS/EEKcfyT7hRAdQQpywm7ZsmXccccdREREMGTIEN59911ycnJIT08HoKKigiVLlvDSSy8xceJEoqKieOedd1i/fj1JSUntfryFhYXcf//99O7dG2dnZ0JDQ7nyyitZvnx5ux/LsWiaxgsvvED//v1xdnYmODiYhISEjj4sIYTokrpC9j/11FPodLojftzd3Tv60IQQokvqCtkP8PPPPzNy5Eg8PT0xGo1cc8017Nu3r6MPSwjRSTl09AGIzquiogIAPz8/ANLT02lqauKiiy6y3ycsLIzu3buzYcMGRo4cecRzNDQ00NDQYP+9srLyjBzbvn37GD16ND4+Pjz//PMMGjSIpqYmfv75Z+69916ys7PPyOucCf/4xz/45ZdfeOGFFxg0aBClpaWUlpZ29GEJIcRZc75n/8MPP8ysWbNa/W3SpElER0d30BEJIcTZd75n/969e5kyZQpz5szhww8/pKKiggcffJCrr76ajRs3dvThCSE6I02INthsNu2KK67QRo8ebf/bhx9+qDk5OR1x3+joaO2RRx5p83mefPJJDTjip6Ki4rSO77LLLtOCg4O16urqI24rKyvTNE3T7rzzTu2KK65odVtjY6NmNBq1xYsXa5rW/D6fffZZrU+fPpqTk5MWGhqqLViwQNM0Tdu7d68GaJs2bbI/fuvWrdqll16qubu7awEBAdott9yiWSyWox5nVlaW5uDgoGVnZ5/W+xVCiK7kfM/+w23evFkDtNWrV5/kOxZCiK7jfM/+zz77THNwcNBsNpv9b99++62m0+m0xsbGU337QohzmCxZFW269957ycjI4OOPPz6t54mLi6OiosL+k5ube9rHVlpayrJly7j33nvbXP7j4+MDwPTp01m2bBkFBQX2277//ntqa2u5/vrr7cf3r3/9i3nz5pGVlcXSpUsxmUxtvm55eTkTJ05k2LBhpKWlsWzZMsxmM3/729+OeqzfffcdvXv35vvvv6dXr1707NmT6dOnyww5IcQ57XzP/sMtXryY/v37M3bs2JN4x0II0bWc79kfFRWFoii888472Gw2Kioq+OCDD7joootwdHQ8jU9BCHHO6uiKoOh87r33Xi0kJETbs2dPq78vX75cA+wjUS26d++uvfTSSyf03BUVFac9UpacnKwB2pdffnnc+4aHh2vPPvus/fcrr7xSu+OOOzRN07TKykrN2dlZW7RoUZuPPXykbP78+doll1zS6j65ubkaoG3fvr3N57j77rs1Z2dnLTY2Vlu9erW2YsUKbejQodqECRNO5K0KIcQ54XzL/kPV1dVpvr6+rY5HCCHOB+dj9q9cuVILCAjQ9Hq9BmijRo064tpJCCFayAw5YadpGvfddx9fffUVv//+O7169Wp1e1RUFI6Ojq2ap27fvp2cnBxGjRrVrsd5oqZPn84777wDgNls5qeffuKuu+4CYNu2bTQ0NDBp0qQTeq4tW7awYsUKPDw87D9hYWEA7N69u83HqKpKQ0MD77//PmPHjmX8+PEsWbKEFStWsH379hN+H0IIcb7rStl/qK+++oqqqipuv/32Ez5+IYQQzbpS9hcWFjJjxgxuv/12UlNTWbVqFU5OTlx77bUn9T6EEOcP2dRB2N17770sXbqUb775Bk9PTwoLCwHw9vbG1dUVb29vpk2bxpw5c/Dz88PLy4v777+fUaNGtbmhw9nSr18/dDrdCTVwve2223jsscfYsGED69evp1evXvYlQ66urif1utXV1Vx55ZU8++yzR9wWFBTU5mOCgoJwcHCgf//+9r8NHDgQgJycHAYMGHBSxyCEEOerrpT9h1q8eDF/+ctfjrosSgghxNF1pex/7bXX8Pb25rnnnrP/7X//+x+hoaEkJye36/WSEKJrkBlywu6NN96goqKC8ePHExQUZP/55JNP7Pd5+eWX+ctf/sI111zDuHHjCAwM5Msvv2zX4/Tz82Py5Mm89tpr1NTUHHF7eXm5/f8bDAamTp3KO++8w7vvvsudd95pv61fv364urqe8Hbpw4cPJzMzk549e9K3b99WP231tAAYPXo0Vqu11Ujajh07AOjRo8cJva4Q4sxTVRWz2Yyqqh19KOIEdaXsb7F3715WrFjBtGnTTuxNCiHOKsn+rqcrZX9tbS2K0vryWq/XA8i/OSE6yOnkfqNVpcFqOwtHdYgOXTArzjtnopeEpmna7t27tcDAQC08PFz7/PPPtR07dmhZWVnaq6++qoWFhbW67y+//KI5OTlper1ey8/Pb3XbU089pfn6+mrvvfeetmvXLm3Dhg32nZgO7yWRn5+vGY1G7dprr9VSUlK0Xbt2acuWLdPuuOMOzWq1tnmcNptNGz58uDZu3Dht48aNWlpamhYbG6tdfPHFp/X+hRAnx2azaYWFhZrNZtNsNpv2zDPPaFdccYX2zDPPtNoNTZwd51v2t5g7d67WrVu3495PCHF2SPZ3rPMt+5cvX67pdDrt6aef1nbs2KGlp6drkydP1nr06KHV1tae1mcghDhxLdnf1NR00rnf0GTTfs82aw9/ulkb/NTP2qepOWf1WGXJquiSevfuzcaNG0lISOChhx6ioKAAo9FIVFQUb7zxRqv7XnTRRQQFBREREUG3bt1a3TZv3jwcHBx44oknOHDgAEFBQcyaNavN1+zWrRvr1q3j0Ucf5ZJLLqGhoYEePXpw6aWXHjEa1kJRFL777jvuv/9+xo0bh7u7O5dddhkvvvjimfkghBDHpaoqCQkJJCcnExsby/Tp00lOTqawsJDk5GQsFssJLSfUNI0d5mqcHRR6+h97ZpQ4O7pK9kPzv7t3332XO+64wz5DQgjRfs5U9ouO11Wyf+LEiSxdupTnnnuO5557Djc3N0aNGsWyZctOesmsEOLUHJr9ERERZGRkYDabj5n7jVaVdbuL+fGPAn7OLKSy3mq/bc3OYq4bEXrWjlenadJhUrSfyspKvL29qaiowMvLq11es7q6muDgYN555x2uvvrqdnlNIUTnYTabmTZtGoWFhQQGBrJo0SIWL15McnIy0dHRzJw5E6PRSElJCUajsdUX7SabSureUn7dZua3bWZyS+u4dWQP5k+N7MB31PVI9gsh2tvpZH9bNE1Dp9O109GfGyT7hRDt7dDsN5lMREZGkpmZSWxsLHFxcZSUlGAwGDAXWdhZqfDD1kJ+yTJTUddkfw5/D2cuiwzkisFBRPf0Q6+cveyXGXLinKWqKsXFxbz44ov4+Phw1VVXdfQhCSFOkKqqWCyWE7pIOh6DwUBERASaphEbG4vJZCI+Ph6z2cyiRYuYPn069fX1uLi4MHLkSO6f8wird5XwW5aZFduLqDpklMzZQcEqfWA6Ncl+Ibqujsz++Pj4Vq+pqhqZBypZnm3m9+wiro8O5eZY6f/bWUn2C9F1na3sHzly5J9FOD9fXkmYy/dZpZR49KbWtx82Bxf744yezUW4ywed/SLcoaQgJ85ZOTk59OrVi5CQEN59910cHOSfuxBdweHLjA6/SDrZ50pcuJC87I0MihxGXFyc/bkURSElJYX8/HwKK+vxibiQfWYj7yYsx6b+OXnc4O7EpIEBXDTQxJh+/rg5SZZ0ZpL9QnRNZzr7ExISSE9PZ/jw4UfN/oKCAgIDA+1LmTx8DKzbVczv2UX8nl1EUVWD/TkN7k5SkOvEJPuF6JrOdvbrFD17qxRe/Oh/LKsdSmUvT/v99dZapkb14LrYPu1ahDuUJJU4Z/Xs2RNZkS1E12OxWM5Ynx9LkZmeuZ8xvlsx+0oLKSl+EFNgEJqmUWJzwWnYFOr7OODiGkB9y4NUjZ5+Llw6qBsXhwcyNNTnzxO0qkJ1Ebj5w2mO4ImzQ7JfiK7pTGa/2Wxm6dKlFBYWkpebw0N334qpVwQoCkajkdjYWDRNw2AwoPcw4DVkAo/8sI8Nu9NptP2ZH+5Oesb2MzIhzMggg4Kqqqc9e0OcHZL9QnRNZyv791XrqPtgHckHmg4OrphAB55aFS4lu3CrzGFCRAh3jx+DyeSLclgx7kzO2jsWKcgJIYToVFoullpGyoxG46k/l5uO2GAHdDUK/m6O7C2u5q20TJZtLSC/ogHoBq6g08HgIA8uG9yNXau+Inv1apoaYhk2Of7PE7SqwpoXIC8NQkbA2IelKCeEEGfImcz+FooOZkXU4L0qHjV3NJaw2/A3BnDVHfehG3QF6/dXk1VQxY5GYEcxAJ66Bq4Z2Z9J4SZievnhqOhISEjggzMwe0MIIURrZyr7NU1jh6UWa8QVeE0ajNXLyHfbqwHwdNZzqX8xf3FIZXCoN56XPI5l/3ZefusDpk+ffkTbgjM5a+94pCAnhBCiU2gZiTIYDEyfPp3p06djMplO6wTY5GIgN2I6P+2sZ0V9X0r+t8N+mx6VCQMDuSQ8kIkDA/BzcyQrK4vvUlbZd2Mym80oB2dUKLXFzcW4anPz/9YWg0fAmXjrQghx3job2W8ymbj55pvZmvQ7lw8uh4ZKlv6azH+W2qgyDKRGc7LfV4fGEOdCjKWbSftjF0Eeeq69+VnC+xhQFMV+PpDdWYUQ4sw5U9m/t7iGbzcf4Nst+ey21ED/SegBR7WeaOtmDOYUthWpeI0dy9jZcSju/qhrXqT8tw8Izs5j6abmPnKHfuc/k7P2jkcKckIIIU7Y2Zq+raoq8+fPZ82aNaiqiqurq3206mRfs6bByqodFpZlFPJ7dhHVDT3ttzlqTdTtTkXL20yY0YGEB9/CZDJhtVqJi4sjIyODuro6fHx8iIqKYtGiRaSkpDSPjj0ehxIy4s8Zcm7+Z+z9CyFEZ9be2R8XF3dar6coCg889Cjfpl7DK5s3s2K/C3W4gB+ggaujwrj+Rib2cKb7LzPwr8mlGIUy116U1jnw6KOP2s9BZ2PmnhBCdAWdNfvNlfV8t+UA3245wB95Ffa/OzkojO9vZHyQjci190HJHvKVRlbudifJyQlL3d2YlFIadq3FpyGPG8JsWJuq2dOjO2+99Rapqan23VjbK/elICeEEOKEnM3p2y09HwoKClBVld69e6PT6TCbzSxevPior9nyRcHZw4fft1v4KaOQ1TssNFj/3Ak1wNOZyRGBjAhy5OHbplC8fx8ODg4M/vvfMRqNWK1WZs+ezaeffoqDgwMeHh4EBZrQ15WQkrmHvPwDaJqGpbgE09iHm2fGSQ85IcR5or2zHyA+Pp7MzMyjvt7RLhLNlfX8kmXml8xCNuwuwapqgA8Atpoymvalc9FAE4vmPoSjXseDs/9Bt907GBEIGeUu5JXVYykuwdvbm9WrVzN9+nSCgoKIj49vl15CQgjRWXS27K+oa+LHrQf4InU/6XlVtLSM1Cs6Rvf156oh3bgkwoSXiyOoKpX1k0n7+k2S8mzsK6rmsmsjmr/326ys3l7MMFSaVIg06VmxbSPLfi5ulf3tlftSkBNCCHFCDp2+nZSURFZWFuHh4Wf0JKXT6XBxcSEgIIDY2FiAo75mcVU9s59/m80lUOsZisqfx9Hdz43LIgOZHBnI0BAfFEVHQUEBChpOTk4YjUbuv/9+zGYzL7/8Mp9++il1dXU4Ozuj2qxc3y2XmPq9BPm6MC+tEj8/P6xWKyqgyDJVIcR5pL2zPzIykoyMjLZbByjKEReJN909m1+yivg5s5DNueWtnrev0Z1RPTz4+IXHKc1Kxmj0J/H1lZSXFvPyyy/zyaefUV/XRLCPE42OztTW5VJRUUFpaSnV1dW8+eabzJo1C5PJJMtUhRDnlY7I/syMrTSWHSAlWcNsNmNVYWuJxjdbDrAiu6jVpjtR3X2YEu7F5cP74u/lCjQXEc1mM0ajkZqoe5g792My9zYSYGr9vf/993byzyiNyACFjDJXNmbvp7yiss3sP9uDMDpNtqMR7aiyshJvb28qKirw8vLq6MMRQpyElougpKQk6uvrcXFxOaIJ6uk894IFC1izZg1jxoxh5syZ9oufQ1/Twd0H/6GToPtwknaXcMh5mV5+Llw5LJRLIwIZGOSJTnfkbknz589n7dq1XHDBBej1etasWUNOTg5VVVVYrVauu+46evi7cG3V2/g7q1jqFaavDSK/wkqPHj0YN26cNPQ+BZL9QnRdx81+VT3lmcNtZb/RaCQxMZHk5GRiYmLQNM2+jCg+Pp6ioiJuvu9RDigBqN0G0eBiaPWcw0J9uMR1O5ewnj59+qOOmcP8BQnHzX5nZ2f+85//YLVa0ev1DBgwgKamJrp37y7Zf4ok+4Xouo6X/aeznLXN7Pc3sGbhVFzLtrHJayJf2cawq9EbVe9sf5xzfSn6vI2E2gr4fHp/PMuz7RutqdBqsCYuLo6EhKNnv2pt5L7rL6HcMYB//+f1Dst+KciJdiUnZiG6NlVVycrK4tFHH8VsNhMYGMiSJUvOyMwBq9VKVlYWBoMBk8lESUkJBoOB7fsP8MPmPN5b8Qc17sGg+/Ok6KerxaFwK2N7evL8vIeOe8Js+fKgqiozZsygoKCA6upqQkNDiYqKIiEhgZJ9mTS+dTE+Do2UNuiYvbk/WXnleHp6ntH3ez6R7Beiaztq9huNp737dFvZ7+vjze6tKXgF9uLuWfdQUFiId6/BjLzuHlbtLie/otH+eAdFx6g+BiZHBHJJuIkApRK+ua95Ax4PE0z5D6qb/3GzPyMjg9GjR1NXV4der2fYsGFUVFTg6elJUKCJt//vOYw9Bkq7gpMg2S9E13a07DcajSQsWMD2jWsZMHwM8XPnnlzRSlWxVhaStb8Ig78Rk8lE+h9bWfH7T3xd2oNC1cd+V4emaq4f2ZvJA/z4/cv/kZaWysSYSB7svRtdTZE95801GtOmTaOwsLDVcbaV/d1DQ3g4Fi4e6EuhQyj9p71F7WHZ7+HhgZ+fH++//z5BQUFn/sNteX9n7ZmFEEKckwwGg73RaXh4ePNSTlU9rdGjllG4pUuXomkaQT370RgwkHLP3tR5hTYX4TxCm19fV0NPhzIqM1cxdmgYMxbec8JTyhVFwWQyoaqq/T1ER0fbZ+QpioKxVwSr3IYzoG4T7p4uvDf7Il7Z6ETKwRka0tBbCHE+ajP7q4tQTmP36cOzPyQkBFcXZ64J2Ee4dz2rvCegDbmayv5ulDh5smdjEdC8S/boPr5MGd6DiwYG4u3meMiTOjUXBw/ZgOdEsj8yMpKYmBhSUlJwcXFh3LhxeHh4kJ6WypxoDf91T0FO9CkVHYUQoqtqK/vNhQX0zP2M8UHF7MstwFI0A1PgCRatVBV19fPsWfkR32fWs6R6NPq+F9DoHggMAcBZraO7YzVNu9Zz4cBgdJnbmP/WOkaPHs2iRYswBRjRrX2pVc4b3ThiI4ajZf+sW64mYMMz6GqKCHSHS0YP4+d1m+zZ7+7uzscff0x1dTWLFi1i7skWHE+CzJAT7UpGyoToug7t2xMVFUVtbS3ffPMNOp2Om266iXnz5p3yycpsNnPj7dPYWqbg2GckjiGR6BS9/XbnmkKuv6A/Vw0LJdjbmRkzZrQaATuVGWuHT7U/9HeqCmn6bBpOtlp0HibUK/+Nuab5dNke/STONZL9QnRdx8z+G29k3nhXlPz0U5ohZzabueWWW0hJSUHTNJxdXOgZGUVkRH+2uEZTqvja7+vmqNCneiMXWjfgU1/AlfO/P/oF4DGW0R4r+wsKCrjpppuorq4mKCiIRYsWodQW470qHuemCnQHZ2KcTNHxfCbZL0TXdazsn3bDlUzV/YauxoLmHkDfOT+heAWe0PPWlxfy03vP8nG+kVRdJKru4Pd91Ub93o04711NfX42Hy/9kLCwMFRVZeLEifbv/StXrmyesdZGzh9rGW2r2wB19fM07VmPY+8LKOh7EzfdfIs9+xcuXMicOXOwWCyEhITw9ttvn7XVMTJDTgghxAk5tLnr+vXraWxspKioCE3TWLt2LRaL5aRPVjUNVn7NMvPtlnz2Db0b90M2ZnCps+BWvI3KjJWU5O/m01/88L7pr/zj8flnZCvyllEzaGMnqcfjcO434c+RN3d/Fr+aeFZ2mhJCiM7smNm/bh2WWe9jGnHnKfWQMxqNjBp1AbsrgdDh6LoPx+LkwYqDtzvZanGtzGGQj5U37r+RgtcfR1dThGLww+h6jDkFinLUotmxsj8uLo6LLrqo1fklceEieubuJTbYgb7jL0dx8z+p9yiEEF3RsbL/t/WbmfWPK3Eu+gPH3hccd8MzTdPYmFPOFxvz+H7LASrrL6LlK7+udB9+lbvxrdpD+vpVlNbU4O7uznPPPcfgwYO577777M/TsioHaDPnD833wx2R/asb2L6xjgHDG4gbE9Qq+8PCwtA0jcLCQvz9/TEYDG0+55kgBTkhhBAnxGg0tpruDVBYWAjAmDFj7IWx4zV5rW+ysXK7he+2HGB5tpn6poMnVhScai30d6nmpQdvxpN6zOah3H//eor3NXFLDzOjSz6i7hdn4h9/AktxyRnbivzQLx3JyclYikswjX0YaotRXf3I2pZNUlKSfde/Uyk+CiFEV3Tc7A8wQctMs4O727WZy4fMZlDRsSm3jG83H+CzpqGoE2Lsd3N31KEUbMV5/wZy/kiiStHxq6qSQAkJl/4NdfPHOOj16DZ9AOP+eVrLRw/P/pKSEuLj47FYLBgMBrKzs0lKTuZbsxMDLAZenHUbJhmMEUKcB46V/aPHjMXjsniUulJUVz/MR/nef6C8ji/Sc/ksLYecsgb734O8XQiu2YFl83Jiw3uz4D//Ijs7mwcffJDc3FxKS0vZvHkzGzduRNM0brzxRj744AP0ej2LFy8+rVU5cDD7U1IoLCyl3JrSZvY7OzsTGBiIi4sLJSUlMkNOCCFEx1IUhbi4OLKzswkLC0NRFGbOnAn8uYzziJlmB2eS2VSN9buL+WbzAX7OKKSqwWp/3p4GNyb29Wb1/16mfP82Gnx9cVf/yuK33yYpKQlHR0cG9vBndI9Kuvu54FG2DV1d6Rk9MR76pcM+605RUN38W+0wZTKZpI+cEOK8cjrZby/CufqhrXmJrTv38r0tlu9Lu3GgsungKziha6rDo2IPT9x5JVt//YxP1nxIg6bRv19fduzYgaOjI1szMim9+18Yc5Kgrgzy00+6Z93h2sp+RVGaG5Yfkv0BpkAGRI1sLj4KIcR54ISy39WPVxLmsiJlKzGxzTuwNto0ftpawEdJe0jNraKlQZoDNi4KM3LL6L708bQxY/rL1BQWsqmhAovFwldffUVeXh4AYWFh9uzPzMwkMTGRdevWUVpaSmpq6mkPjJ9I9jc0NBASEsLIkSPP6vd+KcgJIYQ4IaqqkpjYetnm4bsOHTrbICk5mZVb97Imp57vthRQXN16ZOzKId24cnA3IoO90DSNBVv78WFGClVVVbz66qtkZmZiNpsxmUy88sEX9Mz9As/ybHSh0c1Lo84gRVHsI2OHjvC1vJ+W43j22WcJDw+X5apCiPPGMbNfVaG6CEu1rfUsY4vFvgPrzl07+aZxBN8dCGF/U8TBZ23CQ2/j4kGhVG9bxaqv36JRs5HqV0xmZqZ9d7u3336b//znP2RkZDBy5EgMPQZC7uhWjbxPh2S/EEK07VjZr6oq5sICXNNeZ0zpxzh76PjyjwBKP0rjt51lVNX/OfDuUpWLfn8qTXtT2Z1uYkXuOEbGxRETE8OHH37Y6nv/0bI/PDyccePGnXa7mhadKfulICeEEOeooy0dPd6S0qM5YllnG6NTRqORgdHjMO+vJdc0iLs+yrbf5uPmyBWDgrhycBA93K2YAgLsr6/T6ZgxYwZr1qyhtLSUzMxMIiMj0el0xMbGEjloMMqgwUdt0n0i7/t42uo7cfgImlyQCSE6u3bLflWFNS9AXhrG4ChiY2JITkkhNjaWRgcP3vhtK9+uD2JbfYT9uVxoZJLLdq703Mn4gBpc/vJvCi68ntvW/9Bm9gcHB5OYmNj6uA+2Ezj8XCDZL4Q4n7VX9rfMiN6evob7h9SwxuNivukeQ67Sjd1bLQA4N1Wi5KRj3bmOpqoi6m02nJycKC0ttbcHONb3/rayv60C2um8v86S/VKQE0KIc9DRlg8ddVnRCTyfqqpER0eTmppKdHS0/W+KolBW08j3fxzgy035bKqLgABAAxdHhYsGmriwhxuxPTzpFmg6YrSt5fVNJlOr0a+4uDhKSg7rE3ecpUmn+v6O5lhfAIQQorM5k9nfcpFjMBha9RGyZ39tcfNMtWozSn46f5/5En6xU/k5u5Qlz688+Cx+OGJjnPNOxqop9KveiObSndEmP/tsZ5Mbx83+VhdNbTTyluwXQpzP2jP7C8xF/JZZQIHfxdxYP6B5l1QFXBQblw4K4RrHdfhtWsR6l3peqNWorq2lqamJsLAwvL29W81wO5nsb6uAdi5kvxTkhBDiHHS0Ua3D/242m+09E9o66aiqitls5s0332T9+vWMHj2a//73vyxZsoRpM+8mcPjF6HuPZOUOC0225iYRig6ClErYl0JMsDOe2U48Nu9D9Ho9U6ZMISsrq83NEdo6CR6vP8Tho2InMovvZJ3IcQghRGdwprLfarUSFxfHpk2bGDt2rD2bFy1axIwZM+y7UTcGRfPbtiK+Ng9n5b//wKoebBakaZiUKiypP2Ao28x1kwPwq9lDmlnHsp3OLLn9KYw9BoKioMBJZX9bsyEk+4UQ57M2M9BopGT/NlKSkygsNJOUlERWVtYxZ30dK/tv//scXCMnUejSE3PPK+yPGeJiZrJ1BYOqk0nZNIYA13QaKvLo7aTQL7gPKZkVODs74+XldcQSUMl+KcgJIcQ5qc1NCg77e1RUFAsWLGDv3r2MGjXqiFGlllGnlStXsmnTJqxNTVQX7SVy3OV8netMWb9byWpwg21FAER08+Kvw4IZ1c2BhXOmsSotkx0NDXg7WsktrkWnKGzcuJERI0Y0T0mPicHoqjUvezr4uidzEmxrVOxo71sIIc4HZyr7H3/8cV5//XWamprYv28v1112Ib4h/UhJSWm+8Nm2lwc+TGPl7kFUN9gOPlLDucZMzbZV1G9fR0m5mbq6OvL1el7wCeDCEVeSUr2HEdExWF38UIGWVz3R7D/abAjJfiHE+eyIDPQ3wJoX8M9NZU60xospAdTU1nLPPfcwceJEnnzyySOKcodn/969exk1ZiwFSgCfFAVQMyAKmoCmBnzdHJk8wJfbx/YlOP1FKlb/TIPWSMOWL/jUpjLcpJJyQKNO58bf/vY39uzZw6BBg+ybQ7SQ7AedprXseyHE2VdZWYm3tzcVFRV4eXl19OEIce5p2dHOzR8VjtproaCggOuvv57U1FScnJwYO3Ys77zzTquTotls5q4772BfZhq7KxQuv2ISBUETKHDoZr+Pm66RW8YMYEJPN2IHdkcB1NXPs335//gmPQ/QMcTQRFKejZdSFWbdcw+JiYmUFFswZr+Pkp/e3Jh77MPH7AvXFrPZzLRp0ygsLCQwMJAlS5bYe1vIMqPORbJfiLPr0NyDU8h+o9F+7jBbLNx4442sXLkSNI0nJrhxaYSB3b6j+cQ2kf2NblTofezPG+zjypSh3ShI+pZvP/gvhYWFANTX1wPg4uLC3//+d3s/oEWLFpFysNfcyS4vOlruH/4ZSPZ3DpL9QpxdR83+2mL45j6oNqO5B5DZ9x4uvOI6+3+TW7ZsITg4uNXjLYdkv943GK9hl+IRMRGd68H/djUVXdEORhptLH5mNu4uTqiqysvPPEbsgbdxUxow18C0b+rQgCqbM/f8/e8kJCQwb948+wYNp7Ks9FzOfpkhJ4QQ54pDGmwTMgJl7MNHPVmVlJSQnZ2Npmk0NjbSu3fvI0aVPDy96B/iidZvNrUug9moaz7JueisTA4PYNIAA5OH9uK5Z/9FwhsHR6z+MQMlP50BwX5cjY3q6mrcdE14e+tRRkwhPjERBwcHTB56yE+HanPz8dYWH7c/3OGONiomy4yEEOeTtmYOnFT2H5xJ0XLu8B35ALt27ULTNAIMXtT2u5gnXC9kR2Pv5hfUgye1xFo34u3uybMPP0pJSTHT/rMaHx8frFYrNTU1KIqCo6MjN9xwA4kHs19RlD9n2Z3C8qJjzYaQ7BdCnE+Omf2uftT4hOGhaehCo7E6+1BfX4+qqtTX11NSUkJQUFCrx//jwYfY1eRLwA0Lcek+yP46Wk0ZVw0y8sfX/2Xn5iR+t9l4RldiH2RZmZaJq4cnA9w1NllUqjVXHBwdue2W5uwvKSkhMzOzzXY1J+pczn4pyAkhxDlCrS6iafc6nJrK0R1S5Dr8hB0XF8eXX34JgKOjI8OGDeOll15CURQ0TWNrfgWfpeXxzaZcKv1utz9/X3UfM0JyuTzcH8+JV4Ki2E+u9our2umYQkag5KXRd+JlVNdUU5D2Pdv3N4L/ISNXbv7NM+MOXgDi5n/S71eabgshRPPMgdWrV1NWVtbmTnjHzf66UvvmDOSlsWNLMo3GAQSMuBWXPtF8qncEQEFlQlgAl7MB0+b/8EehjZ+qwykpKW51sXTllVdSU1PDN998g81ma5XPp7u8SHJfCCGaHTP7FyaSkpzOhJhBPHD9bL5OWIirqysAMTExhIeH2/uv5Vc28fV+hU+eXYEy+i5cAE21oeZvxZq9koE+Gi+++CPzdv9Odvo6HBwcyMjIsOdwTOxIfkqGmrBwyv00Avd82yr7W3I/JTmJCTGRzYNAJ+lczn4pyAm71atX8/zzz5Oenk5BQQFfffUVU6dOtd+uaRpPPvkkixYtory8nNGjR/PGG2/Qr1+/jjtoIQRwcJTslbfombuH2GAH+o6/HOVgkevQhqerV69mypQppKWl0aNHD9zd3fnggw9I37qNrFoPPkvPJ7uwyv68froqxjeuJbAkndVF3uzQ9eOae56xLy894uIqwAQBD0NtMYqbP3VFZuYvTmF7XgkmS9qfo2KK0rxM9eASqZNdrtqiq4+KCSHE6VBVlbfeeoucnBwArrrqqlZLl46Z/e+/x+4/kug3OAaHkBHs3LWTz6vH8OUvjbhcPNv+Gs61RUToC3ht7n0EGbxQbVG8klPIil1biYkdab84OvRiyWw2s3nzZkpLS0lPT7dn/5m4qJLcF0Kc704s+838tKaRi6Zmt8r+JUuWsHL1Gmq8e1E++EbKVJ/mJ20CfWMVdRnLccxNJby7ieAhobz++us4OTmRkJAAYF96erTs37R5yxHZH/94HDXLnsGjbBu6tS+dUquaczX7pSAn7GpqahgyZAh33XUXV1999RG3P/fcc/z73//mvffeo1evXsybN4/JkyeTlZWFi4tLBxyxEKKFxWIhOSWFbwudGGAx8OKs2zACFrMZX19fwsPD2bFjB1VVVXzxxRfExMSQnJJC8LCJXL7gc6q9+6BzaJ4F4eSgcGlEINeNCGFkTx92benGP5/cw6YtW0hN30Q1biQmJqIoytEvrg4uPzUGmBgQNZZyaxuzIRTlpJepCiGE+JPFYiE1NRUPDw/8/PyYMWMGAAUFBaiqyogRI/joo49aZX9KSgrRI6JY/uTlGJQKXnO5mNyw29lSEHHwWRvxc3ci2l9l56//Y3vy76yzWnnFqaI5+/UOzJ67kJsPy/1DL5ZMJhPjxo07J5cXCSFERzvV7A8bPpIJD7yIrUcseo9awAcdGuMHBHBzbA/G9PElaUMgzz2Xz5YtW9i8eTNPPvmkve1AyzLVk81+pa4Uz/JsqCk65VY15yopyAm7yy67jMsuu6zN2zRN45VXXmHu3LlMmTIFgPfffx+TycTXX3/NDTfc0J6HKoQ4zKEz1QZExeLrZyAuLo6MjAx7Y22bzYa3tzcbNmcRc8M/KHUYRWZlIxhAB6glOdwzeTDXRvekT2iQ/UQ7YPgYIiIHkZqW3mqaesvJ91gXV+fyFHMhhOhoh89SNhgMPPbYY3zzzTdA86yJ0NBQysrKSEtLIzExkTvuuIMvflnJr2VXsdElhgadCxTU4aBTmRAWyHUjQhk/IAAHBeL2/U7mOusR2X+8oppkvxBCnD0nk/2paWnc+I8n2RU4gS/2VECEDj3gaSvncm0Nf3H5g1FTP8XB1wSqyrjhYSwbFEl6+pHf+085+89Aq5pzleyyKtqk0+laLVnds2cPffr0YdOmTQwdOtR+vwsvvJChQ4fy6quvtvk8DQ0NNDQ02H+vrKwkNDRUdlsS4ixoad5tMBiIj4/nnXfesd8WGNSNWu8eOA+cSI1Pbzi4QYPWWEvDjnVou9fR1+DMRZMmkZ6efsTud1arlfj4+NPaIUmcPyT7hWg/h2f/kiVLqKqqwsXFhejoaKKiosjIyKC6CaqMkZR6DwCvPy+oumsHuNIhlSE1G8jwvZzZDz6I4hEAiiLZL06KZL8Q7ed42T84Kob1BTZKfCNocv2zb1tDbga1W5bxD1M6t0UqgMZu9xEMvvddTDuXouSnY+s2nPhlpWzNyDxz2a+qp92q5lwkM+TECWnZwv7wirjJZLLf1pbExESefvrps3psQpzLDt8h72hbex++bfnWrVupq6vD6uhOwMgp1IWNx+rkhfXg/ZsOZFO5+Sfqtq/D1liP0WjEKTCCjz/+GE9PzyN2QTraNHUh2iLZL8TpOZ3sb2howGazodfrGT16DBNunEXe71lk7qsCpfmrv9pYR232GozmZG6PLKe3UwnbqtwJqPmRps+zce4zGsY+LNkvTopkvxCn50xkv6MhFIfYm/hZ342abrbm+zfWUZPxO9Wbf6TRsh8/Pz+W2XwYH1qGwd0BJ8sfzLvnBh4ZXku/IC/0BzayMP7fWOp0Zy77pVVNm6QgJ86quLg45syZY/+9ZaRMCHF8be2Ql5iY2Gp7c6WNGQyPPfYYAYPG4u0Zg77HMHSKA02At6sjkwf48NULD1O6YzNNjY2oTY3odDrKy8vtxXVfX982d7+Tvj/iREn2C3HqTjX74+LiGDRoEGlpabgZAgkecw2/Oo/mvXfTm59YccBq3kXNH79QmbkSrbGOSgcHXqztjY+TNyHBwSwIq8SpqbxVjx/JfnGiJPuFOHWnk/0RgwaxydyET8Ql6LuFk20DbDZ6+DqTv2IpRak/0FhTQVNj8/f+qqoqqoz+bC5rYqS7ni0lGn8cqCPZZKVHdx+cQ0ageARg8pJBmLNNCnLihAQGBgLN2ysHBQXZ/242m1stYT2cs7Mzzs7OZ/vwhOjy2hoBO3SHvOTkZLKzs1v93nL/xx9/nHfeeQdHd2+K/Yfw60uryNENxqFX83OblGoeueYCrhjcDSe9Dvftk1i71pmRI0fy888/s3fvXjw8POjWrRtjxoxh1qxZ9j4RQpwKyX4hTswZyX7H5g15iouL+cu0OawnjFwMlOr0UNmIp7MDU4d1o3LTT2Tl/crIy0fys95iz/6gbsHN2X/3TEw7/ocuP116/IhTItkvxIk5U9lvU5z4z69ZJPlNxvnicQDo0Lg4PJDbL+jJyF6+LKhfx1rb4CO/9weHUDl0NL1uuYbfln5NQGMq+0JjcLx2ZvNMNrkOaBdSkBMnpFevXgQGBrJ8+XJ7Aa6yspLk5GTuueeejj04Ibq4lhGxpKQkIiMjSUhIwMHB4YiGrf379yciIgJN05pnsBl8Kclaw9crU9DF3opj2FjMDk5Q1oCHswNTh3bjsv4ejBrYo1Vxbd68efaT+pNPPklWVhZffvkl69atQ6/XSzFOCCHawclkf2REON76BsKiYvD19WXVqlV8+eWXVFZW4ujujWPEJdz0v2z2FNeArnlJ0PDuPtwY052/DO6Gq5Me9aoILJbbj579gUEogf+UHj9CCHEWnUz2h4eHU19fT1RUFFarlT/++IOvvvqKGsUdzyF/YVf4xbyyKhcALxcHroowcPfEgYQa3O2vd6zv/YreAVOfQcydN0haE3QQKcgJu+rqanbt2mX/fe/evWzevBk/Pz+6d+/O7NmzWbBgAf369aNXr17MmzePbt262Td+EEKcGovFQlJSEps3byYtLQ1o7sNy6E5FBoOBxMREMjIyiIiI4JZbb+Hr1x7jg6JeNE78J24Hn8tbq+KfU0cydXgIHs5tR7yiKPaeE0ajEZPJRFpaGmVlZaSkpLTqHSeEEOLsOOHsX7iQiJKfuH0QBA6p57JLJ7Plj63UOhvwnHQP7uEXsllxguIa3J30TB3ajZuHeBHeq3urotoJZ7/0+BFCiLPmhLLfz5dXEubyzddfYbWp1NXVsfSjj7D59aJ26M0Ye0eh0ylYgX4BHtwxuidThgRRU1GG0de11eudaPbLd/+OIQU5YZeWlsaECRPsv7f0gLj99tt59913eeSRR6ipqWHmzJmUl5czZswYli1bhouLS0cdshBd1qFT1Y1GI5GRkaSlpR11e3Gz2UxycjIHymrJ3tHA1/9JpdFhEgAOWHHKTaUiYxXBIV5cPGfCUYtxLa99eI+KQ0fkDu8dJ4QQ4sw4lezfvnEt44OKsVY0svnnD9lTOxDnKx7HI2iA/Xn7+rtyx5g+TB0ShEfKK5CUBnkjYOzD9qKcZL8QQnQMe/b7GzC6agyKjDh69huNVP30FGNKP6a+RwUL1lqxuPfGc/T9OJp603LlrSvI5JW/T+GqmP5omtYq3w/dFVWyv3OTgpywGz9+PJqmHfV2nU7HM888wzPPPNOORyXEuefwE2N8fDwJCQkA9gatBoMBs9mMwWCgpKSEnFo9tUOup8zqDTo9NsBPK+c217XcGFLMK1pP/ij3YuTIkcc9sR7eo6KkpMQ+IidT1YUQ4uw4lew3GAwMGD6Gjfsr2eU4hOXu49HGe+EIYLPiUb6LcUHwfw/ORq/XQ3VR84YM1eZWGzOAZL8QQnQE1WbllYS5rEz5gwejYXwfdxIujQJuZ2tGpj37CwoKADC56/Ao24avrw/lYeMJDLsY3P2an8zaiGdJFr6WzUyKjuTK6H7odDqKioqO6DfXMuNNsr9zk4KcEEK0s8NPjC0nzcTERPsSpYULF7JqzVoqffpSHTSCOjcT4Ac6CNBVomb/zhWDu/HA3feiBISRoFNO+MR6eI+KlsfIVHUhhDh7TjT7V69ejaqquLi60jt6Elq/y3m3LgrbwTFTNxqZOsifey8dioN1ZOvcd/Nv3pAhL+2IjRkk+4UQop2pKjXLnmFM6cf4emu4l+loqgjGSadjYfy/sdTpMBgMJCQk8P7776PX65ly4x14Bf2Fj5tupsa9edMepaGKgQ5FPD9rCv17XklJSUmr7G8r31tI9nduOu1YU6KEOMMqKyvx9vamoqICLy+vjj4cITpEW7MkDi2iZe/J5Yp/JNLU8wIUd18AdKqNHjoLul2r2L9pLZWVlQwePJhffvkFB4eTH1tpa3cnIc4WyX4hjp/9BQUFjB8/ngJzEQ69Y/GJmYrqE/rnExTtpO6PZYR7W/n152VHz35VPerGDJL9oj1J9ovzXnUR2tf3UrBrC3nlDTT59OOCvr7oQqObWwoA5r2ZjL5kCvl1eryi/4rrgDGg6AFwriuh8Y8fqcpcweDIiGN+7z9Wvkv2d15SkBPtSk7MQjSfFM1mM0CrHU33WKp5e91ePkvLpcHaHM226lKUPeu4KsKPPVlb2Lt3L7t370av1+Pp6cny5cuJjIzssPcixImQ7Bfi6NnfYtueXP7yj3/R2HMU+oODMYqm4lW2nfo/lrF30xrJftGlSPaL856qoq5+nsY962gMGILHpfNQ6svts5e11S+wNmM3c7N7sd9jkP1hw0M8KFn7CUV/rGSPfO8/p8mSVSGEaCctF2OLFi0iJSWF6OhoZsyYwb5aR5as3cfy7CL7fX20KgpXLaUqcyWuzk64RNxJTEwMmqZRX19PdXU1kZGRhIWFdeA7EkIIcTxtZf/MmTPtRbldRc2DMV+k52GLuBw9zYMx1uzfuW5YEIZgZ5LznGgMDpbsF0KILsKe/avq2bmpjiFD67l5uAVTYBCg4/fNO3ljtZH02gjwAFSVuh3r8MxP5v++/h9vlwWxobInDfK9/5wmM+REu5KRMnHOOMaSoLbuowIJCQmsXr2anJwc3D29qPTqjT5iMg3uf/ZwuGhgAHeN6UV0d28efPBBPv30UxwdHRk6dCiLFy9GURR8fX3Jzs7GYDAQFBQkU89FpyfZL84VJ7Ls59D7QOvs9/DwoKa6isg+3TBGT6Gu52hWbrfYHxvZzQvHPatZ99F/cHRQJPtFlybZL84Vp5P9uTn7eWBYEwM9q9lZ78/anvdQ6DeEHeZqAJx0NqYEWPjynf9SvH87gYGBrFy5EpPJhMVikew/x8kMOSGEOIY2T8CqCmte+LNp9tiHjyzKHXYfy4Bbm3c2Kq/C1nsMFQMmYnPxwQroVCt/HRrEvReH08foYX+KV155BXd3d/vuey2zKVRV5ZtvvjlqHyIhhBCnp63sP14PuLbuM336dJKTkyktLQXA3d2d6MjubAu4mLSGHrDdgk4HFw80MX1sb6J7+mKzjSLeuVKyXwgh2tnZyH4/F5VIg41k/QV86n0VlqZAMFfj4ezAzbGhTBvmhX9AIJ5V+axZ483YsWPtuW8ymST7z3FSkBNCiKM46gm4thjy0tCqzTTuXofjsNtQvAJbP/jgfag2Q14aDgNuwnHYVCrqfLE5uADgjBWvos1c3NOJBTdcecTJ1cHBwb773qFfDI62U58QQojTd7TsPzR7V69ezfTp0wkKCmr12MPzefr06cTGxrI+NZ0+QyaT49SLZTU2AJxp5PqoYO6aEEFPf3f7c0j2CyFE+zsb2b8hJRXvIXfxiM5EYZNr850bqrl7fH/+fkkk3q6O9ueYO3dum7PwJPvPbVJaFUKIozjiBFhkhuoicPVDDY5iZ0Eln27YQ8Irb6GqausHu/lDyAgOOPbkmfLJjHktg01NQdgcXOju58ozUyLY+NTlfJ84iwVzHz3qSFfL6Niht7dsXx4YGHjE1uZCCCFOz+HZbzabMZvNGAwGYmJiqKqqIicnh7feOjL7W/LZZDIRERGB4uqFS/R15A+bRUpTdwprbBicrPzDkMr6ibt55poRrYpxLST7hRCifZ1I9ufm7OfD/76MarO2euzh2e/l40fIhJuxxN7HBmtPCptccaMR/9xV3Oqzk0evHNKqGAdt5/6hzy3Zf26SHnKiXUkvCdGVtBopi4khfpwzSn46hIzA3P9mHrrnTrbnlWAKDGLJkiX2aeUWi4UqXPnvqj18vSmXJq35xBoR5Mk9E/pyWWQQekV32scm25eLrkKyX3Qlh2Z/dHQ0Op2OlJQUYmNjueuuu7jjjjsoLS0lKOjI7Dcajaiqyuz4Z1hX4kqlIQKbTg9AL393ZoztzdVDg3BpKjt2D9K2Dwy1ughLrYYx4MiLNiE6G8l+0ZUcL/vvvON2php2MyJQY+DFt+F52VOo0Cr7H4ufy9oDKhXdRlKncwYg0MuFWRf25m8jQqgqLz3p7+7H26FbdG2yZFUIIY5CURTi4+ObT7SuGsp3D9iXqRqG3MKAqLGUNSURERGBwWDAarXy9/iFJFV4U+nTB9ABCsN0u7isYRlV5UO4PHIhymkW41qOTaarCyHEmXdo9quqyozp06gtziU5SWX69OmMGzeOpKTm7Pf19aWgoIC33nqL1NRU+kdfSG2PMSwjGvybL5r8tEoW3Hwhkw8djHEOOLmDOtiXVMlLwxQyAgIePsPvWgghzm+HZ/+0adPYv38/qtqc/ZeOHcGIkl1089TjVpqFeW8mb/7vS1JTUxkRM5KAkVfxTdNQmoI9AXDT6ombGsXfokNxdmgemHE7ye/ubS2jFecWKcgJIcQx2Buq2qxUeg+gcOcOkvNL2Ze3mEcfe4z4+Hg2bNjAA0+/xOZGEwd0UeDT/NixvbyY6bUB5+TXSSvUsXKHwi3S90EIITq9luxvbKhnit8uehgt5GHF6G8gLi6OuLg41q9fz6WXXoqiKOyv0iDiMjLqBkJ2KegUbPmZaFnLCAx0Jco08fRmRh/Wl5TaYvA4yaKeEEKIY2rJ/vr6ejIzMyksLKSurg6DwcB9jz7Fz/HrsZXv45ffMvnovdnszzuAY7/RZJf1wfp7Ljh54tZUyl/rvqVv404u6fWTvRh3KqR/3LlPCnJCCHEcqqqSsDCRNas3UF1UTZOjN6aCFLKysnjvx3Uogy4npykCdKBpKo07N+C6dzV9p17MqLvi+PfOUlbs2kpM7Ejp+yCEEF2Eqqo8+8Q/idVbCHDT8HasoyxvJ41OPrzzzjuUl5fjHBxGwIQ70AIHNj9IU+mhL+fFGZfy2ZurySh1ZeTIM5D9B/uS2nf3dvM//TcohBDiCKqq8vDDD1NYWIiqqlRXV5Odnc0HH3zAm29uxMexibJGBwJjIrFOuplGz+YCmSuNPDSpJ9Gr5uKmK0ILCMDodnqrYlr6x7XMkJPriHOPFOSEEOIQbfVmaxmdKi4ppaJao2dPH4wRFzD3dwtuVzZPHddUG/XZq7Bt/YnerrXU6z1ITUmmLG8ns+MXcHNxifR7E0KITuqo2Z+xGyf0DDNaUbv1wersQ5G5CJuhD/4XT8GlxxA0ms8BbpYsdNt+wd3PBZeaYSQkJFBScoayX1Fg7MPNM+NOtvecEEKINrWZ/UVmSnOycXZyor6hgf79+6OqKhs3bqSxqYkSUyQ+Y2/DGtgXAKWpFsedK+hhy2XkzQkMnHQ91r0bcOx9AcppzmRu1T5HriPOSbKpg2hX0txVdGZH2+7carUSFxfHN998g82vFw5Dr6LBp+fBB9loyF5J+fpP0dWUED/OmXG93Vi3v44Ao4kbx/XHuc9olHH/lAsocd6S7Bed2XGz/+uv8HGy4WHqic2/H3V9JlKkNfcI0mxN1GWtpG7jN+jrymhqaiIgIIA+ffowbtw45s6dKxdQ4rwl2S86szb7s2kq1T89TUHqt/y4xcKrmxzo1bsPrq6ulOt9KDDGoAX0a358Yx11m76jKeMXmmor/8z+sWOZ++DdzcU4yX9xHDJDTgghDmqrT4PRaCQxMZH1O4toHD0LTAOwAahWAiuyeH3231AauvPgg5vYl1FGlEnD26GBcT0cUW3F5GRVoMvNpe/w21G8Ajv6LQohhDhMm9nvb+DfC+eyedNGGpusVAUPpaD7OPSBA0ADJ72Oi3q7sfXTl0hf8xtNTU3o9XocHBwoLCykpKSE3NxcZsyYQVBQUEe/RSGEEIc5PPvNZjMf/vdlxpR+TLC3I7EhCj3zPcncb8ZrzC1Yuw0BwFHR4XYglV3fvUFjZUnb2T9zJkFeUowTxycFOSGEOKitPg2/b9nD0gMG6sKGA6DZrFi3r2Km8y/cGOFAX7OCMu6fvP/++4wdM5rUA2XE6KxsLdNTV9vAyFCVwgor3rUaJhkcFkKITueI7Pc3UP3T04yyLGWfX3eyxt4LweHoAc3aiH5fEldH+rDwzkfJv6QPo0ePtvca0uv1NDQ0oGkasghFCCE6r8OzX1VVFi39iroe5cR005Fa6c9O0yRcx0/CqncATaWfQylvP3Qt1Axi9O9LKKzSSfaL0yIFOSGEOOjQPg3FVmdmvJ/O8uwi8O6BZrNi27mGhk3fEmlyYvLISnr6h6Dkp0NtMQ4ODji7uPJSWgX9DvjiYghh9+7dfLLLxl+uv4ybA2RHJCGE6IwO79FDdRHLU7bwtvP9bO0djiPNhTjHnBQqkz8nyMeNjPpQLBYLDg4OuLq64urqio+PD6GhoezevRur1crUqVNlNzwhhOikDs/+goICSkrLmJ9jxTTyL+ij/oajoysA1ryt+OxbgbOPI05Nl6JK9oszRApyQohzXlsNW49mb0ktLy/P5/s/Cpr/oKk4H9hM0+Zv6RvgBX1DcXVxps4Ajj7u9t3uTG5w8803s3r1aoYNG4a7uzueXt5ERkayICFBeggJIUQ7O5nsVxQFk8nE1rwKFn6/kw2Nd4MDKGoTnpYMfApScVeaaOjbHRcXl1a73R2e/d7ezdmfINkvhBDt7lSyH0Cn0+ETOQHX8MvRezVvxuBUW0Rg4QYcS3bj4i3ZL848KcgJIc5pLQ1bk5KS6NWrFy+99BJOTk5H3O9AeR0v/7qDLzbmoR6caf6XQUE47/qN7WXJxFx3JTNmzMBoNDbvmudvQFdXCq5+UFuM4ubP448/Tk1NDRkZGcTExLB48WJMJpOclIUQop2daPa33Dd5Ww7vbizm50wzADo0TGUZjAtUeXDhNIzGxygpKcFgMNj/t+WCT7JfCCE6h5PN/pYc31ZYxdPf7sM68g70gBuNzLm4H7eOvYTyssvtmd9CURTJfnFGSEFOCHHOOfQEa7FYSEpKYs2aNfz2229s2bKFFStW4ODQHH/ltY28vnI3767fR6NVBaC7vpw3/n4FEcE+qOpQLJbbW42y2aehu/nDmhcgLw1CRlAy4FYyMzMxm82kpqYya9YsOSkLIUQ7OZnsb5FTUs1dL3/JriY/0OnQ6WDq0GAemNgHNzW6zew3Go2tduabPn26ZL8QQnSQU8n+lsLdurQ/UAf9hZ02fzQNnB0Uboky8eBlkXi4NBfyTCYTqqqyePHiVjuylpSUSPaL0yb/YoQQ5xRVVUlYsIA5M2/h8bjH8PX1pVevXjQ0NKCqKtu3byc7O5u6RhuvrdjF2OdW8NbqPTRaVdxqDuCdugivLR/h79AA/DmVvc0TbG1xczGu2gx5aRjddMTGxhIYGNhqSrsQQoizS1VV5s+fz80338xjjx09+1uUVDfw1LeZTHxxNbusBtDp8KrYzdJbI3j5+qH0MnoeNfsP35kPkOwXQogOcLLZ36Kg0MwPu+rY3u8Gdlibi3FXDunG7w+PZ95fh9uLcS3a3I374KYQkv3idMgMOSHEOcVSZKZnzmeM8ssnbWs6T8yDF154gS1btrB9+3YiBw1mS7UHdz2/gqKq5qJbWKAn/5zcn3WfbSTF1XriJ1U3/+YecgdnyCkeAa2aw8oomRBCtA+z2cyHH35ITk4OSUlJQOvsHzRoEGFhYVQ3WFm8Zg+LVu+hptEGQDelEtcdvzB+SG9iw7of97UO35nPZDJJ9gshRAc40ew/1PrdxTz5zQ4Kg0YD4K/U8PqMScT0Mhz1dY7Yjftg1kv2i9Ol02RfXtGOKisr8fb2pqKiAi8vr44+HHEOUisL2f78xTSU5FJcp/BOaRQvvPk+NpuNXzPyWZpVz86iagBC/Vx56OIBXDWkG4qiO6kmsH++oNo8U87NH+RELESbJPvF2VZQUMCYMWPIyclBr9czZswYPvjgA1RVpaSkhH4Dwvh84wFe+W0nJTWNAAwK9ubRS8O4oI/fSWf/KZ0vhDjPSPaLs+142R8eHm5frlpQUceCH7bxw8GN2/zcHLlndDB3XhiGg4P+uK8luS/OBinIiXYlJ2Zx1qkqtlXPseP3D0krgD0h11CKO78Ve1HjEQKAj5sj90/sxy0xITg3lkkxTYizTLJfnG0ty5bef/999Ho9N954I3q9nuSUFIKiLmG352D2FtcA0MPgxszYQK6/oP8JXYQJIU6NZL84aw4OiKuufsxfkHBE9qekpNh7vVlVWLJ2L//3+05qG20oOrh1ZA/mXDwAbzfHjn4n4jwnBTnRruTELM6WVqNWgFpdRGZRA2+sy+fHrNLmZt2qjZuiu/HIFUPwdtGjrn6epj3rcex9Acq4f0pRToizRLJfnC2HZj80L19q+fsNf3+UgsBRWH17AuDn7sQDE/uy77cPWLd2DWPHjmXu3Lky00GIs0SyX5wVqtrqOzxjH8JcZDl4k8odd9xBaWkpQUFB/P2pl3lxVT67Lc0DMi7V+Uz2r+DlJx6S7BedgvwrFCfttddeo2fPnri4uBAbG0tKSkpHH5I4z7XslDRt2jQSEhKoqm9i4e8HuO7dTH7cVgY6HYMaNnOdWxZP/3Uo9VWlWCsL2bXyY3K2pbFr5ceo1UUd/TaEEEKchMOzX1Wbd8rOK63lhld/JnfgjVh9e6JHZda4Xnx2ezgX93Tio6Ufkpqayocffmgv4AkhhOga1Oqi1t/hq5q/w1utVl595WWqzXuobtSoG3Idf/98B7stNfi6OuCQtpTC/z3Cso8WS/aLTkM2dRAn5ZNPPmHOnDm8+eabxMbG8sorrzB58mS2b99OQEBARx+eOE+17HxUUFjIz9uKWfr099TpXAAYqtvJk14/EB7giv6aN0lMTCQpKYnevXoSXd9EL0eVfeVWvGs1TDJ4K4QQXcahu94lJSXxz7i5fLW9Bq3/RHQOJjRNxaskm/cevpYfPvsfD7yWRM+ePdE0DVkgIoQQXZOlViM530pPB5V9ZVYWJ7zE5198SUV5GQ8MtzFpzMV87nEDu21ugIZvSQbRTgWszEmV7BedjhTkxEl56aWXmDFjBnfeeScAb775Jj/88ANvv/02jz32WAcfnTjXHa2ZqtFopPeICewu9aHELRAAraqIaY1LucewCT+dJ/rut2Ku15GUlMTmzZtJTU1lc/9+mDwNDB45EWOAqaPelhBCiGM4VvbHxsaSlJyMe/gEvqoPhHAfdEBDbgZq+mfcMGUSQd4urbK/X79+mEwmJk2ahCnACNVF0ktUCCE6maNmf4CJfaHX8fPGtQT3H8Lnn39BTk4OxpAerBh0P/uc+wEwwOBIY/JH7NjwC183Ndmzf+LEifbnl2WroqNJQU6csMbGRtLT04mLi7P/TVEULrroIjZs2NDmYxoaGmhoaLD/XllZedaPU5ybWpYmtWw3Hh8fj6IomCvqmP/tFr6vDwM3cHFQaNryPfnL34cLoNjUE8Pwv8LEJzDqFCIjI0lLS8PR0ZFCcxE6JQgZKxPizJLsF2fK0bK/5ULtkptmsd5jDCnmWnADrbKQ8pXvYWjI59prriEhIQFFaZ39RUVFBAUFoQNY8yLkp0PICBj7sBTlhDgNkv3iTDle9sc9/jglJSVYrVa++PYHvC+8A6eoq9in6HGlnofDSrn1ptuZN285WWus9uwPDAxkzZo1pKWlMXLkSPvzCtFRpCAnTlhxcTE2mw2TqfVMIpPJRHZ2dpuPSUxM5Omnn26PwxPnuEOXJiUnJ5N/oJAv/rDw2ur9NNG8S95fh3Xjn5cMYNG/U1hTF0v1sKH0e3gOildg80WWqnLfffdRXV1NdnY2eXl51NTUkJqaisViOeLfthDi1Ej2izPl8Oxv6fvz6n/f5adCFyp8+gPg4aznUtsartJ/RM2Ungy+dyVBQUEodaWorn5tZv/Ozetp6u6Kc1M55KVBbTF4SPsNIU6VZL84U46W/YsWLWq1g+rK7UVwaTyeLj4AjO/jxYJLI3B0dEZRlCOyv6KiArPZTFBQEMnJyfL9X3Q42WVVnLADBw4QHBzM+vXrGTVqlP3vjzzyCKtWrSI5OfmIx7Q1UhYaGiq7LYmTduhIWWjURDY0hlKuuQGgrzxAD0sSH/1nISaTqc0p7qqqMn/+fJYuXYqmaUyZMgU3NzfS09NbjbwJIU6fZL84Uw7N/piYGBqtKt/vqKY8eBQ4uoCmcdUgI3MvCsH422yaKg7g6N0N3ZT/g43vo+WmsmJXNX//aDeqRuvsj4khfpwzisyQE+KMkOwXZ8rh2W+z2VixYgWFhYV4eXnhH9yL7lPn8Mv2UgB0deWEmtfxycvzWLx4MUlJSdTV1ZGXlwf8mf1paWnU19fj4uIiM+REpyAz5MQJ8/f3R6/XH7ErjdlsJjAwsM3HODs74+zs3B6HJ85xiqIw7b6H2B+8mZ92lAGg1lXRmPY5Ea4VjL9wHEaj0X7fw0e7LBYLa9eupbCwEE3T2LRpEy+99BKzZs3CZDLJyViIM0iyX5wpiqIQHx+PxWJh3Z5SHvrfBrSezfnuXF3AZP8KXrnpchSA0GicdGnNxTUNyEujqeIAbqW5WCsrKKppI/uheWac9JAT4rRJ9osz5dDst1qtTJw4kcLCQhwdHfEZdil7e00ke3spig4G6s2oe7/lgugogOaVNPn55OfnU19fj06na5X9RqORkpKSI3rTCdERpCAnTpiTkxNRUVEsX76cqVOnAs2jF8uXL+e+++7r2IMT5yxVVSkwF/HTrhpe/nUnNY02FB2wey0Vq97H6O3Oy59/TmRk5DFPqkajkQsuuIBNmzZRV1fHnj17eOyxxxg1ahTx8fHt94aEEEK0TVXtxTEV7DOdD1TUM/+XXH7ONIOnCbW2AsesH/jkxUcYPGjQn9k/9uE/i2sAISNw1DRqfD2paErFZqs/MvsVRZapCiFEBzp0ZQvQapWLyWSioKAAAL13IJ4XzaIooLlVQYRXHf+6dRIRwd5YLFfYHx8bG4umafj6+vLHH39QX39k9ssyVdFZSEFOnJQ5c+Zw++23M2LECGJiYnjllVeoqamx77oqxJmkqioPPPMKv5UZqHdtvsAa1t2HZ64K56u301lTFs7YsWOPW4yD5pG2WbNmsW7dOg4cOEBxcTH5+fnSP0IIIToDVYU1L0BeGmpwFAmrG9iQmobb0L+QSXfqmmzoFR1hSiF1279g/LjY1sU4OLK4NvZhdLXFhFc2MWTd7ZL9QgjRyRy+NFXTNFJTU5tbCsyeieIRgMHfyOC/zSGtIRBNccBFZ2WO7xru6paLg+84OGxlzKEz626/XbJfdG5SkBMn5frrr8disfDEE09QWFjI0KFDWbZsmYSaOOPKaxt58stNfF8/AFxBb63nn5MHMH3CQEpKinn84O5KJzPd3GQyceGFF5KUlERQUBAuLi7ExsbaR9SEEEJ0kNri5o0Vqs007VlPyjY/tvf4K7amAMBGTE9fZo/tRsyASygpueLEsv9ggc7kpkr2CyFEJ3To5g1r1qwBoLyslJ65n9H0eTo7/Cfy8M5BbG8KAQUu6O1HYkgSPcpymtsTtMyIPkTLzDpVlewXnZ9s6iDaVWVlJd7e3tLcVRyVpml8s/kAz3yfRWlNIwA+pdu40Lec5+c/wbPPPnvEFugno2VavMFgkP4RQrQTyX5xXAdnyBXvyyCh4hK+OuALgLPWyDPXDGP7sg9ISZHsF6IrkewXx3PoDLno6GhqamrI376Jfw4qZpn7FbxVEYOKHnfqeSo4jWsH+aIbOwfqSk+o96dkv+jspCAn2pWcmM9fbe18evht9Xp35n2bxeodFgB8dHV47/wJ1bwDT09PBg0aREZGBoWFhfj5+fH+++8TFBTUEW9HCHESJPvPXyeS/UajEZ1Ox6epOSz8cRsV9TbQNNzNmwkpSWdoeH+2bt1Kfn4+ISEhvP322zIzX4guQLL//HWi2a8oCqqqYjabeeutt0hOTqYYL2zhl1Li0DyTzd28hZe9PmJ8fy+cfIJhyn+k96c4Z8iSVSHEWXfo6NfhsxtUVeXpZ+bzw65aykJGY0OPk4PCtNggVr31BAdycygoKCAwMBCdTkdkRDhledvJzali0aJFzJ07V0a6hBCiEzpe9s+fP5+1a9cy6IJJ5He7kOS9pQC41Flw2Pw5luxUHAID2WproLKykgMHDmAwGDAYDB35toQQQhzDiWT/urVruGT0cObMW4iid0BRFJLSN7PbO4rGHiMBcGyqxnvnT+Rs+J68y404eAcddZmqEF2VFOSEEGfdof0hDm2mqqoq36zeyPsFJrSQUACGh3jwwvVR9DS40bg5miTVhsFgwMXFhZGxsfxjWCNZ9Y1sLNLzU4o0ZhVCiM7qiOwvMmPy0KO6+pGRmcX/ln5MZbcYdtaGwd5SXB31PHhRPwpWbSTFQ8MUGYmLiwsRERF8/fXXNDQ0kJeXh8VikdnRQgjRSR2e/WazGUVRMBgMZGVlsfTD/3FrjyKi8rdQ/ZMzXpc/zbYyyIm4lUbNGQCf0izG+5TyY/Z66hsaeXaDlSueeBJTr4jjLlMVoiuRgpwQ4qwzGo1ER0ezdu1aoqOjMRqN1DU0ccOC99nSGAC+oaj11ei3fsu/73uWEKMH8OcuSfa+D64aum/vp7ufC4rSSL3fIGnMKoQQnVSr7B8xAmP2+2h5aazaXcMTG32xTpiNq08IALHdPXnhb8MJdalFHROHpbjEnv1Wq5VvvvkGRVHQ6XQd/K6EEEIcy6HZHxUVxaJFi0hOTqa+vh5N09BqLEQFqhicbdQe2MbTH6fwxR8lgDPdvJz41zWDGeAzAqvVyk/ffNk8u06noJ5AzzghuhopyAkh2kXLRZROp2NjThkPf7qZfU2BoAMlbxOkfoKj1sCSJUuYN28eiqKgKApGo/HPPhMAodEEAZ6+Axlx6ROyXFUIITqxluz30NWhy8ukoszCZ1VR5IaNB52Cj1bByIJPCXQeQnDGBshPRwkZgXHMHCzFJfZBl5tvvpk1a9YwduxYmRUthBCdXEv219XVkZmZSX5+PgcOHACgvKyGDbkOeLiO4MM911FBCWgaEY4WPpp9I3VVFZL94rwhBTkhxFlnsVhISUmhtKKab3IceOfNJDTAVdeEcd9vjAx1Y2OoibKyMlJTU1staT2iB8XYh9HVFuMpo2RCCNGptWR/WVkZK1MzGNp3Ak8XBZPj0NzcfaqyhodZSp5HI+9nVtDUwwvnpnK03FReSZjL7ykZ9uyfO3fuURuECyGE6DwOzf7MzEwiIyMB8PT0ZNu2bSiuXrzpeSdufhMAcKwvxW3rl+DSSMLT2WRmZkr2i/OGFOSEEGeVqqqoqkr3qInsqDTR6OwDwDXDQ4i/fABNNaMwGAwkJiaSlJRERESEvWH30XrPyc5KQgjRubVkf0xMDBvSNtE0eArTtjbPeAjyduHJkE1cUvYLpaUKOxv98e4zAodeBjiwkWqfMFakpFNYaG6V/TI7QgghOrdDsz8lJYXY2Fji4uIoKSnB19eXO+a+zPrG7uDiBZrKAC2PGB8Lm1ybiIyIIDd7I+bCUsl+cd6QgpwQ4qxRVZWnFyzk+xyFEv/B4KwjyNuFhX8dxISwg0U1DxcA4uLiiI+PJyMjg8TEROLj4zEajcTGxtpnyEm/OCGE6PwOnd3cbfgkSmPuwVzdBMDNsd157LIwPJ0mQM0t+FitZP7r32zNyGSheyzxs/+Nu7s/MRsTJfuFEKILOTT7o6OjWbRoESaTCUVRcPLw5eEvMlmvRIIL9PR1pk/JBgozk3CIiWHRW/8lYPsH7HYtJjnAyr7QGMl+cV6QgpwQ4qxZtXUfH5X2pNHfF4CrIv1ZcO1wvFwcj7hvSUkJmZmZmM3mVjsytYyqyVR1IYToGiwWC+tS0tnjFUVGY39obCLUz5Vnrx7MBX39/7yjZyAlZjMZmVmYzWaSkpPJyrma8PAA+6Y+kv1CCNE1WCwWkpKSyMvLQ9M0Zs2ahaIo/JJZyONfZVBc3YCig1kX9uGGQd78/e5XMJvNpKSk8LcrJhCYn06/IC96dPfB8dqZkv3ivCD/yoUQZ1yjVeWlX7Yz/ZNsGl180WrLCdzxFS/dEHVEMU5VVcxmMwaDgdjYWAIDA4mJieGtt95i2rRpJCYmygWZEEJ0ITvLNXb2uY7G7jEA3DayOz/PHteqGHd49ptMJurr63n00UdJSEgAsM+sEEII0fn5+vpSWVlJQUEB9fX16F09efCTzcz8IJ3i6gb6BnjwxT2juH2YL90CDEyMiSTQFEB9fT3/fPJfrNxdA+4BOPcZjSLtacR5QmbICSHOqG0HKpj98Ua2F9UCYN2ThDV5KYbIMEpKSlr1gTh804aW2XCqqjJjxowje8cJIYTolFRVJbfAzLvpJbyzbh+4+KBVF9OraC33PrgANyeHVvc9PPuzs7N59NFH7bOkJfeFEKLzU1UVi8WCwWBg3rx5bN++HUVRaDIO4NJX11Jc04Sig5nj+vCPiX144bl/kZKcxJxojdl93Lg5bCDT3ttGobmIl1JNRN72FMYeA2XjNnHekIKcEOKMUFWNd9btZeEPmdhQcNKaMOb8zr51X6BZrURERNgbvbbMeDh804aWgp2qqtI7TgghughVVZn9zMv8XG6iwcUXdDrUnWtoSP6ImJuuP6HsDw8PZ+TIkZL7QgjRRRw6uBIREcHWrVtxdPNEN/w6cnqOhZomevu788LfhjC8u699wKWxNB/3snKsFcEEeOuYGDuY31MyiImNxSDFOHGekYKcEOK0FVXW89BnW1izsxhQcCzeQY+idfQPNeESFsbw4cNxdXVlxowZ9m3MFUU56qYNiqJI/yAhhOgCrDaV577fwrd1/cFFwaGphmFNWZSWpzL8xr+dcPZL7gshRNdy6OCKqqp49Y3CdcAtWJ29AQ1D8RbGumkMDRkHYM/+lGSNGt9uOHq7owuNZvaNc7i5WPpFi/OTTtM0raMPQpw/Kisr8fb2pqKiAi8vr44+HHEG/JxZyGNf/EFZbRPODgrDlX1UpH9PfV0dubm5qKrK1VdfTVZWc9PuwMBAlixZYl+K1DLVXU7CQpy7JPvPTTkltTz46WbS95cB4FW+E9/dv3Bg307JfiGEZP85rmWG3PrkVPL9R1AZGAWAu1aHcc8yqvduPnr2+xtQ6krBzV9mxInzmsyQE0KcktpGK/O/z+KjlFwAwoO8+PeNQ+ntP5mMjNHcd999FBUVAbBp0yaioqLQ6XRHLEVSFEX6BAkhRBeiaRpfbMznqW8zqW6w4unswNNTwunrEMp9930p2S+EEOcBRVG48vb7+FmfQmWlFYCGzOX0bthG9LDBZNYFHjv7ZeMGIaQgJ4Q4eZkHKrh/6Sb2FNeg08HNw03ETxmCq5Mjqqry1VdfUVhYiKOjI35+fowdO5b4+HhKSmQ6uhBCdGXltY3Ef5XBD1sLAIju6ctLfxtKsI8L8+e/LdkvhBDnsJYZbr5+Bt5cvZdXl+/EpmpQV0HdqsV41+Zx4c03S/YLcYKkICeEOGE2m403fsvi36tzabRpBHo5M6xxK5vfe4MXsmPt/X9SUlJwcXFhyJAhvPzyy0RGRspsCCGE6KJaLsD2Vut58NMtFFTUo0PDaE4h0s2RYJ+RmM1m1q5di4eHB927d+ell16S7BdCiC6qrbYCLUtUV2/aRkXYFIpUDwA8Srdj3PYpDv7uvPjS55L9QpwEKcgJIewO3br88FGt0up6/pr4BfttPgBMDDMyfZAzCU/8htlsZvXq1UyfPh2j0Uh9fT1msxmj0Uh4eLiMjAkhRCd2rOxXVZX5CxL4Ya8Ni2kEGjq6eTrgsukjKvdlsDbPl4KCu1iyZAk5OTkATJkyxX5BJoQQonM6WvYfuntqy4Y8AJmZmfy0vZyC3teiqc64OymM0HYxtPhFhoY1ogWPIDJCvvcLcTKkICeEAP4c9UpKSqKhvg6Th56wqLHEz51Lek45932YjtnmA6qVoMIN9NRqWPjZburq6qmuqsSpqZy3/vtfZt59Ny4uLgQFBeHi4kJJSYmMkAkhRCd1aPbX1dWhV3RMHhPFnHkLUfQOZOzJ5xOLiVpTMAAhTXl4bPiRxtoqKisrKSsr45VXXiErKwtPT098fX2ZOXOmXJAJIUQndnj263Q6hg8fTmJiIiUlJfbdU5OTkykoKOD5f7/O8spAqkImNj9B0U4uNBRTsSOZEd1UAtwc6NHdsXmjBukNJ8QJk4KcEAL4c+vy/LxcbgjO44JAJ/bmmHnqk4l8uLUSm6rhpavHuPsbZvfeR0D9fvzc4Zv63jwco6O/Rw37878AbQYjR460j6od2shVCCFE59KS/bm5uezds4dHRikMz9tC9Y9OpPS+l39+sY1a92AUWyMe2d+TveEbnJycCAsLo6GhgYryctb+/CXjLr3avnmDDMIIIUTndmj27969G6vVSlJSEgCJiYnExsaSnJzMiBEjmP2v/5KsC0fx9gHVhvbHt5Rt+IxlBgPXXnM1+8oLMXk64NR7dPOuqUKIEyYFOSEEqCpGV43oESNwtVVyUd8ScHLlK25m85YKAKYM7cbTVw7k/55ZSUB9Dq62Kvq7aYTW1jG2jytKTTWB7nqUulLi4uKkkasQQnRyqqqiqipRUVGUl5cT5O1AVIAVdwcrT6y38fW6jQBEdPPCuONbPvv9YxoaGnB2dqZ///4cyM9jRiyM7lHJgOFWdLP/iykwSHJfCCE6scOz38HBgbq6OqxWK19++SVz5swhPj6evAMFTP/3t+xw744CWEtyGee0h7Q9q2lsaMBsNlNdU8vEJ38kyMsRxSMAJP+FOClSkBPifKeqsOYFdLmpjKWaHoFFVPv05XHrDA6ovmBrIrhgLXGzH6ahuoKUzD34uWn0c9PIrnbHovkSNGIETkVbWLe/kRl3/p0JEyfxxBNPyEWZEEJ0UocvVzpw4AAVdTpWlBpIM81hr9YXgGljenHHMF/uvH0TNpsNnU6Hv78/8fHx9AvyZnTxR/g4NrFvzWesy3bgoSee7eB3JoQQ4mjayn5FUdDr9fYfgH0ltdzz6Q52KN0BqN78E+47lvHsqhX8nzu8/fbbNDQ08PHHH+Pm5sZzzz0nxTghToEU5IQ439UWQ14aTRUH8KnIY7X3aBY0XI9V54C3rg7/vd8xfkhfAgKa+0HExI7kpySNFZXV1Os9iB05Co/L4jDvyeTGRybgaK0iKyuLGTNmEBwc3MFvTgghRFvsbQry88nPz6e+vh6nnsP5LOzv4OSBE1ZeuzWGiyOCUFWVcePGkZOTg81m45ZbbiE4OJgH5yZQ+FkjW396m3X7Gnk9Ywk3zZgt2S+EEJ1UW9mvKArdunWje/fuTJp0EatyG3n6u7XUNdlwxoptw3t4523hllubs3/hwoVUV1ezaNEiampqePvtt3nwwQcl+4U4BVKQE+J85+YPISNosOpJdL2OVLUfAJeaKvjXzL/SUD221dLTuLg4srOz6d+/P2VlZfbbLLUa9w1tYniAExuLGikptsiJWQghOimj0UhsTAze+gb8/PzY5z0YdcDFAAw0ufHf26LpbvAAQFEUHn/8caZOnYrBYCAoqGVZqkLRgFuZds9rHChvwsHRhsUi2S+EEJ2V0WgkOjqa+vp6fH19yc/PR6fTcdNNN3HT7dN4ZZ2Zd7/MAGBUbwPPXxtJaV6vVtmvKArTp09n0aJFaJpGdXW1ZL8Qp0gKckKc7xSFXQNmcXdKKrvVevQKPD4xhLsmXIpOrwd3V/tdVVUlMTGx1TboLYW68B4B1Az0wcVWhcHgSXgP2WFJCCE6KwWIH+dMfqCBh8v+yp6y5uLbbSN7EP+XgTg76O33bZX9MTHEz57ZvIueomAMMFGneKJ3qMTT01M28hFCiE5Op9Oh0+kYP34806dPR1EUCpucmfbxFnJKa3FQdMy5pD8zxvTiX4kLSU5OJjo6mpkzZ2IymVAUBZPJhJeXF5WVkv1CnA5Z6C0ASEhI4IILLsDNzQ0fH58275OTk8MVV1yBm5sbAQEB/POf/8RqtbbvgYoz7ufMQqa+sYHdJfUEernw6d0XMO2iIc3FuMO0THNv2QbdYrHYb3PwCiTm6nvpM3gUMVffi4NXYHu+DSGEECejtpj0Hblcvf+vJJd54O6k8H83DuOZqZGtinEAliIz29PXUFR4gJ65n9H0+d2w5gVQVYKCgnjggQe44IILeOCBBwgKCuqgNySEEOJ4LBYLKSkplJWVkZqail6v54dddfztv0nklNYS4uvKZ7NGMWtcb7ZnbyMpKYmCggKWLl3KbbfdRkJCAqpkvxBnjMyQEwA0NjZy3XXXMWrUKJYsWXLE7TabjSuuuILAwEDWr19PQUEBt912G46OjixcuLADjlicLpuq8fKvO/jPil0ADAv24M3bYjB5ux71MUaj0b4NemxsbOvRMEVBf+EjeEXf1bwMVhq7CiFEp6RpGu9trmbB3kuxajr6e9Tz5sxL6B3geeSdVRVj9vs8MdTCloAGhnRzwqmpHPLSoLYYxSOAefPmMWvWLNlZWwghOjmj0UhMTAxr1qxhcPQo4pflsjy7CIBLIwJ59trBeDrr7Rs/tCxtra6upqyszD4gbzKZJPuFOAOkICcAePrppwF4991327z9l19+ISsri99++w2TycTQoUOZP38+jz76KE899RROTk7teLTidFXUNvHAx5tYtaN5hluEg5nGn//LW+XRrZahHk5RFOLj47FYLG2ffBWleRmTEEKITqmu0Ub8V1v5clM+oMO/cjsjXWvp6f/Xth9QW4ySn06/IC96dPfGMWQIOst2CBnRPPgC9uVLQgghOj9N06hzD+Kb+oHUZBfhpFeY95eB3DKyBzqdDrPZTHJyMmazGZPJRGJiIl9//TUpKSmtBuQl+4U4fVKQEydkw4YNDBo0qFXoTp48mXvuuYfMzEyGDRvW5uMaGhpoaGiw/15ZWXnWj1UcW3ZhJTPfTyentBYXB4W4i7rz2QtvtFqGeqyTq5x8hRDHI9nfOeWU1HL3/9LYVlCFXgfGA+toyvyFjYGBR8/+gxv/6PLScA4ZAWPmQF2pzIQWQhxBsr/zUlUVi8WCzWbjpz2NFPa/FjQ9oT7OvHFrNJHB3vb7Hr4iJjIyksjIyKMPyAshTpkU5MQJKSwsPOKLesvvhYWFR31cYmKiffad6Hg/Zxby4CebqW200c25ntdM3zNYG0BOTAzJh416CSHEqZLs73xW77Bw/0cbqaizom+q5WL3XIJ6O5NaEnjs7FcUGPsw1Bb/WYSTmdBCiDZI9ndOVquVxx9/nNQtGdiibqIw6AIAeutL+fof1+Pl2nql09FWxMiAvBBnnk7TNK2jD0KcHY899hjPPvvsMe+zbds2wsLC7L+/++67zJ49m/Ly8lb3mzlzJvv37+fnn3+2/622thZ3d3d+/PFHLrvssjafv62RstDQUCoqKvDy8jqFdyVOhaZpvLZiFy/8sgOAEKWMR4vn0sOpCmf/UPrM/hFLnQ7AvnuSEEKcKsn+zkPTNJas3cvCH7ehatBUuJPS754j1ODBihUrWl1oSfYLIU6HZH/no6oqjz36CJ9++yPWCXNw8AnCUdEx+8IQ/jrIn8DAQMl+ITqQzJA7hz300EPccccdx7xP7969T+i5AgMDSUlJafU3s9lsv+1onJ2dcXZ2PqHXEGdHXaONR774g++2HADg2iFGkt94ljR9EUo3HdtzzVxfbePtd961T00/Vh85IYQ4Hsn+zqG+yUb8Vxl8sTEPADfzFrYvfRq1qZFizRdVVXn77bcl+4UQZ4Rkf+dTWHCAmopCHKYmgM4JtcrCa3eOIvmnT5n5f5L9QnQ0Kcidw4xG4xlbfjhq1CgSEhIoKioiIKB5qcqvv/6Kl5cX4eHhZ+Q1xKlp6QnRVk+Hwop6Zryfxtb8ChwUHU9dGc7uX94jLzeXhJwGjO46mhwbmFhcQnJy8gn3kRNCCNGxjpX9AEWV9cz8II3NuRXoFR0j9PtJXrkIzdqETtc8I7qkRLJfCCG6kuNl/6H3cffyYdrry9jmdyMAEXXp7PzxLQJmfC/ZL0QnIQU5AUBOTg6lpaXk5ORgs9nYvHkzAH379sXDw4NLLrmE8PBwbr31Vp577jkKCwuZO3cu9957r4yEdSBVVUlISGhzdsOm/aVMfy+NktomfN0ceeOWKHq5W/k4NRUPDw+cnJ2p1vQEGfyPaN4qfeSEEKLzOlr2t1yEHWhwZNb/NmKubMBb38DzA/fwfx+vwNPDAxcXF/R6Pf7+kv1CCNGVHC/7WzI8ISGBNRszsfSfSpkuCJ2mcmXlJ/jv/JZdjibJfiE6ESnICQCeeOIJ3nvvPfvvLbumrlixgvHjx6PX6/n++++55557GDVqFO7u7tx+++0888wzHXXIArBYLPYRrqSkJLKysggPD+enjEIeWJqODQVfXR1f//1Cevh7oKoqsbGxaJqG0WhEr+iYPCaKoEBTm81bhRBCdD5tZX9YWBiJiYn8nF1CQegkbCj0dS5nsfFTeuBERswglmvNs+d1Oh3Dhw/HZJLsF0KIruJY2d9SXJs+fTrLM/LY3+tqNJ07TloT3fb+SH7FfrK0EVw1JUqyX4hORDZ1EO2qsrISb29vae56hrSMlCUlJVFfX4+ziwvuw68itSkEAMfiHfQtWs27i960T0VXbVZKcrbjG9yHul8X4lG2DV1odPMuenJCFkKcBZL9Z9bh2e/i4kJEZCQrilywmGIAGNPLizf6JONpToGQEVgvmE329h307duXJ598koyMDEaOHCm9g4QQZ41k/5nVVvZHRkaSkZGB2WzGFBjI+Lvn8/q6fDR0+Cs1fDZ7MjVFuZL9QnRSMkNOiC6sZVvyrKwsHnk0jt2+I2g4WIzrq+XjVLCcUSObp6KrqoqlyIwx+32M+ekQEIZn2TaoKYK8NKgtBo+ADn5HQgghjufQ7H/00UcptJSQVx5Ihak/AJEOhbwz7VIcldGo1UWYq20sSvwXKSkpRERE2C/epHeQEEJ0HYdnf8sGexEREdRbNWqG3MBr6w4AOq4IN/DQhYP54M1XJfuF6MSkICdEF6coCsE9+1ASeT0NOl9AI9Yxl+qN3xMZGUlcXBzQ3E9ie/oanhhqoV+QFzpNA1M4FOkgZAS4+XfsGxFCCHHCFEUhLCyMvpHD2Fvbk1r3IHSoGPf/TnSYD3pFhwokvLqI1atXk5OTg6enJ5qmERkZiU6nk95BQgjRxbRkf2RkJAAxMTFU2JzIDbueRpsvjnodT/wlnL2/fsDdH0j2C9HZSUFOiC4ut6SGK1/4iXKdLw6ajYQr+/LBv97EbDaj0+koKSkBIDk5GXNhCclGKz26++AcGg1j5kBdaXMxTqatCyFEl6GqKo8mvMSPjeE0uXvj4aTgv/1bqnenk1oViMViAZqzv7S0FABfX19GjhxJXFwcJSUl0jtICCG6GFVVSUxMJCMjg8jISIZOvp45n2dic3XBoamGN66PYlA3V6alSPYL0RVIQU6ILiwzv5xbFydRrrmi1FfSI+9nxvVJZMchOycZDAYsFgsxMTGkpKSwLzQGx2tnNi9PVRRZpiqEEF2Mqqp89Hs6X1X3RXV2xrGxgkW3juS3L0NIrslvM/ujo6OZOXMmJpMJRVFkqZIQQnQxqqqSlZVFUlIShWYzpYZBfP7NbmwOLrjWmpliKGL8oKsl+4XoQqQgJ0QXpKoq36fu5KGvttOEHsdaC732/8iYqObp6y0jYAaDgYSEBNauXcsFF1zAokWL7Cdis+ysJIQQXYqqqhQUFDDn1Y9IoT+a3hm3mgKm+BfR029C6+xfsICMlJVERI9rlf2yq54QQnQtLdn/6quvkpmZSV1DE7bh11PgFw4a/HVYNx4cM5xuJiPz589nxYoVjB8/nkWLFmE0Gu2rZYQQnY98GxOii1FVlbuefp0HvmguxjXlZcLyl3j0gbux2WzMmDGDxMREjEYjFouFpUuXkpKSwscff2x/joSEBKZNm0ZCQgKqqnbguxFCCHEiVFVl/vwFjJnxDMnKQDRFj1f5Tl6Z0hsntaF19heZ8f5jEdP8N+GzdQlozTkv2S+EEF2LqqosWLCAcePG8dprr7ExaxcFA/9GuV84aCoxTnm8cO1gugcHYTabee2119iwYQOvv/46VquVxMREyX0hOjGZISdEF6JpGi//tJWVDb1Agbrtayn58WWc9ApPPvkkFosFDw8P++5JqqpitVpbPYfFYiE5OZnCwkLZZUkIIbqIQnMRX+7Xow2+CoDajd8SXJvJc7u+Jzc3t1X2U1PMYL8G/J3A2bkRpa4Ui8VBsl8IIboYi8XC6tWryc/PB+9uOFwWR527Ea2hFtuat6gxOVFcPBWTyYTFYqG2thZVVamrq2PXrl2S+0J0cjJDToguQlU1nvk+i/9bkweAd2E61tWLcHbQo9PpqKysBMDPz8/eP2jx4sXo9Xr8/f256aabMJlMGI1GYmNjCQwMlF2WhBCiC6hrtPHkL7lUBAxF01QqVi7BJfsnXJydKS8vB1pn/1sffomzHrp56ugebMLYY4BkvxBCdEFGo5Hhw4fj2mcEATc/h97LSKBq5qZ9T2HN3UJkZCRGoxFVVfnyyy/tjzOZTIwaNUpyX4hOTmbICdEFNDZaeejjVL7Lat4t6bHJ/bnAEMoXPWysW7cOVVVxdXUlNjaWGTNm2EfJUlNT8fDwwMPDg+nTp9t7BsXHx0sfISGE6ORUVWVnzgEe/WEfm3MrcNIrRFZvpMK9gjF33oleryclJYWrrrqqVfbv3LyBCYEOlFn1hIT0QqkvB48AyX4hhOgCVFXFYrFgMBgoLi6m7+Uz8NaNA52OIbrdPOv6NpXda3Drfz1xCQkoioLZbGbDhg04ODig0+no1asXFRUVkvtCdHJSkBOik6urb+Ke175gpcUTPTaMe5bx6fwX+c7VlZiYGD744AN7w9ZDT7ZGo5Ho6GiWLl1KTU0NS5YsYe7cuSiKIrssCSFEJ6eqKnHzn+OrshAaXXxRrPX4Z31NvbWEESNGMG/ePBRFOeJCy2g00m/oBWz8I5MhhkZy86yMd/VDAcl+8f/t3Xd4FOX6xvF7d9M7JJsCBEgQ6b0EUECOHEDRn12OooKiCHbBAoJIi2CnqNgpir0fy1FEqUJoAobeQiCkLIF00nbm9weHPUQ6wm4Svp/r2guymew+O5nckzz7zvsCqOQMw1BiYqKWL1+uouISZdfrobzI1pLFongzXR//85D80huqoEYTte8zRlbb4T/n7Xa7unTpoj/++EPFxcUyTVPh4eHkPlDJ0ZADKrHcQ2Ua9O7vWuUIlp/KdF/eNE1dtEqZBYbi4+NlsVg0ZMgQeXl5HXOytVqtGjx4sJYsWaKDBw9qxYoVzB0BAFXEis2p+iI3TuV+QXLm71fOt89KJWkqjI6T1WpVdna2oqKijp/9996rAXcs0Q8Z++WbblWz/dlkPwBUAQ6HQ8uXL9euvRnKaXaDfCJbyTQN+W36Uf5GqvIefVv+CXcqOCBCOmrEm9Vq1ZAhQ7R06VI5HA75+/u7zhMAKi8ackAllZVfrAHvrdSm9AIFqFhPHpqutJ3rlH3IIj8/P0VGRp5yPoioqCh169ZNSUlJzB0BAFXE2j05Gvr5VpX7BMk4mKacryboiVa56ljLS/us5dob1/GU2d+1W3clJSWpI9kPAFVGeHi4CgwvHeo8WD5hdWSUHtLBH15RZFmGOt5xh+yRURUacUeLiopS9+7d+b0fqEIspmmani4CF468vDyFhoYqNzdXISEhni6n0tpzoEi3vZuk3dlFqhngpZrr5sqyb51Ss4sUExOjq3p0Uv/BDysqOuaU80EcmYeCuSMAeArZf/oWb3Po3vdXq6jUKf+iTNmWvqWgUode7l6i2Bq+iqjfTL43vSVrSPRJH4fsB+BpZP+ZW7R+h+5/f4XybSEKLDuozG9ekE+RQ02bNtX777+vmJiYk3492Q9ULfyUApXMtsx83fjG79qdXaTYmv76YmgXdW/dUL7hsbr11v769vHuGn7RLsVsm3taP8BH5o7gpAwAldt36/fprlkrVVTq1KUXheumiHTVj4nQFdffquKQeKXnObV8b7kUGHHKxyL7AaBqWbAlS0M/36p8W4jqm2l6rvR51bMdUFBQkLp163Zal5+S/UDVwiWrQCWycV+ebns3SQcKS3VxVJBm39lB1pJ8jRw58vCiDf6mrP9+SCrMkvaukor2S0GRni4bAPA3fZiUqlFf/ynTlPq2iNaIy2opJupJZe93yH/V69r8y25t2C99tUNqypxwAFCtfLwiVaO+TpbTMNWlZoFeCPpOn87br+3pBYqw+2jQoEE02YBqiJ9qoJJYtydHt7y9XAcKS9Widqg+uidB70x/SYMGDdKkSZMODz0PipRRu51KvMNk1G4nBZx6lAQAoHJ7Z/FOPfXV4WZc/4S6itzxg4bee8/h7A+wKDhns+qE+apJuKnuHVowLxAAVBOmaerFn7ZoxJd/ymmYCju4RRcf2irrPyfozY1BksXi6RIBnEc05IBKYFXKAfV/J0m5h8rUtm6YPrg7QeUFB7Vl9WJlZqQrKSlJDodDhqTERSUa9O0hJS4qkeHpwgEAZ800TU2bv00Tv98kSRrSvYHuTwjXksWLlJ7+3+wvMmXWaa8CBWhTfpAKTH8PVw0AOBfKnIYe/3y9Xv1tuySp5r7lsq6aq1Urk6SgSN1ya39FRETIZrPpnXfekWHwmz9Q3XDJKuBhv+/Yr7tnr1JRqVMJcTU16cp6CvQyZVn1usa0zlKS3amU2MMr6jkcDiWtWKGMjAPKKV8hh8PBZUsAUAWZpqnJ/9msNxfulCTd26WWHv1HnJ5++mnt3r1bFotFHTp0kD0ySg7dofFT5mvL3mxFOVaR/QBQxR0qdeq+uav12xaHbBapk1eKViV9Kknq0KGDoqKiNHjwYC1ZskQHDhzQypUryX6gGqIhB3jQgi1Zuvf91SopN9S1YYTi0+bpwSHL5Feep8cv3q264b66qXMT+dw4WFarVXa7XQkJCSxnDgBVmGGYGvvvDZqzbLckKcFnr5a8+bq+fz5Xmzdvlo+Pj5o2barBg/+b/ZFRatSuq3LKyX4AqOoOFpZq0OyVWpOaI5WXqnzpO1qZvU3BwcGqWbOmK/ujoqLUrVs3fu8HqjEacoCHzN+UqaEfrFap09TljSM19p91NPTe5dq7d6927tih1oZVl9b3Vbv2reT334UbrFarRo0axXLmAFBFOQ1TT3y+Tl+sSZPFIj35j3r6buoM7d27V9u3b1d5ebm8vb3Vtm1b10gIsh8Aqj7DMJS8M03Dvtmh7Y5CWcuL5fhivIr3bFB8VLBq1o2tsJoq2Q9UfzTkAA/4dfP/mnEhuTsUm/qHYqJGKCEhQcXFxdq7d69eTCrTD5kh+nLcEIUcdQI+8o4ZAKBqKXcaGvbpWn27Ll0yDXXzTdXdPXrLsfx/2V9aWiq73a6HH364wh9fZD8AVF2GYeixCS/p27y6KvcOUlSIr1rnrNTcrO16qquPujfwUpOeLRV1xaAKk7yT/UD1RpsdcCfD0G9/bNGQ9//XjPNe9YGWLl6ozMxM3X333Zo5c6ZatmwpH19f+UfUkz2SkzAAVGWGYWhP2j4Nnb1c365Ll8V0KuTPT7Xv96+PyX4/Pz/Vr1+fP8AAoIozDEPp6elKS0vTFwtW65v8eJV7B8n70AG9fn0DjX5wkC7r2Fxd6vqoVqhNUVkLZf1mqLT4RYkFHIALAiPkgPPIMIz/DTOX9NsXM3Tv6joqlZd6R+bIlr9F83IOKj83R3fcfpuig70U27iNAgICVLt2bfn7+ys7O5s/zACgCjk6+yVp3PgJen+7TUadNrLJqSctc1To87ve2B6o2267TTabTW3btiX7AaAK+2v2T5gwQXPnzlWOb5T8ez0ii7efLAdSpN/f1mPr31N5ebkyM7K1zR4qu9OU0+mU9VCOtHeVVLRf+u+UNQCqLxpywDl25GQcHh6uSZMmuSZi7dL3Jg1dc7gZ18drte7c/Y4Gfluo7EJTdWrX0j/91qlztLd2Zu2V2ewqWSwWJnAFgCriRNl/x4A79dneIBl1GkvOcg3OnaoOttXKCpWig0O1cuVKWa1W7dq1S9dffz3ZDwBVyImy/6677tL8+fO136+Wgns9IouXt8r2/Kn6e39WvtXQypUrZbFY5O3tra+zW6u0WQe1blNDSlsj1WkvBUR4+qUBcAMacsA5ZBiGEhMTlZSUpGbNmik5OVmZmZn6JTlNMwu2ybB4qYd1rV4I/VyvrSnQngMlksWi+pFB6t4gUEEqkmHsV6pZpDfffFMxMTFM4AoAldyJsn/Z8hX6qSBWRRGNZTrLZFn6jkr8V+hAHYtWpEklXsHy9fVVYWGhMjIyVFhYSPYDQBVxouxfvny58vPzleZdS8F9bpXFalPRlt9V8Mt0XXP7bdq6davS0tJUWFgowzAUW7eeHhg5QVYvr8Mj4wIiJM4BwAWBn3RIklJSUjRo0CDFxcXJ399fDRo00DPPPKPS0tIK261fv15du3aVn5+fYmNj9fzzz3uo4srJ4XAoKSlJGRkZSk5OVtOmTeVbt6X21O8rw2KVT9ZGlW5cpIJrZmtecSv5BwSoY8eOmjH7MzXrNUCFCtSKfaZmzPlM06ZN8/TLAQCchuNlf1iNcOU2v0F7LXbJKFetnd/ry+ljVbtObdlsVtWuXVufffaZ7rrrLgUFBclqterzzz8n+wGgijhe9teoUUPNmjXT4nTJ2b6/LFabfPatVf5PU+Tn7aXIyEjNnj27QvZ///33evrpp2VIhy9TpRkHXDD4aYckafPmzTIMQ2+++aY2bNigV155RW+88Yaeeuop1zZ5eXnq1auX6tWrp9WrV+uFF17Q2LFj9dZbb3mw8srFbrcrISFB0dHRSkhIUIF/lPY1+D8ZFqtirQd1kWOxGre7VPb4FurarbuaNGmibt26KaZWbQVdOVbzAq7RK6ussnl5Kzk5WQ6Hw9MvCQBwCn/Nfv+AQGXE9VGaxS6bDNVL/UlXtq6rlg1q6dI4f0WH+euSOD/VDvPVpEmT9K9//Uv+/v7y9ib7AaCq+Gv2BwYGSpJ2+DRQeu3uksWqxrYsXWU/IH8/X/n5+WnlypXy8vIi+wFI4pJV/FefPn3Up08f18fx8fHasmWLZsyYoRdffFGSNHfuXJWWluq9996Tj4+PmjVrprVr1+rll1/W4MGDPVV6pWK1WjVq1ChlZmbq981pmvVDqkybt4LyU/XBk1cpwNlG4XUbybE/W6tWrVJRUZFWrVolh8OhqKgojUx8RQUKUHJysjp16sQcQgBQBRyd/fvSMzRgxnwVhF8si+HU5GsaqknofWrcuLGy9zu0Is2p+l4WpeQ7FVZkKirES1OmTFFgYCDZDwBViCv7M9KVnbpFj4xOVFrNdjpUXkeS1K95iB68rJXuvfdz+fv7q7y8XM2bNz+82JvVSvYDoCGHE8vNzVXNmjVdHy9btkzdunWTj4+P677evXvrueee08GDB1WjRo1jHqOkpEQlJSWuj/Py8s5v0ZXE8299oG/z42V4+cmZvlmR+35SnR25su1bI6W2l/3SYUpISHBN/HrkBHzkHTPXyqwMWQdQBV2o2f/WW29r9qYyGfU7SYZTPXx3atP8tZq9YoUSEhI0cuRIpcTepJ/WLFGjtpfKHnl4FVWyH0B1cEFmv2lo01t3S2mrFBh7gw5FdZcktffeqw0f/1vv7eyojh07SpKaN2+uxMREV8aT/QBoyOG4tm/frunTp7tGx0lSRkaG4uLiKmwXFRXl+tzxGnKTJk3SuHHjzm+xlczqrXv077z6cnr7ycjaoaA1HygmPkLlu5bJWpaj0h1L5d3mDo0aNeq4J2Cr1erarwBQFV2I2Z+VlaUvd9tk1G8n0zAUse07PTLuAT311FPKyMjQokWLdPfdd2vU6NFkP4Bq6ULM/uzULfLP3qC5gTdrnd+VkqS724Zp+ZwZysjI0OLFizVr1iwNGTLkuE03sh+4sNGGr+ZGjBghi8Vy0tvmzZsrfE1aWpr69Omjm266Sffcc8/fev6RI0cqNzfXdduzZ8/ferzKbs+BIj301XaVeweonrFXT5qz1KBujBq36yqvuM7alp6nT5ftVOKUw/PuRUVF8W4YgGrnQst+0zT15gqHciNbyzQNlSx6W1e1jFHTpk3VsWNH5efnKzU11TXnKtkPoDq60LJfkoKj4/Wieau++28zrpPXLo24PqFC9r/zzjuMgANwXIyQq+aGDx+ugQMHnnSb+Ph41//37dunHj16qEuXLscs1hAdHa3MzMwK9x35ODo6+riP7evrK19f37OovOrJyitW/3eSlJ5brAa+Ofog/HNFtYzXzZeMU3i9JnJkZWr81F+1ZW+2otJXuOaNA4Dq5kLKfkl68actmvl7qiSpz/4PtTOoUEOGDJGXl5fuueceLV68WAcOHNDKlSvJfgDV1oWW/eXlTl05dq52BnWVTEORKfP0ypSRZD+A00ZDrpqz2+2nPUFoWlqaevTooXbt2mnmzJnHvIvTuXNnjRo1SmVlZfL29pYkzZs3T40aNTru5arVjWEYJ5zjIbeoTLe/t0KpB4pUt6a/5rbaouj9NaQ67WWv10SyWmWPjFKjdl2VU15x3jgAQOV1suyXpNd+26bXFuyQJA33+lwJwcu0pNu/XH94RUVFqVu3bsfMGQoAqLyOm/2GIRXtlwIiVGaYGvLeYu20xMg0DJUteVc9ujYi+wGcEYtpmqani4DnpaWl6bLLLlO9evU0e/Zs2Ww21+eOjH7Lzc1Vo0aN1KtXLz355JNKTk7WXXfdpVdeeeW0V1nNy8tTaGiocnNzFRIScl5ey/lgGIYSExNdJ9VRo0a5Ts6HSp267d0krd59UF5lhbouZJeeGz1c1kMHpIAI6ag/4E71hx0AVEfVMfsl6YNlKRr9zQZJ0s1eSzW58VYV1miqwD5jZLV5VXgcsh/AhaZaZb8kLX5R2rtKZbXa6cpforXNGSGZhurs+UWXxPopMTFRXl5kP4DTxwg5SDo80m379u3avn276tSpU+FzR3q2oaGh+vnnn3X//ferXbt2ioiI0JgxY067GVeVORwOJSUlKSMjQ0lJSa5h52VOQ/d/uEardx+U1VmioNWztSnIIsf+gccdls7ErQBQdZwo+yXp23X79PR/m3H+uxZpU2Gysgc97xoVfTSyHwCqjuNmf6BF2rtKRn6mnlzmfbgZZzhVZ88vemPUYDVt2pQFGwCcMRpykCQNHDjwlHPNSVLLli21ePHi819QJWO325WQkFBh2LlhmHry8/X6dXOWfGwWXe6zS3uCLAxLB4Bq4njZL0m/bc7SsE/WypTU2JYlW+EGdUzopPDjNOMAAFXLibLfqN1eI5O89WXexbLIVJ2989Wrqf24zTgAOB1csgq3qqpD16WKw84tFosSv9+kd5bskkWmLtr1pS5tEqvB9w5h9TwA+Ivqkv1Wq1Urdh3Q7e8mqaTcUIBjg26sXaihQ8l+APir6pT9hmFq1Ffr9dHKvZJpqKv3Tj1//81kP4C/hfQATtORYedWq1UzFu7QO0t2SZL+uW+mhvl8ppC1b0umwUkZAKqRo7M/OS1Xg2atVEm5obLdf2jr+0/rtddelWGQ/QBQnRyd/aZpasy3yfpo5V6ZpqEDP0zRDzPGk/0A/jYSBDhDX6zeq+f/s0WSdH+HYF1r/KQIf0ONgvJlFGR5uDoAwPmQsr9QA95bofySctnLHcr4fIKcZaXKz8+Xw+HwdHkAgPPANE2N+/dGfbA8VTJNZX8/RfnJv5L9AM4JGnLAcRiGoczMTBmGUeH+xdscevKL9ZKkuy+tr5T5H2nZnnJlFphamW4q+5DFE+UCAM6BE2W/I79Ed7yXpOzCUjUOLNAzOaOV2N0iq6SgoCDmDQWAKuxE2W+apib9uEmzfk+RTFO5v7yuwg2/SiL7AZwbLOoA/IXhLNeUxNH6bcWf6pjQ6fBS51arNu7L05APVqvcMBWSs015ixdp564Uvb/GWyHrSxTXrINGNWvu6fIBAGehvLxco0aNUnJysjp1+l/2F5SU686ZK5R64JB8S3P1tG26GtQoVIcwb3l5eSmz+Z2KiYnxdPkAgLNwouyXpGm/bNVbiw5PUWNZ/Yny1/0sSbLZbLrzTrIfwN9HQw44mmGo8D/jdemBj+UXZNGPSYeXPnf6hujOWStUWOKUM32z9s+fqtWNGqpdu3ayWCyKj4/Xyy+/LC8vfqQAoKoxDEOjRo3SrFmzXDnucDhUI9yuoR+sVvK+PJnF+Sr48TmlXlqslrV9VFxm1ZXtY3TxY8OZQwgAqqAj2T971kxFBdu0Qoayd2+SvV4Tvb1kl16Zv12SVL7iY3ntWKjYGr5KzytXrdq1NWzYMLIfwN9G9wA4WtF+BR3cpDphPpJZqux68fIOCNHt76xQZl6JfIsPKH/B68o9mK0dO6zq2rWr3n33XVZYAoAqzOFwKDk5WV5eXiorK1NcXJxq1KipJ79Yr8Xb9stilKls/jTl7N2uUfPDVWdgM3W4KFDhDS6VNSTa0+UDAM6Cw+HQhuQ/9Wh7Q23sJapfJ0URS5/Rh0t6K3FDLUlS+R9fKSfpS427PFidYmtoS2Gw9sb9i9FxAM4JOgjAUQz/miqo0URRDVrqYFADLduwS30nfaOtmQWKDPbVP323qclF9eXr66uDBw/qo48+ci2L/td5JwAAVUN4eLiaN2+uVq1aqVGjRtq5c6dumDBHX/2RJpvVoq6WzWoc6S8/Xx9ZS3J1z4ep2tliuNR1uMSbMQBQJYWHh6tjs3h1rGVRnWCbankd1NfpNTVqw+FmW2MzVV5b5yvC31SLmiWy+xv6v7a19NTD9/BGPIBzghFygA4PWU9PT9fUqVO1cUOyEpo30PLkIu2I6KISI1gBPlZ1KVur7cmr1KFJPe1NTZGzYL+c5WWaMmWKNm3apISEhArzTgAAKrejsz85OVnx8fHauXOndvvGqbDs8Mi3Ll67tH/tItWrG6u+QRvVJKRQazIdemjkeHW/rAe5DwBVzNHZv2b1RgUFeal9LZsW5nfQi8VXy5RFTbyyVLLscznLy3XwkEVLU0pktVq07GCmUqe9o1GjR5P9AP42GnK44JWXl+vJJ5/UZ599puzsbIWGhso0Tfm06K0SS0NZZOrJS8L12bRfdWXwJrW3bdBd/QK0N8NbfziK9Pa33ygoOERJSUlyOByKiory9EsCAJzCibI/8OLOKvRrK0m6rVWo1rz/vdatW6cUW4lu7Wmqhrep1nanPl62Ucv9/Ml9AKhC/pr9ISEhSg0KVB1LB6U0vlWGrOoZH6C0rz/T5k2bXFfBTP7dpnfXFcjp61DbdvzOD+DcoCGHC5phGHrqqac0Y8YMHTp06PCdpqlOreL0rtlQktTFK0WfTpshf2eB2keZqhNiVVRgsWxhXvLytuiLFEOBNWooISGB5c8BoAo4XvYbhqFsM0ibfVtKFosutmZqzQevKz8/X2VlZdpfKq3YZ6iN3aKV6VJmfrmubN6c3AeAKsIwDI16aqS+mD1De7MPyfzvfXVadtGuhjfLlFX1rAe075sZKsjPV2lpqSwWi2w2m0xJOWU+CvA21ZzsB3CO0JDDBc3hcGjNmjVyOp2u+yLqNdQcs5ck6a4a67R12QJlZGSrRlioMr3rSnm7dcgWLGdQqHbnOtX7uhs0+N57WdgBAKqI42W/JShCWY2vl6zeCshNkXPb18p0ZCkmJkZxcXHauXOn3t0aJnuaVQdLrBp453VKTEwk9wGginBkZaqx4zu93tuq3/f46NnFpbKGxcjR9GbJ5iP/vFR5bftaaVkZiomJUXx8vDZs2CBfX181adJEISEhatmyJdkP4JyhIYcLlmEYKi8vl2EY8vLykmma8g6Llno9qTJ56/LAXRrZ0aZnD3XRyk0fKScnR4/vtalueA351aylt6c+p16BEbJH0ogDgKrieNnv5R+siOuflvxC5FPk0HVRB7Rsi1MZGRkKCQlReHi4iouLVbt2bU2ePFl2u503YQCgCjEMQ0ZehloE58lSalHnWG/FxkZI/zdW8g2Sb2GGbojcr983l7myPyIiQg0aNFBkZKRmz54tLy8v2e12sh/AOUNDDhckwzCUmJioRYsWac+ePQoMDFS5xUs1bhorp3+oLDl7dZFfmmzdJmhwY4eWLF2qAwcOqKCgQGagXR0SOsse14wTMgBUIcfNfqep8OufVlmN2tKhHPXy26777hmqtSuXKyYmRsHBwWrRooWsVqsSEhLUvHlzsh8AqhDDMJQ4caJid32kbmGH5PS16uvUIHn930Q5g8Kl/Ez1Dtypoffcpz9OkP0xMTFkP4BzjoYcLkgOh0NJSUk6cOCAysrKVO40FHTlQ3IGRclWmq+QPz/R0r0BcuzPVlRUlLp166akpCR16NBBgwcPZmQEAFRBx2R/ebmCegxWWXgDWZylCl3/sVICTVmtVnXq1ElJSUlKSEjQyJEjlZ2dzcgIAKiCHA6HtqxZou4xOSook/YV+urD2k/KGRQpW0m+QtbO1c4a/mQ/ALejIYcLkt1uV8eOHfXBBx8oNzdXfl1uk7V2C9nkVN+QvdpZI8C1SIPVatWoUaPkcDg4IQNAFfbX7PdpdZWsDbvKIlOXB6QqI9BUQkKCoqKijsl9VtMDgKrJbrfr4jaXaPXaZF0cIk0KeFjO0AbyVbmuDE3Vthr+ZD8Aj7CYpml6ughcOPLy8hQaGqrc3FyFhIS4/fkNw3CdZNPT09WlSxcdrNFENfs8KEma1DdO/S5pTPMNAM6hypj92f6xirh2pCRp2GV19ECvFmQ/AJxDlS37L+nSWc7WN8jWpKcszlK9dUsLXd46nuwH4DGMkMMF48jcQUeGod91113yjrlYNboOkSSF7F6kmzr35t0wAKhGjpv99vqq2e3wGzGB+1brvp5kPwBUJ8fLfmvra6QmPWUaToVv/lo9Wl5N9gPwKN4GwAXjyNxB6enpWrRokRwFpfLqPlQWm7ecKatUO/dPZWdne7pMAMA59NfsP1hUJp/LH5LVx1/OfRtUd38S2Q8A1cxfs//fG7JlNOkjSSpf/oGinA6yH4DH0ZDDBcNut6tDhw4qKCjQ7r37dPfslSq2+CrULFCzwjXq0rmz7Ha7p8sEAJxDFbM/TYNmLleRxU9BZpGaHVyuLp07kf0AUM0cnf27SgL13K+pkqSm5m61Di5UZ37vB1AJMIcc3MpTc0kcmUOivLxcAwYO1J5al6kkprVC/Gz69wOXys9ZyNwRAHCeVJrsj+mmklptFeRr01dDuyjEcojsB4DzxKPZn5UpIz9L/R57XqkX3yjZfHRlk3BNv62D9u/fT/YDqBSYQw7V3tFzSHTs2FE1O92g7WWxssjUa7e2Vb2IIElBni4TAHAOnSz7p9/SRg2jQyS5f5JxAMD5YxiGEidOVP09n6luTIRymtwnyUe1rHl6+ZbestlszBkHoNLgbQFUe5mZmVq0aJHS09P1nz9StKo8VpL09FVN1fXiSA9XBwA4H47O/h/X7nZl/6i+TdSjMX+MAUB1lJmZqfXLf1WEV5FGlfRXngLUsKa3fhx9vfx8GIsCoHKhIYdqzTAMvfXWW9q9e7d2789XWr3eMkypoW2/BnSu5+nyAADnQYXsP3BI+/6b/Rfb9uvOLvU9XR4A4Dw4kv3rdmRogvVe7bXEKKjsgNoVrVKwn7enywOAY9CQQ7XmcDi0cuVK+QYEyb/ng7L4Bak8a4eMlR9p//79ni4PAHAeuLI/MET+/3xYFt9AlWdslbHyQ7IfAKoph8OhFStXymz/L+0LbiaVHVL6189r9dLf5HA4PF0eAByDhhxc/u///k9169aVn5+fYmJidPvtt2vfvn0Vtlm/fr26du0qPz8/xcbG6vnnn/dQtafHbrcrISFBXh3/JZs9XiopVMCaD9X90i6srAQA1ZTdblfHjgmydLpdtpp1pEO5ClgzV90uvYTsB4Bqym63K6DN1SqL7SCZhrxWfqAIr1J17dqV7AdQKXEhPVx69Oihp556SjExMUpLS9Njjz2mG2+8Ub///rukwysl9erVSz179tQbb7yhP//8U3fddZfCwsI0ePBgD1d/fFarVRf3GaCDX/wpi0V6pV8rJTzxlaKiolhZCQCqKavVKnu3W5T3ny3ytln06h0d1HLEv8l+AKjGft6YqVXldSQdniv6ykdmSBLZD6DSoiEHl0cffdT1/3r16mnEiBG69tprVVZWJm9vb82dO1elpaV677335OPjo2bNmmnt2rV6+eWXK21DLjktV09/s0GSNLhzLf1fx4ackAGgmlu01aEXftoiSRrWPVb/bNOA7AeAamz93hw98slamaZ0e6e66tswUJGRkWQ/gEqNhMJxHThwQHPnzlWXLl3k7X14EtRly5apW7du8vHxcW3Xu3dvbdmyRQcPHjzu45SUlCgvL6/CzR0Mw9DW3Wka8sFqlZYbirXlaslbTysxMVGGYbilBgC4UHky+//YmqoHP/rj8CIOXvv13bSRZD8AuIGnsn/vgULdNXOFissMdY8Pkde6r3T33XeT/QAqPRpyqODJJ59UYGCgwsPDlZqaqm+++cb1uYyMDEVFRVXY/sjHGRkZx328SZMmKTQ01HWLjY09f8X/l2EYmjgxUdc//432Hjyk2qE+Cvrzc2VmZCgpKYlJXQHgPPNU9o+b+Kxuee035R4qU5OoAHmt+5LsBwA38UT2FxSX6v9e/EH7C8tU25KtlyxTFL/3M2VmpJP9ACo9GnLV3IgRI2SxWE5627x5s2v7xx9/XH/88Yd+/vln2Ww23XHHHTJN86yff+TIkcrNzXXd9uzZcy5e1kk5HA59t6tcBcH1ZDHK9WzfeHXp0EbR0dFKSEhgUlcAOM88kf1ZWVn6el+Aiv0jZCsv0qS+8ercsT3ZDwBu4u7sN01TD89dpQNGgGylBXrq0BSFlKQrobaXGtUJJ/sBVHrMIVfNDR8+XAMHDjzpNvHx8a7/R0REKCIiQhdffLGaNGmi2NhYLV++XJ07d1Z0dLQyMzMrfO2Rj6Ojo4/72L6+vvL19f17L+IEDMOQw+GQ3W6vMD/E9jyrHFEdJEkdLDt0SdO+6tp81HG3BQCce57I/l92FSs3rJFkGupm26bm8dep5SiyHwDcxd3Z/+qv2zV/20FZZajunp/ldXENeYXV0EXNO+ilIXfIHsliDgAqNxKqmrPb7WrcuPFJb0fPCXe0I3MulJSUSJI6d+6sRYsWqayszLXNvHnz1KhRI9WoUeP8v5i/1JaYmKhBgwZVmB/CkV+iRz5dJ1MWxZkZKkyer0mTJklihSUAqOpOlP1/7s3V+O82SZJaKUVZyUvJfgCoJo6X/T9tyNBL87ZKkiZc20Id4yM0fa2vpuy8SOo6XFHRMWQ/gEqPlIIkKSkpSa+++qrWrl2r3bt369dff9Utt9yiBg0aqHPnzpKkW2+9VT4+Pho0aJA2bNigTz75RFOnTtWwYcPcXq/D4dCKpOUqPbBXK5KWy+FwqLzcqfvfXyFHfoniw/3kv/HfyszMZP4IAKgmHA6Hli9frj179ihp+TJl796kgwWHdO+cFSp1GurWIEzlG34i+wGgGjk6+5ctW6Yflq7VsE/WSpIGdK6nnnH+2rBhgzIys/TrimQ59md7tmAAOE1csgpJUkBAgL788ks988wzKiwsVExMjPr06aPRo0e7hp6Hhobq559/1v3336927dopIiJCY8aM0eDBg91erz0iXMM6mAo8mKPCGrVUIyxU142aoT8tcfKSU6/1b6fPi9spKamc+SMAoJoIDw9XcXGxMjPS9XDrUgXOH6Fbd/bSPiNewZYSTflXW72WkaCkpCSyHwCqiSPZn56errwSQ498sUnlfmEKLNgr67o1Cu87UgkJZD+AqoeGHCRJLVq00K+//nrK7Vq2bKnFixe7oaLjc80f4W/qsgaBKsutLa/QAD0w5lmtNzvIYpFq7vpFYZYOGsXcQQBQLRzJfsMw5Ofnpyb1IhXnk6mXNnfUWq94WYwyhW3+XCUFncl+AKgm/pr94fZI5ba+TT5+YXLmZsiS9J6WhIfI4bib7AdQJZFWqDIMw9DEiRN12223aeIrb8qs014+YbW1J7Clfi5vJovVquLNC5W96nu9/fbbkpg7CACquqOz/80331RCQoK8Q6P1fVEzzbTdIEmy/PGFsrasJvsBoJo4Xvb7dPyXfGKbyyw9pOJ5U1WU49Ce1N368K0pkmmQ/QCqHEbIocrIzMzU3LlzlZGRoZ07d2rQoAWKaTdQYz5NUbn3fnkfypaSv1FoaKhWrFghh8OhqKgoT5cNAPgb/pr9CxYs0A23DtSN76yWIZvqGRkySnarKCiI7AeAauKv2T/iza+UW7RHklQrdZ4uubaXVq5IUr9ae9X+4Ccq/I+vgq8YK9GQA1CFkFioUkzTPDx/UGampk6brjdX52vhtv3y87aqh89O+VhNFRYWqmPHjswfAQDVxNHZP236dD27YJ8OyUfx4X66xG+vsjIzVVBQQPYDQDVyJPv3O/01eV6KJOnBf1ykL6ePVWBgoMpy09UkuEB1wnwUdHCTVLTfswUDwBmiIYcqIzw8XF26dFFQUJBCQkK0ameWXvz58HLnw7rHat+mVQoODlbdunV1zz33MGQdAKo4wzBkGIYuv/xyBQcHKyQkRAuzfLV0e7b8vW16tm8DrV+zUkFBQWQ/AFQTFbI/IlphfR+T02JT5/oherTnxbJarVq9erVKvUKUUm5XzbqNZYntIAVEeLp0ADgjXLKKKqG8vFxXXHGF/vzzTwUFBalx81ZKb3i1nIapK1tEa1CPJspc9r/VlbhcCQCqNsMwNGHCBH344YcyTVONGzeWV3RD7Y5OkCSNu6aZOjauXWFlPbIfAKq2o7PfMKXwqx5TSbBdwZYSvXZbB1mtFtntdlf2743rKJ8bB0tBkVyuCqDKoSGHKmHz5s1KTk5WYWGhJCmyz/3aklaumFA/TbqupWw2G6srAUA14nA4tGTJEmVkZMhisah2XEMVtuons9Cpa1rX0k3t6shisZD9AFCNHJ39/h1vkl+NePnaLPr4vn+oZpCfJMlqtZL9AKoFGnKoEho3bqzmzZsrOTlZ9btep8Vp5bJYpFf6tVZogLekwydnRkcAQPVgt9t16aWXKjU1VaYks/0tyip0ql54gCZe21wWi0US2Q8A1cmR7N9VGqzydtdJkiZd30LNaodV2I7sB1AdWEzTND1dBC4ceXl5Cg0NVW5urkJCQs7oa8vLy7VodbIe+TFTecXlur9HAz3eu/F5qhQAcK6cbfYbhqHMzEx99adDz/+6R942i74Y2kUt64Sdv2IBAOfE2Wb/9qx8XfPqEhWWGhrQuZ7GXdP8PFYJAJ7D+F5UGRarTW+sPaS84nK1ig3TIz0v9nRJAIDzyGq1KtcSqKmL0iRJT/RuTDMOAKoxwzD10EdrVVhqqEP9GhrVt6mnSwKA84aGHKqMNxbu0IpdBxToY9PUfq3lbePwBYDqrKi0XA98+IdKyg1d1siuQZfGebokAMB5ZLVaNO6aZmpWK0Sv3dpWPl78vg+g+mIOOVQJf6Qe1MvztkqSxl3TXPUjAj1cEQDgfBv/743anlWgyGBfvXhTK1mtFk+XBAA4zzrUr6nvHrzUNVcoAFRXvOWAKmH6r9vlNExd1TJGN7St7elyAADnmWmaahwdLF8vq6b0a62IIF9PlwQAcBOacQAuBIyQQ5Xw6q1tNG3+dg29rAEnaAC4AFgsFg28JE59W9aSPZhmHAAAAKoXGnKoEgJ8vDTiClZUBYALDc04AAAAVEdcsgoAAAAAAAC4EQ05AAAAAAAAwI1oyAEAAAAAAABuREMOAAAAAAAAcCMacgAAAAAAAIAb0ZADAAAAAAAA3MjL0wXgwmKapiQpLy/Pw5UAgPsFBwfLYrF4ugy3I/sBXMjIfrIfwIXndLKfhhzcKj8/X5IUGxvr4UoAwP1yc3MVEhLi6TLcjuwHcCEj+8l+ABee08l+i3nkrQvADQzD0L59+87oncK8vDzFxsZqz549F+QvM6eDfXRq7KNTYx+d2t/dRxfqKAmy//xgH50a++jU2EenRvafHbL//GAfnRr76NTYRyd3LvYPI+RQ6VitVtWpU+esvjYkJISwOAX20amxj06NfXRq7KMzQ/afX+yjU2MfnRr76NTYR2eG7D+/2Eenxj46NfbRyZ3v/cOiDgAAAAAAAIAb0ZADAAAAAAAA3IiGHCo9X19fPfPMM/L19fV0KZUW++jU2Eenxj46NfaR+7CvT419dGrso1NjH50a+8h92Nenxj46NfbRqbGPTs5d+4dFHQAAAAAAAAA3YoQcAAAAAAAA4EY05AAAAAAAAAA3oiEHAAAAAAAAuBENOQAAAAAAAMCNaMihUktMTFSXLl0UEBCgsLCw426Tmpqqvn37KiAgQJGRkXr88cdVXl7u3kIrkfr168tisVS4TZ482dNledRrr72m+vXry8/PTwkJCVqxYoWnS6o0xo4de8zx0rhxY0+X5VGLFi3S1VdfrVq1aslisejrr7+u8HnTNDVmzBjFxMTI399fPXv21LZt2zxTbDVF9p85sv9YZP+Jkf3HIvs9i9w/O2T/scj+EyP7j+Xp7Kchh0qttLRUN910k4YOHXrczzudTvXt21elpaX6/fffNXv2bM2aNUtjxoxxc6WVy/jx45Wenu66Pfjgg54uyWM++eQTDRs2TM8884zWrFmjVq1aqXfv3srKyvJ0aZVGs2bNKhwvS5Ys8XRJHlVYWKhWrVrptddeO+7nn3/+eU2bNk1vvPGGkpKSFBgYqN69e6u4uNjNlVZfZP/ZIfv/h+w/NbK/IrLfs8j9s0f2/w/Zf2pkf0Uez34TqAJmzpxphoaGHnP/Dz/8YFqtVjMjI8N134wZM8yQkBCzpKTEjRVWHvXq1TNfeeUVT5dRaXTs2NG8//77XR87nU6zVq1a5qRJkzxYVeXxzDPPmK1atfJ0GZWWJPOrr75yfWwYhhkdHW2+8MILrvtycnJMX19f86OPPvJAhdUb2X/6yP6KyP6TI/tPjuz3HHL/zJD9FZH9J0f2n5wnsp8RcqjSli1bphYtWigqKsp1X+/evZWXl6cNGzZ4sDLPmjx5ssLDw9WmTRu98MILF+xw/tLSUq1evVo9e/Z03We1WtWzZ08tW7bMg5VVLtu2bVOtWrUUHx+v/v37KzU11dMlVVq7du1SRkZGhWMqNDRUCQkJHFNuRPYfH9l/GNl/esj+00f2ex65f2Jk/2Fk/+kh+0+fO7Lf65w8CuAhGRkZFU7MklwfZ2RkeKIkj3vooYfUtm1b1axZU7///rtGjhyp9PR0vfzyy54uze32798vp9N53GNk8+bNHqqqcklISNCsWbPUqFEjpaena9y4ceratauSk5MVHBzs6fIqnSO5crxj6kLNHE8g+49F9v8P2X9qZP+ZIfs9j9w/PrL/f8j+UyP7z4w7sp8RcnC7ESNGHDOZ5F9vhGZFZ7LPhg0bpssuu0wtW7bUkCFD9NJLL2n69OkqKSnx8KtAZXTFFVfopptuUsuWLdW7d2/98MMPysnJ0aeffurp0lDNkP1njuzH+UL2wx3I/bND9uN8IfsrH0bIwe2GDx+ugQMHnnSb+Pj403qs6OjoY1bOyczMdH2uuvg7+ywhIUHl5eVKSUlRo0aNzkN1lVdERIRsNpvrmDgiMzOzWh0f51JYWJguvvhibd++3dOlVEpHjpvMzEzFxMS47s/MzFTr1q09VFXVQPafObL/7JD9Z47sPzmy/+yQ+2eH7D87ZP+ZI/tPzh3ZT0MObme322W328/JY3Xu3FmJiYnKyspSZGSkJGnevHkKCQlR06ZNz8lzVAZ/Z5+tXbtWVqvVtX8uJD4+PmrXrp3mz5+va6+9VpJkGIbmz5+vBx54wLPFVVIFBQXasWOHbr/9dk+XUinFxcUpOjpa8+fPd52I8/LylJSUdMKV4XAY2X/myP6zQ/afObL/5Mj+s0Punx2y/+yQ/WeO7D85d2Q/DTlUaqmpqTpw4IBSU1PldDq1du1aSdJFF12koKAg9erVS02bNtXtt9+u559/XhkZGRo9erTuv/9++fr6erZ4D1i2bJmSkpLUo0cPBQcHa9myZXr00Ud12223qUaNGp4uzyOGDRumAQMGqH379urYsaOmTJmiwsJC3XnnnZ4urVJ47LHHdPXVV6tevXrat2+fnnnmGdlsNt1yyy2eLs1jCgoKKrxTuGvXLq1du1Y1a9ZU3bp19cgjj2jixIlq2LCh4uLi9PTTT6tWrVquX/7w95H9Z4bsPxbZf3Jk/7HIfs8i988c2X8ssv/kyP5jeTz7z8larcB5MmDAAFPSMbfffvvNtU1KSop5xRVXmP7+/mZERIQ5fPhws6yszHNFe9Dq1avNhIQEMzQ01PTz8zObNGliPvvss2ZxcbGnS/Oo6dOnm3Xr1jV9fHzMjh07msuXL/d0SZVGv379zJiYGNPHx8esXbu22a9fP3P79u2eLsujfvvtt+PmzoABA0zTPLwE+tNPP21GRUWZvr6+5uWXX25u2bLFs0VXM2T/mSH7j4/sPzGy/1hkv2eR+2eO7D8+sv/EyP5jeTr7LaZpmuemtQcAAAAAAADgVFhlFQAAAAAAAHAjGnIAAAAAAACAG9GQAwAAAAAAANyIhhwAAAAAAADgRjTkAAAAAAAAADeiIQcAAAAAAAC4EQ05AAAAAAAAwI1oyAEAAAAAAABuREMOAAAAAAAAcCMacgAAAAAAAIAb0ZADAAAAAAAA3IiGHAAAAAAAAOBGNOQAAAAAAAAAN6IhBwAAAAAAALgRDTkAAAAAAADAjWjIAQAAAAAAAG5EQw4AAAAAAABwIxpyAAAAAAAAgBvRkAMAAAAAAADciIYcAAAAAAAA4EY05AAAAAAAAAA3oiEHAAAAAAAAuBENOQAAAAAAAMCNaMgBAAAAAAAAbkRDDgAAAAAAAHAjGnIAAAAAAACAG9GQAwAAAAAAANyIhhwAAAAAAADgRjTkAAAAAAAAADeiIQcAAAAAAAC4EQ05AAAAAAAAwI1oyAEAAAAAAABuREMOAAAAAAAAcCMacgAAAAAAAIAb0ZADAAAAAAAA3IiGHAAAAAAAAOBGNOQAAAAAAAAAN6IhBwAAAAAAALgRDTkAAAAAAADAjWjIAQAAAAAAAG5EQw4AAAAAAABwIxpyAAAAAAAAgBvRkAMAAAAAAADciIYcAAAAAAAA4EY05AAAAAAAAAA3oiEHAAAAAAAAuBENOQAAAAAAAMCNaMgBAAAAAAAAbkRDDgAAAAAAAHAjGnIAAAAAAACAG9GQAwAAAAAAANyIhhwAAAAAAADgRjTkAAAAUKmkp6drxIgR6tGjh4KDg2WxWLRgwQJPlwUAAHDO0JADAABApbJlyxY999xzSktLU4sWLTxdDgAAwDlHQw4AAACVSrt27ZSdna2tW7dq2LBhni4HAADgnKMhBwAAgPPu0KFDaty4sRo3bqxDhw657j9w4IBiYmLUpUsXOZ1OSVJwcLBq1qzpqVIBAADOOxpyAAAAOO/8/f01e/Zsbd++XaNGjXLdf//99ys3N1ezZs2SzWbzYIUAAADu4+XpAgAAAHBhSEhI0BNPPKHnnntO1113nTIzM/Xxxx9rypQpuvjiiz1dHgAAgNvQkAMAAIDbjB07Vt99950GDBiggoICde/eXQ899JCnywIAAHArLlkFAACA2/j4+Oi9997Trl27lJ+fr5kzZ8pisXi6LAAAALeiIQcAAAC3+umnnyRJxcXF2rZtm4erAQAAcD8acgAAAHCb9evXa/z48brzzjvVpk0b3X333crNzfV0WQAAAG5FQw4AAABuUVZWpoEDB6pWrVqaOnWqZs2apczMTD366KOeLg0AAMCtWNQBAAAAbjFx4kStXbtW8+fPV3BwsFq2bKkxY8Zo9OjRuvHGG3XllVdW2FaSNmzYIEl6//33tWTJEknS6NGj3V88AADAOWQxTdP0dBEAAACo3tasWaOEhAQNHTpU06ZNc93vdDrVuXNnpaWlacOGDQoLC5Okky70wK+vAACgqqMhBwAAAAAAALgRc8gBAAAAAAAAbkRDDgAAAAAAAHAjGnIAAAAAAACAG9GQAwAAAAAAANyIhhwAAAAAAADgRjTkAAAAAAAAADeiIQcAAAAAAAC4EQ05AAAAAAAAwI1oyAEAAAAAAABuREMOAAAAAAAAcCMacgAAAAAAAIAb0ZADAAAAAAAA3IiGHAAAAAAAAOBGNOQAAAAAAAAAN6IhBwAAAAAAALgRDTkAAAAAAADAjWjIAQAAAAAAAG5EQw4AAAAAAABwIxpyAAAAAAAAgBvRkAMAAAAAAADciIYcAAAAAAAA4EY05AAAAAAAAAA3oiEHAAAAAAAAuBENOQAAAAAAAMCNaMgBAAAAAAAAbkRDDgAAAAAAAHAjGnIAAAAAAACAG9GQAwAAAAAAANyIhhwAAAAAAADgRjTkAAAAAAAAADeiIQcAAAAAAAC4EQ05AAAAAAAAwI1oyAEAAAAAAABuREMOAAAAAAAAcCMacgAAAAAAAIAb0ZADAAAAAAAA3IiGHAAAAAAAAOBGNOQAAAAAAAAAN6IhBwAAAAAAALiRl6cLAAAA/+N0OlVWVubpMgAAlYy3t7dsNpunywAAnCM05AAAqARM01RGRoZycnI8XQoAoJIKCwtTdHS0LBaLp0sBAPxNNOQAAKgEjjTjIiMjFRAQwB9bAAAX0zRVVFSkrKwsSVJMTIyHKwIA/F005AAA8DCn0+lqxoWHh3u6HABAJeTv7y9JysrKUmRkJJevAkAVx6IOAAB42JE54wICAjxcCQCgMjtynmCuUQCo+mjIAQBQSXCZKgDgZDhPAED1QUMOAAAAAAAAcCMacgAAoEqZNWuWwsLCPF0GgGpgwYIFslgsrHANAHA7GnIAAOCsDBw4UBaLRRaLRT4+Prrooos0fvx4lZeXn9fn7devn7Zu3Xpen+NUjn7t3t7eioqK0j//+U+99957MgzjjB6LBuO5ceR7Mnny5Ar3f/31126/zO/IsWGxWBQYGKiGDRtq4MCBWr169Rk/1mWXXaZHHnnk3Bd5ATj6+3C829ixYz1dIgDgAkZDDgAAnLU+ffooPT1d27Zt0/DhwzV27Fi98MILx922tLT0nDynv7+/IiMjz8lj/R1HXntKSop+/PFH9ejRQw8//LCuuuqq896UxPH5+fnpueee08GDBz1dimbOnKn09HRt2LBBr732mgoKCpSQkKA5c+Z4urQLRnp6uus2ZcoUhYSEVLjvscce81ht5yoPAQBVFw05AABw1nx9fRUdHa169epp6NCh6tmzp7799ltJh0csXXvttUpMTFStWrXUqFEjSdKePXt08803KywsTDVr1tQ111yjlJQUSdLPP/8sPz+/Yy4fe/jhh/WPf/xD0vFHlM2YMUMNGjSQj4+PGjVqpPfff9/1uZSUFFksFq1du9Z1X05OjiwWixYsWCBJOnjwoPr37y+73S5/f381bNhQM2fOPK3XXrt2bbVt21ZPPfWUvvnmG/3444+aNWuWa7uXX35ZLVq0UGBgoGJjY3XfffepoKBA0uHL5e68807l5uYeM2rn/fffV/v27RUcHKzo6GjdeuutysrKOtW35ILWs2dPRUdHa9KkSSfdbsmSJeratav8/f0VGxurhx56SIWFhZKkV199Vc2bN3dte2SE3RtvvFHheUaPHn3S5wgLC1N0dLTq16+vXr166fPPP1f//v31wAMPuBqG2dnZuuWWW1S7dm0FBASoRYsW+uijj1yPMXDgQC1cuFBTp051HR8pKSlyOp0aNGiQ4uLi5O/vr0aNGmnq1KlnvL+qu+joaNctNDRUFoulwn1BQUGubVevXq327dsrICBAXbp00ZYtWyo81jfffKO2bdvKz89P8fHxGjduXIXGe2pqqq655hoFBQUpJCREN998szIzM12fHzt2rFq3bq133nlHcXFx8vPz05w5cxQeHq6SkpIKz3Xttdfq9ttvP097BQBQWdCQAwAA54y/v3+FkR/z58/Xli1bNG/ePH333XcqKytT7969FRwcrMWLF2vp0qUKCgpSnz59VFpaqssvv1xhYWH64osvXI/hdDr1ySefqH///sd9zq+++koPP/ywhg8fruTkZN17772688479dtvv5123U8//bQ2btyoH3/8UZs2bdKMGTMUERFxxq//H//4h1q1aqUvv/zSdZ/VatW0adO0YcMGzZ49W7/++queeOIJSVKXLl2OGblzZNROWVmZJkyYoHXr1unrr79WSkqKBg4ceMY1XUhsNpueffZZTZ8+XXv37j3uNjt27FCfPn10ww03aP369frkk0+0ZMkSPfDAA5Kk7t27a+PGjXI4HJKkhQsXKiIiwtW8LSsr07Jly3TZZZedcX2PPvqo8vPzNW/ePElScXGx2rVrp++//17JyckaPHiwbr/9dq1YsUKSNHXqVHXu3Fn33HOP6/iIjY2VYRiqU6eOPvvsM23cuFFjxozRU089pU8//fSMazpbpmmqqLTcIzfTNM/56xk1apReeuklrVq1Sl5eXrrrrrtcn1u8eLHuuOMOPfzww9q4caPefPNNzZo1S4mJiZIkwzB0zTXX6MCBA1q4cKHmzZunnTt3ql+/fhWeY/v27friiy/05Zdfau3atbrpppvkdDpdb2JIUlZWlr7//vsKzw8AqJ68PF0AAAA4dwzDkMPhkN1ul9XqvvfdTNPU/Pnz9dNPP+nBBx903R8YGKh33nlHPj4+kqQPPvhAhmHonXfecc3rNXPmTIWFhWnBggXq1auX/vWvf+nDDz/UoEGDJB1u6uXk5OiGG2447nO/+OKLGjhwoO677z5J0rBhw7R8+XK9+OKL6tGjx2nVn5qaqjZt2qh9+/aSpPr165/VfpCkxo0ba/369a6Pj57/q379+po4caKGDBmi119/XT4+PhVG7hzt6D/I4+PjNW3aNHXo0EEFBQUVRvZUaoYhFe2XAiIkNx2P1113nVq3bq1nnnlG77777jGfnzRpkvr37+/6vjRs2FDTpk1T9+7dNWPGDDVv3lw1a9bUwoULdeONN2rBggUaPny4awTaihUrVFZWpi5dupxxbY0bN5Yk14jQ2rVrV7hs8sEHH9RPP/2kTz/9VB07dlRoaKh8fHwUEBBQ4fiw2WwaN26c6+O4uDgtW7ZMn376qW6++eYzrutsHCpzqumYn9zyXH+1cXxvBfic2z9jEhMT1b17d0nSiBEj1LdvXxUXF8vPz0/jxo3TiBEjNGDAAEmHfx4nTJigJ554Qs8884zmz5+vP//8U7t27VJsbKwkac6cOWrWrJlWrlypDh06SDp8meqcOXNkt9tdz3vrrbdq5syZuummmyQdzsi6deueVcMXAFC1MEIOAIBqwjAMJSYmatCgQUpMTDzjxQXOxnfffaegoCD5+fnpiiuuUL9+/SpMlN6iRQtXM06S1q1bp+3btys4OFhBQUEKCgpSzZo1VVxcrB07dkiS+vfvrwULFmjfvn2SpLlz56pv374nXPhg06ZNuuSSSyrcd8kll2jTpk2n/TqGDh2qjz/+WK1bt9YTTzyh33///bS/9q9M06ywiMAvv/yiyy+/XLVr11ZwcLBuv/12ZWdnq6io6KSPs3r1al199dWqW7eugoODXc2C1NTUs67NrQxDWvyi9M0Dh/91w/F4xHPPPafZs2cf9xhYt26dZs2a5Tr+goKC1Lt3bxmGoV27dslisahbt25asGCBcnJytHHjRt13330qKSnR5s2btXDhQnXo0EEBAQFnXNeRkV1Hjg+n06kJEyaoRYsWqlmzpoKCgvTTTz+d1vf4tddeU7t27WS32xUUFKS33nqr6hwblVDLli1d/4+JiZEk1yXi69at0/jx4yscM0dGLRYVFWnTpk2KjY11NeMkqWnTpgoLC6twDNarV69CM06S7rnnHv38889KS0uTdPiS/CMLlAAAqjdGyAEAUE04HA4lJSUpIyNDSUlJcjgcioqKOq/P2aNHD82YMUM+Pj6qVauWvLwq/moRGBhY4eOCggK1a9dOc+fOPeaxjvyh2qFDBzVo0EAff/yxhg4dqq+++qrCnGxn6shIwaMvcysrK6uwzRVXXKHdu3frhx9+0Lx583T55Zfr/vvv14svvnjGz7dp0ybFxcVJOjwS6qqrrtLQoUOVmJiomjVrasmSJRo0aJBKS0tP2NQpLCxU79691bt3b82dO1d2u12pqanq3bt31ZkMvmi/tHeVVJB5+N+i/VKQexbj6Natm3r37q2RI0cec5lvQUGB7r33Xj300EPHfF3dunUlHV7Z9K233tLixYvVpk0bhYSEuJp0CxcudDVHz9SR5syR4+OFF17Q1KlTNWXKFNc8g4888sgpv8cff/yxHnvsMb300kvq3LmzgoOD9cILLygpKems6job/t42bRzf223P99fnPte8vb1d/z/SDDvypkZBQYHGjRun66+//piv8/PzO+3n+GseSlKbNm3UqlUrzZkzR7169dKGDRv0/fffn2n5AIAqiIYcAADVhN1uV0JCgpKSkpSQkHDMSIzzITAwUBdddNFpb9+2bVt98sknioyMVEhIyAm369+/v+bOnas6derIarWqb9++J9y2SZMmWrp0qetyMklaunSpmjZtKul/jb709HS1adNGkios8HCE3W7XgAEDNGDAAHXt2lWPP/74GTfkfv31V/3555969NFHJR0e5WYYhl566SVXY/Cv83z5+PjI6XRWuG/z5s3Kzs7W5MmTXaNuVq1adUa1eFxAhFSn/eFmXJ32hz92o8mTJ6t169auxUSOaNu2rTZu3HjS47Z79+565JFH9Nlnn7kuHbzsssv0yy+/aOnSpRo+fPhZ1XRkvsCePXtKOnycXnPNNbrtttskHW4Abd261XXsSsc/PpYuXaouXbq4LtOW5Bph6i4Wi+WcXzZaWbVt21Zbtmw54THTpEkT7dmzR3v27HH9vG7cuFE5OTkVvpcncvfdd2vKlClKS0tTz549K4y0AwBUXxfGWRQAgAuA1WrVqFGjPDKH3Onq37+/XnjhBV1zzTUaP3686tSpo927d+vLL7/UE088oTp16ri2Gzt2rBITE3XjjTfK19f3hI/5+OOP6+abb1abNm3Us2dP/fvf/9aXX36pX375RdLhhSY6deqkyZMnKy4uTllZWceskDlmzBi1a9dOzZo1U0lJib777js1adLkpK+lpKREGRkZcjqdyszM1H/+8x9NmjRJV111le644w5J0kUXXaSysjJNnz5dV199tZYuXVphtU7p8LxyBQUFmj9/vlq1aqWAgADVrVtXPj4+mj59uoYMGaLk5GRNmDDhjPe3R1mtUtfH3D6H3BEtWrRQ//79NW3atAr3P/nkk+rUqZMeeOAB3X333QoMDNTGjRs1b948vfrqq5IOX75Yo0YNffjhh/ruu+8kHW7IPfbYY7JYLMdcIn08OTk5ysjIUElJibZu3ao333xTX3/9tebMmeO6/Lphw4b6/PPP9fvvv6tGjRp6+eWXlZmZWaGJU79+fSUlJSklJcV1iXfDhg01Z84c/fTTT4qLi9P777+vlStXukbe4dwaM2aMrrrqKtWtW1c33nijrFar1q1bp+TkZE2cOFE9e/Z0HW9TpkxReXm57rvvPnXv3t01L+XJ3HrrrXrsscf09ttva86cOW54RQCAyqDy/aYOAADOmtVqVVRUVKVsxklSQECAFi1apLp16+r6669XkyZNNGjQIBUXF1cYMXfRRRepY8eOWr9+/QlXVz3i2muv1dSpU/Xiiy+qWbNmevPNNzVz5swKk6K/9957Ki8vV7t27fTII49o4sSJFR7Dx8dHI0eOVMuWLdWtWzfZbDZ9/PHHJ33e//znP4qJiVH9+vXVp08f/fbbb5o2bZq++eYb2WyHL6lr1aqVXn75ZT333HNq3ry55s6dq0mTJlV4nC5dumjIkCHq16+f7Ha7nn/+edntds2aNUufffaZmjZtqsmTJ5/V5bMeZ7UevkzVQ8fj+PHjj5lLsWXLllq4cKG2bt2qrl27qk2bNhozZoxq1arl2sZisahr166yWCy69NJLXV8XEhKi9u3bH/fSw7+68847FRMTo8aNG2vo0KEKCgrSihUrdOutt7q2GT16tNq2bavevXvrsssuU3R0tK699toKj/PYY4/JZrOpadOmrkuX7733Xl1//fXq16+fEhISlJ2dXWG0HM6t3r1767vvvtPPP/+sDh06qFOnTnrllVdUr149SYePl2+++UY1atRQt27d1LNnT8XHx+uTTz45rccPDQ3VDTfcoKCgoGO+/wCA6stino91wwEAwGkrLi7Wrl27FBcXd0bzEQEAqofLL79czZo1O2ZE519xvgCA6oNLVgEAAADAAw4ePKgFCxZowYIFev311z1dDgDAjWjIAQAAAIAHtGnTRgcPHtRzzz13zAIkAIDqjYYcAAAAAHhASkqKp0sAAHhI5ZzxGQAAAAAAAKimaMgBAFBJsM4SAOBkOE8AQPVBQw4AAA/z9vaWJBUVFXm4EgBAZXbkPHHkvAEAqLqYQw4AAA+z2WwKCwtTVlaWJCkgIEAWi8XDVQEAKgvTNFVUVKSsrCyFhYXJZrN5uiQAwN9kMRn3DACAx5mmqYyMDOXk5Hi6FABAJRUWFqbo6GjetAGAaoCGHAAAlYjT6VRZWZmnywAAVDLe3t6MjAOAaoSGHAAAAAAAAOBGLOoAAAAAAAAAuBENOQAAAAAAAMCNaMgBAAAAAAAAbkRDDgAAAAAAAHAjGnIAAAAAAACAG9GQAwAAAAAAANyIhhwAAAAAAADgRv8P19XrJGJ1s/wAAAAASUVORK5CYII=\n" - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "# Visualize the data collected and theory determined during each cycle\n", - "plot_results_panel_2d(random_experimentalist_cycle,\n", - " wrap=3,\n", - " subplot_kw=dict(figsize=(14,10))\n", - " );\n" - ], - "metadata": { - "collapsed": false - } - }, - { - "cell_type": "code", - "execution_count": 12, - "outputs": [ - { - "data": { - "text/plain": "
", - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAtQAAAHGCAYAAABU2xz9AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8o6BhiAAAACXBIWXMAAA9hAAAPYQGoP6dpAACOwElEQVR4nOzdd3hUddrG8e9Meq+TAoTeCSIlCSAgKgp2XLuuWBBcxYq6GrG7MYq+lt11VRDBumvZtayuIqI0IQlVTWiCQCjJMISQENJzzvtHzJiQSUiA9PtzXbnczJw585thNrl5eM7zs5imaSIiIiIiIsfF2tILEBERERFpyxSoRUREREROgAK1iIiIiMgJUKAWERERETkBCtQiIiIiIidAgVpERERE5AQoUIuIiIiInAAFahERERGRE6BALSIiIiJyAhSoW4BpmuTn56NNKkVERETaPgXqoyQnJxMXF0dAQAARERFMnjyZLVu21DimuLiYGTNmEBYWhr+/P5deeil2u73Bz3H48GGCgoI4fPjwyV5+q7Jz504sFgsbNmxo6aWIiIiINBkF6qMsXbqUGTNmkJKSwqJFiygrK+Occ87hyJEjzmPuuece/vvf//LRRx+xdOlS9u3bxx/+8IcWXPXxyc7O5o477qBnz554eXkRExPDhRdeyOLFi1t6aTUsXLiQkSNHEhAQgM1m49JLL2Xnzp0tvSwRERERACym+g7q5XA4iIiIYOnSpYwbN468vDxsNhvvv/8+l112GQCbN29mwIABrFq1ipEjRx7znPn5+QQFBZGXl0dgYGBTvwSXdu7cyWmnnUZwcDBPPvkkgwcPpqysjIULFzJnzhw2b958Up6jR48erF+/nlNPPfW4zrFjxw4GDBjAzJkzmTp1Knl5edxzzz0cPnyYdevWnfAaRURERE6UKtTHkJeXB0BoaCgAa9eupaysjAkTJjiP6d+/P127dmXVqlUuz1FSUkJ+fn6Nr5Z22223YbFYSEtL49JLL6Vv374MGjSImTNnkpKSAsBNN93EBRdcUONxZWVlREREMG/ePAAMw2D27Nn07t0bLy8vunbtSlJSUp3Pm56ezrnnnou/vz+RkZFcd911HDhwoM7j165dS0VFBX/5y1/o1asXw4YN47777mPDhg2UlZWdhHdCRERE5MQoUNfDMAzuvvtuTjvtNGJjY4HKNglPT0+Cg4NrHBsZGUl2drbL8yQnJxMUFOT8iomJaeql1+vgwYN8/fXXzJgxAz8/v1r3V722m2++ma+//pqsrCznfV988QWFhYVceeWVACQmJvLMM8/wyCOPsHHjRt5//30iIyNdPu+hQ4c488wzGTp0KGvWrOHrr7/GbrdzxRVX1LnW4cOHY7VamT9/PhUVFeTl5fHOO+8wYcIEPDw8TuBdEBERETk5FKjrMWPGDNLT0/nXv/51QudJTEwkLy/P+bV79+6TtMLjs23bNkzTpH///vUeN3r0aPr168c777zjvG3+/Plcfvnl+Pv7c/jwYV5++WVmz57N9ddfT69evRgzZgw333yzy/P9/e9/Z+jQoTz99NP079+foUOH8uabb/L999+zdetWl4/p0aMH33zzDQ899BBeXl4EBwezZ88ePvzww+N/A0REREROIgXqOtx+++188cUXfP/993Tp0sV5e1RUFKWlpRw6dKjG8Xa7naioKJfn8vLyIjAwsMZXS2pM2/zNN9/M/PnzgcrX+NVXX3HTTTcBsGnTJkpKSjjrrLMadK4ff/yR77//Hn9/f+dXVajfvn27y8dkZ2czbdo0rr/+elavXs3SpUvx9PTksssu09hBERERaRXcW3oBrY1pmtxxxx188sknLFmyhB49etS4f/jw4Xh4eLB48WIuvfRSALZs2UJmZiajRo1qiSU3Wp8+fbBYLA268HDKlCk8+OCDrFq1ipUrV9KjRw/Gjh0LgI+PT6Oet6CggAsvvJBnn3221n3R0dEuH/PKK68QFBTE7Nmznbe9++67xMTEkJqa2qCLQEVERESakgL1UWbMmMH777/PZ599RkBAgLMvOigoCB8fH4KCgpg6dSozZ84kNDSUwMBA7rjjDkaNGtVmwl1oaCgTJ07klVde4c4776zVR33o0CFnH3VYWBiTJ09m/vz5rFq1ihtvvNF5XJ8+ffDx8WHx4sV1tnlUN2zYMP7973/TvXt33N0b9tErLCzEaq35Dylubm5AZY+7iIiISIszpQbA5df8+fOdxxQVFZm33XabGRISYvr6+pqXXHKJmZWV1eDnyMvLMwEzLy+vCV5Bw2zfvt2MiooyBw4caH788cfm1q1bzY0bN5ovv/yy2b9//xrHfvPNN6anp6fp5uZm7t27t8Z9jz/+uBkSEmK+9dZb5rZt28xVq1aZb7zxhmmaprljxw4TMNevX2+apmnu3bvXtNls5mWXXWampaWZ27ZtM7/++mvzhhtuMMvLy12uc/HixabFYjGfeOIJc+vWrebatWvNiRMnmt26dTMLCwtP/hsjIiIi0kiqUB/FbEBfrre3N6+88gqvvPJKM6yoafTs2ZN169aRlJTEvffeS1ZWFjabjeHDh/Pqq6/WOHbChAlER0czaNAgOnXqVOO+Rx55BHd3dx599FH27dtHdHQ0f/rTn1w+Z6dOnfjhhx944IEHOOeccygpKaFbt25MmjSpVhW6yplnnsn777/P7NmzmT17Nr6+vowaNYqvv/660S0nIiIiIk1BG7u0gNawsUtjFBQU0LlzZ+bPn98md4QUERERaUqqUEudDMPgwIED/N///R/BwcFcdNFFLb0kERERkVZHgVrqlJmZSY8ePejSpQsLFixo8IWEIiIiIh2JEpLUqXv37pr1LCIiInUyDAOHw4HNZqvzeqiOoOO+chERERE5boZhkJSUxNSpU0lKSmrScbaGYbJh9yFW/HKgyZ7jRKhCLSIiIiJ1qqsK7XA4SE1NJTs7m9TUVBwOB5GRkSfteQtKylnxi4PFm/bz/Zb9HCgopX9UAF/fPe6kPcfJokAtIiIiIi5VVaFTU1NJSEhg1qxZzlBts9lISEhw3mez2U74+TJzClm82c53m/eT8msOZRW/t576e7nT0+ZHabmBp3vrarJQoBYRERERl+qrQlutVmbNmnVCPdTlFQZrd+Xy3eb9LN68n237C2rc3y3Ml7P6R3LWgAjiuoe2uiBdRYFaRERERFw6VhXaarXWaPM4uj3EVbtIXlEZS7c6WLzJzpItDvKKypyPd7NaiOsewln9IzlzQAQ9w/2wWCzN82JPgDZ2aQFtbWMXERER6bgaOsnj6PaQxMREkpOTSU1NZUDcOPqecSnfbXaweudByo3f42ewrwdn9IvgzP4RjOtrI8jHozle1kmlCrWIiIhIC2vN4+eOrkK7ZBjk7NpEWmoK2dl2UlLT+HjZBj7baSG3x2WkF9ngf5udh/eO8OesARFMGBDJsK4huFlbfxW6PqpQtwBVqEVERKRKfRf+tbQGBX3DgOXPk79zA69tD+N9ew+KQnpRUq1ua8FkZM9wJgyMZMKACLqF+TXTK2geqlCLiIiItKCmHj93vAzD4KmnnmLFihWMGTOGRx55pFao3neoiMUbtvPNimBSCq6iDDcIqbwvyMeD0/uGE9/ZhwuG9yTYz6sFXkXzUKAWERERaUFNMX7uZLDb7bz//vtkZ2eTmZnJ9OnTiYqKImNfPos22vl2k52Mffm/Hd0ZgB6+JUwY1p+zBkYyolsI7m61q9qtub3leClQi4iIiLSgkzF+rilZ3DwwIvrx3PeZrNq1kay84t/vs8DwriFMGBDBhO4e9O4aA424cLEx7S2tOYgrUIuIiIi0sAZd+NeM8grLWJVVTvRlD1NW6keZmxf/+aly228fDzfG9gnn7IGRnNE/gnD/Y7RyGAYUHgDf8ONub2nNfeagQC0iIiIiwN5DRSzKyGbRJjupv1aNtgsFN7D5exJavBe3HSuJ6xvDI9ckkpOTQ6jvMUbc/XbBInvWYHQejtH3j8TFxbF69epGtbe01j7zKgrUIiIiIs2kIRufNBfTNNmUdZhvNmazaGP1fuhKfSL8OWdQJBMGRBLlUcS3j86ke+ABtu0MZtZD+WRs3HTsanHhAdizBvNwNjuWvMvjL31Ln2FjmTt3LpGRkTUeV9970Vr7zKsoUIuIiIg0g/o2PmmuNobyCoO0nQf5JsPOoo129h4qct5nscCIbiGcPTCSswdG0SP899F2Rn4JCZ3dKMkppZubgzlf/4cyz5BjV4t9w6HzcMrXvY9noZ3R3gX8L82TW265pVaYrq+lo7X3mStQi4iISJvVmi9UO9rRbQubN2+ut43hZL22otIKlv/iYGGGncWb7Rwq/H2rby93K2P72DhnYOVW33X1Q1v9I4gacSEbF77Fxjw4WGyla2TIMavFBuDoMomCJe9SWFRB/4ACCgfEEhYWht1ud762hrR0tLY+8+oUqEVERKRNau0Xqh3NZrMRFxfHihUriIuLo3///nW2MZzoNIxtu7P4+YDBNxvtLNt6gKKyCuf9Ib4enNk/knMGRTK2Tzi+ng2Ig1YrvhMf4fm/L2XF+s0MHNSbBQsWEB0d7XJdhmFgt9uZM2cOP6xYznkBBxkW6cnO8hCumnp7rcp8a2/pOBYFahEREWmTWvuFaq5YLBbnf+trYzie15aVV8TC9GzmfJnCvgp/sPx+vs7BPpw9MJKJg6KI6+56PvSx5BzMpcgtgMioaHx8fHB3d68zTCclJbFs2TIyMzPx8/PjtUw/Bhd34pSRZ2J1c6/x2ux2O1arlcTERBwOR6PX1RooUIuIiEib1Naqmg6Hg7S0NHJzc0lLS3OGZFdB2WazkRAfz5Z1K+g3LL7O17bdUcDX6dl8k5HNj3vyfrs1ECzgVZzDtafH8of4XgzqFOgM88dSV6uJzWZj5MiRx3y/q/4ykJubC0BYWBgXX3wx06dPd77Wqj+3uLg45s6dS1paGvHx8Zim6ZwA0tr/xaE6i2maZksvoqPJz88nKCiIvLw8AgMDW3o5IiIibVZrmppxLI1q4zAMjGXPUfbrSjx6jsY67n6wWqmoqOCHjZmk7SthYYadX/YXOB9iscCwmGCsWekcyljKuKEDaj5HtXnQdW2+cqw11vX+Vr8dcJ4jPj6eadOmuZzokZWVxdatW3nuuefYv38/ISGVe5bn5uYSFRXF3LlzsVqtrfLP8mgK1C1AgVpEROTkaws91Q0O/AX74bPbocCO4RfJuuHJfLW9mA9+2EKB+fuFg+5WC6N7hzNxUCRnD4wkIsDb9XNUmwdNlxEw9j6XodputzN16lSys7OJiopi3rx5x2w1cfW+A67X8FugLzcMJk6cyM8//4y/vz/9+/dn5MiRzgp1XFwcFouFtLS0VvtnWZ1aPkRERKRdaGjfcUtWsRs6qaLMK5QU79P5em8J3+zriSN982/3eEFFKYEFe5h55VlcEt+HAG83HA4H4X6edT/Hb/OgKbBX/rfwAPhH1Hre42mjqet9r7GGowL95tBJpKenc+TIEQDuu+8+BgwYgM1mIycnB8MwmDZtWpvpj1egFhERkXahIWGwxarYhoFRsB9HoYktItLlcxaXVbDilwN8lZ7Nt5vs5BV1d94X4OXOmQMiKNi0gqx1ixkVP5wp4/oDNOz1+IZXVqarKtS+4S6XeTzznhsUwo8K9P2H/JHY2FjS09MZNGgQy5cv54UXXqhR4T76nK25nUctHy1ALR8iIiJN41ihy263c/PUmyg5uBev0M68Me/Npq98/tYPvW3Jv0jdW87OmMtJfOghcnJy8A8KZdkvB/jfz1ks3mynsNRwPsyt7Ai9vAtJvO5cTuttw9O9do94o1o0GtBDffwv8Rhh10XLSblhsHnzZkJCQrjllltqvYa6+rJbYwuIKtQiIiLSJrkKcdXbHVzdbwsPY2aciV/uIY6EdMIWHtb0Cy08QNmvK7Ec2U93d4Mv1qdw3ayXyMj3pDCoO+W4OQ/1tZRy3uBOfPb3J9i/cSXukZH0v30inu61Xx/Unm1db4uG1eqyzeNkOGYri9Va2bddLdC7W63ExsZiGIbLCnf1c9rt9lY9IlGBWkRERNqcY7VulJeXM2vWLNLT0xk5cqTzfmvRQcb38qMsrzMeQX5Yig42Wch08g2nKGYM3+wI5b8VA9natz+GxQpBlXdH+rlRvmst5b+upotvOVOufpr/5mynashd1SYpdVV/q8+2bs0MwHHExOYL1V9FQ9pMWvuIRAVqERERaXPquwDRMAxmzZrFggULcHd3dx4fGRkJvuFYYuLwtNTfS3wy5BWW8c3GbP73cxYrtg2irGIgVF43SJClGI/9GzktxofnH7yLZ55ZTWp2OQkJCQwcOJBrr72WZcuWMXToUObOncuaNWtc/sWhrtnWrc2x/gLUkIs1b775Zm6++eZaI/haAwVqERERaXPqq1g6HA7S09Nxd3envLyc2NjY3+930XpwMh0qLOWbDDtf/pzFD9sOUG78fqla3wh/xvUM4NL4XvSN9OfAgTHOiuzRFdqHHnqII0eOsHbtWnbv3k1AQECNXQWrjjv6fQgLC6u3mt1STmRXy7rG8rUmCtQiIiLS5tTXJlC1ox9AbGwsSUlJNcPlSe4lzj1SysKMbP6Xns3Ko0J0/6gAzhsczaRBkXww92VS3kjF/LkyFFYPlEdXaHNycsjIyHDuNhgSElJjV8HqVd6q9yEsLIzk5ORWeeHeibRstIUt5hWoRUREpE2qq02gsaPfjmccW+6RUr7OqGznWLk9h4qjQvT5g6M575Roetn8gYZdVFd9HdUDaFxcHNOnTwdwOZu56n1ozRfuncifSWvvnwYFahEREWmHGrqBSmPmUucVlrEwI5svfmvnqB6i+9p8uHBoDOcPjqbnbyG6umO1Zrhax9EBtK5pGHU9R2sLnifyZ9LY2djNTXOoW4DmUIuIiJwcJ7TZh2Hg2LWJm+74M1nZdpdznPOLy1iUYeeLn/axYtsByip+j02DOgVybmwUO5d/wubVy0hISCAxMZGcnByX66laq6vWDIfD0aB50sd6va1585OGOp7tz1uaKtQiIiLSJp3Qroe/bTQSvns1M+NMXlgdSfxvVd2CknK+3Wjni5+yWLbVQWnF75uteBXnEBtQwjMzriDQUly5RfYLy8jOziYlJYVZs2aRkZFR7yQLV60ZDa0uH6vK29AqcGvW2ivtrqhC3QJUoRYRETlxja1k1qjeFh6Az26HAjumXwS74x/lx8JQvvg5i++3OCgt/z1E94nwZ3yvQL5/+/84tGszkZGRxMbGkpGRQVxcHBaLhbS0NAYNGkR6ejp2u+tqd/V1uPqLQHuoLp8sbe29UIVaRERETormDkGNqWTWCrEPJVIWHceyLdn8N2cY376zh8KyTOfxPcP9uOCUaC4Y0om+kQEYhoHxUz9SSw7VCM6rV6/m9ddf5w9/+AN9+/bl2WefbVCV2VVPcEtUl1trcG1rlXZVqFuAKtQiItIWNCZsnVD7xUlcY11rrqpmZ9n3499rGIPPv4Gl2/M4XFzuPKarTykXxPfnwlM70z8qoHLnQcNwzqw2oFYPdHx8PKZpsnr16mP2ULc2LfVn1h6pQi0iIiK1NDZsNfWs4LqCcvVKZt2tFCY7CtwoP/UyDhX7k+Puw66MHACiAjy4wGsDF3quZXCIQU7/xwmL9P89TC9/HnP3agpCBuBzzsPO56yqMBuGUWOUXU5OTpuprLaF+c5thQK1iIiI1NLYsOWq/eJktRMYhsFTTz3FihUrGDNmDI888ojL81Vfc0pqKsvSd7Iis5gvfsoiO78YsIE7hPl5ct7gaC4c0okRMUFYf9iAudtgybYC3vz33fQdNpZZDz+MtfAA5u7VZG37kT25q5n9tyUUuQUwcuRI58Ysxxpl15q1xYv/Wiu1fLQAtXyIiEhrd8wKdbVWiKrtu6sHaOCE2wmqzldeXs6ZZ57pvPhwyZIlREdHuzz+z089z9JdhZREDibf9HbeF+DtzqRBUVw4pBOje4Xh7lbztTh2ZrAw+Rq6uR9gZ1k4Q+96j4EDB1Lw1RNs/OYt1mRb+MvSIiKjoomJialxwWFr6kNu7Fpa09rbMlWoRUREpJZ6d7b7rRWCPWugywgYex9YrTXaL/bu3cuiRYsoKCg4rnaC6oF+4MCBmKZZ2YYBlJeXk56eTv/+/XF3dyc7r5gvftrHZxv28XPRIIgATPByt3L2wEguGtKJ0/vZ8HJ3c/1cgGFCfGc3LAVW3EvySH74XvoOGwOmGwuXepJTZGHgoF74+PjUqua2lgvojqcnurWsva1ToBYRERGXlco6w1bhgcowXWCv/G/hAfCPcN5dXl7Oddddx7p16/D29ubCCy9sdDtB9fYNwzA4++yz2bJlC6eddhrXX389Gb/soOvoi+h15lWk7jxI1b+3u1ktjO0Tjrkzjf3rvyXSazgTrqo7WFaF0LTUFO4ZEc2I3lGkrNnL1r0HsR9ZTmlpKSXuQXTtFsqCBQtwd3dvtZuqqCe65ai2LyIi0sFVhcqpU6eSlJSEYRj1P8A3vLIy7R9Z+V/f8Bp3b968mYyMDGdV+dJLL6030Nrt9lrPabPZiI+PJygoiPz8fHbs2MGQ4XHYhk/kl8gz8L7qJRw9ziFlR2WYjusewlOTY0l76CyePa8bOWu/xrFvjzNY1qUqhGZl23lxjZWis59jZ9fLiYiMcq6toKCAMWPGEB0dTWRkZJ1hulHvYROo6omOiopST3QzU4VaRESkg2t0ZdNqrWzzOKqHGiqDZUhICIMGDSIjI4PY2FgGDhzo8jTHalGoqKhg2/bt5HlFEBh1KpuNOIyVubh1GwaAZ6GDuyaP5uKhXegS4vv7eX1/v9guPj6+coa0YbgMwtUvzItPSMDWYxCzHh7Exo0beeCBBwgICCAkJITp06e36JSThqi3TUealAK1iIhIB3dc0x6s1hptHlAzII8bN46XXnqJgQMH4u7uOm7UF0JXbtzF57usmBc8SbB/WOX5gc7BPlx4ShSxgcVMGjnR5bmrgqXdbmfOnDlMmzatzp7iukLowIEDGTlyJCkpKcTGxh7zPWktEzPUE90yNOWjBWjKh4iItDaN3cSlvs1TGrMVePUK9Y0zZvLfn7L5dP1ettgP/35g6RF6euSRNG0ycd1Dyck50KB1NnY9RysvL2fWrFmkp6c7R+XV95wt3UMtLUcVahERkQ7o6PDX0MpmfW0aja3SWq1W7rj3z0St+oXF2w4z9rklzosLPd2snNnfxvgefozqFkhM58oxeY2ZYnGiVeOcnBwyMjKw2+0NauOwWq1E2mwuW2GkfVOgFhER6WBOZMvpGpunpKSwceNGBg4c6AzlrtonysvL2bx5s3PMXXmFwfKt+/n36h0s2nqIkvLfL+BL6BHKJUM7c+7gaIJ8PGo8d1WwbWif8on2FDc6kNcxTlDaPwXqoyxbtoznnnuOtWvXkpWVxSeffMLkyZOd95umyWOPPcbcuXM5dOgQp512Gq+++ip9+vRpuUWLiIg0QkMvoHPVwlAVMlNSUiguLuaBBx6o0Q5xdKW7vLyciRMnkp6eTu+4Mxjzx5ks3pbHgYJS5zF9Ivy5ZFhnLj61M52Dfepcd/XnHjRoEGFhYcd8rSfSU9zoQH6McYLSfumvTUc5cuQIQ4YM4ZVXXnF5/+zZs/nrX//Ka6+9RmpqKn5+fkycOJHi4uJmXqmIiMjxach4tbrGwFWFzGeffRZvb+8a7RCu/LAunc10wePCx9kbex0fbHBwoKCUMLcirvdP4/Ne/+Wbaf25bXzvesN01XMnJiYSGxtLeno6ycnJTT6eriqQN6i6fYxxgtJ+qUJ9lHPPPZdzzz3X5X2mafLSSy/x8MMPc/HFFwPw9ttvExkZyaeffspVV13VnEsVERE5Lg2pvB6rtaNqCkZqaipxcXE1RtMVlpbzTYadf6/bww/bDuARdwUAZnkpXge2ElW8kwd7biPc8QtZRT0ZWF6Gu2E0qD2isX3NzaqecYLSvilQN8KOHTvIzs5mwoQJztuCgoJISEhg1apVCtQiItJm1NUKUdXmERYWdszWjqrRdHPnzuXmadPoPuJM/GLP4n8/Z1NQUu4854huwcRHWjj003f8tLmyXeMfP3qwZ0sxV/XdQNcXzqXfWX/EOu7+miHUMGqF09Yynq5OLsYJSvunQN0I2dnZALV+AEVGRjrvc6WkpISSkhLn9/n5+U2zQBERkRNw9MWKiYmJbN68mQceeMBlRdhqtbK/oIwvdpRzoOcVZBSHwZo9AARYSvDYu44ze/oz+5Y/Y7VaMSaPdIb1WbNmsTNjDSMiwb3oIGW/rsRrxAEM3/DKynl4GNYVL9S6wE+bl0hrpEDdDJKTk3niiSdaehkiIiL1cnWxYlWlOi0tzVkRLiqtYGFGNh+v3cMP2w9gRiYA4E4Fk4d35cwevtx97YXstts5bLNx/ukJjB07Fnd3d2w2Gw6Hg6eeegoLJlk5X9HV3x2PnqMxfEKdgf7M+Fju6bkdy5H9tS7w0+Yl0tooUDdCVFQUUDm2Jzo62nm73W7n1FNPrfNxiYmJzJw50/l9fn4+MTExTbZOERHpOI5nM5G6HlNjG+74eObMmcPq1auJi4tjzpw57Cnx4qFP0vnip6waLR1R1nzM7as4e4CNJy+9ALvdjoXKa4/27t3L5ZdfzpAhQ/jqq6949tlnnRXwvyQ9Tc6Be7D5WrD6R2CvFui/TzOZNnw4ARaLLvCTVk+BuhF69OhBVFQUixcvdgbo/Px8UlNTufXWW+t8nJeXF15eXs20ShERaY9cheDjmSdd32Oqt1MYhsG0adPYe/AIjh3lfPv2RnYf+r19MSbUh0uHdeH0rt48MvM2srOz2XAkytkScs011/DVV1/x888/U1RURHp6OitXrqxRAc/JySEy6vcCVY1An5CA36REKDqoC/yk1VOgPkpBQQHbtm1zfr9jxw42bNhAaGgoXbt25e677+Yvf/kLffr0oUePHjzyyCN06tSpxqxqERGRk6muENzQedLVz7Nx40ZSUlLqnJJhtVoJDbexeJOdvCHXkFseABYrHCrB19ON8wZHc9nwLsR3D8VqtWAYRq2LBK1WK4888gg333wz1113HRkZGcTGxjJ69Oh6Lyh02R+tC/ykDbCYZtUmnwKwZMkSzjjjjFq3X3/99SxYsMC5scucOXM4dOgQY8aM4R//+Ad9+/Zt8HPk5+cTFBREXl4egYGBJ3P5IiLSBjS2TcNutzN16lSys7OJiopi3rx5REZGNqpCXXVs1dQOb2/vGlM7ALbtP8yHa/bwn3V7amy8MrxbCFeOiOG8U6Lx96pdi6vv9Ry9S+LxtKiItHYK1C1AgVpEpOM62W0aDQ2odrudm266iT179tC5c2dmz57NwIEDKSwz+OLHfXy4ZjfrMg85jw/39+LS4Z25fHgMvSP8T8prb8x6RdoStXyIiIg0o8a2aUDdG7EcK5xWvz8sLIzi4mKys7MJCw/niE8kD/z7Z778OYvC0goA3KwWzugXwRUjunBG/wg83E5u4D2ev0yItAUK1CIiIs2o+oV3R+8wWJ+jR8W5mhmdk5PjDNfl5eXMmjWL9PR0Ro4cyc0334y7XxAhI//Anu6juHJumvNcPcP9uCIuhj8M7UxEoPcJv8a6gv7x/GVCpC1QoBYREWlGR+8wOG3atMZXaw2DnF2bSEtNITvbTkpKCrNmzSIjI4P4+HimTp3Kyy+/zFtvvYW7uztH/Dqx++sdbBt4IxVUPocbFUwe1pWr4rsyolsIFovlqKc4vtaM+qrQrX6XQ5HjpB7qFqAeahERqetCw2MyDFj+PObu1SzZfoQXVlsYOCiW9PR07HY7hw8fJjIykqzcAoqihmDtPQZrUJTz4V6F+3HflUpXcz8L5r5a5/bjx9uacazXpR5qaY/0SRYRETnJDMPAbrdjGMbRd0DBfjAMZ7U2KiqqcdXawgOwZw2WI/sZ38uPN/82m6SkJEaOHElwSAhGRF+yep5P2bmP4T78MqxBUfh5unF1fFc+vW0014bvoUfFHkbHDa3zOV21ZjTUsV5XVeuKwrS0J6pQtwBVqEVE2i+jopyXkh7m+7SfiU+oNpbut8oye9ZU7vw39j4MaHy11sV5HEfK+HBNJu+t2sm+/N/H3Q2K8uWPo3ty0ZDO+P027q4hFeITvXhQVWjpaBSoW4ACtYhIO2UYHP7qcTYteps12Ra+KhjIG/PerGx5KNgPn90OBXbwj4SL/17vpiXVQykcFbwNA/OIg1S7lXfTdrMwI5uyispf5wHe7kzqH8oNY/swqHPwCbwUhWKRhtJFiSIiIidL4QH8czfRJdgTKKU4dPDvLQ++4ZUV5arKsm94naepPqEjISEB0zRZvXo1CQkJ3D7zz3yyfh/vpe5iu+OI8zFDuwZzTXwM8VHuxHSKOuEQfPRUERGpmyrULUAVahGRdqraBYMFIQPwm/QoVjf3mvcXHqgM0/W0WyQmJrJgwQLc3d0ZMGAAWCw4Knyx9BlLkW0QJeWVvdnuVBBwcDPjOln5v4fvJjk5mZSUFGJjY0lKSsLdXXUzkeag/6eJiIicLFYrjL0PS+EBAlyFZqu17jaP38K2o6CC9PR03N3dKTOt+MROYK9PT/JMv8rjyg36RwVw8cAQPv/7ozj27Wb7vig2b55ESkoKGzZsYM2aNQAkJyerXUOkGShQi4iInEz1hea6VLvQ0NZ5OAPixpEVdRq5If342d0bTPB0s3DBKZ24dmQ3hnUNxjRNDqQOIzW1jISEBPr3709sbCxr1qzB3d2d9PR0bZwi0kwUqEVERE6i47qYr/AAFbvX8t3+AN7eEcLy4s7wW+u19cgBbPlbePHOKxk5dLDznBaLpdZ25ElJSQDO3RG1cYpI81APdQtQD7WISPt0POPmco+U8sHqTN5Z+jN7izwBsFjgzH4RuO/4gd1rFlFSXIy3tzcjR4485jk1nUOk+alCLSIicgKqB9jqG6KkpaaQs2sTtm4DXM6b/nlPHm+t2sl/f9z320WGngT7uHHliK78cVR3YkJ9MYzhbNw4gQceeAC73e7cZKW+Ng5N5xBpfgrUIiLSbjV1tfboinRiYiIJCQmkpaYwM84k/IfHMXaN4KklRaz44QdGnTaWUy+8kXdSM1mfech5ntjOgUwZ1Z2LhnTC28PNebvVamXgwIGMHDnS+RwNaeNQlVqkeanlowWo5UNEpOmd6G5/1c9TVzi12+1MnTqV7OxsoqKimDdvHjabjZxdmwj/4XEsR/ZT7BHE6a9msjPgVHxOmQjelT/3PdwsnD84mimjuzM0JhiLxXJca2iq1y0iDacKtYiItBmNCZbV2y8a0ipR1/PVF05tNhsJCQk1qsdWqxVbtwGQGUfGL9uZc2gk9vGh+Pw2jzrcz4Mpo3twdXxXbAFeDVpHY9o4TsbrFpHGUaAWEZE2obGVV1dht7GOFU6tVmutSRsVhsm3m/bz5uaxpO4YVHmgG3gdyWZkSCGvP3Ar3p5N9+v3ZLxuEWkcBWoREWkTGlt5rR52w8LCjqunuCHhtKp6nF9cxoerd/LWqp3sPlgEgJvVwrmxUdwwuhtdvMuIiIho8vYLVyFfRJqWArWIiLQJx1N5tVqt2Gy23yvb8fHMuns6Vv+IOrf+PvrxxwrlOw8cYcHKnXy0ZjdHSisACPLx4JqErlw3shudgn2O/0UfJ036EGleuiixBeiiRBGR41NXD3VDLhy0Z2dx59BSrhjVE69ep8HY+2qF6vrOf3S7yfrdecxd9isLN2ZT9Zu0T4Q/N57Wg0uGdsbH0w0R6RhUoRYRkTbDVeW1oRcOblm7nITODjzLDsGeNVB4oMYW4fWdp6rdJCvbzjcb97Pyxe/Y5ChxPnZ8PxtTx/RgTO/weqd1NAeNzBNpfgrUIiLSpjX4wsH9dmyb38aydy10GQG+4Q0+j39QKAHDzmfr4SByvILAUYIVg0uHd2XauJ70jQxo1tdcF43ME2kZCtQiItKmVVWgV61aRffu3QkJCal1jNVqJTIqGsN2L47MLYR17ecMmlUV3bCwsFo92o7DJbyzaifvpOwit7QreIFbeTFB+1KIKNzJfff8nchWEqZBI/NEWooCtYiItFlVYfj+++/n7LPP5sMPP2TTpk0sXLgQd3f3WscmPZ1co3oL1NrpMCcnh3zTh1mfpvPvdXspLTcAiAn1YerobkR9ew+hET9xJGQgtvCwZn/N9dHIPJGWoUAtIiJtUvX2hu7du7NlyxaOHDlCeno6mzdvJjY2tsbxdrudpUuX4nA4ME0Th8MBUKOiuyxjF//6MZdvNtqdjxsSE8wt43oycVAUboUOzJ1elOV1xiPID0vRwRp92C1NI/NEWoYCtYiItEnV2xsMw6Bfv35s3bqV2NhY+vfvX+NYwzB47bXX2LBhA8XFxYSFhREWFobVaiU+PoHvMvaQ02s8N/1zs/MxXd0O8dzUicT3CPv9QkPfcCwxcXha1rjsw24NNDJPpPkpUIuISJtUvb0hLi6Om266idzcXAYOHFir3cPhcLBy5UpKS0uxWq1YrVaysrP53097SQsez84e+WBUbsQSkLMJNi0iMNCd7n4Tak7tsForx+0VHqgM06oAiwignwQiItImVbU3zJ07F4vFwq233spnn33mss3BZrMxZswYoqOjierUhYiRF3Pmc9+TvOwA6fvy8fawcsPo7iy573Qu6VSAzauCuLg4Zw+yYRjY7XYMw6gM0Q3cGEZEOgb9NBARkVajRnCt/0Ao2I+VymCdlpZWY7LF0eexWq3c+0Aif3rxQ4L/+BIry3tS5hOKUVxA2YbPmXdxJx69YADuJflU7XdWVZmu6tWeOnUqSUlJx16biHQ4avkQEZFWoaEzlI2Kco58/ST+uZuwxMRhGzOzxmSLsLCwGue5Y+afeTslkzd/2MGhwjIAIgK8qMj4hj1LPyC2f2+Gx/YjMTGRtWvXsnv3bvz9/UlLS3OG82XLlpGbm6tRdCLikgK1iIi0Cg2ZoVxeXk7yrHuYWPxfuoR4Eg1Yiw7WmGxRdZ59B/L4fIfBB7O/p6CkAoDuYb7ccnov/jCsM26MZ/PmKfTt25dHHnmEBQsW4ObmRkBAAKGhocTHx1NeXs7cuXPJzMwE4KKLLtIoOhGpRYFaRERahWPNUDYMg1mzZvHWgg/wHGFwRm9/AkIG4OcT6gzTAAePlGI9dTKHSsIw3DyhpIKeYd7cNaEfFwzpjJv194sMY2NjsdvtpKen4+7uTnl5ORdffDF33XUXb7zxBjfccAOZmZn4+/sTGhrKtGnTNIpORGpRoBYRkVbhWDOUHQ4H6enpuLl78OKaMkpjL2TYOQ87N2uJHTGKjPIoMkrCMNyiwQ36R/nTKfcn7EsX8lNxAhcOmQVYapzXZrMRHx9PSUkJQ4cO5emnnyYnJ4fVq1dz8OBBAEJDQxk3bpxaPUTEJQVqERFpNeqboVxVwS4pKWHYsGEkJlUG3xVrf2ZXwBAyCgdhWj3ADbyLHDx55UjG9gxm2s3PYT/GVtwWiwWLxUJAQABWq7XWSL7p06cTGRmp6rSIuKRALSIibYZpmlgsFvz8/LAfLmFOioNt/a+j4rehVeHWI/j9uoSzBkZz2cgpAMfcitvhcJCWlkZubq7zQsTIyEjtOCgiDaZALSIibYLD4WD16tXkHCnjsz2evPv8UsoqTMDKKdF+3DtpAGN6h3PgwOk1QvCxgnFdvdvacVBEGspiVg3clGaTn59PUFAQeXl5BAYGtvRyRESOi2EYzVrBdeQXcePsf5JRGoZprawHxXcP5a4JfRjdK6zmjoaN1NyvRUTaF1WoRUSk0Ro6M7ox56sr0B4qLGXu8l+Z/8NOCssjwQrDugZz7zn9TjhIV6mqRldtCKNgLSKNoUAtIiKNVn1mdEpKCsuWLWPMmDG4uzf+10pd4fxwcRnzVuxg3vIdHC4pB2Bw5yBmntOX8X1tjQ7Sx6pCn+y/JIhIx6FALSIijVbVd5ySksKmTZu44oorGDx4MAsXLmx0qD56Q5dde7P5anshc5b96tzZsH9UAPec3ZdzBkYeV0W6IWG5IRvLiIi4or96i4iIS1XtD4Zh1Lqvamb0/fffT0FBAUeOHCE9PZ3Nmzc3+nmqwnlEdGf8hl3IZQsymP31Fg4VltHL5sffrh7K/+4cy8RBUcfd3uEqLNe1jqioqDongoiIuKIKtYiI1FJV0U1JSSE2NpannnqK3NzcGu0SVquVMWPGMHjwYNLT04mNjaV///6Nfy4Tep8zhc8tCWwsKIPSUrqF+XLXWX24+NSaOxser2Ptwlj1ejQqT0SOh6Z8tABN+RCR1s5ut3PTTTexYcMGysrK6NevH4GBgYwcObJWu0R5eTmbN2+mf//+jWr3ME2Tr9Kzef6bLfzqOAJApyBv7prQhz8M64KH28kNtJrkISJNRRVqERGpxWazERsby5o1a7BarWzZsoXo6GiXvcXu7u7ExsY26vw/bDvAs19v5qc9eQCE+nky44zeXJvQFW8Pt5P6WqporrSINBUFahERqcVqtZKUlARAeno6xcXFeHt712qXaGzV96c9h5j99RZWbDsAgJ+nGzeP7cnNY3sQ4O3RNC9GRKSJqeWjBajlQ0TaiqrAHBYWRk5OTo3g3Jgxc9sdBbzwzVa+/DkLAA83C9cmdOP2M3sT7u/VbK9HRKQpqEItItLRGQYUHgDfcDgqEFdvkzi6XaIhY+ay84p5efFWPlyzhwrDxGKBS07tzD1n9yUm1LdpX5eISDNRoBYR6cgMA5Y/D3vWQJcRMPa+WqG6LvVNzsgvLuO1JduZt2IHJeWVY/fG9gwi8YLBDOwU1CQvRUSkpShQi4h0ZIUHMHevpixvHx6miaXwAPhH1Hn40T3TR4+ZKy03eC91F39d/Au5v23KMrxbCJHZq/jlo6/5OHssDz/8sKZsiEi7okAtItKBGT6hLN1+BL/cvRwJCeJ0n9A6d/wqLy9n1qxZpKen1xifFxkZiWma/O/nLGZ/vZmdOYUA9LL58eC5AxgUXMEZZ9yI3W4nMzOTadOmER0d3XwvUkSkiSlQi4h0YI4DObyw2kLJwWC8Qi0MPJBTow+6qiIdEhLCzJkz+ejDD4gKdCcV09kzvWbnQZL+t4n1mYcACPf3ZGpCNFPH98fTw52srMoLEXUNvIi0VwrUx+mVV17hueeeIzs7myFDhvC3v/2N+Pj4ll6WiEij2Gw24hNGkpqaSryLkXh/+ctfWLZsGcXFxfyydQu3DykhoXM5ZucSDpvePPrOGhZm2AHw8XBj2tge5KZ8zJcvr8KxKp5p06Zhs9m45pprWLFiBWPGjNEsaBFpdzQ27zh88MEHTJkyhddee42EhAReeuklPvroI7Zs2UJERN29h1U0Nk9EWpO6ZklnZWUxfvx4srKyqKiooEeEPy+cXkpEpy58HHw9/8wdQIUJVgtcGRfDPRP6YhblMXXqVLKzszl8+DBdu3Zl3LhxJCYm1hq7V99zi4i0JfrpdRxeeOEFpk2bxo033sjAgQN57bXX8PX15c0332zppYmINFpVH3R9gdbHx4eIXkP4MvpPXMtTvHuwMkxPGBDBwrvHkfyHU4gI9HZO/ggJCQHg4MGDpKamOsO0w+HAMCqnflTNsZ46dSpJSUnO20VE2hq1fDRSaWkpa9euJTEx0Xmb1WplwoQJrFq1yuVjSkpKKCkpcX6fn5/f5OsUkY7pZFZ8IyMjueqqq/ju++/pNvZSfvEZwGcFZWDCKZ2DSDxvAKN6hdV4TNXkj5tvvpk5c+awevVqEhISCAsLq7UJTEPmWIuItAUK1I104MABKioqav3Qj4yMZPPmzS4fk5yczBNPPNEcyxORDqwxOxc2NHg7CGT/kOvZXREFBWV0Dvbhz5P6ceEpnbBaLS4fY7VaiY6O5pFHHnE+h6vwXN8caxGRtkSBuhkkJiYyc+ZM5/f5+fnExMS04IpEpD1qaMW3IcF7V84Rnvj0R74r6Q9+YK0o5ZZxPbhr0mC8PdxcPv/RIb36LouuwrOrOdYiIm2RAnUjhYeH4+bmht1ur3G73W4nKirK5WO8vLzw8vJqjuWJSAdWX8W3etitL3jnFZXxyvfbWPDDTkorDCyYBB/cyLldKrj//Itrhd6q84aFhZGcnExqaipxcXFMnz69Rl92XeG5eugWEWmrFKgbydPTk+HDh7N48WImT54MVP5CWbx4MbfffnvLLk5EOrS6QuvRG7IkJibWCt5lFQb/TMvkxUVbnTscju0TTuK5/Qlzi3NZQa5e6R40aBDp6elkZ2fz/vvvs2LFCsaNG1ej+q3wLCLtlQL1cZg5cybXX389I0aMID4+npdeeokjR45w4403tvTSRKSDOzq0GobBrFmzWLBgAe7ulT/yc3JynME7PDycJVsdJH25ie2OIwD0jvBn1vkDGN/XhsViAYJcPlf1SrdpmsTGxlJaWkpBQQG5ubm60FBEOgwF6uNw5ZVX4nA4ePTRR8nOzubUU0/l66+/1i8NEWl1HA4H6enpuLu7U15eTmxsrLPanIcv981fzfJtOQCE+nlyz9l9uTouBne3Y/czH91ikpiYiN1u5+WXXyYjI0MXGopIh6GNXVqANnYRkeZS1ZaRkpJCbGwsSUlJ5JcYvLhoK++l7sIwwdNSwY3dc5lx3VUE+jbueo/qvdlAredyd3fX5i0i0u6pQi0i0oqdaBit3lcdHBrGWym7efnbreQXlwMwKXAXiYEL6ebvBca5wLF3ez36/FX/Ome320lNTcVut2OxWJybuTR0lJ+ISFuln2oiIq3UsXYSNAwDu91+zB0GLRYLGblw7l9X8NQXG8kvLmdAdCDvT43ntdMK6BbiBV1GgG/4Ca23qgUkKirK2e7haqKIiEh7owq1iEgrVd94u1qzpB9KxFp0sDIUV6sA/2I/zJNfbGT5LwcACPPz5L6J/bhiRAxuVgv0ug8KD9R63PFwNWVEm7eISEegQC0i0krVF0arh+201BSOfP0kAYc2V1aax95HblE5L327lXdTM6kwTDzdLNx4WndmnNmHQG+P35/EagX/xrV51OfoKSPavEVEOgIFahGRVqq+MFo9bJ8RH4t/7iY4sp+y3Wt5d0kGLy3PIq+ocp70xMh8Hgr6lm5+/cDzvhZ5HZqCJCLtmaZ8tABN+RCRE1F9d0KHwwGmQeTWd/lh8z6ePDCOXwq8AfAuOsC5wft4oc86LEf2g38kXPz3k1qRFhERVahFRFpUY6d4VO+djo+PxzRNVvy4hZIB55NZEQtAkLc7ftsXU7Lpe7ZFRVAQP5wAi+WkXHgoIiK1KVCLiJwExzPertaFhQ0YKVe9d3rpDykcjIont/eVUOGOmwWmjO7OnWf25u8vpJFyMIKBg2LxOedhKDl0Ui48FBGR2vSTVUTkBB1rvF1djr6wMGfXJjjGY202G/HxCXj1H8e+YdPIjY4Dqzud3fL5351jeOzCQYT4eZGYmEhsbCzp6ekkP/MshsK0iEiT0U9XEZETdLyzlp1zmyMjuH1IMWE/PAbLn683VP+0N5/1YWeyt8tZFJmedAv15bmLerPsySvoFx1UY03r1q3T/GcRkWaglg8RkRN0vLOWrVYriYmJJM+6h5CC/5K9zZNoLFgKD9S6cHB/fjGzF27h47V7APDzdOP2M/tw05jueLm71TjWMAzmzp1LZmYmAHFxcZr/LCLShBSoRUROUPXxdlWTN6r3Uh/dX139e4fDwfJ1mwgLs4CllICQAQRUu3CwtNxgwcod/HXxNgpKKrcL/8Owzjw4qT8Rgd4u1+NwOEhLSyMgIICQkBCmT5+u+c8iIk1IgVpE5CSo2hXw6IsMgRq3JSYmkpycTGpqKsOHD6ewsJCduzJ5eZc7106eyLBzHnb2Oi/d6uCJ/2bwq+MIAEO6BPH4RYMY2jWk3rUcXTHXDGgRkaalQC0icpLU1Utd/bbNmzeTmppKVlYW7777Lvn5+Xh4eODj48OydZuxPPMs1916D0n/28yijXYAvCkjbM9yhvsGM6TL6GOuQ7sTiog0L/2UFRE5SZwXGUZFOXupj76tf//+JCQkEBoaipubG56enpSVVe5oeDCvgM93GJzz4jIWbbTjbrVw9bBIemx8m5LNS0lLq3lxoWEY2O12l1NFqnYnVJgWEWl62imxBWinRJH2y9U8alc91Ha7nblz55KamsrAQYPY79mJlYVRlHkGAHBa7zAev3AQvWx+LmdVH88MaxERaRoK1C1AgVpEoDJop27K5K8/ZLPq1xwAOgf78MgFA5g4KAqLxeI87uiQbrfbmTp1KtnZ2URFRTFv3jz1SouItBD1UIuIHKfj2R2xSl5RGS99u5W3V+2iwjDxcrfyp9N78afTe+HlbmH//v3O81a1b2AYULAffMOPe1SfiIicfKpQtwBVqEXavuNtuTAMk/+s38szX23iQEEpAJMGRTHr/AHEhPrWfV7DqNz0Zc8a6DICxt6HAbrwUESkFVCFWkTkOLia6HGslouMfXk8+lkGa3flAtDL5sfjFw1ibJ/fq8t1nrfwQGWYLrBX/rfwAFb/CLV5iIi0AgrUIiLHwWazERcXx4oVK465E2FeURkvfLOFd1J2YZjg6+nGXWf14cbTeuDpXrOyXGcrh294ZWW6qkJdbfMXERFpWQrUIiLHqeqiwar/Hs0wTD5et4dnv9pMzpHK9o4LTolm1vkDiA7ycfkYVzOknb3aY2ZiLTpYGabV4iEi0mooUIuIHIeq7b1zc3NJS0ur1fKRvjePRz9LZ13mIQB6R/jzxEWDOK33sSvLzosQOf5ebRERaT4K1CIixyEsLIxBgwZhmmaN1oy8wjKe/2YL76Ueu72j1pQQw6jsla5WgT6eXm0REWleCtQiIo1kGAbJycmkp6cTGxtLYmIiYOHDNbt55qvNHGxAe0etyvNDiVhXvFBjigdWq8bjiYi0AQrUIiJ1qGvOdFXV2G63Y7FYSNm8mxeXZzmnd/SO8OfJiwYxup72jqMrzzmZW7AdNcUD/wiXPdUiItK6KFCLiLhQX+9yVdV45ep1cMqFXP/+JioMEx8PK3ed1YepY3vi4VZ/8D268hzWtR9kup7iUb2nWkREWh8FahERF+rqXTYMg/379zPkghv41Iwjp7ACMOnulotn+n9xeMbiNm7WMc/vsvI89r5aPdQiItL6KVCLiLjgqnfZMAweeOp5vtrvT0FANwACLCU8cdFA3ky6rzJ8lx1p8IWDtSrPViv4RzTVSxIRkSaiQC0i4sLRFeTSCpP/+/InPj7SDzPAHbOiDO8dy4kp2caoO18jQxcOioh0WArUIiJ1qKogL//FwSOfprMzpxCs7vgd3k3ojkUEWooZOXIkkZGRunBQRKQDs5imabb0Ijqa/Px8goKCyMvLIzAwsKWXIyJ1sOcX8+QXG/nypywAIgK8ePj8AcRHuREeHk5OTo4CtIiIqEItInK0CsPkvdRdzP56CwUl5VgwCT3wMxN9DS445UxngNbkDRERAQVqEZEaNu7LJ/GTn/lx9yEABkX5UbxiAXk701mfHaWdCkVEpBYFahFpd+rakKW+44rLDV7+9hfeWLGDCsPE38udP0/qx9VxMTyTv4wt5fvoNyxeFxyKiEgtCtQi0q7UtyFLXcd1Gn42GT6D2XuoCIDzBkfx2IWDiAz0xqgo565hZXh28cazpxfqlhYRkaMpUItIm9GQynNdG7K4Om7F2p/ZYRtLeklvKCmic7APT148iLMGRDqf76Wkhxlz8F90CfYk2tPLuSW4iIhIFQVqEWmVjg7P1SvKcXFxTJ8+ncjIyFrB2tWGLEef175/P99sL+TX/n+kDDcsmFw1LJKHLhxCgI+n81iHw8H3aT/j7W8BSgkIGUBAtS3BRUREQGPzWoTG5onUz1XbhsPhYOrUqWRlZVFQUEDXrl0ZN26cy5YOV2Hc4XAQFhbG/Ukv8XVOCEW+UQAMiPClV24aW1K+ZcyYMTzyyCPO81WtIy01hTPiB3P3rL9gdVMdQkREatJvBhFpdVy1bdhsNuLi4li8eDGHDx8mNze3zpaO6lt6l5eXM2vWLH7K2ASDzmUTfcHXDWtFKfec1YtLBodz1pl/Ijs7m8zMTKZPn050dLTzPNqwRUREjkW/HUSk1alq24iKiqrRtmGxWPD09KRLly4EBwcTH1//1A3DMJg1axZvf7WSjTEXs8nSFSxuBOT9yhX+W5hxTixuVovz3FWPsdvtGIYB/B7OFaZFRKQuqlCLSKtTvTIcFhaGw+HAMAzS0tI4dOgQ+fn5REVFcayOtR17svjmYBhe5z1Yed7SAjrtW85p3fz4y6wkZ1i+9tprWb58Oaeddhrz5s0jLS2t3gkhIiIi1SlQi0irUb33uer7p59+mrS0NOLj44mLi2PFihUcPnyYI0eOsHr16jqneHyTkc0jn20iN2wQAF3LMvHZupCc7D1kFESRk5PjrDw//PDDztA+bdo0srOzSUlJYePGjQwcOFChWkRE6qVALSKtQvULEePj4zFNkxUrVpCZmUlAQABpaWnMnTuX6dOnM2fOHFavXu1yisf+w8U88flGvvw5C4BuYb78+YwuTDx1IsnJB0hNLa/1uKpKtWEYJCQkkJKSQn5+Pn/+858ZNWqUKtUiIlIvTfloAZryIVKb3W5n6tSpZGdnExISAsDBgwddTvRwNY/aNE0+WruHpC83kVdUhpvVwrSxPbl7Qh+8PdyAhs2xLi8v56677uKDDz7Ay8uLU089lTfffFPbjYuISJ1UoRaRVqH6/OiqCvXq1atdzpyuPsUDIDOnkMRPfuKHbTkADOoUyLOXnkJs56Aaz3H041xxOBx88803HD58mKKiIgYNGqTtxkVEpF6qULcAVahFXDu6h/pY1eQKw2T+Dzt4/pstFJcZeLlbuefsvtw8pgfubsfXorF3716GDBlCXl4eAQEB/Pjjj8TExBz3axIRkfZPFWoRaRVctWPUV03etr+A+z/+kfWZhwAY1TOM5D8Mpnu43zHPWx+r1UpoaCilpaWEh4fj7q4fkyIiUj/9phCRFudqZ8Q6e5wrDOYu38GL326ltNzA38udWecP4Kq4GOcs6eM5b5XIyEj++Mc/snz5csaOHaveaREROSYFahFpca52RnQVZLfaD3P/Rz/y4548AMb1tZH8h8F0DvZp8HltNlu9FevqY/S0O6KIiDSEArWItLjqFyS6GoVXXmHw+rJfefnbXyitMAjwdueRCwZy+fAutarS9Z03LCysQRXrhly8KCIiUkUXJVaTlJTEl19+yYYNG/D09OTQoUO1jsnMzOTWW2/l+++/x9/fn+uvv57k5ORG9VnqokSR2urqdd6Ulc/9H/9I+t58AM7sH8HTlwwmKsi7QecCalSmq0bzRUVFMW/ePAVnERE5YapQV1NaWsrll1/OqFGjmDdvXq37KyoqOP/884mKimLlypVkZWUxZcoUPDw8ePrpp1tgxSLtV1mFwT++387fv/+FsgqTIB8PHrtwIJcM7VxvVdpV33RVaD5WJVxEROR4HFeFuuqXUXu1YMEC7r777loV6q+++ooLLriAffv2OX9Bv/baazzwwAM4HA48PT0bdH5VqEVqOjoEX3LjHdz/75/ZlFVZlT5nYCR/mRxLRGDdVekq1TeIcVWFbuzUDxERkWM5rt8mo0aNom/fvjz11FP8+uuvJ3tNrdaqVasYPHhwjV/OEydOJD8/n4yMjBZcmUjbVnXxYJZ9P//9tZyL/7GSTVn5hPh68Nerh/L6dcMbFKbh9yp0VFSUyyp0VX+0wrSIiJwsx9Xy8e677/Lee+/x1FNP8fjjjzNy5Eiuu+46rrjiCkJDQ0/2GluN7OzsWv2WVd9nZ2fX+biSkhJKSkqc3+fn5zfNAkXaiKOrxDabjb5xp7M9J5wi3wgwTM6NjeLJi2OxBXg16txWq5VZs2apCi0iIs3muH7TXHPNNXz55Zfs27ePl19+GdM0ue222+jUqROTJ0/m448/prS09GSv9bg8+OCDWCyWer82b97cpGtITk4mKCjI+aVd16Qjq2rvmDp1KklJSZSXV/DmDzv5oiyWIt8Ignw8ePmqU/nHtcMaHaarqAotIiLN6aRN+di+fTvvv/8+7733Hr/88gtBQUFcdtllTJkyhTFjxpyMpzguDoeDnJyceo/p2bNnjf7nunqoH330UT7//HM2bNjgvG3Hjh307NmTdevWMXToUJfnd1WhjomJUQ+1dEh2u52bbrqJvXv3Yus+AP+z/sT6vQUAnN7XxuzLTiGyge0dIiIircFJm/Lh4+ODr68v3t7emKaJxWLhs88+Y968eQwbNoy33nqLgQMHnqynazCbzXbSruQfNWoUSUlJ7N+/n4iICAAWLVpEYGBgva/Ny8sLL6/jq7SJtCdGRTlGfjZFRYXsD+hLXp8rMPcW4OvpxsPnD+Tq+Nq7HYqIiLR2J/TvoYcPH2b+/PlMmDCBbt268dBDD9G9e3c+/vhjsrOz2bdvHx988AH79+/nxhtvPFlrbjKZmZls2LCBzMxMKioq2LBhAxs2bKCgoLJ6ds455zBw4ECuu+46fvzxRxYuXMjDDz/MjBkzFJhFjsGoKGfpXy5i/d//SMXAiXiedj2mmydDO/vz9V3juCahq8K0iIi0ScdVof7ss8947733+OKLLyguLiYuLo6XXnqJq666irCwsBrHXnbZZeTm5jJjxoyTsuCm9Oijj/LWW285v69q4fj+++8ZP348bm5ufPHFF9x6662MGjUKPz8/rr/+ep588smWWrJIm3Fg12bW5/nwpvfDFFj8sRjljPDM4p+3TsPd3c15nMbaiYhIW3NcPdRWq5WYmBj++Mc/MmXKFPr161fv8Wlpabz66qvMnz//uBfanmgOtXQkhmHwS+Y+XlqezVcZdgCiSjPx3PodE+IH8/DDDzuDs6tNWRSqRUSktTuuCvV3333H+PHjG3x8fHw88fHxx/NUItJMmqIybBgGtz7xNxYXRFPu4Ye71cKA4gzS3vs/3N3dCDALcTgczvGTVfOos7OzSU1NrXGfiIhIa3VcvzUbE6ZFpPU7epSdYRjHfR673Y5hGBSXVfDgh2tZWNKbcg8/vIoP8vzESIwtS3B3d6O8vJzY2NgaFw0fa1MWERGR1uikTfkQkbarMZXhuirZ1ds1eo8YT0ZgHL/sr7ygNzTnJy6MqeCC067m55EjAYiNjSUpKanGObQpi4iItEUK1CLirAxX9S7XVRmur8fZ4XCQkprKDq9eZBT2xSwuwBbgxexLBzMwZIQzIB8rMFdtyiIiItJWKFCLSK2gC5UbsBwdeuurZJd5+HPwlD9SaAQAcPaACJ659BTC/L1qPVfVYzTRQ0RE2gP9BhMRoGbQraufuq4e589/3Md5f11BlhGAt7uV5EtimTNlRK0wXd3J6tsWERFpaapQi0gN9VWhj65kF5RW8NhnP/HJ+r0ADIkJ5qUrT6VHuJ/zfHVVoTXRQ0RE2gtVqEWkhvombVQPx6t35nLuS8v5ZP1erBa488zefPynUbXCdGOr3SIiIm3NcW3sIidGG7tIa+eqqlwVjlNS0/AYejE/lkdjmhAT6sNLV57K8G6htR7rcDiYOnUq2dnZREVFMW/evBpVaPVQi4hIe6CWDxFxqh5wj26/cDgcLF+Xwa9dzqW8LBqAS4d14YmLB+Hv5e58fPUpIImJifVOD9FEDxERaQ8UqEUEOPa232vsFezsdzXluONBBc9dOYzJQ7vUOMfRfdE5OTmaKy0iIu2eArWIAHVfJFhcVsGTX2zk/dRMwJ1BUX688scRdA/3r3UOV/OsVYUWEZH2ToFapAOr3uLhKgxvyT7MHf9cx1Z75Y6Hfzq9F/ee0xcPt9qV5qpzJSYmkpOTo4q0iIh0GLoosQXookRpDVy1eEBlpTo8PJx/rt7DU19spKTcINzfixevHMLYPo3fQVFERKS9U4VapIOqq8XDKyCEGe9v4OuMbADG9Qnn/644FVtA3Zu0aKa0iIh0ZCohiXQghmFgt9sxDIOQkBC6d+9OZGSks8Vj9c6DnPfycr7OyMaKQVTWSnrv/YYwP496z2kYBsOHDyckJIS4uDiXM6WrP7eIiEh7ogq1SAdRvS0jLi6OpUuXkp6eTr9+/bjv/j/zyvfbefHbrRgmdAn2wmvNe+Tt/Jm0nKg6K87O2dQpKRQVFWG1WrFYLPU+t1pCRESkvVGgFukgqrdlfPfdd2zcuJHCwkK2ZmZxzesrWJ9VDMDkUztx+ygb75V0Z3Wxo85dDA3DYOPGjaSkpLB3716ysrKIiooiLS2tVgBXS4iIiLRnCtQiHUT1KR5xcXG4ubmx6UAZvhNuZ31WMd4eVp6cGMOW7/7D3e+mER8fz9y5c4mMjKxVTa5emS4uLqZz586EhoZitVpdtny4miAiIiLSXihQi3QQVqvVuclKWFg4oWOuZue3v1BhQi+bH//o9yPdt77Gh7t/5fNsT9LS0rjllltctmZUVZztdjuRkZEkJyfzn//8hx9++MFly0f159Y4PRERaW/0W02kA7FarXj4h3DzO2v5v0W/YJhwydDOfH5jP/rl/YBn2SESOrvTr0tYvZXkqopzVFQUI0eOxGazsWbNGnJzc50tH66e21W1W0REpK1ThVqknam+WQtQoyq8dtdBbn9/PVl5xXi5W3niokFcGReDxTShywgse9bQe/x5/N+fpmCLqDv8Hl1xBtTSISIiHZY2dmkB2thFmkr1aRrx8fFUVFSwcuVKTjttDNFnXMtzC7dSbph0D/Pl1T8OZ0B0YPUHQ+EB8A2HRlSRqwJ8WFiYdkgUEZEOSRVqkXak+jSNZcuWsWPHDnIOF7G90wSM4i0ABB36hbG+R+gXeXrNB1ut4B/RqOfTODwRERH1UIu0Kzabjfj4eEJCQhg6dCiW8B4EXv40RnQs7law7foOt9XvsD5tlcs+58ZyNQ5PRESko1GgFmlnTNPEBHZ5dcc44y6sATYCLMWc67GR/HVfcKSgoM7dDBur+sWJ6p0WEZGOSi0fIu2Iw+Egdc16dnc6g23l3QE4o3cID03oyj23zycgIICQkBCmT59+UlozNA5PREREgVqkXTli8WZ/7NWUmP5YMEk8dwDTxvWkoqKCQYMGYZomI0eOPKm7FFaNwxMREemoFKhF2olvM7K455+rOWz6E+pRxt+njGZ0nwgMwyA5OZn09HRiY2NJTExUJVlEROQkUqAWaeMqDJOXvt3K377bBrgxzGsv/+ixkqjo0UDNXQ0tFgs5OTmqKIuIiJxECtQibVjukVLu/Nd6lv9yAIAbuuXwkP93eHYdBr7hGIaBYRjExcWxevVqXTgoIiLSBBSoRdqon/fk8ad317L3UBHeHlae+cMpTB4SDYWTKsM01NjkZe7cudr6W0REpAnoN6tIG/TB6kwufW0lew8V4VmSx7nuGVw0JPr3zVms1hozotPS0rBarQrTIiIiTUC/XUXakOKyChL/8xMP/PtnSssNAvJ34r/qH/yyekmtTVWOnhEdFhaG3W7HMIwWWr2IiEj7pJYPkTYiK6+IP72zlh/35GGxwMyz+5K7Yh1p4cEue6Orz4gOCwsjOTlZW4SLiIg0AQVqkTZg7a6D3PLOOg4UlBDs68FfrxrKuL42jPH1b6pSNSPabrfX2iJckz5ERERODpWoRFq591N3ceXrKRwoKKF/VAD/vX1MZZg2jAbvUKgtwkVERJqOxTRNs6UX0dHk5+cTFBREXl4egYGBLb0caaVKyw2e/G8G76ZmAtDdLZfPHrqM4oK842rhaEwAFxERkYZTy4dIK3SgoITb3ltH2o6DYJr4bv8O36ItJD3xE+vXr2fo0KFkZGQ4Wzka0sKhLcJFRESahgK1SCuTvjeP6W+vYV9eMf5eboxiK1nFWxk4aBCffvop+/fvZ9euXUyePBmLxaIWDhERkRamQC3SClS1Y6zaV8aD//mZ4jKDnuF+zJkygp7h5+BwXEl5eTmfffYZmCbhPgZ33XkH7h6eauEQERFpYQrUIi3MMAye+ksS/91l4YBtKADj+9l4+aqhBPl4ABAZGYlhGFxz9dV03fUhp3XzJHrb+1jH3V+5mYuIiIi0GAVqkRa2fXcWH9nDKbB1BWBKXBSPXTIMN6ulxnFWq5VZd0+n8F+p+FOIde9aKDxQuTOiiIiItBiVtkRa0Lb9BUz7cCsFAV2xGGWc4bWDxy8ZWitMQ2UlO/mvb/DZ2j1sy87H6DwcfEKhYD9o90MREZEWowq1SDNwNbJu+S8ObntvHYeLy+kc7MPT5/Wnry2hzuMdDgepaWl8nu1JP0cY/3fLH4lc8QLsWQNdRsDY+9T+ISIi0gIUqEVOgvpmPBuGQVJSEikpKcTGxpKUlMS7qZk8+cUmDBNGdAvhH9cO5fWXn+e51FTi4+MxTZPVq1fXmDFdtTlLamoq/YYnYPNzqwzTBfbK/6r9Q0REpEUoUIucoKrAfPQmK1Uh2zAMUlJS2LBhA2vWrmOt2ZNt1i4A+B/I4K3H76YgL9e5Nfjy5csBOHjwIMuWLePmm28mOjq6sod6VrWtxqGyMl1VofYNb7k3QUREpAPTvw+LNJBhGNjtdoyj+pUdDoczDFdtslIVsqdOncqcOXMYNGgQ5RYPvM6+2xmmDy17m53/epLtWzfX2Bp87NixjB49moKCAjIzM5k7d67zOas2Z7FarZXtHWPvg4v/rnYPERGRFqQKtUgD1FWFBmq0YlRtslI9ZK9evZpHZv+Vry0jyLf44WZWUPDtKxz56TuCgoIICwurVX222+2sXLmS3Nxc0tLSsNvtzraPGi0lVqvaPERERFqYArVIA7iqQldt412rFeOofueuI87iTx9vI9/ih83fg7lTRvGpzzoW+xYycuTIGuep+t+RkZGMGzeO1N96qufMmUNaWpqzB9vdXf/XFRERaS0spmmaLb2IjiY/P5+goCDy8vIIDAxs6eVIA9RXoa7vMW8u2cSzi3dRVmFySpcg5k4ZQWSgN+Xl5cyaNYv09HRGjhzp8nzVe7BvvvlmNmzYQHl5OTfccAPJycnaHVFERKSVUJlLpAFcVaGrO3rKR4VhMvvrLby+bCcA5w+O5vnLh+Dj6QZUVrzXrVtHbm5urYp39ees2iExNjaWNWvW4O7uTnp6usvjRUREpGWoxFXNzp07mTp1Kj169MDHx4devXrx2GOPUVpaWuO4n376ibFjx+Lt7U1MTAyzZ89uoRVLc6pxQWA11S9ATEpK4nBRKbe8s5bXl/0KwJ1n9uZvVw91hmnDMJgzZw6ZmZkcPnyY+Ph4bDZbvc+blJTEDTfcwKmnnsrIkSPrPV5ERESalyrU1WzevBnDMHj99dfp3bs36enpTJs2jSNHjvD8888Dle0a55xzDhMmTOC1117j559/5qabbiI4OJjp06e38CuQllC9v3rF2nSW/2MFWx1FeLpbee6yU7j41M61jl+9ejX+/v6EhoYybdq0Y7ZvuLu7k5ycXGeFXERERFqOAnU1kyZNYtKkSc7ve/bsyZYtW3j11Vedgfq9996jtLSUN998E09PTwYNGsSGDRt44YUXFKg7CsPAKNiPo9DEFhFJWFgYgwYNosgzhD39/sARRxHh/p689sdhxPiUYxhGjQB89FSQhrZuVL9oUURERFoPBepjyMvLIzQ01Pn9qlWrGDduHJ6ens7bJk6cyLPPPktubi4hISG1zlFSUkJJSYnz+/z8/KZdtDQdw8BY9hzblvyL1L3l7OhyGSaQsvMQe/tcRrnpTk+bH/OvH8Hbr77o8iLGY/Vji4iISNui3+T12LZtG3/729+45ZZbnLdlZ2fXqhJWfZ+dne3yPMnJyQQFBTm/YmJimm7R0rQKD1D260osR/bT3f0AP6d+z5ebDrKr2/mUW9wZ2tmf/9w6Gu+KI7XG7FVXVz+2iIiItD0d4rf5gw8+iMViqfdr8+bNNR6zd+9eJk2axOWXX860adNO6PkTExPJy8tzfu3evfuEzictyDccj56jMf0i2FEeTtmwa9nf/RywutHL7SDv3zKaYF/PGjsfVm32IiIiIu1Th5hD7XA4yMnJqfeYnj17Ots49u3bx/jx4xk5ciQLFiyoUUWcMmUK+fn5fPrpp87bvv/+e84880wOHjzosuXjaJpD3bYZFeXs276Rv6ws4OvNuQDcGB/NwxcPwc3N7ffjqo3SA9TiISIi0k51iB5qm83W4Arh3r17OeOMMxg+fDjz58+vFX5GjRrFrFmzKCsrw8PDA4BFixbRr1+/BoVpadsMw+DRpNl8sj+cI/6dcbNaSJocy1XxXWsdW32OdGM3hREREZG2Q7/Vq9m7dy/jx4+na9euPP/88zgcDrKzs2v0Rl9zzTV4enoydepUMjIy+OCDD3j55ZeZOXNmC65cmsuGXzL5MKcLR/w7Y60o5YWLe7sM09W52rZcRERE2o8OUaFuqEWLFrFt2za2bdtGly5datxX1RkTFBTEN998w4wZMxg+fDjh4eE8+uijGpnXAWzIzOXa+Rso9QmDokNcGLyXC+MuPubjjh6Tp35qERGR9qVD9FC3Nuqhbl5Hbwt+PI//JPUXZn35K8XlBm6Hs4nZ8QX/nPcPoqOjm2UNIiIi0nqpQi3tWqP6lw0DCg+Abzj8doxhGFz3+Gv8UBIDFiudrXkE7v6C0aOGNWqTFW3KIiIi0n4pUEu75qp/2WWwNQxY/jzsWQNdRsDY+zAtFpI//5EfSruBBUIObuJfj16Dp8dZqjSLiIiIkwK1tGsN7l8uPFAZpgvssGcNFQUOHlm8n/dT91WeZ/8aLuxupXOnKAVpERERqUE91C1APdTNq0H9y9Uq1MXRcdy15wwWbrRjscATFw5kYi9fVaVFRETEJQXqFqBA3UoZBocO7OOGD7azYW8Bnm5WXr7qVM4d3LALD0VERKRjUsuHyG+y8os578UUck0fPKjgrRvjGdVbI+5ERESkfvr3axFg2/4CLnnlB3JNHyzF+XT95WN6BhgtvSwRERFpAxSopcNbn5nL5a+tJPtwKR5FBzny2ZOYuXsICwtr6aWJiIhIG6BALR3a95v3c83cVHILyxgY6Uv5N89RdGAPe/bs0RbhIiIi0iAK1NJhfbx2Dze/vYaisgpO7xtO371fs3f7ZgoLC8nJycEw1PIhIiIix6ZALR3S60u3c99HP1JhmPxhaGf+ck4Ma1NXYrFYsFgsBAcHa0SeiIiINIimfEib1aD50kcxTZPZC7fw6pLtAEwf24PrhwYz5/XXsdvt+Pv7ExwczHXXXaetwkVERKRBFKilTTIMg6SkJOcOiLNmzTpmqDYMk4c//Zn303YD8MCkfhxY/k9ueGkZmZmZ+Pv707VrV1544QViY2NVoRYREZEGUWKQNscwDDZu3EhKSgrZ2dmkpqYe8wLCkrJy/vTWqsowbZqc5rmLyf38SE1NJTc3F9M08ff3Z+zYsQrTIiIi0iiqUEubUlWZTklJobi4mMjISBISErDZ6t6ApaikjIlPfkhmRTAYFfin/5s8aw5wCQkJCaSkpBAYGIjVasVisTTbaxEREZH2QWU4aVMcDgepqanY7Xa8vb159tlnf2/3MAwo2F/5398UlJTzxzdWVYbpijLcU94kumwfcXFxACQmJvLss8/i4+PDoUOHSEtL07g8ERERaRQFamlTbDYbCQkJREVFMTIhgYFdwys/xIYBy5+Hz26v/K9hkHuklGvnprB292E8qKDHri+ZMmEYCxYswGKxMG3aNJKffpr+XUIZ+ds5j1XtFhERETmaxTRNs6UX0dHk5+cTFBREXl4egYGBLb2cNscwDBz77dg2v41lzxoKQgbgN+ZPWL+4Gwrs4B+J/cwXuO5f29lqLyDE14MFN8YR5VmKzWbDbrczZcoUDuUe5M6hpVwxqicePUfj6D8FW0Sk+qdFRESkUdRDLW2O1Wol0t8Nc88asrb9yJ5Dq1mxpoS7Tx+Ode9aMkNHce3bW9mdW0RkoBfvTk2gT2QAUBnG58yZQ2ZmJmHeFSR09sez7BCWvWuJHHEjKEyLiIhIIyk9SJthGAZ2u71yB0PfcApCBrDnUClrsi18vzodR/8pbB39HJetG8zu3CK6hfny8Z9G08vm53ycw+Fg9erV+Pn54REUTdTwC7D4R0KXEeAb3tIvUURERNogBWpp9QzDICsri6eeeoqpU6eSlJSEAfhNepQVoVfxVcFA4hNGsq/Uiyve2cL+wyX0iwzgo1tG0TnYm6SkJOfjwsLCGD58OHl5eWRl23lpnQfGhX+FsfdhwO+BXURERKSB1PIhrVZVRXru3LksX77cuflK1dzpyMhI7n74aa51ONhR4MYf30jjSGkFp8YEs+DGOIJ9PbHb7aSmppKVlcWyZcu46aabKCoqIj8/Hw8PD1LT0tiYeSn9+4eTnJzcqI1iRERERECBWlqZqraMsLAwkpOTWbp0KTt27CA4OBiA0NDQGpM4rFYr2w67cfNbaygqq2BUzzCSzu1KoHflR9tmsxEXF8f7779PQUEBL7/8Munp6Xh6elJWVkZ+fj4PPPAAsbGxpKenOwN4VWAXERERORYFamk1qm8nPmjQIH7++Wc2btxIXl4eFRUV3HDDDdxyyy1ERlZO4jAMg/+u3saf/7udknKD0/va6L7nG+68NaVGlXn69OksX74ch8NBeno6gwcPxmKx0KNHD3799VfsdjsAsbGxWCwWjc4TERGRRlGgllajatOW7OxsTNOkZ8+erFmzBovFwuHDh3E4HNhsNmeYvuWJv/NtUXdMqxtnD4jg0QlduPWWmtuRR0ZGYrPZME2T7OxswsPDeeqpp8jNzXVWwavaPBITE8nJyXE+h4iIiEhDKFBLq2Gz2UiIj2fz2uXE9B/E4088CcAHH3xAcXExH330Ef7+/iQnJ/Phyq0sKu4OVjcC87bz+NnDiI6q3Ia8KiBXVZlzcnLw9vYmKioKb29vcnNzne0cs2bNqhHU1eYhIiIijaVALa2GFXhorCdby7JZk/UVz83254UXXgDgww8/xMPDg/T0dN5bsYXHv94BFjeCDm3lD50KiI6qbAM5OiBDZVAfOXJkraANKESLiIjICVOglhZXdSGizbuC8m1LcS/OobuHycJ1K8jNzeWll17Cz8+P9PR0woafx2Nf/YphwqXDOnPv2OFERUY4w7PVasVms9UI1XUFbREREZGTQYFaWlTVhYhpqSnMHGFweqidED9PUg7503foaRiGgdVqJTk5mXnfb+Tpb3dhmnB1XAxJlwzGarW4PN/R4+9UiRYREZGmolKdtKiqCxFLDu7F79Amyq3ehPUYwjkPvIcJTJs2jaSkJN5J2UXSosowHZrzMz4ZnwFmneerfmGiiIiISFNShVpalM1mIyEhgbRUk4LgaAxfD8xuo8E/gtWrV5Odnc2X24rIPrIRgLADG2DDJ6RlRbmcFV11Plf90iIiIiJNQYFaWlRVf7PdbmfO66/z5ucr6Tu0mKl9DOLj4/ny1zKyo0YCcNv4XhSnrSMtO6rOsKx+aREREWluFtM0a/+7uTSp/Px8goKCyMvLIzAwsKWX0yrY7XZuuukm9uzZQ1FREd26dcM/4XLWl3cG4J4JfbnzrN6YpqmwLCIiIq2KKtTSKoSFhVFcXMy+ffswTRO3wedT9FuY/vOkftw2vjcAFotFFxeKiIhIq6ISnzQbwzCw2+0YhlHrvqrNVzp16kTgyMsp6jMBgAerhWkRERGR1kiBWppF1Ti7qVOnkpSUVCtUV22+4nXqhRixFwAw3GMP08f1bInlioiIiDSYArU0i2ONs7NarUSMu5r90aMA8N22mJL1/9XYOxEREWn1FKilWVSNs4uKcj2h443lv5L81RYAhnnso2fxVo29ExERkTZBUz5aQEed8uHcYvyoCR1vrtjBk19Uzpm+66w+3HVWb03yEBERkTZDaUWajdVqxWaz4XA4nD3UC374PUzfcWZv7p7Qx7lNuMK0iIiItAUamyfNpurCxKpdDGPO/COP/7cyTN82vhczz+6LxWJp4VWKiIiINI4CtTSb6hcmfrX1MPt+2078T6f34v6J/RSmRUREpE3Sv6lLk3HOna4oh4L92MLDSEhIwHPAGezrfDoA08f15IFJCtMiIiLSdqlCLU2iqr0jLTWFmXEm43v5YY2Jo/fZ17HvSAYAU8f0IPHc/grTIiIi0qYpUEuTsNvtLFu2DMsRB365hyjL68x/Dx3koT2VYfrG07rz8PkDFKZFRESkzVOglpPOMAzmzJlDZmYmFkwKggfwDQO5f88YTOC6kV159IKBCtMiIiLSLqiHWk46h8PB6tWr8ff3J6ZrN3ImPM+du8djYMG6MxX3Hz9B489FRESkvVCglpOualfE6Ohoep92HrO+2oWBldJfVnFw4d9YsWK5thQXERGRdkMtH3LSWa1WZs2axXc/7uDOT36htKKCGOsh7Bn/JiAigrFjx2pLcREREWk3FKilSWzMOsw9n22jsLSC03qH8cZ153DojjMBtAuiiIiItCsK1HLSbdt/mClvpnG4uJwR3UKYO2UEPp7u+ERHt/TSRERERE46lQmPctFFF9G1a1e8vb2Jjo7muuuuY9++fTWO+emnnxg7dize3t7ExMQwe/bsFlpt67Mr5wjXzE3l4JFSYjsH8uaNcfh66u9tIiIi0n4pUB/ljDPO4MMPP2TLli38+9//Zvv27Vx22WXO+/Pz8znnnHPo1q0ba9eu5bnnnuPxxx9nzpw5Lbjq1iErr4hr5qay/3AJfSP9efumBAK9PVp6WSIiIiJNymJqflm9Pv/8cyZPnkxJSQkeHh68+uqrzJo1i+zsbDw9PQF48MEH+fTTT9m8eXODzpmfn09QUBB5eXkEBgY25fKbjeNwCVe+vopfDxyhe5gvH94yiohA75ZeloiIiEiTU4W6HgcPHuS9995j9OjReHhUVlpXrVrFuHHjnGEaYOLEiWzZsoXc3FyX5ykpKSE/P7/GV3tyqLCU6+al8uuBI3QK8ubdmxOICPTGMAzsdjuGYbT0EkVERESajAK1Cw888AB+fn6EhYWRmZnJZ5995rwvOzubyMjIGsdXfZ+dne3yfMnJyQQFBTm/YmJimm7xzSyvsIRr56xkc/Zhwv29eG9qPF08CjAqyklKSmLq1KkkJSUpVIuIiEi71SEC9YMPPojFYqn3q3q7xv3338/69ev55ptvcHNzY8qUKSe0s19iYiJ5eXnOr927d5+Ml9XiikrKmPiXT8jIPoIX5bxz03B6bHoVPrudI18/SVpqCtnZ2aSmpmojFxEREWm3OsT4hXvvvZcbbrih3mN69uzp/N/h4eGEh4fTt29fBgwYQExMDCkpKYwaNYqoqCjsdnuNx1Z9HxUV5fLcXl5eeHl5ndiLaGXKKwxueTuNbCMAS3kxXXZ+QXhJb9izBgrs+JsmZ8QP5rs0CwkJCdrIRURERNqtDhGobTbbcQe6qlaFkpISAEaNGsWsWbMoKytz9lUvWrSIfv36ERIScnIW3MqZpslDn/zMsu2HcMMgZvdCxg/pSVjXfpA5AvaswdJlBHdfPZNrD+Rgs9m0kYuIiIi0W5ryUU1qaiqrV69mzJgxhISEsH37dh555BHsdjsZGRl4eXmRl5dHv379OOecc3jggQdIT0/npptu4sUXX2T69OkNep62PuXjma8289rS7Vgt8I9rhzHUZv09NBsGFB4A33BQiBYREZEOoENUqBvK19eX//znPzz22GMcOXKE6OhoJk2axMMPP+xs2QgKCuKbb75hxowZDB8+nPDwcB599NEGh+m2bu6yX3lt6XYAkv8wmEmxR+1+aLWCf0QLrExERESkZahC3QJaY4XaMAwcDke97Rn/XruHez/6EYA/T+rHbeN7N+rxIiIiIu2Rko9gGMYxR9x9u9HOn//9EwA3j+nBraf3atTjRURERNorBWrB4XCQmppa54i71TsPMuP9dVQYJn8Y1pmHzhuAxWJp8ONFRERE2jMFasFmsxEXF0dISAhxcXHOiSiGYbAifQc3LVhNSbnBGf1sPHvpKVitllqPT0hIICoqSiPyREREpMPRRYkC4Kw4V/3XMAweeHI2/8nvSYWnH75H9tF193rcLCNqPdZqtTJr1iz1UIuIiEiHpEAtOBwO0tLSyM3NJS0tDYfDwYHDJXx0IBr8/Sg/sAu3dQtY2ykCh8NRa+t1qAzVrm4XERERae9USuxADMPAbrfXumjw6JYNr4Bg7v5sG/iHU5G/n5JvXiAyNFDtHCIiIiIuaGxeC2iJsXlVkzhSU1NJSEhg1qxZNVozqsbeBQaHcsOCNaTuOIg3ZUSmv8sZI2K55ZZbnBVotXaIiIiI/E4tHx1E9UkcKSkpbNy4kYEDBzpDsdVqxWaL4PZ/riN1x0H8vdz557TRRHiMcobnGqE8Pp5Zd0/H6h+hHRFFRESkQ1MS6iCq2joiIyMpLi7mgQceqDUzOul/m/jfz9l4uFmYM2U4g7uEEBkZ6QzdVaHcnp1F990fUfbxLbD8+crtxkVEREQ6KAXqDqJqEsezzz6Lt7c3drvdWak2DIN5K3Ywb8UOAJ6/fAije4XXeLxhGBiGQXx8PP26hJHQ2R3PskOwZw0UHmiBVyQiIiLSOqjlowOxWq0MHDiQkSNHkpKS4qxUR46YxPelPQF48Nz+XHxq5xqPq97qERcXx3P/mE/k1nex7F0LXUaAb7irpxMRERHpEHRRYgtoiYsSqzMMg40bN/LAAw+wp9iL/OHXY1rdmTKqG09cNKjGLogAdrudqVOnkp2dTVRUFPPmzSPSZqusTPuGq4daREREOjQloQ6oqlLdP/50CoZei2l15+wBETx2Ye0wDXXshGi1gi5IFBEREVGFuiU0d4W6av404LzIcP/hYi55ZSV7DxUxNCaY96eNxMfTrd5zaFyeiIiISG1KRu2cYRg89dRTjB8/nvHjx/OXv/yF/KJSblqwmr2Hiuge5ssb14+oN0zD7zshKkyLiIiI1KSLEts5h8PBihUryM7OxmKxsGz5D2yKSCV9bz5hfp68dVM8Yf5eLb1MERERkTZLgbqds9lsjBkzhszMTEzAGn8Nq3bm4+1hZd4NcXQL82vpJYqIiIi0aeqhbgEt1UM9LzWLN1KysFpgznUjmDAwssmfW0RERKS9U0NsB2C1Wlm+t5w3UrIAeGpyrMK0iIiIyEmiQN0BLN3qIPE/PwNw2/heXJvQrYVXJCIiItJ+KFC3cwcKSrjt3bVUGCaXDO3M/RP7tfSSRERERNoVBep2Ltzfi8cvGsTpfW08e+kpLjduEREREZHjp4sSW0BLbD1umqbCtIiIiEgTUIW6g1CYFhEREWkaCtQiIiIiIidAgVpERERE5AQoUIuIiIiInAAFahERERGRE6BALSIiIiJyAhSoRUREREROgAK1iIiIiMgJUKAWERERETkBCtQiIiIiIidAgVpERERE5AQoUIuIiIiInAAFahERERGRE+De0gvoiEzTBCA/P7+FVyIiIiIi9QkICMBisdR7jAJ1Czh8+DAAMTExLbwSEREREalPXl4egYGB9R5jMavKpdJsDMNg3759Dfobz/HKz88nJiaG3bt3H/ND0NHovamb3hvX9L7UTe9N3fTe1E3vTd303tStpd4bVahbKavVSpcuXZrluQIDA/V/yDrovamb3hvX9L7UTe9N3fTe1E3vTd303tStNb43uihRREREROQEKFCLiIiIiJwABep2ysvLi8ceewwvL6+WXkqro/embnpvXNP7Uje9N3XTe1M3vTd103tTt9b83uiiRBERERGRE6AKtYiIiIjICVCgFhERERE5AQrUIiIiIiInQIFaREREROQEKFC3UUlJSYwePRpfX1+Cg4NdHpOZmcn555+Pr68vERER3H///ZSXl9d73oMHD3LttdcSGBhIcHAwU6dOpaCgoAleQfNYsmQJFovF5dfq1avrfNz48eNrHf+nP/2pGVfePLp3717rdT7zzDP1Pqa4uJgZM2YQFhaGv78/l156KXa7vZlW3Dx27tzJ1KlT6dGjBz4+PvTq1YvHHnuM0tLSeh/XXj83r7zyCt27d8fb25uEhATS0tLqPf6jjz6if//+eHt7M3jwYP73v/8100qbT3JyMnFxcQQEBBAREcHkyZPZsmVLvY9ZsGBBrc+Ht7d3M624+Tz++OO1Xmf//v3rfUxH+MyA65+5FouFGTNmuDy+PX9mli1bxoUXXkinTp2wWCx8+umnNe43TZNHH32U6OhofHx8mDBhAr/88ssxz9vYn1cniwJ1G1VaWsrll1/Orbfe6vL+iooKzj//fEpLS1m5ciVvvfUWCxYs4NFHH633vNdeey0ZGRksWrSIL774gmXLljF9+vSmeAnNYvTo0WRlZdX4uvnmm+nRowcjRoyo97HTpk2r8bjZs2c306qb15NPPlnjdd5xxx31Hn/PPffw3//+l48++oilS5eyb98+/vCHPzTTapvH5s2bMQyD119/nYyMDF588UVee+01HnrooWM+tr19bj744ANmzpzJY489xrp16xgyZAgTJ05k//79Lo9fuXIlV199NVOnTmX9+vVMnjyZyZMnk56e3swrb1pLly5lxowZpKSksGjRIsrKyjjnnHM4cuRIvY8LDAys8fnYtWtXM624eQ0aNKjG61yxYkWdx3aUzwzA6tWra7wvixYtAuDyyy+v8zHt9TNz5MgRhgwZwiuvvOLy/tmzZ/PXv/6V1157jdTUVPz8/Jg4cSLFxcV1nrOxP69OKlPatPnz55tBQUG1bv/f//5nWq1WMzs723nbq6++agYGBpolJSUuz7Vx40YTMFevXu287auvvjItFou5d+/ek772llBaWmrabDbzySefrPe4008/3bzrrruaZ1EtqFu3buaLL77Y4OMPHTpkenh4mB999JHztk2bNpmAuWrVqiZYYesxe/Zss0ePHvUe0x4/N/Hx8eaMGTOc31dUVJidOnUyk5OTXR5/xRVXmOeff36N2xISEsxbbrmlSdfZ0vbv328C5tKlS+s8pq6f1+3NY489Zg4ZMqTBx3fUz4xpmuZdd91l9urVyzQMw+X9HeUzA5iffPKJ83vDMMyoqCjzueeec9526NAh08vLy/znP/9Z53ka+/PqZFKFup1atWoVgwcPJjIy0nnbxIkTyc/PJyMjo87HBAcH16jcTpgwAavVSmpqapOvuTl8/vnn5OTkcOONNx7z2Pfee4/w8HBiY2NJTEyksLCwGVbY/J555hnCwsIYOnQozz33XL1tQWvXrqWsrIwJEyY4b+vfvz9du3Zl1apVzbHcFpOXl0doaOgxj2tPn5vS0lLWrl1b48/barUyYcKEOv+8V61aVeN4qPzZ0xE+H8AxPyMFBQV069aNmJgYLr744jp/Hrd1v/zyC506daJnz55ce+21ZGZm1nlsR/3MlJaW8u6773LTTTdhsVjqPK6jfGaq27FjB9nZ2TU+F0FBQSQkJNT5uTien1cnk3uTP4O0iOzs7BphGnB+n52dXedjIiIiatzm7u5OaGhonY9pa+bNm8fEiRPp0qVLvcddc801dOvWjU6dOvHTTz/xwAMPsGXLFv7zn/8000qbx5133smwYcMIDQ1l5cqVJCYmkpWVxQsvvODy+OzsbDw9PWv17UdGRrabz4gr27Zt429/+xvPP/98vce1t8/NgQMHqKiocPmzZPPmzS4fU9fPnvb8+TAMg7vvvpvTTjuN2NjYOo/r168fb775Jqeccgp5eXk8//zzjB49moyMjGP+TGpLEhISWLBgAf369SMrK4snnniCsWPHkp6eTkBAQK3jO+JnBuDTTz/l0KFD3HDDDXUe01E+M0er+rNvzOfieH5enUwK1K3Igw8+yLPPPlvvMZs2bTrmxR0dwfG8V3v27GHhwoV8+OGHxzx/9b7xwYMHEx0dzVlnncX27dvp1avX8S+8GTTmvZk5c6bztlNOOQVPT09uueUWkpOTW+XWrifqeD43e/fuZdKkSVx++eVMmzat3se25c+NHL8ZM2aQnp5eb58wwKhRoxg1apTz+9GjRzNgwABef/11nnrqqaZeZrM599xznf/7lFNOISEhgW7duvHhhx8yderUFlxZ6zJv3jzOPfdcOnXqVOcxHeUz0x4oULci9957b71/UwXo2bNng84VFRVV68rWqkkMUVFRdT7m6Mb98vJyDh48WOdjWsrxvFfz588nLCyMiy66qNHPl5CQAFRWKlt7MDqRz1FCQgLl5eXs3LmTfv361bo/KiqK0tJSDh06VKNKbbfbW91nxJXGvjf79u3jjDPOYPTo0cyZM6fRz9eWPjeuhIeH4+bmVmuKS31/3lFRUY06vq27/fbbnRdwN7Zi6OHhwdChQ9m2bVsTra51CA4Opm/fvnW+zo72mQHYtWsX3377baP/9aqjfGaq/uztdjvR0dHO2+12O6eeeqrLxxzPz6uTSYG6FbHZbNhstpNyrlGjRpGUlMT+/fudbRyLFi0iMDCQgQMH1vmYQ4cOsXbtWoYPHw7Ad999h2EYzmDQWjT2vTJNk/nz5zNlyhQ8PDwa/XwbNmwAqPF/7NbqRD5HGzZswGq11mr9qTJ8+HA8PDxYvHgxl156KQBbtmwhMzOzRhWltWrMe7N3717OOOMMhg8fzvz587FaG3/JSVv63Lji6enJ8OHDWbx4MZMnTwYq2xsWL17M7bff7vIxo0aNYvHixdx9993O2xYtWtQmPh+NYZomd9xxB5988glLliyhR48ejT5HRUUFP//8M+edd14TrLD1KCgoYPv27Vx33XUu7+8on5nq5s+fT0REBOeff36jHtdRPjM9evQgKiqKxYsXOwN0fn4+qampdU43O56fVydVk1/2KE1i165d5vr1680nnnjC9Pf3N9evX2+uX7/ePHz4sGmaplleXm7Gxsaa55xzjrlhwwbz66+/Nm02m5mYmOg8R2pqqtmvXz9zz549ztsmTZpkDh061ExNTTVXrFhh9unTx7z66qub/fWdbN9++60JmJs2bap13549e8x+/fqZqamppmma5rZt28wnn3zSXLNmjbljxw7zs88+M3v27GmOGzeuuZfdpFauXGm++OKL5oYNG8zt27eb7777rmmz2cwpU6Y4jzn6vTFN0/zTn/5kdu3a1fzuu+/MNWvWmKNGjTJHjRrVEi+hyezZs8fs3bu3edZZZ5l79uwxs7KynF/Vj+kIn5t//etfppeXl7lgwQJz48aN5vTp083g4GDnBKHrrrvOfPDBB53H//DDD6a7u7v5/PPPm5s2bTIfe+wx08PDw/z5559b6iU0iVtvvdUMCgoylyxZUuPzUVhY6Dzm6PfmiSeeMBcuXGhu377dXLt2rXnVVVeZ3t7eZkZGRku8hCZz7733mkuWLDF37Nhh/vDDD+aECRPM8PBwc//+/aZpdtzPTJWKigqza9eu5gMPPFDrvo70mTl8+LAzuwDmCy+8YK5fv97ctWuXaZqm+cwzz5jBwcHmZ599Zv7000/mxRdfbPbo0cMsKipynuPMM880//a3vzm/P9bPq6akQN1GXX/99SZQ6+v77793HrNz507z3HPPNX18fMzw8HDz3nvvNcvKypz3f//99yZg7tixw3lbTk6OefXVV5v+/v5mYGCgeeONNzpDelt29dVXm6NHj3Z5344dO2q8d5mZmea4cePM0NBQ08vLy+zdu7d5//33m3l5ec244qa3du1aMyEhwQwKCjK9vb3NAQMGmE8//bRZXFzsPObo98Y0TbOoqMi87bbbzJCQENPX19e85JJLagTN9mD+/Pku//9VvQbRkT43f/vb38yuXbuanp6eZnx8vJmSkuK87/TTTzevv/76Gsd/+OGHZt++fU1PT09z0KBB5pdfftnMK256dX0+5s+f7zzm6Pfm7rvvdr6PkZGR5nnnnWeuW7eu+RffxK688kozOjra9PT0NDt37mxeeeWV5rZt25z3d9TPTJWFCxeagLlly5Za93Wkz0xVBjn6q+r1G4ZhPvLII2ZkZKTp5eVlnnXWWbXes27dupmPPfZYjdvq+3nVlCymaZpNXwcXEREREWmfNIdaREREROQEKFCLiIiIiJwABWoRERERkROgQC0iIiIicgIUqEVEREREToACtYiIiIjICVCgFhERl7KysnjwwQc544wzCAgIwGKxsGTJkpZelohIq6NALSIiLm3ZsoVnn32WvXv3Mnjw4JZejohIq6VALSIiLg0fPpycnBy2bt3KzJkzW3o5IiKtlgK1iEgHUlRURP/+/enfvz9FRUXO2w8ePEh0dDSjR4+moqICgICAAEJDQ1tqqSIibYYCtYhIB+Lj48Nbb73Ftm3bmDVrlvP2GTNmkJeXx4IFC3Bzc2vBFYqItD3uLb0AERFpXgkJCfz5z3/m2Wef5ZJLLsFut/Ovf/2Ll156ib59+7b08kRE2hwFahGRDujxxx/niy++4Prrr6egoIDTTz+dO++8s6WXJSLSJqnlQ0SkA/L09OTNN99kx44dHD58mPnz52OxWFp6WSIibZICtYhIB7Vw4UIAiouL+eWXX1p4NSIibZcCtYhIB/TTTz/x5JNPcuONNzJ06FBuvvlm8vLyWnpZIiJtkgK1iEgHU1ZWxg033ECnTp14+eWXWbBgAXa7nXvuuaellyYi0ibpokQRkQ7mL3/5Cxs2bGDx4sUEBARwyimn8Oijj/Lwww9z2WWXcd5559U4FiAjIwOAd955hxUrVgDw8MMPN//iRURaIYtpmmZLL0JERJrHunXrSEhI4NZbb+Wvf/2r8/aKigpGjRrF3r17ycjIIDg4GKDeCxX160NEpJICtYiIiIjICVAPtYiIiIjICVCgFhERERE5AQrUIiIiIiInQIFaREREROQEKFCLiIiIiJwAzaEWcaGiooKysrKWXoaIiLQyHh4euLm5tfQypJVRoBapxjRNsrOzOXToUEsvRUREWqng4GCioqLqndMuHYsCtUg1VWE6IiICX19f/bAUEREn0zQpLCxk//79AERHR7fwiqS1UKAW+U1FRYUzTIeFhbX0ckREpBXy8fEBYP/+/URERKj9QwBdlCjiVNUz7evr28IrERGR1qzq94SutZEqCtQiR1Gbh4iI1Ee/J+RoCtQiIiIiIidAgVpEjsuCBQsIDg5u6WWISDuwZMkSLBaLJixJm6VALdLG3XDDDVgsFiwWC56envTu3Zsnn3yS8vLyJn3eK6+8kq1btzbpcxxL9dfu4eFBZGQkZ599Nm+++SaGYTTqXPoLwslR9WfyzDPP1Lj9008/bfZ/Jq/6bFgsFvz8/OjTpw833HADa9eubfS5xo8fz913333yF9kBVP9zcPX1+OOPt/QSRU6YArVIOzBp0iSysrL45ZdfuPfee3n88cd57rnnXB5bWlp6Up7Tx8eHiIiIk3KuE1H12nfu3MlXX33FGWecwV133cUFF1zQ5H+pENe8vb159tlnyc3NbemlMH/+fLKyssjIyOCVV16hoKCAhIQE3n777ZZeWoeRlZXl/HrppZcIDAyscdt9993XYms7WT8PRRSoRdoBLy8voqKi6NatG7feeisTJkzg888/ByorhpMnTyYpKYlOnTrRr18/AHbv3s0VV1xBcHAwoaGhXHzxxezcuROAb775Bm9v71r//HrXXXdx5plnAq4ruq+++iq9evXC09OTfv368c477zjv27lzJxaLhQ0bNjhvO3ToEBaLhSVLlgCQm5vLtddei81mw8fHhz59+jB//vwGvfbOnTszbNgwHnroIT777DO++uorFixY4DzuhRdeYPDgwfj5+RETE8Ntt91GQUEBUPnPzTfeeCN5eXm1qmbvvPMOI0aMICAggKioKK655hrnDFpxbcKECURFRZGcnFzvcStWrGDs2LH4+PgQExPDnXfeyZEjRwD4+9//TmxsrPPYqgr3a6+9VuN5Hn744Xqfo2oDju7du3POOefw8ccfc+2113L77bc7A39OTg5XX301nTt3xtfXl8GDB/PPf/7TeY4bbriBpUuX8vLLLzs/Hzt37qSiooKpU6fSo0cPfHx86NevHy+//HKj36/2LioqyvkVFBSExWKpcZu/v7/z2LVr1zJixAh8fX0ZPXo0W7ZsqXGuzz77jGHDhuHt7U3Pnj154oknavzFOTMzk4svvhh/f38CAwO54oorsNvtzvsff/xxTj31VN544w169OiBt7c3b7/9NmFhYZSUlNR4rsmTJ3Pdddc10bsi7Y0CtUg75OPjU6PysnjxYrZs2cKiRYv44osvKCsrY+LEiQQEBLB8+XJ++OEH/P39mTRpEqWlpZx11lkEBwfz73//23mOiooKPvjgA6699lqXz/nJJ59w1113ce+995Kens4tt9zCjTfeyPfff9/gdT/yyCNs3LiRr776ik2bNvHqq68SHh7e6Nd/5plnMmTIEP7zn/84b7Narfz1r38lIyODt956i++++44///nPAIwePbpW5ayqalZWVsZTTz3Fjz/+yKeffsrOnTu54YYbGr2mjsTNzY2nn36av/3tb+zZs8flMdu3b2fSpElceuml/PTTT3zwwQesWLGC22+/HYDTTz+djRs34nA4AFi6dCnh4eHOv3yVlZWxatUqxo8f3+j13XPPPRw+fJhFixYBUFxczPDhw/nyyy9JT09n+vTpXHfddaSlpQHw8ssvM2rUKKZNm+b8fMTExGAYBl26dOGjjz5i48aNPProozz00EN8+OGHjV7T8TJNk8LS8hb5Mk3zpL+eWbNm8X//93+sWbMGd3d3brrpJud9y5cvZ8qUKdx1111s3LiR119/nQULFpCUlASAYRhcfPHFHDx4kKVLl7Jo0SJ+/fVXrrzyyhrPsW3bNv7973/zn//8hw0bNnD55ZdTUVHhLEJA5YzpL7/8ssbzi9RHG7uINAHDMHA4HNhsNqzW5vt7q2maLF68mIULF3LHHXc4b/fz8+ONN97A09MTgHfffRfDMHjjjTecfa3z588nODiYJUuWcM4553DVVVfx/vvvM3XqVKAylB86dIhLL73U5XM///zz3HDDDdx2220AzJw5k5SUFJ5//nnOOOOMBq0/MzOTof/f3v3HNHW1cQD/8qtQ2kLprPshdoCyiAyhIAgYZYZujQHXbEGX2EmXqBk4t7iIjGWLDLARgxqGG2Ysm1sXDHOL27uxRRS1xNWl/ohhuqJmW4e+zoojsKzDMlae94+u97UgyC9Rw/P5p+29t73n9p7b+/Tc59yjVmP+/PkAgKioqDF9DwAwZ84c/PDDD8Lrm/Nfo6KisGXLFhQUFKC2thYikcin5exmN59QY2JiUFNTg9TUVDidTp+WtXtafz/Q8zsQOg2YpPr4zDPPICkpCaWlpfjggw8Gzd+6dSv0er2wX2JjY1FTU4OsrCzs3r0bjz/+OBQKBVpaWpCXlwez2YyNGzcKLcAnTpxAX18fMjMzR122OXPmAIBwRWbGjBk+aQcvv/wympqasG/fPqSlpSE8PBwikQihoaE+9SMgIABlZWXC6+joaHz//ffYt28fVqxYMepyjcWNPjfmbm6alHUNZCvXIlQ0sWGE0WhEVlYWAKCkpAQ5OTlwuVwICQlBWVkZSkpKYDAYAHiOx4qKChQXF6O0tBSHDx/G2bNnYbfbMXPmTACAyWRCfHw8Tp48idTUVACeNA+TyQSlUimsd+XKldizZw+WL18OwPMbqVKpxvSHjU1N3ELN2ATr7++H0WjE6tWrYTQaR905biwaGxshlUoREhKCpUuX4rnnnvPp6JOQkCAE0wDQ2tqKn376CTKZDFKpFFKpFAqFAi6XCz///DMAQK/Xw2w247fffgMA1NfXIycnZ8iOe21tbVi4cKHPtIULF6KtrW3E21FYWIiGhgYkJSWhuLgYx48fH/F7ByIin05wzc3NyM7OxowZMyCTybBq1Sp0dnaip6dn2M85ffo0li1bBpVKBZlMJpzsL126NOayTar+fuDYduA/6z2Pk1AfvbZt24aPP/74lnWgtbUVH330kVD/pFIptFot+vv7Ybfb4efnh8WLF8NsNqO7uxs2mw3r1q1Db28vzp8/j5aWFqSmpo5pICZvy6q3frjdblRUVCAhIQEKhQJSqRRNTU0j2sfvvvsuUlJSoFQqIZVKUVdXd//UjXvQvHnzhOfeYb29KVatra0oLy/3qTPeqwY9PT1oa2vDzJkzhWAaAObOnQu5XO5TBx999FGfYBoA1q5di4MHD+LKlSsAPClt3g62jI0Et1AzNsGuX78Oq9UKh8MBq9WK69ev48EHH7yj61yyZAl2794NkUiERx55BIGBvoe2RCLxee10OpGSkoL6+vpBn+U90aSmpmLWrFloaGhAYWEhvvjiC5+c5NHyttTffJl44ChjS5cuRXt7O7799lscOnQI2dnZeOmll7B9+/ZRr6+trQ3R0dEAPC2Rubm5KCwshNFohEKhwHfffYfVq1fj77//HjIo++uvv6DVaqHValFfXw+lUolLly5Bq9XeP52Zen4H/nsKcF7zPPb8DkgnpzPp4sWLodVq8frrrw9Kk3E6nXjxxRfxyiuvDHqfSqUC4LmzRl1dHY4dOwa1Wo2wsDAhyG5paRH+3IyWN7jy1o+qqiq8/fbbqK6uFvLsN2zYcNt93NDQgKKiIuzYsQMZGRmQyWSoqqqC1WodU7nGQhwUAFu5dtLWN3DdEy0oKEh47g1mvY0STqcTZWVlePbZZwe9LyQkZMTrGPh7CABqtRqJiYkwmUx46qmn8OOPP+Kbb74ZbfHZFMYBNWMTTKlUYsGCBbBarViwYMGglpA7QSKRYPbs2SNePjk5GZ9++immT5+OsLCwIZfT6/Wor69HZGQk/P39kZOTM+SycXFxsFgswuVYALBYLJg7dy6A/wfqV69ehVqtBgCfDopeSqUSBoMBBoMBixYtwqZNm0YdUB85cgRnz57Fq6++CsDTytzf348dO3YIgf3APFeRSAS32+0z7fz58+js7ERlZaXQ6nXq1KlRleWuC50GRM73BNOR8z2vJ1FlZSWSkpKEzrBeycnJsNlsw9bbrKwsbNiwAZ999plw6f2JJ55Ac3MzLBYLNm7cOKYyefPlNRoNAE891el0eP755wF4AriLFy8KdRe4df2wWCzIzMwU0pwACFd4Joufn9+Ep13cq5KTk3HhwoUh60xcXBwuX76My5cvC8erzWZDd3e3z74cypo1a1BdXY0rV65Ao9H4tHQzdjtT4yhkbBL5+/vjjTfeuCs51COl1+tRVVUFnU6H8vJyREZGor29Hfv370dxcTEiIyOF5d566y0YjUbk5eUhODh4yM/ctGkTVqxYAbVaDY1Gg6+//hr79+9Hc3MzAE9HyfT0dFRWViI6OhodHR2D7tCwefNmpKSkID4+Hr29vWhsbERcXNyw29Lb2wuHwwG3241r167hwIED2Lp1K3Jzc5Gfnw8AmD17Nvr6+rBr1y4sW7YMFovF524RgCev2ul04vDhw0hMTERoaChUKhVEIhF27dqFgoICnDt3DhUVFaP+vu8qf39gUdGk51B7JSQkQK/Xo6amxmf6a6+9hvT0dKxfvx5r1qyBRCKBzWbDoUOH8M477wDwXP6PiIjA3r170djYCMATUBcVFcHPz29QitGtdHd3w+FwoLe3FxcvXsR7772HL7/8EiaTSUhfio2Nxeeff47jx48jIiICO3fuxLVr13yCsKioKFitVvz6669CilRsbCxMJhOampoQHR2NTz75BCdPnhRavtnE2rx5M3Jzc6FSqZCXlwd/f3+0trbi3Llz2LJlCzQajVDfqqur8c8//2DdunXIysoS+mUMZ+XKlSgqKsL777/Pt1Vko0eMMSIiunHjBtlsNrpx48bdLsqoGAwG0ul0o55/9epVys/Pp2nTplFwcDDFxMTQ2rVr6Y8//vBZLi0tjQDQkSNHfKbv2bOHwsPDfabV1tZSTEwMBQUF0WOPPUYmk8lnvs1mo4yMDBKLxZSUlEQHDx4kAHT06FEiIqqoqKC4uDgSi8WkUChIp9PRL7/8Muy2ASAAFBgYSEqlkjQaDX344Yfkdrt9lt25cyc9/PDDJBaLSavVkslkIgDU1dUlLFNQUEAPPPAAAaDS0lIiItq7dy9FRUVRcHAwZWRk0FdffUUA6MyZM0OWayq7VX2z2+0kEolo4CnnxIkT9OSTT5JUKiWJRELz5s0jo9Hos4xOp6PAwED6888/iYjI7XZTREQEpaen37Ys3roBgEJCQmjWrFlkMBjo9OnTPst1dnaSTqcjqVRK06dPpzfffJPy8/N9tuPChQuUnp5OYrGYAJDdbieXy0UvvPAChYeHk1wup8LCQiopKaHExMSRf2FTzK1+N4iIjh49Ouh4PHPmjPBdex04cIAyMzNJLBZTWFgYpaWlUV1dnTC/vb2dnn76aZJIJCSTyWj58uXkcDiE+aWlpcPun1WrVpFCoSCXyzXsdtyv5wt25/gR3YH73jB2H3K5XLDb7cK9SRljjE0t2dnZiI+PH3RFZSA+X7CBOOWDMcYYY1NaV1cXzGYzzGYzamtr73Zx2H2IA2rGGGOMTWlqtRpdXV3Ytm3boA60jI0EB9SMMcYYm9K8g/wwNlb33u0HGGOMMcYYu49wQM3YANxPlzHG2HD4PMEG4oCasX95R+i63VDUjDHGpjbveeLmkR3Z1MY51Iz9KyAgAHK5HB0dHQCA0NBQYehbxhhjjIjQ09ODjo4OyOVyBARM/PDr7P7E96Fm7CZEBIfDge7u7rtdFMYYY/couVyOhx56iBtdmIADasZuwe12o6+v724XgzHG2D0mKCiIW6bZIBxQM8YYY4wxNg7cKZExxhhjjLFx4ICaMcYYY4yxceCAmjHGGGOMsXHggJoxxhhjjLFx4ICaMcYYY4yxceCAmjHGGGOMsXHggJoxxhhjjLFx+B8LSu83l+LtkwAAAABJRU5ErkJggg==\n" - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "# Visualize final cycle\n", - "plot_results_panel_2d(random_experimentalist_cycle,\n", - " query=[-1],\n", - " subplot_kw=dict(figsize=(8,5))\n", - " );\n" - ], - "metadata": { - "collapsed": false - } - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 3", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 2 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython2", - "version": "2.7.6" - } - }, - "nbformat": 4, - "nbformat_minor": 0 -} diff --git a/docs/cycle/simple_cycle_bms_darts.ipynb b/docs/cycle/simple_cycle_bms_darts.ipynb deleted file mode 100644 index be862996f..000000000 --- a/docs/cycle/simple_cycle_bms_darts.ipynb +++ /dev/null @@ -1,396 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "source": [ - "# Simple Cycle Examples with BMS and DARTS\n", - "The aim of this example notebook is to use the AutoRA `Cycle` to recover a simple ground truth theory from some noisy data using BSM and DARTS, as a proof of concept.\n", - "It uses a trivial experimentalist which resamples the same x-values each cycle." - ], - "metadata": { - "collapsed": false - } - }, - { - "cell_type": "code", - "execution_count": null, - "outputs": [], - "source": [ - "# Uncomment the following line when running on Google Colab\n", - "# !pip install autora" - ], - "metadata": { - "collapsed": false - } - }, - { - "cell_type": "code", - "execution_count": null, - "outputs": [], - "source": [ - "from autora.variable import VariableCollection, Variable\n", - "from autora.cycle import Cycle, plot_results_panel_2d\n", - "from itertools import repeat, chain" - ], - "metadata": { - "collapsed": false - } - }, - { - "cell_type": "code", - "execution_count": null, - "outputs": [], - "source": [ - "def ground_truth(xs):\n", - " return (xs ** 2.) + xs + 1." - ], - "metadata": { - "collapsed": false - } - }, - { - "cell_type": "markdown", - "source": [ - "The space of allowed x values is the integers between 0 and 10 inclusive, and we record the allowed output values as well." - ], - "metadata": { - "collapsed": false - } - }, - { - "cell_type": "code", - "execution_count": null, - "outputs": [], - "source": [ - "study_metadata = VariableCollection(\n", - " independent_variables=[Variable(name=\"x1\", allowed_values=range(11))],\n", - " dependent_variables=[Variable(name=\"y\", value_range=(-20, 20))],\n", - " )" - ], - "metadata": { - "collapsed": false - } - }, - { - "cell_type": "markdown", - "source": [ - "The experimentalist is used to propose experiments.\n", - "Since the space of values is so restricted, we can just sample them all each time." - ], - "metadata": { - "collapsed": false - } - }, - { - "cell_type": "code", - "execution_count": null, - "outputs": [], - "source": [ - "from autora.experimentalist.pipeline import make_pipeline\n", - "example_experimentalist = make_pipeline(\n", - " [list(chain.from_iterable((repeat(study_metadata.independent_variables[0].allowed_values, 10))))])" - ], - "metadata": { - "collapsed": false - } - }, - { - "cell_type": "markdown", - "source": [ - "When we run a synthetic experiment, we get a reproducible noisy result:" - ], - "metadata": { - "collapsed": false - } - }, - { - "cell_type": "code", - "execution_count": null, - "outputs": [], - "source": [ - "import numpy as np\n", - "\n", - "def get_example_synthetic_experiment_runner():\n", - " rng = np.random.default_rng(seed=180)\n", - " def runner(xs):\n", - " return ground_truth(xs) + rng.normal(0, 1.0, xs.shape)\n", - " return runner\n", - "\n", - "example_synthetic_experiment_runner = get_example_synthetic_experiment_runner()\n", - "x = np.array([1.])\n", - "example_synthetic_experiment_runner(x)" - ], - "metadata": { - "collapsed": false - } - }, - { - "cell_type": "markdown", - "source": [ - "## Bayesian Machine Scientist" - ], - "metadata": { - "collapsed": false - } - }, - { - "cell_type": "code", - "execution_count": null, - "outputs": [], - "source": [ - "from autora.skl.bms import BMSRegressor\n", - "bms_theorist = BMSRegressor(epochs=100)" - ], - "metadata": { - "collapsed": false - } - }, - { - "cell_type": "markdown", - "source": [ - "We initialize the Cycle with the metadata describing the domain of the theory,\n", - "the theorist, experimentalist and experiment runner,\n", - "as well as a monitor which will let us know which cycle we're currently on." - ], - "metadata": { - "collapsed": false - } - }, - { - "cell_type": "code", - "execution_count": null, - "outputs": [], - "source": [ - "cycle = Cycle(\n", - " metadata=study_metadata,\n", - " theorist=bms_theorist,\n", - " experimentalist=example_experimentalist,\n", - " experiment_runner=example_synthetic_experiment_runner\n", - ")" - ], - "metadata": { - "collapsed": false - } - }, - { - "cell_type": "markdown", - "source": [ - "We can run the cycle by calling the run method:" - ], - "metadata": { - "collapsed": false - } - }, - { - "cell_type": "code", - "execution_count": null, - "outputs": [], - "source": [ - "cycle.run(num_cycles=3)" - ], - "metadata": { - "collapsed": false - } - }, - { - "cell_type": "markdown", - "source": [ - "We can now interrogate the results. The first set of conditions which went into the\n", - "experiment runner were:" - ], - "metadata": { - "collapsed": false - } - }, - { - "cell_type": "markdown", - "source": [ - "The observations include the conditions and the results:" - ], - "metadata": { - "collapsed": false - } - }, - { - "cell_type": "code", - "execution_count": null, - "outputs": [], - "source": [ - "cycle.data.observations[0]" - ], - "metadata": { - "collapsed": false - } - }, - { - "cell_type": "markdown", - "source": [ - "The best fit theory after the first cycle is:" - ], - "metadata": { - "collapsed": false - } - }, - { - "cell_type": "code", - "execution_count": null, - "outputs": [], - "source": [ - "len(cycle.data.observations)" - ], - "metadata": { - "collapsed": false - } - }, - { - "cell_type": "code", - "execution_count": null, - "outputs": [], - "source": [ - "str(cycle.data.theories[0].model_), cycle.data.theories[0].model_.fit_par[str(cycle.data.theories[0].model_)]" - ], - "metadata": { - "collapsed": false - } - }, - { - "cell_type": "code", - "execution_count": null, - "outputs": [], - "source": [ - "str(cycle.data.theories[-1].model_), cycle.data.theories[-1].model_.fit_par[str(cycle.data.theories[-1].model_)]" - ], - "metadata": { - "collapsed": false - } - }, - { - "cell_type": "code", - "execution_count": null, - "outputs": [], - "source": [ - "# Plot all cycle results\n", - "plot_results_panel_2d(cycle, subplot_kw=dict(figsize=(12,4)))" - ], - "metadata": { - "collapsed": false - } - }, - { - "cell_type": "markdown", - "source": [ - "## DARTS\n" - ], - "metadata": { - "collapsed": false - }, - "execution_count": 217 - }, - { - "cell_type": "code", - "execution_count": null, - "outputs": [], - "source": [ - "from autora.skl.darts import DARTSRegressor\n", - "darts_theorist = DARTSRegressor(max_epochs=100)" - ], - "metadata": { - "collapsed": false - } - }, - { - "cell_type": "code", - "execution_count": null, - "outputs": [], - "source": [ - "darts_cycle = Cycle(\n", - " metadata=study_metadata,\n", - " theorist=darts_theorist,\n", - " experimentalist=example_experimentalist,\n", - " experiment_runner=example_synthetic_experiment_runner\n", - ")" - ], - "metadata": { - "collapsed": false - } - }, - { - "cell_type": "code", - "execution_count": null, - "outputs": [], - "source": [ - "darts_cycle.run(3)" - ], - "metadata": { - "collapsed": false - } - }, - { - "cell_type": "code", - "execution_count": null, - "outputs": [], - "source": [ - "darts_cycle.data.theories[-2].visualize_model()\n" - ], - "metadata": { - "collapsed": false - } - }, - { - "cell_type": "code", - "execution_count": null, - "outputs": [], - "source": [ - "darts_cycle.data.theories[-2].model_repr()\n" - ], - "metadata": { - "collapsed": false - } - }, - { - "cell_type": "code", - "execution_count": null, - "outputs": [], - "source": [ - "# Rerun 3 more times\n", - "darts_cycle.run(3)" - ], - "metadata": { - "collapsed": false - } - }, - { - "cell_type": "code", - "execution_count": null, - "outputs": [], - "source": [ - "# Plot the all cycle results\n", - "plot_results_panel_2d(darts_cycle, wrap=3)\n" - ], - "metadata": { - "collapsed": false - } - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 3", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 2 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython2", - "version": "2.7.6" - } - }, - "nbformat": 4, - "nbformat_minor": 0 -} diff --git a/docs/cycle/simple_cycle_bms_model_poppernet.ipynb b/docs/cycle/simple_cycle_bms_model_poppernet.ipynb deleted file mode 100644 index 1bda9fd20..000000000 --- a/docs/cycle/simple_cycle_bms_model_poppernet.ipynb +++ /dev/null @@ -1,622 +0,0 @@ -{ - "cells": [ - { - "cell_type": "code", - "execution_count": 1, - "outputs": [], - "source": [ - "# Uncomment the following line when running on Google Colab\n", - "# !pip install autora" - ], - "metadata": { - "collapsed": false - } - }, - { - "cell_type": "code", - "execution_count": 2, - "metadata": { - "collapsed": true - }, - "outputs": [], - "source": [ - "import matplotlib.pyplot as plt\n", - "import numpy as np\n", - "\n", - "from autora.cycle import Cycle\n", - "from autora.experimentalist.pipeline import Pipeline\n", - "from autora.experimentalist.pooler import grid_pool, poppernet_pool\n", - "from autora.experimentalist.sampler import nearest_values_sampler\n", - "from autora.skl.bms import BMSRegressor\n", - "from autora.variable import Variable, VariableCollection" - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "outputs": [], - "source": [ - "# meta parameters\n", - "ground_truth_resolution = 1000\n", - "samples_per_cycle = 7\n", - "value_range = (-1, 5)\n", - "allowed_values = np.linspace(value_range[0], value_range[1], ground_truth_resolution)" - ], - "metadata": { - "collapsed": false - } - }, - { - "cell_type": "code", - "execution_count": 4, - "outputs": [], - "source": [ - "# define ground truth\n", - "def ground_truth(xs):\n", - " # return (xs ** 2.) + xs + 1.\n", - " y = xs * 1.0\n", - " y[xs < 0] = 0\n", - " return y" - ], - "metadata": { - "collapsed": false - } - }, - { - "cell_type": "code", - "execution_count": 5, - "outputs": [], - "source": [ - "# define variables\n", - "study_metadata = VariableCollection(\n", - " independent_variables=[\n", - " Variable(name=\"x1\", allowed_values=allowed_values, value_range=value_range)\n", - " ],\n", - " dependent_variables=[Variable(name=\"y\", value_range=(-20, 20))],\n", - ")" - ], - "metadata": { - "collapsed": false - } - }, - { - "cell_type": "code", - "execution_count": 6, - "outputs": [], - "source": [ - "# define experiment platform\n", - "def get_synthetic_experiment_runner():\n", - " rng = np.random.default_rng(seed=180)\n", - "\n", - " def runner(xs):\n", - " return ground_truth(xs) + rng.normal(0, 0.5, xs.shape)\n", - "\n", - " return runner\n", - "\n", - "synthetic_experiment_runner = get_synthetic_experiment_runner()" - ], - "metadata": { - "collapsed": false - } - }, - { - "cell_type": "code", - "execution_count": 7, - "outputs": [], - "source": [ - "# Initialize the experimentalist\n", - "random_experimentalist = Pipeline(\n", - " [\n", - " (\"grid_pool\", grid_pool), # type: ignore\n", - " (\"nearest_values_sampler\", nearest_values_sampler), # type: ignore\n", - " ],\n", - " {\n", - " \"grid_pool\": {\"ivs\": study_metadata.independent_variables},\n", - " \"nearest_values_sampler\": {\n", - " \"allowed_values\": np.linspace(\n", - " value_range[0], value_range[1], samples_per_cycle\n", - " ),\n", - " \"n\": samples_per_cycle,\n", - " },\n", - " },\n", - ")" - ], - "metadata": { - "collapsed": false - } - }, - { - "cell_type": "code", - "execution_count": 8, - "outputs": [], - "source": [ - "# define theorist\n", - "bms_theorist = BMSRegressor(epochs=100)" - ], - "metadata": { - "collapsed": false - } - }, - { - "cell_type": "code", - "execution_count": 9, - "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "INFO:autora.skl.bms:BMS fitting started\n", - " 0%| | 0/100 [00:00:2: RuntimeWarning: invalid value encountered in power\n", - " return X0**_a0_\n", - ":2: RuntimeWarning: divide by zero encountered in divide\n", - " return _a0_/X0\n", - ":2: RuntimeWarning: divide by zero encountered in divide\n", - " return _a0_/X0\n", - " 3%|▎ | 3/100 [00:00<00:03, 24.45it/s]:2: RuntimeWarning: divide by zero encountered in divide\n", - " return sig(_a0_/X0)\n", - "/Users/jholla10/Library/Caches/pypoetry/virtualenvs/autora-17yK3Jyq-py3.8/lib/python3.8/site-packages/scipy/optimize/_minpack_py.py:906: OptimizeWarning: Covariance of the parameters could not be estimated\n", - " warnings.warn('Covariance of the parameters could not be estimated',\n", - ":2: RuntimeWarning: divide by zero encountered in divide\n", - " return sig(_a0_/X0)\n", - ":2: RuntimeWarning: divide by zero encountered in divide\n", - " return sig(_a0_/X0)\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return sqrt(X0)\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return sqrt(X0)\n", - " 6%|▌ | 6/100 [00:00<00:04, 19.35it/s]:2: RuntimeWarning: divide by zero encountered in log\n", - " return log(X0)\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(X0)\n", - ":2: RuntimeWarning: divide by zero encountered in log\n", - " return log(X0)\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(X0)\n", - ":2: RuntimeWarning: divide by zero encountered in log\n", - " return log(X0)\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(X0)\n", - ":2: RuntimeWarning: divide by zero encountered in divide\n", - " return _a0_/X0\n", - ":2: RuntimeWarning: divide by zero encountered in divide\n", - " return _a0_/X0\n", - ":2: RuntimeWarning: divide by zero encountered in log\n", - " return -log(X0)\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return -log(X0)\n", - ":2: RuntimeWarning: divide by zero encountered in log\n", - " return -log(X0)\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return -log(X0)\n", - ":2: RuntimeWarning: divide by zero encountered in log\n", - " return -log(X0)\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return -log(X0)\n", - ":2: RuntimeWarning: divide by zero encountered in log\n", - " return -_a0_*log(X0)\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return -_a0_*log(X0)\n", - ":2: RuntimeWarning: divide by zero encountered in log\n", - " return -_a0_*log(X0)\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return -_a0_*log(X0)\n", - ":2: RuntimeWarning: divide by zero encountered in log\n", - " return -_a0_*log(X0)\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return -_a0_*log(X0)\n", - " 10%|█ | 10/100 [00:00<00:03, 24.48it/s]:2: RuntimeWarning: divide by zero encountered in divide\n", - " return _a0_/X0\n", - ":2: RuntimeWarning: divide by zero encountered in divide\n", - " return _a0_/X0\n", - ":2: RuntimeWarning: divide by zero encountered in divide\n", - " return _a0_/X0\n", - ":2: RuntimeWarning: divide by zero encountered in divide\n", - " return _a0_/X0\n", - " 13%|█▎ | 13/100 [00:00<00:03, 25.56it/s]:2: RuntimeWarning: invalid value encountered in sqrt\n", - " return sqrt(X0)\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return sqrt(X0)\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return sqrt(X0)\n", - " 17%|█▋ | 17/100 [00:00<00:02, 28.60it/s]:2: RuntimeWarning: invalid value encountered in sqrt\n", - " return sqrt(X0)\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return sqrt(X0)\n", - " 25%|██▌ | 25/100 [00:00<00:02, 29.38it/s]:2: RuntimeWarning: invalid value encountered in sqrt\n", - " return sqrt(X0)\n", - ":2: RuntimeWarning: divide by zero encountered in divide\n", - " return abs(relu(_a0_/X0))\n", - ":2: RuntimeWarning: divide by zero encountered in divide\n", - " return abs(relu(_a0_/X0))\n", - ":2: RuntimeWarning: divide by zero encountered in divide\n", - " return abs(relu(_a0_/X0))\n", - ":2: RuntimeWarning: divide by zero encountered in log\n", - " return log(X0)\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(X0)\n", - ":2: RuntimeWarning: divide by zero encountered in log\n", - " return log(X0)\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(X0)\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return sqrt(X0)\n", - ":2: RuntimeWarning: divide by zero encountered in log\n", - " return log(X0)\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(X0)\n", - " 29%|██▉ | 29/100 [00:01<00:02, 30.25it/s]:2: RuntimeWarning: invalid value encountered in power\n", - " return abs(X0**_a0_)\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return relu(sqrt(X0))\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return relu(sqrt(X0))\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return sqrt(X0)\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return sqrt(X0)\n", - " 33%|███▎ | 33/100 [00:01<00:02, 31.17it/s]:2: RuntimeWarning: invalid value encountered in sqrt\n", - " return sqrt(X0)\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return sqrt(X0)\n", - ":2: RuntimeWarning: divide by zero encountered in divide\n", - " return _a0_/X0\n", - ":2: RuntimeWarning: divide by zero encountered in divide\n", - " return _a0_/X0\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu(X0**_a0_)\n", - ":2: RuntimeWarning: divide by zero encountered in divide\n", - " return sig(sig(_a0_/X0)**2)\n", - ":2: RuntimeWarning: divide by zero encountered in divide\n", - " return sig(sig(_a0_/X0)**2)\n", - ":2: RuntimeWarning: divide by zero encountered in divide\n", - " return sig(sig(_a0_/X0)**2)\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return sqrt(X0)\n", - " 37%|███▋ | 37/100 [00:01<00:01, 32.09it/s]:2: RuntimeWarning: divide by zero encountered in divide\n", - " return _a0_/X0\n", - ":2: RuntimeWarning: divide by zero encountered in divide\n", - " return _a0_/X0\n", - ":2: RuntimeWarning: divide by zero encountered in divide\n", - " return _a0_/X0\n", - ":2: RuntimeWarning: divide by zero encountered in divide\n", - " return _a0_/X0\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return relu(sqrt(X0))\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return relu(sqrt(X0))\n", - ":2: RuntimeWarning: divide by zero encountered in divide\n", - " return _a0_/X0\n", - ":2: RuntimeWarning: divide by zero encountered in divide\n", - " return _a0_/X0\n", - " 41%|████ | 41/100 [00:01<00:01, 32.14it/s]:2: RuntimeWarning: divide by zero encountered in power\n", - " return sig(sig(sig(X0**_a0_)))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return sig(sig(sig(X0**_a0_)))\n", - ":2: RuntimeWarning: divide by zero encountered in power\n", - " return sig(sig(sig(X0**_a0_)))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return sig(sig(sig(X0**_a0_)))\n", - ":2: RuntimeWarning: divide by zero encountered in power\n", - " return sig(sig(sig(X0**_a0_)))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return sig(sig(sig(X0**_a0_)))\n", - ":2: RuntimeWarning: divide by zero encountered in divide\n", - " return _a0_/X0\n", - ":2: RuntimeWarning: divide by zero encountered in divide\n", - " return _a0_/X0\n", - ":2: RuntimeWarning: divide by zero encountered in divide\n", - " return _a0_/X0\n", - ":2: RuntimeWarning: divide by zero encountered in divide\n", - " return _a0_/X0\n", - " 45%|████▌ | 45/100 [00:01<00:01, 32.18it/s]:2: RuntimeWarning: divide by zero encountered in log\n", - " return log(relu(X0))\n", - ":2: RuntimeWarning: divide by zero encountered in log\n", - " return log(relu(X0))\n", - ":2: RuntimeWarning: divide by zero encountered in log\n", - " return log(X0)\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(X0)\n", - ":2: RuntimeWarning: divide by zero encountered in log\n", - " return log(X0)\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(X0)\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return sqrt(X0)\n", - " 49%|████▉ | 49/100 [00:01<00:01, 32.49it/s]:2: RuntimeWarning: invalid value encountered in power\n", - " return relu(relu(X0**_a0_))\n", - ":2: RuntimeWarning: divide by zero encountered in divide\n", - " return relu(_a0_/X0)\n", - ":2: RuntimeWarning: divide by zero encountered in divide\n", - " return relu(_a0_/X0)\n", - ":2: RuntimeWarning: divide by zero encountered in divide\n", - " return relu(_a0_/X0)\n", - ":2: RuntimeWarning: divide by zero encountered in log\n", - " return abs(log(X0))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return abs(log(X0))\n", - ":2: RuntimeWarning: divide by zero encountered in log\n", - " return abs(log(X0))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return abs(log(X0))\n", - " 53%|█████▎ | 53/100 [00:01<00:01, 32.94it/s]:2: RuntimeWarning: invalid value encountered in sqrt\n", - " return abs(sqrt(X0))\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return abs(sqrt(X0))\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return sqrt(X0)\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return sqrt(X0)\n", - " 57%|█████▋ | 57/100 [00:01<00:01, 32.46it/s]:2: RuntimeWarning: invalid value encountered in sqrt\n", - " return abs(relu(sqrt(X0)))\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return abs(relu(sqrt(X0)))\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return abs(relu(sqrt(X0)))\n", - ":2: RuntimeWarning: divide by zero encountered in divide\n", - " return _a0_/X0\n", - ":2: RuntimeWarning: divide by zero encountered in divide\n", - " return _a0_/X0\n", - ":2: RuntimeWarning: divide by zero encountered in log\n", - " return log(X0)\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(X0)\n", - ":2: RuntimeWarning: divide by zero encountered in log\n", - " return log(X0)\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(X0)\n", - ":2: RuntimeWarning: divide by zero encountered in divide\n", - " return relu(_a0_/X0)\n", - ":2: RuntimeWarning: divide by zero encountered in divide\n", - " return relu(_a0_/X0)\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return sig(sig(sig(log(_a0_))))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return sig(sig(sig(log(_a0_))))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return sig(sig(sig(log(_a0_))))\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return sqrt(X0)\n", - " 61%|██████ | 61/100 [00:02<00:01, 32.52it/s]:2: RuntimeWarning: invalid value encountered in sqrt\n", - " return abs(sqrt(X0))\n", - ":2: RuntimeWarning: divide by zero encountered in log\n", - " return log(X0)\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(X0)\n", - " 65%|██████▌ | 65/100 [00:02<00:01, 33.12it/s]:2: RuntimeWarning: divide by zero encountered in log\n", - " return log(relu(X0))\n", - ":2: RuntimeWarning: divide by zero encountered in divide\n", - " return _a0_/X0\n", - ":2: RuntimeWarning: divide by zero encountered in divide\n", - " return _a0_/X0\n", - ":2: RuntimeWarning: divide by zero encountered in power\n", - " return relu(X0)**X0\n", - ":2: RuntimeWarning: divide by zero encountered in power\n", - " return relu(X0)**X0\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return sqrt(X0)\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return sqrt(X0)\n", - " 69%|██████▉ | 69/100 [00:02<00:00, 33.02it/s]:2: RuntimeWarning: invalid value encountered in sqrt\n", - " return sqrt(X0)\n", - " 73%|███████▎ | 73/100 [00:02<00:00, 31.93it/s]:2: RuntimeWarning: divide by zero encountered in divide\n", - " return relu(_a0_/X0)\n", - ":2: RuntimeWarning: divide by zero encountered in divide\n", - " return relu(_a0_/X0)\n", - " 77%|███████▋ | 77/100 [00:02<00:00, 31.69it/s]:2: RuntimeWarning: divide by zero encountered in divide\n", - " return _a0_/X0\n", - ":2: RuntimeWarning: divide by zero encountered in divide\n", - " return _a0_/X0\n", - ":2: RuntimeWarning: divide by zero encountered in divide\n", - " return abs(_a0_/X0)\n", - ":2: RuntimeWarning: divide by zero encountered in divide\n", - " return abs(_a0_/X0)\n", - ":2: RuntimeWarning: divide by zero encountered in divide\n", - " return abs(_a0_/X0)\n", - ":2: RuntimeWarning: divide by zero encountered in divide\n", - " return relu(_a0_/X0)\n", - ":2: RuntimeWarning: divide by zero encountered in divide\n", - " return relu(_a0_/X0)\n", - ":2: RuntimeWarning: divide by zero encountered in log\n", - " return log(relu(relu(relu(X0))))\n", - ":2: RuntimeWarning: divide by zero encountered in log\n", - " return log(relu(relu(relu(X0))))\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return relu(sqrt(X0))\n", - " 81%|████████ | 81/100 [00:02<00:00, 32.10it/s]:2: RuntimeWarning: divide by zero encountered in divide\n", - " return _a0_/X0\n", - ":2: RuntimeWarning: divide by zero encountered in divide\n", - " return _a0_/X0\n", - " 85%|████████▌ | 85/100 [00:02<00:00, 31.54it/s]:2: RuntimeWarning: invalid value encountered in sqrt\n", - " return relu(sqrt(X0))\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return relu(sqrt(X0))\n", - ":2: RuntimeWarning: divide by zero encountered in divide\n", - " return relu(_a0_/X0)\n", - ":2: RuntimeWarning: divide by zero encountered in divide\n", - " return relu(_a0_/X0)\n", - ":2: RuntimeWarning: divide by zero encountered in divide\n", - " return relu(_a0_/X0)\n", - ":2: RuntimeWarning: divide by zero encountered in divide\n", - " return relu(_a0_/X0)\n", - ":2: RuntimeWarning: divide by zero encountered in divide\n", - " return _a0_/X0\n", - ":2: RuntimeWarning: divide by zero encountered in divide\n", - " return _a0_/X0\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return sqrt(X0)\n", - " 97%|█████████▋| 97/100 [00:03<00:00, 33.64it/s]:2: RuntimeWarning: invalid value encountered in divide\n", - " return relu(relu(X0))/X0\n", - ":2: RuntimeWarning: invalid value encountered in divide\n", - " return relu(relu(X0))/X0\n", - "100%|██████████| 100/100 [00:03<00:00, 31.19it/s]\n", - "INFO:autora.skl.bms:BMS fitting finished\n" - ] - } - ], - "source": [ - "# define seed cycle\n", - "# we will use this cycle to collect initial data and initialize the BMS model\n", - "seed_cycle = Cycle(\n", - " metadata=study_metadata,\n", - " theorist=bms_theorist,\n", - " experimentalist=random_experimentalist,\n", - " experiment_runner=synthetic_experiment_runner,\n", - ")\n", - "\n", - "# run seed cycle\n", - "seed_cycle.run(num_cycles=1)\n", - "\n", - "seed_model = seed_cycle.data.theories[0].model_\n", - "seed_x = seed_cycle.data.conditions[0]\n", - "seed_y = seed_cycle.data.observations[0][:, 1]" - ], - "metadata": { - "collapsed": false - } - }, - { - "cell_type": "code", - "execution_count": 10, - "outputs": [], - "source": [ - "# now we define the poppernet experimentalist which takes into account\n", - "# the seed data and the seed model\n", - "popper_experimentalist = Pipeline(\n", - " [\n", - " (\"popper_pool\", poppernet_pool), # type: ignore\n", - " (\"nearest_values_sampler\", nearest_values_sampler), # type: ignore\n", - " ],\n", - " {\n", - " \"popper_pool\": {\n", - " \"metadata\": study_metadata,\n", - " \"model\": seed_model,\n", - " \"x_train\": seed_x,\n", - " \"y_train\": seed_y,\n", - " \"n\": samples_per_cycle,\n", - " \"plot\": True,\n", - " },\n", - " \"nearest_values_sampler\": {\n", - " \"allowed_values\": allowed_values,\n", - " \"n\": samples_per_cycle,\n", - " },\n", - " },\n", - ")" - ], - "metadata": { - "collapsed": false - } - }, - { - "cell_type": "code", - "execution_count": 11, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Finished training Popper Network...\n" - ] - }, - { - "data": { - "text/plain": "
", - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkIAAAHHCAYAAABTMjf2AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABvAklEQVR4nO3dd1hTZ8MG8DsJhDADyEaQDU5AXDjqbHFUq62j2rrqaK22tdq31fZzddnpa1+1w7aO2lqtdbUuHHXvBYooSxGUqYwwZCXn+wNJRUFBgZOQ+3dduVpOTpI7EeXmnOd5jkQQBAFEREREBkgqdgAiIiIisbAIERERkcFiESIiIiKDxSJEREREBotFiIiIiAwWixAREREZLBYhIiIiMlgsQkRERGSwWISIiIjIYLEIERHV0rhx42BhYSF2jMe2atUqSCQSJCYmarf16NEDPXr0qLPXmD9/PiQSSZ09H1F9YREiIp22du1aLF68WOwYVIXCwkLMnz8fBw4cEDsK0WNjESIincYi1DB2796N3bt31+oxhYWFWLBgQZVF6P/+7/9w586dOkpHVH9YhIioVgoKCsSOIBqx33tZWRlKSkrq5bnlcjnkcnmdPZ+RkREUCkWdPR9RfWERIqpDFeMirly5guHDh8PKygpNmjTBW2+9haKiokr7lpWV4aOPPoK3tzdMTEzg4eGB999/H8XFxZX28/DwwLPPPovdu3cjKCgICoUCLVq0wKZNmyrtVzHu49ChQ3j11VfRpEkTWFlZYcyYMcjOzn4g686dO9GtWzeYm5vD0tISAwYMwKVLlyrtUzEWJiEhAf3794elpSVeeumlR77/+Ph4jBs3DtbW1lAqlRg/fjwKCwsf2P/XX39FSEgITE1NYWtrixdffBHJycna+3v06IHt27fj+vXrkEgkkEgk8PDwgCAIsLOzw4wZM7T7ajQaWFtbQyaTIScnR7v9888/h5GREfLz87Xb/vnnH+17t7a2xnPPPYfLly9X+V6io6MxatQo2NjYoGvXrtW+94iICNjb26NHjx6VXut+FZ/p1atXERYWBnNzc7i4uODDDz+EIAja/RITEyGRSPDVV19h8eLF2u+T6OhoAMCVK1cwdOhQ2NraQqFQoF27dvjrr78eeL1Lly6hV69eMDU1RdOmTfHxxx9Do9E8sF9VY4SKioowf/58+Pn5QaFQwNnZGc8//zwSEhKQmJgIe3t7AMCCBQu0fz7z58+v9Pndq7bf80eOHEGHDh2gUCjg5eWFX375pdrPlehxGYkdgKgxGj58ODw8PLBw4UKcOHEC//vf/5CdnV3pH/KJEydi9erVGDp0KGbOnImTJ09i4cKFuHz5MjZv3lzp+eLi4jBixAi89tprGDt2LFauXIlhw4Zh165dePrppyvtO23aNFhbW2P+/PmIiYnBd999h+vXr+PAgQPaH0xr1qzB2LFjERYWhs8//xyFhYX47rvv0LVrV5w/fx4eHh7a5ysrK0NYWBi6du2Kr776CmZmZjV6/56enli4cCHOnTuHn376CQ4ODvj888+1+3zyySeYM2cOhg8fjokTJyIzMxNLlizBU089hfPnz8Pa2hoffPABcnNzcePGDfz3v/8FAFhYWEAikaBLly44dOiQ9vkuXLiA3NxcSKVSHD16FAMGDAAAHD58GMHBwdrBzXv37kW/fv3g5eWF+fPn486dO1iyZAm6dOmCc+fOVXrvADBs2DD4+vri008/rVRU7nX69GmEhYWhXbt22Lp1K0xNTR/6+ajVavTt2xedOnXCF198gV27dmHevHkoKyvDhx9+WGnflStXoqioCJMnT4aJiQlsbW1x6dIldOnSBa6urpg1axbMzc3xxx9/YPDgwdi4cSOGDBkCAEhLS0PPnj1RVlam3W/58uWPzFeR8dlnn8W+ffvw4osv4q233kJeXh727NmDqKgo9OnTB9999x2mTJmCIUOG4PnnnwcAtGnTptrnrM33fHx8PIYOHYoJEyZg7NixWLFiBcaNG4eQkBC0bNnykfmJakwgojozb948AYAwaNCgSttff/11AYAQGRkpCIIgRERECACEiRMnVtrvnXfeEQAI//zzj3Zbs2bNBADCxo0btdtyc3MFZ2dnITg4WLtt5cqVAgAhJCREKCkp0W7/4osvBADC1q1bBUEQhLy8PMHa2lqYNGlSpddOS0sTlEplpe1jx44VAAizZs2q1ft/5ZVXKm0fMmSI0KRJE+3XiYmJgkwmEz755JNK+128eFEwMjKqtH3AgAFCs2bNHnitL7/8UpDJZIJKpRIEQRD+97//Cc2aNRM6dOggvPfee4IgCIJarRasra2Ft99+W/u4oKAgwcHBQbh9+7Z2W2RkpCCVSoUxY8Y88F5Gjhz5wGuPHTtWMDc3FwRBEI4cOSJYWVkJAwYMEIqKih75GVV8pm+88YZ2m0ajEQYMGCDI5XIhMzNTEARBuHbtmgBAsLKyEjIyMio9R+/evYXWrVtXej2NRiN07txZ8PX11W6bPn26AEA4efKkdltGRoagVCoFAMK1a9e027t37y50795d+/WKFSsEAMKiRYseeA8ajUYQBEHIzMwUAAjz5s17YJ+Kz6/C43zPHzp0qFJuExMTYebMmQ+8FtGT4KkxonowderUSl+/8cYbAIAdO3ZU+u+9p3YAYObMmQCA7du3V9ru4uKi/S0fgPaU1/nz55GWllZp38mTJ8PY2Fj79ZQpU2BkZKR9zT179iAnJwcjR47ErVu3tDeZTIaOHTti//79D7yfKVOm1PzNA3jttdcqfd2tWzfcvn0bKpUKALBp0yZoNBoMHz68UgYnJyf4+vpWmeF+3bp1g1qtxrFjxwCUH/np1q0bunXrhsOHDwMAoqKikJOTg27dugEAUlNTERERgXHjxsHW1lb7XG3atMHTTz+t/Ywe9l7utX//foSFhaF3797YtGkTTExMHpm7wrRp07T/L5FIMG3aNJSUlGDv3r2V9nvhhRe0p6AAICsrC//88w+GDx+OvLw87Wd3+/ZthIWFIS4uDjdv3gRQ/n3WqVMndOjQQft4e3v7h57erLBx40bY2dlpv3fv9TjT4mv7Pd+iRQvtn1tFbn9/f1y9erXWr030MDw1RlQPfH19K33t7e0NqVSqXbfl+vXrkEql8PHxqbSfk5MTrK2tcf369UrbfXx8Hvjh4+fnB6B8LImTk1O1r21hYQFnZ2fta8fFxQEAevXqVWV2KyurSl8bGRmhadOm1b3VKrm7u1f62sbGBgCQnZ0NKysrxMXFQRCEB7JWuLfIVadt27YwMzPD4cOHERYWhsOHD2PBggVwcnLCkiVLUFRUpC1EFWN7Kj5Xf3//B56vefPmCA8PR0FBAczNzbXbPT09q3z9oqIiDBgwACEhIfjjjz9gZFTzf06lUim8vLwqbbv3z/Ne979+fHw8BEHAnDlzMGfOnCqfPyMjA66urrh+/To6duz4wP1Vvf/7JSQkwN/fv1bv62Fq+z1///cQUP59VNV4N6InwSJE1ACq+w1ajAXnKgbKrlmzplKBqnD/Dz4TExNIpbU7eCyTyarcLtwdY6PRaCCRSLBz584q963JYoXGxsbo2LEjDh06hPj4eKSlpaFbt25wdHREaWkpTp48icOHDyMgIKDSEZXaqm48jYmJCfr374+tW7di165dePbZZx/7NWrz+hV/fu+88w7CwsKqfMz9ZUOX1PR7/lHfQ0R1hUWIqB7ExcVV+k0+Pj4eGo1GOxC3WbNm0Gg0iIuLQ/PmzbX7paenIycnB82aNav0fBVHAe79IRIbGwsADwzujYuLQ8+ePbVf5+fnIzU1Ff379wdQfnQKABwcHNCnT58nf7OPwdvbG4IgwNPTU3skpDoP+8HZrVs3fP7559i7dy/s7OwQEBAAiUSCli1b4vDhwzh8+HClglLxucbExDzwXFeuXIGdnV2lo0GPyvXbb7/hueeew7Bhw7Bz584ar8ys0Whw9erVSu+9uj/P+1UcSTI2Nn7kn1+zZs20RwDvVdX7v5+3tzdOnjyJ0tLSao/Q1abI1/Z7nqihcIwQUT1YtmxZpa+XLFkCAOjXrx8AaEvJ/QsFLlq0CAC0M54qpKSkVJpVo1Kp8MsvvyAoKOiBozrLly9HaWmp9uvvvvsOZWVl2tcOCwuDlZUVPv3000r7VcjMzKzx+3xczz//PGQyGRYsWPDAb/iCIOD27dvar83NzZGbm1vl83Tr1g3FxcVYvHgxunbtqv3B3K1bN6xZswYpKSmVxpk4OzsjKCgIq1evrjTFPioqCrt379b+udSUXC7Hpk2b0L59ewwcOBCnTp2q8WOXLl2q/X9BELB06VIYGxujd+/eD32cg4MDevTogR9++AGpqakP3H/vn1///v1x4sSJSrkyMzPx22+/PTLfCy+8gFu3blXKeW9eANoZhPd+ltWp7fc8UUPhESGienDt2jUMGjQIffv2xfHjx/Hrr79i1KhRCAwMBAAEBgZi7NixWL58OXJyctC9e3ecOnUKq1evxuDBgysd0QHKx49MmDABp0+fhqOjI1asWIH09HSsXLnygdcuKSlB7969MXz4cMTExODbb79F165dMWjQIADlY4C+++47jB49Gm3btsWLL74Ie3t7JCUlYfv27ejSpUuVP/zqkre3Nz7++GPMnj0biYmJGDx4MCwtLXHt2jVs3rwZkydPxjvvvAMACAkJwfr16zFjxgy0b98eFhYWGDhwIAAgNDQURkZGiImJweTJk7XP/9RTT+G7774DgEpFCAC+/PJL9OvXD6GhoZgwYYJ2+rxSqdSugVMbpqam2LZtG3r16oV+/frh4MGDaNWq1UMfo1AosGvXLowdOxYdO3bEzp07sX37drz//vs1Oo23bNkydO3aFa1bt8akSZPg5eWF9PR0HD9+HDdu3EBkZCQA4N1338WaNWvQt29fvPXWW9rp882aNcOFCxce+hpjxozBL7/8ghkzZuDUqVPo1q0bCgoKsHfvXrz++ut47rnnYGpqihYtWmD9+vXw8/ODra0tWrVqVeX7r+33PFGDEWu6GlFjVDFlODo6Whg6dKhgaWkp2NjYCNOmTRPu3LlTad/S0lJhwYIFgqenp2BsbCy4ubkJs2fPfmAKdrNmzYQBAwYI4eHhQps2bQQTExMhICBA2LBhQ6X9KqbPHzx4UJg8ebJgY2MjWFhYCC+99FKlqeIV9u/fL4SFhQlKpVJQKBSCt7e3MG7cOOHMmTPafe6dJl6b918xBfz+bPdO1xYEQdi4caPQtWtXwdzcXDA3NxcCAgKEqVOnCjExMdp98vPzhVGjRgnW1tYCgAem0rdv3/6BKeI3btwQAAhubm5V5ty7d6/QpUsXwdTUVLCyshIGDhwoREdH1+i9CELVn8utW7eEFi1aCE5OTkJcXFy1n1HFYxMSEoRnnnlGMDMzExwdHYV58+YJarVau1/F9Pkvv/yyyudJSEgQxowZIzg5OQnGxsaCq6ur8Oyzzwp//vlnpf0uXLggdO/eXVAoFIKrq6vw0UcfCT///PMjp88LgiAUFhYKH3zwgfZ71MnJSRg6dKiQkJCg3efYsWNCSEiIIJfLK02lv3/6vCDU/nv+flVlJHpSEkHgyDOiujJ//nwsWLAAmZmZsLOzq5Pn9PDwQKtWrbBt27aH7rdq1SqMHz8ep0+fRrt27erktanujRs3Dn/++edDV58moobDMUJERERksFiEiIiIyGCxCBEREZHB4hghIiIiMlg8IkREREQGi0WIiIiIDBaL0CMIggCVSsXr2xARETVCLEKPkJeXB6VSiby8PLGjEBERUR1jESIiIiKDxSJEREREBotFiIiIiAwWixAREREZLBYhIiIiMlgsQkRERGSwWISIiIjIYLEIERERkcFiESIiIiKDxSJEREREBotFiIiIiAwWixAREREZLBYhIiIiA+fh4YHFixdrv5ZIJNiyZcsTPWddPEdDMBI7ABEREemW1NRU2NjY1Gjf+fPnY8uWLYiIiHjs5xATixCRjsktLEWxWg1rUznkRjxoS0Q1U1JSArlcXifP5eTkpBPP0RD05l/ZhQsXon379rC0tISDgwMGDx6MmJiYRz5uw4YNCAgIgEKhQOvWrbFjx44GSEtUO+eSsjHzj0i0/2QvAj/cjQ6f7EOLubvQ/5vDWLIvDhl5RWJHJKIG1qNHD0ybNg3Tpk2DUqmEnZ0d5syZA0EQAJSfzvroo48wZswYWFlZYfLkyQCAI0eOoFu3bjA1NYWbmxvefPNNFBQUaJ83IyMDAwcOhKmpKTw9PfHbb7898Nr3n9a6ceMGRo4cCVtbW5ibm6Ndu3Y4efIkVq1ahQULFiAyMhISiQQSiQSrVq2q8jkuXryIXr16wdTUFE2aNMHkyZORn5+vvX/cuHEYPHgwvvrqKzg7O6NJkyaYOnUqSktL6/BTfZDeHBE6ePAgpk6divbt26OsrAzvv/8+nnnmGURHR8Pc3LzKxxw7dgwjR47EwoUL8eyzz2Lt2rUYPHgwzp07h1atWjXwOyB6UEZeERb8FY3tF1MfuK9MIyA6VYXoVBWWHYjHxK5emNbLBwpjmQhJiRoPQRBwp1Td4K9raiyDRCKp1WNWr16NCRMm4NSpUzhz5gwmT54Md3d3TJo0CQDw1VdfYe7cuZg3bx4AICEhAX379sXHH3+MFStWIDMzU1umVq5cCaC8cKSkpGD//v0wNjbGm2++iYyMjGoz5Ofno3v37nB1dcVff/0FJycnnDt3DhqNBiNGjEBUVBR27dqFvXv3AgCUSuUDz1FQUICwsDCEhobi9OnTyMjIwMSJEzFt2jRtcQKA/fv3w9nZGfv370d8fDxGjBiBoKAg7futDxKholrqmczMTDg4OODgwYN46qmnqtxnxIgRKCgowLZt27TbOnXqhKCgIHz//fc1eh2VSgWlUonc3FxYWVnVSXYiAIhIzsGra84gXVUMqQR4vm1TDA1pisCm1lAYS5GaW4Qj8bfw28kkRCbnAAD8HC3w3csh8La3EDc8kR4rLClDi7nhDf660R+GwUxe8+MPPXr0QEZGBi5duqQtULNmzcJff/2F6OhoeHh4IDg4GJs3b9Y+ZuLEiZDJZPjhhx+0244cOYLu3bujoKAASUlJ8Pf3x6lTp9C+fXsAwJUrV9C8eXP897//xfTp0wGUH83ZvHkzBg8ejOXLl+Odd95BYmIibG1tH8hZ3Rihe5/jxx9/xHvvvYfk5GTtwYsdO3Zg4MCBSElJgaOjI8aNG4cDBw4gISEBMln5L3zDhw+HVCrFunXravy51ZbenBq7X25uLgBU+YdS4fjx4+jTp0+lbWFhYTh+/Hi1jykuLoZKpap0I6prp65lYeTyE0hXFcPXwQLb3uiGr4YFopNXE5jKy39rdLE2xfB2btjyemd8+1Jb2FnIEZuej+e/PYZjCbfEfgtE1AA6depU6ShSaGgo4uLioFaXH9Fq165dpf0jIyOxatUqWFhYaG9hYWHQaDS4du0aLl++DCMjI4SEhGgfExAQAGtr62ozREREIDg4+KE/bx/l8uXLCAwMrHQGp0uXLtBoNJWGubRs2VJbggDA2dn5oUer6oLenBq7l0ajwfTp09GlS5eHnuJKS0uDo6NjpW2Ojo5IS0ur9jELFy7EggUL6iwr0f2iU1QYv/IU7pSq0c3XDt+9HAILk+r/KkokEvRv7Yz2HraYvOYMziflYOyKU1g+uh16Bjg0YHKixsHUWIboD8NEed26dv/QkPz8fLz66qt48803H9jX3d0dsbGxtX4NU1PTx85XW8bGxpW+lkgk0Gg09fqaenlEaOrUqYiKiqqXQ2WzZ89Gbm6u9pacnFznr0GGK6ugBJPXnEFBiRqhXk3w45h2Dy1B97K3NMHvkzqhb0snlKoFvPrrWRyN55EhotqSSCQwkxs1+K2244MA4OTJk5W+PnHiBHx9fSsdNblX27ZtER0dDR8fnwducrkcAQEBKCsrw9mzZ7WPiYmJQU5OTrUZ2rRpg4iICGRlZVV5v1wu1x6hqk7z5s0RGRlZadD20aNHIZVK4e/v/9DH1je9K0LTpk3Dtm3bsH//fjRt2vSh+zo5OSE9Pb3StvT09IdO6TMxMYGVlVWlG1FdEAQB/9kQiRvZd9CsiRm+fzmk1gOfFcYyLBkVjD7NHVFSpsHkX84gJi2vnhITkdiSkpIwY8YMxMTE4Pfff8eSJUvw1ltvVbv/e++9h2PHjmHatGmIiIhAXFwctm7dimnTpgEA/P390bdvX7z66qs4efIkzp49i4kTJz70qM/IkSPh5OSEwYMH4+jRo7h69So2btyoHWbi4eGBa9euISIiArdu3UJxcfEDz/HSSy9BoVBg7NixiIqKwv79+/HGG29g9OjRD5y5aWh6U4QEQcC0adOwefNm/PPPP/D09HzkY0JDQ7Fv375K2/bs2YPQ0ND6iklUrU3nbmLflQzIZVL8MDoESjPjRz+oCsYyKZa9FIyOnrYoKFFjwurTuJ3/4D88RKT/xowZgzt37qBDhw6YOnUq3nrrLe00+aq0adMGBw8eRGxsLLp164bg4GDMnTsXLi4u2n1WrlwJFxcXdO/eHc8//zwmT54MB4fqT7PL5XLs3r0bDg4O6N+/P1q3bo3PPvtMe1TqhRdeQN++fdGzZ0/Y29vj999/f+A5zMzMEB4ejqysLLRv3x5Dhw5F7969sXTp0if4dOqG3swae/3117F27Vps3bq10mE0pVKpbbJjxoyBq6srFi5cCKB8+nz37t3x2WefYcCAAVi3bh0+/fTTWk2f56wxqgvpqiI8veggVEVl+E+YP6b29Hni58wuKMFzy44iKasQnb2bYM2EjpBJa3/onYh0U48ePRAUFFTp0hdU9/TmiNB3332H3Nxc9OjRA87Oztrb+vXrtfskJSUhNfXf9Vg6d+6MtWvXYvny5QgMDMSff/6JLVu2cA0hanCf77wCVVEZWrsq8epTXnXynDbmcvw8th1MjWU4lnAbPxxKqJPnJSIyJHoza6wmB64OHDjwwLZhw4Zh2LBh9ZCIqGaibuZi0/mbAICPB7eCkazufv/wdbTEguda4t0/L+Dr3bHo5NUEbd11/9o+RES6Qm+KEJE+EgQBn+64DAB4LsgFgW7Wdf4aw0Ka4nDcLfwdmYK31p1H+AAXmCVdA3x8AF/fOn89ImoYVf1yT3VPb06NEemjI/G3cCzhNuRGUrzzTP1MEZVIJPhkSCu4WsmRnHUHX735NdC/P+DnB/TtC2Rn18vrEhE1BixCRPVo2f54AMCoDu5wszWrt9exUhjjk/MbAAAr2w3COZe7pWvvXmDkyHp7XSIifcciRFRPziVl48TVLBjLJJhcRwOkqxUbix5//ojnL+6DIJHi3X5voVhmBKjVQHg4EBdXv69PRKSnWISI6sm3+8tncQ0OcoWLdT0vUZ9Q/lpz/vkJdgXZiLdzx8/tBv97f3x8/b4+EZGeYhEiqgfXbhVg7+V0SCTAq9296/8Fvctfw6YoD+/vXwEAWNp5BNIsmpTf7/Pk6xYRETVGLEJE9eC3E9cBAD39HeDjYFH/L+jnB4SFATIZhlzaj5Ab0SiUm+LTXq+Ub+fsMSKiKrEIEdWxolI1Npy9AQB4uZN7w73w778DffpAAmDB3h8gETT4q3l3nPzi+4bLQESkZ1iEiOrY35EpyL1TiqY2pujuV/31e+qcjQ2waxcQG4tWK5dgZPPyhRXn/ZMEtUYvrqRDRPfo0aMHpk+fLnYMLV3LU1dYhIjq2K8nkwAAozq6i3PtL19foF8//GdYB1gpjHAlLQ+bzt1o+BxEJLqSkhKxI+g8FiGiOhSfkYfI5BzIpBIMC3ETNYuNuVx7cddFe2JRVKoWNQ9RoxAbC+zcWe9LUowbNw4HDx7EN998A4lEAolEgoSEBEyYMAGenp4wNTWFv78/vvnmmwceN3jwYHzyySdwcXHRXqT82LFjCAoKgkKhQLt27bBlyxZIJBJERERoHxsVFYV+/frBwsICjo6OGD16NG7dulVtnsTExHr9DBoKixBRHdp0rvyaYj387GFvaSJyGmBsZw+4WpsiNbcIK48mih2HSH9lZZWv1O7v3yArt3/zzTcIDQ3FpEmTkJqaitTUVDRt2hRNmzbFhg0bEB0djblz5+L999/HH3/8Uemx+/btQ0xMDPbs2YNt27ZBpVJh4MCBaN26Nc6dO4ePPvoI7733XqXH5OTkoFevXggODsaZM2ewa9cupKenY/jw4dXmcXMT95e9usJrjRHVEY1GwNaIFADAkLauIqcppzCWYcbTfpi5IRLfHojHi+3dYGMuFzsWkf4ZNap8pfZ7VazcvmtXnb+cUqmEXC6HmZkZnJyctNsXLFig/X9PT08cP34cf/zxh7awAIC5uTl++uknyOXlf9e///57SCQS/Pjjj1AoFGjRogVu3ryJSZMmaR+zdOlSBAcH49NPP9VuW7FiBdzc3BAbGws/P78q8zQGPCJEVEdOXsvCzZw7sFQYoU9zR7HjaA0OdkVzZyvkFZVh6X4urEhUa7Gx5Su0q+87vSzCyu3Lli1DSEgI7O3tYWFhgeXLlyMpKanSPq1bt9aWIACIiYlBmzZtoFAotNs6dOhQ6TGRkZHYv38/LCwstLeAgAAAQMLdBVsbKxYhojqy+Xz5gORn2zhDYSwTOc2/ZFIJZvcr/wftl+OJSM4qFDkRkZ55VBFooJXb161bh3feeQcTJkzA7t27ERERgfHjxz8wINrc3LzWz52fn4+BAwciIiKi0i0uLg5PPfVUXb0FncRTY0R1oFStQfildADAoEDdOC12r6f87NHZuwmOJdzG0n/i8fnQNmJHItIf3o9YHb6eVm6Xy+VQ33MU6ujRo+jcuTNef/117baaHK3x9/fHr7/+iuLiYpiYlI9dPH36dKV92rZti40bN8LDwwNGRlVXg/vzNBY8IkRUB05cvY3cO6VoYi5HB09bseNUaeYzfgCAP8/dQOKtApHTEOmRe1Zur0Qmq9eV2z08PHDy5EkkJibi1q1b8PX1xZkzZxAeHo7Y2FjMmTPngUJTlVGjRkGj0WDy5Mm4fPkywsPD8dVXXwEAJJLyJT6mTp2KrKwsjBw5EqdPn0ZCQgLCw8Mxfvx4bfm5P49Go6mX993QWISI6sDOqDQAwDMtHcVZO6gGQprZooe/PdQaAf/bx6vRE9XK3ZXbK+nTp3x7PXnnnXcgk8nQokUL2NvbIywsDM8//zxGjBiBjh074vbt25WODlXHysoKf//9NyIiIhAUFIQPPvgAc+fOBQDtuCEXFxccPXoUarUazzzzDFq3bo3p06fD2toaUqm0yjz3j03SVxJBELjk7EOoVCoolUrk5ubCyspK7Dikg9QaAR0/3Ytb+SVY/UoHdPezFztStS7cyMGgpUchlQC7334KPg6WYkci0i9xceVjgnx89Poafr/99hvGjx+P3NxcmJqaih1HVDwiRPSEziRm4VZ+CZSmxujs3UTsOA/Vpqk1nmnhCI0A/HcvjwoR1drdldv1rQT98ssvOHLkCK5du4YtW7bgvffew/Dhww2+BAEsQkRPrOK0WJ/mjjCW6f5fqbefLh8rtP1CKi6nqkROQ0QNIS0tDS+//DKaN2+Ot99+G8OGDcPy5cvFjqUTeGrsEXhqjB5GEAR0/uwfpOYW4acx7dCnhe6sH/QwU9eew/YLqXimhSOWj2kndhwiItHo/q+vRDrscmoeUnOLoDCWoquvndhxauztPr7l44Si03HxRq7YcYiIRMMiRPQE9sdkAAC6eNvp1CKKj+LjYInBQeXrHS3aEyNyGiIi8bAIET2BA3eLUM8AB5GT1N6bvX0hk0qwPyYT55Pq58KRRES6jkWI6DHlFpbi7PXyAtHDX3enzFfHw84czweXHxXiDDIiMlQsQkSP6WBcJjQC4OdogaY2ZmLHeSxv9PKFkVSCQ7GZ2lJHRGRIWISIHtOBK3dPi/nr32mxCu5NzPBC26YAgMV7Y0VOQ0TU8FiEiB6DRiPgQGwmAKCHHhchAJjWywdGUgkOx93C6cQsseMQETUoFiGix3DxZi6yCkpgaWKEdh42Ysd5Im62ZhjWzg0A8N89PCpERIaFRYjoMRyJvwUACPVuoherST/KtF4+MJZJcCzhNk5cvS12HCKiBqP//4ITieBYQnkR6uKjP4soPoyrtSlGtOdRISIyPCxCRLVUVKrG6cTyGVZdfHT7Iqu1MbWnD+QyKU5ey9IWPSKixo5FiKiWzl7PRkmZBg6WJvC2txA7Tp1xVppiZIfyo0KL98SBlyEkIkPAIkRUS0fvjg/q6mMHiUQicpq69XpPH8iNpDiVmIWj8RwrRESNH4sQUS0dTSgvCJ0byfigezlaKTCqgzsA4L97Y3lUiIgaPRYholrIvVOKizdyADSu8UH3er2HN0yMpDh7PRuH4jhWiIgaNxYholo4cfU2NALgZW8OZ6Wp2HHqhYOVAi93agagfAYZjwoRUWPGIkRUCxVr7HT2bpxHgyq81t0bCmMpIpJztCtoExE1RixCRLVw6lr5JSg6ejbuImRvaYIxoR4AeFSIiBo3FiGiGlIVleJyqgoA0MHTVuQ09W/yU14wNZbhwo1c/HP3ArNERI0NixBRDZ29ng2NADRrYgZHK4XYceqdnYUJxnb2AMAZZETUeLEIEdXQ6bunxdp7NP6jQRUmP+UFc7kMUTdV2BOdLnYcIqI6xyJEVEMV44MM4bRYBVtzOcZ18QAALN7L1aaJqPHRqyJ06NAhDBw4EC4uLpBIJNiyZctD9z9w4AAkEskDt7S0tIYJTI1GUakakXfXD+poQEUIACZ184KFiRGiU1UIv8SjQkTUuOhVESooKEBgYCCWLVtWq8fFxMQgNTVVe3NwcKinhNRYRSTnoFQtwMHSBO62ZmLHaVDWZnKM1x4VioVGw6NCRNR4GIkdoDb69euHfv361fpxDg4OsLa2rvtAZDDuPS3W2K4vVhMTu3ph1dFEXEnLw65Laejf2lnsSEREdUKvjgg9rqCgIDg7O+Ppp5/G0aNHxY5DesgQxwfdS2lmjFe6egLgUSEialwadRFydnbG999/j40bN2Ljxo1wc3NDjx49cO7cuWofU1xcDJVKVelGhq1UrcG5pGwAhluEAOCVrp6wVBghNj0f2y+mih2HiKhONOoi5O/vj1dffRUhISHo3LkzVqxYgc6dO+O///1vtY9ZuHAhlEql9ubm5taAiUkXRaeoUFiihpXCCH4OlmLHEY3S1BiTunkBAL7ZFwc1jwoRUSPQqItQVTp06ID4+Phq7589ezZyc3O1t+Tk5AZMR7ro/N2jQW2b2UAqNbzxQfca38UDSlNjxGfkY9O5G2LHISJ6YgZXhCIiIuDsXP1ATxMTE1hZWVW6kWE7l5QDAGjrbiNuEB1gqTDG1J7eAIBFe2JRVKoWORER0ZPRq1lj+fn5lY7mXLt2DREREbC1tYW7uztmz56Nmzdv4pdffgEALF68GJ6enmjZsiWKiorw008/4Z9//sHu3bvFegukhyrGBwW7W4sbREeMCfXA6mPXcTPnDlYdS8Rr3b3FjkRE9Nj06ojQmTNnEBwcjODgYADAjBkzEBwcjLlz5wIAUlNTkZSUpN2/pKQEM2fOROvWrdG9e3dERkZi79696N27tyj5Sf9k5BXhRvYdSCRAkJu12HF0gsJYhhlP+wEAvt0fj5zCEpETERE9PonANfMfSqVSQalUIjc3l6fJDFD4pTS8uuYs/B0tEf72U2LH0RlqjYAB/zuMK2l5mNTNEx8MaCF2JCKix6JXR4SIGto57UBpa3GD6BiZVIJZ/QIAAKuPXUdyVqHIiYiIHg+LENFDnL87UDrYjQOl79fdzx6dvZugRK3Boj2xYschInosLEJE1ShVa3Dh7oVWeUToQRKJBLP7NQcAbIm4iUspuSInIiKqPRYhompcSc1DUakGVgojeNlZiB1HJ7VuqsTAQBcIAvDpjsvgkEMi0jcsQkTVOJ9cPj4oyJ0LKT7Mu2H+kBtJcTT+NvZEp4sdh4ioVliEiKpx7vrdgdJcP+ih3GzNMKlb+QVZP95+GcVlXGSRiPQHixBRNbiidM293sMHDpYmSMoqxIojiWLHISKqMRYhoircyi9G0t0p4YFcSPGRzE2MtNPpl/4ThwxVkciJiIhqhkWIqAoRd48G+TpYQGlqLG4YPTE4yBWBbtYoKFHjy/AYseMQEdUIixBRFS7cLJ8K3qaptbhB9IhUKsG8geUrTG84ewORyTniBiIiqgEWIaIqRN0tQq1deVmV2mjrboPng10BAAv+vsTp9ESk81iEiKpwsaIINVWKnET/vNs3AGZyGc4l5WDjuZtixyEieigWIaL7pKuKkJlXDKkEaOHMIlRbTkoF3ujlC6B8kUVenZ6IdBmLENF9Lt4oPxrk42ABU7lM5DT6aUJXT/g6WCCroASf7+LAaSLSXSxCRPepOC3WypVHgx6X3EiKjwe3AgD8fioJ55KyRU5ERFQ1FiGi+1RcPLQ1i9AT6ejVBC+0bQoA+L/NUShTa0RORET0IBYhovtoB0qzCD2x9/sHQGlqjOhUFX45fl3sOERED2ARIrpHRl4R0lV3B0q7cOr8k2piYYL3+pavOL1oTyxSc++InIiIqDIWIaJ7VKwf5G1vATO5kchpGocX27sh2N0a+cVl+L/NUVxbiIh0CosQ0T0u3lAB4EDpuiSVSvD5C21gLJNg35UM/BWZInYkIiItFiGie3DGWP3wc7TUri00/69LuJVfLHIiIqJyLEJE94jiQOl6M6WHNwKcLJFdWIr5f10SOw4REQAWISKtzLxipKmKIJEALTlQus4Zy6T4cmggZFIJtl1Ixe5LaWJHIiJiESKqUHE0yMvOHOYmHChdH1o3VWJSNy8AwP9tiULunVKRExGRoWMRIrqLp8UaxvQ+vvCyM0dGXjE+2hYtdhwiMnAsQkR3caB0w1AYy/D50DaQSIA/z97gKTIiEhWLENFdPCLUcNp72GLy3VNkszddRGYeZ5ERkThYhIgA3M4vRkpuEQCgJYtQg5jxjB8CnCxxu6AEszdd4EKLRCQKFiEi/HtazMvOHBYcKN0gTIxk+O+IIMhlUuy9nIH1p5PFjkREBohFiAj/nhbj+KCG1dzZCu+E+QEAPtwWjeu3C0RORESGhkWICLzivJgmdPVCB09bFJaoMeOPSKg1PEVGRA2HRYgIQNRNXmNMLDKpBF8PC4SFiRHOXs/Gkn/ixI5ERAaERYgMXlZBCW7m3AEAtHTlitJicLM1w8eDWwEA/rcvDieu3hY5EREZChYhMngVp8U87cxhpTAWOY3hGhzsiqEhTaERgLfWnUdWQYnYkYjIALAIkcHjQGndsWBQS3jZmyNdVYx3NkRySj0R1TsWITJ4/y6kyNNiYjM3McKyUW0hN5LinysZ+PnINbEjEVEjxyJEBo+X1tAtzZ2tMOfZFgCAz3ddwYUbOeIGIqJGjUWIDFp2QQluZN8dKO3CIqQrXu7ojn6tnFCqFjBt7XmoiniVeiKqHyxCZNCiUsqPBjVrYgalKQdK6wqJRILPXmgDV2tTJGUV4p0/OF6IiOoHixAZNJ4W011KU2N8+1JbyGVS7I5Ox/cHr4odiYgaIRYhMmi84rxuC3SzxvxBLQEAX4ZfwdH4WyInIqLGhkWIDBovraH7RnZww7C76wu98ft5pNxd/JKIqC6wCJHByiksQXJW+Q/VVhworbMkEgk+GtwKLV2skFVQgtd/O4fiMrXYsYiokWARIoN1KaX8+mLutmZQmnGgtC5TGMvw/cshUJoaIyI5Bx9tixY7EhE1EixCZLB4Wky/uNmaYfGLQZBIgF9PJGHDmWSxIxFRI6BXRejQoUMYOHAgXFxcIJFIsGXLlkc+5sCBA2jbti1MTEzg4+ODVatW1XtO0g+cMaZ/evo74M1evgCAD7ZE4XxStsiJiEjf6VURKigoQGBgIJYtW1aj/a9du4YBAwagZ8+eiIiIwPTp0zFx4kSEh4fXc1LSB/9eY4yX1tAnb/X2xdMtHFFSpsGra84iLbdI7EhEpMckgp6uUiaRSLB582YMHjy42n3ee+89bN++HVFRUdptL774InJycrBr164avY5KpYJSqURubi6srPgDs7HIvVOKwAW7AQDn5zwNG3O5yImoNvKLy/D8t0cRm56PwKZKrH81FApjmdixiEgP6dURodo6fvw4+vTpU2lbWFgYjh8/Xu1jiouLoVKpKt2o8bl092hQUxtTliA9ZGFihJ/GtIe1mTEib+Ri1sYLXHmaiB5Loy5CaWlpcHR0rLTN0dERKpUKd+5UvRbJwoULoVQqtTc3N7eGiEoNjAOl9Z97EzN8+1JbyKQSbIlIwQ+HuPI0EdVeoy5Cj2P27NnIzc3V3pKTOTOlMeJA6cahs7cd5g/890r1/1xJFzkREembRl2EnJyckJ5e+R/G9PR0WFlZwdTUtMrHmJiYwMrKqtKNGh9eWqPxeLlTM4zq6A5BAN78PQJx6XliRyIiPdKoi1BoaCj27dtXaduePXsQGhoqUiLSBaqiUiTeLgTAItQYSCQSzB/YEh08bZFfXIZXVp/GrfxisWMRkZ7QqyKUn5+PiIgIREREACifHh8REYGkpCQA5ae1xowZo93/tddew9WrV/Huu+/iypUr+Pbbb/HHH3/g7bffFiM+6YhLN8sHwLtac6B0YyE3kuL7l0PQrIkZkrPuYNIvZ1BUystwENGj6VUROnPmDIKDgxEcHAwAmDFjBoKDgzF37lwAQGpqqrYUAYCnpye2b9+OPXv2IDAwEF9//TV++uknhIWFiZKfdANPizVOtuZyrBjXHkpTY5xPysHMDZHQaDiTjIgeTm/XEWooXEeo8Xnz9/P4KzIF/wnzx9SePmLHoTp2POE2xqw4iVK1gKk9vfGfsACxIxGRDtOrI0JEdaHiiFBLFxbbxijUuwk+e74NAGDZ/gT8wWuSEdFDsAiRQckrKsXVWwUAeGqsMXshpCne6FV+tO/9TRdxLP6WyImISFexCJFBuZRSPlDaRalAEwsTkdNQfZrxtB8GBbqgTCPgtV/PIj4jX+xIRKSDWITIoERxIUWDIZFI8MXQNmjXzAaqojKMX3UKtzmtnojuwyJEBoWX1jAsCmMZfhgdAnfb8mn1E385gzslnFZPRP9iESKDor20RlMWIUPRxMIEK8f/O63+zXXnoea0eiK6i0WIDEZ+cRmucaC0QfK2t8DPY9tBbiTFnuh0zPsrilerJyIALEJkQKJTVBAEwFmpgB0HShucdh62+N+LQZBIgF9PJOHbAwlAbCywcycQFyd2PCISCYsQGQxecZ76tnLGvGfLr1b/ZXgMNj3/GtC/P+DnB/TtC2Rni5yQiBoaixAZDO2MMRcWIUM2rosnXk0/CwB4t99bOOwRVH7H3r3AyJHiBSMiUdS4CGVkZDz0/rKyMpw6deqJAxHVF+2MsaZcUdqgxcbivVXzMSj6AMpkRpgy+H1ccvAE1GogPJynyYgMTI2LkLOzc6Uy1Lp1ayQn/7t0/e3btxEaGlq36YjqSEFxGRIyyxfU46kxA5eQACkEfLljMUKvRyLfxAzjhi3ADSv78vvj48XNR0QNqsZF6P4ZFomJiSgtLX3oPkS6Ijq1fKC0o5UJHCwVYschMXl7AwBM1GX4fvOn8M9MRKaFLcYO/xA5CgvAhxfiJTIkdTpGSCKR1OXTEdWZize4kCLd5ecHhIUBMhmUxQVYtWEenFWZSGjihkkTFqHIw0vshETUgDhYmgwCL61Blfz+O9CnDwDAOe82Vm2YD0t1MU5buODt9RHQcMFFIoNR4yIkkUiQl5cHlUqF3NxcSCQS5OfnQ6VSaW9EuoqX1qBKbGyAXbvK1xHasQP+x/Zg+WvdIZdJsTMqDR9ui+apfiIDYVTTHQVBgJ+fX6Wvg4ODK33NU2OkiwpL/h0ozSJElfj6lt8AhAL4angg3vz9PFYdS4SrtSkmPcXTZESNXY2L0P79++szB1G9uZyqgkYAHCxN4GDFgdJUvUGBLkjPLcInOy7jkx2X4WBlgueCXMWORUT1qMZFqHv37vWZg6jeVAyU5vggqomJ3TyRknsHK48m4p0NkbC3NEFnbzuxYxFRPanxGKGysjIUFxdX2paeno4FCxbg3XffxZEjR+o8HFFduHizfPwaixDVhEQiwZwBLdC/tRNK1QJe/eUsrqRxDCRRY1XjIjRp0iS8+eab2q/z8vLQvn17LFu2DOHh4ejZsyd27NhRLyGJnkQUB0pTLUmlEiwaHoQOHrbIKy7DuBWnkZJzR+xYRFQPalyEjh49ihdeeEH79S+//AK1Wo24uDhERkZixowZ+PLLL+slJNHjulOiRlxGHgAWIaodhbEMP45pB18HC6SpijBu5Snk3il99AOJSK/UuAjdvHkTvndnVwDAvn378MILL0CpLP/hMnbsWFy6dKnuExI9gejUXGgEwN7SBE5KDpSm2lGaGWPVKx3gaGWC2PR8TP7lDIrL1GLHIqI6VOMipFAocOfOv4eGT5w4gY4dO1a6Pz8/v27TET2hC3cHSrfh0SB6TK7Wplg5rgMsTIxw8loWZvwRyQUXiRqRGhehoKAgrFmzBgBw+PBhpKeno1evXtr7ExIS4OLiUvcJiZ7Av1ecZxGix9fCxQo/jA6BsUyC7RdS8emOy2JHIqI6UuMiNHfuXHzzzTfw9vZGWFgYxo0bB2dnZ+39mzdvRpcuXeolJNHj4jXGqK508bHDl0MDAQA/HbmGn49cEzkREdWFWq0jdPbsWezevRtOTk4YNmxYpfuDgoLQoUOHOg9I9LgKissQzxWlqQ4NDnZFmqoIn+28go+3R8PJSoEBbZwf/UAi0lk1LkIA0Lx5czRv3rzK+yZPnlwngYjqSnSqCoIAOFkpuKI01ZlXn/JCas4drD5+HW+vj0ATCzk6eTUROxYRPaYaF6FDhw7VaL+nnnrqscMQ1aULXFGa6oFEIsHcgS2RpipC+KV0TP7lDP6c0hl+jpZiRyOix1DjItSjRw/tRVWruyqzRCKBWs2ppaQbLt7IAQC04UBpqmMyqQTfvBiMl386iTPXszF2xSlsfr0Ll2gg0kM1HixtY2MDNzc3zJkzB3FxccjOzn7glpWVVZ9ZiWqFM8aoPlUsuOhlb47U3PIFF1VFXHCRSN/UuAilpqbi888/x/Hjx9G6dWtMmDABx44dg5WVFZRKpfZGpAvyikpx9VYBAA6UpvpjYy7H6vEdYG9pgitpeXhtzVmUlGnEjkVEtVDjIiSXyzFixAiEh4fjypUraNOmDaZNmwY3Nzd88MEHKCsrq8+cRLVyKaV8oLSLUgE7CxOx41Aj5mZrhlXj28NcLsOxhNv4z59ccJFIn9S4CN3L3d0dc+fOxd69e+Hn54fPPvsMKhWvzky6o+JCqxwoTQ2hpYsS348OgZFUgq0RKfg8/IrYkYiohmpdhIqLi7F27Vr06dMHrVq1gp2dHbZv3w5bW9v6yEf0WLSX1uD4IGog3Xzt8fkLbQAAPxy8ilVHueAikT6o8ayxU6dOYeXKlVi3bh08PDwwfvx4/PHHHyxApJP+HShtLW4QMigvhDRFmqoIX4bHYMG2aDhbmyKspZPYsYjoISRCdXPh7yOVSuHu7o6xY8ciJCSk2v0GDRpUZ+F0gUqlglKpRG5uLqysrMSOQzWgKipFm/m7AQDn5jwNW3O5yInIkAiCgP/bEoXfTibB1FiGP14N5cxFIh1WqyL0yCdrhOsIsQjpn2MJtzDqx5NwtTbF0Vm9Hv0AojpWptZg/KrTOBx3Cw6WJtg6rQuclaZixyKiKtR4jJBGo3nkrbGVINJPFzk+iERmJJNi2Utt4edogYy8Yryy6gwKijmzlkgXPdasMSJddoEzxkgHWCmM8fPY9rCzkONyqgpv/n4eak6rJ9I5LELU6FRMnecRIRKbm60Zlo9pBxMjKfZdycAn2y+LHYmI7sMiRI1KbmEprt8uBMAVpUk3tHW3wdfDAwEAK45ew5rjieIGIqJKWISoUamYNu9mawprM84WI93wbBsX/CfMHwAw/+9oHIjJEDkREVVgEaJGJbLiivOu1qLmILrf6z288ULbplBrBExbex4xaXliRyIi6GERWrZsGTw8PKBQKNCxY0ecOnWq2n1XrVoFiURS6aZQKBowLTW0yOQcAECQm7WoOYjuJ5FIsPD51ujoaYv84jK8suo0bucXix2LyODVqAjZ2NjA1ta2Rrf6tH79esyYMQPz5s3DuXPnEBgYiLCwMGRkVH+Y2crKCqmpqdrb9evX6zUjiUcQBETcLUKBLEKkg+RGUvwwOgQeTcxwM+cOpvx2jlerJxJZjS6xsXjx4nqOUTOLFi3CpEmTMH78eADA999/j+3bt2PFihWYNWtWlY+RSCRwcuIS94YgTVWEjLxiyKQStHLl4pekm6zN5PhpbDsMXnYMp65lYcHfl/DJkNZixyIyWDUqQmPHjq3vHI9UUlKCs2fPYvbs2dptUqkUffr0wfHjx6t9XH5+Ppo1awaNRoO2bdvi008/RcuWLRsiMjWwiKQcAICfoyXM5DW+jB5Rg/NxsMQ3LwZh4i9n8NvJJDR3tsLLnZqJHYvIID3WGKGEhAT83//9H0aOHKk9LbVz505cunSpTsPd69atW1Cr1XB0dKy03dHREWlpaVU+xt/fHytWrMDWrVvx66+/QqPRoHPnzrhx40a1r1NcXAyVSlXpRvoh4u5AaY4PIn3Qu7kj3nnm7kyyvy7hxNXbIiciMky1LkIHDx5E69atcfLkSWzatAn5+fkAgMjISMybN6/OAz6J0NBQjBkzBkFBQejevTs2bdoEe3t7/PDDD9U+ZuHChVAqldqbm5tbAyamJ1FxRCiYRYj0xOs9vDEw0AVlGgGv/3YOyVmFYkciMji1LkKzZs3Cxx9/jD179kAu/3edll69euHEiRN1Gu5ednZ2kMlkSE9Pr7Q9PT29xmOAjI2NERwcjPj4+Gr3mT17NnJzc7W35OTkJ8pNDUOtEbRrCHGgNOkLiUSCL15og1auVsgqKMGkX3hNMqKGVusidPHiRQwZMuSB7Q4ODrh161adhKqKXC5HSEgI9u3bp92m0Wiwb98+hIaG1ug51Go1Ll68CGdn52r3MTExgZWVVaUb6b64jDwUlqhhLpfBx8FC7DhENWYql2H56HawszDBlbQ8vLMhEhpek4yowdS6CFlbWyM1NfWB7efPn4erq2udhKrOjBkz8OOPP2L16tW4fPkypkyZgoKCAu0ssjFjxlQaTP3hhx9i9+7duHr1Ks6dO4eXX34Z169fx8SJE+s1JzW8itNirZsqIZNKxA1DVEsu1qb4/uW2MJZJsDMqDUv3V3/UmojqVq2n1rz44ot47733sGHDBkgkEmg0Ghw9ehTvvPMOxowZUx8ZtUaMGIHMzEzMnTsXaWlpCAoKwq5du7QDqJOSkiCV/tvtsrOzMWnSJKSlpcHGxgYhISE4duwYWrRoUa85qeFFagdK24gbhOgxtfOwxceDW+G9jRfx372xaNNUiR7+DmLHImr0JIIg1OoYbElJCaZOnYpVq1ZBrVbDyMgIarUao0aNwqpVqyCTyeorqyhUKhWUSiVyc3N5mkyH9V18CFfS8vD9yyHo24rrRpH+en/zRaw9mQSlqTG2vdEVbrZmYkciatRqXYQqJCUlISoqCvn5+QgODoavr29dZ9MJLEK6r7CkDK3mhUMjACdm94aTkpdRIf1VXKbG8O+PI/JGLlq5WuHP1zpDYdy4fsEk0iWPveqcu7s73N3d6zIL0WO5eCMXGgFwslKwBJHeMzGS4duXQzBwyRFE3VRh3tZL+HxoG7FjETVaNSpCM2bMqPETLlq06LHDED2OivFBgW5KcYMQ1RFXa1MsGRmM0T+fxPozyQh2t8aLHfiLJ1F9qFEROn/+fKWvz507h7KyMvj7l6+KGhsbC5lMhpCQkLpPSPQIEdorznOgNDUeXXzsMPMZf3wZHoO5Wy+hubMV18giqgc1KkL79+/X/v+iRYtgaWmJ1atXw8am/AdPdnY2xo8fj27dutVPSqKHiEyuWEiRR4SocZnS3RsRyTnYE52O1387h7/f6Apbc/mjH0hENVbrwdKurq7YvXv3AxcujYqKwjPPPIOUlJQ6DSg2DpbWbWm5Rei0cB+kEuDC/DBYmPBiq9S4qIpKMWjJESTeLkR3P3usHNceUq6VRVRnar2gokqlQmZm5gPbMzMzkZeXVyehiGrqXFI2ACDAyYoliBolK4Uxvh8dAhMjKQ7GZmL54atiRyJqVGpdhIYMGYLx48dj06ZNuHHjBm7cuIGNGzdiwoQJeP755+sjI1G1zl4vL0IhzTg+iBqvACcrLBhUfhT+y/AYnL2eJXIiosaj1kXo+++/R79+/TBq1Cg0a9YMzZo1w6hRo9C3b198++239ZGRqFosQmQoRrR3w6BAF6g1At5Yex7ZBSViRyJqFB57QcWCggIkJCQAALy9vWFubl6nwXQFxwjprqJSNVrPD0epWsDhd3tyBV5q9PKLyzBwyRFcu1WAPs0d8OOYdpBIOF6I6EnU+ohQBXNzc9ja2sLW1rbRliDSbRdv5qJULcDe0gRNbUzFjkNU7yxMjLB0VDDkRlLsvZyBn49cEzsSkd6rdRHSaDT48MMPoVQqtafGrK2t8dFHH0Gj0dRHRqIqaU+Ludvwt2IyGC1dlJjzbPmFoz/fdUW7jhYRPZ5aF6EPPvgAS5cuxWeffYbz58/j/Pnz+PTTT7FkyRLMmTOnPjISVYnjg8hQvdzRHf1bO6FULWDa2nPILSwVOxKR3qr1GCEXFxd8//33GDRoUKXtW7duxeuvv46bN2/WaUCxcYyQbhIEAe0/2Ytb+SXYOKUzyxAZHFVRKZ793xEkZRViQBtnLB0ZzCOjRI+h1keEsrKyEBAQ8MD2gIAAZGVxSic1jKSsQtzKL4FcJkUrVxZUMjxWCmMsGRkMI6kE2y+kYtO5xvVLKFFDqXURCgwMxNKlSx/YvnTpUgQGBtZJKKJHqTgt1rqpEiZGMpHTEIkj0M0abz/tBwCYuzUK128XiJyISP/UeineL774AgMGDMDevXsRGhoKADh+/DiSk5OxY8eOOg9IVBWODyIq91p3bxyMycSpxCxMXx+BDa+Gwkj22BOCiQxOrf+2dO/eHbGxsRgyZAhycnKQk5OD559/HjExMbzoKjWYiiLU1p1FiAybTCrBohGBsFQY4XxSDpb8Ey92JCK98tgLKhoKDpbWPXlFpWizYDcEATj1QW84WCrEjkQkuq0RN/HWughIJcCG10IR0sxW7EhEeuGxrlJZVFSECxcuICMj44G1g+6fTUZU185ez4YgAO62ZixBRHc9F+SKAzGZ2Hz+Jqavj8CON7vBUmEsdiwinVfrIrRr1y6MGTMGt27deuA+iUQCtVpdJ8GIqnPqWvnsxI6e/I2X6F4LnmuJ04lZSM66g3l/XcKi4UFiRyLSebUeI/TGG29g2LBhSE1NhUajqXRjCaKGUFGEOrAIEVVipTDG4hFBkEqATeduIvxSmtiRiHRerYtQeno6ZsyYAUdHx/rIQ/RQRaVqRN7IAQB09GwibhgiHdTOwxaTn/IGAHyw+SJu5xeLnIhIt9W6CA0dOhQHDhyohyhEj3Y+KQelagGOViZws+WFVomq8vbTvvBztMCt/BLM2RoFzokhql6txwgtXboUw4YNw+HDh9G6dWsYG1cejPfmm2/WWTii+/17WqwJLydAVA0TIxkWDQ/C4GVHseNiGv6+kIpBgS5ixyLSSbUuQr///jt2794NhUKBAwcOVPphJJFIWISoXp1KvA2A44OIHqWVqxLTevlg8d44zNkShU6etnCw4ixLovs91tXnFyxYgNzcXCQmJuLatWva29WrV+sjIxEAoKRMo11IkTPGiB5tak8ftHK1Qu6dUszadJGnyIiqUOsiVFJSghEjRkAq5RLu1LCiUnJRVKqBjZkxfOwtxI5DpPOMZVJ8PSwIcpkU/1zJwIazN8SORKRzat1mxo4di/Xr19dHFqKHqhgf1N7DFlIpxwcR1YS/k6X2wqwf/h2Nmzl3RE5EpFtqPUZIrVbjiy++QHh4ONq0afPAYOlFixbVWTiie3H9IKLHM/kpL+yJTsO5pBx8sPkiVo5rz8kGRHfVughdvHgRwcHBAICoqKhK9/EvFtUXtUbA6cSKFaW5fhBRbcikEnwxtA36f3MEB2IysTUiBYODXcWORaQTal2E9u/fXx85iB7qSpoKeUVlsDAxQnNnS7HjEOkdHwdLvNnbB1/tjsWCvy+hq68d7CxMxI5FJDqOeCa9cDyhfNp8SDMbGMn4bUv0OF7t7o0AJ0tkF5Ziwd/RYsch0gn8iUJ64fiFJABAF2tO/yV6XMYyKb4cGgipBPg7MgV7o9PFjkQkOhYh0m1ZWSjr2w8n4zMBAJ1ffwno2xfIzhY5GJF+at1UiUlPeQEA/m9LFFRFpSInIhIXixDptlGjEHkpCfkmZrC+o0KL9KvA3r3AyJFiJyPSW2/38YNHEzOkqYrw2c4rYschEhWLEOmu2FggPBzH3VoBAEKTLkIKAVCrgfBwIC5O5IBE+klhLMNnL7QBAKw9mYQTV2+LnIhIPCxCpLsSEgAAR5sFAgA6X4+sfH98fEMnImo0Onk1wUsd3QEAszZeQFGpWuREROJgESLd5e2NIiM5zro2B1BFEfLxESEUUeMxq18AnKwUSLxdiKX/8BcLMkwsQqS7/Pxw9rnRKDGSwynvFryybpZvl8mAsDDA11fcfER6zlJhjPmDWgIAfjiUgPiMPJETETU8FiHSaUdfngYA6Hz9ArTrlvfpA/z+u2iZiBqTsJaO6NPcAaVqAR9sjuIV6sngsAiRTjt6swAA0Pn1kcCOHeUDqHftAmxsRE5G1DhIJBLMH9QSpsYynLyWhT95hXoyMCxCpLNy75Ti4o0cAEDnzi2Bfv14OoyoHjS1McP0PuV/tz7dcRlZBSUiJyJqOCxCpLNOXcuCRgA87czhYm0qdhyiRu2Vrp7ay298tvOy2HGIGgyLEOmsI3F3V5P25tXmieqbsUyKT4aUr9n1x5kbOHUtS+RERA1D74rQsmXL4OHhAYVCgY4dO+LUqVMP3X/Dhg0ICAiAQqFA69atsWPHjgZKSk/qYGx5EeruZy9yEiLDENLMFiM7lK8t9P7miygp04iciKj+6VURWr9+PWbMmIF58+bh3LlzCAwMRFhYGDIyMqrc/9ixYxg5ciQmTJiA8+fPY/DgwRg8eDCioqIaODnVVuKtAiTeLoSRVILOPnZixyEyGLP6BqCJuRzxGfn48fBVseMQ1TuJoEdzJTt27Ij27dtj6dKlAACNRgM3Nze88cYbmDVr1gP7jxgxAgUFBdi2bZt2W6dOnRAUFITvv/++Rq+pUqmgVCqRm5sLKyurunkj9Ei/HE/E3K2X0MnLFusmh4odh8igbD5/A2+vj4SJkRR73u4O9yZmYkciqjd6c0SopKQEZ8+eRZ8+fbTbpFIp+vTpg+PHj1f5mOPHj1faHwDCwsKq3R8AiouLoVKpKt2o4R2MqTgt5iByEiLDMzjIFV18mqC4TIMFf18SOw5RvdKbInTr1i2o1Wo4OjpW2u7o6Ii0tLQqH5OWllar/QFg4cKFUCqV2pubm9uTh6daKS5T41hC+UUgOT6IqOFJJBIsGNQKxjIJ9l3JwL7L6WJHIqo3elOEGsrs2bORm5urvSUnJ4sdyeCcvpaNO6Vq2FuaoLmzpdhxiAySj4MFXunqCQBY8Hc0iqKvADt3AnFxIicjqlt6U4Ts7Owgk8mQnl75N5P09HQ4OTlV+RgnJ6da7Q8AJiYmsLKyqnSjhnUwtnzwe3c/e0gkkkfsTUT15c1evnCykCMpqxA/TFoA9O8P+PkBffsC2dlixyOqE3pThORyOUJCQrBv3z7tNo1Gg3379iE0tOrBtKGhoZX2B4A9e/ZUuz/pBk6bJ9IN5iZG+CDqLwDAt52GIVl5d6jB3r3AyJEiJiOqO3pThABgxowZ+PHHH7F69WpcvnwZU6ZMQUFBAcaPHw8AGDNmDGbPnq3d/6233sKuXbvw9ddf48qVK5g/fz7OnDmDadOmifUW6BFScu4gNj0fUgnQldPmicQVG4tn1y9F6PVIFBub4MNeE8u3q9VAeDhPk1GjoFdFaMSIEfjqq68wd+5cBAUFISIiArt27dIOiE5KSkJqaqp2/86dO2Pt2rVYvnw5AgMD8eeff2LLli1o1aqVWG+BHuHQ3aNBgW7WsDGXi5yGyMAlJEACYMHeH2CkLsMev1Ds9wr59/74eNGiEdUVvVpHSAxcR6hhvbrmDMIvpWN6H19M7+MndhwiwxYbC/j7AwA+7jkBP3UYAo+sFISveB0m6rLy+3khZNJzenVEiBq3olI1DsfdAgD0ae74iL2JqN75+QFhYYBMhreOroV9fhYSbV3wU8cXyrezBFEjwCJEOuP41dsoLFHDyUqBli48+kakE37/HejTB5Yld/DB/hUAgCVdXsTNH1aJm4uojrAIkc7YG12+1EHv5g6cNk+kK2xsgF27gNhYPPflf9DB0RRFUmN8fPim2MmI6gSLEOkEQRCw9+7qtX1a8LQYkc7x9YWkf38seLEdZFIJdkal4XBcptipiJ4YixDphKibKqSrimEmlyHUq4nYcYioGs2drTC6UzMAwLy/LqGkTCNyIqInwyJEOmHP3aNBT/naQ2EsEzkNET3MjGf8YGchx9XMAqw6dk3sOERPhEWIdELF+CCeFiPSfVYKY7zbNwAA8M3eOGSoikRORPT4WIRIdCk5dxCdqoJUAvT052U1iPTB0LZNEeRmjYISNT7beUXsOESPjUWIRLf7UhoAoK27DZpYmIichohqQiqVYMGglpBIgE3nb+JMYpbYkYgeC4sQiW5nVHkR6tvKSeQkRFQbgW7WGB7iBgCYu/US1BpeqID0D4sQiSozrxin7v4m2a+1s8hpiKi2/tPXH5YKI0SnqvD7qSSx4xDVGosQiSr8UhoEAQhsqoSrtanYcYioluwsTDDz6fLrAn61OwbZBSUiJyKqHRYhEtWuu6fFeDSISH+93KkZApwskVNYiq/3xIgdh6hWWIRINFkFJTh+9TYAoB/HBxHpLSOZFPMHtQQArD2ZhEspuSInIqo5FiESzZ7oNKg1Alo4W6FZE3Ox4xDRE+jk1QTPtnGGRgDmbb0EQeDAadIPLEIkmorZYv1b82gQUWPwwYDmMDWW4cz1bGyJ4EVZST+wCJEocgpLcDT+FgCODyJqLJyVppjWywcAsHDHFeQXl4mciOjRWIRIFDuj0lCqFhDgZAlvewux4xBRHZnYzRMeTcyQkVeMJfvixI5D9EgsQiSKLefLD5sPDnYVOQkR1SUTIxnmDmwBAFhx9BoSMvNFTkT0cCxC1OBScu5oF1EcGOgichoiqmu9AhzRK8ABpWoBC/6O5sBp0mksQtTgtl1IgSAAHTxsuYgiUSM199kWkMukOBSbiT3R6WLHIaoWixA1uC3nUwAAzwXzaBBRY+VhZ46J3TwBAB9ui0ZRqVrkRERVYxGiBhWXnofoVBWMpBL0b8XZYkSN2bRePnBWKnAj+w5+OHhV7DhEVWIRogb1V2T50aDufvawMZeLnIaI6pOZ3Ajv928OAPj2QDxuZBeKnIjoQSxC1GA0GgGb784WGxTE02JEhuDZNs7o5GWL4jINPtl+Wew4RA9gEaIGc+LqbdzIvgNLhRHCWnI1aSJDIJFIMH9QS8ikEuyMStMupEqkK1iEqMH8cSYZQPmUeYWxTOQ0RNRQApysMLpTMwDAvL8uoVStETkR0b9YhKhBqIpKtdcWGxbSVOQ0RNTQ3n7aD03M5YjPyMfqY4lixyHSYhGiBrEtMhXFZRr4OFggyM1a7DhE1MCUpsZ4t68/AGDx3jhk5BWJnIioHIsQNYgNZ8tPiw1v1xQSiUTkNEQkhmEhbghsqkR+cRk+3xkjdhwiACxC1ADiM/JwPikHMqmE1xYjMmBSafnAaQDYeO4Gzl7PFjkREYsQNYD1p8uPBvX0t4eDpULkNEQkpmB3G+04wfl/XYJaw+uQkbhYhKheFZWqseHsDQDAyA7uIqchIl3wbt8AWCqMcPFmrnY2KZFYWISoXm27kIqcwlK4Wpuih7+D2HGISAfYW5rg7T5+AIAvdl1BTmGJyInIkLEIUb369cR1AMCoju6QSTlImojKjQ5tBj9HC2QXlmLRnlix45ABYxGiehN1MxcRyTkwlkkwvJ2b2HGISIcYy6TagdO/nriO6BSVyInIULEIUb357WT50aCwlk6wtzQROQ0R6ZrO3nYY0NoZGqF84LQgcOA0NTwWIaoXqqJSbDlffqX5l+8urU9EdL/3BzSHqbEMpxKz8FdkithxyACxCFG9WH8qGXdK1fB1sEBHT1ux4xCRjnK1NsXUnt4AgE93XEZBcZnIicjQsAhRnStTa7Dq7rWEJnT15ErSRPRQE7t5wd3WDOmqYiz5J17sOGRgWISozoVfSsfNnDuwNZdzJWkieiSFsQxzn20BAPj5yFVczcwXOREZEhYhqnM/H7kKoHxskMJYJnIaItIHvZs7oIe/PUrVAj7cFs2B09RgWISoTp1Lysa5pBzIZVKM5iBpIqohiUSCuc+2gLFMggMxmdh3OUPsSGQgWISoTv185BoA4LkgF06ZJ6Ja8bK3wMRuXgCAD7dFo6hULXIiMgR6U4SysrLw0ksvwcrKCtbW1pgwYQLy8x9+HrlHjx6QSCSVbq+99loDJTY8ibcKsPNiKgDgla6eIqchIn00racPnKwUSMoqxJJ/4sSOQwZAb4rQSy+9hEuXLmHPnj3Ytm0bDh06hMmTJz/ycZMmTUJqaqr29sUXXzRAWsP0/cEEaASgV4ADmjtbiR2HiPSQuYmRdsXpHw5exeVUrjhN9UsvitDly5exa9cu/PTTT+jYsSO6du2KJUuWYN26dUhJefgCXGZmZnByctLerKz4A7o+pOTcwcZz5VeZn9rTR+Q0RKTP+rZyQlhLR5RpBMzadBFqDQdOU/3RiyJ0/PhxWFtbo127dtptffr0gVQqxcmTJx/62N9++w12dnZo1aoVZs+ejcLCwofuX1xcDJVKVelGj/bj4asoVQvo5GWLkGY2YschIj334XOtYGlihMjkHKy+uy4ZUX3QiyKUlpYGBweHStuMjIxga2uLtLS0ah83atQo/Prrr9i/fz9mz56NNWvW4OWXX37oay1cuBBKpVJ7c3PjxUIf5VZ+MX4/lQQAmNbTV+Q0RNQYOFopMKt/AADgq90xuJH98F9iiR6XqEVo1qxZDwxmvv925cqVx37+yZMnIywsDK1bt8ZLL72EX375BZs3b0ZCQkK1j5k9ezZyc3O1t+Tk5Md+fUPx85FrKCrVILCpEl18mogdh4gaiZHt3dHBwxaFJWrM2RLFtYWoXhiJ+eIzZ87EuHHjHrqPl5cXnJyckJFReU2JsrIyZGVlwcnJqcav17FjRwBAfHw8vL29q9zHxMQEJiac9l1TmXnFWHU0EQAwrZcvL6dBRHVGKpXg0+dbo/83h7E/JhN/X0jFoEAXsWNRIyNqEbK3t4e9vf0j9wsNDUVOTg7Onj2LkJAQAMA///wDjUajLTc1ERERAQBwdnZ+rLz0oG8PxONOqRqBbtbo09zh0Q8gIqoFHwcLTO3pg//ujcWCvy6hm48dbMzlYseiRkQvxgg1b94cffv2xaRJk3Dq1CkcPXoU06ZNw4svvggXl/LfDm7evImAgACcOnUKAJCQkICPPvoIZ8+eRWJiIv766y+MGTMGTz31FNq0aSPm22k0UnLu4LcT5WOD/vOMP48GEVG9mNLDG74OFrhdUIKPtkWLHYcaGb0oQkD57K+AgAD07t0b/fv3R9euXbF8+XLt/aWlpYiJidHOCpPL5di7dy+eeeYZBAQEYObMmXjhhRfw999/i/UWGp0l/8ShRK1BJy9bjg0ionojN5Li86FtIJUAm87fxO5L1U+SIaoticDRZw+lUqmgVCqRm5vLNYjukXirAL0XHYRaI2DjlFCENLMVOxIRNXILd17GDwevws5Cjt1vd4ctT5FRHdCbI0KkWxbtiYVaI6Cnvz1LEBE1iLf7+MHXwQK38kswZ2uU2HGokWARolo7n5SNvyJTIJEAM5/xFzsOERkIhbEMi4YHQSaVYPuFVGy78PArCxDVBIsQ1YogCPjw7mDFoW2bopWrUuRERGRIWjdVYmqP8uVP5myJQmZesciJSN+xCFGt/BWZgvNJOTCTy/CfMB4NIqKGN62XL1o4WyG7sBSzN13kQov0RFiEqMbulKjx+c7ylb5f7+ENByuFyImIyBDJjaT4enggjGUS7L2cjvWneQUAenwsQlRjPx2+ipTcIrham2JiNy+x4xCRAWvubIV37o5RXPB3NOIz8kVORPqKRYhqJDmrEMsOxAMAZvULgMJYJnIiIjJ0k7p5oYtPE9wpVeOtdedRXKYWOxLpIRYheiRBEDDvr0soKtWgo6ctnm3DS5QQkfikUgkWDQ+CjZkxLqWo8FV4jNiRSA+xCNEj7YpKwz9XMmAsk+CTIa15KQ0i0hmOVgp8MTQQAPDj4Ws4FJspciLSNyxC9FB5RaWY//clAMCU7t7wcbAQORERUWVPt3DEy53cAQAzN0RySj3VCosQPdTXu2ORriqGRxMzvN7TR+w4RERV+qB/C/g5WiAzrxhv/n4eZWqN2JFIT7AIUbXOXs/CL8cTAQAfD27NAdJEpLNM5TJ8+1JbmMllOH71NhbtiRU7EukJFiGqUmFJGWb+EQmNALzQtim6+tqJHYmI6KF8HCzx+QttAADfHkjAvsvpIicifcAiRFX6fOcVJN4uhItSgXmDWogdh4ioRgYGumBcZw8AwNvrI5CcVShuINJ5LEL0gKPxt7D6+HUAwBdDA2GlMBY5ERFRzb3fvzmC3KyhKirDlN/OoqiU6wtR9ViEqJLcO6X4z4ZIAMDoTs14SoyI9I7cSIplL7WFjZkxom6qMGvjBV6PjKrFIkRagiBg1sYLSMktgrutGWb1CxA7EhHRY3G1NsWyl9rCSCrBlogUfHcwQexIpKNYhEjr1xPXsTMqDcYyCZaMDIa5iZHYkYiIHltnbzvMG9QSAPBleAz2RHPwND2IRYgAAJdScvHRtssAgPf6BiDQzVrcQEREdWB0p2YY3akZBAGYvu48rqSpxI5EOoZFiJBfXIZpa8+jRK1Bn+aOmNDVU+xIRER1Zu7AFujs3QQFJWq8svI00nKLxI5EOoRFyMBpNAJmrI/AtVsFcFEq8NWwNryWGBE1KsYyKb59qS287MyRkluEcStPQVVUKnYs0hEsQgZu8b447I5Oh1xWPsvC2kwudiQiojpnbSbH6lc6wN7SBFfS8jD5lzMoLuO0emIRMmg7L6bif/viAACfPt8awe42IiciIqo/brZmWDW+PSxMjHDialb56vkaTqs3dCxCBio6RYWZd9cLeqWLJ4aGNBU5ERFR/WvposQPo0NgLJNg24VUzNkaxTWGDByLkAG6mXMH41edQmGJGl18muD9/lwviIgMRxcfO3w9PAgSCfDbySQs+DuaZciAsQgZmNzCUoxbcQrpqmL4Oljg21EhMJLx24CIDMugQBftBVpXHUvEwp1XWIYMFH8CGpCiUjUmrTmDuIx8OFqZYNUrHaA043XEiMgwDW/nhk+HtAYALD90FV/tjmEZMkAsQgaiVK3BW+vO49S1LFiaGGHV+A5wtTYVOxYRkahGdXTHgrurTy/bn4APt0VzALWBYREyAGqNgBl/RCL8Uvk0+R9Gh6C5s5XYsYiIdMLYzh6YP7AFAGDl0US8u/ECytQakVNRQ2ERauTUGgH/2RCJvyNTYCyT4PvRbdHZh1eUJyK617gunvh6WCBkUgn+PHsDU9ee4zpDBoJFqBFTa8qvJr/p/E3IpBIsGdkWvQIcxY5FRKSTXghpim9fagu5TIrwS+kY/fMpZBWUiB2L6hmLUCNVUqbBm+vOY8PZG5BKgMUjgtC3lZPYsYiIdFpYSyesvLvo4qlrWRjy7VHEZ+SLHavxio0Fdu4E4uJEi8Ai1AjdKVFj8poz2H4hFcYyCZaNaouBgS5ixyIi0gtdfOywcUpnNLUxxfXbhRjy7VEcibsldqzGJSsL6NsX8PcH+vcH/PzKv87ObvAoEoFzBR9KpVJBqVQiNzcXVla6P8A4u6AEk9ecwenEbCiMpfhhdDt097MXOxYRkd65lV+MV9ecxdnr2ZBJJXg3zB+TunlBKuWFqZ9Y377A3r2A+p5xWDIZ0KcPsGtXg0bhEaFG5GpmPoZ8exSnE7NhqTDCrxM6sgQRET0mOwsT/DaxI55v6wq1RsDCnVcwec0Z5BRy3NATiY0FwsNRDAk2teyJ50YvQoqlXXkpCg9v8NNkLEKNxPGE2xjy7TEk3i6Eq7UpNk7pjHYetmLHIiLSawpjGb4eFohPhrSC3EiKvZczMOB/R3A6MUvsaHorIzoei7qOQpcpKzHj2ZmIdPHD6rbP/rtDfHyD5uGpsUfQ9VNjgiDg91PJmPdXFErVAoLdrbF8dDvYW5qIHY2IqFGJupmLqWvP4frtQkgkwMSunpj5jD8UxjKxo+k8QRBwPjkHq44mYseFFJTdbR5Oebcw+tx2jIrYBZuivPKNsbGAr2+DZWMRegRdLkJ3StT4YMtFbDp3EwDwbBtnfDUskH8piYjqSV5RKT7aFo0/ztwAAPg4WODzF9ogpJmNyMl0U2FJGbZfSMWaE9dx4Uaudnv7/BSM+2cNnok5BmPN3XFCIo0RYhF6BF0tQlcz8zHl13OISc+DVAL8JywArz7FQXxERA1h3+V0zNp0EZl5xQCA4e2a4r2+AWhiYVJ+RCMhAfDxadAjG7pCEARcvJmLdaeT8XdECvKKywAAciMpngt0wdjOHmhlpgFGjiwfE1QhLAz4/XfApmFLJYvQI+haERIEARvO3sCCvy6hoEQNOwsTLBkZjFDvJmJHIyIyKNkFJVi487L26JCViQzTE/bjpXWLYKIu/+Ev1g93MeQUlmBrRArWnU7G5VSVdnuzJmYY0d4NL7Z3h625vPKD4uLKxwSJWBpZhB5Bl4pQZl4xZm+6iL2X0wEAHTxtsXRkMBysFKLmIiIyZGevZ2POlihE3/3h75qbjreP/IYhlw5AJpWIcrqnoRSWlGHv5Qz8FXETB2MzUaourxRyIyn6t3LCiPbu6Ohpq9NnK1iEHkEXipAgCNgZlYb/2xKFrIISyGVSzHjGD5O6eZX/JSMiIlGpr8Rg/Ytv4Zsuo5BuWX6E3uv2DUw6vRlDov6B4vKlRnOarKhUjaPxt/B3ZAp2R6ejsOTftYBaOFthRHs3DA5yhdLMWMSUNcci9AhiF6HkrELM3RqF/TGZAIAAJ0v8d0QQrx5PRKRLdu4E+vfHHSMTrG77LL7rNBS5ppYAALv8bIxpZYvhI3vBSamfR/CzC0qw70oG9kan41BcZqXy425rhueCXDAo0AW+jpYipnw8LEKPIFYRKi5T46fD1/C/fXEoLtPAWCbBlO7emNrLByZGnBVGRKRTYmPLLxdxV77cFOvaPIMV7Z9DipUDAEAqAXr6O2BYOzf08LfX6Rm+ZWoNLt7MxbGE2zgYm4kziVnQ3NMWnJUKhLV0wuBgVwQ2VUIi0d+zEyxCj9DQRUijEfD3hRR8GR6DG9l3AAChXk3w0eBW8HGwqPfXJyKix1TFZSNKjeXY/sKrWNt9JE7dswijmVyGnv4OeKalI3r4OYh+GqmkTIMraSqcvZ6No/G3cfLqbe1srwrNna3wdAtHPNPCES1drPS6/NxLb4rQJ598gu3btyMiIgJyuRw5OTmPfIwgCJg3bx5+/PFH5OTkoEuXLvjuu+/gW4vztPVWhKqYXnk84TYW7rysXWvBwdIEs/oFYEiwa6P5hiMiarSysx86JTwhMx9/nE7G35EpSMkt0u4ikZSPreno2QQdvWzRylUJF6Wi3v7dv1OiRkJmPuIy8nDxhgoRydmISlGhpExTaT8rhRFCvZugs7cdegU4wM3WrF7yiE1vitC8efNgbW2NGzdu4Oeff65REfr888+xcOFCrF69Gp6enpgzZw4uXryI6OhoKBQ1O09b50UoKwsYNUr7F0UAcPyFCVjaexyOXS8vQBYmRnituxde6eoJM7nRk78mERE1nEdMCa9YZ2dXVBp2R6cjPiP/gX2sFEYIcLaCj4MFXK1N0dTGFM5KU9iaG8NSYQxLhRFMjWWVypJaIyC/uAx5RaXIKypDTmEp0lR3kJpbhNScItzILkR8Zj5uZN9BVT/5labGCHKzRievJuji0wQtXZQGMSFHb4pQhVWrVmH69OmPLEKCIMDFxQUzZ87EO++8AwDIzc2Fo6MjVq1ahRdffLFGr1fnRejuoVNBrcZ+r3ZY0vlFnHcNAAAYSSUY1dEdb/b2hZ0FL5FBRGQIMlRFOHEtCyeu3sbZxGwkZOajTFOzH833HjSqzU9zW3M5fBws0NzJEkHu1ghys4FHEzODPPvQaA83XLt2DWlpaejTp492m1KpRMeOHXH8+PFqi1BxcTGKi4u1X6tUqir3eyx3r7gLAJOe/z/s9e0EADApLcaLF3Zj8hdvwjW4Rd29HhER6TwHKwUGBZbPugLKJ8vEZ+Tjcmoert8uwM2cO7iZXX5kJ/dOKfKKSrUDl6sqP3IjKawURrBSGMNJqYCTUgEXpSlcrE3hbW8OHweL8hWwCUAjLkJpaWkAAEdHx0rbHR0dtfdVZeHChViwYEH9hEpI0P7vU9fO47h7G7x8fgcmnt4C+8IcIO05ACxCRESGzMRIhpYuSrR0UVZ5vyAIKCxRV5rCDpTPSrNQGHFmcS1JxXzxWbNmQSKRPPR25cqVBs00e/Zs5Obmam/Jycl19+Te3tr/HX5hN45+/wpmH1xVXoKA8vPJREREDyGRSGBuYgR7S5NKtyYWJixBj0HUI0IzZ87EuHHjHrqPl5fXYz23k5MTACA9PR3Ozs7a7enp6QgKCqr2cSYmJjAxqadDhn5+5TMI9u6FQl0Khbq0fHvFFXcbyaqjRERE+kLUImRvbw97e/t6eW5PT084OTlh37592uKjUqlw8uRJTJkypV5es0Z+//3B6ZV9+pRvJyIiogalN2OEkpKSkJWVhaSkJKjVakRERAAAfHx8YGFRvtBgQEAAFi5ciCFDhkAikWD69On4+OOP4evrq50+7+LigsGDB4v3Rmxsyi++pwNX3CUiIjJ0elOE5s6di9WrV2u/Dg4OBgDs378fPXr0AADExMQgNzdXu8+7776LgoICTJ48GTk5OejatSt27dpV4zWE6pWvLwsQERGRyPRuHaGGJvZFV4mIiKj+iDprjIiIiEhMLEJERERksFiEiIiIyGCxCBEREZHBYhEiIiIig8UiRERERAaLRYiIiIgMFosQERERGSwWISIiIjJYenOJDbFULLytUqlETkJERES1ZWlpCYlEUu39LEKPkJeXBwBwc3MTOQkRERHV1qMukcVrjT2CRqNBSkrKIxtlbalUKri5uSE5OZnXMKsBfl41x8+q5vhZ1Rw/q5rjZ1VzDfFZ8YjQE5JKpWjatGm9Pb+VlRX/otQCP6+a42dVc/ysao6fVc3xs6o5MT8rDpYmIiIig8UiRERERAaLRUgkJiYmmDdvHkxMTMSOohf4edUcP6ua42dVc/ysao6fVc3pwmfFwdJERERksHhEiIiIiAwWixAREREZLBYhIiIiMlgsQkRERGSwWIR0xCeffILOnTvDzMwM1tbWYsfRKcuWLYOHhwcUCgU6duyIU6dOiR1JJx06dAgDBw6Ei4sLJBIJtmzZInYknbVw4UK0b98elpaWcHBwwODBgxETEyN2LJ303XffoU2bNtoF70JDQ7Fz506xY+mFzz77DBKJBNOnTxc7is6ZP38+JBJJpVtAQIAoWViEdERJSQmGDRuGKVOmiB1Fp6xfvx4zZszAvHnzcO7cOQQGBiIsLAwZGRliR9M5BQUFCAwMxLJly8SOovMOHjyIqVOn4sSJE9izZw9KS0vxzDPPoKCgQOxoOqdp06b47LPPcPbsWZw5cwa9evXCc889h0uXLokdTaedPn0aP/zwA9q0aSN2FJ3VsmVLpKamam9HjhwRJ4hAOmXlypWCUqkUO4bO6NChgzB16lTt12q1WnBxcREWLlwoYirdB0DYvHmz2DH0RkZGhgBAOHjwoNhR9IKNjY3w008/iR1DZ+Xl5Qm+vr7Cnj17hO7duwtvvfWW2JF0zrx584TAwECxYwiCIAg8IkQ6q6SkBGfPnkWfPn2026RSKfr06YPjx4+LmIwam9zcXACAra2tyEl0m1qtxrp161BQUIDQ0FCx4+isqVOnYsCAAZX+7aIHxcXFwcXFBV5eXnjppZeQlJQkSg5edJV01q1bt6BWq+Ho6Fhpu6OjI65cuSJSKmpsNBoNpk+fji5duqBVq1Zix9FJFy9eRGhoKIqKimBhYYHNmzejRYsWYsfSSevWrcO5c+dw+vRpsaPotI4dO2LVqlXw9/dHamoqFixYgG7duiEqKgqWlpYNmoVHhOrRrFmzHhgMdv+NP9CJxDV16lRERUVh3bp1YkfRWf7+/oiIiMDJkycxZcoUjB07FtHR0WLH0jnJycl466238Ntvv0GhUIgdR6f169cPw4YNQ5s2bRAWFoYdO3YgJycHf/zxR4Nn4RGhejRz5kyMGzfuoft4eXk1TBg9ZGdnB5lMhvT09Erb09PT4eTkJFIqakymTZuGbdu24dChQ2jatKnYcXSWXC6Hj48PACAkJASnT5/GN998gx9++EHkZLrl7NmzyMjIQNu2bbXb1Go1Dh06hKVLl6K4uBgymUzEhLrL2toafn5+iI+Pb/DXZhGqR/b29rC3txc7ht6Sy+UICQnBvn37MHjwYADlpzH27duHadOmiRuO9JogCHjjjTewefNmHDhwAJ6enmJH0isajQbFxcVix9A5vXv3xsWLFyttGz9+PAICAvDee++xBD1Efn4+EhISMHr06AZ/bRYhHZGUlISsrCwkJSVBrVYjIiICAODj4wMLCwtxw4loxowZGDt2LNq1a4cOHTpg8eLFKCgowPjx48WOpnPy8/Mr/TZ17do1REREwNbWFu7u7iIm0z1Tp07F2rVrsXXrVlhaWiItLQ0AoFQqYWpqKnI63TJ79mz069cP7u7uyMvLw9q1a3HgwAGEh4eLHU3nWFpaPjDOzNzcHE2aNOH4s/u88847GDhwIJo1a4aUlBTMmzcPMpkMI0eObPgwYk9bo3Jjx44VADxw279/v9jRRLdkyRLB3d1dkMvlQocOHYQTJ06IHUkn7d+/v8rvobFjx4odTedU9TkBEFauXCl2NJ3zyiuvCM2aNRPkcrlgb28v9O7dW9i9e7fYsfQGp89XbcSIEYKzs7Mgl8sFV1dXYcSIEUJ8fLwoWSSCIAgNX7+IiIiIxMdZY0RERGSwWISIiIjIYLEIERERkcFiESIiIiKDxSJEREREBotFiIiIiAwWixAREREZLBYhIiIiMlgsQkRERGSwWISIiIjIYLEIEZFByczMhJOTEz799FPttmPHjkEul2Pfvn0iJiMiMfBaY0RkcHbs2IHBgwfj2LFj8Pf3R1BQEJ577jksWrRI7GhE1MBYhIjIIE2dOhV79+5Fu3btcPHiRZw+fRomJiZixyKiBsYiREQG6c6dO2jVqhWSk5Nx9uxZtG7dWuxIRCQCjhEiIoOUkJCAlJQUaDQaJCYmih2HiETCI0JEZHBKSkrQoUMHBAUFwd/fH4sXL8bFixfh4OAgdjQiamAsQkRkcP7zn//gzz//RGRkJCwsLNC9e3colUps27ZN7GhE1MB4aoyIDMqBAwewePFirFmzBlZWVpBKpVizZg0OHz6M7777Tux4RNTAeESIiIiIDBaPCBEREZHBYhEiIiIig8UiRERERAaLRYiIiIgMFosQERERGSwWISIiIjJYLEJERERksFiEiIiIyGCxCBEREZHBYhEiIiIig8UiRERERAaLRYiIiIgM1v8DoCobJtEpREkAAAAASUVORK5CYII=" - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "text/plain": "
", - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjcAAAHHCAYAAABDUnkqAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABElElEQVR4nO3deXhU1f3H8c9MlpkgJAECCYFAkMgmOwiGRbBGqSLWtla0ViitWi1UMG4sFYpbsC1IFRS1WpdWQVzACkUxgmsUZatQZJH1pyYBhQQCZJk5vz/C3GRIQJaZe8nwfj1PHjN3zr1z7o2QD997zrkuY4wRAABAhHA73QEAAIBQItwAAICIQrgBAAARhXADAAAiCuEGAABEFMINAACIKIQbAAAQUQg3AAAgohBuAABARCHcACH07LPPyuVyadu2bU53JUhFRYXuuusupaWlye1268orr3S6S4gALpdLo0ePdrobQA3RTncAQPg988wz+stf/qKxY8eqR48eatmypdNdwgk4cOCA/vznP2vQoEEaNGiQ090BTnuEG+AM8O6776p58+Z6+OGHne4KTsKBAwc0ZcoUSSLcAMeB21LAGaCwsFCJiYkhO57f79ehQ4dCdry65kw+f2OMDh486HQ3gGMi3AA2eOyxx3TuuefK4/EoNTVVo0aN0t69e4PabNq0ST//+c+VkpIir9erFi1a6JprrlFRUZHVZsmSJerfv78SExNVv359tWvXThMmTDjq527btk0ul0tLly7VunXr5HK55HK5tGzZMklSSUmJbr/9dqWlpcnj8ahdu3b661//KmNM0HECYyv+9a9/WeexePHio35uenq6Lr/8cr399tvq1q2bvF6vOnbsqNdee61G2y1btugXv/iFGjVqpHr16un888/XwoULg9osW7ZMLpdLc+fO1YQJE5SSkqKzzjpLV1xxhXbu3BnUdtCgQerUqZNWrFihvn37Ki4uTq1bt9bs2bNrfHZpaakmT56sjIwMeTwepaWl6a677lJpaWlIzv/DDz9U79695fV6dfbZZ+v555+v0Xbv3r0aO3as9TPIyMjQQw89JL/fL6nyZ9ikSRNJ0pQpU6yf4Z/+9Ce98cYbcrlc+u9//2sd79VXX5XL5dLPfvazoM/p0KGDhg0bZr2uqKjQfffdpzZt2sjj8Sg9PV0TJkyoce6Bc3nrrbfUq1cvxcXF6Yknnjjqud9///1yu9169NFHj9oGCDsDIGT+8Y9/GElm69at1rbJkycbSSYrK8s8+uijZvTo0SYqKsqcd955pqyszBhjTGlpqWndurVJTU01999/v/n73/9upkyZYs477zyzbds2Y4wxa9euNbGxsaZXr17mb3/7m5k9e7a54447zAUXXHDU/uzfv9+88MILpn379qZFixbmhRdeMC+88ILJz883fr/f/OhHPzIul8vccMMNZubMmWbo0KFGkhk7dmzQcSSZDh06mCZNmpgpU6aYWbNmmVWrVh31c1u1amXatm1rEhMTzbhx48z06dNN586djdvtNm+//bbVLj8/3yQnJ5sGDRqYiRMnmunTp5uuXbsat9ttXnvtNavd0qVLjSTTuXNn06VLFzN9+nQzbtw44/V6Tdu2bc2BAwestgMHDjSpqammadOmZvTo0eaRRx4x/fv3N5LM008/bbXz+XzmkksuMfXq1TNjx441TzzxhBk9erSJjo42P/nJT075/Nu1a2eSk5PNhAkTzMyZM02PHj2My+Uya9eutdqVlJSYLl26mMaNG5sJEyaY2bNnm+HDhxuXy2XGjBlj/Qwff/xxI8n89Kc/tX6Ga9asMd99951xuVzm0UcftY45ZswY43a7TZMmTaxthYWFRpKZOXOmtW3EiBFGkrnqqqvMrFmzzPDhw40kc+WVV9Y4l4yMDNOwYUMzbtw4M3v2bLN06VLruowaNcpqO3HiRONyucyTTz551GsD2IFwA4TQkeGmsLDQxMbGmksuucT4fD6r3cyZM40k88wzzxhjjFm1apWRZObNm3fUYz/88MNGktm1a9cJ92vgwIHm3HPPDdo2f/58I8ncf//9Qduvuuoq43K5zObNm61tkozb7Tbr1q07rs9r1aqVkWReffVVa1tRUZFp1qyZ6d69u7Vt7NixRpL54IMPrG379u0zrVu3Nunp6dY1C4Sb5s2bm+LiYqvtyy+/bCSZv/3tb0HnKslMmzbN2lZaWmq6detmmjZtagXKF154wbjd7qDPNsaY2bNnG0nmo48+OuXzf//9961thYWFxuPxmNtvv93adt9995mzzjrLbNy4MWj/cePGmaioKLNjxw5jjDG7du0ykszkyZNrfNa5555rrr76aut1jx49zC9+8Qsjyaxfv94YY8xrr71mJJk1a9YYY4xZvXq1kWRuuOGGoGPdcccdRpJ59913a5zL4sWLa3x29XBz++23G7fbbZ599tnjukZAOHFbCgijd955R2VlZRo7dqzc7qo/bjfeeKPi4+Ot2y8JCQmSpLfeeksHDhyo9ViBMTMLFiywblmcikWLFikqKkq33npr0Pbbb79dxhj95z//Cdo+cOBAdezY8biPn5qaqp/+9KfW6/j4eA0fPlyrVq1Sfn6+1YfevXurf//+Vrv69evrpptu0rZt2/S///0v6JjDhw9XgwYNrNdXXXWVmjVrpkWLFgW1i46O1u9+9zvrdWxsrH73u9+psLBQK1askCTNmzdPHTp0UPv27bV7927r60c/+pEkaenSpad0/h07dtSAAQOs102aNFG7du20ZcsWa9u8efM0YMAANWzYMKgPWVlZ8vl8ev/993/wcwYMGKAPPvhAkrRv3z6tWbNGN910k5KSkqztH3zwgRITE9WpUydJsq5XdnZ20LFuv/12SapxW7B169YaPHhwrZ9vjNHo0aP1t7/9Tf/85z81YsSIH+wzEG6EGyCMtm/fLklq165d0PbY2FidffbZ1vutW7dWdna2/v73vyspKUmDBw/WrFmzgsbbDBs2TP369dMNN9yg5ORkXXPNNXr55ZdPOuhs375dqampQWFBqhybUb3vAa1btz6h42dkZMjlcgVta9u2rSRZ6wBt3769xrU5Vh/OOeecoNcul0sZGRk11hVKTU3VWWeddczP3rRpk9atW6cmTZoEfQXaFRYWBu1/oudf23T7hg0bas+ePdbrTZs2afHixTX6kJWVVWsfajNgwAB9++232rx5sz7++GO5XC5lZmYGhZ4PPvhA/fr1swL29u3b5Xa7lZGREXSslJQUJSYmntDP/vnnn9esWbP06KOP6tprr/3B/gJ2YCo4cJqYNm2afv3rX2vBggV6++23deuttyonJ0effPKJWrRoobi4OL3//vtaunSpFi5cqMWLF2vu3Ln60Y9+pLfffltRUVFh7V9cXFxYj283v9+vzp07a/r06bW+n5aWFvT6RM//aD8PU22wtt/v18UXX6y77rqr1raBoHUsgarX+++/ry1btqhHjx4666yzNGDAAD3yyCPav3+/Vq1apQceeKDGvkeGz6M51rn369dPq1ev1syZM3X11VerUaNGx3VMIJwIN0AYtWrVSpK0YcMGnX322db2srIybd261foXekDnzp3VuXNn/fGPf9THH3+sfv36afbs2br//vslSW63WxdddJEuuugiTZ8+XQ8++KAmTpyopUuX1jjW8fTtnXfe0b59+4KqN19++WVQ30/W5s2bZYwJ+gW6ceNGSZUzcAKfsWHDhhr7Hq0PmzZtCnptjNHmzZvVpUuXoO3ffPONSkpKgqo3R352mzZttGbNGl100UXH/Us+1Nq0aaP9+/f/4M/uWP1r2bKlWrZsqQ8++EBbtmyxboVdcMEFys7O1rx58+Tz+XTBBRdY+7Rq1Up+v1+bNm2yqmSSVFBQoL17957Qzz4jI8NaYPDHP/6xcnNza1QDAbtxWwoIo6ysLMXGxuqRRx4J+hf7008/raKiIg0ZMkSSVFxcrIqKiqB9O3fuLLfbbU3N/f7772scv1u3bpJUY/ru8bjsssvk8/k0c+bMoO0PP/ywXC6XLr300hM+ZnXffPONXn/9det1cXGxnn/+eXXr1k0pKSlWH5YvX668vDyrXUlJiZ588kmlp6fXGOPy/PPPa9++fdbrV155Rd9++22NvlZUVARNVy4rK9MTTzyhJk2aqGfPnpKkq6++Wl9//bWeeuqpGn0/ePCgSkpKTuHsj8/VV1+tvLw8vfXWWzXe27t3r/X/RL169axttRkwYIDeffddLV++3Ao33bp1U4MGDTR16lTFxcVZ5y1VXndJmjFjRtBxAlWswP+Xx6tLly5atGiR1q9fr6FDh7IODhxH5QYIoyZNmmj8+PGaMmWKfvzjH+uKK67Qhg0b9Nhjj+m8887Tr371K0mVKwiPHj1av/jFL9S2bVtVVFTohRdeUFRUlH7+859Lku699169//77GjJkiFq1aqXCwkI99thjatGiRdCA3OM1dOhQXXjhhZo4caK2bdumrl276u2339aCBQs0duxYtWnT5pTOvW3btvrtb3+rzz77TMnJyXrmmWdUUFCgf/zjH1abcePG6aWXXtKll16qW2+9VY0aNdJzzz2nrVu36tVXXw0ahC1JjRo1Uv/+/TVy5EgVFBRoxowZysjI0I033hjULjU1VQ899JC2bdumtm3bau7cuVq9erWefPJJxcTESJKuv/56vfzyy7r55pu1dOlS9evXTz6fT19++aVefvlla12XcLrzzjv1xhtv6PLLL9evf/1r9ezZUyUlJfriiy/0yiuvaNu2bUpKSlJcXJw6duyouXPnqm3btmrUqJE6depkDRAeMGCA/vWvf8nlcln/L0RFRalv37566623NGjQIMXGxlqf27VrV40YMUJPPvmk9u7dq4EDB2r58uV67rnndOWVV+rCCy884XM5//zztWDBAl122WW66qqrNH/+fOtaA7ZzcqoWEGlqW+fGmMqp3+3btzcxMTEmOTnZ3HLLLWbPnj3W+1u2bDG/+c1vTJs2bYzX6zWNGjUyF154oXnnnXesNrm5ueYnP/mJSU1NNbGxsSY1NdVce+21NaYR16a2qeDGVE67vu2220xqaqqJiYkx55xzjvnLX/5i/H5/UDsdsZ7JD2nVqpUZMmSIeeutt0yXLl2Mx+Mx7du3r3Wq+1dffWWuuuoqk5iYaLxer+ndu7d58803g9oEpoK/9NJLZvz48aZp06YmLi7ODBkyxGzfvr3Wc/38889NZmam8Xq9plWrVkFrvASUlZWZhx56yJx77rnG4/GYhg0bmp49e5opU6aYoqKiUz7/Iw0cONAMHDgwaNu+ffvM+PHjTUZGhomNjTVJSUmmb9++5q9//as1bd0YYz7++GPTs2dPExsbW2Na+Lp166y1eKq7//77jSRzzz331OhLeXm5mTJlimndurWJiYkxaWlpZvz48ebQoUPHdS7G1H5dFixYYKKjo82wYcOClj8A7OQy5oilSAHgFKWnp6tTp0568803Q3K8ZcuW6cILL9S8efN01VVXHbPtoEGDtHv3bq1duzYknw2g7mHMDQAAiCiEGwAAEFEINwAAIKIw5gYAAEQUKjcAACCiEG4AAEBEOePCjTFGxcXF4m4cAACR6YwLN/v27VNCQkLQEu4AACBynHHhBgAARDbCDQAAiCiEGwAAEFEINwAAIKIQbgAAQEQh3AAAgIhCuAEAABGFcAMAACIK4QYAAEQUwg0AAIgohBsAABBRCDcAACCiEG4AAEBEIdwAAICIEu10ByJFWYVfu/eXym+MWjSs53R3AAA4Y1G5CZE1/7dXfae+q+ufXu50VwAAOKMRbkLEGx0lSSot9zncEwAAzmyEmxDxxFReykMVfod7AgDAmY1wEyKe6MpLSeUGAABnEW5CxBtz+LYUlRsAABxFuAmRQOWmwm9U4SPgAADgFMJNiHgODyiWqN4AAOAkwk2IBCo3EuEGAAAnEW5CxO12KTbq8IwpBhUDAOAYwk0IWTOmqNwAAOAYwk0IeawZU1RuAABwCuEmhAKVm0PlVG4AAHAK4SaEAqsUs5AfAADOcTTcvP/++xo6dKhSU1Plcrk0f/78H9xn2bJl6tGjhzwejzIyMvTss8+GvZ/Hy3q+FGNuAABwjKPhpqSkRF27dtWsWbOOq/3WrVs1ZMgQXXjhhVq9erXGjh2rG264QW+99VaYe3p8rOdLUbkBAMAx0U5++KWXXqpLL730uNvPnj1brVu31rRp0yRJHTp00IcffqiHH35YgwcPDlc3jxuzpQAAcF6dGnOTl5enrKysoG2DBw9WXl7eUfcpLS1VcXFx0Fe48HwpAACcV6fCTX5+vpKTk4O2JScnq7i4WAcPHqx1n5ycHCUkJFhfaWlpYetf1WwpbksBAOCUOhVuTsb48eNVVFRkfe3cuTNsn+VhQDEAAI5zdMzNiUpJSVFBQUHQtoKCAsXHxysuLq7WfTwejzwejx3dkzcwFZxF/AAAcEydqtxkZmYqNzc3aNuSJUuUmZnpUI+CBSo3LOIHAIBzHA03+/fv1+rVq7V69WpJlVO9V69erR07dkiqvKU0fPhwq/3NN9+sLVu26K677tKXX36pxx57TC+//LJuu+02J7pfQ9VsKSo3AAA4xdFw8/nnn6t79+7q3r27JCk7O1vdu3fXpEmTJEnffvutFXQkqXXr1lq4cKGWLFmirl27atq0afr73/9+WkwDl6rNlqJyAwCAYxwdczNo0CAZY476fm2rDw8aNEirVq0KY69OHpUbAACcV6fG3Jzuqp4tReUGAACnEG5CiKngAAA4j3ATQl6eLQUAgOMINyFE5QYAAOcRbkKIxy8AAOA8wk0IeWMPL+LHbCkAABxDuAkhLysUAwDgOMJNCMUdrtwcLKNyAwCAUwg3IcSDMwEAcB7hJoTiYqjcAADgNMJNCAWeLXWown/Mx0oAAIDwIdyEUCDc+PxG5T7CDQAATiDchFBgzI3EdHAAAJxCuAmh2Ci3XK7K7w8x7gYAAEcQbkLI5XJZg4pZ6wYAAGcQbkIsMO7mII9gAADAEYSbEKuq3BBuAABwAuEmxDyHBxVTuQEAwBmEmxCjcgMAgLMINyHmJdwAAOAowk2IMVsKAABnEW5CLLCQH5UbAACcQbgJMaaCAwDgLMJNiHm5LQUAgKMINyEWR+UGAABHEW5CLDDmppRwAwCAIwg3IUblBgAAZxFuQszDOjcAADiKcBNiVbOlGFAMAIATCDchxuMXAABwFuEmxFjEDwAAZxFuQozKDQAAziLchBgrFAMA4CzCTYixQjEAAM4i3IRYYMzNwTIqNwAAOIFwE2JxsZWVm9IKwg0AAE4g3ISYN5rbUgAAOIlwE2KByg0DigEAcAbhJsQClRuf36jcR/UGAAC7EW5CzBtbdUmp3gAAYD/CTYjFRrnlclV+z0J+AADYj3ATYi6Xq2qV4jJuSwEAYDfCTRhYC/kxHRwAANsRbsLAG81CfgAAOIVwEwbeWB6eCQCAUwg3YRCYDs5sKQAA7Ee4CYO4WFYpBgDAKYSbMAg8PJPbUgAA2I9wEwbWVHDCDQAAtiPchIEnhjE3AAA4hXATBlWVG8bcAABgN8JNGDDmBgAA5xBuwoAxNwAAOMfxcDNr1iylp6fL6/WqT58+Wr58+THbz5gxQ+3atVNcXJzS0tJ022236dChQzb19vh4CTcAADjG0XAzd+5cZWdna/LkyVq5cqW6du2qwYMHq7CwsNb2L774osaNG6fJkydr/fr1evrppzV37lxNmDDB5p4fm5cBxQAAOMbRcDN9+nTdeOONGjlypDp27KjZs2erXr16euaZZ2pt//HHH6tfv3765S9/qfT0dF1yySW69tprf7DaYzcvA4oBAHCMY+GmrKxMK1asUFZWVlVn3G5lZWUpLy+v1n369u2rFStWWGFmy5YtWrRokS677LKjfk5paamKi4uDvsItjsoNAACOiXbqg3fv3i2fz6fk5OSg7cnJyfryyy9r3eeXv/yldu/erf79+8sYo4qKCt18883HvC2Vk5OjKVOmhLTvP4TZUgAAOMfxAcUnYtmyZXrwwQf12GOPaeXKlXrttde0cOFC3XfffUfdZ/z48SoqKrK+du7cGfZ+MqAYAADnOFa5SUpKUlRUlAoKCoK2FxQUKCUlpdZ97rnnHl1//fW64YYbJEmdO3dWSUmJbrrpJk2cOFFud82s5vF45PF4Qn8Cx8AifgAAOMexyk1sbKx69uyp3Nxca5vf71dubq4yMzNr3efAgQM1AkxUVGWQMMaEr7MnyHP4thRjbgAAsJ9jlRtJys7O1ogRI9SrVy/17t1bM2bMUElJiUaOHClJGj58uJo3b66cnBxJ0tChQzV9+nR1795dffr00ebNm3XPPfdo6NChVsg5HbCIHwAAznE03AwbNky7du3SpEmTlJ+fr27dumnx4sXWIOMdO3YEVWr++Mc/yuVy6Y9//KO+/vprNWnSREOHDtUDDzzg1CnUijE3AAA4x2VOp/s5NiguLlZCQoKKiooUHx8fls/YtrtEg/66TPU90Vo7ZXBYPgMAANSuTs2WqitYoRgAAOcQbsIgMObG5zcq9zFjCgAAOxFuwiAwW0pi3A0AAHYj3ISBJ9otl6vye25NAQBgL8JNGLhcLnmjK29NlbKQHwAAtiLchElcLIOKAQBwAuEmTLzRPDwTAAAnEG7CxBuo3JQRbgAAsBPhJkwCY24OVTDmBgAAOxFuwsQbeHgmlRsAAGxFuAmTwIDi0grCDQAAdiLchEngthSVGwAA7EW4CZPAgGJmSwEAYC/CTZhYlRsW8QMAwFaEmzCJi2WdGwAAnEC4CRNrKjjhBgAAWxFuwiSOMTcAADiCcBMm3phAuGHMDQAAdiLchEkg3PDgTAAA7EW4CZPACsXclgIAwF6EmzCJo3IDAIAjCDdhErgtVcqYGwAAbEW4CRMqNwAAOINwEyYextwAAOAIwk2YMFsKAABnEG7CJI51bgAAcAThJkyqFvGjcgMAgJ0IN2ESR7gBAMARhJswCSziV+E3KvdxawoAALsQbsIkcFtKonoDAICdCDdh4ol2y+Wq/J4ZUwAA2IdwEyYul0veaFYpBgDAboSbMOLhmQAA2I9wE0Y8ggEAAPsRbsLIy0J+AADYjnATRjyCAQAA+xFuwogxNwAA2I9wE0ZxsaxSDACA3Qg3YRSYCk64AQDAPoSbMLLG3JQRbgAAsAvhJoys2VIVzJYCAMAuhJswCgwopnIDAIB9CDdhFGdVbgg3AADYhXATRtZtKSo3AADYhnATRlVTwRlzAwCAXQg3YeSJPjzmhqngAADYhnATRiziBwCA/Qg3YWQt4sdUcAAAbEO4CSOrcsOAYgAAbEO4CSPrwZlMBQcAwDaEmzDi8QsAANiPcBNGXhbxAwDAdoSbMIqzKjcMKAYAwC6Oh5tZs2YpPT1dXq9Xffr00fLly4/Zfu/evRo1apSaNWsmj8ejtm3batGiRTb19sQEKjelTAUHAMA20U5++Ny5c5Wdna3Zs2erT58+mjFjhgYPHqwNGzaoadOmNdqXlZXp4osvVtOmTfXKK6+oefPm2r59uxITE+3v/HGwKjeEGwAAbONouJk+fbpuvPFGjRw5UpI0e/ZsLVy4UM8884zGjRtXo/0zzzyj77//Xh9//LFiYmIkSenp6XZ2+YQEZktV+I3KfX7FRDleKAMAIOI59tu2rKxMK1asUFZWVlVn3G5lZWUpLy+v1n3eeOMNZWZmatSoUUpOTlanTp304IMPyuc7emWktLRUxcXFQV92CdyWklilGAAAuzgWbnbv3i2fz6fk5OSg7cnJycrPz691ny1btuiVV16Rz+fTokWLdM8992jatGm6//77j/o5OTk5SkhIsL7S0tJCeh7HEni2lMTDMwEAsEuduk/i9/vVtGlTPfnkk+rZs6eGDRumiRMnavbs2UfdZ/z48SoqKrK+du7caVt/XS5X1UJ+VG4AALCFY2NukpKSFBUVpYKCgqDtBQUFSklJqXWfZs2aKSYmRlFRVbd7OnTooPz8fJWVlSk2NrbGPh6PRx6PJ7SdPwFxMVE6VO4n3AAAYBPHKjexsbHq2bOncnNzrW1+v1+5ubnKzMysdZ9+/fpp8+bN8vurbvFs3LhRzZo1qzXYnA68zJgCAMBWjt6Wys7O1lNPPaXnnntO69ev1y233KKSkhJr9tTw4cM1fvx4q/0tt9yi77//XmPGjNHGjRu1cOFCPfjggxo1apRTp/CDAtPBGXMDAIA9HJ0KPmzYMO3atUuTJk1Sfn6+unXrpsWLF1uDjHfs2CG3uyp/paWl6a233tJtt92mLl26qHnz5hozZozuvvtup07hB3mo3AAAYCuXMcY43Qk7FRcXKyEhQUVFRYqPjw/75/30sY+0asdePXl9T11ybu1jiQAAQOjUqdlSdVFgOnhpBbelAACwA+EmzKznSxFuAACwBeEmzAKVG6aCAwBgD8JNmHmiqdwAAGAnwk2YBVYoLq2gcgMAgB0IN2EWqNywzg0AAPYg3IRZ1WwpKjcAANjhpMLNc889p4ULF1qv77rrLiUmJqpv377avn17yDoXCTyB21JUbgAAsMVJhZsHH3xQcXFxkqS8vDzNmjVLf/7zn5WUlKTbbrstpB2s67zWgGIqNwAA2OGkHr+wc+dOZWRkSJLmz5+vn//857rpppvUr18/DRo0KJT9q/Oo3AAAYK+TqtzUr19f3333nSTp7bff1sUXXyxJ8nq9OnjwYOh6FwGYCg4AgL1OqnJz8cUX64YbblD37t21ceNGXXbZZZKkdevWKT09PZT9q/MCU8FZxA8AAHucVOVm1qxZyszM1K5du/Tqq6+qcePGkqQVK1bo2muvDWkH6zoqNwAA2OukKjeJiYmaOXNmje1Tpkw55Q5FGqaCAwBgr5Oq3CxevFgffvih9XrWrFnq1q2bfvnLX2rPnj0h61wkCDw4k0X8AACwx0mFmzvvvFPFxcWSpC+++EK33367LrvsMm3dulXZ2dkh7WBdR+UGAAB7ndRtqa1bt6pjx46SpFdffVWXX365HnzwQa1cudIaXIxK1lRwxtwAAGCLk6rcxMbG6sCBA5Kkd955R5dccokkqVGjRlZFB5Wqni1F5QYAADucVOWmf//+ys7OVr9+/bR8+XLNnTtXkrRx40a1aNEipB2s67xUbgAAsNVJVW5mzpyp6OhovfLKK3r88cfVvHlzSdJ//vMf/fjHPw5pB+s6ayo4A4oBALDFSVVuWrZsqTfffLPG9ocffviUOxRpAmNuDlX4ZIyRy+VyuEcAAES2kwo3kuTz+TR//nytX79eknTuuefqiiuuUFRUVMg6FwkClRtjpHKfUWw04QYAgHA6qXCzefNmXXbZZfr666/Vrl07SVJOTo7S0tK0cOFCtWnTJqSdrMsCU8GlyungsdEndScQAAAcp5P6TXvrrbeqTZs22rlzp1auXKmVK1dqx44dat26tW699dZQ97FOqx5uWMgPAIDwO6nKzXvvvadPPvlEjRo1srY1btxYU6dOVb9+/ULWuUjgcrnkiXartMLPQn4AANjgpCo3Ho9H+/btq7F9//79io2NPeVORZqqVYqp3AAAEG4nFW4uv/xy3XTTTfr0009ljJExRp988oluvvlmXXHFFaHuY51X9XwpKjcAAITbSYWbRx55RG3atFFmZqa8Xq+8Xq/69u2rjIwMzZgxI8RdrPt4BAMAAPY5qTE3iYmJWrBggTZv3mxNBe/QoYMyMjJC2rlIwUJ+AADY57jDzQ897Xvp0qXW99OnTz/5HkUgb7WF/AAAQHgdd7hZtWrVcbVjBd6aqNwAAGCf4w431SszODFVs6Wo3AAAEG4sl2uDwGwpKjcAAIQf4cYGVG4AALAP4cYGLOIHAIB9CDc2sG5LEW4AAAg7wo0NApUbVigGACD8CDc28FC5AQDANoQbG1hjbqjcAAAQdoQbG1Q9OJPKDQAA4Ua4sQFTwQEAsA/hxgZMBQcAwD6EGxt4rNtSVG4AAAg3wo0NqNwAAGAfwo0NrKeCE24AAAg7wo0NvDEs4gcAgF0INzagcgMAgH0INzbwxDAVHAAAuxBubOCNZhE/AADsQrixgVW5YcwNAABhR7ixAVPBAQCwD+HGBt5qTwU3xjjcGwAAIhvhxgaByo1E9QYAgHA7LcLNrFmzlJ6eLq/Xqz59+mj58uXHtd+cOXPkcrl05ZVXhreDpygwFVwi3AAAEG6Oh5u5c+cqOztbkydP1sqVK9W1a1cNHjxYhYWFx9xv27ZtuuOOOzRgwACbenryYqJccrsqv2dQMQAA4eV4uJk+fbpuvPFGjRw5Uh07dtTs2bNVr149PfPMM0fdx+fz6brrrtOUKVN09tln29jbk+NyuVjIDwAAmzgabsrKyrRixQplZWVZ29xut7KyspSXl3fU/e699141bdpUv/3tb3/wM0pLS1VcXBz05QQW8gMAwB6Ohpvdu3fL5/MpOTk5aHtycrLy8/Nr3efDDz/U008/raeeeuq4PiMnJ0cJCQnWV1pa2in3+2SwkB8AAPZw/LbUidi3b5+uv/56PfXUU0pKSjqufcaPH6+ioiLra+fOnWHuZe2o3AAAYI9oJz88KSlJUVFRKigoCNpeUFCglJSUGu2/+uorbdu2TUOHDrW2+f2VlZDo6Ght2LBBbdq0CdrH4/HI4/GEofcnxlrIj8oNAABh5WjlJjY2Vj179lRubq61ze/3Kzc3V5mZmTXat2/fXl988YVWr15tfV1xxRW68MILtXr1asduOR2PwEJ+h6jcAAAQVo5WbiQpOztbI0aMUK9evdS7d2/NmDFDJSUlGjlypCRp+PDhat68uXJycuT1etWpU6eg/RMTEyWpxvbTDZUbAADs4Xi4GTZsmHbt2qVJkyYpPz9f3bp10+LFi61Bxjt27JDbXaeGBtWKqeAAANjDZc6whx0VFxcrISFBRUVFio+Pt+1zb3juM72zvlBTf9ZZ1/RuadvnAgBwpqn7JZE6gsoNAAD2INzYxBpzw4BiAADCinBjE08Mi/gBAGAHwo1NqNwAAGAPwo1NrBWKqdwAABBWhBubWM+WonIDAEBYEW5sQuUGAAB7EG5swlRwAADsQbixCQOKAQCwB+HGJl6mggMAYAvCjU2o3AAAYA/CjU2qwg2VGwAAwolwYxNuSwEAYA/CjU24LQUAgD0INzYJPFuKdW4AAAgvwo1NvDFUbgAAsAPhxibWIn5UbgAACCvCjU2YLQUAgD0INzYJzJYq8/nl8xuHewMAQOQi3NgkULmRpDKqNwAAhA3hxibVww2DigEACB/CjU2io9yKdrsksZAfAADhRLixEQv5AQAQfoQbG1kL+THmBgCAsCHc2Mh7uHJzqJzKDQAA4UK4sRGVGwAAwo9wYyNrzA0DigEACBvCjY0ClRtuSwEAED6EGxvxCAYAAMKPcGMjpoIDABB+hBsbea3bUlRuAAAIF8KNjajcAAAQfoQbG3mimQoOAEC4EW5s5I1hET8AAMKNcGMjKjcAAIQf4cZGnhgW8QMAINwINzbyHq7cHGJAMQAAYUO4sRGVGwAAwo9wYyOmggMAEH6EGxsFBhSziB8AAOFDuLFRYCo4lRsAAMKHcGMjpoIDABB+hBsbWWNuWMQPAICwIdzYKPDgTCo3AACED+HGRtZUcMINAABhQ7ixEbelAAAIP8KNjQK3pQ5RuQEAIGwINzaicgMAQPgRbmzEVHAAAMKPcGOjwCJ+FX6jCh8BBwCAcCDc2ChQuZGo3gAAEC6EGxsFxtxIhBsAAMKFcGMjt9ul2KjKS36IQcUAAITFaRFuZs2apfT0dHm9XvXp00fLly8/atunnnpKAwYMUMOGDdWwYUNlZWUds/3pxpoxReUGAICwcDzczJ07V9nZ2Zo8ebJWrlyprl27avDgwSosLKy1/bJly3Tttddq6dKlysvLU1pami655BJ9/fXXNvf85Hh4MjgAAGHlMsYYJzvQp08fnXfeeZo5c6Ykye/3Ky0tTX/4wx80bty4H9zf5/OpYcOGmjlzpoYPH/6D7YuLi5WQkKCioiLFx8efcv9PVL+p7+rrvQc1f1Q/dUtLtP3zAQCIdI5WbsrKyrRixQplZWVZ29xut7KyspSXl3dcxzhw4IDKy8vVqFGjWt8vLS1VcXFx0JeTrMoNY24AAAgLR8PN7t275fP5lJycHLQ9OTlZ+fn5x3WMu+++W6mpqUEBqbqcnBwlJCRYX2lpaafc71PBQn4AAISX42NuTsXUqVM1Z84cvf766/J6vbW2GT9+vIqKiqyvnTt32tzLYIGF/JgtBQBAeEQ7+eFJSUmKiopSQUFB0PaCggKlpKQcc9+//vWvmjp1qt555x116dLlqO08Ho88Hk9I+hsKzJYCACC8HK3cxMbGqmfPnsrNzbW2+f1+5ebmKjMz86j7/fnPf9Z9992nxYsXq1evXnZ0NWS4LQUAQHg5WrmRpOzsbI0YMUK9evVS7969NWPGDJWUlGjkyJGSpOHDh6t58+bKycmRJD300EOaNGmSXnzxRaWnp1tjc+rXr6/69es7dh7Hi9tSAACEl+PhZtiwYdq1a5cmTZqk/Px8devWTYsXL7YGGe/YsUNud1WB6fHHH1dZWZmuuuqqoONMnjxZf/rTn+zs+kmhcgMAQHg5Hm4kafTo0Ro9enSt7y1btizo9bZt28LfoTCqGnND5QYAgHCo07Ol6iJvTGXl5lA5lRsAAMKBcGMzKjcAAIQX4cZmVSsUU7kBACAcCDc281oDiqncAAAQDoQbm1G5AQAgvAg3NmMqOAAA4UW4sVlgQDGL+AEAEB6EG5sFpoJTuQEAIDwINzZjKjgAAOFFuLFZoHJzkNtSAACEBeHGZvW9lU+8KCkl3AAAEA6EG5vV91SGm32HKhzuCQAAkYlwY7NAuNlfWu5wTwAAiEyEG5s1OHxb6lC5X+U+ZkwBABBqhBubnXW4ciNJJaXcmgIAINQINzaLiXLLe/gRDIy7AQAg9Ag3DqjviZEk7adyAwBAyBFuHBAYd0PlBgCA0CPcOIAZUwAAhA/hxgGsdQMAQPgQbhwQWKWYMTcAAIQe4cYBgTE3+6ncAAAQcoQbBzTw1KzclJRWyBjjVJcAAIgYhBsH1D9ittSC1V+r+71LlP3yGie7BQBARCDcOODIdW5yFn2pMp9fr6/6Wuu+KXKyawAA1HmEGwdUVW7Ktf27EuUXH7Ley/vqO6e6BQBARCDcOCAxrrJys+dAudb8X3ClZsX2PU50CQCAiEG4cUBSfY8k6bv9pfry22JJUouGcZKkTYX7HesXAACRgHDjgKT6sZKk3fvL9GX+PknSkC7NJEnbdpeo3Od3rG8AANR1hBsHBCo3RQfLtfbryttSF7ZrqrNio1ThN9r+3QEnuwcAQJ1GuHFAQlyMotwuSVLhvlJJUoeUeLVpWl+StLlwn2N9AwCgriPcOMDtdikl3mu9Ton3KqFejDKscMO4GwAAThbhxiFnNznL+r5dSgNJssLNV7tKHOkTAACRgHDjkDZN6lvftz8cbgLbqNwAAHDyCDcOGXBOkvX94E4pkqrCzVe79vOcKQAATlK00x04U/2ofVPdcUlbSVL3tERJUqvG9RTtdulAmU/fFh1SamKcgz0EAKBuItw4xOVyafSPzgnaFhPlVqvG9fTVrhJ9tWs/4QYAgJPAbanTTODW1KYCxt0AAHAyCDenmfbN4iVJ674pdrgnAADUTYSb00yX5gmSpP/+315nOwIAQB1FuDnNdGuZKKnyAZq7Dq9eDAAAjh/h5jSTVN+jc1Mrb029s75AhcWH9OGm3So6UO5wzwAAqBuYLXUaurJbc637pljjX/tC0W6XKvxGCXExenbkeeresqHT3QMA4LRG5eY0dE3vNJ2dVPl4hgq/Ubw3WkUHy3XLP1fq+5Iyh3sHAMDpzWXOsKVwi4uLlZCQoKKiIsXHxzvdnaMqOliu9zbuUrvkBkpN9OonMz/Slt0lurZ3mnJ+1sXp7gEAcNqicnOaSoiL0RVdU9UupYEaeGP00FWVgWbOZzuZSQUAwDEQbuqI89Ib6cpuqTJGmvzGOvn9Z1TBDQCA40a4qUPGX9ZBZ8VGadWOvXrhk+1OdwcAgNMS4aYOSY73amxW5cM2//TvdXpw0XoVFB9yuFcAAJxeGFBcxxhjNGnBOqtyE+V26aL2TTX6Rxnq0iLR2c4BAHAaINzUQcYYLd1QqMeXfaXPtu2RJLlc0i97t9Sdg9spsV6swz0EAMA5hJs6bmPBPj22dLPmr/5GUuUsq4s6NFVG0/pq2aiemifGqXlinJLqe+R2uxzuLQAA4Ue4iRCfbPlOkxas1caC/bW+HxPlUnK8V55ot6LcLrldLkW5XcHfu1xyu1XLNpfcrsrtLlfle26X5Ha55Dr838DrQFv34XZHvu86vM0lWe+5VPkisM2lqjaBQHbk9qDXQfvqiM9wHXVfVfv8yuNUtdPhfd217Kvq/Qsc/yjHrDq/yvfdrqo+uasdy13b+Qf2cR/Zh1o+v/o+h4/ldv3wPjrcjyP30RH9t65F4E2bVfj8+nz7HjXwRiu98VmKjXYrJiqyhwx+X1Kmcp9fyfFep7sC1DmnRbiZNWuW/vKXvyg/P19du3bVo48+qt69ex+1/bx583TPPfdo27ZtOuecc/TQQw/psssuO67PitRwI1X+Avj4q++0Yvsebf+uRP+356C+2XtQ+cWHxMxxhFL1QHRkwKweiI4MV+5j7GOMZGTkN6r83hj5jZGRdKjcp0Pl/qA+xMVEKT4uWrHRbkW5XPJERyk22q3oKJei3S5Fu93VAnz1cF4V4AMhvvK/VW2ijtjuDnx/OMBHHXX74WMfud2toH8wuKx/XNS+/atd+/XAwvXaX1qh9ikN1Lt1IzVLiFOLhpVV2KT6sWp4Vqzqe6IVE1V5ngCqOB5u5s6dq+HDh2v27Nnq06ePZsyYoXnz5mnDhg1q2rRpjfYff/yxLrjgAuXk5Ojyyy/Xiy++qIceekgrV65Up06dfvDzIjncHE2Fz6+CfaXKLzqkcp9ffr+Rzxj5/JW/PHx+Vfu+6r/V3/cbc/iXTeX3/mq/fKxt/mO/b0zl5wR+iQV+gRkpeJuqfrnVur3Wfau/Drx/lGPqKPsGHfvIfU0tn3P0ff2H/1gF/8I2tfSj6tpIVd8HjlUZSk1VuxrXJnCdj97f6sevy1wuRcR5hIPbJUVHuRXjdlX+N8qlmKjKoBfjDgQ+t2KiA20Ov3+4fWxUtTZRVe8Htwkcs/L76MPvx1Q7VuXxA8eoPG5MdOVxA58RU0v/qt8yX/t1kR5a/KUOlfs06fJzZWTUKTWh8jwJcThOjoebPn366LzzztPMmTMlSX6/X2lpafrDH/6gcePG1Wg/bNgwlZSU6M0337S2nX/++erWrZtmz579g593JoYbIMAKQoeDUvXgExygKtspKGjVHs6CwlstwbDqM6pVZaofs9rfQEfeinO7qio7LRvV0679pSqvMCo+VC6/MTpU7pfPb+RySRU+o3KfXxV+owqfX+X+ysBd7vMHnVMgtFeGfAWFfRMI+9b7gdBeFfJ9J7G9+n/9h48fvF1Bn+eJidKlnVL0xddF2pC/T98WHZQ3OkrRUS4dKverzFd53pEiyu1STFRl9aqkzFdrm/qeaDVp4FGjs2LVsF6MPNFR8pvKhwq73S55o6PkckkxtYSvaLdLUYGgdjjcBVfuFPTadbgCV72a5nYFV+qq376VDt/mVdUt7hrbFNw+cEu68rvAe64a7arfKg8I/H9e7vOrwmd0oMyn//7fXn301XdqWC9GV3Zvrl3FpWreME5Rbpd8fqP6nsoqpzcmyvrMI2/Fh5In2q2mDt5SdfSp4GVlZVqxYoXGjx9vbXO73crKylJeXl6t++Tl5Sk7Ozto2+DBgzV//vxa25eWlqq0tNR6XVxcfOodB+qoylsuUtVfp3VLs4Q4p7vguMC/R0sr/Cr3+VXuqwpzFYHXfr/KK4zK/ZW//ALvl1f4K98LtPEZKxQGBcNqQTHwC7Q8aLtfZRWBY1RtD7Qtq22fw9+X+fw1zilQKZYqQ0W3tERtyN+n/aUVVpv9pRXaX1qhrbtL7LnQddiCwxNMnNSjZaJe+30/xz7f0XCze/du+Xw+JScnB21PTk7Wl19+Wes++fn5tbbPz8+vtX1OTo6mTJkSmg4DgMMCg7q9MVHWv8LrEnO4WlXhrww6lYHLqOxwWGtc36OEuBjt3l+q/9tzUI3PitX27w6o3OdXaYVfRQfL5DdSSWmFotwu7TtUIb8xKq3wy2+MFebKqoWqytBW+Zk+f+XrI6tmflNZyQv0L3AL3WeqKn3VK3+BCmTlOR0+N1W/dVr91nTVuR/Zrvo2mep7VlVIq3+GpKDbioHqVJsm9XVe60Zas3OvPt36fWWlc1+pXC6pXmyU9h+qUJnP6FC5z/qnTWDYwDF/Xjq5CmFstLMD/h0NN3YYP358UKWnuLhYaWlpDvYIAM5cLlflbaHoKB0znFUOnPZIktIa1bOre4gQjoabpKQkRUVFqaCgIGh7QUGBUlJSat0nJSXlhNp7PB55PJ7QdBgAAJz2HK0bxcbGqmfPnsrNzbW2+f1+5ebmKjMzs9Z9MjMzg9pL0pIlS47aHgAAnFkcvy2VnZ2tESNGqFevXurdu7dmzJihkpISjRw5UpI0fPhwNW/eXDk5OZKkMWPGaODAgZo2bZqGDBmiOXPm6PPPP9eTTz7p5GkAAIDThOPhZtiwYdq1a5cmTZqk/Px8devWTYsXL7YGDe/YsUNud1WBqW/fvnrxxRf1xz/+URMmTNA555yj+fPnH9caNwAAIPI5vs6N3VjnBgCAyBbZD2cBAABnHMINAACIKIQbAAAQUQg3AAAgohBuAABARCHcAACAiEK4AQAAEYVwAwAAIgrhBgAARBTHH79gt8CCzMXFxQ73BAAAnKgGDRrI5XIds80ZF2727dsnSUpLS3O4JwAA4EQdz+OTzrhnS/n9fn3zzTfHlfxOVHFxsdLS0rRz506eWxVGXGd7cJ3tw7W2B9fZHuG+zlRuauF2u9WiRYuwfkZ8fDx/cGzAdbYH19k+XGt7cJ3t4eR1ZkAxAACIKIQbAAAQUQg3IeTxeDR58mR5PB6nuxLRuM724Drbh2ttD66zPU6H63zGDSgGAACRjcoNAACIKIQbAAAQUQg3AAAgohBuAABARCHchMisWbOUnp4ur9erPn36aPny5U53qU7JycnReeedpwYNGqhp06a68sortWHDhqA2hw4d0qhRo9S4cWPVr19fP//5z1VQUBDUZseOHRoyZIjq1aunpk2b6s4771RFRYWdp1KnTJ06VS6XS2PHjrW2cZ1D4+uvv9avfvUrNW7cWHFxcercubM+//xz631jjCZNmqRmzZopLi5OWVlZ2rRpU9Axvv/+e1133XWKj49XYmKifvvb32r//v12n8ppzefz6Z577lHr1q0VFxenNm3a6L777lP1uTJc6xP3/vvva+jQoUpNTZXL5dL8+fOD3g/VNf3vf/+rAQMGyOv1Ki0tTX/+859DcwIGp2zOnDkmNjbWPPPMM2bdunXmxhtvNImJiaagoMDprtUZgwcPNv/4xz/M2rVrzerVq81ll11mWrZsafbv32+1ufnmm01aWprJzc01n3/+uTn//PNN3759rfcrKipMp06dTFZWllm1apVZtGiRSUpKMuPHj3filE57y5cvN+np6aZLly5mzJgx1nau86n7/vvvTatWrcyvf/1r8+mnn5otW7aYt956y2zevNlqM3XqVJOQkGDmz59v1qxZY6644grTunVrc/DgQavNj3/8Y9O1a1fzySefmA8++MBkZGSYa6+91olTOm098MADpnHjxubNN980W7duNfPmzTP169c3f/vb36w2XOsTt2jRIjNx4kTz2muvGUnm9ddfD3o/FNe0qKjIJCcnm+uuu86sXbvWvPTSSyYuLs488cQTp9x/wk0I9O7d24waNcp67fP5TGpqqsnJyXGwV3VbYWGhkWTee+89Y4wxe/fuNTExMWbevHlWm/Xr1xtJJi8vzxhT+YfR7Xab/Px8q83jjz9u4uPjTWlpqb0ncJrbt2+fOeecc8ySJUvMwIEDrXDDdQ6Nu+++2/Tv3/+o7/v9fpOSkmL+8pe/WNv27t1rPB6Peemll4wxxvzvf/8zksxnn31mtfnPf/5jXC6X+frrr8PX+TpmyJAh5je/+U3Qtp/97GfmuuuuM8ZwrUPhyHATqmv62GOPmYYNGwb9vXH33Xebdu3anXKfuS11isrKyrRixQplZWVZ29xut7KyspSXl+dgz+q2oqIiSVKjRo0kSStWrFB5eXnQdW7fvr1atmxpXee8vDx17txZycnJVpvBgweruLhY69ats7H3p79Ro0ZpyJAhQddT4jqHyhtvvKFevXrpF7/4hZo2baru3bvrqaeest7funWr8vPzg65zQkKC+vTpE3SdExMT1atXL6tNVlaW3G63Pv30U/tO5jTXt29f5ebmauPGjZKkNWvW6MMPP9Sll14qiWsdDqG6pnl5ebrgggsUGxtrtRk8eLA2bNigPXv2nFIfz7gHZ4ba7t275fP5gv6il6Tk5GR9+eWXDvWqbvP7/Ro7dqz69eunTp06SZLy8/MVGxurxMTEoLbJycnKz8+32tT2cwi8h0pz5szRypUr9dlnn9V4j+scGlu2bNHjjz+u7OxsTZgwQZ999pluvfVWxcbGasSIEdZ1qu06Vr/OTZs2DXo/OjpajRo14jpXM27cOBUXF6t9+/aKioqSz+fTAw88oOuuu06SuNZhEKprmp+fr9atW9c4RuC9hg0bnnQfCTc47YwaNUpr167Vhx9+6HRXIs7OnTs1ZswYLVmyRF6v1+nuRCy/369evXrpwQcflCR1795da9eu1ezZszVixAiHexdZXn75Zf3rX//Siy++qHPPPVerV6/W2LFjlZqayrU+g3Fb6hQlJSUpKiqqxmySgoICpaSkONSrumv06NF68803tXTpUrVo0cLanpKSorKyMu3duzeoffXrnJKSUuvPIfAeKm87FRYWqkePHoqOjlZ0dLTee+89PfLII4qOjlZycjLXOQSaNWumjh07Bm3r0KGDduzYIanqOh3r742UlBQVFhYGvV9RUaHvv/+e61zNnXfeqXHjxumaa65R586ddf311+u2225TTk6OJK51OITqmobz7xLCzSmKjY1Vz549lZuba23z+/3Kzc1VZmamgz2rW4wxGj16tF5//XW9++67NUqVPXv2VExMTNB13rBhg3bs2GFd58zMTH3xxRdBf6CWLFmi+Pj4Gr9ozlQXXXSRvvjiC61evdr66tWrl6677jrre67zqevXr1+NpQw2btyoVq1aSZJat26tlJSUoOtcXFysTz/9NOg67927VytWrLDavPvuu/L7/erTp48NZ1E3HDhwQG538K+yqKgo+f1+SVzrcAjVNc3MzNT777+v8vJyq82SJUvUrl27U7olJYmp4KEwZ84c4/F4zLPPPmv+97//mZtuuskkJiYGzSbBsd1yyy0mISHBLFu2zHz77bfW14EDB6w2N998s2nZsqV59913zeeff24yMzNNZmam9X5givIll1xiVq9ebRYvXmyaNGnCFOUfUH22lDFc51BYvny5iY6ONg888IDZtGmT+de//mXq1atn/vnPf1ptpk6dahITE82CBQvMf//7X/OTn/yk1qm03bt3N59++qn58MMPzTnnnHNGT0+uzYgRI0zz5s2tqeCvvfaaSUpKMnfddZfVhmt94vbt22dWrVplVq1aZSSZ6dOnm1WrVpnt27cbY0JzTffu3WuSk5PN9ddfb9auXWvmzJlj6tWrx1Tw08mjjz5qWrZsaWJjY03v3r3NJ5984nSX6hRJtX794x//sNocPHjQ/P73vzcNGzY09erVMz/96U/Nt99+G3Scbdu2mUsvvdTExcWZpKQkc/vtt5vy8nKbz6ZuOTLccJ1D49///rfp1KmT8Xg8pn379ubJJ58Met/v95t77rnHJCcnG4/HYy666CKzYcOGoDbfffedufbaa039+vVNfHy8GTlypNm3b5+dp3HaKy4uNmPGjDEtW7Y0Xq/XnH322WbixIlB04u51idu6dKltf6dPGLECGNM6K7pmjVrTP/+/Y3H4zHNmzc3U6dODUn/XcZUW8YRAACgjmPMDQAAiCiEGwAAEFEINwAAIKIQbgAAQEQh3AAAgIhCuAEAABGFcAMAACIK4QbAGW/ZsmVyuVw1nqkFoG4i3AAAgIhCuAEAABGFcAPAcX6/Xzk5OWrdurXi4uLUtWtXvfLKK5KqbhktXLhQXbp0kdfr1fnnn6+1a9cGHePVV1/VueeeK4/Ho/T0dE2bNi3o/dLSUt19991KS0uTx+NRRkaGnn766aA2K1asUK9evVSvXj317du3xpO9AdQNhBsAjsvJydHzzz+v2bNna926dbrtttv0q1/9Su+9957V5s4779S0adP02WefqUmTJho6dKjKy8slVYaSq6++Wtdcc42++OIL/elPf9I999yjZ5991tp/+PDheumll/TII49o/fr1euKJJ1S/fv2gfkycOFHTpk3T559/rujoaP3mN7+x5fwBhBYPzgTgqNLSUjVq1EjvvPOOMjMzre033HCDDhw4oJtuukkXXnih5syZo2HDhkmSvv/+e7Vo0ULPPvusrr76al133XXatWuX3n77bWv/u+66SwsXLtS6deu0ceNGtWvXTkuWLFFWVlaNPixbtkwXXnih3nnnHV100UWSpEWLFmnIkCE6ePCgvF5vmK8CgFCicgPAUZs3b9aBAwd08cUXq379+tbX888/r6+++spqVz34NGrUSO3atdP69eslSevXr1e/fv2CjtuvXz9t2rRJPp9Pq1evVlRUlAYOHHjMvnTp0sX6vlmzZpKkwsLCUz5HAPaKdroDAM5s+/fvlyQtXLhQzZs3D3rP4/EEBZyTFRcXd1ztYmJirO9dLpekyvFAAOoWKjcAHNWxY0d5PB7t2LFDGRkZQV9paWlWu08++cT6fs+ePdq4caM6dOggSerQoYM++uijoON+9NFHatu2raKiotS5c2f5/f6gMTwAIheVGwCOatCgge644w7ddttt8vv96t+/v4qKivTRRx8pPj5erVq1kiTde++9aty4sZKTkzVx4kQlJSXpyiuvlCTdfvvtOu+883Tfffdp2LBhysvL08yZM/XYY49JktLT0zVixAj95je/0SOPPKKuXbtq+/btKiws1NVXX+3UqQMIE8INAMfdd999atKkiXJycrRlyxYlJiaqR48emjBhgnVbaOrUqRozZow2bdqkbt266d///rdiY2MlST169NDLL7+sSZMm6b777lOzZs1077336te//rX1GY8//rgmTJig3//+9/ruu+/UsmVLTZgwwYnTBRBmzJYCcFoLzGTas2ePEhMTne4OgDqAMTcAACCiEG4AAEBE4bYUAACIKFRuAABARCHcAACAiEK4AQAAEYVwAwAAIgrhBgAARBTCDQAAiCiEGwAAEFEINwAAIKIQbgAAQET5fzzzzFBWAJG9AAAAAElFTkSuQmCC" - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "text/plain": "
", - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAioAAAHHCAYAAACRAnNyAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABU70lEQVR4nO3deVxU9f4G8GcYGfZFEJBFBNkUWVRIcymXyCWvaVaSu6a5b5ll3hazRS2zNHfrpon7llluuZtbKrgvbKm4I/smA8x8f3/Mz8kRVFDgnIHn/Xrxus13DjPPDFx9POdzziiEEAJEREREMmQidQAiIiKiR2FRISIiItliUSEiIiLZYlEhIiIi2WJRISIiItliUSEiIiLZYlEhIiIi2WJRISIiItliUSEiIiLZYlEhqmBXrlyBQqHA0qVLy/y9+/btg0KhwL59+8o9V3krKeuAAQPg5eVVbs+xdOlSKBQKXLlypdwek4jkjUWFiGRn6tSp2LRpk9QxJDd//vynKrhSMba8ZBxYVIiowvz444+IjY0t8/c9qqj07dsX9+7dQ926dcshnfwZ21/8xpaXjEMNqQMQkbS0Wi0KCgpgbm5e7o9tamparo+nVCqhVCrL9TGrm/z8fKhUKpiY8N+pZBz4m0pV3meffQaFQoG4uDj06dMHdnZ2cHJywieffAIhBK5du4auXbvC1tYWtWvXxsyZM4s9RnJyMgYNGgQXFxeYm5sjNDQUv/zyS7HtMjIyMGDAANjZ2cHe3h79+/dHRkZGibkuXbqEN954Aw4ODjA3N0d4eDg2b978TK/x0qVL6NGjB2xtbeHo6IixY8ciPz/fYFuFQoFRo0ZhxYoVaNiwIczMzLB9+3YAwI0bN/D222/DxcUFZmZmaNiwIX7++ediz3f9+nV069YNVlZWcHZ2xrvvvgu1Wl1su5JmVLRaLWbPno3g4GCYm5vDyckJHTt2xIkTJ/T5cnNz8csvv0ChUEChUGDAgAEAHj2jMn/+fP1rcXNzw8iRI4u9723atEFQUBAuXLiAtm3bwtLSEu7u7vjmm2+e+P4GBQWhbdu2xda1Wi3c3d3xxhtv6NdWr16NsLAw2NjYwNbWFsHBwZg9e/YTn+NhXl5eOH/+PPbv369/H9q0aQMASEtLw4QJExAcHAxra2vY2tqiU6dOOH36tMFj3J8bWr16NT7++GO4u7vD0tISWVlZAIB169YhMDAQ5ubmCAoKwq+//vrIn9msWbPQsGFDmJubw8XFBUOHDkV6enqp8hI9C+5RoWojMjISDRo0wPTp07FlyxZ8+eWXcHBwwKJFi9CuXTt8/fXXWLFiBSZMmIDnnnsOL774IgDg3r17aNOmDRISEjBq1Ch4e3tj3bp1GDBgADIyMjB27FgAgBACXbt2xcGDBzFs2DA0aNAAv/76K/r3718sy/nz59GyZUu4u7vjww8/hJWVFdauXYtu3bphw4YNeO21157qNfbo0QNeXl6YNm0ajh49ih9++AHp6elYtmyZwXZ79uzB2rVrMWrUKNSqVQteXl64c+cOnn/+eX2RcXJywrZt2zBo0CBkZWVh3Lhx+vfjpZdeQlJSEsaMGQM3NzdERUVhz549pco4aNAgLF26FJ06dcLgwYNRVFSEv/76C0ePHkV4eDiioqIwePBgNG3aFEOGDAEA+Pj4PPLxPvvsM0yZMgUREREYPnw4YmNjsWDBAhw/fhyHDh0y2KuTnp6Ojh07onv37ujRowfWr1+PiRMnIjg4GJ06dXrkc0RGRuKzzz7D7du3Ubt2bf36wYMHcfPmTbz11lsAgJ07d6Jnz5546aWX8PXXXwMALl68iEOHDul/T0pr1qxZGD16NKytrfHRRx8BAFxcXAAA//zzDzZt2oQ333wT3t7euHPnDhYtWoTWrVvjwoULcHNzM3isL774AiqVChMmTIBarYZKpcKWLVsQGRmJ4OBgTJs2Denp6Rg0aBDc3d2LZRk6dCiWLl2KgQMHYsyYMbh8+TLmzp2LkydP6t/jx+UleiaCqIqbPHmyACCGDBmiXysqKhIeHh5CoVCI6dOn69fT09OFhYWF6N+/v35t1qxZAoBYvny5fq2goEA0b95cWFtbi6ysLCGEEJs2bRIAxDfffGPwPC+88IIAIJYsWaJff+mll0RwcLDIz8/Xr2m1WtGiRQvh5+enX9u7d68AIPbu3Vuq1/jqq68arI8YMUIAEKdPn9avARAmJibi/PnzBtsOGjRIuLq6ipSUFIP1t956S9jZ2Ym8vDyD92Pt2rX6bXJzc4Wvr2+xrP379xd169bV396zZ48AIMaMGVPsNWi1Wv1/W1lZGfwM7luyZIkAIC5fviyEECI5OVmoVCrRvn17odFo9NvNnTtXABA///yzfq1169YCgFi2bJl+Ta1Wi9q1a4vXX3+92HM9KDY2VgAQc+bMMVgfMWKEsLa21r83Y8eOFba2tqKoqOixj1daDRs2FK1bty62np+fb/B6hRDi8uXLwszMTHz++ef6tfu/P/Xq1dNnvC84OFh4eHiI7Oxs/dq+ffsEAIOf2V9//SUAiBUrVhh8//bt24utPyov0bPgoR+qNgYPHqz/b6VSifDwcAghMGjQIP26vb09AgIC8M8//+jXtm7ditq1a6Nnz576NVNTU4wZMwY5OTnYv3+/frsaNWpg+PDhBs8zevRogxxpaWnYs2cPevTogezsbKSkpCAlJQWpqano0KED4uPjcePGjad6jSNHjjS4ff+5t27darDeunVrBAYG6m8LIbBhwwZ06dIFQgh9ppSUFHTo0AGZmZmIiYnRP5arq6vB4Q5LS0v93o/H2bBhAxQKBSZPnlzsPoVCUfoX+v927dqFgoICjBs3zmDm4p133oGtrS22bNlisL21tTX69Omjv61SqdC0aVODn3dJ/P390ahRI6xZs0a/ptFosH79enTp0gUWFhYAdL8/ubm52LlzZ5lfS1mYmZnpX69Go0Fqaiqsra0REBCg/zk9qH///vqMAHDz5k2cPXsW/fr1g7W1tX69devWCA4ONvjedevWwc7ODi+//LLB70VYWBisra2xd+/eCnqVRDosKlRteHp6Gty2s7ODubk5atWqVWz9wWPvV69ehZ+fX7HhwwYNGujvv/+/rq6uBn/wA0BAQIDB7YSEBAgh8Mknn8DJycng6/5f4MnJyU/1Gv38/Axu+/j4wMTEpNhMh7e3t8Htu3fvIiMjA4sXLy6WaeDAgQaZrl69Cl9f32LF4uHXWZLExES4ubnBwcGhrC+tRPff+4efW6VSoV69evr77/Pw8CiWu2bNmgY/70eJjIzEoUOH9CVy3759SE5ORmRkpH6bESNGwN/fH506dYKHhwfefvtt/fxPedJqtfj+++/h5+cHMzMz1KpVC05OTjhz5gwyMzOLbf/wz/v+++Lr61ts24fX4uPjkZmZCWdn52K/Gzk5OU/9u0pUWpxRoWqjpLNFHnUGiRCiwnJotVoAwIQJE9ChQ4cStynpL5Cn8ai9FA/+6/rBTH369ClxpgYAQkJCyiWTlJ7l5x0ZGYlJkyZh3bp1GDduHNauXQs7Ozt07NhRv42zszNOnTqFHTt2YNu2bdi2bRuWLFmCfv36lTh8/bSmTp2KTz75BG+//Ta++OILODg4wMTEBOPGjdP/LB/08M+7LLRaLZydnbFixYoS73dycnrqxyYqDRYVoieoW7cuzpw5A61Wa7BX5dKlS/r77//v7t27kZOTY7BX5eHriNSrVw+A7vBRREREuWaNj483+NdzQkICtFrtE68O6+TkBBsbG2g0midmqlu3Ls6dOwchhEERKs31Unx8fLBjxw6kpaU9dq9KaQ8D3X/vY2Nj9e8rABQUFODy5cvl+v56e3ujadOmWLNmDUaNGoWNGzeiW7duMDMzM9hOpVKhS5cu6NKlC7RaLUaMGIFFixbhk08+KXMBfdT7sH79erRt2xb/+9//DNYzMjKK7SEsyf33LSEhodh9D6/5+Phg165daNmy5RMLz9McviN6Eh76IXqCV155Bbdv3zaYTygqKsKcOXNgbW2N1q1b67crKirCggUL9NtpNBrMmTPH4PGcnZ3Rpk0bLFq0CLdu3Sr2fHfv3n3qrPPmzTO4ff+5H3dGC6Db0/D6669jw4YNOHfu3GMzvfLKK7h58ybWr1+vX8vLy8PixYufmO/111+HEAJTpkwpdt+DezWsrKweeVr3gyIiIqBSqfDDDz8YfP///vc/ZGZmonPnzk98jLKIjIzE0aNH8fPPPyMlJcXgsA8ApKamGtw2MTHR74m6f/p2YWEhLl26VOLP/mGPeh+USmWxvUDr1q0r9WyTm5sbgoKCsGzZMuTk5OjX9+/fj7Nnzxps26NHD2g0GnzxxRfFHqeoqMggX2l/bkRlwT0qRE8wZMgQLFq0CAMGDEB0dDS8vLywfv16HDp0CLNmzYKNjQ0AoEuXLmjZsiU+/PBDXLlyBYGBgdi4cWOJMwPz5s1Dq1atEBwcjHfeeQf16tXDnTt3cOTIEVy/fr3Y9TBK6/Lly3j11VfRsWNHHDlyBMuXL0evXr0QGhr6xO+dPn069u7di2bNmuGdd95BYGAg0tLSEBMTg127diEtLQ2AblB17ty56NevH6Kjo+Hq6oqoqChYWlo+8Tnatm2Lvn374ocffkB8fDw6duwIrVaLv/76C23btsWoUaMAAGFhYdi1axe+++47uLm5wdvbG82aNSv2eE5OTpg0aRKmTJmCjh074tVXX0VsbCzmz5+P5557zmBwtjz06NEDEyZMwIQJE+Dg4FBsj83gwYORlpaGdu3awcPDA1evXsWcOXPQqFEj/UzTjRs30KBBA/Tv3/+JV3ENCwvDggUL8OWXX8LX1xfOzs5o164d/vOf/+Dzzz/HwIED0aJFC5w9exYrVqww2Kv0JFOnTkXXrl3RsmVLDBw4EOnp6Zg7dy6CgoIMykvr1q0xdOhQTJs2DadOnUL79u1hamqK+Ph4rFu3DrNnz9YPVj8qL9EzkehsI6JKc//U3bt37xqs9+/fX1hZWRXbvnXr1qJhw4YGa3fu3BEDBw4UtWrVEiqVSgQHBxucbnxfamqq6Nu3r7C1tRV2dnaib9++4uTJk8VOTxZCiMTERNGvXz9Ru3ZtYWpqKtzd3cV//vMfsX79ev02ZT09+cKFC+KNN94QNjY2ombNmmLUqFHi3r17BtsCECNHjizxce7cuSNGjhwp6tSpI0xNTUXt2rXFSy+9JBYvXmyw3dWrV8Wrr74qLC0tRa1atcTYsWP1p6s+7vRkIXSnbM+YMUPUr19fqFQq4eTkJDp16iSio6P121y6dEm8+OKLwsLCQgDQn6r88OnJ982dO1fUr19fmJqaChcXFzF8+HCRnp5usE1JP9dHZXycli1bCgBi8ODBxe5bv369aN++vXB2dhYqlUp4enqKoUOHilu3bum3uXz5ssFrepzbt2+Lzp07CxsbGwFAf+pvfn6+eO+994Srq6uwsLAQLVu2FEeOHBGtW7c2OD34/u/PunXrSnz81atXi/r16wszMzMRFBQkNm/eLF5//XVRv379YtsuXrxYhIWFCQsLC2FjYyOCg4PFBx98IG7evPnEvETPQiFEBU4NElGluH/Rs7t375ZqRoHoURo1agQnJ6cKP8WaqLQ4o0JEVA0VFhaiqKjIYG3fvn04ffo0L31PssIZFSKiaujGjRuIiIhAnz594ObmhkuXLmHhwoWoXbs2hg0bJnU8Ij0WFSKiaqhmzZoICwvDTz/9hLt378LKygqdO3fG9OnT4ejoKHU8Ij3OqBAREZFscUaFiIiIZItFhYiIiGTLqIuKEAJZWVkV+rksREREJB2jLirZ2dmws7NDdna21FGIiIioAhh1USEiIqKqjUWFiIiIZItFhYiIiGSLRYWIiIhki0WFiIiIZItFhYiIiGSLRYWIiIhki0WFiIiIZItFhYiIiGSLRYWIiIhki0WFiIiIZItFhYiIiGSLRaWaa9OmDcaNG1fq7ZcuXQp7e/sKy1NW+/btg0KhQEZGBoDyySe310hEJJm4OGDbNiA+XrIILCpUpURGRiIuLq7U23t5eWHWrFnP9BhERFVOWhrQsSMQEAC88grg76+7nZ5e6VFYVEhyQggUFRWVy2NZWFjA2dlZ8scgIjJqvXoBu3YZru3aBfTsWelRWFRkqE2bNhg9ejTGjRuHmjVrwsXFBT/++CNyc3MxcOBA2NjYwNfXF9u2bTP4vv3796Np06YwMzODq6srPvzwQ4MCkJubi379+sHa2hqurq6YOXNmsedWq9WYMGEC3N3dYWVlhWbNmmHfvn2lzn7lyhUoFAqsXr0aLVq0gLm5OYKCgrB//379NvcP12zbtg1hYWEwMzPDwYMHodVqMW3aNHh7e8PCwgKhoaFYv369weNv3boV/v7+sLCwQNu2bXHlyhWD+0s6bPP777/jueeeg7m5OWrVqoXXXntN/z5fvXoV7777LhQKBRQKxSMfY8GCBfDx8YFKpUJAQACioqIM7lcoFPjpp5/w2muvwdLSEn5+fti8eXOp3zciItmIiwN27AA0GsN1jUa3XtmHgYQRy8zMFABEZmZmqbbXarUiV11Y6V9arbZMr6t169bCxsZGfPHFFyIuLk588cUXQqlUik6dOonFixeLuLg4MXz4cOHo6Chyc3OFEEJcv35dWFpaihEjRoiLFy+KX3/9VdSqVUtMnjxZ/7jDhw8Xnp6eYteuXeLMmTPiP//5j7CxsRFjx47VbzN48GDRokULceDAAZGQkCBmzJghzMzMRFxcnBBCiCVLlgg7O7tHZr98+bIAIDw8PMT69evFhQsXxODBg4WNjY1ISUkRQgixd+9eAUCEhISIP//8UyQkJIjU1FTx5Zdfivr164vt27eLxMREsWTJEmFmZib27dsnhBAiKSlJmJmZifHjx4tLly6J5cuXCxcXFwFApKenl5jvjz/+EEqlUnz66afiwoUL4tSpU2Lq1KlCCCFSU1OFh4eH+Pzzz8WtW7fErVu3SnyMjRs3ClNTUzFv3jwRGxsrZs6cKZRKpdizZ49+m/uveeXKlSI+Pl6MGTNGWFtbi9TU1DL97ImIJLd1qxDAo7+2bq3UOAohhKjcalR+srKyYGdnh8zMTNja2j5x+7yCIgR+uqMSkhm68HkHWKpqlHr7Nm3aQKPR4K+//gIAaDQa2NnZoXv37li2bBkA4Pbt23B1dcWRI0fw/PPP46OPPsKGDRtw8eJF/Z6B+fPnY+LEicjMzEReXh4cHR2xfPlyvPnmmwCAtLQ0eHh4YMiQIZg1axaSkpJQr149JCUlwc3NTZ8nIiICTZs2xdSpU7F06VKMGzdOP7z6sCtXrsDb2xvTp0/HxIkTAQBFRUXw9vbG6NGj8cEHH2Dfvn1o27YtNm3ahK5duwLQ7clxcHDArl270Lx5c/3jDR48GHl5eVi5ciX++9//4rfffsP58+f193/44Yf4+uuvkZ6eDnt7+2L5WrRogXr16mH58uUl5vXy8sK4ceMMBooffoyWLVuiYcOGWLx4sX6bHj16IDc3F1u2bAGg26Py8ccf44svvgCg23tlbW2Nbdu2oWPHjo/4SRMRyVBcnG425XH3+/lVWpzS/+1JlSokJET/30qlEo6OjggODtavubi4AACSk5MBABcvXkTz5s31JQXQ/QWbk5OD69evIz09HQUFBWjWrJn+fgcHBwQ88Mt49uxZaDQa+Pv7G2RRq9VwdHQsU/4Hy0aNGjUQHh6OixcvGmwTHh6u/++EhATk5eXh5ZdfNtimoKAAjRs31r/GB/M//DwlOXXqFN55550yZX/YxYsXMWTIEIO1li1bYvbs2QZrD/7MrKysYGtrq//5EBEZDX9/oEMH3UzKg4d/lEogIqJSSwpQzYqKhakSFz7vIMnzlpWpqanBbYVCYbB2v5BotdpnC/eAnJwcKJVKREdHQ6k0zGxtbV1uz3OflZWVwXMDwJYtW+Du7m6wnZmZ2VM/h4WFxVN/b1mV9DMrz58PEVGlWbVKNzi744GjEBERuvVKVq2KikKhKNMhGGPSoEEDbNiwAUIIfYk5dOgQbGxs4OHhAQcHB5iamuLvv/+Gp6cnACA9PR1xcXFo3bo1AKBx48bQaDRITk7GCy+88Ex5jh49ihdffBGA7tBPdHQ0Ro0a9cjtAwMDYWZmhqSkJH2ekl7jwwOqR48efWyOkJAQ7N69GwMHDizxfpVKBc3DA2MlPO+hQ4fQv39//dqhQ4cQGBj42O8jIjJaNWsC27frBmcTEgBf30rfk3Jf1fxbuxoaMWIEZs2ahdGjR2PUqFGIjY3F5MmTMX78eJiYmMDa2hqDBg3C+++/D0dHRzg7O+Ojjz6Cicm/J375+/ujd+/e6NevH2bOnInGjRvj7t272L17N0JCQtC5c+dS55k3bx78/PzQoEEDfP/990hPT8fbb7/9yO1tbGwwYcIEvPvuu9BqtWjVqhUyMzNx6NAh2Nraon///hg2bBhmzpyJ999/H4MHD0Z0dDSWLl362ByTJ0/GSy+9BB8fH7z11lsoKirC1q1b9fMzXl5eOHDgAN566y2YmZmhVq1axR7j/fffR48ePdC4cWNERETg999/x8aNG7Hr4VP3iIiqGj8/yQrKfTw9uYpwd3fH1q1bcezYMYSGhmLYsGEYNGgQPv74Y/02M2bMwAsvvIAuXbogIiICrVq1QlhYmMHjLFmyBP369cN7772HgIAAdOvWDcePH9fvhSmt6dOnY/r06QgNDcXBgwexefPmEkvAg7744gt88sknmDZtGho0aICOHTtiy5Yt8Pb2BgB4enpiw4YN2LRpE0JDQ7Fw4UJMnTr1sY/Zpk0brFu3Dps3b0ajRo3Qrl07HDt2TH//559/jitXrsDHxwdOTk4lPka3bt0we/ZsfPvtt2jYsCEWLVqEJUuWoE2bNmV6T4iIqOyq1Vk/VPHun/Vz8uRJNGrUSOo4RERk5LhHhYiIiGSLRYWIiIhkS9Ki8tlnn+kvXX7/q379+lJGomfk5eUFIQQP+xARUbmQ/Kyfhg0bGpw9UaOG5JGIiIhIJiRvBTVq1EDt2rWljkFEREQPycgrgL2lStIMks+oxMfHw83NDfXq1UPv3r2RlJT0yG3VajWysrIMvoiIiKj8HYxPQdtv92Ht8WuS5pC0qDRr1gxLly7F9u3bsWDBAly+fBkvvPACsrOzS9x+2rRpsLOz03/VqVOnkhMTERFVbUII/HjgH/T7+W+k5xViXfQ1aLXSXclEVtdRycjIQN26dfHdd99h0KBBxe5Xq9VQq9X621lZWahTpw6vo0JERFQO8gqKMHHDWfx++iYA4I0wD3zZLQjmT/GZdeVF8hmVB9nb28Pf3x8JCQkl3m9mZvZMH1BHREREJUtKzcOQqBO4dDsbNUwUmNwlEH2er6v//DipSD6j8qCcnBwkJibC1dVV6ihERETVxoG4u+gy9yAu3c5GLWsVVr7zPPo295K8pAASF5UJEyZg//79uHLlCg4fPozXXnsNSqUSPXv2lDKW5Nq0aYNx48ZJHUNPbnmIiKh8CCGwYF8iBiw5hsx7hQitY4/fR7dCU28HqaPpSXro5/r16+jZsydSU1Ph5OSEVq1a4ejRo4/8cDgqvYKCAqhU0p5SRkRE8pWrLsIH689gy9lbAIDI8Dr4vFtDmNWQbh6lJJLuUVm9ejVu3rwJtVqN69evY/Xq1fDx8ZEy0qPFxQHbtgHx8RX6NAMGDMD+/fsxe/Zs/dV6ExMTMWjQIHh7e8PCwgIBAQGYPXt2se/r1q0bvvrqK7i5uSEgIAAAcPjwYTRq1Ajm5uYIDw/Hpk2boFAocOrUKf33njt3Dp06dYK1tTVcXFzQt29fpKSkPDLPlStXKvQ9ICKiinUlJRfd5x/GlrO3YKpU4KvXgjD99WDZlRRAZsO0spSWBvTqBezY8e9ahw7AqlVAzZrl/nSzZ89GXFwcgoKC8PnnnwMAatasCQ8PD6xbtw6Ojo44fPgwhgwZAldXV/To0UP/vbt374atrS127twJQHdWVJcuXfDKK69g5cqVuHr1arFDOBkZGWjXrh0GDx6M77//Hvfu3cPEiRPRo0cP7Nmzp8Q83ONFRGS89sYmY+yqk8jKL4KTjRkW9mmCsLryOdTzMBaVJ+nVC3jgEv8AdLd79gS2by/3p7Ozs4NKpYKlpaXBFXunTJmi/29vb28cOXIEa9euNSgqVlZW+Omnn/SHfBYuXAiFQoEff/wR5ubmCAwMxI0bN/DOO+/ov2fu3Llo3Lgxpk6dql/7+eefUadOHcTFxcHf37/EPEREZFyEEJi/LxHf/hkLIYAmnvZY0CcMLrbmUkd7LBaVx4mLM9yTcp9Go1uPjwf8/Colyrx58/Dzzz8jKSkJ9+7dQ0FBQbEP/gsODjaYS4mNjUVISAjMzf/9JWzatKnB95w+fRp79+6FtbV1sedMTEyEv79/+b4QIiKqdDnqIkxYexrbz98GAPRq5onJXQJleajnYSwqj5OY+Pj7ExIqpaisXr0aEyZMwMyZM9G8eXPY2NhgxowZ+Pvvvw22s7KyKvNj5+TkoEuXLvj666+L3cfTxImIjN/llFwMWXYC8ck5UClNMKVrQ/Rs6il1rFJjUXmcJw32+vpWyNOqVCpoNBr97UOHDqFFixYYMWKEfi3xSSUKQEBAAJYvXw61Wq2/UN7x48cNtmnSpAk2bNgALy+vR35y9cN5iIjIOOy5dAdjV59Cdn4RnG3MsLBvGJp4lv98ZUWS1QXfZMffXzc4q3xo15hSqVuvoL0pXl5e+Pvvv3HlyhWkpKTAz88PJ06cwI4dOxAXF4dPPvmkWOEoSa9evaDVajFkyBBcvHgRO3bswLfffgsA+ov4jBw5EmlpaejZsyeOHz+OxMRE7NixAwMHDtSXk4fzaLXaCnndRERUPrRagTm74zHolxPIzi9CeN2a+GN0K6MrKQCLypOtWgVERBiuRUTo1ivIhAkToFQqERgYCCcnJ3To0AHdu3dHZGQkmjVrhtTUVIO9K49ia2uL33//HadOnUKjRo3w0Ucf4dNPPwUA/dyKm5sbDh06BI1Gg/bt2yM4OBjjxo2Dvb09TExMSszzuE+4JiIiaWXnF2LY8mjM3BkHIYA+z3ti5TvPw1nmQ7OPIqsPJSyrrKws2NnZVc6HEsbH62ZSfH0rbYC2IqxYsQIDBw5EZmYmLCwspI5DRETlKPFuDoYsO4HEu7lQKU3wRbeGiHzOeOZRSsIZldLy8zPKgrJs2TLUq1cP7u7uOH36tP4aKSwpRERVy84LdzB+zSlkq4tQ29YcC/uGoVEde6ljPTMWlSru9u3b+PTTT3H79m24urrizTffxFdffSV1LCIiKidarcAPe+Ixa5fuyulNvRwwr3cTONmYSZysfPDQDxERkZHKyi/E+DWnsOtiMgBgQAsvfNS5AUyVVWcElXtUiIiIjFBCcjaGLIvGPym5UNUwwdTXgvFGmIfUscodiwoREZGR2XH+NsavOYXcAg3c7HTzKCEe9lLHqhAsKkREREZCqxX4flcc5uxJAAA089bNo9SyrhrzKCVhUSEiIjICmfcKMW71SeyNvQsAGNjSC/99pWrNo5SERYWIiEjm4u5kY8iyE7iSmgezGiaY1j0Y3ZtUvXmUkrCoEBERydj2c7fw3trTyC3QwN3eAov6hiHI3U7qWJWGRYWIiEiGNFqB73bGYt5e3YfQtvBxxJyejeFYhedRSsKiQkREJDOZeYUYs/ok9sfp5lEGt/LGh53qo0YVn0cpCYsKERGRjMTezsaQqBO4mpoHc1MTfP16CLo2cpc6lmRYVIiIiGRiy5lbeH/9aeQVaOBRUzeP0tCt+syjlIRFhYiISGIarcCMHbFYuF83j9LKtxbm9GyMmlYqiZNJj0WFiIhIQhl5BRi96iT+ik8BAAx9sR7e7xBQLedRSsKiQkREJJELN7MwdPkJXEu7BwtTJb55IwRdQt2kjiUrLCpEREQS2Hz6Jj5Yfxr5hVrUcbDA4r7haOBqK3Us2WFRISIiqkRFGi2+2RGLxQf+AQC84KebR7G35DxKSVhUiIiIKklabgFGr4rBoYRUAMDwNj6Y0D4AShOFxMnki0WFiIioEpy/mYkhy6JxI+MeLFVKzHgjFJ1DXKWOJXssKkRERBXst1M3MHHDGeQXalHX0RKL+4YjoLaN1LGMAosKERFRBSnSaDFt2yX87+BlAECbACfMjmwMO0tTiZMZDxYVIiKiCpCao8aolSdx5B/dPMqotr5492V/zqOUEYsKERFROTt3IxNDo3TzKFYqJWb2CEXHIM6jPA0WFSIionK0MeY6Jm08C3WRFt61rLC4bxj8XDiP8rRYVIiIiMpBoUaLr7ZcxNLDVwAAL9V3xneRjWBnwXmUZ8GiQkRE9IxSctQYsSIGxy6nAQDGtPPFuAh/mHAe5ZmxqBARET2D09cyMGx5NG5l5sParAZm9ghFh4a1pY5VZbCoEBERPaV1J67ho03nUFCkRT0n3TyKrzPnUcoTiwoREVEZFRRp8eWWC1h25CoAIKKBC76LDIWtOedRyhuLChERURkkZ+dj5IoYHL+SDgB4N8Ifo9v5ch6lgrCoEBERldLJpHQMXx6D21n5sDGrge8jGyEi0EXqWFUaiwoREVEprDmehE82nUeBRgsfJyss7hcOHydrqWNVeSwqREREj1FQpMWU389jxd9JAID2gS6Y2SMUNpxHqRQsKkRERI+QnJWP4StiEH01HQoF8N7L/hjRhvMolYlFhYiIqATRV9MxfHk0krPVsDGvgR/eaoy29Z2ljlXtsKgQERE9ZOXfSZi8+RwKNQJ+ztZY3C8c3rWspI5VLbGoEBER/T91kQafbT6PVceuAQA6BdXGjDdDYW3Gvy6lwneeiIgIwJ2sfAxbHo2TSRlQKIAJ7QMwoo0PFArOo0iJRYWIiKq9E1fSMHxFDO5mq2FrXgM/9GyMNgGcR5EDFhUiIqq2hBBY/ncSpmw+jyKtQICLDRb3C0NdR86jyIWJ1AHumz59OhQKBcaNGyd1FCIiqgbyCzWYuOEMPtl0DkVagc4hrtg4ogVLiszIYo/K8ePHsWjRIoSEhEgdhYiIqoFbmfcwLCoap69nwkQBfNCxPoa+WI/zKDIk+R6VnJwc9O7dGz/++CNq1qwpdRwiIqrijl1OQ5c5B3H6eibsLEyxdGBTDGvNoVm5kryojBw5Ep07d0ZERMQTt1Wr1cjKyjL4IiIiKg0hBJYduYJePx5FSk4B6te2we+jWuFFfyepo9FjSHroZ/Xq1YiJicHx48dLtf20adMwZcqUCk5FRERVTX6hBh9vOof10dcBAF1C3fD168GwVMliAoIeQ7I9KteuXcPYsWOxYsUKmJubl+p7Jk2ahMzMTP3XtWvXKjglEREZu5sZ99Bj0RGsj74OEwXw0SsN8MNbjVhSjIRCCCGkeOJNmzbhtddeg1Kp1K9pNBooFAqYmJhArVYb3FeSrKws2NnZITMzE7a2thUdmYiIjMyRxFSMWhmD1NwC1LQ0xZyeTdDKr5bUsagMJKuTL730Es6ePWuwNnDgQNSvXx8TJ058YkkhIiJ6FCEElhy6gq+2XoRGKxDoaotFfcNQx8FS6mhURpIVFRsbGwQFBRmsWVlZwdHRsdg6ERFRaeUXavDfjWex8eQNAEC3Rm6Y1j0EFir+A9gY8QAdERFVGdfT8zA0Khrnb2ZBaaLAf19pgLdbevHUYyMm2YxKeeCMChER3Xc4IQUjV8YgPa8QDlYqzO3VGC18OI9i7LhHhYiIjJoQAv87eBlTt16EVgBB7rZY1Dcc7vYWUkejcsCiQkRERutegQYfbjyD307dBAB0b+KOqa8Fw9yU8yhVBYsKEREZpWtpunmUC7d08yifdG6A/i04j1LVsKgQEZHRORifglGrYpCRVwhHKxXm9W6C5+s5Pvkb4+KAxETA1xfw86v4oPTMWFSIiMhoCCHw41//YPq2S9AKIMTDDgv7hMHtSfMoaWlAr17Ajh3/rnXoAKxaBfADcWWNZ/0QEZFRyCsowgfrz+CPM7cAAG+EeeDLbkGlm0fp2BHYtQvQaP5dUyqBiAhg+/YKSkzlgUWFiIhkLyk1D0OiTuDS7WzUMFFgcpdA9Hm+bunmUeLigICAx9/Pw0CyxUM/REQka/vj7mLMqpPIvFeIWtYqzO8dhqbeDqV/gMTEx9+fkMCiImMsKkREJEtCCCzc/w9m7NDNo4TWscfCPk3galfG66P4+Dz+fl/fpw9JFc5E6gBEREQPy1UXYdTKk/h6u66kRIbXwdqhz5e9pACAv79ucPbhD7tVKnXr3JsiaywqREQkK1dSctF9/mFsOXsLpkoFvnotCNNfD4ZZjWe4iNuqVbrB2QdFROjWSdY4TEtERLKxNzYZY1edRFZ+EZxszLCwTxOE1S3DPMqTxMfrZlJ4HRWjwRkVIiKSnBAC8/cl4ts/YyEE0MTTHgv6hMHF1rx8n8jPjwXFyLCoEBGRpHLURZiw9jS2n78NAOjVzBOTuwQ+26EeqjJYVIiISDKXU3IxZNkJxCfnwFSpwOddg9CzqafUsUhGWFSIiEgSey7dwdjVp5CdXwRnGzMs6BOGsLq8nD0ZYlEhIqJKpdUKzN2bgO93xUEIILxuTczv3QTO5T2PQlUCiwoREVWa7PxCvLf2NP68cAcA0Od5T3z6n4ZQ1eDVMqhkLCpERFQpEu/mYMiyE0i8mwuV0gRfdGuIyOc4j0KPx6JCREQVbueFOxi/5hSy1UWobWuOhX3D0KiOvdSxyAiwqBARUYXRagV+2BOPWbviAQBNvRwwr3cTONmYSZyMjAWLChERVYis/EKMX3MKuy4mAwAGtPDCR50bwFTJeRQqPRYVIiIqdwnJ2RiyLBr/pORCVcMEU18LxhthHlLHIiPEokJEROVqx/nbGL/mFHILNHCz082jhHjYSx2LjBSLChERlQutVuD7XXGYsycBANDMWzePUsua8yj09FhUiIjomWXeK8S41SexN/YuAGBgSy/89xXOo9CzY1EhIqJnEncnG0OWncCV1DyY1TDBtO7B6N6E8yhUPlhUiIjoqW0/dwvvrT2N3AIN3O0tsKhvGILc7aSORVUIiwoREZWZRivw3c5YzNubCABo4eOIOT0bw5HzKFTOWFSIiKhMMvMKMWb1SeyP082jDG7ljQ871UcNzqNQBWBRISKiUou9nY0hUSdwNTUP5qYm+Pr1EHRt5C51LKrCWFSIiKhUtpy5hffXn0ZegQYeNXXzKA3dOI9CFYtFhYiIHkujFZixIxYL9+vmUVr51sKcno1R00olcTKqDlhUiIjokTLyCjB61Un8FZ8CABj6Yj283yGA8yhUaVhUiIioRBdvZWFI1AlcS7sHC1MlvnkjBF1C3aSORdUMiwoRERWz+fRNTFx/BvcKNajjYIFFfcIR6GYrdSyqhlhUiIhIr0ijxTc7YrH4wD8AgBf8dPMo9pacRyFpsKgQEREAID1XN49yMEE3jzK8jQ8mtA+A0kQhcTKqzlhUiIgI529mYmhUNK6n34OlSokZb4Sic4ir1LGIWFSIiKq7307dwMQNZ5BfqEVdR0ss7huOgNo2UsciAsCiQkRUbRVptJi27RL+d/AyAKBNgBNmRzaGnaWpxMmI/sWiQkRUDaXmqDFq5Ukc+ScVADCqrS/efdmf8ygkOywqRETVzLkbunmUGxn3YKVSYmaPUHQM4jwKyROLChFRNbIx5jombTwLdZEW3rWssLhvGPxcOI9C8sWiQkRUDRRqtJi69SKWHLoCAGhX3xnfRzaCnQXnUUjeWFSIiKq4lBw1Rq6Iwd+X0wAAY9r5YlyEP0w4j0JGgEWFiKgKO3M9A0OjonErMx/WZjUws0coOjSsLXUsolJjUSEiqqLWnbiGjzadQ0GRFvWcdPMovs6cRyHjwqJCRFTFFGq0+PKPC/jlyFUAQEQDF3wXGQpbc86jkPExkfLJFyxYgJCQENja2sLW1hbNmzfHtm3bpIxERGTU7mar0fvHv/Ul5d0IfyzuG8aSQkZL0j0qHh4emD59Ovz8/CCEwC+//IKuXbvi5MmTaNiwoZTRiIiMzsmkdAxfHoPbWfmwMauB7yMbISLQRepYRM9EIYQQUod4kIODA2bMmIFBgwY9cdusrCzY2dkhMzMTtra2lZCOiEie1h6/ho83nUOBRgsfJyss7hcOHydrqWMRPTPZzKhoNBqsW7cOubm5aN68eYnbqNVqqNVq/e2srKzKikdEJEsFRVp8/sd5LD+aBABoH+iCmT1CYcNDPVRFSF5Uzp49i+bNmyM/Px/W1tb49ddfERgYWOK206ZNw5QpUyo5IRGRPCVn52PE8hicuJoOhQIYH+GPkW19eX0UqlIkP/RTUFCApKQkZGZmYv369fjpp5+wf//+EstKSXtU6tSpw0M/RFTtxCSlY/jyaNzJUsPGvAZmv9UI7epzHoWqHsmLysMiIiLg4+ODRYsWPXFbzqgQUXW06lgSPv3tHAo1An7O1ljcLxzetaykjkVUISQ/9PMwrVZrsNeEiIh01EUafLb5AlYd082jdAqqjRlvhsLaTHZ/lBOVG0l/uydNmoROnTrB09MT2dnZWLlyJfbt24cdO3ZIGYuISHbuZOVj2PJonEzKgEIBTGgfgBFtfKBQcB6FqjZJi0pycjL69euHW7duwc7ODiEhIdixYwdefvllKWMREcnKiStpGL4iBnez1bA1r4EfejZGmwBnqWMRVQrZzaiUBWdUiKgqE0Jgxd9JmPL7eRRqBAJcbLC4XxjqOnIehaoPHtgkIpKh/EINJv92HmtOXAMAdA5xxTevh8CK8yhUzfA3nohIZm5n5mPo8micvpYBEwXwQcf6GPpiPc6jULXEokJEJCPHLqdhxIoYpOSoYWdhijk9G+NFfyepYxFJhkWFiEgGhBCIOnoVn/9+AUVagfq1bbC4bzg8HS2ljkYkKRYVIiKJ5Rdq8Mmmc1gXfR0A0CXUDV+/HgxLFf+IJuL/C4iIJHQz4x6GLY/GmeuZMFEAkzo1wOAXvDmPQvT/WFSIiCRy9J9UjFwRg9TcAtS0NMWcnk3Qyq+W1LGIZIVFhYiokgkhsPTwFXy55SI0WoFAV1ss6huGOg6cRyF6GIsKEVElyi/U4L8bz2LjyRsAgG6N3DCtewgsVEqJkxHJE4sKEVEluZ6eh2HLo3HuRhaUJgr895UGeLulF+dRiB6DRYWIqBIcTkzBqJUnkZZbAAcrFeb2aowWPuU0jxIXByQmAr6+gJ9f+TwmkUywqBARVSAhBP538DKmbbsEjVYgyN0Wi/qGw93e4tkfPC0N6NULePAT5zt0AFatAmrWfPbHJ5IBfighEVEFuVegwaSNZ7Dp1E0AQPcm7pj6WjDMTctpHqVjR2DXLkCj+XdNqQQiIoDt28vnOYgkxqJCRFQBrqXlYWhUNC7c0s2jfNK5Afq3KMd5lLg4ICDg8ffzMBBVATz0Q0RUzg7Gp2D0qhik5xXC0UqFeb2b4Pl6juX7JImJj78/IYFFhaoEFhUionIihMBPf13GtG0XoRVAiIcdFvYJg1t5zKM8zMfn8ff7+pb/cxJJwETqAEREVUFeQRHGrD6Fr7bqSsobYR5YO7R5xZQUAPD31w3OKh+ad1Eqdevcm0JVBIsKEdEzSkrNQ/f5h/H76ZuoYaLAF10bYsYbIeU3NPsoq1bpBmcfFBGhWyeqIjhMS0T0DA7E3cXoVSeRea8QtaxVmN87DE29HSo3RHy8biaF11GhKogzKkRET0EIgYX7/8GMHZegFUBoHXss7NMErnYVdKjncfz8WFCoymJRISIqo1x1ET5YfwZbzt4CAESG18Hn3RrCrAY/r4eovLGoEBGVwZWUXAyNikbsnWyYKhX47NWG6NXUk5/XQ1RBWFSIiEppX2wyxqw6iaz8IjjZmGFhnyYIq1vJ8yhE1QyLChHJk4w+aE8Igfn7EvHtn7EQAmjiaY8FfcLgYmsuaS6i6qDMpyf3798fBw4cqIgsRES6D9rr2FF3efhXXtFdL6RjRyA9XZI4OeoijFgRgxk7dCWlZ1NPrBryPEsKUSUpc1HJzMxEREQE/Pz8MHXqVNy4caMichFRddWrl+6D9h60axfQs2elR7mckovX5h3CtnO3YapUYOprwZjWPZhDs0SV6Kmuo3L37l1ERUXhl19+wYULFxAREYFBgwaha9euMDU1rYicJeJ1VIiqGBl90N6eS3cwdvUpZOcXwdnGDAv6hCGsbs1KeW4i+tdTXZnWyckJ48ePx+nTp/H333/D19cXffv2hZubG959913Ex8eXd04iqg5K80F7FUyrFZizOx6DfjmB7PwihNetiT9Gt2JJIZLIM11C/9atW9i5cyd27twJpVKJV155BWfPnkVgYCC+//778spIRNWFxB+0l51fiGHLozFzZxyEAPo874mV7zwPZ86jEEmmzId+CgsLsXnzZixZsgR//vknQkJCMHjwYPTq1Ut/+OXXX3/F22+/jfQKHn7joR+iKqhjR91Mikbz75pSqfsMm+3bK+xpE+/mYMiyE0i8mwuV0gRfdGuIyOc8K+z5iKh0ynx6squrK7RaLXr27Iljx46hUaNGxbZp27Yt7O3tyyEeEVU7q1bpBmd37Ph3rYI/aG/nhTsYv+YUstVFqG1rjoV9w9Cojn2FPR8RlV6Z96hERUXhzTffhLm59LtCuUeFqAqrhA/a02oFftgTj1m7dHN1Tb0cMK93EzjZmFXI8xFR2fHTk4moWsrKL8T4Naex6+IdAMCAFl74qHMDmCqfaXSPiMoZr0xLRNVOQnIOhkSdwD93c6GqYYKprwXjjTAPqWMRUQlYVIioWtlx/jbeW3saOeoiuNqZY1HfMIR42Esdi4gegUWFiKoFrVZg1q44/LBHdy2WZt66eZRa1pxHIZIzFhUiqvIy7xXi3TWnsOdSMgBgYEsv/PcVzqMQGQMWFSKq0uLvZGNIVDQup+TCrIYJpnUPRvcmnEchMhYsKkRUZW0/dwvvrT2N3AIN3O0tsKhvGILc7aSORURlwKJCRFWORivw3c5YzNur++ygFj6OmNOzMRw5j0JkdFhUiKhKycwrxJjVJ7E/7i4AYHArb3zYqT5qcB6FyCixqBBRlRF7OxtDok7gamoezE1N8PXrIejayF3qWET0DFhUiKhK2HLmFt5ffxp5BRp41NTNozR04zwKkbFjUSEio6bRCnz7ZywW7NPNo7TyrYU5PRujppVK4mREVB5YVIjIaGXkFWD0qpP4Kz4FADD0xXp4v0MA51GIqhAWFSIyShdvZWFI1AlcS7sHC1MlvnkjBF1C3aSORUTljEWFiIzO5tM3MXH9Gdwr1KCOgwUW9QlHoBs/QZ2oKmJRISKjUaTR4psdsVh84B8AwAt+unkUe0vOoxBVVSwqRGQU0nN18ygHE3TzKMPb+GBC+wAoTRQSJyOiiiTpxNm0adPw3HPPwcbGBs7OzujWrRtiY2OljEREMnT+Zia6zD2IgwkpsFQpMa9XE0zsWJ8lhagakLSo7N+/HyNHjsTRo0exc+dOFBYWon379sjNzZUyFhHJyG+nbuD1BYdxPf0e6jpa4tcRLdE5xFXqWERUSRRCCCF1iPvu3r0LZ2dn7N+/Hy+++OITt8/KyoKdnR0yMzNha8tBOqKqpEijxbRtl/C/g5cBAG0CnDA7sjHsLE0lTkZElUlWMyqZmZkAAAcHhxLvV6vVUKvV+ttZWVmVkouIKldqjhqjV53E4cRUAMCotr5492V/HuohqoZks0dFq9Xi1VdfRUZGBg4ePFjiNp999hmmTJlSbJ17VIiqjnM3MjE0Kho3Mu7BSqXEzB6h6BjEQz1E1ZVsisrw4cOxbds2HDx4EB4eHiVuU9IelTp16rCoEFURG2OuY9LGs1AXaeFdywqL+4bBz8VG6lhEJCFZHPoZNWoU/vjjDxw4cOCRJQUAzMzMYGZmVonJiKgyFGq0mLr1IpYcugIAaFffGd9HNoKdBedRiKo7SYuKEAKjR4/Gr7/+in379sHb21vKOEQkgZQcNUauiMHfl9MAAGPa+WJchD9MOI9CRJC4qIwcORIrV67Eb7/9BhsbG9y+fRsAYGdnBwsLCymjEVElOHM9A0OjonErMx/WZjUws0coOjSsLXUsIpIRSWdUFIqS/8W0ZMkSDBgw4Infz9OTiYzXuhPX8NGmcygo0qKek24exdeZ8yhEZEjyQz9EVL0UarT48o8L+OXIVQBARAMXfBcZCltzzqMQUXGyGKYlourhbrZuHuXYFd08yrsR/hjdzpfzKET0SCwqRFQpTialY/jyGNzOyoeNWQ18H9kIEYEuUsciIpljUSGiCrf2+DV8vOkcCjRa+DhZYXG/cPg4WUsdi4iMAIsKEVWYgiItPv/jPJYfTQIAtA90wcweobDhPAoRlRKLChFViOTsfIxYHoMTV9OhUADjI/wxsi3nUYiobFhUiKjcxSSlY/jyaNzJUsPGvAZmv9UI7epzHoWIyo5FhYjK1apjSfj0t3Mo1Aj4OVtjcb9weNeykjoWERkpFhUiKhfqIg0+23wBq47p5lE6BdXGjDdDYW3GP2aI6OnxTxAiemZ3svIxbHk0TiZlQKEAJrQPwIg2Po+8+jQRUWmxqBDRMzlxJQ3DV8TgbrYatuY18EPPxmgT4Cx1LCKqIlhUiOipCCGw4u8kTPn9PAo1AgEuNljcLwx1HTmPQkTlh0WFiMosv1CDyb+dx5oT1wAAnUNc8c3rIbDiPAoRlTP+qUJEZXI7Mx9Dl0fj9LUMmCiADzrWx9AX63EehYgqBIsKEZXasctpGLEiBik5athZmGJOz8Z40d9J6lhEVIWxqBDREwkhEHX0Kj7//QKKtAL1a9tgcd9weDpaSh2NiKo4FhUieqz8Qg0+2XQO66KvAwC6hLrh69eDYaniHx9EVPH4Jw0RPdLNjHsYtjwaZ65nwkQBTOrUAINf8OY8ChFVGhYVIirR0X9SMXJFDFJzC1DT0hRzejZBK79aUsciomqGRYWIDAghsPTwFXy55SI0WoFAV1ss6huGOg6cRyGiyseiQkR6+YUa/HfjWWw8eQMA0K2RG6Z1D4GFSilxMiKqrlhUiAgAcD09D8OWR+PcjSwoTRSY1Kk+BrXiPAoRSYtFhYhwODEFo1aeRFpuARysVJjbszFa+HIehYikx6JCVI0JIfC/g5cxbdslaLQCQe62WNgnDB41OY9CRPLAokJUTd0r0GDSxjPYdOomAKB7Y3dM7R4Mc1POoxCRfLCoEFVD19LyMDQqGhdu6eZRPu7cAANaeHEehYhkh0WFqJo5GJ+C0atikJ5XCEcrFeb1boLn6zlKHYuIqEQsKkTVhBACP/11GdO2XYRWACEedljYJwxu9hZSRyMieiQWFaJqIK+gCBM3nMXvp3XzKG+EeeDLbkGcRyEi2WNRIariklLzMCTqBC7dzkYNEwUmdwlEn+frch6FiIwCiwpRFXYg7i5GrzqJzHuFqGWtwvzeYWjq7SB1LCKiUmNRIaqChBBYuP8fzNhxCVoBhNaxx8I+TeBqx3kUIjIuLCpEVUyuuggfrD+DLWdvAQB6hHvg866cRyEi48SiQlSFXE3NxZBl0Yi9kw1TpQKTuzRE72aenEchIqPFokJUReyLTcaYVSeRlV8EJxszLOjdBOFenEchIuPGokJk5IQQmL8vEd/+GQshgMae9ljYJwwutuZSRyMiemYsKkRGLEddhPfXnca2c7cBAD2beuKzVwNhVoPzKERUNbCoEBmpyym5GLLsBOKTc2CqVGDKq0Ho1cxT6lhEROWKRYXICO25dAdjV59Cdn4RnG3MsKBPGMLq1pQ6FhFRuWNRITIiWq3AvL0J+G5XHIQAwurWxILeTeDMeRQiqqJYVIiMRHZ+Id5bexp/XrgDAOjzvCc+/U9DqGqYSJyMiKjisKgQGYHEuzkYsuwEEu/mQqU0wRfdGiLyOc6jEFHVx6JCJHM7L9zB+DWnkK0uQm1bcyzo0wSNPTmPQkTVA4sKkUxptQI/7InHrF3xAIDnvGpiXu8mcLbhPAoRVR8sKkQylJVfiPFrTmPXRd08Sv/mdfFR50DOoxBRtcOiQiQzCck5GBJ1Av/czYWqhgm+6haEN8PrSB2LiEgSLCpEMrLj/G28t/Y0ctRFcLUzx6K+YQjxsJc6FhGRZFhUiGRAqxWYtSsOP+xJAAA09XbA/N5NUMvaTOJkRETSYlEhkljmvUK8u+YU9lxKBgAMaOGFjzo3gKmS8yhERCwqRBKKv5ONIVHRuJySC7MaJpj6WjBeD/OQOhYRkWxI+k+2AwcOoEuXLnBzc4NCocCmTZukjENUqbafu4Vu8w7hckou3O0tsH5YC5YUIqKHSFpUcnNzERoainnz5kkZg6hSabQCM3ZcwrDlMcgt0KB5PUdsHtUSwR52UkcjIpIdSQ/9dOrUCZ06dZIyAlGlyswrxJjVJ7E/7i4AYFArb0zqVB81OI9CRFQio5pRUavVUKvV+ttZWVkSpiEqm9jb2RgSdQJXU/NgbmqC6d1D0K2xu9SxiIhkzaj+GTdt2jTY2dnpv+rU4UWwyDhsOXMLr80/hKupefp5FJYUIqInM6qiMmnSJGRmZuq/rl27JnUkosfSaAW+3n4JI1fGIK9Ag5a+jvh9dCsEuXMehYioNIzq0I+ZmRnMzHgBLDIOGXkFGL3qJP6KTwEADHmxHj7oEMB5FCKiMjCqokJkLC7eysKQqBO4lnYP5qYm+OaNULwa6iZ1LCIioyNpUcnJyUFCQoL+9uXLl3Hq1Ck4ODjA09NTwmRET2/z6ZuYuP4M7hVqUMfBAov6hCPQzVbqWERERkkhhBBSPfm+ffvQtm3bYuv9+/fH0qVLn/j9WVlZsLOzQ2ZmJmxt+RcBSatIo8U3O2Kx+MA/AIAX/Grhh7cao6aVSuJkRETGS9Ki8qxYVEgu0nN18ygHE3TzKMNa++D9DgFQmigkTkZEZNw4o0L0jM7fzMTQqGhcT78HC1MlZrwZgv+EcB6FiKg8sKgQPYPfTt3AxA1nkF+oRV1HSyzqG4b6tbl3j4iovLCoED2FIo0W07Zdwv8OXgYAtPZ3wg9vNYadpanEyYiIqhYWFaIySs1RY/SqkzicmAoAGNnWB+Nf5jwKEVFFYFEhKoNzN3TzKDcy7sFSpcTMN0PRKdhV6lhERFUWiwpRKW2MuY5JG89CXaSFl6MlFvcLh7+LjdSxiIiqNBYVoico1GgxdetFLDl0BQDQNsAJs95qDDsLzqMQEVU0FhWix0jJUWPkihj8fTkNADCmnS/GRfjDhPMoRESVgkWF6BHOXM/A0Kho3MrMh5VKiZk9GqFjUG2pYxERVSssKkQlWHfiGj7adA4FRVrUq2WFxf3C4OvMeRQiosrGokL0gEKNFl/+cQG/HLkKAIho4IzvIhvB1pzzKEREUmBRIfp/d7N18yjHrujmUcZF+GFMOz/OoxARSYhFhQjAqWsZGBYVjdtZ+bAxq4HvIhvh5UAXqWMREVV7LCpU7a09fg0fbzqHAo0WPk5WWNwvHD5O1lLHIiIisKhQNVZQpMXnf5zH8qNJAID2gS6Y2SMUNpxHISKSDRYVqpaSs/MxYnkMTlxNh0IBvBvhj1FtfTmPQkQkMywqVO3EJKVj+PJo3MlSw8asBma91QgvNeA8ChGRHLGoULWy6lgSPv3tHAo1An7O1ljUNwz1OI9CRCRbLCpULaiLNPhs8wWsOqabR+nYsDa+7REKazP+X4CISM74pzRVeXey8jFseTROJmVAoQAmtA/AiDY+UCg4j0JEJHcsKlSlnbiShuErYnA3Ww1b8xqY3bMx2gY4SxcoLg5ITAR8fQE/P+lyEBEZCRYVqpKEEFjxdxKm/H4ehRqBABcbLOobBq9aVtIESksDevUCduz4d61DB2DVKqBmTWkyEREZAYUQQkgd4mllZWXBzs4OmZmZsLW1lToOyYS6SIPJv53H6uPXAACdg13xzRshsJJyHqVjR2DXLkCj+XdNqQQiIoDt26XLRUQkcywqVKXcztTNo5y6lgETBfBBx/oY+mI9aedR4uKAgIDH38/DQEREJeKhH6oyjl1Ow4gVMUjJUcPOwhRzejbGi/5OUsfSzaQ8TkICiwoR0SOwqJDRE0Ig6uhVfP77BRRpBerXtsHivuHwdLSUOpqOj8/j7/f1rZwcRERGyETqAETPIr9Qgw/Wn8Gnv51HkVbgPyGu2DiihXxKCgD4++sGZ5VKw3WlUrfOvSlERI/EokJG62bGPfRYdATroq/DRAH895X6mNOzMSxVMtxRuGqVbnD2QRERunUiInokDtOSUTr6TypGrohBam4B7C1NMbdnE7TyqyV1rCeLj9fNpPA6KkREpSLDf3oSPZoQAksPX8GXWy5CoxUIdLXFor5hqOMgo0M9j+Pnx4JCRFQGLCpkNPILNfjvxrPYePIGAKBrIzdM7x4CC5XyCd9JRETGikWFjMKNjHsYGnUC525kQWmiwKRO9TGolTc/r4eIqIpjUSHZO5yYglErTyIttwAOVirM7dkYLXyNYB6FiIieGYsKyZYQAj8fuoKpW3XzKEHutljYJwweNY1kHoWIiJ4ZiwrJ0r0CDSZtPINNp24CALo3dsfU7sEwN+U8ChFRdcKiQrJzLS0PQ6OiceGWbh7l484NMKCFF+dRiIiqIRaVR4mL031GC693UakOxqdg9KoYpOcVwtFKhbm9mqC5j6PUsYiISCIsKg9LSwN69QJ27Ph3rUMH3RVEa9aULlcVJ4TAT39dxrRtF6EVQLC7HRb2DYO7vYXU0YiISEK8Mu3DOnYEdu0CNJp/15RK3eXOt28vn+cgA3kFRZi44Sx+P62bR3m9iQe+ei2I8yhERMSiYiAuDggIePz9PAxUrpJS8zAk6gQu3c5GDRMFPu0SiL7P1+U8ChERAeChH0OJiY+/PyGBRaUc/RV/F6NWnkTmvULUslZhfu8wNPV2kDoWERHJCIvKg3x8Hn+/r2/l5KjihBBYdOAffLP9ErQCCK1jj4V9msDVjvMoRERkyETqALLi768bnFU+NBuhVOrWuTflmeUVFGHUqpOYvk1XUnqEe2DNkOdZUoiIqEQsKg9btUo3OPugiAjdOj2Tq6m56D7/MLacuQVTpQJfdgvC16+HcGiWiIgeicO0jxIfr5tJ4XVUysW+2GSMWXUSWflFcLIxw4LeTRDuxXkUIiJ6PM6oPIqfHwtKORBCYP6+RHz7ZyyEABp72mNhnzC42JpLHY2IiIwAiwpVmBx1Ed5fdxrbzt0GAPRsWgefvdoQZjV4qIeIiEqHRYUqxOWUXAxZdgLxyTkwVSow5dUg9GrmKXUsIiIyMiwqVO72XLqDsatPITu/CM42ZljQJwxhdfnxA0REVHayOOtn3rx58PLygrm5OZo1a4Zjx45JHYmeglYrMGd3PAb9cgLZ+UUIq1sTf4xuxZJCRERPTfKismbNGowfPx6TJ09GTEwMQkND0aFDByQnJ0sdjcogR12EYcujMXNnHIQA+jzviVXvPA9nDs0SEdEzkPz05GbNmuG5557D3LlzAQBarRZ16tTB6NGj8eGHHz72eyvq9GR1kQZ5as2TNyQAwK3MfIxZfRIJyTlQKU3wRbeGiHyO8yhERPTsJJ1RKSgoQHR0NCZNmqRfMzExQUREBI4cOVJse7VaDbVarb+dlZVVIbl2nL+DMatOVshjV2W1bc2xoE8TNPbkoR4iIiofkh76SUlJgUajgYuLi8G6i4sLbt++XWz7adOmwc7OTv9Vp06dyopKT/CCXy1sHt2SJYWIiMqVUZ31M2nSJIwfP15/Oysrq0LKSpcQV/wn2LXcH7cqMzFRSB2BiIiqIEmLSq1ataBUKnHnzh2D9Tt37qB27drFtjczM4OZmVmF51IoFFDw710iIiLJSXroR6VSISwsDLt379avabVa7N69G82bN5cwGREREcmB5Id+xo8fj/79+yM8PBxNmzbFrFmzkJubi4EDB0odjYiIiCQmeVGJjIzE3bt38emnn+L27dto1KgRtm/fXmzAloiIiKofya+j8iwq6joqREREJA+SX5mWiIiI6FFYVIiIiEi2WFSIiIhItlhUiIiISLZYVIiIiEi2WFSIiIhItlhUiIiISLZYVIiIiEi2WFSIiIhItlhUiIiISLZYVIiIiEi2JP9QQqoC4uKAxETA1xfw85M6DRERVSHco0JPLy0N6NgRCAgAXnkF8PfX3U5PlzoZERFVESwq9PR69QJ27TJc27UL6NlTmjxERFTlsKjQ04mLA3bsADQaw3WNRrceHy9NLiIiqlJYVOjpJCY+/v6EhMrJQUREVRqLCj0dH5/H3+/rWzk5iIioSmNRoafj7w906AAolYbrSqVunWf/EBFROWBRoae3ahUQEWG4FhGhWyciIioHCiGEkDrE08rKyoKdnR0yMzNha2srdZzqKz5eN5PC66gQEVE54wXf6Nn5+bGgEBFRheChHyIiIpItFhUiIiKSLRYVIiIiki0WFSIiIpItFhUiIiKSLRYVIiIiki0WFSIiIpItFhUiIiKSLRYVIiIiki0WFSIiIpIto76E/v2PKcrKypI4CREREZWVjY0NFArFY7cx6qKSnZ0NAKhTp47ESYiIiKisSvOhwkb96clarRY3b94sVSMrq6ysLNSpUwfXrl3jJzM/Ad+r0uN7VXp8r0qP71Xp8b0qm4p+v6r8HhUTExN4eHhU6HPY2tryl7mU+F6VHt+r0uN7VXp8r0qP71XZSPl+cZiWiIiIZItFhYiIiGSLReURzMzMMHnyZJiZmUkdRfb4XpUe36vS43tVenyvSo/vVdnI4f0y6mFaIiIiqtq4R4WIiIhki0WFiIiIZItFhYiIiGSLRYWIiIhki0WlFL766iu0aNEClpaWsLe3lzqOrMybNw9eXl4wNzdHs2bNcOzYMakjydKBAwfQpUsXuLm5QaFQYNOmTVJHkq1p06bhueeeg42NDZydndGtWzfExsZKHUuWFixYgJCQEP3FuJo3b45t27ZJHcsoTJ8+HQqFAuPGjZM6iux89tlnUCgUBl/169eXLA+LSikUFBTgzTffxPDhw6WOIitr1qzB+PHjMXnyZMTExCA0NBQdOnRAcnKy1NFkJzc3F6GhoZg3b57UUWRv//79GDlyJI4ePYqdO3eisLAQ7du3R25urtTRZMfDwwPTp09HdHQ0Tpw4gXbt2qFr1644f/681NFk7fjx41i0aBFCQkKkjiJbDRs2xK1bt/RfBw8elC6MoFJbsmSJsLOzkzqGbDRt2lSMHDlSf1uj0Qg3Nzcxbdo0CVPJHwDx66+/Sh3DaCQnJwsAYv/+/VJHMQo1a9YUP/30k9QxZCs7O1v4+fmJnTt3itatW4uxY8dKHUl2Jk+eLEJDQ6WOocc9KvRUCgoKEB0djYiICP2aiYkJIiIicOTIEQmTUVWTmZkJAHBwcJA4ibxpNBqsXr0aubm5aN68udRxZGvkyJHo3LmzwZ9dVFx8fDzc3NxQr1499O7dG0lJSZJlMeoPJSTppKSkQKPRwMXFxWDdxcUFly5dkigVVTVarRbjxo1Dy5YtERQUJHUcWTp79iyaN2+O/Px8WFtb49dff0VgYKDUsWRp9erViImJwfHjx6WOImvNmjXD0qVLERAQgFu3bmHKlCl44YUXcO7cOdjY2FR6nmq7R+XDDz8sNiz08Bf/wiWS1siRI3Hu3DmsXr1a6iiyFRAQgFOnTuHvv//G8OHD0b9/f1y4cEHqWLJz7do1jB07FitWrIC5ubnUcWStU6dOePPNNxESEoIOHTpg69atyMjIwNq1ayXJU233qLz33nsYMGDAY7epV69e5YQxQrVq1YJSqcSdO3cM1u/cuYPatWtLlIqqklGjRuGPP/7AgQMH4OHhIXUc2VKpVPD19QUAhIWF4fjx45g9ezYWLVokcTJ5iY6ORnJyMpo0aaJf02g0OHDgAObOnQu1Wg2lUilhQvmyt7eHv78/EhISJHn+altUnJyc4OTkJHUMo6VSqRAWFobdu3ejW7duAHS76Xfv3o1Ro0ZJG46MmhACo0ePxq+//op9+/bB29tb6khGRavVQq1WSx1Ddl566SWcPXvWYG3gwIGoX78+Jk6cyJLyGDk5OUhMTETfvn0lef5qW1TKIikpCWlpaUhKSoJGo8GpU6cAAL6+vrC2tpY2nITGjx+P/v37Izw8HE2bNsWsWbOQm5uLgQMHSh1NdnJycgz+NXL58mWcOnUKDg4O8PT0lDCZ/IwcORIrV67Eb7/9BhsbG9y+fRsAYGdnBwsLC4nTycukSZPQqVMneHp6Ijs7GytXrsS+ffuwY8cOqaPJjo2NTbE5JysrKzg6OnL+6SETJkxAly5dULduXdy8eROTJ0+GUqlEz549pQkk9WlHxqB///4CQLGvvXv3Sh1NcnPmzBGenp5CpVKJpk2biqNHj0odSZb27t1b4u9Q//79pY4mOyW9TwDEkiVLpI4mO2+//baoW7euUKlUwsnJSbz00kvizz//lDqW0eDpySWLjIwUrq6uQqVSCXd3dxEZGSkSEhIky6MQQojKr0dERERET1Ztz/ohIiIi+WNRISIiItliUSEiIiLZYlEhIiIi2WJRISIiItliUSEiIiLZYlEhIiIi2WJRISIiItliUSEiIiLZYlEhIiIi2WJRISLZuHv3LmrXro2pU6fq1w4fPgyVSoXdu3dLmIyIpMLP+iEiWdm6dSu6deuGw4cPIyAgAI0aNULXrl3x3XffSR2NiCTAokJEsjNy5Ejs2rUL4eHhOHv2LI4fPw4zMzOpYxGRBFhUiEh27t27h6CgIFy7dg3R0dEIDg6WOhIRSYQzKkQkO4mJibh58ya0Wi2uXLkidRwikhD3qBCRrBQUFKBp06Zo1KgRAgICMGvWLJw9exbOzs5SRyMiCbCoEJGsvP/++1i/fj1Onz4Na2trtG7dGnZ2dvjjjz+kjkZEEuChHyKSjX379mHWrFmIioqCra0tTExMEBUVhb/++gsLFiyQOh4RSYB7VIiIiEi2uEeFiIiIZItFhYiIiGSLRYWIiIhki0WFiIiIZItFhYiIiGSLRYWIiIhki0WFiIiIZItFhYiIiGSLRYWIiIhki0WFiIiIZItFhYiIiGSLRYWIiIhk6/8AZ/5S5llBxEcAAAAASUVORK5CYII=" - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "INFO:autora.skl.bms:BMS fitting started\n", - " 9%|▉ | 9/100 [00:00<00:03, 28.62it/s]:2: RuntimeWarning: invalid value encountered in power\n", - " return sig(_a0_**X0)\n", - " 21%|██ | 21/100 [00:00<00:02, 31.02it/s]/Users/jholla10/Library/Caches/pypoetry/virtualenvs/autora-17yK3Jyq-py3.8/lib/python3.8/site-packages/scipy/optimize/_minpack_py.py:906: OptimizeWarning: Covariance of the parameters could not be estimated\n", - " warnings.warn('Covariance of the parameters could not be estimated',\n", - "100%|██████████| 100/100 [00:03<00:00, 32.37it/s]\n", - "INFO:autora.skl.bms:BMS fitting finished\n" - ] - }, - { - "data": { - "text/plain": "
", - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAiIAAAGdCAYAAAAvwBgXAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABTf0lEQVR4nO3deVxV1cLG8d8BBUEm5wkBZ9EEZ0IUMC2ze01tvGqlZVamqdnobVAb1GbNZiu10mzSZqcsQFFxnnHCAU0URyYVkLPeP3jjRk5YHPYBnu/ncz7dvc+wHs+97+vTWuvsbTPGGEREREQs4GJ1ABERESm/VERERETEMioiIiIiYhkVEREREbGMioiIiIhYRkVERERELKMiIiIiIpZRERERERHLOHURMcaQnp6OrrkmIiJSNjl1EcnIyMDX15eMjAyro4iIiIgDOHURERERkbJNRUREREQsoyIiIiIillEREREREcuoiIiIiIhlVERERETEMioiIiIiYhkVEREREbGMioiIiIhYRkVERERELKMiIiIiIpZRERERERHLqIiUE4MGDaJPnz5X9J4ZM2bg5+fnkDwiImK99cknmbvuIOuTT1qWQUVEilVQUBCTJ0+2OoaIiFzGpPmJ9H1nOaO/3Ejfd5YzaX6iJTlURERERMqZ9ckneS92T6Fz78XusWRmREXEAl9//TWtWrXCw8ODatWq0b17d7Kysgqe//DDDwkODqZSpUo0b96cd955p9D7Dxw4wG233Yafnx9Vq1ald+/e7Nu3r+D5vLw8Ro8ejZ+fH9WqVePxxx/HGHPZXDNmzCAgIABPT0/69u3L8ePHCz2flJRE7969qVWrFl5eXnTo0IFffvml4Pno6Gj279/Pww8/jM1mw2azAXD8+HH69etHvXr18PT0pFWrVnz++ed/56sTEZFisPdY1hWddyQVkf9XUutkKSkp9OvXj3vuuYfExERiYmK46aabCorCrFmzePbZZ3nxxRdJTExkwoQJPPPMM8ycOROA3NxcevTogbe3N0uXLiU+Ph4vLy+uv/56cnJyAHjttdeYMWMGH3/8McuWLePEiRPMmzfvkrkSEhIYPHgww4cPZ8OGDXTt2pUXXnih0GsyMzO54YYbWLJkCevXr+f666+nV69eJCcnAzB37lz8/f157rnnSElJISUlBYCzZ8/Srl07fvrpJ7Zs2cJ9993HnXfeyapVq4r1uxURkaJpUL3yFZ13KOPE0tLSDGDS0tIcOs7En7eZwCd+LHhM/Hmbw8Zau3atAcy+ffsu+HyjRo3M7NmzC517/vnnTXh4uDHGmE8//dQ0a9bM2O32guezs7ONh4eHWbhwoTHGmDp16piXX3654Pnc3Fzj7+9vevfufdFc/fr1MzfccEOhc7fffrvx9fW95J+nZcuWZurUqQXHgYGB5o033rjke4wx5l//+pd55JFHLvs6ERFxjL/+3TfJgX/3XUqFkq8+zuVi62Q9WtamTUCVYh8vNDSUbt260apVK3r06MF1113HLbfcQpUqVcjKyiIpKYnBgwczZMiQgvecO3cOX19fADZu3Mju3bvx9vYu9Llnz54lKSmJtLQ0UlJSCAsLK3iuQoUKtG/f/pLLM4mJifTt27fQufDwcBYsWFBwnJmZybhx4/jpp59ISUnh3LlznDlzpmBG5GLy8vKYMGECX375Jb///js5OTlkZ2fj6el5+S9MREQc4smewfRoWZu9x7JoUL2yQ/7OK4pyX0QutU7miP9SXF1dWbx4McuXL2fRokVMnTqVp556ioSEhIK/mKdNm1aoSPzxPsgvA+3atWPWrFnnfXaNGjWKPe+fPfrooyxevJhXX32Vxo0b4+HhwS233FKwJHQxr7zyClOmTGHy5Mm0atWKypUrM2rUqMu+T0REHKtNQBXLCsgfyn0RsWKdzGazERERQUREBM8++yyBgYHMmzeP0aNHU7duXfbs2cOAAQMu+N62bdvyxRdfULNmTXx8fC74mjp16pCQkEBkZCSQP6Oydu1a2rZte9FMwcHBJCQkFDq3cuXKQsfx8fEMGjSoYOYkMzOz0CZZADc3N/Ly8s57X+/evbnjjjsAsNvt7Ny5kxYtWlw0j4iIlA/lfrNqm4AqPBDVsNC5oVENHdYQExISmDBhAmvWrCE5OZm5c+dy9OhRgoODARg/fjwTJ07kzTffZOfOnWzevJnp06fz+uuvAzBgwACqV69O7969Wbp0KXv37iUmJoYRI0Zw8OBBAEaOHMmkSZP49ttv2b59Ow8++CCnTp26ZK4RI0awYMECXn31VXbt2sVbb71VaFkGoEmTJsydO5cNGzawceNG+vfvj91uL/SaoKAg4uLi+P333zl27FjB+/6YBUpMTOT+++/nyJEjxfF1iohIaWfJzpQiKqnNqsYYs27/CfPN2gNm3f4TDh1n27ZtpkePHqZGjRrG3d3dNG3atNBmT2OMmTVrlmndurVxc3MzVapUMZGRkWbu3LkFz6ekpJi77rrLVK9e3bi7u5uGDRuaIUOGFHxPubm5ZuTIkcbHx8f4+fmZ0aNHm7vuuuuSm1WNMeajjz4y/v7+xsPDw/Tq1cu8+uqrhTar7t2713Tt2tV4eHiY+vXrm7feestERUWZkSNHFrxmxYoVJiQkxLi7u5s//ud1/Phx07t3b+Pl5WVq1qxpnn766SLlERGRss9mTBEuMGGR9PR0fH19SUtLu+gyhIiIiJReDl2aGTduXMGFrf54NG/e3JFDioiISCni8M2qLVu2LHT1zQoVyv3+WBEREfl/Dm8FFSpUoHbt2o4eRkRERK5QTmYOFT0rYnOxWZbB4b+a2bVrF3Xr1qVhw4YMGDDgkhe/ys7OJj09vdBDREREit/u77ayr0Z7lt07w9IcDt2sOn/+fDIzM2nWrBkpKSmMHz+e33//nS1btpx3ZVDI31Myfvz4885rs6qIiEjxMHZD3H/eoeNXj+LBWfZXaEjdtO1U9KxoSZ4S/dXMqVOnCAwM5PXXX2fw4MHnPZ+dnU12dnbBcXp6OvXr11cRERERKQbHEo+yJ/oeOqb+CMDqGj0J+nU6Na6qZVmmEt056ufnR9OmTdm9e/cFn3d3d8fd3b0kI4mIiJQLaycuwv/pgXS0H+Ys7iTc/AqRXw63dH8IlPCVVTMzM0lKSqJOnTolOayIiEi5lZ2eTUz7R2j33x7Ush9mt3sLkr9aRdTXD1leQsDBReTRRx8lNjaWffv2sXz5cvr27Yurqyv9+vVz5LBl3qBBg+jTp0/BcXR0NKNGjbIsz6X8nWzjxo2jdevWDskjIlKe7Pl5O3trX0302vzbhMS2Gka9Q2toekuIxcn+x6FF5ODBg/Tr149mzZpx2223Ua1aNVauXOnwu8TKP+PMxeZibDYb3377rdUxREScgrEb4u74gNr/akvzMxs4ZqvOqqe/J2rTW3hU9bA6XiEO3SMyZ84cR368iIiI/MWJXcfZGTWEyJR5AKytei3+S2bSsbVzboso93fftYLdbufll1+mcePGuLu7ExAQwIsvvljw/ObNm7nmmmvw8PCgWrVq3HfffWRmZhb587Ozs3n00UepV68elStXJiwsjJiYmEKviY+PJzo6Gk9PT6pUqUKPHj04efIkgwYNIjY2lilTphRcln/fvn0AbNmyhZ49e+Ll5UWtWrW48847C+6wC5CVlcVdd92Fl5cXderU4bXXXitS3kmTJlGrVi28vb0ZPHgwZ8+eLfT86tWrufbaa6levTq+vr5ERUWxbt26gueDgoIA6Nu3LzabreA4KSmJ3r17U6tWLby8vOjQoUOhq/yKiJQ161/7lezmIVydMo8cKhJz42u0ObKAWk5aQkBF5H8OroGNc/L/6WBjxoxh0qRJPPPMM2zbto3Zs2dTq1b+T6eysrLo0aMHVapUYfXq1Xz11Vf88ssvDB8+vMifP3z4cFasWMGcOXPYtGkTt956K9dffz27du0CYMOGDXTr1o0WLVqwYsUKli1bRq9evcjLy2PKlCmEh4czZMgQUlJSSElJoX79+pw6dYprrrmGNm3asGbNGhYsWMCRI0e47bbbCsZ97LHHiI2N5bvvvmPRokXExMQUKgwX8uWXXzJu3DgmTJjAmjVrqFOnDu+8806h12RkZDBw4ECWLVvGypUradKkCTfccAMZGRlAflEBmD59OikpKQXHmZmZ3HDDDSxZsoT169dz/fXX06tXr0teVE9EpDTKycwh5uonCX20O3Xsh0hya86e2QlEfzcalwpO/le9lbf+vZy0tDQDFNze3mEWPWvMWJ//PRY967Ch0tPTjbu7u5k2bdoFn//ggw9MlSpVTGZmZsG5n376ybi4uJjDhw8bY4wZOHCg6d27d8HzUVFRZuTIkcYYY/bv329cXV3N77//Xuhzu3XrZsaMGWOMMaZfv34mIiLiohn//Hl/eP755811111X6NyBAwcMYHbs2GEyMjKMm5ub+fLLLwueP378uPHw8Djvs/4sPDzcPPjgg4XOhYWFmdDQ0Iu+Jy8vz3h7e5sffvih4Bxg5s2bd9H3/KFly5Zm6tSpl32diEhpsWfBDrPVs50xYAyY2OD7TdbRLKtjFZmT16QScHANxE8ufC5+ssNmRhITE8nOzqZbt24XfT40NJTKlSsXnIuIiMBut7Njx47Lfv7mzZvJy8ujadOmeHl5FTxiY2NJSkoC/jcjciU2btzIb7/9Vugz/7iTclJSEklJSeTk5BAWFlbwnqpVq9KsWbNLfm5iYmKh9wCEh4cXOj5y5AhDhgyhSZMm+Pr64uPjQ2Zm5mVnNjIzM3n00UcJDg7Gz88PLy8vEhMTNSMiImWCsRuW3v0xNa5vS4vTazlhq8rKx+cSue09PKt7Wh2vyHQr3OMXvrgax3eDf/tiH87Dw7G7lTMzM3F1dWXt2rW4uroWes7Ly+tvZ8jMzKRXr1689NJL5z1Xp06di16krjgMHDiQ48ePM2XKFAIDA3F3dyc8PJycnJxLvu/RRx9l8eLFvPrqqzRu3BgPDw9uueWWy75PRMTZndp7ksTI++ly8CsA1vt1pfbiT7m6fT2Lk105zYhUa3xl5/+hJk2a4OHhwZIlSy74fHBwMBs3biQrK6vgXHx8PC4uLpedXQBo06YNeXl5pKam0rhx40KPP+6CHBISctHxAdzc3MjLyyt0rm3btmzdupWgoKDzPrdy5co0atSIihUrkpCQUPCekydPsnPnzkvmDQ4OLvQegJUrVxY6jo+PZ8SIEdxwww20bNkSd3f3QptkASpWrHhe5vj4eAYNGkTfvn1p1aoVtWvXLth4KyJSWm2cGkdWk1DCD35FLhWIuX4SIUcWU6cUlhBQEcmf9YgYVfhcxMMOmQ0BqFSpEk888QSPP/44n3zyCUlJSaxcuZKPPvoIgAEDBlCpUiUGDhzIli1b+O2333jooYe48847Cza0XkrTpk0ZMGAAd911F3PnzmXv3r2sWrWKiRMn8tNPPwH5m2VXr17Ngw8+yKZNm9i+fTvvvvtuwV/uQUFBJCQksG/fPo4dO4bdbmfYsGGcOHGCfv36sXr1apKSkli4cCF33303eXl5eHl5MXjwYB577DF+/fVXtmzZwqBBg3BxufT/xEaOHMnHH3/M9OnT2blzJ2PHjmXr1q2FXtOkSRM+/fRTEhMTSUhIYMCAAefN6gQFBbFkyRIOHz7MyZMnC943d+5cNmzYwMaNG+nfvz92u71o/0WJiDiZ3NO5xHR+mlYjoqmXd4C9FZuwa+YKouc/gaub6+U/wFlZvUnlUkpss6oxxhxYbcyGz/P/6WB5eXnmhRdeMIGBgaZixYomICDATJgwoeD5TZs2ma5du5pKlSqZqlWrmiFDhpiMjIyC5y+1WdUYY3Jycsyzzz5rgoKCTMWKFU2dOnVM3759zaZNmwpeExMTYzp16mTc3d2Nn5+f6dGjhzl58qQxxpgdO3aYq6++2nh4eBjA7N271xhjzM6dO03fvn2Nn5+f8fDwMM2bNzejRo0ydrvdGGNMRkaGueOOO4ynp6epVauWefnlly+48fWvXnzxRVO9enXj5eVlBg4caB5//PFCm1XXrVtn2rdvbypVqmSaNGlivvrqKxMYGGjeeOONgtd8//33pnHjxqZChQomMDDQGGPM3r17TdeuXY2Hh4epX7++eeutt4qUR0TE2exbsttsrhxWsCE1rsk9JiMl4/JvLAVK9O67Vyo9PR1fX1/dfVdERMolYzfEP/gZoe8/iDeZnLL5kTjqA8Jfv9XqaMVGm1VFREScUFpyGlsih9J5/+cAbPCNpMb8TwkPD7A4WfHSHhEREREns+ndeDIahhKx/3PO4UpM9xdolfor9cpYCQHNiIiIiDiNc2fPsez6F+gS+zyu2NlfoSEZ780menDY5d9cSqmIiIiIOIGDy/Zx4oYBRGcsB2BZw7sIiZ1KoH/Z3iOppRkRERGLLX/oc7y7hBKSsZw0fFg+fDadk2biU8ZLCGhGRERExDLpB9PZFDWczns+BWCTdyeq/jyLTp2DrA1WgjQjIiIiYoEtHyVwskEbOu/5lDxciIkeR4vUWPzLUQkBzYiIiIiUqLycPJb+axKdfxlLBfI46BrIiamziB4aYXU0S6iIiIiIlJDfVyRztOedRKfFARAf2I+r4t7FP8DX4mTW0dJMOTFo0CD69OljdQwAZsyYgZ+f3xW9x2az8e233zokj4hISVgx+isqR4TSOi2ODLxYdv8ndNozC99yXEJAMyIiIiIOlXk4kw2RI+i8azoAWyqH4f39LDpf08jiZM5BMyIiIiIOsu2TNRwNaEvnXdOxYyMm4imapS4lUCWkgIqIBb7++mtatWqFh4cH1apVo3v37mRlZRU8/+GHHxIcHEylSpVo3rw577zzTqH3HzhwgNtuuw0/Pz+qVq1K79692bdvX8HzeXl5jB49Gj8/P6pVq8bjjz/O5e5t+MdyyY8//kizZs3w9PTklltu4fTp08ycOZOgoCCqVKnCiBEjyMvLK3jfyZMnueuuu6hSpQqenp707NmTXbt2nffZAQEBeHp60rdvX44fP37e+N999x1t27alUqVKNGzYkPHjx3Pu3Lkr+VpFRJyG/ZydmJ4v0WRgOA1yd/G7a302vxlD9LIXqOhZ0ep4zsXiu/9eUlpamgFMWlpakV5vtxuTmWnNw24v2p/p0KFDpkKFCub11183e/fuNZs2bTJvv/22ycjIv53zZ599ZurUqWO++eYbs2fPHvPNN9+YqlWrmhkzZhhjjMnJyTHBwcHmnnvuMZs2bTLbtm0z/fv3N82aNTPZ2dnGGGNeeuklU6VKFfPNN9+Ybdu2mcGDBxtvb2/Tu3fvi+aaPn26qVixorn22mvNunXrTGxsrKlWrZq57rrrzG233Wa2bt1qfvjhB+Pm5mbmzJlT8L4bb7zRBAcHm7i4OLNhwwbTo0cP07hxY5OTk2OMMWblypXGxcXFvPTSS2bHjh1mypQpxs/Pz/j6+hZ8RlxcnPHx8TEzZswwSUlJZtGiRSYoKMiMGzeu4DWAmTdvXtG+ZBERCx1afdCsrXKNMWAMmOX+t5qTe05YHctplakikplZ8N97iT8yM4v2Z1q7dq0BzL59+y74fKNGjczs2bMLnXv++edNeHi4McaYTz/91DRr1szY/9R8srOzjYeHh1m4cKExxpg6deqYl19+ueD53Nxc4+/vf9kiApjdu3cXnLv//vuNp6dnQUkyxpgePXqY+++/3xhjzM6dOw1g4uPjC54/duyY8fDwMF9++aUxxph+/fqZG264odBYt99+e6Ei0q1bNzNhwoRCr/n0009NnTp1Co5VRESkNFjx+Fxz3FbVGDAZVDZxd39s7HlF/DfVckqbVUtYaGgo3bp1o1WrVvTo0YPrrruOW265hSpVqpCVlUVSUhKDBw9myJAhBe85d+4cvr75u6o3btzI7t278fb2LvS5Z8+eJSkpibS0NFJSUggL+98NkipUqED79u0vuzzj6elJo0b/W7esVasWQUFBeHl5FTqXmpoKQGJiIhUqVCg0VrVq1WjWrBmJiYkFr+nbt2+hccLDw1mwYEHB8caNG4mPj+fFF18sOJeXl8fZs2c5ffo0np6el8wtImK1rNQs1kaNJnL7BwBs82yP57ez6XJtE4uTOb8yVUQ8PSEz07qxi8LV1ZXFixezfPlyFi1axNSpU3nqqadISEgo+At32rRphf5y/+N9AJmZmbRr145Zs2ad99k1atT4R3+GihULr1vabLYLnrPb7f9onL/KzMxk/Pjx3HTTTec9V6lSpWIdS0Qu4uAaOL4bqjUG//ZWpylVtn++HrdB/YjM2YEdG3Fhj9Ppl+dw83KzOlqpUKaKiM0GlStbneLybDYbERERRERE8OyzzxIYGMi8efMYPXo0devWZc+ePQwYMOCC723bti1ffPEFNWvWxMfnwjdDqlOnDgkJCURGRgL5Mypr166lbdu2xfrnCA4O5ty5cyQkJNCpUycAjh8/zo4dO2jRokXBaxISEgq9b+XKlef9mXbs2EHjxo2LNZ+IFNHisRA/+X/HEaPg2vFWpSk17OfsxPV9g04/jsGNXFJc6nL45U+JfuQaq6OVKmWqiJQGCQkJLFmyhOuuu46aNWuSkJDA0aNHCQ4OBmD8+PGMGDECX19frr/+erKzs1mzZg0nT55k9OjRDBgwgFdeeYXevXvz3HPP4e/vz/79+5k7dy6PP/44/v7+jBw5kkmTJtGkSROaN2/O66+/zqlTp4r9z9KkSRN69+7NkCFDeP/99/H29ubJJ5+kXr169O7dG4ARI0YQERHBq6++Su/evVm4cGGhZRmAZ599ln//+98EBARwyy234OLiwsaNG9myZQsvvPBCsecWkT85uKZwCYH84+Bemhm5hCMbUjjYbSDRJxYDsLJOX5rGTqNNk2oWJyt99PPdEubj40NcXBw33HADTZs25emnn+a1116jZ8+eANx77718+OGHTJ8+nVatWhEVFcWMGTNo0KABkL+PIy4ujoCAAG666SaCg4MZPHgwZ8+eLZgheeSRR7jzzjsZOHAg4eHheHt7n7dPo7hMnz6ddu3a8e9//5vw8HCMMfz8888FSzpXX30106ZNY8qUKYSGhrJo0SKefvrpQp/Ro0cPfvzxRxYtWkSHDh24+uqreeONNwgMDHRIZhH5k+O7r+y8sOqZH3BtG0K7E4s5jQdxA94n7OA3VFUJ+Vts5nI7GC2Unp6Or68vaWlpF12GEBGRf+DgGviw2/nn712iGZG/OHPiDKuiHyNq89sAbPdojdvXn9PwhuYWJyvdNCMiIlKe+bfP3xPyZxEPq4T8xc6vN3GwboeCEhLT7hEaHF6pElIMNCMiIiL61cxFGLsh7taphM19nEpkc8SlNgdfmEm7MddZHa3MUBERERG5gKNbjrDvmrvpcHQ+AAm1etHot4+oHvzPLpUghWlpRkRE5C9WPzcfQkLocHQ+Z6hE7O1v0/HQdyohDqCf74qIiPy/s6fOktD1SaI2TAFgZ6VWuMz5nKjeLS1OVnapiIiIiAC7v9tK3n/6E3V2EwCxoSMIi3mJSn66wrMjaWlGRETKNWM3xP7nHer1aU+zs5s4aqvJ6nE/EbVhikpICdCMiIiIlFvHEo+S1HUwUUd+AGB1jZ4E/TqdDlfVsjhZ+aEZERERKZfWTlpM3lUhhB35gWzciL1pCu0P/0QNlZASpSJiAWMM9913H1WrVsVms7Fhwwaio6MZNWpUsY4zbtw4WrduXayf+XfFxMRgs9mu6J43QUFBTJ482WGZRKR8yk7PJqb9o7Qbcx217IfZ7d6C/V+tJuqbEdhcbFbHK3e0NGOBBQsWMGPGDGJiYmjYsCHVq1dn7ty5BfdnERERx9jz83ayb+lP9Jn1AMRe9SAdY1/Fo6qHxcnKLxURCyQlJVGnTh06depUcK5q1aoWJhIRKduM3bD0rmm0nzUKT85w3FaN3WM+JurFG62OVu5paaaEDRo0iIceeojk5GRsNhtBQUEA5y3NBAUFMWHCBO655x68vb0JCAjggw8+KPRZTzzxBE2bNsXT05OGDRvyzDPPkJubW+QsfyyXLFy4kDZt2uDh4cE111xDamoq8+fPJzg4GB8fH/r378/p06cL3pednc2IESOoWbMmlSpVonPnzqxevbrQZ//88880bdoUDw8Punbtyr59+84bf9myZXTp0gUPDw/q16/PiBEjyMrKKnJ+EZGiOLHrOAn+NxM56348OcPaqtdybt1mwlRCnEKJFZFJkyZhs9mKfR9EIcZAVpY1jyJeKX/KlCk899xz+Pv7k5KSct5f4H/22muv0b59e9avX8+DDz7I0KFD2bFjR8Hz3t7ezJgxg23btjFlyhSmTZvGG2+8ccVf27hx43jrrbdYvnw5Bw4c4LbbbmPy5MnMnj2bn376iUWLFjF16tSC1z/++ON88803zJw5k3Xr1tG4cWN69OjBiRMnADhw4AA33XQTvXr1YsOGDdx77708+eSThcZMSkri+uuv5+abb2bTpk188cUXLFu2jOHDh19xfhGRi1n/2q9kNw/l6pR55FCRmBtfo82RBdRqXcfqaPIHUwJWrVplgoKCTEhIiBk5cmSR35eWlmYAk5aWVrQ3ZGYak18JSv6RmVnkP9cbb7xhAgMDC52Liooq9N0EBgaaO+64o+DYbrebmjVrmnffffein/vKK6+Ydu3aFRyPHTvWhIaGXvT1v/32mwHML7/8UnBu4sSJBjBJSUkF5+6//37To0cPY4wxmZmZpmLFimbWrFkFz+fk5Ji6deual19+2RhjzJgxY0yLFi0KjfXEE08YwJw8edIYY8zgwYPNfffdV+g1S5cuNS4uLubMmTMF38Ebb7xx0fwiIheTnZFtfgt7wuRhMwZMklszkzh7ndWx5AIcPiOSmZnJgAEDmDZtGlWqVHH0cGVKSEhIwX+22WzUrl2b1NTUgnNffPEFERER1K5dGy8vL55++mmSk5P/0Ti1atUqWOr587k/xk1KSiI3N5eIiIiC5ytWrEjHjh1JTEwEIDExkbCwsEJjhIeHFzreuHEjM2bMwMvLq+DRo0cP7HY7e/fuveI/g4jIH/Yt3sXuWhFEJ7yEC4a45vdR68BamvdrY3U0uQCHb1YdNmwY//rXv+jevTsvvPDCJV+bnZ1NdnZ2wXF6evqVDebpCZmZfyfmP+fpWewf+ddf0dhsNux2OwArVqxgwIABjB8/nh49euDr68ucOXN47bXX/tE4NpvtkuMWl8zMTO6//35GjBhx3nMBAQHFOpaIlA/Gblg2eDptZozAiyxO2Kqy87EPiXypr9XR5BIcWkTmzJnDunXrLrkP4s8mTpzI+PHj//6ANhtUrvz331+KLF++nMDAQJ566qmCc/v373f4uI0aNcLNzY34+HgCAwMByM3NZfXq1QX7f4KDg/n+++8LvW/lypWFjtu2bcu2bdto3LixwzOLSNl3au9JEiPvp8vBrwBY79eV2os+4eoO/hYnk8tx2NLMgQMHGDlyJLNmzaJSpaJdq3/MmDGkpaUVPA4cOOCoeKVekyZNSE5OZs6cOSQlJfHmm28yb948h49buXJlhg4dymOPPcaCBQvYtm0bQ4YM4fTp0wwePBiABx54gF27dvHYY4+xY8cOZs+ezYwZMwp9zhNPPMHy5csZPnw4GzZsYNeuXXz33XfarCoiV2zj1DiymoQSfvArcqlAzPWTCDmymDoqIaWCw4rI2rVrSU1NpW3btlSoUIEKFSoQGxvLm2++SYUKFcjLyzvvPe7u7vj4+BR6yIXdeOONPPzwwwwfPpzWrVuzfPlynnnmmRIZe9KkSdx8883ceeedtG3blt27d7Nw4cKCPUABAQF88803fPvtt4SGhvLee+8xYcKEQp8REhJCbGwsO3fupEuXLrRp04Znn32WunXrlsifQURKv9zTucR0eYarRnSlXt4B9lVszK4Zy4me/wSubq5Wx5MishlTxN+dXqGMjIzzlgruvvtumjdvzhNPPMFVV1112c9IT0/H19eXtLQ0lRIRESmQHLOH9H/356qsBACWNrmHNnFT8KrtZXEyuVIO2yPi7e19XtmoXLky1apVK1IJERER+StjN8Q/+Bkh7w8jgAzS8GXrqA/o8sZtVkeTv0mXeBcRkVIhLTmNLZFD6bz/cwA2+nSh+oLP6BSuX9qVZg5bmikOWpoRERGAze8vx2/4AOqf28c5XFnabTyRPz+pvSBlgGZERETEaZ07e45lPV+kS8xzuGJnf4WGZLw7i673Xm11NCkmKiIiIuKUDi7bx4kb7iA6Ix6AZQ3vJCT2LQL9NUNelujuuyIi4nSWP/Q53l1CCcmIJw0f4h+cReekT/ApQglZn3ySuesOsj75ZAkklX9KMyIiIuI0Mg5lsLHLcDrv+QSATd6dqPLjZ0RENijS+yfNT+S92D0Fxw9ENeTJnsEOySrFQzMiIiLiFLZ8lMCJwNZ03vMJebgQEzWWFqmx1C9iCVmffLJQCQF4L3aPZkacnIqIiIhYKi8nj5hrX6T5vREEntvDQddAtr4TR3TMOCpUKvrE/d5jWVd0XpyDlmZERMQyhxIOkNrjDqLT4gBYHvAfWsa9i3+g3xV/VoPqF77p6cXOi3PQjIiIiFhixeiv8AwPoXVaHBl4sWzITML3zsb3b5QQgDYBVXggqmGhc0OjGtImoEoxpBVH0QXNRESkRGUezmR95Ei67PoYgC2VO+L9/WwCr2lULJ+/Pvkke49l0aB6ZZWQUkBFRERESsy2T9bgcW9/GuTuwo6NuIj/ErFoLBU9K1odTSyiPSIiIuJw9nN24m58lYj5T1GRcxxy9Sf1tc+IHhlldTSxmIqIiIg4VMqa30m57i6iT/4KwIp6txC89ANaN9CyiWizqoiIOFDCmG9x7xhC25O/koUnSwd9xNXJX+KnEiL/TzMiIiJS7LJSs1gbNZrI7R8AsM2zHR5zZ9OlR1OLk4mz0YyIiIgUq+2fr+dw/fZEbv8AOzZiOj5O4yPLaaASIhegGRERESkW9nN24m6eTKfvn8SNXFJc6nL45U+JfuQaq6OJE1MRERGRf+zIhhQOdB9E9PFFAKys04emsR/Spkk1i5OJs9PSjIiI/COrnv0R17YhtD++iNN4EDfgfcIOzqWqSogUgWZERETkbzlz4gyroh8javPbAGz3aE3FL2cT+e9gi5NJaaIiIiIiV2zn15uw3dGfqOytAMS0G034rxNw93G3OJmUNlqaERGRIjN2Q+zNbxJwa0eaZG/liEtt1k5YSPSa11RC5G/RjIiIiBTJ0a2p7Ot6N1FHfwZgVc1/0zDmY9oF17A4mZRmmhEREZHLWvPCAmjVig5Hf+YMlYi99S06pHxPdZUQ+Yc0IyIiIhd19tRZEro+SdSGKQDscr8KPv+cqL5XWZxMygoVERERuaDd320l7z/9iTq7CYDY0BGExbxEJb9KFieTskRLMyIiUoixG+L6vUu9Pu1pdnYTR201WT3uJ6I2TFEJkWKnGRERESlwfMcxdkcPJvLw9wCsrn49Qb/NoMNVtSxOJmWVZkRERASAdS//Qm6LEMIOf082bsT2nUy7lJ+ooRIiDqQZERGRci47PZsV1zxF9NrXANjt3oK8T2YTdVuoxcmkPFAREREpx/b8vJ3sW/oTfWY9AHEth9I+5lU8q3tanEzKCy3NiIiUQ8ZuiLtrGrX/1ZbgM+s5bqtGwn+/I3LLOyohUqI0IyIiUs6c2HWcnVFDiEyZB8Daqt2pt3gmYW3rWpxMyiPNiIiIlCPrX/+N7OahXJ0yjxwqEvPvV2lzZCG1VULEIpoREREpB3KzcojvPpbIlS/hgmGPWzOyP55N9IC2VkeTck5FRESkjNu3eBen+/Qn+vQaAOKaD6Fd7BtUrlnZ4mQiWpoRESmzjN2w9J7pVL+uDS1Or+GkrQorH/uGyMQPVELEaWhGRESkDDq19yTboh6gy4EvAVjv15Xaiz7h6g7+FicTKUwzIiIiZczGt5aS1SSUTge+JJcKxFw/iZAji6mjEiJOSDMiIiJlRO7pXOJ7PEeXZRNwxc6+io05PW020QM7WB1N5KJUREREyoDkmD2k9+pPdGYCAEub3E2buDfxqu1lcTKRS9PSjIhIKRc/9DP8urbmqswE0vBl+agv6LLzY5UQKRU0IyIiUkqlJaexJfJBIvbPBmCjTxeq/fwpnSICLU4mUnSaERERKYU2v7+c9Eatidg/m3O4EtPtea46+hv+KiFSyji0iLz77ruEhITg4+ODj48P4eHhzJ8/35FDioiUaefOniPmmucIfiCS+uf2kVyhAdunLSP6l6dxdXO1Op7IFXPo0oy/vz+TJk2iSZMmGGOYOXMmvXv3Zv369bRs2dKRQ4uIlDkHl+3jxA13EJ0RD8CyhncSEvsWAf4+FicT+ftsxhhTkgNWrVqVV155hcGDB1/2tenp6fj6+pKWloaPj/4PTUTKr+Uj5tBy6v34kk463mwe+i4R7wywOpbIP1Zim1Xz8vL46quvyMrKIjw8/IKvyc7OJjs7u+A4PT29pOKJiDiljEMZbOwynM57PgFgs1c4fj/NIiKygcXJRIqHwzerbt68GS8vL9zd3XnggQeYN28eLVq0uOBrJ06ciK+vb8Gjfv36jo4nIuK0tk5fxYnANnTe8wl5uBATNZbgo3HUVwmRMsThSzM5OTkkJyeTlpbG119/zYcffkhsbOwFy8iFZkTq16+vpRkRKVfycvJY+u+XiFg8loqc46BrICfe/IyQBztbHU2k2JX4HpHu3bvTqFEj3n///cu+VntERKS8OZRwgNQed9I6LRaA5QH/oWXcu/gG+lkbTMRBSvw6Ina7vdCsh4iI5FvxyNd4hofQOi2WDLxYNmQm4Xtnq4RImebQzapjxoyhZ8+eBAQEkJGRwezZs4mJiWHhwoWOHFZEpFTJPJzJ+qhRdNn5EQBbKnfE+7tZdO7W2OJkIo7n0CKSmprKXXfdRUpKCr6+voSEhLBw4UKuvfZaRw4rIlJqJH62lkr39KNL7i7s2Ijt9F86Lx5LRc+KVkcTKRElvkfkSmiPiIiUVfZzduJufJVO85/GjVwOufqT+tpntB4ZZXU0kRKlm96JiJSwlDW/k3LdQKJPLgFgRb1baB77Pq0bVbU4mUjJ003vRERKUMKYb3HvGELbk0vIwpOlAz/k6uQvqaISIuWUZkRERErA6WOnWRM5msjE/EsXJHq0xf2b2XTp2cziZCLWUhEREXGwHV9soMJd/YjM2Y4dG3EdH6PTkudx83KzOpqI5bQ0IyLiIPZzdmL6vEHQf8JolLOdFJe6bHh5MdEJL6mEiPw/zYiIiDhA6sYUkrsNIvr4IgBW1ulD09gPadukmsXJRJyLZkRERIrZqmd/xKVNCO2PL+I0HsT1f4+wg3OpqhIich7NiIiIFJMzJ86wKvoxoja/DcCOSqFU+OpzIv8dbHEyEeelIiIiUgx2frMZ24B+RGVvBSCm7cOE/zYRdx93i5OJODcVERGRf8DYDXG3vUXYN49RiWxSXWpx4IVPiB5zXbGNsT75JHuPZdGgemXaBFQpts8VcQYqIiIif9PRrans63o3UUd/BmBVzX/R4NePadeyZrGNMWl+Iu/F7ik4fiCqIU/21FKPlB3arCoi8jeseWEBhLSiw9GfOYs7sbe+RYeUH6hRjCVkffLJQiUE4L3YPaxPPllsY4hYTTMiIiJX4OypsyRcM4ao9ZMB2OV+FXz+OVF9ryr2sfYey7roeS3RSFmhIiIiUkS7v99G3u39iDq7CYDYkIfo+NtLeFT1cMh4DapXvqLzIqWRlmZERC7D2A1x/d6lXu92NDu7iaO2Gqwa+xNRG990WAkBaBNQhQeiGhY6NzSqoWZDpEyxGWOM1SEuJj09HV9fX9LS0vDx8bE6joiUQ8d3HGN39GDCDn8PwOrq1xO4ZDo1Q2qXWAb9akbKMhUREZGLWPfyL9Qdcxe17Slk48bKPi/R5asRuFTQZLJIcdEeERGRv8jJzGF516eIXvMqAEluwZz79HOibgu1OJlI2aMiIiLyJ3vm7yD75n5En1kPQFzLobSPeRXP6p4WJxMpmzS/KCJC/obUpQM/pNYNbQk+s57jtmokjPmWyC3vqISIOJBmRETEEs60AfNk0gl2RA6hy6G5AKyt2p16i2cS1raupblEygMVEREpcc502fINb/xGrUfv5Gr77+RQkeX/mkDkt6O1IVWkhOj/0kSkRF3RZcsProGNc/L/WcxyT+cSEz6GkNHdqGP/nb0Vm5L02Uqif3xUJUSkBGlGRERKVJEvW754LMRP/t9xxCi4dnyxZNi/ZDeZvfsTnbUagLhm99IubjKVa+qKpSIlTbVfREpUkS5bfnBN4RIC+cf/cGbE2A3L7p1Bte6taZm1mpO2Kqx49Gsit09TCRGxiIqIiJSoIl22/PjuC7/5YueLIG3/KVYE/YfOH92NF1ms94vmbMImwl+5+W9/poj8c1qaEZES92TPYHq0rH3xX81Ua3zhN17s/GVsfGsp1UbdQae8ZHKpQHyP5+ny/WO4urn+rc8TkeKjIiIilmgTUOXiP9v1b5+/J6TQHpGH889fgXNncll23XN0WTYBV+zsq9iY09NmEz2ww9/OLSLFS/eaERHndXBN/nJMtcZXXEKSY/aQ1msArTJXArC08SBax76Jd11vRyQVkb9JRUREypz4oZ/R6r0H8SGDNHzZOuJ9Ok253epYInIBWpoRkTIjLTmNLVHDiNg3C4CNPp2p9vNndIoItDiZiFyMfjUjImXC5g+Wk96oNRH7ZnEOV2K6Pc9VR2PwVwkRcWqaERGRUu3c2XMsu2ECnX97jgrkkVyhAWlvzyL6vnCro4lIEaiIiEipdTB+Pyd6DiA6Ix6AZQ3uICTubQL8tadMpLTQ0oyIlErLR8zBu3MoIRnxpONN/NDP6LznU3xUQkRKFc2IiEipknEog42RD9E5aSYAm73C8f1xFhFRDSxOJiJ/h2ZERKTU2Dp9FScC29A5aSZ5uBAT+SzBR+MIUAkRKbU0IyIiTi8vJ4+l/36JiMVjqcg5DroGcOLNWUQ/2NnqaCLyD6mIiIhTO5RwgNQedxKdFgvA8vq303Lpe/gH+lkbTESKhZZmRMRprXjkazzCQ2mdFksmlVl27wzC932Or0qISJmhGRERcTpZqVms6zKSLjs/AmBr5Q54fTebzt3+3t13RcR5aUZERJxK4mdrSfVvS5edH2HHRkyn/9I0NZ5AlRCRMkkzIiLiFOzn7MTd+Cqd5j+NG7kccvUn9dVPiR4VbXU0EXEgh86ITJw4kQ4dOuDt7U3NmjXp06cPO3bscOSQIlIKpaz5nQ01ryN6/hO4kcuKejfjsWMjrVVCRMo8hxaR2NhYhg0bxsqVK1m8eDG5ublcd911ZGVlOXJYESlFEv77HW4dQ2l7cglZeLJ04IdcnfwVVRpVtTqaiJQAmzHGlNRgR48epWbNmsTGxhIZGXnZ16enp+Pr60taWho+Prpss0hZcvrYadZEPULktvcASPRoi/s3s2nYs5nFyUSkJJXoHpG0tDQAqla98L/pZGdnk52dXXCcnp5eIrlEpGTt+GIDFe7qT2ROIgAxHR+n05LncfNysziZiJS0EvvVjN1uZ9SoUURERHDVVVdd8DUTJ07E19e34FG/fv2SiiciJcB+zk5MnzcI+k8YjXISOexSh3UvLSY64SWVEJFyqsSWZoYOHcr8+fNZtmwZ/v7+F3zNhWZE6tevr6UZkTIgddNhDlwzkHbHFwGQULs3jWM+pFqz6hYnExErlcjSzPDhw/nxxx+Ji4u7aAkBcHd3x93dvSQiiRSvg2vg+G6o1hj821udxumsHvcTQc/dTTtzlNN4sKbf63T57H5sLjaro4mIxRxaRIwxPPTQQ8ybN4+YmBgaNNAdMqUMWjwW4if/7zhiFFw73qo0TuXMiTOsin6cqM1vAbCjUiiuX35OZK9gi5OJiLNw6B6RYcOG8dlnnzF79my8vb05fPgwhw8f5syZM44cVqTkHFxTuIRA/vHBNVakcSq75m3hYN2OBSUkpu3DBB1JoLFKiIj8iUOLyLvvvktaWhrR0dHUqVOn4PHFF184cliRknN895WdLweM3RB361Tq39SeJtlbSHWpxZoXFhC99nXcfbT0KiKFOXxpRqRMq3aR+59c7HwZd3RrKvu63k3k0Z8BWFXzXzT49WPat6xpcTIRcVa66Z3IP+HfPn9PyJ9FPFwuN6yueWEBJiSEDkd/5izuxN4ylQ4pP1BDJURELqFEr6x6pXRlVSk1yvGvZrLTs1kZ/SRR6ycDsMv9Ksys2TS9uZW1wUSkVFAREZG/bff328i7vT/Nzm4EILbVcDrGvIxHVQ+Lk4lIaaGlGRG5YsZuiOv3LvV6t6PZ2Y0ctdVg9dgfido0VSVERK5Iid5rRkRKv+M7jrE7ejCRh78HYE21HgT8OoMOIbUtTiYipZFmRESkyNa9/Au5LUIIO/w92bgR2+cN2h7+mZoqISLyN2lGREQuKyczh+XXPE306lcASHIL5twns4m6vbW1wUSk1FMREZFL2jN/B9k39yf6zDoA4lo8QPvY1/Cs7mlxMhEpC7Q0IyIXZOyGpQM/pNYNbQk+s47jtmokjPmWyK3vqoSISLHRjIiInOdk0gl2RA6hy6G5AKyr0o26v3xCWNu6FicTkbJGMyIiUsiGyTGcbRrC1YfmkkNFYm54mdapi6itEiIiDqAZEREBIPd0LvHdxxK5YhIuGPZWbMrZj2cTfUc7q6OJSBmmIiIi7F+ym8ze/YnOWg1AXLN7aRc3mco1K1ucTETKOi3NiJRjxm5YNmQmVbu3oWXWak7aqrDi0a+J3D5NJURESoRmRESsZOHN8tL2n2JrlwfofOALANb7RVNrwSeEh9Uv0RwiUr6piIhYZfFYiJ/8v+OIUXDt+BIZeuNbS6k26g465SWTSwXir3uOLj88jquba4mMLyLyBy3NiFjh4JrCJQTyjw+uceiw586eIybyWa56KBr/vGT2V2jEzo/jiV44RiVERCyhIiJiheO7r+x8MTgQt5fEGpFEL30eV+wsbTSIqvvX0/Lujg4bU0TkclRERKxQrfGVnf+H4h+chW9UKK0yV5CGL8tHzKHL7ul41/V2yHgiIkWlIiJiBf/2+XtC/izi4WLfsJp+II34BncQ8e4d+JDBRp/OZCzbSKcptxfrOCIif5fNGGOsDnEx6enp+Pr6kpaWho+Pj9VxRIqfA381s/mDFfgN60/9c/s4hyvLrhlL55/GUKGS9qiLiPNQEREpY/Jy8ljacwKdfx1PBfI4UCGIU2/PptV94VZHExE5j/7VSKQMORi/n+M33EF0+jIA4oMGcFXs29QP8LU4mYjIhWmPiEgZsXzkF3h3DiU0fRnpeBP/wKdE7P0MX5UQEXFimhERKeUyDmWwMfIhOifNBGCz19X4/jCLiOiGFicTEbk8zYiIlGJbp6/iRGAbOifNJA8XYro8Q/DRpQSohIhIKaEZEZFSKC8nj6W9XiZi0bNU5BwHXQM4Pvkzood3sTqaiMgVURERKWUOJRwgtcedRKfFArC8/m20XPo+/oF+1gYTEfkbtDQjUoqseOwbPMJDaZ0WSyaVWTZ4OuH75uCrEiIipZRmRERKgazULNZGjiJyx4cAbK3cgcrfzqZzd8dcEl5EpKRoRkTEySV+tpZU/7ZE7vgQOzZiwsfQNDWeIJUQESkDNCMi4qTs5+zE9X6NTj8/hRu5pLjU48hrnxE9KtrqaCIixUZFRMQJHV53iEPd7yL65BIAVta9iWZx02jdqKrFyUREipeWZkScTMJ/v6Ni+xDanlxCFp4svWsaYQe+popKiIiUQZoREXESp4+dZk3UI0Ruew+ARI+2uH8zmy49m1mcTETEcVRERJzAji82UOGu/kTmJAIQ0+ExOv36Am5ebhYnExFxLC3NiFjIfs5OTJ83CPpPGI1yEjnsUod1Ly0metXLKiEiUi5oRkTEIqmbDpN8zSCijy8EIKH2jTSO+Yi2zapbnExEpORoRkTEAqvH/YStdQjtjy/kDJWI6/cuHX//lmoqISJSzmhGRKQEnT11loSox4naNBWAHZVCcf1iNpE3trA4mYiINVRERErIrnlboF8/orK3ABDT9mHCf5uIu4+7xclERKyjpRkRBzN2Q+ytb1H/pvY0yd5Cqkst1jw/n+i1r6uEiEi5pxkREQc6ujWVvdfcQ1TqTwCsrnEDQb9Np33LmhYnExFxDg6dEYmLi6NXr17UrVsXm83Gt99+68jhRIrHwTWwcU7+P/+BNS8uxISE0DH1J87iTuzNb9L+8I/UUAkRESng0BmRrKwsQkNDueeee7jpppscOZRI8Vg8FuIn/+84YhRcO/6KPiI7PZsVXccQve4NAHa5t8TM+pyom1sVX04RkTLCoUWkZ8+e9OzZ05FDiBSfg2sKlxDIPw7uBf7ti/QRST9s49xt/Yk+uxGA2FbD6RjzMh5VPYo3q4hIGeFUm1Wzs7NJT08v9BApMcd3X9n5PzF2Q1z/96h7Yzuand3IMVt1Vj3zA1GbpqqEiIhcglMVkYkTJ+Lr61vwqF+/vtWRpDyp1vjKzv+/4zuOsapeXyI/H4oHZ1lT7TrsGzbT8bl/OyCkiEjZ4lRFZMyYMaSlpRU8Dhw4YHUkKU/82+fvCfmziIcvuSyz7pUl5LYIIezwd2TjRkzv12l7eD41Q2o7NquISBnhVD/fdXd3x91d11UQC107Pn9PyPHd+TMhFykhOZk5LL/maSJXv4oLhiS35pz75HOib29dsnlFREo5pyoiIk7Bv/0lZ0H2LtjBmZsHEH16LQCxLR6gQ+xreFb3LKmEIiJlhkOLSGZmJrt3/2+j3969e9mwYQNVq1YlICDAkUOLFDtjNyy7+yPafjKSypzmhK0qu574iKiJfayOJiJSatmMMcZRHx4TE0PXrl3POz9w4EBmzJhx2fenp6fj6+tLWloaPj4+DkgoUjQnk06wPeo+wn//BoB1Va6hzqJPqNO+nsXJRERKN4cWkX9KRUScwYbJMdR89E7q5h0klwrE3zCByO8ewaWCU+31FhEplbRHROQick/nEn/tOCKXT8QFw56KTcn+eDbRd7SzOpqISJmhIiJyAfuX7Caj9wCis1YBENf0XtrGTcarVmWLk4mIlC2aWxb5E2M3LBsyk6rd23BV1ipO2qqw4tGvidwxTSVERMQBNCMi8v/S9p9ia5cH6HzgCwA2+EZRc+GnhIfpCr8iIo6iGRERYNM7y8hoFEqnA19wDldirn2RVqlLqKsSIiLiUJoRkXLt3NlzLOvxPF3iXsAVO/srNCTjvdlEDw6zOpqISLmgIiLl1oG4vZz61wCiM1cAsKzRQELjphJY19viZCIi5YeWZqRcWj5sFr5RobTKXEEavix/6HM6756Bt0qIiEiJ0oyIlCvpB9PZFDmMzns/A2CTdwRV58+iU0SgxclERMonzYhIubH5gxWcatCazns/y9+Q2nU8LVJj8FcJERGxjGZEpMzLy8ljac8JdP51PBXI40CFIE69NYvo+ztZHU1EpNxTEZEy7fcVyRy7/g6i05cCsCxoAK1i36Z+gK/FyUREBLQ0I2XYilFf4NUphND0paTjTfwDn9J572f4qoSIiDgNzYhImZNxKIMNUSPosnsGAJu9rsb3h1lERDe0NpiIiJxHMyJSpmydvooTgW3osnsGebgQ0+UZmh+JI0AlRETEKWlGRMqEvJw8lt74ChELn6Ei5/jdtT7HJs8iengXq6OJiMglqIhIqZey+iCHr7uT6FMxACyvfxstYt+jXoMq1gYTEZHL0tKMlGorH/uGSmEhtDkVQyaVWXrPdML3zcFPJUREpFTQjIiUSlmpWayNHEXkjg8B2ObZHs9vZ9Pl2iaW5lqffJK9x7JoUL0ybQJUhkRELkdFREqdxFnrqHR3PyJzd2LHRtzVT9Bp8XjcvNwszTVpfiLvxe4pOH4gqiFP9gy2MJGIiPPT0oyUGvZzdmL+/SqN7riaBrk7SXGpx8bXlhC9YqLlJWR98slCJQTgvdg9rE8+aVEiEZHSQUVESoXD6w6xvlYPon96DDdyWVn3Jty3b6TN6K5WRwNg77GsKzovIiL5VETE6SU89T0V24fQ7sQvZOFJ3J0fEHbga6o2qWZ1tAINqle+ovMiIpJPRUSc1uljp4lrOZSwCb2pZo6T6NGGIz+vI/KTIdhcbFbHK6RNQBUeiCp80bShUQ21YVVE5DJsxhhjdYiLSU9Px9fXl7S0NHx8fKyOIyVox5cbqXBnPxrlJAIQ0/5Rwpe8gLuPu8XJLk2/mhERuTIqIuJU7OfsLL31Ta7+9gncyeGwSx1+f3Em7Z681upoIiLiAPr5rjiNo1uOsK/rIKKOLQAgoVYvGv32Ee2Ca1icTEREHEV7RMQprB73E4S0osOxBZyhEnH/eYeOh76jukqIiEiZphkRsdTZU2dJiHqcqE1TAdhRKQTXLz4n8sYWFicTEZGSoCIiltk1bwv060dU9hYAYtuMIuzXiVTyq2RxMhERKSlampESZ+yG2Fvfov5N7WmSvYWjtpqseX4+UeveUAkRESlnNCMiJepY4lH2RN9DVOqPAKyu0ZOgX6fT/qpaFicTERErlNsZkfXJJ5m77qDuBVKC1k5YiP2qVnRM/ZGzuBN785u0P/wTNZyphBxcAxvn5P9TREQcrlzOiOguqSUrOz2blV3HELXuDQB2ubfEzPqcqJtbWZzsLxaPhfjJ/zuOGAXXjrcqjYhIuVDuZkR0l9SSlfRjIvtqhRWUkNhWw/E/tJqmzlZCDq4pXEIg/1gzIyIiDlXuiojukloyjN0QN+B96vRqR7OzGzlmq86qZ34gatNUPKp6WB3vfMd3X9l5EREpFuVuaUZ3SXW84zuOsTv6XiIPfwfAmmrXUf+XGXRsXcfiZJdQrfGVnRcRkWJR7mZEdJdUx1r3yhJyWoQSdvg7snEj5sbXaHt4PrWcuYQA+LfP3xPyZxEP558XERGHKbc3vdNdUotXTmYOy7s9TeSqV3HBkOTWnNyZn9P8P62tjnZlDq7JX46p1lglRESkBJS7pZk/tAmoogJSTPYu3MmZm/oTfXotAHHB99M+7nU8q3tanOxv+KN8/LE3RGVERMShym0RkX/O2A3L7vmYtjNHUJnTnLBVZdcTHxE5sY/V0f4+/YRXRKRElbs9IlI8Tu09ycqA2+gy814qc5p1Va4he9UmwkpzCdFPeEVESlyJFJG3336boKAgKlWqRFhYGKtWrSqJYcVBNkyJ5XSTEMJ//5pcKhDT8yVapy6mTvt6Vkf7Z/QTXhGREufwIvLFF18wevRoxo4dy7p16wgNDaVHjx6kpqY6emgpZrmnc4mJeIqQUV2pm3eQvRWbsGvmCqJ/fhyXCmVgck0/4RURKXEO/9vj9ddfZ8iQIdx99920aNGC9957D09PTz7++GNHDy3FaP+S3eyo2Zno5RNwwRDXdDA1ktfR4q4ytJlTP+EVESlxDt2smpOTw9q1axkzZkzBORcXF7p3786KFSscOfQlJSfDd99ZNnzpYgz1f/uEbt8OJ5BMTtn8SHx4GpGv3WJ1Mse4djwE99JPeEVESohDi8ixY8fIy8ujVq3Cd1etVasW27dvP+/12dnZZGdnFxynp6c7JNf27TBihEM+ukzx5RTvMpQ+zAFgg28kNRd+RnhYfYuTOZh/exUQEZES4lQ/3504cSLjxzv+p5K1a8Pttzt8mFKt2dFlDF95BzVO7yfP5sqaXs/R/qsncHVztTqaiIiUIQ69smpOTg6enp58/fXX9OnTp+D8wIEDOXXqFN/9ZX3kQjMi9evXd8iVVeUizp2D55+HF14Aux0aNoTZsyEszOpkIiJSBjl0s6qbmxvt2rVjyZIlBefsdjtLliwhPDz8vNe7u7vj4+NT6CElaO9eiIyE557LLyEDB8KGDSohIiLiMA5fmhk9ejQDBw6kffv2dOzYkcmTJ5OVlcXdd9/t6KHlSsyeDUOHQno6+PjA++/Df/5jdSoRESnjHF5Ebr/9do4ePcqzzz7L4cOHad26NQsWLDhvA6tYJD0dhg2Dzz7LP46IyP/PQUGWxhIRkfKh3N59V4CVK6F///wlGRcXePZZeOopqOBUe5hFRKQM09845VFeHkyYAOPH5//noCCYNQs6dbI6mYiIlDMqIuVNcjLccQcsXZp/3L8/vPMO+Ppam0tERMqlMnCDECmyL7+EkJD8EuLtDZ9+mj8TohIiIiIW0YxIeZCZmX8p2enT84/DwvJ/JdOwobW5RESk3NOMSFm3ejW0aZNfQmw2ePrp/BkRlRAREXECmhEpq/Ly4JVX4Jln8q+WWr9+/s9yIyOtTiYiIlJARaQsOngQ7rwTYmLyj2+7Dd57D6pUsTSWiIjIX2lppqyZOzd/Q2pMDFSuDB9/DHPmqISIiIhT0oxIWZGVBQ8/DNOm5R+3b5+/IbVJE2tziYiIXIJmRMqCdeugXbv8EmKzwZNPQny8SoiIiDg9zYiUZnY7vPEGjBkDublQr17+tUG6di3WYdYnn2TvsSwaVK9MmwAt8YiISPFRESmtDh2CQYNg8eL8475982dEqlUr1mEmzU/kvdg9BccPRDXkyZ7BxTqGiIiUX1qaKY2+/z5/Q+rixeDpCR98AN98U+wlZH3yyUIlBOC92D2sTz5ZrOOIiEj5pSJSmpw+DQ8+CL17w/Hj+RcqW7sWhgzJ3xtSzPYey7qi8yIiIldKRaS02LQJOnSAd9/NP37kEVixApo3d9iQDapXvqLzIiIiV0pFxNkZA1Om5JeQbdugdm1YtAhefRXc3R06dJuAKjwQVfhS8EOjGmrDqoiIFBubMcZYHeJi0tPT8fX1JS0tDR8fH6vjlLwjR/I3pC5YkH/cqxd89BHUqFGiMfSrGRERcRQVEWf188/5JeToUahUCV5/HR54wCF7QURERKyin+86m7Nn4fHHYerU/OOQkPwrpLZsaW0uERERB9AeEWeyZQt07Pi/EjJyJCQkqISIiEiZpSLiDIyBt9/O35C6eTPUrJm/NDN5cv6yjIiISBmlpRmrHT0K99wDP/6Yf9yzJ0yfDrVqWZtLRESkBGhGxEqLFuXvAfnxx/yf4r75Jvz0k0qIiIiUG5oRsUJ2Nvz3v/m/hAFo0QI+/zy/lIiIiJQjKiIlLTER+veHDRvyj4cNg1deAQ8PS2OJiIhYQUszJcUYeP99aNcuv4RUr55/87q33lIJERGRckszIiXh+HG491749tv842uvhZkzoU4dS2OJiIhYTTMijrZkSf7ej2+/hYoV4bXX8i/ZrhIiIiKiGRGHycmBZ57J3/9hTP5dcmfPhjZtrE4mIiLiNFREHGHnzvwNqWvX5h/ff3/+L2Q8Pa3NJSIi4mS0NFOcjIGPP86f9Vi7FqpWhblz4b33VEJEREQuQDMixeXkSbjvPvj66/zjrl3h00+hXj1rc4mIiDgxzYgUh9jY/A2pX38NFSrApEmweLFKiIiIyGVoRuSfyM2FceNg4sT8ZZkmTfI3pLZvb3UyERGRUkFF5O9KSsrfkLpqVf7xPffAlCng5WVtLhERkVJESzNXyhj45BNo3Tq/hPj5wZdfwkcfqYSIiIhcIc2IXIm0NBg6NP8GdQCRkfkbUgMCrM0lIiJSSmlGpKji4yE0NL+EuLrCCy/Ar7+qhIiIiPwDmhG5nHPn8kvH88+D3Q4NG+ZvSA0LszqZiIhIqacicil798Idd8Dy5fnHd90FU6eCj4+1uURERMoILc1czOzZ+RtSly/PLx6zZ+ffMVclREREpNhoRuSv0tNh+PD8TagAnTrBrFkQFGRpLBERkbJIMyJ/tnJl/n1iPv0UXFzyL1YWG6sSIiIi4iAOKyIvvvginTp1wtPTEz8/P0cNUzzy8vI3pHbuDHv2QGAgxMXB2LH5l2wXERERh3BYEcnJyeHWW29l6NChjhqieCQn59+g7pln8gtJv36wcSNERFidTEREpMxz2L/ujx8/HoAZM2Y4aoh/7ssv4f774dSp/KuivvNO/q9kbDark4mIiJQLTrXukJ2dTXZ2dsFxenq6YwbKzIQRI2D69PzjsLD8DamNGjlmPBEREbkgp9qsOnHiRHx9fQse9evXd8xA06bllxCbDZ56CpYuVQkRERGxwBUVkSeffBKbzXbJx/bt2/92mDFjxpCWllbwOHDgwN/+rEt66CG4/Xb47bf8TaoVKzpmHBEREbmkK1qaeeSRRxg0aNAlX9OwYcO/Hcbd3R13d/e//f4iq1AB5sxx/DgiIiJySVdURGrUqEGNGjUclUVERETKGYdtVk1OTubEiRMkJyeTl5fHhg0bAGjcuDFeXl6OGlZERERKEZsxxjjigwcNGsTMmTPPO//bb78RHR1dpM9IT0/H19eXtLQ0fHSPFxERkTLHYUWkOKiIiIiIlG1O9fNdERERKV9URERERMQyKiIiIiJiGRURERERsYyKiIiIiFhGRUREREQsoyIiIiIillEREREREcuoiIiIiIhlHHavmeLwx0Vf09PTLU4iIiIiV8rb2xubzXbJ1zh1EcnIyACgfv36FicRERGRK1WUW7Q49b1m7HY7hw4dKlKjulLp6enUr1+fAwcO6D42l6Hvquj0XRWdvqui03d1ZfR9FZ2jv6tSPyPi4uKCv7+/Q8fw8fHR/1CLSN9V0em7Kjp9V0Wn7+rK6PsqOiu/K21WFREREcuoiIiIiIhlym0RcXd3Z+zYsbi7u1sdxenpuyo6fVdFp++q6PRdXRl9X0XnDN+VU29WFRERkbKt3M6IiIiIiPVURERERMQyKiIiIiJiGRURERERsYyKCPDiiy/SqVMnPD098fPzszqOU3n77bcJCgqiUqVKhIWFsWrVKqsjOaW4uDh69epF3bp1sdlsfPvtt1ZHcloTJ06kQ4cOeHt7U7NmTfr06cOOHTusjuWU3n33XUJCQgouNhUeHs78+fOtjlUqTJo0CZvNxqhRo6yO4nTGjRuHzWYr9GjevLlleVREgJycHG699VaGDh1qdRSn8sUXXzB69GjGjh3LunXrCA0NpUePHqSmplodzelkZWURGhrK22+/bXUUpxcbG8uwYcNYuXIlixcvJjc3l+uuu46srCyrozkdf39/Jk2axNq1a1mzZg3XXHMNvXv3ZuvWrVZHc2qrV6/m/fffJyQkxOooTqtly5akpKQUPJYtW2ZdGCMFpk+fbnx9fa2O4TQ6duxohg0bVnCcl5dn6tatayZOnGhhKucHmHnz5lkdo9RITU01gImNjbU6SqlQpUoV8+GHH1odw2llZGSYJk2amMWLF5uoqCgzcuRIqyM5nbFjx5rQ0FCrYxTQjIhcUE5ODmvXrqV79+4F51xcXOjevTsrVqywMJmUNWlpaQBUrVrV4iTOLS8vjzlz5pCVlUV4eLjVcZzWsGHD+Ne//lXo/3fJ+Xbt2kXdunVp2LAhAwYMIDk52bIsTn3TO7HOsWPHyMvLo1atWoXO16pVi+3bt1uUSsoau93OqFGjiIiI4KqrrrI6jlPavHkz4eHhnD17Fi8vL+bNm0eLFi2sjuWU5syZw7p161i9erXVUZxaWFgYM2bMoFmzZqSkpDB+/Hi6dOnCli1b8Pb2LvE8ZXZG5MknnzxvM85fH/oLVcRaw4YNY8uWLcyZM8fqKE6rWbNmbNiwgYSEBIYOHcrAgQPZtm2b1bGczoEDBxg5ciSzZs2iUqVKVsdxaj179uTWW28lJCSEHj168PPPP3Pq1Cm+/PJLS/KU2RmRRx55hEGDBl3yNQ0bNiyZMKVQ9erVcXV15ciRI4XOHzlyhNq1a1uUSsqS4cOH8+OPPxIXF4e/v7/VcZyWm5sbjRs3BqBdu3asXr2aKVOm8P7771uczLmsXbuW1NRU2rZtW3AuLy+PuLg43nrrLbKzs3F1dbUwofPy8/OjadOm7N6925Lxy2wRqVGjBjVq1LA6Rqnl5uZGu3btWLJkCX369AHyp9GXLFnC8OHDrQ0npZoxhoceeoh58+YRExNDgwYNrI5UqtjtdrKzs62O4XS6devG5s2bC527++67ad68OU888YRKyCVkZmaSlJTEnXfeacn4ZbaIXInk5GROnDhBcnIyeXl5bNiwAYDGjRvj5eVlbTgLjR49moEDB9K+fXs6duzI5MmTycrK4u6777Y6mtPJzMws9G8Te/fuZcOGDVStWpWAgAALkzmfYcOGMXv2bL777ju8vb05fPgwAL6+vnh4eFiczrmMGTOGnj17EhAQQEZGBrNnzyYmJoaFCxdaHc3peHt7n7fPqHLlylSrVk37j/7i0UcfpVevXgQGBnLo0CHGjh2Lq6sr/fr1syaQ1T/bcQYDBw40wHmP3377zepolps6daoJCAgwbm5upmPHjmblypVWR3JKv/322wX/NzRw4ECrozmdC31PgJk+fbrV0ZzOPffcYwIDA42bm5upUaOG6datm1m0aJHVsUoN/Xz3wm6//XZTp04d4+bmZurVq2duv/12s3v3bsvy2IwxpuTrj4iIiEgZ/tWMiIiIOD8VEREREbGMioiIiIhYRkVERERELKMiIiIiIpZRERERERHLqIiIiIiIZVRERERExDIqIiIiImIZFRERERGxjIqIiIiIWEZFRERERCzzf3+mSb/vxuOEAAAAAElFTkSuQmCC" - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "# running a new cycle taking into account the seed data and model\n", - "# TODO: need to find a way to incorporate the seed data into the cycle\n", - "cycle = Cycle(\n", - " metadata=study_metadata,\n", - " theorist=bms_theorist,\n", - " experimentalist=popper_experimentalist,\n", - " experiment_runner=synthetic_experiment_runner,\n", - ")\n", - "cycle.run(num_cycles=1)\n", - "\n", - "# plot output of architecture search\n", - "all_obs = np.row_stack(seed_cycle.data.observations)\n", - "x_obs, y_obs = all_obs[:, 0], all_obs[:, 1]\n", - "plt.scatter(x_obs, y_obs, s=10, label=\"seed data\")\n", - "\n", - "all_obs = np.row_stack(cycle.data.observations)\n", - "x_obs, y_obs = all_obs[:, 0], all_obs[:, 1]\n", - "plt.scatter(x_obs, y_obs, s=10, label=\"collected data\")\n", - "\n", - "x_pred = np.array(study_metadata.independent_variables[0].allowed_values).reshape(\n", - " ground_truth_resolution, 1\n", - ")\n", - "y_pred_seed = seed_cycle.data.theories[0].predict(x_pred)\n", - "y_pred_final = cycle.data.theories[0].predict(x_pred)\n", - "plt.plot(x_pred, y_pred_seed, color=\"blue\", label=\"seed model\")\n", - "plt.plot(x_pred, y_pred_final, color=\"red\", label=\"final model\")\n", - "plt.legend()\n", - "plt.show()\n" - ], - "metadata": { - "collapsed": false - } - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 3", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 2 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython2", - "version": "2.7.6" - } - }, - "nbformat": 4, - "nbformat_minor": 0 -} diff --git a/docs/cycle/simple_cycle_uncertainty_experimentalist.ipynb b/docs/cycle/simple_cycle_uncertainty_experimentalist.ipynb deleted file mode 100644 index 7fc16de7b..000000000 --- a/docs/cycle/simple_cycle_uncertainty_experimentalist.ipynb +++ /dev/null @@ -1,350 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "source": [ - "# Simple Cycle Examples with Uncertainty vs. Random Experimentalist\n", - "The aim of this example notebook is to use the AutoRA `Cycle` to recover a ground truth theory from some noisy data using BSM.\n", - "It comparse the default \"random\" experimentalist with the \"uncertainty\" sampler." - ], - "metadata": { - "collapsed": false - } - }, - { - "cell_type": "code", - "execution_count": null, - "outputs": [], - "source": [ - "# Uncomment the following line when running on Google Colab\n", - "# !pip install autora" - ], - "metadata": { - "collapsed": false - } - }, - { - "cell_type": "code", - "execution_count": null, - "outputs": [], - "source": [ - "import matplotlib.pyplot as plt\n", - "import numpy as np\n", - "from sklearn.dummy import DummyRegressor\n", - "\n", - "from autora.cycle import Cycle\n", - "from autora.experimentalist.sampler import random_sampler, poppernet_pooler, nearest_values_sampler\n", - "from autora.experimentalist.pipeline import make_pipeline\n", - "from autora.variable import VariableCollection, Variable" - ], - "metadata": { - "collapsed": false - } - }, - { - "cell_type": "code", - "execution_count": null, - "outputs": [], - "source": [ - "def ground_truth(xs):\n", - " oscillating_component = np.sin((4. * xs) - 3.)\n", - " parabolic_component = (-0.1 * xs ** 2.) + (2.5 * xs) + 1.\n", - " ys = oscillating_component + parabolic_component\n", - " return ys" - ], - "metadata": { - "collapsed": false - } - }, - { - "cell_type": "markdown", - "source": [ - "The space of allowed x values is reals between -10 and 10 inclusive. We discretize them as we don't currently have a sampler which can sample from the uniform distribution." - ], - "metadata": { - "collapsed": false - } - }, - { - "cell_type": "code", - "execution_count": null, - "outputs": [], - "source": [ - "study_metadata = VariableCollection(\n", - " independent_variables=[Variable(name=\"x1\", allowed_values=np.linspace(-10, 10, 500))],\n", - " dependent_variables=[Variable(name=\"y\")],\n", - " )" - ], - "metadata": { - "collapsed": false - } - }, - { - "cell_type": "markdown", - "source": [ - "So that we can compare the effectiveness of the two strategies, we fix the number of observations per cycle to be 100." - ], - "metadata": { - "collapsed": false - } - }, - { - "cell_type": "code", - "execution_count": null, - "outputs": [], - "source": [ - "observations_per_cycle = 100" - ], - "metadata": { - "collapsed": false - } - }, - { - "cell_type": "markdown", - "source": [ - "When we run a synthetic experiment, we get a reproducible noisy result:" - ], - "metadata": { - "collapsed": false - } - }, - { - "cell_type": "code", - "execution_count": null, - "outputs": [], - "source": [ - "import numpy as np\n", - "\n", - "def get_example_synthetic_experiment_runner():\n", - " rng = np.random.default_rng(seed=180)\n", - " def runner(xs):\n", - " return ground_truth(xs) + rng.normal(0, 1.0, xs.shape)\n", - " return runner\n", - "\n", - "example_synthetic_experiment_runner = get_example_synthetic_experiment_runner()\n", - "x = np.array([1.])\n", - "example_synthetic_experiment_runner(x)" - ], - "metadata": { - "collapsed": false - } - }, - { - "cell_type": "code", - "execution_count": null, - "outputs": [], - "source": [ - "plt.scatter(study_metadata.independent_variables[0].allowed_values[::5,], example_synthetic_experiment_runner(study_metadata.independent_variables[0].allowed_values[::5,]), alpha=1, s=0.1, c='r', label=\"samples\")\n", - "plt.plot(study_metadata.independent_variables[0].allowed_values, ground_truth(study_metadata.independent_variables[0].allowed_values), c=\"black\", label=\"ground truth\")\n", - "plt.legend()" - ], - "metadata": { - "collapsed": false - } - }, - { - "cell_type": "markdown", - "source": [ - "We use a common BMS regressor with a common parametrization to test the two methods." - ], - "metadata": { - "collapsed": false - } - }, - { - "cell_type": "code", - "execution_count": null, - "outputs": [], - "source": [ - "from autora.skl.bms import BMSRegressor\n", - "bms_theorist = BMSRegressor(epochs=100)" - ], - "metadata": { - "collapsed": false - } - }, - { - "cell_type": "markdown", - "source": [ - "We also define a helper function to plot the results" - ], - "metadata": { - "collapsed": false - } - }, - { - "cell_type": "code", - "execution_count": null, - "outputs": [], - "source": [ - "def run_and_plot_cycle(cycle, study_metadata):\n", - " cycle.run(num_cycles=1)\n", - "\n", - " all_obs = np.row_stack(cycle.data.observations)\n", - " x_obs, y_obs = all_obs[:,0], all_obs[:,1]\n", - " x_obs_new, y_obs_new = cycle.data.observations[-1][:,0], cycle.data.observations[-1][:,1]\n", - "\n", - " x_pred = np.array(study_metadata.independent_variables[0].allowed_values).reshape(-1, 1)\n", - " y_pred = cycle.data.theories[-1].predict(x_pred)\n", - "\n", - " plt.plot(study_metadata.independent_variables[0].allowed_values, ground_truth(study_metadata.independent_variables[0].allowed_values), c=\"black\", label=\"ground truth\")\n", - " plt.scatter(x_obs, y_obs, s=1, c='r', label=\"samples\")\n", - " plt.scatter(x_obs_new, y_obs_new, s=1, c='green', facecolors=\"none\", label=\"new samples\")\n", - " plt.plot(x_pred, y_pred, c=\"blue\", label=\"theorist result\")\n", - "\n", - " plt.legend()\n", - "\n", - " plt.show()" - ], - "metadata": { - "collapsed": false - } - }, - { - "cell_type": "markdown", - "source": [ - "## Random Sampler" - ], - "metadata": { - "collapsed": false - } - }, - { - "cell_type": "code", - "execution_count": null, - "outputs": [], - "source": [ - "random_experimentalist = make_pipeline(\n", - " [study_metadata.independent_variables[0].allowed_values, random_sampler],\n", - " params={\"random_sampler\": {\"n\": observations_per_cycle}}\n", - ")\n", - "random_experimentalist_cycle = Cycle(\n", - " metadata=study_metadata,\n", - " theorist=bms_theorist,\n", - " experimentalist=random_experimentalist,\n", - " experiment_runner=example_synthetic_experiment_runner\n", - ")\n", - "\n", - "for _ in range(10):\n", - " run_and_plot_cycle(cycle=random_experimentalist_cycle, study_metadata=study_metadata)" - ], - "metadata": { - "collapsed": false - } - }, - { - "cell_type": "markdown", - "source": [ - "## Popper Sampler" - ], - "metadata": { - "collapsed": false - } - }, - { - "cell_type": "code", - "execution_count": null, - "outputs": [], - "source": [ - "poppernet_experimentalist = make_pipeline(\n", - " [poppernet_pooler, nearest_values_sampler],\n", - ")\n", - "\n", - "poppernet_experimentalist_cycle = Cycle(\n", - " metadata=study_metadata,\n", - " theorist=bms_theorist,\n", - " experimentalist=poppernet_experimentalist,\n", - " experiment_runner=example_synthetic_experiment_runner,\n", - " params={\"experimentalist\" : {\n", - " \"poppernet_pooler\": {\n", - " \"model\": \"%theories[-1]%\",\n", - " \"x_train\": \"%observations.ivs%\",\n", - " \"y_train\": \"%observations.dvs%\",\n", - " \"metadata\": study_metadata,\n", - " \"num_samples\": observations_per_cycle,\n", - " },\n", - " \"nearest_values_sampler\": {\n", - " \"allowed_values\": study_metadata.independent_variables[0].allowed_values\n", - " }\n", - " }\n", - " }\n", - " )" - ], - "metadata": { - "collapsed": false - } - }, - { - "cell_type": "markdown", - "source": [ - "The Popper sampler depends on having a first guess for the theory, so we add an appropriate model and an initial datapoint to the cycle's data:" - ], - "metadata": { - "collapsed": false - } - }, - { - "cell_type": "code", - "execution_count": null, - "outputs": [], - "source": [ - "# Experimentalist\n", - "x_seed = np.linspace(-10, 10, 20)\n", - "\n", - "# Experiment runner\n", - "y_seed = example_synthetic_experiment_runner(x_seed)\n", - "poppernet_experimentalist_cycle.data.observations.append(np.column_stack([x_seed, y_seed]))\n", - "\n", - "# Theorist\n", - "theory_seed = DummyRegressor(strategy=\"constant\", constant=y_seed[1])\n", - "theory_seed.fit(x_seed, y_seed)\n", - "poppernet_experimentalist_cycle.data.theories.append(theory_seed)" - ], - "metadata": { - "collapsed": false - } - }, - { - "cell_type": "markdown", - "source": [ - "Now we can run the cycle and check the results." - ], - "metadata": { - "collapsed": false - } - }, - { - "cell_type": "code", - "execution_count": null, - "outputs": [], - "source": [ - "for _ in range(10):\n", - " run_and_plot_cycle(cycle=poppernet_experimentalist_cycle, study_metadata=study_metadata)\n" - ], - "metadata": { - "collapsed": false - } - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 3", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 2 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython2", - "version": "2.7.6" - } - }, - "nbformat": 4, - "nbformat_minor": 0 -} diff --git a/docs/pipeline/Experimentalist Pipeline Examples.ipynb b/docs/pipeline/Experimentalist Pipeline Examples.ipynb deleted file mode 100644 index 71f367052..000000000 --- a/docs/pipeline/Experimentalist Pipeline Examples.ipynb +++ /dev/null @@ -1,311 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "source": [ - "# Introduction\n", - "This notebook demonstrates the use of the `Pipeline` class to create Experimentalists. Experimentalists consist of two main components:\n", - "1. Condition Generation - Creating combinations of independent variables to test\n", - "2. Experimental Design - Ensuring conditions meet design constraints.\n", - "\n", - "The `Pipeline` class allows us to define a series of functions to generate and process a pool of conditions that conform to an experimental design." - ], - "metadata": { - "collapsed": false - } - }, - { - "cell_type": "code", - "execution_count": 2, - "outputs": [], - "source": [ - "# Uncomment the following line when running on Google Colab\n", - "# !pip install autora" - ], - "metadata": { - "collapsed": false - } - }, - { - "cell_type": "code", - "execution_count": 3, - "outputs": [], - "source": [ - "import numpy as np\n", - "\n", - "from autora.variable import DV, IV, ValueType, VariableCollection\n", - "from autora.experimentalist.pipeline import Pipeline\n", - "from autora.experimentalist.pooler import grid_pool\n", - "from autora.experimentalist.filter import weber_filter\n", - "from autora.experimentalist.sampler import random_sampler" - ], - "metadata": { - "collapsed": false - } - }, - { - "cell_type": "markdown", - "source": [ - "## Implementation\n", - "\n", - "The `Pipeline` class consists of a series of steps:\n", - "1. One or no \"pool\" steps which generate experimental conditions,\n", - "2. An arbitrary number of steps to apply to the pool. Examples of steps may be:\n", - " - samplers\n", - " - conditional filters\n", - " - sequencers" - ], - "metadata": { - "collapsed": false - } - }, - { - "cell_type": "markdown", - "source": [ - "## Example 1: Exhaustive Pool with Random Sampler\n", - "The examples in this notebook will create a Weber line-lengths experiment. The Weber experiment tests human detection of differences between the lengths of two lines. The first example will sample a pool with simple random sampling. We will first define the independent and dependent variables (IVs and DVs, respectively).\n" - ], - "metadata": { - "collapsed": false - } - }, - { - "cell_type": "code", - "execution_count": 4, - "outputs": [], - "source": [ - "# Specifying Dependent and Independent Variables\n", - "# Specify independent variables\n", - "iv1 = IV(\n", - " name=\"S1\",\n", - " allowed_values=np.linspace(0, 5, 5),\n", - " units=\"intensity\",\n", - " variable_label=\"Stimulus 1 Intensity\",\n", - ")\n", - "\n", - "iv2 = IV(\n", - " name=\"S2\",\n", - " allowed_values=np.linspace(0, 5, 5),\n", - " units=\"intensity\",\n", - " variable_label=\"Stimulus 2 Intensity\",\n", - ")\n", - "\n", - "# The experimentalist pipeline doesn't actually use DVs, they are just specified here for\n", - "# example.\n", - "dv1 = DV(\n", - " name=\"difference_detected\",\n", - " value_range=(0, 1),\n", - " units=\"probability\",\n", - " variable_label=\"P(difference detected)\",\n", - " type=ValueType.PROBABILITY,\n", - ")\n", - "\n", - "# Variable collection with ivs and dvs\n", - "metadata = VariableCollection(\n", - " independent_variables=[iv1, iv2],\n", - " dependent_variables=[dv1],\n", - ")" - ], - "metadata": { - "collapsed": false - } - }, - { - "cell_type": "markdown", - "source": [ - "Next we set up the `Pipeline` with three functions:\n", - "1. `grid_pool` - Generates an exhaustive pool of condition combinations using the Cartesian product of discrete IV values.\n", - " - The discrete IV values are specified with the `allowed_values` attribute when defining the IVs.\n", - "2. `weber_filer` - Filter that selects the experimental design constraint where IV1 <= IV2.\n", - "3. `random_sampler` - Samples the pool of conditions\n", - "\n", - "Functions that require keyword inputs are initialized using the `partial` function before passing into `PoolPipeline`." - ], - "metadata": { - "collapsed": false - } - }, - { - "cell_type": "code", - "execution_count": 5, - "outputs": [ - { - "data": { - "text/plain": "Pipeline(steps=[('grid_pool', ), ('weber_filer', ), ('random_sampler', )], params={'grid_pool': {'ivs': [IV(name='S1', value_range=None, allowed_values=array([0. , 1.25, 2.5 , 3.75, 5. ]), units='intensity', type=, variable_label='Stimulus 1 Intensity', rescale=1, is_covariate=False), IV(name='S2', value_range=None, allowed_values=array([0. , 1.25, 2.5 , 3.75, 5. ]), units='intensity', type=, variable_label='Stimulus 2 Intensity', rescale=1, is_covariate=False)]}, 'random_sampler': {'n': 10}})" - }, - "execution_count": 5, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "## Set up pipeline functions with the partial function\n", - "# Random Sampler\n", - "\n", - "# Initialize the pipeline\n", - "pipeline_random_samp = Pipeline([\n", - " (\"grid_pool\", grid_pool),\n", - " (\"weber_filer\", weber_filter), # Filter that selects conditions with IV1 <= IV2\n", - " (\"random_sampler\", random_sampler)\n", - "],\n", - " {\"grid_pool\": {\"ivs\": metadata.independent_variables}, \"random_sampler\": {\"n\": 10}}\n", - ")\n", - "pipeline_random_samp" - ], - "metadata": { - "collapsed": false - } - }, - { - "cell_type": "markdown", - "source": [ - "The pipleine can be run by calling the `run` method.\n", - "\n", - "The pipeline is run twice below to illustrate that random sampling is performed. Rerunning the cell will produce different results.\n" - ], - "metadata": { - "collapsed": false - } - }, - { - "cell_type": "code", - "execution_count": 6, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Sampled Conditions:\n", - " Run 1: [(3.75, 3.75), (0.0, 3.75), (2.5, 5.0), (3.75, 5.0), (1.25, 1.25), (2.5, 3.75), (2.5, 2.5), (1.25, 3.75), (1.25, 2.5), (0.0, 0.0)]\n", - " Run 2: [(1.25, 5.0), (0.0, 5.0), (5.0, 5.0), (0.0, 1.25), (1.25, 2.5), (2.5, 2.5), (1.25, 3.75), (3.75, 3.75), (2.5, 3.75), (0.0, 0.0)]\n" - ] - } - ], - "source": [ - "# Run the Pipeline\n", - "results1 = pipeline_random_samp.run()\n", - "results2 = pipeline_random_samp.run()\n", - "print('Sampled Conditions:')\n", - "print(f' Run 1: {results1}\\n',\n", - " f'Run 2: {results2}')" - ], - "metadata": { - "collapsed": false - } - }, - { - "cell_type": "markdown", - "source": [ - "An alternative method of passing an instantiated pool iterator is demonstrated below. Note the difference where `grid_pool` is not initialized using the `partial` function but instantiated before initializing the `Pipeline`. `grid_pool` returns an iterator of the exhaustive pool. This will result in unexpected behavior when the Pipeline is run multiple times." - ], - "metadata": { - "collapsed": false - } - }, - { - "cell_type": "code", - "execution_count": 7, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Sampled Conditions:\n", - " Run 1: [(1.25, 2.5), (0.0, 2.5), (3.75, 5.0), (0.0, 3.75), (0.0, 0.0), (0.0, 1.25), (2.5, 2.5), (1.25, 1.25), (3.75, 3.75), (1.25, 3.75)]\n", - " Run 2: []\n" - ] - } - ], - "source": [ - "## Set up pipeline functions with the partial function\n", - "# Pool Function\n", - "pooler_iterator = grid_pool(metadata.independent_variables)\n", - "\n", - "# Initialize the pipeline\n", - "pipeline_random_samp2 = Pipeline(\n", - " [\n", - " (\"pool (iterator)\", pooler_iterator),\n", - " (\"filter\",weber_filter), # Filter that selects conditions with IV1 <= IV2\n", - " (\"sampler\", random_sampler) # Sampler defined in the first implementation example\n", - " ],\n", - " {\"sampler\": {\"n\": 10}}\n", - ")\n", - "# Run the Pipeline\n", - "results1 = pipeline_random_samp2.run()\n", - "results2 = pipeline_random_samp2.run()\n", - "print('Sampled Conditions:')\n", - "print(f' Run 1: {results1}\\n',\n", - " f'Run 2: {results2}')" - ], - "metadata": { - "collapsed": false - } - }, - { - "cell_type": "markdown", - "source": [ - "Running the pipeline multiple times results in an empty list. This is because the iterator is exhausted after first run and no longer yields results. If the pipeline needs to be run multiple times, initializing the functions as a callable using the `partial` function is recommended because the iterator will be initialized at the start of each run." - ], - "metadata": { - "collapsed": false - } - }, - { - "cell_type": "markdown", - "source": [ - "You could also use the scikit-learn \"__\" syntax to pass parameter sets into the pipeline:" - ], - "metadata": { - "collapsed": false - } - }, - { - "cell_type": "code", - "execution_count": 8, - "outputs": [ - { - "data": { - "text/plain": "Pipeline(steps=[('grid_pool', ), ('weber_filer', ), ('random_sampler', )], params={'grid_pool__ivs': [IV(name='S1', value_range=None, allowed_values=array([0. , 1.25, 2.5 , 3.75, 5. ]), units='intensity', type=, variable_label='Stimulus 1 Intensity', rescale=1, is_covariate=False), IV(name='S2', value_range=None, allowed_values=array([0. , 1.25, 2.5 , 3.75, 5. ]), units='intensity', type=, variable_label='Stimulus 2 Intensity', rescale=1, is_covariate=False)], 'random_sampler__n': 10})" - }, - "execution_count": 8, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "pipeline_random_samp = Pipeline([\n", - " (\"grid_pool\", grid_pool),\n", - " (\"weber_filer\", weber_filter), # Filter that selects conditions with IV1 <= IV2\n", - " (\"random_sampler\", random_sampler)\n", - "],\n", - " {\"grid_pool__ivs\": metadata.independent_variables, \"random_sampler__n\": 10}\n", - ")\n", - "pipeline_random_samp\n" - ], - "metadata": { - "collapsed": false - } - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 3", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 2 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython2", - "version": "2.7.6" - } - }, - "nbformat": 4, - "nbformat_minor": 0 -} diff --git a/docs/synthetic/inventory.ipynb b/docs/synthetic/inventory.ipynb deleted file mode 100644 index 54be9ee17..000000000 --- a/docs/synthetic/inventory.ipynb +++ /dev/null @@ -1,68 +0,0 @@ -{ - "cells": [ - { - "cell_type": "code", - "execution_count": null, - "outputs": [], - "source": [ - "# Uncomment the following line when running on Google Colab\n", - "# !pip install autora" - ], - "metadata": { - "collapsed": false - } - }, - { - "cell_type": "code", - "execution_count": null, - "outputs": [], - "source": [ - "from autora.synthetic import retrieve, Inventory\n", - "from sklearn.linear_model import LinearRegression" - ], - "metadata": { - "collapsed": false - } - }, - { - "cell_type": "code", - "execution_count": null, - "outputs": [], - "source": [ - "for id in Inventory.keys():\n", - " s = retrieve(id)\n", - " print(s)\n", - " X = s.domain()\n", - " y_exp = s.experiment_runner(X)\n", - " y_gt = s.ground_truth(X)\n", - " s.plotter() # without model\n", - " fitter = LinearRegression().fit(X, y_exp)\n", - " s.plotter(fitter)\n" - ], - "metadata": { - "collapsed": false - } - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 3", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 2 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython2", - "version": "2.7.6" - } - }, - "nbformat": 4, - "nbformat_minor": 0 -} diff --git a/docs/theorist/bms/example.ipynb b/docs/theorist/bms/example.ipynb deleted file mode 100644 index b297a26bd..000000000 --- a/docs/theorist/bms/example.ipynb +++ /dev/null @@ -1,210 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "source": [ - "# Bayesian Machine Scientist" - ], - "metadata": { - "collapsed": false - } - }, - { - "cell_type": "markdown", - "source": [ - "## Example" - ], - "metadata": { - "collapsed": false - } - }, - { - "cell_type": "code", - "execution_count": null, - "outputs": [], - "source": [ - "# Uncomment the following line when running on Google Colab\n", - "# !pip install autora" - ], - "metadata": { - "collapsed": false - } - }, - { - "cell_type": "markdown", - "source": [ - "Let's generate a simple data set with two features $x_1, x_2 \\in [0, 1]$ and a target $y$. We will use the following generative model:\n", - "$y = 2 x_1 - e^{(5 x_2)}$" - ], - "metadata": { - "collapsed": false - } - }, - { - "cell_type": "code", - "execution_count": 7, - "outputs": [], - "source": [ - "import numpy as np\n", - "\n", - "x_1 = np.linspace(0, 1, num=10)\n", - "x_2 = np.linspace(0, 1, num=10)\n", - "X = np.array(np.meshgrid(x_1, x_2)).T.reshape(-1,2)\n", - "\n", - "y = 2 * X[:,0] + np.exp(5 * X[:,1])" - ], - "metadata": { - "collapsed": false - } - }, - { - "cell_type": "markdown", - "source": [ - "Now let us choose a prior over the primitives. In this case, we will use priors determined by Guimerà et al (2020).\n" - ], - "metadata": { - "collapsed": false - } - }, - { - "cell_type": "code", - "execution_count": 8, - "outputs": [], - "source": [ - "prior = \"Guimera2020\"" - ], - "metadata": { - "collapsed": false - } - }, - { - "cell_type": "markdown", - "source": [ - "## Set up the BMS Regressor\n", - "\n", - "We will use the BMS Regressor to predict the outcomes. There are a number of parameters that determine how the architecture search is performed. The most important ones are listed below:\n", - "\n", - "- **`epochs`**: The number of epochs to run BMS. This corresponds to the total number of equation mutations - one mcmc step for each parallel-tempered equation and one tree swap between a pair of parallel-tempered equations.\n", - "- **`prior_par`**: A dictionary of priors for each operation. The keys correspond to operations and the respective values correspond to prior probabilities of those operations. The model comes with a default.\n", - "- **`ts`**: A list of temperature values. The machine scientist creates an equation tree for each of these values. Higher temperature trees are harder to fit, and thus they help prevent overfitting of the model.\n", - "\n", - "\n", - "Let's use the same priors over primitives that we specified on the previous page as well as an illustrative set of temperatures to set up the BMS regressor with default parameters.\n" - ], - "metadata": { - "collapsed": false - } - }, - { - "cell_type": "code", - "execution_count": 9, - "outputs": [], - "source": [ - "from autora.skl.bms import BMSRegressor\n", - "\n", - "temperatures = [1.0] + [1.04**k for k in range(1, 20)]\n", - "\n", - "primitives = {\n", - " \"Psychology\": {\n", - " \"addition\": 5.8,\n", - " \"subtraction\": 4.3,\n", - " \"multiplication\": 5.0,\n", - " \"division\": 5.5,\n", - " }\n", - "}\n", - "\n", - "bms_estimator = BMSRegressor(\n", - " epochs=1500,\n", - " prior_par=primitives,\n", - " ts=temperatures,\n", - ")" - ], - "metadata": { - "collapsed": false - } - }, - { - "cell_type": "markdown", - "source": [ - "Now we have everything to fit and verify the model." - ], - "metadata": { - "collapsed": false - } - }, - { - "cell_type": "code", - "execution_count": 10, - "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "INFO:autora.skl.bms:BMS fitting started\n", - " 0%| | 0/1500 [00:00 1\u001B[0m \u001B[43mbms_estimator\u001B[49m\u001B[38;5;241;43m.\u001B[39;49m\u001B[43mfit\u001B[49m\u001B[43m(\u001B[49m\u001B[43mX\u001B[49m\u001B[43m,\u001B[49m\u001B[43my\u001B[49m\u001B[43m)\u001B[49m\n\u001B[1;32m 2\u001B[0m bms_estimator\u001B[38;5;241m.\u001B[39mpredict(X)\n", - "File \u001B[0;32m~/Developer/autora/autora/skl/bms.py:133\u001B[0m, in \u001B[0;36mBMSRegressor.fit\u001B[0;34m(self, X, y, num_param, root, custom_ops, seed)\u001B[0m\n\u001B[1;32m 120\u001B[0m \u001B[38;5;28mself\u001B[39m\u001B[38;5;241m.\u001B[39madd_primitive(root)\n\u001B[1;32m 121\u001B[0m \u001B[38;5;28mself\u001B[39m\u001B[38;5;241m.\u001B[39mpms \u001B[38;5;241m=\u001B[39m Parallel(\n\u001B[1;32m 122\u001B[0m Ts\u001B[38;5;241m=\u001B[39m\u001B[38;5;28mself\u001B[39m\u001B[38;5;241m.\u001B[39mts,\n\u001B[1;32m 123\u001B[0m variables\u001B[38;5;241m=\u001B[39m\u001B[38;5;28mself\u001B[39m\u001B[38;5;241m.\u001B[39mvariables,\n\u001B[0;32m (...)\u001B[0m\n\u001B[1;32m 131\u001B[0m seed\u001B[38;5;241m=\u001B[39mseed,\n\u001B[1;32m 132\u001B[0m )\n\u001B[0;32m--> 133\u001B[0m \u001B[38;5;28mself\u001B[39m\u001B[38;5;241m.\u001B[39mmodel_, \u001B[38;5;28mself\u001B[39m\u001B[38;5;241m.\u001B[39mloss_, \u001B[38;5;28mself\u001B[39m\u001B[38;5;241m.\u001B[39mcache_ \u001B[38;5;241m=\u001B[39m \u001B[43mutils\u001B[49m\u001B[38;5;241;43m.\u001B[39;49m\u001B[43mrun\u001B[49m\u001B[43m(\u001B[49m\u001B[38;5;28;43mself\u001B[39;49m\u001B[38;5;241;43m.\u001B[39;49m\u001B[43mpms\u001B[49m\u001B[43m,\u001B[49m\u001B[43m \u001B[49m\u001B[38;5;28;43mself\u001B[39;49m\u001B[38;5;241;43m.\u001B[39;49m\u001B[43mepochs\u001B[49m\u001B[43m)\u001B[49m\n\u001B[1;32m 134\u001B[0m \u001B[38;5;28mself\u001B[39m\u001B[38;5;241m.\u001B[39mmodels_ \u001B[38;5;241m=\u001B[39m \u001B[38;5;28mlist\u001B[39m(\u001B[38;5;28mself\u001B[39m\u001B[38;5;241m.\u001B[39mpms\u001B[38;5;241m.\u001B[39mtrees\u001B[38;5;241m.\u001B[39mvalues())\n\u001B[1;32m 136\u001B[0m _logger\u001B[38;5;241m.\u001B[39minfo(\u001B[38;5;124m\"\u001B[39m\u001B[38;5;124mBMS fitting finished\u001B[39m\u001B[38;5;124m\"\u001B[39m)\n", - "File \u001B[0;32m~/Developer/autora/autora/theorist/bms/utils.py:35\u001B[0m, in \u001B[0;36mrun\u001B[0;34m(pms, num_steps, thinning)\u001B[0m\n\u001B[1;32m 33\u001B[0m desc_len, model, model_len \u001B[38;5;241m=\u001B[39m [], pms\u001B[38;5;241m.\u001B[39mt1, np\u001B[38;5;241m.\u001B[39minf\n\u001B[1;32m 34\u001B[0m \u001B[38;5;28;01mfor\u001B[39;00m n \u001B[38;5;129;01min\u001B[39;00m tqdm(\u001B[38;5;28mrange\u001B[39m(num_steps)):\n\u001B[0;32m---> 35\u001B[0m \u001B[43mpms\u001B[49m\u001B[38;5;241;43m.\u001B[39;49m\u001B[43mmcmc_step\u001B[49m\u001B[43m(\u001B[49m\u001B[43m)\u001B[49m\n\u001B[1;32m 36\u001B[0m pms\u001B[38;5;241m.\u001B[39mtree_swap()\n\u001B[1;32m 37\u001B[0m \u001B[38;5;28;01mif\u001B[39;00m num_steps \u001B[38;5;241m%\u001B[39m thinning \u001B[38;5;241m==\u001B[39m \u001B[38;5;241m0\u001B[39m: \u001B[38;5;66;03m# sample less often if we thin more\u001B[39;00m\n", - "File \u001B[0;32m~/Developer/autora/autora/theorist/bms/parallel.py:102\u001B[0m, in \u001B[0;36mParallel.mcmc_step\u001B[0;34m(self, verbose, p_rr, p_long)\u001B[0m\n\u001B[1;32m 99\u001B[0m p_rr \u001B[38;5;241m=\u001B[39m \u001B[38;5;241m0.0\u001B[39m\n\u001B[1;32m 100\u001B[0m \u001B[38;5;28;01mfor\u001B[39;00m T, tree \u001B[38;5;129;01min\u001B[39;00m \u001B[38;5;28mlist\u001B[39m(\u001B[38;5;28mself\u001B[39m\u001B[38;5;241m.\u001B[39mtrees\u001B[38;5;241m.\u001B[39mitems()):\n\u001B[1;32m 101\u001B[0m \u001B[38;5;66;03m# MCMC step\u001B[39;00m\n\u001B[0;32m--> 102\u001B[0m \u001B[43mtree\u001B[49m\u001B[38;5;241;43m.\u001B[39;49m\u001B[43mmcmc_step\u001B[49m\u001B[43m(\u001B[49m\u001B[43mverbose\u001B[49m\u001B[38;5;241;43m=\u001B[39;49m\u001B[43mverbose\u001B[49m\u001B[43m,\u001B[49m\u001B[43m \u001B[49m\u001B[43mp_rr\u001B[49m\u001B[38;5;241;43m=\u001B[39;49m\u001B[43mp_rr\u001B[49m\u001B[43m,\u001B[49m\u001B[43m \u001B[49m\u001B[43mp_long\u001B[49m\u001B[38;5;241;43m=\u001B[39;49m\u001B[43mp_long\u001B[49m\u001B[43m)\u001B[49m\n\u001B[1;32m 103\u001B[0m \u001B[38;5;28mself\u001B[39m\u001B[38;5;241m.\u001B[39mt1 \u001B[38;5;241m=\u001B[39m \u001B[38;5;28mself\u001B[39m\u001B[38;5;241m.\u001B[39mtrees[\u001B[38;5;124m\"\u001B[39m\u001B[38;5;124m1.0\u001B[39m\u001B[38;5;124m\"\u001B[39m]\n", - "File \u001B[0;32m~/Developer/autora/autora/theorist/bms/mcmc.py:1160\u001B[0m, in \u001B[0;36mTree.mcmc_step\u001B[0;34m(self, verbose, p_rr, p_long)\u001B[0m\n\u001B[1;32m 1157\u001B[0m \u001B[38;5;28;01melse\u001B[39;00m:\n\u001B[1;32m 1158\u001B[0m \u001B[38;5;66;03m# Try to replace the root\u001B[39;00m\n\u001B[1;32m 1159\u001B[0m newrr \u001B[38;5;241m=\u001B[39m choice(\u001B[38;5;28mself\u001B[39m\u001B[38;5;241m.\u001B[39mrr_space)\n\u001B[0;32m-> 1160\u001B[0m dE, dEB, dEP, par_valuesNew \u001B[38;5;241m=\u001B[39m \u001B[38;5;28;43mself\u001B[39;49m\u001B[38;5;241;43m.\u001B[39;49m\u001B[43mdE_rr\u001B[49m\u001B[43m(\u001B[49m\u001B[43mrr\u001B[49m\u001B[38;5;241;43m=\u001B[39;49m\u001B[43mnewrr\u001B[49m\u001B[43m,\u001B[49m\u001B[43m \u001B[49m\u001B[43mverbose\u001B[49m\u001B[38;5;241;43m=\u001B[39;49m\u001B[43mverbose\u001B[49m\u001B[43m)\u001B[49m\n\u001B[1;32m 1161\u001B[0m \u001B[38;5;28;01mif\u001B[39;00m \u001B[38;5;28mself\u001B[39m\u001B[38;5;241m.\u001B[39mnum_rr \u001B[38;5;241m>\u001B[39m \u001B[38;5;241m0\u001B[39m \u001B[38;5;129;01mand\u001B[39;00m \u001B[38;5;241m-\u001B[39mdEB \u001B[38;5;241m/\u001B[39m \u001B[38;5;28mself\u001B[39m\u001B[38;5;241m.\u001B[39mBT \u001B[38;5;241m-\u001B[39m dEP \u001B[38;5;241m/\u001B[39m \u001B[38;5;28mself\u001B[39m\u001B[38;5;241m.\u001B[39mPT \u001B[38;5;241m>\u001B[39m \u001B[38;5;241m0\u001B[39m:\n\u001B[1;32m 1162\u001B[0m paccept \u001B[38;5;241m=\u001B[39m \u001B[38;5;241m1.0\u001B[39m\n", - "File \u001B[0;32m~/Developer/autora/autora/theorist/bms/mcmc.py:1093\u001B[0m, in \u001B[0;36mTree.dE_rr\u001B[0;34m(self, rr, verbose)\u001B[0m\n\u001B[1;32m 1090\u001B[0m \u001B[38;5;28mself\u001B[39m\u001B[38;5;241m.\u001B[39mpar_values \u001B[38;5;241m=\u001B[39m old_par_values\n\u001B[1;32m 1092\u001B[0m \u001B[38;5;66;03m# Prior: change due to the numbers of each operation\u001B[39;00m\n\u001B[0;32m-> 1093\u001B[0m dEP \u001B[38;5;241m+\u001B[39m\u001B[38;5;241m=\u001B[39m \u001B[38;5;28;43mself\u001B[39;49m\u001B[38;5;241;43m.\u001B[39;49m\u001B[43mprior_par\u001B[49m\u001B[43m[\u001B[49m\u001B[38;5;124;43m\"\u001B[39;49m\u001B[38;5;124;43mNopi_\u001B[39;49m\u001B[38;5;132;43;01m%s\u001B[39;49;00m\u001B[38;5;124;43m\"\u001B[39;49m\u001B[43m \u001B[49m\u001B[38;5;241;43m%\u001B[39;49m\u001B[43m \u001B[49m\u001B[43mrr\u001B[49m\u001B[43m[\u001B[49m\u001B[38;5;241;43m0\u001B[39;49m\u001B[43m]\u001B[49m\u001B[43m]\u001B[49m\n\u001B[1;32m 1094\u001B[0m \u001B[38;5;28;01mtry\u001B[39;00m:\n\u001B[1;32m 1095\u001B[0m dEP \u001B[38;5;241m+\u001B[39m\u001B[38;5;241m=\u001B[39m \u001B[38;5;28mself\u001B[39m\u001B[38;5;241m.\u001B[39mprior_par[\u001B[38;5;124m\"\u001B[39m\u001B[38;5;124mNopi2_\u001B[39m\u001B[38;5;132;01m%s\u001B[39;00m\u001B[38;5;124m\"\u001B[39m \u001B[38;5;241m%\u001B[39m rr[\u001B[38;5;241m0\u001B[39m]] \u001B[38;5;241m*\u001B[39m (\n\u001B[1;32m 1096\u001B[0m (\u001B[38;5;28mself\u001B[39m\u001B[38;5;241m.\u001B[39mnops[rr[\u001B[38;5;241m0\u001B[39m]] \u001B[38;5;241m+\u001B[39m \u001B[38;5;241m1\u001B[39m) \u001B[38;5;241m*\u001B[39m\u001B[38;5;241m*\u001B[39m \u001B[38;5;241m2\u001B[39m \u001B[38;5;241m-\u001B[39m (\u001B[38;5;28mself\u001B[39m\u001B[38;5;241m.\u001B[39mnops[rr[\u001B[38;5;241m0\u001B[39m]]) \u001B[38;5;241m*\u001B[39m\u001B[38;5;241m*\u001B[39m \u001B[38;5;241m2\u001B[39m\n\u001B[1;32m 1097\u001B[0m )\n", - "\u001B[0;31mKeyError\u001B[0m: 'Nopi_*'" - ] - } - ], - "source": [ - "bms_estimator.fit(X,y)\n", - "bms_estimator.predict(X)" - ], - "metadata": { - "collapsed": false - } - }, - { - "cell_type": "markdown", - "source": [ - "## Troubleshooting\n", - "\n", - "We can troubleshoot the model by playing with a few parameters:\n", - "\n", - "- Increasing the number of epochs. The original paper recommends 1500-3000 epochs for reliable fitting. The default is set to 1500.\n", - "- Using custom priors that are more relevant to the data. The default priors are over equations nonspecific to any particular scientific domain.\n", - "- Increasing the range of temperature values to escape local minima.\n", - "- Reducing the differences between parallel temperatures to escape local minima.\n" - ], - "metadata": { - "collapsed": false - } - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 3", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 2 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython2", - "version": "2.7.6" - } - }, - "nbformat": 4, - "nbformat_minor": 0 -} diff --git a/docs/theorist/bms/how_it_works.md b/docs/theorist/bms/how_it_works.md deleted file mode 100644 index 40ab6a6d5..000000000 --- a/docs/theorist/bms/how_it_works.md +++ /dev/null @@ -1,75 +0,0 @@ -# Bayesian Machine Scientist - -## How it works - -The Bayesian Machine Scientist (BMS) uses Bayesian inference to search the space of possible equations. The following are the relevant quantities in this Bayesian approach: - -- $P(x):$ Probability of $x$ -- $P(x|\theta)$: Conditional Probability of $x$ given $\theta$ -- $P(x,\theta)$: Joint Probability of $x$ and $\theta$ - -Mathematically, we know: - -$P(x,\theta)=P(x)P(\theta|x)=P(\theta)P(x|\theta)$ - -Rearranging this expression, we get Bayes rule: - -$P(\theta|x)=\dfrac{P(x|\theta)P(\theta)}{P(x)}$ - -Here, $P(\theta)$ is the prior probability, $P(x|\theta)$ is the probability of data given the prior (also known as the 'likelihood'), $P(x)$ is the probability of the data marginalized over all possible values of $\theta$, and $P(\theta|x)$ is the posterior probability. - -In essence, prior knowledge $P(\theta)$ is combined with evidence $P(x|\theta)$ to arrive at better knowledge $P(\theta|x)$. - -BMS capitalizes on this process for updating knowledge: - -1) It formulates the problem of fitting an equation to data by first specifying priors over equations. In their paper, Guimerà et al. use the empirical frequency of equations on Wikipedia to specify these priors. - -$P(f_i|D)=\dfrac{1}{Z}\int_{\Theta_i}P(D|f_i,\theta_i)P(\theta_i|f_i)P(f_i)d\theta_i$ - -$Z=P(D)$ is a constant, so we can ignore it since we are only interested in finding the best equation for the specific data at hand. - -2) It then scores different candidate equations using description length as a loss function. Formally, this description length is the number of natural units of information (nats) needed to jointly encode the data and the equation optimally. - -$\mathscr{L}(f_i)\equiv-\log[P(D,f_i)]=-\log[P(f_i|D)P(D)]=-\log[\int_{\Theta_i}P(D|f_i,\theta_i)P(\theta_i|f_i)P(f_i)d\theta_i]$ - -3) Since the loss function is computationally intractable, it uses an approximation: - -$\mathscr{L}(f_i)\approx\dfrac{B(f_i)}{2} - \log[P(f_i)]$ - -where $B(f_i)=k\log[n] - 2\log[P(D|\theta^*,f_i)]$ - -In this formulation, the goodness of fit $p(D|\theta^*,f_i)$ and likelihood $p(f_i)$ of an equation are equally and logarithmically weighted to each other (e.g., improving the fit by a factor of 2 is offset by halving the likelihood). - -To better frame the problem, equations are modeled as acyclic graphs (i.e., trees). - -Bayesian inference via MCMC is then applied to navigate the search space efficiently. Note, there are many sampling strategies other than MCMC that could be used. - -The search space is very rugged, and local minima are difficult to escape, so BMS employs parallel tempering to overcome this. - -![Parallel_Tempering](img/BMSTempering.png) - -One incremental unit of search in this approach involves two steps: - -I) Markov chain Monte Carlo Sampling: - - a) One of three mutations - Root Removal/Addition, Elementary Tree Replacement, Node Replacement - are selected for the equation tree. - b) Choosing the operator associated with the mutation relies on how likely the operator is to turn up (encoded in the priors). - c) Choosing a specific variable or parameter value is random. - d) Accepting or rejecting the mutation depends on Metropolis' rule. - -![Tree_Mutations](img/BMSEquationTreeOps.png) - -II) Parallel Tree Swap: - - a) Two parallel trees held at different temperatures are selected. - b) The temperatures of the two trees are swapped. - c) If this decreases the loss of the now colder tree, the tree temperatures are permanently swapped. - d) If not, the trees are reverted to preexisting temperatures. - -After iterating over these two steps for $n$ epochs, the tree held at the lowest temperature is returned as the best fitted model for the data provided. - -## References - -R. Guimerà et al., A Bayesian machine scientist to aid in the solution of challenging scientific problems. Sci. Adv. -6, eaav697 (2020). -Wit, Ernst; Edwin van den Heuvel; Jan-Willem Romeyn (2012). diff --git a/docs/theorist/bms/img/BMSEquationTreeOps.png b/docs/theorist/bms/img/BMSEquationTreeOps.png deleted file mode 100644 index 8d6da41930a60b1d7044834f7e9202305b8b86bd..0000000000000000000000000000000000000000 GIT binary patch literal 0 HcmV?d00001 literal 191653 zcmagGWmFu&);5Ym@Zb_4gdl;z3GN!)VQ`lT?(P;m*x=4U2=49yg2N2Kogjm|%gy=L z_ujkipY!&!dhOl4p6XrIUDkV7ceI*{91bQ0CISKij{FyC4Fm*~dISVSHVm|XXR?BY ztp5o_Hw`&SgzCw6@P7y4RzP`cWn~2Be>w&NDk1>_@_#7*fPhGWfck%Q1Ox>{%Kul_ zKxF#A93%vUC=de5|K;falmFSi|J(ni{=X8r0P+93Vgb_suumP?V1Bk*Qbb>DMWoMhjY3S{1{jHm472xl%PId||sZ(*YSZ@^_n6U6&EsL=Jl5i!xS z$e3a(8F)tn`o#Y$dP4@q)h($OR5h7(IMn_trholoey&qL!TMh^iVHxC`Eb}9n59t{ z8uH)4@Q+y$9q(%LUoER~IGb{+5$U1dz*1v~v5EdGc>cpwwoiTh@0LSDkYhuNehb#- zmugj-7W{Wa|6_hNFJ2-2ua=3h-vP0SWadJic_8Mf$p0P6|Cl<2lsn!3-LmOMuXzDe zJ?>H2Ct?;drvD1t|1h%_m~K&#X-JVfIzIUj>;9kndL}a{Ug%~r%Wkk%@&7Zo(bg*- z)wD7wLfXWd1|aj!;}CBdr8*32*OikSrF#3y?KROJK)n;R%WjAX_-Fg>Bj@+UCjYHV--MA8#FKYd~#nRON{eF`g;NL zC)U-D{F9y+->e=FZU^!8W}z=FUAclpaRnY7LLKE5Eqpi$@sPfeavqF;Lm{55=D9hj z)c*G9ihq`HkSNvTE+1@Te?O|G=+AwIC1Z~|@}wMU`lT3zV#voT2AgeekGiaBak#v= zfsjHh$yYY=GC<{u$V_Fly1}^Uy14rkS1T*=dwH{kyioAZmtTsnLUE_#fAoBWQ|73r zN>vX2i1DZTqM>Q-ZI~YHpG;_bdur!VDbl7j1h@mmV7gZGoUBeA-F`t62J(5a*?XBJ zKreRq0%;gngj9K#u>9}MgRg#mKq{D8^b1~%kt!B99&F=ITF`eB!sB~ndm!TeO>{M_ znKT{xAO)Qe9tCOG=w|VI@hayCqzL-?aS_)^-VEHfjgKjaeJhMVvZl~b&%S9)tTC3y zTleR7P_Nl69){t2kU0yJQOO$_i5!pQdxI6eFq^*{9c>_0h17i@D^&cN0m(P@XodFZXPayTn1zQ6cztlq4I`3JbdR!4Ri&_ z@i>82Or(qw3XViYh6jwr-jm|CiGj_(w_>DjUTrMHeGG+ zUu+to%!ePkn&#!BDKfO)y4H|BHLZv_dZHTBjcqg2D9`dk>5cR`KDdX_vD46JMF-Uu z6GNdRhRWYPCcxe$cDDX;8jcUofq^CK>?iLdj<3B=3y{3kZwG~1U_wFXr0^xYpzq*$ z9heR&inWc9$NljgSjb?x+{u1##oW`^*Fy| zrojd#UiEuPmAdZlC?cQkH?2qdI7=L{i*9y-w{1;-j*kM)amX_F?^o2ie|&&iwP&3E zq#3K&2xU$_vUeP!1CWHVz4Dceo|z(T_o&L{AuMFO>pvYe`4BFJ9u0Lb z%1@;Uwu$aM-^qC1lg!qBfcfo6Q$cpAN-7K)xBES__OeBNZ(GWGTm}nn2%)Z8r#lyXejvKQ6L6y%7SEEkshYuXd-MbiW*4 z4Vk>QxIgnbl@9DpmN~tQyk@8b?KSaWKEqF_l_-^LCry0$R)Y>(;185eCE*tbTQskS zJf2(LI+lxg$6=2*`wkBrJZM#3OOW`Z>01a>yY&MV1D}?8*Llzj4Jg2clj?Eu7CPe; z#Hif;WPU(R;a&QH1*Wl~ZAtgqe9*uL(MZ!H%^hPG%NIq<;`y1oCcOgduQKvmi7Iyy zGR*I~2_tr)DXlE)yW{X+28o*d8%Shy8W7Q9ZtQFyKd*hMp*i1Wtv20g=}1 zkW$O;aO1A3tSLEpd6`YrmSpb^jn=_p0XjOc^<=iIQO9>X^Ipd*mxj=3GBsHqd3`gG zL2Sz5#~#2> zai9XFysNl$gU{@+z|W_GBp&|Eehy^9$rnT=&VJOqq<1u{j?neXL1-f_aHR z5c7z_iGTIrg}7L9uFS965u{H(ag{Vw%kZ=tP;y`N;K9E4yzO|Z%$J@H6>fNLIPJ{l zEg)Ydv?%xT##e+D0`5*E!y5PDG(xGqk##rWBo6E~C4bQIpxa~Vu2iC>u`>KfcFD5eEZc_F+7BJSzMx6J zB1@@aDHo^GZlne4c(rfKKFYsC35{$)o~r%J^2Fn^b)&GsAi>rqL=iqW6{ry43*BvQ z)}R7@eAh=I!P1!9h^nG=*d+DDrejZ)x=NS3N3ATm1UX`56C0>LR_A9L@l+@AG?&>- zYcE(fq?+~twZ?GCU*jU}O_JO#xyPV5_a33(QDGEl&9-bR025eC^oAk~#Gdtl+C55Y0Md zz*oPN)B=1qmrg=f!zVL0_KvsaRvoQR2Gf05%YWMNVIIl0!FdD3<1Sy~~dlA{y`48KuPEj4>6 zf%Ddm>Ia^2up0J+sI>7_O|UoacjXi`x_G?t1+afr4X?hs^5i66Miyxj8;hC~NfqsC z!_76+i_mej#Cp9Ryyx-S_RZ?JFkUK9p<|pZ`D`0cNR_*qM%Lcem*%5%cjBKjNLH4uoyLhl&8#x+4u;F}A%?Uf2>vp_^wS9O!DS&u;R#URWMjm8#GxqZJYg z_F%n>D07J2YID<73^jc(igQGqVM2n<19zRix9RfZR_1p4JL9_nbDnS=a2uSHxovg{;>B+wdu^|nyb@1eL5YCI*#VH#hRkeaFL7y{uf^KPJ z2o6Hc$E*?v%k+j;hrT#7=(w)Rv$(DiA*Pel0E*C*`TG!k< z>a`>v=AWGe8-8ot0$tGtbFFq}^7h3lH1)yDc|1?-DY8W4f(6yEsB80uDE%Am-Cr-1 zhg#ca2fV0$Nm>w9h`21wL|tIZar$(s``ifgKX#=DbSU}fu~>feG$4AC8Ohud{FXS4#qhdB!&xBOVb!jR*N~-y~nu* z?f75^fJP*%d4`x;2>Pv>hVEEeM@L~%&0`pP}a z+_fn`4e3o@E3z*O9`h?)I@Enxu9TyGs+cxSH&BciTRI4DL-p{slzVdQ(YpILAqZ)% zY*S7T@lnr8cIk(mu-w`fjUo2CFETnp?V?Iy_2)9k_D+>F3_*UGJ8l2wXQsWpjD!ow zQXCkBGu)rS3H|&z_l!O1LzDdlbidka#`~Mb;B#WNfT(9p9kMH3vje`2a@W$a9VWcB zI~=4wR_kjTGy2--B0CV8w4Iq%IL@v9ZDCv(!zjEDWvMOaQhUuuIW zVQRB8k>k14uGB7)X8+M1DYe62TiK*M(8#0%c}H3GRh&Xn{j=v^?<~Ana>QPH$d@{(&g`TCqNk!uv8quVUzI1Wi2%dACDjhs*QGe-7*>yCQ>1*sG z=zQV%CRt{Yt`}%)y8ep?u1+v9QJUFOXp(5HaZ8Ir6<+b@@kqwwRGorfTJP}kX!vsu ziFclyL_xI9tJ8M8ZnhvV7^G`+^LBmB-pM4dWTXD;BEPeR5Yryh z-tZA)aP|fh-07bmvFuel*A?TM;I*_M^NDw~emb*pgukx4J(YUBUFE(4qrkRl+TNiG zWHuL1PYDKL{4|LB%njV1DC}JZqB1g#p{b)enu|1tqz&z#6EX?NK^X{{#=M-&SY26G z{Z0k_?#D|Vhw{t-r@Xt1s&UPq-H)UXOrMUXnU4iLCPZI(vS2S?CHS&@vO#g_FTbn| zt}gUQd46OLbEKmW5xcXdYCop^!M3aMo2}E6Z4>)KR)E|`H)^Ml|5!J=9w9ri-kxGz zV+c82Rm^5*v#wxz)SVZ%I{*16sC1-}v`RVM(YR0J(AW14*RPw4w%|hrR_vTM1Dl`@ zDRjR)rJSaHU4TPr-9&|jsdBew^-E$#hLQDY748E!_s{9-$G@v6ymPhF?yMF@61Awx zK(p-F$LZd-!+Gezg?TBRT?!0@<;xSpWw$?`IXg^Nw6scM+@$!4DyY+XN1yMl+S3#w z^5aYd29|z*{1bxgYEe(Xw3Jw>RY- zwY7biabBKr$cYaOTU38`-feO5;%?X=W}~=*ZOF85kzzkplR1C!&@*9AXRVLoT|!S0 zTbPP_MsWMmIPu5$7e;yr$KDP!7BRd!ue-X@^VL|tEkI;dCfXxjq*(`F{K2R?RKuRw z?kClSQqWGCJ9vi@#xyL8PteHQ`Z#7%I`;Zp1KY}dRMJ&Pu0(6*!>8~QgaVYtwma~k zg_?}e-*wTmBS(Sgm{nEE;P>^79A+mI419V_P)YF_X_m^)s}dcM z6T-becmpEi$^12?4Z_3VADVxiO3&Ba)mv^__jdFoXl1q27CO}{4%i4`T=KDbpNY;d zb)5>FCEMz1v(f~X0RxAYr9oHYSfC7KR>8WtMeR(CXSe9f_S=o$Gd{#)FuR~vJf_oi z`3fvICUsy|WEvrT$NjnM^=qQ@vP{y3V)r_%R>TTgHuig}QD{UJbGalbdWT zd9GbqSGrOh&E!A3yx6w~7ujHkIJ}Xt+nwNpRz7|a$r+&}#Vf!+M8k`n2Bohnt^2;+ zT8}3_0_|Vx>u=^JJ=@O$9R4OJK+)1`feVH}1#Un~+r@K_R5VXI1Mp^hlLpUeRY|d@ z@QAxieV5hZIC4u-vB|&-R!oTzJ^xl(J=mep{y^q^j-UsF@;kA?`rJP}!*`tSS4?9< z>TJ}x4ECHN?H7)|aYgn?BX1-0(|sP4B}HaKkW^yVm5H>NZ~i9zg&5wn^ko!FekGP! zD*iWdx(>Qi&+75wt151Vx?0%BL=&gFu`sP!f72~*@xEprlRGV=B1+9g?y~!ED_a~HhA#mW}5fqyuqlGC-SHRe}Y4-V^L6-R}a3W67_^ZXb) zS``x_czmjdmlJ0NRNboKQLhrGt%JYPuI#CIw%#ohdi(Uq`du!+5!%4gGzPZwhSE?ttJnnhwfmcjh+E!p*tt#7+=@=(w-1&2eB+$PO zy6>*PxKN1Q68O=qsq*!_KJ#2=ua_>i)RbJ`LwKCML!;w1uQGPxxs|Z7RV0q1{5~Z< zjMp9c?s{fPzyq%3UW0dzjKG99+@9DFxl<#>^q{9$_q#M*sN(BEB2>N7zQY@@N?+*G z{wt)>!&TglL#}j7R0JDE1Ozq(HoUgL-fU-`PjpT=gTPnzAtRXuHnB&L=6>LZ{5j+1 zDxUpjyt_vQ+`o>p0o!b^Bj$9X%XU zd0kNnDLd0g0kGxiF5ma#y!Mpd*b77GIlIq@QWE8pZgGgqy6F!1G|}%J288Wta~y;% z7f03pP2F`**C!Mag~)Oq%>Z%?Hg?uyi|)llhHEYiGKg_ zWT)uNyTD46cKn-mHsfFWW_oG+6gNc;UUfGy`m;IFv}E#jG;k+vJv1aSETrI4 zS)b-sS>J*D{N0Ysnz!Razq3ykCV;$TSpRqL`}-sB%>}bgi|Ck75hBCU5&(}*qAQ}i zxZB0^l2!6Dx6Z{H$76VYi_M>TAq-s4XSR|YfYdDeOdqu@6-TQ6RptAVBmACGjmAMc zFQDXH*ayqcEGeaRxY}m3Q%c=_`p30FFp|SxT9yvQ(wlT8R+YKcuN&y_-KoIAp)Ej- zwLq5QTOl1jHGL7;w{Ai>MqMe9k$4c78?TvU`0inkf>+S9Y?fpam&+Znw1KV1K<>Wb z#jaBAu^qOco+`Di$&>};_1gZb@9oTpLz8J5#9UdYL!v=?I7i*{OhP&L$|PbSc0YTzpP%fku&J0+`C-WVlI+03401Ha zPzE>@Z;2jkg+Zj&%Mg+0#tP%J&%p%c=qvU`t@?crhq#IX)vtd^eTuIO2kfg=gtGni zXcgLNcIu-Ta3zY>xmX=d9sC$qZKVE{dsQ49t5WHsM?FZ}(rN#3^GZ_c)A*NdQgjy&+n zgV-D+XTJLtSw*5FYwjs;10GQm$a)Q9Z~ShMV*_G*j+sOaYaSHU1<=jTIo^nZsqmmH z(TAXir%WDS%bW?wxyHaAR?dNE06Hc&|<|N=czz?8qmw6CpBR;@H-k%;kENq z{V$v8P)|XUE9R%(fD$~Dc5`F60&HZP`AmN7#A3%a(evjiy@MtqsJnHX-619L(;1cZ z)*(}j%H|JztR<2iSv_^9d}Q$Lg!_cwc8m}|*>~fLR9CKgQkh4Dm`as>X_~QKug%Lw z(cBO)wnbr9m4&)>n;2L}qu#3nuo(D-CSd#ZKG7#p3?7++YQ!`k*y0IAve;)Gnvw&& zc_)+k+5d#+YEQO3;ltr(O;D@{Kr#7V6FwWQ4Hr~+fzUH3<2jf?B2X7hb@kg4Q338( zCk8#r^MUs)3`k%okAhv>n4fN)`Jmt}8DZ`A-qhaC#$pVQ>I-IDmhm~lhqZc1|6^^u zo!gXO!2wZ67m#<^ivN6nAp58GX5jpi?Y#c z!_)zXi~_Sr5~ZZ{Z_4#fkS5=S-Cy$GXoEF75TBl^D38v)_~P;KO3j=rF?u4VPec{4 zTCCMZ0VRV@U0JMAb0J-EX@3OAOdb-cGpGx^JU( zM*g7Sn;{Cj5?t^dj(M90Sw$iIau3QjwgayFx~ly?>M!I3egom zh%-X`o7K^KMNY3;{%q+?Py5}p&L=+%?;|u-BenXAHAOcmP_&mZn%FYa74O_aY%INR zz(!3v42998?RWI|J?P)MZBQ_>)8(qr70c~3*S(Aik_Qo4Ws z_@uh?s|@;dMS#$XcqZ3q2VQ+=9U;p$D{t7%V;iF-x=ugyEE+D2BtrKPmkOA&uJH$r z)gtXEZ~)sf8n49laHfj|lx-!?n7JSjW95RUn4HH*>TfmMmWxaF0?>c2tPu)r#mCWxm`m@*g`(CiT?NZH0c0kU<^(=2oxU&JaMT0{hv=gQ&Y8 zO6t|i`CeU?{CH3c#ad?-;Jvw`FV&CaPv@s6i7BSbW;~46> zAqKzASK2PC!?n8LeQwW}4=1-JRjBMF@=4j5<%6!8JQdZCTBzKNjqhx8y2PrnT!qv*Lu6HH$FsqV@K#*1JpXV>_*in!c_#O?7Zs2K0oJsH$Qqu9HXyDv^(%G~b`P0Chl8r*jj+OKF{3DCBw$fD6f=!X^E+huy@ZoKhS zLMgmaB$q?Ebc}DSiCod%x_Wz&qYBDZ1X&((NpTM#%%>Oy{y2^O*Ex=uiZ88L0+#ag zbz&?+M=R`^o-@9$|&j5zqxs;hZEq^p_B}=&4a~^+u-d?D) zfWOn>FEg#QO3p&czt2|T-vrq7xB#~Be&)jw(kj}!cs56}9`;LG`xCgIAB32~?^LPq z`*GE#Hyu|$b7%F?V?z`PBDz8(ZG9r^vIBC2z5Cs?<T*QjfbOGUE$*gD=zXVwZ%TD2zLI095p?F zQRt*r@uhdcSy17TQp7_r_cbL5EB6)6p&?tu>BL$_4t;wFExWX4;IeX}&JdZUy3I=s zlXF+8)0UYU7a%bI1tH(n9(*M&g}yHHNh)5;>xez!T$?WkbG)jpfw ziy`22>V+rwk@WQ)gzTSR4M6#NT?4yWZ&2qR9W>(&$lrRTzp*id7`g~g?cOc}_eEqm zjwuEX;=0?$ET`U6E~|#5z)2@daBil3;#{rbC$>+|MROBRN{1V~GOv8XcgV+L@Pn5h z?K%e}E|%{V4z0VgJFUava{tE6l&G{kk#H~XMEM%UbT%t$-S%xrZKU@<9orbg*5P;ES*Ks?hSF z3)KZa7fh@P`a6Z2=MGn7!J!0S1K{>#O)0u=by+qrqK$N`H;EARZgAeEd5o+`SAcT^i3)04uekIpEdo!uQS7>4#6LFKzNsRU#tMBlHLTurIT7J_KJjRZFQ~&wscQ(E?l-LzxMedt z(JWHqn2NjN_ZwrmBY3zIp-i1c|j`TAMY!CoH~@XJJlL#SGz6;nGa_^e}nhBXCF> zm%Kwx6PLu{vHN+&hJCXfL-S4Pr2zN?1>1Nqu|>vaF6ok1LqhEwgvu|n0>Z`@k@Lvsyfo2kLFZXaYazm6q8;yJMxiZwTjwZ!@ zMp$aPO$99GbyIjGN&DH`ouK05%{axzN6`ywdfGJC0dH0AcT#Q8_&s8#!AL-b zLco&MD?>MfM;TRN1_cE@6=Q!w5y~_TwS_z_Sj_;#nt7%jgcp{hw4XdmorVph#wln$ zCmO=7Ea3ey#_OO%4N2Ggdx8tTsvFKI!;LITL?WkA`x~<7ur?3Fj|%2=Ij|Ib7}dS_ z)WA#1H%L=N?fAY2(Wyl8^u;MK>@x}FR&nQ{6oR|h;5n&^n=4)ad#i(=DU215ovGgi zxy?DP>&A5s-!bSCNg4%8Gq^fmke#}Rci9cG`?C)0PsgNpweZ#wd4dYF<@_$pNw+mf z{TGLz6p!3o(ULT-fE7!2cH)fgM1J^S(Zchnw;ebPcZWVEvG(Ih@zIKx`u-7=t)AZG z52jn2Noqbrz;`rxug0w8?jQCVnbqGJrdX&n`XDKR5!VvaG|S0srV2rw;}*uCk^s3o zFa+P$ds_MOz7lF;rgj$?7Mvb(c_~xmbgp6opwTyby?B&D-&sH_C|7akT7s~MJy7DV znHKG$DVDAK2(dJjbQxW(QrT`(U@})p^4angGbs%hM5IjPt@dVKg6{ruf|VPbSe6aE zzf6w~WD1klb@xKQ63x>6QZ@2V5{peTg=@Vk)5np5*-FPx5Ka@P3Nn9RG! zPdnif(f@ZbCG*77>`z-f{Q>SZ79-USRJ-S`=F=1bvg)=|iPVt1U1%w4(7)vrfFIbg zjStNAe{1@e6qbq!BiZ)9PeDKVh=KIT>b~rC#?5bOJy^BZ7LhhT*)*G^<0t3*Ef*v0Gn9TkyokK;& zouwKVzJ8w?SHzS2DaRi!Dfpb&oz1u9VUi)UbkfvwpY49TC#E=NPkmIb&73l4W~?oG ztPn?j4)Ao*3}@$k6(&j5n)Ugntm>}n`BC$-+;uz@-SF_I831=4`i>~WC|8-@Sbuyl} z{iVd^Q%5=oFc3h|IPI#VPP(n0Y6g7tBmWl?OcTxZp&|IH806%6Pi6C9Mj%wET0ERs zYO($#D|qpzriAXDEN8C8MQ)+tmn$h&MOD1YXw|`tVp|yS({-KK{D-+WctJ0R zoi%Y|J$@iX#_oH43O^S?9Fu@-L31-?Hs3yV_C_D%4@cG$`Z6B3#rFOEl21{G#Z(FP z`LiFh$ES?CvaF3?J@kj`&2I=418Sv(+#i5~?kEv7Fsw+8xLCc$(PA9VX zP;?ar7pv%@ByIe)B&R>11&|-BzQEaWAntc(u4>Fk2Fnk3N`9)TwGrZT>K)Cb5bK{S zKhyZZ-E*aIh)!&SnS&VyK18W=KR#M)$gCdZIzS)|H~?Awi-iOQl6@B&yGm-_b=@(t z)!`dU%(b0UaX;%y zUmO%nZBE9EtTnpk%&Xt~!^W8Ecn)}8HB(*4m8mS$W6PkDcGgr}a$txOTB`D&M#_5rsOB&7V6W(4BORQ0{&X26&P! zBu2_pmSDNuzpH<6V9?e2tq3cz(Qg?ukRNVjOJf*Bv6$`;CUhd^k!ytleE2Vw2P}SH z%8zxHL|oWIxmbHj%tp#u-L|9t-1dYKq%YB{-0*~9izzBJaMcu>ES*1Sy}hXSKl4g z7aVTb9@qY&P|Jn9(QVKJAuqQq#@>S4Ee~AQlwzg`u_B!K+siw@M5YXEC6%2NYj9n! z#(U?mJ6iBZ!7DGSJUW}yM51Ac-pRbjE5^c9ysSN7d>{d{s&Bcp~xI~tp2@iCI z_1j^|q$~RBnAr+9DWFLNikmRH;ZH^S^f~?QsGMXT5Btq@Lf9)V#Oeq=yWuA%x7j9o zc!y;uyAL#NmCUd{;9@`KcJAjRAd1ja}>>gj!!Sk-613ddhTkXO+*&W^pk0Fkf zw2gGf2pPY@qyH9z6{>|1dH8XFWBh40(+#8;L5uxVtO%Ic4EW{tx?oF@XU;C2UKnB% z8JsnzIIe9Cy53M~-elfr{yjEyuSDj^%5KGC%xEjvS4RmLi&Cf3NTy^pjq+RP0HySv zGdq)HI-3n}4!ui_#AIfg$pMf{ZDv<>)gHLg`794JuRCT={N?W)l9@1&(e&+0yKSF_4U7IB^4A^Z#(r{J?N^| z+LCF@sF+6F7Q+%NYP12yX6)FRqhut}U;+YhpPRDPR(gzGZf)VKY^kB zxLB?%_y@Mi)*_{QNgoM#=2PL7a&AcDpQnqj7vCN(XpYa2tFNP7aac}F%{O{K)n~;s zU}y;)*q6*NAn#1@t&iu@Syz5A@)L!vw|lUhW^VcF34Lj`_Ia!G^e*^PpmR& zt~06}EhPJxQ7%~*k<7gEKD<#b9uXbvvH{&n=2<4XC8vvZP%F3)b}Wi1AV(y zpXcjN!xB8Z2s#s+l+ASZ(&F_^B1y7Dp9B`K^^A_w&fMmgr&k5!_1DKvLmLNAT>3>L zUhjNsO>-5o5^Pin)HW6C?ew=BB)ille~#mMCf8U~*p0t*agb#<6=Y7ps(AVptqCm? zEZ<{XG`IdIvmp!v(<(g?T{OAiPp-|%h)RfRg)A9_sGr%%b21w7tJANp$c2&$!Kx}hXg6<XbYk&Mb7MIULA2b}>+a3<2Zv6Olg_^+#gE9YSZJA8!m2}x) zYCo6+9W#hI`9orDS12`Vj?Mjq@Z6xHH~6iAYSVndKnj-I@$C?*S-`}DYtJ9aPX(+!R4 za~CjUk7$9W1U-FiQ(AY4-j}iS^&hD?stj1J|_}kY*Fhm=Yv6&Hr4$xMs)m z!KqYZEm}5zCwiqufr73p2^{`mL|9_1AMZ+rT-1+d3e2vY8VENhFXmvSyTMHrOU)y% zVH2lM*U@9|>}^K)tqmqcW1D#M#Y|tP(8+vjqaC^IH-YwyZBgIDJF_97-|b1KhxoEW zUwFQ5-?)`}c`7#aJNa)@E>^0Cl>BSAs(8q_E%?@Gi>xT9suWsxYG;`9i0a3o_(BH9 zN*-${4O2Vx>!aC6#t$7miY=xnBtefl?Gx0_BKSx2)Ke zam(Wd06B7+i82Y1yQ$X*LIT<&AVw?SJeeGf#;p1EZoWGyvQ$8UT1F?48wC6~&Ovzd zeX&W|`uAjit7C7t`v+-z+F*glghH>Td8B?73}HVV@`#Z5Q@y8k9At@}0aAsP7T61u z#E^8zX?o9-m9==zs#{x}QZ#nl_?KR1ovD$8T`~ffO*w({l`A?GlOg#K4F;tlxyUcp ztkzUk1%NT%aHI+UzIU1HdwXMj{E_ltDw+q)=(qbMK#hfM0+IdY9Lyho250ZHO&V6( z%vlX5S7M<7$pJ68`9kTcw{A|1Rmv@D8I_^24&b&cm14`y@OC)q)SmJf>8aQkKBrYn z0qiTRzVg#)X$sL7BrCU=nV1*=m_iaysCMlGB8kE`9;RhOBzbJbO|_x-!VWOp$_fR_ zsw_dhp?$QgWfmZlz4^V{UvI&u15{fcN~%`}6MZ>azA&z@_e;cAvWlPxC!cp&0Y^veC21qZtCS8+gV~RQNc}M@E zjLyBeS#O7hobe5pjyRRltH>LQlP}Zy6N)}#nZNMkzY*mnWBDlf9gSv)t zo@f-;nR@%n+A`=Z>iT=dr-#x6XD&9d^2xP!$CJGFL1;_D!=q=r3GtX$qd(BsnNP&~ zRHSmTc_HZN9avimh{O^cY9s1o6V1jEqMMXHiNCYBr1JfF_GN_>2w*m zWLEgaZ(rJ0;Hjy`rW3okHs|j~^2oLvzd&-=5q?a1b^F^!Fa-uJkW4j4xKCqbAg<6~ z_~y5dvC%ZaV<7*))}mho0QAlOCpsy4sia|h>34?b?~c;?0Y-O2gTz+*=vC3~4^UR4 za2e4Eg&O>WMpN&@s+Rieavl|%wc5#1#HU|=zueC8(9rB@Zzh$OBBPw9$u4*avYD5B z-ii6}dcfw>*-R7@1J5i}^aBujS|eR^v=M=h3H9uUZ;3V;Cv%ir)Ok#vHxr>kVs~bL z$_m>=8Wlkc=jod)CY#a&u{EW*HynnYuB@w1*ELWoY#f~p-6$Y|XfMMB)^v*i;B~l; z*;0ax$Av>V;Q9~G_`>vcLq6p3w`;X9u*Zv$wW!uLzlU|7kRGxsW|@u4VAq5jrtdOy z^3+80g{B@$&`^xzRC8E-8W$9;J534thUx6XW95DdF>~xG_@F2{!c&@F+6XK8;oTd% z$27dhB(xR2X&L;K$1_47Gy0_BNWm6xUC+k6zeBqN>mQwc+U0bb9%3rHcT_h%$HPU# zE&0GQ4YOBzTk0gGU2zax)66Fr5>^|}#nZ{FrCj3hYch4YK)D9)J}&xs6a4QZN>xnc zE~x>P? zhq7Xjxk?#fAHfitz*iH~q+pHntMVtR$3j23!l1AefG)W-+~?`z7_n*z?ZM|dY^oQV zS0dEOFH40=+BeTko1XY{3I5l1@agDnK)yt)-=5`g3EEtMzLVDe~J=Ae{;D}(rpGX@vF658uC>>44ZMe zDKpbs#UJA?(={1UL}g?*9-nIz0`!nuzFFgl`MhpNCL>3K`NuiNZIvznKAlMipGF3o zm{0ueHWh&#@r8v>Ph|N~zzs%6ly)i-mj;cs3EA@$ZC*A^N@$%M8e4lWx<_WGG)e-) zL*cq?rEXY3zgwK)`|d;&eB0mOf(K}Vj+X%v;dmAn_X6HLw_dXc3lK;b;B&5dn0LC` zO#yZue~_rrU6`1X1*3{Z+UG>nNJ$J#p;QoENiJHDW@pDv;M<%l^Bz$eu$o>II*3q_=NuweHy@?@7=CUW70e7icod?K81WqLz(OCMjs_?+75n) zPuX!=LU=zN1<_Ms@X-70Fd>3y#C1YTC|6Kk3=FugRTnOH8j2XLJW$sDs*Snjefo4k zv%{!nus2e9%zeR^qMH#YyTvZAbp?Wl9SeZvqOMaS>H3O&*sIhM_#CE*PP5re4^Bx* zg)`XEd(p0@mAm3jJhm3RCjS+xf%-7+nV!iWt;8Bc5^7_WSqZyfvwSPi4mHZ z?-Qel)6lp1-HEhEm%mu-zeD;qC&gStB&p=YmCkYdA^eIqwPSqTj*#JoR<3m{SfyxM zz!NPijLS0qIS0%i??Hk!?zooUta=^*xUd7o4A=br{Ob$(9M5rdbxtp6Pp%opCFl*n?~XrQ!+#>AW-Ej4fLnKGM0f%U)!h1c~+45DGE(#OVk3 zo8WxuA$voTZvMd|mOnZ1;zs#BdC$i&glWHx%E0b{O31L@&y#D?n&{u*$9pJ<{q(0l zO_wfR%KT`YtgW?xG)>op6Z9bRhaYhFi*Lq7e1x^h=YpN6a^osf5GmMNW)kCNAV_uY5%3M~~; zFTacxA^cV-pn@KmR~XVWCmOAvb(LBfb857Qe@1AAQa|l$spADgCXY89ILxQj~$_&;3LRg0kJgK^n zD%|LoDeg4RGLbQ?2G+5*TDijp?+6Mb)8owMS2NU}W#oXGp`&yfU=I|p@fRIgxD?0+%*!kN6s%P`N~Dg>xU5aiadZb5;V@C_@j zVBk~0K$A%jyjB64g{v@f3~-MF_iPCzmQ0Jnm$YA6-gMEHn_(YxALTb;#l1|C@iIDL z0TwfPjxW~FvBk-iNE2g?`MkHj!DxL@T|U=%QTZe~As|o@myIE896`}AMH2T_a&JJ8 z&lB{6UzgowJaVt|*-gn!F#z3xJ!J_U7H-hO4lS>yS>D7FxB)Cr53w&xDF6CcemKII zUCq6dnYQ4@<~;~GmX%NTQ|V5j?xWI$MbN<67oc@mR)K4Z%`{MpA~zRz3wbRVTz0Jm z*Z_M+^>a;KWRr3fH5*I<48VYo(!R7(3O9r@tDpM$it%nP57!MKB=#ZP; z?Z-6Wp5--L2(BCK-?h!&Rx2#m>p6%>ni?3U<>-r0;CLc zTBF;%s!7W$55_u#2ddTE(9!aHeUwp}ay zTo$C2M{|K-50+=+UT4oE{2*|960dL&CI*;D862oAD+$8!{zm4Bl^pQg{rD~I3*r2x zS_4SaLQxb;q+LBAjWADKk?({2D8qbDbGc8}b%}JjjgcYZ6zb%wt&2RgG)*B@zFP&G zbXHzl7j?AGO*)q&%TLBY;CVlE7#H8|{qZqfXpHw&8}he`@i*?W3JV(HVHODDWAKY3 zoKVRU>UHRWrx3a%P`(kO!cRw5E~{YHt!q__wPzQ!2dy&w8M+IPny-cBv`Qakwjz&d z1JHya_P7gYYjc8OkTI{1N!k8mC)i(aEi1kH-S3W5OQpBgdIws!3;ZrNj)zIb@@klR z9L@A`>G3>!9%4xgJso3Wch9NJ%S0dt1s;6Z3*AfoQSQv|wfDOReebTKb2(Z0*%t%S zv#^*~0dAX?hNzsER!B#@p4Arw{ItH{m?wP++UX>K%CdLZyG@0ZdtQa|Nq#YCn)#$> z!d3Q{c1h1v&RZYrC!Mpd&9tVsy!QHhQ2qBsP6_p$JrjpBjr?PmGg%qn`YAiqTULxAhR3TO))JaZR6y{FiX#O5j4B86w`uD{Oa;A&z;s^oL3>O@-qUNm2khsZ6+>e-oBjf z{N%?R2=WG&7K>?O@)$?gpGy;G&afXCOFDsJeO*2S1}UMcyw%s`wnm)g4)!yCOk$-4 z>|W}Sm3~aHRIwF4#G>Cb>LmlUX)-u`-6CBI_qq? z*6Vq2e&2A>f16>(Ngu9VyOt+b6{ZxVVnu;;Boy-Ii@X6VU^jhfmGMDOB47BX4LDD` zZ;$s`cv@8`C`#AdXD0G19NMRvWkelvB7T~6Zr(@ym)URPBktoH`0TaIo_Mx3B(nxoPXeNPN4@q!_wJ;HJM8b`a8l|YjdXKGCEK^#fQ>K>| zs>q7`!N(bIeS~40$~LXSUAbi)U9}~hYw~I4X>UL6&-*u_oLKL1)jNZOte(VU_!W0SBva)qu%! z9=Py`*o&ZmF*GG<>U-{4AsP=YYTP2goE6ecP*g~u$E5uVF-n@(=)!L$dfDxoMA z?QnE)hDc=os|y!m)T@jAQM{_MiGZ-Xlrg^p3Yn*c^~73`MeL90Z+e~&gV#Dc$6*k z6T)Gnk96kIMH(3&Cs1UN6i{PHjtr8|5ie{RJfC&?0XqjAz@Lh)1ZAlzsKq8z>G?sb zq%)*)RgQRS#^f-+5jP53EvSB{y(bhx9LqWhXt& z1x0SYF@l&bM?vV=|D7-bxcr8_SVTp=ReE{AhJRh;tEU~zo}Dz>%j{1&-pM%rd^_p9 zN-Nu}&e{mud{udd?zvp$`q3rcP52ciDm-Q#mnODsw7hidVY>Z`chc;8H&D2-MCgSR z>__t=O02^u1S<$TD!#lI=Va3|qKb(U2qaF0-w=XrRnw?f9u?|Z*SSa=IL|L-QleC3 z<<0nWRs!l55+~XDYz1&`n(varrmK^a#5>RLM9k8RU;#U~>AiPvKtowg-3OZA!0pd6J>*{;k553$50>o!NQ_D-~U5joJFPIFM zJ116yy4Y-_aRRa1xzx8#oDZMq=Fp1l1mKl5_}p4NS4Gc!fTl6|fCeq!xBs}cg&9m= zahgs%NOM%6*Hau+z{yoz&~_?Ks+ty9zAk)WQFOB%M%!zKRhjmF#ZSJ-A4}q^SgCdc zeEp=gTOK{4T#@!AbAi{YZSnvCS29SlfSLBIk*~39sVlDyFvVnhe;p>H(b!dCx*Z%gD8s) zhTkDRQdako-Q2Y>QUl5!KlLN=wUY<~)RJW$bV603wFkb+RT2NH_Cg9+=JG!0j=(w$ z?|n|Z#6a@C$P!R6@DvO@*`KNk{hlh|YffAia(7C+{k% z>s#iTc%jw_^&(I6-XxW)V)x!O!mE50<^sZAT=T9O>wWbd_Ch;YR_H5w!r>_V&(UwZ z%HCWo&%}Cn>^S_;S1xd3U{fgwgbbvvm4a)_2{&Lj?@eH)>WUPmH6&+I$Hha=RV&Sm zdcx(zgycl^LwmbuX5gDvW$|0xG-D6+eS2T_S-POGBt45Ig<3d;C4fSdbjdWP^$IxQ z@AuLXr{5I10+w_qU`1Nt7#69EdwUE~kn@|!Ngn_=bt z!(hP1@3-R8L-}I2$%>msc2h++vFA8pTG6!z1qx8+1BkjP+d*C`onciF?AaEj%OL?c z0x}$aY(sc{TXRG^%Nd{X)2I>ItEaspGQga>sznvk$`cg}Ki8>_-2+n9snLh3WK}zz9z=2j|wPQ!kscT`qRBAPyiYygW4z_B6^<91v1FUInz&2Pl!!Nz`QWlH? zh7Gj1f`Rv8;3@6mY3;=UFAs|Oh93sRJTUU>fA(@y^QRv4bA%|BO<+z#Gw2FTOA+QHW3XB)OKfc$s#0xF-l*orWJ+>+AXT$;4g%!Oq4A5K z3##B6|1^9U9)pNbiYpj+76xoD(UxpC3Uo3_GAq(=86+7H84g{{ytU^uF4|oap5eNP z3x>rs5oS5w?+3HWz4sfi&0{@%cDbXL3Wm89QuB3%R>vgYM?doE`%e1SCCc3^;b7cl z5@1!RXWjK16v5akMfKZE5%<-5R8LQa<(Md7pQtKlq_JGT-C8lzN-6Q< zp-RR*{}rvYtpV3KJmYnSJxO7;Qm}oHo^rAUQ%*#}>c54P3c}tm(Zu;%xw;4*xT_y3 zid&`AG9X;859RFTwvNU}h&j<7bu!b;X<)rB|GIb~4IZ6f(`8P|WpA%uP7v&31Nj|Z z$c^ti$#2y&hzyGMmjeik`jDn-ht{ORQL9##uL)QVuWURVe+<#7=rb+4H7rG{@G7rm zSMjatdsDwkfI^zILs}7V z+Wo2>JPF-2Ugq`kem_N0z>3^WSP>Ut)D`e{vtUdFkY5mFs2~|#)g@=HLw!G&5t=IVlzWMD*xn;G&JPv5T!mbj zfM2I1BA4z@yW0cSirEjJPlna_1Zq{on)*Z7^4m~OM;=2Oc+X|;Q&_9iFZRuo_)D3` zajBnl%{b|qGP&(aTGVvy?Y$Z2eG_(jTH_2;hL8QOrJEk!cJ?fX7*KAM8F_=h^4UvX zQaIL6U4fH|>K3GB(ljsgs88^U$xibGtoAyW=g$`d2Ud~QY|Ns_!QKXD4_~YvXetEVZ->6Q++r*%>frm7FoR@!MF7D;W4>Fc55o&=?RQe$~aJ1EK?< zqjkPtOCG=dhWD4sVFepdzjgs~s$#e!Q^jiJ(5j58 zQq_H(w#sE1ueO?0Sxvd;OtN3N!S&#?m$=*&47?u$?d?Q*t-$1@g~}k6R>4dtGzC4E zIcXm+f{AIC67Yi=F~4Jhj8?!9t}}6w#{AEM)r2p+sGsAHW0DpNhO6Xq+!C(im1XE6 zeUumP5q=Z?=XoDpyCz$EBq1W6sGK5H74iP)wvaZ`(oSkJ*gA_IpZWqzUEU7e|lBg_JH zM%PL9Xf3(&FryIKlls|ftLM-lV+bb&y7wY`S}Edgf(+ZC?@&P#b8*j&&WH%a&ts86 zdAu?~U3l#oVjdq=cjWB+=s)Q)upE@LM*iHGs&XR8L^*#uj-CYgTtBG{k`_qQqyy3e zmGk;K>5bni+=rnB(ho0{UXS7AxldQa#aKoE(cZ*#>G2U zZ~|B)#&4u=mDPy;u(yJ#po_2isZ}qYtvvXt(g?K``C*IrLZ`D`%ipNPQZX+L2&?mt z+xMf-=zB@K)CE|cyqk1RWt0cKX}BW2lb;J37y0v7tH+dxlU|u#nyCUzo=rW0G)<=! zz3*b0pk?~H@bg3Y`P?yZAQf3QzHl+9JMgQ>Qm~0xcpI6Q4bG*64%VTR5{5J1XV0F^ zOoL{KF}Mp`;mGy1angZliz^ri4A}0xY)9?wvH2Y7^=mrGfLAdCd7vhL412j*J0|9R z1sovrKRBr+?`lVSJAGXhBx6xe^&7FlIe1iLk3KkGBS=Mnwu-E$?ycz6L6z`0V~48H(tgl z;K^jkBn6{q8IDsjN2c|Ctc&IN>^nsn0rT_rtG*sRp4w#kRo6_USUl@zx?E+bggx4| z;HZx@JMX3ChU{7RawMrnlWYmWTeU_bVEGF9MJsUmS6u1x_s9wIV}u%$|MdOObs&p) z%FQ5ui~y?&4M(C3)$|zxzkWaet%G5;?|trDt#S-76xT>o1w0?W?X*HZRGOwD$jMd( zDh0pbYunQ|-_kf;_}&NIkhTch117wrpVAs>(8Y@v^CYiyMq$nTQBKgD2#auG>x3V1 z*44>j!=%Zf$dU(_&gFJPo}jToqa!>6{1X2J9&$g6c3tBm;@*cI(?#0cQT%p}P4?$% zyfAP6MkI~B@a%i``=H7ssKD6iqTg8QIeXTArnV=0X>W zpXi6tH$O~i!U%@PG36R3hshK<7O+&hg3mSdOqP>&A^6c^p$< z)f8UeG0MwyUc&K;cWH;aU)i5kSl#tob(7v?CsB}iRsYb1VE6SaS`l^hx#e24MclSR zE1KhDGprFU;mLcJG>WgH$z?DOOcy5%c5qd> znuX`g`Nvn@b5&)s2ow=j(35rA%kYWZS%oM@fH8*9sA?SXMmbS_v)s0-Wr5^s31WLy zsqn;eezzxHa4%7fK>=HKTvbJYke3}+-`=DO+WrbHPnvks%EZ0yiMkm16lc`as`ZpC z2Q66IAWf4W^*$6p3QWP*M*sgPb(fAvv!q|HHgJ;Gdxbk`%eiysG93!q)GVV(cbehN z@};+4(lV8Art>|t{<7}g%Zo>T(|K91gG9%g@ASFew>9&shkQ_t>`+xk$!~@0N?9EF z<>#bnc_|->wBT>?o0%9?-OoN~SE_?@x(t~-`T=jh8s&6#M11eut%Ye7_sNvo0P#Yv z;8%&Ne9e#m44j;v=O*wb?7ARx>#{Fm;-#wKr~aBWI|yf$rJ`wuwW7GoOEd9X??vJY zKdq1o&X@F89!VvTMkY?;+3&-`)bAc`4Yuqk`_zPq|G|@0)_`23mU8M6>xLn^7FZ3;6N&}Y#`CtY-nmoondnJ z+yOJ3X%q_F@9M&Z3)!^LK{cG4wi)hnL^p+NIy=HO1Q=)EUw--JW>mQ^7|0liHW=t= ze~xf{2f}Lbb1>AHn*oq(YhyjFK^!+0Ik^mN{=nFH>gngCHI5q2@Ei*nv7JeG?tFU_ zvsv2v=Hf!?La^>}X%eSQZOpTm#tJ8M5br()-5hP)djuhw# zt!<>ug{3rq?`~S9tq+Wkr9-DqroQ3P)+|=V6jcO256!Isor=@~S!O%(z)e_oF~sjZ zW$P{8Lm2kmX8)}-wY+EHu$8FX6byg?+mSPG(tHIl6-{0$ftre@Xj9<_^2{I3d&d&f zc$r_AD#;vIRAkAt$h;^32CT>vZ92k*8(~p~am_MifGkJY!tp&Ecl3RaV2mPNFh~LK zAo|t&i`V^_cyLS9ld=1yt5SfjJun94ocfuVwBoAI2u-V_vS;RIegk#Fi3*re+G@Cp zeCb=n8A$xr`dZppS%gk=ViBjhc6Rrqfe~mcv%Kb!id&G@tMP7F0);+(X@hh?ivrVx(mZHLGhfDi6Nme}x#>+O zd@Zx2Zwh(}f6||DkuKmzdB#Urq}4ax{KAt)NhiIRZuuV4Gs_DrR$&;|PS={SoA=GK zz7+S-{%!ZUNjKVct1r}%byW4~3FBMXhsB@YB5Ug_f|NRPx99uwJyz!)!w2r9-oF0S z3%}VzJL}?PYV+kH>T+r_QKP*IY}BR-k2Y##N5kRsuqZaMHCEBrr>;(?@vaSHHO|fkmWg>-*e?jH~nKx@Pzl)r$y|XO!l= zyc>!^r+uq11FI$5g8DMKr_qU^XVL_nR!dDD&9G)(pFfN>o%(639T#3q9eof+hUmQCRc*Fh&0DLF z+DwbK$s5;G@8m=pK63`53<1B-QiNG%3M8y3tAYTGCwj{#>r#}U%}6Ju?`{d1+!$HC_7*s zC_mExe)RWVw{f4T$li04W;F1V6M&;VI5n`G-uo(}chZ;a>f|6iqO0(nrgfV^*Ewn^ z6>Y0PS8$E+n`|vFrIm*q00R%Ov9_MN`gU`x8aXXJ3qet-*85a-seUa$7bQwpaYhE-YWP){ku@4jNL=k@;mu2R%tb@HktA1tjsu9fIO-`FM;n(Y758t?7@(lRe;nPK}m^Xl}2 z)`V}k_sz?6K^r4)d%7l#F-aP69%u(&!yQbEG=E%Oar4V`J9+c zLrnM&)H0B1GL?}S;HqDFIKr!k9KPR=(K#J$Vb4|VZ|}K+Doalub5Io+uv_^Wajk;)5?MeFZqb|?wm?nh6+zBSsQTSmM+v+D-@Un! z`SwnffnB}*&@{%0s`8}za=CbK@opcNhmyCE7TDM2X`~IhP;Pxx3<*0f%M-57veW~p z$dZS0;!*iNCI-zT?Q6PbeGT{7D`=X&bry!S%Q{QbyyQKNla9rEnLggN39ngZx&Lf2 zaNrbK(dYsV3Nr4EW#d($WrqnD4bq0IGRox}#@py+7!*(pw_&!!wSl^<#MyY^`fNik zu3+HfV8DUU3vo1q*-Gu}s}`G9kBq{10j9 z*zt4}W}pY*ePfYLsn-|N4uThR0cl`s5<$VG1Z+cTWz5N`8&1~E@ z?S380u9Zg*)4;@`w8dbo5Z2KpA-7a#ylN8A8o`@2@m+}6C+>aBKqH%d%>hNmAs5t$ zE4Kv$9~J|)A?d#~UB<}C2rt{0jD#*29PdrvPUnpeVJf#t(ghp^NEw&Nqwli}i)qXk zaRJ}4roEhiYZ_g|2Rva$Il&}3KKV{w!6-#K>)d>=3hL+kE0f>uq#<(u5%(mSs3Tjk zq>Th-;6ALKGLAE__7dtW#6{Nkr>H`rv<#-!(^t70IlXP@Q~XZrY%#D1-!OmoURs%3 zOud}&*W1hH*i#X*mJqwJT}XY*ybKJhMC=w!?YO` zimauFGim1X)wBgKH8eJwhM0&Mm_D5PCh4=J(>WyM9IXJKbq2Jc<&eF45LZvQmId+97! zVKnGklo@4(A9;i)T@2dgy?K2nd2Pe3gD~3_SqF`##k+o{ezg0i(7Rlhh^rMrdwtK$ z_VkJ-Wl(nJ2K#6qchd90FMpHPmsZm7iPLH91@@D~GE1v`yP5g&cg+BJ@HvN8ak&>h z*%hlqjo)Y&IcTq=wo>FWXxmL^SXgE@ims9n@C3|8#taMV*!MZwuz5UD_I<7yl;4Fn zZ1LMqrq1x|AQgFD6_!()f6T#PKmJ)-Lk2x`;xH4!r_z99!#IW!%`%<@`GtHE*FiUY zL1~A4j7n^2o6ph%X@r;0K{uZEZJ&jx$P<2)r@ZdgK+-fv4%S)wEwuJ>w1RY<9H(w6}UXFB86&bsu_M&~+N zo$0(BTy6L^Letxb^%ag(kO?W^&kE?-Qzm?t#73BgQKbY_z8HMZqnM`*#l;46=ste6GSh~(w)SUE%@MZm=qtJ zsO=4^$J~cxmc8h2;WE!t_rVA&e!;+g7?3ehNRp`t!AV9#8g7`(O9)4XH5rt+H{Lul zSP>RNpMD5{aT0NQ@Fi^+T;t-G3%s$WAd?4aY22H9nS9nvY^K53YRaT??{ckPj zBc!H%twTTOuU<#Iy6fOMUF3&OZ|YNBRc&3-=PYv z(tNb{*$=K^()zrCGi`4laqxZBFi-P~y)Qu{pj9S{tjD+Sq)XrbF-z&^($vYL>B#xB zX^QnuedCk45&<{Ej)xjRZYK4&+iM?nK{-v8uuk5n!Sit|&9Kjh&?i4?m^7~G?DI{U zW?YjFc>n*i_uk)e9a)}dBoa2^JpqCwKu>v9NoBjbtL>bf*)y|$;r_mRws-cN>7LUy zZOW@krb^zDq6Ixc!h5ryPb4n*m;z{2C5aR>$cK0@Ubq(-@r`?L+_)h=h$rHO&t8Eg z;fr5}8^?Qb#&_bTS74U+fwRSW#Cz*vKF0A1T(S<~wQO&TQ&FwU{;m@5a+cUz&_SmKT41g;g!it;Tl!VR;oVv$#1 zlXxax8s>ZD2g(S@g zPu%h+gf})pKvvk^q*fKS2g(qM_Nfhke2uuP3v90-T?1NAEuC#_6TFyanFQx9UP+an zfwZy2NgHbru-Im?Z!V)@wS;lOGTSg(JKEC}La$qAK1;VRUC7&9)^6WPn+j*?)G5FBq_PJsA3&U?e^uHFKL76@X)API?J_zVw%BN)KI@->|)XKJU9eKZGmeI3g3CZ2EO=nwRWS~)7wXa z&9np^;1)pJ$o*{PCN$bIURBU=tz;ZpnV(B5(=(X?Yy?v+eFZ#T<9AiFsfjc#ogJwa zBmCl%ShhODit^1Vn3ij#W4i=#v#=km%k~ZVoeXo4K`hHcN$|ggt=i53uJmiia2=dn zrSGgRgSqCx7P~UvXql~)*}^u62DXA*r%m$)_m}Nwt1M7}%i?cSYb7;Oj;?+U6yw9XEb4g_%rX9L_t88?!GwgJP+$7abQG8GEx5YW09rxl(5py2p z`vP+Uqw+W)1H*#}lTMZ&2qizd8d+p!}Sc%Kcf%Tq9BN??Jw)rhvI3zCay%u8cB z4z+!%{nS=)!tt-YKHGW~Tc@jFnlveUcr!Mw(B`X*(MIyEu-&Z<+OefiVHKFhxL%a! zxiy`d2Zl*Mm(y;NMy#5@aVu{D-pcmus{N;d`na81jB2Ex5FF?c~^L@^L=f3QIFlq zkGN51u`GChzslHuF4JvS7csU< zy;xqOstsx33O2K5-bhoI7#Ei()ARz&+xzdQ28_J#``&lc@ZbGqYG`kR5SdGB*vi_R zUvhUwUXkBgW$*WutLgIZUQ3g||6Q7446X7`8(t$v4yTdhCsO|lFQ%>|$MR%9d+uzS zJ%2XM-ME_OZZY0&VpHfgLI4Q|7{68~^g};5iFd$3m%s>5ey7c<%X&wQ|7K~2U;BeY^ z8`p&*vska?|z$Z!NlBBI0KW`$ZymEjWGK1%jwWh z|2p*?!R8_9SJ8aE%^Yy!kAF-z*&2T9%4B91+ZtO^FZDe5%6HSDzxYvV9XpUgcy(qm zUHs*5)A?WhBF)~omev7h@powAcp5%-A`QLpZ0bHdp4MQ7Z@&Fby7T$xY5oqvHtZqJ zvbeFp;UA4Ky1o4asS810dmqeQYjc`n-nz{8z7p@oUwR=Oc>aadd+az{{Dxr)SJL!n zpQS10sL78%N;lb3=^{ldV`1RPku?6(zeSP=q# zeQD&=r%z`;u*7iFd*D$Boh(~ibKzDSvuZYoQBh`KP}DKPeU7?@?>n(edR)8==Fj|g zWBQCA-xK*ixxO8@>NYp|egr>@jE`Fgbg#enURs5BX#rCdDmTG&H!%(?eS@hTTF^sy z&i>)|>B`6NVdHcmwKG3B4iEnLCwUxJFh${Lm_I+6F8%E1*>37a8v^rYv>(BM`5DrX z@7SS(X#|rJW8hH}!YmEDHzIUyMCjE5rnN9|8u2$ccxd|Eg>?4cex4UhR~EGmj4%ua zzJj26KwSLEPg3vEqX^*H8V07_1SdZK_g|$c`p)tK2M|F7ccIv zjhHQqG{f@Lt#lEZ^8BxVon{fJO6|4v^`^m7C)3a~r&901aTX;8)6%V}bm_I%pszpA z+a1*wo28wuo&F4A*;?9n{7CA>wy|3z@0>Z877)ZO(Pt{dL+SAMf0zz`?+2-aZ>9t1 z#nl_{zLT!L`);~^{#=@-|Cb<>yE^;Q(9vV*=s)~z8hHK`-@cY^gNt+E_&l`l5_S<+ zsIS8ICE9*%!`7ov9Ymy$+YOAlgE9r{9-=EcsXJH&tuU7k{EOmCRFbLwY+D+ z`$8YszAc8jiZ;h&Cn0k2_1~xSe|UrE%c%j-?u2oeL)}=R(iQ}wrw1k{$unotMJDj` z@4b^QUpU8v-;|bMaymHyYiWv==_XgMS!t7*CG8x7v0I;hn$G_Em+9kw|MyhF*44=P z7^loMrv(IDCHkPNSWOUv+S`%|v9FerD^5(N%hRcJlM~SBw`z5*uv#|9#C!`?g6967 z)cL*VQgc&p)?iq=g(f5R5=vWa)j|_&k(KjXAAXoFQQx!w`mZo1H_|HQR3NmLFP={u z2&)=cZEGGLVdZLt$$v84`uM|i^RtiB6vTpptkpT{gK%td0Y(Tyq|9nn@8|%lZfGAs zOf|Hy1&o$fbZirs{ULNp)3Pi42HPQZuigT-fW(o+g9MB7KoMVq0FgKe!o@TZ?!EDY zcu{~Qwu|xRWw=5tFXt2&G1Op?K=QrMZc|tI<+GQBzC@F&e-b;Ujr@!AfMx57VNrMU zkg1Du^y7+hih?Y^%`%F4RdfGl{@!o2-tV2Ym7&q)p`UN>qU|PvtSJOdXa4nnrNt{3 zQ)h1%C$YA&Eru1|Ed1|E`<^+DR>5?-^qb$L&wlnVX$}o8g-zW|I)`;EuozZCu+)im)hfb-&i!Ml$arv2JBS))EY}%w~62cj|&!>^-nAwbFLi zE={I0?|cB@qVX|3l^W4HP`kF71sLrm-eO_qB246k_o|HFI^WTXP;l9p_gSn3%WOjFE@*Un!~6$BuwH*cV^#^PcF2Ef$>W^UQ! z1V{yvOK4q`V5DcSU16S>MngmG3mA^Qc)nda(Jn!`A3f=RidePVw}=@<7Z{)~E~qi8 zAWOlN7$PPGR`^c56VuEmFhz#UgN=OlUMD8)-@iYb;}}FkF)*!Ie(^r)UG&W-$`QxR zyLd(U#wp^p>7G;IGAIMLZP9R)M`2KS{>FAp=N7GTRsHiI*YTX|MlMyYJbRFh~euBf@$W#nTf-Q zz)GooVj|moT|Rg&Z@HIobRz^k;$~C6`L435bnuZ6` zBD-|1BFH-PZ~vCAg19XDU_YmIkLFz!3bAfx0pt5D%$`ddGc52f zEu?woiUsoTJ$^KGU`w`%Iba@bwwufwvmBJPxyd3I0<49ZDHe{KQy+CzGk6^uB_C+< zlnAnlSm4-=F&*Q&78l~VHr-z1-uOEGNE7#Bi~NstVc=IREQSC+>QT%;>R?#p>3x(H z;Sn#&GcU2ra)VCO_qm8^<{9}G^EBVO`}$ho8y95l_2bLLIPto=q#(-<{HMAoD>|O} zIVjv-s7kh4TXxcL5#Q(Hz0buwYTx<3?jDC0fFP960Bl_Uuexo2+p7w>s`>#@<28gg zGi>d<^~uL+3r&DgR=ZYNyBbQKTVS#y$?;Wo` z^HyS}mjFMvRe)u|qc&`pTZb~MIXA!gf$`cwCblW0;+q&7}f z*_=mcHFY~p-@1_oSbf`KtKs6*jr2Lp*5vQsOf#p?r-rs3>~;;Omi;h-5I;)@vCjSR z?X=m`pGq)&3euM5+=jw;quDiw9hv41n9HNjP?t5d6+VYaSxF0*uB2;!e4plSN<+`L zr?wWhUecg$#etvMZhr}MCMnu}d(Mg`ulw~D*l7W=Rf3_GXb@)uYmHNUHgSZ>ka>ya zGIR>2Wcr*#Od|v5VucGJYGsN4#+3aUA8IDwFP ze3876NMWC;7pxow8;3FjH49E%{rs~uc>dGWI*Kr6{tjg#G;BtIh44pwYETG+091j} z^yTaHiLEqr>e;;gZ}zh@X%%{88ezeu_x=dBZ({rKSl+ra zn_>fj)-+mIS6B#`Mi8|+!*;Jrlj-(_GpW>uR?M+Osh#K-3u z!GOhz85my#Wh-NQS=_(5i>&zgpGga9ETAP<#x6_`@fun>^H{ou&~On=;ZClsy?1P!w%^aT z^FFpJ&P6+#|)gsm8kt4@g?CeRi(7`t^UrVjQL6na zjtsu^QflWueSSLA!Sf0UKSDE#wr)q*b!YNoy7c~s2-nZCEwU>eC68qmj%QBuEf>zA z`Sm;K^R0Zy(&j2#EZ64K?aSx+-izSqa2h;$G*u9O-MVmzAGFM(!Fd)4T2ckP973?Q zxxry$XHV0HjcAW`v0!j0b%1q^2>nZJ{RTLz{oyJ2>-cvJ@8%3I3X*EEBGMVYmorXn z89tk@m?nm~Flm@HnSv}A6~!?zrdUSY>zlsligk#1zBfEBpMy@T#kIgV!=>#^qhEL5 zTnl_Hf~@E)#SZkKPj>P>gOIUywXouT z@cXYq5H_X<630SyYp!&tE`=`D~he>y6Y1L2!_XR$C!c=gzWK;{qz-&!%Jl`M?m=yJ_f{TS|_iT{VaH$nA8K zmG3p|Cb(roL6){n7GY>snCO{Km`q1f@2L~m!rGU5e*gP4jo_;9@ZmK2Q`FLr9!Z@Y zJurqab)32~O_~K(%AJ&#Zrq{VpQp3Gd=1Tl!L;w>%czK-Oam`KL{P5}|M4HwWi-)B zy%0#^&T2W^XcRC&OiUpbmx=lH2CqU)ZX2mnIr*b69e)~3+t(g z)1?lvt*;+J*QK}KOz-`_{~y{6FohS-pi$MAw&t)W1*6jdJyD`hh)WF!fl6pRt+Ksj zab_VkcJ`$4zxWAETyL8E6`BOUe**!}BISROR>4%ag}1<<&0o3*(|0X(9ypjz{+Itf zZ#%#I+t<^Lci&4JXn5T~J0tNub1Wb%&?i^c(5N^tocfL&PWuoZEzK>a5B~XQ>GGM6 zQ}3q}Fu2cU8!*dg>#oD_mfFzLqJ2i6eV%vUVVmF8^u~YxzgTc#A%jJQeom|H>mNol z_F$SvyW+}+@287z{Q-@HgW&wBY_IVOnzd6b#2o(dU#IaO`~?~$^JuZ1VS6Ko>9D9W z%R)s3fmnA}J7a`j35|{hw8L6BK&0#VGpW+n&b+piuA+VMA=^Qx7(WMTo1-vwZZYaW z8+UCK8;#5#{l|}|!NVtD3eiYwhBf;OtmO@cpvSnOMFvPTO}Pha)gx&?G9mA2?5(C z?bF0JbtBN~r;Hf{YM--H;O3=C1o_9(5pdLn(x%`1BHdvt^cupx8wk+WSXk|13+Ej) zKCiO%TP1`OFFv21{oB7~q4`SsaN%E|x!Gp@hd*GhV-C9fXzH36p*=8AzJRF#%0G01 z{QvfE($a0TQr~(z&7%P}bLj@#tvAxq|1^@ue)v5!R9n-f-~B$#m#>4XhtlZtFXaQ9 zT3ASK;Ct?l?rJ~yw*QT>?{|9d6?hUDP{fc&ZI5Ew$Xg6i9^itb{YjqRg+{j&dM|z% z$F#-z1wIw)P<(HAlox))_1W(cyS(ClH(Jf_H-2s2kyqXS>RaGz5oCRt&ybl=efm?> z>cbX56Z^+WMgl{>cEYI=BN5}?PgIL&a}5<%RIf2dmG{eQsB*&x?5t#Cp7f+YV9wTHl$H?I-eH@}4BJ9_$Bv|Z-+hTyzwe~JQ-{+GD{vPO zT-hp%Y)8Cv?jnXmF>Z*8y2j`mnYcZkz7tKb0c;*X(xw?0vjtWjm-*HO40tY~L7*|u za6$Yrn0AC%nTaJr?Qark>i*N+0^+VrmY29*i^D$0RmA#YtBLu(li2Ze8|M=*o%u=t z#WoxXBVKwxzjwIu1m%8e(n_V#{MwYbOlefwb?1=ThUP4zwQ7 zyrq5$;#&I$^1_41(U;J~NC>hP!TUwFsxPy(N2B`7;IrFemetN+fn$R$e`_#xYirsa zSwtg*X@l}vxh@p1zyFj2Pdwcw&o0SonrTe6dMPlYtV`3>PQGDYdl37{l$i z3g5-8BM1;Ysy^OD8pFgk%L(j>vW#PR_=Xpq;ku%~8>U&Naf(;*yNY=}N%z$SxoVB? zq8#mk;Aj(!*jVRK1bCAk78ZxUgH6@35rjm%qb(eVOVCZLjLl8Pl4!W8VRJ6@R zgYh1&v+jk4RBCF-<{$dTv11B8_Mjc)qH71(vjz{dj9_OLELvdklH~LW2D1iA5rlbq zY+h8PU#xuC6kFB)UFpLjar7C5}Yg6RsH|89N0{n@#EP(~Xn^ZVJ)ewMcp8m4nq z-W7Wp8*K|H>~i8azo<*(r(avo;=B6&_vJK{rN*`wky+iH_4( zn$rMwwr;WIq7i*>iIX+*SOW}8FvUGEZU?YWG6G}LGA6^*2!Sw=x|>)9-+-}Ng}8uG zu#85GhPFU>z;@AJ5p!4;Z6%PUt*wnAP-GVT#xa*~5xC49vjT{xqY#8Pd;PyOC9@dq)QHq|qVMMVv0| z8gxQPI~H1q+c<>a7XodA_S%4O^29HlZH)M>+RoO8dK;$Oj#7Q7|E;$`p#{Wki4_SI zaoA^_*zRTDj8(9}W8Vi}M?47*8MPn&@Q3Ne7hlZtgK-o_nZMh~U&jWLTMuRYWcns1 zCejOx2j>9ucAl^-gs73e`8d~DC-X9`>3ohW^7LKg?RPz?t~$o~ z>-V_&&Xw_&-(Y9_!}K-4z-U8C?bl(n1V&$}u6nn2cY?ueMOj+Ke#=~HMI*Gl(Uhic zu|>KW4LdZNy4eP!O~AGa0+uBhmw9ZfA+&FS$=dh57t%Pt{k|7ose|p=BN&F4q1-@Xbwy+F?|+zuK#6U9Wf z#cOGKk}ZB)Y<*?npce+Jjc;FL0iq4wsQn!O+6J3>lkGF zW_Ma;A%rO-_fhAtZni!SojRE+9OU6aA^CJO#%CGk*F}yJM*0;Vu5-Uh8Rbq+QA3kU zMqWYTj@$X+cS4?;8}Xos2{Fbayms72++fzk3Gc1iv(y^wt;aa1ZDH=5ST?^qYb|b+a2#9&=(V07{iUNE;1kpMH6-D<{a9n?Wu=F z**-9>0`lY+J$1Vy8VkD3;5On2F_oYOs6-0i|n5T-_jZw%mEnCxofSBX_>JHw1RgC zq_A6C#!g|+zOmFjauAFJ_t;9UmhAHFn_wZh%kNQEfJK}6onDRLT4M(%%HlV%=s`<8 z^-hcuJL2+LObA@Efda?EH>`*oK8G_r-UU91Ct_9{>?WPogZ8iV;cj_G9rWYctxl0P z;#=pacf^mdq91jPdPd#r{x{bGUyC5?VLmT9Q^a+ZT>B+nPRd2+3erimUKC_`;))E0 z%z+)=4yQ9e2ZFwns!W6{?b_UW^UXJR^0YIW&Oss(pis*bTqFRT-50sUXAjcfxmWpzoQGR}rMHuqwVze`=<0K?&s8u3D8~tgEM7DN2&Ds#AL&FNYFilMI%@8>{)5`dG z8kRN)w$_=D7#sPRX119$v5M7--7l{e>}1Ix$t;zbSW2w;%M2;RiuN^6rX~IoxD)Dq z-PK!Q?-mFGMq!f}?6WQi2=8OQ2uuzvj^`jqg6N4nOdBT;s+~JIIhhX>apA;OK8+vC zBpy6?FwZ42gHf)25HwLv_~skVxta^g|;{6bM`p zs{#eI-vYq!48Fi1w8JEIjcLB)kuRu~qs zH-u5*qnO%^mQW+x-aO)6p?)I^0IseBR^S_@3RntC!D4ZJOQDb2rD&usqG_;#KuF=e zSY8IJ8^FjC{V`)L`Dh<;i^^@}t&w0deOB8vC51a=-3W8ovW74RrgD9aIyIxwM?Lun z-a9YYzZICFu|=IbA<#=LWdv{7V4?4OYpr!Hy(+b^B# z+Ne(#!rd0;hV?lZT$wrN3g;m%+hl9|vh5qt9&sV4!J~d{h^Nd2KE-GI9Kt4P)xd}% zPDI>VzlaC^ZqmDARpjG)vC>QC?xT-B%0hXC^U}&1a@W4!v17+FE$ksmk*B|J2%aJ= zeCrYQi!gmJ(@9qc&27Dk3l6@k#k5Epe&k*Iy^rg&y*Mx|>gcoKaVZdDq~@)H4PrgN zN%y{?)Q|R*TaXv8-^$}%&7-V2snCn*tt^dczW^u9tio^B0;c6QqP-bOjB^aPgJb^A zP2h{Ctd@!2#Q5}`bl{d_-Aeh#-->4+H#p6Dtu)Wro#%cDVGj%WjMGflTJH8YP>j%M zQel~Jephg$QK3HLU7U36w}`9!YuEzo#ORE@l;v2rF68Oq8D%h_oY*;lV6UsYCx53J zY4#1jtr=lm-iC-U&I2}@)%u4XZsz-%)$Z)*q(1a-eB*8+*xy)%CMLfIgz##+Q)?x!#j@(} z!FSNElHStaCGgDO$lva1cm952TJDedKF8P&KiVkw<9NW2xP_pcHlBSSmwiRdQlUk9 zOgwYflvt;;tfH%ZF21Y1k9vt?=Is^O6>;NRtVi5GN*R$)-T&%ZK#uw=bHyJ!I?RI# zvmLM!_3YBVwSf&q#N0&dB=C??^RahS@*x`7LZ{Q>D7Fgx0P z)1Q2jrYEsIg35nCD{;+jLkNr5uE*BFEd;bPS1}s=>Bku9Y)!*k;~12`nr3HE(_Wgv zb}_5y7%(nD3^=)NP~Rm85D5W&nXU#^wprcUg5g3pnop%qmzm(PW#wwz+Byt0b=7Em z86%ucOva69Ic&|ZrCGk`+OK|<8d3A^d-fEoTNp9s1g+Z$bUUz9)6Q0vwtlp*sKYWw z=GPJIaXcdB(T->fPysXsXg}^1dTn9&SjNk6ooyA3?eCHLeSdL-2U*j7$ zTrsRzhI5T`nPD=b@y>LniEoPZ`f(NGMmbN6FBJGK;EouU9c`-MLznS^=VdVpVsb<7 zNmM3{->p!;31LuMZ)fV*4?}qLSQ>lrJJ?=2%Bg}E)A=`kfq-ZQMuaUXeH=1@W@#(! zyD>ALZoc_0S_&|e2=n`nux*=dC^s)%Vf*1MwzkloMZ=(6Zf48%5=>JS)jzzO?x4BQ0V8_+zy4Q_oF7kT{}=WJ|MfqpUpd<_L}?c7uP&IjmbA&KSqmI~ zv4D_&mF%5g|$W49pSMviGWTGxeeAohro;d6_Xy3fhjZs9+YP7l34{&ARc9-U51Cus9;FR43u6>g zDgrs`;lD^T5?RVJuaU_-N80n1kx*L zm~4QF{fzr#KmF@0sPXWMIq>Gj#~%>~+*7!s;2NP$69VK_#`r24OY>JaJm@kuSP|q* zb0XmNshiM?^VrWrkcrm(8oW&-W4A&1I~qt^Yh`RdUB@g1bm+}nXmk#x&SQtu;h+9p z>K+|SpZwGRz|P)BX+gVy;AItC4FpahDaL-Zjd6?PJ<=A#B5wG` z37Sf55o6@nr`X0X?W8uA!YuCtziRXKd9Sbt4?pnIa-`EjIPd$YhxLs*hi`q0_fh}4 z|Mj=PS0>1+{egXsj#g&<4go2wEuZ2fDh^ySIDi|vCIR@@e`RWgauV7H!>SLd;vFpd3@DeMri zf~JxdtMg^Fv|QbC)oV=x0P1OtI%h!^-&Tg`X=DX_a}yw5#P-P&D_@)%s1|_?q$_VF z4AVDpv~U}%Yn>S1ZEx#J%U7JKiX7$kSo~ax6GPD zV6fT(n+RYUWJ18LE*P&(7zph&b&Zduq3^$#_G7^P=Ev`)Yv-yAOEX$Zm41W-J=)G_ zgW0>5rrzfSK^7G{-8PLt<@TkEX&Q|PwFX-I2RW2t0=p_OYV((^N?wuICe6x?n=Cvm zr8$_dMbh`4IG#q?nzjGA7t-R@+v(a{ALP?xWpp;c)8;|8_F#y;Nqi>%#Y>l1?3m;` zR?^x3_*t6#_y1tqB!_dHcp0G(n27MqQ)ipn(LfvJB&=r+rm?@`KoPaN*xJ&-_MdiW z4~@$&(|6Q916&a!$tZ)da9LZNjFuM-z+5%aY{T5758#8Mc-GW!^41b7d077~{?e;?|i1TG0+`ra@fvP*cQm7*Pnzs9y<2lHW)m zS5tXQO*h_Yi&5j(&1#lWmkky^R+!5)GHpAcBKE{}-9KlAr5Rz5o{>iP?(i{+thJO`zi#X(K&?>ElTXi zX+y4&-{0-I-N%on!5_Yw+R+YLL-^i$?mVX&vJlFmp~9plw1hl)P%TPr&f+2Lvr49BV{~)rmIi7JSnTTK3kn5wjDBeGpa?2YXygEO>fCVDI6H zbm#})PrdsO<P@>1S%H~sk;?4h3J{c1Y%vwuzR{y+bn z1ByOqsa@8pp*c;Xm#2@mD1(d)CEvUzg>Ebk@mAcCw_zN?+~ z;UFV0Z3V5WR)k2}22|j;$<{t(Z_Eb@=|Nd#tq96F?IQ~gwJq4vPuq@>Y`csx@Rc#o)b4R~F?OSFj&-q23@C0-F5-`I14|-Z ztsn0rfAbaVbYhIQOqC0$44}YFMU#H|uo!BZS}citqMUe+a%z3w`wcEMh9Jwd#0G`6qUZL3cWEio36h3R+>XQX^9i5=q4DlL|czI)eFXe zqj)`W@b=l0@Jp-d{I7nUZm?q1071EoW|oFKy8z#Iwr)t}c*^0}OV6_fhLynK%I-aqM1xp!vv@D#*A67s#arxysoPt^pz zwYhZ!9BIMMR3kW?H5tIRj?s~H;D0GzcJT!-lid$Jq zXv=g{W;?6+(^oI1&d=FGjrPQ~x8K3Y`9hjwaiR&Ptpqc*iM=lL>#&2h55{jW%^o?D zZjFA3Hr8^Q{N-=+skS%X{{-d{LLUJ}=fV9fe6U6D;2=!p&Faa8(`b&phm9H9!R?CL zt68=F73{b%Pi%E!H;Z=hLTrR40(M_$Bm0b7iyRBBYWRT3CGH7e4#CJYVQuXk%+cYz z(}&hrKMWxnAkageo)(c8#d zqy+6M56Hp^<+Ne=T`jFtz9OePJF0^K%l>{cFBaf8)vUNh?b~E7Y>QxT36L4$%e=3M;;UZ0~`so!NkKnqBxjY|-WlcN^FS z*NmX5g)ySQhM6GKJ1yXVnw=A`yplEbJtXMduYZHa6@twbw2L&5&SGE-Li=V8?$9&|&0j+{7-?W~EEpw(^-U^5V{%uv;%Ms51AGp&Ms^Vr}z z^NU}j_1cSly>s9rV;!9A#7KK5_N@-iy~?*%uziKiKNb;IIn{Oc;$<+cjF$g3Y!0GX z%_4*NS6RX~7xu5(y0D|g;T>*?H5dk-;!!p)GOJ=jL(h%#7Ig1+p4 z9v{YtekVHyZhrDv-hnX74vI7X@^5TR;H2V@KF*6F?Sn&ThK*z!UQ3Ide#rdL(%qG{ z<;s}VV4?u`5cRnQoNuyzCF}!g8%u4n7UqNwP6nU9Hk8)E@#%Ay`Q9t3ZvsrKa7cm+ z#ZReoT#GZBY7p1N2=O5n0(ZlLz^L7t%=~CwZK;<$np~&^@p`HXsgOS{^!xi zvJ)wIvV%DxkB^UMqm>$ZkCO!-)KtX|=Dm_!PjFHD%E{QlqH{3n4EG8FR}SP)?YEeh zt~NXe*8e;vEg<;-aRK9$k4ok~^H9~fktuTfX1lg!CM5y6hZXkGBZt%S;c-^UX4C2a z@jt64mLL#nYQc^PD_>6-gY7(8PHxfYf?<*wk>GEE zvFO463;Xb}aYA4I@%NaFE2wF|na=(3{d65osAW#Ek&$acqI6*FP#PLNfYw$gObP~m z*~`C)8deFLD)zk&R`9eJgSB6dML(Q+Ze2;Uw{D~>pPfN9o9(v)WBEvU?KAWp^T}(0%BrMtIm9l1xfwnZKBNHXgZ7%prm43hYefN~rJQQ}rmUqeWX;$VsYBVDQ3e z@6T0pjTmQpDF|xZMw7SYAc*P)yC(kTZ_pwgN|%1|t8@$6;5LklxVNRID#mvQjvWPq zhQVP@lL9|oIFLE1^tss3ly09nldgUADS~>in=J|Zo_!__lBRoXe_l9HGpZS8uT91i zfzj}Dr@-nFw$&`KCFk?B$SGfE(L%V||HrI}+KL@1l?RY!!SHl}wFt)8O0&q8nki2E zn)&=}y7KGS^H!C0KDuT9MC#+@#Qi^h1tw@8iv>$)I!vZZzx-Xg{Mwr^m2aghum1so z96|>et&XuVm`@mCv?R7@k46M^==SPnAmsTOAFIi zIf3$OT7u1~W7<5}F0&T{zvKpeeC2r{G(Ukt?@6xpo z--qt{EWOWI*<#CYTNAVtJ4QNBAfO>_3tIbX4yg~x43d`7?3!aNZC)y;RTkXW&~k4j z??EtS-^o*H9J+0A0-6;eb=!e`Xy-2?JVL9BZP^tL(okBy`5xQuKKdlhp1llhyOIsY zZ=lgNG;t)`qiREduK=m<*dd--FalE+IMwg=*>h|sd_B{46*R>TqoI26$3ITP&p*fM zeqb-!ur2^xeDm#e=@0MaQ?Ij;bQc!Dq6&+xWpJ|@AyPX+a}POMLo=(ryN`8Gx1=I4 zU>k_xTme#Gib5(@XSFj2>YAR;w_=xT83`TClbPIuCeuS3$0QO z?Tb`xe19KWbDs37-Nf0+8)=sEJn68F#c59^7l)q)=hzivirD0LtBoZ+CLI-8njxSU z7j#A3iuCzK%^%AMJTWhM@f$2!$*YTB;-^}z?#41tG0yyo`3J`ARgU3a#$blKHKmiR zduui3tCM)pfSjGxavdZ}dKI2|{~%|&x_f+EKzNDETJHQ>+qhFDKkfw~Szjlwq2m}v z<#_VBYaEe`mXZ^eC#SSxWVg(u+6BN4ojj3M#XZWmkN&#GO0+9Vn}D}=OFH)}K*G@F zIx5ht_Bp0%Bp*z>=%%qcP0CuoKE^fa611FUW{k#-*$hw&MO!KuJJ zAk1RY?_i}1q(w+J!b+d3b>-B}D%?I*#wRc43AfTam{;!GV1kBDo@Dz7nutdZL!hw5 zgsTr`MNO~Otz}mK*O{EJbEN$mD{9@T@0nw1=!H`pAAdA!a%uaZeQ+4!fR)$wep&~H z1>u;hj1oo_gmZn%S^!RX>N<|I}MxmlhCTWy&O6 zBvd3eByzmp4SQ?DY6*;Z9|VwjiS-(GH*egHs^sB+p31*C;p`a1ruCe`@*`q-+!`Q^C zch4c_Vz!nnU*kk6G+yU43BbyHBPaW{AKDLA9fO(LhXxVbV^{=O!PbnYc4_2SO{rD1 z1e(}x*9abVz$6WxI!T$}YAZ}Wny(#b6_nV%)4C{bLL_tgpDXzT&zwjHuf2*bu4^zi zXj!0D)XGU%`Jf9H3pTM8*bTGPju1(WvL1w4Bd>fH!CXgL{QLq&m6uZ^Cn~mcg6+_A z&+;7y^6~9kYB+)E%hy>jLmO)DGE5~WAvS>173P>8=p323Cbk5o4$452s{swLl3Gv9 z5i(Fbu)tAC1JE)WR_=w7b^Ch@b605%+aYZA8%225b6`53aHb|gDH;DHeU)uGoKCiJ z9>GS#N@^*0P#&5U%vT-z4G= z7DF@I41H)xth23gg*kI+ex5mmlX%&#<2IhB)fLCD<6oRn(4>}um&}uxW4Li;tcp&I z29hI!KJqT6E0$HfH_s?1Fv>jCkdSVcS(PrAR`$Eh zGjJ^YVwm^3@QYgT~cn_OK(18H<(96{De zPGvm+W}qRX9bocTkkv_82Ld2%ovOjP%9!j&t95}b&@F2GgCQM#2#Jm%$WnNNAghh~ ziI1(={&VZK8eEO--D!3T{3Q<;Mn|yg=QmWq95qC{4~*yEb%`z6^PDhS#*79XE^9!w z9~{lJY}X-$b3IB>5r93*_HG2_(4sE(dJxAJb!jEPfm6@$?E~4gMVbDk(9o@py|h6a zyrJ#ggRs9K`?FaN#y}?vvs;)Capyxj zyr8xk8__5g|B!w`pZD>N*t287fKLVM+N+pJ-<_SjmT|R$kkUh%^4Qp!+o;r2>Kyy> z&w*dkItsgWLGL)`14|4q-utYJFtJ0tvd>?|UZlIET*MS-6wF(W_$RVCxcfOD|KsfAIu+WZaQ ztBgof_aBEAaLNmoY5TVD%+Kx*nJa3ns)GT-Xyzajtpb}B3<0~{&Qq`2Sk>~~Fm^xI zP>*hfV384Wl9cE#qsHA1Gqdl)lpoNgOL$pKd3dXApT z#EQqedtzXj)hSQb$~F?P@1iR82F%zdcB!)2P( z9!i%2F!LwRp=VF=z6(`uPmMwNg z3UkxVsWPgn^H0@mjT^f**#jf#YTOz`%O;FgGluV5P#4c!DBqk$iTn*RU*{8rSgt0zUEX=d{DbKWA}IVQqv#j1eb};#9H#LK)s8;b_y-j{o?iF?&`srU~=E-B@ z*Z92}(1vZn2yq+CQTOm@)-KYn;S84=Q;i(N(Rcir)Xo;d7POYcMVXd1@^9@Ms0zx^ zH0nQkJary8m<{`84CEcaow`pRPschjvdrSa7TXBn*kH`sSXiiPeQki5ZrN__#eg%l z?P9*jnyd(m)^AR;U5`H1iDnhru$94qyikG25=?|qLfc^ft1n|yW*>GD=U6NOTfux! z2UM$7CabBDvf4{&_|(zVcW9J`!(Ji`VxDs-u^C46z+e3|4ZZX-8U>_bTVR>?RPa=R z32x^|dAGx~jSN@m8-9a6=BEmCO5gE`tSN;=Frj}y`ffB8hOj+@JsI+FJoKJqfufJ? z@VE+jG%%Nm+iiU;2%c=>n>YvrhOl$reky~YkN(|#>=>s=4!}enrR)_1bA2#{1Jy;B z?O#4;_$~hvcv1VAhAUihK~+o;8^izwTjGXeMFy?t3=3ymp92GZ7HbR>*TfhF^WvCc z;*A;;GG+?Qbf(cozJWQ0c^~=vtTW6qyeuP5_%=Tm8oVN%@y$Q#rSH4&y?-*Dzd`&C z@eMA~8HSJ+PwlKm80-o{@X;3$BJUrg%@`91mhu)sVrmnr1Pxh%{u)B~-3UK3g6%2| z!Z#x9m)%wuoSWw(Hz?Ankwo`>7LKfo-FMjCsbF<|Dwg=54`O z1soXr(U0>%4K2`PZr^ijo|2gcFh*=xV+*6<3bH)quaSc;Jhhd93d}(Vf~hVn^fHdi z|EWEVe(wiqb&10pup{N+7UEgfn94S|s3bcDD%f5fdj)&4qX+ZJuUW84-fhHJW7J&* zP1L6Wq57e}`hH&cZSTV@27R?b{2*>8^l2j|ETm&AYMCP3x0So;(`^WlwxB`nz0E9Q ztYa!;i))Yt;!ZGU5$&rLG}aU-s@bXyvQFB*k?)0KK#3R4TLe?x2)3M;6mT_g=u%T# z19U8h8x5jaOP|&*Ry%?$X;-(AtJT%T9I`S!$GozUzr_PUtXmvf;_vircYznXeW!vY zF-KeyBNPmY7l94CrKt^z{7okoN^F znC9Vf&U@me^|lP1@dN+#1K*1Ic<)tr-%Ja9rGl(4^GOPk?67vIaM1zn+#xA_lul#% z=yc{SbEH7b0q4LA7vc z=`OAf)VDVYNva=XnFB{p<{FfklueMgKW!Oz%c4Aq!wXC;e4!&X3rX5>TJ z5-t_C60)gaCks&6WfHb|G*LENdL|C%tvH_6l9!+mP+2!f1k&)0l+%XbSjJBw6puN~ z$=;g^+bk;s*vBG8W;|IwYhY!oM7w2*W4i$)E~+U^W!^a_bE~_03+&ng5)ERtTCx%w z3bKj0Y}vG-ZWL*<5c*pk=1+{J6(sdDV2$TaUWbpvk7@#)e)~; zM%w`!FXr!t>@D{V<~mXv>OOGtncSL~ddcPGis$+zm^chSlZW$-LPTpJ6I)?C^-M6g zp}FAU9Sxjpmbd(|UECUaE?9~AO(9*cOgJB$e-9eP`KOWXnk_JRo&09`tEjhi^LMJW z4#LoKJo=%DJQr;>QtuYZrq2HE+f6{aZ@+W=iW7kqK6{C23bNv`A+bTBmh@;X2JDtT zTCSL{_u`dUqTt`fUdu8+o$tl8s6&M58@87##y5Rvn5s!;S)myhF*Mz1<-?4J9?z6mW~frHIr{2+y4}-DXMVMyNE=I@uZBp7JSr+4=r z?x2q2^fl}gS{WiWLr=3bOQcLuX4`>nz1UO&XQ&Z*!)w_@#A!r;AV!&Ywec*vDp+c# zUweY9j+SIMLA5`3F_yg2F@)#rAdrsraHNt45aqb$jo=DFRtZ626WUh|ZCJ!K z!{d6C^6yu-`nxaJ0#$VRa%mr!${)A3gFfg7mx-{$=pGa|Do`w^HqCC&=I>Q2tcrnQ zzIM=BSDRPu`}*_O*8=fd`J3$hyHr^xC#C9qQ=J5Pth(@dGR`(Bvi-XH`^%%S5dQ^N z!ajZUw6P1y!2BqVr|Nm=y1E@iNCL^ut29@qN@~p9$F`n=#r_ z4cz%_`pCm+{a%;*xrAqd$*aaNSC|iy0@vGRMTwSa+nR563+_%SMk%0*kGY9<+KG^z zY$8xU0>dZh&)@=o_U;&8i=QVWtt&9P475S_}$>6x6$2Pv%cdkPa53yaES``I$cQ z6l;oQh%1&8^^5d@c|M1WIPn~LM!0zyCR6F9AS)IEtfMrv7+Q>P-GavU-aLwzaib2A zF3Jx--p8~4UU7?YzPfw*?soT82y{}3J>c8yHKKatCS;TnnPp*;6< zZ7d=VKld`il$q3zIg9qOeJn1r9grsTipQ^ej zVQ8Uz(tg|BJ^jA$vC=l~auQ?2HEEx~iNLDBvPc$r#aIvAGG5rK5-Ud#ysChrrm4a# z^NVeT#xdZUv%d)+qyeK=K?^kwwXXJUmxb=6B z)&jd>&7Q`d4wP7YM&##?tgtP5dEO|TSS<(D2DqS z?}D%}>_Kx*o|JYb(VXIee|C$0zo{)I$z3z9AqaMjvuj`^j9GctNQJ=rgZ%{7`5F$^6yxv zQ5An=TxxN`+5|@JRIza5`?w0hk914^QA7sF?Zjq_qsrUP8-*6t7u8_D%hyqd?L@{z zz_F=z1;2rPDuH|bZU6v407*naR9rPb=YYFo#q`?H(HEM_Su>8u!VginjjXaCCEpXc z^C0tnx9pwZC-5f5eE5DsvH$s8eCKn~`7Yv%1q!j$HWkZcq!fDl9CrF5u6SwM$UFC4 zesq6V-v#qlj34Djn7;8NpUA^_k#D5YkN2jrAE{mHb|HmsGLgO)yJQOWjb~V3Sm2tz zVZM*ccu|iit627K_3^#orv2tzwd}i9DD-@8?^`ooRz*wqjkW8ibqo!&W$*iGg+7vP zXAN`s0|!I!!(`zNdh^>9n!;zU+*hgFRLv~4My?1~x ze(QTPCrY&+P^cz2G8wrO#W6yCjI&)Sf2*qCy&7)ijiNJI)F=8}v47>Z%Q3(B=YH?L z82j-GiEp)5#qX`HWyHH*oJbQ3bkaJ;7bCf~%)2%(>l69a*4tfl%g1vI(O1`}Jon;j-~ zUEt580@3fOS}wXa@2F3dUwmJD_vP;Q>MLI^w|c7GTEI4Tg07vkYvUR(u6P$|cKe-z z0Fu~{P?B+zNRsJuCD48r44r-u3A^QGd4|`W-FW58Sc z4%Sz~%sR^Sc^TJd38Em7f`IZ}T)xvqU5j=2w%o=(0R8y3z{0|D#Yn(yzX--Mx2P$ zFL8E~+sE9s5ue=r^({2cw7jX#?nZt}FafL=pd6RGA#-x8V|M8CnwPK>; ze{r!~Ci&q0O|=^o>%JQ#VuUN~HhGWXYf%v4`ES>4g_=tu_+;&W8Pp-DHT4z?U!2ab zpJ{~}VuTPlXn0lwKUsJFDt#WKXK9(MASz7uTRu-?ooNkgQ+ds}EkIY|{;V^r9=e8bWrk zYT?UG`!T|Cq!$I7L;IhJ-R|P=@Z*x$>rPcFp~ah%&CNMp2VJ>q133|6KJ`|2c=Q2m zs{8I)@449`@>!%WOp^Q;18()cCr`CP-Y{G)VB-_`T6J4;t$T)7U=OzdgG}e| zljdQclMOzvr=pvp_OM=SuLJg{eapf^d#`}yz46?jbJ^!O-?y){=@PNNBD8rmd?EfN z@AUvav8|bF2zGdQSN%Ob(&oyK^GSe!Tboh8&RL65w~|r*&$z}{d`CCqHO)xXLQ>N; zbR*ou*5 zO-7PRn#&h2Ymr=@)Q8uqgiF%xA;#UZCelu7l+{84wt;s!wX)99s%9DY_Q>F2;{&c2o!uF7xT zYUWTV=Xl3F+%np=gKd&{cn$*&Z>dihsx@ilw$3z~sPb25jhvGkiRTZTYb71cD~}Ec z%H3N7b&&S&x&x|~k1B_9smgh&2zj2qsfdO_G%RXlbvZ;b#6_!iM5~ShT^Zdo2Y(I^`R@; z-@($>yLo$c;AsMk^k*u?Wpe26zk9}ooIVmF`t{wF$4e!(l~>Usluh5EwT2#*^U>Jq z1%u*juwH)so6HY;whhVSj%VMY)*w}vBd0nz&%p{l>Bjqd#+tI}5N8h(fTSgTV?`nEYB~=?-P|1(uG?sesyhUTc%SO8*MM+}O_v&ANTf&*l2Jy^) zx_&GAi|@htHM`=kCO2iC`Oj%FU)gVZe&&NMB+W?9YpIe2Q#ePo^mvF(w(0J;n8EfY zg>?yv_=`i0FxCY=f4=pX1VlCO_Vz8z;X}DbpucY({PfqYRHkI0zi-+U=3G<{>RL}f zAYEAqFp2?p9`(?1NS?pLZEN#Q8__+{Lp^IqYS|y^?<6CQH5ma+?vH=lZZs zyt!GF;r?0UbL)L2;b$t3oW9unW@kGv1m&h)@aTA-^IBu#=+W>OqB%iDdm6(%MVb!j z$R`{Rn%$fLF>oG{M5C-9tHE<>fmCP9rMUa07{_fx7pd^YS9 zB;yXq-Ezzb>zP*CE`Iekd^W{I@x*&qwcNhj{xbZGRst}kw@GhtsBK+Vl)S^Sj^GhI2yhrxO!+NA@J85FO%zoC&;^YOV~&5FFY z1&md_Y@`zVnlR_#5~{Z^N#E2w>SEwv}$ zorCNl;YphHE1&peg@E(NZ?rYxRYKY$xF{>N;mYr#GNNt|vd%*A7msIl4gSR)JsH&j z|7*02z8h{NDj-Gapk>mFv#pba_(12k~5z2&TnmN!|VMtu3CE& zdNK0Kfu(oBlgVd?&(If+wO#6D%}5`(2ekyol-#d1W=DQdL)&FteHnf^8qr#(S8e9d zB*XgVeMY3&eN*?g(53Lerw%4V_d3D@o?`vLyC-7BWo0O(luO=oWQ9Sc3h-B-=Kb+F z`>)D-3@4ZTpRfr3ASXCj`j@GFe4TN6wy^iHE9W`u;cWgNxSt4U#q|DGOF$`!Wl-I{ zBtKul$x_-%yz`{+4deMww(|Ju=e#+RAHR^0_QE;6XAMfM@6Kzrv^*QXct4HYXUH@B z?xL|qTh@VB6^U-1Zg<;q8dLdSq#@cFQ+<2Nz34y7%x_*vkA+!H&cmaHHBv%%XLKiN zmYIoO=}Es%5orStEnkJf7a`SlUllHI)zLO@OEFG-Cp%=*8+u(AQ(jN)*glne8ANj4x8%b}U=cKbH1NlY6qvFI3?B{YL z(ZLdpyJ8+);773&FV9DaezZuIrl#g0mslGF?ZWCiRq(Qw_z1T_*12o$O?;hiX76O) zu@>*QJ;G+4EXBhaz;!9IL;A%swC;25DSp{=Kl9K`SL^0|A~kT*?0FP1i-sf1ATR6h zo{<~qNSS=?FmSu8PoC27?<*`Pz{9$y=S$0ekN|mBMqE+{EXAyqopidg*SyC{ zJR+D$tbgb-2W@RA+eKHSwr8y58h}69jKs}cmsj|1)~}HH8Z2KV*DXlwUS)~bo`3Uz z&-OmsB{$UV#J*Fu^tFGyAWe&xp(Sg2W1D7>proY|-Q&MFr%xrRvvE^&Tb;0rte z+YGGWekCEY%H-MtxWH}3^Ls1t!RNgLd9xPTkC3nWK?XtAuYT=CNWw1?{hvW8OSCa3Vg(Nh@-rVMjS(-)o;PgAQ) z6UGV(W%Rm=_6c>3kYejQoLd+RTp~F?KVN{zIt(m7I=l`(@{g<$>Q`?nbA_F?9S$v$ zD3Uvyp~I*010dtpu;K?G1xJ&|OJro8H$EqQ;a^x-sKGU#DbXo#i}rYNxmRx?XC&Yp zA!b_6|wesxavQPZ+pX4?zqpOOjee=e`SMF)~9ce_)UNp&)##v)Y%aSE)dkluX|u5@!THG zwC^qZfi+(i0_T_VE)!_3RlCD}Iaj)1zxn@uWF_2-+60{)tUmw!?KM%?AITNf#c7SM z(^#BlU&rT~$IEB$1a0X=e})Y2Ghb$$NzDTKCORaM zvw@G!j(-hn4s47t#u`UFelIRC#Re(B?8W|9%5_Ei75iZ+`I=wyv%fv}LpdzrNV0U< z>U?T;SDuqxkDbYG5hga*y?gre))caqBq5eH%~XsUg~sUrFtPZXaeP2 zg@E*z-N45kYfdkAyp=R%HQe(3J*MIR*8S>08h4yU!a3!~pW_;R(8}c#fLpu2t7yMR zoX)gNZ7P54%p=#9l(2@ls})LNiu1~zqczRkzPb;)1!4a@fxmTo_sDHHF7#gJri$F$ z$n>A(g2~I9t#Wt1F0|CDOZPB;Nx~6w1=n4%6U=+kw}GnyqjC^6fSQj~6^7-e`=b?7 z)^;m#uuz4BrM$4m{&b4Woz-3L-IxCsbnO*#yHL{#MZd8{x-RqY`rP|?dS`hkZ{m_! zQShnGtD`L0U7d>O7k8Uo_yAXfL%+@7MR+8+9&Sk~6y<46BWS#B+g13)W&2-)g{jH| z4>q)>)8?B7hOcdZa=$3-Jki3Kd}4)0*lg!wb4&<-8cdrK*b|}LT+_|j?7t3UFE>pw z0FfVCgvb8hq|JD^h z;o_3IWL~Gef6UGq!d?m>Wf+&zz^1N~$o`+zg(SFMWr>|>DUrDWBY0=~q_%f|I!eAed(%;4?34)PyIvPPb&@QhD6w>$t-&&a)qTCfL9{v8` zEe#2a)xHV?rcjt5ZA>R9BqV({)1Q?)_?ry!?9*knFXYqsltF|F>oPfWX4(;0kq@`x`YRh;K z{O9@PV1tXdJA*tk{YOapoK$5Pymps`Hz#v=V)193+D>hLTcx{9iI? zt^0=-5NXc7LY@ZPk7?F?WyjIdj$o05Ok;lJO(4gjH5n7egAE4=o!E* z=B1cCGtx+v?k%Jm@=kbnxP>Ubf%OuiH72Orq25k#iwn+Z>1rVd8*6LK{ENsa4LC{f zpq#dXNGC;*WR@uwA9nJg*DQBR828hl*6fd42;@grGuTHf}-ZH|a6OquaL_ z7mnZebkUN4HkA|ry=1kN)0_DmY6n>`Xdu5`ZFj!NwcCe=&Q1n2isNZd?{9zA*WmH< z6oWSRE-ELdb!bTj4L%*oP9Sj{YU)^#u6pnWmZx16zvssIXG{p7Zj|*F^&qp`tv6Td z_dX1S%xa*^*e-F)ANQ-bTNiL5I*%cKA60)6$b}I+RdYBj6t<$}aC|V0un6Wx-|r2X zC9jwcRk|uEmCqQF|5ac744>I6S^@*jS**jO%aBT3b}-4lwch;4EQN($3X^*rDvUcp z2DH_g=1VH*MEd6ShL}%}&{AJ6neYCo_1^4r(ED`z!{vJTrW4pKgbTvc#v-FM6ck}l zuNf5g`YV^3VT^$y`QJ-6!VfkgZJ1k@;n8sM#&$;(=V$dv45I^6a9R+tG(Oi@r)(2h zqkgwJ&WE8$eS$J?$vWeBR41&Yg!a(8!{s3Z`w2MO)^b1`Zz5C<56Td5>XawgVn37* ze9*sB2a6!Qn>lyXzGHCapgKqobv)WD46haZIE!!fenf5KIrRK4R>+MXIVjVf3ohKF z^HnS3`a@T#6&EVo_L*+}0zR;?JK)y=Z}{GAnEfE#Hua(JRW2zz7Rc5_NUdWYcydgL z``oSR@y^3k*220@ca#2p%aLQY&b0;^ti49Yd~X|4&nZA-8<+=}n{&s zyHo^e$?OV3aqm-2Ar3o|>sQ{zlXS?tHIX&)|-o?TGnJ5ub3|c?&&d7RoIQVA)YVXi|sXAPgeK89(G6 zavr}^&Aq0f(&ypcY_Ma;`1TOgD(kOQavRr4m$&okyFzI9yByP?Mpgyycmo)->?ELp zdb0?Ar@?c>Lg-H7tC-Lz}tvgb`qMyrdV zsnYPDQTrl}gwYH?_s6vYSaZ4kv?ktD)lCo0WHI=C9I2>*9MRd*f5y3oe*5`{GvvL; z0z*S6pa79mmf_YwfjIrQVP&Nt*K0!A7if0msebGb<6iCUttY;Fch!wwG|xReN2aEF zrzMy(okcY0tJRa2Z-uz1JbF%O+&QaAEn~4^ICoEEkS((7j*8kNJF9|=7P8d)jvp7Ssm6!?8r&b++*jRzWjLY`5mIf zD=AZA{|+{I(6YMYNHSw^weCEqK_y0@mjFLZ;ytN59@S>}P~ZL8Dm+I8^h@#9Wlo$1 zKK#&6C|kLIl&&e=>q*{2Hz%KW?(KJ$+k#e7BB~O?m8E=YaLM&x_;DZ+?7SA*Y`KpF zQme;B>!zGNDL8yfW6zkV8tK1TWxpNV2uDq^?%qhhyQ(@}gwAWAqr?b}xP=b_d49Li zS5vQ9CEMR4JR7-!h=ttRmp5m84*{5f9mvaR?!ZB@@A3!RpLAu{ew9|d2L@cR479lr z1HD0H3lma#zVlYck9-CU=h49H@W;@a)S$Mr`XJ!6y3M$8?==KX&R{EfH+|qV$2L#r zXgHB}2Xc6z^*B*;-wZspyKuYnDONd>*LUtC^mh@y=`ih&GFgv3540n5(3-8Aj{?Kp zEA~h-fvVsp`~C2kmC>%r4bQSymCNA&pzE;>&eW}}1?2jK^&w+Q0L9IM{a#Thy_m1-)TR&&ke)Atj4zXexm710fWIemSUY+71gB5biV zdBq8b9fed^nVGH>{B7oJ4BJCmFn5eR=%+OK)rTDo9mexr{CI~?NqcTP6s_`RE!o_% z#%qB{SENMERYfRQZ;OP2>kb~e9Z=dt-D=wcY_l|O;q^HdMQ0ZU?acsM1E3rUE5@QY zsOI7G7cXUA7AO*&nUblM_iZLy_+AJv@{~V#GcLFmJo_xBta_6Dt4C$jn)G^3T-7X| zu_P;<+Pah2v2!isb-<1Qn-YgW3P7y#G|k=DJ5_g_bQ`;m0}=oh6BuYRe*fWbeKeOoT(-fCGx%aHXe6oC|zMxtv~7`_^&?JwJZ)L zJuJ02TJ=6f3K{3Jsjb>8(|Ft4hF&M)-&JpTM@W}yu>+|K>tk?(HT3Zsm{$NX2i$mg zewlT3r;e|tZG&b(nwYt>n;;B2M{;=%`WAVI(ZR*z_kNNODL^b3l2t+oH97EjHFbLB?qXVDxE;TO-sA4Ajv;XjMV` zE76c+bBzh-3sC;!jW4p2fiL)>3mLO4CpnvOQAOnHWz^gyL|Bfc{q@o$cd{WOfNM~@*Toj=j&vk6KX_91T|q~ z6FkUh1~YP+w<;s}eOJ z8AcN%cozq0kNjJlWHy^}{Nl)mdl&>P$~ubP_qL0}z>$O$KW=zK6|68=>J~eBDYZ3S zFBF8!&Z-pQD5bRZMy}k&`(2r|(~qP3{9Xjdr6y;$&%LN_WqjZ~(NE)1%FhJTM~YIN zf6l!$LXra3f~WQzE!&QB*Twr}al7+74}KHOm7>HhSt@-Gb`dIH%57f6lj4%(AA*uo~A0x0y|K4XL53mRz-Ff)bi z9J@WOk^?DW8&ng+v$Bn29NIAk8 z$_d~y1IfV`=ug|vmovyV+cSD&3=B8-3~p>NFj2EDFp)D9ZB}+P5XyVJKDz>z-1UA+ zbtp7FGrBFY z#E7q|rCr9?H(x^ZXLjW9qwff;vjCVLG}@mUL~2nhNS91O;&m zLv=ES&2oD+_NS(mhqk53lw}=S8ixz4!?5<-C*?@^8XtUZ14r^FjcWmS=bACn1VF{u z6*)TJPp}DGgrwCu8VoicS&u=%A@;xu^Yge&Wkqo4&XgC)13Ia@N!XY)-a59UTOT@P z!0byxIr;PaJ-==iXG$0CQcg4HzM{>j%zYW^ic{4j0bko3p9-Fo!Oc`!QvKD|yCHCY zatt0{iF+eiqj?KC*2sD3DbUhJ#8AX5hgL|ZDa|G@*ICGN(<9|lEl^R{8 zkOGHC$-1kaMc^Z69F`|(-{$}Gocroaqo~p4UEsP{BOwi#!U}u0jjmnquV@0z)<%ZB zy&Q5L@}Z{fwm2{yfudj*TG75GdX2bA|3B*SXFXC-w@x>P z3wnqON+T5@bWi+lLXS-2@oLMm3{H@1WLf`Awc8uu%_`&Xq3|HGj*|bO#2k^)U4;U? zVIBnBoBR8Tva-9@@atyrw2r`M0|*TEN4fN@0I8O<>_{fUpq+7Ug-VTx-EvlOIs4&< zY%XYT^l`_?9Rl(|xVcO)%QKJktGv;A23oY;m#L42onsNCoxR5*(vYY8AM~%d)rX_M zs-t-UURk&9zZ#Y0ORLYcym{t@1)-j!Xt`93k&KD2KmVeBRly+j;*f3u^Cl)E{0~yQy~Ru#oLh?Cgc8*qZh%e7=t7&(tob9{rWV&s+=+VuE^s zZh)oOG@)hB+0`*$I_>K)xRK5Rxy^~;LweoTn=MYe(#+eX<1(d{vqBjYEwm=YK`z3a_>MM!!k3$WINJOe z$gF6XDW3?YY`XA6?rb+Zw>>8wFymZI zPE9cGR5^%qh4rV{?A;4du(UW9&WIHJX#Vi<=sNg28|jBb;X|5gp6PL{oX1b)z2ruV zcJ}8J^y^}vc*ugo&eH>$V7a+%j;x*6Y^OoPFk?Ggb-jU&Z_`DVNZo~+*kKz&WuP+a z8VdC4MbGQIr^C+tDPaJaI?Fvn3Zm!^4$rq5Y25Pr@>8P?fkH{0AFhjh&*cp?0o^s1 z0rw>CVbA$nt4V{HVvwSkC-s!MI1{L~wDwxRG2%+S%@ z$eRqF{l?wtfd!ClPoC9RQ zm=rYl*!zC;bXed13hQrHiqctu@Fys!SJFYM`wRTg;buwUbJ?Zr@6=i4q%ymE^W zm@1fBohnl?1|cde4nZEc`4k|ce;b%jy!Nab!EJH?rZ&_R5g_46I_VD`DQ!eNC};C=l+iupYx)jp@PDnq`Yz7{H_5 zLEjKrin>kjZz0IPoE8D67n`#Z``ZWW`9oD`;@Ad;8#|Q5R8=|@pL*!HX(CQ^5&mN? zn9$?IdGYtc{Q#zR0F^x85!BqWYGE|0ydM(UsA((gNUU*8U-yn1jgNXb`F(ryHLVlO z+!;q4LXJtv5mLS6E#Kp=k1M1=qL180{v?<1a>*e77l+1~#W5&JH{v4RZM4PQ*{=6P z3L+-5$Ie*_I6UYQ@GN&|j9ReY;iu^f0aIkQ!3CR#t^dY5IN$N{O&`d(O?OtAlA*G{ z8l|0f1cXB`?e3BKpu&PRyDjBB+fs(Q7rKc_&BSaTd{3@5Y5~T zC^^rIICLl^jtPR;*zx7aHTpV62wPe*&Nl_uBS7`5>8P?H*JOAbng?%SLh~2nkrR&tJp%?_p0(0;jqOc3=UOOGxS;Xc`%qo( z1Y}10ly}RUz7g+j(k)u&HsG-bk6&>Ea=p*5`I(ufF-EpMYM}DDm zR+In>6K8m(g8KLX%cB5wjfjw@kI?+CTp@}BUu_)`6~?0vbhP&xdsH)4;Bg?|8_}CF zY!10!cX#h}w#taGGvL2`ZXuY+IXo;_>%|FSxK2_H&OZwpY#JTg;G~X?Wx`=@Z!ANz z$sL+17zN%g{mzqDsV_#A2qFrMy>+%TF>W|%FyH4K^E7bi3{Mm=OawpZMRZ5GFYQ|r zsBM5pFZ+Hys}#f<7`ylh9;K`KZm|ia;iE+9yylQ4UMqjj|90B1PwP#g*4oD6z7=QXNl{*YD4O)3G5$=4(zD6;Z$Q@6X#tCWv3Su>tm(jjL;uPk5QfF#?cg<*n#vC~Op<~~?M8d7q zJ!DB@&|73g?+)9D0blyzL3ihhs+pN0?v}qEw;OkADo0U#-2N|FaLzRTnP|0x2+ht= zq1tDRVs@VkikJA12CMk>&PE6Jp`Jju1Tbii_9F~Njs4RnnfguE8RZE=mmtBn#yAg) zR{qFO7&llv$Y3;lPpG&{5dj8O$Nw@zzp4td(OrY?onmQ&5gkMgDh+>Y<5&ai(LDO6d$PAJW zL;36~J^QWc@e_vvXLI|7T?pW+z?W+@Wv5Q$s|h%Frx>r=jNqQV{V5%FfisvM_K7pLI}1dp zRVvn;8KhOW(oBpu-fZ752#G?DgVvE&TzlQBt^WdN>Zh;r(OT1u@-5GS;2klC+5kD+ z`d2qde0S>6Uh|H3Ykg`U5A6fisN-HLJ&jDPjtyBj$GM~O+&kLsp=NP6XRoBGYhZVC znCCUwnAH6=hA#@Sb#%f@nys^aVSkb8xzgrxKCKEa5ApmcGT~RL>MU^90fL{hHyjT$ zyjkcRQm-o@qN;BySQ?XWOV4W&2e*FsG)^%O?7@&OWy}Wm&+PN(L*_s9Y#4&h)*;7x za~v?gK?JPDiNx@%SNLo;i)c1u zelO3N=pR%@>zk!4nDy>4!<_#2NMW-wA*za`M~8i8viXU+HPP)x{w%2p5O;NDBu@2K2{y=ecw_ux?!Nf8%znzmn z;ZxiMdCR}qX=|4Ju6(BZ>!}4R1%d1B@2OjJq*i~7kTP5r#CN|XreP=sIPU$DTmg29 zCEU!1YleY5{cZ`Ap4@?rt|Hf_F6P*1HN*o8r_l8u}$#Ql#HmL(g zz_jBInX$+Co-!qF0y&yw%LM{LKm8X*W%bG5s+skCHCHH5>SYQLhK4!psJDuDeNJcS zC2eoG4-t^ljrun{d+hc!qC2fHH#9*O0f!x_T5$G0Q0c*v6M`}H49Emn&BRq9BaT^y3YEr?TzXy<+W?1Zasq%T*nI<_D?r)s5 z10hxa@JG8@KOdp0cEuMs*%GKh!{8H8-4{JNe&N~E9hhlq?!9m~&#s(OPWnt@RqpmC z^|D-w@||{YFfv+(;xIdlS_{GtKx{hP$Q<T;(<*``i)jy8aMqYwV?Kme~umf_*KssX4RUE_p(xH%fMYesr-{j@dB1Pr2 ze`Vl96M2WfF9f@j@AHh%Zqb(CZmkR<%$C-o3MOM0#r(ML9aLUbyD0T=@7{W&a7vWL z-z}a8i^)~pE{Dbv0Zd!D^x61fNwLrD6%noNf$9ghx^vO+0Pm5sD(8Y9sfMU_lfO35 zo~WK*)@Q~cN@azvni6iVA(1E?K6;NdXX&!JShfPLD?!fr$0(b(9z+p8SKib-HSgwP z<9lo2eHh+(75{K0!P})*DL^CM$KFFTN5Pc00Evu|ZR8W%93xMrL?e)$ca2Wi9?`-xhN?Opy< zH=R+YxNhrino>L~_|v@BFMB982Yc)e?>kk47;rJ3k#o=A)c z^)MukwD=9?1c7zv&p=F$FUN9%Z14^rx0?3z{sq39SbJ#saUrOnJr+daHG-g0R#?_U zIzh4X^5aO}WwJO!=U&~P!n4LN_!9byA_+FzBO237F+&mEW2~0*r;9wGw(L9x4||cD zC)F$6 zJB*Me=bstraq}kB9>)$Dn)m!#?<~RnJm`Ef?Nhk<>~1*Rz=r z!f8ikcCLpRN^XlSwT7hB_C=aYw7quqV%8dK8c>%^tFf1ub|<)UX@%8e=l1q{xf`5 zMm~sd9ay{vZ9SQ8Xv&=#*s*gy@hl1MN@-6Q?%SmA4CPpSoqPsRJkRv5zH9M8b#Uivi z)re$Yg*(4ESu3E@6vRMtg}3;^XX;~xUjIb_G6`PS@mBF(0e4B(6{*G=xPJZG?ESUD z`4DC&lGa{1D`kLPLx8h5g&}r~O*;-y^%axApfd`fjZ>?VLo#*H)w#bf*JAsg;>iO| zg}^12XKG0;(G8)LQhC9^>qm!jF6CK}o?F!#Mfnp*8n^PeQ4FuC!Q>>x>l#i=4!*&k z^}z0gYq?%I<*6rNA2Lyxy;1cbvmoPWM7dKL-w(39s?2xj0EI9kfg!JwnFY*<0flKr zG30uW?j2Nr%FbsLHUm5pyKnT9`(axm1G}`jGZqRZf368M3l>S!DYsLR7}Rp{9Mb)F zShL&*&=_|*c{oWHS#t^?BMs)PMwo2s^W#<>>M5m}xkv}twrYRbCTvO6H&n^8VQ%CL&%o;7OBn=JpVYk* zeD0#-iHx|Ca~0Nh-^Wlmk3aoRuTQx^phiMQy65W-)y}oF_JwcQUqzM%@_~I0`oB7C zwPuvgotC6eeu>P9QHl=!sw8Izvl^QG^bctkwyv#BG5w_vT&0BC%;U}**QzPyGCQ_8 z)E|EK3u(*U1Qs5wYJqBn-(fX|#9s&Vc>OATVvIhEP_-}~0rPWr8?u=t3tc-~@>Ct= zaJ(ovwf#ex9O^l-TmUE?ZdWjW9q{J~Ix^mpBChu6yD}g4;?4f7qCF9(>0PB2%(8Ra17L$dpR{1`8OQd_#+uS1WiU%Z|Eh zU#EI9iM>9vD-IG~2cpT!=*vah4crc@(+(%I>#Y(9E-8M|kBs#32#O%gkD9mCNqMOf zCrxKA^{?EVe9D_P_mq8eJi3wzWAV*HaQm8Vu0HkLF(rC`cpwYyPFA7%e2-3et&(!6 z(y6VMA-Q1lcZmHN0XNPn9ymfRa7IGjBf2$g>&EltQwxhMTxAeffp+``l*0Tjr_-hb z%cDcCjp(O{MqfIS=G0?ZsSEwNy zp*QO3N#Lut8a^d8Bbr{eHah0Zk9TVjz;}fEPBhO5*Bbx>N8CQ5vhTeR5m8#3WV6+7 z!Mm;^DaVZ7W5!mqAe{Vn-y$LFqD;oW)SQwD9;yUmlpksQ%x32$(c4Xt^st!wjOU3G zcYQ6YhJR=#@7HbV_~iOZ75*9@O1I6fr(9URy!k|TKE{JeT4AO9Ow=I7*9CaIP)b>obthc-Qj*{|q&jwaQHAcc5Ogf>Ry|)aW z*Dc&0lh!$2Skn&c@Q(59XfdHUAjRcU=Oo)K%husk1FG^uI? z1Gh}#kF8JWjBU|ofT}oJTa&n;6G!;aVhEL3vm`vkr=oLo+`$_0JD2!Nc%0_f^*jKrhRvUGH^i zJN}sE=Lt>=a>wI?8Q2#_Tn(&~Wgi@n?Nitce~_@A=Rj&@z_|L}#ok4obUoRP{TW@! zqx7XpZ~D%GnH}uDk)Aubaq)iE68O!ObJ(UiBkfr)i|a2Ol)9-&*-f~yZ^$jPWO2pJ zX5Jl=@XqXgIbP?3@C`aoCHe?y$Un1)(sNP<`X^JwqrDtmYa`$#{KC5l3++?3@{WI6 z4SoLG8s4wGL?mA~AlJxdJ7xU*j0V4KMIW&cVBJJQ+wY#Ln*Xlm2caE-5lkF|3f*jN z3P@|Zfnw|V&9Z-M#-=T`T`d>N!@mbTm;PxJb9N*s z+Iq5SQr(dCjE%WqbXum6d{O6zdht}>uGN@sL?KmNld<2m8!L5#h{6o7z;b9WDpyxT z6I5UE2|BBd8>gVoxM(K3^u*)r%Q|NNMffa9iiNBXbdTI&==-ez+FsuoU6YL!0?pO` z+4yvSP3RAa{#E?Q>s}70_ff+KwcQ%*PIxWR^Dl~6A8>p~B*5oq%s7{m1T3q|5)KAk zcI_RRz-+|ZV6{5K#B2*QQ!wKV72DzWy7x}PumC1c=SO}+D{e;# z7^vOR3cA8V@Zilb$?UGfj&pw_>MDM<3%ECq!5Pqs5hYKReh6PIUL7kl|5MVwKCzI| z6H?BtVdi&3_s+zUmE}b{=zylGnZ9y@RT+34a&Uf6vwBs$?rqO0YLav+kF4!k$YvDE zKkw8nEcQhGH=TK4MxzK=f>aJ?Jgmt$63n**4M=N!M2*z?sNL18 z$rD$z^XD#GSuhC%A_FSZV1g12`ePa{n;DW!dwwiXJMfoZ%F$j>1T#~f-~{m;quM8O zK0&&!#i1FCq#NO?@{xf6y;Rt3sm(2n?Sd_Ymv9Svso-J*suyKEx>MgyP#WdhvxXrE{4%uzR6J{Bvz zYQGku0y-~dzbWbyt zb@IiG&ZZZOk&s~B1DUG!H~-EUXSnFCA_iVFgJZrqQ7+1Z`t3$``Pxf4rRpT~}2SRMW6EuHVecn1O z?-g{Muj7Jw*5_1h=+_k(ST%7)TiBMcqfAO+QqvMk8?TPse=bI3tmyJ~vpG}tS66}U8H{;l4uR(W7#Fp*paYji=DwL1=5D?$AMbmwJo9e0 z(Gohh!5T#Mm_20fS4D&Xm~MxC**67bWlCo%$GRtZ1p-*`QHZEu{1mJx9FTc}|e~NH4xj(9V2HQz5%}{3kk{MnHCz~*blz7p8 zPa1Qeaw%g!s+Q`W2Zf}kilb&F#0Q-Nz$rZ3hXJ(cgl@wu_9}VAgY`0lV_?H&%)g3# z*fM{e>tjjUc27-v6xUi!5J3H0pYr7H3@>NV=C0{rNHlLgEGCADL{I#?wSc-zif z*Vf_F9&-Hm#AOC)cCxV52d7%3h|ev3V=U~sC+73=*>6>awYE3&{O5F|rnP^|XlT7Z z?Ms(Qq?{|;_gD9yn+}WypEm1x&W{a=#B7*cNc%4EKQx_pINSgC{;O8iYH6t&X{)Hw zP}G*R)mH76wx|(XRjgVeAx6nt%^F36P^+!I_pZISps{xlD$IfH}4ZSLkT@P>)*T-hyhEOIG#znZSAuwO`dRlBz%&fY62vWkJNB6BLm zb?oAUSXog|ngfV-ZrdP3loM-gHMHWpbvSrqfH1~3 z_~j=4bj;M%#=Y{-|UgJW5ch})*f-T2m!I9?t(``ycxUm z3xnqN$^M(8QPk07Ns_XfXlm0yXk~w2N9jb8JKICgJu3imM{(}(lkUr$b9=vwFlm7< z3(K=R3*RMyPs}_@1ozmL=Vp}5a~j~^VcRFo^WEe#)khzwbdUG@YqXdOqH_w%xijjk2k|hYSG6Rc@3On1e!ZOWI0}i%0j5 z0v;C2j6)zxd$Eynx*!Wu(xD~NQrQMy`d`|q)5BUzMj?`L({#7eEpHaTq!>|C_q2K}I}bD6c=jnee34UIWaZIqhJ;b;zbRp{2eh5H z6u3H|nVE;HGIx%G-tZQ%;zFsfzOLWY4D$%v!3L>Lvv@PtlWA5t1mvx|xu|!A!%NJz zO!d8PN`dYz*Y5XCUVcZDY>8B#@HlJigc+U63WVG>S`>%Aod74t2-S$i@$$q7@=-$a zfl|YRgVoEGJf5NqIlZ)>Q%iLW2|pik)>BwOX9C}~ZaB#zD*6pw_@oF|xC*;R^D~)% zx2HFc#^3i$>g*M%$QFS-g!6r!%I#FAQLy1j8SU!LQw~J+l2FogM;xYc;`P2Yl?QIU zJA+$Pf1yk&x$C7SxylS$ZM?>>K&=1R3(Y>uYsh1_TIXXs2Mhnks)vXjm`< za-(?d8SZW-a~x1*b^41qZzx&?9y*->H`W6QRDv*$6RHOw{!Q9Z72Bh;*{yQPHVoT5 zdlY55s4EK8J^M7xoU(Kmr{XEKme^d%?bXK6nwc+fuIax1!zIhQn)KMsx3bN79_=3) zIp9eb9l_pMkk7sgEW}rQJTgtAH)le!3(jnHT~x5e4dioc)XmoJ@NCVs4eV_utl|y4 z%07PNue~%(ENW@2CQJH9==99Aw|HIed0AQYyn%JMs;E-_<$)uiw2b>qc)k?bbU0Ee zS;|@Y1w=h3NA!dX!Uo#`8t|DgD&PGdFIG-@ZFDS^8+@3-UT_`}ZL`F2`hu~LGObih zVM6+A8Rwuj;pG0NNa@*xg@~#iviLD!`n1s^I$+&HNKin7m%dmdSGy^}L=XdURyKm4{31jXvya(Lhpv z?=NZDMGy2qi|vDHuCI5}0fxGGLI88+xq(k?a~pM=LaEeq#h<01f&Y^UyUe!b>Xc&% z$hHLe9s@#dnaq8V&!niKUvA+L=#D-@d0HE$XShP zWgLV8+GI{eoZKtekAwz0))V^ZWIaX~v|Zc0=pJ1bsm<78`)`>P4!ci`NIDIbDxQ;d1&BCgO}l8K?%?AhuKH?`qj#GG}s3*bl{ zE9uMX@!SH~ULq}l8)Q?ahI+zS#5~u5vDL#~GnvHXcUh2STl~4pCs^y&WC}zTOuO1z zxUe-}K=2M;L~N#vs23`LM~@ma_l9D zN9A-BvxMB=DyNlIs$BaIT3ME`Nu27JbUu&hxAC?TCAI-d?sC_4Xp&f~KwE9N{-WOp zZm=%~Ec4#f(DeeF&b@YlVbAx_-+dB5g20swnD<0s(GgWx~!YBab2e0l( zSk}y0wv!yOQv;^q6*ZNDP>^(p|4(-n-q^lOH70YwgRd52d;D(R7{N2sWy&|+JCy*b~EZQ!whm7Du=}~jt!S~ zPC-b>r&02^>bsvzHj%=cU_|PchKubuO|gx$$6<>|wJ#BCKN$@0#mD#+Yq)RQleIS7 zFY5R5KCR*|6^S7v=F9bke%igz8qJQ2~}&~v~wbc zYPEIuM(Vd(xpQLG!1RErMd(xnPq$-(~Sq>NlcUFjK zAE~lb_v#Ziaz6K%0Qg73g5#2=XIK!S3TVkio7 z_xB(c0H+HK{|3KmGDqHe?7wJ2-T(3if)?!!(MzN6kzR%B3U*Ozs!h`}ZQ^xPt~u7q zP;MYM1GHVBPcoT1lJxe+!HOi(Cv~vUEM@w5JI{)?@>LZ6#zRqo`9z`WmW0fACdPA0 z3lw(K*piWq#tx!wF> zcAq{9M!95cEfOfkr`P>^Ty@UNv(wa)`5#nZzrtDS z#ZF8bx8zNL_B@sylCcax9{JJ@`~bbMD! zw%%mX;`-Yn+0t9%AhYQZa9NtsI#igaw_0p6a1;|q=d5uVJ6^u_+P-NT)q&=v==7pe zkp{k#A)SdjI`?QD$2*!KSGvrkHmZ2a(++sZr0`Y9QG`LqgfhgkQK|N5&v+eqlm{`B z1VQuVggi1Wfla~>c0GM5Q(e&NQra*520?WJ+P_s#G}sP|$KZ|Yg%blI0YK*SF?isdv*F1&*w{h8p?1Qr+K zuYdJvj~n0H^a9SZNpmxy{&HO%boS6PW(B88p=&O?Utf~MG7Wh2Dj<@!`@d$v-e(&* zM1h^!?H7LG56vlbL0b7u7x0V4SxAA`G6aC=HJR#H<~qfmhXA+bCAp3DR9EhK)U|&& zF?Q>3V@HS1tPn#0uM;Z)-{x>rmZu!29)a`vy|#>K@4((DlDOC3oX9d6MjF(W%2n5v z;~E>+nv7ILpJgT~K38v)LFB;N)(P>rQo5Ql?4Qjsy;rxkP+Fpj*O@U?E!$gfGpma& z>Mr706VdeOw6B5X)&YNYrBUIb`jE#>t(=8G`f}_`xW4a82sJM~lTL6vmn|xFnHQTp zWr8^y<&%;&p+yanGYy&6f^%k?_tMJ&DRe0`Ah7~NE!1oamMzvLx-4=?Tphuu+J``n9cAuFe_V&lS$(KowJeA+av#~6K~?@ zD5-x3%qnXr`%g2KOzfb+ck$S7uGrm6*J_l#Du$54rX>8=3# z-lUOxw>UPoj%X)7W1_pQ;UPTySlJzQXW-|S)#qCIfw|$bUWrqFK4?k(vHcz$*qlvB zYNcB;Z7&ZBSa!En32I-OwN}lPbr6bHD|g9rsYnW0Ul6H(C{}b=CCut-Q{$O6UE41N z*{RJY{)XhO(h_MY-if!xzV2-WdJ}RNrF6my3==t#jV1=VY}?ebp5nJG2r%XcAm)b> zMA#FDrMaS8+Tq*(Yn8U%T`p*!c)s$;$0!)cjrc6=sH~z`&WtGd$M&?~jRN~Z0a!q| ze*%h*kwdKST@OOEu$zrOD zP%kAeGwUAq?iFtPtQgd$(Zz0+#8T*0J@BO?lb_aq^leO|Jv<)1ifx{5s&}%#utIr= zD-*KOzw5dkh|;Hj(1Il>=rd&;{YSq=k^ka`|IVSnl!b&j4e#meDnca9#68Z4&jZ7a zJ1WI`pMFSVdzYq?!tc@$4+bw*_J!vmK+tNtP_^GK_Ts3lH_)->0imKr{^1sHBWo^g zZ~QzIin`SlSivt=RrE34325>flia{uXof3w-%DE75s+Jsq-zvcJ{IPh>)`$x2Oucr1aaoovkz+6fNn!etDgO5zx*7MkLy+|HJ z*!{z-$2^3IA2CBnt(%M+SkR2XR={`Q_y$m^r(ai+^1gQ5#oRquCfA>MuPha)vlk4S z>lJ9QT-A|wSDE<>7$7)Iq6S3y6Pxcg(ET&ow)v4#Mzcgz+e_AZ1&?PAI3tL z=_SXj;nG7Gws#1g`7rDt(I6I?JZUPVY(GPM4!>XLmByJ@B6JXeq(aDG_)g8*`|^oE zW{IZmEb9L;+2_LwQ}#0Bg~10kzLlD;xgIriu^Z+cb{m4oTGvM|yFaY~&DD2G^@fwR z?tvnk(l1>6576Fof2C1+nM-H+OTnC8shAOWa8O3#@_Y2xb~}{NM~kE`G5W zwmxlC1Vy$vK{3K^<$Qo(?kubVk923Kh^zj<6@CWtFIMQj{~yeKLY8K;Z|Qe2cGcX- zCl*@Ngqy-iu%)tiXP3pOvLfcM3i6kByC>nsz^&>E$o; zC%%Jf%v(c>Aw2djtLQvT8b3=#f3LudJdvnS6Hdg3gGq}r3Qok2E^j;Y&X`#d#TqD; z!0YBph|;B?KLj**v{98xyqMd~Z8bC|h7s@j41kFDcTUhvCqygoMR5ne#|f2m2H5YO z)nFi#Dh=chcMzrWe>4|A+r`XZSv zIli`08s=x~6vkidPR#tm$q#r{0zmvXPLeJLmYVt(yTh|3K<+1&bMXX5b+_r|H)cP) za-)jW{K$G6pP258*eYQ@qXH2dT_}k|yOah+K=D)GOcPMh&WWPe9j?hvuD=e@5a-b% zpJ7b-mKuDbW$b<8k6cJf2jnJdffoQ}ccN(FV_obL^@+iNqmTK)RTTS*o{){mQal4&5+t;S~(ddd*v?!>K}>*{4>$MJwVsnMnC*Y+?)uwo~|6*R?tN zMyPFRsNQP#+NORUuYtP_L#5sV?ie#I!jy8~^={yqQp2qpBMdp;Z)?%4>r_C{qvU&z#=M-Q&HFX-6r1xm{*_asw;U1N*-3 zm`2;Q$0unq6z+w_W^mv||7l-dRyn@8Z9~nf_?aPpOG$gU1&XYTWZA=0uC zNzFB~L7)fSMF*{1*$!F5ApOlQ@SFDj9qczQFj^G11rbvljn#y1w17QQ$tZN-v}%87 zZnZ6gO_J*9Ah^-7Q>=~6CGN#mvToN+>`mHVOk9F5_m-ZJLL5i>7^sptSyZ)}F199C zAimoKo%XkG(WOMbp^A}b349;a;s0U~c%Rfx(3y4nf%{ox29Zikz}~CHqG>Vg%<*g) z#F76EDnt?CP5@-~;6<6V?=&gaxz*r++VMzJTYr>A?enf2eDdL9|1Bl=v=Ow3VWd$gq$Ai!q(Ia}HH`bD+DwM@|yS+c$3=h`(%n@2xl3;XOPPvlZsR2>9HGtQZs zPI*wV75f4FC8xl_H=1Pkufua+S7!Zb?BM>DW#M78!2{tu+rTCViITXe+hU z7t7|p@km%SFGp<#KgyA^>xEGZiR*cz|>&By5R0wiyiUzMCkD@5^iS zN;x;xx@>^65iiNWzjA=MT6q7Lsf7Xs))xIM)=;ux#1Cg*=T|0q&&vSKvH?pZQF=i1 zbjy0Uy5C1Ens0MT0PdmKDon3KzXHn}NMl}9g&+PbN}=?f8=Nf&-3hqaReL4T@0s|H z8@7L7z0;6o^dc+CyfjSlyFg2GMykI^;bsec8%D{s)JYC_zLybb!-B+#Z3FUL-Fm@w z@o}x;mH7|b^J4$KaDjAOC~X|B1yVbyR~^*v)-s_JN1`KVt$|PCz{XAff;*1~FehJ2 zt8al6l*V$^Yy0ds)wF*2GRCEfwsdm>Vbu}uT01ZHoi<6!bMrRds|$})uv|upN^ujK zq{FpebX^jDe6&}E{esFShobui@X7dI+{ZafW&YVwt?U!mgbMqwY%m}4cU8W+82mp< z+?lcH`=wFJ7_B*$b>{r92&iP5nlJ$xP^sT{*vqtut5}FmggSk9moQopHG4=S4g6*; znw%4i_#pS93E$uTyN(_rL}>$4+R9uIOT2mJ81qF}PyviB4e?4gGtkas>_`vEQUA!H z^;7U#c>F|A{zKieru~`;)Io%MFniRL=!~^}+6(F2^0kcfnFo5@#%f>TD^VHmGNzqE z2bhRwJe%;h^0x69#KsB{6rG-mVR-|a24Cp&8g>0Q@2&d=2A2c zUSr(OY_|m1g9I=?6(}`_M5a3eezl8_JzXRT+#fshB6U=i7M|0lP;2XEB)z=W(f{>{ z@cp-%%Mv^;`2j{x3iaj>DIEFCAiN}gw@@lu2ZNvLffI-5bM})W3Y024a*xHf)TyFp(ZjX;srLOujc3oTn z9~SLe(wsK3kb-;_+OeTDo6xc|bJS_zWD6Uz15mirs0lwmVUdwW%us#|fp_U*>PIEt z-0*J*Q)i#Mw%H$3-dr%dM4+g;v>xEv?NO1Ogl!X#Ubgi)+doE$;3dPuDu|8>+|049 zH)`m?7RnkEp@(p)`){o8mp)R)m; z&wbH0d?BdqZY!@$(0y(p+`R+K2tCSb277B*=PVW%J=fOkyyK4_!`*)(ssGtl%Sym^ zuc$pN1fjIGg*kl5Xfd*pQrBsl-{>)^a`=-;7wJGWMA;A6M&n*vNK(+%IskzqV_xVV zH8B-fj1cK?9KxebVaQa;o=JT2`CU$&hYocF5|q!eIg;zabv%&LjbJHEJ*Wf(&C%T(n$7AKhF(TuY~8>)uEjFa;_B zPSS^G(DUo}{IG*0c7=`mD%U6E3%C)ZaShQi_uuOwF=$7*LA9JJ>R2tpO^g-_Or?tz)qCB)~JXfQ}TGqr{ ze@pN>*8AE@?Rkg+v@dUX^&qYOU}l4LFqdz6o(5aAnOyeEE~0%)oSF?&{-++GO_x=5GY zV+X%c%3}5#jcR6)-+qG0FH*!Fevv^|VkH$ycuY7<4;)BVxzMjpe-7F#O5asykpe}` z^9(!YSd~nv^r6o`JC=%t)}-e2jCeFwi~6{n{EQNd_)>YRP?4 ze)yD|6XTT}86ZoLBA5dj4;=S61hV;x z_Vh0_DTiy{Gz0R5Y`wnen!TE~K4CcTn`AnXd3624a_%PWV`M?f(jRspIbn)11)B(3 z+DJ_;7DfE+&1Y1$9P4+C4wHYzez}imH{aR9Te-Bm1;M=-2bH6DJ3hm>TtaKx&~Uq8 zFc<6tU&P=Fm%rBD^~j!%<889uipJ$45vFoBF}T-OfsOWvh{ehfy@ux2n;54vV^qQM zstKx~9V_oP0chwUAJ_8~6_qL`e4M^>LdO^cN}!t)`ab_*MyCAkPY2+Ibns6#zs`@H zZNKY3Ts8>Z)X!G(>#J<^$bbYa(B8tR)ZOCvLVDi+;ynPGHA9q8$ns!~Dwr~ipQn?A zn#~KPPuQDYV+bwKy1ea>3k!$1_Y6x%0hrhhu({{NiZsPjX2^=t$>AD^DGSwedTBtp z>s!56(7OvGdcV=YDfJx3>X8y31I7*;KacK78}-dY5gpzkwrDrPy2p?_P-k{{jC&4S zE{E(e9}Z-c9R3JY@RaQ(6BS7?qh!SknNGWl-{ky#`pPW8XKzl(#lNvO!itiuv&mz>3Iy%GO!I1^<2!(V6a5Q&fS z)7bmv%r-O14TRZxITzVtrb!=*B19CjRss9ASR42FT#r+ZS49Sm@MOnP83^%z+VnsB z6J8fCWtkyrDNGra>+fgSj$7Tg9ykN`o;CiEIA3y~x`yf4EpCFn{XQHnxuX41-5^!c zI+#$aFxpvZ>$(c);asylS``RVq?$0V#Mb=cllS%GE&k=gai#NwTRbn`+{>iVbI=bh zDaySjRDZg+`T|aW3mJ8!&JAGs`o`oEhrQEiXH&%5$KdeXE*ls%utejs2-7Uw%{5si z|KV0&&N2sC6BP4_l%MR@Tg29II3<~H|fi94_fGMEZmQg zXnWR4RD&~{?6*XbI&rU%2HgD`MXt8Y*lVyQkM_hHf;vX9soU_F@dIN*f{5x8IeZi! zyr@B$;f?%#;J$gf_SXQ$ThxGx-1&__aJ*tX)UE=e*Wa;>^bJW|8@$A2I(UtJI@cq%S>tl2(2x?X+sA*m*TkWB5RAx{jNZh8xd)*K*HSy0 zZ_ib=l}NHLjC58Jm^nZVJy5~VPp%CyZ<;;`C}a9`0B}MqtjKQ$Gec~*N7B})h*2NaS3$m`W=U|>nQNkZ_C9Z0oU)82wmu> z)CS)=O(%?TFA{GgrEFhUuE@7NX zY?V4`(cgyh(^yL&+yc;X%fN@87LP@gd%l<6Ju74L%1JA0v@tn-i%X*;mS(rH`FUUk zv_wXW7VfAH3!yEnp+OI)bGN-q{m@Mdxi;O|B5>eB`f^J+ zDaC*$p>-46|ApTfHc?w&y=UwN8txZ-9W4vAAg96R#xgA@g`tGz9#_$9Rb0gZ!~a|^ zWy|X@hpUG3f>%m6T($WU`Xf0Mb5^qtZ_um5f&!7ZGre3}Hfh1`t_cf{y2aBx%toH| z(y~%4Cf#oCg^EfCV`yG;1>KGNfpK)e`%;s*49`}Psn;YHM{24gtYV{FS0qYG{=JFf z!qC^W^UW5!ue+n5XDk#BZ@kb+lM zp={^M`2S)Bk1z}uhq>SebA>B?Q{P$Me|7d0;wvoyeRx}`;COi_&_o=5S_zalxumt(FY3U*f=O%Z7a~ z8xni1G18|n7KAv~PKZ=jpP3R>^=B%M#Ep44?C8hoj;cnjzpNvV2}1V&muzGYp)7I_ zrcsskqda-UhXbs*vP~xO>BX;>-SeH@LRr)LQc)s(M+)9Tk8|6#wY@P_kkAw5%SL1b znDi0j$3@PM0(Fsv4+CxNFPkYao=Ck+nK1rH{*U;}Mo-UH;c%3bH?VESlla2xeiV7| z;sjg-!)8xOnk>LgrASIkYv7BMamG^AAcBfN7rLj8@4q;CdLHTYS3HFx4PPW2l`tAFlhFVFBO!>Bucc&=dF7&2JopQ9c)NC3OBTyZ}v%mdMInqr)PgL@3)DAl;*Bz(Tyq@S;tk1N6leeO- z{F$ylyO{=!d)P`VIiuc5!wTfiC3-C3es(it8Ypf*gD5%_@15Meo;K8?#x3@7z6yG_ zfv#@z7TZmHQY$5G`!Z_4of1t71;?ITvEDDak@j29%N7V&jMcQ_Z3xSEP64ZphD>74 zH!y{Xzwo^)4Sl)8O|m{ovRJQ5>%yvLl8n89T-IM+Wy?+j214t*!UC0SL*2_B&s`>( zVs}V4eZRA9T+?n0(D`o|J8syxpKzp~pi_-sE+X*|S=0V;WA+^U<+nCg9vZmVRxnJ- zoQCg|CyHh(4os{H^m>=7``_f_E4Y5HJu*4<7d}efxaTPHDCnQaRX3);Oe-Exn;VIx zk_In(a7*L3!BHTJ*Ax+=b^01G#bLxS0OQvl=een7w+wo-S%D~y2&XYo*<4Nd`R6_xqoj=oKWXx>KA$@LA|Tqlre>CxBFOPb)MFqdd| zFxLR#!vW=o#n-|4gZWjN!@7vLVTtNcLCEzcxY9u~kQeQmOCIM)+Se^4+ocxT`0>ZA z0~Klw*t!2$Y|PwJ=E7fzJzu+^V76vtsTYAytB~-s&GaW>I#=}REa%VX+0QK+NE~Br zN9V^)$aaI6D1S%GeI?8-C#-_9eKhpVXHtM#Q$EgjD0F64Ush}j+3$;z#9+EK}F z++Xq$4=6hJLMM-eN_PG~`(4 zd!36$+;7-i@K&2f{5a@63V8$Y@HAPTi`wC@ZLCNgn=~DnY`ypdSPodZF!ee+zBr$o z^nqNECwI-|YJPRirHkjk_$e5 zWzqAgCrknxpe3|_#HG~q-9<`LIY`P!yCwg zDr_Su(HA8F=hB4(dj6T`+H z1Qjb@32hx3b27dBt3&vzUun4^Spc{q^PJoEbJTTKwy%3FiE6bhYk$ETXi1}Bbl}gp zZ;G&6lP}};f|5fg4)A;bvzF>{LPOIUY!gZ8V|Fc;?zqdGTNj6)}LBmG#=JT;@R#(oAUe1gD6QbV!Gg>({r zBoMH7Qwr3NW`e4~OO8vpi-F)4^zH}^t1GrE%O{_m1r!ey{A9wI)+@8{$mCt=!Fsc! zE=hIkf9@Lb?&lnn^H-F3V3!hB*m3GudXgbeb}l;y6XU9=5lz%-GWc6`lijy0p1($R zeu*Rt`R(;>9;@9#+%KCfq8Thng`g4s8Nhz2wlEU zqS1-0lJ>4g;<=O->O>Y4rs`vT;s`mN_BG!891l21@DrM`5u~u8k2%6?6`_%l|K&~H zKMiU^yi(ZX=#$uM2b3u)jAQS?Lm+5LM?JR5yGoPW%4RmHT3@9^GvnKaa$I?NgkG~L z^hoEj=z>?e=I3J`=!`J9sMzM3Hqq=wx*)6{OB4L#UN(0;`e7Z{rmiqQilG^QuQ@-I ztWxo4GdP^4jhDrG0+SJ9;-mS0mZs5VcRwRAo2?x8meK2_XICPQ67-VXEh@g-e=>F8 zpSd#42lWWL-^A1ALg4hTQo9rSa?2<=I!Sh3<+&cXseLjd%-f0kIs#BDXX4rT{G}ko zexPLRfR7h^G^c&pAgzq87djf*{Nm2TUsCTcWr2=4x2089M@|lUXQXle?bW@6YP%lt zHtq3liTGWn6aYAUDq3T%q$gY;Cal1ZOHCIq7on6bLhB(51}oe6z865)Oj zBI#Ska*T&JjCH^GGdnriasXa_zDi$z*c_VW0A8DSw2X@1DaQsrmuIt}28^8!fKIyg z3jLtH^nvnRbSwDrUCWbyJXGYVnf#B3`wAOk;jbEO?ci^lQZ?n#``HyAn{(~e1LAqU zJ@cTzF;so&El&F~`#m*sx^iO}Btza!w(g50k~XTz!o^~Jv=PtIv+@guPW_*RUGb2( zGSr!y%&g~9Tr2D8Gx+jI*>yE|=n8Ih$r3b~&&wFjeMWGcu|9ctM(8Oh)AZ;eq>P+# z-02l{Il?-J9_dajYc%53lG%s{t$7l^*GAWelegzCPLWOi)orQmKCqmcW^bm-Bs{&f8TYTU#`A)qf zRN^K65?&>=qrX)S%H!!8v;_se*g~Ea9TmLs599ZBOa@yU0*yEL{oSz)Na2@Dqf_Au zn)uK{Iss>5yK`wbo_|GpsFYC!>K5n57IpMM# zuY-nlt9hQV-8JgbVmi9+$^%?tYB+b5iEwo_zpPO8Tkd_w^5|W~S;f1sw%^W(N~)dg zRz9D=!-Z2&4aF?@bV%QF?;)g){7;231=65H!fCO!rN0%*je{p94w)=JMLO2RHaA7V#*;hVrt^&+t&UE!=93Q)b-B@6uperH)=i$K6?R z!CY_^)uW+b$OqhuIX5l5dcS!zF1D~|;itEkW7^qMsh!xTQow5$sdFc(Wz^)%In&_# z7~wKnKxnZB77-X%<>brB48-{Is!4u8kx~a`d}OLr!&oa_e1tvdUnO9(*A%`lswp}M z1S2_4i%w^4p0DBqq21KlqrM*~nF7C{Erj+Vh)Z`mC2N!HGyUt@46CMQcO@Zlu5R9XneUPmwqMXG2owNqj~PZgCNsznjiTE ziJz8&eGb~eS1gc=b$HBx=i-yojG|JdrISvv^HC&O&;DW$eBOB!{E8@Km*vd_ke-H< zBLmgYe#IFRUyS+%`Y;JIoO^KNuiroSw5DLad7?(A`h}iUdW<#NZFBE_VT~}A95&ZD7!5375w)HFcTbYa8u2uKcXzzCQ)Maa=F7nQ%u32NVT(H8C3=TA$a=hLs|N$dNy zI>X9##XtBjgT_J%yZsucpa%~(UxZrf^^d5k&q9@yFp=#DI!Ts3Q<$_EqFL15!lG|x ziS^>Q%KvIm%Q5V;5)JT0ao8T(H@&h4e4Fa^2h)7+$Te9tdCLlDA*Y$21nUYKstWcs+C3e!6PQ zyfBmlCieI@=m;tJ`uhm>f->fEVcy?qQ{`<4GRH6EGW24Wt9Y90@-HokTjDjI(en9{ z&<=x~)qZk}4^KZj_TxHqRhP;&NPXaJ#>7iJ!Y)RC89kB&j#1pd`ciMBXaaFc_WHOOG^DP8_#cK2L? zqF5(tVfbr`f5x|}qyGqf#yNmbXei14KX}pmdqX^Hi42c`LL2WHxeQHiDS4q#%6~p~ zkRg&+Ca6$~K~J&WmJf`sGVt+Zijg!kJ~(`}ics^iFtt)Y8qM?Tv;EyG;YrZ> zUazJXB(qHwU?#+B`WrV<%MNB&zbY*&{=671;E0kQdMg8A#Vj{jh= zQwcpvf!iSHz7&xyP)jBKE*7#QK~t-DGM#zVBf=iipXXA!#ayWmR)Arx;omu;$vLXN ztBR8pgK3*2zOJ>>=b_7=8iIB73<^0>d()dMtEHTtftBHOB~ev_e%UbvOg-4}URsO< z+@u4|JnhO9v%w3QxA8o=w%svggKp5t1Y;%+Rz^!RVTPKnUAc!n8Uet3w`3qm);Lu+ z!Rp^3Ta-CA^=ufl*)LH!Pw2=M-Od9&8K_jrP(t9xR)W<42;y^M?^-!lx;x|9}iCDVl61Af3XgIzbo-gARDXp1v7=gK$ATADgSNXk{ z8MZi@=0+0}R~A5Ix_e0>U0T{AUbiF5@x!^qdZOum?dwr6im{wV{I)`*LEVYA{k}JL zq8a@waMf!N=(6))(23o75>nj7$@%BW9d1TShz=}qPVUM6t~uz)-OU!L{L3M(se5hK zi>1S%&#Lj~BLcfq)X$!MZoSh8`3;Lna4JKqAn(mqH6Pi!5FX;8rB;)n&B5}$7L=&m z6FK|@+jcDX>X_n<>8W1^Y`LWF$KT0;C6|q1Yes+6)>N)WOI>klQdSUEy zbesz6J{UFdS{nR<7fEf%V(t;ccn}@Sn8kriukR|?-gm88xz{^+wV}QF9Or5QseGt? zl8|vE6sg{L#%^o_D@===Obv2M3E&^P&xHisf0xsMo4htB*Vv830Xo7rJSPq@CBOrV?EpAqX}@!PMO4n_Mx2GQ8d@1nQ{dj6>GnTTvRt=iVq4jB0z4TW$~u#lQ0d+Qe1 z7qSz}aOVCnK;havC$8MAgwwzE_0-eu8$Z?UE_{S;Te!$s=DKomvAi-~k!mXhUHbfH zlln+*Zugto9XUlzzv#AdktWG1=m=cA%Bj0j?h+7#on&jf?XwWA{WRHPmUKuPO?r>y z638ohNS1}oavP&I=T2o3l1g$$+q$KC2-4HCL1de^=Ef&nFVT;~1&6AQk2LNRt~kF9 zygo#j!dFZQi`1x7tz2>fMrB-m?>A!(U+UU*+7zW>qoTNkKAkEC9388y_iBpKT54_H zCg!F3vWW+Y7A+8-D9=rb;F4)Nv2?dF7=U<4E$7|V@`&<|vVWLZq&>3%cn{7f3}G!Y zn!$GJf&r}gl@gdkkEUs<#-0`XWFr3K(ssb={93Uc|K~9J;9}c@VEalZ+DzPs>}X(e zR|QrWtumG|*fDoo@BwEx6!FnIenQ>sR^zw7t!z@FAOMt9P~ zxDWVd|GAIX)0I6D#t{BD{4*`DT(0p&B!VePbKkBz{j|(dWy0E|9le8lK6~pMmHT-x zVfH4t2OgE?mLS^HmN$OM#7<9;3E49r%4*p+z419s&)R#-_QLInS5$1KYRb13y*_&epD5S(>i0es!N7%}x;TK#u#llOOrbb%>o74cDCrw`$H?Z#&+2J!t>T^(GmF*l@ zeQvu)U4bGogPK>XtLuM1Su5~b+ji@`OnTmqNO}}s$d;OMC~v9aG`N`8Th&CT)byXd9a~Xni5tz#HowB{?+`0YS~Ub!JU=s` z36^mWlo1%h!1rfuhKVOurZW1l^{Cu5YQ4f{!N95&&XC2QCI#FL!3txATWp!eZthz@ z^`xn@THho-rmyTc5t6{-{3HM9wnw!UrU=|F^O@@h5_xoWyLUc@f{q){jj5Gfm(BK# z2`GGz@E418D}PLS3iOp#Sbml9TgGv{nia4PFxmMfd_JYxZ0J5$D_~D~YasiOIpdl4 z?!Hu-rZnvRU}K*2>|Sfs3Lipik^I7))W`{5dnoX=QoPeI=%?Cj^mGuX{b$)DPl;;^ zr6)HZoVYCu+=}OIx`Jag?=U*1OvKQ7thXHkS6rj+h7d%)c2UA&ck((J65_chAi53V#i~P%$!GAfmA+; zQs6>T=p&&jg2Q5LW)r{M*|0S#km~PD?$G{Y=IQ^iuh9glczVd(?tI}2UT{4!T{-#n zyONpfChcP58V1I5>Rc3fo_f(isGR$4Hoixr`<&EH@0;c8sfWAm5w_GBauiW> z4-DpvU)DdyKAT#*Gy*i!m!G41)cs)g9Sj*toLJnUs}wOAK)wGqjD&o5e-EyTobu>V zkE{K{@YBbczqE#~Y+w((eo@`R(v4f|w@Tl=f=adeh=u!v?Rm}SYtp^aCcj+sisgxe z3f~j&8sr)J*mSdmG{kBl9be41m+IuyQ#$3IBNirh~e`$kN@RODAs4%*jf%pYQ_Y^Ko6ZlVOqf zL<$Pvi4jpXpHzeFZYb$T8PKjibpRHV);vLm>sGX?rA>kIIOXg#ta)xzrs9gLHFIFAu!RkgvFPkR9Xg-wJi{LdFt=m%;+3#fNFaIne(U$2aVVEqMKrU|hgn zgxH4uH`4?4E})kr0=S@7MXi%1cISulwv0<`}2RgLWzr&m;N~VU5#{A6hz!=M+(iEX(l{KBp_} z*jplIzvcKEc-M@ua$omZMw+`$cbQ}{KnZ+H)$uxnw$4hA1Rjt7pGIwfRafz@gLrrT zSt}1}kk>T^>ehw zTU9-6L9dTYS}e21h{ff{=%Kmqwxx_*6-TpnG(vQ# zNnpnR^TouvRW_5c&ziASr(@I|s<&KXJ{u>(eFEpd?Bj-DId66i=Bu&Jl_EHTQ#u-*`__oJIuvRvIM0(!09aCfD zlGBYzgX34XN+X-rtgttBCO0`6EsM;u-3>dq!hxK$UIElItbLxuFWTwS*=c;6GC}6O ze&z@`Y(H2`pmeSKUJkRf6wGZE{kfw;!gXb2-c8PDbU*KHNpy1i7e*i>7j~GID~5AU z+Nt1Dib)){%b{G8I2WEZ{0V${P)fp_TuxV8fb_x~2HR_2NTG;1(VIEqaJqC>n=1}w z_Q_s1xO3CUQ7{W26W(%p**vD={;tx=(EW|f=tl4QuV|Odzfq_c zi+Nd}(Kz*)x&i#xD$%*VQar4)Q9QlQpW4QA7*{gce?#vrlja?*N$>>Elb`?K!(W?^ zdXd3%LBVAv;_z3Ek5PTUrx`f9ujtkbv=`rL;!57xtN-cVwjZmo^|{Y9ttZK> zQ6V?38y6fyP9Arq%ZjfX7=63oxfUjVitFQ>EbYHTS$mAy#B^i2SLw|Y=4Qki!>ZZi zl6B@85Ye%IvQcx47oT5QSB+f?J0Z=t&BA@r2PKQrRt1k~z9hG`__mH(gNs`p6^I8j zBOtR$zmwbojhrr2-u|btw!s%!0AosoYFP&ix*Nc_?lSZ_J9rSku%0z$idgglmuY%* zB(DEAT=u&>g6pN*vTnsxBgpGDt|y8oA2E9&n?gaT&Q+TCKW`>SA| z_hsl{Zzs-Jn{rghiI3)h(4JJl9GcsoFNo+H(X7D`L^m9@@3Nce@mkT+>%N_{wOICp z3r&{SdW6pDZVnWz1Jh5W{)$@Ep7bc4vqW!K4&|zGsVN&WFfv^4*;mM^CV##L?daSw z5c@y)RSsf^gGiq6sh7FT)TzK9GD8B|(RdvcnkHc}O?$l8JH1-HWg-R8=J=Z`R+ zO&4fn?qwx$`&6Vbc0B9HDBf{%^@s51t#)mwqAns1U78Df>`}DiC&35?ofp zzDb+Y{N)Y~u9YRI`F9>->OlLqxj6`4il&W7=xT{mLPnf^%WCCL7g_a0_YElCXqWt- zZ*`|KJ6O?Ucd4oipB`&{ITh>)KVB0Vf~D=Ya-of5yg?&HGM!5G<_-5+Ijr0cq71KINth{9fUQ$KE&?Y^&4< zgm5mKjSh|WSvH%D)pm-0$sAPGy=iwD<_HVC+aulmXQqm?<8vj4MEfw zoXsZ8BC@w_Sw|l)_9)XHLC(GoHd2}%>~E%<<)}MO*cOoH*VIbc-Ch%|QJecy44q}J zmuh~fo%x9cjUz-Dk@31i~0tp%hR7J^o$#6p!yc09c-hzDDq7`W0@PBf5 zqQ-4iSXoE!-)F3bTrZy;_A5mbv7@>+$7}OONe#5rPtdnYw`P^{#4i1BTosyeNFF+< zZThks^?B~}>xPFKFp=AZRm8pxS_#i5JvTAurNKPssNk~$umqek0s$(r4iYr}>*~YF zX;Djn@LcFL_3!$2vfIL=zCsm3CB-u8CLcDsv5@xeO932!J-R)7m{T*_RLS+WGP-Ql zx~b`l-?TtUT&)v$`{VWdDbKVF!-11hqqs4<3-EV_Vxq56c-Zc>c17 z{(-p@UE{O1#sk#6V9WfmIrqN^vO-+V2TwSxt6o5e+~^pcO4DT_D@^$ zw>NJYBmww8cy6D&k~G*rPxM)x*`S+OMsTegxxN@t6it;l8jM$%c%1%lF5Ks2emNsl&6ozio;tG6Oac=Yu=Ry?fp7=!rzbi^F!-<7~A~87vZnU!AK;xs#g>P;}jiXFknRp@%s>YF{{C&%BGN zRjPlI_F+x?0=pDL%c0wiWZiXbHc1|K=slO0sc{)^w3Rz%X3Ps|*;y%gn{C(6R!utf zsocwL?#$ln-R>{cX^)@yicCE1+P7o!|H?A@3g33Xfq!SzBZK}`FKPRc02;GbEpJ@q z7Ht#7KgEvvh+Ibvt=|R~qwp=51JQq`BFMpkIs5jPt7>E&*O!_o(wfNxb$(+U6vJtX zh$)K$tH0PGBV{jWYu57e92CbT-ea4xty62!jpkH*0o#Fe@mT;f=hABIwU<)@@d{(`4t>w|+sTpxaAp5%{9@9SZT=y4yE*^5S;`fjQdO zjb!Gd?OOM}thArkuWCQ9w6{Qe02UNWVQ+D-Vh&Ec=ooxgz;a>?FL@kzJ%l%Qwut=* z_RZn@iq~H6(P3pLs@zvZ1n8P%#cB`-;uEQ?M;E1f277*ro*J?~EmOM3w9^l+y(!<# zwLs#bY=qU#Jl1tXzrJv_~sV0@Crhgmsk`RLzoKV68Ic?tgJ#X;b2T zmF>BcmqWwg27FIC-3aBlvP*~T;PiAr^w`0^?)qE>_wz**+``o?@ye;!o-`xi=?K?t zdWkPzI{x-c@TXT_PHRG>c#k42XGyu1Dj z=I9be?A$p-RyU9s^tPYm&6sI3aDV?$Xf&-A2O=7jb7mUJ+ZO=TZ;h&z@BeF8hF1TbKZvR4(Bt-cDQ3%b-d-O!07F`<&#QjmiE#=G{3V5(e;d9$$Z3 zTL>83Wch+K#~O1tteIfqiy z;v45_t_-w?9;W(*$~T)wGK&B`wmn~W6c>EI_4B4fDfqUKU7y7XTQKpi?E7B+D(q#X zm^SL(Dgjg8q0Dr3{&g)It0Gf}`$a>L8Ey1S&cfxMyCe8-iVPE? zsrl8~#W0_LwQgroLc)XhFeTC-h`e+BKqA{5+c-Jze*tO(1F9!xqXb?#!GKZ0{Ut(IyTZZVWfz6*LKon zBILra7;}xuU!$~jm1z}(OJU%fL6+UQpKOHEu?7*lHlErfTP7T{B3VU{*puCCR!=0D;nx1Zsd=YJQ24yobkC=N$b0K6-|v&Zh<&ZnYSVr@ zTyt@D#$m=IXUUxDIXgG?o&?9!jWz4eej#Ly?^2z!96+LY`e&YE6bU`sMkhU zgDC4OjhaTu-wIjUFe{GF{3-xq-ndDhPz;EF&J`LrKxeq?W3m5hU6p?GXch^V9hLGU} zidowG!wq>r!>Am$V?X=G6z>AlpIRP^)Y+!~mtD0F0*N?fudFfF@sJ<$>n2;k&d@`x)2^*&zqgD!`bMnDSQ zgW`NYyV(9R@XvOZkBCApKxW%>Us@<_$URqsqsz0}d&il#dPng4dIt6Blivjok!c%{ z;F50@>E?6!4!HY{`US6Es7fvLPk)wO&{@`A>w5(b+bzWM%Jh|lP+w^Z0Qd7IL|M&L z54hvc=?NvPs2`!jmF;O2eA&rzfy+-Ku~Rv@9MpG4m4+s(a#ilgr7%F0ig4{29$|l} zmPx+N&4Q&8maG4BX#X)+P;F`9NJXepjty4~oO`F|^9W|~dDwO!0h#WTG4N?zsJlRm zmUX2*dLuM?Bg~aOL+ws3`z)U<{$*f`?8wsvl*o7*<5}w3c*QvK5N<_FnL66O8ocG6 z{xm$I*hDLqJyO))xK89unSwcjB~Q4=GlNiMF&x+f_lx0RV3 zWcT-X0X>qVS?=~|&XhYXS%}?ID9s5)wGFVL1V4wkIg}S#vO1*>-|r0J@Z@hwjr%6W z`bc~EmG-NOV*_FT;HhEjwx)tZ2JS}&yF85946vRZNvB^1{F7@bY5&@Q9x=L||ErG6 zHrcRj?P&V?td`NvQ(OX2gdVFdearuc)I;GnstN)ttpU^2_>R^Ll0U#0_(|RGf6U63 zhZ_RL^P>mZ`X@`9)|GL92L#qoz$#Z1=3G;vNCEF7H>)PMAc1;9oOOd#Gx5nr?Cjon zSPEMBix{QWs4VzL0r%-d!rEg$vlmL?QJJq^zX+^{Wlk!ptguB|PrWksngEPARzLph zu?Ibl;}vl_@&H9%B!3Exyh?uSp%hod98%BN6nAfk$Py2ZpA(bN>wT?`C^b#pE2dC$I17FX8e4TwV*Cm1QvTr!h&hQ$#qHO)yRlSj>LT#ubEp z@dl%vyV{rirLyzT9MzX^DDi<549^dNb5m`uo@BB*zU#>eiqq>5;mtkY_gxh-^3?=*;q8H$) z^oY&8tl>%CMDB20d8W$9Ebwaw@JUf)`mePIn!K?bHx#}W^{b5<8oC-bLiT;m(p;yj z<1`(Ztj9RhmsXtnwgLxxT~=Lb0c*aFcs+0qRFz%>Q5A)xm29i_;T2y-tEEp9i3QD2 z*k3Y3N^yUq(=STejPaT-KG$1wz<#bw3Cu)|3TxnRNvO@ME1P5JyAw8=4p5ekTnXPM zZ6ev(d@e>a^26!}lhYK%unS3c63XlUgcmzID6uu*-p)_!e0S@`Zk(*~;9(U9pJG<8 z9Qw$k1-Pu`ZwW*u)xNwqbrpFgDr~dip;LgmD+F3zUhhVi&&eaJ^+3iO^R;%#TBvk| z%88I0MaSQi0Q?7s7-s)rS%_<234(N3X&=jIGtIrUU17K$hx~)5+D7#XCgOGRniXE+R7hQT(YCm8nBWHrh!kJ36rE;`?oklTz?$GZ# zR+dxJF(4u4DPRt`1}nnJJZyhb%juzAiyDjT^SZqilO?oE(H|s}955=`*h}?puo@7O zhFbjbEx+JEBVOqAT8R5F1m~T&yVFxKzB`^lpXCi(gTFb`(IEvc$aPC%A#gG1Y)3eWtv>_A)W=o9PmCeXHhH&2AZ( zenPJg(RN}}d=Il}yIXv+xiQBkW3m0BPt5U=c#KvrG=3VL0zVvf7MnpIdj(CeS8!%< zW(HpbQQU-+iQdWO;3C|#bGP6)L96aYTC#mWa``kvWGM)cAeEE1K&P%I9uo0*EW%6x~X zW138|X+Uy&Ib&|1?RRjupadfXUeJx+xxkJy(Y9}dPM~mX{b2r%#MYyKZoL`oZ1uWi zTQwYKw1w&*S|WO|L16FF9r1C>JrKq(Gbr3kzBqHmO zHxAQ1C`_ot&cdZ?r1JOK9!AqT_m&3!*Dy|GvAW~#&#}|I5ZtAAp-+fXy53-x9E!5{ z3x&X;%fiV`REee8WV>NPZ(D$%T=b^UyH_|84>kLLXlSukQm3Nwf$m;Mkl=ThwNS&3 zTU#dw3>TDxvW)l*uL#;!NHnNVURll16sLquZpjU>8pICVKK@%N5t#MYLihqvSmaqi zmD(+KH?qf>arw!_|ITplgq3Sx%A=MdT!=@{Cz}m&5qRsMJjjje-4Fg_`;AEQJ1`CJ z|f$G?aD!r(LZ@! zLBQ~TP1ANC#j)K|JzhJO@G&Ja%_3%i_8(`|J0{MF)!5CF@0jX(uwrV zeUtMy@OH#*IsCL|E?bHl(&%eCZ&p>W|KX-TOwrf3-gh!hB6?XK!3=VK31SBgr$()K zZh4eLs#&nPzSshX-M+aGXCxMJ(CXWiYKoo!=X^JpXfTlnA0Zs}lvpO#8io@!?R!0=sSz9v_h;uA5NuN5A2NLrxN0UYG#SuYvZ6bZN1VoVbtTaPC(8UrX zjR@5l!7*jNmbw$?&pc`7?JFgUV74MLM-&U0>mM7uF9&t-d6i?rzxJ>J_uanfqBZ<+ zG^-z>*txR&HDU*z-!$wKZ>_6U4~~~}HKZs*MM63L8h()4VXUfiS?$+7ojdSy6Nzc4 z(`WlFV5{jVXMEX0aKI;$11Gs$e8B+zgOh{2s-U2>Vz=J!BRDfAHFi8~ZR-OfA22`a z?1gn0T!@Whf5u>1RKmxUs~Q~ke+YY+Jrgu2I54*aFYImT6QC;V8w(%qwI*E0=P9H+?Iz8v(2>ra#^Jz=8K%_>q@ zn-bd>vB7_kpOTXSnmbu%)=wy+*L8avV>M~E9>0kTlE6b5!-5@%h?c5Es^tQ3J!l!} zl{1Ut%n89+F9>bSUs)2}H%IuynkC#g9oPQ)!LRe(dM2yVkpZkPv;qpkKIF3N6>2wG zZ5@|6{E{{n87Q2kSLC*AWi3Q~O|3F(GDL7TnaI0ZK;h`t<2p4CoWJQGu23-3PVYci zO3!?Mmo|YNv#4l|l<4Sw5nN+Y*l~Qtf7qGxFIiFmI{&?(t51_j+;Tzj$=H?XS)->X z3^u6(cqiU_DWtFii6i2~WbRa>AL;kM1}LJ9&`}Be!Fy4HoN_=wro% zhwO)p_k2miSA_RN$U5oWb15Xn?+Q=(Z&4L)kxPfZNw|OBwwkl8aG*|wQ7-D?+x~Q8 z{RN2vl*CpZBIEoQpP*`B%#_Przd9PA(@vOxf1z1g#fDMxhxRbo&0nkg%;Ptihx+Ta z5+8SN$A*u7M37d2*R;I2x!=S5y*+2?=T_FnVrg6_A!XQSdY)gLP8iSJ~S&5w3C?79Xo|IA|7WHx)()2s>>EVQ1XWN6sbhOAt!zi=vF&DTrqwh59p( zCAy;DB}%QYnRk5Ed_Pa{f(s$g8yEKtZe<`$v8&ThA$_hbzIyXJ&%QD06rU74|6Jra zS6pM(mogZ7!!E{HRTuG($|G`IPgm5PI!Rq8^{)=A_NmFhgHNlzR!0fkj2?tU#0&~4+I2j< z*2kiEamyt6aTM_Z3G-+}FdB2L#OaTgf0#8V*vOgV)?KQ4n07@$aADLs`U<^*SbKTg zgmzpWXW%O5Di$qb9xj*nlU+hl3D?RmoZsHneIq3MHFYXsEeCi}Ddy*Zm91pf#2<#< zO`(bZQCnP1frpIwt(I!E*w5zeE)3UV(#xYYf73}jVRWMB?++v1`8Dr!6HX+4lbQTk zTigH>u#TX$d5tA+(7N?|Qz|8P>up?9?R6{L+wIao#N`D^N`3j5_DMymqpoNt5Uf7^**MF3Cxz9GE?H`!J>b3Cz$8WI(juYrv5IYhiGup|_8HJz=aaTgGasS6=txVmGK#vCQ1# zw>&h14yR`&`#KHIvOD$nWGp(ot&cz2QSgLhgO92zO+|QPu$I=HfIFn++s~yIGRBYd zGt&U6f3QgSvnNN<8VM6!~F zzERZ<`?%(wy`QxaiX`{=G&#u%*zTOy#L!#V(Y#lmIMn&bva9ipH6*-)WaN(S(cGM7 zWj=x`a#m&3GV)R77i+Qkf*~sfJ}!bfBF**a(8s5WF+^b}rY0)gxh|l}A%-LyLt0Lu z%iIH+lG#E8oUh3zij}bQc}71twYQQ5r4F$ZJ>@E_FpeXRb=(FNTiO%56Lp`efaE%i zrMpW@cF}fa^kBsVvZKDT7d6=SP)##i?Skw^7C$@hhD)7`Q?LQrCiY2g_ZQgb>D(Va zPM#_s8FFa~7=F{$TBkrbnhB0RM~xfEjUCjoQ@5lHm2f-1@DZCB|KCL1Q67ii`Jjdu zhu|{T4`QeU%@LED(+#C!GGR?FwZC7p%RMg8)~UlK<=U_k zfxDlYM1osB2S%>G{_2zZ&i6P_quT?pv9r6ag}Dd_=(!lGc(XnR@EEiUn6B)cdCZT1 zhvmBypAJ-612==_w&SIO&Wl$=qDU~kwT6(yfj=LN)1)HG){jAz?R)NXxCaO;-H>Ib z<$>$G96ebhOoH{FcGI$8Pe9g(x+8P2#s&ETFYJ^iq%7tH!39r4>RaqCUqj%vmpk<> z1b;lSAD9Y)9dD_3%Mku^lkK_Qsp$#7?`DPsg-))hEx$!{%PF}n)CyFKg57^49w+K| z$eAB7XB_`y)QmxQ&6oFC)8xYC#O)xmGHKzvD=}H%k_~ ztJ?P!s(MHiR3l+BvR_cNX|MZs;@{jYTQCsZ|j2)nXbo_ zO-VIU4qdK}DyfG*4X*A%vsdEkRemCxz`|Vqv=~Tl7NEnQDx{tN-_#GJ;zyOY>an(^ zf_Zhsd3YtXL3HVB^UWBH7swT!YW_sh!f)z4{UBDOaB{8Z-gwx7k8`N9O8WdqQmi|2 zQ#p;LK^wopSWhpHof?ETAIX?y?fje{)1dDqRm?*jY6y#h%l^0L{gk zdu)%L!VXv=uF{4}6!z1L4lbK#+jQA7aj1l|nKEHL%5*~r?H0E(ahE2ILfe7Jkw?ac z5fWbTy-F;zk|~q373-X=Zg-)^_qd7q>)o$&qlk;>rg@o|T_jCL{IkOyn=X4`7~l5q z5gp9+C)+sz>Pc5Jl(lDT(56SCL9420p>MYkdjAykPaj0=3azKSGt1Ag^w@Jn+&&u? zJ3iKCI)r6Hbdkx?4OfjXZ|UZ9u78GJv(hC8Fm7?mL*A`h&m7(}5`p>lX~g7!)S|uI z(UDD4K$hmSUqYM-Vr1Sm=KZebz2!R%O3nC{-R^g3&eB3twX&dq2hqVlUg+5xk*dm- zJ<}RxlOLRJFU+&~ke$`(6z-X^3j20)U(CeGv&$K0o!|ZjjGw$4iPoR_8GkT35bs@{ zuJA`27c#Z&WO5yVmR_=9#;}YMk1-#f;x@p zxd`#dkQt6FD+bW1=xM~%#iWg@--?kDoC%ONrCY1T`i+50S^o1cFg^iG(tPnYp<@`!vZh~>x*q)gwCK&*oYVqSc60sFfaNk+D zA#d?1wtrAD?fBZI?v5+{1|0ZCJ@aeIf3C*A`?iGUt%j52n8aDRd2@Y_eI?^Y7Op7% zJjk&!402=~#oA3y$-D|!ok9VQ)n!((&OS~)%b!><;jLT!A9(FVMTeuh92P$`YS-h| z|4=UMw{iLefhC3{L3uyM2DG^j*M~A?n`h%G?ChWV%8Z8Y*)3wfA5TEml}K0M54>FQ zN(X8KJ}}*1Vw~NvJe-<48*-Yk>hbGO5agTjLOG`7dKGP)T=?+#ozqbr-=|%rxTy%X z48S(w#-8LxwMv*z;q{4@R9TMV?fIGG87=6U?x_XSb0uJPI@ThV9b`Hp7x*J7)Wb;Cf6^L*VDF|8X z1NHm#&IT#w~HGy^yl7!U73z7Fl~cL)|5(u z>*O&{wvkES=a;PM5mM(u;K3t#m!gS%FHM+oRk)%=tixUt;EIBZ(Ic6>`R`8Kz$(OJxXE8cEKTp z&QwM6M0=Rz9sua!O8U))HYaXj&U-uDSwCQ1E^kM7v`;MGgW|PmCJCW$xEsOACN@7< zAtRxix_ZLp(dA$@{@hf}m`bxCw{&-4=qB2pX7;hj_VSO3{4R6u#@qYQAIekfEh7)! zK%6Jw!jXxH{()~21}V**&a1^VN;&6g#YrgU1;fd$@5Apu4JJ#)kt zjwjAfAUH+X`t-6HoqOS4(Lr)q^^R6g4~937(N$2NzAW70lZaK(yQmBZ04y`$ul(zx z`?+iTO$!yNh@Fp3sB0Wzdvj%Q{J2IUN}GX!_gQQ8UUJETJj;if@HdrR3?6!n^4*n8 zig0u;Qgmx>h`v=hGT}=mKbT1kkEvNkjBUt`nh6-=g|`$g3oPQ1;njspg}kK;l4b)n z9mjKEnxPP+&)NnK`z5B>S+`mIyZ^n@_=1y2mNw`rNLkaEdbf^Q6~bG6W=N(5ZK!8P z&DVZ}L9=!=-LY51Pb_UkynE0W{C5dG=}m4j0)L-fIIqXJ zSUwf|@RdC|tI0Co24){R&J*fnV5K?j$El$Eej{w> zgDs18ih)i)gtvPc(Kuc_1rUs5Lodt05^Lc3ZPfW+Imshr5%!1zr>f@l&a{r%ybT=( zQ?W!bKpfj;MJF`vRTM=8^|A|>ffY_ac(XJVnlN^JALu9ui$R08m>R{O$~GpZ5Rk)3 z5`tc0dVO?Zp7Kw@GO@JPG9K;-nboqRcG{47X8NXxqs6v>JmK-P<(=*vq7TL}l!35f z_#pTB(nm3P_p75dei2@dl}aUA)rd;i+VnAxfr!nBb)vEAA*bu`&*TMVw)m}7=Kjhw z>^`8ZvO?t|luExJzrlR7y7Yc~D=y*F4Xthln~zS9yv!$G3}i}YezEH*Q{o-eG95Qx z`?bcH*2m=Nm9EZX)-9NVeG!g7IH*YzT#nlYCd25fnM}Xg1aJXVomy~=Jq)#Cvc|b9 zO2Gt1h=Rwx)B@>}MenFaK%V zRcDra_(daCkC)3Adsy!4;}Qmg;VfHKF#aN6@%{E)5hzy!*%-Va(NSQf^VOb?P>t*F z;E77b&M-i@){5F!B)I2lZ)#`iV0o+LScW^qmpB%UV+~pU+{xXMAeAefmAaNt^2#J| zeFFYeE1&FTK3eD2hpgWMM1>1qfKH1e}k z79Ky;MD74o0TW1{*m0=ao-&)Uaz6^jX+px-L{`?mU$sIj)sB(r$VMlCR*nFqM#Z&Nl7vPJja`W604qJkHMasOe}{LfysI&xR-c zG!>Fk$FY7kGipGZ8xyzFJfXcI5IZ)sDaRw5Tm`h0?n8b|lZs`0Bx%RZ$neB&cQ0sg zywZ1~NVmv#fQ968c%Tvf7fD5fEg0q*&?veiW# zxtAK>ai>&t1lnkVos>+QZayWxgxGz8KINQLt66Wn-KVzruB&YhScGgF3bmfzZkdIz z7Oku8Qr3-*p%VU(I)$b8N-r40E{V-A$BtnI{An*mRd=(5HGIgCVwWB7X5O|dgbqOiQn3kjzfhoPXrzP znt@oC?{Z}QYipasE0%BU>uqX9(%iD4kxha3T-i}cAd(dKPD?jwOwgSW4~pp>x5gPq z3SPo$o8Irc9U==(V0;u#2VO-Y4Fe9LZZqRShcGKms5=sM;7eIqI+)YQ9G`QDec%oo z#-Lgml{NV1Ma(zh# zZlLPhO7X!4uYFnW*s$}DKCm}MpQAkwW8`Q#XVZ-dHK^X5Q(H<_)#(~8n^>jve&5e* zbpOT8sSb%04yx)erFhVclL?;^#*mR1 z!3KCVr+KO6w!D1z1=F6Klna8Zh-J&Q8bapPwb`l~A|VdP@}5*!TLrR|WP$)W@u}|L zYJLpAjgL8sxezf7I;ij4RnP34qF(5zbpRO7@$)YmCltQo^+iHx@^E4tq0CY2p*Yp; z?3LIdPPPdB7R;_YjhKm}>^J!8@6aD!oZ; z)(}jek(*|vxNWmv>AU*-K7H3)(c}_@>8&>w=Kg$gwm(<&c!}O|ihI-&@#IRmu3Pr{ zuIvn}NsFP@zErzXDo;oMv@BM!5w7a{=Db!nqjb7i#F3S-1^f;d!||P&O|b6Ni?5*N z-i#(s^Jf||l1$$ilFp16U^BCoqvaDY;m3;ayS!4#e;!tt)%$z5Z!ej0Ch&o|b@2ri zA8Km<(5s986*fF_?2XCJqFdb`8yJ~=_w6g|gxkQo$`cNE35@V00Ne^F8y!q#2L3Fb zK9^my47!Vw4o~Y;5iR@+s`<=6uKgD>>e{u0v;+=(P~^2RyHZ`3UDERtNhywuhCcs-bLSAk&+@`_o-| z3s=beAyDL2X=hz;c`(D;Z12T+;7fY|eQ|%Yu4}`dRb(XYXu*iab}bdunMcG=0(H7P3LCn(GO8<|y#S?l|NdSOz4k8II``7d z`oG>%%49?(hoh|cp_Tg4@w>m_9(g3870V{lW6kx6CjY>E^LmNMGP&o+xAYb<^)UtH zq4LIbZ)2H-*HNB%T^9{2awUG0wauF&SahBLaDdRpXs()Mmfj&zg_FnPG9#<2KQjk~TC%jhjxFcFIQG5u{Pgug6Es}kXEJ(R0QztbpdJWCQ{H${AC zxj`l*gW#hodrhR}mP*i1e*G=-0GS#}`Y3`GL{KBB%Lh@SX!!s;Rrey`cEJ z{4t*pNV-{F`*f%^6QvI}ScHjvk;Vo8xZ}H9fAfXJ)NH`=kDeMP33%geX~;Fm2?hZ$ zM%EmEXN9=<{QmAL5<*r7=!FekihS=GI18;7t@e9A_PpM2rNDRbySlzv!4K;rHzl%* zQqG|Rdf|kA;Lq~p?rZMJI&yo<%U`CF#**mGBqQ9#Z^HBN$SR6@b{^Zj#-NeP7RMM5_^ z(TjE6h&+^IM$P1nPBj$ELu&=(QO)+6Sg?>>Ezj>bOYx+O6tyM+3)<*!CO!PfQ&(Jr zNd#4y-*H(UzM({dhV}hDpzm4DE|!k!MQh$mLDvw!HhAgi(WHyP*FS*aB0UC|_`SfP zw06xpd$-n(b3FGNg#;L0#tGTwHHlelXbsK+SeZHIi`N)sp!|ryj$tiLONq}Tt87kd zV;g@cOV=W1_Q7@^HVr#%PW}k(DJ}?Kkl^y=3P4Tx)hQcCy7FZt8n?zHoKVN5M(zC4 z0<5*O%;$i<`;7AqnH5Off90Jc7xtI_ZJ+)%OvwwVLdA2`--RzgCh^;1y`Rc6`R5v` zZ^9l8;4v~-HpuYu)Uj*dBJ*9FQKjOw-pmSzKo5!GpNUBF6sG3c7mg6SuD5h!`Jkj> zI+va@q&W?R``A+cz|P7(Pj5CDx&LYKZ*unsG|1MmZY^(2&aynUgS$i<3l*~e7|sGa z3f?)KS!7M$vU3pp0hsg8|NVD+zt zs;)co347|A#kW|T_BnzA=cC|&u-@giadgS=V4A7Kgz*0)*_`JrvK)Bhfe&hlf#jWJ z)6T@hsf_3Ytq*~o{6=w>+S1)lp2>{e^%nd?mzWkr3qsIk)#|N&j*X9H7;@62=Crk+ z>-2VWIjz09UK&p_#`#doH(IxNzk(tcx4!wL$fDGQtQ&u?`!}(W+5G+54gjnUGOeD0 zjDCuC&$8`AN5T7fpk=vvNwXNncrjY59qgO zGadiVZClHmUd*RE{DhkD$*p7?Io4Jf9i`3yt$lIPGdC|}VlmA5`@EoxtRl|xvUiZ1 zV$2phmr#LH{78-5?~nrJ;u^w*_#e2pqe2vw02ft9SDvBvO-d2w)`_%_;Azvt@yVNF z1|7KN-HSavlLa<(Os|Y9O;o7Qhn+{e96-}*B3*)5>&@T@SJ>8FqKpUd?wVDhl3>xKD;1Pq z)OFT*!7(#S+SN0LoFD6B0jdW>vSEEApP6DTE&Sv41!PVq%mCu`gS@h|Eac{PB_rTU zy?=v-w5YA-@-@99sWdt#Q|@B?om>tzD}engOeuji^0RC;+@W3gWNNMiL?3c#52m4{ z@!_IJf47HYej_X6bM6SbYyg^ZFU=_bkEgeAYx4i!zeNO;_KkEYNJ)1HLqI{L1*A*5 zySITNpwiMg8j)_PQPMHG8^-7wu`yu3`T5?*{RiyWuIm+h*7-PVKLG?t;j0#Q8+LUjV!x>$RYnGQfp8QCiGXzqGNg6n zbqTaiB04s6134iR5PhLm6u2&vUF++nXxMDY`fS)*G%>oi1T>i@Kh)T%jS)TT=b}>I z{;TfUtpQLE(8dltEq;5~z{9@;iF2uS3b>@mIJw6K+98WAG}hr_Ns8Cc6zP^Ql2Hqn z2Zg}~Et-VK0cnCS4sgSWwLCB5bh9ks#nte(@9;z7cDv2($&1>EV){};2EL7C^f}JcJLn=|1jqM7`i0%QhLEVSZ z(FaWgRRBRB2=oAzp~YdnVWFyg0M)b}^{v|1x6^Kb{1Ixy*^%%0>vzZnM~ejs<9thQ z*}7+6`evw{Oi|9EiLnK7Cnd4pi)WOcutZ*j?d9J%zw8Ur3l#6&Dy^vLHHKc>!zE99 zf>(E^h_Vu|mL_<^YfL2~sQxH$6>TBS-4iNRAp_(Y10?L)2E_70Pgob`wo?aI8`Ouc zV#68hyi-FGW|UAvDQ~(h4Zgw@>E64FAZ@53rs0woj4a*Hn+8lU+`-gsi@~mgsfi!&Jdt)gKf0@aI7Z6T>l{VC$CYOzZFz2*bF$a*UZoP=e-NRN zVgRljv>abFfPVND9ccN5?BQT(cM1^nplonMf#B9jP$q{kI~WxaEY;ibIZ#Peer4wD zk%Cn=$f5EE5K)UT9-6sH1DuHM?(%2#Wth3Kmr7(n4H>FRJmzm;IF)suu{Km=C-}wr zwl!YN*YCm(UQGnt?LwfiI)A+?)Sq7ymxqn3fSbwH+vQa`)IUVd4UAKu2E1(t-rgY! zUpHTxeYena_hzOf#c1W0ie^*fxk9mBV9$^*fy3NGuFID3md!1 zJ-pR2*k{goUX;_mc(VN5Zg!QKEOTDeIfw1wYiE)M-}{IG_axk?QgP=e&=hP-o^dh3 z-ZcjPZejgUnz7O2@ML8%&0F}8J?l`bTAbIk#t%UDF);#SFJlIWw{wo9jMVg2#qc*} ztl)%ei&u42v=dd6L~quSqzUyZT%3h(=5U&vz@9wl-b;EN+g;k~2HZGyT@XRmD?_q- zPXwx8o6kQE>}FfLH@qP5YRV>ZtU&tZIo|`Z6kXh3RMRW3?;OjqZ(FoVSNtz>%`n#) zF#nlZ5P!>vS8XZD`xMIEk+6_T@0Frk(DX96f@}63-|eRS-6lTmTk_j~{tK~@dUqn>L9Z9Mubn18?yFav^;925qgo2&7-KRF%S)Tz4rRL%4p^){}(kqPI|yIsjLeRf|B|Wy{%buB+>lb^)ioU?#7> zH$tN;RsQ~e#ulW;GpyH}RxS5hy*1Tl(bPCok=Qf!bqfzm35vzCaNxNJOJA0>ZE?B$3X*cW$jt#@9??U?aywsjM#hTjAd0D!{<+T^ zajh*Vk1>M()}e_#JvzB|w5UIxPq5w>dZanAK*Pmp*W94v>aRwgow4B@Y}$-y`caIV zhr*p)Ru*~c4s0+MgFUv9=~ZM^(5O>8Z(UE*2cD8o)(nwU7+Rce<5H zE*_D*++Xnf7_c)74MvHru2pTr+B*JuTyM&HWR+nI{1}R3PLZa!aSa9HZ{tu1R%0lZ%;5dfsZ-s zE#{d6gmS7}RF&NX>SAMA?e?3mrenQgj zKDVHctB7c{=;A;CuNd6l^_X|i?KuH)RLnw6A(d0HW9`l^t0QIoO!d17oEih-pV5Bv zEsigx<_4d2n{9=I(TsL8tT(sZV>oWfuwk+?g|Mbld$l+F^lO;?oH0++U>()$T^((y zCe&9EPT|#vZMpQxNZwv+zZt?J*Kow)cz04Jk)`STQQxp(JC=CwM{Sw6OHq{22j-QDaU8?T*5PU9 z`4km}sN8;%Q=i~8;D=k06RkR@%%+j~osAYI8a$B$DwjK)ZNIzNl=J}!VM=ghQ93vI z$WJEva&|D3NblVX%#L*BMECrh(a@BGzH!Z<{zptbYk=q1y^ltVNt`e5>cI%}U^45? zS}w~g2h6}C)Z7q0E^3&>A!;NY_)%gXHsJ-dyU^5W5Ui;fW3XAZwuacwonOm9)XT9K z`v*>n1J4pdWg<&GoUHsO$bX(@YCrX%^O3q}i14uAjN1#@^Yd>lFFfX{1pf>OlR2_J zos3$x?9o>MDZ=l6SctvA;JF5#T~cQ>51(BOga59^dQ3uCk>=*@uH#J!?-xP?;S3?7 z&@K}(uC~*^=HEtCQVdM3#Vx!(fJoxJg|oLi-j`~I2c8j#Jh*Mq^74T53#aNMJk?)X zQ78J$JxBPQQ}=})$RAJMGX{KDFFx$nw%PjD^?tKN1FQ^BP`NWy+BAlveyrWR3yE;! zmCb}~cVbbj*joeq)_G^#*=xTWvMEP(+PKsc-fUGT8{vaDxK>(DE-tzx#j6(e=zhEI z6^ZC(K3f_V+10z-QdRbL30iEu)H!llbb(?D@udDdB3XYvoK*aMFi%kF<%}b^3?d!h zP>sZ)wf8QTs@reDB1=N&Pxcm>Bv+Y^9yq(Cjq| zr&av(9-r5CF#kjkdTCj4LqBcn;@5liVhEQzi!Z=X2^^s^b4@oWOgk2{Inlo;0~m3) ze85CQBb+m*3!{^Iq3U`A-)~Vz8&!aln}$Wm-HfDOVaENeE-oX6_&uGsF4&_-FE9M2 zrG5v`do#xZZT1aDv$q3nja^w+73`9=6{$58qOD|2KfwjJakwXy z*Gb=<;donsk{i zU0ZxD>VZk13<+45)$(O>Qhm$Ni#yi4a=h*R_S?noMlR-uBahuSzz!)5EWyf_>08kD(*ST zNb+F72x=GSZn7CN+xdj@wS}Qo#0T#$4n>Huf3sK`L8`O7ZHzJmbcAZEptF?lLuo#Wl9!ZL2bwKSKbnuTpC=5QCz^`Q)= zmDDXk;**8iTt$EAk6uws38@^(NbGf<@n(pf50Jrx(GBbHK>8F`U4EN=(Kv+TA9jqF zl20B>HU?7729C^PG|69^S635Cp_=;7#52WjwlwdK`+AaA6GelAPeQTiotpjCnEGB( zL~RjPlh!YwVpw|F>x4w00@+du_?I6#t-+mgya)#Saxd#=oLPUiVUAk*R%qa}2TpHN zkRwQC7s35*Kfp*M8L)puWuyKw0|R^oeHttTGQzo0{0?GBZ{>1m0jxT!W+STnVDhl* ztd)Ng!0m+Dwk%Nd!66=8q7-|c$!^^`k!Hb=SnIa#E>xf69tUQPtbJm_RG*ezW1BvV zsMc1qwR+8*$S+It95Oc78l*ae>kb!J?;0;Is07(2mJR5zCLnAIVb{?2!8AT3O`+fG zhGb;_mZ68d75RT_k(aK3e@!y4#%^`YmOewrDA;8EL=fvexVppR9uS)oVMXz z*&1QIt{w2)-D_lYZrCEgl{yUOwb47UNbsFA0F$|U(KHnxkfOAm6e$9jG{7ynRl0$&f$*q?5O?ME$Vl6SzhE9&w|PxV2Mu4-F@>yL z@1;eTH`X|==GIB@a@69lzX*o639Qm-3mXcQzD|+q{nY756&uSw+x|2br|KEGNi@AJ z&FlTJ6EJ&f_?Lf}oMrW9TQXL2iT`Ghe+rcMCZ<8BNW?R#5T7;$G)R5Cpuu=!A78c@ zzO|B!jnZsaJdZ*MBxd2LE+&^9MVgOXWC6FknylvC`)sAYyT1`p&@ww5zZc?VQfSH< z=|YYsak~nrH-8w3igcginE6ps3&yp&4HL|p&*pn=sIyw!MOh+%pD8>#sH4mmt<{?L zN)uKro!0am?|o!GgI-Tp0#Iiu?ZDQ;wP;?O8AYc*;+pn=9MM$2JfAFMA7NXT1c&U0 zBVh}JlIC_GFOEPl@Dx-`20na-NXkBARD}+hTrK(wRLh1^w3#>;7NeqViXgLd4VmSi z%RldnTd?lo8v#Zr>M^#TYrlcYWtDjT53 zcWVwdj(v88BvV8f+}+y_I`FuOsYc`y<=Qn>;Ig@bNE{-!fe@!I!mZaEM5e*$3n~-% zoD>#7U5yUfKN~1qZQX5w^FQ3;NZ=dw5_oultP`8BZL5)Xjj*jG^IDKtl{oX4@*=_w znwT?Ap&p<`(Y2K=iPl9ZDrg@ULafd z_2p#U&@deqW=*-t@*VmKujUH#fM;3ycQw0HUa&E`-#X-OoY)6ik5H9uE1>~>Fw;xUmZm8+8~iVDmSlZKUA85UdLs80fOlg$=kkD$nR(?-BiG@ z2Eo86Oe*R-}{aJ_kP*i5W}8ZXVMM3TTE)E*3u_vJojo=*P}^wlKUz= zah;Yl#&j$`7?XY`1XHP|E>1-OO^`I=^MyJ_T&?S~vtU)$$lQ$7hP1 z;v`f8Z2*`N_Bk5Cv;Xe8jbD)YNxiU{O#OV0JZ<^P!<|V{+38L7)yfU&SwIjuymZ7g zutoMVupN!y=VR1PePZzqk}8r20~FZl%7->2v^NhH9hCa-CQ#&W2E@aivUD^U|Mn)d z`tJqdB+vRKc*rq^s~NZwXR5?8>c4#m+MxAFiEPf*^(W$N-lnoHfcGmF2(4HAJIT~J zd-H9yp;iqYNgiz|e?3Zc`ff%YOxt58uSA5B)dBkr`j2lepZ(jjETekh;hVZjAwkT& z-<9;&j=64TCjt5dhf^8dz$DT8P1_AMhQ)x@hU>a5b3}VZY3Xgjb#V4)*`W8(#l@oR zFijnSWn_SaN5sFQHLHV<%Up?D)VcUZo*BJjdcSyY@#F%3kLF&4-qa`I(92KcwKrP< z6Jqp|(qLL4sK|4ag0U51YB4jGsx8~YZ5)i=qZYVGlG z7kb~?T)Rz)OKaOnoYT~bK;6#Q6~1r@Dw@B)>ZE9U7k5r1Wc`-OHD#afy)c#?6ym{?j0c)jnNRdQ3YJsVwibYFu8i*2j>Z9rpRJs zy`5-#g}B`gCo$Q4Kij*A!uhjIyu?W#9LYL(%n#Ka9Of=Ym;iCckpKbxmdx&b=|z(~7n=IRw9)MS zcfIn9<|#9hknK+^995w$tV#6_m-!g?Se2$~hE?DS7yaZmE_2sr2sy1HtrduE%UWaz zIpex%4mH1Pr;si?-eWp@;8Y+&+X`$Y5k`J?`x1Nyl>zW#V;LeW)OzyQe#m=)%{tG9 zd%Q;XU^fzwLi9&i2ZeW9ir^Wa|Fpc|>iIB5Edg#{;4ui}QBHfrddw4tG&7VYwBUR5ocT&=ff~ZYuGr|MnWln661Lz(Qh9ilhK-K z$L1Af=M66(sU4eM_nebh%6rq#wyndE;T@SPOd@^$j?wFaXpi43veoVgoMJp>M? z=VuqN8Q6tW2Oyh#Z{_!ypa2jYhPpRScg8#(!43omL-Yhp>*a;bz|q-fPRhSy*|G;? z{@&I8BbXRDSeRSOiRfq4X8r;?WXPnjN;EPRgqCOqwDb>pD0}5GzxOH{n1rjzQ~Z4{ zXv9jxMgq|^;ro=?G}7FonkKXP5uh|GC++`U6RMx&DtmFTMAJV)4H7 z7G+m5=oV)}t@==+aSY?l0P%Dyc}RXq6F8?eYZEE6sb#D728}~W$1QhNv`SBH=X=UL zvDCTE#HnWeR)&x~(-F{_yTr(owX?q7$KfZPnX03`(RPG~MX_-d@(ITdlUt_LGYFg? z0raLK`%J*cav7d1$rM(Vc{k8r5nFn_0>=fo#`xQ5=$)!w1X6e=4AN||xcF@*q*0)~ z9DcvK(aZGx=H_Nnz>q>!c$^KO)M+$tBtF}1G=BSsw5^_t??uw zey?-}c(|g%if)YzVMVuHoytahk(_>oPSZ-nfx*ZUe{?p7y)FBo*4o zGuV=JCLR$@rIb~oH5_=vnq6Dh{0SucNF1tYRa(}1ovqaVb;-n!tGGJ9=Y}5n-dY904Eq0j( zbt;-xhp=H=m2OACwnn#6lM(M=sbvVcUVgWK%hTidZ+Xs#KC2^A2Blpi?{UR?ZU}@i zolCuXMg*CJ(Q6>2CkMcfr$jU5B1srYGK9hV#;Y=B;tlJU@1j+k7Q}r69tT?mKi&kH zi7?6=?a&WiF_H7j(Y93;%Yw$h@z_J2RQ+Six9eK2qviw(oI7!cZ z@!ddHjqP%zn&13x*CZVV#A85ZVLwqdUfT~l?*#Th_Onl$WdeEDsER5Q1B`p%u0-CD zxffS7?2K!)8LH9JP5=1jFUY>`&bNy^))-Mmp5|cTXU0G*`lM$5*^&HRcjw7!tWQoi zM7*ODw&Xh=sd=Cj2c$|vbJ<+~H`8Kzk)3jb|dXYmy;H{gl=CyG;U z#x~L$6*osciHxb{=E(ESRV4+AtLOeR)%}xt*Bcn*^aOA4t@A(Xo%@wIZcdtIerGsd zx?ujVOk#8YNl7^wACZB5XU9tlAExcJ;X$KsgIvdk4pyn2QjWBSy@!U*WBjfX2#HM^ zz-EWt(ic@(8)>kOpyRN$IqiAS%+-|X#Q={yWT>`|=L+Z@mfVn9TMdMiT{+N#c(^Ku z)UMS4%gmA3!dRN#p&HN>tCi8m%`}jkw(Gf-3%GJ8?ZY+IKJR;bs}k@`3GMHo)S%1u zd9L)=*H6OU%?t2_>s$bw2WQO|Bb`SpbA6b!~+fTyN*8C8|3G=pLC!JR%#s1%d&OeD+$R<-t2|Sl>4p0nEMDn}nD)W#$CaQ~>=p$p}h0JLq0>^ z_CP7#er=p!8nh>~uH9Zf@{Zdq{WduEl70}3Qo@q#2b%yF+T~GK!I&%61?+~MIp%~* z;%;A4?go;Ce&D*!#WI4%RY0&X9o`>JT>KO+vY zw_l9BzaRZh-^*Iwl?IJMM~3cNKy$^?b}fE(#%hs!|C#DpYbQLtr|1-)_O@WguN}5& z#OBZY?CqE5&Hi$t6)OIJGFpuP7=KO6NVD^w!h6QUZKgg6h$UJrKyTpf2xiKK=ni7T zm^Ct6))zqrar6}_4N#c9#&BkKAo=lf?ne0+6<8TRbZujV@V>Lbq`i9xbA zl$SDQG}%Ps33ELW=Irah*LvpH$yNEI+^y3-l;(>C$zfj@=(Xhs#WS?p=91{>b>+tn zb);Vh;L?1!>}oIi<1OfC;Gy3d$7nv}^oFe=MvB2QLnSldwNRx{;}3PD&eQggA-8qz zo76d2avwD>z=Z{JEUYJYc`2!P$AKa;#N_=CSJJv#N9YrJ?)~_4rYt@ z=e`N1Xjh>_B<4iD{^gqFrrkaK)hEJpPpTLDh^!okSc20e;$}TcB=ADzNj_!br)7)M z8qe;#;{94Rl6zpDozc+gM1g3sk&}FAto%zhm|bo=RG8lD&P2mtM#bosEdCgj1}WF7 z(pyOAt_yy%>ZR&ZGk4OyGD>V@B+}X>&(Wb>`L4aFU`Y$D*HghEa)wSm_e^d=V3nebKx`*vfu15ulk0W*&oM72>&g76f06h zJ7z9`-m8{#X{7G0xYsStox?~2K|?TzTv-Yi9LC%;T3TpDaM1lKrg>~SPpXigSLxxx zK-{d`kJ$Fm3FqTL3X)`6vyLTVGkTR3efz?qFhxG`nkgv}Q*}`S*@Y!W#l;;< zpWuw$aoCReUkWFsCfN4(o5w+`DeWHU6EG9pQ(IF=sQ2;xZQ4(3bf~C)H=E<>+1#_z zr3tVE>OXyK`Fjb~DgSwlLY4NDAqQ?bMCxMQG}NEd*)r}GW%vL;jX+NqOz7R>y@o^K zh-_nLig#aWj@An@MI+fShg3+Y{a5++flGAy{c%G9db)4+CMiCvKEnV><7qrJ_-<2S zL67^&xsNZp2bEVUshq-pYZ;i!Ob{W`6s-`6ox)UN`5re?G;+@7=j;1*h1Je$PuGIv z_fE~&M_Z3?^iRq^{wQsmAQ*9xdomXwzrb7#&$j*MOQg1VQ$-oTnuM^l$=HqU4G|TB zDI(@%BE0_Ne5$t@@We|uZ_Tg(K)M&Y6tCpi@ZQi~J4=Q@T{L3%{-}HTOV-z%bL3XX zK|}K2X}=T5)u~$xQEV3fM8;MA2!Bk=G5|1~LuS_h0(n8>k`dplo{gfb$iiio*eX*B z5W#K+9EbNzMp#9S`KbKq-U>**z0}~{omjaU?N76)**lk2sneXhbD26BdYdP%yIWe_ z&e+7Z+juLf{_PDe5!*(p(9uUUCA#ot8-uy<8ee3iL=noWS)GLzMR%9Q_cjihBtjen zoJzl>EU{R6&izM`d)hm4<@s_C#Ga<>t{`A#CVtV(Z+t#}hw=x4FU$brD0))&oONuL z!6;2(H8roNmFrS&ZE3h(sPi@^aTGPO2lRt(+itOCmZ0CfDJox#k)0%=8+C?>@SlBI z%WPau+kUiK_g2zx>@{BCTUL=Q_{}55HGz#@HVRd@;n~*z-Ezk?_^^Vfs)-MB!E}MG ztY|h^3WqG-rX~D|MHo#O1M#)i&nD4ep~4>3eEY~e-BB>TLF^Fb4~D`i zRx049R;zx%t%&k1(#xbb=MFsjbf&5Q*bIDwx++rSGM^zxu>241FO2XMkrskiyO zPZaTvDa_)>e7b~w}^};=;D!(3xfTxNCFYDw`h2D1xT_v^mW3EOU zFu@jc9?|Jo6kJQ!U)OE9W$=Z@rc<*>`~zRl+CxXlv7PeHK@`)or)g^LD&c*|oLA4J zP8U3>2OFpM@+j%K@AAsDBq9XoYhNi@{`b9}&w`flf;wkUtWMzmd|Y83%>vtB_0&vV z`+WYCQ9~<2twOS;p@Y;gQjIu+GxS$0(2UYe=%<=SyeK*4nLzkOIjU(MVCd0 zGI#gV?-Yz!z7qTYRR&(Dg! z{ob7YV6--l%Zcyg`jX=y(vUFcZN3lqUYtN=l6lvKELuqp!7qZUkc+n17R-5F#4|vi>iPQ1aKR6D-?}kK{rYb z=&$x@9w~t|dj3R7HCC;_&iqA|Wk)S{!!}o&j{N-qDorApZ>eIuRH$Ae;?Hx+%C}@a zv$^?vQ?v*S%}7dxX>7+H!baF{q|}0pa+k2bROX8Me55s-%rM0#D|d8Vz=lh!0XD(|hj-Y8L@&^as>iO{ad3t>a!V3$@i1wMvU6`#EZ|eUNGB^q8GrN?uwcz7v z^NJDYuq2B9dS^8J-l1rEcCn*r{)unuWMF~mME7v!yU9HZXNl18>bJx3>|l`*-ERp9 zQxAE>cQtECYncO+^~#kmr0lC@tBu=VjA*H!)IpYFu1v~0-VlzcW75K8mTH-M=BSnB zw9L(3_n)xG|H*FG3a{v!eg&<65Ld z2J5d3&=AKBPnG3t8SDo>WJP?7p`Wt5mo^C<$?DP3lw{1MVr%PFk|(k1q}|eU_6Fc^ zCnh}hw_{UCOX*v^H^MBvX+U5Q0#Q$BbS+v@@HLV5Wg|PBPigjbR>_%;32_kS-#~%x zdN0I+4~bVfc%rlY1){6gOkI!|;iBx?cnd}0dF1!i7)N7sbD_6^17lDr^bm3 zKWyAb^wHjOi{!=ea>8}5vd;e4(;K}`uB}$>KVVC}v`bZrf=v^|)jbcb<)tpQ(meP7 z3x|(M2(#ZQd`x>5@9@3*{7jDZ=auzqYN@7{oN7`>rp|)FKZ6#AW}T603Bx)}A~qs9 z>2qnC&yr7;!i@mC++u-CdVe;%@Mo?aV^h>3`5?NabCAvdmH#*D9Y z7@DLEDVq;Dz^0`Cd`McP92F+94M!yP)kt>G$^YB_kQ)=f?=2x)Kdpa~XCF;1O!g_t z0vKAZ<3E)bH@)&OBgc|`3R6=NxNTYsXl<6LqeUuGSVKHfuC2_I&tI-2YmUbLt9Pb-@ z8?%t<*d_3;Ue-6n%gj>K^?-5LQRi3=uNH%idsSZ)E#U;D6SE$KhvQwM6%Fhrx*a>J z4x;y>RTp<4@R}pzqZWRiHA59}@x1F4XU(<|p^jSwy|mh=SQT(v9dI1i`d@S)v_xcX zJBD)-rqlT|5zf%)PaIsd?Dj@L3a_vi!9_?2FizR`P)!hfUhHslAvr-#L(%-Qq3|LN z<8a9Y7Lvc_HVwvh>sl&Y``5FRvB-3_0>2pcO*x0nycceN#VNw!{!_GZ*3n^O81231 zb_d`eRV$WrYfbcRzY`&T!1V!PVg7w#CaAF2J{w73dg7N5gRlQf;MH97h&+}0|NSnM zndMsA6YCzTZxjm_x?c?AwTbbf)T}dy)RM*d6jeKJM6^VTy5a&zJEM$Vvxr!ShcLHb z0+_q#kn~@vPMocpK+%Y%4#^WMIc>iX3Sdut0BMorw%*!vQ3kc0FcMl3D*+t`AyZKv zjGLiVtcaH&Fzv(XuGa}=WiNmz>_={WUJkF=%Kg};ylYLX#i6S^_AHD5fhjsVJIi*# zAEI_nbvQHYlM4}cu0jZJU5f(D*d!E z1do+KMehBOkOEaPKvguQqTnKo*Y%->niq)9jQ@n|$**CyihqpGkw5 z`wl>HYW$+_=H|AM91u8@Tq-UBtM;A3z)6fC+d?I*ym zxuTvA#9UbzN&Uf%OFqm87F505Uvf@|Se&L`1*rz97;R(}5w;1JmFIYXf;st@vekG+ zkv)C{Ms-+w66Hbzrv`VMallu=#x4DiArkl`HGxOaomK@9IlTERJYtk#) z$(zrIsV_%`3TK7*UoXYP1s^Re*8yXDkZ8l5F-OPaWA&`A;%tdwCf;(sZ^%z2C6}t- zj+eeL#8a%Q)9W-jbi23* zP6V0UJhx%jY|>c&!AL*#((lMx)~v~s!|BZ*oiw!qDQbwwQD+ok*|#vNVQ>enok-D! zmTa0n9r5U8o<^(NDpcJv1Wu+s(`qvpJ^SX!4l}FA1|t3|1^hYVT0@&SV)URjPU)Mj z{QQH>#@5P{GnF>m7iU-V1>ubW+ZWTXxJ43HB~HuEGO`2i16R@7l^&_t_O{$s38It% zKlOVE2FV&d8*&cwo9M%X~TRlbka36X${tA58 zfa9nWQA0aUYl|2Kt|y!f1tr@$sRHHh zUSzN#7bJ8RUT5zldPgYSapLhHUR~N$d26qk7`WgG z+b>1He`0)tZzHp#Skg%3*m|i1jB3ilw5cubxMKnfNGV_!Dm|WG7)+_`V1*>u6U|iZ zhT>4{kfz05^Y{m=E2{znhH0^`^X42yf>9-m#XbW|@^4Bqn4!I{T+Zc1tM1xMg<$cX zmZGBx041i3Rm(=N{!_c`}1Tsf+!6Bdo!p5`i{J)D!PY)cQ1W$6M^ zcE1{FOIuAk8r6m0n(iLH6Sx1vmY>!lIXPu#H*vArnsJoXl3DM*cpYdMB9(ZFU8@%h z+ zDco<`4}i9D_o`2E1DLJikEFau-wQ5jYvF3LzN9bKBw~bJoelf`L_Cw1jN_A~=&NyH znRpb|aGmTW5P@7^z`KxT5cgRAVF^Yh|f-x#m);IS%HC@dME45nMF!^n-vZ<31xT|rx zht6Xpsk*!xqj7(}Ud*DVaN+EKU;eLXOCe6_x=iYVP?XseZl{M+kUxj`l_q>_&fbZ@WMLqP^jXoSRWxD)S!%&nKwnUlNbNz6<7iIr?8}6K z%m7#;SFXBHfNn^U+tk?q&jPq#0Tle`??Js$X>ap?iB;dHd;hIp*@Oj5eP3%$A^2*e z-pN(n@CS@v+wJ54ALR#9D}I)tl(@)4f4x_Ff5b!hQ)p9@)XOB-EI^WL`;|g7dIht) zf=HPZ0n{5|0w>OvnTz zqh4KQiBTK(>8*$B$)vl}rTU`e({)lnl>3aYPR>(cs12jid5Q3?VH?fjkLNVn)7h3~ zqrV6qu-D!Tt%80Vo2CE*)^4xeHaBza5HVBj!K^WYe#Lld8owW+NYjK*K>R{Vf6;Z6 zPaSGDf|g=|EBl$q);GDZ0S}nNgMI!p+ZE1km(TORcoN~;GLDbLQxh46xt5e?>L$$9 zJA`HgV}b+vdPuc);=7S{a8{E zY8{tQ_sseYuM}5K1;!^khaD5 zZ~^GsFnRWP@Zz!xsd@I)Q}adz03Ww+}|) z`@5rsrS?&HB;k_Tgi+^)pSLP$MRCGxZ_ zb^A>c$bbB*A!^LY;~Jda&cROX^)~pWN@F4USHB&df^18m1&e%Yvv15Z z-7X4F@bGs3%TVRQb5`+GnCOMZj-k`)y;b-vFlY^Ui$s>>mvZ?;AE_<3-Ii!x zch)ny*Oi}^2L``bwy9oEz@Ab#Ff`ANPvDKn8aWAFK@ZcBD) zUbPRW=}n6HQ&M@z48na6Ad*aYbu@Txf9A}guDPVf-%9o3z{nu%QX{)5(RC$&OFbCO zF>+cygJTOTo6G!^>AjwO;*GOBIxc=0$yak+;4*frv2e^5wwn6^KZR=Qqh6VSi~oHN zSRZ>uTK>NWx>NdJDxE~nL(i(eWAhdUk%s`fp5>~=exXdu7z?D_?_3fS`Op>TAaY3w z7W%2JpGN;vc)IS5LaY%}?zkoMOi7MPG)ZWb{uI}+=fk;~dAbcVtLv1e7--_qLw#BQ z*N{P<0Ve3xN|2!xEqRK~5w$Hrw~L_%-{^hKna8&e{}ctRo=a_*P4R%ABs+Y8BPUyN z4IaMD;hK#F-*4UiVC|2n@ZNp4i}~9N>Xz_Fi_4nwHhOy$yO+C@4h+v$7}S2en33sl z!D|OsQ7}m-_F9bjLN8zJtuB`o3-teZ*1ZX&WKu5NAJMkq#Hxoh_S+02EEyuM&UUt3 z+(gWI9g^&7diR(DzdJCCyR`}x&)hxxIDZoGDj8_7(q;13s~;W~|Cv$#?djekX~TfW zCd!MHzJNBplcy@lm77lctq1^+-Iwu&_WuFuKo!69M}IsI7^anv=!lN8NQ4@`Q(!< z{L}PUS|R;Yh-a|>~=Miu$ zSFW>w`rtS4@TfcwayQQ!F;I;BVz$d1Wja%z@-^rg1S7Te!>}AWk#@cLBOLj@oc6r* zJc6vgOd-~JzTr=49{)@FZKYiL7FUA&Yo|Ni&s+%Nt)U3>SP zw9NQZptJ+i!&S^uDwVa=UOmdT?OkbxmH$)!{lBL>r$0-B`*)_E9iwUL#;r7U^?DlG zu`{jz`HxfI@Mya9@#%EogHO`}0+}id*xr|4KzkdeZ0|NCMr{bw7Sg@T7t{HF{6_?1 ze}HD(N{je;k?|Ybu{$05>0hLwgL@HV^`vR$_N8C{1_$@oQ_C6xto!V2e2YyGrVz?Z zVGlU7fkTA#2)srP9ZpET zG6Psc7&d$DCMJ;Q5qRCiw+%uvXy@GIL|Ue;eS3D}r>2XY&G5B@w#CN%d#MwRFLyXx zo?|hu(veo*dJU`5wlq6EmCpQs|1YMa|B5fP+0+B$yzLNzDaOXi8w;t*JZ|mTQD|>` z_$`H?~qx(C2%QVi2=5-ST&prku z(d`iL4un}9(CK!3Uv-UjrBQgBzTu%Xt#E&OK5akwG6Jd-sSB;C4(RbJg6S3n)oai} z=la=y{slB-IX(B&zf60de-SOw3J%++(zQ=MPUn92+jRT#rL^tX;WV^;Bu$~cbs6E- z(*5}~c;G-9I&>gyd+|8+^4?~5jBB5sg5F{Y($3}|(2NOa()Hi`ds>=;wqu&u51kqR z=?~e}aA$h&@Bc1c{LQb@#N15U{^H3rhEK0n7FqR~ReW>uF5=JklfwA#?kkkao1uw; zCI-GU3_O#9tiXoMjha{rlVlEM6cr+ALMT(C;Kh|oLoh>8wvlOx>xj)4=f>r886%lp z)6_bUxiaWqM^h!W6J(CnUQ!4Xd2=Ryf^mv#;WVbjy{{8Tn*(-S8+!zUClhGfH3w3V zWZT7~OrcDvar8r+8$!z>U_GpzalhP#NQ*Yu4&jPRg$(AEK{ZXmpn@%*sai6@*jv_6 zhWoHKJd5e;FeGz~+xrObX0BXj)qW~751k`}`Gca0W`YJXb7&JRe(-);!RB9clkJ#a zbh5gx2~B|kgfxu5byncTg{B=9@Py4pHX$i9nVBP@(1zwIOK4lU^NUbi%?6%kDiPLK zm(m2|cmgJGl^v?8L#Ti6+JQfUW2s{|t7Vp~1Lr$v^P(=(%2f$Fo>Rd6HsZ!H;h1qO zIkps-DhN?~$ZN+`2yBfV_m0PaVeHY^kFBmvE2n#I-Od&1k->JTy{Qn~`KAy^jUqLe zVvL(VLbSu{GVHkjwBxP%8g*O0?Uz2N#U>s-6lO_lgI+j~#iM(~|-OzY7v=nUUhpCEYl;v6-517lXEwEX@?0p3P zZ)2wTPF@HY+_odF!CYmtIB43PQ)f6wd#lox#tt1sYic1)-oBAF0@?=HA$No^gCM6J z?So}}!Cd(0W9l40%V#b1ZX3j`aUMYoH2FGZ5Ofbf|Jui9^L)L3;S$0g==9V*w7CWl z)OKSEb1&VydL`Y2VY|r!+8SeVp7+)o8ea-@=BKV}(7MvWq8^0!nZ{??{)=V zw?8|D=GF$nwUN}`TTQpmpG~KK|2uXwJIjFCK;S=;=FtdN!(!&z4TPEhmKOMK+41IE zX>j}~Jt-C{qRq{?iGd~t9*%*$%OCG^O|PZ7Is@$9F_w0`c9QpZ7eb^n2=K2nC!qrf z^p~N{&T&n+=XvMey^KFh=*$XQvTbN=jUF6Nd;jbW79KjFMYq#D^t$$&-{j39rY>Ag z6T5a}R(KJU#T(Fsel&B@WPJn8*W-s$3mZjDoxh4^)+jU_!5VY9W!`UO=-jz;ycgzE zFY~`^5fj9z3BGYLTi3LZ@2GX!GEcr4=xPV;XoDU-pj^efh%Y+Q%Bc^>OY=?>15FJ4 zX<^_2NA-;L%N6%v1{ECXd|k%n;K75Lp;8+_#>adzUlD?-iR)md;=0U4#XaLVH=i&S zUYVvgg$$?~2r_jF*3M$jEn{``=+S)G7U3GAEm2RTN1QY96ZJKw$Nk5}QLeG=mJ=`D zk30&oK1Dl7JZdT=BPuhf5KE>}yhfj+{lf4Nex#M#RBnIN*}bKL<=X)rJaF zLWM{QVjSm=0yao=?5gkw~pi(^}1ivk~oKej_NLxnHLj~~xM z+n8^bjdlcl+xN7BFbxrV9_=ot+lHv$bOlEttpAYJScP%+>&THKnFiWF@hU6@SmflKLx+F8;O=|z-}*yj-EjdeF(m+Nf2*S!8B1{_Hh zCcl6ApJ;RDGh{p35tpnYM80q;&E30}Zv3tga8%(&YK##DSleECDQ$b{Bs<{sV$O_N z8cbCubEX6OgyWX9ICVG8Gk-7r>R+?KYUi=%((xbtB%4exVBR(dGj;F66|{yXQt#+k z>L1^m*1Fg&w*#L|(8Km^yVKDA=b&9nY%#w#P29ejE}-GFj^O|358g^Ae)5AfeeOcK z^oxIoQ)^8VH*Tlak3LJ?gEx}Cv1ZPp4Rn7lb+CwVki4TO4xuUZhjiwD{wqQ+wZz_` zjWBL#Fmxj*o56?H{X5ezc)jVsD{r6ybtGN?pde}~3FLR;Z;=29h%pe1$W&vzpP zTS|A&eu^eicRKRJAEv#pypCh#{&elL3t5=8(arn#(v)4%&C%t9}xH}Q`%HolLh7H0R+=4RZ)KobKG$AIs+>{AaPbgTHLTEmxB7aE$o zpfN0KqRDy=VKR&I++VM{dmx(XoLAV8;{G%n*sv4r?8H>+hE5D^r`(BSY0vAg=Ec-i z{9{euxQ5B_C_?v}>~_fF;i>a!>I#A}zP)<(4?~+?P2)fLi@fvT3IeIYvE6BS3;{k1 zeH|`v@a?~h_U1eS`Bm<>Ld)mxwx!$ezl$IYA6(Qwq!w8_T4Gbvc>$u2h40>7JN>Z9 z9rv45AAJ7RQyz|x=A9-6ni%+##K1Et$dUld#K;J$S)t%V21`MQOsR~bc|wR)W(a*s z-t&m_U~VGLH%dQ|Ho`LgN(ims*JEfW?7-2 zZ3@OXa2DEN!Pp0kZv&6HaZlk#t*BKPv^9iDI^OMKoDAU$Yu78Uq(NTBZ7_KA*RH0! ze6TNn{9&5K&wxGx77%>76>=v&W0rWqPr*bjk+zO7ONa4pjoikHdhgh_G{6d&8V5*d zcy?=P37;to6KrAZd_j=1#s|YX&$5MQ-h(h@fDeF9c8qC*0di~PsVkSz95_WeR{HOv z%>cu(^vcUHcC?v~2WJqjXjH-=FfL5s$T}Gc$V`3)LTK$sFC6O%M;+(RNd?g!jwyv( zF^6q-jL{fZG49Lvw(4G#Gmf&tcZ?f5o{iNcQV0{;O)iQ%+}Kz{*k$R)H9+`@g&o3G(;xDTH!Easrqv^>kE z1qid2C#O@wtZohspjEy()LQLElW35-r|`+r+U5I^t>N(>)!D^(Lr7)&sT|slkPh?1 zVT8PU5N55_*3gu?n4O_d-=07y#^S(9=sgP<1Ni)EN83nKxsmbx_`W)v=9f3peHg%H z{D8R=S382OzOn82O~hpabX`0zqqVR=8yD_Q;|N|~RD4&ES09MoEOu;r{)M#nwU^M2 z8cFNZnD8@qb9-^RtiQ221cWnJ&_YA&Yn5lvcVKTCz_h4KK~{a9xDe6;z3M=4)w>;E zG|cm=&hjxgA4Iq`v$kjFTIfZM*8uk#qMSZp45ix zW>Kb>z6|iaR^?qWgFtST#hsP=%e;FKT0*Dqp&fqr+V#|dV9=e?`gy0d_duiZw>869 zm`1asf`DxiZM7O2Vp_2_LlXl{3_K|Y5M)6`)Pi(3K{r-V@IJ8r0CciF_3yx6XlGld z5!YBy)zw8OCV$ca7eMuIxDIb%aN`LVQMCv#wBbvujc-x?RY3}YznTiVh3tfI*p{9bNA z{YL>7h4OoZ*GV%pG0?=o_Yecm+^2!ehzzF!4$X38sAT+hqa~u?C4@yXG-bhy&(5+Q zah^}=>5(SW6O2#XFUO7dWPD|etXC}nW0|O6QuWzo+tkjIfo-fOn5ss&%s?nELUe4Vkm~rmgllJoAKXT|0j2tWa z7q_RIjPYJp`#WGx@;3q|I_?xThw0%pOk>Xc;$P81xQd^HRr~|6lZ(1gy@RZhpG=2; z{G;p)xC7X5PdM*9m9G5ycWD;w#kGma?2l#1uM9pWMvom!yAe|L)aau(U< zcw>1wZLmws(p^^YVIY_BiL#0yt$i2=yUGLThu;StUKZa9S(KGONWSfFhj{)GJ6;rE zxsiae!7=U_3&E**9AA!g&!cRN(-^yvE{wS6c{#oDI_?QO;5b$l`s~}cFUQV9h2NSS z8XVV_vn?U~@;d4am^t%T{1HYOW`GIU)>Y1?V54%^+7jP^S`MvMCxK#T}SUyYf>HEON1KXvbO_~yB$@T@5PT=|L#4h9kVnylxRiJq%Xie1o^F+5#GF& zDr{2d&VcUfw?dxfIefBU4y^!1e_C^_z~4T9DKkzhm?BMWN5YH_;Ykac zO*&~`MtD1qkhHdje=3OH)Y%KbXZOt8lUZ0)MJV0@GbMATDWML@C4L<}IJh4hP6G$_ zq`|}ZsJeay4W!{T&$xAbF0ZruB8vkpEMinJ!>d*h;=w?+P_8=Eox1VrK8W`0()G@C zZx!eFckZX@&sey?-`2_v1ZULI!;WLTMMPHK)li&uVzQ|-{Q=%5yIy)7A2+YyLaG-h z`s}KVxtcS$zt1Ia)8d~>0J(HF%-^@FO4dU}_1c9F>KJE@^$bzi8rfxg9ZNt3X z=TOB)w2Dx#s;N8a6*cVEeBd>n^=LZ$vmd1KKmQ8^j-&aV;d6GeV~x413FAG4Rg3p< zijN89>;#JoXlYfu+hM4y>He)Ld^9fNXA9jB@TH^q+tjhKQOQ2J)FSQ~MZ*<**49{H znOdbhz#WE;!DeV;poxJ;Vu0CF2(q9bdDqru{7SB|;8yKR{Uf7k-%Bs1)w?&-WlZ}n zUBK}>)&RTrv6%)Y+WpLVU0qD_9kaN)mhM3#r*GYWCf>{@#f#AJ*{f_m0bO3=`?hU# zDD^{+W}!Lm6uX3Ws~cxb@-5*4?goOiWfo>$26=~cojT1z2;XabgY@9+y>mO8d|>_@LAs?NOPb?R`aq2=&A5qyCI-F-7nOm|pOYF5IvAFzQurcM;zy!KFr{TirOXsP?D;(`PrxxYkB1DNjFb##2v_3T zHp*Pt7R_(eTriIU8DRuG^Bdy&VeR@V>5qb`MukqV)l#u-wo&FjeDwq#qp#&Qm(w2C zcJr1)8II{br(kepG<}YtF{1-`1rVm&F7qjbFht+Pr{SB#W3J#S{$!Ir#!O2mANOnt z--1vpuWG?)8M`fV>P9H)OB(0uooHG0uuD}N%)k;W(Dzw|zlxLK^Z)kiw0Qd#D^rdw zRK91}X%g0Eg%1U_0o(C2Gm!RX)$ysbpW|rrR|v8$r*>DhVDjc+y4KMeP@AEJ50XVp za(Xc%T*b6dHS+d0=94bBTpeS@d_5no-XZj12|R>X5oZ)-X5uL#>q~-)abYoq-j1J3 z>~yB^Lm{Z+%Q2+j*5Dj=j5@X=lwp|GIA*z0^iDyXW|6kV_Qqk^C?9Pv zH!kXP}IiI!W=C;#w@$B=qUBd7>g6C0Zq&4HOih-C5#Pu<{ z35nJBb?6MpN6Tj<3rR*_crJ}Rhx1^BkUS`!1H#*}Q8tpm`8#xN>CR*phOAR|mFK$Z z`yAS&M5R?B3IY`UQO)58bY5{glSnwf?!R}*4d5; z+Js3s+Fb3>*)HaBD}H6x=NOx69UuhikO`wr-I&~UZA0jS`M3^~SMVK!Qz$%MA<)7x za?N)@77n?aGT#QYSD!IegjcN<%*Dy)ZnJAk2)`yU*+ZCYD8x?XPoP@hgOtRwKw*k-0rHx+ty8Gql5v0AC>z=!DHT!O?qICgs zGR<9LuC6U2Y($WyAD$jGt~$^NuC~FrF7UkRe`&+kC@Rq2tSFO-;f}Tz~&PObxLXfQH}0S-d-E zce2pczjqHBu?N!J_WCQ_F+f3R8sVxLqWkU7{v@~xu zG0?=opB4t5IYE|8l$uz^1{ow1!N;YNtIdu_VfCu%Op z@X4UsPw^*nFB5G$%omJlzzLY%S8F72DSY!P5DjB zw%DeCD-&I2P^~}eGQYvJhlOa1@pm0$_}X9uTKRxqfKgglzL{3ojcXQ@mM+GK9~VnJ zn~4uUP8*D=0d{2Be*6X0y?3Wu?|+!C|L&bMb?IX2V|T5wo%l|9?m2{AeQ0ond|TwWjSrWlx#@Ip z$IsE4U`2oD1x!LP=fIJ0JEkmsdoXFi;ilRHuD-*G@w{SgFb4Q5I3Agqf}#1Y@a$N1 z+$gM7@U3>AV(gB-`5h z943U!$F+HcR|w2m#a}~Mz6Qh7g5&qL4orUmx~e%e0`|ULV`=Z}FCq+MJNT8ww1^;P z>dckwAl)7EHWYAWZBgb7!Y8RyjaB{)1Tcj;4ccD5e>iG+xt=z|@#y%t1;I&LUxN8T z0}S)IHiT7G-r+SC&D8qZ@y3g3*NZP?NAK4@{D|_5Q?vytZCz=tLi-@zwKb3cL)fyx zfpE&eFwO9h>@jwEcgZ>CwplOdXnbjA*GU};=Hg&#sR|t!9v@HpFg@== zyJ7DBRJ#1hM`=lOO?LCDVU~!|Bupp^Yu2Ce5!!-Qb+yoxwEi}PP(28-h7KL$S)k=~ z{U)aB_tFB|ShXem(y(ySi$Jj#&ABQJA+yX@`#AF<3_!C1zWNCf|@O(2NysCCXS1^ee$IZ~h!1oOUg~%pmYe9#7 zM>=tRkL78Ri8Gj~PZDQ0l$klrxBCjFe`uMisaac^XJw(91`Zuc+o9PzuiZ(vPG9C5 zaTd)=HpD=K9J{`(S-azfllTC9J@1fu^P`W^vbu<18k))i=@R_U_T78gh+%))drUuh zd(#TvsWY!%hIU>}*Ux;)PNZisOU6ej=HZhF)aUT+*Uj|?yCPQc*|qJ3!}yH#-skDo zyC0>APe02$#&&=DDKsA+vuNgyun^IUHs|0DzE9n#B4~i!_mgxpA#QxR(NW;Z-y#H* zh$DUL_{nl@UACFp#6S}RPXhzriXbZ!Tv}UZ9JWf6fl-*DlVJrKiiHk6?C$=XE1s0HL_0h$w=eERn)yAv4u(k$5Q8ukyvgtyWL|BH z`9lDcZ}4Nf;ZgPG3{UVQjA&nEH!b|!*e01n+aq(TnT~ig&9;fVfFT^uJq+S8n0)U= ze#>kXqMYz8XBq1;-LmnlOf!$cI`r3Ne%l)6S2F#!)ez-`7e|!O85(}f^IZo=mV&Hy zv;*3>Se{!X1#$-r`>6|mo6i2rzho!M zyI;U0@Xa^U_<#PdIOrWo7ykJlQrrLYH)vg5Pj}vbKh2}wy~amHA1m|PzoXG`@n>CE5#UHXi}mG47;{nz+)c|Og2uCvZh(lWkTx)FK}9vV+w zJ9prN3v({|z;{LwU^MNIyGi+Bq?d!Qi{%(ERMDCCNIg%f>_wtHQ!JMNpe86JlL z<^<2pCnpWaa-li_kRs?O#mBnB&Vvh6x6=I0p0qH~mNsVHwQx0S1yq*UtqOl9RhX&T z#&X_@9eGKHS;hRWv#%$uAmCBx)WWWLgL`(QeXl*A`gY*^2?5Z(ODu9suVdPRaDz=Q zYG^f~R+YzqyK|{Yy1KN$HKG@M6Rt9DSCFi%ac>P1zuLwk00Jcpn6AtG z^7zqu1fC!(~n8T}T=cCQ4cIU3Om(t?R$#mu2chc35-cRSRUQTLSwxON6CA@v=vvlp!g|yDjt*zwiM<6}~-R)73HM#>D1dXwq94)}eCq-xT z?^pXN-fjN+J`*-yUw;Iu{QZy#VLXpN%Gpe4VxWnEZxaLGiXf}8LqQONnebW$Mg~t! zBAF+d92ruD8Zs!}H(!(un86Im1S(jPsa3;3Gai{B%UO^4)P9h0^zb~ij>^naz>T=v z#$YssB@Bf_GEvqUnop*A*iPX`5Kh1{EzTp3d|x-VUd=HtVQM9#FOz6{WCDZHGmm}Q z3YWG=eAplH=V4yU+Gk_)M7!fW%2~HKiRWd0Ut;1yrcziQQOzKmGd~IM} zv$n{V#Q0O1VY~Jrd;(~0IE;zc@R6ecgu&Z?0CS5Gd=XsB4sn-ZSo&{_XZ7nfR^2O@ zWpv>Lc;MhTJ`VJAFa(3Ol2x*oW@l0>c&_jv)SmF;%SIa*2Ee1-d+ z;GFYAN#=!6|CGw--_%dzxZJ89$CxI29%@E9HXSnxZ5?yMa12Ipyf}u89e>^n2jar= zh_P-S=Z!Gqi1902?;E0>5l6cBtRsXdwn@!H>r{|sz0x}8ifvN!Ddv{2EEh0^^;JW( zM_6%QhGn{QuH64Z{Op0W4KG}k(WW54Z}=kY9jHqk$6wDa9qftUBhv$16& zpLKZcGqGL16D%XW*Zka|;LW;hOVpKb@DpwI+Vk>tqV$36u=|Ed5n=q2z>N^l2J8#`I zap@-c*k+y``dqlEt4PjiRg+(AfDb!G^ z*?!Ez%g@5cq!ahiV~5iGG-kr*@sEYTx1071jShnUQ8aHgw=Sr-jIT`xl0|dSnX``O zdo&NiH`#rjX9vQ(&Ru&`_YN1J(1Ju`x0QEUIp_$wA5)|qCy#?OHe~>hQ)kcfUPBX% zXSRS-cQ+qtWt_NUVmD@kV+!t$9?F8g1r{W3e)K7QL@>?RS;o|;n|Ea&=0uuxR(WR4 z(8R#^7Xx+SRUHA+;^HghK^(MTGu;IOv`q)c(ez|7w403^b{rd`r8yCL}^K`~VHos=&Z0-tpN8Dtqk zzOR_88JZYqV&GZBz;`0ZYD9vJhnf|d=gFLmu|rNUf5zUI$utCWD8nM7l?fyaj?Apg zp{w;5FJ8@Lrk0mE6^}Bg=C_TuUtDQc z8X8+Z|9JM6_dMDi?J)gW2+Dn`tQOS}OvzhyBOGdn5gI;xm>s5G$K-E}moLtQCwNZ3 z{55_DK1}znTw?YAeCk4VS|2N}=*#T6Dph6mD?$aIBCULUFhSA^4&XP|+{tSmpO|O| zcA^C~*u}>NtM_bgAHg#EXvscL9E)nj@vLf$+Z8k!+|fp#2K?}%_9%j*Tn&l*fdn{L zsT9!V1Y*;3Ef1=ym;CBcc`OSh#!EnqXYH80gs@g0aE>3xr2<>Wg<~t=M0v|O{)`>t zj!!iJ)k0DjBJEMA;{0(ODj3mBF*b6LURXZDR`8>3kw;jj3D3hZ>^OIRDfm&SWghDh zp7YB5rgiJ?@xyr^9rO5wnds4G)7t}-hGBHU^v$;Bh9dkw83Eg@k~uKk9bszOd4gIq!qT^ ze8P|R8#kV3pv|8r#sDZRR{Ndj4RgH$9ctG!Z(t}b&dsFdtCN_a;BW2p^(_0|Kq#Ze z%^*&MhsTek%7J~U8^^s}T?i>S=DHAS^sqD45bqUs`8)iRpX0w}C{16vn*Q*?|B2=i z=6F0$8M5B}<7xQl5q4lj@YRVKI|8x}w6j)WxGIb{8J!j+J<`jLcKoWqG`Ry_JK9B= zSYe*ms#RW}idfE}XAUnyL(K(`|uAleeDADjGb564X~qS1*iG5 z%ty@pdJx?4Qfa~0O|6%sm?E3cQUToX;XP?)YHwAAMU{0{Eijx+g#X!4#*w=Uq|87<$=9sAPu4*b(-hCYn1D@@RNEQ|{@I}kqU z_1h(0&MdhNbiN!EttvC2i!` zF$DC`P!$I9&UlDu|i!lLt)`D;a2ky9^`avJPz%p~ZE*`l5nd z=abjf%-O_169Z2l1K)`tOU5FYFuNoprKw2xNRp9}ISp+b87`R_%Nc?(5r)j6OkoIb zg1HrzjHyhO%#A@tN9HxOe`MZ*ISt0leC4)zT@Kz8o^1$*R|eE{`yoRneBqf#_?|}` zX~s_@1RU%4TqfCmdx%5(9A~T^LxZ~w9|VE3S>@Y^kp_>wu6~;_eOCiQ)ycC zTgF`fW*$B-nM;{UpON(hPP`YvH1TL#6-21rCWC8R#hLB5u4rq-mJfIV>sg95Dbazk zJ9?=#&EC_TaOPkB?56ln!?CYDN2@+R1cA1#E>Ct?8>*@@m*R zb7LBl#wE5ym)UCvW-F^*Eoe7r0;4~g6`u7X+5t;5b6Aj|85W;8d6kR#z)*Fx7Dw@0 zJVD2i9}`a}#5jBsXpV1%CeAg-h=NwfkYggoSBw>7gX7Rcp|@q-XyEke(^-%u{c-L% zo*lD}NrfrW3(K449B{6CUY`~L6&WC&P!XOu4t>Vb$D1lgxfx|5I|a|ZCAh*^+i7duK~|KG{cw2fCBpb zYKOMyO^~*%V|I!^sWx`*Ywzt(y-Wv{N?SUTl`mS-DA!zAjj`gE`u>B~$qR6pV zCN%2{%V>ig!Z9(Lk_bp=(JE@kBxVpN?m9j0-NBBG94qX?H@|Ne7KPAt1Zo2;6uDuC zM6#Vl2;p}?kGg2{z)pO+z>HO)|2jG!d+vFhA8T&Ow*osRb|awKc6eX*kEIFD%x!iy z#iwBvTCJwm&gY*?ee5pSkJ)z@T4+ej*u;ZAqWRW_kFM_R?k0#iCJ!T?NKOA$JShE+ zX%4Eh=Z;Y}c{zeW`2ctZ2N7hBHw)GiTQTJuM3A-<;T;4ioA>GPeM3KBXz%u*pO4)Z;*aae03P#`ah&sj=MtQZBY*1mjI6h4 zNs-$8ZDOE_f$tUr->M+1%%GH+iqKBbOh}Z zaV8x5?O}gq>aD|i?eD2mr}FW^2Onf}FEy~ltOxXI8&iuH!pU#Uhib3svTcfhIYnEh1IDw%xISJE3m-sE`C%D zvW@YslP|Dk`Q3CLKUjBf+)Vdy-0Lo2mp}XutskZcjRu8YnjOwh-AnUm5p2LLZettt zb^Md)6UJ`{w`eb%B{ODx!}Cthul3T){;S}7tFf>ZoN_+Lh8jeUHwD*@9p|lrEXR*? z(Qz*BE$3K?ac8=8z_BHrkX|TAQmAB5c&;BS%lf>e4{H1<%ymvHpnm@O=d*^9^C{*+ zW1C|RnI3I7&HT=**xbPOhv43M=HY!qjB(FR3pid!5T;?Pd#1FrN#jkja{;K^d9g2A@ZWTcJ41V>iUv1_U|KioWwnMn_9HU-i z)1|fM5tj-u4fercJ?0UXv2FLf+^2`(ECXo%{4oX?YHDISvvNs`{Ijf$MNG?6Cxh4nDiS5kEl4ZZPWY4+|U-K%A@cZG+8hxa2q+@1xW`K6QJIkvbNni%;0VL)Mv znppZP^*q0uK?6(t#pETb7-(YP+s44RD#&W=oP;3d`uV&^nv^ZpfJ&*QSPdS)wkXU-|ePbCVkI*Qx zy)wPlXPUwvW83Os`8bd3ay?(>yxb9OSnPbmo@?;9FzZ{~RX|^Z&c9Us-TwHKEXZ10DE!Oxf!`rkG)LVDqb{_?YtUH-UDa=~mCvH0PG{S7C_bzxn_do4*H$=c%x9j+XE~3!R*2_ZQ>dm8PhpZmWAEGM$S=$& zQ%*BI+7|7#pW@8tqySruE8zw$3E`Ref9D-`<^%_tKOcZz_$;J5(qrMooVOlBwB0(T zMZ)))*$?ZqjOo&Rg;%!O!~C|d-1g{C0lE46C=5tb7&e*t$yAneuMM5dzum9Am})OQ z2YD#QjDC(h6o9W{7N@yNr3Sr$4pt$iw{AQD06+jqL_t(46*Qe((e638hiB|~G{5G5 zz(dfk52Ze6;9fM3Ac~Ylr~_TBqOqk`X=dV(-t_L;mkwj5?QVrg-m`Ekn~7io*E5W1 z%kgnr#66s)qZOr-^Bpg}Ks~0C&a~3MmKC=T_NU!%y_$BoK?VZv^_694GG#D}te_$5 z&V_1q^=@P5KX!UWKM>snMM!9Cwm{QqLN8-cA)P8^3_Ex_-}#I~{`xSL>lwpOo=)k} z5_6}=Hihrd*=~Hr3?4k<3z#~=5n~si**Bs2wBFOXy1On)3S_l5kV4fY(7t21w?UtT zJBv@N+owKH6K5`_G>=OFXybNh)~@3x(lDl(HRge>HWcd;G!#@gH>wDu+=!%?4L^E! zj;8G^$Fn(-nq4g{Z20~fsO`r0qvnKYNh09lYXKiu^|ENgwf8ZHyAl5FK7dnc=qB_{ z?P2@W#yh?WF8#Vv3!@6mp8ba~x!j*dUVV*46*h&TQ5DAs`LZ7}aY%zv9xiy~FOtIC zkLFJk1Ap=uV7^F49R8egmM3jK&kGAVjU3)AADLk1n-(hQw)2^!Or(f1w_}-7D1=}I zU2)e#OGq0$Y=hSA%ls+mP@_Tt)_d>0ml+uaSFXq(!#4ZSp+lK5lEIaUEo&HsPaGLy zHHXw1*ox5!X2-V0xp7=anoN^|7_|))#3+|h9g!}s ztXHPgbNg%kfiLSbcpV|q;@Y;^H-nlPGKu2HLrn`0&9UBi#_}Ai!TKQ9x~H1!s65C9JmyY=N_Kh7mt7!@Slaat+yK= zABPZvxPulu>Y)uVcwi6A%L9K`RmR5f!2@X=KPm0tyN}i9P8hIOgbH1#g4ZywP@uFp ziJ1#bgF>$1akLWf6QfzqE*x!+p!L=R<5A<8Z-42fbQtZbSxgbvVG496-v-lI!TGzI z0sZ^&m&Ug8?ZabeD1dKvO5FF>TbSYur+YW<;Clu?HLmz+&Z_cM;PTX9BnW?LV1pvZhK9$9%IM2V_o4{%st0<&_H9;%l+~^@Gs-duVr6);>Eh+hJbp})_y2}YI9hl6ub8N*lm=D)i zd7}#SS~tN4ebQ%@EMLI)&F7JK{bOD~Dkx~_&So}3dr-S)`3ic9^h(n4I!sANXE@9<=HgivkL)_(CiC zTz}j$uInO`Qi2J_SW`$#Fml$*s-O2ILKyzwHzKUiSWgeQh zd83JeKS2yQRr2`Ha|Vi>Kf+9L&K7gS3^_d~7WoxHIVmlcXAVC(Eki3ZN-c8+vO1Ry zb%>n#F0NCX`h3k9qP#$Jp*rtCo(#|5Am|xh{U_+ms&ybks}`5_%5*9G2}aKPtjiE>j((W7NjSei(6vk`cGHqElhL+) z3S(rd6bQ+Tdf0yR+9nS})Dy6C;uHRq%h(?oV*4W=Wge~DJl>0EA!yU04Uuj;OjDR8 z^Cy#N`_*oH2?2>^^kpNH8aR`|e;?B~1&M0B+5fi?jQrJK{Z$$tAJ5t+J_GCbu#V_& z;MLd=3}>`m2HP?|qhRXGup%wslyQ*(e#bu@tnlxA?Inao+j2kL4RB!R9(HYdz(~m& zY)2^7{$KwKj1Fcj`}U_UR_EQV1^boMgMek*v7>3`+O;&tcwc86cOh&VAYU&+Cp@(fSzv*#!Kgvfv-ZP(V^`6f{fs}b&AW-|wxhrj!4oMHJPkQmoU;Z-R zlfE3s-05dO`&kxbi4*6%eKtf}qy56R-pC^^rE}6F`{Q$#_DYBBi$NTUQ)A&78vBwH zn?Dc70BBRgw4l^QwwU*(73aZ>$P_%tD~&V7G)7@A>|M|5tUzW~q%FP?voOW{H8i=9 z4w+B$W*!>%3t>twncGu9CA-oXs!>Y`(q*B16g7BSXT@?ITxLI9mdisT@_QraKq{35 zO7r4S2Im`ZhMoGTYr4)&QOjw~o5E~+W8;}|SpF}KK6WiA;M(3vym zwKD`Y&H`3u;JjPh%J;)OM~wyBQESJn5)H83yV2G?d@zk2JC5criz4;V!W_x~skqRd z;D+!5Ns-Y^Hj8#xM^UGhkO&NgXBh{~%MClhQ9NbvQ?J7= zHZ?Y^XR|Rejwo9d_GTl@)C^4wd_OQyANEF0t31{6JmETHz`0>MGsFZg^1S0T&&xc& zis|j`ynzpC(gDjrG?;${rRH{i$4b32DCm^mkhxq=LtsUodi7=}Ku0oFEZU%eTDX!> zGh0Qb{Z{2Yk|j05kp`~QXedG!l6%i|Lpin|wmWE-G(_5C{v6D_c~MV$!pNd=e8Fr6 z^JabJy1n*ZIe2XznIxGonQZHjsq$RL$|IOW+v5E=0>1Ir4Yoh(lexG5jks*ABl=pd zKl*5z<<)Xi!%6|5!T_1mz`Yt5GN$6w=chKDjH!p^Y*Qm%1AeqcT!??`6HnIZ^RoTk zQ-ENa`1QHVIF}iH^H?^XMZoh{fg?A`%h7qh}DJABnGRj3C+D~^2I5wdmQ5L7LJUIb;DbwnsW zXRIJnzWKO39?P{kmK26Kw;T(O7sraR&)=~S<0}L*3N;+Nj#0G<)v8j6bpmY#X~p>X zc%~f+Lxd@va4d(pq4hbRoa4rhRqGLcW7w+Q(Vi$H9LKZc+rv6-qZ&;1#c}R^^Vu(H zhII)$=1F6{kGn3n%l1eof<9T+dOYlR;LUu|cJst}z=~`8WxJw33X;^mQfp1Ti*L<2 zU2t%*L6c1dgKED?CtP?qdh}>sWDu4@J)g7nL|qX_JG^gRaU{;fmwCjM&rAAiUraL& zdJ*`GzLnt$yBVGg1Dm8kBDQ(4c~US1-XkEpD3}_a#b(}|Rm$?9jI5GZ#kgV~EA;Ts zM1H(tND@CNRa8%goL(>*=E;Eksh?*Mxnz+wd=-Nmw zFAAsX`RY~HuX4Vk7e$I?4a{VI17QA z#rvyHVe*_Mhx1T+S)Y$zz)Z|*?&WO!=GgRlT4X75)bjyMcxq7^ER!cWQBE;ovqCR& z4&vf|U7l4+t;2QR*K_9*^~ybuz6!%DX+{7D+L!4GeU;vP-S9xT2PElCCU(Vnv{7N( zgZ_H2eh@W769Y{Qe0Lalz_C8%Hb`V2#VAOGWJo*=GD0$nG9EH1ksdINWkft=!eoea zEH2}uX^_lNI2IS4>E^YbC@Xx;4rO>ulUcP)2uaLq-Nqh-I7wnSRsOGeZq;74D|?T$3dKJ19L%5bX97EbkLLiL9w z!>QJVriC(+ni4+u+;iDf%Q6OG*e>g{J=Rrjhk3jXoO^BCgDDnQArzEB4V*SI`N9@X z;6gaxRdCeEyj2ibb+P4oCr*5eKI>Bqr_-1S@{OKf)b8xn(T7Hrj@5Z9wlFR{=uUn| zRuw|Qn6x2m(xI@Xg6=xlfq={HkNwm)XE9QXGA#(9x<+xLiwVox@=6wnwb7PV82(oL z$oTFpCOyvttuG`2sT-eXtq2}$XIn3ROi05HhU=o8YGdT~@mqvqewYf<>uFyW@ zZ=PmicHTy8#K!);{R12EHr~!YH+ChBL?e=-NYS_NMx!mfxBGo{ZlVuCG})xsq_}en zsC&*SlU0?cDob$_iMQK)=?jDyarx!VB_bZ7|5a*`);I=Ho&~_ z3M38LM_dR;?0yP-bU6vn^`v#aM|K4m2+-9B@UK|!hx`ztT`l9Kr~4XVmdUeBg*Q2z z%6X!d>4+s~k%kIVvg0kTMd`T}^@Z%`N50D~Y7lIZ;7p<=6H?2xI>w6$b?7 zE19yBDY9H$y_kr~VcN9Hj&xajA;TmD;KB6eatN}2)>9W(D&upmZ@qq5;6c474sCAJ;0Ab7PuQsO; zcJZzY%??wF2E+2bZB?s^u)u$TbpmjK~=!51Fys9 zl9e!pN^XG>LVfDj9FK;7K`}_ffH%&=B#M+4hT8{AXimhqHq1gH09GgG;Kq`Q`f+de z>`iRleJG;yjXy^1KYab0qHJ0asDV!I?J&mxS1u|Svj#s0MJpwo=J`X){Q9+Q3LXF2f@;bOntpz08pesmy6;V#&Oi zPG?@3mtc5I8(LU0UFNskV4y57PaY{tSAMqqvh!Ild|~JxDmoZha6^yqGzl^Ed3f0CC z*XGv;!)bk@z1AVhi7?aYO($b2E@kf3R*^B45f+Df8E$dwH3Sy{KiX1m=XZH8iuKx; z(va`xTs_W}t^Drz3|2_f)baUrc|ubEWL6PkRXw@N?S}h~{7zcxY~NnqkK%hP7>yQA zEcCc~-GeDg{liZZHjfowVBYf{@2ZN%mOfmDof|@kU8V#i<}TL2DBa`6dGwJOLze0I ziGJd{kNy*V$Uf-38iWd4-6kkaaJ(y+RiLd#rZDYW_9M$tz@rnUecm+oLt&})X}=5? z?e=QkaB=T7(nOqB!|c1#AhA%{W5~Yq$#ha9 zy+R6wE&6?-QaxTOBGbYM=2wa)Xd&7c3&KOvD2ltfGthGR_qN#nk=d*qP;5cTIgQQf z%%Kyyb<$a8ZiaQtA=XB3WF0sUrpaLh+jqRrZR1+7irf&I(~!7+M_hp&vg8&DD3|9C z43gpe7tWign2>nR@FGQqYcQdtvy7$?iUG^TlTNfA^<^gvjindkrVcR*1mH`B##W^KGRrF zUsS5xvc`P_1OEmvP#;M75`&Ir=kZn$mSV_31Eiok+stS9?m29l`KCAL11t6MW#gUh&WA5hD^Ix z3R+~IWM&S75oHKRO#ua1x?tjj9n7LIOfPfgHR_Nv@Dp{5tMTTSi4&gT=94KqD9Ez@ zA%HP$F|iEDU;kPz%krYGhFhm{9UldH)W`bkyvq11Fi>!%Aj_?sYGcVPipQy`f+#V6JYx_5pSbve`r z`xKvSUJgk}Q%?}-a^jpTe=dv1FZ`Oi{%I#!{_vZ8p96_0#TPQxzrw`?L4&}4!gW!; zZ(atX{?CO!Kjb-8{l|y;*t8js+xdP&*x~!PZ#jN^_woMi|IvT!`^KAA!K>Q}6=g>OBqgFf1B8hyZsYm^i5K6@WdSPHVHrlzvpD#x!| z3oTElP~7c=3cTIc>H9E$;Me=WakTYd*}{o3ea8x^d>39V$9#cH@o8M(Gu~5_A*_b` zY7F>>i!VZn#7NN``*m-cf^nhW7?t~v>18^~^eD3*IqfbP>^`QE9-2?_RTf|nv`-s_ zw@;~vCvMv;b-2b=S>Z3XzW79623RxRr=nh_HV<(5vpq$=WPpd%kMLZ#QrdcYaj7dlGn8LXV%z6dey9#X%aui0va$?ilAM%y^fN$npb`Gc)N_@jLFz{~y12GQl`3_CT zhxg%Qps9TY=aN=uZl}dd*Rn9n(^%U%1-8~dgo%lM>abMa;}@0tr~IOQwwvqK$FH>WnW+%V2ZZ{*Os=UQ!6Yp2u>Ga)CDI&FLc6 zhnzeMmGT4ico16L72%KgOWXWj=`tk)gti97=hh}C(Jwnk^x!1s8|-*!;!uyK7Fr3- z{RX8yVx=0%8W?C`;88KKKks}E zQ|-NBQJ(M*mSNeC>MSejA27`u^*ad1@UknH9rxv{>17bbzYMBgA(QrmbZV%`kg8cR zIXRi1#i^Pl)=Qi`tS;qxM7_)tWy*khFTTnQzBmjGi!uW&JnJ5?%J9GYd*7>*b*JC< zBR=_lC!Nq|oddsteh6KKGMrm}G$QFkF;PtR8bJCMy6U;<`a%-qTkuxGHl1Kuylr7zCO}KocY5=Ts+6s z@Nkx6-hgj@+ZFV}t3LX-?bAoQgp=P*0Q`#U!8!@cc6bdO3L@H3uB+je73Cd_i)Zud zZIiTEZ8i^p@LA_o{7WwsWJ$Ay>3fNG`fMA8DJ-u(N7)%r=_ha~Y`xFs6JETlgLn+M zf_WI+QW1??FksJ(-Wwx6)2K`s9-zokAayF3AZQMWLP(YA1f(JhFfxrPXrJ`4ASM2i zUZ%qG7UoUl)h7oOyA8_ z)Wi)srYoqtwIqf;Iyt@g&Nz?MWCub1Wx*lI%|WXC%ko@?Cd0MoNrV(p2(v6pjF8jY zy7xKfHn1o<$EihU663t)cISHVVA72D_~H~PP3@g9n{6YYWehWX-m5KS#zdSjNkx3U z^n5k5crVJ1R@HGT@P=z(;NK7iGCiZcj)c#-`nWMHk2juIr*Ea(uf3f%IlZ*&_;~6$ zc^q4*+Ry9DS&J>ej=v(0G@%%O(9bL=FGgZP4;+M~)aMcyrG3(EFu93Z7_9TzY~Iwf`@}N=`;j?C5&nq3xugsOs+8#| z^A%2%waHs7hRx30N?WVzEW~lLI6D`z`Hc#@Z!rDQa19JJF!23j;IRs_4mPhKcwbIv zOjC9;8!}s7)yz>dD7Lj3rsj^C6KYt<%$WZmvm%2N44Xn3?`7hmK8EQOz{J)fg(apl zO}S2%sV_U9%M4f4A(+!(Ov_AF)UgczAlz~p-ajl}So$wZlOqrO1iWZpTy3}Q*NJnr z;Nm1Qw+KZ#+o$(g+$((YzU-rn14ZvYM!eUuH-T`X4BuDW$2Hm=SL^-lx%$U31N{8^ z&Rh$SWY&T#25I*s_hQoQyPVcG<&@lTHGQ4{$W-K@dh&YW&xP@64{$}nfFNB_ zP#q5Na-12XKUhyZe;L=N7ks#Vm4an53h+6JVR};8f(R>WUayAv^IwrpW~GQR zS7vFsezo(xmz~e?j-#JPe7XM^7JbNcjyK1%{a3+;+uhXMlx76XfD>ifhxGPm>4Na= zd%{zQs~4^U7_a4gL0b;OjCy%By$l7i#8Y+coHveO%qbBDsG{3YXwK2bt zRyY)6a~WH8Ypd8Egy9<>%csLO!Kf6qHgB;o@Id^Qt3rRZ80*h-hFxGFH#^shA0kE3 zZoQ2;jrP)hZ|%} zoo&qNi!kd5EXO^ug}{;0>PQp1;dyJ4M#1VX(y|mZ8@F^2Dl)o&so3U6E+82C;xU~ey69t-)l-ZvivM3QguY8i^S zQK&iyl|W_G;hK3^pI=P(E@GE*frC@{Yr#(5_K^*Sd>+i1cEr~oeZzqUNWR^S5!C_j8VLka$6!SuENko9YXk0W~dC)o2Kj|Z{+t{ z4lCaq_b?af%CH|Lt?ksAU%c9O89|Ypox6p*yvy zr=bprA&GZVR7{bIGIRD^x8m;6eluQ4>NW1;-3!5YZ(oWy`-hr*_Sdj+lbBtAAR0?ozLZd z9YP=L82vn83Fph)LD=PTBVWLXxOg_c9A-PhMVf$byA6x0>BN&;38fYP{LlZKu3*E^ z`iD~pF3!9vOwLjLV(u|4MvC5L>p(i!VG-zL{JtI zNfU*~Z}xjTP$Ovq+i7xrOjvg^Pi_}kyEUC=IsJI<+Lg3;_fBf*?Mui0?9bB?4%et; zflW~}>005uv)sDNb+T@jTBo1&sQpVljcv+}r|?277H}Rw&!8zX3ydOtMwqP&ft>k@ zyy{gHHQX;Px4ozhskkv-uPc>Q1o&G|oVCcnmyGN#YHr2W%zz|b_gT&ddAYM@>VB;* z&ZX7sS5wpaCgZ!0txN-{ZJ<9@`?_;`;{7QU)CFX3ymt{sSo{5=p2~JNTmu8&F9sZM zjv~iL(dX;EHuv2eXa)B>wGUr(F;>4K*@KK0_K?JfMM)VqR#wye?U}SbH_z$TeW_<@ zm2HN__WlQeZA0P9qpM&Dr74cXFLy<}zh9j;Abl0gNGG1k^@{MgT6b*MXWV>I)E228 zT%CpJr92O3dW+hX%U!v1J6-vwzfbqkE?;~8#ng(i!IqA;)G>@5!iNKTP;ld}fq@1F z9yg;#0? z$e5Z|##Cna;>C;Eo{kKu+hBwp3{lk0tMxLU*KkqS@^dh>!YKO)_gaP#dB5&8+Ig@} zJ|7G_2)kUqc+s0jL7}*Idys;xt5>gP9E&sGgJt>-JQZ$cW+vMr5{HJH-|N?P=F^E6 znNRCxnBK6%a2R-xYry!rWgnKln6eb_+xVh-ggV*h)jKgSoDccmR1wJ4{^8U-Tujs- zq%tIzLn2d0%!53Uw}{Q3_d1@;V5nMMGDu+qB~L3dfM5#q2xDwRnNCE$FN0l4oXVjr3OmRxCs)1QeHHJU`l<0hN9ZE6?btm+|I3%m=MFOo(N^@Byn-Y~%J2 z41B%^MS{F&xL!h*`%So9zWg+O_-NW7)OhZ#MHV`XqnO1CX z`3)f5o@tA%wiQl+ZNhembkQ<0HL_2`G%LTt=sZfr#z_M0C{rl|#gt#VY zVcN^OnAbAIueiik%pU2pcx{_Q7Vh3pcNzcNXo7V2j-=kvqX{c`Y{&5w-12-NaIjyg z;)WtDC4P&*!=4|+H0~N0_%1O(@2|T|QS!Kynia!?F$%5O-Npn0+MQb~EbeYGk9F}9 z-&AF!WY0WXx<=Yc;!w=Oc&)Ty^RdS1?VMy?ZD&pa-Pm5`AQ*U*ZN8&fvym~i zv9`gsH%_G{zKxTt+u8Eg0neh-ti{&qGFqmKz+TIzSMM^f+2P((u~+V)p^mU?8{w8| zC7-QrXrOcOP-|yzKIK%?bvw{xx72Mdt&n#$?QU{_mb67pOX}9zMVXw+UEy243$55$ z-$?5#%W0jt)85ub7KB%+U!}E!ws-(hJBJ%_Dm}DkW3gzrb2_)^?QUaAVPh?yK1*c~ z5<%Cuq45gfp!<+YaEFbm-cA-9I#V-?hgN(S{H`padB!%%?KQp`Thcz#wqd#ffm1vD ziYIn&)6NZ*7{FQcDtO$&v;yA|48Wv4-d7VezS;sG*$dxS>%o&}Wj!rix{_u;`8eJC z_@mT8JA1)#JHq)+w6Z$jI~%Tnfd&S?e++!*f~+#*;C&`!^~sayh%m3g;5d1TXBkty zafV6AWr}1(z4t22xHpX&T(7HPWg zSwLo4x;%l)cMpDq9ZtrnEPOHCJmq}e2ZLq(%W(n6YZ-1i{NTO$ZL96qn=fG6e&Z}J z!Xkgbw+`VQ}!?ufP6!7Gk~h(o31C_Y^n{Xv^&1yLT_ARhXq+ z92tJ$>n%H6lxbbc_vL5PS|^1Gfy-!z>4azeL4UA)!ih4x|0ZsS`WIFN%$->VzK`OI zsSK0;y(WfEZf7yIDYnA!PVEwP30G6yNPx^jGn__FNju1BR>9Qmy<~j{zrTeSN4X@@ znmLC%`RD!SM1<9&@>W3WMY`fxcz_BU_M*@nBNv(pLMb$@s3Y|%Y>x;egD?HaG7(Q5 z^1I29jLxOosf)ChL7OT}#!PDonuU>Fv25Ww>GJ5}{9v~5LNH<79qa=JAAEl?rVTfJ zymOzUKSaKRanTP=XL|d&!YN_e&+KFNTl-yXi~Hb%4>C*49!>>%I5h%XC^nmUwr8 zLEM`s>S=lU2#avbin^5XRc=S*jdn!3cos&(eHR$u9io-#Z>C3iJ^TU9F?3f63`|ec z)*A0snjxbD69pr-D>Kx^!7Tl3S*N<&%bZ@z7QpR|^(+KxgDI-@b!A4Sxv4l!bc^x4 z0n??(r{oq%C0*ed zdkDv5DBaSyDU->#Z0qSwZD>Qw^a?c#yI>&qXxFX+t6j_@Fkbff_PU+0%C?~jG)h{# z1(UhMw|k3tg<&22z0|QAQcF8CG|4VFXRK`~ScU<#ls4Mb+KE=X3wza$A`Ks!ZRS4P zYm_Z5lX(T^E;LYIX``9exqCa!e)Ms=^Sk%c(w%#0ld)8R zUi6KRrv4*ij5SOfkY|Ir!~%=wOE<1F=VnZ^4YzxIB8@%ud>TG`J`J2b&G_v|^Ovut zi~sfS)BM%TY}KVKrk-mE;5Sy*Fh1Uv`UZy5;F+`O#Q*$Psr%UR)LLU6k1_H+Xh_8? z^SzxNgiQ1IGOR2A^2@XUOaJg3&0`cIus6R*6Q`c9lg>!?OsmeUO1>Z`y0 zRa&@y4WZn6o+DHdG}Q)&(m4Fn@qhR4QrFmM+MJ(Fi&w9unfKqzc~)odXS}p^cBQ`I zBdP!BiPU@Ubm}}knbx4;*MIdo0;10{U(o@*+kh4=-lm%?PUFu#lg6HZHuaxAm1@0%(DmhX>*v2nx8HgvE!@AC);2ZFzRkR(n)*3> zYU(fkB8@)xJc9eZw1BOvB^KnDcsHvzZ}8bc$cHd%6Ws4W6T8?_e)PvbNdqTOqg9&H z^0nK*eGhudw+TWyH+>^rf9IW4>FZ4$Cyw%MlBTo8u>P&!%`{vC0}Tv(4;c7P1zBZg z#J2h@v*gu}fJ~)=D4+GgumnRR16J0)l6g_kB!j8&C4?X5)%mP8fXwOJZ@-=1fB*d~ zsF|9Y$|skZMi??-GGGdCbTU}xl}R)HFc)&&%y|Sk@;mjKmGL6tcj(NPrP{An1U?r47~#}7e6wkGWKeyh+_p= zo(d;(Dm-yvIfvoGat{kPk9hRGnKuNK-di{04{M|FzD?((r7((_?*I))lQjXrJF^Kz zTh?F3fRu#E#&G4y$&Jo#SfAt6w*(dw9|QBZk81&47&1h~)q5IGB3ZyZRr0oQIZyGh zpROKdX`%U$B}HUva;2YHllco+!p{G>%nZZ)dCb&P2)@Wr)QkMa6u(>*PLY0(Rjp0z zG05OGar9R+tBHx#w`LhOR_hCxmSE1hi z>h~d>Fb?9doIlbvu8#);(hRAhUII{Tmn+IDMk}-dsnsUmkj?uud3C+1(m`4lL0Dl= z2!+~4MiDyI@_SsGxtUg3l-h*e2)P~RYi9th08Zs4wsfr+|6Q-$y!w5Q$9m}**EhpGGXgwMd#5ZwNeb$Py*7T?4+qV#6&88KY zB()o|APeTKqkkaPhDI>_+XcNNFG8eEzMC6!_tVDxMcT81mH|TYZiL4D9SGcpV7!L2 zKx+^Bxedc5v$ujdgY_lazrK<+oZ1HlfjtP*#ujKaGmx%9W9QNqbZZNv@7wJ2-dRA% zx3H8osoHxBBpO+SplQyl&C%3c|Yz!mJ(gZ`00ddnI*@^`-XSp48bjjFtoK zzdM`me|#a`zjB#!IjxlPdM1yiQ3Q`_WHej@13y#@6tkbA_WO27d6W)0zj2nMMx;V% zX~xXE@21cG?!TwGtJl*mnocz|J;$Foo0`s^Vl1?>c(at#&7$eE$ilEf<(+CJ^&UT& z)}bBS8`$I=9!$LmvX+>CU;H2ckZ!&EPOA2_GM?Mf$U;~S9mL{q>T2ssi_bipI!~QQ zEn~ybSx!~v8^4Razbe8pHNDj0++1dB|Ao)ewSW1Sboc!aS!871-`UZs5|219t^{>+sCI*^lj~ZKjBNJ(8>U0|4SWP3;eHprU@fSZ&)4zT_b@lb9fg=-X zeQ`d`UAY8}T}_?PqV{eCSsTp=y>`&@f@ZDUMR>+;khOUh5fHpnW-FR#YY4w)DDT35 z`EO|++Pl`wyoz~QGa6#U2=~;;>Oj!9TWw7%H)qoQ4?j-R|MU-O4!q~tI$B$6d^1*8 zmQ%0a1aPv$T%vicl2)(YxBj># zPKH!13K=OGPc^QNL9}G%WaMO46~b5tVOqAX%)G^Y)Yq%&yvjhy%vpco85Z7rGKt}B zOTfy794IHkzUnIcvXd#*m6^K;JDApVhFK4bpzswA$LaoWk$*f%= zGcW#aqiOZp6$@kV#`z9HkR^WN-9?+DE^)OkI-m8X7p}MzXVxp)5x9%1`2w!@-=-6r zMK7>kT83h%G!;y8X2O{0D~!qtM_HVO(4zE8OoPZRYc1veR*oYU~*^eS&Jsi*Q;#tozq>D27O@Gn3qaKiJD+g^vi zUrfNR!`oO|PPbikoW7Z=Ot@-{t*+5ARuzxtiBQ&6fRS|c=AAQKo7Dz0|AWf=lwI`4 zc#f<6!m(=KQc&Tueb6zdw|^L>i~eAkdF+dBhmAh!vqF}Uk&zs39{ZcLLHl^WW>WOV z8*k)sps+yAMK5!RxjOVyU{S<^rGpxHf`{a{PvJgwUVVLyQlT3f~qaS6uYCWY5(qgwC zUP0(3P8DjY%@*%U99kdCvkp;SlppOa*Dq+V^j;tR!?Xu!u5c{FYk1QIJntLs+r)rl zGAOA6-h#GBne%T^rbC(64VrgJ=6=Bdi+erAnOD6hH zPNtJT`%4&?;~c48XpPzjD|xFRwPHJ-nn<(EF|MFVxDJD)mP0d)nc7ZjC`soAPoGUa z%p*D{j%K0Q9hk$JH(pPx_h%tQ1zp(QT0wiMISsL&^&l1Z|S*r;X>A=SeZi$18uJzG%=bOXMS(oid4m`xgn#u&irNh zj@l3~#o(p?#AF(L_Q}+9dJ4hRe7f_Sw}Evftsz|6k!DFhp+)U5k6mY`QtcR8)x%?{ z1!2}a4ED9x(L80GwlcqJ1?OAX+u1_Htr<;^_CaW?S`1IWl)Cyy(;jtF;I@wO{5`h( zbo6wk6$OtlqHVqXylr*Einq_D;TjnD!C*j&m3wZUS8>aAuYUSw(W6O$cBxuUJKG)x z!yz-!pfv3M zrac>}`^b12;JaQM8cwUw=`D7y>;O+XwudIx%{Sjj(`aPRLVqjJiC*}rnwqcB(uMg2 z1ZVH2wLWOb#7LpF=As02wR>isdwiHd%$bOJ^3ZT~9YJe9FAy9{D-J9{RP;!o&Q9i^SbbSAY3h77BJBKbD%= z+K7~k!#!9)pxy)UGlS>PVcTyWLEYs{e;2QT2NqL?PMl2x=g*|grj6A4DOy-{;oSh= zm_7t=HRzf2P@3Iv4Gc6e@cm-o0Vn$y>fwY){ z)G_K&z8WuV8GN^RiZ9=VZ7@z)fx|M~GK_EQ-ieF;FlTtS&n`N%#OI5tOw)`(cekcc z`G*7hV%9@La@(0b`3f^G1bawI!ww5K>Hgb?$??hOgJ})3%7-x=#;KneM8iqN^gF+0 zrSNyy4H!s+=gy~*C-+zZ8&0jw8uO;#fddo?$Vcv6xv-#hSn1S?2HL)G<>wGo+h6V9 z3b7n_hAXtv*?)BQGs6^8Yp2ORsPbA9b*ta(m3Dw_T>O&f-DMO%1y%%#waM{uN;T1uFg04h3G8r{K!P z12s4`2rs_%;@Ldb$MW?$%g{wVqTSZPIG;@$3n0Ej=|*hxG_UoKHUup5mA&v9?r~v2 z+(IqHIfLJxo4rDK{-iO@2&wLW^jZ4w|NbvoaMX;=r`9fnDnnzbcj6dK40cbjVWQU3 z)nENG-M#Qh)`IF(unhg#ynPR*iS0DlWNPW@Ps zaF)=jTA00)MxQ>PdQTilJusCmFr%#qv)a&HP~%9uS88Rc?Qr{jOb+~~|BI6iXVd7p zvsr6t?%GuZMRzFkSXzGxh7nDOrdAjvR{U?h^Skun|M{QNDgq-(RqQ;mToj0n38=Pu*NvD61ma!F(1#vOQ1gl0(ohff|y17RiI`S{Z`{We=? zu1=@5`}1IpI-^OEZOy2;27bE`x_7cIaf9bY7*b8yboLFfP3B}ejg~^k1PnBqYL|Zg zFVyqB)Qpx^D|vR&y4t-r%gJV)sgtcY-A^EJJBQ#4ErwaNH!l9;KcxHAv6F3zHMA$T zR@s)gD8r5Y8k7+RCRq?nY)gEJEsQX>neOqHcc5!qXm4#YF5Q~rJM`V=)gM~Wa19Ln z&@h0^ym0laRL!MDI0eF)?=xooQ>$l7ArD&Wm7)H0{G}JunIFHJH6AyrXo$W$m+rDv zZwZ0WvFBe-N1l8-RnZ{YxOXSrg}z+=@Pl-pZGaQ6vIFA9XPG;(t+<8V32f!e5PDKm%+M;n3VCAEi~aK|4o=Qs1dl>GWU!P3oJR zO1GFF-TL5z)XtVd?QAWuKz03%H`8@^1~oUWV=v!y7XmlC<2Q4+L2iwuMfl ziRYe8qfeZ}{@*BbwzhhQXj~c?Xkg&`#6a+*-+CQ_@%S>pPI_eEyvmTs7|HnP@`MN` zLq8q5JpDo$tR!8OqHkd z1=Fhl%zQFIGPaf-4U z?A2%MV!fihmSvo6v>v7v_iC-Z`R1GXDq|=<#PjpdKcBZ&3CnV1JPlVsDBjepP>^N$ z3I`@9S$V3z$8vkiZ44YnU3?Dh3N>By!tj0g-i1@nQ-<|z-{-opIwr&6%5pP(%T=~b z`jK1rI$)SOSdsBf?yy3=!9M*JPKZ(6+f}X(K9X(Vs+FrY2sSaovW3dI6CQY*YyfnP zm370LfmdxoW!qKtT3dckYqJY^k>bzU~U>aBc34z@u7b}hxU2|^cfW&{gEm!mnT%*O(-r*|jD}Xw z4sfMy6$WRE)&D)1NsWZI_R}sIn(jX80eFO&uAt2``RagK>0q_att~P+4;=MX#Vh~U z*;(rPd4|R|#Vqkb&VzUMWBY{t%>Eog4Eu-zPo3e>m%J)~(vFp5)c&myMIpHT$pamP zXaCpcn}ROKf&E)eECpHSRp=FED;U#DGtB3Bu$(B@ItV-Zz0bOMHf_)gg*pnd9B0-; zSi&j8D(5|T@AJc)jDf*{HhdI}-9002M$ zNkl*NiWo3N<0a4HRM5Zx4 zCyr%dk@j2ee(*j*nA>TA{ii-!c$jZd8$zNvzWEE+Z$Ovs z=Ph;GRq0~Iza1frr?1XVV+Zplur6Io3*!i*ppUMqyTUImwpMB`xHY<^3nR+p-`k;2 zBJA4Wo3O-!*!=bDS(~Yb##77SP-F0G!9jj>S8Rkp&`)17~4d!)dr)c zy_zky_sm~mn=MS3ngy$D1MI-gm9}Aa*={&Lt?icWGonNL|9x)3v-TD43D#wEzgwzP(^bQnJ{#QZ{;E<`tsaFz7~W~ z9$K-7fJu02Uv@Ib>YtoKX!A6}rIWx}%JgIDI`dOBL050xX6x_*qAvx_2)mj0IUCam z`VL0UHy7bkprPw)o2hNI#`l-`Dgy8J7RD_So;?IaZYf@b4rQBMOjy-89h{;}c&CB0 zPcW}#Zi@zJD|QBJ*x*~dKbN;iyX~$EZLzkt&eYMxX{B9#X&buOIf@4R+7g0x=9UQi zw5PYnoKt)`Pws+e=!RZyvAtU3_$?TmcNau^??4(lbvkRl-M@A*Yff#iv10=R^gG*Z z$%aQ*LHMT@svs$PEiyyVWKvQTME^z5Kl6sKmPHLGea+PZ##vpKuZma zQ?Ak=&+&pzU9m0i^E`aO%qNS2i;*| z2h%+2vnQ~~uq@oVnfAbAmG`>A1Y-_7X~*E`%dezkFVX*)&8(B=?q?U$Wmd-S-k4@( zd?+2kQ0MTuC(`IMPvw(PR&#tGwqioxF`I*#rax!(W8dPD`Kb%?u*WP-Y(^Ni7D_3u%W*Cyur_QFM zufCZ2rdVwo97T?`m1eJ8PWLWchM{WB+d#T_k1| zOlrm!!NN6G^qOBc495egfe1;XqRX_ETo;ewZ(sQzPru%Fv^?9Yz55Z2lUVq6=p5Jdrs z8kqJa`;~%iw;Er8DK^ah7qrK5E3I$~t@fMj{|dqk7oO?8w+`M%pNzh26}`6}2m50@ zTUKae*~fi$Y{fWrtdz%Tz=~@b7hiQBWtP(!=D6?e#b7D4GTLtYte0&vjn{I!gdwi< z;_(;1_(l57Z+?@7QEI!oNT5-Cg@02_dd)99;Y)*k4~}i|uh82(YRg)d!f*2jEr|A8 zewju_y-cT*UP$kv-j-wAEIZm^9=$H^15P~W$i~mNj{(Pm^dOIk`~vbq0B__JcqD({zk)`w1nq}NA<*wgqc1*{o?QK3^2+`e%-1r)u|3l5vY@a*rB~?Ri;RWp%9@)=n5mwh-r1SsbFBwDCv@p%W)oRS!hz`*|xFrb+PMrCe^3yb>fxTv{PWsL9@!ag5D zD&`8+^JJh1ZGzzmxD@#+JhDD#CUbO}iP(YY2?0jO!g1Of|~B*NlcZ3zItxJ7#Ek(RBSD z^UzPPp*i&~i$7~HDy^vxfp`atp8eR_>S*aqZCEvLLdfK4if$jYKHWnIhDJxSy{T5{ z+&IFY9u_p45eii}NN5}3Pc!B3@ZFV|S2rkgg)QUFEbO;5Or2F!99^`n3GNbtOG8L- zcef-+umHi`-QC@SCIoj0?lg@%H16IwjYH$Em;an`$Gu}e)k8h)+EQ!H`OSY*GsV;U zvtLPx#o`E$e`tTz%s&76K!|9C9;r>>c?q-s5;-?s8U&*t_nzuL2!e@N{*Z`At9JkB zX@T9|Iu;Dq)2>HI4B~HBrUhYXE|17rwyXsgYNT=jEZ)w}E6WkkN8lkj1s%XeB&JEj z%BB(r2Fw=4e%)7WEoa(D4l_NQD^%bJz3_p*CZKV>f_YCOMNLzt*Z45YeE6;VUw`#Y zFX{20UUFWeK~YLF{0H*a({@GVZvgo`jWn{Xn8NfAoN1i0-f1Lu)s`sIsYOKDnAP%s ztX4m6gCs{1x(W1AHBDoJ-*Hy!(^b@AEaI698fj`YaG4^zb?e(-ODCxJxU9r?J`I5W8=Y$^U*emF! zO{DhWXiSd8r{CJ7mU^)E{De{T``);(ECfcW3+@LB#azse#5L{y8RI6u^|ThkhrpF- zz=3B{|7-%7IWVgwO(v$+BY+4QIxY<;vO=VJc(g2a&8-CX|4N|~okM=qv?Cou{4zuXx-lT#UmW%zo%zZnR1mxuUUSA^=92<;B zoW>gZr)6xX^?+4!`Cz>*3pi2-9&ShQvZ3%nvSSAbS<*gCg~__^_})zSx8(z4+28Vm zs#ePL+k=yPvu*=YkhBys!_^92XW8XfKr8+3Iq}n1I-RmEL{p-gR5so&pkem zi6*L~xn1Cn%9`blvIM?RnH!47QoqsKd_THIFhikQPTH>qZ@F%$JIA&mx_5aH2$I^wtVLo(LgP9yhRqpHp4B-om@TnI=Mr}!L1{{ zCVEFUY#L>mn&o{JyIvqFbsnUy17X>Q)XApBGr(-++r2WNdNIu-)#Fc{#xVGhiTAV5+c>BEuGiOt7T1*Gc}fm7g1`1?s~A{%W`wCIm(Ml2f8)blUKm=x$Y+!lMmJsA@h}7tnj8GF!rJ& zc8PLkM_^Z^^-&oGa&>?;Cq)nmOw5P2GS92_ZCRUZA+ZkQKhNU|zbTMY7%k~tfB4e{ zACp4l6xd}UeM`p5aBi3&0%J+u_vIUY2r>R-3Fx;GH*&aP%l>0KduC!{ zCNA$N9YPSdTiea!?KF6dY$@S_Fq$Fzp$P#WjoQKpp@_JpIpePAC+=GJhjO&}Pf+mU z#aC?}@4S8AOF>n(E62?HK!~GWN_7E65N!rH`M&6w>dxjc&_C~=GPNDksZ0i+h;;4e z5acL2;qXNH;NAZ$6)4f~O4HW7VxcpwbzGU$zX#%rL_3yp zJQ*q(gW&$1|D$N9d9-o}|IW2hOVDCziKg$1I9T+kLeHG6o{{x4{Z*M{jt=fhntFPU zlKYO%M)!Nj(})ZCE;Kt()5u3a6W(u)wL1v;g$U{1qpGEqF8^tN zivG&IFMG!m`F+QUnn{NaJK0D|RgqARUypnIk?oX@q{?5Fi9t>6POb>YL&8nIna9@) zCDeM+p~OGb>Xqt*DKkkP>)_OFW`KpFn}9%=(?mbe-yu9vud0T0Vu*R8`d{oEmHKk> z-f2Bnvb%wUoJY0(pkzMQbg?@kk4N#$7MuCZ%9d`~8D%HGpy1d-EY#S}g@x48TD!ol)+7Cu)5r zuiD)ikt%*_&c)I0HGxA-WNb0Y0$YF(%6c($Rn)xcx!-AzSM0IGPtqdOZ_wZPwJt!8 zMp!~A59B8=@#lG+J5Ixhe(*i$c?sqZPNUrqsR<){gOUlCmd@aeU;(V!wNVBvPy<(f zF;$`p8fBV&(?1R2{o3T%QCdH4W+5PWo=^MJGEG*jGJ1_0<#I{Ay{FnD+lzK49QUKF z1%Y{(RONv$-4yMmOmvTE-o0(X)i=Sddb?Q80^i;@VVmcKKb<))B~v7R3aGb5T6-qS z$LOzLSDdRT--=0(xH-IUgs&La(bnB;mHbAgnqP|r#%XSn$J{uY0gNI`E7B}>U&<1n zeSGqL!htpH=UaN-jB5Xz(^yc)kHIFKazq=RW--;dl}uW@=5z5D$Cclzt#bE1d(Db> zT{K}IEh%1xkL|6w8{k}lV;+}$NJdZvw68R>P&9KDaayeO7IbxabMzaU=w%~MmyR%k z>IhWsmk44nzH$LQQa?*1m<1G*hZ++o_D(m@^eyF|);neMcCAc-E1zKfi=4*!>cBif zL4E~1yG85`doefBN=mVGaJC<#o8#6x;Z-cU3d26x%x}Wf@?bAy{;-|O1Ko0VBem38 z^Qzg8DSDrEciuH-IneAcn+rq4l_+dN(#nUfK(&rjb%`xY$!i056}jD$@vBTcqY2o8 zXK--*JeH*qQg>R;@^d1V>Q!i0xVj_9C)Ozuw{xTUk?Ei82#9A#KM|VnYy3jDyfP4e z%U(hdqsN?mtRS)wdJ$Z3GXD}Ubr&S{VZg72VzHM2lscn+{)R8uIhwdLZH0Bwrxzet znsEe}wE>M2+6!6%u^yI)muO00oj%QG$PegS(CqG5rgKwBd!?Ja=IF=C>h^0zUWTdh zMwf?nj~T3<`P4my-18+5<6viw)0%fm2xAqw?LUnctF1ON6W=eWn=kFIbl+^=%<{$2 z^26t}T28W6js88R z;J-u$^j(?Vui@%!2><32Mq@@x<%_&br%e;&O}vpl_i*denV5Js+vDxdopB=AQ1;rY z_UX`(u#e37IAocXgi^rx{Md_rcRrCHFn=L(6C~E}qkLf!4inpLc;;L}&%6SydTt&R z=xwReT{3iVk5|;6^qeu0Ut%n{zlELE@09-jM@01CyxNZAYti-e7g{N|F^%*4CffIP zUaecQ&FAu~HuOq4#WHchVWc_zFBaOmN=8&-2CIQ#gEt)(7P;KB+A)_C{QUGa*#WJT zfS4C-fnAAjh6L0T^YKHI)24CD3z}qZm``bZLAb|KKxg#tWft4o(bX>cT^$FmD68+q z*{{ln0D!TiGaw|1ubYe13e|k}*C7SKD6E5Rwb_$F&mzC>7sVeZP$CfLs*vooElc#} z^fjq6LSqJ;^=-D=#_M9bd%ka^^OZ`^3n~(7N$%q7%gE(opJWwQs;%MaOu_=EJ}I2v zfdn>-1Fha&lf9Wza#*N}HMJa!$vz@;R~s`~?@B?;kg5<`HJ=9tF3MgT`1nPRb}^R? zX3}*|b|12a%Jfir`>-D$E)8H_;CW~^0_((` zWg0U0I?0FCfaD`WEg)xRcM(adtd})DN6J-lvjgQjLc9INcQuOh-+ak;D?07?^jp2W zk4W5ZthJ^wopivz9YZKvuQmC1TD07oE5YA<+7CarU$eKLPT5WMsGwT;NG6z3j?79^ z6l9xuIt6IHC4C0aBcl_tsUjeK$K?CWOuSg|Ab%_gdRJ;VVuib@#J8Mz5Z|k6p(4j5KW35hE*bX1E@LfY*X$NCQwwxz7n4!y&rf6Job1vUWxG=S{e?iC--I-hAAmy%=OJx~+&3Qh)F zs$IUL?g*y$L(2Q1x|-08IZmssNy)K3-ZM?RUhf7pRuzKg96HcgO12~sAq(GEN5R&| zP}3HJLIUI54ZFNDI>a1bqGox#gaIV$h-33{M)QC26@+XtAZD1hd9`M%tJ&B;??f!| z4?t;q+ceujGv8MktuuC5xGX76u@Hf{GVAaKx^_~j{d|SU_?e4aRqEd+1`)NfErYxM zsj{HxvpSFkt;XF1sC)6T59c$-1Eyirg)Eyo<+B;N>{V zT6}Oy&>p)z(eP zQx(!W{GRni%3x39S^0X z!g9yv|L=bLZjWodHSzvOhD`X^qMrpLoK&2&=*_|JI7Er5nCwWy*g12oe+;e=vk6}g zIUZo)gC*!pJ}82IE{QA8zOha#4(rMRI^P~mLVL~m|Xxq7#3|=x3Tx? zpqzGMS+rJm!i(~V&uZg>?(lNfP`(hu;=R4Fq}E(P8svZVws}TDTG{s>+fS(w!^4yG z{#s~mh=*%{HO5HOe37)zUp}B7j#_w+F!+q%@D~YbW*e>dY1zcu?&1J6d=!apwBue= z6UlOXkvA3T=md>?4hxhnLnRxI>@cnDD<@Iz7C(b>ZS$vi9uL0JatM_s;pe*l)N}Xm zji?Lp=Y1MgwL&CgC9_0YX*uI)GDWgUg-#b2P2bh;F%+Z-CvjgMSa|6`1=BUkZKcz` zMIWwN5E&8P)JR;Il4gE-#!%ucJ&-@DIAhW6OiDNWc%lM2oc4;w0>>@X1UTQmWc_T` z@1@%3CN)w6Q8=$~@&im&Ci{6aUrZ8F3vh#3xuUjYw#Uz$b~?ded6@)#`>$|Hw6-yA4vCp0+5q5&2yxIcxEVFlJ& zvKYtE8@#M%K5&Q8O>r*T&CI^W%{^{#>V&A3D0JkSW2Npm$NK%!1i@d78FszDX@I*Z z-ZZ7W48N5Y$R5j#;8Hxx0B|j({aL8(yrpS3qWUfhxa0nna3uKz!g>%29KD*x8Nnn^ zT|4WFcvJj&pDK_+7u_jbr+8<+QO+QW_7~i5>1nAq3(siBdHyacjVgwd6Vefl_GyPj zxtfuK+jmfoo6uV~DQS@R>yXrHVje=c^G@8g>=q20(or38wcvILvD+gIT`_ZOJ$7x2 zzUai{dF>)=6`40I&fDtnK1b4@Z*M|@=YSFCrwBaSV4-XXS z;`=nF(=6Xq{!>jn9xg^P^C7#7m`f_Lu{NqfI-4bxvrncpAA}OjmZf9xLEDZhGto;m z^0VIBml;DJxp!jlJRQaU(%S5qD=o-ek+^nb-7}0gczX`|6Foh4#Fk-}b|xXE_~8o6 zn$wqdmK(JEwQUrKf!qlySwtliok87}ghO{XrBTR9TRzZy+F|9M`yWQSP*& zm+fM!mqC7rvdH3Ky2+C>KfXz1UdmpO9cr3jp5GG3IE9xt(}stO8yac9+U6s_b|z$$ z)bB#~Fu3Y!EklmRVnST5aq^e*vNK?5BXM!7Wd4t&V`m~{df8q_q6E3~tmo3U`>ou| zodro}sV-O#mpgM)6*xnEW=EKS^s%(g_H zEK^P|AnmQA9%<`cG*>l-^SzP|bkRk)CEVYiSEd(*oVXnp?2#QRCutj1v9kqZ9m_wv zDWf#vGVYdn{eqn*ZX~me^<7hD3>Nc(@|E46q{W8P4PoS6z|dMBt1U`kNvuN<2<2b9 z%$156fdU&S^{sAv;y#KEIe?FdAZylZ2ebx$-&@5#Om+}cwPU`E6TaofARmRwHWq^^ zTqnN#xzYSOxQyq=_P;fSbu#1*Rf*)$UL!>*nowy{c=ZzMT5MWnsoGKYp);AEAtdLF z_ysuOW968C^fkYHozPcJOHAPuEQI9A4l3#$ zEJyQ4~Evu=Mei9Iby{UN3@9bY_}s<+b$Tbzc%KdJl~Ds#WTN>MNW-%HxwA z`z)oLe!pkLM;{;mu4mhC1K0-QW6EJ)a4Zm?)rvjNa0gRaC&eGV=`BB`#CD#2C;c+A zvshl;h3dvdt*Nx2??aPP8tQ6vtatFsp5nR04g#hs$Oj+V zQ!zMZq^o~p{Qi+Wq*$q!eRcaQ<6#7@4PJ(p8m%v;hELOU5h={vh-39!K1~gSJB&3vw0%$T4>OE2;XQidY_< zn|m&nI9F)*)JXrqt#B5!(F+YfYw|Z(B$6dh~1uHk4m@{O1bG%8HseBOPP365n z3(E7#Tpb;YY|c{gN#A*av(GQVYstOA=3lemI~Kxygo%Gx+Eo`tm;?TqF1cqRTMl}V z?HbOAM&O!bR8K+Mc0w!Pkc>QWweB;kkNdYvsY2wsWw{%%{Xm_+q& z!oH(e;eF`!wBz~G+ov{94OdR(5pfy=ol|vdz$;LXh{;FstEg?aB4`2idQ?z6a{Jg0 zS%oQo?Z>QK4RgJHAaIPW`E?pj_xsumtJ)k>0I<0n@ywhmv1#GMUQ*V5VHVo}qeax3 zHI~DA59azx5vyw`=d<+E(HPtHGVBUz6B%o?55B#X6z#?v`s5nvCE*$hZg^8OU?TtW zl8~4p$KZePOJvLx+%>Sjv{P<%GUSiV7RUjqH{$9xxFk$)Y#kNX(tIMx6#T9Ivg)R;jMtgY%l^=QNCCeC6tR{z!e7rE*l@2A3UHvr~go zk0Wj1O)Bxi5h^=jY=WcB-P~jJm2Ddq+hCHp_$#42%&S7BZb`14*m#eM+}75rCm%8! zj)p${graC(bVBj`Wl^@j>5;g&mUH6B)P8Y|FLN*c&5dj<=_-}&C8$76Me6lO;7xX1 zC~Y_^G6?E`9;_7u>LVZUqTy}@J|So$!w!f={~+hZe^Gr4D~_ufss5bhd;X8x)$}7) zjz|V0GbgvxcWa+L`$ICJblOytTMB_7xF<}>&tuUwHrxBMj)Q15qjtZkoN}ko5cQy? zMSkM}uUsHm%HEX$*Oqt|h#o}iV4FRfBh-nGPW5({V+~8ljSx2(Z=uJ1L~l*!wojQ> zmpS1w?tykzvfmV0i0m)1yUTR`RYUj&>@KH0T`(TA_S=Pd(Q+Fuuzohi%tnw~sj}{^ zWd4SgJjFp+FQqyfNoV+ycP6QT(k`E~tY`XTmG@)s=b87TD%s-iewcqw{mYqX)+S0! zJt8^?927?iq2(%MALB+J56+8z>H#rBv-pRfO7U_<7)ivTW{PI{Z3`%>+U8ZmZUpLg zY`tR(QT4jZcrXowuTlopguh_ZY2%!ov)x2Eeo;4b~T|ZpO3{;B({gky%_sNSmO(rugBssGjjVQ3fPI}m0-e0?aZ#~ za-+#S5b=i(Nm^8p(4p;QGr-?z`eU9(CWq>Tc1YS&b9PR%l)w=$FABzun?=WB1uJ2k zt_;cEdK$SlqDdLYCfzLq+9sS%7Nd->%ZAGW_9iX$)od(c?CkWr>=&4I3^ijV_1cnT z|6Y&qzUO|AZnDiiKKG^kbK;@ycs4b(Y-HK>mySOgvs=CQpXWsf?}8t_u;80Urp3q~ zB}Sd7W0ae}PWNY~00m;-IytiZ__#t)_QR}Pe=l(NTxMy4uD)yMQH?wh6G6eg5^Nug zmnQxZp&K(#@Nf2c##~KJgea!6f+c2Ys&?-M$9?BHbpIL&eK=l1K4KH8kCT`fHF>>e zj0sewyab2g-0gTLL)&nOHg|w{dpv7FW(@q78C30)OkeBc;>4EUpUyvqh&o!5`T+}c z)uAuT{edPTmcburGCh8QIPDC->Gp2W5KB93ihL(ph4f$yyB35vq{SrOSeO!~Obs5E zI0;hfm@Y0jNM_i>*&V_21_u_geb~-pSyPI_t@0i>`X==X`oKn(1D;gGuKc1$^#3V zSi0-VrX*aWSwfTWxYUC`#fTv4A4gJT;YN7%?H1 zR%UB{BFOsx8hL2A@2i{EW02@O;`hNJM?+mk)6$c5hAhl!l}!&s4I{ zlegzO*%@v`M7=xE$nqv|EfeilmMO=D)bg?mLA$I zU!7#9rzXwMC@23k)zc(-X=&;FD}*JE<0gyfV}|+oKX(FCW*fGKUYrK;xA5sH5y8L6 z@o`1^`|-hKSVIf^h{mX-jUiO6oPoGGUp{M3y}#^JwpyC!lw?*Ef{B;d>y@wCzB3(% zd|l-@OWE_$Lv?2EOzWkvM64N@=7evgASCh5#RySF{WrO#5mJ^`Yfzx*MR_C~Slh8O z*7Feq3$k(~z!ByM`y|P1=qzcJWVd88nb#3jfSMRbuv}5vxLhtY6?0LzbVAcrM1JrK zScMU!O`xEoMCe-+RZioQ;MjLlgL3rF_;Ws93^)fY;V?HL@gW>6>QL=Y>Cv0f!9t_+m`=z*?`=HSrH>K%OxsXDs?q= z4f^iaBDyUazrSi#a)li7;VMCC@}=?#6WuH6;}&VOBP#T7@vG`x1gVx;J$y&>Toj{! zV0g(!ySHV0%+rXfNkOv#!*0wGV#ggT*fXKLiSqT!+-7hDZBcSi)29lZjWOYOy)}+O z6K{C0mfk}m`ARG7Xq>yZnt>+DQL)r=7)HhSZsBMmC)?Ffq9%+dBy21k@^ny4Fa2JP zpk|}Avu{_rVP?8AU6IYkB;`o?*65v^?^!t~X`6#x%WUco^49~VgB62k9`}EXDtC|T z1;(*(czIodiMX)#<1=i~Qru=#q>rOo_OE_AF|yoIy3*}OH(Ee;LPR?iqSo?ql{*ve zrpXB9D3W2K=5~YL+|$~PIuh-1%as|9B@>W%$j}gyi}MP z`tWYGeox%IO-1Iy^wuczGli6e<;Mo6vJqq*^Qw+}?}zQ27s~4ked0lviWsMdzdA;i z6X0oI$Q$DtyY!VZk*x8C{!CIgGfacCT=9%MQEQ<$zmpzQ08swC?K-qp#8V?Kb9MhD3zoOqsUE@JprYzp5%U2V?((EdEw0z)pQH#J3KcGMRl ze)yE4XyJ~;IyUH33wcGc*PE4XK%8>ND-}R~)bGM|W&6}mWHf15gu9KIEu54_tE4u^ zKu#hWfE}w2f>%`7t@O6;Wc)BCwLax;+d}P18kROiD8I%U63YnFe!G3dZdh?PZ^)@5&-?!EbA#7(P>7wHz4*Zl-P(2&z3Mdfa5nrS*~YRJgWW;fZ%5~>UNYh|($ z*Lf$rJlu45EV525Z)vNVOC+t@}P(ZecV0*vi;s2qk0x z+FndIa|Z*^6b7HnsN2;8XVzQ2YX-s$%l@f?>-b{ZADjE2>mZt=#MS`jL+5{SeY?CY6|e$ z)v}Fk=+=!ZEERiJ1%6gE#(7T`J=yctaCOE-yJ_UCWQ*oPvwkz8`m+;93XCEMCi`59 z+L^?`i8$8QK*H3awFQ&RgkZdV5Vg!!?^W)<7#F463JE?iZuV7{`4Km_f{#3@+-cx0 zgFH6f^Z9aP71$EXNUSH#2+_!1`KOHPPTwTsdXG6UJ+l^q?um7qV@$_ew|+m`z)N2s_NY*r<2bu3jua!4W$_*5wToDzk)A;YxZC+y z(QyGtus)Kj7?L5&k(1={Wp+p=P)4P6x>+20gN4zk≶$7LJL$bLPZ>ok!&H9j}vR zS8Fduf?3bZ4-vO`_L`x4p%G7Cy+_n0@ejiAoXqa1@Ba8Vk7=|R=~ZN0eH`XyerVp5 zU^+h9@u%FOP-%!j)@rOCwn&2@|CK`Yt3L@Bpbf)wgioGmY4Qd*t)*mb{$6)H?S1ss z>_EL_RLmM=s`#t#>EM4v5smUr+82p+#FLwO|63QYQm=?Urmuf!z>BN`MOsm}s)gZ` zVwX&w+4jeGn90R?huVkB7<%Um;ZdLp^)w9Ie6`u>rR=m6cVL#Fb`9Pjp(U)qc36Ch z?;%d9h=#50FN99%UouDNH75tV#Z3mUqS)-Bw~yGmB+zv3Tvx*u51?Nl*_5>ahNnFLMC22u7B zm*=paVcq8QxbRB^5MYlwfJe}~_I~;^4O0O!0^}e>-}# zQrtlzhn=Gg;^h)9*n$mD1ThSSg8PL=?Ajq$)b2`uCwm zaH3A@laRN=7aRU8_SL zvi`x{2POX)tYD#o2NZzOo++)~(&yp_`=#5r9$Y0aF)07Ub4p@ zi35oZx6Wd*)fR67vU6A(f09&AzX5Bi3f?aMO$hPgEg+VWlWDg1BXHH zm9|D7cdRrrwzcE+X}szlepI^bcB$6}MJK>Q#M}($8yVrosv%>R zP_=ic{7Mo+`&{>mEdL1fTW^7^`^CN3w{RYp?DZbvZN{gMUnNsh%rLknDwYKOV_`fm zn^fFgb+XC|*+pip%wdH<{WfaJ&6`*c39Wujeq3SS)S}BWd%G69BEd9>cwM)YwT&Lm zcBfMQo3Y6}nVfe#{vCXnGID+k))6iIxm?VTf?nLCYe`}EmW)=7lLRkzmc~exbLzn0 zJDxNOb~`F6ZR3V6*5-bGYx9b^*W4?G=W0CBe<6q>VVN4*O8^+y1G#4OrMA1~Z zJccAIPlv6Ckk@i9lC|@G`jWR*OY%b_5Ye!XC47SpNB!@fz&7DU1zcu=Xg8nkl1<0b33l*eRv2+V3P)tjbOJRj!#2MS@rZo#4 ze?~+gNUUy>y6YAW7doHyQgeI@>YXabqb*=|DW;OkOUBFwIh%?rFvSRSSZtZ6j#{yo zh@z-oH<2(N89lQ+A}(VwFFY{vPY=oH7*s2J^j7+8bXn+;um$ygEQ;jPx6pli?8O0- zu!XR3J)92!_B_gvBV&qB1sp&7Uzt%S+tpOz(e_%W(=Qw~?!q;oB-RW>u@B8rhKduY zRl@+l^5L?l-^Jr5p3hP(R}jr~=>)fX4Tqw%^%*u?P3D>gQ^X)u6e;dUTuRs+KkS!D z@`8<=RXatmegg>zj=kzEUz_2lU}=csL6L(p{~d+@;wYcXD>} zX?Yl5KBy0P{-*7{7vlOH8?Rbfz*k94b+vy}wHeh$u)R2=RNs&5!^q#z{P4rt#K zOas?cEm@TanQK7bm-ad*txq)OaL*F435LuPssMUl)pn~4X>w#4Gifx$*mX48#Rf-E zldwzpknb@gK+mTu7s)NHzD!EAUO3HsAMe>&kObuE?~Cos^+q!O`;{x*lDyt_=)d3+hIK$if>Y7&W-N=;9nElki#IgzmKw{)87-p6 zmhoD3?D}!Aw81T@qeAiP7hNx5j%fu!jY=LZp;0+8z@xTOem7Ke;yB?<{YR%>D zZWy*=vL*sA^_H}T#y7BPuNzNQK7Y;~Tx>ibtqVm6J#Tdj(PuwE z=-n-{QvB%Y`XG2E9yo=4wlm}|U*ep83XGS^J)T8mH(#x|N#bU{oE7_Z9)Jjzg0u9E zG#$m1iREy4W{MYZ9_6UHu#r0Z9w`6*htEP+O7p(eDT0pUoD-`>W6E#exrxl;4lRMi z=GW}qEZcECg6y7)1qzg@sD?QF5!v7)EYX=dt?{=w-rfZ#0dOY0k{@!X;D_g++9EzM zj{n##@n+h*uWAIU2ZVHy)Uy!TH|eg`|DqT?Q)JNQy?*y_vJf*$_Z%H$RE_;)SUmHv zc-j?J9d}dRGwmdh%|p6#?6)nPVQBN;*zlU|;vyN$mqDRZ`pM6a_EBJxUl<+C|3T1G z09UYtztA;xi+vcZb{ab*o2_UTTX5_+V>IyY`^D9tV#ZOHyDh^#*^kbSju;(|mgmBh zMHP7~LBriY$D?xa+xt`I)uOTln@yE;uE_YYAG0G>{^U?n+|3QK74r!)1Kj4_To`xe zrNY6}1@iHJV`X$dN2QU|Dh{NDvZf5Y)r&n`AKD$-J$8Lmh8Di99oi zm%Q@~2LsYhi=9Sv{d$Ye%>rnI=fG)7Ob9kgZ@j#}t?z0`_4%elC!c@GWdTht54Ixo zCZjZV^>=um`II@cQ>|;OE?r&PjJX3hl;^3!!#!V)Fqg zI`z)>#5g(*FP1yGURuWP5+|V^WNTb6f5ynZtZNv&zMK~?zWPq1YCGjWos1*_FmEEC z?tXj6dvt!hb5|UXxJ=+z6rT6-qpaVcOE?zr8CbAHN_uuz<7K)tsy=c!T~xh^F%2+3 zg6)0Pu3m;d09)zad|!BTh;ZsaiO@SHMWw9z2r{WIRy9I=b(Vy^DZ0WVrnR3U z8s|MLMGJG)bkC~T3={ZM>5L9ESX0NkTGLNA?Z836-sp8pZ*poWyVj!#6b-tN-#&CL z7KI6PI$U3`UqqEF`R}5j6!U>K2nTW^Zh!7BHfE!yTh&ea{91NhAzL;+j>aEiDB+=( zg4>-fyj=0nn_WmfiX&-z@89xQ@eiv@7M+Nr5E@a4fCqf0X>&&lq2QK_0OWwD#VP_J zh9<{Pui^`uCuOMA*_lc@bcP|Akhko?ckz5rD*c4f(WIXLiFIOQP@ zIACLdcMmzwU~!1)8ea(5+pAt9Hem2QMUl!i_Z11tq2h|NOq(d*qM6eVIn)X&dX!SU?+GTG~o?$jx7 z6KpOA;XhX)St05BUK1;#wV~#BvvP)#?0@DgiNHV7Z=ASp7??_@5wK6R;ndfke_OM*Y5Sl486u+jRULj*3BTb&HcL8hIUQw zE2>5PG#qY9_QjP_SAUM=>+U(t;3Zf4qfGf-fAuw9=?E!_+?ZUdL8z^w8y9+Atw^?3-XBnzsUkteUDIkUuAY3a-Zk-388K3dQkP;w z+ffy_v0_ZeY*y`?jhbL@eF_62uiLv=0?`n*q@}!5GO@N7HvlR3?TMb>i^qV*xu{rh z2(&!%1+fLN<#&n##tFu0@rVtXD~CozJrmFkyi?+8_t{T-c^bM}klGlKwtjhP71KCA z;)0qy-!HVTJ-;Xe67LhcPbrlm?t@GYjs^^X-miBfp$4RnSJ45yuA(o%y3Vs}|A2mT z#H>*{a3)E7e!zyvI{!=P6AH?DeEhA=ljaSodYc0xB;U^svEWH|r`iqfsUY6q`2Y|r zKELm`{`kyrcN=TCyup7_4n0b!j_q{aX%5GU6UiWwqzF*3J+9{q54ldN z72Pa99{}w#SW+tDTaF7ta>VO!j!C+S9%VqM=%2dLTR;}aBR2_7DrS#@zgu`gKlK3m zHPTkt-P-Q}kK~HANG|E|dfo4!V?=R_%P^bgI-6&(b~MLW26;SVqTZ6G8EoLZAwtVE z6mOH2xlqa5yc4oiQ^-nU5;x4AC;HDH#uR(*N?<-&0GDi-E7(??;uvWER{c6)TK#re zcqOx&wI+ep^^2!jG-JKOUF4<#=R;`0r^khypx4PRP&J9c^ZW@MebY7MZrJ_cYXE5h z)=?GX0AaiRC~H-eRF3_^!WCM{GspDbozZRMjg!%%bbEC7)IdsZh2|ntlwcIL>IK)6 z77{nrnXuEeNBYwg+<3>G(cMo2mN`~~EzUxXQY|C@9TL)38@6)AVmB@>KZTZdh?yhZ zKtBrk&bn?CZyF&R1x3rxItc%bi2`K%$#asw+4b99TV2~x=y8b%MkwSF6iNpCqn=w5 zHDDw4c7*)iTqo@B0tVR1e~z$!V9R0WVB5lr)PcZm;+!eHnW1biM@HxrBs<_0cXkoM z;KTzR&ss{W9UU@}KLhv#^K3Pyu@qe*-y{{q@{flwl*~(PbZ};)hzu4Ev5T>LHP)^7;t zMK<$E&V*gMIV9SR!7fc@!L5HAW2Y25{v27B>##KopMN($LUlp9HbNpZ8*vO~oid%+ z24m!yBrxeQ8kOTp%8jCe>PtR1P{ z+K8Y{${z>f2ilnSBcS=q>?4OkwO#KX@~%B%+c{;yYu6!zr=+Rg3fxR|UWz6IN12a( z{Q7h+iDR2)8xowjo`pvo^_==ewtRQ$0XE#b;r(t3m!|4x`?Ku&6Hkh(PC`>)%emgz zuNG@2PuI*C)kh#&Qg42z&Q9raLcheBG!$Ppo-J*@b5e@y)t{sd|MQjW@YF0G@?a&B zfp}WS!`;v=g3#VXTlSNqwzxeu2yMG{O#l0pv&A4QDu-Iw3cTfpF9eO`eGMFb_wC^9 z0QZyT7QTEknWkhS&7-i57<_of|>%M0u^Y-{GSAf zNyI3oIrQ5@exj(NwA67>l#rVWrMlOoOA2qMn94;|*>H7+(CIPgR5u8TgY;3JT!J& zw^3}KaZkrMtSYX3chCyV1;Y@*_{LB)=GN~yRIzl~9h@(M)O1iD13q#I8qvXnr6gqm z5k+cnyC_e@Y%ympIokg#KJ1 zq-;f$-=(MLZeNss-j}U!A5e2VY2#9(@OASm{mR-OWamDws?Gkb!~}$p!D6C+D_$mG zWh92UmATZ8%TdByz9X!u96p0mOou2f>W#wN3nxT@0GN}+Iehv4g5O`esMmZ3u7+^ z_r-GQ0K=?*vl_yhjqDO-YnJC#7xfamfG+9Wk?Sh2@=mzvF^f{jLuJKLUh#oaTUDB| zQ0nNb1t!@ATE}|&xL)m-Texe>)De+tw|`;5FZT|leyZWUp^3Yb?gyOh`nyh~PC332 z4XXATkg#2$|K&aB=d9X~FgYk^Qn) z5_``!J=vNn;M&$ku+YwxPULvuzs;IR9brP3>S+I15a=3tpobfJ{(so|&Zwrgu3eC( z0zpNk1%d@Q3etO(gMx?<6{ScCNGJ3fAPE9WEEJ{JpduhrLhleD8hVEWLMQZ4r3V5R z&w1~Czi*5?));H-pL^{+*PQctW(!gz@%u2Q0~;8>0mb=m^V@Ixzir#ZfxT8g3N_B% z9pW?v7!~rzMEJga5%z=>@rxx=-Mfv+l7P!aqHdLNdz(X`ftT!{s=uWj0-q%=by>$u z#1UrN&Qd?KYKlWt1{;<=<2CqauCW59G*J@_R9D)P!(99$Qg7Q*?-!qf7SwSN*w~a% zvjf6JD+g?s=M)8c&DA+5vYok`sal`1_)|B;8O;^WX?=VkOJ{5&kLHiyJaFQ6U>J8% zkxB98Z?;DVDTB&U%N)!t-Ey9mX*ngK=)`@JG>gT674O2 zLjJbVxG(2xVG5!6x~kdsCAe9Iu}v<5)75EmnoR{B-NQcI>+L?ed)DlhKDX{ZP{3z% zN>8P#Z}`IKTNdh=%OVR-o`2w+s#Apn?vO7rKc^h%)>0(-YwXkzM=;SIoUpD>1 z!fQFs#%`aShJh({M#;r{!9N1n*MuKhfaQZG20LWSn_5yZ_wBK)}&eXrVXX!MTrB4v{ca4ncPg&}ouBAh3eZzgrxvqLqGa8V* zg>OyNB7NfsEmrPc=;|Aw;d)d2y%`3!%NC7m(ZUPL$^1wOX?Sq)}^9;RXjGBJN2 z|FUWl+WR?>ccbj5HTRd#U(7NPy6C7F_$RmU1lfr7)9Hpkz@6HU7~51ISqwx`HWNB4 zlmex>x6;K8=*u)E3+1}t$2Ajd*Y%abHSmD$B`C^v<&((x@sBV5h=V4s2R<*U(pk3otlTJtW4E==P;7C z!{ZQ5s@yH53=vjGeKDC=e*TV&rSXUVHS+gi-Bec%fdF&yt`{z8vkqyPeGc}An)zn! z^y%*cC;D&j2YL+|(=Qo;YVa7SyMXsh^)fhhuN`J%%wM>!v;IN4^M2|?^LVIfc_zER zu~KJhev2PMMJ<5+n|s=1emB@i11~YdKWc>*Yf5~l^Y;4SwSq?mcZe9P-%UO*i%P2T z>z*1PdF=}d_5usm+Bl@^-2z@6*DSO>n*miqtDQ~StMSFmOAjh{BfD7$K59L08tmR% zjGr=rRhi5NmV-P2-M{FPlmbZ$KQltaQzJ==0MtSpy%l4*E2DS;Z*606c3EWLM`G+`M|P$xwwS4)E0W0e}Y3U$kTSaYllq z^1wH#nXD@$ZTi8Se|@{W+iphORF6^5WK+K0}*i%-5rtVLU zOez)w*~urfN-b)VFP-iR{`I=4b(1H4AT33>bg3ilyUwVK@_!6goQdI zV25##SffSSE-D$Ac>VpEFXCN}KXu;?40z>YMJ&d6Dx8&j(Y+ry;BQ!~h5HO2;WvY$mtyh`GcFRfz-KQS4P*aq{N&TBW<8Gze>M zY8w3VaBZnzXX)!1Y5Y&V41mEy)DP(tz|(esAwX|_#i}NO^5rr}mFzwt65s0QmEi7X zN&1!vC@(-P=RE=>Bg>MJ@o1CHD>yWgllxoC&MkJ;EJ9A)Mz$yv>`z*Z>h901Husl& zUPCZI`TTGj`_ZD*7Jy!EDcPxilyoP-f!=b_)dkntX>PiAw!8qbrBwHC;^H^F>L zk9LBL%-<&Cm1%_brH4~aWxKl(yUSs?S&dX}EUsrMU8Oh~CoG|Se@f}LcT}*zmY1Au z+=L=TAz5(LshyK(o2IJ6G5*MMxI0*6`3Zl$$iyr<`SHT~b%WamgN`X+HMUS=ZM4^9 zUBpCyr<+C}pUgpIUwg4GzQat95(I~5tQJ$_cVpDtKqEFtD2Gu#tWSU|;!_{kBHd07 z<&uF3s;#%=OChaH?gnu8Aw^Iwn2yLE@znJ$=Qh|aHS-z6N#(>Ezu%YPPwgv1^(VLW zCuLW!8l4Rsuz_8)2ks0X?dRYKKWrCD0&HD}B$lKQw~Z~n3e|4*Qw4-iN5}`Tmw{3P z#)Hb~6Gzl5){dwV0GL#NfJ#pX^mVF;a(b-o%Z{ZF@(K(FFj(^~n6Yv(f10)-%w*Cf zjccKel2j)0sP^ik$!ov8>j~B9SXdkIw7ZQeM@3Eh$RLyllR7ju=(fmwWwS?mvP|Qf zUxGq9Sx|EB4Q!L`}n}CzsY4SQgvYE<)4^=H7_?ayrSIDv%>e6v);-hbX3Bn zrnZbA?!EEKQ|9!PJ5_~FC9~NUobPI)Jnom{MO{I0XN7(KY($?QYWk36u;I9${t8G{ zMeLUG#6E^Lzxa9ROD@ARJC^=M<=4|evymsU5Bblw2AMe{W%++cL4`5p+vOrG1KYYN z{>Q9res_Q7ggI=P-yZl-vKJw)GAz3EIGBaF^O#z+GhVT#Kty`c&G$J_*|ad^GMPLP z@XP%x3+;b7SmB>IUW!Q6L^_j=(*Tb%=Vl`wrL?)d4R7h&(a=)`8b=WG^&6!8^3n_b~4 zW*LF9D@_yZoGacHLzYBKY>av3$YV-iT8!8%(j?FXyE*$Vy2k3NX}Kx3yzzXX=wIIj z+%9vgB4Mu*BT&-gpRTO?m;}QvtYvrHSc}nDZ&29Z75K5fz2f{?ji-UsWJP8K=8)tf z7R@X7a}Rlg7QXlS>1V5pciYzVB=N@@o@0V0-|P6G-bQhijiu`<(==9SRXODSZvG}Y zJtwgj<`lTHTz;Toi`IJtrhr@ZE=Lpn3bxD$RM?pO4xv#mJH-0^QJK>x21ENFKrRxv zz&^yQlKgqNN#_EEyY)rDjA4{J zaXyAWTlsN8oyvDV$;bxW3wU;;JC5}@F=lsXqoUu}!`#jg;`p@aK8@`Jm*(GO{) z-0!O^FQ<%Cq<(lJ&I9|5qgs<+Uii6pIYm`hCRccq9Wx-^bK1Q4#?jYAVsSWUlP&yf z4chmi&p4vcWXl|v_A+@vEJgDL7!Iy8&mbVOvDl<-A`T;xKeyRYTUSXzYhvvYdHR(- zO!iSh<`=RN0?{yIXXBoEva3YLu3wTh7IkIScdn*qGsq#0dsh znYX2+MoARkhsP>5!}?_QCKna|v=5xu(Y@=9ej6{6%>B`uKF(H48jiCuM=UXI$gI>c zqXcNWEKypuaj7BvdGn!i4fiWJ2!m7oWFf|~nko=vrI=HH99xySa=wQsnEv!ZxcSGDuHjb`e&?hT%L}xcna_hiE*i+s3Hw52ucSzc z#88N%B+R*q@P~(4h_RjGPW-BZ{2jUhqQl|&)%RQ@5hbUw;(;4Rui2;Hlms4*aoZRl z2Jt=f64g^y$|fWM|=pnoVEI_KHY{!w8`+83k^`4=5e#GT%5Z4zN5?CZ_LhZOJM7p z>4f}{+axdSiJXTBuv++~CsRqqPW|_wml)_DE&MHHLHOg)7t}ESvnV^1AgX8QLV#-A z)mNq&7ZiW{KK?KncsJ6WBm;5vG+PgeXzvFuPSBV^$*I zO87h2XHJl$>7^FeKQ8swS2eAWs)ve)W%oRf#>WL|pjl3*9b{Or=gW_v%N9t%yF2eW zi@w$ux?xaPc40~lyFQ1?=*{)O@%6sgxe7J(ou%NMfh;BHjasU6<}!h+J6pwWN3RMR z35y@lt9j&*cj^qSatutX6jUx)H`K1=ITCiZk1?*b4gVO$KZf!Du8lHTNw6-?b5&_D zN2tZ7tM+}~#I;g}oD!}0l2;v@l5Yy*G7DEeo;Lh0Bs^71!T%Cz=+V+e%{@mg`&2AH zr9Buhfj&=Ewz|Evl*Dg9tl0h@x40QFICmL|RW;;QTmutVSABzxG3LdYQk%}fw~2^+ z%L{qb7e6YAx0Wi@+|a00QcTE#`bXbqo~UmC6KM6W#Sj19C+&bo@rlb_ z<5h+3qFtsnl%&NB+hky6+vAfTnLBr}gv@IY^58&fNu9vm0SCls0ub}WIdT0OT>EWbFr4+QA1ktEBtKK4*2zzMJvS%vp9%~v@V@Amn7$`{etzx&k4P$Mf>>(^y~Bs3RU7ge!4kqvmnA(|<-3%mQ` zz+zdY;uj_TcI>*i*S$P*Z`4z1oznK`Jt+!gw8pY!l}cz-`4U1#TkKT?9tOFJ7?VrV z^$tx(c_U1T16Ad#_j55dKaM5UvOnl$$tMd$hvY4~515@cgrVUx11@Kb;;~|@c>7wIdRKcWrxK2<>NcH(u&?xL9%E!wpe_l+S$aP1?!!fAE0 z9px?2Qy-SNGj3OS15+EJ)Ln~#z}d^d6H&B_?siI%gav9vHPkqP@8oM@9x`8!Rcq890M+8^wX(~l$FLe->FqAt^2ED* z(r&G`7kGemBrZ{^#8;#HdoroU=*q6re)At1-M~aV_Pgs+>7Em1={_Q7ujUWZ`tL%6 z*;Qjh^3xWd1-8AjbXtatMii*2E6rJ~|90brB~3&rLzDz|u)At5V-JmK)^%V1NM&qq zqo;etUexM*&7kq9*{7^(G$W=Zp6t|3t15A${#OzH_bCy~kOS#LL=h3hFiTYF0xTE& ze7j|6(qb|(r{=rb0in^xamqS~YK@4N`X&5_4EX;o*y%lO6Det}V>Uqlytet|Xj|i5 zfWVh^u8PAaR7Bbv4PDD>3^nB|tcNItNtyza)KgEfP-Ih-qx*LuSB5k7R+OaLmHE zKo0wLysJ6l1ctcAU9&bfPH5}FC!K$Wvo82fN`iqy@MW%Ya5HPug)F1NmygJXqJetD};ocN>n*iZN(B6Q071`7xM za}imll+FH%s65NyxliJjq6q0m?t_ZUJ@^Uj%F)VGQJt`4haYr6PJic?WKgGYX`f!H zjvYs-C30+S{Q}2NAl&2X}Lnp_Rr%57}!H1QY<5}?W?0fpr z*RJzAZ6QYQ{pVcCy_xU2eN}l4`50oj&tyt!o2`l>eC>{U9kvNeR6gt`A4dJ44Qxrv z!fq$pOR`S3=(f=mZQL>uF?DXKHkIz|b%wk!%RQNDiSc|hj+IxD!TYFS*v=vL4ISfm&y5E}Hh7QxI}6gjdM1n;cT0P6c{)`DG7TTk8#ao-PjPXc+=?bWZ>yQlZ@ z8uuGD8^0J`9zDItDg`0CWMxc+Z*X&o1Y${#{Bd{gVkh-?Q9LGsy|br1+u-ovHEWI* zTM+MqO!DPk<Ej`5Y??23xL194f(A^4gi8OEdC*zEf_`?GFO%!urQ>B zSkGqAMl!mru8zi+K6xr@Fb=dM3f0*nBp-z`k!EtmhPdjL2=Zk`T5dqz-|d@nmM`pl z3LvRSvMBkY!JEoWDT4%OvjC#eyJ+O`AQ9e0?2PH$0c&@3wCByoR~(n$sY%R**FE^9 z_mzh)wpcl>4c+cFZvVu{{YF*_DVkWW1K}BeA>g!gKUmCItKT^ID2iB~8umn&&4PM5 zk644jpTtz!utsTEDeU+IG;Cgx9IUk79Nf~h&d%9xR# zeC~>$)6SSe)JDHcVIstevz$~gj(od00ZG5Pl`N;YM^*UW_h!J*E^4VAYs(sznX%66 zf%524iV8_SC0@M-Psp)YtGQ%hlGjjCo8VmQdh~8t`?!!#&wlTGphVJ~ZZEp~#R10V zAB#U#;56mw!m3^Jg!|T8CJAei+Md0)5TT`QOjgaYo@_Z^={$+gMtx^PA;N1FceW%( zf2MSsJ#)V^YEGyjo-)?DfiqLd{{ey6MEMdIqi$928_$ONf~dVH`(y#46fEC6A5n|U z4B>CB>HFmy`RRCKoi+h)Zq)2z<{T_uief1v3qxZa%q?u95;Ws1Ftl?QdZ^~a@NB=i ztcDvPVx)*Mb1aZL#Q%3Nr4k8cUh6f%C~cPul&QF$s_VKW-m@Z6d92<9Kgg}4Fpd4N zynk;0POQns6ZILUhRw5;Q}2~Y(#MX*F3#Pfwoo?9r$^9?Nb=lYhO2$QG)$wVg^X$Q zx&}Lh`uA@#(v_=62Fhi0fK31nq?;oCr25loqcP$ zfDEQ>3Os*AXW=fx$VZw)lO*U_vlMvpaOzUmQY>x7(D9+iGVmGiMbUC6g-ly0roj*S z!%Fqn4&Hc&H;6Y_K)!H&Z@i>q#eJ1%R7iWu!+|K!wRo}0iFvvT9es%5hxmBAvZ!+C z^xm{l72V9k1Q4G>%4X%G!_r0WV&}{n?3hbMQXaVW zDe@g-PIj>Km9a;!e@e+U^jFFGvders;#@s*{}S+H`TZRJo{|RGPrdq!|;kH?P>vgV{HpsqJ2Pp*(XVWkYgeGeTXRQl9bqpu+vI;+;Rbzb0;` zGAg>Tp%6mwVkr@?+mf%%VdW0*>dBpM4c-U?rSTQ=9e6I*c!CHHII^`(#YNFbD6a6R z>^?@#<|pfgMb@($cR4eB%~i|G0nE|SBBIK5uf@80) zJe~6_UsPlRgh+C#pZ9Bg=aF433Rd*Jbw871;sIr!DoWAHDS&2C7H2ZmQmD=y=QKr~ zIBdvQA}Q3erYGAuxOGuZy-YRFTF_jr3nkB&G9&fLt#;^mEXB(UvpuiNER;M~&W@GCAZB|Pta$=E-LFD6ir7w0hxoK^ zKABwdV_&&TU>YBm<%!XEmMKUrZwM#BsIE`5emc&6?IIl-wfhmygyvyJZ zJhn2oiF0iJ^3b)2v7V82eAv#nZo|`%!+k1VefVa9cW3yi?TNZY!lz6EOKKSRY}?YP zarl(PfshKhTXtIo@bc<}A@Z9HTYhVI@1CelFWp`0#*2Z6&?sQX_B~6@zsUV^Jm$C) z4>X&OQg03iMC7B=JG@`CDe+45b9{M2d;KY#1RFB6Alj}r^9PZv|27qbl6W+n&m+R_ z;HVBAa#+vY?yGS*pooRAbkc~xXkUiw8@@%dVRBSwMgaxK677;)Pe#ov$_pg6$IBnb z&$59x04H(yzAkFWuZ!T`sVmrd_imDf*$1eJ-5rk)>$&M{6Rfnt%;?~w8SFp#Dz#9n z@{IBZFRM`(!y*mPTN;;7i1o_AKCDWd{L62o_-R4}&df5PQBJ8g+I}uaJefn|_xIR~ zYQRl7J9;rt?yaIs;N7jqvBZkc6>P3P#lG*;H% z1bua+Okec=LQLrHPpwE77;FUCvZv>V7yoFTFV6K6Fv|P@&`(voQPMOXaleQM`;!~q z|MU9>v>T5HkJxuL5-Z}nO}yt@8D&H0N&6xqyxQL^_;4|UsR{>(`rlCOF4RF%l)Cse zJ?viwmh}t0Ul$>32oE(I^;T?t5OpT!?@$ZtH^p8G-tg%tHZ1Vwv>g`v3ewGj`swRc zplW0~n5tv(5b3qZn&Ew~6+C}MqOV5&YC0Ro+#;@XKrAOSXvh)#s_Uy~|i3)wc&mCXP!mmTd1?Kk7~||Hfex z>uE7r=+3U1$7`jxTXV^;_+pTXxru9m+%UOBBtKl&oMpP4r$gYYQo_Dd?6B+hrcp^L zzSqsQXt3P?ugQcNR8ebW3 zyDPIt4k<}cX6zh7@clg#)XWD@t@N6c`wv5H1D$%}$H*{tGSZ+NgmR~xjt$V;d^u{j z>Ox3*=z8!ha_FjM<2}=MmN5E0`DmoCBBMr{as2$npVVFVlifTpe1_Awp#g=5!Hq^{ zp1;$^Qs8_gsHORzH>%?bvtXScaI6hfGG{__7t)MSH{Xehn&57$@vF%{HO#z$#n#ea z2M6sj_YAc&yB%%Y!u_}p|Co;M$%v((8u{A-Zb#P(kEK6P(pgzWh=!pb;aMA6d~&<$ zA{c_V-Y*A!ivjMfjn`76*7u{9&L){{v}@iwPMevXOdO_#G$_ks`IPh4O2o$P~7Y?QBs z3UBmw0o4y=SIw|HW*GI;sYN|^*^WF7A?YczPlbsj?S!JI8pp^1Rs&qS+5-TG_#9M2Bx?PAw`M)1^CNDN2I#E88OxjbQH@nNPo z*;<@Ft7rtW5-viTVfW78+#y1+H41Qjs1yL5pH$IZ+g;iIu`oVHuIUlH)1k{F!)2cw z<~LW_UHT7Q=1;s^0UJF_8~Lg{O2*n%P79wRu|8dkQXBQh-aH@AI(4r%POoLDgrtVM}OWPli!fz z4w=7NoOIPy35To)WSzB3H0Me`S;>)WPakhgo*V`T@91H-^}Jor`1+J7n*t?jjy{17 zKIMTC%Z6L0Ln^mFiF@Y-)Ks8DTW!=M4aMA`_Ar}hOwnsfKZ@?R4F zI052yBMBgokV-sb0%O>|hGY4bjumK{mjmY`XS1_ z=v}AvFI#oXW+1%>s4AJIU`rmvqQ+|@aqe&N za}t!tGZJJT2$YZwsgTb?COL>79e7a}uWP*EUzPf$r!pboO$y03o1n>OuIZ(Ix0dH$ znDHh{3Mb9J!Y8@FQ1UkXjxI)kP?2)RB;+Cr>6ox@`>Z8Wml@HY)j;Jrr#0u1gwy<$ zvjtF6SF;fWJjGJ;u*xU5ubFbQ*z`1}+`wJ;e${Bg^8&BHM3VT!XiLO1yVaV8>sQ9( zoA}xyN%SiUNU}oV@hX;9X?(JzLCaZMta9=;v5G;`3j!`2#aJgdCLE{5=>2ZgTh%e` zU;+V zc?b=vdEK{<^V<_pzVcc|196ZNCs)l?#o{5b)Z3KIS-sqzMgbPKv24Xp#7^jJ#X@$G zvoN00Qy{yQAL7!8#x{K#cyGkFQ{EgiiF^4W^f}s++RSyly}UzQw-{x|M!5P3wy!^( zaVnHXcV&wEc6E2+CSU7IuIy|+i@S`OJ;h~NP&;45&?X>nSn()KWCMJmgZ>$oK>!X& z#c`tUA74|wrbYjK9-;@0OW`|q^e!kiLCVkL0+3fSyI#4jkRk6ocK`s#d*UC}uTiKF?aY;b$agX^|n-JqedL zIb-%vXG{}p$%Fhvk2!vr$pL6(*y?RoRy@n6#x7bk^kOG*u+~ya&*D1jc%!@SNZyr@ zcY1>_oxs+ABmcO|rXcw)=hv<-sRgO_e7zqRd7^N`8pkasFy?nIsu@oYE<@xA;apR{ ze-66S2<}~&3Xec#LA%!bKAZ9eLHHk-d-5fp$ySPKuoq3&-fd2=empA)zmo$E5sNN4 z`3XMyIkX4w*?aWyv@>IPLjwK`9mU(^rAu2P@LzJ%Q;rVut*9uzQ1KnJ-(S}8Y^h#A zbDWeSlMXNnxk^O3sz0Gq*a;#n)izLS=X0oz2&M&x;9Un1BW3RM{f&3P21^{#(IrkT z(eQZ@9mU*qL)^K|pNy6yEAOa>U@(n_J=t4`<&@+|&q-44VzlYHxK2K@$kcUsDE&Ii z<9TZJ=DURB{=FwXg%q7h&hu%1qin!7O@2{V%}>_WkJoY~qJS$W)ftD?0nyhPP@Tpp zif=EO5=v_Pykk7$lf#4-td_tPZH`zMc2yf*lf4|oI2zpP(d@g+t#4DS9%-E?0_;65 zj&90c=c)KTx8#r5{BYb%1U(wH&OF)9I394yJOg&&AkZ2)jv7@Ni-r8!@SSf!Jhr(| zKSFs;SZWwYMyIAu_^n8-)RpDRay}a|^)nNpCg_+qeH&Dk;0+cLG;HR5{*f_KOnG=_ zl%;5#g}&fd9rU4pyB?xEHUz87wIMVzRUsFY5%>E?rf=at(7P&?xuiqqN$H5>)3)6R ziw?&)FIbqkd1&y-QO3#EJDJm3ONV(DsQRF5BBs0u za-Dy~wVfGNS&s8o6uFx%!9T;Z`zyz5NXJzITFqcePOo%|Y7=g=B1tZitmL!!>cK5z zgKEon-XCUaP&2ozb`g_%2;)8N!DM<#whRx?%kY;ICS+H8yl^th$vl)H(>SqLkJL*# zVoNM$O_OrOPkDrCBy)>cc|=BSda6p_tlM-JAhMmM^CcRPRXwFP9zfmApp^#8&&~e~m}y6}7p+&=6PYvZSZR3CWO@VobFr10>cw8KqENL^GU69^;bv)bg)h?g9Xv0x+CCWX zq|?%nnGx1a?k!Zc!03W%0pO`?Kp(}+KAf%8wv3~;gIMnQUIzmk;NnyiQ2SZI)d)o$4#H|))4@Cng87V`NLz^8>}j{6p8?yqp!Z_qPg zj@uyzqFYYF>O4T7sAJ*@71Cp+1Y)wBF@DT9c`5A{U5|!O!MuJ^H;MC;VnC2XFqB`L6*8 z#^Iym2*Im$@*ETMO?v&pJUMQK+ZJ`j z_UQJ`BuU&_AFoxIlgF!l%MslsQ;t7H1!8w}3wL}qT8po1m9_k?%I3_W)yQr5$a;)L z?^22*Z7J%0YMpB-28hS72=tZNEiBo}m+aOu@>xC|jL-uae)S za%!-M*Mw?sfR&VL0LD{RRZVVC9b$O}9%`8AoXXXqw_5bXYAlx7<4jcCv>mrKKipiA zE;gRvYN@)R#R_UJvNg$0A0iR^lO&C*?Y)0(wL&58e=@}N8AkY=hc}DL`U`zXrT2Fh zjgZ!K8DZd=v0JRmTSNPnl3hwElfM!@(cx0+j@z~0(Sd*8NX7(Avo}a~hw(BEF<}{} z4uWlU3vD5Ga#thSYT*ys6m||@38;ra;kUsXIAtHCd@G6*uDMl{V0}}m?WT|eGNxkw zX+plPHVdWo8aWIAa-q=}HH zK*vC?jGCqgEQ){xB_+u-77f2!KZR7MUEO*evfo<_FxEiT!dib$f?l`Yu zermI%I}2n0&1BeP3K0Xx99X?kR~zwjpHit-H1>IyAU>wjpRPRqbMj~?zGdvtg|=Lf zCDm4Y${9I4XK?x3+143--Wsa<74?xr)P89`0|Ht1G!2ZjlXX zliXnc%J*uoxma0mKb4cHs_NLW-^Z0nPSoCRX8&> zI!QGPhN|yRYyAx>ONp&R6K0^l`EY7gD{Sa!0x6aVU%GGc1I)Ab#v2d)FfaQOJCXfI z$nML?KW<}o;k?cBN?+I+DlpV$-%)O<~g=!Oy`LZA{d! zab8QH3lU7x;#Qzz~7OQRE^w8ysF4gf%811$Oz-4TjYg#N1UKjb3=44 zCYzG_gB82PaOUntfv693u`R{ZF@7+-=Bs2!E1~=+UY1kwR@h>ITiR8heVmGSyT?FR zMp#qwrfodka}aOiLz`x4Z|{6X<)VIbd@4&M#|^mPl&(}s(~yUG@Yc)?Cr-hwXP4{z zrnIz-P+G(_PQn_A1qAa7jL>3WG%->{>cs~{Xri@^Xw1E>$#RwjK^JO5!EPL zYk7;cN8TMV{EXcT!pgX;N(hJ7sfW&^`yDbQS?r6ovR*qRBbIE)fItr>?N&elTwjsJ zc zUKKs91m%UUWlorFU0yy4Rj=pHEQ~XbcrxkqC+94^ud&b1_%P4i^~O*jJ9PgRx+GNU z=-Tmzsf(Sjufajch`U!OFW_fOfdO(Nk3!!_UYu7XpHG^;g8ayYP`%xk%EbW_ecJ<; z6G?8pYuO~VACCGxq1bY0AL};^xUtzT@#dYR>hWoD{t|tL+$pRqG*3OvBN<*QVfGWG zlvoxj^wdlb3h{Ml``#@+C_lVB*@Uu|eC8^j895qW@rN_K^~nXP04MgTI3|bPAn#o% z^S;fUrWDbKSL}?vcxz5hs>0T=C6(c)RcCRb6JO_#>VKTb2Mp8qh!0_&kDz=jvE#!^ zch0CuvH_I-3Xr~Hxr|E2e*Sl`Z5!qckKDDYVDr$Aa@swX9&608e zHrqG==u$H)_x#=iMA11>#>k@x28~uzF2C3DMS{m3I`R??8z}HE>?})@8Hjr$fZ$nR z6Q2P*x+lHed-f47Ocnmj#8F_F^ulVzLE~^_#9p8ZzZ>gj-8zUs?yv#~O(ZX2QEX^c^fM_!x~o?f$fR2Ef9Ayg0V0qniUIysfT>mh?) zbQV>dH`KI=3`60s+#^45l7V>r72Os%d*+^p2|tMJZB_Qm{go$hnp5{sw3f?zyyAJt0e zx#JgbhzaGDM$1+`5 zq5}@rCL${`f_qlQbja8+{S~<-FEAN;2>U1sNy^{!{HXN-;w`sV{L@UD=z5@N|BsJT zC&SySF40x7YgY?Rm9jny^bo(YuSq^)lbL4aZMp$*3XhjOhmR%?71kIp-%gM8b+^gAl6kvI^O|XFfp!YB=Cd z?cYGmx2;Q+hKRGu{J_Ir3um*Ib?UyPpXjtE`|xMGde@t-@?UMYYD`sbRxOQ=$*YUJ z+G?hAF;5-+(!@RyIT3E>h>mH-85)OL^LO6MbcL(l&rz|WqhrptmF2H##h<3q&pR; z=ZP1X-poWM7&69g&UnndZZt0`*Y-UJp-4_n9*+hGsb7r_FJ%gDdkM(cH|22XT6Z@M zPI70TU3fiBG*9$_P5>en^Up~@KkHGv-5XnIErCZ@1T~B|11I)~DX0k+>FfHuS}r=~oWoHma80RmVeEs_~Xi2u-rc>S_bqrzbH8 zeHdnIQKls&iU|D^0XvnNI$p&Ymi)g4&UfCf4Y%=<1u|>$qQ0KeG#RM|(dtoj3ycMg zotWcgi~+9+vmQ{i+Rz+S1yutI64gC@?v@Mxo-+HYaTMh}gpqaUsSk+wl8W~| zEo9cZO!eCD%x%|%vZ(`Feb&`HKrx#Wr+(FaLgRbWM1pCs{IA{c>dtS`?4_O|o-Cro zPrU_sK7r+p)3W~171Dtp64Oha z!oK2NX&DUw8Z;lnOrmSXNUdc9sRO45WBiGGi~hXunw8Z+?NV*ihbq#r+iXO~mj^#h zB-74Ws?`d+q-Y^;XW&#JHGrKd_*k}XHm-NReCMuh2r*tyD?U^ zUYELEw`u)A=tvJ*FF*H$?M8%U31S5ar*VYjfZqPXNkx|XHq&woXV(EC z6XS$jw{)r^*vspCYzNRb#vJEu0GODMnU?HK?E8uBH}OTxOHT}3O%twp)-R%SOU<)g zF=CC?Bg61M(N>CZWUGMY)QMi>oVXF9hWLG(LCNpbri{pbWG_M$(Wy6nKcjNo$~d}9 ze?8-)ezT0MOYCYu;QPoQc=%VMUBR*AvCPQ+mLeU~T)G`R&EwOXP5nbrb zp2EIdoW9~4z}2%4K25SP*}i#VEiYCq{(Ht$UOXhTfA7it>tJ;>`|yosLh#|uni^a>qpW?SPmv@2>3&j_3^b%8D{2K z%&U|w1-5$&$WO>t!Rb_U+fV+1-n_#h`6`PAT@^7kra^I^Y?`b8`e?f~S|qPd-qx)G zQ-C!`)dxX)Yh961A`B&M{Ex;~hBgbLL!^hFYUgKcddo8wt6DTZK5EQqA@X;tUVEj% zg8LHL$8h2Ir_=}~=}nCU9bC;f6gde||L35;9R(jPYNr{NR;YYz0xAS1F?^Vc;X`nr z)tdeWlGt6kD)LsVQEB?GM(w2Yl~zfc54!>8KXV$dipfTQ12<2`GVZIyHJO6FXzAE3 z|Lm=wP0gc*1s*Y_GdQ~7`d%RQ=2jVjU{b53GM1bOOj8tsLprFfz-~MjmNeL9V_DZW z{p!~6ELzKGkB3D^`HPL}xIc253u*ll8}?)BibV~iUL9>IBOno?m2A*T(i~1Jh!z`a z`xBw)_!{CO9rTKCMfS9!px2%g1gl5fx<{cfQ4OO1l&xx(k`coo@D~J(&bId zK%RyQZ4h}QP$KhNgFNW{Mq%V_r5&NfO~={MejL?}??0MDoxP~-D0ky_DgnT1?r(o( zY`SviE{fx9x-rx1HFn_Z*fUz_2GkX}ghn+^V|uIU!9H`&!|6~zlUcTvrU>-gg}kOz z$x_eRhlGcS*#tANqMblpt2=+8n(Uc@u3Mij)_+c{$=E9PgGwfV?dn5)XO*(&)hpI1 zEyRB`hy%~xeCWO!CvQvmZ`V@N6yU=3+K6|hnQP(eg4SU&HDBu@w9@}id*}VmcKi16 z+O$@=TPtYqmei~nJLsS&X{)toQ8ZQ&q9mx6yRArDdz7|{DuP(05hH}CQ7vNC3Nd2D z-aKjV?{hrI^A9{fJ^B2SBl&!e9J!A38s~Ms-tX(Qrl!eohe&d5l?h`HjyS@^e(B3u zZk7|^)6;h+<{K|Gcl9cF7x+$d2~Ry=c{qwed*|tGEz$mkvz0C$oK)4iSjI`@`q-!# zr_5o%ArXBx;rR)n(T(R>K<2^@>?|tf{5%xKnJ%(gw(6Iao)V%0`buZC2ry~IbvxcbPJennb}EP zjg90rpXAEO?II?Qt~!v5+) zv1b&UFAkpdmvTNCJMmnDo0`+~_m@-tE<6X(8YJIE<#{8$FW#2etnQ0=#R{zpp%EQw}@D6vxmd;(QQCnm*;rzaY_08DYx zkfg0X{+lt5Su8soJuV8J!JkyR0h6BV>4NMX^lqS=N-dy|zFm;bwyPz_7NL3V$ss%! zrWs6ELlX+H`%N#}<}SLmzq;wwe$HT;Zj9uxc^QhYRcgKRj|k3iXcty&qf~2&I&^VIbjnYg>dtu8J)Gihl$V8K0|v1wH-FW z!A!zm`yrPShs5?D==i*7m@VvK-tftkWG8G?I9AHB7jH=>6ss+YSzzyh5>l0WCtxz~ zUlU%<^)^dsPNGkV@EHTBx`iaZXNUlS*d_?=DUb~d0Q5H5K;#>5VGrqi$Mj8(nljUe zh$27FHssK6ev_)spK$TgF%zhnCt4KFDYxU8y)Zq#>n+|S>-N_85R=1Am^dMSI_Zgy z7mCb&)s)_i5P84jx)HLtvg5V9m{7sPv5jwxjPx1|WG%*HE0z<} zqgnS_^+D!cePCNtyUl4Q4P>0ESPtR4D`!a^h&WGgG5O)QSXVAszANJ2>lm#Zbx!qx z1+Vs+(yj5UAxe)1PmkUYhO4^N_C+|B&Jgyj>i+C>42r&EO6zrfF4!#dh%?6UO=+{% zrP@ievRhH6N={K+*^gK?ukjkfwQe<;+3ImyHtWj7-{qUt1TC<616o{EB8aIs-KROj zbOH4~$h=)wZ(Yxs&d9gcj>|_;-I{UckgK+*aMGs^oMr~9^D&fhJCgU(j`qdOmwtM` z7@$^7)!gw$fxg~~-hk=xvNCUmMB=PwU0khxK;>Lk@v`r-D|M8y*7O)K*h=Lc6dOP3 z*T@mFM7kaQXlF`^MRo98W{f(o_hPqt*0*K3uBNeyu%MFl3^~ydKHzHW&#b*p5y#4% zmWn%>PmLbX+^f&(_BL5Vj2fd3?63q6_=l%r171#Fr~&h3v(O}7By%`#9KAbZe(4gy zznGjP@dR}5S7=)WAk0!E)0;Dv7#6!VuywUKn*-1sK(PA22t&a zx4B8?nWqP*K@|n3`>cV|$b4%)PT`dJI1qyR!blQ)qUk-0*DIz=?L;MaipVEII#R{U znv7p__BaorSy_?sjQ;ie@)hNjYgP&N8y%iR2}m><84AMFgHGtX=0Of8MKjJEPsMQH zPF`5O=dT!yEoXxPnpq<|Wga0rJsp^&;;m7F~tmUQKWBkrZ_!Coap(jQ)s03Hoi_!n{Zfu7UpLK2F7?7nL2r0xI@I0sMYEc3`u zdeV(qzwBDW-%;Fl#qWS$x}23zGJ28@Pj%tIGdscw!n3wGRO*}CdRo>J!}feW7g!uN z-Z{iE7*(gWiClEF zTo=heOBbLJEBl^}-&Bn%R|54@*j!>bYX07%1@ROQo~FXqV^snCB-iH`C?ue!2O#U@ zcJpPAgm`f9&eI$W)cUe_BH^B}FE}XRvjasTifGdG6TU=Ga$~ix$~9ppPb<`>Sc}+& z?z{vVcV+ap=Bih->r&$4Ldd4JpD}M8=0-VAUXwD8kVRF6#NEkJW57m7QxTWvo(56h zDexOuLuHb-pNw5x~o_3l})2&{N5v4QiCJ=?+J!3-jWYuN@x~;$Y1ucif6kqyVqD;z~z$ z-df=R^iD&Fmwk|mdDGS(%YmTW=reqr;?iZ_Y3G|Rh*+I;Y7#tR*S~s>Gq#COlUZy} zsk>VQ_UzHGq5cVN;|F^aiPPFy=X38CV*Fb#1T}+I)*}yQte8~Q z=qU%KXa-5#uU*WfkELHgNcEC0xla7vYuxQ(R+I2)isADrAtgmPCVCfW{HdqC(-EsQ z$7G&YE{=bwe%3d>17$yNr;`1?gZpM-396{FT!i=P{JiXK=ZN+w>A3qU;+IMH!G^Lj zM++#ZkHs~tvToqJ#1EE`5ZEDfp!z>On4oq7(tOs#rVztNY`kczr%Mn_c&6ogm*PNc zi?N&_Dd55d`r*Q2^>_3Sk_d*drJ^iiN;`|3R8Ys9k(25MCk%bP&kffxId zo~MSW%?uaQ;48|QeG9ByZyov4e3xc$mI8FZ?~tnGjIB)hy+)H4ZD+SDg_@9zusZPO zf{y%6<8R33>_t;&kVpe*r`c?aoaQ6YbD*^oES5uT)kZqfE<^3ft(Vmyy3K#l?rL0K zoGask%sqA3V=dpHaFr$^lHb=R|0svpBNqOxF0YHWTXbcK7m@M9UcO~l`6VUjs#*SQ z|76+rK24`Hi60o`ildafPLEx3A@ zx4jr~(YGI!Oqc12J;X9*kTUfEW1hypcFsT3a5akts6i9XBHSw9zn&1z#vrtbwzswm zQwu(Q1f&x$p}6EW&ALuI`f5q@y6%1d6&q7xtgpQ>L;q_Wkg@mO43l>uG6G5GLy_g8%t_sDy4MZliZ#sf&VH9^vduv)J< zk#b$qY0hJZX7UUlOR0GjZ^%;MTB96r3E3vFLiNf1cLD9l<6dBLdZ2h|F{Ivz#!WLR z%uaa-z)h82LMfkB(6=~e^7W(R3xDBe{nKi1=t)v=Vd?JJ)%(SLy6aO10?w(_Ct>i_ zXx1@8HT_Ho$!opl`y81F+&n`9|Fr>wF2O~GBz;NA2g9aC4pmEQy}y&~Q`!&LhoV4V zcxbVmgO$m{uP{ZWnJRT1$@x4b?r9xh1?!%GkwMcXtakd8P-Nbbx;nlZUQ8AjU}B1S z>5r2YtN6qEmoSOitg=}&TF7*MFU30%6lLr-m5d!29O%(U07dq!WrZ^av`o7iC))jMZsGh5uH1uD1 z;w)bFYdk*hYC0Iv_(aiZl^DdB--Jw9wze|t#loY{Z}#I;7K@Tl9;!p~os-TcI}Cx_ z$U{#CEPkm%Z)TW0>P1gxaPMB7BKn8Dozax*Id>(Gy*T?INt4 zQs)+|G3zDWcOr82oPaN}csDVv`7T7s{;AoUL~H$D3$yS?#DvGKmUc5X9^lPvC+mzV z1i6MiyPAEmYw_A!o-z&C5I&SX_bv&?pvwnPGU7{2<30>u;I4`_+uage-{oG7*}O-n z!khV&(LMA$D1-Vub$9+#OpeQ02d#zMkqvron7#h_tNJ-VE#GgZUvN}ksT*_u#8>)9 zbu%WxQ+EA`Nz9#sam`gN2Zek)o7+nj<*_68Cl6_Pi+TEN6|3>Sb;o_I$D1OQKGx=@ zvnb+PXjjNp@_Sa=u!t^K3?^AcuTj(a^+!o9QJNAv4=!nw3#a8@T4&>Nw#(z|t7HrZ{H7=~-v2*&t9NJn6j4CQw`vFMZoA~jX!$Gm1yxHNFTzE9n z0ULe&U`eOD=EvBxWr41|>f{yQO_&2rN@P+uZs85iYZ}lFHtb4Qd(hRkYn{FN;=xjp zFT+U&a+PI^nz7h*02r*I&c)kq2W)o08lYeM60EB~B29RgAlm9ZvX()kc?ucCOO!&) z_+-34!1pkDV96vFgG#J}eAmLgp40>f+^|Bgc=vT3=F}w+i%g_pHgMEc--}oDE4)&9z`~lG^Z$Twr<~Xrc4R4hxl@frh|*iHJ^as zgNdtN^B~=LV~>csv6-0P!wv^bMLZK<3auFO($WO$VY!m4JOF+=VDy#j z6!wAobZ*{r5qkTFj6{}i)_HqF2wXMtbvMM6GBQi7sUdF-PaUgu+>4zqDWT;apf7mp z(vt|u)JD0CjoG?ts-L|6u%NBVvE|qB8xaGKs=B)W9XP5VMu~4dt$xFI?i{6buYA8B zPq@MCQITBqYO*B{Zx#$4vGb2O7{F^-qQ`TI60z^l2|pbxy1`L6?=XA>+Xld5gh!N)UV`a zfl`JKLTG9=5yZ7jJDKYi*&F>2Z>w`cfPpd+*amI0h#UnA0?)`UIfvy*x zTkx&tkwKN)a_A*$seD3b#RsTh|MenjH*)V2@SV@w;28s-c<%<~g{8@U)wk zgT{H?9pT#}ub8zC4KU_bTRMM(Bx0OcY*Rs_dDW*Z!O8gpCPpxeYfOxjfM4aAyP$uj zM(dr4-v0QzZ6W3i^ntmNxf|6GYpwKBmB2`~1t(I2yaFFLx9l`!pLsduY@0(P4%DQ~ z`OzY6#ycpFXy~cT#Trt7MC#5c%tu$^-kbM;lI>fHQU%-S+|NDXaRg(v|Fp@#` z;($0cUVTc{`vjsGZDg3{pQtZWw*&sH+dcB$=&nuoKgIfO_jLr&KNgl5Mof5he%@z% zB}V%U+6TP$8htZj!>s{tHqJnQvR`ZjojG;rsp8+s!)?BijrEwV#Y5-+)UnvT69>dqWu;=AH>_$XJok_b09@ ziycl=KkEj<9)<%uro)PY>J!%zZ9%}puQ_yeSJd{Et+5?`b-2M`{^Ou2|9$*^&U|>fT3IpdmvDw}0xV|msg^3Q zdr>*~<}*H;{qE%ty4XFXY&0N3+G`npZ^3WLl)Wv@J<4j_ads&9PxnQ$H%HUYld8xZ zf)~kU-tl|Km@0XI;Xcv`*d$=^DBM<&KjZgFO6|*~2hX`C+iHi!4IS1@XsNvr*Wl#rrA= zwSf`wr3nSJ;ejn`cvfKY(rwDvf`i;K74b&b`lzjL*TslwE#Mky_NlT;Jc$Ff^&cuz z*MTKpY{oi1&Za}s3mt<1#WHFW^HRZHIBjAH(1LAVzuuE ze$ciF{CqM1R@PTDCP{xhh@&|$tflB7P?y#cs`fHOjc!u*xpDuo(zk7$HEpN1W0NFf z5r4{VNJqd(7UaX>7x0&$&dKibL(MId_KGk@?KxhQQ-ArPWx#2pSTx(t`bv@jezh1^ zgiM^rY(O#ne8%3gsfzp<@t@8bk zP*MgHM(+mT17U}gTKgt9^Qwd{VrI!Oa9!bATEKeHu!_!5zAg+wM=dryUDLz!8f1lxxrgAsWSk>P7^1}cW^mOT1IT_BrkbTLeNaA_#6}Qrg*_DW;b2OI?RojI}(v~wbd+*YGm{~dH<-Tv%FSPhH z6s5KFuiJKFPlz5>8c?q>PFeo@{Gmy7=Qq>+EWk<;ibQ*)KNPYeZ4lLHeaanOxq_(L zplym39gAtVi{4Z*iCxU(GoVzA_H~H=CiO! zbiK-P&;2_E!HWDeRlN}HZp?!~L^zL)UGp|SLs2J5A zuUvM%e*09&fo$;E)f=!ReIjBOQ6Hst_aKM(J^5Fn#UbTjTBg<9Q_~HQGaNFaa3b2^NNER zx_HufWOsz(w%xtDv-H62IN}2IFOg->M7eRR&wN*Qj|tqZ%VYUt6?~SVa$)Dstw7H7 zCv=!0{mE(MoIG68iRf{uS1{-LIxJN%@^bama_fO2sb|HUh^grlhVhUaOk6* zXA>5*Ug(Fn0d;j2dVrNBHLmx@$2iEW$SaH}Wa#3w?Tsl;N-vjS_nc)P$ZwlUdaguN z;*E#b6SnW|FTAbCjKxlGz(U8M_K*EWJTE%&?g0H{Zsys;WH9bm3TrPJLUoPcp z@qh4ZJFCU9=-yvU%;O45n91UC)6hMwg_YY3!Iiq7e9d~jzq_91o;pdT*Xo#1wS9rx zGwh72pOp+y${^}Q^d{@Wo|@894L`dBaCF3Sp=gfdsY1%o+6t`;s-7oV+8@}k(J2#t z+n*r6j9mJglRu417h5e5Udg_W8~f?@7&-iEw!-uIJfl~PRglLIyB|CIM~;oJf4;1@ ze2F>)Ub)+CIAD=mQp(E7e~$5kOpMU~^CtQk+riJ~XB?29T>twECT1Nj&GupM%FX2e wx%=P8%F3c*ivRzS|8KGX6-obh0dv5@yY^Y2FNgX03C7Fhy2Ulj6_+Rf1rYvH-2eap diff --git a/docs/theorist/bms/img/BMSTempering.png b/docs/theorist/bms/img/BMSTempering.png deleted file mode 100644 index a4ac5e5907105de81d35ac701ba290c8641d03b1..0000000000000000000000000000000000000000 GIT binary patch literal 0 HcmV?d00001 literal 503083 zcmdRWbyVC<(k{*85fiSoRC%9Yi;Fo;& z+r8i2z3=Y+d*RIK->@sLpeh&=uxA(J7Y|JO4Tl05SB zzdx%Z)Bm>&3KCL;EfU&)%ji9he|{1lUyq;u?-4Z*`Tu-l9?IXOG2nTqe|tu$`|~j^ zNT%-N@Z^=Ot{V~(5zU_$vYa~gFC-)}BssXarZ@6_dz3FZf8B?u$Yo`_k-?As*N5(x zXP+NXJ(ip|JzuiUwH(F%;_oCKqyS;b4=Sn^$h!4WWMv@pb#UzSy;d8WvV{$@fOO!m z71qwq8ptUrQ`_6yPd10LPOi`G2lS1N+1QLe*W8ul1~TsJ>+8qRa^?W2QKH14iT`r& zcSHNW^cj8jH5?3*MZ*jJx5FVxFg5&;WSKknUw-f3|MU{&qkP95KZ5A*Z~e>9yk^jskI)oqP{cqe7S^gsr!V4CZ20uv>#NZpE`}Yp| zXx1;yGLQ1kK{$2j|Cz?GdI8iB*IuNOtN+X;eqTJwpB#*cH~s&<36=t$Nf(ZJEk(?G z<+bUa;Y+<>T2$)`up6N8;25I)ch>$T1Jt>KbusvHp%^wVpa$sInPl8Mdf5Ij{?XZD zoy(@Hb-C5pArr;dYq--dh7t$OV&yq@0@@Z4Uk`cU3*^71lr9e>DCCbGMCWqrQw2NB zvD3YadRzl<5&(0DpKpi&CED1KKM5Kh>0iy|%bL{VTC=@6w64zp;Q>*_am1{c4`W`w zao9Gc<8|*{b8&{9zzm8NewyVZ;k3756)Jh@_BJj$Mv*^k{$gFhu{uphR1EI?* z88-7LeqP=9;qzHrn1cE$;Xt~=&1pJJ{uY|QG~cgukoQ>_q5z)?WhKF3+t|=>7AGH6 zgkkaBf^+8*{GyB37ox(KqkQ9@2+8lPt22Ykl*a_lh^6tu7q?lamUaU_Cd^peBrDE9 zV?D!+^e<{wm&e~icv#<>?Mof{X)e5l@`NlcM?b~1RwWCMLnI#B+4*HC^~)ATrbvdz zN`>3V;QA?t#}ZZ(m0GW;pZmHWRv;H!{J@GILq}&DGJo9m3ox|(_^tcR;pR)w3wMXW zwD}x|%N88*k5CEmn(E|BEL#G+&D6gP>5t2@JcbXADWUAWr-Goevar z)n8nP#e@x-b#evhqb=}1;V`}b?%VJsW+8F)m4dilxLo&XbuZu3L%J9J1zPv@G zY{i%_sft#=w`Aa8N`@z$BqI%!=7(Ka%C2XpjkBnpbNslh&Wx5_WjfOk{Ex;mXty0a z1wQdb)tB`sK`1`+q3~cJ>5mBI7wm<2A+kd^4QlN?gn0;*%}{ls#9N+2gIF~ zuzr;yb(aiMW3zB(G){h?92e)qGL2h_)Wq~nE5tKD_z|$9+)qzXHnww{OO>1UtyyMc ze_1hPt*(i6)m{N@%HidfYS>(Bu_9M_Jk~{J>d(@xr9+aGC1rsRe{u&CO!deELq{lsNt;A{*V-VHkC> z`>zLopHCYPbl#s=yS{qGE@LAWE);bC`Sxr=McPJ8UCb_T0Dz0YLL^UD8)s1fa88oM zi8$AtgKqRyUa|MXq*KMZ{eS=ZdXYdSN>(dDd0+*9LOqxudT+D%jq)m%&-4uN+|h(C z_m|r|C#n1V9qse{n0?9FJVp{4^#}a3<87D^vg1Q7FKJ=9Ix7#S&BLet`&R9XCCV6K z(zHtJEX%zOt=abusbj;bsUY1n!_7|dh%pF@@M_~i~R$f^A6T(`XU2uWl^uN)~Z zV-HQjFf0&lUPt}&&CYQ%ub02<;2wX8#47$~CeIX!g-EKbtPIS-m5u=8W*{@5WP}Jg zicz|Ta-(5%%WkVHFK$aj=Cw69Ynz1u7QgbIW7JCM+YrN)L&&3?%#WJjQp@VwmAj-+cu&@bNZCg630+ilQPD&$oov_ zupv_JVq!PLisV(C&|k%IG3YOwKS5EJ@1O-muUGiWv9(~ zjIZ&5iuO|cVF37(Zj3OQSk~ad$RrvBduyl~cpGD<%iRD-Y8t9Wy^Ri%6p((S%62^& zEaLGFGb$8&iXf_k^}ONmW zDd2~*ItM8nvCqx9zA790<7WIIfLWU=eqcvXDd56Xi}raYqrG*dfuXX;{VRJ6QV9}| zM#pXYvLu^0i`$0+vEo1Jp#y5t%zMdy$uUAK%zAy3-j(U>8rjYDRpIvV#gMobhabrd zs7IAnwE3@52PGX!LMAX6Xc7aA2x?=&!%)M>_{y#QaFzRDTgWXd=_wX=dz$;uz#|HV zffd1AU?H$77#$2JIY$=%3c#246{}&Fnp%3ezceDg($Np&JDG_fFfGKIkHv!|cu3DA zeWN|cj{riH7ZIkYW?=_S)ab4;g4fISpWZDwluEy|nHQt)=e<9B>_r6%06zV`t8&%@jq` z`WV_KC&|_?>BS-1&!zYXbe*GKFXnst?W#I&n!X}d3GqFW2%DrgtL@lydwfS?Krlv(7ARI35X)WmY_g< zr^mK1vtuf*zg~%;>KDB~#?4}l@jnaUgHTM^hcE;VF?!x2Z`5fjnSuhkK-K=Vx`RdkjjnQ#!d5({VV3gz3V z#Q_vyzyX3VVH@1X^!wxho|;58`9{P8j6dO|hUqK*KC$?4rUn#%^)@sy&VSwZ8E@%3 zZjUf#*O|y1?&mu*H50|K2S2QDwxo_nexx|P^6`lT=uipxL|POUsTVO6t}O3$U90F7 z^kX~mLA^AInl9+wa`E?2S?P48?@XDQ4$#lxWAbX&VF5W~0EyGL;qak!n4R8A>?7L$ z5+Iq^?q{2|xW!Ti!Zz|odX?3-FF|tBUdszx`zKrc{lF!pj7G@=!Bh4nzYu@gZ3&#P zmeNJ2d$y_6b&Q;E~1NFTga#4}ij1-N)#Lu88#(x-4ItVH_-nqM= z)#vDUaSJm09Znv;S3O2pj4?DB%73l@82H!r6A<}TOuX-jNTaxfm`RNj0LBBx)%i^> zn1}RYsv&^S&Dl4J3#nUJC= zk-Tq|2SrZ%Qih1J@KTs`9b7gb5h7kX$_BtYgBWh(^OjzkI(y>>T$UFa!4jbsm+q)n zDd3azcXYgOQ7ho_HdOY;IqsI`O0Za3fvu;6GcCZPrymAc-F`r|4su=X6`<1Fu97x! zu9A23c=!X7f6yxz+Na)@&~xspe9P^;24X#FxR1zo?Yy&R^K?T`mg~F1ilie#uD5@U z*kO`?5PS9!7?)_xg{5I*U0keYvsd)tN+m1x>D!ewp0a`L8Aw50|D1SRqI`Ey_4RSakU?D%znBM= zNi;mrlTd0ygk?!rw`KGT+pT_!Q>Od&FT_3Tkdpndo7bQQI}GRs^?Bn`o#uyG+F&7~ zBdd8px_jl8<@yX7mCx0+QrJME+R)*KFRioO>J>2S!oPwy{T)8^iGB~!6)G-em@kQ;^D7JUUZ3_zffigsbHHC@LXS`e)f2CB^7xO=y%I1DET=rc6%Tvh7?hhsy zApK(Zd~e#)%WGQNiM;?S`-Y_Ns|}WeWV9Hx+a@X9%8s-aX$4q>>N?riptGOII&(UP zCPJgdji=i`mm}nPW=1zeUBGq=@l{%X?1z4Ax0S{d2&1Cj@|BI!>3YJlcY_RBd z91*toa=JC*_ZB(iH4kqH9{`FvUpp*4LyIdx4R|UW0_H7X2}{J|pdq9Nc$TIC3s7=& zs44iz9ZX@nF}|Zx2^4(vfYL{8;RW}Pn>?J4 zU~xz`uMd%|WmH3a!QUK{$dfuabCL`s9VdlIEc{?DD65SXRs%$Vin}VP_oUy9JMyZa zKfxo2e8#TV^EppG+@LUX>@jeEQUUx@G+E?3Scn|F)({UNRBsxeGVn$HG5O)>pU#| zM1pPzZ;1bE1JeZV^(P)`m@C7>@ju?+oTHOU3KTa&*$@PCU+9TE&&u#mLaz%&!x|De zc_nr&d$kfFirC@Ij^6`kAWHf(qK)Vxxo=w@EDy8Ywapt+g$~fL(O9Em%~F8D1RT4l z{0GYBlV}A^98>1Av@P<{ScT#>yxIpLtF8*qBr^UaEWb!3mGGIlPfI^|WJZ=u%STY3 zsO~1jfE7-4*_V@R|KIuSZ+fmb(FKepjcj8}E09xAkh&o6e2IK28v`Z>)04=34cT=N zmlYF2a}fiqd?|f~Krb$lpjsq}66bG?l?`@>6j8cEn8C_6m=@^gW4x;k34ETUFGE-% zO^8B@1B@|oQ2;})h#;>GzGYG2(sp=UBF*hWIF^Th&~rx&u2LXKYzqBcJ83&Epmwp3 z-}VthHZqECn-yMpCW|p$_P?kfE25x?xGS_a6E#;ZvQK^k=60RK5ljD_dm@uJ4({&6u3IxVMA5mlCj=qryN)~4|q3gf6yd1(PdvP zj=n)NjR1ZXfj{vCls!X1zd_*Bu_3V5$9j|#pT{hICvpU1nW2$7)QlO;5f&;Ua3#WA zuRnb$6mZv6z4?%0l2dGXY}R` zm@W>cm?0ReD2CGUqsr3ZVrF@NjtXf*E5(D`lKSziygM3aG54x$C;RzJyTS{6MHtTy zd-7;LmV*jbr^l9N$aogq@6Ol{NW6C+Sek%Pta+u_imL+s8O1+t z@p}&ND(m~A;-YwXBLBkd{paoZV(aR-r(-u}o<&=CS07|S00-d+tzOGpi~3l?__NQ$ zEPqYPz`uaJC&K{4wR1bs$VG}N~C@r?b1Bm?;vNf*WTt27zs`eSvdj?YK! zyA2Kk>kPsTei5?#nj{#@RG=!2&3F!ws8f!1_lT1G9$75u!R}1zM3O`%gk(5-U6|+S z_pGL-gaHdDsEA03%#~8>z-~*mPw2O|d*O06U+_wbLOOuBw8pkfF^MA`_L&1L#Z?@H z(h;Q&9}Q(#zKHxdFJfzVyw3WWHytd_8=KAvf2xLO`h)sbwMVitng@mS?gG%Tl|I!i zcXPqwH_8H-aeh62#2`xbB60zslJ0rnQ`=O*LYJGvVI5Y$e(UK-Xd>I&K&wZP|DL#H z%ksjddJspYU-Jm7B9?c$U*5+^t9e=~9_)AOwq&0MXeu0LS7~Z`Uf2F==QzP0%WBln z=8LMgIkO#n+3H|kZc(SNospz!(q?MZIYG)f;x_R!!|fW`3*G+P-Y78x@w5Aj>BX&@ zr{%`OtG_hu_wL_b=(m9q0^z=ZtL*Thc*q5M7Cvp^cQzXVMXNtd(*Hcl_-p?O)9bv} zPp$6@zEMHLlJJ38;#U5*zsCSkI_0SIKr#ep9Si{KhcJQFNOUDgc^?n`8l(9_#YNHQ zl7Y9!GB6pE56Gq{!GE%POkqqrShqCmLX8*>@W6zOUu^JFqoWP1b|^ZNDmTEIntmc~ z4khjiVyRNjB7P$_TWkaM80Djrs5Vy{x)rAr$Gi8GU-M8sheF|D01H_YM-qK>+R{*N zRcQ56@)tF`?+XRJhF_!>Z8tx>ES?@gG3w_|VQhGtKi9NI-y*kC4_H1}XPinK~1EptX!RYUP#x3;suaX!^PO8*D z^mQv9Xt344>g1tK^kOkPeXbYFU>-_RyA>Vg7zb>qXb*#bRu+sFI%qJO++U1vJvXg3 z$a%jbR}gje-obX|ql>Q3xn}I=fvjWSZJE4Tw|=g6);?)imd&>My6d_@v%PDa(u=A7 z40QY~(NZezezHx@i(!&Q_&WI8)SOW%3*4ZFzcs+4Xme=Z2JJ!bjA--DuB9dO{<@VG zFH;kb5F{CTuPSo(>`9Qhsq9rgCvlvjg+Zu}Q@j{hBu_8t$;|#w^3mP;zFp@}`TqCZ z2K94*z@V{}-K?WD^H1v^-=o@ZJDX7QpI2AO4o8?44&_vLFg#fSFi7aw-ee6+WtFDA zWMJE%&td1Fq8Pq1>tHA(i0&@UTKpj-E#dc&UBKP6;uKFVF|k+O_)~uALunEomt%j@ zo{y9DC{L2m|Lt1TD7e5!G<)AIXPGPo#CfdyO2;NzeJcyqcn+mTB!Q{T<`@CE4q|qy zL}3`de8HoZ?wDZ%_0}V?gWw|8Gq6%kPbtV9tO=F`tIdFw662B}lgP&s_a(e@f%q=s zy8F3x$KL(7GIt9qH@~sV+#;Qe9y0oH_2vobgOp`nLwcQczG-j0s~K|w$34wtE{F^& zun`w{XN--kj5UAzge+UAzZ$xJ#W3k&w4mhQ+&d?3|1etHVnE~c$v^GVmz_&nWLY3h zn0hoOnlQY6UHkJuN$XT$p;Dleztkn@=9Z#U2(6__#kCXfK~hm8jfbCVdy>cFUjvSiOs&CWg4yNf-SFW_s+DSvxUE(X)i`P!+ft zvfUr*Xz^C(mi+^8TF!?&mc(=U3dKFeq{UPdt*#j(pOOoS+pxF7ia&>p0wh9Q`w=%+ zTe)$3{A1c390F+SD6?QVm>bMDYFbEM7kUjbB%#2&u5UC-3tlk@ zOO4L0O#L9KF-dp*Swv#d=_4_xz0W5)Xms+g`=nI*}Utg8GCZ2YEoGBfT`Z+9-U6<8V+G(qi?m{=`(fcc#A?$;~vfA`_ z+kFm+9F{$I!fr8R-t=P(YZ>ki%}5V%rcw{IsG4}KGj(#xmT+A{v35G&*qiT zR4o?Ri=wSzu4}w0PNE|!b0mK%A(n40^Su4jMdF^pQF)RG#wbwM7%A|huX(hX1n7E- zsxp)lkCanyezf3M=4Mg?_Eh?{LZh~u(i=Cma*c=%dq-RD4?9WLF7W!N4FW;DPT01C ztQ=GTDVu5a3Eqzv^&Oum?9$W~OaBk&DKg+!bi9Qkh`zLZC>G!Co$X=b4Z>4r<+If1e36 zSjkIHR35>F=|VQzDam50M*`>ORWGU}WBNsqRy@=-H+}Rn(STdfnT^@{AG4v5BAUn% zBq;sv-l3X^;$9ph5AXyJ4K)m2v4Ncb)m;ln$RQ7l#2T-}MnsV`f(qdz93dhX5YbYY zgmhlw2vO_0_{Y3n0LZ;8)U|)KBw*%sSpHzP7Z10&0uDqHBv8v1&1%-5a}S=lCfw;{ zTEpxN3=6TotDUW8GE>iHBUcRkiIs5uY%(yG(cD5=mORPhMZ2C{W0cW@_5#xI+yfT5EY(lfiVtU;z9-rQ?kUQPyGn% zp!3vnGk2sk{f-5V?_PG=Wflej3r7{~o@-LlT5-x4&)({k*JB|tEW~vmB=VAY{RL&w z4)B$#=~nXur?wMA6Z9n4m3DqU7)et-;xby!75Sr(1W}tagm^}d2w^R_O@p~Q@-h!H z_k;c07@Ks8ltM%u;@C4EPaBzr)mkYw)Y3;Z5x}i;yNF0s2;hF@qRY*!UZ_pbi6<_R z3zlPTAnKp3l?62hNF5Cf<#7HSOE%V@*AtN%Q3V9ddX+mZ;!6(Lm)}llm=eC=IAX)g zk1;y4RvzDY*yZ@R^PDC$w=}$|d+PgIW)vqb$NC9vxf>$O%FL%xA_{1}H3zlQBXT5D z-@qWCu{#NCX#{AZy@7$Jh6>2Z6jSV|F|K^8bxqs*B!`EGc$gaFk09F+@TynpqUn7i zhxaG>JKri|iaSmucXp(rv2WX+26>G;+VxS`T>~JAq5Y~*ms39~d;$ipo1~dOcXce(!9K7TOu0-$m^@vp z3_H1TU%t7{)&B!2D(x=X9aRM%}jdVnqW55 z$E#YdkiQ1jvaF}QChv5UT*MBKv5JzgdMuOksht-MAkL%gJ=UD4*!7cc#{j8AoB`)4>Ej*vt z=?zicw^!Jx#%}|Xpy^$glk?5$)SvP6NKVxBjmgj(g#(QvCRIm(_B2Hm563o*o?##H zisFRK+}}jvM22#{q(3paxNyv{%MI{1Ze7IXl_*k_s) zDOFBpSvp%U0Kx&nxU<@ivdB!&T}Gv6YxrGHeH=v%emY+3dKhky?5ITnr-b+kj$PcL zCu|&l z-A>t*=E?D>O++>bciV?}uPY!b-ZcR*k2rK8Q^YdiF>(@FJ3iFWES;3Ti@fi=SxDUN zV!@nG{BGzs{;|74$p23x+6sBZ+7h|i+o-bwzNIRrc3B@4R?YB83;ef)T) zQxF8p%pjgY-~6t_zS^FzI~ly;1pLbSbSV#Nj(zNFP~Zqk8it)xl(;j-c~z7ofAPl= za6ggwE|aUZV2s~Nr^H51gN+Pzmf~qVBWuMk+SM*^puMH_Rw|%Kb;b&rD^ryB?UbLO zo15Bd#^y2P96cpdeZFh=CgS(GYxV3rVdXbQ9c@3J2H)>SS%RU@SvYTlj596~x#ir0 z4j+?HpGLO29J%VRZoPADUb~*DabM!A9v?bOaDCIJ6PEQu@9$?ln!ve@yn!D z*bBeC_sh7S4oca%!Tm6yr=BUOrtzyxSOy9YeE6XFaM=W+f2S>)ayUD{>02-cov*8I zqL9PQ<7{Wyf={F=vN+mQX(AtZeKT3vqxo z$DNWIJ@nJta@`@6DE4{#tt>zG9%WhL*A^=4yHVWWm5aOXHz#ji z;0oF2{7PZZD%($P04hM7l1e3*k5$MGJGkb38{;3h;OWgInPb#-Gt%bwN>`6)7$iaq z6&(E7!cLEUZdk}r+#6x}5q+}FIEZ19?SZj=2_E@*Og3>bAg*Q<5zTbKrS!q$V_=67 zQ_j@lcEhOeC6%@1iAtr<2e}mK^4KO5VaDS3$mTzao5rvjt(*!e_Jy%LIkUlaWhfsw z-igd2Y9aR8;g%+9Cy5Zfqav~G{e#qkEDIiP|E@4B-XyU}S6_dsoK)y{sqPqmSq3U;3MVz)%XUdG&! zW062=5?)cOaMou%Z33AGO%5drkrBOxZ-YUn8GAQQ(W}K=2Qs`JQdE6 zTDm<5K*@>GYs`?H@hWnG_Oc`TF5#n`73KXlyV{O~=(B)*SWM3Thi@j0o1RLoggYRI zSnYY%Das$+dPF17hTrJ&*7Elh*Ty(v@xS?zCro93QE=ACT^M{5^Sv5Fu%C!_P|;Zd zo9k6dzO^>j%8ZGG)K7&fIWxp=kYiSXQ~eVVtaEAM^;V0oaq=HB?0kmmlI&jhVlBQJuNP%xYGrO#K&`P731fetYggQWy?FLlz8`~SPJLJ}Ga#6m$ zBgLNGYDG?SY$mcNm{tunY15YB7nApNnTV3xc4sw{{&rU9fF(II;P-0v8rJrn3MicKS&FHspHM0y%L!dD@i8=Fyx)nUEV)<61bf@Mi zOb4f-xbM&@qkS5X)NFSX1t6C$N0cpb7!pnR+ZrYxzoVd&Xpq+OaxF@twyrB5g93%1 z0j*3)G>J0!Lk~Pw*KDOMy9MnROReJX%uhuarPlQwk8IqfnaUerVw(F}&Z@r|h%re0u9N9ID<|V5^!%pp#nDFEAdQud?BiG~ z=U6^9=DpqYyS4C!ID!$TG}<1b4{(1a)`2MqnHCL{v| za$6`<@w6QP5VI_3bvgrw}4|=t)>4(M_NdUDgl4mJ!uAKNzgZM#|=Uvd-^Oiur zn?(y$ww8Jni^iYzK6S19o2$q~vf_2KfDzlCp0>H+icN!>%*GCrfqj~OjMS^75)5+v zvq4aeUWK8Sz_iHAO2u7IrM}F!dl!|Okfs1^2#w|!Hysw*0$y8gOdhw(p}{W+OVrGGo4cqmgu zjbgWXkW)H5T1KNU8X?x}z=>Wci#c^fQY|SYI}ERcRTVZgYS&T3e9kS4iy%vKEil{} zi$+Tyj`C1}ySw}OkwNOJ4Ocp(8?zaMl%AEw5bSU-68rJL{PZ!t!ob|dv-3)u$LvB9SfGWFt>m?keg@PWi_^_%%1NsockbfcB;u-54Wl>OW(h} z!p^o9NCO(A(P?k&M%u&4$A+V;HhysGMgYgYpPTn*(?P?GVl1`4sTD}zKe1H^vNx#! zU0$j}Dn?puO4jzvBJscbxKt8d{!~u?tt{DTux;-!R)4+!adynBQ{=9n8#>W%D0+x# z;fQPcjOZc+5UtBfd|7pqp>S{JM5lVAl^=xU?i=y~-sF%_OYRbK zqUTssA=a@s%e~V;nN#`hXK&?`;BvzeNd?~*PAM*!IP!=|)!>^? z3tzeTd=tgKzetb~IIEqUHVb(#!RlGpuEaM`oGG!ZUP!CVme7BH)$8i+lQ-@%t24_u zUoN-`Y#Pvkk&-|-Q`ep{iSWod#$DSyXqrqYH1d>@h2{wyeAaS)Vj+7L;a>xdbL1Vz zKO1~)_a#e;BGbr@*BmX3llE=!K9ULo0}0`2C^yeaI^y?GL3r$FCyKvUBB+46gOs3fr=yM}d96 z&Z2fzZD7Djqo{H8y*FpC#-Ecy$3tzaTQA!_+<;f5_d-b^(4PhDt!oC~esO zS>9gxV*(Q%An-11FRHXXmK9W3=-XhgnV_YcMot~$kQ>J%FI}iOiK%ZBfXQztzGp|k zH^oz5;W))5nphn3(~5>*$MRaX@E2i$frbHY7>=EO*^B-GA*z|Hwq^OPjs5M4>;M9W zqQRlrVgOU6aB=6RG_-Ox^LYa_9R0d7$jS)QGFV}KI&wq5{xf|7A+jh_;K3&@U39`u zWHwGS8MWi7vTBPjDz-D!_jgY2(IWLc!kIBRPpD`6q7sw0+}>OVjAc0-b8-F9io4-C z^1>$?iyty~p_7tTs(tghx%()trwO~xNxV+&jT6`=F-G|)eW&Fo50t5K#7YB}r7dMw ztuoc0`F>>2H?`XC#j4iz%u_B&xQA{pMI183nTmyj;;qAsnh=@}Mk7+@CTiO}QQy_1l@3Wda@x-u8lyPa->b45F9Tde{ z_PXvO!s-@9YBFe?O|8G;h%&gxO*tZ2<|6xDm*68TV9Rz(*KujIjDMEa`EJdiEmOd@ z#>ePY4gJ!b+JNY6qD@VN4G=YK>dkyH1}Xmj2N=&Xe3;XA_x0;h;`7IjHr9lJ!<~pa zuMT_KCav7$)5aLr#$tvK=>iHkb`gMPdotHsa7mY482A|Kv8_wK}g9nr!Y4jpG4f@lQsR zFBrp;&tbiFvV+7)ryfnd2L{#5a|(TUkh$`X5pKLK`K=4h!dLMkA9>kmn--v)GcNW+ds8yH9Kz8eULI# z$N!Un9~zQTMpjNyuF5lGl_F!PWE5xg3|P7N#4YvZsZAk_GINaM&CB8_O>;=rpQe=m zS!DV3>Q7;rEqh*6LAHS!;aJ`&SK=6YSL4tQ<_vuI({WF!MKo0GcGt$!Neq(G<384Fm7HdlyyHJ*CG+qpTpSa00)o8~05SLr`JpKvX+Ro0T;vs8*NuO<3TIS?wUMYlg|YwuS|qgl{i z$>d9Hs=0TI!E*Mtqq113+JEm9CRrq2qDIiP{hLz5G>XLg1Bf!GgT7u;-|g?3NnaPMGbye_8d& z2h5)7Eb3U=cVWBAxWbB0LY7TfKuY-^Rs^An4Zj67jKsrjr~wCDA#b?RaO(7Ae-@v# zj;2j#at;z1EsY7l#*eg$m@v&TIT}7<%=W3bkrm0!VoWt;uzNE7zKFQ@&0}b&bQV>* z2m(UWpbha2PJ_M8twd;hHUa8QLH_Df=rkf)yfJ-Vwo^*%D`F6PCeY0^l+v^JEypb)scq0qCZf|UQ`QAy0LFK%|r?!eG zNz2l(2=S3JmMo24qpsvZi>}z#IUqc#L84|%w2E=$)WO10QU>()<&RSsR~WOV)wbHO z5o%i?OSP4++CPJhsK?ugLB|c5Yr#}*K_)R&f-#I2g|9d?cCWQPAspIgOp!5 zSa@p#wq-WEKA6ezQ!i%JsCsJ;$+j6k3I6T_@xrv8&L$)(Q)2IwbTj-!htc;{Hyle~ z^Aq(_@`4!td2FY5tb(ek(9|_=#14N#45xjN1YvEuUjM4VsG{3FB({T88xb@iQ}BY2 zcC7A}53K;C7pUprsYdGlsX80jGI|Z^-3TSus!mu!G>hOvTn&cP-^(eNImQvq>drIR zXUss9<}s`V2x#x)@u|e`)U_= z-su+#zyUTcXMO!mRwL?y@DKtenU^B$tr9Rk`1&As$`5aajgj0wjt<-5o}}yzGQ7fb z9?g;B>q3TV=?dhK%j_gD8HGf9!{jb;-)PRq!@G9Q0H(U_O4+1ovNtZ&kJp3-IPb+L z9HJDX-p|`$?X;nz$MTxCvLq2pO}GvPUj1Rd9vC%PvVX?CIm)~w71C8k^FdG+W0;$F z_eYM=?czSGn{Q=F20F2pSBdc+Q7Ddw3rDKwyKE1(0%F9*6AkZ~!YC7cBe6MQvEy2C5$0|mxD_j- zd@0oh|YfhD}GE5TF`p#tnMhczFWU;k7~Dc-9`Mx};*D*xD_CG7R%{%EA?j`9B8 zP*o?NWmlm4UT+!8(`#+T`@YnoxkU&t@XggkKdE;7`)7}F^3FBgDvzCQ-zP@Np)axL zF<5E|7CHwMSs5I4EfW+iNl)rg@oRpdl|OaC&2V6GUQ<*45&tUMBy?YKwy5#B z4tYAdTfPQ8xvz?Sk`=6?ZEki=4xLI9y>*oaerM-{mei&}RE;Y<%#&~Tb<1>e}M zVa|G2m(@$}W&uEM%VV_jFNHs1;Db#0LyFV_8s44Dr{62c>5r_d!Uq&Rs%#nn-Pju8 zwIpqT*T?0=T}tP6@*IGao*}(?^O22!I5g~nLlvhNfY%Y%LO%*FiA&O&;$`XB z&Nect=52W#K9YalGVOB<_piR!io3Eqty)VMIi}vG#o!8rA!_5O6C~wixo;MuXj-!V{B0!2CqWo?f+0!v;)h^L1Iji}*kY zY{`01PNqt@O^Jsw7ylGZD*p>t3-4KGxTS0j(P(GcFxOGsvvz%DR+avh9`RYxc_zOS zKY9CxEG*+~Dpc(7tL^uH`(FUPzDWys-tS4wyM7EUDtz^|83srLK zlb8K+C3{Ijivvca>Z>D{bNw(J=r&e?7hYlD4{`j+3;m-Z_4w?E7mjKY+e+A&d9HI! z`VTY&Pm_OmgHfzNCG7BRUg;H0 zDfxW{J)NWz*^4kpa%(g1r!OuSAS88dFfOM0nLK;cnLHbG7bI_Q#}FVaG(X18M25_< zh;Qmr3L>E+Bh4%OAWe4sl`E)%Egk~=zW4lXfcp0l?gGgP8CwyC(`Hgz6nf@{;jWF? zXpVhNQ4f1~pQeV3;oVKM>-ocd8VDv;$RVA1+F{TyUUqeSY?T>(9)^<9xA;*y7x&nYNN7Q3GjrQ9~$P8zfs}IbCEpaAYl!Kh-pNNWgz3V^`{S5g1xS^@|m= zJ~Y8(DI&-iV4UR+cG2u0YIIHvb-5y>W`fP|CPs0x8wk$IZ&uY=6>pW!yq;r*dPx?kG zp{mGr&v@&|RoZ?vD65S%R!g}wFgdM9_S3ZzH+sTBSN%Lk&+M3}1gC#hU39<(*T^=b z#Ju>fMT0Kt`x)VxliL(J~7jOfq7T0ZX@GTo3 zDPI}UT+1fbJGw1YO?#bWq6fr zhWqwS&$#a3EgZ&;1NUSXSZ_9V43jNM0&xYX3HcpMK3?JCgSb}MRu1!^gk9~N_izlq z)W1Yi4@-ioz)ik*W!qhsmLYIK!qO*V(g@w@oSkw@B91hTML>oI2#T+m&MJ#&zXT2&5s$!xd6M)cEcrLLsD0>FV=uUc^I z%nS2js=dA1x>UNWl5 z&!$Db$}?`Xn)2)Ca&Bk6NA&rAsO*-oYuP1o7~n>6#KS`CcN^83?}hqsCUnb}R`R=K zf1ygJ|1DOC0`IIT!Bfq;F}4OOC_1MBzsRO6nh-oI3EH2p?(zD|?qyL=gv{&a%9MQP zD)EOXTzdMXe`-}&20nHMBg|=@>7A^9H5~Jr%m3{|xLoD?NI7}k#&yUm9znu?w~uiZQJ(ANje>NZ1co+I<}LJZQHhOyJOpvXU&>f zGwb~YRiEmv+IwGDQEUiB?umWwQ|p(g;16&!Q*w9UI1xh?^N4f><@x=RKi`EdkWq99 zV1s8$J=>Pbkz)}h&E!a~D_cdB`qrau*|1S@T+Dh?E@#iGeO#sk z9s6XkR5Wfsls1x!-G;9r4aKpx#ehZ16vZLBr$olgm}Ry-;!n3$68 zuE=xe=Qxekj|}@T&^&oAd0#8|g;Yy}43ebYE~BExLY~r= zG{C$i`UfP)j7&V;A~M1nuu+J#dv;G!t1<~{v-#%gHKZlTz>D}2Z(})r%CesT@iv1cdhqd6hO-&l?>7OU>&@ zqVHzp0X8kq8}qVwnoq7$?u#(`HZ?xXk_zVY+G|$smSn1ySHUT-01OXtkMS~1rm#6Ut~9s z0oQ1^rt2JJZs@SPcYM~+ZV0;JsPAQWogdAMn#bCsiH!#UXPp>?$P%XRCiw5Ahtp63 ze2JTGmG%`4Gc3K4Sya79Xb39d#SDcM0!<3m6J=I8F(!a`tozq`$fIDCqX_7Ewy;=V zwoG;R51o?@yG`@b@)dKQc^;uoZqyY!lgrW2OqWyA&hl$|^eWJS)Km#u?aEQrj<6b8tTT&PzD0nejLH9>*2F;b%m0Up-l$HRbH7*{8g8zft@UtN z=N-Ai?PQC7&4drMcT4skAh)C>?)6c8lG3&&fW}K_qq83^H|q#*s0jg+A!#5jnhr?QzYbE9)Xd;j zb7tQzWRxn#Qt<4V|8j(2NanxX^Sg@8Um@8fN2BV0xB$bZC1gBueH8KKG<*zE55r;E z7v{}WC)<{~lIq?cjdkZ#&ZF7y7m?)l^IsI+z11_#Qr1Z{o2pK(MU%27 zhrzOnL5@Z+)r$v7Psxn}@(fH!m4Mt{H4{OK@ifg*%9N-^FaNAsUhbP_JG}FlI-jL< zycWLueOgDH0m8e)?9Fy=XBsixd}xcPK$()(gSp2VF&mOGNlasaS4p^nXz`e%{Sw3m zFR}2EDhu}v!-jAXIt$$k7crBvq0{4mEh%8deK^{!@P&`RbxkEx0 z{HZJKelAVtt#~Dq2-Z8q>qnVIfLdbeWPq^*#OvPjr@RZpP$=YNn6N%KNMzE$VKCMx@AQN9_65o!`_Si02&oq% zz6|;Nhk;gD!Nu@ZK2&$Y<=ZbL{=5WwSxkT{DljFpXd|#1wMU*ewiOtbeJE#LZBhsF zL8-9Vg#3#iv`b=QATyh*BQ78Zn-B!agVy3i3l7!WC*fw6AG{fOW}0e$Er0m3_tm!K z9={iojxMoB?ydsJHtsG`PDI$}JVO5I9;LXsdeh?q4t1aB7E<=vN97}DG<#_AZw(d% z7uX_a$T@LmHf21ib4+P3DL0NlxEReOzuio~vwBNFj;q-i_yCuG#!MU`dQlK=Xv0Ib zsK8eI4;n2v{3|YM;%?%Kh2ts-ddp%!>M(ZpnW zY_z*$cYD~OtGluNY@9pno@mW{xvkT26&=si;9Xy>3 zI|J#x7J>Az1Q$b=wzAK?Jmu!(A+}^W9ANfF$qjNBGJ4`d~!K;SY+b(tLa}N z@qUmRDJ!OzkBQWkG}fXO-5T=r^?}tbpEc9LQ+gC4$fk*}Nb&{c;6xD)u^N#E%=d)$ z3$e$PT9Z8=%nR*!)A)gll1rkj%YFnp2$(`fG%v^RecYegKYTRRy4-cP6OG_FKTDrF zrzhQWxE&Xr8hiL?H6kic)j<0iMp{loBTppd_K--`ss0W?A!Un2;+#kT3J(Vl26u6W z89GzvesvFvD__Iby>|~yO+!k1qr$2P^?t8@boIBs5?J$ZBGm;bm_nV@baGi~y7n*D zP@6+V3ACxGrvSikDl~i`a9)@^rm2c)t)bXmK^wR@?Zd-RWWR|aqs)P!&ceg{I}6<+ zKdi%J9!ryLUmlbdQrv=yVt*f=-a`ruyRnpF1O^NvUPZF68nzeQ%jmSz=BZYVJ{4sF z!uT6dSQU?>0K*ZB><3F_M5Fr>i30IwXfiDMPU6JcVZ)g#LFpk-q}EZ60y|oZ=$ikO z275}iw;!;OmO``@=e1p?$T%#wl3uqan|EwjoS=glE^R(7HZDVL@$ooklp)Ao2s>0r z)K!3zWei~;p>`F{y zC4T_t2Am=aBW+>vuzO`Kbz+MwI27vX>nV$~IZ*67T4B%UPu>sV3W<`u8tx^}`5Ile zLpMW7CD=s+qOrdW9O9E^ZOze<4HGv2P_8t(~v_TQm~^xaoNCM4Og=p(GJq&foLY{YLZ{cdfz>3-Ab z_SXu`>(~pXF^;zg-mieQY`^jUTmt)NAY&O)lE#}> z9#uUvPxv1^67c6gXj$5mf_NOc4a}Abwm`0O>o8S%@6FqU0em z72jJ7R3l^j;A>=9!`2*?_;A&)rO4=$3&k_p(olbq(G!zfRv=XP8(7tv7aENfUZAc( zJcH@)b>sF-*DOMV{LM}(Q-EI507vwd9y{{@NKl;F&ZD*5oN;JVDJl`+HSG?m_hm%pc^Lj%=EEUKy}~ zqnH#-*h^U_CNm@5rki?4KGGXb4g(`a@;}3>coP6s90io8t+&}@|xC7ohP_^K( zHqrPATlHKk?ndB+&7%0M(r?cD&7n4TE+R;pTz+8q)eJZ!Z~jYS<~f-_vsYS+EiVv&2~Lw60|E`GET{l}%0O@TXGZm=S4o3`4Kn%1EtHwD8+7JRHV@Bqxaw z`(e{5&+UQLs84w#PgeNQ)cVwj@$&}BwkdX#bUNsBHSv|zVnD%O$wl~a|&#{HlyKpOyrbMHag+F}F zrX@=42hGChV@dZ`mJ7jrk=TG)Tn`U zwK!j9-w*@bc!zV5kY;bqw$6XbYewqtt#Ogz_VjH-2TJZI{`l^6RHqtuT8tIC0K&II zb4A4cZ-$P+(18kaL25`xsl22`#N+|M%<9SRrxZ+CQ`{0KnL1L5Pcv<|B8e9RjXa4M zmR-M+O7>d7;rAj{OK#QYQfyVMe909*tr@Ii4JspgR-@dK>OqZs&+@yFdv1UcHwziT zj?rN9l60P|<+S2D2%Q`&TXOwDaSn&g-FycsGA zzc?r&!liLknha>Ubf;IY{u_|(cv97RDXZ`z=W~)M_P*{EG-dlpGi6`4e195Y;uAix zImezg(OsrLL3UOAS<(GI(y&e92>qF@zHrDa?-Xn*14`%C#2~e}KVhyC9?9Fu)5W-qGj@B}&A+k|0tN@HX!ohgV+^D-A$BXdxVfnM;tHeZB z*|~g2UISh!QK*6*Z!u+}-B8&*0pj~UhXMGb<7#{47E%Oq=HmQXq1NBG9cgyBkvA znTJA>4*#iXSqjvai@;~`lOXve@az%qk{;r`Df&=pNDv#ksjledTCJFA#g9c}UqZtX zNHAx2pOyvZL+TpM5FE5LvAxjqDQcccKoavmI(Xr)4&G>|pD_*?Hbr_l1i7Qp#_EGLEycwHGIi_kgU7px%%|Pz-&-{PrXk;M+e(bSXS5=n z$F~-I6A!AkgNdHgn~Pnml?;n(>xq(1!A&ZQX%Pv#^Q@ z8bwnc5Tta?VY=>PnT}Bub)jc*; z`yv!D?JaBUTKRY}54G=Cp~E6&D!_76bwb!(3ug!{#-4=d#LeA{uQ#D8v`KSC0uo|L z)3G@>u?Y8itYuYn#l!}221wHKib!R3ELsU=?m19?g11Jf_zvrNp#lS!m2~WXM*%`2 zR5)(L$YQ<_x{DaJDbEfpduBq5nmug>^mkG6em0qu1`1Nq!`k!_FwbIVmJLkEz>uWa z^sYRHSX?G?lWD{S2{DO?x2LtOu_vNW>bxw#$6K+t1ulIWr9_?_aZs|2&zq7_NJ#XI zA~3{)Vm4Tns3XK3&m|F8#^t<~M*<&47uX%u=_&1s@ zjUJ9c{)Kb+fH@S1ktn#iCtVzueJD+S!lJ#j;who?Fb8wP^xB)z* zlyzEg1lfIC8N2vl5v$XXqZIvs;7p>MLb@!F;-s|z7S8ttnk|Xo`82pImX&x{^5uV% zF{T@jWHO6{0=7-=9aw?!)W(UY0zK`28h_0?a$gx4zzTaunL#FtQpqU+S@43&>@v4h zQw^^~$tWiqyoXXY#fLPK_5g|s8K)~F9n6bItr#ff%&D=*s8(8qmMa^g zZ16s%yBX3n6&UJ_uQh_uL|~rt?o?13{2dfxlrapoExE_jlUqinaj+GS5c9^U zdutI{F{rVz^CV7XETV7Om%`s|1uSWCZphi26hsptFdYU`{@+3OfAela^8WvA0g;Z;(tX@gl*99@H zYyCLaJb8qCp@xnptQ9X9q*m%8fht0{vM2!1)X(y+u z|HOjFc@{Ou@EZR@_xJV>W4r|;ldH1vw3gil9il5*pq%*l{GxBu0gdf5$B9Ynu4h_! zdt`Z%!hVKbZg) zis#w1H=rs}BGn}9I0G_fm@Gq#r_M6gKJ)$*cY?%T?~W@LTIfAb8o(Lhav=RmY#`d$ zrY+Ochjj>!6z6NM?kbBt(|g;y+xm#X0k5tbaL?BWC^gH7VrknoL?Prf5CbJSmP_=u zlEJ3Lm42BpzO-_rwm>wQx`C0HzUX_Pr3HQAxB=J`+{(f*(&B@jHU=;xLRQ>N_@*M< z6$OX&`B2Cz_AV-L?cl8rg;eNMYtZMjZ5UN1txI# z5+27Y9D61NhqE#aLP!#vua*56U$7;A&rZ$~LzCg=@ya zSloza?pGxUohSf$%AHD_7`u2*b47P2te;w3VH+5dUK~Z%q3X9QnV)@t^spKXN)1!u}55+#naRv`lx@2=7rrHsS)FSW+W!uR@nb` zMs*7Si8Hmi1a>a$<|@n|);ljF#~-{rAnzU}hAt^S2uaI{)>nuS-#F*3yHG;cwz9T5 zN4|vW+aAK(vM{l>R}cX_s+~}PRL+kT&QF|(0}WL|E!F9b?`paI~E7~qHhnS z-kQ5M*B+v43VfEAbfY$#IIGm+`-gQZ><}lo>G!(Spd!*Kc^9CgrSNaXVw% zT7r0TEb=DOKq9ZdULPnm9h#z;j?0e`&yOiW;8&VTcT!z##uuLL**KFr3TO0uEziP6 zzp!r5Az=UwV~wv31=(VhfG^B91z^XNuE$ixX}N zD~)$aP7Jt9_SO6$qy|v;JbGO-Gn;#2IeM+E|mOEhB9VVP;I$gmR#9bg6 z+D%DU^sH&CQlOL2*xFYk6HdO&2o-WC5k+jwGeOw&=z}TE zpvs=7jxwi|I&XDJ2uvb3-;c8~9-`NW6@9z6|Q^??u7=p-?KYGZ= z;4OU`A=qCvU;bhvu(>!Y@$+G8bl>L#X)f?BMI^)wAr>aQgv}n1Clm(s9QHqQ`nZzn zkF(w0YWzBwx_#kkBGeRIEc;ki&rUku3H7d>*LuXfi0FKt5WW#hJq}f4>L;XhXK^=s zDO%<#VgGCxJ-Gzs?^p)huL#TPS_dx8`HM5{mGr9a<<`5uipi*jci^ViX@bgRcH*v! z=Jmo!Z%URX!v_jX&l>?-62Ent4yQ0&b1>#l=yf#ZF*^08Rs2@)XzgoMl3nw~LZ?~O z!%VAw-#1@9v6O;RPSugnJfAsl<8_mVVU*jh?<3^bi)?>4Ha1dDwRoRtVmp;dg)hcn z*7>+Q&@DJw-(<3xJ+RPS&Gr;Zm3^ZKZ+pxi;ZScvSxSk;d&@p_zabS@pZl4QavEk< zpA}1PC_vsaDx)$rUjtM)0-Cm#qM=*_YwW*mzjbF$cu0_bZ57ZiEr*e}#3Pu)Ap8JR z@7Vy$RjChdzy1Ql`y3HrPQ%Yhl6CQrWe@c{Ia%?LIh{=sxkVTD-dJr#!wUWy{xreg zm(dtx;((|l+-(604YAAgh1!l*s{q(Jc2PZPqp>5`viQ0jI=|M1ZBc(%4+=D zs);8mWdReJn{J2hMCqp)9FLDbg=KyIaUSCi2W$$Rq_&w>y_0)cR+W4Th8{ z8GGaHRyuKOYN&@rf_nSgCGgigs=k$o2MaZw)S3=JGx)EY>@aF=Q_HWc8GQkCD1X8> zm6?VJ@koh`%s%Z8LJYwIfLnLXB|S`VF0jzS%K5I6CW;0W`m}P)BV6^uduCebs=uv338BJ^?tXF; z`s}@1e?a-Up0S4s#7dYzvVBF_)ad(}9cc(En9@?2{tz*FK|M(X0o31-b~-IP&tq>4 zXbnICKY`AGpTCSmU`M)|#l@{88Q?g?SsKK(NKraUP}E>>>aathuUX-KeI(ZiEd<)> zIuMmC%1A)9*VcvweWK(~kLH8)=TfV4JRPps-h&@f(gi^v`&=`rQU@Lr#sgcSME?*b zQ7eUo!Twq5`)aO-S6Ax!#(v|y-JFoTFz>4c2MRHC14rekf{N=xo;2^(mzuZcihJVy z;>Bi6o|^i}!82h+V}jA^yatl_9pzYr2OL1!a1|0`)vN1 z!vs-eI}*jWQG%S^;^7*Vs?^EHrXh3ac;$6)}9 zEkBupl*!=$qJ%ugair8MV*x;?B@1UZiXjfTgk~yy#Ic-p*d4B|obW&>-aY|*nWo=a+ zu~mdw8Wof@6C+_IVVkRC2;3$EpS21mP7{L1o^_sbnYhwG{GZXo(km#x#O$DeU$JqH z3q-7mGkD#_IE}YPrz69J;UaiAMtxPo&W( z%5TgIyj-p3@3^XeQOMHOI*5oxiGkg#AhSq!(7#g$8jm8$1XfuQEvkF_qsZ}N;CHwb zeH4o5H070hP$Iu7N#RBysiJv<4tT@7`#x!X+(#^F1OqNIE=p-TZtJX<;DQ90V(gk? zWUVc#+LUznTwBP`f@;1wNA>a{J95zgr<{i=S`z!+0BEwC#k=tUWE3caLt*uYNniAu zSR8lRIu+W>xjtk2%?1c`B5FM); zZJpkgLO2ejN=?gVf`%7esCBCSg0)G%oOq8vz`6i78~A8dORua8&EI?Vh5^{mW4+B> zrOzVy%7{5RcYNV)rrd}dzokDbK)n5IMUgWinp~`?28i3MM=zYTE_8 zIQG?F1%`fga9vMwg8gzeH&l?)L89>W{naACH@KzuSB*N-jB+?y702ULP5hBC4 z-be8b4}RpKVhTSjPco+jsn;9PBTZ-fXH;fX_qc0Lu9(2z==%4?c^f7fxpe}9lRe&d z6XX3(Nz~T~BeJu5kKaVKPUEQEHpR?&pur1*0#F4e(1`@o$*W1!y;dfxk&ZgB|Vo)Fh~s?Lh{)nN8G4-R2?{-TY_R+Wf*O6X??F)>?7N%Bo=9 z>+8kW$O_M`v_X#3NVIZ-Y7*(y&CPq9wLO+-`i-)Qsf%JEjaarfNL=a<(KQFCQsbl9 z!l(a1G`x3S?iE_VBsNgV%L!3DD;$ARi0TuKp04MGP>8gmv%*OL z3@$%<5m3#tN{xq`xMVb)dU$bODG7kf0He~_!DE>si|1T%R8N)2m?18Qt1aV@LA+1A z;xP(IHzDhUUQB8Q^@d#3sWCuKg*Bv!TdG=y(E|gn7A^}W2LeyJi~@cZwH%p(US`$u zSOqPlDwc|j9pn_PkK6If%}2}czlIQl73TX<(t zU4a}`IuOr3LSW_y=4@Ul;vGsc{I7kp?I|Z}iZ6ewfj_;=U@B49n+5lZ!7=V}59e&} zLEa%L)l;dYE+Cpc6>?}@vOm2dGP^3y1epR?-yl!i*(ER*7{c5N;FS*N_-MnF{Zyax ze&4gv_!K+Gf+s`4;SL>&2nenEtCpOR=66U)rDC<$-o~bWj!r@i49B;|-NJa{5H1cV zfU!GsTeZw)YvO1D%z(INBPBKORCmQVxP%0L;8=tu;G!vrg3`9OF1jJvY?z1iqp?ro zws)ycS1|{%U|(9bD&#haJG0M!8fiXT>(2rT^-nxqj*bDaIjFT@1EOi#Z|s+)UscR7m9dmNOWxhn3=-e&|Pa*n}HXN7n{UWJza+YHYbql}a%6P_vvc3ycw-oR*1%mrA=%Q>--& zw{2#|3^SuV5h7z>)G#e+v{`kgw|LmlWd7i1dZFsYhkow^kTU8IbmX=cyLx#cL}&6H z^CZ4p_{1vw+_ETRA*auQICcxwsFfFHZ9KBeC)2W^f@ORA1wEb-#W^$hDTQF?cTNr@ zg6#v&;86 z?I%&rweQMXkN}79r;S-p`xAr|!vj~VN^G=IP&BqLlWa)+WU_JdZ)>4><>f)mm9!fy zV^V?#=(QIiLI(mh}MM-i}PAbDp`|% ze243=pFZFbZlg58Zh$sClr3}UcBzfbj-Kv!Pp`<GKZ<+tI0O=+`{{N?5}Mhnc)YX*8IXgt z3~t|G>wXWaUC`_hG5H*AZgviw&5Jiph5eS{JvU4>^xej0@xo7axA&Os=yYEo(B2n0 zs4Q02M^P@?F@v?hY4^~SP8(+TzOUjn)i1@(*l0o|fR@LULV#qa z1w0%EZ_GTPmHPVmFH~ukk18X(23DV-4-6BS$duRfNtyi1%kXF`O?=1M7};pE#(TYx zaFG)|s_&b`J}>m3AP~=}wE1yI%+sdK9B_4(ek-OF;`(ot!qWkjTSBj42r(fqWAEZy zJmn4GR;!b4)o^Q18V!R~wfxP=Wn_)UL$lw`C6!Wv8`AU9WR@U<4Eq(aXU?ZCZI@%T zxT5Xi?75WhApNp#C9ZFw?ILx?Axa*>OR`D$y4u~Z+b3+K*fjZ}qO{ffUt4F#J^t)jFLPslvhED@1K??;jOz`14826Mqn$)V8U1&cY}deQI!+P-W-F zJv6?=O$+8vFg2ljExK|%X#Zxrv*E5#8aOu2=}6*ulzf0FSt-vz115PAc95p7pyLw? zM!e8E`JH+FVCeT~DHII6W?Fhi0co#L8ani= zC>XYvC9Avt5>!gM4IOehiLx@NXo`d&Yx9dqc4KFkqt>a;Tj{=U%oLx1hB{7 zTBMX|LyG=(|AWl~Q9o{WZ>+r2N(*>Wfs60E_|Wr4XC)rTFCyI!X7*@*df;<@HhjQF z8&vE>SP_M_HbG*{om;<#o$H$weIPZqB1{5&O1zC8ey{{=$=iN*yli2$rF?cscX96O z+j}$o8+s!e@s%q@hUqzxK<5v_dmU1b^pX5yqjBH?U1*D;6)2PlYB5|t_~daHRQjkI z`RYNU&9g!vX3|ttOU628LJLCr781OlqR|3Xk*9A^?6YCp-l4y3Yz|Xd4KspHOw(q| zWrMTz0<)cagP+2pZ71wQD5_L|WX1?W2TT1j%e`x_!xq+;xC|KZ>=A=em9K^p-?B#5 z6qo0cA)9vno_z5Jd6Oo~+@vd;CChn7Q9dndTce5yZA3%t1Ue*sIz9)YX6^J>*bE;s z2BA5#yVAMZZJgqa#wMvk`!RDk^;L%D9Sb^-pqymeHtRPHTe|n2EUhhz+`tA7GxA9| zBe#2S`Wt_DPhCuR-kFTUpab!^;gZ0EJFjYPRYAs{-hIPXC0EXFX*93_9Ob~rs$dXm z(h{y)<@ousS~^s!Wq34x7o{1Hsw`Cw*+UE?SUo57%dbdIOkIwSIwcn76`Ej+zxRjx?@%ni7-tGS-Vx@-&U!kfgM2iJXg4cP`ME7i3t5C z9i`sEch~_NNZKq#k}G^1vBB9&>oLi$9OSoy09({n7H<6-x6pHG-L`TXeldcCwQ;uK zOg~&}kG5-A3oxCDzt!q(;#XFb)gOA*$`$hjG+%2c5ztAW&;quO#No>IM2y z1Kc{B^w~x@YrF??E>b(}8<5|wkna}O(4Itjwv+88-Ok8Gc6MbGt%f$jPnD$y zSD^e!gT0|Y9PtY~_0k@8zYe9IzgBSR7bVLgUtWT$))6fH)C+4gM72lr%HqE^YH!b# zPr`YZWQL~@0`!867_R+2f1pJTrc>VMicMw-IVPIl5c)$+-{3k&X-+;$B}svsBq_rj zPl5+z{0dPVKO{(^N3myalJFG3pT8D4cTV@MEU`_&b9uFZ%_E`?1<%%{TwQD|)*`Z73;1p^lLLF4V5y&URSc(DC&ITWsQEO5I|cb@;-klK<6B zS+ajG1Ul+h)PG|^<`SAwgP*@Omvkg`fFOj~n>fo;3!>o`^n_U+qFs+x{X_rUsTQ0= z@Cf-Jj_%Z)S4+DXcls=8GVr)E=AbKz#|A-;Z0vnp@=JGX66THunP^mi7L5)q?_v=G zdNhm|%t1ov-()aXQdL`$=~{AP?pBKK>=4UentM});V_TT7-2P*u8kaZ^Ul<0L zK-b10u)V@I%&bc+O?^k=w$hqp@xl}V!3E_EU=j0BcZ2z`b$^^1 zWAdL}jmSE+urv1KUE3{L!c#@BAYE31kB+`zIByvMMxfBi`Z5zd*0m9g#*_5A2^}vA zqEHQ~X{{utM()1DN!5;4EWdJ93whcQo>!O{uv`9{oV=TS7&V7ND$2xC=}Yj8Nqt3< zr*<30?p-c7(2#G-YGY3^cj=FN=z1q)zsI@RB>!6owQwEwb?~e^pAut0xd)zF{_EH37K5)qZ*+=R}92GBG=;MTjKFE_9{d# zjj;qJ{P!P-JtsNa4?R~YDK@C4}mN|o~2;*%U#M*lDyFpz&bDhSHc?_hiha1<9g0O#8sphs{n`x`WeCbJA;u{%f9_S5i^g9&0?dqu@ zzGMtET_PhLI+vhk2td5nb{e(k!FUWeDBxC{a!P*CHYoHkS(@i*y$+xiDA3Yfk9lql zPQ*{`ZU6HP2dekhQx%{6vXs0k)X4~I{0?+ehR!o+iM`gqQu+7T>MzPAGoS?>Q3 z<^)=BJ9Upjs!Qki@AX$Dw*1{A9q|4LNbTYEeE%H|1zzw5o4K+?oBpqHD-udtqs12h z=(AFFafyui^h453$YDdT&}{ctd`YG88t;c7KjN#a_(F}5gLlxEgYibbD_T#|1VoJ; z3EG6W4Z&2~c}DBur*PmrA>U3BHTI=V* zqJV*#sqtKgqROd~r%^KroD$@gW5&YdAAsv~FCK9oi2Q#9(KxzM*mLWF&3zXb7z7uh z>+JzmMY+GpPdj1muXhsLMAwb6n&3=<{1GqYYY=&X4hLt%gx{)kfKfUk#Ag!uH}7T9 zY;DE^Vv+b{+x_ph2i;vi7#8iusjp{Vhkb=epe{f&?`?|rI2_L$u6ta6hI(qc;@e>bAT#+*E0eN1#lrMjKY(I?v z-Cg19@+ReKu8l_5sipztmCGYjDNz})u`WV2+2=A%uCHiZ;j_%z>n(Fx-)%GyrswVO zn=c;!L3^MZH_sd=>o}m#UHDh%p~e;$3x?R7U}ISAvO2)RP(BC;T|twSqQ z!B%R2w~RjN9wVTGe%8~mr^DAlJtW3BM-p*!xsL*i@lTvm5A7I(byS5XrN8PnVG=rn z$lSu;6sFU+(u+n?4=3ZOvPYn(;CQD^&iQfBXSKrVAdv|UdeRWd8a7uNNkT@Yq)|3% zewWU};GwK7KBB5zEU?Fd`oY!XCHuUj%8#lfh~DeuLjC(*cy|n=<|#Hf**pA72Te{W z{d3yO<%MZ+y{_q-qR6jVrWMZW14N_*ZMnuQXSu^E(H6U)4Z8_bZQ_JQ=@3|y?_3ww zl7Y~@`A?d})hidB0ObA5DD=1db9<|_M~;M;Qn405B$G&P!K{vekC?dR`XF6|aqpln zUcHPnjkJyg-X>L4EW-bB0f@vn4NGm9&L6rnxtJ8!&kepfB)F!2$dl|NrhpPeO`+>2 z)lfVmiO=+25h!Id>&pDtSmpTxzWyJg5-ji>+H|1*quhZDHi1F@_j=Cw)wZU2Mo@?A zS*zjL`|+eh0*P(_>ppgm@)@$P5bP6&Tkh-t|59C=JiA-5N4w(u_1`YK%)S7RLF>dZ zfd_GZq5gJ^_Q5VutQmow45xU^+7AY^j2e(pZ&W7CXchJ0>m^;GBgblAny8I2|GXnzc`c%L@`MB+!i+Y5MKqMv9kRh}cy z6uS1suR!Y+5qyi3DgRbuFE?_wCuDh_n=_so)J4_UcMzJ;xc!(VKWfDVbO#96yjH z;q!*6^P{bvHLUZ7ekxF+Fm!4dW?vO;Txi8R;X-s6<2V0y>v^)BjOxHK91(oK5NsPa zIqRSH?5_w@r?nf28l`jgOs~D&i_lKIp-lLw7jls!%#H948|gP3RHy>!5%3+qHHWLQ z4%GeOHM@c>fHMqhV_|G!YNJX%2jYN(rK> z8Ic-W4PhSzk@1rG{KFD`$5hB+nu)5K#KPKc1?}CpdJ+J#~q=x<7cc-nAlfX0vr2MV9|?m5{W$C{pp=E585`*netFw%2~nOHaJDLXjCF{%@e zZu!lZ^q0w^9DxKA-DZxe)udnVcig8bJ|r#qaMnd zv~dWLWrc$Hb0qXJY$<*H!2KNu>nEx`rGuT0aC`(AVsq-e0l-K|R zddjhvDZ3GbBwOFRS3T@5ZnM}7Q$Mx+C5+lpNaHQ}vT_NP&t+#+FW^>&uFza^C7K6q z;xcW|@pcmCU$^-l-xG_m1I48F{g1Zfnc+~+5KE-g8A)#u*W$XoG(1iAk1Ov3yNTId z7K{TF!eNOjQc%v{_o_?OGTfLQOeXa;ryG;PMg(UoZDjP5&Z3NO? z_al<57%#`a=<%T;pm-=@SmW@E>&Ixm81h`#ev|DK*Neb5A@+^yxqG<{BrGB4txWyb z_{0j2SBc?Kb(!c~5D`f$B}-;ooBk^fcnSpKWhYRiR~7~RTVwpM08xUXu&4AS^me`3 zJliAOgOpycK%NWYm7XfATLIM-XIj+eT<{NJ!#JFoQ=ydYx=08!k3eYSXLzj+)TUid zM2Eaci#^Za8zdC7mRgq}gKlly%8)CIZTsjwe-EvMe5r=& z9b`1D@{E?jZV^R`qcYgXZi!+IYvTRfv#pLW*)Q;(oCAOFWA0!uAy*i_77BcVZL06NP$#9$QA+qTxT+v=5}eX{$`FtcoNWD^dMlGj z;22H-El^k)>;g^A6Ky2hrgu1y-q&TC8nk-Q!EXdLh!PeFfrxpi?mq2$wwn!~jE=T+ z(eh?||LAaX_!=E27C17WfqMb#JE*o0Wl+K=Omf5J5{x`F2^Z*R=9l}bmV#*6o?Oq8 zNYY7hQGUGTB6VX9Mc*b?_<4_n&Q8s?966hj_vD*2S0qt_e9i2#OZ9ptXgJ$ZFH?)_ zR-n$QN`x}>fMcd#1b3L%4LBJ(F+=kA`9KdGR>eO$+_|C-Qu-ziQMcs}Z0l@&amGqe zJ_~}AN0OKYR!^xjw;pVDC*U*B6w#@HcS3#W^m~LXlJ+aBK0^#Z%Q^io0AxU$zqd(m zCXAAkl6x{|Zk}7U7fQJZuNkhUI5pcMXjex}mT>R=wOyvtV0V2iJD5B-Ei1Afz+${QSNnYhf zh(Z%bBn1JoL{RZBXe@b76?{P1$LUC%Q^k0=gJNS}ISmxrk@ZwWK*U7%dI zzdS%uVcXlGPdcFQI${UMQ^o_wRmVupH|E?+-bAf%8W9lUpYN1oh3Ac2GtM3{jvViB zwiM%)%6#W)j#2J<+-Gc_qojAd4s<~oKfw_3dwb>k(hEO^=)SpB8x>kQA}et1(Y9ct zTZWpzEssSPCM{!}rk<7`FggWcL`H|lmouXXis1v7$^G*KW2;}%EE0JLx`+?z17p>x z+CdgLE~_UX@<0AOa^Sb-z_>M*zglI6D|VpFn1az0&3;H;f1TdXKIDzG5r9Z5E?)dG z()5p@`$Xe2LebZ7ZAM2u8jQHd*ZZ*J)Q9~+$Zt#n&q zYnZj*vD!io*a_(PSH5gB18WOawhQpJGGnYHG0qK9`SI=qvsgcN%kRG9%*K*>#G^_c)w#Q#s!3a<3<`(H1tUTg+{pH7^q60w5`E!0{m&hjmy+Geb(yz z+Erc4ZEtkcGU6JVhU7jJJx8Kh459G(3?7mj7wSF>p7$vnr#|{WHwQkuLgb;w@M|je zIdFaqJ@+;4qUFA{kHPr}^JnHjb!pk1W(QhbYo+1F$j1ly6k!$zM{}@3j5_gMOZCm+ zpy|Qtc`N8JKY}kz_^i&p=OC?b5eySPVwLwHiV@A=gk5S^p9-6Iey|So^dI6tBusev zpE0%N?-LtkV!rQMhZkx+=Ds|?I8I4UyUOQKSN=#MP=iu@Qv~5-h_S!0ZMexs5D8m@ znSP#6@Hn|Rp5zqPglhOI5`u17^?JIv=w4rAADy#8UR}NJeqyJ{oI|wtdFHza&ovCP zk4X?saD27u4Hf&Z=KmNZ%shRWb6KGgUleWKKD=`Bist zbJ0ytnFyYK-%Y9ClwC3lgj{F9oFFVa;T<~1#FdA=E0ofn`yRsjeR$^Wp||s9ifN*` zk!UH_D;0*CA92O6XP;QJuVX)=)9n$vQpp9*ew zBYMcWXDxYoI-B>;Ud4_T=Uq|Olzz-zATBo0EThSe8+Dkv=V&=*M8X((vMXZJYtB*R z2)5c+MfJ~#2-{Tur~-f|NJPdJ=2U2AZvc%kzXUj{>k}6)?==cUUX50S@jrr)WN)wV z3y|gKStC+vg8hPpIp$RUmJ!F8KAMovK4WnnuSX92!8owqI-~V|n8JrZ+AHwk%%jwC z!DIgjgV%B(tIjq&omz*2&2J7jB*#Q!=AHNN4U1o^+Am5sPCrXpb5a&fMT+|;M~$mBsUtd>$R%)!J8fT*4Qu?l^z>3#P(_V+>z$kM3W91N5FlAE+-s39VUvc($od z|2kB6>*u~J3{{AD1K>6e+L)h`Q`(oS{gHI=@rZez(D>8-ghzayfIKJKYfLlN0>D&z#iSZ)aM z8I0Jqjy}NH&A=+wmzO_u-<*HT&X8}rHwgbP5wh&gI41=2PG2AV13}I_c9JN%e}TEI z=i6U&yPOkpv%Bp63lmPe+k3Ifb&k~2cHm0TTULd-di4fVASWIi%WjP;RHf#I$d=W8lwJojV*?puUg@3vWa%Px>x=<_U(mzV<69M=-KTh947M$xkS z)Bki^C*PtFVP^sgk?ZZl?kAKFFS&oj6xA7dJx4_P=DataJ+h;s0|CvfwS%GVQNsvY z7oVF7kzHv=c(#ioYKNT<@_#}81&7&RAYgm53oeuocZ`&$2qRUDsEgQV@;OB*;4YjU z-q&pXaKk!)-&SH=l^V^;(#bd3L$bM}@&gE!NVsWoq(MVln8R`x2+W&cI;PuW0{jjW zWggoRN(&~y!ilr}>Z|g`eic@$Lw0^x9EZ2lKsay@!K&r%p^!P?xoF-?i7U^2iLKfR z%AT+b<|AifzI^#Qcet>UeM0^T%8w}rr@JF06e1`_CVT91K`})}@FZo@u|`xx)K9@c zb$ebFQxN90&3ebx0Mcpwm4S#TPXU)}&ep~Q$uIxOax;JL9~Gn5`1Xo5x>|W8`o6fD zI`YD!UWgd=A0ZM4e|;GdPQ0-Lh`g~&L>TaCsc9KwN|x1QY6L}ijI5DVd=JXRBTbfN z+mz`+tF4)a;4>v0M3I#9Bhq^0EzSIv<=w7)yy6o$GE~xMaPwJP6FFF9WX;yd8Ymf) zgg?nQZ~aMT0wvxt*+5%ilc}GFqKA-}{v(COCL~5(d6`evIAZv4U2ulT%_(PByyi>{ z`unpt*X$74=?=a)=nk(Ay8WlS-R=|mw?hmdZu8!XI}4=fq$`lcPldA-%luI5kNIlL zoRqfwIK{Iee!$hBf{I4UKmxw3T}B0oWSFQ}sO>61_!p2kn!QrVu*YsccSU~b*tqu< zV+cwil;Rh27Kf1cg7db{F_pDLXRLz41KF)#95T*sy4X=Cdmg+jv#4)Cjf^DPeT1Ah zMK|V7LU*jhE)x=+vAJkL1-zyxa|Q=4^S8PL<`McnT*U@#EB66slszB}`|5E__n&vvdiQk~j!Fb{<_}~(jG7nFR#U;T(LyZ1YecJkLcQx5ozKr*iLv0I^$nG^ z@<(4_AQCb)`-6aZ{CVWS@4^9FVm0rvzv7ap)?P;xnx3&OvI66bABr>E7`CB_musA_ z{3GznHcG18e=c{e0`@&svvLKXzonyC12rycT5f>xLu@3hLkH+5`)Rm~#41|+7H@oj zB*0K70WvPB?g1-9<{iNFRhEV`qu#Gw;vIlT;A_B^ToL6a&c|OlP<+(a_|u$7;U|X8 z2I|+zhqf$WTLm#ubhsc8EzVhVR9;hWg(QfHtsJaUzJKhO#P2 zxBT_W3l-p%VE%ire5#S82t}0TaTIKu#&)zK?i?X{XcMcis0W zL;iXC&+a>vTc_@n0Ou|WgD*I5;va|qCw5V|s$&N3C)0!Ocy<`Vc@H#qx55D?nOp^H zI)%qBhMTFYW!Vjaa^>yS35o>-H%x%;5FXufFI*)Ogf+SvnG)NxLr(&yNM(p+ zc}MjlnS3Z&RvvVIO}o5dvc~S034-+b{#UW1Wp4)o3}<I z3xx=Dp52^Ryc3muwDaq$)9(1Ee|CHCzGG7rE2S}ma)}L@*O;ez ziQxSe?lqc;Daxz84qN-K=H)$@yGocceXsn>w;>f2`ivciAGJGVj!vW-$>YtF6|ls#Jr$58o1Tha8*0{$qx zTXIJmL|`XJc`Px;$;Qd{AV^F4Y;VC}p8ymZq)bh2fqUh|mt7uVUu@3qj=nEfUYb|N3|`p|uY|2qx8(-{Uhz_(+U&p_Fwim$kk7qSa#xrM>Tx z0_)N9An@s~qAf5cSB)C#XFuQ-u~HsBWBPivI3c`~Bl^5DU%q)mo60nPMTmeo&c-OE z2>nc!pZv1_5l@*O3X1%AMM->niK)I5%n4qpG`OHo~_CofDfGNz~y(S)P;H0@iWQxPMju zOfi+KkZkZU5-Ux(UvlwmeY|orsv}J*H|zr#@0}wosbiR7g%A}vNtN>zd~PwJUq-R$eC z!>uQ^Ho5GPeLhZ95%n+#7YRA+Wu=T)w zNY6S*kENv;UWYKx<5hf0z7J0;d1Y$OfpbpboLfj!;|{Qd?Rg1E421!i`FjXF)r_lT z)AUcAGi#=p@34-8)K~5jad-X+XNR71z&d01WWl$bi{zZ#s1VWYvSWBCL~sK+I7%sk zo9`0vUajz|6A^uTO8{dUJr(h%bBnXhjlN@CtKfFj%GkAQBkNk)2LqMyeV~U^-iLjR z`TaOh(u>bV!N)2FN}*8huO;YX@O&(7Max6*mX)1kK|Z?wIUKO7^IjWrTGY6!#qS8& z-^rmVgO#7}uCj{*tLeD?sEvWPF({sV&uZ^~F+d|wn0(1Vh#(S? zux2JSx22GNTxyo$uVp8l;U5xy*03(r!;S|JetphC;QQ=~SdmvH%pM{b|5QrsPdLOCg~;wU zW<$WQK*Na+mW$XSau+5&-d&!sOJRqdBABp}Zrf06Pcf5g97vHx)l}CzY8AizO5>O* z!3UD#4k&Y{;6>AI*myxH!hyCZHdKgAQ6#Kb(HrM|AQaccmFBa&-1VdgX@WphQ#>~) z4bD+~T+z0z?-@M0!#?~K-O1#Dn{~UC z5oe?z1lvKWv4cQfC55K4RK)bn-FjN5pd}pAIYR{ccHsMAm}dE+d%+>`GX#_8H`=tn z;0Z9%M4-8FR|g7$Z4?=E6d~HTw+xjpfmah!;E#4dQOcZf8h7lN8Ni?Xm;S zb4@Vu<<1WedAAA^Rwu=ICmhB;j@pLgID9hXk?Mz|+S&j@A|47l-6 zv1AQF^rLG~<3R7P^2RinSn)mJXY^EA0}a`4M3E%sr&ZDvea{*#<^nz%GcYhC6tN+l zEv1d$z;fHRazhp4~A*pL zOTfS35+<&>{kD0z2tal=?b*NP%C zUTcNWi~-yGoGWsK(s$wRGUD#LvXJ)N8c-5wb?&)>3B=>J^mN9+$;0AgV_^2L_h2-q zx5e5Q77q(!xKzNlmwyTG?8O~=?!egLe2!hlls%Lo#?w>7&qa60*-##se&xaH+;~utUqH;d!%lt6L9ou;bRqP|k zXM1%V1J@)DBg#VEa}xakaVpPMuuOLt#rJV{fvJ_KG_cO5?z}f zitd4{sCyv!KRH_Fwl=oThJk1Lir=Yl;9ETMnUK$=@~(%5e72B$jzgSzYA#Y8iE}~E zid@}#b|a>#FPYod?Se$D25_e1gq{BrCWCR?A!u{O52zrvD*0@Yxh1^&*wFvBg2KuxO8mxoD@%y0Me4)?NL=lcUm|Gq@Kzt;7DBE#gqt*l3-TlsAv{A5 zGrwYo!#TS@6!hnsQqH+x2gHA${7?7an1A}$={K0Qx>CwJ|{{vQlBEf@GVW3!M8gL5Zir z#8u+`1*4>EPsIY#P*>V&*6WsAb6690gIrv^?PeaD>*7`NF0V1oba~oM74*^oJwW{u zq-XAmVMoK+78IlW*kd=%9CKnjyZhY^N`pCq`xyfLG$~^}^0wAq)>Hn(86pVWcCpw0 zghSxJMyTfXWQi#*$hf)1G#!^p4>nA&GMm-MJhLqhJf5*ad*;d<>0;&fttP!FClpcS zu}Ec0zUhYKb(9Z$(Lq9_CA5B1xWlQoZG2v#UW1P@?#Li`DEe^;dF}&wZNzmYK&}iP z6;a8$`6(CEb;<|G9U^YaM(HtqhAFHs*a4#b+FKNM&!2a*zyBA9y>p2AKmNu+>MuBl zgu~?7v6KB=!)&>rYQ?w64JYVKo+J&z544-tE8L)+AM#kg?DGsK%+LLf!R*h5%K)hr zHwGMl1|M*1ePK&6TcH?$^${EO#M^KS7k3mJZ({U0z3`U!$|8oi%o}}j;Ut7N5Ln9On6S+GKJ>Fxy^XYoLn5cEiqbmx#4!F%XfGk8CySQ`4fol__lzBgt3AdTXz{G58^)riyT{#E`(JaA`ZLau+Go7+ zJ;}QEZ8_*oWW}GpiqU`}3wNzrfn_7+!@*W+b2eb_Ll<$IKlkM;ln@VR;8X74bgZ4+ z(r$RyuC6XPe};a5)djb#Fm+B4PtvxD(8Ozku*H?AQBnH?Z<$2D;Je@sle-xUK|nm^ zIm}SNxdU_eh}}D1u<+nm#U}8!V;^TCN*qBWZwtx%$8DK$8R1oKh8}+(Iq{a#*T_9+Vi;;ZADOwy-|nkFEie}qj1y>$mUk- ztP+wF!UsVOb)zFQwJahCBn{@#S>piw^Jz8iukosQty^4l77@>neDMw!P$7-Tf#aE6 zzqtLQD2y4Uxz(^D!uM|M;`H0v-NB6Qn#IVCMvrK z75CVwpzzCc83b}A(X`0lvsCP#S!D_CxpM`OEI@#k)AS;>qq4 z&JKCnJ==NOJweERz$#egGfZl?V@HaUnph=5>r!B}r{JD+{<*S0a>XV+Aq$5mC{&Ix z`Ly3%qCoS2a0N=q5i63p%vtr;4@1NhslxV900plaaKR{i@-}UzU!gpGvInb&P55ih znc&=yi8qRorOFNjv4I#+>7CJEdr)mEL@v~fi$zv<>E0ONcMh3^V( zqz7Tn3I;6@{@$Umh*htYuMo{0A$vTReQtM%%-IPsLl~@ZEh-#!wZ4$z!{@TLu|tI5 z4!qZ1{oOvhZRF)S=Dc_huMjf({1*t;++DGaf?#j!dAH58^Bj;RJ5)jm2CRp$tBimx z$>S)drq`ATpN*3SZ=(`2T%v-eOi|PoIT~C-x&kl(U#x%kup1Twx(Q<`t@R9ceKhc%+ z>4jalAsBgku<|tUXp^Jz%Bx!#Gs`GM;%2&UpM6k3@sLVEZiLSzI7dJ4KD7|uyDf}v z#T_9kCqv<;a*{r(I|I*8^hXnvhzk_w%!?-UF%y)1E6(=u(X15I+n#+8p!6E}A$8!0 z#t}*Q(=|Td9l4!<4I-QX12|TsqY$}5F>~?i0;_tQ5#(3~!2UB7myA`rN1Qvu_+{L0 zarv=mJ))lDGJPprRWBdd$rA4uQ7V$cB$XYq!?wIKKY#g5d@kNZHXJ^i?5~aH{bj6( zb3{VWOq`dnYqxKOw|I0dJhIbAQX034ksB4mrz><@lkWOr9|eL$0~}&34gnWF*mt6mkY6EuEC^@<`bZ?}lsV8Y3jm&?5TO;vSa-mqJJAa3+Z1=z3pX=O;G zJPRcfd{QB@;9a|XL;HAxGVS!1okqNWv>z4qOgv&7vt8M4Vy9VaXUQn)7W`&+B#RF2 zwix@^k)u*->z474`Q_1b6yy}T#ZJj7j+V zA35+lbD-XKst;ABNB2Dr1OtQnK7+KF(D+G`sdAnr zeY8O*;*P)p$?rOUD`ajFR+s@bBl=%cvPB0hbNkf|3mR@vc;Lo2wh1gA!8`#I5z55W zb4(dM2huT|2H%hAmZd_(c}%ng^4@!ilzdTWcw4;(;Di{$e->X=NqT#}e=6bw;kbk` z;$K$UpOw$!n*UY&pIsqxAEWXkYDn?J$d741^h)ue@?(6v(#cyGZ!Z-hTL`P>bQHSf zS3#m*cdRt2607|9AgjocYka|sq9d;IJOnd_fAs%#IY0}E%4KKPIzpZ5EBn4tj{_&K z8Y_BNp%mfclxPoGpH0rYt<_J+I$6bghhpRU5&^QWEZ=CjP{LUoK;cllr(Nq5n-}auC?^FfcO$)Or}jE(+&2@-*NtjX0GfLPH#@Sx7TmF*O#xl6NLO2t6;LifvhZ>zH$cvd3IT`eXzYBf}0onFS=*DtY*dR z6Y}-AtcfN=ViL?uC2Hm~b24PXbv3WCdtq9HeIy96=fJ6WkglrpIA6vMc*+-b9x{N{ zRx;cY)K9qZWj-=6@lr^?@~j&aA>GAKXc*X8!5KH2((+Js59Sts2w`z;#@m>;+C^F7 z*&Wx=tO+foH*60+?RMD;JZGXe1+U$_3W-(Y^)|xF16H{|A@71VKj(hV4iQ9P-68MR zE@ncu5bEUa6f0DfYHkIkhdPBq1tIf+?po^TJbUCBw>679q>2chlGSGB8|_O zAs*b$gkv^5Osr+@L_s&VE3bp$4ec0PL=iFm@ETFua`1dr_OTOY@`Qfn2Bn9))ZCQ@ zJu`NT%>MQ@J4fhu;$U@lAPB3OE$OvD?<5+}`c*Wh~}Y9prMv-QOX0F5eylF@iK zV1I*PQQpYvORV@lLJyUV_yG1NJiV()xQRQhFdesY*HsCP6_~RNa77!_u5fqFv*op# zo?Uf2w=YqozT*A3>~;}Y&dzwxwt!ompo~O8;x4JfuTpWzM^hZY*d0I$e*f)r@*&_M zOk>Q$z@;tUeE|$*mhj=tzl>IeGazv_{}NMKH)k9U{`RuFJVEK{mVb9c@SKibaJG=m z_H$j5IFQqq(kn$;OnfIQlfOeH0KE%$vRpB@)Wnyhx|5B2$~{AnJXJX&zuc9B+c(412=+4Y@8kz_v19r=vq?hM71 zi~rK>A;M_{-FGNx7brtQ@ltiPzI9hzP?$f7Z4}X%<2&yYe*daCkdC|-(O)vCCB~~~ z|JHw1gPA(J%hmI%?r7Ig&PYi8ol}!9b_CMSr`MSO#N^_VcJH}MQC#$6_GK_Tk@v;w zQ55E3=BwEOqa<^G{QHbCER$lV$S&uO9I=B0#T#RyivsEzD6W_fxKVXzm7qRjL}sR- zt2of`kQ~B?$V5i}djtt9syh9;! zhhQak95X0}vJZRXo+mX!;jN-yfl3m>)1le=T@wnCSPZ}zjQPlG-sfw^c>9RmCp+EV z@ou-ZqghOz6@U3#lx2ObO1w+q>5DM*cs+99kHvxLd>Tph-V?M%SJK%3al}{7b?EGS z^Ig$zDP!D`GLBf!{+A53&!6DK&?(jgg-(fnF2^ffnPXaTYQ&H1v+w8n2<%gM>-pfu za9B7;W8={IRU1lr{q2X#%J*J`2??KWTsSS;zjLLG>S)yxxACv$V@+ z>m0^8U(C^&zcC1}*rCb_pZ1u5S>ttaTP*oJdUO${v?wrp1x!nH%XcggeEqsxzIu&$ zbas6+@AI2Z)5X($%OVTk)b9R{b7aXM$`6zz(qmJaIPc`&E9uYQq|E}O(B28a2HR39 z>QC=lpH}+^>QXhn2g;~Q?sF4y4`?R;d}%$Jk!Or<>>q(VdVeDhD4+UO*L{kEhm-~P z!CH8H6rvEhLKt>|X^!*r^WMG0cAoLqtaQ5JgHk0)DJ4oFvdy8hyG-!C_po=qzrWud zVAI^&@D2ySsvOz8ik`wZP9N7{3|Ia!?4$objRQls6~4_*)5rmYfD<@JGKGo`o(e9R z+D)%mHP5br6$2c*M79tROwRU!KtP6o`EJgtd6geaT+b^8=VZzN$!>%d0_W8Q1LiLG zHo~+W2J0#_Tt`Ga(SI|YY-z&~k1yyh;+q?APCw0?)6n(0fVRIH(mwoYJyJAK=cFM+ zIW3mLoES?*P(rd0Jyn&t$Z9~zr(tSsa^VnTTyz(#uk2pmyy?EX_y*z2R)}_HxHBd| zJD6>f0(XLV2FB~F*P#qiA##dfUyR%ATF^w)oYj@CUOn1*(mml|@P8bA)&2eGZ{3&s z&%#tzE3tQy{;CD853hnkjp{W+is4FeWE0Q@N0KECXav}>_xzCwkvv8WkU`=taskXD zgi}tm6hT>%{b=1x2wko8M=nJ{*gxC3g=j*~rvl{18j3y8Qzn5y-kIi_~x-3$fb7J}aAD3rG5PrKvkVfSpg z-yPo~9K)>K7Axw*1f7DO5cXuj(UPsR_2Y7(j!Ks;cA@Mc7@gfryWN{vcXc-HE?y%9 zdWm2OVd!FqI;@`YykDRY!9)~FtaF5!Z*JM!<>VNFv=dfYDbKv)3aP7%Y+(wnB!RLu zHzf)$V%UNww!Lx9HBa%*y+{Z|W2P$?qeRLUh6%G1Vs_uy-d0Z3Td}cmM7%*lo{ivutr4}6UQcu!Eu`U$ zX)xkc6`?@Lzzf_&e;gO5Y*FKAv>9AbE^xU!P}eefU)8^W5;sq zsyiZW2PL{@>^hVot6Nruqj;U*#>W)q-X?pVH8rBmW>qvria$oa-{)uSxVGgt2k<$N z1U?0`H|LnQd&gW3rHFGkyNj(|4#f83E}mIm;HURUi}mU++Zb28kI*ge1%YQP&kDN0 z%+LwSn|JJJ;Q(_5`Af~=(do=-_uJ6Dg*)T?qfnIC$MTN(4*PLDVX?vlh4_RWa@{$7 z0lQ)*DuLV?!(27qUlk$pVGC1=Ta4XPU~kzy2N*9{cgt%2#U&rZ^g}+c`5xuc_qekE zh6NH!+d*6PC%>Kd+WfQAsLJMZGn8)?^pQW`Ysod%wP z1M)haeFTW0cVg$<<>HdFv$!=ONqf9rUWIZ;l4mGMwn&>_opf7gue+_QpXh@T;9FQ5 zYx4buQZn@YDS15?O4Eyz8RH#uD9;Kx=#JBot87sH%gmSJ*>mf7@IJ-MLhFS+2A zuJr30Y8dq*D*BxOBCXnvaQw?p>l9bCI{~>P4KJ=&b26~;TWRJjf4OU*4Ruf?0QU+$ z#5rd?uUnL5vvU@Wy}9aczGsIf?;j1Cz6FJdN)Z*V@M-b{!HVV%F<}?y`N;Dqyjliz zqH(#)(#0M(2x+d)QHbFB4R!S80j9X_x~+Z21kM!kFWUG9vDwyw+KrT;+t>rzv8=^ z?_$l&K4qu=A-neXwwYt`jpt4gvP@WDGhru5e5bYf$#|~le7EMjLmi72sawC2){Gnb z*P;H{Avs%D*5M;+5_4X11!#lM$3^4_<0h&RXo8JkMaKU|%zNQ=S}XME{vI6o)e4dO zi1r2iIVHn5pNb9@A*ZLO-8(d-Z{NNR_XG{8ai;lUT?&!fAyPX*REVhfPyupubksdz zdL5J7e4>;iao{ThYHw_!tDL72Nd zJcxU-jSvPHh2p2Tr`?;q?UJ-4FDqBG+=zqXN|$(qOWxWXjb_1oO!W2Npyvu@{KV@8SH6(E~TFxdmBq$|o_ zE-{P6nH_WPJ?@Dv0$?YHmSn#^vkpA)TX;5M2jC88R2(4GJ=}ZV9qoPHUG1^@ogE!} zC^Gi%Cb)Oq4tQtorrM!}t3aGvHgt~aMl9v2^+Tx?P0LyRQ)} zy+-}OA<*3y2#}^IuI4Ygy`8U^{2q62yNm9Ea;7fV=Qnm!|V;T;mnB-$Jen{IzxE_c0?PE6OfL$R>(xb6i35&DQWU)~%(PXJDSrBhuVm&yy zV-5f4igsz(%!RLc`yCJafMObvKfoL#(Pb@%_*ElT+nnENxKhLDNMp$`@67L!zGlKQi?55ji zG0FU#chELX-?Ky*Kf#ocyTw*0^srOab%&Z{q>X_>a)R<82r3Cg9K5uRX8SFu3`I>! zIvts_dKDk@D7vFKR2|{|_31U|UtD#U7o2Cpd${L8;qGuC+vmGR*sD?&mIDW#pf)ON z*Xio_#U%<6gvTc@nPAA$UF^9a>b> zZnOG+e!y8F(t#TO`kLp8LL@%ORpfY6r)>J|VT`ICRgNb~eJeiRJD+7fVPS@=@r8&2 zkN32m_W+na(L!4(Xsx3hv5!(2^6nPXktjS)*fr^WiBe<%!!?<>1syvmzIU(Ax?Scj z`>*T9d2vlUx_(Q0JYjKxi)<#0ha5z+diOSVpKaY8cXP(H?VacJ&&>yoovHMD7OL9JAC_ zMOV1FZMY&NZ$>yb;Qph7^096i(O4Z04=T-10pe7R#dDf6U%Wx?f_%pB(h2K~nAOBL zXMS(;{T1_Qk>wS*;t~4{>cQb-KJK|7ok|bpp4}TPg?#f}xA>obc8hPn?^bWIwBWZj zyF(_&d~<#Myz7pTWkTeVF?huSp2;c7nbVW}o>d{^<)pxyE9OGYjfkjV(U39s{Wdlf zJMIJdL&jCjbgK^c6Izg@j=Y&GBZl{k&VCelrei zNaH?zxqjGqIT`jYlUHRL%bg$Y2vPA-3K5ke`p?eJ-cyE{FDBOD6t}`NO=gKlrHMOA zRG@g9Uxmow;bH6=QEB2X5_gQ4M*(Ghe8mSC^nK|17?=;`e@y!;a3CjWA8sksGn)M- zRIc6*K_cms2?AgQC0hut6fZc4O*z1F#>&14%8}K~ogdid-$S6avrh&-TpgGZehRxn zn6RAwfbi>Sw>m@sz0YcV&J$sD zHpBO3`Zpt?wI{@^hPkPfrLCm}Tmh3BRtj`~V588Lh}p6C9@qao(`&rsHUdU;(&0R_|UR1Ug44;yEIoJ7G8C;p@AYggV+j!cSiVy>r|r z2q?cmuz!re@*vD*(I)td+DKZA!o)PflGYX9^Q4C1_6EXd2%7ZAs!TaJ00Sp ze}<5j52JU|(^wcxHAj06@!YIKWXh66k#Dk{fOoqR?KKks06+jqL_t)1@UB*JnG$1~ zxZ?Sd94(+PL--72iy}1&O3YP_phZO;yK`3C)RR^6u^JwJPEeFgXxCNC$ezTCJferP z`>1$NL&$2B09j-LwBLK88W?m?C)-^LP4Prnw@~z+in!kuY)tR{Q1`?RnX;s+#1NmE zDhyP43v>gkc=|2)nB`lZd_#Nu7c06^i2I`X^t9v8uBUiV?8cg~3(B)~W~{p3^2{mT zk=cSc<29|N`6gE8hvI|xY{hv-NZd&$j*l-*F?rcbMAxCjIhs-mS3@Y;+DMKIwh>!V z)+gGC9fZU;C1<=-2v-e<&wzaJq1W= zA8Y|>R;a6R_XZ*F6$+e-cbB0MS(4vF&+m5RC*#2t{PyElg-E<-?v_&kFYhsNiRru< zyF|7y`!_>THFH4&3f?KEvfQr*Q|KRASxEdH&*ql?X2F>|?*8%IhHK6(x)i z4pN^{Hv8wu%T6_Twt}A?P#;2Rl(zG|8+5+xTG>T8re4w-`aS@kD?)8Aqgv~YOD+^A zB3Fw~0H1QCwyb@&29-{ZFP@)t&ADecDD7hI0?*uCbIN%(Z`kGZ6FWc7ZkfL`j^3j1 zmYgm6|7{AmrF}2h0lPwpw1skHhc;}plp}t_({o*p7f9LH$sy~SgrU_>A z((Nw;bsJfDEGhk_RuPrewqB6tGT&Ob09&Md_pYn*XH2H7e05`DZBFOZix%ip5nJut4Y`ZiTBQ}E?hp1+D)ys&;Tn$Vx9Fu!3uy=4s1 z$f7%#>Dk)+G;3}?c@)EgoeBM*ec_BTc^k#e6KobLhiZp`;0aiBQtaMcu%72 z);Qw5AVLzNuJIGJ{q=rYoqw)k!JjeELp*s8aGdELf8i;2?G;^v|42&L@;nAU4+q-k z@vlQ(3W~xK!pe<7$vBlEn!HkZp|ZjqAl@oKN(rJOL#2i=!j=L>#YgS#7?)RNsVFg@ zyGX?CE|W5&r3o#SBJLb{{+yNB*gtpIi0P#mk#=!;jq&TRc+F|r%;9{_&P^v!b;+a=24CrEDt!`co(5@jJ%GL+^tO;${G-bKYxs@Slp0y zn>e}x*syT^2KD$%Fb+4I9+0?Cb>-yOGUQ7ujVdV+8C_L}apc%P0v#%T-=q^0B?uZ% zIj7|{CTxB<|AxcRzw2J15Ya~YAp-GZb_g8aDUg58)5=58&2#PH+Dz!Tm=xKk9Bm(W zFZRCdo?$9W#fYZ1REX?jzUGh#)E<&7!}bw;4p2Ypmwj-XMqrOsUVaUohi&D2NSr3f;9OOZNUuYuiLt3{cVjA8%WcioX+S}hKL({9?lWA z$Z4nABf(^cvY8|r7z8M64?)qu3K!4SxMZiu-rtxwe#veP6nZK|_}rPIJes2j*+nTb zJN==%JA2984VWG3wP34v%VTLziS%)R3o;ly*QXGIl?;Vngo{vx~S zvd=4@h8|<`nHw+3`DhS+8PT45q(r+XH4u?cL1E+Sk;$*|feuQr~ng_UJ6@G)E8Tjno zv5?9TSB`TdoehC0d8~dZQnQaT=JQ?lU2?0hLlgz?l8^}LwQp1*vfvC6l_Iz7YViz) zJLsp1@R2spyN#jNfSJg1-mM&a?1SkWNZ&$YyrqDdgY36?j&l?q^QC;w@!L0K$pBP9 ztG_PK1xkQhc8^@6h`ri6!_*??_?C0x5n^k$>oumOP{hVFp^w!xbtoh;iQxGr*6RH2 zRrl^kc9-xDq8>&u?AcKYgz`u%_;Pf)(SMJaxQ*~nXzC5{*BrDycdD|W|15xYcC zS_8YF&tLk{PvdepF-;{$uMmM6$412ajVAls07xpMa(Fi{D-ivpJg`QzVg9nt)xZq} zVB{7u(HWOjPM`cppTEM@Eu3*_pC9-cE$?s2Bz zG2aJU+w5MpPyCG6nDrLpXyUc@7%EV}xb}$=Y_8z~8xX9;MD*H^$qi>fHh&D``deg- zp8#fi5<{O@Kt?`Z#R1tfV$s@Du)*05nbUd(-0}od=HGL6-;dw305w(=gv>>=!C^Ys z6-N!h2xY_1yY0gQpP$l87TZic8}1$7%-_F^-66|w*&)suBHhI~`1iZ%SM22c8rcr_ zl(QQrM~9F~-@#mRdBPcNdpo=#(B{HE=kzK?z^{xbZi(PF&u~$nsMjcNv( zzw#gga~`TQIEgB zEeC$}=&`8;kbL7dC%wk0v?yiBYhL;vfBdo2{RwTTiV>9|b#S_P$|P2u0ir^rlp zxyEeD4Yzb`!*@+;J>$8(*#DAqLNK+2GGL2%l_lFMOnAPo;B-3eb3ufNKuBSu#HL6~ zJN6-WmwM}l+f*T0{~(^J5YJ9?q6!%Vd)G2(ww5 zpypKC2C=(DZG)9q`T2pf5FG}m{bM zUZV_QM<9yS38t~q{r5eg9IQ#Y8!(rizxEcXKv9z}bDR>!o2w=eq~mv2j6y1{0DBG5BE0SHRl0vc6- zXv)jG%mAfXEch+ayz9dGLA;Oq~X5S4> zaNVMOLAB9cdd3F6E6k+bvdZs{^Hvt{?d}vs2hV7WRr=E{c9+a~u=F=m%p!PL`z_Dv z;-^6&veF#j9(1^ai~5j_N?Td@;PZ-_5>8LnyZuIs49(X#+A)Lr+20dwR}!rAr(LF4 zFH|4hIlE%s(0{+8ACGfFtdolg=*!<-yu%6v=EFd;k5YP{zB9~aA*|n`+$|b%sFc8M z-w-#1D(KpZ8}7FHSYncp{cKb=D&-qw&l{~VVx&2%YmU6lAMZhg>s@TUF7*xg%oJIO zYUO361A@3Ze;aC$kdPxu}{g@i!hNAIvd|XjPO0$%Pitm|-0ruSX92VK`uWv~7;t<=Ed7 zT7Vfbe&-`5Uxo(V5JsE#{TN>n84-c8y%0mJy=?X(0#$tAsK6$=^#aDJe{8>FusiHo zRB(!N{S`a%f4uN}OS6)UpLR4{F7V1(12Zb}IH&ha$1N5F?DB2(Wal`>lLNjnoXLEy zE7|Y!(KkHT;b~cNJ&bfK1le)5DuqAClzOP;nxk@Mp1u(jNVzR}fF>c34m2jn0MW8M zI&wfhHeU8D^+Cm$K4KB=Z>79Yg~%C;=3c(;?l5UJ;Tv;$blk1Jzybo_iL1SucMW+9 z@AwIXiAv^@Q^xJ3=1@I5goSuqjU>e;8 zui)pLy5-3`mqj7_VeaUBo`rrf(YAQ%0ogHqk2;PBkfxxkwH3idIs(b4KkKiL(Awy( zRm!-id1FAU;2KQ6-Q%hcZ&S-lqFHhbsLbV#bLy|&oV>jJYxE50GE;>gLbZwdG5pCn z@L9%>`-E*ODpYu=_)r1z>eZ{b^&77;L&Zd$^RdOppnjDhx`w^S%8S}PQpyl_ho}s( zEb*1nL%(LZyv*;%u&}0=@Jig}|KwbLMEDosz(YON(39yKLYvh#f5QRL#7SSQu4S-A zldth$e$nlGA^6Y=J`{OGbFA5Vsew(?85KLm0Vuhf-i~9_dKD(Sf z!s=6`1KO5euxcO%MoLy-puEd7uD!=AOM6NsK1ghIRfXWY-RVKMk3!^-)k;qg zY#wv(Vd}{pA__9(dx~&!n03ygkj;?)b(J@UQ|OD`BbC^@V)BXjiIA(7t(|!id;a#| zc#@5cDKR0+n1o4xl^q00mLDYTmJ>D0QV}v?H7QzW@RD~)9~zB}azoII5Vpf)4<>!O zTTR43s|pnah*QmG@!b5tS^6Qv?wiHlakn`BFYd2Wu!Gr^DGHN0f}c6NYCMSD73x#) zX+w2!h9DWcs~rc?#X;gcrzsQ0m6KFfR@3+;J}V6gagey?YY-AI&skmb7BfYRLn}>X z!3zaGahN!h+X)KvnTOAQ!C`i+%9&zr(Rx}3CpF$yH6}&!NCrkjA~K$dZrvt&NegjB zQ>14~{8rj#d?q%)C@IU8=87e+DM?30ZkC=9@uVW3ttLJ+gQSAS9eEAps(AAaEvpqv zOwv;&nzgP%6X9_}0hB9>jr7Euk@bESc<;hT$8zuBX`e9m+=G0a{6T-!t=ti?q;0;p zfcXgXDYOdV1O*0%sHE4A9{L>5)bZ>OO$e>%PbNDkH{2Dd8ANs`t!#I`<9s`<5R|Xz zZ*GaZj?glwBG zc%M*;q-GP>_8k<{GFZKt?|QyRwtyKc;HI$(4k+563XwFSle;X=+39e>`33H{P%+}z zBgSm^S#6O1Mpt9FrH#C{EfvP@qH`sxw{iAenswUR=U{Hm@z~l%>4BLnSL6$Shf)L` z6sX_x(xiiJ@!G%Kn|FoNq$66uJ$E0ohzt zwJpYT)MG-QVod`sp=C~9!Izd|Ok`_m5jKr-6joiaBl0c%^Y`rVJI7Sy0!5w5`Ad|0 zxAw8{cFuf7^O8??IO_?))eeg79RvY8?2Oq)qrEe~WalLd1>lh_5UwzOVk%5Hgk4)9 z^q20s2ETm*HRJYoh%ZQ8(-OvzFbOyQHN}f&9PK$n=Hh|@0lQH|<`5a>jx{cV# zSW&uO1ELK7%&+}$?0lr1#!yQB5Y(W2T3#~uJ7<>%JD$8Iw%_CZZu?7l&b$ANF^q%M zgVCOw#Ug+i2dr;>am+?ETEsp(E?tBGW5w+?+n;vxUD_^_7TZE_Q$|G6Ddew9_IH23mx3y7@a2H-LXqRSrW=+$9}KPCgroVHg|jr zIhOj}>Kr7#Un#@7dON>Ns{t++V2oru^mcyX0)v>B#~8I)f@Nl$Wu-sE??X!A<5e7x zKk}@8!*vqNGg^7hrHkp@nZbAGglF$UBNqX#Y?tP&7dmhdOk^!o4y71xyTJ@)=eMeO zkWs31ac-kIuF3He6d_nV_&dsw7hiYNC&$Fo!YO0Ld0rN^WM_ywNrXq}nQc+rw$*U; zb6YX4iptRN+ma(9=Z!s*cGBlE0rUj z`=OG;vp(F-QMZZ^Z_Qdgq!5Y5+IEN3&X78M-LSWck21j}4KH853OT%Mls!HVtjBg_XKAQ;=$j1aG@COxnP-En~TidB2A zc%LAgm>^JNi7v_zlmwv0k~zYORd;!Xz=b>>QoX~fza31f>>yCt<$Q!Wt4v*$8G_v) zQu>lc`*>>=(cxMnFMlgGBHjzO*iY|JEK?9Bl9=6F@m?c{IZ;8u859@P|3=dt3K;o= z`6=KoDym*ck4m}V^Kpfze+yg>NIyYn=;7#ZuHG^+XW~Pddnh+t4}3#E_6}1Z9vFL$ z@bZ9o4^TfxL3QCd6#UJ0rg4D!A?Jg5M#%mQ6Hf?tVzn{2VzoSiBd_9Uu(MX|wx(pO z(F?WwftkGeh6$FFZTc#NYZC;N!!2U_DtYC^I?Ez9F3=2@JmHEW1Ap^JNi6|HVQ=5n z=(JZ&SlMnvlx`zo;_s0*oYG1^&JHF&0;uF9c8@4vb%>$O^1NcZaFoWnUOsf(H8Mqc zw3?{!-tU$iG{1cIzq;ko3*c$jD(;o$gAfX>P>QTBSd9a|u+#d475Un1J@gQ}C*ADDmncP; zh(5&>9fvEkMTPppE%3TnHs76mCh|~w?%LZ~@jNtRqHw7vzgv&3|7x8g6R!>M)VW`Q@m*)876c737mJ#0q{F%)$d={zH+8(d9CPC;TdCE zToDwHuobHt5x9jx7YLk8>AI{o_A;Sr`P%8nbX$FMsN85b)pfezKnRFZs6g@`cr z0KQe($EYy9yG6LcE{5}$nAkxn;`t#f-k0dV?8#u5=CwZ0C1=Gwa5x)HmNqWc*VJ7b zoN&S)f(Uojz~ULg-z@~myGQWvfL&>P+w()_ zSD5y@W;Oi{rlIcWmwlf0VVFsr?9i`x2GX3qgp)XDmwd!JZl7vu@di97L2lllT=7f| zb~cNH^QLy^&)7Nlyu0DiEZ8Y>r9y;fxc7W7&Ng8kfE`g*vb`Uvj4_UzxU9Rbqe))z zmWo4R&v~%PC0K2MaUNi zUv^LbfA-$2y^-Te*Ubb#a4yy)S+-C2^YlJ_v;Y4e*;nVLFScz-rJBg%2!fdMyzdto zK$0p=ZQ0#+E6GGoF|Jq&EXrUWJ_oZprRCRNW z(C%`dISqVUgFE2Fh_%y*O;|@u6a-#lY5WpPVi`JUxo+OPN8pC==@m*i9ZEPO@H2hC z@Bfy7Tl=r`d0cD=7tXlLcu9lt@~zXt>|9QgHR;2(s<0-&`HYjKQSWc}CSouPBx;hqh+E$X1hAPk_dRU?u(~uCji|8uX0$8~4pwPcwE{whcT>-9nGx zn|9Jrtf>p#P9~{LDN}xZHt#1#UiD$O_+pqL4fG_=Kh)zBIMjZSZW3Cr2TDLz=}ID% ze}?d)@TIb=LQ6vz8Vt%*p`^4?Va{wp-lzCEaDTpCDnM(*`uyAV?+yW1BEQNZv7W`m zlhmpehr$W1G_(l0xVXrs=?W-}=N=#K@1a|(;l}5~4bZEwVrU^^e#7*ug^1}Y?C`nf zX}$_Z6qtA_q%lAD6EXj4eKJgcSQYcKtUq=9oG?F?#&6&MyF!5WuN14pUnUJlT+jMj zrWG;8x1Ylp8K)h@9DEQaSO!$?SGWUuXnx0LtN+$Cr!bbk#7g893}|o^RX+w@+!{zl zD*%Bx+}*-hVT0rD!7?#fV=1wL$qRYa+`!b&R+Uux&Cv$tO*zn;|W$zuZk+CKu4QwG159126OmRGUj zxVU3HL3lC8f@1+t-Js8Elrf2TAw0Y?9rh=mp|kDNPH2oHoC;cIFr=<y=9|t1tRz4ci&rw%+b=EVx1#HNT0ScfDU=yr>)fL@o)?Y!6dw_ zjCIPdHYpfXgY-;I*E{BMtUYDGWn!83tP8 zo(V^o9-sXIVh{!mux(i=v}lW=YEBy9CTUoN4#H%^9y%Lb2d(1{2%&~>l1QB~r{I^h zWsx#sr4)avsSt#%1g8QK7c~k+h)?Gb5sLZqmsn%He1T~)+W9YVxAh#2oKx!L;^vUu zY4LSdH?en(CP5@|WR2o34ET2uY}FQ{tbvn3xT#0IC$9KlTX~e<{;nTqwo^_58ls-w zl{Pkp>6a)1h!o9^pb2N?BtqEDW4(8?BiFF8fP^%_o!*&S&h!1ZU?n`?04BU-9g(1>>kKsq!_{jRG$Tw$SY)-9}@Y>z&gYlp2?-8S=_=a2Uc@!;rpt5^NCT zx7*(!@Lvl7arNm@Ft-2V1eTMr$XCpB(gR*Yi}cq*D;t)6_2r6UB1Wsp6WXSvtyYt{K+M z!%LJ9W-zGND1l(d*4(KO#~9{l#cCv={MCMHdqYp@s;EN=Yjb&pc0N{|S7`NP4clVP zIeLDIMLCL#tQ{=ENVmO|?&*PgMU)`idrRxeJ6r=__eyrUUyio}70>urAc7h}_MtqU z9!F4g(r_KK-U5BlX(TJ>MXx*z>7MeY48FfINS@Z|ANsk6O$E`mFQ!rjQ`3iO6Rkwh z?v7$XyFfqzqufCt$^j%$(=h6mMDS%jxi!U{(!vf66~7F_TH3X7gF;@zo|rA}xJJ)e zlOEFEe0B=<$QaUFB594Jf}!q1OIikaawf7dcSnk3IFAfu<@Qk}`d9yKmyEd;Cb@0_ z0VvAaVC7gtpH~>Nq}|uh)zZ!iA?24%fcqX+VMVFFSZ_gtEBX#6L9Z2vf)A}SL?*36+~32E&#OR0s}N7aDy*mi3yJl5)^wvS0OD4Q zkm?T0tM0hW$Fy#4V00psQCMQSmc^r{^K$@U*xiER=fwCe%s(3hcH>pK3k?EZWIW@? z1$0?@Tk|@~@eamI2$lr|%stw9_iV}yPhhnY!yazN47|78!K~fs^T(oT&@^Mfe8B-0H6!BKi}jM5UX(%CvDj=&+7~f<~!>Nlo`kn9b;G zyT#p7*7KyNKtz822!_(=urQWn{K2+i({mU&j2TC0tLo}w4h*l*h}9j)1BC1x!c_rG zgdzx|9w?J8LJWJX5CwtAG{O+Zn4TsMBP#WffGw<(%I-Yv~jwVp@HKZJMM*8|9Gr1NWQkn*bx2JwzH9hYc>Zni+zU3Eyec&W3^zp~c9b zQjlaey3=9`VS9kgxURr3uCh!&fy~>(EAL#?Y{L~|){U!U6{0W%p~&dV*9arIM;IAX zWblAZOiII$zbKF?aubl9dDIaCybnlJ2|3-nM`SZDlMTBq`hd2eIxlNe-n3jii zL4dYF&i~+j2Qn(>rxDomYL1@F`73cjtGsp)1yF8PcjpX~} zZDy9;j3|M^LgFi6R5(%vA{~P64P(uk4bwNc#@aAecaGh-nrm?rH^S{r`V#qfu-7{+ zPe{L1g&PN%40z&-ILtWCM;X`_q%5d>D3L6hi+9%Kj7dHbFa4TG!ai>dQ~!9a*4zQ* zN65dSujxjKTuMBfDs5)|ruXDXLHl=~`TQjGk3QOlyYY4xG<8Z<#2w&hnXIpUT8l|s zitRDyPEkrYz{QXPkuky&W{|k8(n=1975Fh1vn2={VmcF7w*%TZvg=xlOs;?1KIDhhfTea{U6he;Jo34fb;e4QrRyb>0h}W{&7wa)B*Y0io%GCg${V)jg-|W^RJ1V%Q zT(PFox?f8P1p+Gs8+*)I&zLt}9G|oNBYYP>f zs!~bcmOlxSAz+2i4@MxM^FC`ltpnEXKgj;KYxaFue?&NPhY}X!>=;2vcljKHJN7ie z6=8?PIgBRalCWc}!Y}Bf4N8csFymn17v)<5bC(C#LAZovEV|M22mG`JZLRD1qWETd^gV>NQ)t%%cmrB&9rU#J zlzo70ksTy=wMp{ZlJUOJ&k%K4WxQC?JKiAl&FNg@Ld8ME!?h!L5?o;nU?2z{gmD!5 zt>jb!{|$bH*WWmczd@;gR+6mP{yv9-4=p~l1o2*>ghaT42?ZevMYPmVcu|EQMe?Rb z6evd6r{}QbRVboF&(mk~&>BQb5c5?SqN^+|NEDEqvFWb)4bvZ{>AiV+)P;P#uVu-{ z{=4rCSL4)gKlhr!tPlKSX$-^Fw4a9mrR8{<=F{|QKEGWH1nMMI2Ua(;^pH6rlPOO! zC^LvTkTHm+Y>wrVa|_%31Qvt?%Ua{O3!>vVg@_PnX7{3T$>ft^l_h{SSLg+s*K(E}x1Ojgl0_W5| zL^;Q*seJF~352}gec#=EFT&?vJc*ztRs@|`2HfB``vzB4cQ7Tf34>{bpcUqPyukpE z)g1)c4Ge%Q#)2EBIRqmz(M{6kl0P`X#ns*^lKz(nV38OpXnH0Oo{8oV2kjE&y1cr? zU;5WT`Vv=KYE3>sm};eRk3>u1h=iZ5zR$#X0)t;Gk+Irf!GXTD0ZUpi zsx|;=!<0$YQ^c5pJ?ZUmz4gKrd0MCe9XFh>}*b9N+|;O-`Zk+sqoT_HjL!N zF`kFN{T(o{WER7tUbkhfH}xCcJ{7casbmC0+!Ydu_6G;Xj4xwwU^JbmBpx@p(ts63QdbMdhk`D`>M^{^ z2qOdpj;HqpBHWO~t`xO=!4W@l)UVrb<#qWcK9#!?(1<3jWfCr^*0*o4)Ihs^&K@-E z-_*KD0*^On#dmIqe)0!|+Tbdde>I;$@}v#Uupka`YdJYH=l1vIJ@LUQ@m?ZaP3<*I zbJ*wL8v9(}qG);oUG?&~IsL;aMhI4(0flVl+KhtmA z#D0VTV~nN9M7LRoDC1zA;W)lwuazu{(jLUo5(6s_wML^*(81sb?hIz+!>L7&0+B-) z(k^bXG#j&*!{it%k$c({1)a%9m?QVhp;+#WnS)#IyE}z$xMe_=w*QQLUeSImx*jOQ zy+RlowpF+g%RsaPtsH&jfyMfTRvUNVBwVt7HJ9s)=EK8zbECTws;P^%*9fxz6*q6Xiqr#{d1Wsx zgg=M8a|7JCb#%WPaIe!E0XRl@Oa;W%Jr_cqTZ`5!0A3cY>!xi^mzN=eBE z%ys^=vF&(_Me#fSk$vReP@FqlJ}OLoj%I1-G?_T`3f!5sFL1fR2CZthjy|!c2y3AR z7i=nxpoK%fWK79iTHvzFUM%1*V?Zf~RnOto{@f4R1JLrJ#51+>zO>NpwEnksw zO+F#|2U9CYz4nh5G_Q6cQue+ADSLv56(0SE+?Sscrlc$G=jbcbC%w(Re*U3rQh!p! z!02-+WMKTElOC*y-2n-Z%ViO(%t7xHvH6mH)Lcig`YZyGj`iLeCAi5Yyd5m|QBqq&du>pL zlQxk`@+f_}z%4KOpPF}qZR;@%!TmN+fq&L7th=+R_8nFs=O3HZH{Ud?w;!6-JN6;G z#+sdeI6(li!M*P0Ir|~%W)~~d>?zXI?7A=CqXml3M}rdp^ddz-Gc^oFUC;1zO8}DoM$HS~&%CQY&K*#$;*v8rha;+*Mcf17{u;63e> zcLb>G!`6j5hjHx3jzf32PXF%q+vdY9`^c*FmiFaae|1mTLzIY5_wjB7&*C}b)eHLK zzDiMjYPDLmECm_r+XPBk%z0ZT`+WAQp`W9$(q7~JBKy>^R&>2#V)T3Wl8K;9MJwH_ zv1ZYQTUjrfcAsmq>+{U3ZD~pYe#vhN`6R*?!T*YMpCtKT`N&NC>mMS`Q--?24Xr<_ ziz;)~>O;YVf|4o>@tt9x#;>LPvG>)Iq=xmX)kqbHXf2{pM1hDx5Z{~kkL6d>N=LCX zeWq?T%#VGmVSegbI$R0$xw;O&*ZZg8>U*zGzkM$M8vb+NetY-B5Xca~gcD{l!F+aT zm6?>m5BL`e2oscF*myL7=MX!$2hHmC7>3ba^MDJD#R?({OA$AU+c2nh2qrdYffz5O zA_SvPEM3V*hU@|1h|^+O!X6~Z{hCV_$nRjJe2uW+&-V&Mun<9`r3yrD#`r9qVlj2_ zu6cRufkyeC;a(Wg5_ETx1H1Z<|@bKs`bbnG87Xhtx;#%IK4tXOL z-|itYLU2ApI6pc@yT7Q;CumK@YtkWQEu{*RieK8fkTq%ysTCz-l)~%^&?h0#AZ(H< z`ODlkt^VuqBC6zl%54;%j8jhIImGxA_bDOHNjvz!`+B6V_2KhZQ%+u7lO(?dGkwpO z&MM|s}G4QO?5=w{*9EL_jOW+D71h}CbKcK(5EVf<^=;eJoJyUHR3MzH;$ z^SxZ_J~`7ytlMjuLHNRO4zXKv-({Q9_~^M|+{k)|woo%{0yE`+jgOCC9X4lwz>NY6 z?1OvuV7P{MYtbL1EQEe(5f`V~ivZqVN_02iLS#DJ(C! zan)<6ED9BoF#4nqFe6bW~N(#r*<`;5}-$Q z^YlaMSwqZnVKc6tQ; zj=4I>C;|%FF*mqh&<2alj=97+TR+eW)RV6Q)&4YX_y1@QwAUb=1In=vJ{>Z*!vq=~ zYs7KyM%U;$Pk>mpw!hHYE$prG~8Olnl0S6L0&p zjcSp$N#?FR3DH!t|4ldAy()+A)AF<1k zveufGsP=VhQmXsC7$sg`RUf>qnb*8ZKdxUB!iRDUA1eZwS$~wIODVkH;*Iw;uJumN z{t_bTl=}qXrzTy~eS9qmCGDD~0qT9O^`U+!g)HLD3Q4!Mrp?IfQWy;(#VSnb={%l`jQ0H9}2@c>Qg;)Udm!-0c!4+4^94OPOoe z?o)q!F*s*pkyx${x=zM9fOu#@bK2!=4HA}X((fME1!I84R3ny-%k$W%IN7VNhLRe@Lp&j2V6j+sZ! z*%$4+Rfr(XEsY^wc-nrpYr!*axGVM8maH$#03{99m$R1AINZ}ovWa?>Vc35Om+vd~ z!d<<2houMt5%vK~I#-x`UZT**IbFX{*tx!q&b0KumBGG(08u1OiRAf6Yhe`!<7uS zZS4F0aIW+4H@Hy)Wn3L5T;|-QO_(jM1Pxr*-mbredBP;szUU>3{tbDht|iZmo#rV} z85_E+W66s#BML8Gg^xfG5$ZtMr*?V;pqa@*1iE9oN2%5ARxr06}2 z{brxLL#g;3xcl|h*WvMmHibU5uc;&~?jE9~bhbpPd5tnC^UyI~E>2i8)WbZI_O2+r z5SsNxX#x2gnR#iqH9WTU4EOg4LmDj5+7IUlMcgwOS{v&zc^fUfsurax-Fc66(bu8u z0)99ZrbA`!uBE6~D{O%hC@(EVIm6xIULXi9SL&YScZ;~jGD1DXU!NaUG7mMxKiqZ8 z!u&N#?!u!E#`S8tzE|j=@WFcpBMKyZr!|N|k!l(8xpJ6RUDWv9=V}q6z(b1=-zgBO z)+MIzVcO>7H}kLzYM9q=zVlnP63GXCYWdCAvp)OX`(b%%oWIBQX<2HX|CME`W%!?Q zi0X`f002M$Nkl$@j2SIrY5gttXAqBE;kksRx3A?+ed3=uel)XUs&M& z1bLtP|{~q@q*9aJ92uId%&D`uxVoq;GFVLht+()yA$zY0>?H+=kF{}O&VZfxBxP?3dj8i70 z=k#|qXBWVDcF(voBRyP{je$?xx9AoHx+Ba4_nNrxn!|hIF0c&g&}JP$WU`s<6l=AU zqm$+g2BOo#9CKx@KAadWuUapfX)n-D(mYsggAw2Kdw!rswi?_ni28bjIRV_XQd!VG zE8x0jA&_x}s_GJD53L`sW0__!)@1Pa({*66`vD%IsHg`Z%sPN}Xw~*KKWR7)AsPtt zD$wLX28l1tH+dT+Asy3*K)Y$iuCM$Rc%!Q^U9_xO2*wpz-%d#{;fdo|t7ValUluZ2 zi(q!dd$oeiFQp)0DN`woPt;CA%?1ep=vZsxSQ+6AlQI3rjB0KAv`lwf7QS0}gY|XE zw?UYE1ZKq?l{Bg*jbVrzOAzJ(CJ}A<%cR_@Z|KD(ttyB*KxQ^^y29?}Lq0VQcX>mfy>>y&*!dCbkSo-(@7^GM_(;vz z_d(Nk`u0fcSKdfdY*-lT9w@>=+s?L?Bg!HXABPBO8P9IMV=RN{)%BJYsJKj_0w#W} zqetntyyxEZC%F4Ne1`D$^$`LQHmqhJfe~Y01l9H{U^_x!jju$sQ<-C6!Xz=~76k(% z&Mcs4J6mcM9HXVkz`4kF2Lm`w%d#QtW5Fv9tf^1-93WH#B8+b<=A6kCSir!ytP2F` z3p6<^{)tmzyprN$m;)Eyfp|%KL%C!G6pcea6x<0WlCRfo3fval^qr}c_A|vS5}n^@ zL&2XqXo}9>3$1N~PEZ<7}2TCMfuA{oVdY2h`;GzMvpH5A!8+TQ+x5Q8DD-tsCEUsVGy`a5dwh~ z7Cs$rLE^$|k2am4VL8PDlDW(F?wA|wE)=L#mpehTD&B+>zQ3NihSVUPk=Nacp-DB7nXvorBHbU^5`io!vYw^Pcn0s(dltejq zTE{R(2*e>~keL6wg9MCQ4{sCB7lVL<+l26Q>0I8F1T3QO2FdwxaP;GXh3=0mumd+? z=SgZQP$`MQjOCd>U|)GXWh}0xCCzQdH7@PK>sVybAgvp&rrosUqJ4-U^>NR>X?O0O z1`hAh?rtfQyhtWp*74oFL=f`FotCf_cNgGg{Gp4#GI0q9&J5Q!NryHoE>8Myl)=BW zY1)Mg+`TDf+(zF5p@#H}_ccaspS~^X`(0+cq;e;G%luP57?AX8 za=zqV80W~vpVV;sDxdl3L-Brh=Y2|B5QxWN*-gr4k-5g{uU!0M@cMEs~4Dr7ApmC(_t81EUqO6N7JWXt_*hk{y$7cPG^#}qHEk-&7 zlu1ChH)!(8NJn#PJ1=aQ7dP@jU}$Y#qnH`mxR%uXl56_y4vl;{2vdR#e*M-*9K8L{ z-tO`(DQt5li^n;YFNWWR>B}J?>)XBoy*xbxvpC?|!auu-LXkbzaYtAlp0ZD-bKO4l z%7S&BdsB@VLuY%sY6QL{C{F3$zqrgQb93o!efbD8?72qrOYQQdOvA!Gxwnw6)pUpE zM(WUj%_S~uLRkEoqn)p?sX5$GR9bLA>uKtLwQqv zD8tQsDFMNz|vDa4+10^CJS0Z?L4+t@H^>au2{oW-?qq z`u0Illt?2C^B9)Wvbq-OYt`qKvL;ITp1O-%g}^Hb)KYyv=@eKYj^k;{ZW;V14TBG( zlv$wGu#9t2r~$uQm1*qXy2$gsjv2KCHJVq>ivK13(hj8t^^E|3K!CsDO2FV#CB#JL zCx=OF4TF>M|4W#8PkA17G%lZg}FD||u?anzv0R{!6o@~mO{xErmw)ABX-i6(bS!Hs z^}VciCGrzo5BiyV``jYXyJ*huKZ1WAC_AKkOd6Y&j+EAV?wf83>3 zX8g}p!V(4Z$k1WZy-M`FvSj_ffX}wLyld7MtOq}QY{nlyutqq?mF{JD3u6Uw`>Zoh z5Q4lw!3800D}3Qu#MQmDo^xXI*!_lvq#kR^9XExJCzN*y&A4Rj^puZf$>iBhXloUL z|~U{;G!^rz{8ntsR3S3wM}Jep6uK`$GH_ zra={0JS|8jNsz_xhA|!Q>s}$c!_wlz&C-3Zpru-UDCkfa;$d8$z4}g9S~X4I)ia%* z@P6~GhwnXoHw;t1d#&%iABOYUW0+of^Egg@H@wz#YTTN~)3Ve!Ps7#szw}!3`K9sx z`NM+~nFXw=I8tjYK~z4~H+*(z;e`3nPa@h1=ys!X4-tHYZx&MqqC?1`BZMGm@n-UI z!GM-6lPpRx2sD<>+jE!^SK>HA2NuN>7X;Vzqw5#&)Yx2ZHEOOQus*>6eaoEmEsXJx zT6Qo`&GF^lt|?!b8!Zfuj{Gb;6Q%tC2Hui%R~sx&#<$H9fyjbMZb6ynY!-WkAm;7W zy!rMLjSpOM&3IP8GNs>qI$1T>Fu-16Wpc`fv|J#3IrvU8-RtXN=c4-DPx94KgQM88F`)_H3z4RUAk*IkN_d^{0Ofe9=(RB_z-%AHpiA4N|`G# zr|Cq#Ow=;GoWv~&%}U!rV1gU&tx_!|Bpp1Z<;CwZVHSbNN;hc=Z-9T%hV^Y@IqEnsPeLpx`V3ET@TK2v!)}%hC-;|$x7G7Z_rj91=v*Aqx9H1?t(yH}^ zIBeN_uq2CmpGX41xE#Pr;v>|xT7C-A1xScm?kS@dF)mQ!9~#0w=^^ZBJZoo%fM^~N z#KFKGX7Iuj_FztAIdk#4}u{iMVkz17z|HN zVVSD)lR6Q;ho5Oyg4u4fL14AKqm8a8+X=m!#i9b&j=rx&!^XDb6lcR!iEAL4tIUU3 zL+x{p*`(XObl|9wugnS=(zLUMKzm)rW;ysyTL4aq6YTEm0xanZWr4uLQLRXyg=5-| zf(i@ALejFolsdDhWdW$*$od&7?b+X(k2q0Dg9`oaDs!4(l>@Act9g!C3y5c>&E)t@KhJ>f1A_Eth4t-(~L|VCwytGLNuk zIAHVdlNVaJ(O$U7+S~%)>@NWXT$r4|WPT2uU*if98Y$^9XRtbF4ggQNx;PR?Ngjc*H40vb8@-F?I zxM@BL;Jg%gL%6d&J986xrSi~!5acopWR_{N{-k*ejQZb_Jh;b#bz}XQGu6ZL?3mZw zd!fbZLBZx2LDYmWW;9{EizhP#!3sxZwy_I6->9+k5Os{@m-9F{zCi%mEpVf#y9*g& z(4#U<7~IJd354axja7R`d6^TtOQ1Goyr8L9e|pob{`?JYRV$sU;pUMkhT?)lK&hjDI?69`sd0@vk&g>pxKOqu;PeHG7K?|Q zX8Dl~+nMh=+Q%VOfrvc{-clCRE}FIQVXDmh;YRY1C(YHtvia`lzWLKW^M8krb2M33 zbJA1Gna#OzfYBV|I_vQHqS4~pv@WL|-Wak#<5yREPeq#Rq$;=xAdrPdaFTzp27QuPVsldqGXQRoWA9q9|($IPv}YiIj_)%-E+u98ABA{b!Z-TxE^ii zy4$kfa@z0v!;FSfHPK^l8=HYqVOQzLxcMt~K>i??<0108^Us!}o0> zeauAko|FFq3DY509(>MwZY*ADOJ8~zuRn4NEy-9oM`1+f=p7c_w~V*7!;3o=cnA5&g!d-y7XyU0pWa#i!5%GRa%g8QZ_q48sk$t`Z}3 z#B!v&Va_Hl8fC;KELH^@-EK*9ngwS)N?+hzis?^Ze*&agKGUex{Yy>bmtJfBg2%Qj zV^%3whT)oE1sxF#J1lt8@P|5;{xJy9XV72#P!9Vh!yT8@O|stg#F%r!9Mtpn!l1K_ zwH#P8@5xY~lu6JT9XQf1;)L|3eUfoDm_UYWp8e}HEM3#bZDF_xu)P-i=>zAIvN^76 zO~-nFQ5b5J4Ht6CF_fu#cleHdsnKws1lxxOgDRWZ!hO?5>8ozDdjc* zeN@c~gGca4v_5WuQKEC}G?7M0ygpINS;nDM@ev4ZMA@oZgxt{AKir=;U*EiG?kK-5 z(5jD%{SnHBlM@sNrDI7~*mLwbk#{i>DyPzY-5`XQwaxVCFV!Rk5HnN zu_VHkIHta9Rlo6uOL^zl@?7#PJR3u$UwXrlXM!ncu-#ouD-dbrOQ>K2eo&xo*hDJ@ zEs^u3+*&+y_1CL>yYTM%YsQ^EL=BnX{`BQ3x5Oil>`8-Q4S8Yuo{FeKPy8zF!bq7rd zUnOf41;Q^-CS@<37B_MD>?N+9`%xA0Y+3~#0ZqrM0 z+cZm|%1Z$oxRo+#@xPHTgp%ktK+pDj=J`RHoIpIy@79$eNw24 zZgJ&1T14r+eb!fp3TClZJLA;r$sx*4Q#>9_7#LEG)T&mnUIWMh5dN`l?LvR^!@>Tk z&|#QqWxzYYDXj3U`+ykE?+Q{p4Wj_W4bnX?FE4X-Kv5V{H)pSVk|+RCkYfH`t3aj- z4{G}6QOmI%p!&QGieMhXH7c2$EA*N65#!Vs*MScu9I zSg8d9qim#mr|WU^4k5&!zQcU)e8%Jt(PTd$r54v3-7OX(tPSoMRIgy_U!heBzoq%a zM19NRVa@~xjh+SZia~D4K(?R{te`U8pFsglEUXwHmuPe>#|(^PtWhA;(S2|3(IC8n zx%1}ozWD}b;3tUq8UE5;{3{T-nso?ln&u@M>CX{}z>~wp6!ZZbw|5YHCu+BbLC>J= zBn=>>B?2{O-kv3sdS{}h$^~Xp5=>T3fSc>4fjM0NB5*VT}JXryI1T6BXR#DEdk(gG}mPMNG zo&BeE9*nYf1Ng0L&K#_r{AY}Q9vG0`>34Af$K_Lruqfdbni8*%oQq(4bPS6#NIS?>VwB?6cr1Qa2!iiF z&6?SJ7$NlC2^(vUaoaaWNIT|xj0k|QW7-HNcq~9x2v69zLpN|#miob{v`<)1S01*9 zmIaJs9U4GcP|@!T^Mx9jzX(nl%SEIG4_$cm z*diA7K`@7Pn}-%<(`#U(wHx>s>Eq|a<>3&^mZ z1820p>sX+)T*u;Ite5DSCPpDjy5b3Na?$7b#e!wS*cB!k@QXm?4$BZUHpdT)X==)| zI5d&T1O1nAxmB>?OuM8$FlQo{P>2keI_GW#PMr%$T`1y@v13n-4oeTrIk^Y_VfuBH z9d3*Rs=PcR(hsrrXhv+rN|4pJXcePftoy+c0(~ZTz)OB}`s5vb!$!BfjJ?_OML6r? z4<@)ntP%_`GjxHPUoPZyzj1*Dhi+S5p(L?b9ycrZ(E7{!X8HAdHq)j|;6>(t5UlJE zMg7Q%sTADe-u5RC3|O1%(`EDS#jN?}bcWIe7B%x(GleD?v+zBbEwKt&HP4X5AHKlK z<^?ch6L|Y~v9NPyu^OdSxaFBYB_EM~_@2}6F2?OgFr9Q8pvGax{MrEzEoTd}fp!I) z%J@Jj+E}a;-@KNiU{<*=_*H(*$MM_0`ervS)Hf+jA8MC|r7TB@>#s4KyVu}AwfIzV zU=xd6F_sWyP;xD~`)&g4cLEXG7Q_k^>?718_aaOWA8V#|`WObo{xS3-!jJI%XeWgz zE0~5e#_O6A%J8l-OnZCBg~973LP?!BYd%MfcqQVF}MeU`(;r&G!JEZ zI9_q2;^Kqzjq4}-vNbQK{l4${37+?*0<^jHPXb&G$FuKzmCLTBcpMyk0tQOE_Fof6 zc=p9g3}03V_u&R9mGURMgxi*()2yI zlrcCjo-+_AM9Zy@rT~2GhmO0pH?6=~+Aj!i8ubh;`-k17WXtogyvFglUb*cL-sELk zrGMAggmM@BHfEn%+MGw?q)BUnTe$hcqkbq)wJbtQ7qho8cdww8E*Uc~8JBMvBNxyM zYsP!SPQbfEeX^rX?p)yh2xojy3>Set^JNqW5b(xI#JN=E8wGt>CwExdH_+^syXNh+ z-j`DO%NvX8*h>H1sP&JaBHI7nYc(ZtZ696e%@K1 zw2a@a?vhS%+sj@dZ0d#37+MUVWutW$KQd6E$vSC&8SK2P&?{y2mp8yxu=`XB>$N#QZ9udeyd&iQNk3#Z(uWj{sJ$V#KKPchVq6+up+{c@hW4P z^zQaB48iRX9^$t!CkV~|=wK9z5CnBI7=y)n$naXTFQ7jaw%x;++_$i-vrR-{h?b6) zF5n{{`rf(8;mG|bPq7Snb@;OR^61N~!KCkm zU8jXI^I|NlLL*5hv7V#u8DDyQp`?^KrS^7kSPAkH7ya8-%$xGfOO5Gu+vYujWt{3m z?7o>Q2N4Wr`4os~A##E8#Jjr>@Ca~kOtK}LR-GMN=I>)HR@~vqZ?j}3O8fQGXZWbW91m7pAkHhBnM3p9YS*L7;i)GGLFT1 zO?oRr9dfF50OzzkXkfB$@V?Q?Y-eqn{VN=ICBhs(Nndw?tM9OqyV7b3LzDu) zdPSWO9Imitz%8tbAO8`9FR1AR~T1p7bdR{%sQ^!~TQF%Kt7NBqwY8 zJJv!s2tu^9zGIJA@$bYvLJnUvzsDW8YvL(uwGo#6*K-7w@CQ~37baM89kIs7WIBD8 z<|zFVm=dS7Az3n@miNs0tPNK19Ukz&GDGQjhT`+hcL+egzG@!ckq7%yO>ql&aCh09 z+n&pw@MX^H*aO(T3*DDcH;f(opGKfhUV_znm9vcI;+$io{qlzXcuDy$;9Z>0 zK1JYq2d~FH2#qtQeGZw6PgtA3Mv!@b@CpY5FK~H>qBCP2Tu4GW%9OlzP&Br=|KlEI zW&1ZQ|B%667-OH$OeB#xtB~UgQ&ji)@X(!=LJc=w*8)UA$tQ@AcldC;z?Y+^aTJue z4~ZM4yHClNUw+wq@x>R}tljvQqn^VOnC~w+hV}U+@qQ@mFU{ZZKURhx`}RX+sPF%p zxHXM`-fJCZ7zUiAK%1UU$RM(HtO*rG0=|cMZeuJ&dh)XrEug z(9a$s5Qh`AJMJJ-X1J2Nf(dZOLj8FxG+?pqBaneHa>_(KCEN&tbSMz9{$((gB=CWW z6(Bfi)CHnLZ4roYr{)z5m<|TkJ(KPytyQiW+#yggv|&tuCUVH`WcG`h!I$a zz>his>>13y75UB(YAu1=1_25U%mivRt!q-vWNp0*lMP}U&E&=A6AYa9%}MtbVbMp< z`{p@yKH)q7U&F!yhhyE4dQ%w}sj0t9dyc-`Uiw?#a+D{h)<^H_Y6w^ek5oKVO^+|z zxOM~=F9n;dN=$y~C)xBpJyO0| zOz+W*4XQ6-6r%kCuq?uczSW`?K1D117^10TaXuDlXp|EO%L9ZE6Rifc3Lw9Yc?L?g zhQhnAM_=Av`ocwAKoD~FJ8JS~_dD=~ zF!aYQk|(6miD$liF5hTx+BX~FF@9zr7lcY$vUs`>`ussU^{5@GBuct|vrWvzqh3>C zs>tFM3#@yDPBZo-LQ33BZ($5W{JXHo98Mo_oEzhoFpCz`RLB5>I)WdW_-bj>FShR3 zV8(1MY3w^k_!EZ!Z4c3^ibfSN0!y?# zw&fyAT~3YI|7Vo_G5T>phBm?lzEW`0DCzLP9}5HCFxtS-S8EszDRAi)w{zF*hjGuM zL`-vI_&7WyaT9H%;Kll_$bG+qJv?vL@=FUV0(A1}`tJ!;Ne#czMbx_Z>RVGLpMG_7Iy5|*ie zu@;wAH!LQ>rxjX$T1aUrlDuf6!bB=nw4Mq>9t%XId+Z5?St2N?EJ1-|#!S9Y=sm3X z)-S=iX8;!@*keDL1MrcN2qEM&@-tTB(K1#jDbp=5&YVYE(A+Hx`)F$NP6kMa+n3GP z-!^L$$;8FxUxA|*N(w+NhiB#;+6WknYuQ|uLJGlZ)n|!4tjDma3$P2U65!EK|K7_E z)QRG#VCJSZ_>}wMvjP0e5x~{^M9+_yQOasa>amNFX!%LBKCUlPiNW*soi`=LzM~{{ z-L z`xC;DkL*2k>DcZ%Ls$SC8KWkttJ_-`$1}z{W>ILFb@P038_TDCn4(kGBO@3%?F?dE zn#M6uCLP+l?a3E88{Fm=%Vf($s7ogOFTRI3z# zz){=}J#W8JXbU6C&C@q%MZ2Fw$DWPC+D+5lr$=E(`^BrG8I5bLwR?^*$8@Y==wOr` zjAYH$%2Wkxk_vRKQoyuXDX71;=Mdz56}ENhV|n@2j*@Q~0lg1-WFb8Af(ut~70GL@ zFrz(U!9bg?f!zk?ni%2u7uawwi+WE+8`eKZw3FkSYrJyp!`X#$@?3yIOb*@=k{gxH zpfBhXo*TwF@#K;@?+tr!sQ9-JU9Zbf3#mY436Qrm87ZU+6izZn9Py8lHT_JjX!n1# zoC;k^b!mU*afak_GQMj~*|E+UVc9wQ!|&NMMA{8H+O>}dbaw=73eNVhAXR7vy`qP9CBhG`pgn@pdy?WWK|p@__71yr{PKW|Y; zk*@N2fzp)j&79*bv%R#oLK;5#F`7^Y-BQnpqY(94t5n8MnYDYgx!)J?3zxuS%2@e~ z{XWkQpEbv6cmYTKzbA`&JKuN<`!T%8xnVckkay|Y}~V7cKfpT!r3bLcZ*4sSsI zK!hUV1&@Ic;mr~#5Ehz%GUIcDX9N}C)IM-fr8W5kV7eD|?LrBp^~5vNlHTcIQA?S! z@*u6eU_Mc4=$busuEr>ePG(uJ9s>76_zKu|8LnX8LtDP>1tN@{5r`l}Y3@`I zf*yYU0^#s8e5*1xAF+;v-f(}NSklqQE83-gf8|d=Hb~=X+JPlM4lTBm;WheRf|u90 zg#EaB-@JQx+q_5F@fP0JhOvK&u>BeR@g;kt!l_~j!+MbG18}}!>{lV?4me)3r`{#J zXqC2{_w5G-t@={gpeX=XCVV|OC=i*WP<+o?WCmaB{v0m^tVtGFjkL7ghVRm5d*pGT z0t;?;RXoK=4q+ATaSMFqmBXWwUNm`eE7|Z%3#G4!hxVmQEZLod&#~V6IQxJ=ggpW2 zqp{XZ?Su_{M*5Tjk$cuNbA-(HUF(zzAizCf?44wwE;;rU<@-PO0cQXDhZA6B+*gMG zBjW5cSsG3kSnuDzZ@&Ke>j*hy7AgqweEs@$($soHVaR{{$A2_$-@c7-M7LQAL=>KA z8KNNM-~avJ^Q=XPf|$Bb$Y-+7t6}+S+5Ipqf34TkG@iz--)r3ZJPcRg8K#Ew`{%;c zu=QHQ*XMfu&&K^Z@oFCbqpw+XIk2%Oi2b z+GBv6(*9Eh8vTSmAPl*IkvP9)5ygOX2QmKPcGJ8$XE6c8Q^xw93;`yq5FTro^J^B$ zOk|t>)D6-UM#=;NN`LT6af)8<6g=gA%%t3)^}CwBXl7`ixGDJidDon;aJj`I`x2qU z?H(q3%$_dZ<`DC`&AMdakMevNLoQ#&3Sg+lEkw%&jQ&$J6rLdjdA_%9KJG1>moQyV zVP@>3!NBqy2sku5KwEe!U;Z7gNkzD1sww;<;lm+bIxjoHj+uN~79tDEcX!R+CT>R0 z_`G1zBGY+tGmgLWLnh!2gc9z}QC3iUi2e_QU;^CtIgf$$KHS~~aJpuExrLeFxW11D z&I!V&GbHe@5u&`fA*@=N5UOhyPBVlpo9|ehvT5F8jLG3M+UOak|F|bw;DV^rngb@# zhV<4D#kxte8sdoU=K5+0Q}qGMl?A7kJuPM1gLu=`lC$#tjkX+j%^up`&mg*z0P#J< z8DZfe#G)+6TsS``-dl*~Z_pOOCD#-t;r%;f>7_Bf zfMdC550=s9e-~}DLl)M3(PMcdd~<3ZP92%oKx34A@b!;%$Q{gtI~MBm3l`xBHpXc9 zOsUg8RsaW^_syYoX)b|Gv8)0N&HgQJzHV^Gqd)|K<{Dy0t?VVRdVu*nI{u0U2Lv7( zYeF?(EWMI@GM9*w(F}8abA#I_&dv4L5X$dBQjnawhnWD}g0wOL7~49CE&S{>4I7Y$ zx})zT1HPqAc_?+aACM1tQ2LaMQ@&;K;C(L$krAH+Eaj6!IJ?U5unmUS^1$yPULPc% z`03bZX^GHyj=*uoJ|ZJD<69QBBN-|r8-}eZfO`_KE<9QU*PX7(v@){wfhS18)x--V zbMIg-jMT;gmMsE^(J9QGeHPd(%!9{3B8ym}X0E0VGA79`<3gEF{0KZqD;nO8^CFb^ z@2Tc&V9We-`)$*G_&;d2euuUyf-DyAtgZ`a!T=>6<^tkD`|OVh?n!e3F0zQR#fQfZ zRKl3EGLh(KG7LJ#whcI_5T#{rjuEhwSrIT0+^N8kU#7+lW)tTK7S10~bb(;^)ZKzi zl_{22x-)z}dfvQ7kgrg74>wdTN@;KlNQgcLEUotb;R@xL2L#|ZShc-l-uQ<0`oI88 zS}X*0Rnp>0ZbCak>El|FvE79SaGp3OGp~-=qie&Mz9dcO;v0I=&6@EPN%~~AM?W87 z9k!wgPg#_~oC20(aC5=f zv_iPFVQlEmSx9{%J*;fn*D#}gPrqYf>bS&^FNWnRt~w{L=`S7DqRT0B#=*RqPZ0n@ zH+(gD)%-6ubUi}A)Xe_ejNe^1XTbB|6=T2`EFh2Q8;m3Hq)OET1AjO~7W-}b0yrg; zH}fQ8HuK+#h2i2oZY&oUC@i3~01mEjuc1Yft|}bz#t3nzrzlCC(gx3PuY&@>z8_Kp zGXWQpk(red$~PW96?`qfyKv>MgsI1WqzYuL1kS=Ze?9?&j0=3^J-wSqd{--(R|hB1dRV?5t`J~DV;x{Y ze2U=F{o`&JCuYEfWh%^c@Btjsa%AniW8ZgwFD>%u7nsMAKJOX7Iy4a7$E=mGyMmf? zjDT^W`-S+Vwv-A&IAcjfr)7l7G-YqGUlw4bh!(RPz7CM;i`{#}^yFV&CRh!dNVSa& zSzw(w#!HNHHA=op3*<{p`+7u>F}>&r8|)JVgt-+lH-BH*hDbM(c@`+VYEg7)DnxXPoywu3d{+NV*|wp241 zP9I^$e22#P6$&MDXw0QTKX6JHZ!*Rm$5xEb*Nmx`tcTtMx98yGmn8cobJR23yG^gr zl)ZV6&>i~Axe9CA(J?}ZSN~>L%UYj>6@_*FtA*vZKLR&iM>}1{{S1aRJcrF+-mnkI zN5;tF`X#QpAVuPy5d3%k)*4aGa4py(6k$Em+%ncPcaE_NXSo%sh{%r^v4FMah`np9&VV>qr@Ej zfH&it3}M~$hB*wMK&vll3)fM$kI<#%Nx;l@DVv<_qdRKdg}q@-@hxq82Mk=(xW9}p zwC))bR=`oW)?XdHY<|CfjdcxukZEk6whO%lUTy0#D5oQpr&wYs%3Uyv`^SgiNErL9 z!c6A<7M@3oCk%C-K=Y(iFs|U-18biLXs^=lTAHUn)VZz<3bkLjNy`dKVPq#bbARMz;Gg!a^Z zAOd9=v9YSwMIZ@;7t(#i0{YGSra@TPu>ttz8I~fiUNy~EziY<7`+`csNpRg~Qoqts zliH%MFFaE>ue6=@axCC+2_7lPRRQZAYlN?7e?hSNhPjHh2RJ;&bHVY^i{|X;H6BpD zppOC{ghBSdIX>yHP<~vTBWys!^x_oBd+ zVku0RF=`4E>B`z~E5J(uEW|(L0XF_^k4!*6l7)f{8T?v@DA@Rb`PHBQ{O1Td+yMO* z9mq}4wenD?;k`nWzx?Gd&9~ov+uWjo5w|}uO-;vezSEjSOA*~@g?U67{O0jP0)>3! z$1*<+<8wMv-{4Qb*SNprY8v(YDLB=1hxrcU4DV~$r`KWJr{8{i{y7lHXj1}mTgQO% zf~Udf`p)H}gQ0(!K!~-5kY6&W4bv)v`W}N~P8Jh;Xj17eWWk_zFLNHI2_nI0pGnxS@dY>^pWy-n z7h4EU+=%@x{xLqHwfYIo&pRgAl$wE5i>x_B$33S)1T79EF1==haI{p2(%hhxd&&6; z4e3t^L(X8P9ETaJ);$Aupd~aMwlj1GUXo8vz7k5FrkzQLt6h!%5RDR$Bi(6mF4!>s zVTp?=h%FbAmURRpYYKrm!L649jC-tX<`4!U$PxVPDF{I`;t)%iDTLXQbYKx-ZmJeP z697!8Lzo#aAiC}m5IyX(0Asv4l37W*_n0&`@ObywyJbcFmS}se8H?s8NbQedj-sJ0 zQE!1uP5KFm>bd92im*#0`74-5y4H{Z4%K1yeufeRqW^=Optafrv#htIegtmNqB+doC3UP zh;ni(jb{JL>Qma2zPF$r_xR?&U9#s4j8$5-*~6W|@&-+;BNoPEOjMh{5QUA+5CjP< zW&wyPH$U`QYZ34g+yT9K$0B_XrYn+$HNvzGoRGmO!yDwFtQ0h;Z`m!BW#n}3LQ7xw zNiCWvYCX0u|CK)c6$GhFaStFt`y@VTXc?f!uCK%ei8HOc)L6Mkz_B@GtiTOchsO4J z!a}V3h~V|>2u3Du{EmQU0`q#zUIp#FZn~%&8#k}999hXw12#)E`NouKi7;e+hUFED zSZY$5O*jir7He@ygx1N1O~yA@e}M_`e_^`6;WPDtS(iOD43A(g8&5OtXaUheXzCuY zh0t!%?vgm}aPzYv@7nj%fPH%kF2~C>Em!ZYzo2xHrPi2kl=>1TYE~*bf(MLKLO~77P8Lg&X za_V6QC?Lo}O^Vz+#pzUnQB1}Q0+EJAlVNvE9r2m+izki)+zJE8V)AE9=2TD@S1i6U zZCgslXX?1CYljuV=K4*ue*gc$5T&iC4;`NbNmP7ta&d18eL6WjFdsG3FA$jh3tig< zjFwNO*5%h8K^@ZBC|^cD!Ag2O3Gd4Ej+P~bRvxgeK8v&s3%mumG6OF!V1~b)ziU3s z-Z$rW?;*$;r3rk%riI7jXU!Zzt(&Jho=&eQ;79VuO3ryu=Ewv=;L#}pfM=Bd5aGo7 zTijs%2^074SVYh_iKh#>P7N#s8e;?@YU_@aEK-w^0##g3u9yo~C?Cv$#~t{30bZW7 z2$-`#QHXfTJb)J|h5-5zbH)S#snVGaZM`m=kWhasY2QbSvt@21An(Y>b_O3tq}k#I zsl{DZm}r>2r@5Hy$85T*OG7PpbbH70A3TJ?rpqnb3aAFIminGPdL`2p3oRM0YEtS_ zW`lqv3_s?HP67hOhK9YWS{A3HKOlU;nmTv_V z*V}TJ-;~HUNCXSyVJ}LoG|%=a{jz)&%WF8tdWKJ|L0A-H$vgXi5(#^>JbZ%DjZ#C} z4S4D1%04Ac6J>*>P*Wid(l3AJ2;NaLdyXbm=b7#qMdq% z!p8&38&G`NoOc1L>yLF~pch;;0a=BP%eLXM*8PJS{$5QuEhU|wVGM&K|i+CP5P zY@Q>a!!l4>Es83YL&Me4MrKzwWX*i+cu`Pe;H|2**QZ0`OkdGxo{q0}%r6LM<{W}>@C52kR66rIk4Zyy!gke(bRLVxdr0l~7+Y9&k`vIOBMzj8T2Af56qqTNq6<>Tmbdvg-hidT(evXT4Hb&ok^9{_qcL+on!*w&mdaT3hy~7<{=4J3vM!0nQ8UcrU>X}Y@ zF8zFjK%{vMQygYr`_)&4@h9_83l@beq^nl|%(ba|--Zk%$%nk6$RMyXE?Gz)o*w7epnxM7(aa+8mA^s}s;sQ-Z@P{>=F=oeW7XF?)v(LwNd4iC%gv+ub#*zkDtT;qN&9pTwW zG){4gxJ!xIiWbt1o(J$a4xzIrx*Ow2nSoucr&VK? z$@}0YcZH#xTJgnsj|)dByZw~1D}Z7y&KcT_Hg*iKt@}ENZwuzH2tpX|F7YIAj%#i= z>ONb&z$h2mg>gx1IP34&pQvOQUJ!)~pH6u7r)8|OlJmwr41BfvKj0em&HA$Wwnb@W zeAS$en9CuqTNvjoLvgi)KmAA!48A`OD&PA0v0&3hFAVZ_3`LU9I#pH{07ETG4Xj}gqE;4xyu z_3T$hKi)Qu#rP`@t5HXZl1wNokyXH2GG2=d@O`*b2(O~TIqme0HODvC-!^Y%?0cg! zA7M^dcRXXvI-Q`HfR()S@siDH=VO$Y*?0F4#i=>oK9<1oY65<`My5V0S4s!CAIC&m zP#8L2r5s!ki0GmgM5ifOTOyp#en6Db^`cgAFc4Tz$_v6X64%XAnit^~eM8*QTZLzM zHoTL55|5<^%0O)sf{zHl?&K>%SA5e*Qvd)!07*naRKLId(7a*&_x28Bg86v_L0TGZ zRD@0WfS>pQKHkY6Va=q4hYHw1!7IqrGM zg4C}pkQiK7Ox|;(!guT$a+gJq+AT0-A(}54TrTMgpJ1qcg7Nl=L6WHqQ_&X5t_$BX z*}ERj#$F-pAp98o&~?Y9k(#PAGzV|doMquaI(L|7Ucq3!N5gE*K*p@d1TcxFs}>6g^Iw=mGXj+=LD zt#J<#JY!LN4N-7F99Suo(Fxr_+F#(o`vM^@9t`3_F_4r&7U1#ZxtS@pmNC14U6 z0$iqsl_AXy481klMk~g-%_UlBm|M!cp5VG;PZuy~4|LS?0j8EFnKzec=3TsxChH*+ z>l7^&&BE0HaZ~z^331Kjs&<#98_NS-}JQ2h9n5C9FzYX3VsGw?}y|u@b@y!avdlHCNQ+hT$0VUMXOi zim?Cz?mRPdP;T0WvL_XYP8qrG8-Tho@jNN7X@bWc6MMJ9f{1Tx>IlmZrW?3IY|YTs zzJmH-A#+7pE{KL3997T}4h8lIC&JLyOdY`=HbO9?(7b@rzW|pGXd}=Riy;;=Y;--Q zpKC#*>oV&mO+=R_J~ z6BkCV`_pvbp;XW&(R6KzPLr zTOywx*R?R$=!~m778OcQf!Y{c8q+VvY-TdXH>*|=x|Z5RgPb~x>x87j)ZMnDe@HY^ zaJ5-hj4zvT))^OQ!3iA7HA2OS_^S}f_J*i;3>MGMYRj&hH{`90dC(@H`ueysq|aBn7OG~t&lC|-c8 zz=LtNAVNPbS}2K8P0{tAK7K)b;EopBNcU!ra==e_M{D~%W5pVVsBZYgfd}9sQ9Gsn zBNy2+6Z$HPX*yO5Zqx4B+vOJ5PM2?+^%WXiGI_8B>LBDbh0pjxI_Y~b)H|%C+A}tf zr;W3pNQAVMpGBufG;L{%meYP4R|1xc^0wgX2z*!O)lXwO!m8d_%uo zgGX-I{eX4I97278U}S?Usut@DTTP+Kim(s#u^Hpv9%b9VWV}D8{X~0Utt&(YB4dO; z3tYra4=zBXH!x$~(_R;p$#$g7RBwIDT!!`K3K%o}F}DFFhY8xy@pi)`7b{G1*H&)E zV)K^1HQyXER-DjO$7pfxHAga@?exG=oXP|Qe({33apAT_W4U!4&)DghjxZ4Gw2rx- zSqA|E0+BDU+IYq{@s>SbHun2F(m=CX;mwAED{vk&?zZ6ggti>nkEzeRgI=D$g-&>j z%#pT*aWI16-9CUrZqBaDElm=g*gn540j9y4LgX8vp%33z#bTRCBh9I3u^nv_0 z%xfw&91!RX;pHo=bWYf-$hUK7nlW?RIQys2X1d@*VS&J;P2R%61-F2p251AM55>hE zTHX*vz`^ev&H;>bt>ZpId03&eD~ow8uVh4+s2$c~x}AK$ji^G9`6n2F%)d)4 zEwVq2^a@NYc?L3lBM?dA=2%Ko?tqPNvX-D90wdeOdDD`+50874E$R0vTg*}R*uNnh za64drKhw1WZo1++ln$?JR7P{=T;^})L0vnx%=HYIq)D5EjsP#1I~*rAv~k>fk#@^I zBAZVzhOe0)5cn~eP#$oWxpGW;6FSY6aUjFQlmnN7@nBJE$ z;wO`&tD_@KbH*L*V!v zZR>-36ghz77)z50-^{*aPSFx~12bGJ)dqKy47g0almh_9jV5&vKY~k%!*~kqv4K`z zV;Qx+z&#)Pf_2c*9cwS~uFL>jK%>9Kz#67qrv-}*VBfc{+^m%n*>A{OA@c@Hf$qg? zw4f1UF`mmfbc5S9ZMS6HUo!r$;nGX1(kbajtRa{i_vl|O%5Nk@zNBZr5b651sGu${ zY=GJb1}|TCZ))h>8$$iUqo%>tWGt@T(XrWk+Zn_uE|_tR3@vm4UcUqWZ_z%UE9|1p zT=TZn)#Zwb%%PF*n12_O2V5(E(R^`&MJ4#D<*{uGH;q~AC- zJwQX>!)RRND|ZU~WniY@wk>H)7>C!;drRmUX-t&_HmpTP6jax=n?vw~vvUJWOImJW6KJWHe zU#Ji$Ei45*XWrEB{~@%%k@GWago#Qa#3>s7)G`(20-kt!xE>1%aKQ$KDZ=F zk^{e2>e4MoU>5)ne2@1izW?{(0k>*IPmAi3Dfs()RL(Y*1GzZxfw=6B%FM_J4|j8O z(`G)G5AN9n3rf5r ztG#EuJ*Ur(l7pNfMYo?fZWCUmjNxo>mtjrgeI7wqWSu!u!GRzR#=V24q2lx6clLkCL3jrq=gOg-(gAkl`#Cv= zFb}u2Y5sR`>QK-OJe~JloBJF+?wu8M=*g|GHpBjjv*jI~?0Z2e-|g+u!e;X*P~u$a zh6~7l!6;MGGtJTbz+e5G_(cDtRiwr64bu>ygnm@S_ zK9ljtHwF7mWGkBhJtv(dg5d~%jxuy5WM|5X&cJYCjLSFV=g*uY_A48KLOF+8H@%u5 zeg4bgEa}t*^?pKsbB26xo^tB`gpS>QF56r20%Q7$KKAyY zKrfkZ2`23Ua!UWWU|YE&=U(0k+>xoi6acri2k#BXRKY0s3%F9rczTs0c%1&^e9z5R z+cDN*XjbqFo#PW4*vzVR4AZ(rVb zyyy6Sytiw59k1>4@!sS4-jA>2^~dkMAKUu!+?UsV`MGPp{Qghf`(>M7e*V|q_hlRZ z89ompJN_Uz1{~2$^zTDVJ@LyI|DtqVI0R!v0Pm z8dn9bAeV3!_=0B2W=Gd0#Ep%@y?1TIKBz}0QYdxN-4XO>BPN67-gv6Z*|HqWhLW|S z@GRm+=3{FBJHk|vkR5B|Yrl{UhIh)y(uVLG%qj)74R}{l4mZ;FpKOZzB#UNC2w5tP zGh=i zeAK6e5q-a9M3%`h-v$gwK&YHi@-kQs<29$pp2D#I_+A?JPs0he#@yF;B4b3-&1A^z z7_^_v2j z$7s1EY+k%xoLs$`EB$7FElSp@I>s|FeV}wcD!uY#;`fhNU?UsBdN?qwW`s;ghp3dZ zqC%9UxDh#d!+>sm&nX^7HPQ~eGe!`q_9ANzB2Es{aN9!!K`>4ZGR}bA%Kjs(HzNY( z;mO9%N@>lckgr78tj+66dA{`xW4qem!s4w*?Gv^~2{z57vG%;`-tI*pWlW-0TYo8~ z1UZCZX5JSE?P+&ue~eik%?vo!a(EYl4d-0la)2~ksTjiK5^43PWJeACxI99lBc03yNki zZEuSi+BTxQ3AL@2c}7gv95~ERY}9wK7t@{rcY9%j%S-)IgL#GrwZ>|#2IYc?t_#A%bhveXhh-3a*Zh=sNu@!(w#0b&vOsO{kBR4Ga?*n-`uRCMSJP$;Inw(-Uo}jr{CKz>u+V# z{4JdLJ>~2tcz|zFs%CioDBsbVU~Lo|p;7@JqU_YX{U}ln!7N2@hS%vjbO962`y1uI z?)LZ#I(Nn(#f2kFr%k&VGjr}lh8cJi#9^$le(%r$&iuoj71guAXKD~WwDOuq2An~c z$Nn|wT(li*TMj9M`Hd zD`&{|b958EL~Gf@lx-9J&at(~2->|GnVvKtQH#_0-nDx?Txy;t`hZ=Td$JYUU+wrO z>+z8zZ;nTwI$oCDfwzC=WPaixO&Q*h8rSI4QU>iDKb{MwnQhQ>0UNWT>d7c`bgNP~ zps8QhOO9Q?Eyxjv59Uzj)nSdc7BC^QaH%xM8n0Y|?-Cv^1f*n~YmHatB?HcIYQ;mI z#}W)jhDwZm5L5jykNqA69*$RYGA7>NagFs}fJwY(f>O?q=?G89o?Oj=-tXM|17kEm4E16;Vp*MGYEI2nmVz1tEG-y*GiZqwwI(JyFl6I8JdXHR$Mn4}hsD#sX*2@|o$pnjNB{jf%FdG^ z>G@9hR|cvs3_~o7BM}4r4o+Rt%e_r)hP55JbgRV2&Up4@v>|r`MA@1d_CDds?`*>N zJ^uL)E}fIf-^eI_gBQNtU7ozM>Fx#{EDH4#+Wek;^P9cMR1SlCxct%mW!Id+#Wh+e zUKXrzZ*bg^3(9)jmPyD_vS&Qq4<3v58AIh67wB@jLnF$0U3S#I3~yx#cQU`X@7>SY zSXO5lCv$r&RUUGFi6$#wJIXT!aPn5i2y#lkXugeEEu53xD_M6hzDB#rQ|4%LBH+?yd+R-peqWWQN4E%R$%=zeC)Pp`NP~{~a0bd-Nkd|H2r~;Kim0V((k?^gZkB_hjS; zI@R|wH@{}!E@S4S0HybIo*Q!#O<$mQDlX#dWQ@nFLYGrDv|t>?McNoCDwhm!23fZ&$Lx@#VEB^$r6= zpW(OhOtcsfTjag!Oylye1k++{l2vMdz{N0k###(dRR|)5RbDv$n;i5m?edzd-DfLOqlQG*fTQ$V2LZw`4zrY#QhoF=X-pyi1u6X`HoIr1&niY?785oVb=oF>=QYD zD{~aB@6}!;wJ~5YM(n}k6`yg|xXK0_2H_k8XwP21heIrVvnYPz&5HcJBwH1PaG-xb zlHWezVU>IR@&5ah?*xc_M?b10dSziR$$mL&9?6WWXsWp_$ZZQ(b^_O6<&dl9CTa<< z%08ZZ?u@f8ec%rK-h<0%U)JF}y6jKzl0DzMPlj>GJ!iCETv}ntj%efTtn7buR*N&R zby2K+(5QWKGr43(-z*D#rs_gA6jOAv{3uiAR+&T2gjxDcvSh(vb*x47XS{yiI}|QW zfwytfFdFSRHr+b2ZgCELMcFaVkh0Q$y!+wgE@udP%_W`tS4w*QdiV0=TiF?>=+PDr zi!v_F^SSR=WU-e5j<%2Bz+p18E+0i_-CFM-RAqSBWaCl(a`O_eXI}#2_T7j^gDHJZ(}G|2n-7T3jvZyD!pS~ia@eupG1==W-Nhxrt3ay-Tgw9eEYQ&f{c6!3hww9= zmCf#syzw6I{GM*rIDe=dvF{(PubgycA+`FZCr7k$AvQ|q{q_`HL@$!Hf8yYKamTJ9 z(E5xXa$ZoF^Qe4H{Qu%*B>&&O$^glEk+UObM&+(Da^}>?5pu2mTuzargQIK89_gB# z9N&EN&B@>V&ENd&JZUtQ)vAnE&XXJ>?JJVwq-Raa#xIZg=olDGHw^VUp6mTf=ff|x z@Z~jK`_H}ipKAA)p4GW8?>j!L^T*F${@(fj`TFxA5Y6s2Z~O-|pXul=<=Gnn82D6fU`(s=&0? z?=T+~#$}>x{GJyZL3ad;gq(>5yWhPNlX`|vU~^=I7!g>Fw81*kKO+3W*2?p*wvJ@m zx32R`DWW4XRG)@Hvo>p@^_mFa_h|kwj_NOw%d=ctyD=r7D(dwFE~QS-F{u}Xf|tgB z<=7EaG9au7MQ0*Jo|Hy8FuET^yUnXea{KaSE5-?2`LMPp!u2*LpXB-LovqF z=3P@b#8_{Wbr@SMbt1XUOc40bKN|5SD44LAKZA zYSQ=SA|u4Ka7N$8Of_FAtG(-R7&y;B2DXQk)G`VPlS7hELFu;;Lv+=Fv*sY;?6A>3 zML_7F=YaE$aZWwZgU!N6`2$fqW0exB_Y|>RO0#rhZb!l=W3BZzKj-jLj^%6(hV~vf zTbWy$LmT1ED`9oP>3;n;gg}`L=48vDe@9XOF#nwhpo3bX%84mG_4vs64?a&%Z;bej z{&8$^>=&?DR9yqz(=fy8A^C>W4EY)L=X(wi3Ubb%gVff;8S5p*kJpM44i993oIF|I z992}gVLX{+5lR^WY-10T)llfq)!3h(T((8W>uF3I&a<*7wu~-!oFR9+EB${#;9-1! z%G3#u^>IO%TY~Y%we3B!T5|y85c%}mF?V~}Cqp4}&Df+mhX_a8o}=SXbUMRYC5H}# z@!k9lLI1DOgs)K|!o24`JXm8C!P6XY#xPf|WzVT};IJ!VK3cfVsN&bw=O|N`N%66kqa0d-hfoMjSX%oTx{2W9sHYK# zs6Z*lN5j&%AMF~^>DJnuqh~GC;PiySUM9|JuI~)7J4)y{qMYV(qAbysB4-#!PF{Qe z%A9}e_?p5wWx+&u!i8v5qDH(r8V9l9L&nQ~6ZDaT+W1SWCf0BS?8l~iPs%;*84yz3 zQ$9Zsa*Mh@w`NZn7?uod79|`(@BBXJ2;6g6&14~+FkZAS%94AaoIPB=V&H#G>0;Dr z1ukvK=$aLN!uyTJaEO@WIy$mMtcgLu%+oLm8RaN<6SImQ+Vf(r%+vB7SD>uz7}HlG z``U<{w&))7gP~3QASK^gXDFK!+E?i3nZC}^ov|@FgG7;>ql^=}yky8)*>HSzV@=+o zv$7zTXkHGeJe6&1Kc7*I?fY|(WpdcSPuUD@j+is#u!ocTOR$vRhqipilW#a@I&Sf& zHmBUWXLkBoR@FT$h9}mHg~_;M-6H90PLq`3Ii+Lli4vaS*CU$^>|@&T%8}Zhagjr0 zt{(7AI^Zk=TN|3A`)$BFHULH(a>fdO_B4lVlo|SCplmA)eVr2_w!m9AHhW)Cj8>0~ zb@sG@5!S_T8RY+t!fuZsH2#ti<-+uzGp4R($VL6;Yf35S`^lx1V@+cmim1i{+4!SRu638II^SO_&>Bu2skc5% zJgZya{-8&JD95C-ruQ;N?-^5{GOXe)3-oBEuJ}fF%=sA^?HsMCMz*#ldx0K}H9tBr zdQl%o+eUx|f&u+PZ|yu%S?kU?%Ts0Orn{siMO*o3;|2scdgVoe6uE_E%$aF}g# z-D^awK405LqLV|USX|Ca=bQIiwCFKopQg)@nPk3!0ou|N%|fY2?YL&>MDbzW7y%ld z1GL7WfpJ}MoO(2&!N87z6Qiv<=7+9uIhr0nkEVIPwcaaQRRnj&zp_G-4L+;MxkV4p zWYk=N!8#<#g~-!a;j{d8BSn$aS0;qC*Pa*j8*pI4btfwJc|#!2pV zz0dyC1$V|xCV9DU^=}+q;lpr*xV8Y3^u_61{dXTZs{oE7^-nom4GIxf6i#sJztHeB>m{@K#p#9A14C#r%`wJsN)_BJ~u1J9qzUyzXoG^9G$d zGnactr5i@VOS*geDZWQ*s+IqMuYZ=|_X!`n(uHjXEws1iH|CroPhkDX$+{J|vIVnU zP6dXcMdf4AiUs+8frhpxQx5qZ=i2qV>Mq?a7N&=hquG@2l>~cItu+T_X$r`h#8;8w3+O*A~UgmiqB(p5(5ets{ z`m;}Fsy)UkuW z7G>2*+Q5(>WY{V~#H2Mn=E~z`Lg~ekZ`@mb3f4>)y%q$>`p`Veie|4SA(9 zWGlMQDg0lxM<3Ya=pGJ{^gNIYLI#h%-E*X&1eFY=3uF%phg+0g)dC-2i{6Y+`kcex zB6i7G^G`kBeOqfa`Sj5m`;?)PY*Kc>Lf=E4_Ltll=My|^kH;O}wm&0Rp`okfW%A1$ z4j%+iO&epoFYqOUr7M!7_YBtiCBrv;;{oseNG|(ijJNv#Fz5!T6E1Rg&t&jI)ACC~~F9S)K1g=Npi|B3%)=Cr1DX^np^$$mqp z4<5R^V_Yp$r81$U1MR_eLl^)>XQFsW(=%R9=Z7xux1z^`cN?jHV&Ko&@tK@nR>*NC za=hmt$thBXLlNs`Jr?wwGC$;Ba}|jxYv>&Z)OUDQ*+-w_d)COgKEFcveyzi!T$(lA zo{^u7;eqquJ-K{t{;tRcWuTQ!UM55Eid3tsN~NI-0NQ$(ZAMZi*1b758-%w zJGNiY;JxS9Ou2=XaAX3nPh zijI^)`5{LZJ-#3&$`821j{+Cah%$?k%}`b7M;4{WnxH}FhLfFs|6X~z51d6eVA&oz z5Af-pPJhce`&l5`XOS;A0v~5NMDUN14b@nUue}%>XZ&@nX>gdA)np#V9(y0{8Tk&( zJa)@*5N^dM7WQjfzM>zzq!VA~ES9aTyhZeJ;;Y&%&@2}$e&;^xr@d5%LnQcn&cE)}>=_drf>mIe)EjR`TL(sisip`0K${BoXn)mr z_|o?rS3d~m`DC7UbnjF8-YedvztGNK;t8)I&lJY(zx!M~;gE zYpYVQM+5H3@gLW!8J#Oze{Nl>7O}J`eVK;!a#}6=GR7K@wDwzL{RqEj=*V9T3Z+atT$H90$4Z|~sA_p+3J;1GFdO?~1# zx#MUndn-FyI^S4-V>Rf+SOd{fXosGZomVN|k97SHY>QX2W?pde+;3m$0+|b)4C({6 z?)i`WN?QMSdnI^{h4aM|J6AcZ93jX3Kq8VIIYVBmJC{?VGFUl6a){&{$+3~cBu7V1 zkqv|^i=;L_S%^KSERyc)JqO9rQSim%|6M-*(wL8Z`SQ2pxqnWlzPzvN`~EMv|DW@W z|9Q$CL@_A+rX=JHAz2QCx4sWze*~a)-_V9` z>bfII9m5TTe%r-Z9jHcE0%r#$!7&UtLu~Uq!8|p&SdbhZmHW!EKAfNEL;}DN0<<(a zLlS=o2^6GBX(UHAC|Yg4Wq54i(R? zG}oN5X2;mEU?|*+V12pT+O$*J=Yo*^Y}DjJ)?d#x-i-aHe!C!~of`KkMZI+H9SP~_ zNeQ+)hW^7Fg25}!o6D1jdqR;-=xt7-jT|BgmCay`o*+`+$2>aM`}6YXy79${$tf}^ z@i|21m3@iMXOJ~33yzNk=9|H=k}ikJvgAluG4@_+7yix(A9GHD8AINI!Ddfj5du%C zBB<%Z*Z>ZHIJqgBf&+mQ;ld`sdqRf58pi+1f*G?iL6r+D9eS=T&WvMXe#HrN{VfZ| zH;hTm1IN8+_ez@Ff27#hWO;W>vERQiCk)GX$|l?@Rkyy7RU`w&xD$FB|1e|>_^{$p zf)?g;^;u>IrD|my2MWdh!|%Y-^`hKI=NN2;U@lt!ux0F(Sus;rel9Y2O<6p|9th5OXKQB(771!IbYSiJ z4Iyax`L`$Y_b&*`XbT(<))~Na)aAg-uzB){Lxka{vQAqLmaXiQCk}y!tplDvGT`4c z2<=3WEhz^pYpQ6ZkplNI#rHQOD&`T)%bR;TXoC{K_AneDJGi-(LG>tt=ZZ+#2zM8rc|plJbF^vYVkpw7f7&5HX0U9I zCiF!&(8`0gy|6#RsR*GNL-Bk?pbt)n^ML}^hIh=MgltL`MW&#)9k|n4!P~mQ1D??T z6setScCC;4HTnkkM;F6U^sTjkp5?fVR^_0Mwq=O16iV2Dz7%+d&dQ18p#H$=u$3|P z$(nsB%IO86bpwZH3D1<(*7)qF|C@mU9Y+gJIJaiz%}k-+oOx)c!f*E4X*X zz*uI|d&ZEy;iy^&P&xTd zTe8?_q!YZ*Cl+)9y|t(POU{r3$MRNseU6}!9pedD)R>DorE@9kVKvqYXENhUb$d0a zZ<9krz9pRJ)FJq%91Ok%20PA#Cu{TJ-oc1)r(bQHc%$tP=<#O`(0lv-JXLnfFf;ne zSrVl!`)_cJOk9jSWl*A%5&+D4jtY-&jt2KI$6&dQ?*~o)S7_}I+am~lWG5+mbiOi;Kmf6M=J)1LKHAR zQ1TBH;zMO_INuRb&(#GqXwCq%WMGSDlzCE?3A=_UJZph$G$U*9=%6ET7OnocVTkBA zk1C2d$8L{l{f}tK@H2yr_wnjSR}2T9XY}CuHcXEx)5oK$tbyvcz9rjC^3CzRDRGs1EIpCZ zcmrc%d_U*$4EGKbFZTVzp;nk_pG&XZZFqMncy$=OZu!jq5tnqQ9*J&uajk9Rul9 zZRmzm9d&h@vsxJ~jkdZqd9yAT5q}TQ?_@LF2w3?9*B`wv1h8!I!OCq^?&lh=3iU(B z;SzcCmhAUvKb*S@PQOc=te&ILf-UYCR?ZneE48xbI2e)So|99gG5zes*G?nqA1*S+ zKJ{KlU90P3JX6+`&kZbC4R}pB=L>Lyh)LYgTdqC|4*F5VtoIcGc^HJc4P8lQd!lFD zT-#$w;Ke8Jj~jTAqYS-*Sc&;lAQDJ>w*}Kvxu&LQ8j6v^n&=Ioh>l zTzoIWB=^W)Z;l5@JPaUu;8;22=Ve9UeF6FML42_I}D@LM?jI|Y9 zU5oUMcg)Ghdj{K`0HEDZayLGs*CMttc4H^I$!?WfOEzHivv%fmn6hJL)^##<&d18F zkmv>wXPg-`?U#tSz@%GGd-J%(dvem;$qaummZ#GKtdfs)?X;0_{EL$A#^eMY@I(3% zc_zbH_}0Yv&UZSC z9q0B6zFtr=UvfMJ#Y#}!!=)eb_=5Ph9L0CmLQ(T_fbicUnBOaZ#CR&oe@U)cSMv7* z-Z1|=Fhr|7a|FKCqv*zf3%2f;@33)z5lo+W2pG7sf= z&}oauJ1C(61(~TuXibpmPdToy$ZVc}AF)u$Ngo91x7% z3Tu<$=#TW3h0Z)$L$}EoaOn}ht~}@ma@im2`I|v78ZR&yIwQD+Q>Wz6Go@=Y#z!}T ziEdlB))XV_lZ>b2m$>4w~om{d>q?A9dm6S zG6*y758VsBs*Lddg}MF;{kh~2BUdfhUy9l|Fp@tC8n~gKyhrmpZpgHixyo78#?(J4 zg}l-K&t$))xmc9_%XYI{!w)=olnl)|QS`qclSQ)N(5>kb1fj|>W|)3A+Q$16Ml6ZB zEDKVHQcX*Cn99BxFI&Jz4vpq5i%0x9nJ7Lw_%Gg?vm}S(yudQ^Zqi&?pjYcVn2}?f zBYM#C3Z7CI=htxc5}&qr>I~lGpB}cECfPCmp@FqD(Mjh8Qq24|m-)N^!v!67POcf{ zx6owFVqn$8e|`KHzC2;fW%65DfrC33Z*;?Ge2;h4Ph$lC0xWWfv@!jUvO_*`U_A-^ zTCo?O)307w6t6gPURYP>0)7^%3l&r~#ztqH3H)0ABzx>ff%$aK9OQHBIhrDZP=J}a zDHRJJSmz7@r%eG3^nGp&{n66EMg7vT#GJ9d(9IDX%qg~I^Jr}*N6*PQb6Mq&=3^&w z{E5wDC!#iSnC3E^$8)rIj?WYM)`=8&xfPe)*XvX+6k&b>HRXoq5LaX zyk;!8B2ZtS{J??n&LKO2z_h%C_d>ghggWm&pJR4g0>Z6(ZxC+s|4=F;%ufjHgZ?Hq zTrh0BBpiOr5%RwH;i@Eo}?zt z2p^TNSrZ(^T@0anO~G0bjuxCZU7rAe?RX#o#NiRf%&aAP;uDqhofL_kJ_^3}8v(=q z8S?{!nq#y3&S-w3j6R)Qss(#3`m+f2TaKa!Y18#(#ZYrfkiS50&Nx0!=D#P508|XL z^(g9Xt<24wP`5G%V#Eo^lr*2#N?SDkbIRgt4lN?M2s*-2_5Hn9K4g>>!IXjpaIqVB z=QYbv(#G|3g4E^f_QjCha|ZgNFxEExtpq@INu#e<1m}B7STH?fw7szT@5a0>MCBbA zxDuW=nB1l7GD)vE(KZCI1;MC@wY|A~+FdKf_L|W9mVzJy!Y0c*w0V`otSA`@-~f1Y z>llFcyeuRM0ORHR^QUo*)?Ic~U|c#3QjAI*MeT{OX5`w4n%Qi$uiv8{Fn9wK9H%%j zh|OM1EheDNH;gyUaT^i;2!;$i!(y56&lrA)$E0*|OkHsdon7e<;e2*MNTbXz%&Wq6 zl#3iN3_qtFAy*tf*P;ereq|AU#Q^WwqTFe@(1pR(?#lbmB6yUGdAt=lp$yf6L+0?F zaxQXwMc`Rdax!p_;Wmlk^B5}{K%u^1Oq>y>7lhI|huHqZZ-(J;rkq}idNd`2!CwE{ z8zo1{>}!1#g*?jIQMUG{qOKTG7U$@I`&JwZ%UkQNC>+j$gSE2N{;kbEKX6ujn$hY+ zd8{}sR%J4wLF7cQqNkM0qim#fE^dE!!Ve&Fjd3kXQDjRn4v!N688=P{lQYpZd(MbQ z#(_I~6y4cxq6psmXqzmm{hd-2J5eRp?SX>F>_Z78Tz(WO4yU&w=t{yGgL!+>&#j2B>cNJi zIh}?&};nY3%D`gCezLU>u zaXQ>Fh;JF$9|+wygw-D{kDRJs*~jIH;CopV7TVC-t;|U2CG&T`8JQ#VPrvaDPEwAs zkKp$^H1DIe)&|Y-t!Tx!lfGrAJLoY;GPq<+vDWYytG#51o~jGvwkd* zp{VB>8N9?qE%kpb(_+ykk5+BYspfBK4X+r~TEoG!%?P*Z)IXqKpJhee-M>T=)pbXg z?kH|Ir}(0hc{egP??pL3ol}^VJi3VO;hU$;zqMyl^@r0C{$&J#I|MQ8YD_bkjCq6{fGMJnkK?1nb!x}gxF3+PfCU01SD3dm$QGmlI2cs7)e z_#KC>5_Pk8%JF&l3t6Hwk#1LvKugo4I1=S3b}Q2#z|}Z zCo=F3oH@H&;giOMgO9c~P!nM2drmeqEGNQ&k$CJ86;Hz-=M**!+rcQ0KjmG_xwu9v zx!C->Ko8Ig2yu^xy?6djmd3obXPq>TURoP#e~O5lK0h-YKlUp;)#9|rP*@Ki9V4UF znx9_LkNV%cx7Mq#83zhV*l{pyIoP*lYBC0jRfXqhFW$L;+fDDt3JeEp#><`ctfsui zCk^@%Y#KtR$K%m$u&xAVr5K02V67H~xI{}fvp;|Z98}t|@)}p*kO`wQ^~ovW3ibJGmbsJY7IC&eu@+WgH6}Y=r`%La^UCxRaVsx98f(1{Z&sY&5 zYEI~-zMnEozkP=${GOcsBUy>3KThw@I7N&X zzuCKIU+G!$%5Is38;Ej5hB`Z1$V5-mG5{Y18=Qr{Q9_-((zV!ob7k&VwVMgNQbt z4p$E>c*cdk|M{=*XfzFF&?#SrGiaRB{_$Dnq3eqJZ{zFs0NXIuUc&E}Kg#~W!mjb^ z_InT)a`M{PUthH{=$zKWcjS~ggYP{@d{NAY;Y`s6zOrEeUdl2|*4^UW!G78^uE&o_ z0{a}Gt-$2l&e(|2&~mU6w9xm2viX8}bI z$yN;5G%2{QUD++|BXXc)?_Xr-G*57Ij{at}o(a~;2-zb?SuW$sK~ETVkk|35=DgLp zt4tR1dP{cCX;xOuQdIiFo@NUM*^`?Bix@%a>NB##f}XO{$2It^7(yQePu#li6Mp~6 zbsy;m8QIGm8v;;xG!AoQzGA15-Z|a#oRWL>5k2QzC?F^}@^i~BP~}19>Z7Rh_T(A+ zEVy@~Ev^l&{TuK%#>O{-D8i93XyYZLqOTcTZ;g4&fSTi>ER9udkwu<3(B6y0FN>}q z8A2N8X^m_98Sl6H)jlHaGx8_{a!pp>aNxXUcz$D_pBJ*-<8xa9MtA0I_kx3*4tGN* z_yiArkIy}Fl$}x3qE$L-^wBrC@VtJ;UJafZ;Y(KUXoRCHK9NlI%Ur>cp&yWG55{%E zadGk%Gz(0Tr9P)~&6F&yBnJse&=aQ`9(^aE@7D3iu@m$QhN~?0dk&Fg+X88j47gEX z0!P~^y#+mrM+M_~WmDns>@%F=OiS)g*J|_l0blKA?5@|92iy6*T;K;d@ZK#|eE2{P zUS}V0&7fb6$sO@gRL#)C6YHe8iO*^*I(DE>9XRAG<5nre?JKgX#kC-7FDscPJIaLM z|K<&y8^-X_)&#>S!@+a+4EK8(yrXn)^zDVUOlF^7mT4iNhRrvfcgVh;KVF*rm%sja z)8I|U)_eFkxp&~GJ{2fC9%G=vpbW7)a`_FX$O9U-M3>IZ<4dJ<-&l)R>>`!!EugIR zo(|G0r+5K5>egAaW%`hbosX7m;s0jMF`QkB9M~479|dYX&RRw|e68X%jXT?wcC(jsbcMM9?t%31Byzl{hhJ4&(gQYdwy1c{3M+rE(LXMJE zd@`Kvp8w#l=PCa89mQa@UjQ!yOGdjK7&$ZA>m!FqM~;rJ@AsS?IYqjrGFWAgbo99l zk*+VBiayzvJ{^u0h8+^Eo#8Ch*^rOl}+>5ybbdxr4`TQoWLP zxMvtCqoTU1QP&mRO&D2HVAhn2D}uutExsizeB<{w80R(P$2G=($wPcjKw6XB<|4$m zuViS@tj>k8TqqNA#+ZFdh$?EaXr~0nyyG#&oCP^ts>A()apfxt(yvGxe=V)|zlgy6 zn!v|&q)V>vMuOa)LAuC+CkEGh1`AbCI7F5wKOp$;2_YpGlZS^lI~Swn=%xSwKmbWZ zK~#4oO{(v@Wc0`=lYrf;zk~T>1F?b#aze`xTzX!B0O$#vxJKZ_6!sL5 zGs5R3W7Gx3@{};JCPXf?RJlIWM}j~NzoZ~vbAohSz3~jr5p!<# zM2DGI&i2hUoKr4qC3<~TwuS75z4iA9K4r3$eYMEo*V?W#!Q9+ICf720`L~jPyFt_@C&0WR@k>5tExGD{NIoWQnbgwV(^jxEcYk(ysBE9Cba?O4M_ z_wUqweG+NXTt04ITMrx}%4ZG7B_q>w+sDSz{v$+f0ly+e@{@0t~|iq zJBs$_CuO||%nyY0M~cYPDMJUN^_@9>RDx)qLC5;Yj+KUVD66aVc54rsqp9Y1^brk( zD?88GDA#cAcv8Y{=Qubw98IAIIG3WlFLMtZMu`^vi6*l#S|2W=#11MirMmdu-S!2Y z23~N8EZWSz+GxT0!MTG_d_uyWp$s^cQi#R&Cu;)bCQIDK3!RuZ$|C;c7NwHdpq{9WQOEAj7%@B$r4xX|g zw9nftR(X*JeW^^uPsUDV_xvdv;~G9~FP=-b=|@=`V`KUH+YsS!C7%qsA;1CGWGM<4 zqVH(w8s1b!Vp#@3W6O999}coG=54w?6e?@j@2eCyJgvIQJ5g$w2fCaht}XMtx3+0_ z+H)RVABF--#*#B5MO!0&bLbn+s*cCi{U)eKVzGhB?bOCfO!JrWG>H*PwntO)P?bm z;exRtg(6;FCgF(Yrd01s^`R_}^%Fe^qn_9JSl{L{nl#F2Ww1;Wb4$kR83Q88!O!S~ zjI;&VT!CHuuTnghc>E{V#}{9~*K_N5?V33{R|&@qpodCx3C=i_&G;PM?+dt#NaOT- zg0wsIr%gZ0jHyiLsr9fizm;l&ajrABaBr@bu!kW<@QmXx;bLsYN%1lX#%1gv(ip?- zAvZN&MbB1Jr1$2yS1{7ZP9NLt_lQe0FGIY!USWc3 z@L9#D1UD@8sS-}%VZ$4SnVt&(Ju|XYA15GrYt8t*?)l*NB%+Nqbj?8Qj4@XxX7zC6 z9A}5jp$!_ku?9A1)^)h=4pZS-k*Td**@wX3oXSJZ2cQa@Gu9(|DSH>vr(k)(C~ZwKB#B zT=9;nteG`e|1xI6y~eE|98MvV%o++W4L}#_pC4=2zpj0RQ}<}k?Zww>VGDv=agte| zGm+=*(J?ZDD(z^UCd16F;n4=X9`rt^qj_s?qZ#uuK+mrAmAup0!7n}6=Uzd=6li1m zKDzV#TXQuI7frlISDo4FW8<@s+*{dM7p4IR0%PZs4tcX)V zSo8L{u^-Yb87RY~-!r-$hJpGWs*bm0u(?V#;@&!bF3127wk6>>AWI&t0TrtMMGrbvqSrysbHXOJwT3cw_l6KG_7p~d(<;Yael1AYz^@$Bp_>8Cl1M&FzRLXDsq?Tz-*waLCA z6G!I>XD@=I{dfu+0oZJFp1|96_{wGwey+-7#1HQ9aMIOibI@Bncds1NK`GXeB^xG% z;vvBnf>}pH-i|g0Tk9o9O&s9@eLNk!Ki&=V!FlKAJM)JW`c97W>;ie3!?@bd4v{gR z4NUXy9dk^cnBhYRF}axR4DZUGOLm%v7xaQ~tGz9fNh*ms%76xo+HurQUc?+GIoA#X z@DA#|9|Vq#am0JbCza7k)|hM%}RjZco8Kk=qKaUM4Tt6Ln6tM_q? zx$J_@f+#p8BSr?d*7tOThtpAMuEDGP{)`6h{g3&2)@J|5b^e!(^Isa^zx>>_2|N+g z93W+PRPw6tZMNP%BRNGXrB%7CGDONI$pKP3WrcKoWwZKR*{zVQ1hA7kA3g@ zV4? zq8YuC0U{aGpFVgspML1K<10f)@*Dj?`6^}LXhyGT0H1k~?=jsa99^oxJ1(HWwGsF5 zaucjat$RYynjoFc_Z#j06^8f?Yu`%|=$E3>&y?diqnxY>4Mm77q|q&2+xUp#_N78v zUq5|~SHH%1Y_KI8;ltQ_fia!(na3QP7!2tg1AB|v{mQd`O*s4-@qfjee?5Omh{;$v z;Yz|G`Zt7#C&c>^1L1w=5MZ|eDrG;Fia%3Ul8F<&}FCfH4a^+cT` zxaN)2ZPB?6wr+%;MW#L zRca`J431xUm+>683}GtC;CQ%x#gKb6WDh5lXCREOZ4jCX7qz{{lSL&r z9?PQPVB3F-5q?e3VBGd>CVx!a*vFt6n4><2TXo<2N9IW;CS?WXOC$fE1-T>h&}FCfJQv z{nE!#x3hOb&2UfzKkKIZyOuc^JZbAr&(2Pd(sZ?Gy!+lCWHT%RwOhnwMrS zRTfaqjq97E0iU23)Sl;2>b>xzG4~Oe3_B@`307s9jC!!YcN%!pEF{Aq8qd4lm+w&<=BX{S%GtOfLh zaygzalPd@%n94dxJOJr73+!M1h3uqLev zzh^i|V2*afH-?4tvTsCQuHPuhc+T-aIk{9u=9E&LA%AU7!sy06H(m|sw-sw6_1V>H z(O$1lPGvk@;1y4dic2`_K_{1Mk+kq>bt=<|k$mi}1d$?VLtX&VG526$LVWQWcoBV? zz82j$S6*;A_V~d+p!6d?^(30A_DZu}x_7~Ww7?UWWirCgjMPO4W_)NP=~4ENaR4QvN8*0OOb?|x50B~UFjk7J3 zUt7qmJiDMkT*;hq6y^0=u))>2vMwA-=OR5fWYTD4>+BG{@E)0K%;9$i1YAPjt5NNA z0Q2KA+D@4rjw0Rr`;k-=C7ht<$JP;8{!FI^-7^1eR{xXUitcPy=k4zxSZGP+nk%3G*)=YqUg0uIcbZ;HDL{-0^VFA9K zy8it9`s7-K+6E1X-?mnw0dp{$QSb*4qF4G6OmuF{$2hNFKWAZRFLxQe?C7jO4g?ph(DLZB-%`jIBDj}ik|)`FyKotuif&s)pyFBHqm&*xK1BmS zW*km59s1zfVJMiC`H2SwhcRi!*XNGu&RUvym{a2ku5<0oyq1Z(K$n&>#VVJ1%GkAG zL@UxA^%(279t~&A=#g&&Y3kzC$77$G`w1IRdB1IpeYbdNjyO;$z00EUaxZf-t{BFa zr;PX88YywdmLoffx`(rgNK=yU>~~zvvBPe zjEZ!v{Avchpnaik<%{)OH1raBqIyNEg5!*#Ipp-kaZeoG<|6!+Bs)+^PDjuK09Woe*0Gc zzI;umr}JIcE3^rh${ZNH2cET$MGoN&S?1Ds%GkPgoVIRcL_Nw7c);t*C@G^iC&C78 zIim;6?3c6SoFB%g0pA`lVaW8zp4++c`0*#)j}DEi#!r51+~D4YEu|SghK-_Scm#gG zvaaTpJ~REJEQ{+tE4MbvemVDK-y@PC0&b+5i62)oEr(r!Guun$s+9NpU_Nv1Bu$^9 z1EiCoi@0h<2{v#5czIhI8eb;qX+(#LD=~Jc-w3v?|cyiY)i`+FDYc=*b># znjq#?$cht?AvXh7!ALnl7G0RF(E5dfWXg69`Kq88;Ew5@gYxvl!0+j~_1ClY@k&tAjxo1Dw68fiURhh0f?duyVyg&H$=a7M zS0~?oB`ELJ>g4mah-vHc$@y(Es%MmCe!-A^?ReE%0iRV_q{Nn-3NyG8{EKKGaBApd zjZS?%I=wra{yZGe-QhY{jQ3VW(CSES==?d^zex9se7DAaA19!v!c#?m?JKReL+<@f;z5W&WywqNJR>u7~ zC*w;SG3_1OSJv~@Mu3lb^Q;vaa|%MxAHxk*!`HD~JgwE@5#!ScTX>dD!u51t9nmkx zSof|Aa0T{Mo!~5C)A-i1S)Ak@r92ISYRvNoGAEVP`o4A*4pl1Ug_QtR` zuF4FLGSF<6V=uaNzMO6Olg$N( zUT}`QA}hVZr^OVXT;Pc-89KpkkDj$(WvGz@ZO$Pw7w|UrG9>%82g_2>)=IUC>(^w{ zH`ga;uknL;XXVpJV5j@w^v^UR%mA>_uVARJWd*nA;Ief{=dGN2r6&(;AFbGAm!T)S zE}pjW-X1JftT@o&PUvhypA@JW-0x*q%|}oSxrYO4N4MT{RPB=2{TsOW$JrZT44#A4 z^t|RiIC*c5y1swma&kuRV_kL6xcfi$pO)_buvdWm)7P{B{{Gn^kP>KmPcX@uk>LEp z4?hg!W6qIEX8ri%kHguKL!_*b93nYJdgVN6f05t)?swz5jFy$t%30FqVaQ1Ecz*p- z-;Tfa{*V3szUTi-o_p-?@t))T$MeVc9(cUwAAIuz`n}JhiL8?&aR|UV}A%K;&)Dnm)SA1 zN!6TUOLS18gD`-2wkh2jfjlQ5z9x%&MW}fxvhVCi(NBM19H=}`r4T4L)uEkVGOYgk ze?2+->Q@N+^~qmKOI_RR;H9+iZ$+?w<~<(98*8Do(ZR|PwNnK0B`@~d%{9k}GIXo2 zDb3X`XQ;${Y&osci^OYv;=@SQ-z|)jZ}s9kmXO zL!SLuh?z*o2OELE1Gf$4lYPC-TZfj+a6BtrTk5>n9L90RhpYc`a`LOcq-0+*cwvAs zgNy_OO4ICKe+W!NcnU)TQb!~FV$74k<+O2ie~bxe!0CDHgUL8wqqQ?&65J<&$O*4F zJo4?@UdQ$)M&?Af_3|Fh7Aa!nUFh(?ru#E}@D{A6dF{68M&oLJ8G7cTMCKwPX6=!| z8L~?u*3=3koiyEzGG0&bCo$7fGXNDoIeh*mGm#!IC4Z&)(k>=~#xpGcR#-P>W z8^SpQlZ>UMsJoLJsm1dj2%>5@Rezp=`#^x1wedMa&+P4MP7$S<2&Xg3J_)o37-EGeZR2v(xFV!q=BT^a;*ww+{krL91 zsPo~c_r^0Mz0P}xYsMV<)R{3XxRvuIp>=X_F{CqWK)Ws7Td&A$cjmvF0k>%)Ky_rN2kh!e(RO;G{|y?q|dG%mcuS=8QT+JsbF z#)vzq(+>3+V z{F(yRM#VkujH3PK>Q|fqvI7|hNAzL+dIs!R=dBO;-<}2o(yeL75$5SW)zzMT6uJFD z`n{54_l)^PG$v4Q;M6AgsoTAfl0PDq8B({(sO%h%=z4Ns0{NPA>hcx5{0hDnYHf|C ztff2;XGjKmaG8$Y>Ql;>kKj6J7vtDMNa1QHn!JcNJSkRI1mFXM#673TqwJ-vsH;Pc z97^{kI`EQ1=o0R%9ZLq;N_b6%vT1FNvG<(uuaV&ga4x6h8s7E$hD^KC-?0YA8Gm|# z;SpO0-1;+}?k7j<%ZU_9Fxe`RaaUP7zwIxqjkn~5D|DHRJDlgDjqj90`{~o~z)!y! zNS-K2FLEfOUuWyqG@4kW;{iR)VN5$Xd#_&iPj~N?Uwdzp+#i*_xIcMG!M}X!^c-l}Y&Y+<)#u*hS!22PjN?4?dk~uNYn0g&*+1=-^czi?EBj)U33zhK z@x1vfc*PlQ52S-ktOX@J9$N(Rlke@lwPm!-paca5eTxPRczM!zmN|H)4E1arqp!i# zQKrTe5MmC%qn=LJkCtl0>yKxq7AE{|fYIEEUz*p}2;;{}35&J*%4IWVu$|U#ZA^U$ z)WPKF5Sb=7V0nd%!LoO~sn2r`%31W7GQC%4f2JJgLMa*4hkh-q@BFPg_VD1+M$i|G zCPla7OKt4?s4w>-S8tS3yI~CbC=&BQ+h_K)dMmSHb^Zo#Wv=$PrfKv7EgcFvAt~Qz z^So1&`r|t;GV6H3NO*BA@Z=4LKUz4?F+w(tY}DWJw+{`Wv0!{fIA=V|$eVmr)bE3! zhWE5|W{N4#zDe8P{AB#$i=73whdLt6^ zuTB>9$#GrIiso+&Y8u(|=)8r;jjvBGZdN5^>9ZgE9*!jQwy(@axta@QZ%zwl zP&VX28OSzAzE!jQj&Uu6M{|2YMqes>@q{O5%a45y7OK6e)!Nk$N8F<4_ul{E&>7DT zSN${RWxS02y0kw7*hNkdJoxNfX=?a&3RXp;w#Ig7|GUqBPHY4v9Qt6wnZBVnox$fE)6vs|YZu|*DZbh>&%cpH z`jwI~>aCaA%owz#*W|pTHCY`3KJb$>2GrBn#w>z&@aJ%0z?A%9oCC5GV5hm%ujaE? zcmc$HvPP|K{df}H|6ud^I~xb9U}9eqPPc;E*dEp**f%fec}mnRqQU>)#jmk4?M^+%ZPs^mM)VE_FnUYUPyk?Iq`K z#>|)ccxNw)M-GLYRnf%}09ZR3Xbm>nWBH+4t(CF*hTPWouJHh?d6Ww3d;IqKm%*d- zZ@Loxc*fcoPtk=8sOOC17jSk-r%%p~M?vqC3$%8oZx`gwH=IWIWV0uGJMGa!B`0JN z(9>m~%;-!r`pO)yU*HQ{L6{#!kH1qw?xsB?i-s3Cn2b{vOcC-Ks5eztas8R#hjTK+ zxy+6=z7w>kV7Eq~Bk7!DEXh|LVQAxRjJ>9@HqPP5N)T+kt*s%8TQALdhf7E4t$0Lj z^n0_?wLS%#s!FV{WR1P#0C~k}^csyJOJ-Q!kpExEBwMnroWiZI(6IKqXzgZP4$2*x zncAz(KKCfN)4Ht>?djM2)`iId*ag1E4?`CJ8){|K2=*t3k0Anlt{htWz5p^Ebo@$c z!8ha=Fk)D5@4Ut^l?m4?&zWo)_$vG6jy$;&l(oO1dytD&UDF=^Rj>`4!^z@ne1a_W z<}E;=No9AUDUD%_V|2JL(>NL@?DV(JdzNG1dQdRlWY+OIBm)6XXZ=1Ug zzxGy}(|usuy^aFTI)Y!VO|ot8J$<^r7RI;Q(9mddoO*_Xd;K4;ufOY5!*2H^cXt_kCtH}?*iuwMG7 zqh(*tWQ8os>aN5s2VAzodnIOzYikcIEn13njC+ANoNr4y`wag(TnqRrAVgBY-adbK z+IvTKI@8A=WzX*IV|8yLigC>Wx+1)dvS|aOCah|rqI1a(=~-j$^jwd~;GRcUJoUaI zm#^^k^c~Cj{}-=T-v5x-mqzw~>;VyoGC3-B)zMxe9XUaAaP)hhbB5d&-9tId$&pi} zqtv4I2sv)J-gRY@wAp&s9m{TY-7pw^ft2;@*w2YjO+7uH>)V(23N z{pG*McK^B8*UIspKW(w||5!W6`;PBlUfbv6`D45PRC~wk{*>~H~T1hprZ&U2K|Fb?D;9h?yLXnWc^ovV?!uWg9zxEh^$u_?nlDb zJt38ejQsdVLYUCQXG6IZslqVS-U=CeE5S9mMx0~d{gLG+2u+H4EU14}3ppAUdP(si zm=G9BL#;ejT(c%(mLsZbv^BvlhB~!6njD}U?AH$oHA5hKK3gMQKcbf~kz?)$$-{Mx zDupsbhvzs(ByR0L9}(@&S2|)YW%%AkksmO+vlJH$aHP>Q{^t-Oj%yazcwm^d$H>WE zmd!cgrJqSd4P2ilvNL^l!8jKpjdkhAgqIAB zlT)El|8eBw`e2sAi2l`{&c@Na69EPvt8K3yIR-p^PG<<7NoHf;l_9Zo|MT_F^W%ci zhprwkZ^63r)25O|Ou^moiq-@>73 zEMrwgliX!>Xs5AjW3D_E;eBC_s+GTBXgZv}!{~p@I3xn+MxE%HQcm1&EJ6f=U)$$H zM#mfXT{9Rl77fcvup4lzZw<^XWBAW7(5D3bF^i2SB_aH>aLW`BPN*HmK*l&81AQu! z27b70DcZ8M<*kUW*6>n|i$!Iu2Ese%+L5*mFUA}P2V?ztid@$0oKum(Oe&du7_RpaTx1UUT}IPU9EaI_09Yqh)QIY!_MMA4D(z$Lmf z%E(k+s>o^%TB&4X6XsbZUN~JAqVp;tm=XIRbL-H)BeyVvf*eg*%dogaBQIVtZc~KD zIv@R>o)aG%_|&;hweaB6f&sQHx>HVqHN#r9pAlnADq~TgHMgQlce}Tub-zKIy)(2u zmF32WoU(aJ;AQ23SH@K&T3Hy3J@c{4P}7}rXj zoxbJJ`3k;f^g-K;XpZKLjkV3sSTn&kV2^b=(YyAG9Sr=Ioe%{ePUSU;P@7Xb&R>3iw}Ic5_vkf^$ZyGe@6u zd^XJs1a2AB8mlwo1i zwWfvvkO6n~iV-~HZsq*~(x#{R{H&SMVO5>u=GaDUD{z z^vNb+l>W#G@&kw2ckumt4}NIxne(qt9^d}&HsSuS?&T2Hm$BzZuy1_NW1QqkV+j_6 zCN!?&(ZCvrK1L51oDUoa2erfp9zA~NG-I~@o-j_2th|jqn-+}xIbk@fm-X4R_7t(4 zl%s@JuynqE-p1h}&i1S^NkDsqw+oDS7;0RvClif!S-p#NPQ9(o>0B)gIzHO>lz78< zSp)jg?>%?G5eye_JICuN;pW;2CaxN|60Eve8>6#zZL~029DVDzo-v-Ik9f_3QF)Ki z9PEW~`0lqSC-1*aY#Oq#yRplJ5lSRg7gLxVTv+qtm+r0R_tf3$6VR5V7 zD~6kM4z5?%e@TfKMchAdNi68OVMdDfJjbH|o~@vR&-RCTzvP6-SuMM4^U^wefi9xe z3pMBCgHt47@M%pt8r7f?6OIpzMmx6F(G!~Z(Y{1KJjg0QukJX*SJvtJ@~=<+;`RS2 zbL}r;$JPtxpwz=bnYR6n4QB06QM`uwNPkmm*lofx2C*jrYXjPv?oee3!5!`gjRid-#jB|y6-TltzWeq}uamsMJ3 zU``GF=pnxMnm&f<4tR8=7vWm3*2FZM-76||L@T4!(L?K}?9U4soG+HI?Tsg}P$cVG z=0tVwGvR!^L2J;QgK}agXTQR$WR%L_88~TjmgJQ=quq*;WoGH_Km6XZ{)jDZl!||G z@(sH2R!Pp+478WYW{f9E>7n?rAA-e-(YNw$lS~tB1#@Fv8p9dgeF5Kgl_R>v=RXL} zD)>p+pP3+ynK6w?F|SK<+LEL1%sfAxe~aGz3O{^f-wqob+k5V2rA9y9W~FauXxrK4 z*~!(nf(O1KLr|(lX`JB@u?_%z!CBrMH|O5Q`=Ad#k5kS2_zB!oDtv#iXWeb(#~7?D zt@0GVSL&t=$P1ZASAyL(GG5l6S4DuiHP#FbdN|q|D{;*0;GNDzKk8d^*+a&&eHtI0 zzePiS{-p~h^ysR8^=r`7kkJcEoB|>Mpl1#B#-Haku2mFhPak)@))LE`edI_ML5xpvkB$SeIhrr-_Vji! zW6nm2B94S9`@Y7SfeBx8c#QtID_M4O)*Nxi)8k+DMVsMaPLXbiuQgGlRCqEpr_(_I z*`ADF>8l*|q6`peGS!YVefvK@fy$Ye7Hne$`ch`ME+WMm%BDAD^n`yEB+ z4+2sS%7G2XHM&PpFzuSpU3<#zjR0Pp$dKIaH2nUB`R6zxF%2=U67J_m1PM>$|t(nBj8#er%)bduB&% zbH+}B-@^yUnm*i(q=j-o7V9<=Q;s=%WWAD?^--+e^ktiI0Z8nqD$bt+& z@Cs+2tMPtCDQt7y8RO$Z#MF$SJbOuzW9TbgZb=zk;%=i3FQXY*O%{hkWbm5sJ^R22 zCjxX&xyfG~l|6_wKP(v$c#7xO--v!W6#*=2S!taMO5n@t5@VS@zwLhxFt@w z(T_8V!$wIUa>jUOeb@3}l#O>Xkiy;ZZyL8>DN#XauvP8nnwUOArvV+8k2VIw9B2O6 z#>A4kPW%22fpNU2taoN~!h6F!-lxGN?v8O^y*NI#*_i%y>%@fWyUQC8xVGuohCsNw z6*1EWW>ScU1QBs31ZLVQ6>-kEJvRR06q)6P7kxInkcj~HS$M~WVm*I!qqYHVC=d0o zL-z*Lo5toxr=EZ7KAlSFn2hD1GsYWJ>_#t_IyrradAB~t{hs6b4QdEf30mWN_Zf=E z=#zGhwd+gE#PI{}XzTfE?PhhK`(ng7OX+)j$FrSCf zW|)~=KgO8)``p+1RfC;z|MYt9WHYoWAwk-3QRo>+in=+JDk{q1pnm#+ zVw~fkduF1BSv34ch&+31j;w>CXY)n|w?S9yLq{)9Ji;|0d^|T;G?5*CM|Trwinw4Q z0uMOhmsZSzL^0Nl-;1Q$TQf!W%oMiXLk#94_*si3%b^!5U*W3uBxFFovv* zemM-5KKnD8hlS~QYU4=!;RUWJ~UCI(R!T%UH`or*BD#ZOgNPTq3s(=#qX+6 z^LYum2HdrkF?cDmv+R&D2ku=cPZVx;?GdM@{&Ye^gHXT^lwc{_V#Y~O{pf)sU^;qA zVIA$6`kCl|mN0GFl(0;YvauLVM$|E9Lx$@IFfOAd1Mps2asq2Y*;SFJqS$hdl;xI! zQx`@=%a~K`hfo7ad$Mb6Ft}LT7l<{c%#Mt#JM%g4Q9lndSq`$o_8d7od#XIyfICCm zQ}~Cjt_XlTj+%WX2}MWGD4H`u@C;tG`D)asGB1mft;C3H1IYR5M+Om5-2~<~sSmts z%G;@|h}HGv45%F0NVm`FHP%LR)y%X$!a;u@{dvbg_pG7swU}+F@Yic3Nf6d5#pnzx8Z@+;9`E8f6 zkTdQ{;6NE1yA1KCjJ}tm9#a%@?qm=fbN}3*0i@A^2|k_nb)sEHq~Fo5HY@y6F$1c$(EIJEk>koWn@k`l@0581rK0kAokR6m8(1EdScHW$$J!H)tBlCmEuuqh_ zYHHts-woqj8-3o&8aazjn1F+G@!2R^3DA@e1HCJWOH<)vtxYEH;xu`O(W5oVN3wWN~6VV{wQPD(DCTr(Yp47NjT&; zZ6EtJjlsxzmT}J+dNV5QQ;0b{_xF0PIQX2Ses)%th-lz3KjuheKERE&H&fqwM^;p& zUp;Y&6Q0+;X$zUIPuBk7>RV1Uj%#g?sMy9g`W>&;Cv<8?UOaG8J(3%$)xJZYpH{Nx z%*~<9{7cWO1mIxT^|=`d79QBJn)^WrICHjhY zUs3EcZXOsM7}+5PoYNqgc&7e(o6HWQCgb)JP72>aC!*VEcqJCm^|@dc@r?MKFda0p z_IBvW7H`_RW-HrZ%g9y#N9F(n)Y7<;4-c}!8q2^0^Dt)2X$=HkS`N_3x-xmS_E(Cp?a>TS}!l%`{ zp@USje9P&-zrrt+Se%3PsBa!#f-6snb&Q@19N5W1FH3!CPA-(Jdao&1 zh?M0u93ncEF=j3ZtY~Kl0VdIMbE~ft+_Nv?t7YxVdYj1#S$vKT`LS?S+i$u)m3ua(N$Z~&dXbdSIQ%9%lO}V9ZiEn{KR*mB70tfy7l=&c;USAv&93Td5o8_!frvmLU=oQ)AOR*VV}?X&p#~x!fje<&Wyy#p zh%DJXjGtqvD8CX{ODsXt-GO^QdB{Ed5ohMRo@j7N zpFZXO`J6fH3+4j~x`GB3nPcSNb z{8Z`95))?r;n=4ldu;a}Us4J;RUObT5j-zIno8JmNS7Ib6_JpFc%QHy(UWyM{xY_r zm+Wx1&S+CPN({N>62m>lEbA`cn;g$W&hO06_UZz-i{VP|qpvbmn=-#hLcLlR5O9i> zdax)eU#aP%9^L9k)&17T1^1c@j8A^U%x?xAF`#)=yD!UGS1>-E)x7zce{% z)M8zh-H3fCeI|g>X43${Hz`;B+8*sUN-5v^*Ea+4ONryINEu3da>>1D_+qANAuSqZ zgR^xa(>OvwYAFWzEQ;??_`HxZrriQ@&Yt!cpYMyiDs(*<-%Pc*^M^k2%u$=~JF!^27yC7mcs!Oy4sn0Tg1sr%aY8;&pvElz8TlB_%n_2_0E?5eu+C$`e-lnK4h4%td`Hq@_A|0 zF#k4!$Vd7%u4ve4XIa~L0EHdOe>^hK? zbD*rWYS*SxjlmRRt@-VNVIVpJW#ErsXi=Z!XqaHH}v=|?UnMdq2eb`w!|GAJh= zg#t%^O(?#Rfa)uLrUoy#(pzxaVM4SbZ{&ns1ZO%-NLfo>X{}Xjy5ux0eL3@sEY`eo zBr^+5qZHMLDHp9dtN1cUSMfm3gZ3pS-q%7nb;QCot3ym0StxQM$pf+<5T(Hf$DD@t z5;FfXTns7IrH*VZM>Q-mPr2$rAaIg=t6pA~^OOl}K3?y`19H~GEt9BV4BgS5EWZ;< zbFoM|+kqPKO=Nuy2I`b00WNbhA8F-dTn;!H&{mZ(BTbg>fAe8c$A9(g7lBMOH zNXW+`3vqc^$7u)FH6V{`88hm{tGkIK4@;)ACY7uhD-zR8!1NvEhF8kuBu+V9C?{WT zav(BJ@$km#PcA<^$P)#1M!)j>W*#CQc(Iu88-wReESZ8bO!|REjt*d~^E(wJZCZOT%SD7ne=&{?->syXFO0|AfMkE zIdMM07-0K!f=rcIlBbND8@sNC(0TBJUFHfxF6Ujvg-x> zN7O_0R9gi4%J|8>23e|wTQd8Jx>P=Ef7HMADvioES&Y;(7=m52ViDecd-64U;)B7L z_@1}^och!tl4F=O;_!j@9Ir#&Uts+|XAJW})^CYix=Vlw`H^qM^9HW%%WplE6l1&~ z7Wv{!H)I^}Wt@wSs|+Qu+Dx(V6*|!Tq*hUmoKpTgB!C5u{B?RwQf)5S(P^Qm3+Q{O z6FCH_ML3&KecA^ydkl(zZ?&oPaps8{vM!ET)WjHZM*N(kzb<$Px^%o_;Uevbon;s3 z=miUJU-EYSa~7Nb`qgK<|Hsh|e`PWB4;Td9>K@JTgl2xuESyLFgB=@xz?kxv=byo! zISSc-z~aaw-W)x_fRtFN#`VT;f|i{?=MglJlD}<4If#c(5=9;X62hP~WU3iP+ zc!?p_7IMT9f)^~_=gk_%oFk6gJK`<>BkD*U9kCFMl@%Q_?&x6R&a@XCmy+Y>Jc5pT zJwv~jw3j0uo^y#f${x9u$H|}b8qUqWVBUCk{140*8pjy}X>aGyUy^SOSuF7S9WvkU z_f6W!ZX1pa7NS~!EzRA+zQk~Wq4tci=LNDpXRi8;opUhZ?QHuu^{rtiFETLRIz}`8 zv#pN{0|{erUQj@}F3ulQ9_|S6W86c&e3uId%Vg9m;|^`=gf#EV=d>}8arJn^Gwv-O zY2@(~j)9Itr|x9n@6tI#Rxp&`%U?^j`YO29R%K4|RGZc_v?OMMm0%#u=`TJ0<|!Qc z*!BtEm2l_613H|0tI&Y}06+jqL_t)?F+SwDo+lXGAG2tG?2$rHWrv7-Mw>Ce7+513 z@+M6v7wt@0{Y#iSImfW|;tQUm`AGX$9DVi`AB*)RgU8HipRxmz{dc<$Jhqejkl*ck z;{C*DajNm0Mc7O3SA1ZJHpfmr`l@e*vb7KX^jW_v!uJgQe!&snCG(0_|F0x?i7z>Vdx)`sC zE3Yo&v3)rGSSYxJV?YD%ltP_ScMo`rUt`WA+NQ?=`F*&@$ev?H(CZ`W`XOz*z7I$l z7<=IgyDCe~fx|vUGoK*n4f(|H`FTjgAU{UGu}gazC67K3O}U(s^i^%YwG-hYpGQ0$ zvv6m695l8?$9|w`tG-?C5x#jVAN_dG^I3}jg*NRs3}BSqJ5@in3Ga{ALu4S?tPHC` zomC_np}!ap079^#>7t4YQgEsd|R{(&k7|N+Gs~?mv$NVuY^QIJJ za)3S=NN0Ty954mQ!yGh-l$<4t+#>58+4bC}ZFR!_BUxcTI*{Lou zQ^Aw_Jax)L5yJ9ZIRw@Z%M!Wz<|uc%hz&}d;a5qK7ktH$P4sAq#Y@Qt&%^{YR9wQ+ zNr=nyX6TBOm~kLj8|KkmLs9@hAu7Kp?(EkZ^|D;{BcB?rb0s=+j^WIlGL=y&B_d28 z;8JE?e3_*2h{J_JBx?nhftLe4X3>*fPMDMUfq0GgCyedRHT+iJL;8;2(DK>K@y?z6 z-m}vF%!X&iIz5F(OnR+P5o9p351sQ8$_tHZ><~F)Zct+?GP#bf zb~8>U6r{Uw-;4GdL;QHU3;Y^8G%#o+aDm@lBpNxq3~MCNXwn~C*Ek@a-xqObh(?p% zNzzAV&9dyvHmBV-Y@W*a*=L_c<~B?yn}!Z$cejdV6xMS15Nf(*Y#QSlNz{>s4Hr)= zPtz+?8+F>4qQ1;qof$S=!;wa&dB=!woxJ-BfS&6349-=NH!>KMFy0AcbEc`bfcNqiXbu`2_z_X-AZ z3u)@%Va{|p*X;v#!Sx>JalKglCBxm z7*eo$U|91i$wEyKcxK5}zEp^BZAV|+5_lz`7Dc2-${0mZ2sfO3w2B2%--zQWmWv6B zHv%T8;+8AARJIkKYa}VJ$ri$Zvb0NB9#z)X&w?>Xy2zc|LQY_ru!W8FKKPjxN(+sF z&U;}}cs=>-JeqeGE$Bm_lz7mW0ivK7y`FJt#E46RlQJtw53rq3ZM)^ZIb#Whw_*Q5Z@9a z6j^ACfkV`~36ThWnI^sn1{PQ4wdrLnf}`7;od8+~_10UJxpZIB_|}t|K?XZVHbc6B zOQ;~?ASIFXzu?dUZU4CFX_T-)^7mna1p^noxUwM1!&(d`Jec{>#e9U3{&mViJ|MY;a0BX1$MdQW2(7%R~TtUFyQe-$Q71ZR777q;4xRnUP-|?GV+ow z-yTbGh79NF)9QgfZJT5P)^DR+I5vAUf&EKeqSIXAU-Bw#Nis5>J4J-gPef9>;HF%L zNUI{1;B&Yj^;;|mPYA+>zB)O+C|pS{6n=5SXT%@~T*sg2D`+I9-PouCAP#QMFUBy3 zaml&gIsS!5wK3k6F~N4q!x#pU2fW2~%ubIpzR&Oi1IpLTH_o_^eZ>OsL)vj_5M7t< zxcf6Oe8G`&f8ltd&%w2iJ;9j#0dJdqz(deO4N>afeq!5a-V$2kHNKUIr6T1ghowDP z%Bm+z%q)atL+lX4aOY7FE_ga_XSWq?;+Xau!)SJn&@M**Qf)4xDZk@f$uAUg^Pn8Y za*=)hIfn}-^zB7=E(H7byq(N2?vmYE7c35+bDi-Ze8zEgdA@gSP{-&y zAFM|(t96l2*^KMxo1865{b3kpoXDb0+8g&?^P$iB@=iGl>_dMTmF`QwwsGMwb> zE67rbtLo-#cIxfq$UvlIQOoH#Xm}M5JkwV;3oO-ri@xeLch?y6>W%}&1uXq3WBj;OjwBB=e znLpq@_lS$bFLqBUv%4)%&|$_1!p;p`w7bwi?(L~jHH;gU_a3>h@CaGFYnhF^7V;5-^{*t#_Z71&JtQSMLUwf~1 zev+G{BM`bI566v+A;@4Gw=MAc0e`hDCeQ5RWKMD7yn9@+U2z3FE@K#n<9S4P7iVsPWA z-&8xN&+5 zztk%=s2**uKBkD3`-e?H-i~*^WI{N`MdvdSN}dF{d@k-eQ(ht&f^?4IB%T*8@F_7o zI(^^-Ng2S4=mWp*GliU&=>|M=^&mrHIXbVwW6fBejxPS$%In!_eSS)oi+<&kp;I!; zMLT!=v=2BptzFKHUi1uLN zT?ow^;PAIB5p*aaG9!lVL6CFCdY1AYR{bRPS;gdc&$VJ4oUGTS;^<4(EnIRpT-pn; z(Fjc~Cq`YWHy8LxpX7Av+-x%Mfu{c);p6a%(tN5d$|wA3*Ot!(V)b^6&egLY>vq?% z&AwiWtN!iV^g4I(cpRMVKgJq`kSXqj`jOV1X`b-095D{3?7&8`?ov1qf={Oc4B@?aRIXDn-O4v<7Av?9wh8*1p)4)k-I5 zhEZ9I9MH{48=}{U*i_w5rf;u$!133P{gpIVIBng zBIs^LUm7~+{_B!l49%3oe&)A@@(nx+dWtL$nA>|V_r8*k-jl!US{i>mt>rzQ6<+Z2 z(eumqcVAFx?i}}M;1hN`eZlTYR-KWB?9+JElmgNAm|Hz%?*9?b06*e;bwB3hnICcj z#}9Zec#r3U2jo-tX#~buDvR(gyJ{VGP=eXeaUHwm<_JQE^<5;;Sl~kb57;j6t`40r zcUkxVs8K*8$WMOqlNdyVOXtGBG;K6#T=6uFXi%uP-f3Xu<<+w4w;aiE{4}ibI&Fsc z?hK6)e(?Q|fBa(%BN{bKGfxd28f=vB$3OmYj5G4kIN`1m(|`B7--Xs4CeoSSI2uIS zu%Qf=*GoL{HG+64gV(%6WY&v1+1Ept=~eyKN&Bx#|1RTayt3Epa+mcMJDg)khbO-V zUFuF41EXY4z5R1A&JvshrfXupndgNI`?28Oe6tk53|_l;oxMtmi9zs2?%;|{c+>rt zeCcBV99SLbmD$Vuyo6(3medIrYTbL zTEMNn#wtH7MrPtSe^Ui_yyYIKA+~NC2ko^Q0<9F$ibK(@)GMVp6Wrj4Hne33rgfH_ zs=b@*@*pCif;!t#A3kBVqYrHO1Xo^OwkT7(r4Kq;Nnc5Z0!W_$R%w(Z$`Q#nSm?@C z575Hp7wr5RGpEsGiIuBt)Qo>k1D&MBzI@S1cG9O?o(~BZZNSTqYFG>$^z*?$!cumScpkBsPwuCTmXL=h;oDgb$LlWl|e!Z>Y^70lqD*lZe)T2 ztRq2np&@b1VPq276-*bJ)pv2odNMETCHgflCxI$*%-G9V%+wV_h&$<=!kUNUtsjQX z#XXoCF+@s&8~InnBA6y$7<2Ef51ZFy*0DcwD!YMH-k>CE`w^Za)+`HI^h2WPI_2@f zx7uvAl!Dj8u*bP&VNeB1V?C2^S~nTgv31V&y>!Jms3Y9oU;ym_R|G5Sj6zzB_B>c0 zG5PizF)u3WRzvX5@mEHd9`6Z))r)eY)s9ff3{=}s zp$yW6M`6J!%t+O5r1lp;VK3l{uD~f_3Zjb@(c&qMwP*#4mm&wHYPHIh>aRrSedxn2 z{~i`YYpV8{HVP;7b;^SB`#h}t$aAN8So!<`-xT2}EZeq6qdj54T;rMdx;)L=7LdXI zf5}3$J9C~~zL#BCAG5>m#}9wV8)2XF#y18Q7d2Zx>js*Z-?0DH&J2_bh+y@gfs!&a z>v2JqtKRnJo{GF#-j< zJB(Et8)9g1-12^yOZ|FTPWeDGvbA3tY?(~*_$el(G$DL1#~olLkMVNWfPY(Oyem*% z#m`bZAN4&TQZCsGu7l46=2v(bb&*(^$vgL4>x@*&V;i?vryk?P@lB60h&<*f zrzaoyhBtQ$`feLUtQ(oiH*6vv=>SYix|K+Y)l-}ez2Td4$Tk^Q&oO5!rd6| zj&QMXtCxx@C8BMeV)JMHIK)^lb86KsP9>Y3k zSgZ^O-#xF>_x)Rt?s0l)w6h4JkpXB8l%CM4a3dmE<`JyGNE(qO50sj_SSPLVN(etQ z!HFN%@^-FegV5nwm%9A=;{`kmw4G2WgNML!EqnVygDPOYI$`h+&fpme`N-k&7zwsCRklzFzTz5)+{onoq+M$z7z3?S z+ZR{7%Bd(VO+=`u2>vVmQVrr4rASrk)ZCCgX`M;(mI*mg*ckKBxz7*IUDL;N4}uTA z`DAf;wA09wQ6(&7y*d)Te=_g%)FCwx{dhlFoarxf;du?x0s8Pa57YV@Zx`$61K5*9QoU7z0Vqkem!!#~&WJ98(QD_rf1##$b; zn4Im)`tKz{kJGNpl_}aA2Cf`koq3G)NZA}0^0FH;IIoZge~(zNdY>10&$#Ek;2!RA zr<}IB`{4Ae-Dm71_b6R=4|{ZOo>`H@Z;X0O)<+y?{0YX8pFI6^_tW=&&hC&Ou{(tC z3-K(G&-G@iICqjyGJS3GIk9g@v7aXL+31A~SS4H_Cl{?GsUKfB-j z<~PY-BZfy@Nuw+pFf@i}#F&rHlHQ#y|M{Q)8G4Nwrd!Usaq(t9<#30K@f@{*e&naq z(DHx(@BiKX*MI%jvctsubm~##k~$IQ^${Q7)Tkt{*2!G15c1RI?D%c`*P*!$-|rGm z#w(gi1~f-YAEpq{!Ko(BtF#XOrUjRP;db6kU-0nuoQKtV)2fF{Z>la$_?X}X#dcT3 zHHgZARNj{HO!!MI!+9&iEtH`n)r^=GdXx%}GQfQ(z{yNE{Mw#p#JsqCYKqHa0HGoA z04EmS0}avz2GgSIOvEvDm3qmzN;R0Q48vxHH zGcG^8y7=Y4`%uYV$R*#(qiIZ)Z)><(OShWJH#p)MkWiOM1^sPsL-ym=tK8zQBnp^; zhSv<{&_3pphTbaN7{tO7-yql8GD{5K6wBLUZY}OGb(OwAjn(@h)+6EYDmu+uC12+` zq!ovJR;Sk2T=S;?mN#sK}GNiCj{mZNEhe8J#HCt7C+54XPO1Brg1m&+p%>uhM+rN^dF7R!{K zOI8KsrQ3eEDrR7%UC7+p&xj6k)gXi!^o!o|SuWoi^kJ(+w;%Whkol5HF3Sy`Z#(gy z%=O5!+P?L^)_sn;31Z=ZN_t;PuIs`VJE6JqfLPgCjOJ2(1jXICj`tbN8 zKDhjY-G}ZH;cahgu*xc36=asYi&mN~T+^McT87|)WR<$$nd2thiN#9>?sBQO@?9V> zoqm{h&{}{2uJcHJ5lb!^=!W*F^jW5&+Ws~Vxn&-dWU2ZhIFM4#Wn2_E@);;=UKJ9f z`4@J{zmJzV2>SNXDne13=Uj@S1=lnAxvf!6T!fb~%RGvfz~a>L1&rxE;b$>?i1s7J z8fcF^O3%4t#!qE%_L-&`9@Xy17Xho!dXIqzSKg2gGCw_rglb5h0u50pz>pvS<;eNh za|?<;AZ;@cfwjgKgXzg3$B9Yu5q` zH|{pzI(GLUvL1P}U-&`NnJ43J$MP0HqWX8Ck%bwmJ8{pZKjpYV?T#p$^;5LN<=SZ0 zjFy!E2;7avPL>P4cj%5i@fkee+!-e$fTMq7**bRT3)eBb`+Tt|ZL1VsZA8+(2sQ`( z3Xfmq^)k0)XH8NT+NZRT1+I;nDX*@~X}g=F4sgX*kxNTplZi`TnL z#OdLsal+Tg$iQ@?y7uRA< z9=rn_1eJs1ZG{NHdkGVb15nvkZJ3^C6Z;19s?2Ah3JwBf?4u>x8Z%}tLP44PFSxl! zR9*~=-cqXlrVY!X_^5|+MVqi01#X})jh0Rqf}q~?v*;WoNA20k*-O{H;l|Qm>d%C3 z7>02r*_Kv4mm_BzlP(Mi`;SgiU8UAaBR#y-tCt2@ue_{-jv+AapL5$)!lF|r1s$z> z@Jm}p=JM5H@lt^BCok6%dW?#!k_?Nj^*ne0j=mb$-G(bAOC6vwPk6rg5#JAC=cntJ(c37B zrCbWI1S;_z`dy|$uPbvc7`!eujfBy_-4YrIJbuc>dW{_#23*kBwLw4wftP9eIv4si z7Pt$;Bcn8m=rk_0;X?Y}U6I7;r{(Vj$tfwpPM_iO?W4Wi8S?wz|96=ckNIfSk(Wk|){}5~YYfp4(>p^fr}BEqUuS;u z@@iv^@axKJ+D)$M+86hbj&9=dE~n*YkrA#sz2litfA!~~V7>VUAwRwmd(MFKg14D! zTfd83(sARX-ui|Uo{7V;{uu;$pvf~7lYR$V(reUR2g0JSiBR84mm6Fp@CP~u?vh*{ z$&JBz_&`kVvQ}MJ8cB_gSQAosG>$hI5s^j(Ee<&&GXNJPE!c2ts3Ef8ZxLSI6jt5f zO5Y&(-`Ry&9n^B!kf&!4lPuj&q_iAfIp5sd2seegt&wW}X4?XGX3id&1Qoo>lF3pi z%@--btw}}`7avpWq6`UCZ0%FTQ}-Z_%#~6nX1SuZtX^qrQ#OSIU?tdwmxR(^^K2w} zF3!4Y9R{v^q@tUBur$_BtGdU|P#0C>XxYB3%T7TgBd%d$B%(EmJf&_hT`%5#H|I+s)E8aEDsq&PZ z#W4+}`KK)^yENdkIAqBp-_oCq@i)Y=O{$Zgq!qZQ*zghHPZE^PxK8~hk+jm;h%F@9 zM!XbE!a*Fw5yopexh5>%`Y&IgaUayU^1vntyhSgT)%tcKh+jq#+dXooKC9*jtB4YH z!Kd1CXCmVgD#Z(!AKR1txyu|$O|1L~0FhH)#?`C5z!NnK79z?Id0D8|DB`)V#^;Y^ zrW}kR(J}b8l^S)F7oIv*ffr*zGH?pIq(W=n$V2r+(#VcBd}}ao0g|T9vWN($=vRg^ zF4_yQDy_PX#=n0v# zutuHK&b{$qpVc|JmLSpp$VGAFoRrRDq?u4-xoyfnotVzUcsr>~dufK@BA zrh`2Cd04`~$<;-TOF$ZEmdelqtwNa+Z~}%G8IuxliJ#x_lx@2T^BcM)Ms{<%C|Xm~ zO+u`usu!fkcK^}04Tw|hGUf)XwLx$*5{WBWs}omv8A@_1Gwyw%kc*deI(^~s%?}>n z=bY?i9I`*jj5Zn+rCmo;+33`D8A8fe7GY&L9(jmICTXW5&wiO_FbPKF2tQgJ_4@!> z9?;L-CGC+A9^+CC#Cvs_;3^->S>ykbZuy3OBfrl+T($ETX-1i9`~x?tqKwd$@fC7i zsRwo0x)U9G8{9{F0Yjn28Z#m3I*__rql4kZmwHIQWicZQm5$Biks~k^pI1V?j{Jy^ zPv^FkaZ`>5?jo~cq^?>sjI-b(@UL7BLEXL5#n|zYqr2$mXBeZ-xIew%`$8AbFu-7h z;XE_GQGl-bwg7fh+8gq6#Nma7gC1G))hfnpprWt&jo~(+k zfl*=rQ?S)1r-irqbxcW?dLH#@T75I1aU~4zi1j(G8VqPTJjKOe6Ad#%aK{j)3AJqow3m4KVuBZm{Q})+InCP(=pm0 zcg@}h_vpNa1SQ~4T{;lSGhv}6-@+3>WDpJ`)61#Fx`f(n7KEV>@%CwE4#j5_ILM}! zEJjzY7H0BpbQuR{eM0HHs=0;JQg?E$x^4!=^PB!E)1oWF#%y}#XIUhW3*+a($)#IrnIK6iEK+`XYu!*qR}WmQg(3o~rK8Zg{3qoG6{ z2$QdRGJkbu-j+=~^H+D~XW6{ehw1V%-RqE(_aP@-`dRnJ)#G(EhxmLSU}|WL`zcNa z!J)Pugfljfx@t2cMin1j1`j5MFIHjBzal3NGpnU=i$zjkS@rmQtbV3bN?!u9gS8nh43pT+DmpmPwJmDK9W<^8EFjpy`qX+d_;{Ke!tNpziI&Zm2p7gidyX#F3D@c z4Ks0sHOYcKQe`3+Ja|_T_znJmS89GusC-5guXIy!DLTG}i%&4pfRG_=A58oTn<{19 z*BtYd;qb$2I3>M8EB};k2vE=wk(sjR*QG%*H;4<0@)pO~OjC6J26e%A;xBE%DTD5ek_eUVxAp&j{DHkHGg`AodBh-{Vd1YB{g$F9l2o=C<9kD2Q|=KS9md{V<0UUsa91jSfXO#<6;c8DwMQxvgpnsm0E9Jurw8rIkEw-W(hw_H zTY6#}rbI-*o52;^GBRDh=|drsaQ`Y^8v)=P+A)6G2F_U^iySa~}AE6<%C; zkY9~7m9M?t(7qE_8TO4K#bd>mw(POw>4QFPv%Z5=2H!;wk!j8gO2@OXnk7iiWU+a-t=G((T7*!k(vFWj~;P|a$F7@p*;&T>Kj{kAI`}|Lz?;df4*2UkS?H==O!snMf zUvjM0@n85D_?Mi6j*;XH+%NvlHxK#t$=A%UPI;N@DdPv{8SK7#@ipHj!RY@No>yOR zMmxJ&GEd0v6UOU|RYRnfjDlOv8so}OY3#p?_=b(>*PMGD|1Fi{4{2OAzA>i7*oUFS z``t*hy_5k@*6<5YC<)F(2L$Do{2L(MzMCOycnwt>E$Q}YiLZ!DM3DHEv_Sx>6Ltum z#Bb@R+R#4pjTDLSld*S`5_yZm3OAIPKUQu2){?J@<~n-aLL_W$?F|k;2`dmBgL2g! zEXC+2)rJahA9H0lLR+Ryv}C*DkE8`)pd%wZ@?V%t7`D+xF7a}2E&A4{_xo}NruLpv zuXo+jZ{Mv)-cZ;=r7XX5Bb`pM{vFUriIJ>3Xm9jhsw>(AZ~PJ4{F_IR8yI*+s+e*u zx9@K_B(X5|@jAZYGJtxmF*B+~a0A7?

YoEzP}zt8v8SzJl4b%D$GgxQHOktLm<6 zW6FWF#%_OrrhKN9CHqxd;13=)BgeZ=tNe<3`L*4RGD#V?(5z)Bxr_5gZ}Wg!Oq)eZ zfnOOcd5&!E%Ios2{Bj2*N{UK|oBa;ArUr`Mz!#%SUwSi5gz^kl6s&F-`V)Pnub3-k z)2@CP+YhY|=EwDIOg!yNkc_%`ote&$vIo&v!rg{_3Mgd`f~dvmW9<;V7+-F2BqUk*}VAnYqCu z3?lEHJmotfAMm}9kJ%;u3CHI8a@13f!t_P%SynaU_5E<)*dVetvX?8wiC8bxyTGm! z_Qe-p?EdtpKV^}>7xOi8cEx%2RoH|%7BYrM%9YfT6ikV246LKA*4I-Y!H zBoj8k4eKIn;)!m_DBSC((eMoxS0y``kb91;uydD*mb$8J4fmSh$Fzvb>IFWy(H(inj zm-d8Z7+bR}G_&9m>{a3mK#mY7PhCNbOcg2yOD#b&Niak&ocR|VGa+4+xbcQp&G6QA z-?(KTANjjWVT`py(yG6zpV7QvRZw{B$KsLCWNM+ri_F-oJMr)R9s1pr2ij`rl`o>75GVLjrxK zfs3CUOQjC0?NiRQXKIE;#_A4?3(Pqx-!cSx?r=Up>6!fS%rH|D^DA!4)IPbVZToVM zF!QN4n|Yy7;+024pc*ZU1x7m6?^y19k_WE(AOUh49!{=c$E}MmMK-{AEzb(+P}8?x zBa0HW=AdqJ#gcFVB*ITiU|cr{hG%NC(3kVZ?L|#nI8J#5jh`7kW1@Yeua$C>MIxa^ zzo2K=v4#-dXgv4r|Ge4ATa4h8eCFbn0}u#VFUD6_7)q+P?A7%aWZKn=236I0kxSJY zSV~zOsOB^3+Yg3%9{vf}16KY0)U@+fWtp8^E3cAaPTOj!(>p(8*cJuS#u;3ya9ftf z2E57l(HbtQ921{`b6BJ}ftIFx2}A1-!&>ea;~q6}Ez+0%&Ka)Z%88mm*T+0NYh3n4 zyk}qWDb?p^yTADY3Evp`;_)LsqRI!Cncsf?^|Rf{7pJ@TpJ5c`jnuP0@-g%u-{0w^~I1-4iu3_c-yI$Sq#RdwGTq9cj*vN3jV&v7p_M7V(Z}f(g ze;B&OdHtB&Ek<;gk|wfcnDNW9*BDR|ZRIkyfs9D;9ci|Ic$w6-W2}cq+m5mKi^k6AhV<*3k44m==j?yHZpA=|Cu8_aTn#g{*z_wwJ zLe$l$SoiWA9g*YYCVFn%{pZ*sRcfd2A(;cfB?oy++EY;p{5%b6_m6F$YP>$-ZA zGL^my&-hJlA8X1YWL-DHN0BSrg=urJ%!KhoXsBpveSo*Ljc+>P!jTUbL{;pD4<_o6 z%MYHrBUho)+dD(^?l2^}imoMDlhwO(*-?Ka)W`u(cqeS3t&4D~A3*|USfz9x6LKRd zRQ{*(ghOk_lNqsd*Rk6jyF&ojRP*~yFlMN3^ZhD4DraRKmYm9%TZ5#R8$*4 zG(xy2-*hdmFdw=!hPY$n*T4RCj1+AE5Klve`L=PQY1aq4hLoR&_AO`=Q+^E%8Xfd? z?&{Dmp|QiGzS_{C98N&JEUR#Fy;={3-MJyHJ52gpAIhg;$4i+kgZa7Z!@Sjr`Y>O= zxAMzh{xUo@(x^)fFpVq!Hjb#X+dA_#A20K_9O_Z{%k*^HJl-k1Wx#Uq^Kvj8qr|2l zHC^f3T#_6V`EvkuzQ3jF8_$x#;9t2k>m@5jU~|{$ch~{H{v7Zpx5;eI!w1l&E~KRL zGh=NcOTrR>$93UJhJBowWJX)UmZaSp3S>kZ+Wr=Mf=)qkDmnqx+fc4Ixs3eWkZO_w zK?Z*pe0bR6AuUT*%Z-*OZl7o3Qx=7_{w_&Npwk3cC)@~Gh zgv>lfcm^%$#VJWk`Vv^M_Bkfc6)n;H$Zohp$xE6u5bw?!L>SMGd~@Q2D{oK?W7foA zZAlZbnJs>$Z7^yUvtTTN1!)N^Nd|;gQTEeYk}Z6OnzE!`lfU@Y!wd7edzrGxt@yV@ z(2NY0de?@LAkU9^%GNUbc5ht8lb^F-8riEfN>zeU{5(-j4Xj z#3k>cm$NT=43AooNwv+4Awej9g$s+J592L$_$Oa;u4|KSM7I!Ji6r^DpAA`r9O#Gw|nfR#I!dhn7-JHw`Ty!>d&I>~(9@6KQp;V<8w3NNUb!&Iv&@|kP6 zfL9vV3`M@g^PM#ONyVU=xzzZSafAX5AAd-aCN&9;-*(X2<_AbUx7t4!@MZ_bDCv+) zK%9a38sLH5v8@je%RS0bsDp>H%#P>`nZq-h(rweG*c2?9(o5;bL@(q~DMPG81#w*= z-)4MG>?)NIpA+)|bUuP!9~0+$8qav1{OgyyfAEga*QZ}|B!}PhIcL`g-{|<7MUk_I z*|~G};MwkrhkxHad&tQHj~G>$Z+(6KeD~z}Gi(pwpLrqyb;yFt$q$%=xnRfxj%Kr7 z^hH)h(#NL+-SR8lP&6sP>*+Al92&$(9+$wHQhO(Y|@`Eu)CWkQ^0MoNIT8 z#zE>S`BMJT?x4KtU|+kjl+nmll!6R-M{>o;BkgOniO^PxzX>H^Lcs_50k6~B-$%Jt zuzkeWh+oa~Dg?GyfLlPt=HIKL?2V2pJxKHKoX<#}a1Qa@hi$l#cqP|`-&`|A)x4(I z;ovN06D6;TTthTrCYUyd6hY@_A~U_m>NHFT2^**jw7Et+c#YlTJCuww#jfz`zPun0 z-i2Sk^3aX(d?Sky+xZ3=c;OA`USdc0{pQ_mt>X^Ed88kM?@~6@ zrN(p_L)0Tz^>VpOSe`hu6I_V}O7YX8S!dTN9TYrTbnnkFT(&~ye)81XU^D_TcCZI{^-1q#BZp0|y(iTXY>wRqx zCeWk2EVX14zXYR<2{@tTwn2P$G1T=7pR5sIK4!P~)Ax34@4!I9xA)FD4%d6|XJ2!4 z7AsS{q@R~Vm4RclJT5DzWqj}vEs3`EvHm3n5eyrrtU+UBdCG0{+?P|BbDw)3MMh^~ zd3tb8rt!rWlYChTXCDCz4CaFyp||A<@;mr5o|e9S$z4QuQQd|7-o2oKz;9u=)56QJ zI8H<~61br6<#A9N5;CdliphZDT38jq9UK4afBmoBfBeUPWM_msLo|fwGO-y&G`zo% z-|72sNgCET!pu{nMH^cB_$qNUPUtj5D7%Il4H}lma<~&jp6b9fcXN0N(=cSZm%O~p zM>=`r%^r@!a_5J}37xWNbkX1;o<mjT`%(d=W;dNZbrVF6fo(h2GV`xt^SO44*Qrl$G3bA<2Fu4>47p2`+yqd zFoT8W#^fuBw_-X`y&V7L7!$iGc!+L=t)X#?gVI}pmpVIKGbccdRwN2f| z<_xY+nXx+D+>JM7$z&UNxpd8^sAv2&r9;iX^L!A@7WB z{?GYFfs429$doq=owX<`|K3Hwoq6F6-{k?V@;ATA(O)i~9lW5=F<^tw;W9yT#mPr! z8FU@5*#7Uzcf#-BjJ(HYFB;5Rq*Y%qNSS8_BP@In>#cm8!PKsfEK-A4Vyqa=?JC5S zRp_Q%Ax(LEKM(q}5kGWoSc6FYp|R^2ZwquFGZC7&{TWRdS9I6@e)=4*@L_#i#akdR zCD<#7V$C$f=Vh$K!YYAv0vptD^Jl}h0i!nd zRWNc{ND^3LTUOiLUm9DvT#tGioI}*FMHiw{fI&kmp9@A)I%0e!)T(piHw&b>JwT7SmJ(ZAs3AwH5G<+DbdFgrkeaX?vf6fV0y zPW>1N1`_Y>7wn?+Vb@vradsw==9WDEy~LSByi%`)2+}+3?$jVs4=2{G8r(Y5T%6Z< zprODIf@=in?{K)#u7Sjbe(7Db?{9#(Tg06r!kc&J)jLR}m7hihjVEnHk%z{JrdO)w z)4YT=Kf}6C+lQMbKaZbMR@0UJ4}bVW%B9gk88jmN?svb7k;fe)8Z3VL)1St8A&$ln z4M5VmqeG*JdG;<6`6{#d{L8=mON=jV+|U@I0YhVmdeR_bnGI{45bh-pWi&r8dFzWO z{#-_lAId!Ab$Es=rv?$7dFZY)i0tdG^9#}U?WaeIy{6v}kTW=w@|TuhhF((2W#(`L z@qxZ~GwCh)-jL z8$Q)WZ-;pW%d9eCSEnQ2+hm_A0MUQ(7r*Wig1!sxRpfXT+;6XJ-;xwJv7OWA@F?U0 zBCt+84J|1L)X|;wCY;Vd#^SC1hy}DT7pQw__aBJyny5&ZU%@vdt(kz-`CWrQ^9+hV zmZw#ai7v3_gCCS84AH?z1Irh$dCH#f`m9|XH>|eQORO-7B4gAZwnAIL1y!W!GFFQ% z{;qlL)2%5pr|ZM7ihqdHZFt;_)1|l`i_$mJArTrT&h<u&s!k8g;(NNLvAOw~>a zYaMs3Rignu3?c3Wsg+pf(l2$Qd!r~*&tGL@@myBdGn)U&@2{Z+R-+e3abhg%; zzWTX^6D{cIDm!n~*-E>~^A_wx3AKc;LEJg(R~;22pACu~zb4MSJFMSff{P$3su?eV z1uzgLtXw5sT+m9Ah81PCoQB13ma`0360Swsuv#K}PJ8rq002M$Nkl&>NvyKjqF#-8_~Y?#MhJK z^{Bq}!rU^0?~e36GA$AvYGjsbLAa)fX?WYT?sYRXY{1p87ceSSa$%i)`qIntEYf%E zcPJ_yv`bAvbB|dI96c=2C2+8;t+P$y%_JMtLy?!0-;8l{>Y*H82D_f)^(imoc{k~| z$^SMuN;Bgv{ii2tFBNy&5@ueRl?70ye|O<(5V=?kBFtSsc)C0OmT`zXzrO9JkD9;y=0C3lIiZ{b9RYv{N?W4xiv2vv75vXv1cAgN%EH$3w#}g zn73X;tes@DbXN;@b#`6Rol1z}*HKMSk;}-^7T~yAE7< zcVS+qF~CK87yEmmKa=J$laQaT7uns>;9|YT0u3ncvd}2vW!T00nZD`5Wc=*&?6iHj zvT11XW9J@CWx9DQgM5|238iJ!sNhZ#%i``4ebdDiN5e+%o{@)gYG5!;UtDR#kw$*P z%u_kUH(lR&!==@!&rEKexQ5xz^HLFAJ8Z)_ht zwH;+=hei*LAs(Z}GecH%hZfVnod0@>hwt}LjyZakk4hfF^N2H)y~5u!md9=p2=2&P z@c9SB)G;k70ENf9KMEf zAG}H}@yx*Rn!2Hz(dGovJM9puuw48s{s8VRWHg(Z{Sua>o#8{sw!!9kD81aJZ(V4x)EE+j$f^fbwK(Mv5WiCn6Q+{d*0(ss@&JI|46lTnoXH zQ%L;D#ZUbwUC`Q(yk8U~;D5p&ORol_#r#alx}uM(x^5IxHkvfD0W{|7U(apDxevWb z4On5+iWQS9djU%*JN6zkG?$1XWL-3tFy79w2>S@AXGYTM~lx-@8 z^MlAVU}Ec3L5Bm_ixuqM`Mpzvh>KF!Eqa^gBD@9;7t;M+hKubk#GB>kMny z5LcRBz|X=L>GeQmbyQg2-4v#4sQ7RH?Z54Q@rz&Ndmir2XrqdF*SY51e&ZRRVHzje z$e?ke%b-EReB41IzB232_?EK`Djw_Qw?A4o4JXPfKMfO|NAEbX%o>e^8*ZJMk33t> zeOb+4p6a$QVRK!zjPh@zh&xv_inI~NeA}2~-N;M2dpBv|>Ig94={#2{djl$9?uI;K4#1J4|Ye7J|wNbR|3tQIAqzhRpZyY z8?mF*J)?+aTihnHK$n1hYr3kEUP7}F-+iER-pfDgxlTvd!EctWMwG4v^RumRMW3(7 z^X43Hn|e*&dn&mtx0~@`YTr1$#Qt}(d-5>`L7o?%f6X@``CiC*-WsK^@X^#~d|cJ% z^3%^S9Dc>;RWVLJ%rVYEY^I%sp9N9xuhFk zo>Mma>(cuxyvo>x?Apobza}TtH2UobXHc2^TGeTU+xe>Fc9^e-HMm~OyvzNHZ12(U zHE`D&SlVa>`Y!#_Y(%#iFZ3^^xJP&`4csgEwbb^;iMC^Urk+&Y>(*Y=$;TP2?u5uO z_v>SJH6Qc+5Wkap%)R`Wd-=(axF7$7%c<*^d`O*-u3tXK=<(hMy!^w9^vsogf9A+_ zc3wQXaNZN<-tW00u(|Aw0E-}|t!RSh5;t0qz6U>dY7kK$^J4t0AK@AbG*-Bf-(ioD z@~A71(DFDf7u>~l*MqnkPBaqqE(mGcIl-S7_D$2cAif_b_v#%Y(wn|7pFG;_rwKm< z(-7cp4tIwrvodHPFmLnx^wUpcxR`gmXk_q+EO9kpST1Ff?&m-Md0>{;xCRJ~5#r0k zohBYFrqM$hFP-HPHkYd(dV;`D%ip@vFyb}qt!ad7^k}1qWz-;ITzDH(#J3F1r}Mh^ z4{2a+UydXWAQ?m)h!W`Z_P0C^Lsy*e3oiz=!Bg+vy<7v==~j4M{lHedgx#z5<$8TB zj8^PkrF68DmkzW5%xx3d-mzaxn0umctbygex>q*`8FwvrqBKs>`fv2S+puaDdw%6$ ze>T+lwZDfvM^lb54iFxp8RG!3Ku^CG;alW$3of@unaijq_oTKQposMiRC;@HuEDHY z-jgAMDclecDYMXi4UYnMDJ;>wd*d2F?ModQjsWwU(PM5Bxbt`B;qK|b;5y^_3X0Ep zd+nT~SifeQ{}+EA8#cy6TOJJwYd~SqwhSUNb78v;B1F@m`~gp+iHoHkv*k-WhHW0u zA3fv^`44`&JO22WyW@}kh3j8=$YcTd&J7~u_mUo_v^qu8CGO7vEa^VgrX0M9?+54Y zA3AF>W>TP5#7Wj3u?h zW)ys*y9xIumUo(#0$t_!t%&0Ik1-A7g*!bS{eT6OCy#fJ`9{bEyF1QpPdQS~kEQed z$-jTOd-$jKcE?|EV!?x_yC>CW^XVf_Te#rk>!0zh%Ew>rjvt+{f#kE@ z$uo>39+gFRJi;JylrzZbgXz0dp$uB|Wxy~Rz@m#4n^5}g=+EOh2Vtv?1koSk!(X^; z1JU-Pa&QSt@w!f#ot?Bx?rXHc_y>Vg`hD6@vSpdkuWQG?1ome!pyqFy)z7S!@SMqip z7H{q2MhYYJYt-RmO&Gy<-Me#x$aM;F(yhV39UuB0W95zrcS(4ZlyD6I9>=6}SBORf zcYSEo(16lAAx!THz6<+a8U-{Ih}XMN%tM%Tv(Z5MefKI41sVtXTPPX~be6?3XyEzD zPks`khK3D|20I|%hx~QM zb>hgU%RkfY({x(n>$kzB!?PhJ8SvA2b^M>&AA`q@I&ie{-#WYzu@kRiZ6PDJw25tM zbGi3#sR6o9+O%EB@E)1fckkZ321a#M#@0dVp(~?(llN<^NbY~%kOs!R=k~eHb$5uW z(qFe$i|*B^gWV*Xh^?y=4$1nKVG&JzwN6{s1HPa}d&6R{*$%mAGntPdhs~$2Qgz|n z_HOxxi*lb`YhYC6a^}DBgL53e?ZJZ^3#;d64|gw~J=vXqg+YSF*drGHkNJS}?u3=q zV~hYk8Tt^%iOB#fY&;D}Lx)G~dSsS)iASJ)^XIKNCgH5qVn{gi^>yM8Ig8ovl}K~U zT>8;RyQBAhLgei^MH%Y5B1DZhrdnPuFtfl-Cz0-YO4ABM<{Cq)k4Z1T>vELtTXf2j z>~EKU76%mPcIaEd&5J*IEQ3l0mo3_z#9l|fJIVNFCMmjFKnX_=cxe!$;OP_kV07al z9h^VT0?82zB@fOYVf1)!cY5wlDxRA;s^h`OJg0J0$9qpd*uDRV(-t&{JmmQ1b53;N zsJlo1;3$tj(>Gtx*6fNLeqJACr9Z}i1$=FW38y~Dxm+#Gh%(U1k9-Zi$zRxvz*VpL zR!Zl474J5X>O1?GBZqB9AkBGQN!(|0AHUbYx2u6}j{4mkyXkiP1_=(M%*<{ezE64u z4Rl4l0?9q<8`VH+XsMir@bBw=q;`)X)&3vBD#;lvx9avMG!B8a>Q3 zex@sv`C1lt?kG=(`+v#aqBD z>L9_izTTREQ^u2w&K+8`TC}a>JOek)#KlRt0W2x^fw!Z9uD$jCNgdTc-tt%%;l#P% z=bU4A&MqJCo}GWR`}*utKG6I*FRp#Ld-RwWn?B@4oJY(-`G|8q?SX+q0}4-Y@Et~v zaMM7L71+wprjh$O_~N-cL?Z~t0&zaj?(*5+IZlA@l7uN~=fKbW(4>Zv?`E4Ssq6!U z(ih6FE?{b7L-!7)(x2dESKngdHKr8ba9hr7;8u{CLK+&yKpQ+HgD|)b+6lcR;<$DAB%?Cf6WN zBOl=jS8&iq{!`MyV717DNw)_ckoN%S_WbTK?=^6z8mQK&adhch84suXLh|eW)c&0c zanI~t1K$G;*q8SE&FdA*UM9D>w;9h|87M2f+3DeKj|*;W$M~15(Ry(c<|Q8~`BcLP z90&XHN4t}seY(5&$7j3U`%hWVg)at?V@@wR`2jEgJOLU5M9MpmV|Ag?o(#UTqAKrg`k=(eXSu z5NSh68w*_E*X`4Hyy@Bx^7v_-hG`h+kHU-pKmN!6*!|D{`9E`1mPQc`2^tRC$e{7W zOM{5CmdRZr8Wq}5A&r+b?jBJey^}=QHGX*M#Ob*CYZPg@#WmeaJ znl4=5ojc0vaaoqdkEwg?mpfzJt)gBVUzyCmWiYO5{uTRv{5p@&)$>F}G8`Nj6MDQT ziuKn)C%QrJi@OeaLAV-_B$sSP-^|V_AeXw!MQo`CCy7g>g3)d3vi*BK z-i-!Y*Qu1D+zBS6qf1}`+*iikRKgqPvUI3aI+^1yb!xES%aqNuDSa<;2f~}vnn}m* zfbkn*(V9A}&sB&nqrSMSbJ){up#}Rken)nt^)ZLIU?IEaZ^JM`#w}OL(9(@^4kpb@ z;Tz-IkolhHs)6(oCPnPi9(~8zjW65Oe7h>HYo_k6m^yYZFo-<6e6suE;^W;v&i`fi z{E`=J_%P&$Kj26n&O|MP7FK=GF7@$)po3*k^gMqB7DsELNtP$U<~od z4*xWXXcUP7vmTa8?c-NbYA0FAu}VXN>=yt5#r4u{<_rM@y!n}F2^+QiA#FzeAU6{x z-|lByjm>BYE6>lI^R-wfHjln4qy$1{Nr+CaQ{vYRbxM8r zgLh^SnHR(7@cyE>aj!N|wDCg&Kri^uIO55#)Am)~{Ke5Q(8dAdolhGETpkbhS_wipIdnHV{4Ywgd`86n*rmvx)@w&VkFU-5kD*TXP!<`u#E5y@? zq%895-6HPh5H2tC5WfvB`Wl#K9dtg*Y??=ZNozTqzdJ=NZ|@2*e{s8hW}WTp^?MU{ ztawFth$OmqFv<0b3}^HnofyDmRs0s(fy;f;D`{Z8UuG_{(53>3 z>DRKWZ@94!eD{K5u)e;0fA{&tk9N;^pgU*&`}qAI?4EqW`NuzCZu$Nx-#TEzF*}6*~0-vvWb54T|#}Aaz zRoT4m&duBmf3xPea?67Ct;96Px;pQSX|P(k-HOqjBbk56!Y_l<_SxYsr0WvTqE7|C zi!5f=-}$imaJPmXhp?*PTKcK_7%Dp^!DH(#G>TvZ$;E<;i!S+g4Fhub!6U=4Jf?4E zcL>IiIx0(ph&x2;Z&pvMzVGN=Qw?8muK<>m5sM7R?sNJ+X<+R=%k$Np7SB7R zyF$Ec^Fq8~`1?GR`-(67Xb?H~MFkBa%y-%SdGweQnAjz<`}9ZHNSFtI$;&@lQP}x; z^q3dkKlwO2MAn=C_AY6u`u3ROnBSFqoGAju{(iYTGlsG78mzDX3DUO_wtagdCl_8Y1iR&8I)J! zg83@1-};chGMKk=yDP+E_J*5ZyT)(*%1a|l*NOa1)A#zPbce=p*# z)=OXCgR=dT6ya)(QJK>?xTG(EtBNt{Zd_+F{QUu7WO8@;-Hp`yTsHE}1Js-_!3|E) zeRkh^Ts23uAz#K>Va)h1T#y67%K=&MHqPZY`Sd*IHZ=D*ccTGyU+)$P0LG&c zd6-`3o}1??b=SA;_>hY%BOxM!R+w{&2>bCv+_tdF6A7*%T_iF9j%e4Q0#8reLnsdY zyEL;ASom+nx{uv!;EiZt>GDgXrbW^=vwp*UGV3??w)$UWvaR2{dkx%c;Hm~{Os~6| zzq(r2Gmz+kpTawkumyqUbf>??6~A8yqTe2~=6cNB)vM;g@};-3Hhc7h-5?hnjYatK z8K*93Me+M1toQ7Km1|&ptuGH>0GF9JaKy=zQesM!lRu0rpGUS@rxW|C9MnjUeeDp zbXfSl6Ltu$K|lk=k2#agT@%XuzyJ6D-u?Bje@&hmEtL6JzxvhgH^2E!zQ3ViLAVAF z4JXoQG|}jx;X)(FFMs*V7)69@;Lw<&!9-d=)b4RymP;PJ8^nD6^rt^1A7Ne|Yb8%< zbsA{YiRGV-9dmhG4-M;b>nm>?lS~)4bw2w|+x~StJNFVcYMj`!)1>%P?;;w5jKv;$HRV!)~?^`oH=dm2Q<!ojch5-^bU;ldd```aQMgffu?uIzT*9Cdg zyfgq9*H~d#1Ase2JVHwNzU#ba_d*jc(?;Z z!$jk_LuB5~Az$Tmhls|Izy0lRF@{(kkL3E{4}TbgiFnd#=#aPN(-@;OZ_|WX7I(4q z4jE0uv7UacGPmD9^`)3?7*+i}yIN5lTOb9H#S~xs39fr2nrom|N z3WOi&rqm|5_ge!uD3)f5{`|uwTtrQxf3Mrp$=mz27P>|{IK|(dVE^?5ekYXLX-}z3VqFhZTtL<#e|~?!2RGk1KVpUT=$Nhk*)^i!qj22qalw^8 z_+;HR>J!5`Xd>%R0Hoo=H8|plUHH=YFvz9vC0;V*N0}m5QH1O*|LhlW2s_DnNY*O- zB6_Q$bw)gV8$SCB(ILJ|;++M|rBqHRfnq&c%U(V$Q~P_#uNtM?$sfAt<5lV3S^QD( zJ^7>6^a0ZOcM&GLL|9mHcZlz8sWEr$)!4l1ul2ZUvhFFyLk8s_Us003&|B8$hEa%b z_2aP6q;p;?Y|BRYEhX9#ZepuO!fTCAvTO+MBljA3D;h|br^TmF55GG=+V0d*?xt_N zm15p!dar?RMFSby(^0%{OauL`bCYK3WP5Zymlk8ef<$;7Yw5kZ=F~N>mVubu!M%Yq z-#vQp2;m@b5)E9Z!6Y|zLB`A5{BB^^h`GVpP`}%eZ)^~8fx91G4=r|g+P<0^*F|*~ z?_I>#2=Ke#{Vuy5+#%ua2N&=)Y-nH*Pkt`!_ihL2HAI*uj>ZHp=`=oQ5NX3f=h?E% zvd?k~Z`_7=Tw09`pMLsjj1TVY(D0$rMqGDhh}*kW`q-|Y|NQ5nkyfXSI_ccip=1-s*8#c%15gdP(tz(Zy8#P0;eCV|`98d_0o7e@ zt2dhZ!P{KpAE>5gbnoAl2CR}+_`-7nrjkZQnSKR#A-WH|F%9fjg7IzN+KAFgj)^)w z!m zA+EOipA5eq@PrTaOss6peutp0!KE@-+5v$O6`*=3C{WeoA0biv`ZJfl*QIgas;k%D zN2b!fJ!c83jE7~Y5>9E1G2*ZAHPl#vY``69O?A8}-jt8zL;h+h*O%OsCAGzEe@;{M z32yWNpuqmhH29g3ukZn0^6V6G8+aw3M*8mhiau_s5weO9s41)9^r!mcg*Q$v_wS5v ziR2=zvGRh><>_1c+0hl6m4)mkj#D*syW6BLgoo667;_<+0%A7y@L`z#Pl~+5pQKtq z8sp8x!Js%ry-@679FFFeZ<54)O{m3l0^A4hHSiWRkiOmXQyOLFSu|KdrX_Hw0lx)V z@3Xwuz;{*yV?fWd-k8gz+vFzm8d9$}o)BkBoqKKXmZo>IMZ~$QCt!L1&HX&LslHd0 z?{98o`SQU?8}imoP=p4o_q@;zTE_$9E0zi0fA@_IBC2SALA(|OP$pX4Puq`6-^V_= zBgCB{?htXugGLXJrINRTvjzdAz9Q1s@{s=(+Z zZFKbcRY_=Y#@(k`5tq=t&KFg@eqbnZQFqsY~+hOF%VSeUvh_e)+ zM9reKXm3yQk+Tx?RUqs7V12)RVc)v8zS{y+1!Y*)&@d)Psok_k8X-c-lQ5=3y z{p{jJU4}K0xJU!hIg2gl<7m5rxll89k@SNRc(b{wb-LzmZmTnvyRCx=?Xyx3-VIiw zO-PEODsbnxA_>VAv>DedJI@t=6S~T7lWf+Cu1g;2XcfQzz1P6o)aGG7$w-y8+RmcO2Tp<%g+|nNuikTyUj1~@$)^sx7~?BWY$xMd*NHZ z7r)zY9DUO@BxvmLTNwQ@a2NgC7~pOP4I0ASd7(kXg?<+dRBLxvcaPil*mo93+=zMq7n<;m zvB&nIY5F%M&6vHGmUvd=RJ;b>s;ZY?n4bFKk4)=@6lezFrov z<0)-`LnLjHtXcQW?;58qccp&_bTO}J(XGCs#!!{=xJ>Pmx3FhaL`~9w5xBIE$JVW=wG?ty3uGI4E-X#wwAxVd z=vw7wEp2<%@+#j%4%rHda#M{C;psXya;l(>3HQ}ehuuiNU!=x{gCdg7604rIsxu`P zu7cS_Im3Ku&_q5)&w#EaeHoi4`x1W!3(#ijV7&4w+OBMc)^;uJD;hqy%!ikGP=lvK ze26Qb6p5d}(O2PV{UZAWwQJCl11Vs_BL;|bM$Qj?tHe)=@R5Z4<=mJUL3cJp-BV%I z?9;1iSF;yX&2MH~6?Bu3oS1ehLyCtHT0G(tGVv9@0;m`#5}olFJI?hqr0plD&|b`ixnFxQ(-5@H$4xt?XlAOK!2i-Yh`R%&9i_avWJ z;E*W4Xy8g?VMQ+sRGJ|Syk4L>kZG0^7Pz)UWV%6~W*u#4Byc8%pACLC^LfgFJk9_P zp2GOg|NKuo4uC_0(|{)(a0KKlq;QtxlND^*=MxJ!9gvCB0vcqXSH@FyQs<1p_vtx$ zoDVo22t0*BnduNg&vZ_JONRzB(T6(13!J)82b?}Qd8i+}@IjZnltVh}fK!E|w*kEH z;1q!$X9zaw1N<5KIwrh_LD%P#Ci$-t_wug7f1i1nn^>aL0yKl;>r^NwJ7kbv!WAsg z#zVQHMB`-Z7(GLCg_0JQi3PI%&h*_LMA~^ZLv0QZpuSxSM|a_$l(uAV*aFP$++eZs zxjB>;rLFva|B`nrGeh=ykz{tW(A}}fb5NoR&qAVf(3LERXCW1(MBf{G`0b=i=^7Wl zPL~S|5n;710dME+6peNtsm#_@xvkT>(~jHHx0b}*0kEKhOGC#=wB);f0lH=9JE&K#-4Y@wIYY$9}x z+$u2>8PAsg5P*y^jjgPTIs*{rCpM~MP)}|h=w906RD4GobG&|>p$DJo!1JUP2TzCa zheOl^QDQH?Pp2yM10M;1*OKCFnTabUdwpR#pDMN`ByQxK*kAQ7xPp^zHW+*eV%H-nSe9o4}bWBH}i3t z@FWB>ad5E7kHdf`FL;t9zsUg|ve1dAF5tm|06nsC3{3Uy^;)O%IylY)JMX$!AkuspBEQfcLUEOvD)6N z+1q+XIOt||rO4z_=~GC?6|p34#R6$}&HF6U$a;5VP2u3VHl;HpV>33MBpZV%!I(yP ztrW5pMukNQ?sq;Vfhj-xDNS26@AP5&SPJX<%Max97x!cPHFC%*E``m@$c27wPCC91!fUbg*P7d1*R^oR zn%JygZ6 zAUVuA&xl;BKdwXE1j7Pz2nbl_6$iLhznB-M8w}Dj{>NpYejWuw7NENV$ei>Fel?;_ zUA-m*AuoZ-slxQHG(%!)+#@nQ7E(#?Y9iHTB)FokhiaYm0p0~%nLMp^PT$qWfLqczT3iveHEAWnEERg2pA3!g`{lsf6@YOLd$bgKwU7i{KbDP{o8pkAbzjfD{UK|b`PyH<%tgXtfgLTtUQ8ZbN1gT{ z(LhnZrHihPiZ+NyfltUP?T(5pWQzqJiUo2oXgt+{agDn9dYt1>BDu~U>Eh|@u&%fH zBsFw-#1I~jMxleCkBeTY>VOOq$=a=}m<~KAn6RCgGy1^wIoR9!DaG}4_bGiXhsdUi z=8elH8gLkyjeHy##QC%XP6iw!90WeNjspZbHu}@q0E|~r;fTNi!Yj9Ubrp*do(|z7 zjybwHSUNp$h-?aZA%iC6Q2(?6WluY6(xu#9 zM#6}JPicGnG@Y~=r;KU&$=A#8c@qCP<2G%yDTY+bUDqy1YNd?R*OmS7_>0|Tu(%jd z!@0JYgFQTJ+?5*9e`hUjAg6+LvZURBccli49`hEUW%Ga{(~8T@S;lodD&aq3r{^Va zhn9X~!Yq&S38_b@;cOr-bxvuQV%i&VjtRxOwqIx=?P0=V78J)_4n@bXAuXOE+COu| zkoqQ~2QKN)YXLP_>~luTWtYqLj4_6ay3^y!kZNIWtAY+H9VTv2sA+Bf{O?I2pm{DV z&LS%Vy+&KRlBrvrgW>?eF@lnYg+rzknrzpO(I@pFwtiQYO0|8%ij@AC2#p9V$+$X0NDI?TPV=|~_veC5qCl7|cy%rle2_p8`fVHsv!zDq zA!o;tKvBUE%v;W^OL#KGPlyzUh}SCpe02$VTZ&uIiv_k=AjS$^F86<03^0!9o;j|z zh+NQ%1r`hV@)P5#4x=s+1_HnHsDhYKVm~>pYa~vQc(trzp~-V!hg@HKmCsu{U`8t@ ztX_7&>Pk+Op-*p7mTOt=^CnxyTUfKSJ0D-mA(93nzD~f%I5cor5OSlxf3ku!2TlY6 z^!Y?Z(({xA-`jwOCq_7U%@$9L@bm`qq1`29!$Z5Re&Dy!^kt^(U3s8Oo?cF`+csJ7 zualFwUS40$v~1+e9X-#ZO*2E3;gFL>2a1VoVjS?MO@;}6W0t-_dt8Ngqu|Gi>V18+ZeyFCs5z0VcrKVspH?VuKaezYpLK+3hQ>9$)b=B`3JTXacFsx-Y^fK$RAzX1yyD`Y~7aNHGC zX_6qwN9XM-jL7FRU77O)4Z2Phi_rBA%5CD1v5lsccu!Mn4E0&-EuC0^NQX8flLioq zrQ5+qFJqmtf3D+9hn{Wr`+G?PgN@BqzuHQ-g4_&70jzcU{t)&MhwyR#09`(%a-d&m zAEYy6;8j^1x`$wlz)~WmZXi&=TnL-E{F0obYB1GTHgWy2sgD*lx|VXurTAFCudgU% zJE_sc?>BWLg_p`((@72I%InGZTf2?Y=2Y3pa0Mh)i!GF3W^}kaxz5s{Q$o*8X*_DQ z=|1^@d+j5AxK+f4i|N!mSuGLa(Yv z5CvLit64}Q62XMWrHL@_gAyIg!m?KMm@nmy!k6CGysICj0o!8&X;D`P3&i&x|Tx(ePf|M*1Rr0X7J#q zJmeDw9>)a^k34t^13b=_>owH36PTceL@W+9KkC_%ZX^nn)1HXUPnswI6B z7KqWnxuiUHqQ^5=@t3%pD1VW;iv^->wo+>F#Q5P{Mv{{{X>K#9B+10}rNq$f6wqZG z@dQtn1>yv}Q*jWX`wa(5*l1;t(_^X=_;spo6h0MnxqKAcD>va!Q~}$ZajJwNqh!et zxIs|*VXQ;4Qc<-#eO4cenK!mu&^4AcTAyfv63&TemmC`D2+<37fTSAH^}4a%PnEt6uQHvX=rN-1aazJ1_B z*!_l-7jf7FeKA(SS^2qACx|o}yre;!L~1nV=^v9Cspe3-@*0MXS47 znO$`6X-b>*pqof%Ux@D08LvxHE{;hYA{YE{P!5rcqbK38RHr(TkQ}SN@31h9OO06# zPe1V0o)XEe*XD|$sM;T`P!_J3WF9EuP^gp4u*_s!NPGG$WE#747u*I(viG!eqM=Kg zbQtrEO4JKz~~~x`D!&WZy9r3UqcrA!{q>=gB7*cy1qwM$(6PYZOe$OPRQu=VXO-X z++>MjUa(UHL?>`Wl*H3`C!#6Soy_mH8-GdF`y0~fhB~6AFq|CujSuiRFnHb7n>TOj zht%QepBTZ>0iM@n^-qDoPrzxy6C^wtLX1Pi8)h{8j$x{2&z881r?@%zl!pA2j{NlK z`8K7KkGf}i6Fs=Tt>*GQe@{y~kDlg1r!O<^-OW}R0FQcL_Q#A@42X-UJ<(hZqNc)z8v&@_y46eZqVTS740c1 z##f!+3{x>>q33DOByp3*5|6bS?cO-IwRsgf(%;uIz8#>CD#yo9wG?7wCklvhT|~DM zS}KH1^L-InE->UuYh?FeP_rUtfl%)dk~iZC%c%S{G!vHX*^$tWd{sV_K|SH=vn9>K z-;4he_at2*HJPQc_PK9iwQj4BsM8ww=dN-cvr>dK9lOlQUW@h}-BpN|Ev^jQ89vNe z@UCxZOF(Qb@(Z~vigzlzj{tKYNh!nzy0iHM?~HX0Ueo0}NY>e`llh*B=qY&bVMgc- zXs2RFb4T`pjK>lT#cn?}X0i}xx|iM4_V9V?F~x(+ z%^B$0mFz5hBl54U;3B{lm>VHE9=kT29Ytxvo^H(u@-nVx(Fd4B=denMoIs&hl+4G0lu-1FfK`TFax?byige&lyRc>UFv zUw&yP2~U8K2FJluB7AFvkE)aY=Rf~B{O|w%uW>vbf@7fnw#VF!@|-^Cwho?pgYWB= z@NK-i$n9laCcR0gb$YFwb<#_VO7C_`;_Cpdgp~{kjZ#X#}E{;zW%h|_MRMx9;XSqu} zV*$*B!PGozifB4r6yk;uTMEbrVEL&kCP##M6e-@;pCMhs6)j+6ix)d9BHPFA=KxvQ zFX3)mpfp^zRK~F}sZAH&@6T4J2O(8qbCMTyFrSJV{(1zr=S;VKN+X7-g;J~mkq#lA zk10#Pd_8#jY&g)`znmJ7xYq;MYf_MRoI+KI&ZwjR;?!*Ukk`9 zpnuXS8|)pxM1|HugQzd2PbWzTGP6L6JCWdWzY7E?%kY3|(kiSGRPmYcS|j-ZLQAM( z3V^&0ensqetLqgkekxXzX#NEgM0o^HNYL4~B3EQ8Mr_N&XF#0#bO*lcNz~37j&)UA z2^mN9r=*J*&O$))vjhreO~c0@rA;a*NH(k6sM9aoUsqXio|mKWOPcZi;JL;n%!RiT zAs9IdbjeOL#zVHiplsDLhI2eK$M^>&`pr9z5y3}tCF%NM2Z`8eL^jGa6>p2z?}uk)So1 zlxcJk2#gtxzi97d4*4#*PJS-DQzmI!T+4u+jAD{=p{KRk*AW(G&^?Ly1*mf73b`hX z5me=?EIutY)q^6S^XSP5$HPX%{uUMERCr~vGHYZXP9qOkkt_a`PdppkZv#VdLC0A_ z6wrfN!9n1-ccO5v#l+=kH8UyP=Tf9B-MflL&j4S$f;q~`3bgWj)V6fU)ENVK0)zu7 z!OBOn)Usr*7^U1RvOjdT&OCHqx3%JM?SV`J+PXiKHLk}4OAcs*!--os(PKlKDBDF^ zWu0=~uT@fFG$vv`3^g@kh4YUHM23hMS;l|0AJbV>YKK@1;hyk89t}MYrC*W-a zMc3jQ#&gp8oCLA1D`z|ntq#bO)#prXE`PPh6v?CF$rwH@EU79}O(dqqtE`Q-r7HQo zOWcY>1gmV?c*kkMtFCZj{No@07=HNShx*+QcyV~(7~$jNI63%GItNdP^zBww?I971m5Z`#n@gbOKg-j%NBA>H%!=_%b+@|TsjjUId+sSh@s zdkSSLYno5~`yZE~f5B#6EIR6qm~K*;3YmKN%jJwOq?+1H?S%}>5mD$y!-s5Y8nM=i zg$WP)V=&K%l(&mp)K?zYO)vXw(9A6HCIzS|7*d36x@b|hLG=sN;t+|k1O>OSY*O-a4$>tcLxtr_)NcTBO{J z!4(~n%oSIeI9B~(XT_dyl1FjUQn$JR~Cq%|pokeW7%6Mtz3 zVo${GFHkEVM2^T2s2fr{tl{_LG_tZ(rY0?b%>$h4Y`cg?6*qMn0&M(Sz|F43D4DS( zt)vglZspwmQHNT-U~Xe+%O6}G9lFue%W%D6bEq}Zq3gr?iX&u)V97%yWgsXLN(Wu6 zqKZp|3%Bva+(P1L)xq52`9=Ir14Cd0r>KYJC-ky0y0tLQ6}ao5bjFQ*oU(2Zm4nDe zkkq<>A#H@?>?yDoF2!YyX-Q~QwBjb)HZFPP`oJ7iH6;o9&;V!{&K{Go;%Ggwv-we>N z^24uT&+HfQYWzt?yAz6XiZqvHdsD6ocBB;c2wf$kq>zKFGH9X)`~D}N>{_V}s|K#v z9_gjuB2_ZbTLlxZ1j9I`HY*gV+!_+`x$i|B{jrc%k#hyll(P|3g>9sI^hlWrOK~u} zW$MU1Lr`}>+Jl2@N45=&-~}>w&>$!B#MwJZ?=eInMPTZXnic)5j!x*GN9qp0Cwz^Q z5?h$kxn71nwr)c%`RKRQjz2^&-gGcfY$rpb)+7mL40r>OHzGjy=sePTT8*r8U!SbH zV$Yv*G(G)nI!jgTWXV@q37=!GL_!w6IkE+|cMC8&A}~tySAQ753tIcp)r$5o5-psq zwTbg_O#lEu07*naRFq0lBY4v2N~R0(`Jp}^Q4X9UENdwRhX`Yozp_FuYK304^j2U4 z&A?);SCaXJDl*49PkjHNx8@L8XBuugc=Ce}qT>+3>A_^qcR_G^eE5#;t=6!4}Pr(uf#S9WOT&85#T%{ zLNBMta4Oz2rH_mOt00DYc5*qbwLsXdS`T}>ZS^W0UuM{@343B!O(797p31F)ridlK z-2xa7`xnX?8_$45oD8swqBc^IvqZOGfvycUl$KQGx2B?GDaS#}g5_W?)WKW{c)rm^ zDm;hV8@_dfLghvnG|=;^tS9=ez!PnhKGocfGXxr5n*}-I&_#*3&H*qG#3anYCC76K zq){fDF_8w=$s_4v69z9dg{rJ}A!(#a?b^?yG8^biVI%ti3wWFV&}bU0_!Ovo<3~-_ zJG@ujYcRi>ELcX|%CxeAKQ_OVRvnrHEcCJj1eC0&?UEhIjiT=OxvLYJlC71{8bY=M z6h~WAK+39v&B?|ykphg3Fi&awg;KSBkz=|w(=cU)na5%L$Tv^5In+z`qeB!uhQ zibGPh3r4U#%mR_-5yr6NGOy(Pf*6HRYEW8iXysV%N&&B*chbdyje=1 zP$#j$ss`>N#&gn9=nb;W)e|HfbyGS4#G}vvy}Sk$u`BzIqi0H3#um~fK{_%; z($%=phCxbMS*Bx%d%DV86I1Lu6??jMG%2*=Gm&u;DDLHT;A2PDH9M*Cy&J4<2Y=wy#iF9ko1ld7^of3y#&(b@C3D^h=uGHEzm|t z-}-TtinfdN4k~TvFCKXohf_pj6GsTQsQ7NxM`C=&_=hY*OC!AGx@5x_juk*kdYti% zIYhYe%?tsAvJVVX%nUQ14m7LofXon#= z+uS`+X$s;dm>WqS%Gb?#@K(UFNy(P+@3^2Z7a=rmEb|uB{8`o-VYW$E#YzUB>$^oj zW!Ohzt$}wJZZnj5wd0EB^bB0)V1D0Q=Hj(uyAv=U`TUhOi`(7#(nWU ztj<9l0r;KG2rVbaW2y!sRdVZ! zH|rEhUPq1tqYDiBPHbk0`(TzHu%|Rd-<0gJij<<#w9!^l)s$m8Hjrcf64{LL z-m5N~&L^D5NZ1tZD?o(^8|LnwJcuuIF5FcJ1!kcsM@aCMrX*;8AD}8SnQkneYIkD= zErP=WZd$BPd;7mwCe~pAfhaZ<$5$M|>t-}G91%sTFA#jMT` zCh9$EuVSC>wJjpop?lKZ(pGdg()&a;HhpLgYz}^(>b2;4Z41QM$q_^xWAWO8EkN@4 zXI$$Zm3{I!@QP^W;uZNh<~J0GR!djiV4w-=#vCG);|Y3FU~Z%*j)u(-s)PHF|M(BT zE(_-e4iB6dNy96!2sk-#e()3tuh{yZ|M?$3ErR0&dK@h9|Led0>+t*E|9<%HyYKwu zNy^I2&(vX};*#CL0*mcrBxaiu(jF^6nqW36bVOc~sh`^+BAlHe#VNA(CSo+Jg)pXG z4X}_+T*ET`Ra0zBV1LX-dnm5I6UCg~GmVRpfAi`)!X~iJV+91iTfqVaB*Vhmz{av^3RXvqgYXlKuz_%gx7kLhx5=$U%j9mWVFSjjl@8;l_fRI{Qpf+*IdOVW)Bm@m3xPV$RArtnUYbjRKpf zmRhgMW*WwJlv66XncT(Xl<1iu+oiKnfOJkAT*&Qc5>#qTc0<@fsR{SxIVJ)&WN%XT zO0n7hg_!y=l9n}a9O3%#cRT#+RJD-ec&E8sC31$;U#`yF^w2!fWPQU;hHDmjnHYoR z4;pgJ){9A$WfIGb9$~U_4X;lra&f(C7*}bllxvix51tsbzWU z<2S$gjU6JqI_vG*w|+VV2gg@medU9W0S%6hPoF*we1!d{pMLU_B>CMC@HkC~`8Ekp zm4L&svV_F~d$)jRC8ipMe)b8-cmjfq8BK>Bb9yqwPl=rKp8Aln(}cAXQBh!tW-Y+w zE7}2c*gmc>GA=h=c;Pwt^TlV?=x`;pPtO*(0B^_w*#bp;Y04WaY!N$a0oq_!!xy@8 zm+5h6nFZd7X)W8RW{dBDus6O$0O=3l9aUGRF+zFVLsP~+`CWo92PW)C)tCDU00przg0;Uu5}(6p+Xz& zEvLHX*}Y_`9eh{fRyke0ErNUpLlfY+%hmTMaC;6eDrKTZR%@bClB~ueWKzih*gz-0 z!*z+-$*@|tULf?a0CS>Cua>Y5l3Rrtm!j8^Z-=8!hO*v`H5f+Gk+w;i3Yg$}Ii_6! zR0*R5WO^Pg>(j?tW{`7ur3KxWt5aunpg@~l=&O7rAm_vz<6LIsmfSa<`v*s-W6CEmOWb_ z`y*nxgKK>RCrCiUDbn?yB*G~o5>K6wI&&jk2I(6^RY_ER|8m;>n7*6`qDc3|)CIt5 zNZC_NP_M&IsULT~bd5b3VX^t140(UW^c_m$I`*CPbcpt&*uQ4~`&{d$1M(i~^JCj{ z*V3IX-4Cwq5XntkN{+?%?mDDXBspkoo&x#zfB$#C=87jkPW9_~oEbdj!FNXJ6nxN| zvT%0r6bP@)f)+ZS4B^`$fB3^6jKh(_tG9Y*$Yu3R{g(J~TfmEdnINX1wmn8Z=AO3j znwzG|Eo>N(n?W7ta)j^=kwd-%k~fIEnArucpYi6(-$m?Wqp<~b^A|UDY61+WiwzeX zJ^~yL5n>^7;faxofqOegnlo*yxJSaXgvA1n!2)Fnc)V72EH{$7!Sn>enTYcO9E zpgMAF5a;+IMnGYVAr<%-bAbTfh*}cpTu7ZVh6WKKXO80%FzceVmxTMrLDs)7=@PPf zQY+X2Tu$b9liyfK?Z%TO-1%5lN?#!NG}Moo*Z~}e|G=IPr{^cb$=QixTqE9W_L>>I z{@j3BYstG2b4}#ZEE#Hf?f%QCQWw&$lTNJby}plLoD!D!L0Vw!3LqCsz*2rXQZnDEvLqJ^Y_tILN*pX$ zxP90>(@e3pc>H^LNL}U z7OP-)s8()A(ttOWD!TMeU_fPOx?llVftDv5zw(U@J@B!q%f{|_bGKI1GV1uU+cE22 zXzExq>H3ou8Ednicsr&_8mTI%|I2k?gqx8GKIi|6E|Sg5sT|G==WL;=Jo5>&j8H&! z;~lZx(TwY-ldbJ}w5yxobd4jOa9Hzd-;>jm;nV5I;rQ%W?hyTOE1e-?;~pjtCAu2B zlrDcA3sO)KH7cWt2b?6MrWc93y5n-KF#rRs>ewVMsrzdIIz#k^c-0i?aE9b7v(yvZ zU+4k3&a541UAI^V-;<$g|CJ(TCajWc(N@^iiH_apq0W5eBq7PO@Db6HSuC(v;4WIg zV>cWkv8H3_?>L|#Tf)v3xRyhtFC`rpJ&g1^c+!FI10FCOAKoO+&0-d1`aTG+$bvpS zWjH;c<*5*Y-?LV}IRXux21iNH)0efR7Ykg*0`%1Att?kqQcVLl2V>|s7wZxWu^{N< zP$Gp-g>KG=LYrw8>>3M{)=?Dq*Gg#4@I{AB1kE9OS!1*`PLXM2O6m+K%36z9qsjta zEbwS7kdqd3UP(JH`Ao|m45JuIN!N^&tPN69Vkp#(gFntGEhy(;txU$d7oIgP^yF6x zZGbF$MC5rzG@BT!h@FTk^?gZXt@@a>^Vr8}=3i>0Q-K8{uwWi$sJ&*kdd8+*MB!vl zIm-@kg|g>*KL*FCnQ9D{3d!5d+Wit%H@?L|y17B(`~!IJU#K z+JJ}e;e@CWmajhvl4X@v|2Wdxmv@%)U8mEt)8W&}Cpkur^;?Bgt(BV{e7{q&jv8uz zhDw>E3qIPfKfnQ}{xu!!lf z`%U)6w{%O5OOrzM-??K2)e65BTKE7+HKs{lkY3KKMS!`}gntIxOHgHwZX8aDEWi4Q0Ve6Y@zBz8#WJioAI7 zV)V3#376AiflFF|9#(G-BcsKVZ|A&dN^$i*JOSo|H`g(&vdZEdIni}H>RpppX56)a z2T5m>y9sEK2(~0w8$TtYw$c2OkJ!86;*{ju<0g7L?Lx6w;DK6zVZhkR;lO2@jTetM z>g?+_Il)M0-m$?Upu&3|r6-}voxocbO;Vc%ZK;@-eP%w;VGfd&sHG~XBzg>Mo5*w4 zfjmOVM&=Qo-Q1<6YJ*{)uthO@w0i+UR?vk=QRNNL!#qbNv&*;(Wj~_ALRT}?#KW}2 zqz9fcJ&P3}@ip>VFqCq2eiG1p6=1Ql$(cwU}q#;62E+~qbY+E-)~-MFZSnWO$` zwvyz1STQLB`zgI3zv45;jw+0#%eER%CiH|^G|6Vvo!9D z!bEHt#k588%@`WtR;MP$<@AN4ANd~Ub#kyErnx)Uiy32<++u;n0-wbKIgT}Ooy@W9 z`5-g`lw@-{<{jr8Zh>vKz_lDAi1y-KaXKS1PB=7ESdRmr0fz@4Qvc^a|2cgB{r5h8 z_~D1)&6_uVLZp9%Rz3levM3{+CcG+(Z;S9sEk3Ny_eY-S$&vo`Sy|>1FBZ6*1#&7< z95a^JF5wgjT)nsSB*yGj;I*J}o<5xYxRUIg2w6LmFN7-=U{56%zHZZO4_=YQagL2S zb_hF??I39(SuF4{EKsIEPlu{e+*(pKAm#AFPibQPD%EhO6V^b`R*$!T${e0^dD3r+t14wau}tQXirB=x2A8T{N5&e_HwCt;(%Y&N zyR9RRblkFIVrbifep1P-yJ)-*ep3p6Cb?;s=xXD-M^0xODRRDUVT-UViLP&rGM}kN z`!05DlPaA}S)s-?##W-pK9j7Y7@7oBX?sj$;fUO+3Z>8AXM@}!y1)M9^zc-6)tEcH&^yij zI<|C(%=FcLSz@AND6MkSAtF5t%Q})PZD>}~R8^-HQTx(ygPcyS4O9ziKNe66b8+lu zPTyab{?M0k;Q4~qVa=I=jsiC^SJ#}IBc`X_TtIIHN4xeK^yCOupUXVhK{{*n&?UWC zV6niRwt%Jq?=Nah^Fj4Y`(F7@D}Mi!yS78*GF9e=&ljc{CY&8S4f5lUKMsHS%U_1S z{q1l5SUL_7oFsf)z3279Mi+r}jKI%_)p@lR-xr}Qo(|!7_3D*h!8KFt0$MC^Eeqt5 zCF5` zi0-2a)*07*W*yS-=!d!Pt(|g~XS=jnw)+g6?F=4#YX;esN8S~zv`c%;R={PU>8iE~ zUB$o@b4AneNo?k~sy>3m*}#k}yX^s0m*~><>xaGXJd5C9C4( zCQh~v9R#z85!JoSFzX)aRawuUJlF9eeuyZC$cdg3;U4__JYGRfkJ8<@{`95>{Y4Lx zy|9aIvnKNyD*$0M}5Jzdt>vq_R4f=d?UKGw#vSBYXv^)g1QEl;oV(&d*pJFHMhk53*HF;?eG@h(i^;4^Xz}ZmSbN0{#vH=}yHN|2wxCT| z7c+O%pmxLw;-dn`38-oFQCICGDa$fHA!CtO!qf5Q+0JH^;Dnf`%#c`E=(mdBWCLJ zowP@njKLVyuHC05?u0q|rpk22P4QNdvG$_OMT(h%lXJ{hMS>SNN_WhG?*KvC&LOJg zN0~-*l~h@0A(7In32?!Lh z(r!>>h4+pCrYe{G7|i!W!Xfg-)0c9D9Q*qr81vlMUm3vmXG86VU}r9!Eg2IRPlyGTRzrRzBgDiS9#GBGn&a@DFHfh0Qt1tQy*y1JgBcg`UhvkjVIWIBK; zI7uAqMC|dGocAQo`c!qZVgMSF)Dt;4Ug&jMFXa&Vbfnj09q?2LE9JcI1}~0~qr-5B z9J>8NlH0M0tchCkl@f?aQB`#uA;8liQiy~{+hiH1DZL6Hb2A}}C@~TCn+D%^NYkv^ z6u;!JW&vATMqRP15#x67>yqshp{&65XP~}M6t1<@ie$*H6;i9{C*%^+#Ckp>+oPOD zpQ00E@jlK`t(r?}vA|*hSs<4(ZMW0Zk?ShLf`C_D@iYiei15m+ zUw-+;FdQ5>HaPMF={Pu;>|-I(N+-{gB;07@IN`e?Uw{3z)BTerjblkI7Py)P)-8p+ zB++T@(;+I(a~Y>Psa-*by^hPArJO8tB)h0$ zx;!0Zch1!ucRx(BS~NnLfV$LJWw$_$8iL0Bhflkzx~VW9wRzq*&ETa~@+vJtSf$l`b_% z#!(GBDZ(eeN!HSLJR?~yxj_p5te8f%J>@!y%o8K=ZY?4!#9-+Z7->tAvB!Kw!;OvEHjdYq zvooe%GbtyzN}1^l8BK^;KQ^$HHd{DIlKbXkdZ{~F>4Qo;%V`>b)rw7#Oa77;aNjIu z9$R+R_NI+q;!?&Gv`K@I3&+UkZL6F%d)=Ce=5!m^q0ug>#R7{3?xO|Th`x{7-(8)r z?GWjm6X}(%i}oGr4J}WI;1J=!se$tYC&stmemnf`cfWI-PkaFH%giE>ldsIeX~K6y zzWL@GJ5%_M2v3#}dfigrl(EE%1vXh=Zm9u%gSV9BI6Hy0)y({QW|IQBz&4Gh#AR08 zXsvBXS|*P}wM(XxuYPD9K(+OhDyd5h9VAOwEbyo;FdhhX_^h?bgrd(X&9upb1nhCu zr$YoZ8OX_o%t|qQsNKg|2vRyW*2HTe;&4(>YXq(_$;F7)OA*p=IQKw94)}uir!j!^WfD*00S+{~9|t zA&aTTrG&lH++*A$%3%N_1-FddcSs|1!6^!We9>2eTZhNkV&?}kraoO{Sw6AHtI^6O+sE+`unF@+8uzYPsZGb#l6^SEn3Z{xK62B zreL-)F*fS*BMZS>t5gzG`Bi8nK*P3$Y{GS?vQg`46~-09Y<_Z@52ov&yK!HAri<_C zg}xyoFZRWeBt6mbRJ7byKT-SfkcQhaY=!fJ9OGjuM~B;xD=dBj7=36M>p;gzr;6YfpBzm;?)S@%ut6WrM`NhYijhV8X1>; zBzg+h-oV#>G->9pl)WTVe3ZPYzZOc?MucRH+~~XkHKJQGiv<=7+${@u9`G1f%GcO7 zC$!Yv()qq>b8UwR6_3U2stI!OoOtq??x}e~gr`FIcslrB{pweK-PP}Z|NG%T|MNeG z-~8q`{x~|0j{cQdy$sU1fx&l1pv!|-X60+Mk}i4Y^hw+jFBaHnft-!B+K2^*`uEC8 ztVyUhqVOeeLocaYwg7FWZKkr|&6xQNMWRLL+9@#57n)9QH*0CzkkcWTW3;iLOkC?>TPd{4t)tVTb<(d}FS>(Gvsj~m;|O`-3<1|| zs?~BJ+8#Xi>jZ!%dF1>u0&N#~2Ptf>POob34i?GYX6g^gnD(ucY?)If$m=rfXS4Yv zQ5pC0RtkFn0P5KX*+sVCz#+mfvLg@8l(vCHRV~{~dx+^=cF{AcMYeX6N_m4Op$sWv zT}pYWBm-eZg$a!{gP%iBRe8>0Q!ijTHxVnc%p4NL?>W6w2B>ZB^tz$}!O?^DCvT049ugIGc4s#Yl6` z3S|sZtt-RNQ`m=A@rI3sw0e??+-}NTpUUeB7hA?%QQ>yAxPCqEtAw;OJ%Y5S z89Fu|K6TIwJq4B5jJQfNSHv740tI{cL`uh2$jQ%XoyJ`a=(R%=88d0o+;XK^lTWhC zR)i}ggxAa!T1lrYX`@EDq!tS-7Pw0mD9fX=-j8)sOlIq~Xc>c?<8fS`4B_MII4*b!gx6i+2*D}x+u#1y4v~DyV@AYIAm0%57q*?a z7NW%hV+(kGsjG>a7!%FqE0-YTl38&a@hS}bA;ono_J`2vXi zL$?~0o%XZV8JbP>%WeHio4hTeXgycse+;RS9h~WngS`mTIG{Iqj@#3sT`EcJHcUWj zU_@pj9!+}8SK+J;%EF)38gtfMP~}>tfB}Y(N;gf2!=Q+R-=F|@1Y%82iAgT zA9Z}vD?F8UP@mE(`W+6`ADQ)DJ z^J0O;0{6fI8pbiYIWs3@zUe+5=?xw!usJ`pBFlM+Q!P}%A^ii)2gM{KTZ3%VD$OqDDei=gz}zbt0n5C62)U#sLE1bWw=HH zi#UuB*UduX+5&I#40;5oY7=afRxDmxlzIQ6TP{JP}~yC2T}Rj~1toQt?_{TphE)puEMi1; zFEUw;tTNX}+#`MP6KHA=*27eu>)-MD@$lj7{qXkW?eO~em*MA+Uk%SceH_k?FNU|L zAB6ib=$R4Q%5!yBSiC50{;iRAcp(ymos{Pr=YnLfU2m z-aXrkOkq)clusuzJdwMLUMMebfou+}%@KL}jZ&o@4lYjg_|yAg`0(R!@$nbU7stX0 zFK5WXv#*BX<-ZIEFSJFb_riH*YJx7W&=!u=cN1CCSbb_#0O24OG{2eT`7tCxg6_$? zN&bRcEU;MM?pdH+t~AEW^~~2W#`zNVYJt5vM7(hB)QiQDCgj$lUK~Ku!*GW1oe#bp zfErfCB0Z+lLgv>qML+rLeh#P zpg~n>le7XTK^evau>ROo_=4NJ1#Eh?LpVahA;P@i!=k5K726 za?5$Kz$3Ik83f~~*dgc3O=e+0#X$3P$*D}3kt%{GBJ2b)W%4U_QX4kjNaVFy;S`B{ z;)%;IughkdpB5=MnO@r<$Ff(;2DJ(`xe&sD^s$zz5I>Tr%(WQBO`GO%9I#xc<-9yK z@J5^8b2F~gt#%tWH%dlC&}CTRNyKA_re~j%6lFDy zpv@f1+Nm9^759N&i3(p{jH$$1A9Vl!kKO`L`$fe?`fd5?n4 zCB;+i8vEWQbE=jcQ~6^=V)lnm_4o1OqnsaaP5=n-wpz?Gaz${FIZTpJKdB<3ONuAlblpb2{Fc2l8gtW?c(b-1a5 z7rC}TIQwYrSP{DC+leNKp0JenKu?5x8ZM4s4;OF#rsJA`>y+zPB?+>FjrcA-?dgU$>!ADgqx#ZV2cG73*4{;7|-3n zj7uEAxM${C7Hga?KUE2SSe9^U3*=0HX~ta{@}_njJ$M`)I72x2z&Zzx5WXw&n4s9j=0Xob! zTmcsjqB0NF`N-{_ywq)~Ljt%j>WWF0O1=W97$=1G`p0^PGsM#*BDb)bCDll&B_B-@ z>#lfGw|oa8={Cfp`i$t%4}dlVwO)%SL{^oYsx%VOW#Fu|BvMobcEp!Srku<0T$^^T zP_|81E5p6=lcVwt&ZkfGgLyed&Mt=Ii{s(lv793Be;S^?e{P4!r;jIs;SkY}3>3VM zw#Zev+o~|K_cr1j!xWPPwHDdxnrnAI4cf_U6diESNw%!$kHjUh=Molia~7Z*(7qWb z4Sk*d8Q+G}4`lS3tl`s};o|Mzhw~r*M^A~oG3mjxFNedEkHf{YuZQ8w-w38xXVtz1 z$tYulUirJ&Wp+_#HEB-6f5*b0}|Y)h$~z^R2h)RJ5*uvp+~7Fag`8SBF38ZgGV zikPG4nwaq0ny#)^+dIXzSBFSkY_b(tr>wTb6h{8}^XL9%2#%1Se)`D{5gZ_VQ{+s) z^m+Z}_3-tpuZOR`(xbYf&DUpz_$b2*pV9-4w3vG?CkqagXV0G7;qpvRq2TDBmVc*O zV^QYLTfmz$>Sqy4UH^29TmAyuve)v}^g3VlJ6Q8aIW$X^_y)<6itEl+%Pp*{B!#)Eb(|>*LbS5oxumgkMvt zm?snRZ&hj!L3SLTH%i(R2B)1gZ>P;n$UL5Wib-0EW(q}xAVe|a$+ z^0cP{{fz&}C1b=Xb`0Gy2eZOl(^gecE698fmcrPP)hoXm3ugyUhu|1_ z^Y+c~?)|&rhaY|zzWw&w;oEP%8D748IpoLHvn={dbQB(i9P9vj_0=moS#YATHhc2q zXy9)Niv_M~fi}O4C!B-g6hSUi6Gx*R=b-73&c@<|P8`|MIR#~$$Pw)nnM6yx$pXwD zKGY!b7u23lc$I(>c80J?8k3CT^%4_BOp9c^p5w7&(qh8oL5Vx z0Ha#wEpv3(U`|@lKBP0XoLYEVzr@pzBCS{n_qmQZanV8@V$aFc=gMLkhdx3=KP-VD zpCfIvQ%^8ak?Rgbn$6m>VQYh>q-)mzHCF=CEjh)Pn8GAzzy{r@;t@cm>=Y+oT5ZbL4Q#DytvJ%%iRAMDM zfllf~dy%F+o;`g&yu5fhe0B2W@ap*0@ZmzQ6Vmk%$HyE0s{UX&d&?&nF7(>0kHhiV z>G16ESqO2%Q&=sq>N1;9p_Ci_Wy%AFqYDtGvIZwUX%#!EQ~7~I{ZSKehbV{aw8TPi z>8Ogn6z642&r&YScPXXrH!&vC{Dg%(O_fHjmSfQKNbg+!>G{7?vfSU!-8SWx$09BYX}$cVu8nIfgDA|dl(;H(`e{QobOF>>`N?fG2pe% z*9*zN2R*N+$erNcyF=tEwZaL)cSLY>uu$eZA|F0}81g9*93=1c9g%l$-`XM4o)C#f z%#H#di{h6rUktzc)pzbZe*9N*=e|F36dQ|3w)E5siaM+`S?0iS<+PU1kNt* zN-+Q?bTuC}PNt}N<|r%qQmFDIOE$3?!|^Z!HH=E9C1&f{8N%H%ZMBhUR?^;psS+w= zdb99(WxdaY03Gub8>E);1*d)sZo=vWs!kC7AWH9r*N(4ZXyOM{>!t2qqp1w4F;@qs ztLn6ZXf|Mg2r^sXW9_{ z^2zhzo9C~F-+b{a!7hfg)05$;o)kG$A2`+6`NXHx-5-P3%`O>^Egyk-MDHwxWMR=v zrY)e6?nPLNAnvW>zG7e$Y6n<2!Q%R>9#}Sv(;l7g$k=o^2ds zW(l9g0!$H8^V2*B%>6h;EMo&!dgmlw1q9yg2Eznvp6`4SsWrMP{oIx#{jAcxL zt=kP1*Agi|=qxuUW5sO3B|p6{Mrw%}z$%w%!26}04kV$EIJAX}kg+o+C^y{tg#7(lwMe#Z=ASm311w${@lNNRfl+I|_Bvx=H zY@9|Dv?bqzlYT0#&ankSQKenHEqW2#qp`kA8zGn@L$BYOLX-5K#I?<5^yL@%VFC3T z+g~OV%!lad(i}k(3ByWThP7q{?-4XAqhv-f%IW|lLvPhXuT0YWle!}ni?;39ng~#Y z(jQ~vDnM-Onnwj3*a?C&L_fIFdvh;{afom|mwn=Ci*?qI@ z6hk*)&}8Uodbp_})B5D%Kn@XYN82%C2?ZuNIRBE_0^=%MrZZ8NxdVG3N)XDk1(e9w zhMKjWihabu%*00c;hF4ure9B=10h5$YSMY2f`d{?2O7^V)YM?4Gl$nxLa8nE)e4dD z1b?#!+?HWE&ILg2ZD&dpP-v)E)C_=AoKRCSD#V&DX)^BQ25ACn3}u9tN(k{38u?VZ z!(tM^I@Re}c_?BWJB6Z%b%2~!a1c{s+WHh;VL1wW5XTuXA>+vD3~d2grqi6x`7QkL zg7e`Q`h3E#o&MdkU;EztNbP?9Nl%3wej48D*Yj^q-VZ;#{$)5m{@88Nzp^RRNK1v1RS1nC`x&1d=WxKtjK|a`E`658}MQ;e#CSpoDToGRt(62 zF?&oA;E2*Xq0Y^oYPkg)jE$7Mk1U7zsQopne}*Y6ZoUo0UJI2<6&+V(W&f8>;ZSC7Rhp zstGs7q!40Cn}+q&Q_8!T->XB!-l|f|*mPK}a?3G&$OZN zQ6FwQKK|raYWZEW-6ZS_g7Q2*bgV~r&$RIQ`s-J6oID-A`Q~eVd*qcIEBY-9PmlNp zsBf@7&HTRFz`dU6b{U!}FZ@fm&lXVsC|x9PNT`i(NECx&z9OcJW_KF*vO)*4$O7LV z%8o+HP5O!y0=~fOCQFL&w-ORGRb++m@c?WyRkzwMQijChM#fSjVlo^e;S>=y3ueF~n@t`e#c)xXx;6)f5)(1%p#clsE@lAp|;Up@LbWo3H@(&ai6tZLJ{= zU(?|nb0;KY@OAUZ12s#HIQ5AB#0Hxn+~^W0qa0kDV-C-ay|Qx#8A7-zPF9r@uZRgA z_+nE9p(Vi6t1kWvtvR&tkSsPU(Fp$RvGo5K1F!`D)8*Bk&eRh46KC0+p7t0uVYeMpMr9_Ac%UJNO$_XC~6dr z59@3WD8nhDyCvb{mX7y+aYzIjwNtpbn&Fd&#KR7`qM-nx4kg5Qn0ExWTlIBIXq)0kb>*O9_dUyaB zQ)DTP{+{DVv;fsK7?xyn1chOQf_?;0o_4|L-KHxvZjPS3ltmQDlCq7nUq)7k9Domad>d5&q!YkPY<3BFOR++zI*Y-aP~}2eT^CZPCuOw zZw~b;>(ifyA3pswoWDF9-XFdnKAoJZZgIV{Jo>7iC5e$3PO#JyC3VDL4Si4yFfjhH zRoU_Jwa9G+fjX0~T|oyMW55m(J4HyVa<;QhI7G@ucT^cZ^*jOt7sqAnqaJblgw z_>yFfPKuyWRw3j@+G7Z^D53!GXJni1T9q^zRqfOFv+9f1m$g847W1`nlH=vF;(|Vf zjt5hAFJDJAI6WVTl*^kh*IeV0wMzmTjn$+_Rm zf&adRSUum8)?TE0k#kW$j1G*=30{N6w?z0>$iM#UZ}keTCw73~2;t-Ec0|nB8D4L0 zXu=;pj-7keY%Lqo|o}d@(hb)iaHT>atly`r*fA3ss*rB9(4+!Auw-gkkPMh z(&*L5g=kgu0@-4LYQima8_{m7+Jc32X_JjMyLIGTOS|E&r-=vXW#shzBKdk4>L_34 zRxc(es%N&3rxIK#=43W<*ks~|7+RYg=ruj84Uii*n_2zHSxyQTs!K|%%t1w3vHlZ^ zB=ZC5t_Q$Z0<2#6z!6+Y18b~_5;Bdm#6BL&XdJ-X?RLN^piz)AMF-1;zbhy5%dMx- z3keS~WUY$r9Tk|;PPME7WDDr#4N}zFsi00NCyS!)d)~N4@s4N*p-_hkO_7$u4p86_ zVKY^6Zoco+LKK*4m%>x8hy^V8h)PCmE1^d*X^{6(6RL2equ5g5L{Mc-wC4w9G(UMh zk_et(!(TBC%uKK)tMLgiu$#LIGvhhkEa>Zbv=e+TfH%gG>dkH;)z-xg+ELCVYo8FW ztDedEn+|K;#lqw9Ehar$m}st;8^(Fdw=tX$~%5=qg}dn*4}abzH~UcZ%0 zRRJsA?1)X!F9}NA2pYnM4Tnzj=;(>&1xH=|4|53U#gL9-S}N&UA?s6c_41N3oFc*r z>1*38RZC|vy! zQNRPl*jd7y1=7yd=yOC1?BQErW|-}>(u_}!Qw!}zV**(}a9vZFszM%)jG?Jv7Fe+> ziOZ2+j(VlAI{?^=LnIq!U46XxD-D>myc#P$rgvb+#n)ed?fi=ueE;KDc7}ZV_;EPV zdrRZ#4jH@ji;#iw0SQ=IKj~h)z_Ic#!*}0(H+=K$H~wHd&KAmJ;hC@HGPf=kxj_)| zxE87J7&^{DGsiooT5|W_0&Az4%U7)|W@@L-&b?7m8305&>PDH;o{9=OM#e-?!A+n` z_A(ZjHSA>sJZ@UHLZ-pV_%f?y|I@<~+Jh-}uzhOIy>*>+Z^FJWgT?+anSv4PImEp4Y{U-v!@>HP?y zbzRd_qgv-uQAnKR1ir5soB#sIIr|QA@aZ1F+yChli9EkR_vUMr7jjr*&2JA;Qs}gT zH(30E4mt@>dMV(LzxG4lS}Yi6k{YDBmzhysuWY5O84mQa(Dow+g>T#s*@#GvZUY8U)SS%;Z zp#z6VI7Ncrc!)0(C~zZBY9zWYd6^<^hE__;{ZepAjyzYq~|KYR<4NxES z#G0akAc)*kJWdKMam2_%?zz5=aIWtq_!W-&0!Ti+SYnrbCOou$(kQM|7VDF=;0Y_7 zil=%K>Gj*;$?Knn7w>)^zCQWq@ZIpeUYm6?e0Op&yn6j~c>ewI@Z`h4X#e<|;o`|F zZ7P4IS3l?#T>7CS`qGa=ebo^8`p?T3YO9+Bz(A!-T_ZLUV9WMt&<)t$ z{8sS`agJKHvfkyyti}@{*$HS|r9|4O9V*S)ftKWAfyDxsw?GaprXki-=RR~C{gqyA#kW6jV(>%=$GLuCne;SXlZ#9l+b6}~O6x*{T%I^N z(qoW(sGZkmJ<&ppaH<9236J(#2c90uCrHpI%4p?KMCcDM@F@;B0lFnT1`F(C&_{3O z#sF#AcS&szjV9-$?0Fs%5|DAFtcmT?9}~sMENMgxKzf8MR+)np)Dm6J0ew zMii#6&C=0klUSbSXG>$Ao^8Mx!3*d!SfFdb8!vrRSu?okLNWfcb4_$y10GTNgLiU> zgj0l9*=QY6);p=I*XZldc={tR+^XJ#Y)3>jOuRi@U z{Caq;r$tVOf06uGznl&){wasa`(Mie@*C|Te;4AO=sTWI!&ycjaTiym=ptE3w-kBG zGf5+K8G$g5e;+QGKEB*Pg%oUJjA}k?&diNqW=BfnMc)z*8dSwS+gP{Wi(&Sy8VE zX~9gOk)@U%bBS$cN%I)ftWnM8QI>2Y;tE_6iv=E$1#*z=vC27iiM;|)8Fqx|+U031 z*G&v!4*lX~^er{(BDmKNsaR3eQKWsT)FAd;P|$6p_bG`=nT{*5h)9F&U{f0B@7L+t z4v}ruWzox%8yxwa5Yjj;a8~pOuej}2QGBHRWZ(nsA3uH&To3Z9 zJib?gLk2y#K}sjhHrWe)vA|U=kW)y;SCtcdOiDUZm?x_Fsp@*=JWTF1+osz2qOc3$ zCLs&XUDURm+F}+MUAjkQ6F4piqW+rEr>Dg%`3Gcy>q;~1AIt_l_X_y9_@4wn4zD7uEH~wG0FEDknU<9lv6;d zdvo~0r4|L=Suu<0<-1)HKs(fQ6yn!joxIa#?t3{oKh{5Z-1$$N1nYq z8;*YdFdTeRna|{e`9eAz=^G7SzLI^uwD_p?s=cC0ocq~4sRJ7w4>2X5XiM%-Q{(rz zb?GbvJn5^*SSNdd-;M?Pk<_;*rDvXYW!59sL6UV5`#^p*mgv;KFW&y&aPi{haPif@ z42Ngm$)TsGoO(Xx?t18FXLKz!u4DIPkCT%VJ0N&H7O%1*=DSyuro^gEQp&@4p{@`spVx@OUbP zS8ILo#TPCc#|ZWD;;-BkWc?_;PiK8Ip5lAjD`>v3JOB%LvgvOwcc@c07nvFv^CK&S z1umvFpEnWjQ2s))Sl}itu&qB&%Z{Esg+@Mq*&B<6q*(?)T4ISmvjw!d&-x?ZUye3) zrsle^p>rFx0pDb`I@0r__lvP*fC0NmznZpF zB+^ljX=TYxXp@|Bi-M2WqW39 z^4ibY!Zm-n2>2e+0DeG$zasTRC>wzdd{G_hIM6Tf`L4l*HiLCsoSz6(HirGndZgvJ z$U3xgTgrvD69pxCgQ~p3kxG?pBNd>~1d20Q;30@y9JGBLI2BwuzY|OCub3l#Ef{>k zADrCOQcQdof*RrgDSsmITNo%$KSR9WSJV1MG$H5|L!&=!hwHb|2SffwTA!v@uBvK& zGYXh(2p%mg9(taL;1`UgF1~*XHO*?mNUfgJp2mm?zPlW#^dz{dS@+`n#m@X}?*eC6 zJ%Sl}dSw+wLOU6DVbQOc%fTzj(;pWfejF~|{d2g`Qyaslw~9IR4FrAH!%h(#BlN9G&P*Sn>4G(S;l( zde!yCo40yPmo}82N)I_>4qrSS4o`n2zHh`&&xznFD5)MywH#|;ijF=QWw~;2pp0X9 z$@g)9fH)YZ6!q&uWD9T7boeEC-z`9+GB44i)cl$=aM;ElaCdl-l({aSs#AA6VBUM8 zC*z*Jj3=4S~+M`MR4t{5vT9qSI8&BF%$y8d3QP=^*cU#7x*yVqti zzIJC^C>IMX7MQaDL&|eknXTe_ukp#fqz1E}4lUy@u91Z(L>!TFAiS4#Zw{|icf~uuU`*;``h1#fBfVBtl+PI{Tr3> z#7~9fYqq>V&q|eeoeoo4^3blMpNL(u57+`Zb!5D@su1L{mS__qO7LPvg0_~oNz{T{ zEN}}JppRbl659HAq*6|eGjR*`Sc+IIu+9Rx_K8iLvbHP}Jv}%3amKwI_Wh>o(;h!f zR~b&g3uF@DUE}K%~u2vGToOJn6+ohNOp+a4jsUvLNlPQ zi)pA6$bh1~v&c|@E-*13(9_%Js>=a&(s98duLh1Ez1*enr#$K%QYeM7f9OqgIYeY% zZ>NhC_2az^niqIKgCb@KYzoa$q2-3rhe=}FTA;Y0#%x9Xz8gmU(2ZAjNzYMUK_?2XQ3zG5D6ajz0+gyDX&*x=~s;UPRKJqWO9D-QT`S^E%Nd0aBw1r z$l)6eJB_ukzY)(LR7=KR^ik?&-AO2554>~e=b=x(Eq&L69BV)`iX#iiA>)#D)EP-N zDVU6V!X^DMEI`{bPpYSsxi0FJ9lqMx?H zAz}}5j>eFD=g(btr`CjwBX@=KwFO+E%!OsKz=N|u4o=o-gtj8&Lde?8Qw}ktx(2rO zRd4`qyyAfnph8M5+0nQUXEF0+kzF__at{Zy*G!*wpy~-!RdiB z1jh&qbDr4134%ie=g7;KFa4wjPm16e;oyl8zVk5+(Pad63&f2fPonUB5S$;B#c_Om z;wMyiUDxZ^Z{!U5$MEBiKUwZqU%j&9#0#-$0ZV?dz%5%Kr=MMm9nt3udEaNGT`RxP z-9rn|IiuIMlt81*<*UU-ofU#F{L47Fya5-ETd+W^Si%``GsQ8CIN}^BX9bONTkK7* zK;H71@vp-hTcv2Fy*XH7KLJtFo-Rfgx?5KFmWrdbwpWwwJZ%=rHaJ4!XtwKB?OVTx z-%fh2Hq>srR;DOq;R*Vr+(LGnfte^34W+GeLRVwX{H9LYl0UvZZ{J zi6+UapybcGkT2IOKt=~mJEJXvg4VIxJ;n`i9lldW0O?k2f#@bzwerCRGlwKPFIujb zRX;dN;Lf-P<}CdgMqIQJiK%+hDN61rs7vY&UfuDUf9O%R62gGuY41ygTJr}jyVK`hhWcbk_ADF(-4-Vx$ zk<;T~IMF8Zr=yRuHf^!&`rE=3MzBoQ~%z|3vamwV_PDTC4OSE3UMPnCp&# zW@X2`CnZqC{h$|xg(e{lGy!LJ3p&Y`_+D9neh>$T@sGfXL08F8$23YdcE8MPf5iibN9+JsjO=0kTID)9oT-9CS-{h3oI76ISaJe ziZXmX6o|1|*IncbtSlisP~%M*p&9fcX*{X}7Bux-NWhJ$p#a)*WqOq|xDyZW{SA9_ zh|D<^{A;B0t&ntXU@9CHA3l7rqk=rI&B`Z5(m6sLuhDvL#|Xb_;>zVe-u37v7G zf^(~<9+!3RVXGVqWU;`E1#;fG@_f=5W2$Ns7MPZsDSH7e7Pxf_v>w?~QX(_Ec3O9P zZhL|;oFTVfnWezR0&6Uwe(5{yvSx8MJ9);iw)r~*^|*kvArYzM=qX9ZSWv1*gb1Ah zvW6Khts?4)#<_ zA9E(}FtzT#C~Nx%jflF)zf&@m;QpGSM=G$QvWrf$eYEkWtye_yueOZs?=qhv1By2DfTNg zNf-I-Sx6vsjiskHEVlSHki7tLNW_)8ok(a)P`Z4sm$!J%lI3 zydo%LIY@LrJm|g{KAsMuop|jd&X6PBGoR_L3l~pb5636}9Nw$EUyeQu-(MULC+8pK zM0q{@>ZN{F|CPRDa?Xd`rLUfV;TQPlbT-NBGI?Y>2((B%0 zB$j@p&WQZ`6uR2pC$$${7YjTZ3$)8t&Mk4Bx9^qfp$@La99-Bur|FbyE%GTN;|l1k zSaDfQ!8t2rU2bohV{$4Y7!gBxsjYs5u7AAMw)UdC*y{>rBqjN=%t&xUHe<| zI;K*wDH?IBWR4`?8Zy2>Q3iaC450o5(5rv^q(knKMh6S|V&<<`(RqtXg_PM6;x@Gr zp@!9Jpp{gwYM+LXl70AQI4wc@7cs62b*GNpDmPsr31^6Y(rr-aSX6By0_jFfQ5?KsiVQ^%5*>iS%wRAq1YrcY z)HD6@@7?-^PJvkI`yppCjOaM6wVvNO4vb^LvPZZ5Eeb(9LJ2OIK$3%RJdi(c=GTwE zBU34KDkzjx*d#EblfU;snWUS6U$6$KR2qi*irNf4hA@A0I5!zf?^YJ=jJC#w(QcvR z9L=c5Ad16_F|xsD7=*E1`pJ#NVG1#@5+hQd?(ZiXMD9~` zj2IXk*zv*642&TdFu3BFt1Iv30FF_ET^$%lz{ha0uQyiGSdm7Ne89TVB#AdxF0ZsZ zMD)<6VT3R+E{+%AD6ZpY&%5ux`@Z}B`|rD#FJ5*>hewtzza?^8d6?v9zAYZGvGJr$ zpTn~TS`FkdlYXX+;&;XwbRz;Ryy$97OrEmQxp#Me>7?v{QXO{g}{7Q&@g&Ym*$lXrRkp6_6U? zv8``AZ9AxXOBzUOxCFRA7?^QId1_>Vb*;r+7LGY?h!0NlX1vackNie-)?AwbfL_K- z!4HW=pUI}>N75&FkQP)onFoB3D2yTU3(tndEkS6NX)7emxIV=}-}3wvUiYPK@@vJvTa<>d$qQ&+ zfZH$%if^vC=9DVmnQFe11s8!q+Cj0t(Fe`1&t#0y&JbQ4+?Ubg_=m20C1c3z|LB&- zf7S=i^%guwV`+!TV&_nJGIWqB9N`6P!n(42B{|?CSsyIBn|&Qgt&gc+EcUw7^?rA? z){BlyJ&*6JogS)hNsjJPmt}?%jFs1h>-)CbND5;gf%NZ{AIhG3fL}^i{DF{UBEYsr z9jPFV988k$C~1y95e-m>ahISbU84%LO@S6iJ#&O$44(3NhR`u`9esvl;%q3SZv;Om zyqHM95&2KhQJT4lKf#KdMgB%Kz~G{>rvAqGRlLVIU0%d?Jr^E(+sUcY{=>s9yc`7;?rv^7|7#iXoRdE3g8>8(GeZPVuP zx2FMy6OSv!A8Mc?YW|ru@OT<<6P;o|Xw*b*>kP@I5Z$L)8|N;>Mu;YOt0)^~ zxyOA5-sZ2L5^m?(S-PHe$Q_&&HbVM6R)$D6d-;UF3YP^M6s9Q8Fg@lts-M;$;6I(n zu->To0*T2?EeOy^W6Y0OLO?I-uP^dVhnlD7*(Ew*3?%YVH6uRlrRbZ|CZq#IND@rUCfI~Ed06p`$*g%QQb zQA}lkK8rLaG@sx$VlXG)eRE9FCvHoD)q zurYqEv}4YHZd1_)-3$F74NiR1$81f5h0vDNWiby3kI|j_-oW z(7Vu%P3{v}U%DUv`lIuF{oQLBV_tU0M~8YDOxu5D2nl0L&(u82jj!hI#+aoE|F*Ot z<{bMLHQ@G0JKENEK45Z{gHhi~2}O@^J}8)c_%BGs`xaF{m-$Q8KsIDX>kO;GW-!E# z7_ED=4VMN^BQFLJa4?A2DB?b_N%f_wW0vdd)WEO>@|Znx!v;S}{M6`1ZoV(XLL0o5 zd6U0``pNr-(cP2G+Wo?<+ewV~Qb z=ts;%ELALR0O8so{X+H7m!KDVydavbz@_p^YAkxuW`jO{IVLI!-rqZVJt&looCe8` zi|#^(5S-j`DSzj!&dBF~PlkuaghT)wH zdMwH*Sq72SxsD;?VV6bbJpRi<6hwOnv(afm;z z%dGE{D>!+jR5UTS4-blko0&;@d;{c420IxR+%Bc_HFeC}>zytw>dLYqO^6P9S30$> z-5<~X)Gc5B-G-3v#gAS0{7>ED;H7Y6^b;ZrEY1c&oGm|vk3zN0x{U*1xj+=usSO=k zaOp19wl2i&T)r;)(^Bvyh7dkPt=(5E$*XqDdFXx1jwS&!c7GthTcqV6XDdb7$tQmn zcCw8V7Dl-AOLX?WaShO-X=V8Q(muE_x6v<%VSMZV-2P}&rH!rG9l`|}_>5hI-4215 z1gAc+pC>H(6Vvo8?yP}N(tw8?hMv5d(F_=lmmmBR1^45d({6q7Msr0So2jESd6C9r z8pe=)&2703v?)P!>phK;-XT&LnOpvBA0*n8q)b1lpR)fT29eto;D-TCYA`zB@YyZG zaabISh4CT{62LiHi;G<%9DT*HT31)s-t}Pvgl6 z8n}lBvdNB6hu}6wc*{Vo_D)+*BglfcAaoDNc=m@;R&#XLz~|F|<|?#aKR?%p=)Qet z%T7O#$KrwC(~MKM#w*hnV-naRd_s6T@1gVsuR&*7j=yl5exLRU;(g(yt&Rw%7J9LP zr--O0=TzL22 zdalqzC23k13tokqxm7Z)3<)Gqeg+NB2ynu&1n2t0*ij80Bt?3q7bx%?P*CZ5+i!jH zlMEtn6=t!Sg>dx>%AM?9 zq&pq;fGb`^KGQFGA~O#EF=cQ$m4Won&ZX}Bt={_7w>WfknvcTJTb>Jj2c$cEsd|!r znfoA=WzrArOS?b((e#5?GJ*(~g^&Zj8KMuUk6pIGjY`P^2m7|nEGb9Zl`o^rqLaZx zJ4Lh=L{+TCX8Ah1L1n;@qdsLr-Z5V^zh$Ec*!FLm{c+?06(b4)qMzc~%i zCTJzJ-?O+$<=@i!22754rh$qmxd8FSO3{q*NrNe;1htyxb)JLoo z#)y%-MmRQ$52K%+#`i$@21tHyWThP=yp@E5-;QY6eS%>Heuvum!7dbz$aLZ{kMB>xVO)+}$lm0? zU4~)GFt*9(>w!>GT1)(8xc8q%Nhw7%YU)1!3@dHD_7fMV)NiH%BV5?fo_cO3P`uC- zG$Ui|@G(K!1)_9+gqrVjy!$UbQ)suyTRk*lV5ohg=Mk9&Z~wMQ6+hEMnn0m+`8X>s zELL-+@JZX2&1?jKfs7MtWIO#;54!)*gYP@-WZ}N2v|at^*=OP7e!)I=GaPg4KB(``Hy$0kY_jw+bT8TU#K7I-4JdI zxZ;tXR|07Q=yoOj_{b<0D$s@MX|0_>tG6=No&OfQm@wM${SO_3Wo@ZVFEEgpLUrwi zA$l*UXwie+Ao?h@=SIdEN!SWA9+<_IWV^^LWAIg0FtsD3KwycZ@F)Db@T#~-lapJ)YBIs#s7)XNwX&Fu&;uu2M zDS|QM)vH(a1M3(+;^XS){@A)dj(#2=N9QB#{ziyu1o~ag+|w9>!Q=SZasNSfS;qF7 z53>7sELHxUZD3TEl$mm*L;i7@GHv!}4cxAQ98UCrsGzUg3AUs%h^B)PPoo*1{aFJ~ zM+0q3W`<6j<(w%8oQ0lf?^+Pz;olGA#XypsYKnM<%^LXJ8eqcVD>9~4`_j*38wVW( zIze?r27sE<2b4}X~mLjs}mb9nwl`MQr_v} z-^OffE?;CqjCyE)qD)d+%tJ{HB@zeI@Cf{YUl!Q8^f)Yo$A!v#rsKCx7AJbhzUp={h;Tn;L0${bJ1Pf(PLlODPWRdQkJFtuX%3;I50f)2+xx+3?iBzp2`sN=0CgD zFaNt+{r2_+(!?s5rIh@Mvbuphwq1+%LsCIe%4*c_wiX5m!5!gb}h~Zk#bBHJ3o%K%jBr+ z0@>f^;by|oh6MJ!N)`Drb(v*=yC1KTu^ZH~!WZGj)v77LLWnHT&@z^u0k zFvDjJJP8djQg3g`Ji@rW)Bd@Sxb5FY@gxfUjR=|3s*f!0Cz5|;uAfX6t@%TRzc0S< zjGFkHeJ4{W2w`LJ(Q|3u|kt=__Yr_Rv6p^?<8yK|KGfe2zoHz{AI}Swshq3%+3tS<2|Mqg@1Cl#hk#a~VV4 zp1sw=pTdiMee#;+b(ug){!4xAVV8C6i|g*K9<7FfhOq1S1+|lJCgk)7Cp)ARZ$e+!9*34WLwS0GE z9jys{(Ej8}=bQI{r(?y8R@Jl)lOFT)TGE2A0o%?AAI4!wb0V0&zxU!dwUj z7)OeM1Q;Oy#!uuDVe+nN(R`fHw(um4CJPb}|Cl;Pb^WRx)$cB-&A5O0nLTimPxwJa zI3x%u_@z0r7(^cJ7y)i|jSK-Rd1O}hvt;R4>N)T=Y9Q-gWh1yz>rPk8R@1a$L=D<) zy3k?J1;B2RFvyWWPYD0%scb_7p_rnZOilmkm2Z}K*1%KO0KJd#C3<0wG-XOw?}IU5 zfmV8}$1WXH$x*7zXRqGHoZ&*>oIBTUV$Jb1(Un0&$7b4O{*N+Sdv8b5>ut$O5$-1#N9;6^?BuIbEbQ?VJNN3jv6L>y+esp*wL&%jbZP?aX zq&YbPZ>a|Xj?CiwBN##05yE8rc2}y^75VWsc~?1ZmtjtQni{x&@26#LYa@(jo`j)< z(gbtx>-BO+UfFabBQgtS3GW%rp}RD&MQ3HCxQlvD|6CfVog~}3dm}KaJ-$>ZzrjZMgM$aezQG`%o9fDwLB9rV9>grkHGkb`u0eQZ>N_G$nt}e?*@* zrYWLZVVfC}hcER}?uqphw7zLn$e7>d951tpvVssH7qbKt=c)U{hmhM!Gp?uGa6ePp zW|iNaan@fcPRpVXCsM8X2!Nm@x0AAH+Ar|-G;SxLYQdO~N-mGT*TbdKcXe!*zNxUj z&_g3{&)XORUDBpcF}8(^lyxEpY7xvNNynma;Kq?iz`4k`;Im-Ou~i7nTYoarcrn<9 zes&FL{L*d=@1D~4BbG1zO$+0H*V)iI7h1<3tYz4UognaGtdpTaMvk3@j;-RN{3_#> z-hO_kk8b|_?q|JZcGB$&z9Ts0mo((!H~sZEr8B8z06D$v-dvt`r`OsQB16cHU>9ds z-QJ0wxn$*7Ua1^1pse)Z&G#KvIy-B%bED_5-R_5jKX-da$K9cJF)U>`krtHR_UzD) zwc#Hj+~%k^T=61upWpisME%@{+x>6~zm$2Bh`Q#A#9qo0V)v5T=lYblJ^v-6$S-;m zRBhl!_4)FR!ZK=IpQug9NTT{~HH(s>O{+c7wrvo>XOt0tvS2RdtjfL7VgFQ_BE6u6 zm`Jnk?KNp^l?)QLF#GiGPeJ0o81 zzMDL`Jt;1*Q%JQ9Vaa| z%`5qjWlVUBzYV8_x8as{4u5SLP}_6!bMKFlX-g3qO13&DmcgbCPZE^8HquHCg`S6e z+96|8N!g&70ka0a4h`JZ!tYA|Ih9 z?GU-9RVs))yBYGWWCY43;<^^r(mM>!B=-%>`vBnNdy;;9e-dy15wH0eE7+x&4f84u zXA|iPw}gYjzwuC_U@3f(n^(ajsp7G4EhPW* zv`QjGyu`(Vo#H;SMMe>f2TF>gk2v~D=`wCCIRE+JxxTIb+-2c|A8YTl2L~1q#mo3?LviQBb*f~*}7OsoYg|n$SvT3=qkg-EXl8beBd2!R7X}A96 zjUJw_ce?9K(Q9YO@{DIKiKAn())+)EhRBF>$=~9l+ml7*=J}#~wfBAZ^5C_1p=fE_ z5BYVST%uZDWR`2g0U7-k6_20~6umR|2g+y2CW@2=D~5?g(GHRB`ZV77Jk?GS9f7fy zL29`aOvWtU`1JYVd{mY5z}*Iu7fk347{+KTm(sFx<-?QaephUNX&1EZ*jxAWeX@QH*U z%^>nAPAI`|Uhd~BH*GzNpiy)%STmj;e#-^9c9p@a;5 zk2`=EbSiQQm-xrYG|cB)idB7Op!liY^uHyYJX%>%X6pG~natY1mztg!5)-}{z#5-1 z&5I+q6sBnopoY6|gSyY7taz14UP?wD;~d8EBFL?tAHaoC#l980NgNOiA`Mc=Xt{0` zj>NnM5#9bWAJ+IE|j8Ry8TO~4AkRz+5-UQqe-k~0lpKE8#tHT%F$<3?oO1lmY zmj`}?W@ijLJG829gUXGdE7AGLBQFeUJzi;iNSz0C9@B3`!`b@m03a_G6ESn#s4Q3d zJJF7XxBAuz-;_999(R8~KGo+%v};5kSjQo$%O8Od)+yV5vTURyYboG1bi=_DW_W}g zcjn2%e#<*hw*FRLTQTmJkmYW$1B8Cbq+IgYakG{os?+HRYwgfkUtP!uB7N)FELo=1 zcH=Ei>d}iFrsWt6UF-_60`3r;%4?FiO-ccdEI3M`CPJmw89>YPz|PO zGflAMun8Gv4gL5UW6)-k4}OFbI-KWc`p|D%{gC?{Yc&vh;--QtHyni`Zs7d$&>GmH zT)=(1-GWqQNzC+XLIk#eM_6<80W~nJzq=XJ+hPKTUoQ7NIC0(LN-{^vP}TebiXI%) zz>TIK&-n@sTw@N{G!h5(6A8oIlMX+_FtOVJWWqgC1GUOIpzO2irMx|_N1S|bqTNcX`c^&rGI7fwl^~xoCK=I^N8Y_FX*4e9 zTu@3Ifmp584~%+nWCsLB5x*rDc_#bdmDFQDa04esoWAV_)W0Sxv|=0!Qb+)ds{sAh zJiSOVaUp~rSfj5N{vIE-xUAhCA%DAICwvp7uN=fK~r0Ig*Vxm>^MPS*PF$exTA z*BAQO`EIBEBG`sB^dg7Upa{kgj3Nu|8rj)J9!a$?W5(VE8%{J_%gCY!>pk(^-;=K+ z8J0&P-doFXvg*$DeUbMk@4NRG@0HJG_hRQoclsj2tDQraI+w~r14VOIg&>rD?11G( z+5iVG=@O~o>7*p+(|abF*7NB@$@ejR)m7;mZUHiEENk7Pe>pF5pnMiIXai~+2$@$= zj*TaxUHiB-8BC}!g*g&v!G~3aN1KW(ODW$fNZ&aIZxRHC4y2$EPdUQKy(5`+bzywN zXvfYUb{ToMlI5m+kp*M=jV`zaFZn7W&9A!b)Lz^Hi!xC5f>_#Wa6muY&%i5J%S+IJ zr&r3MK_nKzN#7taCrX<#f>j*@P)(?Tn(Tl@Q8|mOnM3&b+vHGm0xhYKrw?rCw&XcP z`toB<0SR*9qKy(tge-4jL`t^C9v>Rg8hnh+1qPgp7Gq9EQynSddkVms1#Mi*Vm4Om zC>adsF;KeAM-62@LY;8t3A{n;gEgZQTJ)AHB5s_xuwV##5Y#qF+g~b zfJSpS?v;E`4x;A8mafl*z}sMGzSB_JZnj_fbx?#P zCRv%<^X(yK{LTNQK1wZE(Y>}a^?quC4vO^eM>S*h8c6N+kckjCVY}jUL%`t^EK$Se zpUHX- zAaODwa)~@95&G;)GM+E}czRX=O@f0Y44uVDL5E2-Mlx=z$dUYY{br%F;P|Om1ydL4 zll;fHtkXu|40_zoNGn~TQIbQT5b%Rvgg2=&pPo;J)Q2`k1NUwrX>nP{La}2c-jp4W zAjt0V+aqdz>rPzLgP!))QfJ3EvyWKUtgc)08iwBzJZM~)rpT9oJ@b?$pwaRj$fiTLdZvxp-tjV**D4vpuYl>c;-n+?MuS&Z5qDg$pVdsh?AP>?XyV3w(tXsoYF7gr{Q@_LsXR@itA>W zB@ZBVGj?DkR@7!5M^*Ap1hrw?FqR8pmh3Hw7EE{P!z6jC<$lI(|#7w z?EDkt1bfm*2)TwS!L<-7k|Ag_95^jzY9Uj=?6J9* zl}8#v@VOT)=6sI)6V4i13yH0kq*zf+QgGpr8pCR$OLJYS5J>@d5)ISJNU|e%nkV-1mz% zZ9p_fMjAk8{ZwwKw>H*>&0+(PjH#`yiHS7(BMqRjZ0FPm6M@^bn7BPv&ycja7J7Yr zzEEE)!#sObmEh>}5pevnI~8R3cl zgdU?1E@fGy*eq5lb4xG*BKgbGP9u$kv-tc(105ApxLd}77O`&&=H~K7sK<(23lz5c zi&**IMiC1Sc!?IAp3k;W;%`mA6@i7fK3Aho;zzr0liF~fH&F3Q-O1n42J5i^06+jq zL_t*5-|^z8d%e_mJalxzwT@ZRchCJf2k$EIBR3D;EM{xWU|ikVA95MY82U~7RAu(t~I%vLXAmH_Pf&d4aX*4mUrj4&p$i{WXq=t~@d; z?&Z{J80(y@dQ2LJsPA4?TbVK|!J^7DfUm?20|;eR0%>j!aX$(`VOHS1fe1b& zZJW1|4j_RRMDZ9;0-9-ohZOOb8Du)~41>`-a|`7MkVIvLmv{x#6Fs?5QvwCKuk#nJ zXR0vZ)23a)RS(2^tq=}KYKs_cE}>x9MWZV0#Cw3C2;(PpfX@X29zTMI^ahw+{UKq( z1wOJMO^ej0lnf@Q1C*GKnFT)%l;0v_6-#NQ&4aMW@1-!uW{mZHm*v*@gV#{DR+Px6 zg+w?rBR#{LSTp1{4Ww@Io6B`~8{M4tb!i~m0i}vNC6Me@_$|hutv~{%$1Co`nv-$F zstqDCelVwFp63@N6xWVX=6=cB+q#TJK z7l|~S>5ZsJnUKYhNjx!x17LuM_?YWv-NR0)DM-&kE0^L)%-n%+ z@z55SfCl`yhu}!S8zcs-|D_f{jo)0dfTPLulg1F@e&E)TFR{3RAdv~(*)^-YnJ+MZ zk9mWkrYzJ7r*jUGk3et=S&=5v67$LVh`&woZlj?W>M!*abr5>!>jABOF86Ucx!&~S z`5}>k6VGgqB?wA_K#g48vP_wAM+&6J-%RcCf>(+Vm~HCEhi~WA%d|c39w((po*OBB zVT*G3mdJkhV)3He*SAAfJL-RWagfa^p0o3y3{x?p4Y~Jdhse$zMvj|qfB#K)v8%6x zEU&f0W4C*`_q=<3@UlBTIO>iLFo@&R8SxDg zKMN=u?J4jPOU{q6n*z8^EbN;ooryROW{i!-0s_p|lIO=Ix5|Pw?fwxzxgoFFoH-if|gUBp+CLAvIL>~- zkY^o;Idv2|28r~%h~t7m%;OT0ILu}Ur%QN|1=2PdG&fWw^i8P{gRIMKt$^?V`^N!? zdX@nL1341azK~kI^wflU4oQoj@W72+drY9ZTp@`;o?sL#GPL}W?%g4LJl+>=7`U#6 zM_^VCN>5jCO_Q)*nkkCJn*F;pkXolMz%B7qZ~BvLZcUt|n1N4K12Lx1Iv6k4-dUXW zAJ8ZnFg^GAB|}Z}d}NjeIF9`D3n>^w*g?w9QFGFW5q$WCQ^aaZ47MdD(<+6>m?5+f zJX!D23?iPeeWY4Ed6u3TuX92D{;a6h;v9@>_Sm2B;4jwyHxYk9PEz=@AxiJ$3h{Hcd)lOo_qlqe?MglQKHHmxhe zj)5!$YLL=d%slLP8dwIW0mFveEv+!bbC3pIVAXGEGMFgStu?W}LBDqX)C_)xd(|dn z?5D<3zr+bAUZ&4}tASQqBTbd0S}oFK_M(=m4-+aec@+-Z5$jfhIsC91=<6tIfOt-_ zrgEzF#FMBdZvH^9-elo?e6P~^3AIp`dZbN6wZ<=%?Qzp>By$PQg+#zUrx;_E!keXj zyHq|Lb0Nh{94~Tt<;-H`GV87vq5E z%2tNt>3k#X`>W&AB9PR!Mfg2wHz|GsLrqQ|^#g z(zgXD;TBZ!6xf7E>iuzA%$D}^g>NrIlyN&wNtr-cYMedno^=P>-N7draP-H}cdPXv zUg`l_CXw!j?}zNKyWf{@yOYJKHiGPR&v%cz*LyFzXZz1&5IO4h_V+ZEm0?>v_xAU@ zS9`By5D{FvQ5HIKi%+s&=?JGQE$Z*BWsngbFDWwuU_{}MTx~d&9}uuGU@P8^(MA-| z&Z!a1G8ez^7XyL~vPt3q_P8Y;vhYhiWQHa2W4&NksNunj2K%|tNpd2`Ula<9B<>ojEiRW;MlUQ^XS}fT(lGh(=gm6hPefjzEITp5=T#@V!Qzp+PYj=NJ1lh z?pga)QzRv;c=IKaOwUhyk;}-H3QD{_Z?h^<$f~SH1%fLzpV0t@Oc_q!N-F}u zJpNTL;-RY={}SH_YGY-GhzDN_1!2#p*HID{C1un!8G)`T;~<HeDj@DLy4^8*9t_5C9;!cZ6W*u!HlxPCn@SM|=fhks z_NPB(DEKgrJ$CZ!Ax|fivZIfO)XA5ufoxfyCZmQ74_xU-Ylb&(3-Q+uDuhY1Prw6N z;JFS;JSI0v-|AYfTamuG1hnF@VOz-qAyV&D;hhNEa{0F5TRIlnoJ>-i_n7bgAf&B` z-?m!+u+raIA4146(3Qu8j>QxR(?!k4y+vc9@uRB!>tx}3WuJRcOIIV2?xeEVl4v4; z#vg$7+k%StO&a+Pd9=W6Xh|IY0If;d29FXoh#P<=tqC&Pr`yIm(?bzi)*-gvj1?l> zGNtESIXEy4pN6)SE$=FJB~wYtBB-TsCld{q4a%Rn^0U}s+j z5`CDR7klJjcevE2+Kn$mx7y;h7V*z@Y}U!ui9Yatq_sF1NVI$4?B=YyTwQh?rNwi6 z|1uG6A!fnw3@6UCYck-H^N0W{w1)6g672&`g5sC^L`5@Q(h%u6Wysx0k%%WWaa&q5 z8~(KD!<1w=g0}o1=E4vVS6LbvN?G#|t#t$s!f`)MSk!$<8!ABf6Ao14k--F=(@PSl z4Ne+9($D4UAy!bB)Fp~BJ{Dz@IjKAgQGS9-r4GrfMIp^`$?63nWDb5lGE#|f@g=>4 zA32#F^sTEpO(47yNKeA`0z_^hX;3Jw0DG)Rsp+PN7l_kX#%+^JIA}->x?8Bt;*b1k z#kW!r7GQBiV;v7*V6y|nWz;y)-N*>I(h+|veaDDPDC{U+Yp0tHf7*o>wlT(_WZu>h zwOuq8>`TrC+v`GrNStz(Pzm^QpjFhCVFenE9BrTwINDgDFRAuC_i5pV4u47(W2_pl z4H!s!4cS;`4dh6fRXlnSEJY61B!8gm@=SOIE521mk9Z@l}`*t;uoywCC zsiDOCE?@3(^v8UTs@f8==L2OPAh@xGS9eEl&{X2BffQ+s@HMs6M=^-xVtM*8Asef4 z7;kY1L%Y%&CO0?Qb}OR@@vPJlWsUMSNjlEEWg@@eZ6{9(aMO?Zsj>W{LO|Z1ThQjc>Kx7*5KF1RlvvGl)H%|2|oTW!|%Oo00Vor_CI#?w!I z%d91QSdnIKRRhsGsE%@HttrDmUm1iL?ZO{o)tKv7F_3g|`;I5KsB7c-VNUmUy_L#G zdOdG6T}YD;q=CyXjMR^PzjaV=OAA)6g&(e!k$5r2BV+uT!{CRq3guo7ytX)mKg@jq zMGA#7tdNpZsHDjj#6)huw*-?#_|PV#B?5-)$IE!GYjjyqfY`}Hn_&(UU&Uj7L4d_k zIqq#-NfVUu8wf7Whn1*h^0kCf#;k>}r8d8Wa&YL8-{97+u9bEl_y8>R%YeJ{RWVyr z2H{J6O#R*EyYAQXU)^($_s&fJyFR>*k>uj)qTAJ$6~0wsL#gM%j0`--#W!A9!X}rv zua~yX7%gCo2r(Kvof`#4?UgQ23wn$}2@sB-2l2rxNX`YGaq;WYIb9*6#eJ(pg!ypJ z_Z;QX-+M46pa=5KOHt$)T#E3KbzgB5Z+sLQUF0Pl)v`idToX)Clru{x`YF^}Y#t&DN%sE_R{hs;>1T29BdE zJqwj18G}~*m4Uu~qkK5lZK<{vJ}*LKZHh3&?}b5>UUVhX%J>Z_AqYpjNL&aCA<30r z#VAC6X3st3#F`RbSS6z2?s!LO~3MBIg z`VhIoVUF_H`3!GoX3WAUWOJPmq?<@a{+KuC{5isc7TCh`YII6J5eW>;mY?7sc_~`r z=>eJDtbthrkE{VYW;()-XF$H=iJ(3k-8KMiI8kO_uK+!gn_4u#E314E#sG4ow*#)P zwcYya+F=YM{^mld0(u^vDJewd&N80(9nJRUFrmTL1DGgpok@)>^6bZEb1#sk`h z>tPWRMGTO_EDJy80;h%>$nE7QqppBF0J1=01SLRM@{V+1>4FLU)^8-2T_KBI!8Jc% zlCWT+uwwBf9#$JEgb=yFWgws9+kb{U0+;543VH6LPq2yw$~`RRV_)|cmYp2 z!{-i{T1Y7p15T~WbYMZ3sibfZTbH>S{`y+?K3|&S>6~lBvTuu?+HjGm+ie23S!QOl zKWkvtz$a)x&taNp@(qyqQ&{n9{&WNu;T?S_J^SR1=AmB9^s@J&yV4Gj_ZKJKuV=p* z_weSudh)9K?ef>|7zVvUc=W)fT!~G!Hdc+V$x*P!HJE@EgVwBGz>++nJ z6maTCZ|K_#tYIFESg~sbs>nHV$#BZh=kP(H3Gz}DaxQs?OuE5YT7Cx88t$Du1NhRB zLVhOTxgcajnO-EuC}QP~G95)N{{R*m%W@54f;t-rN{Z!?tmG?$$U-}a{83l(7OoB2 z!pSTkw-GE#T;M>(FD7&ft2`oD>mI+x7_!2^av{FJh06e;Nhl@4rC`>TOGB9oFWN+#C*gE0(+n%URav5j53jhQ6+tw<1S&Y>n>(iHI;O$b zAM@&{9p>0xSE>S#&&UB1uaR;_NOSad4K#X1m$RES;7(Q4&@_)t#n51y z%QrB^?YD#qZy!`P*?wb?M>B|gh#uoci$P;01ISf(d3o7gTwHYL=NI-bFR#i@5sV@+ z=Js_;1xLNFSR59@uFkJLK05A>kDqmihlkz4!M=`$K*BPPuLHG46fw#&lm=oMESGq6R|BjDj=iVm1-N+&<)g{ZU+BBMsUl{q!KYmM1%41I1SNLsw z=Cu2304*0Cw?tdOpagb2HbwgvGVNX!1ljEVI1NxYSqC1|GSZ0D;`HDN#6D4#9t%WX zJaL!>3Kl(}i;D+1J9kuIB_7b`S80sD&}lBP(C&~mJ40*~k^7hcY;x{DLd_1<4}m*TF{Ia&Kic!mLH9^&eOpdNSrnv!va^MOF>Lu@QUvNN$IVxD0vhrWGnz4IY^wb}Jri||P4 z#deNsk{mvH0(pXOw3k3L7u7}n5%2k$==^Z4D)xY~w*t=?Xit z8MrZm6Pt1nH;#T%W&mVQ+6Kc3kkKWl36$>n8FGj06D-6#@`y~xsBwi)1DS)f24)RB zga$^Pv3B|Bk)!S?6E~({Fhuto2FH@&NzPd|O^$RG0?HVAG5*O)!$mV3d;%%P%CrOgnfxDOo_vwWOZ? zXY4?zSRe_@$o$BSj3G_~UeE}pGg(GvKP#g8wVg7+6c>+G5%FX(DlY+j1tx+0q%Urv*==hZ;A`t7;iRjDINFRr-Psf{pR>g{76 z+oB~ozqP4{W-p9r(L}x<*l0k`rsP!{l)&Yo&j<=LlyYR&LN8DFL&N3BEWeE^ZqfH) z&@=I|0c|_mQY64!;i3$L$@Ak~nYV~R&wC3u=d&Fv-UMt**77Mr$|D4q^aG3Xw6xZI zB>5L?u5jR1Neb9IfG_m6`PHgB+r8-C|9a|q%Y_UfC%>QCIC6cVg^wHY-h;p9QM!?? zb<<>B&u%D00nXm6fms6&rvddh^*i1WrvJr7e~vMLQ0tiQ^No=MeN_EW7tbSSSLfYt zT^y0ci)v7wYH{=I{8UC!9cH9)cULkpRd zaRdy9&vUMHxY8T+-O110V*h#9?Voq6)1L)@tA*op30}0Q#d|N{E6zw-T?UhHO^7lB zZt>f2C4q-8LCXEwM^N$xzfNda>sst-p<3g3?7$q>EIc8Pdo91jaK-nHS-flvfmZNx zACF_RRJXKC^0tETc?L#{c?sq=6F3X)48>5AI3lof^EQfpq~GpZhNY`_-QxO0oW+YH zz;=&(TvMl)E7yxXq zGr!0np81Ec%o@?@H(7lIF=$1(a{dxnmOtB!88mG}29fpoFWvh0|3}yVmO(^2%a{*f z5TR{L=j&&$wXs+I;NVbgP2UvJ5nA0sVcNT#n?w<0JntGxk33x2z7%%fpa{C{0?LWWdf(gpTn~TW(_=q2FjRP zS-G>9SoZXUWxOKKfm<~2pazk;sCY|;Q#imdhOjFHW5_@M`OogxUw`d>`|WodMov$8 zn@Bf5)h(BA0{V%Yb7Te&c9$?AK0ZG7?h+6&O6+R_b8w&=<{d6&OMeQzP0Mh~K^z$< zOTul_* z2JUU?iT9Lz-}m|1GS)EPASveu>AQ@IFp+2{j!eb8Z53ZsiO(Ec>WjG=#DoDP0uP9K zsC1`rx)OL3t0MHMB+stb0QJL#?xKB$Z&v9};K~sU*Edv);hVtDwzV@AdU%gtk=X9l}9{voS-JyyC&lk7*2yx@x$2n0Dps zr!)dL4KphE8$*1)WR2hxC#BvePnFoL6> z>elNylgEXo|6$75*HKB&4xV?<^#=EacKS27x{y)iQVW@}Mz4O(%Ways`lIbT2Qr>; z>4WUrRpReH4rC`6UA+9`j59IETs=!UMWwGF~SgHN8arXtI5Buia{o1 z8E-2P>M1l2;1B0Kt1uamEW+VVp1VXWpJ0e#gGiMZP9Zt-j0Nq5?^jsAIf^ z_(Z(0aC!U_dX74gPF+&yTsu7jeMo(M_Di?={r~IMzy7~6j>r&lqjs$0)7R%R_|d-4 zUd#S*)Gc29S=I4cRrIp*Birf*k$_q(7lV*41||*Iq=kSEgT)=fE8rcrb&= zeHOjPI1JJ(=BF`)T_L~x@=N!RfBd8S*T4SNy?OIiJ4WFfQI6_N{Q9P_K^)@+kpo61>ZvRln zo#w(?W$Y}=kA$5Ts>Pnevj%1je2fOvw_>Kmpg><^mtG0umA;2T6+JDgQ?6$$NV1{`HY|@E^XE5#?ArOZ2S7aYT$mZGW!!0W!mp z*ko*2{vc_&FNiKEk`5fvdYsD)hCZ>JvxhMxX-Ft}Zp#|fbTDeOP54IsHDMTl)^c)l zlCm(^+kh`)NT+YFT+1M$qsLa-S;Gx%vHvXIs^{1&GB&=x;~^sx$5+`X5*8_?H*Tw( zfn!~a%TeOJ8U>(^^bF2(xE^73T7!E<3Fhhs8G`RLLc-dFPL~ae~?F;mr?W+B}l*Ksd8m;fYEaMv_fP+ zq(UEp53mCKV87$Ml5t9!@zzgy5+~!}#4IgBp@&S(c~(1bSa9r{b~>$3bX?Z^UqlwW zbJjMFNnclL;}_zokFBq%D}7tU^-^@1yvc97D_E*G>vLcbpt`6%A!8os%=!zM8tz~*0pa|nq>O})0&XU=Rw=sr?aKh zn?q5EXg!}QJP@aqsbJYl_!x%l7$Z(jPAot2a$%T2-lLqi+vWN5=ME<=Wdkq1vvO{FWI&J5dLcoEn3fjV?_(6nJle9}H$1N6`_er% zJeth7IrU|rVMPpG(#9%o36N}E`E52$E7XqS5^gd#QbVk`LD1^r(SVta{+$7fPW_@@ z;DC~@%8-EBFB(9B(iaNyr62s%Cj*1R(Jx3V=@4ykrAk~+u$ohfZTIxCN?TtlbK$d5iM zXLdy4=dl(TX-Qoke3Pd3Z2=Vax#zl{a^K|g7yumRBL_6|3n3zZiw|y}7?e{?TAtuH zI0Q3_KV}!C1*?`Lp#GgE=n*nK{mdjY?J=EqpBxAg?{xzki-Eqhkhilh1ILjJ9M2BB zt8>j?&X}*M9IAp#oz>2Q885x8bfn470du{BnE$*y?hZw>Cu0iyCS4}9vQHw;z*z&c z20ly!JZb6AMiAz+EXZq7SQl{q)9va=yXQN{-CvLXtdo zy!yLI++CPqgF{+zgdJ^QnKtR)ACGx|dsVsEg`gwF{9O(mALv1IsTcpQ^pWXPJ-+L{ zwz?`iLO9+Dg9zp12qAWf_&6aQ@q~dy@JWftc$Bh%xrtIp^4Uc`26N+ZKz+*B(LPtZi|I>0W5cvcBuR6v0m6iW{v&f@S{H5#%MrlcQ&XI zrfNuc-Jk<5>8SdAOM-U9Jwx|y@%AN%{{-{L-*XYXXDd=oR z?M9F>gcltp+Cpu1v3@P8(5CKg;;-^EN8nk3Z(K;cCC78gj~6(QSvd%gd}9Afgh_#y zu-yh+u2cnj;U?)i3e19Tng;UVLF5^_KAxczGx1s)rzK+H1&lhdVpL-AlLl1JqE^~X z#z)jSDvLFZz8!Oh40p?sz<)y$22zOv92s9dFqmG z)_EmA$r68Ro6MixXT+>z!I)V83LE7>Cgo4T6jkYIGzkoTGdYn0Hvi5Vm^JVi8lV&E zvQwYSAaRdVV_yg!k6J_%&p#6y_+*2~eHOuQ!y%1@eRhXn5aGD2pMLsB_w&!1kSL8E z7A)}Z@9%YoIxmu)4@_nluG4|XgnRdD*ALYg5}?bS75!pHQWU>uF-YJhu}$WL8bpv2IWT6tdiBcufl(G5w0T4r^caLNj9}=%n1b;nX>ANDyFN1C z)ERW~y_I+7hwPM{y!n0#E@9+&I1Xc*-dL;N;gbdJ#D3J zGck^*ng|O9Q6HS z6!jS3aiHKAYP>>POW>@VbmM@uNjk(zLi`c#FuDa{i+saOCSu#}Kf_E-=$undAn2&D zY{6b*z#yWtl)|a#!MAu62Yu?D!TGkDVrK%Q=%-PW^#0UF_ewpOi3%yA4 z;?M?_nt}51bG`E|naa!jT>&-Hr_Z5T1G5G`Py^~mUIg<(8#_a|iZR3;t?*N)-_f}G zZ0D%^^WhKOkzQWA(n4}~tpujF{FqkHP2$PdJr+FYXwm-p{&Dw=?~W{G5MeOrd-5pU z=jAcRKRNEu;oDA+-~}JgN&GZNB369hMgUVT@EoiIO##ERMK#jY&jeB{k4R#PH00-( zdsMs_m0utrFANzNMD&)tpB*(`GEPgEd{be4uEl$vA#^OXR`TQdV^0hA2QP%LZ;ME; zHjZ#?mhTH=SyL$d37N;}#6k0=XOKdIF+_uTx6-$vu1@uAD+9=`jyl>o*Qo`9-@Lz& zLF7~~3rgPQjdl&mAhIXp_e-6G!1p=S7R)Oba=95e8{~?%<9oH|e57z6SLV#qSJDx? z2kZlnG!}oED<~G1&usYwGl2E(uc^2UyLH;7lx7K0|$`PA*HSmFMuv@o1Wo^ z_oHo=Y#a8eJH%?;IG${ZxLGBWREbb^(d{ zj>-&}QuR-XK}xyt+Y2nx^HNA{pnjJHYLYM#sR$TD7#H{+h{tRzM(J=7o&RVX}+B?-v%Szc7gK?T|DKTwLhPNDaeBM~B_(*RSWVGWnd{V`#v=q`&Vg zi#qRrjO=EfpQZt-Yin1Cx{Mog8M(MQbH!*F4|0mqpZtbfgzCaZ%mh-z&5RNP$LNzl z^dM@Zh{E>CKw;n8NEcT;`Tk`b=%a?+_lJCOm32gK|0T0R7!pJ@!`p}l>B#J>vWh?o z)Gz@wpl#ANgJAMF-BKug3loOUojvXP&<>G9Z3}^#^W}G*?Q79gi%=LtSohQ4QY%UR zFtc8MIXXJ-j*btzgBLn7YhQJyjt&l4xfn%+R+3G5XUMF9Sp%P>fzrL*@91pASsXJ{ zeglD|eJyUk)bT?5GKk#pacWO(g~MWES*X)S5*a}CBje}37C8@ftkVG>R@c!uOBS|s zLhTF~i-nsPd6JRX;WqF6;O2adK}BKTEz07f`Ixl+kj;i6y_BgUWq`at#g#HeA+|6o z3$Jm)fpFN}!A=hyFBV5NNeCI97JJ7wb}Xd7h4k%Wb~1u+lERC>b&I1viB5(QE#mvg zEGuqHp4-5dcOsGcM;BCp?$--d^+L9U>-X2)*>4x!$>Oxz(Q!scXL`X;ZQy3-vOCwe zqAoArX_E_!-ZGZRhI4SKlMr@fz|nV5mf9`CCJ(AeOku8zb|e1e2N>r7`9{?91)U1P zw^jT>bhkSRBm>7n*HVpeskT=?v@X0w;y4er5gmoa(MvuqOFKk-WR{L3Tc7B~ObkyL zLk_>wBE5EoknUYM(!WIHj)Z|^LA}XE^V6M*HHY#X0h|(~$i#dnLw|OZRbdLBAmD)G zhkzZ)2ABBf@;)@r7QZdhSbC?qP}Cu9Lk&sa9nw}K)u;5tj-qGUp~J`Q->DC%eXqfz zZMd(9jyBlpg~%||k(yGvpz^v#9XEh6ZWJatAH^ph*K_2TC~bu#=g2T-N-=AJV=q*O z(oX^596b2VD^m;i91r{9O{n7J_LP3o^nRaLhO$-4FXe1oX-^p;H%~|{MhytihR0NM zeAd9Mfrr)rJzAzqO z0Ql~^?_|{Yq5J#a|JHr~{r5JC9F|=l?GBNs>KM%VP#^69gTV1|95?0NA~FQ*>VZ5a zS{loJ(C)yWxE)X1qUM1JpA$*Siu^|6y#5@k?W2#fqL;jUgHX z;Q^j~IxB(rFjiC}q7(7821Reb_gpkHv_7&{m>W?~3gu-k*>k@7f-yvc zrHZP{A5Ygq1G^YFX6U($B6_=CmIkSsZ?lN~t+J0wp3(HPgz&IRsecRsie3q*7y7UC z_x|90_vZ4A#6Icv*j=Ga^_9%-Vs+A;ynoYOUhH%?=VvmKFS=*vTHw~b0fYIj>r1@- z2+Xq#4qxqvNB|U2hJMUNFzINmk8Nwmi9fb|&4N0D=-U$4BG7S+;GoNeWYhU#zS#A# zzEUA}5neveUovv6FVEuJ6gqm09SUon;eCvjb}U@ID;EZl({6DkL(`6g<(XSAW8!;l zLF~BCc1Iba&rq2B6OL0Yx~3KE}X;<>mwA|H(VX=g>?!ow#O-< z#w%=^GByk|=>Ds^u_1)|L+?~Fb)>d_^h)hSFNA7083sajB+;rcWO2ET6kb&p0wY;7 zyMd3sb9|#Ma4Bz-L+?vJ`OHq6*A)-wa6(RaP@{p4?`o4DF4CM@>JxaYxx@n+Vw+2_ zjzlE^qk+k{QCWQDBfk4&X#&_L~h77&X}CL0K^5AV1}3kHO;jD=y&3lLnF8Ap-oxix)P2U^Kx{_LnBPmChuo8KrwZg_(WJaq*OuQn$~4{`fXYp9@DjHPd%I( z2~BOboz!69C3atG(%Hon6A9G|I_E)=NuTO_&E>_R7{lNIP0J~%;Yu2bu3xx{AN-f_ zbs`Aq63}wXwAs(8YOif87UgRED3ee6g!{!UIz-L4B+r`ubPb?ln)pT=&nEuqS=6XU@%uUKglCqG=`BL|!} zos$OOO-RrSX_|%LN?`DSk>um7D*jOB#Hq;&+*gLEfuO8>TH+?0 zxw`nfTJ&Nrrf-StK3jDSyjd1R}%b_8d;~>Hy(r3`ilJp_h{5xx4 z*1$t)fL`vNDGx(P7!~N4xi*(Mxfd#ZZ=vIgwNu0kbo6cg*Rev#vAZOI!98-&Rx!7cw%OzSF4?Z{B<33mY^KUg?PIX9wMljNZF4j>s~i ztYOMU`SJCS?)2~ZAL(}Z!olz%Lx{hvqP*A3w|WrPi3vB#XML)ssGTBeTgw~i2jk79 z+QGS=k@?Puo{jx7B}NcFrq0DTENoPXohF?OEo<>wUz4VtBYe_YTuUS=eJ&}0)1_o#>> zX_Ei}Q5U9{ahpI!gO_x-M$Z_gIBpLZhCH?XI08tbthrpRR$v ze-Y|q(buC-M!4ox$Hwfh=~s+7P&Dw_3?i`@z!=_FAu@RKT3{^H=h0G!hkTIy*hT`r zg%QRAP53^_MFZGu20(`L+=o5J3yc*QCHQ^^#vFEOUfN;@Mi#N48#%1y$ucYlUJ)v%4}7N0^?y^ z0qP5dwhrV0Yy;3@&*6avdd2mj0YbFxt%)PtIr?R4;9m8oenSV;<%d_gQ4VaPk3Oih z{s}XZA<^);=50Y1%=r_t$3b<>_?S9fREQX##oyxaBA)q2El<#m<1c8I5NWT zqcOgatM7fv)A!X)4i5}Lf^xMYCwOaaAS3}k@%T-s0aHIc`erI@{1#*AgJZF%BuHAm zq(+WI7T~b-5EP_EX2gdQPEmvZ6}nb&Ut#g)B7FfGC~eG(2h8mHjBT8HAKlL(3~(paXP%XSR`lX01M?>VATR<9J8Z^)`hMmb88Xkdlnq! z#R${#BAion*!mvi979xRRpKAy)l7yQG8XqN-_#_Md@jnv$L29`9Q~jVk-wI&i|>T6 zLxkN3UU=tQBkWq>h%CO#fl*3y?N)Oa>>d)k&|C17=94DbA%sChZgH&@*-ITxb)gp= zcXVu)^nS_rqMmDvmVsmEP&@r}WFp6+Ep&_)bYbp7DuLZ6G!3w(m@>l>hT_a+TY zM=6?rtWTGD0GTOIZXqmO%OK&hV?5$x=-Oqn-qANE)-rrt=-X45Z@c}QUsT09HtR;m zcwJs}%QNjVc(0ch7uv;it|br_*m za!@5&`ghUXH@!$y(c8S7X(G6TWTX)Y%8^iQw4rbwk)}3GTjx2L zd>BS(+ZZo!R;YZD(Qjhj=al->&lxI60VHUoD8j}1gd(LLOkq_0IIo^Aj@W~+hZ$c# zp2YwjIN`#hRxY$$n=YYa&W4*T3^!7SSg7rB+2EIm@AMPS zO5-3`HQq@^c((GTOzwmzdUmr0W(_>P25QHPtm^QgXp9e|QDV?FGi}7=@uhyUIXsF% zgd0mPs<)bn8%_(+d_r4&F(hyt6c@$-7W4P?Rtd(Dq-h(%ki&gq+ziw>bVFid>l;=j z%N8VPk(>KgG&kW2mNFzs?%=@ifU$!(1`Ui79P{<#k3SloA3Mj0kcN>oE~G&O-WVyk z{^$SvpWUDS^d}ohI0}m$DCh&j2gVWdV+RWQA`VX+`Tp&1e{;S}G@-+Yl62rB}wsprcTLlgS^Rc_II&7)3JAr|2`RWNS(JGtPtq=igCdO&m|~Xn&e~ z@b;_WOp5jPlqypbYE8P&^%l~;-ds9UTn3SaCj2{`AFRH>gHO!^@ZkPWBxNkYSHk+_B4_DxKW{`8IDYEBG2eF^I6c?na%IXXSg)#z=oM~j$4^e`$;;aSv^$kbwaMaOz<)Vda7PYlo zV8O>OmO7G$=SwZ#FEEO*%b<0zY2ylK{FWX!qPQhm`NJ(ZGPXM{qvu)g*SQ;JYP zj>ERy3)~R*MhB77YJ`*i@>N@*}!r|-Cn7@ z>?#pUAFn0!<&N3_<>gA3Rg-b~sN*qR&2p5HqbK8z8$jAu~{4i=Uq_fl)(UIbX%kMoCL8Wxp%}04nZgC#~qHOGPf9@&?^$z1QDxs z3UZ_q@|7UZBL!?+N)#2U002M$Nklpj}XER4aVit7un(bFo8e%}%Fs`4~9L=yJ+S*{Uz5 z@YMy#S&&T=a&-QgH85-7VKmTpvMu~_q>%54QWK|_X4KSoGTV~J*ALdH`Dw0QJRchl z?!%b{cIa|<1q=Otd&EYBD=++GbciFL*2WtSyyd2)3il*%BU7cTfux+i1>Mpf!Z@Ib zO3c13+n6P3$cUiBw`cv4RA@$)z=;_TLd24ls){oB8FfBDN_ zY!FGK1;!0NHje=XJz$K$cmfZ2p%>y9VgCK!|J?=@j32-;WpV0l&l<>*lsNJU^z5+{W{Br%g4T9BX3oAq)VxCK!N#p#!%=+N>wWYD3a* z_g<6nH@|5zyw|PH^j4c568ylU-BQZ~eNb*+4?B9>$`4L3EExwc{VL82TlfPx!5aV| zo*f!UwWw*T%`+cotYD7KxFVR8iEo$48K3e&z7O6M?F_rO24)rCTUDP8G5g8wb>m(& zkjW7J_`xeXVnl>TPh`Yn_ebndywM`U&6Q4C*RdCL&IJo8!eQ-5w=g?oU@Y|WBjYXi zX^p2GO(+YB@SSV)RS(=Lb^5_4ek-=0WfSJiCptSE;?i%9_4wrql0F|K!Bt2C0zCN( z?j{=0a(Qtv;}a}My3Lune)u#ePAlA5+ zc?cS`CTj4$%3x7aDr>5Ysjftw!kJ;S2BtJX+tKCuWbv1N=>{0{OI%<`FKnrztT26{1Q)>boLp0iy%qR;MJpJfC-=Diq>l_j`QJceM4e>^+pTdze_01 zofTfJbQF@#c3NN%VfTcNanh^)BIc+ga>~q0CW;m@3*b{dajOjbyz1?aMAGqiS;|Hc z`P@5@mqlTY$~t@{!^ro3d!BovZfqi=1X|qGUC*H$SS>P4OMXp|q|mRC91A{ZLimt? z-#WoOFD^Sc*u|0aWOjJ0*)4Jta;$Y!;^KIx+xt$2g1<`U-S4||?WTD9>o0oW>%!~V zS9&4r^88w#jo|rHMe<$SUx;v<;<+)3QUpOJ88PDfDOxC(kZX1o@ZE`(o};8QF_dva zyHfOAbs(eI&b4^xn;(mdV?A@rh@u@ND;Z4qeu=XqCx2931~iV#y3{3|vRKT5@SPpI%i!XVeQOb!@4BoOoZO(}%vLf|UA~YE+R=bj!wbu3QbJQr*jCQj%PRj& zFBkHRClPk^ovfV$1$1l}-yyM4L^!xqfBFH9s>$$U_|A_X>RUc)=jvSnT0&!&q{P~! z0McSYU~J}OtUEAIU&oe@VLa83KZeg&Nb|`Ck!?ER0hWO}9gFR`%K$&qS!mDW zp;&Au&dvtX_w;4}i~BcP>0o!n@$oYs{j}5;*L1!aFxY#vW-_6hfs70o6u2-9@ZmnT z)h>Ap^Z{J*$LIln%9gUH;h;4hAQKnzATMd`9w7`2LrQ*Q1RuWm7*yEl0X{myIDz2^ zUgU=Z7kYMyK!dRYU7Ck9$_a$5XJS3rY5mVc0*$}uA8$Kt&t(ohmIk60YdvN*0nS+Q z!J4Sg28;d{M}`!R`E;o$XGX6y9$sJE=%wH5?);s`Of7PF;Xrr_*%+eRnDZegW(oKX zYoTPR54kRMM91<%s}dS_{b5cI!a}l7MqJf%8?B3O%pYiU_!$=I*ya7uAG!cZ56;` zfL$YV1Pk0u(3zkKf}k=B@~`EWvis6cw6XB}@{#%_JLGFC>ULT0k9j+vIrSqo;KmlU z&;&JZs>ccJ)<&`e-K3S8MM|_T7WPWpl1`XY%}2M!i#xt037!C3ccpjYwZ-! z0=YkseWquWQ$6Nh=`HGue+vGq=w&3)ky#umwODFlyJJ@Y&r>?4R!2J7m3$)7|B~a- zwU9O}tpA_A_t1_jN7gmd(1|kTy1M(gduGl1Khw;*vrhM|>atQvqUbW``~E=e+?k}x zN!4A3Aa`zTAP@io0T%&t@L6rYT_4dWpK+b~`88{~ znA4tdFxENu$gqfOg~B06W<5fwz+E95lsRYL-r#?>xO_=Dp+LEL!<`~8*(vgplN4Sd zSXL?lo*NfBpgiC5Hnl~ zoHkdHfOC0^8~}NN-&sKsnwmXvGA>XF!We&h!aQpWZszAvmbnpx-6RptDbGv8LB~p&fsAuJ^;K!o>y9yT9j|tu-7EGf zy)!uR2e#jVoPLT5@VE-eepKw({)AUYokeMuoflIcKoNxo;e78QYq_t!$qqS>i#uWre8jG~V_KfMRextsB;tZ-*XD>hUXs3iF8 zv(KVvFpuWLJP2?6eI%H0`m2!8-8A~B+|aGz=Q};bFU@+_i8zE)q0(>`r0HxN+FQ|~ zf}8r_i~KQ&u`djzWnIJ#d`BGJ4HV7 z$Xf>HHPKKoCyO4i@E)Oivh{s1djb9+AJW72z`sxsI;LFs%3!qVpm&6z4sLnieJ7>~ zHo+8i{S`-jwdce8J_`IS8cF|@g+vB}Pa7*jKkfGL{-;o&>rG0-kIBq^_B*H{1u*~y|tgS?%M#*7G)%k*-y?ipM}ZMTnb*o ztAl5;i(ffGXf_KUtDbuvrl(q}L(u8Fg$~l9uuoo-C7GJO-fl7Ok%qRu9atX#VL+b0 zfCCTo$kd=9`DojSoRj{1+&8xN+Ix$(9XjCe~_Y~%}vKXcPsnbefD6}2c*K1 zw2|(;+%kKna z$O>D&MbRDP$lEN7-9HMmr31Y_y?uQCOyno zyhG&Vk%IqoU>+~7PEcT=*tmVOTwJ|CDRRD9ym@R|=!4k_ABD&T2mQR_U>_7CE0hRJ z7m&$>3YaYkL&a z!W|;OMxgDM1dqTvVK>W`9Utc(Kw>o>2!`Duf_KO$qj5x71lk<4l{-d&tFmO#BNw-C zH%~`-y1Rsc4@o9(5`^p$RRL#xznKfBAEK`zF8PKaaLU ziIpSEII3(*eN=H&TOCG%fQ_6X!9ix4qOIvSpO`5b^*P11^AUnrMR5op+?_rV2sEBy zuSGjJoBTkK2b3Z5O45x&C(2lq3mH4QtLvDyCJ)D|Ss}zJZwY&e;^GZ?W@l2u-&!x^ zCmET%5sB@E$6Y1695J_fjZ)-0!d-lUa_>tpvg=I+()Kaw;JHDLaLEyG$GG!8MsaeA z+w~1`cw`{E;#A_TRESV_&X$> z)w0Fo;pazEAXF_v{>TsyVE&}f*iYUOpV0FhOtLL9Tf5EX(&$0tT zA-qZeJH{5cM;Jl}V;tIr`Iuv?ypQ8nAqSnwnn8)r#5@PQ@;$sb&qnMj1Keey5~CC? z4CqL&@tZ&0R6M9W(A_kdX2WQ2<%4c26LdF>cKtQ_wSq)=@u}QUL1Db+-E;`kaEA41 z+K9(6t&mco(uyd*QRLtTaojq{dOY$H5qbM{wl~MUazwy(w^qm2FEd1D>^h3KcwHuDfErUUN z!FQ$b2PgJhvM-Ge%@5MdNsw*i{Q1E^hp{|-zb^_Lmf=t5dqdp!RQ*ZOQr25`gWRGJ z@i>KxZ*G$;WPtuYK$iz97abR}U=a!>05QN?Ge#8nnmd&Mpx?*&Bivk+_ z_0T5scgyOy4SnKN*AMtE$C>0#r+X;r*6cfV^Vc z;q8yO^3!4ad;gvG+&-DV4cf1pGv?~gSU7j}YVnkQ^U;&j#WUo;=SPp2$FegbeGqwt zv~FrS;drQ1cacygw^x+HYmUr9Fne*rsSZ519HF(PZ@pocz><0A@pD(iUvnSG4Z>T? zm&`;q%&}LC4`4-(r}9E}``sHNP|%!R7#wTOwCUQNBGBmwxYaQi(Vrodb`Fh#W<~ns z&j|d@rsPWYi6eX~;lQgB#}ek* zwb&wbFujL|GeOh02+GSZV*6w`8-Ev9Y1F7@2(fpVeCF#B1sb8G40sj z@9j;D@~Dask7vqm2j;0g9>Q;xyfw#3KT}zzY~;D?rm2r3R2c8>@2j5Sh$3tIhKuZZ z*gC^EG?o9I0}p|Gw*ehb-oo(6i;|<_-a!Ck;Vcoi&8lcn(t7y_jnM_l^q z6M2gt+36uqyg*^`ElLrO<|F+l>@+%imay5`#m=&?3K)EOi;|F|;5M&0#_c7k-5^gOEk`I$ zPTzcuoCk#=uxk_|D|VF}`$pFEgdI(1?1(zqP-nNEE<*i?($NemZy;`SFldt`>1EQS zLMlzDf$M|$@e~*Ym2?m0H$j2$duskY$$jT??8c|x9mnoFy~(J6x|Yw*)*;#_-@D*D z?+4o*3cNRk$lCaDcgi z)?4^!!Qf^29jl&Pxx@-4S21n5Ffl?pXr421&rs}f7VnCcMB6I{L%M?_CS_6OkzXUk zl#90Ep!LD*C=jyjs8o}XqSZuFNW68D_J(76P)sdR8Zz&za&o|H+v1?yVAi<`zKi3* zHlsk%diOhsHR_e_7l&n4+P0@_sXHh;_e<2EV z8O_m;NfTaGjx~G~!hu|wF7xp@wWK?IsYd+d3~372cF^Op6c%lm9A2{;G^Y-R8hQ&Thy(ly5=x7Uy?~I;rls=lENAG38+9sWoBZ)}i}70~~=T zm$o$Mg#5Q*G5JY4Kb@7ml;bGfR2aDzMR)1WmMALi(n7i`~NU~Z%cb( zOYTUUK$Q>ES*|8{v<}sYCd9uY8}FYmzh#W0El(TQ`LNKcy!IK*wi*}(p7e=^v-!kuC!M1LD+;r!05MvRFyicm|k46 zni^r@_Tm|FBM8pU5tSkaAY29)Bi*=^8GcjRbS)S;IawfF`UiJ?U~(*u$2xJG%@P5+ zyB1d*@0D}^q3J5hdD4c^e6gml18yt4M>)BwJPHwUHXRa+s3%h~k&?S!6U@6>(hiZs z{AGs-bKz&N=r=j0igDWMQ;u&wTQ45naF-<)txLb$@qyxCiGY2L^5dBN9aC1f^o=(x zdc3_vq2N(xD66hsGWSW}%+WnuWPbJ~Mv>3X|*G5?Oo zFTVM9@#?Eri{mqBcE*B4vT^g6c%D*t+%2*|QIaCh{DQRMJhic;D@8n|&$L&``iftE z%B}sz*WOEhE#n(HLYgeQx-UlL0gXM}3TtfxnrC24#@GxG@L$@C7Q(?eD5Ot*QaQgmS5Udd3TrCXw}jtIV9@VFKmIsu3f#Grde}x z*Hf2!NbFc5;|bq@qz;bI0dJ)7Y=Gvk$x)B-R5X6wHM)xRe&0EKL(biPtM+$Rh?GF! z{_Ia3CEg0q6{fo*L?wqx5#K5m8cspHihw>AsxC=a8RFoUb|3#Egbr&3WONV}cNK?B z*a{Kf-l_2h1sOOm<`$gk<$NGb(6(%|b#}|Gc0aD3|3abZ0wpRsbJj zaIj)!uL_a1D?aI)G_X2SaSL2QiTZpymvySjef15hyGLHhIve$eYf3^2j-5GR7(s8fb}`~B%HNL z_hbYCj2nLr5wJ$lU=He^HcK_h=Z-jo{C9>wYB=4ti zb$TKu-Ba8nLNluA{MAQzSkN}wr@JfJO|ZBm-YXO$2!N01c#cs3n8zdfr8WK1>KaAN z6#`(7%i%KktvgrTf#CSZ9VAo#Xbe@4v}sIHd+V3l)QOo06;OWK!*|=;Pp4p;IbaPA zU?E1wycr6Si)Y_0-W(wSKI5KGj<+SAS*vD0UJ^98i|8if(U;wZUJxwD=1?U!I-0onD6 z73~~Hd|VMHUK#6-u`C;yaW+-;r+S(u_M+>|oJs z7{lDMvj6(!cZ;j-gfuWAz;9Y%lyreC@9|+= zDgk`NZI}#s+JC&|Gij^h?~<}+7uOaAy#Q}&7-jK-a?lM5s!q2rMs_IU!Y&H^a4mca(UMsairyM>i-$Hm`w2A+mY#H~5PB4xwZ_6-to-NN4^N(l{8SX5Q~&8~D)OH4F&SrY&C3 zR#0bdFHx|(dPIGMzbU(ui`R>DVBs{zu#AOKM!rEQa%r0a{`1wV#bfyO^wD#8R+$2_ zhaAgI{@J;N19^2fns(dqkq_Q6cO2T|*Z($0RgPWO_0_J$xH9i}6SU49Mm)3;&peJ^v>=m+ozqmgJDiNmB{8PFlYMHizBEVEkb#e|VIq z%7Q@@4|%X!vGG|jeoRU>`N&2j4T*uj*Hmh{%C!c(hw~8K>BBn=wcU!0g z>fIK)`DmIRonPPm=r5c!QAyz=tu(?k4Yjv1y`AQ!onge&-woSu{e&?d6*!iI=@Q;J zRg9Q+;e6|+y-mm0-@n(l&7f`3yz!Hjre`#AvRuY`b3(YK6&~I)nD=oOuw|mKMQEnb zZiVn|%U1IxlM1(Va}X~pK3*?2-+qT67=C_&@Z&EZ(^bMB&zZ=*Vlc$yVu8Reh5=Nc zLtGv8Jn{$oT?$l5R>v|5P9S)`&v;IULb0h3*&^iJaGwzs1BD3N?mchVIv}w}8{=qM zOmV|a{dNk-qoH;{n)7!qZx4B|Pci(SSL3YrePuIZo64Iq&t%)mM*mI$A0_sfE8(ZsOsDQlat& zp7GMj8|VKQ93;T%x;LCt{)P$R4T_Hy6O)y@J~*mydrG)t!_cR@>dr~x;c9$giCaa; z1|HqKK%n4mG8HEqCdB3-d~Z(rnUO6{{tVj0CMD)>JHNtF-$G2ranTINUhsSfxeGDJ zIJxgR?ml+5DYi=P4&CIjgDqSA&H>HaNb3M5=~Hrr9L}>hVZt*zY_S<|g4(xE3Hr5L z=A@aZFcO{Yk@s{r@GJ_EOWMDqQ;sry48MAzG0MP|k`#_zaoiS??BV=n2w)WQXhmgt zVoQ5Gi!X&VhunoI*ue*uVId0E9XHHyJy`!K6sXdwa`Ct7SJl~!gJrOkYb8gX+nFxJ z42}kXZiX-6ruHdBEaMBXvW1h1mnt!YZ@fuC@i=ZtmB;wlFECVa7XcD!#%U-w9(^38 z2*=~oW+QN9g|tHYExQJnZxHypn)?+3NtE78cQLFHn6Dj(E0{7$QiCPUjt(YnXg5#-s7{>UMG(b(Li^9gi1l7V)gFQNCPJrYbhL8*=j+Mcix3)$)b^ zNFDC%JmKiD#VZ8bF1+F-jD@>vH13Qxl^&(s?P`h%d{dbeuL(Xcwuv8SaKdQ1z6xK9 zPr)k)zp&?$6nL7UnTA&m$F2ed($ao!?-0d;BHJlmuDO0X~V+(Oit54ys z`h{PQ(~?%dD|}gI?N&RRHf2-prcsG>LHWP@k|u<*MfklvX1;j#0ePeC!Q^flcg3iX zmCoF6GXSfp)JbpXWS`1&Azs zsG9YNaqadLF6Vtj{Wv1;veX&M*%Ns7i1e(SYdw0p*eHiMrJm$Y9h932=uJDsn8*>A z@gs3H_j;Dsukts=I}+dJo`gzoGo#<^2_NcIZs8p5&R-0Ywwm{z5q3tH$Rz>JoM(o6 zFCP7^Cx^xu+stsb(>uNoG4A5hW(M1(A#ES;n)03b%-gQJ;P2687Uz4!TBzWD(3@i) z|2#HwQiy~P0JxI`9iYgb`~0J6d5~b8!;=*}Z8mQEHE@mxKcmU`q#4n7KS8(`$w=AE zO_+V0GtZf|VTAvE7)KtzxUmowwkuS3=f(#gu=*W01@8*io#3``y%hnvsrabLuZ0W? z&9>S&?JFpqsGziA(&#`|YD& z$0J=;UKrLmeectyXe*rl;uoi3EFa6OceR)&Va&U96~?#lKEHP}&!Ki7xyIk-ve2NM zV%__ZM)ISpn4x1XE2FH~%0!!oyQ|VDpXD=lf&7`3Odo!*SbfDH>C4YKQj3Ap7p!Fa z+vkiI;h}$Ef6l-QL49_XST_*JEpv(CUTXH!wwItk@&{!h-&%gOGra}U;z>K>tP+~$ zGCM)s*8lZ4b$<&hz_XLbvtS*#OX22!2heRY0N5{!_WEPKA*7}|`1;VHo_PB+23<`$ zS4vS9QHXqla`5vn7Mrh`v{`qe45U?8=(0*1vG2R?fu;Td>%gCF|JxjyiBN#GYpWwxlCppQn4NK_Pf*lNsw zH-*Bk>{J1Aj@$WDL@%6Meu6OOhzm)rw<<(De)AeZ%kgW@C4a^4(pLy;UMs9{H7TiJ zRp~7Z<4%zqq-ZyOqb%VZ4j`^L>Vg%jYkWCY!1I>32yZs8&K9?xGY_w2@y*Cg+7TzR zwi)!3H=ljRarI7$QHXd}xs!f**at!xtSD5!MWMF)9uUDlA{nJqUkzI!{VkUP+d<}F zy0!Z**vvKuZs&Pg+ikqX)j=%$^lwwj19UgKa_OLA-{%{H?O=lB08^!?e9Asz*&*Ep z`%T)KsJ=(uuuVIlAlNlyfQuI_h`<~>zC&o@80=(w!iG^eJS(5$Jx4Jd-v4Va#eTFy zq9PCTHa{~;0H&;I;jzD*!VM$|r+oqr#)qF@o&uv(pnRz?YK&x2;FIDQWi*wIj#B{+ zdjMm1?$zZuhinKuCsVL~9{7SjL#-(qECJDBJdObn-g#-ZLdfOgzcOA!xXRIpi(_|) zxQg1vM9e)o)@b{RcKXF<_@Qv%{Qo68M3xBI#gTM`FTw4GlxMJ~#cPh9FT%oAQ z6ZeR`6JlK0O&YU+e5Ec8YdO6Ax51|J5s{Ck-wlLA`a1m}=azBuhCce{g!!nqnM1ZU z_k$dx5IJHlWB*D=j1quj$)5iW8lbd&xmldtyx;=ym#kE$Pvst$HG@GIhIeopnwnudh%_atZnJ z>Ay36`UrL)UU!i+_jN`(?&Pc;1IEwJB&oYkY{HItA2=rY#e`xI#_x8ML3AEo*kb(L zdiq0@5}w+CVn-zhM`0x|^v_!qTw4~=Z6Bc&F@Nqb%6%!^b>uNw;}ZF$I|oi_t58UI z3Hy?IL`5P_W1&J&KDiiYjna&}kCxP{Ey@iB&Y7dKZ3;LR?l5kZztIt9hm^zJTXr>X z7&C8K$ajmZ0KJ{+L!sG;rR?gxb};#17u^z>5+J0TXP$X*&bxJefAhw& zmeg-Gdd?p{3oLoiAUw83wiTx+hp9n-)8j3q@Kr; z&!5saRe*o>?~EzZR?(Jb@+U3G9_66|-glKvh*vZW3H%;zes^OOyY8b+kBy)EjIjL# ze&B1^(0CS4+zBw1mF3iBCZg{%JKXjf{pEWXvR%cq@AG|_f9-xWm+xk}BiSh)?&53V zxjQI6{q)la-Bkj#Aios>4rIh9yyd8n-lx9HZC4@|mE~Q9?9P$btgN^IuVGYBoS%CE zyGoHt6Wtz`w-?@F9y)J_Ia2A+M`o#rFfQ}vv03KNZ|_P`k)ZOx{Fz_#r%@r%$AXDV zSRd&jjPQn40U>^s7~)qcqVh$%@P<`sBCKy=4cm0pUs@Pm)ytEndT{0O2|ZUeI^TL~RSLGtj|f z1+BA^Eib{`+FdMSKec!`m+z zNHM@(oI7x$Oi!5r+HuaymL%5787jf32c7Oe@;jwxC*nXq3X$3dnFUSh_!<4tc5Hnh zT<#9}f>k^ocYrd>G58BlJ2Cu@9aH~cvY|3ih4%*vFQ9U^cY}qM`%#SSll~7#=et=hfk#oeeZ#5J zDi(e+u!5eU-)Pz5S0GxaqKmtLgUbz@&khWLlY#Ny&Ra44$ z(6xgfMOuA$hQS(GKD*zU+X5PJ0S9p76a`K>1_CSr8)&E3lqY?65IfrhS(f%lqQ(cW zb{449TdwtG>^qp9O_<7;zdQGx&1}`z+--_+-|--^zoE~R!!9#s*&QH93VBzI^$>hq zbC1%s3nHv9RErG?z%3UCKRTsBbalMJ8wKwLfKw3&Kx0Cd$Q3N9+V~4t2sM$Vcgm=$p8wiYq6m*X+1>g))E@`m727 zfw`6<&fWT{_(C7!b}ZFNl0HdCC#GOcUK@P`9}vUYFP_GutM&mHSR?Tv86_K{6r6XU z&{;yeC5qW4g8uAkK+u|eeD(h@?_mY{o9*Jv3#TcE^%0Bg&Nwy;g@}D;U2?9{!Tho4 z4iW9?_Bp#h=tqfog>ZQN2xW-(gQD2DK7YbkfH5FtzE)A;Sb}6Zjxf1M6lgdZu5&!r z`6ujJdE&y%bk)hTFv-s@dkMu4#x&ex3&5r}IX z$~KIwBMg7wZk*aRdGV8DW`Ng0(o%xT>r^7zjjb@mtLVJH+( z8f+8Kz!gQ2SiqBb6M->}Z(gAC(Tvx4n_JW1NYQZO5XJzcCl5T`2!ccmJk;05i30{a z-r?c+6@^$72@1MZEZImnCZz91aKZvEb_>BExu3-&*C_KGc|`~AB0Jlk)w6#?5%ibr zkg22opn2L)((2AOPnCGZ{QsCTy83*v{Pu68fWF^*XFNujQzKTkg_0E>x;bI7Fgu(t z9m|w+?!Q@~K=g>WV~SDizsoHR|`ELGm4f zg>L!$2|rzT4rOjX0mb_RB^$*ZBR_kXs~stS+XEgHcX`V#@ZAz+lt&E)ey3u(&nlhr#U0-aTTPbZb1q{}9cD`7N6?GyJ6CGb7=lU4t-n3pOa-IUVp>x&&8;cpTOfR=`jX zR<0)CyjWK|tv*H>^4C8vmjC(hi}nBYA8hS@#=x0@^@nU<^^AO0m~Fr27#8~8g?A_* z)XN0Kfs{&-CvMAiwC~_{B+<0yW6wp`KfJLl9i7O#HL$5pJ3B;dIuJfliFq81LvQM- z16lpIZiCL`55ZG99N;rZQ7Gkz$HM0syl}t@e?Z#Hf5X^O#|#=(Why?6yRbYNShQVQ zV)w{_ZxIkE2&5iG5yFZ@SK%*RxsPI`w&`~q71JO6cTjPn?jb#7Q|o~1#mbDq8z1^f zdW}UltkvHSkD@j{dX52M)usfSemZOrg%4~w2U7bqFGO{h2*RlqE8vc}*!+}<+~Yr? ztUq6KdW8KF#f-rB>@hn;o;_lRi06(oPGHsND#{85sQ{@ExuuP~VUl?J#0lp)HI+Ke zvbhZ_aBsN_ge@h&A&k0W_awTIl^0ZBQlm-B5&h>e-^cKrXPz$+QfxSyi@70r1PxCq zo70leCJ--^UsrM6dSn)3nh?%$2;&jk__Qg0JDC{y4{<^|5JEtIeeX=UB+{MZ45s`m zv;Yl1KpNG|x$*Bg8T99x??JThRbTsVhmn3i%=d>q#Pu8eCWB6@=2XZSn#B$$Eb=)< zQRs15SFAL?aW@l;=n7fF>&`wC?O_^b-_zJ>N*{sa zFOow<6VQX@pFjbNVMQB1A0H*!E}uO{yC*?5k``tfOZ^jY{1$w57X{Z`Up@_AVRmk1 z+i^zoiG3G##%G@0pB3h3T%wIob$Rk9#@#gVN1p+M5K_UlcXfDyG|I*81&fQ$@b{8q z4toNSq}tFAqkt-X-H4S$ch(xD_ z_+Sq$uy_a$7eC;}yvC<@+K`Wp!a@XvD-^gV2)@_HC_2N8ZO_?9jW}hiQcWiUYw{vtZxIRUgetbz8zfx$5uuW1DX^k$l5|?Qv z9g`cjkvg48DqqbP<)AC3q3X-u!V#e156z{YM?SGbAeXDF06Al~g2$LKep<4_A$RhO zoiQaGCU_JT;_63~!#)E<$vr7K(=4Ej=~YlLK3byWT2XgB?r!_&6WpMQ^-pPX zs`k^{nl&H&EmqL6EP2kXErTCKZJl7w(O<5rZc z?)Fd_;!$@V|0QCNu%e8&?8a%9v9{q z)iy1(@zQpW`Fq3;jui`T*nPD5hOp0RPl$eNB~ln~yFv(+jP8_v17E+U4qQIVSuG!rn96#TLM;5D~A6EB<$Rmk9Wc7azYpL-J#Mr{0(u zpEB)TZf1Twj<*6wn@;<+^td;6Rc&6<4tUg^_fuI8Q(J;H{fTuOJ9C5$`K^$bOy^hsW^}#=By3tXtC^RF$?}n&b2?Ka_PTUdbyo$vvs^ zrtQE6C5?*)Y@3wH((aXMN{w{*nR;do8*P+c)-T@W5~7dr@9#BI@ct0q!32FMquljE zek{&S+O*V$JJ97Cf)K7uHPPiZTy}nY7&?TGa-6vfAp<|hPzVNmh`^5#Wv^|n$-VP^}6xijqVasQS@3&`bZhr46KNOH>LT9HyC20kLLVXnitqAd3A-?{a6DEKT z7E}nt&B{4w-}t?B)w1#1@CxcxR2(1I{T<>tL!hZLL6boM@TTYI8kGksG*nWUesQVL zaR-I&=0T-|3JTNGiiuX57*06DwnF6FZ@*o5CyDtKmpd`UXP$(W4l0sVh)55^werF| zdwiEWJf!6}-+VLeOwrBoDq2)%h^Oh>G;BJUk3+g-utqrXip#hgN5dZCX?(w@cX5l1 zMy_o9^0r~{`H{Rt!?a{Tw0in%vHlZ-JkFY5vUL*Xgh?MQR{!>I><&Q@^4GsCR-gQd zqq8`JmOE+IfBEy`=o<%F)D6!>cD2|!xU46xi2v)yi`A!}ES4X!9rp>itY@TaB=PrD z4DUTJ>6izx`d*?;gxnem->*2fY`J9D858BDtJpG{p}buslE=1+C+!JcW4}A48DRIv z!+S@8syPsBIE{B+&AszCV1AxZVvkiKq6}e2)#{TEQ6%zkk!LALoSb%fH11uj54Jf4 zBxsiacH6c7hICS|T-x#b+LVUux8b!{8SGqfiVy9VqiO^^+m!+oc3e5rMA=@e1fMgp z_?A_lFBYdv#7oCIK7*i|hr`KGBz9wHA zR*!BupMCKXAMOj;IH6$`>*5hRKUnd&<>-wyZR*C0bsw`cl?z_i2vd%TW9_Bw+#@1> zhZ`ARnho=3nv*$x^z)OpV6DitM8M9E>bLy=q3h2I!&$UFMff($Gg zGdxRs?9G=2kl)>p82T}w4{=19=xz||y>}&^qf}H-f6iSz@ZjEiHL^jJoPv4fY_cXsFkihII8FpN9fz(cn^9PZFcTK6LjD~NfAY= z_l9^E2uEePOQe*U_@j7TTr$4pxK?+HELDK0*mwz?7pimWK#l{m-cv8KOYQ8VokE1& zIPNSC9}sT2eoV5EGuH=+G9=*Ilo$5K1EK2 z?BVLk$BRoAPrjo5U8opjvEPz3JYq}@R;pd`s&rXK0XU-{)~3Sby2oRa>yNU?A1z1v zQ2~BQpcJaPvkpSHNXd z`o6H8x`+3U0@Sj1Glz}Yp>VwYeYag0l?1I2QE}jf<0=t!6HZ~j3IM<7g8V*@)q=LH z*HlOwo!4AUty18B{^x&!$9qJ)=v+a*yCPIVr13pqIoqpU!&0;`{?13gJMBWK6!_Dh z{rHKdDh zrrpPI;!vSsT++o|B*yjm=by(-dNmH?RT zukh33Cco}$kh<|Xd}k#QgZK3(Ol%zBQ;r+TaPu9)b`>IjW_$mi|GZfLl}W@CglF*W z>Vr=fNB`@;iJO?YbkEBJsU38fbiz(F5Y{a}1@^yK1@~uG!Eyh{21O!Wa_Wc4u2lZ6 zOXufhj!8`>p$=}c0!Ct4Y79u26s#Uo*N#429DRULl#3HrtoYbUcj{F-!py3eToI;d z?BIYha>Szvzcd$=(;xd+Zp4HsrAyOhW{;BqhmTIUv07>Cu}PHK3Wdn>PaiJUpP~>% z=)9tB%yDL!IX7-VAIv=z=;3}(WCek~A=|FSXewG7heo&R7p)Jw(hS^i=Wejt7}kH`GFQe7t7ixo5Hcv} z%H(RE=0W>(Fxq(}SO3<>u59K(1D5cyRggh&X`VS$AsYbqzZztY>VC)v*Y{0<6xSfU zHOg;!P)1N7a*87ODeEYf5!mvE(XL*z;0A%4J4P;Ev2%oDv~HP*Iu|`Ozf_r43TLqy zQ9EkSqeJDYWGrPLF8DCE58ap!~S6XS5v?udQT>8len5+?%?gn#yh-3eHeU| z_Y|g?O$P-u2%S77-xd3L95dtP%5RS)@#1t>-XiE-aYW6MejtKJS44NTvDCM+(-@<% zk)NBu(q|aL_JOxDr z#7X0SFejh^I6_d2vZQO?@C&K_Pc`Ze;G0^{tPs`zQ$TPLeb%Qmbyne z-Ed^}RgT{A!e-_)3eBGVI}3@Pv!DPv6Dao~WJR%K4p%!f=S9Z1R?Zis;6{Pb?SRT& z8n(su8;+Fu20<`1Thf24%UZG1n?hSd0qL9%;c0iYq+c?d;rpxz$>r!s|-%D&ge$YtsxqR&h1N>qD zUEXs}l2dhWKWJhbX8qTPok3LgQfxfu6p1rN*&zZN>xB7pH=H{} z*lD>!(YHKD)^yG>VQ2WWYb?BLz17HXlFDQm-naQiiIm-RHpmlC;l5E-(hmvy34y-KjOFy^EneF_PTib*XX2)68R_^+(UC6iF?$9m{?K*HJrcn-e zP??UOXH0p=^z$(MIzzp)LS&w;{mx|WQ+E9otgEC@pzotVU*W&IBl?Ia8^=}zs2otB z?{^>T)R=9mj#zObP8AEEfBuif-~RUZ>F6op4Cmb*Dhlp5V1X}wN`ov;FHct?;!X|~ z8!91GOn97>N(kSksTCJ0H2QuK^J9F{LtGleN(b{ReOfuB5@Q}#MrOMnEExm-3GoK|W>u-2DSY$v-_@b{Zl9V5VgZTb&>3b*VGUME&5*6hp4$Wu7 zNylODuzbeKfOJLsw&XZDck!$gX4tMWdCCCof#c_t-m_;)6S7hR7@Xz%4(B>?)aY9f z^);2$@b9v+q{`kUYMtsZZD|Ns*kqy?p_D5DUHQtH%T9fnWG*=4eR=gQf`+e2BNw3} zQ^}El3a~)ZeNWZlI2B(IQL3~N!YFBHv91ubM2_r=QBd?zYYJ}^wTX9s{+(8_ZKH(q% z$pUWO2_!6zf@R8uT?P3OM?)bLy+v4h&A9)PV`_5L;wcImc7QFo{CkCfKf7J&J6tps z;jkAib03NV_$9kpvI=$7u}Vo2km%~Cl6v?n)IrJvQlSTQ0~`Y5zJqhz>+VYw4Eakd zMOqPjx#RMTxd<^WH|(zVE(rTl`n-(I+?7MyRka%&9AR1gIN04iBCG;7k0N^YLJ=*; z1S>qI{Jbn0rN|OexubLKE|DjN$)nC37bN+h>TLK91eSI)CuIk4m#IKDl+NW-bDo zh2Qy!Yv=C~SK*_;0d9JEs=gckej`?mm=b&EH?F3Wf72;oKOJwPuaJ#Fuk_HCA7j-G z$0IE+Rfv4e^CiL@?t-wbiQpXIT#8N@cN1{gx@N1a#(O|eUPu#9j&Q7)1ULs(8Rg>` z(I-B-Gj4PNkb_tiBb?uA{mDh_AG6y)0Xs6J701o381Q;1*pdsokq|9zj<~m%J9I8k zB))#MT)aX#`x=-PLilsic#YEV)&*xN%n@(*<2%BTebS+kR)=PI9XkKecj!OG^+V9V zpnod($ONy-V)1Ov_nR&%0-=>kuMOpR0WZ9y-g6p_M>lU(xO=00%1(SdDa(NrnH_>U z`UJ|0yIVj247}j|GDeEOcSy-s+c(r3cRIpv)iwqIAm5cjEbq@igIXYp(mFexNQd$e z7KN%TT_W3D(ypy++uR*RAC>mnY(}9y($q(-sXX#j6L)5c$M4Z%gf8zT3nDQA!@L)q z1D9xhz-igox>>K%htVe4F7>gZ!qgFb_HkCEE~SIC@mcjqq=p%g-&Y5OnP7#-ByA## zrQDhh;bq%U%?P~rZubEEq@Tk1lY;yvfNfR(X+~kXiUNiIDnELMggYs|_~MHk5v9LI zMZvRYA4K5)nAM>tuCzp$pW~h=d>c@WD?YS8fBs_e*=L`F=SwDqoK1>GRRO+&{TA*g zKz=Ih?)&XF!-{|2V7rq;1%qid9@C}rqZJ0an^)oVQz@ZRMkR_$3>6dN6V4;BRDNhT zZ{pCHf5RG&Fe)`vw1`vXL@PQBry``&X;{-FoN;wn?X7$f=E3}23fTDE<)3nKaJFkI zcD8Dc@=ducxj$qrUvdfh2D_J_QDAX*S3(54+zSE&U}r%3DMx0>GaQYw#_k3; zR$#4c>paI=L(s-ADu<@`8q*G+sJz%Xkp$nKZ>o=+MkW5{K=&$Ge>?;

    3@;2oUAp6c- zraplB+dENKNM-UJWFnj)eLsnQ!18OMfUNU_M!uTyz&y<4+!o($hwp3)Z2*0R*XT!9 zjF~xpYJnm`g~;mJ|3V?c&TWN}S@hyK&YmTKc)_dVFG)=l{B%0{J;gg5gsZ_J-5CO= z6&H-ND*F~e*wrzM=#CJA8K?6-caO6REDChS@@oa8j&tk_IYMY*KZ!EL)%kHVAx1;P zQT0!|j=OXv6}wM84~zkVWafVOJ@Xn?l_5u@?HB>qBUTST@uF>x-#I6p$LtVUamH7{~{A@qV6qa3x;cl6!;9-Td`Py1a){)4v8Sh!4f-_EPOPeN1dC(w#B++xp8k?6c&aF zUxFlf3SXKUfAn*l3a>{Q5hVv?P&76dnbaWh?y_(oy^< zXmhuOI{;LMy6{F`;>rCt@OJwC#Alp530TQX+2FQy>`H={PZZPh_Jj#=ZQwZt?H-qv z9U{o-7=Htww1A|lwZH7oM!?40Y~d&VuJE?Os5%E^a5kux&HI=DQDRcnHH?_OwD9l%&yT_JossA+MlsigI+iZ_P3!QvX zQu34IGZh{lkLBG$^a(WXxVxZPI1?ov`zY%keAGKcREi|-Zu8%oXmI=-Q}sXNGVibA z!rCkl@N|sVD1M2~b;Xe!C>;oRre|ZlP{ewH8 zqCA&(e@-&LFHHLQ_lPxRLWG$Z^T8N<$sBdPdCm#m-z*+&zh%KJS36Ljk2nH<`G)d( zLqCnoZpr+z6ltbM;_w!q?|Bln$6dd-n|YA8Lk*ufPV5zyNHQKWvbRO}V`J$Eek}YC zrubhD;7H`1O$MAl0*k_ah4*(j2#de^pe_+tA+kcy zt58OhhC^1PvvSDbPKm$&{qKvf!Rx&uAEAIyDWLK}ML-lO6*9j+^wWav`x#L6 z{_>Z^t3t)NTbW{dOqVb!VpOWAK+%0}#Pwi)3I(87I-{mrH7N35Y|vA_oRhV|^|x2k-tUf2C=mk!z9>XIjv*^}nN+Ydq=Z)`6!G}1Jg!WdXK2{v79WlN z{lsB%MCjsbI+yBZm1VV$UYx05X^HZA$$|logdleew&_l6^4)-qV}u{*X=bD=U&(ZSf`8t(7~R}-*vZXyth8H| zxJH+E;hbP6%iG*1fCtMjL4i?tQa`n53>GRX01Xcs2U*Za>0l<*^S98t%flU30nkmXib!C|#a@mw8`=p)BS& zW>@%vOTw4j6SRJYLIh!o2-0IZKj8SFE#v!i!luNeS-*pP#25IoSIw_93aaVU?Y@Gf zJ`aBd?tuCYP-zf_2x&P*@b?s9`JdPk@(3aGhbV2%5dN-JkRbe8(cdj@?NIN60WZ_L`%RoRi;pG!C#nHwZJY z*dcU{Q2d%a-tc76H*@u46i8RxnQ;O?ZnC44c^~(kII-|AO(2PiLQi}|e_yj`vL@4f zF*)34sT_;Za!p#TBNl*db;d68o@s&i(taoQkU(2waB6D&{ZwoPTlW3meYhQ-k-Gsr z3s2c+k;*LNkyfsjO3kG|Nd8aaylL%TMkkO#K5+L9P#I zrBTL(9(^{HA{$rC%g^knS#Z4AQbF)JySk_o9*wo-2)PCKhIrJK!sgsF;#~ejzUPse zA~!u?#l*y7^Wl;*EM03o#lHaHw>>J_F(^I^Ehr9URusHXcBjy$tuT_kYT}3bhDqglQi_ZRjCY(CwTH_CBn58Q?>A3pMUIb?h8A``F1 zx?`Dwayjl0S*+O!&r!Y7x~i)yvcR#TA2{WRs;B=+-^5YqwxcTAZ2y9w=oGxMb|i6m zr=Re<7?_KBNjyx8u7)GuIQA`<#lyeLS6`7o+GQ0Swt@WjBc)P~$a1|uDN58QHxSMWEpB}{+ayb_xD51L;RZUaQnNNZoqyBi*PCd6y`fn zm>-p;GDHQ*{Kzbo8JB3=JQKO^zEHW)4Q0n$?F(lp4@Juj4b3AiSyg$U62RlBR1VC; z{!m(f$X{IIHH`|3Oq2FjYM3?^8v2qSK=C!pFNvgzF=>bQ8Y{7L_L|HB^eU zLZfjTzjpDd3^KgOZFO2Y-d2VPXFLz)XHuZ+`_#}@GhRake}_rqGupD@NHOi&3nYq5 zcXcq?aaDT;K@Nn{Sz11J5JYCbr-2XLf*HXEcxn|T?pY-jhkz>T1W1qZfThzq((yZK zv&i3jGLp)Y8w0)FQ6-e8e%2S2SI=0jbMF2D#g5a1p>equ>gF!+NR6tF!Q^o>gs zzUX+(gy>L|E5Aq zT=mm~F~6*9HhC%?7mqkH%T|m@@zFEy?yXc$2_~y+^&aY)Ks*s3i^|Fp8 zN4)PXZ(uTkV9epFyzN*$mz7KAL4SEk1+**d=%=0V+ON7QQ{0;5h>s{e<2WJ?Lz0GO z$K;y;gzwd^Qlfa**63kRHpv z-A4R(!|5WB=FqoXAAWxs3WV~5^oP8xb9ewCHisbSpibT>fIH>bol7nYMrrS)6th1b znF?GC@&Cns^MctHH?rNEr0 z4wzxbRJ-Jd73CdZdD6bl;j&7cill&-oq=5z7 z@uY#yKs5ZOZUuGPb9{MMd!aqaEVz+Go$i|ZUH2>Q2xVk5a6hHOnt9AI{pKSU6MS&? zbn)lwPqP@5^6O^py%)?GKy!<*|YU^8Q zxjkobMvhG*&(I+)r^zr%U;OlYo>J|)`@}R&{fOg~iSjR?ot=CIFTb^Pro0@hC31eN z6<07^b)j8$n6ViziA|JKVzgMOoxTc@`ZNN23{8!@bP$#>W>zas;StL$k8bc)6cL<| zp+MS8tfNH4Pw&}d?2|#LnFTK{L>%MX#3f$o%`5zBpw7FRs|ciN8x(-66k&(v2Ibe% zdllRn;@x*SDhs~n68hD%|77&9UxIm*j) zS9)TppK{#g$uxR5p2Bw*S8^PYJXwF#&+L{#Eka#dU!WX$b;TP+2mEm(Vf?Rx#H8dImXtmA-0h>=%%qrS--lMqtL1fve*LX~%C#N-6>rN~WA?P~Wz!EI z3rJ;%6?XR6-q>E{0R)pB5a-+%_~gH++w2wze#4;Xu+4xj*>!=;a!D03<-P$r{)E=y zXBzRC_{R4$(aeL{AYfd4l+z15&Y7d{j<5dCB7pzF{Y&Z)#l^0W<5wKtjWTTU9rr>X zbC-{G#~pPlMBA7}QFcQf_k(=LzXSZ#w}Hpw%dfnRgGZi~*AAi_i4y!r7!lq<@FT+g zx{T0;vD8N@)qMva3s|fM&f^^+gGSp5Fm@H*c1;Q72U8R9y zj-x457W~^^|1HXfk2n`r#X{rVW!A8RTjF^5U67_lW24;-w{E?IL$_99sFZPsi*B6< z^Je@iG|Z#<*ZB5Zg@<<2oE0U|z;9`zzhQl(hjDfq^y@gJk;<64LZlTc;uZF8{*#P{ zpZ7`udC13K1}me@2nUt(U^!gUITkM*a-Q%uSqVai1h-W4W-z|WR9NkHL8BXrS77A9 zO2r7X3t8d+=)X|6%Vb6ho#JfasQ__h6m>CACP3-;LsLPd>in6Z8diND%svJ7X_Bvf zr+x78mHIUInT45(aH%k4A5$kzb9UA~)~Y#GC>iVBQx;Bu?XL@pUkBf=CUs)!In}PJ z^VlrT9(P63_B8`b1Pivd+ zIulrT;ITq8b(ngdZQs^)!-vtTeKnoIT?vl=?q|wHoElc7j3ok#uBKf@V>07Zq675>((Jgqd<1 zxA&RO2VB2S3N+vRQ0j`W0`)yXn&%3dufW1{HiG$xL-A}@e$%fhz-OGT$!hw3?{qOs1moKkO8Vs~<9z!d`b6wmvA$+r=L+`PhFNJK>_~Caw^u(VkCDPj z$Wq__9`pzUN52Z9a@%ga+j-{HR@;*(M4Y2<9xXn4^dUPQnEN6q{`AqGI6@1Bi1Qnf zAPmZjuPLeJ)9C7LJ7AoaK~^3Z7FmEto7vDg7FW15{t_tVS;2R|9ZQfU?#WLly?qbw z$!`{H4mSC>V*)l3eGAbvesDpBWy`Z+CHW2Iff$u&eUo~|7_J6)mHE=0FbJm=;%`|k zy`kKFv}dQ*W#IZ zD!a+ITx&ODhcmIW3>-SUy9R;mmU}z4C!a$%#)VvP>^&#Rfp-T<@8BQ}psLsz>>`le zUUK9QW5LbKe`LW;E{~SSh$m6`lkp?+9OJq8nyVr{Ll%w)_d2*sWQ#&%>zyGlSt-x6 zb=>MPLmqR4a%-V7dnOq7s%YWJo$x~9b;Q>X)&pZ+ zl1ALc=ePAHLE~2bI_Dk|j^NgF#q$T8TZZ-nVDHbnvR4EEYqc|_pz|wS+>1~xnq+j^hFkM{JzMa6UEBL|V%RIAJzF0FCIsu0lnLqt&YDdeohZ^jXJQygD!8mxgN#)wRbCxz5dMM0?}@XDkN4|Gqi#RHCp#9);=%k71&U*Bt8QWF83y%PMcY6p|q96j>etW6GSE z23@y#e%ewRiyjq6N8^g7?RS4?Qu}uXR> zo*Zr6tD@d{G*5Y)4^vbgS0ATlghO&n2K=kA(#wvWYW@_ic(>f%&w-u#xv!T<-}1Qn zFnuioP*e^Zez)X5g#K+&pcyNv-uu9Xnv(Wh5opyV8`-RTcL##^ zI=JFHaBa69l@Z(Fn0wB@4foc!74f}d8|Uj_&aPRXr7{AJBW3P!CeCB>+IuwCOm)`sOK|5(4GdT3=@|gx_1oN5e^B3AYDPrC<) zA&lOj5IIu8?H2Q>OppN(-mgxDoN3hkjde03Nz=D5hi;SSJ(fAnw)eZ^^xH=cE8M z#w`kkmtP_5WCssBGc4aMu(|kREVjXqT_6g=KDmM8$|Zz+6@D;+!|cbxNEr zz){FBD=U(BoQhOf20eIbwN((r{K{(@>tEUU@GgfwVh(GLrwoL& zL7{@Zc(ibdGl~}6+Yi7w#vSfiT`^wGPL4#1M7HNv-}B!c{LVG=?GgAs{~hGJ+bW6v z4w?6eve}fbFT&p5qBMW?^ErtlJG+g7k-7OmhizP z$`5vvEmkbl;!^dkm&CfGVErLsIV$}e-g&A*4c=5f=;Pm1xF%^<*6&V^q%&A=+?nU` zk|=G?I8O4MG*ahs5j<&-cR~-3R10lLM|SeTH`$F(VmRT)i`TcWzQ)dc?$tjQn^)xR z9EFby;iQR3x{fx(yi-1A#Caz?BXFZj+d+H4W%t|H%uBhqdW~}D7$u2|E!HX>X;T)j zXje`+ZjAfEmL7xu=u_xd5gc znT6H|NDOn}bmvx5pFi5pjoz zJ3x9x*;LTrtcy#1=V_r9^zzrR#lIk6wEzFMIm-rmWg zPdDVv*uLA|cpApAovy~$F!ONp@WT16vZTXy7~gZ)x%=FH7+3o>?*4vw{|E}q*vLWM zVOtU&gUvE-7@oc|<^sB>I5kLtR~iP39cc{|2cO!2C2)0!S-H`;nK&3$C10n)P$T3l zBX?b9o_`$cprajGtsET0YNGWU|0qNpP)bb)-;kCX`i z_Ir>lOd3x-c(-%j{V@xg;KP09ov@8Ym|- z;(vefa`DBtuNIdaPbH_Hacsv2Pp%iQF6DoZI6q!|e8bK~7SyuVY{IE+R~EKUBQ6|= z4Tv%s0BcPES~%;JD|9)Je8G9-Dnzn_!wD(dwlgVZ#p#k2cG-UIBxITqh{Q>Yc{0T# zO^Fmgy?r?-XEopU^*Z$Eu7>Pn06K*#|@*X9?{&5(9OZ`}uS-nX<@c?3~@Iyw31bnd)~pN|1F zvrZ89G1(#FT`W}UHGQ*65G(o__cENhns}mvwV#wbFPV~UeycT@rzJ3HEi5B?J^TNR ztqX^VvQMsjjgWH$Nuen|NOi;Xd%#IgO=#BXjl-0Ez6wT{wv}&x6>mk!1#gwI4WXq1 z`8+I=1o!O_hAN}*cti8BWig6JX|0aH;av?JqqSv)cpk!TxR*pg=jHR{RTB3yqf;4@ z)hR0ozuKkVb6m|)ySHd6PlZq{=6&!N?{b;Lfp^riT^Qq<)2uQ0cKlY5!O~$tTxr(T z5A!~AbJvkdi(`b0(9;X8w-?`LxF-2F9MR*Q24O_&w??6DdLBz#zQWyOwp?w`<ilfug7>n^39sw~VTTBJJ1mK>E`|oq_&Exw9@62s(sX-_kYiZx)$tyY zg}YV|{w}?*M5V~tbCf3BEyDevOJq~IL)3g_Hx=I*gpPC z6wNkAW?@mG=zSG#1J4m*d;=7PW9Y)T+4%tR$cz10O7k&weOqsn!%E&%R|0|H^Lva-qU#9Nsb@7qE-vpI*?sV`9;!u!>a!dKR-i7`l|_1n5gA7*u1c9#fAAJ4oob1dVX9#n-PnGV8@9$7a1jA;R&M%*j-UyaCvIbI!P{;4g2^7gwA^ ztTJT{zFF&%c4k*j#q$S_cZ7<$1OaTbwW^ zC-^fV%zzR%-@%D@GD`-T2<8qEkIUlhS0}Q|8zvlSaD}f4q4Y6m+5q1>MCFc4=Pz)9 zIsEBXqhKd^8;VYwL59byr9MP7eG7VjeD}D{oYIVmC2@@iC#(;aUlRpVI+oo*S#=pU z>jgDC))i5J!rpRM(Hq*DH||Db0_oj zz8fA7#QJG_j)8R^kMu9?&=G>cqnzc}0q0mMAHj@s(X`?z)WRBfy_2twv)}Qvta$9V z6QbhU;TVo{PeDXG@c1h4;V@5(urb4LeA%|`Ttp_ydKdD-DU5v3<(W+`I66jg;ahMR z%*SllE@CZ{(1eFSCq5~kg3-UB>)l_o#3jHE(l`_A6trkuc-wJ61pkCHAp2iB?Qr{b z*MH}BpPykcBH2YscKP@oa969l`hLa5%o{Ez-+GsaV@K}4_ zOO89^JX!FF3x$VD5$@P=agSx3KlXUok4Zm*RmZ*Od^_%SaggI-(|%x@ z1I=QQ&R;+3%N;h|8YO6)2MleVZC^b?RTyIlnfjd%=~hq1)_@vkV1xLV{RzEBo_>m) z>!+rwC{y*L>$iDKMtzfpqEojyeksKFvHi(tY|v^DD4_gA!6p*XQJ%x3w!8B}|LhX7 zto3gt3p`}`>n~5w&BPN)<=p4}+g0!!qpXn_D7jbIw*1{IP?U!G)-fm9XRV!9_UXS7I|>$ zSM>yqLD09GhI%{1Z{3F)_wJ?}tV5x@-}8p86(YWSr$}FX?y*zegVD!E70g+b8!AzD zYjyV1+wDUpTQGpTOWZke#N+W>-s#ciNM@c_zV^tQW@>Q5JRfs=gLi)W`=`7cU*l*R z{Tv(}rg8Q6!~6YHz^1@KZrYG;HAedozR{D$yuEx^M`~Icux!DjbIh)hanKqJI)T9M z*3PpBB1wQ@3i;fEn~sF%?Ld5Ba=abzSs+{kV;;tQ& z0geuX(o;jC(`0tMF**IgETMqBIcPX#U)qI!MWa|JPc76W!wt828O*_g=5F9Q$RF2k z`v3t$N81SODmAXLTq2Bog#zRS0@bg%c=1b~YgTW2dHNaE;%3POcpjbg>IB8f&Ek@s z6mF(q!CVlg=?P_<$GfEbCf){U=fLW&#a7aGOMDDRSe2BOb)LcN#f07^!h|=g>jZK_ zn!$IF5PS%?WGemJ#0spd0XZIF;cCDulp$AaX$E$i0X<=yP&4^(m7K@-n8eCOB{pcv z8q9vjji0M8D7Y!MJ!DcuQ*XUmA>O2ncYgK)4(D?HtP{(rki&Mc5G8mYG(j9i-Is!zi>D`J~+6KH>Cc?|= z;vmNhPD$A!%Yt;~g0QKUh_2%T0}HApO&CiiMMx5=SaLKYbnfk#>AsrT)BjLilQQB) zihs`ssRN3~;-hvIkx0-{beJniDNt#t{Syae3LnI<=*un+eSpgmM>E}lGt;qe%o{oC zX7*Uet1k3aye7*i20RxP*_b~nEk3qkMCL2{rH%kX;lVLSC`E9y%geG+u2FLFfv%J! z^G7;L>G{v1B%V>Qu!BU3p4nrRGIA4-DlX=$c;rG+=GrKrgIyp|k1fiA>{u=sLq$eu zGgsE)t(X>#@<31gfp1Y!27byyze3=_6+om&+hhfeqJ_RWl6}|Y+EmtcFcNkbdklGB zym71#_l3wp&b6wDOv)rON{H&2UV3!>e0^eF5?NsoP{`McH!0teUPuX=#h{pD5nVRB zM{xUb8BxxZsmhExdcXwF2Le74l=Lcp&@t0$A1F1rGeinL+RaRDkNkO8uwFTDc`N5J9u_CdjC?p@;ethYM7TsrBh;=a&q#a86kd&`>`bMOEOu5KKa&; zknM6UJ?3V(K3Wf#x-V+3oqeZs$!4+9JXd{_%agL>1AoPTXYk8U~d;&(qh{n+VF z-cz1#q$JwQMaWi$sLj&{(s#5D-4v2s$8JeOAqF1AsBDblB~M?G{U8dFL;3ZjQvqp% zLkEYV1BFF)cI*s6Il`_Hc8J8q;@U2%nFC**@DL~QvjR~pF7wW&<&cEZ5{mT>%OlI9`Y z#7~@zGufXeft(oD9-xqmzJhW}`mUk!WCxP)vE9&xm-WsQl)xiAXqR{yfjTiJr9o8n zRzN=v6;0|_(%8eFyjeEL9ybqzSecC2A2`Ummv==M)B|1#Wol_7E2dcCoqj_CmL{^n zkpi_Ha*i@6(i%0kCQZ;sQ44x&dj&9AZB5S@zS8?%j&w^_!jXt@)fD4>L%VIVt`YW6U^Hmfth8#6; zs~1!558;JP+mcyy(VL_YNwG|(9ZN3~yo4~ZGZFoej^7r^p;{zL5&TpTlrA9nl0fZL z<*Pnl5UB0l5h=*He-)l-DhjdEEwKJOlL67!#%~wgJK+IdA%NW_K#!h~q*2in5^2Wo z9s_*}g*osFZX-IzJKzHqQ(}f^`u)u%Q02c@Ai#P3UTRLf(U+%3njdp~4RvR&wt4;L zdYJ#?&2Xdb{6}iPOVu|PF5LiFksOt5691U&RSsP<{Q-eN`Vm>2rmi3AG9N7Yqb1e( zjry6*%}P4T)o}ItYPgk>)lGpmxA&3^4W5?T$M8DE`6?vv)on!(MuRG`eP${z%WXp(cj114n&~Q2eTxZIN12YU(y*(ZUQ4HfG5Ah(As3q9qV_U!;{yNOl8aaI$YAgX)^Bq*R2sX0aghv*3vu<;7AEchusi_=-q%apbo z{0pbj76EziCTNsW0?ie;f!OfnN{@+CR(dEqmtO``5*Z&Nm6YB6PnMW*N_hl~#r3EQ zybFYKz*r^*YA8*jF0@o|<@haIvfwCC@ANR-CFm-g@9SfUkOrB=$Tm;Bi$uIgC&Psi z9VWTG*YtU8F+p#!f_foQkp#^;SJ0jBg4V3auh}i-5P7JCgxb==O^CDBh;%p^ueZDS z`T&4k9P?-Y<@UmHR~kID$jThB%nzx9PE$093SYXP$_5Lt7oD}x%iRa8Eum=PBJ{^n zh@i|sA;Kn;LBJ<~elwWaC&cFk49&5+Qi58%Bq$|AFSD=!CkYM%)02QA+g{$IsQWH!y z!4G`sA^&B;HWWvqrwD$8L7niQ0RD?46oSD6vTWQo*nNrx+*$NRxfX@p_e~wzZ|Zzo z4#?|UM=ofNl$hP<`EoWVbmWj&P$1$qBef*)kh%2Z?{-`f{@A8w15Nwr;>xkTx zk00=QV}686c@}uuJ=({*O-tqLtU!cHLEY5j@-BI$-ncH37dUZ5GOBh#9M$Qal$XQf zA9Z(#c5_|new`aB7j;*U?|9-ZlhG14S_-;nNo`Pj!jRetgs7X*IYperuD;TNMtpTSs>U_U^a21ZYJ9W>zb6O+ zEKPGoTgbFBe6mx@$XI_8Sd1yi3t7gbBYdULQAo-a+hGyO?v$y+1aB#1$Ydh{ {@ zvVL}UI#b&67coZx;J*_;0WBmU-@IKWL@60+CR6;F9I+s&MM`~Lx7K87EnHsT7!|RB z-SUxvzTjTxcx!D)QVZ#}z9(JLekdtp)-nYjNQ}E+dl7;cUhNR!+-0_8YspvVu*&Z* z|G-BXLL81s`M8IUFbB8Mm zyQZ-D0xSa@yWg>>66%zC>R)&BTh?Pb6 z1|=QXfnMn$j9So5-H}Q-3rSAKf{LUAiQhsHOHb0k+ouQSVH5c&R0=hy^iNQWv~Z8( zv{c6_#7AlB6X_SrLq?*Pgnpr0lFIc%@(NaRP?$2r#Y%t-7X5fqtn`3`&>~iM&cY%* zIq%XErs-xHLX6OeQI$e4d5;0pp;?JaK1~;DLdc+?S_qkDfe5+M!PR9PCr1o%WY6&I z&r&`}sc`c~m#J&#uXlTp5_3Xx5w@HrpCEj{eEV zwfdNw&Ck-MXl|_gKG_YnW@6DKD6fe92vyNHfkZ}i^A4U z6yJ05NIOAvDf?WzMf8P$`S7t>?2P71eE7N}Z_+C1Ra>Bv=g4NsY>A7^?>vedl)^4C zf^;Tfo1dg^r+?g+b-dO14dp9yMLrP=>+Qf8|H4JYy+d}4_-Q_fmjpr{kOM%Smbou+EA%un=$&rI5n0^( zv(k}UdY9waRGMBh_Yr9rAL2^6d`O&k;!@wmwud8k8+td@k*}Mh%i(s;5w%x3LQ8!F zkM4pRW>TQa&{n8E$SF$8;POKN&=OMc8b-$GZMpI0vtIyimm)N>3&rfOsAqmEk(Ok- zk~MeS2|Q$j`1>&rt`O-L>{CqrqJD<=Fpjq3s4R}m`t{dehhKjAWq9%8h5Xl2{>Rs2 zC^XnflDkW&Xj?7N@Z!gId$vJxSsCFdIG~>oX##ux{Q2k@a5~! zOoa$|Jzt0Te;e$5!obNiGCgdbKCE{qz7h6*2unJBP|^eTw(z8#c28q+-<3dX{wgnf zVwgyH*pwyRa&|avC^3l8C~jeu?pqO?Hkn~r2>Opu4L&tOjwHN>l(?ejZ=n;%ArZG~ z@^eylH%s3vq!a;ycbnv;E=!8$NH}thr%r3{$O}9VdKm(M^0YsGGw55l@0W(97~*kX zC`>>yj>AvNRd%D($1B)w2Mq)0w{4J7nFPs&Dui#!W8?QmJ{Bc;v>BXtHmzO~W2rC9 zxtELMFqmI?k-`%xwo5~=6bgZ&N1SHp!-`>iOP`S3#uVrU1EEB3rvP3ab!i|AE#Ap- ztlc6~TEq*l!kr!yag-Ol{9-geuu_D6k*9D0Pt+qFN3hdZNq(VSahadK+!1(orWaC< zUho%zI=5N7PqOVp6_fneZq-ouD4{g~Ks@;iErR2yE1=K|yAsA>*$M6-Nurk`;sn19>SQlsMWFfM}6%crIFlYyQ+)7 ztrV|Y&FfLX(x#8}#q2`&{hdA5Zt>F-f4szzw?v5e55eq2<7<&XU*>(ie=Gm4U|IPz z4)~I46y-@l2rNiaqr3{O#e8fQHmR6h+kjLx?vM)&ThvML!GIQaOC#czU&fzs%96Wy z6DQkB!Ydi`0#^5A5=oF`iwV|)xZfc>e^OvHxSBOcz=!Rmmv-SZy^uB@4h-QAltc9E z`(lY#0*xBuxt+nSaEjCz*$pFF6|Lz8O~Pxsy?}z8)AqY8wa>1nv_Y;1VFXP5X&+>gxFoEk*@@G zI9V>R!yL)cHN0r{OgP4z6X8*So4%#WAI|;md*lR=(SB#!85QxN& z9DEcYfm46|sgL>x(cJm&501OieF>*O=p!829F3zLBy+7haW4sX(6t>RA_`4-a(ei+ zl*R`=C~8i)YeBnAd|CF1(2zBJC~YZ3cI+Y%)F0t+@wSvMgmEFa2K1&7iCDyx>4axD zX#y^`Jx)dNVk_9k)X5*?GYZUD5%5g8z)Mz~7t1+*oTQaukRusA1UV^LI5MTIf$4Yf z-cR-!wBKBxO4uH%z3+o_DBj1xA_vhYk=c^FGIye(W?9pY7kak2(*~s(^$Fbi4kAIN zFpwF7Lx4ETAMS)W92_YNe59M!Gebe*lB$>)hj^6bXET*F%%|zgoAi_a3_DZ2}LA9*-mR7YJy4ZBkf))@beHx`4)Q&IWsk=na;MHFLV^v*&F5W z#juq!bgPpKc7Ayl;zIA6Gu@X${uPlnh{+tLT}5C?Cf|fcPaBZTL$PfoOsLfv@tlg% zbh|2j13b7|!bD#_Epmob9u0tGrJoLL0x)5Z&?4Zg{e3WnNOoTDl0@QVM~E^c@A_a@ z2#S!u{N*ph-~ayi;r#sEiV|pYq!!0(p%_7dL8pQeHC`frnvt z$X2!5@KTuI=K~J>C2wgb&x9uocba#FC*Hmdtv>F4`1|_bMkncGAL5-f?t{N?`riUx zb^(X-+PZ~4G&+#_tFrcB3kn^T0tAsKegU|H6e#FnXXg`C9LX>fDKs2YabuVz1d2hq z;5kmx05+MBKuW2zDJKU?UTQN)jVVbyF}02Gpa3#BBk2}|5ne%`tV0s$B{-7gNU$mz z`hjiyj*GmJ@=WlI&+qVQ(B-CAx$nC z%(V65n!7~&wN_AfI8MGE)K^J-ndFPrb%7=AnsafzJA}(Lc?s3aEcB^kh{@cgEiz#s zC_`ZD%njlvLJN+ps$Mmy!25dXM2H!EPL9O_FU)%OeL7j zC7hzy<_8az30EaG7_}zPKU|LmWDzA#DIqO#0xokDTszId;bvAoU|OCj58AQ)=;`C( zX)CGtu?=*8krw893s$wq%ia%D~pjy>`p4w z*)$C)XNeio?1s}|;c|!@bHwI1UOB8>&MJWenu zlsG*t(X{M9NCP7WOhEaK62Z19`F1o{kc5M(H03p<{g?)EqdtKUyaO{D4h)_k;d~kP zmLH3V@RHTA^jm0TRDX0sdxdu*p}f#V=NcfiAf%nW`q*X8odiCbNcl~|g&zo-cmJq- zwO}o2oBRwV1Urk>5A0AR zRX8oCFfD#ihk=Qi@84B;LYKFIQuW$5TB??USx7TC=cxqAYKyM^q# zGTvKI_M^O?AHtO=j(ikgrBBoeL_~=DYvVKNEDuoH1MgKlC`5MJ`J{Xy=a4lC9c7EPf`HTp-+kC2f8T*8t==Zi+dB4- zp}9}L_aAcKm;Qb5Lo~j1*tny(PZ}N~RK2n@Bo;7rs+E8os(X%mW}~L;ZlgS zop4$9qDq2#S@s2(n!s`lmnX7N(u=1r!Q|yr>BPbqaY!V13RnA0{()pFxZxk;KD%`A zO$G{WWCO9phY6NSZt@9~7sob! zlDeQu7o6au?737kM-e&KSGC7yr#f!>k#@UiPYcs=&Q`Cyn(8O;Iz|072_XM3#AHP) z>>T9G)dfVx2G!0)!e*cmfcqW1fT?lDixjGVQKeN$K#s?$O1}dXqqgpMy$QCiU&Me zyt(s&v|R95apb6;I;(IzqmU5c*qC%%<2p_^5Z?Yv^o-TqnU4c;Vb+~5*lDuI1D0@T z@TU(*lus_0w=F*kV5cftP5GgCETBQ5ESkIAU{24TxQ*BU7`Mp8xP=X@CPj!PBoLfa z@}q~d{I_d%>#2-%SDcR?R}?-&XNWc49#xwKvuf%75peIt61N7H>IXPB!m}LH-`TkqmUvxI=XB1BANS`m=CL#&%c^F8^hlR7O+#Qj z@xH-42BioOaPYG(6rK~T5DebHyDv|rW(g6D`>;&rGyOPCehTl&bMR7tq)naEzrzup z{a|?%Q&_PD(JHQf*x4WPgBC;{-h4LNnH{pgkzjg<45g>~4%#h!z1jg{aGSPZXhU`& zDnEFQl8mOUa4;$pSZ`NFbMW<1t5`p1tSdv^yrJh=N~smcgGM`fL# zUktBby&hh@dNur0$8Ftk_lRob(b3XzPEJmRcjG%rVCVJgH#)NM{~fMxZmbM>_WYT5 zp0G=#H<_nH{3c$H)8qB<#KrD$?t}Mn6F*^Zqd{1Y*VFIaiIcQ54ER1Q!zMc<;O0+V zl{W`_cPWC|fH3MOT36^{PMu|TA)XY`bAqoY;0@nE=++2HxWpkqpg>`wZLj*caOgLp zmWfIuWKO^NAIc*hURXlzOmCRZFiy}L#G($8lxz{J9=1Ok!k|I{=wT=f7Z7~LaJ=cK zlK?`J>Br#$iit!7Th577TTCKKw3c-gf+dZU63B&sLT0i?5>VY_f~pP!nbL2#&zFOG zK4&X1mD`mZJlwLkrG3bqU&B$yX$8>&;uk;AFfJUI6MjgIjM4*?VB*0~7(v}n5~`O+ zy)Z^l`;954b0Hjjv|2?gbWOSRd*snyq-#;aU;W7s=bo(lrMFCG`BG3Jk*bK9p~9go zQnyHo9gyfF1ajSTl0qu6fGUnt3pa=|g|%?=+Y>jGA5k$O0@J`DCS{Vo3?~R!z&q#x zXHT~Uzfa7DJ-HrI0$C!XGLR?hT@Tmtm71pNgA^jC-)rGUjGSI-mxvaK*ac0b#a25l zcoCK1a$g_ukR7X`pZ??OW-@Rme#D3$u|P}6IVJp2dt>o7k<@;QLgYvvC7nLi$4O7M z*ma`F?vx-5U7qN3fK2AMmq3)?Z=Y^W5e96kBdSG$JKG~usW#F3Qs0E2$8E`9VyixR z;ZkB!Q40YR8YLElGhP>zsKg|3#sb3%A3)us3l5HJc(U4M(+$eF#2^l2 zh!IFEr!sd1qSjNO5gHgt44jOIjgeiP32E3BLpTa`fPSzYEnwLP1Q;qj7{)0U3+azE zmK#*;M4_|re~Zo7Yx&pCgfN*TO}|(A2U18<4XNM;K))rv{YXH5MT)q@7LCkAfk#xr z^caO74Cx{9r0F*X!Sp8@F^?)r5q5v*VJbl^D4-DGE>xnUI3`(OQ89yTQpPr2$CPK^ z5IO!$FS7tz(ugRcB0SRYpKO#No0X0#zrG#TT1Q#mU~@dV-hobZJo%GTZE`r)2~X50 znfx&wm?wphy?+IdG?hYOr12vR&!++(a$z!(i5t`~1amMyc0?2_G6^G3*ji+DeTlpk zBC>)T=w-VTw!yZI$WPM2rd(V*9O`#DjZY{_<{nc;le8k5erd6)&sK^=T=GtO<8hB< z;V*LM^p)1kU(h=#v7yQk0p`PVY|*lqL5b`b$9aMp`3Hw!{W!YtZ2L#t$F>m;h{xD|P&u7hJX2$xH{Wp+}g`GY0(r#mTlScKpYOyfWY9^Y!- z75>)9pA^_q7PpcGGETl5;f7_H5ox%}zZG$~kr9Uap!t@LPx8AHg(3rK34-4+)!o4| z2o3~BZovyU4bQX+Zf_y=hchKTSyAdiIr_^?r$|a(AkM0Ij(0=wp+TDnsTg9iK|6kd zer2X)A6a-Owrsil%a~=i>jsKiNl(gD`VLncGEICMU)BNJt@ILQB$WfgA|(vA%P0z< zL?c4~6tLr{uELBNN_evmB-H}%xJuf0;9oD`lNBNipr2xhpNbH6e4q%SlSUcBZjc{; z{C@cU`|pMye)vIl-21_f5sCuE$;J8Q@bc-a;Zzr<-$?OsadEDCxbuA@&z?OSo;-PC znpfIA!tq*fq!9UAIf@IK|Mg%0S(PvDgtDT(BUAU~`#$(P$UR7K4n7~t1M!l^gD~`a zBU0*m-)Z2kEdWO!SUfSP5D*>Teid_+8ZR8g32ZvA1AmGaJr$7s~EQ_H)W!Vt7=9}~_6L2G5(9U{YB6U`c+rjLtOlI52Y(P<_hKJX`{eW-~ zA#pRu=?`*+vVn)lH|)vv&=TlnzfXG!ZF zPP;=Eyqv3&p$ysRUWJF-A##{Y>T`XlgKh`Z;aEm=S5pvZD|3CBJD=+g5stXk=_JcX z;(aM148S(jMA|q0sa9GfzxfZP_XSA5@83#Qcw4QAuONf*QVpX%;$iW#f4aIwyNdd@ zFX;ELe_4B>(8ua2(}r7MjDaIiO+Kl`I1=;%mcL;u+>T5UPlSx^3~%WplEkdZzRi)y zg;aWplGH5{^o~#QKSiPAac8A2rB|_0!2JU(EUZB_QP0mVHDI z?hvF=kw?lzg`rrP81aLu)2MLb2TSZC3!d}=uFI*!t+_&)D8xidLBzA|l<)q4%_vw> zRRnk_`5>|hKmv@wG8O1nZ*@cvUNJd_0*g4nlXUV&SQ8N*A%Q1kKjDpEhZO`Y>a%tf zZKO!sT(9JoQUqm)?lhZ~T}7PW!YM6e?Eq&z^WGwP~0vPzr?ALfq&_yWSxv|QF>Sr;u)>n@fV{V^+N4J zb;EZdsm(a=l1sd6Lx>`85~aKgln{seC!J{hW4uAU7AEgvQ8S=ehXHtAv zA)-ofE9D9Ijyx|rN3O0eecaZqzIfoWbnYENA;Pg(C|%Cqoa-2_)$sDg%i*O4qgO9q z8Xv_8J4C?y7*i|eM?|Jk?8ncBlH?BIWY{6Q$4^>)8VNfTcY?h|0<`<=b9yv7HaewI zzYxeVA)vDx1xD-wsw6v-A`vf1R8yO!h3(DaVXY)%)tEozi@Yl zAD71mrhSmm2h#XL&{H0FOYRdGO!>%0c|aPPs|_3VU2Bbxj1e9uWP{3Nj@Pw#VbCOB zxO8)lgaaC*aw1Shmd7A_GEsXX&`#nPd{9aq&HmCThDT6OCBXa!G#3Q{~6KVX2y zb2yyP=-(3)B73;Sy9d3SS|X%f>D}DSw1eljk?wSyvJzLL96gg}Pys&=MbdKuB|=Ip6AfJzSmN3|BAp!RWb8 z*AR^3@t0a>Ig)bP#}`7fkinTI=Ub#3yfmcbCE%sim*C{vu`-Gx0FRL(T=5I9awVSZ zaO%BHV@LA9>U*LXxkgBQ>=+A;SCMOO!cpK@?i;+wP29{;Z-W&o7Ls$*bUu=1=DQFz z*p#8JfALd-3T8>A$FC?6hvXfMbi#xpQNBAJp~6*>LZ+m^ay7PKQNiTnkNTPU3Yx)> zXo^SV=Jy5W7b~6OqB?W^@>0)*KEhCCInvnu_-I(19Sld^O5r%CTJCk z!VMZ)kQ9wW!rLd;V(y20ydRp*eIa2Xggc#S8@i8MqIIzYqsJTLd`&*LbH9U8=4v^r zr$~&C_WW_DIs-$fzkZD7EQSR7GE+MiLE4*JwBmvj7y-|+2w$|!Ry*V;g7_gE+XVdM z00mNy;8nK!9KFlC@1*}cTwjwz^XtwHx=ulKFzF6{1LA18;<`pFd&maEqlXh_Y*YML%KUx{`_|fCxSc;AX+GiPG$gTmLogds8a-rk1 zI6CX{;&MQ7f?|c^wos;^93kwblpw$8()RPq3#UoC7gENc3}IIaPjBwa2l>jd9v}C+ z^87LQ4^6YDcV9mC`JDU|?g1&#dt^N?;rnR#vy({*)vv(BPun>5j35ye5WR8+bxTADsuF`fr ziD06PP1c5t+(HS7P^Z+9&o~Vimj~k!sK*N$f!B}{nwa5FU&H%kS4~KcbQdS71*l56 z$g&_NUa{e&gqSV6dq5|BBYe?6Il&k+*<>36E8+^!b?-sb+rpm_!XOlRy{Gv!zR5-`N83cd{Gx>4`h?!5I z;02PVNh|W!hZzUb1&GyolZ5U4c=n4I#96b}(Mh5KQrb97ydaIJ-}NLGcDjv)2RfJ% zm|piY1}9RMkg@&4jHqtmPcQ`Xsl*E`aXLF>%ETEKpg7{t@agCCNuZ1*k-!1bmujK# zs0ZM4#`{dWL|k0lTgjavR9=_6F-(sIFpd|o{a{%LJ{ma^RWf1W>Yi2=9ZV3RWx<7Z z*5>N@Kz~-t`tn5!i^8V-5F3Zj8JfLmJE{8tGM7~?ZAx* z%9NF3RoPW(78LLTXRD)9*3vBa)C(;llfYbG(6f_o#|}8XcqDerx-4XY$9#psN~DoIWjwg%0^p6(TIoyw>o+=SkXG{(qxp#2%QHgSZ^4v>tJUQuTZ>!GnWoa0Q|68o?lXnDgK_u%`{MLS z8K-eWtjJ;CBc_yQY^|2rPbd9N5(x=vS++?B3gp|}gi-b5WCd?XPADh=)MFvRL43fJ z)MEivOYA5}RJphiJZ$kx96jxiv?Sd;3XFjnzwVh?U#y3lS2}6sm)FDVUtSD1+Ep}@ z^5f|F>2Uh|Y=YVoLNQ{+!Gi%6_4Ob$HXFu;tc%aNxZt7$vcx&VyXap zqe8F=UyhqG8`aO@inQX_^l_5G4wN1TDYynDV4tyMy&~=-e4&2$RU6;w-byPHtyrYx zP&?+@g)OCbmK%L10e(tG9bbUGd~@s`Xa>8(tDbO_`cI8uE(Wqj5C_E{%^G;{JpXVGfNo)k(?;y!0DsCf@`H%atBkmDshJJ&{Ra!CS+haqU8 z-o7eDn9$gya9gPXVPF`GQ&9cW{Ijfy9s|f;nI|c1h*gsT2}pk+r7uIVgG7d;-DBM6 zhUPeSV8(!syU$02eWu@$3?hv?pvrFWoSgJ{y*tCdPJ5ikEY^$)w=Ml4#JN z%4A!+-}NG{F<1|7>T=WuIW)ln(~INsl7z<)DMgHDm@rJZAUH|fk%qn94->jDvOSrU z?=Wh?8wZB3rIn$!VX7xqlFBxlxP@@Aot_f2;#5aNxC@Hbau?p>q^rm2-5G8>17sK0 ztKIMtDIhh+$~&^ncp--#w|6&c%|%RTOd7;@wEz?9TJhrM5CGX1n`wlaHWqJ<_;X7--2#F^~hN&@sN^(l3$mGs@x zYkakGY%pBJJ`}Hw4h=t3N?K_Ll`$pxYA_Dwb3qedm~b_J($Da;6QkHUh-7fF$FZA_ zSV--lNpRYu)^IRJ0oDj3B%qPgu~Zv&b4A2`|A^d(>w}mHOnVf)2jXUln{tu6UqtKC zO8h$@#7P{Y>v7equvS+9^#=bPS|Id@JuhA47|};PFeoS}M5gH;AROjpkFK z6j@6lvfJozB`HE!lh_{d?RVi{_>o1;zZ7e$Ome@6hhYWuX&{8;!Avs36Rm^XUW*$ofWu3y8`PLV>;r#cXEgj| zdn$ZFZj?gr>2XXb6PG9ZBQFNV`qGU%U1VS{KnpEStDGQ)l5D>7P{P4g*y2D4U^Mhg}7g5beazG5?Axk}8 zuZF8Pm%7JnF&zJJIy}C*)%`d}x|8>@E;JJjRu>^v zzcDs*NSg&#kHrl1_L^xy@SLC9l7!yf%G zM(Blor~X=cZ9V=GvTQx>v%#gEfs304ApcHVSzw>O-5)qAC{5I>NWJ|MSw{7+(8)5HXhwxv237Fb zQIZM`j@^PLbig@1J@XC|AIGIj)-i-74sH}NA8RsS9~=L-ikEz*+%nz!;2A#IDFK@P z-7bM@NMBQ`VHm*J>+6N(1KQhbjot`6PENo(? zy`OwiRZ4PF>U_----~HX6grPbLQu;SxIvYE&RmA0@>`L+B;kUm84-l0;=28$0umSj zZY+5AT8hIXDwtscSb_}lxHe8ONGde((k?_IUhnB}dob}JeJH+xd+8?PA^bzIn$})m z?``go&nQVZAlgBBk+t1om>)hRiqDCZnFt%vaQ?bDm8r?`+eiS}mlD}??x&w~I7<9Z z@0XqFoua%0*eCmm{&&+)jI{42IBxracR%*s_!H!FNgzuBJKYbH7S!6>Eqa37or)YyHz2n3SQ zite#X(2}tXFW$TOHR8S_WA4L?KM6Vq0gGW1sS>x8aq^+Dm81V=d|{=3PP^D>9fD)2 zwl}k3DMiRqM;jg=>!NN@yv_`rFf5#h#JFXIzY>PkIg_mfGZvKKBvlB?0+~v}`;44H zQ+xu`M2~w!Hd21vUg$X&pIT&FUur!BB@W7vTucj!@tX`l5u(-KBOP)lvg~`}jCK+o zA_1(%gdu*K?JBy`F>4pY#p_GmA2J_~wIhnf{Kxumd3&SO){4iAL@;DW$Vvc`q3+v( zEfYy+>IFam1QclA@MA#6q#eHWQfFg5uayoMys}i|_CQ|M7W8$#+a5f{B7o5pPEEHuk{RJ;C4~t2%sG0oD<2t`WCVo5ov_6D zBzsI1UrVbCD*+v3l&azSx!ZK z7u0(K`N9V5K6m10L8oE_8|4Q!b&4G!dS#R_+Y+^TY*1mPI0*mZI; z9BDE#`kJl~?Rk7#I(=Bif&X-;-Q#^p?)&(=5B??b{$=oTxbct1>peyf#~33W#5o9j zk9eTGN8B-`Z_gJyMAScM=C;s820scCKXNl58Ac!Ehan+Mh_@3mP6zim0unDHrK_UI z;nA`p1ab|Jm@R(88`n4Jv@kq(;@km56octxWg1Gl((Y+LygPV^wBY1jsRn-Xfv;p< z&ORpvnuwol-{I>)6G+bALbMjTa1zb7e%{GkBD851wZz+eWp7l|%SL+J5JXurdITdm zstaSDCr7Hk!2B9j_;c+8rzA-@1}|Z;!&C7*ZaPSTg|C{&f?I;IG6zX1gPeBrq^sI3 zUIkUhp|C?RBHRZzvAw`OZ%r>9HM}}9B-F`nZq57mM;Hre4kE0M`)ngF8GC zhKw~wc5qIF3CE-zzUlY3l0YZ-&RJ70uu+|_fnU2LGIuy{hlKI9=l9F!AF0zbx92T9 z_Z@vfy9)wR%5vm9RK6v4FcB1Ud@%Zc9N~NQg?RZCM$$@f3}Ql4@0Vj);@A$_qq<03 z%wDp4-oSDCV`Q`D=poO_VxgPl_v!Zuj?yZggrz->KgvPj%}g|R=c+V1*w}d&gSr9l zF@pEu;cgtr-v<}Mi8W4V&j(T;R|)Qe`rzON8a=epOj!rt4PIS|P|H!(q}07^4d7;c z@;H|wWU=HfB-{#AfwO>ht7EBdFLuMxayuL!9S_?xy;l$pZ~Pa!Ugyv}%zr-PJ;E~! zJBqC#B}&>= zA;1I+18NQI+=4;NLHuM#QKEPrt++X#7PuJ7zU0(wn1b=LPVKaI#M8+{rUn$ zwN~jkmik>gD}sm&#+I`aD}@3J|NFsK|7Ql%yVd8w^#ApTn@WqxsR>{ zKK5~rbPKUVX~c+tX@ZaRRaOlc`x57CvmZnuLZ)fVEO2~`AudV_lpfIFl6BnN?ZLew zJovc>BriVCwA_g(QE=k;D-WoZy(Q8*1wOZFvWa$34Cg)(9eu$cmNWl3?KJ%+>Zz&3U{K! zh?U?zUV#-*4KWY+DkLM@{_ytI(|S9vnGjekGo%^2-j4=x-ybtmdT6_GKBoK;oP|(= z%pI}{1m>sF?xQp)BtRTPfC5XoGtU`e)HJK(Fo_@(zaoIbV2(oMSnCQWN5fLK?>p66 z)MmvZnHHvH`zR`1P|doSQ&uwG8KGmfIL?H%D=QSeD8H=)A z4mziq^NS04;Sn*-54KnOSX2)eWN&!*x)|QH;KpJb@Y_orfuswwIhJK{%NmI&kYr3A zP5NVg_SyRw8h7Ia)#w8}bCvAK@5h^rUHO&6ZUmu!i=M@EPq$Q(1}jz0o>lqsP@dKb zm>ao;Y&n`O@oBA;a7!8aV_nswnby1d`C2IBqQ*i6-qP-~nMym8=SPX9G;)p)PQua- zd?-RU^5O&l8LaxJMP7D1t@WXCoUS6j>IT`}N$Gc^`hr3vo)xMF9S^4kSt$Zh5^yLS zobztMVsZ#j7DxCf&)l!GRDH7ykcV(dySU`Xz;W;yoCegtN@la(_)g)~b*}XZ3xOXn zK<7H{YPl^6kt5Y{9sk8~Uo$B+t@NP1&>*$Qz0&k(>Kv>zx`+2l2}TZQucG{xjxUIn&zNnsAD0W|Moo5YR$W3NqDQu? zuQ@1vwgD-fv?)A{Y=w(jcwM`Sv(`5G6-*3v@!e`?AMNn^Vy4|%>YugiV<~0j;!?^G z?c$p6qy!-fbyvGVqW+42u87zyq(RwT2zIVM>Oyw_ErN3Iw8waR^ zibJ~M&ts1jn+BQR#VFrueD~dV4hI+Ih&$(U)YY{#)_?okUkC0GdHwpel^!Tg9zA+w1qw7#lKksm|MHVN zP@oMx9uy}r3k&j zn_wnJb?^&3f-p7K2w!PAV2o99BkF*aWmjUh`kdR4k3J)(2*%)fN8K3@ z{z#{%LzzU`-=+P2TuoS$1SSdm{v?onJ~_)C;zM)U)A-Q16aLpF0m}N|K=fhRc+aZ# z04cRvtu*hW2mC&kQW>(;;?mLC@o@U&Y|V zVl0-;LZ}v-Hu}2Wk9KWr^o9AHlTS!E6(VpDleZYd6^Pd$_yaeM+&TX;SZT0WztLja zii_0$d9I7p^&#n-3oT|}4Ywu-M*EhrBWH#Kq(b~v~K30{Yr>=9{CxlG* zZMGTdXBuxq{_rqnFg(1y^|P5zW4S3JTse>{$}cUT&yfwb{1_kCB*l`IOj0Vb9;u~% zJu#2Q7i9!T@dTgZS5vcvXf0HS;yD`T+I0baHvRH$nw&&xP|I8fr2jQP#1YU>NwFkL zaI#=JtsaT5^gxjJ1Rm-S55by8&a{X+lhRL>#*4HoeWA_~TCe``N?)?;OZijfS;~-| z>Ty&=*)A8jhAE;#Q`KAb>sWa`Ig=t$GDQ(Lmr{cEfli6M6D49IO}W&bd{i2BT8f#q zlzKO6XXmQVSLc^jjx4klYstsf`lG>QJ8|OBgs>9uP7&qh=&??bd3-c1q!?LP**u9FN50Fa4W?RM;h^<3{v?YG>9V&6LR>Y9u?d9 zlXo&-q6Ad#lzpv{a;ZE6VsK@e&kduZ5h_EOc4ePV?f&yrySKFy=}3db_Vi*nSziuEx*L1BzEKSA5OLkndpZgc?iEqJ+T2_Z8{OBvIXNHJ zCvS%BvF`hk{)6>zEt$LjnID~~T^~!auXdomXsNa^KT`cZR$HYlD;syKS9E55u(z^Tmr7);^=yz|Srb6eC=){{8pg8<)b11N z|HXh+dos_o1Yz=27MiVqP$HyblQ!|>jsY)%n7(5YCBy7bAP6NOEGEOaO5BPU4&xMj zqNXu>#Z#kXpzQ)Z95}-K(mXxOO)?+HWlt+9^s-CXgV|+Vqz+QhebHt8sA(m02Qt}k zlLAvJlWZ>p3Sz6bziLrXoye60h#8Z8B?Mo71av(w$`HA|9k|w7!V8M&MEYZyCF8X! zM?OI%Zdi`ZPhzKC1HN%b$f*cTvaqBDED|pee0o6Ei_-?!I*p1wj@97=*M62npJQ#hRcEi_ayAJV*&a%=QqQp zF2;WSk2k}cUtbTG`e5`%3uU+4mHD{2Tny)b*BXnywm;GWHOGLNPcvfTpYQ{t@Wvt` z?oTmUIE@Z6iMO`9v*3?T$>f=j!?(q%9R%~?=yW-pJkhBokFDr5bawyTmt@ELrr!sd6c@U@FM3CTjwM5xb}X95&rXMvXO9LgO~zN-p0lOQ z$Xoo8rCC zn4_^!N?a=6|N7gD;ZjO9WE96`nMv_kcoiKhGDMIa9emupI9?2A%J-w^XTzzK630?X zAm5o3BOBFyVOj7f6=@UvskNC7yRL4KIf}g37sIPxUk-0xy;fQ1NFjagetLAOG6 z>$t7iOpo~4NddAGFS{F*C!s*$K9NCk@Z1~m>4_g4X{falAQ~~+HOeO1t_9Z0HL)83 zs2vJ#n3L;sNg(AOHucJ7hOM&XX^n~YO51HECx8q;t`Q0iyN7{6C4jCKdz@yZzJ#{3 zT}5Bc9UyaEBCKP9nZFut zXD3o}-0C<-T`M7l$dTINLK_4YXHpD4IT=pX51l?g9hOhjhdoxVblf9#IsQbR{=kfu zpOL2z_&VGVt`NB|+o>p^aB*W}uu(`nfBxJG5R?||*Z?PYc3|_M)Zl`36e5JPiv$=u zKQbJ8;6RUuW48YGx4#Yl`@jEdg$N23=%XxQM+yp&Jc{ek4w2*&UNaB4Co@T4lEBw1 z0fwLW@|~e79_~)r1K&nMneZ z1ionr^u5HF+%r5hZyuGt>5~7r%s+HFd>9w+S88Q!ETnrM-0#yE!$Rlx>o1rY(>Np}6(XZaZ?>Y`-~QSs8Ni@={;(pAXmP*Ip1F z^ri9Q%!z0LS36pC7X6L*SnDVxUld;uqc4bV%=wjY8jO!*y7 zg@o+~xk?_#QWmYBuZI&Y;B(v)Q!b7kTj^enOI1pn4)=i(X(6c;$dgOQtMaCvyc$^p^PmqS1tS?tF1iMBJ5KsMWkqA2hK+AW#hUplBBJNza@$Yl!#J5T%BL3K3_-?qIE(kM9yEo zQDF?jqmxHI0_%t)fZ!n+lJ<(@uWr}3!}Ut_TuMsHY4!ScSijbBaasgExz?iaGc5$O zN-BlO4uy!qHd1hIb$7#{e9yPq#iRR2c4}WUDPU$-N|bw4UTabMIKI@MpNU(w=bUyY z3z8fHj>my=7dz(YgxzNvmHRLz_~(>>^`hCAD@lZEn@uX;+e!+-gTlY2c65?ob}0#6w9*h2Kfx zD9xYy`D@)Ta8Ig8|MNcwj@d%V!5{_=a7c&UD1Z3FAB=}W z1e)Nv6S|Ml2|h_+lECjs0v^FM7|75n?5 z!LzGjP?z5?a=g-qKPp(OhYol0!Htu)Q$Mv4jq5HrP@uY-U*fy&Q^W1?@AMNAs4{XH zgp4?j!>cf?#Q3~s`7KakGf`(EYn#bzGtkQ7N#WyfX*Ar)HA!HSz$Af50+R%OzY@q< zb&i0{TQnZZ>v2*UkJ%2tF;aSd?;%!;S13ian0qRv$m;2>7k5ve9P5jD#bYgrh<+-twsBdj$9!pCw%Gu=+wxpgDm;_UyE+osSFvfjieNU{=0uu zj$jhEf8HJYeK9TmT0_r`GQ!?EOfB1MzJwXh$%9Yh!QMB8_^Xotf_yGaHq&}J8+d&KS> zE!uMx04tj;<|}V5cY*BS$Mb2R#dJ;}&IYg)3QK3~O7hMm(d3APLfEAuua#=V@k4l| z&xr?2EqyPFD)L~c1& zlyB~@xqhi*+oW_@zPR)*s}mF=YD=j^f*ya*{fU!QXvyW>A^KEaU&-J4zMNYf`E_}9F>GI{{k_xTdfbP{S* z>`w7mgJNeOSBmUta~#R2Hnv?|2reb9dLu4XpDou?;0Z}bV{NaFrTkOFzJ8)Q|GnaT zH>|I8+R{dKc@SJ_&UBpO68b30OaA2e>dhxBMCf4dGvh&2aujZl?@m&+gdHEbOXNTP z<3GHG4#fq>V6g)P#R&I`aA`W*>oBRnzz-ebr=kO8$DjZFXDdX|K+`djM(zelyg&Z& zk5-~gm#W`af)jj_!0%ZC3>XYpWzcd~>EOe}l!g9{g+*{WQ_!%$$QO{9@7%jBWXx{-Ux6vvJd~>k<37H?E24fdszE5n#>|JI^7N%NDsLe~`3U1cL6stO{7R!Z z2%~<6QbY<7O`H}yn&9zxl$Ag0b57q|n;>x#Z3+7|y?EJY6-EI4lPu`16;zI*s+pF; z3r+KGT0~0Rv$NR5sc)f{%fa~SU*u35kzRpxs*-~m>iP? zCJ9Uum?SVs;2V*EXBhdzT*PCeG7n7t8dT-MC>(PXhw;sU7OS{RWcOIdXX#7#(`S0l zbx`|}Fqw1dPKc%MUpV1QT&+uR_rkS~I=Q~kLh8lV>mAEqg`-6^6e8>rVJW#xl*|LE zlAdk9zQBc+=rng@p^jhARbfqw-ZPH(k^Y0@xNfu{#_>kSkG1ady}kr~u7$KmS|j1^ z3N1i$^cRb8xyDiwsyTiTN15+E2rcAb;Uka!DL~2M!;RvW=p1|H9XwjJXTg4@Me$qh z=k~^MEP+%Z2_-4inM?^Q`yc~ zycJy)vIvTzACXf1XO_hVOp-et7=NWfs@lgXTB`bUt)(y2UXIn! z7PCt?@nh{0Io@2VRjb8{=63Z+@t#S+_>=mlpVc@0s9j$_S&=%^xHN~p?%1JU_&u3V zR)~CvFi>3Nq7U)XoeBw*Aii)+cpPJel7r)|xL1TbMRLc8&m2@oiIRf{Ty}%7D+EOd zJ4DziLVT1c*w98X0^Xng^d~D%P>c{a(}$nr=|l20;Z72mB=B`gz(W!vj|M0H!iCSn zQMDbAfz=a3qoa4QpcC;Mn8A_$PZ0VUS&^Dtp8NpWH%1n)vx9(O#15Lo8uwd4tK}xp z+n4*qz5Z5X2KCQrT3Qd6N=RjttA`_Qc|9Px5hFC_iGS2uczsOI^cJ>Rhympvv#QF`9ra#Y`;hNWO&zzT7FbuO6jiF_p<^|_tEmG-AUG73SmBQgn zi&yhg&9Fp=a2Ate?LlAjYHVg<7C2wcueAd~Cst{xDHe~l%ApisEM|r9$1$g#zX4`V zNtzB{24 z`~i%`c1M_>OgN{>Na;bSo1o-~LPX`V(M84!RDA_gU0t+faJyU_F76f_g1fuBd$8cH z!MV5xcL*-Q-QC??g1cK7zE|_AW@`O|vumBbyH|HFTG2)otqS|X_36pr&xLy&I(A8c z0j?C-SNvTn&yy=webunK z7#qoM=@kta<^@dc7GFh^0E`|o9Eh46+^#V2&pQ)v@XkF>WjUDdOX*L<>Q|_+3S$51saCbt@oc%*wjesJe}5zF|sUmmF>?7n%BNwDRGZ z4~M($^DXj|Oi?@@3JNB^kMm|*;^UupidcaOv~Bb<>%j8aF7rz|ylRYgE;oQ74_e;EzJ+0)E0$qMEsZM_z}ShV%tF_o(in5bVsQa%X*m$_++AenN$J zZNUWj0)Q;hH3hxxHtT4UdDxu)@u6(om&+0ByQ(nPFfbyRkc@Y=3lmMiQw%g?+0SnK zy&4rJL0J}2avP-K*S!=J=tz1HgoPGGx618$qu1bBltn;CT0)$@r3W07r4?mdfQ5N{ z%~=ITth1X2oWZ=OJPD{AY?K->EfY}=O#Jx0xBDGOMK!yv)4tx>tbkXd@w8ZGPfv0- z@3<|YSFf$=TXtTBSYFqhX@}y}t>(o)vykD=ggyP6W|W+2G$pOv<}YyK@RCN3OK@#s zDx|#%@dl(K1eiqYIDz>=`ozsE$O#cZMpH@cUOTj2rBor#WQxM*5%B?@KP%-ukJp=r z+>Qwn#2hWu|IG#hDU_&u0a8TXX0HXHXoGA>uR;@J7UJAqhIhz|2O$WaJ4#9czbPX5 ztZfrWoFD&chC-zcgP}98643c}C}OPE$PJeR4E-SP3lpOpWep-SK-s$PW|{8-ex$FZ z8dTTQg^32MIirVMeh%-RmMQrz#^*RX4u5hkKy;LdcCA>VlLWmltNUh%!q#|u*~CLI zWCdXD$jjAvNB(Onpp&QB2x`}FNy17AkMAWE20Kn)V!<%!*Ms%1G+T|Y{s2lLI(C9W z6=x{MT61@B=h@1{J=xa*_%bFL7NvOC2d=OqzqN#HC&B+k3SHC)%#-)dQBa=VD3~TJ zrY4=H*8Mw?KH5GLZS#y#bHoa8z9*&C?)L|k0({0*by}8T!`I_uuXUahWs$}2kmrF?fz{+sukWKW!Ox%ALo!y^ zj(ImlKeXIePb{hb&eF{oXyfMJq_75)7seEV+LV2{X8O=H*%r`}kbP?U+YIF{NA)sS zN&M>0I&{UY&YF$1PYu|vxq}pG-2xp~bSSb8`WmCG13R&3=QU^N_Fg1f%gotmv9w;Z zjzJ}+=fOKtT#RBl<&#s>i{XlN2koZPuE>-0DhpQUB}OU33eRe6S9NARn#7H_lzi@i zS9U!Yw1&AcYayg~GJ>n9R$#iNz3A8q9h-RfQeH_eveS{<;=aVoY(VT!5BiY(aBRng z!Tzz(HW$pWFhVjKhh~)TrQ_=*{F|9lr1`vhJ`qrc-F+#u?yrd^5rld+7y3#!vJK@J zBe%gW;u-F~=@XSnT1z}JcI-tWD+=yd-aPOn0XrlYW}VOoN-;^W zt~9!^_i+!!VOeCsve#6V=|5IuPnIDjgc($4@)+p6P@~9Fh~W^C?&nrrhfg2mM%!9q z%6VoF{ig{Z2w5^ts6Sz8*PcdL6 z4W(CDGs^!lRxM;#C;h@?DBH@YOsZ!)4_?zN5%enB+c7}tYw0zR)y~&9#&4*r#3a8G z=dGvp!P(NZ@~ssK*7M#j3X5CO{Q4y_Z~$wkL(q5`fJ!5B1JA(7Z&3{A9$YgQ#4Dy` z9S8eO$s-q)6!=LW67ujN>PTfJ7%kV~6{p2zGt7mm z3q|UdEsns^;w49xNT1LlKW#EgPFx5D7M)U?Y-Kh!&Vgg_yoTAjEfS zlNnOyso(0q+d=uL;hrdzN3DszSnMK>)ZvN?HvdZ-d=iLJup)fiBM7C1OlP}ug=vW% zpBu#(Dd9e^QN6?RTfH`;_~gh&?GycK7f^&-JYS1X#XT}ZjSb6$M>^DiqxK&HxrmV% z+u0FGpB;sV+^NqUjv5-ROWU8S;25c?bfyJYifM(&9-U+&?AF&EDVdBtY8}ZL+eU9qTK$#u(A2Y2}eUXZjR#IQ*l*gdZ1f;5ghM?N>f2oPwFr0CU~$ z^WTg!qTO^(Yn~Rz7H)gf!{l6WaNoakseH9g37dOBTgj)`%oXJ(Joa>PtB9O;{TNbQ zy(bS@k}%fMeF&2CS&A4nEqC2%aPzgiU1I)O5V9|;|GhGc0VzxJTS`=;j(Z_T1w|A7 z$g@`LW!7~smuFnwnZ%$9vG5gi`VIY~aTKpIRkuAU1Qx70x?=m-pf_s~MF|fA=G11w zP>UC6VP~`cNx8A?LKropn5{i}23Rz2^)pi|c(j2%$+ zm`?ew5xZN)t4&niA-lrKt9$Cfu;5$$Mkj}eR_$ta2+u3ds!71#G^3EP@Djpk@X_{C zn$owc;Hibv?5h+N`1MQC%|xlfFq z;`|fy-c(!Yi6s2*Hb9oSOQ9uWQcCHys1z^09=Z#;)@26umMbnIJHCUSRkmChtu8KB z{XIf(4bF$|ZA`!DU$mLd)LJ3+U))xTlsMNJ<9!E5F2EHCVfX*<5lE?HL>Tg?XYr(VAyZdlX|;8XPGQ&gF?f@b(qyAQBUIS{Tn5+!CQ0`5qm^BhH1Yi z+%awWKoxz^;(aKKRA+m(w@%*JHV@0{g2Y(=;^iP(;BEd7b-r`u!1V!^Lr2fiQ}RIR zqT<~Elcf2|Um~;}af2WVAFlV^cdl~g?=niSE)ii*!)k9adpBf7in3#dkL6K+b+q^4 z%MZvI{Bn+cD16^z{j4YtATcbunw~uQWf^LjT;2OsBH}}mV3250n3Je}(zI#0 z7@pE(nC=i|$v`+!n5WKD*_^Lyl~z%_ZoI>9`z<)wP_2C6kT!-RGhj zlXlXIDe*Y~mSiLqk5idwHR^4JB^^JbwrFKg8DbbQ>!**oZ*>>GK_5k?39|7qe^A`IH>4=k0lm$pNZ{(PZLF)Jr%^OwXvaPlhYW zX_dKjE}p_K>RT2!;Au>ghO!p_YK4&#&r3xlhUg@b)pJzO1Qe6FxuC)g48Zo7 zlOoOh1u=A0r7DzZfSVHKk_B*@PC@w-Y}X}Of*Dw&==|$J`Fvi4Dlq(sWRBinJ?-vb zI#y$2WfED{Xh{aXT5J@MS1pF9WjCa$&G=Jl8nwWBt@5!(Z~hc@kozzeB1Bt9o9&0fY?%aA75yy zQ!v-V3@(f0ZD3#0bOoNNIEE}e&=r(!r4g4_5?L`%4;)8g%xZo>Ft~yJ#a@hfJ$1@3 zJMz>1I=el8>t#LoN`eNqSk8xM`qdn91DI_F+g+Jk;7;-NSu{ zRWgfs9!m*4@9>vWsv)AYc*oX2R0}2tXeW>$-$-I6M|Uv)$xp((V2m=sVweS9Y20lP zn%jBS+*IE*v*<827l693_{Q3BSr8aHUz!rFZ{dm`)MEBRR^KJfljdXuIFH zfIm2LWlFgzfDOt%v=r!{y#x#dEfQ$q*Tf&Rq*$oRD9(9wRtRn$agEh_SnCxWMun%M zZP6!jCwIAM8q^bLh=}W2o(XKrzCjGYMb_6Y=`;&=d=6+B@Bfry4{`rK0<#@AfZL~g zmjmxHuQ6$VMJ4<=?0==qFvH?K6h(N|>f8enRC1D1Gi)=_D)Q4q)@B@PL?F4vUzrSi zzMIPRInn{dSyCf~7L$SP$)r-)&t-BykQje+3D|lT-qSK@G5*!zIuJlR|J$rGkSe=U zGxH7_B1jC{&7%=pra@QNnpd+M|JzuGF%M~tAOlVG)TX6>BvoZY=-WqD$y|!jdTWwr zag3BUa4Pe;f+%BHCADI)bxz{g&LwH`MhmG;W${N5Km}4p`e&81jO-gY^*k%}riunz z@^KTUMB70kEzTX^d=p2au6r#1Bt9l?E~X6G#z({mE!ERXX5!fuADxhNpNFuSW4ZuX z5GBGgz#>Y(4l6i)5+#k)3?+H?B0%b*5IXy^&$MGIdqNvQUR*<9nfd+7e=ULP*ZN}7;>RLNg(+=!1A`tWXEU|FTt zX(%0T1oU%hrV5GFTxpqOUgtvtCOlJv=w3Ko@T+yx0*zZ))KWB({)y0hVhKGBudSK* zS|lvT9!*69qxe$Y+&ia6>r*P@K+|Bb1PsH1<8ngA1_?x>lPa@Yb~E8f%r$~w>5SxY z4Do6cCRgjR)S}Hj!pF2P<&>GAy4O^aqLqkysYFS%z|%Y8Pd4hDaUK!ZywGp*OuQAZ z;L9+KkGD6Ur`N3yfw$Y74+6jUdriZV7!~Lc_)*mCZ~YeeJweh0n52RqZ*`ZLJI(YL zs5_H!YGAWBU+^@;wN|zI^#bo`c}sO;f$%~TPn*mGgkNryf3b3 zAQ1|11a3|tH;R^od7624xQaBu#yYzvr0e}_va%rho!AV5NF$Xtfzj1=r7@L<$9^r_U$pZJMNEK?(-J91g3k+!fb9@b0ws&JGg>lH0Qxv z78qUIDk%4mJ!``Xw*IuJdEpQmM3h7OmXk<$%9vZW)W-yJWrdDRF{=S}=%q6T`IY8K zbYe(pg>KBH_L!E}w3k-pN)Z&$J1`1}XxL))huV!vB>1*ze}!rDnf$xmqGrPy^3nZn zG1C+O-^m;kx=|()hBKN(ALx}p#qR`!3yh5l$8uA#avMKNrM99lACN`r-H>8v3Rlm# zT}ODV*ArZ>Aio+C8)@_-$BrDGj%-OtCaY-WiL2K_#ep3%y-^MpBIxTkpV8!`?mK7z zy3M9sQS(qmR^R%zCy>=WU|}Y5CcaqzB>IXY9oAB9UgS;9MP*G217oOSPpOHit=l>I zixnETmSjpHq)1@$K8rrdJS}H}=9EX%RDgkUOvL;TX6IzijtA8R>dMjHcGh1TPJ0nt zr$Ry`ovtS9fZBX(B@^9b*RNtFqeoa@<1JQ^3+^|vc3B=Dc`HtfI*ASyht7}ioUXAW ztMje`dMeuL;Wr5o*8*RG__^S|n|YjbFNAHHaOMVG){htR~Px;MBwc9S~a0g*$*Q{Mj_7|v4&y6WMU|T|orx-OQc^k*h57%sW*IqZ3R-vEX z&mvY*$4(3b!(}x5>M0vF%bjTa64TCs6nMx%`nJlZSOnprMR!^_sdG%n{=AHlTX|^f zZ)N1o*}%yAN0t6J5;3c}YyY`1o#t?LN;=PX{T6 zZ@HMBpE>L9k)Nx&{RrO9?z$zEotz7h;_D-WH%OmasG$$wQ;JQMGSB9ufd0fPW)$?- zvlrJG94r4_IzEKx;2p}JJK7hslmn4cV_`!GAq_-G@B+w`cuK6Q0qB zX6g4-!p9~(7ddvqT|81t*c1D3yG2sau>QRfyKTb(Ss>Z=IIJgNF3kMc5VY2n1>EQ8 z&Ep4<0!Nnz#>dC8f_5*i_Zc^HCHKL7OZvL%68wrWg0p#d|3owdZTi25iMWcI-J2A{Z1=ZS(YMv1>NsH_C6EIzj?yB|1sYZ(X>k$=J@$X}U%_xl7 zd=3u|%_Oq%tL;Wwv2TV;F|pBZ2+mnO3eLVv`_{rqE3YE=U<<1O_2r>4PvA zXxt!PbMbF~v08{KCi1p%Qu|);Wv3za(YGv*{8GL=QzC~~eyV2wDIYGXA2A|gG6j`x zu*e$OG{rPhN`XiJLb8ZrDsQdO$?(?y+CRxN&ka%qnDAHxMr3hsKq+qijD@bvH5=kh zKB+kIp10c!y)GZO{FJOT|LWbH*jj+&OPRflCu?z%`pK*T&V}9&5*=18E@k1U${bMC z+qQ=Cb8ZwVJQMmH)$7w#7ox^5CXnM;1?~=*1sf7H?o36X&MI%+a`eHR?|+@0zi7x} z)Y|HtzLkj}A?z#hmM{q$UOR4Qh-RWa6UHJdrRWwgJA!8MHQ*G)u0jT0w0;3WVX1rfDZDKi&!M0PH`&nPh>G0J`T;+Y5Y zLZN*O|0%85_sxA~btvcUzZQJ^g`Ue)n{H?t3QNu}x0H(UnK0a#Jv3SSi#^MYAC+ek5sq95fIo-hJpv=pP@pLqrfd=apGcG z7e-sU9BA+A7bF|XN%puAB}-C%8REc5i%!DDw_*aFf*$pDlS<{oV|k5nDNse3U7_&~ zIc@my2}3HFdeyoX16w4nb{YCVayr;HV(=wr-DGO%FWp-7^mW}e-KQRGEPjXP?8x8#Z|SikGwY9l zsb7UZ9y&~@%rdJz%P~s>wG=b>Ephv3Z2eEczL?r!L)Tv?GQChyZvN--MQC!<1vbuCXr~Y_3up#7QfEw}UF;s`!ubn`}xOEP^$ECB~xTx3z&gGQH zXa{<9!vT=Btv*=CLUj;tW^Z`=^&C~^>v^K_D#(3U5N zVSm8(K7%P3=(4rDj;oOZ9~S%DL>w`(R+y<%4&EK-V3f`#4_-v0PxXPUlNsjGTZV)x z*@k(FS~q~DG5RLF%?c~30^H}jighM5i^3$d!*g6n=@M3MrUn3M+7;^`?T1{*VnV^w zb@#&QzDZAwVH}9J{)wZ^t|$|`%PUunG_$;@weD|JN+-&v0PWR1+qs1g1-hQp=JV^!3IcGQug7Li8tbRu6KTE}LGH#DBC z&e}ogU{USlC6uR8n9cbuS)(E(&&x2bmPEr|3|G?3axn!blYoRfpLQcxJ~KFo*31J= zv51=N%M)j;Q2^xKHrc@~?dI6cKhg#?v;~y1MuZ*YY`DjV9LLmO#~gmmEb!?xTjg49 zvs(F23L|sB9uH-|zyXL0q?tCNd-0}AHo9ddbC2^0eHU%yJ-VhT?&#zVhBnLUT?5Aw z*L~skzo+zYC`FNgf*$K1&*VGKj(l3e(eLhX^c#O|9e*Qf3jsRrS5!7RZZ6_Sk*OUt zCwIO^l!)vbQT6o~Y{pfd@XNj#TITE;W_P8%H-5N1h=j&}x=TeCbM~Q4kB$HG#@~F`2t_d9!FNPVFR1$mu}=2 zKj;{~vSINMJmUkuJhK(O1KCl(md__X>b?fmq16Jf))H!)?2ZSoVJn%i?zIc-g11*? zf;5jdY56Zi7vs0*s2i2$g#K@JC(m`)RMSCyMtH}+lZM1x{9*J3X!3{^&4oQ&i@}t3 zXJWdr7X)e#-uFkzq$U%yd?81#l3{0hPV0KPgXlz;QvLY3*Endimd@MaY43L1N!7@H zJOTah{L}J4CJc)NVL$deXE_T?@Q32L`@5PJ9Z1(!37aN&pEis~ia2qeE^UFOIj1%VqYB3=vl zE-uF}+S>_O^TlZ1ix5>q^mE<>X*;doF@CD%^ceOlPP ztNLa?kp~(qnyR zlAOL&!fZbfLC3f^qKNQ1GFf(ji;RV$+z$GY%r2V3xxP)1pzN zk@0>bI-jg3T-aJ@#?R`Q^Bi{t#`&=dwcbojtImZ1MS2Q1h3#3xk7Ina3`47tZ^{nteh2&xIL(7#$8dU9_jW^bp>e^n-c5dzfXYqL;Td1LoidLyl5Y9yVCt083FAeT ze++mjcd-tf6YM8lz+>*2i)q&i%;2^fE_8ua*mk(?5X`~>{gAyo8z^6?o-(k$d1;`k zaK6dtpfY9Fa8fuqs|P(gIxHf)hBnOuHy4AC7zoeYWtsSz?utN$x8qH6fbif}`mOqL3J^O@M_Il^GJc?9Mz?;qcbipesA+8sB21UKT5XwUeesVnFa>TSSVuwVV$Xld=_(hTGN(^??dla5Gx&p07 z@SQAqqABCV_5=lWHa*^vMo^usu(E4(*~C8K^USX~dyoq)h zjhF;=K5;2Mn`*Sg4`dTtw|P3?Vi>#|?Y4IsNnRjj1%r2^sbp8g4+lG`SlFlBN|;7b z8f+IKa7_8B9=3*=^BLxW>`E4I9~u?~?ZycjmlFbqRE5A_RB>M>Z+I- z(=3*!yrpGGxG4K6)aG$n))ro$ko7r}KQ?_kpiZ`(b)uI>@tap)$ZfAfNy&+2Q`2Xd zLCLZE2~3+DQHOZj|MJ6k+qyc^H(r&;P#2EZ6O{w1*9%_Z z$>HY0W9BNSxy#alPRiE@e z&c(^foDA0&_qv#v%{59Sc zUfuC6mXS3Z51RfpkKA~gEYOPVKjW&r#sG~6k*`v=e zxZA2ILighpd|3C*~;!kM#m;Vq4EMJaoGCm!KdaIxm$&5G4rPt)5LAG%I%+0&*72C(<| z1`YPr8GmQUF2c~*pEDLQs8nTnYyNX}1cnr9q<)dhqMhU@bD8jhw^zfu4@8Yvi>Ac|j^BZgAh{6TN+cjNucnojyW%Njxhp{Gr>_tZ} zG?r_bupkBKg|Zhm_!L&*g8H+HJbFs|*`aV`QZHW2Z@1J&muZNgn=$F>OPm*mCPgAK zcPMk>z$rz{7xX|oT5oj6=o>MoN1zaWv%9Ij*-0r|a(Zc*w&Je&aJPFXHZ8F`lHg_fXY-#f@b8|jQrH^~ zWeaXziOWteKa~323nATo!VABOlSdVM6;>I76Mi`hEjCcUl_(^ij?tJ2gLl$;19 zeqxB&gg~XtQ!ugLbGxkR-SodO*3hH9rZ&a9$w!*a+ot=fpY_#2ONJ*(clg#7^)SQ@ zyjf2%r^MRvlEY@iEn4Cwv8T&1vc#LV*VkE5^fN#=EUp&2lgkj07!~h*J`0{EQ1s)x zX=`^JwHqYLY~u5@6IS=%ZmT+K#q53=lqk|}8$Y|;Q+)qxC_Vt)*~iohS@)T>S0DCs zq(c_dad31Kd?)y45a%a=YllKE@h$GKXt@r6Wiv)qF20d5?0=aJfh z-lzWCxhr*I_N(o z;odgll`X14VmE*QyTg?vc@+}mfl!Q_6w)6;i`R+mOFdQ)D2UVC;;`3@JN*#Lsp{?Y znW=p&(8?CmF^nhBt`nV3-v?$RQ|!M_nL&@R@jX~fnPYmEcKB|UG4_{5mE_RJPP}3V z{WC%kr0S}xIvZ~PQ`sT-?7xj%uHYi434&-S^fTOP`tyrZ1AHipaj(v#VDIvk+%W1r zzttl#g$_9i2*T{qghe~SG>%R+i3{#rjQHw!pZFUSIkSo!J#9pb`=VJOoyS-!R zD0~@?$KgXyB8mbRcaotDyfp@|ACdSCkh3S)%a0S=u^kgwTt6RE6Ep6DL<HxcvLN4C;3+Z{|a^TxHFo{jKj)^H=@;$Bf}(I8J-U06*@b|ZVK#@(F2LUF*+s_ z`3x8mQ->;3XoL@g$UVQ?XP*-OoA_b#L0yTuwseB#yIN9Non$olefbsqWeQb1V7nUJ zcxUPk!C;JG-(m5!eINpqjr8>r%K^s(Rr@zJ0G@ti?+t}Y*V4nsV0dpRwhv?y1TO&u z5O4@|J>q>@Vekw{c)3n{H>{wzA zK3bhK=y5bg-6?0@VF}Q8$eWOrlT}Rpoj}j#Sy|8)H09YsV1!A_YuwhYQ)|Ag>r4=( zIGF^MKH`n@V_s94b7W!=`QrT_9q`*vT-TkJ#xav3__Z>}YEY7c5`N;2Cnq~RhOPkX z-Y?eWK=PmuLZJ2fEQvHcz2&a|04HlV;mu7S9CYv6LS2n4KU!y~4{NuTQE}IyPSK6V zD`K7Di7s*luu+?r>_Vm*nT)jSiTF?0AK0kJdf#q)clU<#CE>fBOMVYtZ^OY%d7?+vPxAXAzrty=G{q!7Mi! zr`>6Ymf;h4nP42F>$rVU;`3Pa+>xirnu}_>q^Q|1$THcx+Z6JCQ3uQr&$PO7?Q?=F zXuh;7in;?{b@ok_bZ@Njwi&f6``Q{u-^*#R^D>^bGI{nKR}pr78>60I#z9T4jNO#- zMy4zc@jFBr9^z^Asc<_?J^?~E>|vP{;Wf-NQq;H9A-uSsQ2`@n`c*hw?8NJj$wl-NuAkS$IK%pFVn{BBEDT;EMrJL^D0RNR3Iqog(2Ct8(zmOs1C@36ClPo zD~4(Aqz7rWf{k)!L#8T0T-WEPqa;P*j2W=I5-Nhs)<=YTQ!9BIvIN#4gYk_sYhEsf zycWlVx*oi6tdU2!`xm$P>|`g}cw7G8WnTDtHk>cR!XsuT*m}fWqrYWqenrO(=}}O9 zd0BRdbf#e0?09i)y#Kqj@(_9X?a%!WHy5M=utvm@M{Xto4J0Y%4@XiG0SNuTAy0~S z-V6TuqGakelwE#Sjfj3dnBa`d%@$#3ER*K$>42UfB-21m4JvZ1AcE`23@l}ZsS>!i z-v_Gzcp&zqg2GszW2BL&hv;hG%|X`^EJ}jFN(4(nf7e7TXC6JmKH#2*ef0slc3_g> zx{N2KCspOn(t#dSIX5=prNTNRbC|cz7XmoFtm7}K>(oMtD{k~Immq~OB$EpO<2#q= ze#0d4%)O2T&txLE5+#I%?tOr7ZWGI@xH)Pxx=#S~GCS8r*VFGPKm~L3h<|82`L6-% z94lOSckLS{lLykjJhRS!3b2TIy%gditEaUP2w3CbAQ)l6H=AW-U9*&J2F?1u((bzD z)thq-OrpRwe`Sk0Y-)wK-$r{zA=81S1hf$udKYGZVpkOHPQvqvUk`uG4Yj|G3jhe} zt2knrHaunq%o!Xekbn^Og8zMVd8n0Kl%F^@Aqu$)MYg@j{s=txOnk>IPgg;H;K>lW z*Z4E>k?OA6XebwSZkaYb)7FS8#E89P{ra`r7w&j)@sw{J?W->S0oOBwbjRZ=u@i{| zGTS$65y;}(^4SWlTL+&sVs36W(g*I?lE6|Gb!ySyQWprXO85P^T0S0!#Vot1$rJGL ze}0xlB?BXp)r&HDw9GxNi7umRj)L9_2p9o=)rE|u>m?w3cUHOuGnmD#TM^W&KsY;O z4Hv0w_k{+IxwrCq_+EdVEX|s*(pl#25HuiP2$W!GFeEBMv!96*2bnbE%M;x_%U=s) z)a*VQ<$y&rF4r5vv=2 zeI#zP@dXWUdaye--&?Wd%nxA!9J){OD$TNYcvt(tQ!mIGLZMy#IR?beO=5j|ENoK=q*q z7B>3<2H^vkLmmFYg`#MLw=YhZ@S@BG#Ln!qwm9O_uaPy+We8S6Y@PBn9M>)m9-vgW zNz+fuys5m=oPv4lO*d>(T@8t8sz?gi+TRx(1U5V6`<0$XZ#1H0cA5xhF z!IR-S=&z8@Fci+S(Brk=1?GMG2i0|DoIy$lY<@0(-@CelY6t^yX+5;NJG;9*PTE$! zHFGCMOUR}*@MA;E$dV(%*^lMk@{DyCK6e5q1?DLperZ568+Q_7Y+5Uh$fo!W1jwNU zBH_dV0&64=2^NQ0wJ5jPk=g>|BAw4v;XQw_8PVp=d^`SO+MS}spRBT*EhMMqom^`o z9ab;g5abwTTWq$!s_MHu_n=yF(Y=heRtuwThI+@MW!g=pv*7VeA2`(t((SqCOQLJ6 zL*LTJ)ftZDxqpd%F~b$VE1*MWF~-D1ZlHM>Ww>$bM279~J(qnu9jjbH(iYR|xH&l* z{9$M~)}DkVuFm$<9SMaiTA}jPo{}I>-Fw~Q&h|*@F@D+aKd@Vs1zXGTHzhlwi;~eI6_WGM%YzwO^7D$JoN|$6=I_Y@ zJr@c+hcA+qIjfw59LHDXbc6gbYRrH6WmP>STE?r5@QbL3^5&)WQ#*YMB@$`MLs`Q);AY(|2fl;}vhJ#*{1!m9SYA zPYOZ1Uw>_Tu8LoIj>|%FqXf`pt2-zMK!xN8i=!LSRw8Wcz@Oslvz80|UVcvw3( z-UT)n*}C^>&f&_J3?2hkoNda+WBF%iaROx;he3dP99aW?MFa^ltQ62~w`Ab^q z(kSo*pdCoRi(p3p^zPz2RPn@y;Wj9WNwA2jgm$U!X5?7i`mx_gjGZq8 z8}DPPR4woQiei5>HHZW;RA?3Ttg}}e!hdZqp}S_xX8+0B=FT@AO8&4@M*4c{jm`*yuW$7^3ZW&C9s1biZnzLP+W4@ z>V`Gb=&##!zv-d4=D`1C+35OVit9~;6eGMZA_oueMtYHz6dIo0>S)Fe4~tfX!(=f2 z@c6iwd;ghQG+=z1N!Z({Q-KY^iAQE#m`NRN?e}S2e#OaO_$B>0@aQgD{E~%~I9id} zTnsftyw%C_x}jg$&ehK1ou?7chJT0F_JZR|uV`N z>^{;9vcoy?WSnw4;7qPP|66>%L;pfJNUscsEQG?&_sn|77?jqGCS!h8$qYqv0=sY( z>Ss56@`pM|+%CvX_5JVW*(ZYHZ1AE%CNp2-V5Mni2KRU1RG+c2X?D6qAULHahM)8U zL$PtU+>+tMdqKUDh@eBDIck6aqYE%vZ|AImJ}SU*6X-PfE^E-A&KnNv)!{l7aA8W|MO|mbvqim;0CAfA%Ufv(){8%)dfRN!Nf8RZvCy zyh7io9e5!1%`is+r^-~R*agLSH6<(N*n5T;3M^%;G}T{|<(O-~p<+xD!LU9ujQmPC z@s;R;P=p?cghF`#HCu=VEoZ1e`;>SGnI7^UxY<5d5YSw_F4$7R^4wf=Dq-ODXmW@a zMb;RM31ym)%tLXK=d4d45*{F(+#Owt&hvr)jljQ?S~PSrdfo5c$L(%=ZRO!#6RXz| zl%&Sb;TK$=XXYkTIU!;>>x_;S246EzLuVtDhSB{zjnMTJ2pBhc(n;v%gbeY}29vevQsb4IkrTzjDOh3~T|+8;;3=FTOM; z*oAI>N?D3yq%)50|Kn6|NCE%+(ukQsm<+tv8D?>JdKusU%2a^-|Jy zV0qS{is>%j0WmOxYsjFVZV#s{1V3}}&R#FOa(r(mIO89bI1gqDB>zMNkKjd-$*nJ= z22KSd1EIjz#C#sieQ~`f7?$a6?RX`p@G6VL0FT5xJ zhgA{t0((s#Y7bad5Bdy1W}=KQ*87xy$NcALEGQ%Wtg`^i2_&wC>mUk?R%n(_5YF7y zpN7n1vtJZNR&CI=U>)DS+26A^>d%+eX+-N7vE{ zpW%F$d2Vr;g>`o5mu{0ebjxceFbrpt99NiVxQi*LPU@kaM{JEHQr8b>9ZNWXvAvU3 zkD|B%PfP>Nhc90K!1xA+95xgfMc@-Zx~N@&`uxe@nx)ibZULkQLg2&2PHqz_6{KCNN{ps&Gjzr&=U$?4SiMBL)S! z^{26tRFKq_s&MT?e7Y;6rfP{oIK-N%F?7$?!7O4v;f2i+NeH-xau9^>I`{P}*Y1E} zYZCFZ2@F~RFZZfxW7EkPEF|q4O$r6LQd0e(7xnQJX%Zsi^Q_8OVpkvJ+w4ZBwE#Xc z@Ii*_^!wXiUF#Al^JoJSGHgEQnEzF?6JBog)aFrYestW6AKh!-S&q$j@<7w&9IF3A z)K`W@y>?#{GUU)PbSWJ}cQ=wE-6ah}hje$RG*Z$f0@B^x-Ho&~zT-L1`M=lwalXv; zyJN4t_S$PVj|V_bs+GR>NzeR+H1Uujs85 zb6#gE2X9;R4yS)1Ix1%&lXXTp#!7vAE6eP1#5FnR@6>U9x#>Ce3vF+kaQF%6=5v6D z0SH0ug)McQuY@z3;rvszUM-#!vrz+`KK|JUaek4GMOq;NPBgm78bwB%Df_{A zsKRDyI#_BWK$WVhFu>33!(%V+vktgG!LsBVJd`49AHsA}OB%6$#ifP%o&(f=;tkPt z2h0i7|M(oXyf2$+eN^s!Kx&a0j;`5Cm5d}2FH7(Fo>rm2A^p8+w;(f^;m5vp#?D$aIy$jT1pZR(Nab0ND`$8EHX zo_zdLkhlL=1*xY9oRpLvlDB#PRfd`n^1XP}bil(|myTy?9v`#HWh`#m?@6D{NZzwZur1f0VmOBWxw|d=#C_C?Ah)ion zi`c9%*_BA?=JiZN3;2j7rbts|@fjNFwnOpVZaOmTHMX_oJ&V~ESpA;aYR{tpEag0= zB!_667<(!ITDTrWM!`~*ii^(lfT^B-%*h=i&8We@O-A`>^w+!2b zls#Ip^1=A66u^73`}S<^mHO#i?hR@86wW+3ZJ&o&D3QW+DDXw=(;C7jwD!e`h)pJk zFXV?e_bu7K-isK64+ZKU8T}qZ!Qa3hyX2hS#1a=#)DaCXJ#rUZmGYxyF5hn7@ zb0_5<{tpj)udPJW0wR=A<2r{bsMPT9GOFhi&Gb!e6tetkI;p%M<`O^_{AIN^`XgXb z?zapb^D^}PnB=UPA{yjNYPTD8tN!d9@tb3v`ep~?*CM^qW=opfk1u;ZM*c49)YSTV zb0&>W*|PAyaWQv}ik%+5k4*_Nxvi+518;KLzJK-E{sFdyShh5_wOsq=kYBkORv&nV z%5Fl8TF|KLGw)o6ECboh-|xc_YIGmH3=%tz*hlcE5U zS+@I~XN1Ng6FjMNJ4R9Q`tEI{!Dr!?cE zVfV5=4j2)HqevBA$xFl1i>R{pF%#0%P}8bREy^aoQ%M{jOX#{_X8ej<{HPjL;47D7 zyQ0=lXL`Xt5$V9J{7)I|U*WQX6-5j15%b-2ZZDT4S~4tMJYqb))xQy=jHop1OuOGY zdP1v%_}s#V@Ei~8Z8G@lVwiIA+kxLJoDe%s6*4#x&C9Av42{pGgU4U|=RyQ!*tktT zV`)TLMpdloKB`FrWYCuV{zGrcg-cv^en589EmP zSEZhk&hJ+Xe}Q~Np(zYKX_)wfcDqVFC2#>bP$pDg;w3 z@k+!W{=JN-cOYJqX^yr|+TzEwwe!dy(qdBz7y2O&!{HLJlu^DFBNc@cdxYr{+bCS; z1y4hdho|JApmKS>|L}xFiXFN(bbM18L+{Gn16cv>N=EZpJQ~H zZwax!`LC$(?^2u--I&j9e{+nrx+Dp;5{XmPIAnth$;E>xvs!+&{dbQ(5)HbC$QM>2 zk0$eHLwawMe4jOXnHM=Bq+Ic)VIJ-aTEV1(yr087&=mU_2t~L@kKPpEw1hzvnv0tr zMg|V^5#EsC5?||NVU>x1w+WiXxhE`&km&7)Gp~*D$684@6#hUT(?~^xn*1(dNO$4Z zsf^i8P%RwwU=BKP|KcW21DpvK4?{7Oy$N6H{)(3*G z0aCaAPi$^ckO2?o_DDd5;Zyk}N!X4wW)3>JjI;JMvjfvtqQxDdQpcI zymqWDO^;M=)}I6cAr`(yYe|9(2}QA}+|te*(g zGyM-zjS`jWzNqgNl9#gZ=QiE2MXo=2Saf1;xO#j-MUG`^?j}6+xX%1XsZ`Yn*k*)$ z54exMJfUIB><>26$!2IvP7Cb)x$I?KWJ9D?3@eSXb`eAwMs>=ac%9l)+qbFT@<|>} zVLjwp5-zAn2OxF*AYEn9h$Od8wygmpOX^DyqOF``!xm0LJ6sT9NBquPmLGto5$S<| zB#qJC9v#>9l{OSo?Seqd;Q`tKjADg!(g`>1qJHzrv}r>DDSVmP_b zz@SL?;uV{IyC^dXj6sjv-iKs?FSZm{QbZRqnNImV3W?H7U(UOurQdWr8)_%rL{}LO z64i|p9GRn_pW(L7Z*MAqXnTz!!g+B4TYR?p(GGse8DGl>RqMf|OAFer7srGUehOj% zTg-@hSF<;K(;7N5_s6+Q8ql#+E>h0(*&D-vE>@_}QF3t0(t zjUb2{5`jg6ksfTvzVd4?!H`gDb>D<0eAKU=`y53%wqpH|PmvS1{!@keW+Ojgbt?H0 z5!aY!+k1S-RVZ4$5h)$@dwW>RGzw^29;_2S3WQz9^6t;xl;m;QVv}M*)>2aM9rXRAvJX~_U%XJC5%vPR6R`FwntKbN&5yF>_0|ysYPgpcm$UUW@^l#b9 zWj+pnIH1yg6;4N(Pec>O+c(@!Ow}3kRKAe*OxgR)Pap=f?xtUQmzBj@fvdHz} zei|`+W&i2-=k;`{-olvE7!NrV(+H&Cd-rprj{&7+g ze{nj#X+oOXJAmoG|3cTc`9t zEa%J>KlYNB=BPYLzyMI=d|uKtqXqv$D!XBkdx_Lib}O0My48kWpTF%Covu@&LZh+l z?sml{Z;48qX7#Oo@^hJ2vrI!Hbpt=Z;0=L?klm&DCCk3@%E^K zld1e-)}uad!i3UAEoSuHUfHaT#sxanU^)QH%gj3=u&QxMth9s!@$s(t%3)pJFX>@S zgO)H=<=q8TbG$-qSG!RkL**m;NMK5K&-lLo*M8E;HS7O`8fg$Fffx12*(H;m@-q{Z zk0*RI#?}@pZ!cvJ4I)jkL>DVPawBBS4s*}ajLTo9lgeth4B3DRiimn;R63m|Xy43t zE@Na`d}GTkT8aHrTw2lgTNhxye`*c*dj-;4KZ$!;V}C~ZHFUy128N25UZIAI;(yKR z$J!r{%fZn`6rNAN?cA%7q%ot(^@1HM;EYe0(CAqW+tExTG^6A9;aAvVIo&2xuHNyH+ow5SgI0cDOUW*bg z`}(`!n4dcl?@=3MO>CQ9XWAyqU9;{au|8AnmyE&VT6i~g^;3uxT$0klrwyqn><TNm3VtKLsOPKlqOjQ{HQDee4uoa1c?qT#c04=N8aFwnws-vXFgSn|xm^IC@ zjscRM`k9rggn>~OW5LHmzUIddUDGPgnNkXMoA8@Y^yIlTVB{SaOuhe7?Ks z-}X@o|A&KxRs`S_O?>uEu2vJZVm$Vqr}@*z#$PYCTUfw;sj94l^IJokBoF%V z=vAO~VFuRraDpUlS34;Jdp5hcwRxkd4aA_k)A1%Z41-)6ijNj>SjA?2xy9jKv$b6? z^p&{_L=^|!t6;zU{-#tO#+YJY8vT*Tr;|<04i_u&jgV%G@GdX!?19uR?*&EX2oGPy ziTh~#f$qrY%}pzv(62qDIqZdH5s{-%zN(xFD!ZI$^1JaY{0~a&MzG%+a3pc^noZPq zaw~AfW-XGX6F5T;wOk2hd1b=hr(%X{GZ!?$VN(LBoHLM&V#^0Pr8bQIi{EMb@B`m3 zZZsK!s>^tPQP**l-%Hj+N|<`xie0i`k!A$o&EWqpzpy5v8>1wfsbRwtu%^l}- zZ&&C71`;n{}7>raB$(PMdB<)Dmfi%qK;;ckCC> zFbr#-DkC4IHyVBDv?%NJN6(Csw~C+p>{W#-tpG36B#Z}U88*XwyJ8Dmxyurpsafyy zl1=#Ta@s>;7hvvk9zZ9YE(TN{Bfm2!}|ty zSNG$Xzw{Q-bDL(%x5h_#2=*uBH3u;7Bf`nc6H2SH>-+DZ>{4?4K)9zNc!b7MV#yZR z{m3G66&WTwjPv zSl78t&h&A3242V469`hWm(o68&_^_4(!|YoB)sa`=ofVB=IptiAfe={HHN46j*Cux zgaW~oF}b@~A9R9YQUocj|D&WfBcWAXT|@q`NzrX{jC_csBI8DB-`!6J;TJU_t1bKU zNXACI>VGiLW-<}zM`dhoqCT|^(V``=^!22zA;&#BKXibU4W{|cglvMvI33j#l^k-` zi}vsO)ZD#cSiFN!GeVObJVBM84?!Q=8LxbOX@bIO3yN|Ah(BTiatG*8sR6oXLZ5## zp%L5K^_9imZTN{qlY)2_;ZUJ+?P8pPE&@FbzfG_=#P}X2Ztg8e70DU=6R|g7)t99W zaQyha6x~>bBgY4&5$Vq~fmhO-==lZ$58N{x7IQko$oD5KtU3?!A9!xKkhB7bNkZn8 zCzH?&A5q)mO0wA%tFy7fx~&-gSdG4=P!<>3=(gU--5zTOiU*fH9ZYo7sNWzVWV?#5eb_gi z`~*(6|M!&{ETLuyZ8zv!mq|YM8yvH3VckVRN7L^q)^~1a+Tc+P)X2(*Vz+A3f%*S_ z>krocpGK)~er3Cw%S9nK+n^$6mE!61mBfg(?)Pn^Ke?<2_P?)W2qKI4b*Yl`F^*q2 zHv5Mb=^rXdUnCPtLr+hKg+EywNKZ1k_H;#ZWI`o;_{0dj(4e6=efgI2(jG=99t!zQ zD>~@{VT10+GI@4ZF&c-qy)iAdC<7^jIV8iK9|W-)C#j+xgX_if4w$eY>ELSC`%JQq z=8TpST zo(pN*UIX#DUA$1or6>DppeSEgN1$8kLsq7WrDX?u8q0abd7-oU6Mi=x_ukc|tnc;F zyWGUh0)3m!u|T zw$t?Zx6>@|$wBZ8))W&g-B+z8!M^Rz_)(nuNFJl~M(yPmYvxKQWgn6#Sw9 zh?SNE|0n>kXhJPX?6hh`iU1d<)`DScgV+{<$kbt)fxMMDr@wb`1m$SQJoW<|Od}jS z5y$6Ny*MG*`cCAK5zFX$w23<$2_yg)bff(%$ z2&(#4%=f-3*rwvo1P*J`jE8w8?hV~kh%6~o8HdzrFUUMe}HPPcCK?VF$Id7=a5 zh3`Ur^UpA;lWVC|E~rkMe4H|zgsO8sMTZFnHW!S(yAy;PJA!}iHf0~{r0*yozR2v> zN81r5DNy@ns>}0P_b#P9#KxWHh4hiBb}>PeSO#&XJl7dmO;vid;+>vhg<=s( znPKi~haZR~gHRIS)w?YRwZYAxL_AfTX}MpP|6{PAcv=g7$-;a>lYn}&_FYiE`o=qz z--LlFzESNZ&c8USSyWV0HWLdycL75`)z;#Q6aNyLBSo;wocc#8 z+*5H(zQ{6a*1YfhX_hCuVYHm3;J+7q`A`)C@E+N-h(G8yrd6_n6P!L%-m1VU_HMZr z69iDXuQ%-2=}uov6_}5+5uP8S_3+aRHKK6l={XtGQSNKQTo3IkJ_;p?6|x-4(PUYD zwDCqGuYfUjiWstUaP8YVwDm+_0TT-iF5GmcBMlskVm7XI(~ciwYeX&5nS9atg)jUQ zuup3jcfeN#uZA1-i{LJGq(6R{LL9{Vi_=MQsCEg=qf}&mLe$2UEYBqHOWgyQ6(nV4 zztCqNtE_bB_AdOU)Y;nM`HK>1WYkCGWOlwh76hl4UJWs0%!Dn8{|(5Sm9s1OR-+GnFm$y;(;e(=catA^o7#YLKMFOgqJK%SgIBQJ+E32Cie~ned%p z=!Ce>9CC2UJxuxKIGr`M1JNQKQ00z`KP_$HLOb1yf7?|B`I7U}q{r_bc4%6&E9S$1 zxUqiTtmeWe-r#HRq0?Xnkg7+n;bA&)yl{X@ za8npD*jW<%>G}D3qTbN&g$s=+3qzd$z#lvX^z}{2)V1u&JZqHw^Lxd?;?MJeNKg)k zEEH^hMOv}+9AO@*RVZ%3E4m+~gamR7D-9+V zzsP{lR2uMcO8E&H7vZ6%jDNQ*(UdbzG4Si4s`}idwBYPszvk?&lWnSzn<&0^Hsw56 zP^d7L+!?-!NlnGxr%o3q z9CuxxSeSJd_1(p{Z)igq88&QSiDHO|b+#@vCFkB3VLGUQjEg#4H z*pVaYM*KUlsQB)2k5DJNnJ2wgchxM*8V)D%FbLRPSNYQ^+v8I0N*lVrUX@V+&U!i>-_v76Wi4S*rvwav&2#EXzpcWU zF0_V$c8!3TN<2;P0NVu8`xd!{L#@FuvDI3X)T5-p#?ptP-vsRx2ME=zd09?{<0C>L zOaGUeWab65x5dQ^;6>!n7ip@9V9CKCh6mEfZ%|rQBrF!D^k(g$hP-Wl#2(YJwOMB% z?9psmOW92B${42g7!9LDeVQI@d#qi>3)h3)Ikm7&@|BRo2KkXz?MpPpEpyC0CUu!lLzk(cMdnrqG!0kSirRUmbccuu^OiD-P8kkitVct&m0eXbvX5-Jl z^OZ=_s(Vflg^Sa*h zgrcEQWxe~`^*&CwjVwgduPr7{)Sq14{>XqvRe}8gB|lAF!-3Sd@(K4kKaq@=!gbo& zMjv3SXO5lpQZACwkLzMa9M)!ecWOLiw??*iyrWTBj{%IKO-P@m!ZnGeR1L#En`gJ` z<^pOO^3)|F73_(C25;bn-7f1)0PhkUkyr#$gf}P!9qSD63AdXSc{?H|Hd&1m#_pGB z*f>z$E?k$61Ug_`gb=q5%VYABrU;)v9=po6W%lK;JLtoG_0Oqu(U%dAUDDwBzP8_4 zV%3dG4lZAzZA}8CWpDx>X(KK8Vpx4wxAGLtMrN*+n-^3e ziR@p_#@&W^qp2jSdb5~Y`3VB~i-O#mgyyWRjK-W#tV+a3E(WZ66V@T#+37g_m>B@- zXtCa--GvS+OUvQ}?L&4Pe(8B+!o^|6^9`IsF~Gt8DhEMKi144?SENYV;6P9@4_GAX0u(mvM-B`lx%!wI_IYSZ9cb}N)`G^ zr_=1QE2ZikaZ1|9$uViRS{w_#YXr_4Os%wd@a(*c>R>C`{h{5_lN!XHj~Xc*${>HSV*0=}Ald%)gM4;3&P6-ZPIHZVUZh04(TQmO*8OXX@tS)|VzlcqD{`4d%S3Y^I6y{T== zEtCy@gK_155QK>FDUM7i66#Wkc|^OG^>o}W07rLx_9Z@KL^_pdVl}{X56D;wL(W)ly_H{rtHim6Fa>kD8$cevrj&gDr(~6(X}f7vlna=f zquCkbVPy3~6~AfJ{tZ8K_i$Wg{a~6K0X*usPj~)up~UwNJsImDb=B=x#OYcQ2~v_M zUu4XFZ0B6NH%GMZ-de7H{*~sU?gH{EMALYDN2iSQZ<+>mkRrA8_su&|!KKtA&L^M0i7?ePf!=ml`tqwl>8y%A!zaD!HR=+qi$RZwVlA{<(Tt zRRPaN@39w*>w{VCYa3Fj52xh?QcO~*_Z#*dOy0R$+1+1VwNUqL*ese8T~*uQms>)R z+k7qgA?h1{b#!tFhh2zjIS-5eP4klr`)SIOfmg3HTewFe$_B86i!Ccpo{mwHOvINY zN!~W4&l)3|IE(UXq2rYc>Uky81Sa#3tA)=^Ay)`YB4Ct2GJRtlGDw^2&Hl7@?n_Xv z0H#}191>l|T?KoGEft{dpb=cvjS=X&vC&Hl>-Ad{V}Ln#&+ zZMInO(5D`Nxp4?;xdj-6_31kr03AZl`cN;vpJwQbOtvc{yjg&F)jb%Tqv6Q11NzZk zqLkUvp;Yg{KVY+Q!)420E9mXAgQ`dT`9hxnP4{E!H$kG)Q=-FP-*sk=U}1tnP67C9 znTHJW%2Qir9LIlDAN+DF8i={l|XH@-*h_ zBgaGsD~=F+r_k7n(i}Ic`eYxOCTW7i5zPB8NFe*wmusIwlN-*9^@+Lr6BzPehK zudyz2CO|0Z7~Ex$ftBNf4v4oh@21CaJHbkj#-{ ziBN5@DwU;iFbU?7gFo{%%=tN|i#-2UO$b)9$t?((@*OX!DQwaog?&@4&P^DWg8=V` zy)qfmb&;&>oy48m5Y5v9_#IlUF(rNFP_t zcBLg#7$o3k3c93UW+OF6TmVqdsL~9dj+k>PKbiV2@Cf@UD^;Unz?2f8Hr>$8Ajw;( z;3XB{2zvj~bGRT4&7V0_w)h~C9f1%eHw-h6>*pb$>@5{E2q{6}#1Uv7jq}QEc(G=? zIJ17R@hubpHmwL4g$8kiCVdiKCGIV|lt6u}z`MiTLVNwz^G`PU&Au@?QAuVFXHS2- zW4}u>^)HPSnHb`45rvy7RYcXPs4nH*&s|b9=i0liw8mx%s{-sBuzr%)s~+X?q`^RX3!(vP7fhKYff9aFRS(IA6lZcIs|{ zvbRAWj+`j#vF}90EDY2>LI<7= zWx|nn$8m_r)akj&!^>rgrVkZU_@uQNn+FbsHg6MA(Y{Gtth1#BJ!CdS%23Jz_e)_u z$D8iCEP9O|d#yBS`0|bIfWg&sw+TcBPm2Vo$XO7UlLdI;RS1gYZT~SAu>12%mk$(1 z^-LRdxsKkg2}4Rqsk`KdF4!HAMps_bhp4=F_(*f~dS7gbElyd7Q3V(5AjKEf_a9rX zBUdQNMphl~3X5GI{O8zbdDX5!pS%Wa_`3^N@`I#2`sK(;%}a}O3%CpvF~~m0WpZ!h zQ8_M?F7IcZS^!;#_Y9o}0Z=_SW$LNNko0eCYfGEk*)@!ct>`WtP-~6Yt z;k5vM)b|~-dhjqm+n)3!O)_Vu-m>PXumr8aNguP-EXfCaWHHidx!sUNBi+U2WXH-?(&7Po{JJtv1yp5NSn; z_2Nj+ch2s{I%b8Q*BqtmncyKnqLC_GjHD3C*}yPHMm1tEB+AjXRPcHlk~LqpdoV<@ zYT4hwqcQ>@R`6;cmSC+If*n* zH2+|9^u58^R=qm7F%QwD`xrBt@~e|$Mt6s4UBOk90fR?0swZ%h&3-vGyYHPA2kGe;PDwq zO=lOsT~QYH{Vm##mjys;7snA_bwD&xO-|T_x%c3452qoB2AdJmW^{a<@FR2p-=EiW zV{j)$cb_~O&E3{Wp-4G7SQb+I2nP?>k4y6^_d_>1cji(*bqBI#*8}u4@#s|PkpwZ~ z-kYSWlV^E$^HE20pJedf7=12Rg2BSoX0LC&wYhJUyqOazREbQt^r7)_J4ifI^M z2DIRq0T?c((2|C~i~;Wzz`e|yMZiPts58!)D{coOM}7eR0^;sNY<(6YY^}0;%OT#%!&)sb<-TKZ;t+RTSOMnRL%Q>_*#!Sib8`J&+3^$1ScaS-Ou&TU; zBc&g8|ES;N0lbM5{qeti-WvGNHEs_GP+A1;YG~s#Hns>&3M5u>Mkn7@4$&~OvsqoI zSsE$%sOe{kpkU^*ECrJq$gEGvUl0=8h09q>D*wdkWq9{2`4Hb{N!6Yg!beHw3 zK>!d9Sz+6hq6@QgS2*eQqH9x(ALj)G1jibQ!i>L7xxNaXOV%4F_dG>n?U9ncLI`W6 zCy>V6?Uqq8>k1EG8k8h#4Iy|iS~M;~+`Hs9+B62iE}(-5%r7)_xzUXkD3x9MG)z1G zyqxzKiIYg6IYGq2vc}7~aTApF-3Ihu9lz}HmpiB;ZTV)UgdO^a7vuVSNAw2&a8vXj ztC@atosbEuk-Es7{s-OjR2;H)G~yY(C6C*SF%cb~0*QNcL+$K_!2g_qZ-}&bRmyRY z;#dmSZd4?_aD*L$h(4XF=Q33VF&EtZgQVzRa_6^8}{HyQKu^cpX}U5{%{msy$K z!=r+^W*zutKRzzDY|~xW@W+EaurMjMhvz>pfGzngxON(O%RXBoj{_p!dgv=Ad@K2Z z)D1a+&2wT`u$%-;VuS>)qD|@VM5mo4`pkxHR0A^}0_~?n-c0?G zIOMPzW`|u78V^G2XWUWQmeGF{8qEaI2$Bd?$3_ye$@T-gS zF^N2O-is6F1@$wU52kTOOM!I%-l)?HiHS||Fyr2Go6WYtm|Kb0O*IXc4f2_!G}fMr zN|By^Z{Uv(XeS<5&UK~Fbx*ZpM4UO?{OThoc;2D%kK-~!bD8xKSyf;LZvf--j%;TT zPgN?aCuy}gq5}yc_nv|SIf|NX~Ctx+7XSzAbY>Y2hzn+WkvA7WiV!n^|}{& zS1tX)Mlf8JX2H)tVbb%mg6yu<;1@g3(SNcMr3zRg-xf4?82!71BypKvlB@3}vslw9 zC)Haol(QawQsu?BfT%APQXce&X0HB*v8H1pquMTSH8rlhqRO#GuJ2+iyY&+2+LTU( z9C}N_jG3$tQ-KJE9uh0d^-^5O`ggHft8w>7TfauQ|LE5+sG)KLZNmZh6VbUfFoK=8 zyXd>UFGd_<6TPh%anaKyI{KBzU#*v|84Zd8co&7y8ti9LIO2NEFf;| z>ITE1Wd!U3zM6tceIGLlH>>?J5b~Q*_v6@`*kRq%!g;Zj6 ztD$>TF3@Ksb&ig-U-#X8k0y5+%gzOOi)8ii+Vj5FeV&@Rg|A3)(AUQ!ShX*+(a?@p zoCK<-4r`{Xf9`uwfD?IgHrX& zmw7uG=ntA(=FdBjxc5A{=6n7!%zk6_p_v4}F*`LcL=M`E>|43XZiE|AiYF(U`zIbs z)|VfpWMPL(|1_~^^r!0nmva=&h>DyRe4XqJCnsqi;5p8H@X}ss2IXXjJHnQ44EY%2 zI+7P|zH^b~iC0OmPIp6oXHWI_dfT=Gj#CHhEE?+@%I&>wxf9P4h~BL$f+KB@ru{l! zlyLXs180b8=B&fMlP&&w)3VZ?`QiK+f?=2c7s6gocP^t*4ImFn^5a~CP_+=c3Pl`g z4xw&LG*juKu;U?OFz})=2ca1ep2Tm{TP?bCIfQxhvN$aR#QZd5a#G84dZ{p`!5TIC zc%i6hY#>SDhux(3z7?B*FiOM>`nZvh3Xq&EB07dq;pY@YFL*?qG}IvEv=P~KyGGeC zGE#~2C{Bnzz6+cPv6?kJQo}0kRi9B$TfJDn`FKQClta7COYUtu_v1)OfS`Yd7>K&| zp0!;Do8DOyBXqOSxwh=s>NzWG>`ixx>jf&Ia#x-&pk#31sJGdp>hesFW;v!M#)bbi zT{D{-Ju`P}+~zb1eU!k_@&pxRKgyB+VB?h*>26Gmr~-!8^K}x2t_LAWE0RkC^WTP(zYC(s zDY}s-{I(?_i{wL`{$td(jGuU}9)Ikl!rJ-l*83`Mg1P+!Aofe5O=HAg%%@`0c^ym7(Ts%|ZI?!jOMQl0rx?8fYR8MJ``ZbCG@@*D>I zZI95Z2aMZO(!tH)2~<`L9r-syAfHpEv1AAuyx(H}V3GW^cB^3GC~IKS9z% z1$q~f7-->iZ+%x2{M=jE>cAHEi?0&Pn#?yso6u^|wU(ZmG5 z2h|#d1i*%EbxUJtcy^}MOI1h^e*jyna6e!6l6epIgrcJnU+jt#Y-R$MwqmA&o|~F@ z^tknw(gT@-nK>Hv&3$+EPZ0Tzd5;G8P6j-Bfk9~xF+KebuYES1ce@pQJz){25;-UE zH1)1athfG-lF@{vsLy?%?yup#f$O(47aV4rN)L{kP623%ui2 zk!dsi!cE-bSFKkH*WNo>`;DF6m)W$w%t?+}69xC_IZwu*hJD?h&AlkMu2!IP&UXyM zW$EEJtcP^fD``aTs*4ZtIZj<1nvL4R5I48FweNzz!@Q>!YM80p#!VT7cN5sI$YwI; zofN0^?H6Y)eRWK}3FfHL=L=Q~I+u&M&*%~V8$qEcMBa)*0Cl3ye5#-vk}F0|#k1g3 zu}xMF$@ZNB*t@2TQm3FP7C*fNx;qeRxoMEAm=*M9IZ=Q&lR>Rn@}w0p$Ja z8MgEZjhylKEQ}0q>)`hCpGn$$f!Pr9gmw6BdsHC|east*S>3HWWainw$Byi8%r#pw zLysvTHlk@sSAb4$UlBLvr9g}3gb?WCu6iFoM^6M3CRuTZLy7@7R`+@eWb-b;`F%@q zgKQ$>7@Q*#AYM;XQ6mAS;Q?z*jc?B*9nbHxNVn%G2Lmexqg4auh$`N8)dWz6@d6NU zy5-TLaqcI7X6-6Iq(ARoy`_gJ(|Ju}r_&N;i0+94u4*|*Jxxlt*S(=S^);b7gDuk~ zzWeNvI*J~4{lFiCF-QGPy})`0gW~TF9@jkj@a+3mRGBSA3nw=jOam(0UY$M`kp7)f zQD(SzYZLxHA{@q&v)7>=-x(zeUn%;QCKfLiJhzqSez1*ReijIGl!k!SuCgWW6JG&Msb9LNe9B>R(Oe(r$lP_G47pIY3`?g zZ}q@?&n#b{j#llPg4#W)9L8{(7DLf~ww&`g{5l#=2^#F zHBO}t$yYcwLd4C;5*7V+S?m9KVA0O_uMiWZwmU}bPs=S8mno8Q@dZ@ncJ9a=hk0@RO?!se#6CA_r1qGwtLJN2kO;RM26%^B%3lzzaR_Rva5Rr_y3? zX_`Y)z`y)N@s8=^b|N}UE7JAz#p<~lcez47>+PyLFRS|u#6tR4|pl3WoILm!dJZJ==I4oOSZTWiKg6d{l zYO)|ytjoG1Y9l5Rwqt4BNvN;(PqNidXxDi$VTg96K&D-}S1x6bjDskGr+k40_`^*{ z&BtbEP0cAB@QL+O8)e6SF=uDJnn9kRSkV)9SNqC5gJD|*sJrAt>5+<^`?()3KGm;5?f64Q zpQBuq;5TSvxM{o}^Teo|l_*#FXgy|_R3%HLdPA5~d6nYt_MXiD-QFDDtKIY$9TiBr z?Y062Njq)3V7`Sn#D_5S9J!k4lc4u>2B+DF=vJ_}py$~4gC8->M$5?T~`oFsd0JuukayBBGdV|MI$%}izo9}#FnU?E^Z2df*U&Y|N)nz5=q?xcj=FRM-EMc_lWruooQ z6_zAAb=|1o)&-LAm1&~h1VJqS%j*tQ9VqO9J+UT3?uUEJ6GLgmiPZZ}B-H_V*le1? zrD`Pmd0P_1J3+Pre1#HPNaSmiG)*tN55<+9_ZP+u)gY6lvbZR9Cti_qEbU9gmxM6Q zju+^Nw=75F!lJc0@6D}Mz?4P;>)DD7xeuoV*|O;-?}gPtj<65W8FBfsR`$MA2G4y% z+GKZ7dk}Y|)4Uxczt?qW3Wq_+z0ZY|(sdz;%yQ&ee~kY3YMm}x;fv2#yDyt#k;2DF zc3b00A|Skz@gp~v@w*YFPqI%2UA>L4q9(}(b|>)K1mZ{Ige`F(|up23W z=5R(|xi)DEIn!c46l-BoQA@{mN1W*6cr& zL7t?~7InnRddn{TkHBWW^e^{et?d*jG0|utEKikWrjWz&ZBHFbA>5P7D*C)@3)i8? znq(%E)=FWKqc$Z;_eF!5E8BBR7r!Uo^VFK;x(g<7s?(wX=1z0@m4C&1GeWR4Ar4u> zXmZg=jEp-R%qNqP&a^vX>oT~TN9rkY!kP=L-s3d9GIdIbs@V$z5c*U8*n5OZb4{s| zBeZt6ocJ<~-YOGI#!t26CU$u)RXdW<0Gne>$wA{s{R7n_+C5MY9m~$UW6tJ?g z4%egk&;w@w`{5wh2K)7T=`V2&#kP{A7>HNeZJUqE>af4ADNCO&e7;6NHU%9(NIB&! z@Ey)~Zi31`?9ckHc~ZBUoU(BJ2t_;|#5Dwl`z3`Z{ty^?vprS+d8}UAfHpROWiM<^ zc>QB7(%nMXr^lT_v8@^??Hx9)*2l|3`6iZW{WOA%nmQ@2JN`U%P{QjTcWv;8lE?BA zc$#$H&*Z-1UQJa^x)EY5(c{<=OOvs9w2%UKLOiAorYwv;ZV47Ei@Y@K95iNof9CT` z$=VoyeZA|D$qx84!QL?GmOyJUqlJ%VO73%$fB#B(jO|qaLR4q*Q-L^%z!RbyuK5G; zLVn!K5ZTi-Au{l-->LL7){6OHm(jm!=zFJGU;^ zjrS2&1B%3nZ%`#C=hk$Mu^bRWN3X|bt^RH^$#85y9e_fpsvBd$GNoo(*Qv( zy!WuCaFYa0IUs;^I;!wy4}pOmh%H^VfwI323o(xKz+77!uRECPCNzPzDK)LNY5r_8 zj`+Ijy1eIPyyNn-JCV^I;5N;xUmN4|XP(>B)erjdVv;6p-t?x~(f^O8uV9EW+PWqN z7`l64=#cKAyQEZ5kj4S&ZlqIcNCD{*M7pILhDJIB28Ir$rTMt`yYF9ko^#ILYwfky z!e|kUb^m@3cN~+toZIRQeWWh3e(q?y9Hb7m_xa&Af0Y^0l3zdX=TX z*^!L@bj`6pj+jpPq>M+<~pgBq)46Pv7A|K0~;Egsg&{y@E^B#%@nX!eqc4sHD5WY&!mAq^YjQecF7Qzm=Lr-}yiX&AQhrsj0W5XJi`;*U&3om6zdPn#*jIwu+7 z;e;uE2;!#KfDFEoQA-Ze&nMeVnz@a}1W0!Q3wXr2B|9l>tEc#dRCLxvD}LyiV&nS|U&Q72!~4{>zX3Ua)bDjYwk90cEos+AgjihEAonlX~#(7>@=R zFWz&f+$>h_`(C}@IFWrim#uvfE*j~DzFI?0UM|N$*dTRIMPL)_UwaUGmV(L4C2Avi zRC4A)BO}oy59o`V#4n(;AjhHPazbENw`#&aTVzPRcN~;1;Hk}~;xRbw?NBuJnGt=> z>$0J`g8AE#(W=y>Zi9l_{jOXp1xJy1#W&#LQp`e5-fMYON9K{G3BH{6T1jDI4G0Ut zV#ZY=^YB--QusJ6kV?F^#A_|W362)Z7-av;X`Qp2*DJ3xPrg6uQo1Kbvs2O)_Z0m@ zUj>)eq=L==|0oJ-VMM3J^X+qXd16@aX{o3a`-*NRD3|(dX0=}3gAqg)=ZeYrq;g{T z{!6M64R&tN{Q0M6MTTw{!2J^vpdN)iFTb7Id=mg?8`s3y5Dh5!}QnT5&4&bZF?X!IhDc=ws|8p zSyQlfhZ~gJ^67c3+S^g^g^ce4w2DLX9OZ(!56vM~=qO!F#+pRC?COL^wQBkCL>-b% za$EeS8akWrbj26ap`{AR`bQP@^AtNp%yHo9F6fDmH;x1zTf4jdc)b4czd3xE*ju|d zLkz*E;lqLN+@=N-BPXU%BO{;1qV%yKL51C`@OE2Wgd%Nt0g~@Iz3)i&5h+`Ej7A_s zU^o)eY3mLr&0&@t#CQG@5rT!}KL%Z&MC?9qr&3%uI5t!w%=hyB_xk=324=G=+(kPS z*M?%=?@s29=GW4--q!on%~8}LrpQ-n9-0qe@tW(L@vWFTTOFVHnhE3HawNz1up=km zkcScqF8t#Pz7_C)G5(Jpj0L+S4=%sf#s5uxlK%8&x^NL^_r;I=FaM$N|Lg6cfR5Bh z+cXK1%a6V2N2MXX8cvr?wHk3%;LMf76YBL0A?doxC3in2|3&tUdtcyN#xhU){578l z|7U0xHxlJ&3nFH^$YZ_%*>zNWu8TDhN9AG?4f>e{)Ul0e8Te{vG|9~B3E^x_!)b{zO)-% zsSJRnAWU7fSM$3?4dR1>%MmwvO3svkJUpDi;#vqB&cc%NiAouP&BwN%F=bho&hMd# zm&_-ONC97KMhbGiq|e<7!@AZ?~`J?-$p zf3;xjUG{fY;6R8Hwi|)EnrA??*k(_4XlaBAlt3$po=C1f4j#i~6hU zS!?7|{5GDikJ@27@73$XyyS~;agmE>>34C6zwG%Znn#QF`kOx4+!%ks`_IH+8NTgd zVt&(jzy49ZDQ{+th3_6AiBJcs{Ws+K>aic=!S4&1c!CpEj#g8@ZTr2zuegO=Op;A5 z{Lm{UDI>1@9x_mm4?C{vo?frYHSTo?zIzkDye;Ipy*YZ?FSShYl!WkC>-MvbTDZW##0`fot z3$~}9k5!7{H=#7SngpA7_SQaUjnck(g9Symp;%VbX3#ayr6F5gKQRK^XVXJ;YX(J6 z`u>d00Wl5q-}vXN!F?=uHh8FoRhfS zA9%EAK94?4KJSK79(JrH?mVSg&2rze-APmHe5LpW+knSf1UnXIG?d1zh2j*UP6|8X z!Mw1HM@G+KJt#DIm{bf7HTYY<60F!{B`@M&zfg}!j)|pQwiMTl8|1gJc&;0Z?%{C> z+&hX!QJVd~xNbLcUu(bX>Lz8T65dO=ihB#5a^*`*zx(htxFhh=?`o$JPjz!>B+-Og zkseNUcCr!19}{jG{kAXx?iM~o7<``)9z0~uujpB}iaS<1YrymSf9J_1m&U~iL@NA?;a_6PF79#Y zJGzq>75g2leeU)ds_>b=>PU6B$ryps0p z`vGko<2mB)I}c!+i56?8zd6PKc(QVOu+GvM()40Atn`=63z@J(8Ll09P8?=7^w1x_8-?&9Hq?DkY?pX^1;0Em$|tF!uT9vQ=z{x z6VpVBe&SeUh7Xl@kuX0A>qX21nBx0&h{Id{&DjPe;2pkzrlpTJ*Eeulyar0Q% zE6_MEz__24{M(Um!dCt@HiBNr0`Y6~=@+K^%25VsD3`2YhYnw2`yJJo;46Uxd$2oq zjVpJZ%vSpj73)-fH+oML79stuVb6`$v@6+m=J#)8+x2X&y+|Kx?!hF2r1nyu=O854y9`nLkk zOH^n~Q?=f4JPrj(WJL1LS6H-Cv$lO73rKyE(@XtL@7inJ0iP_9RAKnWRFt%ll`M(9 zQhT^L_;)vFa~caFH(}>Fl2@%&QH1vyh%a`=&J4IFfAr{Kl&}<|$vhq>+5~}XWt_9N z@o(BsRQBn!rOdNv9>->GbISHN2_2?85ssz;r1l;%8UDL?yo6YErAC+z@6`b$AxaFy z8MGl2in=;pxs`%{vR?38EGNXqvL{>By^eto!-@hvvU{D^xr3jIt9GyYf=0gL zgh>8d?8o`-1+`6SeO1fx?TX zAIo+202U#um=V=dQ47s%X_ISG_M(R{~kd2gdCi->t_HHl^CMLt-$$c~jSze?y;ANw*t^C_F8hvP1^B zN_`wj)$k>fh0B z-A+2U5n{f#A4hut0qUvMo*(?eIIqIdP$7D>?v)|%VOF$gIVKkepi3o`?S9t5qXFqu z$1HyyssddRwL%X0X#Dew5w;yfZWiJJkEvAZ`sXfcz63%AvsVKLx0TKSs{1b*o5a&4 z`TQuf*tazXveG0OFtU1PAI!7Ytfct@Mswn9s^eL#`K-RZBI7()LM$`pBijuWaU&OH z-vPhXy|IMHymw#O%CRd4Km^~_Dzn^eOW*!cjm;^MlgaqA7)OKI%rjq`c&Fl^CGYYQ z*dC|0n<;6}2YpU}mqHAWtPzQ5;Ha#aW&}B^LMCLcHc} zb<@&5{xO-<3}qmtp+zB+t9w5;~uamTsJi&Lb z&!`iM1-_Sa({E3$_Ma5R4+_vKN^0A?r!LnQ;2{D$>R$LRi7Ct3U&aM#@*` zR~&OJw=vh&BTPAqZpNVlw2`5x1XhlN+ylVK#eZTHrCxX`v?isfwb$m7k2X&U(LGD? zDOt!I{9RF0)JiVtuX3F)Co&vt;OWR*b5`*FM`*kN4D38tqSonlOJVKr8$d5n8@R9d zDjD(7<4TA=pcLjf--5Js3!3VT3>z8|)S({%O(Kj)_a#Z_ukMF1$0@SqS!u6(1`08ni6R zd0f;Gy|6I0{Mk{j|1Bx-3Hfipx#>ym-=Foy?TPXhdY`9Vud(Z)g}mjVg{S+zp+VEa zUCF=gj&9e$_JH$k?VEW`@B6F@r?Q`07A8aTjt6xDw^WsfE*BUMDyzTu^l%ToF+qPF zJd<y|!{C(x&4%P}PaSH;U?T= z6=~HumNl;HkpH`6xk~0h-(YUhOPF_P#O;x`ik*F13-`jiegUSqs`DL+uii!mSQJm& z?A-P*Tz!)j|E9|L`vP-5NN0neNp`JW`~qCVb75bITU} z2z?l|dA(+EN2L`|n49Wa9B{Q{{iy%@1kMe8p6UA~P+9e41$w}$!+W!eRHGLXE5EJATfNvRxvU44Ncvi9%msFd zU{f!qOWuzTaPFUTStBJ#@NmKnrfe*-P!YS1l5CV$ug_*yyeUh)|K5$C+7rU28f~;~ z*RglShXWOp4MappW=g@(I0B@rA&IGCb54s zp(c5@@)Mj}tc``8W?-pbhvB<_!SACd!DA%qvwxg=AA+~k4AI$93v!%=N{uvWld0O}0gY|kmQE~s=z8MF7W*Mt3~RgWJTQf%$=TszsDdRqoWyF++^uicvN!>Wim@=(GP z>WZ}67sl~1k(B%4|E=u475z>7ap0Bw89VV$dSGgwS*)`7yG05V0$5Mv95lcplg1Rm zpIpuUB(UP^L~F%U2Mw>NNB0c$BuI?tHa8^7!hHKBwyXOMPvFX)f|4-(6?&n)spa>M zS-d?%n|-@U|2$xDC-~16&36jSPyII60tSj}Sf-~*-u4;_g0cXB=;^gXacP|O;n=kN zFC5|^jZ)sIbW5$_V6n4T?2JZdZ(*L7#FZDzfAj@iGULT3N<8K>+)xfY1;?mMnF!Rx ziHElA0%_8_CQ7P7VGX0MBUCibZAsX!N}}2@K_QdzY)Tv z&SrIzSXny1k5*&8OnkYq9g zp-V_zq|02e`$UHYtX!gZ9Vtl?oU?Hhm;-epiHHgac;l+OIVFg`2aA3g^nl8^7V!x# z7N91!ACLG|*`X~SJaUFaReS<+)N6w#O zw!bD2n(mz*jD<>GphqOzOjVf+QD-%cv{IhbnYOpLd!rE$Fdf!eN>LRG^h%yNyL{aqHD)Y z_YMQfRwZY6cy{w)2Sp~T(P32qR2H5FEkAe3fD_ZStyK@imD&K5N3biLovGjeU|X z9>#iLp0HFvm_*zbtw8*R#Mh%zSJ11g5O=4@TWKaYT@eFmuLat>-t`euT+tT~@R({@_9Ufmv)n$Cd`OdC$|A~EXB!v}+Bu@G` z|CCDA2o&a(ygZeYk105e4LaGveLgz5e%~md^+CBAys7&--DpxtWx>D;NaPXyMOm@v zKEeF*UKniESPO3mlU53$tW8G;Osx5W+^(984tR?O*=~%~^^CW_Acy`Jb}52CKi9U2(!&B2#)2y@qaMsV%q43mAw#a$qh;FcKBe=iTisZM zv~E-Ce(I4vaHt`xnZLPQO-L|N^~DF|+B@2P6 zlXDV4WI7NLVCB#W?Zw)|o;WGSk(iDIxj5v#`So*ac?uWrLyYHX8Q-}D%%Se-LL{13 z!Qht)L%28x2Riz#ZIA{VQu+N!S-e|`Coni*3B8l@rRQRF0KveSOuWEV<@=ZaA3y(; z0@O^id#!%5TZuLi`#A?=Yx^;6^rv<(O;oDOyFTQ1omc!JPUTorXH`%Wm<_E7jI6pi z#E?{z;+U2dXfOUG4TJkIG`=h6DCPB3S735kB|b6Y3VhkKkhXGN8+})3ar)}y>Ed1>@%Er}fr8bg6`gf7 zg7m8f%0VGHOH`vm+g^1;hfUCBtc0iFx7JA$G1BKyM5X%)R1`*ErwBi!{GWnvulOMS zNy4{}ZlJkEfCHc@R6^SkjR5jz`27>*dt5{JHrEme6 zQ?95e@pC0~u=Z{i9sI-NqC^cU`VpH>lALZZ7QIEi9rtxo$OFq>i1bc0(ca>_!H5Yl z$^2ggboZR33>(;Zp`v@iyeCY26SO9V(#x$omDygWHBX*_2=WhI54Ty9VACBQ&F&b0 zv%dmh^%qtS_KUIvSb@NU@vBFNV7XfSfg_idw<+Z9zlmoPegFGVM0Xc3bo-{UD~|ZO z+!(JOMho!i56!ivvmM&A8}NR{wDb{TMWa+O-#0L1v^t|H0#$$8WtqY0SxN7Dh!rHA}=jF8^ts7|(4>uq+N5`eZz1oYcgOVw%Jz{`|VsP#mb}j0k8| zq0{tB4wJE3-3SsdiZg@?ak7d3NLAgX^mmlLVr2-`ja{fbSs1+E7V-q;HI&JUpEX9q zp8q+uHcz&v|0^nM#-N-ybe##leU&bgyEf2HxATXr)ayYB z(_yKmY<32zuLX=AJu`G$Ou4^BRa?XzowK0-w!Sp3VD*}1rOZnm1$KGap%R;Z8GsT= zK^0o9hNy$+RNe00_B|yZZ0-s>$U7k^oCi|jBjd}On=2*CZdC~g8Op9 z&uNClvU2;)E1fe92p!Bra+3N$r83%X9htGU>L&v-vvfle`O7X$`Gh*U=212BQ-yKM z1KVYqu(&cMe!$n0#Gq$5Lm%92dO&WtsMYkJ?L$w=mke?`UP>)cq#P9Qh@<*e!8)J< zWE>&VgO7%P!kl;W8cWs%Ajz*t=ypZw76EmwOZ8Q`FARJ!}k_L+i3Rx)T$|F z^M6WxdX!1O3oak(tDpEz*3#z_0&b%cO@q3xF zHTEx|TN^d$15s=k(OXx4xmW_`Uz>VN36_Y@y~CWP^bZ@e^a zE{VNSqsho8wB%Gjs zcxd)?#xVB0#=Ku$#Uv*eOfCI*F8efd(;ZcOx(7a-qDF5k>juhWT<6ydsE+I2T6k|* zuh;ZMX`8E>c|=ADLe(&#iYXv{w)?3PFE~wlwoIJz$-yadNXELxyc3{w{Wu!*un@%a ztYRk}ij|R)KfhcsYpXgr@H7LcsO^2O8k0TPi@&KyMeC5}9Q#OjZ5FRIE}EFa{lBI~ zKO(qF{Fd;?s9&?_;}796S7$P`!0V+1UN$y%aDon9eahHUBJejAz<}CI<8AV8lT0=Q zQ{F^!zUouWxx1;(nDqOknPHm4+y*5?CL`hzXv80Qzw&!4@8ny9T^08?Y_>|qv&Pb< zw@}L!ZQv0Z(UR@f^4BnIRkCXCjWVKa@B3|DnA&46l{L+=aR$<%PkxSVIkBEMIx1U6 zKj+DQHb(zXw(&3ZGYxRTgWN2`a`)#oZ5Qn7 zlE#12HXUUi1GZ9`X-i3RQ3#eBTDt9v=fz6w?w&n~&)bCmW0y1#YfMT*OKsG>YB^I1 zKRqG)jG;_%b(}bZMdN%kXq#ynfJtIvo$ z%G;(;tqK6gj$Yp|jwz{bC^P z%p=l)OZXy$k8PZJTJIw-jfQ(>FU3($oE$#wUHGY0SC8`IP~i2V`B38NBUwc zO$kfm13&a`*_e{q|BK<35F^A?i_StDUJ`%!*hg8v?eFO)>Q~vna6u>foK9TZJ~xXz zU8d_dQdiqiLii8?alc7kpz~;ld#z+wp1Be3WUWUnJ!ITrZF!e#@W1){C;>dv!x2`pL| zPqzIQWYOi-fU5{WyPL$>4@!`E`+06Bq<5=7OedhkBQtglMtTYJ>pxputOXxCb{vPb zmyvne-F#TldkQPb3h3$AOYhv?fs1jt+_m9L)COl_C~5m__T+l`ID!ep_{!<5n*?g@ z@}#IXNe8}0O)VpSQaD_C@mfpf=M|cWeUZQ&oyt*Za?%D!l99O1OXwRhSCB%loMWlF zu#~w`dhG|b|71XKnk+USeYQehA9oFDh7e`1Ln>Trxa5KZ%==^z-DaNLL&(nUqImqa z@FGwt1S(JhI@@xTEvf8ms4c*v^(!jBE$8!{Rh}xN3v^)Cd7qDdm4Lv}ku{&RoS99i zb-6kh285u>I1vyAkaL^UBW6Do3y2WzOhm5j5fZ=^u;Qy-zi6j z9Xy$Ol%u@ftFHZyYj&M4B%6DN5HV|i6L&68yNGD-CS}QHPsCM$ql(d)jkU~`<|OPS z`pTggA=nC<`-?Eqj8gwUrK5z9BR;_$obX@aoF`fECu@i|z87B)(dL|!;00`MY+Ld2 z9?Xx0_wm*>H%3aAM|Y3Q$(1Z03vv}#k<1gTx9I;kZ5r!9ZyeEOwDzhVe4yFhL@$e9 z;|n4Q$qJJ@#h;a99L+ZdRiXqpVnR*axghoXc0`Mu451^x)pZ182q}W1+sC!(Dl!v|J?2~WPiQ3YmNOoCMJhT+m{-- zuMsS9w7h@cQW2i$FAKQ z1NZ-%-$7UaKj-DaCe-tSN@_`(Dbr*o$6wjeR+zd6!p!7S%Rkrt@m-8BNN!MKVB)U} zlz5}hKV$l6fqVd&%eGFQeUc3N*3_ZBLTOUf{@Eq1S{AK>AbGz3VqofWXj5Xm<{y#C zX2tUb4`;@S$}>$;rX}D(V{8w~TgXNHd?Tl%UBeM3sLdTGqAlQaxiAYEaH+91Ciswi zVA|53$N5l%Gc7Rf^~*cG^L3OWA0dqU#pOQ6`ZmaWhnMAcfrh26Qh5PgLnFUmUD#}@b;2T0GtMpaNs zd2taI+7XA#28cxz;AzRDg`$pWNT}%yq8JU56IyL(@rN^r=p6No{)Dr0gv!Jv7;n`& z1GD#R$vn)pdr7j!A{}mPtEq5hOmzpuQK-jIzc$E2Q#2j?@%(JMW>npa@^%IcmdS`- zXNA)5X&1`UO4!eI!u>x1fH735PEp;u6lJo#&FNpI|JV2NlA<DF2GEAwUqBbsszD?3*8Pc7js z+gDxf(!JLl)-M50WN4uCPJ)W=pb;^g;6w4H_h?KYyz)1$k(%ys#>gW4C^BueY*T-t ze|b;$rCsQ`h{$Xk_&ItFto*bHs-Z2E{p=_4i#71fvsKH!!)Ww}>o+q{!M3ySa_eo? zA$w=hkBPA%SB9qkLyx7oAC<0xZqDa{^H)!n&s zHvrbdg(Xnhh7j7e)HO)7SIYBLztrVmiDh1s~WqqoW?u}+J+D6$TG28D#zwTy%k^1wlB2bpPtc!aQ%RuPsyRFnq8CPEOKK+Hh znuJ|#`NAbkb4UBrEV=1Uf(%Yg&3YnM;MXSA{APB=yQyDoy;pVhs{g}?fy7guAG|l3 zH(U6Rlla~wO*I!J43<<-rB2BJg2d3g_?FqLh862R~}cdDd+J;|BdG-(i!-U&S;h~5$X zoFWt%jUVbrhV7J?Vk5f|P7ooexkioElw=2nNWFb$O?+%{rfqA)Eb9887+|uV3N43n zKcmS44-S;Ki~VNVIh!P&PCgJP*Kkt)Ia0tP&K{(SoG2;4pwV=2d9yX2j8cKnv68imp+T0-+_1YlIS76ynnVOY+O+WJ(@zj`*4oKm9y{g1 zK#4-Gx(#Jsi0c}oDy5}u*R|5QwIZMfuw63h*qdsRQRobLS@+*rcp~r!7qyBCx;Ys= z;+d~|oc*4Uj9FJdQlG8!g7)PhRed7RAubs9-ILCvq7p%gTllV~l9qFYG^9u_7}_p9 z(TJJqef*98doPr>6TL~s(^#5QBf8sDC7=Gx5I1bwC1*Eae7DJ6&Qjms1u|R~b&fMc zAq>(#rl8YngZ%K?Z#(pFKJJRGTDe+H3tDM8%IcElffjGh$2$+DV`=Xp@ZNpT$uS+C z2-4yPR_RUx008ZzuS+T1XCG8`zLGTLer?>>sQ|-oP zk5i4RvoxIx}6q^_|oIYJkt5g-``J(fMayj^EjWuyg&2|_ug>o=M{V? zO+V!NHrLzA;WwBzHA)+choOMr{{5I5?>;-q!mOd4B=MJTsQL&E=JdS!x&*futGU;`pwfX^)Pe}i9BANgr3$e z;iwV)Wathi@W+h_2BP9#Q=3ja*1P%CBqjKjt^19$D$I~=4qm$ zI-M|jv>D@R^E|2zD)%1J!>u)OtnIQnJS&rdo-GVZ+W9c{|Y34k(UUMys(G%tGq)rI=UQwL;jzk|5fsn8N)Fu1uRkXFG;f`t)=^ z`Q(GZS{eGMR1*ui?m_*e{^msPnJoJYl<_|uprqep;6QyBSB)T%N6$^Yezt|BGg_9t zI}#!U64@wVx)<^F;9M|%mg^2>z;Il&+S{4}8m26Y#pxu52FIY`kD<1VJ@a7lgqDJs z@_0MpxqdhiZg`O=me{l*xP#{YKG^iX(go|Vf96wqPVm6xtPkRpB|SY9($JWsY>7mIMJ{7V%u1ZB8Y8N-y)6sR>Pw2dD;99%c|6`}x}gQSm{K2-VPpPIz$SDl0!ji}^Svp<8!WH=6Km zup}y$+r>u*5>K>e8F}}3r@Z$qw98hJEx?A|KtT@hK2FCxT=djNYO4V2?rT1Vo39|i z!6pp61W@me3I}<-?Z%{m)+7n*d#I@9nkN~bPnjkBS#LOs9<|e?-NM&x7Rq%$ql6B-=#if#;MCbXF_>|tDUbS7qb^|@e(?QT|E+r!x!Uwm`hNtLAQ4Ae*11PZnxXX0 zi_v&xzT+2_X;ri_rmQ3h-lnY#!8GNcn#EiTVA`s*J(q7`HCcTWiJjT z_SVScSH*bnc*u&%-5uXtE~8PFbb7&7PO8Y$@UWtT(*PsBH_O$*VZZV3-q<;#COMJ~ zaz>KAgmGl+w@(99DS|}s=v2wI`JW%{jy>jGGRh;!4q|9OLNN{j^oMl1oYeM+=}#}Z z4=ZY?a+(Y?cWfJpJQ}ROy;oiR=oQ^z^l-B(;$+=*P*vJN7`12?pKf~5AQMrBkY2B? z6R*l?%JP0cZ0r7psIP}}EKcxe^+_389JvjP``i0c4>$U!G7fUV`&VsUG-X@jLZHP8 zGlyW%T7{j zTD8QCg^&9px;SneR3Xs3U_iS$rU{gZGP|Z|ItziS9`Hd95VyoaOCJhqcfwiGLBJ$WB61Yp*=u_{HGj&tdgEl6wpOs5fA%cEPDe>pn zy8x2*xMAbPO##3>oYfZWGY}YFaPZYRw0qHzw#bo*%lH3aEFG$5lZm8@_Uz?(DnU&o z*AQn@F*{lob2sXMR`i)mxE9#Cbpl@G>Ykr+F2RHtjbv>Q7Qd$-Et_fx9J}b-)JC;G z_2{o6~u#TAibTnc+gq(Eucf`XY>^4A)AniA+#tOUzH3d2(pLt zPE59-@PT!QP-Ap8Cd3}B_&){5dhFefeh6iPpxL&6IGYqpKWG}*Q6Lr`^SlO@~ zlRu?n&QIhV^rs^q?(fI)AV1xAtCn!G5BnI(2B8xIIg8qZB@UUQ@0&Ln6Vxx%R*J{` z*ngP`*2XRh?X0s;Nz0D{MiM0QDy=dc)V67i;V0ZX&tji?etTqrYu zoeF&SlGejAAKfUGl};FJIj9vvczb?TDaqTsmf1I+BCfq8_Oro#cJn90#wS(p* zV6G&)H_bOPapnZX(^uvjB|LZHiP7+#O#k-37ne(++o7RK-49=)Z#AU?aM?@YUk-~S z^R$s{zBJV`{Gj9f_2Xa39}W1`x0Zp7fS-4Yd$6R-^m2qbL*0qiM?Q`Acx0cX|uG_4=UN{!uYIYsGtc;ubyeq=A$ijaRZE zQ_;sbc1w&446i?O|7DQy5=m0CYJg1UvchbQCv1ev^r`Q<@QQoBO7V3R#hIRgSYdZ7 z-ed0_?ZJ{Kx1PRQr1dSHvHBaQ9k@=}4XUHx1DQo$$@LKJJCVFdnV$&mcxOmI$NZNn z-s@MrRsqObUP_`9^25J3T8mLXIU~>{?>fkqa%4i z^{QK2NalEI!@?nceI!Y0`yx#L>?^qEFNA&Aast|_p62EgPAVQkdok-P2W8ap!y&b- zSRtfgKPLuUS!1eTYP|U$o3KVy)%>htb|A;=CJP7~4!i(T(X{1vRYL>WjpvbZC?mVJKJ7_hOw*yxd%p6VcrjsKlIX*6%9HHD%^t zx-ngQ+bdwmf=@4UuAF2s9}KHl>xm>KvJ)VZ(o&!eN!%kUo~!`}z=Rrq+EVOylaffh zpZ)E$BelPo5wpT1B%kKJD`@>@eFQ0dN4#|R*4J)DJlzG`?yzt&v28EEt7f0=yTA_u z8M9v=Zl&>&FNQ2H4r_OF+WM&mEXK>@dO<2!FK!9{IUW_A4S41mMim_xCqg2)ypr%~ zOFgTz3-&0RA?+7w4*aZ(L@BolVPDAx-}*wLH(#>e-dMLcvjutGq6KrCQ;g$I9}#)&KGJFNnJh?Tspj zx|2uY<+zuqVKiRjNIB8qoTt%2Fq}VMbTGQTR@11YPcHc3ZOUJXJ8Tw__}vc`cWIi% zQx@T5hV>ahV|ReWj6SX*QLbX_3XsC&DXGa`4h>WO&10z7KzIwg$fJ``kZwz<05-jF zCQAR4pm(7oPs@xGkG0?tZV35M|6XEJp1Imm)GK#q7@F69e+NKmlY21xb#0E|1Q$rZ z{bNMe=77MUB=YI;?(0({e-K81(=&y?(1n*i=C&G(USoWHMnh)$equ9`mdt5Q~g#TpB$19E6=e9LYLyj16CNPQH>!et}n3P}D);sP}Ce zZpc-}^|>Z0+Y`1}TN|^vL)zsMW53s{@bLiB=v1K7SV?OrO4`Z6oK|Y7L_bn1GpBk1 z;oYw7Tp0x)l#qYQ&%2IYN zLx*Sztb9C`QaCy|tL^L!>ix`tHma(P`P(w_pN-%8J~uIYuVS|68C7ynfYl<5F7gvY zE;sZ*ozGIAu6~a`@(_J83}=^1+>J`S-2Ni&FN?T3KFhsp^S=2k0sa?&_#3_Zh0`Az zEFj!;R*ohOYkQgg*6}swHk@{pXWg^fy{@URkcHgvQ_&R#-Y@;L*s^1PJWuzJZJC~- zrnTT7#a?y=Ym|3y_KVj!TbKDVHN-EShd7U&pb9B|@@I7qE|9&%#DluS>9VBk_JJzDY9r)T_Hw?z{mzUyA0e z-yCk@YPb)NRe-V{YtLWqIB5QFK?xtV&FSQvOmy+sMc;tt!?LEcMgQSVFXr)fEat$d zT_IDb+u^P}5pMY63hGPq{;GhuipmRt!2ieATSmpTEo-1iW5I(%;}%>4jk|kDa1Cz3 z-5mln5Ii&%EVx5(4X(kR#x=N0UT2?u?tSCEJNifeV8CFlS+i!%s!xPad_6DtexBQ9 z{s^&js4AcM4EI?3X^`OT7C{EAszNYjZnLo<*5GYxXv3pfyU zdkKgf1&}(%jzx=FC@OUMMWW$lf9WoJzmQ~UeQBbXH$0l&$hgz6gs9DmE?={#R4^vp z-8R#0P0;!#pRD?1`lAp-6<%^Ui;VcA>b9<$ypA&xFTi9p?t1qPjNRVd{w-ffP zp{I0_NQ%W44&}%)7SUs)9fZ$eu+UI=c=>!I-a#W^L`aJ$FnQ`Cy0~zl#Y<1%o7`IC z%7uCwaJa_M&AjgdKfXVN|01fxjy+>rBgb%u!ZMJp>dFZWz5MF#UKxm98SJlos87Rb5Cn;sS|CXVOMR{ z;N@6q*iZc)?C+E@Z+_0@@w#e&hStHx$^}R%8nZLDXh!82w|s3- zHngAVm^1htZ6>r{cC$o_8VmK{vRk9hV&CU z^*m_)lr?9e*NM%Ep_{PMXRThuG?d`gb;;Z|zRH{LO- z?WAgqMqJW%Ak7Fikc0u{Xu6P4w21>Ub`=Q~+hv**DK|C_^9^$E+~uDSM#9tNbRR|2 zcuxJ7vb8+)9Z!ync)%`=DY%cH1hemEn#k)anx1A3&~sd@OEo_w_1hkh+LgBNO!)k# zDEbTA9gP!jE}Cvwt^74|y;b?HHt?Sx4Fm@X9jbijBuW)XIc$+&7_`<$i%6zIy_E>~ zL$|gzdy0R$)L@tsvil*|7G7Uu;x!dQQ;+sx*`v7~?Dq{s{=Sn87v>?G@a~-tx_&&{ zFkqDK(^>D<&#i%YA{eHk z=gCabwgZb5QNW_7x$+q8VTsGJXX1Hre@j&Pv8H3s>!^Qgds-QB_HWHIIhsa+tMhh@ z_rs5=V@g-#N$t&H+behoLuYmI+Y7xm|%v+-0SJ0=d z^<60qTfk^3XLi{_sYu}gMWsnrZwdzJVG{``ZS`$X6y&|8x``94i!_FljRi9p&mmm* zzs*9C3V1kRM0a}X@H*dY_U!b%t=t<-o*psI+j%x-4YnO#BcZ-k5IwwIDk>k9AK1apD?r_J*>K}W}?+b{*horTDN3?BnG3XQ-6mam7I zgM?KVDi3sO|GU=zrWzQLE4HiNw*z!4vLP|q%hx$^F>k5Sq+2)Jm({Q;Q7SmfI4D(Q zR%Ua78Db*y`7X-bn@LL&I=T*fb08CdC0f*=g8P*B>zR$M13!-K^DRn3WB=C&Y>Tsap#UISZ*f|E~7``wNT*FR(l0 zVD~$v)pwf|1KNQa*y%VoNJjKY*|z39`u6fvNfL01;57>-m(s>D+lA$4r!LfEAdc>y z`Zp25{5}p+_w49`dSlQYseONX85xMJls@QPX_ar)=PX)TmBWT$rX_*U1kt8IW zg)UrhMymH2?q>$Pt;og-*DLzF-dX?;tSEb)bFMvt`im1B(SjG(+h=Ui(8m(0KM?ftpm%$+$)FqOHl3j5hwy3OA*XG{EbYXmec14vCPIIOkVPcy zL4Gj*eUMmzI6X$4a!s)R_sbU65Ndk>x7U}g->becumj8**1`W%bGP3cPw1%2x!v81 zveti8wLjotOZ{8hs!Ev37L|fWOe&9^l z$+k?5bJEWsqOV`4kTbF?Ay?=TP@^L3P$`V5Ad#x6nto=!Z?Pi5lESNBa zM)>W;ukDL-k9nmm#rdbdD`*!HbgWkYc7RvrKrC{+w&6>|xM++c*l*lhKF5F1p6i#+ z--GP``#4SzRMzGPk<_Wy-cjFEaKqO!`wre7hBG!L>o=_cY%t!8k)1@|ik@W6-pJo8 zJdh5d`0aqC=?^f6C*cK&E~#!DH;*k~Ii?>#<4!B; z4z-f%cD5|da?jf^wfrrzs3z?1tN;KvQ1KkHra6Xjw$7B|^W?Jj3aOkP$5?HbWXB%b zwf}1a$pdy}bGIp=DDrdJVpoym5ggQ$gW%79u<+4CdBJ*+Z0D;fdb{r;^i;K$ ze~S?;tl)NG>TkN67hTF0u8MzFXtYPiQ8ym7eX@d& zZJ6WdvqKhtRzsKNrwOq?tX2KB#mf6JA}#JmZrvygj;k%RLWle5e5K(WN6}r~)KrYu z-As*E;pw-0uEqncm4?&Nen-cR5B1*363a3>^)4J`YlnflTf3nDU!1`30*JxC<3n-5 z>)93fN*Ht)ORX?W*!MV<26f-xRGU9yMCr$3st4bHE39{&D64Q%yZ!nl_3H12_XFHK zgbmKP=`oV5V?a}MU>;x>@uin4xE;^ka&tMt-kakRAvCwA>&7qNTaeVf-p;{b5m~o; zIe~gOz~;a|*_X7p*(t5L@=HY}t6#39H*#^TPo&>}`k=opw0*(gn!cIwjmNk_W>3^& zik2af@fW>SxxX^_PM_pk{1C~OgUyM~@}SLQV{M5etz&uMum5W~qyZ1a{q=a|^<6`D zJ4&K_X+~Ppf^03O!X1Y*Gr5nJVk@qxf#Kgxrq9Rt-l_sVQ6SWzNb8{_k)f9NNPo+6 z3~YP+-AaK0?L8EGzDf$THmuEUf4f2?8W%L}aJAEUYLZlpmj7Q{-3fIAnJmVhc&w9= z``6r;?@jfgnS08w;>I*_T&ni}4901=vm{#&DGL^)!`5wq5}^)RdRzYUVWlffQ_$;T z3zlzhx{$kZj52=?Oa?xl@bj~_vBz9wI(8hiwIRp!p)B0v2&u)x4r7j&utCber{B+~ ztF5hGM-@$k0O_aDZL^7~|Oi`2auQ^gG2Y~0uUZnNish|hMTS$*wIRx6<>@@-r&h^X|&Brc4)<}x*O zG0Yl5-o|{?e!F(5ZNaqAT~?QSnLG$fXHO}*KF=Q>vl90va=g0$9k*+Nj^`Z?r)`%v zo3L{!MxRhx*W;7vl4CA>=RSBCRx;7kbUm<>!NtMx?$f zG+=+HDq^BInc|2slzR0VyLe`a<+sU|_H}O7y3x$7<=M76* zoT@4?e6;tq%-727-4s6z9U~%gR}P~zk&Md)EO>iuv{2q>MJakhbjHUyf7!NH$NC$+ z2u(l#l6MagmeqC!*S?10OcJ=98V95kg2kz*1}p$}dMX-5O*b7h8Eb&_ptIijGj{e} z?zko;Ksr|=Eg##8kZhbi8^@G(wZnfTgzD6nY8&PVsOxtIMTu#Gr7r}!D;eaHCoGi~ z{_VfjFc5&S5UX7^{`4qbWmMB|?5ztAmuxO_N!pf_v>Yxw$=#5$G#1%F6!~f`J z^Cn9uMyPSMT|b*NlzmzJk3ZdF*Bc>liN}R}{8O^cfa(Q+Joux14&-@sYpwm_gwDP+ zyC4Z;+ZH%AxaC!&oOw57<|Oe5-{Q3qkLHg*m^&(KI}j9svD*zI7jn4$ zX)(PE2pR7R@E$442hEI!SYBUv1^|Xt=AT?NKf?ZRSg>_n%ZTq`d9Nfp@|!6vR%*Na zv)`Nyak^d&zizZRwzV&t1=GF6EUx!Tt0yggRP{Ku;g9DdzwRb7-I;$|+-xT_s#~lD z3))FqCnk7YO#U5^W-cNlF?^iWM0QDx(38{45WGC1tlaop(eD8PFH6}N&3je-4`-p+ zgp~eIQ=62Oe|kHWF7^}s->(9Vi;Mj{>Bcls> zWA>SvDst*YR)<4(5Bv>1aGN`;XgPsJ+;K{vRbK;xD_t_c1#3ifFxIJvB zmpRAI$#?*0rg-4fd2uHdRdiYB%yR17A`u>P>u{;FSmXM8|A8 zSPmY!zmIT)LaNx%B|VhStvlfInc+;95(eUh@=8o@{fyarks*aIbV#cTn3yJmXJ{wMEkih%0uy9?KGUA zJJ;XL3fwKOT07)g*Z!Mt%VkXtAL5O;=gR1lwVHlwm0#Sws(Ak3piLPS#0b_OITxMo zgtNDQo91>()Qa3JqDD2YGh@Hx{4vX=d;;Y6`5#nF7j6`vtWotBZS?I%A}yX&)gEhG zS6nSJMW&gv7?GlwKhkSmuGKPE?mKC3k9Vb~0r9sk8yI3Erg(r=5irlr#9MKbSq+@x zd2$5V;|KBB0lDLZ9Tqv*qz<*NJDLtf7qXh}T2cs&>QM-v#y}yUl-Y~M?VzM#q{8CZ zo+c6n>VO0fZeeb`cl`2eJ|mEz-y1Z<@5n7fL)9Z~XPjEf@9Q5_r;6z-9H&<1T#aJQ z)-O1UW-;0i*>_ghGigg$Zau6@Nb?KFXOj=A7#?^G2b`qCIb%Mp!Dp$nCLN|90`1yc zNifOVh!6F@{h~+%E#DsnAi#;ii~~1|a{@f%gw+bbq-PM^s%vJt{B(!`<9RBFRuyXA>v`Tm|Z%Z ziTOXcov(VX3s3;0tPv513MelvMHhOpS>HUtN{?mF`oU*c}&^vjFDz&|z-JcmI}TH{o#eERD0}WENS55rHzyW7HUxxe@$V zJs(H~x9>uU`7l2ke56ZbjdQeDEmEjQ-!`qMQkby_)-+Q{>yXP+KEL(TJ;ar-_hGF~ zMlF}jUD0Gl-K4~@cu02 zwknnSu=_kCcDW^yTmCuswC^_s&@fbSKl3LnoNj_pd3vY@Yl=wTr6H;Xmc&dmkz#x0 zLd!!`Nvw#+MV^tIos$V7-+;sT$FGR z3R}pxvS*rR^DlA+>@;@e6CFG8ao&^lCT)_=xh{EW>n`wI)}p1KcR|93d0L8Z*wvKV zhdxBabZBYQz50a_or_{ez6Y}VlD-wH+DvKAo92ywum){>k;{M zA4(LX`IsPhv(p{Q|HK3k7;+ez^53E(XRpO*kufl5`tN~w;%fH z%rptjC>h57jG+whYV*3-jz-cAxGfG@sIs8gu@TQgNeHIc2gIomcd3zqa53(ok(7k6 z&Qrb_Tp&qPTXu|D@a3yuJcLgh_!iEpdD#b>sMX2!koUWDC7ozIrO%OCpdlC!`JVz0 zNPz(Ts#c`e%tE##<-96vLLOB@E`9VTj8VSUE=sc4Q;c}t5w!P8#`~CPxQ<}zyG`arn_4T+JCf^4& z7%$4rqj|g$*P9daKcPLm(PK4V?Im1@oUuuwC2u(%@WJ#2$6Ouwru}MhR}hjw6iGRU zmHR&82m@l5+tJ8K@ikesHT8JXd06C+(X0>E6^f%uJ_-zcI^F0Y7yyp%M@%uq_=)!B z)}ck*d=JORg(x(r2GzLc)K(Dvn~Gxn#y}81BqyiklLVWeZ%2(QeO22fqv>jKH!~CSz%Vf`xyeN8lO!)$NYcoZ zH2ZI{TPBf9`bqh|4J}5Df%n&Aoh(1!Ji*oFd{L^{m5!)4#?HITOC^z^1^TZ2L2_gM z1%_~_j-78*R+|@@N?K`p;w0O25h|TdCQXVTKM}l^0-EnxnUj1T{)i4}IB6NF7>Y-8 z2Oo>FWlnah?(ZUH`C-R@L?bm_7P7Wa7dup}WHh4s-QR|miKF4EeH=B+|3o6OVPMi7 zdCTiB{#|;!E-$g~(+&8omy<2juSYkW_SIg}+A=I>qBsP_J?B=Jzi_Zx8(WH?ue{my<&~Gm|SkI7u z6uC_k5pE$yGtd^n_iQ)QZ+a6m$_~rRDkmChr@mPf}-POyI zU2V4jg516$4GPaLpq9_2;?;RA4rOWqQRuvKoEpjt=HesvjicC^wGeZ^XmG6FqPr^O zxY4=EDi(Z`Pm3nveX=-l^NJUNI-XL@NVt(vIzer{X|3`3a$n`hb!1>KlPmD$K2q#i zB6lE^fkBCzglrKIgc{-pqe}&VspVyCRhxa$uF&xfdjly90W4IP(vN)+-Z5K9yeg zJibey=DYaBqsp>ej$lSujEfUB4J_0D_@~eBt=6IsInJ9r>?ey|79JR6;n+yYyMDbx zP>1j*>jxerMzzsp%V&A|UR%S?>%Qh9)#<%ggrPQqZ^wmFm531Ne>%Q9$}pq^48K0R zSKr2lbB~GzqD@~C*12Q-w0W^#6heUUYYL#u#kdZj5vOrzSPw}!3>Qa?#WM_=a#Dr5 z^(sV2p<4kJYMs+-5|cHH49A7~n;q9*bsflj360^}$YkMqfn4xSDS@Iqlg???`jojp zt_{aKMC!5+gt)OZl=v&NI2_`QsHdqJA5z~xjzvCM0uZ>CZ;!?X$bjS>3^`58yS0 zsGo`I>BTcnL;OLEeWMCqZSoAquy*UxMx4bpK^7I9E1j44WbQ)K<0pQ!2){dMi+)A zFl^3LI641@Sv+6K?Vl9X zHL)aIbS};v7p0p;Xincb0_7H75bY#)gK?YGOSyDzc}UBrkGn@Dz{`LU6Nmhf7}4vg z=M+Q>vw!2s2sdi?$5&UfDvlGgvzM>Jv0E|$_S4a{yc|ab>QW~>p>y(wRTqsA0YU8# z?~m6-Lub&H*4`x^^>knw!R0XF{_sY1;@IxS8F{7{JI46)xm|cqDk})Xvs_u?(NM&g&URN6>^Xon}Degy=Jwn{sM1ZaN!PttuBp zAC&9#UM7+h%me&Tkcwgid1wD=a*XM)zm3#gpnQKI!Ymd@@xV=i#d*#ZF??oV@e5M< zE^>>qRe;ue_J$?UwEy=GI22)rokV3-y6XB}!}`)#tG-oDbCg6Oo}iSeSO|TCYRP`d zy^h3>0v+<)J1V7P8J7w*$jwuV=(x=>BG|UV#_LU8qfI0>sRi)rA^i?! zFtZJIFg_~UTov+Ml>jFJBZUOE?&Nk$MZ~elYHJu{VbW8}eLny$lkw-(?lb%<`@xvK zM&D3C8}*Do&JT)n*kSGjfp-RZ`T3B$Gj6_MeBjH1^c@-%RlESL?=bQ!M6X08xL_(o z0f%Gs-9D7%ziff|NP+Gu0Uqr$wr-^C*U%4!RU#(&#XO1|yV#M4q9LybrM3Gvgt+&W z$y^fUuqaQ?+o)TyF@g1gP#Fq%T(^k$=7h^ET$d28$;lXC+v0k?LtUpI%{?AY!dSJ4 z<4v&HfJZJ82b#%}V4dR-sG^Qfq!Zm)h@BR%&ywrkM$Q+Ugv)ZQNVX=LUB9aqY@W3Y zhYzI7MlzV(HCR#aXSBUX)KQN5R|?cP%oJ@WxQvIW%l0~b-m!wX!`_A*n2=s#W_|hF z>guPVVk!1RK(%XBa{F@*Y%FA-mGt&V!qm$04L3uWqBFJvxU3tOwYSa($-Di~FlvB$ z+4A4*q<@PIWga$B+fWZy9hViV>i=Au`|~}7bK!~FKNe*Pe;wb@g%^A{ER)vpjaJR! zo1tta*ZkNXw_Ec*v4z?aS48l~PFbl!xidpA>y6*}Ld&$&KfdDH{!tB2bJW(?u*Y+qAs(Dd!UYYXVOVE%@ux0% z*yE^rW#@XGw%_`xPSWtzs1+!Q@;=~Th-0~$J;H$ID^qGt((t%T-NB-hS8ix6c*Nc3 z*a3rjDU)ce=p3M+hHMN8b_qr&*u8Cn=+D!hnE$6iGoV{Iiin~SXTbI0C?Y2KpsMpe zDMZ*g#INJFpx6**4j=Q=im+=V#nP%V$6K-wkxC0i>Lwn6?bx%Qii>>!-6c0vNTB64 zF>RzQ%~^0Ij6~>u8-^=^vl|t#-}lrV>|o#dBln3!0&XvZ{;?ZlUJuHXsS!eL!B)qC z=JWGyHJy6*NnynQfLDlu*Rsu~Phzcm7cKXG9+*22{{a`KvMs;q-fJ_YcC)iyB{r1E ziiuiE(pslkuAiCYHmfmGJL};X_kPF^N}7I`qwXM!^zJ<@Nv#M2R?@XHTZA92ZP6KT zdv}(y+LVmgwGM>}02K2uC}J%F z7mn&0BG>vZ?1@X?h^yKU^+kW~{pul70*CF6fUtv>czZGwjs1LphCuW3dpbI6XBzt^ z%sqO{6a%>J_g#N|JD06e|DZs)(TpE|MuMV+(6CQrwD=gqBQ^l^;QfqW)lNg)Q&#Ks z8o9Xhbt67m)EemdLu8SOyt8DJkm_s2ap4U+L>hpswWj#DHlOk~qtDp@67#J^#(mYS zzPl?%Ik6CB03~WNCkkH(tItouJyfTyASt5Z+hYQ&?LisQADnVGBE04}ywp?u=RwL~ zwC$dJe`%ph92GOF90xpzA1nZ5OmI+xd$9xtvcHLtxcnvy#+{q_9+fTc>-gEn=f6O~ zn@Bj1c|Pt8n;mk~q$$tZ^$*eApx4$*x$4F5&0nh(Mi+b7=$Q?)Cy$(Ybd;&drivkN zlxB)8n94K#NP}ux|6O%!Km?)MoNTjRGx-g-m~+{UjddyHQZ~QE=OTK-*01(0E(rK{ zf(tX|nW|xj68EBo_kK3OVskOy2>RITJZKD%Dz1bL4mkv{%*O9PHCNhOF4Ds!P0<0Q zR^vc&68#pM%!g!AO}7L5ov223%IUllT8jOO4z^R%`QAm}?F8QKUbaZCg_na*lI6$6 zl|}1kZhYlqF)}=720gv_BL*m80WXN=UdG?wrMuE2EO!{6in*7YA%bMlbgH5C1FBtt zd*cp)ib0O3tDS)p4)SOboN1icDwwuXvV0d#zs=OVK0^SS(nL=tnoQ@y3rP0}aGvSXe0Nbx@sZi0Y^5!%Z5ll5BD94*zX1F3iIGyQ>3+&>_> zJQtei=zxw2%7O!u!sGVxOUm`O>E?-7d=}G(%mmAiqpm@)?&}Y3fH|RvwnaFfhjHI? z{7c2g=zs23l}LY!M{x--E&JKWRh9S*I zuMZMCcWjPo)}g8HU$ntR%*)QYF{3AKt!3zsHWFtQke6l&ruK@Y_F8&*Q^ponD~(Xs z(+AD|l@G(Yfnq1zD3m?B(QED$T4!5d7;vce*xp9OI`)LkM`SH%y{xUL%d;2bdp^ev zY%%NlxP-ccX()K$_N$KnVu( zpa*T>PZ9?{UpK|QB#DW*JbK*sqosR0_3d^M`)r1C;X5T}q1f?x$-^9WoEPKwD+GeZ zVA!^!0c=nZ{d3n>h~Tr0eq<7Ms+b4@Yhi$Zso|kmeyelIP0>pV>mv#n#v7$_`zoOS zZ@TCw(yk)W`28j5!u|SO3@Ub!8Nfh8#4kr1 zc{)C`t~m#*BJ?&pnunr9g2!rg?q98ZVcEh!3NQ-1<}--U@D^MD*p5yf@Fz0vRL4$& zLD8FoM(IB-8#b6UmGshLyugfeAJn=hSjN}cBvtz(^zNgkdKjO;#T75wb6y=2wERmb zHcA#SWZR_+I+;J7zVl79y=j8~fP>;f0Af=C99lPeB%2F$^%OBB+Ur1)JYHY4^Q8wn zyb$U2cXfU_zEYzL+8z&l72Y2n%!pnPWn5lpT4{X1o!0iE7eNAXQl@DUUDL44H%5=r zp(VZB#2>&rZHUTqSZa{tm#j?M>J+T~7c8knK@1DbX2!NV}^wG{7F06Qd@0iQp9 zJmn}%%=&&UGaf-c#n4KVwRFuE(4QB_b`xCLk*rOBmyQh%v#b8we*ls$`)iU0 zEnlP`*~gXXz88=}pMX>87Ob1zpNJM!o)u|2aMZ}!qTKawo&A4(aw7DTd!YLd34k0| zr*U{ijIecjkwW?VvId8`vmF-Gf3C^%B*BXaG%k{H!35-<^;=;*!4bW$tca^POnaG- z$pawoLEpb`mG|IATq?o%KuMYy8K5R74}aKoogIadTvfb((wMWicw2Uz`RIx;Fw^cS zmEtIo5u9H`duoxEFPbKDvo^4G{E5*?Y$!<|F34nXWd4RZuWqkVM86GGH_x_M=53U< z%#wD@F>5*}BN6z!iU=`Oh}HS}!e3OxJMv(RrhsytVbitb<4D_k>b>2Dr+$dhPEqPT z9x^rYN6KN*_PQT|kH0rxvRY$Wn~sG<80U6_aodM0Qh;C-CE@X;S?yt2DxxNmOEGm7=c`h%{|Q#N)i z)(VjX`~T|g{B!?!rdE$@%<>RPDX-ghH)z`aG_jnzNRULM!5R9Xg?<)Ac#mvBe3SeN zC|sx**V3YQTtZ_>=+kK9I~RT`{4~ZNfrf{Eo=@9Q?kkap@g8dx zzF^0Ng~HVA9?~2^EvONGu(`c8v!!gD+KJ0gGP`5zUKK}zrU;FDxp*)w^gf+l~h z+2VfPdAY61O`(WJAKP2JM%5W%xLkcKbYE5@NTBS#LK z(QEvgK*-~&jFop}40_!Nf+43h6(T*pRS>GprQ&f)sa=t|DEMV9-b6z|^wOtWlUU72 zpQ2`GNryyq6m)K5bn9y{y z7&7nQa8dLN=%vR0i&B;fnji><9m9^Pf_3lCXSI!+r*r1@O@;1vQL9!qh3NJt zZ&H9R{dTT*Q<+^D=|OSBgI1xkZ~!BFp&MVED_SbO}EV2o6t=A0R; z(k{>}Q1fU+ZVk{RS~z?=QA$B%YZi+otnfyA)!@$$3Qi2Kf^?Vb5#fJgGXuxz@*O62 z<6z@Q=U13X`h3Nl}QAoiy|C{>_E zcW(gz*|c9kbFtP_lX58X{5l8luVDf3I8D-`v`V*neLI%7VqL1IMj_cJc*Jn$9t^b~ z-jqp8&n+WoMUB8w-_0bp2R(Kpi5~C4Mv^Ueuq$pWqck1=urvizqXuE6aGspFR4^*E zXPO5fyv7fb9hmOGlU)=LoGo8u(^fWs(RJ7mh^bZzx_3HDOL2v9(c zD#;Z!y*3`LkqS>}f>`luBxj*oYhLEkkjWyfYH zCs{K_<|D(dTM@9q3L6=9jY){#`j7rdjcMjZ5A*+t)0}lui)R1pqY7NoHY~@1X#QSh ztSengf3^TM6CinqOiJZEekvbp@ar#XaK7lU*|IycTF#f|j4d!CmJo8w znBq+fY!Z@n-i{`AkH^Pl#F56{qRljqGFU6SWTi%`a1TVBp^9QM$WCPvAQD^aQ8(la zb!q0m6nNL5pg-8_#9Y;nATltK4P@%h>uDweF%(TWD|cNk@^oOHubjZ~Q6Wp|JWfUk zy<+pVe>(t*ox^KHDh8?g!Su)(r8neI&PxMZJFKmG!KS`WD=~~W1S&3rvz5Y)C9&;E zn9nfS7SSJ=TkdMauo3qf%(WK^kDHxL3qp|1WH9{&5~ zHs02S^W?>i*orL{9FwLc$`jjt-#14=%!PFVv)G;5gaNAfJA~#U9fOkR4XKkZk+=mo zII#qA67nb;JB}~8rG{TYy5uIq;IMq&I3a2kyuo{3s9#U0vlWBUd9+cJ2^eC;jqKGi zGCo@A#4OCbE9#(8Sb3Fd|F4?H0t&*jdr|?1=1gsTTQ(f>UW^u^-Id41yWawBdCaoj zbK1jPrq-#z;|>j&Mu*0ifsb#y1{6`d(f@p z@=@0B?4_f?Pwh2c{sSE&CiT8IGpNQSOjYr%}Nn^mp`cjF>0sFc(k5zAJt43IDjIr zWi~5=`pi-?`@NL2vlg37j;rp_BC2<7I{jOPNkZ^4;~KzO8y#NhuY#LZ>HD=f0Ruv+ zUVI{1IPOwa-^m<)4jFH6DGv}z(0(7$Buu0v|0aBBtBqBmvY?)wzCoZXj4KB-Z?G`^ zgNlIz2PM$`+a4pzfw``1KHsi;l93`J51Pk2n%>f zA9Y+5m*r;o&s^C66~1Yy!RkIV@8v6XqoMp=by6Qw{7omz^c&=z zx&4!;C=G9tZ}sIZ7i6U_=Sxm2T3}v}2iv(uySaZ3wRCcL-S@4SqzrXx9?Ng#KS|_i zmtMeYYW)*UAW48FdelbsAxCmrqV+O9uv?=)A_=>g!0ny=ys_2R#z$ZSt)>ff!1<>! zR~;1K2WwHTz(;Jw@?E>b3%zh=_piy~3tHzJL!^?4y!*Ffn#O(#@oArf8%owS_Qn>Q zt5Ve?I$wrFF#;xlkMzVJRgKZXkVSrJd<a&F$K=5Wi-Hs-0l<-8Bk%VP=bba3*Rd`GBsM9^q-Fe<$UmWBYaE z(fGhRS}f;o36gTcP&$Bh0ecXjwEfzN+Dgn>xO$@DGy^eOaO)ebKrqo&9tL*iHZGm% zCm#Z0SG-R>FuV&cs@=rrS{e7ID|Efh;otArF8{58S!B9mT^dFL*p$Ov8U8%2cq-)D5r6=G4sV?ID3Us#do zl6eR%mYm@(e)~b}V!7nRrMI}T1ep`0GAdT6u8Q#l%*|9Y1gzPwGyC4nE+B31<2 z+r73L{fT;S$k%x{7$!7DT9XJAoA2{0HZ+NuGd(j-tpZA3h3pqi?G5!EFHB*K;8AOp z^=6K=sg?k~D602C#v(|%3mzk=*9oY*`ji?D$!$*R?6hvBii6#1uKgR&+;5+}(W0ug zo>G)NkE3&ZZ;5VyFUhT)q^D{6m6qtGVRp@2cnbB~>?qgODGlZZ>7^i3OjUMzilbxHAS}`Q|~SHUQhu zO0-;6Qq+Z4>;~y#fgd2TAQlUc&3m_K&Ot(yl^2Wz`W5N%P~+H@%&i9Q3S~uFNjEEs zq3tT2?le-=jXus){^w+&Lx_wDTC~d8_i6U}v^O!o_x$!e#dhpIALdJ>Sit!;g?qli z=(CD;=?~sAMPP!FHii;b4lHmUCA&`bx1O(yB8vA|+K+}zjD3n${)xg$xZt(ShTaV` zFeXsVo@*$N0jB1}6hZ*X^J*s;XNNeQL0Ln=W|)zL?)xro)QIKKu7aAYDuKPN)I-_>l|S0RBob4p9%aUlP*V@U{6nP5%=u#Ri!{uU0)R+!>I&rrdviC zd6kFu5Wn^(eVnkk+Ca^|{5S5^Uz@u~0*IG?W`5ki=@G3R^LY%s8Lw}50rD?je41Z- zWX&-Da-aI=kJJTq^X~A4s-<9^yXOaYcL(;nrpGe;nfk9PnRH_Ou*39^SBx+bup7TVTl-pO z5B3JsJkzGbQ@Wfn?FDhWk4Uy2)MPBEy2+1UN9N-Bb)Ade-suGhVBSGudWD%Em?E<- z-m%~8xcHHI{MTQ6%#P}~&YsV*6+2?)k;-tv(I{v?IADdyv(`X)Gvu9OM;FEhvvwZZ zXowM1OpTAwQIRhGVlT1!dI{#`>a@p;BU`9P$bIZlaR{FfDW0iGdUTc*-@t_}+HZGV z6#VzITo{}JkWMAx9_NLafl47xrHjrJ%2+^6P_vU>uo4+eTlcUl%c(jMGW}_Q2+V_m zUrTF0d~X$yHk61PNixnOH1l1baNEr|6+MHMXbTzKi|K-FT3`~blRK>`&3&F~gOf_xqkH4ZRC z0VhtJ=R~_Ait(I{qEGEw>!ZiG=I&j8$@nPFF<_wGL8kLhQY(&*y$nF1>7tepibx^!P(d3uL9E8~y9^0J9Wg(DrXTk=H;)!i9r_r} z>XM3XE{o)l$~2NOknq^Z+BM1c{L!r1)qXe8q1JTJzGL@*&+^KOCG`JmNhuv&9O(2*!HrN>OS8>}bR*aQf#4)5BK`i2P-a54|Y-m-9|0;E4?q9%%>LK+xrR4)UY2vonT?f$|NAIwVm!V070)TN1~hT3 zH-q54)V=Ps08^PT;mG|2v-wdQ%+Y(}x3$UecatapN4(4;vkLV9J=K{_*3ZFuPdST` z*n(0gl9`BU*q=X(w%f=DNFTrNNetJF4RamFk^*WOiJ~*&qmd4;IgOGZn6(w_@ehE` zf{O1qRxW-qgIb*ue&vvxcHeyw8{{e~4&3fm7+SgsC7S}Jb8_x_2*qF^5I z1QKu?c02rl#-8BEu7Nyp)rh&>WuFNe*y!~h6o~cfD*ED`-gI0Xw&br&8{6joq zZpyJABaYgpOOcR4?I%x87Am>{-@cQl`e)Zcw??zSTPsA0e3jescz7Ll53AOg7@~g`254f@;sbDc5>gL>* zQhkseINM0CW!@8RI}g&82tz zXRApzt@-HLTw62fTixQ;Mm~&p5>=<;dKS6Bo7#OMwT69ubRgRkIrJD(y7tf9GNmDH z-ya##N3=Q(>c*hso~A4AdLZ=@M+x0y!BD~iE)?; z(izz>XyM5cB)nmbe~T`H-d(jna&-7s1~LXePAA|>73$dE>)84N~uH~7r&@A+R`T)f*0 zc7N_T_kGR@CCK1p>f}UgVqgq`Om6863x?Yno1{Hc`EuFs)#E<v8KwJF9&#Eq3C4`14-ZM4bNg4mZ?ho@@|4~^{B;9?-_ zejJWL7u{@}$jOR_w73*_9D^jCZR|p~98cC;s9c2~9Y?s-Ro78%Bn+M51*WoI579qED;~Q^&{K{c-Bmt&y}2@>8;>SMZam!IX%MkIf~*d!M~s6-*PT*gkOO^ z9YTJ*Tm)DAC>N%Y3vk{wd~&B@jCU1ikb})t*lfjRXO@Rc$*d9mnZ?!9lVOSsj4<`| z{fy!7zC6D=)tX({0KS*;G)(S?)A>U`!U@Uy!8JR5c#*)!>}$`gsUe2q)n1Y4>Ucz8 zFqed;JhL+x1Fc%BurvarJ92@{%sw%wfd)Aj2y+{lDkoAF8!+qHEWzjyWJ5yqGYDxl z8M;#?WB1$b)5(O*V4XH;zF&+3wJ~wyulIAPAAex00oPdENIctkxDGtQR0@NGo(Ifp z1d*sEnXrjHmvg%>8tH0X@mAkFEh0CS!u$P%oLZXFSkwrE-+#mWsNgO_+6~lOqZ%89a?6;~5b)h^CK|6PG7DunUbt z-jh9v)#zq5AL;mc#~~ZgeLhn?QX~CIbii8r^#P#yc{`E^`LyB2;yic5v|m#u&?uRN z-}6M-2(STYT>3y7lYzLa^ohwhggRv>RX~sU&FN-4nL%;6kw)@=eM$+uk_93`%RxG6Q*k9Xb%FrN8u$6gY&tob zH&nt{l1$!Puq&&I!N2>W48FH&cZL(eCjw=NfkrkqFm%jj(PFjRM&fkbdbpmQ+{5bn z(2)ul3hFAA0e!!O<9B!C11{OAc`U}>|3DJl=zoDgR3(w%Mx4v5-mML7>pcpOBR!5d z$W@K&hO4keTgs8m7C0Z-4G`O8XC#2f3o-7w>aySmyYby0A^{_@N(e_VEeu^rJzP;T z__k#N>y1n19c)p+dosH8M^Ocv)zpZ8bWlBGjyu^6CTjYYfu%Dm)kUAgBS{2n7UHpP z&9NR$F?*u>U%nvE@@ya=(H~UU)iLJ}uy|UT%Kd&=z6ED8)D`12d`+3$skt#kZ?)5{ z2h=in`AKmb$H@2tX6red?z+)?F7~bm2F&S9Os*F$$CSIJ&T7cbrY+3@=5=&T++0_^ ze|e+@bL2HxV@$nsaA18fb)@B43wW^-p2^bXC^~H84ci-!ke1`YR}Pkn!j-PF@FRi< zhpu3$p~U_>)SiSU{E@5d_r)~h>HJ-7m(MhLG*nx8IA=j3c(S+}`-4#y`-dNQdybT)3+dDWSAfqVD-_VF?Jq*%!Y+OWCM(jmWHeBc?V zWbRuE#}sb|CXH_s3do%MQCJ0FV%26Ubfw zc+eN7n1J8L;tbw}_AS+P!--hQlo7sQfh9Zo-G>OzNpd)OFFq*`XA5*;sV_A1&Ms7T zSkCo=gNN)z`%|E4@7Ce#tQ05-Z7aECg}PLpkQsvw>)(kk$;k*z>ADkzmV)5$PlN?H0iLWs>ilE7q|V<$P3V_IN`Kpyy@^S+~a6@?``I3%z_ zWZLD75`2OybanRGWSZA(ZjPmB-& zX}LKmJg$!CC(7}J0q>DhGSttj^;QBCd!D;Xm@IT$K(7KP}apuhC1zlBZ zg)bz~kQ=Xde)PmpztgMa6=RuZ?c~}4isygrY(diS@tu67{=penI%)gb;+{Mpkhczb zUnW9-=n=ty_~XR+-RUCR-yOt*M>?zzLSJa9c{wW=R`>8X?ah5kaTD%;9{RR6#N>)z zm`;>o)Sw7kfXyliwu-`}WBu5e;F%w*TMRZ`eXqVVAF-bM=S*MDzIf)8sLvar+7emT zSnzm_pHxow@&3&Nsw3WTy)+5orHQqUw9B0GFs->l#*KTuLYS;BqMDqnklFF!0$%ss z`u`RAAB=ixxXbSyx;{o5_eU~SZ4flSGpLL;V3B9K#3?;D1(~b}7JEA+_G)8QLI^{R zg}BJVL?=g|h;i2<>hL%nY+4{ZB_Hwb(jLFjdBN>g4korSp`6v9Su+P+Ab;arcVDl3 z3rIhVahOJau0Ivi0<23191FV;4G-03WPp!+w$sdr=KSs{4pX0W@P&`NxRjUdx8+#5 zJ_n;Ft)NgSC4C1+Bo`?Uos0NfrPaE$OCmX;b4A1NIF?UfHezx1NMtZ+46%=$A{hb( z=9a=szXnfjA|^X0?|ty7Dl~<&X6nf60C|#Jtoc*k%;bM^R@KIwuW4I zk5b0Zlf6C22_=_=z{lbamn?4hGLL6_8{U+duT zXsfTQ(WJMDW}TxBew=Ckr}|Oo3C0XOjudQQMA&0^0FOvbl(s zgP#PL({(7T9NVys37rjhQoG_YG&lRJ2XO7s)bLd84<2#RE8GsH*C*t@Y&1mGF*)&~4mwC)P8u{ddsmQ65MYf?20y%rswr0tOAbAdN`2A>>yDJ*hbw zRqj8)*+4p#)k7SzZH3sW69ohr1sZ-CoC|4=7~yzm(y{ha#dU~qbzZ;k+zTo|caT6> ziLbwEu4Ot~$MHZ-zYBY4KO|#jOLnBa#p~+HrAfy&nzVLu>#wK7ee+@8V64b|SLq2H z)qcvbnZ)1pR6bhL;~+pr(O|Yfp*j_f4O=&3neaM4!T0sx`%MM}(uZn4+p-v@m&*(s z{)1yWelu>Mj+T0aJjW(sec?Y_OPutfuZ45ABXzKB2H3$vD2gaNOuJiY%)OPdLID*1p zs1ZRKUpdPiv#zD^@sIW1u)4!ZK^FkVY|i>uaw`%Akeq@VNRvf=O%_d1{1m2mpNA2P z6S}WzV5XLI{VuCoItK{@rdF~IO>K$_hM>IyvlBD866A3r(=!|O)iB;=y`Ij#2n)&r zc6kyI9!m@^IQAKy#0r=^?dftbmg{X>Kq`n)(mMIn9SiCQ17HTrykWGGI}}Q+DKO72 zz%x8fPj69`-WWwnBPp|8G=5ef1C{S1v+%Oca6)%Xz}M5dLII3%9>Pb+S8SWv#Zj+T ze+*P-_rXkFr^`V3aLwdd!el=T)R|l?^qF{bCMMSMG4b}r`H)cC2a8m< zc+ptcF#Jg6FZ<0mH%T_BKB=;DU(z%-SAlW1bvjUJ+I>VQBATq`s>KVMc%12$@F~n# zUKT5F#vIszbi$|4CM3Tbg{#GyR2n1p4?51UFb;PN0P?_9PHi|4Z=_nWPfhqczaqEj z1RK)J9GoWQ^5H0f);UlpL=0cJ!s|p?3X>0P4xjG}F;>>JEI|3%+>F9i zhc5z8i%oy>(;t8T)Rr=%l@oj>mJ3fK3|@E(bw2wN)=o-_Sen=DId9NA?S1imG!G=^uwxt-pSt!G6j;n z&Pg26V$tLF|K|306F3D}t&XirdYM|~!6P5T!$)$_V09DjeBwvLKB0Za5nzJXt^?yz zWu(F;$^~1NZy7x1*REb)>b1RG2~1udi~qmDs{=Cdba8nwwJ@!}P*F8a6+LID{4UgF zIkur)FX9;d zf^ctT!K&_wm+PRYkne!L*b9?3Z-(I~hzM|p_xMG)8NL!UcGphhYS$@X+PhTnR2)WO zplRvl)6Yl1FEz-Efw~<8qsd~yh!0=~Y=^xo&N?}gCTP?hiBkk>m>)5i)?rIuzD|vER=clmn3wYikhQAp^K7uH!0SZ zu#MM>MX0M;mkDGCs}DzogXuVpUY2Ox^Vut00}UqJR9(1D^86lPmjLO3i@=5VGmtZ zQ8}ZtQ-cfkz6i!Qj12fCPkL5q6;94{&2+c0j_v@^yHXIz6CA`-`GuntgKGS4Mh)Ng z5=qw_gz)&DSTKq6HeZi1z0tK^qQm@) z6Q!4{b8RV}&2P`&(Bkp1B{F61PtdXc^vtZwWFq+l=TZXYFjmWrGHQhf<1{V$d49l+4zaJ~> zJ)%}4!piJ0%*RDVY?EmdgqG{c`NgyVCV=foc3@3D@yXHP<-XmR?#kyZ>ntwPp<1z2 z+0nRc0mpE$ami+#@rFshSpdQm~? z|5K&HoID-?*&&Az8?e`h)^wmGTsZ-^hB9Y7{%YFa{h5djd-NO^nMpZ<&D;8vnmv>k z|14=_p=V+_c+Nh`V5{Nz!w|@UB_P?ypkSqM+2TpJq0bB8#^?SC_>Gr4vjMOljy`M))vU*d#zgxTGnzkWX2@I7VQ*N4}$5tNpFM(Z+^cOASW zKiWzcax)a4c`uy5hAH@qGw_Aan!`ia6e{~C|HYvR;I`-wT~DsT;b9~3%V&`~hs%M; z7Qy_6X9OS;{lrp(9!JlWZVEAf%3D#VV(iv82w3nBb_%p*SI>xeHXkRl_Z}u#H6|}* zju18W`K7`y7B9G`{`kC4q>Y|ScJ{=NZ@)2M8qoNq zU!c!w2*&rIa_9~Xy{}5wn-O;#cs4`+s#nC*J1R7*K9z=)xIF+iYwAuOGiV_x4XPh= z>6Ir~LE<7wDX)<7>*S})&`^SP4h(mPTn2ubgqdU6I2rI_Bci^F_<1U=>i3M~zGR7& zPy%0&r6oYcP_x4}m+i_d2z_wEG}n=k-qsn)n)&cN?XuQ&yyJ&>$6+{Cx<%~qd&6qw zR2BkeLQp!(UWaSHM?VH5Q*YDsCK(wZ*v-@kE{AO;5)s7*kF6bl^?wZSroH+chz1A{ z&n;!+c$`GW;43og;UOUdia#UMVnj_*orQ63PYWjKr$6XF3%`4B|F;NFAnygZGnaF+WWF`^Z3q7T zoS8{;f9o30F*}A3KXdv?V3ulnAl}$*f}d^#jij-I54P{?xSf=nW}c%e!lQa{CP-5C zTK7HECf}@T#apNUf#5@o9c4orzqB*Ei_YJM9#X4#+zD|?A=h;XyxDbLejCam`*JCi zEz175^2-dz;h>h^cfLU9=9grcH^(g>nLp**p`Go}v$zR9!)*iLBxvB0EpjPVYu%y)%BqLP{q2)$gXjg4tNC zo0iYV(ys49qFl*oB8`K4XY@cfO(wDzAnVs)dIjf#?397!U5nn$j<8VTwcWr$@`kxS zxT1xx6kv=leN&^}aahk)c5S2$iW3%~D2IOuhllEnx$CoWJipBeFfr_PSj~qkGotBT z*>Toy_BNe^b}lcx$g&P$k}?Eteu6@ummWK*DU@+B(DqL zonhLKYh7P_4vz{cQ@afq_9-^^bNwqmr856-{VMSkx-k3&Hf!*iDRSPb!d^O5UFEn` z10%nJyCx4WD7D74K;lA8VR$*e<8%q5b5dU8skoZh|2G$-E&dCNVj}zXRJ+~p22%=C z;9t{F@1OZ`IfRa-D=@An3f3Q1bT>Nq=6>$-oouayyveE51;Ru_8US6*LVU0KD* z(f<(j$JQ+CMFBK9TqCN9->%!?zXzXM41aHESyX0b`QAro4EWt5TB2r<20bYrgS76H z#(sgEuBctyw>mzD$XOESZml@dLTKugY233{4J1SO=>+!JPe~o?D3Nf?w`+Xq$@+6> z^?{`Ygn56k&@3%~e0&Pkxg_6iNwtX6`HGfJaY|$7tQRfk_74BqLYsh?_(dS$0L1B7 z<%D*)`6yqs0X#$W7W%h%1P2N5o4#MPF^%j|{B@erQ_B{gA1zH=@zU5nmc%+(#53vAN z2c5mE)MdEDaK z6H2s?qw(CSAF)2P?JxRmqy0q7&P|wSkl-HL!Qd0uzRDFvnaB_1 zaU7B-rPUm2A#h%_U&&%my9YNBl>FVRKL2!&A*?6*5tE^Bk-}W;Uc0BnQ;V36T<1AX z;Rl?Cv7Bm`0^gL~WZfRxEA!shl@C`;`09EOxnTr)G4KyI*efFVEW$g*iOXvnJ;Tu? z!M+cSnxO7m?{s$lR}-*Rp>#CZIlhbZOv2y~p6G-2`8Pjf<_%7EmxE>Vx6@+1QTdN8 zeqh*{$YJk!KP($PacVoyv|b}aWLb#d4Cf#Kqz$G2aA2qa&`641Vc$ZPQj;6oiC)vk zftZc)fvGRxp=|3?@}In17Ndp8s;b&-N0ylAxskEc#lNZD>p7rJ{ww|K#=pfx z3EY-6m^w=Bg~x1rzC63P>M%Z;pc5Lw|d)Qp?z ze^g=nQC_V^^m$r7%CS$G1zc4ro1N!!Atu#RH6{eT!ecWqTYyX^O8{>WjA-wbX`>`T zdsC(6AD|WYe$nfesu%`x|85O6XW#Wkr&lvA1>RqW!DWe|viTyJ$1&~dJ|D4q13KVj zb5^ZcF)~Quy2$F0E*lV33cnjH4sVnBw2(bDCg&6KgxvJCJ9GDP!CPZ_*~cW5NeMI_rjc@n6htzNqI85f~z! zLCtNkO3&}Mfh}JN3^}8CtJ^?6l<9l9Y`026ihuL=BA-{_<=rJU0ocdh8ltr;f&V3g zj@GGQC*m`CTFw})MjJ^kqAoS_*=0sqE4h5L-*$C+=O#ZjaQ{U^RtrIe{z7jT*_nEt z<#Ei&x%cUq3F_TPLfNN3oh)mMKMW4lKRf5;L0VQl0oq7$a=i?+9LkwTazdS{+Cc*$%-Wl*f@ty}MlZH!{YJak4fp3Ae~Z z6N@QiwtJ5STo=fC1l`V=I%F?_Nyq2vU3%92q_ej%JtVx-ha;q)O>ei}RXXub2g8t) zhRKIzeXce$#E_c{OdMqlhi%6W&>M@C;3UBKsOEVwm;5U#cUTi-!CnRS5HkP-F0vhl zCOE)~6+^resptR3CTDH_w;4X(21kHmckV*V&+jVdHA>7@@5nmz!My~`>t7CU97K+`F z9?A6{LT$0i{*Gph{3=paiQ0AE-^f&mMG6S~<&*pf9n{XV zIsNdQ!#|h^OGI5wgcp>7)gph6ZF0r74)N1{E&u zuJ<`B4lWK8^*(NO0<47{BQ1db*1^JxVcA6D{?ibdtD?9cSqSDQdWThWuPB1EyYfL- zkF*bmBo@OCeb07^tc@TP8u|*42X7Mr1d;O4?}wBs~2$8jJCTi6|~O2Cp7X(MokzG-Yk+RPga<(RPtO z5bb)%<4Ye{zFL{t{z`5o@^){ee8Fqvso~0}kcX-Uq7I6?Qtw+!?bw^=B2hZEELkO9 zabC5|TcNqm@5EH=+)XR>S>m5@QrE%VzT|#XmR8%S>Sq08asTjf!0lS!PJybrzLc&0 zzxJYa9OvwNJzrgrQ5=4p!?OzO$9pK)7{Ru5`7;vz& zFK0ie*HGuF`(qd+kVpP6sZtjD+h%SAB+!+ywj z{EWS>j_yUsA=};igb*@M<~{H(v9B;y4nAnOtFpbkgV2S6m4(gI@JgFU9Q^mZmVdI@ z%Rum@nvIiV$*;q9o-zktwS*b=!Do_tGRzx*>?`eNmfMrVjj?V$=liV5asK>$ z*+kxjn!C&9t|M!{eHOiN!1*I9#XJqLc;*ccn>W@K#Wvr+@ zyI=CC&{J{2dG7GF^nvK!)hW+W7WX%%dDJ~}``?n^L$O^5I@tl;3*g+a+0h&DVBP_v z()2rb2$L(jibj5G`vX?ghXeWdl9PYUj{Uyx&-9S__zHbhlngVY#fJl|-^zLY$Yb(W zw+8jqK`(`+hD&xvIS-DoOj8f7Oqmbtq@ppagBOhg17yrI#DV`@m~}&is;H=QvSPFt z=sSrml|7SNs{A{M9OK1Q4n~QqswDdqq}ZHnlJ9>ACit zjMZGE8r#vmC!H$k`ZB9&5(EBdIW|pgCr%&uQ;$5q1==q9dXd=m-G+0< z2^Lcs!^7Gx?ynLzu2~Lnr&{+8yn0&l4~*FU4=&hwZlIFH$CC))1Yg?O_>^G9_kW&? z_cwo-xY&YA#b8Ch?S+ZR5WU@=9yq!juChG7p(57lO6ileZz(Xp5(`jMrU5MSp{J+j zmps~#M@JjwG9@;dwdtvc@)b){?ROr7nHN8W0x3J0357&~a5`&4VTaJL9emed$y9k3 zMj_a}eJoA+8J-}%BvDc@hCCf`97A!D5L`)_1kdDdB8m}~`e{L;bUT`YbkG~Nv*6lz z(4^V8iB3S;`OX%gon3s!J2-(x?vAl`bSw@sZ;|2>#`WrSr!Fo0BQ3|smV8^$+lCg> zI|zc*G(QMSfXUC`NjyYeLJTmUE?2LxfB5Z9|5#roYdLh(A91hGvO}CAv~-?sSc!L3 ze-SJXAYoB0eJnNWp`{Dp>Ulz4iDO_!f#Lqssx>2DBlNsQ@0+wY=hsB4p%$9UCbM+T zMcoQZ8;k0>iPjI!)b2s9g=sA|D7bYT^JDt1)|c~A2&bsXy`>Em*HYqoW+rZJyr764 zkVgk8*OMU{kqS%!1=;C_ZDHN(|NqiQZUb4Me|jVTPYa;+nKKi8{m3gqTe|GQ97pv3 zt}L}Q0HGuNq;t^jRQ%G|8(#~W`lzcV{U>c4uLrtWz9zp*N#OSs)gRDRA9V48&G@M; z)xdn22{cud>_e!g>Q*d7Uw-o`n;e?r>?)&gv|`ex$Q;05><;MVE5 z(jCNZdTE|XwLq7tAlaG>NZC$2CYl~m<5U($Ac4vYqpRSEOY?${l8jgP zO>icNSlO%>=lm$t9L8*>K{0H+PYaAJvvprP142shS%bSH(SS~(5b{4rzN-gbxv6{=K9y^Ao3vkLSrnoZj}p|G+-<3+3#Tz8S~nya0B-V zkc*(yH;2Ibjs9MQdyp8GN}T)7rKP{%_-zag;8k$Qe&%7v+r0#DyD+~vOzu&FdvXJ3 zJdB@7PTlJ7M$Pr!&%pDoQ>lRZU3Qb+X+7EKxI&jr#Vzt0$Y$A|)(LBL+f>~n6K)~} z_ONUcIIs=3K40KBqnM6=koa@shy3Ogd#A%Z&{`4U3j(_v(n5QO_3iA~xAu$;L5%2M z@w)sk>7xrRbf#ZAR0>xo_m&QamfVVC7og(6c~{`{<79JE(5NSr-o##q>n_0Mrzb5I z46sCLiMg^GWvL4$!)% zB8SUeJ{ur|uW3t|Wodv$Cs2VoC_hmNSXT5KH?xJ%6oD>(% z!;QW4K{7Z!td|;rrgRQiZON)uk@ng9{6entdN;D@Ye)%>Fsb&kVJz>Q2QC_SJlCD8 z{UZ{`*Um`UQr5>9UFP?id=ddn-8m95RfkBcElCC!R;OO4)m8D1%?~D+t!Hk;d9QJc z8knadXc+shus+1^Ri5i}t9;^Z-%4GxxW_{TWqzX2`T6Zi0VUBGe{45bK=rQn9NZet z?73g$@V1X~(NbrA84KFC%WRq4)Ue?ucqb@sTkSfQdNt26p}3r+n)aus{6E(lD5$|` z?kW6<+o*9(z7i1AQ0TkkATsY+CgXHEzdzxSNm3m#rXBFPF5WV07JWCa9w0`g9AEC6@LdS{V9`H{1z-&Mm%}fE0^BGfJBLsS&$q?*-nuoI;zaZb_W&1?AMmE>}`c6*L=(?!IvtNr?hrs zroizj_bb08ho5VjY6KM&_EzrkO;VdnPN?z9w#jaqv{7a$22d%zigLR5(zE`gRSb_) zD&0UvZINh9npvo@VsH|E?b2{!K`GyTgUo=46wuBZhe+wPr_qy=3kk|#>4Jp zhmRCNPdXChaR14t;L4M&gS8K14kmkxBp~L;D5CAjx5$?t;ljf&oF*n`BiaRoZ>79h z0I(u9+x=9{6h<#ad&Y|f#)gF8C>96Ll>{n$pTlM4^ZNE%fwmNRijDzEAC-IZ@$bq_ zJg_cfar^I?w>VgMWYwhN2PGaaF$>5)kQ&x&{+h=|6y|@qnu3y8^f#7$e5V^gX=axE zbCpzWZyfXCZkv1;{}J=|Y|XT!L*wBa^=$-Bgw04tw;|SyDMB!qiI4$OO@NrUW*k6Y ziTdPMGOsMq9tvY`A0{WoD@q7xS+tl7FlVrUnLuYemrVW$sjRK^I!GJee9^J{$0=&Z zkBig`)Pq%xyP_?MoADw9)rbJoJ96gx>6^H%qU zssebdUd4TYTK+S@I%*?4DWHvxv+G=S@F8|WKY0$1#k$XRehA?#KrsnK*XH;Y8SmC= z3{6gtInEmkq$|sv6$Td8Nqqaego2%~rx?7yFDZV#G6QHO%00UPH=E(hfM}pI z3r0E}meqa@1$pXT_3!!0hJdZ}-#`(x@XUtwC-!`CX&t$FIP#AFRd1E2+QUdmV`?th zf0%@lWPA97NA|Wg!@kpwh{0=|Fb;KY}Np3d_MQn zz`+`?hxB#Rn70FP71v~B0^1Pl0K<@hc5S9=KCFI6Ji8#{O6+wV@xQT2;=Mb}G_bRxMc zQT3G9Y2+m08>xJcP_0P_vyRA6@-FGU%&2vjpld^czu8R-f%AGckM0fVIX&?f`J1h% z`FT|kp@woAMp^rhgC*uKhJkG3Iy{A)D*gWI>E>|VpkOK9#3jM>g;V857~QFIx`cPy zqvN~)l1$h?knb_0p1aX1W^z^e;@xJ@8}VcpM0!xNA1hfyubZ>)ctc>uJQfSq?2O5} zMsxu{y&k9w3+DQCuU^1f(;V^wb4C5h&M;7ik#}m=^E$}mwzoR1&x7Pkh1~pX(lygh z#wH6I*}{WdYg_;8?)1H&w%fAnrHN}zk%YYi$7-o(<7(8~h9n5v-iU)(@#u5yY6ThF z#^Qi`>SWZylC+6WQHrITZCiTJYch!b!a>PQs8?o|T4FNOb-F=8-)Bmi7N5P&Ufs<} zp7Hg2c+nQZp^74x_4xYY8~ev^>^#c>kC;mvxLGr-(@MOw*fy1u3mi~3pLdtaLikDQ zN}lk(rtMpPZm!Fiv^U<*JAkp6C&xSJTv34={7ddwLY=?8an?9;nf(LhGyHmabfYqR zps$690C}LCj)sM}?f-(t>5p8c<4pu#O=1qCfT^#~Lyy$6mfrE%NETduU2f!Gpx))A_m>8( zM;{o@-Tv;-VDVy8i%yZwFF1ggDv+n0|M0e!UUQS|cJpB!e%zaKZMW)RAAG;cdCe+A zr|iA&c$R9&w9Dx;lQVOORiV}Mbq>Y30HJW_A0aQTohGEX-pl|#TJ;RZu9u%T|JBi6 zaS>YZaEYVd*r;pD)vOO=S6AiJY%7;_Q*1-qpb9u2>CU!;q^37h?4yXaAp#_xXWTXNU zNrY`+ameGVh_BX>kl!Wo<#XmGjC(%Zpe*bM5 z%kptEv}9_{IyP5_NUuFf#3#jnF#2PBC_6*IBdD_ngz@Mj{)d>dLI`*7M?DG9|1e^= zr|5bcxxQ8PU|)Cir&({0FXl&1QT~S~FT#|UXLz67d^>u0935qF&69)6 z!Y0NurmSF0a>;33di#-4?}gk$slj|^-HwaNd)4x7muu-4YXn%1GY8Z61tCeNHgz|}SId?r#6U6_b;(ApmXeQwFlx_=C zX`L%96=p_4(91-KhEi~1AU0XZq&aEp*?E~-^85?y8>38B*?Xq6)_3{~$~D-oFlK3u zFmn!(?r9`3f2q9N+pIer$V{meaFNh*k7M^Xlk?kUEod#Yn9sHsD1G{rBvg3HOjKh_ zgafqt?4$dM+oSCIA~;Z(HzVQ!g`4~K){#|gb6Q7 z6UyI^;{3WJju62Ac{&W`*aIT?d&8JyiaE%@M@Y{9_ zha$(enlMvmr0&kj|8+BH14eWbiB1`$qyTHsi5%s+ zkT~4wd37yrTi0t=Kf&^f=-wayaW}GU%PM#~1ucXVqRd#q^@immuG25R>z4`I#t&hUaurJ)+P9r(xBQ}4lA|>&xj#2#gD~y!iV31RE$+ubrA}VYOCH6-oZpjLWHtt!71rNP7vjsP z;0?!7%uKBE;(YiVq&ECXAp+L(Gq0@ux$^N=Ac6T?q!{cygdhAsLhh5r68J;%#BD`TYn)`8t52Fqa%Vdca<@^|>^Rm7qqU^oiIyVIymp_t zG3Ke~AMR|7vRT7aZHl?1e8ND^)6E&k+F|LJ#!pQjVj!6V{brDL*88W$CsJCO&4Bs< zcA-gb*Ap601j6ij=@Zie<_J7eTE*8UI9#=<66iOE$*}fPn|T#P@69J(XoKCmWtwHXDQATP1#l?8s_V^uD;DnvjsG zt1WM^;+Kyv@Y_aVSSA`sZL`|PeGU9$ZWCwWP~!~NM5QmpsYSca_Cc$ zK1vxtcRZgnGNl*+jWX4Lrg=owj+R^%#gaq41^&8=$Hyf#wXf~fg{6OVk_ck-JH}q> zSw+gDLuc5*$*I3O=W+&#I7Fx(ww>p=ghR`T5Rt1+t&bY&>#0tG6Kc@!GVB;7N@x0Y z;om=lVa(2jLLrZvXZyTr5P;hZFMF8Mu(T_slXJ+s6KOik-BZNWzUm)&kf2-Br`BC# z=bM3@!12MQzjh%m+8cvkkF4AqzgPLIOPYS>A3h!U%|CEm(Ye+= z&tqZ9L_bVP%p~_}AFCHgt*yvQVU6`VfjJ9ciK*3)0WM|kb%Qt<%%pQ_nBSx?$jP~y zRHd$B-=226zZUxXt$pSIk;o{w2!T8D=pEb1E&0jy)^6lp!MQ3boty^+H?x^%<7=oa zVqm+9ZN#JQN*N}9irt#1nK<#XSLFp0cgB{B-(O*Co8Aq){mCVeSj#n>{xxBsUa@BI zOB-QTF?R)#?_oy$R7fjoai@)PN$s9?9SvHWG=G|yxG^W7nKCkp_oQl|GB(_zGnP8) zvcmJX^t7r+9Vf6FH5Y!7sLN1=~e>p$PsNa1fXL4n;Ku{ z6{^hljBSj$!8xnXj;%UPF8%(|(}!2^1jkPdYi%%`roEeIx5G5NjH2sCCh8Lg|L%ma z2V~{Ak&6906r}H6!g>FcPIuY^fo#I6@2Bl!JG{Ob)QlHrvyIyh-V-p;5it+VvNQ4| zvwu7y{Nfn6g(EYSW=k zv`%`Igl=ispN|3&&9zuk1mk)JEM`+~+ixLkvZZ`~2Z+f?7x%j$KT6rLar`eyyIVWX zh*Ko-ZRorc+pMXk-qGQU&?z(&)WU2FQ(D4)GH46J^~_#HYkW7bAxW7LuzBOxyIZd* zD%&S6VEjABhzJLUQp&xd?YLC2jN&M;NS;8vL>; zGK4}7hmY{qYS`Q&@~{456&g3c-WKpIWD#4{O9<_kUY~f&8QaR!X|YWEkR@=usxvj# z|JZ37=b;2aaTbl{7ARORAftYOS!!JhXKCX5GPq^>A-X3Txyd^xvg$@@_vmT-BV0CCn~hKL_r#Ls%K*u~)t?682e7-K-3GHV z^<;mxkBiCbXNJ8!{+5}g1KcvEX^+$bBZAL69>Yn?u7a0bC#~dqmq?74gXT*dJw#9D z(;v_E>tD^!YB*}z*;+2my;iBnkKmCIZ~6MQ%lo)B^_J4i?>n{;0FWP#FV_(c^1S!~ zKAt}vWvtQ_1TUHtr%B)Fv8faEoA^#J*u|u<6#g_g2UJwcP=yV;QysCblkV1M-ji)i zd{ga+7LMJDmek})$Tql3$mCDajz?w3ow;+WS!)yAYo-bi+H3#XzHY05d26Udb>i0X zaFmx?GcA${)DcqYzN##vjp_-i z1PmxLB7do;{^_gF_ONw6ja5)=Ftjbu`A@`VWKKF@nL6HqmM--cAb8o5IIfOu0~lVq z>I!Gu8!>Hi-XI#7`2L@TjH4Wuj1vb_U{5U^V?Eqn7j9ZTzv5O0F5H<9R?CylyNtoo zFI>;qFU9S94{ozA+&1bbzAq_OMn098W!B@uT#$riq!NvX`~TE!o0nW;vNe!FSlkfW z$H&K2s4j_aeRcI1^mvp`Id&f(nd+e&gs{*ILh`xZf}aBXx-50IOKwnt2cahVT_6u2 z*Xt&QW|3)%-ehcvT9%>p^Zv?G$MOlM@_;SotsRI@NHAq4Of@xz?@Rr9j9hip$scdL zwebBevDTs}2`|}vSVX~7RnUK%d#j!Ou+b4rGJd=hmc0N*i>>x9+v;2>x`Q`-BQe|; zKzvGcS;)zMIO_rf54dloV&~+#G?2wi=x?Ra5+J8MfvTGWtN`Ce`-6tl0bcCv1+Y|N zTYh*5XoFO$7yd`E^AWA?2b4@KE`Iq5zQYn&e^~wNGSX=-h7XBn+tGZUe@cq~SYcNy zZIQfuw|=#&H@j~Oiy{9e1~Bd(XQqz><8tsR$i)-}nJG-3emdssz%N94E$8@xZCq@L zc`E!?ufQMaq^Lq7fxh@%KlKp>(?~AN;jVsSOyYDXKyJ^0@i zNDo^wb6sdXMpM3RqWi&U)!nNLC!W8ZuHzybY~>;+r}5GJ$Ew<*FPP~7bLHEh(lDMBi@Da=8*pE1ke-<;KZ62 zEI7pMQy0BM-Q>;FfjUZGfTWj>R8gyBkr0^@HA7r34L={nF+$LZ$+JtnbiT9FJL4?9 z7=?r}Y?Xw0eWf6dU|U<=b@b&h+BXYcP})W;=L=F_eb{R0F*@gW!(j~X;ecD2Y%I21H?@bg|uPrr;=#& zoQa%81DbwlFok(N@$g0Z_A=5I`+fO0Xz@XiaWZhVj$k*4GH=|<~VO*qQ zCBpk-msRKq7;I#bQ{}iv_H5FDq9x{crz}qaiosaDSYdWr>u(|OD|)rtOjwqU7J$}WVFE@ummu54AE9*YwLdzO)eL4Z z?J>xhuy`q3q}rtA#tN?&SL>b}g0P;|qd}Z-S7&<;-W9xQXJ+_^3yC^NUH`%;J@aWjW#*MvMPSCdc z@6i>*P+0vsXFL3?Dof`4Z`Kxc(wlsRH_o@B`$wb3icLT}?^omX_sR6rw#@Oj^&kG5 z$Cb}@y3?V{W36G8dT^Qdf6cOn#-;3S0DID-@Jj6-S3}zX8^{pYr)Cr>r4mr$C+m&| zU3hZBr7hQ}XB`jjj%}}VcTmNvj>eB42TpOq!9IEz^oTOvvGez1Ua6p^*;@mUyVlNeJgaPfD0%!V>LBx%jCrocTYI*A zG+O{Ru)Bg}cq!-8`dgd5(*;Z=`<%P)UpN26oG1l8sP3VWJ>2i+L=;d(h$+61V{^CN zx3n`AJG#B24mHPkz4+GQwho2691+2B*G*!W2YL)FLRnt` z5tJ$MN37Q~tkp`W6Z-@j28b-Q#CE7f^=)!K?WSVR9 zdba?3mb2=L=Ybc&83Ee0c1xr*5STsfrN`%tJvKm5rjtu-v+Q+Bia7$rEv)$-Sty@< zc7rJSklvM+bGw`UTV+pm<_-ZR!5|@2R1W@V83v#yOkCq-?)nd{vI-o~Pyh9pz5ZS@C9- z?iXh)?Grj%^Rm<>trL1%(@kz!$LowK@fMxcWD7E=uc;adq$6&&;#>hq?9JbV3R$7t(v#&VI!{Vli%KDQsp6OHV0PcYGi@NkIy@OIvXA>>M!O6bnzL+gSz| zLRV?f7EOWz?05EByf;sBZOc4$nP8!Yqr&w-$OwU~@go`hafl@_swf@YhX^SOS@DWO zV;4IczO_H!ET43|K6do%E9C~YSNS7g62Ah?L6CaA2&`vpw{tf95aPg>%N)7^aq4g| zJa9pG{H98AvSGU@s}rShk1}8Y6YGZ42_V{e{USvP_?;M$PCbH3lMCxO6iY&~p`@4? zo{K@&MRbsg*M62Oc3E`v+@pZ=5FyYg$X?o@;A%Jo@`dK&&ZKAhb{J!CEBQWl>^sn`fm z`%%m0P(dPz{UcyWZ0eI9>i4r}T#F1YI&*f5&l7T(pYaK~#XS{^)srP?1?vB?Bin7M z(<5zvnW+0!Fi6w=#{kqSL^|+yTj}_vuvVO&QIf}y?VoS+Ij_9fKJ4%I8|`i9{q$HC zTJlvbUnM=YiRF|R{;*J@llaCDTI!HXv|YwA9&+vVz*i|h`QG6SZ0rqox$J1(Kr<#@ z`LXW(!CN`6%Uh^0%_RsF-4L?jNSbk7JyIUf!WR^{j+t?Wup#;@o^M3C(b@+=5BMXh z09IC%lic+TWs9a5by}VN(g2b3GA-#NMI+@{sUKbM!phzTO=6hI)okH>f%+=q2lkeA zg00MA;B__H$dM7r8#{PR+c9_CF-P*%5!%{NGTmaw>3zyj#U)RMJge%sXuUCJxO`~^L(2EObD${Gc0VD zlV0YD-kSRv?Zr_8JkmPhc-fJ|Cpcj-a6L$}!IDx{@FF4PBSX~hx&ln8Xt5fPG;eSo zEMMU)JCbU}T9v?nSpQ*=ETL6Ul4^uN6wiFz?s!f_*+AsT06f)=s2i9L{tm&DI3kn* z?40R*)S2_Pu+qv(%$Nd*cOTv>#IGT!3v9fuKDKNrhEDYMo`hyUxo23e?zSAR##o}p z?$O~dA?kb?{J>TpUXW6lTvh*rX_4dFgYi3PlnT20GeLlLP?(w`(a1EC-eYrPz^I{; zEL8Y5^JWGwD+fUuG~YiKcsu&_q`{B{d~PMTjxsr=qm$~U^mup%et(-NEQ#~_5YxXZ z7I0bj_yP7ygs<-RV^w%^8;-}HdWs@u;e*3S+kVWCwMVj(D9qH(nP=7BW|Q7p0;&D9 ziFlf6;xkHYlMG8d*b6s9-WjTf+5efR)qEAgroF3gCq2l4=zM01}&LyT~ z?=nw;E6z5Ml_E;VH^cncN7U4v7az~K3`2e`U}xUh&Ge*3-sYP<$N(>wL@2$W*xrmj zAcX&nSk(alpx~SFL~}DDy1}1^|l&C|=-1P(fDi#A_LQp}q?)mper$To9XC48;7Y zY*`Q(LKI8j4gPZ-#N#rl2uDN_EJqz)*rPQU(}`Sz=a)zIAVoM%n}FDn zP_$;1k9N3^l*N10J_Nuf{-dbtT#U zgFbu3jbqw(Bg$d(6o-RT)L4Zb0n>g97Lvmc+r$a+0tts76jG@}0-^(xIXSdMl@?o= zaw!~XmJzEl-Zc2o6TtG_)VquZ=LhpIaILAf^09({R@OPJyZuX$54lu#I5bo6CQXk_ zg29yq`Gw-b0QXuDJa?iy_g5{5#YbJLhOSE50y8R3?_XyEts6U^CpwMp8e<@wC%XsF zk9C-+7#&7fFF~&1?%!J_{+lj3Bq3E$U^ks;IltZTy3p-u&5Du2E7o=%*}ylAO4+P? zIx{xBbAL~eY8eS|Y=YTJyg%CzkN;gGJvMEr)II6$gA~neVsctZ-V(9FQBDsY`Lde-T~2F8%^~h063~DPnI(**ay-hs1s0-M zU?b$k`{%~;l4o=YeiViVwk|JVlP`g>kHC)vb_;lCi%tWkx@qj4vJ`TS%e%*tOMw-= z3ya8@UPTCsPh!xB-qlxVdbli1kT@bN%$A!|7i?(h(D4hn|C2c;5B61%fDgk&rvPxG z;MFbcA%1W^j-)7PSGHQLRPSZZ3LU3QeC1tFonoEo(6~ovcT{-~Apdvuff> zb}y8x$H#9ZJ3z`3mZ7uDMGdZGLya?f4YObHHzkJi! zM}O5VwcyAIp$1B^356DWcJ2lens1Hh$#VNVQy21;OTxdYP>)LU;e%Mv2pdtuKldg* zviwLDheY_ceu+3SB8@dgwjnE?x`ipk^oQCjq4k|M{GXTD;~xLHcVxbQ&r#cqc%b|Y z(N0O;!srG^$y(EXg^dDQ?*g5N>5Pi&KO)Op48Q2V6TaRt$xQ7S+~dAcC^`8EX8Yr2 z;6rgBYQ+4@i?86&&?hzqs~U><-?=ozw3TR7uRk!BTPr&U&nK&`s63!%02PDOjU{ks zMK`BMGmy9^t-r^kcFj9*<;7(w=b6TOAyIBn9Yd%aPBg&%>@yF#!a#$>dqUyC?~G#$ z6o@*p`W=}xAo&j!+<=_P1-V%tlfvu@!>!Cd=D1br325_d$sg}J7AQRE+*!MLKia_H z6ae{Yc>@>kdiEYT?(F4TJ544m`Q5T0|NOgHs&RIfTZ`+k)L5GHW-U6t1a@jUEpm4( zvV|jfCL;cvi$4LdG?MVpntYy^1VT~c^6lmYA-}CM6nR7veqLUG;deu)3?{X>2!K&qvJDJx>53eLB3^oVT258j-SQC5` z^mT$kJ`Tstc|A6+69b4~x4-(gt0RO0s>AALtC6!A=-W|=vls|ky=;Xak zfS2UJhbKXG2MU9+TgFk3!NBEOS}`bBqjvejFOg_?TI{AWvV093&8wie;>EM|$Gj=* zG*LftypMb5~08I^h#9{?wV?Cofr@^1c-hPSi&fy27}Ql;A4(;uz&u zv|ZKPIN{p;pCtF zQuUOvo}RZ43EKhB*P0twBC~Q@!+oF7u8_pcc{*{hlZwq&;b}%y^&AV=?b0#2({7 zd$$4|_a6r&D1fFgIndMDX4jhGPiwkg75(G@}D z?ODWShaY-dV_yu#gttaz^&yleaxNKyImk|v^DeNSxt7!qk({u2 zRmJ!4mys^)`N|wR!;K*zIa}4t*#2&f|M*m@In88*MI=+C6Rk`&RYgDi?q$w1vHFX1g|CJEChyZH7`I~@x-Z|`KS z!X*T;{P{z48xdxI2efiJ>C`5n_h5oM-<%_f)%O51525@pS1L zk;5W7Rb?T(6M-P6^-BgUBE$(;>Axv9y!x0!Nn~oOHxP!Ntqog#jlzzi<0XCy1~@Gx zWnir0K_ljP1n;hrzDX6Jlk2!#1!sdL(y5WjBya+yKDS%t6tjA1YdGoZD8g@}vgu{+ zjJ#3i;2VB}&nP12F9>H5`)<6IoH8s%43#oXR4A-{YFfVm`{uM+VQi8}^937u@3$-F zlBmHI3 zLyyD{r0;x9Ke|c(iLx2Xf`18@Na!7{mW^hVW27Y$UVi^$|NFn&NXhUojtOivG#JkS zPF_7(X$1B`b1x=kNp_baLZ45R@vfSwMYvMcEwATvxTaaC+3E?rWvBrzFcAF z&f26z*dxm8@u&sokrPD2%T&@Gd7qUS1o6c=S1(N58JNfZ-d z9y?v+F*PRQdoo>D$2`a{i~22MzaD?x0B`z5aPsnKRYVp3x(h(U^mz#DbKChihD7dz z>%P^M%B{QY+3~19QUa5@-^nL-DXReiQcI34q#;UCE$|J2xm~wjpF3WOnuDm0!L{0y zVES7=jux?=Bv{{A%t=OAgey4FW;v<_L&k@^6aEkZa0Vr%cc8dj4kTbPXD@q^j18qv zZl(Ghj59;s*ma>9o0SWAFw5ML!j7#8#+?PRBv-JgUs4zHjXH*^iZT9sq}&#FHK| zOvqJ6_B#1{4!bC+qyy-8$%hT!+jXsXtS9hi>iWHP^YvxTGz0$WT%A@(DlfNhD~q1x z^y@y0=;GuWp1f$ugVnokb=SfD=EbqG{fUaJV%LG=o#tIub8RDB1{p(>S7M(Nhl-&ZB8-%u-kXecW`GE2W%Zyr%`uf^!^27btNYV(FdP zGv5fjIZo~;d3{`e1%+T3=%B2So8=nbhS?3k8QvL>r~Nsre0`|o)Bkvng#QTh0wscB8_xmE z@4h4s!eTg)gxFo=}`{>?8u>sruegBV@;Zt=XT567Z^fYel_`5kVIGXU=!D ztN&PkWrGJ#WoKT_NWlmu_jCE1VEa=0cW=wC0B9axe_0g_1U_ev&@_JfwacYFvSh?m z$QvjBfakY>Q4s_KJHV$>;ii&1mVwB9SzjNwjA)?&=*aC4kQeb6F>CkJ4}Uv?l!sRF zCL}6Vn`Z59;t>c-Qop2~OEQ0-Rx|rwZ#EIc{%%_KzXgEkw0N_e=@##tQxQ)o(Ljir zfXzy&bKsaL)%HKk5R@nr^0$-IPQi6DO1ilf`&_`1nMJi0QEO{!tEyOf!M!DyKpB2n zN^F_xtu?RP9)TL)iUx^w{Q^d&3@INi$Ho2?-@a*GM%lWal`3S_336NJm(sl`8eY-1>ED}!JWLgLJC+#o_n;5S5 z%nFQ8%lQsRE!J@zH)e*>m+6r_M5B1YtR^%|R(O>W=NrQ28MIw+yn|frwp#Wi9p~Bz zuJ7^|i4I#T2zT~hnLatU?C-|8Qnv38@W$U8L7eU&RmBt(T=F3aeUL57aO5terJ}yC z_bq-n9L;Wt!2#(>5*-LQ6T;8fi7*K;a5vw@k*Jgb5!8r0IK4DM5=N0E#Pye{bi1*C zf(g93BGQ?TR3FZ8wJ>$GG>;tl0U3#LagdO>TtGkilgQ!LvSUY_kZFjR1j8LIr~f_i z(8ccyZ;ZRTUDzmApy2X7KF4LW$`Xo~f-#|vYX#DtNDqPdo@rvIXhl%97P{%Bm1a+a zQ~G2yLcNP=))g7pq; zW2(((G$6C-$6iQX)G=kb!*#}I^H0qC*AN%94Sv`(jCStevi(%_&X<_q8kIuJvC`*A zI~IwsTMbp6XfTEq*`_`KqQvG;xK zh3!!dv0`m$-1*nH(ATSX{Ua~Ni}=#QA`@h%au2ewu(+AL&)h0$cME$|Wg$c>A&{Zp z?sV0JQPHGn<6Ry*ic?%BnUeX;-%-M6Fw8HEx7_{hJXNVyR|9exk|~+@s!BZCVL4GiqK`@Fp-Y8FOwU4mj1?w&}X!ctRQf}fd>vc_zRy<0# z_TK$X%OB;0pK}3yf4q>{u*;12QEMe$ZUbKh`Vh$}aFAiYRhu;AZPV>-o$34t6_G+% zJF>(LCIFaE(7~b&JEXg=nr|5up-PZ$Jr5hcOg*0`1jeQ_j+mT(G1$XtNAM?aq5&T2ex*qUYe6kK**Y#NcF+DN$$3w8x0Wx*WkxeFe7ks-u-(CTU zL@&~u;^TYg~W(4%qDG$@MP51u_^qD{ISUkOPUm-uDa_f)K*?9*Gvrg`$hfXGX4#;&(tB?ewaJtS+-51jA5(QWS`+aqQ>oyDQGG-y z%6(n2amwDic|I94RajY2U&}kHJ%=OZvE5hmh?pJ|CS701+0Ta!TsrF@~>BspHjv z-j{Ox09q?oad@F2)j|Kb<)9V}oufDM*i!%>#-HM23TUZyCJI;YU+LZYz0$ivT3>!P z^<$l=g=9kwsHo#S#_K*eNWrL_DPfAPA&eQ@MX}i;5Cm%^tR#%r8TxcN1$kMF&7NaVJX~TUqaKzk{_6Jqhv32?F zih5MsWrt-3(nOC{C4a?RDV%RT&6SA=?>68mTB?dY#p$W@)up;P+&)wFJ;?*QQ0NPn zYPTXUKdA#$_EJpWxD46Q!F2PPOA#DAoPG`E=Ix|+TxSi#u^<0I@K+mj(vI|HWA9W6 z!!@1|%2PqalkDavaODA1=l=c&Oe_jk(u1!tZX-EFqj6mk-Zx--*#xztGngV`5`&#x z=lp!HRF@n2?JC`$gnSOaiDeIDh>o{xC?*dhwg~xM zL>`=g)TxiQ&gesEsSE=5)}UILm-2QAXL0e*5J?HFmu?bOm-w$gp|fP3FVyQaj^w4DhbCJuQgi|e95x#GKp+?VR1GFncLe7PTwEx z`{KIjI65#JojDZ?ui{z4#bnA;aSM74+3^G}ko7CP^?Ud~7Jw)$T;?utc+lBuSt3CD z{0P1Oy<$2!KnTTGhUc_Va0{v0AzWCFgZv1y2H~6`fS9ax#4&otzh#uC88k+8KGeAP zT^#WS+P*<2^x@DTKG%FhF#WXTDTaQt=(JZ(jad45_wOK{C@7RfK8>bZb^=b{2c5F? zaOcoxY=5~Q#fg9T{aKjv7hc);yy~)@)r+!V7Z5u3kwi60W3zsd|J)~Kcz7R(sgfF6 zD1yxUTDR~Djt=XW(yueksl6Q8rUq`&tDHWw&e=}r?A{Kr%-kOzb0bjOIzYdaZ&cTH zeDgqPu5t2V!$+QkV>(1RcQ0y&mL?xaq}~C#V$)zo3S+;-`_rp9{Ik!!*mUmD9^sY3 z84Wjb=8=2`sy5>%d4jGL{1$~24R?`07t$D zFdZJ-^SKX#XUAYA?R)obtc;$&U`A_;o%T70zMb$$&S>QZIL`5X5cF7Z&a){7_>1h1 zMmXFDal~`A6LsVDVXb=+S7vNLx~Tllg2_#`-I@PryR+;rls*ic_4|CBYdiVqUv*cZ z@%ia8=e10+9HPYsXXoi@s94wHl6tXK8S53BAn1tnOe*mByY{5P;5RpZ^@J3I|H`R! z6unwqW!Bzr?eXjbVf-@u`|B#-Csx>`ugGpy2e5#^r$3{g3Nb+sO&Ypyb{;&95Rxi0 zu?+_u3V@i_GF+br!833LBi8Um8v_Y-WBNZ20W6AWoG2rem%21UHN4 z4=U#oA5zc(SfBwZlxLv%>Q(^w#8t3p^f)%5Y%HDePPH`_0$SRe4L&$8ElL~rJ#8am zmD9SHNDMxfNMr#JB0HE)Ya2_NqyV}w65!DV^MX^2-WlA7zMuqQBOA}6)V*M$@WgMA z`Rz+_Xat^d`z{S&V2v@9Ng9iU@RccSJ@sgvQS;Wrb52;S4Xl3QQ^tZ@t5j>-ZWGq^ zIlA?-i+b06g}^LYRA`|~UvG8}TQX|Buam87MVceU zCK3LL4M^iXt~QMV!O^xtvOK3D0~IW4zqft9{cOY`$%fKa2zUXM+Z zCiEGX6anWBSW@Oj++tm4g_zhO2IAgIjD zcRfbQ7X0R1$uj~LpLyY!Yh^E`-%;u7w*G??oce<>N|}$SRO|=qb*;}E@*@|WtS=Cy zW<0FyGZ`h#Z}rjj;v4e<8&%L-aUIywh8s$aR8?Kxl*xyhh-&i6R7$t`+s_As3Kp&} zAFF)~Q7jw8M9cFa#k z^7k-;mEXHTc;eJf;!cpSN}zqvix#YP`DSPM^lJ~6STF0ZpS4q=LC6y5!wNy&5^wqt z#)k0rP?WKW^DxNuLTC`wkj*A!BVy=x;5bTs7l@cp*3KSyp}Ee1&_F5_Wr6c_dW8p_aCG&A!cDEr&PdYeb3159Sb6P8N3bXw>CSyQ zvGl!|xpVnBa&)iPl>UOZTjVM;ajYLHS+6p6NkrrVa4!h|>7@>~m#u&()7Zcm#+pU* zYksts_)I~{B}Qd$bP)0`w)+7(9_DB{a;!3^y)5xmq<2>6Z7$1I(3;KPS%`ovd>cw5 zM^wq;L4OzWzR;$EHo-G^FaplhcnffK;|c4 zkJA>#-nABRb?9+-{b+4QZpzte<6Y@(r^?Bm)c%j>(6*B-&$a!v$&xPu>t1x3-e=wq z$;GLGr`ZSl+jycIlw)EWmu@EV8O6cOj4ERC_O2ip%JuFE)|`_A(*s5yT6bT=cyoVU z=@Sw`tF2ZKahPIddc}ts0;GjEiJhbBO+cn+&F8QNB_9vb$(uV(h+*RZ3PUQ+kqQaX z+ZAdJOOk%NK=ZJ7&Y6EuaV$8p?BB}?dwRAAS02nNVPRf5y9?fUA`+D(^q0PG0`m3q z-M|$KGN2Uy4y6IsR^wq}vkf&Z&}+yhV-;Mo=dT9_;+F!PW~fU1OF+v_+ArI1+*c(T z4sJCJ+d-jvWe%OGlN|g+H_ERw)2K1RhU zwQm25oo8HTm)5{Sppf*qHc9VIeV9VOT!;#LqRX1#x+a%J{WUT39l=SV5VdrT4aZibnNqbuDXn&m1z$PAzS zz|Qg2SBn1S{h1oyJ%f4Cz_t8ON|O*1?_&~)ezz0N<+L}x6jBs6igHDvio1zB)f=IjUzh98p_TX@i-azQ#4l6*F!-vJm zH1ZSs?BV@MKy`G^({mV*Xy|`Ddol@;+W-qq%bZM3@(KzjT;)zgnX!!7yVX3wisg?Hj8QIxUn|!v!<MZ1g@9^^utq0#@G`VoA zJBWeMK-*aqwPhr?g5PFD95&m<6p)biF}Vk&buTve{kyyz9?LF*r-ilY=?j2Pl(XUb zm5Q?2X?zIg!@`41|FzAOfkIf8kvVd@5Xz%CI2gD8){6lNxF|b0hjgm?%O=~n!ApH+ z+UcdXdBgC5`1YG&01oW(S5v#lx_t8ZR#NS2jh^_FVw^(Gat&7~IkM~Tb}JDl&3y+N zF{#D50!J`xrsh@F-G9Z9_EZ-bMi7h*M;0q3{_l1*G#~hYb9IuCR7)W#Rs(5`jy~=! z!8sDDYi*Cth4-NjmRE**F+1q2x?Kpo!|M#P5Gi(EzGyKU$t1xO-1yTjg`HjP^_vKm zU!!LNnm16DhW7XgGcqV}v61q1n`t^Y`HkIA`Q|#^cwCrx$`76;{*=`dB!zVjcaGT^ zmY%aH3saE^v*Cn3^=fXIXwM8Q1|5jia^pX`7_WcWciz`!a#yiZ&*8fV9B4U|vQ>Mq zz_KBf^a)7Oo1lD-%!!|Dgq{BgWPPvb{=$sqqS-7B>M13X5XsNp%~1Pvt~2?!Uftv~ zs+|>cqz}S!esJ?)FB**qM4TW(d1{m;fHUX%#4PMmWIMyFUn=V)HBVs~A-8$$-r#)FYYjJ*so0-4`YClTh<(Ab71Lk*YiyT%OdMrJ+lsc#P#`la?liY zsiyu_u)^R*ksPaDs8qHoAL-#4(Z}BMhM?Zt4p%4z-qMCFDYTw%$JOs^i zl~$}+w%)qQ$D}_y3hG7)O$A>I>QM)KKR^wkKFDprV56Kw04Y7Z~D5F9V6NM ziRd_en2%|-pTG3*RVlp1>bv#OQ%hAKyL#wy?$Kl)T95q7e;cnMw6d52d3wpd!8m3Y zIalVy?ykC~pMDHidJ$b>FUibNN&gs}bIOjSj~82Eas=@*{Sz7AwP5i49(>Of67(yS zCb_N}54h!Q2I(w{!yq|TS~K+V3cT58<&MJ5oE2clS9?BrJZ*-);D+Zm44IGpF8Td0 z`TlR*RK|iNBKY&-z&Z=nwDV*-tFk8Qi0i9P2isiY=Hc1~&Afgk7$bu&O>dv_arF}9 z-isqV*Vu#{iHC)fwt7Tsn&W`QPZ3CKUKTmdjD)e(Oj1xxvAu$bS}Cw4EGc6^a0K9* zk0{Z2=*H$K$Le@biDBHM8Qj|UklZCrLw^E$GsLkE1R=a-pMr}D|L_^vH)ZCD0LbC{ zj!6!5=d^D1a68l}l4+^eyAI+Sd@Yi!MZ(5+6dsk)3rt%j?>00!z%_i{Ojg3a$yafWd@B8r0O+RGezqG zR$9qUJW&gZjBV^-JEi)BT;vKCjR>g2^ZM?v;_=>LoSOT)*psY%5Se2BbRsNoG#~Tzo-z3uvj}~5{mi(a zX6|GJ4Z=fxMvh8#Eg>dz(e9#%dgVq}?39i=D+ z|6V7`3uXmKYv2e8r~QQV)=6O$6Du8Vc3uEHj+46?H8ORU!Z!Q-7a+Nh#|?&$nk(Qv zAs`c#*4lKK3#BVTI@##xEX*>$2OuhKbXqWKc91o9p+Tovl(edr62M1d$1#ON<@Xmk|i8$g^5;$@j~SBZFDS})*IIjnQTF24p#dM3V*77g zf?%`v23;m@0E?H0HN=3nuHnkzAs(JLehUCL#z%yje9Noj=Pn7J;lUSJrJ4qe3vpY@ zGeqcIrt^4Oyjou1y#sys`GEJ*l(R@bclngS`g7DuH`(H`#^1CZyELS3AvPdm*4ImG zlF)7`7olQD9Bdk{e8;sc3Y$Oum90BhMCZ>Mm6KC86NWhl1Ufnt`L=`=lWxHi_WPvf zwuYtZ8+fs$J@V`o)Xt95-Ttx*802yz<;8C5Pk)x{aq_-Y#n#Kzw3O;s*G6p{z>l^4_ zKoZ10*T&?ATO0V=%gtA9tFt2ZVR{!ieik_nc(^ZyYR{h?MMg)z4gjaT#zhr54O+tR z&`Fnh64r+>CSh)*o6=J-7PGBM7jQGzJjxy)X@I>H3V*`EL7w8h{5^IqzCXuL*!51& zOIVM>2*n1%Q|6uh&$=R3jh`n3>IS4p+>w-pIZ(q+L5dE*ouqwx|K+_^&-J*@xc#{K z%U}Tf+?LSuH-<|mYn^XJ#r6v#?W#`G>8akvN`sIssN7wf(#o1lF(Vfq7CB^bA>f12 znY%c`<7mBkOT0P!d>6ik#~B8;hG)?50fB+96rAEWoj{vEb|j6F&W`p`AQi1;6XFwi<#UmG-T z%ysP@x~yAylQHR@!0!tDyGkMqm9cadCed_fT%$FR<%|Z13ZsmVnul-^^DTM=g^4No zgOk^Jg%`PrU(kFdn=zm#Z=k}gpFoi-)0{r@2XLnI^`W$~1qwEAeH;&b!K?J{Vn#9~ zHwDfjMd+l}hyaJ6m@&w~7bvnD5(gEkH(L4tF|9tp< z)TrMa&Wn2!r69f~P8GMlJ}+Q#BDS~Y{g@TN=GA+x)W*c)JDvK{jYoU|+j9fdl3Kni z5?CcZd2vR00j5W6?8xj(Q=~gRd@Z^orXqLSw@-07*$TVIZJP80J2 zt40t((uh2AG+iZjgOKm+RC$`E;+;)676L<<*ZnR(-c|-am%auGS28|=L$OSjxr@e0 zcDl4;<--B4XCLT3SS>V&I8OhrfqrmC?ilEEk-jJ|7I>-bE@{993ul+otdm-Poi=N* zhjlIx&JJ-iSL_tHS8V1>^JGK6d0nnUP*d1iZu^bUFqSCetyJR<5}o!2~H3WQ6P(uZYz5cZVFDCTTU<%crGxFLsM zW_S7=xKFEe<4g;5)ZusA6iQu4Cl{;v;gpbMoxE@wI|pT>@X#X&Do0Fa0g6!n7}Rcm zIVym^;)OlN5{om&OYR7@aQ`@K_aQF?)_L*VK?&%w#hhcvNG(2$nGTpFTF%oG)kympE%QD=`calyF$%$ zrbwgy+2vtwXEv}r^H$aM;wA)>(yue?Gsi$C)w>B71K1pYWD<79F5(+HgG+P4q`WL% zNq4A3-smG~TD>vv%O61|Tio1gYiQr@)kT`-8(A9K?k1Q@&pvSwLJHO++Fzkym2%Us zEH?nJ#NPdN34x$Ch_LWu}GcSSuw6l5Sr4Kl*LZhOE5=8To<}aE}1&+>Y%o|ePuoiuZSc*!L!CmHPHgL_HPWqpU?XPhG`dRA0Upl-#4p)89 zs7M|IyxG(l&7$2D+EZYacFW5(iX2<4+$)EJM#s23j`g#==7dn5mKr(|E)WE3MA>yz z%$v8J>oi=00~-9DD$B5Ol*|@XP#(2t;KZ3jX!JZ~3g8Ng|M%@dpY;l)s#|jc@fFwp zHqUE@x%d6|`9K_>cY>OB6&gz;Z{Bvsb0t|+5c4Rm!&W&eI9cWH<^@|TO%uq)qs<)D zg{Dw=&K&2uqOb|`I9nt+f7;lByf@8s1dc9@uq$HLU zm>lHB129>5Z?!pkbpL`5oNA%8*&*k6QEJtGLNF7fuMDh5uZOV+yjLQJ(2hARZC3_D z#d#h;5hF>ncnd@v(s8C09yK*nXGzQ7A>4V1 z#2yOm-F3*`7oje6IK<=yqYzp_TEdTZqEnO?n+0RnT76>?cn#xR)ew0c-{a2Ae){fnH|b zpn7BKYF$MQ+pEzhZXft{H`f{4V2!{^$4AiYe}VwLBJ9`F;1;*FZ(KKc7z2s*Kieu1 zVUV_(XyWfKGVkDsxWmwGKjd;^dydR~u%FayNiX^BM+UT{!=T7=ObSHpHAcFOR;_%*Gmh<(k7P`W}>bI0azOs!S1Xuf^t>hffF@ zsXZM;jy2F(RX{0cy3#^$zt&Fe)Wujy<{obd>56Xd!HfQT8A(2*A>i|eK!Dp*2OMxZ zp}d^;?{6508$ zi%+OljelmZ|pkK6g$QlA}^gIJ;k*9|GipCFuj-e1t~gX~F;3?nRg zrookaz!M@t2k$eYottHg&ejJGp2a=M zbv2%JF;t+VcB7qVwo}6lE~%AlCC+x0;X{l^ePviw9tU4-Q4noE$t)oQ@t=+tXd-$U zTEZyj%|N(7BnOvCmJ%AEeUE}_-pWUIh=XvQv1P=eaiAfYylX(+S`vd8vQRuuO48$1 zuU_U~<-6i5eab>Bm@Sf&2_ccxuapmgRU_o3LmAV^X-;1=uA|`d7+o%Afvw!ygF2w^ ztw-``wG(L ztRbX@DS9?75Od&U=;tdK;=*_i@QO*d`AsV}bwd9iYl+xKO_-7wqg6IR9!)G9JAp6T zKvMg*MCR^gwu|Jn2CLgUxuqlrJS2_~>zv{P)> zHN}Fmh8*Hk$6zS8NOW8N#xW~-U#W?ST3SfsK!nbR+FATMUf@7vspUk~19FRpoll#6 zD|&{mJl}a&A{yYSm?vuo?>0j_koZNlR>TiF}^Z`n^{E)Bv3XGwQ6pPWr z-r4NnzNqyOK*xeJG6JWGF0%(KGQgtKhi4lWIG{=rMrPm<(gD$<>-|Zp(|y_aIqq{+ z2S<1aE|@e_c-+@B8g?w|-27PL-O<>JknhgfAy8QiCn)U)I9#25lua8Xi(YDV1;uH2 ziHM6ei>4oa_k4Zt-PJFZX3wa(d?Ml~S@iE0#;)Ahkv^zA?Yr`K;dB4v?@=3Is2F`z z?o9H(X&Bp+Q5K8&q2j`H>#n~BJ&W0sXX&qrvjiqkUG;1kzCole)`SaN7&ei1}jPc%K=zJ7uH)j&6lmN=(T z>y~JS9S9Ja=OK!IN0$AohhzxD6e?!|D(#CRlLiQ|!;TeXR)jYr2nOt=u9xJ-Bej_; zp2-El2UHlt%?RBJCDxx)@e37iIRD?Sf3*I!r(s0GIe!?9EiK7F2we63aBY#_I0xN~ z(UfV9Ob5xt@ItpM1E>A-IU?NMY^lv7cH0J9DgGxtZI;KZPiu^p#A>Jbs$ZYv%8?;P z{6@fH<1(OjvzE3!>nFIO$JoIxby*)*bAVMD6^dsi8Osq*g_QGLlJ!iFYT4v zgyU2@uHjk9pbzVbHiAHFjQ_ol)gpxDS#{X%&CWesrUF7CMT@Xk!XapHOj2bT5Zn4}8F9cEX4^~rzQ9wB-YT*X^O@W*0;G`4rD%O8Tu38r$RqAE0g*jlwJYe8 z>_4in=6v557%7&KgWCibxGI6Pu93*UQmTbYMP;xGZ}xEaXwkI94@ zL^`QG7Io3sgKPVgpC~@_H9cYaIoen2!9qi!spN~_T(JWu)E75T&z$L1ocKXsNg5NR z6Oq9{vb9~oKqBT&U21k|VCKWz0DAKCdGp4y`@(6pK<>J-uPboh5x=1-zW3S63+7nmuKvR-cV3cf zHGg6(ayK{5UWk@}9M?*Fdm{Trs&$yCdfWH@q3C`O)1WIWi0|*ri{+DRa-cb~{|bxF zGf^O|sPW;lc19IgnDc0k=%Ws73{$6D7K>i}KCQ#3qk?7-6=RgwW>*y|qx8h|#2Sd8 zdW{$72$M+&tj?{KHtOxe^T!2dy&-{saj(HPG>Kc%7_5#s7<{K$Z&ezfMnW)duPm85eQ+C8{s*3{3N| zvLS?%XguLesS1+++_q`^A|d+1|uiQw6An!!}}>H5w{^`~2_ z3WviBUapbl_c*Mkj)_{gHJ`J@TiFHR>#UcnH?*w+pdIvq%rnuT$`+Uzz_!xMC$} zVL~1J-v5go^tSjn(m33jdf5kPI{?7oQKe@vnq(IIj1=HK>5PNAWjNDI-=Y|=^YmA| z+b2GV`^Sb)uO8cjjr8K#Ckg+(nXLGGp3~cwE?%kCDaOakOC1w9)`W#({G(#|dfq%^ z{C2%&+Nzf*5Xh;BPHYu~X-xNX#L{92O&c$gF$S$SqHtXC$N#mt_Js43eq=M!ZC7Mz z7V+T=B1!IHyC)tj6g2&;rLEG54LvT^*w_1ux|_ohL(#7^S{pJH#vx-`m}63me`rl4 zs%*)J;f*gkc5^5gf^QaAnFmmW{6)vfcV0Q7-*E6r@V|@Te*NJj4hE&dl5FJqG$+@t7TrHX9~nk|2DtN~Vz}Y@bK37L-MrFk!e<)+>8~_(kCy&LP7pX*vu_iRqqJ z#t){{-&jcKuv@tX_PyPO_{6OzBl8vl-$4j=)GXX*+}~QCFJUrUbizaaNS!{|^aR}= z!5(Zxwo#L+!HS@;#O3Rk)<``$jFqjt;FUm>Sh!SpY&Cl?|=px`nTL*sMN8Q_q7t!wZmeAMlE=#&vav+gBp{K^A zRau3E1WmH@tc* z0Nb(CTtAqGOYA>q$Q$3ubR6Ys`8)bjVhZPyi;RC^O&V@wGSpEfAuE|UY0=WaW27-b z?fvucMK2fcMu#tVD58~m?tkdBq%z^a(sglx%riotgij3x4?ik59lJ%EhHkw+U9IRK zl=fA!;xkSuGB#tYIf?)$$NioPKn6#YUGrFd?-#8T<2bsRmm@k(Nl%`bByeux1cM@U8M8C4vU~e>_ zYWn|bQS}Lk7(yqGPlqqg>f9y{U&_os zghPxt+ne7!t|uZ$)FaPm%F)>4nzksR-hZx>s2hEIzUTrTDz7?N>0AuFT#H)9VF)1U zA<{{>z22=R6vyPzTMy@MMHnhT+@qB+8z7kKEQFAU!NWYuzo$yd}%*t9Y^j&+z-x} zol>;I_0N*3Oo@J&I_>zVEA$a{n8zgyN6*Prsg1pEG$wHHrFV(6WuZ9>NZR^D=X1@| zgXb}oa-#9V>1<>Q&5-&Zns0mBM3wH-ED^*=9_d`HgUUh-K;e+RYK#^jt`kAhz!)v} zXGRy5FxL}?LwcF7E*lntmpMa!?}c04%UoX=PQe0Df^6B@=cYu8ER-v3{+fV4+%h6> zG3S#!zYp7#_TBK`r=L;&b=*~LC5o}}wY;yF+A_?|vm3S8&NUGhVVgpuy+9wjYp9m+ zl}z{Ts12aDF_D_${V*2rtj9(4;mdT#Lxz*N$%qEu;CW$<#y31P^G&v99>)9uEfyY? zv$RhlIMu>B(W++J%;ihx_U7y}-`dflZ=}$NG6;wn2Zt_~Ouw1w@^6j(VUY0CoVOah zS!`rt6aVR}U`S=A`qy(#bS=*`zDA&+2|y%yd3?v0j+?7g{R;3IFKNE8_GM+f`PB52 zp&637a P*M40R{rgSa*lCgQ?{A}iad()2X_`Gzyf>#Jl!yb6we=3edkH5_4HBv* zvr5EtcyMqICe-nN=(xj_AYq5Gmp9Bo)m>rq7MW0ss<*!JniH~9E{o(cJD?jbMwp7lftCn`ytP@Q}a&gKs+rbA4aV0*^~4Tm+sfa#elfhW*0q+0q_ z;@ach1_==oH2Vvu$fmsdJwYvll@^JyD1~QK-Wt{Bn+J1DdL(`d(HWZ0GPFq>{Vqqv z7mr^VZ)2o0IKp23;IHP>4&40?!TsilNh!8l>OK13`HFmK(Pk?bl+kVG+1?e{IDx>R^1EpWXr<(o&0AcviH#nzVxaawJT}9&wOd$18yT15;dD`)>X+7o+USfg!BI4PAHJ)`SKcvX}1JfyZ` ze?VlMf>_?zQsS!KS0h`M@~j6)4+RvwV8i%h3Wl{|C5#0`MVRii=0xrv!ESl`#w1H^ z0*3fDGwtFm<_lYVfm5TLJvlTux5I36TSxZD$H!a*c9ifhv()-rIU?L~xX(GRv9SIr zd09YAeym9Q@f!bv9k4_MJ4dU{{+n?SkES&K|AQa*(9BS;%d$~5k1pb|FZxBpE?m<5jdZ{N*?CgXu`J{T`#!{Dm70Q2 z73JaRsN-uQv9%Rd73<|WwlYVan~`!4_`H+RzL-*EIUYR$L`Gi*OnIEf>E$Y$JpEM6 z5-DJolgJVe;$iq?7doV06$+-hv}PtLbV;>~c=Kxqj<=xlN@(kNeQz(i^b=X|v&zOQ zQ%qg_=n4f%paDS02kTiT99xdqB>rr_c{Nfi4l;mBv>{(5DbUCd)3r=4yYXiVkO)t# zKVkBO1JqH)*|+t&{5M`*#_RAbku59RW4)~P@u8D%B_-G{GhS?G5TS$Il{A%$41fr!B)_UfF19T5KP;=NcQ_zc!W>gNJRlN#1S2N7+L z{_exYW7D>=v#AOF1N27syW#=1QkwU~M!2;yE)0dFQ3N@6QF@I!a`K&Yc_nCLqQLj> z*bQ^Len0na`U_pTQr>deE5^Sa2)nU_N2akr1!MV?DKyNILbbS;vHzaG_w=bVO>tpS4b9((U;O=KpW##Kn%q)GM94xD}EtSjM;Mw zZGh&0X?+shv0C!#$o%r~34r|9tIW9RAQbcfPa_+MQ^Xu}|M|-AGUbv9t*)r!ZJEV? z=%hj_jTvQ1%KyU1-e6kWHLq?}f*Y|Ep&AW)9w*1F#4XBoH|Df|?<#RqBrwVS; zy6%`>u~C8*{gA{=p7}IPFjK}8#7|hGWD8+2jx?+pJhVa>&F1-zlxIZ^#o;(o`wBRf zuSyg8Ftl_z1zq740hFvgVPc=%LD`Tc?J>EYl7PC}K zH6><`J=VMZkQ^n56sPu2;s9?PFHO-4(f4Mv)Q+BKuT9nZV+#Uia0EEoLX% z5+5GETR4;3sB<>e&Hp}jXm@&2alZ{Z44^j9e5i^( zPlY6o_cUrTaV$~lz7}MjTEljm6Ic5F+a<-`sP`|WCtmrvue7Wm4a=sZtU6+6Oep_)$hf}A!(dQn$6zEz@ zpU8YMm1xJGaK*#%^~hM`XfO~_i(;xrrXfFXCOjP!qL$SD1k9GW+Uz5pwC#up2oj$R zdvJ|OJlpKKIokRNZOewS^|=SG)Y|w!l>mKP(e;8$^`y)OnPKPK^z;kO%Pcsu_&%~1Vy!9UYU7Uz00AMwj~Ky_FoCfbR= z-q@OE%X-Ho9Sgm4RDP5cl@|_y+J&@FA4fIz5Yp*KDYRm9R(U57*(7{nqE*!=r?j_Z z&|C^`J#0!<3sWpp@uA07W{{EgJ`H)V1R%vNlZ1b**T!ntqQh;N$F__<;@Q@m(fSrT zI79z(R2}Vg8Ip4m?RVT4LvRU$>YO>nmyvM~jIipV&hZnyXQ9fAF4O{i~! zMavd{WP2y>zcODVMep}{FsBV`JGgk$)pV=3szWxfz(MxOme>c&gg}1}ewq_QuYY5h znO=0)nSadh=>-sRH^m@=_9`;!IyHKndC9A|`Zr>U!No$O;?SW0!_J4I)t&~P2DzYq z%aF&?9w?+j#qWJt@&!2;%ONx&u@ilpoG`A z5iTskgj@yatplwuHAJB1g@;x@{&@tM;iP^;54?Qu)K2ItA3%GsW;<~?m zU*3uQ4y#YHzfRf3_=8AD(y~G~`G~-=w0fB%^JORm$MV`nP;E`$S8dAvtphDKodQ%Z zr9PWLM#kRtl$gN!@2A4M>_YzN0_%vUO?x3ighun#*rLln#`w~Ufz3~rZU;MxU5CvV z$W}HPgoNaawuKUS4bVF>&f@eyf{b&#))Rhn)ek^6$xDfb02T)r7)3JAh24-){=*V{!05B&I?+0imdD3gi0ybPzp{UuDs3nkzP z0x0Rd|6-bHweTtF`m4GAW}L#ZPp)!gtBV@qJY$nTU@HEIKhIb61U@wW4W{(N%01Jy z#H_V@2Gx?x)pnMg&s7MG%F(C0JKEV0?9At5(2n*=qZ77l3doj%agHD?`Kc3vgj5Qj zh(@8_b`?jG?!gB`NHu@bQKi65IkA3;3zQA+3KfGG*H8wmh0qDgaN_1~^zC0E2x0tM zgf-9ZktzbWdMbA4Do~Bu3SckMYyVJL&RpoT6 z8GY-|fYazDMA`29(jX5eg?l9lg)SrQLX1tkP22`|&-AVl-(qeuk1;CuoeireIrRB_ z51N%~D*YSjtOlLZ_HuVpHAtVnWF2)ODpwaXa0ru6jqSh6x0X zy`?xumjxHsB22_AslIbG{-%dSV}yMf7R|?^x?`j&DLfBx2a&|yMl{`?Tk4ka=~Ns3 zycB5g^mNS5`77jB!nV8+vv{hV!)HA{`=x0r?sh;NlTU{;?<@8!8A)x0mPj2C7^#&& z_qG8qyhasObLd2glJc2H;8u72$zrS^I%<{+>HErv?}@=wfzJdwUW;OYI@IU4JEADA z!8(2GYon4?QAjb|BH(27hcA`2w6j)%t6Sc#md7b|?#2jcir1ib?27rDl4VzP*O?Gu zMIm_M?oJYCze`p6)pdCN(k~o(U!W*YefJi^CYC7Us?R?aAQdnylZYqNXY3c}x`@ou z^Gg^S5S}ex92)jdbxlvMT@xnk_(%i)CQrU8vgd9GSpPApkmWc9d0Px_)irUK(9ue& zJ`MFNuBGXI?Kva_x!-8m3>L~#g5=8*%fE_oHJ#D{vX5<0N%9lqQlJ2@QjumyPfZ4y&;BjT zl~R?!g|(BNwQU>d!bISSAjmW3&x)(k)K_lJH)LRpSD$gi2DLiBtBFC!W9eoOr;|R) zb<5szeTb2Pcr)hXYb?}MO#yzcOqR7Zb>jI`QMl=A{%4Yc`;pBqk0bSiO`{6hp1^)) ze}=Pul`I_n+~Cdjh=R)n<|Zqs8nfGmTH^o4j7u zXZQY_(xq_rhEPpY2(Co0l}455e0iK#T)fienSKCC&X*bb0Il%E@8r|)8^(Z;95{{~ z8Cg%Fru5Z!32||JAO<5q1@~Ks<~I=?kJ&t~#X|RAf}8z%C5m{dxZ_kXRuBS>wvYF# zr*_qMNAcI7Q%CkK>x?2J1*BMYyUSar) z4)gAu4XK7<*v7a3kO8ITZHE2uZ2?|P<<5yjZi#KW3P_%abiSQx5nK|CY!7^&X}2|D zm2Jd;*ph~RCmf}cPP18Z>Eih-lJM52C3u*(PvD-a`jL~<8AtO*>obSSi!*P@=<)H)W%d^Vbxi$-7*kamFfIwy{RwXXz8X8VFPls#BUx{~9AjDiw`jl*8i zuD3U4ipN$%PM0>VFz*cn`~_+SJ~kA!sZva#>~Ol_ULdMOS06e`Ratgr5BQzZ^FX^u8lSFBwk^27tolCJqYFibJY$p+vA4 z44S!;c;Xl=@S`;kGIZQ+!l>#na{9gvrQ^wFcKViq5m8Ia(~N;owb9IyEotpZlJ{lA(b+qg%n}lQ@pn}Lx`TRs2piaPy+zl4 z`wZRBm3{bs>0?iVyLQ%(eQqm14E^Z+WEbi1k)}}yQ*z9jUrvSZ|GWUUiz7d0sTH2K z{`g%>^YpL%JAjlk>2s#JkT*%Q3`<9He|6ty8o&O@5&?WxoMtZFL)fOOX1<=m68~Su zPyTV&XY8!swfF!G;rF;j1Ef8gXUc$ZokG$vs`j|~Ai3VQguO`0M2)OYXCB%L7TA>8_(w@ustJFdGnhm5^w^4Fll@@o{mIet1<4->q0<*k z0f1A|%i#H(psA3<5Ny91i*a<4?E$0(5u^vaA_?RRtqzlq`|Ao$+#*hVMbP1j0rOp& z`>l?NqBy06jrh-f7)AqiQ=KL(EG0G4Ue3XMc5V9@vSh!B%t~GsBC_t81F39CbK!mx z@qY=%0-&O&>T8+S^g)qZew#SA%q#Roj{>7|2U%ST=Bhc%K+n55+w!;b?2jybId&{& zVH*?sGk)$TOv^f{OU|t)#brc2W%2f~sn%cehoi&0z)ugDOagXG-onacSgWByOh}di zjA%6!+BoV^HM$-k!&-j$@gmv(#&7&`rRyn(@zUA56fGu+dAqi;yu3-O(zJyoyZxB= z<>CI}udU}e(ii!EL_F12Xq<{q!qxlv>u?CAJNN_}^nB%J2ea6BcW?g6msqwH8LL)( z{`_n~zM?6Ao%s3h4c=3NQcbIATl`UP^HA<4evZO~S3RX@*koguqN1TS7K(+YIlo<+ zQW}r^Rgxk?L5b9+ARks`=Q!(SpOwfrJsbamx|@<--GBTVg{Vos7wN zKcoz!%JfxFl#zSjwB3~QJNSdm^u>fSL;nsb23|mT&KFk@!Lh4nmxBBYpHDUgu#w~S zqrcsyV|T^ql$q3dXhfNCLUcMZIf78(3JMz|59pHZH!)B!;S&gXuNj%xF{8W?e`i~N)Wn$ zFO!-rJDwRTRg=J_Q!@SXY$&MD^u3_?^Gm&mLdJKN`p^C0vtIr9YgOz{NL!h5JF|WC zWbOaVl-_%S^oGF!$4mk}c@Nns zJMi@*$OQ+b?Z9vZ0e8>S>f8b%0>91SB`F@hbv`LX(&k9@DN*;hAd$bOLe7`HlndoPW16VRoAM(kawD4b`Ti$@JjPYMA}%h8Ph_@^j3gsnm%Z$QR=o4Qo3c-Q zz9~Ph#MuIL?=pa!_;Zb6%D)&)FQaImBmBpuUEdrOnCX7k8C09 z8`;xlW!tjM+D$(7d6Weiitsk`95^_4ZtkvMrQ2Kjd$6~(e{irgHJ#ATEmpn3x_jP~ zx2>*+(>5l)??rr?vr^e^fK?bW@OSxOVSz5teLX>1q;Bdj?e6j@cm;Bd47z}OVkw$1 zG1gVXV=$OqU09o%FUL7Fb~qh9shK2(J}dQdxF)I<6JaP-(!QqlQwTlADGXz784JUC zPuPKE3k4Xi&EB}`rPZ4MN6`>!(u+sdFRsyeq>*sucUR=M$`kr0jkiwGjLYbTWP**S zb~|d$dySIxIWyXiQT!CAN`l`Lu?0DSS1*V^(&K7n=HsHQ$3wJ`A2TF-M0f-7i=fe`@8kq!BahdY0@F{zci_0GNf z?KTKtV2wcoa7fCMCBy>`4bE45C{WKq!{P5i*;X_Rr;EKx~?i z-(lhAPly+^Xyiy?^ODg$;Qe*W;0>y*D_;)Q;3yG7v}cEPkoa&l$H3K1=`jQIDR(2K zJ><^=)Md1-O-`Uf*|m;09qRKu&!P1^6P%exYlo6T(vl^Y7$+^rUy^qI?KUg$uOnl1 zeyat<0Yf{1X2UM3qmRgiUOIM7=F)TRMKnXY^d+u_Y1HCFX;WAU=ZEt7wJ8O7H{7ZS zh+XSdbbmi}V6m0}C2W6fc0?a;^7}p?ps@Om)Bp9R$asUn6lBv@b`^7CCrP3mm7R2V zvrOx4x=WOJCVO;X;vL;*K(sGm6SZvkv)k=dv4>3RoqxXBz`gN;29|mg!$85Qy?4!> zpSMR7uXpP~-qYKbB8ul1rtKxi`4TN9H@0H^`rM$KeO6(n#TeF$aO$t}MV5Bzj@pSv zSGz$CaXoXtROZfQsw$ zp(BASZenfv9g4fciIFIUWC z#va_IHXo$ifm{DulKjVE`qTsILW+-E;JFMwV8QrK0yRhCmzMDfp_@YsY?OEB{dl+AvsW&88ixIa9z!1yPO43%Y)(6ZsJF zRcnud8gKe`+$_Hb=&RLa$P`Cp=4wB$m}NvlV6&b4%o5#$=+bWxVyLc(IO9j;5fh`r zyHMGIhfx$HHpklZLfk_!GE$JgOEpi|KmMTc3#-|S{K?g1? zyYy-FEN>Dol+Ml19lB!^0y8XP0vU|hd~EJl*#3GicXa-<&>XlpSf<#|$+uB?6>|c- z{S+r^9p#P(;98dA-Pr2Ot!_TfRV+;%vZ_eS9kcbmsz|>Nn)Q*TX0yH zMGz4|-&hZc4`b2Q#A}T_3+QpvBLyff_-?Ok-?70~(XI7TRDAu(#_{*h#FKoFMPxd5 zfa|j#w47=^-$%MC@;lCwp3dy1$GTgMY`(m!x1bhYmLbg97&k!4+)XioIPGoCoz3MG z^w;Y=M990G&V$M#kv5jAjM3BBiq5aF%TbkDb7qt&Qvlr(rS!)KGFOuya3|~?;w7f61 z&`~j;FGg)a$+x1*AXzfV6-pMw65TgX^ofK7%s`~D+0z0LAMom!(1e6)(|0h(37-zA zs${w5vo203#}p;j>Kh+#q?=+(_dFe&NRai|h$BiKTIDy-r5s5PB6H)Dwi-PU;7VH5 zoPxZ;{JdxJ!rYW!`bG@q8pI0p%wC2kcO14lN%O2JG2HNaX0HNGftX0xv%MXaOqAIo zc&oNx%=2W(ih@aYBS6HTChN1n*XNo??twVs z)`b>1FCy}>EX+|JLNXYHjx0zjoW)4G*WH#LPK((aHG9YiwhlM!*9<2LI-wFsFvEiI zat{Frjz=gi%X3b_@9D$BCOWTk>1$dOmoku$4Trc_l+*?pv_A;Tun4#3V~6h9MMnqK zWt;N*dwE92zuup#Sla z^E1uzUJde=x)(wcgWeZJZGBpmWb-RpvWmp3^mi+CKr(`>pNp$OKnByp)9HV+ft|)m z<+4o-U6W2yKE@1MbKZ`=Aik%{uZFz2r+&4We(fwZbG(Mc<(lKVp2Vu#5sl!yei z*&8Q|D=JEJ?8l|G2@r~TY|;U!L|4;O$m$_$%h4X{@1@xBIVap!4KSDswPeHZ`;;|V zNaSVLGeQQEP11`g7y>4qBZZtVuc$w$n1p^Pu4URMnlbg{Uf zesno}mt=V%OZ;hN%hRE7Zil6-wSY9%@m1O2tg2atk*tEjF~@YCCMgm`?Fq-@*DW3;1Dfd?W6q+`UA<_on-N zu{41nE08{iofo|mkyC`qKq4NAIY?j38FH-;1R|9!&>+F+5=G&g=ma*@d_(w^Q%{Ej zwSHjo02K7fz+a!?(AJTh`rMt(`A5;$U8`6^8>U7_)g*R6lWPM3yOqrtd9JSWzgzKw zw_Ps_a5e{S^I=y5z)YFjzse=s1c7o<QBHXVR) zsDjIOx>HD}+&_THJpDWcP6;H6$UlPcKQI4AT4CT~_yJwq>mW;I6GsZ+r@3*MrY>5@ zH{-8}U1S!09a#{cBzhv~sVDFxU(yj2Fo+Fxz1Nw55VuEvxr-%EWN+L*^a=RfzyI)AhtfIqX(H%Kd2Spib$POT13J9c_FBcVoXlID}C zN_OF>1N}Xwk&RtMFFh}H{1X0pI&CmRtLK5kT76g9tv_Sz$`T)3?m9Id@jA;gT6_7;E&Dq{nctg;6OB(6k zYZrm}#D;cM9cV1+bch&BVmA+={wGPg`VkS9P?PTMiu zr3A&8#c2lSW<%XGH~P(CR28F;zmX?#5JERZ+<)dcbSTflpi?ayjpv)80;JLdF?-`d z$R3>KhtX0EvF%@?+xh(}ICKlByB&=UEi8AO@}z+$nGlDG`hGhsXdT@Ab(j9@Yv`=3kKfsv>(>nu!=^L z=iHI`ojWDq?O{+;b+C(#if)#=b9EiVDY$Q*k4JHv1)Kb9GUNJ^$o>1u2h{C~p)W)2 zOvUQH)&eUw$H5)E-**Y#eRL`QJX2qk3eMShb5d8&FX1O!?Ny0rmwJ+#z4<9AH zjoqKukGe2w8eA5$KDW^}M<`Gv@R@J@+3U_+*6R}mr@SepNJ`5ffm5K$1434aJ%5BC z84nzJ#-KZQmxyL_9qlLD?R{2Lsq;BJ-J~iuB6PXYLP_8%jn(RY?6bn>5*^h)^v z6h7)wgGndId_*TjWOJpzj3G*3%hjg;eoNiURsRaA5MdaI>bV3ccpYpDP5MPpa|)a~ zQ&0Te=l`9shB>jh*xtTMw=I1QmtDOv6N=ht_op%H%XJ>23=MciDQeFULqT7g{zejm zxovLFp^g4uMHF>vp43FM@sY|NJG3^g& z2+=FdK4r=bWyh6d;QELt)bMb_Nn19xL;oWx@%zu4!friEJ!_ z&Aens@)==JAdTKzS-??CYvaidziWM1jQA*fwz=fm5cn+#S`-bc2~~q<^tNIFl^LB@ z-yuj4F_vF+Rp4(}Kp|5EQB)ejW?H}av)Dub6f&s0KQ47`GCxlIM+HR1`Qzz ztC#zdiabNGmf_EAKa&}v7@R;!)HJ{>q=LvWj?{Z*hP!dHq$>o&KPnHnfUp~xC4YQg z*J~RjOKUjgE%nzg1O&@+IK=#t+_ZO@%7Q$X=&K0hklD6x*z%aZd6sz+;*%15jsK`e zYoqGvVd6Jsi6V={8E6)!*4+rbqb~oSoN;Y8_~qFRJvhSBY^j~uD@<6Gu1X|PQ_=5O zQtI;t0xH%m80T}S+-2-o2v zQR3GjR_h!iIS%$3iEnMX;FJVKPGyAZ;x^2TXa6C*7o!E7E}c zp65j1VreF6OFdOh8qRiGfR%W(Mrc~+1iS$pzYE3T#hED$TYMO6g!l=CbaGJ_>F@J~ zxc)(Ap(ReZWhr>YYD4YL9_WLSS=n0j86Pe?g;BfBpQl??!jN7X(Gq`5Bc8!B<00;! zWs%KxG~=~ob4msjjD68Xv?3yZ)#Sct`L4T`r!UemrB%BQE${><9j8h6b~cW107#>` z*aKa{3s_xxBXrfcrpes18>#9mLxpahwBB9z;FE1|dnnZ4dE8~IbUT7C6+E{!FG@PB zIru%z9LeuqLP@HB_!Xy8YX;4576ebCJ}KQF<;Zk6k%Z|!>S;bMpASCvJo{&N0{zLj zlHqz`(rQ!OQ52AmhF7k1`QNV?4D<19W@0xEQee>!iLK*7p~eIXz`~uJOKwa1qSXDF z-GyQ`LVWUGj&VIRfG7$-V^4afe1ux}W~OQLDVVg925;H+V3^}Idj3&MGuxY|=uGNT z2UG7e$O7-W@KfL9Tjy?!qJwb?7MgG3(ZV=ixax3p7Xaz74TmE>3^KoY8q9?0qx~#A zB@Xqx$|7?=6XAE4apk~8{J?490zY;k5dV0VSTCx0FqCWQBYvV9*-$bFMa@y7A ztN14-ky9qm*VOu6{?)BxWRWASUV$Xzm}Yy6vbsXoAbo#dV-UB{r6G$n@-a*3J6tE% zhQo+TSTtnemf68@0c;S^*YdJmT}4JRsZWkj;veXmNknwJkAGaVDPX$5$|yTS^ix^i z+=;mcvXzTF)SWtUw!4*P0LBUvx)B`pI9ETPxw$yBGnJ0JJ5yv^MK$F5H|F}>=-e>s z^0Iv2U2c=Si%7GZnP(|;$cYQ&+U|1SoT(OL>Kx0_2yV{k(MHy)xjlSZi?Y%M8 zhjYbd)rTrJMBvb|*--CM2sEbljXn+(9eOn23OkC5XOwl^lBpglBusF^6c^AuDQEy% z=s7Dy5hCVo)Do4Ec#Hk6iMe=fNwus&#uNxGm`=?|(r4LMi{zP(Fu00r=5TfrowOqZ zzfY42k_8vj#l=MjMnWJ*w5ga?i(5g0E9VS{UwY~xEuH6i))lZ99WTQ^6AUND4QpKw zw%I>!fqtQPYLf6ljueZA>RXP=4i9!9OFo34Xv(Z4&L^=_b;N6e zwcI^?kcEBo6hZiZqAa=ORD`ESLhqU_9N)TVHF2J8klE1YaHp}@&!c7t^TBPXc~!!0T44so4{ zS&C2OoRasjid}3d%1HFCzR+yLpf2%ioGvp7>tC$W_<_)>EEUz-JhN70AJqu=e@+8B zV>%Z(08(M zlBZYc$%8>Abg5d@Thp-Z~K2Y>f{ zKmT>!u@-CIoO8bW+Gk&%O9gviX^Q1-+g>BQfB*^<@RAVSUM8C``?>MrXY0-D9niHI zp)$v76GH>LH1&xG5CBEA>JcKT-1>g*-l_Iu?NVcacW~BTI^`&6lnj@Xu>vdJfH%&= zj2a_%BVIoknxF~AZb+H+LQFeBzzVLZcNWwebynD0`E#jv#tYVYFQBI)#A|7S2fhcP z5p1A`5$cdgoMhf$_x;t<`e4B12i$8-@QPFST}0lc(_yp13&q|4M!4@}(La@#cAHln z0AL6jefF(0PCylr`N0&8ppp=6j%ox+W;MO6(6iYrUGu!((%ShXNw>3U-b_`ZC1jk_ z?kHpuH@)_x0LgpqB8bt%Ly_+4=r?z^Ulqy0ElZTlB+WPj5q1VA%vObRv^Z3+(T(=n z-Fqp~tfIdJs_QgMIQNTVB6U!vI)pt@+ibv4`7kJ#<$LZEkB4i-sDiVmMIK)7U{Y;K zvW1XY5cJ__y>PjQQ4^ogbT`H@1?_n-^iH2&Y+qX@?M^;Wk+MBWQ`JAJyF1AwtSx+^PK?vI%bY;J_k#$T+rj7e zaBo_1TSSndtfdra`7$xVubOA)7Xo6N#+kkP<(4o15|9QPvY}Q4i;jbpzY#$T#?JOS zi@@|BG_L#b1ioX$T#lFw6?4=E7YF4gXBjCoh$Ycn9PHI>ogZ+9Q2AVefF5^5Qa#HegmaQF1`Ky+D5Edkd!{UrP5nAY{?@@b?GoXUEjyo&N zYi9dk#gEQ?A^580EJ3io&+^)L83{dBZZep%7z2D^{5oA$Fds%t`1 zj^#~F2)O!DESZ=3CGtob8V1~^K$X<_Dv@L*Tl=`V%5tVqACvj<$1)QtAE8Iz`fg~$ zL`IMtwc#Dp@Mff>L?k*@rFHt`7p;CgBE%L7R%soK0X>j~X#nSUi1k*jvon%ie*dfT zV^8US->Cju4d6HFt$xx7HU&{5b% zh2O?I3QACTy&G#QNjjBK2=?gyWEPYrIkY|rC(C{ur99Zzy>yn1sTqkqkoA8?KSk_MCD4*ktRVwyF zkbkOwE;Vg79}`d^0a4*vK7ky32%W5_sQsp8L?L^+^@6!ea8km1ztKi7AlDl}B`~Ef zIG^5V2kY%bksJpM6;fs_4Z8T*z=~MU(GC6bU`qp76}Q`=meuO*Zo7`6-L|e6U-vIu zFeYEBuq0znX@q`OCfE?C{8S6u1(Nj|8lQ5UZD-%I#mXsTn>Zc{Md1B@MX@;y2^0%HOx_e-h4oY9 z_DF?nr_jH1cKZD9=qwcl+hh3P_Rqm@dn0p?<-ZNjd-O|;y>7t6N?{x9q4`>a*kWow zqUV##*6c5K!tYv1yr*8RRVZI#Pv%8KHtHMDK221*zJGQp7%E@xz=G$2`_*Jr7lnS& z9aDur(t3JQm|V*>u!dP6(VD-Y`*c$z=fN6PG@$^jMaU?M_{{&ySjHLd`Ac7P_UW2? z|2iw3#s}d~HWF>*3+?Af`y0kiTw=vxu;sUcgQ%h?BwG8zW8}M6M!)`?^!V2LUKyfF zQ~v&Q(*3E`Xirm%UJa|tUNW|#@zZTPvCSD>V1OTai3x6}%ug)XASFWcJ+MhH3^w#M z@A#L~$shWjy3DWeR;Mp_fWp5ub&)P{J5hC}`~?aXi5?}##<_8(9`eo)9@aZjBXSu~ zt?iZnd#P3S{cbJ`J`uihAIY~pGrs`*DDYKQ`UhS-wN7NxG!KS&&vJpJ#FxkwX1%Wi zEmvKyr3GH`^a$3x%MnowT9m9%WTDgS&=Ly#ubPVz&+A8wAjBMDP-f;*W&s;RC!Nza zU<10+R6vfEmvFU~4ZJYGEflMd&MU+Xr-H<9BY58NgI`rw9{n22wveAQg;1}H4Eb~1 zz>5OhljXAzx7zBjx6)0*Ax$QirEv>+1?5?B7aKnJ!w;Yiu}|t<|-Nam|4almPyn6OkRxm2bZl; zwX?Ijo29R_VLj8o03HsHGDimpW(x*KSQCx zbIxz0^&4jfv{-%{;mR0zT@NRnoQxh?`dt@OZxKg~f^pfhVSKJhFBz|_%aTWW^|4(@ zRetc$_9OukF*|>10Eaz8+i;KXjnSyg-{KIhW!4vE&|B9ys-PN{@`NZtzjayFzRb6* zNjDMJ9eNnphTIqMOHO^sdulhk$%a}@n)_;Cu*vs@W z+~dlekK#^4aZ-qFa-k^h9!Eoh(Apa(uGMqpC6W3E+bh+akRk02P|5 z9OBjaA^%Nlz%ACi6xG|n>r0*W zpU?$4v*sRAt>d(o4r zfYiW?F_#;ubsXha;<3nIcc2|^)ej#~W!+W2SM@44Z*Hpwj@(C#p3tF60#6yDlm&nG z^Ar4aW)2uh{QQReUAC5!iCR6B_9=kL^b{-1zJ9t=_7R0RFx>6{ z?Ubb;z!L~Q&5+XyvI+evcZTZKNom(9axX0cxT8q8dLnv=*nGG>QedMcUD z`^MBk#K{MwRo+%^;yyg^dLrc$<%sY#bqH|?d~fHrkMGuNx+!)+V1r`6*+8Z6yz;X# zk;Rh?ViZ-$vH$M}!{mB!VBQ0I1QGbfsEMJot)AdykErZt0iKR;**%(TaIF@g4uMlX z$n}Cc`&e*n>YZj>s=1s}Lg{xJ?W2#SGf@b1Ec?7hH`7Vd_DFw@F26oPxkk)RLZ+Nt zT@4XwS;Fgrtm}1@c;=W@ks`NaD1hy}UF>6FfnfN_as6DP)5KbQEXU5|@^auc#+GDH zT=d$qxjm;}@(>2t1m+wN1f(1t5&~aJ|316sNc<04T3v(a7%k@#pqZ`}jMDZvI40CA zj@Jj8K9-(Z9Ol)Yw`emBCZxFE5B48=t@n?5_u{K(Or)oZYEJDh%BGpZ58YO*;3Bbn z;d@bfeM>(}@}NzFM87p)R=6>QQeRIEKRL+jYlc=(p3U~q#-Cq5 zDSnx=&YWKI-w76sGcf_WAn;sjeZMAys*f!g=r$%=?2}#3zUn?sU)=~l>(^Xnu4l!! zc=j*)^Vd#qK2&)U#kH68j#8jXD-$j-@VY|0FwSWiRZZ-euvbVF6UwoW0R3$`2u8olB#EMv(4&wQGelT8;lFj}KFe>_& zpJGZ`ADo$mcMJXPY_Op^z!`yzGXhd(DTo+m-d=nKeR8&$1-zMhT?;{seBSiyA{U~- z%XXEbW$YTU%@%;!NE*Fe_HxZJ!9L$GpvwvljVFj?yy#bpjI-F8>iPn=2qS4iVe1W# zyn_Yt6j)k4!;6-Db;c44lP*Gn6%2)=3Th0wlf+Qvlkz+}#Lx>b* zPq%X$ABaP7{f^&{*cxfEr)#3=cR);fw!O@Hz5`Eb#RGT1>$g(O} z<~2ed@(VU+dYPej@8vC0)o z^rr-XKe}%Z0M7SbR79VNR?pj}I_+1_F?qeb88Eu)o|u@n%u155zL~T3l{Hm+ zKNnCv?GgIi;uE=;06<)=|He-0lyPpeJ}q3uB=|Dr=K~(VysLjh$W=Ipai+zPkL|Id zMnFES0EFbCF&$zdQDf|&!hK!E%Xl(H?hi5 zKjsL?(8J@Kt==BFVg%qc+rk*;#K1I98}r7qVT;(#Yk;Mf0ion)uM*l1hEDj{%$8aP z`?#0b-HRSC4t}ZFn#xx^tc!bmQ78; z9>&an!E%`B_WR8mt9p=zuS-_UIW*TCvwvP0|Ir#jbc%)qM-bkvM`haEh7TwF7O5|R zA>K5sIk`E2U*1Gvuwyk&nNw!7t4*yQ+4XYTlmNZT+h#p|`-kP{fjg4@mQ$y_&=V%T zbl02b0MFZT3Z*P!PM^jQBt8@Y(BCiwrF=CME}oBme~>9K3UO;M5Gu_u&m4dvQ{7d# z)tN!)-Nb0A*lUqhlvUO<=0Wrtfq{;JrGi=Vqtyp1DZ_KO=K&w@V`4=ZYpWASFJ|uz z{Vyzhd&Va{wVH77eT^jgvjZ3fnw54qZBFgxdsmQYClp@5_9NtP`4V`v-ocjP2qSmV zsh9xb1eSXj_1T1qsKrEXAOLg;MeshzgvB5e21tM^NX);|^#K4>K>oO73a3eA06D1u zPU`^9UE=^w`-ZgW<4g8q*O%4$iLRn6Fr?2#hU&7@LAaRkE#n53DA#3gqevFOAH`Bg z6kHf!M#jY0K)4`&Gov3cOw;q3C+;XmffQsPM>EV36E zrl0!U;DYeLwoiF`fuUQ1{Q&cqtj$m4Mae=v5Lvf)bF>Zj;muOk-Kz|dNzMM74>wOs zyurHNV65qaGk+SS@M`S&eR&S$Pe%hssTP0Wp%PYi*r#erf)Fyubr=%}T2Lp+F zgdzf!F*^`!zJp2txjxWSBRLkck^oAQr+7EGMG~M>StNYnnwBpUil%8OhN8EyP*Coo zHMmpbau-b(59U%Y+2S%9VPtD=SBJBV9P+JeJXX^IrL2Da(p(hX2(OE#D8!Ee6e1F9 zRG->Q`S)4JH_IsSs;N56TofmlF`v8K+jQDtA|~#WSt0f>7aF}5M24<0^ZZXCYtwuZ zXu}uYXm=AWlOqEm<90Uxq|^m(67Y*_!6I`8Jo9yBiXr?l?s#hEd6G9yyj8va{DYLf z=%y}N=u_?IV9}X0tCQSs73#S8eO9nVZrk*Kjr46^JV0LJtkel|eTHKOeELo1%%V@A z-@!_n-4AL6uUSsk6%2f-g$f~c-1n%r(s|q`?}cxT!uyEkl|sW)x=E6=$QQV5nqtdk{T+Eyx^JtYmF#W;(7LytZ_o9Ho?3*{@$XuJ5j2VaZ_h)op+a%45IAST0^jDI5M4Om5 zJD-+JkA;^HPrjA$zqLQ~rL8@-Wr#)M>+oa*mHv#yi*Ze-dWdCwRoklWU2THiop-vi zCz2newl-2Fq+znbv-VDv2K;xsgUZo}mkSOLH43y8dRMuVqfScrOeP(WZ8#K!K67;V zofuGi_?7X7Smm%iqY z%2PzDEUX)No;4^#PveQ3GJs1bbWN(2o5?EQ2xi+#@4eC5Q9sXAN~9TAgv@pa=BXxufx28jK1W zDvS|7+#T|o9*H&&EKmar7eapanwg`d63qyO#|0tv;jMy^GJBzH0*-y#URU*UzR739 z&=z4!;Px2d4g&bM#j3GZ86G-K;MJnGnol^o4;?f<4#g>nq;v3^KgnRX9XrcklDj~eK?x*j!S(oNGuMs@yR@K zviuR$6zY&T>8~)Wl?M!KiRunr?T_+4dMRStevz59?nZ6=<_8APMad7PXVlnk`bp zp^Qt1x3$#dNtV?p6HW=-JpVQ3{WFy(FZ|1}Z#(bzJpx|J+CiFP-y$?6g3|hF00Z`v$d9cc+Lh%m^{T!vK>{+x*;4m)j z8B$=ay&C@QR(ZFud+v_O{)Qn`4qAyXAsy3Jn$D|`O%L~1M?`adxI-e4!?ZGxDENniZR}lxYt#*6& z0<_>iY=M%vs8n5_bVB*hmqC3?!@Z=~-*bCl5h`g8uq0*wQCUz&Y4VbS(0K{o70Da~ zO)V$|VD$A-vUpdMn=eT$_WZT}Z8Z*m4Xy|@ZGhJU0#p;zV6#-`vlJtL4s!AL2H<+1 z#l9){tfM%>)yQ|Pe4BV% zDZ$j&7?v^byVxTI4l1LV;Q~n&-ifTU}C!y zTL#s418FXb&KI1W9KqYRY)egL{2iF{={Bh9w({TwkO z1y2xGLWEMtfhpSG3&HIGb|%#1!ZZ37WD&=ty=Nr$N2Nt}dB58Ju82eblPlk3Z+lj|*OhiS;)qmmuctR`l`vb_TSY-3vCwCQ^-wlPJvNSAx;VEr_X81GLFY9hN6Lf8V4WurAZh>o7=9k0 z;x%kbmXUG*6bR}BIkkyG{hWi6htu^FOnLh8CiyfgTug&jGX2^DT?5S9^7kMI4Zg~UUN8}fGmZU=aZ291J~@< z#YEbZKI_%puV3pqVfy|7`UFKI)m%u6!tZX$e0O)N&jR#Q^t5u5W6ER|bx)t8&hz3+ zlCF+3L^d;MEVQf8fxi!sMM$MS-ZY`|4&xm+xVX`Ru@UvW>(A6b1<+Bfdd{^z6?tmy z;|jJ6%=x<6H%uKY#B?CA3A!;f}%HftXh(WMh?J>5`2%o4QC0V1<*`Z?$1!A1ng zc`|nZNOhF^?~cWe>|?+70UAe?+(=`Ip_sezjXU*YLY!f*`XXb1Nq0{Mk=_9j2)GoY zm(tAeRU4`BJ2jUk$9IjkVxfWJQ?n}Kyq*{tQ%%-25Q3_^Zg51y1R5aCTXK3MzVe!wFlzBd18W1BN`(D zgB<8AN*Iyz7Dc|6V-k(z*5J25#9m2@bj4+$ciux9puvjcU?YEAQ99JB5WrSqON%ks z+UWmTyAAg%oS!~Z@#B;mR+aJsX(Cl$pm$8bdBVVdJ3H?#r+MN=pG3jpSFsSHe1I2OelDVpD`WC8wSrR(}#Y2I{B#Y@A8M-zxh;{ zf}!Pm$0Aw`x&0^5<&TLIt`E)PVb2o2rAn(HSE^9-?YNb%2NHSps6LnE*hyjgwT_3} zcPP#|{(H`SxM=t{nwi#AdQ;}>-tvvy)l;%$=P*|zIQw}Yca6WZ($cfxogpL7D7-$4 z!xlP>JuHRY33I86%Xs;_nBLsSIGMlc-#FTZVsMM%`ZH=GX8t79T)xQ_Y>Jo zWQ6Q}0VSI8H=nQdf2HG6*SKMPa~v7!FKJ}dNO3Mp=KN^*x26W+fA2q04(8es*bwNX zqTHVhVzn3%E#6$1{ZKO?fpnpNxk-<`i*hNOu092mjG;2^2s1){o9&H+lQ|m|D13Y% zBSrp%Z$b_Br)o0=z7;8IQB4&~?KQ)&_%rT)Lu<|ry!4+mjNSdy7N@DfQElN?fZ2u6 z*?;TWCvX%XVAXw|Qk8L$zEoPjPJb#uf0~r6Mwd~L>!aDfYjV+^Q4jM^;uKC9hfz}P ze0c7#WMy@*ZT|Z8>vi{hdyeQH{99)3ujho1;q9C4A1gXVQZNq;1R-Aqm%YlYVNRFz zH#hfLchl^hUt66@?UF0`+~50TY}3*B zX~&&O5{%iB-QtPrW0`+&=7pvnYzk?;aFVHfkjC;KdKI!AzP`ekNOF{PMs~Vy3_F_M z7QgI&Bb}4mh`0m^o;Jh#LhJ-w62W{;qz4rWl7nr%Nqg1r-bpHWP5qF*GkB!%xGv{3>4esGB~&9W$4=jwLL-+qNloQNP(rg z*@s;V**tsVBi?GIX7n2&Xe5_?H>60X;r+O>Mz<0eaz@Uh+)oM=2IH>zQPXZafDVJ1 zX7$vjm0!|T!~QWGYg-6Br$e`!SVMC5fkPY1OI#q^hw9aLW5*Ku)?XY28a@QAE@Wfy zMcJEBtLkCD4=4Do8b)j9EZ#HY{rbuFIcG@_Y>6~8#HaImEUtrP>h(Z74OnDaOTXSS zLu<|;lUuw0eSt34QsGbu&fN7r|80}>J+eO_oKM7jVBxft#jVMd?OZam8)(??;ak|^ zQSq}v$a&N$pxj$)UWhJVXp+85{k&@6+%?IC3iWPst6Ipbqa2 zK?AYuw4SmwwQ;ffpxh<;8TvXjj5yy_gOHQf`N1IE=&-#*^BDMYnpA9{0|DsdW@*?P z-YO3}Oz!ns1CK=Ll}>H*|7I%jNeQa@DJoYEMmpjN7D66k+xFA1(xk{;(X*9hm4XI6 zz{)-*F3(<1>k+&9()t%;BWriQOfe=~Xsl;DcF#O~1~RYDlG5a^Qvv&HD19Fu)L!F^ zsSgb%RpBZvpKNdk7kHr+<#-$rqR89)?Zr_BA+j(kW!Z1{3B}RO@ejoS?a}jES>A>4 zu$PEhMhO5@MKgX2<^=Y_(b_hn%J%Y!ez`8gAIe=-zp^(B(bN@uE7~jb+KuA zb0Jx(-Ni=|@)75hmL%iMencN24XW==={F>TQAO@PNHdJLF=L0@d>y3qKRCFwC3D%W z7abDsizp6uXJcK25d;37#-4wd!Pffd+(+eAy;;}Ko*t%K6Hl5J{3+QL3MpV;j4oLi zD1Jm%zI#b!9wp3yT&ZrRWcooc`f4rV9Y1^CF{~PcH5sj&#fuH^s_IC*XOWn(s`=;y)j!fZw+LPi~oB0Aw&mQ znWH=8-7Zi!C_JD=K1-5bG7r;h1r!Ta2;Gl2^(2kd*$N8H81HA^#%W(3K6F@iEm^AU z3p!vL%S^XT*-=4VY1p}}7|`IP<~Zh94V(QOafo4OI0l;_9yvPPTgs9)6_{7vIVgHs zN0!VDN#q8B4&c54zlBc!HR%qbyeae>U5Rixl@CR`LWq1o5MIIS3Oa<^!Vmz%iw6I8 zxFAE)1)jo$0r4l2UXBQxlUecDJa+fu0S1+3`{(&PrJJ)OE#o;`MIf^Ll+xK%=BT1C zQ+aw;qQd%6(x=4M+dZ~NKfWTiNe|C8V;J#Nk7CthKgqm#gy7sOD^NKFxdh`LkY6&yp?oMvfFO!&{qm zn~g}3=p=PGvYtF*R&u4pf%ZO)K;h`&I?DtUYC$&eZt}*=aZ@n(v`_O_WR72sc#@XF zqv6obEI1&y>2Gv>B zIeF<$P3uJ~xD365fWT08lrm9~aV{8aqZ;J#oYUIDq5-}AIL~9Ff#xSxcwe+8xo;g1 zT(T!QhGtw16gLG>LLmT$A~ELO+HB_eD?0Y8{!>Jp&6%=<1#-brMDOBD$>?`R<8}5B zLNYCa4x`(Q=)*hS2hLNI8T1mg2>>c{$qV#nDbK9AzSfN+t**T)o(wl|QgYFJF%$<; zfzinzWQcy7M@Ag|>#UOOFmLL#OSXi&bS|4|kHxhnvoqEk5rIUryzg96;v{xe|6Rv|je7{JMunY&s;x7ZkrL_5zJ@8jmDYq_r=VC)&5g#^ZsR6)_JRyGlVndEP2A50uBF! zPQ=m|OMKk=cU#-&-M|G(mslhx0do8*vN_%M0G7xV4UXWJIOR-<@a)IYL>0lQhPHQ8 z!D|6IFS}7I34vYtrSC(`Wx&rBWiU?dS~f7f~n%ARP6 z$f9T{nVyf%;w+D_Y{3!SgL6t_K(FmZfBesaVbF7Uj(=gS%BIb3_DW1kP`ythXD+@y zxn>0FFFiE3#F?S;=u2%h3hD)Wt>a`Bgqw%E7r#5xcy&L=G~Ezj+$=h*jYELZTqP<=ZOj^WL6x$FMQk{Efn{Q(Tc@Y^qXa?^CfS)w)g96B^mH zR>*Zxw0ffZxoa`C6tL#qn|bQ<#b+-(S5%Ou`ywHW4{ z-PeQYV}8Xdi?~UUR8VG9U1gHV_!Rtn36^_VA}3zDqqMOX3ONiujB)({M!biZGP?fo zas86-CLcilR?ym%968!zEQTCC`dXug$fc*O(4}~J$F-;A@666VR+HO(^g{;7U~jF^ z4#fllb09j40r-u(trxQ|lJM+x8bI$kx{?5JhDV7TftNG>>v$k@BLlI^t?%tQH3g~u zk2tlD86+}j!<@qse#5-v;89u1J?F%t@M-7>Xh=G%9_wzS*M-cS*$sIZYwPHvSk{A* z$O@8ouo~{>Bo3cf+gC3mYO34Q;6HpQV3GEm|1ISie?@CE$C0<@gw|dnd3|*GMUijh z*+Xgk@u5?Xp_(RDI07D|un|r}U(Vj|=b35FqLHci+NBqs(EZ{RoxO8inZGFm3N2`q zXhnS%ZCw8&hq0>SCAqzMXBtI-WY>QUDjxcGT29h>+gb&z0*$U&zEjLRqkluv(v^X{ znS0sn|Fcd}2u#o_D=0U8R^rxYN%?3Ym|1YCvz-xO}|#tgwmjt?e|0?+X+T~F%i`l;=Q+Hb6mlXb{l9{ z%`0BGzuPT@PuOA8fTV64mSb4cbhRi`TD2T=&|(DB3?M9rkC63S^)^0Q=-;$jkN4!L ziMVG8&IovxF|lU9Y5RWC^%}5KTE?T!ON< zx{02hWPj^Sn1f;y*CTQ4VTMb4f=N06`?mlEXTVU9vej7mDq93i+P%7J$@{U6G#a*H zHng%dC5XKl9yStj{bE}?iB_6_Etr+sTKIGR`zKVJ0rn{F?Q`t zOA$oFoJo;E+_Iyd5qmxeYjpR-3eGD6B<2VXzZ4u<8}|vdY}i@zySZv9kUiJA9LNEn z%u(}u*w5r0mst1veD6*kA&Vt$JXtWQbui$?C+3r2)Vs*L35RN3pi^e2-h9L z8$h^cUvS;C_F|V*i0V~ruI{q8#{lXeEpi%c~NzE zl8;TJzq-Pud8Tsj{j{N2C4AeV?4NI|d-0tSUh8Ls!Wo5Ne$Wq@4j2S<>ScS@{rV;_ zb6qO<*`+acgVBhiRwt_6tjim-k&&(3|Cdw=W~c3_PNu{KcEPU+Dkpo+X)C zIdSHtZ}fjlg%)wz{E3GrCuXM6c_>2nZmlwMIlhet5K?9Ref9R1NMSzKeR-!ss5Jt} z^v>g_iO}HPw?IdusH$a%Na#I<0yvx~Ixz>~;Ersh5$gTLzvGgEwfD6NTGkh~w`O#C zEYg1v+BPIBq^db+pVUN48UWdGw#o_%{_*xSiP#qz5|DK*gR2zwBn%Zya*{bSmDj<| zWKtQ-iE@&~W7-4NHn&SX&x=pn?131C=`@hf_Hts;Hqx{TEc0c^CB5e)6EhM&QL$0M z#ti03V$m`R3<^ig;N!Re@t%rlH~jMHnd^PHQL|WJ(Vv+e zZI^kzKhGLBtiudM`)L3wD7+op>k>8Yd?VDa8ZUUnQb_5J`_wqZaO48`? zbo|fD+m&e7@1Yq=vsqwc}hGU zlHaCN3BHev8|Ll~$#xPWlkniv(5if<;2!1?F`>WG3%0yZOLQ|DP`cO( zPSp>^X%h9($-ObktmUJ)z!*-VPcQ8|YO?|K?a&eF0CMtbJV^m7fHDO?m%K-1inO38;3B5|=+N zb|ef};v>#%!DXOnXP z4gclZB=KxE*S0G~_l2r}Z6`@#OKmWo|J@c_ zm;FLC<~tc8d#Y5wGm1mHWdnb!u6HjykB{h)y0XDX&wk3}A@^fjGy=Y}Vk> zn7(FRs)?go2cNj_3Yza}k@LAdkLC_Moh%lMh^c9hv?0ak%?mX$Sab9GXCKBHWM~bP9*EJ13PkN)P+Jq?UZB<6Z!x5DPC?g#vZV~S54cP=* zlDdGKpo1iWTf1ee?k5Cb3V-6req8IobfFoe^k-V18|K=bKlR&eo4W$N8b51|DMAwb zKus>3Y(vNNH3&C~F%KzZQ0$Ar?1Y_Pcg(LZWPa2hjHDWU|NGfd!5Iwh=XDf)pjnXn zT=$7Ru5O8ueC17yBf0qg!=PG-TkTip5$i6P&*xCeJ7GqA+2X0Tfm^r;N*)$q(s@&P zz46;tczahcLng+z{P^=zPy%kkIxJ&Vn<_ zm+6r$3^oz22yHE2RW?(bq+ubkcGxHPvVzm-WPpJUE&n+3h>ZKWq-XX~Xy1SL-;0I; zy&>glwMbiLtKtLRd~Et;-s<~crmb&o`|cY@M(Jz_iTpR&2y?a=63(aJVH<`?Tqmxl zTMWZQq-tio(XdsPP)!;qBO?zc!Kf{Xh*wV|dF2uzdiV088m>YBuCTn{kBq^L!4>Jf zn?|yKseBl`x`V7)iV>O2k6ZtrMq;K{ofc}moItK9kae@VAbh>TQo&3jwaMb92l>h+ zJ988&bNN~}#Kh-w_c8G)4B>!VdQG(JZ_Q4~0HWsBOyyZ_8Z*C(0l}BLjTK-v;qQ^L z71?1#n6AP-{JlCFiP!!9qMCmS^JNe(%7-bIXU&Bswr&z~t7@~6_meZ!mhT)CzGr>^ z3ntL%6d$BW0Lm{@5QdYESNw~;{`D_wTeYtEy`+59#%9mohn`NVz(>x0NS&%`F*RL} ztr+e$ag*vNaa>DMv{zbrk57LBafe7T`Qumu@8=68`nHdCPgqr#ER94iECMN~h_vS2 zywV?s!+*2f&b$60^wgbq#qPoVS}{U_OR1hdxJNXfK*ZYKj#h-p-m-#_sP@4*I`x&$ z0;h7bs7ZiuapjM)jub`gDFxU<~*+IP!lo(M5_GAww(M#|9x0oMm zUr{HRKbqv#A?4l*?Ou1rsW{77cZux--=rPH@k4%A@bscuLAQTgV&qZ^O>vL@@II_N zRGrsH3FS|Wz1{Jk6rTHxYhH_k45I7ZUSpUtmdGea6pq7-Yc}AEF`=*L4DUc3p$^^% zNe=|6w#km-((${ugAV(Ks1ez=Lu9kKn8_pS!+6Gfd;6id{$8!Ys2w07okj80Akp!1 z$5ApU8gPf$xxH`_=k#PTnr~3m)48n(m&y^4;rrj~IVBTfIS`xHR}k_vRDk^|va`N< zF?%?Oq=HLu^|yH2x_Z z8}=dYGG zaJ|$kK{xxqs%M7Y*$LxRanFv=P4wNF7;D!pFJ2E+)H}rLgV3KH_#V2NfEW^*)h2dg zDY0X5JiiJFf?q)ZV#k27h+Amxq$(pDrxy#Z7Lvqk!&9UFYqP_TG$^&mW{4m=gK-3p z2*kOn(=?vZ@%_eIW$&y+1C17ZF7F58S+7VAa3OXAtD@i>xj_UWZ(wB8tNT0xohtFt z6L*g+%;M3?9%>opa3t(9;_=Ua?`!{JmY`#Dr>Q@ydlzsN;RxFVO=Nz9Y~OB@NRwdl z^+RSEI@(eOWhMbaZW4O zRFa4C7ZF2b=70#CL~#MRn@}bUPBG5Y+f5^@0&un1IFzQ&*FT?Tzv9~(RF8=nG4f_dIBs2`dbj1-D4;{=;AjobOXIe@k8YP_-N9xq8zJl2Mb zgG~#QAk>3}zVi)s+5z{U;uwyf2@O7qQ`(rJ1ea?^z5eh{ZU28NLuw3@t>xclSHo5y zDIL=DNd5;sj8D4*-1&s1`?>7Z93Q%8RwHhlk) z-7-e&^UY|#NpCtL(Pr+Gd(-}93=WQjNq31iydx8Trv zUL{*TnLin)UaKrp9A!zPy+9Vy)GNp zj9UnNgi|3$^dXiI4dV_QVdKMcC|!nq&Lsen=-$PL>4B$cO61HOGL#hl*c~7n`$<>; zVFVw^O}_7UAyeeoLoAhrLaxtL!$5NRqJg~7*S(<`IDA{dB=dC2`jwW}ck6!~`Hud5 z&Ay;4puYVn(GhwafAam=%JWH~D#+vX&MsV~xgk^&EM#Sh7afGYOijSucJA~dY~miO z(FDFNL~`n3oX@|ANmo~Rm;;eOt$LG_M@tf;vtsL{&)p}!9fU9B4tz4`weG8`C}^YJ@rkH!j2R+Qh>{JeZh*n=Gv zK+yU3r6ZFW#ng=8C)~sm&9Hent|j#1$+%?Slj*LTr7uP%X=+ER5~91;N0!tIyA|vL zv@gKMzUm1N|KQN%fc#njOVWnghf$gdTuk6AO0+d>oHP2Hwsp?t*^xzFQ|+3FMbp&e z!fBqnYqb(=E(%HgqYF8hJPz&qVC7&5OlcwoNcU7TR}8zWT3T_OL~^(*R@qWz0(;P% zM3&G@B+!L*PPMHVBzYET_VuKQZJ^F42!StrX@4t!Sjj0_w5%1~3BQYNy6M#hQeh-= ze9jbYm!*55ww@>pn*PzxRvHGm3f6-!UM56Mm!Ncx9H>*i9GN6>Ankz4Hn`cC!CzY3 zMPwW%SnD0`pocKOGX?{ciuot$r@(BV{E1w@xGb6li3+C$4GSk@W5;3`Lq5>r( z=4KW!t2|&$ryZY1FI^!xf}y6^r6<)bCfI{ICUkx8DPgHgaJmS@VYxW+UQli^BG9`X z{qKta0#bF@8>5PNa~dT@K7`EH93@)eE&Tn8ez;- zx%?I66(6rH{QbUn);9)+Xf~8*<7%RY*S%SMiSWB{-_6N3mFlW-u3`fUf;l zu|3EK8A%r&yw#6RzlF$iT;26Ht8|Ct1gB8;ifjbD=Kb#={5uSc!I}(3-Z8QZUW%4e zIf6>kFOO;55URbkz5F?uX6_$`j6 zm{jnJsfv;P!lCc+3bng%%47tncc1;aK0GmLBw4-vvp$AwGu_&f*C?{?NZdSf-YH7A zx4x9mcqn}1BGeDNIvODtQ0t<1`-T4WCpPW>2kJl-zbMO4wxOWHM~TOULW_&9iT!2n zqRNgtY%0pYwL;Ke_oAfZg&D&O$~BaClwapxG$>5V2G6+oHH|6mG(HcX{54JTETefJ z+-do%#OLw2O1|fblY*2@=AX2L`7|Dx}V6|bSq=NYMIx0b3 zOJ(NOX@Ggyt}=Xqnxnu*(aku45d?)b1`#W3K8%SNil>Twmx<3sx^eIggO=lroj8mcHa2)$D#ljx z20r%$!v#EG1i{dNp_;K7p5PZe;^d<|3?r058e_LtnYezGiQxi+3beSm?;h_-=l;Ka z%jysv%q(Y`7{uWbn&uN8!G}laAUk+v9)d^G;j4D$wT88DlR%Te{Uxx)xTB+<@OL*g zrtfMc$MsIE4v9(06LxtCW9G48gKo*TTWptgdU4f#)VU-3J6o}B)-RvVb!LcGB5SKG z#+ckXQ^-|U-eAnB0MG`37r1aU(_DdPYWr;xXcAbn1l+@->p2o-xZ~1?>7(>%o?Cc) zC9S#u62}YI2MoBszXlTbFSO;jTLPm-ayNRzXcA}=XcBm=1Q>RFO=tn0T{%#mDm9PX z>Y+6rYni9|xr*)GOUCdaI*e_ArY`5bghrVWEO~fd4%*XPLwx#PJEYX1q2#E6S&HZJ zj99-$%oic>hbw6YHStyRP73)JvYW*Ofq|QdRzHhVDx}XBT*Qvy_JboLuH-1;^YPnC znvuX-4I*^5T5)6r6vm1AG7gF?ly)ef2%`{N)?t^WnGUpg8Kw-BVi;d+3^6}5QV_sA z8D~*huA}ki(W+s_uVHtE&BI-Ib^0QHYn(;lhwwO$)0*6+iF`|ML6#DrEV%Zdn&0RrRZaNg$90Dw*f$f30Xo zDb6@Tdqp|Un1NE8Fou$OitJ_F`T1emZtK21uU}1J&Oe0{ciJ*OoUg`p7~kP}G%SPv z`Jev@V+cxpuav`p5sJYoBV~~Xg8;Y~1E7yw2_s|1QpRE%FTlfjoW^LtDiKzfFuszP za=c9zh6)TbTo@cMkWe1w;-I^~&lw>}mzGJH_ey4aEFShk% zICX-zx_!V8Wn#F2PaAHs?EQYVi491!p{X%sDtF?(SMb(clR%Te{UxC88jiC>uv=_z z>B~9I*^I~KtuYY-KrrWQ<|g_d29Ya`IXlYF`i`?pjS;(gmegKcTOzo*q4B8XVr;<( zq7vdlshY*}TjnyQ6H2%OeN51THl&RZL2j-|;P)Yc(p~z>hK8q)mB6?sO;d+>-J=G= zeeOO09>x&$^$2EM0|A49E{r6yu7*#qCk~EX=5=ho559RQbSH>4#Yxh=qm-1Txy*Z$ zXc^Whfpy;7HL}%6H3@tn2@E6DDh&K~`p=SjPlxJh+=80I5sogNF#9P>@tCecaHP0g z`z9t|&!#-(LS#gmyakY{84Z$=ZGeF->>T~Wy|4gzAHso z*?lb^4q5%ZyOlm+J=*JeoQyn&%PTAp#D!c42tLw96+DvWyMkam6P%CybWoR1P5SV- zIG#XU?`g_7-eO-`0&6vhP?>3`Ly2UCn-xm&Qp=00t{R{8hdR@?A`iMQ7lmC-yDqaX z&p3n4cgJsCmBROh;DA(1-|J*@6DT}Ng4b5^-7NXBK+_$ zw@ripgM(a21dm*-7R12|Ji!|@Ygv)zImz;kOy#GRVGVELCV?h_)g+L^t$t%-&6lXH zO|5iej`kZxKficVksmO`79#(W zpMj@4FUx40NBDht1XNbU>vxExT~Z^`XQ^XTHpfUw zr2T$239Q{9Qgdzv5}ni?6_~FY*Eq(j(-wv6PL5Iz2MnbauBLe(x{a*8rjRnT!;fW~5@IeA0 zA1eP0D^6R*5Q0N#oh!arDUw?>p)^OaZ)G-jw%2n#Kz?=KsKbj$)qVS+eT#CYbQYCY z!>Kz;eai(o5C(2})O3N7MtR^OSMuX9B(SOinDc_?JkSM)6(6kP@ahZh2WjNRSOGl@ z4&a*3z;m`a;G3Jd5{10Z_v%&BW_2HKYb#f?Q0B{*NfZ9yeQ2yXo`HLCupRvG?!xDb z;L`>X>f$=uC^D@tWg;)jj6BUX2{Z{jUIN2xGtk0-(a$*}gsR_pQYIVyQU6;qfM5i% zAp~OxeRb%r5aXFp^Te%Q*7Q=BmojtCSdtk(13-U)gPN$9RQn5%8@Nf}wc7#Wm_`F~&} zf>Eq~;=dke2D~~%o@tqm<7c>r2jY<6#7XiMw^K5=5j zHhLL-@Kp3pX4m{dmYdH1CppXWFtOt0&af|X8hkO_b zaD;0^N&w3b_!uJa!68gOR;74_2z=Nuf}z1Y)O4yw7T`@iFzx6|lKASol#g))BMZ2j zy6-z$O~Mvid%Ct|^hmnC(PQew;P2poExOV;1TU;8GVkzc{_$%*7u{3xHrFK3B(M$% zO#4!qOajc0FPBx}_rZKtWJa(1W>V5G0mfSlA$24aBsPm|} zW%qkF|8s+ksv_p*N@Nkz2(HK|Gl}`^FsgHTj^5CAbo8gZA4pYwt0$0zfZ#@C15(4r zt*~Z^e8k83qZcbdK86sU53VnDUFbS5{-x5c;_BqbK}Ay1B$tJOIbM{*gP^Y4D{b#A z+W6P{>h)TF@S^9CO+GTwGsTw9EZSf{kg(<^uT!#P-m6rIajACT@L1t10g(hkbCy7i z-MXJPesTZH{R$(P@fP^VIYeHiPvccmA6$gfw}05+Pd?vcs;PueKISBzX=x&{a#76% zKAxY;T1Fkj;f-W_txv#X8yszgb3>ny{PVe(8c-)bM5tG0maZUNy5+e9aVZ*XqZ9c< z`m}cofiiVv(d!jSFJuL%lnP;`C=O*VE6Rp@lOI&<>ca}Q-^}L-?x^ooPb~8PW`1U> zg{-J^w(OyvH6o*Wk>h|+LN(q@;(7pCv~P@7Dcp8CLasYk8@(!RE#?KW!r63uFtel1 zx4W&29TmCvE4Y+_XRv7o(SS^l5<|2rE*>obNBaV2z=Iy>%%~CWlbxc3rH zhkf&5tVfjDvVIl`tkoc5Wzux;nZ~IZxG2(mp#bATIkkw+6b@Z0v-qMITHw@p;P_f3 z(RutW!mZ)=$!A>iR?~5KiUTe%`%^r}=lP~JFYPx8W6a^DEoL4MNcav@Yr^9JzfJ{X za7yXNF=Kgv8?c^tsINd_bBGTUpsG25OPy0rOY7F>sb#Y?$Ac5$kACjHP!j^?tAs$n)4xmNhF1%5qwk>sVdl z0E>{LdLA;*v)CXd;_yVI5<-Yz54H45r^${}i4|8N^ua=ApjILGWeL_J^Z^0O9N_yF zS(P3rHJ)h}f07hbM8mZOE0jB~*d+T}qBA_Kh3Y~gmUmw)fWFSEF9}A13SlGn_n{yd z4xU`U-ABZPBclk<+M{hRz)PtH7C(>;QVPV}sd$QFOR$1iz8j16g~}D7)oxXExXmKVwAbXC}OIm$nYp9OAt-Hf8Jc^%*pf1 z?&|cSyExHxDkF;!wzRG1&Y?cY*w=QW@;9_M2p@Bh7iXW4X#yW=MJzc$k;AJBc%;X@ z$w&eNv;Cw5Bq(kG7Kbp15Lb$>T=B<;GXN0aVrOM;pn@iJa^aTcG)`iI3xtbyrN7>Q zz*$zE6oE?B{pDE|qX8=zb-Y!#qnoT?x)IS5sVAUPLc#7mXYT=X0w%o_*GSZZhRDAz zw!*p8=ig_l1YdlgUtUSsEWM26o<}_?2`}*)m#zD5m;VW<^jm|l-Km#4W0D^g+Pp%8@Sz4j*Ya$H?5?T9_TA^^Jwt680oQ&7Ji;{{0eoyW4#jaK=?CUbSlXj-1j1?AixD|cSX7izs0a@aLm-#phU*TqwX8=nISUri60q18Q7eA&juWVz^OB?5I zu`efqwHid0RfEoEg%X_*0|s9gd+QYr(?xlOa?YL9_@-+(ans{#U)+Ze>^+}*#n;9W z;|0<)_;H=;x=h&uXIc6bzr||_Fz_(w;Cm2q`Y;$7!zqjXDUHRL&o9LfcFEbe&LzeS z6%VYB<=%3CES+iolz;YP(%_qG-R@yDpSrJRy$9Z=;{xe8`%26vx;$EDpRPK@!E1V$-0l^XQ_A!D;S}b0&Na*@T#Fp#`>J^(415Y(M5n=< z1eyfyD*?u>oS)()vCKjJ`?$vVVbmLD@+quj>t}jK0QxS6wCC5YDgy;7iqUv`%~vrp zc(llZ$~Zbe1Ki_O+yJZjxNprD;SXgE7>moQu`6y=_daFO%d;?yl{rg}@G4pZ8w1S= ztjF#Pt>n507kGsq5yf?z1eRh$K3^AK@r7~#K^~M-*)k{@^`!iY38usNGFxxp{z5x3 zDOAo4W|S|JzNTL!QoCLR08?DyWT|?kEq1vttR&bbAeZtV<{Kc6 z-J79jo?&PsgnXq0U_HAG@d9(wkP)<}caw5ir4UMatx`CWa{f#!7UF|y)nON7h>UgL z=-zIt%^m7qv(rF27&kE>gy&VJz(_Xw6fM&9!|+2`Z7j~qP&?Y-BCb68)f~fbpae|8 zQfxpYI{tB?V`#*ptU2%}1HohV0g7hz*NK+ryw@1EK4gUxWZz%Rf2(*6DKfA8=yjIc+1Z5Wy6uW5aWF#Oj%Sxz-C zhS{&v9ujt$%jnHZ1Lo@?<$jqwcMmx8FlJ%1kS|l8hm@L=Fg=G_*e6yV857E^9nOA< z-phMT-c<`)y$motVq}}vG$z1ZeQs4wYP@-UrcS?aco{v?sKYWG$}`@5%dYXKH0~<1 z&P#YHe%zeAOL)Q~q4v8eWI*L%ZQN2{Z|eB{1#5!>k0J zQez&%FZrtO4XEf6OJaI~Dm-UlNFW==5VkP6(%TpcncTjEJcVdaPyrFHX(ui4hWV46 zPwo0Tj0#GA$7zDq&%=>eVBS1%A2!DM#iRU@0AAjeV0D zLq$1>jlg_S&HcL24Lg@o`dnXoa-HeAL`h9uOFqhEOy)0?R8)rla8~f<(NCYc<9BDV zFk$cIVR!hQl)_pCu&Hf3ceGMuQwr}O96~Au^q#2$aOs&iS|LLHqK=?Z-^6LZMFJQ- zFoNv9&>?rPyNw;4cekf&N1FI8j3VHvJxJj`U*bULr;u~Tt%NEhwHFKkms&-^YKjlX zSKWVP2zYm*Hli_UU&{8E2fN*?7i=A~r&ZNC2F;XrAKpfpYet#LGEEp8UQ`Y^a+tNz0 z-XJ37_^r0zWraKU=hdO=@rrGD`H~$YNy=+1H^=N}Yg!k-%j)tJX~=%omDeIep;D8Jxihv9OV5Uwa>r&=S1!GJo@0Z#&5RE;@-ZN!S0W5bT;Moe)m>e zEwe2%cQ+{{r!)M{0LJxn`O!+E-NTZ`ZxLm7WS4^tb}_h-aaMCxOq9qJN5NTmHnM*Ec!qc&NBr4oI})4WQ01_vbZCyqWq|fb3#6yZ3~{O zb}nRKz0#P$co-`?p-{+;sb;Je�y(J8_ioFKjL* z_67W9eaUI{cv!P&cnu?5!%bs~GmV4ieE6&8o6?yV&-*jnrMu{xkAVmB`koFYaGzIc z%ce(8)2#hE{Vv{y(p#uWph;kv1hUr}gP1N4!r=p(I8bU3V^LgVxJCoLfC*7otTIp} zjUs6zAt`et!Tv=}3D76qug%upGm~UK@;;5rx>cn(*jKs$42KQouV7j~Js$8#>?_2} z`pCsI5|YZAfgTtHA`L%*K}r$+a0Of_Dp!Id&FO$3<2e36U*VGGbnvCi2qniyZBz77 z+ZBD{(#!U#zC>gz7jR;17Gad}$$2SX1Ynj7E8(Y zMus{0D1URch|Vb6S4ONuJ;SD&@&&tgk;+d5kY)J`St3)V>8B@GXZ~G=k*!n|+{gX5 z-Nxm47(_Pqzv(t)6xrC8p(KQrpJ=D_$5M|N?Ju0upgR$$Q2-Mr-9E714T!hJAabHM z^G-_HfBbUZ{re*;DmJYsyStSO$h7OP)Ht zN(?eXuZpsiyqJ0^pOr2cqczsDD&%K<_5HV>kM-sEsm=<(AfgXgnMbuK3xmj^cIEgJ zD`C_pZ`svD1_idXg~l&34E^<&)9(NMe4_1)w8Bc~`(RMnkU>P4;zfNJGOByUd0nAL zhl6g^`=;C0SfI~tqn%u-E#1gSx+{YY_lGaoQQER)*0-;AwPHlQTf!p$ATx70mg}RL z{LBRAN!xYA&-WffU`}DG?&<@&!;R&32l9iGlRuv8SfTLK$J6dF|NhwhL+$iLMoG?n z;=CSK{=9vmt(&e6y6+D+x<9|sN-ebl>O|YaWlzMHWP)sRpTR5#5ro4Z$pU~bWn}kA zi1H|rt3x!`U=*Pt<%3F)=!c+)_1Q%NT7|rV`R+<#tTW?!TIcuO#ib1V1&(CTxQFqH zZOZs?1>*=Gv#1x-LyzMDc0hZab?}U&8#7q}Ay+ z%ymiNvlv8RmX3$&^;}6;!}|*?{7$x1i&)D9@Mi*Cn{$ zD;?zc^|;k|T@CB&sr52W=ht;UbQzt`p9YUSD5RTtz;MD+KWSuMXfck6Di1SXg9sMX z&Ew*N=cy6H{v7sto#0=(({yg$t>ZCSk+^V3qA z1eyfyCjs~2hYZ4l@-cEVR;h5tfNQ;oNzd8o{VbH~@ueECm@(LcJuZ)Y9+iR$Z^{J) zkMyT=74<5ZgV~%?jZ^VB2djXD3|=^e!w}F{Euny2S!f$QGgZGN78et#5i59r@;(@K zB)k})O@l88*?a%CJJ$a5zkK45&eQIl{0}mY982+mGEUltc&>-X&@+_c!l0%586T2M z2@!k3>&xG7rR;ipC55Tnj#h|pXm0Egub27YMVgFTGMW7mgN3(e=E16^%-lJIRe#;z zs0yOe-;kD-$awx{l}#;U+>%gIDvEr$aIDVZl1dT1kD8-smkVVF#wv6_6nKkKL1F1k z!>5^TDldjhWQ{!`dn@!4-ZPy65lULoMU_8RxlkTocWXt!tqdHuJ6bIuKUNN198++t z80n-ik4@b-b49_%-Z#P%E=qMd*u;r!gu~}Y{Lu(+q|~{RV(pT%Lq6*3_V@bo_}#gb zKh#<8k_Q*v&I>7sg>$1VlK4_~Q*Fz3wXB5M&ZwF&_xF4;{Y3-NDXm;r-7%1}q@aH7X^Zq0K+!K-R9 z(5^yki*+G`;K})gR(Z&LQ35lTaM|6(pYiVUscTeQ zvS*Ch?qm>A`Ai{a@-MYj*Y?hpjOE(0T}oY65dP`yUff5{I$_mYHSrLGetKY_e4Zc5OqOEKVf85Ol} zm}BYZge0`Njt7(G9wq@~KXs28NAvY?pg7#yhuoy0jSLir(7Z8!UVVlfEz~5?B=B`f zfH5F1R3V{o(aWuN5SKCppO;~j9ai@me_kyagUUF>3o@t?kHEYPYl5lFdBa~1%kmwy za#>HcQNDj;s5TM=Bdig(zx(ei#t5%zUHqPeDPQ=4MNrtGrV>&Zx5yJInMz0ItMU!DN0I`3I_EPzFb(-)it*}7xel6X` ztyW2xg$$UuXc8=ZRV9wm0>OEV<@jvoMI?JN(Qq>#XEpIL>6r{7$1;L^&a2>L>kEU|Cwr>%W%o(xCzspZsrty3Dt@H+JLUcLge|i!)W$UfYdqOj z|HL@7s}&^}MMoU{+DPAC2tw@zB{VLtQTa&PYUAn5zPj4zk5sNT!+F3Qv3O#)2< zUseLy_X`gZVf>I{Q@^|-b6tl5MoP0#WbtyGI3?GtR}Vj-C?m^fm@}eW7haWTO+bJW z4wf;gPtRu5MmPY#2qcuv1w?j5!sA!<>R)0N1)Vh0Q;=Bs4`K<5-+0^4IAYD5y$>C` zEJgUS$3&E%Btca-R`5uVCI#D#wwyWF7oVryzjUDWFBn9$A9bukkU<0EhSX_s#i|44 zBMtuJ6NW);HVo&!qsBKD67CB5GU4tXmzve8XpAZ3%j3TE3L^=p)#u^CSoPNXPjTcv~V zy4&5iBCEY{Dwh(e0HRN`z`(<{SU1-iE7%9VQ<+Idq` zNr=MEt4g3?~sxHO|;zou5H&E_Iec?hDEq$CW<-ZPj z#wa2qg1U@WvS_=$Fcy?^kfabzLNx;=9MtsVGA3a2+@~9V1R(P`W5yD0(tTDXrfles zlAjPbujxYl_*8}rwj?^1@!(kJid<!>Cy_v}3;5aUNwSUpx9n=O8hbuZ4f zt=X~oy_Dex4o+laJ=K{9=c>z9Fga4ENSN z<2$?(t9=FqBJ4I}A25G7jrSNsbm33mGZV-7L98E!?#b0ktUm@Rd1ppWhp6Kt6$LoE zCATeAy?N$PJZtlq5?kITfzK;}M;k=UE}dnO(g`>RS-pJuG7KUN4s4HwLFDXAhvV_! ztVz<&gT^9y;7xIeV{pMgJUk482*wu+kx-22wJctS1&S#PoUF03R3OHN_3|PMs2~Rh%Ds?T=JIcaW{@akMkwX^ zE$IhB$&e-Xr75W>2E;6L_D}=e10nNeGG{bk5IL6d?H7T|*NQIKfoj8NoXNI`O`_lg}>lqi9@oqg>&0QgWBc@By}B#bG7q=G)U&z~?N zRq+P~Q%Yn;8c*R;%938lAq*laM&HLuF!~}|hko+`*pBMGEsbQpT4kQ(h@HCqr=o=+cVu1#)8{z4ttO`TWtVC6?c?- zId$BTOo&k4_<}Ux=eSrfN(RTcFSN*vbDK&~aNT=d7z(fvoT)D{R(+BNmK9Zp3ZK!p z1P?=_m7!`6y(2g<(u3~~teVMq72{R$S&jguFI=nbrU6uZ2k(V{p{Qre_>(KbwpBq4 z&aA4qlz*k`@@6~65AvO-^fNPI33^%S03*8&>^>GqP^zopDT>=np;Sx17_P~bt6XSVSFHcX%$EeA`n{U zglIze5mq}Xe&mFXcx8-FgGkQ1q&aKgRX+(|lv*Kvp zge|k`6(ZhRtIprTO#)2qT{3 zC2vjVzW8@U<%Ddv5`AR;q^ z6cVfm(FzVJiVyTf_N$ls-OIzhZcj!L7RX@e;P!;Pr4T%o0V)o$*Fnl`F^2q+DKg)b z((+caJpT2x`}Guqh<4-G%8*SNL$+lI+21uz82*%eP)v}^Ip`IXmdXIz{Ma-nl; zPT7xMXCR!bJ)umCt+<4KtEC{9S887;8{MaOJU>e5CZouX&QREvL1eQSL}Je^>J#@p zWhtiAm83Wq%`?gK>{opV_(6xatGsL70}Lj4J4LtrQSas?0o~JXN84oKt9|K4OZIAH zSoyf34jB{5YGto;0$2XX!;dfEvm_wPoxTpkNE$~7>lD-YD*Z-$ zRxLq=kYmD3lm+z%y2zh2;d?}VM4S2o7+fC{pV{YfL}z?}j$x4vfMm^~&y1<$jn#JC z6JP3wR#roUc_UWn>9q16-yC-T^WE$2yBGW2E-T2Q-v^N>3+n50)JOb_HJ<4&G>-j8 z=Te<$Ypf3%udc7TL&9LZ%4K1SGX|+{+@oGF14q#NnjKYIy$)dND(!W)<)kF$i0NrX z6cs3Z#eJf$dOU!ea^GW27}_+bkyRM<5iqCMh;b4ZI#a@TxFAP9XGUuJQ{i!`L&W=K zpUoVQ*Lez^@aDnl^e+<*Sw@|xJ%1DD`j*rl1H|W9rAY-^^!F@*wHidC!%w6clcz=@ zzF1;~h_|-F5W;p@Je1<%CA8$7(y7x5%E&Xmead2+EH2IuVS6qcM8LU=-iUaMGzl~b zJPQf9e=lQZQU9*<@=%2Py^RBl>TB6d(+y8)J?*c{f`=&|#GP&~9G{14oO!8^q1=_!>1r7c1*5^rLg8!t^QJKL^ zFb97%kLCg1UEv5vf-phmhZPSb5FZdooa-ol$Rcf0XlWUHNeC5^l;TqMDG9|9-`mIP z1ZaaUoXDl}@i?GxG-idv5nE_T0rvicEwgg_no})5d9%OO zNpBr06LP~qtN=jC7qI}Y@uyZ7^lE`M(T5(APMM+>R@Jm^g$x!_Lhj0d^ycM3_aoan z3HD0&RVw0dVpc>9v|uH?ES_?B>?jX^_;N#bC2D;R;pVSd4j4<102kTP`WO2dd?adSdF zsnk>`lbgE*G>t#nI_p+jC27m7jWCEv4r&v8jlLyA4szgqZ-4t%hbN!w-rsbuw3_3M zXup&abXRSRRUwyBkY33ca;5gdSK}8lq@90M`_VZz7c!7YU8>ayv|%x@!@<(G+R;E2 zeaCqOm))+~+^)7`!ytl9BNW89sca2?RmU*!=$5I%DEO2A2!9&kLQIb1NfL zr!qFwuh<%lzve6f$pUe(8bm8aa$F`&Qc^pk{ioA?il&n=%a9oPX>ViazFGInRHkM- z%X~8#O$R@UCZG#m)aJrygF%k_2)}BN7$_sXW`Jz9Bkroy@MYneMubgZNQe+^Fz65? zL=7iS{Il&`jEC~+`-~&3u-jtASJY3pf$igTZL6_wlO~et&CyF!{VeJX>T zi@rJB)!2R5{ofy6cYl=60qk0uB~BPL2=iZa6`Vt6MK{h%+hESZPJ?|H!|%SV=)Znq ztlN}ia-Z|s187!)&!f}Yg5ObQvwf(x^3j)IMXjyGUON|nP%@`FgBW@A^Y8{X(E{6BrOA4ZWkQb6yq+(CIyF?>jg zeW=5XIVAU!6!dJ>0-qQ~Zl!cX5y7@7?{~Gb1f8Waq7bRnBI40Ch=jHL3`zipitHan z9X?GDb$#BaFcOG-?B^|+?P<^c@3oR+Q|~|fd%NW@V{M~_rbz!7M9#Dg)`u{NoOgfw z`B;b3N_H4TB(L~HP0CF4H&;^JpX;0u&Pu=_a;0r&ZZ@@2Lxzami%qTk*CnD`QXHa` zLV0?nOXzatt84L@lGp2IC|*?yrNckQkT8g3tBE@SHZ==_h-lH4!YQ1JS}D6WP&}(- zj3Pn+9v3*uy(Mke!Pb=yf4=Fy-M{SKs_09>dG9=sK|~f1)dhnHZ7sK6yOe?Lg6*= z7iz1l6ybnpmeXwVo~rw`rE62|I^I{gPt6qxNEVWR$Z~*`5Hi$#DWV2=x8#IO23`E& zazx0Se$I?B0Z^hOVZtsTd?zM6zg8!w5_Jz_B@4XwnG~FfCG38`(5%Y7Bl8%$u0&=` zgGcsV`W^ft2gVbOi?#`HP5{P|I4?kGVGNP{ZRn0R4`-2qzN+zC?Hi-W8?6%g;njZk zr#E{tPJpETi$O&7SiL4fU%`d^MP1WK^li3cWE(Hel48XQ<6w>{)K#^W7h`9{#7&4u zz@D)ZPV~U~T7RfQU#(FkfaVqNatdY-N$i-<7vvm~dBR8<+mc7xTHLeJPPvD9d&=F9 z{x{q(Li4Ug(wJL~ELur@V1yQJ%1J~B%OTIaGM>PJw+dQ<%hG1CKPM#Xn3c@xm0x+D z)9GB)H|uXK{O4P*&nd%J*7KFXqYWZVoVe%!OX>-pjT0Cuz-NmqJJWG|o?qiED-S## zj`6vsxWsE(^U7+lCV?h_uU7)@Sq;BQph;i_3GfJc-}faw*VV7Myaoe`7iAGcDVkqwr_v<~;6)8~sC1QyIOp)-Fg8ewj4_0hA+jjS%?m|(6e${{NjD)M#aZ5qtdk5ULgKLQ)2q$y zoxYa;=erY~8=`}6WfY0+vh)m(0*kG(etf;({rB60?ybHy28PlNgUBl>^@(Hj_^9nr z&b9Rut42`lvy~Qxk_#D0K1#vAJ^BJzOtHUHa#+NWH9-=OcSwK>SK3`h*7C~=i=fWC zjKu1%U6Jj+=h?j4GH zR+K0|hbZ4l`F|t-M(1zboa^q%hQP`Xw$!?jVjm-hb|sT?QI}-6r9;Ruh+sUp)(uzj za&VYN5!wdE5VZzf$X=dY7!OdY3NL{wyCj!h96Ztfxk-F+&$d{xJ(%)s=>Ep)64FY0 zgAVp;bRbat!qnH?CZ{$fWdmR37$?PyE0*9ST$ ze6QP)@oG!=j(6AQW+foWg-c%zf_oPY!*HeO9?o;w+;W5}O>cyjuo#)RL%P4XfmVb@ zw*`!(M_VHapH&m25GPN4DOyn^c25^f@RQtS?mAr4Oa5v|hJ(lqg~ZNw4VTgWl_Beu zdHCL*K4RlR7$QX}ali#HX(TjpSxvI9ZL(hIda1sML4*V8eXr_!ILq(-Aa5Q9jp zXjFJt{fgCN7^zsPb`yOz!*Q+=W0S8aGV45)K8+74Uq`42Ma*VsUVYqViXVNehJC@B z1}}boU=$T!jQ=sB66POX%pU@GyFR-Db-3hAP>xT8 zdz^?UKCe8d6&laW6LX~^#p}h#I2=wseVJ|Z@bgkiNxqMGpI6-*H@_DNJlY^)L0O69 zxc%v57Z0uFp=I8K-&6_Z{8KpeNt*{Jt%ege9p|wRZgWinO#;tb0(Bp*Ij#FSecJuJ z#y70a_gf2F4$JDgD9w2-6Yzl5@I`r@2j4h#zB+wT_&)gHx|~Jy44;Qb{#D9b1;^zy zze%7;;E@uD7sLq-zeoX|laA8H3F_90p@!i?A<2tx*@{Om&KflM4u_;iX;?7 zd5H9TDa-$@GY@{zDvozrk#VdQ11Oev!XRSlk%_T6%Z5_i6a8cg$_yzcV6YSo6z+Vrzawos%6$wXKS-1ICmBUJO9bT>^w0D~|G}PCD@X%&a(aJO+8^e&{}=VBf>S9PLogc3!WVFEb{8sU&lVT|NQJIe(^zL$?9YVN2ztfQP{ z8x9oh(Zr>Uzm?$jwspX{lz!j7KJWghRX67^wso+u>ZxsG;EL^`@&Nm*?w{Hc>#skb zb?+p1?j47tvKr!cM;H5GY4y&=wG0DNU}EUHiZb#RZYwOcrX+|#gnJt%f$j<#!5^H8 z2F$^0+<4JbBF2;0=0q5IE(TgD`s z$feF5xV+NJ4ry6$)b3;(Z)kPe*QQ9Iw#iYUq!Le#hYAOTuV+~5#Lj3J8BPPhk=guD`rt zPfE7a2t?LM;m4=}1=9-IH0ZG^iIIu?vcE<9%+(X*)qS6#5ro$K6TPQm6+V-3aS-Bh zflk5qmAGK$$cS+PBM)s_Ei>>)i*#igj3TaI&b(GZLrJY!M$_AFSM!CMf7l(6Pv8{V z$$=0b?BEEe`JYCiKF-+0y~yqKvf#W^IZoYZTeBOjG>fhL)E~3P;6Vr12QvEA{|@yT zLR89kKjjwjGL}XXDB}!3KA#I-l1Ex#w!-XtF}Gl?Cpnm;#qpQzAX}sJB%G?`$1;&g z5nAX96&#_I2qKHZBOp4^EOZs>gB56LStC3M%y&i`u{0lb{ZQQxmp=qb&6U9OR&Nv$ zLXR7vFT(NqWzZ=8CMB>ogUG7VSydsmD!o9H2&)q!*pTC#;{oL)R)Q6)x$J zZhFGeKL!O1BLC1~)BifU=zi4}N=Gt?+(_}hvw=|r0~EQ0EN1chS70jvm7XP{92fnJ z=nm=Yc}1?2k5wlC(m*Z0?~c!6bx3@4udj-CrL1PVm6!UY__dV9Y@Nl05*xS2)+;K5 zEsl;(_q9S~Uy5t-q%ZsTwc>;oB&6}dJvnF-DDbkb0(gZ;%#lemnM*kd<54cFS<`a3 z2;g4SomZK}Zx}=5U&X2eoq-{P1S>qwwH4F0>it3or5|ZKCk{)$KV2r zW5v&V;r*=p%XuQ48L%gLZ)#Nq#)9ow9U)$|5`hO71huq3ofr4~XMzC zBrE3}1D5He4?HgJy~5r?D%wOvr(lgB>x`HyX!i0d1;Cfrf!d{eX!e382YCs@_bn2m9~CLQ=SVD&Ir@8D*2V)wut${a$}H}6GO zJbwKXXcg`~%4(=h0-s9)Ycq%}Q$Rh1!t1^QVq$&{eB77shTkOcdzZknv1O5LrhVN? zvqkt{Gkjj%T>n*M=lrYSt|BLwy$sjmv2o^=ZN7|S-*ED*QkL`K-xt5m+rmu(O#;tN z0{N0vzi;uvOFWg|yfCIRgmHtv-o=Z5AFBewsnAHsSG*Z;mFMw6zq(hilS#Bi+&-29eX-?voVcH!?iz${@0< z)dVP=pxyJY!dz~zSb`jd*(m}J`eEs=V=JapZOz5m7GUmZYovW`t$U!e6}UJT14G9q z+O6WGQ`QO+9U87vdVi2Y`TX)l7*XE7#29d`Ewl1VMR-W=;1Huo&5Kf$j(TpLuC6O( z4+2?3Dex=f1xj`dNuRW8=ST*PqZ1C1PvyOAR$=%c?iCYAHs!6AKMI`7aDZV19~{nR zc_F3zix*qntJhmveIvGYxVVl0j};PV@;A42h`5X6g__3cicjqUwbb^g!jJJ>JM@!C3+CWe9pN zzArF{sc|XToe1efbv;$RFU0fB3mHOm@ciBzt<2DtRogH2yGrM1=mCQwU>xmuZbZ_D}~&yC)rnYu;E}%2(>TT+aWo4#jseDv{$orD*Ia?I>>7 zyn=(Rp_R=;`OU!GIQzRvo950+Z1QLN;AgLRG(fdM#^`KA!5u%`r)Z!sRkx)`09ZN0 zvTjwv@?einphQF}sg(e+>?jLpxh;`PuBVyNui}^b$;I#RBZw+f>JxK#-<|@!{WJ+Y zdkH++AQBCKPBo|SI!@S1tvOkjrh#A6T1Mx-xbt{vuqJ^ffiEY4y01T!i~pa!^IWeS z$JMo*W91GL&Yb7`-uHhm``_$6v3t6@vR&ou^SuB+iPF+?C@-ff(UwSpAP9g-ix8=L zj93J{ujS(|^40RyVRUer9!RhA%;WbmI^-LpQ|GH`8yDX=_G`Rh7##9A|5frp!}vpb zj$f6I@h5-Mz@&lu)PR1K<$o?li4_(@aQt4&{tQAviWJiM0f%41yKqnd1$=>V1v?|R zaEHDx$WyF;LKC0wg3FTJlB_OaHtz&zO9wg?Z99R@P!?$P;~2 zfoqEec&r~<1Ytp+@;6Icx2V+Z=3LC*qS=dQd zVL>hX9}kK;c}r9sYaKKC-PaMTwynkj3KY|;o~1)=ylfePU$tvJ?7VT=iMwXl+KoC&*ALdPtu7K4b&&5y9FPPO2Q z?lGIBK?Hmuuow#+=J_B<9m3k!-8>L!q!2 zfAR~3K87NU7&%Y%urO(S7{$)VtHPwFZWKJ zsn!^Ql6F)|1{oXpuT>9~ifkYTENBbe?UNL;tKH~Ef;o#e5g7|k8+JhG;VhEjV}9V4 z3^k)YuB(hKzL4QHTxRTL7km~5HQ3p{oy4T$j`hSY4@9S=L+T3ufD7Q-;Pj>{@vpz%SuY z&^^i?Rgm=%?T9U(8bD)*Ps^ohl?Mahw9yu>K$TyuAW{l7g@=xunL14A#cPycs+SrR z+|o?1jz?E0>Ln-ST9RhIO7BxARwuSOXVDf3DaC|`%(}))PA!|uF1AQ!CR&pQ7O#OD z8$`aArFiHZ8AzZP6Pf(s!j$1xDf2qGSD`oIOd6OpaDN)ep<;act+}elj5=(bgz>O! z$hYMq-*v{mF&&{1XpE%|VZ-=!%C0s4wfSlqbr`-(b5T6j^r!Hofk^}RuK{L+-rUfe zB3R~%Jpthp9{+LX$v~NB@)sFF>80JK?B<6uC^UcIhhLIvRss|gnxOGZo7C>dD(SgU z)tBBFKtnUo;EII>z8ArFI!<+*l6HoCI?$z~l}=XlSqZ(>t~H5G9j&yg#cvjlz3?km zb1{rUA(xcJj>^ztMU+{X50+gfmbfER)`~E zFgjom`JkO4ThbS@9myc@c5hibW4eV&@M%5vX$R~EIh9c%{anywF=<1Fr6=3$w%Ka_ z@@l8~X?L|b))7vx-^(cS;Y)Kaovw@0hVpN!#BK4gu3Zj%ADLs%*hN9x;p4^8grd=@ zT&rnI7aOH`G8V zQo!P8$4(?ba#TyU_=v`>Bt@=-8d9nyfTco9Hb}b;0YS6Nm1zM9ypoA}kM?O=07}}> zn+G4_&BW(rq~*|KQadx*0-mY!C}bW|eTkOji~d{-uXJP7esp=|rpu!&p1tGwTVe2g zkKjzq(3|?nXx0{Chmx1%Nzj_{x=7$;%LY)Ve4F8{n3Nd_W1J$83JPsnSAg%_Wqnd? z)+DVg+j-0v+0X(Obq1nb$9ge2(6(F$ZKAG$0Pf0G8rHLy^F2osGLp~j2rpfO2y(VR3Duk#Zg;#FBL zOsnx69`bh?edn9}NduDx?neU`_5UG9SI6bSc$oX!iKB;ltn-*!k9T9bGM+VIe8b1` z7}x#~hrBhNVLJJM`7)iW`s6czF2{Mt$|7wZ-1#Pd(!ivF$EAUKIOj(*SH7{DZ;`Wb z%G=~DylMa_!WAD7dBU&c<`?zAIp+YpfN1{I&!6$|lMcT4!@*9xg&!efkdR|67>O%C zlDmB5Cp{Ml9K&a6+9?Etp%q`gG0V3+j${=%&{0-jv_s(V=vc{GNY*ZaT^&>P^Ajze zYtejzk9CWT)fHvr3UDb8KH!Yi-wab`?&2xs2{S%Qtn>|8HrN$H8P9jtRnB^|tGD|7 zNsAy20XY`xRu@=B($I$|Ph*HWFvT!M$)&aMvBdFk%U;z^F_4ffO zMbj;aKE?}n#;`EIyKxjpMSa#+RuF+y_DQMCDBzqX<%HpH@ct^<;Cm-!+ZJLWpou;-1vAlq5l)1gFbW$`R~Ft|KTi zq6xoqNOzJtll&44UI+OG(ZEGg{vwT=F1n7pqK$lz<)Rk31De28ZnT@|Ycd*ZU|cTO5|e`*7%4$S^A>zo@dy?L5+)dmh=gzGhTe3=U^Nu0 zl7E}IYD3|!nFx663TxqCq?LJ9r;-oBBZhtPC;&H=xLNC2%w)*ZY1A;_- z8D-RuhB%sX8$h#^s#PoiXt8LrAjI!$kOC1-vX|WkPZP~a1B=waLJcA?RxePQ(d#Tg zjpa9;+OKJPL99-%!!>RVpTd&{CJjs)_*OOGv9uolhDHNqzi9ltDD66W8!OlOYyJ$o zj_>@GaZx$fp*i7B8kjWjcr@Ujxc;Hc$GT7T!%AzzYHJvz{N0xF{!r!Bp_Y+w*)t`$Q|$X%sOgV_uHoJ|-;Q<}Gv(5mH(c z&IKt&VnJFy^2!XMKuX5aG)r47BrWNy*nETIix$B7F!zzZ&A@jWR<$a;rJW%^?yfce z@28#S|GwO4wzVrG7N3%gXix%?B9(MbILj$oj`9T-^YERVh#N7#rfXe`?Ckv5(F*@d zm9?vnTd!&t0C-7TdF5DCUJ;xR_pWPa!nyLW0CJ}K4!w{giswcK<#w>8B!KcP%nisv zx)iyPBAD;AF(Zy}TGf$d`(Kuucb}R@wj=2+_0h^1!lJdT|L|4Eo-5H23c-l6Duc*| z3{OvFD0rzOv3}M!HuzS?`Oc24A75k?(|1Yqy^?bsOSP&6MSeW4Vl|WADIt%tQtd~5 zhN_!o)k7SOMLUzBfx26gF=T03bnrtnN((q?gkTE47*hfVOv!exkH726Uc9P$Uu%eA z{5U&JL&&lWcS~5r!XTm&qe+VoSu$2+yjzis7(iClw)h4L-|b-iG>XBC%2H`!BlwMb z!b#$aHWh3JvLJF*u!xZGa(7-NDgP9ZuH;P*U;&im@7bdcaP~_Dbt)NARo8|RE#pG0 z>&&_jpPKd)ic-9eNsQXGP88@Bl`A{?`(LbYvgt=rWhT)BXT{PSp!wK>& zqmq+$AFqwM;K-U|Z5jq8Wpqwq7UVFBSZ?JbYgBJx|_#4&&7-W)|AtyyzL0L#pE>f;Wly0Ts!?nz{=*zYCYO$5H8 zt*ISRqpIAtk41eH#$mCJlSi-sD=Ga^At~SrE*L3zbyy&XU+5A)+t!c=#|JcnsJS=s zOA9jME%=rJ(p4{!&LgGO{h;Vzc__yKXNpc5xMvM4+#q6km^^vtzKZjL))4o)@L~S3 zc+J;5`eXSf*rb6;19z)|JX<_}yw~C2LPJYTufyku0gL|O519VW)xITE!jE+vfN$hG z<%6R9_%F_K+Be)jdA>$w>$3Lia-k1h>(}KOUdJ7V7Boz=4m)2>6Wa552W~nS`KD_= z$>+;_P5z{TNdpgG1Iz(_%*?k|b6KA^+mEzp%aKo?^~U%BFgjh)F9xk8>lmxm z=8w-eWE9zMo+wNir*Ndag*qi9ZzRSgFG8XZ(}eNiS-CK3Xrn?HMOHD4sGK}LOCMO* z&JPx}kvbhTJ6YrWaF-D)Vf`|lR5E`P9!Hh!$WXMc1$}napf3zc{Lu)|YUo|zTK}lf zdPj$$QK2j=FGrxQi}1EAE>C1IIM_ z&~n(R5yYZSX=i#CpyU=_Y7b!4zn)!`fupmc1&B{rr40ona0=&cBl1@$lY&H;JtoI0 zg*Htampv%T&0G*u9KA@cHC-EOtDD;SvZ15c);MO3ogp%!#S7)iZx<|QcCi{7byE04 zmG%-9p$Y20bq?d_r8|Y>t;Nf@u`BR*9?Z5ZC7_znTM5tAONZELlTa7Stcue>FQG}U ztS<2R2Qu3(k|uYsX`k{z9dp24?pXQ^tV2$Hbn!qXI5W0H8u5`%eB6pY%*t^e>+9?KFesPK zkd_aeG2t_Q>JyhsSlQNQNHuq4@Sxj80EnCJeu%MeQj-R1x?Brqh-3L2~W^OF9!z)EuY}Q zt7&d*Yy{udk?BnSq=88T4_pKO(aX56Ux{32I=hM8Abbq`MC1O)&xd+@{&Vwgd!^Y~ zJ!`gCHRfwLh();Y1Cu!z!-vWcJuZ%hTGzFv1^=;epPGk=P=i8x#1azmxwpd9m2l@0 zxz_~RBYFvGB@S&S%mtibhB+b@GD}!-QX{6eh98xq@VW345>Tl$-otH{WN_JfvEA$* zoa&?FI$lbB=|o03*%mY(>w7P%j zQKNmT55YfuC3z&%rnc0qv0H?JfU=7#tUEgHgM^E0jznurcqEj1DG;N#CDHi1tRq5K z8Nc%&IXukmYm z9li>k8h;8;8kjWjFf_n|_Tk|{^Xb!Gv%j}5|5LNSzpq7Zotce+L$faZ+YA2g>x>KJ ztuGebab5)9-Q8(+cXyj7PoBo&i|ITJ$*;!+a#Ck?)PYt5B|5ex0`3rp2YU8n`D7Xzbu=Gwuq+lV@4D!H96E+o5(feAxfey!oK-BIu(B7({k;+!IGJu>)aA zi|iOg#$8Zsf7~(QBqs2AdB!PS4lM#mrf|ViE^K3D_$x_K5ku2Nz#=O3t z{M?+*)l23meA+uchJ`SWsXb(yzyM)==Hey`n%=pQM_aL=Asxk)Z7FE#nd$88B#x6> zd%oFhE8o(S&1Pk9vpLrHWZ0##QH)jej9e&HxzaDq0AK86HKJbew1iP4R74sz#+5Fr z!4dhqd5&{!!5|Py;ApPwBC2tCb-LZC+pydAZeW=vyi54#5EDn!}Hh(FY6^7w{V31h8Tuh>?gtJM@lAIm%j5f_iu7 z5MBi3XOV2!PKN*8?i92vzI9>AD!%5EM>Yf)Who1snV%5Yx!UFuB6OcPFp z6jZ^?OS+)H%izfTxZLg{EEtp%Om;cciXY3oj*IIZOA_hmQh%=4<@uFk#3CFx9 zHkltVfKY+wXPSxh`#23I^3{%Kt4@$vU|--`718JW$!%Q14+~wF7yy}+Y9R3BIk#@H%-<~oi%HO007HSX~(-03D!-s+~ zyhX#N#j8bYbfPzD;O;aKi`rV?#|ZNN!~5pl+jq^!j~`<}o(Cd37RHBto$;o=Y!G3A zo&|7r4lpyXuWx8Ee6z(J(s3CN(MLYy!a(u%?c3(}-+zxC8!YT&kiam3Jj5?@m&r^y z7(BSx5kehc2(gc0gfxr^=odp1co=60V|W0L5yB3d)Gze_F2Tn)v1wgH1>CL-SrV;WO(!4Jy!}Y%cUg8SFxV&&zaDmpO$e4NMxi zi3a>L>-seKZN)+cSA2J(EYNZ!#<`5qj<*2o{Ce zSwSAgz<4uK0wk3bB!7=5&3J1U0QmY4d4ABEMFtr}VuuKe2f4`pNjp=%h>0Z`L)fXY zr5yu1+G4Z2#ie7FbS*9Ge8UdB3M#UAR}3{vn|A@)Q*#dkeov#syk#-U8>BuT(|PmKq6iWObDnkF5W9~ zSV5B7i}{(qWgVThuALN{GMp`O#FUI+Cx?0=LFw8T)abOXFtCIXLgn*hRvScORa7|C z4Bw?mKC&c?aA+yHR-kerN9hk>!Gt zKyx(UdLo(jKs&K>$bQrs4IG^CGYCG=t_H}VnA#gdLb{HMA^0tH2G6ye*l@;M?EF?~ zcTFjYY%PsM9fh<>a{`6qIjITm%9<^4m@zRd6tQxl6aI>yO6%})*G%G8xk8Vr%Z`g- znYSH>AJ??Ujx=1w=u#vUf5Eu9R}RT)2~9zuBo)X&zcbgWhroR~dX@gvui`mJ6Byk( zS<5;N&ggTR6I!E5;3+*CWcJg%*R@Pe;upx*q7!H%WW3NNcH-ALM=1nQHz(S^u!P%8 zGz0jl@6eH=nUZiSB6b-A%?5)9;s5|Z07*naRD|%m@f03OxIn+4Om5P^J!;^_1`#I8 z7@P(|cu|Qo;}~YY&N9TQ)2$7heyi7|^;unJl{67`UJkw>L8 z9u@2muZtzrnlaAMAL0+=L;OX=S?oX5BKV#b$KStu7YqJx-@T0mY!>2La8(PZytQuHq&D#Nl6qYHS_&*! zu$cc&y7|XH{?YvJ|Nd_nk67IQ)1Us-{PfdLAtQKS>)%@!hj~;e*5jWXfyDPaRgp5+<*t47(Xzs zKnHq1|NL|C3IC*fR}Hk?J_t{4(!ivFMQflNWqU(wiFB#m+{K(ma=iVmg?QOI^ik=h z*a4!`v6>J1C3d8-{mUV{L=Ky`8%xb|9htMIMbU#Jjs5x%IBykp6fILJRCC0gx?<4C zGT|#_V}&C(T>!)cEDYar2w51AQU>H1Y^fF9pQ8=m0+qom;iFCQXE~WEPko$RbU&Sp|&*ZV{-nJc_W-@TY$BN>OM7u^_AV z!{ZX_if_g!z_&gyBE-%Tg(KNF+D~aifaqYWGA3@aGf4jWw%)-#UYBv>Gz=oxz+zFf z+NHz`@^M6)8=B&wVT>|im`Q#hpEXN*lx9#tqkRTS!gWt6GnxjG+{v^eVNP|d*Y?_B zvo3$_<6*OWK+9G8#rUc3p@d;a{eSb>rox)z)u!9+N8**D%!!LlSe92hjU)2Kb0Bos zU8taiC)!=(?dLD0w&J(+>ipk(*mXl~=D6?HlIQ?0fva=TRSUsDRRL-4)WA_tk-3!{BwetWeKZOSX|vl06;N*7b!D`S2Ft|a zSw57dSRh*SMDlW|4NnvgVw6~Qc!eT2OY2is+&K2f6mwD97`|a& zo6q?t|8Z*|Cy0w=$bmYh5oSyc)LkAA_8QdN2`LA7kh;03%W+Xj4=pVp_n5A72J58l zI7RGMy1_)(VP)u&lLnR(9i;_5_+&Q-va(Z%ogS3sok3~%S_v3!f!#9bBHvl_GJvw_dI^v(>IrtrlD6ChKe)2!Ozhqxfo}GI{g*8^2*ecDEvUj z5E9Qs!d80D3%p3c+x6N3ApJgJ*w&)ow!XLUQXixKQ6Hs#s$B!CnrBa>z;5p!WTR%1 zetYjYX+aTyuYMX&Dmb23oB~#2a?h|K=_foA19M0|DV!1w< zm(OJV2pd-@Q+Rra;g~g!H`4}+Fp9_vqgU#l7;m-fE}Cq=ik+HTOj9 zI>d>LhFgknd^prxu5W`Voo}P8$RM(;FV3&ZYPzQH-Egg75M2>XEUL*sTgLcelW+qM zK4_cCPn#8n3L(SNPy9%pxf#=0tN0A=_YO#XXFC|yQ0lm+Jx3zRkxqv-1eBy8U+pKx zhz@lS0#mLf053!^zR@n&m4(q!JC@Xm>I>Mat|%jjRD?vLP!4L2(QjH;1q~Cs(Peo1 zow74ujaY?21|tLn+iB$GFKLAgO6!USl2=Sh$`;2T2E$1uNEf=40Y2n&955}H2gdC> z^J}g{wve&Ns(LUtnUO*=Xq( z(ejk-O!0VOpjEc$hhW2UD5GBv7+WJVChMnb%N(Ba=UA z;DKsjAqJ8AlJh%f_Cj$&+6))u=<+_?P%SGm z)$uW|JGuL*m*wkYFD9lbRmHME&EoXxYJLno3?F)UpuSk(#<0P{J7MrxcqiZH=0+@V z1IvZ={2m4AYdQwPy8x~-en2lY5VuacL9|V{s42Ec*9ai1FXYFVP%r$mJLGSF`&$@? zkoV7j{&VOB+`3&OYaNFL;$u1hPJWCD9B0LmTo^>y$$_y0<3k#q^qF1JwSftI@=+f+ zj52)x1HGd~_``q&%{On}1U+b*=8BGHp?-M#(*_J^v(qDvyiyaTTpw@64ie&|(GE-# zKG6|n(T2FFbJ_y3K^q?67oONH0#x2~Yl{f$vfSo@?x1tb`iNVftiz zbXyCaJ6f!Nu5SXo(n9@*&qp$Ttjb`naY%2n^F5J0y*2(pMuqqKAP3jh#<7lgVi8Mg zq8e-B?Oh^_hp^&8B34HFcEDF+52;Nc=ZzecVvSaOeAbHf-sdxY82&`NTqKkDMuty^ zTFsX1TUzwpkPO>8#_EZVvEoRpSb!3HE&Iu+sERWGB_S3M;8d`Xn6&s|iwc-;^s`o% zf)PhoJ2D_W-`Qw>(p&bgWEk1vgW3?d#8G4)s~^kk9jxR162d_>v9H2MmcV^jLRa=> zB|f}#cpolOAYaxY^BoIB)MJP(pT(hAC?X74zWzG|@|IZEoL(T1@hx$%Am&kXskMX# z9>IYsGqv<7CC?xP>}EHLJY73)*3~E0WE5G|cR?5zu$ORgoLoEuU?fqSUFH%_bcO-H zMaW=?q*l7Xb8JLV3Etr&uL;|~OvbC?T}J2IPDihBv)zX|30Lv8Tpj2RRlWzKTPQqhMJ9|m^DW*8xrKX!?P3Ps00MME|QkBSe{1E+%BSqIC- z?oX&Y)816jBwvrS=Oz=gP6n8{0f%3;)5L3p)G%MujL!5Gb zpNARODL-O2Hu9SvEU>dcojW`9+OOQ1b{Vi^fGz1PdXtYGAv-&KEd7a&KYGzF#GCHc z79Zz+8pkiONYA3WcLhK*@Q?<9icpJ^4f=ML(ecZC@L9n3u~jVkv-^Qv5bUh@>tFvG zarnnrf^mR_5FD_f8OkE`Istm)LoM5dnO3$MIFKUcCw(QZ73! zs0%LQ?CQWMfv#DQ;244R^)=BD(Q%)eSJe< z?@0YzKa}}~$hpQV*%6wL2WQRO{gY-_9}4H27_yf%p9Ev^l(9+6#<7?K7xCLSc#3lt zfW&{tFpLDkf^IoaW1?AA;e0syKn9U_pU<1OA7#j4cZ&=?pO3WDjqz7+yFcOhD!uLg zqdsc>YFEbr~<T6=4A39Ca@3+|=9}yJ}URu}GxbvBJE)PCTC!kUna@Rd#;hJ}Gl|8GUgoXcaV0 zf<_XIumB(Gj0t=+nf?>&uk!0sEm^kpGJcS$c5W~=jIhv1>aa7^wd>iGK8Y^5pjtuwiivzba;9zDkwv@o#CSI6?gZ2ACA zEC>c!AT>0AJxE(nCXL*|XlW=yF`28%TLtL{UHcs&81f{XY67Z!QMYSB}|g8u>|4QKJdsGT)d!@h-Zr;}P5X(7bVn(wqywHbzF^Khi7Pn!YXJK+Qu_h?m@@+^u{iX99=Pl zG8P!zy2O_D!UL3HmbyS!jM*xF%aQ_Q3kd?)rgV9y(4>I}s)2{P&6I%~d13Wz0 zEo#v*=0%Oc`RtnX=MBk$YaYnsnWkjOfjtLzKmqPpHtP@9FT56UBuIHIG@zHRNKZh; zBOPG5Vil@Pc9qninPdfSgRbYR)-m`jUbE=_;>Gh=)Mk;KMQ;|fsi$LoV}gb6!vhw} z_v1}}7Rvc11Pk?iLxXQauwd?T*`)wY7Sp+Qc5+c2_Oqa^}ILNiz&1 z2MhNcFNGn5W2^8v9ttA>#s_4@2vFxUE&HbDIJoAaPJ<4H2#g#UU@(Z_VhgD>)75W%5$(}Z`764WaO2x#*Clb?V7DdI;*S_H&!@m_|GUs6W$ zk_S3Ac90jt21X5bv5*e$rpYm47;fAaC=Wbz%I*~NN&A7O+lP&1wO*{Z$)7YZY2a%# z5R-~B%GcPF?xNXawv0BH7CJa0aa{(Hovricr4pDOw4tK;B!kG2&LyDl?jP!iEd4UZ zAo51v;aFc){B)_=(+9)1wNnJ+E615I4t58hz+yG`F~hZN!hyM%<hAHFor>;2Q_%}4F3lX2&e`A-iweBAuyleOlL&o`UDyxeU5_-s9l z6>&_E7^Q5EM{4KpU|#UTHb#*Qx@6%>59lkN5(Lh9fq-5}fG_=8*kU)13?Vz48n1Os z*-9LhkP8!|g0;Y*9)|Hm9EY| z{!)2;5m5-PRc=Q6;K*2zGX3lBrt@{Vzn@(5^fV7%G&7P6h`Ox(Q9YKyGIq|9hqh#= z%#PV7DaTIclIVfizi59T=?YwKBYZ_#Qb^=6B&FaIH^WIPiPD}U4d5(N0g})qw&Q$| zBV#NZ2S$sPg+zZTL8a#(Ba3=e{;8uuFXW|^Ag7!DJ;sa*A7$Up&7)dfuH_;P7jfP2 z6B1yjw9wgf<2^pVm4!g%7#Gud4j`Uw!YLK{JqF>ld-k9;QiFMKXMl_g2>kZ>&(dq9 z014MCyoDxXiqdZwa(ZaW2xbp914!}r4Gq)}rx!0+GDu(G%7`7q_h14b%1w(ysiC*cE^=MyI zYeAcjZ~G(J7)3CExPAD|fAD>A)-(%Zc9hNA!s+W=YL&^GmT`oLk>taJ9k{h~dHB%A zxI@|aPOI@R3Pan*35*OF8!&)iWWYG!qpHC31-&6p7nL!@Cogh)XNGrrVC+C|?6|=N13YW))-^KFC|Iv(q}zPIr~ z$LH*8N5#H?2igwuQSsN>9df2~r}uR1)LY?fa(s^ZxXj2=nBFC9jUvHQZB*#72xm2S zHMfZ_vvq5B4i`mCI*XWZrM85rUu5X9v*g)+P`Eo3Sh}Hns^^KG#`VPWN z?GE|r*+%oH7aBjcV+38m7Gsu%I0aQUi@(84;fsWDAmjo9QCEH(x=PHX*(008Z|%;QX!+9T?u%jxdVB0ID_l7yY%5h{1p+Bsfw`@Y-@yg zl|0Mog^9E16J*lB9cf@Ph}@B)r($kf1NlaPe$_`o`4Cqo8IQl!q5w!Ngv@t2`t$z5 zH{n`YEwlYvI%L+5=a~6OudfcT&dGys8*j_#aEGD5AHmB7oYXmC7Oq)Dw_${Q7$#V} z=3?QUg>Y~%YMh_1#ez2r;4EmfV9#ZP2zki^J^Z}#BifV)OI;a0E-DwGe+U3)aVg$jE(Qd6@{vqkzKcVYgE0i72MhifCj7k(;K+&&?2rk4kg z^W4E4vYu@aL4J${7@;sipjQkb7@XLRgW&;V1Lear`0VT;KYAmKQDaMZVUW;~S)cd! zLMCJ*?~^A_v);-vTw7b4QP0~lXhHMcySHJyfF`nIz<@4%Av0mh#n=J=&_qA*ih+y^ z-r*4(WT8&bDLmRJf}TnDP8j&j_L2I6my2{~9ZvqFfk^{H4dnPagkJRPiC#x8`{Xs1 z=#jdyD`HK@MQt`ZHcGF(@9Kl;yITrt7saX;?OCjeT_QS4>qI+4_$J4;zK4M^WKD(z zb!d$-&@D&q#A^_xlz>xG;!!>h$o1T1IkF7Q5oY9` zMk09QI4_RLqWqPdG?iD+3>Z_sLMy@0bi1Jjs3}@+K7TMr`HBU~NX;T#r$Qx5xyVUV z$kc2fiT|kYDO9Tq>jYs#)>hCq@TkR|nE!eWT;2kN5mteM8Ewd2i2jyga{!iU+IQN$ z`0#fjBj(tC#ijDL!YIHz0Vs_jWw)7jXq}#D&eF4a?noQxgbZ?Jh{?#U-I1ZkG*f(D zN+EUV3VTEF6o2p<7^}@$rth_WRk+JHxAy4}kyZu}!p5DIqCncrb1@c>Kp}8a`O%3w z(lcxb5Wkg`C!RlRgz{WD-upV5Q)tq_eQIDbh}@_4r?MBMf!Qe}#^QMTDrqqwU$r=l z0$ezL=zj}l5%gd^)iV_`+5vYO{G>2+#tN7SB0ai-mA5!oYAWl0(Dgn!e-U5Kd#ju@=SidleiN#jXr5 zwEIVOmk*j@2Ezvz1`!-GU_c?AHUb^$4IRT9w9zp-fVSI8WS(x51||*MPy@^@Ody_X zu1>C-d%Enb#mm&KT?^V3wyy7M$k?%?-4hr@He~Q%`Q}8sEsoCAr)4nNlW~Ea6st;$ z4HX(Mf^LwM;XDi?8pj1RJd6dwZ~W8?hOfr`Rj|Oxiy3z{3?dxsqjBy`JKAK#`6B*5 z9B|Z^#mNk+S!m1NY|(aDJ(l8<)r zjHq;*S?eRk%CcA%kaPk!gVX&UG~gdxd*R>1WZ`B%3>!{TziKj?m`IVwABy=N{N3p-l{NoW(-4^Me44 zG0aiCaB!mMcrLyLNE~<=V}%1Abnx%PbrPxco`^X@v^?Dte{J~>DbQ2e!(nWet*ceq zY`*)Fi6^tJ5eD~d$55<RuYM7r6X#cY1K;@1oJP$kadKMU3@U}G%c0-r@|7SFv~0fRwpfVd7we z`8EZH2$wbF&%Bx^%CbR(h~Jhu0*uT6?64iE({xMqPeM~ocPAYQ|%C8$Ha3T zBlS+<109=nq#Yvc3T2_@Sbh7HZ;U8k%!k2~*wP%hTrQ8hSzgShFdjVQ=#=b_@xz?k zcStejgorMJZqjCV2s}W7k6$0@h%aJm`hLfn47AVnA@vtK>52NA*IgACA0qfrtc;!g4V(m+(X3h!#$^@&ewubr@>AGW<< zkY3|Hj&Lh?5iJZLMaEVs5l5cBHXetB6PI_Q0UFXp%_G_u&*yZZXk{55GItS;A#N}J z)ft2B>*W?U@)p+ykxj6ScNF0&TiI5)D*Udp8{4pg=z_@~G!4m^RHEM2Z|OuxhV&BjR`|^b_->V2LKg@a#+d z{0Lh^dXYL|3Qrn%5E_^aA`hY(CMIsC0R~zI=KN8Y!*0eIk$JE2R1a_moXM^8#XsrT ziGvfpHOfOAxilFq>p_l-1(78!Nbq4sX0CI+jVV(}4D25IDW?nHjPu*fjUMts0}7W( zw@4`&lp6nRR-LwVG|9H!PTiEx+qY{vKVwP8h$twu zLWzCnMH(+KIo`+WVi%?J(9MFicS{gv;hG%?HbP)HAbt^@uC(z`{J@dEpv~gAFTT+A%xuyfBDN_Vz&cE3F7R?z+l6IKSlxb zSNmhMNym+q53k4zZ7#y*AA<;GaS?WYd~^=4T%-|4ej6{o9OO||)Y-9U!oxCogo}{^ zBgTr3KQm4EL;jjBVd{jdr7I%|h72@)<3pug8*jF2YG-S*ZP(;!GIwsWZP%_Q+qP}n z*3Nd5re;phd(QcE{{z=r>$-n@aUq!q&v^|{y2_K_Kl<#v%E#-{VAoZi(S0yqJNyr+ za?n6!6-ioG2TH?ru5*SLGw(dLrj>S71@>2eac2NI# z`z9k-Jw`XMMH4bMrIq#S$=8#Kyht{n4m}5uQ6LYbJbbr_#@$gQp2eRFV0Y#cVBe31 zpN@bNa~D6u1*}9Z)uf*w8XoqQ6IUA896o$`8O#iiVg;_~{g` z&OAX)+ogPc%>~X-MNL9-5Ncx5fCz6)={ptgZ_I_)f#mOCI%R{UQvNJNmI*tYcBIm> zaaN(Z<*5v;T=98ID}dv|=P6C2jF8Eke3b3{x|eCqJ#mI~Ax;@`LZyR?m=F{y`0*~3 zjzl~M6NIVj1Cy}2HX;1|vQNO_@gljQi zE3YnyqIK};jTZRDbR!&lX~DTxA96scTUqvbhkh=PIgXs+%$4W8FXkv1(?gHYF!-)kAHKKt7o3 zz31zRxi~<_v1_$i@IcFauMe0l5OQ?0Gy=T++5Ja?{LeHT-tgfNwpNM5Fl-aSG+36Y zF_!ogc84+iEZxGiC2L8UfY8*TPqctvaB;ms63s>wT{@dSl^K*V9rJKS*~&k`ggmYXVzFCFMwv zfXtXhE`ReglMLY^>c%#a=>cC`adW|8VpqD(J+n+lMA>c2i4)AMab z*b~^c$*gayUx7#cmB=v;=@;cwviOsSD2e~JZ32$>Dt}0CmRTD;wPqPk>Jg2vk8IG$ z2z(zB;@B{za%&o6D~&)q`yo;6!U5?Y;_7-X+ipZT&mU=*+#LB*6bNhixeGIjMq)?) zSrtt;7?MRBWE00$PikJJ)P{I6gYkSg%X?kj>^{Eg!Ci3;8A-rZQ2K2y(kadwHl&pB z+4i$WheBb|VKQd1itt#7u-#E_cpH8+MIekP6GZ(Dz1l$r?)uWdmR}stuFXrnpFNR!y-f%FZZF7Xq5(YNHOdNIp+Z-Gw3G$*rE?lDNLt9B7y!+0# z_eAVXInE!U4O2q6Q>TVYF~opjdauc;Z^hy z`MC-}0NQt9R$1}VfIFn}DGiquN;au$1Lz8z4VmvUI}l0y1J2cZ?!M#nqGBh!d~Q$& zvza{O4|Li5>CJO@_7NYe)XJGew#^WKV({`*g7z)x|zo4brrqWh+-Q&jr~W#k`q3oYhn2noVgmX zsWvmqSKH$3+SLEkd;PDL1f6X{Q}|&}?s+SpPs_V&J_IJ}oW@9D${5b)V|DZ2M(}I^ ziw)gc2nh#71rwyjnL)l(4aYzK37_`gx#IHwGuwIG8W%oIdj;T|gI7>CWg9mO_Yp`k z+wu6h^s}TJzMc#c28al6xm=S$VSU>j9TQj7IBCsFv`L7d?N-*pZRwu^jU>Qvo{S1 z!jL?$3Kt%It_I4F^^OCT8`dq=Y|i%2-$x&<7%N9OsAbx_J|?h5lTeA1j~W(d+Z$k| zM}~Jgu%a2gR*Y~aJ}QRE3LJj{8Qee5cynV#cE($L2MX0?)c67G9wPBXBZL?%FB%!L zdrSi6qoQy>(Q}YA`NA)9Ws_!iU~2%q!wEqiNjW|t8^z8KoNfx6#u|oj=-BrT4|;Q{ z)-ThWaT|1Mh+mkv3A`X~y6j4zdf`!7b5cmmSbR3JHnTrASKwha%{2Nu4owq>BqKUU z{yKjsfnG6l+eQD;%#XTFl~a5<{UZ3Q;<2SEBe4^)v`b%msGQ@tABW@Ux3hmZUnmW# zo&@yAu>m_$86Vx>+sR}h23_)q*G}v*U4|iZ#2ImUHh1vw0r`iIgVcPTJ{z7I;110r zGwM@+gYe%&E@kOha2LR-B7OWqo`fz;%TI8jvg@`cB51vH(KHtR7L6!x$|28E&zzP0(Ajn{iz9JXrwpmLCr^O1q;!DXj7Y1ORk zwU90}GwC5GLO&d=33p&eq4dko?p^t3Y(X-Cdjc-KLg@=K)7>>??ip5!J_(5c@u#8-Y_F@wf8R*K7cS%Zi@ zzL4C95cON^Y1Fx#!6!Y&$7%I9f)ewt3x-oqj*v#a@j@(K`Eg=sC=t7Awgjp*?|;=* z)A!d`Tp-B810r<#-KCz&#!X8R%An6%7qW!-jJ>RxroZ^k5!^=bJvzsKw^0}Wn-OLB z9bE_43w}^ool=CJw}Bgi97RoU#ec+06IDXtOpVYrL)~umhWB*h?k4CK7LImwqVuHo zz#7Tdh9F|4NH;yleCWY`=Jq1&Eic2E9otv3)d*Xp2Bi8-j|C;OFfz%Hd2wr=#0vSj zH$wb3ZtyCI*vLGK5QB`t_Go=1E>{fsFu&Eyy|8P#Fh`;D{BA}God%#wKg5cqu$U^N z9R@slb3Lj!z8}K+rPWNyR(VRYN=3pZ(tsebH@%>aUmQ`0@6J}znmrMYl^wR*SaFS6 z#gyOTq6zmh`9&~9!*AbVS=JPT5q8n~S;dJC0^B3O&g%iUTwP*`(cADu50ZQ#Hp1Nz zMmgbDef{-p(1o(G&iXx7*gliyy-J;5_3yVra-%2kOEas(oDz4}Qw9f@)6`Rtx6|Ik z^wS*Wv;Je?#H<4R1cd!!8pr4Q>gG`~kC@!2H5f0gv4NDEzCO3V^_+g9@G z89%BzhQ@U4;wIH{_u9p25?Y>OpDo`DqJPlRS)Nu!Fi2V+WV0 z$2A8NA%j*>-HNi~l75_&B|aRSnlT%LZ^5dRY+;r)4OvPZ8C`QOpv`9%#wf|-DJMRk z)c5TkxDu@E@6hul4MPU2<;Ujc%UP)*nnIFKxt_HvaW_gW)#pyN3F5RYL%)?My7f2VH@*|nhj-j4=iz4dhDu5rKaZB}_p?b= z#teUcK^wG3#3<};%tScMFjuFNxJdAK`;22AN!Bn2(;wR3FiEt~ZO?=J_2lP5o!%CR zL&pFEt*T(*83h((DekEF%vTgSXnk#ui>LC(=Le2#{hGLC;YB-4x2URuHUSrIHHVPo zUeW<(v>TLuKoDjS10KS!cK)Ak7vUJCnZj_X=%m7&wT8WRJKf%Rqb|$Rn76j^0Xd{q ziis{B;6EfjC?CrHZ|axakYUcAnE37KBp#`I899zu&^#i{1)$l%%E`=d^+iX%K31w_ zVXHY&&8)z<_fq}>P+Q+#U+o!wPWjl}xUt_i4qW>Q3ea8ce&Vj3fyY?t{|jP*wKif+ z=nz=}1`R4zD$M3={kAyf!hPdnOsc0H#W3eI2u7t86FcFt%0Rsb%l7$sMQoFAOA?sU z^E@mOF;Zlq80SW$r-~^v<7Fh_9(nO<#wrI-+*750jMN1RXsKH{+n2lE%)Es?Vs3wGbEm*SYe>tUV>H( zsn;pXGqDD)i`K;Y}cq?nUMFLw4*jI*Z#r z{^@WcC2_thE~%~vYH&mh@s#utWMo&pg^3)z*_p}HL@*bxVf2#BVHmbLKr&uVM~z@t z8W9*F{M8;>?weW1FjWodL?zK;zVo`_rDfp1aq|Z!cYQ~E$u<53ej3U9r8@3A`9Na> zniT@`VAxLXpBQ)77=%*q{Wtu(QlW(Cx%YXKj(YYxT~>eZ;`}-PQ{WzCQv3WHK>pjF zmy6C*a-~l_B=_v7dpmKb>!T2oO_9pyajS8Vp*+}EPZ>MugD*TwxW$HphiM)0I4vy9a2!AKu@WEF3-KsY2hYIgws1nEo&SJ(uyA63<0mdv3M9_Zm0iWJE1Z%S4~lx9$zY**y+r_97st+>+k!Q_$3#UHc~j0}rp zqhXX%`@a3H_tejQ=vnfVF7yY8erR$_b3s;_E`J}1?2k!4NwyNAhH&9-cJ4-mfZ%5; zE4zDeP_Y%4yZfagwU85PQcLivGcnmQ{V@%c(`OF1@e_gzCM61o8=w_OE%0mRzK{|I zWy}GZLJV5{;W1CNfc};QPIGGcZtKt~CIy4FBB2YUkg)ME@ohZA$8uneY zlTkL8N4aTmPn1+gWaU}P<3)F+UG){M*mBs2*@KN}$Sx{xc(XWenk-0gDZ>|6u}Q)- zy=Jz66An|TDNI$;Pyw+JAyL~jYIpcu^!Vy8>J`HJ@++ls>q;i=22%rhae;2h=Y;sa;nZV#H@@YydM|8mP#`rHHRLKDT4;^ewC#5gI_M}g2Nlo8 zrcza;=#Kj7YPp zX+kIA#uAU9EDUX2pF#|MEp9Md)c$cLj>V)*WLS(iTO}k&79-+R<1yuMOkJHIOu*pV zw%>8?wR<(>bGmW6>oi|Ad^AEgnJ!?lVQ|Esvxgt@gN$Y1{6s-8jyxf|c(is;srFsr z7sC|&OSVnkg_y6@T*!3=e!JOV{}&ziT-AFzbwOr4@hLnukrcnse$Ia*rsoQ0T3`k& z--c}Up0G}Qw_4cK7xGMCW1}8s_Z(a;Iz3_{kCl-gw1%@IMsAL&Ol4H1O_3AWZX@bAn@JwhA)5pnq z4$cuYz-ctz2ZPB_C;$X&UxLU(3d@<jg5`ioM30Il!tX%|7qHn86c^i!+G0-Ks5;cF6@pVmGz99)95Fd0&NQp zCI%gVWi6CeV@5XZW1_XkE_C0ZNmqFmJhbTuB#&T z5+E?il163-gOY#7DVDg7-_GMsU`TAhr0^KUTgJ&5QrTRwt-ssOJW=m5(bhR}C1=#A zYD!Z<6iHbn5>lgPMxh2P+M6*gK^V{osdx?I#7NfoYG`~s$NoDqu&VMgF;_G$Nv(G; z*rV^HCusq@7zJ<=GexaTFSD<5etb_o? ze*|wET*04H+}Y-0b?To)yDD$$Cte9?KFZ`?5>E)>mv~`Ag0m#XD2Ro!6QoWuGvU;; zLgkKMpCD~Mp)f)4M7maI0URKeYo$b!LgPo6F=%ihQhEA*MZS@G5MdW}z7&O5O%Tp8 zhWtug6aVVhUnr!fw-xA&JAl9e=^y$Ju zN_^=z(%RN}C?e*4-g^m~&ns+wX9sj2kPm-SUk|+#hDJoV)+ezFkjT>}lnQ$-`NR+9 zpm|myC>t$i>+2_hq||KJ$M3omze9jfus>@Feq-Z!d|?+OAErTpeZ|xyPhmAcFAtW1 zoLLOC$C_y8b%ipEKBZ?glON$=ye7gB7E{yiJHI!<=oiy3w}q+;z&Py_zm|o=D}qxx z3C85e?R7W)>mdb8+U0qIw$6dg2keT@2Tw&UAbNHD$5|yD?$AOK>}g+4j^rk ziV)iL!4MQFh@nmwcvJY28r^3`)f4_K> zebij1s;#W)r~B5yL|K0{*xZ@q+*f4Ge^DWr1?qF2b`)*$Nmma?&Xr5u7)8t{=#ZKOICJEWPH%ny$~o@sq^HG#Y8M4tIY99kA;! zL_z}~OMttNH|snCW0J&6(}lA-HBz_4n5IfY9V>5Z>OVjC{e}Pbec9%_KF{=4Q8skH z(tXPzbK_j-te3k{h@3$O-xDz=($oD&S-JEK&rYo(xIgVvDkacg;_n2KFX2M9`47(q zLYzvY56}C83V86bph_|qO&X;8Lz8cv3*b#0jx}5Qe|k0!R~MZOd*C*-vqqtOj+jSd z#H{$!+_G&G8f^|Nbr@T~HdJN(1H{QA&=N~hu) zvFc|RT9vEXMdk7Ip63}e*6s+Z524_g<_QITRuaZh1{6ZUp~g_(>~u#X1J34#>K-rG7mp*|w)66th-F&HGiqjc{r~C9)K~L- z+6k-;&P{k0>QTOO2@Tw$2)%gTAIjzbVKfa>jxkO`t~r80A4GJ5mVomp`o?_d_4a7R zAR>*~TAVL75Qg6 zwSJUI;uqj8lCrU2&!UoM080J#hW1( zN_(P@?<4vm6HUPlfIDcN+wUX`fJ*4noGCbVZ+$@$E^XT<1DXV@F(%Dz)qWOq% zJTje%2YMp8F&!0*D)D*)1{E@15GdR>$m5*EWYzhwS*&P>7%FSngJsJ*d<^jW)vOcE z8Ef`@IKJPVgF8b5g;HSCEa--=6Q9>T)kNcrO;MJyjD@APsq=@ma2S8ZA`v%QkFi8A z^QQ4__A0B75deafz$m8A;dXB@JfJagAPmFjF}+j3ZSV!m|7ky@5u}kUNzTg{?^Slt?RPm@430r)=Wo^f04CYd z_`u7#$5w4H<~q#^*mZ;yPP_V*=>`VjIzujPC!> z05V#74ylRnN}?oe3mMne9}@bR`w_SL zh5ojU3dr>LAlYXBy@eC(mRo4HP0!3Q-}WTnvv^7NjCt<7r}efa(9@{`nW)E)_JD~u z5?}9`apHOW^>4!>wV65kY0H74z`)}q?nHIx4`GgAQf5yoOWA==0SDf{271LAfnyJx zoT8mqW$W>~&27f{(gXuH{03f9XQcDW1%rJ)djS*W?cb6w9u+kfIW(E>}*d$0n_J0pY3&P_5RPa)jN40!qo%0J-4~{V${JInh(_I)C zYR61^H)O(tyn2b7_ALER1HWt&!`^z1MhnH_?!(7d;!5V1&YJiVI*6-nF<8e~vTb>9 zlCML_A0idmAbb@-{1$^s0RR~E`fVG5S&8%uG!La)0f?;T|257A9#B?|1>ZqPKuIH@ zka4pcS?2$=T(=C`gBgUa<6wF>Ci47!Zg#oxLKlqkJ8C|7n|4ghmxP3*DJ&(U1eNjD zj1oaWhSjHTFytvH0UkQS3M!b!se$r%)zBXm8o3#At5Y#AR&d8Egowm~xwc(9roO9$ z?}tbu4$W9mpuH~iH9DTcIIoWM#@DpQRPdFS06Re?y39%+y(v)+eNsr#Jaf?ucnd3! zK?l}jX6yu?7pv&Yf!b5(93@`;ot|%3{?9={{P4>0?N+!3w0&waUlbNYm-5YCorc1_ zi(?Nf^d;a5bv463wTe-VUZ&PxEZ&GgUXk2pU3Jq@5FOTMTkgwBN4x28We*0e4n?Z~ zO9cp&Z@Ky*h%@u+OtH|Bp0z*IxxYMyjD|Rk7eOT-!u>0mY5MvqEmzVPVPe4zX*Jl@ zLrCv==p1+@TrwE^1^O2!4xO=;LJ-S^Nw2WWK1pB<>?y9jD}6}9>@LUIBg)Ay>BuFm z5E&1XnCUl`NUl4~cO}vbv)M3 zb)~FnRPg>4YIjC)deg;4zlH0x;2+3hQ0@Y-mhdmvntW83p`O^kS;9!$d{Hsw_BoXq z6{S7RJB1{U4CEEdW_GAp=`Y@Gd8_c~+8TJaigY@7K6#DwSXS_|@It)3l&~9k#MI^0xBfsBa*}pxN))wejZ~mBOH|V`4waQGZ)=9Jm#} zA2-el$I)A~oVo}68$Sb3Le+!+@1(#_1R}!bFNRD9^My1eqCk3L*#4^Crc@L2yE?8X?Kgv z@gR07qpee%V0UL&MY6O4;i9u%obn^z$&|=6AkKXpeNlm*vu-^0MN&P&&gdxT# zmzL5_3%I3rc~_nc6w(2;cWwE;R0D;mekp0s4I!9h07Ssc()cml0D(D3CyLy-^?|t{ z=72%c5v-Tt7s%YhP?;N=d|Pezr*gh?69BxMDlzJVXlaR<&nJM^V}Yu-MJhP(18DW- zazx9o$Q9Tyn6KFviURby*l-}ElbgwQxbA^6j@ZHKk~fNPKc1AUk1CP<+bYR{zZ1`; z|ALF8gIIQtgmK0=pOC}XZc+9?*&QTc0Mz18;y@jx{ZHERX236En=*T^^BHl$4Tbyq z@{}QH zKGYK4T_SFK7x+3Qsflu1L^%IP+!05XN={Y-jlLySHp~(S^zG1BZHkmFe$ulL?d9cV zKT36nyFf@|Dd+i&8V!9}%wkyWy~cAw&u$gFjxoQI;?u79t@mX?`Uj>qu!>8u_g$na z+`$x5gQaTruCyw&xWHn)lodkYA`wICcRYZfj*xZ{m=os4l&3D|QI>*t1NX*riRt~P!+B*8F zwe~DEc3#UM=S(Zg@44zh%t3% z7}p+eeyuci9xStvy06WHKa+Gx<@I`$JQ~ZX@2dFWQiUISA?fP%l`zs{zu+o6`#jD1 zBSmQb<}h*A5Jod6k!AXR=cHtPwRpE$!3&c0rxNYNx7Grs0)t-+FU`T(ozBeoq(TZm zMm{IO_)%)t+WXx2o{gY7!u8p&?RT;sZ839JKC=N3-7&nuq8B^m4~+cJ>`~gIueV8L z8YoP4;hf`2?QX6ex%uZVxAH7#I{G@E{`1jSX4^;j{P7U$Xp}_o{Y)Hls?{J7Z zFHCQ`$4$B9{K&XM&Kp%6%d{bg;X_`yRT# z<=>Z4k+6J72{_lJYeBd0KKMii0Wo3!9rT0Y+Fri}<^+E!Pw>DXK+z+}@WwKb8xG5| zfb?+iv|kDHP=bc};f&i98u^hm!U%%`RXc3P))K+}y})JR+{-!V|C$=vQT6OYuIf5f zl2{|$ihrqy9MTrdhx?`4i;?50Bvu|1{1U(ke;Ge0O+ouX{^SH38dVZ~zR2xzn&}76 zV|wZiP(M}T6vYPfrF}_jYfy9$Su~OV(@^eU;)k>~WL!^;2hX`WYyycK+9juJy`1b# z8?;r25n1F)%V+lsiBI7lZ=xWh8-ZOxOyj8A{0j|7Pkn5u( za!}DQtW>huo+#wjR4F4rEHjV$I|ZraHTF^}Zv9_ejqrU^2NEe$TM zb;YP)EKQ`-c=eN4uxjoJ+vtMB{ea)tOuV#od@+z2(sYhDbvQT?V`hzuqNovg7sVzC z7k_}xU%V$ONP0mP+8sCjDnrZ?t9l5IC+%AA-$05mQ6P5DqRrJj^2_=Dut#3|D_RFz zHDO8TO%+|dC{mgu)@`s6W<(WV@;m&=x%zJeFjoEzI|{NPKZw0iwN(z-b{yLTh%1PN z(h!pJn@0j%puh@v6waQ&E~N$yw{vc&W-dnVEz&v=o8xgXV(kBzxQ0NQF5Hq(^Uf^B z{g}UhoELZ(OCav0UnI*cQ$^G1FP{-~qhCQ28j$-G^CNX+Fsk^SUUzaw+=4|`z|57L z_pdU+yWHk?v8`#J?lI{Oyf4~WrU|H|04s37Borl{=UreRG&5dw&*5;ZGrqwgB@3Qo z)-INN`ysI|n4??j71#k|uFq7F#m28@<%rf+cpQ+Tzh*UZ^^VpV?CYJ+MnCGR1_S}O zvfV627-Je=rst)*rj@hYro~&_xiD%sH?+L7W}B&VXs-lce4^YFf=F0J-#-s6$T3LD z*GyuelzpL-V}cp85<2*eZSxAwrX;n2aPL%10J*3xpV58_+s;jIW>NEVnro$Ij_a9KP=pY2d)k2(ubsa5$8- zNV@stkZi4m6Rwy?COZsDZvO|0E{pPn32?^kUs?*MP^Ok$A3E-$pdtkazq0{D?no^g zo!nm1xnrL5UF%<~I2AAvzK5M1B#k~O&kb9Xt<=e956x=$=?*!~W7%*{*W;QgHPH=H zm@j4KjHcJla-rwg)PrLb=-+W>ezP|7kd(BOBqF=bL)hZTVe)!|{6{E3QjIQ8a>yS6 z>Y)Lp&J_oV|EetmxLI{OMcYpCNkW~4G060e>6s8}uQ*_T$R0wu2PSvPZJMb-#gi*V z>%m$s`U-ChiMf@biw16ln=$h38935-dbEs0UbggwwW7|3!1d?~ zCgMctW+DyyHF>DzrNTKFR%ExJrSUT75lDDXx^G5JP!A@zp|!Wh>L^iZBV!4+`AdsR zi5JzFW3>iPN$=i90|iC5nO=~UUHJ=%_c@F+I^tvp7Q>*!$W zR4sZNhJb9J~_qQt@iJ2C!$kw7@O7wQSCBq@>Wg+ri z#3x&$?%Y$_=9bKP;YDtzJ^H;|c%Oy6Tqq=$1)5B5ED=TmH$w_+<9q$S*m?Z^(Ca$1 zY;$&2xL`I!XG;khSg>Dj#NI>H6yY@^nlI+AeW*8mS+iI2UsOs+{Bre^&n_iy4ZmTP z)85~HMmRzlG`q2GJyXABr7+2-d8SOqxJ)Qdrqfg+24qww8ff7)-f zj*tXso;b~78gU~w_wXHd+;-V(`SMdKm$!0i9IwgH+of790lc9+^M1;8xv{qQ5 zcu|56>9q1;vMdU^Ib|c5szeUB?jYK@s-X=#l?8Ug)L=a~TSquS@qeFZRmIStsPbY4 z*=Nw@V1t&JGHiD5#MTsK3<-x8?Z~)sN7IORuLT%Vg=_O!OO3;PP&Ju3p=Ck-bqFMn zmlEhjy>jYi9p5L%v-flsiwhOR1!>tvz&^V;o zcJgchGd`1|~`=sH(04zFey$SbiR+44*KI}S+SpeRDa>TvT>F_wxjE`>L zZaU{Y9-FnZ`76J`AHMyRF5gz2*v!>NhY$y8cjfB?KRv^=uX5p<4_1_FimfZzlNH9U zX^(7Kp11rrI642R)G-N8M{b#2G&&CWM)Ea_Jr%nW23{aJu8;di>sf+UlFo0nawZo> z@4wY;&Wm39&FQ&Uw6iiZ{m8c75u9gPr^FXW`#o}=FvEOu3VIJ^5M~WKg$;S&(Dyp{ z9ixCOTdK3hH*b?$T4Ch(BFxWYnI@?Fn6=;6wjb*#ch-|^qqE(hWS)%cB{^qYG9(m? zZm1nP+oCk>uFS_1y#+NcEb%q(s5jT?N-KA@C_{h*i5}w-C4B_LCrAAiSB&|5-h6_< z(ll>*sJLZ-8G0(3@$cf%00J2!t}%ILnyEsEHXOa64f0C0XyA9flnd%%n5SZded$^s z`T9vB*B&g8QUXz^F%CCUY1dwLxYcL9cs|b^FtDYFQt=V}=p+*@k3wdwhSNuA_+sHj zQV*dIYWmxD1ftl%oVsy&vWRQot*(nv1({ zW10ccDNK8FpBS%GPzZw$&K8)OU7}Bu?3m3Kb4qZI7U!s)@m1RePOv60T4C!KtyqV8 zt==WO;7TvgnJ>r?T&6V-%GXN;LCzsex|%X6heQnE+?!e zb=L@H@?-s!a5~khtFq{y=XYIlZnA;+p~Z4{LBT|ipoteNhqr5!pK0_6)`kQXL2i2@ zO3Y$(D7hY0;y$KCN#CZ!wx!+9J04--QbEgay*!RmxWG@tsl*TI@%kK1DCO1dT^g1X zKQ7#6^J=T<8pKvOocZ>PN2^2Gc1;5#e5oI$Y}rPkY_$i6_&B{@MpWk?Q3{R+giV2* z2wMajU()zEuJ1-3GMZISss@RZM={?%f9oGA=;0?95H=DFmJLJY%v9rnz`t*+y(2QA z+CGD2pH6HH#*RBU_UNCCxD9|&6H0sO;K@G@J}MUB=rl(0 zx8N}VkS-T!Jf_UYsMSDr=0uO(b2Z3wrz36jX(c@N^uX(-=k}mh-zZSCGWjp;VnCiWs9pc_ z4SZf7|4BP8tOJ_6Ii@x1*XTau4RP82iFn)ZY)gZRyi1>!?|;-(cUma*I+yhR8%-Cv z&PwlTt*orPysz-}%{7Ff!2XtiL;tJ667~`&UX%>OqmGq>0x~ba)NHI>n6YgxR1Ah1 zw>PCmZ(+5;97ilU@Lc>~5wGa@o}s%E!}x0HiP^TlVzhm-6f^n|3zM*Hn@$|({HSxt zzUom%cTF+lc8IkM5a&}Yk^s`M-%I_UwoQ{2*+cS_ydqkXFXi^u?s!kW*3lA^oi zMTO;JqZBvw+lx4PB^y=WG(z4Z*&T{Q1mGPD%{*l*MQtHF42z-^>oBjumz& z6u5Jb<@=YsM`Cia;QKrU=!nfq2wSyT-R(w=+GrS~hB^Y}D}0Vt*e2=vf485h3GMKei=cO7ILwo%mgr_uBaA8RN`H#WOtmv*%Qu3r=y3 zPpoMj`KBaOj)oT`lOOKOj$q!k@h|=jKb`gp>TX5=jf;_SWvB zy6En;eg_U^UF$deDjzqRa z2`9`vu_*3$6OW_e5Lbjq4sYy0iZ|E^d*-Ay<$6*T_hUGR@>m2gX4=vLTFe->a2q=d z7{U2>EYxkF$gAwA!>70>nlIWZpIj&gwV!sP!doLrk>qrbSTG$gnAU|0)rFk!&R0fH zZ!QR#9ZvaFPNpROi=U%1ftl0vrYaurvT==&IK59!ZgEo2{^_|N&sy5{B|5apTFe|`cQ+hA|;A>HR5Hs`SSEuz8M?8hq*umCBxm*s8yC{%R<{B^`D^-k9gz87QtDQbU|Wf5)6tSwmnPSFPjs+6x|yw6HDZe z4AVVm+N*p?Z=!+j^4&(M3!1rrC)f#(ucw5@}CfBypjP5z24zbrRNJ4O?D*Ula$29Nx2n& z)g+VzEPZr5!Sg?Vv|@w3w+BbY-9ZoxV2Yq%FR;3(kO(^?eU@8FNWAHHQOs@-NF$u! zk6<2G>KuddedsH1&fEHeeYj@n5KZ01-hwtafc$846%S{}7_=iD1JtEe!U?4P|( zhD94HyahP5eO4Yfhlh>lTK$bvA#J)VMmIYmD|dl8)GwMX`t{zN%N2##-ioi$>_azt zS7zM^#xG6`{5eK1`Zn6ELHA0OdZ*QO+MVUD7ZV8Ny zlQZbyS@)+B;Y z^ftY7Z{(j#l1X$v>T5KpbXgwn_6g7K3@j@zniZ-^5-1FgYHp#s%K1;<oONp~)ViQ1v{M5BuqRzMMMXwTlyG(>_g)IuqE!9Ttz21_O+0xYgT++g= ztEq=MYk3(re(Jd)Ysb_Ro6a}~kAH^z-^;B@;aM1hrcdc98 z9VCHA0!S4GmI6sO$q&F4L5T{4AHiwq?T-)4hwTZ`mVy$3M{F!ceP=C*pP9hkAIA$z zm&?rD83W^f^TK*Xr@hSbPbVx*ZC@6da86*@M5? z2>(Asonu&K;rq5Tch=7KO!j1Jvdzgg*)_SzuF2MJ=bCD=C)<;4W2d*@U+?#ItS{?X z_jBvI&SoWg623V>YK$W>@_^#;quXTN))-}Z-Firm z=KNc&`TpoKx1*^H%0j}stbLDVDx&E*vY{-@PJl_9)8zi8jMi;-u2_cmnTY1)&-I^f zrGLni9Zju;;`{;`D8>wK1v=91rEiv%t~Yq4lUEqV1S5PRxS8L#FtVCMBa70#E1KM- z^$!1BnhZzLRpKlJ&pZ76Vd0WSDbL6~PtxsY5)P0Xi9+rwXT7@}y&+0hlZl}+Ffv~1 z`-PgCWt>@*f-W-7(MHy-OPctP_o7}v1%px)I5*B`;?ipG2%!7NjvRv6dSwVpe#j6P_O5`#%$&}$M zto~G@XvaFz%Rn7deM`AM5{F+qtW#S#PY9Hxi6(4F9XOWqRZxl{A*fufIGoVza`1oZ zqHNW24img|~NA6Qe z=jHUjf$bXvLO+kl;s(yg23TD)pmsU1ZEIV zh7M+YjWRp&%+tn|O+E?gZq=2JcA`$-%tR4BH_nF1*WFmnHM1+I)O;osx#wv-mmyC% zwIgn@`U6zgI9cb?nzv9fs!7t`t?ruhC4#WOD3V>-Mo?je*ZDDrOepy(s^ss{ip(_v zp!a?27oSdQXVS(>#3a%7ldTtBnu254j@%78#6vWxfMiP%xnMurJ>qbT=3p^)g4LC7 zRB9xBGt-aGY&Z^pl*BqlmHNJ8NCi6_*ROe`H-gnF{kw8N=fWT`L^bqQ10<6E&EX-bj~zuUb&f3>ZQPThfapB-*{VGRIlJ{;v$&G% zn5Usp?(!v*v@# zA(6v_Hd*}jzprmuxO4GtBax@0gIA4QLzJQ}{;n3AxMGUO?{4caZ>kYH@|r!+CtZO8 zn%NUjJAfRC-bP5Lyv9V>-oqG z-Ms%6MJYa(43~?nr3WyY=`@_Z8FS-oQxpEN3**+3ee3L119&?zUKHSwOD8>as8|ox z+VcCTPW&7B?ILe~hINrNSNFRwF|ZcV)2;sj>!%<$jLOv{?$uQQC66Kw!#93~-ihQ| zZwY?=OF>M**fhW2@@E!$l1KxE%!3LJ?oOainwl+!AUQEVP8hLC%X)N3jvoW&-+A@Z zG%D*8X5CD70oQ=pU%m91u9K|hlb*&-%OIOm6?v11sswBCIN#n zUUqlg<4oZw6MLyM#vr9rA?5JQR0TqtxMuhKHj9*NgFO03qb@LH*hv#4zkuNue(5=x z6`O~i87p+95-|FaN2X$-7a^suv@&-Qi_yg^?8y@EM`a`v|MP)Iw6oZqUg911H`xsi zE&c{bRMh-D$1TaJXtZ4!j6A4G|8L@$-EYacP?Ivx0_$mKRO*IR=%oGGZGj}u@R8r< z_)o^2UktK7fU4Ig_FmmscfL}ud7}5xhO3b{iFiB;{2`OPHnReIyXNy~y_9O5+v^ek zbZ*gG68LcWQEyO7ro1f<2Qg6Fnsx1{izoehA}qQqsgm)-bfwEX5qC{?{2U7-X^X(3 z)njivQBX}>3G(o0aOjierEmZAsdE8OqehkqSK&a&CPdcQ6b}V_Dbw`L0kfwiNDMXv zRvIG)z3b&VS|F-ZVG4tanS(9GGVD&f0mXRXD8czyB+ z*^42J9rn1=(u;_q7=ZvCgW`DRh(>4cE!DF49lSlX8#}V%_#O4xxT0tmx&q{tTb%zS z=MMb3k41Ty=tL;{a?kpWdn{)3$TfxVV zVAwrfT38N}rRs=+RQ5R6&)YO0Et^3nOTkR_`81C0gaUK%!Lqjg^O}W-%OeQuRti${ zY&TnVy}3+#uB{{(3bRd1zY#b8`5$7v@U|y4_OYL&+&8Ob5mVfq=e_ zO3fqkk3OgiT;>c9#))@q#p3AG50OzoA{7C#e zAP6w##~TC;3MyvhS1gM{gZzCxJ`{2Xe~3S9jbrystcsSWwGZl%#Am8+oTTt`Q<+n}3*W+fwq(6P>**XT!=Fr}9FGHkCJ~23YUvmVJ$JS~ zogeJ)w_Yw=SVFDZhndRQx(pgyUts0Lg3$vKEKnF!RnYRUAT}^HbUvpnWj8S zQV=OxB%h#JOboD_Y--ZpLhcZjG@3q+pMN!Uh$tEV!w?}R9SFtshFw}9YZvtCLCI`7 zO|KBkHFqKkUxIbwm&`k_-29|oNX8bNbelCSa*=9r``e;-Bh^E{M&&#nKps1c*?zTa z>)AmD!4OG@!w_Xx0*vHch9UH}K~6vZ{&Xh$RyUX(V{%L!L%GT|IoJu%3+JtOVGMI< z*v&HkWNkD{4x$c+Y98@vZdz&A%6biSV#)dp#^+CPwoq@=hr=OAuEA@Ll#RM^n|#ME zV)Icsa`C2smEgiz^f1VqJ7}vGI zus&WAql8qK{S>_zp1>~&sJSW7#4eYZE|6oc0VXbHZf;f6nuRlp12k|Dr(ZUgK3D3qbQ|ax4W%SI1 zMejs7k#1X3iEt~m+X`x+e3>gy``jW=X43Y#+F~ZlGfdto6Kog*LL#1ezk+yb&*Bh+ zm!Z*t1ekGsh=?(ce~)EEmF&96wXvSo=?_P!^W>wam*3ui|oPeMC-v z5UOA+v;w?NY!LXz4h{O?^xO*v9+CE?v>x9@lz5NY24EuJag~N0YmpkOdhpf4t3#QG z0f9&WA`gZIb%Kk|o>_wF+J|nTy}5IXnd*fX(L43)H4o@T5EAL}+g8i6 z+jx4Kj+vKZp?w~m8Du;s(u6JAepE!^^Lej%A(Bg5@6M&+q0+|4hPhUoL()D(=*4YX zN9Qq0%mV%+hujK|=PpMwwI45rYJ`gEU4tn0WC_>s7;oi!I&`^p+^7x$w=DHt8NU+k zbLV`iquZI!RMIeBPBE2aR*dIgD$UB1_nr@%)Bh?hAD`)?xezyAga6Lz+c&lxX~TNv?aGvYXL$S>r3$cT)!;HTNM|VnbD8dav(AHOi5pX6#5$qs503C?J_OV;qJ@umpDgzm9pybM=qQ8t|={wcb`eHDvW?u8Qf>#tA0w<7e)~P z(XNc}HrrBYQCxr6so0Q^H+!kcp%?;y-_%-+2SA;IqkUQB|ClVyYK4(5=vSfu=Yw?n ztoz<6^ESSwHVL$PELv-6RP`of>fF$p9nmw#Sdc z5b0899Q6|l`+M&)-fI;czp(i%I^$7e`u*RZPOm>WHg{c0_!pEIWFTrPR`K%u-3_h8 znx`jDzPVkXU71YBcwtCLy@V~M2DjhTFg{@^?i^az-}Wz8w8dRL=?5iBsFqi|v>V@f znF9FkcA`jM{k%l@!v=b{TAZNgxUU!P=q74dc8@DFN3IzB5ziQ2dmwNZjU0sKrB@*C@+66iADiUpKl@=r~ib*>q={^t8?lV?5O!=e!Qt_2(&7gc>miUCX!|DpVu7 z^xkU;WZTJ;{wxq7L!qRv%aoU(C$4ja_%c=WJf%}tHuwA7z0kW?;Mxmao`b&%T_G=) zdn*h9fO{gj%f#xyb2yk3A<^p3$vE@)k^NIcO#@x-nE|ifcZ$}znyBx)cQ0cBMp1%S zb_4OYn1`m7V3^JA-DBt;=f66bcio8VYn*YPa6|%cBP$``l_YwYwv1=A zz#3GL>exuhhK%bsfU2&;fND5_-d0^FCG6O-R6~HrjQzPG&+4;rX3ncRC)JtYs&!j8>K5j=Uw1^UZ+J&PyU6zC*+bL3Rt%(SX0UA$_$HXS+oKf!nDtJrF=d|%!MS6dsui}qLsIuTT7`@~J7MBorg zb&}+8k#`*yxf#j`nELD6PH=|kA_ZkfdPx98M!7TdPT5WJGl5z;28Sy5H?CJ& zG9n_2FJJ+G;dM1#$4{YTdhM%@I-fqyQ|p75c<#unVfAF0@`YdpGpNjq?4=OHbUi>g zJ@J058ShyNWX%@o$CniMU_jnxY~xA!T4e0_m*V>6v5-FvIxOUP(qgQG-TZg)JRy@l zk$$IPUgQOK3F``V=SAaoyw0%HPc3H9G232&ASygj=X+!;&6+tww`g~o#+rF#_hFDT ztU266v8i>WtMn3nG#`MfSOU>F2FF0K_&L6zRAE5o7m!Y8S&R&T0~F2=A%jIhNXQ4* ziL;CxP_Yth`M4wcMHUHP4lV`7*w0I~2uIMw@IR(RkL?cJU7c)DE3^dY^(${L`UR5( z+~Hjvv5LU-K~VfnG(;ka9&X_MMT8I2=gW*#>0cn7#%0|UFCS{apDh9FkO1t=%mAGh zmWDjCYb=qtxLeiwxhwyGT~zH^EZ(Yi0THfO!L=doPdP1a{}%}au{J#sC6M<yj%C zw6|Py1PPg+jhi{*tVBS%O(cX%W+zjJ0*Mg6yn%HUof?^o%0iSC84HAlUKxA*PSGT z0JCBYm0=7q`zBmuLQgYLg)!Iq{MD@#TwiSMS9VsvUgwaO5>2mGU2XfTk4S+uhFs7; zw-tfh*}2+;F|tQ5N>_4aL5q86B|aJ)c<<3jySVI5{aT98??tK@d5x%a$^Prpgk_aY zTP<^a2U%gXurN)u;xM{0^A~UDl)2Pzs;G}4^=cC3ts2JvrUfV1_is6y1;t}WMNWZ^ zk6OR+NUbRB6_lHb&Ki~=<*7-Kp6@BqOa-Kage=pDKAThVT%Ej@RmywLI5%!0A#$}Tjpru;A#7eK~RTj0Cv^g*A)cu@M1^-k3 z0z3f%D-Mqw?$zV68aIzoX0ZLzOl3Cr9qh(=jH}g}!ATMNvSz&6QtE!Bxh}LYc^-Ee z#4OZzqNeqmuj;tNm?uwc7EQL1Qpkg$T3m+dVZ1#w(=NWkt~2VtFgT*RlB z>%&s^v@UAbNW{u$r0C^~qr6uN%%na;0PZt7ybeRp@%O2Z39>UZHM}&IHJg$NNw-dr zDvg$wiB9*2Ga>A?3Fc41T~rC#%NqZ~&1lt7wn3z7wtN$fpKMS0$a&v)W%eOaT-HUx zb;n_!+ddGuynhn%yeuMLhNG_{9C{;R`&z0l*Ygs7S|7HMhx@Xwf>$@yM~!YO`hIg* z_4ED|{g-b2Zt70~L4%sR9YvR&16AYP#Xq(M^v_@UXWNpwcS?ml@5%7{^Z(3~Zg%!7 z0=%fY^)K?xdsC5Ii>@B1A6%44z5V~Lfi9M4s~L*6zk3_#Grvd4_vPt(^s<8$d~w!m zKMZe{l9g1JGZbUo9G|ag_(5Ksq5Y9RT#{=R$8{*c5sWBSc;`JgCmq2LH%WRmOMzkT=b5A@cXG{wtCi@K3XUe42OI4V~Mrf>M^ z`}fjs1z{DS$560lgEJAhMzk5#P>k%>Thf%EI=V{$Py~AJ9zWwm2}b0;ROy&UT@9r# zN5=c5&{m^*mNt~xN8N8bIEr5VmE3Gn6~Z$^u_z%y%&$R#b0RM$buqQ58+-ZLS=e@R zu7T2L&MuI`aaT0K<;5B@jQEu29$3X%H8~In3ma3PIn!AiT#_YDf{#zVi8(JUoetDa z`W4ci`^>4-~{#2j{tg_$>)&R zKbJdkxXo18?ft#P&=AW69+?OV221#n%3CK8#|UM_XdwoywRY_s`6|p;)0K6t;LD(H zym03X4Hp+;?QUGEMHRFDZ4N}r>g^($)o?kvD%qug>Kg^6+pYTYW;e`-3D>g~D%$#0 z%}~WAa%6Np3?eJ1S?h@{NCzQY3dnG;I`j(y2a;s5z-?`vktdCnjfvc_ zbDzjFzTlbk;LZB#pxrzeboZ@$LD$X}z_*0pv;B7#`{uTl&aF8Sa<K3NO& z>OA){>11p_zd|lxfo_h3U;y~}O*g6L+iXiKhxu^DaRAlmN$WnhFxB$3E8PL1sp#*9 zXu1@0mC7OCMPY1VBdo4Ciyd5jQ_*gQ;69|@CsGnyGOHky$IV_ZXx5kycbZ<68D1Ju z9F#_+hyt4J*Mdsl;lk5=w9Gdl@9#y|N%-Cj7_g|!N^Hj;tAs&_AqrJ2JrM-XRq{Vw zwp`P*!khQ;>KC0aquRn=+yXm+8F;`xhr#Y3NOT znjxpZ@gG48*is(Z5q`WIMIxal6WOLqr9S$vx%+?Ge5y#bB{&EP1S@en&j(rK#zq$z zGut7ZQT<542={Bvo%0bIB-s@kl%4SHR7N8rMz_l|;v!1-rfCixCFzEp8Aj4pPG2gc znP~39Q*xp<;qzXf`41m4NU7TXlz2AWxch@yX=Aylvg5vgE{P?}tQy&MU3?l;OLWgX z!bIIOzt;<^4UHihS2r43tIML_*t7&Q-g}M+r{t$GBjH+2zol8Y!*xE05fD7*itUrz-u{>*rIc4f?boXH4jS{9a5^}r8x%7V9C z-7_FZ^W{%g`x(|t{kf<3@O+@htHs2@Pvw{M)U~&JMRJL*P%+Znv+zh@vxN7%l>YeA zVz0n&4gFI?>vPeb6Nz5eLhF6;#7NUCN%?wKh>Mr&>)JlnKEbhXg_zYN`y!Hl3{BN1 zZykDMMK79yGXP_lK_Jx?Z5A=Ru>97;AKdWln_6&4opxj8P?z8R(`;-NRd^W5OM6~^ zgLA6j^NpR)6}Z0fGn()1YS4hd5R^fNc}7{D9OIkfs-c6NE@;~Tkx>zil}|m~%Me-O zQfSWfv`p=u!+0qDBoB8;&?Dbv;mO_@kAHq$)QmBk^ke~PueXx4Lzx(V*ooG5Lfy16 zjnvFPgo9WDsPTCHsVg*TL+)q6XspqKOsuB^rVVFQkG}zQW>v`~;iukRJ^wo->e+$` zi)kJa;Op15jF`REp7rY{*aYGIRF206t)p@=z{dpBXf8#t=+_& zT(htZd|!BINS94vD(1ER)-HCS1;t;-3M(i>VaV%j-F_L) z7q{Hj+yl`7q(cZ)uX)kK*Ku0=t!Kdhc>xrK1<8Q|axa1o!nOD-gm|^xg38!vHh8yl z8^uD=?Q*nY2}hXxShA25S~eDn!^A>3h5nY5TT0BrW1mAbM+&E~AlwTM%n|-ntwc^x8mBs$pA}|&Df{kBHRW`oH)6BuuLo(X z8X_Xork{cA&>r@c8F7ClC3mOu*YPV>K3Q}?*=WJ&nsm}xc3&&^E85;NKDbCHc$l41 z(K6V1l;DiHD1S_#ef{4KVtzc7@!1C`<5k*NoM*h+=w3T39Z`Qp4W2eL1?cnV)z5FG z{ki<+U6_0o^|h{Zp)nQP=cFSg*s7>KwSfuFGBHnzV>H^wcqF1tTk2LZC^*<(sBvE^ z3ZOM4n@BaVnw9C=^%Yj+Rcy@6r#I8jfpvekWtqPv!ABS)P*1V zMBE}Vey?)&a5G3w$_7wsX#jeFs1ZmVU;N_7x<_dxn{V#($Mu{3w+}dDEtIjFszrCS z@PVawhlEo4kBMW-c-Bnj(XSczv4JH4L>rfJsNj;<up8iXOOo6So>2bKmC;2+?r&=wU0B!P;(FSBemeAFNQ`8Zw4tMW0|sNs zGh0#QAkbaEO8u)1wOv^`w{V;n+hRL|vF6-@*5Y_qW9r!Z3uRwgW3ERh>>2DF(78o& zgUN9Kp5*)eC#Rd3I7|FotKMB%|8384&Mtq!KUCB95 zGdqQMGal}-0EywT)$~vKoz0|qI5lx&**uS?3rM48(|D!zqWibS%n2u**>)5686L$C zK$k9R#V5z?KpUJ9wa}&_3rxyLS;<9p=aUmz!{zgn=(sQAZEoc;b}WMxh=QtLbTWc@;AL&8qeEkw-4~D z178jD+X_e2U8D5@+z;e>s*JU&ceRNfM}N3i)jdo3e?6VQXq*vej#(!&{Z!|gW@ zVo$2>LwXhUe#%Jl>Set~h8mzlA5Jvl?fL zLGM6I!vYY1;w^m1)LJq9t>h^~60ii}Xe7?2r<-JCQ|67`NMd}~SD1tFLUE5REf{@B z_5D%?hF#^T!tMMNWV#8+-pd@Q5=aL>U#^D8J!%DPhQ-N9EaP0j46`Zx_ueekj<%r6Bv?HCJKiW^}=m~Cv>Bfp2k%Ac+BJ~O7i^7d%FcI$6zfw%6WpjKc2_hf2#O;tOx!e=n&I; zUnk;f(|FYVtQFp_(31EYe?izji3&H6;jQ2wc81u|Tq?>_6nU-Sp;Fggh|u=Le^r!> zVg*>uj&?89l&v~^qVQw2P%)`4Q`Y}_8_{5{HQ!9IqIKE zVvnpkg2UEAmQ@kKiD*?AC?^Sc7M;>k4=y{m5S|9A=qzPkk(libQJCqoRlEVE9zQ-S zv?+x@=?-zXQ={OnG{?rFJ>eJAZ1!^J4~G_bkjwK+AHK#54s-f=Exhq7vp>NT+u-F_ zk(~_dm*s3^c{H%S9_aydtVT0aFB5BXcP}R3tx9l8xdH;d>~ASv1In{g_$7#07!Il( z?PR@966lczU&(T;c5^IHY5xMwN3G8umo%5M)}f4BLLm+1;6ljtP2}0^x=_cJzhx{q zJ%1sTw4mqggCDF$^G^u4w6F2LInIC5wQ8}31~;euY1X7#uHMgB*F zT)3Rye0@6f{mDY23ynjP%z;bhSs&7|YRkfFgX65?Z7_QNk?{2kIL`+cq@Z-k6Cs(w zncN|+%J)!f$zjGP{z%0Kl7D#rA$GC(V8*pS_BU+96v3K4UO{2$+nJvJ5D_dG(&?#8 z=7Y;|i(xgzq+~Vq!YcK5Ancq1R9T2 zk#hAN+GYX*vydd;i#(PQ9e+E=D(9>WRf?3_u6Tz%TQ2xXOvvs2P@ejj{a&&O_ia-t zU&cJ!_+4`>F5D4oFL1Rd^Zf71_aU`O7q8DU&p@ZJhLm$-DQleP-CnLoEL#c8s*J30 z>1Y3!u#7%0?Yk0oV??7v(jZTGb;0~K@xLPr6f;wg1cR^GJYkoSANs?4f?cGfyru-)CVO8Ry*&INF*A zj2Q#MWyZE6VkJaY!>CO~L@l6+mtYdiSp&<_#H~9A0zwX>DHlhQwN70VU_?L0nOIHq z7YwpeEk|4>;l=7+#{wGF92*N((2tbw`^?r%`s$4pP=nQf_bNZ@tpKQEtfsvPAGaf6 z@M!CM{g$Ewuw9YOLmOCCSn9)Yqdc{QxFD52h9gp6ncG5fUZ#|5KgXtY*(bVt)z4Tb zW~PLyiP~wx3Vt7BW)PbuZc)o368ZtFfM=e;6v`Eza7>Yi8zQE#swk&F8Wn9UqEd#+ z$XBwNw!N?dtv6ksRQ7otpg*1Bb)1n zFnpgnrJ^LWUqDJN;zAv!OXo6y68 z(G+hlR*NA2rMa$p1Mc(1cQ|{%%Awl(!#$L;F(Oq;lvux3oNSOIqN-^EV>z*eb5vls z-IgoZ`&xd`T+e9$K(%rNA5vtN;lO}aG}IKUOI~vsg6PQ-tCAK2bR3pzBbJhvAcA^u zf@fBEIoe{9Tx)k5**8FL{unI_X=(ZIk`ObFwEjNhpBG-C0Pz=hR;AU=3y%46gj%E5 z;t|sQL1tW-nDtME&6SUctHY&Lcc-BmM01fmRO*@qnk(H>PcHcT9bQUFe~p=pF?7q! z`cSzvG|Zo#S%*bxA)S?DRGBa1{hsg^dP*%WCPph3B4qyko9AT>>#8+L>O}Hpg}kyT zJUfgR&&0^JH8qtzsFp9RLn>juFYUBqL;|CrleW;}CIDxeQoDd~>rMx#X(JGeHjbNl zkWm)jG(aK^F(3bD%YpY9Ic1rpU((~_(5$sGrlgu5=#feYKgT8n?a7J+_*wTJ_quO2 zl``)FDfiVR%fyPg)EOEskE)!NIkr}QV15|n;g}|Py}xx3e&&;bLqwBCo*rQ3nCn zY6t|J;w`p^G< zhln)wT^{zu2X&lg&-y;=buMhkI}0tV8Y8 zm+%F`@kzl6Yd#U8rqlzm%qFFYhjz0bli`p$e6n8A8fp^0v4X+_9|H5N$Ubv$aJo1w zwt6^T-Ce`yh+y$3;^uc1zFaiisgCby%8Uk00#d)@*IU;h3ZhDeR^JebZbh^oTf`^5 zCdXPQ^ZPpTINmy|ElA@G`g`=XRb4#8MWykwDl%3Q*Yl$VnBpPO{;=@(VFFmj6?t-X z-c%)6!mn|7Bz}L}DW(3ErYzetZ%e~pe1Ye0QEf}f7f!AI zt5jbP2yhTu;ewB!OLsZ?=s3ebYO$e8tlnEco%=eQ@x$BbpbFbUS5_nrVfgAHiS+r+l#80`IMN^B_JF%S2Gd zmrD(Ix0<$!T!Jw~9#*K-z@q>v{wEm7wSj&R`IA@=uUeY1oYLia^Ix+@f`PKf0y@c` zc5957ifE`Svae#0B=uWXwMO%DosGl-J?6*eu%28uhUY9|z3GB~!l78M+#`}}ZI>Z< z4Hu~}t9tI#IaOfWZX{<~%iEv0i3h#!Dp7|bZjQm=L-kb?iv}LnB%s7!ExB*1ES%+- zN$n;usjr?Q*KP5(*&d6s`CU3JYS}WOEzx*@G^YiT=>#d7{^EaLi{gJrc^rn)8T#gl zdZQrf1X}u4fF-2)OG>XIdrNEkB zhkK10d}|~Du7k0+c>9i4H&E}mJK!KCFP9+&G>dEb8#+z3V6)aVG08Pjh0B{dy%e_Y`tbgM=cX@zH)idZD6^XTghCpl14Os8!cDde0zW z*@=^f9b+70w)INUUkoKrpr8P7KNu>_;9@q>T3UP%E1w3b#0T25IRm8#AsI#*(|UN6 zDV{A{G`axB2S5hoV@vAC*9WrY(~BSwoa<5s+kYfb7zBdL>nOQEjs!ed1aC&zzF`Ie zcRHco;jciEYFSkK$HdCIlN<6hd_hR#8b%R)uAnnKX`_GGF5mjD!tejojLIv*Gndb= zY%^(~=43gAf9BaSpo7{*AZH5hjxW$q_5;d;7f?L^AjTWDNOQ&A#Q@tCSJQV1=-gU- zf_R4@bnWAKN1|p5IDL%f&CiiVuEQ}%w;;mTrFkDB*Z&%|D~5=+m$Xbqv)Jkz`Y=m5 zw+01Eveq(4>yo-u!5SH#JMywV+-lZ0kNNy|E@h=Hp-H)y72tR9EK-1sfYJP4hYK1? z`!l2qYn1IO;a|nrn;E4B;+hkdw-PK2{d&Br2_9Yj8K1(=$V2g#ilv#XeGKU2Prwet7dtBdEBlNy3{0)7O>ld3T5qckP7QO z9aJf(=mCh7ab&D7(a$y(Xzbfc=>0|ez|G{SLuag28mgwRu9IFUt`07$^f^1%rHmuYm@AH8tH77f0O}NNBqqf|1 zy`3{pktW@WFOp0-GofzC1yI?tj^LolnM~|7<;sf>6f`7)FE9XsbCVsbz z(*M)bFK%2^bF6J3sns@8;HUp&$}DRwqg8wPXP4t-Fo*ZYG;vWR>)&LblB0GZP3rmaw zy!L$ahGz_sSoX9?w3ygDO+*tSU`r>@vjy0m-#qy2Nda8hDjkvaQ-<^lUnwOFP!|5e zBks1<+)$mo*ploM2@$XGvm9pu)%2gjqB7+i;>F+u*@t0%7ON10mOqK)t<_RR;OQ!+ z2a7%k297iV*R+p^5|ziZC+HNUyOCsuDs0#|OaLFG;^FVsZV9#riv9=5lOYb=0f01x z1K;ciu>cfRr(SO_Pu;)BsVi+?j=4snMiCQ;WvC3E-8%&UXpiIDn?a}|0YAjCmbJqt z)wK5gNsuJpZwVaQs!g{Aky0< z;fcTuOedC7A6neX+$ev{q}$K$^xMs$5oxC@0gaA-|L^>$dsZ@E5bNYObtBehKEX!e z)TYu--JI`T(ii<+h1OS7+@7CH0tMMq^c_@CXoyoohX3*EE`(&NT^;$8 zP*UX=!`PQ-F8Fdi0hIE)KS~g6e$Y;@Bm#4{js~=uFpeFL(skGc+JQs$5;mA#5icZD zXXI;`-w784rU)ghmifG0gh7pCd1>cE;WIo!wJIzF_}Ui=qajZx44ku+x5PtW^{l4o z&oCRYp#taL@+Wr#sFYar7>kC{(4v-9q}8EMDvOU!j81Zf2cysr`_srUVjbp-Vi@$< zFRSGKBBKq4Fee+2aO|ZDtKM|W-_XYv1^QOR^ASquy#{f-hoQrX%%$<$V}zR}2>9e! z&`e*Nfxtq9rth!goM->K7X8XT7v`QFPC1F$0QG3Wh3I|RZ@r0a+e2XnKu^A%-TCwI z{ch6nKp@G2W|u1?FaNE9RfM$>#YM^1=FY~7g7X3dqPC(HuS+>b*=D^nQ@vnhE0e`3 z)pzsKwm)UH;xp9zcLrZqq;t)|NO%?ni!fd1wT@+{;p;y|BNvuGlb`L2nwX>KP#x;- zIxcq<36@3eQS&4mG~H-Rx)_5~E3$H8Vqe+g8XL}A+L5sIjm0Wz{7UDfDdX2}KY8G? z-X z4!S}~H|Q9O3y*l>?!nd{%ldK}pW1@DwSB%piR5vYk$k8N z(_~xhN|w7u5lIaAk^*@==bg}3h1#QZP6+5RAJ-hd3c8JBWzm)VuU-{V4_fTcdS;J? zo92XC=qph&L1*E3!yv&mmI`%V?>5H_7*M>lv8ogq03h=ASj33O&iC>V`0jagQq#2( zv;(Ai`+$6{-fIID*tAT>O!g2Fa6fhmIlLHy2wvDD6ELWU-rp|XSJFNnSQ1C=L-h`P zd$QV*SOyAhMni}B?Y@7Qg|RZHN3hN~15Ft)$P7}xjLhrYo+##a_CRMshz5BdC50lU z*YF4ggR46uoEWJ4YEH1cX99_kBm@13n)WhBZ=4b94!pb5W(Bo(XI=L@!NF8G^V2cFZpdOSu33*75CV+kDIelO z7VmzM8^1UlgZ9YLd9vQU8dhI)QTo!=de7vqT0bFRk%f4%ZzN$~iAE)eh@^{^E!(W0 zR`YZz{CZZ()Njt%8g*=bV3&&QK~&-ks1dS2`II6S4#uS!F*hDgs%oz$60M`o^m?oexIUB|ph#MlRfw<7L8-kY!F&fw$q&%^ zE|)wrSJBFwv_LoU>N1})>BeT5qedujA>(Hg-*lNLBeWOuv@gk|V3+6q=hwB%&23h*nv za;sesOb))3eV%&PWgZh=@|sDLQsaE|c-;)ohq&li-f;6hU%bDV{ds!0XwJ&B(C`M= zwfw1meg29T(G!F!we~{lwY(t5Q(l6UZh9ED`+jrtIko0V8MGJR7f|79==N6GoUez2 zaMBy)yp4$RCwMBg+e9()hK?_ERZjvqE8VE~i@NF!A!yn}Q9`$ix@a({v5xhD=ak~^ z!q}ecd8OFgRo$E0s%PNIH(I^Eps2IQHi>uAO$q#V#_(e1RQAM6`pp4xU15|_GydSW zuuQQV@9N=GQj zX#!HX{mJuZRu5|P<~Y8v$9=5ViQA_pyaPNr>AP7w!sf^0oK&bRj;P4m)-?9r8NmCs zCSj+U6}s^bHpVd>-tT!J*3Y7_C(i-x>k{-ByfI1>C@EAbY3e}+{~zGyOK3DA&W~0&E$!!~(o}Lg?UgDuL{RdbJSlz=lG}n&RFghuBm)^0)u;R}s%`Xz z&-=KRi8N!|CZVo*U5+Hh)olq9EvvSCy5eiHri2=TE=Sn=K*`5(hi82`^{St8UEl7) z-_pl`Ds39^8inJ@Vj9+4-H*+X;8d1A^xQF#lks>6)NT!AYUj^c>Nn#MTlJ$x*U|Ks z!5@4qBQ0~X#y04;*|%lsU%uJE1lg7c?6(%cjjYd<1F#b!E9aND=Zj`>SZa8Et-51aJuTmSzy3(**Sz-^D^ACRJWg@8AKf7? z$P)2bVeJf$a?}^2>8#^WA<%Go*Jc)`&!4XAI`H*9OhtR@AT(OVCW=oV?~6rj-!xpr z@!7W3p2a*jp6V?Moc~ZPr7W_Rl@j8|`6c4-1=)md$z@>@NMp_Hm)yqI&nm;EVFme& z-3`t9A9Esi$yuMP-NOk^J`!0 zN3v(HHS3<4wPx<|`Zd>k^UT989`}Q?FszPw1xJ&1=!qixDvqyNG_wzVY^HzS$8+)yZr;C3IF}QEj_kT*`HQ znbwM&?QWGA5&7O>{D&KHen?XT*!slc5&4Yr z`m?*m;>#+hIwR2~eN4GEjQWv5-l4#3cJ1@tn&0F1+LSyliSdePIcTP3vW=y*L$cuQ!X<+2Z4Ukb>F+SxJ7-QomrKBXk$PM;;X2agJ^4u2--hy z&MzSU?Zfj!d?7*EL}}0%t44M+9z#q}Wwfl)G|s-dC94FH9B*Zek%gi`VT1mZ=&74h zZyG(`K3blsZ>gR+A~rsbT4z*!_1;8+GW%6@OK1C~tUX1b=H~)IH`#=o3|nmKU)iN; zQz@J`h;E#NckgrqXLIien%7DOo;~v^E*+>F2^MxU7cC;oDvrlrR$7|(< zkigbt=rur9RrpT93|skiF;%0NdIB~f-ERCBb6%dxuoY3`P;~Q`IJH9a8an|PwJ)wM zyF+D7teCy=`0@iZG-?Q6vu`?w9x*l1YXh_DCym~K>tscLT;Cpb;)GO;&la%&Pg=f- ztPc?EP0Lmv)U(wv$Xju29m}+aacpJe@+lQa*9=;2o+diVCI23LqD6&k|p&`#<^BFeRteUkQ8D5)10e&d0H@e}qTDxyyy) zV%#*HfRtGk@eB2y4n^uD&_ill{CwE z@y9V@biPK%7*=?wC{?5_3EHO%ChOO78c{bqqGsR5&WcOlM2iHN&mi02ojHb=`*T*?=h{z#loGGc|uCISP6cR5?gz?zFfhyYC`jPsy~x>D~V{H+0H)%&4FEu-?U z_GaOULc=zDDR+FVmOgiLnmXTEKY5nVPu~%XtC7A@bYMV|K~`;@NMe(x~yZ9J$YWx za%hW5qXrPT-p-uE&-{P}*xGu&hdh#wE1vsi4%m}^i(;;$1!h3NC)FY*&FhJ$aFMRl za2Bl-yTh^yXJeF?IP&fSZQ67(n5EcRQDiYAgy!aDQhcZR}qiO$;{;u06+G1K5kd66dR3&)15Z}+fO{=Q`L!Z3SOCl6T`zI`)Xn%7G zZ4lrcC@lFV6A(Xr>yOcL+viV!NTKRtdWnagcg&^fQTpdJ*nrC1@rK`|#BU~=-BEMx z^5fd&zL%+z}(1q zTcbkL-3cMO9HOW4uhx+-Y&LXS+7Pwf=LAMsAvq*>mSZ(IFqlflB&pBc{L+v`yU1px ztiP|KKrxU_u`4XLj}r29Cj2xJ!9>jYX*bvibL|Dh_#N73icj_dj6@VAxSzYxOoNrF zPK{8gg+Y?Ir&2e^p|?{GT}vB%M3AHG14IgkhOp0a*w`zB-^m0t%Zhxv#2W!iTTZQ> zbk!VLe_-w8jfDMoQQ1c^3lDt^)#Bi^^K)L5^GrX_klV?s1-G>KD$9>aN$Qf~Fm~_%@9{Y=ZCELVjPPWHwsh)8EC`w!!B!mDlM*yN^dWEWM@GKY`A z*V>GBvjQ*7!;rQcEGZ4+XF%YDu(Q+>Y0XVFcsg*;UG_6l4*lV4;P%GmL4>I#u3gPt z!Y6dzzEM?t&AEkJznFqjg?T*F@l$C2LeF+E>)IN@&3hd1nRomSBXs_zebqGk?3tNh>Gcbj~;WvQZD-mg#VOA+JRt9HM+jk=@wP{(1C8R0ez^fTaz@E!_o*oc~?U* zT>C}rwZkje>YPFvjVdY@#z&;U?`wKJUhF{uU60+6QG5)R%29Mq!97us?yWM&yqZdx z&+gUR^BJ1bCEv#5&E;Kg#)*0pt<@oVteRGlWBcrhCku%t2i=z^4PkS%;-7`4*l1*% zvPgN*9bc5^lDr!*c~y$PSI@T95ek{E7q}5}m}>pz8-bsn@JS>JGilshxkOHfso<&Q zB6jfW_?w85sn>}qI)DH_{L>D+Egyp7XSG)jVwvv-R6m8 zxnxf70N_VY&_+IpBdF$CLW@+{GA45G!Yo5BTUU<8rige*LD8r1ao7gJ<2QpswPO?d&yr1(-)2;o zWQ7>9-F`KZ$F%z+K%s+gKuoID*v^E5e`@U+=$OG3f&DoIZ9^*rwn`z^e|T6{iYrp6 z^r*Fh9mc)g&_{`7{A|ZMoS^5~07kdos2JXj@#-rI<>`jZ-{ogGQC8#k)#J*5UHoGE z0#0IkYINe&-MW-odH7LWy^`lS?C}Se72`44;*r_LuY&svw!+Rc7FPSio-MB%)&yN4 z143ODM=%%C5F`6iw-?@-@=z_Y*cX3kFx~02lj=Fl+e;X{NdM0(ptneC*bNUTJM6&B zlh_Eyuj=@~mbtk2)igizO^38Z>S5;U>?`D=j$SyT+mE<@XlhZEdQa1Bk1>;^%b^{o zb-Ja9x~D}!&IitTQh6l2q>I}L=X7@B$g8{V9?zmM`d1R*Ev}E}z_})#LQJh#;c}+@ zK6XcGR=W>X0!z5T`TIRt*CUt@68W9>yDuIwpBLR`_ligQL8YY9YKB)%<7I1a2B6H@ zsBk2BFg)~H@?gFI^w#$L)Ta>(<^%a@Mi*)6gwfX z@YnqQ&m<~R4K&LLw9N?2i$+pUGmf+1$o_Vq`mFyevBRcQ)bEAa!6qpJOx8SG9IgTE zC~;#k8o^%tLI`y%ubCTk&L7X3OJO$o&csnsnJxRXcS{Ml9h(KRM?TKLv`A$rVFaSMa-$fWD zQM<2|Nk7swU;5Jxyt8ANJ{-_JYgFPJ2s=IOG>!!x1Je9K_G_SZD*1FVnf`}+{Tc|y z_3@TAE|93*ErSE=bT!zxts6Q7Lk?A4Jl^mZ(&DT31}DYN`^WaqXwfB8;(vel{{0*W z23*Y-Lci$~Q8RS&IXVb*D(-T3g_G(1?_`JyX%u&ZYN;A`MO~B6;AA&oYLIX<-}9++ z{!G0nyF%gN+z*{ez>hvn>ieZ3?PdHM%WSrR8{f212Oq-R`t+weB^cwsZ0s)8ziMv# z;oNMkx~MYnY*Aysph~KHNqrmThK{PS_?u@g;G3X5=kuR3+ehCU9Pv@h)BukhYD(NPH4096IwSWUgnvxfADvhq`Z=fXJ_&zGtd3QIZv*K8hfBe zu3a_Txhi}6o0GgED#Ka#Wd^kL-uu+u*4bIN?9uPMf#g5;FYU*|;sgd7(xKel{UUZqNrp>K58|sGFI(JG7k zk{5U8=b!+A^y42J=Q|x}zA9`T&_xH~P%;t0NSM4~L^zv2S+Z!E<+Xz1&pr~2#db;` z3c|pCD_6>aXr9v%&D9j$fKC|h1lSdYkXvd9naHHGo2+j^u_5EisKp%A!RAMK=CfW5 zA@017`}f7~zwUqk-=i%J$54H#C4y9kv?QL=Q-BOwdhBcKT6T zGx9-yukW(Z^)U=f*CR)r8bKpcizq(^E?F8J*@Y##3gg0UYvWL`CiTFKd|OTLQ}o}6 zZ-&@242a?cIf6P?0L&jw0|A&2<+=-UE<}DOO=Q(>F@jUBWfR94I_pn2-gz{E130L- z?sKASEh8n)3c)azw!tQOw*?*8KOJ)Fnznhh)X+3eq0dmH^pkK!APqIIk3^!pl7t|m zGUSC>`5kZtE9V8_ZJ#zO9XFxNHG4Q^Pjr%}=pkFk`2?ktzDnJ{%SQf5X7&F@*O%BI zm4creD|i~(lH*i-K6Z`rv-)i8mOuEdTTg1odR)%*2~ta zgm(q?(OR@zTb^yDTfwQ47Zqf|{B`q&)YODnv?DWNdj0$WgAI}p%AlMg)*z23*KRbL zT2L21~^r)V$Bp0E1)2&r&%l5$jNcplHlOegST> zIet*Yp-}?)3Rj343ty;8QQitOB8NZ=Gd#RT*;`oY3DhEe*xPA0&SxRjFF(hI3jL-a zU^*$=h6WfElrKy9aDBP6d-pxm%SDGgm~1qN(sFS9r-(`NTW>z?WXA*P;v~;-oXwTD zNhNP@&0FD$31^lnn51wRPN>C%&LUdyQlj7~f-PX~5vq{-AI_lvy>!wjbW+a{G&cqC zDbtx5bwe9}Xw9)9LEzv^1h4uV?2*`DZx-N*ZxT-qUO|>A%p# zcl2TtZu|&K;J~EeU}g0!hV}b6?Oz?vrywlnhdJFu@1}ozwlNJ4?g#nAABP17I(@E~tpb zzOkM=1V-V~FkQb-&3qZdsDqKK!O*a4jl&x`9u910J?(}Ldm5}npM3D{G@-K7TQBcy zw?pu|VV-5Rmebl9x`HWS>`V1p`Mn`$V*TF^Zazt~wvf%mGH;gN)g9CexUsans0#SE z^89aEiDA#o!i>r+SO`nDk8N5)n`&3w&;CA1iN zcK6f3zUV2(R&P$b)hDL7);c-|n#17*z?^}?4MZZc0|<3Rd73Sw-B@c*-=X%s2&t)) z@Oz={aizZ;l7<;*5h->_al17F3#_e5^Gfi$|0WoMY%;KIfF-UM#oA;y+8~D;f^E_$ zttA$u^)bQ(X#^Jk7L(@6ngrhp$Z;W7{O=n&0xe=kP!eC~$=s9U*#-z9) zI7cKXA7pu%5NjL-GYJpMAOu0wTR36c&gkJgsg9zkI8g5V57YLSGXCGh75^lVzY_ai zt*5pb>1v7!WagBr_5*dQy}9;Ux8p5kN100{SQTh#VlQeZHcA})(`#L$$L;mZQu)gT zf$qay3vuUoaQDU88oztg-x)JB+eQ|d@w*<8X+twXy9ftI>r zQa)vO&Rq%v#wWG?xc>*L{-te(g*eenHfaf1w7o3mB%(wz0*UACr3N4Pnp*cgBDg{p zcAwjlZA%3^wo+1FO*jWwTKM~1yDSQj?OdIRiSU+0eH&|K$N{^Ko)1#?R4c_@aU-!a z27>d2dhF#xV9Isn^s1M4<-yQ|wEweq|DLb5IPve?hVBRS<8v}sdpx+je$JE@KW)b$ z;yU&bcN^mTm^5N@m>b^2uY%tC)E2bhtXjQ7;&EWn39<<8Rk@OwcC$B?mgfj(bvecL z;vloL%1E29m%VYm-K(GT3oq2X4DVh}(feLTKlyoR zw@w+qsO-V8y?6cD;fK;d_2z|pr|BvQ#|Drhd2gozi&e72t{6(>uj~jVM%m@J&}%K( zi7rtZgpQt1P~_2R%l_Mk``?Q0m5OGF!I)S|NFDL`;e(%b%7#F5YW5tb3c6K36+KSm z>27NreupS+Y_6-)92Kr?p+xO+_6;mnaG*Ogu>;fK!Ak8WXEi?_^>%K!_yae*m*@lD z&>G(Rce02bCy2cb*Nz6HUS;&?xuR+z_}KpUF8kL?p^H9C-*ti2?~z#-@zAAn8PgWPlf-EY446#+?<1an zG4=oNN5Tu=5#rUL7^=KhiN91wGIGq-pa)SPwR2g(gc~xBcZsm`%1(TDXdDx4xw<6AU4)|p|4^DDa zJWYki=jm;*vlPDMPO`o5P6w4?S_xeLzKUVJp0*4K?v~2Jh~hFJVNtz93k*DB~b@@(&ZZM#KL2jjY2)gvJV zF~NiWZS|Z-EPzc$%m0P~XwM4~y$XZ>G^uw+QoA%DKy#_!B2#hx^Bc?S!M$;+(~ma6 zj_)y00BS!7I7=2R@m)rPL{K_=FD`1+DIFn@*)rVOxj7ERjW?86L3=$tp#{9y`KPz- zD%4jdPgh8V4z+v7If(|>yduEahKgn#5MCV1nS_uHhUE(x(LA|hi`rsHv0S4hk7oRY z5OU~+ud-9SUJ}d{7cO8NnkPMEp3T@MJ1%Z0in1xBNdMmTOI0x0(^=0twQ1&?nW2B7 z+A#|Daw3EGpMA|j@rB30uz-2S`p-p{G-Qu9yQZO)Z?<1B9qSM_s*b#%W-DPfM4^7% z-7RXz?vNmR8GZZJrK2-~CP$n+|C%&@>!f>dT^W8vP{kYz8qhWrYgI0~J@X<2(Daus$M6Qbptsh?WK2lvx8?8sl^&qe z@Uj;tX_bEZsd3C~^w7ef??<2gsJJHKGFm%fM_b+FXU{%9lMxqD^NyAh0_`1BO|CU~ z_MK2_1qd@E)$SkfF2M(c&*+iPM5s0+Q*?c>k^}NaGXHwh?p|mMw=UHo0(I8$1g)A6 znWfJ?-d#@ENdZCFhtUk0Aq&qx(eakXAp4^R7X+uS2Xk87c?;VKLm`JyjpeNNz2C#Q z+q7cz{N65or@wjL{pJ1crefRg&H;}zq=X#7i*r`*yw3h^OA28m_6#wV4Av%dbQprx zL=PL1(7AQMoRPbG>?ob7LWeX#g>CGb0u&L18uUyUy8(nYw?g~H1|MhUIW~0ZP?D4m zJzSFl%#wEzO{S5S1dvX+{!FRjWM!W732Q)q&$RlA+{>T(x(#m6ztT$QYLwt^O;0gZ zIE?)Ghg=dfN_lASmk1{dtgl}Fk*!<2q$KOnfkic4W$N!VXrUwtAEmGcPgJO2Zdg3A zo2uP+PBF{LAwFjohuEuSwQ-dP{=HF%Xdy4%Zs-@7Hb~931&O|1eEAg(+mS;P8XBd? zKAbczIKc#$6;1yWy$U*mbPcZ(y2ze4{&`ysL(!!u+| zSnSDY-miYO$}YPj%;c>_ZspxMPHX!nBgR~#m35wt#ENDeD}!lJNTcd-1=Cb<4`$#&ye*4qGfYfywPOjr$Yh+wH=&rmS_KDZ!M^-k)G}C2l8zJM#v7TU$9B4q>EH+W9DY$ zZN6|n{p)!1)36=fs{ow33bvwM4MO2kdA-1`w0LX;yiQ_hl|K8>M&N^J z(fYF(e*gN^_plbN%wUAdOhkFyujV>ox8%JUn;p!Z(Ke?g9NQJ=Kx?p(VU~!+O+VQ5 zmEcr(S}UPo!b_j0E#Ia=-9?-t{?A|QpM@Lj&fJhg{>-dEOFL_gP3~FvZ;kEWFnkV5 zT^2+RANmX3r3P65i6I>S6A%&R5GpobWgG{WO+)>2SmxRi!y&bqFHj8{g?YtN^}1W{ zHw(Vw3f@xwt2t@(Tw(9DV)pj{U~u>JJ%y?}@yl8SrBI&&qH|Uc!Ojli*tl&%lxp+U z)r0xcR-lLNMq%d`mQ?Q+R>w&PE&!|R1Y31Uip;x7e7TsmA|!tv(i-gJ5{>=Q{B<(f zt=03^vzwI^6VmMn7p2PgrH-^!l3#{iJ;oXrI^9pmvY}?E8|(Zjy5qMG?!M>mGDnr5XNES&RkdIGaCM-2cvxA<0 z{I#VA!sZ^wV;kyCt+98o8*KDW$dhc+F*vm|Jp3??yq}EgqxsUOd}N~>&hULT`DM)O z2n;NmHp6Yf)zx11@zs_*`VTKBCMVT9T_6xkqR$w#4JqK`PiY*s<`fpH42J{z*|tzz5_7wNqqGvtUuBYf z{>H*cD8wx*b6KQof*FlW+3q8w{t|+R{t~H6#7sQ6_-KUf0t0EVB|Bi< zZs8$jG$Hmz35 z%l2G2g zeY`TEF?P6fkkNC~;z7V{XgKpggqMhzSGwB_bRE&7Mj9pKHPU5Y_CS-}nIwc^EMSF- zO-iRPlknwc%&2qS4vH)&d`;=wnB)-tG3vJtrd z+lGsHkEuRWVHI_pCYeg3^;)7>zgg34K4fi&e5aue3%!3t!xlgJfTZa_>JBQ9OHtyJ zO$XGkI}#z;JT-(LXY8b(?qp!}nCYUpVV@W@ESK4GpJlF>4OLF2Q&mC}3}!wS5zD#n z3A@mLiA&}UYdbYo+%XmqctVM9=9NL4dhKban9Poog!TNELSSIWQ9(k#$?g0U(meeq zwvqYc+1Dla+VlES%I8W}OJW7`@%1^T85W$1>Kig4$)rTR&`*9`AsDMMZlZ>U&+x@} zv4lS~=g~3;0Whefq@;%Pl`>Ocl)^l{y}f2{KX*$X(}348Tk)ZT;lO%a3M!;o24O@S zGfhoR7TcKw!_jC8NLDBT2hP*8Y;&ByyGk0z5X2b1x!)_i8Ly$Y*?XCXvf3?Kf8Zo5 zVeW7+KWs#y^U_3Rc8B7n@AU&DX`Jwr>`xXr@K%23fu-1$Ye@Y#K}e5ibo$}u+2*4c z&YGK+u9)ER0AFx|7rRfuk^*v!T?R3~5)tDyK$^EZQUEqHlW{gx~=m497v8- zR#OT2PI_)2IYh$ZfP%Oxw|=YD85;v{mur}RF(&d$?j5&XKoFffDCEJ7wOg}y?QfO*%=j|0 zoW7)Hq4zpX^+j+N_0+r(BmFE7LRT$SQ5Ixu>=3SIss8Ff<@iDhYpNJxXnE2M6ZevP zR&|mohJ#AIgrJc8mI;CiJa|pbwYSB-cU8Mn0q6YbJ=EuVXxJVn{BymR6?Ag`;BK_W z+Ir7Hj?ItZalG8#Z&lvxdb&N9BO@8#I9N6&3}ge^^8%k;!83-18L#)s&(y@^A)}{i zb$nTRvUs)bzg_4QU53pa3hY{cyQq5bP=|f34qD8{jyOG~NXk!paLR_>vwCACYC4K5 zUWt=-I$NbFW;(GsCeJ$CR#p$|u1+LC*m4}R6Zu&W1tw!FL-v3-+W6le9I(qd3$(;{Uip{c>9yYVtD zwrXQ(4*o#V#Tzp?GLuqO$Uh+mv6w_xNM*gB+rLrZFBRInKz-lgW7NjnYIPRe;~F$p zJtMJ59cx@L(>?VYK<(LAKru6Pxhv$mTH!4`ML(mf-|M<_+c641yl|RnED4$=-C~2> zrZtyzIe95e^(;$O-qWN z`5b2vyXX&F?f^n?gwUE2zpm4lMTQ{MsKe)19?h*=^MY5O4+rH^Vz@v3gy&0ncPU;y z%ytI`P9KZQ*7|hV)3TXMdoQjA1RTZ_0=&%utIkIvy4`o^k4Yr-kC+BZtgOn`W_Y1O zqO1E`3WM)ZjtoicLiX)Pw?Tj(+&*d*>M3&+*m)@8==Wb0w0DZray?!kD)Fi3jdY#O zFq{i|59cTzRw}brK5h@Pwx)Rt?Dxmf(^GmKxA*@%Y9SqG% zlcZLeiOCn^+ccQ=Q4Db}QCCzP3-2pvY~fhJpRc(FJGEFFO?{FyBYe8SFo9cet>{Bz!wXhs)bc)_M}UbjsD=|#>Zs9L z6op2Q>VY=p%Jw3^fm+qpJNc_?(bYKox9VdxW{j$5_^%T3l<`=ey-0I-X8Qg81bl+@ z$~)zHD|0K8)>Vs1^4H_-UMjJ}ZEl#1)kpOo1_d5pJY3k}b}FTII#LI_6iGs)PkGjk z`S6-QVu_6hw0Xw~yOWV0aI<$84jc(g&5=@LRr$l_^nQa2Jrp;c#~vHQ4odh51Xi|+ zsuZPog~D~oD(j9nCXODMq{8tQckQLWj2!P4muLLC+`SJRLIsc|wKP0&1cwe6lnR(F znYmOtY|&|Ohxw1hZ7by+g(=QqYz8tBt%DD%O*jTmG}-I{`T5%go<8R7C%v z^eGZFp-Re1CE(2$??iX#{H#KNJfP-56Flxc=iS}QdSl@v{iU^iZgsNmiAphq$ek_% zE|LYU|B|q~R9FTb_moK;JeCd_c7nJhOWc2PAqy#KGIJ*DK&BX?XrtSnKyG+G)TNJ9 z<+aAXWD+(~+kLT_MLMv@IIC(SfR2^Ft3UmyGi{z$)!&b3um|7S>Rj|ZYTjY%$_}&> zbrPa|qZ5Q0glapE9158T_|YAhnV(5`|M|9V%Rl&R-WZ^>khaSr8NwLqGf}nf+`|S} z+U$RwBL7yNdSqMf4mioTj(QIaozRrL*!)2`<@|A4BjCRIcpEA5=^PI>&;ZVJPCBYR9<;fQrPB;aCaK@A>DQx zYfyAMJJ&|?jE2m^=%MgDSJb#z0{d+=hh5Hl@8kAKuK)-6L(m08jY17GYpZ^%`~!%$ zW-Va?Ic5UQ%VqX07oz%KKJy@R!=tQN!iUz<&Qo5?j+}?x+j6fEj0mD`wO5Z??p(w0 zj5?WZjMw_tZbrFK^WFPXOh?|7-LpCosS5DavBpOB2m!IdG#l{ia|F{5>Rbkilv3O* zNoQ6q_Z>_qKDtP zX1aUiyk$v&J+`PhtpXVQ(7gqsvU@-HnZ{gk`WD~}NZV>;tnV9a8rOwLZ}P-(qT*wa ze7jX0+ekQ9t1_H{p!cQMH%xeqxDPlmB(3hsDjc3Q6VO1f?=3cO^sGqcKMt>lLZRj}u70w`rXjC=F!P2ZI2pc7QK|JohvyiveeOf~kMOEVjSkMI#c z?n!BE1#PT_Jj%siR15BYM%yc@lGFA?O&%KD3-;=!mi)cGyJ|Oit}oGD*r)w1{C%!@ zmc&|a&5$E02%b@0s8saf9jAQzlh>d3rS1anUgx>+|2}3>w3(pm*&!hSQ7_TqN>?n+05pGI``5cBzLfq#*o&uCd`v)p)RO+2L>`{&+Y;SenPt zq=yMue3Qh6lYvK_zc%BMGlN-!BZE0i+eEmgv^lnTZgJm<`1M|k7ZV-u`pw}3aOCVJ z-+kVEFZx_29AMXSGo=Ric)J;bCqLU2ez`H#lgQt-9&`zx?RA$0+okq3xs%W<5vEmv zC)rtb9Na@$cSmE#-d{yci9wc|Kya~HQvUt2E9uhUO^yu`9{NqX3pF-*&!6XsmP;$` z{V*FP+_L;u^xqa0LStQ|CixhX3bE0;8x3$n((pX?fa;!NUq;uR0QA%~DQZ@r z$pi1^XDIICvy|zq;JzVtZnypDB0ZA%<4R`G+nxN0>_8=X1IafO#1sv86xgIJqGZuJ zZTG(oEbC`aMK8!g9|si6uKx7|~Pctm4+R70N%yek>&9UI`}D z?uL16`C8f6r9QkTS6sR=Jx}&SR!>RCgjH`;Hb$*geW{wsG}RWCALo5adv$sBk%Oor z!~LK(=;2b5F=NXnZY`LSBJJ13R4VAFz^2_Cr#R=TR(OR)}y6cR6YLX)8bv{N$ zX<#Fq&P^GT#GF<}9`TcX5@t0w9U?rk>XuU=z9Xy!QCo?N?;W>)k48RJ>!vnZ34%xd zjLMp_$x`MR-VXy$wx_~kX#?7Plrh*68`Mq!xGmZbIME=I{#sPIqh+) zVw=;x)t+WYpZrbGW=KSOLxNeN%wq|BcMf*jJt(}rP`~?adeF01(TPwJ=ZDs(tEaqH z>QirYE-bOfgQdq(7Q@99EU_M6>5JV00AN8MuuhtaDE3^dIpL=a0H&;d1uZ?g5})P^ zKkTeOTrH)xtS~0XPhiEth6paxoc3j0-N?PCC0$8{M;EGZ-bZBF$t{64aGz|>(RtHu zSDbGrHv#4HV5+f4v-#!w>1lB0{h+UO_;bYDuX~^7vE+r5uoR(VUGr~a?feuAZ$3MA zC&O%$jYpC_<5Nvsd#|r(C>TasS;~aDA;z{}Oy3hZv}+sgUZ>7Xtc9V=%qP0nHSG@Z znE{pTLejkXjl3romR_IKKf6z_T*_nBZ~oKr@g!Ku+vn8h@!BUZa|1e#r2w`9cX;HU zXvbOW4(?lRegA0*us#e=tuxv7X#^gBAAa$R`m*LhZ>qDd-4fiM(m|<7gj&MlH9G+8 zNMzn0lSieYqr7ApFD9fFx@^ z1_UKQd0t?+olOXVQ5V8d5hM@d!zQtGH*{b2_E??SPXtWJ^o~|{pEHl znQ9z@^UwEE0)Cxrl1?PDwt8I+BDiLFxX43>timB!D=ZT?AAcxN^^mPTE|3}jxSB>j z&|8^31Lr3#hvT<=V}$!`-AwL$>{|RWb1dRH@f)}X`f=AR2c-n9Fh{W4@u}g=#qPFC z&D~awUqP>SQYgKUI~hxc6@AUmg0Xl(%}O8=V{!z*9S;{@_QvVz9Y>Za6oQ_VIX9#` zkvowQ@AJmpQcmR^T0+WP3v7r1Vu>9dHM2{4`v|eYi4?c6SR}P{3U!3hX?et^l*D#rwpp2B?$ z`r68SUNTIbQ40;N>`8)hK9W;304T0YAJW^w84th%8IV;je}`RbD4w^i+u~B~72A=* zLS|#9yVyEt;i29=!i9EJa%C`SM(e=D7%MujUrM(E?R{*$=&!O}7p`2)sPmnp4GYqL zXxSlz>ICD_#xMla8y&cGd)})u`Hrjb=u|wCx=?ER!{V5aAdn3NpFiOzACTp{)YysR z&5%zeGV-@`u_Pjm?T$(Ddz$0f?L>APM>d7nU$>qp2k>rj&yaJK_BvUGpA~t`E!FZx zvuX=LPLo{dVU%020{F>Cvgl61)ecBzRPl=M&voDBh4x?%eccd(8<*F{lE#l;%fQBO zZO>am?^_;t3@AO{(@q&2={xMh&t`J?&mXGRVTK?dyHVXAQ$)_p58?@YzHY-AwU=Ud z=KYUidm+CZsBo1c99aQ+L}*6x&migFLkZZ=*>^`>`Wu&S2t7Mm^=)N*d$T#kTn@AdrY(p2P=4=@>WR{3DVWK_;Z%eEo=BWard;HuBSE;;bK^_nr$Yt@Y~#bZ8iK6!PlM-D>n#2}K`t zVL!DvcLj}S+I(NV8~nOHU$&I|{;{={_FH|I_wCLOK4}T}c_=xSlGHyO0Xo3f`8xC6 zvPa|;OB-s!86|AmE@X#xFQX{HLH>mfnRb}iYFbEB9TEGL-4rP**WF0S>NNM$pJb7i z_sEUNutxtyR_4d=$eUL0u}Sa4BB2AlFv`s9`8*@3R$<7cGWcy!cT{asL-CXRjsx@B z$MuHCW|wi+Hw}AY&XkLzYAyPTa}u5;$v>S9YFg*C_SVrDu*Bs-i9TR( z9zXs#ox1(tx$2*BNWUy;6rkKtI_rjwSHjZe2bnm#U~~m0VaX=~#LX7cGsD+ai;QQx z63(NlJigx+)xmC$+hS3ppsmq%EmX<0*Bp5+0b)1@Mu82~;Y4zl9vWb-Anw~YfPNv~ zslcShA9q?dh-uf#XhwB}|LG$lv(tA6M_-U3swPdWv+w0xU=X+B`1F@rZ^<91WR34U1cYNkkWbKZ)9jdTMaf?RiY_sK3+--ZhCs48CW{upH>|+?n;ct+05(5p+4ZMM)r@^i}mErfKeu&AeH!Do{)bJ$0JPQIh+b0q zoj^v|o_-|oIYfw0tB{3as&C=y9|)^KJ#=`HquBBIzD0_S9Jk5s__oo#8@+5Rh3@*n zLPMLrPuRHzfshY3a)nH{RrB;4O_UBOFIIe4d>@1=f+`>0Su-S>?35k|UEb}DULKIL zII%ce9_>sl)dw5+h#9--kB|C>c zy_H-UFb9O#+ZBJ1g~}2N#3rs@ghM@>u_U{Le;9I`&cPFpp)I)v2jk6VPVwxM^NM0o zf+JT159A6a^%WE2=Wqyu9~)>dMlrLHx^*;IqgnlB9ycRlj>)Gq&IQNgS2E{v>3w3d z@ctXQ+FAt5d;L@PLGuCvPV5sAO}tIyg$%|Q6XWf`6dcF>4+|n-qk!8MM%R5~F^fc# zd{`RPgr&d1V*a|nB;3P#6ae4?pp;CKSn49#9SnwA0nSIyITF{iw6n{9{o^a_^#E;# z$At#$$(K-;?X~AEOm+&24IMD9|ZbE!#ED|B)Ev&?1s zr~6piyU*+Qizk+eJrl&$qO>T(!8GRMlBVvTw8b7m(g_{R{nex^|fl+nNV*zL!DIXzdmg8YCB0KF>Tw;2bm z=%xy)EoQ(kc$(+;F^^)0jO&}XeT}WiP7#Y7jr!%gHWFkGB|hb3*500vCI_A6>TS~R zy4|`W%{!i^TEr~;4n~}g)pp0w(}-_(XMJVIv5-$8;I&AmDv6r%OC)bGzed7* z;CPFkQ#A3?U<5QBQwccuPD0TTPVv<@jQXO6Wkt* zPyg^jNdamRmY7q9TrQ^eO*KARH=}fQ0m5^J+>R%}!)@+j@#nJvm#2>j9;LS}oZq*9R^u=Sp4x9df7ngr62936_xb@xjj+K(~`0g~3o z!OG0gYn5^Oyth3Kc>u~kVF?85C zZmH|c!_8JE{20c1O@utf7J+4VoH^sq>*Eeppl=Q(zc!s-nJlO9Hr>7b$I$~{>(`@) zv9%Wlad?z|#iMi@(Sa}N;*&`Ol!SGNOSN@P0+pZtjyO zIRtTiF?aadP(cIBLa^>_j&W#NB7a#hYS}#Ug+Z?1l}&BV;?Ks+iOjv@7dglA{J(f+ z{FM0O_p14-M%6+0>)EAeFRO|auKz!xzB`_(|Bs)HOU4ytyEe(DF2Y5MY#$9|b46XU zb&YH1l99+>AyoF>x`&G5hixO0%cQqaOhZmUK!7H{*FI-2S?wen99(8LXrpTLG z!sfaa&U?qsfqv~lCf~Dt_tYPJu{JCY_wtpk z`@AoBicWrou2=&7Bz%riHg(#saPU94L{5Y0Ig^sE84lifcJsz0YxY*_$Mgnkdk-St zy4*IhjUw`N7D1_1EXu`TaZIy>oD$Y|nfK8w2FU)75lc5M3sXCFxGrV!DHBIh<350N z@G^eb+(Spyf`d8!fxc8$gJSgHF_u;X5x!$B*6ib*a4ot6KEhdA`P5J1 zEq6NxYrAform8p^n16vz6XSNQJ`EuyJ7gWvpjSm8>_aHa$g?Xj9PMA==1HYa)1NA| zQ;Zz9^hG5Xv6|dNZ<*%$lGb7u?jACLx{|)uy%UcVaeA6O8&4wsBya*O^R&puMI8^ND$ zzlfsW`lI8yuG65A7x?eV5Bju+p3l3qDPJbX6jDcR=qf!7`=u+d%cFbM95E8s8Q%GN z5%rpx8?PgzXxpK<-7MQpmCho>RIVG_O=ao!hEBmSGPZ8P7m<6-u0xSp;^MoBQJSU~ zFiu%Vfp(RiP`)b%Cz#&*pX)Vd@Pnkb`-cCL#)#R`dNiyNF7p8?=)sV}Y}UnEf$Xm%43ZMhr44q9ITlCsIprb7QRk zl^r$ia_vrIILOi$-0o1GSwreXkvE4m2oW&}t-|Vwz>rUuH+*a!hdek{Fw`pk$gw&) zCRhtU$30U#T3e^fo{6u&Uw5SatE9p{(%32IuwV!FTxw!V`kW0ivlXl>WLQdStavwA z9m~incJneUF~fhSo8^)9M6A9lW4kWCnCWG;fuhsj*m z)V9m_E(OZ+Olq1R>m#4|nV1tOy|x^=;1OVWpAd{$G`{~W9gSyYn1P0!bV%~6*_wW; zpF*srEAoaFKEc2m?=_C4NT7Ic9;kNfT=*X}v(UK9zm&F?4xtYh+<&WL^2Su@#>EPG zC#KCP{S7VK5~=?(-MIxqQ`p<2JPv#^hgIRoGA&O@=-ae6U{+$5XO>7!jze4V6&dtE z$MNl`opwgbq#htNE&9DCsnU>=GTs1wxd#C5(#Xdhr)=p zNvMZ>sLL6iv~X61aN12%=$dqdvZcvb8df4JQ$Q_|2fj?`3wAr+vA5!D>}N4s(=~sq z?39;Y;-&Y34Dm zDay`S0YkK=w5rOcU}sj!N2|^9wYVJ<`F1gO57K7aaMn21dj%Al#J+Og5SEfI2w-z_ z*jWw=-Kw~eJ%f2(9cf1FcL29+*5Y%s_0EW6@BYDo1u~3+E~Q8Lb8!+EJh>T^QmG90 z$UF`Qp`%UXPvMBmu~4CXUJ@5W=L<(giX(?_FoLiOxBoCI=J(|pJ7LnvZa6Pd{oIU| zaCWk7tBBD1$N7o*@ko;%Sj%uEWp$=rEQi^!{e`oJDxSK24O5o4@IBwqp$9jlz9U~I z#N*ftn9RCpot+r0I)2}+pq2dDW21!3?@I4_`=#QnGaxnk(=&sAfT{>&ePhZ-&f`=m zbdMIS(M{@EF5H;}MZU4vA$M{8N*D9{b{h5ucyofo)N>i_vct>jkZr=?t5o`HhU{Wh z9GIMlsw(N-aWAV5x>D1lsR10^%I6Y&(g7iPOlp%&j=%DrB5v5o)cTsdf73vZ5WDl* zcP5j**Khy$8f)XNr{huUi-Hb>e`gvPpd4~ZmM_yd3P8>1Mkn_;>bH&NJI*pBCxPdC z*@ZLKAvr2a6#`5&()Y4m;O(~;+D?B-POM(#(AAYOtx({dq>e#Icf)U+3Pn%c^b&G^4mCiobwWTuS zN?|8cMnrBpf7#})uurekSoHF1KTGwKv3Kb-@*@)Z%PEahvmKU4l_27r9k&~mLMH`H zLe<@|?3BtQKyYY=a5&cB2T!Mm8Mg)S>E+|c->cIdAkTHQ@Ah3!7~)+^?m(E^lAX_F zFzU%P7-_pB+%sF}V3*Y3B-vjdlQ#(B(B2LG8VY_4g?UbBZx=mLMiboTqbkF8EQ2od zKo9-y4qxjo%p#-n?RNkjErk`+wJ`#hH9z?46C;U&KU^~H5$NekN+)LY2KVV9QESaL z5GvOb?00Zq7Y_|j{zoCC35lsZ@o7qAG#xeR{cLM%8G-Vf7MfNonq?bvg)IkfTE{;* zf4Cf(j1Pm*P3T5FQVy!})!#3$Q*iZE>WFbK$hnX(y+Wm0?nNh9CBs(Tv5S01?Q~S= z)ury1B1DV4xXjZW7qtZ3^I8T%(9O5vE5FT_kjFEIWy!W$`>b>99=BZbIRFIS^oNv) z{x2b5#NA|&wD1i%?W&KYetR?21ga8blb*LqiKl8S|N81bRVaI<7@zet<}J*P^xPR1 z2ijYuh1XAI)fugyujRedhaIgXXsM*q+kV)r{n#Pt9cN&?M6Vd5=C{eG@&XIXV*Q2M zQ*AkXWc-#UD+Vft1!Y-t7I3D#y*7v20u-QZ*A4cTXl@}J*6bq++9*1_cxR(Jm9*OW zGjj&3l`eky>8!Rx($1BMgqZ8T0tm*lDSmqOAw7HtO!@fJkVUlc9{J9%P%tcIQgVc1$O9E4%&82cJNyTWp(1k5HuP#Y5xAMpG${- zgwlGvQM%}+Zg%B#+6eVINKh+f&g#F$maCFno-@RFge1`_>UT7&2yX?e7! z^HPWyWjlY?-Pb`6*ua*Nua1@GtDql+kH>UuNg5&*ZOLethy5RLTO!{_^|91_P9Y$?U0X(Ig0NSIR~u)Ueid$<2jdl2zCakDp6q->hX7 zQr_J0AoY~u+;qTPnXuK&I?TE-CB}(B;W*N^744-f{!#p{;At5JTe{PMr67b%pU!4q zonp6?ThKz+wcE3*Ho_-eV7E8UQ0PC1XL6_th2dzer546gvX`Yu$|1 zGHkA(WTT&|<)v}`{Gt_9+?lQ%(aSf$=Dm_qUeLBJICGWRmPWx-zXNs1nadtiUW#hlAY`8sa;p<0RpKQ~dlvRi4i0)wefqT=}K*vCY}Sl6K=8L)NSZ~ZPMI2nZ;6Q;+#-|~y# zXY<=1j0ewFM?H^pxkQ29;P!{Zt|ZA)70^=hr5T#aTHV(`hI>V>h#d5$n#5~mBQsrxJUBixy_Q# z_S_O_trO$gUA+rOG6h0THO5>(tAg@Lq#cy&hyB-mh%)b z7%Y;8uli5-n&Qm+P=@9Oo{F4%a_rFOWL;iRn3GfV1%QHS+mzH-K!({mq@vgOr7|mDBjJ%#s~hc z;#HGB1l*!&Pq^WK%sQH&J^-{k`Aa(DBp;%KAWazx=4-}q>%OIvqWFyw7{a7`v+0K_ zxF?LZHxzRnj4tu2YZb`ft8-{WQOav1r{u<37LPth#n%TL_{&l@m+q$mw+DC%K_az0 z%M&wRBAi-d-A{^t-4$cK3;4&rfQ~`+JP87ZRP@YTAv4?;#9onkPpKDULbE9kRj;i8 z)r0SfQMNA%b@7kjl5YhmRpXc}ZCIviv}{$Ef}ja+=YHF~1Lgx!A(d2Df4~Fc5XE1C zF>s2wA#@F?E5K-`8_`!6;U2fkeX+wm@hKFRa5I4g<+vupCM_a8W;7*G+x2%Yt2Te; zQSUP!4b-y=XPektD2M z_k2sne63tpGk{T)LzJNKuzzF@drf`jzQnm$brwMKNQ)JFNob4 z!MBU=tNvYIIQ_A#ecP2X87k0CrNtE>BgaBB+Fo#n%yMK!fRKfAjrg`VUzI_N%Gz<& zg2Ck9j1_a>G1Z$#+q3kG$n^xg00bv!kgLw=5f|SODqVqw$?R4smaYrvSgeK;Z?&e9 zzXJ~Y-wKfR6>sb)?4tnv=Mz3ge+-Y4jw{7$DGE(TobFTbl+s53uo~GjRQz3E>c8Dr zJ*aED=;iBrKVAoqrpU$Re521-2$RR?&o=WTnCzr3@b(fXxhv%rf6M&$N zq(ZcnAo&c8hY)A!*qZFDlys2GmTSpv>W4qWdakH*O1Ltq=3fB3Yl3aH7TV&5R<}AcaW}H-xi@EL*7q*13L9N za8UcmMOPe8I=Gf7B?f61h18=ju&m%STg|og*W$ee_=I3%Er|fP&Sr8I#V#IasCL)Q zimUI;dz0N_-7gE@1MqhugHtE-kIuvt+-xQ>$WkoGk8S7FYZ@B5jVIyUZZ&{p&p2%GjSJsbM!-Fr?Ho*uYk^)&52 zZb-cjglYl+`7(#5FwDzP7U1o71DbBreB8RVaCy-sh{E(~D8e5$hnn2JjUO-Xl92!fG{?#u-F zRU+zZd4kUFvhjfa?hK|@cR9cj{L|#>x>7d0X3-y2n85aW$el=WxXxy~u*BqJJBsu_ zUTf7Q-HoHsKuc~#k}zA-w(1^)%9+T{Cf~~g2QbQtv0@ow1z8O=M0Jqvddx5o-x7(K zX26mL5&yO74T|xn=Uep^cmVIKk2W5*RF=+>Pl!8@Vb0?bG*#R^ZJlI0s;=n@D(0A6 z##J0M{TPJ@vPL*xaz|jq_bh9%JS9|b8p_r8P44zyw6K+aw4nowk5pNyRdlGN2|@w zn++&!FsX+GHe=WWD(%p|tJj@^4E)Q*4<2T1AKyc3hC4TQQSRb#7}2~k4~XYj;VUO% zeiyl**}6^^74vyND|4g91mHeDAmOBV?dmu}@~T?P6;6kx8*ZNc!YwpByZ3;CHDuQM znFyvbC0Bsk3SU~P>_>wnOq%~1QsZtQ3q)?jpOlbYS3NOl9mw1|1(^asbl~42>a7^;Oov()P+G<*vaeZw2?e-iYz_eP*SPfwGpJ zmWsRg8TN{Tl2Z{x&hPsb;_hAaY;D(nj&WOPJ0qD!`r?XWwH}^0h&=t|0$`-qV`TGx zeNgy3!jGrNtF^yfT|dO=dor5$WB7jL$kkCj?`GY_8as_;xxnu-1e>L^$)wF(Gb4bO zF)$ymSG=te7PxoLk!%e@=onk_BPW&#M#Sho^#~xcyap(^+7HJkT&vY03Fe>^S5VVJ zF}_L$s>J2maibX1mcroQ8Hh}jx>XosF_zDTs)RWcgweon1OHi@VX&43vkTOman%4Jc5N{AYO&F19Xb{o_->F+9 zBWe0@a?_~u%R%Y;j&WDTZBwG{^Dl1NJH<3>?~zaX@PJIIUAfup zLjcm3;xzY*$SJO9#(?`+5C-k}Cis(xh>oz_>bbGdx9t@c@DI*bfo>IqaF6(V zkb^i|Q=RunViRtaV!sJd-u0l_B}9qLIXhx+n8DF}+P4R~s4MMs{)p5FBRV-?_BEP; z*&XRdDp@O80ss3O>MxSV*#j8Cw+zZ@r|Gr1!e%zZ5GY%;33e1H;j|vKFZ2u&xf`uz zl|+(z;-L1wbfQg`A4oc6~N0l3HuB)r-N4N4I9%FHcYK*WG0vtYRV}A8~;`g)D2+l2H{=o0M zGK`AjWtp$Etl*jj-d-YS>w~PFve#mO!2+Pa@v2gf6hpG-o^H6l5km8RIWdF%@lo&6 z(12>}iW{aEo`sWhglH|IivM30z?0Mdu`l4Bot#ORSMTeY8VSGHGi&kTDisf`vd5YI zUS8C;YG2M_fYRySRytd`1=;o~zJ{HpETl6~NuZdg*XVO&h^I3^&=Eh3E=5T|G4@jR z;Wk^9k6+-YIUCj(<&2)6;Rg$D?BugGooE`=vn=m$4y&CzD_?Ov8CXE zhMo`60-ncA99Z+BomW<*1g ztbKp^A`cEpGAK8+r!i*bAggk^-%`KLvW}}~Hx1L&XILwIZk-%OpN269NQay6!(eeY z6s^slN2RFN(p|3?R#!Y;xohN%tjdb~8Hq@&otmvlTB13dUz;LcHUT|95{ct#PsvW6 zQzF!x{+^TJ092`_GgqB~BTJhoOtab*F4*wob$J<`gvBzA%hLUKF7*aZqi6~L0lYnJ zq=1R#i?5exyXGVveWmxPAo?&i(UUBQrFXo zr}I?pX`5E_JF@r3S}}kJAy|n=l}i6gLL-k5l^}y4D>bqb8)RwNC*tDr7VDmX$*ucW z)?S0#`NcZxwa~PC%vX$DWAwSgZIqZu6GFwJ-L01lA271W*r=goYr{g1OpGj-b z=8$pwXz%WXNhTCT`kcyMddlp<@TIb_N#D%7f>JbrOZU0Suq>7~Y)^5<>Giw;*ot=Q ztnO=-I2EL@nYP$}xtcmczV^^teTQ4SLpu0nEsh3cH;00ovysgIhT(a#NU|k$+xzxY zR!l<;jB zAV+E1%>BPWGpp++Qx2Hk)Brt_T4~rYn}aGQmfFm>fDuxEQziY*JMvgR8aTxbfkRwm zcAom@s)3X7XyIwL(9JU}+M$5|4w6ZW`-S;)P8%&i@BO&Nxr=r7FvzO_2 z-UR}ky%dBcp|ly{{DJ$dZUo}1B$BAxlIr?eM$zp{h0(HwTT6_rc99U#7H;=d8q=07 zWJW6}vO+yfSlTKjc(XY@BOky&Wg+jiH4?)Y<<}>(oSbxOy9(@*0m^*_0@>aE1PX$x zIlKr835ywSUcFU+w&fC--X6PfA0wx(8$zz6c8>!R$VwfkH}CnR5jawS0j(6I)Tejd z8p?q#)iY9B)6);JTKp^ZUP?jgg%q`#a2~IyyKX=iS*0$mKh5Ll_ILDUGpeoiw)Z~t zYY6EHX*%|Iq*Ejrzhp97`_=*Pe`Gsf`(dUo<~ac%353DqvRM-{v>pDH2$3kpDA0(X z{7^1G4Uh9N*6LJM6r;$QK)tvGvak(8D8VZzTw0y~r0G_WzMJ8NI@bB%p7=+`0JG7N zMp{7g+y=K(2CMhEM?mOnp+$(9_ghZ#PBKkGJ8aMCwvkleH4nT{CkNX=-{TR=u!b;T zT_nIuS~b-{aWe`emDccJiDdKnD;o$;Qk+&6%!AG&s!vXZ!Ky2+i@9-B$kGu=+>0TtO-x;JyY=nBkKszwvixY0%&# zt|Zgk8<*2`{6ePmEH9=s?Ot-_!R1M`*b6#Q8M#o(-eOCO0zFzHYqsYmf!JKN%GxRy zrvy|Z>QDvGkG)kKddLtx6mjQ^-+7ccvVSxwCC4DdO`&qM-3d8+vx(WED{)Pu5FEIa zA)lx0Ub^Q20pQE}R?ddLkM(>gd!M+(Lg2-j2m_UNNIE&5nLCw1r2pOp2E?sf)`nBL zugb&!BE2Pt?Vncy;O9PQg#vO+Q~%pbQHHTrk7pFqLjC5hZu-zn-2Ko6c#i-mQ$CIY zfS%46o7~`UVO{sB+Dz1*Zk9LLsNIvW^q27)UF+PqVdmbaqa9uU&|j6KweNqweUo%% zO?If=Mhd)9ic^dNMP1oZrM{>{cu*qIR#7+7nO((ZQy3KcYDja3Sj6#BvbbJ#jitBs zcIrY=Y|ixfSDO zHQ9C&EIDN|o`o%OrBA1kht5_vn)CAJW;U*Fz;5TX(ENfem)!nxc&_8;zvRoJw^erf zr$Jv!!YPWvRb;;2RUBAcJngt;K5styPLoqD!RO8I)_R_zY55@T?Cg0)$u3HFS(Q<% z-$IVv9Nr)8lM&5Mg)D8z=dqy$1<_^4_b#6K{o(=?h2$}^roTVWEk{_bC-*polpVIH z{1Rw}Z&0qrIQV4j;BUrIQl693U)s2mowOxR1E;pxnPr2?eRgO2Sq*aoO_ zY@rKi7e{tYLg}!q6@_NIU>inr6P5M%T z;tXCP$DWydOzutstDL&#s*Bd95V3dq%U@hm?BY?a`_SEOj+Rr{>M{?iLR`&guT)D>JF%w~2{C<|# zJ5CMcW19-yL6@uw0a}SpS8P=N8Cdn}kLTZF1Ogr!{VppixaFZYmE-y3s5j2^*JAiF zthMc%TYYvHS;_|s(V9s=aSjftHB0QJm6h;}Xll zavo7bU_z>71nC`#_q>q?xM8L6fQn#CB`-1LF~a$hQPlvOLkqA8&c2lDSv5Wj9oK0$ zl1Dp~eqcV3YyK&x^k9r0#NSG4=SlT^n6=@E%W!Iz(l3pt-y!D;aJx5j%?#h4s`yb* z4mvUTN@*!B^t$&)-go+YbUR@dsEl-4rL*1{iH-SN4wv6T5lE>BC$U3X3MYnHu-+pR z)+UB>pi&L6V0|1%W(sfK`>~CLzA%@Oz}rh#P7`91#imVN96g4^2a1%valE2#kumRe z$`H*AW6kyZH{<_S#;R>&=<5CmvAEK1l&AHFP=~;_Ajiy9+$h3Wb%P@x z$+j)Ic>)>?PMyQ2{Yd#70kRE!Lt*+S@N}8G(EDyTBNLsc5IfS|?Sa@pxVEA4M7%4K}9#M5@_=MY{4uSsXIA74kC5B+(zD7=J1Y5U(-DQr`8lc6 zb5t#{q4aa7%pYcCyDAZLGX6wi9+}I17JpHc;k?A$VCs(BLn?UnLzdK&v(S8q#E&%0*T)mKLfx(-7L@Hf*L_dA3&BB-ah zR+$}#S=Ks>2oLBYX=TPDL_FU<7>Ksx`?2%REx`g6k>9q!``i={)Fc7jucGtxOJUatT_U8bP^bArdi`gH0?W#=g3fW&`)hu0)LbBH>`%B{oK zD%>N5i6y?j13Us>M%!swNzoTp!Ya95z9o|hNMSKB7Y>iJ{~I^Mcv79$sgAC{uQJQV zaj9$x`my%}9SSXX0?>SwBj9rrurV1;vcN~yPHG{=*i25H08-O*jUx}&>svqLxSXH z7+EUSL?}NC>#wm$3XGf@z>eU5LajVP0Et(2*P69tT+Foy6`_>FsurvvKUygdU+mQ-lR{7#J_deyj##m3z4ie4B zVUchx>f&+Q_ryV%yd)ptw^^OlR%caNK-$6kx}Ul8vrV`Ep39o$u4^{k_h3_4p&W6g zu(BmJbrpfN+hr{}c3rt0Pe-u*F@6b z%M2pr>i3nxtx&dV?)Y#P=Or@VNLrLs>{OMRf4hNPs#Ns!o#+G%BwrwWWmFbaGS@BW zIS{RxVJK{z?KUb}8zJ~-Zl()*yUEBg$-g1$HQ@6AYF+(rdy|1Pux!?PRvCt2Q%id* zYu+_CiIQV!jT}(S4E0wkoJvDs@2fK(` z#bL@pIz6OC58!*SFeC|7`4k7Gp$Gf3N$5QnAl^s!gz>Y!7KgRB#!&6*LUy;l>V|iL zKs-xV0@5L#Y4VRPeJjf&FLuV6ej+Dlnda{){zJM&empc3QPjk0hG2UyXQ_9T3zOnP zUF6f1VK9Z;cyOD-cOLbO_hZ=n!5X6wk3A{{4n|wFnB^$%^BIAf(Q8e8yy_xq`@zfFJt)%c0}VJ2RcPCF#%I(CC8 zg`8ZCF9FmJj_JP#RU+r#db0W?!}F$safJ;YSY{Cfw@ZjQjJtH;c(e6D$PsuKIY#IK zluH*I_eMiYasI~Ws|2<* z!Sklk=l=6OZ6%Verg>wnF+!*oZrp$eBo-%v4ArbR;51xq&}VV_Jv!dZm(EU9TEfpgN8CV;eeBh&+gY>Xc)g9j+~@%I zlI-sHT;-OcP;tGg$hi4i^$MN&pw^lV2UkY_@%kuBRu>iPB>0eM&1Sh1B^b|W;kfe_ zY|EJHi8XMtmQ2OeA4Qmi0FaUgsjq^`9x}A?k|Cs6F*StUXaY7;Y zYwUp`>2DKg_oEyx$T@+8iEM_xb>lh6-|Y0}PJ2C^G3OOuZfSMB)OwH)6F<#6{PX{E z-svY?wHNxYbt@(rRYBcWZ?wO@@xz1=uu~e<#$0)Q(VMu^b8BkMED&<%Ys9}=@0nPnoVIVyV=?^?VSmu zMMn-uy(EN6B2;oYJfHJ%V|XH#LRlB%j)xTIK9RFBOzVu2#)}I+Ukmj>>iP2+FoRaQ zKKt^7poj26urRd0jBVgj`~k2&Q9)a>^ROrR_`7S&h0{}o>Cc{@fqkJU$it5^wMwU? z7Ug5Yj^AU@_Y}Esn5WL6mJS#xTi0jXVc51GY6^$)W6-Kg55!461rCaM}Geu zcBIC;o}6$2NQ&o7^+%9i4E0)ftgd@URQQmt57Dv7Dv*bhuX*s71_!kS7Q_v@K$Z4mU03FF~~qP{iWi`BnPc*r*G z=|*;;`}8*dHsUX9v1octLdMt(e+Y z70>^Tkj)_LS=$0zP9Ypafh_NTr8W~`m;$&hSpZX%uDhI_RvOW(MY36B`R#7NRLsa63d`zu7i={oNmB;_c;bo9CxP2$6~pjhx%<{UfbTkpsibN7d>R{jS7gA zOV3EGi@np_V`xWnyaso$rCY!|nD5M%0zAc<#sy$aKTs_%3oBDPNqj-0$0h9F&ecre zhtXY9KcF<%@i{lnm?koyBIzm~D9#f9{7^IVjJMhs>T$Glm|~6uQuZ?LPe|%J9`NGI*B0Ip|fGHKRg$i67Ul=UjnkP)P&YN3txb$2P{B`#i zv~>`F|CP9(f~SPNlH&=dsZOmB^pj-c6#V|vC3Rxa->x@(S4aMD$KbWw+&&|S{2~-~ zF{Ql~*+N~-^gcyRL6qV7rT5Kt*esQd;Ko_iIf=InN;cHZyj~{UV`1~yDER5+Io0|- zdBAdtarm-U0>TM>Xu`88>4SP#x;@lf_dCgk-KVYJ_ccct4T$QC$;xFLX`_YW_FF36 zD9#AZ`A+ro%w3Z9gDSoz-0{I2H@m%_vfkFEFBUL$?5Q%V-pH$I z9j@#O(XNto`Nj6{=Yu}h)S)`@wYd1`Tc9oIvEY%8^ZVIBZNHI;iT$&N9`0xRaOeJ< zl3(!))ekK57oUJ#*7*4I4}hoYVmCKtY&or!DCE4?xOKWDj;f(`8JL@%o+cPKYCp1{ z@+Pe7e4*1@JN7=)s*!ZY4enb2^5xt+XXj0wW<)jI@&nBKajWyLdN!lgNK;f>;k)90 z%X!6qJoW24Pozy=+)H-1*xm87WzjpCsnW0c9l86Ze=wN9GNn;6&WM`)mFTORsEmohVx@JR z)K)<*Wj#j#OaW5I9>k=>A%;WF1y>H(2`&uSa!w3zw_@WArQA?AwLeiD=ou+UMK2zxxHsN)1n+HsFe!0TnJ8 zK6(DkWwo~2-PVYj|SB79({Vjmb?huxg#g ziR8+0M;*VF>GSHz%EB_#{}!otRNo~EI_0d-`?bb&MNKEIBvh8gYEREMl-)rAiO`##rFbsByBjyLd+GhaL^tuaos z*uRt6M3h+Eri(wSinu7X?RaMpS z(F%lux^gSI{>S+=n=o?~COZ6J197k!52Pea>zwKwNRBxpHtfT^OO(%mzFA)ceAbqW zQ&v{VlCfV7?b}a@9DLJW!gR{7d&p3RRB?bKL8p{#+h_lc73z!C$+NG`|Ib%@ti(WD z_{nF{quOhY|ifd3WdMvyPE1=DY9(Q!sh8h~(9$1l+GrQM<;yr8^MqfXO?6MWB=H#OI?eC-b!H zv-O7yZ{{ua^9@?Y3A=V@0B`d;QK!*+C;A*0JpVWN$KgpVKVjhQApX!fXM0|~t)%%T z_;_tz=#T-0Shkw5nn$3x&5}ID2jv4p-gna9b>|#6|8A6{xMiqY;&8*WSFZ_HcDLud zsKK1AePGF1?x7*PMa-V-QAt^h=xxN=S^Yr{SnpTK?qsr~@3COo+*A95=7v(ji$~$F z`;+it1>;49R;Ww=?piQP%5Z05;`iO#I`S*Vo;mAhoNPHdz(Tp#Swm?v4)|KplGQmI z^C#!#hxWgs#O$4W6Ixqak}o|_ubM#aWgMD+l!e9vK36<7|5Da(g?PvHM877`*iWTZ zyG_Tzle>`<#D_jui+k;$Tuwe-{Y1)Yiu8RA_=1tmEP3S|tmQzb&77$v*AaK+4g2=vnpD*A2JCO>Epk zM1DHdB>Yuxy1yq=R}xcl%mZ+~wcH5g$-zc*DfIiX*BpbzWZ4T2Kwh)hZ!a~Of9J=2 zjB@mC_@4zSzzJY62#<}L zx!mO~ogh0qTihr`Qk7KJF0Yr>ya_N4T;sfHF7QTD$!RpHS>Yp9ca-4VOF#Hj?VfpC z=IQQWRf5AvRwh?;3ZpU-k6)QIw#uZx_iZ8@a_hG8o%d~}cIv4WVNcmO)Dv6H%MyR< zMko|cDA<{3k7S+s?iR-!0x4v5WH(yV0XjzSahasR41edb23H zRaxnYhU2*L;HY!n7edpY_jOUP{;j+XC7iweP5jim+*;qk^6b~%?-Akma|wC;o`}Zr zEJmwe|Ba+`9djmadRT`*BT;R@JLor1IlG;xa6MEYWV~`k8RPpW zy>YPWIlrta&!p$6Y==L_J`JChq&Rvoxc7L?S(ZMTH!M&Gq)L;RX_LT{k~>gdFgGlv z=j3>!%mB@IrZ(l&Tl_gzuvRiA^cw+a=Y{yE4LMrb8-zmIVbsm#wr4%y7g5~fS%@=~ z+3|5@^5kLD0-BO5Ge_@>#aEQa;OTa&cdn2uq2+XNpxFO^?Ga$f@WwlA&7iUqt)GVC z{nJeXl8w+G^N1%s>@IVUG;$ID{QgV9KeiDm(cHJr5oUjk#r?!IEH^!VPHa{xDAha; zoE?{E@R^0Zw;3rpPz}-04!tJED3ug4TLQsL1t76mempa);p*6?o>;%XbJC}{V6)|5 zb?Zgzy8bbT&YwLe&-YLZhOg_facTz|A&3gNnUYppXH<6J`OzjxXN`K4<~vAc^G*+k zutAoRLP9cFzoOMdx>2Wa#^!MGZjyYjlyrX>J5gi!=guTDAL!kza{B0cuVlvYc zQhX)DBwAOah&`m&7oP;K;3--H^1F<8Jm4CK7B^*uS`!5AjDd|qPm%rJ?6t3LKkVEW z2$AOQulOpC7@(Zm-}H#qYe4&^gVdL?GG)JX8g_UxKT*(J7Vs6u3e4^E*kJV`Wy>Bn zz@eAC^N0=FLV%d~j`prOqjIzwB)8@S_}q_W+-s~p)Fs~migY+ANtq#IlKNf=x~TSz zFiNBjV2wsar;!BQ`?|4@^NGGcjT7s17S{mpRtbb^!FLF*gxFd)U{h##+L7rE;=MTi ztzythT#8EAZo3F*oO;!H1}y6-9Ra&?1?sfv%L+F?yW6UFSHxKF_MKgZc?J-1Xsu~8 zmlm&GK;OwaJwI&ArkA$WOmtW#qPYWjN1AftmhCzgS96k5_;+$_#p%zJPQ8 z^I5UG&SHwRK0wB+!Gh24%!I?mz`$FJ{(CWB&Jw*zc+aNJDM1TBwr=YzVOU@h*?))f z6nPoC-Va^&ddR5K-DAFNBYMHMJZ%*ydo)5yuk62nVCItDe7N8z?9#fw+P_h_%lTH| zeen4S^y%{1ak@)dMwzgJ3X~fNF4Rj>XEF!R1xKiJgS7qoEqA$Oj{Z+u-yP0&|NV`c zrB;X9tF2D6VhdGN6-8^*h?;Hf6+322Yg2nftEFo15yYxZ>`koNGeKmKC%u2;`SyMu z`Qvj*T(0Y#bI$vm^E&6ePUBQY`^Sxlrusa6lZ5t5ilo!+>ja>8AKrpQ6S`tS&Z}tD z;8HANv~II^=@|gi6GJ%ZcmsC!P+fPtE%D){X9XDpEArK1yu@+UauVr z;3@Ij*)?#+`GlrfoUe=~A>4`czrAv)Jo8Wqxu2omX%dXI+8dIQcu&iEuMeiRx54=j zQ;gEDIq_fPukfdfzA1wT_g@2DgI~f{O$Sh|Bxo5f|GeBYDPCkLx$zHc6b%~@4J1l% zTTZo9_iS4%0?$`~g8=W!;pVV?^O{SGB*N2uA>uKJ=n1|ZvbGXSYJ-)jD-&~2sYCs& zT;DDwj-NJ5V`oW>ny6_zsFt`xTP1z;$ZJZIZocgSsfA2N7e#El&}eWUdYv~@-uw4b z&x#NL?U5HQ;x)gzS1=*E5V$;SZC9q()fyp8O$ zQxXHW_Bn16u7&Ex)X%26XHA3{`4>nmrMBDqLb5gJg3x$>?aS>v#JF8FZY{%B9Zdtj9;(8ov6=JT z=QRpTB3N^=Y<$C`;5)VBy}$E-<>V%N?L+QQRftXDZ*zW%QkdKw32`SyH^i#NU1%}l zbLmihAXnoT_Z-ip&wgT%=1)ZjYPKcz^~I$l1-Ukps@~!;k*MQ_u4592gHqbVzeDqj zJ^wxFJMJ}%1IXB?0y|QFE|?<{2-$02SGbNy4dBxk*nX-10v-3Up1dQz3eYf5sLdv}-c$%#~lUmcRn{$irf2Sd9pz+*~_>*3%mc~9Hem!Bp{lO4ym`te)y~TBn zl6}i30vvwGV!psrsY3tsVq1WiNJTgk=bQfL*meDy>D}4g=2jQ9m(Rn5~SW$f8O~xuRfY{TclOKN7dWy#DI?6_laJtM(l*hWSv~NHE z)mg9Q#kuZqh|%RyOig*o7-T7QPPmd-zF4ghYnaCgl&Ku_5&Q|!W)El0iY9Cpr>ZOF zpSZssKrrP)7k!5qq3NX=P&kR&b(8F4Q|HbD0cTn7%bj*(_&2g~4X93eq@lfY$)3CC zegk|SD7w-T3J0DphW5mkwK4hkLQ#Yd13Pw}&3gf!NxE25L6P4tSC(he4(yPet&=uH}z=^Ov@a2XtgrW{~pe3 zIXanFs|Dg*)L24zTF;EtYUsp7yNBOj^;>DnE04zet7J29o&wS~F`b>n^L=7A&o@H- z@fo1$%d+Fu1{)ed(nsyz z@xFsH0jD+`KRdjuY)3rr=^UV$O%S`jT}12ylO16a5hN3@9iSEoS@e4Ix^c%J;%n6E zL_<$>2GdklMIu3w==dMJDZ`ZC`BUxsfa4Y_N~VxBdcUmL&TsDh;{-I*f41CD_$HuuvGE^p-j#^a7{dIAEn`2@dOTls*!SYA@i$k4pe^7O8689jw z`Xo|%P_0JGlyd>#HSS25>F|1Eu`(GPCZ$>>audAKZXXJf&3Oa7W1Wb+)vQ9!*<$^* zk3u!=0z1uZ^iqr6=m#JVC&A}J@FhrdAAdOXZJXTm)VUHa_ryz*N8VSI+xzswZy;gl z{Fd72{=wpIr`3fSYRPQmOvW{Ks92wej78b7WB=C7_N_o}DH-d7ltXqQ^Kkx>rtvRC z<5^m%=Jl=JAX`Og?*;!OPdTGgyvL74mv-KV>g#+R!To;w)uCx#3t5aoZnwV>@waA? z%xUMhG&q?8N7ZYgE|zkE@e*f`4J+Lz6}}Ra3}u_zwyx9!7QutowTTUX}K2Y;UIG@%OT1^W3C3?wN?lZ1B$zS@;JDfXT zD5sqN+AZN9GkDB`es?6AFCG}ZGZI5O~u{F+wgTzZtityZLtijh`hfeeN zllrs*b^Z{g2grUdpWdOE_T+svy)%KB70ZprzRc5svmnQ&h@4gFnOTQ2W} zIwJXmn%UKqX`9hGYV3Uka{bh`!i-%mZxDs3DqjGca7X0mD%y)XOab3yY?J~xv9ZmD z=}bfD@4zQ90N~_ryI)+*Q{I92-L6sIP)ztdkZ=%MS^JvnVcg~=7GTmbm@{96DdUjP zH>qfc!peus5S}{w|04WG1T4@7R-e5{hWnvx(a?4l#f(7kc59E0PT;$6VKlH=oJLc)Jd7Btgl?$lc0B?Hc1t9F7@)WT*n-CgTs?Fc4phTxGmeFwt+&rXJ2(N(1O`5BVf z)FiVM3&Ydp`&@vUXY>QlrHS11z65@kK+`P7X=*eE>8J90^Rd0Z2OiKUR&j?$2~a?q zg*WZbzyM%9%7xFCLqRjP4Fld-V|@D>YXedetCL+N^)RnJV^XO3twi&*YIChJ;af^5 zL%0@hYVlGk39C`z+=u2tcPcgqZi#cJo~{9B7v2HCCqWrkVAdzoN8kYwv>F`4X#UL8 zbxQF=j}W^MZ#jCr;*QhGT!s`8_YQ*ZLTdEr_y-K1Cr7BnZ|=ubsa$nVYdo1*8@LkA z_@?RVin-gHwe&2l;fHD~*c@&^nM`2N`Ec%lTSdIqdFQ(5`!gmJpd5Eu+-7BOQx9~H z7wX)(;-0>HI_c4}{=6e#DRxBDKROoK^nGQ)=bR8d0SNryza<*X)40(2(Ht6In{seB zl;7=GgV5K!$@3OdU~Ni3rV9l=24Jm6mGceX9+b!WV=kJBN2$`JL9Xq+m21J3b7%Wh z+R1t^!PoY&kgWaP{d6SPL7Ba5+&ds*E$0%6Jg-R-tIZ3V#J`XEXE5tO#hy!7x*Up04g3MM4QWVA1c5r$y1-jX5%_Zo9*wj(`Pse6N$U? zk+7udVZgzIUhEA%KAv~8hD0K9eK)_l=J?>%m8;K{7BfHPJuu=l1%k6`kM_emDD19B>zAds+$9$&DGE2dMoL~V-NFVHO=)^#7$g>h( z&G#*7U$lnMZi=}CNDD_QfGx@{IC%^z^~m4VgfBTq-#c{7%Ga&;e*?7++~v3prTq4J zYl=!xIeHo#IOUMv+u~aZpp>0LFk)h-zCT}!_HtYspBI#%72ALDh4{ATq6<5EZ{E-9 z?11RI%g|s-F53LWfotj|-`e&ot7*xl(+2_Yd(WnY$_-r@z!aC)US^nS%k)NT;Rd(` zY~B>pfN$LXs&&nuIifO#)uDGT17p3-H*I7cl~KJ4Tbj-szF?^6aW&5ya~;cxOWyz*pJS*g7s1odtA1w=>zmbHv#K5w^pQx_% zEh135jhsEU#mhe#v@)7uK?@Txt&_%;+&B{To|3;{up@rU-ZF_!u;o=U>pzX!N+4p`}0EK$>Y^T}7 zqnWE6gLAQMY`)me8k1V5Xsd}LPWw3y>(P0fV!$DmZ3Tbis8HGN#B#P9<5o3W)--{X zHZR<%qNj-N7+YsH4aB`);xZ2SR1 z$ybP~va!;Hw?Z#O5ceZxdVsgNTf<{_IoyHG=(=*j#b>l{(z@tv62*#W!r=7H*w!~3 zW`L3x;SM@EJx2bVt>p+s;OXf~EEB2o9T=@d-RQi~Xbc$4?VGYq2|wIf%vpDue<{A_ zUyu_F(>H&x<8GSjd1Opw)cj+mQ=VR}JP^01hZ$`**q^cXmdWmSb=WH?AMBA?rk?;` zE?0?Lb)phD-O7rdI3Vp=;3j94-jEZ$&D+zh;WB>9WO4!~`FTIoQ^ovj{GMTWe_`kS zz-bzuMHg0y8{Ufp}G(y?N`N z_b(pz?_=60Xv25r=_nKhiE#<%?sIK+IYLK${$E1N-2VyKA~@IpxEli&cc`3 z>lFNZLfG>!k|)QszEj`%Hy-8ptHa(E^_1TAwlw@G*-k7pT-T-sbnu)EBd)pM;p`)1 zE8N=v7l=Z=T#R(`wdc9fH@a=K?(WL7Tw&=LMr5`wNMwBOOc@B*Gb>}tYrZ_8cA|InZEzyetA5AkXMby=m7k_kGrDBIdGk z`)g3K?m4tLC(eT2q-Uhhxs}DugD#?H!3!SR9(4Y{ck(|nlMZPahOfpxJl6c5JN&<| z@*!Hn94((gVq7`w?advPAwh8bFA`BP%Qu{W=GlyyT*VcQr?(s}AGu9%~!$J{Cc}0{R}SW(vNKZ$jLHIG&Xo@>@&H`+ouTN}MI&s^V2GI74;#PkN#k zl~{UrG?A2#rwYwJ27&uWu%vNG)%*0KPuMjJN^5pqwGyKk3!MDV_cQXpIIIgAl`FXC zm-dTHlNNtsx>uWqu6t!lQ%8#UyDb4=jhYk+Yi$#f&d;bHu|rP8g>TjeaBgxF3-9WRjHEJ;;nSlL|5m%xJyq?mVAS6%1sNrA&ubpGcS5$ z=DqqBw%g6+RQoSwP+gx3Trnyk?SzGk?NeNw03fF{r4)>FU2Jp7c;=fWCj1g)Y6op9 zo+{3XWa^Anig70$$IcReG~lf+(Ynnw`dD#&^la`-;4(ZJs6}%5pKRI*23ZbH|CW1u zsZ1FzW`Nz%I}ZOII9Dr9p_tDoJUMu;Yl`lP+3kL+Ov;>{k@C(ZYqRzsrWmeVoeZ&} zdhNeWw@a{WA0*tR>Gl7S{4BH4M;GgZbW{mx-k66aW=C~FAc>`MhWR_BN7&*E4|(Kg z)vp4H@s-{BcfuY%dI|HYh_GweFnFiZvc1l|`4lLAt-cW1cjJaEa3d*kjGgUE;pZqp z)rHjT=q~4*teo-MZ15)aSYN=s=>Z|xDf!=aWgXHI2(cAnm6he9n}>Iw#|AI{Lp%a& zAra!st5N)5)8;6i{oFA`VDE~Ulz(odV+h$qh<}M_gW-90Y0migMYkzs*J296vfQqc zukgvk7bMzJb-@u%c<8J=ui87sFR2D4P`?Uh-rRiiHCb^B2^S%fKlf&tDC@JJ@h zZ0?v{0V~C6f7GhIARh{!;6psaFoj;5>Ar_un)YTjp|Y836FQ~SE1#B+yUHv|JzHdN z-(uR%PcCP#8i*1-40xi{VT7{}{c^lAZ}hZb&PLBLY^>=4DB2<-OQ39YGKLKk+K7Q6 zqxaMOfJZFy<+)uFup(u0O)v-!3Fv<3_gsy*;t!z`wiH4P5`6IlJ15r0ymc^tDm?EJTcqgzB`$n*er5ckSAjnz7z zJ~5%ZM{%V!l1tSa!rFA~^O;Ou_p zTTRDlM7)1Q$vn!&y65`7kB0k>1l!&Pc6Ytw*6z&IS^eMJ_DP_tTvPqW-!<82;t`N3 zBMIVd)ItoCGCg_R6z&HF$3$XSoY(#F*jQdihs-XIdd%|pi029}nqB%wcW};RS@DiU z4EL?I-a!T!59?x3sgG{DJH$BBK~#i-ZKCY)pcBurgKT=>ZEgu~Wu^d8>5eb{Qu`i5 zLUFA;h%Je()|Y8^_C15wW#NT#k6GusIgXm#5fNEpf-btj5`eaYK`F0Jj27tR6%=Pu zT9%L3fB%N+ z{~H4TBdODAW?J&IM)F4^c~SS<*vlj3Rm*V44LRYUAA-N)OZmOxk>HrP_#K{d3Cf?H~9j-h}_~uqPK)$)N0>!C3*@Fe7%*q%hT9>E#{n3RNjuuik{Dio`Sk|JK`=E zFpc+Jc-Zl_Ijb^od#;WGu>DH1=G?7Jm+d|!&muFsqx~(Ras(rboPLy*LRv_r4KWEf zXa+m!Y~42Gf_uI$(ol~%3@xU(=~c48j#wyuX)n>rdpjmv~Q5daS(T6wVDTJp2oSL8JynP1M9kk#pkE7X* z#j_KIT;*dQxlty7aP+57_%kNw1tRPy0i4G+K;W_J2V|4q&n=cscMPq&aq0FSDvp(W z7fmIEmhSv1r^iKaTcpmkYsA9rn%3CTFJ<)r{Y&`DTZv0nJW)`2j_vlkEmm4xHQPaa z&Ac4!^rWm4@*MNA?uB_%3oD3H*z^Y^Z{n*(L+ zb@kow9fdY!uk^hObw!mtv!&NFvb{Vz&4*5l?p{B2l0WY)WGctJ-E}F`ywOv)$M9vc zvO}$g(XyFfyPrN~n;D=H@WjQpanznL^;_nAcl3)>|DbJ5_fPiU!*4k~kGf8VYgegM zm)#@IHBJy_03GPXh=HuDM-`Hg?Jg%sCA%?i1*mC}WA3K-){V04^Ws=7{^Sdf)XOXC?wGAQOQ>cuc)fzXopptGd z%enDA`;n6DsN;rT&Lz1U>9{rD+nO{rt9B)le((IavT_kof^gi{3BGr5ap1$TPjvzG z?-aa-mg{WW(FCdUFDF6D+UfbrSTp!tB#v(Qt&7a*hd)!DdWVj5V=st$mL*5F7n>6V z`Z2mo@lKtA--_yy>8srkyHx=9QGB0~kNREu8?>3UkG$1cML!{VpD1KT z#tTIE;Vypqyw6%6HG011i8E#kah?X>i*iJdSA4`sC0%<~9Ad?pyxReaom9J7NXj#CMH3=#0QR_pTBsy zpMEa7nzTGfdS@nI$073B!cq<~ecOgHQL@Tdj$JNg-r2L?$HcP{)e9aR(c!Z>Vt22p z*6`bzsSX(T`H_z+{Fk#X;|*qv*y;Li|F^x6l32=Mv*m}OAI2Ei8xo*fafqjsauq;1 zRr$oLWl9~hEI}?O*>WmeKC4srJH!(LQ@RIJyB)&n$y#spiA0rG309naMV^u{xGS^z zGmZzR<@0n*Tde!ejEY18`ZZ?;^U7gsR3JC%qG& z>p5gKQ}jmcYNIZ_<)k={Uz|z-L3|EKonAb*Uq8nDicEPI&`?L1Y1t&y)3-YTQX?nd zHJ08ZTYGfO8(4%jiBZUfW@g%bKMV~O2VeSvOGQ;8K4+=t%jiWno?OI49k*b3>1jNL zwk+|Is>y+?6MSl&u@9bV=t@W)7P9TD+k#hgRwoZ}^?w<_Vm|*6c|7!kp{CS-0E~a) zDNLf)l$t) zzo$iBV(w_(P;I2wyTKRIf{A*9a7wjkRhJ3o@)CIrOpt@vMqU107+K8SYQ0XGu~8#P znGMdN?L2^%dfa4Y#_Nr2-oD-SnT}%`%jeR5ZE84DG{vIP*0X#7{cPuD;HfNhJAiq! zK$sk7^Yy49$c&6!cn1gqw-02Zrfrrsyd3=@D>zP?_3bxzQR3YGS0l^LfypCq)L%Wi~yWoL|VrY4wnMgsT!@qzab(W2wZe4j?@n1sBVLAQ9?9DD95r(?E z?Gv}anRlfgmT(+$^~v_!VY~%-0vo%tR5+`#CR2z3d)A%!Lb^wM!&DS=z(>3xNHO(@ z%|Boy&NHR^qGe2GMWmn{1@jW2yNMr0d8`QU37e9-mhpLKNyLqZ(E}9=rv(SI(D4*P ztr%M4QCX!p*@TY>@NLsNm&3S&eB_jeoKqB}VZ4|wxlH+h{_&wc52bH(F8oTMeu->0 z#-TUXQo^g2Z{nt7M!2qgi5TxyW#W&uSF>|6?#&@QXvS+@VRWfwp~$`MI&YSebs8QQ z4L*ut5x)4v2(MIB+FZIJCzE4(@+G+=7SrIwW7!Mb?u?Yj3%=XMp~$m6uXe`yDHkGM z<{EF5Y8OKU!ALgN91LfF7nLM~>_ub=8?VDoY_g1J-OpfxU3*^}YQIsatYKjLYnbh& zP<5JoZRg1#pAU3_pLg<{sg1Omo=rbs&B~KXt+%>Hi() zLjHhsyeTD)ea%`QXzQIpCj&i2#NCa~L%ymUFg zfBYe4zaFtV$k)8ffJOBMUNI&FP+b|k)D)wZuI`Sg13HGSR+K zra#`=&{PWBCse4s2YGOBl?s+~1+EIS-0*yIP-tkkxH6m@enCA|V6S@AzGz1vSb?~C zi-s+jSK7u)+aVmT^z>*WMXAlj1)-i+bMs_-qx>y?j(utH6BoNAIP|k4-Lfqs0$Q6H)cng7`+eh06{qgbezrQjI`+iL~M^@b4pCp~S0i z`0UmxVZ39h?z@A6{ZT1OmmQ`B7nM3Wa@&oL4x#gUgkeKqbB5jV>M^2;ci}ji+gOw0 z@!B&vISUK6;ev*YPN@l5Y27ZbL*<~Z7`D_(UEXcogFV7~v{gWYL=4^mQnWvxTIvgM zigDrW6yYU&8t~{u4%>yU2rR_@9jTNoW`7Iok?+hPmrW; zTIVT&98^9LlOIaNTbh5^z5N9N#9Kx|`GRxvkMcDS7Egdqy#B|YW_#x9w)1xq7Ut;< zOH36=s27s7g%=Ze9b7peaz-VRz^my0BJ8lyJ){{Md8Qv)1a$ADn#~U<5>%D8yQm>I z`2>0dzJwcP~QBU4csB@Wi0V17Jff)ldAQPHmnBATiW|n(QnLEcMAo^8{IcPT! zha?u`Rcx7Q79y~HHn8>j*(I1VYBreP1vMzQ{~~8qtvIRPq>~HP<;%)oAs7PXC1kgT z*K1QvbPKiAuwo8r25~LML&_hn`WM4BQ@C1BHox@ezPf<9d+ORnwR3gMf?jTat~}-) zP2Y8AYPw3bJT3Qm+RP0>n@MW_DdAJpkBN2yBako3sAJ>joiF<0G-5%Vz2)2@80 z;_}J#=I5=f@$unIcU@it1G~P}%XMP(`KS!Q)J^8Fm^BVeQ@WfpAC&L921P z$G3NPl)7g=2Ir_!mfpdsIF&ZA{8~894UdvlW^29lt;~!U!XA61&T|j+;87Y^2)iBoa$n-f2#DDL?+v8?Om>w?oN$l zKMF#(cmsGLBlnnD8KQ+aXB#ToAF-~MYpN^trH4M?Y%Z=oB6YU4VLYNGL!A#KuFVS- z^6uDdn(yjWsC00Z&t_&72XP>$x@jD7e&OFebKxyni?P)Xko`GV>j|&iQnH>j3HOwd zD)f1(-)`qYQ=eCCsRu`5bcoSqfW4cxOW90|jDsN?>?DcvrV8MCRLZ~bd2eb`a4LU6 z!|i=T%4=Lb0l*~C#j45Ts=NYLe3(2S~rNSy%b)y}Ggg~YA6~}?3e)}#3Ugt(v zN9GFan_NY5HwMRtUkZ<2I~bxdE-^>mA>C<~#AUuORMgFP-8jl4zn$27lG5y>xPDrn zF81cg3o6|Z>H%*n5)^S!ObucCg-J}n|Z-D33bx;6THWwJH-FR}4X zyX`N`>xM@Wo53%hv_9n%g3qnf_}uUg;a>~ZcK>)^y$$}1wZ*4+2dG~YJ5T*SGB?Rw zgm;dLm1us4C^EriR($MQxdvKX46m4%7eG;|^Ng8JIa*-CgJS2!cf6FnClas??sn9$ zF}jDFI`BhmoFuiny~;9Ef3Z$06=L-@W2|JnB(zM7Co|g0kv+UPgxCMF&{qUUDCaY* zwcQ7qCg0+{sDi~0VjIUz-u~x@saCk+!g`f%SEE?_BA=a1tk|SOmF7w~O_`7EM19M9 zrEu;i{#Dw?)p<7oquavqewZ~z-d({(L$Faw1w>pf%IX>W`2-J;vQl`g;p&fNCSVcv zhJAw0!7@H{W+2IeRY5epwP~yTNRuf1cQ#T(+c*bWG{HjN{mY4S1P5NG=r+6)9R9Mn zW=t?R{^uWlHku`2m*CIZK|x%sS2aFGO`NyV>@!uEWI({L`N~<&C}^r{t#=}nss#Lr z2Y6XV`W|y@e00Vn&7uGD_?<4{4ru{H(WQxEDH<97`WQgPWdU`M=t!6*pu>$I=lL^4 z*skOwQ z)2wlKNb~6ayo>mi+{hK!%^y^D+jBEt z5MIlq?~cSKr#Tn{fEiCo$AU7*mC+ivTIERGfRt^NkNYnK+Lf)Uy$*ccUx~d=F1&qU z9l)0Sy|s%yX9b`5Iz`T)2+>#FIRG~^Tg~|*{ohXGC0~%WDvI8L z?~qC%u9((f_3pAiXIZM8#vcmPcj)!=dx91RgL2NXiV=nto=Q zOQ|;D*T4v@Kymy6?K^ckx`;Zc^2Zw|^ntJ&Q+N1-sDznYB7U;siFCQA^q^5S=yk%J?9UhGYdctBHep*%TO*qBZ`*r+2in&$^v$4D$ zNTqz*uZ>m}3MkWRu_8OpWU2s{@ol%%@;d?aHmA|)Xo4;RibYGoFKeO`hQ ze2b!8#X&mQyGk9-KGY(@jufUKZhu3$hn<7G?sasEHs?jLCaOp1NS)S%{mBwD?(1y^ z2d%!WVI1hP({6)+_%qzwaQZne4O`)2em99zNv{iLb&Eg5wwH%#pN#!1ut+-gbUjsJ zgAZQep->Ew6NLwCo(%PcMM??>Qa#tsl$Hah(^k}BI^^4u96L|AQTOBXXK_`G%_Vr1 zA|Lg)8msDyCCxf?kUIhJF`B?;6uNU@=CGRXG+NSNC6%5$V|V6@4-U*>6$1$t>9-^;>Fnh0%coV|EPtubwl&N)q;t?45mrebB`>*^V#v&m zo1epSR%Cy@B+~Hbe)TXfX~&^j4Q~JO83T9y4%=bvQy!KgczM*O(}z|kCNA4=Em@4~ zgVXV-SI1eHCw%VH2|=_W-qerh93P#}5hVT0?q*pqKAQ6Geho%XdoLie+;lGgRWs;H zW*!Fnmi>aQd}dz3W!}l?u0Uqp78Xz+9PNYDmG_il%oqnjt;|+$=v#rAQ|Q-?p6B7E zl8RB>1>eku+Nl=k__(N5KE>5)w)oHJQchA{k2?eRzZs2nekyZ{W^r;jtBDEWAdjEv zco;(A`R($fg_*e0mwAyo4(ZByqt$&&y$38j{+D<>ih5EzC#24*p$dK_6l`7qFAsvW z_2M10>b2AZh13%T?i2Pd(_Z0Zk?%Bur!U=R);JpFcdWgdffLb(H)Sv1znp48%+%jq zr_tUq*#B`?JVa_IZf&NxMfEkAAi7x&vj$!?K9{!abK>0|&3pwq8gzAJNt5fQ3@egp zhPe*+^&Q)?Ho0Xfu)d-vT}j>P+2d)T z#>%pHct~Pnv44WkH)09A|dfM95r%*}@;df40k*)}@;iTg_Oc3a~wkyX>;0 ze;{ag-fd$RFEyCf)@Os-)8|L}g;XC0O}$ z-s{(1>9?0UTYpuD7i*(hPVW_-Z_J+mIx^CU+BS;r{&@=8Mjm{p`NnD5UE~>+h+N?^;C&1QV9TL}FDb&zK z)<QR-F!2ltvcFK6gi7=ME9 z44!UPZv!X0I)L6A=(?HBXeV->ifv4A_O}B27^(HrW(ga3#IGv!=2BxNON~c9$fZ{{ z8rk}0`C-6>^9=mhwS*V>wzYWIEB(BC+x<#P{or!wh%~-ecbfM^(Opb2lhlRsymxZDT@AcdIT(GC z^le=NW|vN)y1Jnm=!kp2V>sw)V3L<0mMtlH%O>R?)cV?2jx3ySlcmx4uJ$3mDW2OpZq$T#5kL z&*Q7CqH26}VOk#jin9&#`BD0`4BYI2h9!UXiJm?X6g}Vj3Cx^;+XnV|SMC4(Et2{f zKD0Cg+v8L1U)fBozqH-0R4f(8XA6Ci3;d$^!^kR@sHJBN_3U5qNHqQp#`{c4P2-!Z zwrCm7zq?gIB6YU%%{i)@Ql%HT@zQYc?=`;=K158V4x(AsH>MEDEur`mQQ0iA#ajU} z1mSj*<0U!)vAW8#d$;I@d8Y$x9OfMRyt}Fsg%VGSFU=1!#-%1K+ucY8X&$gFbX@LYDAS^U0R+v ziGw)(Wsg5rG&#fmh3$|~)O{rq*!^V1D9dYi+kFO;#IGk*9u<`=w3#7(_H`8RWMVym zJC@l6Hbp%UnUx5uc1sz77;}pxhfW?bZDy|Lo`n?8T$S4=-Uq;ZH)Mrv2uH>j*bDUc zDpk$4ypFk~7G6P{x5OuAve&DMQ8TD)aktHUE>B6OtHRPnF@zu8UrXHLrN^3H42pKy z&inBL4Tr8<W=@bO2K$;LW2cfCMRYr(?Nno9GRmV82@cSbw|^Zjh}5Ry z%l+?6mPkdrBluD!Ogs>TcXj%XoDo9YiQR^koQh+xXm&$@%~8k13XW^?TmT#8lbLz4G7~1-+xNq$ zH|(L>{uVI9wmg8HKSpJ^m`6wb=l1WnFSS1o*nJkx<*~DSY(BdNGob=db9?f2A{-!9ar)JpOU3_zzty;%tDc*5t*~k6i`4a5x z`uwEW$yvMi2jwCr9sG^Ft9V7j`I!}BWd)+7{^eR7#J;H<+-2f<%S19#@`#msCCY+@YTk|y9!pD@CdLoT1rU!xTH4RsE8HyqzNUN3xoQLx@$dDTux_f@dx4$j*YSq;h_HJmQ^`vgFWmC_bmXaUi3CRS$> z@UJo$kdp!{A;0<~cuc_uWgW%-)g4N{d6_$2qX{z)*tehGvzeV40ooj$e|8&3>*IHO z_h(q}v4zN8D8>vsrVd(|MAa!4_Pd^W;rDufE4ba!hsP`#<7d`n0`y9DH!mx^jV!{A zsowg1H?g5R?*&}Pso2CO*UnLA{_eUD^qKV}D#G+Evc|wm5-+rO9=M)Cm&>vJtl}g0T2kZFu@7?mZGV*w;W!{b8{d~)u8J+)@X106g ztE1ICUDwhu;YdP{e=C8oRc70>kYAW2##z1_DB z1Gdq3VH4{A8x&BeZ2Nd_}&)hk&rBR-wrD`(- zfwUBMq78|Wil~neK^@!d;+zjLHfL|^|MLQZT%sie_E)|BA$jLTAsOjMLsk26$s>!9 F{{xzjdK&-$ diff --git a/docs/theorist/bms/introduction.md b/docs/theorist/bms/introduction.md deleted file mode 100644 index 6dbb19dd7..000000000 --- a/docs/theorist/bms/introduction.md +++ /dev/null @@ -1,23 +0,0 @@ -# Bayesian Machine Scientist - -## Introduction - -Symbolic regression (SR) refers to a class of algorithms that search for interpretable symbolic expressions which -capture relationships within data. More specifically, SR attempts to find compositions of simple functions -that accurately map independent variables to dependent variables within a given dataset. SR was traditionally tackled -through genetic programming, wherein evolutionary algorithms mutated and crossbred equations billions of -times in search of the best match. There are problems with genetic programming, however, which stem from its inherent search constraints as well -as its reliance upon heuristics and domain knowledge to balance goodness of fit and model complexity. To address these -problems, Guimerà et. al (2020) proposed a Bayesian Machine Scientist (BMS), which combines i) a Bayesian approach that -specifies informed priors over expressions and computes their respective posterior probabilities given the data at hand, -and ii) a Markov chain Monte Carlo (MCMC) algorithm that samples from the posterior over expressions to more effectively explore the -space of possible symbolic expressions. - -AutoRA provides an adapted version of BMS for automating the discovery of interpretable models of human information -processing. - -## References - -R. Guimerà et al., A Bayesian machine scientist to aid in the solution of challenging scientific problems. Sci. Adv. -6, eaav697 (2020). - diff --git a/docs/theorist/bms/meta_parameters.md b/docs/theorist/bms/meta_parameters.md deleted file mode 100644 index 7961f16fd..000000000 --- a/docs/theorist/bms/meta_parameters.md +++ /dev/null @@ -1,9 +0,0 @@ -# Bayesian Machine Scientist - -## Meta-Parameters - -Meta-parameters are used to control the search space and the search algorithm. This section provides a basic overview of these parameters along with a description of their effects. - -- **`epochs`**: The number of epochs to run BMS. This corresponds to the total number of equation mutations - one mcmc step for each parallel-tempered equation and one tree swap between a pair of parallel-tempered equations. -- **`prior_par`**: A dictionary of priors for each operation. The keys correspond to operations and the respective values correspond to prior probabilities of those operations. The model comes with a default. -- **`ts`**: A list of temperature values. The machine scientist creates an equation tree for each of these values. Higher temperature trees are harder to fit, and thus they help prevent overfitting of the model. diff --git a/docs/theorist/bms/search_space.ipynb b/docs/theorist/bms/search_space.ipynb deleted file mode 100644 index 07171e1c5..000000000 --- a/docs/theorist/bms/search_space.ipynb +++ /dev/null @@ -1,126 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "source": [ - "# Bayesian Machine Scientist\n", - "\n", - "## Search space\n", - "\n", - "BMS searches the space of operations according to certain parameters to find the best model. As such, the search space is defined by the set of operations that can be applied in each computation step of the model. These operations are also referred to as *primitives*. We can select from the following set of primitives:\n", - "\n", - "- **$\\textit{constant}$**: The output of the computation $x_j$ is a constant parameter value $a$ where $a$ is a fitted float value.\n", - "- **\\+**: The output of the computation $x_j$ is the sum over its two inputs $x_i, x_{ii}$: $x_j = x_i + x_{ii}$.\n", - "- **\\-**: The output of the computation $x_j$ is the respective difference between its inputs $x_i, x_{ii}$: $x_j = x_i - x_{ii}$.\n", - "- **\\***: The output of the computation $x_j$ is the product over its two inputs $x_i, x_{ii}$: $x_j = x_i * x_{ii}$.\n", - "- **\\/**: The output of the computation $x_j$ is the respective quotient between its inputs $x_i, x_{ii}$: $x_j = x_i / x_{ii}$.\n", - "- **abs**: The output of the computation $x_j$ is the absolute value of its input $x_i$: $x_j = |(x_i)|$.\n", - "- **relu**: The output of the computation $x_j$ is a rectified linear function applied to its input $x_i$: $x_j = \\max(0, x_i)$.\n", - "- **exp**: The output of the computation $x_j$ is the natural exponential function applied to its input $x_i$: $x_j = \\exp(x_i)$.\n", - "- **log**: The output of the computation $x_j$ is the natural logarithm function applied to its input $x_i$: $x_j = \\log(x_i)$.\n", - "- **sig**: The output of the computation $x_j$ is a logistic function applied to its input $x_i$: $x_j = \\frac{1}{1 + \\exp(-b * x_i)}$.\n", - "- **fac**: The output of the computation $x_j$ is the generalized factorial function applied to its input $x_i$: $x_j = \\Gamma(1 + x_i)$.\n", - "- **sqrt**: The output of the computation $x_j$ is the square root function applied to its input $x_i$: $x_j = \\sqrt(x_i)$.\n", - "- **pow2**: The output of the computation $x_j$ is the square function applied to its input $x_i$: $x_j$ = $x_i^2$.\n", - "- **pow3**: The output of the computation $x_j$ is the cube function applied to its input $x_i$: $x_j$ = $x_i^3$.\n", - "- **sin**: The output of the computation $x_j$ is the sine function applied to its input $x_i$: $x_j = \\sin(x_i)$.\n", - "- **sinh**: The output of the computation $x_j$ is the hyperbolic sine function applied to its input $x_i$: $x_j = \\sinh(x_i)$.\n", - "- **cos**: The output of the computation $x_j$ is the cosine function applied to its input $x_i$: $x_j = \\cos(x_i)$.\n", - "- **cosh**: The output of the computation $x_j$ is the hyperbolic cosine function applied to its input $x_i$: $x_j = \\cosh(x_i)$.\n", - "- **tan**: The output of the computation $x_j$ is the tangent function applied to its input $x_i$: $x_j = \\tan(x_i)$.\n", - "- **tanh**: The output of the computation $x_j$ is the hyperbolic tangent function applied to its input $x_i$: $x_j = \\tanh(x_i)$.\n", - "- **\\*\\***: The output of the computation $x_j$ is the first input raised to the power of the second input $x_i,x_{ii}$: $x_j$ = $x_i^{x_{ii}}$.\n", - "\n", - "## Example" - ], - "metadata": { - "collapsed": false - } - }, - { - "cell_type": "code", - "execution_count": 0, - "metadata": { - "collapsed": true - }, - "outputs": [], - "source": [ - "# Uncomment the following line when running on Google Colab\n", - "# !pip install autora" - ] - }, - { - "cell_type": "markdown", - "source": [ - "The following example sets up a search space over four illustrative operations found in Wikipedia pages that are tagged by psychology. These operations are our primitives:" - ], - "metadata": { - "collapsed": false - } - }, - { - "cell_type": "code", - "execution_count": 1, - "outputs": [], - "source": [ - "\n", - "primitives = {\n", - " \"Psychology\": {\n", - " \"addition\": 5.8,\n", - " \"subtraction\": 4.3,\n", - " \"multiplication\": 5.0,\n", - " \"division\": 5.5,\n", - " }\n", - "}" - ], - "metadata": { - "collapsed": false - } - }, - { - "cell_type": "markdown", - "source": [ - "We can then pass these primitives directly to the BMS regressor as follows:" - ], - "metadata": { - "collapsed": false - } - }, - { - "cell_type": "code", - "execution_count": 2, - "outputs": [], - "source": [ - "from autora.skl.bms import BMSRegressor\n", - "\n", - "bms_estimator = BMSRegressor(\n", - " prior_par=primitives\n", - ")\n" - ], - "metadata": { - "collapsed": false - } - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 3", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 2 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython2", - "version": "2.7.6" - } - }, - "nbformat": 4, - "nbformat_minor": 0 -} diff --git a/docs/theorist/bms/weber.ipynb b/docs/theorist/bms/weber.ipynb deleted file mode 100644 index ecd2759df..000000000 --- a/docs/theorist/bms/weber.ipynb +++ /dev/null @@ -1,14324 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "id": "3ba2ff78", - "metadata": {}, - "source": [ - "Example file which shows some simple curve fitting using BMSRegressor and some other estimators." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "outputs": [], - "source": [ - "# Uncomment the following line when running on Google Colab\n", - "# !pip install autora" - ], - "metadata": { - "collapsed": false - } - }, - { - "cell_type": "code", - "execution_count": 21, - "id": "41b221c2", - "metadata": {}, - "outputs": [], - "source": [ - "from functools import partial\n", - "\n", - "import pandas as pd\n", - "import numpy as np\n", - "from sklearn.linear_model import LinearRegression\n", - "from sklearn.model_selection import GridSearchCV\n", - "from sklearn.pipeline import make_pipeline\n", - "from sklearn.preprocessing import PolynomialFeatures\n", - "import matplotlib.pyplot as plt\n", - "from autora.skl.bms import BMSRegressor\n", - "from autora.synthetic import retrieve" - ] - }, - { - "cell_type": "code", - "execution_count": 22, - "id": "343e2f03", - "metadata": {}, - "outputs": [], - "source": [ - "def show_results_complete(\n", - " data_: pd.DataFrame,\n", - " estimator=None,\n", - " show_results=True,\n", - " projection=\"2d\",\n", - " label=None,\n", - "):\n", - " \"\"\"\n", - " Function to plot input data (x_, y_) and the predictions of an estimator for the same x_.\n", - " \"\"\"\n", - " if projection == \"2d\":\n", - " plt.figure()\n", - " data_.plot.scatter(\n", - " \"S1\", \"S2\", c=\"difference_detected\", cmap=\"viridis\", zorder=10\n", - " )\n", - " elif projection == \"3d\":\n", - " fig = plt.figure()\n", - " ax = fig.add_subplot(projection=\"3d\")\n", - " ax.scatter(data_[\"S1\"], data[\"S2\"], data[\"difference_detected\"])\n", - " if estimator is not None:\n", - " xs, ys = np.mgrid[0:5:0.2, 0:5:0.2] # type: ignore\n", - " zs = estimator.predict(np.column_stack((xs.ravel(), ys.ravel())))\n", - " ax.plot_surface(xs, ys, zs.reshape(xs.shape), alpha=0.5)\n", - "\n", - " if label is not None:\n", - " plt.title(label)\n", - "\n", - " if show_results:\n", - " plt.show()\n", - "\n", - " return" - ] - }, - { - "cell_type": "code", - "execution_count": 22, - "outputs": [], - "source": [], - "metadata": { - "collapsed": false - } - }, - { - "cell_type": "code", - "execution_count": 28, - "id": "5bfd6747", - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": "
    ", - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZIAAAGlCAYAAADQ/XDvAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOz9d5hj933fj77OQe/AANPrzvbetOTuklSXaIkqjkpiWbYluSiOZcfJ9S/X1859bOd5Epc40e+n+Bcztq4tyUpk/6Jm2bKtZoukKBaRy51tszu97fRB78Ap9w/sAYEZzAwwA+xgyfN6Hj3izgAH3wFwvu/vpwuqqqro6Ojo6OjsEHGvF6Cjo6Oj82CjC4mOjo6Ozq7QhURHR0dHZ1foQqKjo6Ojsyt0IdHR0dHR2RW6kOjo6Ojo7ApdSHR0dHR0doUuJDo6Ojo6u0IXEh0dHR2dXaELiU7D+fznP48gCExPT+/1UurKxz/+cQYGBvZ6GTo6e44uJDqvO4aHh/md3/mdPRW23/3d3+Wv//qv9+z1dXTqiS4kOg3np3/6p0mn0/T39+/1UoCCkPyH//AfdCHR0akTxr1egM5rH4PBgMFg2Otl6OjoNAjdItFpOJViJAMDA7znPe/h2Wef5aGHHsJqtTI4OMhf/MVfVHzuM888w7/8l/8Sv9+P2+3mZ37mZwiHw2WPFQSB3/md39nw+gMDA3z84x8vXu/DH/4wAG95y1sQBAFBEHjqqae2/Bv++q//mhMnTmC1Wjlx4gRf//rXKz7uv/yX/8Lly5fx+/3YbDbOnz/PV77ylQ3rTCaTfOELXyi+vra+mZkZfumXfonDhw9js9nw+/18+MMffs3Fl3ReW+gWic6eMT4+zoc+9CF+7ud+jo997GP8+Z//OR//+Mc5f/48x48fL3vsL//yL+P1evmd3/kdRkZGePLJJ5mZmeGpp55CEISqX/ONb3wj//pf/2v+23/7b/zmb/4mR48eBSj+fyW+853v8MEPfpBjx47xe7/3ewSDQT7xiU/Q09Oz4bGf+cxneN/73sdHP/pRcrkcf/VXf8WHP/xhvvnNb/LEE08A8MUvfpGf//mf56GHHuKTn/wkAPv37wfgpZde4rnnnuMnfuIn6OnpYXp6mieffJI3v/nNDA8PY7fbq/5bdXTuG6qOToP53Oc+pwLq1NRU8Wf9/f0qoD7zzDPFn62srKgWi0X9tV/7tQ3PPX/+vJrL5Yo//8//+T+rgPqNb3yj+DNA/e3f/u0Nr9/f369+7GMfK/77y1/+sgqo3//+96ta/5kzZ9TOzk41EokUf/ad73xHBdT+/v6yx6ZSqbJ/53I59cSJE+pb3/rWsp87HI6yNW32fFVV1eeff14F1L/4i7+oar06Ovcb3bWls2ccO3aMxx57rPjv1tZWDh8+zOTk5IbHfvKTn8RkMhX//a/+1b/CaDTy93//9w1d4+LiIkNDQ3zsYx/D4/EUf/6Od7yDY8eObXi8zWYr/nc4HCYajfLYY4/xyiuvVPV6pc/P5/MEg0EOHDiA1+ut+ho6OvcbXUh09oy+vr4NP/P5fBtiHwAHDx4s+7fT6aSzs7PhsYOZmZmKrw9w+PDhDT/75je/ycWLF7FarbS0tNDa2sqTTz5JNBqt6vXS6TS/9Vu/RW9vLxaLhUAgQGtrK5FIpOpr6Ojcb/QYic6esVkml1rn6c+yLNf1epvxgx/8gPe973288Y1v5I//+I/p7OzEZDLxuc99ji996UtVXeNXfuVX+NznPse/+Tf/hkuXLuHxeBAEgZ/4iZ9AUZQG/wU6OjtDFxKdB4KxsTHe8pa3FP+dSCRYXFzk3e9+d/FnPp+PSCRS9rxcLsfi4mLZz2oJzmu1L2NjYxt+NzIyUvbvr371q1itVr797W9jsViKP//c5z634bmbreErX/kKH/vYx/iv//W/Fn+WyWQ2/F06Os2E7trSeSD40z/9U/L5fPHfTz75JJIk8a53vav4s/379/PMM89seN56i8ThcABUtTl3dnZy5swZvvCFL5S5lr773e8yPDxc9liDwYAgCGWvNz09XbHw0OFwVHx9g8GwwSL7oz/6o/tmVeno7ATdItF5IMjlcrztbW/jn//zf87IyAh//Md/zKOPPsr73ve+4mN+/ud/nl/8xV/kgx/8IO94xzu4du0a3/72twkEAmXXOnPmDAaDgT/4gz8gGo1isVh461vfSltbW8XX/r3f+z2eeOIJHn30UX72Z3+WUCjEH/3RH3H8+HESiUTxcU888QSf/vSn+bEf+zF+8id/kpWVFf77f//vHDhwgOvXr5dd8/z583zve9/j05/+NF1dXezbt4+HH36Y97znPXzxi1/E4/Fw7Ngxnn/+eb73ve/h9/vr+G7q6NSZvU4b03nts1n67xNPPLHhsW9605vUN73pTRue+/TTT6uf/OQnVZ/PpzqdTvWjH/2oGgwGy54ry7L667/+62ogEFDtdrv6+OOPq+Pj4xvSf1VVVT/72c+qg4ODqsFgqCoV+Ktf/ap69OhR1WKxqMeOHVO/9rWvqR/72Mc2pP/+2Z/9mXrw4EHVYrGoR44cUT/3uc+pv/3bv62uv9Xu3LmjvvGNb1RtNpsKFNcXDofVT3ziE2ogEFCdTqf6+OOPq3fu3Kn4N+joNAuCqtY5sqmjU0c+//nP84lPfIKXXnqJN7zhDXu9HB0dnQroMRIdHR0dnV2hC4mOjo6Ozq7QhURHR0dHZ1foMRIdHR0dnV2hWyQ6Ojo6OrtCFxIdHR0dnV2hC4mOjo6Ozq7QhURHR0dHZ1foQqKjo6Ojsyt0IdHR0dHR2RW6kOjo6Ojo7ApdSHR0dHR0doUuJDo6Ojo6u0IXEh0dHR2dXaELiY6Ojo7OrtCFREdHR0dnV+hCoqOjo6OzK3Qh0dHR0dHZFbqQ6Ojo6OjsCl1IdHR0dHR2hS4kOjo6Ojq7QhcSHR0dHZ1doQuJjo6Ojs6u0IVER0dHR2dX6EKio6Ojo7MrdCHR0dHR0dkVupDo6Ojo6OwKXUh0dHR0dHaFLiQ6Ojo6OrtCFxIdHR0dnV2hC4mOjo6Ozq7QhURHR0dHZ1foQqKjo6Ojsyt0IdHR0dHR2RW6kOjo6Ojo7ArjXi9A5/WFqqrIskw2m8VgMBT/J4r6mUZH50FFFxKd+4aqquTzeSRJIpvNFn8uiiJGoxGj0agLi47OA4igqqq614vQee0jyzL5fB5FURAEgVwuhyiKqKqKqqooioKqqgiCgCAIurDo6DxA6EKi01BUVUWSJCRJAkAQhKJlIghCxcdrogIQDAYxGAy0trYWhcVoNFZ8ro6Ozt6gu7Z0GoaiKEUrBChaG5pIaBZIKYIgYDAYiv8Oh8MYjUa8Xi+5XA5BEBBFsSgomrjowqKjs3foQqJTdzSrIp/Pl7mr1j+mms2/1NW1/trrhcVkMhVdYbqw6OjcP3Qh0akrmtvq5s2btLW1EQgEdr2pl3pf11ssmwnL+hiLLiw6Oo1DFxKduqFt6LIsE4/H8fl8u97At3t+qbBogqMoCrlcjmw2qwuLjs59QBcSnV2j1YZIkoSiKIiiWBYLqcf1q0ETB11YdHTuL7qQ6OwKzZUlyzJAUUS01N7dshtBqiQs2v+y2Sy5XK64Zl1YdHR2ji4kOjtGO+mXWiGlbCYAtWzS9bRsSoP+BoNhg7CUWiwmk6koLJX+Nh0dnVfRhUSnZjRXlpaVVWmj3U4AatmYG1XqtJWwZDKZ4mN0YdHR2RpdSHRqQlEUJEna4MpaT70sifu5YW8nLBMTE7S3t+P1estcYbqw6Lze0YVEpyqqqQ0pZS+C7fVmvbBEo1H8fj+KohQtFlEUN8RYdGHReb2hC4nOtlRqc1JNWu5eB9sbgVb8WGqxKIpCNpslk8nowqLzukQXEp0tKa0N0eIF1VCLAKTzMpNrKdJ5Gb/DTH+LDfEB2HjXC6omLLIsF1vll8ZYSvuE6cKi81pCFxKdimxWG1It1QrJXDjN31xfZiGaQVXBZBA52unkfSfbsZsNTWeRbIUmEJrYlgqLJEnF31fqE6YLi86DjC4kOhvYrDakFqoRgJyk8M0by8xHMwy02DAaRJJZiaG5KAGHibcfad3x39AMbCYskiQVux9rwlLaJ0xvma/zoKELiU4Z29WGVEs1QjITSjMfzdLnK4gIgMNixGM3cX0+zhsP+B8oi2Q7dGHRea2iC4kOUF1tSC1UIwBZSUFWVEyG8texGESykkJOVnb8+o2g3oK2nbCAPj1S58FAFxKduriy1lNJSBIZiZdnIwwvxECV6fJYsZpEImkJn91UfFwwledgqx2H2UDwNWSRbMdmwlLa2VifHqnTjOhC8jpHlmUWFhbweDyYzea6BX3XC0kiI/GFF2YZXoxjNYnIssKtxQQ2s4F0LksyK2E1GYik8zjNBi4Ptrzug9CVhEXLoltcXCSZTDIwMFAmLPr0SJ29QBeS1ymltSHXr1/noYcewmKx1O3664XklbkIt5fiDAbsmAwiiiKTysrMxzI81O8lksqTzMmc7HJxod/LgVZH2Vp1ylvm53I5UqkUwKYWiz49Uud+oQvJ65BKI3Ab4f/Xrg8wupzAbBAxG0W0l7KZDagqOC1GfuJ8F5KiYjKIG66jsxGtu0A1Q7706ZE6jUYXktcRpRtNaVZWvVq+l7J+szIZRJRNXsMoFk7S64PupetuFpplE65m3r0+PVLnfqELyeuErQLq98MiOd7l5upchHhGwmkpfO1CqTxWo1jmxqp0nWYSkmahmpn3+vRInfuFLiSvA0rbnFTKyBJFsWzTrweCICArKtF0HrvZwOkeNxOrLbwwFWY+kkFRFOxmkTcd9LO/1b7ldXR2jz49UqeR6ELyGqbaNif1PvXLisqVhTQvzsQxjo3gthl5dL+f95/u4HSPhzvzYZYWFxgM2DnVaURVFChxyVT6O3TKqcYi2YqthEWfHqlTK7qQvEappTZkvRtqt3x/ZJV/GIuDotDrFQkmcvzvK/OkczLnWsEZHuViTwBVlRkeHkaSJDweDz6fj5aWFpxOZzHlVd+0KrNbIVlPqbBUMz1SSzXWOxvrgC4kr0m0CvVq25zUM9iezEo8PbaG1SjiMYLXZsJrM7EUzfC3VyaQ2tNcOHMcv99ffM1UKkU4HCYcDjM7OwuA1+vF5/MVrSmdjTRyA9enR+rUgi4kryFKa0NqaXNST9fWWiJHNJ3HYzHAvRYn+bxENrZGJKWy761n6OjwF1uACIKAw+HA4XDQ09ODqqrE43HC4TDBYJBwOAzArVu38Pl8+Hw+bDZbXdb6IHO/3X3bCUskEiGdTtPb26vPYnkdogvJa4T1tSG13MD1DLY7LAbMRgOZtIoFlWQyyerqGpjtdLQ5CXicxcdulsLqdrtxu9309/czPz/P/Pw8NpuNxcVFRkZGsFgsRVHx+Xx1LaR8UKi3a6tW1gtLOp0mEonQ3d1dZrGsb5mvC8trE11IHnBqHYFbid1aJKqqspbIoagqrU4LJ7vcfOd6FCdZ0ukMTm8LaxmBU50uOty1bfqaz35wcBAASZKIRqNFN9jw8DAOh6MoKl6vF5PJtM1VXxs004asWcD69MjXJ7qQPMCsD6jvtDfVboLts6EUX7u6yPhqAkWF/hYbjwy46bZkmImpOD1eBNnA6R4nHzrXvWvRMhqN+P1+/H4/UGgPosVXJiYmSKVSuN3uorB4PJ6yIr3d0EzZY3ttkaxn/Xr06ZGvL3QheUDZrjakFnYabA8lc/zJM9PMhVO0u60IAgzNBLk2NstPHHdwWRXoHtyP125iMODAIO5M5LZam8lkoq2tjba2NgAymUxRWG7fvk0ulyvLCHO5XK+JbrmaBdAsaIkdm6FPj3xtowvJA8ZuR+BWYqcWyZXZCLPhFAdanYgChMNhnEqSmMnBguTkvDfDhQHfrtdWC1arlc7OTjo7O1FVlXQ6TTgcJhQKcffuXRRFKWaE+Xw+nE7nA7lRNbtFsh21DPla7wrTaT50IXmAaMTcEO06O7FIlqIZREFAUSRWVtcA6OrqQIjlWYpLqJ76uIJ26lISBAG73Y7dbqe7uxtVVUkkEkWLZWpqClEUywL3NputqTbozWhGIdnNJq9Pj3yw0YXkAUFRFObn57Hb7TgcjroXo+1ks/Y5zGQyWRYWwrichYC3IAhk8ln8DjOqmqvL2uqFIAi4XC5cLhd9fX0oikI8HicUCrG8vMzo6Chms7koKi0tLa/LjLCdoChK3T8rfXrkg4MuJE1O6QjcyclJent7cTqd2z+xBmpxbeUkhWg6j8Ms4sqsYMinSFuddLg9SIrKUiyD02rkbLcTNZGsy/oaFeQWRRGPx4PH42Hfvn3Iskw0Gi26wW7fvo3dbi8KSzNZAc20Fmh8zGYzYdE6G4MuLHuJLiRNjKIoSJJU5spqxKZazXUVReW7d1b47vAKwUSWfCrOqYDIL73zON+6E2YhkkZRIeA08/7TnRxw5pmKV75mLQHU+7lZGgwGWlpaaGlpAQoZYZFIpOgGy2Qy3Llzh9bW1mKqcb0ywmql2YREUZT7mna91fRIzWKJx+PY7XacTqc+PbLB6ELShGxWG9KILr1QnUXyD7eW+dKP7qLKeZRsEowWrkQtdITz/H/ffZjJtSSyAvsCdpwWI8vLy3UTvb1KuzWZTLS2ttLa2grAc889R1tbG7lcjpGREbLZbDHVuKWlBbfb/bo9Ae+1sFWaxTIxMUFXV1fx54KgT49sFLqQNBmlbU6g/PS+VxZJOifzneEV8tk0DiGLr9WH3WYjmMzx7HiQx4+1c6zTXfacerVdaaZ5JIIg0NLSgs9XyERLp9OEQiHC4TDz8/PIslzMCNOaTzZqo9rrjXs9zbYe7Xuj9QHTp0c2Fl1ImojS2pBSs12jkRbJVpv17GqU2aU1nCZob2vDaCx8bbw2EzOhFEuxDO3rKtbrKSTNis1mo7u7u5gRlkwmixlh09PTCIJQlhFmt9vr9vc028a9XR3JXlC6pkoWiz49sn7oQtIEVFsb0kgh0eIw61laWuL29ZvYrRYcTmdRRABSORmLyYDbuvFrtJ2Q1HKDNotFshWCIOB0OnE6nfT29hYzwsLhMKurq4yPj2M0GovWis/nw2q17vo1m4VmEzbYWtxKhUUf8rV7dCHZY2qpDWmUkKx3bamqyvBijO9dGSUSjfKW0/t5i0vgO7dXMBtFXBYj6bzMUizDuT4vA/6NEw5fixZJLX9PaUbYwMBAMSNMc4PduXMHq9VaZrGYzeaGrOV+0GyV9lC9lVTafBJ0YdkJupDsIdoXtZa5IY0OtiuKyp89O8E3rsySlVXsNge3X1zj0f1+Lu3zcX0hznIsh9UkcrrHw89e7q+47u2EpJaNsNk2zZ2wPiNMkqRiRtjMzAy3bt3C6XSWNZ8stf7W02wWQL3rSOrBTt1tWwmLPj2yMrqQ7AGltSG1zg1ptEXy3aFJvvqjaTwOC4cCHgRBJJrO8/TYGv/2bft53+kuVhNZvDYTh9qciJv0z3otBtvridFoJBAIEAgEAMjlcsX4ytjYGJlMBpfLVXSDud3uDanGzbRpNZuwQf3iNqXCUml6ZKmwvF6nR+pCcp/ZTZsTURQ3jWXsBk2ghoeH+d7QAkaLlZ5Wb/H3HpuJUDLHlZkIv/LW/exvdVR1zdeaa6uRmM1m2tvbaW9vByj2CAuHwywsLGwYR9xsFkCzB9vrSWkmpT49soAuJPeRWkfgrkcUxWKxVT3J5/MEg0HsdjttXd1MTMc2vrYgkM5Xbw3V05J4LVok22Gz2bDZbHR1daGq6oZxxNp3SZZlfD5f3dvm1EqzWSSKoty3uI0uLLqQ3BfW14bs9AvUiBjJ0tIS09PTWCwWLl68SOLOGs9Px8hJCmZj4SbMywqyonCsy1X1dXWLpH4IwsZxxC+99BJ2u51gMMjExEQxI2yvxhE3W7Bd++7txZq2EpbZ2Vni8TgHDhx4TU2P1IWkwawfgbub+Qr1FBJZlhkZGWFhYYHOri4i8RSCIHB5fws/GF/jxnwMq8mAAKTyMsc6XLzxgL/q6+sWSePQUlcDgQAdHR0oilLMCKs0jrilpaWmjLCd0IyuNtgbIVlP6T2vpflr9/JrZXqkLiQNorTgaa/nhqwnmUxy7do1VCDqPchfvrTISjTN1+Zu8sSpdn7t7Qf47u1VXpwKo6oqFwZ8PH68Dbet+l5K9aojeVBupL2ktBU+bD+O2OfzbZkRthOa0bUFzSEkpciyvKGZ5FbTIx8UYdGFpAE0cm7IboVkaWmJmzdv0t3dzctRB1/+0QKKJCECk8Ek//37U/zco/18+Hw3Hz7fvavX0i2SxrHVxr0X44ibLdiudYdoto1XE5JSNutsXCosH/nIR/jYxz7GRz7ykb1Y9rboQlJn6jkCdz276bVV6so6efIkRoePbz1/HZtZxGU3k0rlafHZWIxm+OuhRd52uBWbeeebS736gjXbRtAs66nFArgf44ib0SJpJmHTqCQk66kkLEtLS3W3IutJ867sAUM7QSwtLTExMcHDDz9c9xtrpxaJ5soSBIHLly9jt9t5ZTZCLCPR7bEg5fNoe77XbiKUyrEQzVSV5rsVr6cWKXvBTr9fjRhH3GzB9mYWklrjVYIgkEqlsNs3dpBoFnQhqQPrXVlaE7h6sxMhWVxc5NatW3R3d3P48OHizeW0GDEbBLKSglEAKGzWOUnBbBBxWnbn6tD+/s1Oqloh13Y3RzOdcpuJeomrINRnHHEzBtubUUgURanZjag1BHW5qs+avN/oQrJL1teGGI3GhlSfQ21Cst6VpRW6aRxodXCwzcn1+RitdhFVhUxeJpjM8dgBP+3u+jQUrCQkS0tL3LhxA0VRsFqtxeptn89XcTiSbpFspFGuJEHYOI44FosRDoc3jCPWPjeLxdKUrq29Gjq2FZrLu1aSySQOx+48BI1EF5IdUlobUtrmpFH9sKB6IankypIVlWt3o9xZSmA2Cjw84ONTb9rHH353nPHlGOmMQlrMcbLLw889MrDrtZYKiYaiKIyMjDA/P8+JEydwOp3FmelTU1PcvHmzbFCUx+N5zbZIqQf3Y+MWRRGv14vX690wjnhubo7h4WHsdjuKohAOhzGbzfd1UuJmNKtFUk2MpBKpVEq3SF5rVBqBW1qA1Ig2JtrrbCcklVxZ2bzMf/3eOD+cCJGXC8//y5fu8vFL/fzhB47z9PBdhu5M8NaLhznd48FkqF9/Ik0EMpkMQ0NDyLLM5cuXMZvN5PP5sn5T2Wy2OCjq1q1bSJKE2+0uuluaoXq7WdgrC6DSOOJwOMzNmzeZm5tjdHQUl8tV1nxyLyyD15KQ5HI58vk8TqezQavaPbqQ1MBmI3BLaaRFslUdiSzL3Llzh8XFxQ2urL+/tczTY2u02M04LIVpcSvxHJ97boYTXS4e6vdgCgm8od9X17VC4T0LBoNcu3aN1tZWjh07hsFgKFb5l2KxWMqCwMlkkpWVFSKRCFeuXEEUxaI7paWlZdfzPB5kmkXUTCZT8SBw/vx5VFUtxldKxxGXNp+8Hxt8swrJTlxuiUQCQBeS1wLrA+qb5ahraa+N+CJvJlLJZJKhoSFEUSy6skr5/sgaBkHEYTEW197mMjMXTvPCVJh3H3LVXfy092ZqaoqZmRmOHj1KT09PTc933hukNT09zWOPPUYsFiMUCrGwsMDIyAg2m63MV9/M6ZH1ppliEqVdG8xmMx0dHXR0dBR7TWlWppYRVppq3KhxxM0qJDuJkSQSiWJSRLPy+rnzdkEttSHal6RRQrL+JLpZVlYp8ayE0VC+Zu1vyOTlhsyC1yyOhYUFHn74Ydxu9zbP2BpBEIq++sHBQSRJKiuyS6fTxbbrLS0t9+3ku5c0i5Bo35316xEEYc/GETezkNRqkWipv83492joQrIF1Y7ALUX7kjRqboh23a1cWes52+Phb68voagq4r31p/MyBlHgYJuz7gHtaDTK1atXgYK7YzdBws2yv4xGI62trbS2tgKUnXy1jDCv11u0VvY6vlJvmskiqbZBomZlbjeOuDSLb6fuy9eSkDRDfHA7dCHZhJ22OSm1SOqNJiSJRIJr165t6spaz/tOd/LSTJjZUBqnxYCsqGQkhYf6fTw04EPKZeqyXlVVuXv3Lnfu3GFwcJCxsbFdu5uqvXmsVitdXV3FtuvJZJJQKFTWHbc0vmKxWHa1rr2mWWIkUO7aqoVaxhG3tLTg9XqrLubbaZptI9Fc3rUKSbOn/oIuJBWpdQRuKVrspBGZW9qN8cILL2zpygIIJnKk8jKdbgsDfjv/4b1H+frVRV6ZjWAxibz1cCs/froTs1FEzgvF/j47PfXIssytW7dYW1vj3Llz+P1+xsbG9qTfVunJV6uF0FJW5+fnuX37drGJobZBVSt4zXIqbDaLpB59rbYaRzw1NUUymax6HHEzWiSa4OoWyWucnY7AXY/BYKi7RSLLMqOjowAcO3aMrq6uio9bjmX5H89M8fJsBFlR6XBb+MmHenj7kTZ+7R0HKj5nuyr07dCC/QaDgcuXLxfdEVu5zO5n99/13XFLmxhqY221zKKd9praC5plY2lUVXs144hLm0+WjiNuRiEp9W7UQiqV0i2SB4WtakNqpd4pwNpGra1Hu7HWk83L/M43b3N7KY7basJmEpkNpfn09yawmwxc3l95nkhpc7haWV5e5saNG/T09HDo0KGym6RZZ5Ksb2JYqddU6SyPegWA60kzubbul3VUyzjiTCbTdOnhOxUSzSJpZl73QlJNbUit1FNISrOyDh48yPe+971Nr/3CVJjR5QTtLmtxuqHdbGQ+kuarVxc3FZJKVejboSgKo6Oj3L17lxMnTtDR0VHxurvd8O7HBrV+rG0ikSAUCrG2tsbExAQmkwmfz1e0VpuBZnNt7cXpf7NxxFpsDApiox0K9to9pAXaa12D5tJrZl7XQrJ+BG695hfUo7q9UlaWtilvtjnPhlIARRHRsJsNTK4lN918ak0QyGQyXLt2jXw+z6VLlzY9LW31Xtb6Pt+vE3hpr6n+/v6yliCyLHP9+nUcDkfRDbZXldvaWpuBZmjYKAjl44hv3ryJyWTCarU2zTjinfb/SqVSupA0K6W1IaW9/+vBbi2SzQoMt+vl1eIwowKyomIQX72xM3mFTrd105u9FoskFAoxNDREIBDg/PnzWwap6zElsfQxqqqSziuYDEJd2rhUQ2kAeHl5mSNHjiDLMqFQqFi5vdtZHjvh9ejaqgVVVbHZbPT19dHf398U44hfqw0b4XUoJDupDamV3QjJ4uIiN2/epLe3d0PMYbtrP7LfzxdfnGMpmqHVZcFoEIimC66YJ05tdD1paH//VmtWVZWpqSkmJiY4fPgwvb29275v9YyR3A2nGV3LsJbMYzII7A/YOd7pwmq6v9aANn1Qi6+UulPm5uYAyjanSi3X60Ezbd7NGNhev6bNxhGHQqH7No54pw0bE4lEUzdshNeZkGi1IXfu3EGWZY4ePdqQm3Enri3NlbW0tMSpU6c2LTAsFZJnxtb42tVFZkMpun1W3n+6k9/4sYN8+nsTLEQySIqK02Lgg2e7eO/JrYVkq00/n89z48YNYrEYDz30EB6Pp6q/qV4xklAW5ibCZBUBn91ETlJ4cTpCLCPzpoMtxSLLvWD9LA+tm/Hq6ipjY2OYzeaiRePz+ep66m0WIWkmUdPYTtz2YhzxToUkmUzS2dm5q9duNK8bIVlfG9Ko4VNQu0VS6sq6dOnSlgWG2rX/5voin/nHCXKygsVoYHUuxs35OL/4xgE++1NnGbobJZ2TOdjmpMu7ffbKZg0hY7EYQ0ND2O32YtfeaqmXRTKfEDDaJA60v9pmxXEv7nO0w0HHLmenVMt2f4sgCLjdbtxud7HATquDmJmZ4datWzidzqKo7Ca+0kybd7NNR4Ta4xHbjSPO5/NlIw524sLcTYykmftswetASCrVhjSy1TsUNvtqr7+dK2s9giCQykp84fnZe3Uir26iwWSO//Wju7zreDsPDdTWybdSv627d+9y+/ZtBgcHGRwcrHnjqoeQKCrE8jBgKf+q2swG8jGVaFqiY3dtvBqGwWAoO/VqdRChUIg7d+6Qz+c3xFeqeY836221VzRDsH09u3W3VRpHrLXgmZubQ1XVmscR78Yi0YPte8hmbU4aUTBYSjXXL3VlnT59ungS2g5RFJkKpggl87ht5QOE3FYj4VSe0ZVEzS3hSzd9WZa5ffs2y8vLnD17dtO6lVquuVMMooDFABmp/P2UFBVBAIuxuU7CW1FaB1G6OWl+eqAoKlp8pRLNFGiH5rKONOoZtykdR9zT07PjccS7CbbrQrJHrB+BW/qh3g+LZCshWZ+VVUsaoiiKmAwColjIzipFVgpNGS3G2k892ppTqVSx+LHWta1np0IiKSqL0QypnIzTYqTdphKXFCKpPB6bEUlRmY9kaHdZ6PI0V9FZtazfnLQGhqFQqDjS1mKxlMVXtMmDzWiRNKNrq1Fr2uk44t1MR9SF5D6zvjakUlbWXrq2FhYWuHXrVtWurErX7vGYONjq5MZCDItRxCAKyIpKOJVnf6uDY521Z3gIgkAoFGJycnLbPl61XLNWIYmm83x/NMhsOI2sqBhFkVRa4A0H7CwkZKaDaQyiQKfbwqV9vg01Mw8qpQ0M9+3bV5ZVpI0h1trka8kOzSIkr3WLZDsqjSPWYmOl44hFUcRisZDP56seR6w1INXTf+8jWm1IaTfSSl/wvbBIdurKqnRtVJVfe8cB/v03hlmMZoHCZt3utvDv3nmwrIakGrT2MOPj45w8ebJuGSK1ComqqvxwIsz4apK+FhsWo0g6L/P8JOQkhfedbCeSljAZBFqd5vtWS7IXrM8qymazZfEVgBs3buD3+xs6IKoamjXYvldrWh8by+fzRCIRJicnicVi/OAHP6hpHLGe/nufKG1zUk1tSC3B8J1gMBjKWmnsxpWloaoqwWSOjFzIrjrY5uRPP3qWp0ZXC24et4W3Hm6lxVFbemk2m+XatWvIssyxY8fqmmZYq5AEk3lmw2k6PZZi7MNmMuCxCEyFMjwiCPS33N9q5PXs1WZtsViKkwdzuRzPPvssfr+faDTK9PR00UevuVLuZ9X2azHYXk9MJhOtra2srq4WW7rUMo74fsZIfv/3f5/f+I3f4Fd/9Vf5v/6v/6vq5z3wQrKTuSGNDraXWiS7dWUBPD8Z4rPPTjO5lkLK57jQu8CvPxGgw2Plx89U7gJcDeFwmKGhoWJjwno3uatVSHKyci+dudzsN4kCOUkhJzXuM3uQ0L7fPT09xaptzUevVW1brdayAVHVulJ2wuvdtVUtWoyk9FCgJV1owlI6jnhkZITu7u771v33pZde4k/+5E84depUzc99oIWklhG4pTTatWUwGJAkiZs3b7K8vLwrV9YrsxH+/TeGSeVkHBYDeRWenU6w8tWb/OlHzxTnsNeCqqpMT08zPj7OoUOH6Ovr4/nnn2/I3PZahMRrM+GyFDLP2lyvDp5KSNBtNeCxPdBf17qx/j1d76PX5niUxldKayA8Hk9dN9lm27QVRWlad9t6F1Zp0sX6ccTf/va3+bu/+zsMBgP/9t/+W9797nfztre9jUOHDtVduBOJBB/96Ef57Gc/y3/8j/+x5uc31ztdJVpAPZfL1Swi0HghyefzBINB4vE4ly9f3rGIAPzVS3dJ5WQCTjN2sxG7ScBtNTC5muSp0bWarydJEkNDQ8zMzHDhwgX6+/u3rWzfKbVe0242cKbHTSqncDeSIZzKMxdOo6gCpzqdr+mYSC1sl7WlzfE4dOgQDz/8MI888gjd3d1kMhlu3brFM888w9DQELOzsyQSiV1/7s1mkWgHomYTkmqytrShbL29vfz5n/85V69eRRAEzp8/z1e/+lVOnz7N7/7u79Z9bZ/61Kd44oknePvb376j5z9wR7ydjsAtRXM9NeIGWFhYYHp6GovFwsMPP7zrL/PwUhyzsfxvNN77z7GVZE3XisfjXL16FZvNtqFKfbPK9t2wnZBkJYVbSzFuLybIyyr7AnZOdjl5x5EAw4sJYhmJLo8Vfyscan0w03wbSbXfXYvFUlZcp514NYtFFMWyMcS1ujh1IamOndSR5HI58vk8v/Vbv4XBYCCTyZBOp+u6rr/6q7/ilVde4aWXXtrxNR4oIdmqNqQWtFOBLMt1a8xWWsTX19dHNBqtyxc54DQTSuZe/UFxcy70naqW+fl5hoeHGRgY4MCBAxveu0qV7btlKyHJSRLfvDbPaDCHw2zAIAo8NxliJpji/ac7ONLhRJJVTAaBZ+PjTbVR7TW7qSMpHUPc29tb1hV3YWGBkZERbDZbWXxlu3ukGV1b0JxCstN57dpnbbVa6xrLnJub41d/9Vf57ne/u6vrPhBCUlobspsRuBql4zjrQSKR4Nq1a8WsLO3GrAfvOdnBp5cnSGQkHBYDqqoSzaq47RbefrR12+eXph2fOXOG1tbKz7mfrq10Os3f/+AKT0+mCNhEBJcDq8OBz2tjJpLh1mKcR/e3YDa++hk3WzX3XlJPC6C0IntwcBBJkorWysTEBOl0uli/0tLSsiGjqN7rqQeN6uq9W3YiJI2e137lyhVWVlY4d+5c8WeyLPPMM8/wf//f/zfZbLaqNTe9kNRzBK6GdiPUI05SKSsrHo/XTaR+/HQnU2spvnljibVEDllWcZlFfvNdh+j2bp3iWUuVer3HA0NlIQkGgwwNDZEzemnv8NDrNpBKpoiEwywtLZJQzLysJDnmo9hxtdk2hL2mkaJqNBppbW0tHjgymUyxx9SNGzdQFAWv11u0WBwOR9MFtpvNQtLYSdPGRhcjvu1tb+PGjRtlP/vEJz7BkSNH+PVf//Wq19u0QtKIEbgaWr+t3QhJqStrfVZWPetUjAaRf/fOg3zgbBc35qOEVpc5HjDy8OGtrZHV1VWuX79OZ2cnR44cqaoZZCMtktJMsSNHjuCWHdy5vojNZsNutxNoDSBLMqOLEYzkGR4eRpIkvF4vsiyTSqWqbmrYKJrJKrpf74PVaqWrq6tsDHE4HC6bOmgwGLDb7WSzWSwWy/YXbTDNKiQ7iZGsd23VG5fLxYkTJ8p+5nA48Pv9G36+FU0pJOsD6vUUEY3dbPbrXVnrT/o7rVNRVZWXZyI8PbZGVlI41+flrYcCWEwG9rc62N/qYGwsSSaT2fIa4+PjTE9Pc/z4cbq6qqszaWSwXZIkXrl2g1t3I3i69jOZtuGxiXisRpZiWTrcFgRBICmpWKw23nJygGOdTpLJZPE0fPv2bSYmJho22+NBYq9cSZV6TEWjUUZHR4nH4/zwhz8sDofSxhDXezhUNTSjkGgH42azSOpF0wmJoigsLy8jyzKBQKBhN8xOLZJqCgx34iZSVZX/8x8n+PKVeSRFRQW+MbTIN/q8/JcPncB5r15kq6B4Lpfj2rVrpNNpLl68WFNbhUYF27PZLN9/9nmeX4KUOYA4n0aZS+O0Gtjns7KazDOxlgIErCaRCwNeDnc4y4LCc3NzHD16FCiM+tVme5T67utdG9HMNItlpMVXnE4nDoeD7u7uYmHd2NgYmUymWLF9P8cQN6OQaHvNTmMk95Onnnqq5uc0jZCUjsBdXV0ln89vGhiuB7UKyVaurPXsxNq5Mhvhy1fmMYgCLqsRQShUc1+ZjfC/X57nZx/pL167kkiFw2GuXbuGx+Ph8uXLNZ8EG+HaymazrKyssCwGSJrN7A84ik0WF6JppkMpPnimk0RORlZU2t0WOu9ZJ+vXJghC8aSrXVtrwX7z5k0URXn1JOzzYbfZmm4zqRfNFtzW1rN+OFTpDA+tYru0jYvdbm/I39GMQqLdszuxSJq98y80iZCsd2UZjcYt3Tf1oBb303aurN1cW+OZsSCSohZFBCjUj+TgO7dXNhUSVVWZmZlhbGyMgwcPFgsMa6WewXZVVZmYmCASidDW1sZoxIPHmi/r1NvusjC6nCCakTjbu/Xo3kp/z/raiEQiweTCKk/dXmQuNIbNbOJIp4dTA220+lsa2iJkL2g2Iam0cdtsNrq7u4sV24lEojiGeHx8HJPJVDZ/pV6uymYUElmWd+Siv1/tUXbLngvJ+hG4giBgNBobWnkO1Vskmiurr6+PgwcPVvUF1dxEtZwcs9KrHYvLriUIZPKvrrN0w9fasITDYd7whjfg89U2zKqUelkk+Xye69evk0gkaG1txel0IodU1r9tgiCgoiIp1b3mVmsTBIGcaGEyYyfvNHHQLxKNJ7mxmmQpNEGvdRiPu+AG8/v9983F0iiaxbWlUU3TxtL4Sn9/P7IsF9vka63WnU5nWXxlp2OIdzpAqpHspAMHFA6xukWyBZVG4GpvcqNbmMD27qdaXFmVrq1do1oX0/k+L1+/ukBOUoond0VRkRWVR/f7y66tKAqJRIKrV69isVi4fPnyrrNl6hFs1yrntfnuIyMjABzpdPH9O6u0OtVii/tgMofDbKSnynny2zG+miSSytPfUphM53da6fB7iaTzHN7nQswVTsN3794FqptE2Kw0q2urFgwGQ/H9h1fHEJd2xPV4PGUdcat9jWa1SHY6Znc3B8T7xZ4IyXZtTrSmh41kK7FKJBIMDQ1hNBp31PZ9JwWPbz4U4Hy/lyszEZK5giVSmMlu4SMP9RQfJwgCmUyG559/nv7+fg4ePFiXTWW3wfalpSVu3LhRrJxPZGWCaYUWUeZCv5eptSRjq0lsRpGcomIQ4PI+Dx3u6gRwq7WpqspSLFvmFoRC767VRJaMauBASQrr+kmEWqdcv9+/baZRs2zgzbIOqM/GXWkMsVYYWTqGWDsAVBplW8/11JudCkk6naa3t7cBK6oveyIk2hdgM5/h/XJtVdrod+LKWo/2nK2ERFZUrs5FCCZzHGpzsi/g4L9+6CT/+8o83xleIZOXuTzYwkce6ikWHiqKwsLCAqlUinPnzu2qGeR6dmqRKIrC2NgYc3NznDp1CpcvwN9cX+L63SiLq3HcFgNPmGL8izd0M7wYZ3othd1s4HC7gwFfdT7xatwmFoNIKld++FBUFVQwlgz6EgQBt9uN2+1mYGCgrJJbyzTSTsJaplEzbdrw2rBItqJSR1xN/FdWVhgbG8NisZQF7kvjK80oJDtJ/YXCodZutzdgRfVlz1xbW52A74dra/1r7MaVtR5NIDfbmCdWk/z6124xFUwiK2A2Crz1cCu//cQRPn6pj49f6tvwnHQ6XagIz+VwOBx1FREofB6lw7iqQUs3zmQyXLx4EafTyf/z8l2enwwRcJrxWg0kcgrfuL6E0SDyyH4/j9xz02mxsWrYLH6TyskksxJ2s4HBVgc/nAiRzEo4LEYUVWUxmqXFYaZ9C6tnfSW3lmmknYRLs8WaJTbRLOvQaHRl+3rxLx1lq6WCO53OovhLktR0QrLTuI2etbUL7reQ7NaVtd31S8nLCv+vr9xgNpTGZhIxigJZSeE7wysEHGb+j3ce3PCctbU1rl27Rnt7O21tbcXYQz2pNdgejUa5evUqHo+HS5cuYTQaWYhkuLkQo9NjxWMzsZISsRpFckaR5yaCnO/z7njGeuna8rLCtbsx7iwnSOcUbGaRfQEHh9rszIQyrCZyCAK02M1c6PdgM1V/EizNNFIUhXg8TjAYZGFhAUmSuHHjBq2trbsOCO+GZrNI7veExPWjbHO5XFnhajabxWw2Mz093TRW5W5iJLqQ7JD7ESMRRRFJkuriytrs+pUskucmQ8yF0thNIsZ78zWsJgOyKvON60v80psHsZsLXzgtjXZqaoqjR4/S09NDKBRqyHTHWlxbWifh/fv3s2/fvuJNGk7lSGTloitOEAVURcFjMxHNSCSyEi1Gc/H1allbKdfmY7w4E8FnM9LuNpPMyQzNRTnX6+adR1uJpvMYDSLtLjPWGkRkPaIo4vF48Hg8DA4O8swzz9Dd3U06nS4GhLW+U/d7bvpeb4yl7LWwmc3msomDt2/fJpPJEIvFmJmZKbMq9yq5YqdCoqf/bsNWXzyj0diweSGlrx8MBllaWtq1K6sSmwnJcjSLCsXsJQ2TKJDNy0RSeexmA7lcjuvXr5NKpXj44Ydxu91bXrce693OIlEUhTt37rC4uMjZs2cJBAJlv3dbjdhMBhJZqViJr6qQyEo4zIaiQGrU8tlqa0vlZEaWE/hsxuJ8erNRRADG11Kc6HKzv7UxN54gCMUTrhYQ1txg09PTGAwGfD4ffr+/rnUR69nrjXs9zdS0Ueuj53a7OXDgQNGqLE2usFgsZa127keN0U5iJNrsmFo6VOwVTWuRQH3nhZSSSCS4e/cuqqrWzZW1ns1cW/sCdkRBIK+omA2vbgY5WcFnNxNwmotuI7fbzaVLl8q+6I0Sku0skkwmw9DQEIqicOnSpbIAYCYvIwA9PhuH2h0MzUXp8lpRFJVIRgIk3nQwsGProHTTTOVkMnmFgLN8k3ZYDCxGs6RyMi5r47/WpQHhnp6eYt+p9XURpS1c6uUGa7YYyf12bW2HoijFe6bUqiwdQxwOh4tjiLVWOz6fr66fUyl6jGQP0D5ISZLqLiSaK8vr9SIIQsPM3M02/PN9Xk50ubg+H0NRCnUVOUlBVeEjF7pZWrjLyMgIBw4cYGBgoGK7kPttkYTDYYaGhvD7/Rw/frz4+SxEMvzTnRVGVhKAwIkuF48dCGAURUaW46zEJawGeOeRVh494K947WrR1mY3G7CaRJJZCYvxVTFJZmVsFayeerLVBl4612P//v3FuohQKFTWyVizVnbTHkS3SLZmq6wtbQyxZk1ns9kNn1Np1l693JV6jKRBbPXhiKJY11bssDErK5/PMz8/X7frr2czIRFFgU9/6CT/6R9G+OFEiJyk4rAY+YnzXZxzRJiYCHP+/PlioVa1190tlQRKVVVmZ2cZHR3l0KFD9PX1FT+3tUSWzz8/w2woTcBpRlVVvj+yxlw4zS8+to94tpXbY5OY1RyPnuzY1doUFRZiOZKGFH6HicPtTl6cjgDgtBhJ5mRCyTzn+zz3xRqphvV1EVonY639uslk2lUn42YSkma0SKrdtC0WS1l8JZVKFQP309PTxQOC9jnt9OApy3LNLjTte6PHSHZBPTO3KmVlLS0tNTQzbCsh9DvNfPrDJ1mOZQin8vjMCmPDN8hlTVy6dGnLkZc7ab9SDeuztmRZ5tatWwSDwYrtV16eiTAbTnOo3Yl4bx0+u4nJ1RTX56Nc3u8n5bOQSNSWUryelXiWZ+5K5JajWGx53FYjxzqdXOj1MLqaZDmew2YSOd/v4VzP1j27NJJZiVhGwmQQaXGYiutvFKWdjPv6+srag+ykk3GzubaazULaaR2JIAg4HA4cDkdxDHEsFiMUCrG4uMjIyEixeFXL2qtWHHYSI0mlUqiqqsdIdkO9Mrc2y8qqt8WznmoaN7a7raipCNev3Kg6a0z7fb1v3lLXVjqd5urVq4iiuKmwzQRT2IyGsk3YaBARBJiPFBpu7rZ/V1ZS+MeRNVbTKge8Bvw+G5FUnh9NR3j8aCsfONNZrCNxWLb/Kiuqyq3FOCPLSZJZGaNBoNNt4XyfB4/t/jV1XN8eZKtOxpWquJtt436QXFu1IIoiXq8Xr9cLUIyvrB9DrH1WWx0AdjqvHdBdW1ux3Y2w2+r27QoMdzp8qlo0F9TzkyH+4oU5RpbjdHms/PM3dPPekwUzemRkhPn5eU6dOkV7e3vV14X6V+9qri2tZqWjo4OjR49u+hoem4mcvNEVJisqTouheM3dCMndcJrFaJY2u4DZICIKAi0OM6m8wvBSgqMdTuzm6nuMTa2leGU2ittqotdnJS8rzIYzyIrKmw/5MRn2ZjOs1MlY65KrVXGXusGaTUia0bXVCGGrFF/RDgC3bt1CkqSyNi6lkw13Oh3RYDA0xdTJ7Whqi2Q3Ewy3KzBsdNGjKIo8NRHlMy9MIssqggjBRI6bCzEml+NcdIWQZZlLly7V5AOtpv3KTtB6eF29erVYs7IVp3s8vDQTZimWoc1lQVVhMZrBazdxostdvOZuhCSTL/yNJkN5IoDNJBLPSCgqGKrcv1RVZWw1icVowGcvWB8Wo4Fuj4XFWJa1RI5Oz/YNJBtNpS652il4cnKSdDqN1WpFVVWi0eiedzJuhJt1t9yvFinrDwClEz2npqaK6eAtLS3k8/kdT0dsJmtvM5paSHbi2qq2wLDRQqIKIl+4GkKSVezmV5tSpnIyn39hljOPB3jswsmav1yNEBJJkpieniaXy3Hx4kU8no2xhryscGcpQSSdp8Vu4lCbgydOdPC9O6uMrxaytgJOM0+caKe3pZAavFshcduMGA0CWan8GrGMxOE254ZanC3/RkUlnVewmcq/DyaDiKKqZKTGWae7obSK++DBg2QyGaampoqWI+xtJ2Pt822mzW4vem2tj4Np6eDhcJj5+Xni8TgTExPEYrGi1bJdRuqD0kIeXkOurVJX1pkzZ7adrthoIVlOKgRTcqFYThBABVmRMagyeVUkZevYUTqg9r7VS0iSySRXr14tpkJXEpGVeJYvPD/L+GoSSVYwGkQOtTv4+MV+Tvd4mAomEQSBA62OsljDTk6pqZzMcjyLKAi0OQtTFZ9aUDGk8hisEqFUHpvJwImu2gKQRlHAZzMxF06XrTGdlzEZRJxVpg3v9cnbarXi8XjIZDKcOXOmWGy3tLRUcyfjeqAJyV6/L6U0wzyS0nTwwcFBnn/+edrb28nn88X4itvtLh4C3G73hjU/KBlb0OQWSbUb/U56ZWnB5UadXiwmAwKFym7UwqlfVVWMBiOyrGLZZeuOegjJysoK169fp6enh0AgwPDw8IbHqKrKl6/MM7wYZ8Bvw2oykM7L3JqP85VX5vnkYwP4nZXnJdRa83JzIc6zEyHCqRyCINDusvDQgJdTrUaCskAqL9Prs3Kmx0Nfy/afcSIrMRtKk8zJOMwGujwWlmJZFqIZPDYjOUklnM5zuM2B39mYKvRGoTUG3etOxrpFUh2KohQzvaBQ4Ku5wW7cuIGiKGXtdmw2G6lUqmHjiAGefPJJnnzySaanpwE4fvw4v/Vbv8W73vWumq+1p0KyleujkRMMtetD4750XW4z+7wmJiJ5kGVEsTD5MZ1X8NhNXBqsXCdSDbudHaKqKuPj40xPT3PixAk6Ozs37eG1EM0wspygy2spVqbbTAba3RZuL8VZiec27a5bTft37e+YC6f57p1VVBX6Wuyoqsp8JMPTY0FOeAxcbnPT1tGFw2KoKl13NZ7l6bEgK4mCKCmqSpvTzOF2B6uJHJG0hMkgcK7HzdFOV8NTgOvJZjGJrToZz8zMlNVEtLS0bJlmXi3ad6aZLJJmFJL1WVtWq5Wukhk5iUSCcDhMMBjk2rVr/Oqv/ipHjhxBVVUWFxfp7Oys+5p6enr4/d//fQ4ePIiqqnzhC1/g/e9/P1evXuX48eM1XaupLZKtYiS1urIqXV+7TiPMf1EU+chhA59+OUtSEhEUAUFVsJhEfvuJI7uqwN6NRaKNwk0mk1y8eLGYo76ZOKVzMjlJwWosP7FbTSLRTJ50fnOxr8UiGVlOkMrJHCj2yRLob7ExtppkQVIY7BKrLjZUVJUrc1HWknkG/IWWNIqqMhtKYzdnefxYgExewWQQseywG/FeUu0hYqtOxnfu3MHhcJTVROzE1dqMrq1mFJKt6khKEyz6+vo4cuQIn/nMZ/hf/+t/cePGDXp6ejh69CjveMc7+Pf//t9v6HG3U9773veW/fs//af/xJNPPskLL7zw2hESo9FINput+Lt6tH3XXAONiJPIsszq6ipeknzxp0/xg9ksk2tJ2t0W3nuqkwH/7gbV7FRItFG4DodjQw+vzTb9DrcVr91EMFme1RRM5mixm2lzbZ6auNXmks1mmZiYwGaz4ff7iaSlDZu6IAgYBIGMXFsRXiSVL6QNuyxFS0O85ypbiWeJpiX8jgfLlbWeWjfu9Z2M8/l80Q12584dcrncjjoZN5uQNNJdvVO0NVUr1Farlfe85z2Mj49jsVj47Gc/yz/90z/xj//4jw0bciXLMl/+8pdJJpNcunSp5uc/cK4trYX5btu+C4LQkKLEZDLJ0NBQMaf8YG8HB+s8KXMnQrK4uMjNmzfZt28f+/fv33Djb2aROK1G3nIowNeGFpkJpnBajcQzEirwlsOBLS2rzcRJa0rpcDiIx+OMjY0RTppZjJvxmTzY7fbCZ6OoKIDLXJsrT3vk+r1NEArtVqq5lKKq96wWYc/qSzajHum2JpOJtrY22trayjoZB4PBmjoZazUkzSQkwI6sq0ZROlK8FrRge0tLCx/60If40Ic+VPe13bhxg0uXLpHJZHA6nXz961/n2LFjNV+naS2S9a4tWZYZHh5mZWVlR66szV6jnmm0y8vL3Lhxg+7ubhwOBysrK3W7dim1CImiKIyOjnL37t0t2+Vrop7MSjw/FeLGfAwRONXj4dEDfhwWIz8YWyOYytPfYudNhwI8PFA5yF56zfVoMa3egUEyZi/JdB5vQOBCLsXyjUWuTi7hMipYrFbSWDjQ7qbXVdum4LWZ8DtMLMVyZUH51USOVqcZr33rKvbZUJqRlQTRtITFIDLYaudQW/Nkz9S7RcpuOhk3Y1U7NFfwXxOSndSRNDr99/DhwwwNDRGNRvnKV77Cxz72MZ5++umaxaRphaQ0/bcREwyhfinAiqLw/NBt/vLKArNZG767KR7plTlub8xwrmqFJJvNcu3aNXK53LaFj4IgkMkr/I9nphi6G8UoioDKy7MRbszH+JePDXB5sIWcrBSqzKuo4Si1OFVVZXR0lLm5OQYOn+Dp2SzjKwvISuF03e218q7zB5gKppheTZDJpOkTs7Rn5kgpsCLnsNlsm+bfz0cyTAdTZCSFNqeZIx1O4tkok2tJrCYD2byM22rifJ+nbIb7eubCaX44GUJVwWU1kpUUfjQTIZWTm6bHVaMLADfrZBwMBjd0Mm62qutmFRLNA1ILiUSibvGQzTCbzRw4cACA8+fP89JLL/GZz3yGP/mTP6npOnvu2toMbZOvlytrq9fYDZlMhu89f5X/9EKSRF5EJQuhLFdm4EybyKWH1ao23VqoptBPcx95vV7OnTu3bUKBKIqMRmEoE6XXZytmaKVzMi/PRHhDf4TL+/1YxepPVdo68/k8165dI51Oc+nSJb41EmF0OUG/z4bJKCArMBVMcs0o8tMPdZPKyYiCgMtaOExcu3atOC0ynU7j8XiKLhen08mNhTg/nAiRyisYRQFJVulvsXF5n4+1ZI5IKo/HZmIwYN8wx6QURVUZWU6gqtB1Lx7ksoDFKDK5lsK5u/6TdeN+V5Jv1ck4HA4XpxJqFsv9GBS1Gc2aRbbT6Yj3uyBRUZRNY9Nb0bQWiSAIJJNJ7ty5UzdX1np2KyShUIihoSH+fsZMIi9gMrzqK87LCleXZZ6bDO16Fsd6trNI7t69y+3btzedaVIJQRC4mwTRSNkAKpvZAKjcWUpweX9tf4eWzPD888/jcDi4ePEiKQlGVxK0uc2YjSIqKkZRoMdr424kzVIsS6/vVYtT6zXkcDgYGBjY4MvPKCJXIjbsdjv72gouF0lRmVpL0emx8Mj+6tOss5JCJC1tyA5zWYwEk3mMjatffWBYX8EdDoe5efMmJpNpR52M640WaG8mIdlpgWSjx+z+xm/8Bu9617vo6+sjHo/zpS99iaeeeopvf/vbNV+rKYUkkUhw584dZFnmTW96U13y3Sux02C7qqpMTU0xMTFR8DG+PA2Un4IMAigCPD22dt+ERFEUbt++zdLSEufOncPvr/51RVFEpHIgWlVhJ3tBNBollUoxODjIwYMHEQSBfDZ7r21M+QnNZBCRZJW8vHEBpRbY+pTWKxNLpIOLWFMRRkeWsdpsOJ1ObIKZ8dUkF/f5qm6loqUDZ/IKpcloWUnBJIKxSfamZuttZTAYiu6RWjsZ15tmy9iCnQ+1anSLlJWVFX7mZ36GxcVFPB4Pp06d4tvf/jbveMc7ar5W0wmJ5srq6OhgeXm5YSICO7NI8vk8N27cIBaL8dBDDxVOXML05q/RgJumkpBoDRd3Oj5YEAT6XbCWhnjm1VN5LJ3HaBA50VXdrA8obHSTk5NMTk5iNps5dOhQ8Xdem4l2t4W5cJo+r7W4Ka4lcvjsJtpc1afliqJ4r81Ehn0BG4okk0gkSCSTLIRDGAW45YjQGgjQ0tKyrT/fKArsD9h5cTqCxSjishjIySqL0Qy9PitiquqlNZRmEpL1wfZaOxnX2w32WhKSRru2/uzP/qxu12qaGMn6rCy73c7CwkJDX7/WrK1YLMbQ0BB2u53Lly8XUyLfeayNL7+ygKKqxboFWSmc5N9yuP7BsvVCornYWltbOXbs2I6+tKIost+lYu7w8eJ0lMVoYaaI2SjyxoN+zvZWJySSJHHz5k0ikQhHjx5lcnISRVGZj2bIywodbiuPHvDztVcWGF9L4jSLpPIqIvDmQ604K8wV2Som1OG24LYZWUvkaHNZ8Pq8OD0eUqYkp9stOB2FSZi3b9/G6XQWYyuayyWYzDEdTBFNS3jtJnq8Vk52u5lcSxFK5TCJAn0tNs73eRharvltbRjNIiRbtZDfrJNxMBgsdjJ2uVzFz6QenYxfS0Ki99qqkdKsrEceeQSr1Uomk2l4cVEtFokWd6hUh/EvH9vHcxMh5iNpFFUt1i883A4PbZMiuxO0+gxVVZmZmWFsbIzDhw/T29tb0wYzsZrk+ckQy7EMXV4rSg5+6s1dPLTPz8hyHAGBIx0uTna7q3IPpVIprl69islk4vLlyySTSYJphc8+O810MIWkqLTYTbz5cCs/caGHl6aDzIfT9PosnO5xc6yj8ulr/d+kqCrhVB4B8NpNPNzv5dnJMBOrKQyigKSo7PM7uHioFbfVyODgILlcboPLJW/xMJYwI4lmHDYLmeUkPruJNx1s4WCrnXhWwmwQCTjNTdVCpdkskmrXUtrJGF7tN6WlGcPuOxk3o5DsZE1aUsODMB0RmkBINsvK0rKMGtnJsxohKW3Fcvbs2YrpeO1uC3/18xf48ivzvDgVxmkx8LaDPozLww254UVRRJIkbty4seko3O340XSYzz47TSSVx2wQeWEqjJoSObqc4Ny+Vs71eWu6XjAYZGhoiM7OTo4cOYIoiqxF4jw9ryC44nR7rZgMIquJLH89tMhHH+rhg2c6q77JNIvkbiTN85MRFu5ZTN1eK5cHfbzvZDszoRTpvEK7y8JgwF4WhzGbzWWzuSOxOF+7MstKOIqLDCmzBafTwUrYzJUZkXefaN9yaqKqqgSTeZI5GYtRpNVprqmt/W5oljRk2F0dyfp+U1oLl9JOxpq1Um0n42bo/Lue3Vgkehv5KlhcXNw0K6u0F1aj0gm3C7anUimGhoYQBGHbuIPXbuIXHh3gFx4dAAqnraeWGzP0R1EU7t69i8Ph4PLlyzXn8mfyMv/Py3dJZQu9rTTX0SvjEb46tMSZ/kDVKcuqqjI7O8vo6ChHjhyht/fVMv6JYJrVtMrFfXaM96rDu702JlaTXJmJcKStuhOn9v6Fkjn+/uYKoVS+GEsZW0kSSeX50NlOLlfZCFMQBGSDFcHm4czhAGaxYBUnEgly0TV+tLKMN7PIQGcAv99fFiAWBIGspHBlNsJ0ME1WKqQcd3ksXBjw4a6yH9huaRaLpF7TEUs7Ge/bt2/HnYyb0SLZTYxEd21VQUdHBy6Xq2JAXRCEus1t3wyDwUAul6v4O63FeldXV/GEXQulA6jq2a5hdXWVlZUVnE4nFy5c2NFNM7mWZCmWpcNjKdsgvWaB2XCa+WimLAV3MxRFKca1KllF8awCKkUR0XBYDCzHa8tVV1WV0ZUkq4kcB1pfba3tCBgYX00xtprkQr+3pmsKFNqpiAYDbo8Ht8eDNyCxFkvj9Qqsra0V+x35/f7CKGFZZmwxzp3lBO0uK3azgZykMBPOIAgR3nzI33A32IPq2qqFnXYyfq0IiaIoukVSLaIobpmV1ejhU5WC7YqiMD4+zszMTLHF+k6vDTs/jaynNBNKmwe96xtmvYfk3gCuashkMgwNDaEoCpcvX674OfrsJhAKNTWl/aoSGZkDgepPWtpGtZbIvToorOR3JoNAKFldtWBOUsjLCl6bkTaXhflImr4WW7HV/EoiR3/AyfGDrYj36mC0k7GiKLzw0hVuJ+3Y7Q5Eh4iqWjEbRTrchZG9oWR+y6LHetBsQnI/Nu5qOxk303ujsZPDZDKZBNBjJNWw3Qd+P4Sk9PpaS5FsNsulS5cqngZyksI3ri3y7eFl8rLKWw4F+NC5bpzrXBr1HImrxUNisRgPP/wwS0tL5PM7L7PeH3AUNr5olv57m6iqqkRzcK7HSvc2s8sjkQhXr17F7/dz/PjxTW+Sg60O2qwqk6spOjyWQowknsVmMnChxiQEVVXxOUzk143dVdVC7YnbuvWNmsnLDN2NMbqSJCcrtDrMdHstJHMSk2tpjAYBSVZoc1k41+spWhUGg4FAIEAgEGBxcZEDh44yeWsVKZdmfGy8YM24XDhcTjJ5I3m58SN7m6m/Vb1cW7WwVSfjlZUVJEni6tWrNXcybhQ7cc9rQqK7turA/XBtaUISDocZGhrC5/Nt2lIkJyn8qy8N8fxUGFBBhZdnInx9aJH/+bNvKKuI1jqi7lZIEokEV69exWq1cunSJcxmMysrK7u6rsVk4CMXevnss9OMrybvbaIqHgv8+Mmt4yNacsTBgwfp7+/f8ga1mQ080qGS8nsYW0kiKxJtLitvPRLgaKd7WzGUFZW5cJo7a3nMRoFjBwot7WdCaTrcFlBhMZahxWHmYNvmLgBFVXl6LMjNxQQ+mwmr0cBsOM1yPMcjg15AIJ4t1M70+WwV557kZYW0BE67jYHOVkKpPB1uM8lEkngiwdTdZTLZHBPGNTJthcykRkwk1GiWU3cziFppJ2Or1UokEsHv9xMKhYqdjDVR2aqTcaOQZbnmerhUKoXJZGq6Xmab0dRCUuvc9lrRhGp6epqxsTEOHTpEX1/fpjfp399c4vnJEKIoIAr3LA5VZXw1yRdemOWX3zxY9vjdtqnXugn39vZy6NChsnhGLUKSyEj8YCLIrfkYFqPI+X4vDw34+M0fO8TzkyFW4lm6vFbElSQHA5VjI4qiMDIywsLCwqbZa3fDaX44EWR0OYHdYuRkuw2bQeXDl/pZjWcLloDTgrmKYVKpnMzf31rh9lKCYLhQCTidXeV0t4vx1UKMR0Ao1KXsb9nSnbQUyzK+mqLbYy1mcrmtRqaCKWZCGd59onJHZABJUbl9LyZyYwnCd0K0ex0oqspCNIfLakV0mvFbPBxvs9JtzRMMBpmbm0MQhOLm5ff767aBNVPW1l5YJFuhqipms5ne3l56e3tr6mTcKHbi3k4kEjgcjqZ6b7fide3a0ipvp6enuXDhQnGe8mb808gaCEJZMFUUBPKKwneGVzYIyU7b1KuqytjYGDMzM5w8eZKOjo6y39fSRj6WzvOH3x3j5nwMURRQFHh6LMjbj7byC48O8BMXeoqPffrp8YrXzeVyRZffxYsXK5rbc+E0f/bDaZaiWTw2I6FUjtHFGAEZ3q2otG4xAKsSL06HGbobpdtrw6GYyEsyi9EsBlHgJ9/QRSRdsFTbXOZt54VE0xL5Cm1ZPFYjK4nshhhOKdfuRnlxOorTImIRVWIZidhqkgMBOyoQSUu4LUbO9rg50OrAIAp0dXWhKAqxWIxQKMTs3By3b98u9qDy+/243e4dn+SbKQ7QTGuBjfGISp2MtaC91sm4NGjfiBnpO4mRaELyoNDUFkkjXVvxeJzR0dFiS5FqTotbnQQr/W4nA6hyuRzXr18nlUptGqepZWb79+6scmM+Rq/PVrQEYuk83x9Z5dJgC6d7Xq1Yr3TdeDzOK6+8gsvl4uLFi5vm8j87HmQpmuVgu6MotOFEltEZgcm1JAe2cD2tJycp3JiP47GZcJgNZAQBgyjQ67NyN5JhMZYtGcm7PRajiFAh6J/OK/gdpk3byiezEreXEnhtBlocZlaN0O4yE81BKJXnvSfbEQQBoyhsqCERRZG4amE67yZismFrA5cxTzod48aNG4WYT8ngqFpcH820eTeDa6uU7bK21tcTlXYynpiYwGQylbnB6lF6sJPaFq09SrN8ztux50KyVfuLRrm2ND9/e3s7oVCoapfDmw4F+Mc7a2WtUNR7//32oxvdI7W6tmKxGFevXsXlcm0Yhbv+utUK1MszYSxGscyd5LaZWE3kuDkfKxOS9Z/F8vIy169fZ2BggAMHDmz6pVZVlZHlOF67qcxac1uN5BWYC6cqCslm18vLCjlZwbLOSjAZBGRVJSvVJs49XisdbgtzkTQ9Hhsmg0AkLZGVZI53tmy6jnhWIpmT6faWb/Jum5FwMk8qJ9OyycjeqWCK5ybD5GUFp8XIalJmRRV4aKCfR48fL2YdLS4uMjIygt1uL1orXq93242nWTaYZnNtKYpSVeEibOxkLMty0Q1Wz07GO3FtJZPJho3VbQR7LiRbUW/XVml33DNnzmA2m1lbW6v6+e892cFfDy3yylwURVWLItLXYuNnLm6cp1uLa0ubHDg4OMjg4OCWN+dOZ7aXokKhkKLCdbXZH1NTUxVda5WwmQzEM+XWo3Ivl9hUY8W33Wygw21lfDVZNs0wkpZwWYy0bZNem5UURpYTTK6lUIF9fjuPDvp4YbpQEZ+XVVxWIw8P+DiySVsWAIvRcK8bsFzWAyyTVzAbxbJ2+6VIisrwYgJVVYv1OD67ibVEjuHFBAN+e1nxnZZ1FAwGuX37Nvl8vsxaWb+hNFOM5EGzSLaiNCgP9etkvNMYyYNSQwKvIyHRqtQBLl26hN1uJ5FI1HR9i8nA/++nz/LlK/P8w60V8rLCWw+38pMP9VRsp1HNhl8axK527kotQnJhwMfwYpyspGC5Z5VE03msRgMnutxljxUEAUmSGBoaIhaLcfHixary2AVB4A39Pr78yjyJrITTYkRRVebDWVwmONxe2Q1VuiHmJIWpexMOW51mLu7zshDNMLGaQs3KpHISdiHPo/t9W8Zb8rLCt4dXuLWYwGgQEIDbSwmOdTj5seNthJI58rKKz24q1Llsgc9uor/Fzq3FOF2ewoaRyMpEcjJv6PNsOq8+mZWIpPMbRvp67SYWoxliaQlbiQitn5+uuVu0jrlWq7Vorfh8vqZybTWjRVIvYatXJ+Od1pHoMZIa2Mq1ZTAYyGQyu36N1dVVrl+/TkdHB0ePHi1+0TTXUy03ptVk4Kcv9vHTF/u2fex2G342m2VoaIh8Pl8Ut2qoRUjefqSNq7NRbizECpXcKhgNAm8/2srJdUKizXd3Op3FVOOtyORlUjkZj83EI/tbmA2lGLobZTGSRUGlxWbiSJuCd4ueVVAYk/uN60vMhTPISiEofrrbzftPtXN9Ps7wTJIWq8g7T7VxpmfrLsTjqymGFxN0ey1FiyErKdxeSnCw1cHxrq2FcTWeZTacISPJBBxmTne7kBWF2VCa5TQ4czKnur2c6XFveg2jWIib5CSlTDByUiFGYzRs/l1b726RJKnYMXd0dJRsNlt0+fr9/j3P7HktWSRbUamTsVa7onUydrvdZS1ctHXs1LWlC0md2G2MRFVVxsfHmZ6e5vjx43R1dZX9XvtwG3XC28qi0or6WlpaOH/+fNV+Xagt/ddlNfLrjx/khxMhbi68mv57od9XVi+ytrZGIpEormermzGVk/n2rWVenA6Tycu0uSy87UgrP/1wL5cGW1iIZrAYRQ622nnlubktXTE5SeEb15eYDqbpbykkBETTeZ6bCuOzG/nwuU7GPWmymTTHq2gkOR9Jo1I+5dFiFBEFmIuktxSS20sJfjAeJJaRCnVAFNxi7zji53S3G1d0kovH/PS2blxHIisxF86QvucG63BbGFspzIu3GEXyssJKPMs+v52WbSyhUoxGY7EgEgqW9c2bN0mn07z88svF4LBmrdzvMbevFyFZT2mhKmzdyViSpJrX9CC1R4EmF5LduLa0lNV0Or2pi6a0jUkjvnybWQ5zc3PcuXOnqqK+Wq6blxW+e3uFf7qzRiSd51iHk3ef7OBIh4t3Hmvjncc2JgSUtqK32+10dnZu+V6oqspfvjTHs+MhvDYjNpOB2VCav3hhDlEQuDDg40hH4b3W1riVkEwFU8yGM0URAfDYTKRyMq/cjfHI/haMBpFqO3Nt1udKZeshY/GMxHOTYWSVYkZYXlYYW0vSsWjh0j4frTYqisBSLMvTY0FW4tl7IwQEWh1m2lxmVuJZFKVwUOn2Wjnf5yn7vNN5mbvhDMmcjM0k0uO14qgwk0XDbrdjtVrx+Xx0dXURjUYJBoNMTU1x69Yt3G532XyPRlsrzeba2qvuv1t1MgYYGhoicG/AWjWdjHWLpEa2+hLuNP03EokwNDSEx+Ph8uXLm35opaZnI05y6zd8rSX9yspKzaNwt7ouFDbrzz47zT/cXMEgFgZSfW9kjVfmovx/fuzQhniItp5bt24RDAa5cOECExMT21o608EUV2ejdLotuO+5rDw2E1PBFP94Z5Vzfd5iKqz22W4lJOm8gqKoG4oUrSYD6ZxCXq7NWhzw27kyGyWWlnDbCp97PCMhCgL9/s1dhwvRDOFUnsGSgkyTQcRrNTK2kuShew0h169FVlRenAoTTOTYF7AX+nMpKtPBFIfbHDx+tJVkTsZqEml3WcrSj0PJHM9OhFmKZQABFZU2p2XbOJC2jvXB4UwmQzAYLGtsqFkrjarobqZ4DTRH08bSTsa9vb0888wzDA4OEo1Gq+5knEqlaGvbvFC22dhzIdmKWl1bpS3Nqznti2KhAeBmr5HISnzvzirBRI4TXS4eGvDVdNOUWlTpdLoY7N+syWG1VKr3mFxL8f2RNTw2YzHI2+pUmQqm+MorCxzvLP+yaqN5oZB8YLVat4xXaSzHs6TyG1NifTYTy/EsyaxUFBiNra4ZcJqxmQ3E0vmy54VTeQ622rGZxC2vsRDN8MpslKlQCpfZyIkuF2d7PVybj7ESzwEqJqPIuV43+wObC4miFnpWrv90xXvNHDdjLZFjOZ6l02N5tT+XKNDqsrAQy3Jx0Ehnhd5lqqoydDfGUixDX4sNg1h4nblQhiuzUd55rHVz62qTzdtqtZY1NozFYsUq++Hh4eI0Qq19Sz023Nera6tatPu/ra2tmP24VSdjn8+HzWYjkUgwODi41aV3zO/93u/xta99jTt37mCz2bh8+TJ/8Ad/wOHDh3d8zaYWklpcW9qI13A4XNOgp81SdH80HeaX/vIaiYyEKBQ2mrO9Hv7ko2c2bJSboVkOwWCQa9eu0dbWxrFjx3b9Ra9kkYyuJEjl5LKZ54Ig4LObGF2Ok8rJRZeJ1lcsEAhw/Pjx4nqqib04LcZiINlSEodI5WVcVmNZbELrN7aZCASDQUzZLMfa7bw8GyeVV7AaRUKpPFaTyMV9vuI1KnE3kuYrryyxlszhsRmJpTNMBtNc3OfhQ2c7mY9kAJUuj5W+FlvFjVlSCmnc7S4zTouBUCqP/15tiKwUJjE+NODddGiVoqrIKhv6kxlEAVkBRan8t8cyEgvRLK2uVwdiiYJAu9vMcnzrLsLVpP+KoojX68Xr9RYrujVr5fr166iqWta+Zac9nZrNtdWMQiIIQtma1ncy1jogLCws8OSTT/KNb3yDjo4OfD4fqVSq7vUkTz/9NJ/61Ke4cOECkiTxm7/5m7zzne9keHh4x+60PReSeri2tMaGFoul5kFPlcQqkZX4V18aIpUr/FzbC67Nx/jdb43y+//seFXXFgSBcDjMzMzMhqFPu6GSkFjvVW8rKpQmBUmyitVkKLpUtJHBlfqKVVMxf6jNyYDfzvhKkr4WGxajSCSdJ5GVePxY2wYXVSUhkWSFl27cYXFhgYDTjC+Z5rDNzmzajGyysD/g5PKgj2Odr8a1Kq3rpekIwWSOgyXzSSLpPNfuxjnb4+Hy4OaHiWg6zytzMUZWEqDCgVY7B1sd3FyME8ukMIkCaUmhx2flVPfmGVotDjM+W6FGpNTyWEvk6PFai+619ShqQYTWx20KFhBbWkE7cSeZzeayVNbSNuxaQWTpNMJqN2PdItma7TK2SgV/cHCQgYEBDh48yJ/8yZ/wta99jb/4i7/gscce48Mf/jCf/OQn67Kmb33rW2X//vznP09bWxtXrlzhjW98446uuedCshXVuLYWFxe5efMm/f39HDhwoOYvUSUh+d7tFZLZws9K71dFUfnmjSV+64kjm9YQaEiSRDAYJJPJVNXHqxYqCcnZXi8Bp5mFaIZurxVREMjkZeIZibcdacMowvDwMIuLi5vGZzazHsKpHDPBNGajwIFWJz9zsY//+eIcU8EUeUnBaTXylkMB3n5kYw3M+mveXojwF9+/yUIsi7/Fz36rk7ee8HJcSrC8usZqcBWHGkKMplg1FjKRKm2aeVlhJpTGZzeV/d57r2q/4G6q7D5M5WT+7uYK42tJfLbC85+fjNDrs/KWQ35W4jlSOZlOt4VD7c6KUw/DqTw5ScFrN3Guz8MPxkNMrSWxmY0ksxIem4kzPe5N3VNuqxG/o+AO7DW/GpdZS+a2rXHZbVxi/TTCfD5f1n9KluWiq0WbELkZukWyNbXWkAQCAX7mZ36Gz3/+83zmM5/hwoULfOc73yEejzdsjdFoFKAYa9sJTS0k2iZf6cZRFIU7d+6wsLDA6dOndxyYqiQka4ncvQaHGzdVSVaJZ/JbCkkqleKVV15BlmVaW1vrKiLw6uZc+r547SY++egATz4zxUwwjSAUTrenez38s1OtvPzyy9vWq6wXKFVV+Yeby/zD8AqRZA6DQaDHa+OnHu7l195xgPGVJMmcRIfbSrfXWnFDKRWS8cUQ/+c3h0jJIod6OlGBGwtxwmmJf/loX9HU1+omJiYmSKfTxfiN1jZCuNc402wUN1TTy4qKgLBlI8fx1SRTayn2+18dAdxiNzGxluJ4l4u3Hd7Y2VgjnpF4emqFqWAKSVHxWI2c7fXw+NEAU8EU4VSeI+1ODrTaaasQME/nZdL33Iyne9z3BCiNzSySzsnYzYWfr19/PCMVM7u097VemEwm2tvbaW9vLxZEBoNBVlZWigWRWmzF6/WWbYx6sH1rdjuv/dChQxw6dKgBKyugKAr/5t/8Gx555BFOnDix4+vsuZBs59pav2HCq4FrreHibnyIlfphHe9yVxQRFWh1mgk4N3edra6ucu3aNbq7uzGbzQ05SYiiSEqCv7m2yGw4jcdm4rEDfi7v97O/1cGL02HiGYl9fjsHfQaGh17G7XZvOmdFY7318KPpMF+5uoDZKDIQcCApCjOhFH/2wxl+812HONpZXdW7qqqEQiH+9/dfIa1aOH+wo+BGUxRsJpHJtTQ3FuI8ur+lmGnU0tLCwYMHSafTTExMEA6HeemllzCbzcVN7XiHg++OhPDkZOxmA8q9+SVtLhP7tsjQWknkEEShbASwQRSwGEXmIxku9Fd+nqzC98cjzEQKs0gsRgPhVJ5/Gg3yrmOtPHZg8yy8vKzwylyUO0sJMpKCw2zgRKeLtx4KMBNOE0rm8dqMDPjthVkrZc+LMbaSJJ2TsJoMyOE8gbbGDNAqLYjs7+8vm50+MjJCLpfD6/UWrZVm27ibbT07SUfWxPx+TEf81Kc+xc2bN3n22Wd3dZ09F5Kt0DY9SZKKqYtra2tcu3aN9vZ2jh49uutZApUskocHfJzu8XBjIVYUFJVCRs+/etO+ioHX0v5UWvHj9PR0XSYkrmcxluOLYyKJiSm0xX3j2iK/8pb9vPlQgPedKowHXlpaYujKK1X174KNwfZnx4NIskpfS8FFZBANDPgdTK4lGZqL8pbD27dzEQSB5eVlpqenEZ0B2szGshvLIAqIYsEKrITNZsPn8yHLMidOnCAcDrOydq/KO53Dr9qZWkxhMJsxGIy0Os382LG2LS1Gm1FErnBQyMuFDX4zgmmV2VyGvhZHMamgw21hNlwQwkNtm1eZvzgd4eXZKF6bEZ/dRDwj8cxEiDceaCmmFlfi2t0YV2YjtNjNdHptJLMS18MyrcsZ+no2fVrdKJ2drqoq6XS6GLSfnJxEVVUWFhaKmUe1FNbWG1VVm1JIdrJHad1/G8kv//Iv881vfpNnnnmGnp7dfZmaWkhK6zxKN+qjR4/u+g/XqJS1JYoCf/pTZ/jdfxjl724uIckqAaeZX3rTPn7ywsbXzefz3Lhxg3g8zsMPP4zb7d702vXgf740z3Ja4ECnBbOxYLUtRrP86Q+mOdvrwW01FufO1+L2Wx9sX03kNmzImohG09uP+lVVFVmWmZmZ4dy5c0SmM8yNrpY/RlGQFbVir7JSZEXh6nycl2eSxDJG2ly9nN5v458JKW7NrnA3uILDZOZ4qx+fmEGWrZvewIMBOy/NRFiMZmh3WxAoCJnFKHKgbfOslYwMsqBuaNboshiJpPJIioqpQvuTaDrP6HISv91UTM22mQysxLPcWoxztMNV7INWSionM7aSxGt79XkemwmvVWA2kiWazm/7vtUTQRCw2+3Y7XZ6e3uRZZkXX3wRg8FQdENq9RF+v/++t0HXvruNHlRVC7txbTWqIFFVVX7lV36Fr3/96zz11FPs27dv19dsaiHRiq4ymQy3bt0ilUqVbdT1YLMUY4/NxB984Di/9cRhYhmJVqe5zBWikUgkeOWVV7Db7Rv6U9WjS+96ouk8V+eiOIxqcY6GIAi0uy0sRNK8MhPCnbxLMpnk4sWLNZ1q1lsk+/x2ngkHaS9xLeYk5V6a6tZ1MPl8nmvXrqEoCqdOncLv93NOSXJlNsJsKEWnx4okycyFM7S5LJzo3HydgiAwtCwxNruEURRwmA2MriSZDqb5Z2c6eOKx8p5Ud+7cKeug6/f7sVqtxLMyZoNAp8fKWw8H+MF4iMm1wvRFl9XEmw60MNCyeWDZaigIaWkDTCi0m+/yWDada5LIyiTzMr2O8vfMZS0IUDIrYTFuTPXN5GUykrIh8G4RVTJyoZjTs/lyG47BYEAURbq7u/H7/cX6iGAwyMzMzH0fcat9d5vJItlJw0ZZlkmn0w2zSD71qU/xpS99iW984xu4XK5i9b3H49kysWIr9lxItjuxiKLI1atX8Xq9W87o2Cnb1ao4LMZNW1YsLS1x48YN+vv7OXjw4Ia/pRETHiVZRVU3xjMEAWRV5ebwbS71OXf0XomiWDZH/U2HAgzdjTIdTBFwWsjLCquJLIfbXWVzTNaTSqW4cuUKNpuNtGriblzB4Myyv9XBh8518a1bK8yF0oBKt8fCe091bFnJHcvK3FyTCAQMxQB2wGlmJpTmhxMhjnU4MZX0pDp06FCxg+7KygrPXBtjMmkmKVhx2W2cGwjw6IEW+lts3I1kQIVOj6XibBFVLdSSKCp4LdDnsjATTtHpsmI2ioRTeVQVTna5N/0u20wiVqNIMieXZYClsoWKd9sm7jS72YDdbCCRlcusoHQePC5xSzfc/aI0frm+PkKb7TE7O8vw8HCxqaE2IbIRkwihuYRkJzGSRCIB0LAYyZNPPgnAm9/85rKff+5zn+PjH//4jq6550KyGaqqMjc3Rz6fp6enh+PHj9/3xopbrW10dJS5uTlOnTpFe3t7xcc1wiJpcZg42Obk2XAMVVWAwmayEk0h5DOc39fJ+TPHdvReaRaJtjkc6XDxC48O8M0bS8xHMhhEgccO+Png2e5NYxDBYJChoSH8bR3cSrn4h4ko5sV5vM4QZ3s9fOBsF8c63dwNp1EVmTa7iM2yteCFUjKJvMrhdRu931FI9Y2mpbLivdKAseIIMLc2T0xIYRNyrK6t8eX5VW6M2/kX5zrZ3xrYtMvAcizLD8aDzIYzKKpKYlngiQEbboeN6WCKfFrBYzNxeb9vQ6t8RVVZjmXJSAotdhP7A3auzccAcJgLs1vCaYlHBn1lHYJVVWU1UUg/dlqMHG538MJUBACnxUAqJxPLq5zzW3GViNJKPMvoSpK1RA6vzcT+VntxFkoj2ayOZP2IW222RzAY5O7duwBl7Vt2WhBZinavNVMW2U5cW6lUwUpulEXSiHk2TSkkkiQxPDzM2toaNpuNtra2hn05ap1iqDWDzGQy27qOGiEkgiDwUw/3cn1ykblIFptZJpXOokh5/vn5Ti6fra5Ycj15WeGHsymem45iuHmdA20OHj/Wxrk+L6d7PKwlspgM4qYTAeHVZpRHjhzhh8sC/zSyglGELrcZSRD5/uhacf0HWu3k83ny+Xyx6FQUxeL/SjEbBIxCwa1WenrPSgpmg1gxvqBxZS5KIqtwvO9eRpWqEk1mmFmNMTSxiGt8DIfDUdzUtCl48YzEN28uMx/J0OG2IgowkYYfTEb4yYf7uTjgJSereG3GDTGTUDLH90cLApSTFFxWA4fbnJzodDETShNK5XGYDDw04OFs76tu2lRO5gfjQSbXUqTzCnazgcGAnbO9bqaDacKpPBajyGGfwMnOV7PS5sJp/mkkSDSTx2E2cjeSYWw1yRsPtHC4vbEB22rrSNbP9tDat8zPz3P79m2cTueGz2Ana9HaHjULO20hb7FY9jRxoVb2fKXrP/REIsHQ0BAmk4nLly8zNDTUsLntUFtjyGg0ytWrV/F4PFy6dGnbD7oRri2Ak91ufuqwwLyhhRtzQbpcMh+4eJjHT+2scl5VVb744hx/MxwFRSZgknlhKsTwYpxfecsgp3s8W8ZESodznT9/HixOXn5xlBaHmaxUmL/hsplRgVdmI7zzaCs+W+HmMpvNyLKMoijF/8GrfdAEQaDTbabdLnA3mmGgxYbJIJLOy6wmcjy6v6XsZL6eu+EMntLqckHA47RhTyl0DLRztttRPCnfvHmz2DpkSbIzG8xxqN1VbH/SYS9Maby9GOctm9SaSIrKd++sMbmWosdnLVT+p/LF/llv6PfeszYMGwLlP5wMcWMhTpfHQpfXSDwjcWM+zoUBD+8/1U7yXprztStzxToTRVW5ejdGMiexP/CqVbQUy3BlLkp/i23TSY71YCeV7YIg4PF48Hg8DA4OFgsig8Egt27dKhZEatZKtX77ZsvYgoKQ1GptJRKJPZ8zUyt7LiSlaDGH3t5eDh06hCiKDZvbrlHtZq/Ned+/fz/79u2r6kOul0UiyQrjq0kA9rc6MBlEupwifcYQbzxt5uzZh3flGpgLp/nBWBC31YBNgBaXhYDTzNRair+9vsSp7s392VpQPZPJFIsdp9aSpPISHS4rWV41pZ0WA3fDOUKJDD6bA4PBUEyogMJGIMsy2bzE1dkoIysJZAXazDnOtYnMClZmwunCcC5R5GSXm7duUTwIhUr32XC67GeyooJQiF2sL8bTWodM3V5meTmDLRfG4XDcy6BRC9lWm6QqA9wNp5kLp4vtY6DQRiWTV7gxH+Nkl6ti1Xo4lWdyLU2721KMybmsRiRFZXQlybleT7EHWGlcIp6RWI3nCKyzFAMOM/PRDKFUni5PY4Vktxve+s8gkUgQDAZZXl5mdHQUm81WNs9+sxN+MwrJTtakCcmDRFMIiaqq3Llzh/n5+Q0xh0ad6qu9vlZBv7i4yNmzZ4uDbKqhHkLyo+kw/+OZKRYiGVSg22vlI2f8yNksbrebs2fP7vrmmQqmSGYl2m0GstmCdSYIAj6HmZlQikRWrnjqTyaTxYy1ixcvFi20FocZh9lYGBBV7KerEk3nsZtFfHbTpn51WYW/vbXMC1PhYl1AOBrlsN/CJ9/WxkIsRyqn0OI0s89vx2zcepM83eNiKphiLZHD7zCRlwtFi51uC/tby2/W0tYhZw0+7spLeO0qqVSK+fl5AJaDYQ54RXK5XMUspHReQVLUDe42u9lAMieTlxUM4sY1p/MyWUnG7yh/n20mkbVEnkxeobQOVtu8RUFAFNhQFyMrhT5em7VoqRf1bpFSOolwYGCgWBBZmo3n9XrL5tlrr79Xs0i2YqcxEt0iqRFFUfjRj36EJElcunRpgxLvpZBkMhmuXbtWXFutFfS1xl/WM7mW5Pe+NUo0nafFYUYAJpbj/P63gvzsMTPn+/rqcuPYTIbCHA3KN6P8vQ6/lWojtKB6d3c3hw8fLvvSe2wmLu7zFeba51RseYVEPEMomeedR1sJuDZ3k91eSvDidIQOtwWzoLK0tIjdbWFZtjEezHKhz13sdoAik8+/6hcXRZFbC3Feno2yHM/S4bZwrtfDmw628PJMlPHVFEaxMGDq3ce3Llo82Oqg02sjmMzRFWjDH4CXb4/jdRmx50I8++xccYiU1pZdEAQ8NiMWo4FkVirL9otmJPp81g1NLYvvmdWI8574+kusi2hGwmk14rRUbkvishrpa7FxazGO/V5nZkVVWYxl6fZaN3QQDqfyxDISFqNIm8u8a6FpdNPG9QWRqVSq6AabmJgodjpoaWlpugaS8PoYswtNICSiKDIwMEAgEKj4hhuNxobGSEo3+8JMbaHYtXdoaKjQiuP48R0VFW3W4qVavjO8QiSVv9fHClLJFC4xT0w1cz2s8vY6BfKPd7ro9FqZXonSYipcM5WTiWYk3n8osMHHPjs7y8jIyIbC0JxUyPiymAy852QHggB/+6MIK4kcPpeRdx1v5YkTHVuuZXItiayoiEqeheUV3B43Pp+PqbUUY2tpHj3YWhZP0dxhAC/PRvm74TUkpVAkOLwYZ2wlyftPt/Nzl3tZiecwGQT67sVZSlFUldlQmsVYFqMosM9v54kTbXx/NMhiLIOqgNMk8MGHBjjTHyjLQpqbm0NSwevz09nmZ7DFwvBykha7GYupkCIsCgKnujdv4uiwGDne5eSHE2EkWcVhMRDPyGQkmYf6vGWfgawoLESzLGYSOMwGznS7iaUlZkMpigOyXBYu7vMWa1vyssKL0xHuLCVIZGUsRpG+FhuP7vftuKhxN9/tnSAIQtHNqBVEru/LJooiMzMztLS03PeCyErsREgSicQDNWYXmkBIADo7Ozd1Ad0Pi+TlxRz/8b8/z9hKErvZwOMHXTzqDnPy6MZW67WgnY52UpQEBX+7KAigqsTjCVRVxeN1k4nnWU3ld+02y0lKocDPYuRnL/fz3757m/lwjvhqEqMo8oY+L+8/3Vl8fKmb7/z588VuocFEjm/dWubKbARFVTnR5ebxY238+OlOOqQVJudX6ArAQIsTOZdBNdo3fU9FQSCVSrGcTBJoDeC6d0OpqEUnWWlml/YeJDI5np2KIAADvoLF43cYmY8WxuCe7HJzZJOMs7ys8O3hVV6Zi5KVFFS10ATznUcD/OSFblbiWWRF5fYrcxy+V/muZSE5fK3MT4a4NhsiuZbCNT5JlzlLm8HOWsSK0WKl3evgfJ93QwbVWiLH5FqKZK5ghRztcGE2iNxcjJPIKrisRh7pKm+nH89IvLCkIMdDGIwJjAaBAb+dR/b7iKZdxLMSdpOBXl/5yN4b8zFemokScJpocxViNqMrhXqFdx3ffIjWVmixr72yAgwGQ9EihELW4NzcHNFolOnp6WJBpGax3O959rCze19zbT1INIWQbIXBYCCbrXZid+08MxXnj4ZyCBQCqKmczF/fijDV7eKvHt+5iEB5i5edCEm314YkrxGJRjGZTLgcDlQK/u9W+87jL7cWYvztjSVGlhLYzQbefCjAe0528H+8qYt/uj5N72Af3V4rJ7pe7UKbz+cZGhoim82WufkSWYk/fnqSO8sJvDYTogDfH1ljbCXBv37zABfOnODE4UJ/prW1NcbHx7FYLAQCAVpbW/H5fOWCm1wlm07h7G7F5SzcTKmcjKpStqFqaM+NZFRiGYV2txXRIBZPy36bkZV4loVQgt4We8X04uvzcV6YjtDmMuO2GgstZ2JZvnN7jW6Pla577ejH1+2XWUnhb68vMbKSpMVhwW6zFiYmWgTe2mcml4yyElzCmRUhHGBFLGxoRqOR0ZUk3729SjiVxyCAgkBfi5UnjrdxostFOl9oaLnecnpuKszdBJxuN+NzOcjkZUZXEliMIu8+XrkVTl5WGF5K4LYa8N6zPmxmA91eKzOhFCvxLB3bdCqohCYke33q1zAajVitVk6dOlUsiNSq7Evn2Ze6IhvNTuI2umurATTSIlFVlf/x3GLhv0t/DgzNJ3hhKsylwZ336C/NRtoJZ1sFvqJkiasm2p1WsrJCMJnDbTXycNfOCouGF2P84XfHCKfyeK0mQskc//PFOaaDKT560sXpVgOXT5a7n5LJJFeuXMHhcJQF1QGuzEQYXU4wGLBjMoioKvhsRsZXU7wwFebHz3QV3RF9fX3IskwoFGJ1dZVbt24hSRJGhxfF4iIZDeE25Hni/D5emksQXkkiUOh9dq7Py5ktqunNxkLr+LwCVvHV8bwyKmajAYup4GbU3KRaTEUQBG4txjEZhGLVeSHl2MLYaoqJtdSmVfcTq0km1lL3gv6F1/TaCiKxojh4x9n+srb4k5OT3Lp1C6vTzbMrJvKCmQNtruKc94m1FD+aifBjx9oqtsGPpvNMraXwmCkWMVpNBjpdVqaDKYLJXFl8RSMrKWTu1aWUYjMZyEkK6fzOvp/NVgBYevovLYgEyGazxWaTc3NzCIJQ1r6lHgWRldBdW/eRrb6IjUz/jaYl7kYrWzsGUeDKbGRXQqLVQdQqJFrlfGJhjl97+37+6nqYpWgGgC6PjU8+NoA9urPOwn9zfYlwKs+g/1X3UiIr8dJMmIe7TBjWidPa2hpDQ0PFlOz1n9VsKAUCRRFR1UIWj9UkMnGvj1UpBoOhGDzNSTJfuzLLU3eWCcbmMAoq/V4T/+xUhn2nWlhIFiYJHmh1cKyr4PbZjHaXhQG/nRsLMQZNBVHLyypL8Syne9z0+F3FJpJaNpj2vUpmchgoD2ILggAq5OVX34/1wh261zqlNIAuCAIuq5G791KOK7XFvzqxyFJkGbcQYiqxisPpxOFw4Ls3EyV1r15kPVlJIScrmNbdLhaTSCilkJMqfx9sJgMem5FgMl+WfRfLSNjNhoqDu6phr11b69kq1dZisdDV1UVXVxeKohTTvEsLIjUX2E4LIiuhB9ubhEZaJFajgEEozJlYj6IWhhbtllozt7S6jHQ6Xaycf/sphZHlBCoqR9pdmI0iV6/O1iwkkqwwupzAYy2fKui0GFmNZ5mL5OhTX73mzMwMo6OjHDt2jO7u7orXdFqNKMXZ5FofMMhX0dH36bEg37kTRE6n2RdwYLY7mV1L8DfDEd7WvkiLIOD3+wkYBQTFDuuERFIU7t6rHu/2WnniRDupnMR0KF1cx4FWB08cby+KeqkbTROWwYCdqWCQNsl0L51WIJUvxI9KZ4Osx2oSUdkYcM7klfIiyBJsNhtt7e0EAgr9PguZTIZkMsnq6gqRlITRYmHurkBvRys2m21DNpzHZuSuBJSISTiVx20zFjsEr8cgFgL937uzxnykUKCZzitE0/my+hSNVE4mks5jNoj4HaZND3rNaJFUIwCiKJYVROZyueKEyJs3b6IoStk8+81a6FS7pp3ESDo7O7d/YBPR9ELSqKwtSZK4M3yT863w8oqKQvnNYBAE3r1NhlE11NJKXuskrLmQtOCg2Shyct3c8J3UqBhEAbvZsGH2h6yoqBRqHdRM4bR++/ZtlpeXecMb3lB0D1TiVLeb7wyvsBApFNOJAqwl8pgMIuf7vJs+LycrfO/mPNlEjMEOb7Gj8/4OI6uJHN1Hj9NulVldXWV6eppbt27h8XiKjRmDWZG/vr7MbCiFrKq02M287XCAn7vcx9hqqthi/VCbY0PWmaQoTKymCCVzuKxGzvT7mQhmmAymcVsM5BWVdE7mTI+LHo8JWZbLNsusVPi2HAg48DsKzSN7fDYMwr3pmgIc69gYz1FUFVlR6XBb8NqMrCYlOt0OnA4HqtrKnaUY/U6VdCzMj2anMJvNBAKBYiGexWjgXI+H67dV5qM5WpwGElkJSVV5eMBf1rMrLyvMhtJEM4Xge1+LlbcfCXBtPkY0LWE1iTy6v4XTJd8rRVUZmosyNB8nlpEwG0T6W6w8ur+l4qFAE9AHTUjWYzab6ejooKOjo6wgcmlpqVgQWTrPvlph0A4rO7FIdNfWDthuSmK9LZJkMsnVq1cxm8387ofP81N//jJLaYo5+IIg8IcfPI7fufu219Vu+CsrK1y7dh3F3YHB08lKUqLbu/mJfidCIggCbz4U4IsvzhHPSLisRmRFZT6SptVl4XS3i5lRuWwsb6X2FKqqkpUUTKLAQIuND53t4K+vLTEVLLhz3FYj7z3Zzpmeyu3+VVXl9sgEC6sROltbcLtfvWlsJpGcpBDPyhzu8OL1ejl48CCZTIa1tTVWV1e5OTrJt+4aSKgm+v0unA4rwYTE168t4bGZONVd+XWhEGf48isLjC4nkJTCZ93ns/H2o23cDacZWU5gNgic7HJxqsuJUaTYwiWSpSBeUQlRKEzSfHR/Cy9NR5gJplDUwt/+lkP+siaOmbzMldkoNxZiZPIK/S02DrQ5uDkfZ3w1icUoks4rdPsc/NjJNjrc1mIs6eWJZb56bZhIWqbb5+AN+1o4G1DAbSYtq7S7LZzscnGk49X3MJaR+M7tVSbXUiiqCip0eSy881gbHzjTSSpXSP9dXzR5eynBM+MhbGYDXR4LWUnh1mKCvKzy3pPtGwa6vRbH7FYqiNSsldLxBKXz7Dd7D7R9ayfBdl1I6ky9hWRlZYXr16/T09PDoUOHUFWV//cpGbX7JLeWUvjsJt53qoMOz87N2VK22/BVVWVycpIrtyf5btDN1K0oeTmMzWTgLYcD/Opb91fslbST2AvAEyc6mAmm+NF0mNV7lkmby8wvPDqATcyQy+XweDwVx/KqqsrzkyG+M7zCUiyL22rgzYf8vOVQgJPdHu4sJZAVlYNtDjo3ef9kWWZ4eJhwKMxgTyvhTLlfMZkrtFZvcZSLqNVqpaenh56eHtITa+SWp+mxKKRiYeJhGavVSjRn5Lnx1Q3WWynfvb3KjfkY/S12bOZCsHkqmOIHY0F+4dF+Hj+2MfMpm83y7EvXeCliJZ9K4neYkFSVfxpZ5WCbgw+e6SCUlpEVlU63pczFJCsqf3drhatzMVwWAyaDyCtzMVocJh470EIknSealuj0WDjS7iw2xTQYDEwnjVyLWcHVQZtXZSGS4BvXVzjuUhmU52nxt9LW6qfF5yhL3/3RdJiR5QT9LXYs96ZBTgdTfH9kjQ+f76oYE1FUlZsLcYwGsdiq32QQ6fUJTIfSLEQzG7oJ17uqfbc0okWK0Wikra2Ntra2YkHk+gzE0nn2pfeMdn/qFkkTUEtTxa1QVZXx8XGmp6c5ceJE0QepqioGEd50qIX3nK4cB9gNWwmhJEncvHmTUDjMd0M+7qym8NnNWIwmklmJv7uxjMdq4hfftHGCWS0WiaqqKGrBtWUzG/i3bzvA7aU4U8EUNpOBc30epGSUoaGbCILA2bNnK24QT42u8bnnZ5EVFZfFwGI0wxdfvEs0I/HPz3XzyP6tExNyuRxDQ0MAXLr4MMa5BF96eZ75SAaf3UQ6L7OWyPFQv5eBLWauJ3IKFrOZtlYnKipSXiKZSiKkklwbneY503LRBeb1eoubSzSd59ZinDaXpdhF2GwU6fUV2sLPhdMbXjeVSnH16lVmUyZkq48j7Q6Ee++pzy4zsZJiYjXB2R53xdTi2XCa4cUE3V5rcX6I32FifDXFUizLe05WHkGQzEr8aCaK1Wig/V6cpsvnZCaUZnRlljef6SeVTDBy5w6SJBWbHFpdXsZWUrQ6LUWLwyAK9HitLESzLMUy9Hg3Wpl5WSWelTbMOLGaDMiySjK78TvcbJXkiqI0tGNuaUGkloGozbMfGxsjk8mUzbMvzQysBV1Idkg1WVu7MaPz+TzXr18vTg0sHRijfdiNCuhvtuGn02leeeUVjEYjzv6TTA7dwe8wF60Pt82EpKj8w/AyP32xd8NwrWqEJJGR+Ma1RZ4aXSOdlznZ7eafneniULuT411ujncV2o3MzMwwNjbG4OAgU1NTFd/nnKTwdzeXQYW+ewV/LXYTq8kc3x8J8tZDrRvacZStJZHg6tWrqBYX/fsPIBhMXN7fQl5WeGo0SDCZw2oUeeuhAO891bFlgVyL3QxCIQ5gMhQaL3rcHlazRt7Q52b/fhtra2vcuHEDRVEKAftAANXqJi8r2M3rJg4aRfKKQnZd1pPW7bmzsxODaMORT2Eo2Titoogo5gil5eKY4vXpxcuxzIZZ8Forlangxqw2jbVknkhaom/dxMaAw8RCDkSbmyO9PaiqSjKZLDY5XLg1ysyqmYDHjgV30fVSSI1WkSpllgAmg4DXZmIhmimzqNJ5GZNBwGl9df3RdJ7hxTh3FsKsLKn4FuIcbndUTFm+n8iy3PApjKUYDIbigQUoa98yNTVV7GyxsrKCz+eruiBSz9pqAKW1GDsp6ovH41y9ehWHw7Hp1MBGzVaHyht+KBQqblBHjhzhe3fWyMkbG/1ZTQbSOZlwKl9RSLYSv7ys8F++O8aPpsPYzAZMoshTo2vcWozz208cYX+rA0VRGB4eZmVlhQsXLmA0GpmcnKx4veVYhrV4ttD+/V5GFIJAi73Q2HE+kt5USILBIM++fJ1baTeLWQP58QlanRZ+7Hgbbz4U4NJgC8FkDod588yjUo51uhj0OxhfTdLutmASBVYSOZxWI5f3B2hvdxY7ycZiMdbW1pibmyMciZGLWpmOmjnY4cVsNiMIAsFkDo/NVDz5Q8EFevPmTQ4cOEBfXx+3hhY2CI0gCKgCuKxmLBZLMaW4NL3YJKjIioIkyRgMr55Os/cGXm2GySBgMgjkJQVjiQjlJQWDQPG7og3xMlntOAOdDB6SWXhplqmVGPnUAoqq4LA7yIoWnHZ72WeUysmMrSZZiWWxmQ10uC0sRDIsRgsWYkZSWI1nOdrhovNewWI0nedvbywzG85gVPMsp+Hvbq6wGHXztiOBhjeJ3Iq97v6rzbPv6elBURTu3r3L1NQUU1NTxYJIzVrZrCBSOxg0ajpio3hghGQn+diLi4vcvHmTgYEBDhw4sKlF08gU49Jra1MfR0ZGOHLkCL29hfkh3V5rMeBaWj+Qysl4baaKG/R2FskrsxFemYvS4bYW3TgtDhNTwRR/e32RX3qsj6tXrxYbUtpsNpLJZMVrqqqK1VjY2DKyiuOeiEBhQzQZxE0bIM7NzTF8Z5SXk36mYwptLhGnxcByPMsXX5zDaipkd3VXcLesJycpxcyzn3q4h2/eWGJ0JUlCUen12Xj7kQCHStqQlM690Kb0GYbv8tWhJa6ML+A0gWq0YDRZeN/Z7mLV9+zsLOPj4xw/frzYifp4p5urczFW4llanWYUFRaiGXw2U/E117duUVWVwVYnrc4os+E0PV4rBlEglpHI5GVOdpVvFqqqshTLks4r+GxGerxWJtaSDLTYMRpEspLCciJLp71gsUIhBvPSTKQwwCsjYTMbaHc76cBMOi9jFxWC0QTpTBxffo3ha0H8fj9mh4enZtJMhwpteBQFnFYD+/x24hmJtUQOi1HkXK+Hi/t8xUD7rcU4s+EM+wN2spk0JAy0uc3cWIhzpMN5X6YybsZeC0kpoijicDiwWCw8/PDDZDKZst5sWkGklg1WakmlUqmaG8RWyzPPPMMf/uEfcuXKFRYXF/n617/Oj//4j+/6uk0hJFu5rDQfoyRJVZutiqIwOjrK3bt3OX36NG1tlVtHaDRSSLQNv/T0vz6l9linizO9Hl6cCiHJRiyme2mdssL7T3dUDLZvJyQTqylkRS2bKCgIAk6LkaszYZ43zuN2uzl//nzRr6y5Z0rRai28NiOne9w8PRrEbjIUA9ULkQxHO50MBhwbnjcyMsLS0hL2niPMv7xSNmTJYTEyuZbk+yNrW6YJQ6GR4z/eWWNiLYnZIPLQgJe3HArwiUt9BJN58rJCwGmu6FrRmjGm8zKdbivvOLufrvY2npsMMrMaw6Tk6LOmYf4mV9LzxZkkZ8+eRTY5GF6MYzcb2B+w886jrTwzFmRsNYVAIdbx+LG2DYkFyazEzL1alr4WG+873cXf31xiJpxBVQuZaRf63Bxrt5HL5RBFkUhG5ju315hYS92bqmjkYKudLre1cC1AFApdid3GV928P5oO8+3ba9jNhaLDZE7m1mKCox1OPFYji7EsfX4XxztdDLaYi5vZP1yf52YIBgM2PK5CQeRqQmI+kuFfnO8CCvGj9YH5ybU0LosBgyigKgoIhTqkxWiWpVhWF5ISSr0oVqu1rCAyFosVq+yHh4dxuVyMjo4SCARIpVINs0iSySSnT5/mZ3/2Z/nABz5Qt+s2hZBshTb4qNqNXgvo5nK5im3pK9FoIcnlcvzoRz9CURQuX768ocBJEAT+/bsO8Uffn+S5yRCxdB6n1cj739DDRy70bHrdrYTEbhZR2Ziimc7mMGYzdHX1b7DStP/WnqO5aLQb9Cfe0F2cEFhInYX9rXY+camvLDVUkiRu3LhBOp3moYce4rnZJIrCBkF0Wws+eVlRN6SWakwHU/zpszOsJXK02M3E8xJfH1ribjjDzz/at2VcZimW4cuvLDK5liQvKbhtJh7d38Ljx9o43uUiLxeKDgVBIJFIcPPmTZLJJJKs8uf/eJ2ZtIW8YMJptzIYcPCBM50c73Qxd6+Z5oDfvmFOy7W7Ub41vFLMiGuxm3nHkQA//0g/U8EUeVml1WGiw20uvrc5SeYb1xYZWUnR7bFgdZmIpiSuzEV5/Ggrl/e3kMxJeKwmer1mnnt2FEEQSOdlrszGcFgMxcJJh8WIQRRYiGZ59/G2DfUfHR0d+FvbeCY4y357Bhs5IuEIS0tLmM0WFmULk4sWLhzoqHjAsxgFpHuzT9R73xnt8FFp3MD9pNmEZLM+W6Io4vUWUttLCyL/8i//ki9/+cvIssyv/dqv8YEPfIDHH3+86LmoB+9617t417veVbfraTS9kED1G70WHPV6vRXTVzejkcF2SZKYnp6mvb19y3b0PruZ33riCMuxLOFUjm6vbcsRstul/z400ML/vrLAQjRDp8eKAKxFEyRSaT70cDcHDx7c8JxSt0xWUvn+yAovTUdQgLO9Ht58yM+/e8d+hhcTrMSzeG0mTna7sJQMl0qn0wwNDWE2m7lw4UIhEG7NFqrd7wXHNRJZicGAnU00BIBnxoKsJXIcbH110I/HJnNtPsbIUpLjXZVPbjlJ4UsvzTO2kqDbY8VqMhBM5vj7W8u4rUYePeAvriWXy3H79m1EUeSxxx7jh1NRxl+axUweuxQjHYry/JqJcCTCr7ztEKc36fk1H0nzjWtL5GSFfX47ArAUy/LNm8sEnBZOdFVOS767kmAmnKX/3mhegBa7kXRe4vrdGL/waF9xgFdpBmMsLRHLSgSc5WLhsRqZC2cIp/KbdhdQEbBZrAScbgL+AJIskUgkWFmKMzo6RnZpvOh68fv9xdjioXYnk2vpe400CweOlXgOt81Ylg2WysncXkoUJ3seaHVwrNNZVjRZb5pRSKpxx2sFkZ/+9Kf5jd/4DY4ePcq5c+f4/Oc/zy/+4i/yx3/8x3zyk5/8/7P33tFxpOeZ76+qOid0N7qRIwHmHIfkBI00kmZGmtFoFKxkWR7bsrTX0u5d2d61fX0c9mrXu/Zd2Svter22rGBb1sqSrKxRmjycTAAkCBAgcgY651RdVfePQje7ATQYhpwB13rO0Tkih90oVHd97/e97xNegyu+ftwyheRKFOD5+XkuXrxIb28vXV1d18TwulnD9sXFRcLhMB6Ph/3791ddUzJXZCaSwW010lbRDmh0mauGvrVwpRNJi9vCR+/o5PNnZpgJZygU8giqwlv2NvOB23du+JrS9WXyMp99cppXZmJIqzv28wsJXpmJ8dtv6a0p+IvH4wwMDNDQ0MDOnTvLD/W+VhcdXitToQxtHismSSCclgG4q7d+089qLJheZ+liM0kUFY3FeK5mIRkLpJkKZcpaCoAGpy6ye24ywukeb9myvr+/H4fDwb59+9AEgZdn47gdVlrdXkCjUCgQS6S5tJzgn3/2HDsbHWW2Tl1dXfnaLi4liedkdjRcntO0ui1cCqQZXEzQ7du4750uKKiagN1q1nf3mqYPyU0SiZxMJlcAk1T1mQuCgN0sYTWKZPJK1QKdKahYDOI6Km8JRkmk12/jhakoHpsRSRQwSAYKopXuViv3H2tBKuqOzbOzs/RfuEjR6MDrrmN7WwP7W50MLyVJpHIkUyq99XBnj7d8OszJCj8cCnBxOYXVKJY/j+lwhgf2N64jldwo3KqFpBL5fJ5CocAf/uEf8ulPf5poNHqTru7GYksUkist+psZN5bsPJaXlzly5Eg5m+BacKNbW6UZzcLCAn6/vyoOVFU1vvT8LN/oXySVK2KQdGfb335LL43XYOV9NfTfN+70s8Nn4ZvPnCMnS7z52H4OddYjbnYEAJ6fCHF2Vk8ptJr0r0ihqDK0lOTp8TBv37de+7C8vMzw8DC9vb20t7dXfaZWo8Sv3d7JV16aZyqUQVZV6qxG3rmnidNX0J64zAYi6WpLF1XTLV0sxtqLRjwno2rrmXB2k0Q8V6RQVMlnUmX2XMmQMp0vks4VsZlKj4aAyWSmwWcmrpnYua+JTluxbGYJlItKNF1E2uC7bJL0AXstuG1GTAbxcqqiICAhki4WaHFZcFhNsGqLn83q7gHFYhGr0cieJgfPTkSRVt2L03mF5USOox3uKtfinKwwFkgTSstYjSLd9VYWYjkmQhksBpGComIxirxhez31DjNgpq6ujqixnouJEIFgisJ8BNuFJQ77BQ67PcQsAgWHkTcfbq76WWOBNKMrKbq81rKhZb6oMrKSYlejo2bxf7X4P6GQpNNprFZr+XWb2RNtJWyJQgLVvda1qLXQ53I5BgYGyrOHjew8rgY3spBU5nacPHmS+fn5qtPUP51d4AvPzWCQdJdYWVE5MxEmnpH5nx88iOEqufgbDcZXEjnmYznq7SY6vVZSqRTjF/q4q6uO/fv3b/qlLr2X1Wrl+y9fJJ0xgE1AVQVEUcJkEDGIAgNz8apComkaU1NTTE9Ps3//fvx+PwCBZJ6ZcAazUWJXo87m+e239DIdzpCTVVo9ljJLajOc6PYwHkwTy8rUWQyoGsxFs/gdJvZukE9SQr3dhEES1jnpxnNFenx24pEQQ0ND9PT00NnZWf7vVpOEz6H7Z3kq6LmpfBGzJNLkttNcbyuHsSUSCYLBIFNTU6wspAlETNSJeVxOByaTCVXVyBc1WutqnzLbPVZ2NTron4vjc5qwGkUiGRk0ONntxbxKMkkmkwycHyRv9TOwmMZtkTje7iSblxkNZAgmC9hMEofb63jzLt/l3zkr8+1zy4wHM6jolileu4k39HrZ1+JkIZbDbpLobbDTXSHIHAtm+OnFECaDyJ52H0VVYy6SZQaVXoeIORKgIBaYGxsis9oCs9vtzMdyiIJQ5YpsNuikmflY9l9MIbkeyUIqlbrl8tphCxWSzbBRaysajdLf34/f72fPnj3XpTGpfP8bUUhKmhWHw1HO7ZAkiUJB31HLiso3+hYQBQGPTV8cTAYRgyQwspLildkYJ7uvzra+8kSSkxX+1zPTPDUWIltQMBlEdtabOOWIsG/7+qH6WpSG6pqmcfr0ac4XxrmQCJBJZ4ivhmpZzBaKila1OJSYaNFolOPHj+N0OlFUjX8eWOKxkSCJXHFVVW3lkVPt7Gh00OPfnPygahoTwTTxbJEGp5lT3W4WY1lemCpZuugxsr9wpKVsJ7IRev12djU6OTcfx+cwYTHoi7MkCOxwygwNDVXRe8v3VRC4vcfLbHSB2UgWr91ITlYIp2WOdtZVCQRFUcRVVwdmOy2d3fTszhF7apzxYBJLMIokSuRFM531DvY2X253aZqePTK2kiKvqHR4rLx1jx+7WWJ4KUkkLeOxGTm9zcvBVb+yWCzGUy/1M5RxkdBMKIEgBlGg12flHfsbONHlJpGVVwfvFkRRKC+sz0/FGF1J0+2zYVoN/ZqL5nhuKsqvne7geKd7w3t4YTGBrKjl31kSBbb5bEyEMmiuRrrr7KysrNDY2FgW4RmNRlaydjIZCUW1VAk4VVXbcKMUz8rIiobbZixHA18PrldrdrPwLyXUCm6RQlLZ2tI0jdnZWS5dusTOnTvXtVGuBzdi2L6yssL58+fXaVYqF/xEtkg0I2MxVX+5zAaJuKpTL6/lmkvv+3cvzPGDwWWcFiONTjOxVIYzE0mKXR7eeRVFpGRKWKJa39bbwDNTSQwWAx6TSC6fJ5bOkU4VsKZyjIwUcbvdzM7OomkaJ06cKAcDPTMe5jvnlnVNgs+GrGjMRHTm1R+8fQcuS+1TSDCZ50svzHEpkCIvq9jNBo601/GB4y2c2uZlLprFbBDZ1eTY8H0yBYWZSAZR0DPXP3hc14acX0wQyxbxO0xst+expBY5fOQIbrcb0IvXTDhLIifjc5g51OZCUTWeHo8QTuUxGSTetNPHW3dXR9KOLKd4fDTIfCyHQRTY1+ri/ad76ZuNM7qSIpfL4TMW2WaJMfjyc3g8Hvx+P4MRgWemEmQKCoKgn8b3tTh5/7FW7t5RT05WcVuN5aIdDAY5d36QScVHRJHoqreu6o4UhpczuO1xHj7YRNMGWSv5osrQQhy3zVDOcxEEgRa3HoY1E8myu2ljO45oRl6nDyq1RdN5BZ9Zw2Aw0NraSmtraznEKze5zLnFCOdHwvicVux2O0XRgkkSqk480YzM02NhJkIZiqpGg9PEqW7Pukjiq8VWO5EoinLNgVmlQnKzTiSpVIrx8fHyn6emphgYGMDr9dLR0XHd77tlCsnVtLYURWFoaIhwOHxFe/Nrwas5kWiaxsTEBFNTU+zfv5+mpmrr+coF32kx4LQYiWYKVG6mC0UVQWDT7Iu1KL1vMlfksZEgdrMBj81AMplCVAq0eJ2MR4uMBdJVIr1KlOinlUUE4FBbHffs8vHYaIhQSr82g2ThrQebeHifk3BghQsXLgD6fCAUCuHz+TCbzTw9FkYSwe/QfxezQaCz3sZMOMPAXIK7tm88w1I1jS+/MMf5hQRtbitWo0giV+Tp8TBOi8T7j7Vt6r/14lSU7w0uE0wVEIBml4V3HW7mA8dbuT/bQDonszw9Rjad5PCJE+VdXzhd4H+/ssDYSopsUcVhNnCozcV7jrRwsL2OeFbGapRwrHEWmAim+YeX5khki/idJmRF48nREKFknl+7vRNZ1bPfHWZDWa0cCoUYnFri60NJrCYDzR67LjyTjJyfT9Lri/GGHT4qR2WLi4tcvHgRf+cOohfTtLqN5bmP1SjR6DJxcTnFPbuUcquwMmsFRaOoaogiFJWibvuOgIA+Z1LV2imbrXUW5qLVmxtZ0S303TYjqnzZtHExnmM2kkVDYPu2Lh50NvDSVJhQMsv8ShLkELvqDeRDRUL4sDnr+N7giu5O4DTjkAQWYjm+N7iC2SBu+lnXwlYsJFst1OqVV17hjW98Y/nPn/rUpwD4yEc+wpe+9KXrft8tU0g2gyRJZLNZXnjhBSRJ4tSpU68qbGaj9y+1n64FJb1EIpFY5+FV+d6lImUyiLzzYBN/c2ZmtQ1hoKDoAUO9fgfHO6++MJbov+F0gaysYDeJxGJxANxuD4IgMBfNEkzl1xWSUp55pc115Q5IEgUeOdXB0Q43FxYTKKrGnmYnh9vrSMSihMNhOjs7aWxsJBQKlVPmnE4nMwENo2SknCwF5XbFZgPnqVCGS4E0rXWW8i64zmqkUFR5cTrGA/ub1i3mJYwF0nz1lQU94KrOggYsxnRDyX97zzbqrSJj40Pl01NJ2KpqGl97ZZFz8wna3PrPjeeKPDMewW6WeNehlnJBXIvnpyLEsnIVLdlplhgNpBhZSVUx20o2Jg6Hg5mCA+fSIm1OkUwmw8pKQLfl10w8N6pyqsuFyWQqe6BNTU1x+PBhYqoZWUliMaw/zabyBXKyAquFpLSYSpKEyWSit9HB2ZmYbsmigYpKMFXAYRLxOwzlBTiVL3J+IclkKIPZIOCxGXFaDEyGMvgdJoqqRiCZp8dnp8dnY2UxgiAIPD0e5sxElFReL1RWo8Txzjo+cKKdpdUE0maXCbuWJRKJcOnSJSYiBV6Jmun2ObAZTJhMRuxmA+PBNOcXEtdcSEonsa1USK53RnIzDRvvvvvu64rovhJuiUJSKBQIBAK0tbWxa9euV/VlKSo6/TOUKrCn2cmuJud1nUgymQx9fX2YTCZOnTpVU3W/ll31wRPtxLIyPxhcIZwuYBAF9re4+P237ayaP1wJpWG73v+HQDSBz27E4dA9fJK5Ilaj3i+vRGXcLKyeBIHhxaRu/+E0sbvJiSQKHG6v43D7Zc3E3Nwcly5dYvfu3bS06Opnl8vFtm3byOfzhEIh/BOzDK7EIZvAarNiMVvQRAOSsHnaYDJXJF9Uq5T4oA+/47kiqXyxZiF5eSZKIle9qHfVWxkLpHlxIog/O1um91Y+2LORLJcCq868q+/tXi1er8zEuXd3wzqPsxJmwllca2jJZqOEomoEUxvHN4MeHSyKIg77aqCVX6d85gIJovE4Tz31FC6XS2eQpdMcOXKEuro6DDkZl9VIOC1X0cPD6QJeu0k3slyDoqoiCQK399SzEMszGc5jN0vkZAURuHu7G7dFnz8mc0W+cS7AeDCD2SiiqoAAvT4bjQ4jy8kCoiBwvNPNHT1eLEadMr+cVnlhLoLNLNHi1hfAWEbm+akonV4rJ7srN0d2fD4f27dvpzCyzPnzSxRyGWaiYQwGA3a7HYNmuqYWbwlbLfYXrm9GcjPtUW4mtnQhKTGCVlZWqKurY8+ePa/q/UaWk3z8H8+V888R4A3bfXzqpPuaCkk4HGZgYICWlpYqvcRGWDt/MRlE/u97evnA8TYmQ7qOZGej44qU3I3eV1VV0rEwvaYkIcFIXrBgUlSyBf2Uc+f2erZVaBc2moeE0wU+98QkQ0tJ8kUNkySwq8nBv3nTtvJuvJQhv7S0xJEjRzZsKZrNZlpbW/ngG5x87olJEtk8akEhkIiSyGvs9JnxkiCXs2x4mmx0mXGYJeJZuUxEAH0Q67WbqhhUaxFMFbAYpHUqfVVRGLg4zgeOtWyYN5/K68Vr7RzAbpKIZWVSeaVmIfHaTYRTqaq/U1QNELCbaj9WnfV62y6WlXFbjQiAZDAimqy8dX8Xt3c5OX/+PMlkEkEQeOlsP05PPR1Nfm7rcPHT0TAzEQWH2UAipwds3dHjrdqEDC8leWEqylIiR53FwPFOD+8/1srgYoK5SBaX1ci+Fie7Gh3l78T5pRiXAmm66y0YJREBgWReYTqc5SMn2/DaTRhEoUokq2ka80mFXFGlvYKE4LYZCacLXFpJbzjvEAQBX51+Qmv22UDTyGYzpNNpFgNhSAY5dy5eFkPOJVUGFxNE0jItdWYOtrnWWeGXNmtbrZD8S8gigS1USNY+5KW2UTwep7Ozs8yfv17kZYVf+/t+Ihm51HFBQx8OO0SZ9/Vc+bhXabm+e/du2to2ti+pRC2xY6PLck26kbUo+Y+dP3+ef/WWvfROy/x4eIVIWsZsFHnrngZ+/c7LwsyNigjA58/M8MpsnCaXGbvJQKagcG4+wV8/M8Pv3bcdRVGq7E422i1pmoaiaRhEkQOtLj52ZxffH1xmIZ7Da3NwZ6OFO5pFwoEVJscu4XA48Pv9+P3+sgtqc52FE10efjYSpFDU9DZTVkZWVe7Z5atSz69Fa52Fc3PxKjuYVDpNLJFgx+Emdu7cWIDZ4NSLVywjVzHAYqsxvW5b7cfjeKeb0ZUUwWSeeoeJoqIzoZpcZvY0Vy8EympLSBDQd+nbPDwzFiGUkjGIkC9q7Gh0cKTNycWLF9E0jaMnTvHMVJwXxoPE59NYBiNsd8jscziYzZmRZTPb6u2c6PZUtdHOLyT4+tlFskUFt8XIQizHTGSRt+7289bd6z3nSnb3Y6E8LosRi8mIpuqtT4dZZCleZDqUotNTv26R1j93YUNnAkkUyCvrv/fRjEy+qNLmttBcZ2EqnKHVbcFitZFUDLS2OLl/Zx1uMUsgEOCHr4wxGDciGcy4HVamwgaGl1K861BTFQPw54Xk9cWWKSSVKGVXWCwWTp8+TSAQIJlMvqr3fOJSiFCqUGbJAAjoffKfjCV4oG1zDUop2S8UCnH8+PEy4+dKuJ5I3CtBURTGxsbKPf+6ujp+pRXedbiF5UQOj81U1f6oNVRfjOc4N5/AZzeVd9E2k4TfYebCYpLx5Tih6YtVdieVKBRVfjQc4MlLYZL5Ir1+G2/b28ixTjeH2+uIpAuYDGKVTUehUCAUChEKhZidnaWoCfj8flob/bznUCMui4FnJyKk8voQ+007/dy9Y3OR6cluDy9Nx5gIZWh0mkmmUsyGkvQ0ubnvaG/N1zU4zRztcPPEpRAFRcVuMhDPyhQUlTdsr9+0eB3pqCOcLvDMeJiJYAZRgFa3lYcPNVcxyi6tpPjB0Arz0RwC0Om1cf++Brq8Ni4uJ8nJKj1+O3sarIwNn8dgMHD06FG+1r/MC5NR3FYjTT4PkYzMJUXlrV4Lu4QkgfAiDs2MOZUjHNbjX1Xg6bEQsqLSu2qi6cNEMJnn+ckoxzrdVae9ShhEAQ0BURBButwqEkQBaYOsFVmFTKFIo8PAdE7/LpRORbKiUlD0SOESYhmZn42GuLSSRlZ1C/1djQ4sRpH5mO635rEZeeMOH4fa9daer6mVJyIzuEnjFGUy6SgGVWUmZuYHao6PvqEH6+rptnTq30r6i58XktcRKysrDA4O0t7eXm5H3Aidx1I8hyjop5BKCOjpcIkNEuBKyOVy9Pf3A1zzoF8UdfZRLCNfVdbGlZDP53nyhbOMR4vkswInjdUthcqfcaWheiKrK7zXUmktRpFwOsfzZwc4tq1hw7mUpml8/swMj4+GMBskzAaRl6ZjjC6n+Tdv6uZgW12V2rkEk8mkO6BaPTwTcdA/G6EwEafNGuKIt0hPs5d9h71YXB4aPY4yZXUtiqpKKq9gM0q0eaw8crqd751f5uJciHwux6ntTbzvtq6qk4aialxYTDC0lKSoaPQ22Ll/rx+HWeLF6SjJfBGv3cRd2+u5s7daz7MQy/HyTJSleA6fw8TRDjf37mngWKeb+WgWk0Fkm89WVXwW4zn+7sV5opkCjS4zmgbDy0kimQK/8YbusmdXKeTM6XSyb98+ZqM5zs8naa6zlN1366xGJkMZxlIG3vKGI2iqWo58HRoaolgsItndTC1r+OqqWT/1DhMTIT2RsVYh2dvs5FIgRU5WsBj1NmEoVcBlMbKzuW5VXKkSSuV5ZjzMxaUU4WiMdreRJpeN6XAam1lv1aXzRbb77exZpRXLisq3zi1zcTlFo9OM06C7FZyZjPKuQ03cs9OHrKg0OM1VbcblRJ54rkhXg2e10Gnk83lMsRRTgTg/ffp5mtx26uvry+4RW6mQXM+wPZ1O4/VenZZsK2FLFZKxsbGyQrqSRnsjCsmORgfqZSJRGTpFU8Jh2PjUEIvF6O/vx+fzXbPwcTyQ4s9/OsXZGQXL4AscaKnj/7q7m11N16fsjcfj/I8fnuWpJYGCZiCXFznz9/189I4u7ttbLayrdO4FNnzIWtxmnBZ9F95QsegHExm0fIZD27vYvaN7w4dzIpTh+akoXrupfOLw2o1MhzN89/wKB1pdNR/qYCrPXzw+WRb8SUYj42kZOWNih9VOLBwgPjnGvN1eboGVBtCqpvHMWJifjYaIpAs4zAbu6vVyz8563tqYYZdY5MD+Q3Q2uKt+vqpp/NPZBZ64FKawSmF9cizMoTYXv3Z7J2/a6S877K4lPYyupPjS83MEk3nMRj0X5IWpGB841sqxTjf1NYSRfbMxnTXXcJkEYDdLjAfSDMzHefMuP8lkkr6+PhobG9m5c2d5Ac/KCm3u6kLssRlZSRbIFvTZTWWWeCqVYnYxQD67yHQ8RsppWg1asqNJBoyigGWDE1ahqCKKcLijjolwmgsLSd2CRtNPp2/cUV/2gsvKKt8YCHApkMKk5Mjn80wmzbRIRU531TEfy4MAt3fXcaitrjxfmgpnmQimq2IEbCbde61vLs4vn9zY3VYSBSRBQFE13aUZAYvZgsMpYbI5uf1kC8VMgnA4zMLCAqqq8crAII3+ehr9vtc0LXEjXK8g8ecnkleByclJlpaWOHXq1LobeSNy2091e9nZ6GA8mEbRtNXcbUCADx5tRNRW1r2mZAS5fft2Ojs7r2m3sxzP8W+/PshyIoek/xhemI4w9vUUf/2hQ7R7r42ZsbKywj8/c57Hl0wYDAaabEZisSyJrMx/f3KSrnpbuUBVzkNKPfCN4LLoeRr/+5UFluI57GaJaDJDKpvnXYebObBzW83rmQ5nyBYUGisKkCAIuG16MckUag+qz0xEmI1m2ea3le3j3TYj06EMC0oT9x/vQZblcgusr68PURTx+XyMpMx8fzSJJOreUrGszFdfXmBwdII3dRi5767bNlxARpZTPDUWps56OYUxJyv0z8V5YSrKm3b6NgznUjVtlWGXZ/tqQdA0jdlolu8NLrOvxblhXgzop2CLofoUKAoCkigQSOaJRCKcO3eOrq6uKqNRu1nCIAmrqZkVEQAFBZd1faETBAGn08nenU7uydl4YiSIxaIhF3LMLSwRyEKv34apEEeWjRiN+mf09Fh4leorcrSjjgf3NXGwta58wurx2emqv3ziHVpKMhlK45VyZHNpdne3YDSYuBRIYTYa+LXbG8saFuBy1kqmgKJp62MErAaCqcI6V+gSWlfnKPOxLN1eG6IoICsqK8k8xzvrqHdawWmlsbGRF8cW+clL4ygRGS5O02Ya5XCbnSa/j/r6+vJG5LVC6Rm8nhPJrZaOCFuokHR2dtLS0rJhFO5mpo1XC1EU+NtfOszvfXuYZ8bDaOjU0kdOdfCRY35eeXmp/G9VVWV0dJTFxcXrNoL87vllAskC9XYjuYxuxmc1SYRTMt8aWOJfv6nnqt5H0zQmJyeZnJxkUfShkKbZaQFNQxSgwWliMZ7n8ZEgu5qcNYfqtfDeIy1YjRKPDq2wHElgpMgjt3fzCyc6N32dzSiBoLeLDBU5FAVFw26SMG5CZZ4IpjEZxKoMEoOoL7DTYd123Gg00tzcXPa0isViLK4E+cG5BeLZIq1uC5Jiod5iJBVPMhQx8Mhb9tfchY6upMjJKu3ey98vi1HCKAkMzMd5007fhq9bSeSZjWZpdFouz9YEgWaXhYV4jplItqYSu95hIl/UqkgAmqahqBqinGFgQHdnaG1tRVE15iJ6XklLnYUOr5XJYIZOjwWTQSSWLZIqKLx5t79q0Z2NZDk7GyOQzNPgNLOz0U40LTO6kkIWJASnnX2NIne2CMzOTHNxeIicwckTSyJZzYDfaSWZL/LdVXLEh29rq+nuvBTPkUgkMBllWltbMBn1e201SSwk5HL7q/I7qKoq1tWZS64gYzbq2ypBEEjli3R4rOuKSE5WSOUVnBYD9+7x853zy4yH0uV72OO3cVfv5WdyaCnJdy9ECOYEdja6ycoKM9kCroKRumyWc+fObZpIeDNQ6gRcayH5Of33VWKjAlLCjfLC8jnM/PUvHmYlkSeSLtDhtWI3G0in0+X3XxuMdb0f6shyEkEAUdADptD03ago6PTMq4GiKFy4cIFoNMptt93Gj34yc9mLqLwG6w9lMFW45iICevvg/t1e/NlZUm1GTh09htN+ZfPLA20umlwW5mM52j1WJFEgUyiSyhW5b4+/5mwD9H5/cQNGj6JqG1qfiKKI1+slK9ow2HN0ewQEpUAmk6FQKGAVReKqwMRShAZXy8ZZ2DWuRRd21mbslSxR1v4LDf1Uuxlr+0i7m5emYsxGsjTVWdA03freKsgY42H2Hd1HQ0MD0+EM3+xfYiaip1rW2/UZjKDBTDRLUdFwmA28YUc9d1YsoBcWE/zjywtEMwXMBomB+Tgvz5h439EW7ujxEl5t/W1vsJdPA7lcji89O04wEaXeKJMpxrHZbPjMFgYXEowHMuzawDJFVVXCywvk8wXautqqsn4KRY066+WUTbi8gKqqyvZGka76OJPBDM0uEyaDQDRTRFE1jrRfLlqyovLcZJSXZmKk8zrF+URXHR863spUOEMmr+C2GdneYC/b5quaxvOTUQqKQrNd1OeEGLGaJGZSCm852MuePXtIJBLlmNuSeLZEL66Vn/5qcL2FJJVK/fxEcrNQKiRr0/6uF2szP0oU3UQiQX9/Py6X65qCsTZCvd20miCn/3m1i4aqsWmqXwmlAb8gCJw6dQqz2Uyv38HZ2Uqaq7C6A4RtPtsVi0g0U+BHQ0Femo4iiQKntnm5s8vOpaHzOJ1Obju+76q/+A6zgY/e3sH/emaG2UgG0HMubut2844DTZu+9ninm2cnIqwkdAEk6Dt/h9nAsRoGgqC3fMwGEVkDm8GALMu4XC4KqkA6mWN28hKF5TF8Ph9+vx+v11veoPT67ZgMIslcsayFyBdV8rJaM6gKwO800e2zcWEhgcNsR1xtbS3G87TUmelc06IsKCrhVAGrUaKr3sb7j7XygwsrLMV11paDPLsdKe45pXt9JXIyX35hjoVYTj9liQLBZJ7HLwV55GQHdrNEpqDQ4DTT5DKXP1dZUfnhhRVSq4PtUsttOpLlx8MB/u09PRta41gsFsKyiY5mPw0OI7lcjkwmQyYRZSlR5Ex/Gvu+Fnw+X9lNW1EUzp8/T4OpQHdrA0tJmZY6CUGAYFLPdl8b2rUUzzGynCJX1Nuf7zjQzM9GgkyFM+TTCnVWA3f2VMcNP34pws9GQjgtBlwWA8lcke8PBigqWs0TYzqvEEgVqLNIFNOXv/N1FgPBZJ5QqkCTS7fEr6urK4tnw+FwOW9FFMVyUan8zrwaVBJcrgU/N228iSgt6IqivKrFvRZKi+eLL75Id3c3PT09r7pg3bu3gR8NB4hlZSQNNE0lkVMwSgL3b5DnUYlS0qPX661KVXzbvkYeGw0yH8vitprIKZCM52lxW3njdi+aptUsIrGszH/4wSVGVlKYJF3NPrgQ4wcvFvjUG1rYu2u9YG8tUvkis5Hs6iJp5WBbHX/yzt30z8VJ5RXaPRb2tbhqxuaWcKDVxXsON/O98ytMhTKAbsfxrkPN7Gio/RC5rUaOdtTxg3MLWNUszX4PgtHMSjTH4Z4m3nvPNpKrtu4TExMMDg7i8Xjw+Xx01/u4fZuXZybCBJIFRAGKisa+Vientq0XWMazMllZod5u4qEDTYRTBcYDaSRJQFE06h0m3nmwuTyv0DSN56ei/PRikGCqgEkSONjm4qEDzfzWW3qYjWSZmpzEkMtw4tjx8hxwcCHJQizHNt/leVGbx8pEMM3LszE+evvGLcbFeI6leJ5Gp7mq5dboNLOUyLMYz60rciW4LAai2SyCaMZqs2G12XArKilDAp/HwsrKCqOjo9hsNrxeL+FIBEmSuPeO47QspXl0OMBkKIOGhttq5P59DVXtvb7ZGN8+t0w0I+unNlFgZ6ODDxxrISPrxdvvNGEziuXNTyIr8/J0FKdZwu/QHQPsJjOBVIGXZmKc6HJv6GxgNoirzs4Kxorvb0HRnYatFZk1RVVjLJBmJpJFFIx0N27j9j17SK6eVqanpxkeHsblcpULi8PhuK61oDRov5bXljzZfn4ieRXY7IaXFtKbUUhK6nngqkWGV4NjnR4+flcXn392hngO8mkZq8nAL59s5/S22vS+5eVlBgcH6enpobu7mjHVWW/jD9++iy88N8NYIIWqCRxpc/Cxu7bR6DJvuvt5bCTIyEqKljozRkkkl8sRLeRZyJtZFrzsu4JD8PcGV/jOuWViWRmDKLC9wc6v39FFh9fK3Ts23i1WIpUv6nYeNhNOi4EH9jdxvNPDyEoKUYBdTY6avlaV13HQmWHQnCMsuFhMaxilPHuaHXzktnakiizstq5tPDcW4IX5EPL8Eg3iGN0eK45OF4s5I5LJxJ5mF8c73VWkgFhW5tvnluifjVNQdEfae3c38Mm7uxmYT7CSyOOxGTjc4aal7jINvG8uzldenEcF6u1G8kWVJ0bDRNIy/+rODjJLEzjUNIdvO1GVmxPL6kmRa4uvzSSxkqhttSIKAoJwWe9ReY9EqHIpXoujHW7GQxliGZk6q57xMhvL0ey28YaD23BbjciyzPjsEt95eYKJuIogiLwc7OdNu5v42Ok2FhIymgYdXus6MecPLgTIF9UyW60UivbsRIQH9q83NQVIJWUyskaTS38vTdXQ0HCaRAKpApFUYcNCYjKIHGpz8e2+GLbVW5EvqsxGsmzzWcsW+LKi8p3zK7wyE0dWVH1GahQ5vc3L/Xv9eDweent7yeVy5dPKzMwMkiRVnVaudv25Xkv7n89IbiJKlb1YLF6zLfNmKCnDS2LHG83f/tCJdt68y8/ffPdpduzo4o4dTbS4N9agVLoIHzx4kIaG9SpkgP2tLj7znn0Eknmee+4MPS0GGi3qFXc+Z2fjGEQBoySSTqfJ5fP43HUsJmUGFxK8eZe/5mufHgvzdy/MIYkCDQ4zBUXl/EKC//rYOP/pod2bWoIUiirf7F/kiUth0gUFm0nkDdt9vPdI8xVjhQuKypnxCC9OR0nni3hJsMNe4I/ee5zljN4CctuM7Gi0Y6goorGszF8+NcXQUgpV00Az4rT4uL/BwS5HHl9oBVVVqc/7SERkTD4fRqORoqryhedm6Z+NU2834bJILMbyfPnFOX7tdAdv2b3xPdI0jScvhZBVrRynazfr7rzDS0m+90wfnU6BY8eOrRvyelcZZEVFrcrqSOUV9rXU1is115lp91gZD6bZ5pMQV6nRS4k8vX57VZEDfZaQziuYDSLHu9wsJ3K8NKMP6UVBoMFp4uFDzWUH4Xgmz9+emWYpY6C1wYtSlHl5Oct0ZIY3NFyiyevC5/NhUHxo2mXPsclgmnA6T3f9ZcqzySDisRo5N5/g3j0NGzK0nBYTVpNEXgGLSQJNv69ZuYjZIGKW9MhjQRBIFVTOLySZieawmSS2+20caDQzuJBnLJBCEgW6fVbecaCx/LOGlpK8NBOj0WkqF6R4VubMRIRev618orJYLOts8cPhMJOTkwwNDVFXV4fP56vSrmyE62Fswc9ZWzcdN4K5VYl0Ok1/fz9ms5lTp07x1FNP3ZTc9kaXhdsaBU7t8eFwbLwwlGxIYrFYTRfhtai3GTh5cA/Ly8v09fUhSVLVbGDtl9hsEFE1jUQigaIouOvcSJIIyBs+2JV4dDiAqkHrqqWLySBiNojMhLOcnYnXtIYH+Ke+Rb41sITDLOG2Gkjni3xrYIlCUeVXTtfOP1BUjS8+N8uTl8KARi6TJq/AQls9xzUj2xvMbK/RBvvxcIDzC0k6vXpuh7a6wP50KsPtb99ZHr4Gg0Gmp6cZGhrC7XYTE5wMzqdo9VjLxdFhNjAVzvD4pRDHOt0bLhyyorEUz+OyVj9OJhEisTgJn5WjR49uuLAcaHXRVW9lMpShyWXGIIkEknkcZmndyVXTNIKpgq76d5h5YH8TX3lpnrFAGknU9RZNLgsP7G+qOuGcm4/zxKUQS/E8ZoPIiS5dTHm8y8NiLIfJILK9wV5eYDOZDN988iyBvIGD2xowGSTASrPXyUQwjbXdT6tbJRQKMT09Xf7u+Xw+CrKEpq0nIUii/pmuNZ5VNY2srOCxGdnb4uS5SX1+5zBLpPIK4UyR23s8NNTZ9IF/Ks9XXllkKpTFaBBQNHhpOsphn8iDvRb8Ha1YjRLd9dVssJHldPnzLKHOqutyJkKZDZl3JZKH1+tl+/btZLPZ8mllcnISo9FYLioej6fq870eDUmhUECW5Z8XkleDK+2ob2QcbjAY5Ny5c7S1tbFjxw5EUbzhue2V2Oy9c7lcWSdRGqpXYiWRJ5op0OaxYjdJVUJDv99PQ0MDqqoSjUYJBoOMjIwgyzL19fX4/X58Pl2YdazNwdMjSxhNIo1efUGMZ2VMkr6w1IKqaSwn8us0FqWHVE8t3BjRTIEnLoVwWQxlgoHNJCGKBZ4dD/OOA001iQcjyymenYjgtooU0gnqHAacdW6mwxl+ejHIh05s3IJUNY0Xp6K4LIZyboew6jw8GcowtJjkjTt95eFrqZ0RDAY5d2GJcDSFtZiiYLVgtVoxm8zUWQwsxfPki+qGmhGjpM949Jhj/e9kWWZxeQWjwcih3dtr7k7tZgMfOdnBd84tMRZIo2hFWuos3LunoYo9FcvKfLNvkcHFJPmigsti5K7t9Xz8rk4uLCYJpwvU200cbHNVtQjPLyT4uxfnyckKXpuJrKzw3fMrBJIFfvlUO+2eaoZeKpXi7NmzZCUndU7DahHRYRAFTJLIfELmLXs7qnbtwWCQ8fFxlmJZ8ikzM2qe1nonRqMJVdMIp2Vu7/FUzZRenonx7ESEcKqAy6qHmB3tqGN0OcVyIo/dJHGi2839exvLLaWX58JMR/Js89kwSAKaBqF0nhfmUryzx8S+JvuG2qmiqm7IsBPYOJNFXaVpG8TLQl6r1UpbWxttbW0oilI+rYyNjZHL5fB4POU2WLFYvC4NCfBzQeLNxI0QJWqaxvT0NOPj4+zdu7dshV56/5tVSGr5bcXjcfr6+qivr2ffvn1VX/5IusBnn5jghakoclHDaZF4+GAT7z/WotOIKwZ5layTnTt3kkqlCAaDzM3NMTw8jN1ux5jOcqTJwkhcYnY1rMhsELlvr39TppQoCLTUWbi4nKxScMur9F3/Jgy0YLJAOq/Q4Kz+N67VhTmQzNcsJKOBFNm8jDGfwWq1lgVlDrOB/rn4poWkqGpIaxaN0h+VDbIYLBYL7e3tHNKcPBOYxGYFRS4QDodBg7hioNVjB7UIrF8cBEHgjh4v//DSvH6aMGgsBUKkVBN7O3zsq9BlaJrGQizHWCCNKArsbnLQ6rbwr+7qYiWZR1Y0Gl3mKvq0qml85aV5XpmJ0eg047EZiWZkvj2wjNkg1mxLaprGk2MhcgWFbWWDQyN2U5HzCwmmwxm2+S6f6kokj/b2diJJG5cuBte9Z1GtdksWRRGPx6NTs71t9EoKuQtzPH4pymI4jsUgoRnMdNQ7uKPihPXcZJRv9C+CtipMTBb47vkV7t/bwMfv6iaR040zK1t0mqZxYSmJ22bEbDKW/85lhIlElgR1Vc+wKIrl//X67QzMJ8gX1fIGI1NQEAWhyhMsX1R5fjLCK3MJsgWFTq+V27d51kVEV85OQD/FlU4rExMTSJJuMxMOh3G73VdVVFKrbtI/n5G8SlxNSuL1ojJdsWR0eCPffzNsVEiWlpa4cOECvb29Vapm0HdI/+EHo5ydja6mKkqk8kW++PwcRkngfcdqEwJKKmen08m2bduYn59nZGQEh83GWxqz7HKZCKo2nA4HJ3sbONKxcbumEvfuaeBSIMVSPIfXbkRWNAIpPeBosyLksRmxGEQyBaX88IL+AJuN0qbeY5lUklQ6TXODo4o5o6japq24kgPxz0ZC1DtM5aFzNCtjN0n0bpIZv7fZSVe9jclQhjZ3HXV1bgLxLGoqyzZrlmefeabcI/f5fKxkBWLZIj6Hidt7vMRzRX5yYZGhxRguu52jXfV84Hhr2X9L1TS+c26Zx0aDpHIKCDpN9aGDzbxxR/267JgSpkIZhpeStLot5dZMk8vMQizL0+Nh7tpev6FuJyurLMZy6+6zwyyxlMixnMiXC0kkEmFgYIDe3l46OjpQAynOTET0jJrVYh9K61Tf/RVU32Aqzzf7lrgUSCErup7kru1+Ptndyvn5OMvRJB4pT5MY4dJAkJDXi8vt5WcX9VlGyQ7eY4PAqrnk6R4vrTVmiTr9+vKf8/k8KytBHHYbjQ0NmEymMhNsJZFjPJhB0TSanBZ2Nti4uJLGYpBQ0VZ1LHXlk5+qaXz73DLPT0Wxm3Sqef9cnMlQhg+faF1XTCqh29HYaG9vR1EUxsfHCYVCjI6OUigUqk4rlWSLSpSov1vJwfhqsaUKyWZ4NTOSyvbR6dOnNxzY34jc9mimQCQt65bsFb3YyvfWNI3x8XGmp6drDtXPLyQYXIjjtZlWWykaJslEKF3gO+dXePhwy6aCv9LPmZ6eZmpqigMHDtDQ0ICiKITDYYLBIMHgEsmpJYaS+lylvr6+JiPlrl4vyVyRb59bIpQqYJAEDrfV8dE7Oje0FSnB7zRzosvNz0aCiILen04XFIKpAm/YXr9uIFzC3NwcUnweX52dLCZKB/2srGdfbETXrcR9exoYWU4xHkxjM0nIioaAwL17/VW7T9ADtcaDaUQBtjc4+NXbO/m7F+aYjmQoFDVcFgPvOd7Jw4eaKa46F0/Or/AXj0+ykJVQBQMum5kjXfXc321C9Uap29dNe3Mj3fW2qlnFwFycR4cC2EwSPX4zGnrr8p/7F+n0WmsuVNGMTE5W17GWnBYDiWyRdL6IaQMzRpNBwGYyEM/IVX8vqxqSIGBf/eyCwSB95wYp1LXz+AKIi3PsanLwll0+nhwLMxbUWy5Os4F79zSUM95lReUfXpzn4nKS5jorFoNIOF3gu+eW+eCJNj5y6jJ1ueQHFgqFuDizyNhMWj9ZaTasVhsWsxmvzchsNEsgkS8P/UFf4KMZnS14oNXFo0MBfA6VYiHP8vIymrWOJpuNngY7kiQhiiLPTUb5weAy0Uxh1TdM5Eibi4f2+ZkIZZEkgd1NTg611ZU3JnPRHAPzCZpc5rJZZr3dyHgww5nJKNt8tYfrlZAkqXyK3rdvX/m0EgwGGRsbw2q1louK2+2+zFxLpW5qXjvA//gf/4M/+7M/Y3l5mYMHD/K5z32OEydOvOr3vWUKyfWeGKLRKP39/TQ0NLBnz56a1b5WbsjVIJkr8pnHxnliJEhB0XCYJd57pJVfub1TN55bfe+SsGuzaF6AhVgWWdFWd/FaObXWZtKzM2KZapPFtVBVlSdeHuTZiSiO+hZSyyp3OfUgpUqjv3g8XqW58Hq9ZZPESodjQRB4YH8jb9xZz1wkh8Uo0um1XtUX/sO3tVNQVM7Oxomks1hNErf3eHnk1PpBe6nILiwscN/pw9hnc3zr3DLjwYweACUKHO1wc88G4rScrJAu6EK3No+V33xzD0+PhxldTuG0GLity8Nt3Z6qa37yUohv9i8RTuvxAo1OMx841sq/v7eXiaDuJdbqtpRdjA2rjJ5vjRdYQaPJKyAqBaKpFD/qT7Iwo/Krpzvo6mrb0ILj7FwcWVXxOfRiJqCfLMaDac4txGsWErfNiNkoks4XqzYoyZw+pK7FmjOIIie73HxzYKlM9ZUVjZlIhg6vlZ2NDpaWljh3YZihYiMjo2kQMqBpPDsR4dQ2D7/xhi5mInortNtno7lCFHlpJc14MEOn11aeHTXXWZiJZDgzEeFkt6d8Iqw8KbsbW3k6MkaxkKcoF1hJrPrcGS2oghGjcPnIMbKc4sfDAeaiWUQRuutttLktXFqKEY/HsTuc1Jut3LPLXz7RzcdyfPf8Mhqwo1F/xqIZmRdnE/zisRY+fMJzufOhFikW9fbXciJHbo1ZpiAIeO1GZiL6M2la9T7LyQrDyykCyTw2k4E9TY6qNm2JtSUIAna7HbvdTkdHB8VikWg0SigUYnh4GEVR8Hg8nD17FofDcVPbWl/72tf41Kc+xV/91V9x22238Rd/8Rfce++9jI6O1mSJXi22VCG5UmvrWmckc3NzjIyMsHPnTtrb26+oVbmeQqVpGn/wvYucGQ9jMoqYjSLJfJHPn5lBEODX7uhCFHXdxosvvljOnN/M68fnMCGJAgVFxSSJZXV8TlbKqt9aKBQK/P3PzvKN0TyyaEIIRvjxaJTvnl/mD9++szxcFQShrLnYvn07mUyGYDDIysoKL5wfZTZvwWh1sL/Dz+07mzAZJOwmw4b2GZVQVI3ZSBYNjQ6vFafFwL954zbmojmCqTz1dtOGRUhRFJ7vG2QykODQvr3Uud086IbdzU7OzSfIFVW2+Wwc7airsmrPyQrfOb/M02NhsgUVn9PI/XsauXtHPe872lrzOoeXkvz9i/Momka7ZzXnPZ7nb5+b5fdcO2r6Zy3Gc1xYTNLksqy6HmuIYhxZzbBYsDKzEmV2dhaXy1Vm0ZVac8lsEeOajYwg6K622ULtTcw2n43dTU76ZmM0uszYjNLqKUXhru1NVSaOk6E0z05EmI1k8TtMHOtwc1evl7OzcQKpPAZRKCvug8uLjI2NodZvY2Q4QWudpRx1nMoXeWEqysFWF7f3bEyLj2dlFHU9AcFpNhBJ6wFW1jX/TdM0PDYTB9rqeGY8gtfjwOeXiKezTAaStFkzjJ17kZC7jrypjm+P5UgWNBocJhRVo282TqNNYJc5jm13E00+L7ubnfRUJIFeXE6SyBWrXJe9dhPRjMzQSprbenzljV3JG6xYLCJp+v+XFQ2jdJkAlJdV3DZT+XQZy8j8/UsLXAqk9agGwGc38gtHW9jbrBeuWvRfg8FQ3qyVBIjLy8t88Ytf5Pz589jtdn7nd36Ht73tbZw+ffqGqOxL+MxnPsNHP/pRHnnkEQD+6q/+ih/84Ad84Qtf4Hd+53de1XtvqUKyGa6ltaWqKiMjIywtLXH06NGr0odcbyEZXUnx0lQUq0kqP4Rmg0g8K/P1vkU+eOJyz7SpqWnTUxGsiu5anWzzWRldSeO16W6vqXyRgqLxtr0NNd1m0+k0Z17u43sTGprRTLtLNxosqhrT4QxffG6WP3j7xmmBNpuNzs5OJnN2vjkwTSSdQynG+faFCL3PXeLjtzXQ0dKI1+utef3nFxL83QtzzESygEab28qHb2vjSIebDu9lcdha5PIFPvv9l3lxqQhGK48uz9LrD/Prd3ayvcHB9oaNF3VN0/ji87M8NhrCYTJgNYnMR3N8/swMKhr37KytjXluMkK6UKw6BXR4LIwHM7w0Ha15rYlckbys6sQDTSMajZIv5GlrrCeSVenZvZ1Wp6HsXDw9PV2miTZaJAZkBUXVyouSrKggsO7nZQoKoysp8kWV7nobHz7RhtkgMrSYJJaRcVmMPHSwqSr068Jigs+fmSWaKWAzGZgIpumfS/DeI8186h4fS/EcNpPuvbUwN8P49DRHjhzh6xfiCALl7y/obcilRJ6RlRRHOtwb3gu3zYhBFMjKSlXBSOSKdNZbq+ZiQ4tJnhkPMxPVC9zBVhcHW52MrqQpKCoGUeRYTyMfONaKw6BTi//3KwtMLWZocwgUJTtWq5UmG1ycD3P69k7ednRj49N8UY8JWLtZMRlE0vnL1iWl73FeLpLJyWzz22l0mZkNZ2j3WjCIAqm8QjKvcM+uy44NPxsNcXE5SXe9DdMqrX42kuVb55bprrdhM0lXJUgUBAGHw0Fvby9PP/00X/7yl/nc5z5HIBDgfe97H9lslqGhoRsiki4UCpw9e5bf/d3fLf+dKIq8+c1v5vnnn3/V73/LFJKrXegLhQL9/f0Ui0VOnz5dc7B1ve+/FlPhDHlFxbEuHEoimStyfnyWZDKJ3+9n7969m56KytbTAvz+fdv5s59NMrqSIp4rYjVKvGN/I794YuPshpIleVT0kSVV5VZrEAXqrEYG5hNEM4Wa4UaBZJ6/OTNDRlbo9um76IysMB3L8vh0ltviFzekFgPMR7N85rEJIulCmX46Gcrw549P8h8e2FUW6q1FNpvlrx99hafmNTwuBx6biYKiZ3T/t8cn+fQ7dtUsnLPRLC9Mxai3m8o9dZfFyHw0y6MXAtzVW19zMB9MFTa0Y5dEgWhW3vA1oKcq2s0SsUwBMZ9CURQa/A0E00VcFgN+hxmz2VAlaotEIoRCIdz5ZYz5IuemUvicFgwmE8m8yp5mJ0faL5M/Liwm+PsX51lK5FBVndV0z04fv3q6nVBKJpkv0uA0VRlcKqrG9wdXiOdkev2Xd+KL8RyPDgc43uWmzeOpah8ePXoUl8sFxGv+vhshJyvkiyo9fhs7Gh1cWEzS6DLrViVp/d7d0VNfbmu9MhPj71+cIyMruMwGLq2kGQukeHB/E/fsaiCS1um/vX57+fNqb29HvZijo9mO16x/T8KhEIqqIkq6j1Y2m93w+W6tsyCKQjmkq3R/MgWlimxRVFWeuhTmzEREDzWzmdjeoH/vZ6N5NE1vL5/ocHKszYEsy+QVjfMLCbx2U/n7IwoCbW4LM1E9d2V/q+u6XDhUVaWtrY0vfvGLqKrKuXPnaG2tfaq+FoRCIRRFobGx2p6psbGRkZGRV/3+W6qQXKn1VCjU1iwAJBIJ+vr6cLvdHD169Jo+yOsdtvsdJoyiUNU/BZCLKiIKKzMTNHndeDyeKxaRyjjcjno7/+0X9jGynCKWlemqt9UcTs/PzzM6OsquXbsgZUY7N7aOMy8KArKqIiu1nW5fnokRy8i0eS4XIZtRwm4xMhw38KkHbiedTldRi+vq6vD7/TwxrxBKFeiqaFu1eyxMR7I8cSlEt2/9TKREN70QN2O3G2lw6r+fURJpc4tMhTMMzCc42b3xcH0hliNdKNLorC5SdVYjoVSB6CazpE6vlYE1Oe+KqqGqWs37DLoZ56muOr7x8jQWSaDZ72Elpfty3bunuWwICZAuFDk7E2cxnsdmcnP4cAe79mT5Xv885xbi5NJJ9vpNvLXNgZLPoJmcRDMyX3hulnBaLrsqR9IFvje4QqPTzB299TSy/ncKpQrMRbM0OMxV37MGp5nZSIbpcJb9LQZGRkYIBoMcP368bA64p9nJS9MxsgWlqrUliQK7Klp8qXyRRy8EeGkmSr6o0u6xcrLbg91k0NtJWT0F9I07GsvapKKq8pOLAQrFy/G/oKcfPnkpzOkeb01hab3dxHQ4g9VtR1FVkqkUXo+HeLRAIZ3gzJkz2Gw2/H4/bo+XmGpCVvTv3d5mB+cXkjjNBkRRb0d11ds4UfFd+uGFAD+8sILVKJWZbPOxLA/sa6S5zkJWVmh0mmitM63qTVQKchG5qGAQhXLej65bEVA1ncgA1x+zW/pMRFHk8OHD1/T61xNbqpBsBoPBQDabrfnfS3Tabdu2sW3btmtmPlzvieRwu5sev53RFX2oa5QEcgWFTF7mZCPcc+dJJicnN33vWvbvoiCwp7m2ylXTNMbGxlhcXOTw4cO6F1Aij9NiIJqRy7oPTdOIZ2X2tTg31X3kZL3NsvbOGVd3dypUUYtzuRyhUIhgMMjZkSi5rEA6rWI2mzEaddsMoyQwF13/uQWDQQYHB2nr7EaejWFf88yZDCKaputpasFlMWCSxHVCwVxRwWIUsZtrP8h39tbz3ESUyVAGv0N3ag4mC7S5rRsWrnhWplBUsYoKHcV53tRlYSpnI1NQcVkNPHSgkXv3Xh5YhtMFPvfkFJdWUqirdh8/HDLyS7e183+/7SCKqiHLBSKrcbmvvPIKBoOByYKDhYjMjibXqvOAHn+Qymc4Mxnhjgob+UoYpMtpgpVQVE0P0xI0Lly4QCKR4Pjx40QLAv3jYQySyI4GG0c76+ibjaFpeqStJAic3OZh/6oGRlE1vvT8LC9Nx6izGjEbRC4uJ5mNZPnYnZ08eKCx7FJcyeQLpQosJ9brhfwOE1ORLPPRbBVDqxLHO92cX0gwuRxFzCfx+nyEstDZYOXhN/RQZxaIRCIMTi3z2WfmCWRANBjxOS28cXcjD+5v4Nx8AlnVON7p5s7e+vIzEc0UODMRoc5iKJMp6qxGFmI5XpyO8e/v7V0331FVFY/BwDafjYH5JG6rofysBtMyLrNEW53+Xlstr93n8yFJEisr1QF+KysrVWm014tbppDUWuhLi+ns7OymHlVX8/6yXLulUfN1osB/eucefu/bw0wE0yQUFUFTOOA38On3n8DhsG3KCCudQq4lQwR0n7ALFy6QTqerdpeNLjPvOtTMP768wEIsi3F1oXVbDXz4ts0JBzsa7JgkkXRBKVNNNU0jkVO4a7u7ys8KdCFfSel7LDvN+CsLKKpCPK63SoxGI9m8QOMaQeLc3BxjY2Ps3buXhoYGms5fZDyUwVNxsMjJCqLIpuy0XU0Oun02RpdTtLotmA0iqbxCIlvkHQebNvUAa/dY+Y27u/jn/iWmwjor7Finm/ceaakSXgaTeb7et0j/fIJCoYi5mOD+XV4++cABckWVZE5vaa1tv31vcJnhpSRdXttqUdSYj+X46ssL7Gl24rYakcxmWlpa9Az7VXeC4ZdnyWazLC+lMVvMWCwWrBYrFuPlttFG8NqM7Gxy8NJUFIdZwiDpvfuFWJbWOguZpUmKhRxHjh7lBxcjPDYSIpkrIgj6ov7uw80caqtjZDlZ3sAcbHOVW02jKynOLehalhJzrM5qYDKU4fHREJ+8e+NIZotBwiiJFNbkzxQUFaMoVBEnSn+/GMthEAX2tTi5s9XIDweDCFYXahZa3Bbedai5XJgc7nqeC8fIGD1saxEpFvKsxNN89dlLPLDdxi/saMDn861LSFxJFEjminR4qk+fHpuRcFomki7Q6q5um5XmKm/d28RCQmYyksduEsnJ+kzmrbu8uC0isixTLBaveTObSqVuWiExmUwcPXqUxx57jHe+852AvvY89thjfOITn3jV739LFxJZljl//jzpdJqTJ0++qg9BkiRyudx1vbbDa+PLv3yUZy/O8/KFS+xpq+e+UwfLw7yNBImappVPIqAfiZdjWRxmwxXzSnK5HAMDAxgMBk6cOLGO2fHB4620e6z8dCRIMJVnu9/BA/sbazKRStjboluqPzUWIZkrYpREUgUFn8PEuw41b/rau3c28NilCPFckYY6B8VikeVEFqNWxBadoK8vit/vJ5VKsbKywpEjeh4HwH17G/jLp6dZjOfw2IwUiiqhdIG9zU4OtG2c1gc6vfXjd3bxP5+eZiqUoahqWI0id/TW8+7D1ddbKOpGk6WfcaS9jt1NTn7vPoduKy+Cz26qevizssJnn5ji4koSl0kgl04SF0z8YEZjZ2+KPc3OdbtWgHxR4ZXpOJ6KWFxh1SFgJpJheDHJ6TVMqJI7wZFdIs8tT+F2GFCLBbKZDLFojGBBorPTRTwer1oUC0WVVF7PWHnnwWaCyQLTkUxZtOd3GDloT6ApumnkK3NJfjC4gt1soMdvQ9X0FuH/fmWR37tve8024lIih6yoVfRjQdBnbzPhLEVVw7jWTgB9IL+32cmzExHsJt22pqjqRbXXb6fbd3mx7puN8d3zKywncoiCQL1JYY8lxh89tJ+4asYgCvT4bVXF58JiUo9trrfqppd2Kz6Pm/Fgitm8SCqVKrv4VnrR2c0SJoNIVlZxVszRsrKC2ShsugnZ5rPz63d08sJUlKlQBrfNyJF2nTygqSrpdJp0Oo3BYChnrVxugdUm2mQymZuaRfKpT32Kj3zkIxw7dowTJ07wF3/xF6TT6TKL69VgSxWSzSq4wWCoov+mUin6+/ux2WycOnXqVdPkXq2yfWV5icLiCO+5bX2++9r5S6mAlIrJdwZX+OrLi0QzBaRV7v8n3ti9oa16IpFgYGCA+vp6du/eveEXUxAE7tpev6mZ4kYQBYF/88Zt9PodPD4aJJlXuK3bw0MHmjYMSapEV72Nf313N198YY6VeB4N6PK7+MUT7RxqMhMIBJiYmECWZex2O+FwGFEUcTqdvGF7PVlZ4XvnV4hkChglUdeanGxfJ7zUNI1YVtbpy1Yj7R4rf/zAToaXdMpnc52FnjXCsVCqwGefmGRkJVX2VWr1WPnk3d30rjJ1NkL/bJyxYJpGm0g6GafR48Jm05XvPxsJ1mw7FlUNRdPWWcOLAmgVffSNcLDNxa4mfYDttZsxOi3EtTwNVpUDPqEsrK3z1nMhZuTscoFMQcVjN/LmXX7+7T3bGJhPEErlsRkFpMgM9XYjBw8exGAw8MJUFFXTypsVSdBnCuPBNAPzcZprzIfsJgMC612Kc7JCk8tyOblzzWclCALvONBEOK3nuairdNl2t5X3H2stn3LHg2m+9MIc6YIehJVMpjg/nyLb4uVeVx2d9o03V4lcEQGqrgl00kVGkDhwYJf+nVn1AxsbGyObzeJ2u2k0GxiL5On2ObCadPeIUKrAG3f4NnVdAP1Eu9anDPRiMDg4SEuLHg5WesZLG8lSMdmoqKTT6XXD8BuJ973vfQSDQf7gD/6A5eVlDh06xI9+9KMb8jO3VCHZDJULfcl0sb29nR07rhzIdDWo5Yd1JWiaxqVLl5ibm+Pw4cP4fOvFcpVEgbVD9R8NB/nvT06jabp1haxoPH4pxEoyz+fet7+KdRQIBMpzoLXF6kbBYpR49+HmdTv6q8HxLg8H2lyMB/TQo16/HvEqyzKhUAir1crx48cJR+O8OLbEysAMLQ6J3R0NHG/0c+fDuwmkCthM0oZ2IWOBFF97ZZHRQAoB2Nfi4n3HWuj02jZNOfzHl+cZXEzQ5rbo16OozEWz/M2zM3z6HbtqMruWEjly+TxpOYfb7cZq0RcOh0Vv6dSCzSixs9HOC1NRPLbLFuvhtIzTYlhn05LO6+p6QRDY0WDn43d28d3BZfpm4xSKKvvb6nhgXyN7W5xlk8QvPzfN4+MhDIKC02oikTbwxUiGoqJy395G8vk8fX19WF1W9u/fX+7Xx7Kl3PTLKGlZStTYjbC/xbl6osrS4bViEHV7mHxR5Y5eb1Umff9cnCfHwvrw32nmDb31fPLuLi4upwmm8rgsRva3OKtON89NRohni/T6bSSTSYrZFPs7fMwlZPrm4jX9xOrtxnLmSSULL5ErcnhVR1LKa/d6vezcuZNMJkMoFOKkHGAlGOfiTBLBYMJpM3O0w8sDB65vYc1kMpw9e5bGxsaqdWltjn0tP7DXIh3xE5/4xA1pZa3FLVVIZFlmcnKSiYkJ9u3bR3PztS92m73/tZ5ISnkmqVRq09ZaqUitHaprwD+dXUTVtPLpw2LUB82jKylenolxepu3yu5k3759VXOg6XCGbw0scW4hgcti4M27/Ny/d+PMh42gaRoZWffCWjsDuRLmotlyXG4pjc9skNjbcnmnns1m6evrw263s3//fiZCWT53JsxcVEFWbFgkOJxOcXolAKpCfX09Fr+fgsVXJdpciGX5s59OsJzI47UbQYNnJ8LMRrP88QM7q+YalYhmCvTP6fkipTmGURJpqTMzE8lyaSVddb2V9yWbiJDP5XG3eLBWKP1zssK2GnRm0BfmB/c3MRXKrtq0GCgoCpIg8MCBxiofqafGwnyjb5FQalVd7zLzoeNt/PLJDt57uFj2r6o06FSMdkYTEu2NXurMIrl8jlwux1Iiw1efTdOkholHguWEzcqd7/YGO2OBNJpLq2qPiQI1s3JAdyn+5VPt/N2L88xHcyiq7uDw5l3+qpPv85NRvvziHDlZxWmRuBRIMRZI8Z5sC2/bJBl0IZbDahJJJhIkUykaGhv0LkNSD0Srhb0tTnr9dkaWkzQ4zZgkgVC6gNUkcWfPxidym81GR0cHHR0dnD4q0z+xxHwggpqJ45XjTI7Ey35qlQ4PmyGbzXL27FkaGhrWbW4rc+xLm9W1YkiAxcXF68ow2QrYUoXkSjvsQqHA7Owst9122yr//cbhWgtJaYE0Go2cPHlyU6V6qbW1lpmVzhdZTuTX9dnNBpG4BrORLCe7VC5evEg4HObYsWNVv/dYIM3vfeciwVQBi0FkLppleCnJxeUk/+4tvVe8n2cmInyjf5GZcBabSeLePX7ec6Rlw75/JZK5In/59DQvT0fJyioWo8ixDje/cXdXlbYhHo8zMDBAY2OjvhOUFf788UnmolmaXBZMkkAsK/PSSpE927bz5m0OgsEgs7OzVdRiv9/PE6MRlhM5uuptZX2C02JgNprlmfEw7zy48aYiU1ApqhoWY3WRNEoiRUUlK29M4BgdHcVdCNHZ6GY5rdBqUDFIAuFUAQG4aw17qqiqjCyniGZ0r7Vev53feksPT14KcWlF95U6tU23aSnh4nKSLz8/h6yotLotaJp+CvqbZ2dodJk3bJ2Arg1J5nVnWkkUcBh1Y0uLQ2YlmmJ0dgmfBcLhMMPDw1Veanf1+jg7G2c8mKbebqKoasQyMnubnRyu0LLkZIWnxsK8MBUlKyvsb3Hxpp0+/p/7tjO6kiIrq7S5LbS6LVUF6QdDKxQVrVxo/cByIsdPLga5vce76gawHk1OMwNTQQQpXy4iqqqBBt4auifQNy6PnG7n2wPLDC8nSRc0muus3LfHX2acbQazycjJ3R2wu6PsBxYMBllcXNTNTh2OclGpq6vb8JnKZrO88sor+P3+K3ZIKuemcJls88wzz9Df38+b3vSmK17zVsSWKiS1UFJ4apq2YWbHjcC1FJKSf1djY2PNOUUJpRz1ZDLJ8vJymYYHYDGKuCwGQukCleOQ4irDxWOV6Ovro1gscuLEiXW7o6++PE8wlaelzlJeXFP5Ik+MhnlgX9OGO+0SnhkP82c/nSAnKzjMErGszN+9OM9cNMvv3rt904fhb56d5onREB6bAbfNTLqgLzqiKPDv39oLXKb39vT00NHRgSAIvDITZz6WpaXOUj4xeWwmcrLKTy+GeOfBZlwuFz09PeWMkFLOxXMzRrSihFIsIq7OwyRRQARmwrXbTA1OEw1OM/PRbJXpYTQj47IY6KyvXqxVVeXChQskk0nuueM2uqIyX3x+jsVYDkXTqLMYeNfhZu7ovTwsX07k+B9PTTMe0FXaFqPEoTYXH7uzkw/ftrGAFODZiQjJQpGe+ssznQ6PlYlQhhemIrR7NhajOVezVrKyUvU7pXMFioUc2zvbOLRnezm869zIOPPRQRo8LvZ1NvCrJ5p4YiLBpUAakyTytn0NvG1vY3kDUVRVPn9mlucmI5gkEYMk8N3zywzMx/nUPT0124gryTzBZIF6R3WxqLebmI/mmI/mNiwkmqbRakgiKnkKNhcKInJBYSmeo8llripwG8HvMPNrt3cQyei2LD6H6YqmphthrXN2oaBHCYRCIfr7+xEEoVxU6uvrMRqN5HI5zp49i8/nY+fOndfcbhZFkRdffJEPfOADfPazn+XjH//4NV/3VsCWLyQle2ufz0c6nb6h3jOVuNpCsrCwwPDwMDt27KCzs3PTf1tqZdXX15NOp5mammJoaAiv10tDQwN+v58HDzTy+TOzJHNF7GaJoqIRyRRodpowhscxuBwcPnx43ZG3qKr0zcVxmAxV+dx2k0QiV2RwMVGzkGiaxj+dXSQnK1VtllS+yPOTUUZX0jU9tVYSeZ6filFnM+Aqq8kNq0FFURZiOdRksEzvrRzkxVcV42vbblajfs2FCj1IKSOkvb2dYrHIKz++yORYlFgsBoDZbNYtw1e9m2rBKIk8dKCJv352hqlwFpdFIlNQUDV4+GBTFaEhkszyD0+cYzIq09nahLCU5bYuD//xHbsYWdbtSrb5bGXdAejOtP/rmRmGlpK01FmwrFKQn5+M4rIa+NgdXTWvLZgsYJaqKd+CICAKbEr17aq3saPRzsBcnDb3KjU4mWU+lOBN2z0c2afb4DhddTwxneXHCxmiGROsFGmanuf2+hxHPFbu2ldPY4OfhnpP1WZoaDHJSzNRGl3mcqFqdGqMhzI8NhriF2tkwVgMetGRixpUfCSyomGQBMzG9Yt76fRnzUf4V/fs4ieXYqwkC0gC9Prt/MLRliuyGEv3rVZ783phMplobm6mubkZVVWJx+OEQiGmpqa4cOECTqeTTCZTnr1cz8zy5Zdf5t3vfjef/vSn+fjHP35TnX9vJrZUIVl7E2dnZ8uK7aamJhYXF68rwvJqcCX336sZqq/996VWlslkYseOHezYsaOsDC8dnXscTt7QaeH5+TyBZBGDKNJeZ+JtTWnam9vo7d24RSUKwqpGZL2Rpcb6xboS8WyR+Wh2nfmj3SQRyxaZDNUuJOF0gXxRWffQ2kwSwWSBgZEJ7LlgFb23hFa3BUlY782UzMvsbnJWeTNVwmAwcP/BDgaWC6iA2wK5XJ7ZUBIRDU9hhfl5odzTVjXdWywnq3R6rdzZ68ViFPnRUIDZaJZOr417dvmqvLiWoin+n2/0sZDSsNuszExEeW4qzr17/Pzq6Q4O1dgVTwTTXAqkaHKay7+T02KgoKi8NBXjfUfkmgygDq+V/jXqelXVUDXWsacUVWMimCYrK3R4rfzKqQ7+ujjDWDBFJldAzmU42e3l19+8t/yaJy6F+HrfIhajRLvHRr6ospjI0V/0cKrLSyIWYWRokIuaVt5p+3w+psIZ5KJWddoRRQGnWWJwIbHh7wK62eieZifPT0awruZ5yIrKYjzHzkYH3fXVcyVN06ratlarlRM9DcxFdR1Jx2rrbiugFODl8XjYvn07sVisTMEPhUKcOXOmfP82irreCP39/bzzne/k93//9/nkJz95yxYR2GKFpARVVRkeHiYQCHDs2DE8Hk/VkOpmnEo2s0gpFoucO3eOdDrNqVOnsFptLMVzmA0i3g12QbWU6kDZUrqrq4t8Pk8wGORhc5C9liwh2YTHbqBeS7B3z65NzdpEQeCNO+r5p77FMmNFW400dZgkTna7a77WsupSnClU/76KqiHAutyLSjSsLpjpfBGT4fLvnsopaMU8WrrA8ZPHN2SfHGxzsbfFycBcApdVV6XHsjImg8g7DjRt+iAdaHXx4dva+HrfIktJGQQDzT4b7znoY7eryNLSEiMjI6RFOz9dlFhKa2gIeGwmHj7UzNv3NXCiy0NRVZEEoepnZTIZPv/jsyykBbY3ezCuFrRYVuZnIyFOb/PWpPrGs0XyRW3dXEk/Zem+WLUKyZ29Xs5MRJgKZ/A7zGhoBJMFWt2WqsyV6XCGvzkzo2tlFA2X1cD9exv47bf28OLILIOjkxzZ3cvJ3R2XC5Km8dhIEFEQaFw9QRklkXaPjelwjpWilWN79+qC0zX59XMZO/m8ilwwYTRdvvaNZk2VEASB9x1pIZouMB7M6E7eq4aUv3iiraooaJrG8PAw0WiU48ePl9u2FqNU0zJlqyCfzzM0NITf72fPnj1lMWkoFGJkZIRCoYDX6y0Xlo38wAYHB3nHO97Bb/3Wb/Gbv/mbt3QRgS1YSPL5PP39/aiqurpo6x9CiSL3WueqZzIZ+vr6MJvNnDp1ihdmEvyPJ4eZjWQRBZ3y+ql7emhfZS1tVkTWwmw2l5Xh+/bJDA0NEQqFECWRiYkJEolEWUC10Q7nA8dbV4frug0HaNjNBn719o51qtxKWIwSd+/w8Y2+RaxGBZtJoqiorCQLNNWZOdpZuyftc5h44w4f3zm/jEYBu0kilVcIJ9Lc1iTx1jtvq0k8MIgiv/3mXv7uxTleXB3idnqsPHyomdNXCKsSBIG372vkVLeH4SVdfb23xVnuuXd1dRFJZvh337zATCSLXVIwSgIrsTyff0Zvad213beOmZZIJOjv72c6Y8LjNJaLCOjphdF0lguLyZqFpM1jwWGSiOXkqqFwfNV3arO2TKfXxife0M3X+xaZiWQAgYPtLt5/tLXccksXinzuySmmw5kyQSGSkfmns4sUMwn8+UV+4a4D+P3V9NhCUSWSlsvhVSWYV91qS0woQRCq8uuz2SyuqSWeW1jg0nyQepuI1WJFlYzkZZWT3Zs7afudZv7dW3sZXEgSTBWosxo42OaqEvipqsrQ0BDJZJJjx45dNTNqKyCfz3P27Fnq6urYs2ePbvS5KnYszUnS6TShUIiVlRVGR0fLfmCJRIJ9+/YxMTHBgw8+yCc+8Ql+7/d+75YvIrDFCkk+n+f555/H4/Gwb9++dYvnjchtrwVJksoaj1LrLBqN0tfXR3NzM7t27aJ/PsHvfnuInKxiM4qoGjwzFmY6nOHLHzmCw3y5GF2L3YmiKAwPD5NKpcrFMxaLEQgEGBkZKTvuNjTodg+lE5nHZuLP3r2XZ8bDjK6ksZsk7uz11rRdr8SHjrcxF83SPxcnmpER0IOdfvOenk1VvQC/fKodUYQnRsNE0gWUQo67Osz89juOblhEdL+n1QwUm5F//cZtxE/KZFZV8xu14c7OxvjRcIC5SJY2t5W37vFzvNON126q6Tc1sJghkIXeJjeSKOhurfk887EcX3r8PO6sr+xabDQay47J3d3dOAMp0omNnQ02+xibXBbu6PXyo6EAclHFZjKQyMkoqsb9exuqTirjwTQ/HgowGkjhthq5a3s9b9zh4w/evoPlRB5xNVyr8nszMJdgNpKl3WMt36cGp5nx5Rg/Glziv/7CoQ1jEswGkQanmYlQuurUnJMVJFGo6blmtVo5sWcbvyo6+aezC0SSOYJxGU3J0OsCf2GJpSV97ldrw2A2SDUjmEtkhlQqxdGjR28KceZmoWTF7nK5ajp5l6zhHQ4HXV1dyLJMJBIhGAzyyCOPsLy8jNPp5MSJE/zGb/zG/xFFBLZYITGbzezZswe/37/hDb6ZueqlolWawczPz3Px4kV27txJR4fuXPuPL82RKyhVIjPzKu32R0PLPHxQNz8T1rRONsNau5PSw1kpoEqlUgQCAWZmZhgaGsLj8eD3+2loaMBqsfDW3Q28dfe1/b5Oi4H/98FdnJ9PMBXO4LLqKYKbtbVKsBglfv2OLu7rdfJs3yC9rQ0cP7B73e88vJTkG/2LDC0msZsNvHmXj3cebMZmkqizGmtSQR8bDfI/n5omu2oDPhfN0j8f56N3dHLfntpeasFUHriscjaZTJhMJvyCGVlQsdvt5Xtos9nIZDL09PTQ1dXFydA8X31lsUrYFs/q9v371pAWNE0jkCxQVFWaXBZ+6bZ26qwGnrwUJp1XaHSZuW9PA2/ZffmUMLyU5P/72QThdAGHycBiPMfwUpK5aJZHTnXUdByOZApAZU69RiqZQpDz4HbhrHNv+DpBEHjLbj9Tz2aqrGcCqTx7m53suwI19s27/OxocDC4mNBJBvVW2h0Qi4TL97CUX+/3+68qIlZVVc6fP082m+XYsWObUua3GgqFAq+88gpOp/OKcRCVMBqNNDY20tjYyDe+8Q1+6Zd+CafTyfLyMs3NzRw/fpy//du/Ze/evVd+sy2MLVVIBEGgsbGxZkriq8ltvxJKp5BiscjExAQLCwscOXKE+vrLu9+LS0mMa1g2kiiApquuK9/nanC1diclSmJPTw/ZbJZgMEggEODSpUs4HI4yA6yUxHfVv7MgcKi9ruYgGfQWydPjYfrmYoiCwPFOD7f3eIiGw4wPD3J6z8Yq+6HFJP/hh6PEsjIOs4FQKs+XX5hjPJjm/7lvR80har6o8NWXF5AVjQ7v5eHsUjzH115Z4M5eb80TU4PDDGjIilp1yskUFA606rTinp4eJicnmZycxOFwMDExwdLSEttdXrbXm5kI52DVysRkEHnb3oYqK/WZSIYvPz+n261oenjX+4+18t4jrbzjQBPJnFKe/5SgaRrfGlgiki6wrYLqG80UeGwkxJt2+sqCzrVocpoRBYF8UReNJhIJcrk8gsVGZ719Q2uSEu7s9ZKRFX54YYVwWreeOb3Ny4dPtF0VPXajMLJ6j7tMzy45P09OTmI2m8tFxePxrPsul2KmC4UCx44du2nsy5uB0knE4XBcUxGpxPT0NA899BAPPvggn/3sZ/Vo3+VlHn30UVpaWm7CVb+22FKF5Eq4mSeS0hd/cHCQfD7PyZMn1w2M/U4zwVS1ylbVNECj3m6+YhHRNI1XZmI8OxEhnkrjzId48EgX23s2dk5di5lIhucnoxSKAvtaerljv5VIOEwwGGRqagqz2VwW8Lnd7vL1FIoqPx0J8ux4BFlROdbp5v69DTVPBCXkZIX/+OglXpyOoawW959eDHK0yczdnigH9++r6dPzzYFFYlmZ9grBWrqg8PJ0jMGFRM3iNRXKEkoVdPV6BertJkKpAlOhDPtaNt5Nn+hy0+m1rQ6v9ZZZJF3AKAncu0ePNp2YmGB+fp6jR4+S0MysxLOYlQxSLs49ngjNQFix4XXZuWNXMye6L9t/xLIyf/qTcWYiWXx2I6IoMhZI89+emOT379fjec2O9bOsdEFhLJDGY6s2hXRbjUyHM4wF0jULycG2OrY3OBheSmCmAIqMZnJgkUTeuqdh0++NIAjct6eBu3rrWU7ksJmkda2z60Wl87OiKOXwrqGhIYrFYlX4mSRJDAwMoCgKR44cuSWLiM1mY9++fdfFGF1YWODtb3879913X7mIADQ1Nd0Qw8StgFuqkKw1bryRyGR0UZuqqpw8eXLDL/vDh5q5uJwilS9iN0komq7ytpkN3LtJywX0IvK5J6f454ElcoUiiqJgMhqYJcOfdKhVGQ4b4Zv9S3z+zEyZaWWQBO7qred3791OS0tL+WEOBAKcP38e0DMIvPV+/uqVCGcmo2iabhzYNxfnqbEwf/LO3TWzIAB+OhLkhekYXpsRq1FCAyKJNM9Oxbm9p6dmEVFUjaHFJA6zoWrRspskImmZS4F0zUJiMgiIG+RqFFUNUWTTnbTdbOC33tLDXz8zw1gwjaIU8diNvPtwM6e63WWq6fa9h/irl4L0zcbJyXqY08kuNx+9/XZO5tLlE196aoVzcW95QXxuIs5cNFtWlJd+p+lwlp8MB2q6KxtEPXlxrZW6qumL/Wa/k8kg8sk3dPLnPxhgNFzEanPS6LLw4AGdeHA1sJkktvluHhNKkqTyBmbXrl1ldXgp/EwURYxGI/v377/m1MDXE7Is09fXh81mY//+/ddVRJaWlnjb297G3XffzV/+5V/eFOnCVsCW+1QFQajZ2rpZJ5JIJEJ/fz+SJLFz586aO6YHDzQzGUzzzf4lIqsD6jqrkX9/b2/NjO8Szs7G+eeBJTSliNOgYnXaKGr6UPlbA0t8qIbIC/S22d88O0NRVcvZHllZ5YlLIfY0O3nvkZaqh1nTNOLxOIFAgG+/OMpjo0VcZgmH1YTRaERRYWQ5xfcHV2qKywBemIwiwGoR0Uin00iagsFkYjhc5O01XicK+uK1NpSq5Py6WdHsqrexzWdjeCmJxSghiXpRCabybG9wsM1f2+MKdCbUp9+xi5lItqy5sEgCg4ODZDIZjh8/zp8/Nccz42G8NhMem5F0vsjPRkMYDSKfvHtbWSuQyWQIBoNlavELQQv5AmiqCQSDHgImCFhNElObqOstRomT2zx8f3AFl8VYZk4txnP4HCYObmKVrygK8+PDPNwj0nbfMWRNpLnOvC7HY6ugshXb0dHB2bNnURQFm81WthSqbIFtVW8pWZY5e/YsFovluovIysoKDzzwACdOnOBv/uZvtuzveiOw5QrJZrgZhWRubo6RkRF27drF1NTUpqJEUYB/86ZtPHSgkXMLCSxGiVPbPFX+UrXwzFiIbK6Ay6SbxomigITOCHpsNLRpIXl6PFKO/SxH4K7aXv/0YpD3HqnusQqCgNvtxu1288N5CYNxCbtZpJAvkM1kkQwSqALPjgU3LSSldpa66kGEpuFyOUnF8+X/thEEQeCeXX49p7ug04tVTWM5kcdjM3LbagzrRhAFgY/d2cl/+ck4C7EspZ/S5DTz8Ts7q+i7wVSex0ZCXFhM4DAbuKPHy+keL6Ig0LUqftN3lf0AHD9+nOVUkb7ZOF6bsSzIrLMaUTU4MxHlA8cK+Bz6fa7U/BQKBWbOTPD8UoBwOIokiZjNJsxmMzlZoaGGFX0J7z7UzEw4s0rV1tA08NpNPHKqvWaLUZZl+vv7EUXxmqOjX2+Urt1oNHLs2LGy4LfUArt48SKFQoH6+vpyYdkqDK7SScRsNnPgwIHrKiKhUIgHH3yQffv28aUvfemW+uyuB7fUb3cj6b+qqjI6Osri4mJ5qD4zM1OzUFVmiHR4rXRdQ6sgnU4zM78AgoDdbquik4qrFtibIZPXf+e1vW2DKJDMbX4/REFvFVksFl31rarIsoySyxONRnjuuefKw/q1KXLHOz28PB0lEo9jMRiwOx3kZRVREDja7t705z58qImJYJqXZ2KE0wU0BNxWA//XXV1VFiPle1Qogqa3p7Y3OPizd+3hzESUlWQev8PE7T3eKjX9UjzHH/1glJlIFkkQUDWNM5MR3rHcxK/drgvzcrkc/f39WCwWDhw4gCRJhFIZcrKCx1p9DTaTRDhdIJwubKj9MJlMvO1IN8/M5YimZbxWgWKhwHIwgaZBp2RgaWmpip5dCa/dxO/fv4NXZmLMrvp+nehyb2iXD5Rt4Cuv/VZBaTdfWohL1y6K4jq9RaXLg9PpLBcVp9P5ulBjSwXQZDJx8ODB6yoi0WiUhx56iN7eXr7yla/cUjOh68WWKyRXCre6EScSWZY5d+4c2WyWU6dOYbPpu9daNinXIjJci0gkwvnz5znS4eFsOElBUctWIIqqUVS1K/a6dzU5EYSlKmqqqmnkixqHOzancR7rdPP9wRVS+SIOs0F/MCQjBqPGQyfa2NZhIhAI0NfXV26PNTQ04PF4ON1u4VvmAnNpiYJgILEaWHWi081d2zcXptlNBn7//h2cm9fDoWwmiZNdnnVFZC6a5R9enOfsbAwNXcH+oRNt9PrtPLC/tu34N/sXmQ5naHNfnlfEMjKPDq1w9456Wux6CJTX661ixDW59EzxVEHBbb28SJTmXg3O2pTU5joLn7y7m789M8tSIo+qGWnw2nj7LjeHvcWyMtztdpfbjKXvFugtrloamEqUnKVLeoVbqa9eOZzerCVUqbfo7u6mUCgQCoUIhULMzMxgMBiqEg1fi0JaLBbp7+/HYDBc90kkHo/z0EMP0dLSwte+9rVbiuL8arDlCslmkCSJfD7/qt4jnU7rgT9W67qh+kats8q8gGstIouLi2UtyummFvrCw7wyE0MQ9JNCUdVoc1t4z5HN6X939nrZ1+zk/EISs0FAFIWymO89hzd/7W1dHu7Z5eNnF0Nl00RBEDjU5uKhgy3YzQaamprKNg+BQIChoSFkWUbTND55m58Z1cvZuSSiAKe2eXnLbv+GPfpYVhcZNjhNGEQRSRQ40uHmSId7w2sLpwv80ff1U4XLos8cnhkPMxZI86fv2lNTW6FpGi9MxbCbDFU04jqrgblYjhfGVmiX52hra6Onp6fqM2uus3B6m5cfXwygqho2k0S6oJDKF3n4UPOmBpAARzvc7G12cnE5RVFR2d7oKBMWtm/fXqZnl9L4Sqpmv99f04a8EqXvp8/nY9euXbeUYK2k+nY4HNfMcDKZTOvy60OhEKOjo+Tz+bLliN/vvylK+GKxSF9fHwaDgYMHD15X4Uomkzz88MN4vV6++c1vbplW3WsBQas12X6dUCwWa546JicnSSQSHDp06LreOxwOMzAwQGtr64ZunWfPnsXv99PR0VEVkXmtJxFN0xgfH2d+fp4DBw6UtSiZgsK3zy3x+GiIfFHlVLeHdx9uqRn1Wol4VuYfX57nsdEw+aLCsQ43HzzeelUqdkXVODMR4YXpCIWixpH2Ou7e4as59J6bm2N0dBSfz0cmkyk7nJYWxLUPcihV4PNnZnhhKkpR1Wh0mvngidYqU8SN8E9nF/n8mRma6yzlgqBqGgvRHB883sojpzs2fJ2maXzky/2k8kpVG0rTNGbCad7gz/PhO3rLQtK1yBQU/u6FOZ4eD5OVFWxGiTft8vGLJ9pu6BC7WCwSXqVnB4PBcmunlA+ydrFKJpOcPXuW1tbWmmadWxUlO/WSdciNOkVpmlYmPQSDQeLxeDkjZKN27PWgdBIRRZFDhw5dVxFJp9O8613vwmAw8P3vf/+mJx1uNWy5QqIoSs05yOzsLMFgkKNHj17z+5achHfv3l3TDHFgYIC6ujq6urrKBQSuTamuKEo5z+Lw4cM3/AulrTKfxJuwyJQK4MLCAgcPHsTj0VtumUyGQCBQfpCdTmd5rmK0WPntfx7mwmISp1nCIIkksjImg8Tv3tu7aSvnPz56iafGwrStCXBaiufY3+LiT9+1p+Zr/9cz0/zzwBKtdZaykn0lliaby/Hpt/dwYtfmFv+gCwJDqQJ+p3lTGvSNQCkit7QglnbZpeKczWbp7++nq6uL7u7um3otNxqldECPx1P2n7pZKMU2l/5XWZy9Xu81D7UVRaGvr+9VFZFsNst73vMeisUiP/zhD3E6a+cA/Z+KW661da0zElVVGRkZYWlpiaNHj27oS1RCZZJhqb5ey86qZHciSVKV3cmNhJ6vfeOhqirnBi/QPxvD19bDUs6Ae9Xe3Gaz0dXVVWYvlRbDyclJJtImBuc0vHYz9lX2mt0ksRjL8c2BpU0LicdmRIMqG3XQT1BrBYlr8a7DzVxYTDIWTCMABVlGUIq892jLVRUR/eebrtjKulEQRbFse7M2TuDixYsA5QVx7f3YyijllL9WrTij0ViVERKLxQiFQoyNjZHNZsvFuZbrbiUURSkHVl1vEcnlcnzgAx8gm83y4x//+F9kEYFbsJBcC2tLlmUGBgbI5/NVQ/Urvf/1DNWTyST9/f14vd4berR/LSDLMj99vp8vX8gSlo0o47OYDPMcbq/jd+/dXkVPNZlMtLa20traiqIoTD49hqqtIOczxPP6g240GrGZJabDmXV2JZW4a3s9Px4OEkoVqF9tUUUzuq383Ts2z3vxO8x8+h27eGI0xPMjc6j5Iu+4bSd37Nw4cncroXLQbLPZGBwcpKWlhUKhwIsvvnhFu5GtgnQ6zdmzZ2lsbLxixOzNwEbFORQKEQgEGB0dxW63l+/j2vmUoigMDAygaRpHjhy5riKSz+f58Ic/TCQS4ac//Sl1dZsnOf6fjC1XSDb7Ml7LiaT0Jbfb7Zw8efKKR15N07BarYyPj5NKpcqtm6s5VQQCAS5cuEB3dzddXV2v625SUTX65+IsJXI0Oc0c7qhbZ51eiWw2y9m+Pr5yUWUlZ8DnMGKSBLKyygtTUf7qmWn+/Vu3b/haSZJob/RiNEZwOs1oqkJBlslkMsTyGo0OI4HlJRoaGjakQO5rcfErpzv4uxf1KFvQ6b/vO96yqdakBKdZotcQxtdW4MiR2664UdhqKNFeDx48WLaBLzkUBINBLly4gKqqVXYjW4VKmkqlOHv2LC0tLVtmnlPS/XR2diLLcjkmd2BgALh84nO73eV7u1H66NVAlmV++Zd/mfn5eR5//PFyG/hfKrbcjKSkc9gI0WiUc+fOcffdd2/6HqFQiHPnztHW1nZVO6XSPERV1SpTxGQyidvtLheVtUdlTdOYmZlhcnJyXazs64FAMs8f/WCU0eUURVVDEgV6/Xb+6IGdGzKgSlkcCYOHz51N4zRL5ahb0Af8gijw5V86vGGAF0AiJ/PxfzzPSjJPg8OEQRRI5Iqk8kXevdvBkbosqVRq0/sYSObpn4ujanr4VS22ViWKxWLZBPDw4cO3HENmdnaW8fFxDh3a2AYeqAqdCgaDpNPpsvPzRvfxtUKpiLS2tq5jxW1FlJweKu+jwWCgq6uLxsbGa96AFItFfuVXfoWRkREef/xxGho2t0f6l4BbqpAkEglefvll7rnnnpqvv5qhegklZlbplLN2qJ7L5cpD5mg0WjVkttlsjIyMEAwGOXTo0A091iZzRZ4aCzMXzdLgNHH3Dt9V5VH/+28N8/xkFI/NgMUokS+qRDIyR9rr+PP3VLuWBoNBBgcH2bZtGzMFB3/0g1GaXOaqIX5OVkgXFP7nBw7S7av9sA0uJPivP5tgIZ4rU2rfstvPv7qrC6MkVlFio9EoDoejrFe5Vsdi0LUKJb7/wYMHbynVsKZpTE1NMTMzw5EjR67pe7P2Ptrt9nJRuRHspatBIpGgr6+Pjo4Otm3bdtN/3o2EqqqcO3eOfD5PU1MT4XCYaDSKzWaraoFt1kpUFIWPfexj9Pf388QTT9DU1PQa/gZbF7dUIUmn0zz77LPce++9G77u4sWLrKyscPjw4SseNSuV6nDloXpJMBUIBAiHw4De2tm7dy8+n++GPcTT4Qy/++2LzMey5b+rt5v44wd2crCt9qIzG8ny0a8MYBQF7BWZIpmCQq6o8j8/cIBev84gm5+fZ3R0lL1799LU1MRMJMO/+up5DIKAsyLHPZQqUGcz8qVfOnxFU8l8UaF/LkG6UGRHg4N2z8a75RLrpnQfjUZjuahUOhbXQkms53Q6r9uN9fWCpmlcunSJ5eVljh49isNxZep2LZRaN8FgsMxeKhWVmyXgi8fj9PX1lVu4txJKRaRQKFQ5EJco2iVLfKDcSqyvr69qJSqKwic/+UnOnDnDk08+SWtr6+vyu2xFbLmt3JWU7WtTDEFf5Etfksp43lq4Hn1ISTDldrvLwiWbzcaFCxeQJImGhoZ1i2G6UCSQ0C3Rr2TZXrquP39sgtlolvrVNpGqaoRSBf7LT8b50kcO13SKjWVlZEVbF61qkgRSeZVYRq7Stxw5cqRcbDu9Nu7srecnwwFkVcNiEEkXFFRN412Hmq9YREBPxTt5FW60laybynnA4OAgmqaVd4Yl+/FKJJNJ+vr6aGxs3FAHtJVRyiiPRCIcP378Vc9zjEYjTU1NZTFpiVpcEvBVzlVuRNsvFovR39/Ptm16/sythFKg1toiAvqaUgqeKrXAQqEQU1NTXLhwAYfDwU9+8hMeeughvvCFL/D000/zxBNP/LyIrMGWKySbYW2KIej92r6+PhwOB7fddttVDdWv1+6kNKNpbm4uz15KRnSBQKC8GHrrfTy5JPLjsQTpgoJJEnnzbh+/8YbuTWNsF2I5hpZSOC2GcmCRKOrxtAuxHOfnEzUjTDu81nJ+usdWYf1RULCZDHR4LFy4cIF4PM6JEyfW6Vv+7zdtw2Mz8tOLQbKrqvmHDzXz7sM3jwW1kWNxMBhkfHycCxcu4PV6y63EdDrNwMAAnZ2ddHdfXX7LVkFlvOzx48dvuDK7FrV4YWGBixcv4nK5yvf5apIM1yIajdLf38/27dtpb2+/odd+s6GqKoODg+RyOY4ePbopWaHS7LSUXz88PMxTTz3FZz7zGURR5EMf+hCTk5O0tLS85sSHP/qjP+KP//iPq/5u586djIyMvKbXsRFuyUJSLBYxGo1lRkZ7e/s1D9Vfjd1J5eyl0oiutBj+5RPjfGckiYCG1SiRV0W+PbBMIlvk0++onYmblRUUVcNsqL4uSdRNCXNybcaa22rkHQea+MrL84TTBaxGiaysUFQ13n7Qz+ylCyiKwvHjxzfcoVqNEh+/s4sP39ZGIluk3m4q+3q9Fqh8iLdv3046nSYQCLCwsMDw8DAADQ0NNDY23lJFRFGU8mn5tYiXXethlc/n1yUZbhR+VgvhcJhz586xc+fOW24XXioi2Wz2ikVkI1itVg4fPszJkydZWFjgd37nd+jv7+eDH/wghUKBubm515wpuHfvXn72s5+V/7xV5oNb4yoqcKXEt5LWY3p6mrGxMfbs2XPFL/jaofrVFpFXZmJ8o2+R4YUILlHmgyd7Nh3gC4KA0ergzGIRq9mE06xfa1EpoqgqT46s8Nw2M0e3t264mHd6bfgcJlaSecwV7KlkrojdbGBX0+Zip0dOt2MzSXzn3DLxXBG3zcj9u+rZLiwhSbarojraTYZNT02vFex2O93d3RiNRpLJJC0tLWSzWZ5//vmyf1VDQwxT+wAAMlVJREFUQ8NrNmS+HpR0TMB1LWQ3AmazuUr3U9lKVFW1yrJl7fWFQiHOnz/Prl27brk42NIpMJPJXPe91zSNT3/603z1q1/liSeeYPfu3eX3Hh0dfV3o5gaDYUsO+F//FeMaIYoiY2NjxGIxjh07dlVDdblYJCcrWAziVReRHw8H+E8/GiOTlxHRCEgSf/LEPCnNxC8crf1QLcbzpPJ6BocoiZgkEyZMmBWFUKrA4PQymeVJ6urqynOV0kzHZBB55FQ7//VnEwSTecwGkXxRt23/hSPNG9qbV8IginzoRBvvPdpCPCMjyFmGBs/hb2i45QwANU1jcnKS2dnZqnlOaThaciwWRbHc/vJ6vVtm+F4oFOjr6yvbkW8FG/i1rcQStbg0D6ikFqdSKc6fP18mZNxKKBWRdDrN0aNHr+sUqGka/+W//Bf+9m//lscff7xcREBfgyr//FpibGyMlpYWLBYLp06d4k/+5E9qesq9lthyrC3QH8KNLqtQKPDkk09iNps5ceLEFYfqclHh71+c5Rt9S8SzMk11Fj50vI13HNi8PVIoqrz3b15mMZbBaQSLxYogCMSyMk6zxNc/eryK3VSJcLrA+z9/FkXTqv5NTlbIySqf/YV97PJbyrTiSCSyjg77zHiEb/QvMhnK0FJn4aGDTdy/t+Ga/LUq6b2dnZ23XBEpUauPHDlSk91Ucokt6X6KxWLVsP71Eu/lcrny3O5WYZZlMplyCywSiQB6K7Grq2tLn/rWQtO0stfd9bYSNU3jz//8z/nMZz7DY489xuHDh2/ClV47Hn30UVKpFDt37mRpaYk//uM/ZmFhgQsXLrzu1iy3TCEpDdULhQJ79+6luXnzIbCmafyXH1/iG32Lq7nYAvmihijAJ9/YzQeP125RvTy+zCe+fhGLQcRhM8Oqu1VR1UjmZP6/d+/l9Lbanl3/76OXePRCAIdZwmIUKSgaiazM3mYn/+tDB6sKQiUdNhQKYTabyyeVq7Ed3whr6b23Ekqml6lUiiNHjly16E7TNJLJZLlAp9PpTR2LbxZK3lP19fXs3r37llmAS1heXubChQt0dHSQy+UIh8OvCbX4RkDTNIaGhkgkEhw9evS62GqapvHf//t/5z//5//Mj3/8Y06cOHETrvTGIBaL0dnZyWc+8xl+9Vd/9XW9lluitRUMBjl37hwdHR1lDcdmUFWVhWiG751fxiiJ2M36F99qgkS2yN+9MM/Dh5qxGtc/EMFgkNGLw0iStLqjvbwQlMz0alFwS/g3b+wmkZV5eSZGMl/EKInsbnbyRw/sWneqWEuHLbVtSrbWpaJyNZ5Ltei9twpKgWOqqnL8+PFr2k0KgoDL5cLlctHb21u2Hl9eXmZ0dBSn01k+9V0Pc+lqUKInNzc3s3379luuiJQsWw4dOoTPp3udVZ76RkZGyvG4pcKyVYKbSvTqeDzOsWPHrruI/PVf/zX/6T/9Jx599NEtXUQA3G43O3bsYHx8/PW+lK1ZSARBKA/IZ2ZmGBsbY+/evbS0tPDyyy9vGodbGqpfXE6SK6rUWat/RatJJJGTmQ5n2F0xvNY0jdnZWSYmJrjn+B5+El7kUiCN0SAirl5PIlekuc7MgdbNUwldFiN/+vAeLgXSzEQyNDjMHGhzXbE1ValHWRs0pShKeSHcKMtCVVWGhoaIxWIb0nu3OkrRsmaz+br9jyphs9no7Oyks7OzSkw6NTVVPvWVmEs3YsEvifVuRXoywMLCAqOjoxw8eLCcnwP6PKC+vp76+np27txJKpUiGAwyPz9/Q6jFNwKlIhKLxV7VSeRLX/oSf/iHf8j3v/99Tp8+fROu9MYilUoxMTHBhz/84df7UrZma0uWZYrFIsPDwwSDQQ4fPozb7Qagv78fj8ezTllbKTIEODsb51//0wWsJrHKfTYrK6gafO1Xj9Lq1tsmJav5SruTwYUE/+5bw8QyMioaArrq+z88sJNTm7S1bgYqNRaBQIBcLleeBZTM/s6dO4eiKBw6dOiW851Kp9P09/fjdrtvunNy6dRXshoByvdxowJ9NYhEIgwMDNDbWztMaytjbm6OsbGxq3KEqEQ+ny/fx0gkcs3U4hsBTdO4ePEikUiEY8eOXVcLU9M0vvKVr/Cbv/mbfOc73+FNb3rTTbjSV4/f+q3f4sEHH6Szs5PFxUX+8A//kIGBAYaHh8vrwOuFLVlISs69iqJw5MiRqi/H+fPnsdvt9PT0lP+uUmQoCAKiKFJUVd7/t33MRjK4LHoka1FRSeYVTnR5+O/v2w/oRaukej106FBVT34lkefRoRXmYzkanWbu29tQ0/rjtYKmaWWNRSAQIJVKIQgCVquVQ4cO3XIOuCXvppaWlte8HaRpGrFYrDxXKSnCGxoa8Pl81+T8fCtSZIGy6WjlZu16UFmgQ6FQFbXY5/PdFL1DiZQRDodfVRH5+te/zic+8Qm+8Y1vcN99993w67xReP/738/TTz9NOBzG7/dzxx138B//43+sWgtfL2zJQvLCCy8AsH///nVfwKGhIQwGAzt37gQ2V6oPLyX5d98aJpjMr7bLoKveymfes49Wt4VMJsPAwABWq3XDn7XVUVqEbTYbgiAQj8dxuVzl9thWLyolsdu2bdted++mygIdDAbLzs+lduJGQ/+lpSWGh4fZv3//LekAOzU1xfT09DWbR14Ja912M5nMDXctriwiR48eve73/Na3vsWv//qv87WvfY0HHnjgVV/Xv1RsyUKSyWRq6j1GRkZQVZU9e/Zcld1JOl/kiUthVpJ5Or1W7uz1YjZIG9qd3ErYiN5bajUEAgEikQh2u71cVK7HZfdmYnl5maGhIfbs2XNFBt7rgVwuV76XJafd0lzF6XQyPz/P2NjYupnCrYKSRufo0aM3nTpambkei8VetWuxpmmMjo4SDAY5duzYdReR73//+zzyyCP8wz/8Aw8//PB1vcfPoWNLFpJisVhzoD4+Pk42m2Xv3r2oqlpmUl2P3cmOHTtuOe8guDp6b7FYrKIVG43GKmPJ17OolLI4Dhw4UGYHbWWUKNqlto0gCCiKwo4dO2hra7sldCIlaJrGxMQECwsLr9qB+HpQeS/D4TCSJFVlrl9pRlVyUA4EAq+qiPzoRz/iwx/+MF/4whd43/ved13v8XNcxpYsJIqi1IzUnZqaIhaLsW/fPmB9hshmKD1Ec3NzHDhw4JbbSVZe/6FDh656MFqyxii1bQRBKLdsXks1eImevLCwwOHDh2+5aFJN0xgbG2NhYQGv10ssFivPAkpsuq3cHi1d/9LSEseOHXvdmX2V1OJgMIgsy1WuxWtnVKXrX15e5tixY9fdun388cd5//vfz1/91V/xoQ99aEud1G9V3FKFRNM0FhYWGBkZKVs/X22mtaIoZbHSoUOHXvOd2KtFJb33yJEj170IlCzHS0WlpAa/2QthKS8mEom8qut/vVDqyYdCofL1l2xGSvcym81WiSC3EnuutJNfWVnh6NGjW+7+a5pWphaXZlR1dXVVc5WJiYlyEbzeIvL000/z3ve+l//23/4bjzzyyM+LyA3CLVNIKuchpYUwEAigaVqVvmKjopLP5xkYGEAURQ4ePLhlRFRXi5JQ70bTeyv9lgKBQHkhvJa8+quBoiicP3+eXC7H4cOHXzOV+Y1CqYgnEolN1fYl+/ZAIEAikShrLEoiyNcLlUXw1bSDXkvkcrkqyxZRFFFVld27d9PU1HRdp+jnnnuOd73rXfzpn/4pH/vYx35eRG4gtmQhWZuSWJlmWNnKqqRvVnotNTY2ljUByWSSgYEBPB7PTdco3Axks1n6+/uxWq0cOHDgptpTVNKKK/PqGxoarnvxl2WZ/v5+BEHg0KFDr5v/1fWisgj+/+2daVBUV/rGH0QBF0BBaBFFXFAEZRUNJjEhIrII3TiJxnFGYpzELDpxLLM4M//UmMTRlCl1jImapEatZCgXuhGX4IaAwRWaRkHjghEFhaYRWbqhF7rv/4N1bgBBoPvC7QvnV8UH+wO8fbu9zz3nvO/zhISEdFrEW89YDBw4kH26Ntf6xhzIsN7jx48t6m7ii9bbiY8fPwaAFq7FnVlF5+bmQiwW4/PPP8eKFSuoiHCMVQsJmVTvTIZI820GpVIJnU4HR0dH1NXVwdvbG+PHjxfcl6eurg4KhQLu7u6YNGlSj4ogyauvrKxETU0Nm1ffladrYl44aNAgTJ061Wo9mtqjqakJBQUFMJlMCA4ONlsEiWMxERbiXdXdZ1Qmk4m1DQkNDRXcShAA7ty5g7KyMrYxoK3W4o481RQKBebNm4d//vOfWL16teDuA0LAaoVEr9e3mFTvyqG6yWRCcXEx7t+/Dzs7O/YQj2zZCOGpmGRBWIN7r16vb9FWPHDgQPZatte+SUw2hw8fLkjzQr1eD4VCgQEDBnBqA9/6jMpgMHSLY3HzVEZzbUP4hrQoT5s2rd0zTY1Gw26B1dTUsE7aGo0GU6ZMwbVr1xAbG4s1a9bgk08+Edz3UChYpZA0NTVBq9Wy/+7KExsJnamsrGTtTsiWjVKphFqtZs8B3N3drfK8xJrde5vngVRVVaF///7s0zWxxSD53l5eXhg3bpzg/vOSldTgwYMxderUblsxEMdiItIajYYd3LNkO5EkA5JQJ2v8jnfE3bt3ce/evWeKSGv0ej0ePXqE8vJyzJs3D/3798eAAQMwe/Zs/PDDD1axItu4cSPWrl2LDz74AFu3buW7HM6wSiFJSkrCnTt3IJFIkJCQAE9Pz07djAwGAwoLC6HT6Z6yOyE0NjZCqVSyB6JcnANwhbntvXzRPK9epVKBYRg4OjqipqYGEyZMwJgxY/guscs0NjZCLpdj2LBhmDx5co9uJzY2NrKiQp6uycqvswOl5ExHp9PxlspoKURELBmWvHr1KpYvXw47Ozt2JR0VFYWNGzfCx8eH44o7R25uLhYsWAAnJydERERQIeluysrKkJKSAplMhvPnz2PatGkQi8UQi8XtbvMQuxMHBwcEBAR06gCu9TkAsRcRiUQ9fijZvL03ODhYcO3JZEakpKQEAwYMaDFf0V1eS1xDtuPImRTf24nNhyA7Y4hI8uGbmposOtPhk5KSEpSUlFgkInfu3EF0dDRef/11bNq0CTY2Nrh69SoOHz6Mt99+GyKRiOOqO4bk63z77bf44osvEBQURIWkp2AYBuXl5UhNTYVMJsPZs2cREBDAisqECRNgY2ODrKwsNDY2YuzYsZg4caJZT5F6vZ4VFZJaKBKJeqR1k7T3khuA0PazGYZhbwCBgYEYNmwY1Go1ez1JyJQ1byfW1tZCoVBg9OjRVrcd13qgFHjasdhoNEKhUIBhGAQHBwtCuFtDDCRDQ0Ph5PTsqIb2KCkpQUxMDOLj47Ft2zar6dJMSkqCi4sLtmzZgpdffpkKCV8wDIOqqipWVM6cOQNfX19MmTIFMpkM//nPfzjz5TcYDFCpVFAqlezhMhEVrj2rmrf3CtE4kgy6VVRUICQkpM2nyIaGBlZU6urq2syr55Pq6mrWPNLat+NI1xK5njqdDi4uLtBoNLCzs0NISIjgvkMA2CwgS0SkrKwMc+fORVRUFHbs2GE1IrJv3z6sX78eubm5cHBwoEJiLTAMg+rqarz55ptIT0+Ht7c3bG1tIRaLIZFIOM3JJp5VSqWS3WIgomJpljWf7b1cQLbjamtrERIS0qlp49ZmiOQcoDuTC58FMb+cNGkSPD09e/RvWwoRlatXr6KpqQkmk4kVaTc3N6t3fyYQEbHEhbi8vBzR0dF48cUX8f3331tNq3lpaSmmTZuGU6dOISAgAACokFgLOp0OSUlJuHz5Mo4ePQpPT08cPXoUUqkUJ06cgIeHBysqwcHBnN2gSeYCEZX+/fuzZypdHTKzpvZec2hqasKVK1dgMBgQEhJi1nYVWfmRcwAHBwdWVCwV6c5AHIinTJnCy765pRgMBsjlctjb2yMgIKDF9STuz5a47PYEpaWlKC4utkhElEolYmJiMG3aNOzdu9dqRAQADh06hMTExBY1GY1GNjdJp9NZVb3mIkghMZlM+Pzzz/Huu+8+lQOhVqvx888/QyqVIj09HS4uLkhISIBEIkFYWBin8wCkDZYYIRJR6SgdjrT3WquFekfo9Xrk5+ezMxZcbKU0z6tXqVSwtbVl22A766fWFcrKynDr1i3BOBC3Rq/XQy6Xs44Hra+PwWBgrydx2SUrle64nuZAPoOQkBCzQ7WqqqoQGxsLPz8/JCcnW922Xn19Pe7du9fitaVLl8LX1xcff/wxaz4rdAQpJJ2loaEBJ06cgFQqxbFjxzB48GDEx8dDIpEgPDycsy9d83z15v5fIpGoxeSy0Np726KhoQH5+flwcnLidAuxOa2vp8lkemZefVcpKSnB3bt3BfsZ6HQ6yOVyDBkypFOfQfPrqVKpYDQauz29sCOIiHQ13rc51dXViIuLw7hx47B//36rbOJoC7q1JWC0Wi1Onz4NmUyGtLQ09O/fH/Hx8UhMTMQLL7zAWatkW/5fZHuBtBkLsb0XePJ0lZ+fD5FI1GPtsW0dLjdvK+7K50aEvKysDCEhIWYf6vKJVquFXC6Hs7OzWd5xrY06icUIWa30RMfggwcPcPPmTYtEpKamBvHx8RgxYgRkMpmgOh2pkPQSDAYDMjMzIZVKcejQIRiNRsTFxUEikeDll1/m3F23vLwcDx48YGcrPDw8BDNbQSCdTd7e3vD29uZlv51YjZMna+JSQFYrz/rcSKpeZWWlVdqod4bmw5J+fn6cfAako06lUrFRzeTBpzuaHx4+fIgbN24gKCgILi4uZv2Ouro6SCQSODk54fDhw7wPElP6qJA0p6mpCTk5OTh48CAOHToEjUaDuLg4iMVizJ492+L2VNLe6+DggHHjxrGphY2NjYLx/1IqlSgqKoKvr69VdTY1NjayK5Vn5dUT88KamhpBOuACT95rXl4eXF1du827jHiqkfRCBwcHVqS5cCwuLy/Hr7/+apGIqNVqzJ8/H3Z2djh69KhgOtN6O31eSJpjNBpx4cIFpKSkIDU1FY8fP0Z0dDTEYjGioqK6/BT7rPZejUbDWrVYs/9XaWkpbt++jalTp8LNzY3vctqlvbx6V1dX3L17t8s28NZEQ0MD5HI53NzcemxLsXnzA4kXJiuVzkTitoaIiCUZ9w0NDXj11VdhMpnw888/C3J7uLdChaQdTCYTcnNzWVEpLy9HVFQUxGIxYmJiOrRvIO29Y8eO7XArqPXAnjX4fzEMw7qvBgcHm91VwwckF1ypVLIddZ6envDw8OjRLBAu0Gg0yMvLg4eHB3x8fHipnTgWE6Fu7qbdmXOqiooKXL9+3SIR0Wq1WLhwIdRqNU6cOCHI863eDBWSTmAymVBQUMCKSklJCWbPng2xWIy4uLinbk6lpaW4deuWWe291uD/xTAMfv31VzZWVohPfiRQq1+/fhg1ahSbB8JXXr05qNVqyOVyeHp6Wk2eTlvnVMSxmETiNodsiwYGBprdZq3T6bB48WKoVCqcPHlSkJ12vR0qJF2EYRhcu3aNNZW8ceMGIiIiIJFIEBMTg3//+99obGzEhg0bzN4HJpDtGqVSyU6Bd7f/l9FoRFFRETQaDUJCQgR5kKnT6ZCfn8/azpBtmNYxzaQNljxZW9NgWH19PeRyOWvFb60Qx2KVSsV+R4lQazQaXLt2DQEBAWZvixoMBixZsgT37t1DRkaG2SsaSvdChcQCiM+UVCrFwYMHcevWLQwcOBDvvfceli5dCnd3d86eIpv7fz169Ig9A+DS/8tgMKCgoIA1/rPmBoD2IJ1NQ4cOfWZ7bPNEzcrKSmi12hbbNXyeU9XW1iI/Px/e3t4YO3Ysb3V0FbKlSM5VSJfimDFjOhzSbYumpia8+eabuHHjBjIzM636jK6vQ4WEA2pqajB//nyoVCpIJBKcOnUKeXl5mDlzJhISEiAWizFy5EjORKWpqYndr+bKWkSr1bLdZd2dDd9daDQa9lDa19e3S9dBrVaz17S+vp6TgClzIKFgQjCQbA+VSsW2ipNOMIZhWgxBdvT9MhqNWL58ORQKBTIzM60u4I3SEiokHLBo0SLU19dj3759bK50aWkppFIpZDIZLly4gLCwMNaqxcvLizNRMRqN7FOgSqXCgAEDuuz/pdFokJ+fDxcXlx4Pc+KKuro65OfnY9SoURafJ7QOmDInr94cHj9+DIVCAR8fH4wePbrb/k53olKpcPXq1Rb+Zc1z1snqr/kQZOvVn9FoxMqVK3Hu3DlkZWVZVcs5pW2okHBAVVUVhg4d2uaAIcMwePjwIWt//8svvyAgIAASiQRisZjTQ1Rz/L9IDoenpyeb7yI0yFM86ZDjkvby6t3d3eHo6MjZ9aqurkZBQQEmTpyIUaNGcfI7e5qqqipcuXKlQxNMEn2tUqnYWAEbGxvY29vD398fq1atwpkzZ5CZmSnYVVlfgwpJD8IwDCorK3Ho0CHIZDJkZmbC19eXFZWubsc8i874f5EW5QkTJsDLy4uTv9vTkPfQEzdgEilAthTJ6o8YIZr72ZH34Ovri5EjR3Jcdc9A3oOfn1+XtqFIQ0lycjLWr18Pd3d31NfXY+/evRCLxbytjnfs2IEdO3agpKQEAODv749PP/0UMTExvNRj7VAh4QmGYfD48WOkpaVBKpXi9OnTGDduHGt/7+/vz9l/oub+X0qlEkajEYMHD0ZdXR0mT54s2K0D0lrKh4syWf2R1QqAFm3FnT1jIltBQnWCBoBHjx7hypUrXRaR5phMJqxduxanT5+Gj48Pzp49i8GDB2PRokX46quvOK64Y44cOQJbW1v4+PiAYRjs3bsXmzZtgkKhgL+/f4/XY+1QIbESamtrceTIETZTxdPTkxWVoKAgTkXl5s2bKCsrw4ABA55qgRWK/xcx/rOGifvWRp0Gg6FT17SyshKFhYWCzUMBft+Smzx5stlCyDAMPvvsM+zduxdZWVnw9fWFwWBAdnY27t69i7feeovjqs3DxcUFmzZtwrJly/guxeqgQmKF1NfXt8hUGT58OOtUHBYWZraoMAyD27dv4+HDhwgODoaTkxPUajVr1SIU/y+SqBcYGGjxrA7XMAyD+vp6VlQaGhpaXFNysExCtaZOnfpUpo5QICJiyZYcwzDYuHEjdu7ciczMTKvM5zAajTh48CCSkpKgUCjg5+fHd0lWBxUSK6ehoQHHjx9nM1WGDBnCdn+Fh4d3eguluXFhcHBwm91HZGLZWv2/iG1LaWkpgoODzU7U60naOlh2cHBAZWWlRdPefEM6zCwVkS1btmDLli3IyMhAUFAQt0VaSGFhIcLDw6HVajFkyBAkJycjNjaW77KsEiokAkKr1eLUqVNspoqdnR27Unn++efbXUEYjUZcuXIFOp2u08aFbfl/iUQiuLm58TLtToY/KyoqEBoaKkjbFq1Wi9u3b6OiogIAnmorFkrHHBERS3LuGYbB9u3b8eWXX+LEiRMICwvjuErL0ev1uH//Pmpra5GSkoIffvgB2dnZdEXSBlRIBIper2+RqWIymTBv3jw2U4WsIJRKJYqLi2Fvb4/AwECztquI/5dSqWTt2olVS0/4fzEMg+vXr+Px48cICQkRrHU4cVIOCgqCo6Mje1BPLNt7Mq/eXGpqapCfn29RlxzDMPjuu++wbt06pKenIzw8nOMqu4fIyEiMHz8eu3bt4rsUq4MKSS+gqakJv/zyC5up0tjYiLi4ODz//PPYsGEDXn31Vaxbt46TafWe9v8ymUwoLCwUtPcX8Pu5TltOymSolHhWWWO+OvD7vM6ECRPMHphkGAZ79uzB2rVrcfToUcyaNYvjKruPV155BV5eXtizZw/fpVgdVikk33zzDTZt2oSKigoEBgbi66+/xvTp0/kuSxAYjUacP38eu3btwoEDBzBhwgT4+/sjMTERUVFRnD7Nt+f/JRKJONmqIVtyBoMBwcHBVnFOYw4kIz4kJKTDc5225n9IBxgXefXmQvy/LBWRn376CWvWrMHhw4cRERHBcZXcsXbtWsTExMDLywv19fVITk5mt+HmzJnDd3lWh9UJyf79+7FkyRLs3LkTM2bMwNatW3Hw4EHcvHlTsN0tPU1OTg7i4+OxatUqREVFQSqVIjU1FUqlEnPmzIFEIkF0dHSHmSpdoT3/L5FIZNYEODGQtLGxQVBQkGDakltDMl3MyYjnMq/eEoiIjB8/3uzBVYZhcODAAaxcuRJSqRRz587luEpuWbZsGTIyMlBeXg5nZ2cEBATg448/piLSDlYnJDNmzEBYWBi2b98O4MkT2ujRo7Fy5Up88sknPFcnDF577TVERkZi+fLl7GsmkwkKhYK1v79//z4iIyMhFosRGxvLaeCTpf5fer0e+fn5sLe3F6yBJMMwuHPnDsrKyhAaGmqxaDfPAamsrIRGo2nhV9VdyY91dXWQy+UWm0jKZDIsX74c+/fvx7x58ziskGINWJWQ6PV6DBo0CCkpKZBIJOzrSUlJqKmpQVpaGn/FCQiGYZ55s2YYBkVFRayo3Lp1i81UiYuLg4uLC6eiUl1dzd4Ayf6/u7t7m/5fWq0Wcrkcjo6OmDJlitWcD3QFhmFQXFyMhw8fdluHGemqU6lUqK2thbOzMztZz9X2JRERSz3Mjh49iqVLl+Knn35CYmIiJ7VRrAurEpKHDx/C09MT58+fb9HJ8dFHHyE7OxuXLl3isbreCZl0l0qlkEqlKCwsxKxZsyAWixEfH89ppgrZ/ycRuAzDsKLi4uKCxsZG5Ofnw9XVFZMnT7bazqVnQdqUlUolQkNDu9UtmNBeXr0lWTUkWMvb29siETl+/Dj+/Oc/Y/fu3ViwYIHZv4di3VAhobCQ7Rhify+XyzFz5kyIxWIkJCRwmqlCbEXIVH1TUxN7sOzv7y/IMxGGYXDjxg1UVVUhNDSUlzbl1uFS9vb2rKh0dvuSiMiYMWMsCtbKyMjAokWLsGvXLvzxj38U5IMBpXNYlZDQrS3rgWEY3L9/nxWVixcvIiwsDGKxGGKxmNNMFTLg5ujoCJ1OB71eLzj/r+azLqGhoT0yX9MRRqORjRWoqqpiYwXc3d3bbStWq9XIy8uzOOL37NmzeO2117Bt2za88cYbVER6OVYlJMCTw/bp06fj66+/BvBkO8TLywsrVqygh+08QTJVZDIZZDIZcnJyEBgYyNrfjxs3zuwbBXGOJWFO5FC5tf+XSCTq0U6lrkDsZ2praxEaGmqVsy6dyatXq9WQy+VsOJi5nD9/HvPnz8dXX32Ft956i4pIH8DqhGT//v1ISkrCrl27MH36dGzduhUHDhzAjRs3BOuQ2ptgGAZKpZLNVMnKysLkyZNZUZk0aVKnbxyVlZUoKip6pnMs6VRSKpVspxKxarGGuRKTyYSioiKo1WqEhoZ2W/cUl7SVVz906FDU1tbC09MTkyZNMvt3X758GRKJBF988QXef/99KiJ9BKsTEgDYvn07O5AYFBSEbdu2YcaMGXyXRWkFwzCorq5ukakyYcIE1v7ez8+v3a6rhw8f4saNG5gyZUqn54NIp5JSqWRz1clWDR83cDJ139DQgNDQUKsQtq7CMAyqqqpQWFgIW1tbGAwG9rp21VctPz8f8fHx+L//+z/87W9/oyLSh7BKIaEIDzI8RzJVTp48iVGjRrGiEhgYyIrKL7/8AoPBgMDAQLi6upr191r7fzk7O7Oi0hPnEyaTqYURphBFBHjiTiyXy+Hh4YEJEyZAq9W2yKt3cnJi24qf1YF29epVxMXF4cMPP8THH39MRaSPQYWE0i3U19fj2LFjkEqlOH78OJupUltbi7S0NFy+fJmzaFydTsdu0zx+/PgpV12uaW7dEhISYpXnNp2hoaEBeXl5GDFiBHx8fJ66+TfPq3/06BEGDRrUZl799evXERMTgxUrVuDTTz+lItIHoULyDM6ePYtNmzZBLpejvLwcqampLbrJKJ1Do9EgPT0dn376KX777Tf4+Phg1qxZkEgkeO655zidXG998+sO/6+CggKYTCYEBwcLoqOsLRoaGiCXy+Hu7o6JEyd2eF1a59Xn5uaiuLgYzz//PNatW4e//OUv+OKLL3gVkQ0bNkAmk+HGjRsYOHAgZs6ciS+//NKiMx9K5xDm/4IeQqPRIDAwEG+++Sbmz5/PdzmCxcHBASdPnmSfgH/77TfIZDIsXLgQ9vb2iI+Ph0QieWamSmexs7ODp6cnPD09W8xUlJSUWOz/1dTUBIVCARsbG0GLSGNjY5dEBAD69++PESNGYMSIETAajTCZTMjNzcWHH37INmCkp6dj9uzZvDUcZGdn4/3330dYWBiamprw97//HVFRUbh+/XqPDIb2ZeiKpJPY2NjQFYmZ3LlzB3/6059w4MCBFs6xer0eZ86cYTNVALCZKi+99BKn5w6W+n8ZDAYoFArY2toiKChIkP5fwBMRycvLg5ubW5c67FpTUlKC6OhoJCQk4A9/+APS0tKQmpoKFxcXKBQKjqs2D5VKBXd3d2RnZwvKrl6IUCHpJFRILKMj/6+mpiacPXuWzVTRarWYN28exGIxXnnlFU5nM4j/F7Fq6cj/y2AwID8/HwMGDEBgYKBgRUSr1SIvLw+urq7w9fU1W0RKS0sxd+5cREdH49tvv2WvF8MwqKioaLeVu6cpLi6Gj48PCgsLrTILvjdBhaSTUCHpOYxGI86dO4eUlBQcOnQItbW1iI6OhkQiwZw5czi1HunI/6upqQn5+flwcHBAQECAIE0kgd9FxMXFxSIfs/LycsydOxezZs3C999/b7WiajKZkJCQgJqaGuTk5PBdTq+HCkknoULCDyaTCZcuXUJKSgpSU1NRWVmJqKgoSCQSzJ07l9NMFYZhWoRKGY1GAMDgwYMRHBws2O4s4qg8bNgwi0REqVQiJiYGYWFh2LNnj9WKCAC8++67SE9PR05ODmfdgZT2oULSSaiQ8I/JZEJ+fj5rf19aWorIyEhIJBLExsZymnVOzhL69esHk8kEg8GA4cOHQyQSwdXVVTAH7TqdDnl5eRg6dCj8/PzMvj4qlQpxcXHw9/fH//73P6t+/ytWrEBaWhrOnj1rkekkpfNQIekkVEisC2JNQkTl9u3beOWVVyAWiy3OVCHbQMOGDYOfnx+AJ3MxZKUiBP8v4ImIyOVyODk5wd/f3+zrUV1djdjYWIwfPx4HDhyw2vfLMAxWrlyJ1NRUZGVlwcfHh++S+gxUSJ6BWq1GcXExACA4OBibN29GREQEXFxczI4cpXAPsW8nolJUVISXXnqJzVRxc3Pr9E2UtMY+6yzB2v2/gCcdcXl5eRaLSE1NDeLj4+Hh4QGZTGY1768t3nvvPSQnJyMtLa3F7Iizs7NVuDH3ZqiQPIOsrCxEREQ89XpSUhL27NnT8wVROoRkqhBRUSgULTJVPDw82r2pkiG9rrTGWpv/F/C7iJCUSXNFpK6uDhKJBM7OzkhLS7NKV+PmtPc+d+/ejTfeeKNni+ljUCGh9FoYhsG9e/cglUqRmpqKixcvYvr06WymyujRo9mbT0VFBW7dugWRSNTpIb3WNDY2sttffPh/AU9ERC6XY/DgwRZFFavVasyfPx92dnY4duwYfaKnPBMqJJQ+AcMwePDgAZupcu7cOQQFBUEikcDHxwfvvPMOtm3bhsTERE4O7Nvz/xKJRN2WnEhEZNCgQZg6darZItLQ0IBXX30VDMPg2LFj3ZI5T+ldUCERCNRHiDuIpUdqair27t0LuVyO0NBQREVFITEx0ewVSXt0t/8X8GRoUi6XY+DAgRaJiFarxcKFC6HRaHD8+HE4OTlZXBul90OFRCBER0fj9ddfb+EjVFRURH2ELEAulyMqKgrvvvsuxo4dC6lUioyMDPj4+CAhIQGJiYmYPHkyp0OIrTPVHRwcIBKJnnLU7ervlMvlFg9N6nQ6LF68GFVVVTh58iSGDh1q1u+h9D2okAgU6iNkGUajkTXkXL16NYDfM1UOHz7MZqp4eXmxosL1ZDvx/1IqlaiqqsKAAQNYUemM/xfwu32LnZ1di8yXrqLX67FkyRKUlpYiIyMDLi4uZv0eSt+EColAoT5ClkMOxNujrq6uRaaKu7s7KyqhoaGci0p7/l/Dhg1rU1SIfQvxADO3HoPBgGXLluHmzZs4c+YM3NzcLH07lD4GFRIBQn2Eeh6SqSKTyXDs2DE4OzsjISEBEokEM2bM4NQupLn/V2VlJQC08P/q168fKyL9+/e3yEiyqakJy5cvx5UrV5CZmQmRSMTZ+6D0HaiQCBDqI8QvjY2NOHnyJGQyGY4cOQIHB4cWmSpc2oe05f81fPhw1NfXw97e3iJLe6PRiBUrVuDChQvIysrCyJEjOaub0regQiIwqI+QdaHX63H69GnIZDKkpaXBxsYGcXFxSExMxKxZszidBGcYBtXV1bh27RoMBgNsbGxY/6/hw4d3SVBMJhNWrVqFzMxMZGZmUqcGikVQIREI1EfI+jEYDGymSlpaGnQ6HeLi4iCRSBAREWHxZLjRaGQTGgMDA1tM1Wu1WgwfPhzu7u4d+n+ZTCZ89NFHOHbsGLKysugDCcViqJAIBOojJCyMRiNycnLYTJW6ujrExMRAIpEgMjKyy0OJRESAJ75vzVcfDMNAo9GwZyoajQaurq5wd3d/yv/LZDLhH//4B6RSKTIzM+kDCYUTqJAIBOojJFxMJhMuXrzIiopKpWqRqdLR5LjRaERBQQFMJhNCQkI63MLSaDTsmUp9fT3s7Oxw6dIlLFiwALt378aPP/6IzMxM+Pr6cvk2zeLs2bPYtGkT5HI5ysvLqcO2QKFCQqH0ICaTCXK5HFKpFDKZDGVlZYiMjIRYLG4zU8VoNOLKlSswGo0IDg7u8kF+Y2MjLl26hE8++QTXrl2Dvb09/vrXv+K9996zinOR9PR0nDt3DqGhoZg/fz4VEoFChYRC4QmTyYSrV6+yolJcXIzZs2cjISEB8+bNg52dHd5++20sXrwYc+fONbsbjGEYbN68Gd999x2WLFmCS5cuITs7G8HBwThw4AC8vb25fWNmQjN/hIswA6gpVsGOHTsQEBAAJycnODk5ITw8HOnp6XyXJRj69euHoKAgfP755ygqKoJCocBzzz2HnTt3YuzYsZg5cyauXbuGiRMnmt3iyzAMvv76a2zZsgWpqalYv349Tp8+jfLycrzzzju05ZfCCXRFQjGbI0eOwNbWFj4+PmAYBnv37sWmTZugUCjg7+/Pd3mCRafTITY2Frdu3YKnpyfkcjlmzpwJiUSChIQEjBgxolP2KQzDYNeuXfjss89w/PhxPPfccz1QvfnQFYlwoSsSitnEx8cjNjYWPj4+mDhxItavX48hQ4bg4sWLfJcmWIxGIxYuXIja2loUFhbiwoULuHXrFuLj45GSkoJJkyYhKioK27dvR2lpKdp7DmQYBrt378a//vUvHDlyxOpFhCJsqJBQOMFoNGLfvn3QaDQIDw/nuxzBYmtri/j4eNZ918bGBmPHjsWaNWuQk5ODu3fvYsGCBTh27Bj8/f0RERGBrVu34u7du6yoMAyDH3/8EWvXrsXhw4fx4osv8vyuKL0durVFsYjCwkKEh4dDq9ViyJAhSE5ORmxsLN9l9XoYhkFFRQVSU1Mhk8mQnZ2NKVOmQCwWw97eHuvXr4dMJkNUVBTfpXYaurUlXKiQUCxCr9fj/v37qK2tRUpKCn744QdkZ2fDz8+P79L6DAzD4NGjR0hLS0NycjLOnDmDn376CYsXL+a7tA5Rq9UoLi4G8GTQcvPmzYiIiICLi4tVtCdTOgcVEgqnREZGYvz48di1axffpfRJSKSwUMw8s7KyEBER8dTrSUlJ2LNnT88XRDEL7mxKKRQ8mY3Q6XR8l9FnsbGxEYyIAMDLL7/cbsMARThQIaGYzdq1axETEwMvLy/U19cjOTkZWVlZOHHiBN+lUSiUHoQKCcVsKisrsWTJEpSXl8PZ2RkBAQE4ceIE5syZw3dpFAqlB6FnJBQKhUKxCDpHQqFQKBSLoEJC6dVs3LgRNjY2WLVqFd+lUCi9FioklF5Lbm4udu3ahYCAAL5LoVB6NVRIKL0StVqNxYsX4/vvv8ewYcP4LodC6dVQIaH0St5//33ExcUhMjKS71IolF4Pbf+l9Dr27duH/Px85Obm8l0KhdInoEJC6VWUlpbigw8+wKlTp+Dg4MB3ORRKn4DOkVB6FYcOHUJiYmKLREGj0QgbGxv069cPOp3O7LRBCoXSNvSMhNKrmD17NgoLC1FQUMD+TJs2DYsXL0ZBQQEVEQ745ptv4O3tDQcHB8yYMQOXL1/muyQKz9CtLUqvwtHREVOmTGnx2uDBg+Hq6vrU65Sus3//fqxevRo7d+7EjBkzsHXrVsydOxc3b96Eu7s73+VReIKuSCgUSqfZvHkz3nrrLSxduhR+fn7YuXMnBg0ahP/+9798l0bhEboiofR6srKy+C6hV6DX6yGXy7F27Vr2tX79+iEyMhIXLlzgsTIK39AVCYVC6RRVVVUwGo0QiUQtXheJRKioqOCpKoo1QIWEQqFQKBZBhYRC6QH+9a9/wcbGpsWPr68v32V1ieHDh8PW1hZKpbLF60qlEiNGjOCpKoo1QIWEQukh/P39UV5ezv7k5OTwXVKXsLOzQ2hoKDIyMtjXTCYTMjIyEB4ezmNlFL6hh+0USg/Rv39/wT+5r169GklJSZg2bRqmT5+OrVu3QqPRYOnSpXyXRuERKiQUSg9x+/ZtjBw5Eg4ODggPD8eGDRvg5eXFd1ldYuHChVCpVPj0009RUVGBoKAgHD9+/KkDeErfglqkUCg9QHp6OtRqNSZNmoTy8nKsW7cODx48QFFRERwdHfkuj0KxCCokFAoP1NTUYMyYMdi8eTOWLVvGdzkUikXQw3YKhQeGDh2KiRMnori4mO9SKBSLoUJCofCAWq3GnTt34OHhwXcpFIrFUCGhUHqANWvWIDs7GyUlJTh//jxrdb9o0SK+S6NQLIZ2bVEoPUBZWRkWLVqER48ewc3NDS+88AIuXrwINzc3vkujUCyGHrZTKBQKxSLo1haFQqFQLIIKCYVCoVAsggoJhUKhUCyCCgmFQqFQLIIKCYVCoVAsggoJhUKhUCyCCgmFQqFQLIIKCYVCoVAsggoJhUKhUCyCCgmFQqFQLIIKCYVCoVAsggoJhUKhUCzi/wHTyqLUMD2lJAAAAABJRU5ErkJggg==" - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "# %% Load the data\n", - "s = retrieve(\"weber_fechner\",rng=np.random.default_rng(seed=180), resolution=20)\n", - "X_ = s.domain()\n", - "y_ = s.experiment_runner(X_)\n", - "data = pd.DataFrame(np.column_stack([X_, y_]), columns=[\"S1\", \"S2\", \"difference_detected\"])\n", - "show_results = partial(show_results_complete, data_=data, projection=\"3d\")\n", - "show_results(label=\"input data\")\n", - "X, y = data[[\"S1\", \"S2\"]], data[\"difference_detected\"]" - ] - }, - { - "cell_type": "code", - "execution_count": 29, - "id": "89405909", - "metadata": {}, - "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/Users/jholla10/Library/Caches/pypoetry/virtualenvs/autora-17yK3Jyq-py3.8/lib/python3.8/site-packages/sklearn/base.py:439: UserWarning: X does not have valid feature names, but LinearRegression was fitted with feature names\n", - " warnings.warn(\n" - ] - }, - { - "data": { - "text/plain": "
    ", - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZIAAAGlCAYAAADQ/XDvAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOz9eZRk+VnfCX/ufm/suWdVZe1dS++belG1QCC0WKAxZtOgYcZahsW8MtjzHl6DfTwvMKAjM2M8+MCYATyv0IwB2RKSQYC1gRq1JDfdre6qrn1fc8+MPe5+7+/940ZEZWRmVeVald19P+f0kSoz8saNGxG/731+z/N8H0kIIUhJSUlJSVkj8r0+gZSUlJSUNzapkKSkpKSkrItUSFJSUlJS1kUqJCkpKSkp6yIVkpSUlJSUdZEKSUpKSkrKukiFJCUlJSVlXaRCkpKSkpKyLlIhSUlJSUlZF6mQpLwl+MhHPsKePXvu2XNJksSv/Mqv3JXnT0m526RCktJDs9nkl3/5l/l7f+/v0d/fjyRJ/OEf/uGajmXbNr/yK7/C888/v6HnmJKSsrVQ7/UJpGwt5ubm+F/+l/+FXbt28eijj65LBGzb5ld/9VcB+J7v+Z6NOcE3KI7joKrp1y3lzUkakaT0sG3bNiYnJ7l69Sr/2//2v93r01kxrusSx/FdeS4hBI7jrOpvTNPc0kLSarXu9SmkvIFJhSSlB8MwGB0dXdFjX3nlFd73vvcxODiIZVns3buXj33sYwBcuXKFoaEhAH71V38VSZJWlCe4dOkSP/ZjP0Z/fz+ZTIZnn32Wv/zLv+x5zPPPP48kSXzmM5/hX/7Lf8mOHTvIZDLU63UA/vN//s889NBDmKbJQw89xBe+8IVlnyuOY37rt36LBx98ENM0GRkZ4Wd+5meoVCo9j9uzZw8f+MAH+PKXv8zb3vY2LMvi937v91Z0jTosfu2/8iu/giRJXLhwgY985COUSiWKxSIf/ehHsW17yd//h//wH3jyySexLIv+/n5+/Md/nOvXr/c85oUXXuDHfuzH2LVrF4ZhsHPnTv6n/+l/WiJ6H/nIR8jlcly8eJHv//7vJ5/P8xM/8ROrej0pKQvZurdIKVuamZkZ3vve9zI0NMQv/dIvUSqVuHLlCp///OcBGBoa4nd/93f52Z/9WX7oh36IH/7hHwbgkUceueUxp6enOXLkCLZt8/M///MMDAzw6U9/mr//9/8+n/vc5/ihH/qhnsf/2q/9Grqu8wu/8At4noeu63zlK1/hR37kR3jggQf45Cc/yfz8PB/96EcZGxtb8nw/8zM/wx/+4R/y0Y9+lJ//+Z/n8uXL/M7v/A6vvfYa3/rWt9A0rfvYs2fP8qEPfYif+Zmf4ad+6qc4dOjQRlxGPvjBD7J3714++clP8uqrr/Lv//2/Z3h4mN/4jd/oPuYTn/gE//P//D/zwQ9+kJ/8yZ9kdnaW3/7t3+a7v/u7ee211yiVSgB89rOfxbZtfvZnf5aBgQFeeuklfvu3f5sbN27w2c9+tud5wzDkfe97H+94xzv41//6X5PJZDbk9aS8RREpKbfg5ZdfFoD41Kc+teR3X/jCFwQgXn755Vv+/ezsrADEL//yL6/o+f7pP/2nAhAvvPBC92eNRkPs3btX7NmzR0RRJIQQ4utf/7oAxL59+4Rt2z3HeOyxx8S2bdtEtVrt/uwrX/mKAMTu3bu7P3vhhRcEIP7oj/6o5++/9KUvLfn57t27BSC+9KUvreh1fPjDH+55LiHEkuvwy7/8ywIQH/vYx3oe90M/9ENiYGCg++8rV64IRVHEJz7xiZ7HHT9+XKiq2vPzxddCCCE++clPCkmSxNWrV3vODxC/9Eu/tKLXk5JyJ9KtrZQ10bkL/ou/+AuCINiQY/7VX/0VTz/9NO94xzu6P8vlcvz0T/80V65c4dSpUz2P//CHP4xlWd1/T05OcvToUT784Q9TLBa7P3/Pe97DAw880PO3n/3sZykWi7znPe9hbm6u+9+TTz5JLpfj61//es/j9+7dy/ve974NeZ0L+Uf/6B/1/Pu7vuu7mJ+f727Tff7znyeOYz74wQ/2nOfo6CgHDhzoOc+F16LVajE3N8eRI0cQQvDaa68tee6f/dmf3fDXk/LWJBWSlDXxzne+kx/5kR/hV3/1VxkcHOQHf/AH+dSnPoXneWs+5tWrV5fdMrr//vu7v1/I3r17l/w9wIEDB5YcY/Fxz58/T61WY3h4mKGhoZ7/ms0mMzMzt32ujWLXrl09/+7r6wPo5mnOnz+PEIIDBw4sOc/Tp0/3nOe1a9f4yEc+Qn9/P7lcjqGhId75zncCUKvVep5HVdVlt/tSUtZCmiNJWROSJPG5z32OF198kS9+8Yt8+ctf5mMf+xi/+Zu/yYsvvkgul9v0c1h4B75a4jhmeHiYP/qjP1r2951CgY14rtuhKMqyPxftCdhxHCNJEv/lv/yXZR/buc5RFPGe97yHcrnML/7iL3L48GGy2Szj4+N85CMfWVLRZhgGspzeR6ZsDKmQpKyLZ599lmeffZZPfOIT/PEf/zE/8RM/wWc+8xl+8id/EkmSVnWs3bt3c/bs2SU/P3PmTPf3d/p7SO7iF7P4uPv37+drX/sazz333KaJxEawf/9+hBDs3buXgwcP3vJxx48f59y5c3z605/mH/7Df9j9+Ve/+tW7cZopb3HSW5KUNVGpVLp3zR0ee+wxgO72VqcSqFqtruiY3//9389LL73Ef/2v/7X7s1arxe///u+zZ8+eJXmOxWzbto3HHnuMT3/60z1bOV/96leX5Fc++MEPEkURv/Zrv7bkOGEYrvicN5sf/uEfRlEUfvVXf3XJ9RZCMD8/D9yMbBY+RgjBv/23//bunWzKW5Y0IklZwu/8zu9QrVaZmJgA4Itf/CI3btwA4Od+7ucoFot8+tOf5t/9u3/HD/3QD7F//34ajQZ/8Ad/QKFQ4Pu///uBZDvogQce4D/+x//IwYMH6e/v56GHHuKhhx5a9nl/6Zd+iT/5kz/h/e9/Pz//8z9Pf38/n/70p7l8+TJ/+qd/uqKtmE9+8pP8wA/8AO94xzv42Mc+Rrlc5rd/+7d58MEHaTab3ce9853v5Gd+5mf45Cc/ydGjR3nve9+LpmmcP3+ez372s/zbf/tv+dEf/dH1Xsp1s3//fn7913+df/7P/zlXrlzhH/yDf0A+n+fy5ct84Qtf4Kd/+qf5hV/4BQ4fPsz+/fv5hV/4BcbHxykUCvzpn/7pkp6YlJRN4Z7Vi6VsWTrlrsv9d/nyZSGEEK+++qr40Ic+JHbt2iUMwxDDw8PiAx/4gHjllVd6jvXtb39bPPnkk0LX9RWVAl+8eFH86I/+qCiVSsI0TfH000+Lv/iLv+h5TKf897Of/eyyx/jTP/1Tcf/99wvDMMQDDzwgPv/5zy9bkiuEEL//+78vnnzySWFZlsjn8+Lhhx8W/+yf/TMxMTHRcz1+4Ad+4M4Xrs1qyn9nZ2d7HvepT32q5zovfE3veMc7RDabFdlsVhw+fFh8/OMfF2fPnu0+5tSpU+Ld7363yOVyYnBwUPzUT/2UOHbs2JIS7g9/+MMim82u+PWkpNwJSYhF8XJKSkpKSsoqSHMkKSkpKSnrIhWSlJSUlJR1kQpJSkpKSsq6SIUkJSUlJWVdpEKSkpKSkrIuUiFJSUlJSVkXqZCkpKSkpKyLVEhSUlJSUtZFKiQpKSkpKesiFZKUlJSUlHWRCklKSkpKyrpIhSQlJSUlZV2kQpKSkpKSsi5SIUlJSUlJWRepkKSkpKSkrItUSFJSUlJS1kUqJCkpKSkp6yIVkpSUlJSUdZEKSUpKSkrKukiFJCUlJSVlXaRCkpKSkpKyLlIhSUlJSUlZF6mQpKSkpKSsi1RIUlJSUlLWRSokKSkpKSnrIhWSlJSUlJR1kQpJSkpKSsq6SIUkJSUlJWVdpEKSkpKSkrIuUiFJSUlJSVkXqZCkpKSkpKyLVEhSUlJSUtZFKiQpKSkpKesiFZKUlJSUlHWRCklKSkpKyrpQ7/UJpLy1EEIQRRGe56EoSvc/WU7vaVJS3qikQpJy1xBCEAQBYRjieV7357Iso6oqqqqmwpKS8gZEEkKIe30SKW9+oigiCALiOEaSJHzfR5ZlhBAIIYjjGCEEkiQhSVIqLCkpbyBSIUnZVIQQhGFIGIYASJLUjUwkSVr28R1R6dB5nK7raJqGqqrL/m1KSsq9Id3aStk04jjuRiFAN9roiEQnAlmIJEkoitL9d0dYXnzxRQ4dOkSpVEKWZRRF6YlaUmFJSbl3pEKSsuF0Fv8gCHq2qxY/ZiWLf0dYOv+rKEr32L7vI0lSV1g0Tes+JhWWlJS7RyokKRtKZ9vqxIkTDA8PMzg4uCGLeucYt4pYFgvL4hxLKiwpKZtHKiQpG0ZnQY+iiEajQV9f34Yt4Au3xBb/vCMsnd/HcYzv+3ielwpLSspdIBWSlHXT6Q0Jw5A4jpFl+ZYL/2bSEYdUWFJS7i6pkKSsi85WVhRFAF0R6ZT2bhRrEablhKXzn+d5+L7fPedUWFJS1k4qJClrpnOnvzAKWcitFv57tUgvTPorirJEWBZGLJ0y404PSyosKSm3JhWSlFXT2crqVGUtt9DeKYJY7cK8GVtltxMW13W7j0mFJSXl9qRCkrIq4jgmDMMlW1mLuRc5kvWyEmFxXZcwDBkcHEyFJSWlTSokKStiJb0hC9loIblXyfvFwlKpVKhUKuRyOSAR0sU5llRYUt5qpEKSckeWszm500L5RoxI7kTndUuShKZpPT5hnufhum4qLClvSVIhSbktC3tDOvmClbBWIQmixE5FU3qfZysK02JB7QhLFEVdq/yFOZaOrctKhDgl5Y1EKiQpy3Kr3pCVstqFv+YEHBtvcHG2hQD29Fs8NlagP6v3nNNWpiMQHbFdKCxhGHZ/v5xPWCosKW9kUiFJWcKtekNWw2qExPYjvnpmjstzNv0ZDUmC71yvMVX3+MDDIxTMN6bb762EJQzDrvtxR1gW+oSllvkpbzRSIUnp4U69IStlNUJyed7m6rzN3gELtb2lVcpoXJyzuTDb4omdRWDrRCTruSapsKS8GUmFJAVYWW/IaliNkJRbySKqLsiLyJKEqcpM173u8d5s3ElYIJ0emfLGIBWSlA3ZylrM7YSk6fp86/glWrHCQLGA44fEyzw2iASW3uv0+2bmVsKy0Nk4nR6ZshVJheQtThRFXL9+HcuyKBaLm+7WOz5b4fe/cpTJlkDEMZEQZAwdVddRRMjuoQIAc00fQ5XZP5jpHu+txnLC0qmiC4KAVquF4zhs27atKyzp9MiUe0EqJG9RFvaG3Lhxg5GREUql0oYdf7GQCCEYHx/nM988TSXO8czhYVRFxvd9Ls/UqLRcpqamuDY+jWkZDOYzvOPgMGMls+cYb2UWz2JptVpMTU0xODi4bMSSTo9MuVukQvIWZPEI3M3YGpEkqXv8MAw5deoUUzOzRPlR9hkWmqogEBiGwcEdQ1wq27z//kGU2KdWq6P4DZwbp/nW1Hn6+vrwfb/r1nsv2Wpi1hEOuPWQr3R6ZMpmkwrJW4iFC83CqixZlruL/kbRWazq9TpHjx7FNE2effbtnHlpksVrsSQBAixd5YFtfcAIkAherVajUqkwPz/PpUuXmJiYoK+vr/ufYRgbet5vJBaPK06nR6bcK1IheYtwu4T6ZnWN1+t1/u7v/o49e/awe+8+dFXhvqEsL14uUzQtOuvXbNOnYKlsL5o9fy/LclcwGo0G/f39ZDIZKpUK169f59SpU2QymR5h0TRtw1/HVuZOfmfpkK+Uu0EqJG8BFtqc3MryfSMjkjAMmZ2dpdG0kUcP8pXxmNalS2wvmRwYzjJWsrgw28LUZPxIYCgy7zzQTylzaxHo7P8PDAwwMDAAQBAEVKtVKpUKly9f5sSJE+Tz+a6oFIvF7rbPm5HFEcntSKdHpmwmb95vWcqKbU42cpphrVbj2LFjCCG4FBS4drmFpSlkNIWTE3WuzLd47wMjHBq2GK+65E2VA8M59g5Yq34uTdMYGhpiaGgIAM/zusJy9uxZPM+jUCh0haVQKPRs/bzRWc97djthSadHpqyWVEjepKymN2QjtraEEFy7do1z586xb98+5loB56/Os2NU7/plDeR0Lsw2OTlR4797clv3uVfCSs7RMAxGRkYYGUlyLI7jdG3fJyYmCMOQYrHYFZZ8Pv+G7sFYTURyJxYKy0qmR3ZKjVNn4xRIheRNSadDfaU2J+tNtgdBwIkTJ6hWqzz55JP09/dz/qXTtPyYvkXbVQNZncmaR8uPyOqbGx1YloVlWWzfvh0hBLZtd4Xl2rVrCCEolUr09fXR399PNptd0aK4lRbOzTqXdHpkympIheRNxMLekNXYnKwnIqlWqxw7doxcLsdzzz2HrifRh6FKyFLSna6rN8/BC2MMRUZXVhcJrDdqkiSJbDZLNptlbGwMIQTNZrMrLJcvX+5J7vf19WFZ1pZeFDcyIrkTKxGWSqVCJpPp5qZSYXnrkArJm4TlekNWs2202ohECMGVK1e4cOEC9913H4OjY/zXqzXOTjXQFJmCiOk3Ja6WbfYMZNAUmaYXUnUC3nt4CF1NoqDVLDIbPXExn8+Tz+fZtWsXcRzTaDSoVCpMT09z/vx5NE3rERbTNO984LvIvexpWU5YJiYmGBgY6JZkL2eZnwrLm5NUSN7grHYE7nLIstzNpawE3/c5fvw4jUaDp556CtXK8f+8eI3TUw1MVSEWglqjxbABw0WDq2WbOAZDlXlyZ4nn9g8AqxOuzV58ZFmmWCxSLBbZs2cPURR1e1jGx8c5c+YMpml2y4t93+9GX/eKuxmR3ImFopJOj3zrkQrJG5jFCfW1DkhazbZRpVLh2LFjFAoFjhw5gq7rfOP8HGemmuwdyKKryZbVFD43yh4/vH8QU5NxgoiBrM7u/gySBEGw+pzM3bwDVxSF/v5++vv7gaSkuVqtcvXqVVqtFt/85jfJZrPd/EqpVLonpcZbaRFeGGGm0yPfWqRC8gblTr0hq2ElyXYhBJcvX+bixYscOHCA3bt3d5/z7HQTXZW7IgKQ0WXCGKYbLt//0OiSY62We724qKrK4OAgrVYrsXU5eLBbanzhwgUcx1nSw7LZpcZbza7ldhFSOj3yzU0qJG8w1jsCdznuFJH4vs/rr79Oq9Xi6aefplgs9vxeV+RlbOCTYyryxi0CW2nh1HWd4eFhhoeHgaSHpVKpUC6XOX36NL7v95QaFwqFDS813kpbW0D387gSVjPka/FWWMrWIxWSNxCbMTcEbp9sL5fLHDt2jFKpxJEjR9A0jaYbcnyiTs0J6M/q7BvMcPRGjaYXkjOSj1TNDTEUif2D2XWfX+cctzKGYTA6Osro6ChCiJ4elhs3bhDH8ZIelvW+pq0mJOs5n3R65BubVEjeIMRxzPT0NNPT0xw+fHhDF5DlIhIhBBcvXuTy5cscOnSInTt3IkkS18o2//eL17lecQCBhMTOPotDw1nOz7YYrzoggEjw6LDC/qGNEZLOOb0RkCSJTCZDJpNhx44dCCFotVpdYbl69SoApVKJ/v5++vr6yGQya85vbRU6JecbQTo98o1FKiRbnIUjcDvbJxu9eCy2SPE8j9dffx3HcXjmmWcoFJJhU1Es+NPXJrhWdtg/lEGVZYIo5tJci75MkY8d2cW1iosiSRSwEbXJDe+8fiMiSRK5XI5cLsfOnTsRQnRLjefm5rhw4QKqqi7pYbkTWy0iWW0592q4lbB0nI0hFZZ7SSokW5g4jgnDsLuVpSjKhtu9Q+/W1vz8PMeOHWNgYIDHH3+8pxJpvOpwZd5mrGSitr+gmiKzrWByca7FjzyxnQe3J/mTqakpLtdu/XyrXXA2y6F4LWxETqpQKFAoFNi9ezdxHFOv1ymXy0xOTnL27FkMw7ijXf5WE5KNjEjuxHLCsnB6JNBtzO14rKXTIzePVEi2ILfqDdksIelUbZ0/f54rV65w//33s2PHjiVfOj+MiWKBtqgrXVUkwljgRzcX+q208G91ZFmmVCp1J1RGUdStCLudXf7dXLhXwmZGJHdiuVksU1NTzM7O8vDDD3cfk06P3BxSIdliLLQ5gd67980YQAXJnVu9Xsf3fZ599lny+TyQbGWdmWpwfqaJJEns7s/Ql9GYaXiM9d3ceplp+IwWDUbyN++aN1pItoow3Y1zUBTljnb5uVwOgEwmQxiGW8IufytFSAsbJFVVTadHbjL3/tOX0mVhb8jCsL3DZiyms7OznDt3DlmWefvb395dkMIo5o9fvsELF+bxgxghgaXJ7O7PUHMCLsw2yekqdS8ga6i874GRnj6SrbLwvxlYbJfv+35XVMrlMi+88MKWsMvfihFS53yWi1jS6ZEbRyokW4DVzA3ZqIiks5V17do1duzYQbVa7bmrffV6jb89N8dAVqfQn9iCVGyfy3M2739omLlmwEzd5fC2PEf29XP/tnzP8e8kJG/kHMm9Rtd1RkZGKJfLGIbBtm3btoRd/r3c2lqOTrPuciwUlnTI1/pJheQes5rekI0SEsdxOHbsGGEY8va3vx3btimXyz2Pef1GjUgICtZNG/i+jM5c08cNYn76u/bc9jnShX/z6WwlrcYuv6+vj1wutykL4laOSG7Hwm0wSIVlLaRCcg/pfFDv1twQgJmZGY4fP87IyAj3338/iqLguu6SRd8PY5RlzkeS6Emq34o7CclqRWYtDsVvBRZ/Zu6VXX6nHHcrLayr6bRfyO2EJZ0euTypkNwDFvaGrGZuSKffYy1f2DiOOXfuHNevX+fBBx9k+/bt3d91Fuk4FnhhjKnJHN6W5+8uV/DDuJv7cIMkajo4fOcmw82ISNIIp5eVXI/b2eXPzMxsmF1+51y2WkSyEbmihcKy3PTIhcLyVp0emQrJXWY9NiedL+lqvyC2bXPs2DHiOObIkSNks71CIJB4dSbiS392iqoTMJI3eG7/APdvy3FqsompyQiSKOXxnSWe2FW643NuRtVWSi9ruaFYqV3+QmFZiV1+573eSu9THMdd2/+NZGElZTo9MiEVkrvIakfgLqbz+NUs0FNTU5w4cYLt27dz6NChZQXor07P87VrMYMDLlld4cJsi0vzNh98cgeP7ixx7HoNWYLHd5U4sq8fU7uziKURyeazEVtJt7LL71i5nDx5smuX39fXR6lUWnZx7mw7bqWFcq1bW6slFZZUSO4Ki3tD1voBWhiR3Ik4jjlz5gwTExM89NBDjI6OLvu4csvnhYtVTAV2tntD+rM6NyoOz5+d5dd/8AHe/+DIqs/1TkISxzHfPnGJh/Ztp5TLrOh4KUvZ6OvSscsfHBwEklLjjrBcvHgR27bJ5/Ndj7COXf5W3dq6F+dzO2G5du0ajUaD++677001PTIVkk1m8Qjc9cxXWKmQtFotjh07BsCRI0fIZG69UN+oOtS9iOyi3Yv+rM58K2Cm4bGr/84L/WJuJyRCCP722AVeO3+dY5cm+K6H9/Pwvu13vC5RHHNl3uZ6xcENY7YVDPYMZLqOw3eLrfJlvxsR2q3s8iuVSo9dfqeJdStFjRuVI1kvC7/znTL/TuHMm2V6ZCokm8TChqeNnBtyp+qlyclJTp48yY4dOzh06NAd78iyuoquyPhe7wLghRGaIpHR1/ZFvJ2QvHL2GscujgMQhBF/89o5Lk3O8+4nD5GzlnpKdTg3H1Cvl4HEpuVa2eFq2eW77+snb771Psr3okrqVnb5c3NzALzwwgs9pcYbYZe/Vu5VRHI7oihaYiZ5u+mRbxRheet9++4CmzU3pHOs5YQkiiJOnz7N9PQ0Dz/8MCMjy29HCSG4VnY4N9NEU2Qe2pZn32CGF89V8cIYQ5Vx/IiZhs/3HBxkMHfrhf1OLCckZ65N8Y1j55f8/MrUPH/01Zd51xMHOTA2vOT3VTfmcjVk3y6VQls0YiG4Mu9wca7FY2PFJX+zGWylO264t9HRQrv8vr4+yuUyb3vb25a1y+8ISzabvWvnvJWFZCG3cjZeKCwf+tCH+PCHP8yHPvShe3HadyQVkg0mjmOmpqYA6O/v3xTL98VC0mw2OXbsGLIsc+TIkVtakEex4P/5u+t87fQMLT8RuYGsxrsP9nPlBkxUHSIBqizx2M4iH3pqbF3nuXjRvT5T5kt/d+qWf+P4AX/54knu3z3POx/Zj2nc3G+rezFeJLoiAiBLEgVT5VrZuWtCspXYSn0bnUX7Vnb58/PzXLx4cYldvmmam/Ya3ihCspjlhGVqampL+Kndiq17Zm8wFtqcTExMYBhG13RvI1ksJBMTE5w8eZJdu3Zx4MCB235xXrgwz18enyJnqOwdMIgFTNZc/urULN+3LeaBJ/ZTc0OG8wYPjOZRlfV9CRcKyXytyRe/fZyMoVO3HSRuvXhcmphlcq7G9z15iJ3Dfe3XLSHE0sVzOTfitwpbKTparqv9Vnb5lUqFqampFdvlr5WtKiQrKadeiCRJ2LZ921znvSYVkg1g8VaWoijd/7/RdHIPYRhy+vRpZmZmePTRR7vJ0Nvxwvk5BEkiHUCRYEfJ5OJsk6uKxH+/s7hhycmFpcot1+fz3ziK4wVAQNY0GJ+cwvcDLMvCtMzu86qyjBAwV7f53b98ib7+Ae7ftwPJizEVmG36DLddhr0wxg5iHh/Yul+wzWQrRSQrOZeFdvl79+5dsV3+Wrmd19a9Yi0FAJ0Jm52Chq1IKiTrZLneEEVRuqW+G40sy7RaLU6ePImmaTz33HMr7kSuOgG6svSuEUnCjTa2yqWzqLh+wBe+cZS6ndTTB0HA2evXUWSJQi5LuVbFn/XRdZ2MZVEq5AmQuVZ2KdsB4xWHixNzDPb3UTKTxsjL8zZS+1ocHM6ybzAVknvNWgwbV2qXv7CHZTXbO1s1IlnLObVarSWNxFuJVEjWyMLekMU2J5s1N6SzfXbq1Cn27NnDfffdt6oP5aGRPBdmWz0LUOKpBUPmxm6VJNVlgr/49nFmqg0A7JbN9PQ0uVyOgYEBojji0NAQjZZDq2UjxSE3JqaouBFzvkpfVsdUDRQRcv3aVeZzBd79+EFMXSGMBaWMymjBRJW3xmJ6L9gqQrIRho23ssuvVCqcP38e13VXZZe/VYVkLTdrnf6drUoqJGtg8QjcxVVZmzHJMAxDTp48ie/77Nu3jwMHDtzxb6JYcHa6QcuL2D2Q4b0PDPPK1QqX5lqUMjpRLKi7AQ9ty7Nfq274OZ+8UUbkZBRZoVwuU61WGRoeIp/PJ3ewSDQdD01VGRsdotpyyBZKuNN1zIZLHIZUHQdIrumNqRn+/Jvf4R9/4Bn6C7kNPdc3IlspR7IZFvIdu/xOBaLjON2I5eTJk3e0y3+zCInv+wRB0B1mthVJhWQV3GoE7mI2OiKp1+scPXoU0zTJ5/Mr+kBdnmvxfzx/mUtzLYIoJm+qvPf+Yf7f776PL74+xempBpom870Ht/GDj47y8jevb+jC9NLpq1yabfBA3yjXxifwfJ+xsTF0Y2mi0TJ1qk2HQtakYbvomoauxxStLAIIg4CWbRPHAdev3+A3PjXBcw/t5ZmH7qO/v39T/JTeCGylra27YSHfscvftm3bErv869evE8dxT6nxVhSStWwfN5tNgFRI3gwsTqjfrkNdluUNSbYLIbh+/Tpnz55l79697N+/n5deeumOIuX4Ef/maxe4OGezrWCgqzJVO+BPX5ugP6fz/3nvARw/QpGlrrPvRnpjnbg0wYunrwBw7uJlshmLwwf24/hL80Y506DRcvHCmOvzTTK6ymDeZLbp40cxupL4EwlZI2fJjG3rRyPklQtTnLs+zQOjOYYG+pZYdmwmW2Xxhq1zLnd7qNVK7PIBzp07x8DAAH19fWQymXt+vdaSI2k2m92ena1KKiQrYOEI3JU0F27E1lYYhpw4cYJKpcITTzzRTUiuJNp59XqVK/M2YyWzKxQDOR0vjPnyyRk+8NAolr60KWojoqjLk/N89ZXT1Gt1AArFAv19/TheSCFr0rQ9YhLBMg2NuuNxo+Iw0/AJohhFliiaKjv6c0yUmzTFze3DohxStHSQ9O6X6pItURrJ4nkep06dIgzD7l1pf3//pg1x2gpstYjkXjdHLrTL932fb37zm+RyOWZnZ7lw4cKG2OWvl7VsbXVKf7dadLWQVEhuw0pH4C5mvRFJrVbj2LFjWJbFkSNHemrrl2v0W0zFDhDQM0MdIKMrVO0AL4yXCMlKjnsnpit1/vybR5mYnMR1kiqtQqFAp2WkbrsYmookyYRhSBCETNVcblRcLF0hq2sEsWCu5SOAh3eWaDgBkgSRZxN5AYvbT8JY8NLFaQ7tHOF7nnqaOAwol8tUKhWuXLnSHeLUiVhu1az5RmQr5Ui22nTEDnv27OmW43d6WCYmJtZsl79e1iIkzWbzrjoCrIVUSG7BemxO1hqRdNxBz507x759+9i3b9+S51xJRDJaMFAkCTeIeizfG27IfcM5TG3pF369EUmt5fDnLxzl0pWrKIrC2M4xrly5AovWOi8I0RQZS1douR6zTR9dlbHa56QrEgVTo+aGeH7AaMHAMlRuTNrYt3n+s9enmS7XedcTBykOjuIY/QwNRaiRi+I3mZyc5OzZs5im2bVNv5Ul+u3Yaov3Vllcttq89s5nuSNuiqJ0BQPWbpe/Hjo51tUKyVYv/YVUSJZltSNwF7OWZHsQBJw4cYJqtcqTTz7ZnQ+xkmOfmKjzxdenOD/TZCRv8K7DQxwezXF8vE5/Vu/mSBRZ4gMPj9yyQGCti6TjBfzhF/+Wc5euMTjQz8jwYDcfIhYpiUzSZ1OzPVRFQSCxeLyJpkhEriCKBaoqU7c9spaO5zq3PAcJ8MKQ/+vLr6Bli4yOjKIqMpoicd9wH088tgdJxFSrVcrlMpcuXaLVanXLSfv7+ykWi1vyrvp2bJXFe6tFJHf67i62yw+CoJtfWWiXv1BY1pt763xv04jkTc5aR+AuZrVCUq1WOXbsGLlcjueee+62IfbiY790pcK/+vI5Gk6IpSuMVx2Ojdf5wUdGGcwZvHqtSt0JGcob/IPHtvE9BweXPe5ak+1+EPB7n/0S569PMjI6QjabxfFD8hkz2YVadEhZVbk61yQII3Ql6a6PJRUhou619sIYVYZS1mx3w4PtJdt1WdOg5Xo9xxRCkLNM5hsOkzUPatO4rRZPPrAfw7Q4M9VkMKuzfyjbs3h4nke5XKZcLnfLSUulUjdi2epf3jQiuTWrrdjSNO2Wdvlnzpzp2uUv7GFZrXAu3N1YDbZtpxHJG4U79YashpXmSIQQXLlyhfPnz3PgwAH27Nlzx+dcuAUVx4L/58VrNN2Qnf1W92/nmh5fPT3Dv/vvHuOjR3bR9CK2FQyM20w2XMvWlm3b/J//6b9wba7Ozp07e7YCGraLrqpoqtJ9rYGQeenCDLYXIRBICExVIYhChKmhSYl9vRPE7BvOg7h5DSWSBseW45HLGNiuT9wWvkLGpOF4tPwIP4wpWSpNx+WFV09xcPd2cqV+rpYd9g/1fhkNw2Dbtm3dctJWq0WlUqFcLnP58mVkWe7mVvr7++9JcvZ2pNtst2a9pb+L7fJd1+1+Nm7cuEEURau2y1+rkHQikq3MW15IVtobshpWkiPxfZ/jx4/TaDR4+umnKZVKKzr2wohkuuFxreLQl9V7zrkz4fD0VIN3HhhkcAXl56vd2pqbm+OPvvg3TDdDxnaMIS3TXR5EMUEY0l8q4AcR3zk/i+tH9Gc0kMALIupuyEBWA2KcUGAZGrsGTErm0uMJBEgkTYyKgqEqqLJEw/ZASmzlkYD2tYiF4MyVcVR9Duvh+4DlozFIhHShc23HYLBcLjMxMcHZs2exLKs71S4Mw3vuxrqVFu+t1rOxkT5bkiR1e1i2b9/ec9OxGrv8TqJ9te9Zq9Xa0j0k8BYXksUjcDdCRODOW1uVSoVjx45RKBR47rnnVpXUW7jg64qMIklEca8ARLFAkSQMdeVfpJVubQkhuHjxIn/94jEc2WLH9hxBeIvoSyJx7I0F5ZaPHcYULS15LgSaImFqCn4keHRHgTAWFDI6mqLgeDcjjs6xFhJEEbqm0PQi5ltJNZcsSShSImAdR2AhBLPVJmcvXOJYSeGR/TtWXHnXMRjct28fYRh2K8Hq9TovvPBCd+Rsf3//mrY6NoKtIiRbSdRgc4Vt8U3Hcnb5C5P7nWh2rV52tm2nQrJVWdgbstD7fyPoCMniL5cQgsuXL3Px4kUOHDjA7t2715TID4IkbzCQ03l0rMgLF+bI6gqqIhMLwXTdY7Rg8MiOlc/oWElex/d9Xn/9dc7fmKEiLDRTJ4pi8paZWMMvei0SEqau0nJ9Wq6PiAWmqeO38x6Q5EiiWCBJUMro+GGEH4Soioypatief/OAC3RF11QuzTaZqrntTTIJhRhVkbD9CFmKkSXwI0F/zkCXBF8/er47iTGfWd02laqqDA0N0Wg0yOVy7N27t1tmfPz48W5XdWcr7G7kV7bS4r1Vk+13g9vZ5U9PT3Pu3DkMwyCTySCEwPO8Vdnlp1VbW5BOQr3TY7B9+51nha+Wzl3HwjsQz/M4fvw4rVaLp59+mmJxbYOYppoRxydaXI6neNuuEv/jc7uZqDpcnre762x/RuPj37NvVWNy7xSRVKtVjh49SiBpTHo6WrseIBaChuOSs0w8PyBcIEaqKuP6IZoukzVUVEWi1nQp5Uw8PwRinCBmpKBjaAphHHejkDCKCUOffNakabs980tURabSSpyBdVXuljiHqDiux0jewAuTY40WdfqzOlL76lydLvMfvvoy3/v4QQ7vWn6K5EowTZPt27f3bHWUy+WeAU4L8ysbOWejw1bKkbzRk+0byXJ2+bVajfHxcaIo4lvf+taq7PKbzeaWNmyEt5iQLOwNaTQamzYDufMB7ghJuVzm2LFjlEoljhw5sqb69DgW/P++fZXPvDSD40doZ8+TM1U+emQ3v/mjD/PCxXmulx36Mhrfdd8Ao8XV3XHfKtm+0KZlaNsY3z4/s7gQC4CW66HKMjnToOl6eEHMeBMuO1U0TWUkbzCU05msuXhVG11V8CKBqcnsKFkosowXLLJQkW4m7U1dpYZARkKVFeabLQT09MmoxCApGLrK9pKKjISuqbhB0HNYLwj50kunuDQ5x7seP4ipr+79WBJ5Ldjq2LVrF3EcU6vVKJfLjI+Pc/r06W6PQqd/ZSPyK1stItkq5wJbK2ejKAr9/f0EQYDneTz66KOrsstvtVps27btrpzrv/pX/4p//s//Of/kn/wTfuu3fmvFf/eWEZLFvSGbOXyq8wEOw5CrV69y+fJlDh06xM6dO9f8ZXvh4jz/8ZVxJGDAksjmTMotn3//zSscHM7x/gfXfnfdOefFd7gdx+Fyucz9Dz7MV49exvGDWxwBwjim6XjIqsqpGxUmWzGlnIAw5sJsi6Gczn1DOeZbPl4YMZxV2D9SJKfL2N6tj+uHIW4QYmkKlqHR8nzCSCAvcy3DKCIIInKGRQzLHjeOBVUn5MuvXeHrJ8d5z5OHeMf9Y6uK4G5Hp5u+0/y2sEdhoR16J7+y2LV2NWyVxfutvLW1Ujo3liuxy8/n8zQaDVqt1l2bjvjyyy/ze7/3ezzyyCOr/ts3vZDcqjdEURR837/zAdZA58t97NgxfN/nmWeeSaxC1sFfn54liAUDpkIYJIvoQFZnvOryt+dmeXjH+o6/eGur2Wxy9OhRdF3nqaef4c++fZKG7ZIx9N68xZIDwXjFodz06bMULF1B01SsWDDf8tlesnhkrNAtdCiYKkEYYWraksih97ASXgRzLR9FEmQNhfmW33MnHMVJtsTQZCRZQRIxqiz3bLfFAsarLvOtpEETL+Rz3zzJiWsz/OS7H6Vg3d4mYy3bSYt7FBzH6SkljeO4JzG7UnPBrRQFbORQtI1gKwrJrexRbmWX/7nPfY5/82/+DbVajdOnTxNFEe9617t429vetuFd981mk5/4iZ/gD/7gD/j1X//1Vf/9m1pIbmdzspkRyfz8PJAsIG9729s2ZBujYvuosoQk3ewWl6Qkc1B11j+NcWGyfXJykhMnTrBr1y7279/PX/zXk0yVawAEYdS1e1+8pAohKGQsXrtWQ5Zi4ijG0DRiQJGTCq6WFwJJvqCQMWk6N5sLCxmTestdUqEVx4J5V3Bhzse0K6iyRH/OxGx37BtqMjnRD2P6szo7+rI07OQ4qiyTNXVabiJ+TTekbAfkTAVVljENHdv1OHZhgv/Tdfgf3vUo2wbWlr9aKYtLSZvNJuVymbm5OS5evNg1F+zkWG6VX9lKOZI0IrkzKy1J7nw+fu7nfo6Pf/zjvP/97+fAgQMcPXqU//1//9/ZtWsXr7766oae28c//nF+4Ad+gHe/+92pkCxkuRG4C9kMIYnjmIsXL3LlyhUUReG+++7bsF6DB7YVeH28Tixuvo4wTvomDo2svzSwkyM5ffo04+PjPProowwNDfE3r57l4sTsggcm5oumlrwud0Feo5i1qNsuuioRxSADXuC3jRIT+VPa/SY5y6DWsHv6T+q2i2VqRFGMv6CkuO7HXJ5rIUvQl9EII8F03WEgbzFUkCi3EmPH0YLBzoEstut3xSiMY0LH7zYxukGEEInAGLqG4/rIkoQqS0yWm3z2+dd46vBunr5/N8pdWIgWutbu3r27m5hdOMc8m812RaWvr697V7vVIpKtci6wdYVktVGbLMvYts1/89/8N/zoj/4ocRwzNTW1oef1mc98hldffZWXX355zcd40wnJ4t6QWyXUN2pmSAfXdbtbWc8++yyvvPLKhg63+sAjo3z93CwTFRtdionsgIYbsncww/cdHlr38eM45sqVK2iaxpEjR8hkMrx85ipHL9xY9vFuECIB+YzJbLVFw4dz03NYmkLJ0piue3gxZIQgCEKaXkghY9Kf0cgYOi3HWxJ5QOLbJUsSectIREnTuDbfQFdkRPtyqopEwVSptlzGigX2D+dpuT6GlmyTLTnugiZGy9AReGiqgh+End5FYiGQ5eR//+70Fa5MzfPep+5noHB3yy47idn+/n7279/fza+Uy2XOnTuH53ldq440Irk1W22rDdZ2Tp2KwE75b6fSdKO4fv06/+Sf/BO++tWvrsu54U0lJJ3ekM4CfrsGw42MSGZnZ3n99dcZGhriySefRFXVdc8kOT3Z4Plzc7T8kMOjeb734CCf+MEH+L2vn+O1axUUWeJ9Dw7z4Wd30Z9dn/313Nwc5XKZXC7HM888g6IonLk6xYsnL9/27wRwY67B2VmHSstLemeAgqkynDe4areoOCFqAJamsKuks30gj+eHy1Z+dUhKij0KWRPbDQijpD9kYQpFlRPLFC+IaDk+uYxJEIa9TYxAEAkqLZ+aGyJLEqYqkzUNmn6IId+cWw9QMG/uO09XGvzJ117hHY/s59EVNjFuBsvlVzr+YJAkSDvbYP39/ViWdU/OdStFR7B1I5K17FBsZvnvd77zHWZmZnjiiSe6P4uiiG984xv8zu/8Dp7nrUj83hRCstDmZKWOvRsxfCqOY86fP8+1a9d44IEH2LFjR/d36xm3+9nvjPN7L1zBaW/DyNIkX3htgv/1hx/iF9+1k9dPtTjy9qeWzBRZLUIILl26xKVLlygUCgwNDaEoCtdnKnzppVNtM0SDhu0uez2FgAtzNuWWx4Clo+karutRcQJMVeG+koxqWWQyFiVLI29qeH5IGEXkMwaVeuuW75MQ0HQCEIJixmSqUmfhsuCHSfe6qcrIkkQYRsSx6CkGCCLB5TmbqhOgKRJCQEUIcmYivPUgJo6SSZFDeYOC2ft1iITgv568zKWJOd79tsMU2k2M93LBtCyLHTt2sH37dr7+9a/z4IMP0mw2e4Y3LexfuRszNmBrbm3dawubxURRtKb3YzMtUr7v+76P48eP9/zsox/9KIcPH+YXf/EXVxxBba0rvQbWOjdkvRGJ4zgcO3aMMAx5+9vfvuSNXuvW2fWyzR988wpRLBjJG0iSRBDFnJlu8n+/eI1/+HgfmiTWLSIdr69ms8kzzzzDtWvXiOOYuVqTP/vm60RtEWw6HnnLxPGD7s862H5M1QnI6woCge/7mKZOQUhUnYCCKTGS18jlTCQJNE3puvk27OS4bhD2HDeKBZM1l4oTY3sBGV3B1GR0TafuOmSjmDASuGHMaMEgoytYptZNpgdhRD5j0nTcJBJxAkoZDVkCBMiKSqXlsqvPRJblZKsrCsjqas+WmBCCGJnr8y2uzbe4MFnhA8/ej75FtpM621r5fJ7BwUH27NnTza+Uy2WuXbvGqVOnyOVyXWHZCCv0253PVooAtmpEspatrc10/83n8zz00EM9P8tmswwMDCz5+e14QwvJakfgLmQ9QjIzM8Px48cZGRnh/vvvX/bDsdaI59uXyth+xHBbRAA0RcZQZf7m3Cz/w+N9646karUar732GoVCodsgKUkSLdfn+W8cxVtUhtt02yaJhoHtJVVWkgSKIhNFMdKCOz/fT8pq5c41aa+7WdPoqdDqHldVeqqqLs/ZzDoxsojQFImGG9JwoWRAqMoISUGWI3b1WWwrGuSzRmLa2EGChpNMYrQDF1WR6OTzLVNPPLxiQSRgKKsBAitr9ST4hYCaB1fnql0fs6m6x9xXX+PggM5T942u6/pvJAs/8wvzK3CzP6FcLnP27NlufmVh/8pGRRFbMSLZakKylhyJ67pEUZR2tm8Gax2Bu5C1LPRxHHP27Flu3LjBgw8+eNuk11q3toJo+TteWZLav1vb3BDo7VLfv38/e/fu7V63IIr56muXkM3l73yCKOre7ddth4xhEEYeWUOh6YWUrJv5hbrjkzOVrstvIWNSt91lj9u1QskYTNds6j7oUtztWDdUmZoT4oaC7VnB6JBFKWfiej5Zy6DRWj5p7wXJZ0PXNBACy9BxFlRzLVxiFif4Y0nhymwFS1fQ2+aPfhQz2/CJ3BYz1QaFwVH2bhtY5TuwcXQ+A7f73C/sTxBCdPMrlUqFa9euASwZQ7xWMUhzJHdmLRFJq9UCuKumjc8///yq/+YNJyTrGYG7kNVuPdm2zbFjx4jjmCNHjtwx1Fzr1tYjYwV0RablR+SM5O2JhcD2I77v8CC6pq5JoKIo4uTJk8zNzfHEE08wMDCw4Hcx3z59g4bjU7yFkAA4QcTJizNU3JgojhnIqGwvWlyeazHf8tEUmSCKMVSZ/UM5vMYcA6aOH9zhOkjQcDxkRcUJQkpG7wJgajKOFxDrYGgyjueTz5hLKrTCSFBpz6RXFQlTkynbHpm8RRglj3X8CE2VyS3Kh3QS/KWsxbnpOgKpKyKQOC3bRLSCmIwX8mffep0n7tvJsw/tQb8He/GrvZmQJIlMJkMmk2FsbKzrWFsul3uMBRcKy2r289OtrTuzFmv7VquVbMFa1iad1cbwhhKSO/WGrIZORLKSO6mpqSlOnDjB9u3bOXTo0IruKlYakbS8kG9cmGeq5rK9ZPJd+wf4vvuH+NLJaWw/RJFl/DBmMKfz3z+zKylRXaWQtFotXnvttW5p78IyPyEEX33lDDfm6gghkoijtdTJ1w9jXr1eo+rG6FLy/Nf9mJzm88C2POVWQNMLyRkq20smpYxGxVNptFxkVb9ls2EHS9eo1x2IYxRVJwzD7kODSPRsURmaiu14xEKQzyRRiRvGXJxtUXPbfS0iEZ2CpVFpucSxQNM04liwo2gua4diaApNx0MI0PWlXw2JJGEPYGoqRy/e4NLUHO976v5Nb2JczEoiktux0LG2k1/pjCHuzDDvjJrtjCG+3ed+q21tbeQ8ko1irRHJVp/UCW8QIVnYG7KeEbgL6byhtyvJi6KIs2fPMjExwUMPPcTo6Mr3xleydXZhpskvfuEk49Wb2z47+yw++Q8e4MHtBb5ycoaaG/DYWJEffWI7ewez2La9KiHpiODY2BgHDx5c8uX69olLnLwygSRJRHFEw3bJWgZBEBJEN59nsuZS92KKhoQsJddLCEHNjfEieGB77x6uqWu4YUxWT9IkN5sNBX67x8cLYiYbHpVWhCCmL6OR0WVmag6DeQNZSoTWC2PGChqylzj/JjmOZCFt2B4ZU+PaVJOqE9CX0ZClxOu34Ub4kWDvgIUXxsjAcDGHKtFjmwKAJNH0IqIoxlQlfD+gUMgQtT9zYSwQCCxNQpaTGTCxEFSbDv/p66/x1OFdPPPAnrvSxNh72huzwCiKwsDAQDdS9X2/uw12+vRpgiDoya/kcrklIxK20sK9VSOSN+O8dngDCMlGjsBdyJ2EpNVqcezYMYBug95quFNEEseCX/urs1yvJI69qiwTRjFXyzb/61fO83s/8Rj/4NGljp8dc8U7RVKdfM74+DgPP/xw18dnIccvjfPiqXavSLuqCcB2fRRZJmfdTJA7oSCOImTpZi5EkiQQMfNNj4d2FKm3y4R1VSUMIxA37VxgYS7CZK7e5PR0k6oTYepJ4UN1LiBvqhQtlUorGWyVNXV2FFVG8wrlOVAVBXeRcWTN9ik3PfpzFsQ3h5T1ZXXmGi5yyWC00LYZETFIvbYpVTtk3g6p2V7SaW4o5A2VubqDpsjIioLnh/RndHIiQlVkgvbnMYgEjh/ytdcucn58jg+8/cG70sS42c2Iuq73jJq1bbubuO+MYFjoD7bVIpKtKCRrSba/EWaRwBYWks0YgbuQrtHfMnmMjtfU2NgYhw4dWtMH8k45kjPTDS7OtsgbKmr7+KoikzNUTk81uDRnL5kx3jku3P5D6bouR48eJYoi3v72ty/7Qbw0McfXXjnT/be0KIkfxTFNO5mPHkbJ3XwcL128YpFMOmw4HnnLwAsipM4d/wJxWvj4huPSDBKPsMG8SRxFoKpkNEHFCdhRyrF3QCWIYixNYahoUWu00NWlIgKASCIULwgoZgy8IOjan3SecyELbVMmKzYTjQDH88noCrEQiReXobCzZNJq9/LsHyqiEePbYVeAyq0gscVvNzTeqLpcm6vzA08d4vEDY5u6sK53a2s1SJJENpslm80yNjZGHMfd/MrU1BTnzp0Dki7pMAzvOF/jbrAVhWStOZI0IlkjQgjq9TqNRoOBgYENFxGg6wC8MGqIoojTp08zPT3NI488suxd/Eq5U3lxww2JYoGq9H6wVFnCDZLf3+q84dZ3pPPz8xw7dozBwUEefPDBZcVmulLnq6+cTmZ1tBfmzvjbLgIaXshsK6CU0Rnry3B5rkXTC8kaChLQ8pNmvs7dftPxyVkGAoEXtMXpFj3s09UWqpIYJ/rt66TIEoqUlPzuKN3M47Rcn4yuUl50rFgk4qYpchJBtHwMNcAy9G6BgqnJ5JbruWnbprgR+GG0oBlRQrVk6k6AUpDY3d9JcgqKWYvxZj15rV7EjYqDJEHRUhFAy4u4Om/z5VfOMj5X5Z2PHeg2MW4W92KBkWWZYrFIsVhk7969hGHIt7/9bRRF6c7X6Iwh7vSv3O1FfasJSefGOI1I7hKdKKRSqXDp0iWee+65TXuuhYt9xzZdURSOHDmy7iqJhSNxl+PAcI6MrtDyQooLSmdbfkTeVJeNRjrHhaUJ94Vd6ocPH2ZsbPk74lrL4QvfOEbL9ZCAgmVSd9ye6CEIY05M1Jmse0RCRiZmOK/z0FgfpyYqlFvJ6zJUmQPDOYZyRtv516TheCASD67pZSKSDvmMxXi1gucnDrxekHSxx4Il4pq3DOaqdRw/bHfae0zWXKYbPkEUk9EVipZKxldo+tBwbaJYkDENtuVVtFvMrs+aBqcm59rlwVYya0WIblLfX5AjypkGtaZLEEZkTJWyExDEgr5M8t5JQN5UKbcCQmQujs9xfabK9z5+gMO7RjZ8wb+bEcmdUFUVSZLYtWsXhUIBz/O622CnTp0iDMOeMcSL8yubwVbz2uqsM2vNkWx1toyQLO4N0TRt02zeO3SEZHx8nFOnTrFr1y4OHDiwIXcyd9ra6s/qfPDJHfzhi9eYb/mYqpxskUjwoafGyJvLvzXLCUkQBLz++us0m83bjvF1vIAvfOMoLTfJewig7rRnjKgKTntxOj3V5Mq8TTFrohDjhxLXKw6yJPGuQyPMtTz8IKI/q5FtlygXMlZi3Q7dpkBNVTC0zthhQbkVYAcRxayJCBwC36Mmovb7reJGSUQ2kL0prFlTp+F43VG7TcfjetXlRtVHEhGakljJ192QA8N5vCCk6SUi15/VGcqbKLLUM5ArjgWSrFC3PSxNoeX7OJ6Ppibd7b6fRINaW9A6c+eRkmtmeyGynkFXl6n80lXqtk++ZOCHIV9++TQXJ+b4vicOYhkbZ1ey1fo2FibbDcNYkl/pJO4vX77cza90EvfrMQu8FVstIul8X9cSkdzNHpK1siWEZLneEFVVN11IZFnm4sWL1Ot1Hnvsse7Eso1guaotIQQtL8LQZDRF5iffsYf+rM5/+s44s02fXf0ZfvypHcsm2Tt0tvk6x67Vahw9epRcLnfbMb5hFPHn33qd+Xprye9szycWYOkKjh8yUXUoZE1UKWmANDQFAUzXPRw/YDSvk7OSxkRILOEby5T2BlGM5IcUVI2/uzjLXMtHkhVcdx4l8ujPGpRtn1rTQVJkLF3l8PYSpbaIGpqK25lw2D627UdMVF10WaKUzeD6AaYm0/BiZhoeD4xmWbi++mHYjZDqjsts3WO6FeAFMTKCjK4gk2zjZWJBDASxTNZQKJgqqiITRkmFVsMNmbMjJMCSw2T+Sc7A9XwkSUqi0NDHVHvfgwvjs0zO1/i+Jw+xb9vgLd/b1bCVnH/h1uW/C/MrO3fuJI5j6vU65XKZyclJzp49i2maXVEplUobkl/ZakISRdGatug30x5lI7nnQrJ4BO7CwVMdK/jNoNFo4DjJQvjcc89t+F3R4qqtvzk7yx988wpX5x0MVeYHHh7hH33XXn7syR386BPb8cMYXV1ZRVon2rl+/Tpnzpxh37597Nu37zYGiIIvvXSKG7OVWx4zFoKWF5BRdWJJgThKplG10RUZJwhwg5icmUQcWdNAlrmlJXwnR/L69TJzdkgpa2A3m8SxT6hZCM3g7Qez1J0Az/fRhY9ozDPZFFimiW5Z6Lp5c2ER4AQxfhiTy2i4fhJFiFiQ0SWabkAQJddx0YnQcFxqbsyVqocqS+gKBBHMtwLyhoIqS7T8CFmCvCGxf6SIrsgokoTt+VwtO8w2fVp2CAjyUZJwn6zY9OUM/DDGdUPyhtKzVRlEyWTI2nSTo9de5MkDO/ixdzxI/g6TGO/EVoxIVvrZLZVKlEolIBnn3OlfuXjxIo7jLOlfWa0gdPIRW01I1lJx2mw204jkdtxqBG6HzrbTRn9hhBCMj49z+vRpdF1n3759mxJaLxSSvz4zy7/8s1P4UYyhKth+xJ+8fINLsy1+58cfRZal7hbQSpAkiXPnzlGr1ZZ0qS/HN45d4OrkPKam9gyiWnxMBGR0BU0WRMgsvC/0whhdkckYN88zimOCUCRWJcs5BEvJQjrT8NBlQbNRR5FlisUCAom6ExLGgrH+DNAurxYQhAFx4ON7Ljdm51AVFb2dQJeJUeRkqJeqSARhiK5piFigyDcHZy0mFnBtvokmy5QyOo7noSkyiizhhTF7R3PIUtL0aGkKIo4wTA0Jidl5n+mGl1TYxe3Z9lKyRdaf0XA8H8PQGcsb5DUJVenYziTuwzUnQFOTv/vrY1e4MlPlf3z3Y+we6bvt+3YntoqQdMrR17Jwq6rK4OAgg4NJpOZ5Xtcm/+TJk90qsI6wrKSCqROtbTUhWUvOptVq0de3vs/J3eCeCMlKbE46vR0bmTQLw5CTJ08yPz/P448/zpUrVzZ0+NRCOlGDEIL/61tX8KOYoqV1X6cXRrxyrcor16o8vWflH5RWq0UURbiuu6RLfTlePXedV85eBegOomos8r3yw5jZZogbgOP67OwzOT3ZQLJMFCK8MMYNYu4bznY7wlUlKZUNoojASTy4bDcgFjevp4REGAv8ICTyPUxdwbIy6LpGEIZEIiBadPkFglI+S8vVMDJZCv1DXJiqcnG+iedB3p4kEAqzjkJfVqeYz9OwXRpeyOFtRUy9PdxqEUEUg6wiRyGu72PoGmEUYagyLS8ijAV9mZtfh4U5n1YAuqqgKTJty0pyhkLFDihYGg8N9NF0PRRJIpcxaLnJLPmqHVBzAopt92EhBLqmc2mqxh9+5RW+77F9vP3BvWtqYtxKW1sbmfg3DINt27axbdu27lCnhfkVRVF6bFyW+/x3vtNvBiFxHIedO3duwhltLPdESDofuDsNnoK1vwGLqdfrHD16FNM0uwvw9evXNy0P08mRNL2IK/MOhqr0vFZdkXGDmNOTjRULyfT0NMePH0eWZQ4fPnxHETl/Y4bnj57r/lsADTtJrodhhB9FXCs7nJyo0/RCgiDgamuG+0fzPLCtwNWyjRdLaKrC7oEMh4aTEFtGQlXknp6OzgRCU705DwQg8l3kMMKXVbLZJOoIggDbj8lbOjmj973tVn6ReGednKwy3wowrSy269GScxhyjBlHVJoe05UWhqYyXDAoaoI4islnDOqt3giplDWJJxuEsUBXZfwgGXQlyyqqHKIpNx+7OOdje8k4Xl1XoZn8LEn+SxhG4ijciYSajoeuKiiKQmPOTpyQ28fJmAaO57dLhUNeOXuNq1Nl3vf0/QwWV7d9sZW2tjYrApAkiVwuRy6XY9euXcRx3B1DPD4+zpkzZ7Asq2cMsaqqW1JI1npD3Gw2V90MfS+4Z1tbnQ7t2/0ekihiPcN5Fjre7t27l/3793e/gBs9bnchna0tU0ss4G2/93mESM6tmLlzYjGOY86dO8eNGzd46KGHug1gt2NirspfvXhi2WvcWRjdUOLo9SoxEkVTxRE+XhhzfLzOc/f1s3cwgxcmJoyD+UxSJkxix96p/FpIxyHYMnWuztYZr7Qo6hKHdvRzbs6l3Aow1MTYMRaJdclQMdO9g8+3S3s7C/hcy2e+FVCyVISIyZsquZxBueXz8K5BNGIcz0OEPnLoMTUxjqqqWJbFQF+RZgDzdgCSjCa5lCyN8ZqHLEeYqowbxjQ9n7H+LHlTQwiBZWhJzodkNoosSZQsjesVB1OVMHQNLwjwoxhTV5FFBFLvAuH4IRIROdOgYrdLpTUVpyOwQiC31WW21uRP/vo7HHloL/fv3o6qyEtzPLdgqwjJwomkm8nCbvp9+/YRBMGS/EqhUOharm+lqG2t3l9p1dY6kSRp3ZVbQRBw8uRJKpXKsrmEjZiSeCs6IqUpMj/w0Ah/8sqNdp4hMf6ruwFFS+N7Dty+iqczCz4IAp599llyuRwXLly47XmX6y3+8wuvEy7eN1pALATnp+qEyAxkNDzPW9AL4XOj4vDIWLG7qNUdF0vX0FWF2i0s4QHmWz7Hz81QbrjESBiyxEFL4uEdRcarDnU3pGRobCuajOQ0mraHrimYukrd7k3aJ02ZyaIbR8nQKlVJ+k7m6g4PbMvRt6BUOI5jXNfFsR1OXplkvBmDqqNIEsgyRUtnMKfTcEOqTogqSwzldEbzKoosYekajhcy3wqYqnvYfjITpWRp5AyVih0Q+R5IMkKXGM6qZBc0Oza9kKm6R6M91tdQZSQpmaEStLvfHT9CVaSus3PyOgP+7785jqxf4PD+3Tywo8SjY8UlExsXshUjkrt9PpqmMTQ01K22dF2XcrnM7OwsAN/85jd7+lfuZYf4enIkqZCsk/UMn6rVahw7dgzLsjhy5AiGYWzo8e/EQpH6R9+9l4tzLb5zrYobtCMRS+PX/v79lG4TkZTLZY4ePcrg4GB3Fjzc3sfLdn0+/42jCAS6puLfIrkOJO7CUmKNstBvTJYlHH/p8VVFoeF4txy/6wUxr10rU6nbDBYs4jgiROHCbJNHjSKP7Swm+2vtRsUwap+bJNFygmSyoe12exhV+abb7kL8ICTbl1/iwCLLMplMBt2wuNxSsbIhWTX5ErdshynbQeR19g1lkdQMhtYWAimJPoIwpukLzs+0iGKBoSXbj9ddh5GCQV/GYmLeQ5UE+wczbC+atNpRRsuLOD/TwgkSW5cwFjRbAaoqY3sByAqel0Rk24tmt9veC2Iuzdm0vIisEfPqybNcmxlmtrmD9z84jHWLIoytdLe9VZLbpmmyfft28vk81WqVJ554gkqlwvz8PBcvXkRV1Z4xxMutCZvFWoUkLf+9A5s1DlcIwbVr1zh37twdy2IVRblt9/laiWLB1YrHdCtJtudMlf/jxx/l5asVzkw1KVoq33Nw6JYiIoTg8uXLXLx4kUOHDrFz586e17Cwj2QhfhDyhReOUWslZc0dg8S6vdQWHmC0L8u1yhyRLhGFIYp6s3mwaPV+NDri0bEWWTJ+V8ClyXnKdZvRvhy6rmG3bFQRIWsWE3WPsT6rJ+KQkJLcghBEIqbScKh5EU03ApEMt9JVmZYXYqrJH7phjIQgpyZCKSHhLnoPG15Iy48YLmQIwxBNS8aHZh2fluvSbDSJw3l0TcfLWFimRX+pgO0FXJhpIEkyg/kkGY+WzGGp2AE7d1hkYg1T18iYMi3Px9Q0YgRX5m2cIHEw7rxEXZHw4yTqUWUJs8/C0iW0Bett2fZpehF9WQ2jLfzzM5P8da3O/n6DR3f13/IzslUikru1tbVSOvmIfD5PPp/vya+Uy2Vu3LjB6dOnyWazXVEplUqbOuN9LTmSTrHBVp+OCFs8IlFVdVW9JEEQcOLECarVKm9729vuWDanKAque+ttmrXwt+fm+M2vXWC84hBFgj+bfoV/8fcO8fCOAs/s7eeZvcsvDB2CIOD48ePU6/VbdqkvF5HEccxfvXiSqXLt5s/aBok5y8TzA/wwYqbh4QQxw8UM/aZCwdSotAJMFVwvxCPpPN/Zf9MiJskb+D0i0HQ9VEUhYxg0HYeZ6RlqDQfLsjANPRGYdsggiQjHY2kkI4Gmqrjt/pQTEw3KdnKHr6gaqogYyOnUnICyHeBFCpofsmfAYiCr47WjrXzG7EmOi/bsET9I3IYhGd5FewbH6IiFJiUVMY7j0KpXmZ6ZRtFMKk0Jy9AIIwlTN3A8D1OVqdgBjh+RNfSk36Z9HdwgQAK8WEZXpIWXiHzGYqLSRJZ0hvNJnk+WJLKm3nVKbvkRqpzMY+kUL8iSRKVa4z99/VXy73mMfduXbn9uJSF5I1jIL8yv7N+/v2vDVKlUOH/+PK7rUigUesYQb+RrSnMk95DVRCTVapWjR4+Sz+d57rnnVpSgX+s43Ftx7EaNf/b5k7hhhKkm+/qnJxv8488c4zM/+RTbirevsupUlmUyGY4cOXLL17C4UEEIwddfO8fFidllH99yPRxf8NLVKjN1G2QV6VqV4bzOo2MFLs3ZzDZcIgHb8zr3b8szWspRtx10TSUIomXNF8MownYc6uV54liwZ2yU6ngLL4i6vRRCCNwgZjBn9EQyYRglVu5tgbpWdphr+fRltGS7DYEdKNTciIe25YmQuHz1OofGCkumGzZsl1iSmW96+GHEYMFCk2yanujmGQSClh8xYqqUMgZRHCMrMqND/dRtl0IQ0GzZxNUWFdfBVWV0XSNjWQhZQZEl8hmDWrlOr1wk22siCpEUFUWWieIYQ9ex2zcpyoIFvzOJMWcZeH6IrsiomrbE1TgWEEUhf/7t4zy4Zxvf/eh9qIrSTd5LW2hr641oIa9pGsPDwwwPDwPJTUXHH+zGjRvEcdzTv5LJZNb1GtMcySaxUVtbQgiuXLnC+fPnOXDgAHv27FnxG77ROZI/fuk6XhiRMxQkJGI5RNcVak7IF45O8P96575b/m0n3F5cWbYciwXw1XPXee389dt0tsOLl+eZrrsMFDKIKBn4NFF1MVWFI/v6qbUcJicnObyvv9sJnrVMJETXNn0xjUaT8zdmEJrF0EA/Y6UsAxWXqXriYRVGAtuPKWQVdrUjnKablAn35TPM15Ja2igWTDc8LE3uLroSEpYqqDkhqq6TI6TfhKyx9Ms4UXW5NG/jhYlH24WZFgVTJZCSrnKlPYgqb6rs7EvMGWVJopAxOTdVY7ruJR37hsJgX4H5lo+hAlFIpdag4UcM5Uxq5bnughALqDsBThCjyklCvjJvY6NSzBq0XI+GG3UNJW++GdD0Q6brHpqqMFLKMnujQiui26PT9JKqsmJbBE9emeT41RkKA6P4sp4URSgRpeXflrvOVoxIVrtoW5aFZVls374dIQTNZpNyuczc3BwXL15E07Qef7DVVpJGUbRq65fO1laaI1knd7JJ8X2f48eP02g0ePrpp7u2C6s5/kYKydnp1s3emPYNoyRJxEJwYXapxxX0Wtc//vjj3Q7f27FQSE5fneL5o+eSO9wgSvb1F1Gxfcotn4KlQ/tuzVIUokgwUXNxgghLV9BluttDEoAQuEHYM+AKAAHTc/O8dr2Gg47swaTb5PREncd395PVFabqHlEMJVPmkbEi/dmbXzzT0Kg0bHKZ5LgiTsROXiSEkgSyotBoOQwO5ZJ+jE6yvk3DDbk4ZwMwnDeJYkGoGdQcnz0DJogkr5IzVAZzOqZ2c/bLqYka1yoecZxsL801fWRZImuo+FFMhIZi6ezqU9meAY2QasvBCwUX5j1akYwiq0hKYlXfn9FohYKpqo2qJon8Xf1Wt/ItFknkNV33CGOBIkvoqsxIMUO56VK1QyQJLE1mrGRhtYXF8SMuzrewL5e5f8829u7azrVZm0stwXc5QY8ly71gK22zwfp9tiRJ6uZXdu/eTRRF3fzK9evXOXXqFNlstscf7E7CtRZxs207KYtPcyTr43blv5VKhWPHjlEoFHjuuefWZPS20UKyvWhwZb5XMIQQKJLEaGHptpZt2xw9ehRJklZlXd8RkmvTZb780ikgmdmhyjI506C5qMfDC2MiAZqiIER0c+64odNwXPwwJqPeHGwlhCCXMbvi0dmSark+YRgyPTPNpXkXG4O+jE7GMvB8n7oTc+xamfc8uI0Htgum5+aIA5/B/E0RyRg6zXZ+oFv6q8n0ZTQmai6mJne3jrxQoMmCgpXkaCRJxjK0HpuXcivAC2OG8mayxSQEicWkIBQy9w0uve5JD03MjYqNJKCU0dAUBS8IqNohsgQPjuaTcm1VZjBvdLvlIwHNRkjdDjHkEOG7IMvMuypxVufhsX6aXlL+25fVyZgadjuim2/6TFTdJErRlSQX0vKZrtk8sK0AkoTnB+QMtbs1CFB1I5peSMlUmJieodFssm/HMOcrgsvzNo+N3d158Yt5I25trQZFUbqiAckNbKd/5ezZs3ieR7FY7EYsy+VX1jqvHUi3tm7HWre2OnM3Ll68yMGDB9m9e/eaP8Qb3ZD4I0/s4O+uVLC9ZKBSLJL5Iroq84OLHH1nZmZ4/fXX2bFjx6qnMMqyzHy9xd8dvXazaopk8l/T8chnDFoL7EqKloalq7TaUwA7NNtTDUtZg8D3u3mQQtZaYqPScFxEFDE7PUUsJBwli6kLMqaO7wdISBTMpNfi+nyT3QMZ+rIG85WbomaoKl4QIkgqoaZqDkEkyBsKh7cXk6R6K0BTJGIkZElib7+ZTC6MYqI4xnZ9SvkMjXaZcCQEEqDIMsGC6FWSOoO2itiOT7wgx2PqGjfKLdx2lVUcx7hRjGnoZCPR7R8pmDpZS+/Z2guimNlWyFBfAU2+OcVT9TwqLY/zV64xkDOwLAvfE0kjZcbEdnzmWj6yBLoqoSkqfhCQNxXKdkDd8RnJGwwP5Gk6N0ugJSCMQUZ0XY0bLZtXTp5HKEZ3NsxC7nZfx1bc2trM89F1fUl+peMPdv36dYCe/IplWWuejqgoyl0tU14rWzoiWSwknudx/PhxWq0WzzzzzC3nbqzm+BuZbH/XoUE+/s59/ME3r9DyI+IYihmFf/H+wxwaSe4q4jjm/PnzXLt2jYceeoht225tGX8rbC/ka8euYOaWCXklaDgeupokfm03YLiYYVepyZnpJlF7oqAfxggE+waSPEg+kwynupUlfKvZYnp6mmKxyL6x7Zx89TqaoixZvDuLeywEthdgGRqKLHd7PqI4sXs/MV6n5d2crz6Uc3lydz9TdZdyyyNn6vRbCkM5vfu6Ov9bt10MLfnoZrUkKe76QdemRAhBECVDp7qWJbKM4wdJ97yTOADL7dyJqkhIEni+TwzoutZNrjec3uguipPhW1EYYpoaWnuoUyGXY6LSYmi4n4wUYjs2tWoNSZKwLItCPkcsElNJyzRw2+IkteOvqG0E2XBcTC2ZuOh4AYWMiYxLtGjMcRzHTJXnefXkWZ7ckaWYs2h5IccnGpydbhILODCc5eHt+U3f+nqzRyR3wrIsduzYwY4dOxBCdMcQz87Ocv78eXRdJ47j5ObC91ecX+nkR7aSSN+KLS0kqqrieckXuVwuc+zYMUql0m3nbqyGjd7akiSJjz23m7//6CivXK1y+uRx/tvvfYTtQ0kZsud5HDt2DM/zePvb376mkNULQr595jpN11teSIBKK+DMdJnpuodlGuzIqxwazWFoMpfmbPwwsRs5MJxl32CWWAiark/W0LDdRZbwAubL89SqNYZHhsnlcrRcj+39GS7P2kn3dvsP3CBGU2RKVmdqoITtBciyRMbQqbUc/DDm1EQDN4iSngspcfKdbnjkyy0Oj2R5fHcflYa97OIURoJy06PptVBlmd1DeaYaPrNNP7HhJ2nyK2ZURtojgP0wAhHRn7eYqrUQMeQMhWI7gipaSWd7GAkaTsjOPpORUo5Ko0UnDPDDxL4eIKNJ2EEyV4YoImOZzNdaGKpMwdKxdIt8IZ+MjG45VBsOtZkyzVZAEwMCF93Q0TSNMEpsWDILGg/LLS/prI9kfK9O3lSTAV5OSE5PNu5qboSpQOi5/IevvczbH9zHpYbMhTmbvKEiAS9cKHO94vL3Hx7uDiDbDLZaRLLWUtuNQGqXmBcKBfbs2UMURVSrVU6dOsX8/Dzj4+PkcrmeMcS32vJ6o1jIwxtgaysMQy5cuMDly5eXbc5bD+sRkjgWPH9+jq+dnsUNIt6+r58PPDyKpSsM5gz+3oMjGDOnyGjJuVYqFY4ePUp/fz9PPPHEmpqfoijmi996nZmqTdZMFuHFVaBVO+Ab5+doeiEZy6DatCk3FcpOxDv2lTgwnCOMBJoidf2eAExNxQkiQOru68dRzNT0FL4foBSGOD0X4E/NM5gz2F4wmao41D2BLEKitnfY3sFsV0hoO94amkqt6ZDPmpyfrNL0Q0qWhtTewFFlGVOVmaq5PL67j2rTIWeZuAsaHhMnYTg+0WC+FSQjeTWVy3Mt7t9eZCBnMFF1iIVgW9FiR9HsJtYBkBW+dWGWqptskWU1meG8ThQnlWECkCUYzuscGi1QbdqYukYQCc5NN5hueASRIAp8spqMJkuUWwFZU6NWaSJJMnsHM90EuRBwtewyVffxAlBki3yxQNhyaAQxktdK8i6yymjBwFJEtzDg7HQLJxSokkBRVKYaPhlVJqspXc+2vK6QM+S2l5vCn37zBDOeynOP3EfeSgR0IKdzed7m3EyLx3duXh7lzZZs30gURWFgYABN0zh48CC5XK5bZnzmzBl836dUKvXkVzrXcrMrtj75yU/y+c9/vmt+eeTIEX7jN36DQ4cOrfpYWzoiieOYSqVCs9nkmWeeoVAobOjx1yokcSz4/37xNH/++lQ3wfvV07P8p++M83/9D49TaC+knRzM5cuXuXDhAgcPHmTXrl1r+tIJIfjKK6e5Ol1GkiWajk+pX0WWEpPADuemmzS9iMFChigKMUyNMIoZr9hUvSJ9ppTcSS9AU2Ti9kyJIAyJY4GuSFy4egNVU2lpJc6PJ9tisiwx0wrJVxwe3J5nrulTdWM0WbCtYLBzQfe6hETGUJOkvZT0e8iykvy3SARlWUJWVWpNF02VaXUaHk29m6yecyWqIuk1MY3Eir7hwtmpOs/u7efwtgKNlou0aCaJLCt852qZ2WaSI1IkiboX03BbPLS9QCwEfhRjqQqDBQMJQQi4QciFWZuJeoCKIKvL1HwoOzG7h1R0TaHhRBQMlZG8znBeS7bD2hHF1bKNqSr0ZTWEkKg5IRlDZ1u/Tt0J0VQFLXLIyiGTkxMoskIt1qi6CkMFs30ZBbqp0gphZ17vRhax79Bs+Biaiu0FtPyYaq3OK6+f5oH7djMy0Nce4CUzXnU3VUje6ltbK6ETJem6zsjICCMjIwghuvmVSqXCtWvXACiVSjz//PPdkuTNurZ/+7d/y8c//nGeeuopwjDkX/yLf8F73/veblXaarinQiJJNyuFFjM3N8elS5e6FU2bYV/Qaexb7QfvW5fK/PnrU8jSzbneUSw4O93k0y9e4+e+dz+QvL5O1+xTTz216vLkhXz7xCVOXZnsHlcIgReESEDBMrvOvNMND1NXieOb4qIqMkJEjM832XXfII4fdu/0ZUlGkRV8v+NMm4TUMzMzDA8OoGYKfOf0dDv5rGLoOp7vU24FTNe9xD+LJNltGVpPmXDW1JlqNlj4qi1NQpUEIQoKnXMUeBGULKl7PSFpeAzDqF0m7FL1QbckdO3mDUDOUCnbAXNND0OVyGd6rVsUWWam6THfCrrNjgA6UPdk5u2AA0NJn7qMhCbL3aowN4iZrrtoskTRMoniGEuVEcTU3Ih37Cgl57GwHNn2MA2NmWYDVZa7xQ26ppJvj+vdP6ixbyADEmSMPvwwJAgiXM9larxGHPrMz7dQVRVd09B0Hd+PQbEoWlpSVBEk1WeinY9S5aTpMghCjp2+yPaRAQ7v3UUYi26U1GGy5nKt4hDFgpG8we6BDOotBoKthK22tbVVhWTxFpYkSWQyGTKZDGNjY8RxTKPR4OrVq3zuc5/jxIkT6LrOT/3UT/Ge97yHd73rXStqD1gpX/rSl3r+/Yd/+IcMDw/zne98h+/+7u9e1bG21tXmpmX6a6+9xvbt2zEMY9M8cDpv7GoT7n99JukgX7joKXLypf4vJ2eAZJSv67pEUcSRI0fWJSKvXxznxVOXu/9eKMCCxJk3Y+joioKpKYRR3Lvl1f6Hqkg0XR8JyJoGCLAMtW3zkSwk5XKZmdkZRkZHyBWLTNZsImQsTcHQdfwgQJIkTE1msuYSt5PAURzTtJOObaWdE7G9gCgW3Kg4vH6jxonxOrYfsbMvqQpr+EnDYsUJsVSJPQPWkiR/x9tLVRQkSUbuzKzvVCa1/+vkopuul8wJN5OEpqEp1G0fIXo7zCVAJqZmh+RMPbGQN/We0mI3SBo3DUXGD0OEEGiaiiYBkkxtkW1Mh6bj4wUxOStJsnYGeamy1B4GFvfMOhHtmfKGYTA80I9hWvS3hzZFcUyjXqfRaDI7M0u90eg6SCPLTFQd5tqRlq7ItPwQgWBiep6vvfQ6jt1i78DNeRYvX63yH1+d5Ktn5vibc/N89rVJvnRyppv/WQtpRHJnVtJHIssyxWKRRx55hG984xv82q/9GocPH6ZQKPCJT3yCkZERLl68uGnnWKsl9kqdMufVsKW2tjqW6b7v8+yzz+L7PnNzc5v2fAuHZ61GrIJoYTFpL34YMz4+zqlTp9A0jb17965rnsrlyTleeP18z8+Wi+Rsz0dTFA5vK/KNs9P4YdLsJoSg6SWTAHeUkj6VMI4JbJf+QpZqK2nmi+LkDt92bMbGxhacc2LoaOSyPc2OgiQP3bOAtBd9y0gmQYax4Gw5wp6vtjs74PK8zb7BDI/sKDBecfAjwe6hHAOmvKyJpRfEeFESCWSVCE9SkqFU8k0TR02RerrHwygiCMLk9TXtdkOgWNzLSBAJDDXZJuzLZ6i3ekuedTXJhfhRjCm3J0IGIYqWNHbqyvKLpypLWJpE1fbY1pfDbUd7fhSjyBLmIkdfN4got3z6ciZ5I0oqyCKBaRgYhkHDDekzI/pzCrV6nemZGQJZ52o1RtYqKKpKRlfIGUoizO258roi05i5wcRkhl19e5lrhXz7UgVNljg4lGxdOH7EsfE6Y30Wj42tbes4jUhuT2fXY7V9JEEQsGfPHn7zN38TSAbbdUqON5o4jvmn//Sf8txzz/HQQw+t+u+3zNbW7Owsr7/+OkNDQ13L9Gq1umk2753nlyRp1c9xZF8/f35skqjdnQx075AfGZQ4c+YMjz32GJcvX15XefFUuc5ffPsEYRT1uPhKtLc0YsGlOZur8zZ+FLNrIMdYUefw9hIXp+vdxKypyjy2s0hhwWJbzFpUmnbiOOt53fr30ZHRHuEbyulkDJ1K0yFnJFstjuvhBTF7BnIsvhFVZJkoEjihR8WDeSdmuKSitqM3x4+4PGfz7L5+ntpTImNo2F5A1jR6kutBJDg/02SylnSBG6qMoaogxdQ9CU0Bv116vKc/Q8FYKCSChi84dW4aQ1cpWRoZXaFqBxRMFbltlihLMFowyGUMqg0HTVVAwHjFJoyT/pbBnM54NREYXZEJkWnaHg/uzNGXM7s9JlU7mWHS9BJblIyuYocwVW2SNTSQJOpuyGjeIN/xChMw0d5mipEJwxp9WYOx/iyTVZuyHSAJMHWZPUMFhtqNnX4EL5yeAAlMOcR3HWquQkvTODSSQ1WTJsycqTJSzPLK2etcniwzsm0HDTfk4PDN/W9LVzBVmXPTzTULSRqR3J6FI8VXw+Jk+8jIyIae10I+/vGPc+LECb75zW+u6e/veUSysK/igQceYMeOHd3f3ckiZb1IkrSmpsT33D/MZ18d59VrtWSbok1Bh3dtFxx5e9Klfu3atTULSbXp8J9fONZdLBe6+CZbOzEvXq5waa7V3nLR+c7VeS5YGt97cJA9/RZVJySKwmT+xQKjw5xlUG9bws/NV5idnWVs2wjXJ6aIhOBa2aFmB2iqxO6BHIdHsxy/UWOu5SPho6gqQwWD+4Z6E3KSRDv5myyu18o2mipjaFo34rF0BbsVMddw2dnfT7M9zKqTXM8aSQPgqckG1ysuli6T0RQiWWG8GnH/DhVTV6nYIblSjqLedg1or2N+GHNmxmG8Ynd7V1QZxgZy1FoudTckFmBqMvcNZdk5kE0mIkowUXU4O9PEj2XCIEBVJIZyBtuLJvMtHz9OhmttL6iMlQxajk8+Y3BptsGZySZelERHNSfA0FWGMhq2LHC8EFmGQ9uKDGeVrvjONn3Oz7bQVRVLkwhlldlGYjz51N5Byg0bkChYKkbbZsXSNa5M1IklmYwmyOcLaKpMs2Uz1/C4MT3PaCbpXTHMPNVGC0VVmK+3OHH9OLaa576hPT12NHI7elwradXW7emsL2vpbL8b5b//+B//Y/7iL/6Cb3zjG4yNja3pGPdUSBzH4bXXXiMMw2X7KjoWKZv5QV1LU6Kuyvzuhx7jT16+wV+emKbleuzLePz44yO844kHux/itboLO17AF75xdMk425brJQlcU+PqbMyVso2hKmQtgzAIMBWNmhNydrrJU3v6GMioFLJmtwscwDJ0Wo6HQDA/O0+j0WB0dBQ9k0FWVV68WmeuGdDJQJyfdXhke47n9ifNgn4oKGU09gxkyZo6drvPJ2lmNHuS7bGg3ZEeoesanucnEZUAy1zk38XN5HosK8w0fHKGgqHKaKpGEAYoMsw0fb7rvgL7h5LPQ9bU8fyQsH2dZ5oh4xWbUrs3BJIoaLzc4u37BohigR+G5A2VnJXMHBEkW2hnZ5q4QUzRktEyFl4QMVlzuX80x/6hPoJYUK8EGJrcPXat5XK96iFkiX6zXa0nSTS8iIrj88TOYtL0KEtoqtxuFJVw/IDJuockyeTN5HOuKxKljErNCSk3HHb0ZZFlcNtVeaoiE0QRXpREU5LU7nwPY3LZLL6kU8ooDBdVQt9ndq6C47nouo5lWciSztTUFN/yHZ68fx8ZyySME1fkfYM38yhBlFj6H59o0PRC9g5keGyscEv36q22cG+184miqHvTuhqazeaGJtcXI4Tg537u5/jCF77A888/z969e9d8rHsqJKdPnyaXy3H//fcvq9YLk+FrsWBeCWstAbZ0hY8e2cU7hjyuXr3Kgw8+yPbt23ses5ZoJ4wi/uybxyg3ljd5DOMYxw9pRgpRHFHKGQSBj9S2FNEUiRtVl6eg2wVuahogiEmGX4VhxNTUFFEcMbZzrNvcebkWMe35DBYziDBAVVUqLY/Xx+u8+/AQD25fuPUhsF2PfNak6bjkLYuG05tjGM5pzNST6iDfD9C1ZBtLNzSsW72dEszVbEIBJUNDcHOSoiaDHwq8MEZtfx46HmMdQZmsuWiK1F3oAUxNwbZ9ZuoO+4eyZE2Lpu2hSBJu20NrvuVj++0mSSTCsD0nxNSZrLscGi1i+z6u2ntDYwcRddvH0pVuRZuiKphRTNONcIK4J3/jhyG0k+uOX8HSe/3klLY9gB/F3Wg0byXXWFMVHC/x4opFr7G/H4QEQchwMY9lKuj5HJlcnqmay1TVxmt66DQgEFy8bnNjZp59e3ZR7Otn/1COB7fdnHP+N2fnePFKtb2dKPPSlSoXZlv88GPb2FFaKiZpRHJ71rp+2ba9qRHJxz/+cf74j/+YP/uzPyOfzzM1NQVAsVhcse9fh3sqJI899thtf78wGX4vhcTxI/72/BzzLZ+HdxR4eHsB3/d5/fXXcV2XZ599dlmHztVGO0IIvvads0zO1W77OFlKtl5kRSeKo575GEl1Uu/j3SBAU2Qyps70XJWp6SlM02Tb8LbuFy6KBXMO6BqIMMAwDIIwJGeo1JyA6YbHngXVP0C3N6SYtXD9ZPDTRM3FC2KyhsJwXqeoJ1s9Sd9Isi22fyjLYE5HiOWvjaEpyAgcPyRn6Xjt9yeMJSxF6rrpdgjjmNDxKOasHu+x7mkuuB6xENRtl1Iuk2xptYnipCFw8bWMwgDJsgg6Y4EXZexlSUKWkuN6vo9lGPhhsn0mSUmTY8+5RgI3jPBCm8FChvGKjW7e/GxHceKpZS54jfP1Fs1IZmqySixiCqZKRpOpOxGqmVwbx48STzVFUMiaNB2f87M2EzU3iV5kAzvWKOZkhjVBuely+dwZ9g0X2D18H05dw1T6mHciXp9oMJTTu9YqQzmdC7M237lWZUdpdMn13YpCslnrxVpYa6f9Zo/Z/d3f/V0Avud7vqfn55/61Kf4yEc+sqpj3VMhudMiLstyUv0ThuuqfFrPObxytcrP/8fXqdo+SMky89SuPP/tWJNtQ/08/vjjt6z4Wu3W1t8ePc/JyxMYWuLftHjYUQdJkhjJKoy7MS0nJp9NtraiWBDFgt2LFnxJAlVVuD45Q6NaYbCvj1yh2LMgCgGiHdXouo7v+8iyjKap4ATdMt/FZAydesthtulzbKJJpXFzrG9el9iZl8j0FZhr+GiqzLaiyVBOT7bcWkknOgIqdsB8K8mt9Gc1BnM6082QWCRVYI4fEsSwvaCjLVJKEQsypkGt6bK9ZHJ62u4phOhat7SrwgoZk1rLQZFlQMH2fXJGsuXkRzF6t6xbEEkqWTUpbMhnDOaEIIhgvOoSREmTYsHSmGv4ZPsMnPZ2pBtJ5A2FXLsIQAi4UXW4XkmE1jQ0NClOmtIiCUVExEDLC+nP6N1zDcKYi2Wf8Uor8QdTVKbqTfKqxFBGJvEigLGSyY6SyWAxS63lULVD5u2IrJ50vkPi51W1A0aLOZ7ZMUDW1Jkr1/jb1y8zPTNLv6UwE2WYmlN5YHsRIdRuQUpfRuNq2SGI4p6y95mGx9WqR3brrNtbLiJZ643wZluk3KqHby3c82T77ZAkacP9sBZzu8W+6YV8/E+O0fTCnuqsl67WGLJK/K/vfnRVA6hux3fOXeM755LO1m6jYcZMkuILiGOBpspklJgHt5U4MVFnvu4gywqImJGCweGR3ujI0nWuXh+n2WwyOjpKLpdd0jyoKhJFA2qxjO/73bnwthtgmToD2aUOpLqWuPmGseDY9RpVJzGIFHFMEMXMN11EEPO++7LcN5hD19WuODZtD0WW0VWJV69VuTJvE0QdyxTYP1pgFJhr+dgNF11V2FVU2NO3YGtFwHjNZaoZUW3OY+kK2woGfaZM3U+iiY71ye7+DH2WRs40aNgeZTvgwmyLmpNsueW0pIR4vpVEb4oMgZAxFcFYn0kkBA3bwxUyZ2Y9QjpzyqFoJsOsZqp299TyhsojO/vQVIkwipmouZydTsQgn9Fx/YC6F1EwVVQiAmQQgm1Fk70Dme7nreLGjJdblDLaTVNKw2K22mRfQWbvjmL3/cuYetdws+YEuL7Ptr4sYdutQJEkVEVmvuVzeHuRpu1hZSzA4roNRmmAAStDNDXP9fEJZCCTschkszihQn/O7J5D0wv5yulZzs60mJ5rYqoSc+oM33dosFsYcK94swjJZm9tbST3vPz3Tmy2kNzu+F87PUPDC1Ha/RJxHLcrgST++mITP4wxtFt/QGRZvtkxfhvOXZ/mb4/29ooIkvxGxtAJwogzU3VOTzZotctLB9SIt9+fZyRvcKPqEEaC4bzBoe1FXO/mc1qayrmLlxBCsHPnTlRNTZrcbJdmABen64SxYDCrs7ekcaYaU7ZjdFXqOs4eHNAZLiaWHZ2GPUWWQSSNiOWWT90NKbSTxkgSpqGR8XxqHth+yHAxQ3PRpMUgirhedrlW89EUmbyZfPlDFC5MNXhqd5EDw1n8MMbSFWYnmhQyBrGUjLO9UrY5N+cSBCGGKlN1Aqp2wIHhLNuKMk0/mSbYn1EZyunJ7HnXp+GFHBuv4/oRWUNFiIiZFhQtlf2DGeZaiQCNWBrbS0Z3XG8YCc7MuHixxLZ+izBMRLTqRezN6owV87hB0rMzkNPRZIEQEpahc6NSRZEkiu1Iw9KSeSRuEHP/aAFNkdFUmf6s2Z0no6kKU7UG6qKcjyRiYiEI0bpzSwxVxfOCm/Y0nSo2P0isObTEtr7jfdapVIsFTNc9pusef3elynAhQ35wBC3Tz3BGwnUcZss1xmseQ9s1Lpz36O/v5/mrHq+NNxgtmih5hVYA37pYRlNk3nN48xLEK+HNIiRvlOmIsMUjEtj8EuDbCclMw+9Wx3QiC1mWEXGS8G160W2FZCU5kvHZKv/l707eMsy0PZ/TU02+c71BGPiYhk655TEbCfKTDR7eUWC4cDNa8PwgmX/hBsgi5NS582QyGYaHhm96UAk4Pl5v28pLSLLEhVmHvBzyxFgfc65gtuljagq7+y129We6UVKS+HV6ynyjuNOU1jl+0rin6zqO65GxzCUi0mG64eP5AcPtwVSyLEMQEInEEfiRHQsS/BLJTBXLRFM1rlV8RJzMFAHIoNBwQ25UXN6xvw9NTTrhM6aO4/ntRlLBRM3D9iMGshqdlVdXBOWWx31DOQ6O5FAWWeQDlO0AOxQUjGS71dB1JN8no6tM1z3uG8r0LPjJtYmpNB0iScbQktcXthP8hirT9JLu+VKmPWbX8chlDFwvQJHkzuVcghACPwjImQaOH+BHMVfmbKYbHgLItgdn2UFERgMvjpEVFUHIQFbrJuovzba4WnGQJQlVlrg4U0eZbTC2bRh/aBhZMdCLFu+7z+KZbSqtepWXT5zj+Ys+xaxBpGWJo4iCoYGpc3y8zpG9pU11G74TW01I1nI+nTG7b4TpiPAGEJLbTUncCG4nJIdGc8SxIEYkMzXat3lCJHf/y3ViL+ROW1vleouvvXKaMLr1Y/ww5vh4DRFG9OczhGGIaqg0nIhTkw0ODueWmDA2bY/Qc5iemaa/rz+Z27JgfZtr+pydbibbLIaCLEvEksJM2WHODnh8z/J3lEmU5NCfz/Zsi5UyGqam0PKibrOdEIKG45EzFExFwr3FSwzjZDBVGEWoys2/ldq/W+4kwiim4QZ4kcBaVEVl6QpNL6TpR/SpiRml7fhkMzqOl2yrNdyw7S214C5fSmaSzNZt7hsexPOXfiZuJuQTXM/DNAx8LyCIkjzKYiGBxEpHRCHIas9z+lGMKtOzFRREMafHq3ixjCqDrkhEbVuVTm7CCaLue9dwXLKmwStXq9wot9DaVvpVuz2fJYhx/I6vWsDuwTw7ShZ+GNJ0QyZqHpamYLVviLK6oGwHuM0qhZLCw3v2cHB7Hzv7rOR420bQB22+VbvCgB7hug4tO+nZ0cwAF51ywyFr3FwA627IfMsnoylda//NZKsJyXoiknRrawVsha2tW5XoxnFMnzvFjixM2Mm0Q0mIZCKfJPHT37V32UVjJccGaDken//G0cRePWNge/6S4UUAVSdIfJsyJmEYIEsysqKgSckI3bLt99T3i1hQq5ap1hqJy+hgX08fCcBkPUkU54x2MlWWIQxRFYWpxvIJ/g6FrMV8vcV006fuxvhBwEjB4MBIlpMTDcqtZJvKj2IsXWNUDXD9YEk/C0DgB/RZCjeqINpNlnEQoygqkhQxkOktsOhUVEmApavEUYhQVFRF6dq3RO1cgLZgyJVl6TRsr1smnNFlZhqLr7VACOjLW9RtDwkpGfLVHgsMUDBVNCWxL7EAw0hGDDedgJ0DObQFghDFgrmmjxfGWJrC/uECr9+oEEcKhWzSzNhwQ0byN7fOvCDm9fE6NV8QhSGxEFiGjq7KNNywe+1UWWJbTiFvSBQyFuena9yotBguZYnC5P3LxoKKHTBaMrF0BSFgpJjBUAR+EJLPGEzWPPwoJm/evM6SJGGqMm4IUuhx5tx5SuoedvXtoiOCJUujmDFAkdjW38fU5CSyLFPxIA6anHztZSaLOYqlPk7XVc7MJ6OCDU3hwFCW9z84tKnDtt4sQrLZVVsbyZaPSO7F1pbjOBw9ehQhBJ/66FP867+5yl+fmSUW0J/V+dnv3suHntpxiyP2Hnu5iMQPQr7wwjFqLadnoqGuyThe7xaQpsgoqornJ4ObYhEnFVRK0iGtL3TLDULmZqYREoztHENV1W4fiSBxC4abWyVJR7xGELTFQ8SEUdytalos9DnLoNKweflKlRvVpD9EUVXOTbc4MJzhqd0lrlUcWl7ErnyW0ayCU7EX9LOoBJHgylyTmUoN32mRVwUWGnP1xLtKlmWCKGC4YHDfaOHmubWJRUy23cw4mNWZqLlIGQ3LSLbRmm7ItqLRrZYqZJL+ljgWNPwAJwjZP1xgouZRd5OeDCGSKKWYNSi01zeBoN5yKbsx42WHMI4YzOoMZhSmmhGtQND0bLxQYGkyozkVS9e6OaPj43WqTmKgqGkaBU1irGQy1wyYrTnomsqugQx7+61uPuN6xaHqxuQNCUVPTqTlR8SSzIM7irRcH1mSkkjYbSYCY7vUneR9jcIARVGSaI4IRZbwwpjDozlyltF1EYDkM2fqiQjHQvR0uquaRhSFXXPMb5+8zIkrM2wfGyOWFEoZnf1DGV69XieKBW4o8JFRrQzve2IvT+1MZm48f3qKr5yvYSkxg3kLIUxeuuwSRDE/8fSOnufcKNbi5r3ZrEVI4jhOI5KN5G4k2xcuVh3Pr9HRUQ4fPoyiKPzWBx+hagfU3YDRgrmkj+FWLLe1Fccxf/niCaYr9Z6f+2EIYZKDaNg3R92O9WUZsMpM1oLueFghBK4fMTaYYVspgx+GOI7DzPQUxXyBYl9/z0yOjrtvPmNSbzkM5XUUWSKW1e5rj4UgjGEkl4hP3jJ67OYz7Y74q2WH6xWHrKF0t1q8SHBp3mW0aPL2ff0osowiJ7YdNyo37/znGi4vXakw1/TwPQ9d18mbKg/tsJgoN5hu+AgJduR09vUpuI5LKZ+l5XoEUcy0AxNTLv51m+G8zp4BCz+K2zPPkwbKoYLJ/aM5kCBrGdRthxsVl8vzDnYQockSY30mD2wvcGXeoWb7SBL0ZQ32Ddy0koljwfGJBjeqLrIkoagKk7UGOSXm4KBJM5ZxfMFwXmOsZFLKaDh+AJLEpbKXmDBmdHRNwQ8j5lo+pmby9O4iTpBYqeRMtTu/BGDWDlFl0c2NAGR0hXIrIAxDHt89kBhLStCMZHw/IiuBknhSAjftOHRdI275qIqEqWm02k7Fjh8x10pKxQ1VxlCSUmVTScREkmUaTZcDw5muwFXsgG9dvIHznWuMbttGsVRiW9HksR15rldd6p6gPy/zvQ8M8fSeZA5K/+AQ08Jmz5jFoCVj2w6OYyPZDt86UWVMrvLg7mH6+vo2ZNpph4W5zK3CWvpaWq2kITnNkayAlWxt3Y0cieu6CCG4cOECV65cWeL5BUke4E45kcUs3toSQvDX3znLpYlbOxo3HBfL1IgigSKD4wc8u7ef58/NUXVuCl5GFTyzu0gQhoSuzeTEJGPbt6GbmWWtzaM4ZrbWopg12dGncGA05OxkNTlPKanQKhgyu0vJNkez2zFuJLYcQbK1Ml51kKReC31Dkai4ATVPMJqXbibiO2ZXJP977EaViXKTvC4xNNRHFEfUXcG5eZ/vPrAdCYHneTi2g92qU6vMMW0Y5HNZzlfhSktBcx00RWG+5TOV0Xjb7iK2l3SQW5rMcMEgbxkEYYTt+NyouLw+0UACDE0mjARnp1vs7o95ameeEIUgiigYyoKTTXywxqsuOSOxZxeAYlpMztcZyQue3LX8oKi6HTBdbTGQt+jcbyiSRE5XmGv6HBzO0pe9+Tlq2B4ZM4lkJJZPrCPdrOKzTA0RC+qxoBlEGF5Ef0bnmuLS8iKyRrJg1Vsumqoy1pclipMig+m6x5npJk6QPJcsQbY9u6YRycRxhIRgtGB0naJjARdmbZwgomRpeLVZfOFxLeynP6vz08/t4uWjNXaO9LF/z037cSdIilFyhoqua+i6QalUYlTEnByv4sYSly9f5uTJk8liaRVxlCz5bJZ9Q9nudt9q2YpCEkXRqsWyIyTp1tYGcbcikldeeQXHcW7Zpb7WYy+MSF4+c5XTV6fu+HdNx8cNBBlLgyimmNH4/odHuV6xabkRliYT1aYoGApT09PYLZv7D+wnkpQeq3dIFqZzM03OTjW7pakPjpV4Zk+JkiFxvTPgqGCSjRo9HdVhHIMfkLX0bj9LFN/qBkDQtF3y2RKul2y1SEh0jDzm6y1uzNXJ6Cq5rEUcR2iKSt6IqDk+FTtgIKthmiamadJHH1EY4TgON8pNLs0FmDJoUpJ0zujJvPUbFZfDo73hv+MHmLqKG0Zcnnfaw7+Sj7qhJjmGyZrH3oEMxYxCNm8RhCFecPPaVexknG9n61AC4ihEURWqt6ocICkQiOLksbKqAxJR2z7ej+KlBQQCai2PYs5kR8ni+I0qWV3ubvs4foSuyN3xxbbr40YSJ2cD5pseZrVCX0ZjpKAz0/CZbyYCrskyO0o6I4X/P3t/GizZed53gr+zL7nn3bfagQIKOwkSBCRKlEiJlOW2NXZPezrabrc6RhMdDsWMQ9FfHI7wF320w+EIj9tyj9vh6XHPDL20NG7bWixKFPcNBFBAAVWoverW3XPPsy/vfHhPnptZ91YBKAImOMMnooCoW3lPnjx5zvu8z/P8FwtDUxkOYt7d80gyQduVNs1JJhiGKWfmHEnI1DXqtompZGgFrHgcpozCRPrAF1/7cDQiH/u8kcb8+acXaVpHpfFdU6Ph6ByMY+r24SLqxTnNqsMz5zdYbzqEYcj/9todvnm5S8+Txm2LNYsvXZjnlfOrH1iq4+OaSGz7eJ2yB4Xv+xiGgWV99OCEDyN+IhLJRzkjCcOQTqfDwsLCh+7EON3aevvWNl+/eA1NVanaVskVuD+u73u8fneAl+QoQrDaqvCpkw3qtsaZebk7Ebng+gjubd1DVVUunH+MIJFtkYptzYg9vr095PW7AxRFwdQVwkzw3RsdBl7E555Y4txCzMRdZWfbY1rBSUGSDgdeiGXopez63iic6asnmUBRFU4u1Bl4oWyjOTadOAYBw+GQ7Z0DNN3AdUy50OmS15BnOaquc5xaiqZrVGtV9EDFMEaoWYiuW2RpShAG5LnK3YMRp5vFA6dIl0Nd1RgHMXEmiAVHUG2WruLFCV6UstJyGQfRTOtvguCarlCEEFiWSZZ6ZLlO3b0PPCAgB4lSM1RSRSdJ5IzEMk0GQx/X0ErHRATsjGSrMMoVVNFnqWax3HLZH4Qoihz+a6rC6TmX2gROq+p89+oeQy+m5hgYusbuMJItwtUaQSxFKBuOwXq7wiiICIEgUwiSnKZzmBAMTcHUFPbHMZ842S4g2oKKbRMWbc2Jple5dxBSJcELY27dvsOfvGpx0pFcla4X89rdAXd6IXVbZ7lhsTUI2R6EResvk+91osFaARC51k14bS9nYb7NEycMwiji1v6Yf3txl+HOHVaaDu12m3a7TavVes8W0UTS/uOWSD5oa2s8HlOpVD5W0jMPi5+I1lYUHb/o/ighhODOnTvcvn0b27Z5/vnnGYUp/9urd7lx4LHWdPiLz60wV310aZZJIrm90+WPvv8OUDgJBhE1V3pZ5FMr6GYv4JvXu+SomJLvx+2DEQM/4n//4gZZofcUhAEgUUNnTm6U/e+J5lTNtfGCiDDNuLI7RlMVKgVCC0XBCxNuHHg82fdpVS0URZXmS8qhbIIQgqprsz/wudcPidKMum3w5FqLzV5A14/RJlbFAs4s1miYBVIKUcJSVRU6Bx1OrS2xfdeTJk0Vvayc5LwA2gVh8H6wgaIoaLrk7ijIjYVlmVS1Gju9EQo5O7uyyrNtm4V2kyTT0TRN2n/meQG7PbzOaQHTbVad0k9EIBj58pyTVLaLNDUgTHNsXcWyrEI1GdqOVoIH4kzw7u6IzV5AmgvaFYPVVoUbe0MCRXqm930fXVc5v1IvkX5bw5A3741QNB1dpCS54N3A42Tb4em1GqMoR+QZC1WT+YpMvhXb5LXbXfw4o2YpKCLHMlSWLZedgc84yqTLJJQM/kmbU24uFExDn+HHyPmPwSiIy2RxMAzoeAkpCuQ5tq4xjjIajo5lGURxwjiWra6t/S6Xu/u8ori8MfS52wuxdYnas3SVM3MOQZJzMI6xdJWfPdviF8/Pl8/+xXsFIbZ4zhzH5okNi6t7Ps3TC5xtS9fOd999lyiKaDQazM3N0W63qVarR9aQj9ugHR5tRjJJJD8p8RNRkXzYra00TXnrrbfo9XqcPXuW/f193t3z+G/++av0gwRNkdj9/+tXb/A//tXnefFk65HeR1VVuiOft751cVZMUJGzEFOXC96E33Bpa0iOiqtTbAElo3kQxLx9r8+Lp+fY3N6l0+kCsL68jB/eZ/daHNsydIZxLnWdDBUUUBTZB7d1lXGU0g8SXEsriYa7k2Y8EuZ7bWfAd2528aJscmjmd0a8cm6BzZ7PvZ6PqiicXqix1jDLdghI+fhbm9ukOZw9fRJVVTm/pPLa3QE9P0FXIM4yFOCJBRdVEQSh9PcYBxGZgCBKaVRtWraGqauEIdhC7tSDKMa0LB5bqXKyZRNFEUqesrPXYRxGaLpJo+qwVNG40YtQHQNb14iSlEGYstpysdScycXzo4w7PWlbaxkaJ+crnGjZ3OmFhClkvocKLLgai4WwVBCnvL45ZHuUQp6hayrbwwTLSzg15zIIUoIkY65qsNFyWHD1suq5eRCgKCp1U0EIDQfJD9kZRpyZc1mra1RdCz+QFaNp6ARRwjiSHJIJFDrPBXmeYJoGQdGam5lRFVG3DTRFcnsaFZskSclyQZIrLJqHFUfPS0r5eABdN0CkqMAwyhGBNP1yDI3Tcw6qAn6U8C++9g6x1eSlC6cxC22v3WHE9jDm//QzG6iqgmNoR2C/oyg9IqmiFPr4cQ4LCwssLCyQZDnfvb7P127s0722Q1u7xeNNhZPLMqnMzc1hmubHMpE8imjjRB7lpxXJ+4zjbGOn48NubY3HY1577TUsy+KVV16RbZftbf77f/0Wg1C+z2TJD5KMv/kv3+RPf+tnZ4bL7zeCOOVbV7ZZ2Th57L/HaYoyQWoFIcNYQSWHKdTOhC0+CGKu3rxNnsScPnWCu5t3CZME7QGtuChJQWSFX3hStGXk50tzyUKfPMACmXxsU0dRJX+iO/T5/q0eXrETVYqB/N4o4s3NHq+cneOTp9pEsfQyT6cSZRzH3Li7zaansO/BW6MdVttVHltw+bnHF3hna8AgSGg6FidaNhutog+uyOHzzjjh8s4YPxWIrMtqw+L0nMvb90L6YYqq5qiKwmrD5mTboWKbVB2Lg5HPXp6xFchdt9H3mTcz6sBwlNBTVFzbYrlhc2HJLa/tOEr5/i15ToaukvkJ24OA8ysNPnOmzd4wJMsFLddAi0al93vXi9kehDiGhltxECJH5IL9cUSQZLx0qnnYApzAbv2QHI0wFTimOnPv24ZGz08YRSmupTEuYOG6Ko2nciFwTI00FxiqQJ0mN8YJrungWqb0dclytgYRu6OINBPMFUKYO8OIKJVukHEqcE21vP65gCt7Y7w4pV2Rcvq5EPRDlWbVoGlpeHFG1ZLEwmnpmF6Qosd9Ll1+l3OnT1CrVFiomVw/8NkZSV+WSQghSY+qonCiZXNl15tplcap/H6XCkfIXAj+7cVdvnmjh6ao6FaD61EFP1JZQmdzc7O0pJjs4j9OCeVRWlue5+G67nu/8GMSP/ZE8l7xYVYk29vbvPXWW5w8eZJz586hqiqqqrI5zLi6H6Fw2G6bJLiDccz3bvX4mbNzH+i9wjjhj199Fy98OMFvsog3Ky4VA8ZBDhw+AELIP5E3JDMMllfWME0TS5OL5YMSCUDV0pl3NTYHOVGSoiuSFe7HGcsNi7nKbNsuSjMqtkwau6OIUST1sybXZOI3vtUPCeIMRYkLTsdhO8r3fO5u73B1ZDBO5LmrisKN3QE9L+EXzs/xylmJ7snzXM6QpjZdm/2QV+8OUBQ5TwhSwfV9n5WGzYW2Qm46aLpE0C1WTUCUO77XNkfFwq7iWAZhkrOTGDyz7GCIlN44QMnHLNkWIoQws7Bsi5sHAf0wkYtn8VnDJOPa7ogTrUWeP9EqW24HB6PyfIeh1NoydVUqDmgaqq5h6wmdQq9LPYa0mmcphq4iUBAiK98zy0XhKXP4/YdxwjAWDMOMJEmk2ZehMg4EFVMm92GUSv01V94Lpq7z6p0+d7uSp6Qpcg7SdHTOLVTo+jFJJlhfcDkzX0EVcq4yDBKGgTT9mlQ8qqJQMRXGYcqnT7VR8pSj2z5RACsgimIuXbnO2tICy0uLxTEOX3mr4/OH7+xzqwBBLNUtapbG1T2fuYpRKBSnPLlU5YmlavE7Ad+73Zeq0UXyynLBtQOPHdHgVz/1OHEc0+v12N7eJkkSvva1r9Fqtcr5iuu6P7bd/aPOSH5SOCTwE5BIPgz4b57nXL58ma2tLZ577jkWFxfLf9M0DS/Jj/hMTMekzH+/kWU5/+5bb3KvM8A2CwmSh1iZurZJ3/N5fKnCgZcQxCm2Ic2L/ChFV6Q/+uryApqiomkqfpKyYplomjpj9yvfX+p4aKrCLzyxzB9e2uJgFCNUlTxLma9afOZ0+8jnNXWdOM0Y+aGEKwqF+589TVVIM0EqBJZpMPRDDE3D1g22dvbpdrskZh0vDWk4OoEfYxsqtUqVvb7H21sDfu78klSpPUou5/qBj0ClZipATsO1CZOU/XFEowpn23ahWCvD0DTSPGe763PgJTRdS1Z1SMTVIEjZHKZ89mybjSXpMtgbDAnDkNwb44UJtwc6uqLJrFd8YEtTiDOVrZ6Po0kjqvF9xl0TwcQsz7EtS3Jysgw0HUubvbxCSK2uKM1YqFeYdzVuHAS0qxaqIi18h4GsBEoJ+UxweS/g9sEYgUBVZYtv3jXJ4wgvzkmQC//jixVWWnK43hnHbA8Tao6JrsiLnAvo+TGLdYtPnWxKgmIQyarV0Avo8UQtWZk6b4FpGER+yMgPWSg00Qa+rMb6QYI3zLEtlUGUUXNM8izjztYON3e6nD21wenC1mBvFPH/+N49doYRSzUTAby759F0dJ5drbE1iDA1hc+fn+Nnz7ZLJNjdnpxVTUOCNVWhbum8s+Pxq0+DaZosLS2h6zphGPL000/T7XbpdDpcv34dwzDK2cqHzV15r3hUHslPZyQfIN5Pa+tHSSTTLPVXXnnlSLmoaRrLTo5ravhxNrNwTnaUz68fzxk4LoQQ/NEP3uH2bhdVUQmTDAS4llXa0k6HY+qExYzk7HyFcZjyzp6PHyWIPMdSc14+3WRjRe7iXdtgHEqZdz+MqVT0clHoejEX7w3ZGUhZj3NLdZ5YdPnCE4vsDmWFMV93aNlHS36pJSZtWwEqOpiGSpyrWFpJhSeIM9oVg6W6WyLP4iRl894e5Alra2tc2guKY8qLqet66YHeHceMCj5EHKdEyWESTHKBl0jL2UmkaSrlTlSdMJ2t7uTwXSWME7xY2vSqpoppGsSFXP2hMGJOu+ZIUcRqVe72BGhKzrtv7eFFMeNxhKqq6LqOY9ukWYyqOOXcyTZ0TF2jULtnoWpRMTWCTEGJJes8SnOiKOX8egPXNvEj6bz4xuaQjpeAqqGIIQtVk8WaSdeLyQFd02k4Ok+t1Mod/J6XcnN/VEizqAgEXpzTC3PONDU03aBer9NwdBquXQ7X+0FKnKTULQPDKLxlChWE/VHEJ0+2ZwbxE0HOlVYFZ2vEOE5pFJBdyzTZHfg0HJ2KpRMmKV6UcWnXZ7fvo2kKvi+wsgTXdtgfhiiKTJyWkSEGO9y61+bZs2u8emfA9jDisQW3TFZ1S+fagc/JOZf/8lNrqPdxlMr7SBw10MoEM940Qggu7Xj8yZ2cP+5vs1y3+Myps/zs0w6DwYButzvDXZnMVmq12kfaBnvU1tZPE8mHGD9KIjk4OOCNN95gaWnpoXa+Bhl/4+fP8ff+4zVptARlhfLXXtpgqf7+MeDfeusGb9+SePjJTZ8UfhDTelNxmnNl1+P6gUeaZmy0XZ5erfH8RoNzCy43t/YReca5tWVcx0YIUcp9TI4thJAoMD8iReVPLu9LRWJdBUXhrc0eWz2PL15YZLlhsYzEpBuahqFrpXqvJOvppJko4b9VW0qqv7M9IjUMFJESp7KN86kzC2USSdOUnW2JmlpeWabqOFQHh9+XVLtNixmLFFUE6UsvRF4mQUWRUFRb1xgFCfZUyy7NcrI0oVo3yl1+6RFfnIely0Q4sfXVNQ2BIAlTKpZGu+rMCE1mhYKzpaucXWrwzq6HowMiQwjBTm+ECijhkNEww3EdRmnOjW7EONPRel2W6zbPn2jx+p0efV+2h3RVYaPlsN608MOYqmvznZs77I5iWhVZLUWpytYg5Oy8y6dONfHjFFNTOTlfk5DoQur95n4PQztsdSkoVEyVrhcRWRobFYNaxTgyXFcL6LIQcl5l6Dp5LkHeplH40BRk0QMvZmsQ4sc5DVvn1HyVa3sjOl6MYxl0PA/bUDm7UCkT3M2Oz+7AZ7HhgsjR0hDNMknThHMLLkkmMHWFhapF3dH509evcmO7w3ZWxdbVmYpHVSWgZGcYHRm6x2lOnOWcnXeoOzq7o5ilmomiKARJhh9nPL9+qA793Vt9/uUbB4w8wZqdcfHekCu7Y/7zF1Z46dQcc3OyPR2GId1ul263y+bmJsBMG+yDclfeKx5l2P6TJI8CPwGJRNf1DzxsF0Jw/fp1bt68yZNPPsn6+voDX6tpGkIIfv3lDVoVk3/6jVvc6visNG3+68+c4L9+aeN9v+/F6/f4zts3y79PqwVP602lueDfv7XLzjAGIVnGb94bcrvj88tPtBl29pmzdJaWVmnVK4z8kHrFmTG5mqnkFHjtVgcvETRLAyqBrup0vZhbHZ/Hlw5vyiTLSNKMekUiiKquTXcUcHeY0PVTmkGf9abDs2t1qpbOjQOPMNVZbZpcWG3QLCqaMAzZ2d7BcZ1Spj5MEpbrJlXHZhhGqMWQOIwzNAVOtA8fUpEXsumORZSkmLrOiabFRT8mSDJsQyXLBaMwpekYuGqEpsn5h66pjPxIWtMCizWTpmPQ9RPqto4gI0xy0HQeX66Vi2eeC67ue9zqBMSZhLZutGzmHJVuJBCZ9DqpuA7n5myads54PGb3oMONkRQm1NQEy3HYG49ZbSR85nSLnp+Q5oK6rUvf92Kt3OyM6AXSBldXJRrZ0lWyXGNrEPH4UrWQs4cwjjE0qcSbpHJgfn9ff4LXkmAKi4plFsoDGR0/ASFnY5YuB+MVU8rhZznkisZiVS87ind7AZe2xyS5JEzujSJcM+TMfIVMUemNApaqDqsNu2y3TQAXjqGRF3pcuq5hKDnDTGAbGucWj268bu92uXawxVCrc3L6HhCCNJP8lkn4ccZXrhzwg9sDwjRjrWlzfrHC5V2Pq/vSPEzXFD6x0eBTJ5vy2iUZX7nSQQBrNY2lmiW9enoBX7nc4bm1etkqs22b1dVVVldXpUr1aESn02FnZ4d3330Xx/lg3JWHRZ5LF8yfViQfcbzXAGxSkbxfX+iJl7rv+7z00kvU6/WHvn6yUxBC8JdfWOUvv7D6SB7UN7YO+LPX3539oVIs+FPzkTBJubrnsTtOMRWBXkAlcyEYBAnfu7rNJzckVn6SfBoVh+g+2937W4K7wwhNEQiRo+kGaRKjKXIA2vWO8QKZHLvq0huH/MmVA3YGkmh4bzzi3d0xT6/WeXqtzrlFeUM7plzAh37IeDxmf2+f9lybRHP47q0efT+hYumcWajw7KrLpR3Y78ckQYptaFxYqbHePFxEslxwbd/jdrdDisZizeBEw+DcgsvtbkC/QPa0XZMXNup4vT2SVLYfu+OEH97psz+S/Ie1ptTYurLr0Q8OtaQeW3R5bLFSLsyXdsZc3fXQNcnx8JOMt3fGPLlc5cyCyTjO0RSFtiuZ2QDNZpMb+x6j/gBXT1HIUWIPXTPY7AsWKhqn5o/fPUZpTpym1G0bTVPJslxaH2sKUZKTFFURICuEUUiCimNoLFQl6ik3DxFNUSoX/aoh1ZIFsDtO+eHtHl4kB+GOoVK3dQZBKttpyCplfa7CY0t1siwjiFPe3fckL6ZQWRZIxeC9UcTPPz6PvlYjitMZRJ5S/vdwE5OlOZWKgXKMNbQfZ3SLc2jYGnfubfOdYMzzj59C03W2BhEt1+CZtVr5HPy/fnCP797q03AMLF3lys4Y19T4c08vyiorE6w1LJ5YrpbV2s4wouPFtG2VLDl8duerJrujmN1RPJPAgiRjqx+iayrrzRr1ep3Tp0+Tpim9Xm+Gu9JsNsvE8kEhuRNC8gdNJL7vz8xyP+7xY08k7xWTL+D9DKz6/T6vv/469Xqdl19++X0N1CbHzLKsZLV/0CSy0x3y7771JkIIKrZZktwmx5pe8CX0MSVPE0zHkotBLoqdS84gM5ibP0SI2aYphfpglnnN7HFtQyPzYpl4kwRN0xFFtfMgkcmqYzEYB1zcHHDgZzj6xLNdx49zLm2PWGs6tCoGhqaSZjlBlOCPhnQ7PZaXl+klKt++2iFKJI+i6yfc6we8cm6BXzjX4uLVIWvr8zRtfdbsSMCrdwfcPPAxTB2yiGtewO7Q5qUTVc7MuwyDFENTmasYqKqC35M6XruDgG9c6+IncgecZRlX9zx6fsIrZ1qMw5QkEzQrBjXLIIgSOQNSNe50A0xdLRnmZsGpud0JeHq1QZbLttwEkj2JAy9B11RMRU7RXbdCGATEfsTd3RgzHGA7Do7rYFt2KZpZtXQqloUXxTiGhm7oiDwnCmVyneyS00zw5taQXS8jCGM5THZMao5Jz5fS/LmQ1d3JlkPdCKg6Fjt9n+/d7JEKaFdtsizDi1K6XsIThZ9OJmC1VaGiSzMsXdOIMoUgzstkCZPWmY6XQm8c4VoauqbN3NOqKmG5Nzo+tq5iGwZ5njPwpBHaersCQs4Fb3Z8ru57sjJUJCm2YWt43oiv/fASKytrnF6Z488/s1huMK7v+1y8N2KtaZcKzk1H5/qBz+Udj//usyeOfT5NXUVXFZJUlPBskIAFXVXKuZsQgm/f7PNH7+zT8eRc62Tb4S+/sMLJtiOFPwvuCsgFfdIGu3XrFpqm0Wq1ysG9aT6csDxpy3/Q1tZ4PObMmTMf6Hd+nPGxTySTxT1N0wcmEiEEd+/e5cqVK5w7d45Tp06972SgFoZVjzqH6Y8Dfvdrr5MUv58GMbWKRPhIENDsgl93HbKsByjkhS1tPiV9bU0lP7No603mFiM/pOrYRHFy5Lin5xx2xyleKBnEWZbixzmWZR7yNKbCKdR8USQkU0VyTiTXRME1JeJpexAyVzHRNA0/iNjd3SVJEtY31qlVKnzth3eI07xofRTQ2Uzh1Vtd/tzTS8xZgkVHo92ozjD5O17M3V5A1TbR1Rx0CfftByFXDzQ+99g8VWt2h6uqCmmecbMTMo4ymq4hnf1smzAq0EqDiFNzDgpgF0kEJLJqbxiRoXK/9qalKyRCpTMOyxbOKAhLWfg4zVCL6g7ANEzyPMO0TMxUoVZ3mJ+3iKOQg/0D4jQjUix00+L0coulqsqNg5wsByPNidMcRdM51bZK5NfVfY+7gwRLlY6PWS7oeRENR3q/b3bGGJrKSsNivWkzHqSMw5idMCNIJBNf5Bm2aaIq0PUSxmHKs+t1KckTRCUiLc0ywjhBN4yy7ToJXdcJo0OWe5pljIKYTijY63uYutT9ajkGo1RhGPp4iaBmCs7Nu5BnVF2LOwdjLu96qAq0XQPTNOiNQ/aTjBc26oWxWJ8X5xtcWDps4eyOIuI0L5MIyGeo5Rrc7QXEmcDSD5PCzU7A/jiiaumcaNm8enPEUoGnSbKc7WHEM6s1lgtDrbe3x/yrH24hBCzXbdJccGXP4//+nbv8zV88c0Qs0nVdXNdlfX1dJsxiaH/37l3efvttqtVqObRvNBpHEkaWZY8k2fKT5EUCH4NE8l4LvtQ9evBCn6Yply5dotvt8slPfpJ2u33s6x4WjzrQD6KY//Vrr5VDa3nCcsG3DL0898niWXNtRl7IibbD5Z0RUZqh5DKZ6KZNGsecmZdPgaoUKKr7ZOi9UBo0OZYxo4v13Il5un7C1T0pQwKyF//8apXTC3WCOCnZ9aauEyeHfIC8cCTMs0zqO+l6aZCU5QLXNugNPba3t9ENnfX1dVRNZbs3xkukretkNTIMnTyPGcUZHe9wAFwy+VWdII7p+jGZUNDVKW0vBWxdY28YMo5iWlVHwoQLPt+kKuqMJQJMQlYFSZJgmSajKGQQJAhhU3XtmeE6IG2R84xM6JiGVlreKpoBcXKkcvML58OGa7FYM9jsB+SKKt9Ps4gS2WZartuYtoVp2eA0+ebVPYZhjBABF7eGLLsq6xWTgygnyRRcU+PUnMOF1QZRIsUi7w1idERZoeiaQt3WGUcZFR1+6aklskwmNdPQ6SQplq0TJvmUNhjEiaxKDT3HT/JjWe4ALdfA0XK8RBItsyxHVTU6o4DVhl06Jo7ClB/cGTAIUnRNcl80JeCp1QYiyxmEGkPhc36jzmJNItzGQcS+l5CjUrdUCR+OY6qWTseTwpJPrcpW1ju3ttk5GPDFTz/JcrtOxdQKQcl8lk+T5MxVzBKl5ccZ/8v373Hx3pAgydFVhcWaSctR2fVSvD0PFLnB+rXnlsp15ju3+gRpzrlCt84Czsy53DjwePPekJ85++D1Q1VVWq0WrVaLs2fPEsdxWa1cunSJLMtm2mCu6z6yqdVPeSQfciiK8sCFfjwe8/rrr2MYBi+//PIHVticxKMkkiTN+L2vX6Q38o/99wmksmrL0t+1TcaFz8ha0+HsnMW7ez4C6TGSxjEn2hWe22iT5ym2qc8mqOn3znKudSN6qSDOfNbbVc60Ez51ssW5hSo7wxBVVVhrSH+NcRhhFBpVUZIW6KbDBLXWdKT1rgJCSIRUKjR0LePscp29bp/dnV1q9Rrzc/PloqSpinQp1DU0XUMRFEKFcmFTlVkF4LgATdRcG1OXhLQ8F0xv1nIhMDWJ7Bn5Ia5lEqcptmVwL82wCxHG3J+FjMvKDWqOJQUVp5JIkubkAuq2nDvcG4QgdFzbJEwyhn7I6Tl3RlDxbj/g6p7POEoxNIWzi3VOzFW4sTuUw9NM+sOcbDulfWyY5nzzWocwU5ivyQ2BF+nsRhmPuwrnqxFRKo3DKnrCYOzh2LbUv8py9PvWG02VhMO4aCmqikLVtogLFCAgrY2F5IlMUFVpKsEUS416oYUmEVz3+mHJyZhzDdabDjc7PnvDEN0wyDNZAT2+VCm/42v7HoMgoeWa5fGDTM4tPnu2yck5m1tJR7pZTiUrCV/PsEybKInLhXwCkZ6O2wdDfvvLX2dtZYlPPLbBfNXkdjfgRMvB0BQGYYofZ/zq081yVvTvL+3xnZs9Vuo2aw2NKM252w+ZN+A/e7xCY2GZpmPw5HL18HsFdkchlfuUijV5o9IPZkE9fiy16oIkZ71ps9GyZza+pmmyvLzM8vJy6bHe7XY5ODjg+vXrmKZZJoMkST4Qd2UikfKTEh/7RALHy6Ts7Ozw5ptvcuLECR577LEfCQf+MEvc40IIwR+/epmtTv/hrwOCOGfRMcnSQmNXQLfbYcPwWX+sxX4ge9grDYuTbZcsS2nWHPrj4IEH/c6NLm/vp0CGYZoc3OlxdUfll55cpFUxZvwuJiGRWimNmsvwvmNfWKmxOwzpejGKEEQiRSHlqfU2Sjhie3efhYUFavVZef2qpTNftdjqB5iaiqZriEwwLhjxC1WL2x2OEA9HXshjy3Uubg4ZRUnBnpf97DjLOTcFNfXjmJpjy2RUHGejZbMzkDIkjiFtZMdxiqUprDVt8lyCJUZhyjvbI7aHEULAXMXg1JwrbXC9BC8JMVSVE22Xp1cOP9vdfsCrdwZkOdiGSpwJLm72OT1f4RMrNgd+SsV1ma+aLNasshrYHsiWW8s10DQVVVFxRU6SCfqZwTOnlkiSBD/wy967pmu06nVcXWEQ5kyPkaJU7sonbZ4sz0mynK1BzLV+hulFLLcM6raUVnFNqZvmxxmuqXKibaOrGkKDi/cGXN3zCkVhKZNfMTWeWqkSJjlC0ahYGit1k0kTL8kEeyM525lmp1dMja4XM4ry0nbg/s5CwzG42wuJkxRN1UBAkkn74Glfn62+9IuJUsHb2yP+7NIm58+cYq7qcLcXkAuoWBqfe3yOzxbVgh9n/OB2n5ZjyESKnBGuN21u7vg07AqfPz9/5BkAWG3Y3O7OEkultL9sn03iyu6Y/+f377E9lMjAiqXz0qkm/8UnVo6VS1IUpeQnnThxgizL6Pf7bG1tkWUZ3/jGN6jVauVs5b24Kz9FbX3A+KC+7Xmec+XKFe7du8ezzz7L0tLSj3wOD7LEfVB89fWrvH1zW/JCilnIg8LQVLwgJgwhTgXj3j4GGesb65imydn7Xl93bfrjQGompRnxfQnuYBxzdd9DV8A2dTQNhKbiJdI46nPnF449D8lDsRmMAva9hFsdnyBOWKxZnJ6r8PknFnjzTkdKfldtzi3XMcI+u/sB58+dJhHyewrijN2hVMFdqls8v9FgHEkhxDyLUDWNimXwyZMNNE2ZqUj6vvTQaFQdGlnOJ9br/HBrRN8LUYpW3mrD5vxUz7xim1ze6nOj49MdQ3Ps8fhynceXKlw/8On5iZyHGBovbDRwdfCiGIHK9+8M2RsG5UK4NYjoByk/e7ZFLhTiXGCqMFc1qdimdKZE4eqeT55TQlIFkKFyt+vTnIMX1mpYTqWU359ElOZQ2BenSUKGBHCYuiRyooBhGjTMBo1GgzzP0cnZ7w6oCo+9CA5SDVtXEKjEOZxqOzSKxdK1bf708g5bg4g4ydB1la3xkNWmTc3WOfAk/He5YfHCiTYaOX4c40UZd/sJukoJeBBCJpN7/YgvPLnEqODjKEgQxjTUfDpM0yCKpPx/kmVUbBcExFnO3U7A9kAeZ65i0Kra7I9CHFMFFJJcoeHorBYS8nGac2l7LNV/ayZZlpPnKRffucLnnjvLf/ezjxGmgtWmxVrjsBrw44wozamas8uXVB0WhFOPjB9nfOtGjzc2B4BEcdmGyu1uwGLVJMkFO8OQk22HZwvk2DhK+Rffu8fuKOJEy5bCqWHKn77bYblm8fknjk9S06FpGnNzc+R5ThAEPPvss2Ub7O7du8Ahd2Vubm6mmzKpbn5S3BHhY5BI3k9MZFLCMOT1118nyzJefvnlDy1jf5DW1qtX7vDDd+/M8EJAwnqPHFdVCHOVb13u0Q1S0izHMHQeW3BZ049WDTXHKq1U/UjKtJdSFkVsFwKCtiYhmJOBu0bO9ig91t4XoFFxGHohP7zT5+2dkdR10nRu7Htc2/P4/BMLPLXksuGknNhY4O7mPdJcsL6xTiIUXMvk0lafH9zqyR0s8sF9Zq3OX3hulSs7Q0ZhimNonJxzWW5WGPpByd34/q0eNw98MjTyrEfV1vnUySY/f6ZBL6zjRTF1S2epZpb6VLZh8OZmnx/eHZDlApGl+An0ohHPr1X5hcfmSuTNcsOiZptl++zmwZj9Uch83SFPJ6q4Kj0/4WbH52fOLZStQyEE4yCiYlsM/ZhxlErF5CIMw4AkkTpliYIXxlRqUhI+mIK81mwd3TAJo7gYJsuWW5TmrC/WDmHlQmqK3Rsm9MYBTdfk9MoSrVbMtX2PMBWkcciiq7Jm6/iBz1yzwVubXbYGEVVLIyFB1wWqYbE9iHj5dINnVusIYK5qzyAHu16MF0YsNpwpKL0khw6TnM44KOdDAsHBMCBFRVNyFmuyzWQbGlaRRCbXp+0ajIIQTdP44eaInWFUfu5elFM3FU60HTkrAzaaBk+tNrENhSTN6HgJfpKxUHfKjoOqKji6wncv3eB8S+VXP3OBuisX2b6fcG8QYukqc67BziguKxKQrSnXUFisymcrSDL+yTdu88a9IWax+39ze8RSzcI1NA48iY57bq3Orz23XFZ+l7blZzk555Sfp+kYjKOMb93s8Yvn52Y4YvcGIVv9iIqp8fhSZaZimcxI3i93JQgCTp069Z+ktfWP/tE/4u/+3b/Lzs4Ozz33HP/wH/5DPv3pTz/SsX4iEommafT7fS5dusTCwgIXLlz4kUhC+6OI/+mbt/nKlX1MTeW5Vsp/u/JwcUWAd+/u8mdvXJ35WZikR0yRABBg6gbfuRcxiAUaktcghODdPZ+qbfKJjUOOS8U2DxnHRUxY6zXXwo9islwU3BCBomr3KZwKCbvMxZHkUy0S1IEX887OSArx2cX1s2w6XsylrRFPzOkgcm7fuYNhWKysLJYw1tsHI757oweqStWSIAIvSrm47dFwjBnCI8jhes2x0FSV6wcB7+55uJaBqwhyoTMKU757s8cXzs+x3jDQNQvT0KUsPpJ9HyQpl7ZHIGSrJAwzdF3BTxLePQj5/GM2dUfOIlzLnJkpjcJUzg7SrCSd5rlsFY0T5dj5kx8VHueWSRDFWIBuGCRJUrbLJsPeScIKM4U7B2PJ02hXaNk+e+PDdlCQSJ7IWl1KyAdRwjvbI97e9aUFq6aw2QvYG0V88kSDLzy5RJjmVG2DOAgYjMeM+j329/a4NtTJMwUNjQRZzevkpAL6Yc5CTcXSdcI4mbmPVFXOrOJEDszLVrGikheINJAJ//Kux62uT5zm6JrKYk26Jw7CHMIAkQsMXeH8UhXH1MjSjG0vZy+Jma85ZGmCUSScvp9wes4td/pSMicnzxRqjiQLarpOkiQznQlFkTOfO3s9/pf/+H1+7rnHeLcv+NOrXYZBgqGpVEyNMMm43Q2kplucMY4znprTS9XgH9wecPHeiPWGXYIYojRnsx/y1z69xmOLFQxNYalmzby/H+elSsF02LrKKEzJBNIGIc358g+3+M7NPuMoLWdmf/0zGyVn5bhhu6Io1Ov1Y7krv/3bv82f/MmfMD8/z5e//GVM0+TZZ5/90CVcvvzlL/Nbv/Vb/M7v/A4vvfQS/+Af/AO++MUvcuXKlUfir3w8dJYfEkJIH+9bt27x+OOP88wzz/xISWRvFPGX/sl3+Z+/c4c73YBr+x7/67sRf/Pf3pK6WA+Ie/t9fv+7l47VBZuYIlUdS0pzCEHNtbi6O2AQ5WgITENi8g1NRRGCt+4NsC15w9uF18SxHTIFRkGEpmo4pslq08I2LYIkK1tquRAkmeBU2yVHyOTjWKiKimMewny3+iFpLmZ229JHQ+HuMCIMQ7IspVKtsbS0VCYRkBDhOMtwNNneUBVpDBXFkjl/XIzDGAW4O0jQVQ2zeFtVUajbBl6cca9ohaRZjh/E1FxbymYUulBBkpeyKsXFxjU1hl5IkEhpl5prH0kM0iJXSr7IXXiObhrkqGjiaPXoRRk9LyFJM1ZrOjkqiVDKJDIMU5qOTstSi2sOP7w74Pff3ObitscPt0b80dt7zFUNzs67KEhb4vmqyYsnGsxX5UYhTnNudENURdB0dCqmRtM1pEDjzhiQny/Pc0zb5tT6ChsnTrC6tia5QXmO78sklCSJBBnkGVGSUnMt2YYTgjQTbA8iNnuFzL2pyUUwy0mSFEXVCZOMlcYsBPny7pg8h6qpoylwpzOm6pg8t1ZlrW5xdsHlpZNNThULpRCCUSy/mDxLsUyTvLAWVhTZitUKGZTJ9zcIEm7tj1hqVjBV2X4qv14h8GMJBrA0lShJ+R//4FX+6R+9RhTFrDVtGo7O/liKga42LOIsp+7o/OXnl/n5DaNcdK/sjkFhxgbY0qX4/tV9j42Ww3J9tmW2O4yYcw0MTW6Ups+rH6ScnqpSvnLlgK9cPpAyO/MuKw2b6wc+/+xbd8q15P3w3ybclfPnz/Ov//W/5qtf/SphGHLx4kU++9nPsrq6yj//5//8ocf4oPH3//7f5zd+4zf49V//dS5cuMDv/M7v4Lou/+yf/bNHOt6PvSJ52IwkjmPefPNNoijixIkTD5U6eb/xT79xi844LoX3QPbAr3Yi/j9vbPNXXjz6Hp2hx+99/Q3S7OFzFC+M0VWVdtXlYDjm7s6+3NloKsqUx4imKiRZzl7fZ7VVIcsF+TGL23RMdsBnllo82wv5wa0QP8lRC5mKuarJsxNxySL5uJY5zUGegQtPhxCCwA9IIwUUCXG8P/w4k+IcyoTToyMKD4npheD+yHLBOIrRDXPqTA6NlOJpBI8CQy+gUbWJY7kYqUxcGw/vk7zg52R5hqnbxwr6rTVtru57jELpn6EAQSAXtdPzhy3RIM54/d6QnYEcqlqGypk5l/WGyfYwxs8FIpc8mU+caJB6fQDudgNu7PtYhkpVV1A1Ey/OeXd3zM8/Ns9TKzXZgjS0GSHQ/XFEEGe0KqZspxbQa9eU4pLjOJuSSpdoM0PXcCyLE/M1BltDHFsnDAMUFLwwIkkFIhjS6cgWSi/I+f6tHqNItrFMXZI6s1wy14UQ6IZgsWbxzFoDkInnVifAUJUCzg2aKq9bZ5zw1FKFJ1fqRxK2VCWmtEqeaNUZho7wk8MEgoTwXrw3ZHcUkeVyE1AxFbxcggU0RSHNJYfk3GKlcOyEO/2I0E/obidUtDXq9Ton2irbg4hfeWqRxxYrOIaKoam89tq9MpEYmnLs/FLAfdDijH9/aY9vXOvhJ/L6u4bGZj8s2fUdT4JCfuFxOR9Jc8E3rvdwTK0c0lu6womWw91eyDs7Y17YaDySztaJEyfo9/t8+ctfplar8e1vf7vUCfswIo5jXn31Vf7W3/pb5c9UVeULX/gC3/72tx/pmD/2RPKgGAwGvP7661SrVRYXFz802ec/uXIwk0QmoQBffffgSCLxgojf/drrKKp8oJP04bMUxzLYPugx6B1QM3VUJSMXML0nSQv5joqlk+Y5cZIeaUcdF9JwyuNTZ+ZwlZjbvRDDcpivmpyZr8zwIFRFakbJnarkryzXbTR1SDwly5ELQRSnnG7pOLU6YjzCNg3ZHpmKdsXkdteXqB9NI88yyY/RdNoPsSNWVIWFqs1mP8Cp2KiqLPfTQiOrZmszSaDu2gw9eR1OzFdp3OnT8RIajuSN5ELgJxlLdYvlhnMI81U1ruzKuYita5xo2bywXufi1ohhmIIijbzOL7istxwsU8cLYr53q8/2UGpHmYZKmEoZlZdOtTg37zIMU1pVh4oh7Xn3Pfl2d/sBArA0Fd0wSJMUWxMMUyku2H7A/K7mWAiRE8VJKd+eZVmRHJlhZSuawfdudOh4EpG13q4wXzE58BLSVCo2q5rOmbbJk6sund6AwdYeb/UUMtXE1cE0JNdkdxhzYaVatLZ0DCVnuW6hCCkmut33iLP8CJem4ljsDQJGYULN0koHSz+WM440TakZCqNYIVNUKDY8fiThrssNCY0WRQW3NQhxDZVqRVoXH4wE6y0b13YZ+iFNx2CjZZezjywXhEmOocnq8MbNW8zPzbGyskwmZKU4TSIMk4wrBxE72YBTcy769d7Ma0ZhiqbCM6uHg+x/+cNt/uidfWq2Ts3SGAQJfpxxfqlCmOSEac4zqzW+8MQ8TyzLFm6c5oyjtOTbTMLUVTIhSi7Xo/BIfF9W+NVqFcMw+Lmf+7kP9PvvFQcHB2RZdgSotLS0xOXLlx/pmB+7RDLNUj979iynT5/mnXfe+dDMre7ve07H/bC+OEn53a+/wcCTcFlVke6BIz88tpJyLYut3QP29/dptVu8cGKey/1bdLwUJcslXySTA/Inl6vUXavw0oaxH1F1LYJiFjKJvWHEOzsjBlFORVc4v1xlvSV9wxfcCtVG8+i5CLCtQx7KRLZ9Xdc4t1Dh6p5HlEqeS5KmNFyDT55exFAyycqOE7mgTyF3zsxXuLYnd/i2CSLPCZOMiqXz1GoDy9ClkOD0aQiBY+qcsg32xxE9L5Q7dE3HC0OWahYrNbMEB1Rsi5v7Q/ZGCQLBci3mM2fn+fq1DgM/Jk0FqprTdE0+dbJFXCT1YZDy9etdhqF8aLM05FbH55m1Ol94Yp79UYyma9RNlYqlkeWyjeYnsO8lVC29nH1UVJUgU3h7e8QXn5wvodS2ac5opsWF5pVpmtKHBMmZybOYJM+PSOUIIedgWR7RsHV6QUJDUZAK+Tq+57PecspqIMlV/vitLUZRhqbKKux21+eZ9RZrrZzrWx1cR+fEXI3Hl+tEccLSso2375H2+1S0HEVAEPioikqaKWz1A371uVWCcHaGMvRDGo4pNxBRUrQFZcvFCyIMTdrkThwsb/cjLm2P8cNYbgJyWJl36IwCCYpAPmen5gxOtFx0TWWz57M/iqlZOq4tvVtcUycXKX0/4ZMnGjhmFU1TSzUCgGbVxtah7+dlS/ag06E7GGI3l1iY2sRcvDfkn74Z4uX7qHqfpqOzWDXZH0unSIS0Rvi5c3O8UDg27gwjvnOzR7ti0i4qi6qlsz0IGQQZf+fPnUNTJIl0+jlzDKkycHXPm4ENj6MUW1dZLpBpjyohb1lWqerxkxA/9jOd8RfIMi5dusTBwQGf+MQnynLuw7Tb/XNPL/GPv3aT+32mBPDFC4dDpjzP+Xfffovd3vDwZwW6p+ba+GFSMtZB7vzu3rvHcDhieWUZ13VJ0oyXVi3e2NPYGcWkmcBQVS4sVfm5J5bLJCIvBKW1qqmrBHHM7Y7Pn109IMnlMGtfCO72Al463WLZBj+MWVm28aPDc7lfbr7vJwzDlIoZM1+z+PyFFRZrXa7vjRh5PusLFZ7emMe1NIIgYELXGHoh40QwDGIcXaXlGvzC+Xne3B6z1ZOVyVrL4bn1BpYGcZJJePE44E4vkAgtRYUg4ZkTKq+cnePS1pC+n6CR8tRakwtLFQwNOcA1VL5zo8O7ex5JYcxlqArnFip8/vE5CVm+t0ezanN+dY6qY5SJ69LOiEGQ0HCkzLzhOgy8SGqFNSyeWGmUcvPT13tv6JMLBdvQS40t0zSJg4gwEcSZwC42HmEsCYGuaRBngoWqRTfIiQofEpCVpqIoNCxZ7VRdi+445PLOiHuDmDjNWKiYnJpzSfY8BmFS2BUkLDZdXjjRAAUsXed71zoMo5SWc+ja6MUZ72wN+NJTizRzA7dapdGoyk3WpFWYCVRVxbbk4mZigRCEXsjA87l27QaWLTXBMtVgaxBL9rypsVQ1uJkIxlGCaxl4UYwXZ6w27HKx3BvHvHanD8B83SUM5YLbGQU8tVKV3x0wVzGZr5ql0rSiaiR5TtO0ysQLcpYVZXkhRplBklGr2Gz3PJJcZW845GTboR+MSlRgmgt832dJbNHrLJItV+h4Cf+3b97hwBecXDBwHYf9sZTI/9WnF8treH6xwoWVWtly2x1FjKOMk+3ZqrrhGPQC+exMC42Wt4+i8IUn5rndCbjd8WlVJLl1EKS8dKrJuQUJAsmyDMuyjvz+w2I8HlOpVD4yR8f5+Xk0TWN3d3fm57u7uywvLz/SMX/siWQSnufx2muvoes6r7zyygyuWtd1omNMoR4l/ttXTvLHl/d5d1cONicIkRdXLL70lCz1hBB85dUr3Nw+OPYY4yDC0DVsTSKFFCG4c+cOSSL5IdNtONfUeGlFofHMGn0vomZpLDYrBWfhaExmIa5t8f1bW6SZ9AYRxa49SDJ+eKfPL52tSNhqwVq3dXkujUJuPk5zvnW9y91eQJoLNAWW6jY/e67NRlVBGfksn1qiVquVMiwTIUg/yvjG9U7Ry5YOeUsVjS89s8ZnXYMglmizyS4VZK986IW8ueNzcbMHqCAyojine73PFy4s80tPLhDEKZoiPTZUVcG1LcI44V4v5Mqeh6Yo1O1DhM27ex7zFYONlkN9xUHVTZpVq9ztp5lgZxBhT5Hm0jShYmsMo5xRAtX7k0gRjqmhkBOlKbZlkudSbiXJBI6hzhhsTbw77nVD2lWH88tV7g0i+kFcoPEkl2KpZrHatEGBgRfy3Vt96fynSkbNnV7AgRfz6ZNNgiQjSHIqlsZqw8bS1QJ9lrAzlEPy6cXENVX6QSoJoGnGgm2iKypBfrgwVy3ZLktzKVY4mZGphmRmt+d1giDg9k6PtzspUS4dN1GkYONSzWIYq3hRiqrknGg7PLNaL7/nzV5Akkk9sDRN0HUNV5Os/iDOeXrtGO6DgmS5Fwz+6bpfSvmrh61W4FtX97ndj4mSDEXIQfrpOYfdYYyfZGiqnEU8tVLl1Su32esOSZ0W++OYRUdg6VohXWNx68BnaxDxf/mF08feA3VbxzJUgiSb0ffy4wxbV6lZD14iP7nRIHtZ8EfvHLA7jDB1lV99epFffXpxCgn3wb3jJ4nkowrTNPnkJz/JV77yFX7t134NkOf5la98hd/8zd98pGN+LBLJ7u4ub775Juvr6zz++ONHLvyH6dtetXX+3//HT/G7r2/xZ+8eYGgqL8zDJxcOHf2+984tLt6499DjJIUMha4Ibt29g2HYrK+vzCCd4FC00VQFKw2bmmPTH/sPtPWdxGZnxDjJsczDJAJg6RpBktEJMprahIEsz6Vdd+kOPVAUvnerx40DT85iTLmLu9cP+OO3tni2lXHyxAbNRq1UFp4+129e73CvX3ifF94Y90bw1Su7/MzZ9iyKaip6fsJbmz0MXcM1NLJMQRMp4yjnrXsDfuZsu0DNKMV7Se2wumtzu9shy6HqHB7bNjSGYcLdfshqQxIGl9o2acGFgKNuvZMQRYslFzOi5zOxWJXtjP1xDEhfjSAVpHnOmflqyWeJ05zv35b9/TBO0Q9SVgaCz5xpcX1vzPYgQlXgsYVKCSkF2TbZ7su2kWFopEmCbWj0g4Q7vYBPn2rOnE9WmE8ZRQI51p55IgRafDAB+IngbtcHBG3XZK5ilqgmrTCBciyLswsOc00Hz3Z4fT8n12KathQPTbOUoZ9CFvP5JxYIcpVWxUFl9rmbLOQgN1yqKg3EdEPHvx/1KKSvfZTmVC2NpbrFnY5Po2Ih0pQoy0lzwal5tzzmzQOfd/c8bFOnbqtomklnFJDngp891ybJBIaq4FryPjF0ja3OgDe3NhnHNtWayTS6wTJU9scP3oSeajucX6ry2t0Bq3VKdFsvSPjShQUazoNns4qi8NKpFp880WQYyO/Wve/ZeNQZyUdZkQD81m/9Fn/9r/91XnzxRT796U/zD/7BP8DzPH7913/9kY73Y08kWZZx/fp1nn766QeWVR9mawvkzfJffXqD/+rT0rTq1q1b9Ho9AN6+tc1337lFxbZmW0/HxGAwZDzoMT83R73ewItTbuyO6XoxFVPj7EIVVVHLtpOp6ww8n3rFZuxHR5jR94eqKFJl1pRMaWXCIQE0RZ2BIju2QW8UYFsmXiiZ64amlsNTXVXQyOkE4J5dolqtMByHM66NKDBKBLujqETByGNb5EHIna7g5bNq6Yl+f+wMJby4oimkaYpuGKXz4VY/JM0kN0HhcCGakDCTHNQjeHv5sCaZYH9/H9fUEZqJH0rZlHEQoQFLNZNb3QBLV8uqJEzBVKBhKViGgSAniFI2+yF7owgFSWL89Kkmr90dcuAneFGKpas8t9HisbnDdsTFeyPudAMcU0U3QNF1tns+WZryF19YwwviIyq6IBOrqsuqJ03ygs8CppYVyWs26hWnrFTXmg7XOwF2gYwTCLxImn0t1kzCTMcLY97aCbiy55GhSg6HpnGybVOzXbYHEWkuWGlVON0yaTk6fpiQotEPUiqWLuchhhQANZKMMINb2we4Skpkmcw3Gyi6KatsBVqOwfZAKhtYpkkQynsnTVKWGg10VSXNc/w447W7A/ZGMZkQuJbFSk1jo2mzN44QioahaZydtzm3UOy+Bdw88NB16XkPkGcp7ZrNoBB73GjPtpl0TSVIE1xDZbC9Tz5WqdWqmKZZQIkzTs3N2mvP3mMK/81L6+S54N09j+2hJBZ+9mybv/Tc+2vz6KpCu3I84OTjarP7V/7KX2F/f5+/83f+Djs7Ozz//PP8wR/8wSMrhfzYE4mmabzyyisPfc2E2f5RnkOWZdze6fKH33tb8jKSbHaRnQohBHt7e4gkpj2/iO06dP2Y3397n84wQFXlbvvVOwM+s+HQ1AWmrpMUwoLDKXXg+9FRkzgxV6Nhd9gfpehqimYY5GlKmORUTI2FqoFfVBOGrpEkGQJBGCf0gxih6iVfQrZsJDQ5y0E1pQ3sITtfLiRxFBOmEiljFwqCqqaRZdIXJEozuqOQ00v1UpV3OlRFQSmY9YqikKWpTIaKCkrx71O/VCsSKsCcq3PrIEPVbLIsLRBa8tzN1Mc1XZpzcyhFAu37Uhbd0VWeXKrQ9RMGQVLKvZu6xlPLFaqWRpgk5Dl8/+6Y63uHM6+r+x6n5xx++akltvu+FFS0dVxTenCEcYofpdztySRl6SqZIkU4K5ZGx5d8iNWmg6aqMyx3gLprkSYjhC4dE7PCNkBoGvcXdWGm8Pq7e4wKhNFK3eJgHDKKIc8SmYB0hadWaszVbK7upoyUlHd2ZTuwZihojksQJdzsBLxypsUzqzV0XZ9N/AqM/RBFVYsFThQ/lsCBKIhZXFykaasEQUB/5OEHHYJcotPark3FlG1DK43I0pxxLFio6yxU5IdyLZM/e3ebnVGEa+pUTWnve21f8OxajadWq0Rp4SZZmfi+SDuFFA2VhGmco8gyqVBdQM4nO/Vpz5iVhkXT0dnte6RXrrG6ukakObRcg8899nDo7HzV5L//whmu7/v0g4SlmnVEoPFR41ESyX8q5d/f/M3ffORW1v3xY08kwANlPSbxYba2HvT+BwOP79y5eOjZPr3ICkFUVEQTj3LX0qkvraAXEilfv3pAdxRKkmEuF/U4zfnuHY9fOmUdkYSfqAPXHZthMDsvqTkygb18us0fX97HjzJEJH0NLNPg5TNNDC0veBxSKTfKD69P1dTRREauSGJbHMfouk6ONIYyyJl+UMMkkez8io2tSUnuOMuxTV22UIQUUzQ0haqtM/JDbMtA5IfXRQjBueU6r93tSxLhpD0jBH4Uc3bOYjQc4lZcDMM4RL8VieX0vMvNjk9nHGDp0g42ihMcNePxpQbzS/NkWU6YZrx+d8idXkAuBDVL55On2/z8uTa3ugFdL6bmWCxVdZbrZtkCutEJuLE/kmx7RSLn4jTnziDl2u6I9dascrQXxuiahqJpJVxb1w2iyENVpYnSBJoapxmIwrq4qCgc06DtZNiGxihKy157nGZkScb5E/Pl7n13lPCtG13COENVYbMnTaE+sdEgTnOGsbQEXqrqLDVskjRHINgZJqSZoObKY+eZlC6JctjshZxou6iKwv0dp4atUzEUhkHMXM0hSRNURWUYSiHHpmOgawq1ao39SOPSSOBHKaqaY4gBy45gLHSGhTr9oqvy0ukWrqmR5jlb+yN6kaBmGZi6ihA5FUtnHKXcOPA5t1ChasnvfRxGJePfMlQqBuyG+QysdgIV18mpOhZhLNWxR/7hZsbSVT59qsm3Lo+Jsow7d+9yYnmOX/+FTxxWPA8JVVF4bPHDrwLeDyHx/vhJ8yKBj0kiea/4qBNJEKd87dJd5paOlrKTRbbu2uwe9NjZ3WG+1aRSPzSxCeKMe/0QTQUKfxFV1TBESpjl7Ac5a8docQlgGEip9CTNSLIM17IYB/IBWaxb/IVnl0sp74qlc26+wonFOtu7BwghjpWbtwyVxxYrXNwcECNwLIs0y0lROF0zZtRXD89FMA5i2o7GKaPC1b0xJDmaIkiKXvaTy7USgjlBMdUcm6EflEP+Z9cavL45kNwNAFQW6ibnF2zyNGZnq4eh6+zFJpvjnHEsq4DzS1V+/rE5Lu+MJUAgzThRhSdXWpxYmSeMpXLs16912S70ljRFoecn/Ok7e3z+ySU+eXIOu2C9CyEKCfVcalt1fRACVUi3Pk3TcXToDAO2BuGRRALS1EkRORXHkryIqfZqlOaYhWcIAArs9D3u9CWbXFNgrWnx3FqNi1sjidBiAot1Wa8XsGLD4LVN6TDZcKQKsihmC+/sjPmlJxfKdl3VMskQJTw2yXPu3zQLITXJhCJlQbzitX6csdkLCYuq64mlKq9tDtkfBhiGTpbnGAo8tVotme7bw4jX7krZ/JptSJXlRKGDwadWdeI4JAgCDAWiUY9x5uA4DkGSE8cJ1aqUyEmK62ZqamE9PKtWINGKGqaucXbepeMlDIIUx1TLZL1Us1isSUi1Y0l03v0Vcc3SebwuWFhpg6pRMTWuXL3OvC04s/LeQosfRTwKIfEnTfkXfkISiV44BX4UEcYJf/iDq3hRzIMKYCEEd7d3GQ/6rC0tYjqVmZs4zibVwQTCJBBZJtnfWYofP/zcJwKNtmlybW+ApigsVKV4YdXWeb7AvE9i6AVYpmzBHKcZlec5a2ZIvyrYi3SiNMMyTc40LD51qnHk9ZNQFIUwyXjlbJuKZfLOdp84FRiayoXlCs/ddx5xmnPtTgc/UyEfc6LlcGGlRruic6cbEKU581UJd520yhYXFd7aGvDadpdcSDSZHyXsjyJe2KjziRMNTlUzhsMhS4tLrCzOlUTNnWHE3kj2sPVifmPqKqMw4bXbXc68uFH4m6jl9yYQ0sp48l0Wf4fCta5A7d0fYSIl2yuWzrk5i9fvJfiJtEXOspxcgTPzLvVCIdiPM/7saoeun2DoBgLY7gdstB0+//gce2PJD2q7BnMV6d2RZBn9MGMc51TNQwa8ohQyMKHkWLQLLouiypM1dSnL3nYN7g2lP/1kWJ0L+We5YcsF2zK5uT/iuzf75TBcQRpbfXKjwd44IsxUHE3wxEoDWzusmm92fNI8pzk1cJ6zbA6GPqFW58Ryg/F4zGAwQNd1hoMh+/v7BEJWgkmWk+cZhiG5NnGa45raoUf95DsRAkPXGPkR51caCAGXd8eMI1mhnZl3ubAswQ8KkkU/jiW82iu4LJPjoIBr6qianPENvJB/+803eeb0Kp997izmf2Juxse5tfVhxscikbxXL/KjqkiyLOfffetNecM/QP5E5HLQ6/kepzbWsR0HTdXwp+DINUunaukMw0Ra9xZZJhESgrngvkevVcCb94b84E6fJJdQybql89nH5lhpHG/WZRo6fpRyyrEZeIFECA1CEDl2OqbpaPziMydIc4UgyXEtjZotd3LTSsVxmnNtz2N7KHfRVqzwnGPy/FqVF081ORgGuKZ2hPEcxBlfubxPx0/LmchbW2M+daLGqTlH+nQcgaYJclXjre0xpmXh6DLp5Zkczr5+p4cV9TBUiXVfmm8xGAdomkrFNunvjMiFKJNIeS00lVGc0x8HaKoU0PQCmWAVFNDk8HpnGEuVAU0Or8MigUsPE/kZgiTn9c0h9/ohuZA+FC+caPHcapWr+x5BLtuGTyxVeWrKw+Ra4RnfrjrkWTGbMizuDSJOz6Wl8+V01F2Hg70heZqiWDqqppW/e39UHYvuOGCzF9L1UwJfZbUlFXg73iGJMM5yFuoOSxWNJMsI4pTX73n4SUaj8H3JckHHk8ixX7qwJK+VIr+fqm2XbpqjMEWf2k1r+gT0Ad1xwBOLFcJAzlpa7RYtWmRphuf7bIceWwMPWwNDj8hV2Vo9s+CWaLjyOkxABoqU9jm9UOX0YpXuOMJQFawpbbiqa5evnVQyExLjJKFMFJYN/bBaf/PmFnf2evzyp55gbb557DX+KOLjOmz/sONjkUjeKyaJ5H49pR8lhBD84fff5vZulyhKsAwNTVVnnAPTJGV7ZxsFhdOnTmLoBQlOpDODeFVVePFUi69e2SdOBaoiEKqOSBMem3ew1fioOvBU3O76fOdWjzyT7RI0Ocz843f2+UsvrFKxZm/Eqm2x3+2T5Tl9L+DbNwdc3R1KbaZczjheOFFnTdUwNIVGRXI1yrmMK5NPmOT80Tt7dAoEkXwMdfK3tvmZs3OkacpSw5EqtvdVVa/fHXDgxVRMvRyAe1HMDzZHLDcsXGP21pJCljY39qQ1qq2rKIqGrmvkSoarqozDmCBTqVcsvEGfiwcHpWe267i0qjaToaw6dR1ToVDVpDCggsLYj1A1ha1+Qncc4poaGy1plLQ3iuV7Zim5gNWGxVJFp+qY9MchX7/aZd9LsHQFXVUZJ/CNq/u8cqbFr1xYYHN7j3a9SrvVnJHL2RpGGIZJlh4q2ark5ELQj3LuV3Cb+J+0KwYVS2MUJtRtgWEaJLGU6Gi6sg1pGwadUcDXr3XZG8UIhLw3g4DHFhwWahb3evJePLdY47EFp/AAkSKlfS+k6ZolClBTFRxDZXcc0/OiGb7MOIzQNQk2aDh6oc2loWqqdMOkYOmbGn4ck+Y5rnU4BNd0jYW5Fj/jVPjh3QE7g5AozdCymEU7Z0GFXjfGcR0sy8K1zCOcqgmXaqXlMvIPN2wVxzoC8ojTQxJjbyT1axRFmZlXTWLgBfzrr77Oi0+c4DMXTqF9yIq6x8WjzkhWVlY+ojP6aOInJpGAzO4flmzAN9+8zju3dwB54wWRXAAm0haBH7CzsyO1vpYWpDz3ZCd/H9opStKSP/D63QG9IMfRBRdW2pxrm+zt7TLyw3KomN0HLLi855Ol2VTfWGBpEOUKV/fGM60txzLwwli2OYRUOL2yM0BX5EKqahqJUHhjc8hqw+bsUp3xtFQH8twrtsXrm/t0xjGOqaEq0tJ4OPa5uudxZqHCSsOeST6TBzPLBbe6AYauFRvZifCghKTujlKeWLaJppLPZNdpaFIWRAgphpgj0DSdMAhRFYXVlWXW2xXiJCUIQjzfo9/vs7+3j2pYuLoiW0GGhPpGmeSLnJl3ygpoGKZ87eqBNL3SdfI0peEYvHSqgZ+pXN8doio6602HM/MuhqYSRBm9UNANJMtbUxV0XcdIEkaJ4PKOVIt1DemmmWc5NVdClxVFwdR1Mj9Ambo/J3OaNJVaan4QkyPIhcLbW0OiJGOuYvDcWo3v35a+6GqUIhQNx9R5bq2OocnNzbu7HrujSAIpVIVApIgs49q+z68+s8zza3V5HoY2I1UzkSwRuWzH6bpBksSoqkImFOI0x7xvoUuzjDTNeGa9xfYwZhilVC2DLMvwClHJjZaE4eZZTpBkrBRDcFHY+tqGyiunW4yjCY9ER1cFQRCQJzGdg33yXFBxXUzLxnEctPu8hkd+hG0apTRNEB71np88jyM/xNI1TE3Ftc3S1+f+EAi+f/k2t7Y7fPHTTzLf+OhaSHkuW96PUpH8tLX1CPFeVcYkeXxYieSNa5t8951bh++vKsUDL+1o0yhge2eH+bl56vU6jmWWPhnTUaKdimrj1JzLEysN4iQt0V9RGJUl9zgoWOhFsprImXRG4ZFyX1FAZClRLvkncZpKCHEB852QB6/vexLxpsoF2bAs1ETuaLdGKUuN433f/SjmxoGPrhuoipwr5FmOrsiW3L1+WLbVJslnAgqIkxhF1SBNQFVLeLRSTECDovqpuRKZVXEshr5Uq20WM4LdYYSmKgiRE4QemaKzXLdZqkurXCHAtm1y1cBXXMxKTlVNuZCNeWM3ZhTJuZlrW5xp2zy5VCvOVfC9Wz06XkLF0iQAwjAZhAkXtwN+6XyLM62jLpKKotDx5HdlWZYk6aVS7NHQFPqBlJifWP6mec7Il4ijOEnZaFrsDIKSKwOFVa6qslq3SvmbzX7At2708KaG7xtth8+ea3O3F0r4r6Nzes5lrSVtgYNYtqH0KTl2RQHLUBjHGTf2Rrx0Zk5yTcKjYpuWLpnbrqmRpgmqphEmgrZ9qPR79IJAxYDPnGry9l5Abyy/v6W6xfPr9RJ0IXlN0uxLU1XqFfvQJlqRBODpJXGyQDZbc5iaYHu/x3A0ZP9gH9M0cR23rFYm8HhVVajZFqGXPHStCKMEoSjomlKe14NifzDmd7/+Bi88tsEnH9/4SMh/k3b8owzbf5pIPoJQFMmE/jDmJNfv7fOVH16Z+ZmqqAik8dH+/j5BEHDm5AlMy8YytEOF2WPi0IvELhjC+SGEmEO2+CQmLPR6xUYIaQDVdA283v2Ch/L/jqaQZhlV2yJO00M5E0UhFzljPyztXSV3I0HVVBRNKYbUD74h5XwiRTVtEMUiWeIFjk6gJ6CAxWaVlt1ha3CoFqsgF05dVVisWSAoF9ooSQsNJoGpqbx0qsWfXT2g78eFhIRGw9H59KkmNdemP5LM/9c3h1zeGROnEp3UcAxeOTPPX1rXuXMwkqiq2Megz95uhFtxSVWTvVEkWd2lB0aOa+p0vJj9UcRi7fi5k2NoZdtosmERQpAJqJkaWZoQhiG2ZTMKEm73QsZRStO1Odl22BoEbA0iRCGrr6sqjy9V5PUAel7It24OCFNB1ZZSJnGWc7Pj03IMXpgyOoMCFi9kYsryowvjZPHLhdwMxXGOYxozfJaKpfH4QoVLO2MGQYquKWQIDAVePL1IIfb1wHvk8eUGS3WTjDZBGFG3jdmXi8PzcC2D/iig5lp4RfX1oKg4FqMgZH11iTBOiZOEIAgIgoC93T0EAqfQBFucazIoqugJuvG4ECLH0DSGvnS7nDxrx4WqSJfGb7x5nVs7HX75xSeoV45qav0oMaE0/LQi+ZiEUrRdftREst0Z8LU3rh5ZJCeyJpv3NtFUjY2NDdA0bENDFPpT77VjCeMYyzAwNGZudEVVZlRj5Q9lyyHLcixd56mVGtuDsJTLFkBSQCTPLVbIc0GOwDR00kxCWtNEthHmXRUvLQ5aRC4UyBNOLtQeeu4n2y5vbg3JRY6CgqopkrBYDKePC8cy6I18Xjo7x3+4uM04LBanolt3brHCXIEy0jSVrZ7P92/32B2l5HnKasPm+fU6n17WuN0RGG6dRsVmo2kz33AZjAMqjsXFzT5v3huiKXLXnAtBz4/5s6sd/vwzSzx3epFxEKEqcxgq7B708MYee6MOcaJg6Rq5IhdjRVVRi2umGwaappAd4yWw3pRugOMkxxUJuqaS5JJceqplsru7S6PeIFItvn6lwzhK0XSDfN/nzXsqv3B+kVPtRFq4KgorDYulmlV+Nd1Q4AURNVuXbZxcYCmQZILrBz5PrhwuHtWp9oyuqpyar/LmZh8h1PL7jFOJ1tqYqzDyDt01p4l6AE+t1qhYGjc7PmGq0HRUzs27tGypZu2H8czmp/yuTYNx0XJUyak3XbIsL1WX4RAp5ViG3HAVA3NT149YEU+iMpmLKId8nbrroGmaXEAFRHFE4AdkccjbV65hmiaO41CtVGg2asd2CCq2yW7hb+NH8js4Tq1bCIEzpc68ud/nX/zHH/C558/x5MnlD606mUB/P+jxfppIHjHez4X+UWVSeiOf3/v6G/hRjGuZpFleDvWCQJbitmWzsLiAUvIj5M3+oNlGGQIs05A3t5gwtuXwcyJrMr3xc0ydIJIPr4LC0+tt/Djlh3cGBIncfbcrJp89N4djqNJPJJhisfsROztyvvOpc8scXNrDi7LClU4lyxPmKyYrVZ2KI1sv6TFJ+MJKje1RSqeoABAgVJ0zbfsIWqzrxWyPEqK4z0LVZLVh8cWnlnhnR6oBO4bK2YUKjy9VmUgFhqng9y/tMo5STE1B0wxudny2e2M+taTx4uNrGIV3vWyDycrPD2Mu74xRNY2JI7CmKFRNHS/K2BomheCiUoglwsbqEn6U0I4S3h3tECQZiImGli7bTJqGlPJScG2Dg2HAu3tjtgchuqZysmXz+SeX+erlXYZhihCS0X9+0aWaDJhbmKNWq/EHl/bw4pxWzSVPU4ShM44yvnn9gP/dc8ucW3Cl4KBy2GJxLZO+NwIKodAsAxQ03UCNMqI0L+8Ricg7lHpP85zTbYt7A4fuOEBTFOJUEvTOLVRpu/oMoXcUhDimQZbLRV9RJOHz3GK1ICge3gvjIELXVGzdmIGSa6pKms3WFEE04Q5ZDIvFWSDQVfXIzj9OpdXx/UNvXVPlrHHqkZ/MZMpKRpHtxVq1Qppm1JtzBEGAH/js7O6ytb3NXLOOqptYto2u67iWSac3mFUTL9S6JyTGyfNbd+0jXYY4TfmjH1zmxnaHX3zhcVz7wR477zcehUMCP0VtfaTxo8ikBFHM73799fJB8SMp/V21Le5u79DrSp2tVrtVDtwnpEA4nG1YhS+4F2Vc3Bxwq+ujAE+vt3h8oWjzFIO/ySB+cs6TysDUNJJMlDtAgWAUhLx4eoHzy3X2hhG6pjBXMVGKJFaiWgTs7R3Q7fU4tbHKrTubNByDLz21xMXNAZu9EF1XOdWu8OxaHUNX8cMIXVWp2LJPvzeKSLKc+arFaqvKLz+hcGXXZHsgB+FOOuZnzs9jGnqZaC9uDnh9c0RaDA9V4ETb4ecfm+dnTjeoPbU0g66ZWA3/2ZU9vCgtHAoVhMiwVEGYa4y1WplEXNsoPqNyeE3CBCXP0S0pmSKvn0zMXpgg8tlENw5idE26Uz693uCHdwYkuVQC8IukvWKndPa2CVwXoVt8+07AwSgohv+wM045OYr5lacW2R/H0rc8C0i8Aesbq9QqVXYGPl0/oWKbMhkoEmLsmhpenLE1CFmuW9Rci0GB0jN0jSCKaTlSFifNREH6E6RJQqZorNaMUkYGwZEKoWbr/NyZBje7FrujCG8U88RanafXW+X3NHPPx/ct+oWqwXG8ozTLSdO4NK0Sgge+NheCUbE4R3GKyAWWoR/vHjoBpZiHKgjyWhwjC3RfJRPFE5kcgaqpVKoVKtUKCOnw5wc+gTdm0O+iqjqO65Z6cffHpOpxbZM8Ew81kLt2b5+tgwFf+OR5zqz+aCTGR4H+CiHwPI9a7RgV5Y9x/MQkkkdtbSVpxu99/SK90ayveJplXLt5GyVPWV9fZ/PeJiIXD/RPL30VdJ3fe2OTUTHUVDSdb1zd490di7/w7ErJCp4M4hsVp2RYm6qOqirEx7DcvVBi4s8s1kuOStU+hDuKXLC7t8vYD0mdNlcOYkQuhe9arsLnHp/Hvq8/Xn7WPGd7f8i3bg7ojEP58FsGTy+5PL/R5PmNRokMu3FjTBQnqKpGzbG4vjvgtbsDUFQcXUUpWjG3uwGXd8c8tVKT6BrLIC/aHhIaHbE/juXij5znJElS2LcKhsUaZRoaYZwyvQLIobzO3jCWw2FVQ1Wl0RiqSsWc3eX1/Ji7PclmX6pbfOr0HKamcq0b0R8HtCoW55eqnJmzCYMAz/e4eHvA7hgqlo6ua2iaRhSn3Or4nJ13WW3YHBwc4AUeq2urGIZFmCQ4linvDZHPLFoFDQNFUQueUUq94hKnckEPo5SlqsFi1WBnFBfoNYWocKu8sFLDMXVUVZ0xxJqOiqXx9EqFp5cr7G55nFirlxI1x8X0oq8pCsOHOXAWC7ll6NimzsALH/xaDm2la64pZxIPeW0Yy2ehVXXojvyH22unMjnN1V26k6H9fedpWiamJSuGPMvQFdjv9Bj7Eniyu7srh/aOU0oYpVlGnudUHZM4KboEDwg/ivn6xeucWGqhf8BEMB2PkkhAwn9d98FCkx/H+Fgkkvfb2vqgiSTPc37/u5fY6vRnfp7ECds722iaxvLyCo5lYRtyJ5QLcWy/WJ4ofPvqPuNYtkkmBDKhquyNIq7ujXlyiqQ2kR2xDR1VUbFMg7EfcXXP4/q+R5LnrDedYhHRyhK/XpFS6V4Bd5zwWfYDuNRVCZN+sZgJ9sUuX3pmFU1VHrgAhYnkpIzjFNs0ZDKLU169O8C1dB5fOuzHKlM74lEQsT1KSYWCqx2qcxua1G+6ceCVpLwwSlBUaNRs+kMfRZES9EJAlmflAFvTNMhSdCWT7QMhiO8XgwKeXK7RGXfx4gxLF2S5IFE0GiYl9FQgePPeiDfuDcsdsaYqnN73+NLTKzy1muFFSckvATBqNWq1Gt/a3sLQUxQKD5I0hTwnyxQ2ux5q0CdNU9bWDttvCDCUjFbFpjuOqJpqmUwm+mLzhWPfBFJedy1yIEkFiqrws2fbvLUt1YSzHJZrJhdWZHtK1zTJS0J5uDJ0AZ/OcoGl6w9NJpPwo+SIa+NxoWkqQy8sLI+Ph9BOwjR1dvZCqo51BFRyf1QKder3GpiDbId1x8FMJfOgaFQrjIKQ1dVlxqMRe50ulmUx9sZ0Oh10Q8d1XGzHZqHVZOjPkhiPvQaqyq+8dOFHSiLwaBwS4KcVyUcZjyKTsnUw4MbWrDmV53ns7u5Sr9eZm5tDURTiNCUTAsvQZgaJx8Wdro/IM9SidcVE5lvA3V4wk0gAUCBKMhxLLqp/euWA6wceQsiFeXcoE9B/9uyKJB4qclHWdQ3T0BgMx2zvbKOaLm92Ium3bshdfRjnXN3zWN0c8okTzRnJ+um4eeDhxRmOoaEh2ziuZTIKQt7eHs0mEqYWBCGrD0UIOVSeYl0rimTFT4ep6wy9iKprE0YJZ+Ydbh6M8aMM15K77aDwszg9VwEEQZJQdSzevtfjRscnTHIWayaPLVZ46VSTi1tD/FjCvlddnZ97fAHXlB4pu8OINzYHAFQL0macCW50Al6/0+PxxQqtmstwHByvVKwoGIaOoqpkaYrQdUSQMBoOCRSoVWskSYKu6eVCWa84PLtS4Zs3IsapgCxDIGG8z63XS4Y5QL3qMPJCBJKM6UcRmqrxqZMtXthokGU5k5c7hk5/5KOoCpauY2jaEeviSViGTphkhEmKycPtny1dJ4wSMiFIg6OyItNhFFXZBO7t2AZpmh+76Bu6VvKEgiil3lAfuDibk3aWcoj8q9rmDL9pErahMy5UCSaVzPRMZjrcqaF9lKSESUrNsag3mjSbTfI8l0gwP8AbDtjb2yuRYK7j0mpUjzWY+7lnz7LY+tEX8keZkSRJQhRFPx22f1TxKBXJ+mKL//ILL/Ifvn2J7tCj2+vS7/VZXFykWpv6ooQccA68gIV2izTNiB/wXpqqgCIVTcknC6wcaD7ID77iGAzHITvjlJs9yZ+YvFYIGIQpb2wOeOVsW+6eVQU/ihmNRoz6PVqtFnc9lTgNpOd5wdfQFMg1nddud3h80ZlxSpyOUSQfeFVRQFWKnXeOoRuMovs+p0IJDnBtg5oh9aqSJMEwJXMbIMuZGchrmir5H7nAC2JUFWrC52RVsOnrBIkAMgxN5fn1Oo8vN8pe9dfe3eWtbb/gbcBWP+TanscvX1jkLz67TJRL86WJgm6W51Rdi9s3u6S5KJKIvJ6mrpDGOdf3PR5bqDDyJI8lSlKyqT7+yTmX1+/2EYqKyORgPEoyFARnF2vM123CIGR/b588z3Ech4V2k/4wY6Pl8Pnz81zd8xglAldXynbYJJxy7iOT88RV0zJVglD6hhjFblXXVOIsK0mmYZJAItFXXijl8ieLqKaqZMUQXClY/uNAwl3jNJ2ZVahygEM2pWhdyorcJ3uvFMeetsGdDNfvT1Tla9OJVfAsw3x6cVaK+y6eSlxZnjMukto0YkxVFHLBTNtJzhCjI5WMrqlyNjT1yAkhCJKMJdso0GVQqVRoNyW3K4ol0djzPLqdLju7Oo1arSBDGiiqwrm1BZ49u8aHEY+qswX8tCL5qOJRZyRLrTp/5Rdf4H/+vT/m9nDE+vp62V+FQ4/zzVQUNrPFjsmxjh3KPbZU4+BGV/IfFIU8S8mEgqrqnJ4/2imWiBE5pL7bD6XUtyk1r/JcJiAVKZD3ypk2lmngBRGdgw6j0Yjl5WXm202uXdmTg93pvryqooiMIFGK6kE+aPWKM7MLr9uFhIWqIabk5pM0ZbFuzXzWifueZWiM/JDT8xXe3fPYG8XEWYim6SSpZH9fKKsvgaGrXN4e8u7umGGY4igJJ2oqv/riOXYGodQBA1abNqutSjkA7gcJb22NEEDVNsrqYBRJY6QvPrWEVbScJpHngrEfoRRy84eriUBTdWnxO1Ut+WGMpilUHLPU4Hpyucq+l7Hd8xBIAqTIM87NWZxamS8qiFgin+IYkcTs7HeIokgS51yXT6y6WLaFocnq0Z+QDHVVtuvu2/QnBeG16kpUHygoikzCksiozwhNjoMI29RJ81zO51BwJujA6Y+N3OlLUMUh2dV1rKNe9VDK3tdcq0QvVe+DDJfXukQ+2YSFBldl6n6ZgZdPAU1yBHGSzrx2JpQpgq4u50Kuffz5Tj6frGSsMhn691U/k3Mp0WUFElAUoEnTNDFNk0azQZ7nhEGIH/j0h0MsTcFxHJ74xCmCIPhQZhSP6o4I/BS19SjxUcJ/x+Mxr732Gi+eW+azn36er75xfcZMqu46jIJwhu+R5TljP5JwxDAp20WKAp840eLWwZitgSQCTlA75xZcnt5o4015JDimXLgmzPlyucsl9FPV9HKHT6FF1R977O7skmZp6f/uhRFzVQNFlXLfE5gvIiUTsNSwZhaVoRfI4beQD/OZ+Qpv7fj0xgGmJv1L4ixHVeDCcq38rOMglq2tPJXSKAWr+wtPLvDWvRHXDzyyPOfkgstLZ+YxFZkgaxWbb1/b5we3+3L3m+f0UOhEUN8e8vhynYW6lExxbMk3mMws7vWlq6JragghBRw1Q8fIBJv9oODbHN97b5gqqqKCqkKel6KCuRCs1K2Z12YFWkfu8mPaVZvPnVO41THZ7IyJwoCzS3UeW22XFYSua9iGgaFrCOFgV2pkWYYf+Pi+X0KwXVeysZfm2gRJgq5phA/ov4PUArNMg7xAPE0vtIpSzHOK9ScpJGBqrg1CIvwm9+lEgmXy/KR5XravFCEYPczhsxiu24aBaWjvOQ/xCg2uZsWmPz587XEM8kOgiU1/FByxn56OCYilVZMcooeFrGQiWlWXgX/0tdPXIheCoRfSrLl4xyQyVVVxKy5uxZVKBVnK5y6sMRr0+e7tW9i2zdzcHHNzczSbzUeadTyqYKPjOI/0fj/O+FgkEjjKAL8/HiWRTLzgT5w4wWOPPYaiKGwszfMH373E3f1eWbJL2OV984UpFIui6IRxXEJof/WZZW7se9ztBaiK9Jc4OefiBWG5gAshCkfEQzmTE22HS1tD0lygq1ICRdF08izlybUWncGQ7e1tTNNkfWV9pr+60XRo2SrdELQ0R9UEUSYl3p9bPyoNP+0XIkTOL5xr8Y3rOV0vJs0Fti5/79xCpdhJSthxo17l8r0uXtKhWbE4tVCn4jq8eLLJiyebU+8gqDgWqgJ7A5/XNwfSm54ctRDA9JOMH9zps9FyClVeq+TaTF3m2fsAyAtpEk3TiZJZBdrpOD3v8u7emP1RhGWaZEFUtLp0nlg+2mOeJIiKLWXeDU1h0Uwx7IClk0tHdqFpmpFlWSmBA5IYW6vWqFUl2TOKolIPbG93j7lGDdO20UwL0zSPLLKTiGIpIYPycMLrJLFomiYlbHSd3Z3dEgAw4Y9M1B+kAkROlgscy3jgQHkSAtmKrFUOdcMeFKqqMJhssCbMdXH8RlAmp4iKc7Tldn/Yls5gHGAWCKsHzYYAKo5Jb+xj6Bq2PmujcP91rLs2g3FQwt8faJ2twOdeOM+L508A0ryu3+/T6XS4cuUKcRzTbDbLxOI4zvva/D7KsH08Hn/kfu0fRXxsEsl7ha7rRNFDdlhTIYTg2rVr3Lp1i2eeeWbGC75esfnPP/cCr165wzffulGuZJOWzv0xES1s1dwSQqypCo8tVXls6ehiFcaSEV2xLfpjv3y4c5Gz1qzw2GKVd/fGpNlE8jpnvuZwvq2xublJo9Fgrj13ZIXVNYUvPbXEd2522ezLKqlmwIunGkd8rCeRC0FWmB8t1m3+4rMrdP2YJJO+GMZEGl7Ia9YZRXz1TsKBr5MlCfQi3trd59l2Trvm4LouFbdyKB+CHLQOwpwoydAVgabrZQKUXiEpgyBlrmoQpxmWaczMK1abNroqYbB2cT65gEwonKjptKruA1WTTU3lC08s8M6ux7XdEbqhc7bl8NRyRUp5HBOKopDkgihOCEZD+v0+q6urWJZ15LVCCKqFp7xlSmOnaei2oijYti13r+05HFNj96DHcOxB1idMcyqViqxYHEdWT0U4U9yZimMRJ9mxpFEAoyAoZmnG/v4euiqYX11F1dSyKpFIuxxdVQnjhLy4l+uVo+S7SahFEsuE1A07bs4y/Vkn98k03+M4r3qlAJ8IDlvFFcc6vjJQFDlb4/BZq7n2sVbOEzAAyqzU0ESFezqRWFNDe1mpSbkeL4yOoDJPLbX55OMb5d91XWd+fp75+XnZ7vZ9ut0unU6H69evY5pmmVRardYDk8X/v5hawU9QInm/M5IkSXjjjTfwfZ/PfOYzxw6tVFXlU0+eYn2xxX/4ziW54KsProiqjk1v6OPa5ntCFxUkemngBSUjXi1k1hUFfv7xeTbaDjf2PZJccHKuwoIRs7O9xZmTG6iGyYMKM9dU+bUXNuiMfJJM4HV2qDaOMnCzXHCnGzCO5SzjRMvBNnUqjnW0BCgWIJELvn1nxN4wwNRVHKeAICcp1wOH1QWb8XhM56CDaZo06zXi2MYwTPY7HVA1NO0+gbqCIaYqYJuHwpcTfxEvjGk6Bs+s1njj3ggvKgh+qoarC57faJSijw9aaGu2yadPGrywLr9nVVFKufH7k48QgoojkT67u7ukScq5M6dQNe1YCHLpk4GsIBRFqhYMx0cTm2NJDk+9Xqder0vZmTxlMJDXLM1SHNvBrbg0arXi/eQxjpvhTEJuROR9vbO9g6ZpzC8t0qy6JXlw8tlykZcKC5OBdX/sl9yX5D5pE+c+OHC56N+3e58k1OkW3IQE6Vo6YuqmOu61WZ7jBRFV2yrJoQ86B4Gcs7iWWc78Jv9g6OrsXKQgPFqGXqINFUWRIANmh/aywxCWM5nJcaq2xS9/6smHVoSVSoVKpcLGxgZZltHr9eh2u1y9epUwDGeqFdd1y2NlWXbsBuVhMUkkP61IHjE+jNbWaDTitddeo1Kp8PLLL2MYx+9KJ7Ey1+Cv/vKn+dMfvivROcdAZyu2FJebhS4ePxQUQshBavEQlcPEwq9Bfk44u1Dh7EIFXVXZ2dlhPPZZX1tH0U2sYrcfHlPeT+Y5pq5i6tBJMxYsA13TykV2GKT84du79IO0JALWLJ0vPrVI2zWP7OAmfxI07nU9DE2KHeZ5iqZKZvj+OCY35lhbbZHlGVEYEgQ++92uJHGi4KgaUa5i6CqiYMDHmbRIXWtXyt0hSEOxcRZRL67V8xsN5qsWNzoyQc5VDB5frFAxC/fBBy60Al1XJYdlsngIGPvRsUiteuFZsbOzg6qorK6tkuagIFFg08lHQktlO+vw+6VEgU0nNl0rYONTt6+qqKCZzM3Psba6TG84xvd9PM9j1O8hFK30WrFtmyyT90vNtfHDiDyfLMomvaHH9vY2tm2zsCAlfEZ+hGloqKokOyqKQrPqMvIiNE0rB/YCQRDJ2VfVMRkFEaqiShmfYyqEctGfQlRN7rvjYhzGzLcrmLq8BsfJjxy+djJcly2pCXH1uPDjeMbKeTqp3x+TVphjSCkc1zEfyF6fVDK1ipT1/9JLT34gORRN08pqBeRwvNPp0Ol0uHHjRlmttNttkiT5wEP7n1YkH3G8l0TK9vY2b731FqdOneLcuXPvO6Nbhs6XXrqACAd8553NmX+zTYPgPijtZOB3nMLpcTd7kmXESU6raczobeVZxr2tLZI8Z2N9o/RiCIvyXlV1Xr11wCiSsNfnT7SPPMyKouCHMQ3TKnf4X7t6QNeLsS0TReTkQmUUpfzJ5X3+8ifWyh2cEKIcCFdsixt7I4SQc+tJyJaJQFF1opLwpzLfbjIYm/h+iGIo2JbN+cTj4kHCKEhRC4vhimXwi08uzwzXy3NndjHcaCmcmpc7sfQYLk85LC/cD/M8LzTNHrAQhfFM5VNxTDr9ETs7O1i2xeLCYnmPiAIFVnUtwki6XEoS3PH30Gxii8pkdlxkuWAcRrSbNSzLYH1liYHnS+0o32d3b7dAWMmkkmc5tmViGSq6pnHQG7C9s021WpW8p6lzihNZwdVcm1zkcsaBcmRgP6lWxmFMxTZRgMGEYa4czlemvpwSGWWb+hGDqJkQciG3spyG6zDw/Flo4X0xWcibVZvBw47LhBQb0qq6D1XgnoQXxsw1KscqR8xEMRN8+cIp1hda73nch8VkMzCpViazlWvXrhEEEmqsKArtdvt9VRo/iTa78BOUSB7U2srznKtXr3L37l2ee+45FhcXH+n451bnabkWt4Y59w76mLpOmmbHs9xnBvHSM6F6jHtb+XJVInWWFmsSTTIa0z+QRk1rKwtHbq7dYcQfXLpDmCmFFIfCG/cG/PKTi6w2D7kKk3J+gtZJUdkehlimTCIgWz2GptIPUvZGEUs1q9ihQtWVO+s4SWm6BrqmkOYCcwplk2Z54SFvY5tSTuSgN2BnZ4dKpcL83DyKojA/P8/JFZ8rO0NGQUxFVzjVhHDYQXUrWPZx1ruHi2HVscjyjCB68CIwcT80DQ3HshiMH74QTSqfRsXhoNdna2uHWr1Gu90+9ly8IJZDXFN/4E758NjSPqBdr7zneUzOu16xSdIcTdWoVqpUK1UEcmDv+z6D4YC9/T0sy6LdbGDqGltbO7RabZrN5vEHFxAlCZqiYhn6sS06RVHQlMIcTt5OZRIuZyxMIcaK5JLlgiBKqBWtquP6BRMwiaJI7lOl0OCa2B0cF5qm4oUJpi6l9I+rvidhaBrjIEJReE9mvq4pUo3azqk7NgP/+NkawPpCk089cfKBx3qU0DStbHEB/OAHP8BxHHq9Hjdu3MAwjJnZynHeSj+J8ijwE5ZI7m9txXHMG2+8QRiGfOYzn/mRMrmqqjimxn/xC8/z3bdv8dq1u0eY2/fHZDjYrDoSunjfPSsE3OsHbA4y2llMvZEwHg0JRn2sSo1Ws3Xs7/zZ1QOCJMfUFTlQRSWKEr767gH/hxfXShOsmXagAp1hgKLpKPc98qoizarCJJPzkIJWH0YJrm3iRwmOofHkUpWLW0OiREKMs0K+/snlGoYqSWDj0ZjtrS1a7TaNRmNmQV6ouyzU3eLcBFEYEobBDEzWrUjb3OlZisgnA1spcPggD4lJ6JrKYBxMCVo+eJenqyr7nR57e3usLC1gOQ9uG4hC3WDoh4ctmocolTQqLv1RUFRVD65KAGzLYOhHJcx7ct4KsqKzLZt2q02apcRRyGAwwA+k4CF5ytgbH7luUAzBFSnXrqjKkRbd/WEWWnJJltKsVxj7EVmeHQ7skSrECmCbk9fmM9yQ+68ZQr7WC2OSLJvhsxx/jQtBSLmHoOYUys/HzO8MTVr6AoWwpI0XREckZBR5cFAK6G8QlsKS9yc1xzT40qcvPJIy7weN+fl5lpaWymql2+1y/fp1giCQwJoisUyqlf/UEvK3bt3it3/7t/mTP/kTdnZ2WF1d5a/+1b/K3/7bfxvTfP8tv49NInk/LonTFclwOOS1116jXq/z8ssv/8jOiZqmFSZLKi8/fYaTy23+w3cuMfAejm03dbl7dSyTJE1JihbQZFbR9STCStlNeG3L56UlhcWFeRbbLYL4qDR9x4vp+wm6Nmk3KJClmJaUKt8dRSWjvJSoL2KtVcVglzjNcWyLLEkO1WZVhbZrlANJBQXTNBj5EVphT/riySamrvL2zogoybENlSeWazy3Xse1Te5u7dLv9zmxvobtVkgesJNUFDANAyEUDMtmdXmZTn/I2PPodXvsJXvYjl2iwNqNWtkSVFXlgQgfeb0n0hxKed2zPD92Jy6VVMds7+yzuLSI5VakV8d9s49JTFqTk7abVcxoovjo57Qto2w1yvdOiwRx9Lw1TZXtugJ8MCp4JOIYnTFd08gUhTCMWVpakgKQvk86HrG7syvlPYp2iqEbM3OjmRZdnBzh31Rdq2wFTqokQ9dwNAkTniZDTkAJk/DzXM5WXDmzKJ9XIaub6aQxqZBrrs14yiF0+hqX3xGyuj8yXIcjLPnJwPw4r5OKY7GdZFSsw+91Iix5f1L75U89SdX5YEPwR4lpHsl0tfLYY48RBAGdTodut8utW7fo9Xr8q3/1r6hWqx94QP+jxOXLl8nznH/yT/4J586d46233uI3fuM38DyPv/f3/t77Ps7HJpG8V0y3tra2trh06RJnzpzhzJkzHwrC4f7W2ep8k7/2xZf4yquX+fY7d/HjjJZrTPmqy3mBQM5NZhjxfsQfX96j48XSHlXI3X0vUnirb/DnT7rl4HEiTT+JtCCgKQhUVSfPM7kyZ/L/ytQuaroisQvZ9+fWG3z/Vg8/iDAMgzSVEuxPLddwTbWEcdYqh/4fWZbjZRGNqsPzGwrPrNYJ0wxbl97lpqFx++4mvh+wuraKZlikWXrs7vcQtSM/k+RuxNSqFRq1GmGckKQJvidJfd5gwPaOSqWoVmxL7jirjoUfyaHz9OdVVIUsPVyYguj4nbhAEHpDdjs9VlZXsC0bhEQEOYUfzXTlI6XsZxPMBGo64ZGUMiUziaE8uyMqyJMwj5FOn6DAps9bIIj8MTt7HVZWVrBtuWFwHAnvXlmF3mDEaDSm2+lSq9h0dMmyd+xDboNXSOq7tl6y7SeJ4f6W3oRtP0mCCgpuxcQLQnRNP6xgBWQioz/2qFgmSZ6TZjmmoeIFMY57HwS9XPQPBRJdy3hg+/f+4fq08vX9MfE6mfj0VG2rbNPdvxZMkzS9MOYTj21wemXu6EE/gngYIdFxHNbX11lfXyfPc95++20ajUZZGdy8eZNf+ZVf4Utf+hLPP//8R4bi+tKXvsSXvvSl8u9nzpzhypUr/ON//I//fzuRvPPOO2xtbfH888+zsHDUe/tHPf509PyUf/NuzPeuJUSDfVQEF1ZqvHymjabJBXZ6gZgw4r0U9scxmiqlwrM8Rysw/1vDiGGQUHeMcgc2jZufq5rYukokVNRpOZNMYGgKLUefWdiEEHIXm0vV4ufWGxiaylv3hnhxSsXSeG6jxfl5u6xEjuz0KIbfXih34QZo8eGCfHdzkyTNWFtfQ9cKDknOzIA6m/AWCqHC+0POQorP6gsajQYLc23iNGXseXLwvFsMnl2XkSthshNS3QS6ez88Vp6LKNn5fpSQZhmjXpeB58+q9xYRRNIHfLKIW6ZeIH+OeViL5OM6FkmakqbZsYlhEhMV5Jor+ScPAwRMI8zCOGHU73PQG7C6unpsWyHJoNFosLQwR5ZldHpDfN+f0QObVCugS7kc1ybJMvwCuXV8FEnQ1AvNsUQqJ0A5W5lG+PnF9XNNnSTJComZ40mVEw2uumsRxOmxl3gSk+F6vbBnfthrJ4mqapukueyRCSFmuDrTrx0HEesLTV55+vRDDvrhxvslJKqqytNPP83/8D/8D/yNv/E3qNfrPPvss/z+7/8+/+bf/Bt+8IMf/Cc428MYDAa02+0P9Dsfm0TyXhl3ssh3Oh1efvnlDzSQCuKMb17v4CcZn9host46SuBTVXUmkWS54P/85Ytc2R1jVmqYtoPX2eHNe0N0VeHzF1aO1wVS4GDoI/kTClmWSk0sQFEhzcCLM+rO4eI28g8Z8ZDys48v8sdv7xCJQmOxUAr+xEYDS1cLboUtvU8KfP1kYVMUaa16YblKnOVosoVOo+IwDmQr6EGtHZjdhXf6Q7qdfVA1VldXj31Ip3e/iqLIBPegFWCqIsjyYuqLcnTw7Pn0+3329/Yl5LXdoFKpHJtEpkNKvAj6B3uESc7a2hqaevyDPNHrqjkW6TEtpvsjCOXGoFmTc5GHhcglKqhZcx8IWZ0975BBt0OaJqytrT20TZtlOVEkpWaq1SqVSgWBkGZPvs9oNOLg4KDUA0uiCs16VSoGPwTIAJJM61imvEfuqzSnkV0yoeTsH3QwNBXLNA8Z9gVqbDKwn0SaCzRVld7y74GqSvOcXAg5v3vIcF1BVvBRklFzLPI8f+A6Yhk6/9/23jtMrrM8G79PnV52Zmereu9aNTdsg7DcLUt2AAMOGMdfcPhipxAScAoxIXyYOB/wgRMwEDAJ8S+ALRdsy7ItSzbu1mpXfdVXbWen7O70ctr7++PMOXumbtfu2ue+Ll8XSKOz75ydee/zPvfz3Pd165eAuQi6iIbRDiQuXboU9957L+69996aIxETgRMnTuCHP/zhiE4jwBQiklqIx+PYu3cvAGDt2rUjIpHXj0fxwNOHEc+KIES1xbhj3Qx89fqFumgNDGokGt7rHsDRcAocQ4Fl1JkAT9NMJAeiOBzJYF06p4dYlaLOzoEiCkSJgOd4ECKDKAoUok7Fe23l8y2apYnXYcM8QnDd0gYc6EkglhHhtrJY0erGfIMpZCaXB0DBaa1gg1GYKlYDGyl97sBh4wvT+0MckwkQivYjFeuD1e6Ex+ut8TRb6OxiaHBMrVcNIlvo7gEA4zZRJDz7fJAkCelMGulMBqFwBAzLgrNY4bA7YLVayzYNQRQQDoVgtViwcN6s6pYY2tssiLOSpMBuKXdNLoXNymMgkSmcfATUaEyChWeRSGdVTycrV3VDlBUZ4VAINEWhPtAIj9Ne1eZdA8cxhtZpVeS38BZYeAvqvHW6H1g6nUZ/NI2eYBB2ux0Nfi9kMFWfklUzSfWeVZrDMSKbSiCWSKG5uRk2Kw+GopApnBwVouhlP4qi1Hmh3GCpUytfVdr0jYmgklRwCC5ps9dgNIRUuygZsGzl93bt+iVwOyo7QEwECCGj9toyDlGPtqT1ta99Dd/5zndqvubIkSNYsmSJ/v8vXLiAG264AZ/85Cfxx3/8xyP6eVOeSM6fP48jR45gwYIFOHr06Ij+bTCew5efOIicKINn1VOBKBM8/v45zPbb8dlLZuivLS1tnenLgBQ2fg0URcHm8UPM20ExLIAKAq9CkE30o8lO0JOmIBPV1E4i6ia7tBBiVQkco3YMOW1WzAswmFNfmzBtFg7xdA5z/H6ksjl1ylmbVDeI6ur7Ux1p1VKapWa3UyKRQCYZg8NdB6/XDSvP1TwNMAwNWSHIC0JFK5FSaBsWAYHLVn1TZlkWDfV+CJIEd50fuWwWRBLQGyp0gRVmL+x2uzr5HepFwFcHu8uNdG7otXgcNn1GQpQkVQhOVz6tWS1coQ1V1Xw4loGFq5y/oQ50qo7Cmv5UqQtMkiQEg0E47VZ4fH7QFK3Ob9ToAjMK5rrI7yguJ2p+YC2NASRSWeTyOWQyGZwLhkARGTxv0QmZ4zlQoMo0lGpDoIQQJGJ9iKcyaGlpUXOCZAIJCjwuO5LprDrsqqjlLhvP6R2N2ucxkakccGW38sW6iD7PUi6uO628eh8Mv6pcoSmidGB49fxWLGgdvzL4cKA9lI7G/Xc82n//6q/+Cl/4whdqvmbevHn6/+7p6cHGjRtxxRVX4Cc/+cmIf96UIZJS5lUUBV1dXQgGg1i7di38fj9Onjw5Iiv53+3v1aNMtevzLIWcKOP/23O+JpG01tlUjZsArGFpskLgdDjwxzdfijf3H8fRcyH97yRJQm9Q3eSuXTEDh8J57DvXr1qE0xTWzfVjdXPl1j5NuFcIMUwAV39KdtosiIQl0LRa6rIUDO+yeaGMRABSVNdPZvKwWbWa/+AOTkDQ39cPIZeB1xeAzWbTBwG1KfTyB+Xia1cSkYvXPbhhaUI8xzLgufKNk2EKG7KiTorb7Q4ADqxoaEQ8mUIilUI8rs5eEEIQ8NWBsww+ddZai93KIWEo8Q1qROXkU0lc10Rqt8OmOuca7oeFLy7J6MOXPAsa6tyRIAoIBoOo97phd3mL1laNIBxaLkgR0anrLhX5rRZOzxCxWW2wWW3w+/yQJAnZXBaKmMe58+fAsiy8LieyWRssJac84xBoJpeHJCuIhiOQZQmtLa0lm6TaBWYtRDTkBUnV7oiie4IZ24tTmZzeLZjJqeXRfBUNRRPX3Q4rEplcUVCWEWrJTSUfbTLf73bgqlXzyy86wRgtkaRSqXHJIgkEAsPWkC9cuICNGzdi3bp1+MUvfjGqtugpQyRG5HI5dHZ2QlEUXHHFFXrXykhTEnsTOVWbKNnMaIpCKFFcuy4lksvn1mGO347uaAaEocDQlGrpTYDb17SgzmnFzZevwNxmP17dewzJlGpjYbPb0BBogNtpg82aw6oWB0J9MRAxh1ktrop98BQw2FtfQCUhXoNqT58f9AcjamkMhAymyWGwnq1ZxBuRLXniVIiCcCgMokgINDaBNQjURVPoFK3b8GsW8qVicjWbEhvPIZUrF30HO4eKW0N5lq34xJ/OCbBarXC7nOgJhSH0C2gO+JFI59AXOw+WYfWZFZvVVrYWYwtxKXRPLfugG251cZ1CIp2DlWchE0AUq7cAA4BQ2Cg5iuD0hQtoCvhhtbuqlC+KCUINOyt3CNCgi/w2C9J5oUJXmQqWZeFyugC40NTUjHgioQZ4RaJFfmBae7HWJszQQF8oBJqhUR9orrrZaGTgtPGFgUZZ16mM7cWEELUpIqV2aBGKqGI8qpRzqEJqI8+CoRmkpMoWRZo+kyq0FI9HZO5ooO0lU9208cKFC/jYxz6G2bNn41//9V8RiUT0vzOa3Q6FKUckAwMD6OzshN/vx/Lly4sYfaThVgsbnIWarRqHCwx2nyxsKD4ZaGK79mFkGRqP3LEKf73tELp6UxBlBRxDYXNbM/5so/qEQ1EUls9tASVl8d8vvAGvV4341J4cAdUB12vjkJCyeqeJcSK+1J+rFLoQrxAIkgSeZQv29Nr0sVw0nZwshBBpm2YtjyLtidPGsTjZfR4Mw2DGjBmo5vitdV657UP7HwGDNiV2K6+X1aoP+FEFIZ6DrCiwcLWny0VZRm8oDFnIYf6c2SA0A7tLLetp9iN6N5PdBofdAZfTCafNAlFRilqIS0EICpqSBXTBlaAWcoKk5tU7bRhIpit3Dmn3JK12p81sbYTd4RpS5FdjlynYOLU7rlbNnCjq58vjsFWMsS1bS06Ar84LD5f1PgAAgFFJREFUxaPA5fVCFES1JTuVRl+0DxzH6V5g/QP9cDusaGlpHbLpQbeWp9SQL+3UW826hWZpZPMCLByr+4JVEuwBlQhTmXzFeOHSzrGrVs2Hzz05vlWa0D4SjUOde7q4ee0vv/wyTpw4gRMnTmDGjBlFfzcSoX9KEcnZs2dx9OhRLFq0CLNmzSr7JYyUSG5e0YifvtGNSDIPmqYKw3lqsuE9Hym2R9AIy/hhnOmz4/+7Zz0OB5OIpgQsanQWxcsSQnDs2DH0nDuH+z99A473JnHg1IUyf65SQ0rdLtumeiRVIxENmhDvtFkgiIOTumoIVbHFBTC4gXsdVgzU6qICIOQFnD1zFm6XEzNbm5DK1s6vAFGfDL0OW9U0OyNkWUGmMKMSr9AWXIpsXoTDzuvkWOmLqBAF4XAYgiBgVusMWK0WKIQgL0igKRoOuwMOuwOkvtDNlM4gkUggHA7D61YJBSwPjuNq3huaUk9uQ1lzAIP6lstuRU6oLFInU0lEIhE0BhrgcLohSnKh1JevuuGok+CqdlBt0NAIl92KeLpQNrLxyNTY9HWbFBBVw6Eo1dnZ61XtarJZpFIpxEIx2HgW2byM3nAf6rxu0DRdlQTtNl4/FTOFAdNUhcx1iqLgstnUpghCIS9KqkFkJlcm2FMUpaY4Fk7npfHC2mlH+xnL5zRj6ezhP1GPN0aTRQJcfIuUL3zhC0NqKcPBlCGSRCKBkydPYt26dVV7mEcabuW2cfjpH67BN57rwr7zcSiEoMFlwZ99fD4+vri4fqj90ktb9iiKwvIWd9m1JUnCvn37kE6ndXuWpsZGzG6qw4vvHikyWKxkUa/q4urwodG9txq0sCy+IG4qilp7TsVSUBRFL0docx4sQyM+hNVHOp1WN1evFzNbGpHKCQUxt7btCM+xSGTzoICqsx36+yxYgsRTuZqT4hpsloKwT6DPhWjZGoD6+9EsV1pbW2G18nq9vHRwkAI12M1UV6fmhfQNoD+RgpjPgWVZsLylYl6I1cKqT/VEda2trhENGl1qefXG2r+GWDyGgf4BNDY2otFfp5caU4UJcLXhoPzixlPf4LUrd4E5DBu4LKsuvtXWbeO5wXjlChoOQzPgeR75fB4+rxcOhwOpgh9YJBKBxWpBfZ0HhGKLfNQ4lkHe4MYsKwTpbL7i75JlaXVmBerpg6EYZAUJdqtFHSgtnNhBVL0snc1BUQbLV0bb+2QhMZGiKPjcDny0bUH5L+oiYjQdW0B519Z0wZQhEo/Hg6uuuqpmD/1QDsCVMD/gwH/evQ4XYllkBRmz/XZwTHnpwUgkQ9nPp9Np7N27FzabrcyuflajH5+7/hK8vKcLx8+HARROJCWbhKZzEKCmN5EGlyFTm2UY8CwLl8sFq9Wqzg8kkohGorBYLHC51LkMiqH1DYLC4AZOQBCPxTEwMICGhgY0Bfz6ZpUq2I6UTn7r94mmABB9QzA68lY6ChutwgdnVCqn8XFssR17KiuAZRlYeBrZnAhRFNUESQuPQCAAj8M+eJorzKhUa1tVN/Y83C433C43CCHI5rKAJCISiUJWZL0LzO1yqsFjuo3ZoEbEUHRR9xAhBDaLpYhMizq1Mjn09fcjmUiiuaUZgTpPWcluMNa3OPGvkpW98dpGgtB0HOMJq9q6GZpST7Ulvy5Nw3HaLegbSCDYG4TL5UJjYyMEUYLP4AeWyWQwkEhBEVX3Ad5mg8PhQJ3brQ+nFr9Hoew9ckxl7UmQ1AFDr9OBZEbtAlP1MvXfGU8riqJAkmQ4rTxoCmBZBjdesgz8GC2TxorRzJAIggBRFE0iGQsoihrSL2ukpS0jWr21e8i14/NQ149Go9i3bx9aW1uxaNGiih8Wm4XH5itW4sCpHuzuOFZW2lKNCSX9e6x7Ezmsg228Bui99YX5EEEUkVcIPE4bkhlanx+QZAnZTAaikEf32TOq6OxQ/aysNqsePdrX14d0Jo3mluaCz1XxZpXNi2BoNb+iVKTneQ7Zko6kVJVN1m7V/JoMhGHQH4yZHhSl+myJQvH9lwpCPEcD3T0XdDt1dxVRu1LbKsexhQaB4lZuu00tISyur0cmm0U8kUQimUQiPgBQjH7veIsamVs8na/es2qT/FRBiI8N9EHIqdYyHpejatu1ZOgCS6azYFmmqpV9afNDXlRtYpQquk/puku7yopAgGh/HP3RMHx1dWhuDJSdOFmGLSJkQchDFvLIJOMI9YZ0HzW73Q6eG5zQlwx2LCh0V1WFYXiVodW2aIZhigV7DHaCxZIZ0BSNq1fNh989+e65o50hAWDayE80RpPbPtLrVyMSQgjOnDmD48ePY9myZWhtba15LYqisGp+K2YEvHji1fcR6lXbhGmKBk1RyCslP4eC3sZLYdBa226xDJKI0fKbLvd2YmgGzQ0BpLJ5eH1+VXROD2Ze2Gw20ET1SJrROgN2m7XQe1++WcmKGqlqPG2o8ydVOpJKNiu+wuZthHHDV8XT6g0HmXQG4XAYTY0BeDwesAxTcw5Gb1u1qQmVFIWKZSMNqqDNYUZzEyhKzerIZNT/euI9hdZjdWO0FWr46gZHVZ07UYiipjBKEpqbm+FzOZDOC1XXDBTb1LAMM6SoLYgyCCT49BjoGsJuYWN2O201XYoz2QxCvSH4fD60NjXU1KoA9XNusVhh97gBBJBMZ5BKqZY3/X39YFlWL7tqfmCKokZAW3i2ZpkTUDss07l8UQt3qWAvK6qz7uzGOiyd1aDvETRN6/9dbIyGSFKpFACYNvJjxXBSEkd7IhkOSqfbNWimapFIBBs2bKieDVEBPrcDn/zYGmQGQlBAwcqzNSeojbnVgighJwj6kKFRfNSgtX067Zaipzyj6FyPeqTTabW1r2C3koz3Q8jbwFmsZV5UGoynDSvPlcxLVIChvKQoQ9uOaBt+nduuDq1VQDweR39/PxoaGmCzO9RaOq1mgtdqiKEKXWAuh6ViBnkpFIWAgtrezXEMXC4XXC6XXgLTkvCksASbzQaPywm73QFnYdajeP5C1XEoikJLSwsYmoYgK6q+RVUuGRrBs6xKhFVifY1w220YSGZrliM12K2cej2arjhbk06nEQqHEKgPoN5fp5fOSv3UytbLMXpOvNVigdNuQzYvQlHKO+hcTjusNjusVhtYjq05HMuxTEEnge6llq2wjmgkCp4B7rn9OlgsFsiyDEVR9P8A6B1UFEVdFGIZjdiutf5OBvGNFVOKSIYCy7IQxSG6isaASkSVz+fR0dEBRVFw+eWX646sIwHPsVjWWofFq9rw4nuHh3w9gfrE7rBwkGUFEhlsS67UZUSUwTRDujBVbUQul0M0EoXL5YLf71fLaqKAbCaNUCgClufgsDtgd9hhsZQHUDEMrXck1fLp0lZPiEqItezgNThsFgwkM7BwrB4bW7gK+vr6kEqmdCdc7f0nK8yoVIKuz1AYcu1WnitYk6Boal0rgdltdhA/gSiKyBZaZHtDEfA8j/o6NxjeApbjIUsygsEgOJ5DQ0NDwXp98CRH1+hiAtRNWxPMtVjfau/TamF13azUiLK8bZZGvpATX8luPplMIhKNoLGhES6XQx/uA4x+apVEfqKfMoBSN+Gcnneu+YEpooD+WALhcET3A/PVecByXNFwLKA2jGQNxJgqWYd26iOKgns/fTPcLrUkpG3giqLopEIIGfQDK5DJRJLKaDSSVCo1LfPagWlGJAzDIJcbuoV0LNcvzTzZu3cv6urqsGLFilF1YQDq05CiKJjV6MPnrrsUL71/BCd7IlVfrw0oJjJ50DR0B9xqrao2Xv1iEYIicRqAvkHU++vhdqs1bb/bqWZi2Byob2hEJp3GQDyJYDAIiqJ0UrHZbLDynDrlXcOC3QijX1M1O3gNWsjSoP5Q2EhTWYQjYQh5QXXv5bgy91/jjErFDibrYAfTUGtnGNWhWds4S63VB38vFDiWg6+pAamsAJ8iq8mG6QyEvgF14xNEPVudpmg4DZ1UgHryqdbFZOFZddDU8HuuZlXC0JTaBmx4ZtCNKCs8uVcStjWCEHJpRKNRNDU1qVPwlvJOPElWIMpqqTNl6AIsHSLV7tRg5orqEkCBQn2dB8l0Dq0Ol+4HlslkcPrMWdAUBZ/XDdAc7A67mj9foYyqr8NmwfFTZ6AoCj51/ZWY0VDe6Wksa2lkohGL8Xs+ESWw0ZS2pms6IjDFiGQ4pa2J1EiMDsC9vb04cOAA5s+fj7lz547pKcH4hGS38thy5SrsO3kBr3UeKyu7aO2yiUxO/eBLBJJUyCev0MbLsjREWdY3QUmSIRU2we7zQSQScTQ1NenCsstRvDlKMgFvs2OBz4d4KqP7MkWjURBFhsvp1H2ZmMJmVC18ymkvt/BIZfMVLVDoQvdXUTcbUfWJWF8ElFJw7y3cO7ejXFyv5mPFcwwyQjnx6k/tRbMbBBaO03M7BjFora5NravrGNw4GVr1tHI5XcjmsggGg6hzOZDM5nGm+ww8LicSFgtshSlxI0o70uhCi3ilj39pXj0hSk3BfPDJXc0jMRohGkFAEOnrQ2wghgXzZkMGXQj+qvywppc6C12ALMOo5otVHnCMFjWKQoqcoTU/MJdTLR9qnzuSSyE+EEUvw+vNDpofmL5uheDYyW6wDIUr16/ChqVzKv58IzSSqHZa0faV8TqtjFYjMU8kFwGjaf8dCTSiOn78OM6cOTOmDHgjjE9FDMOAoii0LZiBGQEvXnj7ICLxlP5at92KRDpXNGSofYFL5zAoSvXoKhUsFUJw4vRZEFnEnFmzQBUsKuxWrvKMSOGJ3Wm3guc42G12+H1+cAyFSP9AUWux9uWWZZXcMjn1tKGbGlbYVMqf8AmsFTZCURQR7A2C53k0NzfDblPbaotOFyUoTTMUCxtCabu1fm8UUpjdUM0i7dbqeSHA4NS6y26BKMtF80Ea0pk0wqEw/H4/PG4PmngWoiAgkUohkUwhGu0Dx3N6IqQ2d6GRvtNmgaKgpnZWpFdZLEgMkROvPrnL8LnsiFUQ4gkI+vv7kUwm0dLaApnQqqX+ML5fgiCB51mAIjWLnIDqEpAXJPAsDY5hK17f6AfGMgwURUIum0FfLIGBgQEwDKM3O1gsFoRCIVCgMGf2LFy7fumoNt7S04rxv/E4rYxWI5mOHVvANCOSiRbbKYrC2bNnIcvymDPgjTB+YI2o9zjx2Ws34Pf7T2LvsbNwWPki0bn0C1JsQpiFw2atUIKQdKG3qbEZNMvAYbUgL4hVO7Q0GMsoNE0jmc6hzluntxZn0hmkM2kMDAzorcVetwsup7No/qMyBrvMOJYpa5nN5XPoDfbC6VLbewkopLJ5eJxWZHLVy3rGewMQeJ1qB9NQm0uq0G5dLS7YCKJALVlxLBiaLtIrEskEotEoGhoa4HQ4C2sRYbda4bDb4HC4VNuWjCo6l+bX22w2UBQNmUjgOXbIrA6WoZFIZcsMHSuB5zjE0jnwPFdY16D+FI1EkcmqDr48x4NhKGRFCZIsq6fWKt1ogPrHFIB0RhiWyM8yNNK56i3lgyCFbB0KnNWOhfN8SKazyGYHT8mSJIGhGfh8ddi0diFsluHnildDpRKYRiqjPa3Isjzi+O+L7bM1nphSRDLUl38iS1uZTAbxeBw8z+Oyyy4bUfD9UNDeVyUSZBkGG9cswqyGOrz0/mHd5qHaxql1sKgllOKNJC/k0dvbC5vVhkAgUBiEVG0+7MOw+VDXqLIBURRQFPRSC8uwcLvdcLvd+saYzqTR09MLhgbcbhcohoPdXrvrhGVopDK5ovKSNmFf56uD1+PVX8vQNHJ5tb5utXA121YBVVCPpbJw2HgIolLz6drCs+rMjkJqGi2qUFMoU4ap9XQuj1gshlgshuamZt1YVFuHdj1NLGecDJzOQnhXLq8Scv8A4qQPoYKnldOhhlBVEsuBwtR4IcmxkuOvERSlWrwQhQwOgjqsiCcziEQjyOfzaGlpKZTcVBsW7YSYTNfWwrQ4aWBokd9oe6+3lFeJDjDqLfop3MLDZrHAYrUgm8vCalVnVOb67TjddRChs6cQCATg9/vh9XrHrHNUK4Fp5DLc08po50hMIrkImKgTSV9fHzo7O2GxWNDU1DSuJAKoRFKttRhQdZHZjXX49MfXYmf7MXT39te8ntNuwUAqA5Zh9Dq4Vl7xer3w1nmLiIjnOSQz+TIhvhKsFrV7CQRlbr8aaIqGw+FQNz+bBX2xBNKZNORsAv19UbC8RRfsjdqAbstBBq1BguEootEoAg0B/Ym+cFeKyl+VxG8jjPYgmZxYUaDWoOeFKEA1LURfRUGz0tqqZVlBWsojl04gEVdjcS28peI6gMGmAM25gAIFq9UKq9WKpoYG5AUByWRKn7sIchx8Xjd4ixUsxxs2ZgKGoSHmBz//pbG+xgRDp63E8ZkA8VQG8YE+KJKoZokU7HQqCebVCMJZmPsxoprI77CW58QbowOMeS52K1exq04QJHVOJBoGx3JobGzE7CYfbr+6DZIkob+/H5FIBAcOHICiKPD7/aivr0d9ff24fI+rCfbGUwtQfloZLZGYpa2LgInQSDSjyCVLliCRSFTd7McKrXOrFMbarMtuw9arVqPzxHm8vu9ExSE6m0GLUMVmGYqQQzgcRiAQKPogEkKKRGqjEF9pQ2ZZWn0CLfxY3e3XoU7Elz5tasKztjECgCxLUEQB4f4B9PWp2oDD7oDH7YTI0Pq1CQjOXOhBJpXC3DmzAKr4S1e+RsMApqIUzajwHItMSVdbuUCt3cvyvBDAoIVoNvyF96oL+YZ7Go6Ekc/lMWf2bPA8p5eMOEMXmhGyrCBVZmtCwNAUaJqBx+OBx+OBoihqsmEmg/6BGFiGBs2pLbKN/jpkKpzItFhfYytv6ZoB9XPW29sLQghaW1t1oqlkwzL4b4oJgmWZmqdao8gvSgpyFRoeNGi6mdNuRS4v6q3JpZBkCcEeVTebM6sVFp7DDZcuA0VR4DiVWBobG9XArYRaZjx79iwOHToEj8ejk4rLVc2uf/gY7mmFoihIkjTin5dKpUwiuRgYzxOJoig4cuQIQqEQ1q9fj7q6OnR1dU0okRjXrk0MG3MLtA/emoUzMSNQhxfeOYT+RFr/N6VeVIQUZi3SKcyZORMWq7Woxl7aoaWifCIeqC7cgwCJdK6sXKQ+eZd37DAMC4ZhsXi+F8lMDql0WtcGJJno0+GpVApCXkBTczNA0WpoUaHmX/pUb4T6FD7YecUwNMq6v/R3Wm7fUutUo9qwD27KPMMiaXA4VhQFvaFeKLKCltYWEKiOtWreSx40BYhVRP4iWxOaAscwZeugabo4vz6XBxQRyWQKB8JhWK3WwZNeiXOx1srrdvBIlHW3yQj2BkHTNJqbmwFQSBYMHXNidfcBDXr4mJ7jUh2SrDonuJ3WoQdYQSFVmE8SJLlsVkaSJPQEe2C1qO3UeVHCTZcth8NqKb8SRemEPH/+fOTzeUSj6mm3u7sbDMOgvr4egUAAPp9vxPpFJVQ7raTTaaTTabAsC0EQhj0MmclkzNLWeGA4GokxM2S0EAQBHR0dkCQJl19+uV7fZhgG+fzQ1uijgbG0ZTweA4M+X0YEvE58dtN6vL7/BPafuACaLvaiUrO+w5AkCa2traAYtvCEZ9EH2Wq5+Bo35EQ6B5ejXLg3wlgukmSl7ARQilRWAM9xCPjqwDbUI5nOIZvLIp1SS3AEKqnkc3kwNKMHRDE0hUyF8CsjiKHzihAMqf1oJyuP04bYMIT4dFZQ18JQeqi8cTNuaWkZ3BAKROt12YalQQmiDJdNK7kQVPv9aCUwC++Ex1sHWZLQF4urJbCB/mIftcKwJiEE2bwIl82it0Nrcb4cz6GxobHIGVmSFYBQ+pxSNahW9oM2+ZXa0I1QZ4GG5/asldWoEvdmURIR7AnCalNJhAKF9UtmY3aTv+b91WCxWNDa2orW1lYoioJYLIZIJILjx48jm82irq5OP62Mx+atfR7y+TwOHDiAlpYW1NfX6w+MwxmGTKfTaGxsHPNaJgNTikiGgvYUMZqOCA3JZBJ79+6Fx+PBunXriq4zkV1hWmnLWFsdKviGYxlcs3Yx5jT58Mb+U/rpRJRE9AZ7wbIsWltb9Q+kJsS7HdaaPlcatA3Z73YinqlsUWKELKsblcPKD9ldpK5ThsWmGh5qpYhcLgeb3Ya6ujpkM9kiW3KX0wmXywmX3V4WWlQJFEUhJ0qwWbmaug+gDXhmYbcO3WWkXVvzGoslUugJBmHhLWhoaKhQ4lNt8ofuSlIn6FOF4dGhOp5oWt3EtWHNGU0NhawOoneB6T5qVhvqfV5QDAdRUsDzLCRJRE9Pjz4gaVy3UQQ3TqJX+sxoJcxqbehGGHURo9tzpWsby2rEYK+TzubQ09MDu92O+vp6UKDQUu/BFcvnVr2vtUDTNHw+H3w+HxYvXqx3gEWjURw/fly/P/X19airqxu1YJ/JZNDe3o7GxkYsWrRIv9/DHYY0xfaLBKPV+2iIRBsynDdvHubNm1e2IZSWn8YT2rW1D9NI0tPmtwTQWOfGjvcO49iZIHpDvXA61DbZsvAvWi23EIKClUTtDdZh49GfSoNj2SLxsxq05MJqQrwRdquWeUGBIjJCwSBsNjv89f5CJ5YVdXVqa3E6nYEk5nG6+wxYlkW91wOGt4DnLRXvk7H8VUv3ATA47KdUG0oshrapUqDQF0sgGg7D43LB7fWWnZRsVk7fJIfqSmLo4gn6Wh1PZfb0Bddkm4WHrCh6w0M96iHkBUAW0BuOQhAEWKwWWCwWpJIpBPx1sDvdRdcuF8GNk+jFHmkWnq3QHViZIDRvrKJ7ZFi3kTQZhlaz2EvuZyyZQqg3iPo6D+wuj/o54VnceNnycZs8t9vtmDVrFmbNmqUL9tFoFIcOHYIkSfD5fPppZbiWSNlsFu3t7WhoaCgiEaBYW9FOJpWGIXt6ekbtnjHZmFJEMtTGqm2+I93sCSE4efIkTp8+jVWrVlU9Pk70iUQQhBGTiAanzYIrFjUheqEbos8Hl6s8bAsotnnXMt+rlbisPIdMIdp0KCG+VLgfdPut/LTJc4OtqlpHmc/vQ0tjQH0SNrycZVjMaAogmSm4FmeySGXSEGJxMBTA8FbVQdZmB03TsBSML0s3wsqdV+XDj6VDicYN32Gz6NpPNptFb6gXXq8XHq+3UHoZ3PBZVksJrNyVVDzNX1nkNwraRssUj8OGRIUJ82yJRkRRFOrcLmTyecywuyBJEhKJBGKxGAAgOhCDjyiwWO3gOF53Za5UOiyeU8qBYSg9WKoMFQiCYeiqp6tiAs8VtRtrEAQBPcEeuJwu2J0euOxWZPMCrrtkKdz2kXvcDQcsy6KhoQENDarTcSqVQiQSQU9PD7q6uuB0OnVS8Xg8Fb+32WwWe/bsQSAQKCORUmikUjoM+fvf/x4dHR34+Mc/PiHvc6JBkZEE804wFEUZ0pRx586d2LBhA9zuyhtpKSRJwoEDB5BIJLB27dqaoTE9PT04d+4cLr300hGtuxa0GumRI0dw/vx5uN1uNDQ0IBAIDPsYSwjBqVOncPbsWaxYsQIKa8X2dw9hIJEpek0lGxFAfaosfdJkGLrQXVL+xa80n+ByWJBMV37it1l5iEXZIpRKJIK6qfX19RW19zptfNGmWclaBVA7u3K5HChZRGQgDlEQ4XDY4XI5wfGWiq7FFA04rYO1dqOIXwkcy6geWXkRFp6FIEkgCpBKpxAJR+Cv98NtIG0tf16SJVgt/BCzLYMzKtVsSoxgWQY8w4BQpPAwUPthw2HjIUoyZIXoQnU2l0Vvby/qvHVwe9y6+242kwFHA7xVdXw2pmlWgs3CqeWWIUw3AfXE57ZbhzUICgB1Ljvi6WxRV6JGIm6XG3W+Ov2zsHbRTHy0beGQ15wICIKAvr4+vQxGUZROKn6/Xy/V7tmzB36/H0uWLBmVdvv222/jtttuw3e+8x38yZ/8ybS0SJl2RLJ7926sXr0adXV1Q14vm81i7969YFkWa9asGbKvPBQK4eTJk7jiiitGtO5qKBXVBUFANBpFJBJBf38/bDZ1cLChoQFut7viB0iWZRw+fBixWAxtbW06EQqShNc7T+DAqR4AxTXvSqAo9VSjPlGr9flaZSyKpuCwqPMndlvhtTU+KQxDqfX/QitqKptXLTgSSTQ2NcJmLQ4WY1kGHEODQM2krz0Vr5KhIAjIZbPoG4gjl8up7rEl4VMaHDYeoFTNaKipeG3DzwkSREnWya+hoaEi2TMMBZdNHX4cDtxOK3I5seLgYCk4hoa1RktuKZw2HgohRbNEfr+/7EGLgIBnKKRSqcL9y6uWN4UJe54vvn/OQsuvlWeHzEVx2PhC/ku5EWUpVGFf0FM+M3kBeSGPYE8QHo+n6Hvd6HPhUxvXgp0C5R5FURCPx3VS0SJxM5kMfD4fVq5cOarS2/vvv48tW7bgn/7pn3D//fdPSxIBphiRqGlrtT+0v//977F06VLU19fXfF1/fz86OzvR2NiIpUuXDuuXHIlE0NXVhauuumpE664Eo7hWqUNDkiT09fUhEokgEomApmmdVHw+n14K27dvHwghWL16NSyW8rbH4+fDePPAKQwk0xjOxmO3cqApqqYgbITLYUEuLw0pTgPqZlXntCOWyiAUVmctmpqbilLyjGAZGjYLP+STuga33QIF6uS1QhQ1fCqdQSarpuMZ0yCtPA9CCDiWqZ4GaFi53WqBoiiIRPsQ7e/XnXArQSsraZ1utb5CPMdAlhUoIGq2eJWpdQ1aB5V6ikTNpgbt4YGAgJJFnDp7Hg2BhoqzCA6bBamseupjWQY0IYjGYoXTShY0TesBVD6PG/lCmzkBgctmLVjsl79PjlXr/toQIssyqs1JBW2OYajBbjEUyI0Gjp/qhsfrRZ13kER4jsGd126A1zk13XBjsRg6OzvBMAwEQVDjBAqnFZ/PNyyto6OjA7fccgv+7u/+Dn/1V381bUkEmGIayXAwHJuUc+fOoaurC4sXL8asWbNGdO3x0EiMJFJND2FZVh+m0toTw+Ewjhw5AlEU4fV6kUgk4PV6sXLlyqofzIUzGtDkc+PF9w7jfDg25NpYRt1YhyPEUxRVSOHDkC2igHri6Yun0N8XAU0IWlpbapRPCFhWTTq0WjjICqnpe+Ww8YgXyl/anAdjcI/N5tQ0yEg0AqIocDkd4C022Ow2eF2Omi2rLrsNiUwW0WgU2UwGixfMQ16sPE+k5ZZQVPWI4cEbqN5DbZPVM0CqhEQZT5WlekXpZ8hhGxTMk4kk+vr6MKu1FQ6no6ybSh3YHDyZSZIMAoLWpgYk01kQAv3+9ff1oS8SBm+x6UaJqaw2/0KXlPJImS5ijNM1anNqC3GxLpLP5dHdG0RjQO2WMq5707olU5ZE8vk8Dh06hEAggGXLlkFRFAwMDCAajaKrqwuCIBQJ9kb7HA0HDhzArbfeiq985SvTnkSAaXgieffddzFjxoyKUbeKoqCrqwvBYBBr1qyBz1eeUVAL8Xgce/bswTXXXDOif2fEcEhkqH9//vx5HD16FBzHQRRF1NXV6aeVal0kiqKg/dg5vHXwVNXSgt3GI1PooiKFck41IZ4QAqfd0DUEUiV7QoWapZFDsCcIllNJ0uOwVyzREEJUW3xj1geNqk/sFl41MzR+UhmGhoVjyshQIQo4mkK0P4Z0Jg0hr3Yx1XnccDgcUECVlcCS6ZyafyIIaG5uBsdycNh4fVJc/5m0erIsO51RKNivD77XSu9RA8vQ6uZu2FSdNh7JKu7JditfFG7FswwkRYGiEMRiMQzEBgZPUIW1aBoRRalEUm2Ww3jy0TJfYok00hl1kDSfyxeVEOvr3LoON1Q51dgmXBrTnM1l0Rvshc/vg8ftKbqHK+e1YtP6JVWvO5nI5/Nob2+H2+3G8uXLyz6rhBCk02m9BBaLxWC32xEIBJBIJLBixQqcPHkSN910E770pS/hwQcfnPYkAkwxIgEw5EBge3s7AoFA2UlDEAR0dnZCEASsXbt2VAExqVQKb7/9Nq699toR/9vSSfVKQ4bDwblz53Ds2DEsXboULS0tyGaziEQiCIfDiMVicDqduljvdDrLfkZvfwLb3zlUVr/nOVbNLSkhmWoeU+5CJkopKlmUMAwFURBx9vx5tSXVX6+vy2blIUpSUfpdrQ3IYeOLntgZhgJNVe4G0snQGLTksBa54kqShExGdS3OZbNw2a0Aw8PhdMDtdEAQJQSDqnVIU1NT0cmveMNXy1+1ymQ2C6d3MA0lrhuJXP3dKFWt79X7QKt6RU6ApdB5NdA/gEQigabmJlgtxQ8YdiuHvCDrljq1QFFq6YsiKLNWkWVZz6/PZFUxvc7jhtftggxm6JIxBXgKFjsayWazakNAJS2nNeDBbVe1gWMnXxcphSAI2LNnT1USqQRRFHU/sM9+9rPo7e2Fy+XCunXr8POf/3xcYiqmAqYdkXR2dsLj8WDu3MHhJG3I0O12Y+XKlaMeVsxms3jttddw/fXXj4gEKhm4jeYkcuzYMQSDwarNBKIo6ppKNKrmgwQCAQQCgSLnU0GSsLvjOA6dDgJQn6QZhq6aoU7RgNMy6DFV6+lYff2gEE9RFIgsovvsedTV1cHj9ZTbptCqe2+64O2UKeTQVwPL0AUhNl9IQBxitqXw5MvSNFK56uvWXIsVKY94IgkAEGUFLMuiubm5YhmOgMBtt6mtocPsYHLaeMTTlS1eSmHlOTA0kB7iPWrr97udiCUziBQE3+bm5qpNJC67BQohQ4rlgEqCoNS27mrxxVoJUcznkEqlwYBAYVg1TtfuqPi9Y2gKFE2DZ2kIooJEMolQKKT7XxnBsjQ+u2kD/O6pN5SnkYjL5cKKFStG9ZB47NgxfP7zn4fL5dIjvDds2ID/+I//wPLlyydg1RcPU04jGWlKYjgcxv79+zF79mwsWLBg3JIMhzsYNJSoPhxoLcrZbBaXXHJJ1dMUx3FoaWlBS0sLZFlGf38/wuEwDhw4AEKITip+vx/XbViKOU0+vNJ+DDRN6bMlFd+DwWNKURSk88O1KLEiFo/h7IUgAoEAXM7KrdWyom7CHocV2bw0ZIeWFqfqczmG1USQFyRYOAYUTdVyHdGH+AhRg7vOnjsHAtVI8uyZs7DZbHoJR9sUKVBQFAWSosDCVy8RaaAoIJOX4LJZCzMq1d8sIUS11c/li+xBqsHtsKE/kUZsoA+SkENLa0vFFmhAJahkNq+7F9dqCmAYCqIkQ5KVmq7Jan69DVavB26vAFEUQSQBA/Ek+qKDBp12hxpABQJYC7G9kiQjm80i1h9BfaC+4mdl45pFU5ZE2tvb4XQ6h30SKUV3dze2bNmCzZs34wc/+AFomkZvby+2b9+OlpaWCVj1xcWUO5EIQu0umCNHjoCiKCxevBinTp3CqVOnsHLlSjQ1NY35Z0uShFdeeQUf//jHh2VBPVY9BAByuRw6OjrA8zxWrVoFjqu8MQy1jng8jnA4jEgkglwuB7/fj0AgAN7uxK7Ok7gQiQ15HYZRnxwp0DXT+gD1ST2fSSEc7cPMGTNA0bWfSbRaPSEENE0hl6+9IWunIhvPVSy9GUHTAMeqm3ypnlAJHAMcP9kNp8uJOTNakM4JEAS1fTaTzhS1Fns9bjCMqiNoJaDqnVek6ARVq4MJKC/x1Vq7SmIiekMhiIKI5pZm1LmcFTUomqbAlGg5HMuAYUrFcm3NxSU7rexWiXwqlSUZhi6kacb0MhhFUQjUeUAYNXEzm80iFA6hIdCApoCvbBB0yexG3HDJsimnF2gkYrfbR93ie+HCBVx33XW47rrr8KMf/Whcs+GnCqYdkRw7dgz5fB6yLCMWi2Ht2rXDHk4cCoQQ7NixAx/72MeGtEYYDxKJx+Po7OxEIBDAkiVLxuUDpol9WgkskUjA5XajNyXjWChZs4tqcLakdtgTIQSJWD/iyRSamprB81xNIV59KjbkY1BaOFL1ifu8KOrieumQYem1i5sCCnoCx1Y0USSKiNNnzsNXVwev1wugPHdFVgZ1ATGfg6xAP6nYbDY9rKp0wy8VlLX7WuleWi1cxfkZbR7H+H5omgJNAWfPX4CiKGhuatZPzEZdptr9qLWWWlpOaaeWNi9S6bSqlgBVvUpRCKBI6I8l1Hsoiio5uVyoq6sDx3JFg6Belx2f3bQeFm5qFUhEUUR7eztsNtuoSSQYDOKGG27AlVdeiZ/97GfT1gJlKEw5IhFFsaaVe1dXFy5cuACn04m2traKsxVjwUsvvYSPfOQjVafOjW6eYyGRUCiEQ4cOYd68eZg9e/aEPYnlcjmdVE6c7cGBCwmA4fXyAwWqaodRpQl3WZHRF4lAlmUEGhuLiKmSEA9UF9dtFg6iLBcJ8QxDgaLoihP3lTqpqm2EmraRyuZ0QsoVLE/8/vL6vNo1NGj3opWEkpmc3hqbzqShyApsdhvcTifqvJ5CjobqX1VLn7HyLJSCuwDD0KAAfZ6i0trV2Q11U7ZZWJw8fVaNT25qKtvQaJqC3ap2n2kGi7Wg/V5ZhkEmr3bxVQeBy2FDNi8WPvO1twueY8DQFCSZQJRkJFNJRCIRuJwuiJKIXDYHjuN0Ym6s9+KWK1aiwVvdcWIyoJGI1WrFqlWrRkUioVAIN910E9auXYtf/vKX42JdP1UxrYhkYGAAe/bsAcdxuPrqqyfkiFjLgmW8RPXu7m6cPn0aK1asuKhdG2q+Qwjb396PQ909+hBfY70PMqlMiMa2XFmW0dvbC7uVh9dXX/H+UzQFp5XXPanUUk/1zcooxANDz6uwDF1oNRb0yNtaeg7Ps6AARKJ9SMRj8PkDNTv6tC4zWyFV0ggCtT1dI5V8Po86twsWqxUWW23LEaBQGrPykBUy5EwOoG7KHEPj6InTYFgGjY2NoKnqn3mPUz0RGIm2GjiOgZVji7zDqkMl1bwgDTmdrz2UAEBPbwR9fX1obGqE3abec1lRtZJMWj3xrZrtx6XL5xfZjkw2RFHE3r17wfM8Vq9ePap9JhqN4qabbsLSpUvx+OOPT4n3NZGYNkRy/vx5HDlyBA0NDcjn87jkkksm5Ofv2rULbW1tZV1TpXYno/lwaWFafX19aGtrG7eS3Ghw6HQPXnhrH3LZLKIDcRCiwG6z6xG6pe+PpQlOdZ+Bz+uBw+UdcvNx2iyQZBmCJA/5FKvV5Cu1n1Z7vcdhQzqbrzjYV/ra/r5+KEIWzjp/1Wl1IxxWDqCoIbudJElCNpuBLOaRSmWgUJQuNlst1or3yO2wQlYU5ITaOg4AsAyF091n4XU54PR4QdUgEe2UA4oCzzBDaFwENqsF2ZxQ8ZRXCu1EqZYYLTXJR3ttPBFHKhFHY2MjWK5y1WB+az2uWjZTtw3KZDJ6TkggUJvwJwqiKKKjowMcx42aRAYGBnDLLbdg9uzZ+M1vfjPu0d1TEVOOSCRJKpouVxQFR48eRU9PD9ra2iAIAs6cOYPLLrtsQn7+66+/jmXLlhVZsIyHHiKKIvbt2wdJktDW1jZse+qJRCyZwUt7unA+MoB8Pq8/aYuCWNTBJIgCQqEQZjQ1wOX2IDdE5xKgCuAWngMIhvX07bTxyIsyWLrKlLgBmikkgJo2IoQQRKIRULIIjz8Ar8tRlPJYCSxLgxBAKjgn1+p2Mua5K0QBTWSEowPIZFQzTc3HSnMtNpa/1IFKtupciiJL6OnpgcVqQ32gHvaa2SXFIv9Qw6al5UB1XqZ8uBOorItUIx8rzyEniojH4ugf6EdzUzPsdptedjN+b9wOK+68dgOs/OCTujYzFY1Gi7zo6uvri9rbJwqSJOnefKtXrx6VnhGPx7F582Y0NjZi27Zt4156n6qY0kQiiiI6OzuRz+f1IcNwOIxjx47hyiuvnJCf/+abb2LhwoV6ycmYFzDaIcN0Oo3Ozk44HI6adieTAUVR8M7hbrx3pFvXEkRR7WBKp9PI5dQNp77OA5vDDY7j4HHahohRNXYC1Z6IBwAbzyErinrrbi0hvlRMrtZJpRAF4VAYNBT4Ag162amSmG1cd6mjby0LlEraj83CQZQkpNJZvQtMFEW4nHZYbXbYbHa9Vq4J1MkS+5a8kEd/JAzeZofP59M3cYqm1CyRkvdaTSeq5NdltxYsXio4Lev6Chl875JcWRcpJR+aVu13wpE+DMQG0NzcXDQk6SwYf8qK2rX3qY1r0ez3lF1Xg+ZFp02IK4qiW47U19ePe6loPEgkmUxiy5YtcLvdePbZZ6fEw+LFwpQlklQqhb1798LhcGD16tX6l6+vrw8HDx7ERz/60Qn5+e+88w5mz56NpqamcRHV+/v7sX//frS2to55zmUicT4Sw4vvHtY3JAKCgYEBxGNx+H1e5PICUuk02MIAmq/OA57nIUrl5ZlKG1s1Ib6a8FzajaRfu2RyXYOxdVZWVC2HoSk0N7eg9BNuFLONf1e56woVLVCqdV0Bqu6jTpQXcmFEAZIgYCCeqOharD2V5wUJuVwO8f4IeLsT3gpBWkCxDf9QGpTR9ZnjGBCCmiW1QVsTUT1h1Dh9akSYyOTgsllwrieEeDyO5ubmik/iGvmsXTQLG5bMrnrdsp9DCBKJhN40kk6n4fF49Lkpu90+pu+VJEno6OgATdNoa2sbFYmk02ncfvvtYFkWzz333LRNOhwtphyRyLKMYDCIffv2YdasWVi4cGHRhyQej6O9vX3CAmDef/99NDc3o7m5eUyiOqD2j3d1dWHJkiUVvcGmGnKCiJ17j+LomRAikQiyuSxaW1pgt1khiLI+Ga49aVMU4K/zAAyn6ioUXbNFtNITdS1xvXRDVo0mq+d0MAwNmiI41X0WHMdh9sxW5IXqZSy1vVWdaRlqml9bqyQrUAip2XUFGMtL+aKTiyzLyGQzutisue46HA44rBwuXOiBw+WFx1P9aR1QZ1QsLIPcEDMzGuwWHhQ1dL49AIAC6ly2Qt7N0J97t8OCYG8Ekb5+NLc0w8JXL+fMafJhy5Wj64LSoHUiaiUwzeFhNFG5sixj7969YyKRbDaLT3ziE5AkCS+88ELNzKMPKqZcP9rZs2dx6NAhLF++vOLE50SmGAKqiG4U/EfzgSeE4MSJEzh//vyozCMnC1aew3XrFiPbH0KoV0JrSwvcTodex9cmwx0OB0g9QS6fQzqdhpLJIBoJw+1yIWWxwmazV/xCEj0NUJ36ViNfq4vrenSt3QpRlAtT5dU3tmxONY2sr/OgsaEBqSE2TS0L3eMsJB8OsWlqKX8uuwWxZO0pdC3f3G23QpCNvmQMXBVci8OhMCgQOO028BwLWZZrbmqSJINjaJVoq5QBjWBYGpmces+HIhOHlUd/IgO71VLmk1YKC8+i+1wPkskkFs2fC6EGqTlsFlx/ybIxax1WqxUzZ87EzJkzIcuyXgI7ePAgFEWB3+/XS2C1hG5ZltHR0QGKokZNIrlcDp/5zGeQzWaxY8eODyWJAFPwRBKPx5HP56s+kY3WD2s4IIToaYqtra013XarQZZlHDx4EMlkEmvWrJlWR1xtyt5isWDWvIV4ff9JnOntH/LfERDQIMhl04j0xSEIAqxWq/6kXcnGw223QpTlYQnxFKWWrhSZVBXic/kceoO9cLvdmNnaBFFSQFEY0tJEc/RlGbqGmD0I7XShlpfKc9mNsFpYtTREautEyaQ6a9Hc2ICcICKbzQCyBMKwehdYaaaLMbFyqOwSo8hvHBys9M03Ogtr98fYnm0ERQGxgQHE4gk0tzSD5/iqJUmKAv7go2sws6HcQ268QAjR72UkEkEqlYLb7dZLYA6HQ98zZFlGZ2cnFEXB2rVrR0Ui+Xwef/iHf4hQKISXX355WGF7H1RMOSIZKiVRFEXs3LkTmzZtGtcBH60zK5/PIxRSSzuxWAwul0vPdB6KFHK5nB52s3r16mnV9pdMJtHR0QG/368HgcmKgrcPncaerjMVNx0jtLKTy25FfzKNTLog1mdzqgdTwdiPt/CwWfiCvlB7gh4o7oyqpFUAQCaTQSgUgs/nQ2ODv7B5D9fSZNAepNamCZR3MBmns0tRyXLeZuEgl+hE8UQc/X39mDdnFgg1uJmJkghKkRAdiCGTyYJlB0nF7/WUzc9Ue6+lwVMaKjcREFh4rox8NU0pk8/rxKkQBdlUAtGBOFqaW4rEb5qmYDeYegLAZcvn4vLlc3ExkcvldLG+r68PPM8jEAjA5/Ph7NmzIIRgzZo1o9pHRFHE5z//eXR3d+PVV1+F3++fgHcwfTDtiERRFLz00kvYuHHjuLXWaYJ6qaguCIJu4a61I2oW7qXRuNpG7PP5sGzZ2I/vFxN9fX268eXcuXPLNt1z4QG8+N7hqtbvpd1LxqdS3W6koAlwLAuH0wGL1Qqb1QaKoqoK8UBlAdx4/WQyiUg0goZAAzweV8Wp+GoeVpWaAtRN01J22uA4FlIFG/7KXWnVLec15+REJod4PI5YLIYFc2dDJpU/L1qb80AsoearZLOQCYHNVtxaXPm9lnehFS+mmJirNhto96BAnJm8gEwihr5YEs0tzVWNI52F+9hS78EfXN02qd8JzeQ0EokgGAzqXWANDQ2or68f0V4iSRL+6I/+CF1dXXj11Vc/MFbwY8G0IxIA2LFjB6688soxl41GkiGitSNqxogcx+lhU5Ik4eDBg5g7dy7mzJkzZTuzKqGnpwdHjhzR80+qISeIeHlPF06cjxT9eTWRutJTKSEKiCyhLxZHOp0GIQR2u13XXVx2a9ETda2OJJqmkEuncKE3XJictulDdpVQOrcxlKWJ0eRwqHAooNhOZqgNmYAgm0oi2j+AWTNngKKZIU58Klmlsmp2STyRKmotLnUt1rzGKJqqGTylwWbhwDIUEsPItyeEIJOIYSCRRFNzy5BP8y6HFXdsXKvmwEwyFEXBvn37IAgCFi9ejP7+fkSjUcTj8aISWKWcHw2yLOPee+9FR0cHdu3aNS5msR8ETEsiqWVjMlyMZVJdURTdwr23txeyLKOurg6zZ88edl7zZIMQgtOnT+PMmTNYtWrVsI7mhBAcPB3E7s5jkCSleP6jCtSnUrUkYtxgCQjy+TzSacOGaLch4POCZnlYeB4KUSpOXGvT6olkAgvnzYFMCt1iQ2yamj4gSDLEYUzcAwROmxWEKMPKC6FowG23IZZMV51CJyCIRqLIZDOYM2sGnHZ7TdIxwuO0IpsXi05ugmiwbDGkGQbqvLBYLcjmxSHLkjzLQCEEVgtXM1OeEIJIJAxFkjBj5gzQdPWMGw1br1qNuc2TX/YxksjatWuLSnH5fL6oBMayrN4FZvw+y7KM+++/H2+++SZ27949LToxLxamHJEMJ2539+7dVcOfhvszFEWBLMujng/RYn3D4TAWLFiAdDqNcDgMURR1i4dAIDAljdqMVi1r1qwZcadJfyKNl97vQiSWrNkCq4FjGTgsHGI1hhiNG6IsiHA6bKA4Hg6Ho0hoVjcz1Sq/qbkJPMfDZbdAlBTdvbcWNL8rUVaGFOIBtfwlyXKZtlHtfSpEUecvKuSyE0IQDoeRF/JobmqG161mydeaQtfgtKuGkjRNF4WKGaGlGQr5LFKpNEDT8LhccLmcoBmuqk5k1EWMMyqla+8N9YKnAY8/AJZhh9Sg1i+ZhatWLah5zy4GFEXB/v379cHmWsOMWv66JtgLgoDHHnsMbW1tOHnyJF5//XXs2rULs2cPfw7mw4BpSSS///3vsWTJEgQCgVFdfzzsTvbv3w9BENDW1gabzaZfO5VKIRwOIxwOI51Ow+fz6brKVLBLkCRJ/1KtWbNm1NO3kizjrYOn0X707JCvtVo45PKCQZOoEZpFCGw8i3DfAIgsoD+WAMOqQ5B2mx0DsQHIsqwnGlp4FoKk5rlXEuJLr10q3NcKk7JZOFWMJtWnyg1XL9IjSie/FaIgFApBltS1e12OIl1F7bwiFclKf48Gzq624YOCGsWbF/XW4kwmDZ6h1Ijhgpea9pRdqQzHskyRXxchBKFQCBwDeH2BshN3JQ2qye/GpzauBTPJWqGiKHpo3Lp160Y0Ea91gT300EN44YUXcOLECSxfvhx/8Ad/gFtuuQVr1669qLrPgw8+iG984xtFf7Z48WJ0dXVdtDVUw9R7XB4GRjtLUk1UHwkymQw6Ozths9mwYcOGohMHRVFwuVxwuVyYP38+MpkMwuEwenp60NXVBY/Ho3eAaeRzMaF1lXEcV7b2kYJlGFy9egFmN/qw4/0jSFcxW2QZpiB+U0hm8rDV9IxSPZiSmbxetgw0NCKZSiEWSyAYU6ODnU4n8vk8WDuj6lyF/SuZydW8fpHFOlFfXy1bhGEKHVeFfXpwBsZScQMvFdzVlEfVryuRyqC3NwRCCJpbmuG0WZHMFp/O8oIEilLbehOpQbKiKAoEKCIRAEhlBbAsAytXbNCoWuHnC2mGqhhP4IcgCJDFvD4hbrFaEKjzok8QyroLJUmGKElwO2z62mkKqKuv7D6cyQlgGBp2G49MVoCFZ3HTZcunNYkA6r3X9JJ0Oo233noLx48fx3PPPYfvfe972L17N9asWTNBq6+M5cuX45VXXtH//1SpeEy5EwkwdG77e++9h9bW1mHXKEciqtdCLBZDZ2cnmpubsWjRohFdQ5vGDYfDGBgYgNPp1MX6WuLeeCGVSuldZVp773ghmxfw0vtdONUTLfmbyl1DNE3BZuHLyMdu4SvmY8iyhIFoGKJCwePxIJPNIJ1Kg2Mo0JzhKZtmql7feLooRaUgrFoT96Vtv1rZqZJQLcsy+qJh0DQNX30AHMsOORWvmiJKkCR58ARVBUaDRofNilS29mAlTVPgGBoD8TgSiSQymayaD1IwmLRarfq/V4iC/mgEiqKgpaUF0hD29JoGdfXqBVg0s7HmaycaiqLg4MGDSKfTWLdu3aha8Qkh+OY3v4nHHnsMu3btwtKlS/W/EwQBHFetXDgxePDBB/H000+js7Pzov3M4WJq0NkIMZITSamoPloSCQaDOHz4MBYtWoSZM2eO+N8bp3FFUUQ0GkU4HEZ3dzcsFot+UvF4POP+4ezv79ctZ+bNmzfu17dZeNz6kZU4cKoHuzuPQ5aV4jJSCRSFIJXNFbXZciyDvFQ+uS4IAoLBIOwOOxbMaUU2L8But2POzBb0xZJIp9OIx+KIhCOw2qz6rIWsKOoEfS4PmmLUHI0q+6AsK0jJeX1Qz2GrHMSlQSw8sbvsNgiihHQVaxVJkhAMBsHxHBoCDXDYLJAVUr0dt4B0Vn3Cr3M5EEtlar5Wm6B32C2QJXnIritFIcgTGU0N9XA6nZAkRbdsCfWGAKiuxTa7DYlEAgCwYO5ssAwzZHYJBQrzWgIfGBL5zne+g//4j//Aq6++WkQiACZtRuz48eNoaWmB1WrF5Zdfjm9/+9uYNWvWpKzFiCl5IhkqbrezsxMejwdz59YecBoPPYQQglOnTuHs2bNYuXJlkb38eECzeNDaimma1kllpL5BlaAR4FDtveOFvkQaL7xzCDlBHFbrKccyYGkKCsqn0LO5LHp7e+HxeFBXVwcKFDiWgc3CIl5iaSJKoi7W57KGzHW3B26XDanMMDymoJbW8qI0LCGeptVTlCDKZYFPoigiGAzCarMiUB9Qy552lUiGypQHClPxeRGuEkfeStDakwVRGmIAU4Wmi5SerAgIcrkc0qk0EskECCHwe92gCtqK22mvufaA14lPX7MO7CR2LRJCdGeJ9evXj5pEvve97+G73/0udu7cedHLV9Wwfft2pFIpLF68GMFgEN/4xjdw4cIFHDx4cNKtWaYlkRw8eBAWiwULFy6s+prxIBFZlnHo0CHE43GsWbMGTqdzxNcYCbSOEY1UZFnWu7/q6+tH1FY8mvbe8YIky3jjwCl0HDs35Gu1RD0KVJFQrnXB+f3+ojZvjmOhyLKacVGFqLQhyHQ6DSIJEGSCBp8XYDhYC0OQlcBzLER5ULivJcQb7eyNKZIURemnKIfDAX+9HxQo2G28fnJRZ1oq538A5VPxg4685eRWKSa52gAmUClfpNhdQFZU01SGZtDYGEAylUYqldJbi10uB3xeLySCIiLnWAZ3XrsBda6LH0algRCCQ4cOIZFIYN26daNqbiGE4JFHHsFDDz2EHTt2TFiA3nggFoth9uzZ+O53v4t77rlnUtcyLYnkyJEjoCgKS5Ysqfj34yGq5/N57Nu3DwDQ1tZ20Y+ymnW21gGWy+Xg9/v1DrChWhi7uroQjUZH1d47Xuju7cOL7x2pOiQIFE/FaxPrfQMDiEajqn7kGCRvLdBK21ArWY6UXjuRyurdS6KQg6Io4C3qAJ/mWKxdm2OL5yLsVq5qEFalbieHjUcsnsSFniDcHnfRKarUpqRS/geg/t4dtgpT8ZQqpJeWlyplogDlA5hArel8NVNelCScOXseDMugqakJVkNbsNZanM6kkclk4LRZQHMWtQxmteHGy5Zj6ezJG84jhODw4cOIxWJYv379qEnkJz/5CR588EFs374dV1xxxQSsdHyxYcMGbNq0Cd/+9rcndR1Tkkhq5bYDwLFjxyCKIpYvX1705+MlqmvCtNfrxbJlyyZ9wJAQoj+hh8NhpFIp1NXV6aRibOEdr/be8UI6l8dL73ehO9hX9nc2a0HQ1jqjQJCIx5FNJeHx1Rd1tpUGWmnQLEdK5yosvFrqMX66CQhEQYAs5BEZiEGSJHUq3G5HQ72vouV8pSAsm5UrkGPxZyubzSIaCSMQ8MNq0wiQ1Mz1KD1tVAup0mC3qqU0SZYrvkcjioKzoLYFVyvZybKM3t4g3A4bHO46eJy2qic+Qgiy2SyEfA7ZTBoNbiuu27BUPzlf7HxyI4msW7duVJ95Qggee+wxPPDAA3juuedw9dVXT8BKxxepVAqzZs3Cgw8+iD/7sz+b1LVMSyI5efIkUqkUVq9erf+ZMYQKGD2JRKNRHDhwYMKE6fFANpvVScVo7+D1enH06FFwHIdVq1Zd9C90NRBC0HniPH6//6RebtEibbX/T0DQF+1DKp1Cc1Mz/HXuopjboWxHjG68lQwTy19vQSyZRjKVBCQBA4k0LFZLRbddo2MuQzMgIGVlo3QmjXAoDH+9X20BL3RSDWVKCUA/bUi6G/IQlvAMBRvPQZDkIYckAYDnWVg5tmqqpSRLCPYEwfO8qs257EhkcsOY/Ad8bjtu3rAI8diA7rjr9Xp1Uplo92tCCI4cOYL+/n6sX79+1CTy3//93/irv/orPPPMMxOWdTRWfOUrX8HmzZsxe/Zs9PT04B//8R/R2dmJw4cPj2qmbjwxLYmku7sb/f39WLt2LYBiPYSiqFEL1OfOncOxY8ewbNkyNDc3j+oaFxuCICAcDiMYDCIWi4FlWcyYMQONjY1wuVxTiggjsRS2v3sIfYm0Pv0NGCa+8/kiE0DNoZaiUTPQSoPmj0VTVNUs9NLXWywcUuksJFlWxfp0GtlsoSW2YINvsVhAgQLPsbDwjG7friGVSiEcCaMh0FCko7kdVuQEcVibPcPQsPEscoJcM1MeGDydUaDKUh4rwWGzIJ3LF2ZMigdCJUlCT7AHVosVgYYALCwLUVFAU1RNHUdb82euWY+Ad/A9a23ukUgE/f39sNvtus433h2JhBB0dXWhr69vTCTy29/+Fvfddx+eeOIJ3HDDDeO2vvHGpz/9abz++uvo6+tDIBDAlVdeiW9961uYP3/+ZC9tahKJMbe9Es6fP49gMIgNGzaMW2fW0aNH0dvbi7a2Nni93jGs/uJDa++dMWMGnE6nnh7HcZzeAeb1eqcEqYiSjLcPnUL7UVWIVxQFvaFeKIqC5qbmsjIixzKw8ExBBxh6/U4bD4qmkUxXn3DXoHYXEdgsfJHQryhqS2w6reoBFEXB4XCg0V8HmWLgttv01ycSCfT19aGxsRF2+6DQrJWdQAFOa23hHiC64WTtTHkVxtNZrUx5oFwXsVl5PaxKlEQEewqdZYEAKKDILqVapryGTesXY+W86rNcmtGp9nkEoJOKz+cb0zCdkUTWrVs36gHfp556Cl/84hfx61//Grfccsuo1/Nhx7QkkmAwiO7ublx22WVjJhFJkvTp1zVr1kzKxPlYoLX3lsb5arbZWgcYAH0A0u/3T7rN/ameKF545yBOd58FzdBoamwqXxM1WNe3WTiIslwzrc/o6FstYMkI49BhtddrKYZEEhDpj4EoqmOxv86DTDaHvoEBNDU1wWYd/NzQtEpSxpOIOmQoVjShLNVFaoVPWXkOuVKjzCo5Lcb7ZwRDU2Ao4PjpbtjtdtTX14OqYSNfqWts0awG3HTp8mF/5wghiMVi+mkll8vB5/PpJbCRnCa0B79IJIL169eP+jv73HPP4e6778avfvUr3HbbbaO6hgkV05JIwuEwjh07hssuuwyEkFHrIdlsFp2dneB5fkppCsMBIQTd3d04ffo0Vq1aVXO+RfsSa7qKZiypZTFMhs1CJpPBm++8h8PBJGTWXvb7q9TWWit4qjTZD6hsZa/B5VAt642o9nqeYyDKqv4m5AWk04U5C0WB22kHa7HpFu7VmgIAzX+ruJPKbuXLQqqMP1fLlFfXV05QRpSSYTViEEQBPT09aPT7YHe5QUiltuASGLzJvC477rx2Ayzc6D836XRaJ5V4PA6XyzUsG3dCCI4dO4ZwODwmEnnxxRfxuc99Dj//+c9xxx13jPp9mFAxJYlElmVIUuXuEm1TfP/999HU1DTqJ+x4PI7Ozk40NDRg8eLFk/6EPhIoioKjR48iHA5jzZo1I7LT14zoNFLJZDJFbcUXo805mUxi7969aGxsxKJFi9Bx4jze2H+yiASqdS9pliBpw9P6UHkhRit7QNUMalmJGIV7iqLAcQwEQ7mnL9qHdDqNQCCgtqrLAmKJFDieR4O/DqA5cDxX8frqaUMtjXEsW9UqXwcF3a/LabfWLHkBBTK08iCKglROKFuDIAjoCfbA5XLB5/OBZ1nwHINsJQPISvfGbsHmy1egyV85Cns0EAQB0WgUkUgEfX19etZPIBAoGsolhOD48ePo7e3F+vXri0qJI8Grr76KT3/60/jxj3+MO++8c0qUfKc7phWRGO1OtGNyOByGJElFZZuh2nVDoRAOHTqE+fPnY9asWdPqgyTLMvbv3z9upTitrTgSiSCRSEy4saSm58yZM6coBCw0kMT2dw9hIJGp6YulQXtaz+ZEuOwWpIbYYDUhnhBS5qRb9fU0BZah9WsbLexLkwFpCpCEHMJ9MWSyGbAMq4v1Rv8qDRaOA8tSQxKDBq/ThnROGDJTHlDvDc+yReQJAHkhj2BPEG63G3W+usKa1PZkjmWGlYvy0baFWLto5BZBw4Usy0U27pIkob6+HvX19fpc1VhI5PXXX8cnP/lJ/L//9/9w9913T6vv/lTGtCESI4kYS1nGwb1QKARBEKqWbbRp7+7ubqxcuXLSW+ZGinw+X5QJP96luErGksa8+rF+6UKhEA4ePFim52gQJRmv7zuBw93BYeWcgALqnDYMJDMYjhDP0ICjUJ4ZzutdNgtAAclMXrVSD4cgCiKaW1QL+6JrMzQoSvUdiyczyGazeoohAD3B0Ga3gaboQvkrD2eFIcNSaAFiDFU7U167J5ouYrRAyefzCAaDut2MBuNAY63IYwCY11KPWz+y8qJtvsbT84ULFyAIAtxuN5qamhAIBEZMJm+99RZuv/12/Mu//Avuvfdek0TGEVOSSEpTEquRSCmMeSChUAjZbBY+nw+NjY3w+/04fvw4+vv7J3Xae7RIp9PYu3cvvF4vli9fPuGlOFEUdVLp6+uD1WrVSaU0r344OHfuHI4fPz4sAj9+PoxX9nRVHeLToJ1cbJbBTqRqMGoXwxHirRZODcoigIVncP78BeRFqWJnmZrRzuutssbra/5VWmuxJEvwe9xqaJfdAYZhalqalM7EVMuU1+C0WUqMMglYCjhxuhteb11RR2IlXaRa7orTbsEfXrsBNsvFd3g4efIkLly4gJUrV+raykhbi99//31s2bIF3/zmN3HfffeZJDLOmNJEok2qj9buRCvb9Pb2IpVKgWEYzJs3Dy0tLZPm3jkaDAwMoLOzEzNnzsT8+fMv+pdAlmW9hh2JRMAwjF5KHMpY0mh6uWbNmmG3ViczOex47wjOhQcq/j3LFA8GDtU2Wyqua1pCZXsRChQoSLICWZHRG+wFTVOYN2cWMjmxXLivoOeoVvbF6yEgoBQFsUQSqXQKQl5QhyAdDrhdTjjt9iIhvqpdCooz5TU4bTySJcSQy+UQ7A2iubEBLrcHoijp/77UtsUIh43XUx5pmsInPrYGrfXeiq+dSJw8eRLnz5/HunXrimZ0arUWl5a3Ozo6cMstt+Dv//7v8eUvf9kkkQnAlCUSQRDGZVI9nU6jo6MDdrsddXV1uhbg9Xr1J+zJthGphd7eXhw6dAiLFy/GjBkzJns5RcaS4XAYiqJU1ae0qeNoNIq1a9eO2PRSURS0HzuHtw6eKhGC1dmP0ryQam2zditXdaCxVIg3ni4kWbWBZ1kWjY1qqJNRiFevXb3rquz0UNKOK0mSXv7ShiAb/F6A5cHzPDx2GxI17FJUw0XVr0vtLJOLtJ9sLoveYC98fh88bg8oGnBa1VKazVqeE1MKLeWxbcFMXLpsTs3XTgS0B5D169fX/OwoioJ4PF7UWnzo0CGIoohVq1bhj/7oj/CVr3wFX/va10wSmSBMSSKRJAm5nPHpcXRlHOOg3oIFC/QPUS6X0zfCWCwGt9uNhoYGNDY2Tpk5EkIIzpw5g1OnTk1ZPYcQgng8rt/LfD6v61N1dXU4evQo0un0mJsCevsT2P7OIcRSWQBD26XwHAOaopETxDIrlkowPt27HVYk0jl1WC8YVLNiAg1FG5CmPUiyMnTXVeH1NK2aN1az1pcVGdlMFul0GqKQU9fEWWF3qKaINTUUCweaAtKGKfRMVs0X8df74XYVd/XVuVSCGmrdADCrsQ63XbX6onc1as7VQ5FIJaTTafzXf/0Xfv7zn+Pw4cNobm7Gn/zJn2DLli1YufLiaTyV8NBDD+GBBx7An//5n+P73//+pK1jvDElieSuu+7CyZMnsXXrVtx6661obW0d8S///PnzOHr0aFVhV4NmMRIOh9Hf368LzI2NjRPuE1QN2sBVKBQacXvvZKE0rz6VSoFlWcydOxfNzc1jzqsXJAm7O47jTKi/ahphESj16VuS5SG1lsI7gMdhRzydgVDIEjEO65VdnlLbeONV/KtK4bTyoGhqyMx6QJ0XyWVzehcYgToE6bCrSZClm7rTbkE6J8Bp5ZFI55DNZhEKhVBfX1+mBWonKI5hymZaSmGz8vjcdRvgsI7tdzdSaCSybt26UWuZR48exY033og77rgDa9aswe9+9zvs2LEDX/jCF/DII4+M84qHh/fffx+f+tSn4Ha7sXHjRpNIJhrnz5/HE088gW3btuGtt97C+vXrsWXLFmzZsgWzZ8+uSSpar3lPTw9WrVoFn8837J9bKjDbbDadVC5GHC6g6hEHDhxAJpOZlpP2+Xwee/fuBcdx8Pv9iEajurGkVkocbesmABw924ude48NK3jKZbdCVuSqVvBG8ByjJjsqMs6ePw+b3QGfz1eVsLRT0VCdTkCxE/HQQj+B3Tqoi9gsHJLpNBKJlHpaEUXYbDY1Xthhh9flKCZWRUT32XOor28oe5JXT2dEP4kYZ1pKyY2igNuvbsOsxuF/f8YD3d3d6O7uHhOJnDx5EjfccAM+/elP4+GHH9aJN5fLIRaLoanp4tvdp1IprF27Fv/+7/+Of/7nf0ZbW5tJJBcLhBAEg0E89dRT2LZtG15//XWsWrVKJxVjuQoY3ITT6TTa2trGdKKQJEmPw41Go+B5Ho2NjaPuWhoOBEFAR0fHhLX3TjS0zrK6ujosW7ZM/wLn83mdoPv7++FwOHRSGQ1BJzI5vPjuYVyIxKq+xig8D+lfVdAu4okUgr1B+Orq0NLUWJYpr6F0oLFapxNQeRpdE/orvb5S2c64fkEU9CRIRRTAcDxshdOKIAgIR8JobW6C1+tBtsRwsVoOfSULlA1LZ+PKlRfXDFAr5a5bt27Up/Du7m7ceOON2Lx5M37wgx9MmUHju+66Cz6fD9/73vfwsY99zCSSyQIhBNFoVCeVV199FUuWLNFJxWq14k/+5E/w13/91/jYxz42rptwaRwuwzD6SWW8zBC1pgC3240VK1ZMmS/AcBGPx9HR0YGWlhYsXLiw6j3R8uq1bhue53WxfiT3UlEUvN91Fu8cPl02kV0ti6SSEK9ZsYT7BhDqDenCNFBJiDekKFZpvVWFdaJfu5pdSqXr2y08MvnK5pSl66cogKEo9MfjqmNxJgsCAofDAa/HC4vFArdj0MJ+KF2JoqDH9LYGvPjkx9Zc1M/g2bNncfLkyTGRyPnz53H99dfjuuuuw49+9KMp8x36n//5H3zrW9/C+++/D6vVahLJVAEhBAMDA3j22Wfx5JNPYseOHbBarVi1ahX+z//5P1i7du2EfYgURdHNEMPhMCiKQiAQQGNj46gz1mOxGDo7O9Ha2lp2ypoO6Ovrw759+zB//nzMnj172P+u1FhSu5cNDQ3w+XzDupfBvji2v3sY8YIQTxem0auVmnieBYXBp2+n3YJQpB+hcAiBQAAuZ3E5xSjEV0pRLIVxCLBaemGl62ulrqGy3LWJfpYZFO6TySQi0Qi8Hi8kSUImkwEowGF3wOd1w+V0Ip0vt0uphDqXHbd/tA1u+8XrZNRIZO3atfB4Rme9EgwGccMNN+Cqq67CT3/600kPo9Nw7tw5rF+/Hi+//DJWrVoFACaRTEU8/fTT+NznPodbbrkFuVwOL730Epqbm7FlyxZs3boVa9ZM3JOVoii6GWIoFAIhZMQOu5pdy8KFCzFz5sRZT0wUtPbksWa4GO+l0RpDu5e1jCXzooRdHcdw+HSw6txFEQpBUqIkI9I/gGgkqk/vVwaB024FUZSizqjqIPA4bUikc0NmhWiv9zrtelfaUHDaeFAUjWQmi0Qyib5oHxqbGmG3qdoTIeoQZDqTRj6TgaIo8LhdAMPB4XSAoatvsrdeuRLzWy5eh+C5c+dw4sSJMZFIKBTCjTfeiPXr1+OXv/zllCERQN2fbrvttqI1ybKs5ybl8/kptd7RYloTyb59+3DllVfiP//zP3Ub6FQqhRdeeAFPPvkktm/fDp/Ph1tvvRVbt27Fhg0bJuyXprXChkIh3WFXI5X6+vqKP/fMmTM4efLklG3vHQpnz57FiRMnhnQfHik02xtNV9EcCoYyluw624ud7UeHFSRF0xTymTR6QmEEGhr0TbganHYLZFkZciIeUKfRKZoGy9BDCvEA9JbjoTLogeLSmpDLoDcUQqCx2MZ+EARWC494UhXqFVFAKp0Bb7HqYr3RL2zNopn4WNvCmmsdT5w/fx7Hjh3D2rVrR50BFI1GcdNNN2HZsmV4/PHHJ8XJuhaSySTOnDlT9Gd33303lixZgq9+9atYsWLFJK1sfDGtiQRQn2iqPclnMhns2LEDTz75JJ5//nk4HA5s3rwZW7duxeWXXz5hHzrNI0gjlVwupz9dBwIBMAyDY8eO6UFao30SmywQQnDixAlcuHABa9asmfD1G/Pqk8lkzWHSeCqL7e8dRjAar3o9hSgQsmkEw1HMaG2Fx+1EpoZ/ldEuRZ1Y56sK8aXT6NUy5TXYrRzSBpdeiqb0Nt7S1xtdjuPxOPoH+tHa0gKfx1XRtLKSLkIUGYKQQ99AHLlsDjzPw+6wY25rIz5/4xWFsK+Jh0Yia9asKfL+Ggn6+/tx8803Y968efj1r389bdwqzNLWNEYul8Mrr7yCbdu24ZlnngHLsti8eTNuu+02XHnllRPWIUUIQTqd1kklnU7rP2u6zIgYoSiKnpG9du3aiz5rUzpM6nK5dILW2l0VRcG7R87g3cOny0pLBAT5dBK90X51voW31EwCZBgKFEVDKjmFVBLigco5J4OvF4oaA0rbcWu93pjPEovFMBAbQHNzM6wWq8FafzDjfmjh3oZ4Ko10JgMhl8Mlc7yoc9mLGh8mqiR84cIFHD16dEwkEovFsHnzZjQ1NWHbtm1jnlO6mDCJ5AMCURSxa9cuPPnkk3j66achyzJuvvlmbN26FR/72Mcm7EMpCALa29shSRI4jkMqlUJdXZ3+dD3VvwyahX0ul8OaNWsm3VpGy7Ewzv1oG6Hb7UZPXxwvvnsYicLGTkCQisfQH0+gubkZPFf8BFveBls801GKUr+rWps3ALAsA64gxAPV23Ervd5p45HKChgYGEA8Hq845KkK8cMX7rX3u2ndYsxvqUd/f79uM6JZ32jeVeN1eu/p6UFXVxfa2tpGNONlRCKRwNatW+F2u/Hss89O+ufQxIeUSIyQJAlvvPEGfvvb3+Lpp59GOp3GzTffjC1btuCaa64Zt4HATCaDvXv3wu12Y/ny5WAYBtlsVn+6jsfj8Hg8aGxsRCAQmHKDiKIoorOzEwDQ1tY25WZcNBM/be5Ha9H21PnQfjKEY+fC6OuLIpfLoampufrGaEgCdDtsFcO1iqGeBrKCOKQVi/Z6t8MGohD1BDQkCDwOdYK+v78fiWRCP0lVe70q3A/PWn/FvBZcu35J8RUKep9GKppGpRHLaB94gsEgjhw5MiYSSaVSuP3228HzPJ577rkxDbeaGD986InECFmW8fbbb+OJJ57AU089hYGBAdxwww3YsmULrrvuulGXcbT23lozFvl8XieVgYEBvWTT2Ng46V+WXC6HvXv3wm63Y+XKlVO+y8TYoq09XZ8fyODI+QF46wNFAnM1uB1WZHJ5SMPwo9LIJCdIwwqecth4yAqBIisQhng9Raknn/6+fsTjcQQam2pqAZouMhyrfL/Hgc9csx4cW/v3qVm3h8NhJBIJ3aUgEAgM+zuhkcjq1avh9/uH9W9Kkclk8IlPfAKKouCFF14YsQeXiYmDSSRVoCgK3n//fZ1UgsEgrrvuOmzZsgU33njjsO0bwuEwDh48OKL2XkEQiqxatElwzf/rYs6ZpFIpdHR0wO/3Y8mSJVNmyGu4EEUR7e3tEAQB6byEd472IEdotWvJbq/YCsuxDBSi2vVahvCjAgY376GEeP3aBfv2WsI6MDjQeOZ8D9KpNFpaW1DndlaciAcAm5VD1uByXGuCnmVpfHbTBvjdI3s40lwKtEwQrZxYKxOkt7cXhw8fHhOJ5HI53HHHHUilUtixY8e00xY/6DCJZBhQFAWdnZ06qXR3d+Oaa67Bli1bcPPNN1f9AmntsStWrEBDQ8OofrY2Ca6VbKxWq27V4nK5JpRUtJPUjBkzJiUHZazQLGc4jsPq1aqDbTyRwMvvHsA7B09BEIQi3yo19VBtmdV0D03ITlUQ4gHAblOJQ+u6qh08VXxtDao1fXlmusPGo/vcBWQyGbQ0t+jlRGNWiAaGoUEBFZMlKzUGXHfJUiyfM/q5H6A4EyQSiYCm6bKBUi0Vc/Xq1aNuEc/n87jzzjsRiUTw0ksvjVqgNzFxMIlkhCCE4NChQ7qpZFdXFzZu3IitW7fi5ptvht/vh6Io+MUvfoEFCxaMa3usFjAVCoV0exFNqB8qIW6kiEQiOHDgABYsWIBZs2aN23UvFrRynMPhwMqVK8tOUufCA/jdG/sQivYjnU4jn8/DYrWgwVcHMFyZBlTJj6pWOFSl4KlqHV1AQVhnad0fy8KxON8TRDabLcuHL319rQAs43q0ifslsxtxwyXLxvXzouXUaKQiiiKcTicSiQSWL18+6mFVURTx+c9/HmfOnMHOnTtHfaIxMbEwiWQMIITg2LFjePLJJ/Hkk09i//79uOKKK5DNZnHhwgW88cYbaGxsnJCfrdmLhEKhIv8vLQtkLJtET08Pjhw5guXLl0+KU+pYoTU21NXVYenSpVXLcTlBxCt7unD8fASSLAGyiHDfAHLZHDieg8PhgMPhAM/zoEAV+VFRFCqeLopQmKBPZnJw2ixl6YXlUIX4ZDqH/v4okmn1JFK9Y0o9LRGFIDXUNH/h9c31Xtx21WpYuIkb3NOydI4fPw6r1Yp8Po+6ujr9tDLcLitJkvBHf/RH6Orqwq5du6bl0O6HBSaRjBMIIdizZw8++clPIpVKQRRFrF69Grfeeiu2bNmClpaWCSsNaU+DGqkQQnRSGa5nlYbu7m6cOnVqTPXsyUQqlUJ7ezuampqwaNGiIe85IQQHTwfx9qFTyOQFEEUNmcpk1Iz1TCYDlmF1UrFYLXBYLaApVBwCrASnzQJBkiGIQ1vfK4qCTCqGZCqDQGNTodxWHTYLp3aLEaLH6FYDw9D49DXr0OAdnT37cBGJRLB//36sXLkSDQ0NyGazuuYXi8X0zB9t9qfS70iWZdx7773o6OjArl27puUDzYcJJpGME06fPo3rr78eq1atwn/+538iGo3iySefxLZt2/D2229jw4YNulXLrFmzJoxUNENLrQNMluWqUbil/+748eMIBoPTclASGHQgnjlzJubNmzeie9yfSGP7u4cRHkgW/blCFD25UDNDrK/zgOOt8HrcNedAAOgW9aIkl2W4l4IQgmSsH/F0Bq0trXA7bVWFdWDQikWSZDVG12JBIlP99RvXLkLbgomNa9ZIZMWKFRVP49rsj+b+bLFYdLFeG4KUZRn3338/3nzzTezevbtmMJ2JqQGTSMYJPT09+I//+A/83d/9XdEJgBCCnp4e3f7+97//PVatWoWtW7diy5YtEypia55V2lS9IAi6VUt9fb1eMlEUBYcPH0YsFsPatWsnvd14NNBilefNmzciB2IjZEXBWwdPYU/X2Yp/TwiBIomIJRJIpdJQFAX1Pg9o1gKb3QaaKj/5GW1KNCE+XdA1Sq/dFw0jJ4hobmrWCb+SsK69vpIuUu31C2YEcMvlKya0YSIajWLfvn1VSaQUpe7P3/zmN/WHnX379uG1114b9e9yrPjRj36EH/3oR+ju7gYALF++HF//+tdx4403Tsp6pjpMIrmIIIQgHA7j6aefxrZt27Br1y4sWbJEJ5UlS5ZMKKmkUimdVLLZLPx+P+rr69Hb2wtJkrBmzZopP11fCVpjwOLFi8fl6fVsqB8vvnekrI3X6HVFQJDP59XUwlwOoiiCM5ghMjRTFK5lhDaBrukrClEQDoVAAahvaChrSS4V4gE1/bHasCTL0OA5BpnC690OK+68dgOs/MQNkUajUezfvx/Lli0bVRmKEIKXX34ZP/jBD/Duu+9ClmVcf/312LJlC2699dZxNQUdDn73u9+BYRgsXLgQhBD88pe/xMMPP4yOjg4sX778oq5lOsAkkkmCVoJ65pln8OSTT+KVV17BvHnzdPv75cuXT+jMRiqVQjAYxNmzZ6EoCnw+n95WPF3M74BBG/vhPgUPF9m8gJf3dOHkhSiAgteV3VJVFxFFAYokIBwdgCiKcLscsFhtsNnslcXywgR9PJVBsDcIG8/C6wvU+J2TAnnki0wkq0FrW87k8vjUxnVo9k+csaaWRzNaEgHUU/Hf//3f47e//S127doFSZLwzDPP4Omnn8YXv/hF3HPPPeO86pHD5/Ph4YcfnhJrmWowiWSKIB6P43e/+50e1NXa2qqTSltb27iTSjabxd69e+F0OjF//nx9ViWRSMDr9epWLVPZx0hzkB1vG3sNhBAcONWD1/Ydh43naiYManDYeKQzOWQzGQzEE8jlcuAt/GAHmMHfS1EUDETDYGkaLl/9sH7HdisHhaB2t5gBV62ej/WLJ6481N/fj87OTixdunTULb6EEPzTP/0TfvnLX2L37t1YsqTcsmUyZ5hkWcZvf/tb3HXXXejo6MCyZcsmbS1TFSaRTEEkk8miTJX6+nrdqXjDhg1jJpVkMomOjg4EAoGycprmrhsKhRCPx+F2u/WTylTy/+ru7sbp06fR1tY24QNq0VgKL75/GJGB1JCvJYTA7bBCVggyOQGyLCOdSetxuBynthXbbDb09ffBynNoaGiEzcrXFOK1azvt6rCjw2qpKcQDwOwmH267avWEbcIaiSxZsgQtLS2jugYhBA899BB+/OMfY9euXVMqn+PAgQO4/PLLkcvl4HQ68fjjj+Omm26a7GVNSZhEMsWRyWTw4osv6pkqTqdT7/66/PLLR+x7NTAwgM7OTsyePRtz586tuclodhihUAgDAwNwOp06qVxs+3gNhBCcPHkS58+fx9q1ay9ad5kky3jzwCnsPXau5us0cZ1AJRR1AFG9x4qiIJPJIJVWg6Zoikad1wOL1Qar1QqXvbIQP3jtYl2kmrCu/p0Ff3jtBtitE1OmHBgYQEdHx5hJ5Hvf+x6+973vYefOnWhraxvfRY4RgiDg7NmziMfjeOKJJ/Czn/0Mr732mnkiqQCTSKYRcrkcXn75ZT1Thed5/aTykY98ZEhHXs33a9GiRZgxY2RtoKIo6qRi9P9qaGioOgsw3iCE4OjRowiHw1i7du2kmPZ19/Zhx3tHKk6RW3gWgigVZaBYeBaEED31UJZlBINB0AyNloYAIv0xpNNpAIDdYYfX44bL4UC+JCXRaimI/CXfVpahwbMsMvnB9VAU8AcfXYOZDRNzUtNIZCzNDYQQPPLII/jOd76DHTt2YMOGDeO8yvHHpk2bMH/+fDz66KOTvZQpB5NIpikEQSjKVFEUBbfccoueqVIqmGt6wlh8vzRIklRk1WK1WnVScbvdE0IqxhbldevWTWqZLZMTsOP9I+gO9ul/RlEUOJauGJNLUepQ4kAijWBvEBzHYf6cWXopi6CQsZ5WS2CKrKC+zgOK5WC3O8CyNBiaqeHkOyjEA8Bly+fi8uVzx/19A6r/2t69e0f1MKKBEIKf/OQn+MY3voHt27fj8ssvH+dVTgw+/vGPY9asWXjssccmeylTDiaRfAAgSRJ+//vf65kq2WxWz1TZuHEj/umf/gmSJOHv/u7vxl1PkGUZfX19OqmwLKuTitfrHRdSURQF+/fvRzabxdq1a6dEizIhBJ0nzuP3+09CkuRBY8cqkGQJA9EwKJpFS3MTRFkpO10AKqkIeQHpdBqSmEcmk4XX7QLNWeBwOGqWMq08iya/G1s+smpCOv5isRg6OjqwYMGCYTtZl4IQgsceewwPPPAAnnvuOVx99dXjvMrxwQMPPIAbb7wRs2bNQjKZxOOPP66fnq699trJXt6Ug0kkHzDIsoy33npLdypOpVIghOBrX/sa7rnnngkdNlQURQ+XikQioCiqyP9rNJubLMvo7OyEJElYu3btlAvUisRS2N15DOfDsaqvkSQJPcEeWC1WtLY0w8KzSA2jAwwAeJZCKplCpD+mG0tqHWClRo42C4c/vO4SOG3jT7TxeBx79+4dM4n86le/wle+8hU8++yz2Lhx4zivcvxwzz33YOfOnQgGg/B4PFi1ahW++tWvmiRSBVOaSP7t3/4NDz/8MHp7e7F69Wr88Ic/xCWXXDLZy5oWyOfz+NznPod3330XN9xwA1555RWEQiFce+212Lp1K2644YZhZ6qMBpr/l2bVQggpsmoZDqmIooiOjg7QNI22trZxi3sdb4iSjN/vP4l9J85X+DsRwZ4gbDYb/PV+PRveZbcilRkU4ivBynPIiWJhhsWKeHJQqM9lc+D5wbZijudw+9VtmNM0/v5oGonMnz9/1E7QhBD85je/wf33348nn3wS119//Tiv0sRkYsoSya9//Wt8/vOfx49//GNceuml+P73v4/f/va3OHr06Jhr/B8G3H333Th8+DCee+45BAIBKIqCjo4O3f7+7Nmz2LRpE7Zs2YKbbrpp3G3ojSCEIBaL6aQiSRLq6+vR2NhY1f8rn89j7969sFqtWLVq1ZRPZQSAUz1RvPT+Ed1/SxRF9AR74LA7CiRSHN1r5VnIBBXNFmkaYBmmSHPhOQYMRSMriKqxZDqDdEb1AFs2sx6bNiyvGTA1GiQSCbS3t4/JegYAtm3bhnvvvRe//vWvccstt4zL2kxMHUxZIrn00kuxYcMGPPLIIwDUJ9yZM2fi/vvvx9e+9rVJXt3Ux+nTp3V31VIQQnDw4EGdVI4dO1aUqeLz+Sbc/0ubVcnn8zqpaP5f2rCklm8/nVIZ07k8drx3BMfP9SLYE4TD6YDf74eV58o6ugCAolE2E6KdQCpqLoWJ+GQmC+0001jnxMaVs9BXMENkGEY//Y22pAgMksjcuXMxZ86cUV0DAJ577jncfffd+NWvfoXbbrtt1NcxMXUxJYlEEATY7XY88cQT2Lp1q/7nd911F2KxGJ555pnJW9wHDFpLrZapcuDAAVx99dXYsmULNm/ejIaGhgn3/9JIJZvNwuPxIJVKIRAIYNmy8Q1fulhIJpP49Quv4lxMgqfOC5qiq3Z0aTDOhLgK2SW1oGWy0zSFO6/dAI9D7WIrLSkqijIs9+dK76G9vR1z5swZE4m8+OKL+NznPodf/OIX+NSnPjXq65iY2piSRNLT04PW1la89dZbRa2Bf/M3f4PXXnsN77777iSu7oMLbdhPs79vb2/HFVdcoRvnTWSmCqDOuRw4cAAsy0IURfh8Pl2sny7+X9oGPHPmTDh9AbzwziFIklKzo0sDyzKw8SxS2XzFjq5SMDSFGy9bgYUzKgc+EUIQj8f1LJBcLof6+nrdtr1a44L2HrSh1dFi586d+MxnPoNHH30Un/3sZ6flQ4GJ4cEkEhMVQQjB2bNndVJ55513sGHDBmzZsgVbtmwZ90wVrbV0zpw5mDt3LrLZrO5UrPl/aaQyVf2/EokE9u7dW7QBC5KE3+87if0nLwz57ymKAsfQsPDssHy9Vi+YgY+vXTSstRFCkE6n9ZNKKpVCXV2dHjCl3dNUKoU9e/Zg1qxZmDdv3rCuXQmvv/46PvnJT+IHP/gBvvCFL5gk8gHHlCQSs7Q1taBlqmzbtg3btm3DG2+8gdWrV+v29yMNkSqF5h67cOHCiq2lmv+XlrDndrt1Upkq2SlaZ1M1PeHEhQhefv8IckLlFMNSXcRq4aDICoQqQ4gBrxOfvmYd2FE2IWSzWf2eap5qHo8HwWAQM2fOxPz580d1XQB46623cPvtt+Nf//Vf8cd//McmiXwIMCWJBFDF9ksuuQQ//OEPAai131mzZuG+++4zxfZJBCEEoVBIz1TZvXs3li5dqpPK4sWLR7RxaOWsZcuWDcs9VhAEfQPs7+/XY1s1q5bJgHaaGqo9NpnJYcd7R3AuPFD2d067pWy2pJIQDwAcy+DOazegzjU+JCoIAs6fP49Tp06pgVkG+xuXyzWi3+d7772HrVu34p//+Z/xp3/6pyaJfEgwZYnk17/+Ne666y48+uijuOSSS/D9738fv/nNb9DV1TWuuRMmRg9CCPr7+4syVRYsWKDb3y9btqxmx1BPTw+6urpGbdui+X+Fw2H09fXBZrOhoaEBjY2NF83/S3PAHa5lCCEEe46exVsHT0EpmC3yHAtRKu/o0uC08cjkRf31N1y6DEtnj1+GeTqdxp49e9Da2orZs2frQ6XRaBQcxw3bqWDv3r3YvHkz/uEf/gF/+Zd/aZLIhwhTlkgA4JFHHtEHEtva2vCDH/wAl1566WQvy0QFaMKulqny0ksvYcaMGTqprF69uohUTp48iTNnzqCtrQ0+n2/MP1/z/9I2QJ7ndVKZKP8vrSQ3GvPCUH8CL7x7GPFURk9drAWWZcAxNOa11OO6DUvHsuwipNNptLe3o7m5GQsWLCi6T6VRuAB0TaV0qHT//v24+eab8dd//df46le/apLIhwxTmkhMTF8kk0k8//zzePLJJ/Hiiy+ivr4et956K7Zs2YKnnnoK77//Pp566il4POOf3Kf5f2kbIMMwRVYt47HJadGyYwl0EiQJb+w/VXEivhJ8bjs+c8068ONkE5PJZLBnzx40NTVh4cKFNe+LoiiIxWL6CVAURRw4cABOpxMrVqzApz71Kdx33334+te/Pmkk8u1vfxvbtm1DV1cXbDYbrrjiCnznO9/B4sWLJ2U9HyaYRDIEXn/9dTz88MNob29HMBjEU089VdQAYGJopNNpPVPl6aefBsuy+MQnPoHPfOYzuOyyyyZ0al1RFP2pOhwOg6IoBAIBNDY2jnpYT7PjH0u0rBHHzoXwSvvRmqcShqHxmWvWI+AdHx0ok8mgvb0dDQ0NWLRo0Yg2f0IIkskkHnnkEfzXf/0XLly4gLlz5+KrX/0qtmzZgkCgcjvyROOGG27Apz/9aWzYsAGSJOFv//ZvcfDgQRw+fHjS8nM+LDCJZAhs374db775JtatW4fbb7/dJJJRQpZlfOlLX8KOHTvwt3/7t3j77bfx7LPPwmKxYPPmzdi6deuwMlXGAu2pWhuA1Ib1Ghsb4fP5hkVooVAIBw8exMqVK8fVqieRyeHFdw/jQiRW8e83rV+MlfNGl/1Rimw2iz179oyKRIw4ceIEbrzxRtx4441YsGABnnrqKbS3t+Mv//Iv8fDDD4/LWseCSCSChoYGvPbaa1PWZfiDApNIRgCKokwiGSV+9rOf4f/+3/+Ll19+WRelBUHAq6++qp9UAOiZKh/96EcndAhR03S0WRVRFIusWiqRSjAYxJEjR7By5coJeepWFAXvd53FO4dP68I6ACya1YCbLl0+LiUjjUQCgcCIO+yM6O7uxg033ICtW7fi+9//vn6yu3DhAgYGBqZEZO6JEyewcOFCHDhwYEqs54MMk0hGAJNIRg9ZlpFIJKrmoUiShNdff13PVMnlcrjllluwZcsWfPzjH5/QIUStVKOdVLQJ8IaGBtTX14PjOL3DbPXq1fD7x99h14hgXxzb3z2MeCoLj9OGO6/dAAs3dufjXC6HPXv2wO/3Y8mSJaMmkXPnzuH666/HDTfcgH//93+fkl5oiqLg1ltvRSwWwxtvvDHZy/nAwySSEcAkkosDWZbx5ptv4oknnsDTTz+NeDyuP/1ee+21EzqEqE2AayeVdDoNu92OTCaDVatWXTTn6bwo4bXO41g9vxWNvrHn0msk4vP5sHTp0lGTSDAYxPXXX4+rr74aP/3pT6esK/OXvvQlbN++HW+88caokxxNDB8mkYwAJpFcfCiKgnfffVcP6gqHw7juuuuwdetWXH/99ROaqQKobcrd3d2wWq3IZrO6rUhDQ8OUSGocDnK5HNrb21FXVzcmEgmFQrjxxhuxYcMGPPbYY1OWRO677z4888wzeP3118fkFWZi+DCJZAQwiWRyoSgK9u7dq9vfnzt3Dps2bcLWrVtx0003jfu8yJkzZ3Dq1CmsWbMGXq+3zFbE4/HopDKZGfK1kM/nsWfPHni93jG5KUciEdx8881Yvnw5/vu//3tKhowRQnD//ffjqaeewu7du7Fw4cLJXtKHBiaRjAAmkUwdKIpSlKly/PhxfPzjH8eWLVvGJVPl9OnT6O7uxtq1ayvOuuTzeZ1UBgYG4HK5dFKZKq2m+Xwe7e3teq7LaO9Hf38/brrpJsyfPx+/+c1vplzcsYb//b//Nx5//HE888wzRbMjHo9nyhL9BwUmkQyBVCqFEydOAADWrFmD7373u9i4cSN8Pt+oY0dNjC8IIejq6tJJ5eDBg/joRz+qZ6oEAoERbaInT57EuXPnsG7dumGVzgRBKLJq0byqGhsb4XA4JmVATxAE7NmzZ8wkEovFsHnzZjQ3N2Pbtm1T2s6/2nv8xS9+gS984QsXdzEfMphEMgR2796NjRs3lv35XXfdhccee+ziL8hETWiZKhqpdHR0FGWqNDc3V91wtH974cIFrFu3blQmkKIoFlm1WK1WnVRGaoA4Wmgk4nK5sGLFilH/zEQiga1bt8Lj8eCZZ56Zsvb9JiYfJpGY+MCCEIIzZ87gySefxFNPPYV33nkHl1xyiZ6pMnPmTH2TVRQFR48eRTgcxvr168elPCXLMqLRKEKhUJEBYmNj47jmqhshCALa29vhcDiwYsWKUbfmplIp3H777eB5Hs8//7xZGjJREyaRmPhQgBCCCxcu6Jkqb775Jtra2rB161Zs3rwZ3/72t5HP5/GTn/xkQtqLjQaI4XC4yP/L6/WOyyyGRiJ2ux0rV64c9TUzmQw+8YlPgBCC559/ftLs+U1MH5hEMo1gmtKND7RMlaeeegpPPvkk3nzzTTgcDtx11134wz/8wzHZhgwHWq56KBRCJBIBIUQnFZ/PNyoCEEUR7e3tsNlsYyKRXC6HO+64Q/dHc7vHPsNi4oMPk0imEUxTuvGFLMv4X//rf2H37t340pe+hN27d2Pnzp1YuHAhbr31Vtx2221YunTphE5uE0IQi8X0AUhZlhEIBNDQ0AC/3z+sWQ2NRKxWK1atWjXq9ebzedx5552IRqN46aWX4PV6R3UdEx8+mEQyjWGa0o0N//Iv/4Kf//zn2LlzJ1pbW3X/rWeffVbPVJk1a5ZOKmPZpIcDQggSiYROKoIgFFm1VJrdEEURe/fuBc/zZZkvI4EgCPj85z+Pc+fOYefOneOSEWPiwwOTSKYxTFO6sSGVSiGdTldN3EwkEkWZKg0NDTqprFu3bsJJJZVK6aSSzWbh9/v1YCmO4yBJEvbu3QuO48ZEIqIo4p577sHRo0fx6quvTpoNvInpC5NIpilMU7qLi3Q6je3bt2Pbtm14/vnn4fF4cOutt2Lr1q249NJLJ9wuJJVK6UJ9KpVCXV0dstksrFYr1qxZM+qfL0kS7r33Xuzbtw+7du0yY6xNjAomkUxTmKZ0k4dsNouXXnoJ27Ztw+9+9ztYrdaiTJWJtg9JJpPo7OyEJEmQZRler1cX60cy6yHLMu677z68/fbb2L17N1paWiZw1SY+yDCJZBrCNKWbOhAEAa+88gq2bduGZ555BhRF4eabb8Ztt92Gq6++etwnwSVJQkdHB2iaRltbG0RR1O3v4/E43G63PqtSa/ZDURT8xV/8BXbt2oVdu3aZLg0mxgSTSKYRTFO6qQ1RFPVMlWeeeQb5fB4333wztm7dio0bN455MlyWZXR0dICiKLS1tZWVs/L5PCKRCEKhEAYGBuB0OtHY2Fjm/6UoCv7mb/4Gzz//PHbv3m0+jJgYM0wimUYwTemmD2RZxhtvvKFnqiQSCdx4443YunUrNm3aNOKhR41EAAxLExFFUSeVvr4+UBSF7du34w/+4A/wzDPPYNu2bdi1a9ekP4y8/vrrePjhh9He3o5gMGiaok5TmEQyjWCa0k1PKIqCd955RyeVSCRSlKky1OS4LMvo7OyEoihYu3btiIV1SZJw4MAB/MM//APeeustAMDnPvc5fPGLX8T69esnxVRSw/bt2/Hmm29i3bp1uP32200imaYwicSEiYsIRVHQ3t6OJ598Etu2bcP58+exadMmbNmypWKmiizL2LdvH2RZxpo1a0Yt5BNC8O1vfxs///nP8Td/8zfYs2cPfve738Hr9eKFF17A8uXLx+stjhpmTMP0hUkkJkxMEhRFwf79+3VSOXHiBK655hrceuutuOWWW8DzPL74xS/izjvvxPXXXz8mEvnud7+L73//+3j11VexevVqAKqmsnPnTmzcuHFKlEZNIpm+mLiJKhMfCvzoRz/CqlWr4Ha74Xa7cfnll2P79u2TvaxpAa3z6pvf/CYOHjyIjo4OXHbZZfjxj3+MuXPn4oorrsChQ4ewaNGiUc+JEELwwx/+EN/73vewY8cOnUQAwGKx4KabbpoSJGJiesMkEhNjwowZM/DQQw+hvb0de/bs0VMKDx06NNlLm1agKArLli3D17/+dbz77ru4+uqrkc/n4ff7sX79etx000149NFHEQwGMdwiAiEEjz76KB566CG88MILWL9+/QS/CxMfVphEYmJM2Lx5M2666SYsXLgQixYtwre+9S04nU688847k720aQlZlnHHHXcgHo/jwIEDePvtt3Hs2DFs3rwZTzzxBBYvXozrrrsOjzzyCM6dO1eVVAgh+MUvfoEHH3wQv/vd73DZZZdd5Hdi4sMEk0hMjBtkWcb//M//IJ1O4/LLL5/s5UxLMAyDzZs36+67FEVh7ty5+MpXvoI33ngDp0+fxqc+9Sk8//zzWL58OTZu3Ijvf//7OH36tE4qhBD813/9Fx544AE8++yzuOqqqyb5XZn4oMMU202MGQcOHMDll1+OXC4Hp9OJxx9/HDfddNNkL+sDDUIIent78dRTT2Hbtm147bXXsGLFCmzZsgUWiwXf+ta3sG3bNlx33XWTvdSaSKVSOHHiBAB1Pua73/0uNm7cCJ/PZ07bTyOYRGJizBAEAWfPnkU8HscTTzyBn/3sZ3jttdewbNmyyV7ahwKEEPT19eGZZ57B448/jldffRW/+tWvcOedd0720obE7t27sXHjxrI/v+uuu/DYY49d/AWZGBVMIjEx7ti0aRPmz5+PRx99dLKX8qGDFilsGnmauJgwNRIT4w5FUZDP5yd7GR9KUBRlkoiJi46J9bs28YHHAw88gBtvvBGzZs1CMpnE448/jt27d2PHjh2TvTQTJkxcJJhEYmJMCIfD+PznP49gMAiPx4NVq1Zhx44duPbaayd7aSZMmLhIMDUSEyZMmDAxJpgaiQkTJkyYGBNMIjFhwoQJE2OCSSQmPtB46KGHQFEU/uIv/mKyl2LCxAcWJpGY+MDi/fffx6OPPopVq1ZN9lJMmPhAwyQSEx9IpFIp3HnnnfjpT3+Kurq6yV6OCRMfaJhEYuIDiT/90z/FzTffjE2bNk32UkyY+MDDJBITHzj8z//8D/bu3Ytvf/vbk72UDyz+7d/+DXPmzIHVasWll16K9957b7KXZGISYRKJiQ8Uzp07hz//8z/Hf//3f8NqtU72cj6Q+PWvf40vf/nL+Md//Efs3bsXq1evxvXXX49wODzZSzMxSTAHEk18oPD000/jtttuK4qmlWUZFEWBpmnk8/lRx9aaUHHppZdiw4YNeOSRRwCo3mozZ87E/fffj6997WuTvDoTkwHTIsXEBwrXXHMNDhw4UPRnd999N5YsWYKvfvWrJomMEYIgoL29HQ888ID+ZzRNY9OmTXj77bcncWUmJhMmkZj4QMHlcmHFihVFf+ZwOOD3+8v+3MTIEY1GIcsyGhsbi/68sbERXV1dk7QqE5MNUyMxYcKECRNjgnkiMfGBx+7duyd7CR8Y1NfXg2EYhEKhoj8PhUJoamqapFWZmGyYJxITJkwMGzzPY926ddi5c6f+Z4qiYOfOnbj88ssncWUmJhMmkZgwcRHw4IMPgqKoov+WLFky2csaFb785S/jpz/9KX75y1/iyJEj+NKXvoR0Oo277757spdmYpJglrZMmLhIWL58OV555RX9/7Ps9Pz63XHHHYhEIvj617+O3t5etLW14cUXXywT4E18eDA9P8kmTExDsCz7gdER7rvvPtx3332TvQwTUwRmacuEiYuE48ePo6WlBfPmzcOdd96Js2fPTvaSTJgYF5iT7SZMXARs374dqVQKixcvRjAYxDe+8Q1cuHABBw8ehMvlmuzlmTAxJphEYsLEJCAWi2H27Nn47ne/i3vuuWeyl2PCxJhglrZMmJgEeL1eLFq0CCdOnJjspZgwMWaYRGLCxCQglUrh5MmTaG5unuylmDAxZphEYsLERcBXvvIVvPbaa+ju7sZbb72lOxR/5jOfmeylmTAxZpjtvyZMXAScP38en/nMZ9DX14dAIIArr7wS77zzDgKBwGQvzYSJMcMU202YMGHCxJhglrZMmDBhwsSYYBKJCRMmTJgYE0wiMWHChAkTY4JJJCZMmDBhYkwwicSECRMmTIwJJpGYMGHChIkxwSQSEyZMmDAxJphEYsKECRMmxgSTSEyYMGHCxJhgEokJEyZMmBgTTCIxYcKECRNjgkkkJkyYMGFiTPj/Adu3FhUzgbaSAAAAAElFTkSuQmCC" - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "# %% Fit first using a super-simple linear regression\n", - "\n", - "first_order_linear_estimator = LinearRegression()\n", - "first_order_linear_estimator.fit(X, y)\n", - "\n", - "show_results(estimator=first_order_linear_estimator, label=\"1st order linear\")" - ] - }, - { - "cell_type": "code", - "execution_count": 30, - "id": "f67dbeeb", - "metadata": {}, - "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/Users/jholla10/Library/Caches/pypoetry/virtualenvs/autora-17yK3Jyq-py3.8/lib/python3.8/site-packages/sklearn/base.py:439: UserWarning: X does not have valid feature names, but PolynomialFeatures was fitted with feature names\n", - " warnings.warn(\n" - ] - }, - { - "data": { - "text/plain": "
    ", - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZIAAAGlCAYAAADQ/XDvAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOz9d5ykaV3vD7/vWLmqqzr3TE9PDjuzs4ndnZllF4QlKogKPKAcWUU5HMGDeI4/41F5jiCGc8RwRPRRVIIoCPo7Epa4LLts3unJoWemu6d7OlfOd3z+qL5rqjqH6uma2fv9eq041VVXXZWuz/3Ngm3bNi4uLi4uLmtE3OwNuLi4uLjc3LhC4uLi4uKyLlwhcXFxcXFZF66QuLi4uLisC1dIXFxcXFzWhSskLi4uLi7rwhUSFxcXF5d14QqJi4uLi8u6cIXExcXFxWVduEJyE/HII48gCAKCIHDo0KGGry8IAh/4wAcavm4j+Pu//3sEQWBoaKh625133ll9P37kR35k8zYH/O7v/i6CIGzac23fvp1HHnnkhjy/i8tcXCG5yWhra+PTn/40H/vYx+b97Qc/+AEvf/nL8fv9dHV18V//638ll8vNu8/v/u7vkkqlGr63xx9/nDe/+c309vbi9Xrp6uri9a9/PU8++WTDnwvgox/9KJ/+9Kdpa2vbkPVdXFxWhrzZG3BZHYFAgHe9613zbu/v7+fVr341Bw4c4H//7//N6Ogof/zHf8zAwABf+9rXqvf7wQ9+wIc//GEeeeQRWlpaGrq3ixcvIooi73vf++jq6iKZTPKZz3yGhx56iK985Su8/vWvb+jzvfGNbwTgt37rtxq67s3IhQsXEEX3utBlc3CF5BbhN37jN4hGozz22GOEw2Gg4u74+Z//eb7xjW/w2te+dsP38HM/93P83M/9XN1tv/ALv8DOnTv5+Mc/vqSQWJaFpml4vd6N3uaaMAwDy7JQVfWGPF+hUMDv96/4/h6PZwN3s37y+TyBQGCzt+GyQbiXMLcAmUyGb37zm7zrXe+qigjAT//0TxMMBvmXf/kXoOJb/5Vf+RUAduzYUY0v1MYdAP7t3/6NQ4cO4fF4OHjwIF//+tfXvDe/3097e/s8V5oTj/nsZz/LwYMH8Xg81ec5c+YMr3rVq/D5fGzdupXf+73fw7KsNe+hlqmpKd7znvfQ2dmJ1+vljjvu4B/+4R/q7jM0NIQgCPzxH/8xH//4x9m1axcej4ezZ88C8MQTT3Dvvffi9XrZtWsXn/zkJxd9vs985jPcc889+Hw+YrEY73jHOxgZGam7zytf+UoOHTrECy+8wEMPPYTf7+c3fuM3VvW65sZInJjSk08+yS//8i/T3t5OIBDgx37sx5ienp73+K997Ws8+OCDBAIBQqEQP/zDP8yZM2fq7nPy5EkeeeQRdu7cWXVd/uzP/izxeLzufk4M5+zZs/zkT/4k0WiUl7/85at6PS43F65Fcgtw6tQpDMPgZS97Wd3tqqpy5513cvz4cQB+/Md/nIsXL/JP//RP/Mmf/Ek1ttDe3l59zBNPPMGXvvQlfuEXfoFQKMSf/dmf8RM/8RNcvXqV1tbWFe0nk8mgaRozMzP84z/+I6dPn17wYPzOd77Dv/zLv/CBD3yAtrY2tm/fzsTEBD/0Qz+EYRj82q/9GoFAgL/+67/G5/Ot9e2pUiwWeeUrX8mlS5f4wAc+wI4dO/jCF77AI488QiqV4oMf/GDd/T/1qU9RKpV473vfi8fjIRaLcerUKV772tfS3t7O7/7u72IYBr/zO79DZ2fnvOf7yEc+wv/4H/+Dt7/97fzcz/0c09PT/Pmf/zkPPfQQx48fr3MtxuNx3vCGN/COd7yDd73rXQuutxZ+8Rd/kWg0yu/8zu8wNDTExz/+cT7wgQ/wz//8z9X7fPrTn+bd7343r3vd6/iDP/gDCoUCn/jEJ3j5y1/O8ePH2b59OwDf/OY3uXLlCj/zMz9DV1cXZ86c4a//+q85c+YMTz/99LwEgLe97W3s2bOHj370o7jTKm5xbJebhne/+912X1/fvNu/8IUv2ID9+OOPz/vb2972Nrurq6v67z/6oz+yAXtwcHDefQFbVVX70qVL1dtOnDhhA/af//mfr3ifr3vd62ygut5//s//2S4Wi/OeSxRF+8yZM3W3/9Iv/ZIN2M8880z1tqmpKTsSiSy6776+PvuHf/iHl93Xxz/+cRuwP/OZz1Rv0zTNPnr0qB0MBu1MJmPbtm0PDg7agB0Oh+2pqam6Nd7ylrfYXq/XHh4ert529uxZW5Iku/bnNDQ0ZEuSZH/kIx+pe/ypU6dsWZbrbn/FK15hA/Zf/dVfLfsabNu2f+d3fsee+9Pt6+uz3/3ud1f//alPfcoG7Icffti2LKt6+4c+9CFbkiQ7lUrZtm3b2WzWbmlpsX/+53++br2JiQk7EonU3V4oFObt5Z/+6Z/mffec/b3zne9c0etxuflxXVu3AMViEVjYT+71eqt/XwkPP/wwu3btqv778OHDhMNhrly5suI1Pvaxj/GNb3yDv/3bv+XIkSNomoZhGPPu94pXvILbbrut7ravfvWrHDlyhPvuu696W3t7Oz/1Uz+14udfjK9+9at0dXXxzne+s3qboijV7Lbvfe97dff/iZ/4iTprzTRNHn30Ud7ylrewbdu26u0HDhzgda97Xd1jv/SlL2FZFm9/+9uZmZmp/tfV1cWePXv47ne/W3d/j8fDz/zMz6z7Nc7lve99b52l8OCDD2KaJsPDw0DFykilUrzzne+s26ckSdx///11+6y1CkulEjMzMxw5cgSAF198cd5zv+9972v463FpTlzX1i2A8wMvl8vz/lYqlVblFqo9IB2i0SjJZBIATdNIJBJ1f29vb0eSpOq/77zzzur//653vYu7776bRx55hC9+8Yt1j9uxY8e85xoeHub++++fd/u+fftWtH/TNOfFAGKxGKqqMjw8zJ49e+ZlNx04cKD63Evtb3p6mmKxyJ49exbc31e/+tXqvwcGBrBte8H7QkXAatmyZcuGBPLnfp7RaBSg+nkODAwA8KpXvWrBx9fG3BKJBB/+8If5/Oc/z9TUVN390un0vMcu9Pm63Jq4QnIL0N3dDcD4+Pi8v42Pj9PT07PitWoFoRZ71sf9gx/8gB/6oR+q+9vg4GDVjz4XVVV585vfzMc+9jGKxWKdqDUi7jGXkZGReQfYd7/7XV75yleueq317M+yLARB4Gtf+9qC72kwGGzYcy3Fcp+nk8Tw6U9/mq6urnn3k+XrR8Tb3/52fvCDH/Arv/Ir3HnnnQSDQSzL4vWvf/2CyRAb9Zpcmg9XSG4BDh06hCzLPP/887z97W+v3q5pGv39/XW3rbf6+o477uCb3/xm3W0LHUC1FItFbNsmm80ue7j09fVVr5JruXDhwor219XVNW9/d9xxR3XtkydPYllWnVVy/vz56t+Xor29HZ/Pt6L97dq1C9u22bFjB3v37l3R3jcDx43Z0dHBww8/vOj9kskk3/72t/nwhz/Mb//2b1dvX+i9cHnp4cZIbgEikQgPP/wwn/nMZ8hms9XbP/3pT5PL5Xjb295Wvc3J5V9rZXs0GuXhhx+u+8+p/Zjr7nCe51//9V/p7e2lo6Nj2fXf+MY38vTTT/Pss89Wb5uenuazn/3sivbn9Xrn7c9x57zxjW9kYmKiLmPJMAz+/M//nGAwyCte8Yol15Ykide97nX827/9G1evXq3efu7cOR599NG6+/74j/84kiTx4Q9/eF7Gkm3b81JmN4vXve51hMNhPvrRj6Lr+ry/O25Cx7KZ+1o+/vGPb/geXZof1yK5RfjIRz7CsWPHeMUrXsF73/teRkdH+V//63/x2te+tq4Q8J577gHgN3/zN3nHO96Boii86U1vakix2Bve8Aa2bt3K/fffT0dHB1evXuVTn/oUY2NjdYf3Uvw//8//w6c//Wle//rX88EPfrCa/utYE+vhve99L5/85Cd55JFHeOGFF9i+fTtf/OIXefLJJ/n4xz9OKBRado0Pf/jDfP3rX+fBBx/kF37hF6pCdPDgwbr97dq1i9/7vd/j13/91xkaGuItb3kLoVCIwcFBvvzlL/Pe976X//7f//u6Xk8jCIfDfOITn+A//af/xN1338073vEO2tvbuXr1Kl/5yld44IEH+Iu/+AvC4TAPPfQQf/iHf4iu62zZsoVvfOMbDA4ObvZLcGkCXCG5Rbj77rv51re+xa/+6q/yoQ99iFAoxHve8x5+//d/v+5+9957L//zf/5P/uqv/oqvf/3rWJbF4OBgQ4TkZ3/2Z/n85z/Pn/zJn5BKpYhGoxw5coTPfe5zPPjggytao7u7m+9+97v84i/+Ih/72MdobW3lfe97Hz09PbznPe9Z1/58Ph+PPfYYv/Zrv8Y//MM/kMlk2LdvH5/61KdW3PDw8OHDPProo/zyL/8yv/3bv83WrVv58Ic/zPj4+Dyh+7Vf+zX27t3Ln/zJn/DhD38YgN7eXl772tfy5je/eV2vpZH85E/+JD09PXzsYx/jj/7ojyiXy2zZsoUHH3ywLpPsc5/7HL/4i7/I//k//wfbtnnta1/L1772tVXF4FxuTQR7rq3q0rQ88sgjfOc73+HFF19EluWG98q62UilUhiGwd13383hw4f5j//4j83ekovLSxI3RnKTMTIyQnt7u9tygkprkfb29nktR1xcXG4srkVyE3H27FnGxsaASvqoUwz2UuWZZ56pJhe0t7dXs7NcXFxuLK6QuLi4uLisC9e15eLi4uKyLlwhcXFxcXFZF66QuLi4uLisC1dIXFxcXFzWhSskLi4uLi7rwhUSFxcXF5d14QqJi4uLi8u6cIXExcXFxWVduELi4uLi4rIuXCFxcXFxcVkXrpC4uLi4uKwLV0hcXFxcXNaFKyQuLi4uLuvCFRIXFxcXl3XhComLi4uLy7pwhcTFxcXFZV24QuLi4uLisi5cIXFxcXFxWReukLi4uLi4rAtXSFxcXFxc1oUrJC4uLi4u68IVEhcXFxeXdeEKiYuLi4vLunCFxMXFxcVlXbhC4uLi4uKyLlwhcXFxcXFZF66QuLi4uLisC1dIXFxcXFzWhSskLi4uLi7rwhUSFxcXF5d14QqJi4uLi8u6cIXExcXFxWVdyJu9AZeXFrZtY5om5XIZSZKq/4mie03j4nKz4gqJyw3Dtm10XccwDMrlcvV2URSRZRlZll1hcXG5CRFs27Y3exMutz6maaLrOpZlIQgCmqYhiiK2bWPbNpZlYds2giAgCIIrLC4uNxGukLhsKLZtYxgGhmEAIAhC1TIRBGHB+zui4uDcT1VVFEVBluUFH+vi4rI5uK4tlw3DsqyqFQJUrQ1HJBwLpBZBEJAkqfpvR1iefvpp9u3bR0tLC6IoIklSndXiCouLy+bhColLw3EOf13X69xVc++zksPfERbnfyVJqq6taRqCIFSFRVGU6n1cYXFxuXG4QuLSUBy31enTp+no6KCtra0hh7qzxmIWy1xhmRtjcYXFxWXjcIXEpWE4B7ppmmSzWaLRaMMO8FqX2NzbHWFx/m5ZFpqmUS6XXWFxcbkBuELism6c2hDDMLAsC1EUFz34NxJHHFxhcXG5sbhC4rIuHFeWaZoAVRFxUnsbxVqEaSFhcf4rl8tomlbdsyssLi5rxxUSlzXjXOnXWiG1LHbwb9YhXRv0lyRpnrDUWixOmrFTw+IKi4vL4rhC4rJqHFeWk5W10EG7nAWx2oN5I1xlSwlLqVSq3scVFheXpXGFxGVVWJaFYRjzXFlz2YwYyXpZibCUSiUMw6Ctrc0VFheXWVwhcVkRK6kNqaXRQrJZwfu5wpJMJkkmkwSDQaAipHNjLK6wuLzUcIXEZVkWanOy3EF5M1oky+G8bkEQUBSlrk9YuVymVCq5wuLyksQVEpclqa0NceIFK2GtQqIZFjbgkeufpxmFaa6gOsJimma1VX5tjMVp67ISIXZxuZlwhcRlQRarDVkpqz34kwWdJ68kOD+Rw7ZhT0eAYzujdIQ8dXtqZhyBcMS2VlgMw6j+faE+Ya6wuNzMuELiMo/FakNWw2qEJF82+JcXx7gyXSAWVBGApweTjCSLvOu+rUT9yk150C4mLIZhVLsfO8JS2yfMbZnvcrPhColLHcvVhqyU1QjJuckcg/Eiu9r9yFLlEI35FQam85way/LQ7hjQPBbJet4TV1hcbkVcIXEBVlYbshpWIySTGQ1RoCoiAKIo4FUkRpPF6nq3GssJC7jTI11uDlwhcWmIK2suSwmJbduMJItMZjX8ioQsgWXNv69mWoS9ct3jbmUWE5bazsbu9EiXZsQVkpc4pmkyMjKCz+cjEolseLfesm7yr8fHeGE4QVG3kESBiLeSyXQtVaI77AEBprMaPllkf1ewut5LjYWExcmi03WdfD5PsViku7u7Kizu9EiXzcAVkpcotbUho6OjdHZ20tLS0rD1FxOSJy7FefJygs6gwpaIhGnbDCdKqJKAIglcnikA0OKTec2Bdna3B+r2/FJm7iyWfD7PxMQEbW1tC1os7vRIlxuFKyQvQeaOwN0I14ggCNX1HQzT4tnhJCGPTNgnY9ugiAJ9MS9XkyV+aG8bAVXCsm16oz6ifqVuvWag2cTMEQ5YfMiXOz3SZaNxheQlRO1BU5uVJYrivEN/vSx0WOmmTVEz8Sj1wiWLApZlIwpwqCe06HrNdohvNnPHFbvTI102C1dIXiIsFVDfqM66c8XJq4hsafFxdjxL1Hf9wMuWTXyKRGdN8aHLyliu35k75MvlRuAKyUuA2jYni7V8vxEWiSAIPLSnjaF4gcvTBVr8CmXDJFc2ObojSm/Uu+R6rkVSz1yLZCnc6ZEuG4krJLcwK21z0uhphnBdnK4mCvSPpEkXdbZEfdzVG+Ftd7Tz788OkEgLtAT8vOJgOw/ubnUPrFWyns9sKWFxp0e6rBZXSG5RVlMbslGurTPTGi9cvEKqqCGJIqZl861TI9zlS/CWfa2UDJtcJo49OcW5UoRoNEosFiMYDM5LAHAtkvmsxiJZjlphWcn0SCfV2O1s7AKukNySOBXqK21zshHB9oJu8/hwEcWvsrejUgsyPRPn7Giezv2d/OjBfVVhKBQK1TkfV69eBaClpYVoNEo0GiUQCCz6PJtBMx2cG7UXd3qky2pwheQWorY2ZDVtTjbian80o5MsWdzR48U0DSYnpwDYs6Wda3mBbMkg6Km4SQKBAIFAgK1bt2LbNtlslmQySTwe5/Lly3VFdm1tbfh8vobu9WalkRbJcqxEWJLJJH6/n0gk4grLSwxXSG4RFqoNWU0gttEWiSNLhXyeZCJOMBgkFouRLOgYlo3NwgehIAiEw2HC4TB9fX1YlkU6nebChQtks1mefvppPB5P1VqJRqN4PC/NbK/NdPUtJCxjY2O0trZWP4+FWua7wnJr4grJTc5qR+AuhCiK1VhKo9gaVvAJBpfG4uzb2kYgEMCybaZzZe7rixLySCs6CEVRJBqNEgqFCAaDbNmyhXQ6XXWDnT17lkAgUBWVlpYWFEVZdt1bgRtpkSxHrai40yNferhCchMzN6C+1gFJjXBt5UoGP7iS4OS1NJZp4M2Nc3vMZtBq5VreRi0VKBkWW1t8vP5g55qe07ZtZFmmtbWV1tZWAHRdr8ZXLl++TKFQIBwOV4UlEonUFemtl2YL+DfTIWxZVl1tkjs98qWDKyQ3KcvVhqyG9Qbbc2WDv3z8CqevZbEtnWwmhyBJ7I+pvO9Vuzg1liFV0NkW9fGy7VHag2q1TfpKWez1KYpCR0cHHR0dAJRKpaqwnDt3Dk3TiESuZ4SFQqFbpltus4naUhaSOz3y1sYVkpuM9Y7AXYj1WiRPDyY4fS1DRNQoawW29sYolk0uJnLkygbveNnWea9hLazkcV6vl+7ubrq7u7Ftm2KxSDKZJJFIMDo6imVZdRlhwWDwpj2omsm1BVS/jythNUO+5rrCXJoPV0huIjZibgisP9h+YjhBPpshFBDp7u5CkRVsK4dlwaWpPPfviDVkj2t5jN/vx+/3s2XLFmzbJpfLVS2WwcHBagzG+c/n8zXV4bwUzSYk69nPaoTFnR7ZfLhCcpNgWRaTk5NMTk6yf//+hh4g67FIJiYmGBsdRZRVuro6ru9LELCxkcTG7XO9rhxBEAiFQoRCIbZt24ZlWWSzWRKJBJOTk1y8eBFVVauiEovFmj4jrNmEpFEH+3LCAu70yGbCFZImp3YEbrlcJplMNvzwWEuLFMuyOH/+PGNjY7zy8Ha+dDZDXjMJeipfqUzJQBYFblukm+9q2YgDUxRFIpEIkUiEHTt2YJom6XS66gY7d+4cfr+/zmJpJprNIqkNtjeaxYTF6WwMrrBsJq6QNDGWZWEYRtWVJUlSw+s9YPWurZPD03zxybPMFCwO7+7jgZ4OjpVlnr6S4FqqiG0LiLbFXR0Sh7rDCz7fag+cG9EiRZIkYrEYsVjFFafrOqlUquoGO336NKqqIssy8XiclpaWhmaErZZmE5JGWiTLsZCw1E6PBKqFueFw2J0eucG4QtKELFYbslFCshqL5NEXL/PJxwcxRIVoOMRjl1K8MJrjkSPbuLcvysXJLJIk0q5oiOlriA10bd1oFEWhvb2d9vZ2AMrlMgMDA2QyGS5cuEC5XK6mGsdiMcLh8A29Ar6RB/dK2EiLZDkWmsUyMTHB9PQ0t99+e/U+7vTIjcEVkiajts0J1F+9b0RPLOc5llvXsixOnTnHZ58aR/b6OdAVqVoJVxNF/v3EOP/zzQe4szcCwNTUFAPpxu5xs9NdPR5PNcvr4MGDFItFEokEyWSSa9euYZpmNSPMaT650QdVMx2EzWQh1RZIyrLsTo/cYFwhaSJqa0NqzXaHjTpMl7NICoUC/f39jOcsbF+Y3tD1zCZBEOgMe5jIlhlOFNnbGdzQvTYTPp+PLVu2VDPC8vl8NSNsaGgIQRDq4it+v7+hB1Wzvb/NaCE5+1nIYnGnRzYOV0iagNXMDdkoi2SxQ2liYoLTp0+zZcsWuvb08h/jF7Hm3NeybUSoy9BaTkiaMUayHgRBIBgMEgwG6e3trWaEJZNJpqenuXTpErIsV62VaDSK17v4IK+V0EwWAGyua2shnGLdhagVFnfI1/pxhWSTWU1tyI10bTlZWVdGxvB27qQQiLEl6KEv5uP8ZI6dbRKiIGDZNuOZMrvbg/TFfHVrNvPBv9HUZoRt3769mhHmuMHOnz+P1+uts1hUVV3VczSbkDSzRbIUtW4wcIVlLbhCsok4X9TNnBvirFt76DuurDNxk+dTUeJDM9hM0x708ODuVlJFncvTBQTAxqYz7OWn7tuKLF3/0S4nJKsVmY3oUHwjmZsRZhhGNSNseHiYM2fOEAwG65pPyvLyP89mOcicdNxm2Q+srtK+lqWExZ0euTCukGwCtbUhq5kb4hz4jf7B1h7SjiuLUAdPxHUKmklPixcBmMiU+frZKf7LQ9tJFXWms2Vagx7u2x6lI+SZt2ajLZJbycKRZZm2tjba2toA0DStGl8ZGBigVCoRCoWqbjAnhbWWZno/nL00m0XSiPTsWmFZaHpkrbC8VKdHukJyg1lPmxPnR9qoH0jtupZlcfbsWcbGxjh06BDfGtZIF8fY2Rao7m9Li5crMwVOj2V574Pbl1yz0UJyq/8gVVWls7OTzs5OgGqPsGQyydjYGIZhzGs+2UwWgPNZN8t+oPI72YiRArWZlO70yAqukNxAVjsCdy7O/Rt9JepcVaVSKY4dO4bf72fmzCWkOXsUBAFFEpjOlVe0V9ciWTs+nw+fz0dPTw+2bS84jti5AMjlcgQCgU09pByLtpkOyrW6tlaLKyyukNwQ5taGrPULVGuRNIqJiQlOnTqFIAgcOXKk+hy9MT+mFa9kZNUImG5abI/5l13XtUgahyAsPI743LlzFAoFnn/++WpGWG3zyRtJs7q2NmM/SwnL1atXyWaz7N69+5aaHukKyQYzdwTuWtqDODRSSEzT5MKFC4yNjbFnzx4uXbpU96N7+a4Y3zo3xeBMnvagBwSYyWl0hDw8tLdt2fVvZYtks3/sglAZR+zz+YhGo3VTI8fHx7lw4ULdOOJYLLbqjLDV0qyurc1sYeNQ+5t30vwda/JWmR7pCskGUVvw1Mi5IY3IXsrn85w4cQJBEDh27BiWZfHd4xf5i8euMJIo0tPi5eH97fzyw7v5p+dGGZjKY9s2h7eEecfLttIbXf5qdyPqSFzqcWIkta3woZIRttQ44mg0uqKMsNXg1JA00+e0WRbJUpimOa+Z5FLTI28WYXGFZAPYqLkhzlrrEZLaAsN9+/YhiiLfPTvGP18WkLwTeGSJ02MZnrqS4L+8Ygf/4437mMqWsW3oDHtW9TpuRYukGfZQy0Kfx2aMI26mwL9DMwtJLYt1Nq4Vlne+8528+93v5p3vfOdmbHtZXCFpMJZlMTExAUAsFmv4j2utQlLryrr99tur2UGaYfHPL05QNm1ui/kRxIolMZoq8dlnRrh/e5TO8OorsNfSmn4pmu2QagZWenjfiHHEzVbVDjePkMxlIWGZmJhouBXZSJp3ZzcZtW1OxsbG8Hg81SvCRrIWIZnryvL7rwfLhxMFJrMaYQWo6Z/VEVSZympcns5zsGd+K/iV0EjX1nLrvRRZ6/uxEeOIm62qHZpXSFYbrxIEgUKhUPe7bTZcIWkAc11ZkiRV//9Gs9og9vj4OGfOnKlzZdUiCgKCAJUVbaByYFiAKLDmCYe1qcoLHUJOyvFKfxzNdrXbDDTCnSQIjRlH3IyuraV6bW0Wa0kAcBqChkKNGRK3EbhCsk4Wqg2RJKma6ttoVmqRLObKmsv2Vj99MR8vpjL0WDayVOmfNZkps7MtwK72wJr2uZSQOCnHlmXh9Xqr1dvRaHTRArKXeu+uhdiIw1sQ5o8jzmQyJJPJeeOInc/N4/G4rq0VslZxy+fzBAJr+y3eCFwhWSO1tSFz25xsVE+sla69lCsLIJHXOD2WQRQEbt8S5meP9XF5dJLhRAFRELGxaQ96eM8DfSjS2n6ICxVPWpbFhQsXuHbtGocOHSIYDFZnpjsTCGsHRUUikaY7CJqNjT68RVGkpaWFlpaWeeOIR0ZGOHv2bNWicSzzjagmXwvNKiRrSWwoFAquRXKrMXcE7tysrI2aZOg811JrL+fK+r8nJ/jMMyMkixoCAjG/wruP9vKTuyyszi3EiyYdIQ8P7m6jp2Xtbc7nCkmpVKK/vx/TNDl27BiqqqLrel2/qXK5XB0UdebMGQzDoKWlhVgsVm1u6XKdzbDQFhtHPDY2hq7rfP/73ycUCtU1n9ysWo5bRUg0TUPXdYLB4Abtav24QrIKFhuBO5fNsEhM0+T8+fOMj48v6srqH0nz/3tyCMuy2RKp1IJMZct88vvD/Eg7/OQdnQ2riK4Vkng8zokTJ2hvb+e2225b1PXn8XjqgsDOoKhEIkEikQDgzJkzVYtlvfM8bnaaIS7hjCMWBIFyucwdd9xRja/UjiOubT55Iw5357fabEKylhhJLpcDcIXkVmBuQH2p4itRFDc02D5XSPL5PP39/YiiuKAry+E7F6YpaibbalqcdIU9jCSLnEltTLru4OAgw8PDHDhwgK1bt67q8bWDokZGRpiamsLn8zE2NsaFCxeqld3OIXWj0iM3+/CupVn24sRIPB4PXV1ddHV1VXtNOVamkxFWm2q8UeOIm7FlC6wtRpLL5apJEc2KKyQroHYE7kqKC2+ka2s5V1Yt07nyvCwsRxBzemPnfTgWx9jYGPfffz/h8NpSiB0EQUCWZXbu3MnOnTsxDKOuyK5YLFbbrsdisRt25buZNINF4rDQXgRB2LRxxM53udm+A2txbTmpv832WmpxhWQJVjoCdy4baZE4hX4rcWXNZXd7gOeHUnWNGC3LxrJtuvyNy4pKp9McP34cgHvuuachQcK577ssy7S3t9Pe3g5Qd+XrZIQ58ZVoNLrp3XE3gmbKYltJHclcK3OxccS1WXxrdV/eSkLSDN2dl8MVkkVYT5uTjbZISqUSTz/99LKurLm89rZOvnN+hpFEkWhAARsSBZ2eFi93tBXXvWfbthkdHeX8+fPs3LmTgYGBhrqbljo4vV4vPT091bbr+XyeRCJBPB7n8uXLdQdULBbD4/EsutZa93CjaSaLZC3pv6sZRxyLxWhpaVlxMV8zCokTt1mtkDR76i+4QrIgqx2BO5eNDLaXy2Wmp6fp7e1d1pUFFYujbFh4FZHeqI/feuM+/v6pq1ycyiEAR3ZEeffRbYyeeW5dh6Rpmpw5c4aZmRnuvvtuWltbGRgYaNjBu5rPoPbK16mFcFJWr127xrlz56pNDJ0DqpnbTyxFswhJIyrblxpHPDg4SD6fX/E44kY1Sm0kzpngWiS3OGsdgTuXjRASx5WVTqfp7OzkwIEDS95fNy3+rX+c/3tqglRBpyfi5a139/Dq/e187MduYyZXGQ/aFlQRBIFrZ9fu2nKC/ZIkcezYsao7YqkiwhvZImVud9zaJobOWFsns2itvaY2g5vdIlmOlYwjrm0+WTuOuBkztmq9G6uhUCi4FsnNwnK1Iauh0TGS2qyszs7OFbmy/vr7Q3zp+BiSKOBVRAamcvzRNwco6hZvOtxF+wIz1tcifpOTk5w6dYqtW7eyd+/euh9JI6vRG3lIzW1iuFCvqdpZHo0KADeal5qbbTXjiFVVbbrPbK1C4lgkzcxLXkhWWhuyGhoZI5mblXX+/Pll1x5Pl/j6mUl8qkTUX6kyjvgUJjJl/vn5UV57oB2PUm9er7Zbr2VZXLx4kdHRUQ4dOkRXV9e8+zS6rclGHZxzx9rmcjkSiQQzMzNcvnwZRVGqorJRSRRrodkskhttASw2jthJujBNk5MnT1YvCjbbPeQE2le7B8el18y8pIVk7gjcRg3maYRra7GsrJUc+ANTOXJlk55IvdUR8crM5DXG0iV2tNVf4azm0C+VSpw4cQJd1zl69OiiV0tLvZfNOtiqttdUX1/fvJYg2Wy2OmzIia9s5hS+ZhGSzRY1QagfRzwzM8OFCxeIRCJ1CRebOY54rRMbC4WCKyTNSm1tSG3v/0bgCMlaf1xLFRiKooiu60s+PuSVkSUB3bTwiNe/uJppoYgCQc/8j32l4pdIJOjv76etrY177rlnySB1o6ckNkNLkIGBAbLZbLUpZrlcXvcsj7Wy2Yd3Lc3WRt62bRRFoa+vj76+vmrCxWaOI75VGzbCS1BInID60NAQoijS09PT8B9jbcBvtVcg4+PjnD59mt7e3nkxB1jZgX+oJ8z2mJ+B6TxdYQFFEinrJpmSwSv3ts+Lj8Dyh75t2wwODnL58mX27dtHb2/vsu/bRsRI0kWd0WSJsmkR8sj0Rr14lRtnEUiShM/nY//+/QB17pSRkRGAusNpoZbrjaKZYiTN1v13rqttsXHEiUTiho0jXmvDxlwu19QNG+ElJiS1tSHZbHbD0gOdL/BqhMRxZU1MTHD48OFFCwwXEpLRZJF/6x/j+EiakFfh4QOVeesf/fpFrqWKlccJAod6wvzCK3YsuO5SwXZd1zl16hSZTIb77ruPSCSyotfUaCGZzJtcPD1FsqCDICAAW6NeXrGnlbD3xn2Va78zc2d5ON2Mp6enGRgYQFXVqkXjBIEbRbNZJM2yF1g+ZrMZ44jXKiT5fJ7u7u51PfdG85IRkrm1IRs5fMr5ApumuaKW2rWurKNHjy6ZlTVXSIbjBf7bF08znimhSAKmZfPi1RRvONTJX77zMM8OpYjnNLZGvdy7PbpoW/jFYi+ZTIb+/n78fn+1a+9KaaSQaKbFubhFpMNkR1sli8qwbIbjBU5dy/DArlhDnmc9CIJAOBwmHA5XC+ycOojh4WHOnDlDMBisikoj4ivNcng3m2trtcH/5cYR67peN+JgreOI1xojaeY+W/ASEJLFakMkSULTtA15TufHvZKYw3KurIXWrl3308+MMJ4p0RnyIM720cqVDb55doofPtTJq/e3r3jPcw/90dFRzp07V+1vtZYAeaOEJF4wSWsW+yLe6j5kUSAWUBlOFLlnm3lDXFyreT2SJNVd9Tp1EIlEgvPnz6Pr+rz4ymre42ayAtZ6SG4U680iW2gcsZMNNjIygm3bqx5HvB6LxA22byJLtTnZ6HG4y6UA17qy7rjjjuqV0HLUWiS2bfP0YAKfIlVFBCCgSuRKBi+OpDm8dWVuqNp1TdPk3LlzTE5Octddd1ULwlZLI4XEtsGyKuN/axEFMCywmidcsCi1dRC1h5PjpweqouLEV5aimWIkN7tFshS144i3bt265nHE6wm2u0KySSw0AreWjRQSWDooPjcrazVpiHNdULJYGY27EPIq5q07h36hUKC/v786XXE9KZKNEBLdtLBsaA0oBBSbmZxGx2yygG3bJPIaezuD+NXmuRpeCXMPJ6eBYSKRqI609Xg8dfGVuW7SZrNImmUvsLF1LWsdR7ye6YiukNxg5taGLBZQ38gOvUutPzY2xpkzZ1bsylpoXUegBEHgVfva+ecXrqGbFopUEZlU0cCnShzdufK4gSAIZDIZBgYGVtSSfqVrrrntStmgfzTDwHQey4KIpNHpr8SAhuIFVFmkqJm0BVUO9zR3RstKqG1guGPHjrqsImcMsdMm3wn+ghsjWYwb6WpbaByxExurHUcsiiIej2dV44idBqRu+u8NxKkNqT1oF/uhbbRFMte1tVZX1lzmWjo/dV8vJ0bTXJzKVy0Tryzyrvu3sat9ZV8+y7LI5XIUi0Vuv/32hmWIrFVINMPiWxdmGJjKE/UrSKLA+ekSVsHmx+9sIVnUyZUM2kMqu9oCtPibY0Z4I5mbVVQul6vxlbNnz2IYBrZtc+3aNTo7OzdsQNRKaSbrCDa319bc2JgzjvjKlStkMplVjyN2039vELVtTlba9XMjW71D/YG/HlfWQuuWdZNcySDgkWgNqvzp/+cw3zo/zdmxDEGPzEN72rhj68oGSZXLZU6cOEG5XKa3t7ehaYZrFZKrySJXZgr0xXyocuUwkKMejids0iWdl29yhtZmHJhzJw/m83meffZZstks165dq/roHYtlM6q2m01ImqWjszOOeHp6utrSZTXjiG9kjORjH/sYv/7rv84HP/hBPv7xj6/4cc3xTq+Dtc4NuRExEtM01+3KqmU6W+bPvj/Gdy+WUV98mgNdId7zQB93b2vhLXd085Y7VicCyWSS/v5+YrEYHR0dDf/hrVVIkgUdy6YqIlCpg/EqMJ4uN3KLNyW1Y1dvu+02FEWp+uidqm2v11s3IGqlrpS10oyurWbaD1zP2pp7UVDbfLJ2HPGFCxfYsmXLDev++9xzz/HJT36Sw4cPr/qxN7WQrHYEbi03QkiuXr1KNptdlyvLoaiZ/Pd/Pc258QyiDQrw/NUUFyZz/Mnbbuf2LSsfZWvbNkNDQ1y6dIm9e/eybds2zp492/AsoLUKiWdWQOa6S3QDgp6bK6i+0TjtfWp99M4cj9r4Sm0NRCQSafgh24wWSbMJyUJxm9qki7njiB999FG+8pWvIEkSH/rQh3jjG9/Iq1/9avbu3dvw9zqXy/FTP/VT/M3f/A2/93u/t+rHN9c7vUKcgLqmaWsSEdhY11Y+nyebzVIsFjl27Ni6RQTguxdnuDiZo8Un45ch6JFpD6pkSwaff250xesYhkF/fz/Dw8Pce++99PX1VWNJjX4/1iok26I+Yn6F0VQJ07Ir2VlFA1G02dPR3NkrNwrnfV3oe+/M8di7dy/3338/DzzwAFu2bKFUKnHmzBkef/xx+vv7uXr1KrlcriEXEG6MZHlWkrXlDGXr7e3l7/7u7zh+/DiCIHDPPffwr//6r9xxxx189KMfbfje3v/+9/PDP/zDPPzww2t6/E1nkaxnBG4tG5W15biyVFWlr6+vYb7qC5NZABRJxGnZKAgCHkXk1FhmRWtks1mOHz+Oz+ebV6W+2jbyK2GlQmLZNiPJEpOZMpIosC3q5ZV7W3niUoLhRBHbBtmGAy0CO1pvrO+/WVnNZ+XxeOqK65wrXsdiEUWxbgzxWuaku66t5VlLHYmmaei6zm//9m8jSRKlUolisdjQfX3+85/nxRdf5LnnnlvzGjeVkCxXG7IaHIukUVdStUV8d9xxB9euXWvowdziU7CpFOZRs65hWrT4lvd/X7t2jbNnz7J9+3Z279497zXfaIvEsiwKhQKq18d3L8Y5OZZFNyxsIOyVeXB3K2+9u5vxdBnTsvFYRUavxJvqqnczWcoiWYraMcS9vb11XXHHxsa4cOECPp+vLr6ykthZs7m21lr8t5GspY7ESf113luv17smoV+MkZERPvjBD/LNb35zXeveFEJSWxuynhG4tTgfqGma6w4y53I5Tpw4UZeVNTEx0dCD+VX72vnMMyOkigaKXXlPClrFovqR2+cPlXKoTTu+8847aW9fuGXKStrTr5bFhKRYLHL8+HEymQzXSgon0iq9sRBbYkFkWWYyU+b7l+JsiXjY2VYJKqfTBiNNUMndTNXksP4MstqK7J07d2IYRtVauXz5MsVisVq/EovF5mUUObgWyfKsRUg2el77Cy+8wNTUFHfffXf1NtM0efzxx/mLv/gLyuXyivbc9ELSyBG4tTRKSBbLymr03Pa+Vj//7TV7+N/fGiCRBS2noUgibzjYyY/dtXC21mqq1Bs9zXCxNePxOP39/XR2dnL48GE+/9wIvkIaLZ/mcmISj8dDwB9goiQxFM8v2PLeZeMETZZl2tvbqxccpVKp2mPq1KlTWJZFS0tL1WJxDrlms0iaUUjWUiS50cWIr371qzl16lTdbT/zMz/D/v37+dVf/dUV77dphWQjRuDW4qy11jjJXFfW3ID6RsRg3niokzt7AvztV55k174d3NUbZX/XwoVo09PTnDx5ku7ubvbv37/qZpCNoFZIajPF9u/fz5YtW9A0DUn10hoT6GnxYhomhUKBfD5PKpnmxf4ZlFTl0PJ4PBta93OzsVbX1mrxer309PTUjSFOJpN1UwdjsVhdN4lmoBmFZC3utrmurUYTCoU4dOhQ3W2BQIDW1tZ5ty9FUwqJbdtkMhmy2Sytra0NFxFYWWPFxVjIlTWX9aYXT2ZKfOXUJNdSRXpafLzhYCc9LV7aQx7ubbd5+O6eBS0p27a5dOkSQ0NDHDx4kJ6enhU930YG2w3D4PTp06RSKe69915KgpcLkzk8osWOmJfBeAHTspFkiVA4hOjxs00N8/L9LYTsAolEglQqhWVZnDt3bkNme9ys3EgrYKEeU04bF+czdoZDOWOIN6sosNmExLkwbjaLpFE0nZA4VkgymeTKlSs88MADG/ZcaznsV1pguJ6YQ/9Iml/50mlSBR3bBkGAf3pulI/92G3cNVuxvpAAaprGiRMnKBaLHDlyZFVtFTbKtVUul3n66adRFIU77rmP71xKcXZ8glzZxCPB1hYvnUGVy9MFQl4Jw7IpGzZ3bw2zf0srktjGtm3bSKfT9Pf3oyhKdbZHre9+I2ojmpkbZZEsRW18ZWxsjIMHD1ZjLAMDA5RKpWrF9o0eQ9xsbe2dc2atMZIbyWOPPbbqxzSNkDhzQwzDwLIsFEXZ0IJBWJ2QLOfKmstaXVumZfPRr18gWdCJ+hVEodLdN1nQ+ejXLvLPP/cyYL6QJJNJTpw4QSQS4dixY6u+Emx0TAcq7Vempqbo7e1l3759fP3sFM8OJekOe+iJeMkUygxMF9jfGeBV+1q5MlNAlUT2dQW5rSuIVNO92ImN7d69u7q204L99OnTWJY1rwX7Rh2yzRALaLa6Ddu2q9Mgnd9G7QwPp2K7to2L3+/fsNfQbBaJ89tai0XS7J1/oUmEZKHaEFmWm0ZIVuLKWmjttRzM5yeyjCSKBD0y4uyPTBQEQh6ZsXSJM+O5uniGbdsMDw8zMDDAnj17qgWGq6Wxs0NsLl++TCqVorOzkwMHDpAtGZwey9IeUIn4FCzbJuhV6EJgNFXitQfaObZEt+K5r2lubUQul6uOuD11foC8rRIIhdnaHmPP1na8nlvLDdZs2WMLBdt9Ph9btmypVmzXfkaXLl1CUZQ68W+kq7LZhMQ0zTW56G9Ue5T1sulCMncEbu3gqY0O3q3kKtxxZW3bto09e/as+Mu51it83bSx7IUHONl2ZT6Hs7bjl04mk7zsZS8jGo2u+vkcGhVs13WdkydPksvlaG9vr15NFTSDsm7SGqg/LPyKSDxvVVOZl2Kxw7PWd6+0dHKFBBOJDMXpIs9fHSLaf5F7tgbpbK90ZL2RLpaNohktkqX2U/sZ9fX1YZpmNb7itFoPBoN18ZW1uqaceEQzfcZr7cCRy+Vci2QpFhuB6+BYCxv5g1nKIlmtK2suaxWSfZ1BogGFRF6jxadUX3uubBLxyRzoDvHMZZFcLsfx48fxeDwcO3YMj2d9abKNCLY7lfPOfPcLFy5U14z4FEJemVRRrw6hcmanBFSJ6DKt4FfyHSjpJs8PpynqNge2tiEKAmXDZHgmT8lbKYAcHa20k1nNJMJmpVmExLbtVdeRSJJUff/h+hji2o64kUikriPuSl+v851rNiFZ65jd9Vwg3ig2RUhW0ubE8fFvZNBsMSHJ5XL09/cjy/Ka276vNUbiUyX+y0M7+INHB0gWdGRRwLBsFEngvQ9uJ+iRsW2bkydPsn37dvbs2dOQA2W9FsnExASnTp2qq5yvdZd5FYn7t0f5yulJRlNFQh6ZTFEjVzZ5xd5WIiuozl9O6KZzGomCxtYWX9Ut6JElokEvWUHkodt2IgrMm0TodMptbW3d1Eyj1dBMrq1GBP4XGkPsFEbWjiF2LgCWioE53+NbQUiKxSK9vb0bsKPGsim/GOcLsNzgKVj7B7ASFhKStbqyFlp7pQfzcLxA/2iagEfi6I4YP3pHN+1BlX954RpD8QLbYn7eencPL98Vqw412rt3Lzt37lzT3hZirRaJZVkMDAwwMjLC4cOH6ezsBCouuDPTGgOJPP6rl9jTEeCevihvvqObZweTpIsafkXigZ1R7t+x/BXXSg4pw7KxF3ALOmJs2TaSKBIOhwmHw2zfvr2uktvJNHKuhJ1Mo9rnbpYDvJlcW422ABbqiOuI/9TUFAMDA3g8nrrAfW18pRmFZK0XxLlcrjoyoJnZtEuv5Q4u50tgGMaG1QvUWg3rdWUttPZyQmKYFh97dID/9+Q4mmEjCBDzK/x/33yAB3a1cmxXa/W+xWKRZ555Btu28Xq91VGrjWItwXYn3bhUKnHkyJGqL9e2bf7fExN883IBWRJoV3S+dX6GcxNZ/tP927hza4RsSUfGxKtIq3ZZLEbUp+BXJTIlo2rh2LZNuqhzoCuIIs0/WOZWcjuZRs6VsCAIdW6wZqJZhKR2IulGIAhCnfjXjrJ1UsGDweC8oH2zvD+w9t5fbtbWOhEEYcMztxyroRGurLmsxLX1T8+N8qX+MWRRIOyVsGxIFHR+7ctn+df/fB8ds+1BZmZmOHHiRDUD6qmnntqQKvTVrJlOpzl+/DiRSISjR4/WuYOGE0VeuJoi6pMIqiIdES9dYZuLkzmeHkzwljt7iPoVNG3lwrXQoaCbFldmCgzFCxgWbIt62d7q48JknlzZRJVFsiWD1oDCno6VZb7UZhpZlkU2myUejzM2Nsb58+eRZRmv10s8Hl9XQHi9NKNFcqP2M3eUraZp1TTjc+fOoWkaAMPDwwtalZvBemIkrpCskxsxVz2dTjM0NLRuV9ZCay93MH/x+BjY4FMqXzBJqAxuypcNHj0zybvu7+Xy5csMDg5y4MABtm7dCmxMzcdqXFtOJ+Fdu3axY8eOeT/SsVSRom4S80rYjptBEGjxK1yYzK35EKzdn2nZPHk5ydmJHKokIIowGK+M5723L8JERqOomexq87Ozzb9sMH8hRFEkEokQiUTYuXMnuq5z9uxZSqVSNSDs9J2KxWI3dG56s7jYYPOD26qq1k0cnJmZ4cyZM2QyGYaHh+dZlZuRXLFWIXHTf5dhs8fhmqZJIpEgn89z5513NmT4VC0rOexnshryHIe+KAgIAkyki7zwwgsUCgXuv/9+wuHrExA3qi/WcmtalsX58+cZHx/nrrvuoq2tbcH7ybMuJMu2oea8M0wbj0+sutFWc+jOE6t0iQtTObrDKr7ZLDDDshmKF9nZ6ueH9rYutMy6UBQFv9+Pz+djz549dW6woaEhJEkiGo3S2tra8LqIuTSTRbLRrq3VIAgCqqoiyzKHDx+uWpW1yRUej6cqKjdiDDGsLUbizI5ZTYeKzaKpLRJZljeklsRxZRmGQXt7e8NFBFbm2trTGeDEaAZvzaFgWjaWZWMmryG2t3D06NF5X/TNsEhKpRL9/f1YlsXRo0eXDADubg8QC6hMzuRomx1xUNAM8prBa7at7b123h/nAJ3JaeimXRURqATVfYrISKrIwZ6N+/E5SSJOQHjr1q11fadq6yJqW7g00g3WTELSzC3ka63K2jHEyWSyOobYabUTjUYb/jk5uDGSTWQjLJLarCxFUchkVjZdcLWsZHDWI0f7+JV/PU22bOCVJSzbpqybxDwWP3r3Tvbv2bngY2/0NMNkMkl/fz+tra0cPHhw3g8tU9R5bjjFwFQOjyxy+5YIbzjYwT89mWI4rZERcsiSwD3botzX15iceFEU6qwdB9OyFwyqbzS1fad27dpVrYtIJBLVTLuWlpaqtbKR7UFuNDdTC3lnDLFjTZfL5XmfU23WXqPclW6MZIO40a6thbKyrl69umGuM+eLvJSQvHJvGx9+037+8nuDTGbKWJbJgRab33rTIQ5sX3jGiLP2Rlgkc9e0bZurV69y8eJF9u7dy7Zt2+a9llRB5+9+MMzAZA6PImFaFsdHUjy4u423HQpzaTLP1r5uusIedrcHqm6v1eI8r2ZUfpDdYQ8Bj0QirxGbrZbPl01M26YvtvkFhnPrIvL5PIlEotp+XVGUOvfKat1grkWyOKtxI3k8nrr4SqFQqAbuh4aGqhcIzue01viKaZqrdqE53xs3RrJOGtUmZbGsrI2MwTg/rOVaNbzxUBfHtgX49tPHCXk9PHTfXcuOvNwIIZlrkZimyZkzZ4jH40u2X3nqSpyLkzl2tQeqlkC6qPPUlQRtO2Vu71C4Y+/CsZTVMJ3TOBkXGHz2GoossqcjyMHuIGfGc1yeKYANqiRye0+Y7a3NlXdfO95227Ztde1B1trJuNmEpFn2AmvvsyUIAoFAgEAgUB1DnMlkSCQSjI+Pc+HChWrxqtPGZaXisJYYSaFQwLZtN0ayXhqR/rtUgeFGCsliExgr7SRmXTNcrwg/1LfyrLGNEhJnTWcUriiKHD16dElhOz2WJeiR69xJEZ/CRKbEtSxEW9bvgkvkNb55Ps6VLBy2oaRbPHE5wb6OAK870EY8r2Pa0B5U6Y54qlXti+GkDQ/GC+imzdYWLzvb/Cuqrm8Ec9uDrLWTcbMc3jeTa2s1iKJIS0sLLS0tANX4ytwxxM5ntdQFwFrntQOua2spNtq1tZICw42YYujgvD7ncJ7JlfnE9wb5+tkpNMPiyI4ob9gmoBam6irCV8JGBtudmpWuri4OHDiw7A9SFitt7muppoM2qKPw+ckcUzmNLh/EAkolgOpTuDxT4LbuELdvCS+/yCymZfPccIoLU3n8ioQkCBwfzTCeLvPg7hgh743/SSzVydip4p6bZdRMVkAzurY2Yj8LxVecC4AzZ85gGEZdG5fayYZrnY4oSdK6++jdCJraIlmrkKy0wHCtrd5XgiAIVaHKlQ1+7tP9DM7kEUQQEPjuhWmevgx/96476OxsX/XaG7Xv48eP19WsLMcdvREuTuUp6ZUqdYCZnEbIK7Mj5sHWtXXvaSxdJuCRydScmx5ZxLIhWVjd8LCpbJnLMwW6Q57qfmMBheFExUI5vIwobfQBvlCXXOcq+MqVK9WrYK/Xi2maTdHl9la1SJZj7gWAEwdzMsKcdPBYLIau62uejrjZn+9KaGohkWWZcrm8qsesplfWjSh4tCyLr5+aZHAmj0cREaiYyF4ZNEvkn/unub1vdULSaIvEMAzOnj0LwD333LNsK5DJTJl0UactqHJkR4xLU3lOXktjWZUW+EGPxGsOdNAdKBKPr98iCagSZeP6/JXq/9qgyqv7kaWKBoZpV0UEKpZTQJUZT5eWFZIbTW0V9549eyiVSiQSCcbGxigWizzxxBObXmzXbBbJWlNt18PcOJiTDp5MJrl27RrZbJbLly+TyWSqVstyzUFvlhbycAu5tmpdWXfeeWe1d1Kj1l8LzoHfP5quZKraFoZpIksyoihi6CbPDqXWtG6j0n/z+TzHjx+vBg1rCx/nkisZfOHFa5wYzVDUTQIeiSM7orzjZT3c09fCSKKAIons7wqxs83PyMjImvdl2zYlw0KVRPZ0BLgwmSWrz44fsGzG0yVa/Ap90dUdnE4B6FzLQp8jLs2K1+ulp6cHWZYZHh5m3759JBIJJiYmNq2TcTO52aA5hlrVpoPv3LmTp556is7OTnRdr8ZXwuFw9SIgHA7P2/PNkrEFTW6RrGaC4Vp6Zd0oIQmoArZtYRqV6mhh9jCzbIj4Vv8RrGcefC1TU1OcPHmSrVu3snPnTr7zne8saunYts0/v3CNJy7F6Qx7aAsqpIsGXz8zhSKJ/NidPdyzraXuMWt1wV2YzHF8JM1MXiegStzeE+Jl2yL831G4Ei8iSyKtAZWX74rRsoLWJ7ppEc9XXGyxgELYKzOV02gPqoiCQLZsYFoW25ogbXilOFbAejoZN4qXqmtrNViWVc30AqqWZTKZ5NSpU1iWVddux+fzUSgUNrTe6BOf+ASf+MQnGBoaAuDgwYP89m//Nm94wxtWvdamCslyHWdXkv67nrbvzpX9Rn3xRFEkm83SbUwgAqYgogiVQ8AwK91+33S4a03rrse1Zds2ly5dYmhoiEOHDtHd3V03unchxtNlTo6m6Qp7qod3W1DFsm2eupLgNfs7CM4JVC/3A1jo8z83keMrp6cwLYuITyFV1Hn03AxHd0R4oNNm521teD0qPRFvdUDWUlxNFHn+aop4TgNBoDWg0BPxMJ4pM5wsIlCJtxzqCbNtldbNZrLQ57RUJ+Ph4eG6mohYLLZsmvlq9tJMB3czCsncrC3Hsuzp6akmWCSTSeLxOCdOnOCDH/wg+/fvx7ZtxsfH6e5evK5srWzdupWPfexj7NmzB9u2+Yd/+Ad+9Ed/lOPHj3Pw4MFVrdXUFslS6b9rcWXNxflgN+KL50yAvHDhAq84uAu9ReSTTwxR0q8LwA/tbeMdL1tZULuW9QiJMwo3n89z5MiRao56bQuShUgVNQq6SWe4PoMk6JGJ5zXSJX1BIVnNPk3L5vmrKWzsai1IlMq0yFNjWXYAe9r9K85imclpfP9ygqJu0hWpHJqTmTJF3eKh3bHZscY2LT6F1oCy4iu/Zrj6Xok7ablOxoFAoK4mYq2tQZrRIrkR/bNWw1J1JLUJFtu2bWP//v386Z/+KZ/97Gc5deoUW7du5cCBA7zmNa/hN3/zNxftcbda3vSmN9X9+yMf+Qif+MQnePrpp28tIdnICYbO+jC/1mO9OMV85XKZHTt2sGvXLnbtglftb+db56bRTIv7d1TahYhzpzCtgLUKiTMKNxAIzOvhNTddeS4xv0pAlciUdKL+61XYmZJO0CMvWIOx1OFSLpe5fPkyPp+P1tZWfD4fubJBIq8TnbNW1K9wabpAbpVeyKvJIumCzs72637mrVEfV2YKxHMad/Y2dqbLjWY1h/dCnYwdN9j58+fRNG3NnYxdi2RpHK/HSoXa6/XyIz/yI1y6dAmPx8Pf/M3f8J3vfIdvf/vbGzbkyjRNvvCFL5DP5zl69OiqH9/0rq25QuK0MG9E23en+V4j4yT5fJ7+/n4kSSISidR98Hs6guzpWH8WxlpiD+Pj45w+fboqbKvt4dUZ9nBXbwuPXZzBtCqZWemiQaZk8pY72gl65n+VFtunM8skEAiQzWYZGBjA5/MRiEQxyhZFPHX1HCXDQpVFFHt17dNzZRNlgawuWRTIlTcuNnYjWG+yhaIodHR00NHRUR1t67RwWW0n42a0SJpJSGpHiq8GJ9gei8V461vfylvf+taG7+3UqVMcPXqUUqlEMBjky1/+Mrfddtuq12l6i8SJkZimydmzZ5mamlqzK2sutbUejWBycpJTp06xZcsW9u3bx/Hjxzek3mM1FollWVy8eJHR0dFlJz/WHvyGaXF6LMuFySwCAvu6gvzYnd0oksALV1NMZssEPTJvPtzF6w8uXEy50OHixLR27dpVHaM6nioyEU+iFTMEynFOXDNJtfhojwSRVR/jeZM9HQGiqRW95CotPhndsLBsu1rtbtk2umUtG6Q3LZuxdInpbCVI3x6qxGWahUZmSq23k7GbtbU0zvmyljqSjU7/3bdvH/39/aTTab74xS/y7ne/m+9973urFpOmFhInRpLNZjlx4kRDJxg6NKIo0TmsR0ZGOHjoEN8bNfnVv3qW0USevmiR97/Ky8MHGteqfqXpv+VymRMnTqBpGkePHl02ldBZ1zAtPv3MCI9fiqPN1m+oZ0Ue2t3Kf7q/l9cf7CRTMmgNqEtWgtdanLZtV9+jO++8k7a2NqbSBb5+Zoor8QJlwybs9XJ47z5iPUXOjCY5P57B0KfpCkps726lILBs8kUirxHP68iSQFfYQ3tIZThRpD2oYtswk9foDKpLZmiZls0LV1Ocn8zXTf/b3xkgZNs0wxG1kYf3Yp2M4/H4gp2MN6NuYymaUUici9bVkMvlGhYPWQxVVdm9ezdQqSF77rnn+NM//VM++clPrmqdTXdtLYWj4E8//XTDJxjWPsd6LJJSqcSJEyfQdZ2jR4/yl0+O8Y/PzNZP2DYDMyV++Yun+Z0f2c9P3NXTkD2vxCJx3EctLS3cfffdK4oBOQf/iyNpvjcwQ2tAJeytXLlnijrfG5jh9i1hXtYXrXbcXcl6uq5z4sQJisViVdB0w+T/nprk/ESOLS1evLJIsqDz/UtJ3nR7By/f20mqoOORIEiZdCpBIQHPPfcckUikeog5vnzTsnl2KMWpsSy5soEoCHSEVA52B4lkNSYylcLWXW1+7u6NEF5CAMfSJS5M5mkLqNXMsIJmcmEyT59i0hNujnqTG2UFLNfJ2BkmNTk5SSwW2/RAd7MJyVoaNkKlaeONLki0LGvVReDQxBaJaZqcP38eqOQ39/Q05hCey3qEJJFI0N/fT1tbG/fccw/TeYPPPTeKQKXi2jItbGx0y+bPvnOZN93etepK7IVYTkhGR0c5d+4cu3fvZvv27avKRrIsi5OjaUzTrooIQNinMJUrc3I0w8tWOFPEiT899dRTBAIBjhw5Uj1kriaLDM4U6I158SuVr2F7yEPZtHlhJMPd21pqXEkhOjvaGBsb4/DhwxSLxTpffiwWI0mAZ8Z0YkEPO0M+TMvmWqrMyWtZfuyOTiwq70HIIy37fkxmy9hQl17sVyVm8jBTMOgJb9zkw5WyWe6khToZnz9/nlwut+ZOxo1mrQf3RrFWi22jx+z++q//Om94wxvYtm0b2WyWz33uczz22GM8+uijq16rKYWkNisLqBbxbARrERLbthkcHOTy5cvs27eP3t5eBEHg+MgMumnjkWd/4EKlr5YiCSQKOldm8uzvWn9L6MWExLIszp07x8TEBHfffTetrasbN1t1bVn2gtlkgiCgr8INmE6nKRQK7Ny5kz179tQdfLmSgW7Z1Xn1DkGPRK5koBkW8gJ1Ik4DQyelNZ1OE4/HefbUNcbSZcSoDyMYJBgIsKXFy3CiyGiqzP6ulV/ZNdE49EVplpntTlNBWZbZt2/fmjsZN5Jms0jWOtRqo1ukTE1N8dM//dOMj48TiUQ4fPgwjz76KK95zWtWvVbTCcncrKzvfOc7N6T6fKXous6pU6fIZDLcd999RCLXU0h9ioQwO7iv9qdi25V/r6SAbiUslA1VKpU4fvw4tm2vOY7krHugO8STl+J1jRhLuoltw23dy/eism2bK1eucOXKFVRVZe/evfPuE/EpeGSRXNkg5Llu+WSKBl0RD54FLLe5B1CtL78t7sUX0/ChkZt1vQCkLC9jk7Ajqqy4/qQz5OHcRI6iblaFrqhXvoOtvua40m2mAHftXtbSybjR3CpCstGurb/9279t2FpNEyNZLCvrRjRWXOn6mUyG/v5+/H4/x44dm5cSeXRnjKhfIVnQcTTDtmwsBG7fEmJbrDE54HPFz3Gxtbe3c9ttt63ZrHcskvv6Yjw/lOT4SLo6Z8QwLe7a1sLL5rRBmYthGJw+fZpUKsWBAwe4cuVK3d+LWuW97o362NsRoH80TUew0ucqWdCxbJt7+1qQFqmvWexKfGvUy4sjGl1tEVqiLdiWTSpXoDidoZCa4cknhwgGg9XYylyXS7qoE8/riAK0BlX2dgS4OJkD5ztq2+ztDBIu5VbyVm44zSYkCx3ci3UyjsfjdZ2Mnc8kFAo1RABuFSFxe22tklpX1gMPPFDXuqFRUxIXY6VC4sQdlqrD8CoSv/+Wg3zoC6co6SZQ6YbbHlL48JsONGzPzoFv2zbDw8MMDAzUudhWSzyn8cxQkmevmlwVkjx8OMz7HtrBU4MJ+kfSANzZG+HYzlZ8S1hVhUKh2gDy2LFj5PPXs54mMyUeuzDDhanKQby/M8h921vwKyLnJ/PECxpRn8L9O1q4Y8vC7r+lXtuBrhCDM0UGZ4pEAwqGaZMqCbxszxZed1s7lqHPc7k4V8VjZZWLcY1c2ai0UfEr1RjNRKYEQFfYS0+Ll8sDU01zgDcLK41J1HYyhuv9ppw0Y6AhnYybTUjWsh8nqeFmmI4ITSAkyxUYNmJK4lIsJyS1rVjuuuuuZdPxXr67lf94/xH+/cQEF0enaPeYvO8NL2vo9D2n9uXUqVPLjsJdjsvTef7isSuMJovkcgb9yWmeGinyC6/YycP7O3h4/8rSluPxOP39/XR3d7N//35EUayOCk0VdD7zzCjDiQJtwYoV98SlOMPxPO++bwuv2NtGUTNp8SsLurRqcYRpJFnk9FiWyUyZaEDhtq4Qr7utjZNjWcZTZTyyyMt3Rblja7jS8VdV62Zz53K5Sl+jK+M8OZwj5FXpjgXxB4JkivDsUIo3HmxnW2z597VsWIgCdVMiN5pms0jWspe5/aacFi61nYwda2U1nYybTUjWY5G4beRXwPj4OOfPn1+ywPBGdOhdbP1CoUB/fz+CIKwq7tAZ9vLeB7czPCwwMzPT8BGumqZhGAbFYpFjx46teYKaZdl89tkRrqWK7GwLkBAK+AMqEzmNzzw7wod/ZD/yMoejbdtcvXqVixcvsn//fnp7e6t/c9J/T1xLM5wosKcjUHVZRX0KF6eynBrP8uDu1iXTcWvXg4r4ffXMFLmySdAjMZnVuDRd4FV7W3nDbR2UdBNJFBY92GtdLkNakD6yxFSTXC7HxPg4hmFwFR/dcoH79vYsGiCeyWmcn8wxmS0jItAX87G/K9iwWNhSNJOQNOLgFgSh2sl4x44d6+pkfKsIyUZnbTWSTRWSrq6u6rS3xdgs15bTYr2np6d6hb2WtRtd2T49Pc2JEycAuPfee9f1g7mWKnJlpkBnyDt7wAsIQHfYy8jsxMClWrpYllWNay1kFTlCMpooospCXdxDEgUE2+KJEwNsC1hs6Yghr+DHZpgWzw5V5qHsar8ec5rIlHl2OMW+ztUd5HnNxOtRCIeDhCMRsG3KZY2z1+JMJ1I888wIHo+n6pJxPs9kQeeJywlSRZ0Wn4Jp2xwfTZMq6jy4O3ZDrJNmEZKNELW1djLeyG7ea2UtQmJZlmuRrBRRFJdtZX0jgu21sz0sy+LSpUsMDw9XW6yvlUZOMqzNhNqzZw/nz59f94/XsCrdb50DXhAqGWayCKZdqfBejFKpRH9/P5ZlcezYsQU/R0dIwj4Zw6xfq1gscen8WQoBgS99N4EsSfR2trK9p53t3W20hOZfiQmCQLZsMpXTqi4yh/ZgpYJ9OqfRt4q5Il1hD8OJ0vU2KoKAICvEWlq490A7vS2euivjYrGI1+vlQtxgoiCxp+t60D7okRlJFpnIlOnd4Jb0zWSR3IimjSvtZOyUCjSTkKylriWfzwO4MZKVsJIfwo2IkZRKlYCq01KkXC5z9OjRZa8Gnh9O8pePDXLiWpqIT+Gtd/fwcw9srxYdNqqPl2EY1ZTj+++/H4/Hw/nz59d9mGxp8VWsj2Rx9vAVAJupTJmOkIe+RbLMUqkUx48fp7W1lYMHDy7ZHtu2bQ72hHl6MMm1VInusIdkKsWz/WewdZ22YCWd2DBNBsemGBybAqCrtYXO1gg7etrZ2tGKIleeQxIq1sxcYdJNC1kUqxMQFyNTMrg0lWMyq+FTJdoCCm0BmaHZIL1p2aSLOrvbK3UokiTS1tZWjY2dOXMGXdc5PZ5hJpXHTI0TDoUIhUMEA0FMG7KljbOgHZqljgRufNPGpToZX7x4EYDTp0/P636wWZimueo0Z0dIXNdWg7hR6b/JZJL+/n6i0eiKWoo8eTnO+z7bj1UZHU5BK/EXjw1y+lqW//POwwiC0BDXVi6X4/jx43i9Xo4ePYqqqlULar0mvCqL/MTdPfz194e4PJPHKFmYJY3WsJ8fv6tnwQwtJzliz5499PX1LfkDdYRkZ1uANx3u4tEzkzx7bpDxkat4ZYG9nUFa5kyItG2bcNDPRDzFRDzFiYvDSJJESzhMIh6nbUuBXW1+XhxJE/BIKJI422CxTF/UN29eSi3Jgs6jZ6cZS5fwKiKaWRnle1tXkJ4WH6OpEooocP/2Fg50hRZ0T0mShNfr5bZgC56ZPDHFIpvLMTk5yXDpKmnby7S3SCZgb9hEQud9aiaLZDP3UtvJuFQq8YMf/IC2tjaSyWRd9wPnv6U6GW8EpmmueohYoVBAUVZe+7TZ3BRCspExEkEQyOVyPP/88+zdu5dt27at6Efxv791CdMGUWC2s6yAZdk8NjDDiyNp7tnWsm7XltNNuLe3l71791b35YjHatc2TIvnr6Y4OZoB4FBPiHu3R/nvr9nN9wfiHL80Qm/Mz5vv3c3BnvrCQ8uyuHDhAmNjY8tmr83kyrwwnOLKVIapSdg1nefebS2MXx0mZ6fo6o3QHQ3gkQSKpTKG8zpsCAf8ZPPF6lol3eLKRI7ExWnSmRzfv/wdDvZ1IqheTqX9BEIhJEmmO+zhlXtbl7RITlzLcC1dYmerv+rOm8lpXJop8La7url/ewuCICy4Rr5sMBgv8vy1En7VpK9XRBQENMlDZ1eQ9s5ORuJ5IkYJH6VqkoZzeLW2tjb8AGsWIWmmmIQjatu2bWPbtm2r7mS8EawlRpLL5QgEAk3zGS/HTeHaWksTsZVgGAbXrl2jWCxy3333rbgVS65kcH6iUg9R+xoEoeIcemYwsS4hsW2bgYEBhoeHuf322+nqqh/HuxYh0U2Lv3p8kMcH4uhm5XGPnp3kgV2tfOCVO9nfFaI/lCIcDrNzjohomlZ1+R05cmRJc3skUeDvn7rKtVQJWbQZj8NffPsircYMXrtUtRhMQydbtrAsC69HwaMqCECmRkQsGwam80xly4Q8MgFVQJRkTgxNsbs9gFdJkkvBlvYY+7ZswYOx6NWxbloMx4vE/Epd0L81oHAlXmAiU2Zf58KuzEzJ4DsXZriWKpHJmtiCTVrI0BZUMW2bkWQRAYGOsI97tnXRHfFiWRaZTIZEIlGtQXJ6ULW2thIOh9d1+G62FVBLM+1lrqgt1MnYCdo7nYxrg/YbMSN9LTESR0huFm4Ki2QjXFvOtEBJkggEAqvq56VIlQwkY4FgtG2DX628rWuJkWiaxsmTJykUCovGaZyBXKsRkueGknzvYpxYQKm2fs+XDZ68HOfubS28cm/bgu3ps9ksL774IqFQiCNHjizp8rNtm2+cnWIsVWJPZwDbtChPl7h47gyYOsd2xebViQiz/chKZR3dMCqzMTweRBEmUkUSeZ2IV8HrUSgXBVTRwhQFJrNl7uqNIApglnI8c/ICL567TMjvZWtHK9u72+jtbEWdbQhZec9g7ltmz/4fcYnD4/xEjpFkkZ1tfiY0CVmWUL0ymZLJq/e1YlN5fHtQrYuPtbS04A+GESJdiNkihVyWqXSWsbExbNuuGxy1WtdHM00lbKa9LGcdqXPqieZ2MlYUpc4N1ogWLmtp2ui0R2kWgV6OTReSlUxJbLRry/Hzb9++nUgkUg3QrRSPIvGaA+18/cxU9WrMtm1My0YWRV5/W0d176s57DOZDMePHycUCs0bhTuX1Vo7x0fSGJZVNz8k4JGZzGq8eDXFK/e2zROnyclJTp48yfbt29m9e/eyX+psyeDSdJ72sIooCEzF4wwNDxNrbSWRF8mWzTohEQTweTyUNL1ubkl+NvkhV9IQRJFQwIdlW1izlpQqi5QNC9OyEaXKnvxelbJmkEjnSKRznByopIhu7YjR193Gjp52drX5eHooTYtPrsY/JjNlon6F7sjCvmjbthmMF2iZY8m0+GQG40XymrmoJVPQTJ4aTDKcKGDbYNkiYW8r9x7YSZtqEo/HGR8f58KFC/j9/qq10tLSsqKDp1kOmWaakLgaN9tCnYwdN1gjOxmvxbWVz+c3bKzuRrDpQrIcjbRIarvjOkWQ8Xh8Tev/6uv2cnosy0iigPPdkgSB//HGfXTNtj9fzWHvTA7cuXMnO3fuXPaHuVohsey5rSRn1xGoWlaOINq2zeXLlxkcHFzQtbYkQqXQ8erVEYaHhzFNE62sYegGpmnh9agosoSumwiCTTZfXPS1emQRVZHJ5osoUsUKUxWZgikSUKge7CG/l2yhNO/xmm7ywqUxnjo/SiTgI+RTKNge+hM+IpEIgiQR8coc3RldcFTw9fdo7sVO5Xlte+nD/OJUjivTeXpjvqpwTWTKHB/J8IaDHezYUSm+c7KO4vE4586dQ9f1OmtloQOlmdxJN5NFshS1QXmgYZ2M1xojuVlqSOAmEJJGpf86VeoAR48erf4415pZ1RHy8OX33c9XT09wYjRDzK/wpsNd7K4p4HNcRUt9uWuD2KsZIbycJTeXQz1hvnthhqJmVrOxnI6+d26NVPdrmib9/f1kMhmOHDmyqjz2kFdmV6uff3v8BVS9kr6IDdmyQcAjEfUrlMoapTIEfT5yhSIBnxdRFCiWdUzTxLIrLjcE6I4FGU2VmMzqBFUZw7JJ5EogSvR1BPCpMj6Ph3JNHZBDQTO5NJ0nXTRQPR6uzMQJeWV2tPqwTJvx6at0tUbp29VNTG1Z9GAWBIHd7X6evJIk6r/+PZnOaUR8Ml2LZImZls1QvEjYp9Rlf3WEVK4mSkxly2xvrXwH585Pd9wtTsdcr9dbtVai0SiSJL2k03+XopGB/0Z1Ml5rHYkbI1kFK3FtrVdIpqenOXnyJF1dXRw4cKDui7ae9f2qxFvv3sJb796y4N+dL89iX+5yuUx/f391uuJqTNnVWiTHdsZ46kqC54dT1aQA07a5q7eFl++uNNEzDIPp6WnC4XA11XglVKwYyBaKGPGreG2NmYKOgE3OgJggsLcjiCqLlVoPRSZXLGJaFvliafY7AEUTrsRLxHNlBAH8E3m2Rr3IkkA8p1MyISIK9LUF6GnxIUkSqVxFsCqxFbUqSlcTOdJFk86IH93QsSSFVEFnNFXmtq5gpamvWeT0wCBDI2MgwPbudvpmYys5zSZdMvAqIrvbA0xkygzFC0xnDUTJptcH925vWbK1i2XZzE0Am7VlWKzWc667xTCMasfcixcvUi6XaWlpwTCM6oXKZh/izbAHh43KIFuok7FTu+J0Mg6Hw3UtXJx9rNW15QpJA1nPQW/bNpcuXWJoaGjRKYsbWaeyVHaVU9QXi8W45557VtyQrnbt1QiJR5H40Kt38/ilGV4YTmHbcHdfCw/tbq1M/5uZYWJigkAgwD333LOiH2NZN/n+pTg/uJJgciZJfuoqW8IKd/T4mQxKlAxIJcoc2tlKQBXxqpWCv1JZm7dWUTc5PpKhbEFQlQCbvCEwnNI53O2nLwaj1/J0tvppiwZBgELpejZfJbZS+XdBM8kbAq1h32y1voAo2AQ9MpmSTkEzCXgkJElClSVyxYpb7PTlEfoHrjKaLKGJXvyhMK2xKPu3tPLArhh7OgIcP5cm4FW590AH7aH51kimZJAu6nhlkS1RLyevZWnxK9VgfqpoEPTItAZWFsSVZbmuILJQKJBIJBgaGmJsbIyZmZk6a2Uzxtw2k2vrRs2PlySp7nNZqpOxI/qr4WZqjwI3gZDIsrymYLuTslosFpd00Thugo24kllMSEZGRjh//vyKivqWWnsxIbFtm2eHkjx6dorRZJGtUR+vP9jJvX0tvO62Tl53W2fdfYeGhhgYGKC1tRWPx7Oi98GybD733CjfvxSnlE4wM36VYtlgLCHxsr4o21v9lVhLVscrQSTgxwYky8YwTGzqL8mnsholSyDqvW6hBhWbeL7EWErk4NYIpaBKOOjFtCzMJURUVRQMI4eGiS0JiIKAoqrIsk05X8aybVRVxragOEfUJjJlxtIlAqqOYJQYjk9y+qzNmQudvPXIbva2iISCnnkiYlg2L15Nc3YiS75sosoirQGFiFdmKF7Ep4iVqY+iyD3bwvMaeWZKBrmygUcWifmVRb8Tfr8fv99POp3G5/PR0tJCPB5ncHCQM2fOEA6H6+Z73AhL4VZ1ba2GpToZA9WR3CvtZOxaJKtkuS+gYzGsxnxOpVL09/cTiUQ4duzYkh9a7WHf6C+gIAh1KcBOS/qpqak1jcKtZSkh+ca5Kf7m+8OUDBO/KjGWLnHyWob3vnw7r73telt40zQ5c+YM8Xice++9l+np6Wq7mOW4MpPnucEEZnqC/PQUfkXEJ6vE8xqD8TyxQAtQEYWg30s6X+T6xyfg93oQsCmWNcqaji0p2GYe264/YCWxYmGUyjo2kC+WCYcUgn4vtg2lcrmuJ1jA5yFbKOOVBfKaScQnY2OjaRqZUuWg7mwJIooVMdRrLlIMy2Ymp+GRRYI+T+Vzsy18os2ZK6PYhRRaLk1XWwv3FW36utvoiIYRBIFz41meHU4R9Sv0taqUdIvRVIktES/3b48wk9PxKSK9MR9bItdTfXXTon80w8BUnrxWyWrrjXq5r6+FwBIJALZtzwsOl0ol4vF4XWNDx1rZyIruZrJImqE4sraTcW9vL48//jg7d+4knU6vuJNxoVCgo2NlIxyagU0XkuWojTMs52esbWm+0qt9Z03TNBcVHMO0+Ma5Kb5xdhrLtnnl3jZ+5Pauas3AUjgHfrFYrAb7F2tyuBoWqyMpaCb/8sI1LNuuBnMBxlIlvvDCNR7cXRlO5YzmhUrygdfrJR6PrziIe3kqw6WBC/jtEqIooszWa/h1i0Rew7JsJFHEpyqVrCul9r21KZTKmKaFbVuEQ378xQKiPN8tY1rgU0WCfi/XyjoeH5imRa4mS8vnUcmWTWbyOqmJGUJehY6Qh+FEpQ5FlUV000ISBfZ2t1CoEUsntiKIItlCCcOyCfq86LrBbJUJkihgWna1yeVUMsPxC0P84ORFfB6V3q42LqXAGwwR9Vdeg1+V2NriZTqncSwY5fCWCAtxfiLH8ZE00YDCtqCXom5xYTKPbcMP7W1d9Pu70IWV1+uta2yYyWSIx+PVim5nGmFra2vDphGCa5EshXMR2dHRUc1+XKqTcTQaxefzkcvl2Llz54bs6fd///f50pe+xPnz5/H5fBw7dow/+IM/YN++fWtes+mFxDncDcNYUkicEa/JZHJVg55EUUQQhEXjJIZp8f7Pn+R7F2eqV9TfODvFF164xt/99N1LTgx01k8mk1y6dImOjg5uu+22hnzRF7NIhuJ5EjmdtmD9oRwLKMzkNIbiBbq8RtXUPnjwYHU/Ky1ynEllePzpFyjmMnj9KiIWmlZxERmWRcjvIRL0ISBQ1K4fyHPRyiVEAdIZm6BsowomyYJFLFRJq0zmy/hUiR3t4VnhEBZc6/JUhtGMQb5QRpJFpksQ88nsaguQKmrkNZMWn8z2jggq9Z9zbWzFMi1iQR/pkkGLV6Gs6YBN2bBQZRGvLJID/F5PNT5TKJU5fXmUM+NZFElkuDVCe2uM9tYoLeEQmmFR1Bd+T3XT4uJUnqBXpmXW1RVQJXoiHkaSReJ5fV6X41qWOrydgsiWlpZqRbdjrZw8eRLbtuvat6ynp9NLIdi+VkzTrHomHOZ2MnY6IIyNjfGJT3yCf//3f6erq4toNEqhUGh4Pcn3vvc93v/+93PvvfdiGAa/8Ru/wWtf+1rOnj27ZnfapgvJcl9Ap4p7qYC409jQ4/GsadDTUgH3/zg1wfcuzsy7vX80zeeeG+U9D/Qtuq4Tezl//jwHDhyoG/q0XhaqQgdQJbFadV/7LphWpV18Mj7F6PiVBfuKLbZmLZdGJvjKE8fxiRYBVSZd1In4FEQBNMNCMyz6Yn4Ks+m8siwR8HlQFZVCWcOyrEqGVyZNMpnERMA0DHxeD70BD+MFkVSuCAiEfSr7u4JE/GrlqneBOhjdshnLGOiaTmxWPG3bZjJVQBW8HO6NIklitf3K3O9brmwwk9Mp6hatIS+qUBHFKU3Dq0gIooSBQFdExqdKWF6VfLGMx3f9xy2LAl5ZJK+ZJJJpiqUyFy4PIYgy/lCIyQ6R7mA3Pm+9KJQNi5Jh4VfrDz6vUim4LOqLf+dXe3irqlqXylrbht0piKydRrjSw9ipO2qWw7sZhWSpC+Bawd+5cyfbt29nz549fPKTn+RLX/oS//iP/8iDDz7I2972Nt773vc2ZE9f//rX6/7993//93R0dPDCCy/w0EMPrWnNTReS5XC66C520I+Pj3P69Gn6+vrYvXv3mgdQLbb+V09PMvf36szt+OrpiUWFxDAMzpw5g2ma1XnqjWQxi2RnW4CdbX7OjGfZpkhVUZnKavQGLPITg4vGZ5aySGzb5vv9F/n2ixfwqQrRoI9DW8KcvpYhWahYI5IosLsrQk9Yqb6flmWTK5RQ1cq6HkVhemqSsUSBlB0gr9tIIsQMiMo6nWKJsiIQCYaIhGS8sk2uUOm/JYjg96iE/D5KZQ1BEkikymSL5apLqfI6Ku6weF6nrBsolkRZ15FlGZ9auV+hpDGdK3NpOk/ZsPGoMlNjaXyqSGfIQ0EzKeomsm3TE1LpCnkI+nwUsml83uvPZc027mwPecjFC+hI6PkShmVR0nQUweKp42d45sRZOmOR2Sr7DjpjYbyKRMgjkS4ZdQWRubKJX5WXLJJcTx3J3GmEuq7X9Z8yTbPqamltbV1yMqizj2aySDa6CeNqWO1+2tra+Omf/mn+/u//nj/90z/l3nvv5Rvf+AbZbHbD9phOpwGqsba10PRCAgu3SXGu9MfGxrjjjjvWFZhaqieWZlizFcz1t9tUrigXolAo8OKLL6IoSjXLptEsJiSiKPDeB7fzh98YYCRZOYBt2yYolHl1j8wDx44tup/Fano03eBPvvQE3+6/TEEzEQWBaEDhzq0tvO72HiYzZXKlMp0RPx7BQqwpnnBEFyqZdNOTE0zlDcbKKoZtE/Sq6JbF1ayG3eLntm0dyILNTCJFIh5H1w28Xi9+v68yNa5URpCL+D0qllXJ0FostiXLcuVzmi1YNE2TXHE28cGyGc8aiJJCd0ihVCoRCCgkCzrZksHBniCmVREJVZFQ5ErtS76kI8s2JXRSZZuCbiIDrQGZ/d0Rrs7kKBuVeMzWqJfOsGf2PbCZiKfIFUo8c/oSPo/Ktq42PN4g+YLABBD2yhR1k3TR4HBPqE4cHQzLRhIa605SFIXOzk46OzurBZHxeJypqalqQaQTW2lpaak7GJ3vS7NYATebRbIYTvrv3r172bt37wbsrIJlWfzSL/0SDzzwAIcOHVrzOpsuJCv5Mcy1GJzAtW3bHFviYFwpS1W3v3JvG88MJevExLYrV9+v2je/Ct0Zhbtlyxb27dvHM888syF1Ko6QlHWTJ68kODmaQRbhZduj3NsX5Q9//BBPDSYYnU6Tnb7GvdvCHL3njmUz2OY1bcwX+bMvP86j/VcBCHplLMtmKlvm2aEED+5upSMgsy3mxbJBkSUMw6xJq63ENYrFIql4HEn1UBA96JZG1CdjYyKLIKoSMwUTUVaRRZtoLEpMiKHrBsVigUKhiKZpzMzEkbAp5CW8Ph8yNrJgUdAgFvIDNppuoNvQ7hWxF/lc85pJXjPwyQLlchlJllBlmZgkkymUKekWflXCoyhYtlVX+5IsmUyn81iWjUcWydsCWc1kT4fC3dtbSeeLSIKALNW4DQURj6ownswxk9MoaFlOjaZoDShYNmiCij8Ypqs9xr27u7h9TnB+KF7gwmSOZEEn7FWwsgYrbIKwKmoLIvv6+upmp1+4cAFN02hpaalaK07dSjNZJKutydpI1lLX4oj5jZiO+P73v5/Tp0/zxBNPrGud5nnHl6C2TcrMzAwnTpygs7OTAwcONMSMXcq19dZ7tvCFF8cYnMnjDOWTRIGOkIefPnLdXVXbn6q2+HEj5rZD5Ydb0Aw+8rWLPDuUxLQrE7a+dmaK193WwftfuZO7Wm3ksWF23r2y/l1zXVvXphJ8+9lT9A9OY1oW0cCsj18UiIoKqaLOTN5ge5uHQqly0Do1gpIk4feo+DwypVKBbDpDKFLphns6OYNPkeosII8sktbgWiLLlhYvqqLMFjBaKKpCOBxmbGycaCREoVSmUChUBwa1eVTGcxbjyRwCNpLiIeIR2dsdwSuLFIrleW3Ggj4vppHFEiVEUcAyLUqmhmZagI1XVYkEPWi6QalkVN87y7aZzpsIskSLX0GRK8KaKWpcnkzjlyouK99slb2mGdhUrIfxZI7BeAHNtFGlSnpyqqCzLeajKwSSkCc7nuLZ5CgTo21s725ne3c7Y1mDxy8lsOxKUeVYpsS1CYNgpMyWhZsqNIza2em2XbkgcIL2V65cqQpJPB6ntbV10w/xW8Uicbr/biQf+MAH+I//+A8ef/xxtm7duq61bgohcVxbly5dYnBwkAMHDqz7hc9dfzEhCXpkPveel/F3Tw7z1TOTWJbNaw508J4H+mgLVsLZuq5z6tQpstks999/P+Hw9XkejZzbXosoijw5nOeZoQJtQQ8+pfJlzZR0Hj07xVa1QLg0uSq3X61FcvryCN94+mRlMFChjNejoqoeLMtC13VEUUCSFHKajrZAryvTNMnkixiGSSqZZlvvVsKhEEVNRxIENEeVbRtRlrFtMI0SilSxLnXDqNZ4CIKA3+cl5FOxEClJARKCgimYBEyLAGVahTIFS8TrDxJQLXqiQSxDp2CAJIn4PBURLJQ1Al4PqVyBgEciWzRomXUh2VTiE60BhbBPIZ0rAKDIMt7Z2Mo1S6Bk2ER9Ep7ZaZWWbeNTRDJlg6JuokhCNavLoyqIVOJ8yXIlhbjWZZUrG0zndboiPizTQBYFSprOxeFxLg6PV1xwBQF/KMz+bZ1EvF6ifoWpcZuLM2WO6CZe5cbEBARBqLpqe3t7MU2T6elpzp49y+DgIGfPnq3WR7S2tm5KG/RbRUg2siDRtm1+8Rd/kS9/+cs89thj7NixY91r3hRCIggCg4ODWJY176BuBMvNDYn4FD708G4+9PDueX/L5XK8+OKL+P3+BftTNWpu+0J77h+vDFTy1RwkIY/MRCLHM5dL/I+fOLKqqxpBEDBMk+8+f4YXzl25vqZXZjxdwpmKKwgCkqIiaCUCixxipmmRScXRDJOOjk4ESSY7GzTvawtwcbqEJYhIkoBpWSTzGiGvvGBcQJEkdMMgU9QYS1hkLRlFlrBtiXjRpD0Y4NDOLkTbIJHKUChkmBhL4vX68Pt9+Hz+SiW8IBDwqOiGSTTkZ58tcmo0STyvIQoClg0BVeS2LTGyhVLVlWnUxFbAwqPKFVE1bczZGgpzdqaJVHNw+r0eimUN27Yp6WUS2WLFXaYqCIKIYRhE/BLJvEaqUF6wb5dmWCQyxcoI2akJFFmmvTVKsZAnqXhJFQ26bpCQzEWSJCKRigvuyJEj1fqIeDzO8PDwpoy4bTYhWUvw3zRNisXihlkk73//+/nc5z7Hv//7vxMKharV95FIZMnEiqXYdCFZ7oolnU6TSqWqB/VG9BJaq/tpYmKCU6dO0dfXx549exZ8LRtpkRiWXTeQyTRNMpk0NtCzpXfVX0TNMHj85BXUYEvd7dtb/UznNNJFA78qIcsyU8ksUb9Ce1DF5/GgyBKarlMsa+i6TjoRRzNtRLEyCKqkW+imhU+R2BrxkinozBRNCsUyiqrQGvZzoNPP3BpPn1dF0wxMyyJdtpkpGMRCCopYsWh8kkJSg5wh0O730tamYNut6LpGsVicDRwnUFUZTQoQL1nYQsUt1R32cnhrhLwOJcNCtA22xoIYur5Qx/1KDEiEmE9hKpMj4lXwKDKiJJHTNVp8Cv7ZuqKg31fNNoPrI5lNy56tTwFVVdA0E4+qEPR6QLCuZybM4veqiBQp6zoeuSKoY5PTTMcTiNdmaLHSHNrRw7auVnraKqnON5La1N+59RHObI+rV69y9uzZalNDZ0LkRlgrN6rX1kpZy35yucr01Y2KkXziE58A4JWvfGXd7Z/61Kd45JFH1rTmpgvJYti2zcjICBcuXCAYDNLe3r5hDelW27jRtm0uXrzIyMgIhw8fprOzc9H7blSMRBRFbmtTGcpq6KaFbRqVFEFZJeCTubNvZQWZDvF0ji9/7ziTySwHOrrAFiiWy5iWRVfYyx1bwgxMFygZUNJLdEW83N4TRpVFiuUyxdnYiK5rJGdmCIWCdIQiDFwZ4txEgZliFsOy8SkSfTEfR/d0cHU6TbZYsS5aAyqKJKDKMh6PUqkbsSvDrZwixJxemami1GSFeT0K2XSJ0XiWiBrC61FQZRnTqtSuRCIRZEnk9GiSwakclmkgAFNJifGEwuGtLcQCHiRJRZV92IDP78MwzVlrAqayZSazGmXDRLZEgqpOW8BLsqiTKRuIQNgn0xvz4feqqIpMadYSsWzQTRtFEmjxyUxmyyiSSMDnoVAsky4ZRHwy2OasC8+DIFQ6GCMIGIZJyCMxmS0jiSLybJV90bDpCoqYusaL5wd59swlBFHCFwjRGouya2sH+3ta6qzVjWCxqva5I26d2R7xeJzR0VGAuvYt6ymInLufZhOS1VokhULFpbpRFslGjCBoSiExDIOzZ88yMzPDPffcw8TExIYcxg6rERKnGWSpVOLIkeVdRxvp2jqyRWWo6OHkSALT0FFVD7Ilc2RnlKM7Vp4TPnhtiv944kXSuQKmaXF6JMFwvEBBM+mI+DnQHebAlih9bUGS+TKSIBDyyvNSovO5HMlEnFAkij8UxrZhtCiRsUwCqoQsWpR0k4szZSQxwZaIh5DqLGJhWQJlXaes64QDPrLFcuWKXBQpaxX3U+1PQPV40MplLNtCnB2lW9b06hW/KImEfF5SJZ140SYaCuBVREzDRNM14jmN04Pj7Gn34vP6UFQPXq+H0uwLkySRqZzBYErHMi28qsJ0Ik9SEjnUG6Yr4kUzLBRJIOyVkSQRSRRJ5wpYNsQLJjMFg5JuIdomUZ9M2CtTtkTSiVwlQ0qV6G3xIc6m9GYLZaazZVJlKGo6fo9K1KcSMy3SJQNrNnswIAv0tQbQzcrc+4JmMhjPkS/HgSEAulsjPHzndg71dbGlfWOslZWmIc+d7eG0b7l27Rrnzp0jGAxWhWWtkwjh1hCSfD6Px+PZ9MSF1bDpO51XaZzL0d/fj6Io1Z5U09PTDR+3W8tKD/t0Os3x48eJRCIcPXp0RR/0Rrq2fJLN23datJsWM2Ibfq+HY7tiPLy/fUV9wGzb5vmzV3j8+LnqgTCctZhJpACQJYErUxkmMhov6w2yJeqnty2MbVd6ZdWOx82mU6TSGdo7Oqp+1uRsVlfYL+ORZBTFQ0gUSeQrrVq6w+qsxWZXK6SxwedTZwPdQt28kqhfJm1J6LZA0KtSKpfRZmt5FmrL7veqpPMFJtJlSrpBV8RfuWhQLCRZIiapKLJMMChRKORJptKAjc9XiatIiodLk3lkSSLgr2RhEfKQKdtcSxW5Y2ukOm9EEgVURam2pB9LlxiOF2etLJGSYTFhCuzuDOERIVMQUWWJsFdGqUkTnkiXmMhbmEaleWSmUCSesdjW6qOvPYRhgW1b5BMlBNusdgoYTZXIl41qlwHLhul0nq8/e4Hzl4bxqDK9na3s6Gmnr7udcGBtvvCFvkOrPbgFQSASiRCJRNi5c2e1IDIej1eLeGsnRK7Gb9+MQrJaayuXyxEIBJompXolbLqQ1OLEHHp7e9m7d2/1CyHLMuVyeZlHrx1Jkqq9ohbDmfO+a9cuduzYseIPWZIk9AWymtaCbducn8iRKupY6RLF+AzBYJBf+YkHVv1lNUyTbz97mqGx6aorJq9ZTORtfD4Bv0fGtm1agn6mUjnOTdh0hDwYpuP3r3TwBZux0WtkiyW6e3rq3I8FzcS0QZGEagq3rutItklRt1FVdVYQNDTDRBaFymCqUsWlpJsmM3mNXNmsTBm0TDp8IikTxpJ5JFlGFiW2tda3dbdtm3DAP9sSpXLIC4KAphsIsxckoigiqzKqVHEhBAJ+bBs0rUyhUCSbzZDIaaQ0lRafTMmqFD6WNR1FECiblUI+nyKh6wY211vS66bNZKaMKgsE1MpPzCNLlC0YnExzeEuYba0BvKqKZdkUyhVR1k2bjC5gmzqh2cC7KkNBgKmMRkfQg08SCAV8DExbBHwefF4PM5kiudnqeEfYfF4V0yqTKmiUwiqCYHB5dJLLo5MAxCJBdm/tpLezlZ72KPIa0+gb0bBxbkFkLpcjHo8zOTnJxYsX8fl8dfPsl7rCbzYhWct+HCG5mWgKIbFtm/Pnz3Pt2rUFYw4bOXzKWX8xq8GpoB8fH+euu+6qDrJZKY2ySK6livzhowNcmMxR0g0Eo8yd7SK//66X4VFX9zHmCiX+/XvPMz6TrN6mKgo6MoYg41clBEDxeNA1Db8qkS7qFHWzGkwGm2Q6SyYZR7dsdmzvw+fxYFrW9dRXWUQUQJBkTNOoWh2aaeGVKwdwxjQBm1Cg0uTRME0kw6KkG5wazzOTK1MxVGwwTfZ3eukOeEiXKvuI+BRifgXfbGxENwwkUSRbuN62PuKT8SsSmdl4hG3bCKJMNpOjsyOAbVt4PUolO8yjoKoq0WgLbRbMXJxC0wxKxdk2LYKAiYRPNimWyiiiB9O2UGSZkOpDNw0yqQKaYVVbnEhSpTGoZBoUDYuyUUkR1o3rohz0eikYFoVyHo9cfzB7ZJFc2aSkG8TCYbL5IoZpkS+WsYXKEDBFUfD5FGzLRJFkSuVK7YzlWHpzKJY0Xjg3yLNnLqPItdZKG5Hgygt8G92wsXYS4fbt26sFkfF4nPPnz6PrOi0tLXXz7Gufv9mEZK0xEtciWSWWZfHss89iGAZHjx5dUIkXapHSSBYTqlKpxIkTJ6p7W0sFfSNE0DAtfu+rFzg/kSOk2IiU0WWZZ6csPv/8NR45tnjjyLlMxFP822PP12UUQaVuQ9M0bNPAFkRUVQF7VgjtSlsUqSbIXSwWSSVmUDw+ulvbMEyrmt4rCgI+jwe/10OrXyGeLRINeCs1EoaFbtrsafdV1wv6vOQK111loigwmbdIlW1ag15s26JYKJAzYDhtcH+LSNTvtOGvrFEqaximWWllUtJIlWAqV0bXdKJ+me2tPgbjBRJ5HVlVsIp5OsMeemZng5TKOiUqlqMkSYQDXsqaSVvYTzxfpiUUxDJN0tkcec3AQ4Z8yqCQU/H5fKiqpypcfo+Kz+dBFARkWcC2LAzDRLcsZElAnnPQSZKIYVsUSyWwTGxJwuvxVERX0zHMykCsSMBPNu98bnb1tXtkERGLeDpPZzQ421bGQzGvEVCZV2fi9aik82UksWKt6YbBlWuTXLlWsVai4SC7t3bQ29nKlo7YktbKRh/ccwsinQmR8Xicy5cvo6pqVVSi0egtISQ321AraAIhEUWR7du309bWtugbXlvZvhHMPewvTuY4e3Wa3MQgh/sqrdbXWkHfCIukfzTNpak8QcnE1nUi4RCWaaFninztzBTvuHfriorSzg+O8bUf9GNaC7+XbUGVgCqSKRqEbWu2rsSibArs7w7TEvRSLGnkslmSiQSRaHTBmh7TssmXSgR9XnoDFl6vj6whUdRMJMFmd3uAHW2VCYqRoI9MvtLt18EwLYZnsshYmKaFVtaQFZnusJ+pdIF02cLvUaoWjm1bqLMV5tl8kXOTeSYzWvVgn8rJbIn6uHd7K6miRrGs41d9RP3KvJnqpmVTtmByLEXAI7Gj1YsoSWTLJoZlU7YEOsJejuzrIZ1KUywWZpveCdWaFZ/PR0iGqYKB34SAV8UWJEpli86AjFe5ftApioxgV4TQI4vEAgpj6TK2Zc3OUbHRbJFtrZXU6LJhV2NGumWTK5uokkB3WGUiLzOeyKFIIrpZQpVFulr9BH2VqZfFskY8b3D1WhzDrKzfEfLQHlTrEidKmsYL54d47uwVZEmit7OV7T3t7Ohpn2et3MgW8oIgEAgECAQC1YJIZ5795cuXKRaLlc7Pk5PVVi+bfVW/FiHJ5XI31ZhdaAIhAeju7l7ysN1o15YTbE/kNf7rP5/kueFU9W/3z2h8fJdJLLB5QjKezJMvlvB5IRQJI4oSmlWebbNhkCkZSwqJbds80X+BZ04PIIqVIVEClerrytjaymEQDfroC1SCwqlC5epcEARaAyo7YyqFYplcJk0um6NvW2/FZVXz2vJlkyszeSazGqIk0RmQCKkq7cUMrR4PcshLe7SF7lgYyzaRRIlM3pkzMn/PhmFQNkwEUURVPZiGgShKeD1ewkEvhVKlVX3A5yFfLGNZJtM5jYlMmZBHQp5tH29YNqPJPFG/SE/Yi7ctCDYUymWsmumK2bLJlUSlcNCybTySSE+Ll91tPrIlA920KHk0trYGK0IWDhEKBbEsm4lUnqFkntxkAo9g0hP147MgVxTJFnVkSaQ9oLCrI0TI58GybCzboqjpJPMammHhkUW6I15MCxIFrTKyV5HoCKrEvAKarqMqlbYsSV1kbKqALWgoksC21hA9IZO07KGomcQCCq0BhaBHriZGJMtwaTJLwKviVSFbLDMYL2DbNp3hSowp4Ku0u3GsQ8M0GRybYnBsiu8CLaFANbaypSO2qS3kJUmqNpOEipX81FNPVYuEnYJIx2LZjHn2aylIdFxbNxNNISTLcaNiJL/0Lyd54Wqq7m/PD6f5b188zafeffea1l5v+m8mk2Hm6gCqLKD4Aohi5UspUGnV0eFTqkORFqKs6Xz1yX4uj1aqVy3r+nTBRF7jcrxSIyFJ0O4Bv2jxQ7vaGM+UKM/6+bvDXgRskvEZcoUS3d1dWIIIloXP40GWRNKFMs8MTpPRbDwSmJrB+axFe1Dlrq1bMMolCoUC0+OjpGdkIuEwkqwSi0ZmixkrdRuCUJmxHpQt4lmDtoCCdzaRoKBbKBJ4RJNcoYxA5WCzLAufR6VY1siUK8KmSCI2lfo+r6qSKxeZTBVp98sYNZ9HZf+VvmUXR7KkCxoRXyVoXdQthuJFvEpl2JSAQMYukiuWkT2V99Dv9XAtVWIobaKZMqpPwRQkhjNFtgTAaxUxbYGQ10vMr2CZBtmCRcDrJZUvM5wsky5bGIaBaRjEAio72/x0hT0gSsiijSoKVYtBNwwuTWUZyxjEIh5iIR+6BZdncvSEZPpiC7tfPaqH4dEZVAlkTGyr0rFAswTSGnRLEj5VJl9cOqmlVNY4fmGI589dqVS2e2UUW2P3vjzR8OYefs7U0dtuuw1FUUin09Uq+9p59s6EyBthraylINF1bW0QsixveIzkakrjmaH8vL+Zts0PriQYnMmzo231H+56ChKdWSsPHtzJGa3A81fT6LMdZ1MFHcuGt9zZvWiqbzKT598ee454ev4sg3RR58nLCXJlk4DXQ7msMZC1CckqdwZ9+NXKrHOAclkjnZzBsGDr1i11P4zibDbd5ak8WV2gLaQiUOk/5rcsZvIaMwWTvlgl3VNRRAr5Aql0lkIyzcTkJD6fD7/fj+r1Iysq+UyKqFgiG/CQ06Fs6VWraVe7n6CnEmAOBnykc3kci0ZVZPw+L4piIIqVhpCqR6WsaVi2jSBQ81lUMrkKpRI+j4epTIls2aAzGkCgEpvwqxK6aTGRKdEb86PIIsWyXokfOe9xrsiF8QyCbdMR9qEo8qyFYlKUFA7u6KRcLlEoFEmlkkxPTxONBEkJMiN5SJYsWnwyfo+A7fGQ0W2mCib7O/yUdbPO4oPK6IKZnIYq2QQ8CgI2gmWgCjbJosUeVUUSBQplrVolH/B5mEjm0U2rmg0GlT8Ltkk6pyF0BdE0g1DAh2ladY93qG35ApVD8upkmkwmy2The7QEA+ycja30draiyDe2dYvz2YqiWFcQCVAul6vNJkdGRhAEoa59S6MKIufiurZuICuZq76RFkkul2M0VQIW/8BHksU1CclaXFu1lfN33nkn7e3t/EaXxl9+b5BnBhNkSwYhj8zLOwx+/M6eBdcYHp/mW8+exjAqUwoNo/79uzSVJ69btIW8WKaJxyOjmxbxbImB8RTb2wIEvB6KhSLx6QlUb4Du1tZ5RYjOfnM62KaOoYPTc9/j8SAbItlZK8HvVSvDnlQv7e1ewEbTNNLZPCdGU8zkZ7BECVUQ2N7m58F9HUxkykyki8iiTVfIQ0fYgyiI+Lwq2TluMd0w8UsWlmlQ0kUioQC2ZWEhIAoi7SHvbGNKqrEVn8dDoVSiODvRUa9JA1dVBT8ShmkiUAnIz6WSTWUSC3gQJZHibMZawCNRNgVUjwevquDz+bDtKD5VZnImSTJb4NpMCY8kULQ9FZeVqqBgk8jrpAoa0YB3thhTR5u9kNKMSqsZz+zFg9PYUpVF8ppBIlsk4JGqjS4lUaRU1pDFSrKEYdqoNVlhmmER9HsplsqVmEz+enaaz1uJrWiajixL1Wy8uZ+98/stahonBq7y4vlBJElia3uU7T2VDsbR8MZnIdUKyVw8Hg89PT309PRgWVZ1QmRtQaTjAltPQeRc3GB7E+EISaMDe7ZtMzQ0xMDAAF2Bpb8421vXNvNkta4tXdc5ceIExWKxrnI+FlD5rTfuYypbJl3U8VpFLp8/UzdECiqv6fiFIR57/iyWbc3eVmkl4lEUDNOkUCqTKFkoooBVszdZFMAWSBY0+mw/k1MzJJMJIi1R2ttaUWUZwzIpluprbkJ+P5aZxqqc0NXBLbquY+ga2DItIR+WaeNVlMrVLgACqqoyWiiR1BVUVUCwLQwbzk1kyeWy7Grzs7fFT7SlBb/Xg2GaWDZ1LhjTsshrJrIo0hpQ6W3xMVEwuTaTqXwGAmxvC7GrMzJbTFm5qg76PWRyhcr7I1fiKWXdRJVEECqWWFGD1kCl1XzQ4yOrKpg14iUKs+m9ooCm6TV7srFtg0KxhCKJeFUZj6pimiaRSBhUP8FyBp9kY+o6+UIeK2uh+nxkC0WKERGlxqWlyjKqKiNJJl61TDJv12UoaYaFLArV4kZJFDEMk7xeccFF/B66YzCWLCKYFopUGedrCjIB2Z5n1ZqWTTpfQhYrdStlTSPo987WvVy3VpyP2+dRKetG9TA3TZPhiRmGJ2b4HueIBP3s6Gmnt7OVbV1tqErjj56lhKQWURTrCiI1TatOiDx9+jSWZdXNs3dcZmvd01piJN3d3Wt+zs3gphESYHYGeGO2bBgGp0+fJpVKcejQIc6cOcMr9rTyxKV4de4IVA6KV+5tY9sivuflWI1rywkSBgIBjhw5smBwsCPkoSPkIZUy5tUHmKbFt549xalLV+tun9s6JOT34VclMiUJQRSwZwPO9ux/iiiQTiZIZ7K0d3Ti83nrW4+IIn6POhuDsMkWCnSFPIwmihR1C99sVlJeqxQS7u6KkspeTzeWxMrVLsBkKs94uoAsmKiigM9XybTJlgzygg2iRDqdYnp6mlDQj8/rw+vzEQmHEAQYmMhweSpHQa+kKHeEvBzaGqEtVyJZkMCGiF+hNaBWxUcSBUJ+HwXNIF0G0zIJ+ioNKCcyZXyKhCiAIUgItklX0FexCnSDoqbj8agEfF5EsXLADyfLJHJlWvwyApVeWAXNZGuLF1UWZ1vuS2TyhdnPQ6A94ieS0SmVDQJBFb/tR1UUxmbSiJjEpybIyBJ+vx+fz4/l9aIZBgGfl5hfYiYpYYkSCBV3W1G36I1Wnk9RZLBtSppOQTPRTAuPbNLmFSh4BVJFE80W8SgKHapAT+h6V17LhulsmamcRlk3iYUChPMarYFK12Rn/461Uszn8aoKJU1fsodTsaRx5so1+i8OI4oiWztis2OH24mFG5Nd5RRHrnYtVVXp6uqiq6urriByYmKiWhBZO89+pcJQ6Tpgr8kicV1ba2C5D/7/z96fxsh6Zved4O/dt1gzI7ebmXcnL3cWyVpYlLWUVkttj9Vy98iepTX2wIY+aL7IGEACBjYwMAYGNC0I1tjQh25LxnjG7XYDUo8XyW7LKlWVXAuLvNzJu6+5xx7vvjzPfHgiIjPvvWSRl6TMmqkDEIWbFfFGxLs85znn/JdZ8vikEkkURVy8eBHbtnnppZcoS7WT+r//1af4td9/mz++1FXfC/jxC0v8g//yyYf+rA/b2trf3+eNN97g5MmTnD9/nqsHMe/tdQlsky+dblO7R2L83uNGScof/tlr3Nw5+MDPqfsKbrtWN7nbC0mkEhDUNI1hnGFpghoJ47Bg7cS6WpTuCSEERVVRVYIkywlcm/OrTaJCcmlnRL9QC45jGTyz0cLVK462oKqpjzvAwWBMklcs1R0c257PwhxT7ZiDRovlTgfH0un1R4RRyEGvx7ZhEONwfShwXIdWzaOsBFujlLQoeeFUi8XgftlyxXGxubQ94MpBRJSVGKZJw3M42aoROCa7oxTTdvAo2Wj5tLzDzYCQkt1JwbXRHrphUrM1Nts+umEwSnLKokDTlGTLZtvDNA0MTSdOM3pRwcEkIy0FdcfE1yWjokBi4Ts2g6TAcRzOLQV0Aos0TYjjhLt7XQZJhe0prbCVVkDTLEnTgkQrcR2bR5c8Nluu4qxUgiQvudlP6EeKh2IZOos1i1MLHhsSJDpSVHiWgWOpakcIydXdEbf6CYau0QhcuuOIA1SCWZ4mnJlEDoBp6iSpVEZhQihVAo4nFMe2qCoxBzkIIbi92+X2bpevX3yPuu/NyZCbq4s4D4mu+iQ4JA8iRM6qlRkh8l4/+/dbv2adiIcZtv8gkXwKMdtlfBJzktmCvbGxMZdhmfERao7BP/7ffI67g4Q7g4STCx7rrY+nSfS9EomUkuvXr3P9+nWeeuopFpdW+Af/7gp/crlLVgg0DZZqDv/nnz7Pl44IMR497n5/xO9/9WUmUYJjqxZWVVVESQ7aoae2a1tzxvfpBZ9BVHCzF3MwjtEA24DHOhZN12B1bZM0f7C0i+86vLc95NpBSJhV+JbOmU7AuUWPtaYzR04t+CbO+z5DkvFoRJmEOKZBJbV5P9k0TdKqwDLANjTqvsskTqjV69TqdUVQTBJevjUkzQuMKiOpXHRDp+GYTHJISo2mo6qDWZiGjmka7AxC3t0LqSpJ21eLYxgnvJukfP5Um2dOdciLiqoqj+iACbIs43ovYVTZ1AILkaXsjwX1ScaFlRrLvk4loBm4dOo2CEkpKrKiYGuYcq0bUwmJqWv0owLf1tloeeRSZxyl1GyDtU6NzcUaGhqWZRALk95Yp/J0wiQmH1fc6U444Uvafonj+dR9F8fS0TWNtBJ4ts2tQc5BWOBbOnXHIKsk26MMxzQ5txRMZy5qp5yX5fQ/we4kp+47NDyHLM9puCaTrGR3nLIYWMdIqTXf4+5wSFnJORlV0zR8x8HQNdKiRJ8qGN8LGjgacZpx6fYOb1y9ja7rrC+1ObW2xOm1Dp3Wh0dXfRpkRNM0WV5eZnl5eU6I7PV6dLtdrl69iuM4x/zsj250Z8/nDyqSz0homvaxB+5SSq5evcrNmzd56qmnjvUgj7bOdF1no+2x0f5kRO0+6Hsfba/NDLv+X9+5w797Z5+aY7LgW1RCsh9m/IN/d4X//n//HAvTXfYskVy6tc0f/tlr893eveq3vquqjaKsCOOUUkgsQ7Vbnj/Z4kwnoBfllEWOU4SIssCvt0jzQu3eXcXYTtOcoqpo1gJevbHPG1tjpATH1BilJRfvjMhLwaMrNTp1h6KoqIRU6r2acv2btUaklAz6PbI0YWN1ibGecneYIh0Dy5BMkpy0FDy2WqfTrCOEwDKtI46JOq7nI42EVt2m4TlEcUSWZZRlRFTp3NzOObfSYKHZmBJaS4pCkGYF+5OctKjoBIdInYZr0YtyeklJfQrtBYnvOJimznA04dqdXSaVzXK7AaIA0yCwdfpxyd444cJKbbrpkehI0qLAtk003WB7PEFHtdnUkWGUVGQVPLpkIxbs+SI9a8GVlWR7UmDaLgu2Rm6rRbIf5/TSCR1NEo8GhIMeC606Y8PC9zyitGBrEOKZGoGrhDHt6SK7H2Ys1635sP5opNNBfsM3iJNEtTlNk5ZlE2UFeSnwbGNKJPUZhcnRkdj82s6qFd91KMsK31W8mTjN7qtWTNNA17T5PSuE4M5ejzt7Pb7xGtR8d2o53GFztTN3qnxQfNqs9qOEyJMnT1JV1dzP/sqVK6RpeszPXtM0dF3/yK22HySSh4wPc6I/jkxKURS88cYbRFHEiy++eJ9hzOzmq6rqEyctHa14jv7OJEl49dVXMU2Tl156Cdu2kVLyb97cVQPOaSvLNDRW6g57k4yvX+3xV549TIDv3N7njb1XHoikAvVgCSGJkpS3t8fcHuXklaRuG5zruJxa8Gn7FrZIGSQjWouL7O3tH75fqvcCIDWatYCsVKQ9pFT8FU3DQ1nGXutGPLnRJs2KOXL0cCgucW0LXdfYunuXUVyw0FnCdR2ePKH+vjdWKr22qfPISo2nNlpzu9uZj7ptKR5InOS4lk5capRVieu4uI5LWQmKKMPUJPt7e+zt7tJuNjBth0a9Rt13QU+PORmq66RhW6YiSLZmCUbBaMPehIODA/xGG8/UcW2DIlf9b6mBZ0n6cakgxlISeO60dadRpTm9qCBMcxYDB9ue2gqLisCBbphyesF54MIel4IkFzhGRV5q6IaObZosmiZbcYRXa7K85OBaBvu9PkkY0uv2KDSTMDZo+w5FUVCUJbZlYepQSkOh6RDH+DSghCVtSxEY7RmZsyxJCvVbzenGxDYMepOEvUlGb1xgIqgX4hhjv+a5cyXkfP7cKqHPWbXCtFrMi/d/rsMk4/rWPm9du4OuaawttTmztsSpE0ss3VOt/HmbWhmGQafTmevvHZVvuXFDIdeklOzv79Nutz/02vID1NanGA8rkzKZTLh48SJBELyvw+Js1/Bpyb3DcfRGv9/n4sWLrK2t8dhjjx2+RsI4Ke9D0Bi6hobifoB68P7om69ze3/EuUeWSNNy3sKahZSSRi1gHEZ8++aQawcRpq5h6hp7aUY/ynBdh3o5oTccsbKyiuu67O8fwD27RkPXsS2TURjRj3LCJKPm2liOSn5lUeCaOqnQ2e6Hx5R4D0NjEiXc3Tvg+rAi1xyMJGbBLzjXcfncRoMoq8hKQdO3CRzzHritqmpm7TbDUJa4L98aEuUVnqVTCckkLek0XB7ZaGHoGqYOB70Bw+GQvb09HMchrWyKSmBYJqauU009PbKipH6MTyAZDocMBkPWVtdINIdrgx6ZqTYFtm2h6zpxIbENMHSDuu8yjuJpIlUS70jlfFhWFTITWJaFqASaruM6Jq5lIUR5bFE0dB3H0ijKAls35/dQmisWvBQCz7ZYbNZIsnyKQmpRVhWTKGYnmdAfT7B1CHyfLEvJhYFl6hR5jtQ1PNdG0zQOJhlRVuCaBp4B/bii4ap7Ja8kcVGx3nSxdEUWvdUdc/UgIhMaZaFRVhrJXsgjHZ+6a05bkSn3hzzmZc80eVvmg2crmqbh2vb8PUJKtvb7bO33+cbrlwg8l1Ori5xdX2ZztfOfXWdr5me/sbGBEIK7d+9y48YNbty4MSdEzqqV9yNESimJouhTc0f8tOL7JpE8TGtrRug7ffo058+f/8DK59PiqhytdnRdn7s+PvbYY2xubh7/DrrG+eUar94e0nDN+ffNCuWed7YTMApj/uBPXma3NyTJC+IkwzRNAtdBopFMZU/qgc8kihkmJbf7MZ6l40wJYq6lBsPfvrLLcwsVG+sbNGqBQhdNiXyzcCxzDreVUs75CEVVYRzhXBiWhV5IfOfBu64kSTjo9ni3D5k0qTmAKLnbz+iHCV95bIXVtoeQkjTLSfP336XqmoZjm9RFxrkFi5u9kriQmIbJiQWbcwsuuqbRqPmMw5h2e4F2e4GqKonjBDEJ0YuUG1sJzZoylSow6TR8Ti81QJZICd1ulziOOHVyE9/3IEzxbV2pCLsmeVFQVAoddfZEk8VmTcnhG6aCQiMRQtLwLALHYJQWLDd88jynkpJhUrLR8pCywrJMvKmsfJjmJKVAE4LANgmzclr9KbhtmFX4JtRci8EkQkroxSXduCLOBZYG7UadUVLgOSZZmhBHSqp/vW4yGQn8KWrtajcmzJXHiWmY1F2DhgtRruZDhq6xUrfZaHn4nsM4TrkzSEgLQcs3icsKaUiSvGI3qtjoNA6r2PcJ17YopnOTbG6xoOG7NoaukxUVZanagskH2EeEccLtvR7v3NhC1zQC28CSOacfGbHc/nSsfD9s6LpOEAQ4jsOXvvQl0jSdVytHCZEzNNhRP/s4jh9KIPbDxNe+9jV+4zd+g1deeYWdnR1+//d/n5//+Z//2Mf9TCSSD9va+rALvRCCy5cvc/fuXZ599lmWl5c/0eN/lJhVIWVZcvnyZfb39/n85z8/Z9zeG3/tC+u8uzthZ5zRcE2KShLnJc9uNFn3Bf/s3359LiUCagcjhJjvAE1dpx54INWub9iNKCpJYB8O/KqqwtAgTAray+sYpkGUqvcLCY5l0Qg8BBDF6ZTDo95bd02WajZ3h4pjYJsGFTr9ScJqw8G3NGV3axiUU4Z0OJkQToaMhEsmSxYCa/79HVOnFxVc3RvzhTMd4jTHMgx816SSkiTNpp8t2RqmbI+Vb4pvwam2x+lFnxMtjzAr5y1B2zAIPJeyqtB1DSGgFIIwlxi2x+aJGq2Fklv9hK3emLIs8XRBy88YD0sC3yecjNFkyZnTp4kKwWQYU3NNzi/XuLIf0otmUGhYa7qcWa4zmKg2nK5pBJ5NmFbEeY5rGpxfrnGjn7M7iucFX8s3WW/aCgVXSJKsZHtSsD1IkJqOZ5vUPEsRRaN8+ltUYmpYBnGWY5om26OUawcxmqakYcJSGXetLdSIs4LStFlseSzXLOpmRZok7O3tcTuEDIemb+HYJhJBd5zRqdl8brON1DRMTWLr6l6K04w4rwizippjoKEhUdWZbymp+53+BM8ylCy/qdBu8RHe0b3s+MOQ89cZho5j25iGju7qD6xWABqBPx/yCynZ6Q0Zjyf0/+jP8F2H02tLnFlf4uTKIq5zP4Lv046jXQjXdY8RIsfj8Zxl/84771Cv17l8+TKdToc4jj+1iiSKIp599ln+5t/8m/zCL/zCJ3bcz0Qi+TDxYWVS8jzntddeI8/z95Wlf1B8WolktmC+9tprAHPXx/eLF88s8H/5uQv8P791m9v9BNvQ+Kln1nhxTef3/+Q78/bb0UQyC9eyqKQ8IjWulGcty0IzTKQoqaqKcopG8lx7XqUc/b5xmlGvB0zCGEPXqXkuEkmSFggpeWa9QVYKhqlgkhcgJYuBzbPrTTRNOyLJrpBZWRyxtnaCve0IXTvewkHTMHTIhD7tqWtzFBFMF2Xf4ep+yFu7EVUlsHTYTwS9MOfpEw022h4L/iEIwbJMhvPZChxEJVe7CZMkAyloexZfOLfEU67JI8vq/tClII5joiii1+uhaRpm0OQbV7tkQkfTdWq2zsmWzQsnW/SjnFJImp7FStMnyw4Xy0lW8MrtAcO4pBIC37V5bK3JCyddtvsmeaW4Nm3PnFeAUkpuDXJudiNcS8c2JJO4YDCRnF+uEbg2SV5i6pKVhsvN6z1AmWjdHaaYhjb3P/EsnUwaDCYJz6zXMfQajanDY5RkNOo1oqxiZydEz1OyJCEKS0zDxDBM+qGkXCgJHAPTUO0ww1D3QVLE0+Qx/bFTNXvPdRmGCVI69/GWZkgu01Azpw/im1iGMfWsP0p6nVUrBlmh7A5qgTdPIrM4OoeM04xbuwe8c+Mumqaxutji9FqHMyeWWV7486lW3m9mo+s6rVaLVqt1jBD5z//5P+df/st/SVVV/J2/83f4hV/4BX7mZ37mvs7Fx4mf/dmf5Wd/9mc/sePN4vsmkXyYhX5mhdtqtXj++ec/Eufk0/JWVxLjSqLhc5/73IeCAv7w+UV+6OwCw6TA0jW+8+Z7fOu1mxiGQc13QUKUZsBhGyrwlMyFuOchXfBMAhMGk5jANhBVgWa5iKrg1IJ/3zxG01B9/lBJcsdZwTvbY7ZGKULCmaU6F1br/MWnA24ejIkypTy8UneOQUOlFAx6PbIsY3FpGakZOIaGZpjYU4Z3WaqkohkWuix5kAqwkJL+OObyfgSiYrHmYhgmlajojROudyPWmu7U6taYJsLDRWh3nPL63TGaBr5lgG7RzzRevjng+fXgSCI18DyP0WhIENSoNVp84+qBmh3oCr20F+lMEocfubDChYZPWVZImC+YoFj27+xM6EeF8nHXDUo0Xr3Z5akTdU4u+niODZpygqympLVK09kaDAlsfT54r9k6k6xid5TwQtNmre6BpmEaGp5tYZqGQn4VxzW0XMehSlKioprLqRyVN/FdB92USEJ818UyfYQQ5EVBmuWEYcSdu8rbxPd8TNuZ+73bhkYrcIkKiW8ZSCSObdObxDRdE+9I5ZsWqpJKC0GrJvAMoaoV28KyTMVDSrP5ZbdNE4Gco/MOQx67pjXfQ5v+jqPVilIiPuJxM22xSSnZ6Q7Y6Q745ptX8FxnmlSWOLnSwXM/nWrlw8qjzAiRv/mbv8mv//qv8/jjj/P888/ze7/3e/zyL/8y//gf/2P+9t/+25/Kd/yk4v9nEsndu3d59913OX/+PKdPn/7IO46PI674frG9vc3bb7+NYRicO3fugTdVmJa8fGtAVgqeXm/MeSu6ruEa8K+//l1u7yqCZFVVhPHsHGi4jqkkwV2HUZg+EL1lGhpfOt3iG1e7jOIcw9QxKVlvuXzhTIfAtSiKkiTPMQz1kI+jBM9zKSrBt28O2Rml6NOB/3euH7A1yvj8hs+pTg3bnLawjixUVVUy6HUpK8Hy6tr8d59oudzsJewPI+quiWkYRCXYpmCj9eAqTUqJ0E3GUULTsyjLaq4bVnMtcqGBYeI7OnlR3YdEujNQkvBtz0LTFI9EkzkHo4xuy+bcstqdDkZjtre3qNcbnD65zhu3egjdYr3jK++XokDLc3rDjO+8E/PMRhPH9RQSzHLJioK8qJROVlLS9q0pb8WkKAoSYGuYstpwCY8h2Ww81+LWQUhRSRruDB6s5GYcQyMpKgRKS0xIQSohyQvKUvmyeK6DpmtomnJqzHJVLRm6hvGAHbGh6+RZjK1DLjTqjouQAkM3yKXBsh9wfs0njiO6/b7S2rJsDNulUfNZDUyudWN20wwhlM9Kux5wsu3M/V0macnl/Ygwq3Bdm7vDPr5t8siSryqW6WxE06fVhqaRlRXlB8zG0DR8x54niNlzMKtW4ihU94XvMYmSBz4PAEmacf3uPpdv7yKEYGWhOfdbWW43/rPqbGVZRp7n/L2/9/f4+3//7zMYDL73mz4D8ZlIJB8H/iuE4N1332V3d5fnn39+7k3wUeOTbG3NZjRbW1s899xzvPXWWw8s5//0Spf/9n+5Si/MEag5xi987gS//CNn6I0m/MFXXz4Cf703JHmh4L2jMFVzCdNUrObs6KJeoacjPrcokBsdSqk4E8t1ByFKJrE6p4Hnzi1hi6LAdR22R5ny9nAVugkNdMNipz/htq/jWYfIKkM38D2bLMvY2tkHw2BldRVNO3woG67FsxsN3tmdEGYCNIFroPgiNVdxTnSdJMsoSpXUG4HHnd4EQ1fkQt04ItJYVVSVxNAgzUsljujq5EVJmimGeZQp7SxdN+a/bVY5JXlFmGSEYcj+/j4bJ1ZZXuqQ5uVcckVDcZgMw8B1XYSZY/vKm+Wgpx7yGVqn1aijmxaGaShGu65TTBdM29RVQpASfd6WVIrFg3EMssKxTDTTwjF08kJJjhRSErg22hT1NRvgz+4BA4FvCA7CgsWGCxoYpkUUF6zV7blcDSjDsAKTre0Bjqlzoulwo5ewM5hgGzq5UBDtC2t1At/CtCxqjRa3ehE3+xHJIEFuT2i7sNrwqXyPg0FC3bU52bYJHB3PsTEMnUsHQyZpwcZinTTLCQKbYVxwq59Qd835NZBSUlWCtKwoK4FrW9iWoWRmksNqRSG4rAcIRx5WK3lRKng3imn/IN4KKFuBoiznJMnd3pDd3pBvvXkFz7E5udrhkZOrPLK5+j7P3oeLhxVs9Dxv/r73m6V+1uIzkUiAqevb+/dOH5RI0jTltddeQwjBSy+9hOc9PInwk0okRVHw2muvkWUZL774IkEQPJDdfneQ8H/7w8uEWclCzcbQYJyW/PPv3sWuIrTJwZzA96CwDAPHMggTBeM92pOOc8E4l4iyQEZddN3k5MbGfQKPs/BdZ25Vq5s2/X6fJJqwGytCpKFr05aKQVkW6LrG7jjlwsohaaoSgt39HuF4gOX4bJxYRdc19scJvUmKaxos1mzWmi6biwF745SqErR9C8vQEVIe26n7roNtGaR5RcM1aPsW+5N86mqokkqYlpxba4IoERxvaTm2GiC3ay47oxSQ8+s7Y7u7lj6F9w5YO7HKQrvNcDowb3g2+qTCsm2q8lCMUDNt6q7F0nKbjpRkWUYcRwyHA/b398k0mzwzKAwNyzNxHMXlyEqlVzVLIhqKbDeezrMarknbM9kdxdRdE8vQqNDRDIv1ljO3uxVC0Ovvk0mTbljg2oJzSwFSi+mNFYlQ02DRt3jsRJO6a1NWFb1JzM1hyd5wMCcRNj2TUwse47Qkyis6nsmpTp3AUr4jrm2xNcnZnlSYlk3Hc8hLwSSrCCqNphixZOWYCIokJNc8pISkUJ+33KpNr4VNXpTUXJMwq4jzat6K812bJCum8w1VqcyqFd3Q8RxrOtTnA9FgUkp8x2YUxnP5HdAIpppgWVGS5TmeY5MfuZ73RpLlXN/a5+nzH38u8TCCjWEYft/5tcNnKJF8rzBNk+zITnswGHDx4kWWlpZ44oknHtoKdxafxIxkxlmp1Wq8+OKL8xnNg479x+8dMElLluv2/KZpuCa37tzln/27S/ylp9VuSNcUiQuNeU/dtdXiUFTiWPIVEl67M+TKfkRaqP59YMJPPLVMs+6TZsV9/ee67zKJUsR04Lu4qFRP0zShGg8pipwsExiGOVUKlkg5VQo+EuPxmGgyot5sUavVGcdqNrE1TCmlkvto+yZfPrOAVgkW/fcnZ9mmSVZU3DiYIKWkU3P54rklvnNzwMEoASQasL5Y52zL5kGzlbwoyYuS0ws+e6OUsJAEtkVeFIzjgrZvQTphlERsbm5QD/wjiUwtxK4esTcMqTsmpmmRlBLHqFhpqJ66pmm4rovrujRbCxRlAVXJwc0+W90Bnqnj2CYlBrbj8OhaC8+xyIoS17bZH0V0Q9WGChyTc9O2Ty/KiXJJ3fNYDWClbuPYKuFevXWXy72C0vC4sxvhWqZyXlxwWKmZ5KXEsXRanoWsSibTVuh2WNENczoNH1lVFFXFIC6wDJ2n1pQAZs1XRMpZognTnOu7I3QkNcfCti0CqWHbOeOs4OzmGsPuHoZhkGUpw+FAVX6Wi6ZZJGmKOALmsC2LAkV6lFPiZpLlCCFVtalrx6yPFW+mxNR10rxQCtamSSEqkiSfX3YpJfXA4/ZgcM9mSU5niSoagYdEVc/vV63YlsnP/+jnWV9euO//+6jx/y+mVvB9lEiOSsnfvn2by5cvc+HCBTY3Nz+R7P1xZyR7e3u88cYbD+SsPOjY/UjtnmevE0Iw2LlFMewRHbHNVTv1w51YM/Dniz4cR21dO4h4Z2eCoYNnCHTdJKkkf/LuLn/xyRV825i3wIqqxDQMxlFyD/NeSZd7ns+5NZ39fIKQJboUZJlixle6xZKnkWUptu0wHPRJk5j24tIckXZpL+RmL8a3DWqmrnbFIXzj8j5/8ekTGLo+T4xHw3Us7vZjXr87JExLJOBZBueXAl5Yr9Ft2gjDoOnYNFwNUd1/zaK8JMkFnYZP0y14fDXgRjdmECboGqwvBKxaGbooOH3qJJaldsV5KRinJYYOTc/iqRN1ruxHjNMSE4GrC84vBSw1fBxL2Qz3Jwk3ejF74wzTsmg6Go9vLrE7StkfJ2R5iSEz6kbC+CCDtEaz0WBvkvHWTsIkTue78U7N5sm1OqdKD8dxqMocbyqamaQp13d2uDmBTHPp1HwcyyBKc+4MEwxD43zHm3utzFpguq4hMNjpRziGTlUW0/Ns0zFtwjwnzEpOLNQYR8fnbHkpyCuBP5VFqSqBlAJdCgQ6lmXj2jaGbdOo15FSkqYpsiq52R/SzypangJX2LbNMCkIbBNTk2pRlxAWcPMgZJKWWIbGasNhtaGAG3P5lKkQ5n3yP44NqFbheH4e37/qDqdcKBUzlr1OVhZkWYFr2/zCj3+B1cXWA4/xUaOqqo9smDVLJJ9WRRKGIVevXp3/+8aNG7z22mssLCxw8uTJhz7uZyaRfJjWVlEUvPnmm/R6vQ/kYjxMPGxrS0rJtWvXuHHjBk8//TSrq/f3VR/U2jrT8ad+4gKqgu6d6xRpQikkndqDUSSNwGcYxoceFZZF4Nl4rkOc5Fw7CBESbFFh22reYJmScVpyZ5Dw2GqNLC8oigrXsYiTTBEZpSTJc+7No+dXW+xOMq4dFGQVgIluwHrNpGEU7Ozs4to6uqbTbLXnpKpSCO70U2xTn3vJ+76HlqT0o4pbBxOW6w4g8RwHy1RzDUM3OBjHvHJrQFoKGp6FBsR5xTu7EwLHYHPBxzQN0qxAVALHsnBs5bMyjFLe252wPUzBsKAasNZ0eWKtzlrTIcwqNCmY9A8Qpc6pU5tIwLYMbg9S3t0ekuRqNtLwTJ5Yq/PFM21KqVBPNcdE17R5tVNUgje2JwwSQc21qYqSO1HBMC544WST88s1KiEV674sKfOMKIq4u3vAtVBHaiYLgYPn+0ipcTBJuNOPee50h0mcwTSJFEXBzs4OwrApDIOGZWCbOlmeY2iSmmczzJm24ap5ItE1DcPQORgnVEKgmYfPWJ7nCKnMunzPRUqo+cf92i1Dw9R18lLiB0qaRghJXompi2RGmuc0XBffdRjGBYXhkVc5T51Z5fLuhHGSE8c5+SjGNnXWXA9TU8TaflxyaT+iEpK651JKyfV+SlJUPLHWRCLfVz5FCEGYpNQ8l1GU4rk2nmOCZswhybPwXWfa9jy6vshj85ZG4POXf/h5VhabD/y8h4nPoqnVd7/7Xb7yla/M//2rv/qrAPzSL/0Sv/d7v/fQx/3MJJLvFUIIRqMRQgi+/OUvfyyzmQfFwySSsix58803GY/HD9TwmsWDWls/8dgy/+K7W1zdOqDo3QUkRaV0nJ5YO34cTVPIlHEUH9sxVkIwiVKkZiCkYJIotVXHc9CkNn8vGqRTaXfLNNFQ/WYhJEVZoV6idmgK61/g2RaTOOXZ9QYnmi574wwJdAKblYaDmCKzikpgWg7dXh+dHo16gDBdsrLEMY254GaR5xi6hpCSrDy0u02ynDiVNGoeaZYzyCSZ1Gh5ytsDoOaY9OOcnUnO5kJwRDpFU73v6WJzeS/i9qik4XnosiRF52Y/RtM0nllvEJglOzt7uK7D6ZOb89787V7Ea3fH6Bp0Gh5SavSilLe2J/zwI0uYspqjqY7G/iTjYJKy2q5R5jmmCb7r0U8qDqKKU+3DtltQr1GWLn6tTuHEyHhIYAqiKCKMQizTQkOnm9gIqexxkzQnSVN2d3eUiJ9bp5qMCVyXfKoqoDHjwKRMYpeaayl4r6ZTlCVJVlB3bTzbJCkqLF2ft3SirKJZ86iKnFCqc5iVglEGSSkwEDRcg34qGcfKQTGvBFGmJFN822AoVeXyys0+/aQizXMs02Sh5vL4eptBlJIWAsfUCAxBzZLcurNNVVVspRaZNFisuegokqzUYZBKCqnh2yZlKR7YgkJOW3GJqqLSLCeMc2zbom6oof8swu/BtPdch7/yoy+w1G584Os+ajzsjOTTFGz8sR/7sQ/csD9sfF8kkm63y+XLl9F1nS9+8YufCDxPSsl/vNTlX7+xwySrOFev+MrJD48nj+OYV199Fdu2+fKXv3xM4uDeeFBrq+6a/B+fa/Lf3niLrUqZVLU9i+dPtlhveVPVXW0+0zjqCHgYaoeZZRnDXpfArEhKDSQYppJYyUt17KZn4TsOaVFQluWcqa4SkxpmhknKQZiTlOAYGmeW62gIllBS9rPIspRRv4du2awtd+ZleFHkitQ3GaOVOZPCxNQ1yqLEMHTyUvli1J2jt51KIso2F0ZhQlWUaI6jdNE0KIsS13EIk/J9AQhJUbEzzggsA0PODLwcLMtmPyzoj0PG/S6NRp2TG+uEccJskb87UEm16VtU0/O96Nv0k5JuVLDZdo8N8mcRZSWWZVMWxVwCt6oqtKpgfxxzruPhOfac5FnO2nCaggUHgUpOVakkQbJccNDt8u6VMfXAxzRNwvGQ9dUV/FqNYZRR811GUYJ/D1/DtRT/RAhJWQrKqqCsKlzHxjJNHlkVvHlnwDAtcczptbBUi9LQFBAhzAXv7qo2k64rAETDd1ms2URpwTjJMQ2N9abLmc5MwkOyF1XsxRWBBUFgU0nJ/jAizzNeONkmcO0px0NnHCVs+nWiNOPWzQG6LBmOhui6jm3ZeL7LMMk5GEXTyvxQOiUtSvK8UCq8nnNfgpi1tqpptRJ4DlGc4cwQjQ9w9ww8l7/6419gsfnJM8kfZkbyacqjfJrxmU4kUkpu3LjBtWvXOHnyJLu7u59YEvl7/+o9/sdXtuayE3+mwb+9pPM/nc9YaXxwX7PX6/Haa69x4sQJLly48KGsPY8mEiEEX33lXV577zo/8ViHJK8ohaTmmGjaoequ7ygZbtuyqPuegrXmh/IomqaRZxnjYQ8vqPPcGZ+vXekxTktcU853/8sNnyc3F0FWlEU1l7U4Wv8nRcV3bo7YD/N59fTanQEvnmkraK6nFoODbp/RsI/r12m1mseOYVk2zaZNs9lCq+V881qXfphiUiF1E6EZbLZsGq4+PS/gOe48iQBTv/GpedZ0121ZFmmccrbTxHMV9PbeHnIp1X82hyZaZVGgCUmUZOzsh1w4ucpSZ2GKzDp8f5yXc4va2eeVZYkoS4ZhwqKnZPeDqatjkuUIKah5LsVBDLZ1TEu9FBLH1OeJY6Y04E8l3TsCLGNCkqv5g23bOI5NWKWcWgloN3XG4zFZlqHrOr3RhElacHK1w3oqubJXUmUl9swuV0g22h6GruO5FnlesjdO2R6lczmTE02PZzZaHMQVk6RgoW6y6Oks1axDZn0vZpyWLPhqE+I4DvvDGFmVPHWihhAujcCl7lqkmbIVAOjFFbauY01334am0fRMxmlJP8oQoqI+ZaJ7roVlGEpbzI0ROPiWalsjBYPhmCgXDJ0MWwR4ns+wrDgIc0ZJiedYrLd9AvUAzC1/4TizfU5IvGe2YujTakUDUzf4+R/7PO3Gp9NKetjW1vebhDx8hhLJfQvDtG00Go344he/CMDW1tYn8lmv3B7yP766NV9LZsmklwh++0+u8ff/yhMPfJ+Uklu3bnHlyhUef/xxNjY2PtTnHU0kSZbz77/1Brd3uvMb/ygbeBZ135vqZ8ljvBDHsnAdJXqnIQjDCYudzvzm+6FzC7y5NWaUluganO34/PCFVaI4njN/PddD0yBOi/n3emcvZnuUUHcMTNuaigoWvHxryE8+tsQkShgNR8TRmLXVNer1+pyEN4tKSCopWah5nAA+f6rF1YOIOK/QpWTJgyUjZutuSL0WUA9qZFmOZR1Wc2tNlxu9mEFUKKFJx6U3jPBsg+VADegt08B3bYSAOEuxLYtSgIEgK8Gcnk8JTOIMUeScWO7QajUZjFWrq+YpyZAkK2h4FluDFBzFMi6KQs2uNObXRgh5qGdm6ASuw1rL4spByCjJ5/OcaDpjWak7NAJvaq+rAZL+RJEjPcvgzFKNW4OMSSHRZEFalNQckzOdAJnH5HlBZ2mFnbDg6n5MIXJevtHlRMNmxbEZ5jpSN2nWDNbqJit1m8BTs4CtYcJ7uxNKIbENnd2spBvmPL5a54kVD9Ook+cFnmtjGgZZXjCMU0ZpNZ0D6di2TZqm1BydcVqQFpVynJxyj6RUiD/DMEHTj6kagBIgFQKqSlL3vTkkN0kLhmWGoWustXxujzJ006Lm2KplWeqs1XUW6xpRFLF70Gc7MYiFrpBrlsPtXsjpRZ/Ti/7U8lcjz8v586QUmB9M0J1VK43A4xd+/As0a5/e7v8HieQ/c4RhyMWLF3Fdd+7VEYbhJ0YY/Pfv7GNo2jE5EU2DSsIfvb3/wERSVRXvvPMO3W6XL3zhC7RarQ/9ebP5S3eoSIbDSQQwHxRXQhDP3AylRj1Q/IIHPQh5WZLmBZPhgKIoWFlaYmmpQ5zlCCHYaCtXR+WXrrFQ9wnjQ2SW4LBNpmQmbCoJd/oxrqkr4iFqV1l3TIaxsoe1ipAsTVhcWgHDmic5x7aQaLx+d8TV3TGGZVMz+1xYrXNqwWez7ZEWAsvQsKYyG4YO4/GE/f6QPEsJfBfD9rEdC9/1+PzJFpf2QvqZJElTVuoOj6wESgEXRawbT6uYwLOREhbqHqc7Nd7bGYNUBMBJnBBnJU+st1hfWiSM1e+W93BWzi03GGYQlgK7VFIwUV6yENhze9lZ2JYJUiUoDXik43G1K5kUqj1oonF+yePcamvKEdGI8pLLexG9KEdISd01OdcJ+Nx6g1u9kLzUOLtcZ7PtMRn06A+GrK2tcn1Ycruf43k+lqiIM5M7UcXJWsGKlgEGDSugZvg0pygo0zS40VX310x/DJQFwe1BysZicMg3OtLmsU0T23EwNIlrm6RZhqEbKASGapceVtUanmMRJYqFbWkGSanR8F2Ykj6jrMAxdTpNf96C6oY5dwYpYaZmeYs1i7atEeYVaZZjWRar7RrnFj1MrULTWsQHEVkyoelIhCgo44RKM7m2V9Jy9SPoRQUOaNV8SiEf+OzMolUL+Ks/8UUawSdjXvd+8YNE8p8x9vb2ePPNN9nc3OTRRx+dVypH4b8fFxpXTglp9x5HA6oHDKLSNOXixYsADzXo13Wd27s9/vk33qM7UZaqC4F9XJzQ0Kl5DppmzO1wH/jdy4pRv0ucFVSGwzv7MeZwj8WazfmVJpZhkBUFtqUQRmGczJnQ97azhJQYhs5ud0JRlniOjWlZSCkoS8UAr6SkNxiwYMup3MnRW0bt6P/sWp/tUYY/1Sw6SATDG0O+fLbFUs051s+fDZGDWp2gVmdrEPPazphRMkIKwUpg8NSqzwvrdeJSA03Hs/X54P1o1AOX/jiiEuBYOucWlXz83WHGOIwQVcWzpzo8udEkPiICGOcl26OMMC3xbJ3VhsPzm03evNMnLiSWZXG2HXCmbc8TK4BhGlw/CDmYZBi6mhutNhwWA4t+VCCBlm+x1qrN3QXjLOf1u2P6UU7gmFiaxiAqeFckPLum8+y6GvBKKenu7RLHMWdOn0IYFvt3D6j5DrYmwTDwLINBXBBpFo+dWSNNEuI4JhwPeH1vF8/zqQyHpBAs1H1MXfmZSCFp+jaTtGQQpg8EDhiaxNMFg1xikOM4Npqm05sk1ByT5lT0UUpJUsE7twcMooIsFiw2gUqyO1SCk0UlQdN5dLWBZ+kkGfSjgnd2lQyMb+nTzUvKZqfOY22DrLQxddUSM3Qlae85NpMipha4ND2bsiypyoq8yOlFOVdv77Bat/A8H9/3MHQFAw40YwpQcabunPl8ttZu1PirP/4F6v6nm0Tg4YbtURSxsPDxOSx/3vGZSiRXrlzh5s2bD4TRHrXD/ShijA+KH32kw//7O3cVWmm2YkvQNfjKo51jrx0Oh1y8eJFOp/NQxEcpJa9e3ea/++ol9uND4tVaw+FHH+3MF1nL0EnzkrxQCriBp5A3yqJ2iqjJMob9LlIzKL0237xyQCEKdF3NDN7dnvAjj3Zo+i4SNdjGsoiz7L4komsavu8wiVIC16TmmEzSHJNDj/ekVPIjNUtnZXXpmNzJLPYnGfthTitw0KUAKkwLhknJzUHO2eWmYivnJY25Yqv6HrvjlFfujCkriec6VJVkN5VU+yVnw100BPUgQPc9DNOet8CklFi2zdcv7bIzUjLzDc/kkaXp4h/3yFvw6Jkz1F0HqUliodp4gzjn1TsjNVDWNISErXHJEyuCL59tE+cVhq7hWSp5+Z5qnWRFxdcv77M/ydCnUPU7g5RTCx5Pnqiz1nTRdR3XMhnN1Zclg7RiUmgsN32qSl3Hmu+yO4i4M9Bo+U2kFOzt7VMUBevr60g0euOErKgILBPLUlDpoizwbIMwKymFxPd9VpcXGYcJrSnQoTuKiMKcKovxHQvLsglqPlkh0I2KB03zJBJNajy5scB3rh/QC0sMvaASEtvUubDRotOsTblAOa/e6pIUFZQ5WSXZjyoWfAvb1IhzQWAbnFwMWPR1kizH0HV6qQTNZDE47ATUPIftfsiy37iv8iurikmcUFUluqarc+s4lFalOCTCZGXZp2kJ4jhiMkyZxClurljrvu8TJYfVimObLLcb/NwPPUfgfTRux8PGwxISf1CRfIy4fv06Ozs7fPnLX37giZwlj08ikfzw+UV+5JFFvn61p25qqQa/jg6/8pWz89fNhCAfeeQRTp069ZErobKq+PfffJ1/9s0bbMcatq7K70oo6e8/vdzlLz65QuA5pHlxpHUg5+0nKRVJL88SBgf72H6AGzT50zd3KYRSYLUsi1IItkYpV7opT62qmUwsFaDeNEz8KXImzjIMXccwjHmrx9A0Hlut8d1bI0ZpoYa4RUklNU43dU6eWMZ3lcJumpfH2PFRAVJq0ySiQkPDMXR2hxGTWF3LRs1Hk8oDPZ7OfK4eRBRTmRQAwzVxipJBWuKur7DgGUp+ZDQhS1ULzHU9glqdr767y/4kw7MNDF2jG+YM45zTXs5S3eWJk5uqBThtq2iA59i8uhUR5VKJKuo6umHQnSS8u1vRqdlzKXZ1FVQbsB64vLc9pBsVLDUDdCRlWZIWFbcHyodlreUrt8R75M/HcUaZ51RTr3HHcZBCYpsGo7REiIrd3V2khPX1E+i6Es400xKkmKoXHEHs6Qa+rTgTvm0zidKpW6ODbTu0Wi1GDNkdJRSVoCwTJmFIInRWGi5N38J3XSohuN2dcHeYMk4KGjWPZU/n2Y0G+5NMiS1aOss1Rw3Oo4Sa53DlYEKBTsMSJJWgtdCgqCDMBc+v1Kk5Fq6lqmIpKoSm5o8HowgdEFIN2k3DoCiU3lVcVCxwf5VkGQbLDZfLu2NsQ87tkbMKaoHL+kIdTZSsLi+yP4y4NtgiSkD2htT0HqsNi2bNx/N8ltp1/ou/8JxSifhzCEXgfLjW1vebOyJ8hhLJqVOnOHHixPv6Gs/scD+JOYmua/w//tqz/A/fvcsfvLZDlJc8vx7w+WDI2U6AEIJLly6xvb390EKQYZzyB199mWvbPW71E3QpMU3l92DpOnpRsTVMyKWBdp8Q3fHodnsMBn0WFpdoNRvcHGRkUle75mluM3UNx7F5d2vAY0su2hFkVnXE+MqzLXRDnwIMxHxYfmbRx9A0ruxHyobX0Di76PLUyUVAO0LeUnMR2zJBgEGMEBVC6nMdKVDtw4atBreeax/zSDF0Hdu2iEoN11a3oGWpIbc5Ra0p+RiHRqNJo6F27VmWUWQpr125w/bEoOmamIaS1TA1nf1RTN9y+PKZk9Pfe/h9JNAdx+wNQ3xLGSfNQBB1x2SSlQzjgs4RmLOyK1ZOk/uTDB2lXyZQlWwj8MgmGeE0dxyVk5+FPZ0LSSFxXGcu81OUFct1n2HvAM+2aS4soOk6udQYjhJcU7V5BnFBy1Oe9nkpCLOSR5YDfNtW1sCBSz/Mub4/JikqAttgo+1RCohKjaLMqahoWJIFI+PK1eu4rkMsHW6MlbaaZzt0Rwl7Q8EjSwFnO/ejmOq+yzCMGYYZRZIQI6jXazi2g28Y7I9jcqETeDZZXqBp+nwuBxLb0BinJZ6poWsGSaJmUYZh0Ao8ap7aYMzasBKdQkiWA5NeYNOPiilIS2IZOqebNoiCmu8RZyVXezkHqUbdt9B1l3FRoeXg5AW6GHHCbXPj2tUHOhJ+GjHbFH7URPID+O/HjPdLIEfjk1TotU2d/+bFk/w3LypZgNFoxCuvvHKfMdbDXNSd7oD/+avfJUxSZVkqwZiS/kRVQVWhSdAMi3FacGrRU4PPe+YzQkjGwz7jScjK6hqO41BWFaMwQZYFmgHG1IxIM3TSOKFEIVPUYPt4BVWbonpErj5HSIljm7i2RVkKNtuSupYQRZLFxUU870G/XSPLS2zTJExSTrQ9mgcZUV4SWIqRkpUCISXnlmrYtnkfB6YSyvnQkBVxUdIM6kp6w9Dnwpz3+qQ4toVr22SuR5BZGNEIDUGaKMayrhtKx0pzpoid+6vH2dk1TZOqqubKvJqmYVj2vOqaybY0Am+aALVj7we1oCl2uFLlNQ0dz7bIy+qYg+Vy3aHmxoSlRpVkylwqKxVzJ+5T2R6dxQ65gEu7CfuTlDwrcC2dlYaDlErMU0iJaehstnweX2vNwQJ3+xFv7UzICoFt2+xFFZ5Z8PypNmGckhY2rqWzGNhY0/MbRRHv3hkrC18nJy+UknOlW+yGFWeXDRCH/jD1wJ1vBNIkpqwki+062pT0KIpi6qxp4FhqkzFDBKpkIlhtOAzinFIzSNIYIWGcVtQdE0cX84F8LnRu9hO6YUZZFCzVHc52fFbqFZOpC+aCb9HyrTnE91Y/YW8Y4RuChmfjuA5lKTiYxHTWNvg//Zc/TJ4mc5vbd999l3q9zuLi4gf6p3+ceNhEEobhDyqSTzs+rEviw8RMXfib3/wmjUbjIxtjzeLdG1v80X96nUqohFd3TAwNjklC6RqiAl1WWFRzXkTgu4q8lmRkec6o3yPJC06sb2AeEb/r1GwMXaMUEl1UgEmRpRRC4+RiQM1z5jLqoBa9Zs2bo4iSouLdnQm3BmoQf6Lp8thqDS0dI8qCs6dPUlbcZ5I1O5YiEKpj2brGsyc8Xr09YpxUaIaBbZpcWKtxfuUoC/3e0Di14PH2vsYojHEtnUpIolyyUPc5s1Sb+454U7jzzGvEMVXP3LItQCPLMgxDo5IaeTyhu5dTqwUYlo1lO/NFInAMOnWPnWE8b6cBTNJC8Tn0ikpoh8rDc1VajZWGy0GYU1YCc1pllNJAlyVt3yTJChLUb7Usg1IoQl/g6nzhTIeLt/qMUwWbtXVoGQkbCw0WFxcoheT17Yi9QUTNNam7JrnU2JqUPLUaYOlQlGqRXKw7ZFPPjkoILu8rK+WF4MjvKSSXdsb86IVlxNTueBamaWJ5AbpTseJryKqgKArlZS9iEqFz0y05tdykHvhYptJjE0Kwu7PLoqtxUDgUAmxjqgWXC+qOQWBp88pXSEFcKkRWVSllgKc2F7m6OyItK3Q0Go7BI8seOgIhNKJc8PZezCTJ8SwdwzDZDisKmfPEss9a87BaPGpcNYwLTENDFuqczNwqg6DOhQuP4zk2nmPTbDY5e/YsWZbR6/Xo9Xrcvn0bXdfnSWVhYeFDbWq/V8w2vD8QbfwMxqdlhwuKZCiEYH19nXPnzn3kHYoQgq9ffI+X37mGPrWnBdC1nNMLLpcPErJSYFtK9iEvK84s+rSmC5qUco61T9OU8aCvhqknTtynN7Rcd9hse1zvJZS5oBA5eSlwLJ3HOmqhsS2FeinKCtPQpnBZjaISfO1Kj4MwxzaUQOO1g4itYczzSzqn11fISzlnDxu6kjEpSjFXiN3uhwzjAsvQpsgll5983GZvnFEKwYl2DddQcwDLtSnLmUfKkWG/Dk9ttgnzLnf6JYO4QEej7pk8s6bcBw1dtY/KSpAd4ausNBxqjkF3HONoFbVaQImBIXOe3Fgi8CCKY6LeANPQaNRrOK5Lo17n7KLLMMroRbli3QuJaxk8tlLD1HXMqaT9cJJQCkFRKYb8o2sW3TBjbzydK1k2sko5veAfW8R7Uc6lvZBRUqDrOgs1h2fWm/zUU2vsDmNGk5B01Ge5s0Cz2ZyioHT2hxEt35rzMTzUAnmrG/FjF5anMGt5rEIaJUr+XSkFKACA67pkZUw/zNgbhASO8v446sroOcq2oKgqPMuaL5xZUVLGOVkac/3GgFY9AMPCdV2l7By4bG4u8dqdAQeTnIkoMU0D3zJ4dMmfw7uVS2TIzjidS/bXfY8LqwE/+tgqB+MYXYOmayrXd6kUpXtxySjK5oRIAEtXaLClwODcsjKd0oHxEZtde8roR8r5HdZuNrGXNmkEx2ciW8OUawcRpbBZXz7Dlx9/gmgyptfrcfPmTd555x0ajcY8sdRqtYeqVmaD9o/yXinlD2YkHzc+rLnVJ51IpJRcvXqVmzdvAnD27NmPfOOkecG/+car3NjaBw4F5VRovHS2jRSCrUgjywt0HR5ZDnjp7P0wvziO6Pe6BLUGQaNFUVY4to1rm3MnQk2Dn376BH/65m1uDTOkBicXPB5fq7NSVw9OUVYIkeFYJlGaU/MdQOPNOwN6UU7dNRSXRgh0NMKsYkQNXTfm5yU6wrUIPBdd1/jWtR7vbQ/JhUK5NVyTL5xq06nZbLY9JUsfJ0g59W6fViTm1H1xkBSEcUYrsBFZwXMbDc51fEaJYpd3agpyK6XE91wGkwim4N9giqAys5xNvyRJBML0mOQSSyt5dKXGqQVfQT/9gE5HsjeMefdgTCUy9HKX052A59Y8dkIlC+/bBustl7ZvY1sGM/2vG92Y692YtFAJ7UTT5akTDU53JKNUkBc5nSBgqWbPocmTrOTinRFxXtHwbZCSnUHMJM548UwbLU/Q4iHnT6/j+zWSLKNZ87h1uw9wH6nPNnXivEJoci6xcpSZPUrL+fUBlC9Nlk2/z2E1WYlD3oxrmziazvpCjWv7E0xdzP1golzQafo8cqpJzXU46A/Y6U+4szUiLMBzKjaiA5460abSTMZJSVWVSuHXONx5b48ytkYpdcfAMnQs22YwiXnzdsYXTrdZqtl4ro2h6XNSq+dY9LcnSmFA06ZdXpUYpFROonGqREZHSYZjm9iWhRSCTi1nZ5SRquEV7VaTpY2zaLrO+aXD9uyfXevzHy51GaclGgop+dxGg59/dpV2u8358+dJ03Rerdy6dQvDMI5VKx+2S/Ew0F/4wYzkzyXezyXxYaMsS9544w3CMOQLX/gC3/rWtz4yZK8/DvmDP3mZ/jh8n1dIiqLgmSWDF88vkkmdhcDBMTXlVz17lYRwMqLfH9BZWjpW3uZFQT4z+9F1GoFLXlQ8vuyxZER4nkUQ2Pj+4Y3r2CZSMm9rzBBa3TBFMwxcxyFNU8pyKvRomexP7teTAuUolxclb2+PeHNrhGuZdFybSkiGYcK3bw74qcc7dBq1I0zu4zFOCv708gHdeOaEZ/LoSp3HllwarnUPt0FO5xOqippkJdcPIvbGGboOdTJONk3+6xfPcxCWTJKElmsROMdv5xu9mLe2JgjdoipzpHQZHVQ82opolCmrrkOtFqDrFc7Ula+sKm71Et7anqBrGp5lUAjJ9W5MVgp+/InV6bm05jpWRVmRpBlbw4QoK1lpKg90IRU6rB/lXN3pUxcRq6sraIZNkuXUfeWPsdjw0HZDSiGP+bxkpWCt5VOVYj6EPpoUarZOO3CZ5IIF1ySd+p+HWclS3cZ3ji9krmMzSTIMDdYbBoPQYBCX6EIt2U3P4vHVGg3fI0wy4krn3YOMUpoEnk2al7yzE7LXG/HUmo9pudR9j1bgKi2sKaJvd5xiaGqhtm2bPM+pOSa9KKcf5tQdUxFwZ9faV170Dd+jF6n7kan6iZRKstHUwbHMuRHYnV5EPy6m59jm/Eqdd24nVGaAu3wS0zT4iQsdNtuKL7I1TPkPl7romsaFZYUkjLKSl2+POLXo8aXTSkncdV3W19dZX19HCMFwOKTX63H9+nXefvttms0mnU6HxcVFfN9/303nwyC24AeorT+XmA1JP4mIooiLFy/iOA4vvvjivLyvqupD90hvbO3z1Vff+UB1UQ2Nuu/R6/XpLJv4gKwK0krJwLu2RVGWbO9sE4Yxq2sncJwHI0o0VItiMI6RUlCr12m16qRJQr8/5OCgi+M4LLabVKWDYaqWx9GwDJ2qrEhiReSzLRvLscmiHNu8/6HwXXsOTb7ejdEB19Copomt4ZqEBQxzDT/N7vs8UIvBy7cG7EcCz5Q4tkZaFFy81aUqGnzuZBvLMilKQZ7neK4777WHWck3r/UZpSWWDmmWsY+OEQSs5iUNG9quP9+lz4a8cV7y7k6IaVm4hkCzbYSU9OOCofR59tQqaZoQRTGiCOke7NOo17Acj2v7E7RptaXOmYJI91LBne6Etq/EBI9WXJZpkAsddwqtlVM4tKZBVZb0RikXLqzhOIo06brW/Df6BrQ9k0EqaHomSMEkzrAtm7WGdcRaF0ASZhV5pfgaZxdd3tuP2RmEmIYJuk6r5vLosj+vlCSSbiy4fH2XJK+wTZ3NtsezGw2GcTH/21LNpV33kEhkVfLWzT0qTNYWAnUszyEtKyoMMk2jzFL6gwE7Oxq+r2C27VYDw7SxTbBMa65SPIt7Cb81z2UYJUgJbVfjjqGRS4Oaa05NyBSR82SnrtSakVzei7gzzOa2xXcGKUs1i+dXXf7yX/ohbNvk9IJ/zI7hWjdmkpY8unxILQgcE9soeGt7Mk8kR0PXdRYWlNHbI488QpIk82rl+vXrWJY1TyrtdvtY4ngYDkme5xRF8YNE8nHiz7O1dXBwwOuvv87GxgaPPvro/IJ/WHixlJJX37vBV195Z97fPfRMr6btJw3TNDENncEwfqB0c1GWxEnCaNAjLyoefeQcpql8qY+KPEqp2iaDpIJexFrTUSgwTaMSGpbjs7LmYRkGZZHRHwzZ3t3DNC2CwMf3A1xXDfLXWy7v7oyVA5+rRCLDOEVWgrNLTeqBCxLiNMN3nTmBUEglRW8Zxx8OwzCgKOmPI5a9Gp7rYBk6eXGIXupGOYMUAlPOxRED20Bkkhu9mEeWaxh5iWnouI6yo50hzK53I0ZpScPRSdOEhmthewG3eyHrDWXde3SXPrPpPYgrCgzqeoU2peGpCkNnd5Ty9HoDz/NZXlxgEifkeUEcR3QP+gzDEsexKKupZ7tl4rsWB+OEKK9oP6DzUFYC3zZJswmBqeYOGhrjyYSirFhZa+M4auduW8aRHblqaX1uo8G7uyHdUC2QzXrAI0tKTypOlIR/WlS8vTPhIMyphMQ1Dc6t1HlmLWB/omTia47JasMhcCzl9a5pXDuI+O7NLjrgmAZJXvH29oS8FHO7ZF3X5zv+NE3Z2t6hMj0W6z62pVFM53T1KZlSGA1OdFpzM6s4jhgM+uzv7yMqm0lqYusCz1OyKXGi9LWa3uEmTTNMvnO9y/5EXbtOzWaj6bI7TtmNleBiK3B5aqNJ3bVIsoxBWLI1VsN419KRUkHNY83nxEaDL55uqTnKPYu4EtC8f40xp7DqBz3jQh5vN3qex8bGBhsbG1RVNa9Wrly5QpqmtNvteRusLMuH4pAAPyAkftrxcVtbUkpu3rzJ1atXefLJJzlx4sR9x/9eiaSsKv7Dt9/krWt35n+7173NMk0C11F8iCR9X9OuNM0Y9btgmKydOEGal5Ar2OXMvS1Kcr5xo8f1/ZCiqlSF45r8hXMLLNWPDxJdx2ZSVbQXl+gsLyPLkvFkwv7+HlJK5WkvKs424HZoMMkEaAJL13hkOWCzNVPiVUJ7lRDUA48sV33spmexN87wpmZVumFQVhVSVDSmA98kzZmNQZWWmEE3UVL3QXC80pup1+aVoOU6SHFc/0nToJcqgEKWxViWTb1WI89zKgGDuGCtea9cjUZZVeRFSVnkmJ4SFpRSKjXgqWS+FIJ6o8Zk2oqbufjVGy2uRgfEWUGe50gh0HMDTCXK6BgPrriaNY/FOMc1dUZJSVBJkjgmzCsWW3UeW+/gO4q3kmQFk7SkGylWftu3aPsWL5xsEmUVjmtDqRJrNIUM+47NazsDJUVj6QS2SVZJ3rw74Mm1Oo8s1+77TmGS4bkO72z1sU3lXy+qSm1g8oo7g4RTCx4118I0FAs9SWJ2d/dYXGiz3a3IsgybQzXgsqrQdW2+wGqahud5WI6D7jVACtplzuD2kK1ejGVMMAwDTTc4t9rk5FKdqpKUleDrl/fpx0qcE+BWP6HpmTyz3iSrBKaus9R0EVNItaEbindlWASuIjpqGpxYXiQxanRLqVqK003YLKHous5G28M2NMKsnJNOKyGZZCU/snxYjZRC8t1bQ16+NWKcFmy0XF48054n3FkcnZ2Amm3MqpVr166p36xp9Ho9Wq3Wh0oqYaja4z+YkXzM+DAuiQ9bkVRVxdtvv02v1+OLX/wizeb9Tmjfy243SlL+5z99he2D/gd+lutYU5kMhX6q+R6OZWDo+pyjEEfToXq9SavVukdb69C97e3dmMt7IZ5tKRhskTNOC75+rc9ffnoFy1DKq45jHyPhVZUEzaDWaFFvthBlQXd/j7SoWLIqOksOE2Fj2TZrzRnySJt7xM/aLrPv4zo2nzu1yFcvHTBMcuq+S5IVpHnJSsNh9b4FHYqqxMZEVjmWqSN0A9tQboFSKqc9zzJoBq7SURLHr72UUCQJUZSxUHMJAh+JhmGaSJnfN5xW515pMjVcA9c0mCQ5gS2mvwJyDM4verRq/jEE1CwMXeP0os/bOxMM28U2IUlzxlFG3axIB3uMyxqO66GbJkmpUWCwOx6yVLd5er3BuztjuqMINOg0azyxVsMzVQVaCcl2WPLO9oQozZFSDbtPLXg8sVpjrV1jHKdK2XIaQkju9CZs9ybUbJ2a76EhsYUgLwpu9xNOTQmlh+dOwbS3ehPSUuJbkE/JkLqu0wws+nFBXql/p7nil+zv79HpLFGv1zlRRLy3F+KYgrrvEicJ47TEtww2FgKCKSz76v6YqwexMsPSNGq2zlMnl5mkBXujGFGW1PQcK9zn2vUJS4tt7o5LJoXGaiugKgukBM9SrcdBkvPIch1zKhs0i0oIkjSjLHKEbU9bS4sEvk88KVg7sY5t21RVhRCCcZJzeT8myiuW6w5Pr9V49e4Y21TPTJhVnOv4vHCyNf+Mf//uAf/xUhdTV6rcr29NuHoQ89c+f4In196/5eT7Pr7vs7m5SVVVXL16lW63y6VLl8jz/Fi14nkP1vmaQX8/CauMP+/4TCWS7xWmac5JZB8l0jTl1VdfRdd1Xnrppff1Uf6gRLXXG/Gvvv4KZSUIXJcoy+4jEIIisd3tTtgaJWjARsvD1iVJpvzJPcdm2B/Q73VpL3beFzMupaTme7x1dwsdgS5LRKWqHcvSCfOKrWHKo6uKGHa0VXJvxHHMZDjAsFw21xbVA5okDEcjxpM+sZhAFtBs1HB8/0ibaBZqHtB2NF7YqHG1r5KZYZqcazo8vd44xmoHxV53LJMwTunUbJZqNtujFN82lJig1EC3eHKzNe2j35sUJL1ej7qeMbJsDNtRr5MQ5iW+Y3JupUngmSSpIgbOZNSllNQdk/PLPu/tqqGsoandZtOzeGy1Tjj1ezFMgyTLudsLySo5lXL3kbrJtf0xcaRQW5udGs+caGDrgiiKOegPuNYvGFRTBxQpaXo2T60FnPNTMs9S/fXApua55IXSrhrEOa/dHIAGbc/AtFyyCm70UtbaAbr+4HlbWghKIRWkuyjmMxjftlSCtixkVSGmbPKZWZht6Op8CzH3C5FCEOUlutQwp6rMWZKzs39Aajbo9Uvs8Zilms1aw2aQw3Z/AppGYBs8vlajqirGcUU/ynl3LwLNoB04ZLmCVmel4MUzbR5dqc+vZ57naKJid/+AG72cMNexhUoIrqvaflYhmaQVxj1JJCsrKiFpesosLSsFa6sLBL6nJPgbbZ7dVHMKwzC4ehDxP7y8zdZQ1cemrvHIks/PPL7AjV5KUUkePRfw+VPtOQS/G+Z8+8aApmcqyXxgqWZzvRvztat9Hl+t3XefPygMw8DzPBqNBk899dS8Wjk4OODKlSt4njdPKq1Wa544wjD8VP3aAf7RP/pH/MZv/Aa7u7s8++yz/PZv//bcpuPjxPdVIjEMgzT9YNvMe2MwGHDx4kWWl5d54oknPjDbv18iuXRzmz/8T6/NCXEwtb/1XDSN+ULmOTZ/+t4ur90ZzU2NTEPncxt16lKV3dvb20yimJWVVeq12nzYnhzVaNI06p5Ld6y0qGY7TQ21CIBAlBVC07EtZUlbVdWhA9+RuL0/4Mp+RFxptGsa56yMtaaLabt0llxWVzXKPGMymbC9vYOQEt8PCAIfz/OOCTVKKXlqY4GNdkycK2l411I6XrqmYLNlpVpRcIgY09D4wqkWr90dsTvOyEuBbWg8d3KRjbp5KKdfVfNd+v7+PlmW84ULmzg7MTe70bxicUydx1dqmFRESYWmabTrPkUpCPOSqhLUXZMLKzWansXWMCUrBZ2aw/nlOroSOSHOcsajgldujxilFWgGhq4Imk+vBmw0FggzNYhueYfAhVbLZlDZDAkxtQIHQV5V9CaC7yQpz69YnFxdRteNY8kNYG+SkVWCRV+ZYZVliYFqE97uRZy5sEwl5HwuMgvPUrIySV5gH2mvJUWJZ0nyosDUlZugYpZP4b6WwUrd4WY/xtQ1bEOp88alZKVm4VsaO/sHbO332S484kpgWzpVlXN3kPDMyQVOGZJJqmyYOzUb9wg59u4wISslnUBDlDmWobPSDOhFBb2oZL01g5NDp91iHMWsr28wMcaMdycKKh+GhGGIZVnklYHb9nAs1W7rhymX90L2xhmVkAS2GsRbtUX6lcNgXNFotnh2s8lzJ1WXIS0q/qdXt9mb5JxfrmNM1QTe3otZb3n8H760fqTzoXTTdF1nZ5QySkseWTreWloMLHZGKeOknCedtKh4dzdkb5Lj2wZPrNaODfdnqC1N0wiCgCAIOHnyJGVZMhgM6Ha7vPPOO1RVRbvd5pVXXqFWq32qba1/8S/+Bb/6q7/K7/zO7/ClL32J3/qt3+JnfuZnuHTpEsvLyx/r2J+pRPJhWlsfZUZy584d3nvvPS5cuMDm5ub3zPT3eqtLKfmz1y/xrTev3PdaxbNQSc0yTTzb4mYv5tU7Y5ASd6rqm5eCV++MeaohaXf3SfKK9fV1DMM4Bus1DQPPsRFSICRM4gRLV54gg7jgKLK1EBLTsvDNQ1jvbMhs6LryLMlyLt3t8epOqmClhs6wG3NnkPL5k815T72sJEGtjm46tBY6SFEShhHdbpdeXDGqLKRustL0efrkIuM4Rdd0ao5+5DwcfodGoJLPMEq5O4gxdJ2lmo1rGbx4ZoEwK8kqwWoroJjOlI76rgshuL59QFrC+vIajm3z3LrBetOhH6l21krdmQ9tpZQ0Apf3tvq8vTNhlKhKqVNzeeZEjZW6IkxapomuMf8cUKzsV2+P6IU5Dc9E1wSaaXHjYILvmHzxVJt6lqk24ZEwDI27wxxNiik/B+yygjgmyjV2JwJR3qHdbJAlDoZlY5ozVOCUNHfE5dIwTGQSk+Ta3GdFOTIqjkqS5awv1Fg8iNkepQS2gWVo8yrl1KJ3uNnQ4NL2gDv9mLiEhZrDWjsgKyu6oSIR2pZFx7d4bDVgOBwyHA5JrAZhlLMQGOiaRBoaubS5tBfyk48ts9qsKB4wlM4qDcvQDlvCUlKWBWWZM0ktHCvAtkwMQ2M4SVRylJLVhsfdYYYAGp5SRg6zClEVJINd3isHuJ7P5YGgn0oCx8aWFeO0YGl1lc+fbCIkrG1s8uhKXYEnprO7qwcRW8OUzbY3b38Gjqoy3tiJ+EvPrmHr2rwFJuU0mUjlGz+zLp6tF3ml9L1msj3DuOCfvbzF5f1oLvraqdn818+vzdtf7wf/NU2TpaUllpaW5gTE3d1dfvd3f5c33niDIAj4tV/7NX7u536Ol1566RNh2c/iN3/zN/lbf+tv8Tf+xt8A4Hd+53f4N//m3/BP/sk/4dd+7dc+1rE/U4nke8WHhf8KIXjvvffY2dnhhRde+ND6/kcrkiwv+KNvvs6V2zsf+B7ftcnykjBOeP1Wl6qqCDwbTTeQosKWkjgXdEuH01Jjff3EAxNaWVXkpZKTKMsKz7HRNXh6vck3rnXnO+NKCCrdZDXQ77EE1uaDaikFw0Gfd7s5QjdpOIeouCgreWNrzKkFH8vQjku7SwADv9YgDnWu9iLyqqIsc24PC97dHvLiyRpLrTr2VJ7kaNSmznSX90Pe2ZmQVWqnXXMMnl712Wh5NDwTz3Ee6EE/ilK+dmmXsNAwHZdLwy5rTZ8ffrTDRtuaky0PfzHUAo/b3Qkv3xqSFAoSK5Hc7U8Yhgk/8dgyy01PSXncA9PuRzmDuKDuKhkb23EocjUwv7435lzbwTY11QIzVIIWQiDRiFLlXw7KUz5JEjzXQRQazXad8yca7HX7TIYj8iyj5nv4gY9vTX1vhFqcdF2nKHKKSrJ4BIwghKQ/TtgPMyzLou5UfPn8Eq/dHnK3H5KVqjJ7rFPj9IKPriu+z3vbI97cGlMIgW3oDKKU2wc6z2w0eXpzgbQQChzh6gwHAyaTCSura1y9OcGzDNS6q6nrm+f044Lb3TGbbXfOmynLiiTLcB0H39LYK0qkbc/vBqHWVjzbIM0LbNtkbxByq5+yH5ZUSBZdg822x/YwZZAU6JqB45g8ttZgvWGTJDHb/ZC73RzPhFLamKbJk+dPsZ+b9FL4v/6vv/RAguDMfti6BxhhGzp5WZGXEsc15t2JrCgJk4L1ts9G0+XWIOFU28WcJutemPOTjy3NLR/++FKXd3dCzix6ilUvJbcGCX/w+h5nFn182/hQhERN06jVapw/f56vfe1r/NN/+k/57d/+bfb39/nFX/xFkiTh7bff/tBOrB8UeZ7zyiuv8Ou//uvzv+m6zk/+5E/yzW9+82Mf//sqkXyYYXue51y8eJGyLHnppZfed7D1fscXQjCcRPzBV1+mOwynu3yNJC/vq4YUiztjxiKO80oplFYVcvY9NQ0MQ7UzFhfftyoKPJc4yahEhZRKvlzTNE4vuujmCm9uTRjFGbbtsNEwee5k84FmT1VVMuh1GaYVSSlxTSVoaJjK2c8XkjCv6IYZF06071PJBcXdeGt7PCd7IU0qYJRUXO6mZOHwGLTYcRxadZ9xlLA9ynj97hgNqNsGEsE4KvjurYITC3WavvVA3k2apnzj0g7jQqfTrKPJkrzSuN0L+calii+fbePYin1elhVZXuI6NmGccqsfE+cVbd+an1/bsBjEBdtTqOiMc+B7h224vBRUUi04lm3PPeJNQyMvFRjAnppTgQJRGLqBZRkst3xuHkwwqcjSDM/zkLqBVhSstutkpaDVatFqtRCiIo4TJlGMjCIC3aQfSVzTRNMEWamIi5tHcMV7k4w37o5IhUFRZFiGzkbL45n1Bo+u+KAZ+LYCLuiajmUZjOOUK/shAnmfO+LlvQnnVhq4eo7EYDIaUhUZZ06dIj8GctCwLAXqOB5HeTMSzbQoK8G5lTo7o5RhXFBzTJWws5KGa7HScGgELoNJzMU7I/bGGY6pdvpXJxWLdY+XHl0izgRZntNwzUN/HqvJoLRwJ2PqtkZRltTrdQTg6oJQ2sRpRqN2/xK23nKpu6qSXwgOPWx6Uc7jqzVqU6KmkJJvXR/w1Ss9BrFqUZ3reOQSbg9TpFQE0afWAn7oTJ2iKMgqyetbYxYCa16h6JrGZtPl5kDJrzy93ngouwshBBsbG/zu7/4uQghef/111tfXP9Ix3i+6XbXJXVlZOfb3lZUV3nvvvY99/M9UIvlerafv1doaj8e8+uqrtFotXnjhhY98IQ3D4O5en4vfenc+s5j1mqUEz7WxDIO0KHAt8x5kEyzVHXZGKcoFRO3MqqpCExDoFaBNNbi0qWS2mLZmfMZRPGfyHjeh0jjZtDnT7pBVys+k5j1YvyrPM0b9HugmS0sL6PsHMD1mOW2hCcAwTeqBT5o/eEC/O87ISkG77qqkONUwcnRBP9P4yhPn0MQhtNi1TLpdC98PuNnNKIWczhTUfKThmowyweXdEY8tB8zbcIZOlhcMhmNubO8TVgaLzZpSntXUDtK31fcJswpQEGvL1HFtpUtV8xzGaYmha8fuH03TMG2b7iTmzIKqZMQ9bbilpo/vKalFOTf/gqQQ1Bxz7tcOR4mZkjQv2GhY3DkQDBJBK6iTS0GSFJxZbuKbh5yFUgi2hhndsMTQHZYX6vzQCZ33tofc7cdIDTabLmc7DpZWAQZpWfHanSElFoFZoVs2WSm42YtpeMqmFwRlIbAsE8dUvfi4kMR5RXAPoz1wDDJhsDsIaXkWBwf7ZFnG2toaAg3ftjiz3OCd7TENw5gnkTArp8rBx7XEbvQzuuMYNDUzOdfx2Y8qwqKaSpbYPL5Wp9PwmcQZ++OMgzCn5Vtz5n5gG/QmCVt9h0eWArTAw3MOPXOEYJ50dMPkwlkleaLrOolhYlQZ3/7mNwkCn6WlJRYWFphIl1Fa0vIsXjzT4j9e6k1/g8EoKWi6Jl+50Jlf5z+71udfvLKNoWm0fJMoq/iz60N+5PwCP/fkCmFWshhYnF5wMTSmtgulEu7UlTClpimu0cw9cua++rBeJDPwja7rPPfccx/p/f854zOVSL5XfFBFsrOzw1tvvcXZs2cfSi8L4MrWAa9d26Hdvp/lqmmQZjmFruPYFmleTrkWFXFSgCZ5fLXGlf2QJFey4lVVIdGUnlMgEKI6psHluw62aRKl6dy74V4nQwDXtqhEhSkEUsgp1+PoXEVy0OszGfaxvWD+/RcCxfswjekiKyVxoVRkPaOiKDVcx8Y2DPKyJMmK6edLdMtC3Je0DxdHUzdptRdYWVkhzzPCMKI3GLLXz5GVTlEo/3BFzLSQSUKYFPPjzNpwo9GIyXjI0soKVhojqwL9CKzX1DXySijSmDM7F8cVbWuOyb5RYVoWoqyoRIVl25RRhG+/n5GRhmdqbLYcLu+M1JzLMYhzlfAfWQrmc4ea7xDFGUlREefK8MnIJ5zyC8b4hHmFYWg8e3KRJ9bqaFKQ5gWlkLx8a8judHMBcHtYcGrB5nNnlnnuDBRFSRzHxHHIeNCl7nv0S5u4hJZTzc+Fa+nkpeBOP+Fcxwc0bMs85j8vhVCeN5aNqSlHRQ0Nw7Sp4gRdg729XcqyZHXtBP2kYpJF2IbOUmCxVLM5mCSYhoVAw9R1Hl0O8KeeMeO04I2diHGU4TuKDHh3kBBmJV861aIQ6v7t1BwFw64EGsxVj4/Kv2iaUnXeG6ecXVRdg9nGTAN81+GM63Cjn6LVOhRSwzVNdL+JnVb8whfWefFUg36/z82tPf77b77BrQmqleu7PHtygf/VM6u8uTVmlBZ8/lSLv3BuYT4bzEvBVy/3sHSNjamMSsO1sKOc1+6O+enHl+/jaQkhaJsmZxY9Xt+a0PIOxSW7YUHdMdloqfd81vzaO50OhmGwt7d37O97e3v3udE+THxfJZIHzUiklFy5coXbt2/z7LPPPhT6oKoEX3v1XV67usUDgE/zcKypflU6MydSC61h6HiOS+C5/NSFgm/d6NMNCwxDZ63h8sXTbUb7W8eABKahHsTBJEQI5QviWBZlWREf8bOYe4g8AIRQVsqwajweEU3GrK6s0Gg05uipF062+NqVHpOpuJ9mmHimwfMbtbkXeZoVpFP5c9sycW2T86smr94ekRTMB5hSqt7zmUUfU9exTOVMqBKChuvXWPcDTssJ7+1FSFESxzmWbZPlOVIcSo5Mrxz9fp/xeMLa2hqe72PcGJFJjYajrGXLoiQtKxxTp+aax6qCo3Gy7XG7l9Abx2oQbTsMk5Ka57D+AH7L7Lci4YllHwvBrX5CluXUbYNH1ps8dqKJrumgwWAc8/buhNt95Tooy5IFR/DiI2t4rk0hwLPV7GAmCeLYFtv9lL2opO4qhQPLUm29GwcRa3WH5bqDZVk0m02azaYiKyYxeT8hjRMSaWDbqhU3IwFmpZjOHyzKe5B6Dc+k4ejsjyPaUyVh07Y5GGcs+jbhQFWoneVVXrkzZm+SI4RE13Xqnsljyz6rdYtRUmCbOsv1GuttH9tWfJHL3YRRlLIQWPO2qmPqDOOCvUnO6UUfXdMwTINRqGC3uq5R8x1MKz8GpjFNizxOsLx7lyDJKC05CDNqjsnf/Knn+F/e7dLLdQrHpwn87JPLvHR2QQEvVlb4t9cy9qjYWNExqpz+JOY/vD6mv+/wv/38GoudNZqNxrHN5SAuGMT5MTsBUOTQ692YvUl2XyKZkRt/+slVtscF13sZgaOTFiph/vRjizQdnaIoKMvyI29mwzD81BKJbdu88MIL/PEf/zE///M/D6jE+Md//Mf8yq/8ysc+/vdVIrm3IimKgjfeeIMoinjxxRcf6iLEac6/+tp3ubPXo6wktmXQCHy1Q08P2x3+1OPjQYTFSgjCRElLyKjHT5yt0VxcJssKpusw4wNtvgAqqKsgTtP53/KiJC8qsrJib1Kg6Trr7QdxOg5DSslwMCBNItqLS2jmjJSoWkd136Xp27y3MyYTOpYuONX2jslUHI2yqpBYUJU8eaLBO3sJk1KiVcojvOGaPHmijmdbFFVFmt9bHWqcXnC52YuIMmgEDYqqJE5zbEq0qMvBQYLve4RhSJblnDq5ged5pFnB2U7Au7sTBpMY29TJSwm6wdMbTRYbvpJyeQCobzGwef5kk7d3xqSlThTG1ByTZ9YbdOruvGqL0oyDcUY/qSiqirZnstZ0eWy1ziMrNQVdNlQ7JYwzmoHHKEy43Eu53s+xDR09SykkHOQW7+4nfOmsj6Nrc4+QWeRFyfW9EZqoME0b21JtG9cyCTPV6lm+Z6EyDYOlzgKRmOAPSuWxUpZkZYlEkkiLzaaNCdPBvzoZaVmRFQLfNnhyTc1nBlGOZTuUYUjdNenoEb7jsrmxwSu3+myPUhqupTZHSPphxjs7gh99ZJHTi4ezmjQvp9W3S2+S4rkOtj3lc0k1H5AoEIehaziWdYzTJISkbmkYsmIUS9o1V9k8Z4oLc9RjJM4r3toe0w1zKik5eeo01u0u/7vPtaivnSEtJestd87xANifZLyxNWal7kyTgk+71aIxSdmOU+52x3MV306nM2+D+baBYxrTVuDhMpjkFY6hHbNcvjfOdgL+9l84xbduDLjei2l7Fs9tNnh2va44OlFEFEWYpkme53M5eU3TPpB+EMfxp+pF8qu/+qv80i/9Ep///Of54he/yG/91m8RRdEcxfVx4jOVSD7MjKSa9uxnoou+7/PlL3/5oWByB4Mxv/8nL08Va9WOI8uL+b9tSz1ouq4zCmM+6OvNmOq1RpNaQzHJLUP5hJuGMW9DBK5LnB4O1dXvBtC42Yv51o0BSVGhmxaG3OOx1To/emFlzleZcSmEqBj0u+R5ydLK6hxeOj3ivHVkIPmhR1eQQlKIiiR98FzkKIEQ4Mm1Gi3P5FY/IS10TizUeGy1Ts1ROlEPqpAA2r7Nl8+2ubyfsT+O0IDNBZ/nNps0bZ3xZMz+/gFSCpqNOlmaIaSGYRg8eaKObepcO4jISoFv65zreDy93mQSJaoNZ5kURUl/khDmFa5lUHdMTi8GnF2qszWI0DRY8C0MXZ9XbSB5c3vC9YHyVqkqxd9Yb7t88VRL+dgf4Uc0Ao9xrPgn1/bGGFJSpTmWadKu14jziq1xRpiXOA9g2MOhkLtlWWTZoWujYZi4ro1jmaR5MYUAa2qwn+R0ajarDZetYYpjGui2SZJXuLpkxZNcv3kL37Vx/YBL/ZK9ULXRHNPg7KLPi2fahAX0JwmO4SCiPoFr01roMIoSbnYjPMcm8ByklBSFGnSP05KDMOfEPVXczBrANTX2xxm+IUED07LQNNCSEs9WXuxHW46VkEo3zDN5fLXGe3sh/bikrBS0/ZGVOo+utdCAMM147e6I/UlG3TU5feYMk0zySlfn2SdXeWHlwazycVqSloKFeyqLhmcTF5LNc+c4veAxHA7nhMAkSWi325yp2Xx7O8exdOqOSVII7g4TnllvcnLhg0E6G22P/6p9/2viOObNN9/kxIkTdDqdect6tgGdJZMHJZUoiu4bhn+S8Yu/+IscHBzwd//u32V3d5fPfe5z/NEf/dEn8pmfqUTyvWI2PN/b2+Ott95ic3OTRx999KHmIZdv7/CHf/bavD0FqgwvisMFsihLHNtkHMUYhk7gqpZLmGTzEl1KmIxHDIcDOkvL9xGKZkP7sqqoew66riTeo6Q8Ng8ZpwX/6XpfGSl5DlKUZCW8vT2h4Zo8ulxTvWPPRpQVd7d2qITGyurakRtSkhRqgK/QLwreO2szwOFcRUo5b5ndSyBUobHe8lhvHT4sdcdUC4qtRAmLsiRJ82Pn39A1zi41Wa2nhFmArjH/LnlZMBhN8D2PUxtr3O2Oef3OgCxXi+eJdsDZhYDzSz55JXFMjWbgz5FlaVYQpTlvbY+51U8ppI6pwUrd4oun2+iivG+XP4v9Sc71foYmSpq2gcREoLMTVmxPCjYaSuDwXmXeOFewbL0qsExD2bgWBbZpkGSSUuh0aqr9WN1Tra7WbfqJJE2zOZ8hKwXIipohyYoSx7Jwp4vYpZ2hkpUPbJ7fbNJwTe4OEkohWW95PL25QGBK5T4Yx7x8a8TWOMe1DDzbIisq3twe4Tk2my2btu2wvb2D77ksLS1NRT7l1LZXmzPkNU3HdQyiQuPoTzjqWT+7H7ZHGZO0VAP8PGeSlnimwalODds0MTSN7iTh6kHE9jBFSEmnZnN+KeCnn1rj9sEEIT3avkXTO7Rh7kU5o0zSaQac3NykLEtWmh6x5vH1qz2+cqFzzPNkFks1m7pjMEyKY9d+mChYd6dmH1PxvXDhAnEc0+12eao64ObWkOt3JkhDJdYn11v84udPfCgG+70RxzGvvPIKKysrx9alGahmxls52lU5qgf25+GO+Cu/8iufSCvr3vi+SiSzBfPNN9/kqaeeYm1t7SMfQ0rJt968wptX72DoGvl8wD0jRM4Y6QaWacx36EKIKd8CQJvu5mBne4vRVP7dth8s/w7KlGkUxRRTFJUa7qoFPUozbvZicgE110QKNfB1TIMoK7m6H/Hocg0J9AdjxoMeuuVwcmMV27IoipKtfsjFu2MOJooRvVR3+PK5DtyDLDvcoavf2675VFL5ivRCNZhXLYKjD5IiGs6semftDgBN1zmIK8JEkSZPLvjTGdLx9kCWZezu7hAENU5trvOd613e3ZlMtZ48docavTThhN3Hti0C3ydYaDOOkmOJ6r2dCe/thAq5ZYJA42Y/AU3npx5fns+H7r3mo0yJZM7goBpgIKiKkhv7IWcXl+dS9JMjidegoipy5eHiumionXiYZJi6sgSYxBKQeI6DZR4qHz+5ucjeZIf9ST5tASk83+kF77D/rsE7W0NevzskKSSGaeKYCY8sujy+WuPCSk3BsGsekzhFoqFpOqXuMC4NFus+pq68dQxRkguN1293aWo+/eGQWhDQ6XTm19M2NBbrHtuDGMtT6s9SCsZxiSYFddfAd20MXUfXNYaTeFpZSZbrNk+u1bm8HzJMiikiz+KZjSYGknGkXCVfvTOmG1d4lokmSu4MEsa5xhc2NU4uPJi5nRRKaPP0hXPkRYHnebTbbfS0YJIqkIPt3Z9Imp7FS+cW+Ndv7lEJpWg9SUuiXPCXn+nc43Ojwvd9Tp48ycmTJ/nCcwVv3dzj+k6XPByxJEdsXZ2QdTp0Oh1c98Eztvu+f5LwyiuvsLy8fN/mdrZuHdXyu5cMCbC9vf1QHiafhfhMJZIPqiyqquLNN98EeOihel6U/Ltvvs6lW9vzv808QSohGOn6dPBtT1Va30+/SjIYhYwHPbKi4vzZM7iOTZYX81bFLGYtozQvsZxqjsw6uqDrmobULUVivKdlZOjaFEkEYTghGo9wgzrNZpMsLxUZMiv506sDolLimMo1bmdc8Idv7vAzTyw98GECldwGYcylvZC3tsfkUsPQdRZ8kxc26rR9G02DwHXnVr1HY5QUfONan1FSoOkGSMlyM+bHL3QwNTFnhMdxxN7ePq1Wi5Pra1zbG/LOzhiNQ1nxrBRsRZLTa+ucalqEkwk3bt9R1dVUssW0Xa73YkxDIeFm4Atpatzth9w6cFkIrPmCnuUlaZ7TqPnEW2Me1JvUNeWRMVdwLso5qzyJE0bdfTZaHlthRVpUBJ5LGGfERcWZjn8kWWpEqbLiHacljcBl05b8+GMrXNodcTDJ0XVYbbist6aeJLbF/iTl1dtDhFSQaQ2I8oK3tnMWGy6nFnwM3WAwCY/J1UR5RVEJao41tyzQDQMzyYjSnLv7fTwTRFmQhJO5f33gOZxZyOmOE6WYYOmUlaQSkrMdn6an5FXqvsftgzHXeynduERHSaqcn3qnD+IC21JscXmkjNkdZRxMUgUw0AXoOg2/TjfM2BorU6sHPed112bj9BlGSc5iI6DVaoGmWlerdYfAfv8F9r94agXH0PnGtT7jVIEb/uKTC/zEY0vv+55ZWJbFc49s8NwjGwoBF4YcHBywvb3Ne++9R61WozNNKs1m84HfPUkSvvvd77K0tPQ9OySzpDL735la8de//nUuXrzIj//4j3/P7/xZjM9UInm/SJKEixcvYhhq8fiwu4SjMY4Sfv9PXuZgMDr296Is5+0t0zAIPKXxE+fvLw6ZJgmDfg/DcjixvjJly6pdrGOr3ncpBKKqEBKiVBEJDw66jMeTqfaOj2Wp3XHgOXjGBFkWCN1QXhaaRjUdcndqNsPBgCQOabYX8P3j5e/1bsQkLag5Boap0GCurTPKSq4exDy/eVzp+FDUL+FmL+GV20NA6TIJUbEzyPmzouK/emET29DmlcixYyD59s0Bg7igFTggBWUl2BmE/Omlih97ZJHAdQgnE/q9LstLS6wud5jEKVtDJZrXOoLYcU2drKy43U84v1TDbxicabXRpNJi6g+GDJOcMDZwbQPDMJWKMGqXHeeSKK9YCJT7YJKpvNEMFFR2faHGpf2IojpkPFdT3P/mQg0xdUcENSDeO+ixv39AZ3GRswsLvL6l2mm9cYRtGpzp+Dy73ph//6ys+PaNIfthjqbrVOWIwDH5/Mkm55drPHNSmWEl0xaY79ikRcGdvpoHLcwo7yjexyAquLo74vRiwDCMcSwbxzanCrg5rqWr9lQlcWwdXVPkxKyoQJQsL7ZZbDdJkoQwitnb7SM0k4bvsNoKeH6jxu2hYq7XXYNTC950yK64OduDkG/dGMx5GEJKLkUZYSn5sUc7tAKXshIU5XHAxSQ7DvW1bIc8y9BFye4w4ZkTDTzHppJC6YlJZQr2iz/2JL/7jRvcSmzatk9SVgzjgrJSn3evD87RsAydn31qha9c6DCZJhLX+ug7e03TqNfr1Ot1zp49S57n9Ho9ut0uFy9eVNDmaVJZXFzEsizSNOWVV16h0+lw4cKFj9xm13Wdb3/72/z1v/7X+Yf/8B/yy7/8yx/5e38W4jOfSPr9Pq+99horKys8/vjjfO1rX/vIUvJ39/v8f/70u3PY7oNCTtVjb/f6tKYeIoHroGmHDz9AFIUMej1qjRat1v1S9DP9LH/qRzLrG3emSp+KM6BMgEzTZHlxgTRNOb3g8c6OYmNblUSfav54jsXpBhR5wkJnCce5P4n2o2LacrGpSpUAKwRaVdINc3xP+WOneUFZVtSO2Nhe3lfw4/q0MjCmMNNRUnJ5d8TJlotpGPhT5NNsrjKICvpRQSNwFYEQtXh4lsH+dFc+g/eurq2w1G6hTPZsiurBg3rDMMnK6ojulmoFeUGdjaDOCSm58uYeeSEYj4boho5pqFmHaWjHdq26ruNappJkB9qucgXcHpdkEkSliGUrTZ+TbXveDquk5O3bXa4fhOiWzZpecd6I+fLZRU63JxRVk1bNwbf0Y94p7+6G7ExyWr6NLgXCshinJa/eGfGTgY0Qh0TIVj1ACIklBGlRTbW3jp8LXQehW3PtrbwsyacbHl3X2Fisc6Kfc7sbqh67VhKnBWGa8dhKQGdBcYlMx/v/tvfe4XXcdb7/a+b0pt7de2+SncQhFJNeHDmh32wIgXthuSS/3WVZyi5LWWAJm3uBZbMLWVrYhVwCsdMTHHDshDSIbbnHRbJlWbZ0iso5OnXq7485MzqSJRcVS0rm9ew+PJGl0feMzpnP9/sp7zct4RzRXIhMNgM9WQKdaeYXaSwoDuCt9OFwunB7PAj5lG0yY6Ra+3IKZQVqAapL50x3kpNRH9NKPFZ6VlaMzjxBMJSEdYzaodvjRsrlEARDednrEpEVFTm/6RIFgeKQjyuXzyV86gQfvXw6u3o87GlPEOuTKPa52LiignctKB/y/TIYr8sxogAyHG63m9raWmNwU9OIx+PEYjFOnDjBgQMHCIVCpNNpq/YyklrtG2+8wfve9z6++c1v8pd/+Zfjqvw7nkyqQDL4Jra1tXHkyBEWL17MjBkzgJF5kvi9btYuncuxtk46Yj1n/14Egn4v4Vh3QRFdH6AH5fO46enpoqe7m7KKymFVOo3dfoBEMmW4x+WMOQuHQ6Qk4KWkKEA6a8hmaIpMrLuXdDqFIAisqfRxrNdNOKmg6UZOel5Iw6tLlFVW4fV48Lpdgya0jWE10elCkQcWvjUd/O5+iXlHvqdfALxuJ5mcRDyj4HIO3O25XC50OUtvSmJmibHzTBTUVQI+D4mcju5woisyiIWpPGOAsDMSw4vMzBnT8ft9eSkZg8oiLyd6JRCdVhASHU6UTIaKwNDdMjrGCWPF9FLeOB7F7Q3gdohkcjmSmSyVfgE1HSctBAiFAjhFkdM9SSMwO0Rqijysm1VMa1ea9t4smuZkbnUJ86v8CJqOnPdIeflwB229OdwuFy5doDmaJpo2ZjfM+gqqQlo1XqvP40bRNNrjOXxuB2K+xiYKgpWvj/TlrKaFoN9Hb18KM3JUFPloiyuIohMtfy90QBdchFwDA66sanQmcsiqRonPxZppQTRFIZpSkFQNTZaZX+Fn9awK62cOdfRxpk/FK2qUBzwomk4iK3NGcVPj9pBIpshksvi8LopDIXJZFy6Ph66kZLVCF/5tBdFJVypHdciFohonPwC3y4HP42Gu4KA5kiStiuj59vm0pFqWCgPeZ04HVy6fS2fbcWbPns2cOXNYiVF4T+YUKoMeSzJlohFFkdLSUkpLS1mwYAG9vb3s2bMHp9NJLBbjlVdesU4rZWVlF1TraGpqYtOmTXz5y1/m3nvvnbJBBCZZIDHRNI1Dhw4RiURYu3btgEnzkbgklhUFuWzZfC5bNp9kOktze5jmU520dcYQRRGnKJLMZPMyB2fPiRTKv9fU1BIKGoqm2ZzMsXCCZFYh6HUyo9RPcdBPIpk+a1Jd03RLqdftdODxekHw4fH6kGSFbDZLKpViYTDFTI+Gy+3B51AQHE6qqqoQBHM3ZwRR0zVP12HFjDKOx9rJSLol65GRNZyiwNwKIw3mdjkQEAY80D0uN+VFPjri/QV5Z95nW9f0s6Q2wAiU6UyO0oAbFyqy7sDjcqNpCqqikJVVRE3FI8CcWTNxiE7L19xkerGHZo9INJnJD+q5yWZkSvxu5lUO3bVi1mpml0KyNsSJWJpkTjGmr+tKaZgeRM6miXd3EYlGOd4nEs2CqguIgqH+etmsEuZXBplfGbRaWhXJ0I7yuFy0nIlyJqkS8rnxuY0TWpHfSSyR4UhYYP3cgeKflsWvKKKpOk6XA6fbUATQNA1RMO6XeQILBbxnmWnVBF0UuSDWl8bnduJwugyJFrfOrILCdKQvx862XlL51JHb7WJ6sZuGmUWEu+JEuvuYPrOCuooSI7ipKj19acJJFRcqnvxO3ekQCHld9GYUFEcx1dVFCIJxQuvq7iWV6sEhgqB5kPPpWdFh/qwTXcswhEkksqIhKxkEXefyeZXsbouTlA2FXZcIC6qCTC/tP0173C6uXbuIMyePM3fuXGbNmmX9W3nAPWBWZLKRy+U4ePAglZWVLF26FE3TLGn4w4cPI0kSZWVlVmAZSu9v//793HrrrXzuc5/jb//2b6d0EAEQ9HPptl9idF2nr6+PpqYmNE1jzZo1Z/0R/vSnPzF9+vQxETPLSjInTkdoPtXJ8dMR+pIpzpw5w9y5c6zvkSTJKKorGjU1tTjyudpEVuH5QxF6MyqIIrquUR70cPWCUkIex7ByJ2YqoL+zSO+XKVFVMtkciUSCdLKPnGx0dvh83nzBOTBAP0wURetkcbJX5s+tvXnvCw2PU2TV9CKW1ATxeTxIsnJWeyrAia4Urx3vAQwnR1VTSaZzFPmc3Lis6qyWS4dDwON0kc5J7D+TYP/pBIIALlFE1gw9qyVlDtYvnpYv4g4tFZCVVQ539nEmaUyDTy/xsrA6SHVJwDBakhSrcUFFxyE40XXFmqjOyip9+fx9KF/w9nvcSIrCoY4+dp2KI2oyDl1DEAWyqjEdf92SKqpKQ1ZLK2D5nxzvznEy5aAs4MHpMvxHZEkiLRlSJRtXVJ/VFmrWOrYfiRLuy1FipggdTiQNFEXlnXOLmFFZXBBEdHKKhphPBaVyCofDSTr7JARBpNzvYFFVgLrSIA6ng0Q6x7P7zhjyNl4nLpeLdFYiLSnML3NSJqSpqanB6+3/rOi6Dg4Xz+zvxOtyIKJZmyRdN6TQr5xXxowyHy5nYbDXkSSZlnCcfR0pnAIEvC4cLiepnLE5eef88iGHWg3LYUO8M6eoRPuMwcLaEj8VIR+KqpLO5vB63FzbsJj21mYWLFhgZRumArlcjl27dlFUVMSyZcvOCgDmjFssFiMWi9Hb24vfb+iBJRIJli9fTktLCzfddBOf/vSn+drXvjblgwhMshNJLpfjtddeo7S0lOXLlw+r5z9Su93BeN0ulsyZxpI501BUlcMtbTz7Qgq/10M6myObzdITi+L0eKmr6xd703V48WiM7pSExynicICmC8TiGf54ymyAXgAAZItJREFUXOT9a2rJZCUGR+ig30sqM3g6WxggU5JNp8mlk1RWVOL0eFAUhVQqTSqVoqurC7fbTSAQoKS4CKfLYeXpZxa7qFxaRmc8i9vtYkaZH5cATqeYDy5D34M55X6yssaRaJa+VBpRgMqQm/csrqY85CGT7W+nNU815rzJ8toQXqfIsUiKZE7GrcvMK/fyjqUzkRQFv8+NrhkifFlJs0QA/W6jGPrORTUDWqqBAZ7vOiL7O1Oc6Eoj5XIU+1wsqw0xrcR3Vj486POQyhrzPc2RJA50gj4vDofRiSdKEj19GY62R0j3xQkE/Hg8XnRdo7PT8LSvKCvjZCqBDmhqvt9fABxOvC4nbqdjQGux8TsN06pF1UF60zK9aRmPU0TRFDQd5lX4mVFRlP9+LydjSQ6eidOdNupa00p8LK0NcsXcMjRdICvJVmE5nZMgB23daTIqlBf5EQVD0cHjFEhnVVpjEktX1A5oQDGbKXr70rgFjWR+psLpdCIKIsmsjMshUBpw43QMPjEa/vWLp1egODyciKVIqQJyNocTjdmlTlxqGinrxuXxWJ1khvio2SIOHqfD0rACrK+HAj7es2o+7a3NLFy4cEwk0i8VphT7cEEE+qXhg8Egs2fPRpZluru7iUaj3H333XR2dhIKhbjsssv4zGc+85YIIjAJTyTt7e3W8NRQ7Nmzh+LiYubMmTPkv4+GTCbDiy++yLXXXkvTwcO8/OcmZIcPwTnwmN2dknlszxlEQbCc/dB1FE1D1aBxZTUVIS8Bn1GPSGdz+H2eIT3C+9Hp6TblTirwen04HaJR5MaoiaiqSiqVRpVzxBN9CKLDknL3er0D7pm5O8zkcvg8HmRVyU+1D/z9xqnGRW8yQ0/acLgz/dvNdfkKJspTgwYQwWjvPdMZoby0mJnT6wa8Tk3XOXimj5buHJKqIWga00q8XLWwcghRyH5UXeePx3s53ZPBIxp6ZpIu4BJFrpxdRE2BF4uZpgIBTdd5Ym8nuq4PUO8FSEiwus5PnVehuyeen+swNie1tbXkVNh2tJucohF0G6qusqaRzKosqwuxoi5keXIIgs7xzjhZWSPodVLicxLpk2iOpuhKGUOCc8p8rJhZZqkJdKclXm7uJqsKBDxOZMWYx6ku9rJhUSUMc3prjibZ3RanqjiInK+DyYpCKifjcjm5ZUXNAL/2oN9rzT8dj6XYk5f19zhFZE1DUnQW1xXzjnkVhgDmIDfGfnQk3cHprj7EvNKvqEmk08bGRhSgKBTE7fZQUlxMVj73Bi/g8/DeNQtob21h8eLF1NXVnfP7JxOSJLFz505CoRDLly8f2RD00aN89KMfJRQKkcvlaGpqYt26dfz0pz9l2bJl47DqS8ekOpEIgiHCNpYuiReDeQI6cuQI8Wgnd952I2VlZXTF+zh2Ksyxtg4i3XGystHW63a7UAsn4wUBBY2sYgwaJdNZBMFIf2iqRlFeul0a9IHTNI2erhiyIlNRVWPJvRQWuUVBoCjgp7Q4RCqdpbi0jEwmQyqVIhIJo+tYQcXv81GUTzEAVpeMOdUuKRqJTJag25g9SGdzuJ0i1UVDtVUbUg4dPUkOnklwOi4hig5ml/uYX+5Byabp6opRU1lJbXWl1Q1m8mZnkn2nE4YOk1NAAVp7cmjN3Vy9oOysuRuT3qxGZ0+GoEvAmd+hu3WdeDbHkXCSedWGT7wgQiLZH7hEQaAs4OJMbxavy2GMjggimi6AlqPI6yJUHMIfCBGLdhqdYpLMyZNtlBSFWFjq4FBUoTet568HtcUeFlUFMdt3JZfOtoMddGUMu2OXKFATdLB2ZglXzi0DdETRUFYu1J1qiaYs3xRQcToF/B4/sbRMRzxLTdA15L0o8rrwuN2kslncDoFMNouqKKi4qPa7CXo9OJ0iuZyE2+WyggjA3Ao/giBYv9vtEFlaG2JRdcB6f4iiQMBjTPYXDnSaAWlORWHdyonP56e8vBxZlkmlUmQzGY5EooQCfnz+AA6X+yzjs5Dfy4Y182k73szSpUtHNEw8UZgnkWAwOOxJ5Hy0trbS2NjIxo0b+cEPfoAoinR2dvLcc89NqYA6HJMqkFwIY5naGow5dRqLxbjiiissuYKKkiIqSopYv2IBiVSG3UdPsaPtT6QTcTwFHU+KpuMURcMMCkPh1+l0kBqgb2XURNp7c+w+2UM4nsLrFJgZFFg7v3bYbg9VM3L98b4UHfEsJ3okElmVkNvF/Moail2GVk9PTzfxHp2w020FFvOa6ZzCa8e7OBFLowkOSv2G2GFN0DVsLSPk9xLpTbLtcIyejIxLFNCR2dOW4XinSEOFztzZs/D7A2f5syiaxrFIEodo+E+IogO3oJOVFNpjfZyu8FJX6sebV7I103RBv5dDHVE0XcPpKMjFC4bneFcqZ9RxAl4SyYx1SpBlhUxOYlF1kFhSIp6V8bmdaHlZ97oSL9VFHnK5HB0dHYRCQQRvESldwhNwIjgVStUkCwNZEoohx15V7GdGeRCHKFrpm6f2tNORyBH0OHA5dHKKSmuXRNDnYf3ccnKShNPhGBBEALpS8gDXPofTacwaKTLRRJYZJf0Ck5l8m7Wu68ytLuZYJGnY+2oK6Dq6w4XX6WBhVYBMTkKUDGkXWVEpCvjyKtKGwsCccj+zynzkFI2Qz22cngtSdJqmF4iDGidQj8tFRjJSokM/NwVcLjfT60LG36K0jHQ6TV8qRTodxet2URQK4XC5KS8t4b1r5nPyeDPLly8fVz2pscYMIn6/n+XLl59TdHE4Tp8+zc0338wNN9xgBRGAmpqaMRFMnAxMuUDicDgM5dExxtTJAVizZs2wmjdFAR/vWbOQj/U4+K9XT6Bm+yCbJJNMoGk6S+qC+N0Oa1p+cMcSCBxs7+WVlm4UTUMQHfTJAofjILYnWDer9KzfKYA1+9EcTfP6iW4U1XD869B1TvZkuWZJFbOm1aAqKsl0lnQ6RSLRRzQaw+v14PP5eaNDoiMh4Xa7EDSVzt4Uv+9L8875ZSyqKcHhFMnmzAHN/px3SyxNT8bwWxAFoz01J0n0pBUSjjK8eSHKgM9juQ8qqkZW1sgpmmEp63Sgq4afisshkJFVkjklr3qcbwEWoCgQQFEVq/7R37RgoGg6RW4nQb97gAaXeZ/dLicLa/24XW72tffSk5ZwoLGkJsjS2hC5bIbOzjAlpSWc6BNoPhlFE5xoiozbIbK8LsSqxXXIUpZ4vI/u3hjt6R78AT9V5WW0RuJEk1I+iBgPBE/ebrW5M8GS6gABtzG9XRTwkZONtQmCgM8lksgYJx2Xy4WSbznWdeMag+VrAl43LqeDVDbH2pnFIKXpTOk43R5K/C4WVQepLvJaMzNm4DLncByiiC+vD5fOyvi9bmRZHXbTYL7bnA4HvUmjRdmwFnCh6jqZghSYofvmsToRRdFBMBgiGAwZbe/ZLOl0GjGXZVmNnxPNR6mrq6OoqGi4XzzpkGWZ3bt34/f7WbFixYiCSEdHBzfddBPvec97+I//+I8RXWMqMOkCSaFnwVA4HA6y2bOtWkdDd3c3TU1N1NXVGW/+c/yxzbbeT101E79LYMueTuLZcqpniLx7lpdlZRDpitPblx5SIVfTdZra48iqaigL6xoOp4OconE4nGbtnEpCHkOmQtP1Aaq8sqqxu60XNd+aK2DoN6VyMq+0dFEdrMYpipSXFFFSFCSdlVAUhXQ6xclYktM9Eh63C4dmpKdcHgfJnMLBjj5mlPogZ3QUeT1ufB7DvEvXIZzIIQpYQUSSJNB1nG43PVmNTP4hXug+6Pd68Ho8eFwuY8ZBVS05XEXVcQjCoBqGTsDnyz/ADLvUIr+XlKQRcOkIuk5W0dCAxXUlpAbt9nUMmQ8UHVlRmVbipSpYAaLDMMeSFRKJBNFohIqKSrplB0fDPXi9Hpy6Ak4naUll35kE5UE3lUEPJWXllFdUgKaSTqU4eeo00bRKThLwiC70AldGlygi5T1bnIICBfsHr9uFx+1iYU0x4UQESRdBltF0w4XQ53ZQVzIwrajrGqIo0pvMoKoqfT0xlld5eVdlFRlJydu8GpI2LpdjkOCmgarpVprL73Vb/5uT5bPSqyZFAe8AJYMBLef54IZgnFL6UkMP+AqCgM/nY1pNBVctm03biRZqa2vJZDK88sorVhdTZWXlsLIjE40sy+zatQuv1zviIBIOh7nlllu47LLL+PGPfzxldbQuhEkXSM7HWNdITp06xeHDh62hxzNnzgybOjPloM0ZgY+tn8lfXD7D0vcxW2U1TeN0tIfmU500nwpbuWiAREamLyvjdIg4BN3q0Xc7RNKSyolInLkVAQRBoCToMyRW8g/oWFIiI2tG7j//QRcQCOS946OJLBVBj/XBd4gCoeIgJaEAp1IiTk8Sl6CiqTqSIiEAIiLdSQlZ1XA5HDhE49o9CVNK30HQ70VIGl1IkmQMmfn8AaR0DseQZdp+GfvFtSF2tnbjdLhwiwI5SSIta9QUeagK5QUUBcOzvjA15nGKrJsR5M8ne0lkjHkat9PFsho/M0v6012arnMknKQlmiIra4R8TlbNKKNWMLrrUDUUIJ6Ik04kmD9nFg6Xm6ZDYQSnCxeqlbsJuB30ZhXae7JUBo1ivo6A1+NFRWRWMERFTuH4wSgZWcIhSTgcIg6HAwknHqeAe4jnTU5WyMkKNUEnq2aVcyScJCGDrij43CJrphdbLcwmwfz9UFWVjo4OnE4H5ZXlxibC68brcaFphqLs2afegfi9bsNLx9rY6HjcLjxOp2UtoOtQFPQNqalWeK/TuRxet+GX7vMY1tOSYohUFgaE8uIg71g6k1Otx1m9ejXl5cZ0emEX0549ewDOkh2ZaMyTiMfjYeXKlSMKIrFYjI0bN7J8+XIeeuihi7b9nmpMuVc3VjUSTdM4cuQIZ86cob6+3nqji6I45PVNGWjztGS+uVwO4azhKVEUmVFdzozqct7TsJRIT4LmU2GaT3VwpvMEQj4MFL5BtbxwoJku8XkMKXPDf0Qn4PUQVPI/kzeF13UjzWGe0AbPOKh5W15RECjye0FP4vJ40TUFXdPQdA0pp+LQFNrb2igOhQgEA8huj7U2WdGoCTo41qGQklX8XkP8L501TikzhvFtMLvG5msaiZSf1q40GVXH6RSZVVnEVfNKEclLmLucJNM5srJKd8p4OFcG3VQXeblhaRWdCWPor8TnJOR24HY68XicqKrGH49GONyZRBTBKYp0Z3V2HA5z2eyS/DCmTnd3D4lEgtraGlQcqJKKLroQhRwOhxNFyRf88/dPVk0FaNHQXcvv9nUd/G4nM0u9HI+puN1eHCJksgo5OUNNsUiit8dqLT67i87HIgHqgg66UjIOUWB2ZQi/xyj4S7JqNGd4DZkSRZHp6OjA7fbkh1L7TwnmPIqqaQR9nrMK5Sb9bdGFXxUswU8wUmChvHaWQxQsz5vBWMZV+e6/TE4mU+iu6XGhaRoBr5fLF9Vx6uQJVq9eTVlZ/yCny+WiurraaqqJx+NEo1GOHz/OgQMHKC0ttQyohlOPGE9kWaapqQm3282qVatGFER6enpobGxk/vz5/OpXv5oUwXG8mXSB5ELNrUaDLMvs3buXTCbD+vXrB7xhh7p+oZeAaUpzoQiCQHVZMWUhPx45QZ1/Nl0+maaWM2haLj/9DFlFI+RxUldsOBsm09mCvb5AKivhd+j4XQJJSSfkdoEgIEuG+VJpwH2WbSj0F/yrAgpeh048lSHgMcQvNRUEUWbptCBzp4fo7Y0TjcWQJEPG2yzWV3qhyqMQyTrIaIYDodMhsGpGKUvqSslK8gDxPrOmk0hlcIoil80uZWltiERWwevMtxfrGi6XA4/bha7rHOxMcuhMIj+oZ9jyXj6nlMqgh8V1JWRyUr+bZF53qi+ncLwrjc/rwes0/i6KLNGn6Bzs6GNWmY/urhiZTIZp0+pwuQzbWp/PTYkH2rskFNGZP1UYNS0BhbKAC7fLAbpgyeUX0jCzGLdD5GR3GlV34vc6WD2rioXlbpJ9ScKdYXQMufJAwI/X66OkKGDt9kNeF6G8IrOqKPTla1J+jwe320FWUpGkHJ2dnfh8fior+2XgwbB8VjXNChoDC+X9UvYOh0Bq2Nbe/E/oOn6vl96+jPW3M7XZClNgDoeAy+kcMoUG/Smw6vJiLl9QS/upNurr6w0V32EQBIGSkhJKSkpYsGABmUyGaDRKLBbj2LFj+Hw+KisrqaiooKSkZNzrC4qi0NTUhNPpHPFJJB6P09jYSF1dHY888sg5rSXeSkyqORIw/pjnChSRSISjR49y1VVXjej6qVSK3bt34/P5WLVq1Vm7hVdeeYUFCxZYMvWFfgGmXeZIfueePXsIBAKsWLGCzj6JLz7+JsfDceR0H1IqgUvN8K55pSyaVnrOeZP23gx/bO5G0gQ0VUEQRYJeN9curqTYM/BnPC4nmq5bD/kz8SyvtnSTllR0jB3mjFIvN66chlMUkBV1QF0llUpZpx2fz4+vpIK27jSCIFBb5KUiaLZ49k/nJ7MSp+M5MjnDrGo4CXtvXslWVjSOx1K8dqIHp9OF3+NEkWWSWZmgx8kH1s1EleUhH4Zt3Wleau6myGv4tCuyjNPpRNYMjbOGSnCjUltbi9PpzLsQusjkDC2n7UdiJLIKHqeIjo6kGErLt66ZjtfpIJnJnbMw7XK76Iqn8XscOAseOqIoIOgaqWSSru5eRFEH0WUF5qHSHGatI5uTkaQckXCYivJSyssrSBecKLwe1wUUzA05lmxWwut1o2kDtdn60Qn5fWd12xX+u6FmbRiTJQrUAIaitqKEhnnVnGk/RX19PcXFZ4uaXiiKoljKu7FYDE3TrBRYRUXFmO/yFUVh9+7dOJ1OVq1aNaJ6Rl9fH42NjRQVFfHkk0+OSKV8qjLlAklXVxcHDhzg3e9+90Vfu6uriz179jBt2rRh1Tpff/11Zs2aRU1NzcCayEWeREy6u7vZt28f06ZNY/78+dY10pLKi8e6aOtOUxF08445JcTjcZpPdXLidMTqvBmM2+kgnlV4syNOMqdS5HUyr8JPyGtYyxrT5KDpKlmp39fbRFIMO1FJNaTL51UXW91PYJxgfB43qqZxuiNMb28vxcVFOATo7o3jcDgtGXzjg9J/TzoTEq+29pDKKQiCA5cD5pV5aJhZMuDe+b1uspJsrW3roQjRpETIm3/A6joIIilF4B1ziplZ4h7y3ncmsrxwpIuQ32OJP4IhnyJJMu+Z5WXRnJko+d27w+EgV2APEM/IvNnZx5l4Pk1X6qN+djkOtPzajKYBp8NBVpKt7jIYWjdrMALGEF4uJ5HJpOnujZNMpfPqBEZQ8XiMzizD5tnQXOvs7LB26mBsXvxew7I5k8sNWyg/19pEUcDvzQ/I5nKoqk7Q3991NRwup2itzXhvuNB14xqFsWxaVSmrZ1XQ2WGkiseyO0vX9XyjRJRoNEoqlaK4uNgq2Pv9/lEV7M2TiCiKrF69ekRBJJVKcfvtt+N0Onn66afH3elwsjHpAomqqucspsfjcXbt2nXRBjCmkvCSJUvOKcvwxhtvDJCOhpGfRE6fPm0V8i9GG0xVNU5Fumhu66TldNj6sHs9LhRFPSsPPpiQ30sqm8OfHzIbygYWdEKWnPygf9F1otEouVyW+XNn4fX48oVfhXQ6kz+tGMX4QMBPIBDA4fHz5L5OspKC320MAuYUDVUTePfiKpZUG11kfp/bSLcUvOs2N51BVvsn0XVdx+X20NOXYkVdEQ2zSvPzFdoAuRddgOff7CKayBDyOAyrZEUjkckxLeTkmuXTEAQRj9uJKBhtraqmDZB/h3x9quC+DfeJ8LicuF1ORIdAvO/cu3PTsnfgLImOyyEiSTni8QTdvQk8bheBQAC3xwvohMMRysvLKCoauJv3+zz5orhmFLmdTqRBVseDrXGHXZtoqBADxgnoHJsWQRCG3NQIAvjyToplRUGWTy+ls+MMDQ0NhEJD+6uPFdls1kqBdXd34/F4rBRYaWnpRaWkVFVl9+7dowoimUyG97///SiKwrPPPjvur38yMulqJOfjYmskmqZx+PBhOjo6aGhoGFD4GwpRFJFl2QoiI8mT6rpOc3Mz7e3trFmz5ry/czAOh8js2kpm11Zytb6cjq5eTrRHOHaqk6548py/t/BBUpg7D3g9Ruu0JKEoGj6vZ8ggomkax9s7aE8oOH0h4m19zCqVKPK6CPi9+en8IiRZIZczFIuTiTiHoxGSGYGgx5FXlReM9FBO4cCpbqaHnIQCXnTd6EgqLAwX+1x0JrKA8SF2uQwfC4CQ13mWm2TA70bAaCZYNyPEK8dlEhnFaAFWFMr9Tt6xqBZBMHbQkpUKMk4jpvw7gqHthTZQZmU4crLhChjvy1gqAXqBR4uJmG/ZHjyQCIYRleBwU1JWQV1dHdlMlr5kH9FIBFVT8eT1q1RVtR5qQb+HVNqsdeSL3AVzM+bMkohw3lOS4czozqsBGHhcTjxu14AhRpfTaaT7hgkyug7pjMSs2gqWTSsm3NnB2rVrCQaDw/7uscLr9TJjxgxmzJiBqqpWCuzAgQNomkZ5ebmVAjtXjUJVVcuwaqRBJJvN8pGPfIRMJsPWrVvflkEEpuCJxNTDuv766897SpBlmT179pDL5aivrz9vF4iu6+zfv59EIsG0adOoqqq66DynqqocOHCAvr6+cw42jpSueJ/RAdYepjPWa31dAAIFGkvD4XAI+NxuRIeILPcbEoFxxD944gz7uzRUwQ15xVi/y8E755dTW2zeC91q/RREgd6+FDtbezjYkcTr1NE13TBbcohIqiHgd/c75w4KXEbayCGKHAv3sf1IGE0zCr2KbMjRl/hd3LC06ix3PLfLCTpIimEgpupwuL2b0+EoFcUBFkyryKf5PGQHPeTPQtcpLQqgqJrROaUMvUkx7u/QqSAz9SSKAlJe8mWoIn0hXo8bWZaNzrq+PmKxKNNrjXRqV28vmUwOr9dDZVkpiE5c53ggmiKNqUyOgNdoW05lJWszZGJ1XQ1rIW3UaoI+NwgCSatrcGjmTKtkcXWIWCxKQ0PDhKdzTPVwMwWWTCYpKiqyUmCBQKDfpEtV2bNnD5qmUV9fP6Igksvl+Iu/+AvC4TC///3vB9hdvN2YdIFE07RzTq7Lssy2bdu45pprztmbnUql2LVrF4FAgFWrVp23j9vszMrlcoTDYaLRKL29vYRCIaqqqqiqqjrvByWbzbJnzx4cDgerVq0a946NvnSGlvYIzac66IqnBgSRjKzSHEkRSebwOEVml/uZWxlE1xnQYeVyOvB5XKQzWZqPt/JGTCSjuwi6dDD+j2ROocTvHiCjbrazJlIZ3C4XJ7uzbDsSxSsa8uiapqKoKilJZ3qxm8um+6yawFA75va4zN7TCfqyMrqqUFXkYe3MkrPkyr0eN8oAGX5DlSAc7qS2uprKynJkRTUm7IdQYC6k/zWY903Py604kOX+2QhR5CzdrKFw54vSDlG0OqcGz1fAwBpRIhGnq6ubmppqfD5zo2OkwBQpR6y7l3hfHy6Xy/KuH1ibGrpgLpBPPTlEcpKMqmmD5OKHxpSrUVTNuMYQHVwA82dUM7/ST3dXFw0NDRPSqns+stmsVaw3lbMrKyspKyujra0NXddZs2bNiGY8ZFnmox/9KK2trbzwwgvW+MDblSkXSDRN4/nnn2fDhg14PJ4hvycWi7F3716mT5/OwoULz3tyMQvqg4vqkiQRjUaJRCJ0d3fj8/moqqqisrKSoqKiAdc1fVTKyspYunTpJZdCyOQkTpyJ0nKqk33HO3j2QCfxjJzvqQKny8nK2gCrpp3dSZPJpAmHw+ieIl7rUHCLAqLev6NWNJ2cqnHj0ioqgobkxuCHl6xqbD0UoTut4PO4EARIZxU8LgeX1XnwC4ZqrMMhFjwQfQiCYJ0wMpJMPCvjdTmpKvZZaSPzHTrUCcPczVdWVllplVDASzYn4fW4UbWB0h6FGOms4U9wRpB1o6MPmQYsxEgvqcjKwFOAOfOiaRqpjETA58l3Yen09vbS29tLTc1QMvD9KUqnQ0SVJeJ9Cbp74oBgtRZXlpWSPk9wcDqMOpFDdFieIEMFc5/bhaQM1xGm43W7cLmcTKssY2aJi3hvLw0NDUMaN002VFW1BiE7OjqsLrCqqioqKiqGfZYMhaIofPzjH+fw4cO88MILVofn25kpF0gAtm7dylVXXTXkCeFCi+rQL3di1lzOVVQ32xEjkQjRaBSXy0VlZSVVVVUoisKBAweYM2cOs2fPHjPJh0hfjt/sOs0fm7txiALvWVjBB+vrKBliXqSQf37uME/uPI5fy5BLJUAQSGeMzqybl1dZopLQ/yAuL69A9BezZVcbPqeYn61wgiAgyRJZSeX6pVXUFHnxed1DtpMmcwpNp+Kc7s2CIFDqd7N2dhmzy/2kczkURSOTyVitxbquU1JUhNfnw+3xDhl8RUHA73PjdIj5gn//27W3t5eenh5rN6/rOsUBH4n0UB1LxmtOZ2UjXef1DNMS24/RTWUM74miQMDrQccQVCxM+RhpqqGNwwoJ+j0IuoCGTvvpDhJ9CWpra3G7+x9iheZQQ+EQBdA1En0JMuk0iWRmwMzP4N21yykiCuKAgvlQ3VdGLUk5ZyoLYMmcaUwPOejrS9DQ0DClWlw1TWPv3r1IksSiRYvo7u4mFosRj8cHpMCCweCwn2FVVfnUpz5FU1MT27dvp6am5hK/isnJlAwk27ZtY926dQNaDDVN48033yQcDrNmzZrz5iuHm1S/0DV2d3cTiUTo7OxEVVVKS0uZNWvWBfs1n4+ulMRf/eYArV1pSzFW0XQWVgf5/vuX97fKDkLVdDY9+GckWaPEbwz7ZdNJMn1xIrEu6uv8LK8rAnR6enqJx3uprq6msqyU3lSGJ/Z2ksqpeS0v4zSTklSK/V4+vG4aTlE85y4eQBdEJFXFLWJJuRhaWl5EQcinSRQcAsS6e0gmU8iyjN/vs04rDofx+gp35wKC1SnUfqaDnt44tbW11m4y5PcMsBIeCocoEvAZFsXnqom4XU7DJneIfzcFC0VRQNM0Mln53HUYCltyIRqNkcmkmTd7Nl6fh1zOXMf55joMRBG8bjeZnIRTEEinU3T3xkmlMwNai4MBPwIC0jlqjoJgCJHqGI0HQ71ek2XzplPrF0ilkjQ0NFzULn6iKQwi9fX1A+ZQcrncgBSY0+m0usAKP8+qqnLvvffyyiuvsGPHjjFxaX2rMOm6ti5kNz+4c0uSJOtNsn79+vMetUc7HyKKImVlZUQiEURRZOHChaRSKQ4fPowsy5bEQ2VlJU6nk/aeDC+3GIZJq6cXsXJa0Xl/55P7OjnZnaY86MYp9kt3HA0nef7NCO9bM7SHgW4WNvKXFwQBXyCE1x8k56vgyoZKlpXCH9/YQyKRYPq06RSFAiQzOZyiyJoZxbx+ooe+nIJDMIyiXA6RhhlFqKpGJm+VahpdpQcZXZn5f484+PUJA0QdS4J+VE2nrsadH4KUSaXSJJN9xGIxPB4Pfr+PmqoKqxNJx9Adi0ajZLMZ5s6eRSDgM6a4ReG8QcTlFHGI4sCaSD5do8gq6Xw9w+d2IavDt1mb6wj6PKQyEj6PC6fTMeAa1vdaJ4w0um4M1EpSjrq6aciajpzK5tdh6GflcvJZiseFGB1h/c6Ysq7j8vqprvEZrcW5HL3xOJHODmIOBx6vYdPs8/mGvKY/371nBML+GtHg17JywQwqPRrpdHpKBpF9+/YNGUQAPB4P06ZNY9q0aZb/ejQatfzXH3roIVavXk1LSwsvvfQS27dvt4PIICbdiUTXdUNd9hz88Y9/ZPHixVRWVpJMJtm9ezfBYJCVK1decFF9NEOGsixbb8zVq1dbgUvXdZLJJJFIhEgkQiqVYl8yyJMtMpJmPNSd+RTVP9y44Cw/9ELueWQ/+04nqAwOLNiH+3JsWFDBN25dPOzPfut3R/ndwQjVIY+RCsEQi9SAf33/UtIdLeRyOeYtXEx7rJfmtk7aI91WLSKcyHIskiKeVSj2OVk+rZSKgHPIB6tZrDfTOuey9TXv0eD0k8vZL7ufzkqoqkIqnUZXJLp7EzidxhCkz+ent7cHVTWm1R0Op9Vqq6gqXrcLTR96ituUPDnX7tzldBDwelDyvvXnYrh24QGvJZMzpPjTWXRdIxwOoyjm2vtPraa+lrlul9NhiTIWuhea2l/n7QhzG5pXiiLTl0jQ1RtHVTXrxOf3+3E4HAR87nP+vVxOYzh1/owaShyS1f04lWQ/NE1j//79ZDIZGhoaLmoi3uwCu++++3j22Wdpbm5m2bJlvO997+OWW26hvr7+ktZCv/a1r/H1r399wNcWLVrE4cOHL9kahmPSnUguBPNEEovF2LNnDzNmzBhVUf1C0HWd5miaWDxJ6kwz5UV+1q1bNyBwCYJAKBQiFAoxb9489p2M8cRvDyEpKj6HjkMQUXSRPxyOsKw2xAcbhndG87nEIeX0BcA7lMRsAXdeNoP9p/s4E8/iEEDVwSUKNK6spKf1EG6321p7VXkp9YvmkMlKtJwO03wqjLMjarklBnwDfdsHY2oshfzGbEjQ70XXsGTwB93FIRVmC6XKHaJAyB+gvKSYRCpFqLiMTCZNMpmit7cDgGAwSC6XIxRy5ae9Jes65jX6fThyeJzmCePc80cel5N4/uQgigL+glmTwtrBuaba+1+LTjDgRQP8XhfHT7Shahp1dbWIYn8QMdNUhcFvgHS7mJduxxhUzZynsD6wYC4SKCohWFyCU4BkKkl3jyGSWFocpNfpJuD343INHRhkRWPVglqCZJAk5aIfxBPNaIII9PuvC4JAKpXi1Vdf5dixYzz99NN873vfY8eOHaxZs2acVj80y5Yt4w9/+IP135NFVXhyrKKAC01thcNhIpEIS5cuPe8xc3BR/WKDSGtXmn/+3TEOdSSQZIWg28Gd68tZdZ5ayGttSRREKos9hiudoiKoCqmMwiOvHaOhJENVVdWQxb0NCyv4c2svaUnF73ag6zopyUjhvHv+uVsNZ5b5+MEHl/P0/jAHziQIeZ1cOTOIt/c4RUXlLFmy5KydlM/rZvm8GSyfNwNJVjjZEeNER4RjJzvPmf8fXBw2u5sEQTDk5yE/sGeowp6v+8kY2tPoS6eMwBzw4fcaHUJ+v5+ioiIymTTxnm66YjHcHg+BgLHLNh/QhT4cAZ8bdPA53WQl6ayuKpPBJ4xC10BTyFDEaAVOnGfoD4zJ8WReBr6zswNRdDB/7mycDofVSjs4TTUUmqaTk1QEQFYUAj5j9iaTk/MGZP34PIbXyGBZHF0HWQePL0itL4Df66KvL0lvb5xTXd351mL/Wa3Fly2bi09NoeZnLaZaEDlw4ICVihvJ2nVd55vf/Cb/7//9P7Zv386SJUu44ooruPPOO5EkaULuh9PpnJQF/kkXSM6HphmdP4lEgrVr115UUT0tqbx+ood4VmFhVZDldaHzBpSMrPL5xw7RGkvhQiXkdSFpAj95tY1iv4vbVw/vPZ3MqXmrUkOi3OUWceEip0sogkgymaS1tRWPx2PNqphGP9cuqWRXW5wXjsRI5owHhssh0riyhivnnX9Svirk4eNXzgQMva+9e/cyfeZM5s6de97X7HY5WTCzhgUza7h67XLaI900t3fScio8oBAsYNjiDtVhZHrWQ37Ize9FQMDtcgyrFeVyGg6M5qyDruv0xPvo6Ogg4PczY3odTqcTXSsxpruzxmR9b2+cSCSKz+e1ivVOp2sICfV+ddycpFh+8YZUzPCyIjqQzuQI5RWN+619jQnzwvspCkZDQDKdRVGUvAy8i6qq6vxpQsYcxnQ5HOTyLonD/U08bqN1WMoHwMI6k8ftxu1yGBsUQRjkOTI0RjE/g8PlpbzSS02tiCJJJBJ9dHZ2YrYWv7thKV4liQ7U19dPmp3vhWAGkVQqRUNDw4hScbqu853vfIef/vSnvPDCCyxZsmTAv09Ueu/YsWPU1dXh9XpZv3493/72t5k5c+aErKWQSVcjAaN4PtSyJElizx6jSDxz5kwWLlx4zusU1kP2n+njy08dIZrMu/s5RC6fXcI3bl1MwD38h2TroQhfefJNPKLRMup0Grve7pTEzDIf/+/jDcM+BJ45EOaff3eMYp/Tms7WdZ1YUuKm5dV8+caFlsSD2VYsimJ/UCkpYVdbgp1tvTgEgcvnlLJ6+vkL9YV0dHRw6NAhlixZQl3d8Km0C0HXdcLdcVpOhTnW3kkmK51zNw0UCBKaKRl9yGJ94SCcSTabobOzk+Li4vyGQchrTuXwuF3G4KBiNACoqkIqlSadTpHJZCkJ+REcbgLBQP5Df/Y9czsdBHwespKcT48Nf1+DPk+B5EzhNfq9UbI5Ga/bmByXZcNLxOfzUlFROeBv5nI68t1r+Q2CUxxy5mWoezIUAZ8bSVbztSp9gFpwIeeTgXHkVYunlwUocWuW3IjZODIVWn11XbeUJdauXTviIPK9732P7373u2zbtu2Sp6+G47nnniOZTLJo0SI6Ojr4+te/zunTpzlw4MCES7NMmUBiFtVDoRAOhwOfz8eCBQuGvUZhEMnIGh/66W5iyRwhrwsxLyiYlVU+snYaf331vCGvoaoq33l8J48fTVMRGjjnYCjcCjz7mcstf/HBpCWVex/Zz5udSdxOwZi2llVK/S7+9QMrWFA1cA7G7Bgxg4qqqtaHuKKi4qLainVd58SJE5w8eZKVK1eOy+RtTyJpybV0xHrOengNN6RXiFHgdqNo2oACdyqVIhKJUF5ebrV5D9ScGngNn8eFoumk01kCPg+d0S7S6RTpdAaHQ8ynvwJ4vabh1MBWW1P1WNMHPogHF8KHwyGKuF0Owy0xl6P5RCt+f4CKinIKH9xul+MsdYFCzJkX84RxrnZcGNq4ShT6r2Fqml2IlhjAO1cvRE8Z6a758+dbQ3zxeJxgMGjNTp1r1mKi0HWdgwcPkkgkRtxZpus6DzzwAPfddx9bt27lsssuG4eVjg29vb3MmjWL7373u3ziE5+Y0LVMiUASjUbZu3cvM2fOZMGCBRw+fBhBEFi8eOjOpcFF9a1vRvnq00cIeZxWFxNAX1Yh4HHw9P++DI9z4EM6l8uxd+9e/typ8KvDKsV+l9WGC8aJZHqpj0c+MfyJBIx5kF+8fopth2NIqkb9jGI+tn4GS2rOvYMwpbPNDrBsNkt5ebk1WX+u/KwpVBmLxVizZs0l2a0k01mOnzaEJU91duFxOcnltaTORdDvsdSAHaKI3+uipzdO++kOKqsqCQTy0+oX8CA06zVmK6vRJKCSyWSs04quG4ZTleWlIDoQhOGHIM2INdRJpJDCE0Yul6WjwzhFTa+tRhRFqzbjdRudb+c7YZjWuLquW3MzQ/msB/1ekucNDjqlIT+KqiEphi3vcO/X99QvRk5E8Xg8Z7kDSpJELBYjGo3S1dVlDeRWVlZetOLueKDrOocOHaK3t5e1a9eOOIj853/+J1/72td47rnnuPLKK8dhpWPLunXruOaaa/j2t789oeuYlIlPQRCsAvnJkyc5duwYy5Yts1IzDodjyKHF4YrqPSnjewePNrgcAllZIy2pAwJJMpmkqamJkpIS7rp2ETvC+2jvMaTKHXlvdUEQ+EB93Xl3ZeUBN5+9eh5//d65aLo+wADpfPeguLiY4uJi5s+fb+3Q29raOHToEKWlpVZQKUw5KIrCvn37yOVyXHbZZZcsHRH0e1m5YCYrF8wkJ8ucOB2huT1M6+nosN4qg7ufVE3l1JkuQzaktoaK0hIABPH8qrbG9XwD6jVGDcdnKBYXhZAVlVxOQpVztJ/pQFGU/FS4cVoxT3yarpPNyTidDrI5iYDXg+gQyeaUswrc5gkjJytkMhnC4U5KS0spLi4hZaX9jACnA0gKcr6mMRT9EirGf6cLrmHOvMiKilMUzxtEzGHOngLJe6/bZSj9FkilCAJsaFhCtieM3+9nxYoVZwUGt9tNXV0ddXV11kBuNBrl4MGDKIpizU6Nh+nU+SgMIqM5iTz00EN89atf5emnn54SQSSZTNLS0sKdd9450UuZnCcSWZZRFIVDhw4RjUZZs2bNAMvOlpYWkskkq1atsr5WOGQIA+VOdp7s5f/7zX7cTgceZ/8HpDcjM6vMx68/0WCJEcZiMfbv38/MgsJ0SzTFN547Sks0hapBwOPgA2tq+Z9XzTrLJ/1SkMlkrJNKobxDSUkJR44cweVysXLlyknRZaOoKm2dXbS0h2lpD+dPH/1DeoXig7FYF6lUcoBsiHkSMZWCh9qZmwXuc6efDEtZt9OYw8jkzCFIw1sllzPUdv3+AMXFIbxuzxABsL/ALSsqaLplmpVOpwiHI1RUlBMKDTR1GmzkZUi/G6eTQt2r4VJ3gwn5vWQkCZ/bjaoPrSXWP68zfJecOeV/2dK5pLo6CAaDLF++/KJOF0Mp7paUlFhBZbwVgXVd580336S7u5u1a9eOaOOk6zq/+tWv+Nu//VueeOKJi/Y6ulR87nOfY+PGjcyaNYszZ87w1a9+lT179nDo0CEqKysndG2TMpCYyr2qqlJfX3/Wm6O1tZXu7m7q6+uBgfUQQ6114AdB03U+8+v97G7rNYa6ROMk4hAF/v6GBdyyohqAU6dOcfToUZYuXUptbe1Z1zgSTtKX7/g6n97VpUKSJCKRCB0dHfT29uJ0Opk+fTrV1dWEQufvSruU6LpOR6yXE2ciHG49Q29f2vp6JBIhl8tRV1eL0+k6R22iYGcuq0iKgsflsmZJhqNQNwv6PThk1TCHUlWVVCqNnPdYERxOy7TL2OEOvI8+jxtN03C7nfT2xmlrPz1AONLEOGEM3TwCZjrPkPXvS2bO23VVFPCe1X7crwMGmbymWVHgQqRWBK5eu5S+6GmKi4tZtmzZqN8vpulUNBqlu7vbSCPmU2BmR+JYoes6hw8fpqura1RB5Le//S333HMPjz76KDfccMOYrW+s+fCHP8xLL71EV1cXlZWVXHXVVXzrW99i3ryha7yXkkkZSF5//XUAVqxYMWTbYXt7Ox0dHaxbt+6CJ9UTWZkHdrTy+8NRFFWjKuThritmsDEfRI4cOUJnZyerV68ecPqZCljtvdOnEwwGLfc4l8tldYCVlJRMuqDSFU9ypPU0L76+i1g8SU2NMfEtiiJel/OcvhlgdDu5HA4cTgfqoN19IefSzYL+Qjv51uOcJJPJpEmlUqTThke9mf7y+XwE/V4yeRXiRCJBV1cXtbU1VJSVYtZmVE2/qBNGXzqDIOSDSkGRvPB+FQWHdrQcTEnIh6rqZKWzU3EmDlHkmnVL6Q2forS0lKVLl475+8MUOjXfj4AVVMrKykbVUlwYREajQPzYY4/xyU9+kkceeYRbbrllxOt5uzMpA0k6nT5nUOjo6KC1tZUrrrjiouVOUpJCKqdSHnDjEAUURbGmX9esWTMlJLELMdt7B9v5mrLZZgcYYHXclJeXT3hxFIzT1O7du3G5XMyZv5CT+RRYtCdx3rbioYKDWazXdSzXwvPpZpmY6Sd0Q5AR+nf32axRrE+lUridIg6nG3/AjyzLxONxampq8Hr73zcCUBzwo+pq/mE+fOfVUCcMg/6Zl0xOwut2nVdL7GzRx8JUnNEmLQiGLP21ly2l60wbFRUVLF68eNw3GaZsvnlayWazlJWVWSmwizlN6LrOkSNHiEajrF27dsSf2aeffpq7776bX/7yl9x2220juoaNwaQMJIqinNNONxKJcPToUa644gprmGskH4RMJsOePXtwu92TpqZwoei6TmtrKydOnGDlypVUVFSc83t7e3utuoopLGl6MUzEsFk6nWb37t1WSqUwsGVyklGsPxWmtSN61oP4QoKDIAgUBbxGO29mKM/6fgYXuK1rwICuKbfLSVdPnFQqTV9fAlU1rHFDodAACfeBTQT5uRmHA0lVLY/1Cz9hGMFBkhU8LieyZlxjqJNXcBgHRxOnQyQU8HHF0rnEzrRSXV19QdJC40EqlbKCSjweJxQKXZCMu67rHD16lEgkMqog8rvf/Y4777yTn/3sZ3zoQx8azUuxYZIGknPZ7ZoPxTfeeIOampoR77Dj8Th79uyhqqqKRYsWTYod+oWiaRpHjhwhEomwZs2aAXL658MsjppBJZ1OD2grvhQTu319fezevZvq6moWLVp0zgeZrKi0dcZoPtVJS3sEQWBA4Xo4Bs5X6MMW6y+shdaQqJcUFbfTwZmOTrp64lRVVSHLEqlUmmw2i9vtorq8HN3hOMcQpBOP24FDdNCbTJ3n9w4tK18485LJ11/8vvPPurhdDq5dt5TwqRPU1dUxf/78SZHuvNDWYl3XOXbsGJ2dnaxdu3bErowvvPACH/7wh/nRj37EHXfcMSnuwVRnSgWSQrkT85gciURQFGVA2uZ8g3vhcJiDBw8yb948Zs6cOaXeSKqqsm/fvjFLxZltxdFolEQiQXFxsVVXGY80n1nPmT179kWbgGmaxulIjyHX0h4mnhza/OncMyf9xXoRgd5kashZEuu79X4/FF3HSsvMmjmDYMBnOR8qioIDjXCsm0wmjaOgWD+cNe5QqbhCznfCAHA4BII+D5rGWXWVQjwuJ9detpSOky1Mnz6defPmTcr3vaqqlox7NBq1WosrKiqsuarRBJGXXnqJD3zgA/zrv/4rd99996S8B1ORKRNICoNIYSqrcHAvHA4jSdKwaRtz2ru1tZUVK1ZMeMvcxZLL5QZ4wo91Ks7suIlEIvT09BAMBgf41Y/2QxcOhzlw4MBZ9ZyRoOs6kZ4EzafCtLR3Eu3pAzivbpb5s0ZaKYPL6cTrcQ1ZrC/0dDc6y8JIkkxdXa1lvAV5xeKgz/DwyEqomko6bTpBGp1pgYAffyBAVVlpwXxJP0J+Gt0stHvcrvOeMEzl4MJZE7/Hg8PpMEy78u3LHreL69Yt4czJFqutfSpQeHo+ffo0kiRRVFRETU0NlZWVFx1MXn31VW6//Xb+5V/+hU996lN2EBlDJmUgGeySOFwQGUyhH0g4HCaTyVBWVkZ1dTXl5eUcO3aM7u7uSzbtPZakUil2795NSUnJWTWF8UCWZSuodHV14fV6raAy2K/+Qjh16hTHjh0btwDe05fixOkIR052DCnXYqLr+rCtsQNPCDkCPsPTXdc1Ojs70TTN6iwrxEiP9ase+71GI0c6P1mfzWZJp9MoUo5UJovP57cUiwdfSxQEvB4X6OBwGBa50hADnQ5RwONynaOzTcfjdhHye3nH8rmcOtFsWUFPJXRdp6WlhdOnT7NixQqrtnKxrcVvvPEGjY2NfOMb3+Cee+6xg8gYM6kDiTmpPlIPETNt09nZSTKZxOFwMHfuXOrq6qaUOU9PT4/luzIRKQnT+8VMNzgcDiuVeD55DF3XOX78OG1tbWcNlo4X6WyOlnbDW+VkR2xAob3woT8cAnn5eQwr3ZbWk+g61NTUDHit59fh6j8h6JpOMpNBkuR8W3GKXE7C6/X064B53EMEByMguF1OFMU48TidIi6n01JJHg6/182165Zw6vgxK4071WhpaaG9vZ2GhoYBMzrnai0enN5uamrilltu4ctf/jKf/exn7SAyDkzaQCJJ0rCT6hdDKpWiqakJv99PaWmpVQsoKSmxdtiTWdW0s7OTgwcPsmjRIqZPnz7RyxkgLBmJRNA0bdj6lDl1HIvFqK+vP2tY71KQk2Vaz0Q51tZJtCdBdyJ1zu8XBQGv12V0eqmGDLzT4WT2rBm4nM4CL5HBaaWh6T855Ppl31XDPVFVVSv9lctm8fu8ON2e/BDk0MV6bz6oqJpKOiMNO6MS8Hm4du1iTrYcZcGCBcyYMeMC79jkwdyArF279pzvHU3TiMfjA1qLDx48iCzLrFy5ko9//ON87nOf44tf/KIdRMaJSRlIFEUhm+3fNY40jVM4qFfYoZLNZq0HYW9vL0VFRVRVVVFdXT1p5khMnbHjx49P2nqOruvE43HrXuZyOas+VVpaypEjR0ilUpNmPkdVNU5Fumg5Faa5vfOsQnbhIKSiGDLwHo+HysqqggeQIaTodjrJ5aVWhns4OUQRl8sx5MnBko5XNWRZBUGnpzdhDUGKoqFYbJhNGX7rLqeYl+RX8us10mhgpNHMTVfI7+Xq+oWcPH6MRYsWTUl/cVO5+nxBZChSqRT//d//zc9+9jMOHTpEbW0tf/mXf0ljYyMrVqyY0GBy33338aUvfYm/+qu/4vvf//6ErWOsmZSB5K677qKlpYVNmzZx6623Mm3atIv+47e3t3PkyJHzFnZNiZFIJEJ3d7dVYK6urh53naDhMAeuwuHwRbf3ThSD/eqTySROp5M5c+ZQW1s7IiG98UTXdTq6eq2gkkhmLD90WZbo6OjA7/fn53P633uDfdNNf/XBxXrjoe8o8GEZGpdTxOEQcTmc6JZisWHeZp5WdF2jKBQkGAzidHmG3FiZMy9FAR/rl86iteUYixcvHrUHzURgBpGGhoYR1zKPHDnCjTfeyIc+9CHWrFnDU089xdatW/nYxz7GAw88MMYrvjDeeOMNPvjBD1JUVMSGDRvsQDLetLe38+ijj7JlyxZeffVV1q5dS2NjI42NjcyaNeucQcXsNT9z5gwrV66krOz8boImgwvMPp/PCiqXyn9BVVX2799POp2eNDv5iyGXy1nT6uXl5cRiMUtY0kwljrR1czzp6u2j5XSYA8dOsufgYUKhUP69U+Al4nQgFBhSDcYq1gOyrA77fdb1XA7QBaSCDkVByA9BCqb8vIqmKiSTKeKJPmRZthSLAwH/gO6x4qCf966ex4kWQy17Mlqyno/W1lZaW1tHFURaWlq44YYb+PCHP8z9999vBd5sNmsoS0/AfUkmk9TX1/Mf//EffPOb32T16tV2ILlU6LpOR0cHjz32GFu2bOGll15i5cqVVlAZPFBlPoRTqRSrV68e1YlCURRisRiRSIRYLIbb7aa6unrEXUsXgiRJNDU1jVt773hjdpaZ2k3mBziXy1kBuru7m0AgYAWVyWSQ1NvbS1NTE5XVtShOH82nOjkV7kLT9PPqdZmY36dqmmEuhUA6l0NV9SG+Tzun6Zc5cyIIIMkKmZycVyw2vFWy2Rwej4dAwE9ddaVREznezPLly6murh6DO3JpMVO5DQ0NIz6Ft7a2cuONN7Jx40Z+8IMfTJpB47vuuouysjK+973v8Z73vMcOJBOFruvEYjErqLzwwgssXrzYCiper5e//Mu/5O/+7u94z3veM6YP4cF2uA6HwzqpjJUYotkUUFRUdNFS3pOBeDxOU1MTdXV1LFiwYNh7Isuy1QFmBmizWD+RwpJdXV3s3bv3rMJ0VpI53h7mxJkIx09HhvWbB85hXKUT8HlxiAJZSUYUxAuy0B1stetxOQ2ZFFUjk8sZ6bR0Cicaq2aV4XU5qaqqYtasWWOutDvetLW10dLSMqog0t7ezvXXX891113HD3/4w0nzGfr1r3/Nt771Ld544w28Xq8dSCYLuq7T09PDk08+yebNm9m6dSter5eVK1fyz//8z9TX14/bm8g09TFrAYIgUFlZSXV19Yid4np7e9mzZw/Tpk2bNLIVF4P5EJ43bx6zZs264J8bLCxp3suqqirKysou2YMgEomwf//+Ie0DClFUlbaOGM15b5XCji2vx418AY6QXrcTURRwOvKe9cMU671uF7KiDqsR5nQYSsEhv591C2tpPd7CrFmzyGazxGIx616aSrsXY9N8qTGDSH19PcXFxSO6RkdHBzfccAPvfOc7+fGPfzxpXu+pU6dYu3Ytv//971m5ciWAHUgmI48//jh33nknt9xyC9lslueff57a2loaGxvZtGkTa9asGdegYoohhsNhdF2/aIVdU65lqrZomu3J53sIn4/Ce1kojWHey/ESljxz5gyHDx9m+fLlVFVVXdR6O2K9NLeHOdUZI9rbd179L5/HTU4eqBPmtibrVVL5Yr3P40KSlfMGpeqyItYvnsHJ1uOsWrWK8vJya22FEkKyLFNeXm4FlsmUMj116hTNzc2jCiLhcJgbb7yRtWvX8otf/GLSBBEwnk+33XbbgDWpqmr5JuVyuUm13pEypQPJ3r17ueqqq/iv//ovSwY6mUzy7LPPsnnzZp577jnKysq49dZb2bRpE+vWrRu3P5rZChsOh60PrxlUKioqhvy9J0+epKWlZdK2956PtrY2mpubz6s+fLGYsjfmg9BUKBhrYUlz/YUP4ZGuN9bbZ5xUTnUS7k6c9T2mD/u5jKscokgw4EXTVJLps9WIC6mtKOGyhXW0tZ5gzZo1lJaWDrs2s5uu0MHQvJcT2czR3t7O0aNHqa+vH/GgaiwW46abbmLp0qU8/PDDE6JkfS76+vo4efLkgK/dfffdLF68mC984QssX758glY2tkzpQALGjma4nXw6nWbr1q1s3ryZZ555hkAgwMaNG9m0aRPr168ftzedqRFkBpVsNmvtrisrK3E4HBw9etQy0hrpTmyi0HWd5uZmTp8+zZo1a8Z9/aZCQSQSoa+vb9TDpKbm2smTJ8dl2j6eTFtBpT3Sjd/rJp2Vh3VJNAn4PJZhligI+H1DF+unVZWydl4Np9oufv2ZTMYa3DP11MwNz6VsfDCDyLmC4Pno7u7m5ptvZu7cuTzyyCNTRq3CTm1NYbLZLH/4wx/YsmULTzzxBE6nk40bN3Lbbbdx1VVXjdtxX9d1UqmUFVRSqZT1u6bKjEghmqZZHtn19fWXfNZm8DBpKBSyAvSFDK6Z7eEdHR3U19ePu+ZaOpPjxJkoze2dtJ6JDltgD/jceUveIVdtFevLioKsnFVB+6m2UaWDoL/xwWx3N+XbzcaH8UoJnz59miNHjowqiPT29rJx40ZqamrYsmXLpJtTOhd2IHmLIMsy27dvZ/PmzTz++OOoqsrNN9/Mpk2beM973jNub0pJkti1axeKouByuUgmk5SWllq768n+YTAl7LPZLGvWrJlwaRnTx6Jw7sd8EA7Vom1KtnR1dU1IEJRkhZMdMZrbOzl+OmJNvAfzXiLn+yDOqq1g5cwyzpw+TX19/ZhuQszGB/O0YkrfmNpVY3V6N2tSq1evvqgZr0ISiQSbNm2iqKiIJ598csLfhzZv00BSiKIovPzyy/z2t7/l8ccfJ5VKcfPNN9PY2MjVV189Zjlk0xGwqKiIZcuW4XA4yGQy1u46Ho9TXFxMdXX1hOeuh0KWZfbs2QPA6tWrJ1XBFvpF/My5H7NF29xdAxw4cIC+vj4aGhom/OGjqhqno90cPx3hWFtn3m53eOZMq2RpXQnhzvE/SZn1PjOomDUqM7CMdMPT0dHBm2++Oaogkkwmuf3223G73Tz99NOTcrj17cjbPpAUoqoqr732Go8++iiPPfYYPT093HDDDTQ2NnLdddeNeAdrtveea8Yil8tZQaWnp8dK2VRXV0/4hyWbzbJ79278fj8rVqyY9F0mhS3a0WgUXdcRRUOnqqGhYdIFaV3XCXfH83ItYWK9fQP+ff6MahbVhAh3dp6lgnspMKXbI5EIiUTCUimorKy84M+EGURG09iQTqd5//vfj6ZpPPvssxMiAmozNHYgGQZN03jjjTesoNLR0cF1111HY2MjN9544wXvCCORCAcOHLio9l5JkgZItZiT4Kb+16WcM0kmkzQ1NVFeXs7ixYsnzZDXhSLLMrt27UKSjHkNsxXW7KabbCcrgJ5EkuZ8UAn5vcyt8BGLRmloaJgw/TcTU6XA9AQx04nn8gTp7Ozk0KFDowoi2WyWD33oQySTSbZu3TrlaotvdexAcgFomsaePXusoNLa2srVV19NY2MjN99887AfILO99GJnFAopLIjGYjG8Xq8l1RIKhcY1qJgnqclszXouTMkZl8vFqlWrEEVxgLBkKpUa0FY82WpUuq5z+PBhYrEYDQ0NE34yHUyhJ0g0GkUUxbMGSk1XzFWrVo24RTyXy3HHHXcQjUZ5/vnnR1ygtxk/7EBykei6zsGDBy1RycOHD7NhwwY2bdrEzTffTHl5OZqm8fOf/5z58+ePaXusaTAVDocteRGzDjDWkhjRaJT9+/czf/78KWmIZKbjAoEAK1asGPIklU6nraBi+tWbD8KJfmjrus6hQ4fo6emZlOm4wZg+NWZQkWWZYDBIIpFg2bJlIx5WlWWZj370o5w8eZJt27aNat7HZvywA8ko0HWdo0ePsnnzZjZv3sy+ffu48soryWQynD59mpdffnncxPPMLptwODxA/8v0AhlNUDlz5gxvvvnmlFWQNRsbSktLWbJkyQWl4yaTsKS5WYnH45OiMeBiMb10jh07htfrJZfLUVpaagXpC309iqLw8Y9/nMOHD7N9+/YpObT7dsEOJGOEruvs3LmTD3zgAySTSWRZZtWqVdx66600NjZSV1c3bg8jczdoBhVd162H4MVqVrW2tnL8+PFRT3tPFMlkkl27dlFTU8PChQtHdM8HpxM9Hs+4nfwGo2kaBw4cIJlM0tDQMOnSbRdCNBpl3759rFixgqqqKmsI0pz9MT1/zNmfoe6nqqp86lOfoqmpie3bt0/JDc3bCTuQjBEnTpzg+uuvZ+XKlfzXf/0XsViMzZs3s2XLFl577TXWrVtnSbXMnDlz3B5GpqClmbJRVXVYK9zBP2cO6k3FQUnoVyCeMWMGc+fOHZN7XKj8XCiGOB7CkpqmWV40DQ0NU2ZSuxAziAwnZW/O/pjqz4YDpVGsN4cgVVXl3nvv5ZVXXmHHjh1T0uHx7YYdSMaIM2fO8NOf/pR/+Id/GPBw0XWdM2fOWPL3f/zjH1m5ciWbNm2isbFxXIvYpmaVOVUvSZIl1VJRUWENmWmaxqFDh+jt7aW+vn7C6wMjwbRVnjt37kUpEF8MhcKSZpAuvJ+jaYvWNI29e/eSy+Wor6+fkkEkFouxd+/eC/ZDGaz+/I1vfMPa7Ozdu5cXX3xx3P6W5+OHP/whP/zhD2ltbQVg2bJlfOUrX+HGG2+ckPVMduxAcgnRdZ1IJMLjjz/Oli1b2L59O4sXL7aCyuLFi8c1qCSTSSuoZDIZysvLqaiooLOzE0VRWLNmzZRNpezfv/+S+pObQdoMKtls1morvliFXVVV2bt3L7IsU19fPylbks9HLBZj3759LF26dERpKF3X+f3vf88PfvAD/vSnP6GqKtdffz2NjY3ceuutYyoKeiE89dRTOBwOFixYgK7r/OIXv+D++++nqamJZcuWXdK1TAXsQDJBmCmoJ554gs2bN/OHP/yBuXPnWvL3y5YtG9eZjWQySUdHB21tbWiaRllZmdVWPJV2w6aM/US7Ag72qzelbyorK89ZXFZVlT179qBpGmvWrJl06rUXgulHM9IgAsaJ7Mtf/jK//e1v2b59O4qi8MQTT/D444/zyU9+kk984hNjvOqLp6ysjPvvv39SrGWyYQeSSUI8Huepp56yjLqmTZtmBZXVq1ePeVDJZDLs3r2bYDDIvHnzrOJyIpGgpKTEkmqZzB1DpoLsWMvYj5bBxWVTpaCqqmrAQKGiKDQ1NSEIAqtXr56SQaS7u5s9e/awZMmSEbf46rrOP/3TP/GLX/yCHTt2sHjx4rP+fSJnmFRV5be//S133XUXTU1NLF26dMLWMlmxA8kkpK+vb4CnSkVFhaVUvG7dulEHlb6+PsObvLLyrHSaqa4bDoeJx+MUFRVZJ5XJNMvQ2trKiRMnWL169aQeUBusUuD3+61C/bFjx3A6naxevXrSy84MhRlEFi9eTF1d3Yiuoes69913Hz/60Y/Yvn37pPLn2L9/P+vXryebzRIMBnn44Ye56aabJnpZkxI7kExy0uk0v/vd7yxPlWAwaHV/rV+//qIfQD09PezZs4dZs2YxZ86cc+70zNmKcDhseVeYQWWipDp0XaelpYX29vYxV8AdbxRFsQZKI5EIoihSV1dn2TRPJeWAnp4empqaRh1Evve97/G9732Pbdu2sXr16rFd5CiRJIm2tjbi8TiPPvooP/nJT3jxxRftE8kQ2IFkCpHNZvn9739veaq43W7rpPKOd7zjvEVaU/dr4cKFTJ8+/aJ+tyzLVlAp1P+6lAN7uq5z5MgRIpEI9fX1U1K0T5Ikdu/ejcfjYdq0aVZKERjQVjyZTyhmEBlNc4Ou6zzwwAN85zvfYevWraxbt26MVzn2XHPNNcybN48HH3xwopcy6bADyRRFkqQBniqapnHLLbdYniqDC+ZmPWE0ul8mhTtrU//LDCpD+YCMBYUtylNBMmQoTD8aU0XZTFHquj6grViW5SHbtCcDvb297N69e0SbERNd1/nP//xPvv71r/Pcc8+xfv36MV7l+PDe976XmTNn8tBDD030UiYddiB5C6AoCn/84x8tT5VMJmN5qmzYsIF/+qd/QlEU/uEf/mHM6wnmwJ4ZVJxO5wAfkLEIKpqmsW/fPjKZDPX19VOyRTmXy7Fr1y5CodA5O/JMm2ZztqJQWHKiO+p6e3tpampi/vz5F6xkPRhd13nooYf40pe+xNNPP8273vWuMV7l2PClL32JG2+8kZkzZ9LX18fDDz9snZ6uvfbaiV7epMMOJG8xVFXl1VdftZSKk8kkuq7zxS9+kU984hPjOmyoaZo1BR6NRhEEYYD+10iaBMz2WEVRpuyMRTabZdeuXRQXF7Ns2bKLCq6DvUCKi4ute3opT2XxeJzdu3ePOoj88pe/5HOf+xxPPvkkGzZsGONVjh2f+MQn2LZtGx0dHRQXF7Ny5Uq+8IUv2EFkGCZ1IPn3f/937r//fjo7O1m1ahX/9m//xmWXXTbRy5oS5HI57rzzTv70pz9xww038Ic//IFwOMy1117Lpk2buOGGG8bVZc/U/zLTNbquD5BquZCgIssyTU1NiKI4ZdtjM5kMu3btoqysjCVLlozqhJbNZq2gYjY/FLYVj1edygwi8+bNG7EStK7r/OY3v+Hee+9l8+bNXH/99WO8SpuJZNIGkkceeYSPfvSj/OhHP+Lyyy/n+9//Pr/97W85cuTIqHP8bwfuvvtuDh06xNNPP01lZSWaptHU1GTJ37e1tXHNNdfQ2NjITTfdNK5ihINrAIqiUFFRQXV19bD6X7lcjt27d+P1elm5cuWkLj4PRzqdZteuXVRWVrJo0aIxvb9m80OhZpU5+zOWf8tEIsGuXbtGLT2zZcsWPvWpT/HII49wyy23jMnabCYPkzaQXH755axbt44HHngAMHa4M2bM4N577+WLX/ziBK9u8nPixAlLXXUwuq5z4MABK6gcPXp0gKdKWVnZuOt/mbMquVzOCipmYdkcljT97aeaKyMYKaldu3ZRXV09YhXiC6VQWNK0FDBPfyNNKUJ/EJkzZw6zZ88e8fqefvpp7r77bn75y19y2223jfg6NpOXSRlIJEnC7/fz6KOPsmnTJuvrd911F729vTzxxBMTt7i3GGZLrempsn//ft71rnfR2NjIxo0bqaqqGnf9LzOoZDIZiouLSSaTVFZWsnTp0ik1W2FiStnX1dUxf/78S/oaBqcUNU27IPXnwfT19bFr1y5mz549qiDyu9/9jjvvvJOf//znfPCDHxzxdWwmN5MykJw5c4Zp06bx6quvDmgN/PznP8+LL77In/70pwlc3VsXc9jPlL/ftWsXV155pSWcN56eKmDMuezfvx+n04ksy5OmW+liMB/AYyllP1J0XScej1t1lWw2S0VFhSXbPlzjgvkazKHVkbJt2zY+8pGP8OCDD/I//sf/mJKbApsLww4kNkOi6zptbW1WUHn99ddZt24djY2NNDY2jrmnitlaOnv2bObMmUMmk7EmwE39LzOoTFb9r0Qiwe7du0f9AB4PdF0nlUqdV1gymUyyc+dOZs6cydy5c0f8+1566SU+8IEP8IMf/ICPfexjdhB5izMpA4md2ppcmJ4qW7ZsYcuWLbz88susWrXKkr8f7c7bVI9dsGDBkK2lpv6XKYJYVFRkBZXJ4p1idjaNtp5wqchkMtY9NTXViouL6ejoYMaMGcybN2/E13711Ve5/fbb+T//5//wv/7X/7KDyNuASRlIwCi2X3bZZfzbv/0bYOR+Z86cyT333GMX2ycQXdcJh8OWp8qOHTtYsmSJFVQutjvJTGctXbr0gtRjJUmyHoDd3d0DWmAnSjLFPE2Npj12IpEkifb2do4fP46u6wPkb0Kh0EX9Pf/85z+zadMmvvnNb/KZz3zGDiJvEyZtIHnkkUe46667ePDBB7nsssv4/ve/z29+8xsOHz48ob4TNv3ouk53d/cAT5X58+db8vdLly49Z8fQmTNnOHz48IhlW8wWWFNZ1+fzUVVVRXV19SXT/zIVcEcjGTLRpFIpdu7cybRp05g1a9YAa2GXy3XBSgW7d+9m48aN/OM//iN/8zd/YweRtxGTNpAAPPDAA9ZA4urVq/nBD37A5ZdfPtHLshkCs7Breqo8//zzTJ8+3Qoqq1atGhBUWlpaOHnyJKtXr6asrGzUv9/U/zIfgG632woq46X/ZabkLqUz41hjtinX1tae1WE22AoXsGoqg4dK9+3bx80338zf/d3f8YUvfMEOIm8zJnUgsZm69PX18cwzz7B582Z+97vfUVFRwa233kpjYyOPPfYYb7zxBo899hjFxcVj/ruHmqsolGoZi4ecaS07GkOniSadTrNz505qampYsGDBOe+L6VdvngBlWWb//v0Eg0GWL1/OBz/4Qe655x6+8pWvTFgQ+fa3v82WLVs4fPgwPp+PK6+8ku985zssWrRoQtbzdsIOJOfhpZde4v7772fXrl10dHTw2GOPDWgAsDk/qVTK8lR5/PHHcTqdvP/97+cjH/kIV1xxxbhOrWuaZu2qI5EIgiBQWVlpeYCMZFjPlOMfjbXsRGNO3VdVVV30wKQpLPnAAw/w3//935w+fZo5c+bwhS98gcbGRiorK8dx5cNzww038OEPf5h169ahKAp///d/z4EDBzh06NCE+ee8XbADyXl47rnneOWVV2hoaOD222+3A8kIUVWVT3/602zdupW///u/57XXXuPJJ5/E4/GwceNGNm3adEGeKqPB3FWbA5DmsF51dfUFe4CEw2EOHDjAihUrpqxUTyaTYefOnSMKIoU0Nzdz4403cuONNzJ//nwee+wxdu3axd/8zd9w//33j/GqL55oNEpVVRUvvvjipFUZfqtgB5KLQBAEO5CMkJ/85Cf83//7f/n9739vFaUlSeKFF16wTiqA5any7ne/e1yHEM2ajjmrYnqAmFItQwWVjo4O3nzzTVasWDFhu+7RYgaR0ep/tba2csMNN7Bp0ya+//3vWye706dP09PTMyksc5ubm1mwYAH79++fFOt5K2MHkovADiQjR1VVEonEsH4oiqLw0ksvWZ4q2WyWW265hcbGRt773veO6xBioQdIOBy2JsBNYymXy2V1mK1atYry8vJxW8t4ks1m2blzJ+Xl5SxevHjEQeTUqVNcf/313HDDDfzHf/zHpNRC0zSNW2+9ld7eXl5++eWJXs5bHjuQXAR2ILk0qKrKK6+8wqOPPsrjjz9OPB63dr/XXnvtuA4hmhPg5kkllUrh9/tJp9OsXLlyyqazzCAyWjn7jo4Orr/+et71rnfx4x//eNKqMn/605/mueee4+WXX56ybdlTCTuQXAR2ILn0aJrGn/70J8uoKxKJcN1117Fp0yauv/76cfVUAaNNubW1Fa/XSyaTsWRFqqqqpoxTo2msVVpaOqogEg6HufHGG1m3bh0PPfTQpA0i99xzD0888QQvvfTSpJOqeatiB5KLwA4kE4umaezevduSvz916hTXXHMNmzZt4qabbhrzeZGTJ09y/Phx1qxZQ0lJyVmyIhPlVngx5HI5du7cSUlJyajUlKPRKDfffDPLli3jV7/61aQ0GdN1nXvvvZfHHnuMHTt2sGDBgole0tsGO5BcBHYgmTxomjbAU+XYsWO8973vpbGxcUw8VU6cOEFrayv19fVDzrrkcjkrqPT09BAKhQa4FU4GTJ9409dlpPeju7ubm266iXnz5vGb3/xm0tod/+///b95+OGHeeKJJwbMjhQXF0/aQP9WwQ4k5yGZTNLc3AzAmjVr+O53v8uGDRsoKyubkrpKb0V0Xefw4cNWUDlw4ADvfve7LU+VysrKi3qItrS0cOrUKRoaGi4odSZJ0gCpFlOrqrq6elwtcM+3pp07d446iPT29rJx40Zqa2vZsmXLpJbzH+41/vznP+djH/vYpV3M2ww7kJyHHTt2sGHDhrO+ftddd/HQQw9d+gXZnBPTU8UMKk1NTQM8VWpra4d94Jg/e/r0aRoaGkYkAinL8gCpFq/XawWVixVAHClmEAmFQixfvnzEvzORSLBp0yaKi4t54oknJq18v83EYwcSm7csuq5z8uRJNm/ezGOPPcbrr7/OZZddZnmqzJgxw3rIaprGkSNHiEQirF27dkzSU6qqEovFCIfDAwQQq6urx9RXvRBJkti1axeBQIDly5ePuDU3mUxy++2343a7eeaZZ+zUkM05sQOJzdsCXdc5ffq05anyyiuvsHr1ajZt2sTGjRv59re/TS6X4z//8z/Hpb24UAAxEokM0P8qKSkZk1kMM4j4/X5WrFgx4mum02ne//73o+s6zzzzzITJ89tMHexAMoWwRenGBtNT5bHHHmPz5s288sorBAIB7rrrLv7iL/5iVLIhF4Lpqx4Oh4lGo+i6bgWVsrKyEQUAWZbZtWsXPp9vVEEkm83yoQ99yNJHKyoqGtF1bN5e2IFkCmGL0o0tqqryP//n/2THjh18+tOfZseOHWzbto0FCxZw6623ctttt7FkyZJxndzWdZ3e3l5rAFJVVSorK6mqqqK8vPyCZjXMIOL1elm5cuWI15vL5bjjjjuIxWI8//zzlJSUjOg6Nm8/7EAyhbFF6UbHv/zLv/Czn/2Mbdu2MW3aNEt/68knn7Q8VWbOnGkFldE8pC8EXddJJBJWUJEkaYBUy1CzG7Iss3v3btxu91meLxeDJEl89KMf5dSpU2zbtm1MPGJs3j7YgWQKY4vSjY5kMkkqlRrWcTORSAzwVKmqqrKCSkNDw7gHlWQyaQWVTCZDeXm5ZSzlcrlQFIXdu3fjcrlGFURkWeYTn/gER44c4YUXXpiygpQ2E4cdSKYotijdpSWVSvHcc8+xZcsWnnnmGYqLi7n11lvZtGkTl19++bjLhSSTSatQn0wmKS0tJZPJ4PV6WbNmzYh/v6IofOpTn2Lv3r1s377dtrG2GRF2IJmi2KJ0E0cmk+H5559ny5YtPPXUU3i93gGeKuMtH9LX18eePXtQFAVVVSkpKbGK9Rcz66GqKvfccw+vvfYaO3bsoK6ubhxXbfNWxg4kUxBblG7yIEkSf/jDH9iyZQtPPPEEgiBw8803c9ttt/Gud71rzCfBFUWhqakJURRZvXo1sixb8vfxeJyioiJrVuVcsx+apvHXf/3XbN++ne3bt9sqDTajwg4kUwhblG5yI8uy5anyxBNPkMvluPnmm9m0aRMbNmwY9WS4qqo0NTUhCAKrV68+K52Vy+WIRqOEw2F6enoIBoNUV1efpf+laRqf//zneeaZZ9ixY4e9GbEZNXYgmULYonRTB1VVefnlly1PlUQiwY033simTZu45pprLnro0QwiwAXVRGRZtoJKV1cXgiDw3HPP8b73vY8nnniCLVu2sH379gnfjLz00kvcf//97Nq1i46ODlsUdYpiB5IphC1KNzXRNI3XX3/dCirRaHSAp8r5JsdVVWXPnj1omkZ9ff1FF9YVRWH//v384z/+I6+++ioAd955J5/85CdZu3bthIhKmjz33HO88sorNDQ0cPvtt9uBZIpiBxIbm0uIpmns2rWLzZs3s2XLFtrb27nmmmtobGwc0lNFVVX27t2LqqqsWbNmxIV8Xdf59re/zc9+9jM+//nPs3PnTp566ilKSkp49tlnWbZs2Vi9xBFj2zRMXexAYmMzQWiaxr59+6yg0tzczNVXX82tt97KLbfcgtvt5pOf/CR33HEH119//aiCyHe/+12+//3v88ILL7Bq1SrAqKls27aNDRs2TIrUqB1Ipi7jN1Fl87bghz/8IStXrqSoqIiioiLWr1/Pc889N9HLmhKYnVff+MY3OHDgAE1NTVxxxRX86Ec/Ys6cOVx55ZUcPHiQhQsXjnhORNd1/u3f/o3vfe97bN261QoiAB6Ph5tuumlSBBGbqY0dSGxGxfTp07nvvvvYtWsXO3futFwKDx48ONFLm1IIgsDSpUv5yle+wp/+9Cfe9a53kcvlKC8vZ+3atdx00008+OCDdHR0cKFJBF3XefDBB7nvvvt49tlnWbt27Ti/Cpu3K3YgsRkVGzdu5KabbmLBggUsXLiQb33rWwSDQV5//fWJXtqURFVVPvShDxGPx9m/fz+vvfYaR48eZePGjTz66KMsWrSI6667jgceeIBTp04NG1R0XefnP/85X/va13jqqae44oorLvErsXk7YQcSmzFDVVV+/etfk0qlWL9+/UQvZ0ricDjYuHGjpb4rCAJz5szhc5/7HC+//DInTpzggx/8IM888wzLli1jw4YNfP/73+fEiRNWUNF1nf/+7//mS1/6Ek8++STvfOc7J/hV2bzVsYvtNqNm//79rF+/nmw2SzAY5OGHH+amm26a6GW9pdF1nc7OTh577DG2bNnCiy++yPLly2lsbMTj8fCtb32LLVu2cN111030Us9JMpmkubkZMOZjvvvd77JhwwbKysrsafsphB1IbEaNJEm0tbURj8d59NFH+clPfsKLL77I0qVLJ3ppbwt0Xaerq4snnniChx9+mBdeeIFf/vKX3HHHHRO9tPOyY8cONmzYcNbX77rrLh566KFLvyCbEWEHEpsx55prrmHevHk8+OCDE72Utx2mpbAt5GlzKbFrJDZjjqZp5HK5iV7G2xJBEOwgYnPJGV+9a5u3PF/60pe48cYbmTlzJn19fTz88MPs2LGDrVu3TvTSbGxsLhF2ILEZFZFIhI9+9KN0dHRQXFzMypUr2bp1K9dee+1EL83GxuYSYddIbGxsbGxGhV0jsbGxsbEZFXYgsbGxsbEZFXYgsXlLc9999yEIAn/913890UuxsXnLYgcSm7csb7zxBg8++CArV66c6KXY2LylsQOJzVuSZDLJHXfcwY9//GNKS0snejk2Nm9p7EBi85bkM5/5DDfffDPXXHPNRC/FxuYtjx1IbN5y/PrXv2b37t18+9vfnuilvGX593//d2bPno3X6+Xyyy/nz3/+80QvyWYCsQOJzVuKU6dO8Vd/9Vf86le/wuv1TvRy3pI88sgjfPazn+WrX/0qu3fvZtWqVVx//fVEIpGJXprNBGEPJNq8pXj88ce57bbbBljTqqqKIAiIokgulxuxba2NweWXX866det44IEHAENbbcaMGdx777188YtfnODV2UwEtkSKzVuKq6++mv379w/42t13383ixYv5whe+YAeRUSJJErt27eJLX/qS9TVRFLnmmmt47bXXJnBlNhOJHUhs3lKEQiGWL18+4GuBQIDy8vKzvm5z8cRiMVRVpbq6esDXq6urOXz48AStymaisWskNjY2Njajwj6R2Lzl2bFjx0Qv4S1DRUUFDoeDcDg84OvhcJiampoJWpXNRGOfSGxsbC4Yt9tNQ0MD27Zts76maRrbtm1j/fr1E7gym4nEDiQ2NpeAr33tawiCMOD/Fy9ePNHLGhGf/exn+fGPf8wvfvEL3nzzTT796U+TSqW4++67J3ppNhOEndqysblELFu2jD/84Q/WfzudU/Pj96EPfYhoNMpXvvIVOjs7Wb16Nb/73e/OKsDbvH2Ymu9kG5spiNPpfMvUEe655x7uueeeiV6GzSTBTm3Z2Fwijh07Rl1dHXPnzuWOO+6gra1topdkYzMm2JPtNjaXgOeee45kMsmiRYvo6Ojg61//OqdPn+bAgQOEQqGJXp6NzaiwA4mNzQTQ29vLrFmz+O53v8snPvGJiV6Ojc2osFNbNjYTQElJCQsXLqS5uXmil2JjM2rsQGJjMwEkk0laWlqora2d6KXY2IwaO5DY2FwCPve5z/Hiiy/S2trKq6++aikUf+QjH5nopdnYjBq7/dfG5hLQ3t7ORz7yEbq6uqisrOSqq67i9ddfp7KycqKXZmMzauxiu42NjY3NqLBTWzY2NjY2o8IOJDY2NjY2o8IOJDY2NjY2o8IOJDY2NjY2o8IOJDY2NjY2o8IOJDY2NjY2o8IOJDY2NjY2o8IOJDY2NjY2o8IOJDY2NjY2o8IOJDY2NjY2o8IOJDY2NjY2o8IOJDY2NjY2o+L/B8/AuHrxeZQFAAAAAElFTkSuQmCC" - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "# %% Fit using a 0-3 order polynomial, getting the best fit for the data.\n", - "polynomial_estimator = GridSearchCV(\n", - " make_pipeline(PolynomialFeatures(), LinearRegression(fit_intercept=False)),\n", - " param_grid=dict(polynomialfeatures__degree=range(4)),\n", - ")\n", - "polynomial_estimator.fit(X, y)\n", - "\n", - "show_results(estimator=polynomial_estimator, label=\"[0th-3rd]-order linear\")" - ] - }, - { - "cell_type": "code", - "execution_count": 31, - "id": "3d870dbb", - "metadata": {}, - "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "INFO:autora.skl.bms:BMS fitting started\n", - " 0%| | 7/1500 [00:00<01:15, 19.80it/s]:2: RuntimeWarning: invalid value encountered in power\n", - " return S2**2*_a0_**S1\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return -_a0_**S2\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return -_a0_**S2\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return -_a0_**S2\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return sqrt(cos(S1))\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return sqrt(cos(S1))\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return sqrt(cos(S1))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return _a0_**S1/S2\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(S1/_a0_)\n", - " 1%| | 10/1500 [00:00<01:11, 20.75it/s]/Users/jholla10/Library/Caches/pypoetry/virtualenvs/autora-17yK3Jyq-py3.8/lib/python3.8/site-packages/scipy/optimize/_minpack_py.py:906: OptimizeWarning: Covariance of the parameters could not be estimated\n", - " warnings.warn('Covariance of the parameters could not be estimated',\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return sqrt(_a0_/S2**2)\n", - " 1%| | 16/1500 [00:00<01:10, 21.08it/s]:2: RuntimeWarning: invalid value encountered in log\n", - " return log(cos(S1))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(cos(S1))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return S2*cos(S2)**(-S1)\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return S2*cos(S2)**(-S1)\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return S2*cos(S2)**(-S1)\n", - " 1%|▏ | 19/1500 [00:00<01:09, 21.32it/s]:2: RuntimeWarning: invalid value encountered in scalar power\n", - " return (_a0_**3)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return (_a0_**3)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return (_a0_**3)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return _a0_**(-S1)\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return (S2 + _a0_)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return (S2 + _a0_)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return (S2 + _a0_)**_a0_\n", - " 1%|▏ | 22/1500 [00:01<01:06, 22.25it/s]:2: RuntimeWarning: divide by zero encountered in scalar power\n", - " return fac(_a0_)**_a0_\n", - ":2: RuntimeWarning: divide by zero encountered in scalar power\n", - " return fac(_a0_)**_a0_\n", - ":2: RuntimeWarning: divide by zero encountered in scalar power\n", - " return fac(_a0_)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return (S1 + _a0_)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return (S1 + _a0_)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return (S1 + _a0_)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return (S2 + _a0_)**S1\n", - " 2%|▏ | 25/1500 [00:01<01:11, 20.69it/s]:2: RuntimeWarning: invalid value encountered in power\n", - " return S2*_a0_**sin(S1)\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return _a0_**(-S1)*sig(_a0_/S1)\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return _a0_**(-S1)*sig(_a0_/S1)\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return _a0_**(-S1)*sig(_a0_/S1)\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return tan(S2)**(_a0_/S1)\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return tan(S2)**(_a0_/S1)\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return tan(S2)**(_a0_/S1)\n", - " 2%|▏ | 28/1500 [00:01<01:11, 20.71it/s]:2: RuntimeWarning: overflow encountered in power\n", - " return S1**(S2**S2)\n", - "/Users/jholla10/Library/Caches/pypoetry/virtualenvs/autora-17yK3Jyq-py3.8/lib/python3.8/site-packages/pandas/core/arraylike.py:402: RuntimeWarning: overflow encountered in square\n", - " result = getattr(ufunc, method)(*inputs, **kwargs)\n", - ":2: RuntimeWarning: overflow encountered in power\n", - " return S1**(S2**S2)\n", - ":2: RuntimeWarning: overflow encountered in power\n", - " return S1**(S2**S2)\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return -_a0_*_a0_**(-S1)\n", - " 2%|▏ | 34/1500 [00:01<01:13, 20.01it/s]:2: RuntimeWarning: invalid value encountered in power\n", - " return sig(_a0_**S1)/S1\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return sig(_a0_**S1)/S1\n", - " 3%|▎ | 40/1500 [00:01<01:15, 19.45it/s]:2: RuntimeWarning: invalid value encountered in power\n", - " return S2*_a0_**(-S2)\n", - " 3%|▎ | 42/1500 [00:02<01:16, 19.18it/s]:2: RuntimeWarning: invalid value encountered in power\n", - " return S2*_a0_**(-S2 - _a0_)\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return S1**3 + sig(_a0_**S1)**S1\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(cos(S1))\n", - " 3%|▎ | 44/1500 [00:02<01:19, 18.29it/s]:2: RuntimeWarning: invalid value encountered in power\n", - " return sin(S1)**((1/2)*_a0_)\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return sin(S1)**((1/2)*_a0_)\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return -_a0_**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return -_a0_**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return -_a0_**_a0_\n", - " 3%|▎ | 46/1500 [00:02<01:25, 17.02it/s]:2: RuntimeWarning: overflow encountered in exp\n", - " return exp(S2**S2)\n", - ":2: RuntimeWarning: overflow encountered in exp\n", - " return exp(S2**S2)\n", - ":2: RuntimeWarning: overflow encountered in exp\n", - " return exp(S2**S2)\n", - " 3%|▎ | 48/1500 [00:02<01:29, 16.20it/s]:2: RuntimeWarning: invalid value encountered in log\n", - " return relu(log(_a0_))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return relu(log(_a0_))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return relu(log(_a0_))\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return sqrt(log(_a0_)/S1)\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return sqrt(log(_a0_)/S1)\n", - " 3%|▎ | 52/1500 [00:02<01:28, 16.33it/s]:2: RuntimeWarning: invalid value encountered in log\n", - " return log(cos(S1))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return sig(_a0_**S1)/S1\n", - " 4%|▎ | 56/1500 [00:02<01:29, 16.12it/s]:2: RuntimeWarning: invalid value encountered in power\n", - " return cos(S1)**((1/2)*_a0_)\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return cos(S1)**((1/2)*_a0_)\n", - " 4%|▍ | 58/1500 [00:03<01:27, 16.48it/s]:2: RuntimeWarning: invalid value encountered in scalar power\n", - " return relu(_a0_**_a0_)\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return relu(_a0_**_a0_)\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(sin(S2))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(sin(S2))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(sin(S2))\n", - ":2: RuntimeWarning: overflow encountered in power\n", - " return S2*_a0_**(S2**S2)\n", - "/Users/jholla10/Library/Caches/pypoetry/virtualenvs/autora-17yK3Jyq-py3.8/lib/python3.8/site-packages/scipy/optimize/_minpack_py.py:862: RuntimeWarning: overflow encountered in square\n", - " cost = np.sum(infodict['fvec'] ** 2)\n", - ":2: RuntimeWarning: overflow encountered in power\n", - " return S2*_a0_**(S2**S2)\n", - ":2: RuntimeWarning: overflow encountered in power\n", - " return S2*_a0_**(S2**S2)\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return sqrt(-S1 - _a0_*(S1 + S2))\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return sqrt(-S1 - _a0_*(S1 + S2))\n", - " 4%|▍ | 60/1500 [00:03<01:26, 16.62it/s]:2: RuntimeWarning: invalid value encountered in sqrt\n", - " return relu(S1)**((1/2)*sqrt(_a0_))\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return relu(S1)**((1/2)*sqrt(_a0_))\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return relu(S1)**((1/2)*sqrt(_a0_))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return (S2*(S1*S2)**(1/4)/_a0_)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return relu(_a0_)/sqrt(sin(S1))\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return relu(_a0_)/sqrt(sin(S1))\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return relu(_a0_)/sqrt(sin(S1))\n", - " 4%|▍ | 62/1500 [00:03<01:24, 17.07it/s]:2: RuntimeWarning: invalid value encountered in power\n", - " return relu((_a0_**S1)**_a0_)\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu((_a0_**S1)**_a0_)\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu((_a0_**S1)**_a0_)\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return sqrt(log(S2)/S1)\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return sqrt(log(S2)/S1)\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return sqrt(log(S2)/S1)\n", - " 4%|▍ | 64/1500 [00:03<01:22, 17.31it/s]:2: RuntimeWarning: divide by zero encountered in scalar power\n", - " return relu(_a0_)**((1/2)*_a0_)\n", - ":2: RuntimeWarning: divide by zero encountered in scalar power\n", - " return relu(_a0_)**((1/2)*_a0_)\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return S2 + _a0_**relu(S1)\n", - ":2: RuntimeWarning: overflow encountered in power\n", - " return relu(S1**(S1**S1))\n", - ":2: RuntimeWarning: overflow encountered in power\n", - " return relu(S1**(S1**S1))\n", - ":2: RuntimeWarning: overflow encountered in power\n", - " return relu(S1**(S1**S1))\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return sqrt(-(S1 + S2)*(S1 + _a0_)/S1)\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return sqrt(-(S1 + S2)*(S1 + _a0_)/S1)\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return sqrt(-(S1 + S2)*(S1 + _a0_)/S1)\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return sqrt(-_a0_*(S1 + _a0_)/S1)\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return sqrt(-_a0_*(S1 + _a0_)/S1)\n", - " 4%|▍ | 66/1500 [00:03<01:26, 16.57it/s]:2: RuntimeWarning: invalid value encountered in scalar power\n", - " return _a0_**((1/2)*_a0_)\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return _a0_**((1/2)*_a0_)\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return _a0_**((1/2)*_a0_)\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return sqrt(-(S1 + S2)*cosh(S2)/S1)\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return sqrt(-(S1 + S2)*cosh(S2)/S1)\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return sqrt(-(S1 + S2)*cosh(S2)/S1)\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(-_a0_/S1)\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(-_a0_/S1)\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(-_a0_/S1)\n", - " 5%|▍ | 68/1500 [00:03<01:29, 16.04it/s]:2: RuntimeWarning: invalid value encountered in power\n", - " return tan(relu(S1))**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return tan(relu(S1))**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return S1**(_a0_**S2)\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return S1**(_a0_**S2)\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return S1**(_a0_**S2)\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return sqrt(-_a0_*(S1 + tan(_a0_))/S1)\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return sqrt(-_a0_*(S1 + tan(_a0_))/S1)\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return sqrt(-_a0_*(S1 + tan(_a0_))/S1)\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return (S1/_a0_)**(_a0_/S1)\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return (S1/_a0_)**(_a0_/S1)\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return (S1/_a0_)**(_a0_/S1)\n", - " 5%|▍ | 70/1500 [00:04<02:30, 9.48it/s]:2: RuntimeWarning: invalid value encountered in power\n", - " return relu((S2/_a0_)**_a0_)\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu((S2/_a0_)**_a0_)\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu((S2/_a0_)**_a0_)\n", - ":2: RuntimeWarning: overflow encountered in power\n", - " return S1**(-relu(fac(_a0_)))\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return sqrt(log(_a0_/S1))\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return sqrt(log(_a0_/S1))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(tan(_a0_))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(tan(_a0_))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(tan(_a0_))\n", - " 5%|▍ | 72/1500 [00:04<02:14, 10.63it/s]:2: RuntimeWarning: invalid value encountered in power\n", - " return ((S1*S2)**(1/4)/_a0_)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return S1**(_a0_**S2)\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return S1**(_a0_**S2)\n", - ":2: RuntimeWarning: overflow encountered in power\n", - " return S2*_a0_**relu(_a0_/S1)\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return sqrt(tan(S1))\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return sqrt(tan(S1))\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return sqrt(tan(S1))\n", - " 5%|▍ | 74/1500 [00:04<02:05, 11.35it/s]:2: RuntimeWarning: invalid value encountered in sqrt\n", - " return sqrt(-S2**_a0_*(S2 + _a0_**2)/S1)\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return sqrt(-S2**_a0_*(S2 + _a0_**2)/S1)\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return sqrt(-S2**_a0_*(S2 + _a0_**2)/S1)\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return _a0_**sin(_a0_)\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return _a0_**sin(_a0_)\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return sqrt(cos(S2))\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return sqrt(cos(S2))\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return sqrt(cos(S2))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(_a0_/S1)/S1\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(_a0_/S1)/S1\n", - " 5%|▌ | 76/1500 [00:04<01:55, 12.38it/s]:2: RuntimeWarning: invalid value encountered in log\n", - " return _a0_*sig(sig(log(_a0_)))**(_a0_**2)\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return (tan(sqrt(S2*_a0_*relu(S1)))/S1)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return (tan(sqrt(S2*_a0_*relu(S1)))/S1)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return sig(sig(log(_a0_)))**(S1*_a0_)*tanh(_a0_)\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return sqrt(-_a0_*(S2 + 2*_a0_)/S1)\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return sqrt(-_a0_*(S2 + 2*_a0_)/S1)\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return sqrt(-_a0_*(S2 + 2*_a0_)/S1)\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return S1**(_a0_**S1)\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return S1**(_a0_**S1)\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return S1**(_a0_**S1)\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return log(_a0_*_a0_**(-_a0_))\n", - " 5%|▌ | 78/1500 [00:04<01:53, 12.52it/s]:2: RuntimeWarning: invalid value encountered in power\n", - " return (S2*_a0_*relu(S1))**(1/4)/S1\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return sqrt(-S2 - _a0_**2)\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return sqrt(-S2 - _a0_**2)\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return (2*_a0_)**tanh(_a0_)\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return (2*_a0_)**tanh(_a0_)\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return (2*_a0_)**tanh(_a0_)\n", - " 5%|▌ | 80/1500 [00:04<01:43, 13.68it/s]:2: RuntimeWarning: divide by zero encountered in power\n", - " return relu(relu(S2*_a0_))**_a0_\n", - ":2: RuntimeWarning: divide by zero encountered in power\n", - " return relu(relu(S2*_a0_))**_a0_\n", - ":2: RuntimeWarning: divide by zero encountered in power\n", - " return relu(relu(S2*_a0_))**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return sqrt(-_a0_*(_a0_**2 + _a0_)/S1)\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return sqrt(-_a0_*(_a0_**2 + _a0_)/S1)\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return relu(_a0_)/sqrt(log(S1))\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return relu(_a0_)/sqrt(log(S1))\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return relu(_a0_)/sqrt(log(S1))\n", - " 5%|▌ | 82/1500 [00:04<01:41, 13.98it/s]:2: RuntimeWarning: divide by zero encountered in scalar power\n", - " return relu(_a0_)**_a0_\n", - ":2: RuntimeWarning: divide by zero encountered in scalar power\n", - " return relu(_a0_)**_a0_\n", - ":2: RuntimeWarning: divide by zero encountered in scalar power\n", - " return relu(_a0_)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return _a0_**tanh(_a0_)\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return _a0_**tanh(_a0_)\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return sqrt(-_a0_*(_a0_**2 + _a0_)/S1)\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return sqrt(-_a0_/S1)\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return sqrt(-_a0_/S1)\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return sqrt(-_a0_/S1)\n", - " 6%|▌ | 84/1500 [00:05<01:38, 14.37it/s]:2: RuntimeWarning: divide by zero encountered in power\n", - " return relu(_a0_/S2)**_a0_\n", - ":2: RuntimeWarning: divide by zero encountered in power\n", - " return relu(_a0_/S2)**_a0_\n", - ":2: RuntimeWarning: divide by zero encountered in power\n", - " return relu(_a0_/S2)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(S2/tan(S2))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(S2/tan(S2))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(S2/tan(S2))\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return sqrt(-_a0_*(S2 + fac(S2))/S1)\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(_a0_)**sin(_a0_)\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(_a0_)**sin(_a0_)\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(_a0_)**sin(_a0_)\n", - " 6%|▌ | 86/1500 [00:05<01:40, 14.08it/s]:2: RuntimeWarning: invalid value encountered in power\n", - " return S1**(_a0_**S2)\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return S1**(_a0_**S2)\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return S1**(-relu(_a0_**S1))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(cos(S2))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(cos(S2))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(cos(S2))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return relu(S1**log(_a0_))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return relu(S1**log(_a0_))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return relu(S1**log(_a0_))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return _a0_**(-S2)*sig(_a0_/S1)\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return _a0_**(-S2)*sig(_a0_/S1)\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return _a0_**(-S2)*sig(_a0_/S1)\n", - " 6%|▌ | 88/1500 [00:05<01:40, 14.06it/s]:2: RuntimeWarning: divide by zero encountered in power\n", - " return relu(_a0_/S2)**_a0_\n", - ":2: RuntimeWarning: divide by zero encountered in power\n", - " return relu(_a0_/S2)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return S2*(_a0_**_a0_)**relu(S1)\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return S2*(_a0_**_a0_)**relu(S1)\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return S2*(_a0_**_a0_)**relu(S1)\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return sqrt(2)*sqrt(-S2*_a0_**S2/S1)\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return sqrt(2)*sqrt(-S2*_a0_**S2/S1)\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return sqrt(2)*sqrt(-S2*_a0_**S2/S1)\n", - ":2: RuntimeWarning: overflow encountered in cosh\n", - " return cosh(S1**(-S2)*_a0_)\n", - ":2: RuntimeWarning: overflow encountered in cosh\n", - " return cosh(S1**(-S2)*_a0_)\n", - ":2: RuntimeWarning: overflow encountered in cosh\n", - " return cosh(S1**(-S2)*_a0_)\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(cos(S2)/S1)\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(cos(S2)/S1)\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(cos(S2)/S1)\n", - " 6%|▌ | 90/1500 [00:05<01:36, 14.56it/s]:2: RuntimeWarning: invalid value encountered in power\n", - " return relu((S1 + _a0_)**_a0_)\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu((S1 + _a0_)**_a0_)\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu((S1 + _a0_)**_a0_)\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return sqrt(-_a0_*(S2 + _a0_)/S1)\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return sqrt(-_a0_*(S2 + _a0_)/S1)\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return sin(_a0_)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return sin(_a0_)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return sin(_a0_)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return sqrt(2)*sqrt(-S2*_a0_/S1)/S1\n", - " 6%|▌ | 92/1500 [00:05<01:40, 14.05it/s]:2: RuntimeWarning: invalid value encountered in sqrt\n", - " return sqrt(-_a0_*fac(S2)/S1)\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return sqrt(2)*sqrt(-S2*(S2 + _a0_)/S1)\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return sqrt(2)*sqrt(-S2*(S2 + _a0_)/S1)\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return sqrt(2)*sqrt(-S2*(S2 + _a0_)/S1)\n", - " 6%|▋ | 94/1500 [00:05<01:35, 14.65it/s]:2: RuntimeWarning: invalid value encountered in power\n", - " return ((-S1)**(1/4)/S1)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return ((-S1)**(1/4)/S1)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return ((-S1)**(1/4)/S1)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return sqrt(-(2*S2*_a0_)**S1)\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return sqrt(-(2*S2*_a0_)**S1)\n", - ":2: RuntimeWarning: divide by zero encountered in power\n", - " return relu(log(S1))**(-relu(_a0_))\n", - ":2: RuntimeWarning: divide by zero encountered in power\n", - " return relu(log(S1))**(-relu(_a0_))\n", - ":2: RuntimeWarning: divide by zero encountered in power\n", - " return relu(log(S1))**(-relu(_a0_))\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return sin(_a0_)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return sin(_a0_)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return sqrt(-(2*S2*_a0_)**S1)\n", - " 6%|▋ | 96/1500 [00:05<01:32, 15.17it/s]:2: RuntimeWarning: invalid value encountered in sqrt\n", - " return relu(relu(sqrt(_a0_)))**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return relu(relu(sqrt(_a0_)))**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return relu(relu(sqrt(_a0_)))**_a0_\n", - ":2: RuntimeWarning: divide by zero encountered in scalar power\n", - " return relu(relu(_a0_))**_a0_\n", - ":2: RuntimeWarning: divide by zero encountered in scalar power\n", - " return relu(relu(_a0_))**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return sqrt(-_a0_*cosh(S2)/S1)\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return (S2 + _a0_)**sin(_a0_)\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return (S2 + _a0_)**sin(_a0_)\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return (S2 + _a0_)**sin(_a0_)\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return _a0_**(-_a0_)*sig(_a0_/S1)\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return _a0_**(-_a0_)*sig(_a0_/S1)\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return _a0_**(-_a0_)*sig(_a0_/S1)\n", - " 7%|▋ | 98/1500 [00:06<01:34, 14.82it/s]:2: RuntimeWarning: divide by zero encountered in scalar power\n", - " return relu(_a0_)**_a0_\n", - ":2: RuntimeWarning: divide by zero encountered in scalar power\n", - " return relu(_a0_)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return sqrt(-_a0_*relu(S2)/tan(S2))\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return sqrt(-_a0_*relu(S2)/tan(S2))\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return sqrt(-_a0_*relu(S2)/tan(S2))\n", - ":2: RuntimeWarning: divide by zero encountered in power\n", - " return relu(cos(S1))**_a0_\n", - ":2: RuntimeWarning: divide by zero encountered in power\n", - " return relu(cos(S1))**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return sqrt(sinh(_a0_*relu(S2)/S1))\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return sqrt(sinh(_a0_*relu(S2)/S1))\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return sqrt(_a0_/S1)/S1\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return sqrt(_a0_/S1)/S1\n", - " 7%|▋ | 100/1500 [00:06<01:29, 15.56it/s]:2: RuntimeWarning: invalid value encountered in power\n", - " return S1**sin(_a0_**S2)\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return S1**sin(_a0_**S2)\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return S1**sin(_a0_**S2)\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return _a0_**S1/S1\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return (S1 + _a0_)**S1\n", - " 7%|▋ | 102/1500 [00:06<01:30, 15.40it/s]:2: RuntimeWarning: divide by zero encountered in scalar power\n", - " return relu(_a0_)**_a0_\n", - ":2: RuntimeWarning: divide by zero encountered in scalar power\n", - " return relu(_a0_)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return sqrt(-relu(S2)/(S2*_a0_))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return cosh(log(_a0_)**S1)\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return cosh(log(_a0_)**S1)\n", - ":2: RuntimeWarning: divide by zero encountered in power\n", - " return relu(S1*_a0_)**_a0_\n", - ":2: RuntimeWarning: divide by zero encountered in power\n", - " return relu(S1*_a0_)**_a0_\n", - ":2: RuntimeWarning: divide by zero encountered in power\n", - " return relu(S1*_a0_)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return sqrt(-_a0_**(-S2)*relu(S2)/S1)\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return sqrt(-_a0_**(-S2)*relu(S2)/S1)\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return sqrt(-_a0_**(-S2)*relu(S2)/S1)\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return sqrt(_a0_/S1**3)\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return cosh((1/2)*log(_a0_)/_a0_)\n", - " 7%|▋ | 104/1500 [00:06<01:32, 15.04it/s]:2: RuntimeWarning: invalid value encountered in power\n", - " return ((S2*_a0_)**(1/4)/S2)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return S1**(_a0_**_a0_)\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return S1**(_a0_**_a0_)\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return S1**(_a0_**_a0_)\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return sqrt(_a0_/tan(S2))\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return sqrt(_a0_/tan(S2))\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return sqrt(_a0_/tan(S2))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(cos(S1 + _a0_))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(cos(S1 + _a0_))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return ((1/2)*(S2*_a0_)**(1/4)/S2)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return sqrt(sinh(relu(S2)/(S1*_a0_)))\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return sqrt(sinh(relu(S2)/(S1*_a0_)))\n", - " 7%|▋ | 106/1500 [00:06<01:32, 15.00it/s]:2: RuntimeWarning: invalid value encountered in sqrt\n", - " return sqrt(-1/S1)\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return sqrt(-1/S1)\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return sqrt(-1/S1)\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return _a0_**sin(_a0_)\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(-S1)\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(-S1)\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(-S1)\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return (S2 + _a0_)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return (S2 + _a0_)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return tan(sinh(S1))**(-relu(_a0_))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return tan(sinh(S1))**(-relu(_a0_))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return (S2/_a0_)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return (S2/_a0_)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return (S2/_a0_)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return sig(sqrt(_a0_))/S1\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return sig(sqrt(_a0_))/S1\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return sig(sqrt(_a0_))/S1\n", - " 7%|▋ | 108/1500 [00:06<01:34, 14.81it/s]:2: RuntimeWarning: divide by zero encountered in power\n", - " return relu(relu(sin(S2)))**_a0_\n", - ":2: RuntimeWarning: divide by zero encountered in power\n", - " return relu(relu(sin(S2)))**_a0_\n", - ":2: RuntimeWarning: divide by zero encountered in power\n", - " return relu(relu(sin(S2)))**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return sin(S1)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return sin(S1)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return sin(S1)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return (S1*_a0_)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return (S1*_a0_)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return (S1*_a0_)**_a0_\n", - " 7%|▋ | 110/1500 [00:06<01:34, 14.76it/s]:2: RuntimeWarning: invalid value encountered in sqrt\n", - " return sqrt(-relu(S1)/(S1*_a0_))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return (S2 + _a0_)**cos(_a0_)\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return (S2 + _a0_)**cos(_a0_)\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return (S2 + _a0_)**cos(_a0_)\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return (S2*_a0_)**(1/4)/S1\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return (-relu(S2)/(S1*_a0_))**(1/4)\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return -_a0_**cos(_a0_)\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return -_a0_**cos(_a0_)\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return -_a0_**cos(_a0_)\n", - " 7%|▋ | 112/1500 [00:06<01:32, 15.00it/s]:2: RuntimeWarning: invalid value encountered in power\n", - " return (cos(S2)**(1/4)/S1)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return (cos(S2)**(1/4)/S1)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return (cos(S2)**(1/4)/S1)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu(sinh(S1))**(-relu(_a0_**S2))\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return sqrt(-1/S1)\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return sqrt(-1/S1)\n", - " 8%|▊ | 114/1500 [00:07<01:29, 15.41it/s]:2: RuntimeWarning: invalid value encountered in power\n", - " return S1**(_a0_**S2)\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return S1**(_a0_**S2)\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return sqrt(-relu(S2)/_a0_**3)\n", - ":2: RuntimeWarning: divide by zero encountered in power\n", - " return relu(S2/_a0_)**_a0_\n", - ":2: RuntimeWarning: divide by zero encountered in power\n", - " return relu(S2/_a0_)**_a0_\n", - ":2: RuntimeWarning: divide by zero encountered in power\n", - " return relu(S2/_a0_)**_a0_\n", - " 8%|▊ | 116/1500 [00:07<01:26, 15.92it/s]:2: RuntimeWarning: invalid value encountered in divide\n", - " return relu(_a0_)/(sqrt(S1)*_a0_)\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return tan(_a0_)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return tan(_a0_)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return tan(_a0_)**_a0_\n", - " 8%|▊ | 118/1500 [00:07<01:27, 15.84it/s]:2: RuntimeWarning: invalid value encountered in scalar power\n", - " return _a0_**_a0_*sig(_a0_)**S1\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return _a0_**_a0_*sig(_a0_)**S1\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return _a0_**_a0_*sig(_a0_)**S1\n", - ":2: RuntimeWarning: divide by zero encountered in power\n", - " return relu(log(S1))**_a0_\n", - ":2: RuntimeWarning: divide by zero encountered in power\n", - " return relu(log(S1))**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(-S2/S1)\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(-S2/S1)\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(-S2/S1)\n", - ":2: RuntimeWarning: overflow encountered in power\n", - " return (S1 + S2)*sig(S2*_a0_)**(S1*_a0_)\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return sqrt(-S2/(S1*_a0_**2))\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return sqrt(-S2/(S1*_a0_**2))\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return sqrt(-S2/(S1*_a0_**2))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return relu(log(cos(S1 + _a0_)))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return relu(log(cos(S1 + _a0_)))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return _a0_/log(_a0_)\n", - " 8%|▊ | 120/1500 [00:07<01:35, 14.40it/s]:2: RuntimeWarning: invalid value encountered in log\n", - " return S1**log(_a0_)\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return S1**log(_a0_)\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return tan(S1)**cos(_a0_)\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return tan(S1)**cos(_a0_)\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return tan(S1)**cos(_a0_)\n", - " 8%|▊ | 122/1500 [00:07<01:33, 14.68it/s]:2: RuntimeWarning: invalid value encountered in sqrt\n", - " return sqrt(-(_a0_ + relu(S2))/S1)\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return sqrt(-(_a0_ + relu(S2))/S1)\n", - ":2: RuntimeWarning: divide by zero encountered in power\n", - " return relu(relu(S2/_a0_))**_a0_\n", - ":2: RuntimeWarning: divide by zero encountered in power\n", - " return relu(relu(S2/_a0_))**_a0_\n", - ":2: RuntimeWarning: divide by zero encountered in power\n", - " return relu(relu(S2/_a0_))**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return sqrt(-S1**_a0_/(S1*_a0_))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return _a0_**(-S2)*sig(_a0_)\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return _a0_**(-S2)*sig(_a0_)\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return _a0_**(-S2)*sig(_a0_)\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu(sinh(_a0_**S2))**(-_a0_)\n", - " 8%|▊ | 124/1500 [00:07<01:27, 15.69it/s]:2: RuntimeWarning: invalid value encountered in sqrt\n", - " return sqrt(-1/S1)\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return sqrt(-1/S1)\n", - " 8%|▊ | 126/1500 [00:07<01:23, 16.43it/s]:2: RuntimeWarning: invalid value encountered in log\n", - " return sig(_a0_/S1)/log(_a0_)\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return sig(_a0_/S1)/log(_a0_)\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return sig(_a0_/S1)/log(_a0_)\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return (S1 + _a0_)**(2*S1)\n", - " 9%|▊ | 128/1500 [00:07<01:23, 16.42it/s]:2: RuntimeWarning: divide by zero encountered in power\n", - " return relu(relu(S2 + _a0_))**_a0_\n", - ":2: RuntimeWarning: divide by zero encountered in power\n", - " return relu(relu(S2 + _a0_))**_a0_\n", - ":2: RuntimeWarning: divide by zero encountered in power\n", - " return relu(relu(S2 + _a0_))**_a0_\n", - ":2: RuntimeWarning: divide by zero encountered in power\n", - " return relu(sin(S1))**(-_a0_)\n", - ":2: RuntimeWarning: divide by zero encountered in power\n", - " return relu(sin(S1))**(-_a0_)\n", - " 9%|▊ | 130/1500 [00:08<01:23, 16.46it/s]:2: RuntimeWarning: invalid value encountered in power\n", - " return ((S2*_a0_)**(1/4)/S1)**(sqrt(S2))\n", - ":2: RuntimeWarning: divide by zero encountered in scalar power\n", - " return relu(_a0_)**_a0_\n", - ":2: RuntimeWarning: divide by zero encountered in scalar power\n", - " return relu(_a0_)**_a0_\n", - ":2: RuntimeWarning: divide by zero encountered in power\n", - " return relu(-S1)**(-_a0_)\n", - ":2: RuntimeWarning: divide by zero encountered in power\n", - " return relu(-S1)**(-_a0_)\n", - " 9%|▉ | 132/1500 [00:08<01:23, 16.47it/s]:2: RuntimeWarning: divide by zero encountered in power\n", - " return relu(relu(S2 + _a0_))**_a0_\n", - ":2: RuntimeWarning: divide by zero encountered in power\n", - " return relu(relu(S2 + _a0_))**_a0_\n", - ":2: RuntimeWarning: overflow encountered in power\n", - " return S1**(S1**S1)\n", - ":2: RuntimeWarning: overflow encountered in power\n", - " return S1**(S1**S1)\n", - ":2: RuntimeWarning: overflow encountered in power\n", - " return S1**(S1**S1)\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return sig(_a0_/S1)/log(_a0_)\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return sig(_a0_/S1)/log(_a0_)\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return _a0_**S2/S1\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return _a0_**S2/S1\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return _a0_**S2/S1\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return sqrt(_a0_/S1**2)\n", - " 9%|▉ | 134/1500 [00:08<01:21, 16.67it/s]:2: RuntimeWarning: invalid value encountered in sqrt\n", - " return sqrt(-relu(S2)/(_a0_*sin(S1)))\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return sqrt(-relu(S2)/(_a0_*sin(S1)))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return (S2 + _a0_)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return (S2 + _a0_)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return S2*tanh(_a0_)**S1\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return S2*tanh(_a0_)**S1\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return relu(_a0_)/sqrt(sin(S1))\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return relu(_a0_)/sqrt(sin(S1))\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return sqrt(_a0_/S1)/S1\n", - " 9%|▉ | 136/1500 [00:08<01:23, 16.40it/s]:2: RuntimeWarning: invalid value encountered in sqrt\n", - " return sqrt(-1/relu(S1))\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return sqrt(-1/relu(S1))\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return sqrt(-1/relu(S1))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(tan(S1)/S1)\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(tan(S1)/S1)\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(tan(S1)/S1)\n", - ":2: RuntimeWarning: divide by zero encountered in divide\n", - " return sqrt(-relu(S2)/(_a0_*relu(sinh(_a0_))))\n", - ":2: RuntimeWarning: divide by zero encountered in divide\n", - " return sqrt(-relu(S2)/(_a0_*relu(sinh(_a0_))))\n", - ":2: RuntimeWarning: divide by zero encountered in divide\n", - " return sqrt(-relu(S2)/(_a0_*relu(sinh(_a0_))))\n", - " 9%|▉ | 138/1500 [00:08<01:24, 16.21it/s]:2: RuntimeWarning: overflow encountered in power\n", - " return (S1 + S2)*sig(S1 + _a0_)**(S1*_a0_)\n", - ":2: RuntimeWarning: divide by zero encountered in divide\n", - " return sqrt(-relu(S2)/(_a0_*relu(_a0_)))\n", - ":2: RuntimeWarning: divide by zero encountered in divide\n", - " return sqrt(-relu(S2)/(_a0_*relu(_a0_)))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return S1**(_a0_**S2)\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return S1**(_a0_**S2)\n", - " 9%|▉ | 140/1500 [00:08<01:28, 15.31it/s]:2: RuntimeWarning: invalid value encountered in sqrt\n", - " return sqrt(sin(relu(S2)/(_a0_*relu(S1))))\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return sqrt(sin(relu(S2)/(_a0_*relu(S1))))\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return (_a0_**3)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return (_a0_**3)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(log(S1)/S1)\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(log(S1)/S1)\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(log(S1)/S1)\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return ((S2*_a0_)**((1/4)*S1))**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return sqrt(-relu(S2)/(S2*relu(S1)))\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return sqrt(-relu(S2)/(S2*relu(S1)))\n", - " 9%|▉ | 142/1500 [00:08<01:26, 15.68it/s]:2: RuntimeWarning: invalid value encountered in sqrt\n", - " return sqrt(-relu(S2)*exp(-S1)/_a0_)\n", - ":2: RuntimeWarning: divide by zero encountered in power\n", - " return relu(relu(S2 + _a0_)**_a0_)\n", - ":2: RuntimeWarning: divide by zero encountered in power\n", - " return relu(relu(S2 + _a0_)**_a0_)\n", - ":2: RuntimeWarning: divide by zero encountered in power\n", - " return relu(relu(S2 + _a0_)**_a0_)\n", - ":2: RuntimeWarning: overflow encountered in exp\n", - " return relu(exp(cos(S1 + _a0_ + exp(S2/_a0_))))\n", - ":2: RuntimeWarning: invalid value encountered in cos\n", - " return relu(exp(cos(S1 + _a0_ + exp(S2/_a0_))))\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return sqrt(-S2**(-S1)*relu(S2)/relu(S1))\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return sqrt(-S2**(-S1)*relu(S2)/relu(S1))\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return sqrt(-S2**(-S1)*relu(S2)/relu(S1))\n", - " 10%|▉ | 144/1500 [00:08<01:25, 15.78it/s]:2: RuntimeWarning: invalid value encountered in sqrt\n", - " return sqrt(-relu(S2)**_a0_/relu(S1))\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return sqrt(-relu(S2)**_a0_/relu(S1))\n", - ":2: RuntimeWarning: divide by zero encountered in power\n", - " return relu(sinh(sin(S2)))**_a0_\n", - ":2: RuntimeWarning: divide by zero encountered in power\n", - " return relu(sinh(sin(S2)))**_a0_\n", - ":2: RuntimeWarning: divide by zero encountered in power\n", - " return relu(sinh(sin(S2)))**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return sqrt(-relu(S2)/(S1*relu(S1)))\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return sqrt(-relu(S2)/(S1*relu(S1)))\n", - ":2: RuntimeWarning: divide by zero encountered in power\n", - " return relu(S2 + _a0_)**_a0_\n", - ":2: RuntimeWarning: divide by zero encountered in power\n", - " return relu(S2 + _a0_)**_a0_\n", - ":2: RuntimeWarning: divide by zero encountered in power\n", - " return relu(S2 + _a0_)**_a0_\n", - ":2: RuntimeWarning: overflow encountered in exp\n", - " return relu(exp(cos(S1 + exp(S1**S1/_a0_))))\n", - ":2: RuntimeWarning: invalid value encountered in cos\n", - " return relu(exp(cos(S1 + exp(S1**S1/_a0_))))\n", - " 10%|▉ | 146/1500 [00:09<01:27, 15.42it/s]:2: RuntimeWarning: invalid value encountered in sqrt\n", - " return sqrt(relu(S2)**3/(_a0_**3*relu(S1)**3))\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return sqrt(relu(S2)**3/(_a0_**3*relu(S1)**3))\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return sqrt(-relu(S2)/(S1**2*relu(S1)))\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return sqrt(-relu(S2)/(S1**2*relu(S1)))\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return sqrt(-relu(S2)/(S1**2*relu(S1)))\n", - ":2: RuntimeWarning: divide by zero encountered in power\n", - " return relu(relu(relu(S1 + _a0_))**_a0_)\n", - ":2: RuntimeWarning: divide by zero encountered in power\n", - " return relu(relu(relu(S1 + _a0_))**_a0_)\n", - ":2: RuntimeWarning: divide by zero encountered in power\n", - " return relu(relu(relu(S1 + _a0_))**_a0_)\n", - " 10%|▉ | 148/1500 [00:09<01:37, 13.83it/s]:2: RuntimeWarning: divide by zero encountered in power\n", - " return relu(relu(relu(sin(S1)))**_a0_)\n", - ":2: RuntimeWarning: divide by zero encountered in power\n", - " return relu(relu(relu(sin(S1)))**_a0_)\n", - ":2: RuntimeWarning: divide by zero encountered in power\n", - " return relu(relu(relu(sin(S1)))**_a0_)\n", - " 10%|█ | 150/1500 [00:09<01:41, 13.26it/s]:2: RuntimeWarning: invalid value encountered in power\n", - " return (_a0_**(-S2)*sqrt(sinh(S2*_a0_)))**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return (_a0_**(-S2)*sqrt(sinh(S2*_a0_)))**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return sqrt(-relu(S2)/(S2*relu(S1)))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(-S2)\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(-S2)\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(-S2)\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return sqrt(_a0_/relu(S1**2))\n", - " 10%|█ | 152/1500 [00:09<01:39, 13.55it/s]:2: RuntimeWarning: invalid value encountered in log\n", - " return log(log(S2))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(log(S2))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(log(S2))\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return sqrt(tan(S1)/relu(S1))\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return sqrt(tan(S1)/relu(S1))\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return sqrt(tan(S1)/relu(S1))\n", - ":2: RuntimeWarning: overflow encountered in exp\n", - " return exp(_a0_/(S2 + _a0_))/S1\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(-relu(S2)/(_a0_*relu(S1)))\n", - "/Users/jholla10/Developer/autora/autora/theorist/bms/mcmc.py:1197: RuntimeWarning: overflow encountered in exp\n", - " paccept = np.exp(-dEB / self.BT - dEP / self.PT)\n", - ":2: RuntimeWarning: divide by zero encountered in power\n", - " return relu(relu(relu(S2/_a0_))**_a0_)\n", - ":2: RuntimeWarning: divide by zero encountered in power\n", - " return relu(relu(relu(S2/_a0_))**_a0_)\n", - ":2: RuntimeWarning: divide by zero encountered in power\n", - " return relu(relu(relu(S2/_a0_))**_a0_)\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return (2*_a0_)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return (2*_a0_)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return (2*_a0_)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return (S2*_a0_)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return (S2*_a0_)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return (S2*_a0_)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return relu(_a0_**_a0_)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return relu(_a0_**_a0_)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return relu(_a0_**_a0_)**_a0_\n", - " 10%|█ | 154/1500 [00:09<01:43, 13.03it/s]:2: RuntimeWarning: invalid value encountered in log\n", - " return log(-S1**(-_a0_)*relu(S2)/relu(S1))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(-S1**(-_a0_)*relu(S2)/relu(S1))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(-S1**(-_a0_)*relu(S2)/relu(S1))\n", - ":2: RuntimeWarning: overflow encountered in sinh\n", - " return relu(sinh(S2**S2))**_a0_\n", - ":2: RuntimeWarning: overflow encountered in sinh\n", - " return relu(sinh(S2**S2))**_a0_\n", - ":2: RuntimeWarning: overflow encountered in sinh\n", - " return relu(sinh(S2**S2))**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return _a0_/sqrt(tan(_a0_))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(-relu(S2)/(_a0_*(S2 + _a0_)))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(-relu(S2)/(_a0_*(S2 + _a0_)))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(-relu(S2)/(_a0_*(S2 + _a0_)))\n", - ":2: RuntimeWarning: divide by zero encountered in power\n", - " return relu(cos(S1))**_a0_\n", - " 10%|█ | 156/1500 [00:09<01:49, 12.27it/s]:2: RuntimeWarning: invalid value encountered in log\n", - " return log(-1/relu(S1))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(-1/relu(S1))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(-1/relu(S1))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return S2*_a0_**((1/2)*S1)\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return S2*_a0_**((1/2)*S1)\n", - ":2: RuntimeWarning: overflow encountered in sinh\n", - " return sinh(S2**S2)**_a0_\n", - ":2: RuntimeWarning: overflow encountered in sinh\n", - " return sinh(S2**S2)**_a0_\n", - ":2: RuntimeWarning: overflow encountered in sinh\n", - " return sinh(S2**S2)**_a0_\n", - " 11%|█ | 158/1500 [00:10<01:45, 12.67it/s]:2: RuntimeWarning: invalid value encountered in log\n", - " return log(-relu(S2)/(S2**2*relu(S1)))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(-relu(S2)/(S2**2*relu(S1)))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(-relu(S2)/(S2**2*relu(S1)))\n", - ":2: RuntimeWarning: divide by zero encountered in power\n", - " return relu(relu(S1 + _a0_)**_a0_)\n", - ":2: RuntimeWarning: divide by zero encountered in power\n", - " return relu(relu(S1 + _a0_)**_a0_)\n", - ":2: RuntimeWarning: divide by zero encountered in power\n", - " return relu(relu(S1 + _a0_)**_a0_)\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return sinh(tanh(_a0_))**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return sinh(tanh(_a0_))**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return sinh(tanh(_a0_))**_a0_\n", - ":2: RuntimeWarning: overflow encountered in exp\n", - " return relu(exp(exp(S1 + exp(S2/_a0_))))\n", - ":2: RuntimeWarning: overflow encountered in power\n", - " return sinh(S1)**(S2**S2)\n", - ":2: RuntimeWarning: overflow encountered in power\n", - " return sinh(S1)**(S2**S2)\n", - ":2: RuntimeWarning: overflow encountered in power\n", - " return sinh(S1)**(S2**S2)\n", - " 11%|█ | 160/1500 [00:10<01:40, 13.33it/s]:2: RuntimeWarning: invalid value encountered in power\n", - " return S2*(S2/_a0_)**S1\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return S2*(S2/_a0_)**S1\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return S2*(S2/_a0_)**S1\n", - ":2: RuntimeWarning: divide by zero encountered in scalar power\n", - " return relu(_a0_)**_a0_\n", - ":2: RuntimeWarning: divide by zero encountered in scalar power\n", - " return relu(_a0_)**_a0_\n", - ":2: RuntimeWarning: overflow encountered in exp\n", - " return exp(_a0_/(S1 + _a0_))/S1\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return sig(sqrt(_a0_))/S1\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return sig(sqrt(_a0_))/S1\n", - " 11%|█ | 162/1500 [00:10<01:38, 13.56it/s]:2: RuntimeWarning: divide by zero encountered in power\n", - " return relu(relu(relu(S2*_a0_))**_a0_)\n", - ":2: RuntimeWarning: divide by zero encountered in power\n", - " return relu(relu(relu(S2*_a0_))**_a0_)\n", - ":2: RuntimeWarning: divide by zero encountered in power\n", - " return relu(relu(relu(S2*_a0_))**_a0_)\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return sin(_a0_)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return sin(_a0_)**_a0_\n", - ":2: RuntimeWarning: divide by zero encountered in power\n", - " return relu(sin(S1))**_a0_\n", - ":2: RuntimeWarning: divide by zero encountered in power\n", - " return relu(sin(S1))**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return relu(exp(cos(S1 + exp(1/sqrt(_a0_)))))\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return relu(exp(cos(S1 + exp(1/sqrt(_a0_)))))\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return relu(exp(cos(S1 + exp(1/sqrt(_a0_)))))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(-1/relu(S1))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(-1/relu(S1))\n", - " 11%|█ | 164/1500 [00:10<01:35, 14.01it/s]:2: RuntimeWarning: invalid value encountered in scalar power\n", - " return relu(relu(relu(_a0_**_a0_))**_a0_)\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return relu(relu(relu(_a0_**_a0_))**_a0_)\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return relu(relu(relu(_a0_**_a0_))**_a0_)\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(-1/_a0_)\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return relu(tan(_a0_)**_a0_)\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return relu(tan(_a0_)**_a0_)\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return relu(tan(_a0_)**_a0_)\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return _a0_/sqrt(sin(S1))\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return _a0_/sqrt(sin(S1))\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return _a0_/sqrt(sin(S1))\n", - " 11%|█ | 166/1500 [00:10<01:39, 13.38it/s]:2: RuntimeWarning: invalid value encountered in power\n", - " return (S1 + _a0_)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return (S1 + _a0_)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(-(S1 + _a0_)/(_a0_*relu(S1)))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(-(S1 + _a0_)/(_a0_*relu(S1)))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(-(S1 + _a0_)/(_a0_*relu(S1)))\n", - " 11%|█ | 168/1500 [00:10<01:36, 13.78it/s]:2: RuntimeWarning: overflow encountered in power\n", - " return sinh(S1**2)**exp(S2)\n", - ":2: RuntimeWarning: overflow encountered in power\n", - " return sinh(S1**2)**exp(S2)\n", - ":2: RuntimeWarning: overflow encountered in power\n", - " return sinh(S1**2)**exp(S2)\n", - ":2: RuntimeWarning: divide by zero encountered in power\n", - " return relu(sinh(_a0_/S2))**_a0_\n", - ":2: RuntimeWarning: divide by zero encountered in power\n", - " return relu(sinh(_a0_/S2))**_a0_\n", - ":2: RuntimeWarning: divide by zero encountered in power\n", - " return relu(sinh(_a0_/S2))**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return _a0_**(-S2)*(S1 + _a0_)/S1\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return _a0_**(-S2)*(S1 + _a0_)/S1\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return _a0_**(-S2)*(S1 + _a0_)/S1\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return tan(S1**2)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return tan(S1**2)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return (_a0_ + _a0_**_a0_)/S1**2\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return (_a0_ + _a0_**_a0_)/S1**2\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return (_a0_ + _a0_**_a0_)/S1**2\n", - " 11%|█▏ | 170/1500 [00:10<01:32, 14.42it/s]:2: RuntimeWarning: divide by zero encountered in scalar power\n", - " return relu(relu(relu(_a0_))**_a0_)\n", - ":2: RuntimeWarning: divide by zero encountered in scalar power\n", - " return relu(relu(relu(_a0_))**_a0_)\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return exp(_a0_**S1)/S1\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return exp(_a0_**S1)/S1\n", - " 11%|█▏ | 172/1500 [00:11<01:27, 15.13it/s]:2: RuntimeWarning: invalid value encountered in log\n", - " return log(-relu(S2)/(_a0_*log(S1)))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(-relu(S2)/(_a0_*log(S1)))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return sig(_a0_)/log(_a0_)\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return sig(_a0_)/log(_a0_)\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return sig(_a0_)/log(_a0_)\n", - ":2: RuntimeWarning: divide by zero encountered in power\n", - " return relu(-sinh(S1))**_a0_\n", - ":2: RuntimeWarning: divide by zero encountered in power\n", - " return relu(-sinh(S1))**_a0_\n", - ":2: RuntimeWarning: divide by zero encountered in power\n", - " return relu(-sinh(S1))**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(-relu(S2)/(S2*_a0_))\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return (sqrt(sinh(_a0_*tan(S2)))/S1)**sig(S1)\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return (sqrt(sinh(_a0_*tan(S2)))/S1)**sig(S1)\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return (sqrt(sinh(_a0_*tan(S2)))/S1)**sig(S1)\n", - " 12%|█▏ | 174/1500 [00:11<01:27, 15.10it/s]:2: RuntimeWarning: invalid value encountered in power\n", - " return S2*(2*_a0_)**S1\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return S2*(2*_a0_)**S1\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return S2*(2*_a0_)**S1\n", - " 12%|█▏ | 176/1500 [00:11<01:27, 15.21it/s]:2: RuntimeWarning: invalid value encountered in scalar power\n", - " return sinh(_a0_)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return sinh(_a0_)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return sinh(_a0_)**_a0_\n", - ":2: RuntimeWarning: overflow encountered in exp\n", - " return exp(sinh(S1**2))**_a0_\n", - ":2: RuntimeWarning: overflow encountered in exp\n", - " return exp(sinh(S1**2))**_a0_\n", - ":2: RuntimeWarning: divide by zero encountered in power\n", - " return relu(sinh(sin(S2)))**_a0_\n", - ":2: RuntimeWarning: divide by zero encountered in power\n", - " return relu(sinh(sin(S2)))**_a0_\n", - " 12%|█▏ | 178/1500 [00:11<01:27, 15.18it/s]:2: RuntimeWarning: invalid value encountered in log\n", - " return log(-relu(S2)*exp(-S1)/_a0_)\n", - ":2: RuntimeWarning: divide by zero encountered in power\n", - " return relu(relu(relu(S2*_a0_))**_a0_)\n", - ":2: RuntimeWarning: divide by zero encountered in power\n", - " return relu(relu(relu(S2*_a0_))**_a0_)\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(-relu(S2)/(_a0_*relu(S1*S2)))\n", - " 12%|█▏ | 180/1500 [00:11<01:24, 15.69it/s]:2: RuntimeWarning: invalid value encountered in power\n", - " return relu(log(relu(S1))**_a0_)\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu(log(relu(S1))**_a0_)\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return (S2/_a0_)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return (S2/_a0_)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return sqrt(_a0_)/S1\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return sqrt(_a0_)/S1\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log((S2 + _a0_)/S1)\n", - ":2: RuntimeWarning: divide by zero encountered in power\n", - " return relu(sinh(S1*_a0_))**_a0_\n", - ":2: RuntimeWarning: divide by zero encountered in power\n", - " return relu(sinh(S1*_a0_))**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(-relu(S2)/S2)\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(-relu(S2)/S2)\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(-relu(S2)/S2)\n", - ":2: RuntimeWarning: overflow encountered in power\n", - " return (S1 + S2)*sig(2*_a0_)**(S1*_a0_)\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return relu(relu(relu(S1))**log(_a0_))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return relu(relu(relu(S1))**log(_a0_))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return relu(relu(relu(S1))**log(_a0_))\n", - " 12%|█▏ | 182/1500 [00:11<01:27, 14.99it/s]:2: RuntimeWarning: invalid value encountered in log\n", - " return log(-log(S2)/(_a0_*relu(S1)))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(-log(S2)/(_a0_*relu(S1)))\n", - ":2: RuntimeWarning: divide by zero encountered in scalar power\n", - " return relu(relu(relu(_a0_))**_a0_)\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return _a0_**((1/2)*_a0_)\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return _a0_**((1/2)*_a0_)\n", - " 12%|█▏ | 184/1500 [00:11<01:30, 14.61it/s]:2: RuntimeWarning: invalid value encountered in log\n", - " return log(-relu(S2)/relu(relu(S1)))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(-relu(S2)/relu(relu(S1)))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(-relu(S2)/relu(relu(S1)))\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return relu(relu(_a0_**_a0_)**_a0_)\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return relu(relu(_a0_**_a0_)**_a0_)\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return relu(relu(_a0_**_a0_)**_a0_)\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return (S1 + _a0_)**(S1**2)\n", - ":2: RuntimeWarning: divide by zero encountered in divide\n", - " return log(-relu(S2)/(_a0_*relu(log(S1))))\n", - ":2: RuntimeWarning: divide by zero encountered in divide\n", - " return log(-relu(S2)/(_a0_*relu(log(S1))))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu((_a0_/S2)**_a0_)\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu((_a0_/S2)**_a0_)\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu((_a0_/S2)**_a0_)\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return (S1 + sqrt(_a0_))/S1\n", - " 12%|█▏ | 186/1500 [00:11<01:35, 13.75it/s]:2: RuntimeWarning: divide by zero encountered in divide\n", - " return log(-relu(S2)/(_a0_*relu(relu(_a0_))))\n", - ":2: RuntimeWarning: divide by zero encountered in divide\n", - " return log(-relu(S2)/(_a0_*relu(relu(_a0_))))\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return sinh(_a0_)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return sinh(_a0_)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return relu(sinh(sinh(_a0_))**_a0_)\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return relu(sinh(sinh(_a0_))**_a0_)\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return relu(sinh(sinh(_a0_))**_a0_)\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return (S2 + sqrt(_a0_) + _a0_)/S1\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return _a0_**(-S2)*(S1 + _a0_)/S1\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return _a0_**(-S2)*(S1 + _a0_)/S1\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(-relu(S2)/(_a0_**2*relu(relu(S1))))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(-relu(S2)/(_a0_**2*relu(relu(S1))))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(-relu(S2)/(_a0_**2*relu(relu(S1))))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return (tanh(sinh(_a0_*abs(S2)))/S1)**sig(S2**2)\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return tan(sinh(S1))**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return tan(sinh(S1))**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return sqrt(_a0_/log(S1))\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return sqrt(_a0_/log(S1))\n", - " 13%|█▎ | 188/1500 [00:12<01:34, 13.84it/s]:2: RuntimeWarning: invalid value encountered in power\n", - " return relu(S2*sin(_a0_)**S1)\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu(S2*sin(_a0_)**S1)\n", - ":2: RuntimeWarning: divide by zero encountered in scalar power\n", - " return relu(relu(relu(_a0_)**_a0_))\n", - ":2: RuntimeWarning: divide by zero encountered in scalar power\n", - " return relu(relu(relu(_a0_)**_a0_))\n", - ":2: RuntimeWarning: divide by zero encountered in scalar power\n", - " return relu(relu(relu(_a0_)**_a0_))\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return sinh(_a0_)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return sinh(_a0_)**_a0_\n", - ":2: RuntimeWarning: overflow encountered in power\n", - " return relu(sinh(S1))**(S1**S2)\n", - ":2: RuntimeWarning: overflow encountered in power\n", - " return relu(sinh(S1))**(S1**S2)\n", - ":2: RuntimeWarning: overflow encountered in power\n", - " return relu(sinh(S1))**(S1**S2)\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(-S1**(-S2)*relu(S2)/relu(relu(S1)))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(-S1**(-S2)*relu(S2)/relu(relu(S1)))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(-S1**(-S2)*relu(S2)/relu(relu(S1)))\n", - ":2: RuntimeWarning: divide by zero encountered in power\n", - " return relu(relu(relu(_a0_/S1)**_a0_))\n", - ":2: RuntimeWarning: divide by zero encountered in power\n", - " return relu(relu(relu(_a0_/S1)**_a0_))\n", - ":2: RuntimeWarning: divide by zero encountered in power\n", - " return relu(relu(relu(_a0_/S1)**_a0_))\n", - ":2: RuntimeWarning: overflow encountered in power\n", - " return sinh(S1**2)**(S1**3)\n", - ":2: RuntimeWarning: overflow encountered in power\n", - " return sinh(S1**2)**(S1**3)\n", - ":2: RuntimeWarning: overflow encountered in power\n", - " return sinh(S1**2)**(S1**3)\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return relu(exp(cos(S1 + sqrt(S2*_a0_))))\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return relu(exp(cos(S1 + sqrt(S2*_a0_))))\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return (S1 + sqrt(_a0_))/S2\n", - " 13%|█▎ | 190/1500 [00:12<01:34, 13.90it/s]:2: RuntimeWarning: invalid value encountered in log\n", - " return log(-relu(S2)/(_a0_*relu(S2**_a0_)))\n", - ":2: RuntimeWarning: divide by zero encountered in scalar power\n", - " return relu(sinh(_a0_))**_a0_\n", - ":2: RuntimeWarning: divide by zero encountered in scalar power\n", - " return relu(sinh(_a0_))**_a0_\n", - " 13%|█▎ | 192/1500 [00:12<01:32, 14.20it/s]:2: RuntimeWarning: invalid value encountered in scalar power\n", - " return relu(sinh(_a0_)**_a0_)\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return relu(sinh(_a0_)**_a0_)\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return sinh(_a0_)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return sinh(_a0_)**_a0_\n", - ":2: RuntimeWarning: divide by zero encountered in divide\n", - " return S1**_a0_/fac(_a0_)\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(cos(S2))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(cos(S2))\n", - ":2: RuntimeWarning: overflow encountered in exp\n", - " return relu(exp(tan(S1 + exp(S2*_a0_))))\n", - " 13%|█▎ | 194/1500 [00:12<01:30, 14.50it/s]:2: RuntimeWarning: invalid value encountered in scalar power\n", - " return relu(_a0_**_a0_)\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return relu(_a0_**_a0_)\n", - ":2: RuntimeWarning: overflow encountered in exp\n", - " return exp(cosh(S2)/S1)/S1\n", - ":2: RuntimeWarning: overflow encountered in exp\n", - " return exp(cosh(S2)/S1)/S1\n", - ":2: RuntimeWarning: overflow encountered in exp\n", - " return exp(cosh(S2)/S1)/S1\n", - ":2: RuntimeWarning: divide by zero encountered in divide\n", - " return log(-relu(S2)/(_a0_*relu(_a0_)))\n", - ":2: RuntimeWarning: divide by zero encountered in divide\n", - " return log(-relu(S2)/(_a0_*relu(_a0_)))\n", - ":2: RuntimeWarning: divide by zero encountered in divide\n", - " return log(-relu(S2)/(_a0_*relu(_a0_)))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu(S2*(S1*_a0_)**S1)\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu(S2*(S1*_a0_)**S1)\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu(S2*(S1*_a0_)**S1)\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return sinh(_a0_)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return sinh(_a0_)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return relu(_a0_**_a0_)\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return relu(_a0_**_a0_)\n", - ":2: RuntimeWarning: divide by zero encountered in power\n", - " return relu(sin(S1))**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return _a0_**(-_a0_)*(S1 + sqrt(_a0_))\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return _a0_**(-_a0_)*(S1 + sqrt(_a0_))\n", - " 13%|█▎ | 196/1500 [00:12<01:30, 14.39it/s]:2: RuntimeWarning: invalid value encountered in log\n", - " return log(-relu(S2)/(S2**2*relu(relu(S1))))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(-relu(S2)/(S2**2*relu(relu(S1))))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(-relu(S2)/(S2**2*relu(relu(S1))))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return sinh(_a0_**S2)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return sinh(_a0_**S2)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return sinh(_a0_**S2)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return relu(S2*_a0_)/sqrt(S1*_a0_)\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(sin(relu(S2)/(_a0_*relu(relu(S1)))))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(sin(relu(S2)/(_a0_*relu(relu(S1)))))\n", - " 13%|█▎ | 198/1500 [00:12<01:31, 14.17it/s]:2: RuntimeWarning: divide by zero encountered in log\n", - " return log(-relu(S2 + _a0_)/(_a0_*relu(relu(S1))))\n", - ":2: RuntimeWarning: divide by zero encountered in log\n", - " return log(-relu(S2 + _a0_)/(_a0_*relu(relu(S1))))\n", - ":2: RuntimeWarning: divide by zero encountered in log\n", - " return log(-relu(S2 + _a0_)/(_a0_*relu(relu(S1))))\n", - ":2: RuntimeWarning: divide by zero encountered in scalar power\n", - " return relu(relu(relu(relu(_a0_))**_a0_))\n", - ":2: RuntimeWarning: divide by zero encountered in scalar power\n", - " return relu(relu(relu(relu(_a0_))**_a0_))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return (S1 + _a0_)**(S1**(3/2))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return tan(S1**2)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return sqrt(_a0_/log(S1))\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return S1 + sqrt(_a0_)\n", - " 13%|█▎ | 200/1500 [00:12<01:31, 14.18it/s]:2: RuntimeWarning: divide by zero encountered in log\n", - " return log(-relu(_a0_)/(_a0_*relu(relu(S1))))\n", - ":2: RuntimeWarning: divide by zero encountered in log\n", - " return log(-relu(_a0_)/(_a0_*relu(relu(S1))))\n", - ":2: RuntimeWarning: overflow encountered in power\n", - " return S1**(S2**S2)\n", - ":2: RuntimeWarning: overflow encountered in power\n", - " return S1**(S2**S2)\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return relu((2*_a0_)**_a0_)\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return relu((2*_a0_)**_a0_)\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return relu((2*_a0_)**_a0_)\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return (S2 + sqrt(_a0_))/S1\n", - " 13%|█▎ | 202/1500 [00:13<01:30, 14.29it/s]:2: RuntimeWarning: invalid value encountered in log\n", - " return log(-1/2*relu(S2)/(S2*relu(relu(S1))))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(-1/2*relu(S2)/(S2*relu(relu(S1))))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(-1/2*relu(S2)/(S2*relu(relu(S1))))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu(S2*_a0_**S1)\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu(S2*_a0_**S1)\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu(S2*_a0_**S1)\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu(sinh(sin(S1))**_a0_)\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu(sinh(sin(S1))**_a0_)\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu(sinh(sin(S1))**_a0_)\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return relu(S2*_a0_)/sqrt(_a0_)\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return relu(S2*_a0_)/sqrt(S1*sin(S2))\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return relu(S2*_a0_)/sqrt(S1*sin(S2))\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return relu(S2*_a0_)/sqrt(S1*sin(S2))\n", - " 14%|█▎ | 204/1500 [00:13<01:26, 14.90it/s]:2: RuntimeWarning: divide by zero encountered in log\n", - " return log(-relu(S1*_a0_)/(_a0_*relu(relu(S1))))\n", - ":2: RuntimeWarning: divide by zero encountered in log\n", - " return log(-relu(S1*_a0_)/(_a0_*relu(relu(S1))))\n", - ":2: RuntimeWarning: divide by zero encountered in log\n", - " return log(-relu(S1*_a0_)/(_a0_*relu(relu(S1))))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(cos(_a0_)/S1)\n", - ":2: RuntimeWarning: divide by zero encountered in power\n", - " return relu(S1 + _a0_)**_a0_\n", - ":2: RuntimeWarning: divide by zero encountered in power\n", - " return relu(S1 + _a0_)**_a0_\n", - ":2: RuntimeWarning: divide by zero encountered in power\n", - " return relu(S1 + _a0_)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return relu(S2*_a0_)/sqrt(S1*_a0_/S2)\n", - " 14%|█▎ | 206/1500 [00:13<01:28, 14.63it/s]:2: RuntimeWarning: overflow encountered in power\n", - " return relu(S2)*sig(S1 + _a0_)**(S1*_a0_)\n", - ":2: RuntimeWarning: divide by zero encountered in power\n", - " return relu(relu(relu(_a0_/S2)**_a0_))\n", - ":2: RuntimeWarning: divide by zero encountered in power\n", - " return relu(relu(relu(_a0_/S2)**_a0_))\n", - ":2: RuntimeWarning: divide by zero encountered in power\n", - " return relu(relu(relu(_a0_/S2)**_a0_))\n", - ":2: RuntimeWarning: divide by zero encountered in divide\n", - " return log(-relu(S2)/(_a0_*relu(relu(S1 + _a0_))))\n", - ":2: RuntimeWarning: divide by zero encountered in divide\n", - " return log(-relu(S2)/(_a0_*relu(relu(S1 + _a0_))))\n", - ":2: RuntimeWarning: divide by zero encountered in divide\n", - " return log(-relu(S2)/(_a0_*relu(relu(S1 + _a0_))))\n", - ":2: RuntimeWarning: divide by zero encountered in scalar power\n", - " return relu(relu(relu(relu(_a0_))**_a0_))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(_a0_)/S1**(3/2)\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(_a0_)/S1**(3/2)\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(_a0_)/S1**(3/2)\n", - " 14%|█▍ | 208/1500 [00:13<01:28, 14.62it/s]:2: RuntimeWarning: divide by zero encountered in log\n", - " return log(-relu(S2 + _a0_)/(_a0_*relu(relu(S1))))\n", - ":2: RuntimeWarning: divide by zero encountered in log\n", - " return log(-relu(S2 + _a0_)/(_a0_*relu(relu(S1))))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(-relu(S2)/(S1*relu(relu(S1))))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(-relu(S2)/(S1*relu(relu(S1))))\n", - ":2: RuntimeWarning: divide by zero encountered in power\n", - " return relu(relu(relu(tan(S1))**_a0_))\n", - ":2: RuntimeWarning: divide by zero encountered in power\n", - " return relu(relu(relu(tan(S1))**_a0_))\n", - " 14%|█▍ | 210/1500 [00:13<01:26, 14.87it/s]:2: RuntimeWarning: invalid value encountered in power\n", - " return log(-(relu(S2)/_a0_)**relu(relu(S1)))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return log(-(relu(S2)/_a0_)**relu(relu(S1)))\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return relu(exp(cos(_a0_**_a0_ + exp(S2*_a0_))))\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return relu(exp(cos(_a0_**_a0_ + exp(S2*_a0_))))\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return relu(exp(cos(_a0_**_a0_ + exp(S2*_a0_))))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(sin(relu(S2)/(_a0_*relu(relu(S1)))))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return log(sinh(S1))**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return log(sinh(S1))**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu((_a0_**S2)**_a0_)\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu((_a0_**S2)**_a0_)\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu((_a0_**S2)**_a0_)\n", - " 14%|█▍ | 212/1500 [00:13<01:26, 14.91it/s]:2: RuntimeWarning: invalid value encountered in log\n", - " return log(-relu(S2)/(S1*relu(relu(S1))))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu(S2*(cos(_a0_)**3)**S1)\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu(S2*(cos(_a0_)**3)**S1)\n", - ":2: RuntimeWarning: overflow encountered in sinh\n", - " return sinh(exp(2*S2))**_a0_\n", - ":2: RuntimeWarning: overflow encountered in sinh\n", - " return sinh(exp(2*S2))**_a0_\n", - ":2: RuntimeWarning: overflow encountered in sinh\n", - " return sinh(exp(2*S2))**_a0_\n", - " 14%|█▍ | 214/1500 [00:13<01:24, 15.17it/s]:2: RuntimeWarning: overflow encountered in power\n", - " return relu(S2)*sig(S1*_a0_)**(S1*_a0_)\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return _a0_**2/sqrt(-_a0_)\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return _a0_**2/sqrt(-_a0_)\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return _a0_**2/sqrt(-_a0_)\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return sinh(cos(S1))**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return sinh(cos(S1))**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(tan(S1))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(tan(S1))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(tan(S1))\n", - ":2: RuntimeWarning: overflow encountered in exp\n", - " return exp(S2/(S1*_a0_))/S1\n", - ":2: RuntimeWarning: overflow encountered in exp\n", - " return exp(S2/(S1*_a0_))/S1\n", - ":2: RuntimeWarning: overflow encountered in exp\n", - " return exp(S2/(S1*_a0_))/S1\n", - " 14%|█▍ | 216/1500 [00:14<01:28, 14.46it/s]:2: RuntimeWarning: invalid value encountered in power\n", - " return relu(S2*sinh(cos(2*_a0_))**S1)\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu(S2*sinh(cos(2*_a0_))**S1)\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return relu(sinh(_a0_)**_a0_)\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(-relu(S2)/((S1 + _a0_)*relu(relu(S1))))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(-relu(S2)/((S1 + _a0_)*relu(relu(S1))))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(-relu(S2)/((S1 + _a0_)*relu(relu(S1))))\n", - ":2: RuntimeWarning: overflow encountered in power\n", - " return sinh(S1**2)**(S1**S2)\n", - ":2: RuntimeWarning: overflow encountered in power\n", - " return sinh(S1**2)**(S1**S2)\n", - ":2: RuntimeWarning: overflow encountered in power\n", - " return sinh(S1**2)**(S1**S2)\n", - ":2: RuntimeWarning: divide by zero encountered in scalar power\n", - " return relu(_a0_)**_a0_\n", - ":2: RuntimeWarning: divide by zero encountered in scalar power\n", - " return relu(_a0_)**_a0_\n", - " 15%|█▍ | 218/1500 [00:14<01:32, 13.88it/s]:2: RuntimeWarning: invalid value encountered in scalar power\n", - " return _a0_**((1/2)*_a0_)\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return _a0_**((1/2)*_a0_)\n", - ":2: RuntimeWarning: divide by zero encountered in power\n", - " return relu(relu(relu(S1 + _a0_)**_a0_))\n", - ":2: RuntimeWarning: divide by zero encountered in power\n", - " return relu(relu(relu(S1 + _a0_)**_a0_))\n", - ":2: RuntimeWarning: divide by zero encountered in power\n", - " return relu(relu(relu(S1 + _a0_)**_a0_))\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return relu(S2*sig(sqrt(_a0_))**S1)\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return relu(S2*sig(sqrt(_a0_))**S1)\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return sinh(_a0_)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return sinh(_a0_)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu(relu(relu(_a0_**S2)**_a0_))\n", - ":2: RuntimeWarning: divide by zero encountered in power\n", - " return relu(relu(relu(_a0_**S2)**_a0_))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu(relu(relu(_a0_**S2)**_a0_))\n", - ":2: RuntimeWarning: divide by zero encountered in power\n", - " return relu(relu(relu(_a0_**S2)**_a0_))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu(relu(relu(_a0_**S2)**_a0_))\n", - ":2: RuntimeWarning: divide by zero encountered in power\n", - " return relu(relu(relu(_a0_**S2)**_a0_))\n", - " 15%|█▍ | 220/1500 [00:14<02:08, 9.97it/s]:2: RuntimeWarning: divide by zero encountered in power\n", - " return relu(log(S1))**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return relu(exp(cos(S1 + exp(_a0_**(3/2)))))\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return relu(exp(cos(S1 + exp(_a0_**(3/2)))))\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return relu(exp(cos(S1 + exp(_a0_**(3/2)))))\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return exp(sqrt(_a0_)/S1)/S1\n", - " 15%|█▍ | 222/1500 [00:14<01:54, 11.13it/s]:2: RuntimeWarning: invalid value encountered in log\n", - " return log(tan(S1)/S1)\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(tan(S1)/S1)\n", - " 15%|█▍ | 224/1500 [00:14<01:50, 11.55it/s]:2: RuntimeWarning: divide by zero encountered in divide\n", - " return log(-relu(S2)/(_a0_*relu(relu(_a0_))))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(tan(S1))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(tan(S1))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu(exp(cos(S1 + exp(S2*_a0_**S1))))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu(exp(cos(S1 + exp(S2*_a0_**S1))))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu(exp(cos(S1 + exp(S2*_a0_**S1))))\n", - " 15%|█▌ | 226/1500 [00:14<01:43, 12.34it/s]:2: RuntimeWarning: invalid value encountered in power\n", - " return log(-relu(S2)/(_a0_*relu(relu(_a0_**S1))))\n", - ":2: RuntimeWarning: divide by zero encountered in divide\n", - " return log(-relu(S2)/(_a0_*relu(relu(_a0_**S1))))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return log(-relu(S2)/(_a0_*relu(relu(_a0_**S1))))\n", - ":2: RuntimeWarning: divide by zero encountered in divide\n", - " return log(-relu(S2)/(_a0_*relu(relu(_a0_**S1))))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return log(-relu(S2)/(_a0_*relu(relu(_a0_**S1))))\n", - ":2: RuntimeWarning: divide by zero encountered in divide\n", - " return log(-relu(S2)/(_a0_*relu(relu(_a0_**S1))))\n", - ":2: RuntimeWarning: divide by zero encountered in power\n", - " return relu(relu(relu(relu(log(S1)))**_a0_))\n", - ":2: RuntimeWarning: divide by zero encountered in power\n", - " return relu(relu(relu(relu(log(S1)))**_a0_))\n", - ":2: RuntimeWarning: divide by zero encountered in power\n", - " return relu(relu(relu(relu(log(S1)))**_a0_))\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return sqrt(cos(S2)/S1)\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return sqrt(cos(S2)/S1)\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return sqrt(cos(S2)/S1)\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return relu(S2/_a0_)/sqrt(tan(S2))\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return relu(S2/_a0_)/sqrt(tan(S2))\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return relu(S2/_a0_)/sqrt(tan(S2))\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return relu(_a0_**_a0_)\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return relu(_a0_**_a0_)\n", - " 15%|█▌ | 228/1500 [00:15<01:37, 13.01it/s]:2: RuntimeWarning: divide by zero encountered in scalar power\n", - " return relu(relu(relu(_a0_)**_a0_))\n", - ":2: RuntimeWarning: divide by zero encountered in scalar power\n", - " return relu(relu(relu(_a0_)**_a0_))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return sinh(_a0_/S2)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return sinh(_a0_/S2)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return sinh(_a0_/S2)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(tan(S1))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(tan(S1))\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return (S1 + _a0_)/(S1*sqrt(sin(_a0_)))\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return (S1 + _a0_)/(S1*sqrt(sin(_a0_)))\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return (S1 + _a0_)/(S1*sqrt(sin(_a0_)))\n", - " 15%|█▌ | 230/1500 [00:15<01:30, 14.06it/s]:2: RuntimeWarning: invalid value encountered in scalar power\n", - " return tanh(_a0_)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return tanh(_a0_)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return tanh(_a0_)**_a0_\n", - ":2: RuntimeWarning: divide by zero encountered in power\n", - " return relu(tan(S1))**_a0_\n", - ":2: RuntimeWarning: divide by zero encountered in power\n", - " return relu(tan(S1))**_a0_\n", - ":2: RuntimeWarning: divide by zero encountered in scalar power\n", - " return relu(relu(relu(_a0_)**_a0_))\n", - ":2: RuntimeWarning: divide by zero encountered in scalar power\n", - " return relu(relu(relu(_a0_)**_a0_))\n", - " 15%|█▌ | 232/1500 [00:15<01:25, 14.76it/s]:2: RuntimeWarning: invalid value encountered in sqrt\n", - " return log(-relu(S2)/(sqrt(_a0_)*relu(S1)))\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return log(-relu(S2)/(sqrt(_a0_)*relu(S1)))\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return log(-relu(S2)/(sqrt(_a0_)*relu(S1)))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(_a0_)/S1**(3/2)\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(_a0_)/S1**(3/2)\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return log(-relu(S2)/(_a0_*relu(_a0_**S1)))\n", - ":2: RuntimeWarning: divide by zero encountered in divide\n", - " return log(-relu(S2)/(_a0_*relu(_a0_**S1)))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return log(-relu(S2)/(_a0_*relu(_a0_**S1)))\n", - ":2: RuntimeWarning: divide by zero encountered in divide\n", - " return log(-relu(S2)/(_a0_*relu(_a0_**S1)))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return log(-relu(S2)/(_a0_*relu(_a0_**S1)))\n", - ":2: RuntimeWarning: divide by zero encountered in divide\n", - " return log(-relu(S2)/(_a0_*relu(_a0_**S1)))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu(sinh(S2*_a0_)**_a0_)\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu(sinh(S2*_a0_)**_a0_)\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu(sinh(S2*_a0_)**_a0_)\n", - " 16%|█▌ | 234/1500 [00:15<01:22, 15.28it/s]:2: RuntimeWarning: invalid value encountered in power\n", - " return (log(sinh(_a0_*abs(S2)))/S1)**sig(S1)\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return (log(sinh(_a0_*abs(S2)))/S1)**sig(S1)\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(-_a0_/S1)/S1\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(-_a0_/S1)/S1\n", - " 16%|█▌ | 236/1500 [00:15<01:21, 15.52it/s]:2: RuntimeWarning: invalid value encountered in log\n", - " return log(-2/relu(S1))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(-2/relu(S1))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(-2/relu(S1))\n", - ":2: RuntimeWarning: divide by zero encountered in scalar power\n", - " return relu(_a0_)**_a0_\n", - ":2: RuntimeWarning: divide by zero encountered in scalar power\n", - " return relu(_a0_)**_a0_\n", - ":2: RuntimeWarning: overflow encountered in power\n", - " return S1**(S1**S2)\n", - ":2: RuntimeWarning: overflow encountered in power\n", - " return S1**(S1**S2)\n", - ":2: RuntimeWarning: overflow encountered in power\n", - " return S1**(S1**S2)\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu(sinh(cos(S1))**_a0_)\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu(sinh(cos(S1))**_a0_)\n", - " 16%|█▌ | 238/1500 [00:15<01:19, 15.85it/s]:2: RuntimeWarning: invalid value encountered in log\n", - " return log(-relu(S2)/(relu(S1)*cosh(S2)))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(-relu(S2)/(relu(S1)*cosh(S2)))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(-relu(S2)/(relu(S1)*cosh(S2)))\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return relu(sqrt(cos(S1 + exp(S2*_a0_))))\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return relu(sqrt(cos(S1 + exp(S2*_a0_))))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(-relu(S2)/(_a0_*(S1 + _a0_)))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(-relu(S2)/(_a0_*(S1 + _a0_)))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(-relu(S2)/(_a0_*(S1 + _a0_)))\n", - ":2: RuntimeWarning: divide by zero encountered in power\n", - " return relu(relu(relu(relu(S2 + _a0_))**_a0_))\n", - ":2: RuntimeWarning: divide by zero encountered in power\n", - " return relu(relu(relu(relu(S2 + _a0_))**_a0_))\n", - ":2: RuntimeWarning: divide by zero encountered in power\n", - " return relu(relu(relu(relu(S2 + _a0_))**_a0_))\n", - ":2: RuntimeWarning: divide by zero encountered in scalar power\n", - " return relu(sinh(_a0_))**_a0_\n", - " 16%|█▌ | 240/1500 [00:15<01:20, 15.63it/s]:2: RuntimeWarning: invalid value encountered in log\n", - " return log(-1/(_a0_*relu(S1)))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return cos(S1**2)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return cos(S1**2)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return relu(sinh(sqrt(_a0_)))**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return relu(sinh(sqrt(_a0_)))**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return relu(sinh(sqrt(_a0_)))**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu(sinh(_a0_**S2)**_a0_)\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu(sinh(_a0_**S2)**_a0_)\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu(sinh(_a0_**S2)**_a0_)\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(-S2)\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(-S2)\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return cos(sinh(S1))**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return cos(sinh(S1))**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu(sinh(_a0_**(2*S1))**_a0_)\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu(sinh(_a0_**(2*S1))**_a0_)\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu(sinh(_a0_**(2*S1))**_a0_)\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return (S1 + _a0_)/(S1*sqrt(_a0_))\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return (S1 + _a0_)/(S1*sqrt(_a0_))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(S2/log(S1))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(S2/log(S1))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(S2/log(S1))\n", - " 16%|█▌ | 242/1500 [00:15<01:17, 16.17it/s]:2: RuntimeWarning: invalid value encountered in log\n", - " return log(-1/2*relu(S2)/(S2*_a0_))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return relu(S2)*sig(_a0_/S1)**(S1*log(_a0_))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return cos(S2)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return cos(S2)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return cos(S2)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return (S1 + _a0_)/(S1*sqrt(-S1))\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return (S1 + _a0_)/(S1*sqrt(-S1))\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return (S1 + _a0_)/(S1*sqrt(-S1))\n", - ":2: RuntimeWarning: divide by zero encountered in scalar power\n", - " return relu(relu(relu(_a0_)**_a0_))\n", - ":2: RuntimeWarning: divide by zero encountered in scalar power\n", - " return relu(relu(relu(_a0_)**_a0_))\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return relu(sinh(_a0_)**_a0_)\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return relu(sinh(_a0_)**_a0_)\n", - " 16%|█▋ | 244/1500 [00:16<01:23, 15.12it/s]:2: RuntimeWarning: divide by zero encountered in divide\n", - " return log(-relu(S2)/(_a0_*relu(sin(_a0_))))\n", - ":2: RuntimeWarning: divide by zero encountered in divide\n", - " return log(-relu(S2)/(_a0_*relu(sin(_a0_))))\n", - ":2: RuntimeWarning: divide by zero encountered in divide\n", - " return log(-relu(S2)/(_a0_*relu(sin(_a0_))))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(_a0_**(-1.0))\n", - ":2: RuntimeWarning: divide by zero encountered in power\n", - " return relu(relu(relu(-S1)**_a0_))\n", - ":2: RuntimeWarning: divide by zero encountered in power\n", - " return relu(relu(relu(-S1)**_a0_))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu(tan(S1**2)**_a0_)\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu(tan(S1**2)**_a0_)\n", - ":2: RuntimeWarning: divide by zero encountered in log\n", - " return log(-relu(log(S1))/(_a0_*relu(S1)))\n", - ":2: RuntimeWarning: divide by zero encountered in log\n", - " return log(-relu(log(S1))/(_a0_*relu(S1)))\n", - ":2: RuntimeWarning: divide by zero encountered in log\n", - " return log(-relu(log(S1))/(_a0_*relu(S1)))\n", - ":2: RuntimeWarning: divide by zero encountered in scalar power\n", - " return relu(_a0_)**_a0_\n", - ":2: RuntimeWarning: divide by zero encountered in scalar power\n", - " return relu(_a0_)**_a0_\n", - " 16%|█▋ | 246/1500 [00:16<01:23, 15.06it/s]:2: RuntimeWarning: invalid value encountered in power\n", - " return relu(S2*_a0_**S1)\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu(S2*_a0_**S1)\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(sin(S2))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(sin(S2))\n", - ":2: RuntimeWarning: divide by zero encountered in power\n", - " return relu(S1*_a0_)**_a0_\n", - ":2: RuntimeWarning: divide by zero encountered in power\n", - " return relu(S1*_a0_)**_a0_\n", - ":2: RuntimeWarning: overflow encountered in sinh\n", - " return relu(sinh(fac(S1)**2)**_a0_)\n", - ":2: RuntimeWarning: overflow encountered in sinh\n", - " return relu(sinh(fac(S1)**2)**_a0_)\n", - ":2: RuntimeWarning: overflow encountered in sinh\n", - " return relu(sinh(fac(S1)**2)**_a0_)\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(-cos(S2)/(_a0_*relu(S1)))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(-cos(S2)/(_a0_*relu(S1)))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu(S2*(_a0_/S1)**S1)\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu(S2*(_a0_/S1)**S1)\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu(S2*(_a0_/S1)**S1)\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return sinh(S1 + _a0_)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return sinh(S1 + _a0_)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return sinh(S1 + _a0_)**_a0_\n", - ":2: RuntimeWarning: divide by zero encountered in scalar power\n", - " return relu(_a0_)**_a0_\n", - ":2: RuntimeWarning: divide by zero encountered in scalar power\n", - " return relu(_a0_)**_a0_\n", - ":2: RuntimeWarning: overflow encountered in sinh\n", - " return relu(sinh(S1**S2)**_a0_)\n", - ":2: RuntimeWarning: overflow encountered in sinh\n", - " return relu(sinh(S1**S2)**_a0_)\n", - ":2: RuntimeWarning: overflow encountered in sinh\n", - " return relu(sinh(S1**S2)**_a0_)\n", - " 17%|█▋ | 248/1500 [00:16<01:20, 15.55it/s]:2: RuntimeWarning: invalid value encountered in log\n", - " return log(-relu(S2)*exp(-S1)/relu(S1))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(-relu(S2)*exp(-S1)/relu(S1))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(-relu(S2)*exp(-S1)/relu(S1))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(tan(S2))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(tan(S2))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(tan(S2))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(-S1**(-_a0_)*relu(S2)/_a0_)\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu(S2*(S1 + _a0_)**S1)\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu(S2*(S1 + _a0_)**S1)\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu(S2*(S1 + _a0_)**S1)\n", - " 17%|█▋ | 250/1500 [00:16<01:17, 16.16it/s]:2: RuntimeWarning: overflow encountered in power\n", - " return relu(S2)*sig(S2 + _a0_)**(S1*_a0_)\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu(S2*_a0_**S1)\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu(S2*_a0_**S1)\n", - ":2: RuntimeWarning: divide by zero encountered in power\n", - " return relu(relu(relu(S2/_a0_)**_a0_))\n", - ":2: RuntimeWarning: divide by zero encountered in power\n", - " return relu(relu(relu(S2/_a0_)**_a0_))\n", - ":2: RuntimeWarning: divide by zero encountered in power\n", - " return relu(relu(relu(S2/_a0_)**_a0_))\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return -sqrt(_a0_/S1)\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu(sinh(S2*_a0_)**_a0_)\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu(sinh(S2*_a0_)**_a0_)\n", - ":2: RuntimeWarning: divide by zero encountered in scalar power\n", - " return relu(_a0_)**_a0_\n", - ":2: RuntimeWarning: divide by zero encountered in scalar power\n", - " return relu(_a0_)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return cos(S1)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return cos(S1)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return cos(S1)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return sqrt(tan(S1))\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return sqrt(tan(S1))\n", - " 17%|█▋ | 252/1500 [00:16<01:14, 16.74it/s]:2: RuntimeWarning: invalid value encountered in log\n", - " return log(log(S1))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(log(S1))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(log(S1))\n", - ":2: RuntimeWarning: divide by zero encountered in scalar power\n", - " return relu(relu(relu(relu(_a0_))**_a0_))\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return relu(sinh(_a0_**_a0_)**_a0_)\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return relu(sinh(_a0_**_a0_)**_a0_)\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return relu(sinh(_a0_**_a0_)**_a0_)\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(-log(S2)/(_a0_*relu(S1)))\n", - ":2: RuntimeWarning: divide by zero encountered in scalar power\n", - " return relu(relu(relu(_a0_)**_a0_))\n", - ":2: RuntimeWarning: divide by zero encountered in scalar power\n", - " return relu(relu(relu(_a0_)**_a0_))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu(sinh(S2*_a0_)**_a0_)\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu(sinh(S2*_a0_)**_a0_)\n", - " 17%|█▋ | 254/1500 [00:16<01:13, 16.90it/s]:2: RuntimeWarning: divide by zero encountered in log\n", - " return log(-relu(_a0_)/(_a0_*relu(S1)))\n", - ":2: RuntimeWarning: divide by zero encountered in log\n", - " return log(-relu(_a0_)/(_a0_*relu(S1)))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return sinh(S1 + _a0_)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return sinh(S1 + _a0_)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu(S2*(_a0_**S1)**S1)\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu(S2*(_a0_**S1)**S1)\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu(S2*(_a0_**S1)**S1)\n", - ":2: RuntimeWarning: divide by zero encountered in scalar power\n", - " return relu(relu(relu(relu(_a0_))**_a0_))\n", - " 17%|█▋ | 256/1500 [00:16<01:11, 17.46it/s]:2: RuntimeWarning: divide by zero encountered in power\n", - " return relu(relu(relu(relu(S1 + _a0_))**_a0_))\n", - ":2: RuntimeWarning: divide by zero encountered in power\n", - " return relu(relu(relu(relu(S1 + _a0_))**_a0_))\n", - ":2: RuntimeWarning: divide by zero encountered in power\n", - " return relu(relu(relu(relu(S1 + _a0_))**_a0_))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(-relu(S2)/S2)\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(-relu(S2)/S2)\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return (S2/_a0_)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return (S2/_a0_)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu(sinh(S1 + _a0_)**_a0_)\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu(sinh(S1 + _a0_)**_a0_)\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu(sinh(S1 + _a0_)**_a0_)\n", - " 17%|█▋ | 260/1500 [00:17<01:13, 16.92it/s]:2: RuntimeWarning: invalid value encountered in power\n", - " return relu(S2*_a0_**S1)\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu(S2*_a0_**S1)\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return sqrt(_a0_/sin(S1))\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return sqrt(_a0_/sin(S1))\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return sqrt(_a0_/sin(S1))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(-relu(S2)/(relu(S1)*cos(_a0_)))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(-relu(S2)/(relu(S1)*cos(_a0_)))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(-relu(S2)/(relu(S1)*cos(_a0_)))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(log(S2)/S1)\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(log(S2)/S1)\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(log(S2)/S1)\n", - " 17%|█▋ | 262/1500 [00:17<01:12, 17.03it/s]:2: RuntimeWarning: divide by zero encountered in power\n", - " return relu(_a0_/S1)**_a0_\n", - ":2: RuntimeWarning: divide by zero encountered in power\n", - " return relu(_a0_/S1)**_a0_\n", - ":2: RuntimeWarning: divide by zero encountered in power\n", - " return relu(_a0_/S1)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu(sinh(sin(S1))**_a0_)\n", - ":2: RuntimeWarning: divide by zero encountered in power\n", - " return relu(-S1)**_a0_\n", - ":2: RuntimeWarning: divide by zero encountered in power\n", - " return relu(-S1)**_a0_\n", - ":2: RuntimeWarning: overflow encountered in sinh\n", - " return relu(sinh(S1**(2*S2))**_a0_)\n", - ":2: RuntimeWarning: overflow encountered in sinh\n", - " return relu(sinh(S1**(2*S2))**_a0_)\n", - ":2: RuntimeWarning: overflow encountered in sinh\n", - " return relu(sinh(S1**(2*S2))**_a0_)\n", - " 18%|█▊ | 264/1500 [00:17<01:12, 16.98it/s]:2: RuntimeWarning: invalid value encountered in power\n", - " return log(-_a0_**(-S2)*relu(S2)/relu(S1))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return log(-_a0_**(-S2)*relu(S2)/relu(S1))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return log(-_a0_**(-S2)*relu(S2)/relu(S1))\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return relu(_a0_**_a0_)\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu(relu(sin(relu(S1))**_a0_))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu(relu(sin(relu(S1))**_a0_))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return (_a0_/S2)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return (_a0_/S2)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return (_a0_/S2)**_a0_\n", - " 18%|█▊ | 266/1500 [00:17<01:15, 16.41it/s]:2: RuntimeWarning: invalid value encountered in log\n", - " return log(sin(relu(S2)/(_a0_*relu(S1))))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(sin(relu(S2)/(_a0_*relu(S1))))\n", - ":2: RuntimeWarning: divide by zero encountered in power\n", - " return relu(relu(relu(relu(-S2))**_a0_))\n", - ":2: RuntimeWarning: divide by zero encountered in power\n", - " return relu(relu(relu(relu(-S2))**_a0_))\n", - ":2: RuntimeWarning: divide by zero encountered in power\n", - " return relu(relu(relu(relu(-S2))**_a0_))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return (S2 + _a0_)**exp(S1)\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(-relu(S2)/(_a0_*(S1 + _a0_)))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(-relu(S2)/(_a0_*(S1 + _a0_)))\n", - " 18%|█▊ | 268/1500 [00:17<01:17, 15.94it/s]:2: RuntimeWarning: invalid value encountered in power\n", - " return tan(sinh(S1))**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return relu(sinh(_a0_)**_a0_)\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return relu(sinh(_a0_)**_a0_)\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(-relu(S2)/(S2*relu(S1)))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(-relu(S2)/(S2*relu(S1)))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu(S2*sig(_a0_**S1)**S1)\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu(S2*sig(_a0_**S1)**S1)\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu(S2*sig(_a0_**S1)**S1)\n", - ":2: RuntimeWarning: divide by zero encountered in power\n", - " return relu(-sinh(S1))**_a0_\n", - ":2: RuntimeWarning: divide by zero encountered in power\n", - " return relu(-sinh(S1))**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return (S2/_a0_)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return (S2/_a0_)**_a0_\n", - " 18%|█▊ | 270/1500 [00:17<01:18, 15.57it/s]:2: RuntimeWarning: divide by zero encountered in power\n", - " return relu(sinh(S2*_a0_))**_a0_\n", - ":2: RuntimeWarning: divide by zero encountered in power\n", - " return relu(sinh(S2*_a0_))**_a0_\n", - ":2: RuntimeWarning: divide by zero encountered in power\n", - " return relu(sinh(S2*_a0_))**_a0_\n", - ":2: RuntimeWarning: overflow encountered in power\n", - " return sinh(S1)**(S1**S1)\n", - ":2: RuntimeWarning: overflow encountered in power\n", - " return sinh(S1)**(S1**S1)\n", - ":2: RuntimeWarning: overflow encountered in power\n", - " return sinh(S1)**(S1**S1)\n", - " 18%|█▊ | 272/1500 [00:17<01:16, 16.10it/s]:2: RuntimeWarning: invalid value encountered in log\n", - " return log(-S1**_a0_/(_a0_*relu(S1)))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return sinh(S1/_a0_)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return sinh(S1/_a0_)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return sinh(S1/_a0_)**_a0_\n", - ":2: RuntimeWarning: divide by zero encountered in power\n", - " return relu(cos(S1))**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return sin(S2)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return sin(S2)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return sin(S2)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(-relu(S2)/(S2**2*relu(S1)))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(-relu(S2)/(S2**2*relu(S1)))\n", - " 18%|█▊ | 274/1500 [00:17<01:17, 15.88it/s]:2: RuntimeWarning: invalid value encountered in sqrt\n", - " return relu(S2/_a0_)/sqrt(-_a0_)\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return relu(S2/_a0_)/sqrt(-_a0_)\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return relu(S2/_a0_)/sqrt(-_a0_)\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return sinh(_a0_)**_a0_\n", - ":2: RuntimeWarning: divide by zero encountered in power\n", - " return relu(relu(relu(relu(cos(S2)))**_a0_))\n", - ":2: RuntimeWarning: divide by zero encountered in power\n", - " return relu(relu(relu(relu(cos(S2)))**_a0_))\n", - ":2: RuntimeWarning: divide by zero encountered in power\n", - " return relu(relu(relu(relu(cos(S2)))**_a0_))\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return sqrt(-S2)\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return sqrt(-S2)\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return sqrt(-S2)\n", - " 18%|█▊ | 276/1500 [00:18<01:16, 16.03it/s]:2: RuntimeWarning: divide by zero encountered in log\n", - " return log(-relu(_a0_/S1)/(_a0_*relu(S1)))\n", - ":2: RuntimeWarning: divide by zero encountered in log\n", - " return log(-relu(_a0_/S1)/(_a0_*relu(S1)))\n", - ":2: RuntimeWarning: divide by zero encountered in log\n", - " return log(-relu(_a0_/S1)/(_a0_*relu(S1)))\n", - ":2: RuntimeWarning: divide by zero encountered in scalar power\n", - " return relu(relu(relu(_a0_)**_a0_))\n", - ":2: RuntimeWarning: divide by zero encountered in scalar power\n", - " return relu(relu(relu(_a0_)**_a0_))\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return sqrt(tan(S2))\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return sqrt(tan(S2))\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return sqrt(tan(S2))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(-S1*relu(S2)/(S2*relu(S1)))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(-S1*relu(S2)/(S2*relu(S1)))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(-S1*relu(S2)/(S2*relu(S1)))\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return sinh(_a0_**_a0_)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return sinh(_a0_**_a0_)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return sinh(_a0_**_a0_)**_a0_\n", - ":2: RuntimeWarning: overflow encountered in sinh\n", - " return relu(sinh(S2**S2))**_a0_\n", - ":2: RuntimeWarning: overflow encountered in sinh\n", - " return relu(sinh(S2**S2))**_a0_\n", - " 19%|█▊ | 278/1500 [00:18<01:14, 16.35it/s]:2: RuntimeWarning: invalid value encountered in log\n", - " return log(-relu(S2)/(S1*relu(S1)))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(-relu(S2)/(S1*relu(S1)))\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return relu(S2/_a0_)/sqrt(sin(S2))\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return relu(S2/_a0_)/sqrt(sin(S2))\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return relu(S2/_a0_)/sqrt(sin(S2))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(-relu(S2)/(relu(S1)*sinh(S2)))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(-relu(S2)/(relu(S1)*sinh(S2)))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(-relu(S2)/(relu(S1)*sinh(S2)))\n", - ":2: RuntimeWarning: overflow encountered in power\n", - " return relu(relu(relu(relu(S1))**(S2**S2)))\n", - ":2: RuntimeWarning: overflow encountered in power\n", - " return relu(relu(relu(relu(S1))**(S2**S2)))\n", - ":2: RuntimeWarning: overflow encountered in power\n", - " return relu(relu(relu(relu(S1))**(S2**S2)))\n", - " 19%|█▊ | 280/1500 [00:18<01:13, 16.57it/s]:2: RuntimeWarning: invalid value encountered in power\n", - " return sinh(cos(S2))**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return sinh(cos(S2))**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return sinh(cos(S2))**_a0_\n", - ":2: RuntimeWarning: overflow encountered in power\n", - " return S1**(S2**S1)\n", - ":2: RuntimeWarning: overflow encountered in power\n", - " return S1**(S2**S1)\n", - ":2: RuntimeWarning: overflow encountered in power\n", - " return S1**(S2**S1)\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu(sinh(S2 + _a0_)**_a0_)\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu(sinh(S2 + _a0_)**_a0_)\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu(sinh(S2 + _a0_)**_a0_)\n", - ":2: RuntimeWarning: divide by zero encountered in power\n", - " return relu(relu(relu(relu(sin(S1)))**_a0_))\n", - ":2: RuntimeWarning: divide by zero encountered in power\n", - " return relu(relu(relu(relu(sin(S1)))**_a0_))\n", - ":2: RuntimeWarning: divide by zero encountered in power\n", - " return relu(relu(relu(relu(sin(S1)))**_a0_))\n", - " 19%|█▉ | 282/1500 [00:18<01:12, 16.81it/s]:2: RuntimeWarning: invalid value encountered in log\n", - " return log(-1/relu(S1))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(-1/relu(S1))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(tan(S1)/S1)\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(tan(S1)/S1)\n", - ":2: RuntimeWarning: divide by zero encountered in power\n", - " return relu(cos(S1))**_a0_\n", - ":2: RuntimeWarning: divide by zero encountered in scalar power\n", - " return relu(relu(relu(2*_a0_)**_a0_))\n", - ":2: RuntimeWarning: divide by zero encountered in scalar power\n", - " return relu(relu(relu(2*_a0_)**_a0_))\n", - ":2: RuntimeWarning: divide by zero encountered in scalar power\n", - " return relu(relu(relu(2*_a0_)**_a0_))\n", - ":2: RuntimeWarning: divide by zero encountered in log\n", - " return log(-relu(tan(_a0_))/(_a0_*relu(S1)))\n", - ":2: RuntimeWarning: divide by zero encountered in log\n", - " return log(-relu(tan(_a0_))/(_a0_*relu(S1)))\n", - ":2: RuntimeWarning: divide by zero encountered in log\n", - " return log(-relu(tan(_a0_))/(_a0_*relu(S1)))\n", - ":2: RuntimeWarning: overflow encountered in power\n", - " return relu(S2)*sig(2*_a0_)**(S1*_a0_)\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return S2**_a0_/log(_a0_)\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu(cos(S2)**_a0_)\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu(cos(S2)**_a0_)\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu(cos(S2)**_a0_)\n", - " 19%|█▉ | 284/1500 [00:18<01:14, 16.43it/s]:2: RuntimeWarning: invalid value encountered in log\n", - " return log(-1/relu(S1))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(-1/relu(S1))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return sinh(sin(S2))**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return sinh(sin(S2))**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return sinh(sin(S2))**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu((_a0_**S2)**_a0_)\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu((_a0_**S2)**_a0_)\n", - ":2: RuntimeWarning: divide by zero encountered in log\n", - " return log(-relu(_a0_)/(_a0_*relu(S1)))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu(S1**(_a0_**S1))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu(S1**(_a0_**S1))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu(S1**(_a0_**S1))\n", - ":2: RuntimeWarning: overflow encountered in power\n", - " return relu(sinh(S1**2)**(S2**S2))\n", - ":2: RuntimeWarning: overflow encountered in power\n", - " return relu(sinh(S1**2)**(S2**S2))\n", - ":2: RuntimeWarning: overflow encountered in power\n", - " return relu(sinh(S1**2)**(S2**S2))\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return sqrt(log(_a0_))\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return sqrt(log(_a0_))\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return sqrt(log(_a0_))\n", - " 19%|█▉ | 286/1500 [00:18<01:12, 16.81it/s]:2: RuntimeWarning: invalid value encountered in log\n", - " return log(-S1/(_a0_*relu(S1)))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu(sinh(S1*_a0_)**_a0_)\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu(sinh(S1*_a0_)**_a0_)\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu(sinh(S1*_a0_)**_a0_)\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return relu(log(cos(S1 + exp(S2*_a0_))))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return relu(log(cos(S1 + exp(S2*_a0_))))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu(sinh(log(S1))**_a0_)\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu(sinh(log(S1))**_a0_)\n", - " 19%|█▉ | 288/1500 [00:18<01:12, 16.65it/s]:2: RuntimeWarning: divide by zero encountered in log\n", - " return log(fac(relu(S2)/(_a0_*relu(S1))))\n", - ":2: RuntimeWarning: divide by zero encountered in log\n", - " return log(fac(relu(S2)/(_a0_*relu(S1))))\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return (S1 + _a0_)/(S1*sqrt(_a0_**3))\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return (S1 + _a0_)/(S1*sqrt(_a0_**3))\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return (S1 + _a0_)/(S1*sqrt(_a0_**3))\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return tanh(_a0_)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return tanh(_a0_)**_a0_\n", - " 19%|█▉ | 290/1500 [00:18<01:13, 16.36it/s]:2: RuntimeWarning: invalid value encountered in power\n", - " return relu(S2*(_a0_/S1)**S1)\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu(S2*(_a0_/S1)**S1)\n", - ":2: RuntimeWarning: overflow encountered in power\n", - " return relu(sinh(S1))**(S2**S2)\n", - ":2: RuntimeWarning: overflow encountered in power\n", - " return relu(sinh(S1))**(S2**S2)\n", - ":2: RuntimeWarning: overflow encountered in power\n", - " return relu(sinh(S1))**(S2**S2)\n", - ":2: RuntimeWarning: overflow encountered in sinh\n", - " return relu(sinh(S1**S1)**_a0_)\n", - ":2: RuntimeWarning: overflow encountered in sinh\n", - " return relu(sinh(S1**S1)**_a0_)\n", - ":2: RuntimeWarning: overflow encountered in sinh\n", - " return relu(sinh(S1**S1)**_a0_)\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(log(S2)/S1)\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(log(S2)/S1)\n", - ":2: RuntimeWarning: divide by zero encountered in scalar power\n", - " return relu(sinh(_a0_))**_a0_\n", - " 19%|█▉ | 292/1500 [00:18<01:11, 16.96it/s]:2: RuntimeWarning: invalid value encountered in log\n", - " return log(-tan(S2)/(_a0_*relu(S1)))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(-tan(S2)/(_a0_*relu(S1)))\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return relu(relu(_a0_**_a0_))\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return relu(relu(_a0_**_a0_))\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return relu(relu(_a0_**_a0_))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(-relu(S2)/(relu(S1)*tanh(S2)))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(-relu(S2)/(relu(S1)*tanh(S2)))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(-relu(S2)/(relu(S1)*tanh(S2)))\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return sinh(_a0_)**_a0_\n", - " 20%|█▉ | 294/1500 [00:19<01:11, 16.78it/s]:2: RuntimeWarning: divide by zero encountered in scalar power\n", - " return relu(sinh(_a0_))**_a0_\n", - ":2: RuntimeWarning: divide by zero encountered in scalar power\n", - " return fac(_a0_)**_a0_\n", - ":2: RuntimeWarning: divide by zero encountered in scalar power\n", - " return fac(_a0_)**_a0_\n", - ":2: RuntimeWarning: divide by zero encountered in scalar power\n", - " return relu(sinh(_a0_))**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu(sinh(cos(S1))**_a0_)\n", - " 20%|█▉ | 296/1500 [00:19<01:26, 13.94it/s]:2: RuntimeWarning: invalid value encountered in power\n", - " return log(-(relu(S2)/_a0_)**S1)\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return log(-(relu(S2)/_a0_)**S1)\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return sinh(_a0_)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return cos(S1)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu(relu(S2*(S1*_a0_)**S1))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu(relu(S2*(S1*_a0_)**S1))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu(relu(S2*(S1*_a0_)**S1))\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return sqrt(-S2)\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return sqrt(-S2)\n", - " 20%|█▉ | 298/1500 [00:19<01:19, 15.12it/s]:2: RuntimeWarning: divide by zero encountered in log\n", - " return log(fac(relu(S2)/(S1*_a0_)))\n", - ":2: RuntimeWarning: divide by zero encountered in log\n", - " return log(fac(relu(S2)/(S1*_a0_)))\n", - ":2: RuntimeWarning: divide by zero encountered in scalar power\n", - " return relu(relu(relu(sinh(relu(_a0_)))**_a0_))\n", - ":2: RuntimeWarning: divide by zero encountered in scalar power\n", - " return relu(relu(relu(sinh(relu(_a0_)))**_a0_))\n", - ":2: RuntimeWarning: divide by zero encountered in scalar power\n", - " return relu(relu(relu(sinh(relu(_a0_)))**_a0_))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu((S2 + _a0_)**_a0_)\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu((S2 + _a0_)**_a0_)\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu((S2 + _a0_)**_a0_)\n", - ":2: RuntimeWarning: divide by zero encountered in scalar power\n", - " return relu(_a0_)**_a0_\n", - ":2: RuntimeWarning: divide by zero encountered in scalar power\n", - " return relu(_a0_)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu(sinh(S1*_a0_)**_a0_)\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu(sinh(S1*_a0_)**_a0_)\n", - " 20%|██ | 300/1500 [00:19<01:15, 15.97it/s]:2: RuntimeWarning: invalid value encountered in power\n", - " return relu(S2)*log(sig(S1))**(S1*_a0_)\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu(S2)*log(sig(S1))**(S1*_a0_)\n", - ":2: RuntimeWarning: divide by zero encountered in scalar power\n", - " return relu(relu(relu(_a0_)**_a0_))\n", - ":2: RuntimeWarning: divide by zero encountered in scalar power\n", - " return relu(relu(relu(_a0_)**_a0_))\n", - ":2: RuntimeWarning: divide by zero encountered in scalar power\n", - " return relu(_a0_)**_a0_\n", - ":2: RuntimeWarning: divide by zero encountered in scalar power\n", - " return relu(_a0_)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(tan(S2)/S1)\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(tan(S2)/S1)\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(tan(S2)/S1)\n", - ":2: RuntimeWarning: divide by zero encountered in power\n", - " return relu(relu(relu(tan(S1))**_a0_))\n", - " 20%|██ | 302/1500 [00:19<01:14, 15.98it/s]:2: RuntimeWarning: invalid value encountered in log\n", - " return log(-(_a0_ + relu(S2))/S1)\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(-(_a0_ + relu(S2))/S1)\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(-relu(S2)/(S1*S2))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(-relu(S2)/(S1*S2))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return sin(S1)**_a0_\n", - ":2: RuntimeWarning: overflow encountered in power\n", - " return relu(S2)*sig(S2*_a0_)**(S1*_a0_)\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(tan(S1))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(tan(S1))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(tan(S1))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(tan(S1))\n", - " 20%|██ | 304/1500 [00:19<01:13, 16.20it/s]:2: RuntimeWarning: invalid value encountered in log\n", - " return log(-relu(S2**_a0_)/(S1*_a0_))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu(relu(S2*(_a0_**3)**S1))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu(relu(S2*(_a0_**3)**S1))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return exp(-sig(_a0_)/log(_a0_))/S1\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return exp(-sig(_a0_)/log(_a0_))/S1\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return exp(-sig(_a0_)/log(_a0_))/S1\n", - ":2: RuntimeWarning: divide by zero encountered in power\n", - " return relu(S2 + _a0_)**_a0_\n", - ":2: RuntimeWarning: divide by zero encountered in power\n", - " return relu(S2 + _a0_)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(cos(S2))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(cos(S2))\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return _a0_/sqrt(tan(S1))\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return _a0_/sqrt(tan(S1))\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return _a0_/sqrt(tan(S1))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu(exp(cos(S1 + exp(_a0_*_a0_**S2))))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu(exp(cos(S1 + exp(_a0_*_a0_**S2))))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu(exp(cos(S1 + exp(_a0_*_a0_**S2))))\n", - " 20%|██ | 306/1500 [00:19<01:15, 15.75it/s]:2: RuntimeWarning: divide by zero encountered in power\n", - " return relu(relu(relu(_a0_/S1)**_a0_))\n", - ":2: RuntimeWarning: divide by zero encountered in power\n", - " return relu(relu(relu(_a0_/S1)**_a0_))\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return sqrt(_a0_/sin(S2))\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return sqrt(_a0_/sin(S2))\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return sqrt(_a0_/sin(S2))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(-relu(S1)/(S1*_a0_))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(tan(_a0_))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(tan(_a0_))\n", - " 21%|██ | 308/1500 [00:20<01:12, 16.36it/s]:2: RuntimeWarning: invalid value encountered in log\n", - " return log(tan(relu(S2)/(S1*_a0_)))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(tan(relu(S2)/(S1*_a0_)))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return (S2/_a0_)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return (S2/_a0_)**_a0_\n", - ":2: RuntimeWarning: overflow encountered in power\n", - " return S2**(S1**S1)/(S1 + _a0_)\n", - ":2: RuntimeWarning: overflow encountered in power\n", - " return S2**(S1**S1)/(S1 + _a0_)\n", - ":2: RuntimeWarning: overflow encountered in power\n", - " return S2**(S1**S1)/(S1 + _a0_)\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return (S2 + sig(_a0_))*exp(-sqrt(_a0_))\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return (S2 + sig(_a0_))*exp(-sqrt(_a0_))\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return (S2 + sig(_a0_))*exp(-sqrt(_a0_))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(-relu(S2)/(S1*S2))\n", - " 21%|██ | 310/1500 [00:20<01:12, 16.40it/s]:2: RuntimeWarning: invalid value encountered in log\n", - " return log(-relu(S2)**_a0_/S1)\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(-relu(S2)**_a0_/S1)\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return sinh(_a0_)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return log(sqrt(relu(S2)/(S1*_a0_)))\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return log(sqrt(relu(S2)/(S1*_a0_)))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(log(S1)/S1)\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(log(S1)/S1)\n", - " 21%|██ | 312/1500 [00:20<01:12, 16.36it/s]:2: RuntimeWarning: invalid value encountered in power\n", - " return log(-_a0_**(-S2)*relu(S2)/S1)\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return log(-_a0_**(-S2)*relu(S2)/S1)\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return log(-_a0_**(-S2)*relu(S2)/S1)\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return sinh(S1*_a0_)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return sinh(S1*_a0_)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return sinh(S1*_a0_)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(S2/(S1 + _a0_))\n", - ":2: RuntimeWarning: divide by zero encountered in scalar power\n", - " return relu(sinh(_a0_**3))**_a0_\n", - ":2: RuntimeWarning: divide by zero encountered in scalar power\n", - " return relu(sinh(_a0_**3))**_a0_\n", - ":2: RuntimeWarning: divide by zero encountered in scalar power\n", - " return relu(sinh(_a0_**3))**_a0_\n", - " 21%|██ | 314/1500 [00:20<01:12, 16.35it/s]:2: RuntimeWarning: invalid value encountered in scalar power\n", - " return (_a0_**3)**_a0_/(S1 + _a0_)\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu(relu(S2*_a0_**S1))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu(relu(S2*_a0_**S1))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu(relu(S2*_a0_**S1))\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return log(-_a0_**_a0_/(S1*_a0_))\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return log(-_a0_**_a0_/(S1*_a0_))\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return log(-_a0_**_a0_/(S1*_a0_))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(cos(_a0_))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu((_a0_/S2)**_a0_)\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu((_a0_/S2)**_a0_)\n", - " 21%|██ | 316/1500 [00:20<01:11, 16.59it/s]:2: RuntimeWarning: invalid value encountered in scalar power\n", - " return relu(_a0_**_a0_)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return relu(_a0_**_a0_)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return relu(_a0_**_a0_)\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return relu(_a0_**_a0_)\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return relu(_a0_**_a0_)\n", - ":2: RuntimeWarning: overflow encountered in exp\n", - " return relu(exp(cos(S1 + exp(S1**S2*S2))))\n", - ":2: RuntimeWarning: invalid value encountered in cos\n", - " return relu(exp(cos(S1 + exp(S1**S2*S2))))\n", - ":2: RuntimeWarning: overflow encountered in exp\n", - " return relu(exp(cos(S1 + exp(S1**S2*S2))))\n", - ":2: RuntimeWarning: invalid value encountered in cos\n", - " return relu(exp(cos(S1 + exp(S1**S2*S2))))\n", - ":2: RuntimeWarning: overflow encountered in exp\n", - " return relu(exp(cos(S1 + exp(S1**S2*S2))))\n", - ":2: RuntimeWarning: invalid value encountered in cos\n", - " return relu(exp(cos(S1 + exp(S1**S2*S2))))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(tan(_a0_))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(tan(_a0_))\n", - " 21%|██ | 318/1500 [00:20<01:11, 16.58it/s]:2: RuntimeWarning: divide by zero encountered in scalar power\n", - " return relu(sinh(_a0_))**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(-tanh(S2)/(S1*_a0_))\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return relu(_a0_**_a0_)\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return relu(_a0_**_a0_)\n", - " 21%|██▏ | 320/1500 [00:20<01:10, 16.71it/s]:2: RuntimeWarning: invalid value encountered in log\n", - " return log(-relu(S2)/(S1*tan(S1)))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(-relu(S2)/(S1*tan(S1)))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(-relu(S2)/(S1*tan(S1)))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu(relu(sin(sinh(S1))**_a0_))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu(relu(sin(sinh(S1))**_a0_))\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return relu(sinh(_a0_)**_a0_)\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(-relu(S2)/(S1*S2**2))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(-relu(S2)/(S1*S2**2))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(-relu(S2)/(S1*S2**2))\n", - " 21%|██▏ | 322/1500 [00:20<01:11, 16.46it/s]:2: RuntimeWarning: invalid value encountered in scalar power\n", - " return relu(sinh(S1))**(_a0_**_a0_)\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return relu(sinh(S1))**(_a0_**_a0_)\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return relu(sinh(S1))**(_a0_**_a0_)\n", - ":2: RuntimeWarning: divide by zero encountered in power\n", - " return relu(relu(relu(-sinh(S1))**_a0_))\n", - ":2: RuntimeWarning: divide by zero encountered in power\n", - " return relu(relu(relu(-sinh(S1))**_a0_))\n", - ":2: RuntimeWarning: divide by zero encountered in power\n", - " return relu(relu(relu(-sinh(S1))**_a0_))\n", - " 22%|██▏ | 324/1500 [00:20<01:09, 16.87it/s]:2: RuntimeWarning: invalid value encountered in power\n", - " return relu(relu(S2*(S2*_a0_)**S1))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu(relu(S2*(S2*_a0_)**S1))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu(relu(S2*(S2*_a0_)**S1))\n", - ":2: RuntimeWarning: overflow encountered in sinh\n", - " return relu(relu(relu(sinh(S2**S2))**_a0_))\n", - ":2: RuntimeWarning: overflow encountered in sinh\n", - " return relu(relu(relu(sinh(S2**S2))**_a0_))\n", - ":2: RuntimeWarning: overflow encountered in sinh\n", - " return relu(relu(relu(sinh(S2**S2))**_a0_))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return (S2/_a0_)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return (S2/_a0_)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(-1/S1)\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(-1/S1)\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(-1/S1)\n", - ":2: RuntimeWarning: divide by zero encountered in scalar power\n", - " return relu(relu(relu(_a0_)**_a0_))\n", - ":2: RuntimeWarning: divide by zero encountered in scalar power\n", - " return relu(relu(relu(_a0_)**_a0_))\n", - ":2: RuntimeWarning: overflow encountered in exp\n", - " return exp(-sig(_a0_)/(S2 + _a0_))/S1\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return (_a0_**S1)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return (_a0_**S1)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return (_a0_**S1)**_a0_\n", - " 22%|██▏ | 326/1500 [00:21<01:13, 16.02it/s]:2: RuntimeWarning: invalid value encountered in sqrt\n", - " return exp(-sqrt(_a0_)/S1)/S1\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return exp(-sqrt(_a0_)/S1)/S1\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(-relu(S2)/(S1*log(S2)))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(-relu(S2)/(S1*log(S2)))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(-relu(S2)/(S1*log(S2)))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(tan(S2))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(tan(S2))\n", - ":2: RuntimeWarning: overflow encountered in power\n", - " return S2**(S2**S2)/(S1 + _a0_)\n", - ":2: RuntimeWarning: overflow encountered in power\n", - " return S2**(S2**S2)/(S1 + _a0_)\n", - ":2: RuntimeWarning: overflow encountered in power\n", - " return S2**(S2**S2)/(S1 + _a0_)\n", - " 22%|██▏ | 328/1500 [00:21<01:10, 16.52it/s]:2: RuntimeWarning: invalid value encountered in scalar power\n", - " return (_a0_**_a0_ + sig(_a0_))*exp(-S1)\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return (_a0_**_a0_ + sig(_a0_))*exp(-S1)\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return (_a0_**_a0_ + sig(_a0_))*exp(-S1)\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return relu(_a0_**_a0_)\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return relu(_a0_**_a0_)\n", - ":2: RuntimeWarning: divide by zero encountered in log\n", - " return log(log(_a0_)/S1)\n", - ":2: RuntimeWarning: divide by zero encountered in log\n", - " return log(log(_a0_)/S1)\n", - ":2: RuntimeWarning: divide by zero encountered in log\n", - " return log(log(_a0_)/S1)\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return log(-_a0_**(-S1)*relu(S2)/_a0_)\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(-_a0_**(-S1)*relu(S2)/_a0_)\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return log(-_a0_**(-S1)*relu(S2)/_a0_)\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(-_a0_**(-S1)*relu(S2)/_a0_)\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return log(-_a0_**(-S1)*relu(S2)/_a0_)\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(-_a0_**(-S1)*relu(S2)/_a0_)\n", - " 22%|██▏ | 330/1500 [00:21<01:11, 16.48it/s]:2: RuntimeWarning: invalid value encountered in power\n", - " return relu(relu(S2*(S2*_a0_)**S1))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu(relu(S2*(S2*_a0_)**S1))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu(relu(cos(sinh(S1))**_a0_))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu(relu(cos(sinh(S1))**_a0_))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu((S2*_a0_)**_a0_)\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu((S2*_a0_)**_a0_)\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu((S2*_a0_)**_a0_)\n", - ":2: RuntimeWarning: divide by zero encountered in power\n", - " return relu(S1*_a0_)**_a0_\n", - ":2: RuntimeWarning: divide by zero encountered in power\n", - " return relu(S1*_a0_)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu(sinh(cos(S2))**_a0_)\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu(sinh(cos(S2))**_a0_)\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu(sinh(cos(S2))**_a0_)\n", - ":2: RuntimeWarning: overflow encountered in exp\n", - " return relu(exp(cos(S1 + exp(S2*exp(S1)))))\n", - ":2: RuntimeWarning: invalid value encountered in cos\n", - " return relu(exp(cos(S1 + exp(S2*exp(S1)))))\n", - ":2: RuntimeWarning: overflow encountered in exp\n", - " return relu(exp(cos(S1 + exp(S2*exp(S1)))))\n", - ":2: RuntimeWarning: invalid value encountered in cos\n", - " return relu(exp(cos(S1 + exp(S2*exp(S1)))))\n", - ":2: RuntimeWarning: overflow encountered in exp\n", - " return relu(exp(cos(S1 + exp(S2*exp(S1)))))\n", - ":2: RuntimeWarning: invalid value encountered in cos\n", - " return relu(exp(cos(S1 + exp(S2*exp(S1)))))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(tan(S1))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(tan(S1))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return _a0_**S1/S1**(3/2)\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return _a0_**S1/S1**(3/2)\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu(relu(S2*(S1 + _a0_)**S1))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu(relu(S2*(S1 + _a0_)**S1))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu(relu(S2*(S1 + _a0_)**S1))\n", - " 22%|██▏ | 332/1500 [00:21<01:09, 16.71it/s]:2: RuntimeWarning: invalid value encountered in power\n", - " return relu(relu(S2*(S2*_a0_)**S1))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu(relu(S2*(S2*_a0_)**S1))\n", - ":2: RuntimeWarning: divide by zero encountered in power\n", - " return relu(relu(relu(S2 + _a0_)**_a0_))\n", - ":2: RuntimeWarning: divide by zero encountered in power\n", - " return relu(relu(relu(S2 + _a0_)**_a0_))\n", - ":2: RuntimeWarning: divide by zero encountered in power\n", - " return relu(relu(relu(S2 + _a0_)**_a0_))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu(log(S1)**_a0_)\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu(log(S1)**_a0_)\n", - " 22%|██▏ | 334/1500 [00:21<01:10, 16.49it/s]:2: RuntimeWarning: invalid value encountered in scalar power\n", - " return relu(sinh(_a0_)**_a0_)\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return relu(sqrt(cos(S1 + exp(S2*_a0_))))\n", - ":2: RuntimeWarning: divide by zero encountered in log\n", - " return log(-relu(_a0_)/(S1*_a0_))\n", - ":2: RuntimeWarning: divide by zero encountered in log\n", - " return log(-relu(_a0_)/(S1*_a0_))\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return sqrt(sin(S2))/sqrt(S1)\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return sqrt(sin(S2))/sqrt(S1)\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return sqrt(sin(S2))/sqrt(S1)\n", - " 22%|██▏ | 336/1500 [00:21<01:10, 16.62it/s]:2: RuntimeWarning: invalid value encountered in scalar power\n", - " return sinh(_a0_)**_a0_\n", - ":2: RuntimeWarning: divide by zero encountered in power\n", - " return relu(relu(relu(sinh(_a0_/S1))**_a0_))\n", - ":2: RuntimeWarning: divide by zero encountered in power\n", - " return relu(relu(relu(sinh(_a0_/S1))**_a0_))\n", - ":2: RuntimeWarning: divide by zero encountered in power\n", - " return relu(relu(relu(sinh(_a0_/S1))**_a0_))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu(cos(S2)**_a0_)\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu(cos(S2)**_a0_)\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return relu(sinh(tanh(_a0_))**_a0_)\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return relu(sinh(tanh(_a0_))**_a0_)\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return relu(sinh(tanh(_a0_))**_a0_)\n", - " 23%|██▎ | 338/1500 [00:21<01:10, 16.51it/s]:2: RuntimeWarning: invalid value encountered in log\n", - " return log(-relu(S2)/(S1*(S1 + S2)))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(-relu(S2)/(S1*(S1 + S2)))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(-relu(S2)/(S1*(S1 + S2)))\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return sin(_a0_)**abs(_a0_)/(S1 + _a0_)\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return relu(sinh(sin(_a0_))**_a0_)\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return relu(sinh(sin(_a0_))**_a0_)\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return relu(sinh(sin(_a0_))**_a0_)\n", - " 23%|██▎ | 340/1500 [00:21<01:12, 16.08it/s]:2: RuntimeWarning: invalid value encountered in sqrt\n", - " return sqrt(cos(S2)/S1)\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return sqrt(cos(S2)/S1)\n", - ":2: RuntimeWarning: divide by zero encountered in log\n", - " return log(-relu(S1 + _a0_)/(S1*_a0_))\n", - ":2: RuntimeWarning: divide by zero encountered in log\n", - " return log(-relu(S1 + _a0_)/(S1*_a0_))\n", - ":2: RuntimeWarning: divide by zero encountered in log\n", - " return log(-relu(S1 + _a0_)/(S1*_a0_))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return (relu(relu(S2*_a0_))/tan(S1))**sig(relu(S1))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return (relu(relu(S2*_a0_))/tan(S1))**sig(relu(S1))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return (relu(relu(S2*_a0_))/tan(S1))**sig(relu(S1))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu(relu(S2*_a0_**S1))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu(relu(S2*_a0_**S1))\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return relu(_a0_**_a0_)\n", - " 23%|██▎ | 342/1500 [00:22<01:11, 16.17it/s]:2: RuntimeWarning: invalid value encountered in log\n", - " return log(-relu(S2)/S1**2)\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(-relu(S2)/S1**2)\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return sin(S1)**_a0_\n", - ":2: RuntimeWarning: overflow encountered in power\n", - " return relu(S2)*sig(sig(S1))**(_a0_*exp(S2))\n", - ":2: RuntimeWarning: divide by zero encountered in scalar power\n", - " return relu(relu(relu(_a0_)**_a0_))\n", - ":2: RuntimeWarning: divide by zero encountered in scalar power\n", - " return relu(relu(relu(_a0_)**_a0_))\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return sqrt(S2 + _a0_)/sqrt(S1)\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return sqrt(S2*_a0_/S1)/sqrt(S1)\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return sqrt(cos(S1))\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return sqrt(cos(S1))\n", - " 23%|██▎ | 344/1500 [00:22<01:28, 13.07it/s]:2: RuntimeWarning: invalid value encountered in power\n", - " return sinh(S2 + _a0_)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return sinh(S2 + _a0_)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return sinh(S2 + _a0_)**_a0_\n", - ":2: RuntimeWarning: divide by zero encountered in scalar power\n", - " return relu(_a0_)**_a0_\n", - ":2: RuntimeWarning: divide by zero encountered in scalar power\n", - " return relu(_a0_)**_a0_\n", - ":2: RuntimeWarning: divide by zero encountered in scalar power\n", - " return relu(relu(relu(_a0_)**_a0_))\n", - ":2: RuntimeWarning: divide by zero encountered in scalar power\n", - " return relu(relu(relu(_a0_)**_a0_))\n", - " 23%|██▎ | 346/1500 [00:22<01:22, 14.00it/s]:2: RuntimeWarning: invalid value encountered in power\n", - " return tan(S2)**abs(_a0_)/(S1 + _a0_)\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return tan(S2)**abs(_a0_)/(S1 + _a0_)\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return tan(S2)**abs(_a0_)/(S1 + _a0_)\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return relu(S2/_a0_)/sqrt(S2*cos(S1))\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return relu(S2/_a0_)/sqrt(S2*cos(S1))\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return relu(S2/_a0_)/sqrt(S2*cos(S1))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(-sig(_a0_)/S1)/S1\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(-sig(_a0_)/S1)/S1\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(-_a0_)\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(-_a0_)\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(-_a0_)\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return sqrt(cos(S2))\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return sqrt(cos(S2))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return log(sinh(S1))**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return (_a0_ + _a0_**_a0_)/S1**(3/2)\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return (_a0_ + _a0_**_a0_)/S1**(3/2)\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return (_a0_ + _a0_**_a0_)/S1**(3/2)\n", - " 23%|██▎ | 348/1500 [00:22<01:19, 14.51it/s]:2: RuntimeWarning: invalid value encountered in log\n", - " return relu(relu(S2*sig(log(_a0_))**S1))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return relu(relu(S2*sig(log(_a0_))**S1))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return relu(relu(S2*sig(log(_a0_))**S1))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu(sinh(_a0_/S1)**_a0_)\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu(sinh(_a0_/S1)**_a0_)\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu(sinh(_a0_/S1)**_a0_)\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu(sin(S1)**_a0_)\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu(sin(S1)**_a0_)\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return S1**(_a0_**_a0_)\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return S1**(_a0_**_a0_)\n", - " 23%|██▎ | 350/1500 [00:22<01:14, 15.51it/s]:2: RuntimeWarning: divide by zero encountered in power\n", - " return relu(relu(relu(sinh(cos(S2)))**_a0_))\n", - ":2: RuntimeWarning: divide by zero encountered in power\n", - " return relu(relu(relu(sinh(cos(S2)))**_a0_))\n", - ":2: RuntimeWarning: divide by zero encountered in power\n", - " return relu(relu(relu(sinh(cos(S2)))**_a0_))\n", - " 23%|██▎ | 352/1500 [00:22<01:11, 15.99it/s]:2: RuntimeWarning: overflow encountered in sinh\n", - " return relu(sinh(S1**S1)**_a0_)\n", - ":2: RuntimeWarning: overflow encountered in sinh\n", - " return relu(sinh(S1**S1)**_a0_)\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return sqrt(log(S2)/S1)\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return sqrt(log(S2)/S1)\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return log(-(relu(S2)/_a0_)**S1)\n", - " 24%|██▎ | 354/1500 [00:22<01:08, 16.79it/s]:2: RuntimeWarning: invalid value encountered in power\n", - " return sinh(S2/_a0_)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return sinh(S2/_a0_)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return sinh(S2/_a0_)**_a0_\n", - ":2: RuntimeWarning: overflow encountered in exp\n", - " return relu(exp(cos(S1 + exp(S2*S2**S2))))\n", - ":2: RuntimeWarning: invalid value encountered in cos\n", - " return relu(exp(cos(S1 + exp(S2*S2**S2))))\n", - ":2: RuntimeWarning: overflow encountered in exp\n", - " return relu(exp(cos(S1 + exp(S2*S2**S2))))\n", - ":2: RuntimeWarning: invalid value encountered in cos\n", - " return relu(exp(cos(S1 + exp(S2*S2**S2))))\n", - ":2: RuntimeWarning: overflow encountered in exp\n", - " return relu(exp(cos(S1 + exp(S2*S2**S2))))\n", - ":2: RuntimeWarning: invalid value encountered in cos\n", - " return relu(exp(cos(S1 + exp(S2*S2**S2))))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return log(-(relu(S2)/_a0_)**S1)\n", - " 24%|██▎ | 356/1500 [00:22<01:08, 16.81it/s]:2: RuntimeWarning: invalid value encountered in log\n", - " return log(sinh(relu(S2)/(S1*_a0_)))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(sinh(relu(S2)/(S1*_a0_)))\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return relu(relu(relu(sinh(S1))**(_a0_**_a0_)))\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return relu(relu(relu(sinh(S1))**(_a0_**_a0_)))\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return relu(relu(relu(sinh(S1))**(_a0_**_a0_)))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return relu(log(_a0_))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return relu(log(_a0_))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return relu(exp(cos(exp(S2*_a0_) + log(_a0_))))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return relu(exp(cos(exp(S2*_a0_) + log(_a0_))))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return relu(exp(cos(exp(S2*_a0_) + log(_a0_))))\n", - " 24%|██▍ | 358/1500 [00:23<01:10, 16.27it/s]:2: RuntimeWarning: invalid value encountered in power\n", - " return log(-relu(S2)/(S1*_a0_))**S1\n", - ":2: RuntimeWarning: overflow encountered in power\n", - " return S2**(S2**S1)/(S1 + _a0_)\n", - ":2: RuntimeWarning: overflow encountered in power\n", - " return S2**(S2**S1)/(S1 + _a0_)\n", - ":2: RuntimeWarning: overflow encountered in power\n", - " return S2**(S2**S1)/(S1 + _a0_)\n", - ":2: RuntimeWarning: divide by zero encountered in scalar power\n", - " return relu(relu(relu(2*_a0_)**_a0_))\n", - ":2: RuntimeWarning: divide by zero encountered in scalar power\n", - " return relu(relu(relu(2*_a0_)**_a0_))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(-(S2 + _a0_)/(S1*_a0_))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(-(S2 + _a0_)/(S1*_a0_))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(-(S2 + _a0_)/(S1*_a0_))\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return sqrt(sin(S1))\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return sqrt(sin(S1))\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return sqrt(sin(S1))\n", - " 24%|██▍ | 360/1500 [00:23<01:10, 16.16it/s]:2: RuntimeWarning: invalid value encountered in log\n", - " return log(-S2*relu(S2)/_a0_**2)\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(-S2*relu(S2)/_a0_**2)\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(-S2*relu(S2)/_a0_**2)\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return (2*_a0_)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return (2*_a0_)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(sin(S2)/S1)\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(sin(S2)/S1)\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(sin(S2)/S1)\n", - " 24%|██▍ | 362/1500 [00:23<01:09, 16.27it/s]:2: RuntimeWarning: invalid value encountered in power\n", - " return (_a0_**S1 + sin(S2**_a0_))*exp(-S1)\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return relu(exp(cos(S1 + sqrt(S2*_a0_))))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(log(S2))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(log(S2))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return log(-(relu(S2)/_a0_)**S1)\n", - ":2: RuntimeWarning: overflow encountered in power\n", - " return S2**abs(S2**S1)/(S1 + _a0_)\n", - ":2: RuntimeWarning: overflow encountered in power\n", - " return S2**abs(S2**S1)/(S1 + _a0_)\n", - ":2: RuntimeWarning: overflow encountered in power\n", - " return S2**abs(S2**S1)/(S1 + _a0_)\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return relu(S2/_a0_)/sqrt(cos(S2))\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return relu(S2/_a0_)/sqrt(cos(S2))\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return relu(S2/_a0_)/sqrt(cos(S2))\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return sqrt(S2*_a0_)/sin(S1)\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return sqrt(log(_a0_)/S1)\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return sqrt(log(_a0_)/S1)\n", - " 24%|██▍ | 364/1500 [00:23<01:07, 16.73it/s]:2: RuntimeWarning: invalid value encountered in log\n", - " return log(-relu(tanh(S2))/(S1*_a0_))\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return relu(relu(S2*(_a0_**_a0_)**S1))\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return relu(relu(S2*(_a0_**_a0_)**S1))\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return relu(relu(S2*(_a0_**_a0_)**S1))\n", - ":2: RuntimeWarning: divide by zero encountered in scalar power\n", - " return relu(relu(relu(sinh(relu(_a0_)))**_a0_))\n", - ":2: RuntimeWarning: divide by zero encountered in scalar power\n", - " return relu(relu(relu(sinh(relu(_a0_)))**_a0_))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu((S2/_a0_)**_a0_)\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu((S2/_a0_)**_a0_)\n", - " 24%|██▍ | 366/1500 [00:23<01:08, 16.50it/s]:2: RuntimeWarning: invalid value encountered in power\n", - " return relu(sin(S1)**_a0_)\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(-relu(S2)/(S1*S2*_a0_))\n", - ":2: RuntimeWarning: overflow encountered in exp\n", - " return relu(exp(cos(S1 + exp(S1**S1*S2))))\n", - ":2: RuntimeWarning: invalid value encountered in cos\n", - " return relu(exp(cos(S1 + exp(S1**S1*S2))))\n", - ":2: RuntimeWarning: overflow encountered in exp\n", - " return relu(exp(cos(S1 + exp(S1**S1*S2))))\n", - ":2: RuntimeWarning: invalid value encountered in cos\n", - " return relu(exp(cos(S1 + exp(S1**S1*S2))))\n", - ":2: RuntimeWarning: overflow encountered in exp\n", - " return relu(exp(cos(S1 + exp(S1**S1*S2))))\n", - ":2: RuntimeWarning: invalid value encountered in cos\n", - " return relu(exp(cos(S1 + exp(S1**S1*S2))))\n", - " 25%|██▍ | 368/1500 [00:23<01:10, 16.15it/s]:2: RuntimeWarning: invalid value encountered in scalar power\n", - " return sinh(_a0_)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return sinh(_a0_)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(S2/cos(S2))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(S2/cos(S2))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(S2/cos(S2))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(-cos(S2)/(S1*_a0_))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(-cos(S2)/(S1*_a0_))\n", - " 25%|██▍ | 370/1500 [00:23<01:10, 16.05it/s]:2: RuntimeWarning: invalid value encountered in power\n", - " return relu((_a0_/S2)**_a0_)\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu((_a0_/S2)**_a0_)\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return relu(_a0_**_a0_)\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return relu(_a0_**_a0_)\n", - " 25%|██▍ | 372/1500 [00:23<01:10, 16.10it/s]:2: RuntimeWarning: divide by zero encountered in scalar power\n", - " return relu(relu(relu(sinh(_a0_))**_a0_))\n", - ":2: RuntimeWarning: divide by zero encountered in scalar power\n", - " return relu(relu(relu(sinh(_a0_))**_a0_))\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return log(-_a0_**_a0_/(S1*_a0_))\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return log(-_a0_**_a0_/(S1*_a0_))\n", - ":2: RuntimeWarning: divide by zero encountered in power\n", - " return relu(relu(relu(-S1)**_a0_))\n", - " 25%|██▍ | 374/1500 [00:24<01:41, 11.07it/s]:2: RuntimeWarning: invalid value encountered in log\n", - " return log(-relu(S2)/_a0_**2)\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(-relu(S2)/_a0_**2)\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return sqrt(-S2)\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return sqrt(-S2)\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return log(-(relu(S2)/_a0_)**S1)\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return _a0_**(sqrt(S1))/S1**(3/2)\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return _a0_**(sqrt(S1))/S1**(3/2)\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return sqrt(S2*_a0_) + exp(S1)\n", - " 25%|██▌ | 376/1500 [00:24<01:32, 12.09it/s]:2: RuntimeWarning: invalid value encountered in log\n", - " return log(-relu(S2)/(S1*tan(S2)))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(-relu(S2)/(S1*tan(S2)))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(-relu(S2)/(S1*tan(S2)))\n", - ":2: RuntimeWarning: overflow encountered in exp\n", - " return exp(-_a0_/(S1*S2))/S1\n", - ":2: RuntimeWarning: overflow encountered in exp\n", - " return exp(-_a0_/(S1*S2))/S1\n", - ":2: RuntimeWarning: overflow encountered in exp\n", - " return exp(-_a0_/(S1*S2))/S1\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return (_a0_ + _a0_**_a0_)/S1**(3/2)\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return (_a0_ + _a0_**_a0_)/S1**(3/2)\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return relu(relu(S2*sig(_a0_)**(_a0_**_a0_)))\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return relu(relu(S2*sig(_a0_)**(_a0_**_a0_)))\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return relu(relu(S2*sig(_a0_)**(_a0_**_a0_)))\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return S1*sqrt(S2*_a0_)/S2\n", - " 25%|██▌ | 378/1500 [00:24<01:25, 13.05it/s]:2: RuntimeWarning: invalid value encountered in log\n", - " return log(-relu(S2)/(_a0_*sin(_a0_)))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(-relu(S2)/(_a0_*sin(_a0_)))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(-relu(S2)/(_a0_*sin(_a0_)))\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return _a0_**abs(_a0_)/(S1 + _a0_)\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return (sqrt(S1) + _a0_)/(S1*sqrt(_a0_))\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return (sqrt(S1) + _a0_)/(S1*sqrt(_a0_))\n", - " 25%|██▌ | 380/1500 [00:24<01:20, 13.87it/s]:2: RuntimeWarning: invalid value encountered in log\n", - " return log(log(S2))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(log(S2))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return exp(-S1)*sin(S2**_a0_)**S2\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return exp(-S1)*sin(S2**_a0_)**S2\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return relu(sqrt(_a0_))\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return relu(sqrt(_a0_))\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return relu(sqrt(_a0_))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(S2/_a0_)/sqrt(S1*S2)\n", - " 25%|██▌ | 382/1500 [00:24<01:16, 14.53it/s]:2: RuntimeWarning: invalid value encountered in log\n", - " return log(log(S2)/S1)\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(log(S2)/S1)\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return sinh(S1)**log(_a0_)\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return sinh(S1)**log(_a0_)\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return sinh(S1)**log(_a0_)\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu(relu(tan(sinh(S1))**_a0_))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu(relu(tan(sinh(S1))**_a0_))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(-sig(_a0_)/S1)/S1\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return sin(sinh(S1))**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return sin(sinh(S1))**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return S1**(-S1)*sqrt(S2*_a0_)\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(-S2**(-S2)*relu(S2)/S1)\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(-S2**(-S2)*relu(S2)/S1)\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(-S2**(-S2)*relu(S2)/S1)\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return exp(-_a0_**_a0_/S1)/S1\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return exp(-_a0_**_a0_/S1)/S1\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return exp(-_a0_**_a0_/S1)/S1\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return log(sinh(S1))**_a0_\n", - " 26%|██▌ | 384/1500 [00:24<01:13, 15.10it/s]:2: RuntimeWarning: invalid value encountered in log\n", - " return log(relu(S2)/(S2*_a0_))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(relu(S2)/(S2*_a0_))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(relu(S2)/(S2*_a0_))\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return relu(S2/_a0_)/sqrt(-S1*_a0_)\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return relu(S2/_a0_)/sqrt(-S1*_a0_)\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return relu(S2/_a0_)/sqrt(-S1*_a0_)\n", - ":2: RuntimeWarning: divide by zero encountered in log\n", - " return log(-relu(_a0_)/(S1*_a0_))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return sinh(S2/_a0_)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return sinh(S2/_a0_)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return relu(sinh(S1))**(_a0_**_a0_)\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return relu(sinh(S1))**(_a0_**_a0_)\n", - " 26%|██▌ | 386/1500 [00:25<01:14, 15.03it/s]:2: RuntimeWarning: invalid value encountered in power\n", - " return log(S2)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return log(S2)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return log(S2)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return relu(_a0_**_a0_)\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return relu(_a0_**_a0_)\n", - ":2: RuntimeWarning: divide by zero encountered in power\n", - " return relu(relu(relu(sinh(sin(S2)))**_a0_))\n", - ":2: RuntimeWarning: divide by zero encountered in power\n", - " return relu(relu(relu(sinh(sin(S2)))**_a0_))\n", - ":2: RuntimeWarning: divide by zero encountered in power\n", - " return relu(relu(relu(sinh(sin(S2)))**_a0_))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(-relu(S2)/(S1*fac(S2)))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(-relu(S2)/(S1*fac(S2)))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(-relu(S2)/(S1*fac(S2)))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(_a0_)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(_a0_)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(_a0_)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return sqrt(_a0_*sinh(S2))*exp(-S1)\n", - " 26%|██▌ | 388/1500 [00:25<01:16, 14.58it/s]:2: RuntimeWarning: invalid value encountered in power\n", - " return exp(-S1)*sin(S2**_a0_)**S2\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return sqrt(S2*_a0_)*exp(-S1 - _a0_)\n", - ":2: RuntimeWarning: divide by zero encountered in log\n", - " return log(-relu(log(S2))/(S1*_a0_))\n", - ":2: RuntimeWarning: divide by zero encountered in log\n", - " return log(-relu(log(S2))/(S1*_a0_))\n", - ":2: RuntimeWarning: divide by zero encountered in log\n", - " return log(-relu(log(S2))/(S1*_a0_))\n", - " 26%|██▌ | 390/1500 [00:25<01:14, 14.90it/s]:2: RuntimeWarning: invalid value encountered in power\n", - " return (S2/_a0_)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return (S2/_a0_)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(-1/S1)\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(-1/S1)\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return (S2/_a0_)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return (S2/_a0_)**_a0_\n", - ":2: RuntimeWarning: divide by zero encountered in power\n", - " return relu(relu(relu(S2 + _a0_)**_a0_))\n", - ":2: RuntimeWarning: divide by zero encountered in power\n", - " return relu(relu(relu(S2 + _a0_)**_a0_))\n", - ":2: RuntimeWarning: divide by zero encountered in divide\n", - " return (sqrt(S1) + _a0_)/(S1*sqrt(relu(_a0_)))\n", - ":2: RuntimeWarning: divide by zero encountered in divide\n", - " return (sqrt(S1) + _a0_)/(S1*sqrt(relu(_a0_)))\n", - ":2: RuntimeWarning: divide by zero encountered in divide\n", - " return (sqrt(S1) + _a0_)/(S1*sqrt(relu(_a0_)))\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return S1 + sqrt(_a0_/S1)\n", - " 26%|██▌ | 392/1500 [00:25<01:16, 14.52it/s]:2: RuntimeWarning: invalid value encountered in power\n", - " return relu(relu(S2*tanh(_a0_)**S1))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu(relu(S2*tanh(_a0_)**S1))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(S2/tan(S2))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(S2/tan(S2))\n", - ":2: RuntimeWarning: divide by zero encountered in scalar power\n", - " return relu(_a0_)**_a0_\n", - ":2: RuntimeWarning: divide by zero encountered in scalar power\n", - " return relu(_a0_)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return (_a0_ + _a0_**S1)/S1**(3/2)\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return (_a0_ + _a0_**S1)/S1**(3/2)\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return (_a0_ + _a0_**S1)/S1**(3/2)\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return sinh(S1)**(sqrt(_a0_))\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return sinh(S1)**(sqrt(_a0_))\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return sinh(S1)**(sqrt(_a0_))\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return (sqrt(S1) + _a0_)/(S1*sqrt(sin(_a0_)))\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return (sqrt(S1) + _a0_)/(S1*sqrt(sin(_a0_)))\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return (sqrt(S1) + _a0_)/(S1*sqrt(sin(_a0_)))\n", - " 26%|██▋ | 394/1500 [00:25<01:12, 15.36it/s]:2: RuntimeWarning: invalid value encountered in log\n", - " return log(-1/S1)\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(-1/S1)\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return (S2 + _a0_)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return (S2 + _a0_)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu((S1*_a0_)**_a0_)\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu((S1*_a0_)**_a0_)\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu((S1*_a0_)**_a0_)\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return S2*sqrt(S2*_a0_)*exp(-S1)\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu(sinh(cos(S2))**_a0_)\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu(sinh(cos(S2))**_a0_)\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return relu(sinh(sqrt(_a0_)))**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return relu(sinh(sqrt(_a0_)))**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return sqrt(S2*_a0_)*exp(-_a0_)\n", - " 26%|██▋ | 396/1500 [00:25<01:13, 15.04it/s]:2: RuntimeWarning: invalid value encountered in log\n", - " return log(-relu(S2)/S2)\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(-relu(S2)/S2)\n", - ":2: RuntimeWarning: divide by zero encountered in scalar power\n", - " return relu(relu(relu(2*_a0_)**_a0_))\n", - ":2: RuntimeWarning: divide by zero encountered in scalar power\n", - " return relu(relu(relu(2*_a0_)**_a0_))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return sin(sinh(S1))**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu(exp(cos(S1 + exp(S2*_a0_*_a0_**(2*S2)))))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu(exp(cos(S1 + exp(S2*_a0_*_a0_**(2*S2)))))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu(exp(cos(S1 + exp(S2*_a0_*_a0_**(2*S2)))))\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return exp(-S1)*sqrt(cos(S1))\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return exp(-S1)*sqrt(cos(S1))\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return exp(-S1)*sqrt(cos(S1))\n", - " 27%|██▋ | 398/1500 [00:25<01:08, 16.01it/s]:2: RuntimeWarning: invalid value encountered in power\n", - " return (relu(relu(S2*_a0_))/tan(S2))**sig(S1**2)\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return (relu(relu(S2*_a0_))/tan(S2))**sig(S1**2)\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return (relu(relu(S2*_a0_))/tan(S2))**sig(S1**2)\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return relu(S2/_a0_)/sqrt(tan(S2))\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return relu(S2/_a0_)/sqrt(tan(S2))\n", - ":2: RuntimeWarning: divide by zero encountered in scalar power\n", - " return relu(sinh(_a0_))**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return sinh(_a0_)**_a0_\n", - " 27%|██▋ | 400/1500 [00:25<01:08, 15.96it/s]:2: RuntimeWarning: invalid value encountered in log\n", - " return log(-S1**(-_a0_)*relu(S2)/S1)\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(-S1**(-_a0_)*relu(S2)/S1)\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(-S1**(-_a0_)*relu(S2)/S1)\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return (_a0_**3)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return (_a0_**3)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return sqrt(sin(S1))\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return sqrt(sin(S1))\n", - " 27%|██▋ | 402/1500 [00:26<01:10, 15.62it/s]:2: RuntimeWarning: invalid value encountered in power\n", - " return relu(relu(S2*(S1 + _a0_)**S1))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu(relu(S2*(S1 + _a0_)**S1))\n", - ":2: RuntimeWarning: overflow encountered in power\n", - " return relu(sinh(S1)**(S1**S1))\n", - ":2: RuntimeWarning: overflow encountered in power\n", - " return relu(sinh(S1)**(S1**S1))\n", - ":2: RuntimeWarning: overflow encountered in power\n", - " return relu(sinh(S1)**(S1**S1))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(log(S1)/S1)\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(log(S1)/S1)\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return sqrt(S2*_a0_)*exp(-S1)/S1\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(-relu(S2)/_a0_**2)\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return relu(sinh(_a0_)**_a0_)\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return relu(sinh(sqrt(_a0_)))**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return relu(sinh(sqrt(_a0_)))**_a0_\n", - " 27%|██▋ | 404/1500 [00:26<01:09, 15.86it/s]:2: RuntimeWarning: invalid value encountered in log\n", - " return log(-relu(S2)**_a0_/S1)\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu(relu(S2*(_a0_**2)**(_a0_**S2)))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu(relu(S2*(_a0_**2)**(_a0_**S2)))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu(relu(S2*(_a0_**2)**(_a0_**S2)))\n", - ":2: RuntimeWarning: divide by zero encountered in log\n", - " return log(-relu(_a0_)/(S1*_a0_))\n", - ":2: RuntimeWarning: divide by zero encountered in power\n", - " return relu(sin(S1))**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(-relu(S2)**_a0_/S1)\n", - " 27%|██▋ | 407/1500 [00:26<01:02, 17.37it/s]:2: RuntimeWarning: invalid value encountered in log\n", - " return log(-S2**(-S2)*relu(S2)/_a0_)\n", - ":2: RuntimeWarning: divide by zero encountered in power\n", - " return relu(log(S1))**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return (sqrt(S1) + _a0_)**(S1**(3/2))\n", - ":2: RuntimeWarning: overflow encountered in power\n", - " return S2**(S2**S1)/(S1 + _a0_)\n", - ":2: RuntimeWarning: overflow encountered in power\n", - " return S2**(S2**S1)/(S1 + _a0_)\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu(sinh(S1)**(_a0_**S2))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu(sinh(S1)**(_a0_**S2))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu(sinh(S1)**(_a0_**S2))\n", - ":2: RuntimeWarning: divide by zero encountered in scalar power\n", - " return relu(relu(relu(_a0_)**_a0_))\n", - ":2: RuntimeWarning: divide by zero encountered in scalar power\n", - " return relu(relu(relu(_a0_)**_a0_))\n", - ":2: RuntimeWarning: divide by zero encountered in scalar power\n", - " return relu(sinh(_a0_))**_a0_\n", - " 27%|██▋ | 409/1500 [00:26<01:02, 17.47it/s]:2: RuntimeWarning: divide by zero encountered in log\n", - " return log(-relu(tan(_a0_))/(S1*_a0_))\n", - ":2: RuntimeWarning: divide by zero encountered in log\n", - " return log(-relu(tan(_a0_))/(S1*_a0_))\n", - ":2: RuntimeWarning: divide by zero encountered in log\n", - " return log(-relu(tan(_a0_))/(S1*_a0_))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu(log(S1)**_a0_)\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return (S2 + sin(sqrt(_a0_)))*exp(-S1)\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return relu(relu(S2/_a0_)/sqrt(S1*cos(S2)))\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return relu(relu(S2/_a0_)/sqrt(S1*cos(S2)))\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return relu(relu(S2/_a0_)/sqrt(S1*cos(S2)))\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return sqrt(-_a0_/S2)\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return sqrt(-_a0_/S2)\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return sqrt(-_a0_/S2)\n", - " 27%|██▋ | 411/1500 [00:26<01:00, 17.88it/s]:2: RuntimeWarning: invalid value encountered in log\n", - " return log(-relu(S2)/_a0_**2)\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return sinh(sin(S1))**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return sinh(sin(S1))**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return sinh(sin(S1))**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return sinh(_a0_)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return sinh(_a0_)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(-1/_a0_**2)\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(-1/_a0_**2)\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(-1/_a0_**2)\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return sinh(tan(S1))**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return sinh(tan(S1))**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return sinh(tan(S1))**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return sqrt(tan(S2))\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return sqrt(tan(S2))\n", - " 28%|██▊ | 413/1500 [00:26<01:01, 17.66it/s]:2: RuntimeWarning: divide by zero encountered in power\n", - " return relu(sinh(sin(S2)))**_a0_\n", - ":2: RuntimeWarning: divide by zero encountered in power\n", - " return relu(sinh(sin(S2)))**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(sinh(relu(S2)/(S1*_a0_)))\n", - ":2: RuntimeWarning: overflow encountered in power\n", - " return relu(sinh(S1)**(S2**S1))\n", - ":2: RuntimeWarning: overflow encountered in power\n", - " return relu(sinh(S1)**(S2**S1))\n", - ":2: RuntimeWarning: overflow encountered in power\n", - " return relu(sinh(S1)**(S2**S1))\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return (sqrt(S1) + _a0_)/(S1*sqrt(_a0_))\n", - " 28%|██▊ | 415/1500 [00:26<01:03, 17.10it/s]:2: RuntimeWarning: invalid value encountered in log\n", - " return log(-(_a0_ + relu(S2))/S1)\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return (relu(relu(S2/_a0_))/sin(_a0_))**sig(S1**2)\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return (relu(relu(S2/_a0_))/sin(_a0_))**sig(S1**2)\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return (relu(relu(S2/_a0_))/sin(_a0_))**sig(S1**2)\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return relu(sinh(log(_a0_))**_a0_)\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return relu(sinh(log(_a0_))**_a0_)\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return relu(sinh(log(_a0_))**_a0_)\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu(relu(relu(_a0_**S2)**_a0_))\n", - ":2: RuntimeWarning: divide by zero encountered in power\n", - " return relu(relu(relu(_a0_**S2)**_a0_))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu(relu(relu(_a0_**S2)**_a0_))\n", - ":2: RuntimeWarning: divide by zero encountered in power\n", - " return relu(relu(relu(_a0_**S2)**_a0_))\n", - ":2: RuntimeWarning: divide by zero encountered in power\n", - " return relu(S2*_a0_)**_a0_\n", - ":2: RuntimeWarning: divide by zero encountered in power\n", - " return relu(S2*_a0_)**_a0_\n", - ":2: RuntimeWarning: divide by zero encountered in power\n", - " return relu(S2*_a0_)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return sqrt(S2*_a0_)/(S1*S2)\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(-1/(S1*_a0_))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return exp(-S1)*sin(S2**_a0_)**S2\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu(sinh(S2/_a0_)**_a0_)\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu(sinh(S2/_a0_)**_a0_)\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu(sinh(S2/_a0_)**_a0_)\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return sqrt(S2*_a0_)\n", - " 28%|██▊ | 417/1500 [00:26<01:05, 16.59it/s]:2: RuntimeWarning: invalid value encountered in sqrt\n", - " return sqrt(S2*_a0_)/S1**2\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return sqrt(-sig(S2)/_a0_)\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return sqrt(-sig(S2)/_a0_)\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return sqrt(-sig(S2)/_a0_)\n", - ":2: RuntimeWarning: divide by zero encountered in power\n", - " return relu(relu(relu(S2/_a0_)**_a0_))\n", - ":2: RuntimeWarning: divide by zero encountered in power\n", - " return relu(relu(relu(S2/_a0_)**_a0_))\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return (sqrt(_a0_) + _a0_)/S1**(3/2)\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return (sqrt(_a0_) + _a0_)/S1**(3/2)\n", - " 28%|██▊ | 419/1500 [00:27<01:04, 16.66it/s]:2: RuntimeWarning: invalid value encountered in power\n", - " return relu((_a0_/S2)**_a0_)\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu((_a0_/S2)**_a0_)\n", - ":2: RuntimeWarning: divide by zero encountered in log\n", - " return log(-relu(_a0_)/(S1*_a0_))\n", - ":2: RuntimeWarning: divide by zero encountered in power\n", - " return relu(sinh(_a0_/S2))**_a0_\n", - ":2: RuntimeWarning: divide by zero encountered in power\n", - " return relu(sinh(_a0_/S2))**_a0_\n", - " 28%|██▊ | 421/1500 [00:27<01:05, 16.39it/s]:2: RuntimeWarning: invalid value encountered in log\n", - " return log(-S1**(-_a0_)*relu(S2)/S1)\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(-S1**(-_a0_)*relu(S2)/S1)\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return relu(_a0_**_a0_)\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return relu(_a0_**_a0_)\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return _a0_**(S2/_a0_)\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return _a0_**(S2/_a0_)\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return sinh(S1)**(_a0_**_a0_)\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return sinh(S1)**(_a0_**_a0_)\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return sinh(S1)**(_a0_**_a0_)\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu(sinh(sin(S2))**_a0_)\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu(sinh(sin(S2))**_a0_)\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu(sinh(sin(S2))**_a0_)\n", - ":2: RuntimeWarning: overflow encountered in exp\n", - " return relu(exp(fac(S1 + exp(S2**2/_a0_))))\n", - ":2: RuntimeWarning: divide by zero encountered in power\n", - " return relu(-sinh(S2))**_a0_\n", - ":2: RuntimeWarning: divide by zero encountered in power\n", - " return relu(-sinh(S2))**_a0_\n", - ":2: RuntimeWarning: divide by zero encountered in power\n", - " return relu(-sinh(S2))**_a0_\n", - " 28%|██▊ | 423/1500 [00:27<01:07, 15.92it/s]:2: RuntimeWarning: invalid value encountered in log\n", - " return log(tan(relu(S2)/(S1*_a0_)))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu(relu(S2*(S2 + _a0_)**S1))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu(relu(S2*(S2 + _a0_)**S1))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu(relu(S2*(S2 + _a0_)**S1))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(-1/S1)\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(-1/S1)\n", - ":2: RuntimeWarning: divide by zero encountered in power\n", - " return relu(S2*_a0_)**_a0_\n", - ":2: RuntimeWarning: divide by zero encountered in power\n", - " return relu(S2*_a0_)**_a0_\n", - " 28%|██▊ | 425/1500 [00:27<01:04, 16.67it/s]:2: RuntimeWarning: invalid value encountered in power\n", - " return sinh(_a0_**S1)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return sinh(_a0_**S1)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return sinh(_a0_**S1)**_a0_\n", - ":2: RuntimeWarning: overflow encountered in power\n", - " return S1**(S1**S2)\n", - ":2: RuntimeWarning: overflow encountered in power\n", - " return S1**(S1**S2)\n", - ":2: RuntimeWarning: overflow encountered in power\n", - " return relu(sinh(S1))**(S1**S1)\n", - ":2: RuntimeWarning: overflow encountered in power\n", - " return relu(sinh(S1))**(S1**S1)\n", - ":2: RuntimeWarning: overflow encountered in power\n", - " return relu(sinh(S1))**(S1**S1)\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu(relu(cos(sinh(S1))**_a0_))\n", - " 28%|██▊ | 427/1500 [00:27<01:05, 16.38it/s]:2: RuntimeWarning: invalid value encountered in log\n", - " return log(-relu(S2)/S1**4)\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(-relu(S2)/S1**4)\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(-relu(S2)/S1**4)\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return relu(log(S2/_a0_)/sqrt(S1*S2))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(-1/(S2*_a0_))\n", - ":2: RuntimeWarning: divide by zero encountered in power\n", - " return relu(relu(relu(sinh(tan(S1)))**_a0_))\n", - ":2: RuntimeWarning: divide by zero encountered in power\n", - " return relu(relu(relu(sinh(tan(S1)))**_a0_))\n", - ":2: RuntimeWarning: divide by zero encountered in power\n", - " return relu(relu(relu(sinh(tan(S1)))**_a0_))\n", - " 29%|██▊ | 429/1500 [00:27<01:06, 16.11it/s]:2: RuntimeWarning: invalid value encountered in power\n", - " return sinh(S1 + _a0_)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return sinh(S1 + _a0_)**_a0_\n", - ":2: RuntimeWarning: divide by zero encountered in power\n", - " return relu(relu(relu(sinh(sin(S1)))**_a0_))\n", - ":2: RuntimeWarning: divide by zero encountered in power\n", - " return relu(relu(relu(sinh(sin(S1)))**_a0_))\n", - ":2: RuntimeWarning: divide by zero encountered in power\n", - " return relu(relu(relu(sinh(sin(S1)))**_a0_))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu(relu(S2*(S2/_a0_)**S1))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu(relu(S2*(S2/_a0_)**S1))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu(relu(S2*(S2/_a0_)**S1))\n", - " 29%|██▊ | 431/1500 [00:27<01:05, 16.25it/s]:2: RuntimeWarning: invalid value encountered in log\n", - " return log(S2/tan(S2))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(S2/tan(S2))\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return relu(relu(S2*(_a0_**2)**(sqrt(_a0_))))\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return relu(relu(S2*(_a0_**2)**(sqrt(_a0_))))\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return relu(relu(S2*(_a0_**2)**(sqrt(_a0_))))\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return sqrt(log(S2)/S1)\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu((S2*_a0_)**_a0_)\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu((S2*_a0_)**_a0_)\n", - " 29%|██▉ | 433/1500 [00:27<01:07, 15.74it/s]:2: RuntimeWarning: invalid value encountered in log\n", - " return log(-sin(S2)/(S1*_a0_))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(-sin(S2)/(S1*_a0_))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu(relu(S2*sin(_a0_)**S1))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu(relu(S2*sin(_a0_)**S1))\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return relu(_a0_**_a0_)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return relu(_a0_**_a0_)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return relu(exp(cos(S1 + sqrt(S2**2/_a0_))))\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return relu(exp(cos(S1 + sqrt(S2**2/_a0_))))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu(_a0_**S2)*sig(sig(S1))**(-S1*_a0_)\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu(_a0_**S2)*sig(sig(S1))**(-S1*_a0_)\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu(_a0_**S2)*sig(sig(S1))**(-S1*_a0_)\n", - " 29%|██▉ | 435/1500 [00:28<01:08, 15.44it/s]:2: RuntimeWarning: overflow encountered in sinh\n", - " return sinh(S2**S1)**_a0_\n", - ":2: RuntimeWarning: overflow encountered in sinh\n", - " return sinh(S2**S1)**_a0_\n", - ":2: RuntimeWarning: overflow encountered in sinh\n", - " return sinh(S2**S1)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return (2*_a0_)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return (2*_a0_)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return sqrt(_a0_*cos(S1))*exp(-S1)\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return sqrt(_a0_*cos(S1))*exp(-S1)\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return sqrt(_a0_*cos(S1))*exp(-S1)\n", - " 29%|██▉ | 437/1500 [00:28<01:06, 16.04it/s]:2: RuntimeWarning: divide by zero encountered in log\n", - " return log(-relu(_a0_/S2)/(S1*_a0_))\n", - ":2: RuntimeWarning: divide by zero encountered in log\n", - " return log(-relu(_a0_/S2)/(S1*_a0_))\n", - ":2: RuntimeWarning: divide by zero encountered in log\n", - " return log(-relu(_a0_/S2)/(S1*_a0_))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu(tan(S1)**_a0_)\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu(tan(S1)**_a0_)\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return (log(relu(S2/_a0_))/S1)**sig(S1)\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return (log(relu(S2/_a0_))/S1)**sig(S1)\n", - ":2: RuntimeWarning: divide by zero encountered in power\n", - " return relu(S2 + _a0_)**_a0_\n", - ":2: RuntimeWarning: divide by zero encountered in power\n", - " return relu(S2 + _a0_)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return sqrt(_a0_*log(S2))*exp(-S1)\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return sqrt(_a0_*log(S2))*exp(-S1)\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return sqrt(_a0_*log(S2))*exp(-S1)\n", - " 29%|██▉ | 439/1500 [00:28<01:09, 15.35it/s]:2: RuntimeWarning: invalid value encountered in log\n", - " return log(relu(S2)/(S1*_a0_))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(relu(S2)/(S1*_a0_))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(relu(S2)/(S1*_a0_))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu(relu(S2*(_a0_/S1)**S1))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu(relu(S2*(_a0_/S1)**S1))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu(relu(S2*(_a0_/S1)**S1))\n", - ":2: RuntimeWarning: divide by zero encountered in power\n", - " return relu(relu(relu(sinh(S2*_a0_))**_a0_))\n", - ":2: RuntimeWarning: divide by zero encountered in power\n", - " return relu(relu(relu(sinh(S2*_a0_))**_a0_))\n", - ":2: RuntimeWarning: divide by zero encountered in power\n", - " return relu(relu(relu(sinh(S2*_a0_))**_a0_))\n", - ":2: RuntimeWarning: divide by zero encountered in power\n", - " return relu(sinh(log(S1)))**_a0_\n", - ":2: RuntimeWarning: divide by zero encountered in power\n", - " return relu(sinh(log(S1)))**_a0_\n", - ":2: RuntimeWarning: divide by zero encountered in power\n", - " return relu(sinh(log(S1)))**_a0_\n", - " 29%|██▉ | 441/1500 [00:28<01:09, 15.14it/s]:2: RuntimeWarning: invalid value encountered in power\n", - " return (_a0_**S2)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return (_a0_**S2)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return (_a0_**S2)**_a0_\n", - ":2: RuntimeWarning: divide by zero encountered in log\n", - " return log(log(_a0_)/S1)\n", - ":2: RuntimeWarning: divide by zero encountered in log\n", - " return log(log(_a0_)/S1)\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu((S2 + _a0_)**_a0_)\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu((S2 + _a0_)**_a0_)\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return sqrt(S2*_a0_)*exp(-tan(S1))\n", - ":2: RuntimeWarning: divide by zero encountered in log\n", - " return log(-relu(-S1)/(S1*_a0_))\n", - ":2: RuntimeWarning: divide by zero encountered in log\n", - " return log(-relu(-S1)/(S1*_a0_))\n", - ":2: RuntimeWarning: divide by zero encountered in log\n", - " return log(-relu(-S1)/(S1*_a0_))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(-S2)\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(-S2)\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return tan(_a0_)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return tan(_a0_)**_a0_\n", - " 30%|██▉ | 443/1500 [00:28<01:11, 14.86it/s]:2: RuntimeWarning: invalid value encountered in log\n", - " return log(relu(S2)/cos(S2))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(relu(S2)/cos(S2))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(relu(S2)/cos(S2))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(-relu(S2)/(_a0_*sinh(_a0_)))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(-relu(S2)/(_a0_*sinh(_a0_)))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(-relu(S2)/(_a0_*sinh(_a0_)))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu(relu(S2*sin(_a0_)**S1))\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return relu(_a0_**_a0_)\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return relu(_a0_**_a0_)\n", - ":2: RuntimeWarning: divide by zero encountered in power\n", - " return relu(relu(relu(S1*_a0_)**_a0_))\n", - ":2: RuntimeWarning: divide by zero encountered in power\n", - " return relu(relu(relu(S1*_a0_)**_a0_))\n", - ":2: RuntimeWarning: divide by zero encountered in power\n", - " return relu(relu(relu(S1*_a0_)**_a0_))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return tan(S2)**_a0_/(S1 + _a0_)\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return tan(S2)**_a0_/(S1 + _a0_)\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return tan(S2)**_a0_/(S1 + _a0_)\n", - ":2: RuntimeWarning: overflow encountered in power\n", - " return relu(relu(relu(sinh(S1))**(S2**S1)))\n", - ":2: RuntimeWarning: overflow encountered in power\n", - " return relu(relu(relu(sinh(S1))**(S2**S1)))\n", - ":2: RuntimeWarning: overflow encountered in power\n", - " return relu(relu(relu(sinh(S1))**(S2**S1)))\n", - ":2: RuntimeWarning: divide by zero encountered in scalar power\n", - " return relu(sinh(_a0_))**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return _a0_**(-_a0_)*sqrt(S2*_a0_)\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return _a0_**(-_a0_)*sqrt(S2*_a0_)\n", - " 30%|██▉ | 445/1500 [00:28<01:09, 15.13it/s]:2: RuntimeWarning: invalid value encountered in log\n", - " return log(-relu(exp(_a0_))/(S1*_a0_))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu(S2)*sig(sig(S1))**(_a0_*_a0_**S2)\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu(S2)*sig(sig(S1))**(_a0_*_a0_**S2)\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu(S2)*sig(sig(S1))**(_a0_*_a0_**S2)\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu(cos(S1)**_a0_)\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu(cos(S1)**_a0_)\n", - ":2: RuntimeWarning: divide by zero encountered in power\n", - " return relu(sinh(tan(S1)))**_a0_\n", - ":2: RuntimeWarning: divide by zero encountered in power\n", - " return relu(sinh(tan(S1)))**_a0_\n", - ":2: RuntimeWarning: divide by zero encountered in power\n", - " return relu(sinh(tan(S1)))**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return cos(S1)**_a0_\n", - " 30%|██▉ | 447/1500 [00:28<01:08, 15.45it/s]:2: RuntimeWarning: invalid value encountered in scalar power\n", - " return (2*_a0_)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return (2*_a0_)**_a0_\n", - ":2: RuntimeWarning: divide by zero encountered in scalar power\n", - " return relu(sinh(fac(_a0_))**_a0_)\n", - ":2: RuntimeWarning: divide by zero encountered in scalar power\n", - " return relu(sinh(fac(_a0_))**_a0_)\n", - ":2: RuntimeWarning: divide by zero encountered in scalar power\n", - " return relu(sinh(fac(_a0_))**_a0_)\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return sqrt(-S2*_a0_)*exp(-S1)\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return sqrt(-S2*_a0_)*exp(-S1)\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return sqrt(-S2*_a0_)*exp(-S1)\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return sqrt(-sig(log(S2))/S2)\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return sqrt(-sig(log(S2))/S2)\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return sqrt(-sig(log(S2))/S2)\n", - " 30%|██▉ | 449/1500 [00:28<01:05, 15.98it/s]:2: RuntimeWarning: invalid value encountered in scalar power\n", - " return relu(sinh(_a0_)**_a0_)\n", - ":2: RuntimeWarning: divide by zero encountered in scalar power\n", - " return relu(relu(relu(_a0_)**_a0_))\n", - ":2: RuntimeWarning: divide by zero encountered in scalar power\n", - " return relu(relu(relu(_a0_)**_a0_))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return tan(sinh(S1))**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return (-sinh(S1))**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return (-sinh(S1))**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return (-sinh(S1))**_a0_\n", - ":2: RuntimeWarning: overflow encountered in sinh\n", - " return relu(exp(sinh(S1 + exp(S2**2/_a0_))))\n", - ":2: RuntimeWarning: overflow encountered in exp\n", - " return relu(exp(sinh(S1 + exp(S2**2/_a0_))))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return sin(sinh(S1))**_a0_\n", - " 30%|███ | 451/1500 [00:29<01:11, 14.60it/s]:2: RuntimeWarning: invalid value encountered in power\n", - " return tan(S2)**_a0_/(S1 + _a0_)\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return tan(S2)**_a0_/(S1 + _a0_)\n", - ":2: RuntimeWarning: overflow encountered in power\n", - " return relu(sinh(S1))**(S1**S1)\n", - ":2: RuntimeWarning: overflow encountered in power\n", - " return relu(sinh(S1))**(S1**S1)\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(-1/S1)\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(-1/S1)\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return sin(S1)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return tan(S2)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return tan(S2)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return tan(S2)**_a0_\n", - " 30%|███ | 453/1500 [00:29<01:10, 14.79it/s]:2: RuntimeWarning: invalid value encountered in log\n", - " return log(-relu(S2)/(S1*sin(S1)))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(-relu(S2)/(S1*sin(S1)))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(-relu(S2)/(S1*sin(S1)))\n", - ":2: RuntimeWarning: overflow encountered in exp\n", - " return exp(-_a0_/S1**2)/S1\n", - ":2: RuntimeWarning: overflow encountered in exp\n", - " return exp(-_a0_/S1**2)/S1\n", - ":2: RuntimeWarning: overflow encountered in exp\n", - " return exp(-_a0_/S1**2)/S1\n", - ":2: RuntimeWarning: divide by zero encountered in power\n", - " return relu(relu(relu(-S1)**_a0_))\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return relu(exp(cos(S1 + exp(S2*_a0_**_a0_/_a0_))))\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return relu(exp(cos(S1 + exp(S2*_a0_**_a0_/_a0_))))\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return relu(exp(cos(S1 + exp(S2*_a0_**_a0_/_a0_))))\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return sqrt(S2*_a0_)/tanh(S1)\n", - " 30%|███ | 455/1500 [00:29<01:08, 15.37it/s]:2: RuntimeWarning: divide by zero encountered in scalar power\n", - " return relu(relu(relu(_a0_)**_a0_))\n", - ":2: RuntimeWarning: divide by zero encountered in scalar power\n", - " return relu(relu(relu(_a0_)**_a0_))\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return relu(sinh(_a0_**_a0_))**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return relu(sinh(_a0_**_a0_))**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return relu(sinh(_a0_**_a0_))**_a0_\n", - ":2: RuntimeWarning: divide by zero encountered in log\n", - " return log(relu(log(_a0_))/S1)\n", - ":2: RuntimeWarning: divide by zero encountered in log\n", - " return log(relu(log(_a0_))/S1)\n", - ":2: RuntimeWarning: divide by zero encountered in log\n", - " return log(relu(log(_a0_))/S1)\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return sqrt(S2*_a0_)/tan(S1)\n", - " 30%|███ | 457/1500 [00:29<01:09, 14.96it/s]:2: RuntimeWarning: invalid value encountered in power\n", - " return log(-(relu(S2)/_a0_)**S1)\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(-S2)\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(-S2)\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return sqrt(S2*_a0_)/relu(S1)\n", - " 31%|███ | 459/1500 [00:29<01:06, 15.75it/s]:2: RuntimeWarning: invalid value encountered in power\n", - " return relu(relu(S2*(_a0_**S2)**S1))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu(relu(S2*(_a0_**S2)**S1))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu(relu(S2*(_a0_**S2)**S1))\n", - ":2: RuntimeWarning: divide by zero encountered in power\n", - " return relu(relu(relu(-S1)**_a0_))\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return exp(-_a0_**(-_a0_)*sig(_a0_))/S1\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return exp(-_a0_**(-_a0_)*sig(_a0_))/S1\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return exp(-_a0_**(-_a0_)*sig(_a0_))/S1\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(-relu(S2)**_a0_/S1)\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return _a0_**S1*sig(sig(S1))**(-S1*_a0_)\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return _a0_**S1*sig(sig(S1))**(-S1*_a0_)\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return _a0_**S1*sig(sig(S1))**(-S1*_a0_)\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return (_a0_ + sqrt(S2*_a0_))/S1**(3/2)\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return (_a0_ + sqrt(S2*_a0_))/S1**(3/2)\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return (_a0_ + sqrt(S2*_a0_))/S1**(3/2)\n", - " 31%|███ | 461/1500 [00:29<01:06, 15.52it/s]:2: RuntimeWarning: overflow encountered in sinh\n", - " return relu(sinh(S1**S1)**_a0_)\n", - ":2: RuntimeWarning: overflow encountered in sinh\n", - " return relu(sinh(S1**S1)**_a0_)\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return sqrt(S2*_a0_)/S1\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return relu(sinh(_a0_)**_a0_)\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return relu(_a0_**_a0_)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return relu(_a0_**_a0_)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return sqrt(S2*_a0_)/abs(S1)\n", - " 31%|███ | 463/1500 [00:29<01:06, 15.65it/s]:2: RuntimeWarning: divide by zero encountered in log\n", - " return log(-relu(cos(S2))/(S1*_a0_))\n", - ":2: RuntimeWarning: divide by zero encountered in log\n", - " return log(-relu(cos(S2))/(S1*_a0_))\n", - ":2: RuntimeWarning: divide by zero encountered in log\n", - " return log(-relu(cos(S2))/(S1*_a0_))\n", - ":2: RuntimeWarning: divide by zero encountered in power\n", - " return relu(relu(relu(S2 + _a0_)**_a0_))\n", - ":2: RuntimeWarning: divide by zero encountered in power\n", - " return relu(relu(relu(S2 + _a0_)**_a0_))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return log(S1)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return log(S1)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return log(S1)**_a0_\n", - ":2: RuntimeWarning: divide by zero encountered in scalar power\n", - " return relu(_a0_)**_a0_\n", - ":2: RuntimeWarning: divide by zero encountered in scalar power\n", - " return relu(_a0_)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(cos(relu(S2)/(S1*_a0_)))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(cos(relu(S2)/(S1*_a0_)))\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return (sqrt(S1) + _a0_)/(S1*sqrt(_a0_))\n", - " 31%|███ | 465/1500 [00:30<01:07, 15.30it/s]:2: RuntimeWarning: invalid value encountered in power\n", - " return abs(sinh(S1)**(_a0_**S2))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return abs(sinh(S1)**(_a0_**S2))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return abs(sinh(S1)**(_a0_**S2))\n", - ":2: RuntimeWarning: divide by zero encountered in power\n", - " return relu(_a0_/S2)**_a0_\n", - ":2: RuntimeWarning: divide by zero encountered in power\n", - " return relu(_a0_/S2)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return abs(sinh(_a0_/S2)**_a0_)\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return abs(sinh(_a0_/S2)**_a0_)\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return abs(sinh(_a0_/S2)**_a0_)\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return relu(sinh(_a0_**_a0_))**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return relu(sinh(_a0_**_a0_))**_a0_\n", - " 31%|███ | 467/1500 [00:30<01:10, 14.55it/s]:2: RuntimeWarning: divide by zero encountered in log\n", - " return log(-relu(_a0_)/(S1*_a0_))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu(S2)*sig(sig(S1))**(_a0_**(-S1))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu(S2)*sig(sig(S1))**(_a0_**(-S1))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return sqrt(sig(log(S1/_a0_))/S1)\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return (S1 + _a0_)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return (S1 + _a0_)**_a0_\n", - " 31%|███▏ | 469/1500 [00:30<01:09, 14.81it/s]:2: RuntimeWarning: invalid value encountered in power\n", - " return relu(relu(cos(sinh(S1))**_a0_))\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return relu(sqrt(_a0_))*sig(sig(S1))**(-S1*_a0_)\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return relu(sqrt(_a0_))*sig(sig(S1))**(-S1*_a0_)\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return relu(sqrt(_a0_))*sig(sig(S1))**(-S1*_a0_)\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return (_a0_**S2)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return (_a0_**S2)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return log(-_a0_**S2/(S1*_a0_))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(-_a0_**S2/(S1*_a0_))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return log(-_a0_**S2/(S1*_a0_))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(-_a0_**S2/(S1*_a0_))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return log(-_a0_**S2/(S1*_a0_))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(-_a0_**S2/(S1*_a0_))\n", - ":2: RuntimeWarning: overflow encountered in power\n", - " return relu(relu(relu(sinh(S1))**(S1**S2)))\n", - ":2: RuntimeWarning: overflow encountered in power\n", - " return relu(relu(relu(sinh(S1))**(S1**S2)))\n", - ":2: RuntimeWarning: overflow encountered in power\n", - " return relu(relu(relu(sinh(S1))**(S1**S2)))\n", - ":2: RuntimeWarning: divide by zero encountered in power\n", - " return relu(sinh(S2 + _a0_))**_a0_\n", - ":2: RuntimeWarning: divide by zero encountered in power\n", - " return relu(sinh(S2 + _a0_))**_a0_\n", - ":2: RuntimeWarning: divide by zero encountered in power\n", - " return relu(sinh(S2 + _a0_))**_a0_\n", - " 31%|███▏ | 471/1500 [00:30<01:10, 14.51it/s]:2: RuntimeWarning: overflow encountered in power\n", - " return relu(sinh(S1))**(S1**S2)\n", - ":2: RuntimeWarning: overflow encountered in power\n", - " return relu(sinh(S1))**(S1**S2)\n", - " 32%|███▏ | 473/1500 [00:30<01:08, 14.96it/s]:2: RuntimeWarning: invalid value encountered in power\n", - " return relu(relu(S2*(-S1**2)**S1))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu(relu(S2*(-S1**2)**S1))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu(relu(S2*(-S1**2)**S1))\n", - ":2: RuntimeWarning: divide by zero encountered in power\n", - " return relu(relu(relu(sinh(S2 + _a0_))**_a0_))\n", - ":2: RuntimeWarning: divide by zero encountered in power\n", - " return relu(relu(relu(sinh(S2 + _a0_))**_a0_))\n", - ":2: RuntimeWarning: divide by zero encountered in power\n", - " return relu(relu(relu(sinh(S2 + _a0_))**_a0_))\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return (sqrt(S1) + _a0_)/(S1*sqrt(S2*_a0_))\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return (sqrt(S1) + _a0_)/(S1*sqrt(S2*_a0_))\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return (sqrt(S1) + _a0_)/(S1*sqrt(S2*_a0_))\n", - ":2: RuntimeWarning: overflow encountered in sinh\n", - " return relu(sinh(S1**S1))**_a0_\n", - ":2: RuntimeWarning: overflow encountered in sinh\n", - " return relu(sinh(S1**S1))**_a0_\n", - ":2: RuntimeWarning: overflow encountered in sinh\n", - " return relu(sinh(S1**S1))**_a0_\n", - ":2: RuntimeWarning: divide by zero encountered in log\n", - " return log(relu(cos(S2))/S1)\n", - ":2: RuntimeWarning: divide by zero encountered in log\n", - " return log(relu(cos(S2))/S1)\n", - ":2: RuntimeWarning: divide by zero encountered in log\n", - " return log(relu(cos(S2))/S1)\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(-S2)\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(-S2)\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return exp(-S1)*sqrt(tan(S1))\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return exp(-S1)*sqrt(tan(S1))\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return exp(-S1)*sqrt(tan(S1))\n", - " 32%|███▏ | 475/1500 [00:30<01:12, 14.17it/s]:2: RuntimeWarning: overflow encountered in power\n", - " return abs(sinh(S1)**(S1**S2))\n", - ":2: RuntimeWarning: overflow encountered in power\n", - " return abs(sinh(S1)**(S1**S2))\n", - ":2: RuntimeWarning: overflow encountered in power\n", - " return abs(sinh(S1)**(S1**S2))\n", - ":2: RuntimeWarning: divide by zero encountered in power\n", - " return relu(-sinh(S2))**_a0_\n", - ":2: RuntimeWarning: divide by zero encountered in power\n", - " return relu(-sinh(S2))**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(-S2/S1)\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return sqrt(S2*_a0_)/log(S1)\n", - " 32%|███▏ | 477/1500 [00:30<01:10, 14.53it/s]:2: RuntimeWarning: invalid value encountered in log\n", - " return log(-relu(S2)/S1**2)\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(S2/tan(S1))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(S2/tan(S1))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(S2/tan(S1))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return log(S1)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return log(S1)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return sqrt(tan(log(S2**3))/S1)\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return sqrt(tan(log(S2**3))/S1)\n", - ":2: RuntimeWarning: divide by zero encountered in scalar power\n", - " return relu(sinh(_a0_))**_a0_\n", - " 32%|███▏ | 479/1500 [00:31<01:10, 14.55it/s]:2: RuntimeWarning: invalid value encountered in scalar power\n", - " return abs(_a0_**_a0_)\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return abs(_a0_**_a0_)\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return abs(_a0_**_a0_)\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return relu(sinh(_a0_**3)**_a0_)\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return relu(sinh(_a0_**3)**_a0_)\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return relu(sinh(_a0_**3)**_a0_)\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu(S2)*log(sig(S1))**(-S1*_a0_)\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu(S2)*log(sig(S1))**(-S1*_a0_)\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return sqrt(log(S2**3)**3/S1)\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return sqrt(log(S2**3)**3/S1)\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return abs((_a0_**S1)**_a0_)\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return abs((_a0_**S1)**_a0_)\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return abs((_a0_**S1)**_a0_)\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu(relu(relu(_a0_**S2)**_a0_))\n", - ":2: RuntimeWarning: divide by zero encountered in power\n", - " return relu(relu(relu(_a0_**S2)**_a0_))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu(relu(relu(_a0_**S2)**_a0_))\n", - ":2: RuntimeWarning: divide by zero encountered in power\n", - " return relu(relu(relu(_a0_**S2)**_a0_))\n", - " 32%|███▏ | 481/1500 [00:31<01:09, 14.77it/s]:2: RuntimeWarning: divide by zero encountered in divide\n", - " return log(-relu(S2)/(S1*fac(_a0_)))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(-relu(S2)/(S1*fac(_a0_)))\n", - ":2: RuntimeWarning: divide by zero encountered in divide\n", - " return log(-relu(S2)/(S1*fac(_a0_)))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(-relu(S2)/(S1*fac(_a0_)))\n", - ":2: RuntimeWarning: divide by zero encountered in divide\n", - " return log(-relu(S2)/(S1*fac(_a0_)))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(-relu(S2)/(S1*fac(_a0_)))\n", - ":2: RuntimeWarning: divide by zero encountered in log\n", - " return sqrt(sig(log(log(_a0_)**3))/S1)\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return sqrt(sig(log(log(_a0_)**3))/S1)\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return sqrt(-_a0_)*exp(-S1)\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return sqrt(-_a0_)*exp(-S1)\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return sqrt(-_a0_)*exp(-S1)\n", - " 32%|███▏ | 483/1500 [00:31<01:13, 13.85it/s]:2: RuntimeWarning: invalid value encountered in power\n", - " return relu(S2)*sig(sig(S1))**(_a0_**(-S1))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(-S2/(S1*_a0_**2))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(-S2/(S1*_a0_**2))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(-S2/(S1*_a0_**2))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return (S2*_a0_)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return (S2*_a0_)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu(relu(S2*(_a0_**2)**(_a0_**S1)))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu(relu(S2*(_a0_**2)**(_a0_**S1)))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu(relu(S2*(_a0_**2)**(_a0_**S1)))\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return sqrt(S2*_a0_)*exp(S1)\n", - " 32%|███▏ | 485/1500 [00:31<01:12, 14.00it/s]:2: RuntimeWarning: invalid value encountered in power\n", - " return relu(relu(S2*_a0_**S1))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu(relu(S2*_a0_**S1))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return (S2 + sin(cos(S1)**_a0_))*exp(-S1)\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return (S2 + sin(cos(S1)**_a0_))*exp(-S1)\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return (S2 + sin(cos(S1)**_a0_))*exp(-S1)\n", - ":2: RuntimeWarning: divide by zero encountered in scalar power\n", - " return relu(_a0_)**_a0_\n", - ":2: RuntimeWarning: divide by zero encountered in scalar power\n", - " return relu(_a0_)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return relu(exp(cos(S1 + log(relu(S2)/_a0_))))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return relu(exp(cos(S1 + log(relu(S2)/_a0_))))\n", - ":2: RuntimeWarning: overflow encountered in power\n", - " return relu(relu((sinh(S1)**2)**(S1**S1)))\n", - ":2: RuntimeWarning: overflow encountered in power\n", - " return relu(relu((sinh(S1)**2)**(S1**S1)))\n", - ":2: RuntimeWarning: overflow encountered in power\n", - " return relu(relu((sinh(S1)**2)**(S1**S1)))\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return (sqrt(S1) + _a0_)/(S1*sqrt(_a0_**3))\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return (sqrt(S1) + _a0_)/(S1*sqrt(_a0_**3))\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return (sqrt(S1) + _a0_)/(S1*sqrt(_a0_**3))\n", - " 32%|███▏ | 487/1500 [00:31<01:11, 14.12it/s]:2: RuntimeWarning: invalid value encountered in log\n", - " return log(-relu(S2)/_a0_**2)\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return sinh(_a0_**3)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return sinh(_a0_**3)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return sinh(_a0_**3)**_a0_\n", - ":2: RuntimeWarning: divide by zero encountered in scalar power\n", - " return relu(sinh(2*_a0_))**_a0_\n", - ":2: RuntimeWarning: divide by zero encountered in scalar power\n", - " return relu(sinh(2*_a0_))**_a0_\n", - ":2: RuntimeWarning: divide by zero encountered in scalar power\n", - " return relu(sinh(2*_a0_))**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return relu(exp(cos(S1 + exp(relu(sqrt(_a0_))/_a0_))))\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return relu(exp(cos(S1 + exp(relu(sqrt(_a0_))/_a0_))))\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return relu(exp(cos(S1 + exp(relu(sqrt(_a0_))/_a0_))))\n", - " 33%|███▎ | 489/1500 [00:31<01:14, 13.63it/s]:2: RuntimeWarning: divide by zero encountered in log\n", - " return log(-relu(sin(S2))/(S1*_a0_))\n", - ":2: RuntimeWarning: divide by zero encountered in log\n", - " return log(-relu(sin(S2))/(S1*_a0_))\n", - ":2: RuntimeWarning: divide by zero encountered in log\n", - " return log(-relu(sin(S2))/(S1*_a0_))\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return relu((2*_a0_)**_a0_)\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return relu((2*_a0_)**_a0_)\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(-relu(S2)/(S1*S2))\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return (S2/_a0_ + sin(log(_a0_)**_a0_))*exp(-S1)\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return (S2/_a0_ + sin(log(_a0_)**_a0_))*exp(-S1)\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return (S2/_a0_ + sin(log(_a0_)**_a0_))*exp(-S1)\n", - " 33%|███▎ | 491/1500 [00:31<01:11, 14.06it/s]:2: RuntimeWarning: invalid value encountered in scalar power\n", - " return sinh(_a0_)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return (S2/_a0_ + sin((S2 - _a0_)**_a0_))*exp(-S1)\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return (S2/_a0_ + sin((S2 - _a0_)**_a0_))*exp(-S1)\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return (S2/_a0_ + sin((S2 - _a0_)**_a0_))*exp(-S1)\n", - " 33%|███▎ | 493/1500 [00:32<01:09, 14.51it/s]:2: RuntimeWarning: invalid value encountered in log\n", - " return log(-S2/S1)\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return log(-_a0_**S1/(S1*_a0_))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(-_a0_**S1/(S1*_a0_))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return log(-_a0_**S1/(S1*_a0_))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(-_a0_**S1/(S1*_a0_))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return log(-_a0_**S1/(S1*_a0_))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(-_a0_**S1/(S1*_a0_))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(-S2/_a0_)\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(-S2/_a0_)\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(-S2/_a0_)\n", - ":2: RuntimeWarning: divide by zero encountered in scalar power\n", - " return sinh(fac(_a0_))**_a0_\n", - ":2: RuntimeWarning: divide by zero encountered in scalar power\n", - " return sinh(fac(_a0_))**_a0_\n", - ":2: RuntimeWarning: divide by zero encountered in scalar power\n", - " return sinh(fac(_a0_))**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return (_a0_/S1)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return (_a0_/S1)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return (_a0_/S1)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return sqrt(S2/_a0_)*exp(-S1)\n", - " 33%|███▎ | 495/1500 [00:32<01:12, 13.82it/s]:2: RuntimeWarning: invalid value encountered in log\n", - " return log(-S2*relu(S2)/_a0_**2)\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(-S2*relu(S2)/_a0_**2)\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(sin(S2)/S1)\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(sin(S2)/S1)\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return exp(-sig(_a0_**_a0_)/S1)/S1\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return exp(-sig(_a0_**_a0_)/S1)/S1\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return exp(-sig(_a0_**_a0_)/S1)/S1\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return sqrt(S2/_a0_)*exp(-S2)\n", - ":2: RuntimeWarning: divide by zero encountered in log\n", - " return log(-relu(_a0_)/(S1*_a0_))\n", - ":2: RuntimeWarning: divide by zero encountered in power\n", - " return relu(-S1)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return (sqrt(S1) + _a0_)/(S1*sqrt(_a0_))\n", - " 33%|███▎ | 497/1500 [00:32<01:17, 12.93it/s]:2: RuntimeWarning: invalid value encountered in power\n", - " return log(-(relu(S2)/_a0_)**S1)\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu(relu(sin(sinh(S1))**_a0_))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(-relu(S2)/(S1*fac(S2)))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(-relu(S2)/(S1*fac(S2)))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu(relu(S2*(_a0_/S1)**S1))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu(relu(S2*(_a0_/S1)**S1))\n", - ":2: RuntimeWarning: divide by zero encountered in power\n", - " return relu(sinh(sin(S2)))**_a0_\n", - ":2: RuntimeWarning: divide by zero encountered in power\n", - " return relu(sinh(sin(S2)))**_a0_\n", - " 33%|███▎ | 499/1500 [00:32<01:11, 13.91it/s]:2: RuntimeWarning: invalid value encountered in power\n", - " return relu(sinh(S2 + _a0_)**_a0_)\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu(sinh(S2 + _a0_)**_a0_)\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu(relu(exp(cos(S1 + exp(_a0_**(-S2)*relu(S2))))))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu(relu(exp(cos(S1 + exp(_a0_**(-S2)*relu(S2))))))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu(relu(exp(cos(S1 + exp(_a0_**(-S2)*relu(S2))))))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return (S1/_a0_)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return (S1/_a0_)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return (S1/_a0_)**_a0_\n", - ":2: RuntimeWarning: overflow encountered in power\n", - " return relu(S2)*sig(sig(S1))**(S1**S1*_a0_)\n", - ":2: RuntimeWarning: overflow encountered in power\n", - " return relu(S2)*sig(sig(S1))**(S1**S1*_a0_)\n", - ":2: RuntimeWarning: overflow encountered in power\n", - " return relu(S2)*sig(sig(S1))**(S1**S1*_a0_)\n", - ":2: RuntimeWarning: overflow encountered in power\n", - " return S1**(S1**S1)\n", - ":2: RuntimeWarning: overflow encountered in power\n", - " return S1**(S1**S1)\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return (_a0_ + sqrt(sin(_a0_)))/S1**(3/2)\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return (_a0_ + sqrt(sin(_a0_)))/S1**(3/2)\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return (_a0_ + sqrt(sin(_a0_)))/S1**(3/2)\n", - " 33%|███▎ | 501/1500 [00:32<01:08, 14.61it/s]:2: RuntimeWarning: invalid value encountered in power\n", - " return (_a0_/S1)**_a0_/(S1 + _a0_)\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(-(S1 + _a0_)/(S1*_a0_))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(-(S1 + _a0_)/(S1*_a0_))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(-(S1 + _a0_)/(S1*_a0_))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(_a0_)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(_a0_)**_a0_\n", - " 34%|███▎ | 503/1500 [00:32<01:09, 14.39it/s]:2: RuntimeWarning: invalid value encountered in scalar power\n", - " return relu(sinh(_a0_)**_a0_)\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(-(_a0_ + relu(S2))/S1)\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(sin(S2)/S1)\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return tan(S1)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return tan(S1)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return sin(S1)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return sin(S1)**_a0_\n", - ":2: RuntimeWarning: divide by zero encountered in scalar power\n", - " return relu(sinh(_a0_))**_a0_\n", - " 34%|███▎ | 505/1500 [00:32<01:10, 14.10it/s]:2: RuntimeWarning: invalid value encountered in log\n", - " return log(sin(S2)/S1)\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(sin(S2)/S1)\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu(cos(S1)**_a0_)\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu(S2)*sig(sig(S1))**(_a0_**(-S1))\n", - ":2: RuntimeWarning: divide by zero encountered in power\n", - " return relu(_a0_/S1)**_a0_\n", - ":2: RuntimeWarning: divide by zero encountered in power\n", - " return relu(_a0_/S1)**_a0_\n", - " 34%|███▍ | 507/1500 [00:33<01:09, 14.26it/s]:2: RuntimeWarning: divide by zero encountered in divide\n", - " return log(S2/log(_a0_))\n", - ":2: RuntimeWarning: divide by zero encountered in divide\n", - " return log(S2/log(_a0_))\n", - ":2: RuntimeWarning: divide by zero encountered in divide\n", - " return log(S2/log(_a0_))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu(relu(S2*_a0_**S1))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu(relu(S2*_a0_**S1))\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return relu(sinh(_a0_)**_a0_)\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return (S1 + _a0_)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return (S1 + _a0_)**_a0_\n", - " 34%|███▍ | 509/1500 [00:33<01:06, 14.87it/s]:2: RuntimeWarning: invalid value encountered in log\n", - " return log(-S1**(-_a0_)*relu(S2)/S1)\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(-S1**(-_a0_)*relu(S2)/S1)\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(tan(S2))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(tan(S2))\n", - ":2: RuntimeWarning: overflow encountered in sinh\n", - " return relu(sinh(S1**S1))**(2*_a0_)\n", - ":2: RuntimeWarning: overflow encountered in sinh\n", - " return relu(sinh(S1**S1))**(2*_a0_)\n", - ":2: RuntimeWarning: overflow encountered in sinh\n", - " return relu(sinh(S1**S1))**(2*_a0_)\n", - ":2: RuntimeWarning: divide by zero encountered in log\n", - " return log(-relu(_a0_)/(S1*_a0_))\n", - ":2: RuntimeWarning: overflow encountered in exp\n", - " return relu(relu(exp(cos(S1 + exp(S1**(-S2)*relu(S2))))))\n", - ":2: RuntimeWarning: invalid value encountered in cos\n", - " return relu(relu(exp(cos(S1 + exp(S1**(-S2)*relu(S2))))))\n", - ":2: RuntimeWarning: overflow encountered in exp\n", - " return relu(relu(exp(cos(S1 + exp(S1**(-S2)*relu(S2))))))\n", - ":2: RuntimeWarning: invalid value encountered in cos\n", - " return relu(relu(exp(cos(S1 + exp(S1**(-S2)*relu(S2))))))\n", - ":2: RuntimeWarning: overflow encountered in exp\n", - " return relu(relu(exp(cos(S1 + exp(S1**(-S2)*relu(S2))))))\n", - ":2: RuntimeWarning: invalid value encountered in cos\n", - " return relu(relu(exp(cos(S1 + exp(S1**(-S2)*relu(S2))))))\n", - " 34%|███▍ | 511/1500 [00:33<01:10, 14.09it/s]:2: RuntimeWarning: invalid value encountered in scalar power\n", - " return relu(_a0_**_a0_)\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return relu(_a0_**_a0_)\n", - ":2: RuntimeWarning: overflow encountered in power\n", - " return S1**(S2**S2)\n", - ":2: RuntimeWarning: overflow encountered in power\n", - " return S1**(S2**S2)\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return (_a0_ + _a0_**S2)/S1**(3/2)\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return (_a0_ + _a0_**S2)/S1**(3/2)\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return (_a0_ + _a0_**S2)/S1**(3/2)\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(S2/log(S2))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(S2/log(S2))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(S2/log(S2))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return sin(sinh(S1))**(2*_a0_)\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return sin(sinh(S1))**(2*_a0_)\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return _a0_**(-S2)*sqrt(S2*_a0_)\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return _a0_**(-S2)*sqrt(S2*_a0_)\n", - ":2: RuntimeWarning: overflow encountered in exp\n", - " return relu(relu(exp(tan(S1 + exp(relu(S2)/_a0_)))))\n", - " 34%|███▍ | 513/1500 [00:33<01:10, 13.98it/s]:2: RuntimeWarning: invalid value encountered in log\n", - " return log(-relu(S2)**_a0_/S1)\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu((_a0_/S2)**_a0_)\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu((_a0_/S2)**_a0_)\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return sqrt(tanh(log(S2**3))/S1)\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return sqrt(tanh(log(S2**3))/S1)\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return _a0_**(-_a0_)*exp(-sig(_a0_)/S1)\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return _a0_**(-_a0_)*exp(-sig(_a0_)/S1)\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return _a0_**(-_a0_)*exp(-sig(_a0_)/S1)\n", - " 34%|███▍ | 515/1500 [00:33<01:11, 13.72it/s]:2: RuntimeWarning: overflow encountered in power\n", - " return S1**(S1**S1)\n", - ":2: RuntimeWarning: overflow encountered in power\n", - " return S1**(S1**S1)\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return (_a0_ + sqrt(cos(S2)))/S1**(3/2)\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return (_a0_ + sqrt(cos(S2)))/S1**(3/2)\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return (_a0_ + sqrt(cos(S2)))/S1**(3/2)\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return sqrt(S2*_a0_)*exp(-fac(_a0_))\n", - " 34%|███▍ | 517/1500 [00:33<01:09, 14.06it/s]:2: RuntimeWarning: invalid value encountered in sqrt\n", - " return sqrt(sig(log(S2**3))/(S1 + _a0_))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu(relu(exp(cos(S1 + exp(_a0_**(-S1)*relu(S2))))))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu(relu(exp(cos(S1 + exp(_a0_**(-S1)*relu(S2))))))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu(relu(exp(cos(S1 + exp(_a0_**(-S1)*relu(S2))))))\n", - " 35%|███▍ | 519/1500 [00:33<01:10, 13.99it/s]:2: RuntimeWarning: invalid value encountered in log\n", - " return log(sin(relu(S2)/(S1*_a0_)))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(sin(relu(S2)/(S1*_a0_)))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu(relu(S2*_a0_**S1))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu(relu(S2*_a0_**S1))\n", - ":2: RuntimeWarning: divide by zero encountered in power\n", - " return relu(log(S1))**(-_a0_)\n", - ":2: RuntimeWarning: divide by zero encountered in power\n", - " return relu(log(S1))**(-_a0_)\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu(relu(S2*(_a0_**S1)**S1))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu(relu(S2*(_a0_**S1)**S1))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu(relu(S2*(_a0_**S1)**S1))\n", - ":2: RuntimeWarning: overflow encountered in cosh\n", - " return relu(relu(exp(cosh(S1 + exp(relu(S2)/_a0_)))))\n", - ":2: RuntimeWarning: overflow encountered in exp\n", - " return relu(relu(exp(cosh(S1 + exp(relu(S2)/_a0_)))))\n", - " 35%|███▍ | 521/1500 [00:34<01:13, 13.28it/s]:2: RuntimeWarning: divide by zero encountered in log\n", - " return log(-relu(cos(S2))/(S1*_a0_))\n", - ":2: RuntimeWarning: divide by zero encountered in log\n", - " return log(-relu(cos(S2))/(S1*_a0_))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return sinh(cos(S1))**_a0_\n", - " 35%|███▍ | 523/1500 [00:34<01:13, 13.25it/s]:2: RuntimeWarning: invalid value encountered in log\n", - " return log(-relu(S2)/S1**(3/2))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(-relu(S2)/S1**(3/2))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(-relu(S2)/S1**(3/2))\n", - ":2: RuntimeWarning: overflow encountered in sinh\n", - " return sinh(S2**S2)**_a0_\n", - ":2: RuntimeWarning: overflow encountered in sinh\n", - " return sinh(S2**S2)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return log(-_a0_**(-S1)*relu(S2)/_a0_)\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(-_a0_**(-S1)*relu(S2)/_a0_)\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return log(-_a0_**(-S1)*relu(S2)/_a0_)\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(-_a0_**(-S1)*relu(S2)/_a0_)\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(cos(S2)/S1)\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(cos(S2)/S1)\n", - ":2: RuntimeWarning: divide by zero encountered in scalar power\n", - " return relu(relu(relu(_a0_)**_a0_))\n", - ":2: RuntimeWarning: divide by zero encountered in scalar power\n", - " return relu(relu(relu(_a0_)**_a0_))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu(sinh(_a0_**S1)**_a0_)\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu(sinh(_a0_**S1)**_a0_)\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu(sinh(_a0_**S1)**_a0_)\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return sqrt(sinh(log(S2**3))/(S1 + _a0_))\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return sqrt(sinh(log(S2**3))/(S1 + _a0_))\n", - " 35%|███▌ | 525/1500 [00:34<01:12, 13.37it/s]:2: RuntimeWarning: invalid value encountered in power\n", - " return (_a0_ + _a0_**S2)/S1**(3/2)\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return (_a0_ + _a0_**S2)/S1**(3/2)\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return relu(relu(sqrt(_a0_))/sqrt(S1*S2))\n", - " 35%|███▌ | 527/1500 [00:34<01:09, 14.03it/s]:2: RuntimeWarning: invalid value encountered in power\n", - " return relu(relu(S2*_a0_**S1))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu(relu(S2*_a0_**S1))\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return sqrt(S2*_a0_)/sig(S1)\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(_a0_**3*relu(S2)**3/S1**3)\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(_a0_**3*relu(S2)**3/S1**3)\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return sqrt(sig(log(S1))/(S1 + _a0_))\n", - " 35%|███▌ | 529/1500 [00:34<01:10, 13.84it/s]:2: RuntimeWarning: divide by zero encountered in scalar power\n", - " return relu(_a0_)**_a0_\n", - ":2: RuntimeWarning: divide by zero encountered in scalar power\n", - " return relu(_a0_)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return relu(sinh(_a0_**_a0_)**_a0_)\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return relu(sinh(_a0_**_a0_)**_a0_)\n", - ":2: RuntimeWarning: overflow encountered in power\n", - " return S1**(S2**S2)\n", - ":2: RuntimeWarning: overflow encountered in power\n", - " return S1**(S2**S2)\n", - " 35%|███▌ | 531/1500 [00:34<01:11, 13.56it/s]:2: RuntimeWarning: divide by zero encountered in log\n", - " return log(-_a0_*relu(sin(S1))/S1)\n", - ":2: RuntimeWarning: divide by zero encountered in log\n", - " return log(-_a0_*relu(sin(S1))/S1)\n", - ":2: RuntimeWarning: divide by zero encountered in log\n", - " return log(-_a0_*relu(sin(S1))/S1)\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return exp(-S1)*sin((S1 + S2)**_a0_)**(S2/_a0_)\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return exp(-S1)*sin((S1 + S2)**_a0_)**(S2/_a0_)\n", - ":2: RuntimeWarning: divide by zero encountered in scalar power\n", - " return relu(relu(relu(sinh(_a0_))**_a0_))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return log(relu(S1))**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return log(relu(S1))**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(-relu(S2)**_a0_/S1)\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return relu((2*_a0_)**_a0_)\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return relu((2*_a0_)**_a0_)\n", - " 36%|███▌ | 533/1500 [00:34<01:10, 13.63it/s]:2: RuntimeWarning: divide by zero encountered in log\n", - " return log(fac(_a0_*relu(S2)/S1))\n", - ":2: RuntimeWarning: divide by zero encountered in log\n", - " return log(fac(_a0_*relu(S2)/S1))\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return sqrt(S2*_a0_)/cos(S1)\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return (_a0_/S1)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return (_a0_/S1)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu(relu(S2*(_a0_**(2*S1))**S1))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu(relu(S2*(_a0_**(2*S1))**S1))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu(relu(S2*(_a0_**(2*S1))**S1))\n", - ":2: RuntimeWarning: divide by zero encountered in power\n", - " return relu(relu(relu(sinh(cos(S1)))**_a0_))\n", - ":2: RuntimeWarning: divide by zero encountered in power\n", - " return relu(relu(relu(sinh(cos(S1)))**_a0_))\n", - ":2: RuntimeWarning: divide by zero encountered in power\n", - " return relu(relu(relu(sinh(cos(S1)))**_a0_))\n", - " 36%|███▌ | 535/1500 [00:35<01:13, 13.13it/s]:2: RuntimeWarning: invalid value encountered in log\n", - " return log(-S2*relu(S2)/relu(S1))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(-S2*relu(S2)/relu(S1))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return S2**_a0_/(_a0_ + log(_a0_))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu((S2*_a0_)**_a0_)\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu((S2*_a0_)**_a0_)\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(-S1*_a0_**2/relu(S1))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(-S1*_a0_**2/relu(S1))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(-S1*_a0_**2/relu(S1))\n", - ":2: RuntimeWarning: divide by zero encountered in scalar power\n", - " return relu(sinh(relu(_a0_))**_a0_)\n", - ":2: RuntimeWarning: divide by zero encountered in scalar power\n", - " return relu(sinh(relu(_a0_))**_a0_)\n", - ":2: RuntimeWarning: divide by zero encountered in scalar power\n", - " return relu(sinh(relu(_a0_))**_a0_)\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return relu(exp(-sqrt(_a0_)/S1)/S1)\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return relu(exp(-sqrt(_a0_)/S1)/S1)\n", - " 36%|███▌ | 537/1500 [00:35<01:13, 13.03it/s]:2: RuntimeWarning: invalid value encountered in scalar power\n", - " return sinh(_a0_)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return sinh(_a0_)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return cos(sinh(S1))**(-_a0_)\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return cos(sinh(S1))**(-_a0_)\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return (sqrt(S1) + _a0_)/(S1*sqrt(_a0_))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(-S1*relu(S2)/relu(S1))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(-S1*relu(S2)/relu(S1))\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return sinh(_a0_**_a0_)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return sinh(_a0_**_a0_)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return S2*sqrt(S2*_a0_)/S1\n", - " 36%|███▌ | 539/1500 [00:35<01:11, 13.38it/s]:2: RuntimeWarning: invalid value encountered in power\n", - " return relu(relu(exp(cos(_a0_**S2 + exp(_a0_*relu(S2))))))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu(relu(exp(cos(_a0_**S2 + exp(_a0_*relu(S2))))))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu(relu(exp(cos(_a0_**S2 + exp(_a0_*relu(S2))))))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(-2*_a0_**2/relu(S1))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(-2*_a0_**2/relu(S1))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(-2*_a0_**2/relu(S1))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu(relu(S2*tanh(_a0_)**S1))\n", - ":2: RuntimeWarning: divide by zero encountered in power\n", - " return relu(relu(relu(sinh(S1*_a0_))**_a0_))\n", - ":2: RuntimeWarning: divide by zero encountered in power\n", - " return relu(relu(relu(sinh(S1*_a0_))**_a0_))\n", - ":2: RuntimeWarning: divide by zero encountered in power\n", - " return relu(relu(relu(sinh(S1*_a0_))**_a0_))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu(sinh(S2*_a0_)**_a0_)\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu(sinh(S2*_a0_)**_a0_)\n", - " 36%|███▌ | 541/1500 [00:35<01:12, 13.24it/s]:2: RuntimeWarning: invalid value encountered in log\n", - " return log(cos(_a0_*relu(S2)/relu(S1)))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(cos(_a0_*relu(S2)/relu(S1)))\n", - ":2: RuntimeWarning: divide by zero encountered in scalar power\n", - " return sinh(relu(_a0_))**_a0_\n", - ":2: RuntimeWarning: divide by zero encountered in scalar power\n", - " return sinh(relu(_a0_))**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu((S2*_a0_)**_a0_)\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu((S2*_a0_)**_a0_)\n", - " 36%|███▌ | 543/1500 [00:35<01:09, 13.68it/s]:2: RuntimeWarning: invalid value encountered in log\n", - " return log(-_a0_*fac(S2)/relu(S1))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu(exp(-_a0_**(-S1)*sig(_a0_))/S1)\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu(exp(-_a0_**(-S1)*sig(_a0_))/S1)\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu(exp(-_a0_**(-S1)*sig(_a0_))/S1)\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return sqrt(sig(log(S2**2))/(_a0_ + cos(S2)))\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return sqrt(sig(log(S2**2))/(_a0_ + cos(S2)))\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return sqrt(sig(log(S2**2))/(_a0_ + cos(S2)))\n", - " 36%|███▋ | 545/1500 [00:35<01:13, 12.95it/s]:2: RuntimeWarning: divide by zero encountered in power\n", - " return relu(relu(relu(sin(S1))**_a0_))\n", - ":2: RuntimeWarning: divide by zero encountered in power\n", - " return relu(relu(relu(sin(S1))**_a0_))\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return relu(_a0_**_a0_)\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return relu(_a0_**_a0_)\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(relu(S2)/(S1 + _a0_))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu(relu(S2*(_a0_/S2)**S1))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu(relu(S2*(_a0_/S2)**S1))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu(relu(S2*(_a0_/S2)**S1))\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return abs(relu(relu(S2/_a0_)/sqrt(S2*cos(_a0_))))\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return abs(relu(relu(S2/_a0_)/sqrt(S2*cos(_a0_))))\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return abs(relu(relu(S2/_a0_)/sqrt(S2*cos(_a0_))))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu(_a0_**(-S2)*exp(-sig(_a0_)/S1))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu(_a0_**(-S2)*exp(-sig(_a0_)/S1))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu(_a0_**(-S2)*exp(-sig(_a0_)/S1))\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return relu(sinh(S1))**(sqrt(_a0_))\n", - " 36%|███▋ | 547/1500 [00:36<01:14, 12.86it/s]:2: RuntimeWarning: invalid value encountered in log\n", - " return log(tan(_a0_))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(tan(_a0_))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(-relu(S2))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(-relu(S2))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(-relu(S2))\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return sqrt(sig(log(S2*tanh(S1)))/(S1 + _a0_))\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return (sqrt(S1) + _a0_)/(S1*sqrt(_a0_**_a0_))\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return (sqrt(S1) + _a0_)/(S1*sqrt(_a0_**_a0_))\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return (sqrt(S1) + _a0_)/(S1*sqrt(_a0_**_a0_))\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return sqrt(sig(log(S1*S2))/(S1 + _a0_))\n", - " 37%|███▋ | 549/1500 [00:36<01:11, 13.35it/s]:2: RuntimeWarning: divide by zero encountered in divide\n", - " return log(-_a0_*relu(S2)/relu(S1*_a0_))\n", - ":2: RuntimeWarning: divide by zero encountered in divide\n", - " return log(-_a0_*relu(S2)/relu(S1*_a0_))\n", - ":2: RuntimeWarning: divide by zero encountered in divide\n", - " return log(-_a0_*relu(S2)/relu(S1*_a0_))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu(sinh(S2/_a0_)**_a0_)\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu(sinh(S2/_a0_)**_a0_)\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return log(-(_a0_*relu(S2))**relu(S1))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return log(-(_a0_*relu(S2))**relu(S1))\n", - " 37%|███▋ | 551/1500 [00:36<01:10, 13.53it/s]:2: RuntimeWarning: invalid value encountered in log\n", - " return log(log(S2)/S1)\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(log(S2)/S1)\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return sinh(S2/_a0_)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return sinh(S2/_a0_)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return (sqrt(S1) + _a0_)/(S1*sqrt(_a0_))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu(relu(S2*tanh(_a0_)**S1))\n", - " 37%|███▋ | 553/1500 [00:36<01:07, 14.01it/s]:2: RuntimeWarning: invalid value encountered in log\n", - " return log(sin(relu(S2)/(_a0_*relu(S1))))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu((_a0_/S1)**_a0_)\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu((_a0_/S1)**_a0_)\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu((_a0_/S1)**_a0_)\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(-relu(S2)/(S2*_a0_*relu(S1)))\n", - " 37%|███▋ | 555/1500 [00:36<01:06, 14.23it/s]:2: RuntimeWarning: invalid value encountered in log\n", - " return log(-S2**(-_a0_)*relu(S2)/relu(S1))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(-S2**(-_a0_)*relu(S2)/relu(S1))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(-S2**(-_a0_)*relu(S2)/relu(S1))\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return relu(sinh(sinh(_a0_))**_a0_)\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return relu(sinh(sinh(_a0_))**_a0_)\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(-relu(S2)/(S1*relu(S1)))\n", - " 37%|███▋ | 557/1500 [00:36<01:02, 15.12it/s]:2: RuntimeWarning: invalid value encountered in log\n", - " return log(-(_a0_ + relu(S2))/relu(S1))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(-(_a0_ + relu(S2))/relu(S1))\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return (_a0_ + sqrt(S2 + _a0_))/S1**(3/2)\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return (_a0_ + sqrt(S2 + _a0_))/S1**(3/2)\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return (_a0_ + sqrt(S2 + _a0_))/S1**(3/2)\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(-relu(S2)/_a0_**2)\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(-relu(S2)/_a0_**2)\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return (_a0_ + _a0_**S1)/S1**(3/2)\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return (_a0_ + _a0_**S1)/S1**(3/2)\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return sin(_a0_)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return sin(_a0_)**_a0_\n", - " 37%|███▋ | 559/1500 [00:36<01:02, 15.03it/s]:2: RuntimeWarning: invalid value encountered in log\n", - " return log(sin(relu(S2)/(_a0_*relu(S1))))\n", - ":2: RuntimeWarning: divide by zero encountered in power\n", - " return relu(sinh(log(S1)))**(-_a0_)\n", - ":2: RuntimeWarning: divide by zero encountered in power\n", - " return relu(sinh(log(S1)))**(-_a0_)\n", - ":2: RuntimeWarning: divide by zero encountered in power\n", - " return relu(sinh(log(S1)))**(-_a0_)\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return sqrt(log(S2**2)**3/S1)\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return sqrt(log(S2**2)**3/S1)\n", - " 37%|███▋ | 561/1500 [00:36<01:05, 14.42it/s]:2: RuntimeWarning: invalid value encountered in sqrt\n", - " return relu(sqrt(-sig(_a0_)/S1)/S1)\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return relu(sqrt(-sig(_a0_)/S1)/S1)\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return relu(relu(relu(sinh(_a0_**_a0_))**_a0_))\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return relu(relu(relu(sinh(_a0_**_a0_))**_a0_))\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return relu(relu(relu(sinh(_a0_**_a0_))**_a0_))\n", - ":2: RuntimeWarning: divide by zero encountered in power\n", - " return relu(sinh(relu(tan(S1)))**_a0_)\n", - ":2: RuntimeWarning: divide by zero encountered in power\n", - " return relu(sinh(relu(tan(S1)))**_a0_)\n", - ":2: RuntimeWarning: divide by zero encountered in power\n", - " return relu(sinh(relu(tan(S1)))**_a0_)\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return relu(exp(-_a0_**(-_a0_)*sig(_a0_))/S1)\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return relu(exp(-_a0_**(-_a0_)*sig(_a0_))/S1)\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return relu(exp(-_a0_**(-_a0_)*sig(_a0_))/S1)\n", - " 38%|███▊ | 563/1500 [00:37<01:40, 9.33it/s]:2: RuntimeWarning: invalid value encountered in log\n", - " return log(-relu(S2)**_a0_/relu(S1))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(-relu(S2)**_a0_/relu(S1))\n", - " 38%|███▊ | 565/1500 [00:37<01:29, 10.45it/s]:2: RuntimeWarning: invalid value encountered in sqrt\n", - " return relu(relu(S2/_a0_)/sqrt(log(S1)))\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return relu(relu(S2/_a0_)/sqrt(log(S1)))\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return relu(relu(S2/_a0_)/sqrt(log(S1)))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu(sinh(_a0_/S1)**_a0_)\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu(sinh(_a0_/S1)**_a0_)\n", - ":2: RuntimeWarning: divide by zero encountered in power\n", - " return relu(-S1)**(-_a0_)\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return log(S1)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return relu(sinh(_a0_)**_a0_)\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return relu(sinh(_a0_)**_a0_)\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return (sqrt(_a0_) + _a0_)/S1**(3/2)\n", - " 38%|███▊ | 567/1500 [00:37<01:23, 11.24it/s]:2: RuntimeWarning: divide by zero encountered in divide\n", - " return log(-relu(relu(S2))/(_a0_*relu(_a0_)))\n", - ":2: RuntimeWarning: divide by zero encountered in divide\n", - " return log(-relu(relu(S2))/(_a0_*relu(_a0_)))\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return sinh(_a0_)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return sinh(_a0_)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu(sinh(S2/_a0_)**_a0_)\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu(sinh(S2/_a0_)**_a0_)\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return sqrt(tan(S1)/_a0_)*exp(-S1)\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return sqrt(tan(S1)/_a0_)*exp(-S1)\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return sqrt(tan(S1)/_a0_)*exp(-S1)\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return relu(relu(exp(cos(S1 + exp(sqrt(_a0_))))))\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return relu(relu(exp(cos(S1 + exp(sqrt(_a0_))))))\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return relu(relu(exp(cos(S1 + exp(sqrt(_a0_))))))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu(relu(S2*_a0_**S1))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu(relu(S2*_a0_**S1))\n", - ":2: RuntimeWarning: divide by zero encountered in power\n", - " return relu(sinh(relu(S1 + _a0_))**_a0_)\n", - ":2: RuntimeWarning: divide by zero encountered in power\n", - " return relu(sinh(relu(S1 + _a0_))**_a0_)\n", - ":2: RuntimeWarning: divide by zero encountered in power\n", - " return relu(sinh(relu(S1 + _a0_))**_a0_)\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return exp(-S1)/_a0_**(1/4)\n", - " 38%|███▊ | 569/1500 [00:37<01:18, 11.85it/s]:2: RuntimeWarning: invalid value encountered in power\n", - " return relu(relu(-S2*_a0_**S1))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu(relu(-S2*_a0_**S1))\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return relu(relu(relu(sinh(sqrt(_a0_)))**_a0_))\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return relu(relu(relu(sinh(sqrt(_a0_)))**_a0_))\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return relu(relu(relu(sinh(sqrt(_a0_)))**_a0_))\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return relu(exp(-_a0_**(-_a0_)*sig(_a0_))/S1)\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return relu(exp(-_a0_**(-_a0_)*sig(_a0_))/S1)\n", - ":2: RuntimeWarning: overflow encountered in power\n", - " return relu(sinh(S1))**(S2**S1)\n", - ":2: RuntimeWarning: overflow encountered in power\n", - " return relu(sinh(S1))**(S2**S1)\n", - ":2: RuntimeWarning: overflow encountered in power\n", - " return relu(sinh(S1))**(S2**S1)\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return relu(log(_a0_))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return relu(log(_a0_))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu(relu(S2*(S1 + _a0_)**S1))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu(relu(S2*(S1 + _a0_)**S1))\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return relu(relu(relu(sinh(_a0_**_a0_))**_a0_))\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return relu(relu(relu(sinh(_a0_**_a0_))**_a0_))\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return exp(-S1)*sqrt(sin(S2))\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return exp(-S1)*sqrt(sin(S2))\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return exp(-S1)*sqrt(sin(S2))\n", - " 38%|███▊ | 571/1500 [00:37<01:13, 12.64it/s]:2: RuntimeWarning: divide by zero encountered in log\n", - " return log(-relu(_a0_)/(_a0_*relu(S1)))\n", - ":2: RuntimeWarning: divide by zero encountered in log\n", - " return log(-relu(_a0_)/(_a0_*relu(S1)))\n", - ":2: RuntimeWarning: divide by zero encountered in power\n", - " return relu(relu(relu(sinh(S1 + _a0_))**_a0_))\n", - ":2: RuntimeWarning: divide by zero encountered in power\n", - " return relu(relu(relu(sinh(S1 + _a0_))**_a0_))\n", - ":2: RuntimeWarning: divide by zero encountered in power\n", - " return relu(relu(relu(sinh(S1 + _a0_))**_a0_))\n", - ":2: RuntimeWarning: divide by zero encountered in log\n", - " return log(-relu(relu(S2/_a0_))/(_a0_*relu(S1)))\n", - ":2: RuntimeWarning: divide by zero encountered in log\n", - " return log(-relu(relu(S2/_a0_))/(_a0_*relu(S1)))\n", - ":2: RuntimeWarning: divide by zero encountered in log\n", - " return log(-relu(relu(S2/_a0_))/(_a0_*relu(S1)))\n", - ":2: RuntimeWarning: divide by zero encountered in scalar power\n", - " return relu(relu(relu(_a0_)**_a0_))\n", - ":2: RuntimeWarning: divide by zero encountered in scalar power\n", - " return relu(relu(relu(_a0_)**_a0_))\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return relu(relu(S2/_a0_)/sqrt(log(S2)))\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return relu(relu(S2/_a0_)/sqrt(log(S2)))\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return relu(relu(S2/_a0_)/sqrt(log(S2)))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu(sinh(log(S1))**_a0_)\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return sinh(sin(S2))**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return sinh(sin(S2))**_a0_\n", - " 38%|███▊ | 573/1500 [00:38<01:10, 13.14it/s]:2: RuntimeWarning: invalid value encountered in scalar power\n", - " return relu(relu(S2*(_a0_**_a0_)**S1))\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return relu(relu(S2*(_a0_**_a0_)**S1))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu(sinh(tan(S1))**_a0_)\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu(sinh(tan(S1))**_a0_)\n", - ":2: RuntimeWarning: divide by zero encountered in scalar power\n", - " return relu(_a0_)**_a0_\n", - ":2: RuntimeWarning: divide by zero encountered in scalar power\n", - " return relu(_a0_)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(-relu(relu(S2))/(_a0_*relu(2*S2)))\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return sqrt(S1/_a0_)*exp(-S1)\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return (_a0_/S2)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return (_a0_/S2)**_a0_\n", - " 38%|███▊ | 575/1500 [00:38<01:07, 13.65it/s]:2: RuntimeWarning: invalid value encountered in log\n", - " return log(-relu(relu(S2))**_a0_/relu(S1))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(-relu(relu(S2))**_a0_/relu(S1))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return relu(log(_a0_))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return relu(log(_a0_))\n", - ":2: RuntimeWarning: divide by zero encountered in scalar power\n", - " return relu(sinh(relu(_a0_))**_a0_)\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return relu(_a0_**_a0_/(S1 + _a0_))\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return relu(sinh(relu(S1))**(sqrt(_a0_)))\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return relu(sinh(relu(S1))**(sqrt(_a0_)))\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return relu(sinh(relu(S1))**(sqrt(_a0_)))\n", - ":2: RuntimeWarning: divide by zero encountered in power\n", - " return relu(log(S1))**(-_a0_)\n", - ":2: RuntimeWarning: overflow encountered in exp\n", - " return relu(relu(exp(relu(S1 + exp(S2/_a0_)))))\n", - " 38%|███▊ | 577/1500 [00:38<01:07, 13.71it/s]:2: RuntimeWarning: invalid value encountered in log\n", - " return relu(relu(S2*log(_a0_)**S1))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return relu(relu(S2*log(_a0_)**S1))\n", - ":2: RuntimeWarning: divide by zero encountered in power\n", - " return relu(relu(relu(S2/_a0_)**_a0_))\n", - ":2: RuntimeWarning: divide by zero encountered in power\n", - " return relu(relu(relu(S2/_a0_)**_a0_))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu(exp(-sig(_a0_**S2)/S1)/S1)\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu(exp(-sig(_a0_**S2)/S1)/S1)\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu(exp(-sig(_a0_**S2)/S1)/S1)\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return cos(sinh(S1))**(-_a0_)\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return relu(sinh(_a0_)**_a0_)\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return relu(sinh(_a0_)**_a0_)\n", - " 39%|███▊ | 579/1500 [00:38<01:06, 13.77it/s]:2: RuntimeWarning: invalid value encountered in power\n", - " return log(-(relu(relu(S2))/_a0_)**relu(S1))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return log(-(relu(relu(S2))/_a0_)**relu(S1))\n", - ":2: RuntimeWarning: divide by zero encountered in power\n", - " return relu(relu(relu(sinh(log(S1)))**_a0_))\n", - ":2: RuntimeWarning: divide by zero encountered in power\n", - " return relu(relu(relu(sinh(log(S1)))**_a0_))\n", - ":2: RuntimeWarning: divide by zero encountered in power\n", - " return relu(relu(relu(sinh(log(S1)))**_a0_))\n", - ":2: RuntimeWarning: divide by zero encountered in divide\n", - " return log(-relu(relu(S2))/(_a0_*relu(sin(S1))))\n", - ":2: RuntimeWarning: divide by zero encountered in divide\n", - " return log(-relu(relu(S2))/(_a0_*relu(sin(S1))))\n", - ":2: RuntimeWarning: divide by zero encountered in divide\n", - " return log(-relu(relu(S2))/(_a0_*relu(sin(S1))))\n", - " 39%|███▊ | 581/1500 [00:38<01:06, 13.85it/s]:2: RuntimeWarning: invalid value encountered in log\n", - " return log(-relu(relu(S2))/(_a0_*(S1 + S2)))\n", - ":2: RuntimeWarning: divide by zero encountered in scalar power\n", - " return sinh(relu(_a0_))**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return sqrt(sig(log(S2*_a0_/S1))/S1)\n", - " 39%|███▉ | 583/1500 [00:38<01:07, 13.58it/s]:2: RuntimeWarning: invalid value encountered in scalar power\n", - " return sinh(_a0_)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return sinh(_a0_)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return sqrt(S1**2/_a0_)*exp(-S1)\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(-relu(relu(S2))/((S1 + _a0_)*relu(S1)))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(-relu(relu(S2))/((S1 + _a0_)*relu(S1)))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(-relu(relu(S2))/((S1 + _a0_)*relu(S1)))\n", - ":2: RuntimeWarning: overflow encountered in power\n", - " return S1**(S2**S1)\n", - ":2: RuntimeWarning: overflow encountered in power\n", - " return S1**(S2**S1)\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return log(S1)**_a0_\n", - " 39%|███▉ | 585/1500 [00:38<01:09, 13.22it/s]:2: RuntimeWarning: invalid value encountered in power\n", - " return log(-_a0_**(-S1)*relu(relu(S2))/relu(S1))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return log(-_a0_**(-S1)*relu(relu(S2))/relu(S1))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return log(-_a0_**(-S1)*relu(relu(S2))/relu(S1))\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return relu(sinh(_a0_)**_a0_)\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return relu(sinh(_a0_)**_a0_)\n", - ":2: RuntimeWarning: divide by zero encountered in power\n", - " return sinh(relu(cos(S2)))**_a0_\n", - ":2: RuntimeWarning: divide by zero encountered in power\n", - " return sinh(relu(cos(S2)))**_a0_\n", - ":2: RuntimeWarning: divide by zero encountered in power\n", - " return sinh(relu(cos(S2)))**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return _a0_*sqrt(S2/_a0_)/S1\n", - " 39%|███▉ | 587/1500 [00:39<01:11, 12.77it/s]:2: RuntimeWarning: divide by zero encountered in scalar power\n", - " return sinh(relu(_a0_))**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return relu(sinh(_a0_)**_a0_)\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return relu(sinh(_a0_)**_a0_)\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return sinh(S1 + _a0_)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return sinh(S1 + _a0_)**_a0_\n", - ":2: RuntimeWarning: divide by zero encountered in log\n", - " return log(relu(log(S2/S1)))\n", - ":2: RuntimeWarning: divide by zero encountered in log\n", - " return log(relu(log(S2/S1)))\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return sqrt(S2/_a0_)*exp(-sqrt(S2))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return cos(sinh(S1))**(-_a0_)\n", - " 39%|███▉ | 589/1500 [00:39<01:08, 13.36it/s]:2: RuntimeWarning: divide by zero encountered in divide\n", - " return log(-relu(relu(S2))/(_a0_*relu(S1 + _a0_)))\n", - ":2: RuntimeWarning: divide by zero encountered in divide\n", - " return log(-relu(relu(S2))/(_a0_*relu(S1 + _a0_)))\n", - ":2: RuntimeWarning: divide by zero encountered in divide\n", - " return log(-relu(relu(S2))/(_a0_*relu(S1 + _a0_)))\n", - ":2: RuntimeWarning: divide by zero encountered in scalar power\n", - " return relu(relu(relu(_a0_)**_a0_))\n", - ":2: RuntimeWarning: divide by zero encountered in scalar power\n", - " return relu(relu(relu(_a0_)**_a0_))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return sqrt(sig(log(S2*sin(S2)))/S1)\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return sqrt(sig(log(S2*sin(S2)))/S1)\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu(sinh(S2/_a0_)**_a0_)\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu(sinh(S2/_a0_)**_a0_)\n", - " 39%|███▉ | 591/1500 [00:39<01:08, 13.24it/s]:2: RuntimeWarning: invalid value encountered in log\n", - " return log(-S2**(-S1)*relu(relu(S2))/_a0_)\n", - ":2: RuntimeWarning: overflow encountered in power\n", - " return relu(sinh(S1))**(-S2**S2)\n", - ":2: RuntimeWarning: overflow encountered in power\n", - " return relu(sinh(S1))**(-S2**S2)\n", - ":2: RuntimeWarning: overflow encountered in power\n", - " return relu(sinh(S1))**(-S2**S2)\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(-relu(relu(S2))/(S2*relu(S1)))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(-relu(relu(S2))/(S2*relu(S1)))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu(cos(S1)**_a0_/(S1 + _a0_))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu(cos(S1)**_a0_/(S1 + _a0_))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu(cos(S1)**_a0_/(S1 + _a0_))\n", - ":2: RuntimeWarning: divide by zero encountered in scalar power\n", - " return relu(relu(relu(_a0_)**_a0_))\n", - ":2: RuntimeWarning: divide by zero encountered in scalar power\n", - " return relu(relu(relu(_a0_)**_a0_))\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return sqrt(S2/_a0_)*exp(-2*S2)\n", - " 40%|███▉ | 593/1500 [00:39<01:10, 12.85it/s]:2: RuntimeWarning: overflow encountered in power\n", - " return (S2/_a0_ + sin((2*S1 + S2)**(S1**S1)))*exp(-S1)\n", - ":2: RuntimeWarning: invalid value encountered in sin\n", - " return (S2/_a0_ + sin((2*S1 + S2)**(S1**S1)))*exp(-S1)\n", - ":2: RuntimeWarning: overflow encountered in power\n", - " return (S2/_a0_ + sin((2*S1 + S2)**(S1**S1)))*exp(-S1)\n", - ":2: RuntimeWarning: invalid value encountered in sin\n", - " return (S2/_a0_ + sin((2*S1 + S2)**(S1**S1)))*exp(-S1)\n", - ":2: RuntimeWarning: overflow encountered in power\n", - " return (S2/_a0_ + sin((2*S1 + S2)**(S1**S1)))*exp(-S1)\n", - ":2: RuntimeWarning: invalid value encountered in sin\n", - " return (S2/_a0_ + sin((2*S1 + S2)**(S1**S1)))*exp(-S1)\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return relu(relu(S2*log(_a0_)**S1))\n", - ":2: RuntimeWarning: divide by zero encountered in scalar power\n", - " return relu(relu(relu(_a0_)**_a0_))\n", - ":2: RuntimeWarning: divide by zero encountered in scalar power\n", - " return relu(relu(relu(_a0_)**_a0_))\n", - ":2: RuntimeWarning: overflow encountered in exp\n", - " return relu(relu(exp((S1 + exp(S2/_a0_))**3)))\n", - ":2: RuntimeWarning: overflow encountered in power\n", - " return relu(sinh(S1))**fac(_a0_)\n", - ":2: RuntimeWarning: divide by zero encountered in log\n", - " return log(-relu(S2 + _a0_)/(_a0_*relu(S1)))\n", - ":2: RuntimeWarning: divide by zero encountered in log\n", - " return log(-relu(S2 + _a0_)/(_a0_*relu(S1)))\n", - ":2: RuntimeWarning: divide by zero encountered in log\n", - " return log(-relu(S2 + _a0_)/(_a0_*relu(S1)))\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return sqrt(sig(log(S2*relu(S2)))/(S1 + _a0_))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu((-sinh(S1))**_a0_)\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu((-sinh(S1))**_a0_)\n", - ":2: RuntimeWarning: overflow encountered in exp\n", - " return relu(exp(-_a0_/(S1*S2))/S1)\n", - ":2: RuntimeWarning: overflow encountered in exp\n", - " return relu(exp(-_a0_/(S1*S2))/S1)\n", - ":2: RuntimeWarning: overflow encountered in exp\n", - " return relu(exp(-_a0_/(S1*S2))/S1)\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return (sqrt(S1) + _a0_)/(S1*sqrt(_a0_))\n", - " 40%|███▉ | 595/1500 [00:39<01:09, 13.01it/s]:2: RuntimeWarning: invalid value encountered in log\n", - " return log(cos(S1))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(cos(S1))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return relu(log(_a0_))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return relu(log(_a0_))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu((S1*_a0_)**_a0_/(S1 + _a0_))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return cos(S1)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return relu(log(cos(S1)))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return relu(log(cos(S1)))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return relu(log(cos(S1)))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu(relu(S2*(_a0_/S2)**S1))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu(relu(S2*(_a0_/S2)**S1))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu(relu(relu(_a0_**S2)**_a0_))\n", - ":2: RuntimeWarning: divide by zero encountered in power\n", - " return relu(relu(relu(_a0_**S2)**_a0_))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu(relu(relu(_a0_**S2)**_a0_))\n", - ":2: RuntimeWarning: divide by zero encountered in power\n", - " return relu(relu(relu(_a0_**S2)**_a0_))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return sinh(tan(S1))**_a0_\n", - ":2: RuntimeWarning: overflow encountered in power\n", - " return sinh(S1)**(S2**S2)\n", - ":2: RuntimeWarning: overflow encountered in power\n", - " return sinh(S1)**(S2**S2)\n", - " 40%|███▉ | 597/1500 [00:39<01:05, 13.81it/s]:2: RuntimeWarning: invalid value encountered in sqrt\n", - " return sqrt(sin(S1)/_a0_)*exp(-S1)\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return sqrt(sin(S1)/_a0_)*exp(-S1)\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return sqrt(sin(S1)/_a0_)*exp(-S1)\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return sinh(tan(S1))**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return sinh(tan(S1))**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(-relu(relu(S2))/(_a0_*relu(S2)))\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return sinh(_a0_**_a0_)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return sinh(_a0_**_a0_)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return sqrt(tan(log(S2*relu(S2)))/S1)\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return sqrt(tan(log(S2*relu(S2)))/S1)\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return relu(sinh(_a0_)**_a0_)\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return relu(sinh(_a0_)**_a0_)\n", - " 40%|███▉ | 599/1500 [00:40<01:13, 12.18it/s]:2: RuntimeWarning: invalid value encountered in sqrt\n", - " return relu(relu(S2/_a0_)/sqrt(sin(S1)))\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return relu(relu(S2/_a0_)/sqrt(sin(S1)))\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return relu(relu(S2/_a0_)/sqrt(sin(S1)))\n", - ":2: RuntimeWarning: divide by zero encountered in log\n", - " return log(-relu(relu(cos(S2)))/(_a0_*relu(S1)))\n", - ":2: RuntimeWarning: divide by zero encountered in log\n", - " return log(-relu(relu(cos(S2)))/(_a0_*relu(S1)))\n", - ":2: RuntimeWarning: divide by zero encountered in log\n", - " return log(-relu(relu(cos(S2)))/(_a0_*relu(S1)))\n", - " 40%|████ | 601/1500 [00:40<01:34, 9.49it/s]:2: RuntimeWarning: invalid value encountered in log\n", - " return relu(log(_a0_))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return relu(log(_a0_))\n", - " 40%|████ | 603/1500 [00:40<01:30, 9.91it/s]:2: RuntimeWarning: invalid value encountered in log\n", - " return log(-S2**(-S2)*relu(relu(S2))/relu(S1))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(-S2**(-S2)*relu(relu(S2))/relu(S1))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(-S2**(-S2)*relu(relu(S2))/relu(S1))\n", - ":2: RuntimeWarning: divide by zero encountered in power\n", - " return relu(S2)*sig(sinh(_a0_))**(S1*_a0_)\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return exp(-S1)*sqrt(cos(_a0_))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return S1**(_a0_**S1)\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return S1**(_a0_**S1)\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return relu(relu(exp(cos(sqrt(_a0_) + exp(S2/_a0_)))))\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return relu(relu(exp(cos(sqrt(_a0_) + exp(S2/_a0_)))))\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return relu(relu(exp(cos(sqrt(_a0_) + exp(S2/_a0_)))))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return relu(log(_a0_))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return relu(log(_a0_))\n", - ":2: RuntimeWarning: divide by zero encountered in power\n", - " return relu(relu(relu(tan(S1))**_a0_))\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return sinh(tanh(_a0_))**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return sinh(tanh(_a0_))**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return _a0_**(sqrt(S1))/S1**(3/2)\n", - " 40%|████ | 605/1500 [00:40<01:26, 10.32it/s]:2: RuntimeWarning: invalid value encountered in scalar power\n", - " return relu(sinh(_a0_)**_a0_)\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return relu(sinh(_a0_)**_a0_)\n", - " 40%|████ | 607/1500 [00:40<01:24, 10.55it/s]:2: RuntimeWarning: divide by zero encountered in log\n", - " return log(-relu(relu(_a0_))/(_a0_*relu(S1)))\n", - ":2: RuntimeWarning: divide by zero encountered in log\n", - " return log(-relu(relu(_a0_))/(_a0_*relu(S1)))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu(relu(relu(_a0_**S2)**_a0_))\n", - ":2: RuntimeWarning: divide by zero encountered in power\n", - " return relu(relu(relu(_a0_**S2)**_a0_))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu(relu(relu(_a0_**S2)**_a0_))\n", - ":2: RuntimeWarning: divide by zero encountered in power\n", - " return relu(relu(relu(_a0_**S2)**_a0_))\n", - ":2: RuntimeWarning: divide by zero encountered in power\n", - " return relu(sinh(relu(S2 + _a0_))**_a0_)\n", - ":2: RuntimeWarning: divide by zero encountered in power\n", - " return relu(sinh(relu(S2 + _a0_))**_a0_)\n", - ":2: RuntimeWarning: divide by zero encountered in power\n", - " return relu(sinh(relu(S2 + _a0_))**_a0_)\n", - ":2: RuntimeWarning: overflow encountered in power\n", - " return relu(relu(S2*exp(2*exp(S2))**S1))\n", - ":2: RuntimeWarning: overflow encountered in power\n", - " return relu(relu(S2*exp(2*exp(S2))**S1))\n", - ":2: RuntimeWarning: overflow encountered in power\n", - " return relu(relu(S2*exp(2*exp(S2))**S1))\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return sqrt(tan(log(S2*relu(S2)))/S1)\n", - " 41%|████ | 609/1500 [00:41<01:17, 11.55it/s]:2: RuntimeWarning: divide by zero encountered in scalar power\n", - " return relu(relu(relu(sinh(_a0_))**_a0_))\n", - ":2: RuntimeWarning: divide by zero encountered in power\n", - " return relu(sinh(log(S1)))**_a0_\n", - ":2: RuntimeWarning: divide by zero encountered in power\n", - " return relu(sinh(log(S1)))**_a0_\n", - ":2: RuntimeWarning: overflow encountered in exp\n", - " return relu(relu(exp(cos(S1 + exp(S2**_a0_)))))\n", - ":2: RuntimeWarning: invalid value encountered in cos\n", - " return relu(relu(exp(cos(S1 + exp(S2**_a0_)))))\n", - ":2: RuntimeWarning: overflow encountered in exp\n", - " return relu(relu(exp(cos(S1 + exp(S2**_a0_)))))\n", - ":2: RuntimeWarning: invalid value encountered in cos\n", - " return relu(relu(exp(cos(S1 + exp(S2**_a0_)))))\n", - " 41%|████ | 611/1500 [00:41<01:15, 11.80it/s]:2: RuntimeWarning: invalid value encountered in log\n", - " return log(cos(S2)/S1)\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(cos(S2)/S1)\n", - ":2: RuntimeWarning: divide by zero encountered in log\n", - " return log(-relu(relu(_a0_/S1))/(_a0_*relu(S1)))\n", - ":2: RuntimeWarning: divide by zero encountered in log\n", - " return log(-relu(relu(_a0_/S1))/(_a0_*relu(S1)))\n", - ":2: RuntimeWarning: divide by zero encountered in log\n", - " return log(-relu(relu(_a0_/S1))/(_a0_*relu(S1)))\n", - ":2: RuntimeWarning: divide by zero encountered in scalar power\n", - " return relu(_a0_)**_a0_\n", - ":2: RuntimeWarning: divide by zero encountered in scalar power\n", - " return relu(_a0_)**_a0_\n", - ":2: RuntimeWarning: divide by zero encountered in log\n", - " return log(-relu(relu(S2/_a0_))/(_a0_*relu(S1)))\n", - ":2: RuntimeWarning: divide by zero encountered in log\n", - " return log(-relu(relu(S2/_a0_))/(_a0_*relu(S1)))\n", - " 41%|████ | 613/1500 [00:41<01:16, 11.60it/s]:2: RuntimeWarning: divide by zero encountered in power\n", - " return relu(sinh(relu(tan(S2)))**_a0_)\n", - ":2: RuntimeWarning: divide by zero encountered in power\n", - " return relu(sinh(relu(tan(S2)))**_a0_)\n", - ":2: RuntimeWarning: divide by zero encountered in power\n", - " return relu(sinh(relu(tan(S2)))**_a0_)\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return relu(exp(-_a0_**_a0_/S1)/S1)\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return relu(exp(-_a0_**_a0_/S1)/S1)\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return relu(exp(-_a0_**_a0_/S1)/S1)\n", - ":2: RuntimeWarning: overflow encountered in sinh\n", - " return sinh(S2**S2)**_a0_\n", - ":2: RuntimeWarning: overflow encountered in sinh\n", - " return sinh(S2**S2)**_a0_\n", - " 41%|████ | 615/1500 [00:41<01:14, 11.81it/s]:2: RuntimeWarning: divide by zero encountered in power\n", - " return relu(sinh(relu(-S2))**_a0_)\n", - ":2: RuntimeWarning: divide by zero encountered in power\n", - " return relu(sinh(relu(-S2))**_a0_)\n", - ":2: RuntimeWarning: divide by zero encountered in power\n", - " return relu(sinh(relu(-S2))**_a0_)\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(-relu(S2**_a0_)/(_a0_*relu(S1)))\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return relu(relu(exp(cos(S1 + sqrt(S2/_a0_)))))\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return relu(relu(exp(cos(S1 + sqrt(S2/_a0_)))))\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return (sqrt(_a0_) + _a0_)/S1**(3/2)\n", - " 41%|████ | 617/1500 [00:41<01:11, 12.32it/s]:2: RuntimeWarning: invalid value encountered in log\n", - " return log(-(_a0_ + relu(relu(S2)))/relu(S1))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(-(_a0_ + relu(relu(S2)))/relu(S1))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return relu(log(cos(S1)/S1))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return relu(log(cos(S1)/S1))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return relu(log(cos(S1)/S1))\n", - ":2: RuntimeWarning: divide by zero encountered in scalar power\n", - " return relu(relu(relu(sinh(tan(_a0_)))**_a0_))\n", - ":2: RuntimeWarning: divide by zero encountered in scalar power\n", - " return relu(relu(relu(sinh(tan(_a0_)))**_a0_))\n", - ":2: RuntimeWarning: divide by zero encountered in scalar power\n", - " return relu(relu(relu(sinh(tan(_a0_)))**_a0_))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu(log(relu(S1))**_a0_)\n", - ":2: RuntimeWarning: divide by zero encountered in scalar power\n", - " return relu(sinh(sin(_a0_)))**_a0_\n", - ":2: RuntimeWarning: divide by zero encountered in scalar power\n", - " return relu(sinh(sin(_a0_)))**_a0_\n", - ":2: RuntimeWarning: divide by zero encountered in scalar power\n", - " return relu(sinh(sin(_a0_)))**_a0_\n", - " 41%|████▏ | 619/1500 [00:41<01:12, 12.20it/s]:2: RuntimeWarning: divide by zero encountered in scalar power\n", - " return relu(sinh(relu(_a0_))**_a0_)\n", - ":2: RuntimeWarning: divide by zero encountered in scalar power\n", - " return relu(relu(relu(sinh(relu(_a0_)))**_a0_))\n", - ":2: RuntimeWarning: divide by zero encountered in scalar power\n", - " return relu(relu(relu(sinh(relu(_a0_)))**_a0_))\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return sqrt(tanh(log(S2*relu(S2)))/S1)\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return sqrt(tanh(log(S2*relu(S2)))/S1)\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu(sinh(S1))**(_a0_**S1)\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu(sinh(S1))**(_a0_**S1)\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu(sinh(S1))**(_a0_**S1)\n", - " 41%|████▏ | 621/1500 [00:42<01:12, 12.11it/s]:2: RuntimeWarning: divide by zero encountered in log\n", - " return log(-relu(relu(log(S1)))/(_a0_*relu(S1)))\n", - ":2: RuntimeWarning: divide by zero encountered in log\n", - " return log(-relu(relu(log(S1)))/(_a0_*relu(S1)))\n", - ":2: RuntimeWarning: divide by zero encountered in log\n", - " return log(-relu(relu(log(S1)))/(_a0_*relu(S1)))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return sqrt(sig(log(S2*(S2 + _a0_)))/S1)\n", - ":2: RuntimeWarning: overflow encountered in sinh\n", - " return relu(sinh(S2**S2)**_a0_)\n", - ":2: RuntimeWarning: overflow encountered in sinh\n", - " return relu(sinh(S2**S2)**_a0_)\n", - ":2: RuntimeWarning: overflow encountered in sinh\n", - " return relu(sinh(S2**S2)**_a0_)\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return relu(exp(-sig(_a0_**_a0_)/S1)/S1)\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return relu(exp(-sig(_a0_**_a0_)/S1)/S1)\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return relu(exp(-sig(_a0_**_a0_)/S1)/S1)\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return _a0_**(sqrt(S1))/S1**(3/2)\n", - " 42%|████▏ | 623/1500 [00:42<01:12, 12.14it/s]:2: RuntimeWarning: invalid value encountered in log\n", - " return log(-relu(relu(S2))**_a0_/relu(S1))\n", - ":2: RuntimeWarning: overflow encountered in exp\n", - " return relu(relu(exp(cos(S1 + exp(S1**S1/_a0_)))))\n", - ":2: RuntimeWarning: invalid value encountered in cos\n", - " return relu(relu(exp(cos(S1 + exp(S1**S1/_a0_)))))\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return (_a0_ + sqrt(S1*_a0_))/S1**(3/2)\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return (_a0_ + sqrt(S1*_a0_))/S1**(3/2)\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return (_a0_ + sqrt(S1*_a0_))/S1**(3/2)\n", - " 42%|████▏ | 625/1500 [00:42<01:09, 12.64it/s]:2: RuntimeWarning: invalid value encountered in power\n", - " return sinh(_a0_**S1)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return sinh(_a0_**S1)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return sqrt(sig(log(S2*log(S2)))/S1)\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return sqrt(sig(log(S2*log(S2)))/S1)\n", - " 42%|████▏ | 627/1500 [00:42<01:09, 12.65it/s]:2: RuntimeWarning: divide by zero encountered in log\n", - " return log(-relu(_a0_)/(_a0_*relu(S1)))\n", - ":2: RuntimeWarning: divide by zero encountered in log\n", - " return log(-relu(_a0_)/(_a0_*relu(S1)))\n", - ":2: RuntimeWarning: divide by zero encountered in log\n", - " return log(-relu(2*_a0_)/(_a0_*relu(S1)))\n", - ":2: RuntimeWarning: divide by zero encountered in log\n", - " return log(-relu(2*_a0_)/(_a0_*relu(S1)))\n", - ":2: RuntimeWarning: divide by zero encountered in log\n", - " return log(-relu(2*_a0_)/(_a0_*relu(S1)))\n", - ":2: RuntimeWarning: divide by zero encountered in power\n", - " return relu(relu(relu(sinh(S1 + _a0_))**_a0_))\n", - ":2: RuntimeWarning: divide by zero encountered in power\n", - " return relu(relu(relu(sinh(S1 + _a0_))**_a0_))\n", - ":2: RuntimeWarning: divide by zero encountered in power\n", - " return relu(sinh(relu(-S2))**_a0_)\n", - ":2: RuntimeWarning: divide by zero encountered in power\n", - " return relu(sinh(relu(-S2))**_a0_)\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return sin(S1)**_a0_\n", - " 42%|████▏ | 629/1500 [00:42<01:10, 12.31it/s]:2: RuntimeWarning: invalid value encountered in log\n", - " return log(cos(S2))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(cos(S2))\n", - ":2: RuntimeWarning: divide by zero encountered in divide\n", - " return log(-relu(relu(S2))/(_a0_*relu(2*_a0_)))\n", - ":2: RuntimeWarning: divide by zero encountered in divide\n", - " return log(-relu(relu(S2))/(_a0_*relu(2*_a0_)))\n", - ":2: RuntimeWarning: divide by zero encountered in divide\n", - " return log(-relu(relu(S2))/(_a0_*relu(2*_a0_)))\n", - ":2: RuntimeWarning: divide by zero encountered in power\n", - " return relu(relu(relu(sinh(S1/_a0_))**_a0_))\n", - ":2: RuntimeWarning: divide by zero encountered in power\n", - " return relu(relu(relu(sinh(S1/_a0_))**_a0_))\n", - ":2: RuntimeWarning: divide by zero encountered in power\n", - " return relu(relu(relu(sinh(S1/_a0_))**_a0_))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return sin(relu(S1))**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return sin(relu(S1))**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(-S2**(-_a0_)*relu(relu(S2))/relu(S1))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(-S2**(-_a0_)*relu(relu(S2))/relu(S1))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(-S2**(-_a0_)*relu(relu(S2))/relu(S1))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return (S2/_a0_ + sin((S1 + tan(S2))**_a0_))*exp(-S1)\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return (S2/_a0_ + sin((S1 + tan(S2))**_a0_))*exp(-S1)\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return (S2/_a0_ + sin((S1 + tan(S2))**_a0_))*exp(-S1)\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return sinh(_a0_)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return sinh(_a0_)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return (_a0_**S2)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return (_a0_**S2)**_a0_\n", - " 42%|████▏ | 631/1500 [00:42<01:14, 11.74it/s]:2: RuntimeWarning: invalid value encountered in log\n", - " return log(-S2)\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(-S2)\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return sinh(2*_a0_)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return sinh(2*_a0_)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return sinh(2*_a0_)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return (_a0_**S2)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return (_a0_**S2)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return sinh(_a0_)**_a0_\n", - ":2: RuntimeWarning: divide by zero encountered in scalar power\n", - " return relu(_a0_)**_a0_\n", - ":2: RuntimeWarning: divide by zero encountered in scalar power\n", - " return relu(_a0_)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(S2/cos(S1))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(S2/cos(S1))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(S2/cos(S1))\n", - ":2: RuntimeWarning: divide by zero encountered in log\n", - " return log(-relu(_a0_)/(_a0_*relu(S1)))\n", - ":2: RuntimeWarning: divide by zero encountered in log\n", - " return log(-relu(_a0_)/(_a0_*relu(S1)))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return _a0_**(-S1)*(sqrt(S1) + _a0_)/S1\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return _a0_**(-S1)*(sqrt(S1) + _a0_)/S1\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return _a0_**(-S1)*(sqrt(S1) + _a0_)/S1\n", - " 42%|████▏ | 633/1500 [00:42<01:09, 12.43it/s]:2: RuntimeWarning: invalid value encountered in power\n", - " return (S1*_a0_)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return (S1*_a0_)**_a0_\n", - ":2: RuntimeWarning: divide by zero encountered in power\n", - " return relu(sinh(tan(S1)))**_a0_\n", - ":2: RuntimeWarning: divide by zero encountered in power\n", - " return relu(sinh(tan(S1)))**_a0_\n", - ":2: RuntimeWarning: divide by zero encountered in divide\n", - " return log(-relu(relu(S2))/(relu(S1)*relu(_a0_)))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(-relu(relu(S2))/(relu(S1)*relu(_a0_)))\n", - ":2: RuntimeWarning: divide by zero encountered in divide\n", - " return log(-relu(relu(S2))/(relu(S1)*relu(_a0_)))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(-relu(relu(S2))/(relu(S1)*relu(_a0_)))\n", - ":2: RuntimeWarning: divide by zero encountered in divide\n", - " return log(-relu(relu(S2))/(relu(S1)*relu(_a0_)))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(-relu(relu(S2))/(relu(S1)*relu(_a0_)))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu(_a0_**S1)**_a0_\n", - ":2: RuntimeWarning: divide by zero encountered in power\n", - " return relu(_a0_**S1)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu(_a0_**S1)**_a0_\n", - ":2: RuntimeWarning: divide by zero encountered in power\n", - " return relu(_a0_**S1)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu(_a0_**S1)**_a0_\n", - ":2: RuntimeWarning: divide by zero encountered in power\n", - " return relu(_a0_**S1)**_a0_\n", - " 42%|████▏ | 635/1500 [00:43<01:08, 12.67it/s]:2: RuntimeWarning: invalid value encountered in log\n", - " return log(S2/sin(S1))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(S2/sin(S1))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(S2/sin(S1))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(log(S2))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(log(S2))\n", - ":2: RuntimeWarning: overflow encountered in sinh\n", - " return relu(sinh(S1**S2))**_a0_\n", - ":2: RuntimeWarning: overflow encountered in sinh\n", - " return relu(sinh(S1**S2))**_a0_\n", - ":2: RuntimeWarning: overflow encountered in sinh\n", - " return relu(sinh(S1**S2))**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return relu(sinh(relu(S1))**log(_a0_))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return relu(sinh(relu(S1))**log(_a0_))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return relu(sinh(relu(S1))**log(_a0_))\n", - " 42%|████▏ | 637/1500 [00:43<01:07, 12.74it/s]:2: RuntimeWarning: divide by zero encountered in log\n", - " return log(-relu(sin(S2))/(_a0_*relu(S1)))\n", - ":2: RuntimeWarning: divide by zero encountered in log\n", - " return log(-relu(sin(S2))/(_a0_*relu(S1)))\n", - ":2: RuntimeWarning: divide by zero encountered in log\n", - " return log(-relu(sin(S2))/(_a0_*relu(S1)))\n", - ":2: RuntimeWarning: divide by zero encountered in scalar power\n", - " return relu(_a0_)**_a0_\n", - ":2: RuntimeWarning: divide by zero encountered in scalar power\n", - " return relu(_a0_)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(-_a0_)\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(-_a0_)\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return sqrt(S2*_a0_)*exp(-_a0_**2)\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu(cos(relu(S1))**_a0_)\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu(cos(relu(S1))**_a0_)\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return relu(sinh(log(_a0_)))**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return relu(sinh(log(_a0_)))**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return relu(sinh(log(_a0_)))**_a0_\n", - " 43%|████▎ | 639/1500 [00:43<01:06, 12.93it/s]:2: RuntimeWarning: invalid value encountered in log\n", - " return sqrt(sig(log(S2*tan(S2)))/S1)\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return sqrt(sig(log(S2*tan(S2)))/S1)\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(-relu(S2)/(S2*relu(S1)))\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return sinh(_a0_)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return sinh(_a0_)**_a0_\n", - " 43%|████▎ | 641/1500 [00:43<01:06, 12.96it/s]:2: RuntimeWarning: invalid value encountered in log\n", - " return log(cos(relu(S2)/(_a0_*relu(S1))))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(cos(relu(S2)/(_a0_*relu(S1))))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu(sinh(S2/_a0_)**_a0_)\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu(sinh(S2/_a0_)**_a0_)\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return (S2/_a0_)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return (S2/_a0_)**_a0_\n", - ":2: RuntimeWarning: divide by zero encountered in power\n", - " return relu(relu(relu(sinh(sin(S1)))**_a0_))**2\n", - ":2: RuntimeWarning: divide by zero encountered in power\n", - " return relu(relu(relu(sinh(sin(S1)))**_a0_))**2\n", - ":2: RuntimeWarning: divide by zero encountered in power\n", - " return relu(relu(relu(sinh(sin(S1)))**_a0_))**2\n", - " 43%|████▎ | 643/1500 [00:43<01:07, 12.62it/s]:2: RuntimeWarning: divide by zero encountered in power\n", - " return relu(relu(relu(_a0_/S1)**_a0_))**2\n", - ":2: RuntimeWarning: divide by zero encountered in power\n", - " return relu(relu(relu(_a0_/S1)**_a0_))**2\n", - ":2: RuntimeWarning: divide by zero encountered in power\n", - " return relu(relu(relu(_a0_/S1)**_a0_))**2\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return sin(S1)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return (_a0_ + sqrt(_a0_**S2))/S1**(3/2)\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return (_a0_ + sqrt(_a0_**S2))/S1**(3/2)\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return (_a0_ + sqrt(_a0_**S2))/S1**(3/2)\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return (_a0_ + sqrt(_a0_**S2))/S1**(3/2)\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return (_a0_ + sqrt(_a0_**S2))/S1**(3/2)\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return (_a0_ + sqrt(_a0_**S2))/S1**(3/2)\n", - ":2: RuntimeWarning: divide by zero encountered in power\n", - " return sinh(relu(sin(S2)))**_a0_\n", - ":2: RuntimeWarning: divide by zero encountered in power\n", - " return sinh(relu(sin(S2)))**_a0_\n", - ":2: RuntimeWarning: divide by zero encountered in power\n", - " return sinh(relu(sin(S2)))**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return (sqrt(_a0_) + _a0_)/S1**(3/2)\n", - " 43%|████▎ | 645/1500 [00:43<01:07, 12.70it/s]:2: RuntimeWarning: divide by zero encountered in divide\n", - " return log(-relu(S2)/(_a0_*relu(sin(_a0_))))\n", - ":2: RuntimeWarning: divide by zero encountered in divide\n", - " return log(-relu(S2)/(_a0_*relu(sin(_a0_))))\n", - ":2: RuntimeWarning: divide by zero encountered in scalar power\n", - " return relu(relu(relu(sinh(fac(_a0_)))**_a0_))**2\n", - ":2: RuntimeWarning: divide by zero encountered in scalar power\n", - " return relu(relu(relu(sinh(fac(_a0_)))**_a0_))**2\n", - ":2: RuntimeWarning: divide by zero encountered in scalar power\n", - " return relu(relu(relu(sinh(fac(_a0_)))**_a0_))**2\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return relu(sinh(_a0_)**_a0_)\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return relu(sinh(_a0_)**_a0_)\n", - ":2: RuntimeWarning: overflow encountered in exp\n", - " return relu(relu(exp(sqrt(S1 + exp(S2/_a0_)))))\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return relu(sinh(_a0_**_a0_)**_a0_)\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return relu(sinh(_a0_**_a0_)**_a0_)\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return sinh(S2*_a0_)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return sinh(S2*_a0_)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return sinh(S2*_a0_)**_a0_\n", - " 43%|████▎ | 647/1500 [00:44<01:05, 13.02it/s]:2: RuntimeWarning: invalid value encountered in log\n", - " return log(-1/relu(S1))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(-1/relu(S1))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return sinh(S2*_a0_)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return sinh(S2*_a0_)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return (S1 + _a0_)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return (S1 + _a0_)**_a0_\n", - ":2: RuntimeWarning: divide by zero encountered in power\n", - " return relu(relu(relu(S1 + _a0_)**_a0_))**2\n", - ":2: RuntimeWarning: divide by zero encountered in power\n", - " return relu(relu(relu(S1 + _a0_)**_a0_))**2\n", - ":2: RuntimeWarning: divide by zero encountered in power\n", - " return relu(relu(relu(S1 + _a0_)**_a0_))**2\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return log(relu(S1))**_a0_\n", - " 43%|████▎ | 649/1500 [00:44<01:04, 13.19it/s]:2: RuntimeWarning: divide by zero encountered in scalar power\n", - " return relu(_a0_)**_a0_\n", - ":2: RuntimeWarning: divide by zero encountered in scalar power\n", - " return relu(_a0_)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(-sin(S2)/(_a0_*relu(S1)))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(-sin(S2)/(_a0_*relu(S1)))\n", - ":2: RuntimeWarning: divide by zero encountered in power\n", - " return relu(sinh(relu(S2*_a0_))**_a0_)\n", - ":2: RuntimeWarning: divide by zero encountered in power\n", - " return relu(sinh(relu(S2*_a0_))**_a0_)\n", - ":2: RuntimeWarning: divide by zero encountered in power\n", - " return relu(sinh(relu(S2*_a0_))**_a0_)\n", - ":2: RuntimeWarning: divide by zero encountered in scalar power\n", - " return relu(sinh(sinh(_a0_)))**_a0_\n", - ":2: RuntimeWarning: divide by zero encountered in scalar power\n", - " return relu(sinh(sinh(_a0_)))**_a0_\n", - ":2: RuntimeWarning: divide by zero encountered in scalar power\n", - " return relu(sinh(sinh(_a0_)))**_a0_\n", - " 43%|████▎ | 651/1500 [00:44<01:04, 13.23it/s]:2: RuntimeWarning: invalid value encountered in power\n", - " return relu(cos(relu(S1))**_a0_)\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return sin(relu(S1))**_a0_\n", - ":2: RuntimeWarning: divide by zero encountered in scalar power\n", - " return relu(sinh(2*_a0_))**_a0_\n", - ":2: RuntimeWarning: divide by zero encountered in scalar power\n", - " return relu(sinh(2*_a0_))**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(-relu(S2)/_a0_**2)\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(-relu(S2)/_a0_**2)\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return relu(relu(S2/_a0_)/sqrt(-S1*_a0_))\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return relu(relu(S2/_a0_)/sqrt(-S1*_a0_))\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return relu(relu(S2/_a0_)/sqrt(-S1*_a0_))\n", - " 44%|████▎ | 653/1500 [00:44<01:04, 13.23it/s]:2: RuntimeWarning: invalid value encountered in power\n", - " return log(S1)**_a0_\n", - " 44%|████▎ | 655/1500 [00:44<01:04, 13.10it/s]:2: RuntimeWarning: invalid value encountered in log\n", - " return log(-relu(S2)/((S2 + _a0_)*relu(S1)))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(-relu(S2)/((S2 + _a0_)*relu(S1)))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(-relu(S2)/((S2 + _a0_)*relu(S1)))\n", - ":2: RuntimeWarning: divide by zero encountered in scalar power\n", - " return relu(relu(relu(_a0_)**_a0_))**2\n", - ":2: RuntimeWarning: divide by zero encountered in scalar power\n", - " return relu(relu(relu(_a0_)**_a0_))**2\n", - ":2: RuntimeWarning: divide by zero encountered in scalar power\n", - " return relu(relu(relu(_a0_)**_a0_))**2\n", - ":2: RuntimeWarning: divide by zero encountered in power\n", - " return relu(sinh(S2/_a0_))**_a0_\n", - ":2: RuntimeWarning: divide by zero encountered in power\n", - " return relu(sinh(S2/_a0_))**_a0_\n", - ":2: RuntimeWarning: divide by zero encountered in power\n", - " return relu(sinh(S2/_a0_))**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return (_a0_ + _a0_**S2)/S1**(3/2)\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return (_a0_ + _a0_**S2)/S1**(3/2)\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(-relu(S2)/(_a0_**2*relu(S1)))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(-relu(S2)/(_a0_**2*relu(S1)))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(-relu(S2)/(_a0_**2*relu(S1)))\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return sinh(2*_a0_)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return sinh(2*_a0_)**_a0_\n", - " 44%|████▍ | 657/1500 [00:44<01:04, 12.99it/s]:2: RuntimeWarning: divide by zero encountered in scalar power\n", - " return relu(relu(relu(sinh(_a0_))**_a0_))\n", - ":2: RuntimeWarning: overflow encountered in exp\n", - " return relu(relu(exp(tan(S1 + exp(S2/_a0_)))))\n", - ":2: RuntimeWarning: divide by zero encountered in scalar power\n", - " return relu(sinh(_a0_))**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(-relu(S2)/(S2**2*relu(S1)))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(-relu(S2)/(S2**2*relu(S1)))\n", - ":2: RuntimeWarning: divide by zero encountered in scalar power\n", - " return relu(sinh(_a0_))**_a0_\n", - " 44%|████▍ | 659/1500 [00:44<01:05, 12.86it/s]:2: RuntimeWarning: invalid value encountered in log\n", - " return log(-relu(S2)/(S1*relu(S1)))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return sqrt(sig(log(relu(S2)*log(S2)))/S1)\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return sqrt(sig(log(relu(S2)*log(S2)))/S1)\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return sqrt(sig(log(relu(S2)*log(S2)))/S1)\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return exp(-S1)*log(S2/_a0_)\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu(log(relu(S1))**_a0_)\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return relu(sinh(S1))**(_a0_**_a0_)\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return relu(sinh(S1))**(_a0_**_a0_)\n", - " 44%|████▍ | 661/1500 [00:45<01:04, 13.09it/s]:2: RuntimeWarning: invalid value encountered in power\n", - " return relu(cos(S2)**_a0_/(S1 + _a0_))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu(cos(S2)**_a0_/(S1 + _a0_))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu(cos(S2)**_a0_/(S1 + _a0_))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return sqrt(sig(log(relu(S2)*log(S2)))/S1)\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return sqrt(sig(log(relu(S2)*log(S2)))/S1)\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return sinh(_a0_)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return sinh(_a0_)**_a0_\n", - ":2: RuntimeWarning: divide by zero encountered in scalar power\n", - " return relu(sinh(_a0_))**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(-relu(S2)**_a0_/relu(S1))\n", - ":2: RuntimeWarning: divide by zero encountered in power\n", - " return relu(relu(relu(S2/_a0_)**_a0_))\n", - ":2: RuntimeWarning: divide by zero encountered in power\n", - " return relu(relu(relu(S2/_a0_)**_a0_))\n", - ":2: RuntimeWarning: overflow encountered in sinh\n", - " return sinh(S2**S2)**_a0_\n", - ":2: RuntimeWarning: overflow encountered in sinh\n", - " return sinh(S2**S2)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return (sqrt(S1) + _a0_)/(S1*sqrt(_a0_))\n", - " 44%|████▍ | 663/1500 [00:45<01:04, 13.07it/s]:2: RuntimeWarning: invalid value encountered in log\n", - " return log(S2/cos(S1))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(S2/cos(S1))\n", - ":2: RuntimeWarning: divide by zero encountered in scalar power\n", - " return relu(_a0_)**_a0_\n", - ":2: RuntimeWarning: divide by zero encountered in scalar power\n", - " return relu(_a0_)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(-S2/S1)\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(-S2/S1)\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return log(sqrt(_a0_*relu(S2)/relu(S1)))\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return log(sqrt(_a0_*relu(S2)/relu(S1)))\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return sqrt(cos(S1)/_a0_)*exp(-S1)\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return sqrt(cos(S1)/_a0_)*exp(-S1)\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return sqrt(cos(S1)/_a0_)*exp(-S1)\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu(relu(relu(_a0_**S2)**_a0_))\n", - ":2: RuntimeWarning: divide by zero encountered in power\n", - " return relu(relu(relu(_a0_**S2)**_a0_))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu(relu(relu(_a0_**S2)**_a0_))\n", - ":2: RuntimeWarning: divide by zero encountered in power\n", - " return relu(relu(relu(_a0_**S2)**_a0_))\n", - ":2: RuntimeWarning: divide by zero encountered in scalar power\n", - " return relu(sinh(relu(_a0_))**_a0_)\n", - " 44%|████▍ | 665/1500 [00:45<01:03, 13.09it/s]:2: RuntimeWarning: invalid value encountered in sqrt\n", - " return relu(sqrt(-log(S2*relu(S2))/S1))\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return relu(sqrt(-log(S2*relu(S2))/S1))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(-S1)\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(-S1)\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(-S1*relu(S2)/relu(S1))\n", - ":2: RuntimeWarning: divide by zero encountered in scalar power\n", - " return relu(sinh(relu(2*_a0_))**_a0_)\n", - ":2: RuntimeWarning: divide by zero encountered in scalar power\n", - " return relu(sinh(relu(2*_a0_))**_a0_)\n", - ":2: RuntimeWarning: divide by zero encountered in scalar power\n", - " return relu(sinh(relu(2*_a0_))**_a0_)\n", - ":2: RuntimeWarning: divide by zero encountered in power\n", - " return sinh(relu(S2 + _a0_))**_a0_\n", - ":2: RuntimeWarning: divide by zero encountered in power\n", - " return sinh(relu(S2 + _a0_))**_a0_\n", - ":2: RuntimeWarning: divide by zero encountered in power\n", - " return sinh(relu(S2 + _a0_))**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return _a0_**(sqrt(S1))/S1**(3/2)\n", - " 44%|████▍ | 667/1500 [00:45<01:03, 13.21it/s]:2: RuntimeWarning: invalid value encountered in sqrt\n", - " return exp(-S1)*sqrt(log(_a0_))\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return exp(-S1)*sqrt(log(_a0_))\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return exp(-S1)*sqrt(log(_a0_))\n", - ":2: RuntimeWarning: divide by zero encountered in power\n", - " return relu(sinh(S2/_a0_))**_a0_\n", - ":2: RuntimeWarning: divide by zero encountered in power\n", - " return relu(sinh(S2/_a0_))**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(tan(_a0_))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(tan(_a0_))\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return sinh(_a0_)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return sinh(_a0_)**_a0_\n", - " 45%|████▍ | 669/1500 [00:45<01:03, 13.17it/s]:2: RuntimeWarning: invalid value encountered in log\n", - " return log(-(_a0_ + relu(S2))/relu(S1))\n", - ":2: RuntimeWarning: divide by zero encountered in power\n", - " return relu(relu(relu(sinh(_a0_/S2))**_a0_))\n", - ":2: RuntimeWarning: divide by zero encountered in power\n", - " return relu(relu(relu(sinh(_a0_/S2))**_a0_))\n", - ":2: RuntimeWarning: divide by zero encountered in power\n", - " return relu(relu(relu(sinh(_a0_/S2))**_a0_))\n", - " 45%|████▍ | 671/1500 [00:45<01:03, 13.08it/s]:2: RuntimeWarning: invalid value encountered in log\n", - " return log(S2/(S2 + _a0_))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(_a0_*relu(S2)/relu(S1))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(_a0_*relu(S2)/relu(S1))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(_a0_*relu(S2)/relu(S1))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return (_a0_**(-S1)*relu(relu(S2/_a0_)))**sig(relu(S1))\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return relu(sqrt(log(S2*relu(S2))**3/S1))\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return relu(sqrt(log(S2*relu(S2))**3/S1))\n", - ":2: RuntimeWarning: overflow encountered in sinh\n", - " return sinh(relu(S2**S2))**_a0_\n", - ":2: RuntimeWarning: overflow encountered in sinh\n", - " return sinh(relu(S2**S2))**_a0_\n", - ":2: RuntimeWarning: overflow encountered in sinh\n", - " return sinh(relu(S2**S2))**_a0_\n", - ":2: RuntimeWarning: overflow encountered in power\n", - " return relu(relu(relu(sinh(S1))**(S2**S2)))\n", - ":2: RuntimeWarning: overflow encountered in power\n", - " return relu(relu(relu(sinh(S1))**(S2**S2)))\n", - ":2: RuntimeWarning: overflow encountered in power\n", - " return relu(relu(relu(sinh(S1))**(S2**S2)))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return log(S2)**(-_a0_)\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return log(S2)**(-_a0_)\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return log(S2)**(-_a0_)\n", - " 45%|████▍ | 673/1500 [00:46<01:02, 13.17it/s]:2: RuntimeWarning: invalid value encountered in power\n", - " return log(-_a0_*relu(S2)/relu(S1))**S2\n", - ":2: RuntimeWarning: overflow encountered in exp\n", - " return relu(relu(exp(abs(S1 + exp((S2 + _a0_)/_a0_)))))\n", - ":2: RuntimeWarning: divide by zero encountered in scalar power\n", - " return relu(sinh(_a0_))**_a0_\n", - ":2: RuntimeWarning: overflow encountered in sinh\n", - " return sinh(S1**S2)**_a0_\n", - ":2: RuntimeWarning: overflow encountered in sinh\n", - " return sinh(S1**S2)**_a0_\n", - ":2: RuntimeWarning: overflow encountered in sinh\n", - " return sinh(S1**S2)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(S2/cos(S2))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(S2/cos(S2))\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return relu(sqrt(-log(S2*relu(S2))/S1))\n", - " 45%|████▌ | 675/1500 [00:46<01:03, 13.02it/s]:2: RuntimeWarning: divide by zero encountered in scalar power\n", - " return sinh(relu(tanh(_a0_)))**_a0_\n", - ":2: RuntimeWarning: divide by zero encountered in scalar power\n", - " return sinh(relu(tanh(_a0_)))**_a0_\n", - ":2: RuntimeWarning: divide by zero encountered in scalar power\n", - " return sinh(relu(tanh(_a0_)))**_a0_\n", - " 45%|████▌ | 677/1500 [00:46<01:03, 13.04it/s]:2: RuntimeWarning: divide by zero encountered in log\n", - " return log(-_a0_*relu(_a0_)/relu(S1))\n", - ":2: RuntimeWarning: divide by zero encountered in log\n", - " return log(-_a0_*relu(_a0_)/relu(S1))\n", - ":2: RuntimeWarning: overflow encountered in exp\n", - " return relu(relu(exp((S1 + exp((S2 + _a0_)/_a0_))**2)))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return (-sinh(S1))**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return log(sqrt(_a0_*relu(S2)/relu(S1)))\n", - ":2: RuntimeWarning: overflow encountered in sinh\n", - " return sinh(S1**S2)**_a0_\n", - ":2: RuntimeWarning: overflow encountered in sinh\n", - " return sinh(S1**S2)**_a0_\n", - " 45%|████▌ | 679/1500 [00:46<01:01, 13.32it/s]:2: RuntimeWarning: divide by zero encountered in log\n", - " return log(-_a0_*relu(S1*_a0_)/relu(S1))\n", - ":2: RuntimeWarning: divide by zero encountered in log\n", - " return log(-_a0_*relu(S1*_a0_)/relu(S1))\n", - ":2: RuntimeWarning: divide by zero encountered in log\n", - " return log(-_a0_*relu(S1*_a0_)/relu(S1))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return exp(-S1)*sin((2*S1 + relu(S2))**_a0_)**(S2/_a0_)\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return exp(-S1)*sin((2*S1 + relu(S2))**_a0_)**(S2/_a0_)\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return sin(S1)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(-S1*relu(S2)/relu(S1))\n", - ":2: RuntimeWarning: divide by zero encountered in scalar power\n", - " return relu(relu(relu(2*_a0_)**_a0_))\n", - ":2: RuntimeWarning: divide by zero encountered in scalar power\n", - " return relu(relu(relu(2*_a0_)**_a0_))\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return relu(exp(sqrt(_a0_)/S1)/S1)\n", - " 45%|████▌ | 681/1500 [00:46<01:01, 13.31it/s]:2: RuntimeWarning: invalid value encountered in power\n", - " return relu(relu(relu(sinh(_a0_**S1))**_a0_))\n", - ":2: RuntimeWarning: divide by zero encountered in power\n", - " return relu(relu(relu(sinh(_a0_**S1))**_a0_))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu(relu(relu(sinh(_a0_**S1))**_a0_))\n", - ":2: RuntimeWarning: divide by zero encountered in power\n", - " return relu(relu(relu(sinh(_a0_**S1))**_a0_))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu(relu(relu(sinh(_a0_**S1))**_a0_))\n", - ":2: RuntimeWarning: divide by zero encountered in power\n", - " return relu(relu(relu(sinh(_a0_**S1))**_a0_))\n", - ":2: RuntimeWarning: divide by zero encountered in scalar power\n", - " return relu(sinh(_a0_))**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(-_a0_*relu(S2)/relu(S1/S2))\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return relu(sqrt(cos(log(S2*relu(S2)))/S1))\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return relu(sqrt(cos(log(S2*relu(S2)))/S1))\n", - ":2: RuntimeWarning: divide by zero encountered in scalar power\n", - " return relu(relu(relu(_a0_)**_a0_))\n", - ":2: RuntimeWarning: divide by zero encountered in scalar power\n", - " return relu(relu(relu(_a0_)**_a0_))\n", - ":2: RuntimeWarning: divide by zero encountered in power\n", - " return relu(sinh(relu(_a0_/S1))**_a0_)\n", - ":2: RuntimeWarning: divide by zero encountered in power\n", - " return relu(sinh(relu(_a0_/S1))**_a0_)\n", - ":2: RuntimeWarning: divide by zero encountered in power\n", - " return relu(sinh(relu(_a0_/S1))**_a0_)\n", - ":2: RuntimeWarning: overflow encountered in sinh\n", - " return sinh(S1**S1)**_a0_\n", - ":2: RuntimeWarning: overflow encountered in sinh\n", - " return sinh(S1**S1)**_a0_\n", - ":2: RuntimeWarning: overflow encountered in sinh\n", - " return sinh(S1**S1)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu(sinh(_a0_**S1))**_a0_\n", - ":2: RuntimeWarning: divide by zero encountered in power\n", - " return relu(sinh(_a0_**S1))**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu(sinh(_a0_**S1))**_a0_\n", - ":2: RuntimeWarning: divide by zero encountered in power\n", - " return relu(sinh(_a0_**S1))**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu(sinh(_a0_**S1))**_a0_\n", - ":2: RuntimeWarning: divide by zero encountered in power\n", - " return relu(sinh(_a0_**S1))**_a0_\n", - " 46%|████▌ | 683/1500 [00:46<01:01, 13.31it/s]:2: RuntimeWarning: invalid value encountered in power\n", - " return log(-_a0_*_a0_**(-S1)*relu(S2))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(-_a0_*_a0_**(-S1)*relu(S2))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return log(-_a0_*_a0_**(-S1)*relu(S2))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(-_a0_*_a0_**(-S1)*relu(S2))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return log(-_a0_*_a0_**(-S1)*relu(S2))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(-_a0_*_a0_**(-S1)*relu(S2))\n", - ":2: RuntimeWarning: divide by zero encountered in power\n", - " return relu(relu(relu(-sinh(S1))**_a0_))\n", - ":2: RuntimeWarning: divide by zero encountered in power\n", - " return relu(relu(relu(-sinh(S1))**_a0_))\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return relu(sinh(S1))**(_a0_**_a0_)\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return relu(sinh(S1))**(_a0_**_a0_)\n", - ":2: RuntimeWarning: overflow encountered in exp\n", - " return relu(exp(-_a0_/(S1*S2))/S1)\n", - ":2: RuntimeWarning: overflow encountered in exp\n", - " return relu(exp(-_a0_/(S1*S2))/S1)\n", - " 46%|████▌ | 685/1500 [00:46<01:01, 13.22it/s]:2: RuntimeWarning: invalid value encountered in log\n", - " return relu(relu(exp(cos(S1 + exp(log(_a0_)/_a0_)))))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return relu(relu(exp(cos(S1 + exp(log(_a0_)/_a0_)))))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return relu(relu(exp(cos(S1 + exp(log(_a0_)/_a0_)))))\n", - ":2: RuntimeWarning: divide by zero encountered in divide\n", - " return log(-_a0_*relu(S2)/relu(tan(_a0_)))\n", - ":2: RuntimeWarning: divide by zero encountered in divide\n", - " return log(-_a0_*relu(S2)/relu(tan(_a0_)))\n", - ":2: RuntimeWarning: divide by zero encountered in divide\n", - " return log(-_a0_*relu(S2)/relu(tan(_a0_)))\n", - ":2: RuntimeWarning: divide by zero encountered in scalar power\n", - " return relu(relu(relu(_a0_)**_a0_))\n", - ":2: RuntimeWarning: divide by zero encountered in scalar power\n", - " return relu(relu(relu(_a0_)**_a0_))\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return sinh(2*_a0_)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return sinh(2*_a0_)**_a0_\n", - " 46%|████▌ | 687/1500 [00:47<01:01, 13.25it/s]:2: RuntimeWarning: invalid value encountered in power\n", - " return (S2/_a0_ + sin((2*S1 + sin(S2))**_a0_))*exp(-S1)\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return (S2/_a0_ + sin((2*S1 + sin(S2))**_a0_))*exp(-S1)\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(log(S2)/S1)\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(log(S2)/S1)\n", - ":2: RuntimeWarning: divide by zero encountered in scalar power\n", - " return relu(relu(relu(sinh(_a0_))**_a0_))\n", - " 46%|████▌ | 689/1500 [00:47<01:00, 13.40it/s]:2: RuntimeWarning: divide by zero encountered in divide\n", - " return log(-_a0_*relu(S2)/relu(_a0_))\n", - ":2: RuntimeWarning: divide by zero encountered in divide\n", - " return log(-_a0_*relu(S2)/relu(_a0_))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(cos(S1))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(cos(S1))\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return sqrt(S2*_a0_)*exp(-cos(S2))\n", - ":2: RuntimeWarning: divide by zero encountered in scalar power\n", - " return relu(relu(relu(sinh(tan(_a0_)))**_a0_))\n", - ":2: RuntimeWarning: divide by zero encountered in scalar power\n", - " return relu(relu(relu(sinh(tan(_a0_)))**_a0_))\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return sinh(_a0_)**_a0_\n", - ":2: RuntimeWarning: divide by zero encountered in log\n", - " return log(-_a0_*relu(_a0_)/relu(S1))\n", - ":2: RuntimeWarning: divide by zero encountered in scalar power\n", - " return sinh(relu(_a0_))**_a0_\n", - " 46%|████▌ | 691/1500 [00:47<01:00, 13.32it/s]:2: RuntimeWarning: invalid value encountered in log\n", - " return log(-S1*relu(S2)/relu(S1))\n", - ":2: RuntimeWarning: divide by zero encountered in scalar power\n", - " return sinh(relu(_a0_))**_a0_\n", - ":2: RuntimeWarning: divide by zero encountered in power\n", - " return relu(S2*_a0_)**_a0_\n", - ":2: RuntimeWarning: divide by zero encountered in power\n", - " return relu(S2*_a0_)**_a0_\n", - " 46%|████▌ | 693/1500 [00:47<01:00, 13.38it/s]:2: RuntimeWarning: invalid value encountered in scalar power\n", - " return sinh(_a0_)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return S1**(sqrt(_a0_))\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return S1**(sqrt(_a0_))\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return S1**(sqrt(_a0_))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(-S2)\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(-S2)\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return sqrt(S1**_a0_*_a0_)*exp(-S1)\n", - ":2: RuntimeWarning: divide by zero encountered in scalar power\n", - " return relu(relu(relu(sinh(relu(_a0_)))**_a0_))\n", - ":2: RuntimeWarning: divide by zero encountered in scalar power\n", - " return relu(relu(relu(sinh(relu(_a0_)))**_a0_))\n", - ":2: RuntimeWarning: overflow encountered in sinh\n", - " return sinh(S1**S1)**_a0_\n", - ":2: RuntimeWarning: overflow encountered in sinh\n", - " return sinh(S1**S1)**_a0_\n", - " 46%|████▋ | 695/1500 [00:47<00:58, 13.69it/s]:2: RuntimeWarning: invalid value encountered in log\n", - " return log(-sqrt(S1)*relu(S2)/relu(S1))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(-sqrt(S1)*relu(S2)/relu(S1))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(-sqrt(S1)*relu(S2)/relu(S1))\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return relu(relu(S2/_a0_)/sqrt(S1*cos(_a0_)))\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return relu(relu(S2/_a0_)/sqrt(S1*cos(_a0_)))\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return relu(relu(S2/_a0_)/sqrt(S1*cos(_a0_)))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return (_a0_ + sqrt(_a0_**S2))/S1**(3/2)\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return (_a0_ + sqrt(_a0_**S2))/S1**(3/2)\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return (_a0_ + sqrt(_a0_**S2))/S1**(3/2)\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return (_a0_ + sqrt(_a0_**S2))/S1**(3/2)\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(-S2**S1*_a0_/relu(S1))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(S2/sin(S2))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(S2/sin(S2))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(S2/sin(S2))\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return relu(relu(S2*relu(sig(sqrt(_a0_)))**S1))\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return relu(relu(S2*relu(sig(sqrt(_a0_)))**S1))\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return relu(relu(S2*relu(sig(sqrt(_a0_)))**S1))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu(tan(relu(S1))**_a0_)\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu(tan(relu(S1))**_a0_)\n", - ":2: RuntimeWarning: divide by zero encountered in scalar power\n", - " return relu(sinh(_a0_))**_a0_\n", - " 46%|████▋ | 697/1500 [00:47<00:57, 14.02it/s]:2: RuntimeWarning: invalid value encountered in log\n", - " return log(-_a0_*relu(S2)/(S1 + _a0_))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(-_a0_*relu(S2)/(S1 + _a0_))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(-_a0_*relu(S2)/(S1 + _a0_))\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return relu(sqrt(tan(log(S2**2))/S1))\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return relu(sqrt(tan(log(S2**2))/S1))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(S2/log(S2))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(S2/log(S2))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return sin(sinh(S1))**_a0_\n", - " 47%|████▋ | 699/1500 [00:47<01:00, 13.35it/s]:2: RuntimeWarning: invalid value encountered in sqrt\n", - " return sqrt(S2*_a0_)/(S2 + _a0_)\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return sinh(S1*_a0_)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return sinh(S1*_a0_)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return log(sqrt(_a0_*relu(S2)/relu(S1)))\n", - ":2: RuntimeWarning: divide by zero encountered in power\n", - " return relu(sinh(relu(tan(S2)))**_a0_)\n", - ":2: RuntimeWarning: divide by zero encountered in power\n", - " return relu(sinh(relu(tan(S2)))**_a0_)\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return (-sinh(S1))**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return (-sinh(S1))**_a0_\n", - " 47%|████▋ | 701/1500 [00:48<01:03, 12.50it/s]:2: RuntimeWarning: invalid value encountered in power\n", - " return abs(sinh(S2 + _a0_)**_a0_)\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return abs(sinh(S2 + _a0_)**_a0_)\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return abs(sinh(S2 + _a0_)**_a0_)\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(-relu(S2)**_a0_/relu(S1))\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return relu(relu(S2/_a0_)/sqrt(S2*(S2 + _a0_)))\n", - ":2: RuntimeWarning: divide by zero encountered in power\n", - " return relu(relu(relu(tan(S1))**_a0_))\n", - " 47%|████▋ | 703/1500 [00:48<01:04, 12.28it/s]:2: RuntimeWarning: invalid value encountered in log\n", - " return log(S2/tan(S1))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(S2/tan(S1))\n", - " 47%|████▋ | 705/1500 [00:48<01:01, 12.84it/s]:2: RuntimeWarning: divide by zero encountered in divide\n", - " return log(-_a0_*relu(S2)/relu(sin(S1)))\n", - ":2: RuntimeWarning: divide by zero encountered in divide\n", - " return log(-_a0_*relu(S2)/relu(sin(S1)))\n", - ":2: RuntimeWarning: divide by zero encountered in divide\n", - " return log(-_a0_*relu(S2)/relu(sin(S1)))\n", - ":2: RuntimeWarning: divide by zero encountered in scalar power\n", - " return abs(sinh(relu(_a0_))**_a0_)\n", - ":2: RuntimeWarning: divide by zero encountered in scalar power\n", - " return abs(sinh(relu(_a0_))**_a0_)\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return (sqrt(S1) + _a0_)/(S1*sqrt(S2/_a0_))\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return (sqrt(S1) + _a0_)/(S1*sqrt(S2/_a0_))\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return (sqrt(S1) + _a0_)/(S1*sqrt(S2/_a0_))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu(relu((S1*_a0_)**_a0_/(S1 + _a0_)))\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return relu(sinh(_a0_)**_a0_)\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return relu(sinh(_a0_)**_a0_)\n", - " 47%|████▋ | 707/1500 [00:48<01:00, 13.21it/s]:2: RuntimeWarning: divide by zero encountered in power\n", - " return relu(relu(relu(S1*_a0_)**_a0_))\n", - ":2: RuntimeWarning: divide by zero encountered in power\n", - " return relu(relu(relu(S1*_a0_)**_a0_))\n", - ":2: RuntimeWarning: divide by zero encountered in power\n", - " return relu(sinh(S2 + _a0_))**_a0_\n", - ":2: RuntimeWarning: divide by zero encountered in power\n", - " return relu(sinh(S2 + _a0_))**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(-S2/relu(S1))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(-S2/relu(S1))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(-S2/relu(S1))\n", - " 47%|████▋ | 709/1500 [00:48<01:00, 13.16it/s]:2: RuntimeWarning: invalid value encountered in sqrt\n", - " return relu(relu(S2*relu(sqrt(_a0_))**S1))\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return relu(relu(S2*relu(sqrt(_a0_))**S1))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return relu(sqrt(sig(log(S2*_a0_/S1))/S1))\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return relu(relu(S2/_a0_)/sqrt(-S2**2))\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return relu(relu(S2/_a0_)/sqrt(-S2**2))\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return relu(relu(S2/_a0_)/sqrt(-S2**2))\n", - " 47%|████▋ | 711/1500 [00:48<00:57, 13.83it/s]:2: RuntimeWarning: invalid value encountered in log\n", - " return log(-relu(S2)**_a0_/relu(S1))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu(relu(cos(sinh(S1))**_a0_))\n", - ":2: RuntimeWarning: divide by zero encountered in power\n", - " return sinh(relu(sin(S1)))**_a0_\n", - ":2: RuntimeWarning: divide by zero encountered in power\n", - " return sinh(relu(sin(S1)))**_a0_\n", - ":2: RuntimeWarning: divide by zero encountered in power\n", - " return sinh(relu(sin(S1)))**_a0_\n", - " 48%|████▊ | 713/1500 [00:49<00:58, 13.45it/s]:2: RuntimeWarning: invalid value encountered in power\n", - " return sinh(cos(S1))**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return sinh(cos(S1))**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return relu(sinh(_a0_)**_a0_)\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return relu(sinh(_a0_)**_a0_)\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return sinh(S1)**(_a0_**_a0_)\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return sinh(S1)**(_a0_**_a0_)\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return relu(sinh(2*_a0_)**_a0_)\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return relu(sinh(2*_a0_)**_a0_)\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return relu(sinh(2*_a0_)**_a0_)\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu(relu(exp(cos(S1 + exp(_a0_*(S2 + _a0_**S2))))))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu(relu(exp(cos(S1 + exp(_a0_*(S2 + _a0_**S2))))))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu(relu(exp(cos(S1 + exp(_a0_*(S2 + _a0_**S2))))))\n", - " 48%|████▊ | 715/1500 [00:49<00:58, 13.37it/s]:2: RuntimeWarning: invalid value encountered in power\n", - " return exp(-S1)*sin((2*S1 + relu(S2))**_a0_)**(S2/_a0_)\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return sin(relu(S1))**_a0_\n", - ":2: RuntimeWarning: divide by zero encountered in scalar power\n", - " return relu(sinh(relu(_a0_))**_a0_)\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return relu(log(-_a0_/S1)/S1)\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return relu(log(-_a0_/S1)/S1)\n", - " 48%|████▊ | 717/1500 [00:49<00:56, 13.97it/s]:2: RuntimeWarning: invalid value encountered in log\n", - " return relu(sqrt(sig(log(tan(S1)))/relu(S1)))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return relu(sqrt(sig(log(tan(S1)))/relu(S1)))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return relu(sqrt(sig(log(tan(S1)))/relu(S1)))\n", - ":2: RuntimeWarning: divide by zero encountered in scalar power\n", - " return relu(relu(relu(_a0_)**_a0_))\n", - ":2: RuntimeWarning: divide by zero encountered in scalar power\n", - " return relu(relu(relu(_a0_)**_a0_))\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return sinh(relu(sqrt(_a0_)))**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return sinh(relu(sqrt(_a0_)))**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return sinh(relu(sqrt(_a0_)))**_a0_\n", - ":2: RuntimeWarning: divide by zero encountered in power\n", - " return relu(log(S1))**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(log(S1))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(log(S1))\n", - ":2: RuntimeWarning: overflow encountered in sinh\n", - " return sinh(relu(S2**S1))**_a0_\n", - ":2: RuntimeWarning: overflow encountered in sinh\n", - " return sinh(relu(S2**S1))**_a0_\n", - ":2: RuntimeWarning: overflow encountered in sinh\n", - " return sinh(relu(S2**S1))**_a0_\n", - " 48%|████▊ | 719/1500 [00:49<01:02, 12.56it/s]:2: RuntimeWarning: invalid value encountered in sqrt\n", - " return (1/2)*sqrt(S2*_a0_)/_a0_\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return sqrt(sig(log(S2**2))/(S2*_a0_))\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return relu(sinh(_a0_)**_a0_)\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return relu(sinh(_a0_)**_a0_)\n", - " 48%|████▊ | 721/1500 [00:49<01:02, 12.40it/s]:2: RuntimeWarning: invalid value encountered in power\n", - " return relu(sinh(S1 + _a0_)**_a0_)\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu(sinh(S1 + _a0_)**_a0_)\n", - " 48%|████▊ | 723/1500 [00:49<00:58, 13.38it/s]:2: RuntimeWarning: divide by zero encountered in power\n", - " return relu(sinh(relu(S1/_a0_))**_a0_)\n", - ":2: RuntimeWarning: divide by zero encountered in power\n", - " return relu(sinh(relu(S1/_a0_))**_a0_)\n", - ":2: RuntimeWarning: divide by zero encountered in power\n", - " return relu(sinh(relu(S1/_a0_))**_a0_)\n", - ":2: RuntimeWarning: overflow encountered in power\n", - " return relu(sinh(S1))**(S1**S1)\n", - ":2: RuntimeWarning: overflow encountered in power\n", - " return relu(sinh(S1))**(S1**S1)\n", - ":2: RuntimeWarning: overflow encountered in exp\n", - " return relu(exp(S2/S1**2)/S1)\n", - ":2: RuntimeWarning: overflow encountered in exp\n", - " return relu(exp(S2/S1**2)/S1)\n", - ":2: RuntimeWarning: overflow encountered in exp\n", - " return relu(exp(S2/S1**2)/S1)\n", - ":2: RuntimeWarning: overflow encountered in sinh\n", - " return relu(relu(relu(sinh(S1**S2))**_a0_))\n", - ":2: RuntimeWarning: overflow encountered in sinh\n", - " return relu(relu(relu(sinh(S1**S2))**_a0_))\n", - ":2: RuntimeWarning: overflow encountered in sinh\n", - " return relu(relu(relu(sinh(S1**S2))**_a0_))\n", - " 48%|████▊ | 725/1500 [00:49<00:56, 13.83it/s]:2: RuntimeWarning: divide by zero encountered in divide\n", - " return (sqrt(S1) + _a0_)/(sqrt(S1)*relu(fac(_a0_)))\n", - ":2: RuntimeWarning: divide by zero encountered in divide\n", - " return (sqrt(S1) + _a0_)/(sqrt(S1)*relu(fac(_a0_)))\n", - ":2: RuntimeWarning: divide by zero encountered in divide\n", - " return (sqrt(S1) + _a0_)/(sqrt(S1)*relu(fac(_a0_)))\n", - " 48%|████▊ | 727/1500 [00:50<00:55, 14.01it/s]:2: RuntimeWarning: invalid value encountered in log\n", - " return log(-_a0_*tan(S2)/relu(S1))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(-_a0_*tan(S2)/relu(S1))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return sinh(cos(S1))**_a0_\n", - " 49%|████▊ | 729/1500 [00:50<01:02, 12.40it/s]:2: RuntimeWarning: divide by zero encountered in log\n", - " return log(-_a0_*relu(_a0_)/relu(S1))\n", - ":2: RuntimeWarning: divide by zero encountered in scalar power\n", - " return relu(sinh(relu(_a0_)))**_a0_\n", - ":2: RuntimeWarning: divide by zero encountered in scalar power\n", - " return relu(sinh(relu(_a0_)))**_a0_\n", - ":2: RuntimeWarning: divide by zero encountered in scalar power\n", - " return relu(sinh(relu(_a0_)))**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return sqrt(log(log(S2**2))/relu(S1))\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return sqrt(log(log(S2**2))/relu(S1))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return sqrt(log(log(S2**2))/relu(S1))\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return sqrt(log(log(S2**2))/relu(S1))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return (-sinh(S1))**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu(sinh(_a0_**S2)**_a0_)\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu(sinh(_a0_**S2)**_a0_)\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return (S1 + _a0_)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return (S1 + _a0_)**_a0_\n", - " 49%|████▊ | 731/1500 [00:50<01:04, 11.85it/s]:2: RuntimeWarning: invalid value encountered in scalar power\n", - " return relu(_a0_**_a0_)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return relu(_a0_**_a0_)**_a0_\n", - " 49%|████▉ | 733/1500 [00:50<01:01, 12.46it/s]:2: RuntimeWarning: invalid value encountered in power\n", - " return (-sinh(S1))**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return (-sinh(S1))**_a0_\n", - ":2: RuntimeWarning: divide by zero encountered in divide\n", - " return (sqrt(S1) + _a0_)/(sqrt(S1)*relu(_a0_))\n", - ":2: RuntimeWarning: divide by zero encountered in divide\n", - " return (sqrt(S1) + _a0_)/(sqrt(S1)*relu(_a0_))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(-S2/relu(S1))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(-S2/relu(S1))\n", - ":2: RuntimeWarning: overflow encountered in power\n", - " return sinh(S1)**(S2**S1)\n", - ":2: RuntimeWarning: overflow encountered in power\n", - " return sinh(S1)**(S2**S1)\n", - ":2: RuntimeWarning: overflow encountered in power\n", - " return sinh(S1)**(S2**S1)\n", - ":2: RuntimeWarning: divide by zero encountered in power\n", - " return relu(relu(relu(sinh(sin(S1)))**_a0_))\n", - ":2: RuntimeWarning: divide by zero encountered in power\n", - " return relu(relu(relu(sinh(sin(S1)))**_a0_))\n", - ":2: RuntimeWarning: divide by zero encountered in scalar power\n", - " return relu(sinh(relu(_a0_))**_a0_)\n", - " 49%|████▉ | 735/1500 [00:50<00:59, 12.93it/s]:2: RuntimeWarning: invalid value encountered in log\n", - " return log(-S2/S1)\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(-S2/S1)\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return (sqrt(S1) + _a0_)**(sqrt(S1)*relu(S1))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return log(relu(S1))**_a0_\n", - ":2: RuntimeWarning: overflow encountered in power\n", - " return relu(relu(relu(sinh(S1))**(S1**S1)))\n", - ":2: RuntimeWarning: overflow encountered in power\n", - " return relu(relu(relu(sinh(S1))**(S1**S1)))\n", - ":2: RuntimeWarning: overflow encountered in power\n", - " return relu(relu(relu(sinh(S1))**(S1**S1)))\n", - " 49%|████▉ | 737/1500 [00:50<00:58, 13.02it/s]:2: RuntimeWarning: divide by zero encountered in divide\n", - " return log(-_a0_*relu(S2)/relu(_a0_))\n", - ":2: RuntimeWarning: divide by zero encountered in scalar power\n", - " return relu(relu(relu(_a0_)**_a0_))\n", - ":2: RuntimeWarning: divide by zero encountered in scalar power\n", - " return relu(relu(relu(_a0_)**_a0_))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu(log(relu(S1))**_a0_)\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return sqrt(sin(_a0_)/_a0_)*exp(-S1)\n", - " 49%|████▉ | 739/1500 [00:51<01:01, 12.37it/s]:2: RuntimeWarning: invalid value encountered in sqrt\n", - " return (sqrt(S1) + _a0_)/(sqrt(_a0_)*relu(S1))\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return (sqrt(S1) + _a0_)/(sqrt(_a0_)*relu(S1))\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return relu(relu(S2*relu(_a0_**_a0_)**S1))\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return relu(relu(S2*relu(_a0_**_a0_)**S1))\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return relu(relu(S2*relu(_a0_**_a0_)**S1))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return sinh(S1/_a0_)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return sinh(S1/_a0_)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return _a0_**(sqrt(S1))/(sqrt(S1)*relu(S1))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return _a0_**(sqrt(S1))/(sqrt(S1)*relu(S1))\n", - ":2: RuntimeWarning: divide by zero encountered in power\n", - " return relu(S1/_a0_)**_a0_\n", - ":2: RuntimeWarning: divide by zero encountered in power\n", - " return relu(S1/_a0_)**_a0_\n", - ":2: RuntimeWarning: divide by zero encountered in power\n", - " return relu(S1/_a0_)**_a0_\n", - " 49%|████▉ | 741/1500 [00:51<01:27, 8.70it/s]:2: RuntimeWarning: overflow encountered in power\n", - " return sinh(S1)**(S2**S1)\n", - ":2: RuntimeWarning: overflow encountered in power\n", - " return sinh(S1)**(S2**S1)\n", - ":2: RuntimeWarning: divide by zero encountered in log\n", - " return log(-_a0_*relu(_a0_)/relu(S1))\n", - " 50%|████▉ | 743/1500 [00:51<01:15, 10.00it/s]:2: RuntimeWarning: invalid value encountered in log\n", - " return log(-S2*relu(S2))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(-S2*relu(S2))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(-S2*relu(S2))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return (relu(relu(S2/_a0_))/sin(S1))**sig(relu(S1))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return (relu(relu(S2/_a0_))/sin(S1))**sig(relu(S1))\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return sqrt(-S1/_a0_)*exp(-S1)\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return sqrt(-S1/_a0_)*exp(-S1)\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return sqrt(-S1/_a0_)*exp(-S1)\n", - ":2: RuntimeWarning: divide by zero encountered in power\n", - " return sinh(relu(-S2))**_a0_\n", - ":2: RuntimeWarning: divide by zero encountered in power\n", - " return sinh(relu(-S2))**_a0_\n", - ":2: RuntimeWarning: divide by zero encountered in power\n", - " return sinh(relu(-S2))**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return sinh(S1 + _a0_)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return sinh(S1 + _a0_)**_a0_\n", - ":2: RuntimeWarning: divide by zero encountered in power\n", - " return relu(_a0_/S2)**_a0_\n", - ":2: RuntimeWarning: divide by zero encountered in power\n", - " return relu(_a0_/S2)**_a0_\n", - " 50%|████▉ | 745/1500 [00:51<01:08, 11.09it/s]:2: RuntimeWarning: invalid value encountered in log\n", - " return log(S2*_a0_/relu(S1))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(S2*_a0_/relu(S1))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return sinh(_a0_/S2)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return sinh(_a0_/S2)**_a0_\n", - ":2: RuntimeWarning: divide by zero encountered in scalar power\n", - " return relu(_a0_)**_a0_\n", - ":2: RuntimeWarning: divide by zero encountered in scalar power\n", - " return relu(_a0_)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(-S2*relu(S2)/relu(S1))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return sinh(sin(S1))**_a0_\n", - ":2: RuntimeWarning: divide by zero encountered in scalar power\n", - " return relu(sinh(relu(tan(_a0_)))**_a0_)\n", - ":2: RuntimeWarning: divide by zero encountered in scalar power\n", - " return relu(sinh(relu(tan(_a0_)))**_a0_)\n", - ":2: RuntimeWarning: divide by zero encountered in scalar power\n", - " return relu(sinh(relu(tan(_a0_)))**_a0_)\n", - ":2: RuntimeWarning: divide by zero encountered in divide\n", - " return (sqrt(S1) + _a0_)/(sqrt(S1)*relu(sin(S1)))\n", - ":2: RuntimeWarning: divide by zero encountered in divide\n", - " return (sqrt(S1) + _a0_)/(sqrt(S1)*relu(sin(S1)))\n", - ":2: RuntimeWarning: divide by zero encountered in divide\n", - " return (sqrt(S1) + _a0_)/(sqrt(S1)*relu(sin(S1)))\n", - " 50%|████▉ | 747/1500 [00:51<01:05, 11.56it/s]:2: RuntimeWarning: divide by zero encountered in power\n", - " return sinh(relu(tan(S2)))**_a0_\n", - ":2: RuntimeWarning: divide by zero encountered in power\n", - " return sinh(relu(tan(S2)))**_a0_\n", - ":2: RuntimeWarning: divide by zero encountered in power\n", - " return sinh(relu(tan(S2)))**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(-S1*relu(S2)/relu(S1))\n", - " 50%|████▉ | 749/1500 [00:52<01:00, 12.31it/s]:2: RuntimeWarning: invalid value encountered in log\n", - " return log(-_a0_*cos(S2)/relu(S1))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(-_a0_*cos(S2)/relu(S1))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(-S2*relu(S2)/relu(S1))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu(sinh(S2 + _a0_)**_a0_)\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu(sinh(S2 + _a0_)**_a0_)\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return relu(relu(relu(sinh(S1))**(sqrt(_a0_))))\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return relu(relu(relu(sinh(S1))**(sqrt(_a0_))))\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return relu(relu(relu(sinh(S1))**(sqrt(_a0_))))\n", - " 50%|█████ | 751/1500 [00:52<01:01, 12.11it/s]:2: RuntimeWarning: invalid value encountered in sqrt\n", - " return exp(-S1)*sqrt(tan(_a0_))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu(relu(exp(cos(S1 + exp(_a0_*_a0_**S2)))))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu(relu(exp(cos(S1 + exp(_a0_*_a0_**S2)))))\n", - ":2: RuntimeWarning: divide by zero encountered in power\n", - " return relu(relu(relu(S1 + _a0_)**_a0_))\n", - ":2: RuntimeWarning: divide by zero encountered in power\n", - " return relu(relu(relu(S1 + _a0_)**_a0_))\n", - ":2: RuntimeWarning: divide by zero encountered in power\n", - " return relu(sinh(S2/_a0_))**_a0_\n", - ":2: RuntimeWarning: divide by zero encountered in power\n", - " return relu(sinh(S2/_a0_))**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(-(_a0_ + relu(S2))/relu(S1))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(tan(S1))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(tan(S1))\n", - ":2: RuntimeWarning: overflow encountered in sinh\n", - " return relu(sinh(S2**S1))**_a0_\n", - ":2: RuntimeWarning: overflow encountered in sinh\n", - " return relu(sinh(S2**S1))**_a0_\n", - ":2: RuntimeWarning: overflow encountered in sinh\n", - " return relu(sinh(S2**S1))**_a0_\n", - " 50%|█████ | 753/1500 [00:52<00:57, 12.90it/s]:2: RuntimeWarning: overflow encountered in sinh\n", - " return sinh(S1**S2)**_a0_\n", - ":2: RuntimeWarning: overflow encountered in sinh\n", - " return sinh(S1**S2)**_a0_\n", - ":2: RuntimeWarning: divide by zero encountered in divide\n", - " return (sqrt(S1) + _a0_)/(relu(S1)*sqrt(relu(_a0_)))\n", - ":2: RuntimeWarning: divide by zero encountered in divide\n", - " return (sqrt(S1) + _a0_)/(relu(S1)*sqrt(relu(_a0_)))\n", - ":2: RuntimeWarning: divide by zero encountered in divide\n", - " return (sqrt(S1) + _a0_)/(relu(S1)*sqrt(relu(_a0_)))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return (-sinh(S1))**_a0_\n", - " 50%|█████ | 755/1500 [00:52<00:55, 13.37it/s]:2: RuntimeWarning: overflow encountered in sinh\n", - " return sinh(S1**S1)**_a0_\n", - ":2: RuntimeWarning: overflow encountered in sinh\n", - " return sinh(S1**S1)**_a0_\n", - ":2: RuntimeWarning: divide by zero encountered in log\n", - " return log(log(_a0_)/S1)\n", - ":2: RuntimeWarning: divide by zero encountered in log\n", - " return log(log(_a0_)/S1)\n", - " 50%|█████ | 757/1500 [00:52<00:55, 13.49it/s]:2: RuntimeWarning: invalid value encountered in log\n", - " return log(-S1*relu(S2)/relu(S1))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return sqrt(sig(log(tan(S1)))/relu(S1))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return sqrt(sig(log(tan(S1)))/relu(S1))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return sqrt(sig(log(tan(S1)))/relu(S1))\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return relu(log(_a0_)**_a0_/(S1 + _a0_))\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return relu(log(_a0_)**_a0_/(S1 + _a0_))\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return relu(log(_a0_)**_a0_/(S1 + _a0_))\n", - ":2: RuntimeWarning: overflow encountered in exp\n", - " return relu(relu(exp(cos(S1 + exp(_a0_*(S2 + S2**S2))))))\n", - ":2: RuntimeWarning: invalid value encountered in cos\n", - " return relu(relu(exp(cos(S1 + exp(_a0_*(S2 + S2**S2))))))\n", - ":2: RuntimeWarning: divide by zero encountered in power\n", - " return relu(sinh(sin(S1)))**_a0_\n", - ":2: RuntimeWarning: divide by zero encountered in power\n", - " return relu(sinh(sin(S1)))**_a0_\n", - ":2: RuntimeWarning: divide by zero encountered in power\n", - " return relu(sinh(sin(S1)))**_a0_\n", - " 51%|█████ | 759/1500 [00:52<00:54, 13.62it/s]:2: RuntimeWarning: invalid value encountered in sqrt\n", - " return sqrt(S2*_a0_)*exp(-S2 - _a0_)\n", - ":2: RuntimeWarning: divide by zero encountered in power\n", - " return relu(sinh(S1 + _a0_))**_a0_\n", - ":2: RuntimeWarning: divide by zero encountered in power\n", - " return relu(sinh(S1 + _a0_))**_a0_\n", - ":2: RuntimeWarning: divide by zero encountered in power\n", - " return relu(sinh(S1 + _a0_))**_a0_\n", - ":2: RuntimeWarning: divide by zero encountered in divide\n", - " return (sqrt(S1) + _a0_)/(sqrt(S1)*relu(sin(S2)))\n", - ":2: RuntimeWarning: divide by zero encountered in divide\n", - " return (sqrt(S1) + _a0_)/(sqrt(S1)*relu(sin(S2)))\n", - ":2: RuntimeWarning: divide by zero encountered in divide\n", - " return (sqrt(S1) + _a0_)/(sqrt(S1)*relu(sin(S2)))\n", - " 51%|█████ | 761/1500 [00:52<00:55, 13.41it/s]:2: RuntimeWarning: invalid value encountered in log\n", - " return log(_a0_**3*relu(S2)**3/relu(S1)**3)\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(_a0_**3*relu(S2)**3/relu(S1)**3)\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return sqrt(_a0_*cos(S2))*exp(-S1)\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return sqrt(_a0_*cos(S2))*exp(-S1)\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return sqrt(_a0_*cos(S2))*exp(-S1)\n", - ":2: RuntimeWarning: divide by zero encountered in log\n", - " return log(-_a0_*relu(S2 + _a0_)/relu(S1))\n", - ":2: RuntimeWarning: divide by zero encountered in log\n", - " return log(-_a0_*relu(S2 + _a0_)/relu(S1))\n", - ":2: RuntimeWarning: divide by zero encountered in log\n", - " return log(-_a0_*relu(S2 + _a0_)/relu(S1))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu(relu(S2*relu(sig(_a0_))**(_a0_**S1)))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu(relu(S2*relu(sig(_a0_))**(_a0_**S1)))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu(relu(S2*relu(sig(_a0_))**(_a0_**S1)))\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return (sqrt(S1) + _a0_)/(relu(S1)*sqrt(cos(S1)))\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return (sqrt(S1) + _a0_)/(relu(S1)*sqrt(cos(S1)))\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return (sqrt(S1) + _a0_)/(relu(S1)*sqrt(cos(S1)))\n", - " 51%|█████ | 763/1500 [00:53<00:54, 13.55it/s]:2: RuntimeWarning: invalid value encountered in log\n", - " return log(-relu(S2)/relu(S1))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(-relu(S2)/relu(S1))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(-relu(S2)/relu(S1))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu((-sinh(S2))**_a0_)\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu((-sinh(S2))**_a0_)\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu((-sinh(S2))**_a0_)\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu(relu(sin(sinh(S1))**_a0_))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(-S2**3*_a0_/relu(S1))\n", - ":2: RuntimeWarning: divide by zero encountered in scalar divide\n", - " return relu(exp(_a0_/relu(_a0_))/S1)\n", - ":2: RuntimeWarning: divide by zero encountered in scalar divide\n", - " return relu(exp(_a0_/relu(_a0_))/S1)\n", - " 51%|█████ | 765/1500 [00:53<00:52, 14.13it/s]:2: RuntimeWarning: invalid value encountered in log\n", - " return log(-S2*relu(S2)/relu(S1))\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return relu(relu(S2/_a0_)/sqrt(tan(S2)))\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return relu(relu(S2/_a0_)/sqrt(tan(S2)))\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return relu(relu(S2/_a0_)/sqrt(tan(S2)))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(S2*_a0_/relu(S1))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu(relu(cos(sinh(S1))**_a0_))\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return sin(_a0_)**(-_a0_)\n", - " 51%|█████ | 767/1500 [00:53<00:51, 14.12it/s]:2: RuntimeWarning: invalid value encountered in log\n", - " return log(-_a0_**2/relu(S1))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(-_a0_**2/relu(S1))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(-_a0_**2/relu(S1))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu(exp(_a0_**relu(S1))/S1)\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu(exp(_a0_**relu(S1))/S1)\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(-_a0_*relu(S2)/tan(S1))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(-_a0_*relu(S2)/tan(S1))\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return exp(-S1)*sqrt(tan(S1))\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return exp(-S1)*sqrt(tan(S1))\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return sqrt(sig(log(S2**2))/(S2 + _a0_))\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return (sqrt(S1) + _a0_**_a0_)/(sqrt(S1)*relu(S1))\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return (sqrt(S1) + _a0_**_a0_)/(sqrt(S1)*relu(S1))\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return (sqrt(S1) + _a0_**_a0_)/(sqrt(S1)*relu(S1))\n", - " 51%|█████▏ | 769/1500 [00:53<00:51, 14.11it/s]:2: RuntimeWarning: invalid value encountered in log\n", - " return log(-S2*relu(S2))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(-S2*relu(S2))\n", - ":2: RuntimeWarning: divide by zero encountered in power\n", - " return relu(relu(relu(tan(S1))**_a0_))\n", - ":2: RuntimeWarning: divide by zero encountered in scalar power\n", - " return relu(_a0_)**_a0_\n", - ":2: RuntimeWarning: divide by zero encountered in scalar power\n", - " return relu(_a0_)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(sin(S1))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(sin(S1))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(sin(S1))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return sqrt(sig(log(log(S1)))/relu(S1))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return sqrt(sig(log(log(S1)))/relu(S1))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return sqrt(sig(log(log(S1)))/relu(S1))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return sin(sinh(S1))**_a0_\n", - " 51%|█████▏ | 771/1500 [00:53<00:54, 13.44it/s]:2: RuntimeWarning: invalid value encountered in log\n", - " return log(-(_a0_ + relu(S2))/relu(S1))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(_a0_*relu(S2)/S1)\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(_a0_*relu(S2)/S1)\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return relu(relu(relu(sinh(S1))**(sqrt(_a0_))))\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return relu(relu(relu(sinh(S1))**(sqrt(_a0_))))\n", - ":2: RuntimeWarning: divide by zero encountered in divide\n", - " return (sqrt(S1) + _a0_)/(sqrt(S1)*relu(_a0_/S1))\n", - ":2: RuntimeWarning: divide by zero encountered in divide\n", - " return (sqrt(S1) + _a0_)/(sqrt(S1)*relu(_a0_/S1))\n", - ":2: RuntimeWarning: divide by zero encountered in divide\n", - " return (sqrt(S1) + _a0_)/(sqrt(S1)*relu(_a0_/S1))\n", - " 52%|█████▏ | 773/1500 [00:53<00:53, 13.64it/s]:2: RuntimeWarning: invalid value encountered in scalar power\n", - " return sinh(2*_a0_)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return sinh(2*_a0_)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(S2/cos(S1))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(S2/cos(S1))\n", - ":2: RuntimeWarning: divide by zero encountered in log\n", - " return log(-_a0_*relu(S2/_a0_)/relu(S1))\n", - ":2: RuntimeWarning: divide by zero encountered in log\n", - " return log(-_a0_*relu(S2/_a0_)/relu(S1))\n", - ":2: RuntimeWarning: divide by zero encountered in log\n", - " return log(-_a0_*relu(S2/_a0_)/relu(S1))\n", - " 52%|█████▏ | 775/1500 [00:53<00:52, 13.76it/s]:2: RuntimeWarning: invalid value encountered in log\n", - " return log(-S2*relu(S2)/relu(S1))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return sqrt(sig(log(S2*sin(S1)))/relu(S1))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return sqrt(sig(log(S2*sin(S1)))/relu(S1))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return sqrt(sig(log(S2*sin(S1)))/relu(S1))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return (S2*_a0_)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return (S2*_a0_)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return S1**(_a0_**S1)\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return S1**(_a0_**S1)\n", - ":2: RuntimeWarning: divide by zero encountered in divide\n", - " return (sqrt(S1) + _a0_)/(sqrt(S1)*relu(_a0_))\n", - " 52%|█████▏ | 777/1500 [00:54<00:50, 14.24it/s]:2: RuntimeWarning: invalid value encountered in power\n", - " return sin(relu(S1))**_a0_\n", - ":2: RuntimeWarning: divide by zero encountered in divide\n", - " return (sqrt(S1) + _a0_)/(sqrt(S1)*relu(tan(S2)))\n", - ":2: RuntimeWarning: divide by zero encountered in divide\n", - " return (sqrt(S1) + _a0_)/(sqrt(S1)*relu(tan(S2)))\n", - ":2: RuntimeWarning: divide by zero encountered in divide\n", - " return (sqrt(S1) + _a0_)/(sqrt(S1)*relu(tan(S2)))\n", - ":2: RuntimeWarning: divide by zero encountered in scalar power\n", - " return relu(sinh(_a0_))**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return relu(relu(S2/_a0_)/sqrt(-S1*S2))\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return relu(relu(S2/_a0_)/sqrt(-S1*S2))\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return relu(relu(S2/_a0_)/sqrt(-S1*S2))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return sin(S1)**_a0_\n", - ":2: RuntimeWarning: overflow encountered in exp\n", - " return relu(relu(exp(cos(S1 + exp(_a0_*(S1**S2 + _a0_))))))\n", - ":2: RuntimeWarning: invalid value encountered in cos\n", - " return relu(relu(exp(cos(S1 + exp(_a0_*(S1**S2 + _a0_))))))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return sinh(S1/_a0_)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return sinh(S1/_a0_)**_a0_\n", - " 52%|█████▏ | 779/1500 [00:54<00:54, 13.16it/s]:2: RuntimeWarning: invalid value encountered in power\n", - " return sin(S1)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return (sqrt(S1) + _a0_)/(relu(S1)*sqrt(log(S1)))\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return (sqrt(S1) + _a0_)/(relu(S1)*sqrt(log(S1)))\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return (sqrt(S1) + _a0_)/(relu(S1)*sqrt(log(S1)))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return relu(sinh(log(_a0_)))**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return relu(sinh(log(_a0_)))**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(-relu(S2))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(-relu(S2))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu(exp(_a0_**relu(S1))/S1)\n", - " 52%|█████▏ | 781/1500 [00:54<00:52, 13.64it/s]:2: RuntimeWarning: invalid value encountered in power\n", - " return log(-_a0_*_a0_**(-S1)*relu(S2))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(-_a0_*_a0_**(-S1)*relu(S2))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return log(-_a0_*_a0_**(-S1)*relu(S2))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(-_a0_*_a0_**(-S1)*relu(S2))\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return sqrt(-_a0_)*exp(-S1)\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return sqrt(-_a0_)*exp(-S1)\n", - ":2: RuntimeWarning: divide by zero encountered in scalar power\n", - " return relu(relu(relu(sinh(_a0_))**_a0_))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu(exp(_a0_**relu(S1))/S1)\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return log(-(_a0_*relu(S2))**relu(S1))\n", - ":2: RuntimeWarning: overflow encountered in power\n", - " return relu(S2)*sig(sig(S1))**(S2**S1*_a0_)\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return sinh(cos(S1))**_a0_\n", - ":2: RuntimeWarning: divide by zero encountered in scalar power\n", - " return relu(relu(relu(sinh(relu(_a0_)))**_a0_))\n", - ":2: RuntimeWarning: divide by zero encountered in scalar power\n", - " return relu(relu(relu(sinh(relu(_a0_)))**_a0_))\n", - ":2: RuntimeWarning: divide by zero encountered in power\n", - " return relu(sinh(log(S2)))**_a0_\n", - ":2: RuntimeWarning: divide by zero encountered in power\n", - " return relu(sinh(log(S2)))**_a0_\n", - ":2: RuntimeWarning: divide by zero encountered in power\n", - " return relu(sinh(log(S2)))**_a0_\n", - ":2: RuntimeWarning: overflow encountered in exp\n", - " return relu(exp(cosh(S2)/relu(S1))/S1)\n", - ":2: RuntimeWarning: overflow encountered in exp\n", - " return relu(exp(cosh(S2)/relu(S1))/S1)\n", - ":2: RuntimeWarning: overflow encountered in exp\n", - " return relu(exp(cosh(S2)/relu(S1))/S1)\n", - " 52%|█████▏ | 783/1500 [00:54<00:51, 14.03it/s]:2: RuntimeWarning: invalid value encountered in log\n", - " return log(-_a0_*exp(S2)/relu(S1))\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return sinh(relu(S1))**(sqrt(_a0_))\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return sinh(relu(S1))**(sqrt(_a0_))\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return sinh(relu(S1))**(sqrt(_a0_))\n", - ":2: RuntimeWarning: divide by zero encountered in scalar power\n", - " return relu(relu(relu(_a0_)**_a0_))\n", - ":2: RuntimeWarning: divide by zero encountered in scalar power\n", - " return relu(relu(relu(_a0_)**_a0_))\n", - ":2: RuntimeWarning: divide by zero encountered in power\n", - " return relu(S1*_a0_)**_a0_\n", - ":2: RuntimeWarning: divide by zero encountered in power\n", - " return relu(S1*_a0_)**_a0_\n", - " 52%|█████▏ | 785/1500 [00:54<00:49, 14.49it/s]:2: RuntimeWarning: invalid value encountered in log\n", - " return log(-relu(S2)*log(S2)/relu(S1))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(-relu(S2)*log(S2)/relu(S1))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(-relu(S2)*log(S2)/relu(S1))\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return sqrt(S2/_a0_)*exp(-exp(S2))\n", - ":2: RuntimeWarning: divide by zero encountered in power\n", - " return relu(sinh(S1/_a0_))**_a0_\n", - ":2: RuntimeWarning: divide by zero encountered in power\n", - " return relu(sinh(S1/_a0_))**_a0_\n", - ":2: RuntimeWarning: divide by zero encountered in power\n", - " return relu(sinh(S1/_a0_))**_a0_\n", - " 52%|█████▏ | 787/1500 [00:54<00:50, 14.17it/s]:2: RuntimeWarning: invalid value encountered in sqrt\n", - " return sqrt(S1/(S2*_a0_))*exp(-S1)\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return relu(_a0_**_a0_)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return relu(_a0_**_a0_)**_a0_\n", - ":2: RuntimeWarning: divide by zero encountered in divide\n", - " return log(-_a0_*relu(S2)/relu(relu(_a0_)))\n", - ":2: RuntimeWarning: divide by zero encountered in divide\n", - " return log(-_a0_*relu(S2)/relu(relu(_a0_)))\n", - ":2: RuntimeWarning: divide by zero encountered in divide\n", - " return log(-_a0_*relu(S2)/relu(relu(_a0_)))\n", - ":2: RuntimeWarning: overflow encountered in sinh\n", - " return sinh(relu(S1**S2))**_a0_\n", - ":2: RuntimeWarning: overflow encountered in sinh\n", - " return sinh(relu(S1**S2))**_a0_\n", - ":2: RuntimeWarning: overflow encountered in sinh\n", - " return sinh(relu(S1**S2))**_a0_\n", - " 53%|█████▎ | 789/1500 [00:54<00:51, 13.85it/s]:2: RuntimeWarning: invalid value encountered in log\n", - " return log(tan(_a0_))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(tan(_a0_))\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return sqrt(fac(S1)/_a0_)*exp(-S1)\n", - ":2: RuntimeWarning: overflow encountered in exp\n", - " return relu(relu(exp(abs(S1 + exp(_a0_*(S2 + _a0_))))))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return sqrt(sig(log(tan(S1)))/relu(S1))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return sqrt(sig(log(tan(S1)))/relu(S1))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return sinh(S2 + _a0_)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return sinh(S2 + _a0_)**_a0_\n", - " 53%|█████▎ | 791/1500 [00:55<00:53, 13.14it/s]:2: RuntimeWarning: invalid value encountered in log\n", - " return sqrt(sig(log(S2*cos(S2)))/relu(S1))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return sqrt(sig(log(S2*cos(S2)))/relu(S1))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return sqrt(sig(log(S2*cos(S2)))/relu(S1))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return sinh(log(_a0_))**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return sinh(log(_a0_))**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return sinh(log(_a0_))**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return sin(S1)**_a0_\n", - ":2: RuntimeWarning: divide by zero encountered in power\n", - " return sinh(relu(S2*_a0_))**_a0_\n", - ":2: RuntimeWarning: divide by zero encountered in power\n", - " return sinh(relu(S2*_a0_))**_a0_\n", - ":2: RuntimeWarning: divide by zero encountered in power\n", - " return sinh(relu(S2*_a0_))**_a0_\n", - ":2: RuntimeWarning: overflow encountered in power\n", - " return S1**(S2**S1)\n", - ":2: RuntimeWarning: overflow encountered in power\n", - " return S1**(S2**S1)\n", - ":2: RuntimeWarning: divide by zero encountered in log\n", - " return log(-_a0_*relu(_a0_)/relu(S1))\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return relu(relu(exp(cos(S1 + exp(_a0_*(_a0_ + _a0_**_a0_))))))\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return relu(relu(exp(cos(S1 + exp(_a0_*(_a0_ + _a0_**_a0_))))))\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return relu(relu(exp(cos(S1 + exp(_a0_*(_a0_ + _a0_**_a0_))))))\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return tanh(_a0_)**(-_a0_)\n", - " 53%|█████▎ | 793/1500 [00:55<00:53, 13.18it/s]:2: RuntimeWarning: invalid value encountered in power\n", - " return log(S1)**_a0_\n", - ":2: RuntimeWarning: divide by zero encountered in scalar power\n", - " return relu(relu(relu(_a0_)**_a0_))\n", - ":2: RuntimeWarning: divide by zero encountered in scalar power\n", - " return relu(relu(relu(_a0_)**_a0_))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(-(S2 + _a0_)*relu(S2)/relu(S1))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(-(S2 + _a0_)*relu(S2)/relu(S1))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(-(S2 + _a0_)*relu(S2)/relu(S1))\n", - ":2: RuntimeWarning: divide by zero encountered in power\n", - " return relu(relu(relu(tan(S1))**_a0_))\n", - ":2: RuntimeWarning: divide by zero encountered in power\n", - " return relu(-S1)**_a0_\n", - " 53%|█████▎ | 795/1500 [00:55<00:51, 13.74it/s]:2: RuntimeWarning: invalid value encountered in power\n", - " return _a0_**(sqrt(S1))/(sqrt(S1)*relu(S1))\n", - ":2: RuntimeWarning: divide by zero encountered in power\n", - " return relu(relu(relu(S1*_a0_)**_a0_))\n", - ":2: RuntimeWarning: divide by zero encountered in power\n", - " return relu(relu(relu(S1*_a0_)**_a0_))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return _a0_*log(-_a0_*relu(S2)/relu(S1))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return sinh(S1 + _a0_)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return sinh(S1 + _a0_)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return sinh(sinh(_a0_))**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return sinh(sinh(_a0_))**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return sinh(sinh(_a0_))**_a0_\n", - " 53%|█████▎ | 797/1500 [00:55<00:51, 13.75it/s]:2: RuntimeWarning: invalid value encountered in log\n", - " return log(-S1*relu(S2)/relu(S1))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(-_a0_)\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(-_a0_)\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return sinh(_a0_)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return _a0_**(-S2)*(sqrt(S1) + _a0_)/relu(S1)\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return _a0_**(-S2)*(sqrt(S1) + _a0_)/relu(S1)\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return _a0_**(-S2)*(sqrt(S1) + _a0_)/relu(S1)\n", - " 53%|█████▎ | 799/1500 [00:55<00:47, 14.87it/s]:2: RuntimeWarning: invalid value encountered in log\n", - " return log(-S2**_a0_*_a0_/relu(S1))\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return relu(relu(exp(cos(S1 + sqrt(_a0_*(S2 + _a0_))))))\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return relu(relu(exp(cos(S1 + sqrt(_a0_*(S2 + _a0_))))))\n", - ":2: RuntimeWarning: overflow encountered in sinh\n", - " return sinh(S2**S2)**_a0_\n", - ":2: RuntimeWarning: overflow encountered in sinh\n", - " return sinh(S2**S2)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return sqrt(sig(log(-S2**2))/relu(S1))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return sqrt(sig(log(-S2**2))/relu(S1))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return sqrt(sig(log(-S2**2))/relu(S1))\n", - " 53%|█████▎ | 801/1500 [00:55<00:48, 14.48it/s]:2: RuntimeWarning: invalid value encountered in power\n", - " return tan(S1)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return sinh(_a0_)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return sinh(_a0_)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu(relu(relu(sinh(S1))**(_a0_**S2)))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu(relu(relu(sinh(S1))**(_a0_**S2)))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu(relu(relu(sinh(S1))**(_a0_**S2)))\n", - " 54%|█████▎ | 803/1500 [00:55<00:47, 14.74it/s]:2: RuntimeWarning: divide by zero encountered in scalar divide\n", - " return relu(exp(_a0_/relu(_a0_))/S1)\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return relu(relu(_a0_**_a0_*relu(sig(_a0_))**S1))\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return relu(relu(_a0_**_a0_*relu(sig(_a0_))**S1))\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return relu(relu(_a0_**_a0_*relu(sig(_a0_))**S1))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return log(S1)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return (-sinh(S1))**_a0_\n", - " 54%|█████▎ | 805/1500 [00:56<00:45, 15.14it/s]:2: RuntimeWarning: invalid value encountered in sqrt\n", - " return (sqrt(S1) + _a0_)/(sqrt(_a0_)*relu(S1))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(-S1**2*relu(S2)/relu(S1))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(-S1**2*relu(S2)/relu(S1))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(-S1**2*relu(S2)/relu(S1))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return log(S1)**_a0_\n", - " 54%|█████▍ | 807/1500 [00:56<00:47, 14.72it/s]:2: RuntimeWarning: invalid value encountered in sqrt\n", - " return (sqrt(S1) + _a0_)/(sqrt(S1/_a0_)*relu(S1))\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return (sqrt(S1) + _a0_)/(sqrt(S1/_a0_)*relu(S1))\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return (sqrt(S1) + _a0_)/(sqrt(S1/_a0_)*relu(S1))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(-S2/relu(S1))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(-S2/relu(S1))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return sqrt(sig(log(cos(S2)))/relu(S1))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return sqrt(sig(log(cos(S2)))/relu(S1))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return sqrt(sig(log(cos(S2)))/relu(S1))\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return sinh(_a0_)**_a0_\n", - ":2: RuntimeWarning: divide by zero encountered in power\n", - " return relu(relu(relu(sinh(S2/_a0_))**_a0_))\n", - ":2: RuntimeWarning: divide by zero encountered in power\n", - " return relu(relu(relu(sinh(S2/_a0_))**_a0_))\n", - ":2: RuntimeWarning: divide by zero encountered in power\n", - " return relu(relu(relu(sinh(S2/_a0_))**_a0_))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return log(sinh(S1))**_a0_\n", - " 54%|█████▍ | 809/1500 [00:56<00:49, 14.08it/s]:2: RuntimeWarning: invalid value encountered in power\n", - " return log(-(_a0_*relu(S2))**relu(S1))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return cos(sinh(S1))**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(-S2*relu(S2)/relu(S1))\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return exp(-S1)*sqrt(sin(S2))\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return exp(-S1)*sqrt(sin(S2))\n", - ":2: RuntimeWarning: divide by zero encountered in divide\n", - " return (sqrt(S1) + _a0_)/(sqrt(S1)*relu(_a0_))\n", - ":2: RuntimeWarning: divide by zero encountered in power\n", - " return relu(_a0_/S2)**_a0_\n", - ":2: RuntimeWarning: divide by zero encountered in power\n", - " return relu(_a0_/S2)**_a0_\n", - " 54%|█████▍ | 811/1500 [00:56<00:47, 14.39it/s]:2: RuntimeWarning: invalid value encountered in log\n", - " return log(-_a0_**2/relu(S1))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(-_a0_**2/relu(S1))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu(exp(_a0_**relu(S1))/S1)\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(-S2*relu(S2)/relu(S1))\n", - " 54%|█████▍ | 813/1500 [00:56<00:45, 15.07it/s]:2: RuntimeWarning: invalid value encountered in power\n", - " return relu(cos(S1)**_a0_/(S1 + _a0_))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu(cos(S1)**_a0_/(S1 + _a0_))\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return sinh(_a0_)**_a0_\n", - ":2: RuntimeWarning: divide by zero encountered in power\n", - " return relu(relu(relu(-sinh(S1))**_a0_))\n", - ":2: RuntimeWarning: divide by zero encountered in power\n", - " return relu(relu(relu(-sinh(S1))**_a0_))\n", - ":2: RuntimeWarning: overflow encountered in power\n", - " return S1**(S1**S2)\n", - ":2: RuntimeWarning: overflow encountered in power\n", - " return S1**(S1**S2)\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(-_a0_**2/relu(relu(S1)))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(-_a0_**2/relu(relu(S1)))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(-_a0_**2/relu(relu(S1)))\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return sqrt(S2**_a0_/(S1 + _a0_))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return cos(S1)**_a0_\n", - " 54%|█████▍ | 815/1500 [00:56<00:46, 14.63it/s]:2: RuntimeWarning: invalid value encountered in log\n", - " return log(S2/sin(S2))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(S2/sin(S2))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(-relu(S2)*cos(S1)/relu(relu(S1)))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(-relu(S2)*cos(S1)/relu(relu(S1)))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(-relu(S2)*cos(S1)/relu(relu(S1)))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return sin(S1)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return sinh(_a0_)**_a0_\n", - ":2: RuntimeWarning: divide by zero encountered in scalar power\n", - " return relu(relu(relu(_a0_)**_a0_))\n", - ":2: RuntimeWarning: divide by zero encountered in scalar power\n", - " return relu(relu(relu(_a0_)**_a0_))\n", - ":2: RuntimeWarning: divide by zero encountered in scalar power\n", - " return relu(sinh(_a0_))**_a0_\n", - " 54%|█████▍ | 817/1500 [00:56<00:44, 15.26it/s]:2: RuntimeWarning: divide by zero encountered in divide\n", - " return log(-_a0_*relu(S2)/relu(S2*_a0_))\n", - ":2: RuntimeWarning: divide by zero encountered in divide\n", - " return log(-_a0_*relu(S2)/relu(S2*_a0_))\n", - ":2: RuntimeWarning: divide by zero encountered in divide\n", - " return log(-_a0_*relu(S2)/relu(S2*_a0_))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return sinh(S1 + _a0_)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return sinh(S1 + _a0_)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return (S2*_a0_)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return (S2*_a0_)**_a0_\n", - ":2: RuntimeWarning: divide by zero encountered in divide\n", - " return log(-_a0_*relu(S2)/relu(_a0_))\n", - ":2: RuntimeWarning: divide by zero encountered in divide\n", - " return log(-_a0_*relu(S2)/relu(_a0_))\n", - ":2: RuntimeWarning: divide by zero encountered in divide\n", - " return (sqrt(S1) + _a0_)/(sqrt(S1)*relu(tan(_a0_)))\n", - ":2: RuntimeWarning: divide by zero encountered in divide\n", - " return (sqrt(S1) + _a0_)/(sqrt(S1)*relu(tan(_a0_)))\n", - ":2: RuntimeWarning: divide by zero encountered in divide\n", - " return (sqrt(S1) + _a0_)/(sqrt(S1)*relu(tan(_a0_)))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu(relu(cos(sinh(S1))**_a0_))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return relu(exp(_a0_/relu(S1))/log(_a0_))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return relu(exp(_a0_/relu(S1))/log(_a0_))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return relu(exp(_a0_/relu(S1))/log(_a0_))\n", - " 55%|█████▍ | 819/1500 [00:56<00:45, 15.01it/s]:2: RuntimeWarning: invalid value encountered in power\n", - " return (S2/_a0_)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return (S2/_a0_)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return (_a0_ + sqrt(sin(S2)))/(sqrt(S1)*relu(S1))\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return (_a0_ + sqrt(sin(S2)))/(sqrt(S1)*relu(S1))\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return (_a0_ + sqrt(sin(S2)))/(sqrt(S1)*relu(S1))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(-(_a0_ + relu(S2))/relu(relu(S1)))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(-(_a0_ + relu(S2))/relu(relu(S1)))\n", - " 55%|█████▍ | 821/1500 [00:57<00:46, 14.63it/s]:2: RuntimeWarning: invalid value encountered in log\n", - " return log(S2/log(S2))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(S2/log(S2))\n", - ":2: RuntimeWarning: divide by zero encountered in divide\n", - " return (sqrt(S1) + _a0_)/(sqrt(S1)*relu(_a0_))\n", - ":2: RuntimeWarning: divide by zero encountered in divide\n", - " return (sqrt(S1) + _a0_)/(sqrt(S1)*relu(_a0_))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(-S2*relu(S2)/relu(relu(S1)))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(-S2*relu(S2)/relu(relu(S1)))\n", - ":2: RuntimeWarning: divide by zero encountered in scalar power\n", - " return relu(relu(relu(_a0_)**_a0_))\n", - ":2: RuntimeWarning: divide by zero encountered in scalar power\n", - " return relu(relu(relu(_a0_)**_a0_))\n", - " 55%|█████▍ | 823/1500 [00:57<00:47, 14.21it/s]:2: RuntimeWarning: divide by zero encountered in power\n", - " return relu(relu(relu(sinh(tan(S2)))**_a0_))\n", - ":2: RuntimeWarning: divide by zero encountered in power\n", - " return relu(relu(relu(sinh(tan(S2)))**_a0_))\n", - ":2: RuntimeWarning: divide by zero encountered in power\n", - " return relu(relu(relu(sinh(tan(S2)))**_a0_))\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return sinh(_a0_)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return relu(exp(_a0_/relu(S1))/sqrt(_a0_))\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return relu(exp(_a0_/relu(S1))/sqrt(_a0_))\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return relu(exp(_a0_/relu(S1))/sqrt(_a0_))\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return relu(_a0_**(-_a0_)*exp(_a0_/relu(S1)))\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return relu(_a0_**(-_a0_)*exp(_a0_/relu(S1)))\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return relu(_a0_**(-_a0_)*exp(_a0_/relu(S1)))\n", - " 55%|█████▌ | 825/1500 [00:57<00:47, 14.24it/s]:2: RuntimeWarning: divide by zero encountered in power\n", - " return relu(relu(relu(sinh(cos(S1)))**_a0_))\n", - ":2: RuntimeWarning: divide by zero encountered in power\n", - " return relu(relu(relu(sinh(cos(S1)))**_a0_))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return cos(S1)**_a0_\n", - ":2: RuntimeWarning: divide by zero encountered in scalar power\n", - " return relu(sinh(_a0_**3))**_a0_\n", - ":2: RuntimeWarning: divide by zero encountered in scalar power\n", - " return relu(sinh(_a0_**3))**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(-S1/relu(relu(S1)))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(-S1/relu(relu(S1)))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(-S1/relu(relu(S1)))\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return (2*_a0_)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return (2*_a0_)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return (sqrt(S1) + _a0_)**(sqrt(S1)*relu(cosh(S1)))\n", - ":2: RuntimeWarning: divide by zero encountered in divide\n", - " return relu(exp(_a0_/relu(S2 + _a0_))/S1)\n", - ":2: RuntimeWarning: divide by zero encountered in divide\n", - " return relu(exp(_a0_/relu(S2 + _a0_))/S1)\n", - ":2: RuntimeWarning: divide by zero encountered in divide\n", - " return relu(exp(_a0_/relu(S2 + _a0_))/S1)\n", - " 55%|█████▌ | 827/1500 [00:57<00:47, 14.05it/s]:2: RuntimeWarning: invalid value encountered in power\n", - " return (relu(relu(S2*_a0_))/cos(S1))**sig(relu(S1))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return (relu(relu(S2*_a0_))/cos(S1))**sig(relu(S1))\n", - " 55%|█████▌ | 829/1500 [00:57<00:46, 14.33it/s]:2: RuntimeWarning: invalid value encountered in log\n", - " return log(-_a0_**2/relu(relu(S1)))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(-_a0_**2/relu(relu(S1)))\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return sinh(_a0_**3)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return sinh(_a0_**3)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return sqrt(sig(log(S2**2))/cos(S1))\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return sqrt(sig(log(S2**2))/cos(S1))\n", - ":2: RuntimeWarning: divide by zero encountered in power\n", - " return relu(relu(relu(_a0_/S1)**_a0_))\n", - ":2: RuntimeWarning: divide by zero encountered in power\n", - " return relu(relu(relu(_a0_/S1)**_a0_))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return sinh(_a0_**S2)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return sinh(_a0_**S2)**_a0_\n", - ":2: RuntimeWarning: divide by zero encountered in power\n", - " return relu(sinh(S2/_a0_))**_a0_\n", - ":2: RuntimeWarning: divide by zero encountered in power\n", - " return relu(sinh(S2/_a0_))**_a0_\n", - " 55%|█████▌ | 831/1500 [00:57<00:47, 14.20it/s]:2: RuntimeWarning: invalid value encountered in log\n", - " return relu(log(-_a0_*relu(S2)/relu(S1**3)))\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return sqrt(_a0_**_a0_/_a0_)*exp(-S1)\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return relu(log(-_a0_*relu(S1**3)/relu(relu(S1))))\n", - " 56%|█████▌ | 833/1500 [00:57<00:47, 14.09it/s]:2: RuntimeWarning: invalid value encountered in log\n", - " return relu(log(-_a0_**2/relu(relu(S1))))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return relu(log(-_a0_**2/relu(relu(S1))))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return relu(log(-_a0_**2/relu(relu(S1))))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return sinh(_a0_/S1)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return sinh(_a0_/S1)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return sinh(_a0_/S1)**_a0_\n", - " 56%|█████▌ | 837/1500 [00:58<00:45, 14.70it/s]:2: RuntimeWarning: invalid value encountered in power\n", - " return (_a0_/S1)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return (_a0_/S1)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return relu(_a0_**_a0_)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return relu(_a0_**_a0_)**_a0_\n", - " 56%|█████▌ | 839/1500 [00:58<00:44, 14.78it/s]:2: RuntimeWarning: invalid value encountered in log\n", - " return relu(log(-_a0_*relu(S2)/relu(relu(S1))))/S1\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(-_a0_)\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(-_a0_)\n", - ":2: RuntimeWarning: divide by zero encountered in power\n", - " return relu(sinh(S2*_a0_))**_a0_\n", - ":2: RuntimeWarning: divide by zero encountered in power\n", - " return relu(sinh(S2*_a0_))**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return relu(log(-relu(S2)**2/relu(relu(S1))))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return relu(log(-relu(S2)**2/relu(relu(S1))))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return relu(log(-relu(S2)**2/relu(relu(S1))))\n", - " 56%|█████▌ | 841/1500 [00:58<00:43, 15.08it/s]:2: RuntimeWarning: invalid value encountered in power\n", - " return relu(relu(exp(cos(S1 + exp((S2 + _a0_)**_a0_)))))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu(relu(exp(cos(S1 + exp((S2 + _a0_)**_a0_)))))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return relu(log(-relu(S2)*exp(S2)/relu(relu(S1))))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return relu(log(-relu(S2)*exp(S2)/relu(relu(S1))))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return relu(log(-relu(S2)*exp(S2)/relu(relu(S1))))\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return sqrt(sqrt(S2/_a0_)*exp(-S1))\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return sinh(_a0_)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return sinh(_a0_**_a0_)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return sinh(_a0_**_a0_)**_a0_\n", - ":2: RuntimeWarning: divide by zero encountered in power\n", - " return relu(relu(relu(S1*_a0_)**_a0_))\n", - ":2: RuntimeWarning: divide by zero encountered in power\n", - " return relu(relu(relu(S1*_a0_)**_a0_))\n", - ":2: RuntimeWarning: overflow encountered in power\n", - " return S1**(S1**S2)\n", - ":2: RuntimeWarning: overflow encountered in power\n", - " return S1**(S1**S2)\n", - " 56%|█████▌ | 843/1500 [00:58<00:45, 14.35it/s]:2: RuntimeWarning: invalid value encountered in log\n", - " return log(tan(S2)/S1)\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu(relu(tan(sinh(S1))**_a0_))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(relu(S2)/log(S2))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(relu(S2)/log(S2))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(relu(S2)/log(S2))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return relu(log(-relu(S2)*abs(S1)/relu(relu(S1))))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return relu(log(-relu(S2)*abs(S1)/relu(relu(S1))))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return relu(log(-relu(S2)*abs(S1)/relu(relu(S1))))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu(relu(S2*relu(sig(_a0_**S1))**S1))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu(relu(S2*relu(sig(_a0_**S1))**S1))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu(relu(S2*relu(sig(_a0_**S1))**S1))\n", - ":2: RuntimeWarning: divide by zero encountered in power\n", - " return relu(S2/_a0_)**_a0_\n", - ":2: RuntimeWarning: divide by zero encountered in power\n", - " return relu(S2/_a0_)**_a0_\n", - " 56%|█████▋ | 845/1500 [00:58<00:46, 13.98it/s]:2: RuntimeWarning: invalid value encountered in log\n", - " return relu(log(log(_a0_*relu(S2)/relu(relu(S1)))))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return relu(log(log(_a0_*relu(S2)/relu(relu(S1)))))\n", - ":2: RuntimeWarning: invalid value encountered in divide\n", - " return (relu(relu(S2*_a0_))/relu(_a0_))**sig(relu(S1))\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return sinh(S1)**(_a0_**_a0_)\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return sinh(S1)**(_a0_**_a0_)\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return relu(relu(relu(sinh(_a0_**_a0_))**_a0_))\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return relu(relu(relu(sinh(_a0_**_a0_))**_a0_))\n", - ":2: RuntimeWarning: divide by zero encountered in scalar power\n", - " return relu(_a0_)**_a0_\n", - ":2: RuntimeWarning: divide by zero encountered in scalar power\n", - " return relu(_a0_)**_a0_\n", - ":2: RuntimeWarning: divide by zero encountered in log\n", - " return relu(log(-_a0_*relu(sinh(_a0_))/relu(relu(S1))))\n", - ":2: RuntimeWarning: divide by zero encountered in log\n", - " return relu(log(-_a0_*relu(sinh(_a0_))/relu(relu(S1))))\n", - ":2: RuntimeWarning: divide by zero encountered in log\n", - " return relu(log(-_a0_*relu(sinh(_a0_))/relu(relu(S1))))\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return exp(-S1)*sqrt(sin(S1))\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return exp(-S1)*sqrt(sin(S1))\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return exp(-S1)*sqrt(sin(S1))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return sinh(S2 + _a0_)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return sinh(S2 + _a0_)**_a0_\n", - " 56%|█████▋ | 847/1500 [00:58<00:47, 13.89it/s]:2: RuntimeWarning: divide by zero encountered in log\n", - " return relu(log(-_a0_*relu(S1*_a0_)/relu(relu(S1))))\n", - ":2: RuntimeWarning: divide by zero encountered in log\n", - " return relu(log(-_a0_*relu(S1*_a0_)/relu(relu(S1))))\n", - ":2: RuntimeWarning: divide by zero encountered in log\n", - " return relu(log(-_a0_*relu(S1*_a0_)/relu(relu(S1))))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu(sinh(S1*_a0_)**_a0_)\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu(sinh(S1*_a0_)**_a0_)\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return (S2/_a0_)**(-_a0_)\n", - " 57%|█████▋ | 849/1500 [00:59<00:48, 13.33it/s]:2: RuntimeWarning: invalid value encountered in log\n", - " return relu(log(-S1*relu(S2)/relu(relu(S1))))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return relu(log(-S1*relu(S2)/relu(relu(S1))))\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return relu(relu(S2/_a0_)/sqrt(cos(_a0_)))\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return relu(relu(S2/_a0_)/sqrt(cos(_a0_)))\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return relu(relu(S2/_a0_)/sqrt(cos(_a0_)))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return (sqrt(S2) + _a0_**S1)/(sqrt(S1)*relu(cosh(fac(S1))))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return (sqrt(S2) + _a0_**S1)/(sqrt(S1)*relu(cosh(fac(S1))))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return (sqrt(S2) + _a0_**S1)/(sqrt(S1)*relu(cosh(fac(S1))))\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return relu(_a0_**_a0_)\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return relu(_a0_**_a0_)\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return sin(S2)**(-_a0_)\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return sin(S2)**(-_a0_)\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return sin(S2)**(-_a0_)\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return relu(log(-_a0_*tan(S2)/relu(relu(S1))))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return relu(log(-_a0_*tan(S2)/relu(relu(S1))))\n", - ":2: RuntimeWarning: divide by zero encountered in scalar divide\n", - " return exp(_a0_/relu(_a0_))/S1\n", - ":2: RuntimeWarning: divide by zero encountered in scalar divide\n", - " return exp(_a0_/relu(_a0_))/S1\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return tan(sinh(S1))**_a0_\n", - " 57%|█████▋ | 851/1500 [00:59<00:49, 13.08it/s]:2: RuntimeWarning: invalid value encountered in log\n", - " return relu(log(tan(_a0_*relu(S2)/relu(relu(S1)))))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return relu(log(tan(_a0_*relu(S2)/relu(relu(S1)))))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return (-relu(relu(S2*_a0_))/S1)**sig(relu(S1))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return (-relu(relu(S2*_a0_))/S1)**sig(relu(S1))\n", - ":2: RuntimeWarning: divide by zero encountered in scalar power\n", - " return relu(relu(relu(sinh(_a0_**3))**_a0_))\n", - ":2: RuntimeWarning: divide by zero encountered in scalar power\n", - " return relu(relu(relu(sinh(_a0_**3))**_a0_))\n", - ":2: RuntimeWarning: divide by zero encountered in scalar power\n", - " return relu(relu(relu(sinh(_a0_**3))**_a0_))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return log(S1)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return relu(log(-S2*relu(S2)/relu(relu(S1))))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return relu(log(-S2*relu(S2)/relu(relu(S1))))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return sinh(log(S1))**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return sinh(log(S1))**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return sinh(log(S1))**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return (sqrt(S2) + _a0_)/(sqrt(S2 + _a0_)*relu(cosh(fac(S1))))\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return (sqrt(S2) + _a0_)/(sqrt(S2 + _a0_)*relu(cosh(fac(S1))))\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return (sqrt(S2) + _a0_)/(sqrt(S2 + _a0_)*relu(cosh(fac(S1))))\n", - ":2: RuntimeWarning: divide by zero encountered in power\n", - " return relu(relu(relu(tan(S1))**_a0_))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return sinh(_a0_**S2)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return sinh(_a0_**S2)**_a0_\n", - " 57%|█████▋ | 853/1500 [00:59<00:48, 13.47it/s]:2: RuntimeWarning: divide by zero encountered in log\n", - " return relu(log(-_a0_*relu(tan(S2))/relu(relu(S1))))\n", - ":2: RuntimeWarning: divide by zero encountered in log\n", - " return relu(log(-_a0_*relu(tan(S2))/relu(relu(S1))))\n", - ":2: RuntimeWarning: divide by zero encountered in log\n", - " return relu(log(-_a0_*relu(tan(S2))/relu(relu(S1))))\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return relu(relu(S2/_a0_)/sqrt(S2*tan(S1)))\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return relu(relu(S2/_a0_)/sqrt(S2*tan(S1)))\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return relu(relu(S2/_a0_)/sqrt(S2*tan(S1)))\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return relu(log(-_a0_*relu(S2)/relu(_a0_**_a0_)))\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return relu(log(-_a0_*relu(S2)/relu(_a0_**_a0_)))\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return relu(log(-_a0_*relu(S2)/relu(_a0_**_a0_)))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return (_a0_**S2)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return (_a0_**S2)**_a0_\n", - " 57%|█████▋ | 855/1500 [00:59<00:48, 13.23it/s]:2: RuntimeWarning: invalid value encountered in log\n", - " return _a0_ + relu(log(-_a0_*relu(S2)/relu(relu(S1))))\n", - ":2: RuntimeWarning: divide by zero encountered in log\n", - " return _a0_ + relu(log(-_a0_*relu(S2)/relu(relu(S1))))\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return (sqrt(S2) + _a0_)/(sqrt(_a0_)*relu(cosh(fac(S1))))\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return (sqrt(S2) + _a0_)/(sqrt(_a0_)*relu(cosh(fac(S1))))\n", - ":2: RuntimeWarning: divide by zero encountered in power\n", - " return relu(relu(relu(_a0_/S1)**_a0_))\n", - ":2: RuntimeWarning: divide by zero encountered in power\n", - " return relu(relu(relu(_a0_/S1)**_a0_))\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return relu(_a0_**_a0_)\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return relu(_a0_**_a0_)\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return S1**log(_a0_)\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu(S2)*sig(sig(S1))**(_a0_*_a0_**S2)\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu(S2)*sig(sig(S1))**(_a0_*_a0_**S2)\n", - " 57%|█████▋ | 857/1500 [00:59<00:47, 13.56it/s]:2: RuntimeWarning: invalid value encountered in power\n", - " return relu(log(-_a0_*relu(S2)/relu(_a0_**S2)))\n", - ":2: RuntimeWarning: divide by zero encountered in divide\n", - " return relu(log(-_a0_*relu(S2)/relu(_a0_**S2)))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu(log(-_a0_*relu(S2)/relu(_a0_**S2)))\n", - ":2: RuntimeWarning: divide by zero encountered in divide\n", - " return relu(log(-_a0_*relu(S2)/relu(_a0_**S2)))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu(log(-_a0_*relu(S2)/relu(_a0_**S2)))\n", - ":2: RuntimeWarning: divide by zero encountered in divide\n", - " return relu(log(-_a0_*relu(S2)/relu(_a0_**S2)))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return log(S1)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return relu(log(-_a0_**2/relu(relu(S1))))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return relu(log(-_a0_**2/relu(relu(S1))))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu((S1/_a0_)**_a0_)\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu((S1/_a0_)**_a0_)\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu((S1/_a0_)**_a0_)\n", - " 57%|█████▋ | 859/1500 [00:59<00:46, 13.66it/s]:2: RuntimeWarning: invalid value encountered in power\n", - " return log(S1)**_a0_\n", - ":2: RuntimeWarning: divide by zero encountered in divide\n", - " return (sqrt(S2) + _a0_)/(sqrt(S1)*relu(tan(fac(S1))))\n", - ":2: RuntimeWarning: divide by zero encountered in divide\n", - " return (sqrt(S2) + _a0_)/(sqrt(S1)*relu(tan(fac(S1))))\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return relu(_a0_**_a0_)\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return relu(_a0_**_a0_)\n", - ":2: RuntimeWarning: divide by zero encountered in power\n", - " return relu(_a0_/S1)**_a0_\n", - ":2: RuntimeWarning: divide by zero encountered in power\n", - " return relu(_a0_/S1)**_a0_\n", - " 57%|█████▋ | 861/1500 [00:59<00:45, 14.02it/s]:2: RuntimeWarning: invalid value encountered in power\n", - " return relu(log(-_a0_*relu(_a0_**S1)/relu(relu(S1))))\n", - ":2: RuntimeWarning: divide by zero encountered in log\n", - " return relu(log(-_a0_*relu(_a0_**S1)/relu(relu(S1))))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu(log(-_a0_*relu(_a0_**S1)/relu(relu(S1))))\n", - ":2: RuntimeWarning: divide by zero encountered in log\n", - " return relu(log(-_a0_*relu(_a0_**S1)/relu(relu(S1))))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu(log(-_a0_*relu(_a0_**S1)/relu(relu(S1))))\n", - ":2: RuntimeWarning: divide by zero encountered in log\n", - " return relu(log(-_a0_*relu(_a0_**S1)/relu(relu(S1))))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(sin(S2))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(sin(S2))\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return relu(relu(S2*relu(sig(sqrt(_a0_)))**S1))\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return relu(relu(S2*relu(sig(sqrt(_a0_)))**S1))\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return relu(relu(relu(sinh(_a0_**_a0_))**_a0_))\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return relu(relu(relu(sinh(_a0_**_a0_))**_a0_))\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return sinh(_a0_)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return relu(log(-_a0_*relu(exp(_a0_))/relu(relu(S1))))\n", - ":2: RuntimeWarning: divide by zero encountered in log\n", - " return relu(log(-_a0_*relu(exp(_a0_))/relu(relu(S1))))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return (S1 + _a0_)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return (S1 + _a0_)**_a0_\n", - " 58%|█████▊ | 863/1500 [01:00<00:44, 14.19it/s]:2: RuntimeWarning: invalid value encountered in log\n", - " return log(cos(S1))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(cos(S1))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return (-sinh(S1))**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return (-sinh(S1))**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return relu(relu(S2*relu(log(_a0_))**S1))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return relu(relu(S2*relu(log(_a0_))**S1))\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return relu(relu(sqrt(cos(S1 + exp(_a0_*(S2 + _a0_))))))\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return relu(relu(sqrt(cos(S1 + exp(_a0_*(S2 + _a0_))))))\n", - ":2: RuntimeWarning: divide by zero encountered in power\n", - " return relu(relu(relu(sinh(S1/_a0_))**_a0_))\n", - ":2: RuntimeWarning: divide by zero encountered in power\n", - " return relu(relu(relu(sinh(S1/_a0_))**_a0_))\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return relu(sinh(_a0_)**_a0_)\n", - ":2: RuntimeWarning: divide by zero encountered in power\n", - " return relu(S1 + _a0_)**_a0_\n", - ":2: RuntimeWarning: divide by zero encountered in power\n", - " return relu(S1 + _a0_)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return log(S1)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return (2*_a0_)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return (2*_a0_)**_a0_\n", - ":2: RuntimeWarning: divide by zero encountered in scalar divide\n", - " return exp(_a0_/relu(_a0_))/S1\n", - " 58%|█████▊ | 865/1500 [01:00<00:43, 14.47it/s]:2: RuntimeWarning: invalid value encountered in log\n", - " return relu(log(-S1*relu(S2)/relu(relu(S1))))\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return relu(relu(S2*relu(sig(sqrt(_a0_)))**S1))\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return relu(relu(S2*relu(sig(sqrt(_a0_)))**S1))\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return (sqrt(_a0_) + _a0_)/(sqrt(S1)*relu(cosh(fac(S1))))\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return (sqrt(_a0_) + _a0_)/(sqrt(S1)*relu(cosh(fac(S1))))\n", - ":2: RuntimeWarning: overflow encountered in sinh\n", - " return relu(sinh(S2**S2))**_a0_\n", - ":2: RuntimeWarning: overflow encountered in sinh\n", - " return relu(sinh(S2**S2))**_a0_\n", - " 58%|█████▊ | 867/1500 [01:00<00:45, 14.01it/s]:2: RuntimeWarning: invalid value encountered in log\n", - " return log(tan(S2)/S1)\n", - ":2: RuntimeWarning: divide by zero encountered in power\n", - " return relu(relu(relu(_a0_/S2)**_a0_))\n", - ":2: RuntimeWarning: divide by zero encountered in power\n", - " return relu(relu(relu(_a0_/S2)**_a0_))\n", - ":2: RuntimeWarning: divide by zero encountered in power\n", - " return relu(cos(S1))**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu(_a0_**S2)**_a0_\n", - ":2: RuntimeWarning: divide by zero encountered in power\n", - " return relu(_a0_**S2)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu(_a0_**S2)**_a0_\n", - ":2: RuntimeWarning: divide by zero encountered in power\n", - " return relu(_a0_**S2)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu(_a0_**S2)**_a0_\n", - ":2: RuntimeWarning: divide by zero encountered in power\n", - " return relu(_a0_**S2)**_a0_\n", - " 58%|█████▊ | 869/1500 [01:00<00:44, 14.18it/s]:2: RuntimeWarning: divide by zero encountered in log\n", - " return relu(log(-_a0_*relu(S2*_a0_)/relu(relu(S1))))\n", - ":2: RuntimeWarning: divide by zero encountered in log\n", - " return relu(log(-_a0_*relu(S2*_a0_)/relu(relu(S1))))\n", - ":2: RuntimeWarning: divide by zero encountered in log\n", - " return relu(log(-_a0_*relu(S2*_a0_)/relu(relu(S1))))\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return relu(sinh(_a0_)**_a0_)\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return tan(sinh(S1))**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return sqrt(sig(log(log(S2)))/relu(S1))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return sqrt(sig(log(log(S2)))/relu(S1))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return sqrt(sig(log(log(S2)))/relu(S1))\n", - " 58%|█████▊ | 871/1500 [01:00<00:42, 14.74it/s]:2: RuntimeWarning: invalid value encountered in log\n", - " return relu(log(-_a0_*relu(S1**S2)/relu(relu(S1))))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return (_a0_**S2)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return (_a0_**S2)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return cos(sinh(S1))**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return relu(_a0_**_a0_)\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return relu(_a0_**_a0_)\n", - " 58%|█████▊ | 873/1500 [01:00<00:43, 14.42it/s]:2: RuntimeWarning: invalid value encountered in log\n", - " return relu(log(-_a0_*exp(S2)/relu(relu(S1))))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return sinh(S1*_a0_)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return sinh(S1*_a0_)**_a0_\n", - ":2: RuntimeWarning: overflow encountered in power\n", - " return relu(sinh(S1))**(S2**S1)\n", - ":2: RuntimeWarning: overflow encountered in power\n", - " return relu(sinh(S1))**(S2**S1)\n", - " 58%|█████▊ | 875/1500 [01:00<00:43, 14.40it/s]:2: RuntimeWarning: divide by zero encountered in log\n", - " return relu(log(-_a0_*relu(_a0_)/relu(relu(S1))))\n", - ":2: RuntimeWarning: divide by zero encountered in log\n", - " return relu(log(-_a0_*relu(_a0_)/relu(relu(S1))))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return relu(log(-_a0_*relu(S2**2)/relu(relu(S1))))\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return sqrt(sig(log(S2**2))/sin(S1))\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return sqrt(sig(log(S2**2))/sin(S1))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return relu(relu(exp(cos(S1 + exp(log(_a0_)/_a0_)))))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return relu(relu(exp(cos(S1 + exp(log(_a0_)/_a0_)))))\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return (_a0_ + sqrt(S1 + _a0_))/(sqrt(S1)*relu(cosh(fac(S1))))\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return (_a0_ + sqrt(S1 + _a0_))/(sqrt(S1)*relu(cosh(fac(S1))))\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return (_a0_ + sqrt(S1 + _a0_))/(sqrt(S1)*relu(cosh(fac(S1))))\n", - ":2: RuntimeWarning: overflow encountered in power\n", - " return relu(sinh(S1)**(S1**S2))\n", - ":2: RuntimeWarning: overflow encountered in power\n", - " return relu(sinh(S1)**(S1**S2))\n", - ":2: RuntimeWarning: overflow encountered in power\n", - " return relu(sinh(S1)**(S1**S2))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return (S1*_a0_)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return (S1*_a0_)**_a0_\n", - " 58%|█████▊ | 877/1500 [01:01<00:43, 14.21it/s]:2: RuntimeWarning: invalid value encountered in log\n", - " return relu(log(-_a0_**2/relu(relu(S1))))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return relu(log(-_a0_**2/relu(relu(S1))))\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return relu(sinh(tan(_a0_))**_a0_)\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return relu(sinh(tan(_a0_))**_a0_)\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return relu(sinh(tan(_a0_))**_a0_)\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return tan(sinh(S1))**_a0_\n", - ":2: RuntimeWarning: divide by zero encountered in log\n", - " return relu(log(-_a0_*relu(tan(S1))/relu(relu(S1))))\n", - ":2: RuntimeWarning: divide by zero encountered in log\n", - " return relu(log(-_a0_*relu(tan(S1))/relu(relu(S1))))\n", - ":2: RuntimeWarning: divide by zero encountered in log\n", - " return relu(log(-_a0_*relu(tan(S1))/relu(relu(S1))))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return tan(S1)**_a0_\n", - ":2: RuntimeWarning: divide by zero encountered in power\n", - " return relu(sin(S1))**_a0_\n", - " 59%|█████▊ | 879/1500 [01:01<00:44, 13.88it/s]:2: RuntimeWarning: overflow encountered in power\n", - " return S1**(S1**S2)\n", - ":2: RuntimeWarning: overflow encountered in power\n", - " return S1**(S1**S2)\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(tan(S2))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(tan(S2))\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return sqrt(-_a0_**2)*exp(-S1)\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return sqrt(-_a0_**2)*exp(-S1)\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return sqrt(-_a0_**2)*exp(-S1)\n", - ":2: RuntimeWarning: divide by zero encountered in scalar power\n", - " return relu(_a0_)**_a0_\n", - ":2: RuntimeWarning: divide by zero encountered in scalar power\n", - " return relu(_a0_)**_a0_\n", - " 59%|█████▊ | 881/1500 [01:01<00:45, 13.55it/s]:2: RuntimeWarning: invalid value encountered in sqrt\n", - " return sqrt(_a0_*exp(S2))*exp(-S1)\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return sinh(_a0_)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return -_a0_**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return -_a0_**_a0_\n", - " 59%|█████▉ | 883/1500 [01:01<00:45, 13.47it/s]:2: RuntimeWarning: invalid value encountered in log\n", - " return log(relu(S2)/sin(S1))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(relu(S2)/sin(S1))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(relu(S2)/sin(S1))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return log(S1)**_a0_\n", - " 59%|█████▉ | 885/1500 [01:01<00:45, 13.48it/s]:2: RuntimeWarning: invalid value encountered in log\n", - " return relu(log(-_a0_**2/relu(relu(S1))))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return relu(log(-_a0_**2/relu(relu(S1))))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return cos(S2)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return cos(S2)**_a0_\n", - " 59%|█████▉ | 887/1500 [01:01<00:45, 13.49it/s]:2: RuntimeWarning: invalid value encountered in scalar power\n", - " return relu(log(-_a0_**_a0_*relu(S2)/relu(relu(S1))))\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return relu(log(-_a0_**_a0_*relu(S2)/relu(relu(S1))))\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return relu(log(-_a0_**_a0_*relu(S2)/relu(relu(S1))))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu(sinh(tan(S2))**_a0_)\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu(sinh(tan(S2))**_a0_)\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu(sinh(tan(S2))**_a0_)\n", - " 59%|█████▉ | 889/1500 [01:01<00:43, 14.10it/s]:2: RuntimeWarning: divide by zero encountered in power\n", - " return relu(relu(relu(log(S1))**_a0_))\n", - ":2: RuntimeWarning: divide by zero encountered in power\n", - " return relu(relu(relu(log(S1))**_a0_))\n", - ":2: RuntimeWarning: overflow encountered in power\n", - " return sinh(S1)**(S2**S2)\n", - ":2: RuntimeWarning: overflow encountered in power\n", - " return sinh(S1)**(S2**S2)\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(relu(S2)/(S2 + _a0_))\n", - ":2: RuntimeWarning: overflow encountered in power\n", - " return sinh(S1)**(S2**S1)\n", - ":2: RuntimeWarning: overflow encountered in power\n", - " return sinh(S1)**(S2**S1)\n", - " 59%|█████▉ | 891/1500 [01:02<00:45, 13.49it/s]:2: RuntimeWarning: divide by zero encountered in log\n", - " return log(relu(S1/_a0_)/S1)\n", - ":2: RuntimeWarning: divide by zero encountered in power\n", - " return relu(relu(relu(sinh(cos(S1)))**_a0_))\n", - ":2: RuntimeWarning: divide by zero encountered in power\n", - " return relu(relu(relu(sinh(cos(S1)))**_a0_))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu(sinh(S2*_a0_)**_a0_)\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu(sinh(S2*_a0_)**_a0_)\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return sinh(tan(_a0_))**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return sinh(tan(_a0_))**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return sinh(tan(_a0_))**_a0_\n", - " 60%|█████▉ | 893/1500 [01:02<00:45, 13.28it/s]:2: RuntimeWarning: invalid value encountered in power\n", - " return relu(_a0_**S1)**_a0_\n", - ":2: RuntimeWarning: divide by zero encountered in power\n", - " return relu(_a0_**S1)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu(_a0_**S1)**_a0_\n", - ":2: RuntimeWarning: divide by zero encountered in power\n", - " return relu(_a0_**S1)**_a0_\n", - ":2: RuntimeWarning: divide by zero encountered in divide\n", - " return relu(log(-_a0_*relu(S2)/relu(relu(_a0_))))\n", - ":2: RuntimeWarning: divide by zero encountered in divide\n", - " return relu(log(-_a0_*relu(S2)/relu(relu(_a0_))))\n", - ":2: RuntimeWarning: divide by zero encountered in scalar power\n", - " return relu(sinh(_a0_))**_a0_\n", - " 60%|█████▉ | 895/1500 [01:02<00:44, 13.50it/s]:2: RuntimeWarning: invalid value encountered in scalar power\n", - " return sinh(_a0_)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu(sinh(S1/_a0_)**_a0_)\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu(sinh(S1/_a0_)**_a0_)\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu(sinh(S1/_a0_)**_a0_)\n", - ":2: RuntimeWarning: divide by zero encountered in power\n", - " return relu(sinh(S2 + _a0_))**_a0_\n", - ":2: RuntimeWarning: divide by zero encountered in power\n", - " return relu(sinh(S2 + _a0_))**_a0_\n", - " 60%|█████▉ | 897/1500 [01:02<00:43, 13.73it/s]:2: RuntimeWarning: invalid value encountered in sqrt\n", - " return sqrt(S2*_a0_)/_a0_**2\n", - ":2: RuntimeWarning: divide by zero encountered in scalar power\n", - " return relu(sinh(_a0_))**_a0_\n", - ":2: RuntimeWarning: divide by zero encountered in scalar power\n", - " return relu(_a0_)**_a0_\n", - ":2: RuntimeWarning: divide by zero encountered in scalar power\n", - " return relu(_a0_)**_a0_\n", - ":2: RuntimeWarning: divide by zero encountered in power\n", - " return relu(relu(relu(_a0_/S1)**_a0_))\n", - ":2: RuntimeWarning: divide by zero encountered in power\n", - " return relu(relu(relu(_a0_/S1)**_a0_))\n", - " 60%|█████▉ | 899/1500 [01:02<00:43, 13.83it/s]:2: RuntimeWarning: invalid value encountered in power\n", - " return log(S1)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu(relu(exp(cos(S1 + exp(_a0_**(2*S1)/_a0_)))))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu(relu(exp(cos(S1 + exp(_a0_**(2*S1)/_a0_)))))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu(relu(exp(cos(S1 + exp(_a0_**(2*S1)/_a0_)))))\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return (sqrt(_a0_) + _a0_)/(sqrt(S1)*relu(cosh(fac(S1))))\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return -_a0_**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return -_a0_**_a0_\n", - " 60%|██████ | 901/1500 [01:02<00:44, 13.58it/s]:2: RuntimeWarning: divide by zero encountered in divide\n", - " return relu(log(-_a0_*relu(S2)/relu(S2 + _a0_)))\n", - ":2: RuntimeWarning: divide by zero encountered in divide\n", - " return relu(log(-_a0_*relu(S2)/relu(S2 + _a0_)))\n", - ":2: RuntimeWarning: divide by zero encountered in divide\n", - " return relu(log(-_a0_*relu(S2)/relu(S2 + _a0_)))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return relu(log(-2*S2*relu(S2)/relu(relu(S1))))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return relu(log(-2*S2*relu(S2)/relu(relu(S1))))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return relu(log(-2*S2*relu(S2)/relu(relu(S1))))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return sinh(S1/_a0_)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return sinh(S1/_a0_)**_a0_\n", - ":2: RuntimeWarning: overflow encountered in sinh\n", - " return sinh(S2**S1)**_a0_\n", - ":2: RuntimeWarning: overflow encountered in sinh\n", - " return sinh(S2**S1)**_a0_\n", - " 60%|██████ | 903/1500 [01:03<00:43, 13.65it/s]:2: RuntimeWarning: divide by zero encountered in divide\n", - " return relu(log(-_a0_*relu(S2)/relu(relu(_a0_/S1))))\n", - ":2: RuntimeWarning: divide by zero encountered in divide\n", - " return relu(log(-_a0_*relu(S2)/relu(relu(_a0_/S1))))\n", - ":2: RuntimeWarning: divide by zero encountered in divide\n", - " return relu(log(-_a0_*relu(S2)/relu(relu(_a0_/S1))))\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return relu(relu(exp(cos(S1 + exp(_a0_**_a0_/_a0_)))))\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return relu(relu(exp(cos(S1 + exp(_a0_**_a0_/_a0_)))))\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return relu(relu(exp(cos(S1 + exp(_a0_**_a0_/_a0_)))))\n", - ":2: RuntimeWarning: divide by zero encountered in log\n", - " return relu(log(-_a0_*relu(S2 + _a0_)/relu(relu(S1))))\n", - ":2: RuntimeWarning: divide by zero encountered in log\n", - " return relu(log(-_a0_*relu(S2 + _a0_)/relu(relu(S1))))\n", - ":2: RuntimeWarning: divide by zero encountered in log\n", - " return relu(log(-_a0_*relu(S2 + _a0_)/relu(relu(S1))))\n", - ":2: RuntimeWarning: overflow encountered in power\n", - " return (S2/_a0_ + sin((3*S1 + S2)**(S2**S1)))*exp(-S1)\n", - ":2: RuntimeWarning: invalid value encountered in sin\n", - " return (S2/_a0_ + sin((3*S1 + S2)**(S2**S1)))*exp(-S1)\n", - ":2: RuntimeWarning: overflow encountered in power\n", - " return (S2/_a0_ + sin((3*S1 + S2)**(S2**S1)))*exp(-S1)\n", - ":2: RuntimeWarning: invalid value encountered in sin\n", - " return (S2/_a0_ + sin((3*S1 + S2)**(S2**S1)))*exp(-S1)\n", - ":2: RuntimeWarning: overflow encountered in power\n", - " return (S2/_a0_ + sin((3*S1 + S2)**(S2**S1)))*exp(-S1)\n", - ":2: RuntimeWarning: invalid value encountered in sin\n", - " return (S2/_a0_ + sin((3*S1 + S2)**(S2**S1)))*exp(-S1)\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return relu(relu(S2/_a0_)/sqrt(-_a0_))\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return relu(relu(S2/_a0_)/sqrt(-_a0_))\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return relu(relu(S2/_a0_)/sqrt(-_a0_))\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return relu(_a0_**_a0_)\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return relu(_a0_**_a0_)\n", - " 60%|██████ | 905/1500 [01:03<00:42, 13.94it/s]:2: RuntimeWarning: invalid value encountered in log\n", - " return relu(log(-relu(S2)*cos(_a0_)/relu(relu(S1))))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return relu(log(-relu(S2)*cos(_a0_)/relu(relu(S1))))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return relu(log(-relu(S2)*cos(_a0_)/relu(relu(S1))))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return (-relu(relu(S2/_a0_))/S1)**sig(relu(S1))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return (-relu(relu(S2/_a0_))/S1)**sig(relu(S1))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return relu(log(tanh(_a0_*relu(S2)/relu(relu(S1)))))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return relu(log(tanh(_a0_*relu(S2)/relu(relu(S1)))))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(S2/cos(S2))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(S2/cos(S2))\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return sqrt(S2*_a0_)/sinh(S1)\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return sinh(S1 + _a0_)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return sinh(S1 + _a0_)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return _a0_**(sqrt(S2))/(sqrt(S1)*relu(cosh(fac(S1))))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return _a0_**(sqrt(S2))/(sqrt(S1)*relu(cosh(fac(S1))))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return (_a0_/S1)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return (_a0_/S1)**_a0_\n", - " 60%|██████ | 907/1500 [01:03<00:41, 14.16it/s]:2: RuntimeWarning: divide by zero encountered in divide\n", - " return relu(log(-_a0_*relu(S2)/relu(_a0_)))\n", - ":2: RuntimeWarning: divide by zero encountered in divide\n", - " return relu(log(-_a0_*relu(S2)/relu(_a0_)))\n", - ":2: RuntimeWarning: divide by zero encountered in divide\n", - " return relu(log(-_a0_*relu(S2)/relu(_a0_)))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return sqrt(sig(log(S2*tan(S2)))/relu(S1))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return sqrt(sig(log(S2*tan(S2)))/relu(S1))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return sqrt(sig(log(S2*tan(S2)))/relu(S1))\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return (2*_a0_)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return (2*_a0_)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return relu(log(-S2**3*_a0_/relu(relu(S1))))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return (_a0_/S1)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return (_a0_/S1)**_a0_\n", - " 61%|██████ | 909/1500 [01:03<00:42, 13.96it/s]:2: RuntimeWarning: invalid value encountered in sqrt\n", - " return relu(relu(S2/_a0_)/sqrt(S1*tan(S1)))\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return relu(relu(S2/_a0_)/sqrt(S1*tan(S1)))\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return relu(relu(S2/_a0_)/sqrt(S1*tan(S1)))\n", - ":2: RuntimeWarning: divide by zero encountered in power\n", - " return relu(relu(relu(tan(S1))**_a0_))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(-relu(S2)/S1)\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(-relu(S2)/S1)\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return (_a0_ + sqrt(S1*_a0_))/(sqrt(S1)*relu(cosh(fac(S1))))\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return (_a0_ + sqrt(S1*_a0_))/(sqrt(S1)*relu(cosh(fac(S1))))\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return (_a0_ + sqrt(S1*_a0_))/(sqrt(S1)*relu(cosh(fac(S1))))\n", - ":2: RuntimeWarning: divide by zero encountered in scalar power\n", - " return relu(relu(relu(_a0_)**_a0_))\n", - ":2: RuntimeWarning: divide by zero encountered in scalar power\n", - " return relu(relu(relu(_a0_)**_a0_))\n", - " 61%|██████ | 911/1500 [01:03<00:44, 13.22it/s]:2: RuntimeWarning: invalid value encountered in power\n", - " return sin(S1)**_a0_\n", - ":2: RuntimeWarning: overflow encountered in power\n", - " return relu(sinh(S1))**(S2**S1)\n", - ":2: RuntimeWarning: overflow encountered in power\n", - " return relu(sinh(S1))**(S2**S1)\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return relu(log(-relu(S2)*tanh(S2)/relu(relu(S1))))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return relu(log(-relu(S2)*tanh(S2)/relu(relu(S1))))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return relu(log(-relu(S2)*tanh(S2)/relu(relu(S1))))\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return relu(relu(exp(cos(S1 + sqrt(S2**2/_a0_)))))\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return relu(relu(exp(cos(S1 + sqrt(S2**2/_a0_)))))\n", - " 61%|██████ | 913/1500 [01:03<00:43, 13.51it/s]:2: RuntimeWarning: invalid value encountered in log\n", - " return relu(relu(S2*relu(sig(log(_a0_)))**S1))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return relu(relu(S2*relu(sig(log(_a0_)))**S1))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return relu(relu(S2*relu(sig(log(_a0_)))**S1))\n", - ":2: RuntimeWarning: overflow encountered in sinh\n", - " return relu(sinh(S1**S2))**_a0_\n", - ":2: RuntimeWarning: overflow encountered in sinh\n", - " return relu(sinh(S1**S2))**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return relu(log(-S1**_a0_*relu(S2)/relu(relu(S1))))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return relu(log(-S1**_a0_*relu(S2)/relu(relu(S1))))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return relu(log(-S1**_a0_*relu(S2)/relu(relu(S1))))\n", - ":2: RuntimeWarning: divide by zero encountered in log\n", - " return log(log(_a0_)/S1)\n", - ":2: RuntimeWarning: divide by zero encountered in log\n", - " return log(log(_a0_)/S1)\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu(relu(exp(cos(_a0_**S1 + exp(S2**2/_a0_)))))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu(relu(exp(cos(_a0_**S1 + exp(S2**2/_a0_)))))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu(relu(exp(cos(_a0_**S1 + exp(S2**2/_a0_)))))\n", - " 61%|██████ | 915/1500 [01:03<00:44, 13.24it/s]:2: RuntimeWarning: invalid value encountered in log\n", - " return relu(log(-relu(S2)*sin(S1)/relu(relu(S1))))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return relu(log(-relu(S2)*sin(S1)/relu(relu(S1))))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return relu(log(-relu(S2)*sin(S1)/relu(relu(S1))))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu((S1 + _a0_)**_a0_)\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu((S1 + _a0_)**_a0_)\n", - ":2: RuntimeWarning: divide by zero encountered in divide\n", - " return relu(log(-_a0_*relu(S2)/relu(S2*_a0_)))\n", - ":2: RuntimeWarning: divide by zero encountered in divide\n", - " return relu(log(-_a0_*relu(S2)/relu(S2*_a0_)))\n", - ":2: RuntimeWarning: divide by zero encountered in divide\n", - " return relu(log(-_a0_*relu(S2)/relu(S2*_a0_)))\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return (sqrt(_a0_) + _a0_)/(sqrt(S1)*relu(cosh(fac(S1))))\n", - " 61%|██████ | 917/1500 [01:04<00:43, 13.26it/s]:2: RuntimeWarning: invalid value encountered in power\n", - " return relu(log(-_a0_**S1*relu(S2)/relu(relu(S1))))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu(log(-_a0_**S1*relu(S2)/relu(relu(S1))))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu(log(-_a0_**S1*relu(S2)/relu(relu(S1))))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return sinh(_a0_/S1)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return sinh(_a0_/S1)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return sinh(_a0_)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu((_a0_/S1)**_a0_)\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu((_a0_/S1)**_a0_)\n", - ":2: RuntimeWarning: divide by zero encountered in power\n", - " return relu(S1/_a0_)**_a0_\n", - ":2: RuntimeWarning: divide by zero encountered in power\n", - " return relu(S1/_a0_)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return relu(log(-S2**2*relu(S2)/relu(relu(S1))))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return relu(log(-S2**2*relu(S2)/relu(relu(S1))))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return relu(log(-S2**2*relu(S2)/relu(relu(S1))))\n", - ":2: RuntimeWarning: overflow encountered in cosh\n", - " return (sqrt(S2) + _a0_)/(sqrt(S1)*relu(cosh(fac(fac(S2)))))\n", - ":2: RuntimeWarning: overflow encountered in cosh\n", - " return (sqrt(S2) + _a0_)/(sqrt(S1)*relu(cosh(fac(fac(S2)))))\n", - ":2: RuntimeWarning: overflow encountered in cosh\n", - " return (sqrt(S2) + _a0_)/(sqrt(S1)*relu(cosh(fac(fac(S2)))))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return cos(sinh(S1))**_a0_\n", - " 61%|██████▏ | 919/1500 [01:04<00:46, 12.38it/s]:2: RuntimeWarning: overflow encountered in exp\n", - " return relu(relu(exp(relu(S1 + exp(S2**2/_a0_)))))\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return relu(relu((_a0_**3)**_a0_))\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return relu(relu((_a0_**3)**_a0_))\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return relu(relu((_a0_**3)**_a0_))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu(sinh(_a0_/S2)**_a0_)\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu(sinh(_a0_/S2)**_a0_)\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu(sinh(_a0_/S2)**_a0_)\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(cos(S2))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(cos(S2))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(relu(relu(S2))/(S1 + _a0_))\n", - ":2: RuntimeWarning: overflow encountered in power\n", - " return relu(relu((sinh(S1)**3)**cosh(S1)))\n", - ":2: RuntimeWarning: overflow encountered in power\n", - " return relu(relu((sinh(S1)**3)**cosh(S1)))\n", - ":2: RuntimeWarning: overflow encountered in power\n", - " return relu(relu((sinh(S1)**3)**cosh(S1)))\n", - ":2: RuntimeWarning: divide by zero encountered in scalar power\n", - " return relu(_a0_)**_a0_\n", - ":2: RuntimeWarning: divide by zero encountered in scalar power\n", - " return relu(_a0_)**_a0_\n", - " 61%|██████▏ | 921/1500 [01:04<00:45, 12.86it/s]:2: RuntimeWarning: invalid value encountered in scalar power\n", - " return relu(relu((_a0_**3)**_a0_))\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return relu(relu((_a0_**3)**_a0_))\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return relu(sinh(_a0_**_a0_)**_a0_)\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return relu(sinh(_a0_**_a0_)**_a0_)\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return relu(log(-_a0_*log(S2)/relu(relu(S1))))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return relu(log(-_a0_*log(S2)/relu(relu(S1))))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return relu(relu(relu(sig(_a0_))**S1*log(_a0_)))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return relu(relu(relu(sig(_a0_))**S1*log(_a0_)))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return relu(relu(relu(sig(_a0_))**S1*log(_a0_)))\n", - " 62%|██████▏ | 923/1500 [01:04<00:43, 13.36it/s]:2: RuntimeWarning: divide by zero encountered in divide\n", - " return relu(log(-_a0_*relu(S2)/relu(_a0_)))\n", - ":2: RuntimeWarning: divide by zero encountered in divide\n", - " return relu(log(-_a0_*relu(S2)/relu(_a0_)))\n", - ":2: RuntimeWarning: divide by zero encountered in log\n", - " return log(relu(S2 + _a0_)/relu(S1))\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return sqrt(S2*_a0_/S1)*exp(-S1)\n", - ":2: RuntimeWarning: divide by zero encountered in divide\n", - " return sqrt(sig(log(S2**2))/relu(S2*_a0_))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return relu(relu(S2*relu(log(_a0_))**S1))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return (_a0_**S2)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return (_a0_**S2)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu(relu((_a0_**3/S2**3)**_a0_))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu(relu((_a0_**3/S2**3)**_a0_))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu(relu((_a0_**3/S2**3)**_a0_))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu((_a0_/S2)**_a0_)\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu((_a0_/S2)**_a0_)\n", - " 62%|██████▏ | 925/1500 [01:04<00:44, 13.04it/s]:2: RuntimeWarning: invalid value encountered in log\n", - " return relu(log(-relu(S2)*log(S2)/relu(relu(S1))))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return relu(log(-relu(S2)*log(S2)/relu(relu(S1))))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return relu(log(-relu(S2)*log(S2)/relu(relu(S1))))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return (S1 + _a0_)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return (S1 + _a0_)**_a0_\n", - ":2: RuntimeWarning: divide by zero encountered in scalar power\n", - " return sinh(fac(_a0_))**_a0_\n", - ":2: RuntimeWarning: divide by zero encountered in scalar power\n", - " return sinh(fac(_a0_))**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu((_a0_/S2)**_a0_)\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu((_a0_/S2)**_a0_)\n", - " 62%|██████▏ | 927/1500 [01:04<00:42, 13.36it/s]:2: RuntimeWarning: overflow encountered in exp\n", - " return relu(relu(exp(cos(S1 + exp(S2**2/S1**3)))))\n", - ":2: RuntimeWarning: invalid value encountered in cos\n", - " return relu(relu(exp(cos(S1 + exp(S2**2/S1**3)))))\n", - ":2: RuntimeWarning: overflow encountered in exp\n", - " return relu(relu(exp(cos(S1 + exp(S2**2/S1**3)))))\n", - ":2: RuntimeWarning: invalid value encountered in cos\n", - " return relu(relu(exp(cos(S1 + exp(S2**2/S1**3)))))\n", - ":2: RuntimeWarning: overflow encountered in exp\n", - " return relu(relu(exp(cos(S1 + exp(S2**2/S1**3)))))\n", - ":2: RuntimeWarning: invalid value encountered in cos\n", - " return relu(relu(exp(cos(S1 + exp(S2**2/S1**3)))))\n", - ":2: RuntimeWarning: overflow encountered in sinh\n", - " return relu(relu((sinh(S1**S1)**3)**_a0_))\n", - ":2: RuntimeWarning: overflow encountered in power\n", - " return relu(relu((sinh(S1**S1)**3)**_a0_))\n", - ":2: RuntimeWarning: overflow encountered in sinh\n", - " return relu(relu((sinh(S1**S1)**3)**_a0_))\n", - ":2: RuntimeWarning: overflow encountered in power\n", - " return relu(relu((sinh(S1**S1)**3)**_a0_))\n", - ":2: RuntimeWarning: overflow encountered in sinh\n", - " return relu(relu((sinh(S1**S1)**3)**_a0_))\n", - ":2: RuntimeWarning: overflow encountered in power\n", - " return relu(relu((sinh(S1**S1)**3)**_a0_))\n", - ":2: RuntimeWarning: divide by zero encountered in divide\n", - " return relu(log(-_a0_*relu(S2)/relu(relu(S2*_a0_))))\n", - ":2: RuntimeWarning: divide by zero encountered in divide\n", - " return relu(log(-_a0_*relu(S2)/relu(relu(S2*_a0_))))\n", - ":2: RuntimeWarning: divide by zero encountered in divide\n", - " return relu(log(-_a0_*relu(S2)/relu(relu(S2*_a0_))))\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return relu(relu(S2/_a0_)/sqrt(-S2))\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return relu(relu(S2/_a0_)/sqrt(-S2))\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return relu(relu(S2/_a0_)/sqrt(-S2))\n", - " 62%|██████▏ | 929/1500 [01:05<00:45, 12.63it/s]:2: RuntimeWarning: invalid value encountered in log\n", - " return relu(log(cos(_a0_*relu(S2)/relu(relu(S1)))))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return relu(log(cos(_a0_*relu(S2)/relu(relu(S1)))))\n", - ":2: RuntimeWarning: overflow encountered in power\n", - " return relu(S2)*sig(sig(S2**(cosh(S2)**2)))**(S1*_a0_)\n", - ":2: RuntimeWarning: overflow encountered in power\n", - " return relu(S2)*sig(sig(S2**(cosh(S2)**2)))**(S1*_a0_)\n", - ":2: RuntimeWarning: overflow encountered in power\n", - " return relu(S2)*sig(sig(S2**(cosh(S2)**2)))**(S1*_a0_)\n", - ":2: RuntimeWarning: divide by zero encountered in log\n", - " return relu(log(-_a0_*relu(sin(S1))/relu(relu(S1))))\n", - ":2: RuntimeWarning: divide by zero encountered in log\n", - " return relu(log(-_a0_*relu(sin(S1))/relu(relu(S1))))\n", - ":2: RuntimeWarning: divide by zero encountered in log\n", - " return relu(log(-_a0_*relu(sin(S1))/relu(relu(S1))))\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return sqrt(tanh(log(S2**2))/relu(S1))\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return sqrt(tanh(log(S2**2))/relu(S1))\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return _a0_**((1/2)*_a0_)\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return _a0_**((1/2)*_a0_)\n", - " 62%|██████▏ | 931/1500 [01:05<00:43, 12.95it/s]:2: RuntimeWarning: invalid value encountered in power\n", - " return relu(log(-(_a0_*relu(S2))**relu(relu(S1))))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu(log(-(_a0_*relu(S2))**relu(relu(S1))))\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return cos(sqrt(S2*_a0_)*exp(-S1))\n", - " 62%|██████▏ | 933/1500 [01:05<00:41, 13.63it/s]:2: RuntimeWarning: divide by zero encountered in divide\n", - " return relu(log(-_a0_*relu(S2)/relu(relu(_a0_))))\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return sinh(_a0_)**_a0_\n", - ":2: RuntimeWarning: overflow encountered in power\n", - " return (sinh(S1)**2)**(S2**S1)\n", - ":2: RuntimeWarning: overflow encountered in power\n", - " return (sinh(S1)**2)**(S2**S1)\n", - ":2: RuntimeWarning: overflow encountered in power\n", - " return (sinh(S1)**2)**(S2**S1)\n", - ":2: RuntimeWarning: overflow encountered in power\n", - " return relu(relu((sinh(S1)**3)**sinh(S1)))\n", - ":2: RuntimeWarning: overflow encountered in power\n", - " return relu(relu((sinh(S1)**3)**sinh(S1)))\n", - ":2: RuntimeWarning: overflow encountered in power\n", - " return relu(relu((sinh(S1)**3)**sinh(S1)))\n", - " 62%|██████▏ | 935/1500 [01:05<01:01, 9.25it/s]:2: RuntimeWarning: divide by zero encountered in log\n", - " return relu(log(fac(_a0_*relu(S2)/relu(relu(S1)))))\n", - ":2: RuntimeWarning: divide by zero encountered in log\n", - " return relu(log(fac(_a0_*relu(S2)/relu(relu(S1)))))\n", - ":2: RuntimeWarning: overflow encountered in exp\n", - " return relu(relu(exp(cos(S1 + exp(S1**(-_a0_)*S2**2)))))\n", - ":2: RuntimeWarning: invalid value encountered in cos\n", - " return relu(relu(exp(cos(S1 + exp(S1**(-_a0_)*S2**2)))))\n", - ":2: RuntimeWarning: overflow encountered in exp\n", - " return relu(relu(exp(cos(S1 + exp(S1**(-_a0_)*S2**2)))))\n", - ":2: RuntimeWarning: invalid value encountered in cos\n", - " return relu(relu(exp(cos(S1 + exp(S1**(-_a0_)*S2**2)))))\n", - ":2: RuntimeWarning: overflow encountered in exp\n", - " return relu(relu(exp(cos(S1 + exp(S1**(-_a0_)*S2**2)))))\n", - ":2: RuntimeWarning: invalid value encountered in cos\n", - " return relu(relu(exp(cos(S1 + exp(S1**(-_a0_)*S2**2)))))\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return relu(relu((_a0_**3)**_a0_))\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return relu(relu((_a0_**3)**_a0_))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return relu(log(-S2/relu(relu(S1))))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return relu(log(-S2/relu(relu(S1))))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return relu(log(-S2/relu(relu(S1))))\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return sqrt(S2*_a0_)/(S1 + _a0_)\n", - " 62%|██████▏ | 937/1500 [01:05<00:56, 9.94it/s]:2: RuntimeWarning: invalid value encountered in sqrt\n", - " return relu(relu(S2/_a0_)/sqrt(-S2*_a0_))\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return relu(relu(S2/_a0_)/sqrt(-S2*_a0_))\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return relu(relu(S2/_a0_)/sqrt(-S2*_a0_))\n", - ":2: RuntimeWarning: overflow encountered in sinh\n", - " return (sinh(S2**S2)**2)**_a0_\n", - ":2: RuntimeWarning: overflow encountered in square\n", - " return (sinh(S2**S2)**2)**_a0_\n", - ":2: RuntimeWarning: overflow encountered in sinh\n", - " return (sinh(S2**S2)**2)**_a0_\n", - ":2: RuntimeWarning: overflow encountered in square\n", - " return (sinh(S2**S2)**2)**_a0_\n", - ":2: RuntimeWarning: overflow encountered in sinh\n", - " return (sinh(S2**S2)**2)**_a0_\n", - ":2: RuntimeWarning: overflow encountered in square\n", - " return (sinh(S2**S2)**2)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return log(S2)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return log(S2)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(sin(relu(S2))/relu(S1*_a0_))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(sin(relu(S2))/relu(S1*_a0_))\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return relu(relu(S2/_a0_)/sqrt(S2*log(S1)))\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return relu(relu(S2/_a0_)/sqrt(S2*log(S1)))\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return relu(relu(S2/_a0_)/sqrt(S2*log(S1)))\n", - ":2: RuntimeWarning: overflow encountered in exp\n", - " return relu(relu(exp(abs(S1 + exp(S2**2/_a0_)))))\n", - " 63%|██████▎ | 939/1500 [01:06<00:54, 10.36it/s]:2: RuntimeWarning: invalid value encountered in log\n", - " return log(cos(S1))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(cos(S1))\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return relu(sqrt(sin(log(S2**2))/relu(S1)))\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return relu(sqrt(sin(log(S2**2))/relu(S1)))\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return (2*_a0_)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return (2*_a0_)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return relu(_a0_**_a0_)\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return relu(_a0_**_a0_)\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu(relu(((S1 + _a0_)**3)**_a0_))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu(relu(((S1 + _a0_)**3)**_a0_))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu(relu(((S1 + _a0_)**3)**_a0_))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return relu(log(-_a0_*relu(S2)*relu(relu(S1))))\n", - " 63%|██████▎ | 941/1500 [01:06<00:50, 11.08it/s]:2: RuntimeWarning: invalid value encountered in log\n", - " return relu(log(-relu(S2)*sig(_a0_)/relu(relu(S1))))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return relu(log(-relu(S2)*sig(_a0_)/relu(relu(S1))))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return relu(log(-relu(S2)*sig(_a0_)/relu(relu(S1))))\n", - ":2: RuntimeWarning: divide by zero encountered in divide\n", - " return log(relu(relu(S2))/relu(S1 + _a0_))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu(tan(S1)**_a0_)\n", - ":2: RuntimeWarning: divide by zero encountered in scalar divide\n", - " return exp(-_a0_/relu(sin(_a0_)))/S1\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return (sqrt(S2) + _a0_)/(sqrt(-S2)*relu(cosh(fac(S1))))\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return (sqrt(S2) + _a0_)/(sqrt(-S2)*relu(cosh(fac(S1))))\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return (sqrt(S2) + _a0_)/(sqrt(-S2)*relu(cosh(fac(S1))))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return sinh(_a0_/S2)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return sinh(_a0_/S2)**_a0_\n", - " 63%|██████▎ | 943/1500 [01:06<00:49, 11.16it/s]:2: RuntimeWarning: invalid value encountered in sqrt\n", - " return relu(sqrt(sig(log(S2**2))/(S2 + _a0_)))\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return sinh(_a0_)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return sinh(_a0_)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(tan(S1))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(tan(S1))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return relu(relu(log(cos(S1 + exp(S2**2/_a0_)))))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return relu(relu(log(cos(S1 + exp(S2**2/_a0_)))))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu(tan(S1)**_a0_)\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return (log(_a0_)**2)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return (log(_a0_)**2)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return (log(_a0_)**2)**_a0_\n", - " 63%|██████▎ | 945/1500 [01:06<00:47, 11.72it/s]:2: RuntimeWarning: invalid value encountered in log\n", - " return relu(log(-relu(S2)*tan(S2)/relu(relu(S1))))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return relu(log(-relu(S2)*tan(S2)/relu(relu(S1))))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return relu(log(-relu(S2)*tan(S2)/relu(relu(S1))))\n", - ":2: RuntimeWarning: divide by zero encountered in log\n", - " return log(relu(_a0_)/relu(S1 + _a0_))\n", - ":2: RuntimeWarning: divide by zero encountered in log\n", - " return log(relu(_a0_)/relu(S1 + _a0_))\n", - ":2: RuntimeWarning: divide by zero encountered in log\n", - " return log(relu(_a0_)/relu(S1 + _a0_))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return relu(log(-S1*relu(S2)/relu(relu(S1))))\n", - " 63%|██████▎ | 947/1500 [01:06<00:46, 12.00it/s]:2: RuntimeWarning: divide by zero encountered in divide\n", - " return relu(log(-_a0_*relu(S2)/relu(S2/_a0_)))\n", - ":2: RuntimeWarning: divide by zero encountered in divide\n", - " return relu(log(-_a0_*relu(S2)/relu(S2/_a0_)))\n", - ":2: RuntimeWarning: divide by zero encountered in divide\n", - " return relu(log(-_a0_*relu(S2)/relu(S2/_a0_)))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return (-sinh(S2))**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return (-sinh(S2))**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return (-sinh(S2))**_a0_\n", - ":2: RuntimeWarning: overflow encountered in exp\n", - " return relu(relu(exp(cos(S1 + exp(S1**_a0_/_a0_)))))\n", - ":2: RuntimeWarning: invalid value encountered in cos\n", - " return relu(relu(exp(cos(S1 + exp(S1**_a0_/_a0_)))))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(-relu(S2)/relu(S1 + _a0_))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(-relu(S2)/relu(S1 + _a0_))\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return (_a0_ + sqrt(tan(S1)))/(sqrt(S1)*relu(cosh(fac(S1))))\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return (_a0_ + sqrt(tan(S1)))/(sqrt(S1)*relu(cosh(fac(S1))))\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return (_a0_ + sqrt(tan(S1)))/(sqrt(S1)*relu(cosh(fac(S1))))\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return sinh(_a0_)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return sinh(_a0_)**_a0_\n", - " 63%|██████▎ | 949/1500 [01:06<00:45, 12.20it/s]:2: RuntimeWarning: invalid value encountered in scalar power\n", - " return relu(relu(S2*relu(_a0_**_a0_)**S1))\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return relu(relu(S2*relu(_a0_**_a0_)**S1))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return sinh(log(S1))**_a0_\n", - " 63%|██████▎ | 951/1500 [01:06<00:43, 12.65it/s]:2: RuntimeWarning: invalid value encountered in sqrt\n", - " return (sqrt(S2) + _a0_)/(sqrt(_a0_)*relu(cosh(fac(S1))))\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return sqrt(S2*_a0_)/fac(S1)\n", - ":2: RuntimeWarning: divide by zero encountered in divide\n", - " return relu(log(-relu(S2)/(_a0_*relu(relu(sin(_a0_))))))\n", - ":2: RuntimeWarning: divide by zero encountered in divide\n", - " return relu(log(-relu(S2)/(_a0_*relu(relu(sin(_a0_))))))\n", - ":2: RuntimeWarning: divide by zero encountered in divide\n", - " return relu(log(-relu(S2)/(_a0_*relu(relu(sin(_a0_))))))\n", - ":2: RuntimeWarning: divide by zero encountered in divide\n", - " return log(relu(relu(S1))/relu(S1 + _a0_))\n", - ":2: RuntimeWarning: divide by zero encountered in divide\n", - " return (sqrt(S2) + _a0_)/(sqrt(S1)*relu(log(fac(S1))))\n", - ":2: RuntimeWarning: divide by zero encountered in divide\n", - " return (sqrt(S2) + _a0_)/(sqrt(S1)*relu(log(fac(S1))))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return (S2 + _a0_)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return (S2 + _a0_)**_a0_\n", - " 64%|██████▎ | 953/1500 [01:07<00:41, 13.30it/s]:2: RuntimeWarning: invalid value encountered in log\n", - " return sqrt(sig(log(sin(S1)))/relu(S1))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return sqrt(sig(log(sin(S1)))/relu(S1))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return sqrt(sig(log(sin(S1)))/relu(S1))\n", - ":2: RuntimeWarning: overflow encountered in cosh\n", - " return (sqrt(S2) + _a0_)/(sqrt(S1)*relu(cosh(fac(S1 + S2))))\n", - ":2: RuntimeWarning: overflow encountered in cosh\n", - " return (sqrt(S2) + _a0_)/(sqrt(S1)*relu(cosh(fac(S1 + S2))))\n", - ":2: RuntimeWarning: overflow encountered in cosh\n", - " return (sqrt(S2) + _a0_)/(sqrt(S1)*relu(cosh(fac(S1 + S2))))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return relu(log(-(_a0_ + relu(S2))/relu(relu(S1))))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return relu(log(-(_a0_ + relu(S2))/relu(relu(S1))))\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return sinh(_a0_)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return sinh(_a0_)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return (-S1**2)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return (-S1**2)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return (-S1**2)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return relu(sinh(_a0_**3)**_a0_)\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return relu(sinh(_a0_**3)**_a0_)\n", - " 64%|██████▎ | 955/1500 [01:07<00:40, 13.31it/s]:2: RuntimeWarning: invalid value encountered in sqrt\n", - " return sqrt(sqrt(log(S2**2))/relu(S1))\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return sqrt(sqrt(log(S2**2))/relu(S1))\n", - ":2: RuntimeWarning: overflow encountered in power\n", - " return relu(relu((sinh(S1)**2)**(S2**S2)))\n", - ":2: RuntimeWarning: overflow encountered in power\n", - " return relu(relu((sinh(S1)**2)**(S2**S2)))\n", - ":2: RuntimeWarning: overflow encountered in power\n", - " return relu(relu((sinh(S1)**2)**(S2**S2)))\n", - ":2: RuntimeWarning: divide by zero encountered in divide\n", - " return relu(log(-S2/(_a0_*relu(_a0_))))\n", - ":2: RuntimeWarning: divide by zero encountered in divide\n", - " return relu(log(-S2/(_a0_*relu(_a0_))))\n", - ":2: RuntimeWarning: divide by zero encountered in divide\n", - " return relu(log(-S2/(_a0_*relu(_a0_))))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu(cos(S1)**_a0_)\n", - " 64%|██████▍ | 957/1500 [01:07<00:41, 13.12it/s]:2: RuntimeWarning: divide by zero encountered in log\n", - " return relu(log(relu(relu(S2*_a0_))/relu(S1 + _a0_)))\n", - ":2: RuntimeWarning: divide by zero encountered in log\n", - " return relu(log(relu(relu(S2*_a0_))/relu(S1 + _a0_)))\n", - ":2: RuntimeWarning: divide by zero encountered in log\n", - " return relu(log(relu(relu(S2*_a0_))/relu(S1 + _a0_)))\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return relu(relu(S2/_a0_)/sqrt(-_a0_))\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return relu(relu(S2/_a0_)/sqrt(-_a0_))\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return sqrt(sin(log(S2**2))/relu(S1))\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return sqrt(sin(log(S2**2))/relu(S1))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return tan(S1**2)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return relu(relu((sinh(S1)**2)**log(_a0_)))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return relu(relu((sinh(S1)**2)**log(_a0_)))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return relu(relu((sinh(S1)**2)**log(_a0_)))\n", - ":2: RuntimeWarning: divide by zero encountered in divide\n", - " return relu(log(-S2/(_a0_*relu(S2 + _a0_))))\n", - ":2: RuntimeWarning: divide by zero encountered in divide\n", - " return relu(log(-S2/(_a0_*relu(S2 + _a0_))))\n", - ":2: RuntimeWarning: divide by zero encountered in divide\n", - " return relu(log(-S2/(_a0_*relu(S2 + _a0_))))\n", - ":2: RuntimeWarning: divide by zero encountered in divide\n", - " return relu(log(relu(relu(S2))/relu(2*_a0_)))\n", - ":2: RuntimeWarning: divide by zero encountered in divide\n", - " return relu(log(relu(relu(S2))/relu(2*_a0_)))\n", - " 64%|██████▍ | 959/1500 [01:07<00:41, 12.88it/s]:2: RuntimeWarning: invalid value encountered in log\n", - " return relu(log(-relu(S2)/relu(relu(S1))))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return relu(log(-relu(S2)/relu(relu(S1))))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return relu(log(-relu(S2)/relu(relu(S1))))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return relu(log(-S1/relu(relu(S1))))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return relu(log(-S1/relu(relu(S1))))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return relu(log(-S1/relu(relu(S1))))\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return relu(_a0_**_a0_)\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return relu(_a0_**_a0_)\n", - " 64%|██████▍ | 961/1500 [01:07<00:42, 12.58it/s]:2: RuntimeWarning: divide by zero encountered in divide\n", - " return relu(log(relu(relu(S2))/relu(S1 + log(S1))))\n", - ":2: RuntimeWarning: divide by zero encountered in divide\n", - " return relu(log(relu(relu(S2))/relu(S1 + log(S1))))\n", - ":2: RuntimeWarning: divide by zero encountered in divide\n", - " return relu(log(relu(relu(S2))/relu(S1 + log(S1))))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return relu(log(-abs(_a0_)/relu(relu(S1))))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return relu(log(-abs(_a0_)/relu(relu(S1))))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return relu(log(-abs(_a0_)/relu(relu(S1))))\n", - ":2: RuntimeWarning: overflow encountered in power\n", - " return (S1**2)**(S2**S1)\n", - ":2: RuntimeWarning: overflow encountered in power\n", - " return (S1**2)**(S2**S1)\n", - ":2: RuntimeWarning: overflow encountered in power\n", - " return (S1**2)**(S2**S1)\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return cos(S1)**_a0_\n", - ":2: RuntimeWarning: divide by zero encountered in divide\n", - " return log(S2/log(_a0_))\n", - ":2: RuntimeWarning: divide by zero encountered in divide\n", - " return log(S2/log(_a0_))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return relu(log(-S2/(_a0_*relu(relu(S2)))))\n", - ":2: RuntimeWarning: invalid value encountered in divide\n", - " return (relu(relu(S2/_a0_))/relu(S1 + _a0_))**sig(relu(S1))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return log(S1**2)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return log(S1**2)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu((S1 + _a0_)**_a0_)\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu((S1 + _a0_)**_a0_)\n", - " 64%|██████▍ | 963/1500 [01:07<00:43, 12.29it/s]:2: RuntimeWarning: invalid value encountered in log\n", - " return relu(log(-(S2 + _a0_)/relu(relu(S1))))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return relu(log(-(S2 + _a0_)/relu(relu(S1))))\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return sqrt(-sig(log(S2**2))/S1)\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return sqrt(-sig(log(S2**2))/S1)\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return relu(_a0_**_a0_)\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return relu(_a0_**_a0_)\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu(relu(exp(cos(S1 + exp(_a0_**(-S2)*relu(S2)**2)))))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu(relu(exp(cos(S1 + exp(_a0_**(-S2)*relu(S2)**2)))))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu(relu(exp(cos(S1 + exp(_a0_**(-S2)*relu(S2)**2)))))\n", - " 64%|██████▍ | 965/1500 [01:08<00:43, 12.39it/s]:2: RuntimeWarning: invalid value encountered in power\n", - " return relu(log(-(S2/_a0_)**relu(relu(S1))))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu(log(-(S2/_a0_)**relu(relu(S1))))\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return sinh(_a0_**_a0_)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return sinh(_a0_**_a0_)**_a0_\n", - ":2: RuntimeWarning: overflow encountered in exp\n", - " return relu(relu(exp(tan(S1 + exp(relu(S2)**2/_a0_)))))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return relu(log(-S1/(_a0_*relu(relu(S1)))))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return ((sqrt(S2) + _a0_)/(sqrt(S1)*relu(cosh(fac(S1)))))**S2\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return relu(_a0_**_a0_)\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return relu(_a0_**_a0_)\n", - " 64%|██████▍ | 967/1500 [01:08<00:41, 12.84it/s]:2: RuntimeWarning: divide by zero encountered in divide\n", - " return relu(log(-S2/(relu(_a0_)*relu(relu(S1)))))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return relu(log(-S2/(relu(_a0_)*relu(relu(S1)))))\n", - ":2: RuntimeWarning: divide by zero encountered in divide\n", - " return relu(log(-S2/(relu(_a0_)*relu(relu(S1)))))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return relu(log(-S2/(relu(_a0_)*relu(relu(S1)))))\n", - ":2: RuntimeWarning: divide by zero encountered in divide\n", - " return relu(log(-S2/(relu(_a0_)*relu(relu(S1)))))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return relu(log(-S2/(relu(_a0_)*relu(relu(S1)))))\n", - ":2: RuntimeWarning: overflow encountered in sinh\n", - " return sinh(S2**S1)**_a0_\n", - ":2: RuntimeWarning: overflow encountered in sinh\n", - " return sinh(S2**S1)**_a0_\n", - ":2: RuntimeWarning: divide by zero encountered in divide\n", - " return exp(-_a0_/relu(log(S1)))/S1\n", - ":2: RuntimeWarning: divide by zero encountered in divide\n", - " return exp(-_a0_/relu(log(S1)))/S1\n", - ":2: RuntimeWarning: divide by zero encountered in divide\n", - " return exp(-_a0_/relu(log(S1)))/S1\n", - " 65%|██████▍ | 969/1500 [01:08<00:43, 12.33it/s]:2: RuntimeWarning: invalid value encountered in log\n", - " return log(S2/sin(S1))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(S2/sin(S1))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return relu(log(log(S2/(_a0_*relu(relu(S1))))))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return relu(log(log(S2/(_a0_*relu(relu(S1))))))\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return relu(relu(S2/_a0_)/sqrt(S2*tan(S1)))\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return relu(relu(S2/_a0_)/sqrt(S2*tan(S1)))\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return (sqrt(S2) + _a0_)/(relu(cosh(fac(S1)))*sqrt(tanh(_a0_)))\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return (sqrt(S2) + _a0_)/(relu(cosh(fac(S1)))*sqrt(tanh(_a0_)))\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return (sqrt(S2) + _a0_)/(relu(cosh(fac(S1)))*sqrt(tanh(_a0_)))\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return relu(relu(S2*relu(sig(_a0_**_a0_))**S1))\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return relu(relu(S2*relu(sig(_a0_**_a0_))**S1))\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return relu(relu(S2*relu(sig(_a0_**_a0_))**S1))\n", - ":2: RuntimeWarning: overflow encountered in sinh\n", - " return sinh(S2**2/_a0_**2)**_a0_\n", - ":2: RuntimeWarning: overflow encountered in sinh\n", - " return sinh(S2**2/_a0_**2)**_a0_\n", - ":2: RuntimeWarning: overflow encountered in sinh\n", - " return sinh(S2**2/_a0_**2)**_a0_\n", - " 65%|██████▍ | 971/1500 [01:08<00:44, 11.83it/s]:2: RuntimeWarning: divide by zero encountered in divide\n", - " return relu(log(relu(S2)/relu(log(_a0_))))\n", - ":2: RuntimeWarning: divide by zero encountered in divide\n", - " return relu(log(relu(S2)/relu(log(_a0_))))\n", - ":2: RuntimeWarning: divide by zero encountered in divide\n", - " return relu(log(relu(S2)/relu(log(_a0_))))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return relu(log(-S2/(_a0_*relu(S2))))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu(relu(S2*log(sig(_a0_))**S1))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu(relu(S2*log(sig(_a0_))**S1))\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return sinh(_a0_)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return relu(sinh(tanh(_a0_))**_a0_)\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return relu(sinh(tanh(_a0_))**_a0_)\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return relu(sinh(2*_a0_)**_a0_)\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return relu(sinh(2*_a0_)**_a0_)\n", - " 65%|██████▍ | 973/1500 [01:08<00:42, 12.34it/s]:2: RuntimeWarning: invalid value encountered in power\n", - " return (_a0_ + _a0_**S1)/(sqrt(S1)*relu(cosh(fac(S1))))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return (_a0_ + _a0_**S1)/(sqrt(S1)*relu(cosh(fac(S1))))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return (_a0_ + _a0_**S1)/(sqrt(S1)*relu(cosh(fac(S1))))\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return sqrt(-_a0_)*exp(-S1)\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return sqrt(-_a0_)*exp(-S1)\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return log(S1)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return log(S1)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return relu(relu(S2/_a0_)/sqrt(S1*tan(S2)))\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return relu(relu(S2/_a0_)/sqrt(S1*tan(S2)))\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return relu(relu(S2/_a0_)/sqrt(S1*tan(S2)))\n", - " 65%|██████▌ | 975/1500 [01:08<00:39, 13.17it/s]:2: RuntimeWarning: overflow encountered in sinh\n", - " return sinh(sinh(S1)**2)**_a0_\n", - ":2: RuntimeWarning: overflow encountered in sinh\n", - " return sinh(sinh(S1)**2)**_a0_\n", - ":2: RuntimeWarning: overflow encountered in sinh\n", - " return sinh(sinh(S1)**2)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu(log(-(S2/_a0_)**relu(relu(S1))))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return (_a0_**S1)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return (_a0_**S1)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu(sinh(S2*_a0_)**_a0_)\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu(sinh(S2*_a0_)**_a0_)\n", - " 65%|██████▌ | 977/1500 [01:08<00:40, 12.83it/s]:2: RuntimeWarning: invalid value encountered in log\n", - " return relu(log(-1/relu(relu(S1))))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return relu(log(-1/relu(relu(S1))))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return sinh(_a0_**S1)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return sinh(_a0_**S1)**_a0_\n", - ":2: RuntimeWarning: overflow encountered in power\n", - " return S1**(S2**S2)\n", - ":2: RuntimeWarning: overflow encountered in power\n", - " return S1**(S2**S2)\n", - " 65%|██████▌ | 979/1500 [01:09<00:44, 11.65it/s]:2: RuntimeWarning: invalid value encountered in log\n", - " return relu(log(-S2/(S1*relu(relu(S1)))))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return relu(log(-S2/(S1*relu(relu(S1)))))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return sqrt(sig(log(S2*(S2 + _a0_)))/relu(S1))\n", - ":2: RuntimeWarning: overflow encountered in exp\n", - " return relu(relu(exp(cos(S1 + exp(_a0_*relu(S2**S2)**2)))))\n", - ":2: RuntimeWarning: invalid value encountered in cos\n", - " return relu(relu(exp(cos(S1 + exp(_a0_*relu(S2**S2)**2)))))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu(relu((_a0_**(2*S2))**_a0_))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu(relu((_a0_**(2*S2))**_a0_))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu(relu((_a0_**(2*S2))**_a0_))\n", - ":2: RuntimeWarning: divide by zero encountered in log\n", - " return log(relu(log(_a0_))/relu(S1))\n", - ":2: RuntimeWarning: divide by zero encountered in log\n", - " return log(relu(log(_a0_))/relu(S1))\n", - ":2: RuntimeWarning: divide by zero encountered in log\n", - " return log(relu(log(_a0_))/relu(S1))\n", - ":2: RuntimeWarning: overflow encountered in sinh\n", - " return (sqrt(S2) + _a0_)/(sqrt(S1)*sinh(cosh(fac(S1))))\n", - ":2: RuntimeWarning: overflow encountered in sinh\n", - " return (sqrt(S2) + _a0_)/(sqrt(S1)*sinh(cosh(fac(S1))))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return log(S1**2)**_a0_\n", - " 66%|██████▌ | 983/1500 [01:09<00:41, 12.41it/s]:2: RuntimeWarning: invalid value encountered in log\n", - " return relu(log(-S2/(relu(relu(S1))*tan(S1))))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return relu(log(-S2/(relu(relu(S1))*tan(S1))))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return relu(log(-S2/(relu(relu(S1))*tan(S1))))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return (S2/_a0_)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return (S2/_a0_)**_a0_\n", - ":2: RuntimeWarning: overflow encountered in sinh\n", - " return sinh(S1**S1)**_a0_\n", - ":2: RuntimeWarning: overflow encountered in sinh\n", - " return sinh(S1**S1)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return sqrt(-sig(_a0_)/relu(S1))/S1\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return sqrt(-sig(_a0_)/relu(S1))/S1\n", - " 66%|██████▌ | 985/1500 [01:09<00:40, 12.60it/s]:2: RuntimeWarning: invalid value encountered in power\n", - " return relu(log(-(S2/_a0_)**relu(relu(S1))))\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return sinh(_a0_)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return relu(sinh(_a0_**3)**_a0_)\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return relu(sinh(_a0_**3)**_a0_)\n", - ":2: RuntimeWarning: divide by zero encountered in divide\n", - " return relu(log(-S2/(_a0_*relu(_a0_))))\n", - ":2: RuntimeWarning: divide by zero encountered in divide\n", - " return relu(log(-S2/(_a0_*relu(_a0_))))\n", - ":2: RuntimeWarning: divide by zero encountered in log\n", - " return log(relu(log(S2))/relu(S1))\n", - ":2: RuntimeWarning: divide by zero encountered in log\n", - " return log(relu(log(S2))/relu(S1))\n", - ":2: RuntimeWarning: divide by zero encountered in log\n", - " return log(relu(log(S2))/relu(S1))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu(sinh(S1)**(_a0_**S1))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu(sinh(S1)**(_a0_**S1))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu(sinh(S1)**(_a0_**S1))\n", - " 66%|██████▌ | 987/1500 [01:09<00:46, 11.11it/s]:2: RuntimeWarning: invalid value encountered in power\n", - " return relu(relu(S2*relu(_a0_**S2)**S1))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu(relu(S2*relu(_a0_**S2)**S1))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu(relu(S2*relu(_a0_**S2)**S1))\n", - ":2: RuntimeWarning: overflow encountered in cosh\n", - " return (sqrt(S2) + _a0_)/(sqrt(S1)*relu(cosh(S1**S2)))\n", - ":2: RuntimeWarning: overflow encountered in cosh\n", - " return (sqrt(S2) + _a0_)/(sqrt(S1)*relu(cosh(S1**S2)))\n", - ":2: RuntimeWarning: overflow encountered in cosh\n", - " return (sqrt(S2) + _a0_)/(sqrt(S1)*relu(cosh(S1**S2)))\n", - ":2: RuntimeWarning: divide by zero encountered in divide\n", - " return sqrt(sig(log(S2*relu(S2)))/relu(cos(S1)))\n", - ":2: RuntimeWarning: divide by zero encountered in divide\n", - " return sqrt(sig(log(S2*relu(S2)))/relu(cos(S1)))\n", - ":2: RuntimeWarning: divide by zero encountered in divide\n", - " return sqrt(sig(log(S2*relu(S2)))/relu(cos(S1)))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return sinh(sin(S2))**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return sinh(sin(S2))**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return sqrt(-sig(_a0_)/relu(S1))/S1\n", - " 66%|██████▌ | 989/1500 [01:10<00:44, 11.41it/s]:2: RuntimeWarning: invalid value encountered in log\n", - " return relu(log(-S1/relu(relu(S1))))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return relu(log(-S1/relu(relu(S1))))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return relu(log(-abs(S1)/relu(relu(S1))))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return relu(log(-abs(S1)/relu(relu(S1))))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return relu(log(-abs(S1)/relu(relu(S1))))\n", - " 66%|██████▌ | 991/1500 [01:10<00:43, 11.69it/s]:2: RuntimeWarning: divide by zero encountered in divide\n", - " return relu(log(-S2/(_a0_*relu(S2*_a0_))))\n", - ":2: RuntimeWarning: divide by zero encountered in divide\n", - " return relu(log(-S2/(_a0_*relu(S2*_a0_))))\n", - ":2: RuntimeWarning: divide by zero encountered in divide\n", - " return relu(log(-S2/(_a0_*relu(S2*_a0_))))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return (S2*_a0_)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return (S2*_a0_)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return sin(S1)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return _a0_**(-_a0_)*exp(-sig(_a0_)/relu(S1))\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return _a0_**(-_a0_)*exp(-sig(_a0_)/relu(S1))\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return _a0_**(-_a0_)*exp(-sig(_a0_)/relu(S1))\n", - " 66%|██████▌ | 993/1500 [01:10<00:42, 12.06it/s]:2: RuntimeWarning: divide by zero encountered in divide\n", - " return (relu(relu(S2/_a0_))/relu(log(S2)))**sig(relu(S1))\n", - ":2: RuntimeWarning: divide by zero encountered in divide\n", - " return (relu(relu(S2/_a0_))/relu(log(S2)))**sig(relu(S1))\n", - ":2: RuntimeWarning: divide by zero encountered in divide\n", - " return (relu(relu(S2/_a0_))/relu(log(S2)))**sig(relu(S1))\n", - " 66%|██████▋ | 995/1500 [01:10<00:40, 12.54it/s]:2: RuntimeWarning: invalid value encountered in power\n", - " return (_a0_**S1)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return (_a0_**S1)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return sqrt(-log(S2*relu(S2))/relu(S1))\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return sqrt(-log(S2*relu(S2))/relu(S1))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu(log(S1)**_a0_)\n", - " 67%|██████▋ | 999/1500 [01:10<00:42, 11.81it/s]:2: RuntimeWarning: invalid value encountered in scalar power\n", - " return sinh(_a0_)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return relu(log(-S2/(relu(relu(S1))*cos(_a0_))))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return relu(log(-S2/(relu(relu(S1))*cos(_a0_))))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return relu(log(-S2/(relu(relu(S1))*cos(_a0_))))\n", - ":2: RuntimeWarning: invalid value encountered in divide\n", - " return (relu(relu(S2/_a0_))/relu(S2*_a0_))**sig(relu(S1))\n", - ":2: RuntimeWarning: divide by zero encountered in divide\n", - " return sqrt(S2)*_a0_/(sqrt(S1)*relu(cos(fac(S1))))\n", - ":2: RuntimeWarning: divide by zero encountered in divide\n", - " return sqrt(S2)*_a0_/(sqrt(S1)*relu(cos(fac(S1))))\n", - " 67%|██████▋ | 1001/1500 [01:11<00:42, 11.84it/s]:2: RuntimeWarning: overflow encountered in cosh\n", - " return sqrt(S2)*_a0_/(sqrt(S1)*relu(cosh(fac(sinh(S2)))))\n", - ":2: RuntimeWarning: overflow encountered in cosh\n", - " return sqrt(S2)*_a0_/(sqrt(S1)*relu(cosh(fac(sinh(S2)))))\n", - ":2: RuntimeWarning: overflow encountered in cosh\n", - " return sqrt(S2)*_a0_/(sqrt(S1)*relu(cosh(fac(sinh(S2)))))\n", - " 67%|██████▋ | 1003/1500 [01:11<00:41, 12.08it/s]:2: RuntimeWarning: invalid value encountered in log\n", - " return log(tan(S2)/relu(S1))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(tan(S2)/relu(S1))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return sqrt(sig(log(relu(S2)*cos(S2)))/relu(S1))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return sqrt(sig(log(relu(S2)*cos(S2)))/relu(S1))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return sqrt(sig(log(relu(S2)*cos(S2)))/relu(S1))\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return sinh(_a0_)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(log(S2)/S1)\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(log(S2)/S1)\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return sinh(log(S1))**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return sinh(log(S1))**_a0_\n", - " 67%|██████▋ | 1005/1500 [01:11<00:40, 12.25it/s]:2: RuntimeWarning: divide by zero encountered in divide\n", - " return log(relu(S2)/relu(cos(S1)))\n", - ":2: RuntimeWarning: divide by zero encountered in divide\n", - " return log(relu(S2)/relu(cos(S1)))\n", - ":2: RuntimeWarning: divide by zero encountered in divide\n", - " return log(relu(S2)/relu(cos(S1)))\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return sinh(_a0_)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu(sin(S1)**_a0_)\n", - ":2: RuntimeWarning: divide by zero encountered in scalar divide\n", - " return exp(-sig(_a0_)/relu(_a0_))/S1\n", - ":2: RuntimeWarning: divide by zero encountered in scalar divide\n", - " return exp(-sig(_a0_)/relu(_a0_))/S1\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return relu(log(sin(S2/(_a0_*relu(relu(S1))))))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return relu(log(sin(S2/(_a0_*relu(relu(S1))))))\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return (_a0_**_a0_)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return (_a0_**_a0_)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return (_a0_**_a0_)**_a0_\n", - " 67%|██████▋ | 1007/1500 [01:11<00:39, 12.48it/s]:2: RuntimeWarning: invalid value encountered in scalar power\n", - " return relu(sinh(_a0_)**_a0_)\n", - ":2: RuntimeWarning: divide by zero encountered in scalar divide\n", - " return exp(-sig(_a0_)/relu(relu(_a0_)))/S1\n", - ":2: RuntimeWarning: divide by zero encountered in scalar divide\n", - " return exp(-sig(_a0_)/relu(relu(_a0_)))/S1\n", - ":2: RuntimeWarning: divide by zero encountered in scalar divide\n", - " return exp(-sig(_a0_)/relu(relu(_a0_)))/S1\n", - " 67%|██████▋ | 1009/1500 [01:11<00:37, 13.25it/s]:2: RuntimeWarning: divide by zero encountered in divide\n", - " return relu(log(-S2/(_a0_*relu(relu(S1 + _a0_)))))\n", - ":2: RuntimeWarning: divide by zero encountered in divide\n", - " return relu(log(-S2/(_a0_*relu(relu(S1 + _a0_)))))\n", - ":2: RuntimeWarning: divide by zero encountered in divide\n", - " return relu(log(-S2/(_a0_*relu(relu(S1 + _a0_)))))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return relu(log(-S2*S2**(-S1)/relu(relu(S1))))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return relu(log(-S2*S2**(-S1)/relu(relu(S1))))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return relu(log(-S2*S2**(-S1)/relu(relu(S1))))\n", - ":2: RuntimeWarning: overflow encountered in cosh\n", - " return sqrt(S2)*_a0_/(sqrt(S1)*relu(cosh(fac(S1**2))))\n", - ":2: RuntimeWarning: overflow encountered in cosh\n", - " return sqrt(S2)*_a0_/(sqrt(S1)*relu(cosh(fac(S1**2))))\n", - ":2: RuntimeWarning: overflow encountered in cosh\n", - " return sqrt(S2)*_a0_/(sqrt(S1)*relu(cosh(fac(S1**2))))\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return sqrt(S2/_a0_)*exp(-sinh(S2))\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return relu(relu(relu(S2/_a0_)/sqrt(-S1*S2)))\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return relu(relu(relu(S2/_a0_)/sqrt(-S1*S2)))\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return relu(relu(relu(S2/_a0_)/sqrt(-S1*S2)))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return (S2*_a0_)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return (S2*_a0_)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return sinh(sin(S1))**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return sinh(sin(S1))**_a0_\n", - " 67%|██████▋ | 1011/1500 [01:11<00:38, 12.68it/s]:2: RuntimeWarning: divide by zero encountered in divide\n", - " return relu(log(-S2/(_a0_*relu(relu(sin(_a0_))))))\n", - ":2: RuntimeWarning: divide by zero encountered in divide\n", - " return relu(log(-S2/(_a0_*relu(relu(sin(_a0_))))))\n", - ":2: RuntimeWarning: divide by zero encountered in divide\n", - " return relu(log(-S2/(_a0_*relu(relu(sin(_a0_))))))\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return sinh(_a0_)**_a0_\n", - ":2: RuntimeWarning: divide by zero encountered in divide\n", - " return relu(S2**_a0_/(S1 - S2))\n", - ":2: RuntimeWarning: divide by zero encountered in divide\n", - " return relu(S2**_a0_/(S1 - S2))\n", - ":2: RuntimeWarning: divide by zero encountered in divide\n", - " return relu(S2**_a0_/(S1 - S2))\n", - ":2: RuntimeWarning: divide by zero encountered in log\n", - " return sqrt(sig(log(S2*relu(tan(S2))))/relu(S1))\n", - ":2: RuntimeWarning: divide by zero encountered in log\n", - " return sqrt(sig(log(S2*relu(tan(S2))))/relu(S1))\n", - ":2: RuntimeWarning: divide by zero encountered in log\n", - " return sqrt(sig(log(S2*relu(tan(S2))))/relu(S1))\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return tan(_a0_)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return tan(_a0_)**_a0_\n", - " 68%|██████▊ | 1013/1500 [01:11<00:37, 13.09it/s]:2: RuntimeWarning: invalid value encountered in sqrt\n", - " return sqrt(exp(_a0_)/_a0_)*exp(-S1)\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return relu(relu(relu(S2/_a0_)/sqrt(S1*cos(S2))))\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return relu(relu(relu(S2/_a0_)/sqrt(S1*cos(S2))))\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return relu(relu(relu(S2/_a0_)/sqrt(S1*cos(S2))))\n", - ":2: RuntimeWarning: overflow encountered in power\n", - " return S1**((S1 + S2)**3)\n", - ":2: RuntimeWarning: overflow encountered in power\n", - " return S1**((S1 + S2)**3)\n", - ":2: RuntimeWarning: overflow encountered in power\n", - " return S1**((S1 + S2)**3)\n", - ":2: RuntimeWarning: overflow encountered in sinh\n", - " return sinh(S2**S1)**_a0_\n", - ":2: RuntimeWarning: overflow encountered in sinh\n", - " return sinh(S2**S1)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return relu((2*_a0_)**_a0_)\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return relu((2*_a0_)**_a0_)\n", - " 68%|██████▊ | 1015/1500 [01:12<00:36, 13.17it/s]:2: RuntimeWarning: invalid value encountered in log\n", - " return S1**log(_a0_)\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return (2*_a0_)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return (2*_a0_)**_a0_\n", - ":2: RuntimeWarning: divide by zero encountered in divide\n", - " return exp(-sig(_a0_)/relu(S1 + _a0_))/S1\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return relu(log(-S2/(_a0_*cos(relu(S1)))))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return relu(log(-S2/(_a0_*cos(relu(S1)))))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu(relu(S2*relu(_a0_**S2)**S1))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu(relu(S2*relu(_a0_**S2)**S1))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return (_a0_**S1)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return (_a0_**S1)**_a0_\n", - " 68%|██████▊ | 1017/1500 [01:12<00:37, 12.71it/s]:2: RuntimeWarning: invalid value encountered in log\n", - " return log(tan(S2)/relu(S1))\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return sqrt(sig(log(S2*relu(S2)))/tan(S1))\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return sqrt(sig(log(S2*relu(S2)))/tan(S1))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return (_a0_**S1)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return (_a0_**S1)**_a0_\n", - " 68%|██████▊ | 1019/1500 [01:12<00:39, 12.14it/s]:2: RuntimeWarning: divide by zero encountered in divide\n", - " return relu(log(-S2/(_a0_*relu(relu(S1/_a0_)))))\n", - ":2: RuntimeWarning: divide by zero encountered in divide\n", - " return relu(log(-S2/(_a0_*relu(relu(S1/_a0_)))))\n", - ":2: RuntimeWarning: divide by zero encountered in divide\n", - " return relu(log(-S2/(_a0_*relu(relu(S1/_a0_)))))\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return relu(relu(relu(S2/_a0_)/sqrt(cos(S1))))\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return relu(relu(relu(S2/_a0_)/sqrt(cos(S1))))\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return relu(relu(relu(S2/_a0_)/sqrt(cos(S1))))\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return sqrt(sig(log(S2*relu(S2)))/log(S1))\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return sqrt(sig(log(S2*relu(S2)))/log(S1))\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return relu(relu((sinh(S1**2)**2)**(_a0_**_a0_)))\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return relu(relu((sinh(S1**2)**2)**(_a0_**_a0_)))\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return relu(relu((sinh(S1**2)**2)**(_a0_**_a0_)))\n", - " 68%|██████▊ | 1021/1500 [01:12<00:37, 12.83it/s]:2: RuntimeWarning: overflow encountered in sinh\n", - " return relu(relu((sinh(S2**(2*S1))**2)**_a0_))\n", - ":2: RuntimeWarning: overflow encountered in square\n", - " return relu(relu((sinh(S2**(2*S1))**2)**_a0_))\n", - ":2: RuntimeWarning: overflow encountered in sinh\n", - " return relu(relu((sinh(S2**(2*S1))**2)**_a0_))\n", - ":2: RuntimeWarning: overflow encountered in square\n", - " return relu(relu((sinh(S2**(2*S1))**2)**_a0_))\n", - ":2: RuntimeWarning: overflow encountered in sinh\n", - " return relu(relu((sinh(S2**(2*S1))**2)**_a0_))\n", - ":2: RuntimeWarning: overflow encountered in square\n", - " return relu(relu((sinh(S2**(2*S1))**2)**_a0_))\n", - ":2: RuntimeWarning: divide by zero encountered in scalar divide\n", - " return exp(-sig(_a0_)/relu(_a0_))/S1\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return relu(log(-S2/(_a0_*relu(relu(log(_a0_))))))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return relu(log(-S2/(_a0_*relu(relu(log(_a0_))))))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return relu(log(-S2/(_a0_*relu(relu(log(_a0_))))))\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return (2*_a0_)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return (2*_a0_)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu(relu((sinh(_a0_**(2*S2))**2)**_a0_))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu(relu((sinh(_a0_**(2*S2))**2)**_a0_))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu(relu((sinh(_a0_**(2*S2))**2)**_a0_))\n", - " 68%|██████▊ | 1023/1500 [01:12<00:36, 12.96it/s]:2: RuntimeWarning: divide by zero encountered in log\n", - " return relu(log(relu(S2/_a0_)/sqrt(S1*S2)))\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return sinh(_a0_)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu((_a0_**S2)**_a0_)\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu((_a0_**S2)**_a0_)\n", - " 68%|██████▊ | 1025/1500 [01:12<00:38, 12.36it/s]:2: RuntimeWarning: invalid value encountered in log\n", - " return relu(log(-S2**_a0_/relu(relu(S1))))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return relu(log(-S2**_a0_/relu(relu(S1))))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return sinh(log(S2))**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return sinh(log(S2))**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return sinh(log(S2))**_a0_\n", - ":2: RuntimeWarning: divide by zero encountered in divide\n", - " return (relu(relu(S2/_a0_))/relu(log(S2)))**sig(relu(S1))\n", - ":2: RuntimeWarning: divide by zero encountered in divide\n", - " return (relu(relu(S2/_a0_))/relu(log(S2)))**sig(relu(S1))\n", - " 68%|██████▊ | 1027/1500 [01:13<00:40, 11.60it/s]:2: RuntimeWarning: divide by zero encountered in divide\n", - " return relu(log(-S2/(_a0_*relu(_a0_))))\n", - ":2: RuntimeWarning: divide by zero encountered in divide\n", - " return relu(log(-S2/(_a0_*relu(_a0_))))\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return sqrt(tan(log(S2*relu(S2)))/relu(S1))\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return sqrt(tan(log(S2*relu(S2)))/relu(S1))\n", - ":2: RuntimeWarning: overflow encountered in sinh\n", - " return relu(sinh(S1**S1)**_a0_)\n", - ":2: RuntimeWarning: overflow encountered in sinh\n", - " return relu(sinh(S1**S1)**_a0_)\n", - ":2: RuntimeWarning: divide by zero encountered in scalar divide\n", - " return exp(-sig(_a0_)/relu(_a0_))/S1\n", - " 69%|██████▊ | 1029/1500 [01:13<00:39, 11.94it/s]:2: RuntimeWarning: invalid value encountered in log\n", - " return relu(log(tan(S2/(_a0_*relu(relu(S1))))))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return relu(log(tan(S2/(_a0_*relu(relu(S1))))))\n", - ":2: RuntimeWarning: divide by zero encountered in log\n", - " return sqrt(sig(log(S2*relu(-S2)))/relu(S1))\n", - ":2: RuntimeWarning: divide by zero encountered in log\n", - " return sqrt(sig(log(S2*relu(-S2)))/relu(S1))\n", - ":2: RuntimeWarning: divide by zero encountered in log\n", - " return sqrt(sig(log(S2*relu(-S2)))/relu(S1))\n", - ":2: RuntimeWarning: overflow encountered in sinh\n", - " return relu(relu((sinh(S2**S1)**2)**_a0_))\n", - ":2: RuntimeWarning: overflow encountered in square\n", - " return relu(relu((sinh(S2**S1)**2)**_a0_))\n", - ":2: RuntimeWarning: overflow encountered in sinh\n", - " return relu(relu((sinh(S2**S1)**2)**_a0_))\n", - ":2: RuntimeWarning: overflow encountered in square\n", - " return relu(relu((sinh(S2**S1)**2)**_a0_))\n", - ":2: RuntimeWarning: overflow encountered in sinh\n", - " return relu(relu((sinh(S2**S1)**2)**_a0_))\n", - ":2: RuntimeWarning: overflow encountered in square\n", - " return relu(relu((sinh(S2**S1)**2)**_a0_))\n", - " 69%|██████▊ | 1031/1500 [01:13<00:40, 11.59it/s]:2: RuntimeWarning: invalid value encountered in sqrt\n", - " return relu(relu(relu(S2/_a0_)/sqrt(log(S1))))\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return relu(relu(relu(S2/_a0_)/sqrt(log(S1))))\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return relu(relu(relu(S2/_a0_)/sqrt(log(S1))))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return (S2/_a0_)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return (S2/_a0_)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return relu(log(-S2/(_a0_*tan(relu(S1)))))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return relu(log(-S2/(_a0_*tan(relu(S1)))))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return (-sinh(S2))**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return (-sinh(S2))**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return relu(sinh(_a0_)**_a0_)\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return relu(sinh(_a0_)**_a0_)\n", - " 69%|██████▉ | 1033/1500 [01:13<00:38, 12.03it/s]:2: RuntimeWarning: overflow encountered in exp\n", - " return relu(relu(exp(tan(S1 + exp(_a0_*relu(S2)**2)))))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return sinh(cos(S2))**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return sinh(cos(S2))**_a0_\n", - " 69%|██████▉ | 1035/1500 [01:13<00:43, 10.62it/s]:2: RuntimeWarning: invalid value encountered in scalar power\n", - " return relu(sinh(_a0_)**_a0_)\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return relu(sinh(_a0_)**_a0_)\n", - ":2: RuntimeWarning: divide by zero encountered in divide\n", - " return log(relu(S2)/relu(relu(cos(S2))))\n", - ":2: RuntimeWarning: divide by zero encountered in divide\n", - " return log(relu(S2)/relu(relu(cos(S2))))\n", - ":2: RuntimeWarning: divide by zero encountered in divide\n", - " return log(relu(S2)/relu(relu(cos(S2))))\n", - ":2: RuntimeWarning: divide by zero encountered in divide\n", - " return relu(relu(log(-S2/(_a0_*relu(S2*_a0_)))))\n", - ":2: RuntimeWarning: divide by zero encountered in divide\n", - " return relu(relu(log(-S2/(_a0_*relu(S2*_a0_)))))\n", - ":2: RuntimeWarning: divide by zero encountered in divide\n", - " return relu(relu(log(-S2/(_a0_*relu(S2*_a0_)))))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return (S1*_a0_)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return (S1*_a0_)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return sinh(_a0_)**_a0_\n", - " 69%|██████▉ | 1037/1500 [01:14<00:43, 10.72it/s]:2: RuntimeWarning: overflow encountered in exp\n", - " return relu(relu(exp(cos(S1 + exp(_a0_*exp(exp(S2)))))))\n", - ":2: RuntimeWarning: invalid value encountered in cos\n", - " return relu(relu(exp(cos(S1 + exp(_a0_*exp(exp(S2)))))))\n", - ":2: RuntimeWarning: divide by zero encountered in divide\n", - " return exp(-sig(_a0_)/relu(sin(S2)))/S1\n", - ":2: RuntimeWarning: divide by zero encountered in divide\n", - " return exp(-sig(_a0_)/relu(sin(S2)))/S1\n", - ":2: RuntimeWarning: divide by zero encountered in divide\n", - " return exp(-sig(_a0_)/relu(sin(S2)))/S1\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return relu(relu(log(-sqrt(S2)/relu(relu(S1)))))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return relu(relu(log(-sqrt(S2)/relu(relu(S1)))))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return relu(relu(log(-sqrt(S2)/relu(relu(S1)))))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return (S1/_a0_)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return (S1/_a0_)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return (_a0_**S1)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return (_a0_**S1)**_a0_\n", - " 69%|██████▉ | 1039/1500 [01:14<00:41, 11.18it/s]:2: RuntimeWarning: invalid value encountered in log\n", - " return log(tan(S2))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(tan(S2))\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return (2*_a0_)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return (2*_a0_)**_a0_\n", - ":2: RuntimeWarning: divide by zero encountered in divide\n", - " return relu(relu(log(-S2/(_a0_*relu(S1*_a0_)))))\n", - ":2: RuntimeWarning: divide by zero encountered in divide\n", - " return relu(relu(log(-S2/(_a0_*relu(S1*_a0_)))))\n", - ":2: RuntimeWarning: divide by zero encountered in divide\n", - " return relu(relu(log(-S2/(_a0_*relu(S1*_a0_)))))\n", - " 69%|██████▉ | 1041/1500 [01:14<00:43, 10.67it/s]:2: RuntimeWarning: divide by zero encountered in divide\n", - " return relu(relu(log(-S2/(_a0_*relu(relu(_a0_))))))\n", - ":2: RuntimeWarning: divide by zero encountered in divide\n", - " return relu(relu(log(-S2/(_a0_*relu(relu(_a0_))))))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return sinh(S1/_a0_)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return sinh(S1/_a0_)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return tanh(_a0_)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return tanh(_a0_)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return relu(relu(log(-S1/(_a0_*relu(relu(S1))))))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return cos(S2)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return cos(S2)**_a0_\n", - " 70%|██████▉ | 1043/1500 [01:14<00:40, 11.33it/s]:2: RuntimeWarning: divide by zero encountered in divide\n", - " return log(relu(S2)/relu(-S1))\n", - ":2: RuntimeWarning: divide by zero encountered in divide\n", - " return log(relu(S2)/relu(-S1))\n", - ":2: RuntimeWarning: divide by zero encountered in divide\n", - " return relu(relu(log(-S2/(_a0_*relu(_a0_)))))\n", - ":2: RuntimeWarning: divide by zero encountered in divide\n", - " return relu(relu(log(-S2/(_a0_*relu(_a0_)))))\n", - ":2: RuntimeWarning: divide by zero encountered in divide\n", - " return relu(relu(log(-S2/(_a0_*relu(_a0_)))))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return (_a0_/S1)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return (_a0_/S1)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return relu(sinh(_a0_)**_a0_)\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return relu(sinh(_a0_)**_a0_)\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return relu(relu(log(-S2/(_a0_*relu(S2)))))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(S2/log(S1))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(S2/log(S1))\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return exp(-sqrt(_a0_)/relu(S1))/S1\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return exp(-sqrt(_a0_)/relu(S1))/S1\n", - " 70%|██████▉ | 1045/1500 [01:14<00:37, 12.29it/s]:2: RuntimeWarning: invalid value encountered in log\n", - " return relu(relu(log(-S2/relu(relu(S1)))))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return relu(relu(log(-S2/relu(relu(S1)))))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return relu(relu(log(-S2/relu(relu(S1)))))\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return relu(relu(relu(S2/_a0_)/sqrt(S2*cos(_a0_))))\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return relu(relu(relu(S2/_a0_)/sqrt(S2*cos(_a0_))))\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return relu(relu(relu(S2/_a0_)/sqrt(S2*cos(_a0_))))\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return sqrt(tanh(log(S2*relu(S2)))/relu(S1))\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return sqrt(tanh(log(S2*relu(S2)))/relu(S1))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu(relu(tan(sinh(S1**2))**_a0_))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu(relu(tan(sinh(S1**2))**_a0_))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return relu(relu(log(-sin(S2)/relu(relu(S1)))))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return relu(relu(log(-sin(S2)/relu(relu(S1)))))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return relu(relu(log(-sin(S2)/relu(relu(S1)))))\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return relu(relu(relu(S2/_a0_)/sqrt(cos(_a0_))))\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return relu(relu(relu(S2/_a0_)/sqrt(cos(_a0_))))\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return relu(relu(relu(S2/_a0_)/sqrt(cos(_a0_))))\n", - " 70%|██████▉ | 1047/1500 [01:14<00:36, 12.35it/s]:2: RuntimeWarning: overflow encountered in power\n", - " return relu(relu((sinh(S1**2)**2)**(S1**S1)))\n", - ":2: RuntimeWarning: overflow encountered in power\n", - " return relu(relu((sinh(S1**2)**2)**(S1**S1)))\n", - ":2: RuntimeWarning: overflow encountered in power\n", - " return relu(relu((sinh(S1**2)**2)**(S1**S1)))\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return exp(-S1)*sqrt(sin(S1))\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return exp(-S1)*sqrt(sin(S1))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return exp(-_a0_**S2/relu(S1))/S1\n", - ":2: RuntimeWarning: overflow encountered in exp\n", - " return exp(-_a0_**S2/relu(S1))/S1\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return exp(-_a0_**S2/relu(S1))/S1\n", - ":2: RuntimeWarning: overflow encountered in exp\n", - " return exp(-_a0_**S2/relu(S1))/S1\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return exp(-_a0_**S2/relu(S1))/S1\n", - ":2: RuntimeWarning: overflow encountered in exp\n", - " return exp(-_a0_**S2/relu(S1))/S1\n", - " 70%|██████▉ | 1049/1500 [01:14<00:34, 13.16it/s]:2: RuntimeWarning: invalid value encountered in power\n", - " return relu(sinh(_a0_/S2)**_a0_)\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu(sinh(_a0_/S2)**_a0_)\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return relu(relu(log(-S2/(S1*relu(relu(S1))))))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return relu(relu(log(-S2/(S1*relu(relu(S1))))))\n", - " 70%|███████ | 1051/1500 [01:15<00:35, 12.77it/s]:2: RuntimeWarning: invalid value encountered in power\n", - " return relu(sinh(S2/_a0_)**_a0_)\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu(sinh(S2/_a0_)**_a0_)\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu(relu((-S1**4)**_a0_))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu(relu((-S1**4)**_a0_))\n", - " 70%|███████ | 1053/1500 [01:15<00:34, 13.07it/s]:2: RuntimeWarning: invalid value encountered in power\n", - " return (relu(relu(S2/_a0_))/relu(_a0_**S2))**sig(S1)\n", - ":2: RuntimeWarning: invalid value encountered in divide\n", - " return (relu(relu(S2/_a0_))/relu(_a0_**S2))**sig(S1)\n", - " 70%|███████ | 1055/1500 [01:15<00:37, 11.73it/s]:2: RuntimeWarning: overflow encountered in exp\n", - " return relu(relu(exp(tan(S1 + exp(_a0_*exp(relu(S2)))))))\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return S1**(_a0_**_a0_)\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return S1**(_a0_**_a0_)\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return sinh(S1)**(_a0_**S1)\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return sinh(S1)**(_a0_**S1)\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return sinh(S1)**(_a0_**S1)\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return relu(relu(_a0_**_a0_*relu(sig(_a0_))**S1))\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return relu(relu(_a0_**_a0_*relu(sig(_a0_))**S1))\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return _a0_**((1/2)*_a0_)\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return _a0_**((1/2)*_a0_)\n", - " 70%|███████ | 1057/1500 [01:15<00:37, 11.78it/s]:2: RuntimeWarning: invalid value encountered in log\n", - " return relu(relu(log(-S2*exp(-S1)/relu(relu(S1)))))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return relu(relu(log(-S2*exp(-S1)/relu(relu(S1)))))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return relu(relu(log(-S2*exp(-S1)/relu(relu(S1)))))\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return S2 + sqrt(S2*_a0_)*exp(-S1)\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return relu(sinh(_a0_)**_a0_)\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return relu(sinh(_a0_)**_a0_)\n", - " 71%|███████ | 1059/1500 [01:15<00:36, 11.94it/s]:2: RuntimeWarning: divide by zero encountered in divide\n", - " return relu(relu(log(-S2/(_a0_*relu(relu(_a0_/S1))))))\n", - ":2: RuntimeWarning: divide by zero encountered in divide\n", - " return relu(relu(log(-S2/(_a0_*relu(relu(_a0_/S1))))))\n", - ":2: RuntimeWarning: divide by zero encountered in divide\n", - " return relu(relu(log(-S2/(_a0_*relu(relu(_a0_/S1))))))\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return sqrt(sin(log(S2*relu(S2)))/relu(S1))\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return sqrt(sin(log(S2*relu(S2)))/relu(S1))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return relu(relu(exp(cos(exp(_a0_*exp(relu(S2))) + log(_a0_)))))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return relu(relu(exp(cos(exp(_a0_*exp(relu(S2))) + log(_a0_)))))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return relu(relu(exp(cos(exp(_a0_*exp(relu(S2))) + log(_a0_)))))\n", - ":2: RuntimeWarning: overflow encountered in power\n", - " return relu(relu((sinh(S1)**2)**(S1**3)))\n", - ":2: RuntimeWarning: overflow encountered in power\n", - " return relu(relu((sinh(S1)**2)**(S1**3)))\n", - ":2: RuntimeWarning: overflow encountered in power\n", - " return relu(relu((sinh(S1)**2)**(S1**3)))\n", - " 71%|███████ | 1061/1500 [01:15<00:35, 12.22it/s]:2: RuntimeWarning: invalid value encountered in log\n", - " return log(tan(S2))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(tan(S2))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return tan(S1)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return relu(relu(log(-S1**_a0_/(_a0_*relu(relu(S1))))))\n", - ":2: RuntimeWarning: overflow encountered in sinh\n", - " return relu(sinh(sinh(S2)**2)**_a0_)\n", - ":2: RuntimeWarning: overflow encountered in sinh\n", - " return relu(sinh(sinh(S2)**2)**_a0_)\n", - ":2: RuntimeWarning: overflow encountered in sinh\n", - " return relu(sinh(sinh(S2)**2)**_a0_)\n", - " 71%|███████ | 1063/1500 [01:16<00:35, 12.40it/s]:2: RuntimeWarning: divide by zero encountered in scalar power\n", - " return relu(relu((sinh(fac(_a0_))**2)**_a0_))\n", - ":2: RuntimeWarning: divide by zero encountered in scalar power\n", - " return relu(relu((sinh(fac(_a0_))**2)**_a0_))\n", - ":2: RuntimeWarning: divide by zero encountered in scalar power\n", - " return relu(relu((sinh(fac(_a0_))**2)**_a0_))\n", - " 71%|███████ | 1065/1500 [01:16<00:35, 12.12it/s]:2: RuntimeWarning: invalid value encountered in log\n", - " return log(sin(S2)/relu(relu(S1)))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(sin(S2)/relu(relu(S1)))\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return sqrt(sig(log(S2*relu(S2)))/(S2*_a0_))\n", - ":2: RuntimeWarning: overflow encountered in power\n", - " return sinh(S1)**(S1**S1)\n", - ":2: RuntimeWarning: overflow encountered in power\n", - " return sinh(S1)**(S1**S1)\n", - " 71%|███████ | 1067/1500 [01:16<00:39, 10.85it/s]:2: RuntimeWarning: invalid value encountered in sqrt\n", - " return S1**(-S2)*sqrt(S2*_a0_)\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return relu(relu(S2*relu(sqrt(_a0_))**S1))\n", - ":2: RuntimeWarning: overflow encountered in power\n", - " return S1**(S1**S1)\n", - ":2: RuntimeWarning: overflow encountered in power\n", - " return S1**(S1**S1)\n", - ":2: RuntimeWarning: overflow encountered in power\n", - " return relu(sinh(S1**2)**cosh(S1))\n", - ":2: RuntimeWarning: overflow encountered in power\n", - " return relu(sinh(S1**2)**cosh(S1))\n", - ":2: RuntimeWarning: overflow encountered in power\n", - " return relu(sinh(S1**2)**cosh(S1))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(tan(_a0_))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(tan(_a0_))\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return sinh(_a0_)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu(sinh(S1*_a0_)**_a0_)\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu(sinh(S1*_a0_)**_a0_)\n", - " 71%|███████▏ | 1069/1500 [01:16<00:37, 11.63it/s]:2: RuntimeWarning: invalid value encountered in power\n", - " return relu(relu(sin(sinh(S1))**_a0_))\n", - " 71%|███████▏ | 1071/1500 [01:16<00:35, 12.19it/s]:2: RuntimeWarning: invalid value encountered in log\n", - " return relu(relu(log(-S2**_a0_/relu(relu(S1)))))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return relu(relu(log(-S2**_a0_/relu(relu(S1)))))\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return sinh(sinh(_a0_))**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return sinh(sinh(_a0_))**_a0_\n", - ":2: RuntimeWarning: divide by zero encountered in divide\n", - " return sqrt(sig(log(S2*relu(S2)))/relu(-S1))\n", - ":2: RuntimeWarning: divide by zero encountered in divide\n", - " return sqrt(sig(log(S2*relu(S2)))/relu(-S1))\n", - ":2: RuntimeWarning: divide by zero encountered in divide\n", - " return sqrt(sig(log(S2*relu(S2)))/relu(-S1))\n", - " 72%|███████▏ | 1073/1500 [01:16<00:34, 12.53it/s]:2: RuntimeWarning: divide by zero encountered in divide\n", - " return log(relu(S2)/relu(log(S1)))\n", - ":2: RuntimeWarning: divide by zero encountered in divide\n", - " return log(relu(S2)/relu(log(S1)))\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return S1**(_a0_**_a0_)\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return S1**(_a0_**_a0_)\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return relu(relu(log(-S1**3/relu(relu(S1)))))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return relu(relu(log(-S1**3/relu(relu(S1)))))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return relu(relu(log(-S1**3/relu(relu(S1)))))\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return (1/2)*sqrt(S2*_a0_)/S1\n", - ":2: RuntimeWarning: divide by zero encountered in scalar power\n", - " return relu(relu((relu(_a0_)**2)**_a0_))\n", - ":2: RuntimeWarning: divide by zero encountered in scalar power\n", - " return relu(relu((relu(_a0_)**2)**_a0_))\n", - " 72%|███████▏ | 1075/1500 [01:17<00:32, 12.99it/s]:2: RuntimeWarning: invalid value encountered in power\n", - " return (S2 + _a0_)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return (S2 + _a0_)**_a0_\n", - ":2: RuntimeWarning: overflow encountered in exp\n", - " return relu(relu(exp(cos(S1 + exp(_a0_*exp(S2**2))))))\n", - ":2: RuntimeWarning: invalid value encountered in cos\n", - " return relu(relu(exp(cos(S1 + exp(_a0_*exp(S2**2))))))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu(relu(log(relu(S1))**_a0_))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu(relu(log(relu(S1))**_a0_))\n", - ":2: RuntimeWarning: divide by zero encountered in divide\n", - " return relu(relu(log(-S2/(_a0_*relu(S2*_a0_)))))\n", - ":2: RuntimeWarning: divide by zero encountered in divide\n", - " return relu(relu(log(-S2/(_a0_*relu(S2*_a0_)))))\n", - ":2: RuntimeWarning: overflow encountered in sinh\n", - " return sinh(S2**S2)**_a0_\n", - ":2: RuntimeWarning: overflow encountered in sinh\n", - " return sinh(S2**S2)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return -_a0_**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return -_a0_**_a0_\n", - " 72%|███████▏ | 1077/1500 [01:17<00:33, 12.61it/s]:2: RuntimeWarning: invalid value encountered in power\n", - " return relu(S2)*log(sig(relu(S1)))**(S1*_a0_)\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu(S2)*log(sig(relu(S1)))**(S1*_a0_)\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return (_a0_/S2)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return (_a0_/S2)**_a0_\n", - ":2: RuntimeWarning: divide by zero encountered in log\n", - " return relu(relu(log(relu(S2/(_a0_*relu(relu(S1)))))))\n", - ":2: RuntimeWarning: divide by zero encountered in log\n", - " return relu(relu(log(relu(S2/(_a0_*relu(relu(S1)))))))\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return relu(relu(sqrt(_a0_)*relu(sig(_a0_))**S1))\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return relu(relu(sqrt(_a0_)*relu(sig(_a0_))**S1))\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return relu(relu(sqrt(_a0_)*relu(sig(_a0_))**S1))\n", - " 72%|███████▏ | 1079/1500 [01:17<00:33, 12.43it/s]:2: RuntimeWarning: invalid value encountered in log\n", - " return relu(relu(S2*relu(log(_a0_))**S1))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return log(S1)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return (_a0_**3)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return (_a0_**3)**_a0_\n", - ":2: RuntimeWarning: overflow encountered in power\n", - " return relu(sinh(S1**2)**(S2**3))\n", - ":2: RuntimeWarning: overflow encountered in power\n", - " return relu(sinh(S1**2)**(S2**3))\n", - ":2: RuntimeWarning: overflow encountered in power\n", - " return relu(sinh(S1**2)**(S2**3))\n", - ":2: RuntimeWarning: divide by zero encountered in divide\n", - " return relu(relu(log(-S2/(_a0_*relu(relu(S1 + _a0_))))))\n", - ":2: RuntimeWarning: divide by zero encountered in divide\n", - " return relu(relu(log(-S2/(_a0_*relu(relu(S1 + _a0_))))))\n", - ":2: RuntimeWarning: divide by zero encountered in divide\n", - " return relu(relu(log(-S2/(_a0_*relu(relu(S1 + _a0_))))))\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return sinh(tan(_a0_))**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return sinh(tan(_a0_))**_a0_\n", - ":2: RuntimeWarning: overflow encountered in exp\n", - " return relu(relu(exp(cos(S1 + exp(S2*exp(relu(S2)))))))\n", - ":2: RuntimeWarning: invalid value encountered in cos\n", - " return relu(relu(exp(cos(S1 + exp(S2*exp(relu(S2)))))))\n", - ":2: RuntimeWarning: overflow encountered in exp\n", - " return relu(relu(exp(cos(S1 + exp(S2*exp(relu(S2)))))))\n", - ":2: RuntimeWarning: invalid value encountered in cos\n", - " return relu(relu(exp(cos(S1 + exp(S2*exp(relu(S2)))))))\n", - " 72%|███████▏ | 1081/1500 [01:17<00:33, 12.62it/s]:2: RuntimeWarning: overflow encountered in sinh\n", - " return sinh(S1**S1)**_a0_\n", - ":2: RuntimeWarning: overflow encountered in sinh\n", - " return sinh(S1**S1)**_a0_\n", - ":2: RuntimeWarning: overflow encountered in sinh\n", - " return relu(sinh(cosh(S1)**2)**_a0_)\n", - ":2: RuntimeWarning: overflow encountered in sinh\n", - " return relu(sinh(cosh(S1)**2)**_a0_)\n", - ":2: RuntimeWarning: overflow encountered in sinh\n", - " return relu(sinh(cosh(S1)**2)**_a0_)\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return relu(relu(log(-S2*_a0_**(-_a0_)/relu(relu(S1)))))\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return relu(relu(log(-S2*_a0_**(-_a0_)/relu(relu(S1)))))\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return relu(relu(log(-S2*_a0_**(-_a0_)/relu(relu(S1)))))\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return sqrt(S2*cos(S1))*exp(-S1)\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return sqrt(S2*cos(S1))*exp(-S1)\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return sqrt(S2*cos(S1))*exp(-S1)\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu(sinh(_a0_/S1)**_a0_)\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu(sinh(_a0_/S1)**_a0_)\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return exp(-sqrt(_a0_)/relu(S1))/S1\n", - " 72%|███████▏ | 1083/1500 [01:17<00:32, 12.69it/s]:2: RuntimeWarning: divide by zero encountered in log\n", - " return log(relu(-S2)/relu(relu(S1)))\n", - ":2: RuntimeWarning: divide by zero encountered in log\n", - " return log(relu(-S2)/relu(relu(S1)))\n", - ":2: RuntimeWarning: divide by zero encountered in log\n", - " return log(relu(-S2)/relu(relu(S1)))\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return sinh(2*_a0_)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return sinh(2*_a0_)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return relu(relu(log(-1/(S2*relu(relu(S1))))))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return relu(relu(log(-1/(S2*relu(relu(S1))))))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return relu(relu(log(-1/(S2*relu(relu(S1))))))\n", - " 72%|███████▏ | 1085/1500 [01:17<00:31, 13.01it/s]:2: RuntimeWarning: invalid value encountered in power\n", - " return relu(relu(log(-S2/(_a0_*relu(relu(_a0_**S1))))))\n", - ":2: RuntimeWarning: divide by zero encountered in divide\n", - " return relu(relu(log(-S2/(_a0_*relu(relu(_a0_**S1))))))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu(relu(log(-S2/(_a0_*relu(relu(_a0_**S1))))))\n", - ":2: RuntimeWarning: divide by zero encountered in divide\n", - " return relu(relu(log(-S2/(_a0_*relu(relu(_a0_**S1))))))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu(relu(log(-S2/(_a0_*relu(relu(_a0_**S1))))))\n", - ":2: RuntimeWarning: divide by zero encountered in divide\n", - " return relu(relu(log(-S2/(_a0_*relu(relu(_a0_**S1))))))\n", - ":2: RuntimeWarning: overflow encountered in exp\n", - " return relu(relu(exp(cos(S1 + exp(S2**2*exp(relu(S2)))))))\n", - ":2: RuntimeWarning: invalid value encountered in cos\n", - " return relu(relu(exp(cos(S1 + exp(S2**2*exp(relu(S2)))))))\n", - ":2: RuntimeWarning: overflow encountered in exp\n", - " return relu(relu(exp(cos(S1 + exp(S2**2*exp(relu(S2)))))))\n", - ":2: RuntimeWarning: invalid value encountered in cos\n", - " return relu(relu(exp(cos(S1 + exp(S2**2*exp(relu(S2)))))))\n", - ":2: RuntimeWarning: overflow encountered in exp\n", - " return relu(relu(exp(cos(S1 + exp(S2**2*exp(relu(S2)))))))\n", - ":2: RuntimeWarning: invalid value encountered in cos\n", - " return relu(relu(exp(cos(S1 + exp(S2**2*exp(relu(S2)))))))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu(relu(cos(relu(S1))**_a0_))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu(relu(cos(relu(S1))**_a0_))\n", - " 72%|███████▏ | 1087/1500 [01:18<00:46, 8.91it/s]:2: RuntimeWarning: overflow encountered in exp\n", - " return relu(relu(exp(cos(S1 + exp(_a0_*exp(2*S2))))))\n", - ":2: RuntimeWarning: invalid value encountered in cos\n", - " return relu(relu(exp(cos(S1 + exp(_a0_*exp(2*S2))))))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return (_a0_/S2)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return (_a0_/S2)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu(relu(log(-(S2/_a0_)**relu(relu(S1)))))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu(relu(log(-(S2/_a0_)**relu(relu(S1)))))\n", - ":2: RuntimeWarning: overflow encountered in exp\n", - " return (sin((3*S1 + S2)**_a0_) + sinh(S1))*exp(-S1/_a0_)\n", - " 73%|███████▎ | 1089/1500 [01:18<00:42, 9.65it/s]:2: RuntimeWarning: divide by zero encountered in divide\n", - " return (relu(relu(S2/relu(_a0_)))/(S1 + _a0_))**sig(S1)\n", - ":2: RuntimeWarning: divide by zero encountered in scalar power\n", - " return relu(relu(_a0_)**_a0_/(S1 + _a0_))\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return sqrt(-sig(log(S2*relu(S2)))/S1)\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return sqrt(-sig(log(S2*relu(S2)))/S1)\n", - " 73%|███████▎ | 1091/1500 [01:18<00:37, 10.88it/s]:2: RuntimeWarning: invalid value encountered in log\n", - " return relu(relu(log(-1/relu(relu(S1)))))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return relu(relu(log(-1/relu(relu(S1)))))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(log(S2)/relu(relu(S1)))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(log(S2)/relu(relu(S1)))\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return relu((-sinh(_a0_**2))**_a0_)\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return relu((-sinh(_a0_**2))**_a0_)\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return relu((-sinh(_a0_**2))**_a0_)\n", - ":2: RuntimeWarning: divide by zero encountered in power\n", - " return relu(relu((relu(_a0_/S1)**2)**_a0_))\n", - ":2: RuntimeWarning: divide by zero encountered in power\n", - " return relu(relu((relu(_a0_/S1)**2)**_a0_))\n", - ":2: RuntimeWarning: divide by zero encountered in power\n", - " return relu(relu((relu(_a0_/S1)**2)**_a0_))\n", - ":2: RuntimeWarning: invalid value encountered in divide\n", - " return sqrt(S2)*_a0_/(relu(abs(_a0_))*sqrt(tanh(S1)))\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return sqrt(S2**2/_a0_)*exp(-S1)\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return relu(relu(relu(S2/_a0_)/sqrt(S1*log(S1))))\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return relu(relu(relu(S2/_a0_)/sqrt(S1*log(S1))))\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return relu(relu(relu(S2/_a0_)/sqrt(S1*log(S1))))\n", - ":2: RuntimeWarning: divide by zero encountered in scalar power\n", - " return sinh(relu(_a0_))**sin(_a0_)\n", - ":2: RuntimeWarning: divide by zero encountered in scalar power\n", - " return sinh(relu(_a0_))**sin(_a0_)\n", - ":2: RuntimeWarning: divide by zero encountered in scalar power\n", - " return sinh(relu(_a0_))**sin(_a0_)\n", - ":2: RuntimeWarning: divide by zero encountered in power\n", - " return relu(tan(S1))**_a0_\n", - ":2: RuntimeWarning: divide by zero encountered in power\n", - " return relu(tan(S1))**_a0_\n", - " 73%|███████▎ | 1093/1500 [01:18<00:35, 11.53it/s]:2: RuntimeWarning: divide by zero encountered in divide\n", - " return relu(relu(log(-S2/(_a0_*relu(_a0_/S1)))))\n", - ":2: RuntimeWarning: divide by zero encountered in divide\n", - " return relu(relu(log(-S2/(_a0_*relu(_a0_/S1)))))\n", - ":2: RuntimeWarning: divide by zero encountered in divide\n", - " return relu(relu(log(-S2/(_a0_*relu(_a0_/S1)))))\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return sqrt(S2*_a0_)/S2**2\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return (sin((3*S1 + S2)**_a0_) + 1/sqrt(_a0_))*exp(-S1/_a0_)\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return sinh(tan(S1))**sin(_a0_)\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return sinh(tan(S1))**sin(_a0_)\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return sinh(tan(S1))**sin(_a0_)\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return exp(-sqrt(_a0_)/relu(S1))/S1\n", - " 73%|███████▎ | 1095/1500 [01:18<00:33, 12.08it/s]:2: RuntimeWarning: invalid value encountered in power\n", - " return relu(S2)*log(sig(relu(S1)))**(S1*_a0_)\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return relu(log(-sig(S2)/relu(relu(S1))))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return relu(log(-sig(S2)/relu(relu(S1))))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return relu(log(-sig(S2)/relu(relu(S1))))\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return relu(relu(relu(S2/_a0_)/sqrt(S1*log(S2))))\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return relu(relu(relu(S2/_a0_)/sqrt(S1*log(S2))))\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return relu(relu(relu(S2/_a0_)/sqrt(S1*log(S2))))\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return sqrt(sig(log(S2*relu(S2)))/tan(S1))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return sinh(_a0_/S1)**sin(_a0_)\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return sinh(_a0_/S1)**sin(_a0_)\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return sinh(_a0_/S1)**sin(_a0_)\n", - " 73%|███████▎ | 1097/1500 [01:19<00:33, 11.92it/s]:2: RuntimeWarning: divide by zero encountered in log\n", - " return log(log(S2/S1))\n", - ":2: RuntimeWarning: divide by zero encountered in log\n", - " return log(log(S2/S1))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return (_a0_/S2)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return (_a0_/S2)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return sinh(_a0_)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return relu(sqrt(sig(log(S2*relu(S2)))/tan(S1)))\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return relu(sqrt(sig(log(S2*relu(S2)))/tan(S1)))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return (_a0_**S2)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return (_a0_**S2)**_a0_\n", - " 73%|███████▎ | 1099/1500 [01:19<00:32, 12.28it/s]:2: RuntimeWarning: divide by zero encountered in divide\n", - " return log(relu(S2)/relu(-S1))\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return sqrt(S2)*_a0_/(relu(abs(fac(S1)))*sqrt(tan(S1)))\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return sqrt(S2)*_a0_/(relu(abs(fac(S1)))*sqrt(tan(S1)))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu(relu(S2*relu(_a0_**S1)**S1))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu(relu(S2*relu(_a0_**S1)**S1))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu(relu(S2*relu(_a0_**S1)**S1))\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return _a0_**sin(_a0_)\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return _a0_**sin(_a0_)\n", - ":2: RuntimeWarning: divide by zero encountered in divide\n", - " return exp(-sig(_a0_)/relu(S2 + _a0_))/S1\n", - ":2: RuntimeWarning: divide by zero encountered in divide\n", - " return exp(-sig(_a0_)/relu(S2 + _a0_))/S1\n", - ":2: RuntimeWarning: divide by zero encountered in divide\n", - " return exp(-sig(_a0_)/relu(S2 + _a0_))/S1\n", - " 73%|███████▎ | 1101/1500 [01:19<00:32, 12.40it/s]:2: RuntimeWarning: invalid value encountered in power\n", - " return exp(-S1/_a0_)*sin((3*S1 + S2)**_a0_)**(S2/_a0_)\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return exp(-S1/_a0_)*sin((3*S1 + S2)**_a0_)**(S2/_a0_)\n", - ":2: RuntimeWarning: divide by zero encountered in scalar power\n", - " return relu(relu(tanh(_a0_))**_a0_/(S1 + _a0_))\n", - ":2: RuntimeWarning: divide by zero encountered in power\n", - " return relu(-S1)**_a0_\n", - ":2: RuntimeWarning: divide by zero encountered in power\n", - " return relu(-S1)**_a0_\n", - ":2: RuntimeWarning: divide by zero encountered in divide\n", - " return relu(log(-S2/(_a0_*relu(_a0_))))\n", - ":2: RuntimeWarning: divide by zero encountered in divide\n", - " return relu(log(-S2/(_a0_*relu(_a0_))))\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return relu(relu(relu(S2/_a0_)/sqrt(-S2*_a0_)))\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return relu(relu(relu(S2/_a0_)/sqrt(-S2*_a0_)))\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return relu(relu(relu(S2/_a0_)/sqrt(-S2*_a0_)))\n", - ":2: RuntimeWarning: divide by zero encountered in scalar power\n", - " return sinh(fac(_a0_))**sin(_a0_)\n", - ":2: RuntimeWarning: divide by zero encountered in scalar power\n", - " return sinh(fac(_a0_))**sin(_a0_)\n", - ":2: RuntimeWarning: divide by zero encountered in scalar power\n", - " return sinh(fac(_a0_))**sin(_a0_)\n", - " 74%|███████▎ | 1103/1500 [01:19<00:31, 12.52it/s]:2: RuntimeWarning: invalid value encountered in sqrt\n", - " return sqrt(-S2/S1)*exp(-S1)\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return sqrt(-S2/S1)*exp(-S1)\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return sqrt(-S2/S1)*exp(-S1)\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu(relu(S2*relu(_a0_**S2)**S1))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu(relu(S2*relu(_a0_**S2)**S1))\n", - ":2: RuntimeWarning: divide by zero encountered in divide\n", - " return (relu(relu(S1/relu(_a0_)))/relu(S1))**sig(S1)\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return relu(relu(exp(cos(S1 + exp(_a0_*exp(_a0_**_a0_))))))\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return relu(relu(exp(cos(S1 + exp(_a0_*exp(_a0_**_a0_))))))\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return relu(relu(exp(cos(S1 + exp(_a0_*exp(_a0_**_a0_))))))\n", - " 74%|███████▎ | 1105/1500 [01:19<00:30, 13.06it/s]:2: RuntimeWarning: divide by zero encountered in log\n", - " return log(relu(cos(S2))/relu(relu(S1)))\n", - ":2: RuntimeWarning: divide by zero encountered in log\n", - " return log(relu(cos(S2))/relu(relu(S1)))\n", - ":2: RuntimeWarning: divide by zero encountered in log\n", - " return log(relu(cos(S2))/relu(relu(S1)))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return relu(log(-exp(S1)/relu(relu(S1))))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return relu(log(-exp(S1)/relu(relu(S1))))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return relu(log(-exp(S1)/relu(relu(S1))))\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return sinh(_a0_)**sin(_a0_)\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return sinh(_a0_)**sin(_a0_)\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return sinh(_a0_)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu(log(-S2*_a0_**(-S1)/relu(relu(S1))))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu(log(-S2*_a0_**(-S1)/relu(relu(S1))))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu(log(-S2*_a0_**(-S1)/relu(relu(S1))))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return (S2*_a0_)**sin(_a0_)\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return (S2*_a0_)**sin(_a0_)\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return (S2*_a0_)**sin(_a0_)\n", - " 74%|███████▍ | 1107/1500 [01:19<00:29, 13.19it/s]:2: RuntimeWarning: invalid value encountered in log\n", - " return relu(log(-S2/(_a0_*relu(S2**S1))))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(tan(S1))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(tan(S1))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu(sin(S2)**_a0_/(S1 + _a0_))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu(sin(S2)**_a0_/(S1 + _a0_))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu(sinh(_a0_/S1)**_a0_)\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu(sinh(_a0_/S1)**_a0_)\n", - " 74%|███████▍ | 1109/1500 [01:19<00:28, 13.55it/s]:2: RuntimeWarning: invalid value encountered in log\n", - " return relu(log(-sinh(S2)/relu(relu(S1))))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return relu(log(-sinh(S2)/relu(relu(S1))))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return relu(log(-sinh(S2)/relu(relu(S1))))\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return relu(relu(exp(cos(S1 + sqrt(_a0_*exp(relu(S2)))))))\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return relu(relu(exp(cos(S1 + sqrt(_a0_*exp(relu(S2)))))))\n", - ":2: RuntimeWarning: overflow encountered in power\n", - " return S1**(S1**S1)\n", - ":2: RuntimeWarning: overflow encountered in power\n", - " return S1**(S1**S1)\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return relu(relu(log(S2/_a0_)/sqrt(S1*S2)))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu(sinh(_a0_/S2)**_a0_)\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu(sinh(_a0_/S2)**_a0_)\n", - ":2: RuntimeWarning: overflow encountered in power\n", - " return relu(relu((relu(S1)**2)**(S1**S2)))\n", - ":2: RuntimeWarning: overflow encountered in power\n", - " return relu(relu((relu(S1)**2)**(S1**S2)))\n", - ":2: RuntimeWarning: overflow encountered in power\n", - " return relu(relu((relu(S1)**2)**(S1**S2)))\n", - " 74%|███████▍ | 1111/1500 [01:20<00:29, 12.99it/s]:2: RuntimeWarning: divide by zero encountered in log\n", - " return log(relu(-S2)/relu(relu(S1)))\n", - ":2: RuntimeWarning: divide by zero encountered in log\n", - " return log(relu(-S2)/relu(relu(S1)))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return relu(log(-S2/(S1*relu(relu(S1)))))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return sinh(_a0_**S2)**sin(_a0_)\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return sinh(_a0_**S2)**sin(_a0_)\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return sinh(_a0_**S2)**sin(_a0_)\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return (S2 + _a0_)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return (S2 + _a0_)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return relu(sqrt(sig(log(S2*relu(S2)))/log(S1)))\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return relu(sqrt(sig(log(S2*relu(S2)))/log(S1)))\n", - " 74%|███████▍ | 1113/1500 [01:20<00:28, 13.50it/s]:2: RuntimeWarning: divide by zero encountered in divide\n", - " return (relu(relu(S2/relu(S1/_a0_)))/relu(S1))**sig(S1)\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return (_a0_**_a0_)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return (_a0_**_a0_)**_a0_\n", - ":2: RuntimeWarning: divide by zero encountered in log\n", - " return log(relu(relu(S2/_a0_)/sqrt(S1*S2)))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return relu(relu(exp(cos(exp(_a0_*exp(relu(S2))) + log(_a0_)))))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return relu(relu(exp(cos(exp(_a0_*exp(relu(S2))) + log(_a0_)))))\n", - " 74%|███████▍ | 1115/1500 [01:20<00:28, 13.33it/s]:2: RuntimeWarning: invalid value encountered in log\n", - " return relu(log(-1/(S1*relu(relu(S1)))))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return relu(log(-1/(S1*relu(relu(S1)))))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return relu(log(-1/(S1*relu(relu(S1)))))\n", - ":2: RuntimeWarning: divide by zero encountered in log\n", - " return relu(sqrt(sig(log(relu(S2)*log(_a0_)))/relu(S1)))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return relu(log(tan(S2/(_a0_*relu(relu(S1))))))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return (_a0_**S2)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return (_a0_**S2)**_a0_\n", - " 74%|███████▍ | 1117/1500 [01:20<00:28, 13.50it/s]:2: RuntimeWarning: divide by zero encountered in divide\n", - " return log(relu(S2)/relu(relu(S2 + _a0_)))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return sinh(S1)**log(_a0_)\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return sinh(S1)**log(_a0_)\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return (S2/_a0_)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return (S2/_a0_)**_a0_\n", - " 75%|███████▍ | 1119/1500 [01:20<00:28, 13.49it/s]:2: RuntimeWarning: invalid value encountered in power\n", - " return sin(S1)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return relu(S1)**log(_a0_)\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return relu(S1)**log(_a0_)\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return relu(S1)**log(_a0_)\n", - " 75%|███████▍ | 1121/1500 [01:20<00:28, 13.48it/s]:2: RuntimeWarning: invalid value encountered in log\n", - " return log(tan(S2)/relu(relu(S1)))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(tan(S2)/relu(relu(S1)))\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return relu(relu(relu(S2/_a0_)/sqrt(S2*(S2 + _a0_))))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu(relu(S2*relu(sig(_a0_))**(_a0_**S2)))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu(relu(S2*relu(sig(_a0_))**(_a0_**S2)))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu(relu(S2*relu(sig(_a0_))**(_a0_**S2)))\n", - ":2: RuntimeWarning: divide by zero encountered in scalar power\n", - " return relu(_a0_)**_a0_\n", - ":2: RuntimeWarning: divide by zero encountered in divide\n", - " return relu(log(-S2/(_a0_*relu(relu(2*_a0_)))))\n", - ":2: RuntimeWarning: divide by zero encountered in divide\n", - " return relu(log(-S2/(_a0_*relu(relu(2*_a0_)))))\n", - ":2: RuntimeWarning: divide by zero encountered in divide\n", - " return relu(log(-S2/(_a0_*relu(relu(2*_a0_)))))\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return sinh(sin(_a0_))**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return sinh(sin(_a0_))**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return sinh(sin(_a0_))**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return relu(sinh(_a0_)**_a0_)\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return relu(sinh(_a0_)**_a0_)\n", - " 75%|███████▍ | 1123/1500 [01:21<00:28, 13.08it/s]:2: RuntimeWarning: invalid value encountered in sqrt\n", - " return sqrt(relu(S2)**_a0_/(_a0_ + relu(S1)))\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return relu(_a0_**_a0_/(_a0_ + relu(S1)))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return cos(S1)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return relu(sinh(_a0_)**_a0_)\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return relu(sinh(_a0_)**_a0_)\n", - " 75%|███████▌ | 1125/1500 [01:21<00:28, 13.22it/s]:2: RuntimeWarning: invalid value encountered in log\n", - " return relu(log(-S1/relu(relu(S1))))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return relu(log(-S1/relu(relu(S1))))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return (-relu(relu(S2/relu(2*_a0_)))/S1)**sig(S1)\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return (-relu(relu(S2/relu(2*_a0_)))/S1)**sig(S1)\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return sqrt(S2/tan(S2))*exp(-S1)\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return sqrt(S2/tan(S2))*exp(-S1)\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return sqrt(S2/tan(S2))*exp(-S1)\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return sinh(cos(S1))**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return sinh(cos(S1))**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu(relu(exp(cos(S1 + exp(_a0_*exp(_a0_**S2))))))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu(relu(exp(cos(S1 + exp(_a0_*exp(_a0_**S2))))))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu(relu(exp(cos(S1 + exp(_a0_*exp(_a0_**S2))))))\n", - " 75%|███████▌ | 1127/1500 [01:21<00:28, 13.09it/s]:2: RuntimeWarning: invalid value encountered in log\n", - " return exp(-sig(log(_a0_))/relu(S1))/S1\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return exp(-sig(log(_a0_))/relu(S1))/S1\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return exp(-sig(log(_a0_))/relu(S1))/S1\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return relu(log(-S2**2/relu(relu(S1))))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return relu(log(-S2**2/relu(relu(S1))))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return relu(log(-S2**2/relu(relu(S1))))\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return sqrt(S2/log(S2))*exp(-S1)\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return sqrt(S2/log(S2))*exp(-S1)\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return sqrt(S2/log(S2))*exp(-S1)\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu((S1*_a0_)**_a0_)\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu((S1*_a0_)**_a0_)\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return log(S2)**(-_a0_)\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return log(S2)**(-_a0_)\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return sin(S1)**_a0_\n", - " 75%|███████▌ | 1129/1500 [01:21<00:28, 13.18it/s]:2: RuntimeWarning: invalid value encountered in log\n", - " return relu(log(-S2/(relu(relu(S1))*log(S2))))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return relu(log(-S2/(relu(relu(S1))*log(S2))))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return relu(log(-S2/(relu(relu(S1))*log(S2))))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return relu(sqrt(sig(log(relu(S2)*cos(S2)))/relu(S1)))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return relu(sqrt(sig(log(relu(S2)*cos(S2)))/relu(S1)))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return relu(sqrt(sig(log(relu(S2)*cos(S2)))/relu(S1)))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu(relu(exp(cos(S1 + exp(_a0_*exp(relu(_a0_**S2)))))))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu(relu(exp(cos(S1 + exp(_a0_*exp(relu(_a0_**S2)))))))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu(relu(exp(cos(S1 + exp(_a0_*exp(relu(_a0_**S2)))))))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log((S2 + _a0_)/relu(relu(S1)))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return relu(log(-log(S1)/relu(relu(S1))))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return relu(log(-log(S1)/relu(relu(S1))))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return relu(log(-log(S1)/relu(relu(S1))))\n", - ":2: RuntimeWarning: divide by zero encountered in divide\n", - " return (relu(relu(S2/relu(2*_a0_)))/S2)**sig(S1)\n", - " 75%|███████▌ | 1131/1500 [01:21<00:27, 13.37it/s]:2: RuntimeWarning: divide by zero encountered in divide\n", - " return relu(log(-S2/(_a0_*relu(sin(S1)))))\n", - ":2: RuntimeWarning: divide by zero encountered in divide\n", - " return relu(log(-S2/(_a0_*relu(sin(S1)))))\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return relu(sqrt(sig(log(S2*relu(S2)))/(S2 + _a0_)))\n", - ":2: RuntimeWarning: overflow encountered in exp\n", - " return relu(relu(exp(cos(S1 + exp(relu(S1)*exp(relu(S2)))))))\n", - ":2: RuntimeWarning: invalid value encountered in cos\n", - " return relu(relu(exp(cos(S1 + exp(relu(S1)*exp(relu(S2)))))))\n", - ":2: RuntimeWarning: overflow encountered in exp\n", - " return relu(relu(exp(cos(S1 + exp(relu(S1)*exp(relu(S2)))))))\n", - ":2: RuntimeWarning: invalid value encountered in cos\n", - " return relu(relu(exp(cos(S1 + exp(relu(S1)*exp(relu(S2)))))))\n", - ":2: RuntimeWarning: overflow encountered in exp\n", - " return relu(relu(exp(cos(S1 + exp(relu(S1)*exp(relu(S2)))))))\n", - ":2: RuntimeWarning: invalid value encountered in cos\n", - " return relu(relu(exp(cos(S1 + exp(relu(S1)*exp(relu(S2)))))))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu(relu((_a0_**(2*S1))**_a0_))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu(relu((_a0_**(2*S1))**_a0_))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu(relu((_a0_**(2*S1))**_a0_))\n", - ":2: RuntimeWarning: divide by zero encountered in scalar power\n", - " return relu(relu((relu(fac(_a0_))**2)**_a0_))\n", - ":2: RuntimeWarning: divide by zero encountered in scalar power\n", - " return relu(relu((relu(fac(_a0_))**2)**_a0_))\n", - ":2: RuntimeWarning: divide by zero encountered in scalar power\n", - " return relu(relu((relu(fac(_a0_))**2)**_a0_))\n", - " 76%|███████▌ | 1133/1500 [01:21<00:28, 13.08it/s]:2: RuntimeWarning: invalid value encountered in power\n", - " return exp(-_a0_**S2/relu(S1))/S1\n", - ":2: RuntimeWarning: overflow encountered in exp\n", - " return exp(-_a0_**S2/relu(S1))/S1\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return exp(-_a0_**S2/relu(S1))/S1\n", - ":2: RuntimeWarning: overflow encountered in exp\n", - " return exp(-_a0_**S2/relu(S1))/S1\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return sinh(log(S1))**(-_a0_)\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return sinh(log(S1))**(-_a0_)\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return sinh(log(S1))**(-_a0_)\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return exp(-_a0_**(-_a0_)*sig(_a0_))/S1\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return exp(-_a0_**(-_a0_)*sig(_a0_))/S1\n", - ":2: RuntimeWarning: divide by zero encountered in power\n", - " return relu(relu((relu(S2 + _a0_)**2)**_a0_))\n", - ":2: RuntimeWarning: divide by zero encountered in power\n", - " return relu(relu((relu(S2 + _a0_)**2)**_a0_))\n", - ":2: RuntimeWarning: divide by zero encountered in power\n", - " return relu(relu((relu(S2 + _a0_)**2)**_a0_))\n", - " 76%|███████▌ | 1135/1500 [01:21<00:28, 13.01it/s]:2: RuntimeWarning: invalid value encountered in power\n", - " return log(S2)**(-_a0_)\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return log(S2)**(-_a0_)\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return relu(relu(relu(S2/_a0_)/sqrt(S1*log(S1))))\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return relu(relu(relu(S2/_a0_)/sqrt(S1*log(S1))))\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return relu(sqrt(tanh(log(S2*relu(S2)))/relu(S1)))\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return relu(sqrt(tanh(log(S2*relu(S2)))/relu(S1)))\n", - " 76%|███████▌ | 1137/1500 [01:22<00:29, 12.45it/s]:2: RuntimeWarning: invalid value encountered in sqrt\n", - " return sqrt(S2)*_a0_/(sqrt(-S1)*relu(abs(fac(S1))))\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return sqrt(S2)*_a0_/(sqrt(-S1)*relu(abs(fac(S1))))\n", - ":2: RuntimeWarning: divide by zero encountered in power\n", - " return relu(relu((relu(_a0_/S2)**2)**_a0_))\n", - ":2: RuntimeWarning: divide by zero encountered in power\n", - " return relu(relu((relu(_a0_/S2)**2)**_a0_))\n", - ":2: RuntimeWarning: divide by zero encountered in power\n", - " return relu(relu((relu(_a0_/S2)**2)**_a0_))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return relu(log(-S2/(S1*relu(relu(S1)))))\n", - ":2: RuntimeWarning: divide by zero encountered in divide\n", - " return (relu(relu(S1/relu(2*_a0_)))/relu(S1))**sig(S1)\n", - ":2: RuntimeWarning: divide by zero encountered in divide\n", - " return sqrt(S2)*_a0_/(relu(log(fac(S1)))*sqrt(tanh(S1)))\n", - ":2: RuntimeWarning: divide by zero encountered in divide\n", - " return sqrt(S2)*_a0_/(relu(log(fac(S1)))*sqrt(tanh(S1)))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return (_a0_/S2)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return (_a0_/S2)**_a0_\n", - " 76%|███████▌ | 1139/1500 [01:22<00:29, 12.06it/s]:2: RuntimeWarning: invalid value encountered in log\n", - " return relu(log(-S1/relu(relu(S1))))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return relu(log(-S1/relu(relu(S1))))\n", - ":2: RuntimeWarning: divide by zero encountered in divide\n", - " return (relu(relu(S2/relu(2*_a0_)))/relu(sinh(S2)))**sig(S1)\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return S1**(-_a0_**S1)\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return tan(S1)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return relu(log(-S2*exp(-S2)/relu(relu(S1))))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return relu(log(-S2*exp(-S2)/relu(relu(S1))))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return relu(log(-S2*exp(-S2)/relu(relu(S1))))\n", - ":2: RuntimeWarning: divide by zero encountered in divide\n", - " return (relu(relu(S2/relu(2*_a0_)))/relu(S2))**sig(S1)\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return relu(relu(relu(relu(S2/_a0_)/sqrt(cos(_a0_)))))\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return relu(relu(relu(relu(S2/_a0_)/sqrt(cos(_a0_)))))\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return relu(relu(relu(relu(S2/_a0_)/sqrt(cos(_a0_)))))\n", - ":2: RuntimeWarning: divide by zero encountered in divide\n", - " return relu(sqrt(sig(log(S2**2))/relu(-_a0_)))\n", - ":2: RuntimeWarning: divide by zero encountered in divide\n", - " return relu(sqrt(sig(log(S2**2))/relu(-_a0_)))\n", - ":2: RuntimeWarning: divide by zero encountered in divide\n", - " return relu(sqrt(sig(log(S2**2))/relu(-_a0_)))\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return relu(relu((2*_a0_)**_a0_))\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return relu(relu((2*_a0_)**_a0_))\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return relu(relu((2*_a0_)**_a0_))\n", - " 76%|███████▌ | 1141/1500 [01:22<00:30, 11.89it/s]:2: RuntimeWarning: invalid value encountered in power\n", - " return relu(relu(tan(relu(S1))**_a0_))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu(relu(tan(relu(S1))**_a0_))\n", - ":2: RuntimeWarning: divide by zero encountered in divide\n", - " return relu(log(-S2/(_a0_*relu(log(S1)))))\n", - ":2: RuntimeWarning: divide by zero encountered in divide\n", - " return relu(log(-S2/(_a0_*relu(log(S1)))))\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return relu(relu(relu(relu(S2/_a0_)/sqrt(S1*cos(S2)))))\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return relu(relu(relu(relu(S2/_a0_)/sqrt(S1*cos(S2)))))\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return relu(relu(relu(relu(S2/_a0_)/sqrt(S1*cos(S2)))))\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return relu(sqrt(sqrt(log(S2**2))/relu(S1)))\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return relu(sqrt(sqrt(log(S2**2))/relu(S1)))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu(relu((S1 + _a0_)**_a0_))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu(relu((S1 + _a0_)**_a0_))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu(relu((S1 + _a0_)**_a0_))\n", - ":2: RuntimeWarning: divide by zero encountered in power\n", - " return relu(relu((relu(_a0_/S2)**2)**_a0_))\n", - ":2: RuntimeWarning: divide by zero encountered in power\n", - " return relu(relu((relu(_a0_/S2)**2)**_a0_))\n", - " 76%|███████▌ | 1143/1500 [01:22<00:28, 12.39it/s]:2: RuntimeWarning: invalid value encountered in log\n", - " return log(S2/cos(S2))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(S2/cos(S2))\n", - ":2: RuntimeWarning: divide by zero encountered in log\n", - " return log(relu(log(S1))/relu(relu(S1)))\n", - ":2: RuntimeWarning: divide by zero encountered in log\n", - " return log(relu(log(S1))/relu(relu(S1)))\n", - ":2: RuntimeWarning: divide by zero encountered in log\n", - " return log(relu(log(S1))/relu(relu(S1)))\n", - ":2: RuntimeWarning: divide by zero encountered in divide\n", - " return relu(log(-S2/(_a0_*relu(_a0_/S1))))\n", - ":2: RuntimeWarning: divide by zero encountered in divide\n", - " return relu(log(-S2/(_a0_*relu(_a0_/S1))))\n", - ":2: RuntimeWarning: divide by zero encountered in divide\n", - " return relu(log(-S2/(_a0_*relu(_a0_/S1))))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return tan(S1)**_a0_\n", - " 76%|███████▋ | 1145/1500 [01:22<00:28, 12.51it/s]:2: RuntimeWarning: invalid value encountered in power\n", - " return relu(log(-S2/(_a0_*relu(_a0_**S2))))\n", - ":2: RuntimeWarning: divide by zero encountered in divide\n", - " return relu(log(-S2/(_a0_*relu(_a0_**S2))))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu(log(-S2/(_a0_*relu(_a0_**S2))))\n", - ":2: RuntimeWarning: divide by zero encountered in divide\n", - " return relu(log(-S2/(_a0_*relu(_a0_**S2))))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu(log(-S2/(_a0_*relu(_a0_**S2))))\n", - ":2: RuntimeWarning: divide by zero encountered in divide\n", - " return relu(log(-S2/(_a0_*relu(_a0_**S2))))\n", - ":2: RuntimeWarning: divide by zero encountered in power\n", - " return relu(relu(log(S1))**_a0_/(_a0_ + relu(S1)))\n", - ":2: RuntimeWarning: overflow encountered in exp\n", - " return relu(relu(exp(cos(S1 + exp(S2*exp(relu(S2)))))))\n", - ":2: RuntimeWarning: invalid value encountered in cos\n", - " return relu(relu(exp(cos(S1 + exp(S2*exp(relu(S2)))))))\n", - ":2: RuntimeWarning: divide by zero encountered in divide\n", - " return exp(-sig(_a0_)/relu(S1))/relu(_a0_)\n", - ":2: RuntimeWarning: divide by zero encountered in divide\n", - " return exp(-sig(_a0_)/relu(S1))/relu(_a0_)\n", - ":2: RuntimeWarning: divide by zero encountered in divide\n", - " return exp(-sig(_a0_)/relu(S1))/relu(_a0_)\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return relu(log(-S2*exp(-S1)/relu(relu(S1))))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return relu(log(-S2*exp(-S1)/relu(relu(S1))))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return relu(log(-S2*exp(-S1)/relu(relu(S1))))\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return sqrt(S2)*_a0_/(relu(abs(fac(S1)))*sqrt(sin(S1)))\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return sqrt(S2)*_a0_/(relu(abs(fac(S1)))*sqrt(sin(S1)))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return S1**log(_a0_)\n", - ":2: RuntimeWarning: divide by zero encountered in power\n", - " return relu(-S1)**_a0_\n", - ":2: RuntimeWarning: divide by zero encountered in power\n", - " return relu(-S1)**_a0_\n", - " 76%|███████▋ | 1147/1500 [01:22<00:27, 12.95it/s]:2: RuntimeWarning: invalid value encountered in power\n", - " return relu(relu(sinh(_a0_**S1)**_a0_))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu(relu(sinh(_a0_**S1)**_a0_))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu(relu(sinh(_a0_**S1)**_a0_))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return (_a0_**S2)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return (_a0_**S2)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu(log(-S2/(_a0_*relu(_a0_**S1))))\n", - ":2: RuntimeWarning: divide by zero encountered in divide\n", - " return relu(log(-S2/(_a0_*relu(_a0_**S1))))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu(log(-S2/(_a0_*relu(_a0_**S1))))\n", - ":2: RuntimeWarning: divide by zero encountered in divide\n", - " return relu(log(-S2/(_a0_*relu(_a0_**S1))))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu(log(-S2/(_a0_*relu(_a0_**S1))))\n", - ":2: RuntimeWarning: divide by zero encountered in divide\n", - " return relu(log(-S2/(_a0_*relu(_a0_**S1))))\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return sqrt((S1 + _a0_)/_a0_)*exp(-S1)\n", - ":2: RuntimeWarning: overflow encountered in exp\n", - " return relu(relu(exp(cos(S1 + exp(_a0_*exp(S1**S2))))))\n", - ":2: RuntimeWarning: overflow encountered in exp\n", - " return relu(relu(exp(cos(S1 + exp(_a0_*exp(S1**S2))))))\n", - ":2: RuntimeWarning: overflow encountered in exp\n", - " return relu(relu(exp(cos(S1 + exp(_a0_*exp(S1**S2))))))\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return (_a0_**3)**(-_a0_)\n", - ":2: RuntimeWarning: divide by zero encountered in scalar power\n", - " return relu(_a0_)**_a0_\n", - " 77%|███████▋ | 1149/1500 [01:23<00:26, 13.06it/s]:2: RuntimeWarning: invalid value encountered in power\n", - " return tan(S1)**(-_a0_)\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return tan(S1)**(-_a0_)\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return relu(relu(sinh(_a0_**_a0_)**_a0_))\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return relu(relu(sinh(_a0_**_a0_)**_a0_))\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return relu(relu(sinh(_a0_**_a0_)**_a0_))\n", - ":2: RuntimeWarning: overflow encountered in exp\n", - " return relu(relu(exp(cos(S1 + exp(_a0_*exp(relu(S1**S2)))))))\n", - ":2: RuntimeWarning: overflow encountered in exp\n", - " return relu(relu(exp(cos(S1 + exp(_a0_*exp(relu(S1**S2)))))))\n", - ":2: RuntimeWarning: overflow encountered in exp\n", - " return relu(relu(exp(cos(S1 + exp(_a0_*exp(relu(S1**S2)))))))\n", - " 77%|███████▋ | 1151/1500 [01:23<00:28, 12.25it/s]:2: RuntimeWarning: invalid value encountered in power\n", - " return (S2 + _a0_)**(-_a0_)\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return exp(-_a0_**S2/relu(S1))/S1\n", - ":2: RuntimeWarning: overflow encountered in exp\n", - " return exp(-_a0_**S2/relu(S1))/S1\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return exp(-_a0_**S2/relu(S1))/S1\n", - ":2: RuntimeWarning: overflow encountered in exp\n", - " return exp(-_a0_**S2/relu(S1))/S1\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return relu(log(-abs(_a0_)/relu(relu(S1))))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return relu(log(-abs(_a0_)/relu(relu(S1))))\n", - " 77%|███████▋ | 1153/1500 [01:23<00:29, 11.84it/s]:2: RuntimeWarning: divide by zero encountered in divide\n", - " return relu(log(-S2/(_a0_*relu(relu(_a0_)))))\n", - ":2: RuntimeWarning: divide by zero encountered in divide\n", - " return relu(log(-S2/(_a0_*relu(relu(_a0_)))))\n", - ":2: RuntimeWarning: overflow encountered in exp\n", - " return relu(relu(exp(cos(S1 + exp(exp(relu(relu(S2)))*abs(S1))))))\n", - ":2: RuntimeWarning: invalid value encountered in cos\n", - " return relu(relu(exp(cos(S1 + exp(exp(relu(relu(S2)))*abs(S1))))))\n", - ":2: RuntimeWarning: overflow encountered in exp\n", - " return relu(relu(exp(cos(S1 + exp(exp(relu(relu(S2)))*abs(S1))))))\n", - ":2: RuntimeWarning: invalid value encountered in cos\n", - " return relu(relu(exp(cos(S1 + exp(exp(relu(relu(S2)))*abs(S1))))))\n", - ":2: RuntimeWarning: overflow encountered in exp\n", - " return relu(relu(exp(cos(S1 + exp(exp(relu(relu(S2)))*abs(S1))))))\n", - ":2: RuntimeWarning: invalid value encountered in cos\n", - " return relu(relu(exp(cos(S1 + exp(exp(relu(relu(S2)))*abs(S1))))))\n", - ":2: RuntimeWarning: overflow encountered in power\n", - " return S1**(S1**S1)\n", - ":2: RuntimeWarning: overflow encountered in power\n", - " return S1**(S1**S1)\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return (_a0_**S2)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return (_a0_**S2)**_a0_\n", - " 77%|███████▋ | 1155/1500 [01:23<00:28, 12.01it/s]:2: RuntimeWarning: invalid value encountered in sqrt\n", - " return sqrt(S2)*_a0_/(sqrt(-S1)*relu(abs(fac(S1))))\n", - ":2: RuntimeWarning: divide by zero encountered in divide\n", - " return (relu(relu(S2/relu(_a0_)))/relu(-S2))**sig(S1)\n", - ":2: RuntimeWarning: divide by zero encountered in divide\n", - " return (relu(relu(S2/relu(_a0_)))/relu(-S2))**sig(S1)\n", - ":2: RuntimeWarning: divide by zero encountered in divide\n", - " return (relu(relu(S2/relu(_a0_)))/relu(-S2))**sig(S1)\n", - " 77%|███████▋ | 1157/1500 [01:23<00:27, 12.39it/s]:2: RuntimeWarning: invalid value encountered in log\n", - " return relu(log(-1/relu(relu(S1))))\n", - ":2: RuntimeWarning: divide by zero encountered in divide\n", - " return relu(sqrt(sig(log(S2**2))/relu(cos(S1))))\n", - ":2: RuntimeWarning: divide by zero encountered in divide\n", - " return relu(sqrt(sig(log(S2**2))/relu(cos(S1))))\n", - ":2: RuntimeWarning: divide by zero encountered in divide\n", - " return relu(sqrt(sig(log(S2**2))/relu(cos(S1))))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return sinh(_a0_/S2)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return sinh(_a0_/S2)**_a0_\n", - ":2: RuntimeWarning: divide by zero encountered in divide\n", - " return log(relu(S2)/relu(relu(S1 + _a0_)))\n", - " 77%|███████▋ | 1159/1500 [01:23<00:28, 12.00it/s]:2: RuntimeWarning: invalid value encountered in log\n", - " return relu(log(-1/relu(relu(S1))))\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return sinh(_a0_)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return _a0_*relu(log(-S2/(_a0_*relu(relu(S1)))))\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return relu(relu(relu(relu(S2/_a0_)/sqrt(log(S2)))))\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return relu(relu(relu(relu(S2/_a0_)/sqrt(log(S2)))))\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return relu(relu(relu(relu(S2/_a0_)/sqrt(log(S2)))))\n", - ":2: RuntimeWarning: overflow encountered in exp\n", - " return relu(relu(exp(cos(S1 + exp(S2*exp(relu(relu(S2))))))))\n", - ":2: RuntimeWarning: invalid value encountered in cos\n", - " return relu(relu(exp(cos(S1 + exp(S2*exp(relu(relu(S2))))))))\n", - ":2: RuntimeWarning: overflow encountered in exp\n", - " return relu(relu(exp(cos(S1 + exp(S2*exp(relu(relu(S2))))))))\n", - ":2: RuntimeWarning: invalid value encountered in cos\n", - " return relu(relu(exp(cos(S1 + exp(S2*exp(relu(relu(S2))))))))\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return relu(relu(_a0_**_a0_))\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return relu(relu(_a0_**_a0_))\n", - ":2: RuntimeWarning: divide by zero encountered in divide\n", - " return exp(-sig(_a0_)/relu(S1*_a0_))/relu(S1)\n", - ":2: RuntimeWarning: divide by zero encountered in divide\n", - " return exp(-sig(_a0_)/relu(S1*_a0_))/relu(S1)\n", - ":2: RuntimeWarning: divide by zero encountered in divide\n", - " return exp(-sig(_a0_)/relu(S1*_a0_))/relu(S1)\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu(_a0_**S1)**_a0_\n", - ":2: RuntimeWarning: divide by zero encountered in power\n", - " return relu(_a0_**S1)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu(_a0_**S1)**_a0_\n", - ":2: RuntimeWarning: divide by zero encountered in power\n", - " return relu(_a0_**S1)**_a0_\n", - " 77%|███████▋ | 1161/1500 [01:24<00:28, 11.94it/s]:2: RuntimeWarning: invalid value encountered in log\n", - " return relu(log(S2**3/(_a0_**3*relu(relu(S1))**3)))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return relu(log(S2**3/(_a0_**3*relu(relu(S1))**3)))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu(relu(sinh(S1*_a0_)**_a0_))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu(relu(sinh(S1*_a0_)**_a0_))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu(relu(sinh(S1*_a0_)**_a0_))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(-S2/relu(relu(S1)))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(-S2/relu(relu(S1)))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return relu(log(-S2/(_a0_*cosh(relu(S1)))))\n", - ":2: RuntimeWarning: overflow encountered in power\n", - " return (relu(relu(S2/relu(_a0_)))/relu(S1))**(S2**S2)\n", - ":2: RuntimeWarning: overflow encountered in power\n", - " return (relu(relu(S2/relu(_a0_)))/relu(S1))**(S2**S2)\n", - ":2: RuntimeWarning: overflow encountered in power\n", - " return (relu(relu(S2/relu(_a0_)))/relu(S1))**(S2**S2)\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return relu(sqrt(sig(log(S2**2))/sin(S1)))\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return relu(sqrt(sig(log(S2**2))/sin(S1)))\n", - " 78%|███████▊ | 1163/1500 [01:24<00:27, 12.08it/s]:2: RuntimeWarning: overflow encountered in exp\n", - " return relu(relu(exp(cos(S1 + exp(_a0_*exp(relu(relu(2*S2))))))))\n", - ":2: RuntimeWarning: invalid value encountered in cos\n", - " return relu(relu(exp(cos(S1 + exp(_a0_*exp(relu(relu(2*S2))))))))\n", - " 78%|███████▊ | 1165/1500 [01:24<00:26, 12.56it/s]:2: RuntimeWarning: invalid value encountered in log\n", - " return relu(log(sinh(S2/(_a0_*relu(relu(S1))))))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return relu(log(sinh(S2/(_a0_*relu(relu(S1))))))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return sinh(S2*_a0_)**(-_a0_)\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return relu(relu(_a0_**_a0_))\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return relu(relu(_a0_**_a0_))\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return sinh(_a0_)**_a0_\n", - " 78%|███████▊ | 1167/1500 [01:24<00:25, 12.94it/s]:2: RuntimeWarning: invalid value encountered in power\n", - " return cos(S2)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return cos(S2)**_a0_\n", - ":2: RuntimeWarning: divide by zero encountered in scalar power\n", - " return relu(relu(_a0_))**_a0_\n", - ":2: RuntimeWarning: divide by zero encountered in scalar power\n", - " return relu(relu(_a0_))**_a0_\n", - ":2: RuntimeWarning: overflow encountered in exp\n", - " return relu(relu(exp(cos(S1 + exp(_a0_*exp(relu(sinh(S2))))))))\n", - ":2: RuntimeWarning: invalid value encountered in cos\n", - " return relu(relu(exp(cos(S1 + exp(_a0_*exp(relu(sinh(S2))))))))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return sinh(_a0_**S1)**(-_a0_)\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu(_a0_**S1)**_a0_\n", - ":2: RuntimeWarning: divide by zero encountered in power\n", - " return relu(_a0_**S1)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu(_a0_**S1)**_a0_\n", - ":2: RuntimeWarning: divide by zero encountered in power\n", - " return relu(_a0_**S1)**_a0_\n", - " 78%|███████▊ | 1171/1500 [01:24<00:24, 13.37it/s]:2: RuntimeWarning: divide by zero encountered in divide\n", - " return relu(log(-S2/(_a0_*relu(relu(tan(S1))))))\n", - ":2: RuntimeWarning: divide by zero encountered in divide\n", - " return relu(log(-S2/(_a0_*relu(relu(tan(S1))))))\n", - ":2: RuntimeWarning: divide by zero encountered in divide\n", - " return relu(log(-S2/(_a0_*relu(relu(tan(S1))))))\n", - ":2: RuntimeWarning: divide by zero encountered in divide\n", - " return (relu(relu(S2/relu(_a0_)))/relu(S2))**sig(S1)\n", - " 78%|███████▊ | 1173/1500 [01:24<00:24, 13.15it/s]:2: RuntimeWarning: divide by zero encountered in divide\n", - " return (relu(relu(S2/relu(_a0_)))/relu(exp(S1)))**sig(S1)\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return relu(sqrt(sig(log(S2*(S2 + _a0_)))/relu(S1)))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return (_a0_/S1)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return (_a0_/S1)**_a0_\n", - " 78%|███████▊ | 1175/1500 [01:25<00:24, 13.31it/s]:2: RuntimeWarning: invalid value encountered in log\n", - " return relu(log(-fac(S1)/relu(relu(S1))))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return relu(log(-fac(S1)/relu(relu(S1))))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return relu(log(-fac(S1)/relu(relu(S1))))\n", - ":2: RuntimeWarning: divide by zero encountered in divide\n", - " return (relu(relu(S2/relu(_a0_)))/relu(S2 + _a0_))**sig(S1)\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return sqrt(-S1/_a0_)*exp(-S1)\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return sqrt(-S1/_a0_)*exp(-S1)\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return tan(S1)**_a0_\n", - ":2: RuntimeWarning: overflow encountered in sinh\n", - " return relu(relu(sinh(S2**S2)**_a0_))\n", - ":2: RuntimeWarning: overflow encountered in sinh\n", - " return relu(relu(sinh(S2**S2)**_a0_))\n", - ":2: RuntimeWarning: overflow encountered in sinh\n", - " return relu(relu(sinh(S2**S2)**_a0_))\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return S1**(sqrt(_a0_))\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return S1**(sqrt(_a0_))\n", - " 78%|███████▊ | 1177/1500 [01:25<00:24, 13.08it/s]:2: RuntimeWarning: invalid value encountered in log\n", - " return log(S2/sin(S1))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(S2/sin(S1))\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return relu(relu(_a0_**_a0_))\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return relu(relu(_a0_**_a0_))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return relu(log(-(S2 + _a0_)/relu(relu(S1))))\n", - " 79%|███████▊ | 1179/1500 [01:25<00:24, 13.10it/s]:2: RuntimeWarning: divide by zero encountered in scalar power\n", - " return relu(relu(_a0_**3)**_a0_/(_a0_ + relu(S1)))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return relu(log(-S2/(_a0_*tan(relu(S1)))))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return (_a0_/S2)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return (_a0_/S2)**_a0_\n", - " 79%|███████▊ | 1181/1500 [01:25<00:23, 13.34it/s]:2: RuntimeWarning: overflow encountered in exp\n", - " return relu(relu(exp(cos(S1 + exp(S2**S1*exp(relu(relu(S2))))))))\n", - ":2: RuntimeWarning: invalid value encountered in cos\n", - " return relu(relu(exp(cos(S1 + exp(S2**S1*exp(relu(relu(S2))))))))\n", - ":2: RuntimeWarning: overflow encountered in exp\n", - " return relu(relu(exp(cos(S1 + exp(S2**S1*exp(relu(relu(S2))))))))\n", - ":2: RuntimeWarning: invalid value encountered in cos\n", - " return relu(relu(exp(cos(S1 + exp(S2**S1*exp(relu(relu(S2))))))))\n", - ":2: RuntimeWarning: overflow encountered in exp\n", - " return relu(relu(exp(cos(S1 + exp(S2**S1*exp(relu(relu(S2))))))))\n", - ":2: RuntimeWarning: invalid value encountered in cos\n", - " return relu(relu(exp(cos(S1 + exp(S2**S1*exp(relu(relu(S2))))))))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return sinh(log(_a0_))**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return sinh(log(_a0_))**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return (2*_a0_)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return (2*_a0_)**_a0_\n", - ":2: RuntimeWarning: overflow encountered in sinh\n", - " return sinh(S1**S1)**_a0_\n", - ":2: RuntimeWarning: overflow encountered in sinh\n", - " return sinh(S1**S1)**_a0_\n", - ":2: RuntimeWarning: overflow encountered in power\n", - " return relu(relu((sinh(S1)**2)**(S1**S1)))\n", - ":2: RuntimeWarning: overflow encountered in power\n", - " return relu(relu((sinh(S1)**2)**(S1**S1)))\n", - " 79%|███████▉ | 1183/1500 [01:25<00:23, 13.41it/s]:2: RuntimeWarning: invalid value encountered in sqrt\n", - " return _a0_*sqrt(log(_a0_))/(sqrt(tanh(S1))*abs(relu(fac(S1))))\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return _a0_*sqrt(log(_a0_))/(sqrt(tanh(S1))*abs(relu(fac(S1))))\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return _a0_*sqrt(log(_a0_))/(sqrt(tanh(S1))*abs(relu(fac(S1))))\n", - ":2: RuntimeWarning: divide by zero encountered in divide\n", - " return (relu(relu(S2/relu(_a0_)))/relu(S2*_a0_))**sig(S1)\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu(S1)**(_a0_**S2)\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu(S1)**(_a0_**S2)\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu(S1)**(_a0_**S2)\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return exp(-log(_a0_)/S1)/relu(S1)\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return exp(-log(_a0_)/S1)/relu(S1)\n", - ":2: RuntimeWarning: divide by zero encountered in scalar power\n", - " return relu(sinh(_a0_))**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return relu(log(-S2/(_a0_*sin(relu(S1)))))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return relu(log(-S2/(_a0_*sin(relu(S1)))))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return (S2/_a0_ + sin((2*S1 + sin(S1) + tan(S2))**_a0_))*exp(-S1)\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return (S2/_a0_ + sin((2*S1 + sin(S1) + tan(S2))**_a0_))*exp(-S1)\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return (S2/_a0_ + sin((2*S1 + sin(S1) + tan(S2))**_a0_))*exp(-S1)\n", - " 79%|███████▉ | 1185/1500 [01:25<00:24, 13.07it/s]:2: RuntimeWarning: divide by zero encountered in divide\n", - " return log(relu(S2)/relu(relu(cos(S2))))\n", - ":2: RuntimeWarning: divide by zero encountered in divide\n", - " return log(relu(S2)/relu(relu(cos(S2))))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return relu(log(-tan(S2)/relu(relu(S1))))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return relu(log(-tan(S2)/relu(relu(S1))))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return relu(log(-tan(S2)/relu(relu(S1))))\n", - ":2: RuntimeWarning: overflow encountered in exp\n", - " return relu(relu(exp(cos(S1 + exp(_a0_*exp(cosh(relu(S2))))))))\n", - ":2: RuntimeWarning: invalid value encountered in cos\n", - " return relu(relu(exp(cos(S1 + exp(_a0_*exp(cosh(relu(S2))))))))\n", - ":2: RuntimeWarning: divide by zero encountered in log\n", - " return log(relu(sin(S2))/relu(relu(S1)))\n", - ":2: RuntimeWarning: divide by zero encountered in log\n", - " return log(relu(sin(S2))/relu(relu(S1)))\n", - ":2: RuntimeWarning: divide by zero encountered in log\n", - " return log(relu(sin(S2))/relu(relu(S1)))\n", - ":2: RuntimeWarning: divide by zero encountered in scalar divide\n", - " return exp(-sig(_a0_)/relu(_a0_))/relu(S1)\n", - ":2: RuntimeWarning: divide by zero encountered in scalar divide\n", - " return exp(-sig(_a0_)/relu(_a0_))/relu(S1)\n", - ":2: RuntimeWarning: divide by zero encountered in scalar divide\n", - " return exp(-sig(_a0_)/relu(_a0_))/relu(S1)\n", - " 79%|███████▉ | 1187/1500 [01:26<00:24, 12.92it/s]:2: RuntimeWarning: invalid value encountered in log\n", - " return log(cos(S1))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(cos(S1))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return relu(log(-(S2 + _a0_)/(_a0_*relu(relu(S1)))))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return relu(log(-(S2 + _a0_)/(_a0_*relu(relu(S1)))))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return relu(log(-(S2 + _a0_)/(_a0_*relu(relu(S1)))))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(relu(S2)/sin(relu(S1)))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(relu(S2)/sin(relu(S1)))\n", - ":2: RuntimeWarning: divide by zero encountered in divide\n", - " return exp(-sig(_a0_)/S1)/relu(cos(S1))\n", - ":2: RuntimeWarning: divide by zero encountered in divide\n", - " return exp(-sig(_a0_)/S1)/relu(cos(S1))\n", - ":2: RuntimeWarning: divide by zero encountered in divide\n", - " return exp(-sig(_a0_)/S1)/relu(cos(S1))\n", - ":2: RuntimeWarning: divide by zero encountered in power\n", - " return relu(_a0_/S2)**_a0_\n", - ":2: RuntimeWarning: divide by zero encountered in power\n", - " return relu(_a0_/S2)**_a0_\n", - ":2: RuntimeWarning: divide by zero encountered in power\n", - " return relu(S1*_a0_)**_a0_\n", - ":2: RuntimeWarning: divide by zero encountered in power\n", - " return relu(S1*_a0_)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return relu(relu((_a0_**(2*_a0_))**_a0_))\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return relu(relu((_a0_**(2*_a0_))**_a0_))\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return relu(relu((_a0_**(2*_a0_))**_a0_))\n", - " 79%|███████▉ | 1189/1500 [01:26<00:23, 13.42it/s]:2: RuntimeWarning: invalid value encountered in log\n", - " return relu(log(-S2/(_a0_*log(relu(S1)))))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return relu(log(-S2/(_a0_*log(relu(S1)))))\n", - ":2: RuntimeWarning: divide by zero encountered in scalar power\n", - " return relu(_a0_)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return exp(-_a0_**_a0_/S1)/relu(S1)\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return exp(-_a0_**_a0_/S1)/relu(S1)\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return exp(-_a0_**_a0_/S1)/relu(S1)\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return relu(log(-S2/(_a0_*relu(cosh(S1)))))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu(relu(sinh(cos(S1))**_a0_))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu(relu(sinh(cos(S1))**_a0_))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu(relu(sinh(cos(S1))**_a0_))\n", - ":2: RuntimeWarning: divide by zero encountered in scalar power\n", - " return relu(sinh(_a0_))**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return relu(relu((sinh(_a0_**_a0_)**2)**_a0_))\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return relu(relu((sinh(_a0_**_a0_)**2)**_a0_))\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return relu(relu((sinh(_a0_**_a0_)**2)**_a0_))\n", - " 79%|███████▉ | 1191/1500 [01:26<00:24, 12.72it/s]:2: RuntimeWarning: invalid value encountered in log\n", - " return relu(log(-S2/(_a0_**2*relu(relu(S1)))))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return relu(log(-S2/(_a0_**2*relu(relu(S1)))))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return relu(log(-S2/(_a0_**2*relu(relu(S1)))))\n", - " 80%|███████▉ | 1193/1500 [01:26<00:23, 12.88it/s]:2: RuntimeWarning: invalid value encountered in log\n", - " return sqrt(sig(log(tan(S2)))/relu(S1))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return sqrt(sig(log(tan(S2)))/relu(S1))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return sqrt(sig(log(tan(S2)))/relu(S1))\n", - ":2: RuntimeWarning: divide by zero encountered in scalar power\n", - " return relu(_a0_)**_a0_\n", - ":2: RuntimeWarning: divide by zero encountered in scalar power\n", - " return relu(_a0_)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return (S2/_a0_ + sin((2*S1 + S2 + log(S1))**_a0_))*exp(-S1)\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return (S2/_a0_ + sin((2*S1 + S2 + log(S1))**_a0_))*exp(-S1)\n", - ":2: RuntimeWarning: divide by zero encountered in power\n", - " return relu(tan(S1))**_a0_\n", - ":2: RuntimeWarning: overflow encountered in sinh\n", - " return relu(relu((sinh(S1**S1)**2)**_a0_))\n", - ":2: RuntimeWarning: overflow encountered in square\n", - " return relu(relu((sinh(S1**S1)**2)**_a0_))\n", - ":2: RuntimeWarning: overflow encountered in sinh\n", - " return relu(relu((sinh(S1**S1)**2)**_a0_))\n", - ":2: RuntimeWarning: overflow encountered in square\n", - " return relu(relu((sinh(S1**S1)**2)**_a0_))\n", - ":2: RuntimeWarning: overflow encountered in sinh\n", - " return relu(relu((sinh(S1**S1)**2)**_a0_))\n", - ":2: RuntimeWarning: overflow encountered in square\n", - " return relu(relu((sinh(S1**S1)**2)**_a0_))\n", - " 80%|███████▉ | 1195/1500 [01:26<00:25, 12.11it/s]:2: RuntimeWarning: divide by zero encountered in divide\n", - " return relu(log(-S2/(_a0_*relu(S1*_a0_))))\n", - ":2: RuntimeWarning: divide by zero encountered in divide\n", - " return relu(log(-S2/(_a0_*relu(S1*_a0_))))\n", - ":2: RuntimeWarning: divide by zero encountered in divide\n", - " return relu(log(-S2/(_a0_*relu(S1*_a0_))))\n", - ":2: RuntimeWarning: divide by zero encountered in power\n", - " return relu(log(S1))**_a0_\n", - ":2: RuntimeWarning: divide by zero encountered in divide\n", - " return relu(log(-S2/(_a0_*relu(_a0_))))\n", - ":2: RuntimeWarning: divide by zero encountered in divide\n", - " return relu(log(-S2/(_a0_*relu(_a0_))))\n", - ":2: RuntimeWarning: divide by zero encountered in log\n", - " return log(relu(log(_a0_))/relu(relu(S1)))\n", - ":2: RuntimeWarning: divide by zero encountered in log\n", - " return log(relu(log(_a0_))/relu(relu(S1)))\n", - ":2: RuntimeWarning: divide by zero encountered in log\n", - " return log(relu(log(_a0_))/relu(relu(S1)))\n", - ":2: RuntimeWarning: divide by zero encountered in divide\n", - " return (relu(relu(S2/relu(-S1)))/relu(S1))**sig(S1)\n", - ":2: RuntimeWarning: divide by zero encountered in divide\n", - " return (relu(relu(S2/relu(-S1)))/relu(S1))**sig(S1)\n", - ":2: RuntimeWarning: divide by zero encountered in divide\n", - " return (relu(relu(S2/relu(-S1)))/relu(S1))**sig(S1)\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return relu(relu(relu(relu(S2/_a0_)/sqrt(-S2))))\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return relu(relu(relu(relu(S2/_a0_)/sqrt(-S2))))\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return relu(relu(relu(relu(S2/_a0_)/sqrt(-S2))))\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return relu(sqrt(_a0_))**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return relu(sqrt(_a0_))**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return relu(sqrt(_a0_))**_a0_\n", - " 80%|███████▉ | 1199/1500 [01:26<00:22, 13.14it/s]:2: RuntimeWarning: invalid value encountered in sqrt\n", - " return sqrt(S2)*_a0_/(sqrt(tanh(log(S1)))*abs(relu(fac(S1))))\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return sqrt(S2)*_a0_/(sqrt(tanh(log(S1)))*abs(relu(fac(S1))))\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return sqrt(S2)*_a0_/(sqrt(tanh(log(S1)))*abs(relu(fac(S1))))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu(cos(S2)**_a0_/(_a0_ + relu(S1)))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu(cos(S2)**_a0_/(_a0_ + relu(S1)))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu(cos(S2)**_a0_/(_a0_ + relu(S1)))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return (_a0_**S1)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return (_a0_**S1)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return (_a0_**_a0_)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return (_a0_**_a0_)**_a0_\n", - " 80%|████████ | 1201/1500 [01:27<00:22, 13.29it/s]:2: RuntimeWarning: divide by zero encountered in divide\n", - " return sqrt(S2)*_a0_/(sqrt(tanh(S1))*abs(relu(_a0_)))\n", - ":2: RuntimeWarning: invalid value encountered in divide\n", - " return sqrt(S2)*_a0_/(sqrt(tanh(S1))*abs(relu(_a0_)))\n", - ":2: RuntimeWarning: divide by zero encountered in divide\n", - " return exp(-sig(_a0_)/S1)/relu(S2 + _a0_)\n", - ":2: RuntimeWarning: divide by zero encountered in divide\n", - " return exp(-sig(_a0_)/S1)/relu(S2 + _a0_)\n", - ":2: RuntimeWarning: divide by zero encountered in divide\n", - " return exp(-sig(_a0_)/S1)/relu(S2 + _a0_)\n", - ":2: RuntimeWarning: divide by zero encountered in scalar power\n", - " return fac(_a0_)**_a0_\n", - ":2: RuntimeWarning: divide by zero encountered in scalar power\n", - " return fac(_a0_)**_a0_\n", - ":2: RuntimeWarning: divide by zero encountered in scalar power\n", - " return relu(_a0_)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return sinh(_a0_)**_a0_\n", - " 80%|████████ | 1203/1500 [01:27<00:23, 12.43it/s]:2: RuntimeWarning: invalid value encountered in power\n", - " return (_a0_/S1)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return (_a0_/S1)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu(relu((_a0_**(2*S1))**_a0_))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu(relu((_a0_**(2*S1))**_a0_))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return relu(log(-S1**2/relu(relu(S1))))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return relu(log(-S1**2/relu(relu(S1))))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return relu(log(-S1**2/relu(relu(S1))))\n", - ":2: RuntimeWarning: divide by zero encountered in power\n", - " return relu(log(S1))**_a0_\n", - ":2: RuntimeWarning: divide by zero encountered in power\n", - " return relu(log(S1))**_a0_\n", - " 80%|████████ | 1205/1500 [01:27<00:24, 11.95it/s]:2: RuntimeWarning: invalid value encountered in sqrt\n", - " return relu(relu((sinh(sqrt(_a0_))**2)**_a0_))\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return relu(relu((sinh(sqrt(_a0_))**2)**_a0_))\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return relu(relu((sinh(sqrt(_a0_))**2)**_a0_))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu(relu(S2*relu(_a0_**S2)**relu(S1)))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu(relu(S2*relu(_a0_**S2)**relu(S1)))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu(relu(S2*relu(_a0_**S2)**relu(S1)))\n", - " 80%|████████ | 1207/1500 [01:27<00:24, 11.93it/s]:2: RuntimeWarning: invalid value encountered in log\n", - " return relu(log(-S2*exp(-relu(S1))/_a0_))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu(relu((S1/_a0_)**_a0_))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu(relu((S1/_a0_)**_a0_))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu(relu((S1/_a0_)**_a0_))\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return sinh(_a0_)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return sqrt(S2/_a0_)*exp(-cosh(S1))\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return relu(relu(relu(relu(S2/_a0_)/sqrt(tan(_a0_)))))\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return relu(relu(relu(relu(S2/_a0_)/sqrt(tan(_a0_)))))\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return relu(relu(relu(relu(S2/_a0_)/sqrt(tan(_a0_)))))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return sinh(_a0_/S1)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return sinh(_a0_/S1)**_a0_\n", - " 81%|████████ | 1209/1500 [01:27<00:23, 12.14it/s]:2: RuntimeWarning: divide by zero encountered in power\n", - " return relu(S1 + _a0_)**_a0_\n", - ":2: RuntimeWarning: divide by zero encountered in power\n", - " return relu(S1 + _a0_)**_a0_\n", - ":2: RuntimeWarning: overflow encountered in exp\n", - " return relu(relu(exp(cos(S1 + exp(relu(relu(S2))**2*cosh(S2))))))\n", - ":2: RuntimeWarning: invalid value encountered in cos\n", - " return relu(relu(exp(cos(S1 + exp(relu(relu(S2))**2*cosh(S2))))))\n", - ":2: RuntimeWarning: overflow encountered in exp\n", - " return relu(relu(exp(cos(S1 + exp(relu(relu(S2))**2*cosh(S2))))))\n", - ":2: RuntimeWarning: invalid value encountered in cos\n", - " return relu(relu(exp(cos(S1 + exp(relu(relu(S2))**2*cosh(S2))))))\n", - ":2: RuntimeWarning: overflow encountered in exp\n", - " return relu(relu(exp(cos(S1 + exp(relu(relu(S2))**2*cosh(S2))))))\n", - ":2: RuntimeWarning: invalid value encountered in cos\n", - " return relu(relu(exp(cos(S1 + exp(relu(relu(S2))**2*cosh(S2))))))\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return sinh(_a0_)**_a0_\n", - ":2: RuntimeWarning: divide by zero encountered in scalar power\n", - " return relu(_a0_)**_a0_\n", - ":2: RuntimeWarning: divide by zero encountered in scalar power\n", - " return relu(_a0_)**_a0_\n", - " 81%|████████ | 1211/1500 [01:28<00:24, 11.80it/s]:2: RuntimeWarning: divide by zero encountered in scalar power\n", - " return relu(relu((sinh(relu(_a0_))**2)**_a0_))\n", - ":2: RuntimeWarning: divide by zero encountered in scalar power\n", - " return relu(relu((sinh(relu(_a0_))**2)**_a0_))\n", - ":2: RuntimeWarning: divide by zero encountered in log\n", - " return log(relu(cos(S1))/relu(relu(S1)))\n", - ":2: RuntimeWarning: divide by zero encountered in log\n", - " return log(relu(cos(S1))/relu(relu(S1)))\n", - ":2: RuntimeWarning: divide by zero encountered in log\n", - " return log(relu(cos(S1))/relu(relu(S1)))\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return relu(relu(sinh(_a0_)**_a0_))\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return relu(relu(sinh(_a0_)**_a0_))\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return _a0_**(-_a0_)*exp(-sig(_a0_)/S1)\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return _a0_**(-_a0_)*exp(-sig(_a0_)/S1)\n", - " 81%|████████ | 1213/1500 [01:28<00:24, 11.78it/s]:2: RuntimeWarning: divide by zero encountered in divide\n", - " return (relu(relu(S2/relu(cos(S2))))/relu(S1))**sig(S1)\n", - ":2: RuntimeWarning: divide by zero encountered in divide\n", - " return (relu(relu(S2/relu(cos(S2))))/relu(S1))**sig(S1)\n", - ":2: RuntimeWarning: divide by zero encountered in divide\n", - " return (relu(relu(S2/relu(cos(S2))))/relu(S1))**sig(S1)\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return relu(relu((_a0_**_a0_)**_a0_))\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return relu(relu((_a0_**_a0_)**_a0_))\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return relu(relu((_a0_**_a0_)**_a0_))\n", - ":2: RuntimeWarning: overflow encountered in exp\n", - " return exp(-_a0_/S1**2)/relu(S1)\n", - ":2: RuntimeWarning: overflow encountered in exp\n", - " return exp(-_a0_/S1**2)/relu(S1)\n", - ":2: RuntimeWarning: overflow encountered in exp\n", - " return exp(-_a0_/S1**2)/relu(S1)\n", - ":2: RuntimeWarning: divide by zero encountered in power\n", - " return relu(relu((sinh(relu(tan(S1)))**2)**_a0_))\n", - ":2: RuntimeWarning: divide by zero encountered in power\n", - " return relu(relu((sinh(relu(tan(S1)))**2)**_a0_))\n", - ":2: RuntimeWarning: divide by zero encountered in power\n", - " return relu(relu((sinh(relu(tan(S1)))**2)**_a0_))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return relu(log(-S2**2*_a0_/relu(relu(S1))))\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return relu(relu(relu(relu(S2/_a0_)/sqrt(-S1))))\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return relu(relu(relu(relu(S2/_a0_)/sqrt(-S1))))\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return relu(relu(relu(relu(S2/_a0_)/sqrt(-S1))))\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return relu(relu(_a0_**_a0_))\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return relu(relu(_a0_**_a0_))\n", - ":2: RuntimeWarning: divide by zero encountered in scalar power\n", - " return relu(sinh(_a0_))**_a0_\n", - " 81%|████████ | 1215/1500 [01:28<00:24, 11.87it/s]:2: RuntimeWarning: divide by zero encountered in power\n", - " return relu(_a0_/S1)**_a0_\n", - ":2: RuntimeWarning: divide by zero encountered in power\n", - " return relu(_a0_/S1)**_a0_\n", - " 81%|████████ | 1217/1500 [01:28<00:23, 12.04it/s]:2: RuntimeWarning: divide by zero encountered in divide\n", - " return relu(log(-S2*_a0_/relu(relu(_a0_))))\n", - ":2: RuntimeWarning: divide by zero encountered in divide\n", - " return relu(log(-S2*_a0_/relu(relu(_a0_))))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return relu(log(-S2*_a0_*relu(relu(S1))))\n", - ":2: RuntimeWarning: divide by zero encountered in log\n", - " return log(relu(log(_a0_))/relu(relu(S1)))\n", - ":2: RuntimeWarning: divide by zero encountered in log\n", - " return log(relu(log(_a0_))/relu(relu(S1)))\n", - ":2: RuntimeWarning: divide by zero encountered in divide\n", - " return (relu(relu(S2/relu(_a0_)))/(S2*_a0_))**sig(S1)\n", - ":2: RuntimeWarning: divide by zero encountered in scalar power\n", - " return relu(_a0_)**_a0_\n", - ":2: RuntimeWarning: divide by zero encountered in scalar power\n", - " return relu(_a0_)**_a0_\n", - " 81%|████████▏ | 1219/1500 [01:28<00:23, 12.10it/s]:2: RuntimeWarning: divide by zero encountered in power\n", - " return relu(-S1)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu(relu(cos(S1)**_a0_))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu(relu(cos(S1)**_a0_))\n", - " 81%|████████▏ | 1221/1500 [01:28<00:23, 12.10it/s]:2: RuntimeWarning: invalid value encountered in power\n", - " return relu(relu(S2*relu(sig(_a0_))**(_a0_**S2)))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu(relu(S2*relu(sig(_a0_))**(_a0_**S2)))\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return relu(relu(sinh(S1)**(_a0_**_a0_)))\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return relu(relu(sinh(S1)**(_a0_**_a0_)))\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return relu(relu(sinh(S1)**(_a0_**_a0_)))\n", - ":2: RuntimeWarning: divide by zero encountered in power\n", - " return relu(sinh(log(S1)))**_a0_\n", - ":2: RuntimeWarning: divide by zero encountered in power\n", - " return relu(sinh(log(S1)))**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return (2*_a0_)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return (2*_a0_)**_a0_\n", - ":2: RuntimeWarning: overflow encountered in power\n", - " return relu(sinh(S1))**(S1**S2)\n", - ":2: RuntimeWarning: overflow encountered in power\n", - " return relu(sinh(S1))**(S1**S2)\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return relu(relu((sinh(relu(_a0_**_a0_))**2)**_a0_))\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return relu(relu((sinh(relu(_a0_**_a0_))**2)**_a0_))\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return relu(relu((sinh(relu(_a0_**_a0_))**2)**_a0_))\n", - " 82%|████████▏ | 1223/1500 [01:28<00:22, 12.22it/s]:2: RuntimeWarning: invalid value encountered in power\n", - " return tan(S1)**_a0_\n", - " 82%|████████▏ | 1225/1500 [01:29<00:22, 11.98it/s]:2: RuntimeWarning: divide by zero encountered in scalar power\n", - " return relu(sinh(tan(_a0_)))**_a0_\n", - ":2: RuntimeWarning: divide by zero encountered in scalar power\n", - " return relu(sinh(tan(_a0_)))**_a0_\n", - ":2: RuntimeWarning: divide by zero encountered in scalar power\n", - " return relu(sinh(tan(_a0_)))**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return (S1/_a0_)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return (S1/_a0_)**_a0_\n", - " 82%|████████▏ | 1227/1500 [01:29<00:25, 10.69it/s]:2: RuntimeWarning: invalid value encountered in log\n", - " return -log(-S2*_a0_/relu(relu(S1)))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return sqrt(sig(log(-_a0_))/sinh(S1))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return sqrt(sig(log(-_a0_))/sinh(S1))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return sqrt(sig(log(-_a0_))/sinh(S1))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return relu(log(-S1/relu(relu(S1))))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return relu(log(-S1/relu(relu(S1))))\n", - ":2: RuntimeWarning: divide by zero encountered in divide\n", - " return (relu(relu(S2/relu(_a0_)))/relu(S1*S2))**sig(S1)\n", - ":2: RuntimeWarning: divide by zero encountered in scalar power\n", - " return relu(relu(_a0_)**_a0_/(_a0_ + relu(S1)))\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return relu(relu(sinh(sin(_a0_))**_a0_))\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return relu(relu(sinh(sin(_a0_))**_a0_))\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return relu(relu(sinh(sin(_a0_))**_a0_))\n", - " 82%|████████▏ | 1229/1500 [01:29<00:24, 11.07it/s]:2: RuntimeWarning: invalid value encountered in power\n", - " return sinh(S1*_a0_)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return sinh(S1*_a0_)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return sinh(S1)**(sqrt(_a0_))\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return sinh(S1)**(sqrt(_a0_))\n", - ":2: RuntimeWarning: divide by zero encountered in power\n", - " return relu(S2 + _a0_)**_a0_\n", - ":2: RuntimeWarning: divide by zero encountered in power\n", - " return relu(S2 + _a0_)**_a0_\n", - " 82%|████████▏ | 1231/1500 [01:29<00:23, 11.30it/s]:2: RuntimeWarning: divide by zero encountered in power\n", - " return relu(relu((sinh(relu(S2/_a0_))**2)**_a0_))\n", - ":2: RuntimeWarning: divide by zero encountered in power\n", - " return relu(relu((sinh(relu(S2/_a0_))**2)**_a0_))\n", - ":2: RuntimeWarning: divide by zero encountered in power\n", - " return relu(relu((sinh(relu(S2/_a0_))**2)**_a0_))\n", - " 82%|████████▏ | 1233/1500 [01:29<00:24, 11.08it/s]:2: RuntimeWarning: divide by zero encountered in divide\n", - " return relu(log(-S2*_a0_/relu(S1*_a0_)))\n", - ":2: RuntimeWarning: divide by zero encountered in divide\n", - " return relu(log(-S2*_a0_/relu(S1*_a0_)))\n", - ":2: RuntimeWarning: divide by zero encountered in divide\n", - " return relu(log(-S2*_a0_/relu(S1*_a0_)))\n", - ":2: RuntimeWarning: divide by zero encountered in power\n", - " return relu(relu((sinh(relu(S1/_a0_))**2)**_a0_))\n", - ":2: RuntimeWarning: divide by zero encountered in power\n", - " return relu(relu((sinh(relu(S1/_a0_))**2)**_a0_))\n", - ":2: RuntimeWarning: divide by zero encountered in power\n", - " return relu(relu((sinh(relu(S1/_a0_))**2)**_a0_))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return _a0_*relu(log(-S2*_a0_/relu(relu(S1))))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu(relu((_a0_**S2)**_a0_))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu(relu((_a0_**S2)**_a0_))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu(relu((_a0_**S2)**_a0_))\n", - " 82%|████████▏ | 1235/1500 [01:30<00:22, 11.66it/s]:2: RuntimeWarning: invalid value encountered in power\n", - " return (S2/_a0_ + sin((2*S1 + S2 + sin(S2/S1))**_a0_))*exp(-S1)\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return (S2/_a0_ + sin((2*S1 + S2 + sin(S2/S1))**_a0_))*exp(-S1)\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return sqrt(S1**S1/_a0_)*exp(-S1)\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return (S1 + _a0_)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return (S1 + _a0_)**_a0_\n", - " 82%|████████▏ | 1237/1500 [01:30<00:22, 11.56it/s]:2: RuntimeWarning: invalid value encountered in log\n", - " return log(-S1)\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(-S1)\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return exp(-S1)*sqrt(log(_a0_))\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return exp(-S1)*sqrt(log(_a0_))\n", - ":2: RuntimeWarning: divide by zero encountered in log\n", - " return log(relu(tan(S2))/relu(relu(S1)))\n", - ":2: RuntimeWarning: divide by zero encountered in log\n", - " return log(relu(tan(S2))/relu(relu(S1)))\n", - ":2: RuntimeWarning: divide by zero encountered in log\n", - " return log(relu(tan(S2))/relu(relu(S1)))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return tan(S1)**_a0_\n", - " 83%|████████▎ | 1239/1500 [01:30<00:22, 11.73it/s]:2: RuntimeWarning: overflow encountered in power\n", - " return relu(relu(sinh(S1)**(S1**S1)))\n", - ":2: RuntimeWarning: overflow encountered in power\n", - " return relu(relu(sinh(S1)**(S1**S1)))\n", - ":2: RuntimeWarning: overflow encountered in power\n", - " return relu(relu(sinh(S1)**(S1**S1)))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return relu(log(-log(_a0_)/relu(relu(S1))))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return relu(log(-log(_a0_)/relu(relu(S1))))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return relu(log(-log(_a0_)/relu(relu(S1))))\n", - " 83%|████████▎ | 1241/1500 [01:30<00:22, 11.74it/s]:2: RuntimeWarning: invalid value encountered in log\n", - " return relu(log(-S2*sin(S2)/relu(relu(S1))))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return relu(log(-S2*sin(S2)/relu(relu(S1))))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return relu(log(-S2*sin(S2)/relu(relu(S1))))\n", - ":2: RuntimeWarning: overflow encountered in power\n", - " return relu(S2)*sig(relu(sig(sig(sig(S2)))))**(S2**S2*_a0_)\n", - ":2: RuntimeWarning: divide by zero encountered in power\n", - " return relu(_a0_/S2)**_a0_\n", - ":2: RuntimeWarning: divide by zero encountered in power\n", - " return relu(_a0_/S2)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return relu(log(-S2**_a0_/relu(relu(S1))))\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return sinh(_a0_)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return relu(relu(exp(cos(S1 + exp(_a0_*relu(_a0_**_a0_)**2)))))\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return relu(relu(exp(cos(S1 + exp(_a0_*relu(_a0_**_a0_)**2)))))\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return relu(relu(exp(cos(S1 + exp(_a0_*relu(_a0_**_a0_)**2)))))\n", - " 83%|████████▎ | 1243/1500 [01:30<00:22, 11.61it/s]:2: RuntimeWarning: invalid value encountered in log\n", - " return log(log(S1)/S1)\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(log(S1)/S1)\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(tan(S1)/S1)\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(tan(S1)/S1)\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return sig(sqrt(S2/_a0_)*exp(-S1))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return sinh(S2/_a0_)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return sinh(S2/_a0_)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu(relu(sin(sinh(relu(S1)))**_a0_))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu(relu(sin(sinh(relu(S1)))**_a0_))\n", - " 83%|████████▎ | 1245/1500 [01:30<00:21, 11.62it/s]:2: RuntimeWarning: divide by zero encountered in divide\n", - " return relu(log(-S2*_a0_/relu(S2 + _a0_)))\n", - ":2: RuntimeWarning: divide by zero encountered in divide\n", - " return relu(log(-S2*_a0_/relu(S2 + _a0_)))\n", - ":2: RuntimeWarning: divide by zero encountered in divide\n", - " return relu(log(-S2*_a0_/relu(S2 + _a0_)))\n", - ":2: RuntimeWarning: overflow encountered in sinh\n", - " return relu(relu((sinh(relu(S1**S1))**2)**_a0_))\n", - ":2: RuntimeWarning: overflow encountered in square\n", - " return relu(relu((sinh(relu(S1**S1))**2)**_a0_))\n", - ":2: RuntimeWarning: overflow encountered in sinh\n", - " return relu(relu((sinh(relu(S1**S1))**2)**_a0_))\n", - ":2: RuntimeWarning: overflow encountered in square\n", - " return relu(relu((sinh(relu(S1**S1))**2)**_a0_))\n", - ":2: RuntimeWarning: overflow encountered in sinh\n", - " return relu(relu((sinh(relu(S1**S1))**2)**_a0_))\n", - ":2: RuntimeWarning: overflow encountered in square\n", - " return relu(relu((sinh(relu(S1**S1))**2)**_a0_))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu((_a0_/S2)**_a0_)\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu((_a0_/S2)**_a0_)\n", - ":2: RuntimeWarning: divide by zero encountered in scalar power\n", - " return relu(relu((sinh(relu(_a0_))**2)**_a0_))\n", - " 83%|████████▎ | 1247/1500 [01:31<00:30, 8.30it/s]:2: RuntimeWarning: divide by zero encountered in power\n", - " return relu(log(S1))**_a0_\n", - ":2: RuntimeWarning: overflow encountered in exp\n", - " return relu(relu(exp(cos(S1 + exp(relu(relu(cosh(S1)))**2/_a0_)))))\n", - ":2: RuntimeWarning: invalid value encountered in cos\n", - " return relu(relu(exp(cos(S1 + exp(relu(relu(cosh(S1)))**2/_a0_)))))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return (S2/_a0_)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return (S2/_a0_)**_a0_\n", - " 83%|████████▎ | 1249/1500 [01:31<00:27, 9.23it/s]:2: RuntimeWarning: divide by zero encountered in log\n", - " return log(relu(log(_a0_))/relu(relu(S1)))\n", - ":2: RuntimeWarning: divide by zero encountered in log\n", - " return log(relu(log(_a0_))/relu(relu(S1)))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return (relu(relu(S2/relu(_a0_)))/cos(S1))**sig(S1)\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return (relu(relu(S2/relu(_a0_)))/cos(S1))**sig(S1)\n", - ":2: RuntimeWarning: divide by zero encountered in scalar power\n", - " return relu(sinh(fac(_a0_))**_a0_)\n", - ":2: RuntimeWarning: divide by zero encountered in scalar power\n", - " return relu(sinh(fac(_a0_))**_a0_)\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu(relu(cos(sinh(relu(S1)))**_a0_))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu(relu(cos(sinh(relu(S1)))**_a0_))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return (relu(relu(S2/relu(_a0_)))/log(S1))**sig(S1)\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return (relu(relu(S2/relu(_a0_)))/log(S1))**sig(S1)\n", - ":2: RuntimeWarning: divide by zero encountered in power\n", - " return relu(S2 + _a0_)**_a0_\n", - ":2: RuntimeWarning: divide by zero encountered in power\n", - " return relu(S2 + _a0_)**_a0_\n", - " 83%|████████▎ | 1251/1500 [01:31<00:25, 9.96it/s]:2: RuntimeWarning: invalid value encountered in scalar power\n", - " return sinh(_a0_)**_a0_\n", - ":2: RuntimeWarning: divide by zero encountered in divide\n", - " return exp(-sig(_a0_)/S1)/relu(_a0_)\n", - ":2: RuntimeWarning: divide by zero encountered in divide\n", - " return exp(-sig(_a0_)/S1)/relu(_a0_)\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return exp(-_a0_**S2/S1)/relu(S1)\n", - ":2: RuntimeWarning: overflow encountered in exp\n", - " return exp(-_a0_**S2/S1)/relu(S1)\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return exp(-_a0_**S2/S1)/relu(S1)\n", - ":2: RuntimeWarning: overflow encountered in exp\n", - " return exp(-_a0_**S2/S1)/relu(S1)\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return exp(-_a0_**S2/S1)/relu(S1)\n", - ":2: RuntimeWarning: overflow encountered in exp\n", - " return exp(-_a0_**S2/S1)/relu(S1)\n", - ":2: RuntimeWarning: overflow encountered in exp\n", - " return relu(relu(exp(cos(S1 + exp((relu(relu(S2))**2)**_a0_)))))\n", - ":2: RuntimeWarning: invalid value encountered in cos\n", - " return relu(relu(exp(cos(S1 + exp((relu(relu(S2))**2)**_a0_)))))\n", - ":2: RuntimeWarning: overflow encountered in exp\n", - " return relu(relu(exp(cos(S1 + exp((relu(relu(S2))**2)**_a0_)))))\n", - ":2: RuntimeWarning: invalid value encountered in cos\n", - " return relu(relu(exp(cos(S1 + exp((relu(relu(S2))**2)**_a0_)))))\n", - " 84%|████████▎ | 1253/1500 [01:31<00:23, 10.64it/s]:2: RuntimeWarning: invalid value encountered in log\n", - " return log(-S2/S1)\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(-S2/S1)\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu(relu(S2*relu(sig(_a0_))**relu(_a0_**S2)))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu(relu(S2*relu(sig(_a0_))**relu(_a0_**S2)))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu(relu(S2*relu(sig(_a0_))**relu(_a0_**S2)))\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return _a0_**((1/2)*_a0_)\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return _a0_**((1/2)*_a0_)\n", - ":2: RuntimeWarning: divide by zero encountered in power\n", - " return relu(_a0_/S2)**_a0_\n", - ":2: RuntimeWarning: divide by zero encountered in power\n", - " return relu(_a0_/S2)**_a0_\n", - " 84%|████████▎ | 1255/1500 [01:31<00:22, 10.71it/s]:2: RuntimeWarning: invalid value encountered in log\n", - " return relu(log(-S1/relu(relu(S1))))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return relu(log(-S1/relu(relu(S1))))\n", - ":2: RuntimeWarning: divide by zero encountered in divide\n", - " return (relu(relu(S2/relu(_a0_**3)))/relu(S1))**sig(S1)\n", - ":2: RuntimeWarning: divide by zero encountered in divide\n", - " return exp(-sig(_a0_)/S1)/relu(_a0_)\n", - " 84%|████████▍ | 1257/1500 [01:32<00:22, 10.98it/s]:2: RuntimeWarning: invalid value encountered in sqrt\n", - " return sqrt(sin(log(S2**2))/sinh(S1))\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return sqrt(sin(log(S2**2))/sinh(S1))\n", - ":2: RuntimeWarning: overflow encountered in sinh\n", - " return sinh(S2**S2)**_a0_\n", - ":2: RuntimeWarning: overflow encountered in sinh\n", - " return sinh(S2**S2)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return (S1 + _a0_)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return (S1 + _a0_)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu(relu(sin(sinh(relu(S1)))**_a0_))\n", - " 84%|████████▍ | 1259/1500 [01:32<00:20, 11.56it/s]:2: RuntimeWarning: invalid value encountered in log\n", - " return relu(log(-S1**2/relu(relu(S1))))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return relu(log(-S1**2/relu(relu(S1))))\n", - ":2: RuntimeWarning: overflow encountered in exp\n", - " return relu(relu(exp(cos(S1 + exp(fac(S2)*relu(relu(S2))**2)))))\n", - ":2: RuntimeWarning: invalid value encountered in cos\n", - " return relu(relu(exp(cos(S1 + exp(fac(S2)*relu(relu(S2))**2)))))\n", - ":2: RuntimeWarning: overflow encountered in exp\n", - " return relu(relu(exp(cos(S1 + exp(fac(S2)*relu(relu(S2))**2)))))\n", - ":2: RuntimeWarning: invalid value encountered in cos\n", - " return relu(relu(exp(cos(S1 + exp(fac(S2)*relu(relu(S2))**2)))))\n", - ":2: RuntimeWarning: overflow encountered in exp\n", - " return relu(relu(exp(cos(S1 + exp(fac(S2)*relu(relu(S2))**2)))))\n", - ":2: RuntimeWarning: invalid value encountered in cos\n", - " return relu(relu(exp(cos(S1 + exp(fac(S2)*relu(relu(S2))**2)))))\n", - ":2: RuntimeWarning: divide by zero encountered in divide\n", - " return (relu(relu(S2/relu(_a0_)))/relu(sin(S2)))**sig(S1)\n", - ":2: RuntimeWarning: divide by zero encountered in divide\n", - " return (relu(relu(S2/relu(_a0_)))/relu(sin(S2)))**sig(S1)\n", - ":2: RuntimeWarning: divide by zero encountered in divide\n", - " return (relu(relu(S2/relu(_a0_)))/relu(sin(S2)))**sig(S1)\n", - ":2: RuntimeWarning: divide by zero encountered in scalar power\n", - " return relu(relu(sinh(_a0_)))**_a0_\n", - ":2: RuntimeWarning: divide by zero encountered in scalar power\n", - " return relu(relu(sinh(_a0_)))**_a0_\n", - ":2: RuntimeWarning: divide by zero encountered in scalar power\n", - " return relu(relu(sinh(_a0_)))**_a0_\n", - ":2: RuntimeWarning: divide by zero encountered in power\n", - " return relu(relu((sinh(relu(_a0_/S2))**2)**_a0_))\n", - ":2: RuntimeWarning: divide by zero encountered in power\n", - " return relu(relu((sinh(relu(_a0_/S2))**2)**_a0_))\n", - ":2: RuntimeWarning: divide by zero encountered in power\n", - " return relu(relu((sinh(relu(_a0_/S2))**2)**_a0_))\n", - " 84%|████████▍ | 1261/1500 [01:32<00:20, 11.42it/s]:2: RuntimeWarning: overflow encountered in sinh\n", - " return relu(relu((sinh(S2**S1)**2)**_a0_))\n", - ":2: RuntimeWarning: overflow encountered in square\n", - " return relu(relu((sinh(S2**S1)**2)**_a0_))\n", - ":2: RuntimeWarning: overflow encountered in sinh\n", - " return relu(relu((sinh(S2**S1)**2)**_a0_))\n", - ":2: RuntimeWarning: overflow encountered in square\n", - " return relu(relu((sinh(S2**S1)**2)**_a0_))\n", - ":2: RuntimeWarning: overflow encountered in power\n", - " return S1**(S1**S1)\n", - ":2: RuntimeWarning: overflow encountered in power\n", - " return S1**(S1**S1)\n", - " 84%|████████▍ | 1263/1500 [01:32<00:19, 11.95it/s]:2: RuntimeWarning: invalid value encountered in log\n", - " return log(-_a0_)\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(-_a0_)\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return relu(log(-S1/relu(relu(S1))))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return relu(log(-S1/relu(relu(S1))))\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return sqrt(sig(log(S2**2))/sinh(S2 + _a0_))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu(sin(S1)**_a0_)\n", - ":2: RuntimeWarning: overflow encountered in power\n", - " return sqrt(S2)*_a0_**2/(sqrt(S1**(S1**S2))*abs(relu(fac(S1))))\n", - ":2: RuntimeWarning: overflow encountered in power\n", - " return sqrt(S2)*_a0_**2/(sqrt(S1**(S1**S2))*abs(relu(fac(S1))))\n", - ":2: RuntimeWarning: overflow encountered in power\n", - " return sqrt(S2)*_a0_**2/(sqrt(S1**(S1**S2))*abs(relu(fac(S1))))\n", - ":2: RuntimeWarning: overflow encountered in exp\n", - " return relu(relu(exp(cos(S1 + exp((relu(relu(S2))**2)**_a0_)))))\n", - ":2: RuntimeWarning: invalid value encountered in cos\n", - " return relu(relu(exp(cos(S1 + exp((relu(relu(S2))**2)**_a0_)))))\n", - " 84%|████████▍ | 1265/1500 [01:32<00:19, 12.15it/s]:2: RuntimeWarning: invalid value encountered in log\n", - " return relu(log(-cosh(S2)/relu(relu(S1))))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return relu(log(-cosh(S2)/relu(relu(S1))))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return relu(log(-cosh(S2)/relu(relu(S1))))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu(relu(exp(cos(S1 + exp(_a0_**S2*relu(relu(S2))**2)))))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu(relu(exp(cos(S1 + exp(_a0_**S2*relu(relu(S2))**2)))))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu(relu(exp(cos(S1 + exp(_a0_**S2*relu(relu(S2))**2)))))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(cos(S1))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(cos(S1))\n", - ":2: RuntimeWarning: overflow encountered in power\n", - " return relu(sinh(S1)**(S1**S2))\n", - ":2: RuntimeWarning: overflow encountered in power\n", - " return relu(sinh(S1)**(S1**S2))\n", - ":2: RuntimeWarning: divide by zero encountered in scalar power\n", - " return fac(_a0_)**_a0_\n", - ":2: RuntimeWarning: divide by zero encountered in scalar power\n", - " return fac(_a0_)**_a0_\n", - ":2: RuntimeWarning: divide by zero encountered in power\n", - " return sinh(relu(S2*_a0_))**_a0_\n", - ":2: RuntimeWarning: divide by zero encountered in power\n", - " return sinh(relu(S2*_a0_))**_a0_\n", - " 84%|████████▍ | 1267/1500 [01:32<00:19, 12.20it/s]:2: RuntimeWarning: divide by zero encountered in divide\n", - " return relu(log(-S2/(_a0_*relu(_a0_))))\n", - ":2: RuntimeWarning: divide by zero encountered in divide\n", - " return relu(log(-S2/(_a0_*relu(_a0_))))\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return relu(sinh(S1)**(_a0_**_a0_))\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return relu(sinh(S1)**(_a0_**_a0_))\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return relu(sinh(S1)**(_a0_**_a0_))\n", - " 85%|████████▍ | 1269/1500 [01:33<00:18, 12.62it/s]:2: RuntimeWarning: invalid value encountered in log\n", - " return log(-S2)\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(-S2)\n", - ":2: RuntimeWarning: divide by zero encountered in divide\n", - " return relu(log(-S2/(_a0_*relu(-S1))))\n", - ":2: RuntimeWarning: divide by zero encountered in divide\n", - " return relu(log(-S2/(_a0_*relu(-S1))))\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return relu(sinh(_a0_**3)**_a0_)\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return relu(sinh(_a0_**3)**_a0_)\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return sinh(_a0_/S1)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return sinh(_a0_/S1)**_a0_\n", - ":2: RuntimeWarning: divide by zero encountered in divide\n", - " return log(relu(S2)/relu(S2 + _a0_))\n", - ":2: RuntimeWarning: divide by zero encountered in divide\n", - " return log((relu(relu(S2/relu(_a0_)))/relu(S1))**sig(S1))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return sqrt(sig(log(S2*log(S2)))/sinh(S1))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return sqrt(sig(log(S2*log(S2)))/sinh(S1))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return sqrt(sig(log(S2*log(S2)))/sinh(S1))\n", - " 85%|████████▍ | 1271/1500 [01:33<00:17, 12.78it/s]:2: RuntimeWarning: invalid value encountered in log\n", - " return log(relu(S2)/sin(relu(S1)))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return relu(log(-cos(_a0_)/relu(relu(S1))))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return relu(log(-cos(_a0_)/relu(relu(S1))))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return relu(log(-cos(_a0_)/relu(relu(S1))))\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return relu(_a0_**_a0_)\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return relu(_a0_**_a0_)\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return (_a0_**S1)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return (_a0_**S1)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return (S2*_a0_)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return (S2*_a0_)**_a0_\n", - " 85%|████████▍ | 1273/1500 [01:33<00:16, 13.43it/s]:2: RuntimeWarning: invalid value encountered in sqrt\n", - " return sinh(relu(sqrt(_a0_)))**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return sinh(relu(sqrt(_a0_)))**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(tan(S2)/S1)\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(tan(S2)/S1)\n", - ":2: RuntimeWarning: divide by zero encountered in power\n", - " return relu(relu(tan(S1))**_a0_/(_a0_ + relu(S1)))\n", - " 85%|████████▌ | 1275/1500 [01:33<00:16, 13.31it/s]:2: RuntimeWarning: invalid value encountered in sqrt\n", - " return sqrt(S2)*_a0_**2/(sqrt(tan(S2))*abs(relu(fac(S1))))\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return sqrt(S2)*_a0_**2/(sqrt(tan(S2))*abs(relu(fac(S1))))\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return sqrt(S2)*_a0_**2/(sqrt(tan(S2))*abs(relu(fac(S1))))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu((S2/_a0_)**_a0_)\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu((S2/_a0_)**_a0_)\n", - " 85%|████████▌ | 1277/1500 [01:33<00:17, 13.00it/s]:2: RuntimeWarning: divide by zero encountered in divide\n", - " return relu(log(-S2/(_a0_*relu(S2 + _a0_))))\n", - ":2: RuntimeWarning: divide by zero encountered in divide\n", - " return relu(log(-S2/(_a0_*relu(S2 + _a0_))))\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return -_a0_**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return -_a0_**_a0_\n", - " 85%|████████▌ | 1279/1500 [01:33<00:16, 13.35it/s]:2: RuntimeWarning: invalid value encountered in log\n", - " return relu(log(-S2**_a0_/relu(relu(S1))))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(relu(S2)/tan(relu(S1)))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(relu(S2)/tan(relu(S1)))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return (-relu(S2/relu(_a0_))/relu(S1))**sig(S1)\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return (-relu(S2/relu(_a0_))/relu(S1))**sig(S1)\n", - ":2: RuntimeWarning: divide by zero encountered in scalar power\n", - " return relu(sinh(fac(_a0_))**_a0_)\n", - ":2: RuntimeWarning: divide by zero encountered in scalar power\n", - " return relu(sinh(fac(_a0_))**_a0_)\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return sinh(_a0_)**_a0_\n", - ":2: RuntimeWarning: divide by zero encountered in divide\n", - " return relu(log(-S2/(_a0_*relu(S1 + _a0_))))\n", - ":2: RuntimeWarning: divide by zero encountered in divide\n", - " return relu(log(-S2/(_a0_*relu(S1 + _a0_))))\n", - ":2: RuntimeWarning: divide by zero encountered in divide\n", - " return relu(log(-S2/(_a0_*relu(S1 + _a0_))))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu(sinh(S1 + _a0_)**_a0_)\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu(sinh(S1 + _a0_)**_a0_)\n", - " 85%|████████▌ | 1281/1500 [01:33<00:15, 13.96it/s]:2: RuntimeWarning: invalid value encountered in log\n", - " return relu(log(-1/relu(relu(S1))))\n", - ":2: RuntimeWarning: divide by zero encountered in log\n", - " return sqrt(sig(log(log(_a0_)))/sinh(S1))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(log(S2)/relu(S1))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(log(S2)/relu(S1))\n", - ":2: RuntimeWarning: overflow encountered in power\n", - " return sinh(relu(S1))**(S1**S1)\n", - ":2: RuntimeWarning: overflow encountered in power\n", - " return sinh(relu(S1))**(S1**S1)\n", - ":2: RuntimeWarning: overflow encountered in power\n", - " return sinh(relu(S1))**(S1**S1)\n", - ":2: RuntimeWarning: divide by zero encountered in divide\n", - " return exp(-sig(_a0_)/S1)/relu(_a0_)\n", - " 86%|████████▌ | 1283/1500 [01:34<00:15, 13.63it/s]:2: RuntimeWarning: invalid value encountered in log\n", - " return relu(log(-S1/relu(relu(S1))))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return relu(log(-S1/relu(relu(S1))))\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return exp(-_a0_**_a0_/S1)/relu(S1)\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return exp(-_a0_**_a0_/S1)/relu(S1)\n", - " 86%|████████▌ | 1285/1500 [01:34<00:15, 13.51it/s]:2: RuntimeWarning: invalid value encountered in power\n", - " return relu(sinh(S1)**(_a0_**S2))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu(sinh(S1)**(_a0_**S2))\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return sinh(_a0_)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return sinh(_a0_)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return relu(log(-S2/(_a0_*log(relu(S1)))))\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return sinh(_a0_)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu(relu((sinh(_a0_**S1)**2)**_a0_))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu(relu((sinh(_a0_**S1)**2)**_a0_))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu(relu((sinh(_a0_**S1)**2)**_a0_))\n", - " 86%|████████▌ | 1287/1500 [01:34<00:16, 13.09it/s]:2: RuntimeWarning: divide by zero encountered in divide\n", - " return relu(log(-S2/(_a0_*relu(relu(_a0_)))))\n", - ":2: RuntimeWarning: divide by zero encountered in divide\n", - " return sqrt(S2)*_a0_**2/(sqrt(S1**_a0_)*abs(relu(fac(log(_a0_)))))\n", - ":2: RuntimeWarning: divide by zero encountered in divide\n", - " return sqrt(S2)*_a0_**2/(sqrt(S1**_a0_)*abs(relu(fac(log(_a0_)))))\n", - ":2: RuntimeWarning: divide by zero encountered in divide\n", - " return sqrt(S2)*_a0_**2/(sqrt(S1**_a0_)*abs(relu(fac(log(_a0_)))))\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return relu(relu(relu(S2/_a0_)/sqrt((S1 + _a0_)*(S1**2 + S2))))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu(sin(S1)**_a0_)\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return relu(relu((sinh(relu(_a0_**_a0_))**2)**_a0_))\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return relu(relu((sinh(relu(_a0_**_a0_))**2)**_a0_))\n", - ":2: RuntimeWarning: divide by zero encountered in divide\n", - " return relu(log(-S2/(_a0_*relu(_a0_))))\n", - ":2: RuntimeWarning: divide by zero encountered in divide\n", - " return relu(log(-S2/(_a0_*relu(_a0_))))\n", - ":2: RuntimeWarning: divide by zero encountered in scalar power\n", - " return relu(relu((sinh(relu(_a0_))**2)**_a0_))\n", - " 86%|████████▌ | 1289/1500 [01:34<00:16, 12.63it/s]:2: RuntimeWarning: invalid value encountered in log\n", - " return relu(log(-S1/relu(relu(S1))))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return relu(log(-S1/relu(relu(S1))))\n", - ":2: RuntimeWarning: divide by zero encountered in divide\n", - " return sqrt(S2)*_a0_**2/(sqrt(S1**_a0_)*abs(relu(fac(cos(S2)))))\n", - ":2: RuntimeWarning: divide by zero encountered in divide\n", - " return sqrt(S2)*_a0_**2/(sqrt(S1**_a0_)*abs(relu(fac(cos(S2)))))\n", - ":2: RuntimeWarning: divide by zero encountered in divide\n", - " return sqrt(S2)*_a0_**2/(sqrt(S1**_a0_)*abs(relu(fac(cos(S2)))))\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return sqrt(cos(log(S2**2))/sinh(S1))\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return sqrt(cos(log(S2**2))/sinh(S1))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return cos(relu(S1))**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return cos(relu(S1))**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return relu(log(-S1**(-S1)*S2/relu(relu(S1))))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return relu(log(-S1**(-S1)*S2/relu(relu(S1))))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return relu(log(-S1**(-S1)*S2/relu(relu(S1))))\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return (2*_a0_)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return (2*_a0_)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return sinh(_a0_)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return sinh(_a0_)**_a0_\n", - ":2: RuntimeWarning: divide by zero encountered in scalar power\n", - " return relu(relu((sinh(relu(relu(_a0_)))**2)**_a0_))\n", - ":2: RuntimeWarning: divide by zero encountered in scalar power\n", - " return relu(relu((sinh(relu(relu(_a0_)))**2)**_a0_))\n", - ":2: RuntimeWarning: divide by zero encountered in scalar power\n", - " return relu(relu((sinh(relu(relu(_a0_)))**2)**_a0_))\n", - " 86%|████████▌ | 1291/1500 [01:34<00:16, 12.78it/s]:2: RuntimeWarning: invalid value encountered in scalar power\n", - " return relu(sinh(_a0_**_a0_)**_a0_)\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return relu(sinh(_a0_**_a0_)**_a0_)\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return (S1/_a0_)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return (S1/_a0_)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(cos(S1)/S1)\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(cos(S1)/S1)\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(cos(S1)/S1)\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return relu(log(-tan(_a0_)/(_a0_*relu(relu(S1)))))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return relu(log(-tan(_a0_)/(_a0_*relu(relu(S1)))))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return relu(log(-tan(_a0_)/(_a0_*relu(relu(S1)))))\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return sqrt(S2/_a0_)*exp(-S2 - _a0_)\n", - " 86%|████████▌ | 1293/1500 [01:34<00:15, 13.35it/s]:2: RuntimeWarning: overflow encountered in power\n", - " return (S2/_a0_ + sin((2*S1 + S2 + sin(S1*S2))**(S1**S2)))*exp(-S1)\n", - ":2: RuntimeWarning: invalid value encountered in sin\n", - " return (S2/_a0_ + sin((2*S1 + S2 + sin(S1*S2))**(S1**S2)))*exp(-S1)\n", - ":2: RuntimeWarning: overflow encountered in power\n", - " return (S2/_a0_ + sin((2*S1 + S2 + sin(S1*S2))**(S1**S2)))*exp(-S1)\n", - ":2: RuntimeWarning: invalid value encountered in sin\n", - " return (S2/_a0_ + sin((2*S1 + S2 + sin(S1*S2))**(S1**S2)))*exp(-S1)\n", - ":2: RuntimeWarning: overflow encountered in power\n", - " return (S2/_a0_ + sin((2*S1 + S2 + sin(S1*S2))**(S1**S2)))*exp(-S1)\n", - ":2: RuntimeWarning: invalid value encountered in sin\n", - " return (S2/_a0_ + sin((2*S1 + S2 + sin(S1*S2))**(S1**S2)))*exp(-S1)\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return tan(relu(S1))**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return cos(S1)**_a0_\n", - ":2: RuntimeWarning: overflow encountered in exp\n", - " return relu(relu(exp(fac(S1 + exp(relu(relu(S2))**2/_a0_)))))\n", - " 86%|████████▋ | 1295/1500 [01:35<00:15, 13.63it/s]:2: RuntimeWarning: invalid value encountered in power\n", - " return relu((S1/_a0_)**_a0_)\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu((S1/_a0_)**_a0_)\n", - " 86%|████████▋ | 1297/1500 [01:35<00:17, 11.93it/s]:2: RuntimeWarning: invalid value encountered in sqrt\n", - " return sqrt(S2*_a0_)/S1**3\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return (S2/_a0_ + sin((2*S1 + S2 + sin(S2/S1))**_a0_))*exp(-S1)\n", - " 87%|████████▋ | 1299/1500 [01:35<00:16, 12.46it/s]:2: RuntimeWarning: invalid value encountered in log\n", - " return log(sin(S2))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(sin(S2))\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return sinh(_a0_)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return relu(log(-S2**_a0_/relu(relu(S1))))\n", - ":2: RuntimeWarning: divide by zero encountered in scalar power\n", - " return relu(_a0_)**_a0_\n", - ":2: RuntimeWarning: divide by zero encountered in scalar power\n", - " return relu(_a0_)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return sinh(_a0_)**_a0_\n", - " 87%|████████▋ | 1301/1500 [01:35<00:15, 12.89it/s]:2: RuntimeWarning: invalid value encountered in power\n", - " return relu(tan(S2)**_a0_/(_a0_ + relu(S1)))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu(tan(S2)**_a0_/(_a0_ + relu(S1)))\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return sqrt(S2*sin(S2))*exp(-S1)\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return sqrt(S2*sin(S2))*exp(-S1)\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return sqrt(S2*sin(S2))*exp(-S1)\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return relu(sinh(_a0_)**_a0_)\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return exp(-_a0_**(-S2)*sig(_a0_))/relu(S1)\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return exp(-_a0_**(-S2)*sig(_a0_))/relu(S1)\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return exp(-_a0_**(-S2)*sig(_a0_))/relu(S1)\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu(relu(exp(cos(S1 + exp(relu(_a0_**S1)**2/_a0_)))))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu(relu(exp(cos(S1 + exp(relu(_a0_**S1)**2/_a0_)))))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu(relu(exp(cos(S1 + exp(relu(_a0_**S1)**2/_a0_)))))\n", - " 87%|████████▋ | 1303/1500 [01:35<00:16, 12.24it/s]:2: RuntimeWarning: invalid value encountered in log\n", - " return relu(log(-S2/(S1*relu(relu(S1)))))\n", - ":2: RuntimeWarning: divide by zero encountered in scalar power\n", - " return relu(relu((sinh(relu(_a0_))**2)**_a0_))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu(log(-_a0_**S2/(_a0_*relu(relu(S1)))))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return relu(log(-_a0_**S2/(_a0_*relu(relu(S1)))))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu(log(-_a0_**S2/(_a0_*relu(relu(S1)))))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return relu(log(-_a0_**S2/(_a0_*relu(relu(S1)))))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu(log(-_a0_**S2/(_a0_*relu(relu(S1)))))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return relu(log(-_a0_**S2/(_a0_*relu(relu(S1)))))\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return relu(_a0_**_a0_)\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return relu(_a0_**_a0_)\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return sinh(_a0_)**_a0_\n", - " 87%|████████▋ | 1305/1500 [01:35<00:15, 12.67it/s]:2: RuntimeWarning: invalid value encountered in log\n", - " return relu(log(-S2/(relu(relu(S1))*log(_a0_))))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return relu(log(-S2/(relu(relu(S1))*log(_a0_))))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return relu(log(-S2/(relu(relu(S1))*log(_a0_))))\n", - ":2: RuntimeWarning: divide by zero encountered in scalar power\n", - " return relu(relu(sin(_a0_))**_a0_/(_a0_ + relu(S1)))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return tan(S1)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return tan(S1)**_a0_\n", - ":2: RuntimeWarning: divide by zero encountered in power\n", - " return relu(relu((sinh(relu(S2*_a0_))**2)**_a0_))\n", - ":2: RuntimeWarning: divide by zero encountered in power\n", - " return relu(relu((sinh(relu(S2*_a0_))**2)**_a0_))\n", - ":2: RuntimeWarning: divide by zero encountered in power\n", - " return relu(relu((sinh(relu(S2*_a0_))**2)**_a0_))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return relu(log(-sinh(S2)/relu(relu(S1))))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return relu(log(-sinh(S2)/relu(relu(S1))))\n", - ":2: RuntimeWarning: divide by zero encountered in power\n", - " return sinh(relu(tan(S2)))**_a0_\n", - ":2: RuntimeWarning: divide by zero encountered in power\n", - " return sinh(relu(tan(S2)))**_a0_\n", - " 87%|████████▋ | 1307/1500 [01:36<00:15, 12.15it/s]:2: RuntimeWarning: invalid value encountered in power\n", - " return (-sinh(S1))**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return relu(log(-S2/(_a0_**2*relu(relu(S1)))))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return relu(log(-S2/(_a0_**2*relu(relu(S1)))))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return (-sinh(S1))**_a0_\n", - " 87%|████████▋ | 1309/1500 [01:36<00:15, 12.70it/s]:2: RuntimeWarning: invalid value encountered in log\n", - " return log(S2/log(S1))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(S2/log(S1))\n", - ":2: RuntimeWarning: divide by zero encountered in divide\n", - " return relu(sqrt(S2)*_a0_**2/(sqrt(S1**_a0_)*abs(relu(tan(S1)))))\n", - ":2: RuntimeWarning: divide by zero encountered in divide\n", - " return relu(sqrt(S2)*_a0_**2/(sqrt(S1**_a0_)*abs(relu(tan(S1)))))\n", - ":2: RuntimeWarning: divide by zero encountered in divide\n", - " return (relu(relu(S2/relu(_a0_)))/S2)**sig(S1)\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu(log(S1)**_a0_)**2\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu(log(S1)**_a0_)**2\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return relu(log(-S1/relu(relu(S1))))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return relu(log(-S1/relu(relu(S1))))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return exp(-sig(_a0_)/log(_a0_))/relu(S1)\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return exp(-sig(_a0_)/log(_a0_))/relu(S1)\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return exp(-sig(_a0_)/log(_a0_))/relu(S1)\n", - " 87%|████████▋ | 1311/1500 [01:36<00:14, 13.09it/s]:2: RuntimeWarning: overflow encountered in exp\n", - " return relu(relu(exp(cos(S1 + exp((relu(relu(S2))**2)**_a0_)))))\n", - ":2: RuntimeWarning: invalid value encountered in cos\n", - " return relu(relu(exp(cos(S1 + exp((relu(relu(S2))**2)**_a0_)))))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return (S2/_a0_ + sin((S1 + (S1 + S2)*sin(S1*S2))**_a0_))*exp(-S1)\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return (S2/_a0_ + sin((S1 + (S1 + S2)*sin(S1*S2))**_a0_))*exp(-S1)\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return sqrt(tan(log(S2**2))/sinh(S1))\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return sqrt(tan(log(S2**2))/sinh(S1))\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return sinh(_a0_)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return sinh(_a0_)**_a0_\n", - ":2: RuntimeWarning: overflow encountered in power\n", - " return relu(sinh(S1)**(S1**S2))**2\n", - ":2: RuntimeWarning: overflow encountered in square\n", - " return relu(sinh(S1)**(S1**S2))**2\n", - ":2: RuntimeWarning: overflow encountered in power\n", - " return relu(sinh(S1)**(S1**S2))**2\n", - ":2: RuntimeWarning: overflow encountered in square\n", - " return relu(sinh(S1)**(S1**S2))**2\n", - ":2: RuntimeWarning: overflow encountered in power\n", - " return relu(sinh(S1)**(S1**S2))**2\n", - ":2: RuntimeWarning: overflow encountered in square\n", - " return relu(sinh(S1)**(S1**S2))**2\n", - " 88%|████████▊ | 1313/1500 [01:36<00:14, 12.98it/s]:2: RuntimeWarning: invalid value encountered in power\n", - " return sinh(S2/_a0_)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return sinh(S2/_a0_)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(sin(S2)/relu(S1))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(sin(S2)/relu(S1))\n", - ":2: RuntimeWarning: divide by zero encountered in power\n", - " return sinh(relu(sin(S1)))**_a0_\n", - ":2: RuntimeWarning: divide by zero encountered in power\n", - " return sinh(relu(sin(S1)))**_a0_\n", - " 88%|████████▊ | 1315/1500 [01:36<00:14, 12.50it/s]:2: RuntimeWarning: invalid value encountered in log\n", - " return relu(log(-S2**_a0_/relu(relu(S1))))\n", - ":2: RuntimeWarning: divide by zero encountered in divide\n", - " return exp(-sig(_a0_)/S1)/relu(_a0_)\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return relu(relu(exp(cos(S1 + exp(relu(relu(log(_a0_)))**2/_a0_)))))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return relu(relu(exp(cos(S1 + exp(relu(relu(log(_a0_)))**2/_a0_)))))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return relu(relu(exp(cos(S1 + exp(relu(relu(log(_a0_)))**2/_a0_)))))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return cos(S1)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return relu(relu(log(cos(S1 + exp(relu(relu(S2))**2/_a0_)))))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return relu(relu(log(cos(S1 + exp(relu(relu(S2))**2/_a0_)))))\n", - " 88%|████████▊ | 1317/1500 [01:36<00:14, 12.84it/s]:2: RuntimeWarning: invalid value encountered in scalar power\n", - " return relu((_a0_**_a0_)**_a0_)**2\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return relu((_a0_**_a0_)**_a0_)**2\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return relu((_a0_**_a0_)**_a0_)**2\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return sinh(_a0_)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return relu(sqrt(S2)*_a0_**2/(sqrt(-S2)*abs(relu(fac(S1)))))\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return relu(sqrt(S2)*_a0_**2/(sqrt(-S2)*abs(relu(fac(S1)))))\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return relu(sqrt(S2)*_a0_**2/(sqrt(-S2)*abs(relu(fac(S1)))))\n", - ":2: RuntimeWarning: divide by zero encountered in divide\n", - " return (relu(relu(S2/relu(_a0_)))/relu(exp(S2)))**sig(S1)\n", - ":2: RuntimeWarning: divide by zero encountered in scalar power\n", - " return sinh(relu(_a0_))**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return sinh(sin(S1))**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return sinh(sin(S1))**_a0_\n", - " 88%|████████▊ | 1319/1500 [01:36<00:13, 12.94it/s]:2: RuntimeWarning: invalid value encountered in power\n", - " return relu(relu(relu((sinh(S1)**2)**(_a0_**S1))))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu(relu(relu((sinh(S1)**2)**(_a0_**S1))))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu(relu(relu((sinh(S1)**2)**(_a0_**S1))))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu(sinh(S1)**(_a0_**S2))**2\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu(sinh(S1)**(_a0_**S2))**2\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu(sinh(S1)**(_a0_**S2))**2\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return exp(-S1)*sqrt(tan(S2))\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return exp(-S1)*sqrt(tan(S2))\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return exp(-S1)*sqrt(tan(S2))\n", - ":2: RuntimeWarning: divide by zero encountered in scalar power\n", - " return sinh(relu(_a0_))**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu(sinh(log(S1))**_a0_)**2\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu(sinh(log(S1))**_a0_)**2\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu(sinh(log(S1))**_a0_)**2\n", - " 88%|████████▊ | 1321/1500 [01:37<00:13, 13.22it/s]:2: RuntimeWarning: invalid value encountered in log\n", - " return relu(log(-S2*exp(-_a0_)/relu(relu(S1))))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return relu(log(-S2*exp(-_a0_)/relu(relu(S1))))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return relu(log(-S2*exp(-_a0_)/relu(relu(S1))))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return (-sinh(S1))**_a0_\n", - ":2: RuntimeWarning: divide by zero encountered in divide\n", - " return exp(-sig(_a0_)/S1)/relu(S1/_a0_)\n", - ":2: RuntimeWarning: divide by zero encountered in divide\n", - " return exp(-sig(_a0_)/S1)/relu(S1/_a0_)\n", - ":2: RuntimeWarning: divide by zero encountered in divide\n", - " return exp(-sig(_a0_)/S1)/relu(S1/_a0_)\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(tan(S1)/S1)\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(tan(S1)/S1)\n", - ":2: RuntimeWarning: divide by zero encountered in divide\n", - " return relu(relu(exp(cos(S1 + exp(relu(relu(S2))**2/relu(_a0_))))))\n", - ":2: RuntimeWarning: invalid value encountered in cos\n", - " return relu(relu(exp(cos(S1 + exp(relu(relu(S2))**2/relu(_a0_))))))\n", - ":2: RuntimeWarning: divide by zero encountered in divide\n", - " return relu(relu(exp(cos(S1 + exp(relu(relu(S2))**2/relu(_a0_))))))\n", - ":2: RuntimeWarning: invalid value encountered in cos\n", - " return relu(relu(exp(cos(S1 + exp(relu(relu(S2))**2/relu(_a0_))))))\n", - ":2: RuntimeWarning: divide by zero encountered in divide\n", - " return relu(relu(exp(cos(S1 + exp(relu(relu(S2))**2/relu(_a0_))))))\n", - ":2: RuntimeWarning: invalid value encountered in cos\n", - " return relu(relu(exp(cos(S1 + exp(relu(relu(S2))**2/relu(_a0_))))))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return (_a0_**S1)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return (_a0_**S1)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return (_a0_**_a0_)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return (_a0_**_a0_)**_a0_\n", - " 88%|████████▊ | 1323/1500 [01:37<00:14, 12.56it/s]:2: RuntimeWarning: divide by zero encountered in divide\n", - " return relu(sqrt(S2)*_a0_**2/(sqrt(S1**_a0_)*abs(relu(fac(log(S2))))))\n", - ":2: RuntimeWarning: divide by zero encountered in divide\n", - " return relu(sqrt(S2)*_a0_**2/(sqrt(S1**_a0_)*abs(relu(fac(log(S2))))))\n", - ":2: RuntimeWarning: divide by zero encountered in divide\n", - " return relu(sqrt(S2)*_a0_**2/(sqrt(S1**_a0_)*abs(relu(fac(log(S2))))))\n", - ":2: RuntimeWarning: divide by zero encountered in divide\n", - " return _a0_*(relu(relu(S2/relu(_a0_)))/relu(S1))**sig(S1)\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(S2/log(S1))\n", - " 88%|████████▊ | 1325/1500 [01:37<00:13, 13.41it/s]:2: RuntimeWarning: invalid value encountered in sqrt\n", - " return sqrt(-sig(_a0_)/S1)/relu(S1)\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return sqrt(-sig(_a0_)/S1)/relu(S1)\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return relu(log(-_a0_**_a0_/(_a0_*relu(relu(S1)))))\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return relu(log(-_a0_**_a0_/(_a0_*relu(relu(S1)))))\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return relu(log(-_a0_**_a0_/(_a0_*relu(relu(S1)))))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu(S2)*log(sig(relu(_a0_)))**(S1*_a0_)\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu(S2)*log(sig(relu(_a0_)))**(S1*_a0_)\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return (S1/_a0_)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return (S1/_a0_)**_a0_\n", - " 88%|████████▊ | 1327/1500 [01:37<00:13, 12.66it/s]:2: RuntimeWarning: divide by zero encountered in divide\n", - " return log(S2/relu(S2 + _a0_))\n", - ":2: RuntimeWarning: divide by zero encountered in divide\n", - " return (relu(relu(S2/relu(_a0_)))/relu(-S2))**sig(S1)\n", - ":2: RuntimeWarning: divide by zero encountered in divide\n", - " return (relu(relu(S2/relu(_a0_)))/relu(-S2))**sig(S1)\n", - ":2: RuntimeWarning: divide by zero encountered in power\n", - " return sinh(relu(relu(S1*_a0_)))**_a0_\n", - ":2: RuntimeWarning: divide by zero encountered in power\n", - " return sinh(relu(relu(S1*_a0_)))**_a0_\n", - ":2: RuntimeWarning: divide by zero encountered in power\n", - " return sinh(relu(relu(S1*_a0_)))**_a0_\n", - ":2: RuntimeWarning: divide by zero encountered in scalar power\n", - " return sinh(relu(_a0_))**_a0_\n", - ":2: RuntimeWarning: divide by zero encountered in scalar power\n", - " return sinh(relu(_a0_))**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return relu(sinh(_a0_**_a0_)**_a0_)**2\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return relu(sinh(_a0_**_a0_)**_a0_)**2\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return relu(sinh(_a0_**_a0_)**_a0_)**2\n", - " 89%|████████▊ | 1329/1500 [01:37<00:13, 12.91it/s]:2: RuntimeWarning: divide by zero encountered in scalar power\n", - " return sinh(relu(_a0_))**_a0_\n", - ":2: RuntimeWarning: divide by zero encountered in scalar power\n", - " return sinh(relu(_a0_))**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return log(S1)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu(sinh(cos(S1))**_a0_)**2\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu(sinh(cos(S1))**_a0_)**2\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu(sinh(cos(S1))**_a0_)**2\n", - " 89%|████████▊ | 1331/1500 [01:37<00:12, 13.63it/s]:2: RuntimeWarning: overflow encountered in exp\n", - " return relu(relu(exp(cos(S1 + exp(relu(S1**S1)**2/_a0_)))))\n", - ":2: RuntimeWarning: invalid value encountered in cos\n", - " return relu(relu(exp(cos(S1 + exp(relu(S1**S1)**2/_a0_)))))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu(log(-(S2/_a0_)**relu(relu(S1))))\n", - ":2: RuntimeWarning: overflow encountered in power\n", - " return relu(sinh(S1)**(S1**S1))**2\n", - ":2: RuntimeWarning: overflow encountered in square\n", - " return relu(sinh(S1)**(S1**S1))**2\n", - ":2: RuntimeWarning: overflow encountered in power\n", - " return relu(sinh(S1)**(S1**S1))**2\n", - ":2: RuntimeWarning: overflow encountered in square\n", - " return relu(sinh(S1)**(S1**S1))**2\n", - ":2: RuntimeWarning: overflow encountered in power\n", - " return relu(sinh(S1)**(S1**S1))**2\n", - ":2: RuntimeWarning: overflow encountered in square\n", - " return relu(sinh(S1)**(S1**S1))**2\n", - " 89%|████████▉ | 1333/1500 [01:38<00:12, 13.48it/s]:2: RuntimeWarning: invalid value encountered in log\n", - " return relu(log(-S1/relu(relu(S1))))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return relu(log(-S1/relu(relu(S1))))\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return relu(sqrt(S2)*relu(_a0_)**2/(sqrt(log(S1))*abs(relu(fac(S1)))))\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return relu(sqrt(S2)*relu(_a0_)**2/(sqrt(log(S1))*abs(relu(fac(S1)))))\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return relu(sqrt(S2)*relu(_a0_)**2/(sqrt(log(S1))*abs(relu(fac(S1)))))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return sqrt(sig(log(sin(S2)))/sinh(S1))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return sqrt(sig(log(sin(S2)))/sinh(S1))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return sqrt(sig(log(sin(S2)))/sinh(S1))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu(relu(S2*relu(_a0_**S1)**S1))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu(relu(S2*relu(_a0_**S1)**S1))\n", - ":2: RuntimeWarning: divide by zero encountered in scalar power\n", - " return sinh(relu(relu(_a0_)))**_a0_\n", - ":2: RuntimeWarning: divide by zero encountered in scalar power\n", - " return sinh(relu(relu(_a0_)))**_a0_\n", - " 89%|████████▉ | 1335/1500 [01:38<00:12, 12.94it/s]:2: RuntimeWarning: divide by zero encountered in divide\n", - " return relu(log(-S2/(_a0_*relu(relu(-S2)))))\n", - ":2: RuntimeWarning: divide by zero encountered in divide\n", - " return relu(log(-S2/(_a0_*relu(relu(-S2)))))\n", - ":2: RuntimeWarning: divide by zero encountered in divide\n", - " return relu(log(-S2/(_a0_*relu(relu(-S2)))))\n", - ":2: RuntimeWarning: divide by zero encountered in power\n", - " return sinh(relu(log(S1)))**_a0_\n", - ":2: RuntimeWarning: divide by zero encountered in power\n", - " return sinh(relu(log(S1)))**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return relu(relu(S2*relu(sqrt(_a0_))**S1))\n", - " 89%|████████▉ | 1337/1500 [01:38<00:12, 13.01it/s]:2: RuntimeWarning: invalid value encountered in sqrt\n", - " return relu(sqrt(S2)*relu(_a0_)**2/(sqrt(log(S2))*abs(relu(fac(S1)))))\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return relu(sqrt(S2)*relu(_a0_)**2/(sqrt(log(S2))*abs(relu(fac(S1)))))\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return relu(sqrt(S2)*relu(_a0_)**2/(sqrt(log(S2))*abs(relu(fac(S1)))))\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return relu(relu(relu(S2/_a0_)/sqrt(S1*(S1**2 + cos(_a0_)))))\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return relu(relu(relu(S2/_a0_)/sqrt(S1*(S1**2 + cos(_a0_)))))\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return relu(relu(relu(S2/_a0_)/sqrt(S1*(S1**2 + cos(_a0_)))))\n", - ":2: RuntimeWarning: divide by zero encountered in divide\n", - " return (relu(relu(S2/relu(_a0_)))/relu(S2**S1))**sig(S1)\n", - ":2: RuntimeWarning: divide by zero encountered in divide\n", - " return exp(-sig(_a0_)/S1)/relu(_a0_)\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return sinh(_a0_)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return cos(S1)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return relu(log(-S2/(_a0_*sin(relu(S1)))))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return sin(S2)**_a0_/(_a0_ + relu(S1))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return sin(S2)**_a0_/(_a0_ + relu(S1))\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return sinh(_a0_**_a0_)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return sinh(_a0_**_a0_)**_a0_\n", - " 89%|████████▉ | 1339/1500 [01:38<00:12, 12.97it/s]:2: RuntimeWarning: invalid value encountered in log\n", - " return relu(log(-1/relu(relu(S1))))\n", - ":2: RuntimeWarning: divide by zero encountered in scalar power\n", - " return sinh(relu(_a0_))**_a0_\n", - ":2: RuntimeWarning: divide by zero encountered in scalar power\n", - " return sinh(relu(_a0_))**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return (S1/_a0_)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return (S1/_a0_)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return cos(S2)**_a0_/(_a0_ + relu(S1))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return cos(S2)**_a0_/(_a0_ + relu(S1))\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return sinh(relu(relu(S1)))**(sqrt(_a0_))\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return sinh(relu(relu(S1)))**(sqrt(_a0_))\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return sinh(relu(relu(S1)))**(sqrt(_a0_))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return (S2 + _a0_)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return (S2 + _a0_)**_a0_\n", - " 89%|████████▉ | 1341/1500 [01:38<00:11, 13.57it/s]:2: RuntimeWarning: overflow encountered in sinh\n", - " return sinh(relu(relu(S2**S2)))**_a0_\n", - ":2: RuntimeWarning: overflow encountered in sinh\n", - " return sinh(relu(relu(S2**S2)))**_a0_\n", - ":2: RuntimeWarning: overflow encountered in sinh\n", - " return sinh(relu(relu(S2**S2)))**_a0_\n", - ":2: RuntimeWarning: divide by zero encountered in divide\n", - " return relu(log(-S2/(_a0_*relu(relu(_a0_)))))\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return sqrt(cos(log(S2**2))/sinh(S1))\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return sqrt(-S1*S2)*exp(-S1)\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return sqrt(-S1*S2)*exp(-S1)\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return sqrt(-S1*S2)*exp(-S1)\n", - " 90%|████████▉ | 1343/1500 [01:38<00:11, 13.44it/s]:2: RuntimeWarning: invalid value encountered in log\n", - " return relu(log(-(S2 + _a0_)/relu(relu(S1))))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return sinh(cos(S1))**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return sinh(cos(S1))**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return (-sinh(S2))**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return (-sinh(S2))**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(-_a0_)\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(-_a0_)\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return (S2/_a0_ + sin((S1 + sin(S1*relu(_a0_))**(S1 + S2))**_a0_))*exp(-S1)\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return (S2/_a0_ + sin((S1 + sin(S1*relu(_a0_))**(S1 + S2))**_a0_))*exp(-S1)\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return sinh(S1*_a0_)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return sinh(S1*_a0_)**_a0_\n", - " 90%|████████▉ | 1345/1500 [01:38<00:12, 12.29it/s]:2: RuntimeWarning: invalid value encountered in power\n", - " return exp(-S1)*sin((2*S1 + S2 + sin(S1*relu(_a0_)))**_a0_)**(S2/_a0_)\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return exp(-S1)*sin((2*S1 + S2 + sin(S1*relu(_a0_)))**_a0_)**(S2/_a0_)\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return relu(sqrt(S2)*relu(_a0_)**2/(sqrt(-S2)*abs(relu(fac(S1)))))\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return relu(sqrt(S2)*relu(_a0_)**2/(sqrt(-S2)*abs(relu(fac(S1)))))\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return relu(sqrt(S2)*relu(_a0_)**2/(sqrt(-S2)*abs(relu(fac(S1)))))\n", - ":2: RuntimeWarning: divide by zero encountered in divide\n", - " return (S2**(-S1)*relu(relu(S2/relu(_a0_))))**sig(S1)\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return sinh(log(S1))**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return sinh(log(S1))**_a0_\n", - " 90%|████████▉ | 1347/1500 [01:39<00:12, 12.57it/s]:2: RuntimeWarning: invalid value encountered in power\n", - " return sinh(cos(S2))**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return sinh(cos(S2))**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return sqrt(cos(log(S2**2))/sinh(S1))\n", - ":2: RuntimeWarning: divide by zero encountered in divide\n", - " return exp(-sig(_a0_)/S1)/relu(log(S1))\n", - ":2: RuntimeWarning: divide by zero encountered in divide\n", - " return exp(-sig(_a0_)/S1)/relu(log(S1))\n", - ":2: RuntimeWarning: divide by zero encountered in divide\n", - " return exp(-sig(_a0_)/S1)/relu(log(S1))\n", - " 90%|████████▉ | 1349/1500 [01:39<00:11, 13.00it/s]:2: RuntimeWarning: invalid value encountered in log\n", - " return log(S2/cos(S1))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu(relu((sinh(_a0_**S2)**2)**_a0_))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu(relu((sinh(_a0_**S2)**2)**_a0_))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu(relu((sinh(_a0_**S2)**2)**_a0_))\n", - ":2: RuntimeWarning: divide by zero encountered in divide\n", - " return relu(log(-S2/(_a0_*relu(relu(_a0_)))))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return (_a0_**S1)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return (_a0_**S1)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return (_a0_/S2)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return (_a0_/S2)**_a0_\n", - " 90%|█████████ | 1351/1500 [01:39<00:11, 13.19it/s]:2: RuntimeWarning: invalid value encountered in log\n", - " return log(sin(S2)/relu(S1))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(sin(S2)/relu(S1))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(cos(S2)/S1)\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(cos(S2)/S1)\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return relu(log(-_a0_**2/relu(relu(S1))))\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return relu(sqrt(S2)*relu(_a0_)**2/(sqrt(-S1)*abs(relu(fac(S1)))))\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return relu(sqrt(S2)*relu(_a0_)**2/(sqrt(-S1)*abs(relu(fac(S1)))))\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return relu(sqrt(S2)*relu(_a0_)**2/(sqrt(-S1)*abs(relu(fac(S1)))))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return log(S1)**_a0_\n", - " 90%|█████████ | 1353/1500 [01:39<00:11, 12.88it/s]:2: RuntimeWarning: invalid value encountered in log\n", - " return log(S2/tan(S1))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return (_a0_/S1)**_a0_/(_a0_ + relu(S1))\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return sqrt(-S1)*exp(-S1)\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return sqrt(-S1)*exp(-S1)\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return sqrt(-S1)*exp(-S1)\n", - " 90%|█████████ | 1355/1500 [01:39<00:11, 13.08it/s]:2: RuntimeWarning: invalid value encountered in power\n", - " return (_a0_/S2)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return (_a0_/S2)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return relu(log(-S1*S2/relu(relu(S1))))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return relu(log(-S1*S2/relu(relu(S1))))\n", - ":2: RuntimeWarning: overflow encountered in sinh\n", - " return relu(sinh(S2**S2)**(-_a0_))**2\n", - ":2: RuntimeWarning: overflow encountered in sinh\n", - " return relu(sinh(S2**S2)**(-_a0_))**2\n", - ":2: RuntimeWarning: overflow encountered in sinh\n", - " return relu(sinh(S2**S2)**(-_a0_))**2\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return sinh(S1)**(_a0_**S2)\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return sinh(S1)**(_a0_**S2)\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return sinh(S1)**(_a0_**S2)\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu(relu((sinh(S1)**2)**(_a0_**S2)))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu(relu((sinh(S1)**2)**(_a0_**S2)))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu(relu((sinh(S1)**2)**(_a0_**S2)))\n", - " 90%|█████████ | 1357/1500 [01:39<00:10, 13.46it/s]:2: RuntimeWarning: invalid value encountered in power\n", - " return relu(log(-S2*_a0_/relu(_a0_**S1)))\n", - ":2: RuntimeWarning: divide by zero encountered in divide\n", - " return relu(log(-S2*_a0_/relu(_a0_**S1)))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu(log(-S2*_a0_/relu(_a0_**S1)))\n", - ":2: RuntimeWarning: divide by zero encountered in divide\n", - " return relu(log(-S2*_a0_/relu(_a0_**S1)))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu(log(-S2*_a0_/relu(_a0_**S1)))\n", - ":2: RuntimeWarning: divide by zero encountered in divide\n", - " return relu(log(-S2*_a0_/relu(_a0_**S1)))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return (_a0_/S1)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return (_a0_/S1)**_a0_\n", - ":2: RuntimeWarning: divide by zero encountered in divide\n", - " return relu(log(-S2*_a0_/relu(relu(2*_a0_))))\n", - ":2: RuntimeWarning: divide by zero encountered in divide\n", - " return relu(log(-S2*_a0_/relu(relu(2*_a0_))))\n", - ":2: RuntimeWarning: divide by zero encountered in divide\n", - " return relu(log(-S2*_a0_/relu(relu(2*_a0_))))\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return relu(sinh(_a0_)**(-_a0_))**2\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return sinh(S1*_a0_)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return sinh(S1*_a0_)**_a0_\n", - " 91%|█████████ | 1359/1500 [01:40<00:10, 13.67it/s]:2: RuntimeWarning: invalid value encountered in power\n", - " return relu(_a0_**S2)**_a0_/(_a0_ + relu(S1))\n", - ":2: RuntimeWarning: divide by zero encountered in power\n", - " return relu(_a0_**S2)**_a0_/(_a0_ + relu(S1))\n", - ":2: RuntimeWarning: divide by zero encountered in scalar power\n", - " return sinh(relu(_a0_))**_a0_\n", - ":2: RuntimeWarning: divide by zero encountered in scalar power\n", - " return sinh(relu(_a0_))**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return sinh(log(S1))**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return sinh(log(S1))**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return (S1 + _a0_)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return (S1 + _a0_)**_a0_\n", - ":2: RuntimeWarning: divide by zero encountered in divide\n", - " return exp(-sig(_a0_)/S1)/relu(log(S1))\n", - ":2: RuntimeWarning: divide by zero encountered in divide\n", - " return exp(-sig(_a0_)/S1)/relu(log(S1))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return relu(log(-S2*tanh(S1)/relu(relu(S1))))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return relu(log(-S2*tanh(S1)/relu(relu(S1))))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return relu(log(-S2*tanh(S1)/relu(relu(S1))))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return (relu(relu(S2/relu(_a0_)))/log(S1))**sig(S1)\n", - ":2: RuntimeWarning: divide by zero encountered in scalar power\n", - " return relu(relu(relu(sinh(relu(_a0_)))**_a0_))\n", - ":2: RuntimeWarning: divide by zero encountered in scalar power\n", - " return relu(relu(relu(sinh(relu(_a0_)))**_a0_))\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return sinh(S1)**(_a0_**_a0_)\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return sinh(S1)**(_a0_**_a0_)\n", - " 91%|█████████ | 1361/1500 [01:40<00:10, 13.71it/s]:2: RuntimeWarning: invalid value encountered in log\n", - " return log(cos(S2))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(cos(S2))\n", - ":2: RuntimeWarning: overflow encountered in power\n", - " return relu(relu(relu(sinh(S1))**(S2**S2)))\n", - ":2: RuntimeWarning: overflow encountered in power\n", - " return relu(relu(relu(sinh(S1))**(S2**S2)))\n", - " 91%|█████████ | 1363/1500 [01:40<00:09, 13.73it/s]:2: RuntimeWarning: divide by zero encountered in log\n", - " return relu(log(fac(S2/(_a0_*relu(relu(S1))))))\n", - ":2: RuntimeWarning: divide by zero encountered in log\n", - " return relu(log(fac(S2/(_a0_*relu(relu(S1))))))\n", - ":2: RuntimeWarning: divide by zero encountered in divide\n", - " return relu(sqrt(S2)*relu(_a0_)**2/(sqrt(S1**_a0_)*abs(relu(fac(tan(S2))))))\n", - ":2: RuntimeWarning: divide by zero encountered in divide\n", - " return relu(sqrt(S2)*relu(_a0_)**2/(sqrt(S1**_a0_)*abs(relu(fac(tan(S2))))))\n", - ":2: RuntimeWarning: divide by zero encountered in divide\n", - " return relu(sqrt(S2)*relu(_a0_)**2/(sqrt(S1**_a0_)*abs(relu(fac(tan(S2))))))\n", - ":2: RuntimeWarning: divide by zero encountered in power\n", - " return sinh(relu(relu(S1/_a0_)))**_a0_\n", - ":2: RuntimeWarning: divide by zero encountered in power\n", - " return sinh(relu(relu(S1/_a0_)))**_a0_\n", - ":2: RuntimeWarning: divide by zero encountered in power\n", - " return sinh(relu(relu(S1/_a0_)))**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return (_a0_**S1)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return (_a0_**S1)**_a0_\n", - " 91%|█████████ | 1365/1500 [01:40<00:09, 13.57it/s]:2: RuntimeWarning: invalid value encountered in power\n", - " return sinh(tan(S1))**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return sinh(tan(S1))**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(tan(S1))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(tan(S1))\n", - ":2: RuntimeWarning: divide by zero encountered in divide\n", - " return relu(log(-S2/(_a0_*relu(log(S1)))))\n", - " 91%|█████████ | 1367/1500 [01:40<00:09, 14.16it/s]:2: RuntimeWarning: invalid value encountered in power\n", - " return (S1*_a0_)**_a0_/(_a0_ + relu(S1))\n", - ":2: RuntimeWarning: divide by zero encountered in scalar power\n", - " return sinh(relu(_a0_))**_a0_\n", - ":2: RuntimeWarning: divide by zero encountered in scalar power\n", - " return sinh(relu(_a0_))**_a0_\n", - ":2: RuntimeWarning: divide by zero encountered in scalar power\n", - " return relu(relu(relu(_a0_)**_a0_))\n", - ":2: RuntimeWarning: divide by zero encountered in scalar power\n", - " return relu(relu(relu(_a0_)**_a0_))\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return sinh(_a0_**3)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return sinh(_a0_**3)**_a0_\n", - " 91%|█████████▏| 1369/1500 [01:40<00:09, 14.08it/s]:2: RuntimeWarning: invalid value encountered in log\n", - " return log(log(S2))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(log(S2))\n", - ":2: RuntimeWarning: divide by zero encountered in power\n", - " return relu(tan(S1))**_a0_/(_a0_ + relu(S1))\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return relu(relu(relu(S2/_a0_)/sqrt(S1*(S2 + tan(S1)))))\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return relu(relu(relu(S2/_a0_)/sqrt(S1*(S2 + tan(S1)))))\n", - ":2: RuntimeWarning: divide by zero encountered in power\n", - " return sinh(relu(_a0_/S2))**_a0_\n", - ":2: RuntimeWarning: divide by zero encountered in power\n", - " return sinh(relu(_a0_/S2))**_a0_\n", - ":2: RuntimeWarning: divide by zero encountered in power\n", - " return sinh(relu(_a0_/S2))**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return sinh(_a0_)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu(relu(exp(cos(S1 + exp(relu(_a0_**S2)**2/_a0_)))))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu(relu(exp(cos(S1 + exp(relu(_a0_**S2)**2/_a0_)))))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu(relu(exp(cos(S1 + exp(relu(_a0_**S2)**2/_a0_)))))\n", - " 91%|█████████▏| 1371/1500 [01:40<00:09, 14.29it/s]:2: RuntimeWarning: divide by zero encountered in scalar power\n", - " return sinh(relu(relu(2*_a0_)))**_a0_\n", - ":2: RuntimeWarning: divide by zero encountered in scalar power\n", - " return sinh(relu(relu(2*_a0_)))**_a0_\n", - ":2: RuntimeWarning: divide by zero encountered in scalar power\n", - " return sinh(relu(relu(2*_a0_)))**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return (S1*_a0_)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return (S1*_a0_)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return exp(-_a0_**S2/S1)/relu(S1)\n", - ":2: RuntimeWarning: overflow encountered in exp\n", - " return exp(-_a0_**S2/S1)/relu(S1)\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return exp(-_a0_**S2/S1)/relu(S1)\n", - ":2: RuntimeWarning: overflow encountered in exp\n", - " return exp(-_a0_**S2/S1)/relu(S1)\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(S2/sin(S1))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return relu(log(-S1/relu(relu(S1))))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return relu(log(-S1/relu(relu(S1))))\n", - ":2: RuntimeWarning: overflow encountered in power\n", - " return relu(sinh(S1)**(S2**S2))\n", - ":2: RuntimeWarning: overflow encountered in power\n", - " return relu(sinh(S1)**(S2**S2))\n", - ":2: RuntimeWarning: overflow encountered in power\n", - " return relu(sinh(S1)**(S2**S2))\n", - " 92%|█████████▏| 1373/1500 [01:41<00:09, 13.60it/s]:2: RuntimeWarning: divide by zero encountered in divide\n", - " return relu(log(-S2/(_a0_*relu(relu(_a0_)))))\n", - ":2: RuntimeWarning: divide by zero encountered in power\n", - " return relu(relu(relu(sinh(tan(S2)))**_a0_))\n", - ":2: RuntimeWarning: divide by zero encountered in power\n", - " return relu(relu(relu(sinh(tan(S2)))**_a0_))\n", - " 92%|█████████▏| 1375/1500 [01:41<00:08, 14.26it/s]:2: RuntimeWarning: invalid value encountered in scalar power\n", - " return _a0_**_a0_/(_a0_ + relu(S1))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu(sinh(S1)**(-_a0_**S2))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return relu(log(cos(S2/(_a0_*relu(relu(S1))))))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return relu(log(cos(S2/(_a0_*relu(relu(S1))))))\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return exp(-S1)*sqrt(log(_a0_))\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return exp(-S1)*sqrt(log(_a0_))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return (S1*_a0_)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return (S1*_a0_)**_a0_\n", - " 92%|█████████▏| 1377/1500 [01:41<00:08, 14.09it/s]:2: RuntimeWarning: divide by zero encountered in divide\n", - " return relu(log(-S2/(_a0_*relu(relu(_a0_)))))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return (relu(relu(S2/relu(_a0_)))/tan(S1))**sig(S1)\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return (relu(relu(S2/relu(_a0_)))/tan(S1))**sig(S1)\n", - ":2: RuntimeWarning: divide by zero encountered in scalar power\n", - " return relu(relu(relu(_a0_)**_a0_))\n", - ":2: RuntimeWarning: divide by zero encountered in scalar power\n", - " return relu(relu(relu(_a0_)**_a0_))\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return sinh(_a0_)**_a0_\n", - " 92%|█████████▏| 1379/1500 [01:41<00:08, 14.09it/s]:2: RuntimeWarning: invalid value encountered in scalar power\n", - " return sinh(_a0_)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return relu(log(-1/relu(relu(S1))))\n", - ":2: RuntimeWarning: divide by zero encountered in scalar power\n", - " return sinh(relu(relu(_a0_)))**_a0_\n", - " 92%|█████████▏| 1381/1500 [01:41<00:08, 14.28it/s]:2: RuntimeWarning: divide by zero encountered in scalar power\n", - " return sinh(relu(_a0_))**_a0_\n", - ":2: RuntimeWarning: divide by zero encountered in scalar power\n", - " return sinh(relu(_a0_))**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return (-sinh(relu(S1)))**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return (-sinh(relu(S1)))**_a0_\n", - " 92%|█████████▏| 1383/1500 [01:41<00:08, 13.97it/s]:2: RuntimeWarning: invalid value encountered in log\n", - " return relu(log(-S2/(_a0_*cos(relu(S1)))))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu(_a0_**S2)**_a0_\n", - ":2: RuntimeWarning: divide by zero encountered in power\n", - " return relu(_a0_**S2)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu(_a0_**S2)**_a0_\n", - ":2: RuntimeWarning: divide by zero encountered in power\n", - " return relu(_a0_**S2)**_a0_\n", - ":2: RuntimeWarning: divide by zero encountered in divide\n", - " return relu(sqrt(S2)*relu(_a0_)**2/(sqrt(S1**_a0_)*abs(relu(fac(sin(S1))))))\n", - ":2: RuntimeWarning: divide by zero encountered in divide\n", - " return relu(sqrt(S2)*relu(_a0_)**2/(sqrt(S1**_a0_)*abs(relu(fac(sin(S1))))))\n", - ":2: RuntimeWarning: divide by zero encountered in divide\n", - " return relu(sqrt(S2)*relu(_a0_)**2/(sqrt(S1**_a0_)*abs(relu(fac(sin(S1))))))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return (S2 + _a0_)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return (S2 + _a0_)**_a0_\n", - " 92%|█████████▏| 1385/1500 [01:41<00:08, 13.44it/s]:2: RuntimeWarning: invalid value encountered in log\n", - " return relu(log(-S2/(S1*relu(relu(S1)))))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(-S1/relu(S1))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(-S1/relu(S1))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(-S1/relu(S1))\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return -sqrt(S2*_a0_)/S1\n", - ":2: RuntimeWarning: divide by zero encountered in divide\n", - " return exp(-sig(_a0_)/S1)/relu(_a0_)\n", - " 92%|█████████▏| 1387/1500 [01:42<00:08, 13.34it/s]:2: RuntimeWarning: invalid value encountered in sqrt\n", - " return relu(sqrt(S2)*relu(_a0_)**2/(sqrt(-S2)*abs(relu(fac(S1)))))\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return relu(sqrt(S2)*relu(_a0_)**2/(sqrt(-S2)*abs(relu(fac(S1)))))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return tan(S1)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return relu(log(-tan(S2)/(_a0_*relu(relu(S1)))))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return relu(log(-tan(S2)/(_a0_*relu(relu(S1)))))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return relu(log(-tan(S2)/(_a0_*relu(relu(S1)))))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return (-sinh(S1))**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return (-sinh(S1))**_a0_\n", - " 93%|█████████▎| 1389/1500 [01:42<00:08, 13.33it/s]:2: RuntimeWarning: divide by zero encountered in log\n", - " return log(log(_a0_))\n", - ":2: RuntimeWarning: divide by zero encountered in log\n", - " return log(log(_a0_))\n", - ":2: RuntimeWarning: divide by zero encountered in log\n", - " return log(log(_a0_))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return sinh(_a0_**S1)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return sinh(_a0_**S1)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return (S2/_a0_ + sin((2*S1 + S2 + sqrt(-S1*_a0_))**_a0_))*exp(-S1)\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return (S2/_a0_ + sin((2*S1 + S2 + sqrt(-S1*_a0_))**_a0_))*exp(-S1)\n", - " 93%|█████████▎| 1391/1500 [01:42<00:08, 13.01it/s]:2: RuntimeWarning: invalid value encountered in log\n", - " return log(cos(S1)/S1)\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(cos(S1)/S1)\n", - ":2: RuntimeWarning: divide by zero encountered in power\n", - " return relu(_a0_/S2)**_a0_/(_a0_ + relu(S1))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return relu(log(-S2/((S1 + _a0_)*relu(relu(S1)))))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return relu(log(-S2/((S1 + _a0_)*relu(relu(S1)))))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return relu(log(-S2/((S1 + _a0_)*relu(relu(S1)))))\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return sqrt(cos(log(S2**3))/sinh(S1))\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return sqrt(cos(log(S2**3))/sinh(S1))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return (S2*_a0_)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return (S2*_a0_)**_a0_\n", - " 93%|█████████▎| 1393/1500 [01:42<00:08, 13.19it/s]:2: RuntimeWarning: divide by zero encountered in power\n", - " return relu(relu(relu(log(S1))**_a0_))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu(_a0_**S2)**_a0_\n", - ":2: RuntimeWarning: divide by zero encountered in power\n", - " return relu(_a0_**S2)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu(_a0_**S2)**_a0_\n", - ":2: RuntimeWarning: divide by zero encountered in power\n", - " return relu(_a0_**S2)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return relu(log(-S2/((S1 + S2)*relu(relu(S1)))))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return relu(log(-S2/((S1 + S2)*relu(relu(S1)))))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return relu(log(-S2/((S1 + S2)*relu(relu(S1)))))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(S2/tan(S1))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return sqrt(sig(log(cos(S2)))/sinh(S1))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return sqrt(sig(log(cos(S2)))/sinh(S1))\n", - ":2: RuntimeWarning: divide by zero encountered in scalar power\n", - " return relu(relu(relu(sinh(_a0_))**_a0_))\n", - " 93%|█████████▎| 1395/1500 [01:42<00:07, 13.83it/s]:2: RuntimeWarning: invalid value encountered in log\n", - " return relu(log(-S2/(S1*relu(relu(S1)))))\n", - ":2: RuntimeWarning: divide by zero encountered in divide\n", - " return ((1/2)*relu(relu(S2/relu(_a0_)))/_a0_)**sig(S1)\n", - ":2: RuntimeWarning: divide by zero encountered in power\n", - " return sinh(relu(S1 + _a0_))**_a0_\n", - ":2: RuntimeWarning: divide by zero encountered in power\n", - " return sinh(relu(S1 + _a0_))**_a0_\n", - ":2: RuntimeWarning: divide by zero encountered in power\n", - " return sinh(relu(S1 + _a0_))**_a0_\n", - " 93%|█████████▎| 1397/1500 [01:42<00:07, 14.04it/s]:2: RuntimeWarning: invalid value encountered in log\n", - " return relu(log(-S2/(S1*relu(relu(S1)))))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return (S1 + _a0_)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return (S1 + _a0_)**_a0_\n", - " 93%|█████████▎| 1399/1500 [01:42<00:07, 14.24it/s]:2: RuntimeWarning: invalid value encountered in sqrt\n", - " return sqrt(sig(log(S2**3))/sinh(sin(S1)))\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return sqrt(sig(log(S2**3))/sinh(sin(S1)))\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return sqrt(sig(log(S2**3))/sinh(sin(S1)))\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return sinh(_a0_)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return sinh(relu(relu(log(_a0_))))**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return sinh(relu(relu(log(_a0_))))**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return sinh(relu(relu(log(_a0_))))**_a0_\n", - ":2: RuntimeWarning: overflow encountered in power\n", - " return sinh(S1)**(S1**S2)\n", - ":2: RuntimeWarning: overflow encountered in power\n", - " return sinh(S1)**(S1**S2)\n", - ":2: RuntimeWarning: overflow encountered in power\n", - " return sinh(S1)**(S1**S2)\n", - " 93%|█████████▎| 1401/1500 [01:43<00:07, 13.92it/s]:2: RuntimeWarning: invalid value encountered in power\n", - " return (_a0_/S2)**_a0_/(_a0_ + relu(S1))\n", - ":2: RuntimeWarning: divide by zero encountered in divide\n", - " return relu(relu(relu(S2/_a0_)/sqrt(S1*(-S1 + S2))))\n", - ":2: RuntimeWarning: divide by zero encountered in divide\n", - " return relu(relu(relu(S2/_a0_)/sqrt(S1*(-S1 + S2))))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return sin(S1)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(S2/cos(S2))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(S2/cos(S2))\n", - " 94%|█████████▎| 1403/1500 [01:43<00:07, 13.45it/s]:2: RuntimeWarning: invalid value encountered in log\n", - " return relu(log(-S1/relu(S1)))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return relu(log(-S1/relu(S1)))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return relu(log(-S1/relu(S1)))\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return relu(relu(relu(S2/_a0_)/sqrt(S1*(S1**2 - _a0_))))\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return relu(relu(relu(S2/_a0_)/sqrt(S1*(S1**2 - _a0_))))\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return relu(relu(relu(S2/_a0_)/sqrt(S1*(S1**2 - _a0_))))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return (S1/_a0_)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return (S1/_a0_)**_a0_\n", - ":2: RuntimeWarning: divide by zero encountered in power\n", - " return sinh(relu(S2*_a0_))**_a0_\n", - ":2: RuntimeWarning: divide by zero encountered in power\n", - " return sinh(relu(S2*_a0_))**_a0_\n", - ":2: RuntimeWarning: divide by zero encountered in divide\n", - " return log(S2/relu(S1 + _a0_))\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return relu(sqrt(S2)*relu(_a0_)**2/(sqrt(-S2)*abs(relu(fac(S1)))))\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return relu(sqrt(S2)*relu(_a0_)**2/(sqrt(-S2)*abs(relu(fac(S1)))))\n", - ":2: RuntimeWarning: divide by zero encountered in scalar power\n", - " return sinh(relu(_a0_))**_a0_\n", - ":2: RuntimeWarning: divide by zero encountered in scalar power\n", - " return sinh(relu(_a0_))**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return sin(S1)**_a0_\n", - " 94%|█████████▎| 1405/1500 [01:43<00:07, 12.85it/s]:2: RuntimeWarning: invalid value encountered in sqrt\n", - " return relu(sqrt(S2)*relu(_a0_)**2/(sqrt(sin(S2))*abs(relu(fac(S1)))))\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return relu(sqrt(S2)*relu(_a0_)**2/(sqrt(sin(S2))*abs(relu(fac(S1)))))\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return relu(sqrt(S2)*relu(_a0_)**2/(sqrt(sin(S2))*abs(relu(fac(S1)))))\n", - ":2: RuntimeWarning: divide by zero encountered in scalar power\n", - " return sinh(relu(_a0_))**_a0_\n", - ":2: RuntimeWarning: divide by zero encountered in scalar power\n", - " return sinh(relu(_a0_))**_a0_\n", - ":2: RuntimeWarning: divide by zero encountered in scalar power\n", - " return sinh(relu(relu(_a0_)))**_a0_\n", - " 94%|█████████▍| 1407/1500 [01:43<00:07, 13.16it/s]:2: RuntimeWarning: divide by zero encountered in scalar power\n", - " return sinh(relu(relu(tanh(_a0_))))**_a0_\n", - ":2: RuntimeWarning: divide by zero encountered in scalar power\n", - " return sinh(relu(relu(tanh(_a0_))))**_a0_\n", - ":2: RuntimeWarning: divide by zero encountered in scalar power\n", - " return sinh(relu(relu(tanh(_a0_))))**_a0_\n", - ":2: RuntimeWarning: divide by zero encountered in power\n", - " return relu(relu(relu(S1*_a0_)**_a0_))\n", - ":2: RuntimeWarning: divide by zero encountered in power\n", - " return relu(relu(relu(S1*_a0_)**_a0_))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return exp(-_a0_**S1/S1)/relu(S1)\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return exp(-_a0_**S1/S1)/relu(S1)\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return exp(-_a0_**S1/S1)/relu(S1)\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return relu(log(-S2))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return relu(log(-S2))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return relu(log(-S2))\n", - " 94%|█████████▍| 1409/1500 [01:43<00:07, 12.81it/s]:2: RuntimeWarning: divide by zero encountered in divide\n", - " return (S1**(-S1)*relu(relu(S2/relu(_a0_))))**sig(S1)\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return sin(S1)**(2*_a0_)\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return sin(S1)**(2*_a0_)\n", - ":2: RuntimeWarning: divide by zero encountered in scalar power\n", - " return sinh(relu(_a0_))**_a0_\n", - ":2: RuntimeWarning: divide by zero encountered in scalar power\n", - " return sinh(relu(_a0_))**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return sinh(_a0_)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return sin(S1)**_a0_\n", - " 94%|█████████▍| 1411/1500 [01:43<00:07, 11.90it/s]:2: RuntimeWarning: invalid value encountered in log\n", - " return relu(log(-S2**2))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return relu(log(-S2**2))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return relu(log(-S2**2))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(-S1)\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(-S1)\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return relu(relu(exp(cos(_a0_**_a0_ + exp(relu(relu(S2))**2/_a0_)))))\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return relu(relu(exp(cos(_a0_**_a0_ + exp(relu(relu(S2))**2/_a0_)))))\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return relu(relu(exp(cos(_a0_**_a0_ + exp(relu(relu(S2))**2/_a0_)))))\n", - ":2: RuntimeWarning: divide by zero encountered in scalar power\n", - " return relu(relu(relu(_a0_)**_a0_))\n", - ":2: RuntimeWarning: divide by zero encountered in scalar power\n", - " return relu(relu(relu(_a0_)**_a0_))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(S2/log(S2))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(S2/log(S2))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return cos(S1)**_a0_\n", - " 94%|█████████▍| 1413/1500 [01:44<00:06, 12.50it/s]:2: RuntimeWarning: invalid value encountered in power\n", - " return relu(relu(sin(sinh(S1))**_a0_))\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return sqrt(sinh(S1)/_a0_)*exp(-S1)\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return (S1/_a0_)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return (S1/_a0_)**_a0_\n", - " 94%|█████████▍| 1415/1500 [01:44<00:06, 12.86it/s]:2: RuntimeWarning: invalid value encountered in scalar power\n", - " return (_a0_**(-_a0_)*relu(relu(S2/relu(_a0_))))**sig(S1)\n", - ":2: RuntimeWarning: divide by zero encountered in divide\n", - " return (_a0_**(-_a0_)*relu(relu(S2/relu(_a0_))))**sig(S1)\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return sqrt(sig(log(S2**3))/sinh(S2 + _a0_))\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return exp(-S1)*sqrt(log(S1))\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return exp(-S1)*sqrt(log(S1))\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return exp(-S1)*sqrt(log(S1))\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return sinh(_a0_**3)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return sinh(_a0_**3)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return _a0_**(2*_a0_)\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return _a0_**(2*_a0_)\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return _a0_**(2*_a0_)\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return sinh(_a0_**S2)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return sinh(_a0_**S2)**_a0_\n", - " 94%|█████████▍| 1417/1500 [01:44<00:09, 8.63it/s]:2: RuntimeWarning: divide by zero encountered in scalar power\n", - " return sinh(relu(relu(_a0_)))**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return relu(log(_a0_/relu(S1)))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return relu(log(_a0_/relu(S1)))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return relu(log(_a0_/relu(S1)))\n", - " 95%|█████████▍| 1419/1500 [01:44<00:08, 9.36it/s]:2: RuntimeWarning: invalid value encountered in log\n", - " return relu(log(-S2/relu(S1)))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return relu(log(-S2/relu(S1)))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return relu(log(-S2/relu(S1)))\n", - ":2: RuntimeWarning: divide by zero encountered in scalar power\n", - " return relu(relu(relu(sinh(_a0_))**_a0_))\n", - " 95%|█████████▍| 1421/1500 [01:44<00:07, 10.16it/s]:2: RuntimeWarning: invalid value encountered in power\n", - " return sinh(_a0_/S1)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return sinh(_a0_/S1)**_a0_\n", - ":2: RuntimeWarning: divide by zero encountered in log\n", - " return log(log(S2/S1))\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return sinh(_a0_)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return relu(relu(S2*relu(log(_a0_))**S1))\n", - ":2: RuntimeWarning: divide by zero encountered in power\n", - " return sinh(relu(S2 + _a0_))**_a0_\n", - ":2: RuntimeWarning: divide by zero encountered in power\n", - " return sinh(relu(S2 + _a0_))**_a0_\n", - ":2: RuntimeWarning: divide by zero encountered in power\n", - " return relu(relu(relu(S2 + _a0_)**_a0_))\n", - ":2: RuntimeWarning: divide by zero encountered in power\n", - " return relu(relu(relu(S2 + _a0_)**_a0_))\n", - " 95%|█████████▍| 1423/1500 [01:45<00:07, 10.99it/s]:2: RuntimeWarning: invalid value encountered in log\n", - " return log(S2/log(S1))\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return sinh(_a0_)**(2*_a0_)\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return sinh(_a0_)**(2*_a0_)\n", - ":2: RuntimeWarning: divide by zero encountered in power\n", - " return relu(relu(relu(S1*_a0_)**_a0_))\n", - ":2: RuntimeWarning: divide by zero encountered in power\n", - " return relu(relu(relu(S1*_a0_)**_a0_))\n", - " 95%|█████████▌| 1425/1500 [01:45<00:06, 11.53it/s]:2: RuntimeWarning: divide by zero encountered in scalar power\n", - " return sinh(relu(_a0_))**_a0_\n", - ":2: RuntimeWarning: divide by zero encountered in scalar power\n", - " return sinh(relu(_a0_))**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return relu(sqrt(S2)*relu(_a0_)**2/(sqrt(relu(fac(S1)))*sqrt(cos(S1))))\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return relu(sqrt(S2)*relu(_a0_)**2/(sqrt(relu(fac(S1)))*sqrt(cos(S1))))\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return relu(sqrt(S2)*relu(_a0_)**2/(sqrt(relu(fac(S1)))*sqrt(cos(S1))))\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return relu(relu(relu(S2/_a0_)/sqrt(S1*(S2 + log(S1)))))\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return relu(relu(relu(S2/_a0_)/sqrt(S1*(S2 + log(S1)))))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return sinh(_a0_/S2)**(2*_a0_)\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return sinh(_a0_/S2)**(2*_a0_)\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return sinh(_a0_/S2)**(2*_a0_)\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return relu(relu(S2*relu(sig(log(_a0_)))**S1))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return relu(relu(S2*relu(sig(log(_a0_)))**S1))\n", - " 95%|█████████▌| 1427/1500 [01:45<00:06, 12.04it/s]:2: RuntimeWarning: invalid value encountered in log\n", - " return log(cos(_a0_)/relu(S1))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return (S2 + _a0_)**(2*_a0_)\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return (S2 + _a0_)**(2*_a0_)\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return (S2 + _a0_)**(2*_a0_)\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu(sqrt(relu(sinh(_a0_**S2))**_a0_))\n", - ":2: RuntimeWarning: divide by zero encountered in power\n", - " return relu(sqrt(relu(sinh(_a0_**S2))**_a0_))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu(sqrt(relu(sinh(_a0_**S2))**_a0_))\n", - ":2: RuntimeWarning: divide by zero encountered in power\n", - " return relu(sqrt(relu(sinh(_a0_**S2))**_a0_))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu(sqrt(relu(sinh(_a0_**S2))**_a0_))\n", - ":2: RuntimeWarning: divide by zero encountered in power\n", - " return relu(sqrt(relu(sinh(_a0_**S2))**_a0_))\n", - " 95%|█████████▌| 1429/1500 [01:45<00:05, 12.23it/s]:2: RuntimeWarning: invalid value encountered in log\n", - " return relu(log(-S2*_a0_/tan(S1)))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return relu(log(-S2*_a0_/tan(S1)))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return cos(S2)**_a0_/(_a0_ + relu(S1))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return (_a0_**S2)**(2*_a0_)\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return (_a0_**S2)**(2*_a0_)\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return (_a0_**S2)**(2*_a0_)\n", - ":2: RuntimeWarning: divide by zero encountered in scalar power\n", - " return sinh(relu(_a0_))**_a0_\n", - ":2: RuntimeWarning: divide by zero encountered in scalar power\n", - " return sinh(relu(_a0_))**_a0_\n", - ":2: RuntimeWarning: divide by zero encountered in power\n", - " return relu(S2 + _a0_)**_a0_\n", - ":2: RuntimeWarning: divide by zero encountered in power\n", - " return relu(S2 + _a0_)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return (_a0_/S2)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return (_a0_/S2)**_a0_\n", - " 95%|█████████▌| 1431/1500 [01:45<00:05, 12.23it/s]:2: RuntimeWarning: invalid value encountered in log\n", - " return relu(log(S2**3*_a0_**3/relu(S1)**3))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return relu(log(S2**3*_a0_**3/relu(S1)**3))\n", - ":2: RuntimeWarning: divide by zero encountered in scalar power\n", - " return sinh(fac(_a0_))**_a0_\n", - ":2: RuntimeWarning: divide by zero encountered in scalar power\n", - " return sinh(fac(_a0_))**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return relu(log(-cos(S2)/relu(S1)))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return relu(log(-cos(S2)/relu(S1)))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return relu(log(-cos(S2)/relu(S1)))\n", - ":2: RuntimeWarning: divide by zero encountered in power\n", - " return relu(sqrt(relu(-sinh(S2))**_a0_))\n", - ":2: RuntimeWarning: divide by zero encountered in power\n", - " return relu(sqrt(relu(-sinh(S2))**_a0_))\n", - ":2: RuntimeWarning: divide by zero encountered in power\n", - " return relu(sqrt(relu(-sinh(S2))**_a0_))\n", - ":2: RuntimeWarning: divide by zero encountered in scalar power\n", - " return sinh(relu(_a0_))**_a0_\n", - ":2: RuntimeWarning: divide by zero encountered in scalar power\n", - " return sinh(relu(_a0_))**_a0_\n", - " 96%|█████████▌| 1433/1500 [01:45<00:05, 12.27it/s]:2: RuntimeWarning: invalid value encountered in log\n", - " return relu(log(-S1*S2/relu(S1)))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return relu(log(-S1*S2/relu(S1)))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return sqrt(sig(log(-_a0_**3))/sinh(S1))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return sqrt(sig(log(-_a0_**3))/sinh(S1))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return sqrt(sig(log(-_a0_**3))/sinh(S1))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return sinh(S2/_a0_)**(2*_a0_)\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return sinh(S2/_a0_)**(2*_a0_)\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return sinh(S2/_a0_)**(2*_a0_)\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return sinh(_a0_)**_a0_\n", - ":2: RuntimeWarning: overflow encountered in power\n", - " return sinh(S1)**(2*S2**S2)\n", - ":2: RuntimeWarning: overflow encountered in power\n", - " return sinh(S1)**(2*S2**S2)\n", - ":2: RuntimeWarning: overflow encountered in power\n", - " return sinh(S1)**(2*S2**S2)\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu(sqrt(tan(sinh(S1))**_a0_))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu(sqrt(tan(sinh(S1))**_a0_))\n", - " 96%|█████████▌| 1435/1500 [01:46<00:05, 11.53it/s]:2: RuntimeWarning: invalid value encountered in sqrt\n", - " return sqrt(-S1)*exp(-S1)\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return sqrt(-S1)*exp(-S1)\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return (_a0_/S2)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return (_a0_/S2)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu(sqrt(relu(_a0_**S1)**_a0_))\n", - ":2: RuntimeWarning: divide by zero encountered in power\n", - " return relu(sqrt(relu(_a0_**S1)**_a0_))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu(sqrt(relu(_a0_**S1)**_a0_))\n", - ":2: RuntimeWarning: divide by zero encountered in power\n", - " return relu(sqrt(relu(_a0_**S1)**_a0_))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu(sqrt(relu(_a0_**S1)**_a0_))\n", - ":2: RuntimeWarning: divide by zero encountered in power\n", - " return relu(sqrt(relu(_a0_**S1)**_a0_))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return (_a0_/S1)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return (_a0_/S1)**_a0_\n", - ":2: RuntimeWarning: divide by zero encountered in divide\n", - " return relu(log(-S2*_a0_/relu(_a0_)))\n", - ":2: RuntimeWarning: divide by zero encountered in divide\n", - " return relu(log(-S2*_a0_/relu(_a0_)))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return sinh(S2/_a0_)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return sinh(S2/_a0_)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return (_a0_**_a0_)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return (_a0_**_a0_)**_a0_\n", - " 96%|█████████▌| 1437/1500 [01:46<00:05, 11.47it/s]:2: RuntimeWarning: divide by zero encountered in scalar power\n", - " return relu(sqrt(relu(sinh(sin(_a0_)))**_a0_))\n", - ":2: RuntimeWarning: divide by zero encountered in scalar power\n", - " return relu(sqrt(relu(sinh(sin(_a0_)))**_a0_))\n", - ":2: RuntimeWarning: divide by zero encountered in scalar power\n", - " return relu(sqrt(relu(sinh(sin(_a0_)))**_a0_))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return relu(log(tan(S2*_a0_/relu(S1))))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return relu(log(tan(S2*_a0_/relu(S1))))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu(sqrt(relu(_a0_**S2)**_a0_))\n", - ":2: RuntimeWarning: divide by zero encountered in power\n", - " return relu(sqrt(relu(_a0_**S2)**_a0_))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu(sqrt(relu(_a0_**S2)**_a0_))\n", - ":2: RuntimeWarning: divide by zero encountered in power\n", - " return relu(sqrt(relu(_a0_**S2)**_a0_))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu(sqrt(relu(_a0_**S2)**_a0_))\n", - ":2: RuntimeWarning: divide by zero encountered in power\n", - " return relu(sqrt(relu(_a0_**S2)**_a0_))\n", - " 96%|█████████▌| 1439/1500 [01:46<00:05, 11.88it/s]:2: RuntimeWarning: invalid value encountered in log\n", - " return relu(log(-S2*sinh(S1)/relu(S1)))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return relu(log(-S2*sinh(S1)/relu(S1)))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return relu(log(-S2*sinh(S1)/relu(S1)))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(S2/log(S1))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return sinh(S2 + _a0_)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return sinh(S2 + _a0_)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return relu(log(-S2*_a0_/relu(S1)))**3\n", - ":2: RuntimeWarning: overflow encountered in sinh\n", - " return relu(sqrt(relu(sinh(S1**S2))**_a0_))\n", - ":2: RuntimeWarning: overflow encountered in sinh\n", - " return relu(sqrt(relu(sinh(S1**S2))**_a0_))\n", - ":2: RuntimeWarning: overflow encountered in sinh\n", - " return relu(sqrt(relu(sinh(S1**S2))**_a0_))\n", - " 96%|█████████▌| 1441/1500 [01:46<00:04, 12.21it/s]:2: RuntimeWarning: invalid value encountered in log\n", - " return relu(log(-_a0_*fac(S2)/relu(S1)))\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return relu(sqrt(S2)*relu(_a0_)**2/(sqrt(S1**_a0_)*sqrt(log(fac(S1)))))\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return relu(sqrt(S2)*relu(_a0_)**2/(sqrt(S1**_a0_)*sqrt(log(fac(S1)))))\n", - ":2: RuntimeWarning: overflow encountered in power\n", - " return relu(sqrt(relu(sinh(S1))**(S2**S2)))\n", - ":2: RuntimeWarning: overflow encountered in power\n", - " return relu(sqrt(relu(sinh(S1))**(S2**S2)))\n", - ":2: RuntimeWarning: overflow encountered in power\n", - " return relu(sqrt(relu(sinh(S1))**(S2**S2)))\n", - ":2: RuntimeWarning: divide by zero encountered in scalar power\n", - " return relu(_a0_)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return relu(log(-S2/S1))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return relu(log(-S2/S1))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return relu(log(-S2/S1))\n", - ":2: RuntimeWarning: divide by zero encountered in divide\n", - " return (relu(relu(S2/relu(_a0_)))/relu(-S2))**sig(S1)\n", - ":2: RuntimeWarning: divide by zero encountered in divide\n", - " return (relu(relu(S2/relu(_a0_)))/relu(-S2))**sig(S1)\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return relu(relu(exp(cos(S1 + log(relu(relu(S2))**2/_a0_)))))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return relu(relu(exp(cos(S1 + log(relu(relu(S2))**2/_a0_)))))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return (_a0_/S2)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return (_a0_/S2)**_a0_\n", - " 96%|█████████▌| 1443/1500 [01:46<00:04, 12.45it/s]:2: RuntimeWarning: invalid value encountered in scalar power\n", - " return _a0_**(2*_a0_)\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return _a0_**(2*_a0_)\n", - " 96%|█████████▋| 1445/1500 [01:46<00:04, 11.67it/s]:2: RuntimeWarning: divide by zero encountered in divide\n", - " return relu(exp(-sig(_a0_)/S1)/relu(tanh(_a0_)))\n", - ":2: RuntimeWarning: divide by zero encountered in divide\n", - " return relu(exp(-sig(_a0_)/S1)/relu(tanh(_a0_)))\n", - ":2: RuntimeWarning: divide by zero encountered in divide\n", - " return relu(exp(-sig(_a0_)/S1)/relu(tanh(_a0_)))\n", - " 96%|█████████▋| 1447/1500 [01:47<00:04, 12.16it/s]:2: RuntimeWarning: overflow encountered in sinh\n", - " return sqrt(sig(log(S2**3))/sinh(S2**S1))\n", - ":2: RuntimeWarning: overflow encountered in sinh\n", - " return sqrt(sig(log(S2**3))/sinh(S2**S1))\n", - ":2: RuntimeWarning: overflow encountered in sinh\n", - " return sqrt(sig(log(S2**3))/sinh(S2**S1))\n", - ":2: RuntimeWarning: overflow encountered in power\n", - " return relu(S2)*relu(sig(sig(relu(_a0_))))**(_a0_*exp(S2))\n", - " 97%|█████████▋| 1449/1500 [01:47<00:04, 12.31it/s]:2: RuntimeWarning: invalid value encountered in sqrt\n", - " return sqrt(sig(log(S2**3))/sinh(S2*_a0_))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return sinh(sin(S1))**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return relu(log(-S1/relu(S1)))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return relu(log(-S1/relu(S1)))\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return (_a0_**_a0_)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return (_a0_**_a0_)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return sinh(sin(S1))**_a0_\n", - " 97%|█████████▋| 1451/1500 [01:47<00:04, 12.18it/s]:2: RuntimeWarning: divide by zero encountered in divide\n", - " return relu(relu(relu(S2/_a0_)/sqrt(S1*(-S1 + S2))))\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return sqrt(sin(log(S2**3))/sinh(S1))\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return sqrt(sin(log(S2**3))/sinh(S1))\n", - ":2: RuntimeWarning: divide by zero encountered in scalar power\n", - " return relu(sqrt(relu(_a0_)**_a0_))\n", - ":2: RuntimeWarning: divide by zero encountered in scalar power\n", - " return relu(sqrt(relu(_a0_)**_a0_))\n", - ":2: RuntimeWarning: divide by zero encountered in scalar power\n", - " return relu(sqrt(relu(_a0_)**_a0_))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return (S1/_a0_)**(2*_a0_)\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return (S1/_a0_)**(2*_a0_)\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return (S1/_a0_)**(2*_a0_)\n", - ":2: RuntimeWarning: divide by zero encountered in scalar power\n", - " return relu(sqrt(relu(sinh(_a0_))**_a0_))\n", - ":2: RuntimeWarning: divide by zero encountered in scalar power\n", - " return relu(sqrt(relu(sinh(_a0_))**_a0_))\n", - " 97%|█████████▋| 1453/1500 [01:47<00:03, 12.51it/s]:2: RuntimeWarning: invalid value encountered in scalar power\n", - " return sinh(_a0_)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return sinh(_a0_)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(sin(S2))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(sin(S2))\n", - ":2: RuntimeWarning: divide by zero encountered in divide\n", - " return (relu(relu(S2/relu(_a0_)))/relu(cosh(S2)))**sig(S1)\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return log(S1)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return _a0_**(2*_a0_)\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return _a0_**(2*_a0_)\n", - " 97%|█████████▋| 1455/1500 [01:47<00:03, 12.86it/s]:2: RuntimeWarning: overflow encountered in sinh\n", - " return sinh(S1**S2)**_a0_\n", - ":2: RuntimeWarning: overflow encountered in sinh\n", - " return sinh(S1**S2)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return sinh(_a0_)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return sinh(_a0_)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return relu(sqrt(_a0_ + relu(sinh(S1))))\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return relu(sqrt(_a0_ + relu(sinh(S1))))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return (S1*_a0_)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return (S1*_a0_)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return relu(log(-S1*S2))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return relu(log(-S1*S2))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return relu(log(-S1*S2))\n", - ":2: RuntimeWarning: divide by zero encountered in scalar power\n", - " return sinh(relu(_a0_))**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return sinh(_a0_**_a0_)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return sinh(_a0_**_a0_)**_a0_\n", - " 97%|█████████▋| 1457/1500 [01:47<00:03, 12.82it/s]:2: RuntimeWarning: invalid value encountered in power\n", - " return log(S1)**(2*_a0_)\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return log(S1)**(2*_a0_)\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return sinh(_a0_)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return relu(exp(-sig(_a0_)/S1)/relu(_a0_**_a0_))\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return relu(exp(-sig(_a0_)/S1)/relu(_a0_**_a0_))\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return relu(exp(-sig(_a0_)/S1)/relu(_a0_**_a0_))\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return relu(sqrt(_a0_*relu(sinh(S1))))\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return relu(sqrt(_a0_*relu(sinh(S1))))\n", - " 97%|█████████▋| 1459/1500 [01:47<00:03, 13.32it/s]:2: RuntimeWarning: invalid value encountered in log\n", - " return sqrt(sig(log(tan(S2)**3))/sinh(S1))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return sqrt(sig(log(tan(S2)**3))/sinh(S1))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return sqrt(sig(log(tan(S2)**3))/sinh(S1))\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return sinh(_a0_)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return relu(log(log(S2*_a0_/relu(S1))))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return relu(log(log(S2*_a0_/relu(S1))))\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return sqrt(sinh(log(S2**3))/sinh(S1))\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return sqrt(sinh(log(S2**3))/sinh(S1))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return (_a0_**S1)**(2*_a0_)\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return (_a0_**S1)**(2*_a0_)\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return (_a0_**S1)**(2*_a0_)\n", - " 97%|█████████▋| 1461/1500 [01:48<00:03, 12.98it/s]:2: RuntimeWarning: invalid value encountered in log\n", - " return relu(log(-sig(_a0_)/relu(S1)))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return relu(log(-sig(_a0_)/relu(S1)))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return relu(log(-sig(_a0_)/relu(S1)))\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return sinh(2*_a0_)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return sinh(2*_a0_)**_a0_\n", - ":2: RuntimeWarning: overflow encountered in power\n", - " return sinh(S1)**(S2**S2)\n", - ":2: RuntimeWarning: overflow encountered in power\n", - " return sinh(S1)**(S2**S2)\n", - " 98%|█████████▊| 1463/1500 [01:48<00:03, 11.95it/s]:2: RuntimeWarning: invalid value encountered in log\n", - " return relu(log(-S2))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return relu(log(-S2))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return (S1/_a0_)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return (S1/_a0_)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return relu(log(-_a0_**2/relu(S1)))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return relu(log(-_a0_**2/relu(S1)))\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return relu(sqrt(relu(sinh(S1))/_a0_))\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return relu(sqrt(relu(sinh(S1))/_a0_))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu(relu(exp(cos(S1 + exp(_a0_**(-S1)*relu(relu(relu(S2)))**2)))))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu(relu(exp(cos(S1 + exp(_a0_**(-S1)*relu(relu(relu(S2)))**2)))))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu(relu(exp(cos(S1 + exp(_a0_**(-S1)*relu(relu(relu(S2)))**2)))))\n", - " 98%|█████████▊| 1465/1500 [01:48<00:02, 11.86it/s]:2: RuntimeWarning: divide by zero encountered in divide\n", - " return relu(log(-S2*_a0_/relu(S2 + _a0_)))\n", - ":2: RuntimeWarning: divide by zero encountered in divide\n", - " return relu(log(-S2*_a0_/relu(S2 + _a0_)))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return sinh(tan(S1))**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return relu(sqrt(relu(sinh(log(_a0_)))**_a0_))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return relu(sqrt(relu(sinh(log(_a0_)))**_a0_))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return relu(sqrt(relu(sinh(log(_a0_)))**_a0_))\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return sinh(_a0_)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return sinh(S1 + _a0_)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return sinh(S1 + _a0_)**_a0_\n", - " 98%|█████████▊| 1467/1500 [01:48<00:02, 11.07it/s]:2: RuntimeWarning: invalid value encountered in sqrt\n", - " return (relu(relu(S2/relu(sqrt(_a0_))))/relu(_a0_))**sig(S1)\n", - ":2: RuntimeWarning: divide by zero encountered in scalar power\n", - " return relu(sqrt(relu(_a0_)**_a0_))\n", - ":2: RuntimeWarning: divide by zero encountered in scalar power\n", - " return relu(sqrt(relu(_a0_)**_a0_))\n", - " 98%|█████████▊| 1469/1500 [01:48<00:02, 11.61it/s]:2: RuntimeWarning: invalid value encountered in log\n", - " return relu(log(-S2*_a0_/tan(S1)))\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return (relu(relu(S2 + relu(sqrt(_a0_))))/relu(S1))**sig(S1)\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return (_a0_**S1)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return (_a0_**S1)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return relu(sqrt(relu(sinh(S1))/_a0_))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return (S2*_a0_)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return (S2*_a0_)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return sinh(S1 + _a0_)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return sinh(S1 + _a0_)**_a0_\n", - " 98%|█████████▊| 1471/1500 [01:49<00:02, 10.87it/s]:2: RuntimeWarning: invalid value encountered in log\n", - " return relu(log(-S2))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return relu(log(-S2))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(tan(S1)/relu(S1))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(tan(S1)/relu(S1))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(tan(S1)/relu(S1))\n", - ":2: RuntimeWarning: overflow encountered in exp\n", - " return relu(relu(exp(cos(S1 + exp(relu(relu(relu(S2)))**2*exp(-_a0_))))))\n", - ":2: RuntimeWarning: invalid value encountered in cos\n", - " return relu(relu(exp(cos(S1 + exp(relu(relu(relu(S2)))**2*exp(-_a0_))))))\n", - ":2: RuntimeWarning: overflow encountered in exp\n", - " return relu(relu(exp(cos(S1 + exp(relu(relu(relu(S2)))**2*exp(-_a0_))))))\n", - ":2: RuntimeWarning: invalid value encountered in cos\n", - " return relu(relu(exp(cos(S1 + exp(relu(relu(relu(S2)))**2*exp(-_a0_))))))\n", - ":2: RuntimeWarning: overflow encountered in exp\n", - " return relu(relu(exp(cos(S1 + exp(relu(relu(relu(S2)))**2*exp(-_a0_))))))\n", - ":2: RuntimeWarning: invalid value encountered in cos\n", - " return relu(relu(exp(cos(S1 + exp(relu(relu(relu(S2)))**2*exp(-_a0_))))))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu(log(-(S2*_a0_)**relu(S1)))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu(log(-(S2*_a0_)**relu(S1)))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return (S1/_a0_)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return (S1/_a0_)**_a0_\n", - ":2: RuntimeWarning: overflow encountered in power\n", - " return sinh(S1)**(S2**S1)\n", - ":2: RuntimeWarning: overflow encountered in power\n", - " return sinh(S1)**(S2**S1)\n", - ":2: RuntimeWarning: divide by zero encountered in power\n", - " return relu(S2/_a0_)**_a0_\n", - ":2: RuntimeWarning: divide by zero encountered in power\n", - " return relu(S2/_a0_)**_a0_\n", - " 98%|█████████▊| 1473/1500 [01:49<00:02, 10.63it/s]:2: RuntimeWarning: invalid value encountered in scalar power\n", - " return sinh(_a0_)**_a0_\n", - ":2: RuntimeWarning: divide by zero encountered in scalar power\n", - " return relu(sqrt(relu(2*_a0_)**_a0_))\n", - ":2: RuntimeWarning: divide by zero encountered in scalar power\n", - " return relu(sqrt(relu(2*_a0_)**_a0_))\n", - ":2: RuntimeWarning: divide by zero encountered in scalar power\n", - " return relu(sqrt(relu(2*_a0_)**_a0_))\n", - ":2: RuntimeWarning: overflow encountered in exp\n", - " return relu(exp(S2/S1**2)/relu(S1))\n", - ":2: RuntimeWarning: overflow encountered in exp\n", - " return relu(exp(S2/S1**2)/relu(S1))\n", - ":2: RuntimeWarning: overflow encountered in exp\n", - " return relu(exp(S2/S1**2)/relu(S1))\n", - ":2: RuntimeWarning: divide by zero encountered in log\n", - " return sqrt(sig(log(log(_a0_)**3))/sinh(S1))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return sqrt(sig(log(log(_a0_)**3))/sinh(S1))\n", - " 98%|█████████▊| 1475/1500 [01:49<00:02, 11.44it/s]:2: RuntimeWarning: invalid value encountered in log\n", - " return log(tan(S2))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return log(tan(S2))\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return sinh(_a0_)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return sinh(_a0_)**_a0_\n", - ":2: RuntimeWarning: divide by zero encountered in divide\n", - " return sqrt(S1/relu(_a0_))*exp(-S1)\n", - ":2: RuntimeWarning: divide by zero encountered in scalar power\n", - " return relu(sqrt(relu(sinh(_a0_))**_a0_))\n", - " 98%|█████████▊| 1477/1500 [01:49<00:01, 11.72it/s]:2: RuntimeWarning: invalid value encountered in power\n", - " return sinh(sin(S2))**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return sinh(sin(S2))**_a0_\n", - ":2: RuntimeWarning: divide by zero encountered in scalar power\n", - " return relu(_a0_)**_a0_\n", - ":2: RuntimeWarning: divide by zero encountered in divide\n", - " return relu(exp(-_a0_/S1)/relu(fac(_a0_)))\n", - ":2: RuntimeWarning: divide by zero encountered in divide\n", - " return sqrt(tanh(S2)/relu(_a0_))*exp(-S1)\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return sinh(_a0_)**_a0_\n", - " 99%|█████████▊| 1479/1500 [01:49<00:01, 11.40it/s]:2: RuntimeWarning: invalid value encountered in log\n", - " return relu(log(-S2*cosh(S1)/relu(S1)))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return relu(log(-S2*cosh(S1)/relu(S1)))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return relu(log(-S2*cosh(S1)/relu(S1)))\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return sqrt(sinh(log(S2**3))/sinh(S1))\n", - ":2: RuntimeWarning: divide by zero encountered in power\n", - " return relu(sqrt(relu(sinh(S2/_a0_))**_a0_))\n", - ":2: RuntimeWarning: divide by zero encountered in power\n", - " return relu(sqrt(relu(sinh(S2/_a0_))**_a0_))\n", - ":2: RuntimeWarning: divide by zero encountered in power\n", - " return relu(sqrt(relu(sinh(S2/_a0_))**_a0_))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return sinh(S1*_a0_)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return sinh(S1*_a0_)**_a0_\n", - " 99%|█████████▊| 1481/1500 [01:49<00:01, 10.24it/s]:2: RuntimeWarning: invalid value encountered in power\n", - " return _a0_**S1*relu(sig(sig(relu(relu(_a0_)))))**(S1*_a0_)\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return sinh(2*_a0_)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return sinh(2*_a0_)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu(relu(_a0_**S2*relu(sig(_a0_))**S1))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu(relu(_a0_**S2*relu(sig(_a0_))**S1))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu(relu(_a0_**S2*relu(sig(_a0_))**S1))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return (S1 + _a0_)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return (S1 + _a0_)**_a0_\n", - " 99%|█████████▉| 1483/1500 [01:50<00:01, 10.88it/s]:2: RuntimeWarning: invalid value encountered in log\n", - " return relu(log(S2*_a0_/S1))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return relu(log(S2*_a0_/S1))\n", - ":2: RuntimeWarning: divide by zero encountered in divide\n", - " return (relu(relu(S2/relu(_a0_)))/_a0_**2)**sig(S1)\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return sqrt(sig(log(S2 + _a0_))/sinh(S1))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return sinh(S1)**log(_a0_)\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return sinh(S1)**log(_a0_)\n", - " 99%|█████████▉| 1485/1500 [01:50<00:01, 11.39it/s]:2: RuntimeWarning: invalid value encountered in log\n", - " return relu(log(sin(S2*_a0_/relu(S1))))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return relu(log(sin(S2*_a0_/relu(S1))))\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return sinh(_a0_)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return (S2*_a0_)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return (S2*_a0_)**_a0_\n", - " 99%|█████████▉| 1487/1500 [01:50<00:01, 11.66it/s]:2: RuntimeWarning: invalid value encountered in power\n", - " return sinh(_a0_**S2)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return sinh(_a0_**S2)**_a0_\n", - ":2: RuntimeWarning: divide by zero encountered in power\n", - " return relu(sqrt(relu(sinh(S1*_a0_))**_a0_))\n", - ":2: RuntimeWarning: divide by zero encountered in power\n", - " return relu(sqrt(relu(sinh(S1*_a0_))**_a0_))\n", - ":2: RuntimeWarning: divide by zero encountered in power\n", - " return relu(sqrt(relu(sinh(S1*_a0_))**_a0_))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return relu(log(-S2))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return relu(log(-S2))\n", - ":2: RuntimeWarning: divide by zero encountered in divide\n", - " return log(S2/relu(tan(S2)))\n", - ":2: RuntimeWarning: divide by zero encountered in divide\n", - " return log(S2/relu(tan(S2)))\n", - ":2: RuntimeWarning: divide by zero encountered in divide\n", - " return log(S2/relu(tan(S2)))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return sinh(relu(S1))**(_a0_**S2)\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return sinh(relu(S1))**(_a0_**S2)\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return sinh(relu(S1))**(_a0_**S2)\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return relu(sqrt(_a0_ + relu(sinh(S1))))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return tan(S1)**_a0_\n", - " 99%|█████████▉| 1489/1500 [01:50<00:00, 12.73it/s]:2: RuntimeWarning: invalid value encountered in log\n", - " return relu(log(-S2))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return relu(log(-S2))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return (log(relu(S2/relu(_a0_)))/relu(S1))**sig(S1)\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return (log(relu(S2/relu(_a0_)))/relu(S1))**sig(S1)\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return relu(relu(relu(S2/_a0_)/sqrt((S1**3 + S2)*sin(S2))))\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return relu(relu(relu(S2/_a0_)/sqrt((S1**3 + S2)*sin(S2))))\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return relu(relu(relu(S2/_a0_)/sqrt((S1**3 + S2)*sin(S2))))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return sinh(S1/_a0_)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return sinh(S1/_a0_)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu(S1)**(_a0_**S2)\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return relu(S1)**(_a0_**S2)\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return relu(log(-S1*S2/relu(S1)))\n", - " 99%|█████████▉| 1491/1500 [01:50<00:00, 12.86it/s]:2: RuntimeWarning: invalid value encountered in sqrt\n", - " return relu(relu(relu(S2/_a0_)/sqrt((S1**3 + S2)*tan(S2))))\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return relu(relu(relu(S2/_a0_)/sqrt((S1**3 + S2)*tan(S2))))\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return relu(relu(relu(S2/_a0_)/sqrt((S1**3 + S2)*tan(S2))))\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return relu(sqrt(_a0_ + relu(sinh(S1))))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return (_a0_/S1)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return (_a0_/S1)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return relu(log(-2*S2**2/relu(S1)))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return relu(log(-2*S2**2/relu(S1)))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return relu(log(-2*S2**2/relu(S1)))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return sin(relu(S1))**_a0_\n", - ":2: RuntimeWarning: overflow encountered in exp\n", - " return relu(relu(exp(cos(S1 + exp(_a0_*relu(relu(relu(S2)))**2/S1)))))\n", - ":2: RuntimeWarning: invalid value encountered in cos\n", - " return relu(relu(exp(cos(S1 + exp(_a0_*relu(relu(relu(S2)))**2/S1)))))\n", - ":2: RuntimeWarning: divide by zero encountered in scalar power\n", - " return relu(_a0_)**_a0_\n", - "100%|█████████▉| 1493/1500 [01:50<00:00, 12.74it/s]:2: RuntimeWarning: invalid value encountered in power\n", - " return (_a0_/S2)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return (_a0_/S2)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return relu(log(-S2**2/relu(S1)))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return relu(log(-S2**2/relu(S1)))\n", - ":2: RuntimeWarning: divide by zero encountered in divide\n", - " return sqrt(S2/relu(_a0_))*exp(-S2)\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return sinh(S2/_a0_)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return sinh(S2/_a0_)**_a0_\n", - ":2: RuntimeWarning: divide by zero encountered in power\n", - " return relu(sqrt(relu(S1 + _a0_)**_a0_))\n", - ":2: RuntimeWarning: divide by zero encountered in power\n", - " return relu(sqrt(relu(S1 + _a0_)**_a0_))\n", - ":2: RuntimeWarning: divide by zero encountered in power\n", - " return relu(sqrt(relu(S1 + _a0_)**_a0_))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return relu(relu(exp(cos(exp(relu(relu(relu(S2)))**2/_a0_) + log(_a0_)))))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return relu(relu(exp(cos(exp(relu(relu(relu(S2)))**2/_a0_) + log(_a0_)))))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return relu(relu(exp(cos(exp(relu(relu(relu(S2)))**2/_a0_) + log(_a0_)))))\n", - "100%|█████████▉| 1495/1500 [01:51<00:00, 12.62it/s]:2: RuntimeWarning: invalid value encountered in log\n", - " return relu(log(-sqrt(S1)*S2/relu(S1)))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return relu(log(-sqrt(S1)*S2/relu(S1)))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return relu(log(-sqrt(S1)*S2/relu(S1)))\n", - ":2: RuntimeWarning: divide by zero encountered in log\n", - " return log(log(_a0_))\n", - ":2: RuntimeWarning: divide by zero encountered in log\n", - " return log(log(_a0_))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return relu(log(-S2))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return relu(log(-S2))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return (S1/_a0_)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return (S1/_a0_)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return sinh(sqrt(_a0_))**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return sinh(sqrt(_a0_))**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in sqrt\n", - " return sinh(sqrt(_a0_))**_a0_\n", - "100%|█████████▉| 1497/1500 [01:51<00:00, 12.85it/s]:2: RuntimeWarning: invalid value encountered in log\n", - " return relu(log(-tanh(S1)/relu(S1)))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return relu(log(-tanh(S1)/relu(S1)))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return relu(log(-tanh(S1)/relu(S1)))\n", - ":2: RuntimeWarning: divide by zero encountered in divide\n", - " return sqrt(S1**2/relu(_a0_))*exp(-S1)\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return sinh(_a0_**S1)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return sinh(_a0_**S1)**_a0_\n", - ":2: RuntimeWarning: overflow encountered in sinh\n", - " return sinh(S1**S2)**_a0_\n", - ":2: RuntimeWarning: overflow encountered in sinh\n", - " return sinh(S1**S2)**_a0_\n", - "100%|█████████▉| 1499/1500 [01:51<00:00, 12.89it/s]:2: RuntimeWarning: divide by zero encountered in divide\n", - " return relu(sqrt(S2)*relu(_a0_)**2/(sqrt(S1**_a0_)*sqrt(relu(log(S1)))))\n", - ":2: RuntimeWarning: divide by zero encountered in divide\n", - " return relu(sqrt(S2)*relu(_a0_)**2/(sqrt(S1**_a0_)*sqrt(relu(log(S1)))))\n", - ":2: RuntimeWarning: overflow encountered in sinh\n", - " return sqrt(sig(log(S2**3))/sinh(S1**S2))\n", - ":2: RuntimeWarning: overflow encountered in sinh\n", - " return sqrt(sig(log(S2**3))/sinh(S1**S2))\n", - ":2: RuntimeWarning: overflow encountered in sinh\n", - " return sqrt(sig(log(S2**3))/sinh(S1**S2))\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return sinh(_a0_)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in scalar power\n", - " return sinh(_a0_)**_a0_\n", - ":2: RuntimeWarning: divide by zero encountered in power\n", - " return relu(sqrt(relu(S2*_a0_)**_a0_))\n", - ":2: RuntimeWarning: divide by zero encountered in power\n", - " return relu(sqrt(relu(S2*_a0_)**_a0_))\n", - ":2: RuntimeWarning: divide by zero encountered in power\n", - " return relu(sqrt(relu(S2*_a0_)**_a0_))\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return sinh(S2*_a0_)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in power\n", - " return sinh(S2*_a0_)**_a0_\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return relu(log(-_a0_/S1)/relu(S1))\n", - ":2: RuntimeWarning: invalid value encountered in log\n", - " return relu(log(-_a0_/S1)/relu(S1))\n", - "100%|██████████| 1500/1500 [01:51<00:00, 13.46it/s]\n", - "INFO:autora.skl.bms:BMS fitting finished\n", - "/Users/jholla10/Library/Caches/pypoetry/virtualenvs/autora-17yK3Jyq-py3.8/lib/python3.8/site-packages/pandas/core/arraylike.py:402: RuntimeWarning: divide by zero encountered in log\n", - " result = getattr(ufunc, method)(*inputs, **kwargs)\n", - "/Users/jholla10/Library/Caches/pypoetry/virtualenvs/autora-17yK3Jyq-py3.8/lib/python3.8/site-packages/mpl_toolkits/mplot3d/art3d.py:1180: RuntimeWarning: invalid value encountered in subtract\n", - " v1[poly_i, :] = ps[i1, :] - ps[i2, :]\n", - "/Users/jholla10/Library/Caches/pypoetry/virtualenvs/autora-17yK3Jyq-py3.8/lib/python3.8/site-packages/numpy/core/numeric.py:1665: RuntimeWarning: invalid value encountered in multiply\n", - " multiply(a1, b2, out=cp0)\n", - "/Users/jholla10/Library/Caches/pypoetry/virtualenvs/autora-17yK3Jyq-py3.8/lib/python3.8/site-packages/numpy/core/numeric.py:1666: RuntimeWarning: invalid value encountered in multiply\n", - " tmp = array(a2 * b1)\n", - "/Users/jholla10/Library/Caches/pypoetry/virtualenvs/autora-17yK3Jyq-py3.8/lib/python3.8/site-packages/numpy/core/numeric.py:1668: RuntimeWarning: invalid value encountered in multiply\n", - " multiply(a2, b0, out=cp1)\n", - "/Users/jholla10/Library/Caches/pypoetry/virtualenvs/autora-17yK3Jyq-py3.8/lib/python3.8/site-packages/numpy/core/numeric.py:1669: RuntimeWarning: invalid value encountered in multiply\n", - " multiply(a0, b2, out=tmp)\n", - "/Users/jholla10/Library/Caches/pypoetry/virtualenvs/autora-17yK3Jyq-py3.8/lib/python3.8/site-packages/mpl_toolkits/mplot3d/proj3d.py:180: RuntimeWarning: invalid value encountered in divide\n", - " txs, tys, tzs = vecw[0]/w, vecw[1]/w, vecw[2]/w\n" - ] - }, - { - "data": { - "text/plain": "
    ", - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZIAAAGlCAYAAADQ/XDvAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOz9eZgkd33nib/ijjwrK+vq6vuSulv3hSRaGHEIZAwYeexlDB4vxmP/mDVm8JqZtWdYj+0dxh5fa/sZ7/Ds4FlkY2SP7TFgjAWIW4ARuvpW30d1d92VWXnFHfH9/RGZ2ZlV1d11qksiXs+jBzorM+KbmZHfd3xuSQghSEhISEhIWCbyjV5AQkJCQsIrm0RIEhISEhJWRCIkCQkJCQkrIhGShISEhIQVkQhJQkJCQsKKSIQkISEhIWFFJEKSkJCQkLAiEiFJSEhISFgRiZAkJCQkJKyIREgSEhISElZEIiQJC/L4448jSVLXf4ODg7zxjW/kySefnPf81nN+7ud+bsHjffSjH20/Z3p6uutvn//853n44YcZHBwknU6zc+dO3v3ud/PFL37xuuvcvn171xozmQz3338/f/7nf768N56QkLBkpKTXVsJCPP7447z//e/n//q//i927NiBEIKJiQkef/xxjh49yuc//3ne8Y53tJ8vSRKmaWKaJhMTE+i63nW8nTt3MjY2huM4TE1N0d/fD8Dv//7v82//7b/l4Ycf5l3vehfpdJrTp0/zla98hTvvvJPHH3/8muvcvn07vb29fOQjHwFgbGyMP/3TP+XkyZP8t//23/j5n//51f1gEhIS5iMSEhbgk5/8pADEs88+2/V4qVQSmqaJ9773vV2PA+Kxxx4TsiyLz372s11/+853viMA8eM//uMCEFNTU0IIIXzfF/l8XrzlLW9ZcA0TExPXXee2bdvE29/+9q7HJicnRTabFfv27bvu61eber3+sp9zJYRhKGzbvtHLSHiFk7i2EpZEoVAglUqhquq8v23atInXv/71PPHEE12Pf/rTn+b222/ntttu63p8enqaarXKQw89tOC5BgcHl7XGgYEB9u7dy5kzZ7oej6KIP/qjP+LWW2/FNE2Ghob4wAc+QLlcnve83/iN32Djxo2k02ne+MY3cuzYMbZv387P/MzPtJ/Xcv9985vf5Bd+4RcYHBxk8+bN7b8/+eST/NAP/RCZTIZcLsfb3/52jh492nWu8fFx3v/+97N582YMw2B4eJh3vetdnD9/vv2c5557jkcffZT+/n5SqRQ7duzgZ3/2Z7uO02g0+MhHPsKWLVswDIM9e/bw+7//+4g5DgdJkvjFX/xFPv3pT3PrrbdiGMaiXIgJCddi/m6QkNBBpVJhenoaIQSTk5P8l//yX6jX6/yLf/EvFnz+e9/7Xj784Q9Tr9fJZrMEQcDf/M3f8Mu//Ms4jtP13MHBQVKpFJ///Of50Ic+RLFYXJU1B0HApUuX6O3t7Xr8Ax/4QNtl96//9b/m3Llz/Mmf/Akvvvgi3/nOd9A0DYB/9+/+Hb/7u7/LO9/5Th599FEOHjzIo48+Om/9LX7hF36BgYEB/sN/+A80Gg0APvWpT/G+972PRx99lN/5nd/Bsiw+/vGP87rXvY4XX3yR7du3A/DjP/7jHD16lA996ENs376dyclJnnrqKUZGRtr/futb38rAwAC/+qu/SqFQ4Pz58/zd3/1d+/xCCH70R3+Ur3/96/zLf/kvueuuu/jSl77Ev/23/5bLly/zh3/4h13r/drXvsZf//Vf84u/+Iv09/e315KQsGxusEWUsE5pubbm/mcYhnj88cfnPR8QH/zgB0WpVBK6rotPfepTQgghvvCFLwhJksT58+fFr//6r3e5toQQ4j/8h/8gAJHJZMTb3vY28Z/+038Szz///KLXuW3bNvHWt75VTE1NiampKXH48GHx0z/90+31tHj66acFID796U93vf6LX/xi1+Pj4+NCVVXx2GOPdT3vN37jNwQg3ve+9837jF73uteJIAjaj9dqNVEoFMTP//zPdx1jfHxc9PT0tB8vl8sCEL/3e7931ff3mc98ZkEXYyef/exnBSA+9rGPdT3+Ez/xE0KSJHH69On2Y4CQZVkcPXr0qsdLSFgqiWsr4Zr8P//P/8NTTz3FU089xV/8xV/wxje+kZ/7uZ/ruiPupLe3lx/+4R/mL//yLwF44okn2L9/P9u2bVvw+b/5m7/JE088wd13382XvvQlPvrRj3Lvvfdyzz338NJLLy1qjV/+8pcZGBhgYGCA22+/nU996lO8//3v5/d+7/faz/mbv/kbenp6eMtb3sL09HT7v3vvvZdsNsvXv/51AL761a8SBAG/8Au/0HWOD33oQ1c9/8///M+jKEr730899RSzs7O85z3v6TqXoig88MAD7XOlUil0Xecb3/jGPPdai0KhAMA//MM/4Pv+gs/5x3/8RxRF4V//63/d9fhHPvIRhBDzsuwefvhhbrnllqu+n4SEpZIIScI1uf/++3nkkUd45JFH+Kmf+im+8IUvcMstt/CLv/iLeJ634Gve+973tt0zn/3sZ3nve997zXO85z3v4emnn6ZcLvPlL3+Z9773vbz44ou8853vvKo7qZMHHniAp556ii9+8Yv8/u//PoVCgXK53JU5durUKSqVCoODg23Raf1Xr9eZnJwE4MKFCwDs3r276xzFYnGeq6zFjh07uv596tQpAN70pjfNO9eXv/zl9rkMw+B3fud3ePLJJxkaGuL1r389v/u7v8v4+Hj7WA8//DA//uM/zm/+5m/S39/Pu971Lj75yU/ium77ORcuXGDjxo3kcrmudezbt6/rPV1tvQkJKyWJkSQsCVmWeeMb38gf//Efc+rUKW699dZ5z/nRH/1RDMPgfe97H67r8u53v3tRx87n87zlLW/hLW95C5qm8Wd/9mc888wzPPzww9d8XX9/P4888ggAjz76KHv37uUd73gHf/zHf8wv//IvA3EAfXBwkE9/+tMLHmNgYGBRa1yIVCrV9e8oioA4TrJhw4Z5z+9MVPilX/ol3vnOd/LZz36WL33pS/zar/0av/3bv83XvvY17r77biRJ4m//9m/53ve+x+c//3m+9KUv8bM/+7P8wR/8Ad/73vfIZrMrXm9CwkpJhCRhyQRBAEC9Xl/w76lUiscee4y/+Iu/4G1ve1u7ZmQp3HffffzZn/0ZY2NjS37t29/+dh5++GF+67d+iw984ANkMhl27drFV77yFR566KFrbqQtF9zp06e77txnZmau6n6ay65du4A4maAlcNd7/kc+8hE+8pGPcOrUKe666y7+4A/+gL/4i79oP+fBBx/kwQcf5D/9p//EE088wU/91E/xV3/1V/zcz/0c27Zt4ytf+Qq1Wq3LKjl+/HjXe0pIWCsS11bCkvB9ny9/+cvout52nSzEv/k3/4Zf//Vf59d+7deu+hzLsvinf/qnBf/W8uvv2bNnWev8lV/5FWZmZvjEJz4BwLvf/W7CMOQ//sf/OO+5QRAwOzsLwJvf/GZUVeXjH/9413P+5E/+ZNHnfvTRR8nn8/zWb/3WgnGNqakpIH7/c113u3btIpfLtV1X5XJ5XgrvXXfdBdB+zo/8yI8QhuG8Nf7hH/4hkiTxtre9bdFrT0hYDolFknBNnnzyyfad7eTkJE888QSnTp3iV3/1V8nn81d93Z133smdd955zWNblsX+/ft58MEH+eEf/mG2bNnC7Owsn/3sZ3n66ad57LHHuPvuu5e17re97W3cdttt/N//9//NBz/4QR5++GE+8IEP8Nu//dscOHCAt771rWiaxqlTp/ibv/kb/viP/5if+ImfYGhoiA9/+MP8wR/8AT/6oz/KD//wD3Pw4EGefPJJ+vv7kSTpuufO5/N8/OMf56d/+qe55557+Mmf/EkGBgYYGRnhC1/4Ag899BB/8id/wsmTJ3nzm9/Mu9/9bm655RZUVeUzn/kMExMT/ORP/iQAf/Znf8Z//a//lR/7sR9j165d1Go1PvGJT5DP5/mRH/kRAN75znfyxje+kY9+9KOcP3+eO++8ky9/+ct87nOf45d+6ZfaFlJCwppxo9PGEtYnC6X/mqYp7rrrLvHxj39cRFHU9XzmpNsuxNz0X9/3xSc+8Qnx2GOPiW3btgnDMEQ6nRZ33323+L3f+z3huu5117lQZXuLxx9/XADik5/8ZPux//bf/pu49957RSqVErlcTtx+++3i//g//g8xOjrafk4QBOLXfu3XxIYNG0QqlRJvetObxEsvvST6+vrEv/pX/2reZ3S11Nyvf/3r4tFHHxU9PT3CNE2xa9cu8TM/8zPiueeeE0IIMT09LT74wQ+KvXv3ikwmI3p6esQDDzwg/vqv/7p9jBdeeEG85z3vEVu3bhWGYYjBwUHxjne8o32MFrVaTfzv//v/LjZu3Cg0TRM33XST+L3f+71lfU8JCUsl6bWVkLAIZmdn6e3t5WMf+xgf/ehHb/RyEhLWFUmMJCFhDrZtz3vsj/7ojwB4wxve8PIuJiHhFUASI0lImMP/+B//g8cff5wf+ZEfIZvN8u1vf5u//Mu/5K1vfetV+4IlJPwgkwhJQsIc7rjjDlRV5Xd/93epVqvtAPzHPvaxG720hIR1SRIjSUhISEhYEUmMJCEhISFhRSRCkpCQkJCwIhIhSUhISEhYEYmQJCQkJCSsiERIEhISEhJWRCIkCQkJCQkrIhGShISEhIQVkQhJQkJCQsKKSIQkISEhIWFFJEKSkJCQkLAiEiFJSEhISFgRiZAkJCQkJKyIREgSEhISElZEIiQJCQkJCSsiEZKEhISEhBWRCElCQkJCwopIhCQhISEhYUUkQpKQkJCQsCISIUlISEhIWBGJkCQkJCQkrIhESBISEhISVkQiJAkJCQkJKyIRkoSEhISEFZEISUJCQkLCikiEJCEhISFhRSRCkpCQkJCwIhIhSUhISEhYEYmQJCQkJCSsiERIEhISEhJWRCIkCQkJCQkrIhGShISEhIQVod7oBST8YCGEIAxDXNdFUZT2f7Kc3NMkJLxSSYQk4WVDCIHv+wRBgOu67cdlWUZVVVRVTYQlIeEViCSEEDd6EQmvfsIwxPd9oihCkiQ8z0OWZYQQCCGIogghBJIkIUlSIiwJCa8gEiFJWFOEEARBQBAEAEiS1LZMJEla8PktUWnRep6u62iahqqqC742ISHhxpC4thLWjCiK2lYI0LY2WiLRskA6kSQJRVHa/24Jy/e+9z327NlDoVBAlmUURemyWhJhSUi4cSRCkrDqtDZ/3/e73FVzn7OYzb8lLK3/VRSlfWzP85AkqS0smqa1n5MIS0LCy0ciJAmrSsttdeTIEQYHB+nv71+VTb11jKtZLHOFZW6MJRGWhIS1IxGShFWjtaGHYUitVqO3t3fVNvBOl9jcx1vC0vp7FEV4nofruomwJCS8DCRCkrBiWrUhQRAQRRGyLF91419LWuKQCEtCwstLIiQJK6LlygrDEKAtIq3U3tViOcK0kLC0/nNdF8/z2mtOhCUhYfkkQpKwbFp3+p1WSCdX2/hv1CbdGfRXFGWesHRaLK0041YNSyIsCQlXJxGShCXTcmW1srIW2mivZ0EsdWNeC1fZtYTFcZz2cxJhSUi4NomQJCyJKIoIgmCeK2suNyJGslIWIyyO4xAEAf39/YmwJCQ0SYQkYVEspjakk9UWkhsVvJ8rLOVymXK5TDabBWIhnRtjSYQl4QeNREgSrstCbU6ut1G+Ei2S69F635IkoWlaV58w13VxHCcRloQfSBIhSbgmnbUhrXjBYliukPhh3E5FU7rPsx6Faa6gtoQlDMN2q/zOGEurrctihDgh4ZVEIiQJC3K12pDFstSNv+oEHLxU5cx0AyFge1+KOzflKWb0rjWtZ1oC0RLbTmEJgqD994X6hCXCkvBKJhGShHlcrTZkKSxFSGw/5KmXpjg3Y9Gb1pAkeGGkynjV5e23DZE3X5ndfq8mLEEQtLsft4Sls09Y0jI/4ZVGIiQJXVyvNmSxLEVIzk1bXCjZ7OhLoTZdWr1pjTNTNmemGty9pQdYPxbJSj6TRFgSXo0kQpIALK42ZCksRUhmGj6SRFtEAGRJwtQkxqtu+3ivNq4nLJBMj0x4ZZAIScKquLLmci0hmZgp880Dp7AijYFinlDRiRZ4rhcI0np3p99XM1cTls7Oxsn0yIT1SCIkP+CEYcjFixdJpVL09PSsabdeIQRHT5/nie+cpialQXhYZ0vIIkLVdTwrzbb+PKZpMmP5mJrMzv50+3g/aCwkLK0sOt/3aTQa2LbN8PBwW1iS6ZEJN4JESH5A6awNuXTpEkNDQxQKhVU7/lwh8X2fo0eP8vWTMwSZfu7e0IOixBveheka5ZqN57o8d/ISQgj6cib3by/Sq4VdExV/kJk7i6XRaDA+Pk5/f/+CFksyPTLh5SIRkh9A5o7AXQvXiCRJ7eNXKhUOHDiAbqaQilvYiIyqyAgEEhJbizkCofD22wbJGgoNy0IPGviNKs8//3zb1VYulykUCqRSqRu2Oa43MWsJB1x9yFcyPTJhrUmE5AeIzo2mMytLluX2pr9atCySCxcucPLkSXbt2sWmLdt47tvnmXuq1r5mqDI3DWaBbPtvURRRq9U4duwYtVqN73//+2iaRm9vb/s/0zRXde2vFOaOK06mRybcKBIh+QHhWgH1tagaj6KIqakppqamuOvue0nn8uiqzK7+DN87V6LHSCE1DaGpukc+pbKxZ74gyLJMT08P6XSa/v5+NmzYQKVSoVwuc/nyZY4fP45pml3Couv6vOO8Wrlev7NkyFfCy0EiJD8AdLY5uVrL99W0SGZnZ7l8+TJCVlCG9/HEwTK2P81g3mDvUJbNvSlOTzcwNBk/FBiKzBv39FFIa1c9ZkvsFEWhWCxSLBYBCIKA2dlZyuUyFy5c4OjRo2QymbaoFAoFNO3qx30lM9ciuRbJ9MiEtSQRklcxi21zslrTDIUQnD9/ntOnT1MoFHhmPOLiSzPkTJWUJnN2qsGlss1b9w2ybyjNpbJDzlS5aTDDjr70ss6pqir9/f309/cD4HleW1jOnDmDZVnkcjmKxSK9vb309PR0uX9eyazkO7uWsCTTIxOWSiIkr1KWUhuyGq4tz/M4fPgwtVqN17zmNZwYmeBUeZrtGw16UrFF0JvWOTvd4NhYlffeN8z92xaf1rvYNeq6zuDgIIODgwC4rttu/f7SSy/heR49PT1tiyWfz79i6zCWYpFcj05hWcz0yFaqcdLZOAESIXlV0qpQX2ybk5UG28vlMgcPHiSfz/PQQw+haRrlk2PYftQWkRbFtM5E1cXyQjL62lsGhmGwYcMGNmzYgBAC27bbwnLp0iXCMKRQKLSFJZfLLapF/nphrdaSTI9MWAqJkLyK6KwNWUqbk+VaJEIIzp49y9mzZ7n55pvZunVr+3ymJiNL4AYhhnpFMJwgJKUpGOrSrIDVsJokSSKdTpNOp9m0aRNCCBqNRltYLly4ANAlLJlMZt1ujKtpkVyPxQhLuVwmnU7T09OTCMsPGImQvEpYqDZkKW6jpVokruty6NAhLMvi/vvvJ1RTfOnoJEfHaqiKxIDq05eSuFCy2VZMY6gyVdunYge8dmcvmhJbQUvZZNZiZns2myWbzbJlyxaEENRqNcrlMjMzM5w5cwZVVSkUCu0Yy3qqI7mRa1lIWEZHR+nr68MwjPZz5rbMT4Tl1UkiJK9wljoCdyFkWW7HUhbDzMwMhw4dore3l/3799Pw4c//aYTTU3Xypkok4PBsnX4dtvSmuDRrE0aClKbw4I5eXrujCCxNuF6OzUeSJPL5PPl8nm3bthFFEdVqlXK5zPj4OCdOnGhvjOPj4/T29rY3zRvBy2mRXI9OUUmmR/7gkQjJK5i5AfXlDkharNtICMGZM2c4d+4ce/bsYcuWLUiSxItnpzgzXeemgUy7g68ROVyYdvmJHb30pDRsL6Qvq7drRXx/6TGZl/sOXJZlCoUChUKBHTt2EIYhJ0+epFKpcPHiRY4dO0Y6ne6qYXm5U43X0ybcaWEm0yN/sEiE5BXK9WpDlsJigu2O43Do0CEcx+GBBx4gn8+3/3Zqsk5KU7rawJuaTChgsuZy37bermMtRxDWw+aiKArpdJowDLntttvwfb+danzu3DmOHDlCNpvtqmFptS9ZC9aTmw2ubSEl0yNf3SRC8gpjpSNwF+J6Fsn09DSHDh2iv7+fe+65Z97maGoKQTT39fEx585eXwnrbePUNI2BgQEGBgaAOAW6Fbg/deoUjuOQy+XawrLaNSzrybUFtK/HxbCUIV9zXWEJ649ESF5BrMXcELh6sD2KIk6fPs2FCxfYt28fmzZtQpIkJmsuBy9VmGl4DGQNthZTHLhUYdb2KaRi//iM5ZNSpWbvrJWznjbMq6HrOkNDQwwNDQGxFdcSlmPHjhEEQVcNSy6XW9HGuN6EZCXrSaZHvrJJhOQVQhRFTExMMDExwd69e1d1A1nIInEch4MHD+L7Pg8++CC5XA6A4+M1Pv39S0xUHRRZIoxguCdufXJm2mKiOdFQFRL3DSlsX2bF+kKsN4vkepimyfDwMMPDw101LKVSiYsXLxJFUVeqcTabXfL3ut6EZLU29usJCyTTI9cTiZCsczpH4LaqtFd785jbImVqaopDhw4xODjIvn372q4sP4z4+4PjzDRc9gzFm14kBKcnGxQzOv+/123jYtlBliAvGjilsVVb43raMJfDQjUs9Xq9bbGcO3cOSZK6AvfpdPqa73u9WSRLTedeClcTllZnY0iE5UaSCMk6JooigiBou7IURVn1du9wxbUVRRGnTp1iZGSEW265hU2bNnU971LZ5vKszaaeK/NAZEliuMdkpGSR1lXecHPc82p8PODczMIWxHICqGvRoXi5rJY7MZfLkcvl2Lp1a7tdfrlcZmpqitOnT6OqapewpFKprmOsNyFZTYvkeiwkLJ3TI4F2YW4+n0+mR64xiZCsQ65WG7JWQiLLMkEQ8MwzzxBFEa997WvJZufHNiIBEYK5v0VZav6tY6NfTxv/K4FWu/yenh62b99OGIbtGpaxsTFOnDgxr13+y7lxL4a1tEiux0KzWMbHx5mamuL2229vPyeZHrk2JEKyzuhscwLdd+9rMYAKoFqtUq1W2bx5M3v37m3/IF0/5LmRWY6N1ZAluGkgS3/GYLzqsq2YaovFeMVh50CGodyV4rzVFpL1Ikwv1xoURWkLBsR31605LCMjIxw9ehRVVUmlUkxNTa2LdvnryULqLJBUVTWZHrnGJEKyjuisDek021us9mYaRREnTpzg4sWLmKbJrbfe2v6b44f86Xcu8PyFWSQp3iS+c6bEtmIKXZE40awdsb2Q/qzOj9y2oauOZL1s/K8WVFWlr6+Pvr4+AHzf58iRIwRB0NUuv7OG5eVul78eLaTWehayWJLpkatHIiTrgKXMDVkti8SyLA4cOADA3r17uXTpUtffn70wy/MXZtlUMEk1u/Q23ICRks1jdw7jhhGTNZfhHpP7tvWypbfbf389IXklx0jWA5qmYZomhmGwc+fOrnb5J06cwHVd8vl8Vw3LWm/yN9K1tRCtYt2F6BSWZMjXykmE5AazlNqQ1RKS8fFxjhw5wsaNG9m7dy/T09Pzjnt0tIok0RYRgIyhEgqHWcfnpx/Yes1zJBv/2tPpSupslw90tcsfHR3tqmEpFouLape/nPWsV4vkWnS6wSARluWQCMkNpHWhvlxzQ8Iw5Pjx44yNjXHbbbe1N52FJiRKzf/mIUBa+C/dr7+OkCxVZJbTofgHgatdM6lUilQqxcaNGxFCYFlWW1hGRkaA1W2X30rHXU8b61Iq7Tu5lrAk0yMXJhGSG0BnbchS5oa0Nvzl/GAbjQYHDhxAlmX2799POn2lULC1Sc9aPrO2T39G57ZNeZ45X8byQtJNq6TmBCiKxL7h3HXPtxYWSWLhdLPYz0OSJDKZDJlMhs2bN3fVsMzMzHD27FlkWZ6XarycFv/rzSJZjThRp7AsND2yU1h+UKdHJkLyMrOSNietH+lSfyCjo6McPXqULVu2cPPNN8/7sbuh4KsjAX91+SiOH5I1VF63u497txZ4fmQ2/tEgocgSD+3s445N+auc6QprkbWV0M1yLYCFalhaqcYTExOcPHkSXde7hMU0zeuupXXs9UIURWuSydaZSZlMj4xJhORlZKkjcOfSev5iN+gwDHnppZeYmJjgzjvvbM8xn8vfHpzi+5OCHcPQlzWo2j6fPTjGj905zAd+aDsvjdeRgFs35rhzc8+iGjGuREiiSFCxPXoz3bM+Eoukm9VyJS3ULr+Vanz58mWOHz9OKpXqygjTdb3rGC2343raKJfr2loqibAkQvKyMLc2ZLkXUKdFcj3q9ToHDhxAVVX2798/ryq6xeisw4uX6uQ16M/GG3dKUxBVh6dPz/Ajt2/ggR3FJa91uUISRhFPHbrIrOXyz197U/tzav3vdN1jrOIQRILetMamgrmqHYZfaazFRqQoCsVikWIx/t6DIGi3yz9//jz1en1eu/z16tq6Eeu5lrCMjIxQq9XYvXv3q2p6ZCIka8zcEbgrma+wWCG5fPkyx44dY9u2bezevfuaP6bpuovlR6TnXAl5U6PU8Cg3PLLG0i+T5QhJEEZ88eAFzk1WATg3WWXnUE/77+fKHi/Wp7G9kNZb2lZM89odBUzt5auZWC8/9pfLQlNVlf7+fvr74/Y3nue1haXVLr/VCaFcLt+QGpaFWK0YyUrp/M230vxbiTOvlumRiZCsEZ0FT6s5N+Ra2UtBEHDs2DGmp6e566672nMyrkVvWiOlydhO96bUcAPSukJPank+5qXWkXhByD++eJ6LM/X2Y98/PcGOwTySJFH3Ik6VAjZulNjQHycKeGHEuZkGgzmdWxeRAPBq40ZlSem6zuDgYNtV6jgOk5OT1Go1jh8/jud5Xe3y8/n8DbEMbpRFci3CMJzXTPJa0yNfKcKSCMkasFZzQ1rHWkhIarUaBw4cwDAM9u/ff9XgqOuHfP/CLCcnauiKzJ2be7htOMtT07NUbJ+MoVC1A2Ztn3fevoH8MoUEFn/H7PohXzp4oUtEAKZqNmcmKuzeUKBsRzT8iGL6ynp0RSajq1yYsV82IVlvcZr1sLGYpkl/fz9nz55l//79XTUsly5dWpV2+cthPQtJJ1frbNwpLO95z3t43/vex3ve854bsezrkgjJKhNFEePj4wAUi8U1afneKSRCCC5dusTx48fZvn07u3fvvuo5G27AH3/tDC+MVAiFQAh48ugEP7SzwM09EZYXMNPwyOgKb903yD+7e+OK1rmYTdf2Aj737FnqjrfgHfb3T0+wa6gHJJCk+RunJMH62tpfPtZT3Uarqn2hdvmNRmNF7fJXsqZXgpDMZSFhGR8fX9OxzStl/a7sFUZnm5PR0VEMw2j3RVpNOoUkCAKOHDlCqVTinnvuue75vnpiiucuzLKxYLZjCjMNj2+dKfPmouCtb9xDxQkZzOkM5a+d7rkYriYkjuNw+PBhKg2bFycCPFQMwySb0mm4cQvwKBJUnICLZRv9+RFyQqBLULH9trstjAQ1J2Tf0OpMYXylsZ6so6tVtUuSRDabJZvNsmXLFqIool6vUyqVFt0uf7msVyGZm/F2PSRJwrKsrtqv9UYiJKvAXFeWoijt/7/atGIP1WqVAwcOkEqleOihhzAM47qv/d7ZEpoqdwWmi2mNMw2PkYbEpoLJ1lUKTnamKnfebc7MzHDw4EFSuQKHZiRmag62bRNFEflsClkzMM0UY/WQ6UZc6PXlw5fZ2ZdGRVB3fCq2jyLLeEHE1l6Tnf3r9we2lqwni2Sxa5FlmXw+Tz6fZ/v27URR1E41brXLNwyjS1gWc20vxLV6bd0olpMA0LLqWlNK1yOJkKyQhWpDFEVpp/quNpIkMT4+zqVLl9i5cyc7d+5c9GbihwJ5zlNbr43E6ma5zBUSIQRnz57l7NmzbNy2i+dHLSIlYGDABASe5+M4NsL3OHVxlglLIp/WSBk6uiTHXVqFYN9wnjCK8IKIgVw8Lz71MmZsrSfWk5Ast2FjZ0U9dLfLv3jxIseOHSOTyXSlGi+2yHC9WiTLWVOj0SCTyazBilaHREiWSWdtyNw2J2s1N6TV8np0dJR77723nee/WO7dWuDUZB0/jNq1FzUnQFdkNmXEmlSit6y1Q4cOUa/XuenWO/nKsQnCKCKObsRdvXRdR9d1DE1hOqqQlR10OcJxHGq1OlZNYaC3h3K5zBtu3byu/cUvJ+tFSFarYeNC7fJbqcZnz55t35l3djW+2rWwXoVkOTdrrTEB65Xk17gM5o7AnZuVtRaTDCuVCgcOHECSJPbs2bMoERmddfj++RINN2R7f5o33NzPCxdnOTXRQFdlQiFAwOtvKrLNLa3qmlufR6VS4fDhw+RyOW6+7W4+/8J5LDcgikJMTcUNus/p+iEpQ0NzArKmBmSIhKBer1GxPEZHL/N06Ry5XI5isfiytUhfj6ynGMlatZDXNI2BgYF2KvtS2uW/WoTE8zx8319waul6IRGSJXC1EbhzWU2LRAjBhQsXOHXqFLt372Z8fHxRF+I3T03ziafPM2v5IMWz1e/YlOcXHt7BCyMVDl2qYGgyD+wo8tDOIl//6uk12Ziee+45du/eTaY4xGe+fxrHa8WOJDo/uiCKcP0IVZHI6gphJAiiCFWWkSUJISlUHZ/X3/9aNmRkyuUypVKJ0dFRwjBsp5cWi8UVd7J9pbCeXFsvVwv5pbTLX2/zUWB57uN6PU6LT4TkVcDcgPq1KtRlWV6VYLvneRw5coRqtcp9991Hb28vk5OT1xWpmbrHf//OBRpuwPa+uIur44e8cLHC109M8/792+al9q5mk8VWjy+AO++8k0jP8vfPne0QkRjLDUgZGuemG0zWXNwgQpUlCimNDT0mE1UXiRABeIEgpwrqloXZ18/w8DDDw8PtQGSpVGqnl7bG1LYslus1HFwq62lzWi9ruVGb9tXa5ZdKJQCeffZZCoVC+1q40TcZy4mR1Ov1dlr1eiURkkXQOQJ3McWFq+HaKpfLHDx4kHw+z/79+9spg4uxdl68OEup4bGt90orcFNTyBkKT5+e4acf2NI1FhdWb95Hq119667LEhpPPnMaXVsoNRQmqi7nZywMVSZjqARhxHhz8uKuvhQ1tzl2OCVQI5fnzkyyb1MRpWOEaiu9tNXJdqGGg62NpLe391UTX1lvFsmNXktnu/wNGzbwrW99izvuuINarUapVFqVdvkrZTmurVbq73pz03Xy6vhFrRGLHYE7l5VYJEIIzp07x5kzZ7jpppvYtm1b1zkXU+jXijvMXaoqS3hhRLTAyxdbQHgtWpMXN2/ezO7du/kff/9F/v65swhkvDBEV+OU3RZhJBgpWaQNFVOVm2tUkCWJmbrHzv5eitl4TbWqj2WB6wc8d2aCB24aXnANkiThKWlqhoI82MfWrTJpYVOdLXPmzBls22771IvF4g1r37EarKcYyXqcjgi0v+vWTUZLVCYmJjh16hSapi2pXf5KWY6Q1Ov1G25JXY9ESK7CStqcLNci8TyPQ4cO0Wg0uP/+++np6Zn3nKtZJHU3YKLq0pvWuGkwS0pTqDpBu3hPCMGsHfC63UV0deHCseVaJFEUcfLkSS5dusTtt9/O0NAQF6YqfP+SzZatIaoqgwBdVbqEJIgEXhiR1tWuO1pdlam7AXUnIGte+dGpcpwe+v2TowzmU+wYKsxby7HxOocuV3H8KI6tINjZn+bBXTexR5VxHKftBjt8+HC7fcdiXR/rbfNeL5vLeotHtK7lTnGTZZmenh56enqu2i7fNM0uYVlq8eC1aMVYlyok6z31FxIhWZCljsCdy3KC7aVSiYMHD1IoFNi/f/9Vc+XnHjsII/76+cv8w+Fxqk6Aoco8tKuPB3cU+eap6fZjdTegP2vwY3ct3PZkuRaJ4zgcPHiQIAh47WtfSyaT4dxEhS+8cJYwituwtKg7PrIsMVl18MMIXQZNlrC8gGLWwPNj0faCOD1ZQpAzNGquj6HKWEFI2DSnvnzwPP/8ob0UMlfuIGcaHkdGa6Q0heFmZb4XRJyZstiQN7l5MINpmmzcuLHtU2/FV0qlEmfOnEFV1baoFIvFZRfDvVysl817PVok1/vtXqtd/oULFzh69GhXDctK3aKt321ikbzKWe4I3LksRUg6C/X27NnDli1brnnOucf+2xdG+fPvXURXZfIpDccP+ccjEzy0q8gHfmgb3zg5Q8X22b+rj7ffNsTuwYUzP5YTbG9VqQ8MDHDLLbegKApnJyp84fmzZAyt6Vq7csyq7TNSdpipu0RCoMhgqDJuEMVjfBEEkaDhhQzmDDKGghOEmJpMvaMVP8Rpwv/4/Fl+Yv8edDX+YU7XPSw/ZCh3ZfPXVRlTk7lYtrl5sPuu7mrxlVKp1L5DTafTbVEpFApL+nzWmsQiuTrLSf29Vrv8llt0bg3LUkSh07uxFCzLSiySVwrXqw1ZCouNkbiuy6FDh7BtmwceeIB8fnEjbFsbquOHfOHIOJoqM5C7MpRKlWVevFjhXzywhbffvnAs4VrHvR6d4rd37142b96MJEmcnZjlC8+fI4wiLNdvilP8miCKODXVoO4E9GV1oijC9kIabkghrRGFEZEkEUaC4bzBlt4UIKHKEjIRC2ncdM3m64dHeOtd2698Vws8T0IiWoRIzq2ybhXDlUolTp8+jW3b6LqOpmnMzs7e8PhK4ma7OqtRQzK3XX5nDctLL7205Hb5yxWSlkWynvmBF5LF1oYshcXESFp38319fdx9992LNpk7LZLpukfFDsga3XdFWUOh3PAYnXW46SoWyELHXczG1Fml3hnHOT1W5skXzzcr1mPhSKkSrZ191vKpOwGFlIqmKLhRhKHK+JEgigS3DueQZIkwjAsVAdK6guW4CCFI6Sq1OWsRQvDsmQnKTsTeLf3oioyhStScgJwZH8MPI2w/ZEvh+iI9l7nFcI7jcOLECRqNRju+0tpEisXimnWxvRrrafNeb8V/a9Fnq7OGRQgxr11+Zz1Tb28vuVyu6/tpBdqX+p01Go11XUMCP+BCMncE7mqICFzbtSWE4PTp05w/f77rbn4px25t+IWURkpTsL2IdEdM0PbjTbovu/hA4WJcW63q+mw22xXHOT1e5h9fPEc0Jx3MC2n39gojgUAgyxKuHzTFNkCVJfxIoMgSiixRSJnxUC1DwbLdWIYkCTcI0ToahUWR4NKsw1Td4+TUec7Negz2ZMgaChXbp2z7yJKEH0ZsK6bY1rfyjrKmaZLL5dB1nb1791Kv1ymXy8zMzNyw+Mp6EZL1JGqw9sJ2vXb5Fy5cAOgSlpW0R0mEZJ3SWRvS2ft/NWgJydwfVysw7XkeDz744LJ658hy3MAQIGuqvHnvAH/z/OW4ItxQcfyQ6brHXZvz3LJh8ce/nvi1Zp7s2rWLHTt2tN/XqbEyT75wDkNTsL3uRpURkNJVfBFbF6oSx0MMVUaRZXwpds/1Z3WUpkgEkSCjK9Rtt/tYTY1q2Tizts9kzSVjqGiKRGmmzMZCmrobcs+WPEEUN6kczOls6U1hLJCpthIkSSKXy5HL5RaMr7z00ktkMpm2sBQKhVWvX1lPm/d6Dba/XMxtly+EoFardd1otH5jo6Oj7VTjxXx/SdbWOqQVUD9//jyyLLNx48ZV/zG27jo6U/2mpqY4dOgQAwMD3HvvvcvaVCq2z5dON3hxtE7f8SM8tLuP/+WejdScgKdPTzM6a2OoMvdsLfCRR3Yhz231ew2uZpGEYcjRo0eZnp6eN/Pk1FiZJ188R7TAhmZ7IWOWYOxUCV1TGMia9KV1JmoOXiAjSwFeEKGrMht7rmReqbIEYn58SSJ2U2UMjZrjUXUCZElCU+LzukHAmcuTDPb1IUkyr9l2bVeWEHFQPxKxK1Be4TWwUHyldXfammuez+fbWUK5XG7FG916ipG8GoLtq4kkSe12+du2bSOKIi5evMjIyAjj4+NLapdfr9fXdcNG+AETks7akFqttmYzkDubxkmSxKlTpxgZGeGWW25h06ZNyzpmxfb59589xqGLFRAR52uzPD8yyzNnS/zGO/byz+/bxMWyTTGjc/Pg0lMFFwq2t6rUVVWdN7735GiZLx644s6yXJ+UrmJ7AY4fcni0yrgFBSUEWeHkZJ2BrM7O/gxTdRc/jNjQY9Kf0dq1LhlDpW7ZgETaVLHcDgtHkhBA3fXJpw2iGStWlw4c1+PEyCgP7uy95nudtXwOj1YZq7hEwGA2nvk+lF+cK2oxn62maV2B2pY/vVQqtcfPrjS+st4skvWyFrjxQjIXWZYxTZNUKsU999xDGIbtjLBWu/xWhmDrv5bruNFoMDy8uKSZlfKf//N/5t/9u3/Hhz/8Yf7oj/5o0a/7gRGSubUhazl8qnUBNxoNjh8/3q6xWImf8x+PTHB0rEYxpSAJyGZNbD/kmfNlnj4zwyN7B9ncu/w4wNxge2eV+s0339z1ozw1R0RatDaS8apLxfbJ63EDRl2T0RSN6YbHxkKKe7YU4noQEZI2NGwvJGuo1Cy7XY7v+iGaIuOHsbgJIah7gomqy0zdozdjMNPwiSKBJEFaV6k0HGw/5NCZS9y5OY+2gD/a9kO+e7bMRM2lL6sjS3Cp7DBr+7zx5n5608ufUX8t5vaEak0JbLk9WhXWLVfYYuMr62Xz/kF3bS2GTg+FoihXbZd/7tw5jhw5wunTp3nxxRepVqurNifoWjz77LP8v//v/8sdd9yx5Ne+6oXkarUhiqLged6anLP1437uuefYsGED+/btW/GF8My5EooEmirjNwv3UprCdOTx4kiFR/YOrnjNrQy2VpX6bbfd1u6y2uLUWJmnDl1YMB3Xcn3Sukqp4aHJMiFxPCMSgrSuxplbbsBgzkCRIQzj5IasoVK17O4Ml0igaTJBCF4Ycb7sMV4LyUQWABlDIaOrzNo+GUOlOttACBjM6VTrFv/w/VO84/6b5onJ5VmHiZrL1mKq7c5K9yqcL9lcKFn0pud3E+hkNdxJnfGVbdu2dVVYdw5zul58ZT1ZAas5FG01WI9Ccq1g+9wMwdZN77e//W2eeeYZnnzySb70pS/xpje9iUceeYQ3vOENq7q2er3OT/3UT/GJT3yCj33sY0t+/ataSK7V5mStLJLWRgy0JxiuBrIstcdAde7iEqCsUqaZ67o8++yzXVXqnZxuxUQiQS6lU7PnC7EgjnOErU2uuVYvCOO1zonbyAjCMFhwQ3T8kKyhcX60wowVYCrQm9YQIp7nnjdl9m7IMl21SWc0ekyNQlpDluDidIW/f+Yk77z/5nbBIkDDDZCabfVbSJKEqcmULX8Fn+Dy6ayw3rVrVzu+UiqV2vGVVr1CZ3xlPcVIEovk+iwlJVnXdR555BEeeeQRHn30Uf7ZP/tn9PX18bWvfY0//MM/XHUh+eAHP8jb3/52HnnkkURIOlloBG4nayEklmVx8OBBoihqV8muFj+0u48XRyq44ZXNo+4GqIrMa3ZcOyawGHzf5+zZs2zYsKFdpd7JmfHZrhRf2w2QpTibyvEjpupxG3hTlRkupJiqe3ihoCVFNccnY2oUO1xHWVOhajnIsoSpKTj+/O+jYns0fIGpykQi/g5jK6ZZ9a7IV53ZfnmmyueeOcE7X3MzbhinGJuaQiQEkRBdYuL6ETlzbdxaS2Wh+EqrP1hnfCWK4gmSL3f9ykIkwfbrs5L03+3bt/MTP/ETvP/971/1df3VX/0VL7zwAs8+++yyj/GqE5K5tSFXC6iv1syQFq2YwsaNG9mzZw/f+ta3Vnx81w9xg4icqfLoLUM8c67MP52ZxvMjqqGNKss8sneA165ASFpV6rOzswwNDXHbbbfN+7zOjM/yjy90x0SCKCKX0rlYanDkcpWaE7Rzc4tZg/6MxoglUbJ8VFVgagrbiia9aSN+ralSqtabd9YQirjGZG7cJYoEjhdgaDItA0iIOEW4OmvRcD16CmkcP1jwDv3EaJmDn3mO7Zs2oGsq/VkdU1W4POswmDOQJZhueGR0hW29a9v5dbmkUik2bdrUrldoxVemp6c5dOgQuq531a+sZqPBxbIeLZL15GqD5a2pVZ+yVum/Fy9e5MMf/jBPPfXUijofv6qEpFUb0so+ulaB4WpZJFEUcfz4cUZHR7tiCiuZSVKxff6/71zgK8en8MOInQMZ3vfgVn7zHXv5++fO8PRLo2zdvIH7d/Syf2dx3myRxdJZpd7f309PT8+8z+vcZIWnX7rUrljvpOH4nJpoUHcDihmdlier1HDZXEhzU4+Ekk6RTqXoTWukdYWUoSCETKVudZ3LDyLShoblxGrR8EKCKLZEMobCdNVDleIflqkrzNbjVOe4INMnpWs4XoDo6JHScEPOz1h4ocAPQ27buZlz0xZ5U6U3pTJddxECCmmNOzbl221mOml1K16oY/KNoDO+cubMGV7zmtfgeR6lUqkdX8lms139wV6ODXU9xWtg/Voky0n7X8v03+eff57JyUnuueee9mNhGPKtb32LP/mTP8F13UVdP68KIelsc7LYjr2rMXyq0Whw8OBBAPbv3981wWy543b9MOKjnzvGixcrmJqCJkscuVzl1z//Eh971y28YXcvw+Ekr3vdTSta+9wq9ZdeemneHf3IdJV/eD7u4tuZQdVi1oqbJOZMtT37RJIgZ6jMWB4bFdiY18l0dOgVUYQXLBwTsVwfTVU5fLlC2fIJhUBXZPKmgiJD3YFMJJisWAgBm3tNzObArJaYuH7Q7qtVsnycIKIvoxN4HkdOneeum7dRdkPu316gL6MTCUFvWkObI8YV2+el8TqXZh0ANhdM9m3INt/jjd8wW9+Vqqpks9l2B9tWo8FSqdSead7T09O2WFajfmUh1qNra70NMAvDcFnW4lq2SHnzm9/M4cOHux57//vfz969e/mVX/mVRd+ErK9Pehksd27ISi2SsbExjh49yqZNm9izZ8+8H+dyXWffP1/m8OUqvWkNU4u/xIyhMFF1+cvvX+L/fPPGFQng1arU5wrfpZkaf//sGcKmeBi6hj8nuB6J+I7dmNPrS5Ig8EMMU+0Sp5ypUWlY6KqCIkvM/XiEEBy4WKbiRqQ0GVWWmvEXj76UghkKZBnyKZWBjE5fpvtHaXs+pq7hNcXE8kIMRUGRwAsCvAC+f+wsff0D2H6B/qu0kLG8kG+fKTNWcdrpwEdGa0zXPbZrEdo62C9bn+vca31uo8FWfKVUKjEyMgLQVb+yWhMC16Nraz2tB5YXI2mND14r11Yul+O2227reiyTydDX1zfv8WvxihaSpY7A7WS5QhKGIcePH2d8fLw9xOlqx1/Ohn9qskEkRFtEIN4sUrrC8YkakWDZQnKtKvXOyvbLpTqfe/YMQYcFUne85mCqKzNBcqZKWpdxQkh3/GYbbkjeVNEVv5211RIRqdn/KqWpeJ7fNcax5gRxE0pTxVBlglCQ1hWCKMILBEU9ZOtgOnaBeQtnWDmej66q+GFIWpexvAA/uCJmfhBy/OxF9g2Y3Lkpv+A1c7FsM1Zx2FpMtbPM8imVCzM2hhGwNbd+NqjrXfNz4yutCYFTU1OcPn0aTdPaGWMrGeS0Hi2S9SYky4mROI5DGIZJZftasNwRuJ0sZ6Ov1+scPHgQWZbZv38/qdTVCwCX69rqSalx7UUkulqc+GHsglGV5aV9XqtKHa5Uto+VGzz54ln8YK65AF4oODJaZaIa98EazBkM95icn7EpN0LUpvvLUGV2DmTwqzYpQ+0SkRaW55NL69SdK9XrfigIhWimM0tIUpxdldVVqg2LnuYeZ7k+KVPDdrvFZNYOmKy6NLyAjKGS1hWiMKTuSqQ1mUhA3Q3JGArnLk/w5HOCR+7e1ZUeDFC2fFRF6kpVbrVjqTgRrAMhuZpFci0623Zs3769Xb9SKpXag5xabrJW/cpiN74kRnJ9lmORNBoNgJe1aeM3vvGNJb/mFSckKxmB28lSXU+jo6McPXqUrVu3ctNNN133Il3q8Vs/xNfv7uf/+84Fpuou/dk4q8jyQsIo4u23bViWAF6rSr1zvTN1l69fOI2qLFDTEUQ8d36GWTueVigB52YselMa+zZksTzBdMMhZ6gM95j0pjUuV0EWgrrtLPgd1SyPTEpnuhYLk65KKLKM17SENFUGETHdcDBUic5l2Y5PytDa2Vply+f0lEUQRpi6QtX2KdVdetM6fhBQc+M6lpypsKmQQlNlTo1OU2k4vOP+PeTSVwLtpiYTLDDYPg7+r4/NcjVqSOZOCPQ8r12/Mje+0qpfudpvLXFtXZ/ltLZvNBrIsnzNm9b1wCtKSK5XG7IUWhvy9e6kgiDgpZdeYnJykrvuuqtdeXo9FmORRJHg84fH+dsXLnN51mF7X5p337uJX330Jn73qdNM1z2EEOiqzJv3DPCT923Cd+1FC8n1qtQ7qdg+Xz0+Sb5QxPHjqvnOuo6xikPJ8tmQNwma50/pglLDx/ZDbhrMskfOdLnD0ppMxbLZmM1Qd7x5n3PFCTg8VqfuhYShIG8q8WucgLQmk0HB9mMRHerRwbK6Xm+7sZjYns9YxSWMBH0ZHQlBIAtsYpfc3VsLNJx40FZaVzq9aUxW6nzmu0fZuXkYwzRRFRlTlckaKhNVl4FcbAZN1T3SusKQqbLg9KyXmeVYJNdD13WGhoYYGhrqmrcxN77Sslg64yvrzbW1FvNIVspyLZL1PmYXXiFC0lkbspIRuJ20vtBrpeTVajUOHjyIpmk89NBDS8qzXozl8Ml/GuG/f+c8kYhHzh4bq/Ef//EEH37jLv78Z+7lu2dLNNyAfRty3DIc3w2G/uJcZgvNUr8asw2Hr52YwvEC8sTlIPGP8IqQVG0fWQI/jHtgBVEswIocN0GMhCCja+1q96ypcsn1yGkGjWajxc5KeMsLOT5Rx/YietIaoSSYafikNJnBrI4bhMxaLqYqc8eWXgzhMdmtI0AsJpIsY/shGV2JRaRpCZqaQtnymW14bO3PUrUc5l42pqbx7NkpvnR4lOHBPjZvGCRramwqmFheyMVSnLXVk1K5a3MeUbHblqblhZyZajBStgHY0ZdmZ3+6K7611qzVBrPQvI1WfGViYoKTJ0+2u9cWi8V1ZwGst/XA8oTklTCvHV4BQrKaI3A7uZaQCCHaMyW2b9/Orl27lnxRXs8iKTU8/vLZSyiyRLHZ/TYHlBsej39vhLffPsTbbp0fyG+1xriWJdWavtjf38+tt956zYu3ajn8z++dwvbCrvvsRrObr9OcMaKrcYwhrs25IjJhRHvWR93x0RQZQ1OoNixkSW7XddQsj4yp0WjGNSZrLg03jC0ICVKmhirHKbu7+tMUTIMgFM3ZJRIKWldrmE78IERXFKIopDO0E0Zx9bqiSNRsl6xpYHl++24+a2qcHa8y0/DIGyp2vcrkmI+xaSNjVYm37utvn7Ivo5PWFU5X4n87fsi3Ts9wfsYm08xau1guMVZ1ef3u4rx04tXm5W6PslB8pdVk8MKFC1iWxcmTJxkYGKBYLC55nvlqsx6FZDnB9lfCLBJYx0KyFiNwO2kda24cIwgCjh49yszMDHffffey25xcL0ZyYqJOww3omdNtNmOoVCyfs9MWt2+aP1Ojs0X93ItSCMG5c+c4c+bMoqYvNhyfv/ve6TiwvsA8krIVxxlSusJgzuBCyabmBGSMuK6kYvloisRQ3myfP6NrlOqN+LytKVQAzSFWuqLghSGWF6LIUttC8IIAU1Mx1ZBS3WEwk0XveHuWG7RrRiCuhK/aAUEkyBoKxbTCSMlFT2lAHLSvOQE9KZWsEV/mDdfD0FQiITAUhXrDoWz7qLKM0tz4Kw2b+ulz5It9lLf2LPgdAFwo2Vwo2Wwrmu2CUC+IODNltS2TtWQtXFtLYW732u985zsMDQ3hui4vvfQSvu/P6w/2cq51PQrJcmMkiUWyTIQQVKtVarUafX19qy4iQLsDcKfVUK1WOXDgAKZpLpjZtBSul16c0RVkWSKMRDzMqUmrVUhaX/jOpfU5zN30rzZL/Wo4XsBnnjnFrOWSMbWuBotOEHHwUoXJqkskJGRJMJDT2dmf5sKMTbnhoygymgx7BrPteoysqVGqNciljTgmgtRVaR5GEaqmIkcSUujTsG1ScoimaU1LK4oD2trCPzbHj8iYGpNVh9NTDapOgISEKkOPIVNIqVQdH1lS8MN4bvu2YprOPpGuH5A1NKIohGavsLmXVhhFnL1wmW9nJG4euB1Dn/8zGa+6aIrU1VVAV2UkSTBV99ZcSFqslw1GCEFfXx89PT3t+EqrP9hC8ZXO4t21YL0JSevGOLFIXiZaVki5XObs2bM89NBDa3au1mYvhODixYucOHGCHTt2sGvXrhX/QDtH4i7ErRvzbCumOTPVoJjRUGSJIBLUnYA7NvVcdSPqtEhaXG2W+tVw/ZDPfP8007XYt1+3vbhpYhwO4Nholctlm5ypkTZULNdndNZBkWUe2lWkZHkIAZsKqfYmnTU1ao24FXzD8TE1tcsiabgh41WHmuOjRj5WvUpK1eOW88JCVyWsQCKlq2wtFuYvWgKBoGZ7XKrE8056UzqqHKcDT9ZdthXTbOwxcfyQnkwOhWhe+xhTUzk/VcP2Q3oyJhlNpmL7RPqVJo5eEKEqEjPlWf7uO4d57S3b2D5UjDdIP07Q0DWJhTyXUUR7auNacqMtkrl0ulo74yubN28miqJ2f7DO+Epn/cr1rtmlst56bbVuKpcbI1nvrBshmVsbomnamg2eatGaSXLw4EHK5fK8Ir2VcD3XliJL/J8/cjO/+pljTNbc9p67qTfFr/7wzVfdIDqF5Fqz1K+GH0b8w3NnmJhttB+TJAm56dpqeCHj1XgWuqHKhGFsBQgRxzX2bsiyuRCnIqYNDcv12yLSQghBGMX1IAIRTyS8XKXm+ARePB2xv6eHjQWVmhvi+RG245DWQvo1jwvnztGbSyNUnVQqdWXIk4CqEzBVdRjImRBFBGGIrsoYkcJU3WNzwSRvxpd1NmXScLy2TaTICs+dm6Fi+/FjJZusocVDsazYympt0EM5nQ2FNBPlGp/9zhEG+3oxc0VOXW4gI9i9Jc4Sq9h+e8Jj2fIxNZmNPd09u2Ytn8m6hwRsyBvkzJX/7NZb3ca10n9lWV4wvlIqlTh//jxHjhwhl8u1LZbViK+sN4ukdeO3HIvk5awhWS7rQkgWqg1RVXXNhQTgyJEj7Tv5xU6lWwxz3Wa2F/K1E1OcnKjTk9J4y74BbhnO86n338vXTkwxXnHZ1Gvypj0DbZ/+QrTcfL7vc/LkyQWr1K9GGEV89dAFLs7U5v3N8UMMRcINFnAviXjGiB2EcRPD5sfUcGOroNyYn07lByG6phBGgnPTDWq2hxY5mLpCJtNDzQ2YtUNet7OXmZoNpMmaKookEQQBlm0hRz4T4xMAGIaBEALXj4P/IgrjQLosxy6zpkUXRqJdSFi3PUxdJQjjRo8HL8R1ML0pNZ7vIqBiB5iawt7hHiarFqos05NS2dKXoW7H9S11N+DFA+dBvsi2/hy5bJazMza6KlFzQmYaPhLxlMZ7tvQw1Gz+KITg0OUqBy7VaDSTFvKmymu2FdgztLLNYT3NIoGlpf/Oja+0mk6Wy+Wu+Epnf7CliuZ6E5IwDJflol/L9iiryQ0XkrkjcDsHT7Vawa82QghGRkawbZvh4WHuuOOOVb+768zamqq5fOh/HOL0VNMKEHHq70ffdjM/fOsQP3bXxiUdW5IkXnzxRQzDWHQsRwjBUwcvcPxSCV2T211tO48phCCryRiqjONHZI34hxiEEUEzRTnTES/IGCp110WR4kFWc3H9CMPQmK5aRJ6NnjZJp2NrJqMrNNyAUsNt39G3UFWVfC6PQLBhaAPjpSoT5RoNT2BPTuBYEtOuQialYxo6mqrEo31TWlzE2IHjBeRScRV82fZJN2NT8XuOCxSrTggi5K6tvdiuT9rQqdlO+xjTNQ83iCimFc5fHqevJ8t9d/QxY4XcuTlPqpnuO5jr7v91adbh+xcqZHSZHX0pBDBV8/jeuVmKaW3BbsOLZT1aJMtdj67rbNiwgQ0bNnTFV1oWiyzL8/qDXW8t61FIlpNxWq/XE4vkWlxtBG6LzvjFav5gfN/nyJEjVCoVcrkcAwMDa/KD7BSS//KNs5yarJMz1HaLk6oT8NtfPMlrtvXSd5XmgQsxPj5OFEUUCgVuu+22Rf1YhBB88+gljl8ugUSzZ9YVIak5AZcqHpblc/eQyva+NC+N1aiKuIrdCyICIXHTQKptqaR1FctyEYi2i2shZmareG5IOp0inb6S3WWoMpVGQBBGGJrRtjQ6kZA4O1XnUjVgpipwbInB3hzZlE/F9rArdWQhCCWVbNqkPxVX3HcSu90c3CBCVzWiqPs8UtP9Fok4i60npePPsYTrbtBOcQaYnq3x/cPHyfYUkW8qtrsCz+VCySaIBMWmuEjAUN7g9JTF5Yq7IiFprX090EpHX42Ne6H4ykL1K9eKr7SstfUmJMtx1zUaDXp7Vz64bq25IUKymDYnrdqO1Qyazc7OcuDAAXK5HPv37+fQoUNr5j5rxUhsL+QbJ6bRFbkd+JUkiZypUrUDnj49zWOLsEg6q9RVVWXbtm2L/qE8c2qMA+cn2/+u2R4pXcX2Ak5O1jk5UcdyfYIgZPLIBLsGUty2Kc+FGQsniDA0hZuLKe7YUsB2A1K6gu247Ywsy/Xnjd4NwxDLspCEYGNfgWkriDOkEBiqwsRsg4yukDMU/DDE7KhZaVF3A05NNQhCwWDOZMZrNKvtZbYP9lB3Q1w/QCMkr/oots1IbYZUKkUqlWKgN890xcKP4v5fuhxR8SGty+35KpYXklIVMrpCNqUx23AAQTZlYHsBYRTFQ7Ws7rVFUcS5kUs8bQRsyt3GQM98MXH8aMHAe9yNeGXX3Xpyba1l4F+WZXp6eujp6WHHjh0EQdDuD3bu3Ll2fKUlKq2ssdZr1wvLFRLbttmyZcsarGh1uSFC0pndca3BU7D8L6ATIQTnz5/n9OnT7N69m+3bt7fTf9dKSFoxEi+M4sK4ObPKW/9qeNc/f6tK3fd9Xvva1/Lss88uuk3KgXOTfO/kWPe5m7GFyZrLS2N1FBkKporrhgRhyKkpiwe29/KGm/ubd/JxS/cwEs3sLq8986NFzfbImjp1x2OsXOfM5SlCAX25FNsHMngTFqW6g64pTNccUprM7oEMqhJPRfSC+WIyXfdw/IiBrE4UBaiKRM7UmGl4yJLEXZvzRKKVPh275mQRUq7UaDRqHDw3QSNSkBWFlKHTlzVRJMFULU55rjsemiyztS9FMWs2EwYkwgjOT9XxI0Ha1MjqCmUrwPLC9p13qe6S0mQc2+Ivv/o8d+7axL03b2Wi7jNV91AVCV2RcP2oK27jhxECqW2ltB67WHYYrTjIUpwNt6XX7BoFPJf15Np6OTduVVW74iuu67bbuLTiK/l8XPvTaDTI5xfu8Pxys9wb4nq9vuap0qvBDXNttSq0r/V3iAsEVzI61PM8Dh8+TK1W4zWveQ2FQqHrHGtpkURRRN5U2TWY4choFVO9Ynk5zRTTuzZfu96js0r9vvvuQ1GURXcWPnG5xPNnJxb8W93xmKz5BFFE3owbGyJB1lAp2wGXyxYD2UJXPYsEaLLAvsr31nB9jl2a4djlCoqqIRDMzHg0RIN9GzIEUZqJ2QaGajCQ00l3NECMIoHrd4uJF0bNokVBEET4QYSmyuiqjBtEyM1ss/b6JAkhqWzZOMgLF8q4mkxaFojQp95oUK7W2ZjXKRoGvgjY3p8lpyts6k1Rs2IRcYNYSGet2FUnhKCQMenP6lRsn0YAhD59PQbbiik0RSaKBM+duMjnnjtLKt9HT6EHCalZVwLnpm0K6bgQsmqH7BxIs6U39vP7YcTTp0scG68hRJy7d+BSlTs25dm/s/eaYrIeNki4kpF0I9ZjGEZXfMWyLCYmJtreh1Z8pbM/2I1gub2/kqytFSJJ0oozt8rlMgcPHiSfz/PQQw/N86WuxpTEq9ESKUmS+N9ev4N/8z+PMGvHLUTCKHYKPXrLILcMLzxn4FpV6osRkpGpKl86eB4hWHAWuiRJeM3NGJoWUuspIkKSuu+edFUh8H3cKFowJiKE4PzoJCfGG+QyafJpHcuyiJppw5t6TTbnNbb09mE5fjtGNvcYjh8gKzJ+EJIxVISw8f2wowI+xA9F1x19JxlTY6xUZ7LmMJBPE4UBkmTSkxNULA87Ctmg+nhujahSQytkma14SIqGLMez3EsNj960FqdEI6hYLkKo3LetyLlLYwghsWVDtmuTn6p7XJppkG84RE6NvTu34Ig4aWHPcIaZuo8iwa07c+zbkGvHXM7N2Bwdq7Ohx2gH7etuwMHLVbb2pthaXHjjW48WyY1ejyRJZDIZhoaGGBkZ4Yd+6Ifa8ZWxsTFOnDiBaZptUVmL+pWrsZIYSSIkK2S5richBGfPnuXs2bPcfPPNbN26dcGL/OVwbQG8dmeRP373HXzqmZH29MN33TnMT963cAuT61WpX09IJisWn3/uTFs8soZOzfHmPS9jyAik2E3VXEYk4sBzT+rKRa+pMlEYtDv7ekHQNXo3DEPGx8eZrAUomkFfPoXnx+N0ZeLhVOcmq2zO92E5HmlTw3LmB+cnay4jZZuGF2JqCgMZjZQqU7J8Uir4UdxtOGso9KbVtiut/X5MlYbt4DStFxGFmLqGH4ZEEaR0DS9UKPb3oCsSKiGTM2VmZqdQJUGAwuW6jK7p7UJLCYl8SqXhR1QaDn0ZDRFF8yyFmYaH1oyDVRs23z90nOGBPuRMgaFcH2/eE7famfu6i2UbWaYtIvH3pTJZ8xhtDtdaiPUYI1kvMYlWxtZC8ZVWf7C58ZVW/cpavYflCkmS/nsd1mocruu6HDp0CMuyrtsqRFGUa1afL4dSw+Ovn7/MN09MYjdCxrOX+Gd3DXPftgL3bStc9/WLqVJvDaFaiNmGw2eeOdU1X73uxj77mh1wuWI3U3vjuSFjVZepqoOhSDiBwLF8+jI6G/IGWVPH8QOIwq5BV0EoSOkKQShwXIexsTFM06Svr4fJsTp+EGIaOo7jNMflemjalUvNas4SaURRO9YyWXM5MlYjjAQpTcH1Q85O+xRTCsM9BjN1l1DA5rzB1mIKU1WoOy75tEHVcskYGtWGg2imKauK1JxrEqAoErqmUncddFVGU6S4G7HltH3tYRjSsGxoNLAadXwbNE1D0zRMwyAKQvwwRPgBQsBw2qDhuO3q9thCAEWWEVFEGEVcHJ+i4oyzPRtxy4Y9qAttJMsUhPVkkdxI19ZCXC31V1VV+vv72/3zOuMrR48eJQgCCoVC22LJZrOr9p6WEyMRQtBoNNb9dERY5xaJqqpLqiWZmZnh0KFD9Pb2LqpViKIoOI5zzecshZm6x7/81AtcmLHjO/tI8LtfPsU3T07zX37yjmt2hO2sUt+5cyc7d+68ZnX7QkLScDw+88wp7DnZT3HhXcjXT0xRd+O/SUBvWueOTXn6Mzrnp+vIEuweyHDTUBZTi7OpFKKuuSQtbC8gdG0uXRqlr6+PQqHArOWjqRZ28/m6ImM5Di4aO/q6U10t18doCkYkBCNlmzBqToGUJfwgQBKChi/YNWCyo9fg4qUaNw9nuZKqIFG1PAxN48DFMpM1FyGgmNbI6AqzdkDGUNAiGSfwQVbYmNfpaYoIxDGKkuXjBQJT0+nNRjTMFClZ4HkuYeAxVq0jSRJuI0SKQlRVoWa5SLKErMg4rkchrXFx1iUUAtH8blw/RBIRZy5c5s9rFR66fSc3bx4kFHGXZ1WR2VQwOTZex/HDdvv5hheiSBLDPVfqgxpuwLHxerMWSWKDGSLWvl53UbxSh1otFF9pFUaeO3euK75SLBZX1HsviZHcQBZrkQghOHPmDOfOnWPPnj1s2bJlUXcSyx2HezU+/f2LnJ+xSekyigSuGyIrEt87V+Yrx6cWbAsP8UV27NgxpqamFlWlvlCigheEzTnr8+9ww0jw7VPTWF5IIaU1LRrBTMPj7HSDN+0bYkdBZWJinF1bC0Dz7jIKURVp3t2vEILp6WnGyzWiVJHz4z7G9Aybe1Ns7U1xvmThBgLXdhBIDBV0tizgorG9gJSuUrd9Gm5ISlPicb1NK9HUFGYaPkKSMTVYqJejqsr80+lJynZAxojb6lyuOKQ1hf6MTs0NcP0AXZUZzmvsGe7BcWN3WNWJ059rTjw9ESl2MQkhqAWQNtK4jkc6azCcldHkgLrlEEUR41WXSqAQoZBJmfRmNPKGwkzNacfBADb2mGQNhWrD4cnvHeNL2hnkbB+hoqNIEpsKBpt6TC5XWrNSJCTgto05Nhfijcv2Q758fJozU412e5Uz4w1MN2J/hwDdKNbbUKvlFCO24iuZTIYtW7YQRRHVapVyuTwvvlIsFikUCkuKryQxkjVitVxbjuNw6NAhHMfhgQceaKf+LYbVjpF8/eQ0ktRM9Wzu55oi4wQB3z1TWlBIrjdLfSHmCmAUCZ584RyTlQZGcyPs/Hyn6y4Vx6eQ0tu1H60OwxM1l1LdoSdjMtlxDlOV2nGMfMagZsWbbxAEjI+PU3UjLvtpHNshpStYls9Mw2NHX5r9O4tcmK5RlVQyquA1Nw20h03NxfYCUoaKpkgEzfqiFkEkkCUIghAtpaMqsXXVemtpXeXsZI2S5VNIacgSGKaJ6XmUGj4bewx2D6TxI4GpyhSzJtVmY8m0qfPixQp1N2wG1mPBLds+/Rmd3oxO1fbp7U3Tl1HJ6TLxHHmJ6UbAZF3EgXzh4DoWk7Mqm3vT7CimqLpxi/zetEYxrTWlASqOz9nLNRxvjK1DfWzbvJHjEwGbe03ecHM/M3UPSYItzSB7K2X47JTFuWmL7X2ptlVrCp9D5+HstHXVhI2Xi/Vokay0ZECWZQqFAoVCoSu+UiqVOHv2LJZlzesPdq3PIAzDJQf2W66tJEayQq7XJmV6eppDhw7R39/PPffcc9VJh9c6/moKSYd+dCExv1U5LG6W+oLn6RASIQRfOzLCuclZIHan5FI69Y5gdhjFlceRiFCa6arxeuP+VEEUu+Fax0xrCg3Hbb++bnukDZVSpcb4+DipVJpGoOH4DsWMjqJICE3F8gPGqi7bCgZ3bMpTKoV4nkcQRmRMncacgH8UiXZrlZ39GQ5eLCPpSntmesUO6E1p9Ka12AUWxeJh+2FcUOl61F0fxJUgtuv56KqKrkZUnIAd/WlSQNbU2+4sIQRjZQsrgGLGANFsqCdLZHQV24+4o2BCs/miJEE2ZdCwXSIBM3aEYRjkzQyyDGEQUGnYXJ6potghg/kUKDopWSb+icVrq7oRlhNnhFUqFQ5VKwz193HOK3Lf1gJvuHlhS3S85qLIUpdrVFUkFElisuauCyF5pVsk12Oh+ErLDTY3vlIsFufNEFmOuFmWhRAiiZGslKul/0ZRxOnTp7lw4QL79u1j06ZNy7qQV1tIHtk7yNmnz7c730LcklySJF5/05VNYimz1BeiU0iePT3OkZGprr97QRgrWvMj6U3rmJoSu7YyajyLQwgsL6SY0cjqKm7gY6oSGUOhbrldxxNCMDlTYmZqit5iH5lsngMnpkg1559HkUBVZHKywsSsRdn26EmrTfEUgKDheG0x8UPB+ZkGF0sWQXPO+oasyrZiiomax0wjHuvbm9LY10yzjZqzQyzPp5A1qdYdhIgHbM0Vbz+I57znU3EhV6ZDRNrfgRD4QUCkSaQMHcf3kUT8PvwgwvGCtstICKhZLpqqoKkKThCRN2VkWWquTaaQzRDJPsXBNIYc4nku9WqJ8XGPVCpFb0+WmUqc9HDlg4WJqRlmRybYoLtsK9xK2pyf1qx3uMq6vhfoEpcwEpyfsRgpO0RCsLlgsrM/vebTGl8Nrq2lYhgGw8PDDA8Pty2HVuC+FV9pBe2LxeKy57UDiWvrWizXtdVZ5f3ggw+uSK1XuyDxp+7fzDdPTXN8vN5spQ4qEW/ZN8gbborvZOZWqS/HbG0JyfFLM3z3xOV5f/eCkJShMV6xUWSJrKFy82CWI6NVpqo2uqbi+XEK774NOWS52WEgirCcuSISMTU1RaNhsX3rFmRFJxSx+66zX5cQop2BdGVQl9SVlNRwPNKGxnfPTHOxZKPKkNJVRssNpqoyd27Ks6lgEiIRBGG7lqMTQ1WYrdnN50QUMxqmJlN1fHJGLF4NL647yesShUyKygLdiTO6gqnG4ipLHpqiIMkS1ZpLTpe7emu18IM4ey1t6M2BX1LbYvZDgSKDoalkTJNMJoMAhhBYtkW5WsOq2VR9CTI6uqbHrg5JIhIR5y+P88l/rHDf3m3csn0jIxWPi2UbRZIwtTgLrdTw2vUzJctHk6V2enAkBN86XeKFi5W26LwwUuHW4SyP7B1AX+D9rBbr0bX1cq5HkiSy2SzZbLYrvtJZv9Lq2G2aJr29vYvynjQaDRRFWdWu5GvFurZI5grJ1NQUhw4dYnBwkH379i3ZlbXQ8Vcz2J5PafzpT9/N3x8c55/OzjAzNclPvHYn77x7K6oiL1ilvhwkSWK03ODIdG3BhIHzMxYvjdWpuQGyBIM5g7u39JA2FM5PWzihYCirsWsg0x6Tmzc1zvvxuNu42FAiCHzGxsZjv/2WzVihhCGDJGBzIcXx8Rp+KDA0mdCPu+sWMgb9uSsuobnOvssli6l6QMaQyRoanhe7esqWz4WSzX1b43TtXCFFze4UNQlVljg3Xef8TJwZpikKg3mTbcUUl8rx2FwEGJrMrv40W/rSzNYbKLKMaWiMzNSZaXiEkaCQ1hjuiccHl60AQw3xwoi0obOtz+i60Sk1PCZqLpYXgu9jSBKNMMIN42FYfhBSc0L6s1p7Fgq05pD4zFoeKSNH/2COoNzADgI834qFSSjkUxqG5KNrWZ4+dJpPffMoktnD4NAgsiyjSFLTvReP8hWAFEbc0ie3A/IjJZsXL1boS2vtgLzthxweq7OtL82ta+j++kG0SK5FZ3wF4rjic889hyzLnDlzBtu25/UHW2i9rfjIehLpq7GuhURVVVzXJYoiTp06xcjICLfccgubNm1aleOv1LVVanh869Q0XiB4cGcvW4tpsobKe+/fzHvv38xXv/pVXnNzEVWWOHv27KJnqV+PuhvyjeOT5Au9cbPEjtjD5VmH758vE0aCnKnjBSEXSzaWF/LmvQNsK6YRQpDS1XZab9ZQKVfjGSUN2yOfMZkszTI+PkE2myGV7+WFSzUmax5hFFHImGzu0RnuMZmqe9QsFyHiwsO9gxn6s2azULDbIgGoewG267GxGAfqYyRMTaHqxDPY45oXl4yhY3lB7MJSZUp2yGS9iizLpDWFUAjOT9fZVMxy99Y8NTtEIMibKsWsie3G6cBBGPLSWJWxeoDnh4DgcsWlP6Nx00CGsuXjhRG9KZUNeYNiRidj6lQaDhM1l5OTDYJIoCsStUaIocr05yVs14sD+brOQE5mZ1+mnZhctnxOTVlxWq8qUbddZoKIvlwaRETdCVAQFKSIoh7g1WY5Oj2Fhc5oQ6KYtQmsWbZtGqant4+KE/DI3n60pvWoejVqU432dTRacfDCqGtoVkpTmuJrramQrDeLZLmptmuFqqooisKmTZsYGBjAcZy2G2x0dJQgCLra5LfiK2vdQv63f/u3+bu/+zuOHz9OKpVi//79/M7v/A579uxZ8rHWvWvL8zyeeeYZoijita997ap+sCsRkv/54ij/+Ysn25uxIsv8i/s385G37O5qZeJ5Hi+88MKiZ6lfD9sL+ObJadxmgWDd8dvDnQBOTdYJwviOW5LA1OICvFLD4/Ksw/a+dLNhpQx+SEZXqTVsZCn+4QkhuDg6QaM2S19fkUw2x7dPl5iqu2R0FV1TKNcdqo7PfVt72N2fisflKhKDOYO0rlBvxkMqC6xfk2V0TcWyHExdw/N8kOIMLVOVu5pbNlwPQ1ORJQnXdZm0BZEeN5gE0ABVlhkvN9jea7CpN4UfxIF4x/XaIjZrB1yadTBUmXxWQ1VULMdlqu4xkDW4d2sPtteZnBBRtRw0TeVypQ7EtSmSJKGLgJLl40eC2zfm8MIIVZYpZnVURcFqivpk3cfxQwqpKz8xXYmoWi63bcyTTxu4XoCpSs2iSoe853Hk8ixR6FGrOjTqNWZnK6TTKczCINUtOd6wdzA+/qRNvSsle+HrZaFfmeWFXCzHLe6Hcgb9SxhjsBA/CMH2ldIZIzFNc158ZW79yp/+6Z+yadOmFe8X1+Kb3/wmH/zgB3nNa15DEAT8+3//73nrW9/KsWPHluxyX9cWSaPRYGZmhs2bN7N3795Vn8G8XCE5NlblP37hBKGI2vM5vFDw589c5OYNWX70juH2cw8fPkw+n19UgeT1CMKIzz97mrobtOtIYktAa1sls5aP3myGKIRoVlPH77HmXMmAq9se+bRGre4008rixycnJ3Ech40bh8lmMpxvuoMKKa2djtqTkqk4ARem6zy4vUBfZv77asVD6lY8tbDmBMiyxLa+NCfGZqnYAQiBoWnUXR8/iNjVl0aesx+FYYSkgKYquKFEdk7gWJXjFi8Vy6OQUpubst21sVZsnyAU9KSUuNNw5JM2DWxfULL9LhHpZKbmUHNc+nNxzy5FkamHISlNouGGRAIKzaFcnh/i+SGZlIHvh1RsH0PtfjO6KlN3A1w/RBYhGV0mnzapWjYSYOg66VQaR2jkzbjrgu/7VCpVLk1VeGL6AtXRXey/c088ahnaRZhDeQNNkai7QXvCpuOHBJFgR9+V7rFnphp87eQMUzUXQRwrumdLDw/tKra/36WSuLauz9WspM74ytatW4miiImJCQYGBvjyl7/MqVOn2LdvH295y1t45JFHeOSRR1YtHfiLX/xi178ff/xxBgcHef7553n961+/pGPdUCFpTeWbSxRFnDhxgsuXL5NKpbj11lvX5Pytwr6lXnifOzhOJERXN19DlXD8iL957jLvvH0Dly5dwnVdNm7cyO23377iH5oQgq8eusBoqT7vc6s5Pqoix2m2hsJ0/Yo4xsPB4v+f0q+8R1NX8T0fSYrvZltB4yAI2LJlC4oaZ2RZXuwu6txkJMBQYtHqtIbmYvsBVQ9Onpqh7gbomkpOFWzvz3BhxqJie0R2HJfZ0Z9hW1930aIiyyiSwHFDoigio8tdrV8gzlSSJAlDldEUmbrtkDZ0XP9Kb7CF8HwfRZau2V1XluLyQMfzyJha64sgEqBKsNAl4/kBURSRMrT2qN4WUbONSmsuTdrUKdcsFEXCNAwsx6U3ozFV9wijeHKgrusEKQlsl3xa4Z+OnuXbB45TLPRQ13uRLh7HNE029abZ2GMyWnGYrLlx0amAW4az3DQYbzwV2+ep49NUnYDtTdEu2wHfOVumL6Nz68blub/Wm2trvQrJYm6EZVlmeHiY3//93+eJJ57gk5/8JL/6q7/KV77yFX7lV36Fv/u7v+OWW25ZkzVWKrEPoVgsLvm1684isSyLAwcOALB3714uXry4ZudqfbFLvfCm615zU5j/momay5EjR5iamiKdTjM0NLQqd2vPnh7n4kwVmC/Anh8iSxpCwK6BLDP1Eo3mAKooEjR8yJoqmwvxRq0qcXDcD0Myps7kdJmJybjd/NCGIRQ1/lxcP6CQNkDEm6AsxaV1igy2G/fkijfj+Rs8QMkKOTblYaY0coaGF3iMV0OcIOL+bQUqtkcQCnKmSiGtYepqu6uwLMGs7XNhuo7theRNBVMOacgydiDQZQhFbOn0pnU2FFIEYUgYxanGXhjhhhKO65E1VFRF6mpDIksyluuwtaBj6hog2u3rLS++k09pCvmUSs2NkIlnoMiKghcKBtIa6Y6Kci+MKFsBbhChSIKsKpj24wwvhYggipi1fPKmSk9KJZsyqDUcZm2fS7MOVTuIW6YUM/RldEoNDySQpHjq43CPycb+NBISlhfwzNkpGl6F7UM18rkMoxMGA7kUr7upH6GlAInNvSl29afbGVvnSzbTdY/dA+n2NVlMa9ScuP3KcoVkPVokL1dX38WynDqSRqNBT08Pjz32GI899tjaLKxJFEX80i/9Eg899BC33Xbbkl+/roSkVaC3ceNG9u7dS7lcXrPuvNA9PGspGWB7hrI89dJke3OFK+mvG3SXRqPB/v37OXDgwKpkhZ0ZL/Pd45dBil08LSGpuyEHL1W4PGsTCejL6tw6nOO2TXlOTtSp2gGyJFFIaTywoxdTU1AkCVmEuGFca3JpdAKnXmFgYICJiebsEgFuc15KjyEzkE8xVbXJmSqGKjPbcJCA7f1pvCBs11f4c6b+jVbjYPRwWkVEIYqkoikys5bPdMNjc8Fo17tEQsSTFk2DuuMyVvU4OFJuxiAkxmsC4UpsH1KpOCF2EKduD+YMbt2YRxIRQRjFnZ+nLUZKNk4QoWkqGU2mN61RavjU3RBDVfB8l8GswXCPiePF2V6SonLoUrl9o5DSZLYUs/hBg3JzQqLr+uQMhVs3FdAVCc8PqLsBxycsqo5P2BTUrKHQl9ao2S5BJNA0jZ6Uyq6BDIWMSa3hUHUCjo3VcYOItK4QhBHHR2cZypvcta3IdC3+nHN6vP5WhfxMw8cNIadJBGFAqVKlv5BjsiZx9vxFbsr5FAoF0m4R1xZozeaDrr9wc0Wj6XJbLolFcm1aXo/lCMnLVUPywQ9+kCNHjvDtb397Wa9fF66tMAw5ceIEo6OjXQV6a9nmvXV+SZKWfI5/dvcwn/7+RcqWjyLHloEfCBRJ8L/cMcD999/WbmO90vVPVS2++OK5+B/NzrZIEn4Y8c1T08zUPQxNRpZhouZRtmZ4w8397OrPULJ8VFmiP6tTSBvUHR9dAcuN3S+TE5O4rsuGDcMUe7JMTk5yedbhbGmWWvMOeVsxxS1DGU5IgrLlUbddTE3m5qEsW1vDmYIQTZGbs+CvvN+6F6HLEoHvI4g3G01VAB/7KpMh646LoascuzyJAPqadRNCCC5bNrYfcf/2ApYXkUvppNR4GFTrvONVl9NTFroSp8wKIag6PsgGewbThMRV+z0pk8Gs0S4QDIXghXPTlK2A3oyBH/gEQubkeIW9Q1nk3rhuxrUiCqaCFIV4EWRSBkfG61SdgLyhIEsKQkDZ9tEVmds35nD8eEBXX9agkDGYrcXZVmOVuOV9Z4zJUGWm6y5belPs25BFVRQadvdEStsPm7U/sVvS1FSmSxUqTonJ9Cbe8cDtRL5DqVTi/PnzKIpCsVhESBkkRJdlJoSg5vjcOnxlwxJCcGba4sREg5obsLlgcsuG7FVnwKxHi2Q9CUnnSPGl8HK1R/nFX/xF/uEf/oFvfetbbN68eVnHuOEWSavXlCzL7N+/v2us5PVapKwUSZKWtdn3Zw3++0/fzW998SQvjMwSRYINacGH37Cdd75md/t5K61TsVyfzz97Gr+j8K/u+OiqwkQjpNQIyZlqO9PJUARVN+TkRJ3X7e5jU8d0w7rjxRlVtovneYyPjaOqKpu3bI67IPshFU/m3EiVCDCbonB0rEbdDXjrvgEmKjYNN6Anpc5rFOiHEaoio6sqXvM760mplGpWu79XFEUIAYqqLNxoUEDaVDk3WcMJBL1pHSGu3EUbKsw68ez33rSGrEixa02W2kIyVonjEmlDab+ux1Qp1Wz2DA4wnFNw/fluj5mGz6wV0GOqEIXk0iZhEDLp+UzWPe7eHPdwmxFW16Y5U7Wp2AE9aQ1JxFaeJEHOUKk2kxsGc/EGnDFUZusWmqZi6hoVZxZzTqFgS9icIMJ2fSCOf2UMs9miJR53HEaCSBKYho7rxoHzIAyZnpnmr79psXvTIPft3U52eCdHRqY5M1FDD8YIyzbPTugM5FPksmkaocJA1uD2jVd61D1zfpavn5whCAW6KvHSeJ2jYzUeu2MDQ/n5xXFJ1ta1ae0v680iEULwoQ99iM985jN84xvfYMeOHcs+1g0VktHRUQ4fPsyWLVsW7DXVapGylhfqcjf73YNZ/uu7b+Hp77+I7QW86cG7533pK+kuHIQR//DcGarW/IFUuipT92KfUNcseElCVxWm692vEUKQNTWCIKTRaDAxMUFPvifuMtx8eRhGXLbi3ltX7jzjkbbjNY8L0zUGcwb9WSOeUXKVNYdRiBdCWpMZziqMTAmqzXbuUSSouQE5Q2X3UB7HddruGiFE3CPMcpp32hFhGGAaBq7nxd+/uJJgJstxN2Db80EIsmkD2w2w/bC7DUl8dHRVY7Zu0WemyaVNGpZL1FEs6fhxUoEsgWFoOM0K/6ypY3lRZ8eZjo9bQlUVfD9AIcLUFDRdw3Xj5osC2pZE2tTa/cscL8DzA9KGSs1tdgSQWiuVkGQZEYW0fp5eEDFRjRtMmoaBocoYCriRSt2O3V81JyDV7HgsBJy6OMFXDp6nHGgU+vrJ5fLIci87tg9zq+Ly0miVyclJ+nTBTb15vIpMQyniovFP58qkNJmBYiwakRCcmbJ4bqTC228bnPe9r7eNe72tpzUpdalrqtfr7d5ea8EHP/hBnnjiCT73uc+Ry+UYHx8HoKenZ8kjiW+okDQaDe68804GB+dfnNAdDF/t1N/Oc1zPIhFCcGysxqzts29DjmJGb1epD/X3c+utty64vpW4tr55dISJ2fmtPQBsLySlSnEXqzki6/kB/ZnuiyBvalQbNqVSCbdRZXBwcJ7oeWFEw4vIZrSuY6Z1lalKg6oT0JfRcYMQU1PniYkXRBwbq3F51iYUkFJlhtKC7XmJipDj9F9Joj9rcOvGHEHgk03pWI5P1BS6y6V6c70qGV2l6oZIkhe3dAlCnAg2plVSmoKhKFittF1Jom57qLLMYD7NqYkKWV1pb86aqhE0LNJ6CgHULAdNUUhpsYUmSVLbMlA1Fde9IsR126U/q5NLGzTs+HFBnAGlKCqSCMgaChUnQFdkXNdDURSsIE4TzhoqKUPDdj2m6x6XZm1qToiuSqQ0Bcf1UEyNvKnHTSiDiJQCxaa7KxKCExMNxioOceeTBqosUcyZVKsWlhsigJypsr0vTaaZ+lt1AkbKDhkzYnZ8hLAej6A9NRXx2J3DvOs1NxGGEb4bXxfT09OcOXOGUUdlpKSzZyhHFKrIioIsSRQzGmenG7hB1NU+puYETNZ95AXGF9wo1puQLHf/sixrTS2Sj3/84wC84Q1v6Hr8k5/8JD/zMz+zpGPdUCG5+eabr7nRdgbDb5SQnJ6s88t/e4QzU41mkzyJt9+c4+HCLLfsu3aV+nKtnSMjUxy+MEU2pVO3579ekiU2ZCQuWhJ1JyBjqsiA40dIEty84crFl9FVZmuxFeL5Phs2bKSvJ9vVHRjizreKDK7vkzXT+EFcN+G6LpIUNw6E+EfhBgJTV9tZTkIIDl6qcH7GIqXJpBSJhutx0hZsMuDhPf1U7ABFhp7mPBSEoOHEw61Kls+3D4/FriAJekyVDT0GF8s2M5aPjA+SRF5X2NmXxjTUduFfww0Yr7o0vJCMrpDVFfJpg1nbJ6XJKIrCdK3BQFZnoKPwrub4XBqrUnLiAH1fSqEvl2JitkHOUFFkqdmHS2JTj0ndcuO0XVnh2IRNqMYZYYYqkzdVNFlqj9sNIg9Nlrllc4HerEnNcpiqexwdreGFEaYqU3ejePCWHicpjFUsNFWlx9TY2qO1P+/WyN2sobYfCyWZidkaO/Iyu7YNxB2Ple5U5ooTgKwgE89aqdcb1OtnsSOZp6I6d266G0NTMbQrNQxhGPLs6TGeL48zPVNifGIC0zBIZzLYQiOdMtt1Pl4Q8c3TJQ5dqjIxU0WTIqrmND+0u7jmTSKvx1reeC6H5Vbar/WY3dUc13zDYyTXQpbjOo0gCND1lVXfXo1rCYnthfzcp15kqjknQgb8IOIzxyoMv24Lj27Zcs1jL8e1NV6u87XDIwDUbb89G10gmLX8eHpeFCGJkIdv2sjTp6eoOwGCeLO/ZUOOTXkDU1NBCMqVKqNjY+iaxpbNm5EVBcsN4umEXkjDC5vtVFQG0xKjtojjKYaK63lxENlUGcpd8Y1HkcD146FUthdQdYL2ZpfWZYIgIGcolBsuk44MQtB3lerphhvxnZNTeAJSzeLOmYaP7UfcvilH3YlTajOGiluus6k3he24QLxxH7xUpeGGyDJEEWQMhW3FFLOahOWD57ns6Euxsz/TroVx/YgXL1YoNXy05t11xZHJKIL+jE7VCdqxiG3FVDvG4QUhh8ca1EOFgZSMIau4gWCy7rG1N4UqS9TcgIxuMJTXGc7rNBwXU9cYqzXww4hi+kp8xvZDglBw68Ycpq7heh49KY20oaGrsbU0XfeQkNoiYhg6juPih4K6J5CikJQqx4WQQYjbtBQNXcP3G0h6dzzI9zxOnrnAf/98nTt2bebOmzYzWgt5qZkwMJDV2NDfSwRsyapYjQaVeoNzM7Pc2gvHj9UpFou8OA3/NFKjmNYpmDINL+JrJ2cAeNOetXPHLIb1ZpEs90Z4rVukrCbrWkjiVh5rm7l1rc3+yy9NMln3UOS4MC2KIhQZwgj++sAkH3zTnu4YxRKOvRCW6/MPz53peI3A0BRqjs93z5YYrTiEkUBGUNAiHttu8M7bNzBWjR/vzxrtpoGKLDE1Nc3Y+ER7TkJrKEokBOWGx3MXZpuV0YKelEZRldjcYzBth0xV486zeVPlNdt758Udoiiuu0jpGqOzNl4QUUh1j0Y2VJmG7aKoGlJXRCIma2g8c2YKywvoTWsYuo4fBBQUmbLlUbUDbm4W0wkhmLBVKnWbbCaFQOLEeKndCr+VwVS2fCZqLm/aO8hs3SZrFlBkqb3BQtyXqmT5ccBeltBUFdtxqXohD2zsQSUiErEodd5dlxoeVqSQkuMRuqauY+iCoO5Stn1eu6O3PT5AUxWCKCKMBLOWy0zNJp82UDWZoLkWU1MoNeJRwVkNslpTsPw4hqKpCpqmIcux9WjocexGkmKvnWjFl4BqIy5ErAUSIooQUYgs0eWKCoXADyP6sjqu73Pk7GU++73jTAc6vX0D9OSyHBkNMVQJU1U4W3KRUJG0Hl532zBv3JEmsKqcvTTOl4/V0DUVIWWQI5+CoSKlNV68VOX+7YV2df2N4NUiJGvt2lpNbnj67/VYayG51vEvluLNVBKCSITIUmwhCVlQtnwsLyRrXv0jbPXaWgxhFPGPz59pNju8Qt32eOb8LBdKFqaqYOoybhAyYQm+cXKSR28dntciXJJg9PJlGrUqQxs2zDOPHT+e3151I0wlXudM3WM6FDx8k8mdaYPpuoupKmzpSxMEC38+kRDYnk8+1Zx34nhdawlCgSKBH/jkUwZhFLULF9Omzmy1Rt0LUZqWp+f7KIqCTDyoqlXbIIQglza44AUIYmuoYgVYYRwbaF1GkhQ3oGx4MFmxyJsqQRgShJBLGdQdDyEEJctvZ3tpmorneSiKROQIxmct7tlWRIKu1ilCxLUgvu+TMeNNwQ/iVjWZZnPMIBQoqoSqyoBoV9YrUlylb3s+Mgq6FsehHNdD13U834OmxR2JWLBqboAiSShEhAI0TWsmHcQt6yUJMtqVG4PjE3UuVxwURSUKfSRZRZHjmxBLlpGkuAtAX0ZnKKdjaiqzDYdz0w2gQWRVCXvybBzewEygsXsgw81DWRw/pD+js3swQ0pTgCJKzxDFqRF69TjGYtsOURSiOC4WBqPTPdy0sdj+fdt+SKkRuxqvlkK8mrxahOSVMh0R1rlFAmufAnwtIdlUMAiiCBlQlCvtUKJIUEzrpPVrXxxLiZF898RlLs3U5j1ecXxGKw6mqrTvLA1FxpfhYtmm6vgoXAmOB2HI7NQYddtleMMwvfksDbc7HnKxbFOxfXpSGroab7aaIjFZ9Rkp2TzYmyZnxGnYURiRNrR2xXmLeIKhH8cQCib9WZ2LMzVyxEWHjh/ihYKhVOxyc7w4jdXUVSRgfGKSyckpvIaE7cqklQhV1QibfcEkWWm7unJpIx5M1TUTKh7La6Z0VFVui52mKtjNNNlOarbbPL+OIl3pQ+Z39dmKW8E4nh9nuqVMvCDAD0LyaZOKXYuFMRK00hkkKe5UHHccThEEAUKKJzVWm265lKawIa9zdtpuuqjiwkU7kskbcbFh6zM9OlZjourSmmOlKxIpXWN8to6mKMiKiu8H9KcVeoz4Ayk1fEYrLj0pHVUSCKERRIJZ22dbX4aUrlF3XHpTKgNZnaypE4QRs7aPE1xxt81WqsxWqkSKRtQY5MfuvJd8an66b85QyRgqkSIx0JNrt+CxhIJkOZw5foSJszKF3l4uuimOzkTU/bh78p6hLG/Z209Pau0qz9ebkCxnPa1mjq+E6YjwChCSq01JXC2uJiSNRoOe2jkKhkTVi+8UZeJhVRIS/+uDW6/p1oLFu7ZOj5U5dG6KlsOiax1uiOcHZFPalT9J8V1uEApKdZftA1ksx8dxHGanx4gkNY6HyDKOF2cTeR0tTFrNG2UpvqvWVBU/CNBlwXR9/iRBxwtIGzpWM5vpQsni2FiNhhvGkxG1uNpfkXJcKtWpuyG6KrO9aFKkYwZ7GCFLMDYxycXJMpuGBkgXBLMjFUqWhyE5yLKMK2TSusauwTy5lEa10SEizc8gb6pkDZWq5dGTUtF1nSgKma655A2F3AKulSCMqNsu2/qzTDZCGo4XN7gUYPnxe2l1wpUkibrtUHEC7FDm1OQMPSmVXlNm2haoWogqS+3uz1t6U9ieh6Eq+AIOjdaZqDpxVbsi0ZfRGczqlCyfUAh0VcVU4kaVubRBFMHxsQpjlViUNCVuwW+H4Pg+24spGl7srhroz1JQfCwn/q4qdjw/RpVBRFeGi6lNUdw7mEZVDFJG7NKKml0AWqnUQnSPgrZth0uXLvHpJ11u3bmRO2/aiqJqcRzFDsinVHYNpHl+pBrHMKMIN5LxVYM337WRR/b0Ua1W+faJMb5wbBwRehTTGpGe4tsVi4bj8y8e2LLsJpHXY70JyUosksS1tQjWg2troRTdiYkJDh8+zObNm/mzn93Ev/mfRzkz1SAQcdbWT71mM//yoW3LOvZcKg2Xpw6eww/DZpZWt2srZ6pxQ8Yg3pBahFE8UCrbrM+oVKvUy1OkMjkKvb3tfTeMIlRVRY5o3+WmOkbISi0xUeR4+l92/p1iy4WVNnXOTdV4YSSewpdP63iuy3Q9xA2qvOHmfm7blKdiuWR0BY2QsdFa13G+dvAso7UQzcwwMtJgY4/B3Vv7ODXVoO4EBFFIRhEMGw7lsYtUNI3efA6hqNR9ODVtoygehXQ8S+TwWC0OmrsRYRiRMTVuGjC7NqlSw+Ni2Wlmcils60uzpUdjrB7EPa2IR/bu6k+3786FEJyaanCx4tGwXWRJQtd1MsDGnEIjiuMPKT0OyG/uMdGb7r2Dl2tcnnUo5lIgQlw/ZKzisK0vzT1b8kSySuC59GV1VFluphULpq045tSq1dQ0FaSAkhPXqOwevOLmKJcbRJEglzLQNRcQiDk3LaLLUo2wXY9QCCpuhOX6KMRjBupu0I6thULgBIJdBQPH83j++Hm+efAMo7YC6QLpTNxuZUPeYN+GDKMVl4lGSM5U+KFdRR6+qQ9Zlsn39HDZrzA4oLC5oGNZFpZl4zkVvn2kzEA4xW1bBxacb75SXi1CstZZW6vJurdIXk7X1tVmqX/uf3uAo2M1Zq24juRqGUgLHftaFkkQRnzh+TO4zbvaVjptJzlTZXsxzcnJGqauokgSXhgRCNjbnyalKVwcHSOyahSK/V2dAVq4XkA2pVOz48K+Lb0pTkzUqDhxdpWqKMw2HFRZZkth4fcmhMB2fS7PenhBxEDeJPDjmIja7J91edbmpsEshb4MUSSoN6y2ERUEPt996RIX64JcysTQJPxQ4nwpboP++t3FuLU8cUV81tSYrdawLIvxqRlG6xHnayBmq6hKvOaNPSb3bulhquHRcOLZHpt6TIaLcVzHCyKmai4vXKri+CG6IlP3QqbrHjcNpLhrOE3F0TENjZQSpx23NrSS5TMy60EY189IgBuETNuCO4dN7ujLNWeoKCgypEyNhuNR98J4douhIEUBkiSRz5gIHCaqLndu6SXwPTDNOZ+whO36ccNB1Yzb4DTnyCPFG3z3FxK72KqWS8FUMTSVAFCbn7gfCoSgnfIsyxKzdsDBi2XqzdqTlKGT1lWC0GOmEQ8ik2UYyBkM5/X2eU5N1pmqe/SmZ4myGTYMDTE6G1FIafzL/Vt48XCdoWKO22++Ug/m+BFly292XlDIZnNkszkGBwXHx6ooKYNSqcTZs2fRNA01U8BSMhR68uwezHcN6FoKy+nmvdYsR0iiKEosktXk5Qi2+75/zVnqkiRxW0cLicVyPdfW08cuMllptP8dhNGCVsn9O3qRZRgpO7hBiCJLbMoI7tqU5fLoZRQiNmzcGAeDg/nns/2QExMlAiGhSoKtxTQP7CjywsgsdS8kbDiYusLuXpkthavPhxZCMFO3MXWVMLjispKbWURWs3+W68U1KClDAyGwGg3GJiaYdmVyKZ20oQICWYo3u4lGiN3MvoK4d5Tj+ei6ga4bCD3DRKmMIjnkUyqO6xL6EucmPbJKxC2betrWFoDVFMyMqfNP58q4fhwHkGUZGajYHmdnLDYVTIrN4k1dU1HluA+XJEnU3Ajbcdu9viDOQotExKVZmz1b+lEUmYblkEmZ7ZbxXhARhIK0fqVi33O9uFhRlpitO2SNhTeV/qzOuRmLMIpbrajNTsOK5HeN8K05AcenXWadiHStTK8pUzAlJqsuKHHyQeD7bOwxGcoZcddmWebgxWkaXkghrTUzukJmah67B7PkUjoNx6OQNsjpUtv6rXsBs3bcjUCWJBoNi7PnzoOi8L2ZHh7emWcoI7fnsnR+Vj2mykTNa8eA4msxwjQ0btq2iZ39acIw5KnDl/jaiSmma2WCIKAvo/Hmm3p53d6N5PP5JYlC6/e2noRkuQ0bgSRGshgWY86+HDGSSqXCd7/73RXPUp/LtVxbJ0dLHDw/Oe/xuu0xUraZrLqozUFQvWmN1+4scqcbEiGBCBm/NMLY6GWy6RQbBvoJIhFPOZSirjDLdMPj26dnrsRFZJmXxmu8bncf77pzmIsztXY2T2lqgiCMFqxcb1FIaZTqdfJGCs/32nMvBHQlH4RhhOsF6AqUpicwsgWYteZlmOmKRNXxCCUZVVGQ5djVFnUow2Qt7iJsyPH3Veztxfd9Zuoul2cbGF4ZTdNIpVKkUynM5t3+dNWi7oTk0zqyHLc/CcO4cLFs+VTsoL1mzw/wCMikdGQJHG9+4gPEghkKgdsMyPfk0ngdn1VaV9BVGdePuj4PLwI5Ckhp8TCruuMyU3cZKTtULJ+UrlDMaPSkNKYbPpoUx+MiIdjRn2FzMUvDdrH8kAOXqpQaIWldIQoDLpbj1Ot9wzkaXtxSaCCXZ2NvCtfxMA2Vs5M16u4VEYF4s3eDiMmqw64+k1x/AUmSsByvPWMmilrdE5rvX4oTT2zXo1wb54kvfYc+zef+W28i1+dxaLTOhRmLrKG0i0rHqy7FtIYThIxVXW7dkGNbMRbwMzMO377okM3l2bGxH98PuTBd46tnagS1Q/Tqoj2CtlgsLmhxd7IehSQMwyW3tW8JSeLaWiXW0iIRQjA7O0upVOKWW25Z8Sz1uVzNtVWu23z98IV5j3tBxFdPTDFR84ma7/nw5Sr/f/b+PMayPLvvxD6/u9/79hd7REYukVmZWWtXV3VVV3Vz726xKWooahvJtmxRM6aBgWljQIwBChIEGNI/WjzggJZFzhCEARkyBEs2rBmKEtcm2Su7q2tfcs/IJfa3v7svP//xu+/FmllV2VXs6nEfoFCIyBf3vXeX3/mdc77LC2ebXF6s4dk6rmWwsb0HQLPRYGmuXYr7Kf+QqmsxCuJSWRm+c7vHqCQVipKAMAwzXrkz4MuXDRbr+y0WgUoAaZ5jWwZx2WrzE9Xnb7gm5+c87nbG7A0DGhWHJE3x45y6Y3CqtS/NUhQFe7u7yKLg3LmzjFMwN5WvuDJ2Uuc5yQtMXaDJAl0oK95RfhghNkFgTS5NlmVomobruhhazunTi0RhSBCG7O7tUeQ5jutiWA55kSPTAreiRBgnxxOCE4e9WVaQ5zmLTY8bnZC0kJjavkJwLqHl6AqSXHHoDwPu90P2woIoLWg6GrMVi3t9JWliGYJcCsI44+K8h64JhkFEx095aztkFMbYumA8ztnzU9ZmPWY9OWXJL9Ztlhs2fhRjmjr9Uc4ozml7JnmuPGccUyXGNC94bG5/4QmjmKrroB1I9ke/saEpJWnHtg9VVaMUxlGGkMqj3k9ymq6GbhikqSLGepZOxdK5u7PH/a+/xeZXrlM4DWZnZiiEhm1onG65hGnO5jDC0jWeO9Xgp5+Ym577tzdGRFnOakt9btsyuLjc4sq2T211jedWHDqdDjs7O1y7dg3btpmZmaHdbtNqtY7ZP3xSE4lzrJX58AiCANM0se0Hdwg+SfEDkUg+jhlJmqa8+eab9Pt9Go0Gq6ur7Ixi/t+vbrDeCVhtu/y1Ty+zUP9wN8DBOKm1VRSS//TqrRMXsTc3hmz2IxxTxzANhdpJc7693mep4VB3DNbvbZBFIQDLs61jsNxxmFDzbMZhQi9M6QUpnqXvJ0ipds29ccTuKD407xFC6XflhYQsRyL4xo1OSYQsqFg6azMOn15t8N7WmGGgeAtzNYdPnapNh/hplrG5uUnF0un6OWmhiI1rc1Xe3hggUKiuJMsJkpyzMy5110QiGYURVdcmTLKpt0fLM9GFIMsVQEBKiabrhFHApVNNPMdG1zQqlQoSSJKEIAiIwgAri+mmBjKJsS0Tx3HpBSE12zjEMk+ygp1xSs8foQnFcF+omOyGORQ5AkmSFzRsjfmqQc1zGfkh72yNuNVR10MT0PF1qo7B6bZDx09JC4GlweWFfQdIKSXXd8aMg4SZioVlWmRZSpAW3O0GfH6txcWF4zvRNMvZ7o+xTANNZBSFNn1fIWAU7W+4pJTUK0qeBZQ/iuvYZFJiiolNs2pHnpurE8Vq8zEIU968P2IYKc6OYZpYZWU9SCRaFJLkCpxwbkYlRiklG6OMzfGQdiWiF/ZotVpQabI90vgvXl5FEwLH1JivHV4Yh1E6Ze0fDF0DPymo1WrUajVWT5/hlfUe37qxQ3drTFPb44ybsDpbp91uMzMzQ61Wm0raf9ISyYftcozH448chPBxxg9EayuO4/d93YeJ4XDIq6++SrVa5cKFC2xvb/PdO33+t//qVQXnLGnS/8NX1/nv/1fP8sLZ1iO9z0mJ5FvXNtjsKbvciT3uJG7s+miawND3Gf2uqePHGbf3fNqMAcmZ06us37rJwA9PLJnHYYJrm+RjJS9++DQrkqAs5PEB7gHnxSwv+ONrHTaHMZYGNUdZx75+L+H5002+9Pgc/VI/a67mKF2uJCMMQ7a2tmg3GmyGcLU/5v7VPRYbDmfbLpqmcXWrzzhWFcjZGZdnVuo4hl7CiwV3Oz63uyH9SHmbr7ZcFhs2t7Yj8ijFdRwCP6DtmSzWTeI0peY5DPyIm3t+OUsqaHsOT5+f5e27HTrjhEEUIgcBVdvg8mwTmWdIzSTOCl65O6AzzigKtRjf1kPOz3rMVC12RjG6btJ0wC0CWp7FKAjphyl3uhGOoR1Awqk50mK9yRcut/HjBB05tdcFhfYaRmVbTUKSJhi6Ts3R2R7mDCJVaRwNKSWNqsvmsI+hZYBCkiliJIc84muew7XNAVujmCyXqm1mwtYwwXNtdAEDP6RZ9Vio7pulXdlWAp0tT6kFKIJkzGy9wmzVpDsKmbN1lur2lFxYFJJOkOGYJrapZlibW1sgt4g0h1dmNX7+hfPo5TmQUhF6JXCq6fD6/dEhk7iskKUP/b4XzW+/tcNXrnUQgGlU2IttxpbB2ZrLeDycOqnW62qWGUXRh64CPq54lBnJJJH8oMQPREXyUba27t27x7vvvsva2hpra2tsb2+TZhl/79+9RViipyZsjijN+W/+3Vv8wX/9+UMLwQeNozOSje6Ib13dANTD4ZgG4zyZ/pyWPAuYeBgIhJBIJLudHotLFebm5rBMQ3lfPCTSNGe2auNZOn6cU3NKdVtNozcOcU2d5aZLUcgDraNSZwRlJ7w9jPBMHc82SJOEqq0zijKu7ow5P1eZci6UfLwkjQI2NrdYXpznlfsBd7shSQLhKGZzGHG/H/Ij52e4vLhCz1cLrGcKqq6NX7ZVOn7CN2/1CNMCSxeg6XQ3Rpxtu6zVIbNc0rzg7GKV021X2d1KGAYRb2yMuNOLkUWmXBXHOZ1xl+dWG+SFGhzrFNT0nCIesTPuYJomd3yNnRE0PB1DU4nZjzNudQI+f77NubKSMAwdv5/jhwmWW6EfZKRFQc3ZT+ZCKFXf+92ApxYrzFRs0rw4JNGiCXGg3SSxDIs0TZT/vCyouU5pEqYSRMdPGIQZVdfBEjmWLvDjAs/SiOKEcZRRdW1WZxTCp+rZfPvmHrc7geI/CcHWMKbpGqzNeuz5CVkmOb/Y5EzbxRFqMzOKc/phStXRp5sPTcBsw2Pkhzy54PDYTIuqaykr45LMOfGbMQ2DJD1cIQfjEd949W06W/d5+vwpWjMz/OmtEbf2FKJvvmZRtXWu7QTMVs3y+6ZcmPN4ckkNmu/1I755q0fLM6eD+0JKru343PAt/tqnn6YoCkajEZubmwB84xvfwPO86Wyl2Wx+34QcH0W0cSKP8sOK5APGUf/xo/FRtbbyPOedd95hd3eX5557TnlxlMe/3s24P0gUQau8cJPPtT2Mee3egM+c+fBVycEZSZzm/MdXbx76ruMoLi1qVTm+3HC4uRdgGwr/r2saQRQj84LV2Trz87Oqp52lxJnSanpQOsmKAs8yeHqlzrdv9xiESmk3iiJMXePplTpZluPaJnGaq7kB+4qg4zgjLySuZZDEMaZpKvFMQ7HWJ/awlH+zu7vLaDTi0rkz3OyE3OtFSquqgKprkBewM4q53Qm4uFBlvmqjaYrkOenNg+Tqjk+YFrQ8Y+pVEmUaG8OMJ2oGizP2iV4JvSDlTjfA1jUqFQ+QpElCLyi43Qn57LkmgsM71EIWhEFIrzuCPCEY5xi6gWEYOIbOIFJQ4QliyjR0RmGCbRlUPRvRDU8891Iqg6o0zUizDCRUXIuunzIMYjxLZ76mEFpVt0KaJlMnx5pt4GgFSVrg2jbfXu+x3vERukGWDHFMndmqyU6aMIwLokIN6i/M2Di6pFH12B6ErHcCbGNfHaAopWHmajYvn2tRcS38MEYINbNybYtR7CPLxDMJ27aUd4tUlYeUklEQE6U53aigF2b0+jnNaoXtUVSi4yaIrxy7tDn2w4g/evUKr28GJMLm/OklarU613cD6o7Ok4tVtkYxAsGPXmjzYxfaU72uu70IP8lZauy3xTShHDDf2Rrz84VE1zQajQYAnU6Hz7zwAv1ej16vx5UrV0iShEajMW2D/Xm2jR6lteX7/vsCCz5J8X1PJO8XH0VFMnFh1HWdz33uc4dKXk3TVCVy0iRy8vcPsIV9vzjY2vrKW+sM/MMtOinBKhMJwNMrDTYHEeNYsaazPKEo4HTb5bGVWQSUVrmq/RanGY7jTNtjeSG52wtVK0YTnGo6fOpUE8fQudUJ6AwD5lseF+YrrDTVYhzG6TSZUM5IQJEWDV0njGJMXXEaTNNkFEXKD2QiBJjnbG1tkec558+dodA0BiVPwdQ1EgCpBttaaS97caFKmudUdJ2iULveQiruQ8dPcE1tmkRAtWwGccYglqwaJz+QgzAjyyU1W+lcpYnSsXIztYDmhcQ4MpfShGBupgl3AyzbplkplXXTlCiOiTPVBvVdaDVqRHGipFnygnEQc6rlcbMbMwwT6q5KfFlRkEo4VzWn91OcFXznyi7boxiErpjurs5yq8J2f99BsmobPLFUm87P3t3oc3NnRLvmYWiS1DDxk5y9ccpjLYNCaNTrdVquiWVoVFyLwThgoxeof6vYUwkYTQhsQ2N7GPPc2TZ+GB0iK46CCM/UaFYdRmFK1QLLsoijZDpYnyzsQZor9eQgRReCKDVwxim6ptELUjRNVVuWLjg/W5luOPqRpDMKaXsZd29dx3Ec5ufm6GVVTj02w//yxRUEHHPPnFy3o49oViiY9XT8JyVvbY75D+uS3+3fZsYzeXltkc++dJE4iuh0Osfshyf/fVzq4vDoM5IfFA4J/AAkku8V/nuQpX6SC6Ou65yuShxTm/p5TEIt9BrPnmo80ntrmoaUkqv39njn7t6xf0/ygrfu9TF1nZmqyWzV4qefWOCN+33udcZ4huCZM7NcnK+iCTUwnQxPhVALwGTOkuYFf3Jtj/v9qGxVCd7dVAzrH7s0x2rDIi9O5sKEcYprmWoBKyuSUy2PttNje5hSsQ0MTTAMYqTQuDBfVYq6cczm5ia2bXNqZRmjtLxNswyBagXB/gKgmPTqBFddi8HIR0qJbZroukYeJmqoXhyuUDVNQ2YKyZZmOa26wyiKDsGcjZLMohsGWZoiSkJfLqHiWId22aCqkYrr4IcRS3Wbqzs+SaZgmp7nqcohSWk6OqNBn73dHTTTYi/IGWU6lfGA+ZrNWtvm2l7BIJZkWYJlmsx5BmfLdhgS3tgYcb8XUnEMLF21TDd9wYVZk5XVGn6iFHrnqtahRXRjEOHYFqLIyAuwTBPLNNkaBIwTON0yaJXDa8+xpu1BIQRFXpAkKZqmYRomaZaq+9kyy9ep89HxE+731Y6/7hi0HMHQzxmlBmaeEkTJlPU/SXDrnZCun9KqmLi2xd5eByk1JBpPnmoSpQVFnrFQs2l6Zjn4d3lzY2cKDAA1x7hz9y6DMOf30y5PzX6a5bnm/n2ZKn7R2RmXlmeyOYhZbtgIIYizgnGU8eMX2tNr+507A/7Na7v0RpLTNcnNTsDNTsAwTPnC5Tk8z2N1dZWiKBgMBnS7Xe7evcs777xDtVqdosEajcZHOqx/VB7JD2ckHyI+SGvrURLJg1jqJx3fEgW/9BMX+Oe/fx0p5aGdz3/1Y+ceWWBO13XirOAP31xH14RCQ5VxY9fnm7e6ZfLSsHR47nSTc02DM+aYpx6rMTs7q7woTB1DU1Lh+3h+dd6iJKXm2nzzxh73ehGupU93cFGa8+7WkLNtm9V25RjR8WCESUqUQydISYyI5YbFZ8+1+PbtHnvjhEBKbF3j4pzLM6sN/JHPvY0NWq0WM+02tqlNYcgLdYfrOz5+lKCXyWSi+rvSdJTtbKBsdiVSebyn0Kw6nGo5XNn2sQ0NQxMIIej7MZ6l0XLUdx6FEZahYxj61OBqvmZRdy26o5C6o1z9kkzNJs7PODi2OW0VrndC7o9S+uNdqrZiyLcrBr1SFbgIEnRN48nTMzw2q6rXYRDx7VtdNgYJUmYwTLixrXGq6fD8SoM9P8W26tQcpT02makNo4zdUUzFMaZVXKPi0BuH3NnL+JmnFnFNg9GBCmESUtOReQwlxHXS4tV1Dd3QpvM0xzIYBTF7JbiiaulYhijNviBOYvJCIjWD5fr+zvteL+StzRFJVmBoGjujGM/UubjUoD+OGMcZp2cqnJ+vUTVUxSuRbA0jHFMr/eLV+fdMjWEioci5OOtiWyaWaTAOIqqeQo8pQieHSwup2rCDfpff/vpr2KbJY2eWuR+ZvLEZEKU5c1Wb87MeV3fGXN3xVdtXwNMrdT5/vj29v/7wyh55IVmu6VMjs61hzB9f7/LC2da0RalpGq1Wi1arxfnz50mShG63S7fb5e233ybP86n1woS78r20wR61tfXDRPIRxqMkkoex1B90/P/y82eYr9v81tfusN4NWG25/BefO81f/tTSI392TdN4ezvAasc0qx6jciHfGyuSYFaoSgipCGvfvNnBbxVcXp2bok8AbF0wDMJD1dLBBDwKY+71lU/FwfaNbSgdpVu7Y1quQdW1T0wmhZS8st7n6pbSEzN2dqhagpfOtfnJS3P0goQ4K6g7Jp6ls7Ozy3Aw4OzqCrppgxC8dqfLOFYtkNWWy9qcx41dnzDKiSmdBlsOlxbrRFGibIKRbAxi7vcVymq2YnFupsI4kWz2g9JvQ+LogmdW6sjxflXX82Nu7AV0wgJBwWrL5clFjzfuZfTDdNpOO9V0uDBXISkl6Nd7Ca9vhuRZjGVodPyEbpDy+GKVlaYyy7J0jaW6zVLTxjB0dE2ws5PRiSQVWwkqGrpi39/thViZz4X5CpIET3hUnQq6rjEOI6KsICsklZIpbhpKtt4qFZL7fkzu5Li2haFrbPXGjJKcmmspgchhQcXa18xK8gIhJSYZmm5Srzjc3B7x+v2+kj6R4FoaddtgEGV0/FR53Osac1WThaqBZ1tkheTK9i5Fwb60u4RBUnC/6/PS2Sb7t1JBIQVVT5lngfKqT5JkPyEcWWfjJCVOUgrN4MaeT5YVVG0DxxBTaR6AcZxj64Lz83X8MGYcRPzh73ybe/2YxflZFhcXuNsv2BhG/MwTc1iGTpzlLNYdnlisTgmue2NlZdxyNLJo/8PMVkzu9EI2BxF1Z79VNI4z1jshmiY4N+OyuLjI4uLiVHX3oP2wZVnTpNJqtT40ufBRhu0/SPIo8AOQSAzD+FDD9omX+gdlqeu6IpdJKfm5Z5b4uWcePXEcjVs7A+4PYs62JOMwmbodXt8ZkxYSz9Sm3A1TFASFpE/lUBIB9VDWHIvRAa+So5VclGbo2uHvaho6MoimMN9xGFNz7WlCm8TV7TFXtscIJDVLoOkaoyjn6ze6/MxTCwdgngVbW1vEcczS8gq6ZZEVgt/+7h1G8X6yf29rxEvn2izVHd6+dZ9my2Gp6XJxoUGSKo92JLy1MeK97TFFoaCfG4OI9V7IS2ebXJqvKEFFmbNYt6naBvd9tUAESc7Xbvbolw6SAkE3yFisGvzo+Ra7Y0XOqzsGs9X9tlacFVzZ8RFFwly9QpZnuGbBKMpY74b81MUZLpSEPiGYeqwA7AUZumFi5DkCgW7oVAydhBSnUUMYGVEYMugP2NIEruvSqtdpeTaGpt676ljTeznOCixDUxsJwI8S3t4ccX+YkOYCwYCKpeGZOp0gxTE0cinJCslKw6HpxAhgexDwyt0eudBpejpSFvhxTidIuTRfIZcSiRpMz3hK4j8o/ePjXNCqOhS5SrKarlExlJqwn2SHFJSllIyDCAmcnavx3tYIS1PzCYlUKDtD3xe9BLbHOW/c3SXKiqlvy1y9wsAPlRUwitP07Gobq0SODcKMrWFCxdJJxgPuXB/geS65VeO1msl/86XHTuRg2aXmWxwXGAd2XEkuMTVtWg1KKfnGrR6/8/Yue36CJgQLNYu/+uwSTy3XEEJQrR62H56Qlm/dusXbb79NrVY7xF15WJIoCvXdf1iRfMzxfiXjpGJQMg0Pfq2Uklu3bnHjxg0uX364l/rBmNwEH7XQW5Rm/NGb62rBL1sCjqWThoUa3pffR0qpkD2opBlmh9t8FUtjHETEqVA+6SWM9GgiWWk6vL05QmIiUCiWsGyXLNT2wQWjE5LJtR0fTQg8S8F8FadBY5xK7vVDLsxVSFNFMtR1jdXVU+i6TtWx+P+8so6fQsO1FFRZwjBMefVun59+Yp6gBmdP1bEtgyxPcSyDMFby99d2fQxN4JUth0KqRezGXsCPPjbDfNXAtgzGwT5IQUrJrb2AfpjSdBVCSNc0ojhla5AQLApOt5wTr32cC/wwomYbSt4FNVB2C0mY5KWEiBrWe7ZVqvKqyPOcPFMLum4Y0/tR102SLKVeb1Cv15FSEoQRm90xm3d3scloGhbbUUGWKRXfOCtKFnp16sB4fdfnxl6AZxk0XUGaGYwTSdWCtYZHZ6zMt1YaDqfbLv3OHpqmcbfrK5dIT0MgsSw1R9nuB4zjnOdPNzFNbapSMAnFEcmJkwTT0LAMi6IoyIu0lJffP39BknOvHylya0nkrFvQCzMs08RPNVwdLs1704F8lMOrd7oIFKF0osV2rzvmudNNGp5NmmbMN1yiaP/6+klOlhfUnf2FNwgC8jDmT7+xxWOOzwuXT3Nqvk0h1XnbHCiRzPOzHl+7NmKmLBjSvOBeP+LxhSqrperC1R2ff/vqFlLCmbZHUUg2BhH/+jv3+T/+xDkW64cJk7quMzMzM0V5RlE0bYPdu3cP4JCEy1FE4QRs82ETSRAEzM/Pv/8LPyHxfU8k7xeTC/CwgdWEpT4ajXjxxRenMMAPc/w8z4/JLXwv8Sdv32EcJYcW/HGYYBo6Tc8EIcjzgjxXch8K5gytA/OYiqUz8ictLUmWKzdBpYN0OJFcXqgqo6s4R0dSZBEFklNNl5XmYdjrKFTSGePSACrKcixTJ8/2vUgEUGQZQuhKgXdrm1qtquY2QuDZJvf3hnT9FEfX0DWB0HTyPKNiGwyjrFSUVTtW2zQIooQkVd9hmEqStFDnogxNKKTP9jhlHCZoArIwp+LYh4ibO6MYU9fQhMDQdLIsxdSVX/pG1+f02szUR2USlqlDacSVFxJNE1MWfFEOoZUHiKTuOozCCKQkLZTZ1XzN5n4/IklzTClxXY9cQpEFzNf2oeFdP+W1ez7DOEcWBpZhcqpusCxitvyYONUxhORc2+FsW12XvJDc6YWYuoZnG+RZhi7AMyTjuOCltTrPrYrpnEkIgWko2f84EyVsXb1/WvI4HMsklQLbMgjj4+3MpmtSK69TW1deLmmaERUaSw0Lz1IJbhRnfHt9wCBMMQ2dYpSyLnzWZj1WWg79MMNJcp4532apWSGIYhzb4sq9PmmWH3JE9CydbpCyPQhZqllUqi5FLql6Nn6g2mSWLsprpNjtUkps26I7UjptN+9tsr6xhee63AktdnOHAkWobFdMZlydvXFGtOsjgLNtl7/67OK0ivnOnQF+ku9LyWiCM22Xa7s+b9wfslifO3auDobjOCwvL7O8vKzmdaMRnU6Hra0trl69iuu6h7grk7b8h92kjsdj1tbWPtTffD/jE59IjAODxpMSyUGW+ssvv/yhYXxaafP6UZIe13cGvH1nFzhcOUiUsu3F+Spv3x/gJxm2oSOFICgJeM+VLHpT10qc//5xs7zAtUzCoiDKlTeHMSiYrVks1R2+dHmOq9tjNvoK0XRutsLFEmF1NMZhNK1MZqsO97pjPH3yKZVplhCCNBzTD8bMzs5MW26WaRBGCXn5aiFUoheywDRM8iJByon/iaRqm9MWESiPlChO0M0JV2Q/IeqGSX6klRmUygaerZKOoakkbJg62ZQUV/69JhRDXkKt4hDEKUUhSTPlmdH2THZGMXXNnAIgxlHKasul6VlUXYveKGCjryqmYaSMwVZbSkn3XjdFZAWRTJFFxrm5GhcW6gRRTJLJ6UJVtw00AWEmWR/mfHqlyafOWYyCCL1IEXnK/bt3sWwbzbKVeZhjH/ruk+/ZGYVUDIea55KkKYaus5VkOI5B1dqv5iaXWUqIkoSWVyHNMiUSGSoOz91eSJDmtD2LlaZD0gnpRTlFruT8647BWtvBsSwsU+f1+7sMwpR21cbQNPI8w08k692QHz3f5mzb41baoWJAGCdUPeUFk+bFUUkFdX2EIMnkIZRZL0jZHqWkaHg6VGydfpjScA08x2HohySZZG1232fmlVu7XN32aXgmszMtWu1Z9saSui75Sxdc5peXqLsGlxaqU9UBULMU55g1tQJ1DKPD910/SHlrU4ldLjVsnljcryAnf1ev16nX65w7d44sy+j1enS7Xa5evUocx1P13snM44MO7X+QvEjgE5BI3u/ETi7ySQv9UZb6oyIrPkr2fJrl/Mnb69OflTru/m56MA5Jhh0+NSO5FagdXV7AjGfywrkWM55FnGVoRY6UxbHjh0nK/WHK1++nZDJD00I0AadaLj/+2Aw/cqGNHyVUHeuY//vRmLS5Hl9w2e6PGScFpoAiUYTDpg1GMqS1tES7WSfJc4SEIs8ppJpB1GxD7VZdgZQKchvnqppqexaFZTAKomMJfqFmYzDATyUNzyJNU3TdIBgrwuJJ5nlhklKpapxfqNMJ+wRhjKVrSFTbxCpFDtWJh+2+z7XdkI1RQpKkLNQszs16pHlBv/Q+ESjPjqeWaziWQW8YsONnfPe+TxjHuKZOmOa8sznmTNvl8ozJKNdwHYu5SoXlhkMYJTiWxc44ZBxlpcKu+gI116AzClnvhJxuuTiN/cWhNTsLecZOp4dBQac/pO4Y6LqOYRikucTQBVVLRwJDP8B1HG53fW4OQQwjlmZMGo6xr6mGYuU3qy4LFZ0syxlmIe9u+9zoxqqFS8F6N8AxNJ4/O8soiIjSHM/WWao7uKZGkqaEScL2KKbmOpiGrnxUKLXagpSOn1KxlbKAavNppGmGnykosW6YCE0pFE9ERLOiYL7hThF+9/oRb95Xwo2aEBSFpOraNKsOQZwz6I2wDY2zMy7nZhRBLy8k9/sRtqmhCzUc7/d66IbFjrB5cW6JH3ts5sR7frXlqhbwgVZ5XkqyzB/QnXtnc8S/+rP77IzULErTBE8u1fiFl049EMVpGAZzc3PMzamqJggCNjc3GY1GfPe730XTtEPclYcJMv6QR/IRh7pBDy/0D2KpP2p8lInk29c3pg8JgCa0aUWSJAlbm1vUPJunzq/yKV1X4nhSUneUtlGUZjRdk/44OPH4wyjjj97dIkfgmhqGoZPlkjvdkOu7PpfmVI92HCUnepuAsu+91w/JC8mpVsqF+RpRkvHanS6jSLVVFl3JubrgzOoqpmESximmoWEaGut7SmK97Zk8vVLnm7e69MMUQ9PIigJT03hqtcVCw+Pu7f1dXpjk9MIUUxPMVC0eX6zy1saI3WGoQBVhxEzF4tL84Z3Yzijhdidgp5fTDkY8c3qWMy2b9U4w9aM3dY3LC5XpsDfJCr5xq083yDBEgabp3B2k7I0TPr/Wwk9ywrSgYuvMVy3qJURVAm9vDIiThLm6qwymkpQkL7g/iHhuTuNc1aJaOw6I6PsRmq5jWxZJmig1gFR93yA96f4SSM3g/NnTUPH5xvVdgixHzxJSPyJDY7lu4mo5Uhq4jsMfvbvF5jAiSVJ002Q3CZj3lFDk3lhd69Ozdc42zSncdRzn3Nzz0YCKqWOaDrJkul/fHvC5tdZR0NV+lHD4NEkwLRMQJMmEr8K0FExzye1tn9t7PhLJfNWmokv2hiGeY6HrOqMgpF2xWa5bSFmQZAXvbY3JCuUXM4GDd4OYVqXGUwseumFgaRJb3yceZqVOnK4JbNtW6DEgSxN6gz5/+EoP2xA8tbbC3Eybr97s82frffJccmbGpWrr3NgLmK9ZFAXsjGPOtF0+dUpd0yDJ+X++skHHT6bClGEp3/+f3t3lP39u+UFn61B4nsfs7CxbW1u8/PLLDIdDOp3OdANcrVanSaXRaBzquEwkUj7O+Bf/4l/wz/7ZP2Nra4tPfepT/Nqv/RovvvjiIx3rE59I4LBMysNY6o8aH8QS94PEwI945dqmakE5JmGSgYDruyE3Ol1GYcJ8zeL5dpOKq9oZ9SNOcJ5t0B8HWIah+BVH4k4nIMkltqYeJIGy/01zwVt3u1yaW5m+dhyWlUnZ6gHFX/n2ujJ7Eprgu7dzzs54fPGJRVpmxk53CEVGzXOYn5+f9nYncjFfvbqDnynHw4Zr8tzpJj9+cZYbOz79UDnirc0q7kFv5ONZysTqzfsDrmyPibNiKm/xwpkGTddge5wRxQntisvlpSbZAb2m252QV+4OSLOCIpeMBhlb72zx4pkGS/UGQSbI0pT5mkXTNaeLzb2eatlUTIGuqXNsIxlGki0/59KsPd2RurZJWLbP4kyhuBxz/54zTQPThL1hRJBBPT9eKYIijMqiIIwiXNeBUlIkziVztcO72Lu9kNudUPnT633Ozbh86lSDO8OUUZBgWQVznsayV7Czs4Nj6dzzBXcHCoZtIzAMyCnYGhf85KU5PqVJHNsiL31iJtEPU+KsoFWenyxLMS0L1xSMM0GaSeVdX4af5IziDEsTnJmt8c79Pi3PmF6XMIWq67JQt5Eoaf3XNgM2+gGWriGA63s+Dcfk7IzS9pJZwcWFGk8sN7A0iFOlTO3HOQ13Xw5HIKi7NruDgCfmHTwLpBRUXItxnLPZ89E1QdU2GMQQl6rFk2tnaIKqpbG+ucuNezu8en/MSFSYn5/DcT2+dqPHTMXk3IzL7lidp8+cbvCXnl6YVhpXd8ZsDWJOt/Zbaa6p03QNXrkz4OeeXpgSRyeaX3d7iifz1HLtkJHXhEOiaRrNZpNmsznlrkzaYO+++y5pmtJsNqdq5B+3aOO/+Tf/hl/+5V/m13/91/nsZz/Lr/7qr/LTP/3TXLly5ZGG/N/3RPJhfNvfj6X+YSLLC27uBTim9r6WuB80/vitO2RFMVV9lFLyTqdgfTRUEEBN484gY+utbf7yswYt9/DpNzRBHEUlKVIZVRVH2ltJXgosohR8J/aEmsxIMvaN2MsYRwkVx8KPEwZByp/d7pEVkqZnkaUJKYIbuz4zd7osWSlmEVNvKbz8QeROUsDvvb0x1dhyHIt+mPK16x2+9MQ8L5fEMFCyL8l00cm51Yl4azNAQ1K1DfJCsjtO+NqNHl9+Yo5TTbfkJyhnP9tSbnzDMOGtDWW81XAN0kSiaZJxKnlrY8yXLs8qtWTNwbXNA5pdEBUaeZqimwdk8hFoQrLRHfPp1TpISZ5L0lJrbHINjpJHs0zpjhmmgXnokkk6vqpyNE0wWzGZqZj0Ykk6DtGEIMoknm2zNrOP5rm64/P25gihG4g8oV9Idkcxn15t8PkzNcIkp1l1MTRBlKjr1+2PeLPXReY5yYFevmVpBFnB+u6Il87PIYQkEeYhs63JhqOQEl0ITNMiiWOyrECIHF0XVD2HMFZouzvdkCQrlEe9UVBzDPphNhHFxtI1zrdMbF3DtQz8wmRj4NN0renC60lJP0w503b5qZUZEALXUtybKFNMfMfhGP9E03WKJDsoWoAE/uxmh/VuSJyrGZ2pC9IkppcqefqskGS5ZL6iUS0lWTYGETujFNfo0r3To1Kp0pyZZXfo8JMXZ/gv19pookSVHXhm4qxQ5+pIf1XB9yVpLnFM9bp/9a17fHu9T5QVCGCmYvG/eGGZz5xuAg/mkFiWxcLCAgsLC4e4K//6X/9rfuu3fgvHcfiN3/gN4jjmi1/8Iu12+9gxvpf4b//b/5Zf/MVf5O/+3b8LwK//+q/z27/92/zWb/0Wv/Irv/Khj/fJEe1/SOi6zp07d3jzzTd56qmnuHz58veURP79G5v82P/lq/xn/7dv8qX/7uv8n7+Z8O7W+Hv6jOs7fW5sdac/h0lKkOTcGRUIJJ5l4JhKRC/JCv706g6udRinb+lM0UlJmuFY+jHW/2zVQgNyCVKWki6F8idfqDsnDjj9KKFiW6yXC0TNMSgyJSMyIXS9d79Hp9fHME1WFucPJRHPNnnzTocoVXMRQ9MQsqDhGMQ53NrdtwueLFr5gV37tR2fIk+pew66pmHqGnVHIYa2hsk0iUwiTjKCOCHKIUiVD4quqaQqUT36UZxNuQhZUSiDKFOR7aquQ56l7EMc9qMoJLahE5YIMtvUMHRBEOdTafPTLXcK0QUFDvAzQcWQVPQCxzJxbIvv3h3yx9e6vH5/yKt3B/zJ9S7L7QorVTXTSIuCpqvz7LLHUtNTw/JM7WBNw6RqQMU2aLomuZRc2Vb3YNUxyLKUMI6pVxyFZrItbMvGsm0lOFjK70RRRBzHBEHI1s4u/aFPkmYYpsWOn3Njb7KDV+dMN0ylNCxVkl+qK0n5cRDx9kafG50YwzBo11wMqQiNmgZPL9c403K5OF/hs+ea+xIwQqn16oaB4+wnbU0IdCHYGycIlO1xlCiZlm6QcmNnSJokeJZBVGhoujaVFPLjlLZnTofk652Aa7s+QkDL1alaGkGghESX21V1fMvgqeUaa01jKhoZS01J9Jc/+/6Y+3dus3XjHX7nG28Q+qNDSWR3FHNle6x0xcq508HnsxuoxDixSv7KtQ5/eqNLwzW5MFfh3KzHMMr419/emCIWPwirfcJdOX36NP/0n/5Tbt++PeWq/ON//I+Zm5vjH/yDf/DQY3yYSJKEV155hS9+8YvT32maxhe/+EW+8Y1vPNIxv+8VyftFFEWEYfiBWOofJP7k2h7/p3/39qHf3RsV/Nf//ha/e26Z2eqHdyTLi4KvHHE8jOOY169vKQVd84CxFAJDUw9YlO7zY2qOycg/PBfxo32TqkmsNB0WGzb3ugGZBoXI1IJoaA/1lfejBCE0pABZFAeWV4kscoJE0m638X2fME6n8GDb1AnjmEGUlQPw/QQjpUTInCAXU9kL2zQIwsPilEGSY+oaWZaiiX2XPU3T6PshK/Xjw0uBUGZLKBMrSVGCD9RiI+DYQD5KMzzbpChyzs1Vub7rM45zKrYaQk+01FbbyjXQMnV2hyGv3Ruw6xekWY6pS9ZmPFaaDtvDGD/OMUyTqiF5brWBDAdEScqVzT63e7GSXpE5QgiiAt6+1+NHL8zw9EqdvJClqRhkec4oUES8FJ2qIQ/lONfU8ZOccZxNWyy2ZeAHMXmh7I/PzNXYGu1RlMNt0zSQQsfVJW1PZzQes9fpMMoNbo0Eca5QcJZp0LB0pNDZG+7fY/M1m0sLqg+fF5L1boROgWebyLyg4jloupKwry0ZnJ87/OxVPYf+cISmKQBGmiQgBKZpUuQFBSmGrmTtx2FEkOR89+6AvXFKVkgsXVCxdOIsZS+WWKZJLpV45aWFynRPtN5V1Z1n6mi6QVHkNDyDfpgy57p8ZmWWimeT5wXrd0fqeXIdsgfYJWd5zqDb4d/+wbdYaDdZXpjh3b7Om9sK0eaaOrau0fFTxnGOY2oMIjW7/AuPz02f5W/e7OEYGrWJ9IoQnGopBe+3Nkb8+GMzjySPUqlU6Ha7/L2/9/d48skn2djYIAhOnpk+Suzt7ZHnOQsLC4d+v7CwwHvvvfdIx/xEJ5IJS13Xdc6ePfuR9Az/+z+9PVWbnUSB2vn+v17Z4L/68XMf+piv3dymO96XFB+NRuzu7GI7HrqecHRXDKpwiNOMVulX4QcnS5KPgpiKY02dEHVN8JOX5vjGlU02xookt9Jw+OzaLA1HO+Gd9qNqCXSE4qOUsOQ4jskLWJuvYZrmvuxKEFLzHOISPlt3DO6VcN6DQkmFBFcrcG0TU9cY+oe/h0DNDnphhotOIQuKtEDXDYoimBLYToq2p7wqxiUUVNeUa2SQFsxVrUPzpTDJuT9I2B12sU2N1abDi2uzvHK7y6BEaJm64LH5CqtNB9cxGQcx37rdY3MQl4uHIBUG72z7PLtS47G5CimqRbZYtzF1jd3yeb7Xi8izDNMS6EaJ0koS+plkcxDx1HLtxO9kGRqyyMhyJd2e5zlFURyz/zV0jX6QcnVrxJ6fYBsayw2HxbrDXpATpaDnBYahKa+WpSq6EPhxyptX9gjTDEcrIMtIM42tyODZ001s3SMsWesLdXu6W0/ygiQvsC2TLM3Ktl+OIUDoJvmR5kWOzuvre+R5gasrGuxEJThJ1CbJMJRt7jiMkBK+e3fI1jCmWsrMxFlBL0w51XRoVV0GfkTDMTjd9phreiRpRpxkRGmBqQmEpoEs4IAJ1qTV65ekVSk0+qlO914Px1RKy34p3QOqHSWAxbpFzXPZ7g74T2/c4eZeyEy7ydLCPJpZZ2eccH7Wo1ZWJk8u1fjxx2Z4rASCSCkZxfm0op+EJgQCQZhOPO8/vGBjnueEYTgdti8vf7Dh/vczvu+J5KQZyVGW+t7e3kOFHT9MvLc9PpREDsbVnQ/f3hqHMd+8ohiuUko6nQ7D4ZDFxUUWDJvXt+6S5ODqagGWpczF2mwFy9DI8wKt2O/RH40wzXl3a6JjpbFWynI/u+TwZJrSai/t96VtiyBOSo2q4/HEUp13N/rsjFMMIcnSjBxB1TV5cqmBEOn0PKv2VIaugyV11mYr3Ch5FZOHMkjUbm1troKhCUZBSNV1GAXhIV+X87Mu3703ZlwOsdE0RsMxczWbi4v10iBJIXb6QVb6Uighxs9dmOWP3t2mM47IypZNzTF49lR9+h7DMOVrt/oMghTK9tfNvYBPrdT5wqUZBgmEUUK7YtBwjKkF7d44YXeUTBc2AIOCTEru9FOeOdUqpeOPPyZxXkzPu5QFWS4VLyaVU1uAg5HlanbVrpg0bF21g4Q6P5puEMWFIulZOpomGEQ5X3lvl3GcYegaeSHZGsaszXo8teBwazukVnE5O99gzlNtJIDtsYJft2suGmohKwrlyPjO7W0+s2hwptnAdjQQ+5sCy9Co2CajKMU84M6Y5AXkBaaQuLaagbxxf8ib9/okmaqoZaYx3zLw42zaDjJ1jUtLVWpGga7phLmgG2alVplafO0ScdhPBJ9uWtiz+8CZsa8QdJ5jMdf0uNMZUxVQlO3GLC/QYKrZBXB/EPGd+wlxrkQ3bcfGc2zCKKY7/VyCs7Mel1fajAJVJd3vKxHKIvK5v34L3dAxvDr35Qz/9D9/bmrgdjCEEDy+WOGPr3WZq1rTe9GPM0xdsNoqyaaPoLM1Hqt1aMJB+ahjdnYWXdfZ3t4+9Pvt7e0Hitu+X3zfE8nROIml3u/3PzJ47lLdYRyNj+3c1S7lwyPA/uzqffJCHvLlWD21WkIl4alZkzc7xXSHIoCGa/LilHgICI2T6pG9ccLvv7ujJFWEBlLyxr0hX7g8jyckcVEcGgj65WD9YDKJU+WLPlt3CKKYn7g4y3du7nK7G2BbNgt1m6dW6sxULXx/vydcc202uiOCJKfpWZyerfK58xnfvTNgHKsdft0xef50k5VWZSpvPwpC9oKc6ztjoiRDSyRPtQ2eP9Pknc0RcQYiS1htezy3qoh8nmMBgj+71eXK9pi03GU6tsmFtsVPXZzhTi9kpzugWTG4tNxioVVVhktI3tnyGYQpNVtDE2qu5Cc5b22MWGk6LFV19LqH59hAMf2s4zgjl3KaRCZhGRrjOGUYRLRrivOQHUFqzVctdkcJSMWQL2RBnuTIPGO+2SwFMmOitOCdzRF3+xFC06hbGqstlzSXDKKsxEakNF2Dz67N4Jmq/fjm9Q7jJKdZwmJBbSrudEN+8uIsXqaxMFdBMwRV10FK8MNoeu4mt4Wma5iWhVPEaMKk1arihyG73R5RLugVFqNY0qzazFct+n7CKM5wDJ2sUPftSsNhpmISxgm9MOeNe31M06Rqq1lO31cIrGdWakw2S6dmqjiaMmzLi4LOMCZJM+p1D02IKQO/4jmMfSXaOdXDQikE9IIEXQuZdzV2TZNBVODqgiTLCFOlwTZXyuj7ScYbG2OiTM3xLNMkzjJ645zHl+o0KzZxklK3dc7M1tRmBwXrTQs5HdAD5FlOOugi7ArdID0xkQD85MVZ3tkcc303oOmZqrOQ5EorbtIyfITW1qSN9XHBfy3L4vnnn+cP/uAP+Pmf/3lAbTj+4A/+gF/6pV96pGN+ohLJg1jqHyXP43/z0ir/4N+/e+K//Y3nP1wJOQxi3ry9g07O3bt3cRyHpaWlQzuQcy2L+ZpgOzaIspyZisWF+SqOqWHrGiNfobSqrn2IQCglfPWGWkw8U/XZNc1gFCZ842aHzy9rJ1ZpfpTg2YqM+MqdPtd2xuQSNFmwNutyxss4ZYU8/+wStu3QrLpTtNOEha/rOv/ja3e51wvJpdrFnZ/1+InHl1hpuuUAVanGupY+tVwFeO3egLc3Sg9uwyAKCzrZgC89vsClhTr9IFJ8Blsh5Yo8Jwhj7g9iruyph7vu6OiGwTiMeHcrYbZq8eRSjVktwPOUffDIDzENHR1l1mRp+85+Qqje+yDK2B7GnJv1StJZQZJk5fxHSe5rQpCVxL9JZIXANUEXMAqUXlnVtbnT8bk/yvBsOD1T5V4/ph/lmFpRGnMVLNRs5isG4zBG1zS+c2/I3Y6PZ1sUecbWKKUfprxwpkmaq4W6YuksNWw0maMbJnGa0Y2U6vNB0INjavTDjN1xzIxpEMUpFWOfIe7YFotNJYaZ5ipBGuVwPc4KTrUcKpUKlUqFrWHEd2/1COIETYNtP8cgZ75iEOZqgTV0wdqMx5OlmKGha9zpjUiznKqlKSdI06JiZQR5wSDMeP50A8eyiNMUKfc/e9XWsUq1BsdUcFjDNOkNA2xDm3rU51Ly6t0hd3th6d0uqXsuSzVFfB1GKaZh8uR8nbW2Na3EdkYpYVrg6WXbS4BtasRZwfYw4omFChKdRtVTKgxKbRLXUu2vJC9wD4ieNuaWaczOTHlJJ8XarMf//sfP8vvv7XJl26fuWPzsU01+6uLstGX4qBLytm1/pJJNR+OXf/mX+Tt/5+/wmc98hhdffJFf/dVfxff9KYrrw8b3PZFMSsKHsdQ/KrtdgL/+3DI3dn3+79+4M61KbF3wf/hsk7XZDzeD+fbV+/T7ffb29pibm6NWbxyDMwohqJrw9PmFQ+q9SBCymCaDIE6wTWPq7d3xE3p+im1o06FjUeR4tkFn6NNvV6jqJ7fDgjjhtXtD3twYYmgapiZJspy37g3oVwVffHp1epOOgqgk4yk8vqHB7761UVq1aji6krt4Z2uMrm3z+QtzrLbVYqeVrZm8hE53/YR3N0foGlRKnKxhGwwitSv/scdm1VxD7vvE67pOISX3+hFporgpumaQpgmuoYacd3sRyw1VLR5Mnkma4dgWkvcXxXMtAz9UMiBJqS12bq7GW/eH7PkpFUvH0DWiTPnPn2tXpuifKMn5ytX77IwSsgKkjJkZ9HhxbYZbOyM2hxGaEDw25/HYfGXaurnd8bnXGdGqepi6IEsljqGSwZ1eyMvnWoc+Y91TciC5lORZgtA0DEvBtCc3qwBqnkPY72N7Ssdse5SwPVReJLMVk8WGw+YwxREasmSt24Y+VTYupIJPJ5lkpupgmiZpGjMIJONc41OtnGGggB7NGogiQwgLXdeI4uywbE+WkucZhukiNQPbNEgzRbLNC1mCShRScKXpcKsTUEjVJhsOxuSF5FOnZ2hWHPww5tZewK1OgGvqVG0FVe6MAu5kGj/x2Ay6psAqlq6kjSquRZZJciKKcrN58PPpmlDunyj9sXEQUZT6aZ5n46Q5Kw2HG3uqCrB0Da85i6y0eOls64HVyCTWZj3+dz9yRum3ieOt+jzPH8pgPykmHJKP0wr4b/7Nv8nu7i7/8B/+Q7a2tnj22Wf5j//xPx4bwH/Q+L4nkjzPefPNNx/KUjcMgziOT/jrDx9CCH7lyxf5X7+0yrdu9XBMjWXRx5AfLlH1xwF/9J23GAxHah4y22IUpYyijH6QUrUNWhUToSm3ujBWgoGTBbTmGAwPsNeLQk6HiEX5ECoB8P2bSQihyGa6UcJ/H5BIkpx3NgaYuoZramRpilZkGJpgN9GJcqgeuPLDIMJzLLIsph/kbPRDXFObLoi6piPTnGs7Pk+v1HFMnYqjBvMHNbQ2B6q1cnAILgsl631vmBAmyZQpDWUFIQQ6kBaTh1CQFxm6oU/RWRN029GYzDrmKoaS/Ki5IFXCDVLVKpmvWVOBwzQvuNON2BrGaAKWGg4/+tgs37kzYrM/JkiVltla2+TiAXb96/eHbPRjPFvHzFIkgn4M313v8VMX2zxHfXp9DsYwzNANC/KUNAehaZimiZXJKQt9EjXXYeCHCJQe1amWy9XtMZYWY+gaumXQH8dUXZuaKemXf/fq3SE39gLFXyr/dqXp8PRKjRvbQzBMVusua22buXJRHEUZwyjFNTUsyyRNU4TQqLkW4zjDrs/wzCmbJInZ6/bp9Xp4joVmWFQMZaNbTAbe5fXMspymrWRQXNui48f86ZVdemFGISWGrrFQs7gwV2FrnBFECY6pszbjslpXro2GrrExVjt429AwLZM0Sag5BoNAVZcXDiDHJtL2Fdeh6RqYlkWeJEx3c1IpHCw33OmcqSgHpHkhGfmqxfncmTauY3NzZ4R0qswtn+LltRZ//dMf3FLiJD07eDRV8Y+bjDiJX/qlX3rkVtbR+L4nEiEEhmE8lKX+Uba2JrHSdPmrn1ZY+Bs3fHz/4bpUByOKIv4f/9NXCIKQ1VOnME2Tzijka7f63NgZk5c+5EsNh+cWTAwkWVFQ92yGpS/JOIiOHTdOMyqOzTiKVduo1HlyNbWoakI9GJYuOdVyGAxOhjeOItXT9xyLPE1J0wTdMDA1jTBVg9ejaKkgShS/IleD4YNCd1D6r2fK68IyNGWJWy4QR+cHB0MAeqnTZBkTGG52bNGdq9rc60UTBUgFH5UgdIP5mk2e52RZNh0ea4bJvb0RNcfgiaUq3SChO4rQNBCagYYahtYcEw3BOEn52s0em4No4ibMrU7AmbbHy+eahFmVAh2tSKgcODdRqqTIbVPD0gVxppSCtTyjO5YEmaDl6aQnSKDUKzZ5NkSaZkkgLUiThCzPmalWMA2dNMvxHIvrW31udkKGUUrdMVlp2sxWbTq+8olHJniuxbOnGrSrNr1dyfYo5cZugGlo1EpByyQv2BxlLNVzfvrxWQoJhgaebaPpGn4wEQIVmJY1nVXAvgCnEIICMCyb5aVFcmFwY7NLOA4wigSryNkdpjimup5BCgsNk/NzVZI0I0pSvnq1QzcqaFSckuekpOgfX2rwpUt1gjhTEj8HFtksL/CDCE3mmJZDKeKFkBLEvsvm9PNKSa3iMg4iWq7OrCu4PQbN1DGlhh9EuJbBhbmqcis90II9GEWec2nW4TPnZvmR559mvuEdUi3+XuJRZyQfd0XyUcf3PZFomsYTTzzxvna7H1Vr60HH/6CJqtfr8dVvfYf7g4SVU6emffmv3+hybVdJvpu62rUp2fGUzy2rh9yPUvXvQpI8gEnvR7FqNYUxz642+OatHkGSY+gaQRShC8Gzq03SNMMzT75BXUtH1zXCwEdIxVA2TJMoSad4/KNRcy32un10MkzLI8kyLGP/dVleYOoCz9KpOBZDPwAEmqZRdW1GQcRSw8HUBVGW73uP6xpRFHN5sUaUqO9f81yCKKEoDcWEUC51d/oxe0MlswFqUWx5JmuzLv6wpxj8lsuf3Rlxp+tTFJKKpfPEUpWfuNDmdjei4ye4ps7pGWWkVRQFfpRwqxOwMYjwTH06D0mzgjvdgNWWwxMrTUZBhGurYfC49HJJylbXZBA88YQ3TIMgyeiNQ6qGQ9V1SItiulg5tsmMk+GaOqMycWtCJSYpYaVmkKYZ9arLlc0hX7vRJc1Vy6Xrp9zvR3x6tc7arMcgTKk4FvMVnYarE8UptmGwnSh/+9oBCKpn24Qj9V3XZj0mVzAs9agMQ2fZqzLXCNnojkpZGVESAdXnnJpTSbjejXntziZxqvg0ruVxYUlnFCZsDhTHZcmVPD2nE4xHuK7LXqCG7xVLg1y1wiquQyFS1vd8Ls+5h0yzDsZczeJ2NyYt9bw0TUNqBrouj4kl1qvutKrQheAzp5vk4YixzChSwemZCk+vNJmvWYyCh3c0GlWXv/WlF0tAxkcX//9gswufgETyQcIwjI+8IjkYHySRSCm5e/cuV65cYUCFufnKtOkUpjnXd30oJJaluA6TSnfXz+hFGoso4mLDNemPHk4uGgURFcfi8cUarqnz3taY7jhgtu7w+FKNc7Meo9GIYZSw6tqMjhAAa5bOrJVzNyxwLQMhBHGckkrBSsM65AEC4DkmIz8EIagZMOdqbIw1KCSGYCoLcXGhSs01CaP99kFRFGV7wcbQdS4v1nhnc8QwVD4rSZLRcA2eWFQS2qL8frc7Idf2QuWx7pp8+vQMnz9X590toSoT4OxshYuzLrtbm1iWyZnV0/zelQ73uj6OIaYeJN9eH/DS2QZPLHoIcXAnV3raezb3+3sIODRUNw2NIC3YCwuGvoIsT7w7PMcuB/EFrqkTpDm2ZZHHSp8pTpXDYbOUuRmHEYMw5VYv5U4/QJOS002HT63UeHNjxChSLoSmrvHYnMfarIdp6AzGEd+53UUKnXZVoaCEEIyijHe3xnz5iTkuLdTIi2I6ixJCECUpcayjaTqGaSmyp6aR5RkClWAORtdPWe+GBEnOXMPjXNPEj10GYYIsyhmCqfPMSm16jrqR5Du39jA0QdMzFTIsirmeGfzFp5ewdclgMCQJxghR0Ov12NndYZhbJFlBxdxPSFmaYGqCpBBYloWQGSftHS8t1tkedegFKY6pkRc5aR6z1LA5O1dTiLowpuLa6podaP3ahsbpqmRxqY1hmOhCVYXDQAlHGpo+5bQcDMc2+fmf+MxHnkTg0RLJD5ryL3xCEslRt7+j8XG0tg7G+4k2HlQbPn/5Sd5+ZR1xAEA8jrPpAG8qtIUy5sly8BO1AGgCxn5AxTHxo+NldiElwyjD1DV0LcUydM7OeDy+UDmkKAz7/fihH1KvuNNkkqYp/d0tLjVBMypsDWPFRdAEizWbLz+1PF2sQC2mcbl4ilLO9UcuzPCNm122hgmhEBjAxYUqz59uIpBTXbI0L7jdDej56qE/N1flRy/OM1u1uNePidIUOy9oahHj3i5FUsHzPK7uRrx6b4CUir3djXJ+/50Nnj/d4LNnW7x4Rn3HKArZ3t6iVqvTbre50/XZGoRqIK9rFLmSjh9GGVd3Ak63yhmJLKi5NoNRoHwm/BAhNDR9kkD3r52mayRJghDe9HdSSjb7PmkuWWi4PHOqyTdvdRgECeTKv1wKuDBfme6sR3HGH1/vMoqVrwxC4+3tgFlP4wuXZtnzE7Jc0q5YJblSGTjtjWOCksiX5xmGYSA0DbdQEOZhlOPZ5jSJHIyZisndQUoUxVimoUzPckVuXKztL4rr3ZDvrA+IM0WOu9ONqNganz7VYBybBDnUHJOFijbd9XuOzddvbFFIprwhIRTrvB9mXNno8fRynXbNYyf0abXaiLYgzVJ2+z56d8gwiJRRlabhuC5BpGTniyxF0zVqpQd8WCZnXVeq0C+dbXBtx2fXT3BMRSK9OF8hSVKSBDzXUogr2yKMDgtUylIjy9AEtYqjjOGg3PyoOVXVVSz4IIrRdZ3/7Eefo13/eBbuRyEk/qB5kcAnJJG8X3zcieRhoo1hGPLaa68B8LnPfY4/eefesaRXtdXCkEuJlmcI3QRZTGclXnmWK6bOMIkpYpUkkgMaU9d3fV5Z7+OXqJjlpstPXJpjtmJNeQ8HY5J8hRAMgxA/Fbx3b48k9FmuW5xdXeScEHT8ZNpama1a5FlKzbWV4VMpWvjWvQHboxhdSOwE1iydn7o8xyBMCeKc5XYVikzJ0pctgnGc8YdXdqeaQsqDfcjLa22eXGlxaTGfvjbNMsIgIAgCtve6vLYrkChrX1MXWKIgEiZvb465MKeImsPhiL29PWZnZ6nXa0pXKlfJQ0hBnhUYpoksCixDzX2EpqMJpeY7UQooZAESFqoGG/2AwrCwTJMsS8mUXgyLtf1++CBM+fb6gD1ftd4cQ7XOPnd+hnc3x+wNEmxT4+JijccX9hefazuKrNmqOMgiAxTxdC8oGCZKv+tgOJYy+1JIn1JQkdJ3J88Bga4buNa+AGOY5NzcC9gaxcRBwdl5yULNZnsYE+Ugi5yskCy2Kjyx3CDPM9Jc8vq9IWle0PQUca7IcwZRxtUdn5+6NDPd0+u6pkAXuSSME8I0Rz8yJ1ZbJak86F2brd2OQoXZZumCKVieNVnzFSk010AzdDoDHyklZ6oGw2Efz/UoZIFA4NjWtB0cRAkzFYuZcxb5VApnP1FYhpp1TLTcHNvENHSCKFHJtpSPqXiTiuVwyKJgXN4btm3wxRee4tT8RyuIeDAehZD4w9bWxxSGYXxfZiQTiZb5+XmeeOIJ4jTn1lbnmH+8a+o8Nl/l3a0RWSExRE5WqJ3rQs2kZkm1OJZEo6IoEKVVbCEl692AP7m2R16o1oeUsN4N+B/f2ORvPbd0sMiZxiSR5IXkT6/vcWN3TFYIRJFzrV/wWd3n0kJVPZRHBofjMMaxTLJC8m+/s66SQXl8WQi02z0+c7ZF0zVpuiYUGY2KS3DAW/vVu332xgkVW1dyKyhW77du9Vibr5GnKbXSmc8yTaxGQ1kgDyKK3R0sDdI0I0vV3EQTGlEhiAvBqNNhOByxtLQ49cCuey5aCdGciB7naQoCCk2nago0DRxTQZNTKVjvBIxKJv5Sw+Z+32J7nCCiBKHpCE1jpW5zqlzk07zgqze6dIMU19TVZ0pzXtvwefGU4AsXW+x2Cuqeg+sdftC3hjGWZZZJRIWhCYo84353zGqrjW2ajIJI6aeVSbblmTQck26QUHfE9LqOo5TFVhXXkNQ8h8445I+uqZaPJiBJoXff59ysxwtrM9zaHSKlklFZm/UoihzHthiMEiV8aRtomlaaTIFravSChHGcTauqvEQXIpVn/WLLU7Biex/VrlCHgvm6x3hyPwhIkowkUSCKqufw8oVZHKPD/VFBEEW06x7n2w4LniQMQwaDAUIIPNfDcRzmZlrEaUbVc8jynDBKphyR/edU8UPyA8oBcZISJ6rCrjjK1dG1Fbfm/UbVn7m8xqUzH6/8yA9bW3+O8X7ohD+PiuTg8aWUrK+vc+3aNS5fvszq6ioAb69v4IfKTvRoa+rltTa5lNzY9UmyHN0wON2wefGUhz/ooZc740nEaUbFVYKMb94fkhdyioIBtbD2fKXI+uzpNlFyuKcsSgbxu1tDrm2PEKWlraYZ+FHKN292ma/Zh7wRDn1nTfAnV7bohorwqGnlwDXMeWdrxNnZyhQu6tomg7GvxPA8m71hwJ1eiKVr04ddAJ5lEGaSK/d7nJ+rKNFHqzTsKltzlqGh65pq31gGWZpQ5AVxlpPnktu3b9NydFaXF9EtheLzHLW7PNV0lM94nFEtpUTipCDLCx5bblF3HZI0ozOO+eOrHYZxNs3BVUvnpXMtTkcpG4MI0zSZ9zQem6+qCiaKud+P6Yeqept8r2bFpTcOuLqjFm0h1UC90TCwStIkQNV16HdHoB9UdFb/N3RBmuakaU7dc+n4MVe3RiRpQbti8sxKjT9b75cmZ+pvmlWPpxdcQDIKQt6+P6AfS5oVmyLLiGSG1AT3hxlrs5IvXJo9do3jJFXcGcAyFSFy//5R5+XgPaVpAl3TiJOULIw5VTe55VmMErA0xXmK0pyZmsNS3ZxaJRxtLU0QiZ+/tEicZvT9GEvfl3Gp1+pTnbcgDMjikHev7GLbNq7r4noe9WoF2zIJopi8ZOtPLJ5PCikloyCakg2rrmKyH1WWnsSTa6d48cnzJ/7bRxk/HLZ/gmKy0B+9aT/q44O68G+99RbdbpcXXniBZrMJqBv1zdtbgNpJHw1TF/zkxVleONNkEGa0qzaOqSnlYp1Du/lJ+KGSCe/4yVR+fXo8QyNJcvpBSlCy1aN0f6GZWPi+dbeLlMqfPM9Sily5/vlRzq09n1bpi3Dosxo6URxzc89HFBmm45KXi4yhKfjvvV7IXNVC15R9qizPwTCIVHJAlFpNKhQpUCOPYnK5vzlQKCZJzXPxo4R2xaLtWewGOUaq1IClLsgyScMuaNiKhHd3YxPXNEh0h0GqUXFsTrVdPn+hzTdv9hhGKbkESxdcXqxycd4jK3LSIue7930GUUbN1qdV3zhWyrM/+9QCL6zNM/CDKTFyHMZYhk5aiCnMGiS6qXgMpq4xig8n8iTNSNIM0zCouBZL1TH3uiU821BVZZjmmLridQBUPJvv3Nrh9XsjkkKqmc1uwJxn8KPn22yPEvwkY6bmMeeJQxDt+/0YXWbIXCHH9EwR3fpBxPYw3rcYPhIzFZO6a9P3A6qWGsxLKfGDkIW6PVWuhf122yQajsnLZxu8szVmz88xTIuLMxZPLnqYE52xI1yn6bFsBeCQUuKZGpXpXELNNIQQOI7DbLuhqrRWmzAMCYOA4dYW20Lgui6e6zLbbuLYFr2h/9DnX1NkdeIkmxJ7K46N0AT+gfbw6cVZvvDCU38u8NpHnZEsLX1wDssnIX5gEgmoRf7jkA2YDNuDIODVV1+d8loOMlLv7g7ojVRvNU6Vg+D4hIF51TamC0DFsYijfSjjSTHyI2quRWcUMcFqCiHI0gQJUz5HEE+SiUqoaZYqTaBCxzQN8mz/sxRFgURSyJMfFEODMC2miTnPUoSuK7x+GZM5kG3q+EeSoMwzWp5yNjQLidCUDWqYpBi6YL52eFGTEja6Y0xdY6bu8lOX5/kPb24wivLpezki55lFl9WVBfX9i4Jv3OhwqxuSSYHMhriG4PlTFb7wWJN+LElySbtiUrN1aqVVbj9I2e77eLaBaZlkaaIgz5bGIMwIc4Hw1RB+QoYEJc1hiAIhdDTNUNLvJbktLWHIB9edvXHCtV2fUSLxDDg/V+HycpNrW0PCUm3YMjSeWqoxUzFxbJOtrs/r90fkUlKzdQQFWQE7Qc7GKOOpxSqeY5246Si5f+r65jkgyfMUzVDAgwfFXL3C43Mx372rrAD0OFfv71q8dH5OKWEXxZSPcTRmKhY/cr5FkqkEW6/YyEJtRsZhfOLmzjQ0smyfRHqwSlEzDYMgUhL84yAq0XQ6tWqVWrWqqpUkIQwCBsMh40GfHI16rUqrUUMK/Tj4QAgMTVfVy4GPM7l3dU0lM8+2+Nkf+fRDz9lHFUVRTCWHPkz4vv/D1tajxPvtDCbJ4+NKJJOK5Otf/zorKytcunTp2IDsjVubh36OHkBuOhhpprwwNh5QXk/i8XmPr41jklxZhSILojTHMfRDHhCTZNLp9dnd2UUIwal2lRu743IKOoHkSpDKVKniWPgHdpk112JUDhtPtzze2y51scoBb6HpCKmG/TVXQSePhRA8s9LgK1d38TOBISQFisF/aaF6qJ22NYj4zp0BvUB9hoWmx+fOtvhrz61wbXtEdxSSBSMuLDaYndl3ZXx3a8ytfoohhBIyNC2CDL5zz0dGI1xTp+J56LlH1W1OAQlZoaoMIQuVRDQdTdfJ4hg0jYEf4jWOE1+FEKy2PRqbYwah4qKYxr7r4oVZTy3gUrI1znh9e4+kUHpceV5wtxfy/OkGP/lYm2EKeZaxUNr/ToiH9/r7xmKTO97QBFqWc21rwGfPNQ8Nlg/GasvlzQ3VArUsgzwKyUoNtYWqSdVVs4WD92XFsRkFIWuzHlVH53YnxE9ymq7B2oxH1VBJoFWvHKpEjp0bBJZOOfNS5zlK1AbMcyyKA5sYTVMorQeR/yYzDcdWBm2ObR5DXgkhcGwbx7ZZXVmiP/QJo5AwCOn2+kgk7UadSsVDCgNd16i6Dr3B6IFrSV6oFujP/sincawH62d9lDHpcjzKsP2HieRjiEkp/HHMSaSU3LunZOAvX77MqVOnjr3GjxKub3QO/S7NciXRET44oeR5jiZPlvc4GJcWqozinLc2hsS5RGYJFcvgxy7OTKGXk7i3uUUwHjE3N8vu3h4vrs1wtzPCT4pyUK/QQnNVizMzLuMwol5xGfqKmzI6kBiePlVnYxAqxFO54y3ynKdW25ydqZTgAPUPG4OYu72AQirG/mrL4QuXZnlna0QvLKhYBmdatalfAyjtrT+8ujflXCDgftfnP4xCfubJOU7XNAx/zMzZOaqV/QdHIrndTSDPsA9ATz0DgszAbs8ya2eEYch42GdrewvXUYKEVdvFs3SC0tCqKHKKIieRShjwoAhf11dWvpuDSAkUzlb43Fqb794bsjeMiJIUxzL51GqDtbZFHCcEYcS7XZ0kh7pjKLOt0pTqjfsjfu7peeZrGmBT8+wScSVIs2wqz3E0NKE8cZIkIy11wCzLLLXB1N9cnFdQ7j0/ZZzEpInEtuDSQoXZqsU4iJBIPMdW7cgsL5ODWljnqzbzJ5i2ebZFb6QcLiuO8rH3wwiOtKvqFffQvQNqx+2HMWmW4zom5eTuoUkJQDc0NVCP1fNsWxaWqaqUg+hJz1HfSzd0qtWqWlwlxElMGIRs7XbI0pRmzWM8spBox7TuJmHoOn/5x56jUfVOfsHHEJPv8sOK5BMSCmP+0Q/csyzjzTffZDAYADxQsOzt9e1Di0CU5ryzOWJjoHDo5+cqPDZfObabdE1BZxxjvs+GRBPw4pkGz59ucnt3iK4pCZeJgiiom3J7e5skSVhaWsKzLYa9PVwt5y88Mc+rdwdsD2N0XeOxeY/nTjenWlmjIKLm2vhxrFRVc8lC3abuGPzMU4tc2VKLqWVouNmIF1arQIFnq2rmW7d6vLs1mp6DdzdHnGo6/MTFGf7iU0v4UYxAlF7rGmG5G726MyZKi6k1qa4bmCLFjzNev73LKSdleXmJmVZjylCG/Z30Uf0iVawVDIOYywszGDNtgigmThJ832c8HhPt7bFsG1yLYBip5JpJiaHpPD5XoVGx0TWdu50hv//e3tS9MckLXr83oBtm/NRjbQZhSpJLWp6JbWikScKo10F3KgRZRMVRToyTcAyNIM3ZGcUlCkwNfz3bKjdCJrNV5eeR5sWUvS9R5kxnZyvTwXCS5iRpjqYJqp5LVPJ8vnB5lrv9mM1ewHiYcOlUg9WZyrSKEwjCKME0lG1txbMJw+REDgqoakBdOxWTlpph6LiWRZAk5FlB1VOV6Ulr9KS1FYQxtYpHGMdUPZckTQ/5xk9CCIGpG1PiJ0CcpsRpOkV85UVBnhcKYHLsAGDbNrZt02w18WyTnU6PMAjIMyVyurOzg+u4uJ477WD89EvPsDTbOvE8fFwxgf5+2FnMDxPJI8YHOdEftUyK7/u8+uqr2LbNSy+9xFe+8hXyPMc0D5e9UkrevLU1/TlIMv6/r28xCJW/t6YZ3OkGrHcDvnh5fspo1zXBuDR4SrIMQ9fJ3icRNhydT602GYWHd3RpmrK5uYlhGMwsLHGrl5CkAVqQcdbQWag7fPlJhyxXiJWjC7CUkvXOmN97Zws/UVpVli54eqXOp1ebPH+mOX3ttWtDHEMvCZCSXiR5d2uEJgSOrSHKmcHdfsiNvZAnl/TpQhYnir1d85SHx944RdNUNakbBnla+lgXBb0g5bPnVzBNg5EfYpkGpqGTlQPZmarF5iDGNvY3mVmhXASbrkGSpkipdu4bw5Qb3YKicFio1Xh8TlB1xtzoRoyTnNmqzbmWxcU5t2z9pFzbDQlzjYrFFLEmdJN7HZ97bYczM/s71/F4zO7uLrOzs7iWh7HZIc+z6cAZJHLampflhkdQrziMS1VlgDOzVS4MUq5sKnKgJtS5bFRcLs4eb7cVhVSKA0DFtdF0NdM527S5fXvAYt06NugWgmlrKU5SEIKqZ5NlxaG216TddlK1nGU5o0y9b6NaIc0UJJiTntPy9/WqN3XHHAUhSPWZ9yscFa6zL3t//FAq+eqahmUaVEyTIE4e+Nx4tq0SV1mthEHA3t4ejapFnsbsbPUppOBHnr3EXM1+JAHF7yUehUMCP0RtfazxUcqk7Ozs8MYbb7C6uspjjz023TWcREpc3+4xOLBbfu3ugEGYYpQLpBCSHMHN3YA7CwFn22oBci2NYSzL4ypvc1FKblzZGXNr1yeXqvf9+FKNpmspz3Yh1OC4TCZhGLK1tUWtVqNXOPzeq1vEZcIoUklX2+YLTyyRpMpJ78QQGr/9+j2irMA1dHTHIoxiXr07oOYYPDa/v/uplLtU5QUjeG+jq9jNjonMcyQSQxMkGdzqhFyeP9wqEAjVjtA1WlWHnWGErttqcC0lSSkSONesYZr7t1+SZuR5jmtZYOo8sVRjb5wwjnPsUnE2Kf0+lpsOnqOIml+70eXGrg+agURyY89nueHwkxcXeOqcwNRgZ69LEASsr69j2zae53GnE6BLiWFYpYUrU8DCrp9ME0m/r9RvFxYW8DyPimdTN3fZ83OcqovMVetsUnkt1B21s3YsBuNgv1oQqlp4brlC2zW43YsJopjVmSpnmyVf5wEhS6Xd0TjEsa1yUHwSWkriOjbBwYW6HHRLFBPc0DTCOEHTBGny8I2ZaRqMgpC8KMr2k162nw6DMjzHOmaxjNgfdBu6jmcrTa/B0dcdCSGEgvnGCSGlVbPrIJGHEpBlGsQlIGX/26skWm80AajnOecWWlw+1eadd94hz3NarRbtdpuZmZkpR+njikeB/kop8X3/Y3NH/LjiByaRfBStLSkl169f5/bt2zz11FOHIHYPOv4bt7cO/XyzJMVNdplSSgxDJyly7nRCzrY9VY34h18XxgnVisf/9ObmVEsKlPT6tZ0Rf+O5pemObxREVF2He1s7dLtdZmdnkabLV1/dJCsKPNOgyBIiVJup5Vm8dGF+Ohg+GIau8d3bHeKsmBpkyTzFK4203t0aTxOJYxlESXpol5rnyhCqyFJ0w1QwYQG6YZI8BHCQ5wVnmia39pTJliUK0pIo6Jg65w8kr7yQvLs15nYvYhzELDZsXlyb48cvzvLqHcWv0ITg4nyVT682aFc9hkHI3V7Ijb0AU9ewjBLVpNlsjBKu7Yx5cW2OcRDSardotVvkWU4QBgR+gMxSkhQMUWCaFkIolWIZpZiamjXt7e0RBAErKytYlqWsjIOIF860+ONrHXqjQGEcDAvbErxwpollGAp5FUYYujFl1kskslyAz7ZMzrUtapU5NARBlD6w/QQK2j2ZT0zaXLqmNhxpLqd/W/XcKWv7aIgDf1txbIVULAqyBwBBdF1haSfHnrSfNCGoeI5qPcUJlmkQJRkPmzxkeU6ByWgcqMpKaPhhdKxtpQze9gf6oJLD5GfT0HEtkyjJys8mj/39we7GmaU5fv4nX0QvZ4e+79PpdNjZ2eHatWu4rsvMzAztdptms/mhF/33i0dJJKDgv5735zfL+SjiE5FIPmhr63tJJGma8sYbb+D7Pi+99NKxjH/S8YMo4c5O732PrYhe+9WAa6pqBPYRG1JK3rrb5f4gwdD2209SQj/M+c7NDp8p7XellNxcv0ORxiwvLeO4Dq/c6ZMVEzvSQkFXBeTAla0RTy7VaFRdhsH+oFRKiaULxpHaeR48zUWmEFHjZF8IMM+L8kX7D+hiw+HqjjIgIkvRNB2EThYFrCw0jp0LBTve99R48UzBt27s4RcCgRp4f+ZMc0p2lBL+9HqXW70EmSuo7o3dgPu9u3zpiTn+1mfPsDcM0YWSsq849hQEcK8XUUg5VSlWrncZ5AUbo5wkTQ4NX3VDp1arUavVeCIf8p07fQo00iQmzwtSKTBNg7VZj62tLbIsY2VlBcMwsEydJFPtzLmaxZefnOPWXsAwyqhYOudmPE7N1iiKsoUkFCRaLwHGUqpEIlGKx5ahMxornoWmadQ8hyRXDo4Hw3OtE2G5WV4wDhWxsurZyud9fPIcY3ptpKRW8Q4NzSuuDVLZ9B58Di1DtZWORjGB8kqoeg7h+MFIqel3cCz80mlyMog3dA3XtohLPg5AozK5f0+ONMvJshzXtkCAZdpTwuXk+00+S7Pq8Zd+5LkpzFcIMW2BnTlzhizL6PV6dDod3nvvPdI0PVStfBQL+aNwSIAfViQfZ3wvMimj0YhXX32VSqXCyy+/fGwOAicnkvt7fSwNDj5O52Y93rw/PHTT5oVqkJ9uu+Vs5LC670T24k4vpMhSHMeettGEBjJNudWRfOZsizzL2NraopCSpcVFmo0a41C5zE0+Z5EmBxjwivgmhBJwrDg2QZIqkqJnM/JDGqVC7URaBEpF1jxn0bGouerzjMO4RG9NH03OtF2l5zSK91t5WcxM3eOp5fr0O+ZS8vbGiPe2x0Rprnzpz80wq0e8MJsj3Qae63JhoU56oJLZGcXc6SfoMsWaINQk+EnOa3cHzFVtqraO59jESUaYxOxPI+Qx6Rh1viFJE9Isp+Y6ROlxhvPlxRq7fsr9fkxaKFqdrsP5mmR3Yx3TMJhpNUnSFNNQ/ibJAT+Mqm3w9Er90DH9MMHQBbZpQDkbmNwjQghEqao7nWFN4doFg3GgGPiei0CRVR3HmioCHIxD7Rwpy1mKMifTNPHAGUTtBOTV5LW2ZWKZJkEU4dr2oargpFDKyDnjKMY0FI8nTXOi9PDntU2TOEmPXaYsLxRkWyqkmWUa9McPV8WWUqqq68Bn00sIcpLljMpn0jYNfv7HP4PrPNhTxDAM5ubmmJubUwZtQUCn02Fvb4/r16/jOM60Wmm1Wo+UEB5lRpKmKXE59/lBih+YRPKoFcnW1hZvvvkmZ8+e5cKFCw/cPZ2kALy+3WXkh9iOQ5KpR+HZ1Qbr3YBhmJWsXhVrs7byYjeYViOTmAoslj8XeQaarhwRUbwRAcRxzObmJo7jsDw/j9CUAVbVc5ipWiAEWZJwcJaeSw4RAP1IyZLomjZl867NVXhzY8gwykqLUsXA1jXBU8v10pGxwDR0QJTEN7VA6QK+eHmOd7fH3Nz1lT5VzeOJpRoVS+kajYKIb97q8t6Wr3bhQtAJcn779bs80RI8f2G5nLlAkiTYlomhaQRxwl6QkWUp3kFom1BKAdvDuGxfFIz9CNcxMQ2rXEgES3WHazs+WV5M50N5UYCmc6phIeXEc51jCUXX4GefXuL69pCdUazUkasGQX8X265SrVbwg5AkGuAbGoXQcT0Pz/MeyGWaSK1MxDhdy8QwDKWrVaoA7M8A0unipKqVopSomSyuFoYmiIt8KkQ4jX15A0zTKCsgphWEaeg4lpqDTVpTnmOfKP45iThVbPC65yBRieVBXBApJa6nqgGlDsChpKDrSupdEyBlcawFdSiE0mkbjANlf+vYpFmm2ldHQkGQD3+HvNhPSJaho3mOUvNtfPCFWAgx9bI/ffo0WZbR7/fpdDpcvXqVJEloNpvTxOJ53gfqojyqzhbww4rk44oPm0iklFy9epW7d+/yqU99ivn5+fc9/tFh+53tLgDmgaqkYhn8lWeXeWdjyN1eiKlrnJ+vcHG+im0INTA/EpNEcrqt7FOzvFB9eCHIUlWaL9cN7t+7R6vdptVsHupDjYOIZ1YavHWvT3ecTuVUkgJsQ5EDD0YUJ1RsE9cy8WNlafoXHp/n6ze77IxiZKGsfp8/3eTsjKcWnLxA05T8xttbY5IioObonJ+t4Fo6z56q86OPzU9RRKDmIOMgIing+l6kvLQNDYQgTWJiCXdDk88eqQDjJCUGqp6NbYQglV3rwUezKOVPtLJC8rx95WHHMjAMg9PtgpWmy/1+CJlKxugGbVvNU/bvhQMJxXOm/JCRr7zglxsOUaRADfV6g3a7BQgqlSo1z6bTGxDHEXkSc6/TwTBNvDKpOLYDQolKHiVvRmkGaYZpajiWgx+GeM7x3b6qVvaTikJCaQz9CE0TeI5FFCfkhdpxT5ZlfQISOHLfpllOmimvjoqr0GAntamORrX0+JiQilzHwtD3GeyTOLigH5pLCDF9H0MTVF2XMH34+yr0mIL55oWcJoXJe/thRFEiwCaeOSeGUB4tz64tc3rxuO7YhwnDMJidnVWzSalEJjudDp1Ohxs3bmBZ1qFq5UEbi0d1RwR+iNp6lPio4b9JkvD6668TRREvvfTSByoTjyaqoR/RKw2oRn6I63nEZXvJNXWeP9Pi+TNHcOl5RsU2jkmnTBLJ2RmPszMetzsBWax8smVe0HA0ZvBZWFx84A1k6YK/8uwSf3x1l/VOQCElTQteOt9isXGYaFbzHJXQ5KSdEdOqWPzsUwsMo4yskKUzHtimMW1vbPQjfv92TCZyJeonJW/eH/Glx+dYbVcOJZGDcbfjk5ayMXmWkWdq8bBLQ6hRlE/bawdDQ7BQ0bFtizhNcUrSYl4oVeNzC5WpUORBnkmUZJBk1Fybv/jMEm/c7bHeCdF0nYWKzqWF6r5D44GQkrIFZJY7WGUfrOC9O8zMzFKv77erKq6loMm2jVXK5TTbM1Dk7PUHbG0pIMZsq8l4NMLzPLQTFo40K0izkJrrIASYuk76kE1Rveox8iMMw1BVSpSoto5jK3h0rK6XZehT/sVJIZFThJZjKvXfk4bcQCmQmOwv1EKUEPBUtY9c1Vq0S7j25HVHNwDqPEsc26Ff6pntJ6TDplJa6ckSHx34H3hvTQgaFZs0K058r4Px5NklLq0+fMP4YUMIMd00rK6ukuf5tFq5fv06URQdqlYOWuQ+qmCj67of+eD/445PRCKB/cX2QfFBE8lwOOTVV1+lXq/z8ssvf2BJlaOJ5M5O99Bn03kwqkaFJIoj8lzi2Nah0nzy3TQh+OLjc1zf8bnTjYijkDnPYsZMWV05NW3/HA0NQRTHaDLny08ukGSSMEnZvHeHpSNifYausd0b8d6WcuWrOQZPn2pRsQ2SLKd+AGZac63pAl0UBX9ybY8kB1NTi5NuWozjlK/e6PLX68d5DpOw9LJCilXLSdMMoCDLJRpgGccff7X7DajaBs+vVPj2ep+wEBSZUuydqyp/8oke00kxIbU9f6bNZ85phEegqSd+VlMnStJSRkaSxSH9boeFhcVDA1bb1JXS7NFFWtNA05ibm+Ps6imCIKTT6+EPR+zs7uKU8GLP89T1LP/+qKqAkkuXRMnhHXu94h5KmkIIdKEWlTDJyIuc8WBAq6ZkTYR2YAZT/jcNqTYKQZxMW3pqyG0TxwlJvv+7oihKifjjMWkfTQy2qp5TtuuAE7S2Dg3NDyUk5RMy8XV3rcPyPSeFrqkBfZrlOJaBbZgESUJ2xL/93PIcT59qk2XvL130vYSu68zMzDAzMwOoCqLb7dLpdLh58yamaU7/PcuyR2pt/aD5tcMnKJG8XxiGQRw/3Hd5Y2ODt99+m7W1NdbW1j7UxTg6I5m0tSYxDiIqlQphcvJOsmIbjMfq4cmzTBldFft98UnbTBOCiwtVnlr0uH7zFrpucP7c2nSYflJUXZNBOYiME7VDbNdctrXjyXdnlPDvX71PfMCz4a37Q376yUXOLzamEGHL0A8MZSXbw5hhlOGYOnp53CLLMDSNvVHM2zfustiqUPEqx5LzctPBNcBPwdZyhAYInVTmnGs7U+HJSUz4CJP95aWFKvM1i9udkFzCUquiKhXTIM9yHrK/ACBKEgxNw7VN8kKeOKCenHuB4vVIKens7eH7PouLi8y0mqRZTpxmaOXi/KCFFdSuO4oTNENjdWVJoaiCkCAICHyfXq+Hrut4nkezUcM/UgdMuB2ebaHrOuMwxLMPV14nvefOzg6OaVBrzWBbJk4ppZLlhYIaw5RfUq+4+54hZaghdwhIKo6jrrMsTpxJHAzT0EnSbLqAG7qO51jsTZy5ylCougkD5HDkhWToq9ZVo+opjTeh2pgnhRDqfSYbhjjJiBO10VAtO4kfxcw2avzFzz/L3fX1P1fCITDdNJw6dYo8zxkMBtMWWBAEUxb+zMwM1Wr1fdekH0QyIvwAJZKHzUiKouDKlStsbGzw7LPPMjc390jHnyz2UspjsF8hBLLISiLv8ZtBHvhsaZbhuTZBvC/adnDBL9KY927fplarMzs7Q5SkVNzS46Q89NYg4t2tEcMwp+EInlisMlcO1fOiIAwjPMs8dFzXMvndP7tDnCmY8KQSirKCP766y1zVpFn1GIVquJwUkslQPckPDnVLNrqu+vBRnFCtVhiPx3T2OopT4Xl4FQ/bsul3uzzZLHi7rxOmkCY5kDNTsfipxxfRKPZRaqgF/Wjl0PIsWt5+ReZYyh2wW9rlPiiklHi24h4kmRJVrHgORV4QHlgcpZSKOxNGyFJuJp3Ae01TzS2kpOo5aJp2nGB3JARqcQ3jhHGmkkK96tGoeozDGkhJGEVEYcDOzh5RkuA6Dl5F2Q2bhhJunHrEuzaGpikU3wl7iizP2NrcwnMtmq2Zkgei2l5oGg1PebFEcVqim2wllc8DqhUE4zBS7chUUi/RUCclT02oaxYfqAKyPGfoh2RZTqtuUXEs0qIov8/DF8tqxZ1ujDRNtS4nigYH+VlVxzkRPSZhypavV1x+7sefxzbNP3fm+tHQdZ12u0273eaxxx7jzTffJM9zhsMh6+vrh6qZVqt1Inp0kkh+WJE8YjxqayuOY1577TWyLOPll19+ZPz3wUTVHfonQijDKKHieQRHqhJT1/BD/9DvlPaQyyhMD323wWCA3+uUFrL7/Xg/jKbJ5OrOeOqYKDSNzX7K9Z0xX7g8x9mScS1Rsu2LtkGBetDvdsYMoxRT39f3UdpGytd8b6z65Q3PJU7VgjP5b65mYxkaaV5gH+BlBHGCa2rMN6tU3TaykHT6A4IgYHNzE1kOgB8/Pc9jZ0zu9CKCJKflmay2XMhThK5R9xyGgVq43m+RBrAMg944oOJYSMQhbaaDUa84h5E8QkzRRPvto1RxbPxwCq8WmsbK8vLhmUa52A5K4hxSoeBOeqirnnNoZiTKaw7K18M0dDRNY7bdVMKGSUIQBPjjMZ29PcwDA3vXc5VXRxijaRrVik2UpKSpus8mEjnVisfs3Ozx9p2UUz5FxXOwDJ3BOEArB/OTazy5pqL8rqqNtm+NMDGEyouDi7rEte2HypqESYoVp1imge2Wn/0BREfPtvAPnLcJdBnURsgsZ3aVI+f3pNA1jZ/53LM0q2oH/3Gpgz9qCCFotVqcOXNGQbzLauXWrVu8/fbb1Ov16WylVqspOZk/54rk9u3b/KN/9I/4wz/8Q7a2tlheXuZv/+2/zd//+3//ga32k+KTc9bfJ06SSOn3+7z66qu0222efPLJ7+kmOphI1o+0tQ5GnqVIeXh35xiHuSaT2OqOuDfMWN/LmUtCFvyAIgmZmZ09UZ7BDyNM0+IbN7vKMdFSDHYMQZxJvn6jy+m2OxWHFEIwDCLmZxUcMU7Hqqo4ctzJ4DwrJKauM/QDiqKg6jolmkngmjrPrNR55U6fMM3RgELT0JB8erWBoStUDBKW5mcZjAI24g2EKZhp1Nja2SNNU+quy2Ldo1KxpnyJPC8Y+iH1ivOBkHeubU5Jh0GcTKuMvEwK+687maxXnhzVxivbKHGakSYJm1tbOLbN3Pz8sQRRcfZ9vidJwbMtNE1jfIATUnOdE/3AJzHRuapVXJBqwROWhWVZNJvNsqJUbbCt7W0cy0DT9xPLaMpUdwiDiFv379Go1VlanJ8aNp34laHkAynui+uYhHFKmmYUk2QiJQVKCmcwGjOpPiebncn5dG0LU9eZiE8+LJRgp3IzpMw3lRJYMD6gJGyWfusP2i5GSUqUpEoSpSjwHPsYUfJgfOHFp1g54Lf+/a5IjsZBQqKmabRaLVqtFhcuXCCKoulsZX19nTzP+c3f/E2Wlpb+XBPJe++9R1EU/MZv/AYXLlzgrbfe4hd/8RfxfZ9//s//+Qc+zg9MIjna2rp79y7vvfcejz32GGfOnPmeS0Fd16czmLsPYbNHSUq14uHHk88iD2sblXGvF/K77+yQ5ICmcaM/xjMEf/P5FRzzwZ/15s6AOJcYuih7HOVDqMM4UVXFhDcyefjzPCfPMlbbFWxTJ05zbG1C7pOkeYFj6sxWLUxDI45zJDAMQhzLRAiNOE15ZqWOZ+m8uzXCT6FmSp5canJ29kCVJ2Cv22d3Z5t2q0mr1SZJM1YrNdI0VTOCktw1bYF5nuJlhBF5XuC5TskAP74o6ppGlmccSocHqoya5xJnGXkuyfIT1GGPxARCOhr7DHpdZloNKtX6sSG6Zao21dErM6mEJlVGXhSMwuh9mjdqIR2Og+kirWDHGWmWoWsa1UpF/XfmNHu9PkFp4rSzuzvVAxsMdbqdDvPzs5xaWqQ39B/6nlpZbRSFpCBn5Kt7tOq5FLKY3qf2hHuCOF6tlOclihMMzyGMVGWdpCnxCderKJQ68FEzLv+grIltESZKtSB9iBQMgGNb+NE+3Ni2TGzLJIxjsgNzv+cvn+Op86vHPssnKZE8jJDoOA7Ly8ssLy9TFAV37txhfn6e3/u932N9fZ2XXnqJL3/5y/zMz/wML7zwwsf2vb785S/z5S9/efrz2toaV65c4V/+y3/5P99EkmUZRVHwzjvvsLOzw3PPPTdFT3yvMRm2F0VxaD6S5gXr3YAoVYKBczWbJEmY2BlWLIPxkQFplkv+4MoucV5gagIpc6SmERaC3313i5975uE2mjLP0CzzkMf2STEZ4mtAlKm5xI9cnOcP3t4kSvOpzawmBJ8506RVdRiNg33svxCqpUEJGQ5iHpuv8MRSnazITxSx9Mc+O7s7tFttvFodyzQQJYbfNE0ajQaNRoOiKKZJZWtrC9vU0U2LilcOWTVBzXOJ4pQ0359NOZZxzJHxwBdmFCp5jmbNe2C75cCZxDINdjpddnd2aM/M4FXreK6tWjLlUF5pGp8s2jmJOEnJ8wLT0Ki59jFuxcGY7M4P9vvVrl5ScV11bqJYtceCcGri1G61yEqnzuFwSByrVhd5zt2NbWq1quJmJMmJGlmOY524qZks6o5tYRoGSZaiadp0djdx8oN9D41JtSflvgKx5ygpFj/YhxBPrAY87+SlZMJpqThq82O6NuMw4SRJAsPQppbak0gOSKhUXHWM+VadH/305WN//0lMJB8EtaVpGmfPnuVXf/VX+Wf/7J/x+uuv81f+yl/hd37nd/jN3/zNKdP+zysGgwHtdvv9X3ggPjGJ5IO4JGZZxre+9S2klLz88ssfqXrnZNi+1RtNb9z7fVVVTBBVQsCZtseXHp+jVa8xjjNkcXyxv9cPCZMCo1zoBaBrBiKXbA1ixlFG1Tn51C/WHSXjHsXYpqa4JrIgzSV1x2C2ut+3FELgOeah3eBa06Ty7Aqv3unSC1KarsmTy3VFPDxojXrgfKvqJMKxTOW9rgmSozbCslTC7fdYmF/Aq3jUXHuKAKp7HuMo2UenadpU26jm2ex2+wS+T7fXI93ZwXUcBp5HparsU/0wouq6H2h+Uqs49Ec+IKhVnAf25Kuuy72NTXq9HvMLC1TK+VkwmSeUUjV6WbU8PESJNkuYcis8m+CI34emafttpBOOMXmfmucixARhtf9aQ9eRUpImCQsLC9Q8h91OjyAYKsSW4+BVPOZn2hiGOW391Lzj8idHI44VBHfC+UkyhYI6xLCXEl1TKtUHOwATOXghhIIQOzaykNyLE2zv4a2Yo59tgviKkn3PEgHHfEqOhh/GtOtVvvy5Z09MGD+oieRg+L7P3Nwcv/ALv8Av/MIvHBOi/Ljj+vXr/Nqv/dqHqkbgE5RI3i/G4zFpmlKtVnniiSc+1AW6sj3m99/dISskn1tr85kzzWMXZ9I6u1vOR6I05z++vUOc5QpNI1TL4HYn4NvrfX7soolpmPjh8Yc3zhQmX5MSrVQelXmGQJBL5TX+oDB1wRefWOA/vH5XtRKEQGgGpg6fPz9zyDxLExDHCYZxeCi2UNH5S08vKu2kOJnu9Efj4FgSORhRklJ1rNKDfR8gIKVkd3eXMAxZWV7BspUS7j4xTTAMQvRSfPBgT33CA3EcB8dxaM/MkKUp/qQF1u2yaZrMNOuIogbywZ8PwLWsAxBZOf0MqrqJp9WN51jcunMX3/dZWl7GsQ/zbQRMq4IsL6i4tvIPf8B71yqHh795UTDyo2NtK8cyT/RcPxiaUB41SZpN5Uz8Us6k1+0yHA5ZWlqiUa+SpDmzs4qpfbB1+F7nOoZh0GrUabUaDP2Ho9um3yHY9wyRUp0nXdOnMyChCWzTIoxjDMM4sVo5+H/H1Kl6NsWRhDgJNYc7/IxMEF+g3l8gynnKw8+bbZn85R9/Xok2nhD/c0kkBwnUj5pEfuVXfoV/8k/+yUNf8+6773L58n5ld//+fb785S/zN/7G3+AXf/EXP9T7feITiZSSO3fucOXKFQCefPLJD3yzSCn5v37lJv/DV9env/vNr67zpcfn+Cd/9cmpgyDsJ5LJoP3mnk+SKQ2nyaXUNAVbfXdzxGfPtmjZ5rEhe1EUaNEADYkU2rS9BJAmsYKInsDy3v/QcKZp8XPPLPLe1phBmNKqWHxmbQ7nyD3p2SbpA4avWZaTZhk1zyXJsvdNIkDpVaH0rSzDwDB0RkHI9tY2UkpOrZxCN3Ql2Jflx46liGtq7qIJTUnSF8Wx5cU40gKLw5Aoiti5fQddCFrNOmjGMaa42innHFuwpNz3cnEd4jTl9vod4jhhZWUF8wEgDOfIsF61fvRSimX/PQ7OO47GwbZVs1Z5oD7Vwde77j4KatL6AQhHA6IwYLlMfGo2vv85jrYOwzAkS2Nu3r6DLApazTqGaWPZzjHgSXUCEDg8eppWAIaul9dNATgm3/VotaJ2yOqcp1mm4M9BTK1q4DkucZKSlOjKiQPjwyKIEuqe+/9r773j5Drrc/Hn9DJle1OvlqyulWRbxhjLGHdZwhAM8QXjcC/lF3PTSIAUAgkEEnKBS5xQAyYBbgi2XLAxNi6yccFYq1W1urRqW2d3p51zZk57f3+855yd2Z2yVbtrz/P5+GN7d/bMO2dm3uf9tueBlslS4Uc733d+aK0MbrtmI2qixVUqxqu2O1UYz3o0TRtzWqkQ/uzP/gwf/vCHSz5myZIlwX93dnZi27ZtuPrqq/Hd7353zM83Y4ik0JfUcRwcPnwY/f392LhxI9ra2sZ06vhdxyC+99JZEEIgeMqrjgv8+kgvNrfV4PevGPJn913lOvtpQVM3HS/1MGydoHUT2yXIGAYUkQ/mFUzTQnd3F1Sex6qWKN7oTgeKsa7n5dA6R0WVSr1ACiHsGVw1RqQ8MUYCBxFVRcrTmxI8F8NiLXq07RNIpHREVBGiKBRtyfShSDxSuvdabBtpXUdiMAZREFBX3xBMUftWuMVAu7sIqiIqjOEpsmFgWRaN9bVI6RlU19Yim81C1zRYZgrJ+CAIyyEUCkFVFNRURUunoAhBPJXGQKwXAs+jeeGC4j7pLEtl83Pgd1sJPA9J5JE2slTmpUgLcC5CshwUw4NaQkHvc3XEvXNdF729vbAsC83NzaiKhCFyHAbTWtHnZVkW0UgYLBdFtKoGptdenBqMA8SBJElgOAGhUAhV0YgXcRRfv+04YBhqUKWqEhjCQMsMrX+oEE+FGdO6gXg8DkKoARatZVDBwbAqB2rJpVr6/Xvld+j5hKxKEjje09ny3r93tF6ORS2l58NmYkQy1vVMls2ur2w8Gly8eBHbtm3Dpk2b8MMf/nBc93DGEMlwGIaB9vZ2sCyLrVu3BhvmWHrFnzjYE5CI/4XkOSBrEzyyvzOPSPwaichzMBwXdSGqHpsrvQ7Qk1lUESDzLDIZAzzHg+cFJNNpdHf3IBqNoK6uDi0EqFIFHO5MIZ2lQ4VbltRjaX0IKU2nnV/DyYQMmQ8NBwNQYyBVhpG1g1mPQl9UAgRqshFVRlrPgPVSMCk9UzAqCclinoaSYRjo6e5GNBpFfX09PZXrtGjqn/5LQVUkxJN0I4yEFOiZwt7hYUWiJ2DvNfqFZwCwbRu2ZSJjGOiP9aK7p8dzKVQhy/KITda0LCQHYnDBoKqmDq5LX3/GsvMiN0IIVeotkkqxbJqmEnkOkiBQnacSG6LAczBMM7glhtf9Jwg8ZEFAWs+CgA5EprxN04fjOIFm15w5c8BxVFkgntYgCwJEiUdao3+fDwJJFD2SAyRJhCSJqKmphuM40HUDlplFfCCGWG8PRFmmMyuKGnh05EKRpCB1pweHFR6yJMDIDkmSRFQFSU1HLNaPTMbA3LlzvBQYHW4lhEDTM5AlEbZlI6RIMG2n4CFGFHhkzeEDjF7Ld5amAMOqjCVzG7FxxaKi99/HTCISv5tyPBHJpVT+vXjxIq677josXLgQ//zP/4y+vr7gd83NzaO+zowkkv7+fuzbtw8tLS1YuXJl8OGg5kujVwBOZSy4RSbRE0Z+SojjODAguOLyRXhh3wksqFVRHxYRS5tB2t5x6Ye7dUE1FJFD2mRgOTay6SS6YoNoqG9ANBrx1gqsn1eF9fOqoCfjSKTSaK4fKkqmC5CJH42UgqZnEFIkZC2z4BBnLonwPEv1okDlPlKaAVWRYDlu3hebBUMtcL37lEwm0R+Lob6hAZFIhP6tbiAkiWDo+HvJNbIMC9MbcAOo6CXL0qHEVE7Hj8DR9RW7Gs9Tld+qqiowINA0HQPxBHp6e71JdSVoL7YsC4P9MYiyjMbaOm+JxDv9UxL1TZSqcvzFi4EQAlEQgpRWRJVhmNbIbimGtixbBYZlLY/AWJZFRFGCllsftm2jq6sLPM+jqakJLMvmzbIEroQsi7CqIJOjmRVVVe8kPxIcxyESCQMkAlnkkUilQBybthf39kKSKKmEQioEQYQo8IEFct76PUIFGM88i8VgkvrXW5aJOXPmBIc6zov4XdelZON1ByY1qu6sKjK1NvBSXZxnZ1BKYt71DkLXbVo1qlrBTCISv440HvXfS+mO+Otf/xonT57EyZMnMW/evLzflYsmczEz7jqGZiLOnDmDvXv3YsWKFVi1alXeB2OsUvLr51d7Wj5DN4T6gjC4YmF13mP9a29YNg8RVQbHMrhtbTOWNoS8tQFhicO1y+uwsjkCxjt99fb2oqunF5ctmk+/vMMg8twI+1ofaU1HSPJkEkpEI8NBiAvbtqHK4gjPap9EGIZBSJZGRAG6kYVjW4goUuBrEVZFukERgv7+fgwMDKC5paWAiyRVj414m0IxhGRhxIbrunQokedYhL3nFni+pMUsgEDSPJO1wPICFs6fi5WXLcOclhYIoohEIoGOs2fR3d0FXhCKnOYooZgWnXAvV8cAPJ0qLwXlt8DaloOwIlHjKg+00F76fXNdF6ZlwTQthBUJsijANE1cvHgRkiShubkZLMsGkivDt0zXdZFK67C8E340pCCeLj1TAiDoaJMkGbIaRmPzHKxcvhzNDXXIZDK4cOEizp8/h/5YDMlUuoS2GK2HJNMaBvpjEDkG8+bNK5gZiIZpWzbHcfQgwHFgPb2stE4JUpVFyKKAjNcIUgxhRcL2t28CP8rN+M1AJOl0+pJGJH5nWKF/xoIZE5HYto39+/cjHo/jiiuuQFVV1YjHjNUl8c4NLfh/r19AZzwDwPX3JIQkHh++emHeY30i4TkOV69egqdefwOqyOHGVY3IWA5M20VI4oNpbd0wcPHiRRBCMH/efNgOQSQijpCQl7ziNCmyYaZ1g05Ao7CXyXDIkkANqxgGRiZLxesYUBvXoBjKQBJ5pNKFT92uS6OEkCIBDIOkpoO4BD29vbBME3PnzIEwrPZC/Tv8XLbhzYHItIMqZ+cLTtRFTpCWl+aoCisw7TIkAtAWYy968CfOCYDa6iiqomF098Zg9vejrqYamkE3R57nvEglBEUZSoGxLAvdyML0mhBsxy1Y2JUEvsjEPAnEFkOKDJFnMZDUApHHoq/Bv0+gYo2ZTAYD/X1oqq+FpIY92RJmVAN7tm1DtxwqJyLS9t9CX3q/lTo/aQSYtgNOkDB/7lxIIg9d12l7cSIJ23FG6IH59822HVy82AmGYVDX3OzJqchwXQIt46kjSCLSWn66kKoXD83TENCmlWRahyKJ4DgWumFSifgcxQaOZbH92k0Iq6Ofn5hJROIfeMdTI6mINk4AiUQClmVh69atkIa1avoYa0QSVQT8x4db8X+fO41fe+2/8m/BvQAAhOdJREFUW5fU4n9vW4KlDflvlj+QSAjBqkXNeP1oBwY8PxJZ4PL8LWwzi3Mdp6EoChobG8Ey9MOSSmtQFJUaGnnQjAyYYaKNw5FM64iGZDAsA1JGBp1lEKSWGJZFSjdQVV0NwrDI2jSdREA7sMqN66X1DEKKCEUUcOLUGbAch7lz54701Ai6h4a2JaqRZARujHrWBMcyyJrF/TF8iDyPZNqAS1yEFBlukWhMzUnz5ILx1t4fi8E2s1i5fClMx0Wkiq7Llx/p6+uF67pQFBWqqqCxrhYZk7ZhU0IgCMkSCJigoO4fNkq9XwwAx7GRyDjUydDz2iiEoFvKexW6rqOnpwe1tbWQ1TAEgdZhwGDEYOuI52WZ4L3wHQ1ZlkFYVZA1bZiehLrsEUypd8F2HCisCMKwWLhgHohLEE+mCuqB1VRHcbGreygFx1BDLZ9sZUGAIHCeM2SJ+8ZQLa+0kYHA09qTr/EVkkVYjgMjQ/XgbrhiNZpqRx4mS2GmEQnLsqNKyfkghMxKv3ZgBhFJfX19IFxWDOOx222KyviHnavwxTsuD4btil0boG8my7J429ql+MUrB0c8LpVKITnQi+rqalRXVwcbBP1j2uLLczxslyAki0h7nTelNqaQIiKZ1iGLAhzv9FcIudEI4GlouS4yWVoviYZUJPUMwooU2OyWQkSV0T8YR3d3N6qromhsbBxpMgQgGpaRLBLdZE1fbZZqgJUbigMIOI6BadEUI40w6N/bjhPIcHAsC9O0Cm6GrpdSNE0TixfOh2m7OdPqJkIhmv8npN7rZtLgmBm8cfR4ID+ihqhfiO7VkBRJ9JoqmLJzIAwztKFnPK8NgedoO3FOhCAJtKDvf0ZS6RT6+vrQ0NCASJhuFpblQBIFaHoWkZCMrOkUrFcQQhAqIJ7oEzrxZOEZhk6Dl0tNKLIYRJj+ZyUUUlBXUwUjYyJrWTAMA8TO4szZc2DAQBAEaGkNqqrmpWyylg2GZWBaNsKqAsd1oBsjO90kgZpn+fcjz2vFUy1WZRGXL56HlQvnBNkHfwq/FEn48y4zhUjG24p8qWskk4UZQyRA+eGbsbgkDke59IP/pvsnieXzGtFUE0XPYBIA/SL39/cjmUxiybwWkCLlJdt2oPI8bAK4fnhbhkj8SZWMaYHnOCiSEMh35D0udw6EELAch3Q8Dtd1oYZCsB0HVWEVTpk2X/9a/YOD6OzsQk1NDaLV1YHQoJbJBh4RIs+V9MgAhupbKV33/t4qKjcSUZURqq5MsJkRREIqjKzpbcIjnze3y2ne3LngOB6Oaw8RkiLD9QjF72aKRkIwTRuR6tpgoC8ej4Pl2KBY7xIXVSEVpmV7w4eFXzMlTXlE6sufB6ERgoysaeflmuOJOAYHBtHc3AxVGdooAuMuQt0bCUhgj6vlzHOUaxBgwEDPZKB6UhoRVYGezY5ocQZoiph2seV/JyzLgWUZwfOFJBFHT5xEJBJBNBKFbuhIJBPoy9EDUxQF9bXVwf3w60q+RpYe2DizICiee/fbi5vra7Bt8xpvZssNCML/3jMME5z0c0kjV1FhJmA8HVvApe/amizMKCIph0IKwJOFXCIRBAEMw+CadUvx0AvtVDqluxuWZVH/Cs9nuhj0TBbRiIp4ikp5MzlDiSNeE8cGXz6AphycjIOwquZN+tJT65CftksIIpEIZFmm8wPJJGJ9faiOhCBKMqqrqmAToLA3BIFp6Ojs7EJjY2NeTjalGbTGIItecVwMZCyKggEsL62S0gxwLIdoSKYmRjkQ+WK1h6ELpTQDYUUCw9B7k+uE58upi5KExsZGVA2byWDAeHLqnmkTQ7wTMCUAnuMRjUQRjURp9JIxoGs6YrEYWBD0iTIUVYGqhiBLIhRZgqZnA8MoAIiGlZLE6roEybSBsCp7E9sMOru7kUqm0DKnhXq8e6CeIm5eNsiP0oChzdi2HSS1/LbhQojkuCtatgEwdKbDcdy8WRieY5HJln5PU2kN5y9cQG1NNebMaYaRyVJlgppa2I4dEHLW0NDd0x0QsqqoYFl2SCOLoek9jmMRTxWfiwHoWm9/+yYIgt8Jxnn31M37J3cP8COVmUgkY12LaZqwLKtCJBPBaHKJ40ltjeX5h7cXL2yqRWOVitcPHIEgCJg3bx4USUC2SNtlLlzHQVSVkNKzJVNbiiQgOSyVQQiQ0jREwyEkPRkOPyWXP2HMQBJFSKKImupq2I4NK5tBIkFVZKMhFawgQ8mZuyCEID7Qj1Q6VVA6BKBRVdo2UBNWaU9/GeQWxAHAcR0k0zoEgYckCp6UCMByDIhVOuXC8xz0LNXs8jWkaMePju6uLoQjdE6Hzp/o+alFD0xOeqo6osLyUj25nzGGYaAqdOOrRx0YQjAQTyCVSiEWi3nKxSFEwmHUVEeRyZrgONabei9zP7yOL9rV1wfi2Fi+bDGsnOYCQghkSSgosujDtGwv70/vQzZHwHA4QoqUV4uhT4J8WXieGkaXS3tms1n09fYgEo0iUlWFtPcZDKsy9SoxCKKRKJrq66Fns8gYGWi6hoGBAfRavZAVechuWBDBsEAirUMUeciiSOdShkXNLMti+7Wbg2hs+O/8TdmPUPx6ph+t+MrdvgjldBPKeGdIAEzKQOKlxowhktFgIqmt0V4/l0j6+/shZwcRCoVQV1cHhmEgcuWL2AAlEs3IIBIKIZMp3FlDc+zFNmra2RJWZTjESxmQYZLfw/6iOhJGmmWhKGpQdDazGcQHY8iaNhRFgWlaUEUec+bMLT3YydBUiWU7iITUYKhuOCSRL3pC9+coFEmELAiIp0sTMJ3d4KF7KS0/XabrOlLxQdTX1SEciYDnqK9FIRLJhSqLiCfTXkeRAJ7nvegv/+8iIRUpTUdNTXXOQB993gsXL6KzqxOhUAiNdTXgBRGWXZwMJS9V5boEPT09sG0bLS0tsGw3GPDT9CxCJdJnOXcEIs9Dz2a9ugeCLqbcqXkhkMAvfj8ypgWe52B4roi+YONwaLqG5OAAItGqvM7JXK8SWRIg8rynHM1AURQqoFqXrwc20D+AsCojxotQQyoUonhmXXSuhMl5HTdcsRZzGmrK3I+hiCM3WrEsCx0dHQiHw0HU4j+2XG1lqjAeIkmnqTJApUYyQYzGJXGqIhL/+v6J5+zZszhx4gSu3rwBQm0fTnXGAADEHd3zG96JOKVpiKoyOgusO6SIZU+HaT2DaEiGwLFDSqlFojczZ56BZZmcojMBQ1ycPU9bY+NpDVnHRUhVoYZCBbWohpR9gZSmQ+A5SKIUGGEBXmNCEbG+XDiOi0RWhyqLsF0XZhF/8EjO7IaPRCKBgYEBNDY2UjVhRYYLAq1MZMBx+UORGdMCTM/Fz4uSAO8kn9bzZizpQF8EkUiEpsCMDBjXRsf5i7BtG7XVUShqCCwn5NmlUptcF47juTAyjDetTjcyf8BPkan7oiBwgQtiIURDqpfS8q7P5Ph8eFPzetYEx7CwynwupZxWYV+wMaRIYBg2uKamaUjGBxCOVpdMr2RNmz6nbSOsUm8ZzSuu5+qB8RyDVFpDOq2hr7fP66CjQ6S27QQDp2uXLcDa5QtKrr8Ujhw5AsMwsHHjRgiCENhBDCcVP+twKYhlvDpboVBo2qOp8WBGEUk50CJh+WGy8YLjOFiWhUOHDiEWi2HLli2orq6GFK7C6a4YCCHQjfKpHkUSoOdMzqd1AwrPjkivsGVO1ADtMosnfQ0jtagIXliRRmzCPjKZLHp6ulFdVYV5c+diMJGkbZ6eAZUgigGpSJIEoUA7q19MViURLuhmQuVXyk+ICzwH07K9jiNaUM9aVt4myvNcXrcUITQiTKdTaGlpgSzL3iGDQDcyXjHZLFhMpmrHhYv1fu7eV93NZE2UyqoyDIOGuhqkdQPzQ+HgxB3rH4Dr2FBlBRAEqIqC+ppqJFJpdHV1QRBE2ho+rMmDY1nYtg3DHjqZgyDYiH2EFAmJYQSXCz/ai6gyAAaEIcgWqXtQ4dB8mReGQXC/eY6Dmc0gMdCPqtpahEKlUyu5Ssj++y9LAiSBesk4Dv2ccxwPRaGyLARkSA8sJ324YE4j1i1pGfHdGA0cx8GBAwdgmiY2b94ckHputOKTip/yoq+9cMF+MjGeGkk6nZ6Vfu3ALCMSjuOQyZRvax0vGIbB0aNHwfM8tm7dGpjJ1FeFcfnCFpy+0AvDLJ/Y4odpGTEMFcCLKCJShhkMXKULSNDngwRT0AzDIK3riHiyKsMjt2K581Qqhb6+GOrr69Dc2ICUpqEmGoEsS6iqqqI5b12Hrmno6uoCwzBorK0GYTkoijLiy0DVYgnCIRXZAp1lwxFWlWEFdlpQZwBEwgqMDJX9yE1pua7f3pul6r3eBkHdDrO0oK3pnhYTlQ7JLcoXimyGg5IJH8hwFNMC4/1pc+/LLeZa5nopMNPMIj3Yj97uHjiuC1mW0dDQMIJECCGQ8uoiQ4V1WeIh8Dw0w/SK4VY5JZocRV/Ga52VwHFc3v0eUhsu/r3pHxhEIk47ymqqq6gjZYEUIACEVAnJtDFibb7gpa+owAtcoLVGXykDSZQgiRJqqmvoBu9Y2Hr5Qhw8cAAMw6C+vh719fWoq6vLi/QKwXEc7Nu3D47joLW1teDji9VWihXsJ5NUxpPamq2tv8AMI5LRpLamqkaSSCSg6zqqq6uxefPmER+CrauX4EJ3DOVtlzCio8vfUBIpDVWREFKGCVUWkEwX34j9E1QmZxMDaJpJEgWA5YIUUViRkR7WAEAIMDg4gEQiiebmZiiKDOJ1H6V0HTzHBV4RkXAYkXCYPqdjYzAeh6ZpcBwnKJqGQqGce0I7xxzb9jbtwjUglmGLypEQAMm0AZZhUBcNIe6dcGl7bw8Agrlz5+bN94gCn7chUv0wXwtLgZG1wLAorRDsgXY40edMasYQKQ1zHxQ5DrpdOAr1U2CSUINEKg2tuwvV0RAyWQtnz3YEaRxVDUEQ+ILKvz6yph2kjFR/4y8x5O6f/nOnwYck4anxlJE1PTHGwrUp4pmVJeJxLF60ACQnzRUINmaGSFoSeW8+pPi6CCFgOQaJlDaiBTgXPM/hPTe9DQtbGuC6LhKJBGKxGM6cOYNDhw6hqqoK9fX1aGhoGHFKt20b+/btAyEEra2toxJxLVRbyY1WyrUXjxXjrZFUIpJLgKlq/+3s7MThw4cDH+VCH4DqsILLFzbjtwdTJa/FMEwglJj7M8DXbNIR8kyYCmOoK0uVxaDWkgv/5Bf22j391lsfrkvQ19eLbDaLuXPnQBRFKMNsWG3HQUrXoSoSHIcEEU0kHALH86irq4NlWdA0LUhF+LMDNdVVSKWpAnAyrVOV3KB+MrQOVRHLz6B4HT0EVE7m1PkL4AVhRFqolAMgFQekaaAqRYVGSNGhToCqzg6vTQWkBAYhVYZtOxBFfsTMSyFomobOzk7U1dUhGo3S5+BZpFJp9A8m0N/fj7CioF8UEfLSh8U2C181Gd6QpktoKi+v4wyMx+WFD1224yKlGVBkEY5jQ5WlwN1w6J4BAwMDSKVSuGzZksDuwEe+YKMM13XgjEIWXpGG3nPTsrzhSjrR7hIE67hmw+VY6MnCsyyLmpoa1NTUYPny5TAMA7FYDLFYDKdPn4YoikG0Eo1GccCLYFpbW8ftPzI8WinXXjxWUhlvjWQ2dmwBs4xIJrvYTgjB8ePHcf78eWzYsAHnzp0r+UW5et1ydPfH0dHZV/QxiiRA0/M39lwiAQDbsiHwdII9XxGFBHLcAEoKIxJCkErrqI6E8hwJbdsJCr3+iZ4QUrQe7k8gR0KqVzTNBGv20zg1NTVU40nXkU6noaeTsF0EdRUiyzBtx5sOZ6Fns5B9B8WynVW0dTibyeB0dzeqolEsmDc3mAcBAJ7lyk6bAzSNFk/pYLz/Nm0L5vBiNkGe2diI+wpCa1qSCNuhEijD6xe5cC0T5y5cHDGPY9ouJEXF0uoaMAxBPJ5EIpUKhin9SE9RlGDDoZIw/rwIM9QlJdKivqZn4BIX4VGk7jiWpQOGHqGKghC4N9qOi1isD7puYPnSxcjabokogxJsRFVgEZeqIGctz2CswHMWlEkhQc1NFHgsX9CMLauXFl27oiiYP38+5s+fD8dxMDg4iFgshqNHjyKTyUAQBCxevBimaU6K3XahFNhYhiELYSx2Fz5mq84WMMOIZCon24fDsiwcOHAAmqbhqquuQjgcxsWLF0sSFcuyuO2ajfjxky8hkSqcLij8+fKJxAXAQRQ4pNI6ZFmETQDbdpEbiTAM9cUeTYrGtCwwhEqEDMbpRqUoNEfv309VlqGXqC0RQpBMawjLElRZKrhp8zyPaDSK5sZ6pDUDumFA1zT09lDPF9UjFUVREA2rXitq6fdTkQSk0rTo39vbi9qaGlRVVyOlU5VgVZaR1DOeyVTpe5EbZRAg8JIPKwpsd0h6JRKmEuelwDIMHOLC9BomZFEYck4MhAUIsoaGzu5eL3VYeEPTMxlEQgpC4RDq6mqgZ7LQdQOapmFwcDDwYY9GwnCdEBh25Ck2Y9rImDY4lkVtJFzWdZAQ4nVpDT3OzJlBSScG4dgWFi6YB6e8K4DX/k2Jy0/bhhQZICSw6AUQpLFKIaRI2LZl7ajTNxzHob6+HlVVVRgcHER1dTXq6+vR19eHEydOQFVVNDQ0oK6uDtXV1ROucxRLgfnkMtpoZbxzJBUiuQSYrIhE0zTs3bsXiqJg69atQaHOF24sBUUSsePaTfjpU68UTJ9YBVpbqbLJkHCjL8yYyZjgec47KZoBiTAMnYEot+ENFagZJHr7kErEg9bLvO8pU14SOqzKSGt08w0pCiyngBmRR3oMyyIUCtEPPSHIeK6G/sZY51nlNjXUwXER+KgPByGEep8MDKCxoQGhnLDedqjsfESlg5QlowhCaOfRiIYDhhKQrwXGMkUVkXMRUqW8lFzGtJAxqZ6W4ulpDQ4MIp1OY+7cuUVdKgEqR+9HjJZNC+P1tdWoikS8zjULuqbBNE309A4JJYZCKiQp37yL5+l0uEuoFAyAPBdDH7kT7vn3yc2bbQmpKliWQdqTZikEWRQKRj9aEGEIkEUeYJiyaUCO47D92s2QxdKF9OEwTRNtbW1QVRVr164Fy7JYvHgxLMvCwMAA+vr6cPDgQbiui7q6uiANVup9GS1KDUPmthcPj1Ymw699NmFWEclk1EhisRj27duH+fPn47LLLsv7oo6WqBprq3DTVevwxEvteT/nODbQeBqOoJGAMHnRgd/GqSoydK9ThxAyKs8MSRRgmlYwa9HQ0ICammqIwtDJcHhtpBByw3eA8fLYvi3sUIopnNP2mfPCIMsylc+oq4NtW8gYBlKpNN442g9RFNFQVwNWECEIIvxNL6rK6Dh/AcnUUHvvcHAME5g58TyHkCRT+9VhhJK7WRcEQ1+TJPBQZAEMQ2VpCp2KQ8GU/sjfWbYD09IR6+sFB2DuvLlgmOInYNEriOfC9zbxn4uRJVRHw0jrWVRV18Iw9EAhOIj0vH8YCMFrz00VyaIIPZOB4xJPjHHk+n2ZH0II5syZQ5s+vHX4xltZ24aZ87kLJFxKwLJpK7VuZBBSaYt2sajkhivWonGMir7ZbBZtbW0Ih8NYs2ZN3ulfEAQ0NTWhqakpOJTEYjGcO3cOhw8fDgr2oxGEHQ1GG60wDAPbtsf8fOl0ukIklwITiUgIIejo6MDJkyexevVqzJkzp+D1i4kNDsfli+eiuz+BtiOng58pIg/bKmKVyzBwXQJFFmAY3gmQINBx0nQdVZEwkp4DYnn1Xga6TouSmpYONmPLoptBNByiXT2jmFWJFBAhJIQWwQWBFtL1jAmjDCEBQF1VFAmORzgcgeu1FseTaWQyGaiyCIYXEQmHcbKnG5lstqD3iQ81R3rFth2kbK/bTJWR9vy8BY4baVlc5DUmdQPw9klFEiDwPFI6nW0BEGhEFUvJua6Lnp5uSAKPqupasAyLkKdlZYxQKKAt3qV0yjQjSwvitotoSIamZ8GGwt4cB0E2m4WmUYHJdHIQLrigg86Pov2Ule/iSGts+eunnXBdYFkWLS0tiKhq3oGAmo7R6FeVJfAch6RuQBGFsmk0X2WAYEiORRA4KL4Uivd9XbN0AdYsG9vQYSaTQVtbG6qqqkaY3A0HwzBBNL506VJks9mgYN/R0RGkyBoaGlBbWzvm+kUhFItWNE2DpmngeR6maY56GFLX9UpqazIwmhqJfwIYC9s7joPDhw+jv78/GDIsdv1s0W6qkXhH60r0DiRwvqe/7GNZlvFSMJ4KqkuCk77fhZNMawh7k+jloEg8Tp85C9u2PSHJnAlrhppkqYpY1FDLByGkYOHUh68IWxNRkTFt2Gbx6wkcm6dQy7IsnUb3WoszmQwyho5EfwzpbBaqoiKTzYLluBFpAEUUCqZKbIfqeHEcSzdO4kIrMyQqi8KIiGUoXcVDEWm6SpXFoqKS/mYs8gJq6xoAhhnaPAkdLGTZoQI5Fa0snephWQaO7cC0HZiWDZZhEA1RS+CsaUOSZEiSjPlzW5BIpQPpkcHBQXAch5BnQOUPazougWZkoEhiIAdjWdTOVxQFNDY20RbeEp9xP5qIhhTaSSdQKZSCIJRIhpPokIowVTKuiYZx/RVrSt6L4TAMA21tbaipqcGqVaOz2s2FJEmYO3cu5s6dC9d1EY/Hg7qKYRioqakJopXJ2Lx9gshmszh48CDmzJmD+vr6oO45mmFITdPQ1NQ04bVMB2YUkZSDf4oYS0dEJpNBeztNQeUOGRbCWCMeKjTXiv944jfU+a6EwKGf2rJzxOYYhhlx+E2nDSiyAJH3jYJGwrZtnOvuBABqRFXklMOxrGeapVK/8QK1irAql41+OI5BIq3DdQnCISoeOKJ+AuR0ao2EL5+RTppwGAYL58+HY1noHRhEX18fZEmCGgohpKplh9EAeK2ogJGxEFVlaEUGCv3Uf7EagN/mGvFqDsMVhwHAtj3VYVHEgvnzYAxPOzJDIpEizyEkS0iU9WUBQrKc19LskiGPc+p8ycA0LWRMM2h2iEapcrFPKr2ef319TTXS6TRUlcrwI2vCdR3E+/sQDqmorqkFy5SPkoChFl7/nqmy5A3Q5n9OwmX1whhYto0bt64vKMNTDIZhYM+ePaivr8fKlSsnJSVVW1uL2tparFixgioTeNHKiRMnggHS+vp61NTUjLtgr+s62tra0NTUlJc2H+0wZKXYfomQK/U+GiJJJBLYu3cv6urqsHr16rLFr9EU24dDlSXseMdm7HruNeglJtWpGRKBphlFSQSgsxe6kaGneUXOk5IHKDHGYnTjbW6sL/ol84uojDdJznon+FwbXPrhLp/KC8kyTX0wCGoLUVWBZmTheNGTIhWOIHxks1l0dXWhrqYakWgVwAAcz2PJwgg4lkFPbICetgcGEA2rAMsHp+1Cr5FjWGTNbOAFz3qpnUzWgpXzHkZCclmzLY5lYZgmbSRg6MwKrRfYME267lAojMUL5pWuxYA2I/jpoEiI+sMX2rjDqkwHBQsX1Lxr0CYBBkyetwjDMEPNDgAY4mIgnoCWol4hsixDkiSkUimEw2FU19QgrEoQeR6DqdJe7xxD6yK5xDskpUIHHX2JmdG0d9941QbURkef99c0DW1tbWhsbMSKFSumZDhPVVUsWLAACxYsgG3bGBgYQCwWw+HDh6mWWm1tEK2UOnjmwo+gGhsbR9Rec2srfmRSaBiys7Nz3HMx040ZRSTlPjR+SDiazd4fMly2bBkWLVo0qg/keGswLfXV2LZ5NX75UltJ4x6BY0qSCDA0O+K6LlKajmhYRdqgHV3pdBp9fX1YOLcFrFDYjthHSM6XdncdF6m0jpAswQFB1qRudlqZTZYtcBL1BwB5z3ckkTJK1mL84vG8Oc0QRDnvtZvel6i+rhZScyO0jAlNSyOd1oLTtl8XyJVsCalSXurI9YrYARGYlldUL99CrUhDOmWEUE8VQgg4hqC/rxfRaBWaGxtGda2Qmi92CVDlAT8NRj8HHB1aLfOZpKKNnl89Q4nJthwYueKcDANBlIKBPtu2kUwmEY/HAdB7DwAMqUEaDERBgCLT+sXwqJIQAkUtnt7zBx0FnoNLqJqA72FfCOsvW4iVi+eWfI25SKfTaGtrQ0tLC5YvX35JJrx5nkdjYyMaGxvzvmOdnZ04evQowuFwQCq0G3LkmvwIqqGhYQSJDIf/+R0+DPmb3/wG7e3tuP7666fmhU4xZhSRjAY8z5ecJRk+ZNjQ0DDqa4+l2D4cq5bMg+M4eOrVfXlkQv+TQBQlxPp64cA7TaohCAXaIHOJjAGQSlNJlP7BOGL9g2hsaoKkqAVTS7koZryl55yWnVEoGYcVKU+BNhe25ztSHVFhe1PPw79EyWQS/f39aGpsgqqGYTmF1+VPQVeHQlBlEYrnIpjJZKgk+cAALMuCoiiora7CgG3l1YV8+EQAEFSFQwAIsiWEPkOyLy+Tv25d19Db24f6+jo01NdBEgXvOsU3iZDfMTU8XWkMeYLw3mesnM/L8BpR8LoIgSJLniFaBiElP+LyiaS2thZVVVUwDAPZjIELFy/Csh2ogWyLiqpIKI/gomG1bAsvwIDnuEC8lONYqLIE03LyOg0ba6O4bvPqMtfKuUceicydOxdLly6dFpkQhmEC1eclS5bANE309/cjFouhvb29oB6Y3xBQX18/rgiKZVm89tpr+MAHPoBvfvOb+PjHPz5Fr25qMeuIpFTU4A8Z6rqOrVu3jjnfONE5lbXLF4JhGPzqlXavDkJ79wkB/eCxdRiIx6FrOgYHBsELPEJqKJDNYFkm8BD34RKCcxcuwsxmcNmSJRCk8tLzsiQgU6aTybIdOI6DkCIFG8lwcF7bbCn4rcqZrAlVptIf/msYGBhAMplES0sLGutqihJS7rrjWhoAA0nkIXhEIcsyamtrg5mLtJZGIpmGKIoIhaiWlSQNtRYDdIgukdYAAoRDntTIsA4klmFg2iPJwSc/f1pd5HkkUrrXaisgbWRHtCAHHV8l9pGMaSKqKshYtK5jDEvD+WAYwC0mRpCjqUVnSUhQT/Mjv1ypFkVR0FBbA83IwDRNaLqOZCqFvhzJm+qqKKojkbIdWsDIJgLHi1IA2mXHMSxM28Ht124edV0klUqhra0NCxYswJIlS0b1N5cCoiiipaUFLS0tBfXAIpEIdF0Pai/jIb/XX38d73nPe/DFL34RH//4x2elzhYAMGQ0LUKXCISQPE+NQvjNb36Dyy+/HPX19Xk/zx0yXL9+/agKtsPR19eHo0eP4u1vf/uY/zYXh0+dwy9f2hvkQAEGPM/Bsaxgo3FdF4ZuQNM16J7wYH1tFRhOgKIoQQqvu6cHIARNzc3gOQ410RASWsZr8yyMiFpg3mMYwjkS8KpCW1iHd+fQwbbSm39IzleWJaB1o66ubiTTGlpaWrzrO0UHCgH63ocUecRmLwoCRGHIojcaVpBMG3BdunFqmg7D0MEwbEAq4ZBK79+w6FKRJZqq8+o8I/3jCQYHB5FIJNDc3AxZViAKPCzbRu7SWZZFSJHojItXtwiPQlJfFHjPrZH+PwPQ9mGX5FnhRkNK2Y4vgePgEjd4ja5tobu7G5GqmjwvkWIaZY49ZJdrGAZEkYcoUdKRFBlGxhyxqYVkaVRkc+s1rVi1ZH7ZxwFDdcxFixZh8eLFo/qbmYB4PI59+/aB4ziYppmnB1ZbWzuqWkd7eztuv/12/NVf/RX+7M/+bNaSCDBLI5Lhqa2+vj7s37+/4JDhWK89GZPzq5bMh+O4ePLlvd5aqENf2s4f9gqFQwiFQ0FrLBwLvbEYXMeBLMvIZqlPdmNTE1jGVxDWwbIsFEUs2PbKjiKKYNj8x/jy7ZGQAt0w4RBCo6NRRCPDycF1XZw6fQau62LFsiVwCG0hTemlO4XCqlLEP4SmvERBgCQIgdUty3IIhyMIhyPe/TOgaTpisT4k4xwYlocaoikc/0vtC2AqniptIp1PInQmR8ecOXRa3W/XHt6kRetXVAo/HJLBMgyS6ZEpreHgGBZmzu3Knb3w51oc16WKBiU+w1QJmYOWofc0N31YXV0VRE1S4AhZYC08T610o1GEFQl9/YPQdB1nz1+A4ziIRiOoqYqC4ekAJ89xxduAc7B66YJRk0g8Hkd7ezuWLFmChQsXjupvZgKy2SwOHz6MhoYGrFq1Cq7r5umBmaaZV7AvJJ9z8OBB3HHHHfjUpz4160kEmKVE4m/2oxkyHO+1xwu/zW/lojlgGODJl9tBSGmVEoahdqWyGIEcitCNIRYDy3HQdR3d3d0IqSrqamuo0KPr0pbVsAo9Y+ZFJyFVpsq8JRCWpYKn1JRmgOc4RBQJBEzZE3ZIkfPIxrJtdHd1gRcEzGlpgZE1IYl0lkXguIJpHHrTmLIaaqZlQRI48CwgyXQgMTjZM0xgoKRILYgnU9B1HclE0mstlqGGVFqXEgRksjQqEHgWiiQiqRno6emBaZqYO3dOUHupCqslIwMCQDdMcAxVECjUIusjElJKyrNkshadEud4VIVV6JlsUWmZqpCKpFdEj8fjiA/G0dLcAlmRA+LlWRaiwAGMAKOEb0xIoZGUoqpQVBWoq4PppRC7e2PIZrOIhlVURSOwwZXsYqqtiuCdV6wt+vtcDA4Oor29HcuXL8f8+aMjnpkAf9LeH5KkBl5cQBorVqyApmmIxWLo6enBsWPHAj2wZDKJNWvW4NSpU9i+fTvuu+8+/OVf/uWsJxFghhHJaG6oL5OSO2R4xRVX5PlLjxcTKbb7syE+EbEsi1VL5oNlWPzy5b3IlknZcSwHI2sFp8uGhgZEIhFYtg3dm5TVU0k4BHQQLRRCKu1JZMhiUJcoJZ/uo+iGDk9eXtMRlmUoklhgYnvo9ebme7LZLLq6uxEKhVDv+dsDdLNOe/LyUVWFns2OmNMYTYuuJPje8FTynud5KBJV5h2KimhdSpIkSJKUp1oc1KV4Ho31tTAyLGRZRiZroq+3F5LIo6V5QaDGLPAjXSILISSLSOlGcE+FnHU5xPfxEDwds9KgSsgZagsMgoiqwCXIF0YUBKQMAyDAwOBQDUqS87v4FJk6LAJekZ/noOlZuDmVF4Hj6OxT7vcuR/W5uoYaULHEQW//AGzThCjw4HgRkle099fFsSxuf/smiEL5LWVgYAD79u3DZZddhnnz5pV9/EyBr/kVjUaxevXqgvsVwzDBEO6iRYvy9MDuvfdemn6MRHDFFVfgD//wD98UJALMsBoJgLKT5fv27UMoFEIsRj3UN27cOOpe73IwDAMvvPACbrrppjG9wYUE3HL//tjZTvzyxddL6haFVRkd5y4gnUqhqbkZSoHXJAk8Yv0D0LzcNs9xUL3p5sb6WjiEUFn4EjkWWRJLeKFQhBQZmk5bYCMhlU5eD4sYVFkKohG/yFvjqff6zy4KAkzLRG7Oh0rWezMorguOYQEGZTWdisnGcBznrSU7oiV4OIhLYJlZJFIpaJoWdNfxPI+WlhbwPE/l5y3Lcyssc5/8+lCB2+0bZWVNGwxLI45SGKqxjLyYLAoQRVonEgUBmayJWH8MmkZrUMPFCem6Rq6dY6lplmnZyFqWpwpd+jXKouBJoNCDUsbIwDB0uDaNfBhOQCgUwm3XbsGV61aWvBZAte4OHDiAlStXTjiDcClhmib27NmDSCSCNWvWjIsAjh8/jg996EOIRCLIZrNob2/Hli1b8O///u9YvXr0HW4zETMqIgHKuyQ6joOOjg40Nzdj1apVkzrAkyvGNtrr5k6sFtPSWbFwDkI3XoNHn38NRoFN3HVddF7shKHredayeWAYZC07aE90CYFhUDny3t5e9Pb0oKG+BooaAmF5sEXEBAWeRdl6aU7KKK3T3H8kFKJOd/6G771HyWQSMT+CGiY4J4m8Z2yUf7+SaR0sSwcIc+sExaDKXmdZgd85XgQlCjyIS8CxXNG2ZoZlUFtTDVGWUVVVlTcAdu7cucDRsLGuhsqelPAiYRk6tV2Ms11v1ibsCRmGArvbkX9ArXXNgr8DhuRcoiEZLgHig/3QdR1z58wFPywC4NhCKsjevXKHOqxqIiFYjgsGRa1qAgHRQMqHYaCoChRVAQjtkrTMLKpVAcme83j11UE0NDSgoaEB0Wh0xH3r6+vDgQMHsGrVKrS0tBR51pkHPxIJh8NFI5Fy6OjowI4dO7B9+3Z885vfBMuy6O7uxpNPPjmrCLUYZlxEYpoj/ch9XLx4EYcOHUJ1dTWuuOKKSQ8LbdvGM888g+uvv35UEtS5JOIPS5ZCPKXh4WdfRX9iyGXRtm10dXZBlgTU1jcUNbNSFRl6MYdAANlMBraZxUA8DoHjwIkSZEVBSB2yyKWREinZ8cWX8HzhOBaqosB2HOhGhnY4JT0r32ERVLl5H4CekBkGUOTCqr6ANyQniSXlZwB/eI+6JIZVFVnTHCEx47c6m6aJrq4uRCIR1NbWgmGYwA3SMHSY2Sw4jocaCqG2ugrhEBXAzF3eaDrafHVmEvw/D1EQaIrJtxQgJLArLgVFoorOvT29ME0TS5csgiiKnkdKzrUUpWxKThZFZC0ThHjT6oqMbHbk/Yqo5VOOIUXGPdu3QeDYQHYkFouBZdm8mYuBgQEcPHgQa9asmVV6UoUk7MeKixcv4sYbb8SNN96Ib33rW5PqDT9TMCuIhBCCY8eO4cKFC6ivr4cgCFMSChJC8NRTT+G6664rmy4bK4n4yJgmnnhhD8509iCbyaK7uxtVVRFUVVWXvAYt1hbfuDiWheM6IASwLBMZw4BjWxhIpCErMkJqCE0NdWU7b8o9D32MjM6uHvTHE5hTILUSXKdMXSB3M6YttTK0TDaP6CIhuayHiCjwRWRIFFi2g6xlgQEgCDziiWSQhisk3hlRZcRTmldXof9mWRbRSAR1dTUgDAdZFAtGlrmgVslSwRoTxzDUbtm0aM2jzGbNMLSecfbcebiui+aW5uBwIHA8FIXWyBRZKvveMQwluJGpNoKQqoABkNZpmlDTC6ftcvGed27F4rn5xOCLJPqkout6IF+/ZMmSSXE1vBSwLAttbW1QFGXcJNLV1YWbb74Z11xzDb7//e/PWgmUcphxRGJZVl7B27Is7N+/H4ZhoLW1Fd3d3dA0DevWrZuS53/66afxtre9regwY66a51hJxIfrunj417/Bc69SddN5c5rLFmNlUSh5Ki82xyDwHJIpDfFEEo5tgniT9aqqFvAOJxB4OutQDAwDXOzshOu4WLRoAURxpN+JwPN0gr3EJ4tlmTwZ/aGf5xAKIRBYruiUvo+QIhdteSaEIKyqEAQW5zt70NfXFzQyDIck8J6TIsn7eyOToQ0Pug7iOqirrYEgShBEqejGUMpj3gfPMZBEWiQvNhQK0IL+8VOnwTAMmpubC25oIs/T9F6Za0XDalnDNFniIfICDNMqee83Xb4U27aU7tLq6urCG2+8gZaWFhiGgcHBwaCLqaGhoajsyHTDJxFZlrFu3bpxkUhPTw9uvfVWtLa24kc/+tGkSNfPVMzoV5ZOp7F3716EQiFcddVVEARhUu12C6FUC/Dwovp4SIQQgrNnz6JGcPCem96BfSculPUM4Vi2bGqn2Dos24GiKmhurMNgUvOG+DR0dVF/ilwdq5AqQy+RYrFtG4nBATAMgzlz5sC2Xdh2BqoiwSUkOOXKkgBLK7/5F0oN+RpjLMuiJhwqu+nR+klhkyqA3pesmUVXzyBSySSWLFpY0A+ZEOKlFcmIv1cVBaqioA6AyLPo7etHItYPFoSKSvICwqFwIHkjcNyobJJlUQpSWpLIQxKEERGZyHM4duIUeJ5HU1MTGHbk6ySEQBCG7IgVUYAgCtD1oc4xeq9EJNMaSoUZ9D5wXtMCdcsEA2g5KTQAqK+O4u2tq0q+vosXL+LYsWPYsGED6urqACCvi2nfvn30WsNkR6YblmVh7969kCRp3CQSi8Wwfft2rFmzBg888MCbmkSAGUwkxYYMJ8MlsRSKKQDnWmz6jxsrXNfFkSNH0N/fj82bNyMajWLJwvl48qU9Jf9OkSWky+TjSzoqEloXkUQekVAd0l60ZRgGdF1HX18ftSmtqQLLUavX4a8va5ro6uxEdVUUzfUNeRu3blAXxUhIhW07ZedPmFFKryTTWlBDMDIj24b9gchSZE4IgZZOYWBgEM3NzQDD0tO7KEDLmUWJhJSyUaHAcXBckieQqOs6LDOLWF8PbIdAURU01tXBQel29pA3y+MfIqjSsA2WZRD1VIO1TAbdnRchiAIaGxuLRxkhNS/6yVgWMpYVKCLbjous5dsIlBGKzNPbGnqfBJ6DKovQsxYIIbjt7ZvAl0jTnD9/HidOnMCGDRtQW1s7dA+HuRomElSx+PTp0zh06FDgE9LQ0ABVVUuudSpgWRba29shiiLWr18/ru/54OAgduzYgWXLluEnP/nJjCDHqcaMTG2dOnWq6JBhV1cXzp49i6uuumpKnv/FF1/EqlWr8iRYxlsPyYWforNtGxs2bMirwSTSGh5/4XV09Q0U/NtydQte4GGZVkkx2ZAiByfWkEI3F7+uQAiBY9tIppLQNB2WadIOJs8fxLQs9PT0oKWpAZKiloygIiEFhNBOo2KGWVTmpFwdRs17zVT9VoWeNYNZmXCZzZ8QgsTgIBKene/wWg6VRZe9OgYpO4NT6vlcQmBmsyCOhdjAIBzXUy32Bv1yNySWYcBxLCyr+POZpolUYgCyrCAUiRaddBe8g1Up+RkQoDoagu260PQh8hwOUeBhO07JZgyA4Por16N1ZXFNrHPnzuHUqVPYuHFjURO5QjAMA319fYjFYhgYGKA6YZ5PSHV19ZQXqW3bxt69e8HzPNavXz+uekYikcD27dvR1NSEXbt2QZJKq3S/WTDjiOTAgQPo7OxEa2trwSHD3t5eHD9+HNdcc82UPP/LL7+M5cuXo7GxEUC+n/nw+ZDRQtO0YP5l7dq1BT+gjuPipfY38Pqh4yN+J/LFWzqB0XUQgcmbHww25rS3seSSlWVZ0LwUWMbzlw+FQpg/twWm7ZQgEq/GYtuAp2VF7VaHIgmGYcCOYm6Edo8V3mgjIRVZ2wZx3aIqyK7rore3FxxDUFPXUDK1EFFp+iZjWkXrQ4o39Fnq3WdYBhzDwnYc8CwQTyYxGE8GqsUhVYUaCqEmGint3WJm0d/XB0lWUFtXm+PLbua1NtP6T2FpmVzQGZws9YBhWaiyDNO2vHpQcDU6j1NG7HN+cz3ed+Pbin4POjo6cObMmaLf39HCtu1AeTcWi8F13SAF5jfcTCYmg0RSqRR27NiBaDSKxx57bNLm22YDZhyR9Pf3g+f5om9Cf38/Dh06hHe84x1T8vy//e1vsXDhQjQ3N0+4qA7QKd4DBw5g7ty5WLZsWdlrnDrfhV+9vDfQheJ5HpbXdVQM5YhELSG2J/AcREGANcz1kICG6Il4HNFoFI5jQ9P0IYvXkGc6lbMyVZFG6HMxDIuIqkDzZlAiIRUprbS5UlQtL1oYDtHOH9u2kTHzN39qi9sNWRRQXVtXclPgOc7rdqNfg5CiUEHNvJoUVSMumT7EyE41v3PLcRz0DgxA1+ggHxgukGwRJTHvHmYyGXR1daGpsR5KKJz/vjMMwqoMx3ahZ7MjUlqFwHoSHiOK5oS+XyzLQjMyiITKF+ElgceH7rgeVeHCKafTp0/j3LlzaG1tDdSHJwOEECSTVO6mr68PmqahqqoqKNjnTtiPB7Zto729HSzLYsOGDeMiEU3TcOedd4LneTz++OOz1ulwvJhxNZLq6uqSxfSprpH4xfaJFtUBWmw8evQoVq5ciblzR2fws3R+Cz60/Xo8/uLvcLGnH7LIwy7hp0G7ikq3onJc8ZSAZTvgWBYcx4LjOWQytP26r68PRiaDuXOpgCGVZU8HisU93T0AQDdE33SqwD0ixEVS08AyLMKKNGJAceQfMHnGTcWQ9YyZCAjCCpWJN7Imncvp6qLT6nPmlLWVlSUB6RxBSc1zufSVgjU9Q1uQyxCbJIx0iGRyJN8bamshtzQjkzUxEE9A13R0xjtpw4NHKgQEvT29WDB/Dji+wBwTIUFqLaxQEi83wDvcr2RocUPeNCFZAiEuRIGDWSLddt2WtQVJhBCC06dP4/z589i0aVPBjriJgGEYVFVVoaqqCsuWLUMmkwlSYKdOnYIkSeO2ynUcZ8IkYhgG3ve+9wEAHnvssbcciQAzkEjKYbIUeouBZdm8FuTx5GUJITh58iQuXLiAjRs35hUbR4NISMFdN70dL+87gjdOniv5WFkSy+p4lTPBEgU+OI2GFBkdZ8/DtCzMnTMHPM9TeX/LAsuwgcUrqSfIZDPQNA39sX64rgtZlj0pd3XEF9IlLkAILMtCJKRC0zMjWn8BqqZbruhNH0MjHyanIMyzDHr6eiGKIpYsWlBW4kQWi6vjBkrBElUBZlgGpEjtgBBCyboER1q2A1mkWmYtjQ2wHRdGJgsjY0DXqPe64zoIqSqMjAlF4Ypuaj5xJDUNLMsiElKQMe0RJK36LpllzkCOS6BlDC9VRglquMXzknlNWLNsQcG1nDx5Ep2dndi8eTPCw9QNpgKyLGP+/PmYP38+HMcJUmCHDh2iTSN1dUEKrNRgsU8iDMOMm0QymQw+8IEPwDAMPPXUU5NOorMFs5ZICrnxTRS0jVLAxYsXAQCNjY1jznM6joNDhw4hlUrhiiuuGPfphGVZvL11NRY01+Opl9u9ts2REAW+JJGwDOsNzxW/V369wrZtHDtxEjzPY8XypdCzJohbeLCOYRgosgJFVkDqCCSeR09fX9CFI8syVM+0S/BkPFxCPJl0DRzLFiQUs0z6CCAwzZFRRiabQXdXN6LRKFqaG6mGFyn5sr2No/Tz8RwXeN6HQwqMrDUiYh7NZDrPsUGXWNrTMVNlGZGQgk7Hgeu5GiqSgNhAHL29vZBkOairiDk1gUhYDcjW9WTnCSEIqTIYhqV6a4x3gCjzFcn1PqHddEP+7KosI2Oa4DgON129ccT3zXcj7enpwebNm6flJM5xXJ5VbiqVQl9fH86dO4c33ngD0Wg0SIGFQqHgNTiOg337qJtpa2vruEgkm83igx/8IAYGBvDrX/96UoRjZytmXI3EdV1YJdIflmXh2WefxQ033DCpvdl+Z1Y2m0VPDx1ci8fjiEQiwQe13Bclk8kEZjfr168flczKaJA1Lex+/QAOHu8Y8bshDafCCKsyUiU2OQZ0A/Fz86qqor6+HgxDLVUVRQJxScnTPSGEyoF475tt03oKLdYbEAQR1VVRCKJIu1hyNiSOZRFSFWg6nUcpH42M7JzyRSN9e9mwqiCt6xB4HrIk5knO+yhUzxkOkS8yMR9S4Di0jkK9OpiyUR8dGB35fIlEAol4HIsXLoCqDtU8/NZizTOe4nkeIVVFOBJGSFFGtELnQuB5hEIyNC1TUum5kGnXcBBCcMd1V2LForkjfn7s2DH09fVh06ZN09KqWw6ZTCYo1vf390MURTQ0NKC2thbnzp0DIQQbN24c1z5iWRY+9KEPoaOjA88991wwJ/NWxawjEtd18fTTT2Pbtm2T1lrn10OGF9VN00RfXx96e3uDdsTGxsaConSpVArt7e2ora3FqlWrpqRV8fSFbjz98t6cdAztgCqUIvIR8TSoikGVRPQPxtHT04OqqirU1NSMeIwiS+A4Fmmt8MQ07fYpvCk7jgtd18EQG739g7RryGsrlj0nSIAWhf2TdrH2U0KIl8ob+nykUin0xfrQ2NDopVWIpzo89BifrPRgFoVAFkVkyqQEw0rhzX/ovoiQRBHxVOnmAUUS8xwQ/dcSj8cRj8fR0tICRVHAcQxkUaSOiTnS8a7rUoFOXQexLRhZk/quh0JQFWXEZy1X/j+sKiCE5EnRF3pcMSxfMAd3XHfFiLUfOXIEAwMD2LRp06yQPHEcJxiE7OrqCrrAGhsbUV9fP6a9xLZt/MEf/AGOHj2K5557LujwfCtj1hEJADz11FO45pprJhxKD/cQKdXe67cj9vb2oq+vD4IgoKGhAY2NjbBtG4cOHcLixYuxaNGiKZV8MLImnv3tPhw9fX50p2pPBrwobAtnzp1HfX19wfwuJQmvXuB5shvDWkRHYzPLey3MhmEE/iqEkGCyvramGlnTAsuyCCsKDDML284nyOFSKPF4HIODg2hqboKqqGXXwjCM1+3FlG2XliUJRiZTcmaG52maleM4KJ6U/ci2Zp+0ht4DQggGBgaQ8uZbJEnyUkxDa5JFEYLA02jS+4oqnnR/NpulVgKaFrQW++TM80LBDjNRoNGZZtAW4tHY+cqiiA/vuB5hdYgoCCE4fPgwEokENm3aNKtaXF3Xxf79+2GaJlasWIGBgQHEYjEkEom8FFg4HC76HXYcBx/72MfQ3t6O559/ng65VjA7ieTZZ5/Fli1bJtRiOJFJddd1MTAwgN7eXnR3d8NxHNTU1GDhwoWj9mueKI51XMSr+95AbDBR9DE8z9G5iEJfCkIwGI8jo6VRXVtX9FRZFVYDgyQfYZUqAGe9SWyfkIshdxgy9/mz2Sw0T8NKYAGwfEAsgiAgrCowspRQCCFQZOqTTkAw0J+/EdNLekrBZSINgechijzcYV7pQ0vz/OPLFOtHpNkYOpNi2nYwozFcc4sQEggZ+kOSkiAga1Ezq+HwtceypuXJveR/N3w3Q03Xkc1kUB0NA5yAkKpClKSRNMgwiKoybJdAKxCl5OLmt7VizbIhC1zXdXH48GGkUils2rRpVg3b5ZJIa2tr3hxKNpvNS4HxPB90geV+nx3HwSc/+Um8/PLL2L1796g7Md8KmHFEQgiBWWYj2L17N9avX18wDTPa53Bdl7q/jbO113VdHD16FL29vVi2bFngC2JZViDx0NBQehBuotAzWez+3QG8cepswd+HiwgHEkIQ6+tDxsigqbmpZC2nlCBiNKwCDFNWcbYgkeSAZWiRPZ1OQ9d1ZDIZSJIUdIjV1VRTMULNCFqTM5kMmluaIQpizvOUrhcBI++JIkvgvFmKvNdcpng+dOovrH0VClElXSM7ZIVMCEFvby+y2Szm5HTEhRS5aGpwaN0yDUx83asC4FgG8SQ17TJ0HSzHDU3Xe2lEWpRXoBsZSKIAUeBH6HsBwKI5jXjPDVfnpdcOHjwIXdfR2to660jkwIEDyGazI0ik0GMHBweDmRXTNPHAAw9gw4YNOHXqFF588UU8//zzs8pj/lJgVhLJb37zG6xcuRINDQ3juv5kyJ0cOHAApmliw4YNwWmeEIJ0Ok2Npnp7oWkaamtrg7rKVH35znb24OlX9iIxLFdfiEhc10VPTw8c28bSJYtLpr38e1Mu2uBY2hlWqADMcxxsxyklBExP7TlpHcdxAnFJv9BcX1uDcDiMnt4YMmaWOhpyQyRNI5bSviV+jSVT4DWLArXITesZCHz54cNSBBu8Lk8zS5JEpNMGOru74DgOWlpaglMuvU45lWAOrkuCWpjfRKBnzCAtm0sQ/v/nqha7jgNFVdFQVwMw+a3FDEMHMR3HgZ41IYkCPnzHO+lBAUMbcSaTQWtr66Q1kVwK+ARoGAY2bdo0pol4vwvsK1/5Cn75y18Gsk3vec97cPvtt6O1tfWSeot8/vOfxxe+8IW8n61YsQJHjx69ZGsohlnX/guMf5akWFF9LNB1Hfv27YOiKNiyZUtexMEwTOBguHTpUug6nQ/o7OzE0aNHUVVVFXSATWaBcuGcJnx457vw6r4j2HPoBFxCU0HDN1XbttHd3Q2OZTFn7lxIolhyw1Tk0jUYhmGgGxkQeMVyb4I91wZAVaQRqbHhGK7JxXHckBOk68IyTcQTCXT19AIAGurrwBC6sfpOkKM71Rc3fTItG6ZlIxKiJ3fHdUbUaHJfU9owStZPBIH3BhQJMl4noCwKaJg3d4hwGZQf0ASdFcqt+1i2HcjQhFUZjkvAskxeFDVctdg0TRiGjt7eGIyciE9VVc8gi15fFgVcu2l1QCKO42D//v2wLGvMG/F0YyIkAgz5rzMMA03T8Morr+DEiRN4/PHH8fWvfx27d+/Gxo0bp2j1hbF69Wo888wzwf/PFFXhmbGKHIxmcx/rdPvwovp4SSQej2Pfvn1oaWnJUyQuBlVVsWjRIixatCiYxu3t7cWJEycQDoeDYn2p4t5oIfA8rt28FpcvWYCnXm7DYDKVd/I2TRPdXV1QFAX1DQ1evr105MeXOW3lEo1vLct6nuxpPVNAamQkJFEoOZnPsiyqqyLo7euDqqqIRqMwDAMDFy5A5KlnPcsLkITSQ5/Em2EpDTqjkjWpJE045BljDSuUuy4pK/0viVTaxnEcdHnkXVVbB8u2EVJkmmYCyjZLKBIdKiz48SAEad0Ay7CQRAERVUE6kxkxOMkAkEQR9TVVSGmG155NLQUGBgYgCFTxWVVVNNfXYN1liwEMzVo4jlM2JTTT4LouDh06BF3Xx02AhBB88YtfxP/7f/8Pzz//PC6//HJcddVV+OAHPwjTNKflfvA8PyML/DOOSEaDsUQkw4vq4xVe9A16LrvsMsyfP3/Mf587jWtZFmKxGHp7e9HR0QFJkoJIZaJGPw21Vfj9267DgeNn8Ju2Q8iYFgzDQE9391B7rzcjUi59U85QqhDRuIR6svMci2gkjEQZXS2J55EtQTbZbBYXL16gBOgpMquqirq6OpimCU3T4GZ0nDk9SIvMIRWqOjQE6SOkKNDKRCwhRQlO9QQIIoqQooBhGaQ1Y1TDh7JE5VIcT65FEEU05cjA6wZNn1HfehV6JlOU5OjgbcmnQ1iVA2UClmURDgr+Q++vIolIpnU6H8TzgeSI69L2bD96Xju/FocPH0ZdXR0uXLgAAGhtbZ0xJ9/RwCcRTdOwadOmcaXiCCH4x3/8R/z7v/87nnvuOVx++eV5v5+u9N6JEycwZ84cyLKMrVu34stf/jIWLBipOHCpMeNqJEBp33YA2LdvH6qqqrB48eKS15mMeoivI3Tu3DmsXbs2T15+MuBLPPhtxSzLBqQyVt2g4dCMDB595jd46XftqB/mCji8LjEc1Lq39Am+3BxCNKRCz2ShKtR7Y/hbyqC4/wtAB8oG+/shq2rJxopoWMVAPAHLNGFmsxiIJyGKQjBZL4oiLcSXiHwIIVAlEcYIC9ohSCKtoyS1ka8l9zohVUYimUJXVxdkRUGDN+CZCypeSe8/wzAIqTIs282LEkfjsigKgjfpP8yeGrR1m+NYaEbWU0AofXDYtGoZNiyfj56eHly8eDGQG/EbR2ZDqy8hJFCW2Lx587hJ5Otf/zq+9rWv4dlnn73k6atiePLJJ5FOp7FixQp0dXXhC1/4Ai5evIhDhw5NuzTLrCSSQ4cOQZIkLF++vOhjJoNEHMcJeuY3btw45TpCfseITyqO4wRf4vr6+jG1FRNCcObMGZw9exaNc+Zj77Gz6O4fDH4fUUsLEdLp8OK/9z3iS2lw5BKNwHGQ5fwpczrwV/g5/C64BfPmgBOKNymwDAMwyOs6YhiAODb6+gehaRoUSQQn0pqALMsFPwsheXTF85Smg+NoS24ma42YaFdVCfF4El1dXbTjrL5+xB0aavfNB/EUeTmOg5HJAGBKkjnt+FLKpseiIQUENJVpFpXmV3DvzneBAcHevXshCAKWLVsWDPElEolJT8dONvwZl2QyOe72ZEII7r//fnzlK1/BU089hSuuuGIKVjo5iMfjWLhwIb72ta/hIx/5yLSuZfbEqzkol9qajKJ6NpvF/v37AQBXXnnlJQllWZZFXV0d6urqsHLlSiSTSfT29uLkyZM4dOgQ6urqgg6wci2MR48eRSwWw+bNmxGJRHD58iU4eKIDL7YdgpHJjsK6t/RaFc/ithg4lqW1D+9CluPA0gxKKF6xupipeyqVQiwWQ3NzE3hRLnmoCKvKiMl9QgCwPJqaGhGSZaQ1Db39A+jt6aEnda8lVlVVMF7EV+48RQgJUn2O4wappHBIofMo3syJruno7OxE1EsjFrqNvMAXJBKGGRKLjIZVEDDIZM2iKcawqpRtU+Z5FmkjA9clIKCtxixLVQpyF/fOKzcAxEWbZzHruwNGo1EsWrQIpmkiFouhr68PZ8+eDQZyGxoaJhw5TwYIIXjjjTeQSCSwefPmcZPId7/7XfzDP/wDnnzyyRlNIgBVSr/ssstw8uTJ6V7KzIxIctV3C+H48eOwLAurV6/O+/lYJtVLIZ1Oo729HdXV1Vi1atUlGTAsBUJIcELv7e1FOp1GTU1NQCq5KQfbtoOe+Y0bN45IR+iZLF7ddwTtR06W3DyHy4wMR7SM9EoxbSkfsihQn3E9k7cOXzakqakJjfV1ZSfQFVkqWawXBB62ZSMSUmHaFuLJdDBZb9s2FEVBXW0NWI4HxxU/V5WbUZElEa5j4/jJM6iprUF1EQE/RZK8Icjir4nnec/UiwCEQShEyVQz8v+umBZYLoq5OvI8B0WSYJgmFs9pwi3XtKKtrQ2qqmLt2rUlicEfyPVnLWzbDmanpsJ0qhx8EonH4+OetieE4IEHHsBnP/tZPP7447j22munYKWTi3Q6jQULFuDzn/88/vf//t/TupZZSSSnTp1COp3G+vXrg5/lmlAB4yeRWCyGgwcPYsGCBViyZMmMC98B6n/gk0quvEN1dTWOHTsGQRCwbt26kl/ovoE4dr9+AB0Xe0b8TuR5mGUK7VIZ6ZXhJk8jfq9Snwye46jcuZ4JTItaWlogCMIIXa0RaxAEZC0TpdJreevwZi0IaP3ItixarPcIRpYlr66iQsgZdCSEQFVKE5amaRgcGEBtXS2aGxu9ifz8qJleRy7rH1MsrUgHCAVoRhYhVS47CCpLIoxstqzMy923vgMnjh1BOBzGmjVrxhRd5Cru9vX1IZ1Oo7q6OiCVqVYEztX92rx587hJ5Cc/+Qn+7M/+DI8++iiuv/76KVjpxPGpT30K27dvx8KFC9HZ2Ym//du/xb59+/DGG2+Ma6ZuMjEriaSjowMDAwNobW0FkF8PYRhm3GH2+fPncfz4caxatQotLS3jusalhmma6O3tRVdXF+LxOHiex7x589DU1IRIJFKSCAkhOHOhG8//bj8GEqng5+VIgJ6EraL5ryE14BL2wKqClK4Hj++PxQDiorauAaynXVVuwy2vF0Ug8ELB1BDVsuJgWQ4yJh3s8xWLDcOAINAOsFAohJqqaKA3VgjpdBrpRBzhquqgjsaAQTgkw3boYCDDMKMaYpQE0SPH4hAEDrIowrIdZIo0BwyRX+lrbV69DIKVRlVVFVavXj3hg5Pf5t7X14eBgQGoqhqkwCbakTgchBAcPXoU/f39EyKRn//857jvvvvw4IMP4uabb5609U023v/+9+PFF19Ef38/GhoacM011+BLX/oSli5dOt1Lm5lEYtt2yRrIhQsX0NXVhS1btkxaZ9axY8fQ3d2NDRs2oLq6egKrv/QYGBjA/v37MW/ePITD4cA9ThCEoAOsurq6hBCdi/3HTuPl9sPIZM28jqJCKJfWEoXSKRdCCESBg2XT962nuweu63qSJwJCigzX8+0oBobxO76KHzjKpdcABIN3mp6B4xXsqdquHsxaKJIIThCh5kiN+Egmk4jFYli0cAHYIqkxRZLAcgxch5TVAaOS+qU7tQJFZ0KgKDJ4lqM1p5xvcrGUVi5kiceaudVoqK/HqlWrJj369oVO/c8jgIBUamtrJ9RSnEsiE1Egfvjhh/HRj34UP/vZz3D77bePez1vdcxKIunq6kJHRweuuuqqCZOIbdvB9OvGjRtnhSR2Lvz5luF2vr5stt8BBiDouKmrqysYtRlZE6/uewOHTnSUTluVaUstF9FIXrHZcRx0dXWBYzk0NTcFa6JEIwT1hOGT70D5rjL6mNJEwnlDgS4hYD1l4EzWyiNBWeSpNa4n2eK6biAsaVkWEokElixaABelo+CwqiCTNWlqq0DaCxhd/UQQeFiWPaJNYciIyoLtUPvkQs/hw7IsLKxVsHH1ZVi5cuWUp3B92Xw/WslkMqitrQ1SYGOJJnK9UDZv3jzu7+zjjz+Oe++9Fz/+8Y/x7ne/e1zXqIBiVhJJb28vjh8/jquuuipwShzPF8EwDOzbtw+iKJatKcw0EELQ0dGBM2fOYN26dSXnW/wvsV9X8YUlfS+G4SfDeCqNl9oO48jpkTa/hBAIPF9wc/dRbgOPhBQMxBN0zkKS0dDYkPf+5bYNM6CT8pmslVe3KZcm4jgWruOW1vgqSHgEYVWF67rQjCwi4fyTva9YnEql4DgOHSatrwPD8UVP2ITku0zStBc1x9K9tNdY6iclZ0sIQU00DMtxvI6ukd8L0zJh6SncdfO1WLFixbTUATVNC0glkUggEomMSsadEOrK2NvbOyES+dWvfoUPfvCD+MEPfoC77rprIi+lAsxQInEcZ4SdqQ9/U3z99dfR3Nxc8oRdColEAvv27UNjYyNWrFgx7e2LY4Hrujh27Bh6e3uxcePGMcnp+8VRn1R0Xc9rK85tc+6JDeKFPQdxtnOoIC9LQtG8vPcM4Fiu5PwDzwKnTncgFA6hvq5+xF4XDYWQLDARHwmpMC0bLiGe1UDxDXA0fhvlBipDqgyGAJqRBcmhpFgsBk3T0NDQABbAQDweKBb70UrufSxFerJEfUdQJpUH0E43I2uW7M3mOdYTeCQQeC54jb5umGma6Orqwt23X4crN420z50O5LYW9/f3F20tJoTgxIkT6O7uxubNm8ftyvjcc8/h/e9/P7797W/j7rvvnhH3YLZjVhFJrtyJHyb39vbCtu28tE25dt2enh4cPnwYS5cuxYIFC2bVB8lxHBw4cGDSUnF+W3FfXx+SyWRBYcmOi914Yc9B9PbHy9ZHyhGNYejo7elFVVUVrUUVuPVhRfHmTAqAADVVEWRMs2gh2Vf5LZWek0WBztKUeO+jYRXJtAaB46EodG6mu7sHmUwmkIH3U2zDFYs5jgtk8Gurq0oW6wkhCCsyOJ5DxrSoh0wBhEZT8ynw/jCgtZdMJoOTp87givWX40N33jojP/eO4+TJuPutxfX19cFc1URI5MUXX8Tv/d7v4f/+3/+Le++9d0beg9mIWUMkuSSSm8oihAQfsJ6eHpimWTRt4097d3R0YO3atdPeMjdWZLPZPE/4yU7F5QpLDg4OIhwOB6SiqiqOnjmPPYeOo6c/XvQapYhGS6cRHxxAtKoakWhhSQfqIc+WtA9WZRm6QT3eGYZBWs83aMp1dSy+ztF0fHHB5LrvJSKwDBqamuG4pMSEOgn0qywzC9OyA6VdVVVHbF4hNdf/hLYoA8gz1goEMktsfKK33kJf6Gw2i66uLsxpasAfffh9ea6HMxW50fPFixdhmiai0Siam5vR0NAwZjJ55ZVXcOedd+Kf/umf8LGPfaxCIpOIGUkkw10Si5HIcOT6gfT09MAwDNTW1qKpqQl1dXU4ceIEBgYGsHHjxmnXphkrNE3D3r17UV1djdWrV095Ks6yrIBU+vv7IcuyF/HV42x3P3574EjB0zEd3Bu5iScTCfQPDGDp4tKFaVUuLQfPMgwIyZ9ElyURAs95tQOmbDNAoPFVIv0WVuQgKiIuQXd3d9BZ5gsjioKAgUSq5IYUUmT0D8apE6SmwXEcKIoSEAvnzdEUIr7AHlfPQJTEsvWTYk0O2UwGXV1dqK6pwW3brsbVG1aVvM5MAiEEp06dwsWLF7F27dqgtjLW1uLXX38dO3bswN///d/jvvvuq5DIJGNGE4k/qT5euRM/bdPd3Y10Og2O47BkyRLMmTNnVpnzDA4OYt++fZg/fz6WLl16yb8EjuMEOey+vj5wHIeamlp0J3Qc6egMUkj+svI+UYRgcHAQiUQCzS0tqK0uPZNRLnVWShNLFHiIniy94xb/WI9GDNEnEtdx0dXdBYZh0NzcHBA4x7BwQbvLJFFAWjPgDvsqFRra9BWLdV1HNptFNBIGL4iBvXDB1+yZh9mOA62ANTDgperMkcOZmUwG3V1dqKmtRUtTI/7ne26GJM6eppJTp07hwoUL2LRpU57WXanW4uHp7fb2dtx+++3467/+a/zpn/5phUSmADOWSEzTnJRJdU3T0N7eDtVTkPVrAdXV1UHaZiarmnZ3d+Pw4cNYsWIF5s2bN93LyROW7O3tRSZroi+dxbneOCKRSL6GFyHoy/EnlyWRRhMleqkUSYKRLUE0ahlpFkWBYZoIyRL0Iq6NxaImHzxH51NsTwae53k0NTWBYYc+fxFVDQYqAaot5gs5+t1l5dqgbdsGXCouaRhGnmKxJInwSSE3YlG84vxwNeVCnXIZw0BXdzfqamsRrarC9Vesx6bVxYVOZxp81e3NmzeXFEx1XReJRCKvtfjw4cOwLAvr1q3DH/zBH+BTn/oUPvOZz1RIZIowI4nEtm1kctIb403j5A7qLVu2LPgQZTKZYCOMx+OIRqNobGxEU1PTjJkjIYTg7NmzOH369Iyt5xBCkEgk0Nvbi/MXLuLwqfO4OJCGLMuQFQX9sRhMy0JLczN4b9CwlK3saKTrZbG0nW5uRMMwDMKqgqw1NBsi8hz971JF9pCCAU/BV5KkEe3JQOmOr7CqAAyDdNoo1VjmRSw0inBdB7puBNEKy7KBXz0YNhCX9OETV9a0wHL5ApkAYOg6unt6UF9Xh0g0imhIxUfuvAk8P726caOFr1xdjkQKQdM0/Od//id+8IMf4I033kBLSws+/vGPY8eOHVi7du20kslXvvIVfPazn8Uf/dEf4Rvf+Ma0rWOyMSOJ5J577sGpU6ewc+dO3HHHHZg7d+6Y3/wLFy7g2LFjIwb1hsOXGOnt7cXAwEBQYG5qappynaBi8Aeuenp6xtzeO13w61Md587jN6/vx+FT5wEA1TU1iITD4HjeK3CXjiaKdmsBtK24jKGZJIkFjbLCqgLXdcHzfMk1EELAguDsufNQVZXO5wz76AVkVuIjGfValQWBh6ZnRqS9gOIRCyEEhmFA1zW4lkU9XVQVqldXyTtYEYLqqjAs26UT8QwDXdfR09OD+vr6oBZ489s2Ye1lpf17Zgp8Etm0adO4a5nHjh3DLbfcgrvuugsbN27EL37xCzz11FP48Ic/jPvvv3+SVzw6vP7663jf+96HaDSKbdu2VYhkqnHhwgU8+OCD2LVrF1555RVs3rwZO3bswI4dO7Bw4cKy+lEnTpxAZ2cn1q1bh9ra0hasuRheYFYUJSCVS+W/4DgODh48CF3XZ+WkfTabxd69e2E5BBdiSex94zg03YAkSaitrgIvikVrAeWkWcJqadkPnuNKDkr6z+ES4kVGI99PDgSnO84iEonQz06BtzyqqkjqpQUTBW6o4yvXv8RPe/mqxKW+fJLXomxms9C81mLLsoJifUhVEQ6pQTQi8Bwcy0LH+XOorWsITvJ11VF8eMcNs2JWqqOjAx0dHRMikVOnTuHmm2/G+9//fnz1q18NXncmk0E8Hp8Wq9p0Oo3W1lb827/9G774xS9iw4YNFSK5VCCEoKurCw8//DB27dqFF198EevWrQtIJTddBQxtwpqmYcOGDROKKGzbDuxwY7EYRFGk0uaNjYhGo1NCKqZpor29fcrae6cafmdZTU0NVq1aBZZlkdJ0vNR2CK8fOIJ4PA4jY0D0isvB4J53K4u10/qIhNSSirflahJUXoQOMvodUemcaCGTySAx2A9JVlFdU13wGrTji/NMvQojpMhFfUJCqgJCAI5jSq4VKNwUYJkmNF2HrmnIZLOojobBcgLUUAimaaKvt5cefhoaQECQNjLYef3VuGxR8ah8psBP5W7atGncUXhHRwduueUWbN++Hd/85jdnDHnec889qK2txde//nVcd911FSKZLhBCEIvFAlJ57rnnsHLlyoBUZFnGxz/+cfz5n/85rrvuukndhIfb4XIcF0QqpcQQxwK/KSAajY5ZynsmIJFIoL29HXPmzMHy5ctH3JNkWsfvDh5F+5GTSKfS0HRaC+A4DiE1hOqqKFieL9naLQmlFYXLdXzRAcP83/vRQv9AHBe7OlFXV1fyJDwqjS+l9GNYloEk0pZl33RqOEYTsfAci4HBOHRNg24YVCY/FEJVdTVkSQIYBnMb6/CB27bN+CLzuXPncOrUqQmRyIULF3DTTTfhxhtvxLe+9a0Z8x36r//6L3zpS1/C66+/DlmWK0QyU0C8ltLHHnsMDz30EJ566inIsox169bhH/7hH9Da2jplHyLf1MevqzAMg4aGBjQ1NY3bKS4ej2Pfvn2YO3fuiChrNqC/vx/79+/H0qVLsXDhwpKPTWk6Xj90HPuPnoJl2TAMI/AEyZgWVE+6fbjKriQKyJaYmKdCj/wI69tcFEud0TbxHixdvBiiJJVU6C2r8cVynsZXifbjnHWwLIOwqiJrWXmtwqORePEjllQqhVhfH6qqq2HbNnRdBwNADYWw851vw5Ub10y7OVsp+CTS2tqKqiKGYOXQ1dWFm2++GW9/+9vxve99b8a83vPnz2Pz5s349a9/jXXr1gFAhUhmIh555BF88IMfxO23345MJoOnn34aLS0t2LFjB3bu3ImNGzdOKan4Yog9PT0ghJRV2B0OX65l+fLlmD9//pSscyrhtyeP1cNF0zN4/dAx7Dt6CpZtI6TIiA1Qj3Vd0/NUdhVVQVUkXDKtVc5oq5jYpG/r29jYiObGOqQ0A6oig2UYpIcRhsBT5d2SRfYy7clA4cl74plusSy11/X1sopB4FnYtktl7Pv70dzUBMWb9CaEIJPJgIOLa9YsgePYqKurC+YsZlLK9Pz58zh58uSESKSnpwe33HILNm/ejB/96EczhkQAuj+9+93vzluT4ziBb1I2m51R6x0vZjWR7N+/H9dccw3+4z/+I5CBTqfT+OUvf4mHHnoITz75JGpra3HHHXdg586d2LJly5S9aX4rbE9PT6Cw65NKfX19wec9e/YsTp06NWPbe8vh3LlzOHnyZFn14VLQjAzaDh/HweMdQxPtxFPZ1T1LXMtGbXUVWF4IpsGHo1DaKheyNLJtOJFIYGBgAM3NTZBlBQLP5c2diAIPSRKCrqtyzQBU40sq2DXmoxzh0dcSAkA8Cf3C7dDRkIILnd3oHxhAS3Mz5AJNGTds3YgNK5cGag+5Doa+SOd0NnNcuHABx48fR2tr67g9gGKxGG699VasWrUKP/3pTyfkcTIVSKVSOHv2bN7P7r33XqxcuRKf/vSnsWbNmmla2eRiVhMJQE80xU7yuq7jqaeewkMPPYQnnngCoVAI27dvx86dO7F169Yp+9D5GkE+qWQymUD/q6GhARzH4fjx44GR1nhPYtMFQghOnjyJixcvYuPGjZOyfiNrYu8bJ7D3jRMjNnzLNJExDCRTaWSzWciyHBTr/fewnJFTfv2EYHAwjkQijubmFjr3UkJskmWpu6FtOzBKpL0USSzrSFiujkMIgSQJME0bDENrMrZLoBtDemIcyyAeT6C/vx/NLS0FB2pVWcJH33crhGGfccMwgsE9X0/NP/Bcqs5EYIhENm7ciJqamnFdY2BgALfddhuWLFmCn/3sZ7NGraKS2prFyGQyeOaZZ7Br1y48+uij4Hke27dvx7vf/W5cc801UxbuE0KgaVpAKpqmBc81W2ZEcuG6buCR3draOumzNlnTwv6jp7Dn8PGgFqFIQ7a7tm0HulWBdHsohKg3q1IMQ7UNgv7+AaTTKbS0tEAUJQDlN3hKNCbCqgqHuHkbu49yXWVA+RZlVaGClCOfX/RmUgyYmQwudHahpaUFUhFVhmtaV2NrGU0ty7KCzsRc+XbfUXOqUsIXL17EsWPHJkQi8Xgc27dvR3NzM3bt2gVJkiZ5lVOHCpG8SWBZFp5//nk89NBDeOSRR+A4Dm677Tbs3LkT11133ZR9KE3TRFtbG2zbhiAISKfTqKmpCaRaZvqXwZewz2Qy2Lhx45RKy1i2jUMnOvC7A0fBMEAiNXKD9qXbHcvEYCIJnueDSCX3XjIMnXJ3XRd9fTEYBpVsEYShE2w5M67hqTNFFsFzHNK6AQIqJkkn1ItP5o9G46tcii6RSCCra2hobgbDFk7TijyPj951GxRp9Cd031HTj1Zc183Trpqs6L2zsxNHjx7Fhg0bxjTjlYtkMomdO3ciGo3isccem9ESR28VvCWJJBe2beOll17Cz3/+czzyyCPQNA233XYbduzYgXe+852TlkPWdR179+5FNBrF6tWrwXEcDMMIur8SiQSqqqrQ1NQ07bnrQrAsC/v27QMAbNiw4ZIVbB3HxZHTZ/G7A8fQH08WfEwkrCKRTAcdYLqug2GYEX4gvb29MM0sWlrm5G2MQ0RT/KtQjGh4joOiUNIqF42US7+xnpZX4XUQDAwMwjIN1NTWQxRF2hTAsvSaOdHR5tXLse3KDSXXUgp+vc8nFV9F2yeW8R54urq6cOTIkQmRSDqdxp133glRFPH444+P25ekgsnFW55IcuE4Dl599VU8+OCDePjhhzE4OIibb74ZO3bswI033jjuNI7f3ltsxgKgxWWfVAYHBxGJRIJZlen+smQyGezduxeqqmLt2rXT0mVCCMHJc5343YGj6Oztz/vd8C4oX2LEJxVFEmBkLTAMgzlzWsDz+SSoKlKe98dwjIZoQqoMFgxsxy0oOslzHJwxtAXng2BgYACpVArLlyyBOawAL/AcFM/K13UJ/tfv3YJIaPI+M750e29vL5LJZKBN19DQMOrvhE8i69evR11d3bjWoes63vve98J1Xfzyl78cswZXBVOHCpEUgeu6eP311wNS6erqwo033ogdO3bglltuGbV8Q29vLw4dOjSm9l7TNPOkWkKhUJ7+16WcM0mn02hvb0ddXR1Wrlw57UNehBCc7+7D7w4cxZkL3WBZBsQtrijsui76Y31eTYNGOKo65AfCslzZdNJojLJY1icaAkWWwLFc3lBiuecAaLpsZLGeoL+/H+m0hvnz5oHjuBJURLB+xVLceM3mks8zEWSz2SBSGRgYgKIoZT1Buru78cYbb0yIRDKZDO666y6k02k89dRTs662+GZHhUhGAdd1sW/fvoBUOjo68M53vhM7duzAbbfdVvQL5LfHrlmzBo2NjeN67tyCaCwWgyzLgVRLJBKZUlLxI6l58+ZNiw9KOfTEBtF+5CQOnehAoY+x4zjo7ekBGAbNzU1gGCbwA9E0DaZJdavqaqvB8QI4rnAdoNxwoCJLBU2n/EhBMzLgOa5k22+uEvAQqJoDleGfg7qaqrJkdNet12FBy/g+a2NFridIX18fWJYNivW1tbVgWRY9PT04dOgQ1q9fP+4W8Ww2i7vvvht9fX14+umnx12gr2DqUCGSMYIQgsOHDweikkePHsW2bduwc+dO3Hbbbairq4PruvjhD3+IZcuWTVp7LDBkMNXT0xPof/mF+nIOcWNFX18fDh48iGXLlmHBggWTdt2pwGAyjT2HjuPQ8TNBR5TvJVIVCSNSVVjGxrIsZHQdybTfViwFfiC5NaDCkcIQykUbkihA5HnYrlP0OiO7xohXn8hgzpwWcBxf1oe+JhrGR957y7QQvu9T45OKZVkIh8NIJpNYvXr1mIZVc2FZFj70oQ/h7NmzePbZZ8cd0VQwtagQyQRACMHx48fx0EMP4aGHHsKBAwdw9dVXwzAMXLx4ES+99BKampqm5Ln9Lpuenp48/a/GxkbU1NRMaDPp7OzEkSNHsHr16mlRSh0vNCOD9iMn8bv9R3Cm4ywURcHihfNLdmP52lmOY0PTqMKubzIVCoUQCUfACzxKjbMXa9n1kUs0qiyB41ja7ZXzzctvCybo7e1DNpsJGgPK1XEA4JpNa8q2/F4K+F46J06cgCzLyGazqKmpCaKV0XZZ2baNP/iDP8DRo0fx/PPPz8qh3bcKKkQySSCEYM+ePfi93/s9pNNpWJaF9evX44477sCOHTswZ86cKTsp+qdBn1QIIQGp+CmG0aKjowOnT5+eUD57OpFOp/Haa79D0nTRm8wga1olT/GFFIOpyRQlFWLbMB036ACTZQm5pEJrNKVK6IUdGXmOg6rQlJgkCgHZEUK87jIziESA8lEPwzD46Ptu9abipxd9fX04cOAA1q5di8bGxmAI0jeS8z1/Ghoaig5BOo6Dj33sY2hvb8fzzz8/qw40b0VUiGSScObMGdx0001Yt24d/uM//gOxWAwPPfQQdu3ahVdffRVbtmwJpFoWLFgwZaTiC1r6HWCO4+TpfxXruPJ9XLq6umbloCQwpEA8f/58LFmyBK7r4njHBew5dBzdscGCf1NOsiSsyujp689pK0aQ/lIUBeGQUlQyHijiY5/7ewBV0RBMy0ZaM9DXR+V1WlrmBO8Vy9ALleoaWzyvGe+96dqiv79U8ElkzZo1BaNx0zQRi8UCr3VJkoJivT8E6TgOPvnJT+Lll1/G7t27SxrTVTAzUCGSSUJnZyf+/d//HX/1V3+VFwEQQtDZ2RnI3//mN7/BunXrsHPnTuzYsWNKi9iEECSTyWCq3jTNQKqlvr4+mKVwXRdvvPEG4vE4Wltbp73deDzwbZWXLFkyQoGYEIILPTHsOXgMJ891Bj/P9Scphlyi8cUQ/WI9IS4a6moAloeqqmCYkZFfSC3uTeKD41jYto3B/n4ABDV19XnXGo0S8PZtW7FyyfSKfsZiMezfv78oiQyHn571dcD+/u//Pjjs7N+/Hy+88EJZNempwre+9S1861vfQkdHBwBg9erV+NznPodbbrllWtYz01EhkksIP23xyCOPYNeuXXj++eexcuXKgFRWrlw5paSSTqcDUjEMA3V1daivr0d3dzds28bGjRtn/HR9IfiNAStWrCh7eu2PJ9F26DgOnzwLVZFKposEnoNl2yhMNATZbBaWmcVgPAHbtqEoqpcCo23FQPmUlCKL0I0Muru74bouWlpa6IS+IsO0LGRNu2wNRpZEfOL926fVjz0Wi+HAgQNYtWrVuNJQhBD8+te/xje/+U289tprcBwHN910E3bs2IE77rhj3B1f48UvfvELcByH5cuXgxCCH/3oR/jqV7+K9vZ2rF69+pKuZTagQiTTBD8F9eijj+Khhx7CM888gyVLlgTy96tXr57SmY10Oo2uri6cO3cOruuitrY2aCueLeJ3wJCM/WhPwT403cD+Y6ex942TBVt3gfKOi7RATokmv63YhKJQYcm6mhpYRRR8AZo6O3HqNAghaG5uHvGeh1WqcEBnUgofMjauWoYbtraWfsFTCN+PZrwkAtCo+K//+q/x85//HM8//zxs28ajjz6KRx55BB/96EfxkY98ZJJXPXbU1tbiq1/96oxYy0xDhUhmCBKJBH7xi18ERl1z584NSGXDhg2TTiqGYWDv3r0Ih8NYunRpMKuSTCZRXV0dSLXMZB0jX0F2IjL2lm3jjZNn0Xb4xAgJlnLaWJFwYZFG27agaToMQ4euG5CkIWvhXH0v13URH4ghY1oFSQQYmnYXeB6yLMIwzBGijx/a8S401U/PbMXAwAD27duHyy+/fNwtvoQQ/N3f/R1+9KMfYffu3Vi5cuWI30/nDJPjOPj5z3+Oe+65B+3t7Vi1avo742YaKkQyA5FKpfI8Verr6wOl4i1btkyYVFKpFNrb29HQ0DAinZbJZAKjrkQigWg0GkQqM0n/q6OjA2fOnMGGDRsmZUCNEIIzF7rRdvg4Oi72eEZYXFE/EACIhhUk08WJJqTKSKY06J6viq4bEAQhKNQPDvSDYVk0NzcX3SiHW/syoL7vLiHQ9Aya6mtwz84bx/26JwKfRFauXIk5c+aM6xqEEHzlK1/Bt7/9bTz//PMzyp/j4MGD2Lp1KzKZDMLhMH7605/i1ltvne5lzUhUiGSGQ9d1/OpXvwo8VcLhcND9tXXr1jHrXg0ODmLfvn1YuHAhFi9eXPKk58th9PT0BN4VPqlMtnz8aEEIwalTp3DhwgW0trZOSXdZ30Ace4+cxOETHXCKEMlorH2H10dc1/XaitPQNA2yKECUlYBYCoHjODhFZOclScTbNq7GptWXjeHVTQ4GBwfR3t4+YRL5+te/jq9//et49tlnsWHDhsld5ARhmibOnTuHRCKBBx98EN///vfxwgsvVCKSAqgQySxCJpPBr3/968BTRRTFIFJ529veVlaR19f9uuyyyzBv3rwxPbdlWQGp5Op/XUpDJEIIjh07ht7eXrS2tk65aJ+mG9h39DT2HT05YhhQEnlkTbvk34sCD9PKf4zjOOjq6gLPc5jT3Bi0FgMI0l++X30hV8fh+IP33IK66kvbqu2TyGiaG4qBEIL7778f//iP/4innnoKW7ZsmeRVTj5uuOEGLF26FN/5znemeykzDhUimaUwTTPPU8V1Xdx+++2Bp8rwgrlfT5iI7pcP27bzpFpkWQ5IJRqNTgmp5LYob9q06ZKm2WzbwdEz59B2+AR6++MAgEhYQapEWouSSH5rMSWRTgiCgMbGJijyEFHkthU7jgNVVdHcWA+HMEVTmZGQio/ddfslrR/E43Hs3bt3XIcRH4QQfPe738UXvvAFPPnkk9i6deskr3JqcP3112PBggV44IEHpnspMw4VInkTwLZt/OY3vwk8VQzDCDxVtm3bhr/7u7+Dbdv4q7/6q0kXvHMcB/39/QGp8DwfkEp1dWGNq7HCdV0cOHAAhmGgtbV12lqUfeXhvYdPoCvWj7RWvCV3eMeX49jo7OyCJIloaGgEzxdPWWWzWUootoVUWoOiKEG0kpvKXLN8MW659orJe4FlEI/H0d7ejmXLlo1ayXo4CCF44IEH8NnPfhaPP/44rr12+ocoC+Gzn/0sbrnlFixYsACpVAo//elPg+jpXe9613Qvb8ahQiRvMjiOg1deeSVQKk6n0yCE4DOf+Qw+8pGPTOmwoeu66O/vDwbMGIbJ0/8aT5OA4zjYt28fbNtGa2vrJTPUKofBZArtb1Dl4UKT8bkmVlRAshOSJKOxsQEA4xXRS0ueAMhrKx7uV7/jnW/DqmWLpuLljUAikcDevXsnTCI//vGP8alPfQqPPfYYtm3bNsmrnDx85CMfwbPPPkuFP6uqsG7dOnz605+ukEgRzGgi+dd//Vd89atfRXd3N9avX49/+Zd/wRVXXLoT2GxGNpvFBz/4Qbz22mu4+eab8cwzz6Cnpwfvete7sHPnTtx8882j9lQZD3z9L1+qhRCSJ9UyGlKxLAvt7e1gWRYbNmyYNLvXyUTWtHD4RAf2HjmJwUQKAN0wacThwrYtdHZ2eb4d9fBTXTRiKeGBUmAI0bbtQAPMMAy878a3YeH8eUHzw1SluHwSWbp06biVoAkh+O///m988pOfxEMPPYSbbrppkldZwXRixhLJz372M3zoQx/Ct7/9bVx55ZX4xje+gZ///Oc4duzYhHP8bwXce++9eOONN/D444+joaEBruuivb09kL8/d+4cbrjhBuzYsQO33nrrpMvQ54IQgng8HpCKbduor69HU1NTUf2vbDaLvXv3QpZlrFu3blpcGceC3PbhnlgcRjYLy7LQ1dUJVQ2hvr4OPokQQiCJIwvxuYiGQ0imtaK/r62K4JarN+RpVvmzP5P5XiaTSbS1tRWUnhkLdu3ahY997GP42c9+httvv31S1lbBzMGMJZIrr7wSW7Zswf333w+AnnDnz5+PT37yk/jMZz4zzaub+Thz5kygrjochBAcOnQoIJXjx4/nearU1tZOuf6XP6uSzWYDUvH1v/xhSd/ffrpdGceKvoE4Xtt3GM+89FvIsuKpKA/dzyETq+Io17G1ec2KwJfdr1P5KUWO44Lob7wpRWCIRBYvXoxFixaN6xoA8Pjjj+Pee+/Fj3/8Y7z73e8e93UqmLmYkURimiZUVcWDDz6InTt3Bj+/5557EI/H8eijj07f4t5k8FtqfU+VgwcP4tprr8WOHTuwfft2NDY2Trn+l08qhmGgqqoK6XQaDQ0NWLVq1YxzZRwN0uk02traUNfQgIzLYd+RUxhMpoPfl0trlZod8fGeG6/FkvkjJ8mHpxRd1x2V+vNwpFIptLW1YdGiRRMikV/96lf44Ac/iB/+8Id43/veN+7rVDCzMSOJpLOzE3PnzsUrr7yS1xr4F3/xF3jhhRfw2muvTePq3rzwh/18+fu2tjZcffXVgXDeVHqqAHTO5eDBg+B5qspbW1sbFOtni/6XvwH7UvYMw4AQgtPnu9B+5CTOXOhGWJXzptWHY/g0+3BwHIv77t4JsUzjASEEiUQi8ALJZDKor68PZNuLNS74r8EfWh0vnn32WXzgAx/Ad77zHfz+7//+rDwUVDA6VIikgoIghODcuXMBqfz2t7/Fli1bsGPHDuzYsWPSPVX81tJFixZh8eLFMAwjUCr29b98Upmp+l/JZBJ79+4tuQH3x5PYd/QUDh0/XbRG4utrFcP8lka8/9axdTwRQqBpWhCppNNp1NTUBAZT/j1Np9PYs2cPFixYgCVLlozpOXLx4osv4vd+7/fwzW9+Ex/+8IcrJPImx4wkkkpqa2bB91TZtWsXdu3ahZdeegnr168P5O/9k/d44avHLl++vGBrqa//5TvsRaPRgFRmineK39k02npC1rRw+GQH2o+cxECOWCQtxAslC/HXbFo7YUtdwzCCe+prqlVVVaGrqwvz58/H0qVLx33tV155BXfeeSf++Z//Gf/rf/2vCom8BTAjiQSgxfYrrrgC//Iv/wKA5n4XLFiA++67r1Jsn0YQQtDT0xN4quzevRuXX355QCorVqwY08bhp7NWrVo1KvVY0zSDDXBgYCCwbfWlWqYDfjQ1nvZYQgjOdfai/cgJnDzXCZHnkC1BIgBw9/YbMKdx8myQTdPEhQsXcPo0lbPPlb+JRCJjej9/97vfYefOnfjiF7+IP/zDP6yQyFsEM5ZIfvazn+Gee+7Bd77zHVxxxRX4xje+gf/+7//G0aNHx+Q7UcHUgRCCgYGBPE+VZcuWBfL3q1atKtkx1NnZiaNHj45btsXX/+rt7UV/fz8URUFjYyOampoumf6Xr4A7EckQH4mUhkPHz6D9aHGPFFkU8Yd375jUTjZN07Bnzx7MnTsXCxcuDDrAYrGYJ+cyOqWCvXv3Yvv27fibv/kb/Mmf/EmFRN5CmLFEAgD3339/MJC4YcMGfPOb38SVV1453cuqoAD8wq7vqfL0009j3rx5AamsX78+b/M7deoUzp49iw0bNqC2tnbCz+/rf/kboCiKAalMlf6Xn5KbiHhhIVi2jWNnzmPfkZPo6hvI+93yRfOw851vm7Tn0jQNbW1taGlpwbJly/Lu03ArXABBTWX4UOmBAwdw22234c///M/x6U9/ukIibzHMaCKpYPYilUrhiSeewEMPPYRf/epXqK+vxx133IEdO3bg4Ycfxuuvv46HH34YVVVVk/7cheYqcqVaJmOT861lJ2LoNBp09fWj/Y2TOHbmPGzHwQ1Xb8LGy5dNyrV1XceePXvQ3NyM5cuXl7wvrusiHo8HEaBlWTh48CDC4TDWrFmD973vfbjvvvvwuc99btpI5Mtf/jJ27dqFo0ePQlEUXH311fjHf/xHrFixYlrW81ZChUjK4MUXX8RXv/pVtLW1oaurCw8//HBeA0AF5aFpWuCp8sgjj4Dnebz3ve/FBz7wAVx11VVTOrXuum5wqu7t7QXDMGhoaEBTU9O4h/V8Of6JWMuOFXomi4PHTmPF4vmojk68FqTrOtra2tDY2IjLLrtsTJs/IQSpVAr3338//vM//xMXL17E4sWL8elPfxo7duxAQ0PDhNc3Htx88814//vfjy1btsC2bfzlX/4lDh06hDfeeGPa/HPeKqgQSRk8+eSTePnll7Fp0ybceeedFSIZJxzHwSc+8Qk89dRT+Mu//Eu8+uqreOyxxyBJErZv346dO3eOylNlIvBP1f4ApD+s19TUhNra2lERWk9PDw4dOoS1a9fOWqkewzCwZ8+ecZFILk6ePIlbbrkFt9xyC5YtW4aHH34YbW1t+JM/+RN89atfneRVjx19fX1obGzECy+8MGNVht8sqBDJGMAwTIVIxonvf//7+D//5//g17/+dVCUNk0Tzz33XBCpAAg8Vd7xjndM6RCiX9PxZ1Usy8qTailEKl1dXThy5AjWrl07bafuicInkYaGhjF32OWio6MDN998M3bu3IlvfOMbQWR38eJFDA4OzgjL3JMnT2L58uU4ePDgjFjPmxkVIhkDKkQyfjiOg2QyWdQPxbZtvPjii4GnSiaTwe23344dO3bg+uuvn9IhRD9V40cq/gR4Y2Mj6uvrIQhC0GG2fv16Tztr9iGTyWDPnj2oq6vDypUrx00i58+fx0033YSbb74Z//Zv/zYjtdBc18Udd9yBeDyOl156abqX86ZHhUjGgAqRXBo4joOXX34ZDz74IB555BEkEong9Puud71rSocQ/QlwP1LRNA2qqkLXdaxbt27WprN8EqmtrcXll18+bhLp6urCTTfdhGuvvRbf+973Zqwq8yc+8Qk8+eSTeOmllybcll1BeVSIZAyoEMmlh+u6eO211wKjrt7eXtx4443YuXMnbrrppin1VAFom3JHRwdkWYZhGIGsSGNj47Q5NY4VmUwGbW1tqKmpmRCJ9PT04JZbbsGWLVvwwAMPzFgSue+++/Doo4/ixRdfnJBWWAWjR4VIxoAKkUwvXNfF3r17A/n78+fP44YbbsDOnTtx6623Tvq8yNmzZ3H69Gls3LgR1dXVI2RFqqqqAlK5lB7yY0E2m8WePXtQXV09ITXlvr4+3HbbbVi9ejV+8pOfzEiTMUIIPvnJT+Lhhx/G7t27sXz58ule0lsGFSIZAypEMnPgum6ep8qJEydw/fXXY8eOHZPiqXLmzBl0dHSgtbW14KxLNpsNSGVwcBCRSCQglZnSaprNZtHW1hb4uoz3fgwMDODWW2/F0qVL8d///d8zxu54OP6//+//w09/+lM8+uijebMjVVVVM5bo3yyoEEkZpNNpnDx5EgCwceNGfO1rX8O2bdtQW1s7btvRCiYXhBAcPXo0IJVDhw7hHe94R+Cp0tDQMKZN9NSpUzh//jw2bdo0qtSZaZp5Ui2+VlVTU9OUWuCWW9OePXsmTCLxeBzbt29HS0sLdu3aNaPl/Iu9xh/+8If48Ic/fGkX8xZDhUjKYPfu3di2baRk9z333IMHHnjg0i+ogpLwPVV8Umlvb8/zVGlpaSm64fh/e/HiRWzatGlcIpCWZeVJtciyHJDKWAUQxwufRCKRCNasWTPu50wmk9i5cyeqqqrw6KOPzlj5/gqmHxUiqeBNC0IIzp49i4ceeggPP/wwfvvb3+KKK64IPFXmz58fbLKu6+LYsWPo7e3F5s2bJyU95TgOYrEYenp68gQQm5qaJtVXPRemaaKtrQ2hUAhr1qwZd2tuOp3GnXfeCVEU8cQTT1RSQxWURIVIKnhLgBCCixcvBp4qL7/8MjZs2ICdO3di+/bt+PKXv4xsNovvfve7U9JenCuA2Nvbm6f/VV1dPSmzGD6JqKqKtWvXjvuauq7jve99LwgheOKJJ6ZNnr+C2YMKkcwiVETpJge+p8rDDz+Mhx56CC+//DJCoRDuuece/I//8T8mJBsyGvi+6j09Pejr6wMhJCCV2tracRGAZVloa2uDoigTIpFMJoO77ror0EeLRqPjuk4Fby1UiGQWoSJKN7lwHAf/83/+T+zevRuf+MQnsHv3bjz77LNYvnw57rjjDrz73e/G5ZdfPqWT24QQxOPxYADScRw0NDSgsbERdXV1o5rV8ElElmWsW7du3OvNZrO4++67EYvF8PTTT6O6unpc16ngrYcKkcxiVETpJoZ/+qd/wg9+8AM8++yzmDt3bqC/9dhjjwWeKgsWLAhIZSKb9GhACEEymQxIxTTNPKmWQrMblmVh7969EEVxhOfLWGCaJj70oQ/h/PnzePbZZyfFI6aCtw4qRDKLURGlmxjS6TQ0TSvquJlMJvM8VRobGwNS2bRp05STSjqdDkjFMAzU1dUFxlKCIMC2bezduxeCIEyIRCzLwkc+8hEcO3YMzz333KwVpKxg+lAhklmKiijdpYWmaXjyySexa9cuPPHEE6iqqsIdd9yBnTt34sorr5xyuZB0Oh0U6tPpNGpqamAYBmRZxsaNG8f9/LZt42Mf+xj279+P559/vmJjXcG4UCGSWYqKKN30wTAMPP3009i1axd+8YtfQJblPE+VqZYPSaVS2LdvH2zbhuM4qK6uDor1Y5n1cBwH9913H1599VXs3r0bc+bMmcJVV/BmRoVIZiEqonQzB6Zp4plnnsGuXbvw6KOPgmEY3HbbbXj3u9+Na6+9dtInwW3bRnt7O1iWxYYNG2BZViB/n0gkEI1Gg1mVUrMfruvij//4j/H888/j+eefr6g0VDAhVIhkFqEiSjezYVlW4Kny6KOPIpvN4rbbbsPOnTuxbdu2CU+GO46D9vZ2MAyDDRs2jEhnZbNZ9PX1oaenB4ODgwiHw2hqahqh/+W6Lv7iL/4CTzzxBHbv3l05jFQwYVSIZBahIko3e+A4Dl566aXAUyWZTOKWW27Bzp07ccMNN4x56NEnEQCjqolYlhWQSn9/PxiGwZNPPon3vOc9ePTRR7Fr1y48//zz034YefHFF/HVr34VbW1t6OrqqoiizlJUiGQWoSJKNzvhui5++9vfBqTS19eX56lSbnLccRzs27cPruuitbV1zIV127Zx8OBB/M3f/A1eeeUVAMAHP/hBfPSjH8XmzZunRVTSx5NPPomXX34ZmzZtwp133lkhklmKCpFUUMElhOu6aGtrw0MPPYRdu3bhwoULuOGGG7Bjx46CniqO42D//v1wHAcbN24cdyGfEIIvf/nL+MEPfoC/+Iu/wJ49e/CLX/wC1dXV+OUvf4nVq1dP1kscNyo2DbMXFSKpoIJpguu6OHDgQEAqJ0+exDvf+U7ccccduP322yGKIj760Y/i7rvvxk033TQhEvna176Gb3zjG3juueewfv16ALSm8uyzz2Lbtm0zIjVaIZLZi6mbqKrgLYFvfetbWLduHaLRKKLRKLZu3Yonn3xyupc1K+B3Xv393/89Dh06hPb2dlx11VX49re/jcWLF+Pqq6/G4cOHcdlll417ToQQgn/5l3/B17/+dTz11FMBiQCAJEm49dZbZwSJVDC7USGSCiaEefPm4Stf+Qra2tqwZ8+ewKXw8OHD0720WQWGYbBq1Sp87nOfw2uvvYZrr70W2WwWdXV12Lx5M2699VZ85zvfQVdXF0abRCCE4Dvf+Q6+8pWv4Je//CU2b948xa+igrcqKkRSwYSwfft23HrrrVi+fDkuu+wyfOlLX0I4HMZvf/vb6V7arITjOLjrrruQSCRw8OBBvPrqqzh+/Di2b9+OBx98ECtWrMCNN96I+++/H+fPny9KKoQQ/PCHP8TnP/95/OIXv8BVV111iV9JBW8lVIikgkmD4zj4r//6L2iahq1bt073cmYlOI7D9u3bA/VdhmGwePFifOpTn8JLL72EM2fO4H3vex+eeOIJrF69Gtu2bcM3vvENnDlzJiAVQgj+8z//E5/97Gfx2GOP4e1vf/s0v6oK3uyoFNsrmDAOHjyIrVu3IpPJIBwO46c//SluvfXW6V7WmxqEEHR3d+Phhx/Grl278MILL2DNmjXYsWMHJEnCl770JezatQs33njjdC+1JNLpNE6ePAmAzsd87Wtfw7Zt21BbW1uZtp9FqBBJBROGaZo4d+4cEokEHnzwQXz/+9/HCy+8gFWrVk330t4SIISgv78fjz76KH7605/iueeew49//GPcfffd0720sti9eze2bds24uf33HMPHnjggUu/oArGhQqRVDDpuOGGG7B06VJ85zvfme6lvOXgWwpXhDwruJSo1EgqmHS4rotsNjvdy3hLgmGYColUcMkxtXrXFbzp8dnPfha33HILFixYgFQqhZ/+9KfYvXs3nnrqqeleWgUVVHCJUCGSCiaE3t5efOhDH0JXVxeqqqqwbt06PPXUU3jXu9413UuroIIKLhEqNZIKKqigggomhEqNpIIKKqigggmhQiQVVFBBBRVMCBUiqeBNja985StgGAZ//Md/PN1LqaCCNy0qRFLBmxavv/46vvOd72DdunXTvZQKKnhTo0IkFbwpkU6ncffdd+N73/seampqpns5FVTwpkaFSCp4U+IP//APcdttt+GGG26Y7qVUUMGbHhUiqeBNh//6r//C3r178eUvf3m6l/Kmxb/+679i0aJFkGUZV155JX73u99N95IqmEZUiKSCNxXOnz+PP/qjP8JPfvITyLI83ct5U+JnP/sZ/vRP/xR/+7d/i71792L9+vW46aab0NvbO91Lq2CaUBlIrOBNhUceeQTvfve786xpHccBwzBgWRbZbHbctrUVUFx55ZXYsmUL7r//fgBUW23+/Pn45Cc/ic985jPTvLoKpgMViZQK3lR45zvfiYMHD+b97N5778XKlSvx6U9/ukIiE4Rpmmhra8NnP/vZ4Gcsy+KGG27Aq6++Oo0rq2A6USGSCt5UiEQiWLNmTd7PQqEQ6urqRvy8grEjFovBcRw0NTXl/bypqQlHjx6dplVVMN2o1EgqqKCCCiqYECoRSQVveuzevXu6l/CmQX19PTiOQ09PT97Pe3p60NzcPE2rqmC6UYlIKqigglFDFEVs2rQJzz77bPAz13Xx7LPPYuvWrdO4sgqmExUiqaCCS4DPf/7zYBgm75+VK1dO97LGhT/90z/F9773PfzoRz/CkSNH8IlPfAKapuHee++d7qVVME2opLYqqOASYfXq1XjmmWeC/+f52fn1u+uuu9DX14fPfe5z6O7uxoYNG/CrX/1qRAG+grcOZucnuYIKZiF4nn/T1BHuu+8+3HfffdO9jApmCCqprQoquEQ4ceIE5syZgyVLluDuu+/GuXPnpntJFVQwKahMtldQwSXAk08+iXQ6jRUrVqCrqwtf+MIXcPHiRRw6dAiRSGS6l1dBBRNChUgqqGAaEI/HsXDhQnzta1/DRz7ykeleTgUVTAiV1FYFFUwDqqurcdlll+HkyZPTvZQKKpgwKkRSQQXTgHQ6jVOnTqGlpWW6l1JBBRNGhUgqqOAS4FOf+hReeOEFdHR04JVXXgkUij/wgQ9M99IqqGDCqLT/VlDBJcCFCxfwgQ98AP39/WhoaMA111yD3/72t2hoaJjupVVQwYRRKbZXUEEFFVQwIVRSWxVUUEEFFUwIFSKpoIIKKqhgQqgQSQUVVFBBBRNChUgqqKCCCiqYECpEUkEFFVRQwYRQIZIKKqigggomhAqRVFBBBRVUMCFUiKSCCiqooIIJoUIkFVRQQQUVTAgVIqmgggoqqGBCqBBJBRVUUEEFE0KFSCqooIIKKpgQ/n9RhP8vzxVquAAAAABJRU5ErkJggg==" - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "log((S2 / S1))\n" - ] - }, - { - "data": { - "text/plain": "array([[0. ],\n [1.82624565],\n [2.43545837],\n [2.81130323],\n [3.08383954]])" - }, - "execution_count": 31, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "# initialize model\n", - "# hyper parameters\n", - "\n", - "prior_par = {\n", - " \"Nopi_/\": 5.912205942815285,\n", - " \"Nopi_cosh\": 8.12720511103694,\n", - " \"Nopi_-\": 3.350846072163632,\n", - " \"Nopi_sin\": 5.965917796154835,\n", - " \"Nopi_tan\": 8.127427922862411,\n", - " \"Nopi_tanh\": 7.799259068142255,\n", - " \"Nopi_**\": 6.4734429542245495,\n", - " \"Nopi_pow2\": 3.3017352779079734,\n", - " \"Nopi_pow3\": 5.9907496760026175,\n", - " \"Nopi_exp\": 4.768665265735502,\n", - " \"Nopi_log\": 4.745957377206544,\n", - " \"Nopi_sqrt\": 4.760686909134266,\n", - " \"Nopi_cos\": 5.452564657261127,\n", - " \"Nopi_sinh\": 7.955723540761046,\n", - " \"Nopi_abs\": 6.333544134938385,\n", - " \"Nopi_+\": 5.808163661224514,\n", - " \"Nopi_*\": 5.002213595420244,\n", - " \"Nopi_fac\": 10.0,\n", - " \"Nopi2_*\": 1.0,\n", - " \"Nopi_sig\": 1.0,\n", - " \"Nopi_relu\": 1.0,\n", - "}\n", - "\n", - "# temperatures\n", - "ts = [1.0] + [1.04**k for k in range(1, 20)]\n", - "\n", - "# epoch num\n", - "epochs = 1500\n", - "\n", - "# fit model\n", - "estimator = BMSRegressor(prior_par, ts, epochs)\n", - "estimator = estimator.fit(X, y)\n", - "\n", - "# model estimate\n", - "show_results(\n", - " estimator=estimator, label=\"BMS Regressor\"\n", - ")\n", - "print(estimator.model_)\n", - "\n", - "# model prediction\n", - "test_x = X.head()\n", - "estimator.predict(test_x)" - ] - }, - { - "cell_type": "code", - "execution_count": 32, - "id": "375b5b94", - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Best model:\t log((S2 / S1))\n", - "Desc. length:\t -659.941451339323\n" - ] - }, - { - "data": { - "text/plain": "
    ", - "image/png": "iVBORw0KGgoAAAANSUhEUgAABOYAAAHkCAYAAACaDCCGAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABrN0lEQVR4nO3dd3wUdf7H8femN1KAFEroRZqCdJEihwTFgh2kwyF6HF1Ffki9UwR7Rb1TQBE4UUFFEREFREORIkUIvQWSQCAFCKnz+wOysCQkm82GzYTX8/HIQ3fmOzOfCZNk8863WAzDMAQAAAAAAADgunJzdQEAAAAAAADAjYhgDgAAAAAAAHABgjkAAAAAAADABQjmAAAAAAAAABcgmAMAAAAAAABcgGAOAAAAAAAAcAGCOQAAAAAAAMAFCOYAAAAAAAAAFyCYAwAAAAAAAFyAYA4AAAAAAABwAYI5AAAAAAAAwAUI5gAAAIBi+PDDD9W4cWOVK1dOYWFhevjhh11dEgAAMAmCOQAAAKAIVq9erSNHjkiS3nnnHc2aNUuLFi1SSkqKNm3apHvuuceu82zYsEH79+8vyVIBAEApRzAHAAAA2Ck6Olo7duxQtWrVJElz5szRiBEj1KBBA1ksFkVGRmrAgAF2natly5aaNm2aTp06VYIVAwCA0oxgDgAAALDDmTNnNHPmTD311FPWbT4+Pnrvvff0zTffKCUlpUjns1gsmjJlip544glnlwoAAEyCYA4AAABFNmXKFFksliIfN2fOHFksFh06dMih6xb3+OIYN26chg8fLje3y2+hFyxYoBYtWmjIkCEKCwvTkCFDlJGRIenikNc2bdro9ttv1+jRo/M9Z82aNdWoUSPNmTPnetwCAAAoZQjmAAAArpAb/FgsFq1duzbPfsMwFBkZKYvFYjOX2JXHWSwW+fj4qHLlyoqKitJbb72l1NTUa17rjz/+KNF7QvHt379fGzduVOfOnW22R0ZGatasWTpx4oS+/fZbzZs3T1988YUkqU6dOlq9erXWrl2rhIQEbd++Pd9zDx06VJMnT1Z6enqJ3wcAAChdCOYAAADy4ePjo/nz5+fZvnr1ah07dkze3t75Hjdt2jR9+umnmjVrloYPHy5JGjVqlJo0aaJt27aVaM0oOW+88Yb69u17zf1ubm668847FR4ervPnz0uSqlSpYn1OPDw85O7unu+xVatWVfPmzTV37lznFw4AAEo1gjkAAIB83H333Vq0aJGysrJsts+fP1/NmzdXREREvsfddddd6tOnjwYOHKjx48dr+fLl+umnn5SQkKD77rtPaWlp16N8OFFmZqYWLFige++912b79OnTtX79emVmZurs2bN64YUXdO7cOd1///027bZs2aJTp06pYcOG17zGgw8+qI8//rhE6gcAAKUXwRwAAEA+evXqpcTERK1YscK6LSMjQ1988YUef/zxIp2rc+fOmjhxog4fPqx58+YVu7bc+d327NmjPn36KCgoSKGhoZo4caIMw9DRo0d1//33KzAwUBEREXr11VfznGPLli266667FBgYqICAAP3tb3/TunXr8r3e2rVr1bJlS/n4+Kh27dr64IMP8m0XGxurQYMGKTw8XN7e3mrUqJHdYdPu3bt15MgR+z8JDt7LqlWr1KJFC5t7KWy+vDVr1sjLy0t169a12X7mzBn17t1bISEhqlevnrZv367o6GiFhoZa2yQkJGjEiBGFfh7atGmj9evX6+jRo0W4cwAAYHYEcwAAAPmoUaOG2rZtqwULFli3LVu2TMnJyerZs2eRz5c7DPLHH390Wo2PPfaYcnJy9NJLL6l169b697//rTfeeEN33nmnqlSpohkzZqhOnTp6+umntWbNGutxO3fuVPv27fXnn3/q2Wef1cSJE3Xw4EF16tRJ69evt7nG9u3b1bVrVyUkJGjKlCkaOHCgJk+erMWLF9u0i4+PV5s2bfTTTz/pn//8p958803VqVNHgwcP1htvvFHovTRo0ED9+vUr8uegKPeyZcsWdevWTYmJiZo6daoGDx6sadOmacmSJQVeY/Xq1WrWrFme7TNnztS+fft09uxZHT9+XAsXLlSdOnWs+9PT0/X444/rjTfeUHh4eIHXqFOnjipWrKhVq1bZfe8AAMD8PFxdAAAAQGn1+OOPa/z48UpLS5Ovr68+++wzdezYUZUrVy7yuapWraqgoCDt37/fafW1atXK2nvtiSeeUI0aNTR27FhNnz5d48aNk3Sx51/lypX18ccfq0OHDpKk559/XpmZmVq7dq1q1aolSerXr5/q16+vZ599VqtXr7ZeY9KkSTIMQ7/++quqVasmSXrooYfUpEkTm1omTJig7Oxsbd++XRUqVJAkPfnkk+rVq5emTJmioUOHytfX12n3nqso9zJ58mS5u7vrt99+s/4bPvroo2rQoEGB19iyZYtq165d5No++eQTbd++XWPHjpV0cehr27Ztr9n+lltu0aZNmwqcyw4AAJQt9JgDAAC4hkcffVRpaWlaunSpUlNTtXTp0iIPY71SQEBAvquzOurvf/+79f/d3d3VokULGYahwYMHW7cHBwerfv36OnDggCQpOztbP/74o3r06GENsiSpUqVKevzxx7V27VqlpKRY2y5fvlw9evSwhnLSxd5tUVFR1teGYejLL7/UvffeK8MwdOrUKetHVFSUkpOTtXnz5gLvxTCMIvcWK+q9/PTTT+rRo4dNsFqnTh3dddddBV5n3759qlKlSpFqk6QhQ4YoPj5eq1at0qpVqwoM5SSpfPnyTg1uAQBA6UcwBwAAcA2hoaHq0qWL5s+fr6+++krZ2dl6+OGHHT7f2bNnVa5cOafVd2VYJklBQUHy8fFRxYoV82w/c+aMJOnkyZM6f/686tevn+d8DRo0UE5OjnWes5MnTyotLS3P3GqSbI4/efKkkpKS9OGHHyo0NNTmY+DAgZIuzrXmbEW5l4SEBKWlpdkMNc2V37YrxcXFKSgoyDlFFyAkJETx8fElfh0AAFB6MJQVAACgAI8//riGDBmiuLg43XXXXQoODnboPMeOHVNycnKhIVBRuLu727VNutgjraTk5ORIkvr06aP+/fvn2+bmm28useuXtHPnzsnHx6fErxMSEqKzZ8+W+HUAAEDpQTAHAABQgAceeEBDhw7VunXr9L///c/h83z66aeSZDME1BVCQ0Pl5+enmJiYPPt2794tNzc3RUZGWtv6+vpq7969edpeeXxoaKjKlSun7OxsdenSpeSKv0pR7iUsLEw+Pj7at29fnrb5bbuSYRjKysrKs72glVwLk19Q6uHBW3MAAG40DGUFAAAoQEBAgGbNmqUpU6bo3nvvdegcP//8s/71r3+pZs2a6t27t5MrLBp3d3d17dpVX3/9tQ4dOmTdHh8fr/nz5+v2229XYGCgtW1UVJSWLFmiI0eOWNvu2rVLy5cvtznnQw89pC+//FI7duzIc82TJ08WWtfu3bttrlES99KlSxctWbJEx48ft7bdt2+fli1bVuB1/P39lZSUlGe7YRgOf+QnLS1NAQEBRfocAAAAc+PPcgAAAIW41vDM/Cxbtky7d+9WVlaW4uPj9fPPP2vFihWqXr26vvnmm3yHRH788cf64Ycf8mwfOXKkU+eky/Xvf/9bK1as0O23365//OMf8vDw0AcffKD09HTNnDnTpu3UqVP1ww8/qH379vrHP/6hrKwsvf3222rUqJG2bdtmbffSSy/pl19+UevWrTVkyBA1bNhQp0+f1ubNm/XTTz/p9OnTBdbUoEEDdezYscgLQBTlXqZMmaIff/xR7dq101NPPaXs7Gy98847aty4sbZu3XrNa0RERFjn6MvPhx9+qLfeekuHDx+Wr6+vOnTooC+++KJI9yFJycnJioiIKPJxAADAvAjmAAAAnGjSpEmSJC8vL5UvX15NmjTRG2+8oYEDB14zZJs1a1a+2wcMGFAiwVyjRo3066+/avz48Zo+fbpycnLUunVrzZs3T61bt7Zpe/PNN2v58uUaM2aMJk2apKpVq2rq1Kk6ceKETTAXHh6uDRs2aNq0afrqq6/03nvvqUKFCmrUqJFmzJjh9Htw5F6aN2+uZcuW6emnn9bEiRMVGRmpadOmadeuXdq9e/c1r1GnTh0lJibmu++dd97RRx99pEWLFummm27SsWPHtHLlSofuJTY2Vg0aNHDoWAAAYE4WoyRnAgYAAABKuR49emjnzp35zqUnSZMnT9aPP/6o6OjoPPtatGihYcOGWVefLY66detq8uTJ6tOnT7HPBQAAzIE55gAAAHDDSEtLs3m9d+9eff/99+rUqdM1j+nUqZM2b96s9PT0PPt8fHz03nvv6ZtvvlFKSorDdaWmpmr//v3q2LGjw+cAAADmQzAHAACAG0atWrU0fvx4/ec//9Hzzz+vNm3ayMvLS88+++w1j+nQoYNCQkK0efPmPPsWLFigFi1aaMiQIQoLC9OQIUOUkZEhSUpPT1ebNm0UEBBQ6Mqvq1evVvPmza2ryAIAgBsDwRwAAABuGN26ddOCBQs0fPhwvf3222rZsqXWrFmjunXrXvMYd3d39e/fX1999VWefZGRkZo1a5ZOnDihb7/9VvPmzbMu/ODp6amvv/5aDz/8cKF1LV26VP369XP8xgAAgCmx+AMAAABuGLNnz3bouNGjR6tFixaaNm2afH198+x3c3PTnXfeqfDwcJ0/f966LTw8vNBzp6Wl6aefftIrr7ziUG0AAMC86DEHAAAAFCIiIkJDhgzRggULrNumT5+u9evXKzMzU2fPntULL7ygc+fO6f777y/SuT/55BMNHTpUAQEBzi4bAACUcgRzAAAAgB2ee+45ffHFF0pKSpIknTlzRr1791ZISIjq1aun7du3Kzo6WqGhoXaf89y5c1q6dKlGjx5dQlUDAIDSzGIYhuHqIgAAAAAz2Ldvn9555x298cYbdh8zYMAAPf/886pTp06efc8//7wGDx6smjVrOrFKAABgFgRzAAAAQBFs3LhR5cuXV+3atQtt26NHD23YsEE1a9bUqFGj9Mgjj1j3bdmyRZ6enmrcuHFJlgsAAEoxgjkAAAAAAADABViV1QlycnJ0/PhxlStXThaLxdXlAAAAAAAAwIUMw1BqaqoqV64sN7drL/FAMOcEx48fV2RkpKvLAAAAAAAAQCly9OhRVa1a9Zr7CeacoFy5cpIufrIDAwNdXA0AAAAAAABcKSUlRZGRkdbM6FoI5pwgd/hqYGAgwRwAAAAAAAAkqdApz649yBUAAAAAAABAiSGYAwAAAAAAAFyAYA4AAAAAAABwAYI5AAAAAAAAwAUI5gAAAAAAAAAXIJgDAAAAAAAAXIBgDgAAAAAAAHABgjkAAAAAAADABQjmAAAAAAAAABcgmAMAAAAAAABcgGAOAAAAAAAAcAGCOQAAAAAAAMAFCOYAAAAAAAAAF/BwdQEonR59P1opFzJttlUI8NJrjzZVeKCPi6oCAAAAAAAoOwjmkK+9Cak6cz4zz/ZVMQl6rGU1F1QEAAAAAABQthDMIV+z+jRXVrZhff3myj3aeOiMMq7YBgAAAAAAAMcRzCFfbWpVsHm9YOMRSVJODsEcAAAAAACAM7D4A+zi4WaRJGURzAEAAAAAADgFwRzs4n4pmMvOyXFxJQAAAAAAAGUDwRzsQo85AAAAAAAA5yKYg13c3S4+Ktks/gAAAAAAAOAUBHOwCz3mAAAAAAAAnItgDna5PMccwRwAAAAAAIAzEMzBLvSYAwAAAAAAcC6COdiFVVkBAAAAAACci2AOdnGnxxwAAAAAAIBTEczBLrlDWXMI5gAAAAAAAJyCYA52cXe7+KjQYw4AAAAAAMA5COZgFw93VmUFAAAAAABwJoI52IU55gAAAAAAAJyLYA528XCjxxwAAAAAAIAzEczBLvSYAwAAAAAAcC6COdjlco+5HBdXAgAAAAAAUDYQzMEu1lVZs+kxBwAAAAAA4AwEc7CL+6UnhTnmAAAAAAAAnINgDnax9pgjmAMAAAAAAHAKgjnYJXeOuRyDYA4AAAAAAMAZCOZgF+uqrMwxBwAAAAAA4BQEc7DL5VVZCeYAAAAAAACcgWAOdrH2mMvJcXElAAAAAAAAZQPBHOzi4U6POQAAAAAAAGcimINdWJUVAAAAAADAuQjmYBfmmAMAAAAAAHAugjnY5fIccwRzAAAAAAAAzkAwB7u402MOAAAAAADAqQjmYBdWZQUAAAAAAHAugjnYxTrHXDY95gAAAAAAAJyBYA52sQ5lNQjmAAAAAAAAnIFgDnbxcLv4qDDHHAAAAAAAgHMQzMEurMoKAAAAAADgXARzsAtzzAEAAAAAADgXwRzsQo85AAAAAAAA5yKYg1083C/1mCOYAwAAAAAAcAqCOdjlco+5HBdXAgAAAAAAUDYQzMEu7paLwVyOIeXQaw4AAAAAAKDYTB3MTZ8+XS1btlS5cuUUFhamHj16KCYmxqbNhQsXNGzYMFWoUEEBAQF66KGHFB8fb9PmyJEj6t69u/z8/BQWFqZnnnlGWVlZ1/NWSj0Pt8uPSrZBMAcAAAAAAFBcpg7mVq9erWHDhmndunVasWKFMjMz1bVrV507d87aZvTo0fr222+1aNEirV69WsePH9eDDz5o3Z+dna3u3bsrIyNDv//+u+bOnas5c+Zo0qRJrrilUsv90hxzEvPMAQAAAAAAOIPFMMpO96eTJ08qLCxMq1evVocOHZScnKzQ0FDNnz9fDz/8sCRp9+7datCggaKjo9WmTRstW7ZM99xzj44fP67w8HBJ0vvvv69x48bp5MmT8vLyynOd9PR0paenW1+npKQoMjJSycnJCgwMvD43e51dyMzWTRN/kCTtnBolf28Pp51769EkHTx1VhlZOfp9f6KSzmcW63ye7hYN7VhbLWuUd1KFAAAAAAAA9ktJSVFQUFChWZHz0pVSIDk5WZJUvvzFQGbTpk3KzMxUly5drG1uuukmVatWzRrMRUdHq0mTJtZQTpKioqL01FNPaefOnWrWrFme60yfPl1Tp04t4bspXXIXf5CkLCf1mFt3IFH/99V2HTh1rvDGRZSWma3P/t7G6ecFAAAAAABwljITzOXk5GjUqFFq166dGjduLEmKi4uTl5eXgoODbdqGh4crLi7O2ubKUC53f+6+/IwfP15jxoyxvs7tMVeW5S7+IEljP98qL4/ij4LeeOiMTqZe7HnYNDJY5Xw8VL2Cn26pGiy3K65XFHEpF/Ty8hjFxJ0tdn0AAAAAAAAlqcwEc8OGDdOOHTu0du3aEr+Wt7e3vL29S/w6pYmbm0UVA7x06myGftqV4LTz+nq668unblPDys4ZAnw+I0uv/BijU2fTlXg2XRUCbqx/JwAAAAAAYB5lIpj75z//qaVLl2rNmjWqWrWqdXtERIQyMjKUlJRk02suPj5eERER1jYbNmywOV/uqq25bXDRp4Nba+Oh0047n0VS+7qhqlHR32nn9PPyULXyfjqceF6jP/9TIX6ekqRujSJ0V5NKTrsOAAAAAABAcZk6mDMMQ8OHD9fixYu1atUq1axZ02Z/8+bN5enpqZUrV+qhhx6SJMXExOjIkSNq27atJKlt27Z64YUXlJCQoLCwMEnSihUrFBgYqIYNG17fGyrlGlQKVINKpX9xi5urButw4nmt2XPSum3lrgRFNYqQm5tjQ2QBAAAAAACczdTB3LBhwzR//nx9/fXXKleunHVOuKCgIPn6+iooKEiDBw/WmDFjVL58eQUGBmr48OFq27at2rS5uDBA165d1bBhQ/Xt21czZ85UXFycnn/+eQ0bNuyGG65aVky8p4Fa1ghRZvbFRSpm/rBbZ9Oz9OexJP3314M6fS7DofN6e7rpmaj6alQ5yJnlAgAAAACAG5TFMAznLLHpApZrLBAwe/ZsDRgwQJJ04cIFjR07VgsWLFB6erqioqL03nvv2QxTPXz4sJ566imtWrVK/v7+6t+/v1566SV5eNiXW9q7BC5c4/53f9OfR5NUNyxAexOKtyhE/fByeqRFVQX5eureWyrLx9PdSVUCAAAAAICywt6syNTBXGlBMFe6jf9quxZsOGJ9PbRjLTUuYq+37BxDExZv17mMbJvtnu6FD431dHfTlPsa6dEWtiv3xsSlqvd/1ys5reg9+JpFhmj+kNbycC/+6rgAAAAAAMC57M2KTD2UFbBHx3oVrcFceKC3Rv2tnny9it7TLdDXQ99sPa6sHEPR+xOVeC7DOly2IJnZ2fps3eE8wdziLbE6dTa9yHVI0oZDp3Uo8bzqhAU4dDwAAAAAAHA9gjmUed0aV9Kvz96h1AtZiizv61AoJ0mdbwpX55vCJUmZ2Tl2hWqJZzN0z9trtT02WWv3npKXx+UebqtiEiRJU+9rpK6Nwu2uo//HG7Qn/qyOniGYAwAAAADAzAjmcEOILO/n1PN5urupUpBvoe0qBfmqVkV/HTh1Tn0+Wp9vm66Nwu06V64aFfwvBnOnz9t9DAAAAAAAKH0I5oASNuJvdfXuL/uUnZN32GvH+qFFCuWkyyHjkUSCOQAAAAAAzIxgDihhPZpVUY9mVZx2vsiQi0Heyt0JysjOsW5vW6uC7mpSyWnXAQAAAAAAJYtgDjCZuuHlJEkHT53TwVPnrNsXbjyqLg3D5clKrQAAAAAAmALBHGAyt9WuoBcfaKK45DRJUnp2jj5YfUAZWTnKMQpfJRYAAAAAAJQOBHOAyVgsFj3eupr1deqFTH2w+oAkiVwOAAAAAADzYMwbAAAAAAAA4AIEc4DJWSwWV5cAAAAAAAAcQDAHmNyVsRxDWQEAAAAAMA+COaAMMUQyBwAAAACAWRDMASbHSFYAAAAAAMyJYA4wOcsVg1kZygoAAAAAgHkQzAEAAAAAAAAuQDAHmNyVQ1npMAcAAAAAgHkQzAFliMFYVgAAAAAATINgDgAAAAAAAHABgjnA5BjKCgAAAACAORHMAWUII1kBAAAAADAPgjnA5CyyFN4IAAAAAACUOgRzgMldOZSVsawAAAAAAJgHwRxQhhgkcwAAAAAAmAbBHGByDGQFAAAAAMCcCOaAMoTFHwAAAAAAMA+COcDkLBb6zAEAAAAAYEYEc4DJsfYDAAAAAADmRDAHlCEGY1kBAAAAADANgjnA5BjJCgAAAACAORHMASZ35Rxz9JcDAAAAAMA8COaAMoSRrAAAAAAAmAfBHAAAAAAAAOACBHNAGWIwmBUAAAAAANMgmAPKABaAAAAAAADAfAjmgDLAmsvRYQ4AAAAAANMgmAPKEHI5AAAAAADMg2AOKAMsjGUFAAAAAMB0PBw98OTJk5o9e7Y2btyopKQkZWdn52ljsVi0cuXKYhUIoHC5sZxBlzkAAAAAAEzDoWBu27Zt6ty5s86cOSOjgCSAXjzA9cWqrAAAAAAAmIdDQ1nHjh2r06dPa8KECTp48KAyMzOVk5OT5yO/XnQAnI8MHAAAAAAA83Gox1x0dLR69OihadOmObseAA6wyCLJYCgrAAAAAAAm4lCPOS8vL9WuXdvZtQAAAAAAAAA3DIeCuY4dO+qPP/5wdi0AHHVpKCsd5gAAAAAAMA+HgrlXXnlFO3bs0CuvvOLsegAUQ0GLsQAAAAAAgNLFrjnmBg0alGdb48aNNW7cOL3//vtq2rSpAgMD87SxWCz66KOPil8lgAKx9gMAAAAAAOZjVzA3Z86ca+47cOCADhw4kO8+gjng+shdlZUOcwAAAAAAmIddwdzBgwdLug4AAAAAAADghmJXMFe9evWSrgNAMVgYzAoAAAAAgOk4tPjDoEGD9M033xTYZunSpfnOTQfA+RjKCgAAAACA+TgUzM2ZM0dbt24tsM2ff/6puXPnOnJ6AAAAAAAAoMxzKJizx4ULF+ThYddIWQDFlDuQ1RBd5gAAAAAAMAuHkzOLJf85rQzD0NGjR7Vs2TJVrlzZ4cIAFB1DWQEAAAAAMA+7e8y5ubnJ3d1d7u7ukqQpU6ZYX1/54eHhoZo1a2rz5s3q2bNniRUO4LJrBeUAAAAAAKD0srvHXIcOHay//K9Zs0bVqlVTjRo18rRzd3dX+fLl1blzZw0ZMsRphQK4tstDWQEAAAAAgFnYHcytWrXK+v9ubm4aOHCgJk2aVBI1AXCQwVhWAAAAAABMw6E55nJycpxdB4DiYCQrAAAAAACmU2KrsgK4fhjKCgAAAACA+TjUY65z586FtnFzc1NgYKDq16+vHj16qHXr1o5cCgAAAAAAACiTHArmcuebs1gs+c5pdfX2mTNnauDAgfrvf//rWJUACpS7MAtTzAEAAAAAYB4ODWVNS0vTvffeqwYNGmj+/Pk6fPiwLly4oMOHD2v+/Plq1KiR7rvvPh09elQ//vijbr31Vs2ePVuzZs1ydv0AbJDMAQAAAABgFg4Fc5MnT9b27du1fv169ezZU5GRkfLy8lJkZKR69uyp6Ohobdu2TW+//ba6dOmiFStWKDQ0VLNnz3Z2/U717rvvqkaNGvLx8VHr1q21YcMGV5cE2MXC4g8AAAAAAJiOQ8Hc/Pnz9eCDD8rf3z/f/f7+/nrwwQe1YMECSVJwcLC6deumXbt2OV5pCfvf//6nMWPGaPLkydq8ebNuueUWRUVFKSEhwdWlAYWyLv5AhzkAAAAAAEzDoWDu5MmTyszMLLBNVlaWTahVqVIlZWdnO3K56+K1117TkCFDNHDgQDVs2FDvv/++/Pz89PHHH+dpm56erpSUFJsPoDQglwMAAAAAwDwcCuZq166tRYsWKTExMd/9iYmJ+vzzz1W7dm3rtuPHj6t8+fKOVVnCMjIytGnTJnXp0sW6zc3NTV26dFF0dHSe9tOnT1dQUJD1IzIy8nqWC+RhYSwrAAAAAACm41AwN3z4cMXFxenWW2/VW2+9pU2bNuno0aPatGmT3nrrLd16662Kj4/X8OHDJUk5OTn6+eef1bJlS6cW7yynTp1Sdna2wsPDbbaHh4crLi4uT/vx48crOTnZ+nH06NHrVSqQL4ayAgAAAABgPh6OHDR06FDFxsZq+vTpGj16tM0+wzDk5uam8ePHa+jQoZKk06dP6+mnn9Ztt91W/IpLAW9vb3l7e7u6DAAAAAAAAJiYQ8GcJE2bNk19+/bV/PnztW3bNqWkpCgwMFC33HKLevbsqXr16lnbVqxYUSNHjnRKwSWhYsWKcnd3V3x8vM32+Ph4RUREuKgqwH65I1kNZpkDAAAAAMA0HA7mJKlu3bqaPHmys2pxGS8vLzVv3lwrV65Ujx49JF0cfrty5Ur985//dG1xQBEwlBUAAAAAAPMoVjBXlowZM0b9+/dXixYt1KpVK73xxhs6d+6cBg4c6OrSADuw+AMAAAAAAGZTrGBuw4YN2rhxo5KSkpSdnZ1nv8Vi0cSJE4tzievmscce08mTJzVp0iTFxcWpadOm+uGHH/IsCAGURtahrPSYAwAAAADANCyGUfRf5U+fPq0ePXrot99+U0GHWyyWfAO7siYlJUVBQUFKTk5WYGCgq8vBDajlCz/pZGq6vhtxuxpVDnJ1OQAAAAAA3NDszYoc6jE3ZswYrV27Vp06dVL//v1VtWpVeXgwKhZwFQayAgAAAABgPg6laUuXLlWrVq20cuVKWSxEAoCrMZQVAAAAAADzcXPkoLS0NHXo0IFQDgAAAAAAAHCQQ8Fc06ZNdejQISeXAsBRFgazAgAAAABgOg4Fc5MnT9Y333yjdevWObseAMXAUFYAAAAAAMzDoTnm4uLi1L17d3Xs2FG9e/fWrbfees0VJvr161esAgEUjlHlAAAAAACYj8Uwit7Hxs3NTRaLRVceevV8c4ZhyGKxKDs7u/hVlnL2LoELlJTbpq/U8eQL+uaf7XRz1WBXlwMAAAAAwA3N3qzIoR5zs2fPdrgwACWHoawAAAAAAJiHQ8Fc//79nV0HgGJghWQAAAAAAMzHocUfAJROdJgDAAAAAMA8ihXMLV68WI8++qhuvvlm1alTx7p99+7dmjlzpmJjY4tdIAD7OTBlJAAAAAAAcBGHhrLm5OSoV69e+uKLLyRJvr6+SktLs+4PCQnRhAkTlJ2drfHjxzunUgDXxEhWAAAAAADMx6Eec6+//roWLVqkoUOH6syZM3r66adt9oeHh6t9+/b67rvvnFIkAPvQXw4AAAAAAPNwKJibM2eOWrZsqffee0+BgYH5Tjxfp04dHTx4sNgFAigcPeYAAAAAADAfh4K5ffv2qX379gW2qVChghITEx0qCkDRWHQxmWOKOQAAAAAAzMOhYM7X11fJyckFtjl8+LCCg4MdOT0Ah5HMAQAAAABgFg4Fc82aNdPy5ct14cKFfPefPn1aP/zwg9q0aVOs4gDYh6GsAAAAAACYj0PB3IgRI3Ts2DE99NBDOnbsmM2+/fv364EHHlBycrJGjBjhlCIBFCw3l2MoKwAAAAAA5uHhyEH333+/xo0bpxkzZqh69ery9/eXJIWFhSkxMVGGYWjixInq3LmzU4sFUDByOQAAAAAAzMOhHnOSNH36dC1fvlz33HOP/Pz85O7urpycHHXr1k3Lli3T1KlTnVkngALktzIyAAAAAAAo3RzqMZfrzjvv1J133umsWgA4iKGsAAAAAACYj8M95gAAAAAAAAA4jmAOKAsudZkz6DIHAAAAAIBp2DWU1c3NzaE5rCwWi7Kysop8HADHEMsBAAAAAGAedgVzHTp0YHJ5oBTjqxMAAAAAAPOxK5hbtWpVCZcBoDhyg3NGsgIAAAAAYB7MMQeUIQaDWQEAAAAAMA2COaAMYCgrAAAAAADmQzAHlAHWKSDpMAcAAAAAgGkQzAEAAAAAAAAuQDAHlAGWS4NZ6TAHAAAAAIB5EMwBZQirsgIAAAAAYB4Ec0AZYGH1BwAAAAAATIdgDihDDAazAgAAAABgGh7FOXjDhg3auHGjkpKSlJ2dnWe/xWLRxIkTi3MJAEXAUFYAAAAAAMzDoWDu9OnT6tGjh3777TcZBSQBBHPA9WFhLCsAAAAAAKbjUDA3ZswYrV27Vp06dVL//v1VtWpVeXgUq/MdgGLIjeXoMAcAAAAAgHk4lKYtXbpUrVq10sqVK+mpAwAAAAAAADjAocUf0tLS1KFDB0I5oJTI/VIsaGg5AAAAAAAoXRwK5po2bapDhw45uRQAxUUsBwAAAACAeTgUzE2ePFnffPON1q1b5+x6ADiAzqsAAAAAAJiPQ3PMxcXFqXv37urYsaN69+6tW2+9VYGBgfm27devX7EKBFA4S+7yD3SZAwAAAADANCyGA5NSubm5yWKx2MxndfV8c4ZhyGKxKDs7u/hVlnIpKSkKCgpScnLyNQNKoCTd+/ZabY9N1scDWqjzTeGuLgcAAAAAgBuavVmRQz3mZs+e7XBhAJyPoawAAAAAAJiPQ8Fc//79nV0HgGLIzeVYlBUAAAAAAPNwaPEHAAAAAAAAAMXjUI+5XIcOHdJnn32mrVu3KiUlRYGBgWratKl69+6tGjVqOKlEAIW6NJaVHnMAAAAAAJiHw8Hcm2++qWeffVZZWVk2i0B8+eWXmjZtmmbOnKmRI0c6pUgA9iGXAwAAAADAPBwayrp06VKNHj1aQUFB+ve//63ff/9dBw8eVHR0tF588UUFBQVpzJgx+u6775xdL4B8sPYDAAAAAADm41CPuddee03ly5fX5s2bVbVqVev26tWrq3Xr1urdu7eaNWum1157Td27d3dasQDyl7sqq8FYVgAAAAAATMOhHnObN2/WY489ZhPKXSkyMlKPPvqoNm3aVKziABQNsRwAAAAAAObhUDCXkZEhf3//AtsEBAQoIyPDoaIAFA1DWQEAAAAAMB+Hgrl69erp22+/VVZWVr77s7KytHTpUtWrV69YxQGwj4VVWQEAAAAAMB2Hgrl+/fopJiZGUVFReYar/vHHH7rrrrsUExOj/v37O6VIAAAAAAAAoKxxaPGHkSNHas2aNfrmm2/UqlUr+fn5KSwsTAkJCTp//rwMw9D999+vkSNHOrteAPm4PJSVLnMAAAAAAJiFQz3m3N3dtWTJEs2ZM0edOnWSl5eXjhw5Ii8vL91xxx2aO3euFi9eLDc3h04PwEEMZQUAAAAAwDwc6jGXq1+/furXr5+zagHgIAurPwAAAAAAYDp0aQPKAMulwax0mAMAAAAAwDwI5oAyhKGsAAAAAACYh13BnJubmzw8PLRnzx7ra3d390I/PDyKNVIWgL0YygoAAAAAgOnYlZx16NBBFotFfn5+Nq9d6dChQ/rXv/6ln3/+WXFxcapcubL69OmjCRMmyMvLy9pu27ZtGjZsmDZu3KjQ0FANHz5czz77rM25Fi1apIkTJ+rQoUOqW7euZsyYobvvvvt63xLgsNyvRoPBrAAAAAAAmIZdwdyqVasKfO0Ku3fvVk5Ojj744APVqVNHO3bs0JAhQ3Tu3Dm98sorkqSUlBR17dpVXbp00fvvv6/t27dr0KBBCg4O1hNPPCFJ+v3339WrVy9Nnz5d99xzj+bPn68ePXpo8+bNaty4sStvESgyhrICAAAAAGAeFsMoO7/Kv/zyy5o1a5YOHDggSZo1a5YmTJiguLg4ay+65557TkuWLNHu3bslSY899pjOnTunpUuXWs/Tpk0bNW3aVO+//75d101JSVFQUJCSk5MVGBjo5LsCCtfzw2itO3Bab/dqpntvqezqcgAAAAAAuKHZmxU5tPhDrVq19NZbbxXY5t1331WtWrUcOb3DkpOTVb58eevr6OhodejQwWZoa1RUlGJiYnTmzBlrmy5duticJyoqStHR0de8Tnp6ulJSUmw+gNKgzKTsAAAAAADcABwK5g4dOqSkpKQC2yQlJenw4cOOnN4h+/bt09tvv62hQ4dat8XFxSk8PNymXe7ruLi4Atvk7s/P9OnTFRQUZP2IjIx01m0ADrGw+gMAAAAAAKbjUDBnj+TkZHl7exf5uOeee04Wi6XAj9xhqLliY2PVrVs3PfLIIxoyZIizbuGaxo8fr+TkZOvH0aNHS/yaQEFy12IpQyPTAQAAAAAo8+xa/EGS1qxZY/P60KFDebZJUnZ2to4eParPPvtM9erVK3JBY8eO1YABAwpsc+UQ2ePHj+uOO+7Qbbfdpg8//NCmXUREhOLj42225b6OiIgosE3u/vx4e3s7FDoCAAAAAAAAuewO5jp16iTLpW45FotFc+fO1dy5c/NtaxiGLBaLXnrppSIXFBoaqtDQULvaxsbG6o477lDz5s01e/ZsubnZdgBs27atJkyYoMzMTHl6ekqSVqxYofr16yskJMTaZuXKlRo1apT1uBUrVqht27ZFrh1wFQsjWQEAAAAAMB27g7lJkybJYrHIMAxNmzZNHTt2VKdOnfK0c3d3V/ny5XXHHXeoQYMGzqzVRmxsrDp16qTq1avrlVde0cmTJ637cnu7Pf7445o6daoGDx6scePGaceOHXrzzTf1+uuvW9uOHDlSHTt21Kuvvqru3btr4cKF+uOPP/L0vgNKs9w55hjJCgAAAACAedgdzE2ZMsX6/6tXr9bAgQPVr1+/kqjJLitWrNC+ffu0b98+Va1a1WZf7jxbQUFB+vHHHzVs2DA1b95cFStW1KRJk/TEE09Y2952222aP3++nn/+ef3f//2f6tatqyVLlqhx48bX9X4AZzBYlxUAAAAAANOwGMwWX2wpKSkKCgpScnKyAgMDXV0ObkB9P1qvX/ee0uuP3aIHmlUt/AAAAAAAAFBi7M2K7O4xl58TJ05o4cKF2rJli5KTkxUUFKRmzZqpZ8+eqlSpUnFODcABxOwAAAAAAJiHw8Hcu+++q2eeeUbp6em6stPdvHnzNGHCBL3yyiv6xz/+4ZQiAQAAAAAAgLLGoWBu4cKFGj58uCpWrKgJEyaoffv2Cg8PV3x8vNasWaM333zTuv/RRx91ds0ArpK7YjI95gAAAAAAMA+HgrmZM2eqYsWK2rp1qypXrmzdXr9+fXXo0EEDBgxQs2bNNGPGDII54DoilwMAAAAAwDzcHDlo165devTRR21CuStVrVpVjzzyiHbt2lWs4gDYx+LqAgAAAAAAQJE5FMwFBwfL39+/wDYBAQEKDg525PQAiujSSFaxyDIAAAAAAObhUDB333336dtvv1VWVla++zMzM/Xtt9/q/vvvL1ZxAIqGWA4AAAAAAPNwKJibOXOm/P391bVrV61bt85mX3R0tLp27apy5crppZdeckqRAArGUFYAAAAAAMzHocUfmjVrpoyMDG3evFnt2rWTh4eHKlasqFOnTll70VWqVEnNmjWzOc5isWj//v3FrxqADYt1LKtr6wAAAAAAAPZzKJjLycmRp6enqlWrZrP96sUgrp7vivmvAAAAAAAAgIscCuYOHTrk5DIAFEfuUFaDLnMAAAAAAJiGQ3PMASid6JQKAAAAAIB5EMwBZYCF1R8AAAAAADAdu4ayTps2TRaLRcOGDVP58uU1bdo0u05usVg0ceLEYhUIwB4Xkzk6zAEAAAAAYB4Ww44VGdzc3GSxWLRr1y7Vq1dPbm72dbSzWCzKzs4udpGlXUpKioKCgpScnKzAwEBXl4Mb0N/n/qGfdsXrxQea6PHW1Qo/AAAAAAAAlBh7syK7esz98ssvkmRdhTX3NYDSgaGsAAAAAACYj13BXMeOHQt8DcC1WJUVAAAAAADzcWjxh86dOzN3HAAAAAAAAFAMDgVz69evvyHmjgPMIncoa+EzRgIAAAAAgNLCoWDupptu0uHDh51dC4BiIpcDAAAAAMA8HArmhg8frq+//lp//fWXs+sB4ACLWP0BAAAAAACzsWvxh6vVqlVLnTp1Ups2bTR06FC1bNlS4eHhsuSzNGSHDh2KXSSAglm/9BjLCgAAAACAaTgUzHXq1EkWi0WGYejVV1/NN5DLxVx0wPVDLAcAAAAAgHk4FMxNmjSpwDAOwPXFlyMAAAAAAObjUDA3ZcoUJ5cBoDhy55hjJCsAAAAAAObh0OIPAAAAAAAAAIrHoWDut99+05gxYxQXF5fv/hMnTmjMmDFat25dsYoDYKdLQ1kNuswBAAAAAGAaDgVzr732mr799ltFRETku79SpUpaunSpXn/99WIVB6BoiOUAAAAAADAPh4K5jRs36vbbby+wTYcOHegxB1wnrP0AAAAAAID5OBTMJSQkqEqVKgW2iYiIUEJCgkNFASia3FWSGckKAAAAAIB5OBTMBQcH68iRIwW2OXz4sAICAhwqCoBjyOUAAAAAADAPh4K5Nm3aaPHixTp69Gi++48cOaIlS5botttuK1ZxAOzDUFYAAAAAAMzHoWBuzJgxOn/+vNq1a6dPPvlEJ06ckHRxNda5c+eqXbt2SktL09ixY51aLID8WViVFQAAAAAA0/Fw5KAOHTrotdde09ixYzVw4EBJF+e4yg0F3Nzc9Oabb6pDhw7OqxQAAAAAAAAoQxwK5iRp5MiRuuOOO/T+++9r48aNSk5OVnBwsFq1aqUnn3xSjRs3dmadAArAUFYAAAAAAMzH4WBOkm6++Wa99957zqoFQDExkhUAAAAAAPNwaI65gqSnpyszM9PZpwVQAIuFPnMAAAAAAJiNQ8HcmjVrNGnSJCUlJVm3JSYm6q677lJAQICCgoL03HPPOatGAIXIjeUM0WUOAAAAAACzcCiYe+WVVzR//nwFBwdbt40dO1bLly9XzZo1FRwcrJdfflmff/65s+oEYAeGsgIAAAAAYB4OBXNbtmzR7bffbn194cIFff755+ratav27NmjmJgYVatWTbNmzXJaoQAKwEhWAAAAAABMx6FgLjExUVWqVLG+jo6O1oULFzRw4EBJUrly5XTPPfcoJibGOVUCKJDlUjJHhzkAAAAAAMzDoWDO19dXqamp1te//PKLLBaLOnbsaN0WEBCgM2fOFL9CAHZjKCsAAAAAAObh4chBderU0Q8//KD09HRZLBYtXLhQDRs2VEREhLXNkSNHFBYW5rRCAVwbi7ICAAAAAGA+DvWYGzJkiPbt26c6deqoQYMG2r9/v3UYa65NmzapYcOGTikSgH1YlRUAAAAAAPNwKJgbPHiwnnnmGaWlpSk5OVlPPfWURo0aZd0fHR2tPXv26G9/+5uz6gRQADrMAQAAAABgPg4NZbVYLJoxY4ZmzJiR7/7mzZvrzJkz8vf3L1ZxAOyTO5SVOeYAAAAAADAPh4K5wnh5ecnLy6skTg0AAAAAAACUCQ4NZc21ePFiPfroo7r55ptVp04d6/bdu3dr5syZio2NLXaBAApnYTArAAAAAACm41CPuZycHPXq1UtffPGFJMnX11dpaWnW/SEhIZowYYKys7M1fvx451QK4JouD2VlLCsAAAAAAGbhUI+5119/XYsWLdLQoUN15swZPf300zb7w8PD1b59e3333XdOKRKAfcjlAAAAAAAwD4eCuTlz5qhly5Z67733FBgYKIsl7zC6OnXq6ODBg8UuEEDh8vkSBAAAAAAApZxDwdy+ffvUvn37AttUqFBBiYmJDhUFoKguJnN0mAMAAAAAwDwcCuZ8fX2VnJxcYJvDhw8rODjYkdMDAAAAAAAAZZ5DwVyzZs20fPlyXbhwId/9p0+f1g8//KA2bdoUqzgA9rm8+INr6wAAAAAAAPZzKJgbMWKEjh07poceekjHjh2z2bd//3498MADSk5O1ogRI5xSJAD7GAxmBQAAAADANDwcOej+++/XuHHjNGPGDFWvXl3+/v6SpLCwMCUmJsowDE2cOFGdO3d2arEA8sfaDwAAAAAAmI9DPeYkafr06Vq+fLnuuece+fn5yd3dXTk5OerWrZuWLVumqVOnOrNOAAVgKCsAAAAAAObjUI+5XHfeeafuvPNOZ9UCoJjI5QAAAAAAMA+He8wBKD0sDGYFAAAAAMB0HOoxFxsbqyVLlmjjxo06deqUJCk0NFQtW7bUAw88oEqVKjm1SAAFyx3KylhWAAAAAADMo8g95iZPnqw6depoxIgR+uSTT/T999/r+++/19y5czV8+HDVrl1b//rXv0qi1mtKT09X06ZNZbFYtHXrVpt927ZtU/v27eXj46PIyEjNnDkzz/GLFi3STTfdJB8fHzVp0kTff//9daocAAAAAAAAN6oi9ZibMGGCpk+fLm9vb/Xp00edOnVS5cqVJUnHjx/XL7/8okWLFmnKlCnKzs7WlClTSqLmPJ599llVrlxZf/75p832lJQUde3aVV26dNH777+v7du3a9CgQQoODtYTTzwhSfr999/Vq1cvTZ8+Xffcc4/mz5+vHj16aPPmzWrcuPF1qR8oLmuHOZdWAQAAAAAAisJiGPaNfTtw4IDq16+vatWqadmyZapXr16+7fbs2aOoqCjFxsYqJiZGNWvWdGrBV1u2bJnGjBmjL7/8Uo0aNdKWLVvUtGlTSdKsWbM0YcIExcXFycvLS5L03HPPacmSJdq9e7ck6bHHHtO5c+e0dOlS6znbtGmjpk2b6v3337erhpSUFAUFBSk5OVmBgYHOvUHADpO/3qG50Yf1zzvq6Omo+q4uBwAAAACAG5q9WZHdQ1nnzp2rnJwcffrpp9cM5SSpXr16mjdvnrKysvTJJ58Ureoiio+P15AhQ/Tpp5/Kz88vz/7o6Gh16NDBGspJUlRUlGJiYnTmzBlrmy5dutgcFxUVpejo6GteNz09XSkpKTYfgCtZLCz+AAAAAACA2dgdzP32229q3LixbrvttkLbtmvXTk2aNNGvv/5arOIKYhiGBgwYoCeffFItWrTIt01cXJzCw8NttuW+jouLK7BN7v78TJ8+XUFBQdaPyMjI4twK4DQGg1kBAAAAADANu4O5Xbt2qVWrVnafuFWrVtbhokXx3HPPyWKxFPixe/duvf3220pNTdX48eOLfI3iGj9+vJKTk60fR48eve41APlhUVYAAAAAAMzD7sUfkpKSFBYWZveJw8LClJSUVOSCxo4dqwEDBhTYplatWvr5558VHR0tb29vm30tWrRQ7969NXfuXEVERCg+Pt5mf+7riIgI63/za5O7Pz/e3t55rgu4EiNZAQAAAAAwH7uDubS0tCKFUV5eXkpLSytyQaGhoQoNDS203VtvvaV///vf1tfHjx9XVFSU/ve//6l169aSpLZt22rChAnKzMyUp6enJGnFihWqX7++QkJCrG1WrlypUaNGWc+1YsUKtW3btsi1A65iubQuKx3mAAAAAAAwD7uDudKmWrVqNq8DAgIkSbVr11bVqlUlSY8//rimTp2qwYMHa9y4cdqxY4fefPNNvf7669bjRo4cqY4dO+rVV19V9+7dtXDhQv3xxx/68MMPr9/NAAAAAAAA4IZTpGBu3rx5WrdunV1t9+3b51BBzhQUFKQff/xRw4YNU/PmzVWxYkVNmjRJTzzxhLXNbbfdpvnz5+v555/X//3f/6lu3bpasmSJGjdu7MLKgaLJHcrKHHMAAAAAAJhHkYK5ffv2FSlws1zHia9q1KghI59U4uabby50ddhHHnlEjzzySEmVBlw3rMoKAAAAAIB52B3MHTx4sCTrAFAMrP0AAAAAAID52B3MVa9evSTrAFAM1s6pdJgDAAAAAMA03FxdAADnIZcDAAAAAMA8COaAMuB6zucIAAAAAACcg2AOKAOsI1lZlhUAAAAAANMgmAMAAAAAAABcgGAOKAsudZmjwxwAAAAAAOZBMAeUIeRyAAAAAACYB8EcUAZYxOIPAAAAAACYDcEcUAZYGMoKAAAAAIDpEMwBZYjBYFYAAAAAAEyDYA4oAxjICgAAAACA+RDMAWUAQ1kBAAAAADAfgjkAAAAAAADABQjmgDKAVVkBAAAAADAfgjmgDDEYywoAAAAAgGkQzAFlgIUOcwAAAAAAmA7BHFAG5OZy9JcDAAAAAMA8COaAMoSRrAAAAAAAmAfBHFAWMJYVAAAAAADTIZgDyoDLQ1npMgcAAAAAgFkQzAFlCENZAQAAAAAwD4I5oAxgJCsAAAAAAOZDMAeUIXSYAwAAAADAPAjmgDLAIrrMAQAAAABgNgRzQBmQO5SVOeYAAAAAADAPgjmgTCGZAwAAAADALAjmgDKAgawAAAAAAJgPwRxQBjCUFQAAAAAA8yGYA8oQgjkAAAAAAMyDYA4oAywWBrMCAAAAAGA2BHNAGWKw+AMAAAAAAKZBMAcAAAAAAAC4AMEcUAaw+AMAAAAAAOZDMAeUIeRyAAAAAACYB8EcUAZYxOIPAAAAAACYDcEcUAYwlBUAAAAAAPMhmAPKEFZlBQAAAADAPAjmgDKAgawAAAAAAJgPwRxQBuQOZaXDHAAAAAAA5kEwBwAAAAAAALgAwRxQBuSuykqHOQAAAAAAzINgDihDDJZlBQAAAADANAjmgDLAwuoPAAAAAACYDsEcUIbQXw4AAAAAAPMgmAPKEEayAgAAAABgHgRzQBlgYSwrAAAAAACmQzAHlAG5sRwd5gAAAAAAMA+COQAAAAAAAMAFCOaAMiB3JKvBJHMAAAAAAJgGwRxQhhDLAQAAAABgHgRzQBnA0g8AAAAAAJgPwRxQBlhXZaXLHAAAAAAApkEwB5QhBskcAAAAAACmQTAHlAEWxrICAAAAAGA6BHNAGZCby7EoKwAAAAAA5kEwBwAAAAAAALgAwRxQFlway0qPOQAAAAAAzINgDihDWPwBAAAAAADzIJgDygDWfgAAAAAAwHxMH8x99913at26tXx9fRUSEqIePXrY7D9y5Ii6d+8uPz8/hYWF6ZlnnlFWVpZNm1WrVunWW2+Vt7e36tSpozlz5ly/GwCcIHdVVoayAgAAAABgHh6uLqA4vvzySw0ZMkQvvviiOnfurKysLO3YscO6Pzs7W927d1dERIR+//13nThxQv369ZOnp6defPFFSdLBgwfVvXt3Pfnkk/rss8+0cuVK/f3vf1elSpUUFRXlqlsDHEIuBwAAAACAeVgMw5x9bLKyslSjRg1NnTpVgwcPzrfNsmXLdM899+j48eMKDw+XJL3//vsaN26cTp48KS8vL40bN07fffedTaDXs2dPJSUl6YcffrCrlpSUFAUFBSk5OVmBgYHFvzmgiOavP6L/W7xddzYM13/6tXB1OQAAAAAA3NDszYpMO5R18+bNio2NlZubm5o1a6ZKlSrprrvusgnYoqOj1aRJE2soJ0lRUVFKSUnRzp07rW26dOlic+6oqChFR0df89rp6elKSUmx+QBciaGsAAAAAACYj2mDuQMHDkiSpkyZoueff15Lly5VSEiIOnXqpNOnT0uS4uLibEI5SdbXcXFxBbZJSUlRWlpavteePn26goKCrB+RkZFOvTcAAAAAAACUfaUumHvuuedksVgK/Ni9e7dycnIkSRMmTNBDDz2k5s2ba/bs2bJYLFq0aFGJ1jh+/HglJydbP44ePVqi1wMKc3lVVrrMAQAAAABgFqVu8YexY8dqwIABBbapVauWTpw4IUlq2LChdbu3t7dq1aqlI0eOSJIiIiK0YcMGm2Pj4+Ot+3L/m7vtyjaBgYHy9fXN9/re3t7y9va2/6aA64ShrAAAAAAAmEepC+ZCQ0MVGhpaaLvmzZvL29tbMTExuv322yVJmZmZOnTokKpXry5Jatu2rV544QUlJCQoLCxMkrRixQoFBgZaA722bdvq+++/tzn3ihUr1LZtW2feFlCiLJbC2wAAAAAAgNKl1A1ltVdgYKCefPJJTZ48WT/++KNiYmL01FNPSZIeeeQRSVLXrl3VsGFD9e3bV3/++aeWL1+u559/XsOGDbP2eHvyySd14MABPfvss9q9e7fee+89ff755xo9erTL7g0oKsulwax0mAMAAAAAwDxKXY+5onj55Zfl4eGhvn37Ki0tTa1bt9bPP/+skJAQSZK7u7uWLl2qp556Sm3btpW/v7/69++vadOmWc9Rs2ZNfffddxo9erTefPNNVa1aVf/9738VFRXlqtsCHGYwlhUAAAAAANOwGPwmX2wpKSkKCgpScnKyAgMDXV0ObkCf/3FUz36xTXfUD9Xsga1cXQ4AAAAAADc0e7Mi0w5lBXBZ7hRzpOwAAAAAAJgHwRxQhtD/FQAAAAAA8yCYA8oAC8uyAgAAAABgOgRzQBlChzkAAAAAAMyDYA4oA+gvBwAAAACA+RDMAWVA7khWFlkGAAAAAMA8COYAAAAAAAAAF/BwdQEAio+1HwAAuL5SL2Rq85EktatdQR7uBf+tOyfH0Oo9J5V4LiPPvgoBXupUL7TULORkGIZW7TmprGxDd9QP1amzGfpt36k889jWrOin5tXLF3qu3/cn6qaIcqoQ4F1yRcMpsrJz9Nv+RKWkZcrNYlHLmiEKK+fj6rJM5crRK1cOZDHy2W+xWOTuVjq+7lEycv+9c//Zr34OCvvZgRsHwRxQBlguzTK3Oy5VYz7fWvwTGtLehLP660RK8c/lAB8PN7WrU1EBPub7FuVmsahljRBVCvJ1aR2+Xu5qFhlcZn7g74lPVWSIn3y93F1Ww4GTZ3XsTFqxzlE7LEBVggt+NgzD0PbYZCWdz8yzLyzQWzdFBCrxbLp2Hk+Rn5e7mlULMe0b+7PpWXrg3d904NQ5h47v0iBMH/Rt4eSqSo9FfxzVqj0nHTq2dkV/jb6zXpHCnt/3n9LCDUeVfcUvjv5e7hrxt7qqGuLnUB1l2aiFW7Vyd4Im3N1AQzrUKrDtLzEJGjz3j2vunz2gpe64KczZJTrkl5gEDZpzsdbXHr1Fn60/ok2Hz+RpZ7FIa565Q5Hlr/1sLN8ZryfnbVKdsAD9NKZjidV8NcMwNOSTP/RLzOWvn54tI/XCA03sPkdWdo56/WedQvy89GG/Fvrpr3iN/t9Wnc/MLvC4rg3DNatPc4drd6WvtsTq2S+22WzL7+dLs8hgLXyiTZl5j1GYz/84qklf71BGVo6kK8OV4p3Xy8NNbzzWVHc3qVS8ExVT4tl0PfDe74pNKvp7nOrl/bR4WDsF+XoW2nbKNzv1275T+uoft6mcT+HtzSAu+YIefO83xaVccOi5qB9eTnXCAgqcMNzdYlGfNtXVqubFP4ScTc/S6yv26MylP/RceTmbYNhmu+057Tmmgr+Xnu12k/y93PX6T3vVsFKgbq9bUTN/2J3vH5mcxd1i0Vu9mpXY+Usr8/3WCyCPIL+LP9xOpqbrq82xLq6m+M5lZOvHv+JdXYbDvth0zNUlSJKe7VZf/+hUx9VlFNtv+06p93/X686G4fpPP9eEMEdPn9edr69Rdk7x3oWX8/ZQ9P/9TQHe1/7xm/uL7LUsGdZOIxdu0eHE85Kkifc01ODbaxarLlfZeiRJexPOOnz88p3xSrmQqcAy8gb/ShcyszX+q+3KKsYz17lBuJpGBtvd/t9Ld+X7B5lgPy/9390NHK6jrFq5O0GS9NHag4UGczuPX/y8Vgn2Vd3wAOv2vfFnFZuUpp3Hk0tNMLf92OVnYNuxZO2ITZYk3Va7grw8LgYxW44kKTkt8+IfTQoI5r758+J7kn3F+Dp3xOlzGfppV4LNti83H9O/ezS2O6zeE39WGw9dDCSTz2fqu+0nlJqeVehxy3bE6Wx6VoHf50urLUeSJEnVyvvJ28NNexPO5vtz74/DZ7Q34awaVAq8zhW6xjdbj+tCZo7Tz5uRlaMfdsS5PJhbd+C0jpw+79CxB06d0+bDZwr9/mUYhub8fkiS9P32E3qsZTWHrlfa/Lr3pI4nX3D4+Jj4VMXEpxba7tiZ8/rqH+0kSV9vjdVHaw86fM2iaFgpUOFBPnpr5V5J0osPNNEn0YdL9JoebgRzAEyqfZ2KeuOxpkpIdfwHw9V8PN3Vrk5FlXPBG8u9CWe183jydb+uM5xMTdf6g6eVle26hTiS0zIVm5SmTYfy9nAwow/XHJAkrXBhWLv5yBll5xgK8PZQtQJ+CS3I/pNnlZqepd0nUtSixrWHf204eFqSFFrOW6FXDP06npympPOZ+n77CWsoJ0kbD542bTB3+PTFnnLt61bUq4/cUqRj737rV506m6EjiefVuEpQSZTnUkdPn1dWjiE/L3eN63ZTkY6dt+6w9iac1f6Es3YHczk5hg6cuhiejLmznoJ8PbXlyBkt2Xpc+69zqFIW5X7NPt66mobdcfkPJm+t3KvXVuyx+Zp2tYOnLv97rzuQqPSsHHm4WfTJoFbWHlJPfrpJP+yM09FCfpm/spdGVnbOdethdfhSXeGB3loyrJ1un/GLLmTmKCE1XeGB9g3NPJF8uffQ4dPndDjx4verlx5sos7XCCG6vfmrTp/L0OHEc2pU2Xzfl/afvPw9oEezKjp9LkNZ2baB1BOfbtLWo0naE596wwRzuT+r/tOvhW6JvPzvmjti5cqs98rY98oQ2GLddvG/K3claOyiP63Pqivl3t/dTSI05d5Gdh/33Ffb9fPuBOvXRkGu7GF1Nr3gXqdmcvBSj/+Hm1fVs93qS7r4XOT+O1/+d7fkeQbOpmfpt32nCgx9E8+m662f92n/ycuf49w/dLSrU0Gd6l3+XlTQ3xzyexbzOyb35crdCfp17yntTTir9KzL9W04mCjp4vu2Lg3Cr33BYjDpIJBiI5gDygAPdzf1aFbF1WU4TVigj9rVqejqMkzr9/2n9Ph/1mvfybL3y3RaRrZLhrPuufTXzPuaVtaLRRgKdaUBszdoVcxJxcSnFhjM5V7rma719WjLSOv2N3/aq9d/2qNv/zyeb3szOnIpjKgdGqAwO39ZzlWtvJ9Onc3Q4TIazOW+2a8dGqD+t9Uo0rEx8anam3DWeg57xKde0IXMHLm7WfRUp9rydHdTnbAALdl6XAft+KXrRpOeVbRfLI9c+sX36t5luUF/afjlPNfBK0LC3XEXv79UK+9nE6pVDbk4JL+w4f1X/kJ3IvlCgb3rCnPqbLo1JK4U5KtqFa59rtzvLTUq+KtSkK8qB/vo6Ok0HU48b3cwd2VYejjxvLVHUeMqQdf8flWtvJ9On7v4BwNTBnOXPr91wi726izv75WnTcPKgdp6NEkxceb92VMUmdk5Op508Q/fN1cNctqcezdVKidJOlIKvr/mfr3UDStXpJ/FdcICLgZzdnz/uvLrKS65eNOClCaHLv37NagUWORnI9jPq9Ceg2kZ2Xrr531KTsvUmXMZCvH3sv5s796ksh5vXTI9D7093fXr3lPaf/KsPK5IynJHNHVvUkk9W5WNXo+lBcEcAJQxuW+oj54+rwuZ2fLxdN28bM5w5vzlv7IePHVODSsX7S/0FzKzdTjxvIw8U5fbb+vRJEkX5wJxVP3wcloVc1IbD55W8+oh12y3O+7iMLJ6EbbXqh9x8d/1xKUhEy2qh+iPw2d0KPGcdsQmy8O95P7EWK28n/y8nP+WIfeNevUCfsG+luoV/LX5SJL1L/1lTe4b7xoV/Yt8bM0KF48pSqB28NJf4yNDfOV5KYDJvfaRxPPXtbeTGeT+oi5J5zKyCv0+c/DUpWf96mDu0rN/8NQ569d+YQJ9PFX50lyVhmHoUOL5IgeF5zOy9fu+U/n2XNmXT9h/9XOYG7AdPVPwL+SxVwR3R8+cdziYO5uepbvf/FUJqemSJE93i7755+3X7LF19feW6uX9LwVz56zzNBXmyqF9u06k6NTZiz+LCgoEq1fw09ajSXYFFWkZ2Ro6b5P2lpI/rhjG5V5NtUKv/X0n9+fg7N8OafGWkp8+xdPdTc93b6CujSKs21IvZGrop5sK/OODu5tFwzvX0WMtq+mF7/7S0m0nbPb7ebnr9cea6uaqwQVeP/ZMmrJzDPl4uimsnPMWMKl+6fv0mfOZBU7J8PXWWL3yY4xDIzG8Pdw09f7G6lgvtMB2jv4szv3DwhE7evweueJndWnqIXwtFzKzraFbQfbEXwyza1YsmXlYfb3cVSnIRyeSL+jAqXNq7u+lQ5ee+5oOvD+wV+3Qi+8598SlWudWlC7+7JAuzpkM5yKYA4AyJjTAW+V8PJR6IUt3v/WrvEz+y/SVcxM98ekfRZ63JzYpTakXCp8XyB71ihHM5R67ZOtxLdl6vJDWUt2r3vRcfe12dSpq/8mzOnM+U/e8vdbhuuzh5+WuyBA/p68AXZxgLvcXgv+sOaBv7Ph8mk1uAOHIG+/cY37elaBub6yx65iUtMw816sU6CNvDzelZ+Wo25u/2vzV/EaXdsUCAKkXstTyhZ/s+j5z9bOeG9SdTE1Xtzd+tfv6NSv6y9vDTakXshyasL0wnu4WWWRRxqVhjFfOiydJkeUvBoNr9pwq8Bm7suf205//qUA7JojPz9n0LCWkpivA20PeHm5KPJehvh9tUMWAvD26JCku5WJwmht+VKvgJ+2TZi6PsXtupis/r7lzKoX4eRY4p2Xuv+eHaw5oSSGh1dn0rGIvKFQSbokMLvAPMW1qVZCb5eLXQFry9RmSOHLhVpuvHXuf+4lLduqjtQet4cnV+n60QZWCCu7llBtEVCvv59SVkwO8PVTB30uJ5zLU453frPM3Xu3AqXM2wUhR/WPepkID8dwFmIr6szi3/W/7C/4+INkOZV2z96TdP5tc5diZNJ21Y07JXDUrllxQVbOiv04kX9CIBVtUzsfDGvyXbDB38dzHky/kO4debnAH5yGYA4AyxmKxqGWN8vp5d4IOnCxbvYkc/SXG19Nd/t7F6zlYJyxAzaoFO3z8HTeFqXGVQMXZMUlwt8YR8r8qgKxRwV/dGkXoj8OnFejrqXturiQvDzfN+f2QzYpaznY+I1vnM7LtmpzYEZ7uFoeGfOX+W5w5n6kz+axgW1bc6sAz16RqkDzdLUrLzLYORbT/epd7c7q5WdSsWrDWHTh93SfvN5vUC1ny8XQr8A8HHeuF5Vm5sLy/lx5sVkVr9tq3+m5ur6Yrewq5WfIfcliYumHl1LByYL6LAbapVUE+nu5aFZMgPy939btqOHXDSkV/xq71C15RvPBAYzWsFKjub63VqbPpOnU2vcD2uXMsNosM1vz1R3QyNV0nUws+Jj+5v6AXNmdjs0tfP6fPZei0HasWWizSzIduLlVztdUppCdM/Yhy+v25vxX6uXcGw5AmLNmubceS8zxnbhbp9ceaXjMgeHl5jFbvOWkN5Qa1q6kHb7047UtGdo7+MW+z4lIuKDnNvp8fRVlIx17NqgXrp10Jha5M3rpmeU28p2GRzm0Y0tOL/lRMfKpdX6P+Xu6qE1a0Pz42qBQoLw83XcjMKdLPmqK2dxV73zveWi0kT29oZ7q1Woh+359oE0ZXCfZVeKDzenBerby/lx66tapW77m4iM659GwF+3kqMztHHeuFOfQzBwWzGCX5bv4GkZKSoqCgICUnJyswsPT8YAVw4zqfkaWtR5JUzEVES41aof46dibNob8ae3m4qVm1YOvwPBRNdo6hrUfPKC3D+SvSSRd7IRQ0NOxaDMPQXydSdOZc2Q3lQvw91bBSoEO9NI5cMSeWvXw83dQ0MthmyOrZ9Cz9eTRJvFvMy93Notqh/toTf1ZeHhc/d9fq9eJMx86c16FTl/9tG1QqpwoBJfcL2rUcTjyno6cL/2NJrVB/xSalKb2Yq1oG+XqqSdWLIf7BU+dshsnmp7y/lxpUKieLxaKcHEPbY5OL3Hs6PNBbmdmGTp/LkJvlYm+yq/9ocqWifl8KLeet+hGO98S+EaReyNS2Y8l5vgdFBHkXGCRdyMzW5iNnlJNz8XvbrdVC5HZFr99TZ9O1+4R94ZCH+8U/Unh7OHdqEHveq7m5XQwFHZlOIjktUzti837u8lMz1F9VLg2RL4qjp8/bPTQ1wMdDIX6edn3fcLX8fh66SlZ2jrYcTbL5Huqq7/soOnuzIoI5JyCYAwAAAAAAQC57syLXR8AAAAAAAADADYhgDgAAAAAAAHABgjkAAAAAAADABQjmAAAAAAAAABcgmAMAAAAAAABcgGAOAAAAAAAAcAGCOQAAAAAAAMAFCOYAAAAAAAAAFyCYAwAAAAAAAFyAYA4AAAAAAABwAYI5AAAAAAAAwAUI5gAAAAAAAAAXIJgDAAAAAAAAXIBgDgAAAAAAAHABD1cXUBYYhiFJSklJcXElAAAAAAAAcLXcjCg3M7oWgjknSE1NlSRFRka6uBIAAAAAAACUFqmpqQoKCrrmfotRWHSHQuXk5Oj48eMqV66cLBaLq8txipSUFEVGRuro0aMKDAx0dTkwAZ4ZFBXPDIqKZwZFxTODouKZQVHxzKCoeGZuHIZhKDU1VZUrV5ab27VnkqPHnBO4ubmpatWqri6jRAQGBvLNAkXCM4Oi4plBUfHMoKh4ZlBUPDMoKp4ZFBXPzI2hoJ5yuVj8AQAAAAAAAHABgjkAAAAAAADABQjmkC9vb29NnjxZ3t7eri4FJsEzg6LimUFR8cygqHhmUFQ8MygqnhkUFc8MrsbiDwAAAAAAAIAL0GMOAAAAAAAAcAGCOQAAAAAAAMAFCOYAAAAAAAAAFyCYAwAAAAAAAFyAYA75evfdd1WjRg35+PiodevW2rBhg6tLggtMnz5dLVu2VLly5RQWFqYePXooJibGps2FCxc0bNgwVahQQQEBAXrooYcUHx9v0+bIkSPq3r27/Pz8FBYWpmeeeUZZWVnX81bgIi+99JIsFotGjRpl3cYzg6vFxsaqT58+qlChgnx9fdWkSRP98ccf1v2GYWjSpEmqVKmSfH191aVLF+3du9fmHKdPn1bv3r0VGBio4OBgDR48WGfPnr3et4LrIDs7WxMnTlTNmjXl6+ur2rVr61//+peuXM+MZ+bGtmbNGt17772qXLmyLBaLlixZYrPfWc/Htm3b1L59e/n4+CgyMlIzZ84s6VtDCSnomcnMzNS4cePUpEkT+fv7q3LlyurXr5+OHz9ucw6emRtLYd9nrvTkk0/KYrHojTfesNnOM4NcBHPI43//+5/GjBmjyZMna/PmzbrlllsUFRWlhIQEV5eG62z16tUaNmyY1q1bpxUrVigzM1Ndu3bVuXPnrG1Gjx6tb7/9VosWLdLq1at1/PhxPfjgg9b92dnZ6t69uzIyMvT7779r7ty5mjNnjiZNmuSKW8J1tHHjRn3wwQe6+eabbbbzzOBKZ86cUbt27eTp6ally5bpr7/+0quvvqqQkBBrm5kzZ+qtt97S+++/r/Xr18vf319RUVG6cOGCtU3v3r21c+dOrVixQkuXLtWaNWv0xBNPuOKWUMJmzJihWbNm6Z133tGuXbs0Y8YMzZw5U2+//ba1Dc/Mje3cuXO65ZZb9O677+a73xnPR0pKirp27arq1atr06ZNevnllzVlyhR9+OGHJX5/cL6Cnpnz589r8+bNmjhxojZv3qyvvvpKMTExuu+++2za8czcWAr7PpNr8eLFWrdunSpXrpxnH88MrAzgKq1atTKGDRtmfZ2dnW1UrlzZmD59ugurQmmQkJBgSDJWr15tGIZhJCUlGZ6ensaiRYusbXbt2mVIMqKjow3DMIzvv//ecHNzM+Li4qxtZs2aZQQGBhrp6enX9wZw3aSmphp169Y1VqxYYXTs2NEYOXKkYRg8M8hr3Lhxxu23337N/Tk5OUZERITx8ssvW7clJSUZ3t7exoIFCwzDMIy//vrLkGRs3LjR2mbZsmWGxWIxYmNjS654uET37t2NQYMG2Wx78MEHjd69exuGwTMDW5KMxYsXW1876/l47733jJCQEJufS+PGjTPq169fwneEknb1M5OfDRs2GJKMw4cPG4bBM3Oju9Yzc+zYMaNKlSrGjh07jOrVqxuvv/66dR/PDK5EjznYyMjI0KZNm9SlSxfrNjc3N3Xp0kXR0dEurAylQXJysiSpfPnykqRNmzYpMzPT5nm56aabVK1aNevzEh0drSZNmig8PNzaJioqSikpKdq5c+d1rB7X07Bhw9S9e3ebZ0PimUFe33zzjVq0aKFHHnlEYWFhatasmf7zn/9Y9x88eFBxcXE2z0xQUJBat25t88wEBwerRYsW1jZdunSRm5ub1q9ff/1uBtfFbbfdppUrV2rPnj2SpD///FNr167VXXfdJYlnBgVz1vMRHR2tDh06yMvLy9omKipKMTExOnPmzHW6G7hKcnKyLBaLgoODJfHMIK+cnBz17dtXzzzzjBo1apRnP88MrkQwBxunTp1Sdna2zS/EkhQeHq64uDgXVYXSICcnR6NGjVK7du3UuHFjSVJcXJy8vLysb0pyXfm8xMXF5fs85e5D2bNw4UJt3rxZ06dPz7OPZwZXO3DggGbNmqW6detq+fLleuqppzRixAjNnTtX0uV/84J+LsXFxSksLMxmv4eHh8qXL88zUwY999xz6tmzp2666SZ5enqqWbNmGjVqlHr37i2JZwYFc9bzwc+qG9eFCxc0btw49erVS4GBgZJ4ZpDXjBkz5OHhoREjRuS7n2cGV/JwdQEAzGHYsGHasWOH1q5d6+pSUIodPXpUI0eO1IoVK+Tj4+PqcmACOTk5atGihV588UVJUrNmzbRjxw69//776t+/v4urQ2n0+eef67PPPtP8+fPVqFEjbd26VaNGjVLlypV5ZgCUqMzMTD366KMyDEOzZs1ydTkopTZt2qQ333xTmzdvlsVicXU5MAF6zMFGxYoV5e7unmeFxPj4eEVERLioKrjaP//5Ty1dulS//PKLqlatat0eERGhjIwMJSUl2bS/8nmJiIjI93nK3YeyZdOmTUpISNCtt94qDw8PeXh4aPXq1Xrrrbfk4eGh8PBwnhnYqFSpkho2bGizrUGDBjpy5Iiky//mBf1cioiIyLNAUVZWlk6fPs0zUwY988wz1l5zTZo0Ud++fTV69GhrL12eGRTEWc8HP6tuPLmh3OHDh7VixQprbzmJZwa2fv31VyUkJKhatWrW98OHDx/W2LFjVaNGDUk8M7BFMAcbXl5eat68uVauXGndlpOTo5UrV6pt27YurAyuYBiG/vnPf2rx4sX6+eefVbNmTZv9zZs3l6enp83zEhMToyNHjlifl7Zt22r79u02P3hy38xc/cs4zO9vf/ubtm/frq1bt1o/WrRood69e1v/n2cGV2rXrp1iYmJstu3Zs0fVq1eXJNWsWVMRERE2z0xKSorWr19v88wkJSVp06ZN1jY///yzcnJy1Lp16+twF7iezp8/Lzc327ew7u7uysnJkcQzg4I56/lo27at1qxZo8zMTGubFStWqH79+jarSqNsyA3l9u7dq59++kkVKlSw2c8zgyv17dtX27Zts3k/XLlyZT3zzDNavny5JJ4ZXMXVq0+g9Fm4cKHh7e1tzJkzx/jrr7+MJ554wggODrZZIRE3hqeeesoICgoyVq1aZZw4ccL6cf78eWubJ5980qhWrZrx888/G3/88YfRtm1bo23bttb9WVlZRuPGjY2uXbsaW7duNX744QcjNDTUGD9+vCtuCS5w5aqshsEzA1sbNmwwPDw8jBdeeMHYu3ev8dlnnxl+fn7GvHnzrG1eeuklIzg42Pj666+Nbdu2Gffff79Rs2ZNIy0tzdqmW7duRrNmzYz169cba9euNerWrWv06tXLFbeEEta/f3+jSpUqxtKlS42DBw8aX331lVGxYkXj2WeftbbhmbmxpaamGlu2bDG2bNliSDJee+01Y8uWLdYVNJ3xfCQlJRnh4eFG3759jR07dhgLFy40/Pz8jA8++OC63y+Kr6BnJiMjw7jvvvuMqlWrGlu3brV5T3zlapk8MzeWwr7PXO3qVVkNg2cGlxHMIV9vv/22Ua1aNcPLy8to1aqVsW7dOleXBBeQlO/H7NmzrW3S0tKMf/zjH0ZISIjh5+dnPPDAA8aJEydsznPo0CHjrrvuMnx9fY2KFSsaY8eONTIzM6/z3cBVrg7meGZwtW+//dZo3Lix4e3tbdx0003Ghx9+aLM/JyfHmDhxohEeHm54e3sbf/vb34yYmBibNomJiUavXr2MgIAAIzAw0Bg4cKCRmpp6PW8D10lKSooxcuRIo1q1aoaPj49Rq1YtY8KECTa/IPPM3Nh++eWXfN+/9O/f3zAM5z0ff/75p3H77bcb3t7eRpUqVYyXXnrpet0inKygZ+bgwYPXfE/8yy+/WM/BM3NjKez7zNXyC+Z4ZpDLYhiGcT165gEAAAAAAAC4jDnmAAAAAAAAABcgmAMAAAAAAABcgGAOAAAAAAAAcAGCOQAAAAAAAMAFCOYAAAAAAAAAFyCYAwAAAAAAAFyAYA4AAAAAAABwAYI5AAAAAAAAwAUI5gAAAAAAAAAXIJgDAABwkUOHDslischisSgiIkJZWVn5ttu1a5e1XY0aNfJtYxiGvvrqKz344IOqWrWqvL29Va5cOd1yyy0aPXq0/vrrL5v2nTp1sp5z6dKl16yxdevW1narVq3Kt82ePXs0fPhwNWrUSIGBgfL29lZkZKQefvhhffnll8rJybHr82GP3M/ZgAEDnHZOAAAAVyGYAwAAcDEPDw/Fx8fr+++/z3f/Rx99JDc3N7m55f/W7fTp0+rSpYseeugh/fLLL7rttts0evRoDRkyRBEREXrvvffUpEmTfIM1Dw8Pffzxx/med+fOndqwYYM8PDyuWfurr76qhg0b6t1331WFChU0aNAgjR07Vp06ddJvv/2mhx9+WEOGDCn8kwAAAHADuva7LAAAAFwXt912m/788099/PHHuu+++2z2ZWVlad68eerSpYtWr16d59isrCw98MADWrNmjfr06aN3331XgYGBNm1OnDihCRMmKDk5Oc/xd911l5YuXaqTJ08qNDTUZl9uIBgVFaXvvvsuz7Effvihnn76adWoUUNffvmlbr311jy1zZ07V7/++qvdnwsAAIAbCT3mAAAAXMzX11c9e/bUd999p4SEBJt9S5cuVXx8vAYNGpTvsZ9++qnWrFmjDh06aO7cuXlCOUmqVKmSPv74Y3Xr1i3PvkGDBikzM1OffvqpzfbMzEzNmzdPXbt2VdWqVfMcl5SUpGeeeUZeXl767rvv8oRy0sXeeIMHD9YHH3xQ4P3n+vLLL9WxY0eFhYXJx8dHlStXVpcuXfTll19KkubMmaOaNWtKkubOnWsdYnv1MFvDMPTxxx+rXbt2CgwMlJ+fn1q0aJFvz8ApU6ZYj//oo4/UpEkT+fj4qEqVKho9erRSU1Ptqh0AAMARBHMAAAClwKBBg5SVlZUnIPv4449Vvnx59ejRI9/jPvroI0nS888/f82hrrm8vb3zbGvTpo0aNmyo2bNn22z/9ttvdfLkyWsGgl988YVSUlL08MMPq2HDhkW+7tVmzZqlhx9+WHv37tUDDzygMWPGqFu3boqLi9PixYslSU2bNtXIkSMlSbfccosmT55s/cide88wDPXu3VuDBw/WyZMn9fjjj+vvf/+7zp07p8GDB+vpp5/O9/qvvfaaRowYoZYtW2rUqFGqVKmS3njjDXXt2lWZmZmF1g8AAOAIhrICAACUAq1atVLjxo01e/ZsjR07VpIUFxenZcuW6amnnso33MrKyrLOAde+fXuHrz1o0CA9/fTT2rhxo1q2bCnpYuBXoUIF3X///Vq5cmWeY3777TdJUufOnR2+7pX++9//ysvLS1u3blVYWJjNvsTEREkXg7lRo0bpzTffVNOmTTVlypR8z7NgwQINHDhQH3zwgTw9PSVJGRkZevjhh/Xqq6+qV69eat68uc1xy5cv18aNG3XzzTdLuhjw9enTR/Pnz9dbb71l/TcBAABwJnrMAQAAlBKDBg3Szp07tX79ekkXh2tmZWVds9daYmKiMjMzVbFiRfn4+Dh83b59+8rT09M61PP48eNavny5+vTpIy8vr3yPiYuLk6R8h7k6ytPT0xqkXalChQp2n+Odd96Rv7+/3n33XZtzeXl56YUXXpAkLViwIM9x/fr1s4ZykmSxWPTiiy/K3d1dc+bMKcJdAAAA2I8ecwAAAKVEnz59NG7cOH388cdq3bq1Zs+erWbNmqlp06Ylet2wsDB1795dCxcu1Ouvv665c+cqOzv7moFgSejZs6eeffZZNW7cWI8//rjuuOMO3X777fnOmXct58+f1/bt21W5cmXNmDEjz/7cIam7d+/Osy+/HofVq1dXZGSkdu7cqYyMjGuGlAAAAI4imAMAACglQkNDde+992rhwoV65JFHFBMTo7fffvua7StUqCBPT08lJiYqPT3drrncrmXQoEFasmSJvvzyS82ePVvNmze36UF2tYiICElSbGysw9e80tNPP60KFSpo1qxZevXVV/XKK6/Iw8ND3bt31+uvv25d9KEgZ86ckWEYio2N1dSpU6/Z7ty5c3m2hYeH59s2PDxchw4dUmpqapF67gEAANiDoawAAAClyODBg5WSkqIBAwbIx8dHvXv3vmZbDw8PtWrVSpmZmVqzZk2xrnv33XerUqVKGjdunPbu3avBgwcX2L5du3aSlO/8c46wWCwaNGiQNm7cqJMnT2rx4sV68MEH9fXXX+uee+5RdnZ2oefI7V3XvHlzGYZxzY9ffvklz7Hx8fH5njM+Pl4Wi0XlypUr3g0CAADkg2AOAACgFImKilKVKlUUGxurHj16KCQkpMD2uQHaiy++KMMwCmybnp5+zX3u7u7q16+fYmNj5ePjo169ehV4rocffliBgYH68ssv8x0aau9181OhQgX16NFD//vf/9S5c2f99ddf2rdvn7VOSfkGdeXKlVODBg20a9cuJSUlFemav/76a55thw8f1tGjR9WoUSOGsQIAgBJBMAcAAFCKuLu7a8mSJVq8eLGmT59eaPu+ffuqffv2WrVqlQYOHKjU1NQ8beLj4zVkyBD98MMPBZ5rzJgxWrx4sZYvX67g4OAC2wYHB+vll19Wenq6unfvrq1bt+Zpk52drblz5+rJJ58s9D5WrVqVJ1jMzMzU6dOnJcm6uEVISIgsFouOHj2a73lGjBih8+fPa8iQIfkOWT148KAOHTqUZ/snn3yibdu2WV8bhqH/+7//U3Z2tgYMGFBo/QAAAI5gjjkAAIBSpkWLFmrRooVdbT08PLRkyRI98sgjmjt3rr755ht17dpVNWvWVEZGhv766y+tWrVKmZmZ6tOnT4HnCgsLU48ePeyu84knnlBKSoqee+453XrrrerQoYOaNWsmX19fxcbGauXKlYqNjdXf//73Qs/Vo0cPBQYGqk2bNqpevboyMzO1YsUK/fXXX3r44YdVvXp1SVJAQIBatmypNWvWqG/fvqpbt67c3NzUt29fVa9eXUOHDtW6des0d+5c/fbbb+rSpYsqV66s+Ph47d69W+vXr9f8+fNVo0YNm+tHRUWpbdu26tmzp0JDQ7Vy5Ur98ccfatOmjYYPH2735wQAAKAoCOYAAABMrnz58vrpp5/01Vdfad68efr111+1ePFieXh4qFatWnriiSf05JNPqkGDBk6/9tNPP617771X77zzjn7++Wf997//VXp6usLCwtSyZUu9+eabevDBBws9z/Tp0/XDDz9ow4YN+vbbb+Xv76/atWtr1qxZeea7+/TTTzV69GgtXbpUycnJMgxDt99+u6pXry6LxaI5c+bo7rvv1n/+8x8tXbpUZ8+eVVhYmOrWratXXnlFXbp0yXP9MWPG6L777tMbb7yhffv2qXz58ho5cqT+9a9/MYwVAACUGItR2GQkAAAAQBk1ZcoUTZ06Vb/88os6derk6nIAAMANhjnmAAAAAAAAABcgmAMAAAAAAABcgGAOAAAAAAAAcAHmmAMAAAAAAABcgB5zAAAAAAAAgAsQzAEAAAAAAAAuQDAHAAAAAAAAuADBHAAAAAAAAOACBHMAAAAAAACACxDMAQAAAAAAAC5AMAcAAAAAAAC4AMEcAAAAAAAA4AL/D8QGjm5pzotiAAAAAElFTkSuQmCC" - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "estimator.present_results()" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "outputs": [], - "source": [], - "metadata": { - "collapsed": false - } - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 3 (ipykernel)", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.8.13" - } - }, - "nbformat": 4, - "nbformat_minor": 5 -} diff --git a/docs/theorist/bsr/bsr.ipynb b/docs/theorist/bsr/bsr.ipynb deleted file mode 100644 index 651d16d29..000000000 --- a/docs/theorist/bsr/bsr.ipynb +++ /dev/null @@ -1,142 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "source": [ - "# Bayesian Symbolic Regression (BSR)\n", - "\n", - "## Introduction\n", - "\n", - "Symbolic regression (SR) refers to a class of algorithms that search for interpretable symbolic expressions which capture relationships within data. More specifically, SR attempts to find compositions of simple functions that accurately map independent variables to dependent variables within a given dataset. Bayesian Symbolic Regression, proposed by [Jin et. al (2019)](https://arxiv.org/abs/1910.08892), is a specific SR method that uses a Bayesian framework to search for concise and interpretable expressions. The following are its main contributions, listed in sequential order:\n", - "\n", - "1. It models equations as expression trees, with root and intermediate tree nodes representing operators (e.g. `*` for a binary node and `sin` for a unary node) and leaf nodes representing features in the data. BSR then defines the search space as the union of the following three parts:\n", - " - Tree structure (T): this represents the structure of the expression tree (e.g. how to recursively construct the tree and when to stop by using leaf nodes), and also specifies the assignment of operators to non-leaf nodes.\n", - " - Leaf nodes (M): this assigns features to leaf nodes that are already defined from part **T**.\n", - " - Operator parameters ($\\Theta$): this uses a vector $\\Theta$ to collect additional parameters for certain operators which require them (e.g. a linear operator `ln` with intercept and slope params).\n", - "\n", - "2. It specifies priors for each of the three parts above. `Autora`'s implementation of BSR allows users to either specify custom priors for part `T` or choose among a pre-specified set.\n", - "\n", - "3. It defines `actions` that mutate one expression tree (`original`) into a new expression tree (`proposed`), and supports the calculation of transition probabilities based on the likelihoods of the `original` and `proposed` models.\n", - "\n", - "4. It designs and implements a Reversible-Jump Markov-Chain Monte-Carlo algorithm (RJ-MCMC), which iteratively accepts new samples (where each sample is a valid expression tree) based on the transition probabilities calculated above. In each iteration, `K` expression trees are obtained either from the `original` samples or the new `proposed` samples.\n", - "\n", - "5. With each iteration, the candidate prediction model is a linear mixture of the `K` trees, wherein the ground truth response is regressed on the results generated by the `K` expression trees to obtain the linear regression parameters $\\beta$.\n", - "\n", - "`AutoRA`'s implementation of BSR is adapted from original authors' [codebase](https://github.com/ying531/MCMC-SymReg), and includes comprehensive refactoring of data structures and MCMC computations. It also provides new priors that suit the cognitive and behavioral sciences.\n", - "\n", - "## Meta-Parameters\n", - "\n", - "Meta-Parameters are used to control the search space and the model configuration. In BSR, they are mainly defined in the theorist constructor (see `bsr.py`). Below is a basic overview of these parameters. Note, there are additional algorithm-irrelevant configurations that can be customized in the constructor; please refer to code documentation for their details.\n", - "\n", - "- `tree_num`: the number of expression trees to use in the linear mixture (final prediction model); also denoted by `K` in BSR.\n", - "- `iter_num`: the number of RJ-MCMC steps to execute (note: this can also be understood as the number of `K`-samples to take in the fitting process).\n", - "- `val`: the number of validation steps to execute following each iteration.\n", - "- `beta`: the hyperparameter that controls growth of a new expression tree. This needs to be < 0, and in general, smaller values of `beta` correspond to deeper expression trees.\n", - "\n", - "## Search Space\n", - "\n", - "The following are built-in operators which constitute the search space:\n", - "\n", - "- **\\+**: The output of the computation $x_j$ is the sum over its inputs $x_i, x_{ii}$: $x_j = x_i + x_{ii}$.\n", - "- **\\-**: The output of the computation $x_j$ is the respective difference between its inputs $x_i, x_{ii}$: $x_j = x_i - x_{ii}$.\n", - "- __\\*__: The output of the computation $x_j$ is the product over its two inputs $x_i, x_{ii}$: $x_j = x_i * x_{ii}$.\n", - "- **exp**: The output of the computation $x_j$ is the natural exponential function applied to its input $x_i$: $x_j = \\exp(x_i)$.\n", - "- **pow2**: The output of the computation $x_j$ is the square function applied to its input $x_i$: $x_j$ = $x_i^2$.\n", - "- **pow3**: The output of the computation $x_j$ is the cube function applied to its input $x_i$: $x_j$ = $x_i^3$.\n", - "- **sin**: The output of the computation $x_j$ is the sine function applied to its input $x_i$: $x_j = \\sin(x_i)$.\n", - "- **cos**: The output of the computation $x_j$ is the cosine function applied to its input $x_i$: $x_j = \\cos(x_i)$.\n", - "- **ln**: The output of the computation $x_j$ is the linear transformation applied to its input $x_i$: $x_j = a * x_i + b$, where $a$ and $b$ are slope and intercept parameters.\n", - "\n", - "In BSR, a new operator can be added in two steps. First, define an operator as a function, as demonstrated in `operations.py`. Second, add the name of the operator and its prior information to the dictionaries in `__get_prior()` within `prior.py`.\n", - "\n", - "## Examples\n", - "\n", - "The following toy example shows out-of-the-box functionality of BSR. It first generates data using the equation, $y = \\sin(x) + x^3$, as ground-truth, and then fits the data with default meta-parameters. For ease and efficiency of illustration, it applies a small number of iterations, `itr_num`. As displayed in the plot below, the algorithm provides results that are not only reasonable, but exactly match the ground-truth equation." - ], - "metadata": { - "collapsed": false - } - }, - { - "cell_type": "code", - "execution_count": null, - "outputs": [], - "source": [ - "# Uncomment the following line when running on Google Colab\n", - "# !pip install autora" - ], - "metadata": { - "collapsed": false - } - }, - { - "cell_type": "code", - "execution_count": 28, - "outputs": [ - { - "data": { - "text/plain": "
    ", - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAi8AAAGgCAYAAABi2ofUAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8o6BhiAAAACXBIWXMAAA9hAAAPYQGoP6dpAABW4klEQVR4nO3dd3QUVcMG8GdmtoQACS0kAUKXXgIozUJVQlFRVJpSXqQJUgIooOCHvLyRIiBIlyJKALGgFBEMTTSKlEhHgiAtiRTJUrO7M/f7A1nZbMkGspvd5Pmdk3Ocu/fO3mEJ+zhziySEECAiIiIKEHJud4CIiIgoOxheiIiIKKAwvBAREVFAYXghIiKigMLwQkRERAGF4YWIiIgCCsMLERERBRSGFyIiIgooDC9EREQUUBheiIiIKKB4NbzExcXhkUceQeHChVGyZEl07NgRx48fz7LdmjVrUK1aNQQFBaF27drYuHGjN7tJREREAUTy5t5GMTEx6NKlCx555BFYrVaMHTsWhw4dwpEjR1CwYEGnbX766Sc88cQTiIuLQ4cOHRAfH4/Jkydj3759qFWrVpbvqWkaLly4gMKFC0OSpJy+JCIiIvICIQSuXbuGUqVKQZbd31vxanjJ7OLFiyhZsiR27NiBJ554wmmdzp0748aNG1i/fr2trHHjxoiOjsb8+fOzfI9z584hKioqx/pMREREvnP27FmUKVPGbR2dj/oCAEhPTwcAFCtWzGWdxMRExMbG2pW1adMGa9eudVo/IyMDGRkZtuO7Wezs2bMICQl5wB4TERGRL5hMJkRFRaFw4cJZ1vVZeNE0DcOGDcOjjz7q9vFPamoqwsPD7crCw8ORmprqtH5cXBwmTJjgUB4SEsLwQkREFGA8GfLhs9lGgwYNwqFDh7Bq1aocPe+YMWOQnp5u+zl79myOnp+IiIj8i0/uvAwePBjr16/Hzp07s3yOFRERgbS0NLuytLQ0REREOK1vNBphNBpzrK9ERETk37x650UIgcGDB+Orr77C1q1bUaFChSzbNGnSBAkJCXZlW7ZsQZMmTbzVTSIiIgogXr3zMmjQIMTHx+Prr79G4cKFbeNWQkNDUaBAAQBAjx49ULp0acTFxQEAhg4dimbNmuH9999H+/btsWrVKuzZswcLFy70ZleJiIgoQHj1zsu8efOQnp6O5s2bIzIy0vazevVqW50zZ84gJSXFdty0aVPEx8dj4cKFqFu3Lj7//HOsXbvWozVeiIiIKO/z6TovvmAymRAaGor09HTONiIiIgoQ2fn+5t5GREREFFAYXoiIiCig+HSFXSIiIgpcqiaw+9QV/HXtNkoWDkLDCsWgyL7fR5DhhYiIiLK06VAKJqw7gpT027ayyNAgvPN0DcTUivRpX/jYiIiIiNzadCgFAz/dZxdcACA1/TYGfroPmw6luGjpHQwvRERE5JKqCYz+8iCcTU2+WzZh3RGomu8mLzO8EBERkUtDVu7D1ZuWe0rsQ4oAkJJ+G7tPXfFZnxheiIiIyKlJGw5jw8FU27EBFqw2TMQLyg5kDjF/XbsNX+GAXSIiInKw8cAFLPrhtF3ZGF08GsnH8JB0DlvUBkhHIdtrJQsH+axvvPNCREREdlRNYNQXB+zKnpT3oLfuOwDACMtAu+BSJFiPhhWK+ax/DC9ERERkZ8jKfbiRodqOS+ESpuoXAAAWWdthm1bPrn7vphV8ut4LwwsRERHZTFxvP85FgYoPDB+iiHQDSVpFTLF2satfyKjD4JaVfdpHhhciIiICcGeA7uJdp+3Khus+xyPy7zCJAnjd8josmYbLTulUx+er7DK8EBERkdMBuo/KB/Ga8g0AYIylL86KcLvX+z5eAe3q+HZ1XYDhhYiIKN9TNYG3vz5kV1YSf2Omfg5kSSDe2hIbtMZ2r7evHYG32tfwZTdtGF6IiIjyud2nruDKjX8XolOgYrZhNsIkE45qZTHB2sOufkGDglld6/u6mzYML0RERPncgp3JdsejdJ+hkXwM10QBDLQMRQYMdq9PfaFuruwmfRfDCxERUT42cf1hbD9+yXbcWt6LAbp1AIA3LP1wWtiPacmtcS73YnghIiLKpzLPLioj/YX39fMAAEusMfhWa2RXv3mVErk2zuVeDC9ERET5UObZRQZYMEc/C6HSTezTKiPO2s2hTf9mvl3PxRWGFyIionzG2fL/b+s+RV35D/wtCmGweYjDei7FCxp8ugWAOwwvRERE+Uzm5f+fkX9ED90WAMBwy2u4gBIObSY+WytXB+nei+GFiIgoH8m8/H8l6Tzi9B8BAGZZO2K7Fu3Qxh8G6d6L4YWIiCifmLjefoBuMG5jnn4mCkoZ+FGtiZnWFxza9HmsvF8M0r0XwwsREVE+4LhvkcBU/XxUkc8jTRTBUMtgaJliQZ/HymNch5o+7acnGF6IiIjyOGf7Fg1Q1qG9shtmoWCgeRguIdTu9fa1I/wyuAAML0RERHmas32LHpMPYpRuNQDg/6y9sE9UsXs9t5f/zwrDCxERUR6Wed+iMtJfmK2fDUUSWGVtjni1pUOb3F7+PysML0RERHnYvfsWBSEDC/UzUFS6jiStIt6x9gJgH1L8bWaRMwwvREREeZT9vkUCcfqPUEP+ExdFCAaahztsuOiPM4ucYXghIiLKgzJPi/6PsgnPKT/CKmQMNg9FCorb1W9epYTfDtDNjOGFiIgoj8kcXBrLRzBWtwIAMMnaHb+I6g5t/GXfIk8wvBAREeUhmddzKYVL+FA/CzpJw5fqY1iqxji08ad9izzB8EJERJRHZF7PJRi38ZHhfZSQTDislcNYSx9kHqAL+Ne+RZ5geCEiIsoDMu8ULUHD+/p5tgG6fc0jcBtGh3aBMLsoM6+Gl507d+Lpp59GqVKlIEkS1q5d67b+9u3bIUmSw09qaqrbdkRERPld5p2ih+m+QFvlV2QIHfqbY53uFB0os4sy82p4uXHjBurWrYs5c+Zkq93x48eRkpJi+ylZsqSXekhERBT4Jm2w3ym6g5yIobqvAABjLa86rKAL+O++RZ7QefPkbdu2Rdu2bbPdrmTJkihSpEjOd4iIiCiPyTzOpbb0B6bp5wMA5ls74AvtCYc2gRxcAD8d8xIdHY3IyEg8+eST+PHHH93WzcjIgMlksvshIiLKD1RNIPaz32zHJfE3FhneR5BkQYJaD1OsXRzaBHpwAfwsvERGRmL+/Pn44osv8MUXXyAqKgrNmzfHvn37XLaJi4tDaGio7ScqKsqHPSYiIso9r8fvxW2rBgAwwoyFhvcRIf2N37XSGGoZBC3T17w/7xSdHZIQQvjkjSQJX331FTp27Jitds2aNUPZsmXxySefOH09IyMDGRkZtmOTyYSoqCikp6cjJCTkQbpMRETkt+wXohP4QD8Hzyo/4W9RCM+aJ+KMCLerX9Cg4MD/tfHbKdEmkwmhoaEefX97dcxLTmjYsCF27drl8nWj0Qij0XHqFxERUV6VeQXdIcpXeFb5CRah4DXLUIfgAvj/TtHZ4VePjZxJSkpCZGRgzT8nIiLylszBpaO8C7H6zwEA4629kKg5PhbqUDsy4NZyccerd16uX7+O5OR/t+I+deoUkpKSUKxYMZQtWxZjxozB+fPnsXz5cgDAzJkzUaFCBdSsWRO3b9/GRx99hK1bt2Lz5s3e7CYREVFAyBxcGklHMUW/AMCdmUUr1VYObYyKhA+61vNVF33Cq+Flz549aNGihe04NjYWANCzZ08sW7YMKSkpOHPmjO11s9mMESNG4Pz58wgODkadOnXw/fff252DiIgoP8ocXCpKF7DAMB0GScUGtSEmO5lZBAAzOtfLM4+L7vLZgF1fyc6AHyIiokCQObgURzq+NLyDcvJf2KdVRlfz28iAwaFd38crBMwKutn5/vb7MS9ERET5WeZdoo0wY5HhfZST/8IZLQx9zSOcBpdAXfrfEwwvREREfirz6rkSNMzQz0V9ORlXRUH0tryBywh1aJcXFqJzh+GFiIjID2XeJRoA3tStQjtlN8xCQX9zLE6K0g7t8npwARheiIiI/NKHW0/Y7RLdXfkeA3TrAQBvWPrjF1HdoU1+CC4AwwsREZHfUTWBudv+XWqkjfwr3tUtBQBMt7yAtdpjDm3yS3ABGF6IiIj8zuvxe5Gh3pkM3FA6iln6D6FIAvHWFpilPudQPz8FF4DhhYiIyK9MXH8YGw+lAQCqSmfwkeF9GCULtqgNMM76HwD2a7bkt+ACMLwQERH5jXvXcymNi/jYMBkh0k3s1qpisOV1qFDs6keXCcl3wQVgeCEiIvIL9waXIriG5Yb3ECH9jeNaGbzqYi2XUW0cB+3mBwwvREREueze4FIAt7HEMBWV5BScF8XR0/wmTCjk0KaQUYfGlYr7uKf+wat7GxEREZFrqiYwJH4fNhxKBQDoYMWH+tm2Reh6mEcjFc4DypROdfLcnkWeYnghIiLKBZsOpWD46iTcsmgA7qyeG6f7CK2U/bglDPiPeZTTReiAO3sWtasT6cvu+hWGFyIiIh/bdCgFAz7dd0+JwHjdJ3hRtxNWIWOw5XXsE1Wcts3LexZ5imNeiIiIfEjVBGJXJ9mVDdd9jt667wAAoyz9kaA1cNo2P06LdobhhYiIyIdej9+Lm/88KgKAfso6DNV9BQB429IbX2mPO23H4PIvhhciIiIfuXcBOgDopiRgrH4lAGCypQs+VZ902o7BxR7DCxERkQ/cOx0aAJ6Rf8R/dUsAAHOsz2Ce+ozTdgwujhheiIiIvCxzcHlS3oPp+nmQJYGPrU9iqrWz03YMLs4xvBAREXlR5uDyqHwQH+pnQSdp+EJ9HP9n7YnM+xUBDC7uMLwQERF5Sebg8oh0DIv002GUrNikPoI3LP0gnHwVM7i4x/BCRETkBZmDSwPpOJYZJiNYysAOtQ6GWAY7bLQIMLh4guGFiIgoh2UOLvWl3/GxYTIKShn4Qa2FfpZYmKF3aMfg4hmGFyIiohw0aYN9cImWkvGxYTIKSbfxo1oTfS3Od4hmcPEcwwsREVEOWZ90AYt+OG07rislY7khDoWlW0hUa+BVywjchtGhHYNL9jC8EBER5YD1SRcweNV+23Ft6Q98YngPIdIt/KJVw38sI3ELQQ7tGFyyjxszEhERPaBJG45g0Q+nbMc1pVP41PA/hEg38atWBb3NbzC45CCGFyIiogeQeXBuTekUVhj+h1DpJvZqD6GX+U3cZHDJUQwvRERE9ylzcKknncDHhskIkW5iv1YZPc1v4gYKOLRjcHkwDC9ERET3IXNwaSgdxRLDVBSSbtseFV1HsEO79rUiGFweEMMLERFRNjlb8v8j/fsoIJnxk1oDr1pGOn1UZFQkzOpW34c9zZsYXoiIiLJhwrrDWPrjadtxC3k/5utnwihZsF2ti/6W4U7XcQGAGZ3rQZEd9zGi7GF4ISIi8lCfZbuRcOyi7biN/Ctm62fBIKnYrDbAYMsQpyvnAkD/JyqgXZ1IX3U1T2N4ISIi8kDm4PKM/BOm6+dCJ2lYpzbGcMtrsDr5Wg3Sy5j+Yl20q1PKl93N0xheiIiIsjBh3SG74PKish2TdYsgSwJfqI9jlKU/NCfrvrarFY7Z3RrwUVEO8+oKuzt37sTTTz+NUqVKQZIkrF27Nss227dvR/369WE0GlG5cmUsW7bMm10kIiJya+L6w1j645+24/7KOkzVL4QsCcRbW2Kki+DS57HymPvywwwuXuDV8HLjxg3UrVsXc+bM8aj+qVOn0L59e7Ro0QJJSUkYNmwYXn31VXz33Xfe7CYREZEDVRMY9Onee2YVCYzWxWOMfiUAYL71aYy19oFwEVw4Hdp7vPrYqG3btmjbtq3H9efPn48KFSrg/fffBwBUr14du3btwowZM9CmTRtvdZOIiMjOxgMpGL56PzJUAQBQoOJ/usXorNsOAPifpSsWqk87bcvg4n1+NeYlMTERrVu3titr06YNhg0b5rJNRkYGMjIybMcmk8lb3SMionwg8z5FRpgxS/8h2ih7oAoJo619sUZt7rRt70cZXHzBr3aVTk1NRXh4uF1ZeHg4TCYTbt265bRNXFwcQkNDbT9RUVG+6CoREeVBE9cftgsuhXATS/VT0EbZgwyhx0DLMJfBpVW1MLzzNIOLL/hVeLkfY8aMQXp6uu3n7Nmzud0lIiIKQJlXzS2OdKw0/BdNlSO4Jgqgl+UNbNYecdq2VbUwLO7V0Ec9Jb96bBQREYG0tDS7srS0NISEhKBAAceNrQDAaDTCaDT6ontERJRHZQ4u5aRULNNPRgU5DZdECHqa38RhUcFp296PlsM7T9fyUU8J8LPw0qRJE2zcuNGubMuWLWjSpEku9YiIiPI6ZztDf2SYhuLSNZzVwtDDMhqnhPOVcTk4N3d49bHR9evXkZSUhKSkJAB3pkInJSXhzJkzAO488unRo4et/oABA/DHH3/gjTfewLFjxzB37lx89tlnGD58uDe7SURE+ZDjVGjgKflXrDT8F8WlazigVcDz5gkMLn7Iq3de9uzZgxYtWtiOY2NjAQA9e/bEsmXLkJKSYgsyAFChQgVs2LABw4cPxwcffIAyZcrgo48+4jRpIiLKUZmnQgNAT+U7vKNbDlkS2KpGY7BliNOdoQGg7+Pl8VZ7BpfcIgkhRNbVAofJZEJoaCjS09MREhKS290hIiI/k3kqtAQNY3Qr0U+3AQAQb22JcdbeUKE4tOU+Rd6Tne9vvxrzQkRE5C2qJjAkfh82HEq1lRlhxvv6eeig/AIAmGLpjLnqMwAcl/RvXL4oVvRrwuX+/QDDCxER5XnOHhMVgwkLDNPxiPw7zELBKEt/fK095rR9Ab3M4OJHGF6IiChPi9t4BAt2nrIrqyKdxWL9NETJF2ESwehvGY5EzfUYlhmdoxlc/AjDCxER5Vnrky44BJcW8n7M1s9GIek2/tRK4j+WUTgpSjttH2yQMf2laMTUcj7jiHIHwwsREeVJ65MuYPCq/feUCPRRNuItXTxkSeBnrToGmIfhKgo7bd+uVjhmd2vAOy5+iOGFiIjynMwzivSwYqJuCbr8syv0SmsLjLf2hsXF1yCnQvs3hhciIsoznM0oKgoT5htmopF8DKqQMMn6MpaoMXA2o4hToQMDwwsREeUJzmYUVZHOYpH+fZST/8I1UQCvWwZju1bPaXs+JgocDC9ERBTQVE1g6Mr9WH8wxa68vfwzpuoXIFjKwBktDH0so3BClHF6Dj4mCiwML0REFLA2HUrB8NVJuGXRbGUKVIzSfYYBunUAgB/UWhhiGYy/4XzV1g+71EOHaD4mCiQML0REFJA2HkjBa/H77MqK4Bpm62fjceUQAGC+9WlMtb7kdKl/gMElUDG8EBFRwHGcBg3UkE5jgX4GouSLuCmMGGXpjw1aY5fn6P9EBQaXAMXwQkREAcPV+JZn5V14T/8RCkhmnNbC0d8yHMdFWafn4IyiwMfwQkREAcHZbCIDLBirW4Feus0AgG1qXQy1DIIJhZyegzOK8gaGFyIi8muu7raUkf7CHP0s1JX/AADMtnbEDOsL0CA7PQ9nFOUdDC9EROS3nN1tAYAn5T2Ypp+PUOkm/haFMNwy0OX6LXxMlPcwvBARkV+auP4IFu+y31RRByve1K1CX91GAMA+rTIGm4fgAko4PQcfE+VNDC9EROR3+izbjYRjF+3KInEZHxpmoYF8AgCwyNoOU6xdXO5P1Oex8hjXgY+J8iKGFyIi8huqJvDivB+x72y6XXkLeT/e189DMek6TCIYIy39sVl7xOV5OL4lb2N4ISIiv7DxQAqGrdoH87+L5cIIM0brVqK37jsAwAGtAgZZhuCsCHd6Do5vyR8YXoiIKFe5mk30kHQOs/SzUV0+CwBYYo3Be9auMEPv9Dzta4djVleOb8kPGF6IiChXqJrA7IQT+HDrCVjtJhMJvKx8j7d1nyJIsuCiCMEoywBs16Kdnod3W/IfhhciIvK5jQdSEPtZEm5bNbvyojBhin4RnlT2AgB2qHUwwjIQlxDq9Dy825I/MbwQEZFPTdpwBIt+OOVQ3lQ+hOn6eYiQ/kaG0GGytSuWqm0gnCw6F6STMf0l3m3JrxheiIjIJ1RNYEj8Pmw4lGpXHoQMvKlbZRuUm6yVwlDLYBwW5Z2ep35UKNYMfJR3W/IxhhciIvI6VyvlRkvJeF8/D5XkO4N1P7W2wiRrd9xCkNPztKoWhsW9Gnq9v+TfGF6IiMhrXM0k0sOKobovMFD5BookkCqK4k1LP+zQ6ro8V5/HymFch1re7jIFAIYXIiLKca5nEgHVpDOYrp+HGvKfAICv1EfxjqWny52gOZuIMmN4ISKiHOVqJpECFf2UDRiuWwODpOKKKIS3LH3wrdbI5bk4m4icYXghIqIc42omUXXpT0zWL0Qd+c5rW9T6GGt5FRdRxOl5eLeF3GF4ISKiB+ZqJpEBFgzWfYWByjroJRXpIhgTra/gc/UJAM7vpgxpURlDn6zCuy3kEsMLERHdN3djW+pLv2OyfhEeks8DADapj2CcpRcuoqjL883tVo93WyhLDC9ERJRtd0PLnG3JsGj2qSUYtzFS9xl6Kd9BlgQuilCMs/TGJs31FOdgg4zpL0Ujplakt7tOeQDDCxERZYurAbkA8Jh8EHG6jxAlXwQAfK4+gYmWl5HuYiaRXpEwqHklvN6Kj4nIcwwvRETkEVdrtgBAGK5irH4FnlN+BACcEyUw1tIHO92s28KZRHS/HDeM8II5c+agfPnyCAoKQqNGjbB7926XdZctWwZJkux+goKcr7RIRES+sfFACmqM+9YhuMjQ8IqyGQnGkXhO+RGakLDU2gZPZUxxGVyC9DLmdquHOd0fZnCh++L1Oy+rV69GbGws5s+fj0aNGmHmzJlo06YNjh8/jpIlSzptExISguPHj9uOJYl/uYmIcoO7uy21pT/wX/0S1JX/AAAc0CrgLUsfHBQVXZ6PM4koJ3g9vEyfPh19+/ZF7969AQDz58/Hhg0bsGTJEowePdppG0mSEBER4e2uERGRC+5mERXGTYzUrcYryveQJQGTKICp1s5YobaG5uaGPmcSUU7xangxm83Yu3cvxowZYyuTZRmtW7dGYmKiy3bXr19HuXLloGka6tevj//973+oWbOm07oZGRnIyMiwHZtMppy7ACKifMbdLCJA4Bn5J4zTf4owKR0AsFZtikmWl10uNgdwJhHlPK+Gl0uXLkFVVYSHh9uVh4eH49ixY07bVK1aFUuWLEGdOnWQnp6OadOmoWnTpjh8+DDKlCnjUD8uLg4TJkzwSv+JiPIL96EFqCGdxjv65Wgk3/m3+6QWiXHW3vhJc71RImcSkbf43WyjJk2aoEmTJrbjpk2bonr16liwYAEmTpzoUH/MmDGIjY21HZtMJkRFRfmkr0REeYG7qc/FYMII3Rp0UbZCkQRuCQPmWJ/FQrUDzNA7PR9DC3mbV8NLiRIloCgK0tLS7MrT0tI8HtOi1+tRr149JCcnO33daDTCaDQ+cF+JiPIbd4NxdbDiFWULhum+QKh0EwCwTm2MOEs3XEAJp+djaCFf8Wp4MRgMaNCgARISEtCxY0cAgKZpSEhIwODBgz06h6qqOHjwINq1a+fFnhIR5R/uBuMCwOPyAYzXfWJb1v+wVg7/Z+mJX0U1l+dsVyscs7txzRbyDa8/NoqNjUXPnj3x8MMPo2HDhpg5cyZu3Lhhm33Uo0cPlC5dGnFxcQCAd999F40bN0blypVx9epVTJ06FX/++SdeffVVb3eViChPy2pcSwUpBWN1K/Cksg8AcFkUxlRrZ3ymNnc7i6jv4+XxVnvnkyqIvMHr4aVz5864ePEixo8fj9TUVERHR2PTpk22QbxnzpyBLP/7S/H333+jb9++SE1NRdGiRdGgQQP89NNPqFGjhre7SkSUJ2UVWorBhKG6L9BN2Qq9pMIiFCxXn8IH1udhQkGX5zXqJMx4KZrTn8nnJCGEk5uGgctkMiE0NBTp6ekICQnJ7e4QEeUqd4Nxg5CB/yjfYqBuHQpLtwAAW9VoTLJ2x0lR2uU5ObaFvCE7399+N9uIiIgenLvBuDI0PK/8gBG6NYiUrgAADmrl8T9rdyRqrh//MLSQv2B4ISLKI1RN4OeTl7H859PYciQNTp4Q4Qn5N4zRrUR1+QyAOxsoTrF0xjqtCYSLcS0MLeRvGF6IiALc3TEt83ecdPp4CACipWSM1K3GY8phAEC6CMaH1o5Yrj6FDBhcnps7P5M/YnghIgpQWQ3EBYBq0hmM0H1mm0Fk/mcw7mzrc0hHIZfn5mBc8mcML0REAcjdQFzgzrTn4brP8YxyZx85VUj4XG2GWdbncB5hLs/LR0QUCBheiIgCiLuBuABQCpcwRPclXlB2QifdCTbr1MaYYX0BfwjXd1EYWiiQMLwQEfk5TwbihuEqXtN9jW5KAoySFQDwvVoP060v4ogo7/LcDC0UiBheiIj8lCcDcUvibwzQrUM3JQFBkgUA8JNaA9OsL2GfqOL2/ByMS4GK4YWIyA+t++0CYj9LgkV1PhA3ApcxUPcNuijbYfwntOzTKmOa9SX8pNVye24OxqVAx/BCROQn7j4eemvtQZy+fNNpndK4iIG6b/CissP2eOhXrQo+sHbCLq0WANd3UfiIiPIKhhciolzmyeOhMtJfGKR8jReUndBLKgAgUa2BWepzSNRqwF1oMeokDGzG0EJ5B8MLEVEu8WSdlsrSOQzQrUdHeZdt9tAutSZmWZ/HblHd5bkVGXiyejheaVIejSsWZ2ihPIXhhYjIh+6dOfT90TSozm+0oJ50AgN13+ApZa+tbIdaB7Osz2GvqOr2PTgQl/I6hhciIh/ZeCAFb3xxANczrC5qCDSXf8MA3To0lo8CADQh4TvtYcy3Po3fRGW35+dAXMovGF6IiLzo7p2WqZuPIelsutM6ClS0l3/BAN061JD/BHBnGf+v1MexUG2Pk6K02/fgQFzKbxheiIi8wJNBuEaY8aKyA/2U9SgrXwQA3BBGrFBbY4k1Bqko7vY9OBCX8iuGFyKiHOLpeJYwXMXLui14WfkexaVrAIDLojCWWmPwifqk2w0TZQBP1eRAXMrfGF6IiHJA1uNZ7uzw3EfZiGeUn2xrtJwTJbDQ2h6fqc1xG0a371G/bCjWDHiUgYXyPYYXIqL75Ml4FgkamskH0EfZiMeVQ7byvdpDWGxti++0R6BCcfs+QXoZ0zrVQYdo92NfiPILhhciomzydDzL88oP6KN8i8ryhTvthIRvtYZYYm2b5b5DXKeFyDWGFyIiD3g+nuVvvKz73m48yzVRAKvUFvhYbYNzIszt+3DmEFHWGF6IiNy4e5dl3o6TyHBxlwUQqC+dQC/dd2gr77Yt339OlMBSawxWq81xHcFu34ehhchzDC9ERE54snS/EWY8o/yEnspm1JJP28r3aFWwxBrj0XgWnQwMblGZoYUoGxheiIj+4emjodK4iJd136Ozsg3FpOsAgNtCj6/VR7FcfRKHRYUs34trtBDdP4YXIsrX7g0sW4/9BYvq/C4LINBUPoyeyma0lvdCke7UOydK4BPrk1itNsdVFHb7XhyES5QzGF6IKN/yZG2WYNzG88oP6KlsxkPyeVv5LrUmPlbbIEGrDw2y2/fheBainMXwQkT5iidrswBAdelPdFMS0FH5EYWlWwDuLN3/hfoEPlafynK/IYDjWYi8heGFiPI8Tx8NFcBtdFB+RnclAdHySVv5SS0Sy9Wn8KX6OK5lMWsI4HgWIm9jeCGiPMuTxeSAO8v237nLsgsh/9xlMQsFm7VHsEJthZ+16hBZPBrieBYi32F4IaI8525o+XBbMqwupjkHIQMdlJ/RTUlAfTnZVv6nVhIr1ZZYozbDZYRm+V4cz0LkewwvRJQneDrNuYp0Ft2UBDyv7EKIdBMAYBEKNmsNEK+2wk9azSzvsgCAUZEwkKGFKFcwvBBRwPJ0LIsRZrSXf0Y33VY8LP9uKz+jhWHVP3dZLqJIlu/HR0NE/oHhhYgC0rrfLmDU57/htsX1WJbK0jl0VxLwvPIDQv+5y2IVMrb8c5dll1bLs7ssHIBL5FcYXogoYNy90/LW2oM4ffmm0zpGmNFO/gVddVvRUD5uKz8nSmCltSU+U5vhIopm+V68y0Lkv3wSXubMmYOpU6ciNTUVdevWxezZs9GwYUOX9desWYNx48bh9OnTeOihhzB58mS0a9fOF10lIj/j6aOhStJ5dFO2opOyE0WkGwDu3GVJ0OojXm2FH7TaWS4mB3BtFqJA4PXwsnr1asTGxmL+/Plo1KgRZs6ciTZt2uD48eMoWbKkQ/2ffvoJXbt2RVxcHDp06ID4+Hh07NgR+/btQ61atbzdXSLyA9kZyxIj70Y33VY0ko/Zys+JElhlbYHP1Ob4y4O7LAAfDREFEkkI4WojjxzRqFEjPPLII/jwww8BAJqmISoqCq+//jpGjx7tUL9z5864ceMG1q9fbytr3LgxoqOjMX/+/Czfz2QyITQ0FOnp6QgJCcm5CyEin/BkLEsl6Ty6KNvQSdlp2xhRFRK2avWxQm2JnVpdj+6y6GWgFR8NEfmF7Hx/e/XOi9lsxt69ezFmzBhbmSzLaN26NRITE522SUxMRGxsrF1ZmzZtsHbtWqf1MzIykJGRYTs2mUwP3nEi8ilPxrIYYEGM/Cu66RLQWD5qKz8vimO1tQU+U5shFcU9er/oqBCMalOdgYUoQHk1vFy6dAmqqiI8PNyuPDw8HMeOHXPaJjU11Wn91NRUp/Xj4uIwYcKEnOkwEfmMp4+GKkgp6KpsxQvKjkx3WephpdoS27Voj+6yAEBBg4ypL9RFuzqlcuw6iMj3An620ZgxY+zu1JhMJkRFReVij4jIHU+W7NfDijbyr+imJKCpcsRWniKKYbXaHKutLZDi4V0WPhoiynu8Gl5KlCgBRVGQlpZmV56WloaIiAinbSIiIrJV32g0wmg05kyHichrVE3ggy2/Y86OZJer35aTUv+5y7ITJaQ7j4A1IWGbFo2Vakts06KhQsnyvRhYiPI2r4YXg8GABg0aICEhAR07dgRwZ8BuQkICBg8e7LRNkyZNkJCQgGHDhtnKtmzZgiZNmnizq0TkBfc+GtpyJA3OthnSw4on5T3opiTgMeWwrTxVFLXdZbmAEh69X/niBTDpuToMLER5nNcfG8XGxqJnz554+OGH0bBhQ8ycORM3btxA7969AQA9evRA6dKlERcXBwAYOnQomjVrhvfffx/t27fHqlWrsGfPHixcuNDbXSWiHOLJo6Ey0l/oqmzFS8oOhEnpAO7cZdmh1UG82gpbtXoe3WUBgCC9jGmd6qBDdOkcuwYi8l9eDy+dO3fGxYsXMX78eKSmpiI6OhqbNm2yDco9c+YMZPnfwXZNmzZFfHw83n77bYwdOxYPPfQQ1q5dyzVeiPycJxsjKlDRUt6P7koCnpAPQJbu3Ir5SxS5c5dFbYFzIsyj9+OjIaL8y+vrvPga13kh8q27Y1nm7TzpcsZQBC6ji24bOivbESldsZX/oNbCCrU1vtfqw+rB/0sxsBDlXX6zzgsR5V13Hw3N3noCzjKLDA1PyL+hu7IVLeV9UP65y3JZFMYatRlWqi3xp3A+ED8zjmUhonsxvBCRxzx5NBSGv/GSsgNddVtRRrpkK/9Zq44V1lb4TnsEZug9ej+OZSEiZxheiMgtTxaTk6ChqXwY3ZUEPCnvhV5SAQBXRUF8oT6BeLUlTgrPAggfDRFRVhheiMiljQdS8MYXB3A9w+r09cK4iReUHXhZ+R6V5BRb+R6tCuKtLbFBa4wMGLJ8HxnAUzUZWIjIMwwvRGTn7p2WqZuPIelsutM6VaUz6KFsQUdlFwpKd/YWuyYK4Ev1McSrrXBclPX4/drXDsesrg0YWIjIYwwvRAQg67VZdLCijbwHPXSb0Uj+d2+y41oZfKI+ia/Ux3ADBTx6L50MPBtdCnHP14VB59m+REREdzG8EOVjng7A7apsQzddAiKkvwEAViHjO+1hfKI+hZ+16gCyvmuiyMCTHMtCRDmA4YUon3I/nkXgYek4eui2oK282zYA96IIRbzaEiutLZHq4caIRp2Egc0q4fVWVRhYiChHMLwQ5SNZjWcxwIJnlJ/wH2UTash/2sr3aFWw3PoUvtUawuLhPxvRUSEY1aY677IQUY5jeCHKB7Iaz1IC6eiufI+XdVsQ9s9uzreEAWvVR/GJ+iSOiPIevY8iAR3rcSwLEXkXwwtRHuXJeJbq0p/orWzCs8qPMEp3Hh9dEMWw3PoUVqotkY5CHr0XHw0RkS8xvBDlQet+u4BRn/+G2xbHxCJBQ0t5P/oo36KpcsRWnqRVwmJrW3yrNfRonyEOwCWi3MLwQpSHqJrAS/N/wt4zVx1eC8ZtvKDsQG9lEyrIaQDuzBrapDXEEmsM9okqHr2HTgYGt6jMuyxElGsYXogC3L2PhzYfTkPmxftLIB09dd+hh7IZodJNAIBJBCNebYnl1qdwASU8eh8+GiIif8HwQhSgshqEW15KQV9lI15QdsIoWQAAp7RwLFHb4gv1CdxEUJbvwUdDROSPGF6IAszd0DJnWzIsmuMmiXWlZPTXrUeM/Ctk6c7rSVolzLM+jS3aw9CQ9SwgvSJhUHPeZSEi/8TwQhQg7oaWD7clw+oQWgSay79hgG4dGstHbaUJaj0ssHbAblENnqyCy/EsRBQIGF6I/Jy7Oy0KVDwtJ2KAbh2qyWcBABah4GvtUSy0tsfvIsqj9+B4FiIKJAwvRH7KXWjRw4rnlB/wmvINyv8zc+i6CMJKtSWWWNsixYOl+zmehYgCFcMLkZ9xF1qMMOMlZTsG6NahtHQZAHBFFMJiazt8oraGyYNF5XiXhYgCHcMLkZ9QNYEPtvyOOTuSHVbDLYDb6KYkoL9uA0pKVwEAf4kiWGBtj3i1FW55MHOofPECmPRcHd5lIaKAx/BClMvu3mmZvfUE1EzjcAvhJnooW9BHtxHFpWsAgPOiOOZbn8ZnanNkwJDl+fWKhBkv1kWH6NLe6D4Rkc8xvBDlEnePh4JxG72U79BPtx5FpBsAgD+1kpirPosv1cc92tmZj4eIKK9ieCHysazGtLyibMEA3TqU+Gd355NaJGZbn8M6rQlUKG7PzUG4RJQfMLwQ+Yi70GKABV2UrRis+9o2puW0Fo4PrM/ja+1RjxaWa187HLO6NmBgIaI8j+GFyAfW/XYBsZ8lwZJpUIsOVryo7MBg3Vrb7KFzogRmWZ/Dl+rjHu3uXNAgY+oLddGuTimv9J2IyN8wvBB5katdnmVo6CjvwjDdFygrXwQApIhimGN9FqvVFlmOaeHjISLKzxheiLzg7iOiWQknYD/rWaC5nIQ3datQ/Z8VcS+KUMy1PoN4tVWWs4e45xAREcMLUY5yN64lWkrGaP1K295D6SIY86zP4GP1qSzXaVEk4PWW3HOIiAhgeCHKEe5CSwUpBSN1q9Fe2Q0AyBB6LFXbYJ71GaR7sCIuB+ISEdljeCF6QK4G44bhKobovkRXZSt0kgZNSPhCfRwzrC/gAkq4PaciAR3rlULc83Vh0GU904iIKD9heCG6T64G4xphxqvKRrym+xoFpQwAwPdqPUy1dsZxUdbtOTmmhYgoawwvRNnkbjBuB/lnjNavRBnpEgAgSauEOEs3/CKquz0nQwsRkecYXog85G5cSx3pJMbpP8Ej8u8AgAuiGN6zdMU3WlMArsMIB+ISEWUfwwtRFtyFlnBcwRv61eik/AAAuCmMmG99GgvV9rgNo9vz1i8bijUDHmVoISLKJq+OBLxy5Qq6d++OkJAQFClSBH369MH169fdtmnevDkkSbL7GTBggDe7SeTSxgMpqDl+E2YmnLALLkaY8bryJbYZR9iCyxfq42iR8T5mqc+7DS56RcKHXaLx5WuPMbgQEd0Hr9556d69O1JSUrBlyxZYLBb07t0b/fr1Q3x8vNt2ffv2xbvvvms7Dg4O9mY3iZyauP4IFu865VDeQt6P/9N9jHLyXwCAPVoVTLS8jN9EZbfn47gWIqKc4bXwcvToUWzatAm//vorHn74YQDA7Nmz0a5dO0ybNg2lSrnehyU4OBgRERHe6hqRW6om8OK8H7HvbLpdeRnpL7yj+wRPKnsBAKmiKCZZumOd1gTuxrUwtBAR5SyvhZfExEQUKVLEFlwAoHXr1pBlGb/88guee+45l21XrFiBTz/9FBEREXj66acxbtw4l3dfMjIykJGRYTs2mUw5dxGUr7iaRWSEGf2U9Rik+xpBkgUWoWCx2hazrc/hBgq4PB8H4xIReYfXwktqaipKlixp/2Y6HYoVK4bU1FSX7bp164Zy5cqhVKlSOHDgAN58800cP34cX375pdP6cXFxmDBhQo72nfIXdwNym8m/4f90y1BBTgMA/KTWwHhrLySLMm7PycG4RETek+3wMnr0aEyePNltnaNHj953h/r162f779q1ayMyMhKtWrXCyZMnUalSJYf6Y8aMQWxsrO3YZDIhKirqvt+f8peNB1IQ+1kSblvtV2yJxGW8o1+OGOVXAECaKIL/Wl726BHRjBfrokN0aW92m4goX8t2eBkxYgR69erltk7FihURERGBv/76y67carXiypUr2RrP0qhRIwBAcnKy0/BiNBphNLqfkkqUmaoJDF25H+sPptiVy9DwsrIFb+hWo5B0G1YhY4naFh9Yn3f7iIjjWoiIfCfb4SUsLAxhYWFZ1mvSpAmuXr2KvXv3okGDBgCArVu3QtM0WyDxRFJSEgAgMjIyu10lcmrjgRQMX70fGZn2IqoincV7+kWoLycDuDOLaKylD34Xru/kMbQQEfmeJIQQWVe7P23btkVaWhrmz59vmyr98MMP26ZKnz9/Hq1atcLy5cvRsGFDnDx5EvHx8WjXrh2KFy+OAwcOYPjw4ShTpgx27Njh0XuaTCaEhoYiPT0dISEh3ro0CkCu7rYYYcYg3VoMUNbBIKm4JgpgsrULVqitIFwshaSXJQxqwdBCRJRTsvP97dV1XlasWIHBgwejVatWkGUZnTp1wqxZs2yvWywWHD9+HDdv3gQAGAwGfP/995g5cyZu3LiBqKgodOrUCW+//bY3u0n5gKu7LQ2lo4jTf4RK8p1As1ltgPGWXkhFcZfnqh8VijUDORiXiCi3ePXOS27gnRe6l6u7LYVxE2N08eim2woA+EsUwXhLL2zSHoG7Abmtq4fho54NvdllIqJ8yW/uvBDllrvTnz/cegLWTPH8Cfk3vKdfhFLSFQBAvLUl3rN2hQkFXZ6Ps4iIiPwHwwvlOa6mPxfCTbylW4Guum0AgFNaON609MNuUd3luTggl4jI/zC8UJ4yacMRLPrBcT+iR+WDmKJfiNLSZWhCwlI1BlOtL7ncQJGhhYjIfzG8UJ4xcf1hLN512q6sIG5hrC4e3XUJAIA/tZIYZenv9m5Lu1rhmN2tAUMLEZGfYnihgKdqAkPi92HDIfttJxrLRzBNPx9lpEsAgGXWpzDZ2gW3EOTyXH0fL4+32tf0an+JiOjBMLxQQHM2BdoAC2J1a9BP2QBZEjirheENaz8kaq5DiVEnYcZL0WhXx/Vu50RE5B8YXigguZoCXUk6j1n6D1FT/hMAsMraHBOtr7hc2p9jW4iIAg/DCwUU11OgBV5RtuAt3QoESRZcEYUw2tIXm7VHXJ6rfe1wzOrKsS1ERIGG4YUChqsp0GG4iin6BWih/AYA2KHWwUhLf1xEUafnCdLLmP5iXT4iIiIKUAwvFBBcTYFuJe/FFP1CFJeuIUPoEWftio/Vp1zuSTSkRWUMfZKPiIiIAhnDC/k9Z1Og9bBitG4l+ui+BQAc1cpiiGUwTogyLs8zt1s93m0hIsoDGF7Ib7maAl1WSsNs/WzUlf8AAHxkbYsp1i4wQ+/0PMEGGdNfikZMrUiv95mIiLyP4YX8kqtdoNvLPyNOvwgh0i38LQphpKU/ErQGLs/DQblERHkPwwv5HWfjW4wwY5zuE7z8z0q5v2pVMMT8OlJQ3Ok5OCiXiCjvYnghv+HqMVFF6QLm6GehunwGmpAwV30GM6wvQIXi9Dy820JElLcxvJBfcPeYaIp+AQpKGbgoQhBreQ0/aHWcnoN3W4iI8geGF8p1zh4T6f6ZTfTqP7OJflJrYKhlkMu1WzgFmogo/2B4oVzlbBp0GK7iQ8MsNJKPAQDmWp/B+9YXXT4m4hRoIqL8heGFco2z4PKwdAxzDLMQLl3FNVEAIy0D8J2LJf45BZqIKH9ieCGfcz4wV6C3sgljdfHQSyqOa2UwwDIcp4TzYMJBuURE+RfDC/mUs4G5BXAbk/WL8IySCAD4Rm2C0Za+uIkgh/YclEtERAwv5BOqJjB05X6sP5hiV14aF7HIMB015D9hEQomWbtjmdoGgOMdlXa1wjG7G++2EBHldwwv5HWupkE/Ih3DPMNMlJBMuChC8Jp5GH4V1Zyeo+/j5fFW+5q+6C4REfk5hhfyqriNR7Bgp+Nu0F2UrXhXtxQGScUhrTz6mWNxASWcnuPDLvXQIZqPiYiI6A6GF/KajQcuOAQXHax4W/cpeuk2AwDWq40x0tIft2F0eg5OgyYioswYXsgrzFYNQ1cn2ZUVwTXM0c/Co8phAMBUy0uYoz4LZ+NbOA2aiIhcYXihHLfxQAqGrtoHi/ZvWWXpHD7Sv4/ychpuCCOGW17DZhfrt3BgLhERucPwQjnK2VL/TeVDmK+fiRDpJs5qYXjVMgLHRVmn7Tkwl4iIssLwQjnC1Y7QLyrb8T/dYuglFbu1quhvHo6/EeLQnuu3EBGRpxhe6IE5mwotQcMI3RoM1n0NAPhabYo3LP2QAYNDe66WS0RE2cHwQg/E2WMiI8yYql9gWzF3lrUjpltfhLOBuZwGTURE2cXwQvfN2caKRWHCQsN0PCL/DotQMNbaB2vU5k7bM7gQEdH9YHih++IsuFSQUrBUPwXl5TSYRDD6W4YjUXM++Lbv4xUYXIiI6L4wvFC2OQsu0VIylhimoJh0HWe1MPSyvIGTorTT9ndmFNXwQU+JiCgvYnihbHEWXJrLSZir/wDBUgZ+0yqij3kULiHUoS1nFBERUU6QvXXiSZMmoWnTpggODkaRIkU8aiOEwPjx4xEZGYkCBQqgdevWOHHihLe6SNnkLLg8L+/EIv37CJYysEOtg67mt50Gl3a1wnF4QgyDCxERPTCvhRez2YwXX3wRAwcO9LjNlClTMGvWLMyfPx+//PILChYsiDZt2uD27dve6iZ5yFlw6ausx3TDfOglFV+qj+FVy0jcRJBD276Pl8fclx/mVGgiIsoRkhBCZF3t/i1btgzDhg3D1atX3dYTQqBUqVIYMWIERo4cCQBIT09HeHg4li1bhi5dunj0fiaTCaGhoUhPT0dIiONiaJQ9zhafk6BhrC4efXUbAQALre0RZ+0KkSkL8zERERF5Kjvf334z5uXUqVNITU1F69atbWWhoaFo1KgREhMTXYaXjIwMZGRk2I5NJpPX+5pfOFt8Tg8rpugX4DnlRwDAJEs3LFI7OLRtXL4oVvRrwrstRESU47z22Ci7UlPv/J99eHi4XXl4eLjtNWfi4uIQGhpq+4mKivJqP/OLSRuO4LX4fXbBpQBu4yP9NDyn/AiLUDDcPNBpcCmglxlciIjIa7IVXkaPHg1Jktz+HDt2zFt9dWrMmDFIT0+3/Zw9e9an758XTdpw2GHV3MK4ieWG99BMOYCbwohXLSPxlfa40/YzOkczuBARkddk67HRiBEj0KtXL7d1KlaseF8diYiIAACkpaUhMjLSVp6Wlobo6GiX7YxGI4xG4329JznaeOACFv1w2q6sKEz42DAZdeRTMIlg9DK/gX2iikPbYIOM6S9FI6ZWpMNrREREOSVb4SUsLAxhYWFe6UiFChUQERGBhIQEW1gxmUz45ZdfsjVjie6fqgnEfvabXVkY/sYKw/9QRT6PSyIEPcyjcUSUd2jbrlY4Znfj5opEROR9XhvzcubMGSQlJeHMmTNQVRVJSUlISkrC9evXbXWqVauGr776CgAgSRKGDRuG//73v/jmm29w8OBB9OjRA6VKlULHjh291U36h6oJdF+YiNtWzVZWRrqINYZ3UUU+jxRRDJ3N45wGlz6PcSo0ERH5jtdmG40fPx4ff/yx7bhevXoAgG3btqF58+YAgOPHjyM9Pd1W54033sCNGzfQr18/XL16FY899hg2bdqEoCDHtUMo5zibVVRRuoBPDf9DKekKzmhh6GZ5C+dESYe2fR4rj3EdnO9fRERE5A1eX+fF17jOS/ZM2nDEYXBuNekMPjH8D2GSCSe00njZPAZpKObQ9s4eRQwuRET04AJynRfyPWer5taW/sAnhjgUkW7gkFYePcyjcQX2f4n0ioQPOkdz8TkiIsoVDC/5lLPgUkc6iU8NcQiRbmKv9hB6m9+ACQXt6uhl4PCEGBh0frNEEBER5TMML/mQs+BSV0rGJ4Y4hEi3sFurit7mN3ADBRzaftClPoMLERHlKoaXfMZZcImWkrH8n+Dyi1YNvc1vuNhgsQLa1eEaLkRElLsYXvKRSRscg0s96QSWG95D4SyCS5/HyuOt9jV81FMiIiLXGF7yCWcr59aXfsfHhskoLN1ColoD/7GMxC2nd1w4q4iIiPwHw0s+4Gzl3HuDy09qDfRxElyC9DKmv1iXs4qIiMivMLzkA6/H77VbObe+9DuWG95DIek2flRroo9lJG7Dfn8oLvdPRET+iuElj5u4/jA2HkqzHdeS/sAyw2QUkm5jl1oTrzoJLlw1l4iI/BnDSx6lagJD4vdhw6FUW1lV6Qw+MbyHEOkWftaqM7gQEVFAYnjJg9ztVVRUuo59WmX0MTsGl/a1IhhciIjI7zG85DHO9iqKktKw4p+9ig5p5dHL/KbDAnRGRcKsbvV92VUiIqL7wvCShzhbgC4SlxGv/x8ipSv4XSuNV8yjHZb8B4AZnetxcC4REQUErvOeRzhbgC4MV7HCMAlR8kX8oUWgu3ks/objTp1cOZeIiAIJw0se4GwBuqIw4VPD/1BRTsU5UQLdzW/hIoo6tOXKuUREFGgYXgKcswXoCuIWPjZMRlX5HFJFUXQzv4UUFHdoy5lFREQUiBheAlzmBeiMMGOhfjrqyKdwWRRGd/NYnBHhDu0YXIiIKFBxwG4Ay7wAnQwNM/Vz8KhyGNdFEHqa38RJUdqhHfcqIiKiQMbwEqAcZxYJ/Fe3GG2VX5EhdOhrGYFDoqJdG+5VREREeQHDSwByNiV6pO4zdNNtgyokDLUMRqJmf2elcfmiWNGvCadDExFRwOOYlwDjLLj8R/kWg3VfAwDesvbBJq2h3etGRWJwISKiPIPhJYA4Cy7PyT9gvP4TAMAUS2esUls6tOMCdERElJcwvAQIZ4vQtZT3Yap+AQDgI2tbzFWfcWjHBeiIiCivYXgJAM4WoYuWkjFHPws6ScMX6mOYZO0OwP7uChegIyKivIjhxc+pmsCoLw7YlZWV0rDYMBUFJDO2qXXxpqUfRKaPkuu4EBFRXsXw4uc+3HoCNzJU23FRmLBMPxnFpWs4oFXAIMtQWDNNGmNwISKivIzhxY+pmsDcbcm2YyPM+Mjwvm2/oj7mUbiJILs2DC5ERJTXMbz4sdfj9yJDFQDurJ77gX4OGsgncFUURE/zm7iIInb1GVyIiCg/YHjxU/ZL/wuM032CmLur55pHOCz7z+BCRET5BcOLH8q8nksfZSN6674DAIywDMSvoppd/egyIQwuRESUbzC8+JnMwaWd/DPG6VcAACZZumG91sShzag21X3VPSIiolzH8OJHMgeX+tLvmKGfBwBYZn0Ki9T2Dm0KGXVoXKm4r7pIRESU6xhe/ETm4FIaF7HAMB1GyYLNagO8a+2BzIvQAcCUTnW49D8REeUrDC9+IHNwKYSbWGyYhjDJhMNaOQyzDILm5KPi0v9ERJQfeS28TJo0CU2bNkVwcDCKFCniUZtevXpBkiS7n5iYGG910S9kDi53p0RXk8/iL1EEfcwjHdZyAbj0PxER5V+6rKvcH7PZjBdffBFNmjTB4sWLPW4XExODpUuX2o6NRqM3uucXnG22OFa3Aq2U/bgt9HjVPAKpcBzPwmnRRESUn3ktvEyYMAEAsGzZsmy1MxqNiIiI8EKP/IuzzRa7KFvxqu5bAECsZSAOiEoO7RhciIgov/O7MS/bt29HyZIlUbVqVQwcOBCXL192Wz8jIwMmk8nux9+pmsDbXx+yK2siH8ZE3Z07Tu9bXsBGrbFDOwYXIiIiPwsvMTExWL58ORISEjB58mTs2LEDbdu2haqqLtvExcUhNDTU9hMVFeXDHt+f3aeu4MoNi+24gpSC+foZ0Esq1qpNMVt9zqENgwsREdEd2Qovo0ePdhhQm/nn2LFj992ZLl264JlnnkHt2rXRsWNHrF+/Hr/++iu2b9/uss2YMWOQnp5u+zl79ux9v7+vLNj572aLobiOxfqpCJVuYq/2EN609EPmKdEMLkRERP/K1piXESNGoFevXm7rVKxY8UH643CuEiVKIDk5Ga1atXJax2g0BtSg3onrD2P78UsAAAUqZutn23aJ7m+ORQYMdvUZXIiIiOxlK7yEhYUhLCzMW31xcO7cOVy+fBmRkXljLZPM06Lf0K3CE8pB3BRGvGoeiUsItavfvEoJBhciIqJMvDbm5cyZM0hKSsKZM2egqiqSkpKQlJSE69ev2+pUq1YNX331FQDg+vXrGDVqFH7++WecPn0aCQkJePbZZ1G5cmW0adPGW930mczB5Vl5F/rrNgAARlr645go69Cmf7PKvuoeERFRwPDaVOnx48fj448/th3Xq1cPALBt2zY0b94cAHD8+HGkp6cDABRFwYEDB/Dxxx/j6tWrKFWqFJ566ilMnDgxoB4LOZN5PZea0ilM1i8CAHxofdbpzKLiBQ1oWKGYr7pIREQUMCQhhMjtTuQkk8mE0NBQpKenIyQkJLe7g40HLuC1+P224+JIxzfGt1FauoytajRetYx0uvT/3G71ufQ/ERHlG9n5/varqdJ5jaoJjPrigO1YByvmGj5AaekyTmqR3LOIiIjoPjC8eNGQlftwI+PfNWrG6T5BI/kYrokC6GeJhQkFHdpwzyIiIiL3GF68ZNKGw9hwMNV2/JKyDT11WwAAwyyv4aQo7dCG06KJiIiyxvDiBZn3LaonnbBb+j9Ba+DQhsGFiIjIMwwvOUzVBGI/+812XBzpmGv4AEbJim/VR/Ch2tGhDYMLERGR5xhectiQlXtx26oB+HcF3UjpCpK1UhhpGQCR6Y+8fe0IBhciIqJsYHjJQRsPXMCGg2m241jdGjRVjuCGMKK/ZThuoIBd/YIGBbO61vd1N4mIiAIaw0sOyTwturW8F4N03wAA3rT0czpAd+oLdaHIkkM5ERERucbwkkPunRZdVkrDdP08AMASawzWa00c6neoHcm1XIiIiO4Dw0sOmLj+32nRQcjAfP1MhEg3sUergjhrN4f6RkXCB13r+bqbREREeQLDywOy37dI4L/6pagh/4lLIgSDzENgcbJ91IzO9fi4iIiI6D4xvDyAzOu5dFG24QVlJ1Qh4XXL60iD48aKXPqfiIjowTC83KfMA3RrS39ggm4ZAGCatTMSNcfpz+1rR3DpfyIiogfE8HKf7h2gG4IbmKu/sxDdFrUB5qsdHOpzWjQREVHOYHi5D/b7FglM1i9ElHwRZ7QwjHCyEB3AadFEREQ5heElmzKPc+mhbEZb5VeYhYJBlqFOd4rmOBciIqKcw/CSDZnHudSUTuEt3QoAQJy1Gw6Kig5t+jxWnuNciIiIchDDSzb8/Mdl2ziXQriJOfpZMEpWbFYbYKka41Cf+xYRERHlPIaXbJj63bF//ksgTv8RystpOCdKYJSlPwD78SwcoEtEROQdDC8emrj+MJLOpgO4s57L08rPsAgFQ8yDkY5CDvU5QJeIiMg7GF48cO8qutWkM/g/3ccAgKnWl7BPVHGoz32LiIiIvIfhJQv3zi4Kxm18qJ+FIMmCbWpdLFLbO9TXc98iIiIir2J4cUPVBN7++pDteKJ+KSrLF5AqiiLWMtDpei6DWzzEx0VERERexPDixu5TV3DlhgUA0Eb+FZ2UH6AKCUPMg/E3QhzqFzLqMLhlZV93k4iIKF9x3PKYbP66dtv239u0aCy2tsUVURi7RXWn9ad0qsO7LkRERF7G8OJGycJBtv82Q4+J1lcACKd1uYouERGRb/CxkRsNKxRDZGhQplLHOytcRZeIiMh3GF7cUGQJ7zxdw0lc+Vffx8tzFV0iIiIfYnjJQkytSMx7ub7DHZhiBfWY260e3mrP4EJERORLHPPigZhakXiyRgR2n7qCv67dRsnCQWhYoRgH5xIREeUChhcPKbKEJpWK53Y3iIiI8j0+NiIiIqKAwvBCREREAYXhhYiIiAIKwwsREREFFK+Fl9OnT6NPnz6oUKECChQogEqVKuGdd96B2Wx22+727dsYNGgQihcvjkKFCqFTp05IS0vzVjeJiIgowHgtvBw7dgyapmHBggU4fPgwZsyYgfnz52Ps2LFu2w0fPhzr1q3DmjVrsGPHDly4cAHPP/+8t7pJREREAUYSQjjfrMcLpk6dinnz5uGPP/5w+np6ejrCwsIQHx+PF154AcCdEFS9enUkJiaicePGWb6HyWRCaGgo0tPTERLiuPMzERER+Z/sfH/7dMxLeno6ihUr5vL1vXv3wmKxoHXr1rayatWqoWzZskhMTHTaJiMjAyaTye6HiIiI8i6fhZfk5GTMnj0b/fv3d1knNTUVBoMBRYoUsSsPDw9Hamqq0zZxcXEIDQ21/URFReVkt4mIiMjPZHuF3dGjR2Py5Mlu6xw9ehTVqlWzHZ8/fx4xMTF48cUX0bdv3+z30o0xY8YgNjbWdpyeno6yZcvyDgwREVEAufu97clolmyHlxEjRqBXr15u61SsWNH23xcuXECLFi3QtGlTLFy40G27iIgImM1mXL161e7uS1paGiIiIpy2MRqNMBqNtuO7F887MERERIHn2rVrCA0NdVvHqwN2z58/jxYtWqBBgwb49NNPoSiK2/p3B+yuXLkSnTp1AgAcP34c1apV83jArqZpuHDhAgoXLgxJytmNE00mE6KionD27Nk8ORg4r18fkPevkdcX+PL6NfL6Ap+3rlEIgWvXrqFUqVKQZfejWry2MeP58+fRvHlzlCtXDtOmTcPFixdtr929i3L+/Hm0atUKy5cvR8OGDREaGoo+ffogNjYWxYoVQ0hICF5//XU0adLEo+ACALIso0yZMl65prtCQkLy7F9KIO9fH5D3r5HXF/jy+jXy+gKfN64xqzsud3ktvGzZsgXJyclITk52CBN3b/ZYLBYcP34cN2/etL02Y8YMyLKMTp06ISMjA23atMHcuXO91U0iIiIKMF4LL7169cpybEz58uUdBuYEBQVhzpw5mDNnjre6RkRERAGMextlg9FoxDvvvGM3QDgvyevXB+T9a+T1Bb68fo28vsDnD9fo0xV2iYiIiB4U77wQERFRQGF4ISIiooDC8EJEREQBheGFiIiIAgrDyz0mTZqEpk2bIjg42GFzSFeEEBg/fjwiIyNRoEABtG7dGidOnLCrc+XKFXTv3h0hISEoUqQI+vTpg+vXr3vhCrKW3b6cPn0akiQ5/VmzZo2tnrPXV61a5YtLsnM/f9bNmzd36PuAAQPs6pw5cwbt27dHcHAwSpYsiVGjRsFqtXrzUpzK7vVduXIFr7/+OqpWrYoCBQqgbNmyGDJkCNLT0+3q5ebnN2fOHJQvXx5BQUFo1KgRdu/e7bb+mjVrUK1aNQQFBaF27drYuHGj3eue/E76Unaub9GiRXj88cdRtGhRFC1aFK1bt3ao36tXL4fPKiYmxtuX4VZ2rnHZsmUO/Q8KCrKrE8ifobN/TyRJQvv27W11/Okz3LlzJ55++mmUKlUKkiRh7dq1WbbZvn076tevD6PRiMqVK2PZsmUOdbL7e51tgmzGjx8vpk+fLmJjY0VoaKhHbd577z0RGhoq1q5dK3777TfxzDPPiAoVKohbt27Z6sTExIi6deuKn3/+Wfzwww+icuXKomvXrl66Cvey2xer1SpSUlLsfiZMmCAKFSokrl27ZqsHQCxdutSu3r1/Br5yP3/WzZo1E3379rXre3p6uu11q9UqatWqJVq3bi32798vNm7cKEqUKCHGjBnj7ctxkN3rO3jwoHj++efFN998I5KTk0VCQoJ46KGHRKdOnezq5dbnt2rVKmEwGMSSJUvE4cOHRd++fUWRIkVEWlqa0/o//vijUBRFTJkyRRw5ckS8/fbbQq/Xi4MHD9rqePI76SvZvb5u3bqJOXPmiP3794ujR4+KXr16idDQUHHu3DlbnZ49e4qYmBi7z+rKlSu+uiQH2b3GpUuXipCQELv+p6am2tUJ5M/w8uXLdtd26NAhoSiKWLp0qa2OP32GGzduFG+99Zb48ssvBQDx1Vdfua3/xx9/iODgYBEbGyuOHDkiZs+eLRRFEZs2bbLVye6f2f1geHFi6dKlHoUXTdNERESEmDp1qq3s6tWrwmg0ipUrVwohhDhy5IgAIH799VdbnW+//VZIkiTOnz+f4313J6f6Eh0dLf7zn//YlXnyl97b7vf6mjVrJoYOHery9Y0bNwpZlu3+gZ03b54ICQkRGRkZOdJ3T+TU5/fZZ58Jg8EgLBaLrSy3Pr+GDRuKQYMG2Y5VVRWlSpUScXFxTuu/9NJLon379nZljRo1Ev379xdCePY76UvZvb7MrFarKFy4sPj4449tZT179hTPPvtsTnf1vmX3GrP69zWvfYYzZswQhQsXFtevX7eV+dtneJcn/w688cYbombNmnZlnTt3Fm3atLEdP+ifmSf42OgBnDp1CqmpqWjdurWtLDQ0FI0aNUJiYiIAIDExEUWKFMHDDz9sq9O6dWvIsoxffvnFp/3Nib7s3bsXSUlJ6NOnj8NrgwYNQokSJdCwYUMsWbLEo23Nc9KDXN+KFStQokQJ1KpVC2PGjLHbsiIxMRG1a9dGeHi4raxNmzYwmUw4fPhwzl+ICzn1dyk9PR0hISHQ6ewX2Pb152c2m7F371673x9ZltG6dWvb709miYmJdvWBO5/F3fqe/E76yv1cX2Y3b96ExWJBsWLF7Mq3b9+OkiVLomrVqhg4cCAuX76co3331P1e4/Xr11GuXDlERUXh2Weftfs9ymuf4eLFi9GlSxcULFjQrtxfPsPsyup3MCf+zDzhte0B8oPU1FQAsPtSu3t897XU1FSULFnS7nWdTodixYrZ6vhKTvRl8eLFqF69Opo2bWpX/u6776Jly5YIDg7G5s2b8dprr+H69esYMmRIjvU/K/d7fd26dUO5cuVQqlQpHDhwAG+++SaOHz+OL7/80nZeZ5/x3dd8JSc+v0uXLmHixIno16+fXXlufH6XLl2CqqpO/2yPHTvmtI2rz+Le37e7Za7q+Mr9XF9mb775JkqVKmX3RRATE4Pnn38eFSpUwMmTJzF27Fi0bdsWiYmJUBQlR68hK/dzjVWrVsWSJUtQp04dpKenY9q0aWjatCkOHz6MMmXK5KnPcPfu3Th06BAWL15sV+5Pn2F2ufodNJlMuHXrFv7+++8H/nvviTwfXkaPHo3Jkye7rXP06FFUq1bNRz3KeZ5e44O6desW4uPjMW7cOIfX7i2rV68ebty4galTp+bIl5+3r+/eL/LatWsjMjISrVq1wsmTJ1GpUqX7Pq+nfPX5mUwmtG/fHjVq1MD//d//2b3mzc+P7s97772HVatWYfv27XYDWrt06WL779q1a6NOnTqoVKkStm/fjlatWuVGV7OlSZMmaNKkie24adOmqF69OhYsWICJEyfmYs9y3uLFi1G7dm00bNjQrjzQP0N/kOfDy4gRI7LcILJixYr3de6IiAgAQFpaGiIjI23laWlpiI6OttX566+/7NpZrVZcuXLF1v5BeXqND9qXzz//HDdv3kSPHj2yrNuoUSNMnDgRGRkZD7z/ha+u765GjRoBAJKTk1GpUiVEREQ4jJRPS0sDgBz5DH1xfdeuXUNMTAwKFy6Mr776Cnq93m39nPz8XClRogQURbH9Wd6Vlpbm8noiIiLc1vfkd9JX7uf67po2bRree+89fP/996hTp47buhUrVkSJEiWQnJzs8y++B7nGu/R6PerVq4fk5GQAeeczvHHjBlatWoV33303y/fJzc8wu1z9DoaEhKBAgQJQFOWB/054JMdGz+Qh2R2wO23aNFtZenq60wG7e/bssdX57rvvcnXA7v32pVmzZg6zVFz573//K4oWLXrffb0fOfVnvWvXLgFA/Pbbb0KIfwfs3jtSfsGCBSIkJETcvn075y4gC/d7fenp6aJx48aiWbNm4saNGx69l68+v4YNG4rBgwfbjlVVFaVLl3Y7YLdDhw52ZU2aNHEYsOvud9KXsnt9QggxefJkERISIhITEz16j7NnzwpJksTXX3/9wP29H/dzjfeyWq2iatWqYvjw4UKIvPEZCnHne8RoNIpLly5l+R65/RneBQ8H7NaqVcuurGvXrg4Ddh/k74RHfc2xM+UBf/75p9i/f79tKvD+/fvF/v377aYEV61aVXz55Ze24/fee08UKVJEfP311+LAgQPi2WefdTpVul69euKXX34Ru3btEg899FCuTpV215dz586JqlWril9++cWu3YkTJ4QkSeLbb791OOc333wjFi1aJA4ePChOnDgh5s6dK4KDg8X48eO9fj2ZZff6kpOTxbvvviv27NkjTp06Jb7++mtRsWJF8cQTT9ja3J0q/dRTT4mkpCSxadMmERYWlmtTpbNzfenp6aJRo0aidu3aIjk52W5qptVqFULk7ue3atUqYTQaxbJly8SRI0dEv379RJEiRWwzu1555RUxevRoW/0ff/xR6HQ6MW3aNHH06FHxzjvvOJ0qndXvpK9k9/ree+89YTAYxOeff273Wd39N+jatWti5MiRIjExUZw6dUp8//33on79+uKhhx7yaZB+kGucMGGC+O6778TJkyfF3r17RZcuXURQUJA4fPiwrU4gf4Z3PfbYY6Jz584O5f72GV67ds32XQdATJ8+Xezfv1/8+eefQgghRo8eLV555RVb/btTpUeNGiWOHj0q5syZ43SqtLs/s5zA8HKPnj17CgAOP9u2bbPVwT/rYdylaZoYN26cCA8PF0ajUbRq1UocP37c7ryXL18WXbt2FYUKFRIhISGid+/edoHIl7Lqy6lTpxyuWQghxowZI6KiooSqqg7n/Pbbb0V0dLQoVKiQKFiwoKhbt66YP3++07relt3rO3PmjHjiiSdEsWLFhNFoFJUrVxajRo2yW+dFCCFOnz4t2rZtKwoUKCBKlCghRowYYTfV2Feye33btm1z+ncagDh16pQQIvc/v9mzZ4uyZcsKg8EgGjZsKH7++Wfba82aNRM9e/a0q//ZZ5+JKlWqCIPBIGrWrCk2bNhg97onv5O+lJ3rK1eunNPP6p133hFCCHHz5k3x1FNPibCwMKHX60W5cuVE3759c/RL4X5k5xqHDRtmqxseHi7atWsn9u3bZ3e+QP4MhRDi2LFjAoDYvHmzw7n87TN09W/E3Wvq2bOnaNasmUOb6OhoYTAYRMWKFe2+E+9y92eWEyQhfDyflYiIiOgBcJ0XIiIiCigML0RERBRQGF6IiIgooDC8EBERUUBheCEiIqKAwvBCREREAYXhhYiIiAIKwwsREREFFIYXIiIiCigML0RERBRQGF6IiIgooDC8EBERUUD5f7B6kZdHZLCkAAAAAElFTkSuQmCC\n" - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "from autora.skl.bsr import BSRRegressor\n", - "import numpy as np\n", - "import matplotlib.pyplot as plt\n", - "\n", - "x = np.expand_dims(np.linspace(start=-1, stop=1, num=500), 1)\n", - "y = np.power(x, 3) + np.sin(x)\n", - "\n", - "# initialize regressor\n", - "bsr = BSRRegressor(itr_num = 500)\n", - "bsr.fit(x, y)\n", - "y_pred = bsr.predict(x)\n", - "\n", - "# plot out the ground truth versus predicted responses\n", - "plt.figure()\n", - "plt.plot(x, y, \"o\")\n", - "plt.plot(x, y_pred, \"-\")\n", - "plt.show()" - ], - "metadata": { - "collapsed": false - } - }, - { - "cell_type": "markdown", - "source": [ - "
    \n", - "\n", - "## References\n", - "Jin, Ying, et al. \"Bayesian symbolic regression.\" arXiv preprint arXiv:1910.08892 (2019).\n" - ], - "metadata": { - "collapsed": false - } - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 3", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 2 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython2", - "version": "2.7.6" - } - }, - "nbformat": 4, - "nbformat_minor": 0 -} diff --git a/docs/theorist/bsr/how_it_works.md b/docs/theorist/bsr/how_it_works.md deleted file mode 100644 index 69052bae0..000000000 --- a/docs/theorist/bsr/how_it_works.md +++ /dev/null @@ -1,20 +0,0 @@ -# Bayesian Symbolic Regression - -## How it works - -Bayesian Symbolic Regression (BSR) has the following features: - -1. It models equations as expression trees, with root and intermediate tree nodes representing operators (e.g. `*` for a binary node and `sin` for a unary node) and leaf nodes representing features in the data. BSR then defines the search space as the union of the following three parts: - - Tree structure (T): this represents the structure of the expression tree (e.g. how to recursively construct the tree and when to stop by using leaf nodes), and also specifies the assignment of operators to non-leaf nodes. - - Leaf nodes (M): this assigns features to leaf nodes that are already defined from part **T**. - - Operator parameters ($\Theta$): this uses a vector $\Theta$ to collect additional parameters for certain operators which require them (e.g. a linear operator `ln` with intercept and slope params). - -2. It specifies priors for each of the three parts above. `Autora`'s implementation of BSR allows users to either specify custom priors for part `T` or choose among a pre-specified set. - -3. It defines `actions` that mutate one expression tree (`original`) into a new expression tree (`proposed`), and supports the calculation of transition probabilities based on the likelihoods of the `original` and `proposed` models. - -4. It designs and implements a Reversible-Jump Markov-Chain Monte-Carlo algorithm (RJ-MCMC), which iteratively accepts new samples (where each sample is a valid expression tree) based on the transition probabilities calculated above. In each iteration, `K` expression trees are obtained either from the `original` samples or the new `proposed` samples. - -5. With each iteration, the candidate prediction model is a linear mixture of the `K` trees, wherein the ground truth response is regressed on the results generated by the `K` expression trees to obtain the linear regression parameters $\beta$. - -`AutoRA`'s implementation of BSR is adapted from original authors' [codebase](https://github.com/ying531/MCMC-SymReg), and includes comprehensive refactoring of data structures and MCMC computations. It also provides new priors that suit the cognitive and behavioral sciences. diff --git a/docs/theorist/bsr/img.png b/docs/theorist/bsr/img.png deleted file mode 100644 index 3d278fd1e3f6b8691ac8e173b3d7303af423e087..0000000000000000000000000000000000000000 GIT binary patch literal 0 HcmV?d00001 literal 17622 zcmb7sbySq!*YDt0L_tBR5hRqBR7&X%1?gr8m4*SNq(Kl7K}tfTK{}-yL6L!xE*V04 z2qO1l4a)Ac| z!ArY*3H;A9RPZ1KBAfh3R!Ym=cy+?s;3`?cuA-el(^r&s z_0`48+vKE4H!N>ZjoVZXSGnn~?rsgQe%ZNdIV?<8=KuO?Gr{kO$inZO7ij#3T~3?* zPPbD*$7y=U65F6Ve`$GlJP1TCXyXC|@{VvC9|9q#XeEL`*w|k~ArLjK%V1<_xz~*$ z5J~kr4d8ycI#xYYpj$Hd=Gv{os+9bE_T9}{ zg&`CwpPijuOIJ7kaAP_!zp$_ZbxFV4J{eVJ9(uSp<}h@2x_)*6;?Ho~)o{6b@I`r5 zB4}Ir)&qO3vwgp_9Aa8wvk7#q+v+D`q0_MxQI8CHdHKRBsn4@peqa(ajIQH_tJw{2 z;z9Q-&^T-I`Q4R~<*j+--D+1ixBP89%zhM12&+glnoZ&MnZ zp%jMeIR$9usEzyIH<%50fQL5;xf`xtyOw9-dmslNtLm!jnG=SaIW36-`(NeW6+utS z1t5W02g7Ma3XcL10TUe^9Wi6sIXUIVr7Qi|CSc1iRlXrNHcCDB*ODiVDm=CqK9@9~ z3XifxDdt-7e>xr?W1r~n&!~Qk{6raF)X$wv0D%OxWci}`8$O0wi8<|sjx4kU60p-n zU*9UkkMI5m;@>)@(R>B$2Gg$EK?lqh(R1eBO~mY*vMq@f!F&fd zTAf7V!4tKKK)8-mMkW44(1|3PMsE1nQUI#zRW90odQ0Sq51v6(zVr}<4?9UfZlumk}k|@gRJ>pMc zqnTJR$N6v{)%U#C2zc~l#Dv67cH1KkiJKprb1F%OR}!gm_m7m^ z1hp(;Zr!>b!xp*WwvRpKq_{356F$JZPfce`&`!-KY57W`s*Qdw_S(a>f6rIJe9aN* z`1m1Jgz;fRcb02T-Sv8h_jQHC!cYm^MAE_%>O&c1o_B1+>Mm)@yw~e;<@Wuzao(3u zFl>!-lWymz0hg{R21fn`=R(T!FRy|x=Z@pNXcb%>Yi~KGgz7CZLwH~0{l?%&r*iM+ z8QH{{igC4~%Ai1?(rRy}w#nxeG;UR6sJ8!}El!y_B`dY})=t49gB7<5BjPGHLq0807uKD`uw_?K_D^u(W-TXWjRrzw;ICNB2FI|b%= z-nV~kd9LS7W!Ydxs@F_bXV2ni z&WBc-wnBNpQ}b(N1dbmMqd99PKcDdHgb}Xjz(q5Wii`0D6X>0tC@N#8#&Wi|N+&D; zAk|urN4WA;MRoVbNS3CYc#c1~w#Y?AB+E&ikDPS=w-FN~=SY3`;uJ4gzScE7g1&jM zM>@_ITxy|ev84%t#;@a&$gP^@&~faTcMUB&KQ%Eo`DzsPqIwyo<)p)?fW=A-W3K%> zvXAImgzGyC6uYZqlyznreqC*oy}IDP{XR`WGq5gt61l9ur0FMe0}DC)>}Axy-Qq38 zW)!d*=Orems`kd>*GcKVqqME8M}Pz9Ol=JC^fL=9>kt5=9ise#f^yVfT5)f^YCia6 z!>CPSxDpx4cr80+j}Pk{a`kMe4br*kZ^7(Q zih9*vH$CtmF^orxX9L1D2svm^JDpyOIae|HYR2bQB?pI+Pbn!?_Nwh!m{u9LFHZEO z4A1qQrB7essCg^>5Xnpye`vHZEjQdaUi0Exofs_!k<{#dPLa|ss;+S^udY-{hvwRF zjxRApD4ld$yN{MW4Mde&MzHYY*4FC#HMp+m`1tWtKS?01^FAocFDlX=t9H2U~G$hox&_Vp4ffGsee1CADijWp&@0L8sy8Nj{ zj{MLisvYZWaBf8H>dz@Bi{m^`8dOdoasmKmP85}aY&y+J>c89AKOqPGSS{)+LyO#n zu!~fD6^m0EY3SO|v$&H<&bGY+J8Ppf?_8YuB?h+3bIf+ZI3h_r-V#zSGxg$0(uuk! zJi`JqN?$HP&kqiHTC!_ieemH?J(Q>FVX1qW{oRZIdG@hqgwr$bDsyrmW2!V#hZZ&` zDa=1bhVuOskN=Sfxkre~i0J0FOjqYy=^W(2Ch#nGeJcVhs( z?dEu3_O192PpanPc`E`7B;30pXG|pNiNq(l)XxTVtZoQomdm~9%CI{}Ok3I3_E$fe z%x>pBY0&x*RmV({PS)o1U!G6Z`v~N-R7GB8bn;xQEWShwTQICHh>Kd$G2J8|5C|=s z$60tT;Ud)UX4Gm=$YNVh4!Y_%4Y&p!(?^%$Nk@&$oN(~EwYdG|ERV<$9C%9Ao>h}1 zdEQu?|JaM}fFzCVn-6Wr6hl1Z-akr0|FQL4h@WoM;)-E|ai60@J%wH;bIoNOe%&U) z>}?ul;}WX|bQySZ_dieC!4u%2iJX~hlx2A?8kgiI{RhaM5LdZZzg-ddeRv=pI#SoY z%++sUb+>wo;oNdG_XCwyHUtDl>Wm2D6O&ml@Kor9x5%A`2STQoph7P8#je4`+|`Vg z`GT9Rgk1B~|E_FlCoe(#rzsBE_!s}q?JIk9=F!Qk&mMDcKEWsQ0+CuZ218`93+Jm) zU^aUy%vdw7RSq|H6e=#c34cQwfV9Nz(68+G0+I7kh8;KJMW&x$jAuR{1&5gmg%Nc! z_=Y01h57U+A=kxtt@BR^KZb&7i=L3e*4{+qlUKvrei%zP&u24o6zctDDFz+KI!=g!h2w$u+!^|V^RC+>zowkP7t3Y8 zVR%Ifi9PlZ`3H(wqBJi&a%an4Fcdc_u;SH7+=B>jPBa;;9Bd@uHhg53Oqa~vr=Oi2 zWx2d-5i>>IhZPE^p`DsV!`n}z&fmf3t8pQ@njaKL4Tl;)7 zW#|6X^omz^whD#ozMCH*m!Yd;?Xauh>QFj~;BNU3W+kj2nD0%Ov2k+JX!O{YZ%(VL z6E1kav@!k7#?4K~=kJD8qxXS^06)JToEIC?Dcy&niGg45Whiz@)g2;pv$|my>;?`S zaAW`RLmey)c4JjfPWGG6w0(Sh@-s4|1q1~0BIqUZpSOqW!w0ZUEg{~9*xBy2D(-%_ z6_|9sO9lIp8NUO!0H)@|VeTf9rD11hCpRc4C}ynKxG^83H_t1dU_t$2l#x_f(I^ok zFPBSY!5u2tn_5cjGmM-evBB9IJ0gr|kF27}qQb-ueB7U|Idhmlg)%irv_ZuCFsu@WF-cmSo^~ zb2msUO!qruIXHjeL*_s{GS}IwDuGXVg*!sVYbfZ;5kQvGhc9<)2G^6`#9zB5m@DSB zXSEgZDKT-k-LTqzXkQ^yJyww^dbP2rzp=5=v%ux~b4J4~Jc!U!`yk4)Z1Yp(i?e;< z@LawxR2-$(VNTz$z69~gdGdlm^M5>(shEYmeYngr1S0eteD{w}a)+ifE2FD*$I#_=IeU4_2qb9EenO zU|Y?rRgk$~tQjMNJC1A~QUkI%?Wy_T{0diaR@iIyy~5)tbvOGSG!<=l{*HBQjzQ7A z{)cV~>r9;sSE1nWP_KA=sly?XTAAQlNqK-G=7br%^d2Q_R5hZhx2)V84C^9;ZGFeZ zfy^COxy$0rb9s`+)%hvJi&fgtgJ-tuNyi zmncaL)3l!|Gmae;E;g5ZbQz_-hEII2Voi5IL{w!7({ z_cF8}za)Nd0M`g0S}}YVjsr`=0OQ}hr>Qa5HR9ciN&7-O`Y83&yu|l<2|4J7tI2tA zy%pxU)Q8L&$dU*XGY5vg{-``4OOSY|_gmvTuCG!SCaXV%^`C8K@?L!gsn7EIy3Tgd zn2S}y747`+J8opL!nlU!CeU2Hc~C8KC%iVpsKYrcwkFj?Xkl*di@U0U2WMsVmW z+rGJegE~b`RoctNDoQ=RrRi;cO6k}YdBev5|1hD?mbAPg@x?-T-UG^cak~sCE&No_jmdM>|;4M9O?iRYY%s<{gP<_hc+8&jfboNaA!Q((&LryFcDh#6n zOd|}Q!)4mRlnLCO6>PeHrh99n7qDT8zjnMmYm^mrvc~=xv|7?+UHHT1_?_bhq@ysWaj~DU^Y|%=p!S$Z|u+o=1?)OW9jpQ zt2eAFhW^~TdUeUNo^U0Has#Uaso=QLD#D?OTSEkW32-rr-FPba-E$1kt5UW#G>|VY z2wo+K&g6O^qMBPiyQE-vF_UZlJZ0C4L@l3V3l2@;Yu715)+#r z3qybvDLfy{Yj?XUkXU{y`Y^*P$phl^gjcI~k3 zsAKl0+Y$!)B9mQM=Q{V$uTHrI#_G0}0PBzwX10v5OZ2`f5_0`3Xi2moNz_9F<5>Zl zr?QHwRC*sCo-c9wR|bx%=&<2nYH0A8(zE8Mx>xvmW7J#d)JRb%`6(UPa(W3?p`BtHJ832rx%!+Hur7K7#j z#z(7?J$K~fpZ=`!4Xe5h@*j|al=+@`Vkkjvzy&&aiPGs-+fS6Ch_3K#-Au4JoR2qg z5uy5Wf9&9lWGUAY8ONpn5=@ePfSW-mky-d*?n@F6utIezmZEklr5`SjvVGjx0;$gm zR6|=k*2xQ`VRTXV$B3-G_WtNsTK3SnF81CL5E9B$c*Yd-5iZ9>`ehhlHs%5OYMCG% z3c$*6;tIXe8_HTz7c2Kx8+5x0Lk-*V#%15{aG{?h*_LY{p_|HfHyX!JQ)$& zCP@s!Ss1{9U*XcbhILSDbp=y{ZbBF{eG@r0*{W+J*fq!r@kvqn5FP{im|?5 zY(*cQL$l)7JR504+hkF>E%Iwn)vDzk#tR2SN7=d16$t6^ckc*o3tSkY)cUOWN5yG~ z3o;cV@&OB(NAGv69#Mms<>Nx_Is=j{=0nzSCG2K>Ny*-yptu}(Y<^COSBH_T6SMX9 z*#%fFw$;AD!Ot&AIy`uINz47tPUn0`=tO%56erQVtuvJ;yCWtTqIY-3Xj=#yTEzrr zNrx8NMiuo;#-`5ymaR~C2oW4R914?oe#EEq9^|u1?j5Wk--Ny2dE=ck zYp?zxO4t?9LPNt5m0SpX?8)^f#Y|fHAJ={PAs4F%2P5RuD)Hw}a85Gj@)e3(ZnWwI zJlArU`B${&o`nErhD9b6CaF%GQUK75)F4t72O)CYwO(vpJCRm&wdvUmLmj;ghH1e^ z!dgZQ?zCaS91@HsIGlYqs6q5XZeUTXlQ<)2818w0E$?p<7*Sgd;sI_%3^CSsiX-7Y zP7`-{DiBv{b?d1IYkx5o6wzzS>T#U+#xx)eyTdwVyeb|)zQ;LdHcs^Cw)87p4A15` z%K1H(LxdIZmfkB>ZSbCC*TaB!7KYM9gt!1(@>QqBowdUBK?T}Kglj=jNLvjX z6Rvf9tLNHAKZ0tmeX;goU-L#jv#PyyYTZ$8a540S`di#Q2wy)C(;9I`64KD=J9=du zd3P!zlQ-@Ui6^NIk(Ctf`6}N?kHnd=@QYn`a5o6i7o^AYHeQJJmuXo=MNxv$fH)91 zg0Iva3rTUI&tDEz7MJIxGiwx~-jo=?Px8rlhFX+PY-HwdNE5vaz`iRv`pAME^MEc%s{Yx9X3Zw2E1sT0Fm8#8e{8RvJoyEwiN@yd>Jx>N4P z(NX=-Y;Tj9RRZ7@XZlzgDNuF}&+c$P4#7=>y~9l`H0h1V@K{Dll{VNW-lC|nsyTeJ zf?0`jFi0F-W=g?XnIeavNGWj@_?*1#kVE|)G<9xb%Y zOL5PFPEUppe*QyKcS}6K?o#lsCv^KhOM)k=qPhF$bS@B(oZzrr%1kw6SSa<`Jv-L|oVIn~N*@{(o>yMaQoW zs`<=Fc;c;1gr{oA>(f>0=DliCape_v5M#N#q7QkAHAtEnm%Vd$gSLM7YW$7Z(W*9e z%G&(x_uZPF$)QQnw&Fj&ds3R3W6y$QhyM7&aVsGeU2UA&O9!oqYdPU%V1do?))F>z zhMxzNrr_)00;4o0v-+;u7k|P(y){&qAQM$g^HjecjwVjf$v0C;t$ zbU`@EtdatdrOUJJ5&4ys+S*!Lxy8lYCx1IT9~Z!{1N3H79=${<*2#PC`om6M)L1qs zV(3LY3eLM@3dgw(Dr+ig>c_rKfDPVV=(*(}QC?qvUjl zJr`1pVkDC@6e=IHa&6+>V8KS|H#TIB>G#3wYBzCJu*2PzUAD(YMn;{ho9?iQI#;9( zk8!ha5w}TGl9QpOWzMJ6)M}LHS+L7sxj8bfP=qAyo>_TZmf)teD_|-Bu04;LR}erA z{!$sU`MWg{U;TN$1CjmqcFHnXP&E0qvEFLMfGKo7qQeI1t- z{s+t|P{xKG1`jLyqyD^+EC0^kFHdD*87np;<#iyQi7C*eVNBn^kfgDJ4XdUZhO>i_Ns5cNjSX0|PsH%v;uYnvbJjw5-j|nRUVk1_nT) z{!XoPQ0>#yolH)nz;8C}(ZZcub4WI%P_TMj-J~ICL=m?(m_VVDpPzrRsAoZENtPi! zqtB|Wv0A$>D@(3AUVzIk_R>2gK}{J>yc9%@5+BviLUa`=8&<5+1(;2}pMMqnjIFDkfK;BZbo*ehx3YsCwUX>R1GR+%H4)}+a2`LwQ&cxc#tK?%dvCp*Z z_I;`RSqU;de_mWMOv9a#tNq&*4l{RZKqP~p(Wcl{fw%N$)tVMrAJL(Bxep7-^)7Ql zk}y1;f7Re9XBlIzt)n6)Af++~#If4${>uWgO-o>~ypU$KBOaFmKkwax2382x1*V0W z*F$uRQJk!kp0DJFE5|XQ^`<0uIb;OD8)BPJ;Nops?C3kSvUfR26%7=M^KKdCXi`pf zTGyoVggu0du_S-mw9L;qC4Gf2DUY>WOjOoz`C@?(2)$1BWQH${ui;h0yW1JB$m>JQ zu%PbGTRP|&2lyL-;emV$K+#fta+oMCc1zWamv=B+9fhZ0f*YS|5@t z7rP306S9v*r<)7!WKyreb#rE%b&gy2_^mQ8WwWaF_wWyTi&L zdT?yB>_IRftN zAg*nflXsaRlZTh^c@+r&cYkke?wf{iPiLNxBTZDWUnXJ_w;ladmXhUcB|F6ATZJNs zLR-Y(ONwJ%ni>7(d$x#A6)2*La} zoY3jA6nx1$xUqdTBjj=oL3_3o(J-Mgaee(D#y`F5FL}u=>H)gUW@)_v8CQ8%84la@vOf)PTp%v-(B=ir{yS;sL3WM)0 z+2R+7{4=ltm?RxSJ0(yCsWdb;l3eCxC0wzO+=*a!*hH3|HI}yO=hJd*z={k+&K--g6&M0b}Ob`+|+iz|03} zYQj`7Ap>*1ESZO8rc5c!4MzG!ofzj)GJw&ysi_t#a5gZzC6JCUc^B)>O(}r!p+D9N z5{*FM3JlO>o=Cl3`x!&>RY~c+B}${gc33LCL^+!h(v{0GaW)Knd`ttY%C|MTwhW^j zp^J`+JAu{>Ni?C%PW&Kh?{GHFb_so9zWR>l9xL?mj=Uj@$conNub83X@1H0k^PSk( zPa%PF){TUCsi@o7s&;JigUzj`XF=p-U~skA!QEC$0QnwWZ5}9A9aM>(67{DEC9__E|5|GeoVK{KzV%Qhd!6SDnT3T&To>uA1W~2k5 zN5UU*+OmM)%Oq_YDnA;@#PdHX*aK-&p)H>O4rr^pRY^`R$oB@Q_dc0)`}6Dm?*4DT zg7xOJNt^Yk4c>eAOea#fKr>SPs|>>QUY|ix??d|hBddtzZVMx#bbLr0rZ7%vj0uWP zL6JCStm$x>14mTE`yybiNQdT=Y)p-`va~cUqc8VxAScx{F;(-_JZUvAwxq&b#(zq@C~b*eU5aD8r=KpCY+~R z@x`Py_4V_*lY}yT59Xn+vp=pCB(su+=-HZ;t%}~}fZNn|y>{e>BWu{*D-o9_L9# z4yq|A1QUx&9B%~X=jEyMm^5jT(2G~3h=59YX2a)O@F@J+FOwFP8|G4LpfEf1`*%@3 z>z`6-D?I;k;1Pwc@i-|azouA^tlQk&jFDMpN<$EddH*dvg$)-dszoKs1Nqv>)12z+ z2L<8on2AQ&S7d=2u;-w0EDgMNNWTPAh82+*m45=790GU)cKmRF5?cMR|9w>wV6`|V z&`{`H)v6AtD=Tp$#0EvJPUs>2vDhON!{l(}{Ny-@LK5(Jhpi#Tj#1YcpZ>5zw{tT< z5LhB!s^d}h$$_l5lo6l^u5vl~hAQ7mSpC`CilT%duvEO%qfwu_F2dUxJ`bmF!AJ8+ z`+kJ!`m$6&Bz>_6`S`~g-(C>;yf@_;in2CsMkA98L=jiGAd%RLWIzV1)U4#!jB%hd zu@SC#Km}vTfNFuv3QUWt_I@foB+?7x76URUEAZ<;m~8S;Jv&%DqUw(}MyHVb7Z5g@ zxAsR2dPpD$EF~_b{c=Lg$!RaQB7*Bux^Fd++4yxOy$0@!5dlBQW*J(ro!GpN>d`D1oLdL`@IZ z(wzy)Md12@I4e&E>5UW=_%)KS`AHT_)#CYIz$(Ys+@%cD%+-sNhGyPZjXOx>a&y1H zw~{x6q&Z^kL#P8fLO&41(Dpu`jf)iH0uo1 zcVx_jtmgD`m}PY-J~iZBB8IRqeS!}UjFUl|Jqd-vet2ys+yRqyhubFJ@t0z$2UqV2pcw)4QL=T_{cHBLj5N+7h9&qM3F`}>mBeZNkX0Q z(kif%-(t6VY7h3rvi!)>9DkHIEOp^=FJ~vde?Qj52qG%xJi=d>e7N@%CmbX`%Y=s2 zc{d66*%l-}1l1}q#~3zDSSi(w|Gw(&@U*SX0#c5`{8ojxebpu+oM{`#WU{aXeWWI) zZg!i&^RRA6dPNYZC0^3#pm~$x>R0dE`>`<)f=WN}*`*so&E^cAPha>bq3>#^ zy4zP8Uga)y!1H&)R&Nj?e%_Ujv?FrfL~Cve`TR9Z_dFv*kLsS`NTwpTvI7L0Lgj2l54w$*_)8!`6k1misw> z&R4)7{@AbO0Y0$LJ$c&|#kqZkJ zLn9;cuI|>hwgYfmTiYRw*0;#8day_0tgz|y&=xEHQrHU!KsuTPJ8c{a5YU)vJ1||E;{vSf2I`ZRR2;uir2QB6ka` z8=%gc9Rh*qb98Qi;y{+k&O%qBrhPNe5L;C3%QD+Da?8s#zLT-=%c7U!dqyF6E9dpM53o8VY z0A9BnuTc;FpvUNWf%fM0>dP? zBAv``8NaSI)fN64FmW7}N0+d*Ne~SHa{1{I9=1$Bl+`x|^g(t(mmq~eqSUSLK3eBm zKqq%4_}enD{~&!RD8)04iTa(whK9I|f6G@rKHF@k&(F@5*VfU&2)WC&g;kl{5e$ZY zw}qfyA4S*vgezD=Cvz1G=V_yP|y_YQL~W1`a9YK3dO6WBX%!hUIAgdpx<5bQ3Q6e}8Fys={fA^pe* zH}BZuRO?$J$nAE_Y0tWPF*zxb8kYZ0V5sODBRPn_H*N&C74{Qb%z?s)r$)3ofT;cC zAIKIqhXfK-$^ETGGp848T1*dXN}KQ@kq(%%s*zzfI4Aks%+lY&A$dn9Zip!t23nLtE>ph{B1=>Uf#b>)!&wS#>KD}I zZeW!{0c_)VQUtvnmyv;cfx-iXj>XmlHgOF2WzkjxHVdB&Go@ER4BOt-MXe1Qb zeU(eN1~UUSQ|t^B6I!w`nqHKTF+n_to7wqAp9WDDgC%0a($N~Pe@-y~2P<47YCD=Q zOrTJB6!GR+((DBYn;zD(W&m(ZP3C|f&H!$v=t#()7@~$1*=4;2-qOm?gtsPa2enT` zoc0fd99u5GODYxI8x;J^CVifO7Dn19-?-Lh_iY9Sk-U#xV20~1myNa&*93lJ6lN;(19E88nnP<>%AxSA-54`z38X0Og7+Qcq2(bq7KZrOz^Y&Z| z;b}kBy-0VYim@hEo_<&D6y8@B%66miqo`Q5>tAZjM;h3VAPMN&tGhuTENfjzi1l0M z-5)*`1GfU&ut$#&$ap}7;zNshP02T6?o_*9uHQZBFbYx3(ICIhS5pxN)7|D813KTg z#+OB37hAZ*WuD>vJKWb)Fi^D2OXx+H!|Yv$SMcjC9Bi}Vw%CxzS&0|chddcMMFdo}L zNo86nS0_GYBUc|l7=wK>VCpOcD137^xPzN1Nv+7P#0N!VMl~+JT=+(IUvf%BfK=R# zDgpNa<)Yr=0^9$;Ci<$JN@-2?>jFzVz%bd928$S%KO zy4)bK*vuyY%@{d72r-7=foZge_F#l?0 zkoaYlzaNRYfkt<*<8K3n!Nn2I3lLmgt|J{>O}U$H#^5PM5I;Jc46<#YN(P=`jR7J_ zg>_Uk_eW}Fy`T}N5m(>id?6b){fho)K^POTb>P=w4v0S%40IBV(WHioZ=!pMT=o~I zoXWR9=cn8T0fs5IEp4~n>TWqV(kDR$u8tnRjI&g}r|RSGg8<9dVu-VNZ8H_<`+eA{ zQ@~pISNuAGOy{Ke3y`l86TnTG$9^2k02xuWWVM$gf{;6)9PCJ3RZu6y&v579*FTN4 z1_4S8o_&N|8TnC53=oJY=HQkQ{5U*7csEEuC)-|S1%dQqGU<5pdn2`oj#{9`58lga z)ZkwMGg8E2Cr!c%3{Vm-j`~&;**W1qdl~f5Kqro^AJ2RRw+XCWcx$`OOL?9JQPRR{ z>~BCIN*F6c32w1RFv)a;{0;CVN9}tgE9DeAd%*Fbl#3T2kyw`eg`;RvZ@O$i=lfz! ztUJut+-&Q+NkZg;2SKD@pwg_v?_KfB6r?ngBp*a^6tIi`cn`mVy*pvXI$c%X-uWN`LKcrG_SfLcV zvZ{_rIvj6^*z)N2fE!D^Sc_c6;0D!W;QyjWxB$Or6GW-bCydMmx3-Yj{D{ggggt`r=#QgQNqR7kPzeN#1zQ9Nmf~ZH{udtHd_zTAc@fJoo@cUo`%$M9%^K^BCmg=D%bA04k8Zmy z>F!p*N`S;KM`E(U!#TRSYa87&)Z}v%UEQH$O=T_Q{nyc{pyFPt9~T0uJ9+P5q@jfT zf3_CX+YVs=&6`UTwYQCL2_aO(Tr(t<~-FK-k?7OESxWQ*lDjez_6Q)P}zpuXrZOjZzP8O4VKLQ?TM~(VryqNNTAud;EhwZq$KDHT?; z*O#eqn8b0XWWtUcFnEgS!*)0J>;?~fJ<5Gk`4A?4V#5`~~ybk;o zp&Gra>s(jj4nYL4`_#)gF)#0~z=H=lJTDwKrlfqfHexw+3(=jxA`I>PN2&^xAXy)<?b;g>LAY- z_dU+V9BJ1%{?R;6bL8qk3^YKmIsgKTnw70vO%<(&wyeAhw5Z`FlCDrIc zcS1+RJNFZII?fKes@jg}I=!aX6Gi2lEKl&8A}3`Id{`tDNDazxR0ILyadOOhUv@Uj zL^Hr3=CK;zuDHMr(yvF;ybdG`epD3|6-*NG%~s6To_>{`i5$PLJLUaT^1h+N50nr( zc|LpV6^$^oX`asP|BmZ=;8V<1?MG^S>C&abF|n<0Ts_lgE%ol38K-m|XdwdRYU(3- z?m1|v-<(y^q{Km}os|{aLG4Ak1EPE6g!=HdO4|{Q(}3NSZxR|+gFR;AwR=5GtMep5 z<(54x4j)=yZZAA3ST%UD`dqNtL}^K^0bC#3Z8uJD3{J80B>~qR79|#rt2=gyP8bz9 zPCl7~dE8E<=e~1AYtrt3qr>m$TQJFoHnr#+CY7@j4SuFP?%gM4D4p3##pxJvq{-LQ zv3bFRg<~MY9Qye)?6mo3`vS`8h!w<_8grFM5_5iP?cd(pPquuiqCR|G@Kdha7mtq{ zllY+gMA7f0x~T1lwS{M~63OFspfqO3V}??C_v%d0!*2nN-fdr+gr4=7HF4(nu~6Z~ zWB@Hl@|OF-3DZD4uMbPhDke~;OC&)qWgh#+wj*L%fjlB(tiuF7d6Kn9*SStk<#CVR zgl#?DL~xpU(I@gZ)VK@wzC>T}G7nzaH6D$x^IdUwB+gd1M$#iA%xT|yJAaCZbuc(s znP?D;2Qx&t=A?*uSxij!^`#TjJWTVOMnskzw>G*gMGtXlq5uw?8|^z;x&vq4`S6_0%v*eEg^Ss!V>h39CV2Hr)I`%(R zPfGj#?i_mEc%(Eh7UN2{ZEinJRHsQ*_fP<-(-90k;4o;4 zOh7m`oZWAuG%j16eQXly{k(IeO(H2V{8)hV&esMXp{*f_h(e+$bc_JQmPhe7rKUqx zzcwTfNrJ73&6iD^Cch<4bUaKb2zvKAZ$FEz_|K!`hA6^=CV_QiW$d0hVn5>|zy8ZR zsqy_@Y|SDK>MhE{TVgvOMkL+uUf+t(KA!3M4y%rYyLVW)J6FCrvJz7{d_c8c(1WBzFku?6}~h|KJXNd?y%$!kid?v&n#d!G14K;s)uC z_&vDRZLsvMFujE?bxVU%FAzJR<>CsSW|hbdzxi0N)gPsPp}cni_4o)KwM6DYx6U(} zhF`y>lzpA@kHvrlPYvP-ZG!yps0kcJCFLr6uT*4dZP?$Bexn|9JPrvK8^2k6kQJsQ z#|b}KM^3Le+7nMI)B#FBZV1Cgc2(` zZBOVt0m4WTxtX_T)|$Q)GU0>1hSCcmW%`?{DfGlCPqk;ZWET9K=b`V9qxTnh%<*e$ zvsB+KnX5MZ^m_ahX5(ec&9!Ur`SN4>E+K;i=_q>cGq;BkJ4TeR9-n0;D?df(2p@$0 zvP-lrKKU@hu_DHF9g!f|52b32YvyifcQ?$M57xZ!-us%_r&id5Xp-WS?d*4EX3~et zzdtQ?m6XgMu^O_^LmQ4W;vFsQ^OTuLJq@~Sd1U&wbd$*it$B2-uA$f)0R}bI?5P^p z@8mQ!iO)A~`4V(A^B!}z$Tyjof0_oF;o;HkR4G(XWyIEzwsdt^=`kp|dVZIqTQ{jN z{JEa4(7m!L|KXT$RV-#?c1ZXNj}z>zH|MU}T71(Z`o_IU9qXk)Z!t5JjxS4BQGY^{ zMZv3$8OCo0TMG$ul5{2Sy}2FUp1n|_&1O2<&-&_45ZW<%ErFO4nU!T6`jRcVxks9? z^6Dr77uyF1g9IJ0-5qQW^yFCrPz%6k&+*V*VJ}08~bVYX5)B*z52G&v?BTTgt=zg-LF zuDmbOy7J+e!-t=qv6*#lH%H_%_rQpq!2kK{9sl1y_wipph&?0WKr$sIe$i3}zgGfz NB&Q- Date: Tue, 25 Apr 2023 22:45:49 -0400 Subject: [PATCH 038/130] docs: reorder pyproject.toml --- pyproject.toml | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/pyproject.toml b/pyproject.toml index 0bd26ed69..deb5977c8 100644 --- a/pyproject.toml +++ b/pyproject.toml @@ -1,6 +1,5 @@ [project] name = "autora" -dynamic = ["version"] description = "Autonomous Research Assistant (AutoRA) is a framework for automating steps of the empirical research process." authors = [ {name = "Sebastian Musslick", email="sebastian_musslick@brown.edu"}, @@ -9,6 +8,7 @@ authors = [ readme = "README.md" requires-python = ">=3.8,<3.11" license = { file = "LICENSE.md" } +dynamic = ["version"] [project.optional-dependencies] core = [ From 92a4a3e04ee31702c5a838262dfb6c6334d8684c Mon Sep 17 00:00:00 2001 From: John Gerrard Holland Date: Tue, 25 Apr 2023 22:49:02 -0400 Subject: [PATCH 039/130] chore: reformat pyproject.toml --- .editorconfig | 2 +- pyproject.toml | 45 ++++++++++++++++++++------------------------- 2 files changed, 21 insertions(+), 26 deletions(-) diff --git a/.editorconfig b/.editorconfig index f499c879e..675923a2d 100644 --- a/.editorconfig +++ b/.editorconfig @@ -13,7 +13,7 @@ tab_width = 4 profile = black max_line_length = 100 -[{*.yml,*.yaml}] +[{*.yml,*.yaml,*.toml}] indent_size = 2 tab_width = 2 diff --git a/pyproject.toml b/pyproject.toml index deb5977c8..4d7fb4117 100644 --- a/pyproject.toml +++ b/pyproject.toml @@ -1,9 +1,8 @@ [project] name = "autora" description = "Autonomous Research Assistant (AutoRA) is a framework for automating steps of the empirical research process." -authors = [ - {name = "Sebastian Musslick", email="sebastian_musslick@brown.edu"}, - {name = "John Gerrard Holland", email="john_holland1@brown.edu"}, +authors = [{ name = "Sebastian Musslick", email = "sebastian_musslick@brown.edu" }, + { name = "John Gerrard Holland", email = "john_holland1@brown.edu" }, ] readme = "README.md" requires-python = ">=3.8,<3.11" @@ -11,30 +10,26 @@ license = { file = "LICENSE.md" } dynamic = ["version"] [project.optional-dependencies] -core = [ - "autora-core" -] -theorists = [ - "autora-darts", -] +core = ["autora-core"] +theorists = ["autora-darts"] dev = [ - "build", - "twine", - "autora[docs]", - "autora[core-dev]", - ] -docs = [ # TODO: move these to autora-core[docs] dependencies - "mkdocs-material>=8.5.10,<10.0.0", - "mkdocs-gen-files>=0.3.4,<0.5.0", - "mkdocs-literate-nav>=0.4.1,<0.7.0", - "mkdocs-section-index>=0.3.4", - "mkdocstrings-python>=0.7.1,<0.10.0", - "mkdocs-jupyter>=0.24.1", - "mkdocs-multirepo-plugin>=0.6.1", + "build", + "twine", + "autora[docs]", + "autora[core-dev]", +] +docs = [# TODO: move these to autora-core[docs] dependencies + "mkdocs-material>=8.5.10,<10.0.0", + "mkdocs-gen-files>=0.3.4,<0.5.0", + "mkdocs-literate-nav>=0.4.1,<0.7.0", + "mkdocs-section-index>=0.3.4", + "mkdocstrings-python>=0.7.1,<0.10.0", + "mkdocs-jupyter>=0.24.1", + "mkdocs-multirepo-plugin>=0.6.1", ] -core-dev = [ # TODO: move these to autora-core[dev] dependencies - "autora[dev]", - "pre-commit", +core-dev = [# TODO: move these to autora-core[dev] dependencies + "autora[dev]", + "pre-commit", ] [project.urls] From 646abb27e7872b45c2a6ed4255e51f2a7c5c4371 Mon Sep 17 00:00:00 2001 From: John Gerrard Holland Date: Thu, 27 Apr 2023 16:50:56 -0400 Subject: [PATCH 040/130] deps: update project dependencies --- pyproject.toml | 46 +++++++++++++++++++++++++++------------------- 1 file changed, 27 insertions(+), 19 deletions(-) diff --git a/pyproject.toml b/pyproject.toml index 4d7fb4117..2de4b23a3 100644 --- a/pyproject.toml +++ b/pyproject.toml @@ -1,36 +1,44 @@ [project] name = "autora" description = "Autonomous Research Assistant (AutoRA) is a framework for automating steps of the empirical research process." -authors = [{ name = "Sebastian Musslick", email = "sebastian_musslick@brown.edu" }, +authors = [ + { name = "Sebastian Musslick", email = "sebastian_musslick@brown.edu" }, { name = "John Gerrard Holland", email = "john_holland1@brown.edu" }, ] readme = "README.md" -requires-python = ">=3.8,<3.11" license = { file = "LICENSE.md" } dynamic = ["version"] +dependencies = [ + "autora-core" +] + [project.optional-dependencies] -core = ["autora-core"] -theorists = ["autora-darts"] dev = [ - "build", - "twine", - "autora[docs]", - "autora[core-dev]", + "autora-core[dev]", ] -docs = [# TODO: move these to autora-core[docs] dependencies - "mkdocs-material>=8.5.10,<10.0.0", - "mkdocs-gen-files>=0.3.4,<0.5.0", - "mkdocs-literate-nav>=0.4.1,<0.7.0", - "mkdocs-section-index>=0.3.4", - "mkdocstrings-python>=0.7.1,<0.10.0", - "mkdocs-jupyter>=0.24.1", - "mkdocs-multirepo-plugin>=0.6.1", + +all = [ + "autora[core]", + "autora[all-theorists]", + "autora[all-experimentalists]", + "autora[all-experiment-runners]", + "autora[synthetic-experiments]", ] -core-dev = [# TODO: move these to autora-core[dev] dependencies - "autora[dev]", - "pre-commit", + +core = ["autora-core"] + +all-theorists = [ + "autora-theorist-darts", + "autora-theorist-bms", + "autora-theorist-bsr", ] +theorist-darts = ["autora-theorist-darts"] + +all-experimentalists = [] +all-experiment-runners = [] +synthetic-experiments = [] + [project.urls] homepage = "https://www.empiricalresearch.ai/" From 4a41bf3834625889b007a788bf101b25268ee55f Mon Sep 17 00:00:00 2001 From: John Gerrard Holland Date: Thu, 27 Apr 2023 17:05:32 -0400 Subject: [PATCH 041/130] docs: move all docs config into docs directory --- .idea/autora.iml | 2 + .idea/modules.xml | 2 + .idea/vcs.xml | 3 +- mkdocs.yml | 22 ++-------- mkdocs/base.yml | 42 +++++++++++++++++++ .../{_gen_ref_pages.py => gen_ref_pages.py} | 6 +-- 6 files changed, 55 insertions(+), 22 deletions(-) create mode 100644 mkdocs/base.yml rename mkdocs/{_gen_ref_pages.py => gen_ref_pages.py} (83%) diff --git a/.idea/autora.iml b/.idea/autora.iml index 01e4256c7..b1eb03f20 100644 --- a/.idea/autora.iml +++ b/.idea/autora.iml @@ -13,6 +13,8 @@ + +