diff --git a/.editorconfig b/.editorconfig
index f499c879e..675923a2d 100644
--- a/.editorconfig
+++ b/.editorconfig
@@ -13,7 +13,7 @@ tab_width = 4
profile = black
max_line_length = 100
-[{*.yml,*.yaml}]
+[{*.yml,*.yaml,*.toml}]
indent_size = 2
tab_width = 2
diff --git a/.github/dependabot.yml b/.github/dependabot.yml
deleted file mode 100644
index 7c53f3204..000000000
--- a/.github/dependabot.yml
+++ /dev/null
@@ -1,12 +0,0 @@
-# Please see the documentation for all configuration options:
-# https://docs.github.com/github/administering-a-repository/configuration-options-for-dependency-updates
-
-version: 2
-updates:
- - package-ecosystem: "pip"
- directory: "/" # Location of package manifests
- schedule:
- interval: "weekly"
- # Add reviewers
- reviewers:
- - "benwandrew"
diff --git a/.github/workflows/publish-documentation-gh-pages.yml b/.github/workflows/publish-documentation-gh-pages.yml
index e2c0af17b..b80761da1 100644
--- a/.github/workflows/publish-documentation-gh-pages.yml
+++ b/.github/workflows/publish-documentation-gh-pages.yml
@@ -3,26 +3,21 @@ name: Publish Documentation to GitHub Pages
on:
workflow_dispatch: # this allows us to run it manually
release:
- types: [ released ] # only deploy when we make a new `latest` release
+ types: [released] # only deploy when we make a new `latest` release
permissions:
contents: write
jobs:
-
- build-publish:
+ publish:
runs-on: ubuntu-latest
steps:
- uses: actions/checkout@v3
-
- - run: pipx install poetry
-
- - uses: actions/setup-python@v4
+ - name: Set up Python
+ uses: actions/setup-python@v4
with:
- python-version: 3.8
- cache: 'poetry'
-
+ python-version: '3.x'
+ cache: 'pip'
- name: Install dependencies
- run: poetry install
-
- - run: poetry run mkdocs gh-deploy --force
+ run: pip install -U ".[docs]"
+ - run: mkdocs gh-deploy --force
diff --git a/.github/workflows/publish-package-anaconda-org.yml b/.github/workflows/publish-package-anaconda-org.yml
deleted file mode 100644
index 6ce42c3f6..000000000
--- a/.github/workflows/publish-package-anaconda-org.yml
+++ /dev/null
@@ -1,45 +0,0 @@
-name: Publish package to Anaconda.org
-
-on:
- release:
- types: [ published ]
-
-jobs:
- build-conda:
- runs-on: ubuntu-20.04
- # ubuntu-20.04 selected over ubuntu-latest because
- # upload part of conda build command is broken in ubuntu-latest
- # JGH: I think that the function conda_build.external.find_executable
- # ... might be returning a list of executables for the "anaconda"
- # ... rather than the expected single value.
- # When updating to ubuntu 22.04: check that upload functions correctly.
- # If it does, you're fine to update and get rid of this comment.
-
- steps:
- - uses: actions/checkout@v3
-
- - name: Replace version number in meta.yaml with release number
- run: |
- REF_NAME_WITHOUT_V=${GITHUB_REF_NAME#v}
- sed -i.bak "s/^{% set version =.*$/{% set version = \"${REF_NAME_WITHOUT_V}\" %}/" conda/autora/meta.yaml
-
- - name: Set up Python
- uses: actions/setup-python@v4
- with:
- python-version: '3.9'
-
- - name: Add conda to system path
- run: |
- # $CONDA is an environment variable pointing to the root of the miniconda directory
- echo $CONDA/bin >> $GITHUB_PATH
-
- - name: Install dependencies
- run: |
- conda install conda-build conda-verify anaconda-client
-
- - name: Build
- run: |
- cd ./conda
- conda config --set anaconda_upload yes
- conda build autora -c pytorch --token "${{ secrets.ANACONDA_TOKEN }}"
-
diff --git a/.github/workflows/publish-package-pypi.yml b/.github/workflows/publish-package-pypi.yml
index 992e80d7d..c550e77c0 100644
--- a/.github/workflows/publish-package-pypi.yml
+++ b/.github/workflows/publish-package-pypi.yml
@@ -1,34 +1,38 @@
+# This workflow will upload a Python Package using Twine when a release is created
+# For more information see: https://docs.github.com/en/actions/automating-builds-and-tests/building-and-testing-python#publishing-to-package-registries
+
+# This workflow uses actions that are not certified by GitHub.
+# They are provided by a third-party and are governed by
+# separate terms of service, privacy policy, and support
+# documentation.
+
name: Publish to PyPI
on:
release:
- types: [ published ]
+ types: [published]
+
+permissions:
+ contents: read
jobs:
-
- build-publish:
+ deploy:
runs-on: ubuntu-latest
steps:
- - uses: actions/checkout@v3
-
- - run: pipx install poetry
-
- - uses: actions/setup-python@v4
- with:
- python-version: 3.8
- cache: 'poetry'
-
- - name: Install dependencies
- run: poetry install
-
- - name: Bump version number
- run: poetry version ${{ github.event.release.tag_name }}
-
- - name: Build package
- run: poetry build
-
- - name: Setup PyPI Repository
- run: poetry config pypi-token.pypi ${{ secrets.PYPI_TOKEN }}
-
- - name: Publish
- run: poetry publish
+ - uses: actions/checkout@v3
+ - name: Set up Python
+ uses: actions/setup-python@v4
+ with:
+ python-version: '3.x'
+ cache: 'pip'
+ - name: Install dependencies
+ run: |
+ python -m pip install --upgrade pip
+ pip install build
+ - name: Build package
+ run: python -m build
+ - name: Publish package
+ uses: pypa/gh-action-pypi-publish@27b31702a0e7fc50959f5ad993c78deac1bdfc29
+ with:
+ user: __token__
+ password: ${{ secrets.PYPI_API_TOKEN }}
diff --git a/.github/workflows/test-conda-build.yml b/.github/workflows/test-conda-build.yml
deleted file mode 100644
index d38313784..000000000
--- a/.github/workflows/test-conda-build.yml
+++ /dev/null
@@ -1,25 +0,0 @@
-name: Test Conda Build
-
-on:
- pull_request:
- merge_group:
-
-jobs:
- build-conda:
- runs-on: ubuntu-latest
-
- steps:
- - uses: actions/checkout@v3
-
- - name: Add conda to system path
- run: |
- # $CONDA is an environment variable pointing to the root of the miniconda directory
- echo $CONDA/bin >> $GITHUB_PATH
-
- - name: Install dependencies
- run: conda install conda-build
-
- - name: Build conda package
- run: |
- cd conda
- conda build autora -c pytorch
diff --git a/.github/workflows/test-poetry-build.yml b/.github/workflows/test-poetry-build.yml
deleted file mode 100644
index a401cb74f..000000000
--- a/.github/workflows/test-poetry-build.yml
+++ /dev/null
@@ -1,24 +0,0 @@
-name: Test Poetry Build
-
-on:
- pull_request:
- merge_group:
-
-jobs:
- build-poetry:
- runs-on: ubuntu-latest
- steps:
- - uses: actions/checkout@v3
-
- - run: pipx install poetry
-
- - uses: actions/setup-python@v4
- with:
- python-version: 3.8
- cache: 'poetry'
-
- - name: Install dependencies
- run: poetry install
-
- - name: Build package
- run: poetry build
diff --git a/.github/workflows/test-pre-commit-hooks.yml b/.github/workflows/test-pre-commit-hooks.yml
index 9a9d7eeaf..919ca494a 100644
--- a/.github/workflows/test-pre-commit-hooks.yml
+++ b/.github/workflows/test-pre-commit-hooks.yml
@@ -10,17 +10,16 @@ on:
jobs:
build:
runs-on: ubuntu-latest
-
steps:
- uses: actions/checkout@v3
- - run: pipx install poetry
- - uses: actions/setup-python@v4
+ - name: Set up Python
+ uses: actions/setup-python@v4
with:
- python-version: 3.8
- cache: "poetry"
- - run: poetry install --only pre-commit
+ python-version: '3.8'
+ cache: 'pip'
+ - run: pip install pre-commit
- uses: actions/cache@v3
with:
path: ~/.cache/pre-commit
key: pre-commit-3|${{ env.pythonLocation }}|${{ runner.os }}|${{ hashFiles('.pre-commit-config.yaml') }}
- - run: poetry run pre-commit run --all-files --show-diff-on-failure --color=always
+ - run: pre-commit run --all-files --show-diff-on-failure --color=always
diff --git a/.github/workflows/test-pypi-build.yml b/.github/workflows/test-pypi-build.yml
new file mode 100644
index 000000000..7fc744d37
--- /dev/null
+++ b/.github/workflows/test-pypi-build.yml
@@ -0,0 +1,25 @@
+name: Test PyPI Build
+
+on:
+ pull_request:
+ merge_group:
+
+permissions:
+ contents: read
+
+jobs:
+ build:
+ runs-on: ubuntu-latest
+ steps:
+ - uses: actions/checkout@v3
+ - name: Set up Python
+ uses: actions/setup-python@v4
+ with:
+ python-version: '3.x'
+ cache: 'pip'
+ - name: Install dependencies
+ run: |
+ python -m pip install --upgrade pip
+ pip install build
+ - name: Build package
+ run: python -m build
diff --git a/.github/workflows/test-pytest.yml b/.github/workflows/test-pytest.yml
index 446e4a209..df47f2eb5 100644
--- a/.github/workflows/test-pytest.yml
+++ b/.github/workflows/test-pytest.yml
@@ -12,15 +12,15 @@ jobs:
strategy:
fail-fast: true
matrix:
- python-version: ["3.8", "3.9", "3.10"]
+ python-version: ["3.8", "3.9", "3.10", "3.11"]
os: [ubuntu-latest, macos-latest, windows-latest]
runs-on: ${{ matrix.os }}
steps:
- - uses: actions/checkout@v3
- - run: pipx install poetry
- - uses: actions/setup-python@v4
- with:
- python-version: ${{ matrix.python-version }}
- cache: "poetry"
- - run: poetry install --only main,test
- - run: poetry run pytest
+ - uses: actions/checkout@v3
+ - uses: actions/setup-python@v4
+ with:
+ python-version: ${{ matrix.python-version }}
+ cache: 'pip'
+ - name: Install dependencies
+ run: pip install -U ".[test]"
+ - run: pytest
diff --git a/.idea/autora.iml b/.idea/autora.iml
index e163492a5..01e4256c7 100644
--- a/.idea/autora.iml
+++ b/.idea/autora.iml
@@ -2,14 +2,16 @@
+
+
-
+
@@ -23,4 +25,4 @@
-
+
\ No newline at end of file
diff --git a/.idea/misc.xml b/.idea/misc.xml
index 2f700f2b8..588d16260 100644
--- a/.idea/misc.xml
+++ b/.idea/misc.xml
@@ -1,6 +1,5 @@
-
diff --git a/.idea/other.xml b/.idea/other.xml
deleted file mode 100644
index a708ec781..000000000
--- a/.idea/other.xml
+++ /dev/null
@@ -1,6 +0,0 @@
-
-
-
-
-
-
\ No newline at end of file
diff --git a/.idea/runConfigurations/pytest_in_tests.xml b/.idea/runConfigurations/pytest_in_tests.xml
deleted file mode 100644
index 351b1dff2..000000000
--- a/.idea/runConfigurations/pytest_in_tests.xml
+++ /dev/null
@@ -1,19 +0,0 @@
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
\ No newline at end of file
diff --git a/.idea/vcs.xml b/.idea/vcs.xml
index 94a25f7f4..35eb1ddfb 100644
--- a/.idea/vcs.xml
+++ b/.idea/vcs.xml
@@ -1,6 +1,6 @@
-
+
\ No newline at end of file
diff --git a/Brewfile b/Brewfile
deleted file mode 100644
index 8c840000d..000000000
--- a/Brewfile
+++ /dev/null
@@ -1,7 +0,0 @@
-# Python environment
-brew "pyenv"
-brew "poetry"
-brew "pre-commit"
-
-# External tools
-brew "graphviz"
diff --git a/MAINTAINING.md b/MAINTAINING.md
new file mode 100644
index 000000000..2e6fee33d
--- /dev/null
+++ b/MAINTAINING.md
@@ -0,0 +1,36 @@
+# Maintainer Guide
+
+## Release Process
+
+The release process is automated using GitHub Actions.
+
+- Before you start, ensure that the tokens are up-to-date. If in doubt, try to create and publish a new release
+ candidate version of the package first. The tokens are stored as "organization secrets" enabled for the autora
+ repository, and are called:
+ - PYPI_TOKEN: a token from pypi.org with upload permissions on the AutoResearch/AutoRA project.
+ - ANACONDA_TOKEN: a token from anaconda.org with the following scopes on the AutoResearch organization: `repos conda
+ api:read api:write`. Current token expires on 2023-03-01.
+
+- Update [conda recipe](./conda/autora/meta.yaml):
+ - dependencies, so that it matches [pyproject.toml](pyproject.toml).
+ - imports for testing – all modules should be listed.
+
+- Trigger a new release from GitHub.
+ - Navigate to the repository's code tab at https://github.com/autoresearch/autora,
+ - Click "Releases",
+ - Click "Draft a new release",
+ - In the "Choose a tag" field, type the new semantic release number using the [PEP440 syntax](https://peps.python.
+ org/pep-0440/). The version number should be prefixed with a "v".
+ e.g. "v1.2.3" for a standard release, "v1.2.3a4" for an alpha release, "v1.2.3b5" for a beta release,
+ "v1.2.3rc6" for a release candidate, and then click "Create new tag on publish".
+ - Leave "Release title" empty.
+ - Click on "Generate Release notes". Check that the release notes match with the version number you have chosen –
+ breaking changes require a new major version number, e.g. v2.0.0, new features a minor version number, e.g.
+ v1.3.0 and fixes a bugfix number v1.2.4. If necessary, modify the version number you've chosen to be consistent
+ with the content of the release.
+ - Select whether this is a pre-release or a new "latest" release. It's a "pre-release" if there's an alpha,
+ beta, or release candidate number in the tag name, otherwise it's a new "latest" release.
+ - Click on "Publish release"
+
+- GitHub actions will run to create and publish the PyPI and Anaconda packages, and publish the documentation. Check in
+ GitHub actions whether they run without errors and fix any errors which occur.
diff --git a/README.md b/README.md
index 56715d601..b3d280d09 100644
--- a/README.md
+++ b/README.md
@@ -1,424 +1,31 @@
# Automated Research Assistant
-Automated Research Assistant (AutoRA) is an open source AI-based system for automating each aspect of empirical research in the behavioral sciences, from the construction of a scientific hypothesis to conducting novel experiments. The documentation is here: [https://autoresearch.github.io/autora/](https://autoresearch.github.io/autora/)
-# Getting started
+![PyPI](https://img.shields.io/pypi/v/autora)
+![GitHub Workflow Status](https://img.shields.io/github/actions/workflow/status/autoresearch/autora/test-pytest.yml)
+![PyPI - Downloads](https://img.shields.io/pypi/dm/autora)
-You should be familiar with the command line for your operating system. The topics required are covered in:
-- **macOS**: Joe Kissell. [*Take Control of the Mac Command Line with Terminal, 3rd Edition*](https://bruknow.library.brown.edu/permalink/01BU_INST/528fgv/cdi_safari_books_v2_9781947282513). Take Control Books, 2022. Chapters *Read Me First* through *Bring the Command Line Into The Real World*.
-- **Linux**: William E. Shotts. [*The Linux Command Line: a Complete Introduction. 2nd edition.*](https://bruknow.library.brown.edu/permalink/01BU_INST/9mvq88/alma991043239704906966). No Starch Press, 2019. Parts *I: Learning the Shell* and *II: Configuration and the Environment*.
+[AutoRA](https://pypi.org/project/autora/) (Auto mated R esearch A ssistant) is an open-source framework for
+automating multiple stages of the empirical research process, including model discovery, experimental design, data collection, and documentation for open science.
-To use the AutoRA package you need:
-- `python` and packages as specified in the `pyproject.toml` file,
-- `graphviz` for some visualizations.
+![Autonomous Empirical Research Paradigm](https://github.com/AutoResearch/autora/raw/restructure/autora/docs/img/overview.png)
-To develop the AutoRA package, you also need:
-- `git`, the source control tool,
-- `pre-commit` which is used for handling git pre-commit hooks.
+## Getting Started
-We recommend setting up your development environment using:
-- `pyenv` which is used for installing different versions of `python`,
-- `poetry`, which handles resolving dependencies between `python` modules and ensures that you are using the same package versions as other members of the development team.
+Check out the documentation at
+[https://autoresearch.github.io/autora](https://autoresearch.github.io/autora).
-You should also consider using an IDE. We recommend:
-- PyCharm (academic licenses for PyCharm professional edition are available for free). This is a `python`-specific integrated development environment which comes with extremely powerful tools for changing the structure of `python` code, running tests, etc.
-- Visual Studio Code (free). This is a powerful general text editor with plugins to support `python` development.
+## About
-The following sections describe how to install and configure the recommended setup for developing AutoRA.
+This project is in active development by
+the [Autonomous Empirical Research Group](http://empiricalresearch.ai),
+led by [Sebastian Musslick](https://smusslick.com),
+in collaboration with the [Center for Computation and Visualization at Brown University](https://ccv.brown.edu).
-*Note: For end-users, it may be more appropriate to use an environment manager like `Anaconda` or `Miniconda` instead of `poetry`, but this is not currently supported.*
+The development of this package is supported by Schmidt Science Fellows, in partnership with the Rhodes Trust, as well as the Carney BRAINSTORM program at Brown University.
+## Read More
-## Development Setup on macOS
+- [Package Documentation](https://autoresearch.github.io/autora/)
+- [AutoRA Pip Package](https://pypi.org/project/autora/)
+- [Autonomous Empirical Research Group](http://www.empiricalresearch.ai)
-### Prerequisites
-
-For macOS, we strongly recommend using `homebrew` to manage packages.
-
-Visit [https://brew.sh](https://brew.sh) and run the installation instructions.
-
-### Clone Repository
-
-We recommend using the GitHub CLI to clone the repository. Install it:
-
-```shell
-brew install gh
-```
-
-Clone the repository. Run:
-```shell
-gh repo clone AutoResearch/AutoRA
-```
-
-... and following the prompts to authenticate to GitHub. It should clone the repository to a new directory. This is referred to as the `` in the rest of this readme.
-
-### Install Dependencies
-
-Open the repository directory in the terminal.
-
-Install the dependencies, which are listed in the [`Brewfile`](./Brewfile) by running:
-
-```shell
-brew bundle
-```
-
-### Install `python`
-
-We recommend using `pyenv` to manage `python` versions.
-
-#### Initialize pyenv
-Run the initialization script as follows:
-
-```shell
-pyenv init
-```
-... and follow the instructions to add `pyenv` to the `$PATH` by editing the interactive shell configuration
-file, `.zshrc` or `.bashrc`. If it exists, this file is a hidden file ([dotfile](https://missing.csail.mit.edu/2019/dotfiles/)) in your home directory. You can create or edit this file using a
-text editor or with CLI commands. Add the lines of script from the `pyenv init` response to the `.zshrc` file if they are
-not already present.
-
-#### Restart shell session
-
-After making these changes, restart your shell session by executing:
-
-```shell
-exec "$SHELL"
-```
-
-#### Install `python`
-
-Install a `python` version listed in the [`pyproject.toml`](./pyproject.toml) file. The entry looks like:
-
-```toml
-python = "^3.8”
-```
-
-In this case, you could install version 3.8.13 as follows:
-
-```shell
-pyenv install 3.8.13
-```
-
-### Install Pre-Commit Hooks
-
-If you wish to commit to the repository, you should install the pre-commit hooks with the following command:
-```shell
-pre-commit install
-```
-
-For more information on pre-commit hooks, see [Pre-Commit-Hooks](#pre-commit-hooks)
-
-### Configure your development environment
-
-There are two suggested options for initializing an environment:
-- _(Recommended)_ Using PyCharm,
-- _(Advanced)_ Using `poetry` from the command line.
-
-#### PyCharm configuration
-
-Set up the Virtual environment – an isolated version of `python` and all the packages required to run AutoRA and develop it further – as follows:
-- Open the `` in PyCharm.
-- Navigate to PyCharm > Preferences > Project: AutoRA > Python Interpreter
-- Next to the drop-down list of available interpreters, click the "Add Interpreter" and choose "Add Local Interpreter" to initialize a new interpreter.
-- Select "Poetry environment" in the list on the left. Specify the following:
- - Python executable: select the path to the installed `python` version you wish to use, e.g.
- `~/.pyenv/versions/3.8.13/bin/python3`
- - Select "install packages from pyproject.toml"
- - Poetry executable: select the path to the poetry installation you have, e.g.
- `/opt/homebrew/bin/poetry`
- - Click "OK" and wait while the environment builds.
- - Run the "Python tests in tests/" Run/Debug configuration in the PyCharm interface, and check that there are no errors.
-
-Additional setup steps for PyCharm:
-
-- You can (and should) completely hide the IDE-specific directory for Visual Studio Code in PyCharm by adding `.vscode` to the list of ignored folder names in Preferences > Editor > File Types > Ignored Files and Folders. This only needs to be done once.
-
-#### Command Line `poetry` Setup
-
-If you need more control over the `poetry` environment, then you can set up a new environment from the command line.
-
-*Note: Setting up a `poetry` environment on the command line is the only option for VSCode users.*
-
-From the ``, run the following commands.
-
-Activate the target version of `python` using `pyenv`:
-```shell
-pyenv shell 3.8.13
-```
-
-Set up a new poetry environment with that `python` version:
-```shell
-poetry env use $(pyenv which python)
-```
-
-Update the installation utilities within the new environment:
-```shell
-poetry run python -m pip install --upgrade pip setuptools wheel
-```
-
-Use the `pyproject.toml` file to resolve and then install all the dependencies
-```shell
-poetry install
-```
-
-Once this step has been completed, skip to the section [Activating and using the environment](#activating-and-using-the-environment) to test it.
-
-#### Visual Studio Code Configuration
-
-After installing Visual Studio Code and the other prerequisites, carry out the following steps:
-
-- Open the `` in Visual Studio Code
-- Install the Visual Studio Code plugin recommendations suggested with the project. These include:
- - `python`
- - `python-environment-manager`
-- Run the [Command Line poetry Setup](#command-line-poetry-setup) specified above. This can be done in the built-in terminal if desired (Menu: Terminal > New Terminal).
-- Select the `python` option in the vertical bar on the far left of the window (which appear after installing the plugins). Under the title "PYTHON: ENVIRONMENTS" should be a list of `python` environments. If these do not appear:
- - Refresh the window pane
- - Ensure the python-environment-manager is installed correctly.
- - Ensure the python-environment-manager is activated.
-
-- Locate the correct `poetry` environment. Click the "thumbs up" symbol next to the poetry environment name to "set as active workspace interpreter".
-
-- Check that the `poetry` environment is correctly set-up.
- - Open a new terminal within Visual Studio Code (Menu: Terminal > New Terminal).
- - It should execute something like `source /Users/me/Library/Caches/pypoetry/virtualenvs/autora-2PgcgopX-py3.8/bin/activate` before offering you a prompt.
- - If you execute `which python` it should return the path to your python executable in the `.../autora-2PgcgopX-py3.8/bin` directory.
- - Ensure that there are no errors when you run:
- ```shell
- python -m unittest
- ```
- in the built-in terminal.
-
-### Activating and using the environment
-
-#### Using `poetry` interactively
-
-To run interactive commands, you can activate the poetry virtual environment. From the `` directory, run:
-
-```shell
-poetry shell
-```
-
-This spawns a new shell where you have access to the poetry `python` and all the packages installed using `poetry install`. You should see the prompt change:
-
-```
-% poetry shell
-Spawning shell within /Users/me/Library/Caches/pypoetry/virtualenvs/autora-2PgcgopX-py3.8
-Restored session: Fri Jun 24 12:34:56 EDT 2022
-(autora-2PgcgopX-py3.8) %
-```
-
-If you execute `python` and then `import numpy`, you should be able to see that `numpy` has been imported from the `autora-2PgcgopX-py3.8` environment:
-
-```
-(autora-2PgcgopX-py3.8) % python
-Python 3.8.13 (default, Jun 16 2022, 12:34:56)
-[Clang 13.1.6 (clang-1316.0.21.2.5)] on darwin
-Type "help", "copyright", "credits" or "license" for more information.
->>> import numpy
->>> numpy
-
-```
-
-To deactivate the `poetry` environment, `exit` the session. This should return you to your original prompt, as follows:
-```
-(autora-2PgcgopX-py3.8) % exit
-
-Saving session...
-...saving history...truncating history files...
-...completed.
-%
-```
-
-To run a script, e.g. the `weber.py` script in the [`example/sklearn/darts`](./example/sklearn/darts) directory, execute:
-
-```shell
-poetry run python example/sklearn/darts/weber.py
-```
-
-#### Using `poetry` non-interactively
-
-You can run python programs using poetry without activating the poetry environment, by using `poetry run {command}`. For example, to run the tests, execute:
-
-```shell
-poetry run python -m unittest
-```
-
-It should return something like:
-
-```
-% poetry run python -m unittest
-.
---------------------------------
-Ran 1 test in 0.000s
-
-OK
-```
-
-## Development Setup on Windows
-
-Windows is not yet officially supported. You may be able to follow the same approach as for macOS to set up your development environment, with some modifications, e.g.:
-- Using `chocolatey` in place of `homebrew`,
-- Using the GitHub Desktop application in place of the GitHub CLI.
-
-If you successfully set up AutoRA on Windows, please update this readme.
-
-## Development Practices
-
-### Pre-Commit Hooks
-
-We use [`pre-commit`](https://pre-commit.com) to manage pre-commit hooks.
-
-Pre-commit hooks are programs which run before each git commit, and can read and potentially modify the files which are to be committed.
-
-We use pre-commit hooks to:
-- enforce coding guidelines, including the `python` style-guide [PEP8](https://peps.python.org/pep-0008/) (`black` and `flake8`),
-- to check the order of `import` statements (`isort`),
-- to check the types of `python` objects (`mypy`).
-
-The hooks and their settings are specified in [`.pre-commit-config.yaml`](./.pre-commit-config.yaml).
-
-See the section [Install Pre-commit Hooks](#install-pre-commit-hooks) for installation instructions.
-
-#### Handling Pre-Commit Hook Errors
-
-If your `git commit` fails because of the pre-commit hook, then you should:
-
-1. Run the pre-commit hooks on the files which you have staged, by running the following command in your terminal:
- ```zsh
- $ pre-commit run
- ```
-
-2. Inspect the output. It might look like this:
- ```
- $ pre-commit run
- black....................Passed
- isort....................Passed
- flake8...................Passed
- mypy.....................Failed
- - hook id: mypy
- - exit code: 1
-
- example.py:33: error: Need type annotation for "data" (hint: "data: Dict[, ] = ...")
- Found 1 errors in 1 files (checked 10 source files)
- ```
-3. Fix any errors which are reported.
- **Important: Once you've changed the code, re-stage the files it to Git.
- This might mean un-staging changes and then adding them again.**
-4. If you have trouble:
- - Do a web-search to see if someone else had a similar error in the past.
- - Check that the tests you've written work correctly.
- - Check that there aren't any other obvious errors with the code.
- - If you've done all of that, and you still can't fix the problem, get help from someone else on the team.
-5. Repeat 1-4 until all hooks return "passed", e.g.
- ```
- $ pre-commit run
- black....................Passed
- isort....................Passed
- flake8...................Passed
- mypy.....................Passed
- ```
-
-It's easiest to solve these kinds of problems if you make small commits, often.
-
-# Documentation
-
-## Commenting code
-
-To help users understand code better, and to make the documentation generation automatic, we have some standards for documenting code. The comments, docstrings, and the structure of the code itself are meant to make life easier for the reader.
-- If something important isn't _obvious_ from the code, then it should be _made_ obvious with a comment.
-- Conversely, if something _is_ obvious, then it doesn't need a comment.
-
-These standards are inspired by John Ousterhout. *A Philosophy of Software Design.* Yaknyam Press, 2021. Chapter 12 – 14.
-
-### Every public function, class and method has documentation
-
-We include docstrings for all public functions, classes, and methods. These docstrings are meant to give a concise, high-level overview of **why** the function exists, **what** it is trying to do, and what is **important** about the code. (Details about **how** the code works are often better placed in detailed comments within the code.)
-
-Every function, class or method has a one-line **high-level description** which clarifies its intent.
-
-The **meaning** and **type** of all the input and output parameters should be described.
-
-There should be **examples** of how to use the function, class or method, with expected outputs, formatted as ["doctests"](https://docs.python.org/3/library/doctest.html). These should include normal cases for the function, but also include cases where it behaves unexpectedly or fails.
-
-We follow the [Google Style Python Docstrings](https://sphinxcontrib-napoleon.readthedocs.io/en/latest/example_google.html), as these are supported by the online documentation tool we use (see [Online Documentation](#online-documentation)).
-
-A well documented function looks something like this:
-```python
-def first_order_linear(
- x: Union[float, np.ndarray], c: float, m: float
-) -> Union[float, np.ndarray]:
- """
- Evaluate a first order linear model of the form y = m x + c.
-
- Arguments:
- x: input location(s) on the x-axis
- c: y-intercept of the linear model
- m: gradient of the linear model
-
- Returns:
- y: result y = m x + c, the same shape and type as x
-
- Examples:
- >>> first_order_linear(0. , 1. , 0. )
- 1.0
- >>> first_order_linear(np.array([-1. , 0. , 1. ]), c=1.0, m=2.0)
- array([-1., 1., 3.])
- """
- y = m * x + c
- return y
-```
-
-*Pro-Tip: Write the docstring for your new high-level object before starting on the code. In particular, writing examples of how you expect it should be used can help clarify the right level of abstraction.*
-
-## Online Documentation
-
-Online Documentation is automatically generated using [Material for MkDocs](https://squidfunk.github.io/mkdocs-material/) based on docstrings in files in the `autora/` directory.
-
-### Commands
-
-Build and serve the documentation using the following commands:
-
-* `poetry run mkdocs serve` - Start the live-reloading docs server.
-* `poetry run mkdocs build` - Build the documentation site.
-* `poetry run mkdocs gh-deploy` - Build the documentation and serve at https://AutoResearch.github.io/AutoRA/
-* `poetry run mkdocs -h` - Print help message and exit.
-
-### Documentation layout
-```
-mkdocs.yml # The configuration file for the documentation.
-docs/ # Directory for static pages to be included in the documentation.
- index.md # The documentation homepage.
- ... # Other markdown pages, images and other files.
-autora/ # The directory containing the source code.
-```
-# Release Process
-
-The release process is automated using GitHub Actions.
-
-- Before you start, ensure that the tokens are up-to-date. If in doubt, try to create and publish a new release
- candidate version of the package first. The tokens are stored as "organization secrets" enabled for the autora
- repository, and are called:
- - PYPI_TOKEN: a token from pypi.org with upload permissions on the AutoResearch/AutoRA project.
- - ANACONDA_TOKEN: a token from anaconda.org with the following scopes on the AutoResearch organization: `repos conda
- api:read api:write`. Current token expires on 2023-03-01.
-- Update [conda recipe](./conda/autora/meta.yaml):
- - dependencies, so that it matches [pyproject.toml](pyproject.toml).
- - imports for testing – all modules should be listed.
-- Trigger a new release from GitHub.
- - Navigate to the repository's code tab at https://github.com/autoresearch/autora,
- - Click "Releases",
- - Click "Draft a new release",
- - In the "Choose a tag" field, type the new semantic release number using the [PEP440 syntax](https://peps.python.
- org/pep-0440/). The version number should be prefixed with a "v".
- e.g. "v1.2.3" for a standard release, "v1.2.3a4" for an alpha release, "v1.2.3b5" for a beta release,
- "v1.2.3rc6" for a release candidate, and then click "Create new tag on publish".
- - Leave "Release title" empty.
- - Click on "Generate Release notes". Check that the release notes match with the version number you have chosen –
- breaking changes require a new major version number, e.g. v2.0.0, new features a minor version number, e.g.
- v1.3.0 and fixes a bugfix number v1.2.4. If necessary, modify the version number you've chosen to be consistent
- with the content of the release.
- - Select whether this is a pre-release or a new "latest" release. It's a "pre-release" if there's an alpha,
- beta, or release candidate number in the tag name, otherwise it's a new "latest" release.
- - Click on "Publish release"
-- GitHub actions will run to create and publish the PyPI and Anaconda packages, and publish the documentation. Check in
- GitHub actions whether they run without errors and fix any errors which occur.
diff --git a/autora/__init__.py b/autora/__init__.py
deleted file mode 100644
index 0adc79c15..000000000
--- a/autora/__init__.py
+++ /dev/null
@@ -1,6 +0,0 @@
-import importlib.metadata
-
-try:
- __version__ = importlib.metadata.version("autora")
-except importlib.metadata.PackageNotFoundError:
- __version__ = "source_repository"
diff --git a/autora/cycle/__init__.py b/autora/cycle/__init__.py
deleted file mode 100644
index f7682c7e4..000000000
--- a/autora/cycle/__init__.py
+++ /dev/null
@@ -1,8 +0,0 @@
-from .plot_utils import (
- cycle_default_score,
- cycle_specified_score,
- plot_cycle_score,
- plot_results_panel_2d,
- plot_results_panel_3d,
-)
-from .simple import SimpleCycle as Cycle
diff --git a/autora/cycle/plot_utils.py b/autora/cycle/plot_utils.py
deleted file mode 100644
index 0c6b88a9a..000000000
--- a/autora/cycle/plot_utils.py
+++ /dev/null
@@ -1,616 +0,0 @@
-import inspect
-from itertools import product
-from typing import Callable, List, Optional, Sequence, Tuple, Union
-
-import matplotlib.pyplot as plt
-import numpy as np
-import pandas as pd
-from matplotlib import rcParams
-from matplotlib.patches import Patch
-from matplotlib.ticker import MaxNLocator
-
-from .simple import SimpleCycle as Cycle
-
-# Change default plot styles
-controller_plotting_rc_context = {
- "axes.spines.top": False,
- "axes.spines.right": False,
- "legend.frameon": False,
-}
-
-
-def _get_variable_index(
- cycle: Cycle,
-) -> Tuple[List[Tuple[int, str, str]], List[Tuple[int, str, str]]]:
- """
- Extracts information about independent and dependent variables from the cycle object.
- Returns a list of tuples of (index, name, units). The index is in reference to the column number
- in the observed value arrays.
- Args:
- cycle: AER Cycle object that has been run
-
- Returns: Tuple of 2 lists of tuples
-
- """
- l_iv = [
- (i, s.name, s.units)
- for i, s in enumerate(cycle.data.metadata.independent_variables)
- ]
- n_iv = len(l_iv)
- l_dv = [
- (i + n_iv, s.name, s.units)
- for i, s in enumerate(cycle.data.metadata.dependent_variables)
- ]
- return l_iv, l_dv
-
-
-def _observed_to_df(cycle: Cycle) -> pd.DataFrame:
- """
- Concatenates observation data of cycles into a single dataframe with a field "cycle" with the
- cycle index.
- Args:
- cycle: AER Cycle object that has been run
-
- Returns: Dataframe
-
- """
- l_observations = cycle.data.observations
- l_agg = []
-
- for i, data in enumerate(l_observations):
- l_agg.append(pd.DataFrame(data).assign(cycle=i))
-
- df_return = pd.concat(l_agg)
-
- return df_return
-
-
-def _min_max_observations(cycle: Cycle) -> List[Tuple[float, float]]:
- """
- Returns minimum and maximum of observed values for each independent variable.
- Args:
- cycle: AER Cycle object that has been run
-
- Returns: List of tuples
-
- """
- l_return = []
- iv_index = range(len(cycle.data.metadata.independent_variables))
- l_observations = cycle.data.observations
- # Get min and max of observation data
- # Min and max by cycle - All IVs
- l_mins = [np.min(s, axis=0) for s in l_observations] # Arrays by columns
- l_maxs = [np.max(s, axis=0) for s in l_observations]
- # Min and max for all cycles by IVs
- for idx in iv_index:
- glob_min = np.min([s[idx] for s in l_mins])
- glob_max = np.max([s[idx] for s in l_maxs])
- l_return.append((glob_min, glob_max))
-
- return l_return
-
-
-def _generate_condition_space(cycle: Cycle, steps: int = 50) -> np.array:
- """
- Generates condition space based on the minimum and maximum of all observed data in AER Cycle.
- Args:
- cycle: AER Cycle object that has been run
- steps: Number of steps to define the condition space
-
- Returns: np.array
-
- """
- l_min_max = _min_max_observations(cycle)
- l_space = []
-
- for min_max in l_min_max:
- l_space.append(np.linspace(min_max[0], min_max[1], steps))
-
- if len(l_space) > 1:
- return np.array(list(product(*l_space)))
- else:
- return l_space[0].reshape(-1, 1)
-
-
-def _generate_mesh_grid(cycle: Cycle, steps: int = 50) -> np.ndarray:
- """
- Generates a mesh grid based on the minimum and maximum of all observed data in AER Cycle.
- Args:
- cycle: AER Cycle object that has been run
- steps: Number of steps to define the condition space
-
- Returns: np.ndarray
-
- """
- l_min_max = _min_max_observations(cycle)
- l_space = []
-
- for min_max in l_min_max:
- l_space.append(np.linspace(min_max[0], min_max[1], steps))
-
- return np.meshgrid(*l_space)
-
-
-def _theory_predict(
- cycle: Cycle, conditions: Sequence, predict_proba: bool = False
-) -> list:
- """
- Gets theory predictions over conditions space and saves results of each cycle to a list.
- Args:
- cycle: AER Cycle object that has been run
- conditions: Condition space. Should be an array of grouped conditions.
- predict_proba: Use estimator.predict_proba method instead of estimator.predict.
-
- Returns: list
-
- """
- l_predictions = []
- for i, theory in enumerate(cycle.data.theories):
- if not predict_proba:
- l_predictions.append(theory.predict(conditions))
- else:
- l_predictions.append(theory.predict_proba(conditions))
-
- return l_predictions
-
-
-def _check_replace_default_kw(default: dict, user: dict) -> dict:
- """
- Combines the key/value pairs of two dictionaries, a default and user dictionary. Unique pairs
- are selected and user pairs take precedent over default pairs if matching keywords. Also works
- with nested dictionaries.
-
- Returns: dict
- """
- # Copy dict 1 to return dict
- d_return = default.copy()
- # Loop by keys in dict 2
- for key in user.keys():
- # If not in dict 1 add to the return dict
- if key not in default.keys():
- d_return.update({key: user[key]})
- else:
- # If value is a dict, recurse to check nested dict
- if isinstance(user[key], dict):
- d_return.update(
- {key: _check_replace_default_kw(default[key], user[key])}
- )
- # If not a dict update the default value with the value from dict 2
- else:
- d_return.update({key: user[key]})
-
- return d_return
-
-
-def plot_results_panel_2d(
- cycle: Cycle,
- iv_name: Optional[str] = None,
- dv_name: Optional[str] = None,
- steps: int = 50,
- wrap: int = 4,
- query: Optional[Union[List, slice]] = None,
- subplot_kw: dict = {},
- scatter_previous_kw: dict = {},
- scatter_current_kw: dict = {},
- plot_theory_kw: dict = {},
-) -> plt.figure:
- """
- Generates a multi-panel figure with 2D plots showing results of one AER cycle.
-
- Observed data is plotted as a scatter plot with the current cycle colored differently than
- observed data from previous cycles. The current cycle's theory is plotted as a line over the
- range of the observed data.
-
- Args:
- cycle: AER Cycle object that has been run
- iv_name: Independent variable name. Name should match the name instantiated in the cycle
- object. Default will select the first.
- dv_name: Single dependent variable name. Name should match the names instantiated in the
- cycle object. Default will select the first DV.
- steps: Number of steps to define the condition space to plot the theory.
- wrap: Number of panels to appear in a row. Example: 9 panels with wrap=3 results in a
- 3x3 grid.
- query: Query which cycles to plot with either a List of indexes or a slice. The slice must
- be constructed with the `slice()` function or `np.s_[]` index expression.
- subplot_kw: Dictionary of keywords to pass to matplotlib 'subplot' function
- scatter_previous_kw: Dictionary of keywords to pass to matplotlib 'scatter' function that
- plots the data points from previous cycles.
- scatter_current_kw: Dictionary of keywords to pass to matplotlib 'scatter' function that
- plots the data points from the current cycle.
- plot_theory_kw: Dictionary of keywords to pass to matplotlib 'plot' function that plots the
- theory line.
-
- Returns: matplotlib figure
-
- """
-
- # ---Figure and plot params---
- # Set defaults, check and add user supplied keywords
- # Default keywords
- subplot_kw_defaults = {
- "gridspec_kw": {"bottom": 0.16},
- "sharex": True,
- "sharey": True,
- }
- scatter_previous_defaults = {
- "color": "black",
- "s": 2,
- "alpha": 0.6,
- "label": "Previous Data",
- }
- scatter_current_defaults = {
- "color": "tab:orange",
- "s": 2,
- "alpha": 0.6,
- "label": "New Data",
- }
- line_kw_defaults = {"label": "Theory"}
- # Combine default and user supplied keywords
- d_kw = {}
- for d1, d2, key in zip(
- [
- subplot_kw_defaults,
- scatter_previous_defaults,
- scatter_current_defaults,
- line_kw_defaults,
- ],
- [subplot_kw, scatter_previous_kw, scatter_current_kw, plot_theory_kw],
- ["subplot_kw", "scatter_previous_kw", "scatter_current_kw", "plot_theory_kw"],
- ):
- assert isinstance(d1, dict)
- assert isinstance(d2, dict)
- d_kw[key] = _check_replace_default_kw(d1, d2)
-
- # ---Extract IVs and DV metadata and indexes---
- ivs, dvs = _get_variable_index(cycle)
- if iv_name:
- iv = [s for s in ivs if s[1] == iv_name][0]
- else:
- iv = [ivs[0]][0]
- if dv_name:
- dv = [s for s in dvs if s[1] == dv_name][0]
- else:
- dv = [dvs[0]][0]
- iv_label = f"{iv[1]} {iv[2]}"
- dv_label = f"{dv[1]} {dv[2]}"
-
- # Create a dataframe of observed data from cycle
- df_observed = _observed_to_df(cycle)
-
- # Generate IV space
- condition_space = _generate_condition_space(cycle, steps=steps)
-
- # Get theory predictions over space
- l_predictions = _theory_predict(cycle, condition_space)
-
- # Cycle Indexing
- cycle_idx = list(range(len(cycle.data.theories)))
- if query:
- if isinstance(query, list):
- cycle_idx = [cycle_idx[s] for s in query]
- elif isinstance(query, slice):
- cycle_idx = cycle_idx[query]
-
- # Subplot configurations
- n_cycles_to_plot = len(cycle_idx)
- if n_cycles_to_plot < wrap:
- shape = (1, n_cycles_to_plot)
- else:
- shape = (int(np.ceil(n_cycles_to_plot / wrap)), wrap)
-
- with plt.rc_context(controller_plotting_rc_context):
- fig, axs = plt.subplots(*shape, **d_kw["subplot_kw"])
- # Place axis object in an array if plotting single panel
- if shape == (1, 1):
- axs = np.array([axs])
-
- # Loop by panel
- for i, ax in enumerate(axs.flat):
- if i + 1 <= n_cycles_to_plot:
- # Get index of cycle to plot
- i_cycle = cycle_idx[i]
-
- # ---Plot observed data---
- # Independent variable values
- x_vals = df_observed.loc[:, iv[0]]
- # Dependent values masked by current cycle vs previous data
- dv_previous = np.ma.masked_where(
- df_observed["cycle"] >= i_cycle, df_observed[dv[0]]
- )
- dv_current = np.ma.masked_where(
- df_observed["cycle"] != i_cycle, df_observed[dv[0]]
- )
- # Plotting scatter
- ax.scatter(x_vals, dv_previous, **d_kw["scatter_previous_kw"])
- ax.scatter(x_vals, dv_current, **d_kw["scatter_current_kw"])
-
- # ---Plot Theory---
- conditions = condition_space[:, iv[0]]
- ax.plot(conditions, l_predictions[i_cycle], **d_kw["plot_theory_kw"])
-
- # Label Panels
- ax.text(
- 0.05,
- 1,
- f"Cycle {i_cycle}",
- ha="left",
- va="top",
- transform=ax.transAxes,
- )
-
- else:
- ax.axis("off")
-
- # Super Labels
- fig.supxlabel(iv_label, y=0.07)
- fig.supylabel(dv_label)
-
- # Legend
- fig.legend(
- ["Previous Data", "New Data", "Theory"],
- ncols=3,
- bbox_to_anchor=(0.5, 0),
- loc="lower center",
- )
-
- return fig
-
-
-def plot_results_panel_3d(
- cycle: Cycle,
- iv_names: Optional[List[str]] = None,
- dv_name: Optional[str] = None,
- steps: int = 50,
- wrap: int = 4,
- view: Optional[Tuple[float, float]] = None,
- subplot_kw: dict = {},
- scatter_previous_kw: dict = {},
- scatter_current_kw: dict = {},
- surface_kw: dict = {},
-) -> plt.figure:
- """
- Generates a multi-panel figure with 3D plots showing results of one AER cycle.
-
- Observed data is plotted as a scatter plot with the current cycle colored differently than
- observed data from previous cycles. The current cycle's theory is plotted as a line over the
- range of the observed data.
-
- Args:
-
- cycle: AER Cycle object that has been run
- iv_names: List of up to 2 independent variable names. Names should match the names
- instantiated in the cycle object. Default will select up to the first two.
- dv_name: Single DV name. Name should match the names instantiated in the cycle object.
- Default will select the first DV
- steps: Number of steps to define the condition space to plot the theory.
- wrap: Number of panels to appear in a row. Example: 9 panels with wrap=3 results in a
- 3x3 grid.
- view: Tuple of elevation angle and azimuth to change the viewing angle of the plot.
- subplot_kw: Dictionary of keywords to pass to matplotlib 'subplot' function
- scatter_previous_kw: Dictionary of keywords to pass to matplotlib 'scatter' function that
- plots the data points from previous cycles.
- scatter_current_kw: Dictionary of keywords to pass to matplotlib 'scatter' function that
- plots the data points from the current cycle.
- surface_kw: Dictionary of keywords to pass to matplotlib 'plot_surface' function that plots
- the theory plane.
-
- Returns: matplotlib figure
-
- """
- n_cycles = len(cycle.data.theories)
-
- # ---Figure and plot params---
- # Set defaults, check and add user supplied keywords
- # Default keywords
- subplot_kw_defaults = {
- "subplot_kw": {"projection": "3d"},
- }
- scatter_previous_defaults = {"color": "black", "s": 2, "label": "Previous Data"}
- scatter_current_defaults = {"color": "tab:orange", "s": 2, "label": "New Data"}
- surface_kw_defaults = {"alpha": 0.5, "label": "Theory"}
- # Combine default and user supplied keywords
- d_kw = {}
- for d1, d2, key in zip(
- [
- subplot_kw_defaults,
- scatter_previous_defaults,
- scatter_current_defaults,
- surface_kw_defaults,
- ],
- [subplot_kw, scatter_previous_kw, scatter_current_kw, surface_kw],
- ["subplot_kw", "scatter_previous_kw", "scatter_current_kw", "surface_kw"],
- ):
- assert isinstance(d1, dict)
- assert isinstance(d2, dict)
- d_kw[key] = _check_replace_default_kw(d1, d2)
-
- # ---Extract IVs and DV metadata and indexes---
- ivs, dvs = _get_variable_index(cycle)
- if iv_names:
- iv = [s for s in ivs if s[1] == iv_names]
- else:
- iv = ivs[:2]
- if dv_name:
- dv = [s for s in dvs if s[1] == dv_name][0]
- else:
- dv = [dvs[0]][0]
- iv_labels = [f"{s[1]} {s[2]}" for s in iv]
- dv_label = f"{dv[1]} {dv[2]}"
-
- # Create a dataframe of observed data from cycle
- df_observed = _observed_to_df(cycle)
-
- # Generate IV Mesh Grid
- x1, x2 = _generate_mesh_grid(cycle, steps=steps)
-
- # Get theory predictions over space
- l_predictions = _theory_predict(cycle, np.column_stack((x1.ravel(), x2.ravel())))
-
- # Subplot configurations
- if n_cycles < wrap:
- shape = (1, n_cycles)
- else:
- shape = (int(np.ceil(n_cycles / wrap)), wrap)
- with plt.rc_context(controller_plotting_rc_context):
- fig, axs = plt.subplots(*shape, **d_kw["subplot_kw"])
-
- # Loop by panel
- for i, ax in enumerate(axs.flat):
- if i + 1 <= n_cycles:
-
- # ---Plot observed data---
- # Independent variable values
- l_x = [df_observed.loc[:, s[0]] for s in iv]
- # Dependent values masked by current cycle vs previous data
- dv_previous = np.ma.masked_where(
- df_observed["cycle"] >= i, df_observed[dv[0]]
- )
- dv_current = np.ma.masked_where(
- df_observed["cycle"] != i, df_observed[dv[0]]
- )
- # Plotting scatter
- ax.scatter(*l_x, dv_previous, **d_kw["scatter_previous_kw"])
- ax.scatter(*l_x, dv_current, **d_kw["scatter_current_kw"])
-
- # ---Plot Theory---
- ax.plot_surface(
- x1, x2, l_predictions[i].reshape(x1.shape), **d_kw["surface_kw"]
- )
- # ---Labels---
- # Title
- ax.set_title(f"Cycle {i}")
-
- # Axis
- ax.set_xlabel(iv_labels[0])
- ax.set_ylabel(iv_labels[1])
- ax.set_zlabel(dv_label)
-
- # Viewing angle
- if view:
- ax.view_init(*view)
-
- else:
- ax.axis("off")
-
- # Legend
- handles, labels = axs.flatten()[0].get_legend_handles_labels()
- legend_elements = [
- handles[0],
- handles[1],
- Patch(facecolor=handles[2].get_facecolors()[0]),
- ]
- fig.legend(
- handles=legend_elements,
- labels=labels,
- ncols=3,
- bbox_to_anchor=(0.5, 0),
- loc="lower center",
- )
-
- return fig
-
-
-def cycle_default_score(cycle: Cycle, x_vals: np.ndarray, y_true: np.ndarray):
- """
- Calculates score for each cycle using the estimator's default scorer.
- Args:
- cycle: AER Cycle object that has been run
- x_vals: Test dataset independent values
- y_true: Test dataset dependent values
-
- Returns:
- List of scores by cycle
- """
- l_scores = [s.score(x_vals, y_true) for s in cycle.data.theories]
- return l_scores
-
-
-def cycle_specified_score(
- scorer: Callable, cycle: Cycle, x_vals: np.ndarray, y_true: np.ndarray, **kwargs
-):
- """
- Calculates score for each cycle using specified sklearn scoring function.
- Args:
- scorer: sklearn scoring function
- cycle: AER Cycle object that has been run
- x_vals: Test dataset independent values
- y_true: Test dataset dependent values
- **kwargs: Keyword arguments to send to scoring function
-
- Returns:
-
- """
- # Get predictions
- if "y_pred" in inspect.signature(scorer).parameters.keys():
- l_y_pred = _theory_predict(cycle, x_vals, predict_proba=False)
- elif "y_score" in inspect.signature(scorer).parameters.keys():
- l_y_pred = _theory_predict(cycle, x_vals, predict_proba=True)
-
- # Score each cycle
- l_scores = []
- for y_pred in l_y_pred:
- l_scores.append(scorer(y_true, y_pred, **kwargs))
-
- return l_scores
-
-
-def plot_cycle_score(
- cycle: Cycle,
- X: np.ndarray,
- y_true: np.ndarray,
- scorer: Optional[Callable] = None,
- x_label: str = "Cycle",
- y_label: Optional[str] = None,
- figsize: Tuple[float, float] = rcParams["figure.figsize"],
- ylim: Optional[Tuple[float, float]] = None,
- xlim: Optional[Tuple[float, float]] = None,
- scorer_kw: dict = {},
- plot_kw: dict = {},
-) -> plt.Figure:
- """
- Plots scoring metrics of cycle's theories given test data.
- Args:
- cycle: AER Cycle object that has been run
- X: Test dataset independent values
- y_true: Test dataset dependent values
- scorer: sklearn scoring function (optional)
- x_label: Label for x-axis
- y_label: Label for y-axis
- figsize: Optional figure size tuple in inches
- ylim: Optional limits for the y-axis as a tuple (lower, upper)
- xlim: Optional limits for the x-axis as a tuple (lower, upper)
- scorer_kw: Dictionary of keywords for scoring function if scorer is supplied.
- plot_kw: Dictionary of keywords to pass to matplotlib 'plot' function.
-
- Returns:
- matplotlib.figure.Figure
- """
-
- # Use estimator's default scoring method if specific scorer is not supplied
- if scorer is None:
- l_scores = cycle_default_score(cycle, X, y_true)
- else:
- l_scores = cycle_specified_score(scorer, cycle, X, y_true, **scorer_kw)
-
- with plt.rc_context(controller_plotting_rc_context):
- # Plotting
- fig, ax = plt.subplots(figsize=figsize)
- ax.plot(np.arange(len(cycle.data.theories)), l_scores, **plot_kw)
-
- # Adjusting axis limits
- if ylim:
- ax.set_ylim(*ylim)
- if xlim:
- ax.set_xlim(*xlim)
-
- # Labeling
- ax.set_xlabel(x_label)
- if y_label is None:
- if scorer is not None:
- y_label = scorer.__name__
- else:
- y_label = "Score"
- ax.set_ylabel(y_label)
- ax.xaxis.set_major_locator(MaxNLocator(integer=True))
-
- return fig
diff --git a/autora/cycle/simple.py b/autora/cycle/simple.py
deleted file mode 100644
index fb311b2e8..000000000
--- a/autora/cycle/simple.py
+++ /dev/null
@@ -1,527 +0,0 @@
-import copy
-from collections.abc import Mapping
-from dataclasses import dataclass, replace
-from typing import Callable, Dict, Iterable, List, Optional
-
-import numpy as np
-from sklearn.base import BaseEstimator
-
-from autora.experimentalist.pipeline import Pipeline
-from autora.utils.dictionary import LazyDict
-from autora.variable import VariableCollection
-
-
-@dataclass(frozen=True)
-class SimpleCycleData:
- """An object passed between and updated by processing steps in the SimpleCycle."""
-
- # Static
- metadata: VariableCollection
-
- # Aggregates each cycle from the:
- # ... Experimentalist
- conditions: List[np.ndarray]
- # ... Experiment Runner
- observations: List[np.ndarray]
- # ... Theorist
- theories: List[BaseEstimator]
-
-
-def _get_cycle_properties(data: SimpleCycleData):
- """
- Examples:
- Even with an empty data object, we can initialize the dictionary,
- >>> cycle_properties = _get_cycle_properties(SimpleCycleData(metadata=VariableCollection(),
- ... conditions=[], observations=[], theories=[]))
-
- ... but it will raise an exception if a value isn't yet available when we try to use it
- >>> cycle_properties["%theories[-1]%"] # doctest: +ELLIPSIS
- Traceback (most recent call last):
- ...
- IndexError: list index out of range
-
- Nevertheless, we can iterate through its keys no problem:
- >>> [key for key in cycle_properties.keys()] # doctest: +NORMALIZE_WHITESPACE
- ['%observations.ivs[-1]%', '%observations.dvs[-1]%', '%observations.ivs%',
- '%observations.dvs%', '%theories[-1]%', '%theories%']
-
- """
-
- n_ivs = len(data.metadata.independent_variables)
- n_dvs = len(data.metadata.dependent_variables)
- cycle_property_dict = LazyDict(
- {
- "%observations.ivs[-1]%": lambda: data.observations[-1][:, 0:n_ivs],
- "%observations.dvs[-1]%": lambda: data.observations[-1][:, n_ivs:],
- "%observations.ivs%": lambda: np.row_stack(
- [np.empty([0, n_ivs + n_dvs])] + data.observations
- )[:, 0:n_ivs],
- "%observations.dvs%": lambda: np.row_stack(data.observations)[:, n_ivs:],
- "%theories[-1]%": lambda: data.theories[-1],
- "%theories%": lambda: data.theories,
- }
- )
- return cycle_property_dict
-
-
-class SimpleCycle:
- """
- Runs an experimentalist, theorist and experiment runner in a loop.
-
- Once initialized, the `cycle` can be started using the `cycle.run` method
- or by calling `next(cycle)`.
-
- The `.data` attribute is updated with the results.
-
- Attributes:
- data (dataclass): an object which is updated during the cycle and has the following
- properties:
-
- - `metadata`
- - `conditions`: a list of np.ndarrays representing all of the IVs proposed by the
- experimentalist
- - `observations`: a list of np.ndarrays representing all of the IVs and DVs returned by
- the experiment runner
- - `theories`: a list of all the fitted theories (scikit-learn compatible estimators)
-
- params (dict): a nested dictionary with parameters for the cycle parts.
-
- `{
- "experimentalist": {},
- "theorist": {},
- "experiment_runner": {}
- }`
-
-
- Examples:
-
- ### Basic Usage
-
- Aim: Use the SimpleCycle to recover a simple ground truth theory from noisy data.
-
- >>> def ground_truth(x):
- ... return x + 1
-
- The space of allowed x values is the integers between 0 and 10 inclusive,
- and we record the allowed output values as well.
- >>> from autora.variable import VariableCollection, Variable
- >>> metadata_0 = VariableCollection(
- ... independent_variables=[Variable(name="x1", allowed_values=range(11))],
- ... dependent_variables=[Variable(name="y", value_range=(-20, 20))],
- ... )
-
- The experimentalist is used to propose experiments.
- Since the space of values is so restricted, we can just sample them all each time.
- >>> from autora.experimentalist.pipeline import make_pipeline
- >>> example_experimentalist = make_pipeline(
- ... [metadata_0.independent_variables[0].allowed_values])
-
- When we run a synthetic experiment, we get a reproducible noisy result:
- >>> import numpy as np
- >>> def get_example_synthetic_experiment_runner():
- ... rng = np.random.default_rng(seed=180)
- ... def runner(x):
- ... return ground_truth(x) + rng.normal(0, 0.1, x.shape)
- ... return runner
- >>> example_synthetic_experiment_runner = get_example_synthetic_experiment_runner()
- >>> example_synthetic_experiment_runner(np.ndarray([1]))
- array([2.04339546])
-
- The theorist "tries" to work out the best theory.
- We use a trivial scikit-learn regressor.
- >>> from sklearn.linear_model import LinearRegression
- >>> example_theorist = LinearRegression()
-
- We initialize the SimpleCycle with the metadata describing the domain of the theory,
- the theorist, experimentalist and experiment runner,
- as well as a monitor which will let us know which cycle we're currently on.
- >>> cycle = SimpleCycle(
- ... metadata=metadata_0,
- ... theorist=example_theorist,
- ... experimentalist=example_experimentalist,
- ... experiment_runner=example_synthetic_experiment_runner,
- ... monitor=lambda data: print(f"Generated {len(data.theories)} theories"),
- ... )
- >>> cycle # doctest: +ELLIPSIS
-
-
- We can run the cycle by calling the run method:
- >>> cycle.run(num_cycles=3) # doctest: +ELLIPSIS
- Generated 1 theories
- Generated 2 theories
- Generated 3 theories
-
-
- We can now interrogate the results. The first set of conditions which went into the
- experiment runner were:
- >>> cycle.data.conditions[0]
- array([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10])
-
- The observations include the conditions and the results:
- >>> cycle.data.observations[0]
- array([[ 0. , 0.92675345],
- [ 1. , 1.89519928],
- [ 2. , 3.08746571],
- [ 3. , 3.93023943],
- [ 4. , 4.95429102],
- [ 5. , 6.04763988],
- [ 6. , 7.20770574],
- [ 7. , 7.85681519],
- [ 8. , 9.05735823],
- [ 9. , 10.18713406],
- [10. , 10.88517906]])
-
- In the third cycle (index = 2) the first and last values are different again:
- >>> cycle.data.observations[2][[0,-1]]
- array([[ 0. , 1.08559827],
- [10. , 11.08179553]])
-
- The best fit theory after the first cycle is:
- >>> cycle.data.theories[0]
- LinearRegression()
-
- >>> def report_linear_fit(m: LinearRegression, precision=4):
- ... s = f"y = {np.round(m.coef_[0].item(), precision)} x " \\
- ... f"+ {np.round(m.intercept_.item(), 4)}"
- ... return s
- >>> report_linear_fit(cycle.data.theories[0])
- 'y = 1.0089 x + 0.9589'
-
- The best fit theory after all the cycles, including all the data, is:
- >>> report_linear_fit(cycle.data.theories[-1])
- 'y = 0.9989 x + 1.0292'
-
- This is close to the ground truth theory of x -> (x + 1)
-
- We can also run the cycle with more control over the execution flow:
- >>> next(cycle) # doctest: +ELLIPSIS
- Generated 4 theories
-
-
- >>> next(cycle) # doctest: +ELLIPSIS
- Generated 5 theories
-
-
- >>> next(cycle) # doctest: +ELLIPSIS
- Generated 6 theories
-
-
- We can continue to run the cycle as long as we like,
- with a simple arbitrary stopping condition like the number of theories generated:
- >>> from itertools import takewhile
- >>> _ = list(takewhile(lambda c: len(c.data.theories) < 9, cycle))
- Generated 7 theories
- Generated 8 theories
- Generated 9 theories
-
- ... or the precision (here we keep iterating while the difference between the gradients
- of the second-last and last cycle is larger than 1x10^-3).
- >>> _ = list(
- ... takewhile(
- ... lambda c: np.abs(c.data.theories[-1].coef_.item() -
- ... c.data.theories[-2].coef_.item()) > 1e-3,
- ... cycle
- ... )
- ... )
- Generated 10 theories
- Generated 11 theories
-
- ... or continue to run as long as we like:
- >>> _ = cycle.run(num_cycles=100) # doctest: +ELLIPSIS
- Generated 12 theories
- ...
- Generated 111 theories
-
- ### Passing Static Parameters
-
- It's easy to pass parameters to the cycle components, if there are any needed.
- Here we have an experimentalist which takes a parameter:
- >>> uniform_random_rng = np.random.default_rng(180)
- >>> def uniform_random_sampler(n):
- ... return uniform_random_rng.uniform(low=0, high=11, size=n)
- >>> example_experimentalist_with_parameters = make_pipeline([uniform_random_sampler])
-
- The cycle can handle that using the `params` keyword:
- >>> cycle_with_parameters = SimpleCycle(
- ... metadata=metadata_0,
- ... theorist=example_theorist,
- ... experimentalist=example_experimentalist_with_parameters,
- ... experiment_runner=example_synthetic_experiment_runner,
- ... params={"experimentalist": {"uniform_random_sampler": {"n": 7}}}
- ... )
- >>> _ = cycle_with_parameters.run()
- >>> cycle_with_parameters.data.conditions[-1].flatten()
- array([6.33661987, 7.34916618, 6.08596494, 2.28566582, 1.9553974 ,
- 5.80023149, 3.27007909])
-
- For the next cycle, if we wish, we can change the parameter value:
- >>> cycle_with_parameters.params["experimentalist"]["uniform_random_sampler"]\\
- ... ["n"] = 2
- >>> _ = cycle_with_parameters.run()
- >>> cycle_with_parameters.data.conditions[-1].flatten()
- array([10.5838232 , 9.45666031])
-
- ### Accessing "Cycle Properties"
-
- Some experimentalists, experiment runners and theorists require access to the values
- created during the cycle execution, e.g. experimentalists which require access
- to the current best theory or the observed data. These data update each cycle, and
- so cannot easily be set using simple `params`.
-
- For this case, it is possible to use "cycle properties" in the `params` dictionary. These
- are the following strings, which will be replaced during execution by their respective
- current values:
-
- - `"%observations.ivs[-1]%"`: the last observed independent variables
- - `"%observations.dvs[-1]%"`: the last observed dependent variables
- - `"%observations.ivs%"`: all the observed independent variables,
- concatenated into a single array
- - `"%observations.dvs%"`: all the observed dependent variables,
- concatenated into a single array
- - `"%theories[-1]%"`: the last fitted theorist
- - `"%theories%"`: all the fitted theorists
-
- In the following example, we use the `"observations.ivs"` cycle property for an
- experimentalist which excludes those conditions which have
- already been seen.
-
- >>> metadata_1 = VariableCollection(
- ... independent_variables=[Variable(name="x1", allowed_values=range(10))],
- ... dependent_variables=[Variable(name="y")],
- ... )
- >>> random_sampler_rng = np.random.default_rng(seed=180)
- >>> def custom_random_sampler(conditions, n):
- ... sampled_conditions = random_sampler_rng.choice(conditions, size=n, replace=False)
- ... return sampled_conditions
- >>> def exclude_conditions(conditions, excluded_conditions):
- ... remaining_conditions = list(set(conditions) - set(excluded_conditions.flatten()))
- ... return remaining_conditions
- >>> unobserved_data_experimentalist = make_pipeline([
- ... metadata_1.independent_variables[0].allowed_values,
- ... exclude_conditions,
- ... custom_random_sampler
- ... ]
- ... )
- >>> cycle_with_cycle_properties = SimpleCycle(
- ... metadata=metadata_1,
- ... theorist=example_theorist,
- ... experimentalist=unobserved_data_experimentalist,
- ... experiment_runner=example_synthetic_experiment_runner,
- ... params={
- ... "experimentalist": {
- ... "exclude_conditions": {"excluded_conditions": "%observations.ivs%"},
- ... "custom_random_sampler": {"n": 1}
- ... }
- ... }
- ... )
-
- Now we can run the cycler to generate conditions and run experiments. The first time round,
- we have the full set of 10 possible conditions to select from, and we select "2" at random:
- >>> _ = cycle_with_cycle_properties.run()
- >>> cycle_with_cycle_properties.data.conditions[-1]
- array([2])
-
- We can continue to run the cycler, each time we add more to the list of "excluded" options:
- >>> _ = cycle_with_cycle_properties.run(num_cycles=5)
- >>> cycle_with_cycle_properties.data.conditions
- [array([2]), array([6]), array([5]), array([7]), array([3]), array([4])]
-
- By using the monitor callback, we can investigate what's going on with the cycle properties:
- >>> cycle_with_cycle_properties.monitor = lambda data: print(
- ... _get_cycle_properties(data)["%observations.ivs%"].flatten()
- ... )
-
- The monitor evaluates at the end of each cycle
- and shows that we've added a new observed IV each step
- >>> _ = cycle_with_cycle_properties.run()
- [2. 6. 5. 7. 3. 4. 9.]
- >>> _ = cycle_with_cycle_properties.run()
- [2. 6. 5. 7. 3. 4. 9. 0.]
-
- We deactivate the monitor by making it "None" again.
- >>> cycle_with_cycle_properties.monitor = None
-
- We can continue until we've sampled all of the options:
- >>> _ = cycle_with_cycle_properties.run(num_cycles=2)
- >>> cycle_with_cycle_properties.data.conditions # doctest: +NORMALIZE_WHITESPACE
- [array([2]), array([6]), array([5]), array([7]), array([3]), \
- array([4]), array([9]), array([0]), array([8]), array([1])]
-
- If we try to evaluate it again, the experimentalist fails, as there aren't any more
- conditions which are available:
- >>> cycle_with_cycle_properties.run() # doctest: +ELLIPSIS
- Traceback (most recent call last):
- ...
- ValueError: a cannot be empty unless no samples are taken
-
- """
-
- def __init__(
- self,
- metadata: VariableCollection,
- theorist,
- experimentalist,
- experiment_runner,
- monitor: Optional[Callable[[SimpleCycleData], None]] = None,
- params: Optional[Dict] = None,
- ):
- """
- Args:
- metadata: a description of the dependent and independent variables
- theorist: a scikit-learn-compatible estimator
- experimentalist: an autora.experimentalist.Pipeline
- experiment_runner: a function to map independent variables onto observed dependent
- variables
- monitor: a function which gets read-only access to the `data` attribute at the end of
- each cycle.
- params: a nested dictionary with parameters to be passed to the parts of the cycle.
- E.g. if the experimentalist had a step named "pool" which took an argument "n",
- which you wanted to set to the value 30, then params would be set to this:
- `{"experimentalist": {"pool": {"n": 30}}}`
- """
-
- self.theorist = theorist
- self.experimentalist = experimentalist
- self.experiment_runner = experiment_runner
- self.monitor = monitor
- if params is None:
- params = dict()
- self.params = params
-
- self.data = SimpleCycleData(
- metadata=metadata,
- conditions=[],
- observations=[],
- theories=[],
- )
-
- def run(self, num_cycles: int = 1):
- for i in range(num_cycles):
- next(self)
- return self
-
- def __next__(self):
- assert (
- "experiment_runner" not in self.params
- ), "experiment_runner cannot yet accept cycle properties"
- assert (
- "theorist" not in self.params
- ), "theorist cannot yet accept cycle properties"
-
- data = self.data
- params_with_cycle_properties = _resolve_cycle_properties(
- self.params, _get_cycle_properties(self.data)
- )
-
- data = self._experimentalist_callback(
- self.experimentalist,
- data,
- params_with_cycle_properties.get("experimentalist", dict()),
- )
- data = self._experiment_runner_callback(self.experiment_runner, data)
- data = self._theorist_callback(self.theorist, data)
- self._monitor_callback(data)
- self.data = data
-
- return self
-
- def __iter__(self):
- return self
-
- @staticmethod
- def _experimentalist_callback(
- experimentalist: Pipeline, data_in: SimpleCycleData, params: dict
- ):
- new_conditions = experimentalist(**params)
- if isinstance(new_conditions, Iterable):
- # If the pipeline gives us an iterable, we need to make it into a concrete array.
- # We can't move this logic to the Pipeline, because the pipeline doesn't know whether
- # it's within another pipeline and whether it should convert the iterable to a
- # concrete array.
- new_conditions_values = list(new_conditions)
- new_conditions_array = np.array(new_conditions_values)
- else:
- raise NotImplementedError(f"Object {new_conditions} can't be handled yet.")
-
- assert isinstance(
- new_conditions_array, np.ndarray
- ) # Check the object is bounded
- data_out = replace(
- data_in,
- conditions=data_in.conditions + [new_conditions_array],
- )
- return data_out
-
- @staticmethod
- def _experiment_runner_callback(
- experiment_runner: Callable, data_in: SimpleCycleData
- ):
- x = data_in.conditions[-1]
- y = experiment_runner(x)
- new_observations = np.column_stack([x, y])
- data_out = replace(
- data_in, observations=data_in.observations + [new_observations]
- )
- return data_out
-
- @staticmethod
- def _theorist_callback(theorist, data_in: SimpleCycleData):
- all_observations = np.row_stack(data_in.observations)
- n_xs = len(
- data_in.metadata.independent_variables
- ) # The number of independent variables
- x, y = all_observations[:, :n_xs], all_observations[:, n_xs:]
- if y.shape[1] == 1:
- y = y.ravel()
- new_theorist = copy.deepcopy(theorist)
- new_theorist.fit(x, y)
- data_out = replace(
- data_in,
- theories=data_in.theories + [new_theorist],
- )
- return data_out
-
- def _monitor_callback(self, data: SimpleCycleData):
- if self.monitor is not None:
- self.monitor(data)
-
-
-def _resolve_cycle_properties(params: Dict, cycle_properties: Mapping):
- """
- Resolve "cycle properties" inside a nested dictionary.
-
- In this context, a "cycle property" is a string which is meant to be replaced by a
- different value before the dictionary is used.
-
- Args:
- params: a (nested) dictionary of keys and values, where some values might be
- "cycle property names"
- cycle_properties: a dictionary of "cycle property names" and their "real values"
-
- Returns: a (nested) dictionary where "cycle property names" are replaced by the "real values"
-
- Examples:
-
- >>> params_0 = {"key": "%foo%"}
- >>> cycle_properties_0 = {"%foo%": 180}
- >>> _resolve_cycle_properties(params_0, cycle_properties_0)
- {'key': 180}
-
- >>> params_1 = {"key": "%bar%", "nested_dict": {"inner_key": "%foobar%"}}
- >>> cycle_properties_1 = {"%bar%": 1, "%foobar%": 2}
- >>> _resolve_cycle_properties(params_1, cycle_properties_1)
- {'key': 1, 'nested_dict': {'inner_key': 2}}
-
- """
- params_ = copy.copy(params)
- for key, value in params_.items():
- if isinstance(value, dict):
- params_[key] = _resolve_cycle_properties(value, cycle_properties)
- elif (
- isinstance(value, str) and value in cycle_properties
- ): # value is a key in the cycle_properties dictionary
- params_[key] = cycle_properties[value]
- else:
- pass # no change needed
-
- return params_
diff --git a/autora/experimentalist/__init__.py b/autora/experimentalist/__init__.py
deleted file mode 100644
index e69de29bb..000000000
diff --git a/autora/experimentalist/filter.py b/autora/experimentalist/filter.py
deleted file mode 100644
index 58a9139cd..000000000
--- a/autora/experimentalist/filter.py
+++ /dev/null
@@ -1,128 +0,0 @@
-from enum import Enum
-from typing import Callable, Iterable, Tuple
-
-import numpy as np
-
-
-def weber_filter(values):
- return filter(lambda s: s[0] <= s[1], values)
-
-
-def train_test_filter(
- seed: int = 180, train_p: float = 0.5
-) -> Tuple[Callable[[Iterable], Iterable], Callable[[Iterable], Iterable]]:
- """
- A pipeline filter which pseudorandomly assigns values from the input into "train" or "test"
- groups. This is particularly useful when working with streams of data of potentially
- unbounded length.
-
- This isn't a great method for small datasets, as it doesn't guarantee producing training
- and test sets which are as close as possible to the specified desired proportions.
- Consider using the scikit-learn `train_test_split` for cases where it's practical to
- enumerate the full dataset in advance.
-
- Args:
- seed: random number generator seeding value
- train_p: proportion of data which go into the training set. A float between 0 and 1.
-
- Returns:
- a tuple of callables `(train_filter, test_filter)` which split the input data
- into two complementary streams.
-
-
- Examples:
- We can create complementary train and test filters using the function:
- >>> train_filter, test_filter = train_test_filter(train_p=0.6, seed=180)
-
- The `train_filter` generates a sequence of ~60% of the input list –
- in this case, 15 of 20 datapoints.
- Note that the correct split would be 12 of 20 data points.
- Again, for data with bounded length it is advisable
- to use scikit-learn `train_test_split` instead.
- >>> list(train_filter(range(20)))
- [0, 2, 3, 4, 5, 6, 9, 10, 11, 12, 15, 16, 17, 18, 19]
-
- When we run the `test_filter`, it fills in the gaps, giving us the remaining 5 values:
- >>> list(test_filter(range(20)))
- [1, 7, 8, 13, 14]
-
- We can continue to generate new values for as long as we like using the same filter and the
- continuation of the input range:
- >>> list(train_filter(range(20, 40)))
- [20, 22, 23, 27, 28, 29, 30, 31, 32, 33, 34, 36, 37, 38, 39]
-
- ... and some more.
- >>> list(train_filter(range(40, 50)))
- [41, 42, 44, 45, 46, 49]
-
- As the number of samples grows, the fraction in the train and test sets
- will approach `train_p` and `1 - train_p`.
-
- The test_filter fills in the gaps again.
- >>> list(test_filter(range(20, 30)))
- [21, 24, 25, 26]
-
- If you rerun the *same* test_filter on a fresh range, then the results will be different
- to the first time around:
- >>> list(test_filter(range(20)))
- [5, 10, 13, 17, 18]
-
- ... but if you regenerate the test_filter, it'll reproduce the original sequence
- >>> _, test_filter_regenerated = train_test_filter(train_p=0.6, seed=180)
- >>> list(test_filter_regenerated(range(20)))
- [1, 7, 8, 13, 14]
-
- It also works on tuple-valued lists:
- >>> from itertools import product
- >>> train_filter_tuple, test_filter_tuple = train_test_filter(train_p=0.3, seed=42)
- >>> list(test_filter_tuple(product(["a", "b"], [1, 2, 3])))
- [('a', 1), ('a', 2), ('a', 3), ('b', 1), ('b', 3)]
-
- >>> list(train_filter_tuple(product(["a","b"], [1,2,3])))
- [('b', 2)]
-
- >>> from itertools import count, takewhile
- >>> train_filter_unbounded, test_filter_unbounded = train_test_filter(train_p=0.5, seed=21)
-
- >>> list(takewhile(lambda s: s < 90, count(79)))
- [79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89]
-
- >>> train_pool = train_filter_unbounded(count(79))
- >>> list(takewhile(lambda s: s < 90, train_pool))
- [82, 85, 86, 89]
-
- >>> test_pool = test_filter_unbounded(count(79))
- >>> list(takewhile(lambda s: s < 90, test_pool))
- [79, 80, 81, 83, 84, 87, 88]
-
- >>> list(takewhile(lambda s: s < 110, test_pool))
- [91, 93, 94, 97, 100, 105, 106, 109]
-
- """
-
- test_p = 1 - train_p
-
- _TrainTest = Enum("_TrainTest", ["train", "test"])
-
- def train_test_stream():
- """Generates a pseudorandom stream of _TrainTest.train and _TrainTest.test."""
- rng = np.random.default_rng(seed)
- while True:
- yield rng.choice([_TrainTest.train, _TrainTest.test], p=(train_p, test_p))
-
- def _factory(allow):
- """Factory to make complementary generators which split their input
- corresponding to the values of the pseudorandom train_test_stream."""
- _stream = train_test_stream()
-
- def _generator(values):
- """Generator which yields items from the `values` depending on
- whether the corresponding item from the `_stream`
- matches the `allow` parameter."""
- for v, train_test in zip(values, _stream):
- if train_test == allow:
- yield v
-
- return _generator
-
- return _factory(_TrainTest.train), _factory(_TrainTest.test)
diff --git a/autora/experimentalist/pipeline.py b/autora/experimentalist/pipeline.py
deleted file mode 100644
index de76c450e..000000000
--- a/autora/experimentalist/pipeline.py
+++ /dev/null
@@ -1,495 +0,0 @@
-"""
-Provides tools to chain functions used to create experiment sequences.
-"""
-from __future__ import annotations
-
-import copy
-from itertools import chain
-from typing import (
- Any,
- Dict,
- Iterable,
- List,
- Literal,
- Optional,
- Protocol,
- Sequence,
- Tuple,
- Union,
- get_args,
- runtime_checkable,
-)
-
-
-@runtime_checkable
-class Pool(Protocol):
- """Creates an experimental sequence from scratch."""
-
- def __call__(self) -> _ExperimentalSequence:
- ...
-
-
-@runtime_checkable
-class Pipe(Protocol):
- """Takes in an _ExperimentalSequence and modifies it before returning it."""
-
- def __call__(self, ex: _ExperimentalSequence) -> _ExperimentalSequence:
- ...
-
-
-_StepType = Tuple[str, Union[Pool, Pipe, Iterable]]
-_StepType.__doc__ = (
- "A Pipeline step's name and generating object, as tuple(name, pipeline_piece)."
-)
-
-PARAM_DIVIDER = "__"
-
-
-class Pipeline:
- """
- Processes ("pipelines") a series of ExperimentalSequences through a pipeline.
-
- Examples:
- A pipeline which filters even values 0 to 9:
- >>> p = Pipeline(
- ... [("is_even", lambda values: filter(lambda i: i % 2 == 0, values))] # a "pipe" function
- ... )
- >>> list(p(range(10)))
- [0, 2, 4, 6, 8]
-
- A pipeline which filters for square, odd numbers:
- >>> from math import sqrt
- >>> p = Pipeline([
- ... ("is_odd", lambda values: filter(lambda i: i % 2 != 0, values)),
- ... ("is_sqrt", lambda values: filter(lambda i: sqrt(i) % 1 == 0., values))
- ... ])
- >>> list(p(range(100)))
- [1, 9, 25, 49, 81]
-
-
- >>> from itertools import product
- >>> Pipeline([("pool", lambda: product(range(5), ["a", "b"]))]) # doctest: +ELLIPSIS
- Pipeline(steps=[('pool', at 0x...>)], params={})
-
- >>> Pipeline([
- ... ("pool", lambda: product(range(5), ["a", "b"])),
- ... ("filter", lambda values: filter(lambda i: i[0] % 2 == 0, values))
- ... ]) # doctest: +ELLIPSIS +NORMALIZE_WHITESPACE
- Pipeline(steps=[('pool', at 0x...>), \
- ('filter', at 0x...>)], \
- params={})
-
- >>> pipeline = Pipeline([
- ... ("pool", lambda maximum: product(range(maximum), ["a", "b"])),
- ... ("filter", lambda values, divisor: filter(lambda i: i[0] % divisor == 0, values))
- ... ] ,
- ... params = {"pool": {"maximum":5}, "filter": {"divisor": 2}})
- >>> pipeline # doctest: +ELLIPSIS +NORMALIZE_WHITESPACE
- Pipeline(steps=[('pool', at 0x...>), \
- ('filter', at 0x...>)], \
- params={'pool': {'maximum': 5}, 'filter': {'divisor': 2}})
- >>> list(pipeline.run())
- [(0, 'a'), (0, 'b'), (2, 'a'), (2, 'b'), (4, 'a'), (4, 'b')]
-
- >>> pipeline.params = {"pool": {"maximum":7}, "filter": {"divisor": 3}}
- >>> list(pipeline())
- [(0, 'a'), (0, 'b'), (3, 'a'), (3, 'b'), (6, 'a'), (6, 'b')]
-
- >>> pipeline.params = {"pool": {"maximum":7}}
- >>> list(pipeline()) # doctest: +ELLIPSIS
- Traceback (most recent call last):
- ...
- TypeError: () missing 1 required positional argument: 'divisor'
-
-
- """
-
- def __init__(
- self,
- steps: Optional[Sequence[_StepType]] = None,
- params: Optional[Dict[str, Any]] = None,
- ):
- """Initialize the pipeline with a series of Pipe objects."""
- if steps is None:
- steps = list()
- self.steps = steps
-
- if params is None:
- params = dict()
- self.params = params
-
- def __repr__(self):
- return f"{self.__class__.__name__}(steps={self.steps}, params={self.params})"
-
- def __call__(
- self,
- ex: Optional[_ExperimentalSequence] = None,
- **params,
- ) -> _ExperimentalSequence:
- """Successively pass the input values through the Pipe."""
-
- # Initialize the parameters objects.
- merged_params = self._merge_params_with_self_params(params)
-
- try:
- # Check we have steps to use
- assert len(self.steps) > 0
- except AssertionError:
- # If the pipeline doesn't have any steps...
- if ex is not None:
- # ...the output is the input
- return ex
- elif ex is None:
- # ... unless the input was None, in which case it's an emtpy list
- return []
-
- # Make an iterator from the steps, so that we can be sure to only go through them once
- # (Otherwise if we handle the "pool" as a special case, we have to track our starting point)
- pipes_iterator = iter(self.steps)
-
- # Initialize our results object
- if ex is None:
- # ... there's no input, so presumably the first element in the steps is a pool
- # which should generate our initial values.
- name, pool = next(pipes_iterator)
- if isinstance(pool, Pool):
- # Here, the pool is a Pool callable, which we can pass parameters.
- all_params_for_pool = merged_params.get(name, dict())
- results = [pool(**all_params_for_pool)]
- elif isinstance(pool, Iterable):
- # Otherwise, the pool should be an iterable which we can just use as is.
- results = [pool]
-
- else:
- # ... there's some input, so we can use that as the initial value
- results = [ex]
-
- # Run the successive steps over the last result
- for name, pipe in pipes_iterator:
- assert isinstance(pipe, Pipe)
- all_params_for_pipe = merged_params.get(name, dict())
- results.append(pipe(results[-1], **all_params_for_pipe))
-
- return results[-1]
-
- def _merge_params_with_self_params(self, params):
- pipeline_params = _parse_params_to_nested_dict(
- self.params, divider=PARAM_DIVIDER
- )
- call_params = _parse_params_to_nested_dict(params, divider=PARAM_DIVIDER)
- merged_params = _merge_dicts(pipeline_params, call_params)
- return merged_params
-
- run = __call__
-
-
-def _merge_dicts(a: dict, b: dict):
- """
- merges b into a.
-
- Args:
- a: the "base" dictionary
- b: the "update" dictionary which takes precendence
-
- Returns:
-
- Originally from https://stackoverflow.com/a/7205107, modified for AER to allow overwriting.
-
- Examples:
- Non-conflicting dictionaries are merged "side-by-side"
- >>> _merge_dicts({1:{"a":"A"},2:{"b":"B"}}, {2:{"c":"C"},3:{"d":"D"}})
- {1: {'a': 'A'}, 2: {'b': 'B', 'c': 'C'}, 3: {'d': 'D'}}
-
- With conflicting dictionaries, the second dictionary takes precedence
- >>> _merge_dicts(
- ... {"l1_a": {"l2_1": {"l3_alpha": "from_first"}}},
- ... {"l1_a": {"l2_1": {"l3_alpha": "from_second"}}})
- {'l1_a': {'l2_1': {'l3_alpha': 'from_second'}}}
-
- Again, with non-conflicting dictionaries at the lower level
- >>> _merge_dicts(
- ... {"l1_a": {"l2_1": {"l3_alpha": "from_first"}}},
- ... {"l1_a": {"l2_1": {"l3_beta": "from_second"}}})
- {'l1_a': {'l2_1': {'l3_alpha': 'from_first', 'l3_beta': 'from_second'}}}
-
- >>> _merge_dicts(
- ... {"l1_a": {"l2_1": {"l3_alpha": "from_first", "l3_beta": "from_first"}}},
- ... {"l1_a": {"l2_1": { "l3_beta": "from_second"}}})
- {'l1_a': {'l2_1': {'l3_alpha': 'from_first', 'l3_beta': 'from_second'}}}
-
- """
- a_, b_ = dict(a), dict(b)
-
- for key in b_:
- if key in a_:
- if isinstance(a_[key], dict) and isinstance(b_[key], dict):
- a_[key] = _merge_dicts(a_[key], b_[key])
- elif a_[key] != b_[key]:
- a_[key] = b_[key]
- else:
- pass
- else:
- a_[key] = b_[key]
- return a_
-
-
-class PipelineUnion(Pipeline):
- """
- Run several Pipes in parallel and concatenate all their results.
-
- Examples:
- You can use the ParallelPipeline to parallelize a group of poolers:
- >>> union_pipeline_0 = PipelineUnion([
- ... ("pool_1", make_pipeline([range(5)])),
- ... ("pool_2", make_pipeline([range(25, 30)])),
- ... ]
- ... )
- >>> list(union_pipeline_0.run())
- [0, 1, 2, 3, 4, 25, 26, 27, 28, 29]
-
- >>> union_pipeline_1 = PipelineUnion([
- ... ("pool_1", range(5)),
- ... ("pool_2", range(25, 30)),
- ... ]
- ... )
- >>> list(union_pipeline_1.run())
- [0, 1, 2, 3, 4, 25, 26, 27, 28, 29]
-
- You can use the ParallelPipeline to parallelize a group of pipes – each of which gets
- the same input.
- >>> pipeline_with_embedded_union = Pipeline([
- ... ("pool", range(22)),
- ... ("filters", PipelineUnion([
- ... ("div_5_filter", lambda x: filter(lambda i: i % 5 == 0, x)),
- ... ("div_7_filter", lambda x: filter(lambda i: i % 7 == 0, x))
- ... ]))
- ... ])
- >>> list(pipeline_with_embedded_union.run())
- [0, 5, 10, 15, 20, 0, 7, 14, 21]
-
- """
-
- def __call__(
- self,
- ex: Optional[_ExperimentalSequence] = None,
- **params,
- ) -> _ExperimentalSequence:
- """Pass the input values in parallel through the steps."""
-
- # Initialize the parameters objects.
- merged_params = self._merge_params_with_self_params(params)
-
- results = []
-
- # Run the parallel steps over the input
- for name, pipe in self.steps:
- all_params_for_step = merged_params.get(name, dict())
- if ex is None:
- if isinstance(pipe, Pool):
- results.append(pipe(**all_params_for_step))
- elif isinstance(pipe, Iterable):
- results.append(pipe)
- else:
- raise NotImplementedError(
- f"{pipe=} cannot be used in the PipelineUnion"
- )
- else:
- assert isinstance(
- pipe, Pipe
- ), f"{pipe=} is incompatible with the Pipe interface"
- results.append(pipe(ex, **all_params_for_step))
-
- union_results = chain.from_iterable(results)
-
- return union_results
-
- run = __call__
-
-
-def _parse_params_to_nested_dict(params_dict: Dict, divider: str):
- """
- Converts a dictionary with a single level to a multi-level nested dictionary.
-
- Examples:
- >>> _parse_params_to_nested_dict({"a": 1}, divider="__")
- {'a': 1}
- >>> _parse_params_to_nested_dict({"a__b": 1, "a__c": 2}, divider="__")
- {'a': {'b': 1, 'c': 2}}
- >>> _parse_params_to_nested_dict(
- ... {"a__b__alpha": 1, "a__b__beta": 2, "a__c__gamma": 3},
- ... divider="__")
- {'a': {'b': {'alpha': 1, 'beta': 2}, 'c': {'gamma': 3}}}
-
- >>> _parse_params_to_nested_dict(
- ... {"a:b:alpha": 1, "a:b:beta": 2, "a:c:gamma": 3},
- ... divider=":")
- {'a': {'b': {'alpha': 1, 'beta': 2}, 'c': {'gamma': 3}}}
- """
- nested_dictionary: dict = copy.copy(params_dict)
- for key in params_dict.keys():
- if divider in key:
- value = nested_dictionary.pop(key)
- new_key, new_subkey = key.split(divider, 1)
- subdictionary = nested_dictionary.get(new_key, {})
- subdictionary.update({new_subkey: value})
- nested_dictionary[new_key] = subdictionary
-
- for key, value in nested_dictionary.items():
- if isinstance(value, dict):
- nested_dictionary[key] = _parse_params_to_nested_dict(
- value, divider=divider
- )
-
- return nested_dictionary
-
-
-def make_pipeline(
- steps: Optional[Sequence[Union[Pool, Pipe]]] = None,
- params: Optional[Dict[str, Any]] = None,
- kind: Literal["serial", "union"] = "serial",
-) -> Pipeline:
- """
- A factory function to make pipeline objects.
-
- The pipe objects' names will be set to the lowercase of their types, plus an index
- starting from 0 for non-unique names.
-
- Args:
- steps: a sequence of Pipe-compatible objects
- params: a dictionary of parameters passed to each Pipe by its inferred name
- kind: whether the steps should run in "serial", passing data from one to the next,
- or in "union", where all the steps get the same data and the output is the union
- of all the results.
-
- Returns:
- A pipeline object
-
- Examples:
-
- You can create pipelines using purely anonymous functions:
- >>> from itertools import product
- >>> make_pipeline([lambda: product(range(5), ["a", "b"])]) # doctest: +ELLIPSIS
- Pipeline(steps=[('', at 0x...>)], params={})
-
- You can create pipelines with normal functions.
- >>> def ab_pool(maximum=5): return product(range(maximum), ["a", "b"])
- >>> def even_filter(values): return filter(lambda i: i[0] % 2 == 0, values)
- >>> make_pipeline([ab_pool, even_filter]) # doctest: +ELLIPSIS +NORMALIZE_WHITESPACE
- Pipeline(steps=[('ab_pool', ), \
- ('even_filter', )], params={})
-
- You can create pipelines with generators as their first elements functions.
- >>> ab_pool_gen = product(range(3), ["a", "b"])
- >>> pl = make_pipeline([ab_pool_gen, even_filter])
- >>> pl # doctest: +ELLIPSIS +NORMALIZE_WHITESPACE
- Pipeline(steps=[('step', ),
- ('even_filter', )], params={})
- >>> list(pl.run())
- [(0, 'a'), (0, 'b'), (2, 'a'), (2, 'b')]
-
- You can pass parameters into the different steps of the pl using the "params"
- argument:
- >>> def divisor_filter(x, divisor): return filter(lambda i: i[0] % divisor == 0, x)
- >>> pl = make_pipeline([ab_pool, divisor_filter],
- ... params = {"ab_pool": {"maximum":5}, "divisor_filter": {"divisor": 2}})
- >>> pl # doctest: +ELLIPSIS +NORMALIZE_WHITESPACE
- Pipeline(steps=[('ab_pool', ), \
- ('divisor_filter', )], \
- params={'ab_pool': {'maximum': 5}, 'divisor_filter': {'divisor': 2}})
-
- You can evaluate the pipeline means calling its `run` method:
- >>> list(pl.run())
- [(0, 'a'), (0, 'b'), (2, 'a'), (2, 'b'), (4, 'a'), (4, 'b')]
-
- ... or calling it directly:
- >>> list(pl())
- [(0, 'a'), (0, 'b'), (2, 'a'), (2, 'b'), (4, 'a'), (4, 'b')]
-
- You can update the parameters and evaluate again, giving different results:
- >>> pl.params = {"ab_pool": {"maximum": 7}, "divisor_filter": {"divisor": 3}}
- >>> list(pl())
- [(0, 'a'), (0, 'b'), (3, 'a'), (3, 'b'), (6, 'a'), (6, 'b')]
-
- If the pipeline needs parameters, then removing them will break the pipeline:
- >>> pl.params = {}
- >>> list(pl()) # doctest: +ELLIPSIS
- Traceback (most recent call last):
- ...
- TypeError: divisor_filter() missing 1 required positional argument: 'divisor'
-
- If multiple steps have the same inferred name, then they are given a suffix automatically,
- which has to be reflected in the params if used:
- >>> pl = make_pipeline([ab_pool, divisor_filter, divisor_filter])
- >>> pl.params = {
- ... "ab_pool": {"maximum": 22},
- ... "divisor_filter_0": {"divisor": 3},
- ... "divisor_filter_1": {"divisor": 7}
- ... }
- >>> list(pl())
- [(0, 'a'), (0, 'b'), (21, 'a'), (21, 'b')]
-
- You can also use "partial" functions to include Pipes with defaults in the pipeline.
- Because the `partial` function doesn't inherit the __name__ of the original function,
- these steps are renamed to "step".
- >>> from functools import partial
- >>> pl = make_pipeline([partial(ab_pool, maximum=100)])
- >>> pl # doctest: +ELLIPSIS +NORMALIZE_WHITESPACE
- Pipeline(steps=[('step', functools.partial(, maximum=100))], \
- params={})
-
- If there are multiple steps with the same name, they get suffixes as usual:
- >>> pl = make_pipeline([partial(range, stop=10), partial(divisor_filter, divisor=3)])
- >>> pl # doctest: +ELLIPSIS +NORMALIZE_WHITESPACE
- Pipeline(steps=[('step_0', functools.partial(, stop=10)), \
- ('step_1', functools.partial(, divisor=3))], \
- params={})
-
- It is possible to create parallel pipelines too:
- >>> pl = make_pipeline([range(5), range(10,15)], kind="union")
- >>> pl
- PipelineUnion(steps=[('step_0', range(0, 5)), ('step_1', range(10, 15))], params={})
-
- >>> list(pl.run())
- [0, 1, 2, 3, 4, 10, 11, 12, 13, 14]
-
- """
-
- if steps is None:
- steps = []
- steps_: List[_StepType] = []
- raw_names_ = [getattr(pipe, "__name__", "step").lower() for pipe in steps]
- names_tally_ = dict([(name, raw_names_.count(name)) for name in set(raw_names_)])
- names_index_ = dict([(name, 0) for name in set(raw_names_)])
-
- for name, pipe in zip(raw_names_, steps):
- assert isinstance(pipe, get_args(Union[Pipe, Pool, Iterable]))
-
- if names_tally_[name] > 1:
- current_index_for_this_name = names_index_.get(name, 0)
- name_in_pipeline = f"{name}_{current_index_for_this_name}"
- names_index_[name] += 1
- else:
- name_in_pipeline = name
-
- steps_.append((name_in_pipeline, pipe))
-
- if kind == "serial":
- pipeline = Pipeline(steps_, params=params)
- elif kind == "union":
- pipeline = PipelineUnion(steps_, params=params)
- else:
- raise NotImplementedError(f"{kind=} is not implemented")
-
- return pipeline
-
-
-class _ExperimentalCondition:
- """An _ExperimentalCondition represents a trial."""
-
- pass
-
-
-_ExperimentalSequence = Iterable[_ExperimentalCondition]
-_ExperimentalSequence.__doc__ = """
-An _ExperimentalSequence represents a series of trials.
-"""
diff --git a/autora/experimentalist/pooler/__init__.py b/autora/experimentalist/pooler/__init__.py
deleted file mode 100644
index 54d836a1d..000000000
--- a/autora/experimentalist/pooler/__init__.py
+++ /dev/null
@@ -1,2 +0,0 @@
-from .general_pool import grid_pool, random_pool
-from .poppernet import poppernet_pool
diff --git a/autora/experimentalist/pooler/general_pool.py b/autora/experimentalist/pooler/general_pool.py
deleted file mode 100644
index e0c85068c..000000000
--- a/autora/experimentalist/pooler/general_pool.py
+++ /dev/null
@@ -1,56 +0,0 @@
-import random
-from itertools import product
-from typing import List
-
-import numpy as np
-
-from autora.variable import IV
-
-
-def grid_pool(ivs: List[IV]):
- """Creates exhaustive pool from discrete values using a Cartesian product of sets"""
- # Get allowed values for each IV
- l_iv_values = []
- for iv in ivs:
- assert iv.allowed_values is not None, (
- f"gridsearch_pool only supports independent variables with discrete allowed values, "
- f"but allowed_values is None on {iv=} "
- )
- l_iv_values.append(iv.allowed_values)
-
- # Return Cartesian product of all IV values
- return product(*l_iv_values)
-
-
-def random_pool(*args, n=1, duplicates=True):
- """
- Creates combinations from lists of discrete values using random selection.
- Args:
- *args: m lists of discrete values. One value will be sampled from each list.
- n: Number of samples to sample
- duplicates: Boolean if duplicate value are allowed.
-
- """
- l_samples = []
- # Create list of pools of values sample from
- pools = [tuple(pool) for pool in args]
-
- # Check to ensure infinite search won't occur if duplicates not allowed
- if not duplicates:
- l_pool_len = [len(set(s)) for s in pools]
- n_combinations = np.product(l_pool_len)
- try:
- assert n <= n_combinations
- except AssertionError:
- raise AssertionError(
- f"Number to sample n({n}) is larger than the number "
- f"of unique combinations({n_combinations})."
- )
-
- # Random sample from the pools until n is met
- while len(l_samples) < n:
- l_samples.append(tuple(map(random.choice, pools)))
- if not duplicates:
- l_samples = [*set(l_samples)]
-
- return iter(l_samples)
diff --git a/autora/experimentalist/pooler/poppernet.py b/autora/experimentalist/pooler/poppernet.py
deleted file mode 100644
index 2995405ce..000000000
--- a/autora/experimentalist/pooler/poppernet.py
+++ /dev/null
@@ -1,369 +0,0 @@
-from typing import Optional, Tuple, cast
-
-import numpy as np
-import torch
-from sklearn.preprocessing import StandardScaler
-from torch import nn
-from torch.autograd import Variable
-
-from autora.variable import ValueType, VariableCollection
-
-
-def poppernet_pool(
- model,
- x_train: np.ndarray,
- y_train: np.ndarray,
- metadata: VariableCollection,
- n: int = 100,
- training_epochs: int = 1000,
- optimization_epochs: int = 1000,
- training_lr: float = 1e-3,
- optimization_lr: float = 1e-3,
- mse_scale: float = 1,
- limit_offset: float = 0, # 10**-10,
- limit_repulsion: float = 0,
- plot: bool = False,
-):
- """
- A pooler that generates samples for independent variables with the objective of maximizing the
- (approximated) loss of the model. The samples are generated by first training a neural network
- to approximate the loss of a model for all patterns in the training data. Once trained, the
- network is then inverted to generate samples that maximize the approximated loss of the model.
-
- Note: If the pooler returns samples that are close to the boundaries of the variable space,
- then it is advisable to increase the limit_repulsion parameter (e.g., to 0.000001).
-
- Args:
- model: Scikit-learn model, could be either a classification or regression model
- x_train: data that the model was trained on
- y_train: labels that the model was trained on
- metadata: Meta-data about the dependent and independent variables
- n: number of samples to return
- training_epochs: number of epochs to train the popper network for approximating the
- error fo the model
- optimization_epochs: number of epochs to optimize the samples based on the trained
- popper network
- training_lr: learning rate for training the popper network
- optimization_lr: learning rate for optimizing the samples
- mse_scale: scale factor for the MSE loss
- limit_offset: a limited offset to prevent the samples from being too close to the value
- boundaries
- limit_repulsion: a limited repulsion to prevent the samples from being too close to the
- allowed value boundaries
- plot: print out the prediction of the popper network as well as its training loss
-
- Returns: Sampled pool
-
- """
-
- # format input
-
- x_train = np.array(x_train)
- if len(x_train.shape) == 1:
- x_train = x_train.reshape(-1, 1)
-
- x = np.empty([n, x_train.shape[1]])
-
- y_train = np.array(y_train)
- if len(y_train.shape) == 1:
- y_train = y_train.reshape(-1, 1)
-
- if metadata.dependent_variables[0].type == ValueType.CLASS:
- # find all unique values in y_train
- num_classes = len(np.unique(y_train))
- y_train = class_to_onehot(y_train, n_classes=num_classes)
-
- x_train_tensor = torch.from_numpy(x_train).float()
-
- # create list of IV limits
- ivs = metadata.independent_variables
- iv_limit_list = list()
- for iv in ivs:
- if hasattr(iv, "value_range"):
- value_range = cast(Tuple, iv.value_range)
- lower_bound = value_range[0]
- upper_bound = value_range[1]
- iv_limit_list.append(([lower_bound, upper_bound]))
-
- # get dimensions of input and output
- n_input = len(metadata.independent_variables)
- n_output = len(metadata.dependent_variables)
-
- # get input pattern for popper net
- popper_input = Variable(torch.from_numpy(x_train), requires_grad=False).float()
-
- # get target pattern for popper net
- model_predict = getattr(model, "predict_proba", None)
- if callable(model_predict) is False:
- model_predict = getattr(model, "predict", None)
-
- if callable(model_predict) is False or model_predict is None:
- raise Exception("Model must have `predict` or `predict_proba` method.")
-
- model_prediction = model_predict(x_train)
- if isinstance(model_prediction, np.ndarray) is False:
- try:
- model_prediction = np.array(model_prediction)
- except Exception:
- raise Exception("Model prediction must be convertable to numpy array.")
- if model_prediction.ndim == 1:
- model_prediction = model_prediction.reshape(-1, 1)
-
- criterion = nn.MSELoss()
- model_loss = (model_prediction - y_train) ** 2 * mse_scale
- model_loss = np.mean(model_loss, axis=1)
-
- # standardize the loss
- scaler = StandardScaler()
- model_loss = scaler.fit_transform(model_loss.reshape(-1, 1)).flatten()
-
- model_loss = torch.from_numpy(model_loss).float()
- popper_target = Variable(model_loss, requires_grad=False)
-
- # create the network
- popper_net = PopperNet(n_input, n_output)
-
- # reformat input in case it is 1D
- if len(popper_input.shape) == 1:
- popper_input = popper_input.flatten()
- popper_input = popper_input.reshape(-1, 1)
-
- # define the optimizer
- popper_optimizer = torch.optim.Adam(popper_net.parameters(), lr=training_lr)
-
- # train the network
- losses = []
- for epoch in range(training_epochs):
- popper_prediction = popper_net(popper_input)
- loss = criterion(popper_prediction, popper_target.reshape(-1, 1))
- popper_optimizer.zero_grad()
- loss.backward()
- popper_optimizer.step()
- losses.append(loss.item())
-
- if plot:
- popper_input_full = np.linspace(
- iv_limit_list[0][0], iv_limit_list[0][1], 1000
- ).reshape(-1, 1)
- popper_input_full = Variable(
- torch.from_numpy(popper_input_full), requires_grad=False
- ).float()
- popper_prediction = popper_net(popper_input_full)
- plot_popper_diagnostics(
- losses,
- popper_input,
- popper_input_full,
- popper_prediction,
- popper_target,
- model_prediction,
- y_train,
- )
-
- # now that the popper network is trained we can sample new data points
- # to sample data points we need to provide the popper network with an initial condition
- # we will sample those initial conditions proportional to the loss of the current model
-
- # feed average model losses through softmax
- # model_loss_avg= torch.from_numpy(np.mean(model_loss.detach().numpy(), axis=1)).float()
- softmax_func = torch.nn.Softmax(dim=0)
- probabilities = softmax_func(model_loss)
- # sample data point in proportion to model loss
- transform_category = torch.distributions.categorical.Categorical(probabilities)
-
- popper_net.freeze_weights()
-
- for condition in range(n):
-
- index = transform_category.sample()
- input_sample = torch.flatten(x_train_tensor[index, :])
- popper_input = Variable(input_sample, requires_grad=True)
-
- # invert the popper network to determine optimal experiment conditions
- for optimization_epoch in range(optimization_epochs):
- # feedforward pass on popper network
- popper_prediction = popper_net(popper_input)
- # compute gradient that maximizes output of popper network
- # (i.e. predicted loss of original model)
- popper_loss_optim = -popper_prediction
- popper_loss_optim.backward()
- # compute new input
- # with torch.no_grad():
- # delta = -optimization_lr * popper_input.grad
- # popper_input += -optimization_lr * popper_input.grad
- # print(delta)
- # popper_input.grad.zero_()
-
- with torch.no_grad():
-
- # first add repulsion from variable limits
- for idx in range(len(input_sample)):
- iv_value = popper_input[idx]
- iv_limits = iv_limit_list[idx]
- dist_to_min = np.abs(iv_value - np.min(iv_limits))
- dist_to_max = np.abs(iv_value - np.max(iv_limits))
- # deal with boundary case where distance is 0 or very small
- dist_to_min = np.max([dist_to_min, 0.00000001])
- dist_to_max = np.max([dist_to_max, 0.00000001])
- repulsion_from_min = limit_repulsion / (dist_to_min**2)
- repulsion_from_max = limit_repulsion / (dist_to_max**2)
- iv_value_repulsed = (
- iv_value + repulsion_from_min - repulsion_from_max
- )
- popper_input[idx] = iv_value_repulsed
-
- # now add gradient for theory loss maximization
- delta = -optimization_lr * popper_input.grad
- popper_input += delta
-
- # finally, clip input variable from its limits
- for idx in range(len(input_sample)):
- iv_raw_value = input_sample[idx]
- iv_limits = iv_limit_list[idx]
- iv_clipped_value = np.min(
- [iv_raw_value, np.max(iv_limits) - limit_offset]
- )
- iv_clipped_value = np.max(
- [
- iv_clipped_value,
- np.min(iv_limits) + limit_offset,
- ]
- )
- popper_input[idx] = iv_clipped_value
- popper_input.grad.zero_()
-
- # add condition to new experiment sequence
- for idx in range(len(input_sample)):
- iv_limits = iv_limit_list[idx]
-
- # first clip value
- iv_clipped_value = np.min([iv_raw_value, np.max(iv_limits) - limit_offset])
- iv_clipped_value = np.max(
- [iv_clipped_value, np.min(iv_limits) + limit_offset]
- )
- # make sure to convert variable to original scale
- iv_clipped_scaled_value = iv_clipped_value
-
- x[condition, idx] = iv_clipped_scaled_value
-
- return iter(x)
-
-
-def plot_popper_diagnostics(
- losses,
- popper_input,
- popper_input_full,
- popper_prediction,
- popper_target,
- model_prediction,
- target,
-):
- print("Finished training Popper Network...")
- import matplotlib.pyplot as plt
-
- if popper_input.shape[1] > 1:
- plot_input = popper_input[:, 0]
- else:
- plot_input = popper_input
-
- if model_prediction.ndim > 1:
- if model_prediction.shape[1] > 1:
- model_prediction = model_prediction[:, 0]
- target = target[:, 0]
-
- # PREDICTED MODEL ERROR PLOT
- plot_input_order = np.argsort(np.array(plot_input).flatten())
- plot_input = plot_input[plot_input_order]
- popper_target = popper_target[plot_input_order]
- # popper_prediction = popper_prediction[plot_input_order]
- plt.plot(popper_input_full, popper_prediction.detach().numpy(), label="prediction")
- plt.scatter(
- plot_input, popper_target.detach().numpy(), s=20, c="red", label="target"
- )
- plt.xlabel("x")
- plt.ylabel("model MSE")
- plt.title("popper network prediction")
- plt.legend()
- plt.show()
-
- # CONVERGENCE PLOT
- plt.plot(losses)
- plt.xlabel("epoch")
- plt.ylabel("loss")
- plt.title("loss for popper network")
- plt.show()
-
- # MODEL PREDICTION PLOT
- model_prediction = model_prediction[plot_input_order]
- target = target[plot_input_order]
- plt.plot(plot_input, model_prediction, label="model prediction")
- plt.scatter(plot_input, target, s=20, c="red", label="target")
- plt.xlabel("x")
- plt.ylabel("y")
- plt.title("model prediction vs. target")
- plt.legend()
- plt.show()
-
-
-# define the network
-class PopperNet(nn.Module):
- def __init__(self, n_input: torch.Tensor, n_output: torch.Tensor):
- # Perform initialization of the pytorch superclass
- super(PopperNet, self).__init__()
-
- # Define network layer dimensions
- D_in, H1, H2, H3, D_out = [n_input, 64, 64, 64, n_output]
-
- # Define layer types
- self.linear1 = nn.Linear(D_in, H1)
- self.linear2 = nn.Linear(H1, H2)
- self.linear3 = nn.Linear(H2, H3)
- self.linear4 = nn.Linear(H3, D_out)
-
- def forward(self, x: torch.Tensor):
- """
- This method defines the network layering and activation functions
- """
- x = self.linear1(x) # hidden layer
- x = torch.tanh(x) # activation function
-
- x = self.linear2(x) # hidden layer
- x = torch.tanh(x) # activation function
-
- x = self.linear3(x) # hidden layer
- x = torch.tanh(x) # activation function
-
- x = self.linear4(x) # output layer
-
- return x
-
- def freeze_weights(self):
- for param in self.parameters():
- param.requires_grad = False
-
-
-def class_to_onehot(y: np.array, n_classes: Optional[int] = None):
- """Converts a class vector (integers) to binary class matrix.
-
- E.g. for use with categorical_crossentropy.
-
- # Arguments
- y: class vector to be converted into a matrix
- (integers from 0 to num_classes).
- n_classes: total number of classes.
-
- # Returns
- A binary matrix representation of the input.
- """
- y = np.array(y, dtype="int")
- input_shape = y.shape
- if input_shape and input_shape[-1] == 1 and len(input_shape) > 1:
- input_shape = tuple(input_shape[:-1])
- y = y.ravel()
- if not n_classes:
- n_classes = np.max(y) + 1
- n = y.shape[0]
- categorical = np.zeros((n, n_classes))
- categorical[np.arange(n), y] = 1
- output_shape = input_shape + (n_classes,)
- categorical = np.reshape(categorical, output_shape)
- return categorical
diff --git a/autora/experimentalist/sampler/__init__.py b/autora/experimentalist/sampler/__init__.py
deleted file mode 100644
index 215afeb19..000000000
--- a/autora/experimentalist/sampler/__init__.py
+++ /dev/null
@@ -1,5 +0,0 @@
-from .assumption import assumption_sampler
-from .model_disagreement import model_disagreement_sampler
-from .nearest_value import nearest_values_sampler
-from .random import random_sampler
-from .uncertainty import uncertainty_sampler
diff --git a/autora/experimentalist/sampler/assumption.py b/autora/experimentalist/sampler/assumption.py
deleted file mode 100644
index b46a9220a..000000000
--- a/autora/experimentalist/sampler/assumption.py
+++ /dev/null
@@ -1,67 +0,0 @@
-from typing import Iterable
-
-import numpy as np
-from sklearn.metrics import mean_absolute_error as mae
-from sklearn.metrics import mean_squared_error as mse
-
-
-def assumption_sampler(
- X, y, model, n, loss=True, theorist=None, confirmation_bias=False
-):
- """
- Assumption Sampler challenges assumptions made by the Theorist.
- It identifies points whose error are most dependent on the assumption made.
- Assumptions take the form of hard-coding, which may be hyperparameters or arbitrarily chosen
- sub-algorithms e.g. loss function
- Because it samples with respect to a Theorist, this sampler cannot be used on the first cycle
-
- Args:
- X: pool of IV conditions to sample from
- y: experimental results from most recent iteration
- model: Scikit-learn model, must have `predict` method.
- n: number of samples to select
- loss: assumption to test: identify points that are most affected by choice of loss function
- theorist: the Theorist, which employs the theory it has been hard-coded to demonstrate
- confirmation_bias: whether to find evidence to support or oppose the theory
-
- Returns: Sampled pool
-
- """
-
- if isinstance(X, Iterable):
- X = np.array(list(X))
- current = None
- if theorist:
- pass # add code to extract loss function from theorist object
- idx = range(len(X))
-
- if y is not None:
- if loss:
- if current is None:
- current = mse
- print(
- Warning(
- "Knowledge of Theorist Loss Function needed. MSE has been assumed."
- )
- )
- y_pred = model.predict(X)
- current_loss = current(
- y_true=y.reshape(1, -1),
- y_pred=y_pred.reshape(1, -1),
- multioutput="raw_values",
- )
- print(current_loss)
- alternative = mae
- alternative_loss = alternative(
- y_true=y.reshape(1, -1),
- y_pred=y_pred.reshape(1, -1),
- multioutput="raw_values",
- )
- loss_delta = alternative_loss - current_loss
- idx = np.flip(loss_delta.argsort()[:n])
- else:
- raise TypeError(
- "Experiment results are required to run the assumption experimentalist"
- )
-
- return X[idx]
diff --git a/autora/experimentalist/sampler/dissimilarity.py b/autora/experimentalist/sampler/dissimilarity.py
deleted file mode 100644
index 8b8b112ac..000000000
--- a/autora/experimentalist/sampler/dissimilarity.py
+++ /dev/null
@@ -1,96 +0,0 @@
-from typing import Iterable, Literal
-
-import numpy as np
-from sklearn.metrics import DistanceMetric
-
-AllowedMetrics = Literal[
- "euclidean",
- "manhattan",
- "chebyshev",
- "minkowski",
- "wminkowski",
- "seuclidean",
- "mahalanobis",
- "haversine",
- "hamming",
- "canberra",
- "braycurtis",
- "matching",
- "jaccard",
- "dice",
- "kulsinski",
- "rogerstanimoto",
- "russellrao",
- "sokalmichener",
- "sokalsneath",
- "yule",
-]
-
-
-def summed_dissimilarity_sampler(
- X: np.ndarray, X_ref: np.ndarray, n: int = 1, metric: AllowedMetrics = "euclidean"
-) -> np.ndarray:
- """
- This dissimilarity samples re-arranges the pool of IV conditions according to their
- dissimilarity with respect to a reference pool X_ref. The default dissimilarity is calculated
- as the average of the pairwise distances between the conditions in X and X_ref.
-
- Args:
- X: pool of IV conditions to evaluate dissimilarity
- X_ref: reference pool of IV conditions
- n: number of samples to select
- metric (str): dissimilarity measure. Options: 'euclidean', 'manhattan', 'chebyshev',
- 'minkowski', 'wminkowski', 'seuclidean', 'mahalanobis', 'haversine',
- 'hamming', 'canberra', 'braycurtis', 'matching', 'jaccard', 'dice',
- 'kulsinski', 'rogerstanimoto', 'russellrao', 'sokalmichener',
- 'sokalsneath', 'yule'. See [sklearn.metrics.DistanceMetric][] for more details.
-
- Returns:
- Sampled pool
- """
-
- if isinstance(X, Iterable):
- X = np.array(list(X))
-
- if isinstance(X_ref, Iterable):
- X_ref = np.array(list(X_ref))
-
- if X.ndim == 1:
- X = X.reshape(-1, 1)
-
- if X_ref.ndim == 1:
- X_ref = X_ref.reshape(-1, 1)
-
- if X.shape[1] != X_ref.shape[1]:
- raise ValueError(
- f"X and X_ref must have the same number of columns.\n"
- f"X has {X.shape[1]} columns, while X_ref has {X_ref.shape[1]} columns."
- )
-
- if X.shape[0] < n:
- raise ValueError(
- f"X must have at least {n} rows matching the number of requested samples."
- )
-
- dist = DistanceMetric.get_metric(metric)
-
- # create a list to store the summed distances for each row in matrix1
- summed_distances = []
-
- # loop over each row in first matrix
- for row in X:
- # calculate the distances between the current row in matrix1 and all other rows in matrix2
- summed_distance = 0
-
- for X_ref_row in X_ref:
-
- distance = dist.pairwise([row, X_ref_row])[0, 1]
- summed_distance += distance
-
- # store the summed distance for the current row
- summed_distances.append(summed_distance)
-
- # sort the rows in matrix1 by their summed distances
- sorted_X = X[np.argsort(summed_distances)[::-1]]
-
- return sorted_X[:n]
diff --git a/autora/experimentalist/sampler/model_disagreement.py b/autora/experimentalist/sampler/model_disagreement.py
deleted file mode 100644
index 20a9b805f..000000000
--- a/autora/experimentalist/sampler/model_disagreement.py
+++ /dev/null
@@ -1,66 +0,0 @@
-import itertools
-from typing import Iterable, List
-
-import numpy as np
-
-
-def model_disagreement_sampler(X: np.array, models: List, num_samples: int = 1):
- """
- A sampler that returns selected samples for independent variables
- for which the models disagree the most in terms of their predictions.
-
- Args:
- X: pool of IV conditions to evaluate in terms of model disagreement
- models: List of Scikit-learn (regression or classification) models to compare
- num_samples: number of samples to select
-
- Returns: Sampled pool
- """
-
- if isinstance(X, Iterable):
- X = np.array(list(X))
-
- X_predict = np.array(X)
- if len(X_predict.shape) == 1:
- X_predict = X_predict.reshape(-1, 1)
-
- model_disagreement = list()
-
- # collect diagreements for each model pair
- for model_a, model_b in itertools.combinations(models, 2):
-
- # determine the prediction method
- if hasattr(model_a, "predict_proba") and hasattr(model_b, "predict_proba"):
- model_a_predict = model_a.predict_proba
- model_b_predict = model_b.predict_proba
- elif hasattr(model_a, "predict") and hasattr(model_b, "predict"):
- model_a_predict = model_a.predict
- model_b_predict = model_b.predict
- else:
- raise AttributeError(
- "Models must both have `predict_proba` or `predict` method."
- )
-
- # get predictions from both models
- y_a = model_a_predict(X_predict)
- y_b = model_b_predict(X_predict)
-
- assert y_a.shape == y_b.shape, "Models must have same output shape."
-
- # determine the disagreement between the two models in terms of mean-squared error
- if len(y_a.shape) == 1:
- disagreement = (y_a - y_b) ** 2
- else:
- disagreement = np.mean((y_a - y_b) ** 2, axis=1)
-
- model_disagreement.append(disagreement)
-
- assert len(model_disagreement) >= 1, "No disagreements to compare."
-
- # sum up all model disagreements
- summed_disagreement = np.sum(model_disagreement, axis=0)
-
- # sort the summed disagreements and select the top n
- idx = (-summed_disagreement).argsort()[:num_samples]
-
- return X[idx]
diff --git a/autora/experimentalist/sampler/nearest_value.py b/autora/experimentalist/sampler/nearest_value.py
deleted file mode 100644
index 61f2713d7..000000000
--- a/autora/experimentalist/sampler/nearest_value.py
+++ /dev/null
@@ -1,60 +0,0 @@
-from typing import Iterable, Sequence, Union
-
-import numpy as np
-
-
-def nearest_values_sampler(
- samples: Union[Iterable, Sequence],
- allowed_values: np.ndarray,
- n: int,
-):
- """
- A sampler which returns the nearest values between the input samples and the allowed values,
- without replacement.
-
- Args:
- samples: input conditions
- allowed_samples: allowed conditions to sample from
-
- Returns:
- the nearest values from `allowed_samples` to the `samples`
-
- """
-
- if isinstance(allowed_values, Iterable):
- allowed_values = np.array(list(allowed_values))
-
- if len(allowed_values.shape) == 1:
- allowed_values = allowed_values.reshape(-1, 1)
-
- if isinstance(samples, Iterable):
- samples = np.array(list(samples))
-
- if allowed_values.shape[0] < n:
- raise Exception(
- "More samples requested than samples available in the set allowed of values."
- )
-
- if isinstance(samples, Iterable) or isinstance(samples, Sequence):
- samples = np.array(list(samples))
-
- if hasattr(samples, "shape"):
- if samples.shape[0] < n:
- raise Exception(
- "More samples requested than samples available in the pool."
- )
-
- x_new = np.empty((n, allowed_values.shape[1]))
-
- # get index of row in x that is closest to each sample
- for row, sample in enumerate(samples):
-
- if row >= n:
- break
-
- dist = np.linalg.norm(allowed_values - sample, axis=1)
- idx = np.argmin(dist)
- x_new[row, :] = allowed_values[idx, :]
- allowed_values = np.delete(allowed_values, idx, axis=0)
-
- return x_new
diff --git a/autora/experimentalist/sampler/random.py b/autora/experimentalist/sampler/random.py
deleted file mode 100644
index 03246032a..000000000
--- a/autora/experimentalist/sampler/random.py
+++ /dev/null
@@ -1,21 +0,0 @@
-import random
-from typing import Iterable, Sequence, Union
-
-
-def random_sampler(conditions: Union[Iterable, Sequence], n: int):
- """
- Uniform random sampling without replacement from a pool of conditions.
- Args:
- conditions: Pool of conditions
- n: number of samples to collect
-
- Returns: Sampled pool
-
- """
-
- if isinstance(conditions, Iterable):
- conditions = list(conditions)
- random.shuffle(conditions)
- samples = conditions[0:n]
-
- return samples
diff --git a/autora/experimentalist/sampler/uncertainty.py b/autora/experimentalist/sampler/uncertainty.py
deleted file mode 100644
index 5cf3da0b7..000000000
--- a/autora/experimentalist/sampler/uncertainty.py
+++ /dev/null
@@ -1,61 +0,0 @@
-from typing import Iterable
-
-import numpy as np
-from scipy.stats import entropy
-
-
-def uncertainty_sampler(X, model, n, measure="least_confident"):
- """
-
- Args:
- X: pool of IV conditions to evaluate uncertainty
- model: Scikit-learn model, must have `predict_proba` method.
- n: number of samples to select
- measure: method to evaluate uncertainty. Options:
-
- - `'least_confident'`: $x* = \\operatorname{argmax} \\left( 1-P(\\hat{y}|x) \\right)$,
- where $\\hat{y} = \\operatorname{argmax} P(y_i|x)$
- - `'margin'`:
- $x* = \\operatorname{argmax} \\left( P(\\hat{y}_1|x) - P(\\hat{y}_2|x) \\right)$,
- where $\\hat{y}_1$ and $\\hat{y}_2$ are the first and second most probable
- class labels under the model, respectively.
- - `'entropy'`:
- $x* = \\operatorname{argmax} \\left( - \\sum P(y_i|x)
- \\operatorname{log} P(y_i|x) \\right)$
-
- Returns: Sampled pool
-
- """
-
- if isinstance(X, Iterable):
- X = np.array(list(X))
-
- a_prob = model.predict_proba(X)
-
- if measure == "least_confident":
- # Calculate uncertainty of max probability class
- a_uncertainty = 1 - a_prob.max(axis=1)
- # Get index of largest uncertainties
- idx = np.flip(a_uncertainty.argsort()[-n:])
-
- elif measure == "margin":
- # Sort values by row descending
- a_part = np.partition(-a_prob, 1, axis=1)
- # Calculate difference between 2 largest probabilities
- a_margin = -a_part[:, 0] + a_part[:, 1]
- # Determine index of smallest margins
- idx = a_margin.argsort()[:n]
-
- elif measure == "entropy":
- # Calculate entropy
- a_entropy = entropy(a_prob.T)
- # Get index of largest entropies
- idx = np.flip(a_entropy.argsort()[-n:])
-
- else:
- raise ValueError(
- f"Unsupported uncertainty measure: '{measure}'\n"
- f"Only 'least_confident', 'margin', or 'entropy' is supported."
- )
-
- return X[idx]
diff --git a/autora/experimentalist/utils/__init__.py b/autora/experimentalist/utils/__init__.py
deleted file mode 100644
index d4e204653..000000000
--- a/autora/experimentalist/utils/__init__.py
+++ /dev/null
@@ -1,133 +0,0 @@
-from __future__ import annotations
-
-import collections
-from typing import Union
-
-import numpy as np
-
-
-def sequence_to_array(iterable):
- """
- Converts a finite sequence of experimental conditions into a 2D numpy.array.
-
- See also: [array_to_sequence][autora.experimentalist.utils.array_to_sequence]
-
- Examples:
-
- A simple range object can be converted into an array of dimension 2:
- >>> _sequence_to_array(range(5)) # doctest: +NORMALIZE_WHITESPACE
- array([[0], [1], [2], [3], [4]])
-
- For mixed datatypes, the highest-level type common to all the inputs will be used, so
- consider using [_sequence_to_recarray][autora.experimentalist.utils._sequence_to_recarray]
- instead.
- >>> _sequence_to_array(zip(range(5), "abcde")) # doctest: +NORMALIZE_WHITESPACE
- array([['0', 'a'], ['1', 'b'], ['2', 'c'], ['3', 'd'], ['4', 'e']], dtype='>> sequence_to_array("abcde",array_type="numpy.array") # doctest: +NORMALIZE_WHITESPACE
- array([['a'], ['b'], ['c'], ['d'], ['e']], dtype='>> sequence_to_array(["abc", "de"],array_type="numpy.array"
- ... ) # doctest: +NORMALIZE_WHITESPACE
- array([['abc'], ['de']], dtype='>> _sequence_to_recarray(range(5)) # doctest: +NORMALIZE_WHITESPACE
- rec.array([(0,), (1,), (2,), (3,), (4,)], dtype=[('f0', '>> _sequence_to_recarray(zip(range(5), "abcde")) # doctest: +NORMALIZE_WHITESPACE
- rec.array([(0, 'a'), (1, 'b'), (2, 'c'), (3, 'd'), (4, 'e')],
- dtype=[('f0', '>> _sequence_to_recarray("abcde") # doctest: +NORMALIZE_WHITESPACE
- rec.array([('a',), ('b',), ('c',), ('d',), ('e',)], dtype=[('f0', '>> _sequence_to_recarray(["abc", "de"]) # doctest: +NORMALIZE_WHITESPACE
- rec.array([('abc',), ('de',)], dtype=[('f0', '>> a0 = np.arange(10).reshape(-1,2)
- >>> a0
- array([[0, 1],
- [2, 3],
- [4, 5],
- [6, 7],
- [8, 9]])
-
- The sequence is created as a generator object
- >>> array_to_sequence(a0) # doctest: +ELLIPSIS
-
-
- To see the sequence, we can convert it into a list:
- >>> l0 = list(array_to_sequence(a0))
- >>> l0
- [array([0, 1]), array([2, 3]), array([4, 5]), array([6, 7]), array([8, 9])]
-
- The individual rows are themselves 1-dimensional arrays:
- >>> l0[0]
- array([0, 1])
-
- The rows can be subscripted as usual:
- >>> l0[2][1]
- 5
-
- We can also use a record array:
- >>> a1 = np.rec.fromarrays([range(5), list("abcde")])
- >>> a1
- rec.array([(0, 'a'), (1, 'b'), (2, 'c'), (3, 'd'), (4, 'e')],
- dtype=[('f0', '>> l1 = list(array_to_sequence(a1))
- >>> l1
- [(0, 'a'), (1, 'b'), (2, 'c'), (3, 'd'), (4, 'e')]
-
- The elements of the list are numpy.records
- >>> type(l1[0])
-
-
- """
- assert isinstance(input, (np.ndarray, np.recarray))
-
- for a in input:
- yield a
diff --git a/autora/skl/__init__.py b/autora/skl/__init__.py
deleted file mode 100644
index e69de29bb..000000000
diff --git a/autora/skl/bms.py b/autora/skl/bms.py
deleted file mode 100644
index b7ca02d67..000000000
--- a/autora/skl/bms.py
+++ /dev/null
@@ -1,180 +0,0 @@
-from __future__ import annotations
-
-import logging
-from inspect import signature
-from typing import Callable, Dict, List, Optional
-
-import numpy as np
-import pandas as pd
-from sklearn.base import BaseEstimator, RegressorMixin
-from sklearn.utils.validation import check_array, check_is_fitted, check_X_y
-
-from autora.theorist.bms import Parallel, Tree, get_priors, utils
-
-_logger = logging.getLogger(__name__)
-
-# hyperparameters for BMS
-# 1) Priors for MCMC
-PRIORS, _ = get_priors()
-
-# 2) Temperatures for parallel tempering
-TEMPERATURES = [1.0] + [1.04**k for k in range(1, 20)]
-
-
-class BMSRegressor(BaseEstimator, RegressorMixin):
- """
- Bayesian Machine Scientist.
-
- BMS finds an optimal function to explain a dataset, given a set of variables,
- and a pre-defined number of parameters
-
- This class is intended to be compatible with the
- [Scikit-Learn Estimator API](https://scikit-learn.org/stable/developers/develop.html).
-
- Examples:
-
- >>> from autora.theorist.bms import Parallel, utils
- >>> import numpy as np
- >>> num_samples = 1000
- >>> X = np.linspace(start=0, stop=1, num=num_samples).reshape(-1, 1)
- >>> y = 15. * np.ones(num_samples)
- >>> estimator = BMSRegressor()
- >>> estimator = estimator.fit(X, y)
- >>> estimator.predict([[15.]])
- array([[15.]])
-
-
- Attributes:
- pms: the bayesian (parallel) machine scientist model
- model_: represents the best-fit model
- loss_: represents loss associated with best-fit model
- cache_: record of loss_ over model fitting epochs
- """
-
- def __init__(
- self,
- prior_par: dict = PRIORS,
- ts: List[float] = TEMPERATURES,
- epochs: int = 1500,
- ):
- """
- Arguments:
- prior_par: a dictionary of the prior probabilities of different functions based on
- wikipedia data scraping
- ts: contains a list of the temperatures that the parallel ms works at
- """
- self.ts = ts
- self.prior_par = prior_par
- self.epochs = epochs
- self.pms: Parallel = Parallel(Ts=ts)
- self.ops = get_priors()[1]
- self.custom_ops: Dict[str, Callable] = dict()
- self.X_: Optional[np.ndarray] = None
- self.y_: Optional[np.ndarray] = None
- self.model_: Tree = Tree()
- self.models_: List[Tree] = [Tree()]
- self.loss_: float = np.inf
- self.cache_: List = []
- self.variables: List = []
-
- def fit(
- self,
- X: np.ndarray,
- y: np.ndarray,
- num_param: int = 1,
- root=None,
- custom_ops=None,
- seed=None,
- ) -> BMSRegressor:
- """
- Runs the optimization for a given set of `X`s and `y`s.
-
- Arguments:
- X: independent variables in an n-dimensional array
- y: dependent variables in an n-dimensional array
- num_param: number of parameters
- root: fixed root of the tree
- custom_ops: user-defined functions to additionally treated as primitives
-
- Returns:
- self (BMS): the fitted estimator
- """
- # firstly, store the column names of X since checking will
- # cast the type of X to np.ndarray
- if hasattr(X, "columns"):
- self.variables = list(X.columns)
- else:
- # create variables X_1 to X_n where n is the number of columns in X
- self.variables = ["X%d" % i for i in range(X.shape[1])]
-
- X, y = check_X_y(X, y)
-
- # cast X into pd.Pandas again to fit the need in mcmc.py
- X = pd.DataFrame(X, columns=self.variables)
- y = pd.Series(y)
- _logger.info("BMS fitting started")
- if custom_ops is not None:
- for op in custom_ops:
- self.add_primitive(op)
- if (root is not None) and (root not in self.ops.keys()):
- self.add_primitive(root)
- self.pms = Parallel(
- Ts=self.ts,
- variables=self.variables,
- parameters=["a%d" % i for i in range(num_param)],
- x=X,
- y=y,
- prior_par=self.prior_par,
- ops=self.ops,
- custom_ops=self.custom_ops,
- root=root,
- seed=seed,
- )
- self.model_, self.loss_, self.cache_ = utils.run(self.pms, self.epochs)
- self.models_ = list(self.pms.trees.values())
-
- _logger.info("BMS fitting finished")
- self.X_, self.y_ = X, y
- return self
-
- def predict(self, X: np.ndarray) -> np.ndarray:
- """
- Applies the fitted model to a set of independent variables `X`,
- to give predictions for the dependent variable `y`.
-
- Arguments:
- X: independent variables in an n-dimensional array
-
- Returns:
- y: predicted dependent variable values
- """
- # this validation step will cast X into np.ndarray format
- X = check_array(X)
-
- check_is_fitted(self, attributes=["model_"])
-
- assert self.model_ is not None
- # we need to cast it back into pd.DataFrame with the original
- # column names (generated in `fit`).
- # in the future, we might need to look into mcmc.py to remove
- # these redundant type castings.
- X = pd.DataFrame(X, columns=self.variables)
-
- return np.expand_dims(self.model_.predict(X).to_numpy(), axis=1)
-
- def present_results(self):
- """
- Prints out the best equation, its description length,
- along with a plot of how this has progressed over the course of the search tasks.
- """
- check_is_fitted(self, attributes=["model_", "loss_", "cache_"])
- assert self.model_ is not None
- assert self.loss_ is not None
- assert self.cache_ is not None
-
- utils.present_results(self.model_, self.loss_, self.cache_)
-
- def add_primitive(self, op: Callable):
- self.custom_ops.update({op.__name__: op})
- self.ops.update({op.__name__: len(signature(op).parameters)})
- self.prior_par.update({"Nopi_" + op.__name__: 1})
diff --git a/autora/skl/bsr.py b/autora/skl/bsr.py
deleted file mode 100644
index 2abda3161..000000000
--- a/autora/skl/bsr.py
+++ /dev/null
@@ -1,357 +0,0 @@
-import copy
-import logging
-import time
-from typing import List, Optional, Union
-
-import numpy as np
-import pandas as pd
-from scipy.stats import invgamma
-from sklearn.base import BaseEstimator, RegressorMixin
-from sklearn.utils.validation import check_is_fitted
-
-from autora.theorist.bsr.funcs import get_all_nodes, grow, prop_new
-from autora.theorist.bsr.node import Node
-from autora.theorist.bsr.prior import get_prior_dict
-
-_logger = logging.getLogger(__name__)
-
-
-class BSRRegressor(BaseEstimator, RegressorMixin):
- """
- Bayesian Symbolic Regression (BSR)
-
- A MCMC-sampling-based Bayesian approach to symbolic regression -- a machine learning method
- that bridges `X` and `y` by automatically building up mathematical expressions of basic
- functions. Performance and speed of `BSR` depends on pre-defined parameters.
-
- This class is intended to be compatible with the
- [Scikit-Learn Estimator API](https://scikit-learn.org/stable/developers/develop.html).
-
- Examples:
-
- >>> import numpy as np
- >>> num_samples = 1000
- >>> X = np.linspace(start=0, stop=1, num=num_samples).reshape(-1, 1)
- >>> y = np.sqrt(X)
- >>> estimator = BSRRegressor()
- >>> estimator = estimator.fit(X, y)
- >>> estimator.predict([[1.5]])
-
- Attributes:
- roots_: the root(s) of the best-fit symbolic regression (SR) tree(s)
- betas_: the beta parameters of the best-fit model
- train_errs_: the training losses associated with the best-fit model
- """
-
- def __init__(
- self,
- tree_num: int = 3,
- itr_num: int = 5000,
- alpha1: float = 0.4,
- alpha2: float = 0.4,
- beta: float = -1,
- show_log: bool = False,
- val: int = 100,
- last_idx: int = -1,
- prior_name: str = "Uniform",
- ):
- """
- Arguments:
- tree_num: pre-specified number of SR trees to fit in the model
- itr_num: number of iterations steps to run for the model fitting process
- alpha1, alpha2, beta: the hyper-parameters of priors
- show_log: whether to output certain logging info
- val: number of validation steps to run for each iteration step
- last_idx: the index of which latest (most best-fit) model to use
- (-1 means the latest one)
- """
- self.tree_num = tree_num
- self.itr_num = itr_num
- self.alpha1 = alpha1
- self.alpha2 = alpha2
- self.beta = beta
- self.show_log = show_log
- self.val = val
- self.last_idx = last_idx
- self.prior_name = prior_name
-
- # attributes that are not set until `fit`
- self.roots_: Optional[List[List[Node]]] = None
- self.betas_: Optional[List[List[float]]] = None
- self.train_errs_: Optional[List[List[float]]] = None
-
- self.X_: Optional[Union[np.ndarray, pd.DataFrame]] = None
- self.y_: Optional[Union[np.ndarray, pd.DataFrame]] = None
-
- def predict(self, X: Union[np.ndarray, pd.DataFrame]) -> np.ndarray:
- """
- Applies the fitted model to a set of independent variables `X`,
- to give predictions for the dependent variable `y`.
-
- Arguments:
- X: independent variables in an n-dimensional array
- Returns:
- y: predicted dependent variable values
- """
- if isinstance(X, np.ndarray):
- X = pd.DataFrame(X)
-
- check_is_fitted(self, attributes=["roots_"])
-
- k = self.tree_num
- n_test = X.shape[0]
- tree_outs = np.zeros((n_test, k))
-
- assert self.roots_ and self.betas_
- for i in np.arange(k):
- tree_out = self.roots_[-self.last_idx][i].evaluate(X)
- tree_out.shape = tree_out.shape[0]
- tree_outs[:, i] = tree_out
-
- ones = np.ones((n_test, 1))
- tree_outs = np.concatenate((ones, tree_outs), axis=1)
- _beta = self.betas_[-self.last_idx]
- output = np.matmul(tree_outs, _beta)
-
- return output
-
- def fit(
- self, X: Union[np.ndarray, pd.DataFrame], y: Union[np.ndarray, pd.DataFrame]
- ):
- """
- Runs the optimization for a given set of `X`s and `y`s.
-
- Arguments:
- X: independent variables in an n-dimensional array
- y: dependent variables in an n-dimensional array
- Returns:
- self (BSR): the fitted estimator
- """
- # train_data must be a dataframe
- if isinstance(X, np.ndarray):
- X = pd.DataFrame(X)
- train_errs: List[List[float]] = []
- roots: List[List[Node]] = []
- betas: List[List[float]] = []
- itr_num = self.itr_num
- k = self.tree_num
- beta = self.beta
-
- if self.show_log:
- _logger.info("Starting training")
- while len(train_errs) < itr_num:
- n_feature = X.shape[1]
- n_train = X.shape[0]
-
- ops_name_lst, ops_weight_lst, ops_priors = get_prior_dict(
- prior_name=self.prior_name
- )
-
- # List of tree samples
- root_lists: List[List[Node]] = [[] for _ in range(k)]
-
- sigma_a_list = [] # List of sigma_a, for each component tree
- sigma_b_list = [] # List of sigma_b, for each component tree
-
- sigma_y = invgamma.rvs(1) # for output y
-
- # Initialization
- for count in np.arange(k):
- # create a new root node
- root = Node(0)
- sigma_a = invgamma.rvs(1)
- sigma_b = invgamma.rvs(1)
-
- # grow a tree from the root node
- if self.show_log:
- _logger.info("Grow a tree from the root node")
-
- grow(
- root,
- ops_name_lst,
- ops_weight_lst,
- ops_priors,
- n_feature,
- sigma_a=sigma_a,
- sigma_b=sigma_b,
- )
-
- # put the root into list
- root_lists[count].append(root)
- sigma_a_list.append(sigma_a)
- sigma_b_list.append(sigma_b)
-
- # calculate beta
- if self.show_log:
- _logger.info("Calculate beta")
- # added a constant in the regression by fwl
- tree_outputs = np.zeros((n_train, k))
-
- for count in np.arange(k):
- temp = root_lists[count][-1].evaluate(X)
- temp.shape = temp.shape[0]
- tree_outputs[:, count] = temp
-
- constant = np.ones((n_train, 1)) # added a constant
- tree_outputs = np.concatenate((constant, tree_outputs), axis=1)
- scale = np.max(np.abs(tree_outputs))
- tree_outputs = tree_outputs / scale
- epsilon = (
- np.eye(tree_outputs.shape[1]) * 1e-6
- ) # add to the matrix to prevent singular matrrix
- yy = np.array(y)
- yy.shape = (yy.shape[0], 1)
- _beta = np.linalg.inv(
- np.matmul(tree_outputs.transpose(), tree_outputs) + epsilon
- )
- _beta = np.matmul(_beta, np.matmul(tree_outputs.transpose(), yy))
- output = np.matmul(tree_outputs, _beta)
- # rescale the beta, above we scale tree_outputs for calculation by fwl
- _beta /= scale
-
- total = 0
- accepted = 0
- errs = []
- total_list = []
-
- tic = time.time()
-
- if self.show_log:
- _logger.info("While total < ", self.val)
- while total < self.val:
- switch_label = False
- for count in range(k):
- curr_roots = [] # list of current components
- for i in np.arange(k):
- curr_roots.append(root_lists[i][-1])
- # pick the root to be changed
- sigma_a = sigma_a_list[count]
- sigma_b = sigma_b_list[count]
-
- # the returned root is a new copy
- if self.show_log:
- _logger.info("new_prop...")
- res, root, sigma_y, sigma_a, sigma_b = prop_new(
- curr_roots,
- count,
- sigma_y,
- beta,
- sigma_a,
- sigma_b,
- X,
- y,
- ops_name_lst,
- ops_weight_lst,
- ops_priors,
- )
- if self.show_log:
- _logger.info("res:", res)
- print(root)
-
- total += 1
- # update sigma_a and sigma_b
- sigma_a_list[count] = sigma_a
- sigma_b_list[count] = sigma_b
-
- if res:
- # flag = False
- accepted += 1
- # record newly accepted root
- root_lists[count].append(copy.deepcopy(root))
-
- tree_outputs = np.zeros((n_train, k))
-
- for i in np.arange(k):
- temp = root_lists[count][-1].evaluate(X)
- temp.shape = temp.shape[0]
- tree_outputs[:, i] = temp
-
- constant = np.ones((n_train, 1))
- tree_outputs = np.concatenate((constant, tree_outputs), axis=1)
- scale = np.max(np.abs(tree_outputs))
- tree_outputs = tree_outputs / scale
- epsilon = (
- np.eye(tree_outputs.shape[1]) * 1e-6
- ) # add to prevent singular matrix
- yy = np.array(y)
- yy.shape = (yy.shape[0], 1)
- _beta = np.linalg.inv(
- np.matmul(tree_outputs.transpose(), tree_outputs) + epsilon
- )
- _beta = np.matmul(
- _beta, np.matmul(tree_outputs.transpose(), yy)
- )
-
- output = np.matmul(tree_outputs, _beta)
- # rescale the beta, above we scale tree_outputs for calculation
- _beta /= scale
-
- error = 0
- for i in np.arange(n_train):
- error += (output[i, 0] - y[i]) * (output[i, 0] - y[i])
-
- rmse = np.sqrt(error / n_train)
- errs.append(rmse)
-
- total_list.append(total)
- total = 0
-
- if len(errs) > 100:
- lapses = min(10, len(errs))
- converge_ratio = 1 - np.min(errs[-lapses:]) / np.mean(
- errs[-lapses:]
- )
- if converge_ratio < 0.05:
- # converged
- switch_label = True
- break
- if switch_label:
- break
-
- if self.show_log:
- for i in np.arange(0, len(y)):
- _logger.info(output[i, 0], y[i])
-
- toc = time.time()
- tictoc = toc - tic
- if self.show_log:
- _logger.info("Run time: {:.2f}s".format(tictoc))
-
- _logger.info("------")
- _logger.info(
- "Mean rmse of last 5 accepts: {}".format(np.mean(errs[-6:-1]))
- )
-
- train_errs.append(errs)
- roots.append(curr_roots)
- betas.append(_beta)
-
- self.roots_ = roots
- self.train_errs_ = train_errs
- self.betas_ = betas
- self.X_, self.y_ = X, y
- return self
-
- def _model(self, last_ind: int = 1) -> List[str]:
- """
- Return the models in the last-i-th iteration, default `last_ind = 1` refers to the
- last (final) iteration.
- """
- models = []
- assert self.roots_
- for i in range(self.tree_num):
- models.append(self.roots_[-last_ind][i].get_expression())
- return models
-
- def _complexity(self) -> int:
- """
- Return the complexity of the final models, which equals to the sum of nodes in all
- expression trees.
- """
- cp = 0
- assert self.roots_
- for i in range(self.tree_num):
- root_node = self.roots_[-1][i]
- num = len(get_all_nodes(root_node))
- cp = cp + num
- return cp
diff --git a/autora/skl/darts.py b/autora/skl/darts.py
deleted file mode 100644
index c22f1c60f..000000000
--- a/autora/skl/darts.py
+++ /dev/null
@@ -1,871 +0,0 @@
-import copy
-import logging
-from dataclasses import dataclass
-from itertools import cycle
-from types import SimpleNamespace
-from typing import Any, Callable, Iterator, Literal, Optional, Sequence, Tuple
-
-import numpy as np
-import torch
-import torch.nn
-import torch.nn.utils
-import torch.utils.data
-from matplotlib import pyplot as plt
-from sklearn.base import BaseEstimator, RegressorMixin
-from sklearn.utils.validation import check_array, check_is_fitted, check_X_y
-from tqdm.auto import tqdm
-
-from autora.theorist.darts import (
- PRIMITIVES,
- Architect,
- AvgrageMeter,
- DARTSType,
- Network,
- darts_dataset_from_ndarray,
- darts_model_plot,
- format_input_target,
- get_loss_function,
- get_output_format,
- get_output_str,
-)
-from autora.variable import ValueType
-
-_logger = logging.getLogger(__name__)
-
-_progress_indicator = tqdm
-
-SAMPLING_STRATEGIES = Literal["max", "sample"]
-IMPLEMENTED_DARTS_TYPES = Literal["original", "fair"]
-IMPLEMENTED_OUTPUT_TYPES = Literal[
- "real",
- "sigmoid",
- "probability",
- "probability_sample",
- "probability_distribution",
-]
-
-
-@dataclass(frozen=True)
-class _DARTSResult:
- """A container for passing fitted DARTS results around."""
-
- network: Network
- model: torch.nn.Module
-
-
-def _general_darts(
- X: np.ndarray,
- y: np.ndarray,
- network: Optional[Network] = None,
- batch_size: int = 20,
- num_graph_nodes: int = 2,
- output_type: IMPLEMENTED_OUTPUT_TYPES = "real",
- classifier_weight_decay: float = 1e-2,
- darts_type: IMPLEMENTED_DARTS_TYPES = "original",
- init_weights_function: Optional[Callable] = None,
- param_updates_per_epoch: int = 20,
- param_updates_for_sampled_model: int = 100,
- param_learning_rate_max: float = 2.5e-2,
- param_learning_rate_min: float = 0.01,
- param_momentum: float = 9e-1,
- param_weight_decay: float = 3e-4,
- arch_learning_rate_max: float = 3e-3,
- arch_updates_per_epoch: int = 20,
- arch_weight_decay: float = 1e-4,
- arch_weight_decay_df: float = 3e-4,
- arch_weight_decay_base: float = 0.0,
- arch_momentum: float = 9e-1,
- fair_darts_loss_weight: int = 1,
- max_epochs: int = 100,
- grad_clip: float = 5,
- primitives: Sequence[str] = PRIMITIVES,
- train_classifier_coefficients: bool = False,
- train_classifier_bias: bool = False,
- execution_monitor: Callable = (lambda *args, **kwargs: None),
- sampling_strategy: SAMPLING_STRATEGIES = "max",
-) -> _DARTSResult:
- """
- Function to implement the DARTS optimization, given a fixed architecture and input data.
-
- Arguments:
- X: Input data.
- y: Target data.
- batch_size: Batch size for the data loader.
- num_graph_nodes: Number of nodes in the desired computation graph.
- output_type: Type of output function to use. This function is applied to transform
- the output of the mixture architecture.
- classifier_weight_decay: Weight decay for the classifier.
- darts_type: Type of DARTS to use ('original' or 'fair').
- init_weights_function: Function to initialize the parameters of each operation.
- param_learning_rate_max: Initial (maximum) learning rate for the operation parameters.
- param_learning_rate_min: Final (minimum) learning rate for the operation parameters.
- param_momentum: Momentum for the operation parameters.
- param_weight_decay: Weight decay for the operation parameters.
- param_updates_per_epoch: Number of updates to perform per epoch.
- for the operation parameters.
- arch_learning_rate_max: Initial (maximum) learning rate for the architecture.
- arch_updates_per_epoch: Number of architecture weight updates to perform per epoch.
- arch_weight_decay: Weight decay for the architecture weights.
- arch_weight_decay_df: An additional weight decay that scales with the number of parameters
- (degrees of freedom) in the operation. The higher this weight decay, the more DARTS will
- prefer simple operations.
- arch_weight_decay_base: A base weight decay that is added to the scaled weight decay.
- arch_momentum: Momentum for the architecture weights.
- fair_darts_loss_weight: Weight of the loss in fair darts which forces architecture weights
- to become either 0 or 1.
- max_epochs: Maximum number of epochs to train for.
- grad_clip: Gradient clipping value for updating the parameters of the operations.
- primitives: List of primitives (operations) to use.
- train_classifier_coefficients: Whether to train the coefficients of the classifier.
- train_classifier_bias: Whether to train the bias of the classifier.
- execution_monitor: Function to monitor the execution of the model.
-
- Returns:
- A _DARTSResult object containing the fitted model and the network architecture.
- """
-
- _logger.info("Starting fit initialization")
-
- data_loader, input_dimensions, output_dimensions = _get_data_loader(
- X=X,
- y=y,
- batch_size=batch_size,
- )
-
- criterion = get_loss_function(ValueType(output_type))
- output_function = get_output_format(ValueType(output_type))
-
- if network is None:
- network = Network(
- num_classes=output_dimensions,
- criterion=criterion,
- steps=num_graph_nodes,
- n_input_states=input_dimensions,
- classifier_weight_decay=classifier_weight_decay,
- darts_type=DARTSType(darts_type),
- primitives=primitives,
- train_classifier_coefficients=train_classifier_coefficients,
- train_classifier_bias=train_classifier_bias,
- )
-
- if init_weights_function is not None:
- network.apply(init_weights_function)
-
- # Generate the architecture of the model
- architect = Architect(
- network,
- arch_momentum=arch_momentum,
- arch_weight_decay=arch_weight_decay,
- arch_weight_decay_df=arch_weight_decay_df,
- arch_weight_decay_base=arch_weight_decay_base,
- fair_darts_loss_weight=fair_darts_loss_weight,
- arch_learning_rate_max=arch_learning_rate_max,
- )
-
- _logger.info("Starting fit.")
- network.train()
-
- for epoch in _progress_indicator(range(max_epochs)):
-
- _logger.debug(f"Running fit, epoch {epoch}")
-
- data_iterator = _get_data_iterator(data_loader)
-
- # Do the Architecture update
- for arch_step in range(arch_updates_per_epoch):
- _logger.debug(
- f"Running architecture update, "
- f"epoch: {epoch}, architecture: {arch_step}"
- )
-
- X_batch, y_batch = _get_next_input_target(
- data_iterator, criterion=criterion
- )
-
- architect.step(
- input_valid=X_batch,
- target_valid=y_batch,
- network_optimizer=architect.optimizer,
- unrolled=False,
- )
-
- # Then run the param optimization
- _optimize_coefficients(
- network=network,
- criterion=criterion,
- data_loader=data_loader,
- grad_clip=grad_clip,
- param_learning_rate_max=param_learning_rate_max,
- param_learning_rate_min=param_learning_rate_min,
- param_momentum=param_momentum,
- param_update_steps=param_updates_per_epoch,
- param_weight_decay=param_weight_decay,
- )
-
- execution_monitor(**locals())
-
- model = _generate_model(
- network_=network,
- output_type=output_type,
- sampling_strategy=sampling_strategy,
- data_loader=data_loader,
- param_update_steps=param_updates_for_sampled_model,
- param_learning_rate_max=param_learning_rate_max,
- param_learning_rate_min=param_learning_rate_min,
- param_momentum=param_momentum,
- param_weight_decay=param_weight_decay,
- grad_clip=grad_clip,
- )
-
- results = _DARTSResult(model=model, network=network)
-
- return results
-
-
-def _optimize_coefficients(
- network: Network,
- criterion: torch.nn.Module,
- data_loader: torch.utils.data.DataLoader,
- grad_clip: float,
- param_learning_rate_max: float,
- param_learning_rate_min: float,
- param_momentum: float,
- param_update_steps: int,
- param_weight_decay: float,
-):
- """
- Function to optimize the coefficients of a DARTS Network.
-
- Warning: This modifies the coefficients of the Network in place.
-
- Arguments:
- network: The DARTS Network to optimize the coefficients of.
- criterion: The loss function to use.
- data_loader: The data loader to use for the optimization.
- grad_clip: Whether to clip the gradients.
- param_update_steps: The number of parameter update steps to perform.
- param_learning_rate_max: Initial (maximum) learning rate for the operation parameters.
- param_learning_rate_min: Final (minimum) learning rate for the operation parameters.
- param_momentum: Momentum for the operation parameters.
- param_weight_decay: Weight decay for the operation parameters.
- """
- optimizer = torch.optim.SGD(
- params=network.parameters(),
- lr=param_learning_rate_max,
- momentum=param_momentum,
- weight_decay=param_weight_decay,
- )
- scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(
- optimizer=optimizer,
- T_max=param_update_steps,
- eta_min=param_learning_rate_min,
- )
-
- data_iterator = _get_data_iterator(data_loader)
-
- objs = AvgrageMeter()
-
- if network.count_parameters()[0] == 0:
- return
-
- for param_step in range(param_update_steps):
- _logger.debug(f"Running parameter update, " f"param: {param_step}")
-
- lr = scheduler.get_last_lr()[0]
- X_batch, y_batch = _get_next_input_target(data_iterator, criterion=criterion)
- optimizer.zero_grad()
-
- # compute loss for the model
- logits = network(X_batch)
- loss = criterion(logits, y_batch)
-
- # update gradients for model
- loss.backward()
-
- # clips the gradient norm
- torch.nn.utils.clip_grad_norm_(network.parameters(), grad_clip)
-
- # moves optimizer one step (applies gradients to weights)
- optimizer.step()
-
- # applies weight decay to classifier weights
- network.apply_weight_decay_to_classifier(lr)
-
- # moves the annealing scheduler forward to determine new learning rate
- scheduler.step()
-
- # compute accuracy metrics
- n = X_batch.size(0)
- objs.update(loss.data, n)
-
-
-def _get_data_loader(
- X: np.ndarray,
- y: np.ndarray,
- batch_size: int,
-) -> torch.utils.data.DataLoader:
- """Construct a minimal torch.utils.data.DataLoader for the input data.
-
- Arguments:
- X: The input data.
- y: The target data.
- batch_size: The batch size to use.
-
- Returns:
- A torch.utils.data.DataLoader for the input data.
- """
-
- X_, y_ = check_X_y(X, y, ensure_2d=True, multi_output=True)
-
- if y_.ndim == 1:
- y_ = y_.reshape((y_.size, 1))
-
- input_dimensions = X_.shape[1]
- output_dimensions = y_.shape[1]
-
- experimental_data = darts_dataset_from_ndarray(X_, y_)
-
- data_loader = torch.utils.data.DataLoader(
- experimental_data,
- batch_size=batch_size,
- shuffle=True,
- pin_memory=True,
- num_workers=0,
- )
- return data_loader, input_dimensions, output_dimensions
-
-
-def _get_data_iterator(data_loader: torch.utils.data.DataLoader) -> Iterator:
- """Get an iterator for the data loader.
-
- Arguments:
- data_loader: The data loader to get the iterator for.
-
- Returns:
- An iterator for the data loader.
- """
- data_iterator = cycle(iter(data_loader))
- return data_iterator
-
-
-def _get_next_input_target(
- data_iterator: Iterator, criterion: torch.nn.Module
-) -> Tuple[torch.Tensor, torch.Tensor]:
- """
- Get the next input and target from the data iterator.
- Args:
- data_iterator: The data iterator to get the next input and target from.
- criterion: The loss function to use.
-
- Returns:
- The next input and target from the data iterator.
-
- """
- input_search, target_search = next(data_iterator)
-
- input_var = torch.autograd.Variable(input_search, requires_grad=False)
- target_var = torch.autograd.Variable(target_search, requires_grad=False)
-
- input_fmt, target_fmt = format_input_target(
- input_var, target_var, criterion=criterion
- )
- return input_fmt, target_fmt
-
-
-def _generate_model(
- network_: Network,
- output_type: IMPLEMENTED_OUTPUT_TYPES,
- sampling_strategy: SAMPLING_STRATEGIES,
- data_loader: torch.utils.data.DataLoader,
- param_update_steps: int,
- param_learning_rate_max: float,
- param_learning_rate_min: float,
- param_momentum: float,
- param_weight_decay: float,
- grad_clip: float,
-) -> Network:
- """
- Generate a model architecture from mixed DARTS model.
-
- Arguments:
- sampling_strategy: The sampling strategy used to pick the operations
- based on the trained architecture weights (e.g. "max", "sample").
- network: The mixed DARTS model.
- coefficient_optimizer: The function to optimize the coefficients of the trained model
- output_type: The output value type that is used for the output of the sampled model.
- param_update_steps: The number of parameter update steps to perform.
- param_learning_rate_max: Initial (maximum) learning rate for the operation parameters.
- param_learning_rate_min: Final (minimum) learning rate for the operation parameters.
- param_momentum: Momentum for the operation parameters.
- param_weight_decay: Weight decay for the operation parameters.
-
- Returns:
- A model architecture that is a combination of the trained model and the output function.
- """
- criterion = get_loss_function(ValueType(output_type))
- output_function = get_output_format(ValueType(output_type))
-
- # Set edges in the network with the highest weights to 1, others to 0
- model_without_output_function = copy.deepcopy(network_)
-
- if sampling_strategy == "max":
- new_weights = model_without_output_function.max_alphas_normal()
- elif sampling_strategy == "sample":
- new_weights = model_without_output_function.sample_alphas_normal()
-
- model_without_output_function.fix_architecture(True, new_weights=new_weights)
-
- # Re-optimize the parameters
-
- _optimize_coefficients(
- model_without_output_function,
- criterion=criterion,
- data_loader=data_loader,
- grad_clip=grad_clip,
- param_learning_rate_max=param_learning_rate_max,
- param_learning_rate_min=param_learning_rate_min,
- param_momentum=param_momentum,
- param_update_steps=param_update_steps,
- param_weight_decay=param_weight_decay,
- )
-
- # Include the output function
- model = torch.nn.Sequential(model_without_output_function, output_function)
-
- return model
-
-
-class DARTSRegressor(BaseEstimator, RegressorMixin):
- """
- Differentiable ARchiTecture Search Regressor.
-
- DARTS finds a composition of functions and coefficients to minimize a loss function suitable for
- the dependent variable.
-
- This class is intended to be compatible with the
- [Scikit-Learn Estimator API](https://scikit-learn.org/stable/developers/develop.html).
-
- Examples:
-
- >>> import numpy as np
- >>> num_samples = 1000
- >>> X = np.linspace(start=0, stop=1, num=num_samples).reshape(-1, 1)
- >>> y = 15. * np.ones(num_samples)
- >>> estimator = DARTSRegressor(num_graph_nodes=1)
- >>> estimator = estimator.fit(X, y)
- >>> estimator.predict([[0.5]])
- array([[15.051043]], dtype=float32)
-
-
- Attributes:
- network_: represents the optimized network for the architecture search, without the
- output function
- model_: represents the best-fit model including the output function
- after sampling of the network to pick a single computation graph.
- By default, this is the computation graph with the maximum weights,
- but can be set to a graph based on a sample on the edge weights
- by running the `resample_model(sample_strategy="sample")` method.
- It can be reset by running the `resample_model(sample_strategy="max")` method.
-
-
-
- """
-
- def __init__(
- self,
- batch_size: int = 64,
- num_graph_nodes: int = 2,
- output_type: IMPLEMENTED_OUTPUT_TYPES = "real",
- classifier_weight_decay: float = 1e-2,
- darts_type: IMPLEMENTED_DARTS_TYPES = "original",
- init_weights_function: Optional[Callable] = None,
- param_updates_per_epoch: int = 10,
- param_updates_for_sampled_model: int = 100,
- param_learning_rate_max: float = 2.5e-2,
- param_learning_rate_min: float = 0.01,
- param_momentum: float = 9e-1,
- param_weight_decay: float = 3e-4,
- arch_updates_per_epoch: int = 1,
- arch_learning_rate_max: float = 3e-3,
- arch_weight_decay: float = 1e-4,
- arch_weight_decay_df: float = 3e-4,
- arch_weight_decay_base: float = 0.0,
- arch_momentum: float = 9e-1,
- fair_darts_loss_weight: int = 1,
- max_epochs: int = 10,
- grad_clip: float = 5,
- primitives: Sequence[str] = PRIMITIVES,
- train_classifier_coefficients: bool = False,
- train_classifier_bias: bool = False,
- execution_monitor: Callable = (lambda *args, **kwargs: None),
- sampling_strategy: SAMPLING_STRATEGIES = "max",
- ) -> None:
- """
- Initializes the DARTSRegressor.
-
- Arguments:
- batch_size: Batch size for the data loader.
- num_graph_nodes: Number of nodes in the desired computation graph.
- output_type: Type of output function to use. This function is applied to transform
- the output of the mixture architecture.
- classifier_weight_decay: Weight decay for the classifier.
- darts_type: Type of DARTS to use ('original' or 'fair').
- init_weights_function: Function to initialize the parameters of each operation.
- param_updates_per_epoch: Number of updates to perform per epoch.
- for the operation parameters.
- param_learning_rate_max: Initial (maximum) learning rate for the operation parameters.
- param_learning_rate_min: Final (minimum) learning rate for the operation parameters.
- param_momentum: Momentum for the operation parameters.
- param_weight_decay: Weight decay for the operation parameters.
- arch_updates_per_epoch: Number of architecture weight updates to perform per epoch.
- arch_learning_rate_max: Initial (maximum) learning rate for the architecture.
- arch_weight_decay: Weight decay for the architecture weights.
- arch_weight_decay_df: An additional weight decay that scales with the number of
- parameters (degrees of freedom) in the operation. The higher this weight decay,
- the more DARTS will prefer simple operations.
- arch_weight_decay_base: A base weight decay that is added to the scaled weight decay.
- arch_momentum: Momentum for the architecture weights.
- fair_darts_loss_weight: Weight of the loss in fair darts which forces architecture
- weights to become either 0 or 1.
- max_epochs: Maximum number of epochs to train for.
- grad_clip: Gradient clipping value for updating the parameters of the operations.
- primitives: List of primitives (operations) to use.
- train_classifier_coefficients: Whether to train the coefficients of the classifier.
- train_classifier_bias: Whether to train the bias of the classifier.
- execution_monitor: Function to monitor the execution of the model.
- primitives: list of primitive operations used in the DARTS network,
- e.g., 'add', 'subtract', 'none'. For details, see
- [`autora.theorist.darts.operations`][autora.theorist.darts.operations]
- """
-
- self.batch_size = batch_size
-
- self.num_graph_nodes = num_graph_nodes
- self.classifier_weight_decay = classifier_weight_decay
- self.darts_type = darts_type
- self.init_weights_function = init_weights_function
-
- self.param_updates_per_epoch = param_updates_per_epoch
- self.param_updates_for_sampled_model = param_updates_for_sampled_model
-
- self.param_learning_rate_max = param_learning_rate_max
- self.param_learning_rate_min = param_learning_rate_min
- self.param_momentum = param_momentum
- self.arch_momentum = arch_momentum
- self.param_weight_decay = param_weight_decay
-
- self.arch_updates_per_epoch = arch_updates_per_epoch
- self.arch_weight_decay = arch_weight_decay
- self.arch_weight_decay_df = arch_weight_decay_df
- self.arch_weight_decay_base = arch_weight_decay_base
- self.arch_learning_rate_max = arch_learning_rate_max
- self.fair_darts_loss_weight = fair_darts_loss_weight
-
- self.max_epochs = max_epochs
- self.grad_clip = grad_clip
-
- self.primitives = primitives
-
- self.output_type = output_type
- self.darts_type = darts_type
-
- self.X_: Optional[np.ndarray] = None
- self.y_: Optional[np.ndarray] = None
- self.network_: Optional[Network] = None
- self.model_: Optional[Network] = None
-
- self.train_classifier_coefficients = train_classifier_coefficients
- self.train_classifier_bias = train_classifier_bias
-
- self.execution_monitor = execution_monitor
-
- self.sampling_strategy = sampling_strategy
-
- def fit(self, X: np.ndarray, y: np.ndarray):
- """
- Runs the optimization for a given set of `X`s and `y`s.
-
- Arguments:
- X: independent variables in an n-dimensional array
- y: dependent variables in an n-dimensional array
-
- Returns:
- self (DARTSRegressor): the fitted estimator
- """
-
- if self.output_type == "class":
- raise NotImplementedError(
- "Classification not implemented for DARTSRegressor."
- )
-
- params = self.get_params()
-
- fit_results = _general_darts(X=X, y=y, network=self.network_, **params)
- self.X_ = X
- self.y_ = y
- self.network_ = fit_results.network
- self.model_ = fit_results.model
- return self
-
- def predict(self, X: np.ndarray) -> np.ndarray:
- """
- Applies the fitted model to a set of independent variables `X`,
- to give predictions for the dependent variable `y`.
-
- Arguments:
- X: independent variables in an n-dimensional array
-
- Returns:
- y: predicted dependent variable values
- """
- X_ = check_array(X)
-
- # First run the checks using the scikit-learn API, listing the key parameters
- check_is_fitted(self, attributes=["model_"])
-
- # Since self.model_ is initialized as None, mypy throws an error if we
- # just call self.model_(X) in the predict method, as it could still be none.
- # MyPy doesn't understand that the sklearn check_is_fitted function
- # ensures the self.model_ parameter is initialized and otherwise throws an error,
- # so we check that explicitly here and pass the model which can't be None.
- assert self.model_ is not None
-
- y_ = self.model_(torch.as_tensor(X_).float())
- y = y_.detach().numpy()
-
- return y
-
- def visualize_model(
- self,
- input_labels: Optional[Sequence[str]] = None,
- ):
- """
- Visualizes the model architecture as a graph.
-
- Arguments:
- input_labels: labels for the input nodes
-
- """
-
- check_is_fitted(self, attributes=["model_"])
- assert self.model_ is not None
- fitted_sampled_network = self.model_[0]
-
- genotype = Network.genotype(fitted_sampled_network).normal
- (
- _,
- _,
- param_list,
- ) = fitted_sampled_network.count_parameters()
-
- if input_labels is not None:
- input_labels_ = tuple(input_labels)
- else:
- input_labels_ = self._get_input_labels()
-
- assert self.y_ is not None
- out_dim = 1 if self.y_.ndim == 1 else self.y_.shape[1]
-
- out_func = get_output_str(ValueType(self.output_type))
-
- # call to plot function
- graph = darts_model_plot(
- genotype=genotype,
- input_labels=input_labels_,
- param_list=param_list,
- full_label=True,
- out_dim=out_dim,
- out_fnc=out_func,
- )
-
- return graph
-
- def _get_input_labels(self):
- """
- Returns the input labels for the model.
-
- Returns:
- input_labels: labels for the input nodes
-
- """
- return self._get_labels(self.X_, "x")
-
- def _get_output_labels(self):
- """
- Returns the output labels for the model.
-
- Returns:
- output_labels: labels for the output nodes
-
- """
- return self._get_labels(self.y_, "y")
-
- def _get_labels(
- self, data: Optional[np.ndarray], default_label: str
- ) -> Sequence[str]:
- """
- Returns the labels for the model.
-
- Arguments:
- data: data to get labels for
- default_label: default label to use if no labels are provided
-
- Returns:
- labels: labels for the model
-
- """
- assert data is not None
-
- if hasattr(data, "columns"): # it's a dataframe with column names
- labels_ = tuple(data.columns)
- elif (
- hasattr(data, "name") and len(data.shape) == 1
- ): # it's a single series with a single name
- labels_ = (data.name,)
-
- else:
- dim = 1 if data.ndim == 1 else data.shape[1]
- labels_ = tuple(f"{default_label}{i+1}" for i in range(dim))
- return labels_
-
- def model_repr(
- self,
- input_labels: Optional[Sequence[str]] = None,
- output_labels: Optional[Sequence[str]] = None,
- output_function_label: str = "",
- decimals_to_display: int = 2,
- output_format: Literal["latex", "console"] = "console",
- ) -> str:
- """
- Prints the equations of the model architecture.
-
- Args:
- input_labels: which names to use for the independent variables (X)
- output_labels: which names to use for the dependent variables (y)
- output_function_label: name to use for the output transformation
- decimals_to_display: amount of rounding for the coefficient values
- output_format: whether the output should be formatted for
- the command line (`console`) or as equations in a latex file (`latex`)
-
- Returns:
- The equations of the model architecture
-
- """
- assert self.model_ is not None
- fitted_sampled_network: Network = self.model_[0]
-
- if input_labels is None:
- input_labels_ = self._get_input_labels()
- else:
- input_labels_ = input_labels
-
- if output_labels is None:
- output_labels_ = self._get_output_labels()
- else:
- output_labels_ = output_labels
-
- edge_list = fitted_sampled_network.architecture_to_str_list(
- input_labels=input_labels_,
- output_labels=output_labels_,
- output_function_label=output_function_label,
- decimals_to_display=decimals_to_display,
- output_format=output_format,
- )
-
- model_repr_ = "\n".join(["Model:"] + edge_list)
- return model_repr_
-
-
-class DARTSExecutionMonitor:
- """
- A monitor of the execution of the DARTS algorithm.
- """
-
- def __init__(self):
- """
- Initializes the execution monitor.
- """
- self.arch_weight_history = list()
- self.loss_history = list()
- self.epoch_history = list()
- self.primitives = list()
-
- def execution_monitor(
- self,
- network: Network,
- architect: Architect,
- epoch: int,
- **kwargs: Any,
- ):
- """
- A function to monitor the execution of the DARTS algorithm.
-
- Arguments:
- network: The DARTS network containing the weights each operation
- in the mixture architecture
- architect: The architect object used to construct the mixture architecture.
- epoch: The current epoch of the training.
- **kwargs: other parameters which may be passed from the DARTS optimizer
- """
-
- # collect data for visualization
- self.epoch_history.append(epoch)
- self.arch_weight_history.append(
- network.arch_parameters()[0].detach().numpy().copy()[np.newaxis, :]
- )
- self.loss_history.append(architect.current_loss)
- self.primitives = network.primitives
-
- def display(self):
- """
- A function to display the execution monitor. This function will generate two plots:
- (1) A plot of the training loss vs. epoch,
- (2) a plot of the architecture weights vs. epoch, divided into subplots by each edge
- in the mixture architecture.
- """
-
- loss_fig, loss_ax = plt.subplots(1, 1)
- loss_ax.plot(self.loss_history)
-
- loss_ax.set_ylabel("Loss", fontsize=14)
- loss_ax.set_xlabel("Epoch", fontsize=14)
- loss_ax.set_title("Training Loss")
-
- arch_weight_history_array = np.vstack(self.arch_weight_history)
- num_epochs, num_edges, num_primitives = arch_weight_history_array.shape
-
- subplots_per_side = int(np.ceil(np.sqrt(num_edges)))
-
- arch_fig, arch_axes = plt.subplots(
- subplots_per_side,
- subplots_per_side,
- sharex=True,
- sharey=True,
- figsize=(10, 10),
- squeeze=False,
- )
-
- arch_fig.suptitle("Architecture Weights", fontsize=10)
-
- for (edge_i, ax) in zip(range(num_edges), arch_axes.flat):
- for primitive_i in range(num_primitives):
- print(f"{edge_i}, {primitive_i}, {ax}")
- ax.plot(
- arch_weight_history_array[:, edge_i, primitive_i],
- label=f"{self.primitives[primitive_i]}",
- )
-
- ax.set_title("k{}".format(edge_i), fontsize=8)
-
- # there is no need to have the legend for each subplot
- if edge_i == 0:
- ax.legend(loc="upper center")
- ax.set_ylabel("Edge Weights", fontsize=8)
- ax.set_xlabel("Epoch", fontsize=8)
-
- return SimpleNamespace(
- loss_fig=loss_fig,
- loss_ax=loss_ax,
- arch_fig=arch_fig,
- arch_axes=arch_axes,
- )
diff --git a/autora/synthetic/__init__.py b/autora/synthetic/__init__.py
deleted file mode 100644
index e2d0b94aa..000000000
--- a/autora/synthetic/__init__.py
+++ /dev/null
@@ -1,77 +0,0 @@
-"""
-Provides an interface for loading and saving synthetic experiments.
-
-Examples:
- The registry is accessed using the `retrieve` function, optionally setting parameters:
- >>> from autora.synthetic import retrieve, describe
- >>> import numpy as np
- >>> s = retrieve("weber_fechner",rng=np.random.default_rng(seed=180)) # the Weber-Fechner Law
-
- Use the describe function to give information about the synthetic experiment:
- >>> describe(s) # doctest: +ELLIPSIS +NORMALIZE_WHITESPACE
- Weber-Fechner Law...
-
- The synthetic experiement `s` has properties like the name of the experiment:
- >>> s.name
- 'Weber-Fechner Law'
-
- ... a valid metadata description:
- >>> s.metadata # doctest: +ELLIPSIS
- VariableCollection(...)
-
- ... a function to generate the full domain of the data (if possible)
- >>> x = s.domain()
- >>> x # doctest: +ELLIPSIS
- array([[0...]])
-
- ... the experiment_runner runner which can be called to generate experimental results:
- >>> import numpy as np
- >>> y = s.experiment_runner(x) # doctest: +ELLIPSIS
- >>> y
- array([[ 0.00433955],
- [ 1.79114625],
- [ 2.39473454],
- ...,
- [ 0.00397802],
- [ 0.01922405],
- [-0.00612883]])
-
- ... a function to plot the ground truth:
- >>> s.plotter()
-
- ... against a fitted model if it exists:
- >>> from sklearn.linear_model import LinearRegression
- >>> model = LinearRegression().fit(x, y)
- >>> s.plotter(model)
-
- These can be used to run a full experimental cycle
- >>> from autora.experimentalist.pipeline import make_pipeline
- >>> from autora.experimentalist.pooler.general_pool import grid_pool
- >>> from autora.experimentalist.sampler.random import random_sampler
- >>> from functools import partial
- >>> import random
- >>> metadata = s.metadata
- >>> pool = partial(grid_pool, ivs=metadata.independent_variables)
- >>> random.seed(181) # set the seed for the random sampler
- >>> sampler = partial(random_sampler, n=20)
- >>> experimentalist_pipeline = make_pipeline([pool, sampler])
-
- >>> from autora.cycle import Cycle
- >>> theorist = LinearRegression()
-
- >>> cycle = Cycle(metadata=metadata, experimentalist=experimentalist_pipeline,
- ... experiment_runner=s.experiment_runner, theorist=theorist)
-
- >>> c = cycle.run(10)
- >>> c.data.theories[-1].coef_ # doctest: +ELLIPSIS
- array([-0.53610647, 0.58457307])
-"""
-
-from autora.synthetic import data
-from autora.synthetic.inventory import (
- Inventory,
- SyntheticExperimentCollection,
- describe,
- register,
- retrieve,
-)
diff --git a/autora/synthetic/data/__init__.py b/autora/synthetic/data/__init__.py
deleted file mode 100644
index 394d81233..000000000
--- a/autora/synthetic/data/__init__.py
+++ /dev/null
@@ -1,2 +0,0 @@
-""" Models bundled with AutoRA. """
-from . import expected_value, prospect_theory, weber_fechner
diff --git a/autora/synthetic/data/expected_value.py b/autora/synthetic/data/expected_value.py
deleted file mode 100644
index a5c86f937..000000000
--- a/autora/synthetic/data/expected_value.py
+++ /dev/null
@@ -1,184 +0,0 @@
-from functools import partial
-
-import numpy as np
-
-from autora.variable import DV, IV, ValueType, VariableCollection
-
-from ..inventory import SyntheticExperimentCollection, register
-
-
-def get_metadata(minimum_value, maximum_value, resolution):
- v_a = IV(
- name="V_A",
- allowed_values=np.linspace(
- minimum_value,
- maximum_value,
- resolution,
- ),
- value_range=(minimum_value, maximum_value),
- units="dollar",
- variable_label="Value of Option A",
- type=ValueType.REAL,
- )
-
- v_b = IV(
- name="V_B",
- allowed_values=np.linspace(
- minimum_value,
- maximum_value,
- resolution,
- ),
- value_range=(minimum_value, maximum_value),
- units="dollar",
- variable_label="Value of Option B",
- type=ValueType.REAL,
- )
-
- p_a = IV(
- name="P_A",
- allowed_values=np.linspace(0, 1, resolution),
- value_range=(0, 1),
- units="probability",
- variable_label="Probability of Option A",
- type=ValueType.REAL,
- )
-
- p_b = IV(
- name="P_B",
- allowed_values=np.linspace(0, 1, resolution),
- value_range=(0, 1),
- units="probability",
- variable_label="Probability of Option B",
- type=ValueType.REAL,
- )
-
- dv1 = DV(
- name="choose_A",
- value_range=(0, 1),
- units="probability",
- variable_label="Probability of Choosing Option A",
- type=ValueType.PROBABILITY,
- )
-
- metadata_ = VariableCollection(
- independent_variables=[v_a, p_a, v_b, p_b],
- dependent_variables=[dv1],
- )
- return metadata_
-
-
-def expected_value_theory(
- name="Expected Value Theory",
- choice_temperature: float = 0.1,
- value_lambda: float = 0.5,
- resolution=10,
- minimum_value=-1,
- maximum_value=1,
- added_noise: float = 0.01,
- rng=np.random.default_rng(),
-):
-
- params = dict(
- name=name,
- minimum_value=minimum_value,
- maximum_value=maximum_value,
- resolution=resolution,
- choice_temperature=choice_temperature,
- value_lambda=value_lambda,
- added_noise=added_noise,
- random_number_generator=rng,
- )
-
- metadata = get_metadata(
- minimum_value=minimum_value, maximum_value=maximum_value, resolution=resolution
- )
-
- def experiment_runner(X: np.ndarray, added_noise_=added_noise):
-
- Y = np.zeros((X.shape[0], 1))
- for idx, x in enumerate(X):
- value_A = value_lambda * x[0]
- value_B = value_lambda * x[2]
-
- probability_a = x[1]
- probability_b = x[3]
-
- expected_value_A = value_A * probability_a + rng.normal(0, added_noise_)
- expected_value_B = value_B * probability_b + rng.normal(0, added_noise_)
-
- # compute probability of choosing option A
- p_choose_A = np.exp(expected_value_A / choice_temperature) / (
- np.exp(expected_value_A / choice_temperature)
- + np.exp(expected_value_B / choice_temperature)
- )
-
- Y[idx] = p_choose_A
-
- return Y
-
- ground_truth = partial(experiment_runner, added_noise_=0.0)
-
- def domain():
- X = np.array(
- np.meshgrid([x.allowed_values for x in metadata.independent_variables])
- ).T.reshape(-1, 4)
- return X
-
- def plotter(model=None):
- import matplotlib.colors as mcolors
- import matplotlib.pyplot as plt
-
- v_a_list = [-1, 0.5, 1]
- v_b = 0.5
- p_b = 0.5
- p_a = np.linspace(0, 1, 100)
-
- for idx, v_a in enumerate(v_a_list):
- X = np.zeros((len(p_a), 4))
- X[:, 0] = v_a
- X[:, 1] = p_a
- X[:, 2] = v_b
- X[:, 3] = p_b
-
- y = ground_truth(X)
- colors = mcolors.TABLEAU_COLORS
- col_keys = list(colors.keys())
- plt.plot(
- p_a, y, label=f"$V(A) = {v_a}$ (Original)", c=colors[col_keys[idx]]
- )
- if model is not None:
- y = model.predict(X)
- plt.plot(
- p_a,
- y,
- label=f"$V(A) = {v_a}$ (Recovered)",
- c=colors[col_keys[idx]],
- linestyle="--",
- )
-
- x_limit = [0, metadata.independent_variables[1].value_range[1]]
- y_limit = [0, 1]
- x_label = "Probability of Choosing Option A"
- y_label = "Probability of Obtaining V(A)"
-
- plt.xlim(x_limit)
- plt.ylim(y_limit)
- plt.xlabel(x_label, fontsize="large")
- plt.ylabel(y_label, fontsize="large")
- plt.legend(loc=2, fontsize="medium")
- plt.title(name, fontsize="x-large")
- plt.show()
-
- collection = SyntheticExperimentCollection(
- name=name,
- metadata=metadata,
- experiment_runner=experiment_runner,
- ground_truth=ground_truth,
- domain=domain,
- plotter=plotter,
- params=params,
- )
- return collection
-
-
-register("expected_value", expected_value_theory)
diff --git a/autora/synthetic/data/prospect_theory.py b/autora/synthetic/data/prospect_theory.py
deleted file mode 100644
index 2344e790b..000000000
--- a/autora/synthetic/data/prospect_theory.py
+++ /dev/null
@@ -1,198 +0,0 @@
-from functools import partial
-
-import numpy as np
-
-from ..inventory import SyntheticExperimentCollection, register
-from .expected_value import get_metadata
-
-
-def prospect_theory(
- name="Prospect Theory",
- added_noise=0.01,
- choice_temperature=0.1,
- value_alpha=0.88,
- value_beta=0.88,
- value_lambda=2.25,
- probability_alpha=0.61,
- probability_beta=0.69,
- resolution=10,
- minimum_value=-1,
- maximum_value=1,
- rng=np.random.default_rng(),
-):
- """
- Parameters from
- D. Kahneman, A. Tversky, Prospect theory: An analysis of decision under risk.
- Econometrica 47, 263–292 (1979). doi:10.2307/1914185
-
- Power value function according to:
- - A. Tversky, D. Kahneman, Advances in prospect theory: Cumulative representation of
- uncertainty. J. Risk Uncertain. 5, 297–323 (1992). doi:10.1007/BF00122574
-
- - I. Gilboa, Expected utility with purely subjective non-additive probabilities.
- J. Math. Econ. 16, 65–88 (1987). doi:10.1016/0304-4068(87)90022-X
-
- - D. Schmeidler, Subjective probability and expected utility without additivity.
- Econometrica 57, 571 (1989). doi:10.2307/1911053
-
- Probability function according to:
- A. Tversky, D. Kahneman, Advances in prospect theory: Cumulative representation of
- uncertainty. J. Risk Uncertain. 5, 297–323 (1992). doi:10.1007/BF00122574
-
- """
-
- params = dict(
- added_noise=added_noise,
- choice_temperature=choice_temperature,
- value_alpha=value_alpha,
- value_beta=value_beta,
- value_lambda=value_lambda,
- probability_alpha=probability_alpha,
- probability_beta=probability_beta,
- resolution=resolution,
- minimum_value=minimum_value,
- maximum_value=maximum_value,
- rng=rng,
- name=name,
- )
-
- metadata = get_metadata(
- minimum_value=minimum_value, maximum_value=maximum_value, resolution=resolution
- )
-
- def experiment_runner(X: np.ndarray, added_noise_=added_noise):
-
- Y = np.zeros((X.shape[0], 1))
- for idx, x in enumerate(X):
-
- # power value function according to:
-
- # A. Tversky, D. Kahneman, Advances in prospect theory: Cumulative representation of
- # uncertainty. J. Risk Uncertain. 5, 297–323 (1992). doi:10.1007/BF00122574
-
- # I. Gilboa, Expected utility with purely subjective non-additive probabilities.
- # J. Math. Econ. 16, 65–88 (1987). doi:10.1016/0304-4068(87)90022-X
-
- # D. Schmeidler, Subjective probability and expected utility without additivity.
- # Econometrica 57, 571 (1989). doi:10.2307/1911053
-
- # compute value of option A
- if x[0] > 0:
- value_A = x[0] ** value_alpha
- else:
- value_A = -value_lambda * (-x[0]) ** (value_beta)
-
- # compute value of option B
- if x[2] > 0:
- value_B = x[2] ** value_alpha
- else:
- value_B = -value_lambda * (-x[2]) ** (value_beta)
-
- # probability function according to:
-
- # A. Tversky, D. Kahneman, Advances in prospect theory: Cumulative representation of
- # uncertainty. J. Risk Uncertain. 5, 297–323 (1992). doi:10.1007/BF00122574
-
- # compute probability of option A
- if x[0] >= 0:
- coefficient = probability_alpha
- else:
- coefficient = probability_beta
-
- probability_a = x[1] ** coefficient / (
- x[1] ** coefficient + (1 - x[1]) ** coefficient
- ) ** (1 / coefficient)
-
- # compute probability of option B
- if x[2] >= 0:
- coefficient = probability_alpha
- else:
- coefficient = probability_beta
-
- probability_b = x[3] ** coefficient / (
- x[3] ** coefficient + (1 - x[3]) ** coefficient
- ) ** (1 / coefficient)
-
- expected_value_A = value_A * probability_a + rng.normal(0, added_noise_)
- expected_value_B = value_B * probability_b + rng.normal(0, added_noise_)
-
- # compute probability of choosing option A
- p_choose_A = np.exp(expected_value_A / choice_temperature) / (
- np.exp(expected_value_A / choice_temperature)
- + np.exp(expected_value_B / choice_temperature)
- )
-
- Y[idx] = p_choose_A
-
- return Y
-
- ground_truth = partial(experiment_runner, added_noise_=0.0)
-
- def domain():
- v_a = metadata.independent_variables[0].allowed_values
- p_a = metadata.independent_variables[1].allowed_values
- v_b = metadata.independent_variables[2].allowed_values
- p_b = metadata.independent_variables[3].allowed_values
-
- X = np.array(np.meshgrid(v_a, p_a, v_b, p_b)).T.reshape(-1, 4)
- return X
-
- def plotter(model=None):
- import matplotlib.colors as mcolors
- import matplotlib.pyplot as plt
-
- v_a_list = [-0.5, 0.5, 1]
- p_a = np.linspace(0, 1, 100)
-
- v_b = 0.5
- p_b = 0.5
-
- for idx, v_a in enumerate(v_a_list):
- X = np.zeros((len(p_a), 4))
- X[:, 0] = v_a
- X[:, 1] = p_a
- X[:, 2] = v_b
- X[:, 3] = p_b
-
- y = ground_truth(X)
- colors = mcolors.TABLEAU_COLORS
- col_keys = list(colors.keys())
- plt.plot(
- p_a, y, label=f"$V(A) = {v_a}$ (Original)", c=colors[col_keys[idx]]
- )
- if model is not None:
- y = model.predict(X)
- plt.plot(
- p_a,
- y,
- label=f"$V(A) = {v_a}$ (Recovered)",
- c=colors[col_keys[idx]],
- linestyle="--",
- )
-
- x_limit = [0, metadata.independent_variables[1].value_range[1]]
- y_limit = [0, 1]
- x_label = "Probability of Choosing Option A"
- y_label = "Probability of Obtaining V(A)"
-
- plt.xlim(x_limit)
- plt.ylim(y_limit)
- plt.xlabel(x_label, fontsize="large")
- plt.ylabel(y_label, fontsize="large")
- plt.legend(loc=2, fontsize="medium")
- plt.title(name, fontsize="x-large")
- plt.show()
-
- collection = SyntheticExperimentCollection(
- name=name,
- params=params,
- metadata=metadata,
- domain=domain,
- experiment_runner=experiment_runner,
- ground_truth=ground_truth,
- plotter=plotter,
- )
- return collection
-
-
-register("prospect_theory", prospect_theory)
diff --git a/autora/synthetic/data/weber_fechner.py b/autora/synthetic/data/weber_fechner.py
deleted file mode 100644
index ac5e56ab4..000000000
--- a/autora/synthetic/data/weber_fechner.py
+++ /dev/null
@@ -1,158 +0,0 @@
-from functools import partial
-
-import numpy as np
-
-from autora.variable import DV, IV, ValueType, VariableCollection
-
-from ..inventory import SyntheticExperimentCollection, register
-
-
-def weber_fechner_law(
- name="Weber-Fechner Law",
- resolution=100,
- constant=1.0,
- maximum_stimulus_intensity=5.0,
- added_noise=0.01,
- rng=np.random.default_rng(),
-):
- """Weber-Fechner Law.
-
- Args:
- name: name of the experiment
- resolution: number of allowed values for stimulus 1 and 2
- constant: constant multiplier
- maximum_stimulus_intensity: maximum value for stimulus 1 and 2
- added_noise: standard deviation of normally distributed noise added to y-values
- rng: `np.random` random number generator to use for generating noise
-
- Returns:
-
- """
-
- params = dict(
- added_noise=added_noise,
- name=name,
- resolution=resolution,
- constant=constant,
- maximum_stimulus_intensity=maximum_stimulus_intensity,
- rng=rng,
- )
-
- iv1 = IV(
- name="S1",
- allowed_values=np.linspace(
- 1 / resolution, maximum_stimulus_intensity, resolution
- ),
- value_range=(1 / resolution, maximum_stimulus_intensity),
- units="intensity",
- variable_label="Stimulus 1 Intensity",
- type=ValueType.REAL,
- )
-
- iv2 = IV(
- name="S2",
- allowed_values=np.linspace(
- 1 / resolution, maximum_stimulus_intensity, resolution
- ),
- value_range=(1 / resolution, maximum_stimulus_intensity),
- units="intensity",
- variable_label="Stimulus 2 Intensity",
- type=ValueType.REAL,
- )
-
- dv1 = DV(
- name="difference_detected",
- value_range=(0, maximum_stimulus_intensity),
- units="sensation",
- variable_label="Sensation",
- type=ValueType.REAL,
- )
-
- metadata = VariableCollection(
- independent_variables=[iv1, iv2],
- dependent_variables=[dv1],
- )
-
- def experiment_runner(
- X: np.ndarray,
- std: float = 0.01,
- ):
- Y = np.zeros((X.shape[0], 1))
- for idx, x in enumerate(X):
- # jnd = np.min(x) * weber_constant
- # response = (x[1]-x[0]) - jnd
- # y = 1/(1+np.exp(-response)) + np.random.normal(0, std)
- y = constant * np.log(x[1] / x[0]) + rng.normal(0, std)
- Y[idx] = y
-
- return Y
-
- ground_truth = partial(experiment_runner, std=0.0)
-
- def domain():
- s1_values = metadata.independent_variables[0].allowed_values
- s2_values = metadata.independent_variables[1].allowed_values
- X = np.array(np.meshgrid(s1_values, s2_values)).T.reshape(-1, 2)
- # remove all combinations where s1 > s2
- X = X[X[:, 0] <= X[:, 1]]
- return X
-
- def plotter(
- model=None,
- ):
- import matplotlib.colors as mcolors
- import matplotlib.pyplot as plt
-
- colors = mcolors.TABLEAU_COLORS
- col_keys = list(colors.keys())
-
- S0_list = [1, 2, 4]
- delta_S = np.linspace(0, 5, 100)
-
- for idx, S0_value in enumerate(S0_list):
- S0 = S0_value + np.zeros(delta_S.shape)
- S1 = S0 + delta_S
- X = np.array([S0, S1]).T
- y = ground_truth(X)
- plt.plot(
- delta_S,
- y,
- label=f"$S_0 = {S0_value}$ (Original)",
- c=colors[col_keys[idx]],
- )
- if model is not None:
- y = model.predict(X)
- plt.plot(
- delta_S,
- y,
- label=f"$S_0 = {S0_value}$ (Recovered)",
- c=colors[col_keys[idx]],
- linestyle="--",
- )
-
- x_limit = [0, metadata.independent_variables[0].value_range[1]]
- y_limit = [0, 2]
- x_label = r"Stimulus Intensity Difference $\Delta S = S_1 - S_0$"
- y_label = "Perceived Intensity of Stimulus $S_1$"
-
- plt.xlim(x_limit)
- plt.ylim(y_limit)
- plt.xlabel(x_label, fontsize="large")
- plt.ylabel(y_label, fontsize="large")
- plt.legend(loc=2, fontsize="medium")
- plt.title("Weber-Fechner Law", fontsize="x-large")
- plt.show()
-
- collection = SyntheticExperimentCollection(
- name=name,
- metadata=metadata,
- experiment_runner=experiment_runner,
- ground_truth=ground_truth,
- domain=domain,
- plotter=plotter,
- params=params,
- )
- return collection
-
-
-register("weber_fechner", weber_fechner_law)
diff --git a/autora/synthetic/inventory.py b/autora/synthetic/inventory.py
deleted file mode 100644
index 4d75be832..000000000
--- a/autora/synthetic/inventory.py
+++ /dev/null
@@ -1,205 +0,0 @@
-"""
-Module for registering and retrieving synthetic models from an inventory.
-
-Examples:
- To add and recover a new model from the inventory, we need to define it using a function
- (closure).
- We start by importing the modules we'll need:
- >>> from functools import partial
- >>> import matplotlib.pyplot as plt
- >>> import numpy as np
- >>> from autora.synthetic import register, retrieve, describe, SyntheticExperimentCollection
- >>> from autora.variable import IV, DV, VariableCollection
-
- Then we can define the function. We define all the arguments we want and add them to a
- dictionary. The closure – in this case `sinusoid_experiment` – is the scope for all
- the parameters we need.
- >>> def sinusoid_experiment(omega=np.pi/3, delta=np.pi/2., m=0.3, resolution=1000,
- ... rng=np.random.default_rng()):
- ... \"\"\"Shifted sinusoid experiment, combining a sinusoid and a gradient drift.
- ... Ground truth: y = sin((x - delta) * omega) + (x * m)
- ... Parameters:
- ... omega: angular speed in radians
- ... delta: offset in radians
- ... m: drift gradient in [radians ^ -1]
- ... resolution: number of x values
- ... \"\"\"
- ...
- ... name = "Shifted Sinusoid"
- ...
- ... params = dict(omega=omega, delta=delta, resolution=resolution, m=m, rng=rng)
- ...
- ... x = IV(name="x", value_range=(-6 * np.pi, 6 * np.pi))
- ... y = DV(name="y", value_range=(-1, 1))
- ... metadata = VariableCollection(independent_variables=[x], dependent_variables=[y])
- ...
- ... def domain():
- ... return np.linspace(*x.value_range, resolution).reshape(-1, 1)
- ...
- ... def experiment_runner(X, std=0.1):
- ... return np.sin((X - delta) * omega) + (X * m) + rng.normal(0, std, X.shape)
- ...
- ... def ground_truth(X):
- ... return experiment_runner(X, std=0.)
- ...
- ... def plotter(model=None):
- ... plt.plot(domain(), ground_truth(domain()), label="Ground Truth")
- ... if model is not None:
- ... plt.plot(domain(), model.predict(domain()), label="Model")
- ... plt.title(name)
- ...
- ... collection = SyntheticExperimentCollection(
- ... name=name,
- ... params=params,
- ... metadata=metadata,
- ... domain=domain,
- ... experiment_runner=experiment_runner,
- ... ground_truth=ground_truth,
- ... plotter=plotter,
- ... )
- ...
- ... return collection
-
- Then we can register the experiment. We register the function, rather than evaluating it.
- >>> register("sinusoid_experiment", sinusoid_experiment)
-
- When we want to retrieve the experiment, we can just use the default values if we like:
- >>> s = retrieve("sinusoid_experiment")
-
- We can retrieve the docstring of the model using the `describe` function
- >>> describe(s) # doctest: +ELLIPSIS
- Shifted sinusoid experiment, combining a sinusoid and a gradient drift.
- Ground truth: y = sin((x - delta) * omega) + (x * m)
- ...
-
- ... or using its id:
- >>> describe("sinusoid_experiment") # doctest: +ELLIPSIS
- Shifted sinusoid experiment, combining a sinusoid and a gradient drift.
- Ground truth: y = sin((x - delta) * omega) + (x * m)
- ...
-
- ... or we can look at the closure function directly:
- >>> describe(sinusoid_experiment) # doctest: +ELLIPSIS
- Shifted sinusoid experiment, combining a sinusoid and a gradient drift.
- Ground truth: y = sin((x - delta) * omega) + (x * m)
- ...
-
- The object returned includes all the used parameters as a dictionary
- >>> s.params # doctest: +ELLIPSIS
- {'omega': 1.0..., 'delta': 1.5..., 'resolution': 1000, 'm': 0.3, ...}
-
- If we need to modify the parameter values, we can pass them as arguments to the retrieve
- function:
- >>> t = retrieve("sinusoid_experiment",delta=0.2)
- >>> t.params # doctest: +ELLIPSIS
- {..., 'delta': 0.2, ...}
-"""
-
-
-from __future__ import annotations
-
-from dataclasses import dataclass
-from functools import singledispatch
-from typing import Any, Callable, Dict, Optional, Protocol, runtime_checkable
-
-from autora.variable import VariableCollection
-
-
-@runtime_checkable
-class _SyntheticExperimentClosure(Protocol):
- """A function which returns a SyntheticExperimentCollection."""
-
- def __call__(self, *args, **kwargs) -> SyntheticExperimentCollection:
- ...
-
-
-class _SupportsPredict(Protocol):
- def predict(self, X) -> Any:
- ...
-
-
-@dataclass
-class SyntheticExperimentCollection:
- """
- Represents a synthetic experiment.
-
- Attributes:
- name: the name of the theory
- params: a dictionary with the settable parameters of the model and their respective values
- metadata: a VariableCollection describing the variables of the model
- domain: a function which returns all the available X values for the model
- experiment_runner: a function which takes X values and returns simulated y values **with
- statistical noise**
- ground_truth: a function which takes X values and returns simulated y values **without any
- statistical noise**
- plotter: a function which plots the ground truth and, optionally, a model with a
- `predict` method (e.g. scikit-learn estimators)
- """
-
- name: Optional[str] = None
- params: Optional[Dict] = None
- metadata: Optional[VariableCollection] = None
- domain: Optional[Callable] = None
- experiment_runner: Optional[Callable] = None
- ground_truth: Optional[Callable] = None
- plotter: Optional[Callable[[Optional[_SupportsPredict]], None]] = None
- closure: Optional[Callable] = None
-
-
-Inventory: Dict[str, _SyntheticExperimentClosure] = dict()
-""" The dictionary of `SyntheticExperimentCollection`. """
-
-
-def register(id_: str, closure: _SyntheticExperimentClosure) -> None:
- """
- Add a new synthetic experiment to the Inventory.
-
- Parameters:
- id_: the unique id for the model.
- closure: a function which returns a SyntheticExperimentCollection
-
- """
- Inventory[id_] = closure
-
-
-def retrieve(id_: str, **kwargs) -> SyntheticExperimentCollection:
- """
- Retrieve a synthetic experiment from the Inventory.
-
- Parameters:
- id_: the unique id for the model
- **kwargs: keyword arguments for the synthetic experiment (metadata, coefficients etc.)
- Returns:
- the synthetic experiment
- """
- closure: _SyntheticExperimentClosure = Inventory[id_]
- evaluated_closure = closure(**kwargs)
- evaluated_closure.closure = closure
- return evaluated_closure
-
-
-@singledispatch
-def describe(arg):
- """
- Print the docstring for a synthetic experiment.
-
- Args:
- arg: the experiment's ID, an object returned from the `retrieve` function, or a closure
- which creates a new experiment.
- """
- raise NotImplementedError(f"{arg=} not yet supported")
-
-
-@describe.register
-def _(closure: _SyntheticExperimentClosure):
- print(closure.__doc__)
-
-
-@describe.register
-def _(collection: SyntheticExperimentCollection):
- describe(collection.closure)
-
-
-@describe.register
-def _(id_: str):
- describe(retrieve(id_))
diff --git a/autora/theorist/__init__.py b/autora/theorist/__init__.py
deleted file mode 100644
index e69de29bb..000000000
diff --git a/autora/theorist/bms/__init__.py b/autora/theorist/bms/__init__.py
deleted file mode 100644
index ce93fbce6..000000000
--- a/autora/theorist/bms/__init__.py
+++ /dev/null
@@ -1,3 +0,0 @@
-from .mcmc import Tree # noqa: F401
-from .parallel import Parallel # noqa: F401
-from .prior import get_priors # noqa: F401
diff --git a/autora/theorist/bms/data/named_equations.wiki.parsed__num_operations.dat b/autora/theorist/bms/data/named_equations.wiki.parsed__num_operations.dat
deleted file mode 100644
index 37fbb6085..000000000
--- a/autora/theorist/bms/data/named_equations.wiki.parsed__num_operations.dat
+++ /dev/null
@@ -1,30 +0,0 @@
-0 2213
-1 572
-2 296
-3 242
-4 168
-5 136
-6 111
-7 83
-8 60
-9 45
-10 26
-11 38
-12 20
-13 20
-14 11
-15 10
-16 6
-17 3
-18 6
-19 2
-20 2
-21 1
-24 1
-26 2
-27 1
-28 1
-31 1
-34 1
-38 1
-52 1
diff --git a/autora/theorist/bms/data/named_equations.wiki.parsed__operation_type.dat b/autora/theorist/bms/data/named_equations.wiki.parsed__operation_type.dat
deleted file mode 100644
index 7d25e54f1..000000000
--- a/autora/theorist/bms/data/named_equations.wiki.parsed__operation_type.dat
+++ /dev/null
@@ -1,18 +0,0 @@
-sinh 5
-cos 65
-log 132
-tanh 6
-pow2 547
-- 520
-abs 27
-sqrt 130
-cosh 4
-fac 7
-+ 1271
-** 652
-exp 129
-pow3 38
-* 2774
-/ 1146
-sin 39
-tan 4
diff --git a/autora/theorist/bms/data/named_equations.wiki.parsed__operation_type_sq.dat b/autora/theorist/bms/data/named_equations.wiki.parsed__operation_type_sq.dat
deleted file mode 100644
index 32397b302..000000000
--- a/autora/theorist/bms/data/named_equations.wiki.parsed__operation_type_sq.dat
+++ /dev/null
@@ -1,18 +0,0 @@
-sinh 5
-cos 113
-log 156
-tanh 6
-pow2 1193
-- 738
-abs 31
-sqrt 266
-cosh 4
-fac 9
-+ 2981
-** 1328
-exp 163
-pow3 50
-* 9374
-/ 2260
-sin 41
-tan 4
diff --git a/autora/theorist/bms/fit_prior.py b/autora/theorist/bms/fit_prior.py
deleted file mode 100644
index abe7ca512..000000000
--- a/autora/theorist/bms/fit_prior.py
+++ /dev/null
@@ -1,278 +0,0 @@
-from datetime import datetime
-from optparse import OptionParser
-from random import choice, random
-
-from .mcmc import Tree
-from .prior import get_priors
-
-
-# -----------------------------------------------------------------------------
-def parse_options():
- """Parse command-line arguments."""
- parser = OptionParser()
- parser.add_option(
- "-s",
- "--source",
- dest="source",
- default="named_equations",
- help="formula dataset to use ('full' or 'named_equations' (default))",
- )
- parser.add_option(
- "-n",
- "--nvar",
- dest="nvar",
- type="int",
- default=5,
- help="number of variables to include (default 5)",
- )
- parser.add_option(
- "-m",
- "--npar",
- dest="npar",
- type="int",
- default=None,
- help="number of parameters to include (default: 2*NVAR)",
- )
- parser.add_option(
- "-f",
- "--factor",
- dest="fact",
- type="float",
- default=0.05,
- help="factor for the parameter adjustment (default 0.05)",
- )
- parser.add_option(
- "-r",
- "--repetitions",
- type="int",
- default=1000000,
- dest="nrep",
- help="formulas to generate between parameter updates",
- )
- parser.add_option(
- "-M",
- "--maxsize",
- type="int",
- default=50,
- dest="max_size",
- help="maximum tree (formula) size",
- )
- parser.add_option(
- "-c",
- "--continue",
- dest="contfile",
- default=None,
- help="continue from parameter values in CONTFILE (default: start from scratch)",
- )
- parser.add_option(
- "-q",
- "--quadratic",
- action="store_true",
- dest="quadratic",
- default=False,
- help="fit parameters for quadratic terms (default: False)",
- )
- return parser
-
-
-# -----------------------------------------------------------------------------
-def read_target_values(source, quadratic=False):
- """Read the target proportions for each type of operation."""
- # Number of formulas
- infn1 = "./data/%s.wiki.parsed__num_operations.dat" % source
- with open(infn1) as inf1:
- lines = inf1.readlines()
- nform = sum([int(line.strip().split()[1]) for line in lines])
- # Fraction of each of the operations
- infn2 = "./data/%s.wiki.parsed__operation_type.dat" % source
- with open(infn2) as inf2:
- lines = inf2.readlines()
- target = dict(
- [
- (
- "Nopi_%s" % line.strip().split()[0],
- float(line.strip().split()[1]) / nform,
- )
- for line in lines
- ]
- )
- # Fraction of each of the operations squared
- if quadratic:
- infn3 = "./data/%s.wiki.parsed__operation_type_sq.dat" % (source)
- with open(infn3) as inf3:
- lines = inf3.readlines()
- target2 = dict(
- [
- (
- "Nopi2_%s" % line.strip().split()[0],
- float(line.strip().split()[1]) / nform,
- )
- for line in lines
- ]
- )
- for k, v in list(target2.items()):
- target[k] = v
- # Done
- return target, nform
-
-
-# -----------------------------------------------------------------------------
-def update_ppar(tree, current, target, terms=None, step=0.05):
- """Update the prior parameters using a gradient descend of sorts."""
-
- # Which terms should we update? (Default: all)
- if terms is None:
- terms = list(current.keys())
- # Update
- for t in terms:
- if current[t] > target[t]:
- tree.prior_par[t] += min(
- 0.5,
- random() * step * float(current[t] - target[t]) / (target[t] + 1e-10),
- )
- elif current[t] < target[t]:
- tree.prior_par[t] -= min(
- 0.5,
- random() * step * float(target[t] - current[t]) / (target[t] + 1e-10),
- )
- else:
- pass
- # Make sure quadratic terms are not below the minimum allowed
- for t in [t for t in terms if t.startswith("Nopi2_")]:
- """
- lint = t.replace('Nopi2_', 'Nopi_')
- op = t[6:]
- nopmax = float(tree.max_size) / tree.ops[op] - 1.
- minval = - tree.prior_par[lint] / nopmax
- """
- minval = 0.0
- if tree.prior_par[t] < minval:
- tree.prior_par[t] = minval
-
- return
-
-
-# -----------------------------------------------------------------------------
-def read_prior_par(inFileName):
- with open(inFileName) as inf:
- lines = inf.readlines()
- ppar = dict(
- list(
- zip(
- lines[0].strip().split()[1:],
- [float(x) for x in lines[-1].strip().split()[1:]],
- )
- )
- )
- return ppar
-
-
-# -----------------------------------------------------------------------------
-# -----------------------------------------------------------------------------
-if __name__ == "__main__":
- MAX_SIZE = 50
- parser = parse_options()
- opt, args = parser.parse_args()
- if opt.npar is None:
- opt.npar = 2 * opt.nvar
- target, nform = read_target_values(opt.source, quadratic=opt.quadratic)
- print(opt.contfile)
- print("\n>> TARGET:", target)
-
- # Create prior parameter dictionary from scratch or load it from file
- if opt.contfile is not None:
- ppar = read_prior_par(opt.contfile)
- # Add values to parameters for the quadratic terms (and modify
- # those of the linear terms accordingly) if you loaded ppar
- # from a file without quadratic terms
- if opt.quadratic:
- for t in [
- t
- for t in target
- if t.startswith("Nopi2_") and t not in list(ppar.keys())
- ]:
- ppar[t] = 0.0
- else:
- ppar = dict(
- [(k, 10.0) for k in target if k.startswith("Nopi_")]
- + [(k, 0.0) for k in target if not k.startswith("Nopi_")]
- )
- print("\n>> PRIOR_PAR:", ppar)
-
- # Preliminaries
- if opt.quadratic:
- outFileName = "prior_param_sq.%s.nv%d.np%d.maxs%d.%s.dat" % (
- opt.source,
- opt.nvar,
- opt.npar,
- opt.max_size,
- datetime.now(),
- )
- else:
- outFileName = "prior_param.%s.nv%d.np%d.maxs%d.%s.dat" % (
- opt.source,
- opt.nvar,
- opt.npar,
- opt.max_size,
- datetime.now(),
- )
- with open(outFileName, "w") as outf:
- print("#", " ".join([o for o in ppar]), file=outf)
- iteration = 0
-
- # Do the loop!
- while True:
- # Create new seed formula
- tree = Tree(
- ops=dict(
- [(o[5:], get_priors()[1][o[5:]]) for o in ppar if o.startswith("Nopi_")]
- ),
- variables=["x%d" % (i + 1) for i in range(opt.nvar)],
- parameters=["a%d" % (i + 1) for i in range(opt.npar)],
- max_size=opt.max_size,
- prior_par=ppar,
- )
-
- # Generate the formulas and compute the features
- current = dict([(t, 0) for t in ppar])
- for rep in range(opt.nrep):
- tree.mcmc_step()
- for o, nopi in list(tree.nops.items()):
- current["Nopi_%s" % o] += nopi
- try:
- current["Nopi2_%s" % o] += nopi * nopi
- except KeyError:
- pass
-
- # Normalize the current counts
- current = dict([(t, float(v) / opt.nrep) for t, v in list(current.items())])
-
- # Output some info to stdout and to output file
- print(40 * "-")
- print(tree.prior_par)
- with open(outFileName, "a") as outf:
- print(iteration, " ".join([str(v) for v in list(ppar.values())]), file=outf)
- for t in ppar:
- print(
- t,
- current[t],
- target[t],
- "%.1f" % (float(current[t] - target[t]) * 100.0 / target[t]),
- )
- iteration += 1
-
- # Update parameters
- dice = random()
- # all terms
- if dice < 0.8:
- update_ppar(tree, current, target, step=opt.fact)
- # a single randomly chosen term
- else:
- update_ppar(
- tree,
- current,
- target,
- step=opt.fact,
- terms=[choice(list(current.keys()))],
- )
- ppar = tree.prior_par
diff --git a/autora/theorist/bms/mcmc.py b/autora/theorist/bms/mcmc.py
deleted file mode 100644
index afbd71129..000000000
--- a/autora/theorist/bms/mcmc.py
+++ /dev/null
@@ -1,1582 +0,0 @@
-"""
-A Markov-Chain Monte-Carlo module.
-
-Module constants:
- `get_ops()`:
- A dictionary of accepted operations: `{operation_name: offspring}`
-
- `operation_name`: the operation name, e.g. 'sin' for the sinusoid function
-
- `offspring`: the number of arguments the function requires.
-
- For instance, `get_ops() = {"sin": 1, "**": 2 }` means for
- `sin` the function call looks like `sin(x1)` whereas for
- the exponentiation operator `**`, the function call looks like `x1 ** x2`
-"""
-
-import json
-import logging
-import sys
-from copy import deepcopy
-from inspect import signature
-from itertools import permutations, product
-from random import choice, random, seed
-from typing import List
-
-import matplotlib.pyplot as plt
-import numpy as np
-import pandas as pd
-import scipy
-from scipy.optimize import curve_fit
-from sympy import lambdify, latex, log, sympify
-
-from .prior import get_priors, relu
-
-_logger = logging.getLogger(__name__)
-
-
-class Node:
- """
- Object that holds algebraic term. This could be a function, variable, or parameter.
-
- Attributes:
- order: number of children nodes this term has
- e.g. cos(x) has one child, whereas add(x,y) has two children
- """
-
- def __init__(self, value, parent=None, offspring=[]):
- """
- Initialises the node object.
-
- Arguments:
- parent: parent node - unless this node is the root, this will be whichever node contains
- the function this node's term is most immediately nested within
- e.g. f(x) is the parent of g(x) in f(g(x))
- offspring: list of child nodes
- value: the specific term held by this node
- """
- self.parent: Node = parent
- self.offspring: List[Node] = offspring
- self.value: str = value
- self.order: int = len(self.offspring)
-
- def pr(self, custom_ops, show_pow=False):
- """
- Converts expression in readable form
-
- Returns: String
- """
- if self.offspring == []:
- return "%s" % self.value
- elif len(self.offspring) == 2 and self.value not in custom_ops:
- return "(%s %s %s)" % (
- self.offspring[0].pr(custom_ops=custom_ops, show_pow=show_pow),
- self.value,
- self.offspring[1].pr(custom_ops=custom_ops, show_pow=show_pow),
- )
- else:
- if show_pow:
- return "%s(%s)" % (
- self.value,
- ",".join(
- [
- o.pr(custom_ops=custom_ops, show_pow=show_pow)
- for o in self.offspring
- ]
- ),
- )
- else:
- if self.value == "pow2":
- return "(%s ** 2)" % (
- self.offspring[0].pr(custom_ops=custom_ops, show_pow=show_pow)
- )
- elif self.value == "pow3":
- return "(%s ** 3)" % (
- self.offspring[0].pr(custom_ops=custom_ops, show_pow=show_pow)
- )
- else:
- return "%s(%s)" % (
- self.value,
- ",".join(
- [
- o.pr(custom_ops=custom_ops, show_pow=show_pow)
- for o in self.offspring
- ]
- ),
- )
-
-
-class Tree:
- """
- Object that manages the model equation. It contains the root node, which in turn iteratively
- holds children nodes. Collectively this represents the model equation tree
-
- Attributes:
- root: the root node of the equation tree
- parameters: the settable parameters for this trees model search
- op_orders: order of each function within the ops
- nops: number of operations of each type
- move_types: possible combinations of function nesting
- ets: possible elementary equation trees
- dist_par: distinct parameters used
- nodes: nodes of the tree (operations and leaves)
- et_space: space of all possible leaves and elementary trees
- rr_space: space of all possible root replacement trees
- num_rr: number of possible root replacement trees
- x: independent variable data
- y: depedent variable data
- par_values: The values of the model parameters (one set of values for each dataset)
- fit_par: past successful parameter fittings
- sse: sum of squared errors (measure of goodness of fit)
- bic: bayesian information criterion (measure of goodness of fit)
- E: total energy of model
- EB: fraction of energy derived from bic score of model
- EP: fraction of energy derived from model given prior
- representative: representative tree for each canonical formula
- """
-
- prior, ops = get_priors()
-
- def __init__(
- self,
- ops=ops,
- variables=["x"],
- parameters=["a"],
- prior_par=prior,
- x=None,
- y=None,
- BT=1.0,
- PT=1.0,
- max_size=50,
- root_value=None,
- fixed_root=False,
- custom_ops={},
- seed_value=None,
- ):
- """
- Initialises the tree object
-
- Args:
- ops: allowed operations to compose equation
- variables: dependent variable names
- parameters: parameters that can be used to better fit the equation to the data
- prior_par: hyperparameter values over operations within ops
- x: dependent variables
- y: independent variables
- BT: BIC value corresponding to equation
- PT: prior temperature
- max_size: maximum size of tree (maximum number of nodes)
- root_value: algebraic term held at root of equation
- """
- if seed_value is not None:
- seed(seed_value)
- # The variables and parameters
- if custom_ops is None:
- custom_ops = dict()
- self.variables = variables
- self.parameters = [
- p if p.startswith("_") and p.endswith("_") else "_%s_" % p
- for p in parameters
- ]
- # The root
- self.fixed_root = fixed_root
- if root_value is None:
- self.root = Node(
- choice(self.variables + self.parameters), offspring=[], parent=None
- )
- else:
- self.root = Node(root_value, offspring=[], parent=None)
- root_order = len(signature(custom_ops[root_value]).parameters)
- self.root.order = root_order
- for _ in range(root_order):
- self.root.offspring.append(
- Node(
- choice(self.variables + self.parameters),
- offspring=[],
- parent=self.root,
- )
- )
-
- # The possible operations
- self.ops = ops
- self.custom_ops = custom_ops
- # The possible orders of the operations, move types, and move
- # type probabilities
- self.op_orders = list(set([0] + [n for n in list(ops.values())]))
- self.move_types = [p for p in permutations(self.op_orders, 2)]
- # Elementary trees (including leaves), indexed by order
- self.ets = dict([(o, []) for o in self.op_orders])
- self.ets[0] = [x for x in self.root.offspring]
- self.ets[self.root.order] = [self.root]
- # Distinct parameters used
- self.dist_par = list(
- set([n.value for n in self.ets[0] if n.value in self.parameters])
- )
- self.n_dist_par = len(self.dist_par)
- # Nodes of the tree (operations + leaves)
- self.nodes = [self.root]
- # Tree size and other properties of the model
- self.size = 1
- self.max_size = max_size
- # Space of all possible leaves and elementary trees
- # (dict. indexed by order)
- self.et_space = self.build_et_space()
- # Space of all possible root replacement trees
- self.rr_space = self.build_rr_space()
- self.num_rr = len(self.rr_space)
- # Number of operations of each type
- self.nops = dict([[o, 0] for o in ops])
- if root_value is not None:
- self.nops[self.root.value] += 1
- # The parameters of the prior probability (default: 5 everywhere)
- if prior_par == {}:
- self.prior_par = dict([("Nopi_%s" % t, 10.0) for t in self.ops])
- else:
- self.prior_par = prior_par
- # The datasets
- if x is None:
- self.x = {"d0": pd.DataFrame()}
- self.y = {"d0": pd.Series(dtype=float)}
- elif isinstance(x, pd.DataFrame):
- self.x = {"d0": x}
- self.y = {"d0": y}
- elif isinstance(x, dict):
- self.x = x
- if y is None:
- self.y = dict([(ds, pd.Series(dtype=float)) for ds in self.x])
- else:
- self.y = y
- else:
- raise TypeError("x must be either a dict or a pandas.DataFrame")
- # The values of the model parameters (one set of values for each dataset)
- self.par_values = dict(
- [(ds, deepcopy(dict([(p, 1.0) for p in self.parameters]))) for ds in self.x]
- )
- # BIC and prior temperature
- self.BT = float(BT)
- self.PT = float(PT)
- # For fast fitting, we save past successful fits to this formula
- self.fit_par = {}
- # Goodness of fit measures
- self.sse = self.get_sse()
- self.bic = self.get_bic()
- self.E, self.EB, self.EP = self.get_energy()
- # To control formula degeneracy (i.e. different trees that
- # correspond to the same canonical formula), we store the
- # representative tree for each canonical formula
- self.representative = {}
- self.representative[self.canonical()] = (
- str(self),
- self.E,
- deepcopy(self.par_values),
- )
- # Done
- return
-
- # -------------------------------------------------------------------------
- def __repr__(self):
- """
- Updates tree's internal representation
-
- Returns: root node representation
-
- """
- return self.root.pr(custom_ops=self.custom_ops)
-
- # -------------------------------------------------------------------------
- def pr(self, show_pow=True):
- """
- Returns readable representation of tree's root node
-
- Returns: root node representation
-
- """
- return self.root.pr(custom_ops=self.custom_ops, show_pow=show_pow)
-
- # -------------------------------------------------------------------------
- def canonical(self, verbose=False):
- """
- Provides canonical form of tree's equation so that functionally equivalent trees
- are made into structurally equivalent trees
-
- Return: canonical form of a tree
- """
- try:
- cansp = sympify(str(self).replace(" ", ""))
- can = str(cansp)
- ps = list([str(s) for s in cansp.free_symbols])
- positions = []
- for p in ps:
- if p.startswith("_") and p.endswith("_"):
- positions.append((can.find(p), p))
- positions.sort()
- pcount = 1
- for pos, p in positions:
- can = can.replace(p, "c%d" % pcount)
- pcount += 1
- except SyntaxError:
- if verbose:
- print(
- "WARNING: Could not get canonical form for",
- str(self),
- "(using full form!)",
- file=sys.stderr,
- )
- can = str(self)
- return can.replace(" ", "")
-
- # -------------------------------------------------------------------------
- def latex(self):
- """
- translate equation into latex
-
- Returns: canonical latex form of equation
- """
- return latex(sympify(self.canonical()))
-
- # -------------------------------------------------------------------------
- def build_et_space(self):
- """
- Build the space of possible elementary trees,
- which is a dictionary indexed by the order of the elementary tree
-
- Returns: space of elementary trees
- """
- et_space = dict([(o, []) for o in self.op_orders])
- et_space[0] = [[x, []] for x in self.variables + self.parameters]
- for op, noff in list(self.ops.items()):
- for vs in product(et_space[0], repeat=noff):
- et_space[noff].append([op, [v[0] for v in vs]])
- return et_space
-
- # -------------------------------------------------------------------------
- def build_rr_space(self):
- """
- Build the space of possible trees for the root replacement move
-
- Returns: space of possible root replacements
- """
- rr_space = []
- for op, noff in list(self.ops.items()):
- if noff == 1:
- rr_space.append([op, []])
- else:
- for vs in product(self.et_space[0], repeat=(noff - 1)):
- rr_space.append([op, [v[0] for v in vs]])
- return rr_space
-
- # -------------------------------------------------------------------------
- def replace_root(self, rr=None, update_gof=True, verbose=False):
- """
- Replace the root with a "root replacement" rr (if provided;
- otherwise choose one at random from self.rr_space)
-
- Returns: new root (if move was possible) or None (otherwise)
- """
- # If no RR is provided, randomly choose one
- if rr is None:
- rr = choice(self.rr_space)
- # Return None if the replacement is too big
- if (self.size + self.ops[rr[0]]) > self.max_size:
- return None
- # Create the new root and replace existing root
- newRoot = Node(rr[0], offspring=[], parent=None)
- newRoot.order = 1 + len(rr[1])
- if newRoot.order != self.ops[rr[0]]:
- raise
- newRoot.offspring.append(self.root)
- self.root.parent = newRoot
- self.root = newRoot
- self.nops[self.root.value] += 1
- self.nodes.append(self.root)
- self.size += 1
- oldRoot = self.root.offspring[0]
- for leaf in rr[1]:
- self.root.offspring.append(Node(leaf, offspring=[], parent=self.root))
- self.nodes.append(self.root.offspring[-1])
- self.ets[0].append(self.root.offspring[-1])
- self.size += 1
- # Add new root to elementary trees if necessary (that is, iff
- # the old root was a leaf)
- if oldRoot.offspring is []:
- self.ets[self.root.order].append(self.root)
- # Update list of distinct parameters
- self.dist_par = list(
- set([n.value for n in self.ets[0] if n.value in self.parameters])
- )
- self.n_dist_par = len(self.dist_par)
- # Update goodness of fit measures, if necessary
- if update_gof:
- self.sse = self.get_sse(verbose=verbose)
- self.bic = self.get_bic(verbose=verbose)
- self.E = self.get_energy(verbose=verbose)
- return self.root
-
- # -------------------------------------------------------------------------
- def is_root_prunable(self):
- """
- Check if the root is "prunable"
-
- Returns: boolean of root "prunability"
- """
- if self.size == 1:
- isPrunable = False
- elif self.size == 2:
- isPrunable = True
- else:
- isPrunable = True
- for o in self.root.offspring[1:]:
- if o.offspring != []:
- isPrunable = False
- break
- return isPrunable
-
- # -------------------------------------------------------------------------
- def prune_root(self, update_gof=True, verbose=False):
- """
- Cut the root and its rightmost leaves (provided they are, indeed, leaves),
- leaving the leftmost branch as the new tree. Returns the pruned root with the same format
- as the replacement roots in self.rr_space (or None if pruning was impossible)
-
- Returns: the replacement root
- """
- # Check if the root is "prunable" (and return None if not)
- if not self.is_root_prunable():
- return None
- # Let's do it!
- rr = [self.root.value, []]
- self.nodes.remove(self.root)
- try:
- self.ets[len(self.root.offspring)].remove(self.root)
- except ValueError:
- pass
- self.nops[self.root.value] -= 1
- self.size -= 1
- for o in self.root.offspring[1:]:
- rr[1].append(o.value)
- self.nodes.remove(o)
- self.size -= 1
- self.ets[0].remove(o)
- self.root = self.root.offspring[0]
- self.root.parent = None
- # Update list of distinct parameters
- self.dist_par = list(
- set([n.value for n in self.ets[0] if n.value in self.parameters])
- )
- self.n_dist_par = len(self.dist_par)
- # Update goodness of fit measures, if necessary
- if update_gof:
- self.sse = self.get_sse(verbose=verbose)
- self.bic = self.get_bic(verbose=verbose)
- self.E = self.get_energy(verbose=verbose)
- # Done
- return rr
-
- # -------------------------------------------------------------------------
- def _add_et(self, node, et_order=None, et=None, update_gof=True, verbose=False):
- """
- Add an elementary tree replacing the node, which must be a leaf
-
- Returns: the input node
- """
- if node.offspring != []:
- raise
- # If no ET is provided, randomly choose one (of the specified
- # order if given, or totally at random otherwise)
- if et is None:
- if et_order is not None:
- et = choice(self.et_space[et_order])
- else:
- all_ets = []
- for o in [o for o in self.op_orders if o > 0]:
- all_ets += self.et_space[o]
- et = choice(all_ets)
- et_order = len(et[1])
- else:
- et_order = len(et[1])
- # Update the node and its offspring
- node.value = et[0]
- try:
- self.nops[node.value] += 1
- except KeyError:
- pass
- node.offspring = [Node(v, parent=node, offspring=[]) for v in et[1]]
- self.ets[et_order].append(node)
- try:
- self.ets[len(node.parent.offspring)].remove(node.parent)
- except ValueError:
- pass
- except AttributeError:
- pass
- # Add the offspring to the list of nodes
- for n in node.offspring:
- self.nodes.append(n)
- # Remove the node from the list of leaves and add its offspring
- self.ets[0].remove(node)
- for o in node.offspring:
- self.ets[0].append(o)
- self.size += 1
- # Update list of distinct parameters
- self.dist_par = list(
- set([n.value for n in self.ets[0] if n.value in self.parameters])
- )
- self.n_dist_par = len(self.dist_par)
- # Update goodness of fit measures, if necessary
- if update_gof:
- self.sse = self.get_sse(verbose=verbose)
- self.bic = self.get_bic(verbose=verbose)
- self.E = self.get_energy(verbose=verbose)
- return node
-
- # -------------------------------------------------------------------------
- def _del_et(self, node, leaf=None, update_gof=True, verbose=False):
- """
- Remove an elementary tree, replacing it by a leaf
-
- Returns: input node
- """
- if self.size == 1:
- return None
- if leaf is None:
- leaf = choice(self.et_space[0])[0]
- self.nops[node.value] -= 1
- node.value = leaf
- self.ets[len(node.offspring)].remove(node)
- self.ets[0].append(node)
- for o in node.offspring:
- self.ets[0].remove(o)
- self.nodes.remove(o)
- self.size -= 1
- node.offspring = []
- if node.parent is not None:
- is_parent_et = True
- for o in node.parent.offspring:
- if o not in self.ets[0]:
- is_parent_et = False
- break
- if is_parent_et:
- self.ets[len(node.parent.offspring)].append(node.parent)
- # Update list of distinct parameters
- self.dist_par = list(
- set([n.value for n in self.ets[0] if n.value in self.parameters])
- )
- self.n_dist_par = len(self.dist_par)
- # Update goodness of fit measures, if necessary
- if update_gof:
- self.sse = self.get_sse(verbose=verbose)
- self.bic = self.get_bic(verbose=verbose)
- self.E = self.get_energy(verbose=verbose)
- return node
-
- # -------------------------------------------------------------------------
- def et_replace(self, target, new, update_gof=True, verbose=False):
- """
- Replace one elementary tree with another one, both of arbitrary order. target is a
- Node and new is a tuple [node_value, [list, of, offspring, values]]
-
- Returns: target
- """
- oini, ofin = len(target.offspring), len(new[1])
- if oini == 0:
- added = self._add_et(target, et=new, update_gof=False, verbose=verbose)
- else:
- if ofin == 0:
- added = self._del_et(
- target, leaf=new[0], update_gof=False, verbose=verbose
- )
- else:
- self._del_et(target, update_gof=False, verbose=verbose)
- added = self._add_et(target, et=new, update_gof=False, verbose=verbose)
- # Update goodness of fit measures, if necessary
- if update_gof:
- self.sse = self.get_sse(verbose=verbose)
- self.bic = self.get_bic(verbose=verbose)
- # Done
- return added
-
- # -------------------------------------------------------------------------
- def get_sse(self, fit=True, verbose=False):
- """
- Get the sum of squared errors, fitting the expression represented by the Tree
- to the existing data, if specified (by default, yes)
-
- Returns: sum of square errors (sse)
- """
- # Return 0 if there is no data
- if list(self.x.values())[0].empty or list(self.y.values())[0].empty:
- self.sse = 0
- return 0
- # Convert the Tree into a SymPy expression
- ex = sympify(str(self))
- # Convert the expression to a function that can be used by
- # curve_fit, i.e. that takes as arguments (x, a0, a1, ..., an)
- atomd = dict([(a.name, a) for a in ex.atoms() if a.is_Symbol])
- variables = [atomd[v] for v in self.variables if v in list(atomd.keys())]
- parameters = [atomd[p] for p in self.parameters if p in list(atomd.keys())]
- dic: dict = dict(
- {
- "fac": scipy.special.factorial,
- "sig": scipy.special.expit,
- "relu": relu,
- },
- **self.custom_ops
- )
- try:
- flam = lambdify(
- variables + parameters,
- ex,
- [
- "numpy",
- dic,
- ],
- )
- except (SyntaxError, KeyError):
- self.sse = dict([(ds, np.inf) for ds in self.x])
- return self.sse
- if fit:
- if len(parameters) == 0: # Nothing to fit
- for ds in self.x:
- for p in self.parameters:
- self.par_values[ds][p] = 1.0
- elif str(self) in self.fit_par: # Recover previously fit parameters
- self.par_values = self.fit_par[str(self)]
- else: # Do the fit for all datasets
- self.fit_par[str(self)] = {}
- for ds in self.x:
- this_x, this_y = self.x[ds], self.y[ds]
- xmat = [this_x[v.name] for v in variables]
-
- def feval(x, *params):
- args = [xi for xi in x] + [p for p in params]
- return flam(*args)
-
- try:
- # Fit the parameters
- res = curve_fit(
- feval,
- xmat,
- this_y,
- p0=[self.par_values[ds][p.name] for p in parameters],
- maxfev=10000,
- )
- # Reassign the values of the parameters
- self.par_values[ds] = dict(
- [
- (parameters[i].name, res[0][i])
- for i in range(len(res[0]))
- ]
- )
- for p in self.parameters:
- if p not in self.par_values[ds]:
- self.par_values[ds][p] = 1.0
- # Save this fit
- self.fit_par[str(self)][ds] = deepcopy(self.par_values[ds])
- except RuntimeError:
- # Save this (unsuccessful) fit and print warning
- self.fit_par[str(self)][ds] = deepcopy(self.par_values[ds])
- if verbose:
- print(
- "#Cannot_fit:%s # # # # #" % str(self).replace(" ", ""),
- file=sys.stderr,
- )
-
- # Sum of squared errors
- self.sse = {}
- for ds in self.x:
- this_x, this_y = self.x[ds], self.y[ds]
- xmat = [this_x[v.name] for v in variables]
- ar = [np.array(xi) for xi in xmat] + [
- self.par_values[ds][p.name] for p in parameters
- ]
- try:
- se = np.square(this_y - flam(*ar))
- if sum(np.isnan(se)) > 0:
- raise ValueError
- else:
- self.sse[ds] = np.sum(se)
- except ValueError:
- if verbose:
- print("> Cannot calculate SSE for %s: inf" % self, file=sys.stderr)
- self.sse[ds] = np.inf
-
- # Done
- return self.sse
-
- # -------------------------------------------------------------------------
- def get_bic(self, reset=True, fit=False, verbose=False):
- """
- Calculate the Bayesian information criterion (BIC) of the current expression,
- given the data. If reset==False, the value of self.bic will not be updated
- (by default, it will)
-
- Returns: Bayesian information criterion (BIC)
- """
- if list(self.x.values())[0].empty or list(self.y.values())[0].empty:
- if reset:
- self.bic = 0
- return 0
- # Get the sum of squared errors (fitting, if required)
- sse = self.get_sse(fit=fit, verbose=verbose)
- # Calculate the BIC
- parameters = set([p.value for p in self.ets[0] if p.value in self.parameters])
- k = 1 + len(parameters)
- BIC = 0.0
- for ds in self.y:
- n = len(self.y[ds])
- BIC += (k - n) * np.log(n) + n * (np.log(2.0 * np.pi) + log(sse[ds]) + 1)
- for ds in self.y:
- if sse[ds] == 0.0:
- BIC = -np.inf
- if reset:
- self.bic = BIC
- return BIC
-
- # -------------------------------------------------------------------------
- def get_energy(self, bic=False, reset=False, verbose=False):
- """
- Calculate the "energy" of a given formula, that is, approximate minus log-posterior
- of the formula given the data (the approximation coming from the use of the BIC
- instead of the exactly integrated likelihood)
-
- Returns: Energy of formula (as E, EB, and EP)
- """
- # Contribution of the data (recalculating BIC if necessary)
- if bic:
- EB = self.get_bic(reset=reset, verbose=verbose) / 2.0
- else:
- EB = self.bic / 2.0
- # Contribution from the prior
- EP = 0.0
- for op, nop in list(self.nops.items()):
- try:
- EP += self.prior_par["Nopi_%s" % op] * nop
- except KeyError:
- pass
- try:
- EP += self.prior_par["Nopi2_%s" % op] * nop**2
- except KeyError:
- pass
- # Reset the value, if necessary
- if reset:
- self.EB = EB
- self.EP = EP
- self.E = EB + EP
- # Done
- return EB + EP, EB, EP
-
- # -------------------------------------------------------------------------
- def update_representative(self, verbose=False):
- """Check if we've seen this formula before, either in its current form
- or in another form.
-
- *If we haven't seen it, save it and return 1.
-
- *If we have seen it and this IS the representative, just return 0.
-
- *If we have seen it and the representative has smaller energy, just return -1.
-
- *If we have seen it and the representative has higher energy, update
- the representatitve and return -2.
-
- Returns: Integer value (0, 1, or -1) corresponding to:
- 0: we have seen this canonical form before
- 1: we haven't seen this canonical form before
- -1: we have seen this equation's canonical form before but it isn't in that form yet
- """
- # Check for canonical representative
- canonical = self.canonical(verbose=verbose)
- try: # We've seen this canonical before!
- rep, rep_energy, rep_par_values = self.representative[canonical]
- except KeyError: # Never seen this canonical formula before:
- # save it and return 1
- self.get_bic(reset=True, fit=True, verbose=verbose)
- new_energy = self.get_energy(bic=False, verbose=verbose)
- self.representative[canonical] = (
- str(self),
- new_energy,
- deepcopy(self.par_values),
- )
- return 1
-
- # If we've seen this canonical before, check if the
- # representative needs to be updated
- if rep == str(self): # This IS the representative: return 0
- return 0
- else:
- return -1
-
- # -------------------------------------------------------------------------
- def dE_et(self, target, new, verbose=False):
- """
- Calculate the energy change associated to the replacement of one elementary tree
- with another, both of arbitrary order. "target" is a Node() and "new" is
- a tuple [node_value, [list, of, offspring, values]].
-
- Returns: change in energy associated with an elementary tree replacement move
- """
- dEB, dEP = 0.0, 0.0
-
- # Some terms of the acceptance (number of possible move types
- # from initial and final configurations), as well as checking
- # if the tree is canonically acceptable.
-
- # number of possible move types from initial
- nif = sum(
- [
- int(len(self.ets[oi]) > 0 and (self.size + of - oi) <= self.max_size)
- for oi, of in self.move_types
- ]
- )
- # replace
- old = [target.value, [o.value for o in target.offspring]]
- old_bic, old_sse, old_energy = self.bic, deepcopy(self.sse), self.E
- old_par_values = deepcopy(self.par_values)
- added = self.et_replace(target, new, update_gof=False, verbose=verbose)
- # number of possible move types from final
- nfi = sum(
- [
- int(len(self.ets[oi]) > 0 and (self.size + of - oi) <= self.max_size)
- for oi, of in self.move_types
- ]
- )
- # check/update canonical representative
- rep_res = self.update_representative(verbose=verbose)
- if rep_res == -1:
- # this formula is forbidden
- self.et_replace(added, old, update_gof=False, verbose=verbose)
- self.bic, self.sse, self.E = old_bic, deepcopy(old_sse), old_energy
- self.par_values = old_par_values
- return np.inf, np.inf, np.inf, deepcopy(self.par_values), nif, nfi
- # leave the whole thing as it was before the back & fore
- self.et_replace(added, old, update_gof=False, verbose=verbose)
- self.bic, self.sse, self.E = old_bic, deepcopy(old_sse), old_energy
- self.par_values = old_par_values
- # Prior: change due to the numbers of each operation
- try:
- dEP -= self.prior_par["Nopi_%s" % target.value]
- except KeyError:
- pass
- try:
- dEP += self.prior_par["Nopi_%s" % new[0]]
- except KeyError:
- pass
- try:
- dEP += self.prior_par["Nopi2_%s" % target.value] * (
- (self.nops[target.value] - 1) ** 2 - (self.nops[target.value]) ** 2
- )
- except KeyError:
- pass
- try:
- dEP += self.prior_par["Nopi2_%s" % new[0]] * (
- (self.nops[new[0]] + 1) ** 2 - (self.nops[new[0]]) ** 2
- )
- except KeyError:
- pass
-
- # Data
- if not list(self.x.values())[0].empty:
- bicOld = self.bic
- sseOld = deepcopy(self.sse)
- par_valuesOld = deepcopy(self.par_values)
- old = [target.value, [o.value for o in target.offspring]]
- # replace
- added = self.et_replace(target, new, update_gof=True, verbose=verbose)
- bicNew = self.bic
- par_valuesNew = deepcopy(self.par_values)
- # leave the whole thing as it was before the back & fore
- self.et_replace(added, old, update_gof=False, verbose=verbose)
- self.bic = bicOld
- self.sse = deepcopy(sseOld)
- self.par_values = par_valuesOld
- dEB += (bicNew - bicOld) / 2.0
- else:
- par_valuesNew = deepcopy(self.par_values)
- # Done
- try:
- dEB = float(dEB)
- dEP = float(dEP)
- dE = dEB + dEP
- except (ValueError, TypeError):
- dEB, dEP, dE = np.inf, np.inf, np.inf
- return dE, dEB, dEP, par_valuesNew, nif, nfi
-
- # -------------------------------------------------------------------------
- def dE_lr(self, target, new, verbose=False):
- """
- Calculate the energy change associated to a long-range move
- (the replacement of the value of a node. "target" is a Node() and "new" is a node_value
-
- Returns: energy change associated with a long-range move
- """
- dEB, dEP = 0.0, 0.0
- par_valuesNew = deepcopy(self.par_values)
-
- if target.value != new:
-
- # Check if the new tree is canonically acceptable.
- old = target.value
- old_bic, old_sse, old_energy = self.bic, deepcopy(self.sse), self.E
- old_par_values = deepcopy(self.par_values)
- target.value = new
- try:
- self.nops[old] -= 1
- self.nops[new] += 1
- except KeyError:
- pass
- # check/update canonical representative
- rep_res = self.update_representative(verbose=verbose)
- if rep_res == -1:
- # this formula is forbidden
- target.value = old
- try:
- self.nops[old] += 1
- self.nops[new] -= 1
- except KeyError:
- pass
- self.bic, self.sse, self.E = old_bic, deepcopy(old_sse), old_energy
- self.par_values = old_par_values
- return np.inf, np.inf, np.inf, None
- # leave the whole thing as it was before the back & fore
- target.value = old
- try:
- self.nops[old] += 1
- self.nops[new] -= 1
- except KeyError:
- pass
- self.bic, self.sse, self.E = old_bic, deepcopy(old_sse), old_energy
- self.par_values = old_par_values
-
- # Prior: change due to the numbers of each operation
- try:
- dEP -= self.prior_par["Nopi_%s" % target.value]
- except KeyError:
- pass
- try:
- dEP += self.prior_par["Nopi_%s" % new]
- except KeyError:
- pass
- try:
- dEP += self.prior_par["Nopi2_%s" % target.value] * (
- (self.nops[target.value] - 1) ** 2 - (self.nops[target.value]) ** 2
- )
- except KeyError:
- pass
- try:
- dEP += self.prior_par["Nopi2_%s" % new] * (
- (self.nops[new] + 1) ** 2 - (self.nops[new]) ** 2
- )
- except KeyError:
- pass
-
- # Data
- if not list(self.x.values())[0].empty:
- bicOld = self.bic
- sseOld = deepcopy(self.sse)
- par_valuesOld = deepcopy(self.par_values)
- old = target.value
- target.value = new
- bicNew = self.get_bic(reset=True, fit=True, verbose=verbose)
- par_valuesNew = deepcopy(self.par_values)
- # leave the whole thing as it was before the back & fore
- target.value = old
- self.bic = bicOld
- self.sse = deepcopy(sseOld)
- self.par_values = par_valuesOld
- dEB += (bicNew - bicOld) / 2.0
- else:
- par_valuesNew = deepcopy(self.par_values)
-
- # Done
- try:
- dEB = float(dEB)
- dEP = float(dEP)
- dE = dEB + dEP
- return dE, dEB, dEP, par_valuesNew
- except (ValueError, TypeError):
- return np.inf, np.inf, np.inf, None
-
- # -------------------------------------------------------------------------
- def dE_rr(self, rr=None, verbose=False):
- """
- Calculate the energy change associated to a root replacement move.
- If rr==None, then it returns the energy change associated to pruning the root; otherwise,
- it returns the energy change associated to adding the root replacement "rr"
-
- Returns: energy change associated with a root replacement move
- """
- dEB, dEP = 0.0, 0.0
-
- # Root pruning
- if rr is None:
- if not self.is_root_prunable():
- return np.inf, np.inf, np.inf, self.par_values
-
- # Check if the new tree is canonically acceptable.
- # replace
- old_bic, old_sse, old_energy = self.bic, deepcopy(self.sse), self.E
- old_par_values = deepcopy(self.par_values)
- oldrr = [self.root.value, [o.value for o in self.root.offspring[1:]]]
- self.prune_root(update_gof=False, verbose=verbose)
- # check/update canonical representative
- rep_res = self.update_representative(verbose=verbose)
- if rep_res == -1:
- # this formula is forbidden
- self.replace_root(rr=oldrr, update_gof=False, verbose=verbose)
- self.bic, self.sse, self.E = old_bic, deepcopy(old_sse), old_energy
- self.par_values = old_par_values
- return np.inf, np.inf, np.inf, deepcopy(self.par_values)
- # leave the whole thing as it was before the back & fore
- self.replace_root(rr=oldrr, update_gof=False, verbose=verbose)
- self.bic, self.sse, self.E = old_bic, deepcopy(old_sse), old_energy
- self.par_values = old_par_values
-
- # Prior: change due to the numbers of each operation
- dEP -= self.prior_par["Nopi_%s" % self.root.value]
- try:
- dEP += self.prior_par["Nopi2_%s" % self.root.value] * (
- (self.nops[self.root.value] - 1) ** 2
- - (self.nops[self.root.value]) ** 2
- )
- except KeyError:
- pass
-
- # Data correction
- if not list(self.x.values())[0].empty:
- bicOld = self.bic
- sseOld = deepcopy(self.sse)
- par_valuesOld = deepcopy(self.par_values)
- oldrr = [self.root.value, [o.value for o in self.root.offspring[1:]]]
- # replace
- self.prune_root(update_gof=False, verbose=verbose)
- bicNew = self.get_bic(reset=True, fit=True, verbose=verbose)
- par_valuesNew = deepcopy(self.par_values)
- # leave the whole thing as it was before the back & fore
- self.replace_root(rr=oldrr, update_gof=False, verbose=verbose)
- self.bic = bicOld
- self.sse = deepcopy(sseOld)
- self.par_values = par_valuesOld
- dEB += (bicNew - bicOld) / 2.0
- else:
- par_valuesNew = deepcopy(self.par_values)
- # Done
- try:
- dEB = float(dEB)
- dEP = float(dEP)
- dE = dEB + dEP
- except (ValueError, TypeError):
- dEB, dEP, dE = np.inf, np.inf, np.inf
- return dE, dEB, dEP, par_valuesNew
-
- # Root replacement
- else:
- # Check if the new tree is canonically acceptable.
- # replace
- old_bic, old_sse, old_energy = self.bic, deepcopy(self.sse), self.E
- old_par_values = deepcopy(self.par_values)
- newroot = self.replace_root(rr=rr, update_gof=False, verbose=verbose)
- if newroot is None: # Root cannot be replaced (due to max_size)
- return np.inf, np.inf, np.inf, deepcopy(self.par_values)
- # check/update canonical representative
- rep_res = self.update_representative(verbose=verbose)
- if rep_res == -1:
- # this formula is forbidden
- self.prune_root(update_gof=False, verbose=verbose)
- self.bic, self.sse, self.E = old_bic, deepcopy(old_sse), old_energy
- self.par_values = old_par_values
- return np.inf, np.inf, np.inf, deepcopy(self.par_values)
- # leave the whole thing as it was before the back & fore
- self.prune_root(update_gof=False, verbose=verbose)
- self.bic, self.sse, self.E = old_bic, deepcopy(old_sse), old_energy
- self.par_values = old_par_values
-
- # Prior: change due to the numbers of each operation
- dEP += self.prior_par["Nopi_%s" % rr[0]]
- try:
- dEP += self.prior_par["Nopi2_%s" % rr[0]] * (
- (self.nops[rr[0]] + 1) ** 2 - (self.nops[rr[0]]) ** 2
- )
- except KeyError:
- pass
-
- # Data
- if not list(self.x.values())[0].empty:
- bicOld = self.bic
- sseOld = deepcopy(self.sse)
- par_valuesOld = deepcopy(self.par_values)
- # replace
- newroot = self.replace_root(rr=rr, update_gof=False, verbose=verbose)
- if newroot is None:
- return np.inf, np.inf, np.inf, self.par_values
- bicNew = self.get_bic(reset=True, fit=True, verbose=verbose)
- par_valuesNew = deepcopy(self.par_values)
- # leave the whole thing as it was before the back & fore
- self.prune_root(update_gof=False, verbose=verbose)
- self.bic = bicOld
- self.sse = deepcopy(sseOld)
- self.par_values = par_valuesOld
- dEB += (bicNew - bicOld) / 2.0
- else:
- par_valuesNew = deepcopy(self.par_values)
- # Done
- try:
- dEB = float(dEB)
- dEP = float(dEP)
- dE = dEB + dEP
- except (ValueError, TypeError):
- dEB, dEP, dE = np.inf, np.inf, np.inf
- return dE, dEB, dEP, par_valuesNew
-
- # -------------------------------------------------------------------------
- def mcmc_step(self, verbose=False, p_rr=0.05, p_long=0.45):
- """
- Make a single MCMC step
-
- Returns: None or expression list
- """
- topDice = random()
- # Root replacement move
- if topDice < p_rr:
- if random() < 0.5:
- # Try to prune the root
- dE, dEB, dEP, par_valuesNew = self.dE_rr(rr=None, verbose=verbose)
- if -dEB / self.BT - dEP / self.PT > 300:
- paccept = 1
- else:
- paccept = np.exp(-dEB / self.BT - dEP / self.PT) / float(
- self.num_rr
- )
- dice = random()
- if dice < paccept:
- # Accept move
- self.prune_root(update_gof=False, verbose=verbose)
- self.par_values = par_valuesNew
- self.get_bic(reset=True, fit=False, verbose=verbose)
- self.E += dE
- self.EB += dEB
- self.EP += dEP
- else:
- # Try to replace the root
- newrr = choice(self.rr_space)
- dE, dEB, dEP, par_valuesNew = self.dE_rr(rr=newrr, verbose=verbose)
- if self.num_rr > 0 and -dEB / self.BT - dEP / self.PT > 0:
- paccept = 1.0
- elif self.num_rr == 0:
- paccept = 0.0
- else:
- paccept = self.num_rr * np.exp(-dEB / self.BT - dEP / self.PT)
- dice = random()
- if dice < paccept:
- # Accept move
- self.replace_root(rr=newrr, update_gof=False, verbose=verbose)
- self.par_values = par_valuesNew
- self.get_bic(reset=True, fit=False, verbose=verbose)
- self.E += dE
- self.EB += dEB
- self.EP += dEP
-
- # Long-range move
- elif topDice < (p_rr + p_long) and not (
- self.fixed_root and len(self.nodes) == 1
- ):
- # Choose a random node in the tree, and a random new operation
- target = choice(self.nodes)
- if self.fixed_root:
- while target is self.root:
- target = choice(self.nodes)
- nready = False
- while not nready:
- if len(target.offspring) == 0:
- new = choice(self.variables + self.parameters)
- nready = True
- else:
- new = choice(list(self.ops.keys()))
- if self.ops[new] == self.ops[target.value]:
- nready = True
- dE, dEB, dEP, par_valuesNew = self.dE_lr(target, new, verbose=verbose)
- try:
- paccept = np.exp(-dEB / self.BT - dEP / self.PT)
- except ValueError:
- _logger.warning("Potentially failing to set paccept properly")
- if (dEB / self.BT + dEP / self.PT) < 0:
- paccept = 1.0
- # Accept move, if necessary
- dice = random()
- if dice < paccept:
- # update number of operations
- if target.offspring != []:
- self.nops[target.value] -= 1
- self.nops[new] += 1
- # move
- target.value = new
- # recalculate distinct parameters
- self.dist_par = list(
- set([n.value for n in self.ets[0] if n.value in self.parameters])
- )
- self.n_dist_par = len(self.dist_par)
- # update others
- self.par_values = deepcopy(par_valuesNew)
- self.get_bic(reset=True, fit=False, verbose=verbose)
- self.E += dE
- self.EB += dEB
- self.EP += dEP
-
- # Elementary tree (short-range) move
- else:
- target = None
- while target is None or self.fixed_root and target is self.root:
- # Choose a feasible move (doable and keeping size<=max_size)
- while True:
- oini, ofin = choice(self.move_types)
- if len(self.ets[oini]) > 0 and (
- self.size - oini + ofin <= self.max_size
- ):
- break
- # target and new ETs
- target = choice(self.ets[oini])
- new = choice(self.et_space[ofin])
- # omegai and omegaf
- omegai = len(self.ets[oini])
- omegaf = len(self.ets[ofin]) + 1
- if ofin == 0:
- omegaf -= oini
- if oini == 0 and target.parent in self.ets[ofin]:
- omegaf -= 1
- # size of et_space of each type
- si = len(self.et_space[oini])
- sf = len(self.et_space[ofin])
- # Probability of acceptance
- dE, dEB, dEP, par_valuesNew, nif, nfi = self.dE_et(
- target, new, verbose=verbose
- )
- try:
- paccept = (
- float(nif) * omegai * sf * np.exp(-dEB / self.BT - dEP / self.PT)
- ) / (float(nfi) * omegaf * si)
- except ValueError:
- if (dEB / self.BT + dEP / self.PT) < -200:
- paccept = 1.0
- # Accept / reject
- dice = random()
- if dice < paccept:
- # Accept move
- self.et_replace(target, new, verbose=verbose)
- self.par_values = par_valuesNew
- self.get_bic(verbose=verbose)
- self.E += dE
- self.EB += dEB
- self.EP += dEP
-
- # Done
- return
-
- # -------------------------------------------------------------------------
- def mcmc(
- self,
- tracefn="trace.dat",
- progressfn="progress.dat",
- write_files=True,
- reset_files=True,
- burnin=2000,
- thin=10,
- samples=10000,
- verbose=False,
- progress=True,
- ):
- """
- Sample the space of formula trees using MCMC, and write the trace and some progress
- information to files (unless write_files is False)
-
- Returns: None or expression list
- """
- self.get_energy(reset=True, verbose=verbose)
-
- # Burning
- if progress:
- sys.stdout.write("# Burning in\t")
- sys.stdout.write("[%s]" % (" " * 50))
- sys.stdout.flush()
- sys.stdout.write("\b" * (50 + 1))
- for i in range(burnin):
- self.mcmc_step(verbose=verbose)
- if progress and (i % (burnin / 50) == 0):
- sys.stdout.write("=")
- sys.stdout.flush()
- # Sample
- if write_files:
- if reset_files:
- tracef = open(tracefn, "w")
- progressf = open(progressfn, "w")
- else:
- tracef = open(tracefn, "a")
- progressf = open(progressfn, "a")
- if progress:
- sys.stdout.write("\n# Sampling\t")
- sys.stdout.write("[%s]" % (" " * 50))
- sys.stdout.flush()
- sys.stdout.write("\b" * (50 + 1))
- for s in range(samples):
- for i in range(thin):
- self.mcmc_step(verbose=verbose)
- if progress and (s % (samples / 50) == 0):
- sys.stdout.write("=")
- sys.stdout.flush()
- if write_files:
- json.dump(
- [
- s,
- float(self.bic),
- float(self.E),
- str(self.get_energy(verbose=verbose)),
- str(self),
- self.par_values,
- ],
- tracef,
- )
- tracef.write("\n")
- tracef.flush()
- progressf.write("%d %lf %lf\n" % (s, self.E, self.bic))
- progressf.flush()
- # Done
- if progress:
- sys.stdout.write("\n")
- return
-
- # -------------------------------------------------------------------------
- def predict(self, x):
- """
- Calculate the value of the formula at the given data x. The data x
- must have the same format as the training data and, in particular, it
- it must specify to which dataset the example data belongs, if multiple
- datasets where used for training.
-
- Returns: predicted y values
- """
- if isinstance(x, np.ndarray):
- columns = list()
- for col in range(x.shape[1]):
- columns.append("X" + str(col))
- x = pd.DataFrame(x, columns=columns)
-
- if isinstance(x, pd.DataFrame):
- this_x = {"d0": x}
- input_type = "df"
- elif isinstance(x, dict):
- this_x = x
- input_type = "dict"
- else:
- raise TypeError("x must be either a dict or a pandas.DataFrame")
-
- # Convert the Tree into a SymPy expression
- ex = sympify(str(self))
- # Convert the expression to a function
- atomd = dict([(a.name, a) for a in ex.atoms() if a.is_Symbol])
- variables = [atomd[v] for v in self.variables if v in list(atomd.keys())]
- parameters = [atomd[p] for p in self.parameters if p in list(atomd.keys())]
- flam = lambdify(
- variables + parameters,
- ex,
- [
- "numpy",
- dict(
- {
- "fac": scipy.special.factorial,
- "sig": scipy.special.expit,
- "relu": relu,
- },
- **self.custom_ops
- ),
- ],
- )
- # Loop over datasets
- predictions = {}
- for ds in this_x:
- # Prepare variables and parameters
- xmat = [this_x[ds][v.name] for v in variables]
- params = [self.par_values[ds][p.name] for p in parameters]
- args = [xi for xi in xmat] + [p for p in params]
- # Predict
- try:
- prediction = flam(*args)
- except SyntaxError:
- # Do it point by point
- prediction = [np.nan for i in range(len(this_x[ds]))]
- predictions[ds] = pd.Series(prediction, index=list(this_x[ds].index))
-
- if input_type == "df":
- return predictions["d0"]
- else:
- return predictions
-
- # -------------------------------------------------------------------------
- def trace_predict(
- self,
- x,
- burnin=1000,
- thin=2000,
- samples=1000,
- tracefn="trace.dat",
- progressfn="progress.dat",
- write_files=False,
- reset_files=True,
- verbose=False,
- progress=True,
- ):
- """
- Sample the space of formula trees using MCMC,
- and predict y(x) for each of the sampled formula trees
-
- Returns: predicted y values for each of the sampled formula trees
- """
- ypred = {}
- # Burning
- if progress:
- sys.stdout.write("# Burning in\t")
- sys.stdout.write("[%s]" % (" " * 50))
- sys.stdout.flush()
- sys.stdout.write("\b" * (50 + 1))
- for i in range(burnin):
- self.mcmc_step(verbose=verbose)
- if progress and (i % (burnin / 50) == 0):
- sys.stdout.write("=")
- sys.stdout.flush()
- # Sample
- if write_files:
- if reset_files:
- tracef = open(tracefn, "w")
- progressf = open(progressfn, "w")
- else:
- tracef = open(tracefn, "a")
- progressf = open(progressfn, "a")
- if progress:
- sys.stdout.write("\n# Sampling\t")
- sys.stdout.write("[%s]" % (" " * 50))
- sys.stdout.flush()
- sys.stdout.write("\b" * (50 + 1))
-
- for s in range(samples):
- for kk in range(thin):
- self.mcmc_step(verbose=verbose)
- # Make prediction
- ypred[s] = self.predict(x)
- # Output
- if progress and (s % (samples / 50) == 0):
- sys.stdout.write("=")
- sys.stdout.flush()
- if write_files:
- json.dump(
- [
- s,
- float(self.bic),
- float(self.E),
- float(self.get_energy(verbose=verbose)),
- str(self),
- self.par_values,
- ],
- tracef,
- )
- tracef.write("\n")
- tracef.flush()
- progressf.write("%d %lf %lf\n" % (s, self.E, self.bic))
- progressf.flush()
- # Done
- if progress:
- sys.stdout.write("\n")
- return pd.DataFrame.from_dict(ypred)
-
-
-# -----------------------------------------------------------------------------
-# -----------------------------------------------------------------------------
-# MAIN
-# -----------------------------------------------------------------------------
-# -----------------------------------------------------------------------------
-
-
-def test3(num_points=10, samples=100000):
- # Create the data
- x = pd.DataFrame(
- dict([("x%d" % i, np.random.uniform(0, 10, num_points)) for i in range(5)])
- )
- eps = np.random.normal(0.0, 5, num_points)
- y = 50.0 * np.sin(x["x0"]) / x["x2"] - 4.0 * x["x1"] + 3 + eps
- x.to_csv("data_x.csv", index=False)
- y.to_csv("data_y.csv", index=False, header=["y"])
-
- # Create the formula
- prior_par, _ = get_priors()
- t = Tree(
- variables=["x%d" % i for i in range(5)],
- parameters=["a%d" % i for i in range(10)],
- x=x,
- y=y,
- prior_par=prior_par,
- BT=1.0,
- )
- # MCMC
- t.mcmc(burnin=2000, thin=10, samples=samples, verbose=True)
-
- # Predict
- print(t.predict(x))
- print(y)
- print(50.0 * np.sin(x["x0"]) / x["x2"] - 4.0 * x["x1"] + 3)
-
- plt.plot(t.predict(x), 50.0 * np.sin(x["x0"]) / x["x2"] - 4.0 * x["x1"] + 3)
- plt.show()
-
- return t
-
-
-def test4(num_points=10, samples=1000):
- # Create the data
- x = pd.DataFrame(
- dict([("x%d" % i, np.random.uniform(0, 10, num_points)) for i in range(5)])
- )
- eps = np.random.normal(0.0, 5, num_points)
- y = 50.0 * np.sin(x["x0"]) / x["x2"] - 4.0 * x["x1"] + 3 + eps
- x.to_csv("data_x.csv", index=False)
- y.to_csv("data_y.csv", index=False, header=["y"])
-
- xtrain, ytrain = x.iloc[5:], y.iloc[5:]
- xtest, ytest = x.iloc[:5], y.iloc[:5]
-
- # Create the formula
- prior_par, _ = get_priors()
- t = Tree(
- variables=["x%d" % i for i in range(5)],
- parameters=["a%d" % i for i in range(10)],
- x=xtrain,
- y=ytrain,
- prior_par=prior_par,
- )
- print(xtest)
-
- # Predict
- ypred = t.trace_predict(xtest, samples=samples, burnin=10000)
-
- print(ypred)
- print(ytest)
- print(50.0 * np.sin(xtest["x0"]) / xtest["x2"] - 4.0 * xtest["x1"] + 3)
-
- # Done
- return t
-
-
-def test5(string="(P120 + (((ALPHACAT / _a2) + (_a2 * CDH3)) + _a0))"):
- # Create the formula
- prior_par, _ = get_priors("GuimeraTest2020")
-
- t = Tree(prior_par=prior_par, from_string=string)
- for i in range(1000000):
- t.mcmc_step(verbose=True)
- print("-" * 150)
- t2 = Tree(from_string=str(t))
- print(t)
- print(t2)
- if str(t2) != str(t):
- raise
-
- return t
-
-
-if __name__ == "__main__":
- NP, NS = 100, 1000
- test5()
diff --git a/autora/theorist/bms/parallel.py b/autora/theorist/bms/parallel.py
deleted file mode 100644
index 6956304f5..000000000
--- a/autora/theorist/bms/parallel.py
+++ /dev/null
@@ -1,171 +0,0 @@
-import sys
-from copy import deepcopy
-from random import randint, random
-from typing import Optional, Tuple
-
-from numpy import exp
-
-from .mcmc import Tree
-from .prior import get_priors
-
-
-class Parallel:
- """
- The Parallel Machine Scientist Object, equipped with parallel tempering
-
- Attributes:
- Ts: list of parallel temperatures
- trees: list of parallel trees, corresponding to each parallel temperature
- t1: equation tree which best describes the data
- """
-
- # -------------------------------------------------------------------------
- def __init__(
- self,
- Ts: list,
- ops=get_priors()[1],
- custom_ops={},
- variables=["x"],
- parameters=["a"],
- max_size=50,
- prior_par=get_priors()[0],
- x=None,
- y=None,
- root=None,
- seed=None,
- ) -> None:
- """
- Initialises Parallel Machine Scientist
-
- Args:
- Ts: list of temperature values
- ops: allowed operations for the search task
- variables: independent variables from data
- parameters: settable values to improve model fit
- max_size: maximum size (number of nodes) in a tree
- prior_par: prior values over ops
- x: independent variables of dataset
- y: dependent variable of dataset
- root: fixed root of the tree
- """
- self.root = root
- # All trees are initialized to the same tree but with different BT
- Ts.sort()
- self.Ts = [str(T) for T in Ts]
- self.trees = {
- "1.0": Tree(
- ops=ops,
- variables=deepcopy(variables),
- parameters=deepcopy(parameters),
- prior_par=deepcopy(prior_par),
- x=x,
- y=y,
- max_size=max_size,
- BT=1,
- root_value=root.__name__ if root is not None else None,
- fixed_root=True if root is not None else False,
- custom_ops=custom_ops,
- seed_value=seed,
- )
- }
- self.t1 = self.trees["1.0"]
- for BT in [T for T in self.Ts if T != 1]:
- treetmp = Tree(
- ops=ops,
- variables=deepcopy(variables),
- parameters=deepcopy(parameters),
- prior_par=deepcopy(prior_par),
- x=x,
- y=y,
- root_value=root.__name__ if root is not None else None,
- fixed_root=self.t1.fixed_root,
- custom_ops=custom_ops,
- max_size=max_size,
- BT=float(BT),
- seed_value=seed,
- )
- self.trees[BT] = treetmp
- # Share fitted parameters and representative with other trees
- self.trees[BT].fit_par = self.t1.fit_par
- self.trees[BT].representative = self.t1.representative
-
- # -------------------------------------------------------------------------
- def mcmc_step(self, verbose=False, p_rr=0.05, p_long=0.45) -> None:
- """
- Perform a MCMC step in each of the trees
- """
- # Loop over all trees
- if self.root is not None:
- p_rr = 0.0
- for T, tree in list(self.trees.items()):
- # MCMC step
- tree.mcmc_step(verbose=verbose, p_rr=p_rr, p_long=p_long)
- self.t1 = self.trees["1.0"]
-
- # -------------------------------------------------------------------------
- def tree_swap(self) -> Tuple[Optional[str], Optional[str]]:
- """
- Choose a pair of trees of adjacent temperatures and attempt to swap their temperatures
- based on the resultant energy change
-
- Returns: new temperature values for the pair of trees
- """
- # Choose Ts to swap
- nT1 = randint(0, len(self.Ts) - 2)
- nT2 = nT1 + 1
- t1 = self.trees[self.Ts[nT1]]
- t2 = self.trees[self.Ts[nT2]]
- # The temperatures and energies
- BT1, BT2 = t1.BT, t2.BT
- EB1, EB2 = t1.EB, t2.EB
- # The energy change
- DeltaE = float(EB1) * (1.0 / BT2 - 1.0 / BT1) + float(EB2) * (
- 1.0 / BT1 - 1.0 / BT2
- )
- if DeltaE > 0:
- paccept = exp(-DeltaE)
- else:
- paccept = 1.0
- # Accept/reject change
- if random() < paccept:
- self.trees[self.Ts[nT1]] = t2
- self.trees[self.Ts[nT2]] = t1
- t1.BT = BT2
- t2.BT = BT1
- self.t1 = self.trees["1.0"]
- return self.Ts[nT1], self.Ts[nT2]
- else:
- return None, None
-
- # -------------------------------------------------------------------------
- def anneal(self, n=1000, factor=5) -> None:
- """
- Annealing function for the Machine Scientist
-
- Args:
- n: number of mcmc step & tree swap iterations
- factor: degree of annealing - how much the temperatures are raised
-
- Returns: Nothing
-
- """
- for t in list(self.trees.values()):
- t.BT *= factor
- for kk in range(n):
- print(
- "# Annealing heating at %g: %d / %d" % (self.trees["1.0"].BT, kk, n),
- file=sys.stderr,
- )
- self.mcmc_step()
- self.tree_swap()
- # Cool down (return to original temperatures)
- for BT, t in list(self.trees.items()):
- t.BT = float(BT)
- for kk in range(2 * n):
- print(
- "# Annealing cooling at %g: %d / %d"
- % (self.trees["1.0"].BT, kk, 2 * n),
- file=sys.stderr,
- )
- self.mcmc_step()
- self.tree_swap()
diff --git a/autora/theorist/bms/prior.py b/autora/theorist/bms/prior.py
deleted file mode 100644
index 973d9bdd2..000000000
--- a/autora/theorist/bms/prior.py
+++ /dev/null
@@ -1,90 +0,0 @@
-import numpy as np
-
-
-def __get_prior(prior_name):
- prior_dict = {
- "GuimeraTest2020": {
- "Nopi_/": 0,
- "Nopi_cosh": 0,
- "Nopi_-": 0,
- "Nopi_sin": 0,
- "Nopi_tan": 0,
- "Nopi_tanh": 0,
- "Nopi_**": 0,
- "Nopi_pow2": 0,
- "Nopi_pow3": 0,
- "Nopi_exp": 0,
- "Nopi_log": 0,
- "Nopi_sqrt": 0,
- "Nopi_cos": 0,
- "Nopi_sinh": 0,
- "Nopi_abs": 0,
- "Nopi_+": 0,
- "Nopi_*": 0,
- "Nopi_fac": 0,
- "Nopi_sig": 0,
- "Nopi_relu": 0,
- },
- "Guimera2020": {
- "Nopi_/": 5.912205942815285,
- "Nopi_cosh": 8.12720511103694,
- "Nopi_-": 3.350846072163632,
- "Nopi_sin": 5.965917796154835,
- "Nopi_tan": 8.127427922862411,
- "Nopi_tanh": 7.799259068142255,
- "Nopi_**": 6.4734429542245495,
- "Nopi_pow2": 3.3017352779079734,
- "Nopi_pow3": 5.9907496760026175,
- "Nopi_exp": 4.768665265735502,
- "Nopi_log": 4.745957377206544,
- "Nopi_sqrt": 4.760686909134266,
- "Nopi_cos": 5.452564657261127,
- "Nopi_sinh": 7.955723540761046,
- "Nopi_abs": 6.333544134938385,
- "Nopi_+": 5.808163661224514,
- "Nopi_*": 5.002213595420244,
- "Nopi_fac": 10.0,
- "Nopi2_*": 1.0,
- "Nopi_sig": 1.0, # arbitrarily set for now
- "Nopi_relu": 1.0, # arbitrarily set for now
- },
- }
- assert prior_dict[prior_name] is not None, "prior key not recognized"
- return prior_dict[prior_name]
-
-
-def __get_ops():
- ops = {
- "sin": 1,
- "cos": 1,
- "tan": 1,
- "exp": 1,
- "log": 1,
- "sinh": 1,
- "cosh": 1,
- "tanh": 1,
- "pow2": 1,
- "pow3": 1,
- "abs": 1,
- "sqrt": 1,
- "fac": 1,
- "-": 1,
- "+": 2,
- "*": 2,
- "/": 2,
- "**": 2,
- "sig": 1,
- "relu": 1,
- }
- return ops
-
-
-def get_priors(prior="Guimera2020"):
- priors = __get_prior(prior)
- all_ops = __get_ops()
- ops = {k: v for k, v in all_ops.items() if "Nopi_" + k in priors}
- return priors, ops
-
-
-def relu(x):
- return np.maximum(x, 0)
diff --git a/autora/theorist/bms/utils.py b/autora/theorist/bms/utils.py
deleted file mode 100755
index d9f047f85..000000000
--- a/autora/theorist/bms/utils.py
+++ /dev/null
@@ -1,89 +0,0 @@
-import logging
-from copy import deepcopy
-from typing import List, Tuple
-
-import matplotlib.pyplot as plt
-import numpy as np
-import pandas as pd
-from tqdm import tqdm
-
-from .mcmc import Tree
-from .parallel import Parallel
-
-logging.basicConfig(level=logging.INFO)
-_logger = logging.getLogger(__name__)
-
-
-def run(
- pms: Parallel, num_steps: int, thinning: int = 100
-) -> Tuple[Tree, float, List[float]]:
- """
-
- Args:
- pms: Parallel Machine Scientist (BMS is essentially a wrapper for pms)
- num_steps: number of epochs / mcmc step & tree swap iterations
- thinning: number of epochs between recording model loss to the trace
-
- Returns:
- model: The equation which best describes the data
- model_len: (defined as description length) loss function score
- desc_len: Record of loss function score over time
-
- """
- desc_len, model, model_len = [], pms.t1, np.inf
- for n in tqdm(range(num_steps)):
- pms.mcmc_step()
- pms.tree_swap()
- if num_steps % thinning == 0: # sample less often if we thin more
- desc_len.append(pms.t1.E) # Add the description length to the trace
- if pms.t1.E < model_len: # Check if this is the MDL expression so far
- model, model_len = deepcopy(pms.t1), pms.t1.E
- _logger.debug("Finish iteration {}".format(n))
- return model, model_len, desc_len
-
-
-def present_results(model: Tree, model_len: float, desc_len: List[float]) -> None:
- """
- Prints out the best equation, its description length,
- along with a plot of how this has progressed over the course of the search tasks
-
- Args:
- model: The equation which best describes the data
- model_len: The equation loss (defined as description length)
- desc_len: Record of equation loss over time
-
- Returns: Nothing
-
- """
- print("Best model:\t", model)
- print("Desc. length:\t", model_len)
- plt.figure(figsize=(15, 5))
- plt.plot(desc_len)
- plt.xlabel("MCMC step", fontsize=14)
- plt.ylabel("Description length", fontsize=14)
- plt.title("MDL model: $%s$" % model.latex())
- plt.show()
-
-
-def predict(model: Tree, x: pd.DataFrame, y: pd.DataFrame) -> dict:
- """
- Maps independent variable data onto expected dependent variable data
-
- Args:
- model: The equation / function that best maps x onto y
- x: The independent variables of the data
- y: The dependent variable of the data
-
- Returns: Predicted values for y given x and the model as trained
- """
- plt.figure(figsize=(6, 6))
- plt.scatter(model.predict(x), y)
-
- all_y = np.append(y, model.predict(x))
- y_range = all_y.min().item(), all_y.max().item()
- plt.plot(y_range, y_range)
-
- plt.xlabel("MDL model predictions", fontsize=14)
- plt.ylabel("Actual values", fontsize=14)
- plt.show()
- return model.predict(x)
diff --git a/autora/theorist/bsr/__init__.py b/autora/theorist/bsr/__init__.py
deleted file mode 100644
index e69de29bb..000000000
diff --git a/autora/theorist/bsr/funcs.py b/autora/theorist/bsr/funcs.py
deleted file mode 100644
index 15c728777..000000000
--- a/autora/theorist/bsr/funcs.py
+++ /dev/null
@@ -1,927 +0,0 @@
-import copy
-from enum import Enum
-from functools import wraps
-from typing import Callable, Dict, List, Optional, Tuple, Union, cast
-
-import numpy as np
-import pandas as pd
-from scipy.stats import invgamma, norm
-
-from .node import Node, NodeType
-
-
-def check_empty(func: Callable):
- """
- A decorator that, if applied to `func`, checks whether an argument in `func` is an
- un-initialized node (i.e. node.node_type == NodeType.Empty). If so, an error is raised.
- """
-
- @wraps(func)
- def func_wrapper(*args, **kwargs):
- for arg in args:
- if isinstance(arg, Node):
- if arg.node_type == NodeType.EMPTY:
- raise TypeError(
- "uninitialized node found in {}".format(func.__name__)
- )
- break
- return func(*args, **kwargs)
-
- return func_wrapper
-
-
-@check_empty
-def get_height(node: Node) -> int:
- """
- Get the height of a tree starting from `node` as root. The height of a leaf is defined as 0.
-
- Arguments:
- node: the Node that we hope to calculate `height` for
- Returns:
- height: the height of `node`
- """
- if node.node_type == NodeType.LEAF:
- return 0
- elif node.node_type == NodeType.UNARY:
- return 1 + get_height(node.left)
- else: # binary node
- return 1 + max(get_height(node.left), get_height(node.right))
-
-
-@check_empty
-def update_depth(node: Node, depth: int):
- """
- Update the depth information of all nodes starting from root `node`, whose depth
- is set equal to the given `depth`.
- """
- node.depth = depth
- if node.node_type == NodeType.UNARY:
- update_depth(node.left, depth + 1)
- elif node.node_type == NodeType.BINARY:
- update_depth(node.left, depth + 1)
- update_depth(node.right, depth + 1)
-
-
-@check_empty
-def get_all_nodes(node: Node) -> List[Node]:
- """
- Get all the nodes below (and including) the given `node` via pre-order traversal
-
- Return:
- a list with all the nodes below (and including) the given `node`
- """
- nodes = [node]
- if node.node_type == NodeType.UNARY:
- nodes.extend(get_all_nodes(node.left))
- elif node.node_type == NodeType.BINARY:
- nodes.extend(get_all_nodes(node.left))
- nodes.extend(get_all_nodes(node.right))
- return nodes
-
-
-@check_empty
-def get_num_lt_nodes(node: Node) -> int:
- """
- Get the number of nodes with `lt` operation in a tree starting from `node`
- """
- if node.node_type == NodeType.LEAF:
- return 0
- else:
- base = 1 if node.op_name == "ln" else 0
- if node.node_type == NodeType.UNARY:
- return base + get_num_lt_nodes(node.left)
- else:
- return base + get_num_lt_nodes(node.left) + get_num_lt_nodes(node.right)
-
-
-@check_empty
-def calc_tree_ll(
- node: Node, ops_priors: Dict[str, Dict], n_feature: int = 1, **hyper_params
-):
- """
- Calculate the likelihood-related quantities of the given tree `node`.
-
- Arguments:
- node: the tree node for which the calculations are done
- ops_priors: the dictionary that maps operation names to their prior info
- n_feature: number of features in the input data
- hyperparams: hyperparameters for initialization
-
- Returns:
- struct_ll: tree structure-related likelihood
- params_ll: tree parameters-related likelihood
- """
- struct_ll = 0 # log likelihood of tree structure S = (T,M)
- params_ll = 0 # log likelihood of linear params
- depth = node.depth
- beta = hyper_params.get("beta", -1)
- sigma_a, sigma_b = hyper_params.get("sigma_a", 1), hyper_params.get("sigma_b", 1)
-
- # contribution of hyperparameter sigma_theta
- if not depth: # root node
- struct_ll += np.log(invgamma.pdf(sigma_a, 1))
- struct_ll += np.log(invgamma.pdf(sigma_b, 1))
-
- # contribution of splitting the node or becoming leaf node
- if node.node_type == NodeType.LEAF:
- # contribution of choosing terminal
- struct_ll += np.log(1 - 1 / np.power((1 + depth), -beta))
- # contribution of feature selection
- struct_ll -= np.log(n_feature)
- return struct_ll, params_ll
- elif node.node_type == NodeType.UNARY: # unitary operator
- # contribution of child nodes are added since the log likelihood is additive
- # if we assume the parameters are independent.
- left = cast(Node, node.left)
- struct_ll_left, params_ll_left = calc_tree_ll(
- left, ops_priors, n_feature, **hyper_params
- )
- struct_ll += struct_ll_left
- params_ll += params_ll_left
- # contribution of parameters of linear nodes
- # make sure the below parameter ll calculation is extendable
- if node.op_name == "ln":
- params_ll -= np.power((node.params["a"] - 1), 2) / (2 * sigma_a)
- params_ll -= np.power(node.params["b"], 2) / (2 * sigma_b)
- params_ll -= 0.5 * np.log(4 * np.pi**2 * sigma_a * sigma_b)
- else: # binary operator
- left = cast(Node, node.left)
- right = cast(Node, node.right)
- struct_ll_left, params_ll_left = calc_tree_ll(
- left, ops_priors, n_feature, **hyper_params
- )
- struct_ll_right, params_ll_right = calc_tree_ll(
- right, ops_priors, n_feature, **hyper_params
- )
- struct_ll += struct_ll_left + struct_ll_right
- params_ll += params_ll_left + params_ll_right
-
- op_weight = ops_priors[node.op_name]["weight"]
- # for unary & binary nodes, additionally consider the contribution of splitting
- if not depth: # root node
- struct_ll += np.log(op_weight)
- else:
- struct_ll += np.log((1 + depth)) * beta + np.log(op_weight)
-
- return struct_ll, params_ll
-
-
-def calc_y_ll(y: np.ndarray, outputs: Union[np.ndarray, pd.DataFrame], sigma_y: float):
- """
- Calculate the log likelihood f(y|S,Theta,x) where (S,Theta) is represented by the
- node prior is y ~ N(output,sigma) and output is the matrix of outputs corresponding to
- different roots.
-
- Returns:
- log_sum: the data log likelihood
- """
- outputs = copy.deepcopy(outputs)
- scale = np.max(np.abs(outputs))
- outputs = outputs / scale
- epsilon = np.eye(outputs.shape[1]) * 1e-6
- beta = np.linalg.inv(np.matmul(outputs.transpose(), outputs) + epsilon)
- beta = np.matmul(beta, np.matmul(outputs.transpose(), y))
- # perform the linear combination
- output = np.matmul(outputs, beta)
- # calculate the squared error
- error = np.sum(np.square(y - output[:, 0]))
-
- log_sum = error
- var = 2 * sigma_y * sigma_y
- log_sum = -log_sum / var
- log_sum -= 0.5 * len(y) * np.log(np.pi * var)
- return log_sum
-
-
-def stay(lt_nodes: List[Node], **hyper_params: Dict):
- """
- ACTION 1: Stay represents the action of doing nothing but to update the parameters for `ln`
- operators.
-
- Arguments:
- lt_nodes: the list of nodes with `ln` operator
- hyper_params: hyperparameters for re-initialization
- """
- for lt_node in lt_nodes:
- lt_node._init_param(**hyper_params)
-
-
-def grow(
- node: Node,
- ops_name_lst: List[str],
- ops_weight_lst: List[float],
- ops_priors: Dict[str, Dict],
- n_feature: int = 1,
- **hyper_params
-):
- """
- ACTION 2: Grow represents the action of growing a subtree from a given `node`
-
- Arguments:
- node: the tree node from where the subtree starts to grow
- ops_name_lst: list of operation names
- ops_weight_lst: list of operation prior weights
- ops_priors: the dictionary of operation prior properties
- n_feature: the number of features in input data
- hyper_params: hyperparameters for re-initialization
- """
- depth = node.depth
- p = 1 / np.power((1 + depth), -hyper_params.get("beta", -1))
-
- if depth > 0 and p < np.random.uniform(0, 1, 1): # create leaf node
- node.setup(feature=np.random.randint(0, n_feature, 1))
- else:
- ops_name = np.random.choice(ops_name_lst, p=ops_weight_lst)
- ops_prior = ops_priors[ops_name]
- node.setup(ops_name, ops_prior, hyper_params=hyper_params)
-
- # recursively set up downstream nodes
- grow(
- cast(Node, node.left),
- ops_name_lst,
- ops_weight_lst,
- ops_priors,
- n_feature,
- **hyper_params
- )
- if node.node_type == NodeType.BINARY:
- grow(
- cast(Node, node.right),
- ops_name_lst,
- ops_weight_lst,
- ops_priors,
- n_feature,
- **hyper_params
- )
-
-
-@check_empty
-def prune(node: Node, n_feature: int = 1):
- """
- ACTION 3: Prune a non-terminal node into a terminal node and assign it a feature
-
- Arguments:
- node: the tree node to be pruned
- n_feature: the number of features in input data
- """
- node.setup(feature=np.random.randint(0, n_feature, 1))
-
-
-@check_empty
-def de_transform(node: Node) -> Tuple[Node, Optional[Node]]:
- """
- ACTION 4: De-transform deletes the current `node` and replaces it with children
- according to the following rule: if the `node` is unary, simply replace with its
- child; if `node` is binary and root, choose any children that's not leaf; if `node`
- is binary and not root, pick any children.
-
- Arguments:
- node: the tree node that gets de-transformed
-
- Returns:
- first node is the replaced node when `node` has been de-transformed
- second node is the discarded node
- """
- left = cast(Node, node.left)
- if node.node_type == NodeType.UNARY:
- return left, None
-
- r = np.random.random()
- right = cast(Node, node.right)
- # picked node is root
- if not node.depth:
- if left.node_type == NodeType.LEAF:
- return right, left
- elif right.node_type == NodeType.LEAF:
- return left, right
- else:
- return (left, right) if r < 0.5 else (right, left)
- elif r < 0.5:
- return left, right
- else:
- return right, left
-
-
-@check_empty
-def transform(
- node: Node,
- ops_name_lst: List[str],
- ops_weight_lst: List[float],
- ops_priors: Dict[str, Dict],
- n_feature: int = 1,
- **hyper_params: Dict
-) -> Node:
- """
- ACTION 5: Transform inserts a middle node between the picked `node` and its
- parent. Assign an operation to this middle node using the priors. If the middle
- node is binary, `grow` its right child. The left child of the middle node is
- set to `node` and its parent becomes `node.parent`.
-
- Arguments:
- node: the tree node that gets transformed
- ops_name_lst: list of operation names
- ops_weight_lst: list of operation prior weights
- ops_priors: the dictionary of operation prior properties
- n_feature: the number of features in input data
- hyper_params: hyperparameters for re-initialization
-
- Return:
- the middle node that gets inserted
- """
- parent = node.parent
-
- insert_node = Node(depth=node.depth, parent=parent)
- insert_op = np.random.choice(ops_name_lst, 1, ops_weight_lst)[0]
- insert_node.setup(insert_op, ops_priors[insert_op], hyper_params=hyper_params)
-
- if parent:
- is_left = node is parent.left
- if is_left:
- parent.left = insert_node
- else:
- parent.right = insert_node
-
- # set the left child as `node` and grow the right child if needed (binary case)
- insert_node.left = node
- node.parent = insert_node
- if insert_node.node_type == NodeType.BINARY:
- grow(
- cast(Node, insert_node.right),
- ops_name_lst,
- ops_weight_lst,
- ops_priors,
- n_feature,
- **hyper_params
- )
-
- # make sure the depth property is updated correctly
- update_depth(node, node.depth + 1)
- return insert_node
-
-
-@check_empty
-def reassign_op(
- node: Node,
- ops_name_lst: List[str],
- ops_weight_lst: List[float],
- ops_priors: Dict[str, Dict],
- n_feature: int = 1,
- **hyper_params: Dict
-):
- """
- ACTION 6: Re-assign action uniformly picks a non-terminal node, and assign a new operator.
- If the node changes from unary to binary, its original child is taken as the left child,
- and we grow a new subtree as right child. If the node changes from binary to unary, we
- preserve the left subtree (this is to make the transition reversible).
-
- Arguments:
- node: the tree node that gets re-assigned an operator
- ops_name_lst: list of operation names
- ops_weight_lst: list of operation prior weights
- ops_priors: the dictionary of operation prior properties
- n_feature: the number of features in input data
- hyper_params: hyperparameters for re-initialization
- """
- # make sure `node` is non-terminal
- old_type = node.node_type
- assert old_type != NodeType.LEAF
-
- # store the original children and re-setup the `node`
- old_left, old_right = node.left, node.right
- new_op = np.random.choice(ops_name_lst, 1, ops_weight_lst)[0]
- node.setup(new_op, ops_priors[new_op], hyper_params=hyper_params)
-
- new_type = node.node_type
-
- node.left = old_left
- if old_type == new_type: # binary -> binary & unary -> unary
- node.right = old_right
- elif new_type == NodeType.BINARY: # unary -> binary
- grow(
- cast(Node, node.right),
- ops_name_lst,
- ops_weight_lst,
- ops_priors,
- n_feature,
- **hyper_params
- )
- else:
- node.right = None
-
-
-@check_empty
-def reassign_feat(node: Node, n_feature: int = 1):
- """
- ACTION 7: Re-assign feature randomly picks a feature and assign it to `node`.
-
- Arguments:
- node: the tree node that gets re-assigned a feature
- n_feature: the number of features in input data
- """
- # make sure we have a leaf node
- assert node.node_type == NodeType.LEAF
- node.setup(feature=np.random.randint(0, n_feature, 1))
-
-
-class Action(int, Enum):
- """
- Enum class that represents a MCMC step with a certain action
- """
-
- STAY = 0
- GROW = 1
- PRUNE = 2
- DE_TRANSFORM = 3
- TRANSFORM = 4
- REASSIGN_OP = 5
- REASSIGN_FEAT = 6
-
- @classmethod
- def rand_action(
- cls, lt_num: int, term_num: int, de_trans_num: int
- ) -> Tuple[int, List[float]]:
- """
- Draw a random action for MCMC algorithm to take a step
-
- Arguments:
- lt_num: the number of linear (`lt`) nodes in the tree
- term_num: the number of terminal nodes in the tree
- de_trans_num: the number of de-trans qualified nodes in the tree
- (see `propose` for details)
-
- Returns:
- action: the MCMC action to perform
- weights: the probabilities for each action
- """
- # from the BSR paper
- weights = []
- weights.append(0.25 * lt_num / (lt_num + 3)) # p_stay
- weights.append((1 - weights[0]) * min(1, 4 / (term_num + 2)) / 3) # p_grow
- weights.append((1 - weights[0]) / 3 - weights[1]) # p_prune
- weights.append(
- ((1 - weights[0]) * (1 / 3) * de_trans_num / (3 + de_trans_num))
- ) # p_detrans
- weights.append((1 - weights[0]) / 3 - weights[3]) # p_trans
- weights.append((1 - weights[0]) / 6) # p_reassign_op
- weights.append(1 - sum(weights)) # p_reassign_feat
- assert weights[-1] >= 0
-
- action = np.random.choice(np.arange(7), p=weights)
- return action, weights
-
-
-def _get_tree_classified_nodes(
- root: Node,
-) -> Tuple[List[Node], List[Node], List[Node], List[Node]]:
- """
- calculate the classified lists of nodes from a tree
-
- Argument:
- root: the root node where the calculation starts from
- Returns:
- term_nodes: the list of terminal nodes (or the count of this list, same below)
- nterm_nodes: the list of non-terminal nodes
- lt_nodes: the list of nodes with linear operator
- de_trans_nodes: the list of nodes that can be de-transformed
- """
- term_nodes: List[Node] = []
- nterm_nodes: List[Node] = []
- lt_nodes: List[Node] = []
- de_trans_nodes: List[Node] = []
- for node in get_all_nodes(root):
- if node.node_type == NodeType.LEAF:
- term_nodes.append(node)
- else:
- nterm_nodes.append(node)
- # rules for deciding whether a non-terminal node is de-transformable
- # 1. node is not root OR 2. children are not both terminal nodes
- if node.depth or (node.left or node.right):
- de_trans_nodes.append(node)
- if node.op_name == "ln":
- lt_nodes.append(node)
-
- return term_nodes, nterm_nodes, lt_nodes, de_trans_nodes
-
-
-def _get_tree_classified_counts(root: Node) -> Tuple[int, int, int, int]:
- """
- Helper function that returns the counts (lengths) of the classified node lists from
- `_get_tree_classified_nodes`, instead of the lists themselves.
- """
- term_nodes, nterm_nodes, lt_nodes, de_trans_nodes = _get_tree_classified_nodes(root)
- return len(term_nodes), len(nterm_nodes), len(lt_nodes), len(de_trans_nodes)
-
-
-@check_empty
-def prop(
- node: Node,
- ops_name_lst: List[str],
- ops_weight_lst: List[float],
- ops_priors: Dict[str, Dict],
- n_feature: int = 1,
- **hyper_params
-):
- """
- Propose a new tree from an existing tree with root `node`.
-
- Arguments:
- node: the existing tree node
- ops_name_lst: the list of operator names
- ops_weight_lst: the list of operator weights
- ops_priors: the dictionary of operator prior information
- n_feature: the number of features in input data
- hyper_params: hyperparameters for initialization
-
- Return:
- new_node: the new node after some action is applied
- expand_node: whether the node has been expanded
- shrink_node: whether the node has been shrunk
- q: quantities for calculating acceptance prob
- q_inv: quantities for calculating acceptance prob
- """
- # PART 1: collect necessary information
- new_node = copy.deepcopy(node)
- term_nodes, nterm_nodes, lt_nodes, de_trans_nodes = _get_tree_classified_nodes(
- new_node
- )
-
- # PART 2: sample random action and perform the action
- # this step also calculates q and q_inv, quantities necessary for calculating
- # the acceptance probability in MCMC algorithm
- action, probs = Action.rand_action(
- len(lt_nodes), len(term_nodes), len(de_trans_nodes)
- )
- # flags indicating potential dimensionality change (expand or shrink) in node
- expand_node, shrink_node = False, False
-
- # ACTION 1: STAY
- # q and q_inv simply equal the probability of choosing this action
- if action == Action.STAY:
- q = probs[Action.STAY]
- q_inv = probs[Action.STAY]
- stay(lt_nodes, **hyper_params)
- # ACTION 2: GROW
- # q and q_inv simply equal the probability if the grown node is a leaf node
- # otherwise, we calculate new information of the `new_node` after the action is applied
- elif action == Action.GROW:
- i = np.random.randint(0, len(term_nodes), 1)[0]
- grown_node: Node = term_nodes[i]
- grow(
- grown_node,
- ops_name_lst,
- ops_weight_lst,
- ops_priors,
- n_feature,
- **hyper_params
- )
- if grown_node.node_type == NodeType.LEAF:
- q = q_inv = 1
- else:
- tree_ll, param_ll = calc_tree_ll(
- grown_node, ops_priors, n_feature, **hyper_params
- )
- # calculate q
- q = probs[Action.GROW] * np.exp(tree_ll) / len(term_nodes)
- # calculate q_inv by using updated information of `new_node`
- (
- new_term_count,
- new_nterm_count,
- new_lt_count,
- _,
- ) = _get_tree_classified_counts(new_node)
- new_prob = (
- (1 - 0.25 * new_lt_count / (new_lt_count + 3))
- * (1 - min(1, 4 / (new_nterm_count + 2)))
- / 3
- )
- q_inv = new_prob / max(1, new_nterm_count - 1) # except the root
- if new_lt_count > len(lt_nodes):
- expand_node = True
- # ACTION 3: PRUNE
- elif action == Action.PRUNE:
- i = np.random.randint(0, len(nterm_nodes), 1)[0]
- pruned_node: Node = nterm_nodes[i]
- prune(pruned_node, n_feature)
- tree_ll, param_ll = calc_tree_ll(
- pruned_node, ops_priors, n_feature, **hyper_params
- )
-
- new_term_count, new_nterm_count, new_lt_count, _ = _get_tree_classified_counts(
- new_node
- )
- # pruning any tree with `ln` operator will result in shrinkage
- if new_lt_count < len(lt_nodes):
- shrink_node = True
-
- # calculate q
- q = probs[Action.PRUNE] / ((len(nterm_nodes) - 1) * n_feature)
- pg = 1 - 0.25 * new_lt_count / (new_lt_count + 3) * 0.75 * min(
- 1, 4 / (new_nterm_count + 2)
- )
- # calculate q_inv
- q_inv = pg * np.exp(tree_ll) / new_term_count
- # ACTION 4: DE_TRANSFORM
- elif action == Action.DE_TRANSFORM:
- num_de_trans = len(de_trans_nodes)
- i = np.random.randint(0, num_de_trans, 1)[0]
- de_trans_node: Node = de_trans_nodes[i]
- replaced_node, discarded_node = de_transform(de_trans_node)
- par_node = de_trans_node.parent
-
- q = probs[Action.DE_TRANSFORM] / num_de_trans
- if (
- not par_node
- and de_trans_node.left
- and de_trans_node.right
- and de_trans_node.left.node_type != NodeType.LEAF
- and de_trans_node.right.node_type != NodeType.LEAF
- ):
- q = q / 2
- elif de_trans_node.node_type == NodeType.BINARY:
- q = q / 2
-
- if not par_node: # de-transformed the root
- new_node = replaced_node
- new_node.parent = None
- update_depth(new_node, 0)
- elif par_node.left is de_trans_node:
- par_node.left = replaced_node
- replaced_node.parent = par_node
- update_depth(replaced_node, par_node.depth + 1)
- else:
- par_node.right = replaced_node
- replaced_node.parent = par_node
- update_depth(replaced_node, par_node.depth + 1)
-
- (
- new_term_count,
- new_nterm_count,
- new_lt_count,
- new_det_count,
- ) = _get_tree_classified_counts(new_node)
-
- if new_lt_count < len(lt_nodes):
- shrink_node = True
-
- new_prob = 0.25 * new_lt_count / (new_lt_count + 3)
- # calculate q_inv
- new_pdetr = (1 - new_prob) * (1 / 3) * new_det_count / (new_det_count + 3)
- new_ptr = (1 - new_prob) / 3 - new_pdetr
- q_inv = (
- new_ptr
- * ops_priors[de_trans_node.op_name]["weight"]
- / (new_term_count + new_nterm_count)
- )
- if discarded_node:
- tree_ll, _ = calc_tree_ll(
- discarded_node, ops_priors, n_feature, **hyper_params
- )
- q_inv = q_inv * np.exp(tree_ll)
- # ACTION 5: TRANSFORM
- elif action == Action.TRANSFORM:
- all_nodes = get_all_nodes(new_node)
- i = np.random.randint(0, len(all_nodes), 1)[0]
- trans_node: Node = all_nodes[i]
- inserted_node: Node = transform(
- trans_node,
- ops_name_lst,
- ops_weight_lst,
- ops_priors,
- n_feature,
- **hyper_params
- )
-
- if inserted_node.right:
- ll_right, _ = calc_tree_ll(
- inserted_node.right, ops_priors, n_feature, **hyper_params
- )
- else:
- ll_right = 0
- # calculate q
- q = (
- probs[Action.TRANSFORM]
- * ops_priors[inserted_node.op_name]["weight"]
- * np.exp(ll_right)
- / len(all_nodes)
- )
-
- (
- new_term_count,
- new_nterm_count,
- new_lt_count,
- new_det_count,
- ) = _get_tree_classified_counts(new_node)
- if new_lt_count > len(lt_nodes):
- expand_node = True
-
- new_prob = 0.25 * new_lt_count / (new_lt_count + 3)
- # calculate q_inv
- new_pdetr = (1 - new_prob) * (1 / 3) * new_det_count / (new_det_count + 3)
- q_inv = new_pdetr / new_det_count
- if (
- inserted_node.left
- and inserted_node.right
- and inserted_node.left.node_type != NodeType.LEAF
- and inserted_node.right.node_type != NodeType.LEAF
- ):
- q_inv = q_inv / 2
- # ACTION 6: REASSIGN OPERATION
- elif action == Action.REASSIGN_OP:
- i = np.random.randint(0, len(nterm_nodes), 1)[0]
- reassign_node: Node = nterm_nodes[i]
- old_right = reassign_node.right
- old_op_name, old_type = reassign_node.op_name, reassign_node.node_type
- reassign_op(
- reassign_node,
- ops_name_lst,
- ops_weight_lst,
- ops_priors,
- n_feature,
- **hyper_params
- )
- new_type = reassign_node.node_type
- _, new_nterm_count, new_lt_count, _ = _get_tree_classified_counts(new_node)
-
- if old_type == new_type: # binary -> binary & unary -> unary
- q = ops_priors[reassign_node.op_name]["weight"]
- q_inv = ops_priors[old_op_name]["weight"]
- else:
- op_weight = ops_priors[reassign_node.op_name]["weight"]
- if old_type == NodeType.UNARY: # unary -> binary
- tree_ll, _ = calc_tree_ll(
- reassign_node.right, ops_priors, n_feature, **hyper_params
- )
- q = (
- probs[Action.REASSIGN_OP]
- * np.exp(tree_ll)
- * op_weight
- / len(nterm_nodes)
- )
- ll_factor = 1
- else: # binary -> unary
- tree_ll, _ = calc_tree_ll(
- old_right, ops_priors, n_feature, **hyper_params
- )
- q = probs[Action.REASSIGN_OP] * op_weight / len(nterm_nodes)
- ll_factor = tree_ll
- # calculate q_inv
- new_prob = new_lt_count / (4 * (new_lt_count + 3))
- q_inv = (
- 0.125
- * (1 - new_prob)
- * ll_factor
- * ops_priors[old_op_name]["weight"]
- / new_nterm_count
- )
- if new_lt_count > len(lt_nodes):
- expand_node = True
- elif new_lt_count < len(lt_nodes):
- shrink_node = True
- # ACTION 7: REASSIGN FEATURE
- else:
- i = np.random.randint(0, len(term_nodes), 1)[0]
- reassign_node = term_nodes[i]
- reassign_feat(reassign_node, n_feature)
- q = q_inv = 1
-
- return new_node, expand_node, shrink_node, q, q_inv
-
-
-def calc_aux_ll(node: Node, **hyper_params) -> Tuple[float, int]:
- """
- Calculate the likelihood of generating auxiliary parameters
-
- Arguments:
- node: the node from which the auxiliary params are generated
- hyper_params: hyperparameters for generating auxiliary params
-
- Returns:
- log_aux: log likelihood of auxiliary params
- lt_count: number of nodes with `lt` operator in the tree with
- `node` as its root
- """
- sigma_a, sigma_b = hyper_params["sigma_a"], hyper_params["sigma_b"]
- log_aux = np.log(invgamma.pdf(sigma_a, 1)) + np.log(invgamma.pdf(sigma_b, 1))
-
- all_nodes = get_all_nodes(node)
- lt_count = 0
- for i in range(all_nodes):
- if all_nodes[i].op_name == "ln":
- lt_count += 1
- a, b = all_nodes[i].params["a"], all_nodes[i].params["b"]
- log_aux += np.log(norm.pdf(a, 1, np.sqrt(sigma_a)))
- log_aux += np.log(norm.pdf(b, 0, np.sqrt(sigma_b)))
-
- return log_aux, lt_count
-
-
-def prop_new(
- roots: List[Node],
- index: int,
- sigma_y: float,
- beta: float,
- sigma_a: float,
- sigma_b: float,
- X: Union[np.ndarray, pd.DataFrame],
- y: Union[np.ndarray, pd.DataFrame],
- ops_name_lst: List[str],
- ops_weight_lst: List[float],
- ops_priors: Dict[str, Dict],
-) -> Tuple[bool, Node, float, float, float]:
- """
- Propose new structure, sample new parameters and decide whether to accept the new tree.
-
- Arguments:
- roots: the list of root nodes
- index: the index of the root node to update
- sigma_y: scale hyperparameter for linear mixture of expression trees
- beta: hyperparameter for growing an uninitialized expression tree
- sigma_a: hyperparameters for `lt` operator initialization
- sigma_b: hyperparameters for `lt` operator initialization
- X: input data (independent variable) matrix
- y: dependent variable vector
- ops_name_lst: the list of operator names
- ops_weight_lst: the list of operator weights
- ops_priors: the dictionary of operator prior information
-
- Returns:
- accept: whether to accept or reject the new expression tree
- root: the old or new expression tree, determined by whether to accept the new tree
- sigma_y: the old or new sigma_y
- sigma_a: the old or new sigma_a
- sigma_b: the old or new sigma_b
- """
- # the hyper-param for linear combination, i.e. for `sigma_y`
- sig = 4
- K = len(roots)
- root = roots[index]
- use_aux_ll = True
-
- # sample new sigma_a and sigma_b
- new_sigma_a = invgamma.rvs(1)
- new_sigma_b = invgamma.rvs(1)
-
- hyper_params = {"sigma_a": sigma_a, "sigma_b": sigma_b, "beta": beta}
- new_hyper_params = {"sigma_a": new_sigma_a, "sigma_b": new_sigma_b, "beta": beta}
- # propose a new tree `node`
- new_root, expand_node, shrink_node, q, q_inv = prop(
- root, ops_name_lst, ops_weight_lst, ops_priors, X.shape[1], **new_hyper_params
- )
-
- n_feature = X.shape[0]
- new_outputs = np.zeros((len(y), K))
- old_outputs = np.zeros((len(y), K))
-
- for i in np.arange(K):
- tmp_old = root.evaluate(X)
- old_outputs[:, i] = tmp_old
- if i == index:
- new_outputs[:, i] = new_root.evaluate(X)
- else:
- new_outputs[:, i] = tmp_old
-
- if np.linalg.matrix_rank(new_outputs) < K: # rejection due to insufficient rank
- return False, root, sigma_y, sigma_a, sigma_b
-
- y_ll_old = calc_y_ll(y, old_outputs, sigma_y)
- # a magic number here as the parameter for generating new sigma_y
- new_sigma_y = invgamma.rvs(sig)
- y_ll_new = calc_y_ll(y, new_outputs, new_sigma_y)
-
- log_y_ratio = y_ll_new - y_ll_old
- # contribution of f(Theta, S)
- if shrink_node or expand_node:
- struct_ll_old = sum(calc_tree_ll(root, ops_priors, n_feature, **hyper_params))
- struct_ll_new = sum(
- calc_tree_ll(new_root, ops_priors, n_feature, **hyper_params)
- )
- log_struct_ratio = struct_ll_new - struct_ll_old
- else:
- log_struct_ratio = calc_tree_ll(
- new_root, ops_priors, n_feature, **hyper_params
- )[0] - calc_tree_ll(root, ops_priors, n_feature, **hyper_params)
-
- # contribution of proposal Q and Qinv
- log_q_ratio = np.log(max(1e-5, q_inv / q))
-
- log_r = (
- log_y_ratio
- + log_struct_ratio
- + log_q_ratio
- + np.log(invgamma.pdf(new_sigma_y, sig))
- - np.log(invgamma.pdf(sigma_y, sig))
- )
-
- if use_aux_ll and (expand_node or shrink_node):
- old_aux_ll, old_lt_count = calc_aux_ll(root, **hyper_params)
- new_aux_ll, _ = calc_aux_ll(new_root, **new_hyper_params)
- log_r += old_aux_ll - new_aux_ll
- # log for the Jacobian matrix
- log_r += np.log(max(1e-5, 1 / np.power(2, 2 * old_lt_count)))
-
- alpha = min(log_r, 0)
- test = np.random.uniform(0, 1, 0)[0]
- if np.log(test) >= alpha: # no accept
- return False, root, sigma_y, sigma_a, sigma_b
- else: # accept
- return True, new_root, new_sigma_y, new_sigma_a, new_sigma_b
diff --git a/autora/theorist/bsr/misc.py b/autora/theorist/bsr/misc.py
deleted file mode 100644
index 9470d71db..000000000
--- a/autora/theorist/bsr/misc.py
+++ /dev/null
@@ -1,48 +0,0 @@
-from typing import Dict
-
-"""
-a file for all miscellaneous functions that are used in BSR.
-"""
-
-
-def normalize_prior_dict(prior_dict: Dict[str, float]):
- """
- Normalize the prior weights for the operators so that the weights sum to
- 1 and thus can be directly interpreted/used as probabilities.
- """
- prior_sum = 0.0
- for k in prior_dict:
- prior_sum += prior_dict[k]
- if prior_sum > 0:
- for k in prior_dict:
- prior_dict[k] = prior_dict[k] / prior_sum
- else:
- for k in prior_dict:
- prior_dict[k] = 1 / len(prior_dict)
-
-
-def get_ops_expr() -> Dict[str, str]:
- """
- Get the literal expression for the operation, the `{}` placeholder represents
- an expression that is recursively evaluated from downstream operations. If an
- operator's expression contains additional parameters (e.g. slope/intercept in
- linear operator), write the parameter like `{param}` - the param will be passed
- in using `expr.format(xxx, **params)` format.
-
- Return:
- A dictionary that maps operator name to its literal expression.
- """
- ops_expr = {
- "neg": "-({})",
- "sin": "sin({})",
- "pow2": "({})^2",
- "pow3": "({})^3",
- "exp": "exp({})",
- "cos": "cos({})",
- "+": "{}+{}",
- "*": "({})*({})",
- "-": "{}-{}",
- "inv": "1/[{}]",
- "linear": "{a}*({})+{b}",
- }
- return ops_expr
diff --git a/autora/theorist/bsr/node.py b/autora/theorist/bsr/node.py
deleted file mode 100644
index 1f0072d5a..000000000
--- a/autora/theorist/bsr/node.py
+++ /dev/null
@@ -1,178 +0,0 @@
-from enum import Enum
-from typing import Callable, Dict, List, Optional, Union
-
-import numpy as np
-import pandas as pd
-
-from .misc import get_ops_expr
-
-
-class NodeType(Enum):
- """
- -1 represents newly grown node (not decided yet)
- 0 represents no child, as a terminal node
- 1 represents one child,
- 2 represents 2 children
- """
-
- EMPTY = -1
- LEAF = 0
- UNARY = 1
- BINARY = 2
-
-
-class Node:
- def __init__(
- self,
- depth: int = 0,
- node_type: NodeType = NodeType.EMPTY,
- left: Optional["Node"] = None,
- right: Optional["Node"] = None,
- parent: Optional["Node"] = None,
- operator: Optional[Callable] = None,
- op_name: str = "",
- op_arity: int = 0,
- op_init: Optional[Callable] = None,
- ):
- # tree structure attributes
- self.depth = depth
- self.node_type = node_type
- self.left = left
- self.right = right
- self.parent = parent
-
- # a function that does the actual calculation, see definitions below
- self.operator = operator
- self.op_name = op_name
- self.op_arity = op_arity
- self.op_init = op_init
-
- # holding temporary calculation result, see `evaluate()`
- self.result = None
- # params for additional inputs into `operator`
- self.params: Dict = {}
-
- def _init_param(self, **hyper_params):
- # init is a function randomized by some hyper-params
- if callable(self.op_init):
- self.params = self.op_init(**hyper_params)
- else: # init is deterministic dict
- self.params = self.op_init
-
- def setup(
- self, op_name: str = "", ops_prior: Dict = {}, feature: int = 0, **hyper_params
- ):
- """
- Initialize an uninitialized node with given feature, in the case of a leaf node, or some
- given operator information, in the case of unary or binary node. The type of the node is
- determined by the feature/operator assigned to it.
-
- Arguments:
- op_name: the operator name, if given
- ops_prior: the prior dictionary of the given operator
- feature: the index of the assigned feature, if given
- hyper_params: hyperparameters for initializing the node
- """
- self.op_name = op_name
- self.operator = ops_prior.get("fn", None)
- self.op_arity = ops_prior.get("arity", 0)
- self.op_init = ops_prior.get("init", {})
- self._init_param(**hyper_params)
-
- if self.op_arity == 0:
- self.params["feature"] = feature
- self.node_type = NodeType.LEAF
- elif self.op_arity == 1:
- self.left = Node(depth=self.depth + 1, parent=self)
- self.node_type = NodeType.UNARY
- elif self.op_arity == 2:
- self.left = Node(depth=self.depth + 1, parent=self)
- self.right = Node(depth=self.depth + 1, parent=self)
- self.node_type = NodeType.BINARY
- else:
- raise ValueError(
- "operation arity should be either 0, 1, 2; get {} instead".format(
- self.op_arity
- )
- )
-
- def evaluate(
- self, X: Union[np.ndarray, pd.DataFrame], store_result: bool = False
- ) -> np.array:
- """
- Evaluate the expression, as represented by an expression tree with `self` as the root,
- using the given data matrix `X`.
-
- Arguments:
- X: the data matrix with each row being a data point and each column a feature
- store_result: whether to store the result of this calculation
-
- Return:
- result: the result of this calculation
- """
- if X is None:
- raise TypeError("input data X is non-existing")
- if isinstance(X, np.ndarray):
- X = pd.DataFrame(X)
- if self.node_type == NodeType.LEAF:
- result = np.array(X.iloc[:, self.params["feature"]]).flatten()
- elif self.node_type == NodeType.UNARY:
- assert self.left and self.operator
- result = self.operator(self.left.evaluate(X), **self.params)
- elif self.node_type == NodeType.BINARY:
- assert self.left and self.right and self.operator
- result = self.operator(
- self.left.evaluate(X), self.right.evaluate(X), **self.params
- )
- else:
- raise NotImplementedError("node evaluated before being setup")
- if store_result:
- self.result = result
- return result
-
- def get_expression(
- self,
- ops_expr: Optional[Dict[str, str]] = None,
- feature_names: Optional[List[str]] = None,
- ) -> str:
- """
- Get a literal (string) expression of the expression tree
-
- Arguments:
- ops_expr: the dictionary that maps an operation name to its literal format; if not
- offered, use the default one in `get_ops_expr()`
- feature_names: the list of names for the data features
- Return:
- a literal expression of the tree
- """
- if not ops_expr:
- ops_expr = get_ops_expr()
- if self.node_type == NodeType.LEAF:
- if feature_names:
- return feature_names[self.params["feature"]]
- else:
- return f"x{self.params['feature']}"
- elif self.node_type == NodeType.UNARY:
- # if the expr for an operator is not defined, use placeholder
- # e.g. operator `cosh` -> `cosh(xxx)`
- assert self.left
- place_holder = self.op_name + "({})"
- left_expr = self.left.get_expression(ops_expr, feature_names)
- expr_fmt = ops_expr.get(self.op_name, place_holder)
- return expr_fmt.format(left_expr, **self.params)
- elif self.node_type == NodeType.BINARY:
- assert self.left and self.right
- place_holder = self.op_name + "({})"
- left_expr = self.left.get_expression(ops_expr, feature_names)
- right_expr = self.right.get_expression(ops_expr, feature_names)
- expr_fmt = ops_expr.get(self.op_name, place_holder)
- return expr_fmt.format(left_expr, right_expr, **self.params)
- else: # empty node
- return "(empty node)"
-
- def __str__(self) -> str:
- """
- Get a literal (string) representation of a tree `node` data structure.
- See `get_expression` for more information.
- """
- return self.get_expression()
diff --git a/autora/theorist/bsr/operation.py b/autora/theorist/bsr/operation.py
deleted file mode 100644
index 2d43b12a5..000000000
--- a/autora/theorist/bsr/operation.py
+++ /dev/null
@@ -1,70 +0,0 @@
-from typing import Callable, Dict
-
-import numpy as np
-
-"""
-this file contains functions (operators) for actually carrying out the computations
-in our expression tree model. An operator can take in either 1 (unary) or 2 (binary)
-operands - corresponding to being used in a unary or binary node (see `node.py`). The
-operand(s) are recursively evaluated `np.array` from an operation or literal (in the
-case of a leaf node) in downstream node(s).
-
-For certain operator, e.g. a linear operator, auxiliary parameters (slope/intercept)
-are needed and can be passed in through `params` dictionary. These parameters are
-initialized in `prior.py` by their specified initialization functions.
-"""
-
-
-# a linear operator with default `a` = 1 and `b` = 0 (i.e. identity operation)
-def linear_op(operand: np.array, **params: Dict) -> np.array:
- a, b = params.get("a", 1), params.get("b", 0)
- return a * operand + b
-
-
-# a safe `exp` operation that has a cutoff (default = 1e-10) and avoids overflow
-def exp_op(operand: np.array, **params: Dict) -> np.array:
- cutoff = params.get("cutoff", 1e-10)
- return 1 / (cutoff + np.exp(-operand))
-
-
-# a safe `inv` operation that has a cutoff (default = 1e-10) and avoids overflow
-def inv_op(operand: np.array, **params: Dict) -> np.array:
- cutoff = params.get("cutoff", 1e-10)
- return 1 / (cutoff + operand)
-
-
-def neg_op(operand: np.array) -> np.array:
- return -operand
-
-
-def sin_op(operand: np.array) -> np.array:
- return np.sin(operand)
-
-
-def cos_op(operand: np.array) -> np.array:
- return np.cos(operand)
-
-
-# high-level func that produces power funcs such as `square`, `cubic`, etc.
-def make_pow_op(power: int) -> Callable[[np.array], np.array]:
- def pow_op(operand: np.array) -> np.array:
- return np.power(operand, power)
-
- return pow_op
-
-
-"""
-a list of binary operators
-"""
-
-
-def plus_op(operand_a: np.array, operand_b: np.array):
- return operand_a + operand_b
-
-
-def minus_op(operand_a: np.array, operand_b: np.array):
- return operand_a - operand_b
-
-
-def multiply_op(operand_a: np.array, operand_b: np.array):
- return operand_a * operand_b
diff --git a/autora/theorist/bsr/prior.py b/autora/theorist/bsr/prior.py
deleted file mode 100644
index 30649d370..000000000
--- a/autora/theorist/bsr/prior.py
+++ /dev/null
@@ -1,175 +0,0 @@
-from typing import Callable, Dict, Union
-
-import numpy as np
-from scipy.stats import norm
-
-from .misc import normalize_prior_dict
-from .operation import (
- cos_op,
- exp_op,
- inv_op,
- linear_op,
- make_pow_op,
- minus_op,
- multiply_op,
- neg_op,
- plus_op,
- sin_op,
-)
-
-
-def _get_ops_with_arity():
- """
- Get the operator function and arity (number of operands) of each operator.
-
- Returns:
- ops_fn_and_arity: a dictionary that maps operator name to a list, where
- the first item is the operator function and the second is the number of
- operands that it takes.
- """
- ops_fn_and_arity = {
- "ln": [linear_op, 1],
- "exp": [exp_op, 1],
- "inv": [inv_op, 1],
- "neg": [neg_op, 1],
- "sin": [sin_op, 1],
- "cos": [cos_op, 1],
- "pow2": [make_pow_op(2), 1],
- "pow3": [make_pow_op(3), 1],
- "+": [plus_op, 2],
- "*": [multiply_op, 2],
- "-": [minus_op, 2],
- }
- return ops_fn_and_arity
-
-
-def linear_init(**hyper_params) -> Dict:
- """
- Initialization function for the linear operator. Two parameters, slope
- (a) and intercept (b) are initialized.
-
- Arguments:
- hyper_params: the dictionary for hyperparameters. Specifically, this
- function requires `sigma_a` and `sigma_b` to be present.
- Returns:
- a dictionary with initialized `a` and `b` parameters.
- """
- sigma_a, sigma_b = hyper_params.get("sigma_a", 1), hyper_params.get("sigma_b", 1)
- return {
- "a": norm.rvs(loc=1, scale=np.sqrt(sigma_a)),
- "b": norm.rvs(loc=0, scale=np.sqrt(sigma_b)),
- }
-
-
-def _get_ops_init() -> Dict[str, Union[Callable, object]]:
- """
- Get the initialization functions for operators that require additional
- parameters.
-
- Returns:
- ops_init: a dictionary that maps operator name to either a parameter
- dict (in the case that the initialization is hard-coded) or an
- initialization function (when it is randomized). The dictionary
- value will be used in growing the `node` (see `funcs_legacy.py`).
- """
- ops_init = {
- "ln": linear_init,
- "inv": {"cutoff": 1e-10},
- "exp": {"cutoff": 1e-10},
- }
- return ops_init
-
-
-def _get_prior(prior_name: str, prob: bool = True) -> Dict[str, float]:
- prior_dict = {
- "Uniform": {
- "neg": 1.0,
- "sin": 1.0,
- "pow2": 1.0,
- "pow3": 1.0,
- "exp": 1.0,
- "cos": 1.0,
- "+": 1.0,
- "*": 1.0,
- "-": 1.0,
- "inv": 1.0,
- "ln": 1.0,
- },
- "Guimera2020": {
- "neg": 3.350846072163632,
- "sin": 5.965917796154835,
- "pow2": 3.3017352779079734,
- "pow3": 5.9907496760026175,
- "exp": 4.768665265735502,
- "cos": 5.452564657261127,
- "+": 5.808163661224514,
- "*": 5.002213595420244,
- "-": 1.0, # set arbitrarily now,
- "inv": 1.0, # set arbitrarily now,
- "ln": 1.0, # set arbitrarily now,
- },
- }
- assert prior_dict[prior_name] is not None, "prior key not recognized"
- if prob:
- normalize_prior_dict(prior_dict[prior_name])
- return prior_dict[prior_name]
-
-
-def get_prior_dict(prior_name="Uniform"):
- """
- Get the dictionary of prior information as well as several list of key operator properties
-
- Argument:
- prior_name: the name of the prior dictionary to use
-
- Returns:
- ops_name_lst: the list of operator names
- ops_weight_lst: the list of operator weights
- prior_dict: the dictionary of operator prior information
- """
- ops_prior = _get_prior(prior_name)
- ops_init = _get_ops_init()
- ops_fn_and_arity = _get_ops_with_arity()
-
- ops_name_lst = list(ops_prior.keys())
- ops_weight_lst = list(ops_prior.values())
- prior_dict = {
- k: {
- "init": ops_init.get(k, {}),
- "fn": ops_fn_and_arity[k][0],
- "arity": ops_fn_and_arity[k][1],
- "weight": ops_prior[k],
- }
- for k in ops_prior
- }
-
- return ops_name_lst, ops_weight_lst, prior_dict
-
-
-def get_prior_list(prior_name="Uniform"):
- """
- Get a dictionary of key prior properties
-
- Argument:
- prior_name: the name of the prior dictionary to use
-
- Returns:
- a dictionary that maps a prior property (e.g. `name`) to the list of such properties
- for each operator.
- """
- ops_prior = _get_prior(prior_name)
- ops_init = _get_ops_init()
- ops_fn_and_arity = _get_ops_with_arity()
-
- ops_name_lst = list(ops_prior.keys())
- ops_weight_lst = list(ops_prior.values())
- ops_init_lst = [ops_init.get(k, None) for k in ops_name_lst]
- ops_fn_lst = [ops_fn_and_arity[k][0] for k in ops_name_lst]
- ops_arity_lst = [ops_fn_and_arity[k][1] for k in ops_name_lst]
- return {
- "name": ops_name_lst,
- "weight": ops_weight_lst,
- "init": ops_init_lst,
- "fn": ops_fn_lst,
- "arity": ops_arity_lst,
- }
diff --git a/autora/theorist/darts/__init__.py b/autora/theorist/darts/__init__.py
deleted file mode 100644
index 6c7d2f2a4..000000000
--- a/autora/theorist/darts/__init__.py
+++ /dev/null
@@ -1,12 +0,0 @@
-from .architect import Architect
-from .dataset import DARTSDataset, darts_dataset_from_ndarray
-from .model_search import DARTSType, Network
-from .operations import PRIMITIVES
-from .utils import (
- AvgrageMeter,
- format_input_target,
- get_loss_function,
- get_output_format,
- get_output_str,
-)
-from .visualize import darts_model_plot
diff --git a/autora/theorist/darts/architect.py b/autora/theorist/darts/architect.py
deleted file mode 100755
index c7d723e29..000000000
--- a/autora/theorist/darts/architect.py
+++ /dev/null
@@ -1,337 +0,0 @@
-from typing import Optional
-
-import numpy as np
-import torch
-import torch.nn.functional as F
-from torch.autograd import Variable
-
-from autora.theorist.darts.model_search import DARTSType, Network
-from autora.theorist.darts.operations import isiterable
-
-
-def _concat(xs) -> torch.Tensor:
- """
- A function to concatenate a list of tensors.
- Args:
- xs: The list of tensors to concatenate.
-
- Returns:
- The concatenated tensor.
- """
- return torch.cat([x.view(-1) for x in xs])
-
-
-class Architect(object):
- """
- A learner operating on the architecture weights of a DARTS model.
- This learner handles training the weights associated with mixture operations
- (architecture weights).
- """
-
- def __init__(
- self,
- model: Network,
- arch_learning_rate_max: float,
- arch_momentum: float,
- arch_weight_decay: float,
- arch_weight_decay_df: float = 0,
- arch_weight_decay_base: float = 0,
- fair_darts_loss_weight: float = 1,
- ):
- """
- Initializes the architecture learner.
-
- Arguments:
- model: a network model implementing the full DARTS model.
- arch_learning_rate_max: learning rate for the architecture weights
- arch_momentum: arch_momentum used in the Adam optimizer for architecture weights
- arch_weight_decay: general weight decay for the architecture weights
- arch_weight_decay_df: (weight decay applied to architecture weights in proportion
- to the number of parameters of an operation)
- arch_weight_decay_base: (a constant weight decay applied to architecture weights)
- fair_darts_loss_weight: (a regularizer that pushes architecture weights more toward
- zero or one in the fair DARTS variant)
- """
- # set parameters for architecture learning
- self.network_arch_momentum = arch_momentum
- self.network_weight_decay = arch_weight_decay
- self.network_weight_decay_df = arch_weight_decay_df
- self.arch_weight_decay_base = arch_weight_decay_base * model._steps
- self.fair_darts_loss_weight = fair_darts_loss_weight
-
- self.model = model
- self.lr = arch_learning_rate_max
- # architecture is optimized using Adam
- self.optimizer = torch.optim.Adam(
- self.model.arch_parameters(),
- lr=arch_learning_rate_max,
- betas=(0.5, 0.999),
- weight_decay=arch_weight_decay,
- )
-
- # initialize weight decay matrix
- self._init_decay_weights()
-
- # initialize the logged loss
- self.current_loss = 0
-
- def _init_decay_weights(self):
- """
- This function initializes the weight decay matrix. The weight decay matrix
- is subtracted from the architecture weight matrix on every learning step. The matrix
- specifies a weight decay which is proportional to the number of parameters used in an
- operation.
- """
- n_params = list()
- for operation in self.model.cells._ops[0]._ops:
- if isiterable(operation):
- n_params_total = (
- 1 # any non-zero operation is counted as an additional parameter
- )
- for subop in operation:
- for parameter in subop.parameters():
- if parameter.requires_grad is True:
- n_params_total += parameter.data.numel()
- else:
- n_params_total = 0 # no operation gets zero parameters
- n_params.append(n_params_total)
-
- self.decay_weights = Variable(
- torch.zeros(self.model.arch_parameters()[0].data.shape)
- )
- for idx, param in enumerate(n_params):
- if param > 0:
- self.decay_weights[:, idx] = (
- param * self.network_weight_decay_df + self.arch_weight_decay_base
- )
- else:
- self.decay_weights[:, idx] = param
- self.decay_weights = self.decay_weights
- self.decay_weights = self.decay_weights.data
-
- def _compute_unrolled_model(
- self,
- input: torch.Tensor,
- target: torch.Tensor,
- eta: float,
- network_optimizer: torch.optim.Optimizer,
- ):
- """
- Helper function used to compute the approximate architecture gradient.
-
- Arguments:
- input: input patterns
- target: target patterns
- eta: learning rate
- network_optimizer: optimizer used to updating the architecture weights
-
- Returns:
- unrolled_model: the unrolled architecture
- """
- loss = self.model._loss(input, target)
- theta = _concat(self.model.parameters()).data
- try:
- moment = _concat(
- network_optimizer.state[v]["momentum_buffer"]
- for v in self.model.parameters()
- ).mul_(self.network_arch_momentum)
- except Exception:
- moment = torch.zeros_like(theta)
- dtheta = (
- _concat(torch.autograd.grad(loss, self.model.parameters())).data
- + self.network_weight_decay * theta
- )
- unrolled_model = self._construct_model_from_theta(
- theta.sub(eta, moment + dtheta)
- )
- return unrolled_model
-
- def step(
- self,
- input_valid: torch.Tensor,
- target_valid: torch.Tensor,
- network_optimizer: torch.optim.Optimizer,
- unrolled: bool,
- input_train: Optional[torch.Tensor] = None,
- target_train: Optional[torch.Tensor] = None,
- eta: float = 1,
- ):
- """
- Updates the architecture parameters for one training iteration
-
- Arguments:
- input_valid: input patterns for validation set
- target_valid: target patterns for validation set
- network_optimizer: optimizer used to updating the architecture weights
- unrolled: whether to use the unrolled architecture or not (i.e., whether to use
- the approximate architecture gradient or not)
- input_train: input patterns for training set
- target_train: target patterns for training set
- eta: learning rate for the architecture weights
- """
-
- # input_train, target_train only needed for approximation (unrolled=True)
- # of architecture gradient
- # when performing a single weigh update
-
- # initialize gradients to be zero
- self.optimizer.zero_grad()
- # use different backward step depending on whether to use
- # 2nd order approximation for gradient update
- if unrolled: # probably using eta of parameter update here
- self._backward_step_unrolled(
- input_train,
- target_train,
- input_valid,
- target_valid,
- eta,
- network_optimizer,
- )
- else:
- self._backward_step(input_valid, target_valid)
- # move Adam one step
- self.optimizer.step()
-
- # backward step (using non-approximate architecture gradient, i.e., full training)
- def _backward_step(self, input_valid: torch.Tensor, target_valid: torch.Tensor):
- """
- Computes the loss and updates the architecture weights assuming full optimization
- of coefficients for the current architecture.
-
- Arguments:
- input_valid: input patterns for validation set
- target_valid: target patterns for validation set
- """
- if self.model.DARTS_type == DARTSType.ORIGINAL:
- loss = self.model._loss(input_valid, target_valid)
- elif self.model.DARTS_type == DARTSType.FAIR:
- loss1 = self.model._loss(input_valid, target_valid)
- loss2 = -F.mse_loss(
- torch.sigmoid(self.model.alphas_normal),
- 0.5 * torch.ones(self.model.alphas_normal.shape, requires_grad=False),
- ) # torch.tensor(0.5, requires_grad=False)
- loss = loss1 + self.fair_darts_loss_weight * loss2
- else:
- raise Exception(
- "DARTS Type " + str(self.model.DARTS_type) + " not implemented"
- )
-
- loss.backward()
- self.current_loss = loss.item()
-
- # weight decay proportional to degrees of freedom
- for p in self.model.arch_parameters():
- p.data.sub_((self.decay_weights * self.lr)) # weight decay
-
- # backward pass using second order approximation
- def _backward_step_unrolled(
- self,
- input_train: torch.Tensor,
- target_train: torch.Tensor,
- input_valid: torch.Tensor,
- target_valid: torch.Tensor,
- eta: float,
- network_optimizer: torch.optim.Optimizer,
- ):
- """
- Computes the loss and updates the architecture weights using the approximate architecture
- gradient.
-
- Arguments:
- input_train: input patterns for training set
- target_train: target patterns for training set
- input_valid: input patterns for validation set
- target_valid: target patterns for validation set
- eta: learning rate
- network_optimizer: optimizer used to updating the architecture weights
-
- """
-
- # gets the model
- unrolled_model = self._compute_unrolled_model(
- input_train, target_train, eta, network_optimizer
- )
-
- if self.model.DARTS_type == DARTSType.ORIGINAL:
- unrolled_loss = unrolled_model._loss(input_valid, target_valid)
- elif self.model.DARTS_type == DARTSType.FAIR:
- loss1 = self.model._loss(input_valid, target_valid)
- loss2 = -F.mse_loss(
- torch.sigmoid(self.model.alphas_normal),
- torch.tensor(0.5, requires_grad=False),
- )
- unrolled_loss = loss1 + self.fair_darts_loss_weight * loss2
- else:
- raise Exception(
- "DARTS Type " + str(self.model.DARTS_type) + " not implemented"
- )
-
- unrolled_loss.backward()
- dalpha = [v.grad for v in unrolled_model.arch_parameters()]
- vector = [v.grad.data for v in unrolled_model.parameters()]
- implicit_grads = self._hessian_vector_product(vector, input_train, target_train)
-
- for g, ig in zip(dalpha, implicit_grads):
- g.data.sub_(eta, ig.data)
-
- for v, g in zip(self.model.arch_parameters(), dalpha):
- if v.grad is None:
- v.grad = Variable(g.data)
- else:
- v.grad.data.copy_(g.data)
-
- def _construct_model_from_theta(self, theta: torch.Tensor):
- """
- Helper function used to compute the approximate gradient update
- for the architecture weights.
-
- Arguments:
- theta: term used to compute approximate gradient update
-
- """
- model_new = self.model.new()
- model_dict = self.model.state_dict()
-
- params, offset = {}, 0
- for k, v in self.model.named_parameters():
- v_length = np.prod(v.size())
- params[k] = theta[offset : (offset + v_length)].view(v.size())
- offset += v_length
-
- assert offset == len(theta)
- model_dict.update(params)
- model_new.load_state_dict(model_dict)
- return model_new # .cuda() # Edit SM 10/26/19: uncommented for cuda
-
- # second order approximation of architecture gradient (see Eqn. 8 from Liu et al, 2019)
- def _hessian_vector_product(
- self, vector: torch.Tensor, input: torch.Tensor, target: torch.Tensor, r=1e-2
- ):
- """
- Helper function used to compute the approximate gradient update
- for the architecture weights. It computes the hessian vector product outlined in Eqn. 8
- from Liu et al, 2019.
-
- Arguments:
- vector: input vector
- input: input patterns
- target: target patterns
- r: coefficient used to compute the hessian vector product
-
- """
- R = r / _concat(vector).norm()
- for p, v in zip(self.model.parameters(), vector):
- p.data.add_(R, v)
- loss = self.model._loss(input, target)
- grads_p = torch.autograd.grad(loss, self.model.arch_parameters())
-
- for p, v in zip(self.model.parameters(), vector):
- p.data.sub_(2 * R, v)
- loss = self.model._loss(input, target)
- grads_n = torch.autograd.grad(loss, self.model.arch_parameters())
-
- for p, v in zip(self.model.parameters(), vector):
- p.data.add_(R, v)
-
- # this implements Eqn. 8 from Liu et al. (2019)
- return [(x - y).div_(2 * R) for x, y in zip(grads_p, grads_n)]
diff --git a/autora/theorist/darts/dataset.py b/autora/theorist/darts/dataset.py
deleted file mode 100644
index d9ae8690d..000000000
--- a/autora/theorist/darts/dataset.py
+++ /dev/null
@@ -1,72 +0,0 @@
-from typing import Optional, Tuple
-
-import numpy as np
-import torch
-from torch.utils.data import Dataset
-
-
-class DARTSDataset(Dataset):
- """
- A dataset for the DARTS algorithm.
- """
-
- def __init__(self, input_data: torch.tensor, output_data: torch.tensor):
- """
- Initializes the dataset.
-
- Arguments:
- input_data: The input data to the dataset.
- output_data: The output data to the dataset.
- """
- assert input_data.shape[0] == output_data.shape[0]
- self.input_data = input_data
- self.output_data = output_data
-
- def __len__(self, experiment_id: Optional[int] = None) -> int:
- """
- Returns the length of the dataset.
-
- Arguments:
- experiment_id:
-
- Returns:
- The length of the dataset.
- """
- return self.input_data.shape[0]
-
- def __getitem__(self, idx: int) -> Tuple[torch.tensor, torch.tensor]:
- """
- Returns the item at the given index.
-
- Arguments:
- idx: The index of the item to return.
-
- Returns:
- The item at the given index.
-
- """
- input_tensor = self.input_data[idx]
- output_tensor = self.output_data[idx]
- return input_tensor, output_tensor
-
-
-def darts_dataset_from_ndarray(
- input_data: np.ndarray, output_data: np.ndarray
-) -> DARTSDataset:
- """
- A function to create a dataset from numpy arrays.
-
- Arguments:
- input_data: The input data to the dataset.
- output_data: The output data to the dataset.
-
- Returns:
- The dataset.
-
- """
-
- obj = DARTSDataset(
- torch.tensor(input_data, dtype=torch.get_default_dtype()),
- torch.tensor(output_data, dtype=torch.get_default_dtype()),
- )
- return obj
diff --git a/autora/theorist/darts/fan_out.py b/autora/theorist/darts/fan_out.py
deleted file mode 100644
index 54fbcc404..000000000
--- a/autora/theorist/darts/fan_out.py
+++ /dev/null
@@ -1,42 +0,0 @@
-import torch
-import torch.nn as nn
-
-
-class Fan_Out(nn.Module):
- """
- A neural network class that splits a given input vector into separate nodes. Each element of
- the original input vector is allocated a separate node in a computation graph.
- """
-
- def __init__(self, num_inputs: int):
- """
- Initialize the Fan Out operation.
-
- Arguments:
- num_inputs (int): The number of distinct input nodes to generate
- """
- super(Fan_Out, self).__init__()
-
- self._num_inputs = num_inputs
-
- self.input_output = list()
- for i in range(num_inputs):
- linearConnection = nn.Linear(num_inputs, 1, bias=False)
- linearConnection.weight.data = torch.zeros(1, num_inputs)
- linearConnection.weight.data[0, i] = 1
- linearConnection.weight.requires_grad = False
- self.input_output.append(linearConnection)
-
- def forward(self, input: torch.Tensor) -> torch.Tensor:
- """
- Forward pass of the Fan Out operation.
-
- Arguments:
- input: input vector whose elements are split into separate input nodes
- """
-
- output = list()
- for i in range(self._num_inputs):
- output.append(self.input_output[i](input))
-
- return output
diff --git a/autora/theorist/darts/model_search.py b/autora/theorist/darts/model_search.py
deleted file mode 100755
index 738c39dc2..000000000
--- a/autora/theorist/darts/model_search.py
+++ /dev/null
@@ -1,796 +0,0 @@
-import random
-import warnings
-from enum import Enum
-from typing import Callable, List, Literal, Optional, Sequence, Tuple
-
-import numpy as np
-import torch
-import torch.nn as nn
-import torch.nn.functional as F
-from torch.autograd import Variable
-
-from autora.theorist.darts.fan_out import Fan_Out
-from autora.theorist.darts.operations import (
- PRIMITIVES,
- Genotype,
- get_operation_label,
- isiterable,
- operation_factory,
-)
-
-
-class DARTSType(str, Enum):
- """
- Enumerator that indexes different variants of DARTS.
- """
-
- # Liu, Simonyan & Yang (2018). Darts: Differentiable architecture search
- ORIGINAL = "original"
-
- # Chu, Zhou, Zhang & Li (2020). Fair darts: Eliminating unfair advantages
- # in differentiable architecture search
- FAIR = "fair"
-
-
-# for 2 input nodes, 1 output node and 4 intermediate nodes,
-# there are 14 possible edges (x 8 operations)
-# Let input nodes be 1, 2 intermediate nodes 3, 4, 5, 6, and output node 7
-# The edges are 3-1, 3-2; 4-1, 4-2, 4-3; 5-1, 5-2, 5-3, 5-4; 6-1, 6-2,
-# 6-3, 6-4, 6-5; 2 + 3 + 4 + 5 = 14 edges
-
-
-class MixedOp(nn.Module):
- """
- Mixture operation as applied in Differentiable Architecture Search (DARTS).
- A mixture operation amounts to a weighted mixture of a pre-defined set of operations
- that is applied to an input variable.
- """
-
- def __init__(self, primitives: Sequence[str] = PRIMITIVES):
- """
- Initializes a mixture operation based on a pre-specified set of primitive operations.
-
- Arguments:
- primitives: list of primitives to be used in the mixture operation
- """
- super(MixedOp, self).__init__()
- self._ops = nn.ModuleList()
- # loop through all the 8 primitive operations
- for primitive in primitives:
- # OPS returns an nn module for a given primitive (defines as a string)
- op = operation_factory(primitive)
-
- # add the operation
- self._ops.append(op)
-
- def forward(self, x: torch.Tensor, weights: torch.Tensor) -> float:
- """
- Computes a mixture operation as a weighted sum of all primitive operations.
-
- Arguments:
- x: input to the mixture operations
- weights: weight vector containing the weights associated with each operation
-
- Returns:
- y: result of the weighted mixture operation
- """
- # there are 8 weights for all the eight primitives. then it returns the
- # weighted sum of all operations performed on a given input
- return sum(w * op(x) for w, op in zip(weights, self._ops))
-
-
-# Let a cell be a DAG(directed acyclic graph) containing N nodes (2 input
-# nodes 1 output node?)
-class Cell(nn.Module):
- """
- A cell as defined in differentiable architecture search. A single cell corresponds
- to a computation graph with the number of input nodes defined by n_input_states and
- the number of hidden nodes defined by steps. Input nodes only project to hidden nodes and hidden
- nodes project to each other with an acyclic connectivity pattern. The output of a cell
- corresponds to the concatenation of all hidden nodes. Hidden nodes are computed by integrating
- transformed outputs from sending nodes. Outputs from sending nodes correspond to
- mixture operations, i.e. a weighted combination of pre-specified operations applied to the
- variable specified by the sending node (see MixedOp).
-
- Attributes:
- _steps: number of hidden nodes
- _n_input_states: number of input nodes
- _ops: list of mixture operations (amounts to the list of edges in the cell)
- """
-
- def __init__(
- self,
- steps: int = 2,
- n_input_states: int = 1,
- primitives: Sequence[str] = PRIMITIVES,
- ):
- """
- Initializes a cell based on the number of hidden nodes (steps)
- and the number of input nodes (n_input_states).
-
- Arguments:
- steps: number of hidden nodes
- n_input_states: number of input nodes
- """
- # The first and second nodes of cell k are set equal to the outputs of
- # cell k − 2 and cell k − 1, respectively, and 1 × 1 convolutions
- # (ReLUConvBN) are inserted as necessary
- super(Cell, self).__init__()
-
- # set parameters
- self._steps = steps # hidden nodes
- self._n_input_states = n_input_states # input nodes
-
- # EDIT 11/04/19 SM: adapting to new SimpleNet data (changed from
- # multiplier to steps)
- self._multiplier = steps
-
- # set operations according to number of modules (empty)
- self._ops = nn.ModuleList()
- # iterate over edges: edges between each hidden node and input nodes +
- # prev hidden nodes
- for i in range(self._steps): # hidden nodes
- for j in range(self._n_input_states + i): # 2 refers to the 2 input nodes
- # defines the stride for link between cells
- # adds a mixed operation (derived from architecture parameters alpha)
- # for 4 intermediate nodes, a total of 14 connections
- # (MixedOps) is added
- op = MixedOp(primitives)
- # appends cell with mixed operation
- self._ops.append(op)
-
- def forward(self, input_states: List, weights: torch.Tensor):
- """
- Computes the output of a cell given a list of input states
- (variables represented in input nodes) and a weight matrix specifying the weights of each
- operation for each edge.
-
- Arguments:
- input_states: list of input nodes
- weights: matrix specifying architecture weights, i.e. the weights associated
- with each operation for each edge
- """
- # initialize states (activities of each node in the cell)
- states = list()
-
- # add each input node to the number of states
- for input in input_states:
- states.append(input)
-
- offset = 0
- # this computes the states from intermediate nodes and adds them to the list of states
- # (values of nodes)
- # for each hidden node, compute edge between existing states (input
- # nodes / previous hidden) nodes and current node
- for i in range(
- self._steps
- ): # compute the state for each hidden node, first hidden node is
- # sum of input nodes, second is sum of input and first hidden
- s = sum(
- self._ops[offset + j](h, weights[offset + j])
- for j, h in enumerate(states)
- )
- offset += len(states)
- states.append(s)
-
- # concatenates the states of the last n (self._multiplier) intermediate
- # nodes to get the output of a cell
- result = torch.cat(states[-self._multiplier :], dim=1)
- return result
-
-
-class Network(nn.Module):
- """
- A PyTorch computation graph according to DARTS.
- It consists of a single computation cell which transforms an
- input vector (containing all input variable) into an output vector, by applying a set of
- mixture operations which are defined by the architecture weights (labeled "alphas" of the
- network).
-
- The network flow looks as follows: An input vector (with _n_input_states elements) is split into
- _n_input_states separate input nodes (one node per element). The input nodes are then passed
- through a computation cell with _steps hidden nodes (see Cell). The output of the computation
- cell corresponds to the concatenation of its hidden nodes (a single vector). The final output
- corresponds to a (trained) affine transformation of this concatenation (labeled "classifier").
-
- Attributes:
- _n_input_states: length of input vector (translates to number of input nodes)
- _num_classes: length of output vector
- _criterion: optimization criterion used to define the loss
- _steps: number of hidden nodes in the cell
- _architecture_fixed: specifies whether the architecture weights shall remain fixed
- (not trained)
- _classifier_weight_decay: a weight decay applied to the classifier
-
- """
-
- def __init__(
- self,
- num_classes: int,
- criterion: Callable,
- steps: int = 2,
- n_input_states: int = 2,
- architecture_fixed: bool = False,
- train_classifier_coefficients: bool = False,
- train_classifier_bias: bool = False,
- classifier_weight_decay: float = 0,
- darts_type: DARTSType = DARTSType.ORIGINAL,
- primitives: Sequence[str] = PRIMITIVES,
- ):
- """
- Initializes the network.
-
- Arguments:
- num_classes: length of output vector
- criterion: optimization criterion used to define the loss
- steps: number of hidden nodes in the cell
- n_input_states: length of input vector (translates to number of input nodes)
- architecture_fixed: specifies whether the architecture weights shall remain fixed
- train_classifier_coefficients: specifies whether the classifier coefficients shall be
- trained
- train_classifier_bias: specifies whether the classifier bias shall be trained
- classifier_weight_decay: a weight decay applied to the classifier
- darts_type: variant of DARTS (regular or fair) that is applied for training
- """
- super(Network, self).__init__()
-
- # set parameters
- self._num_classes = num_classes # number of output classes
- self._criterion = criterion # optimization criterion (e.g., softmax)
- self._steps = steps # the number of intermediate nodes (e.g., 2)
- self._n_input_states = n_input_states # number of input nodes
- self.DARTS_type = darts_type # darts variant
- self._multiplier = (
- 1 # the number of internal nodes that get concatenated to the output
- )
- self.primitives = primitives
-
- # set parameters
- self._dim_output = self._steps
- self._architecture_fixed = architecture_fixed
- self._classifier_weight_decay = classifier_weight_decay
-
- # input nodes
- self.stem = nn.Sequential(Fan_Out(self._n_input_states))
-
- self.cells = (
- nn.ModuleList()
- ) # get list of all current modules (should be empty)
-
- # generate a cell that undergoes architecture search
- self.cells = Cell(steps, self._n_input_states, self.primitives)
-
- # last layer is a linear classifier (e.g. with 10 CIFAR classes)
- self.classifier = nn.Linear(
- self._dim_output, num_classes
- ) # make this the number of input states
-
- # initialize classifier weights
- if train_classifier_coefficients is False:
- self.classifier.weight.data.fill_(1)
- self.classifier.weight.requires_grad = False
-
- if train_classifier_bias is False:
- self.classifier.bias.data.fill_(0)
- self.classifier.bias.requires_grad = False
-
- # initializes weights of the architecture
- self._initialize_alphas()
-
- # function for copying the network
- def new(self) -> nn.Module:
- """
- Returns a copy of the network.
-
- Returns:
- a copy of the network
-
- """
-
- model_new = Network(
- # self._C, self._num_classes, self._criterion, steps=self._steps
- num_classes=self._num_classes,
- criterion=self._criterion,
- steps=self._steps,
- n_input_states=self._n_input_states,
- architecture_fixed=self._architecture_fixed,
- classifier_weight_decay=self._classifier_weight_decay,
- darts_type=self.DARTS_type,
- primitives=self.primitives,
- )
-
- for x, y in zip(model_new.arch_parameters(), self.arch_parameters()):
- x.data.copy_(y.data)
- return model_new
-
- # computes forward pass for full network
- def forward(self, x: torch.Tensor):
- """
- Computes output of the network.
-
- Arguments:
- x: input to the network
- """
-
- # compute stem first
- input_states = self.stem(x)
-
- # get architecture weights
- if self._architecture_fixed:
- weights = self.alphas_normal
- else:
- if self.DARTS_type == DARTSType.ORIGINAL:
- weights = F.softmax(self.alphas_normal, dim=-1)
- elif self.DARTS_type == DARTSType.FAIR:
- weights = torch.sigmoid(self.alphas_normal)
- else:
- raise Exception(
- "DARTS Type " + str(self.DARTS_type) + " not implemented"
- )
-
- # then apply cell with weights
- cell_output = self.cells(input_states, weights)
-
- # compute logits
- logits = self.classifier(cell_output.view(cell_output.size(0), -1))
- # just gets output to have only 2 dimensions (batch_size x num units in
- # output layer)
-
- return logits
-
- def _loss(self, input: torch.Tensor, target: torch.Tensor) -> torch.Tensor:
- """
- Computes the loss of the network for the specified criterion.
-
- Arguments:
- input: input patterns
- target: target patterns
-
- Returns:
- loss
- """
- logits = self(input)
- return self._criterion(logits, target) # returns cross entropy by default
-
- # regularization
- def apply_weight_decay_to_classifier(self, lr: float):
- """
- Applies a weight decay to the weights projecting from the cell to the final output layer.
-
- Arguments:
- lr: learning rate
- """
- # weight decay proportional to degrees of freedom
- for p in self.classifier.parameters():
- if p.requires_grad is False:
- continue
- p.data.sub_(
- self._classifier_weight_decay
- * lr
- * torch.sign(p.data)
- * (torch.abs(p.data))
- ) # weight decay
-
- def _initialize_alphas(self):
- """
- Initializes the architecture weights.
- """
- # compute the number of possible connections between nodes
- k = sum(1 for i in range(self._steps) for n in range(self._n_input_states + i))
- # number of available primitive operations (8 different types for a
- # conv net)
- num_ops = len(self.primitives)
-
- # e.g., generate 14 (number of available edges) by 8 (operations)
- # weight matrix for normal alphas of the architecture
- self.alphas_normal = Variable(
- 1e-3 * torch.randn(k, num_ops), requires_grad=True
- )
- # those are all the parameters of the architecture
- self._arch_parameters = [self.alphas_normal]
-
- # provide back the architecture as a parameter
- def arch_parameters(self) -> List:
- """
- Returns architecture weights.
-
- Returns:
- _arch_parameters: architecture weights.
- """
- return self._arch_parameters
-
- # fixes architecture
- def fix_architecture(
- self, switch: bool, new_weights: Optional[torch.Tensor] = None
- ):
- """
- Freezes or unfreezes the architecture weights.
-
- Arguments:
- switch: set true to freeze architecture weights or false unfreeze
- new_weights: new set of architecture weights
- """
- self._architecture_fixed = switch
- if new_weights is not None:
- self.alphas_normal = new_weights
- return
-
- def sample_alphas_normal(
- self, sample_amp: float = 1, fair_darts_weight_threshold: float = 0
- ) -> torch.Tensor:
- """
- Samples an architecture from the mixed operations from a probability distribution that is
- defined by the (softmaxed) architecture weights.
- This amounts to selecting one operation per edge (i.e., setting the architecture
- weight of that operation to one while setting the others to zero).
-
- Arguments:
- sample_amp: temperature that is applied before passing the weights through a softmax
- fair_darts_weight_threshold: used in fair DARTS. If an architecture weight is below
- this value then it is set to zero.
-
- Returns:
- alphas_normal_sample: sampled architecture weights.
- """
-
- alphas_normal = self.alphas_normal.clone()
- alphas_normal_sample = Variable(torch.zeros(alphas_normal.data.shape))
-
- for edge in range(alphas_normal.data.shape[0]):
- if self.DARTS_type == DARTSType.ORIGINAL:
- W_soft = F.softmax(alphas_normal[edge] * sample_amp, dim=0)
- elif self.DARTS_type == DARTSType.FAIR:
- transformed_alphas_normal = alphas_normal[edge]
- above_threshold = False
- for idx in range(len(transformed_alphas_normal.data)):
- if (
- torch.sigmoid(transformed_alphas_normal).data[idx]
- > fair_darts_weight_threshold
- ):
- above_threshold = True
- break
- if above_threshold:
- W_soft = F.softmax(transformed_alphas_normal * sample_amp, dim=0)
- else:
- W_soft = Variable(torch.zeros(alphas_normal[edge].shape))
- W_soft[self.primitives.index("none")] = 1
-
- else:
- raise Exception(
- "DARTS Type " + str(self.DARTS_type) + " not implemented"
- )
-
- if torch.any(W_soft != W_soft):
- warnings.warn(
- "Cannot properly sample from architecture weights due to nan entries."
- )
- k_sample = random.randrange(len(W_soft))
- else:
- k_sample = np.random.choice(range(len(W_soft)), p=W_soft.data.numpy())
- alphas_normal_sample[edge, k_sample] = 1
-
- return alphas_normal_sample
-
- def max_alphas_normal(self) -> torch.Tensor:
- """
- Samples an architecture from the mixed operations by selecting, for each edge,
- the operation with the largest architecture weight.
-
- Returns:
- alphas_normal_sample: sampled architecture weights.
- """
- alphas_normal = self.alphas_normal.clone()
- alphas_normal_sample = Variable(torch.zeros(alphas_normal.data.shape))
-
- for edge in range(alphas_normal.data.shape[0]):
- row = alphas_normal[edge]
- max_idx = np.argmax(row.data)
- alphas_normal_sample[edge, max_idx] = 1
-
- return alphas_normal_sample
-
- # returns the genotype of the model
- def genotype(self, sample: bool = False) -> Genotype:
- """
- Computes a genotype of the model which specifies the current computation graph based on
- the largest architecture weight for each edge, or based on a sample.
- The genotype can be used for parsing or plotting the computation graph.
-
- Arguments:
- sample: if set to true, the architecture will be determined by sampling
- from a probability distribution that is determined by the
- softmaxed architecture weights. If set to false (default), the architecture will be
- determined based on the largest architecture weight per edge.
-
- Returns:
- genotype: genotype describing the current (sampled) architecture
- """
- # this function uses the architecture weights to retrieve the
- # operations with the highest weights
- def _parse(weights):
- gene = []
- n = (
- self._n_input_states
- ) # 2 ... changed this to adapt to number of input states
- start = 0
- for i in range(self._steps):
- end = start + n
- W = weights[start:end].copy()
- # first get all the edges for a given node, edges are sorted according to their
- # highest (non-none) weight, starting from the edge with the smallest heighest
- # weight
-
- if "none" in self.primitives:
- none_index = self.primitives.index("none")
- else:
- none_index = -1
-
- edges = sorted(
- range(n),
- key=lambda x: -max(
- W[x][k] for k in range(len(W[x])) if k != none_index
- ),
- )
- # for each edge, figure out which is the primitive with the
- # highest
- for (
- j
- ) in edges: # looping through all the edges for the current node (i)
- if sample:
- W_soft = F.softmax(Variable(torch.from_numpy(W[j])))
- k_best = np.random.choice(
- range(len(W[j])), p=W_soft.data.numpy()
- )
- else:
- k_best = None
- # looping through all the primitives
- for k in range(len(W[j])):
- # choose the primitive with the highest weight
- # if k != self.primitives.index('none'):
- # EDIT SM 01/13: commented to include "none"
- # weights in genotype
- if k_best is None or W[j][k] > W[j][k_best]:
- k_best = k
- # add gene (primitive, edge number)
- gene.append((self.primitives[k_best], j))
- start = end
- n += 1
- return gene
-
- if self._architecture_fixed:
- gene_normal = _parse(self.alphas_normal.data.cpu().numpy())
- else:
- gene_normal = _parse(
- F.softmax(self.alphas_normal, dim=-1).data.cpu().numpy()
- )
-
- concat = range(2 + self._steps - self._multiplier, self._steps + 2)
- genotype = Genotype(
- normal=gene_normal,
- normal_concat=concat,
- )
- return genotype
-
- def count_parameters(self, print_parameters: bool = False) -> Tuple[int, int, list]:
- """
- Counts and returns the parameters (coefficients) of the architecture defined by the
- highest architecture weights.
-
- Arguments:
- print_parameters: if set to true, the function will print all parameters.
-
- Returns:
- n_params_total: total number of parameters
- n_params_base: number of parameters determined by the classifier
- param_list: list of parameters specifying the corresponding edge (operation)
- and value
- """
-
- # counts only parameters of operations with the highest architecture weight
- n_params_total = 0
-
- # count classifier
- for parameter in self.classifier.parameters():
- if parameter.requires_grad is True:
- n_params_total += parameter.data.numel()
-
- # count stem
- for parameter in self.stem.parameters():
- if parameter.requires_grad is True:
- n_params_total += parameter.data.numel()
-
- n_params_base = (
- n_params_total # number of parameters, excluding individual cells
- )
-
- param_list = list()
- # now count number of parameters for cells that have highest
- # probability
- for idx, op in enumerate(self.cells._ops):
- # pick most operation with highest likelihood
- values = self.alphas_normal[idx, :].data.numpy()
- maxIdx = np.where(values == max(values))
-
- tmp_param_list = list()
- if isiterable(op._ops[maxIdx[0].item(0)]): # Zero is not iterable
-
- for subop in op._ops[maxIdx[0].item(0)]:
-
- for parameter in subop.parameters():
- tmp_param_list.append(parameter.data.numpy().squeeze())
- if parameter.requires_grad is True:
- n_params_total += parameter.data.numel()
-
- if print_parameters:
- print(
- "Edge ("
- + str(idx)
- + "): "
- + get_operation_label(
- self.primitives[maxIdx[0].item(0)], tmp_param_list
- )
- )
- param_list.append(tmp_param_list)
-
- # # get parameters from final linear classifier
- # tmp_param_list = list()
- # for parameter in self.classifier.parameters():
- # for subparameter in parameter:
- # tmp_param_list.append(subparameter.data.numpy().squeeze())
-
- # get parameters from final linear for each edge
- for edge in range(self._steps):
- tmp_param_list = list()
- # add weight
- tmp_param_list.append(
- self.classifier._parameters["weight"].data[:, edge].numpy()
- )
- # add partial bias (bias of classifier units will be divided by
- # number of edges)
- if "bias" in self.classifier._parameters.keys() and edge == 0:
- tmp_param_list.append(self.classifier._parameters["bias"].data.numpy())
- param_list.append(tmp_param_list)
-
- if print_parameters:
- print(
- "Classifier from Node "
- + str(edge)
- + ": "
- + get_operation_label("classifier_concat", tmp_param_list)
- )
-
- return (n_params_total, n_params_base, param_list)
-
- def architecture_to_str_list(
- self,
- input_labels: Sequence[str],
- output_labels: Sequence[str],
- output_function_label: str = "",
- decimals_to_display: int = 2,
- output_format: Literal["latex", "console"] = "console",
- ) -> List:
- """
- Returns a list of strings representing the model.
-
- Arguments:
- input_labels: list of strings representing the input states.
- output_labels: list of strings representing the output states.
- output_function_label: string representing the output function.
- decimals_to_display: number of decimals to display.
- output_format: if set to `"console"`, returns equations formatted for the command line,
- if set to `"latex"`, returns equations in latex format
-
-
- Returns:
- list of strings representing the model
- """
- (n_params_total, n_params_base, param_list) = self.count_parameters(
- print_parameters=False
- )
- genotype = self.genotype().normal
- steps = self._steps
- edge_list = list()
-
- n = len(input_labels)
- start = 0
- for i in range(steps): # for every node
- end = start + n
- # for k in [2*i, 2*i + 1]:
-
- edge_operations_list = list()
- op_list = list()
-
- for k in range(start, end):
- if (
- output_format == "latex"
- ): # for every edge projecting to current node
- v = "k_" + str(i + 1)
- else:
- v = "k" + str(i + 1)
- op, j = genotype[k]
- if j < len(input_labels):
- u = input_labels[j]
- else:
- if output_format == "latex":
- u = "k_" + str(j - len(input_labels) + 1)
- else:
- u = "k" + str(j - len(input_labels) + 1)
- if op != "none":
- op_label = op
- params = param_list[
- start + j
- ] # note: genotype order and param list order don't align
- op_label = get_operation_label(
- op,
- params,
- decimals=decimals_to_display,
- input_var=u,
- output_format=output_format,
- )
- op_list.append(op)
- edge_operations_list.append(op_label)
-
- if len(edge_operations_list) == 0:
- edge_str = v + " = 0"
- else:
- edge_str = ""
- for i, edge_operation in enumerate(edge_operations_list):
- if i == 0:
- edge_str += v + " = " + edge_operation
- if i > 0:
- if (
- op_list[i] != "add"
- and op_list[i] != "subtract"
- and op_list[i] != "none"
- ):
- edge_str += " +"
- edge_str += " " + edge_operation
-
- edge_list.append(edge_str)
- start = end
- n += 1
-
- # TODO: extend to multiple outputs
- if output_format == "latex":
- classifier_str = output_labels[0] + " = " + output_function_label
- if output_function_label != "":
- classifier_str += "\\left("
- else:
- classifier_str = output_labels[0] + " = " + output_function_label
- if output_function_label != "":
- classifier_str += "("
-
- bias = None
- for i in range(steps):
- param_idx = len(param_list) - steps + i
- tmp_param_list = param_list[param_idx]
- if i == 0 and len(tmp_param_list) == 2:
- bias = tmp_param_list[1]
- if i > 0:
- classifier_str += " + "
-
- if output_format == "latex":
- input_var = "k_" + str(i + 1)
- else:
- input_var = "k" + str(i + 1)
-
- classifier_str += get_operation_label(
- "classifier",
- tmp_param_list[0],
- decimals=decimals_to_display,
- input_var=input_var,
- )
-
- if i == steps - 1 and bias is not None:
- classifier_str += " + " + str(bias[0])
-
- if i == steps - 1:
- if output_function_label != "":
- if output_format == "latex":
- classifier_str += "\\right)"
- else:
- classifier_str += ")"
-
- edge_list.append(classifier_str)
-
- return edge_list
diff --git a/autora/theorist/darts/operations.py b/autora/theorist/darts/operations.py
deleted file mode 100755
index 05603b04b..000000000
--- a/autora/theorist/darts/operations.py
+++ /dev/null
@@ -1,665 +0,0 @@
-import typing
-from collections import namedtuple
-
-import torch
-import torch.nn as nn
-
-Genotype = namedtuple("Genotype", "normal normal_concat")
-
-
-def isiterable(p_object: typing.Any) -> bool:
- """
- Checks if an object is iterable.
-
- Arguments:
- p_object: object to be checked
- """
- try:
- iter(p_object)
- except TypeError:
- return False
- return True
-
-
-def get_operation_label(
- op_name: str,
- params_org: typing.List,
- decimals: int = 4,
- input_var: str = "x",
- output_format: typing.Literal["latex", "console"] = "console",
-) -> str:
- r"""
- Returns a complete string describing a DARTS operation.
-
- Arguments:
- op_name: name of the operation
- params_org: original parameters of the operation
- decimals: number of decimals to be used for converting the parameters into string format
- input_var: name of the input variable
- output_format: format of the output string (either "latex" or "console")
-
- Examples:
- >>> get_operation_label("classifier", [1], decimals=2)
- '1.00 * x'
- >>> import numpy as np
- >>> print(get_operation_label("classifier_concat", np.array([1, 2, 3]),
- ... decimals=2, output_format="latex"))
- x \circ \left(1.00\right) + \left(2.00\right) + \left(3.00\right)
- >>> get_operation_label("classifier_concat", np.array([1, 2, 3]),
- ... decimals=2, output_format="console")
- 'x .* (1.00) .+ (2.00) .+ (3.00)'
- >>> get_operation_label("linear_exp", [1,2], decimals=2)
- 'exp(1.00 * x + 2.00)'
- >>> get_operation_label("none", [])
- ''
- >>> get_operation_label("reciprocal", [1], decimals=0)
- '1 / x'
- >>> get_operation_label("linear_reciprocal", [1, 2], decimals=0)
- '1 / (1 * x + 2)'
- >>> get_operation_label("linear_relu", [1], decimals=0)
- 'ReLU(1 * x)'
- >>> print(get_operation_label("linear_relu", [1], decimals=0, output_format="latex"))
- \operatorname{ReLU}\left(1x\right)
- >>> get_operation_label("linear", [1, 2], decimals=0)
- '1 * x + 2'
- >>> get_operation_label("linear", [1, 2], decimals=0, output_format="latex")
- '1 x + 2'
- >>> get_operation_label("linrelu", [1], decimals=0) # Mistyped operation name
- Traceback (most recent call last):
- ...
- NotImplementedError: operation 'linrelu' is not defined for output_format 'console'
- """
- if output_format != "latex" and output_format != "console":
- raise ValueError("output_format must be either 'latex' or 'console'")
-
- params = params_org.copy()
-
- format_string = "{:." + "{:.0f}".format(decimals) + "f}"
-
- classifier_str = ""
- if op_name == "classifier":
- value = params[0]
- classifier_str = f"{format_string.format(value)} * {input_var}"
- return classifier_str
-
- if op_name == "classifier_concat":
- if output_format == "latex":
- classifier_str = input_var + " \\circ \\left("
- else:
- classifier_str = input_var + " .* ("
- for param_idx, param in enumerate(params):
-
- if param_idx > 0:
- if output_format == "latex":
- classifier_str += " + \\left("
- else:
- classifier_str += " .+ ("
-
- if isiterable(param.tolist()):
-
- param_formatted = list()
- for value in param.tolist():
- param_formatted.append(format_string.format(value))
-
- for value_idx, value in enumerate(param_formatted):
- if value_idx < len(param) - 1:
- classifier_str += value + " + "
- else:
- if output_format == "latex":
- classifier_str += value + "\\right)"
- else:
- classifier_str += value + ")"
-
- else:
- value = format_string.format(param)
-
- if output_format == "latex":
- classifier_str += value + "\\right)"
- else:
- classifier_str += value + ")"
-
- return classifier_str
-
- num_params = len(params)
-
- c = [str(format_string.format(p)) for p in params_org]
- c.extend(["", "", ""])
-
- if num_params == 1: # without bias
- if output_format == "console":
- labels = {
- "none": "",
- "add": f"+ {input_var}",
- "subtract": f"- {input_var}",
- "mult": f"{c[0]} * {input_var}",
- "linear": f"{c[0]} * {input_var}",
- "relu": f"ReLU({input_var})",
- "linear_relu": f"ReLU({c[0]} * {input_var})",
- "logistic": f"logistic({input_var})",
- "linear_logistic": f"logistic({c[0]} * {input_var})",
- "exp": f"exp({input_var})",
- "linear_exp": f"exp({c[0]} * {input_var})",
- "reciprocal": f"1 / {input_var}",
- "linear_reciprocal": f"1 / ({c[0]} * {input_var})",
- "ln": f"ln({input_var})",
- "linear_ln": f"ln({c[0]} * {input_var})",
- "cos": f"cos({input_var})",
- "linear_cos": f"cos({c[0]} * {input_var})",
- "sin": f"sin({input_var})",
- "linear_sin": f"sin({c[0]} * {input_var})",
- "tanh": f"tanh({input_var})",
- "linear_tanh": f"tanh({c[0]} * {input_var})",
- "classifier": classifier_str,
- }
- elif output_format == "latex":
- labels = {
- "none": "",
- "add": f"+ {input_var}",
- "subtract": f"- {input_var}",
- "mult": f"{c[0]} {input_var}",
- "linear": c[0] + "" + input_var,
- "relu": f"\\operatorname{{ReLU}}\\left({input_var}\\right)",
- "linear_relu": f"\\operatorname{{ReLU}}\\left({c[0]}{input_var}\\right)",
- "logistic": f"\\sigma\\left({input_var}\\right)",
- "linear_logistic": f"\\sigma\\left({c[0]} {input_var} \\right)",
- "exp": f"+ e^{input_var}",
- "linear_exp": f"e^{{{c[0]} {input_var} }}",
- "reciprocal": f"\\frac{{1}}{{{input_var}}}",
- "linear_reciprocal": f"\\frac{{1}}{{{c[0]} {input_var} }}",
- "ln": f"\\ln\\left({input_var}\\right)",
- "linear_ln": f"\\ln\\left({c[0]} {input_var} \\right)",
- "cos": f"\\cos\\left({input_var}\\right)",
- "linear_cos": f"\\cos\\left({c[0]} {input_var} \\right)",
- "sin": f"\\sin\\left({input_var}\\right)",
- "linear_sin": f"\\sin\\left({c[0]} {input_var} \\right)",
- "tanh": f"\\tanh\\left({input_var}\\right)",
- "linear_tanh": f"\\tanh\\left({c[0]} {input_var} \\right)",
- "classifier": classifier_str,
- }
- else: # with bias
- if output_format == "console":
- labels = {
- "none": "",
- "add": f"+ {input_var}",
- "subtract": f"- {input_var}",
- "mult": f"{c[0]} * {input_var}",
- "linear": f"{c[0]} * {input_var} + {c[1]}",
- "relu": f"ReLU({input_var})",
- "linear_relu": f"ReLU({c[0]} * {input_var} + {c[1]} )",
- "logistic": f"logistic({input_var})",
- "linear_logistic": f"logistic({c[0]} * {input_var} + {c[1]})",
- "exp": f"exp({input_var})",
- "linear_exp": f"exp({c[0]} * {input_var} + {c[1]})",
- "reciprocal": f"1 / {input_var}",
- "linear_reciprocal": f"1 / ({c[0]} * {input_var} + {c[1]})",
- "ln": f"ln({input_var})",
- "linear_ln": f"ln({c[0]} * {input_var} + {c[1]})",
- "cos": f"cos({input_var})",
- "linear_cos": f"cos({c[0]} * {input_var} + {c[1]})",
- "sin": f"sin({input_var})",
- "linear_sin": f"sin({c[0]} * {input_var} + {c[1]})",
- "tanh": f"tanh({input_var})",
- "linear_tanh": f"tanh({c[0]} * {input_var} + {c[1]})",
- "classifier": classifier_str,
- }
- elif output_format == "latex":
- labels = {
- "none": "",
- "add": f"+ {input_var}",
- "subtract": f"- {input_var}",
- "mult": f"{c[0]} * {input_var}",
- "linear": f"{c[0]} {input_var} + {c[1]}",
- "relu": f"\\operatorname{{ReLU}}\\left( {input_var}\\right)",
- "linear_relu": f"\\operatorname{{ReLU}}\\left({c[0]}{input_var} + {c[1]} \\right)",
- "logistic": f"\\sigma\\left( {input_var} \\right)",
- "linear_logistic": f"\\sigma\\left( {c[0]} {input_var} + {c[1]} \\right)",
- "exp": f"e^{input_var}",
- "linear_exp": f"e^{{ {c[0]} {input_var} + {c[1]} }}",
- "reciprocal": f"\\frac{{1}}{{{input_var}}}",
- "linear_reciprocal": f"\\frac{{1}} {{ {c[0]}{input_var} + {c[1]} }}",
- "ln": f"\\ln\\left({input_var}\\right)",
- "linear_ln": f"\\ln\\left({c[0]} {input_var} + {c[1]} \\right)",
- "cos": f"\\cos\\left({input_var}\\right)",
- "linear_cos": f"\\cos\\left({c[0]} {input_var} + {c[1]} \\right)",
- "sin": f"\\sin\\left({input_var}\\right)",
- "linear_sin": f"\\sin\\left({c[0]} {input_var} + {c[1]} \\right)",
- "tanh": f"\\tanh\\left({input_var}\\right)",
- "linear_tanh": f"\\tanh\\left({c[0]} {input_var} + {c[1]} \\right)",
- "classifier": classifier_str,
- }
-
- if op_name not in labels:
- raise NotImplementedError(
- f"operation '{op_name}' is not defined for output_format '{output_format}'"
- )
-
- return labels[op_name]
-
-
-class Identity(nn.Module):
- """
- A pytorch module implementing the identity function.
-
- $$
- x = x
- $$
- """
-
- def __init__(self):
- """
- Initializes the identify function.
- """
- super(Identity, self).__init__()
-
- def forward(self, x: torch.Tensor) -> torch.Tensor:
- """
- Forward pass of the identity function.
-
- Arguments:
- x: input tensor
- """
- return x
-
-
-class NegIdentity(nn.Module):
- """
- A pytorch module implementing the inverse of an identity function.
-
- $$
- x = -x
- $$
- """
-
- def __init__(self):
- """
- Initializes the inverse of an identity function.
- """
- super(NegIdentity, self).__init__()
-
- def forward(self, x: torch.Tensor) -> torch.Tensor:
- """
- Forward pass of the inverse of an identity function.
-
- Arguments:
- x: input tensor
- """
- return -x
-
-
-class Exponential(nn.Module):
- """
- A pytorch module implementing the exponential function.
-
- $$
- x = e^x
- $$
- """
-
- def __init__(self):
- """
- Initializes the exponential function.
- """
- super(Exponential, self).__init__()
-
- def forward(self, x: torch.Tensor) -> torch.Tensor:
- """
- Forward pass of the exponential function.
-
- Arguments:
- x: input tensor
- """
- return torch.exp(x)
-
-
-class Cosine(nn.Module):
- r"""
- A pytorch module implementing the cosine function.
-
- $$
- x = \cos(x)
- $$
- """
-
- def __init__(self):
- """
- Initializes the cosine function.
- """
- super(Cosine, self).__init__()
-
- def forward(self, x: torch.Tensor) -> torch.Tensor:
- """
- Forward pass of the cosine function.
-
- Arguments:
- x: input tensor
- """
- return torch.cos(x)
-
-
-class Sine(nn.Module):
- r"""
- A pytorch module implementing the sine function.
-
- $$
- x = \sin(x)
- $$
- """
-
- def __init__(self):
- """
- Initializes the sine function.
- """
- super(Sine, self).__init__()
-
- def forward(self, x: torch.Tensor) -> torch.Tensor:
- """
- Forward pass of the sine function.
-
- Arguments:
- x: input tensor
- """
- return torch.sin(x)
-
-
-class Tangens_Hyperbolicus(nn.Module):
- r"""
- A pytorch module implementing the tangens hyperbolicus function.
-
- $$
- x = \tanh(x)
- $$
- """
-
- def __init__(self):
- """
- Initializes the tangens hyperbolicus function.
- """
- super(Tangens_Hyperbolicus, self).__init__()
-
- def forward(self, x: torch.Tensor) -> torch.Tensor:
- """
- Forward pass of the tangens hyperbolicus function.
-
- Arguments:
- x: input tensor
- """
- return torch.tanh(x)
-
-
-class NatLogarithm(nn.Module):
- r"""
- A pytorch module implementing the natural logarithm function.
-
- $$
- x = \ln(x)
- $$
-
- """
-
- def __init__(self):
- """
- Initializes the natural logarithm function.
- """
- super(NatLogarithm, self).__init__()
-
- def forward(self, x: torch.Tensor) -> torch.Tensor:
- """
- Forward pass of the natural logarithm function.
-
- Arguments:
- x: input tensor
- """
- # make sure x is in domain of natural logarithm
- mask = x.clone()
- mask[(x <= 0.0).detach()] = 0
- mask[(x > 0.0).detach()] = 1
-
- epsilon = 1e-10
- result = torch.log(nn.functional.relu(x) + epsilon) * mask
-
- return result
-
-
-class MultInverse(nn.Module):
- r"""
- A pytorch module implementing the multiplicative inverse.
-
- $$
- x = \frac{1}{x}
- $$
- """
-
- def __init__(self):
- """
- Initializes the multiplicative inverse.
- """
- super(MultInverse, self).__init__()
-
- def forward(self, x: torch.Tensor) -> torch.Tensor:
- """
- Forward pass of the multiplicative inverse.
-
- Arguments:
- x: input tensor
- """
- return torch.pow(x, -1)
-
-
-class Zero(nn.Module):
- """
- A pytorch module implementing the zero operation (i.e., a null operation). A zero operation
- presumes that there is no relationship between the input and output.
-
- $$
- x = 0
- $$
- """
-
- def __init__(self, stride):
- """
- Initializes the zero operation.
- """
- super(Zero, self).__init__()
- self.stride = stride
-
- def forward(self, x: torch.Tensor) -> torch.Tensor:
- """
- Forward pass of the zero operation.
-
- Arguments:
- x: input tensor
- """
- if self.stride == 1:
- return x.mul(0.0)
- return x[:, :, :: self.stride, :: self.stride].mul(0.0)
-
-
-class Softplus(nn.Module):
- r"""
- A pytorch module implementing the softplus function:
-
- $$
- \operatorname{Softplus}(x) = \frac{1}{β} \operatorname{log} \left( 1 + e^{β x} \right)
- $$
- """
-
- # This docstring is a raw-string (it starts `r"""` rather than `"""`)
- # so backslashes need not be escaped
-
- def __init__(self):
- """
- Initializes the softplus function.
- """
- super(Softplus, self).__init__()
- # self.beta = nn.Linear(1, 1, bias=False)
- self.beta = nn.Parameter(torch.ones(1))
- # elf.softplus = nn.Softplus(beta=self.beta)
-
- def forward(self, x: torch.Tensor) -> torch.Tensor:
- """
- Forward pass of the softplus function.
-
- Arguments:
- x: input tensor
- """
- y = torch.log(1 + torch.exp(self.beta * x)) / self.beta
- # y = self.softplus(x)
- return y
-
-
-class Softminus(nn.Module):
- """
- A pytorch module implementing the softminus function:
-
- $$
- \\operatorname{Softminus}(x) = x - \\operatorname{log} \\left( 1 + e^{β x} \\right)
- $$
- """
-
- # This docstring is a normal string, so backslashes need to be escaped
-
- def __init__(self):
- """
- Initializes the softminus function.
- """
- super(Softminus, self).__init__()
- # self.beta = nn.Linear(1, 1, bias=False)
- self.beta = nn.Parameter(torch.ones(1))
-
- def forward(self, x: torch.Tensor) -> torch.Tensor:
- """
- Forward pass of the softminus function.
-
- Arguments:
- x: input tensor
- """
- y = x - torch.log(1 + torch.exp(self.beta * x)) / self.beta
- return y
-
-
-# defines all the operations. affine is turned off for cuda (optimization prposes)
-
-
-def operation_factory(name):
-
- if name == "none":
- return Zero(1)
- elif name == "add":
- return nn.Sequential(Identity())
- elif name == "subtract":
- return nn.Sequential(NegIdentity())
- elif name == "mult":
- return nn.Sequential(
- nn.Linear(1, 1, bias=False),
- )
- elif name == "linear":
- return nn.Sequential(nn.Linear(1, 1, bias=True))
- elif name == "relu":
- return nn.Sequential(
- nn.ReLU(inplace=False),
- )
- elif name == "linear_relu":
- return nn.Sequential(
- nn.Linear(1, 1, bias=True),
- nn.ReLU(inplace=False),
- )
- elif name == "logistic":
- return nn.Sequential(
- nn.Sigmoid(),
- )
- elif name == "linear_logistic":
- return nn.Sequential(
- nn.Linear(1, 1, bias=True),
- nn.Sigmoid(),
- )
- elif name == "exp":
- return nn.Sequential(
- Exponential(),
- )
- elif name == "linear_exp":
- return nn.Sequential(
- nn.Linear(1, 1, bias=True),
- Exponential(),
- )
- elif name == "cos":
- return nn.Sequential(
- Cosine(),
- )
- elif name == "linear_cos":
- return nn.Sequential(
- nn.Linear(1, 1, bias=True),
- Cosine(),
- )
- elif name == "sin":
- return nn.Sequential(
- Sine(),
- )
- elif name == "linear_sin":
- return nn.Sequential(
- nn.Linear(1, 1, bias=True),
- Sine(),
- )
- elif name == "tanh":
- return nn.Sequential(
- Tangens_Hyperbolicus(),
- )
- elif name == "linear_tanh":
- return nn.Sequential(
- nn.Linear(1, 1, bias=True),
- Tangens_Hyperbolicus(),
- )
- elif name == "reciprocal":
- return nn.Sequential(
- MultInverse(),
- )
- elif name == "linear_reciprocal":
- return nn.Sequential(
- nn.Linear(1, 1, bias=False),
- MultInverse(),
- )
- elif name == "ln":
- return nn.Sequential(
- NatLogarithm(),
- )
- elif name == "linear_ln":
- return nn.Sequential(
- nn.Linear(1, 1, bias=False),
- NatLogarithm(),
- )
- elif name == "softplus":
- return nn.Sequential(
- Softplus(),
- )
- elif name == "linear_softplus":
- return nn.Sequential(
- nn.Linear(1, 1, bias=False),
- Softplus(),
- )
- elif name == "softminus":
- return nn.Sequential(
- Softminus(),
- )
- elif name == "linear_softminus":
- return nn.Sequential(
- nn.Linear(1, 1, bias=False),
- Softminus(),
- )
- else:
- raise NotImplementedError(f"operation {name=} it not implemented")
-
-
-# this is the list of primitives actually used,
-# and it should be a set of names contained in the OPS dictionary
-PRIMITIVES = (
- "none",
- "add",
- "subtract",
- "linear",
- "linear_logistic",
- "mult",
- "linear_relu",
-)
-
-# make sure that every primitive is in the OPS dictionary
-for name in PRIMITIVES:
- assert operation_factory(name) is not None
diff --git a/autora/theorist/darts/utils.py b/autora/theorist/darts/utils.py
deleted file mode 100755
index 79d6affbc..000000000
--- a/autora/theorist/darts/utils.py
+++ /dev/null
@@ -1,491 +0,0 @@
-import csv
-import glob
-import os
-import shutil
-from typing import Callable, List, Optional, Tuple
-
-import numpy as np
-import torch
-from torch import nn as nn
-
-from autora.theorist.darts.model_search import Network
-from autora.variable import ValueType
-
-
-def create_output_file_name(
- file_prefix: str,
- log_version: Optional[int] = None,
- weight_decay: Optional[float] = None,
- k: Optional[int] = None,
- seed: Optional[int] = None,
- theorist: Optional[str] = None,
-) -> str:
- """
- Creates a file name for the output file of a theorist study.
-
- Arguments:
- file_prefix: prefix of the file name
- log_version: log version of the theorist run
- weight_decay: weight decay of the model
- k: number of nodes in the model
- seed: seed of the model
- theorist: name of the DARTS variant
- """
-
- output_str = file_prefix
-
- if theorist is not None:
- output_str += "_" + str(theorist)
-
- if log_version is not None:
- output_str += "_v_" + str(log_version)
-
- if weight_decay is not None:
- output_str += "_wd_" + str(weight_decay)
-
- if k is not None:
- output_str += "_k_" + str(k)
-
- if k is not None:
- output_str += "_s_" + str(seed)
-
- return output_str
-
-
-def assign_slurm_instance(
- slurm_id: int,
- arch_weight_decay_list: List,
- num_node_list: List,
- seed_list: List,
-) -> Tuple:
- """
- Determines the meta-search parameters based on the slum job id.
-
- Arguments:
- slurm_id: slurm job id
- arch_weight_decay_list: list of weight decay values
- num_node_list: list of number of nodes
- seed_list: list of seeds
- """
-
- seed_id = np.floor(
- slurm_id / (len(num_node_list) * len(arch_weight_decay_list))
- ) % len(seed_list)
- k_id = np.floor(slurm_id / (len(arch_weight_decay_list))) % len(num_node_list)
- weight_decay_id = slurm_id % len(arch_weight_decay_list)
-
- return (
- arch_weight_decay_list[int(weight_decay_id)],
- int(num_node_list[int(k_id)]),
- int(seed_list[int(seed_id)]),
- )
-
-
-def sigmid_mse(output: torch.Tensor, target: torch.Tensor) -> torch.Tensor:
- """
- Returns the MSE loss for a sigmoid output.
-
- Arguments:
- output: output of the model
- target: target of the model
- """
- m = nn.Sigmoid()
- output = m(output)
- loss = torch.mean((output - target) ** 2)
- return loss
-
-
-def compute_BIC(
- output_type: ValueType,
- model: torch.nn.Module,
- input: torch.Tensor,
- target: torch.Tensor,
-) -> float:
- """
- Returns the Bayesian information criterion for a DARTS model.
-
- Arguments:
- output_type: output type of the dependent variable
- model: model to compute the BIC for
- input: input of the model
- target: target of the model
- """
-
- # compute raw model output
- classifier_output = model(input)
-
- # compute associated probability
- m = get_output_format(output_type)
- prediction = m(classifier_output).detach()
-
- k, _, _ = model.countParameters() # for most likely architecture
-
- if output_type == ValueType.CLASS:
- target_flattened = torch.flatten(target.long())
- llik = 0
- for idx in range(len(target_flattened)):
- lik = prediction[idx, target_flattened[idx]]
- llik += np.log(lik)
- n = len(target_flattened) # number of data points
-
- BIC = np.log(n) * k - 2 * llik
- BIC = BIC
-
- elif output_type == ValueType.PROBABILITY_SAMPLE:
- llik = 0
- for idx in range(len(target)):
-
- # fail safe if model doesn't produce probabilities
- if prediction[idx] > 1:
- prediction[idx] = 1
- elif prediction[idx] < 0:
- prediction[idx] = 0
-
- if target[idx] == 1:
- lik = prediction[idx]
- elif target[idx] == 0:
- lik = 1 - prediction[idx]
- else:
- raise Exception("Target must contain either zeros or ones.")
- llik += np.log(lik)
- n = len(target) # number of data points
-
- BIC = np.log(n) * k - 2 * llik
- BIC = BIC[0]
-
- else:
- raise Exception(
- "BIC computation not implemented for output type "
- + str(ValueType.PROBABILITY)
- + "."
- )
-
- return BIC
-
- # old
-
-
-def compute_BIC_AIC(
- soft_targets: np.array, soft_prediction: np.array, model: Network
-) -> Tuple:
- """
- Returns the Bayesian information criterion (BIC) as well as the
- Aikaike information criterion (AIC) for a DARTS model.
-
- Arguments:
- soft_targets: soft target of the model
- soft_prediction: soft prediction of the model
- model: model to compute the BIC and AIC for
- """
-
- lik = np.sum(
- np.multiply(soft_prediction, soft_targets), axis=1
- ) # likelihood of data given model
- llik = np.sum(np.log(lik)) # log likelihood
- n = len(lik) # number of data points
- k, _, _ = model.count_parameters() # for most likely architecture
-
- BIC = np.log(n) * k - 2 * llik
-
- AIC = 2 * k - 2 * llik
-
- return BIC, AIC
-
-
-def cross_entropy(pred: torch.Tensor, soft_targets: torch.Tensor) -> torch.Tensor:
- """
- Returns the cross entropy loss for a soft target.
-
- Arguments:
- pred: prediction of the model
- soft_targets: soft target of the model
- """
- # assuming pred and soft_targets are both Variables with shape (batchsize, num_of_classes),
- # each row of pred is predicted logits and each row of soft_targets is a discrete distribution.
- logsoftmax = nn.LogSoftmax(dim=1)
- return torch.mean(torch.sum(-soft_targets * logsoftmax(pred), 1))
-
-
-class AvgrageMeter(object):
- """
- Computes and stores the average and current value.
- """
-
- def __init__(self):
- """
- Initializes the average meter.
- """
- self.reset()
-
- def reset(self):
- """
- Resets the average meter.
- """
- self.avg = 0
- self.sum = 0
- self.cnt = 0
-
- def update(self, val: float, n: int = 1):
- """
- Updates the average meter.
-
- Arguments:
- val: value to update the average meter with
- n: number of times to update the average meter
- """
- self.sum += val * n
- self.cnt += n
- self.avg = self.sum / self.cnt
-
-
-def accuracy(output: torch.Tensor, target: torch.Tensor, topk: Tuple = (1,)) -> List:
- """
- Computes the accuracy over the k top predictions for the specified values of k.
-
- Arguments:
- output: output of the model
- target: target of the model
- topk: values of k to compute the accuracy at
- """
- maxk = max(topk)
- batch_size = target.size(0)
-
- _, pred = output.topk(maxk, 1, True, True)
- pred = pred.t()
- correct = pred.eq(target.view(1, -1).expand_as(pred))
-
- res = []
- for k in topk:
- correct_k = correct[:k].view(-1).float().sum(0)
- res.append(correct_k.mul_(100.0 / batch_size))
- return res
-
-
-def count_parameters_in_MB(model: Network) -> int:
- """
- Returns the number of parameters for a model.
-
- Arguments:
- model: model to count the parameters for
- """
- return (
- np.sum(
- np.prod(v.size())
- for name, v in model.named_parameters()
- if "auxiliary" not in name
- )
- / 1e6
- )
-
-
-def save(model: torch.nn.Module, model_path: str, exp_folder: Optional[str] = None):
- """
- Saves a model to a file.
-
- Arguments:
- model: model to save
- model_path: path to save the model to
- exp_folder: general experiment directory to save the model to
- """
- if exp_folder is not None:
- os.chdir("exps") # Edit SM 10/23/19: use local experiment directory
- torch.save(model.state_dict(), model_path)
- if exp_folder is not None:
- os.chdir("..") # Edit SM 10/23/19: use local experiment directory
-
-
-def load(model: torch.nn.Module, model_path: str):
- """
- Loads a model from a file.
- """
- model.load_state_dict(torch.load(model_path))
-
-
-def create_exp_dir(
- path: str,
- scripts_to_save: Optional[List] = None,
- parent_folder: str = "exps",
- results_folder: Optional[str] = None,
-):
- """
- Creates an experiment directory and saves all necessary scripts and files.
-
- Arguments:
- path: path to save the experiment directory to
- scripts_to_save: list of scripts to save
- parent_folder: parent folder for the experiment directory
- results_folder: folder for the results of the experiment
- """
- os.chdir(parent_folder) # Edit SM 10/23/19: use local experiment directory
- if not os.path.exists(path):
- os.mkdir(path)
- print("Experiment dir : {}".format(path))
-
- if results_folder is not None:
- try:
- os.mkdir(os.path.join(path, results_folder))
- except OSError:
- pass
-
- if scripts_to_save is not None:
- try:
- os.mkdir(os.path.join(path, "scripts"))
- except OSError:
- pass
- os.chdir("..") # Edit SM 10/23/19: use local experiment directory
- for script in scripts_to_save:
- dst_file = os.path.join(
- parent_folder, path, "scripts", os.path.basename(script)
- )
- shutil.copyfile(script, dst_file)
-
-
-def read_log_files(results_path: str, winning_architecture_only: bool = False) -> Tuple:
- """
- Reads the log files from an experiment directory and returns the results.
-
- Arguments:
- results_path: path to the experiment results directory
- winning_architecture_only: if True, only the winning architecture is returned
- """
-
- current_wd = os.getcwd()
-
- os.chdir(results_path)
- filelist = glob.glob("*.{}".format("csv"))
-
- model_name_list = list()
- loss_list = list()
- BIC_list = list()
- AIC_list = list()
-
- # READ LOG FILES
-
- print("Reading log files... ")
- for file in filelist:
-
- with open(file) as csvfile:
- readCSV = csv.reader(csvfile, delimiter=",")
- for row in readCSV:
- if winning_architecture_only is False or "sample0" in row[0]:
- model_name_list.append(row[0])
- loss_list.append(float(row[1]))
- BIC_list.append(float(row[2].replace("[", "").replace("]", "")))
- AIC_list.append(float(row[3].replace("[", "").replace("]", "")))
-
- os.chdir(current_wd)
-
- return (model_name_list, loss_list, BIC_list, AIC_list)
-
-
-def get_best_fitting_models(
- model_name_list: List,
- loss_list: List,
- BIC_list: List,
- topk: int,
-) -> Tuple:
- """
- Returns the topk best fitting models.
-
- Arguments:
- model_name_list: list of model names
- loss_list: list of loss values
- BIC_list: list of BIC values
- topk: number of topk models to return
- """
-
- topk_losses = sorted(zip(loss_list, model_name_list), reverse=False)[:topk]
- res = list(zip(*topk_losses))
- topk_losses_names = res[1]
-
- topk_BICs = sorted(zip(BIC_list, model_name_list), reverse=False)[:topk]
- res = list(zip(*topk_BICs))
- topk_BICs_names = res[1]
-
- return (topk_losses_names, topk_BICs_names)
-
-
-def format_input_target(
- input: torch.tensor, target: torch.tensor, criterion: Callable
-) -> Tuple[torch.tensor, torch.tensor]:
- """
- Formats the input and target for the model.
-
- Args:
- input: input to the model
- target: target of the model
- criterion: criterion to use for the model
-
- Returns:
- input: formatted input and target for the model
-
- """
-
- if isinstance(criterion, nn.CrossEntropyLoss):
- target = target.squeeze()
-
- return (input, target)
-
-
-LOSS_FUNCTION_MAPPING = {
- ValueType.REAL: nn.MSELoss(),
- ValueType.PROBABILITY: sigmid_mse,
- ValueType.PROBABILITY_SAMPLE: sigmid_mse,
- ValueType.PROBABILITY_DISTRIBUTION: cross_entropy,
- ValueType.CLASS: nn.CrossEntropyLoss(),
- ValueType.SIGMOID: sigmid_mse,
-}
-
-
-def get_loss_function(outputType: ValueType):
- """
- Returns the loss function for the given output type of a dependent variable.
-
- Arguments:
- outputType: output type of the dependent variable
- """
-
- return LOSS_FUNCTION_MAPPING.get(outputType, nn.MSELoss())
-
-
-OUTPUT_FORMAT_MAPPING = {
- ValueType.REAL: nn.Identity(),
- ValueType.PROBABILITY: nn.Sigmoid(),
- ValueType.PROBABILITY_SAMPLE: nn.Sigmoid(),
- ValueType.PROBABILITY_DISTRIBUTION: nn.Softmax(dim=1),
- ValueType.CLASS: nn.Softmax(dim=1),
- ValueType.SIGMOID: nn.Sigmoid(),
-}
-
-
-def get_output_format(outputType: ValueType):
- """
- Returns the output format (activation function of the final output layer)
- for the given output type of a dependent variable.
-
- Arguments:
- outputType: output type of the dependent variable
- """
-
- return OUTPUT_FORMAT_MAPPING.get(outputType, nn.MSELoss())
-
-
-OUTPUT_STR_MAPPING = {
- ValueType.REAL: "",
- ValueType.PROBABILITY: "Sigmoid",
- ValueType.PROBABILITY_SAMPLE: "Sigmoid",
- ValueType.PROBABILITY_DISTRIBUTION: "Softmax",
- ValueType.CLASS: "Softmax",
- ValueType.SIGMOID: "Sigmoid",
-}
-
-
-def get_output_str(outputType: ValueType) -> str:
- """
- Returns the output string for the given output type of a dependent variable.
-
- Arguments:
- outputType: output type of the dependent variable
- """
-
- return OUTPUT_STR_MAPPING.get(outputType, "")
diff --git a/autora/theorist/darts/visualize.py b/autora/theorist/darts/visualize.py
deleted file mode 100755
index bf3055332..000000000
--- a/autora/theorist/darts/visualize.py
+++ /dev/null
@@ -1,201 +0,0 @@
-import logging
-import typing
-from typing import Optional
-
-from graphviz import Digraph
-
-from autora.theorist.darts.operations import Genotype, get_operation_label
-
-_logger = logging.getLogger(__name__)
-
-
-def plot(
- genotype: Genotype,
- filename: str,
- file_format: str = "pdf",
- view_file: Optional[bool] = None,
- full_label: bool = False,
- param_list: typing.Tuple = (),
- input_labels: typing.Tuple = (),
- out_dim: Optional[int] = None,
- out_fnc: Optional[str] = None,
-):
- """
- Generates a graphviz plot for a DARTS model based on the genotype of the model.
-
- Arguments:
- genotype: the genotype of the model
- filename: the filename of the output file
- file_format: the format of the output file
- view_file: if True, the plot will be displayed in a window
- full_label: if True, the labels of the nodes will be the full name of the operation
- (including the coefficients)
- param_list: a list of parameters to be included in the labels of the nodes
- input_labels: a list of labels to be included in the input nodes
- out_dim: the number of output nodes of the model
- out_fnc: the (activation) function to be used for the output nodes
- """
-
- g = darts_model_plot(
- genotype=genotype,
- full_label=full_label,
- param_list=param_list,
- input_labels=input_labels,
- out_dim=out_dim,
- out_fnc=out_fnc,
- )
-
- if view_file is None:
- if file_format == "pdf":
- view_file = True
- else:
- view_file = False
-
- g.render(filename, view=view_file, format=file_format)
-
-
-def darts_model_plot(
- genotype: Genotype,
- full_label: bool = False,
- param_list: typing.Sequence = (),
- input_labels: typing.Sequence = (),
- out_dim: Optional[int] = None,
- out_fnc: Optional[str] = None,
- decimals_to_display: int = 2,
-) -> Digraph:
- """
- Generates a graphviz plot for a DARTS model based on the genotype of the model.
-
- Arguments:
- genotype: the genotype of the model
- full_label: if True, the labels of the nodes will be the full name of the operation
- (including the coefficients)
- param_list: a list of parameters to be included in the labels of the nodes
- input_labels: a list of labels to be included in the input nodes
- out_dim: the number of output nodes of the model
- out_fnc: the (activation) function to be used for the output nodes
- decimals_to_display: number of decimals to include in parameter values on plot
- """
-
- format_string = "{:." + "{:.0f}".format(decimals_to_display) + "f}"
-
- graph = Digraph(
- edge_attr=dict(fontsize="20", fontname="times"),
- node_attr=dict(
- style="filled",
- shape="rect",
- align="center",
- fontsize="20",
- height="0.5",
- width="0.5",
- penwidth="2",
- fontname="times",
- ),
- engine="dot",
- )
- graph.body.extend(["rankdir=LR"])
-
- for input_node in input_labels:
- graph.node(input_node, fillcolor="#F1EDB9") # fillcolor='darkseagreen2'
- # assert len(genotype) % 2 == 0
-
- # determine number of steps (intermediate nodes)
- steps = 0
- for op, j in genotype:
- if j == 0:
- steps += 1
-
- for i in range(steps):
- graph.node("k" + str(i + 1), fillcolor="#BBCCF9") # fillcolor='lightblue'
-
- params_counter = 0
- n = len(input_labels)
- start = 0
- for i in range(steps):
- end = start + n
- _logger.debug(start, end)
- # for k in [2*i, 2*i + 1]:
- for k in range(
- start, end
- ): # adapted this iteration from get_genotype() in model_search.py
- _logger.debug(genotype, k)
- op, j = genotype[k]
- if j < len(input_labels):
- u = input_labels[j]
- else:
- u = "k" + str(j - len(input_labels) + 1)
- v = "k" + str(i + 1)
- params_counter = k
- if op != "none":
- op_label = op
- if full_label:
- params = param_list[
- start + j
- ] # note: genotype order and param list order don't align
- op_label = get_operation_label(
- op, params, decimals=decimals_to_display
- )
- graph.edge(u, v, label=op_label, fillcolor="gray")
- else:
- graph.edge(
- u,
- v,
- label="(" + str(j + start) + ") " + op_label,
- fillcolor="gray",
- ) # '(' + str(k) + ') '
- start = end
- n += 1
-
- # determine output nodes
-
- out_nodes = list()
- if out_dim is None:
- out_nodes.append("out")
- else:
- biases = None
- if full_label:
- params = param_list[params_counter + 1]
- if len(params) > 1:
- biases = params[1] # first node contains biases
-
- for idx in range(out_dim):
- out_str = ""
- # specify node ID
- if out_fnc is not None:
- out_str = out_str + out_fnc + "(r_" + str(idx)
- else:
- out_str = "(r_" + str(idx)
-
- if out_dim == 1:
- if out_fnc is not None:
- out_str = "P(detected) = " + out_fnc + "(x"
- else:
- # out_str = 'dx_1 = (x'
- out_str = "P_n = (x"
-
- # if available, add bias
- if biases is not None:
- out_str = out_str + " + " + format_string.format(biases[idx]) + ")"
- else:
- out_str = out_str + ")"
-
- # add node
- graph.node(out_str, fillcolor="#CBE7C7") # fillcolor='palegoldenrod'
- out_nodes.append(out_str)
-
- for i in range(steps):
- u = "k" + str(i + 1)
- if full_label:
- params_org = param_list[params_counter + 1 + i] # count from k
- for out_idx, out_str in enumerate(out_nodes):
- params = list()
- params.append(params_org[0][out_idx])
- op_label = get_operation_label(
- "classifier", params, decimals=decimals_to_display
- )
- graph.edge(u, out_str, label=op_label, fillcolor="gray")
- else:
- for out_idx, out_str in enumerate(out_nodes):
- graph.edge(u, out_str, label="linear", fillcolor="gray")
-
- return graph
diff --git a/autora/utils/__init__.py b/autora/utils/__init__.py
deleted file mode 100644
index 6fda29471..000000000
--- a/autora/utils/__init__.py
+++ /dev/null
@@ -1 +0,0 @@
-from . import dictionary
diff --git a/autora/utils/dictionary.py b/autora/utils/dictionary.py
deleted file mode 100644
index b45b5b927..000000000
--- a/autora/utils/dictionary.py
+++ /dev/null
@@ -1,18 +0,0 @@
-from typing import Mapping
-
-
-class LazyDict(Mapping):
- """Inspired by https://gist.github.com/gyli/9b50bb8537069b4e154fec41a4b5995a"""
-
- def __init__(self, *args, **kw):
- self._raw_dict = dict(*args, **kw)
-
- def __getitem__(self, key):
- func = self._raw_dict.__getitem__(key)
- return func()
-
- def __iter__(self):
- return iter(self._raw_dict)
-
- def __len__(self):
- return len(self._raw_dict)
diff --git a/autora/variable/__init__.py b/autora/variable/__init__.py
deleted file mode 100644
index 4cdd8ff99..000000000
--- a/autora/variable/__init__.py
+++ /dev/null
@@ -1,70 +0,0 @@
-from dataclasses import dataclass, field
-from enum import Enum
-from typing import Any, Optional, Sequence, Tuple
-
-
-class ValueType(str, Enum):
- """Specifies supported value types supported by Variables."""
-
- REAL = "real"
- SIGMOID = "sigmoid"
- PROBABILITY = "probability" # single probability
- PROBABILITY_SAMPLE = "probability_sample" # sample from single probability
- PROBABILITY_DISTRIBUTION = (
- "probability_distribution" # probability distribution over classes
- )
- CLASS = "class" # sample from probability distribution over classes
-
-
-@dataclass
-class Variable:
- """Describes an experimental variable: name, type, range, units, and value of a variable."""
-
- name: str = ""
- value_range: Optional[Tuple[Any, Any]] = None
- allowed_values: Optional[Sequence] = None
- units: str = ""
- type: ValueType = ValueType.REAL
- variable_label: str = ""
- rescale: float = 1
- is_covariate: bool = False
-
-
-@dataclass
-class IV(Variable):
- """Independent variable."""
-
- name: str = "IV"
- variable_label: str = "Independent Variable"
-
-
-@dataclass
-class DV(Variable):
- """Dependent variable."""
-
- name: str = "DV"
- variable_label: str = "Dependent Variable"
-
-
-@dataclass(frozen=True)
-class VariableCollection:
- """Immutable metadata about dependent / independent variables and covariates."""
-
- independent_variables: Sequence[Variable] = field(default_factory=list)
- dependent_variables: Sequence[Variable] = field(default_factory=list)
- covariates: Sequence[Variable] = field(default_factory=list)
-
-
-@dataclass
-class IVTrial(IV):
- """
- Experiment trial as independent variable.
- """
-
- name: str = "trial"
- UID: str = ""
- variable_label: str = "Trial"
- units: str = "trials"
- priority: int = 0
- value_range: Tuple[Any, Any] = (0, 10000000)
- value: float = 0
diff --git a/autora/variable/time.py b/autora/variable/time.py
deleted file mode 100644
index a2ad641a9..000000000
--- a/autora/variable/time.py
+++ /dev/null
@@ -1,103 +0,0 @@
-import time
-
-from autora.variable import DV, IV
-
-
-class VTime:
- """
- A class representing time as a general experimental variable.
- """
-
- _t0 = 0
-
- def __init__(self):
- """
- Initializes the time.
- """
- self._t0 = time.time()
-
- # Resets reference time.
- def reset(self):
- """
- Resets the time.
- """
- self._t0 = time.time()
-
-
-class IVTime(IV, VTime):
- """
- A class representing time as an independent variable.
- """
-
- _name = "time_IV"
- _UID = ""
- _variable_label = "Time"
- _units = "s"
- _priority = 0
- _value_range = (0, 3600)
- _value = 0
-
- # Initializes reference time.
- # The reference time usually denotes the beginning of an experiment trial.
- def __init__(self, *args, **kwargs):
- """
- Initializes the time as independent variable.
-
- For arguments, see [autora.variable.Variable][autora.variable.Variable.__init__]
- """
- super(IVTime, self).__init__(*args, **kwargs)
-
- # Waits until specified time has passed relative to reference time
- def manipulate(self):
- """
- Waits for the specified time to pass.
- """
-
- t_wait = self.get_value() - (time.time() - self._t0)
- if t_wait <= 0:
- return
- else:
- time.sleep(t_wait)
-
- def disconnect(self):
- """
- Disconnects the time.
- """
- pass
-
-
-class DVTime(DV, VTime):
- """
- A class representing time as a dependent variable.
- """
-
- _name = "time_DV"
- _UID = ""
- _variable_label = "Time"
- _units = "s"
- _priority = 0
- _value_range = (0, 604800) # don't record more than a week
- _value = 0
-
- _is_covariate = True
-
- # Initializes reference time.
- # The reference time usually denotes the beginning of an experiment trial.
- def __init__(self, *args, **kwargs):
- """
- Initializes the time as dependent variable. The reference time usually denotes
- the beginning of an experiment trial.
-
- For arguments, see [autora.variable.Variable][autora.variable.Variable.__init__]
- """
- print(self._variable_label)
- super(DVTime, self).__init__(*args, **kwargs)
- print(self._variable_label)
-
- # Measure number of seconds relative to reference time
- def measure(self):
- """
- Measures the time in seconds relative to the reference time.
- """
- value = time.time() - self._t0
- self.set_value(value)
diff --git a/autora/variable/tinkerforge.py b/autora/variable/tinkerforge.py
deleted file mode 100644
index bd5518ae6..000000000
--- a/autora/variable/tinkerforge.py
+++ /dev/null
@@ -1,347 +0,0 @@
-from abc import abstractmethod
-from typing import Any, Tuple
-
-from tinkerforge.bricklet_industrial_analog_out_v2 import BrickletIndustrialAnalogOutV2
-from tinkerforge.bricklet_industrial_dual_0_20ma_v2 import BrickletIndustrialDual020mAV2
-from tinkerforge.bricklet_industrial_dual_analog_in_v2 import (
- BrickletIndustrialDualAnalogInV2,
-)
-from tinkerforge.ip_connection import IPConnection
-from variable import ValueType
-
-from autora.variable import DV, IV, Variable
-
-
-class TinkerforgeVariable(Variable):
- """
- A representation of a variable used in the Tinkerforge environment.
- """
-
- _variable_label = ""
- _UID = ""
- _priority = 0
-
- def __init__(
- self,
- variable_label: str = "",
- UID: str = "",
- name: str = "",
- units: str = "",
- priority: int = 0,
- value_range: Tuple[Any, Any] = (0, 1),
- type: ValueType = float,
- ):
- """
- Initializes a Tinkerforge variable.
- Args:
- variable_label: the label of the variable
- UID: the user identification of the variable
- name: the name of the variable
- units: the units of the variable
- priority: the priority of the variable
- value_range: the value range of the variable
- type: the type of the variable
- """
-
- super().__init__(
- name=name,
- value_range=value_range,
- units=units,
- type=type,
- variable_label=variable_label,
- )
-
- self._UID = UID
- self._priority = priority
-
- def __get_priority__(self) -> int:
- """
- Get priority of variable. The priority is used to determine the sequence of variables
- to be measured or manipulated.
-
- Returns:
- The priority of the variable.
- """
- return self._priority
-
- def __set_priority__(self, priority: int = 0):
- """
- Set priority of variable.
- The priority is used to determine the sequence of variables to be measured or manipulated.
-
- Arguments:
- priority: The priority of the variable.
- """
- self._priority = priority
-
- @abstractmethod
- def clean_up(self):
- """Clean up measurement device."""
- pass
-
- @abstractmethod
- def disconnect(self):
- """Disconnect from up measurement device."""
- pass
-
-
-class IVTF(IV, TinkerforgeVariable):
- """
- A representation of an independent variable used in the Tinkerforge environment.
- """
-
- def __init__(self, *args, **kwargs):
- """
- Initializes an independent variable used in the Tinkerforge environment.
-
- For arguments, see [autora.variable.tinkerforge.TinkerforgeVariable]
- [autora.variable.tinkerforge.TinkerforgeVariable.__init__]
- """
- IV.__init__(self, *args, **kwargs)
- TinkerforgeVariable.__init__(self, *args, **kwargs)
-
-
-class DVTF(DV, TinkerforgeVariable):
- """
- A representation of a dependent variable used in the Tinkerforge environment.
- """
-
- def __init__(self, *args, **kwargs):
- """
- Initializes a dependent variable used in the Tinkerforge environment.
-
- For arguments, see [autora.variable.tinkerforge.TinkerforgeVariable]
- [autora.variable.tinkerforge.TinkerforgeVariable.__init__]
- """
- DV.__init__(self, *args, **kwargs)
- TinkerforgeVariable.__init__(self, *args, **kwargs)
-
-
-class IVCurrent(IVTF):
- """
- An independent tinkerforge variable representing the current.
- """
-
- _name = "source_current"
- _UID = "MST"
- _variable_label = "Source Current"
- _units = "µA"
- _priority = 0
- _value_range = (0, 20000)
- _value = 0
-
- _HOST = "localhost"
- _PORT = 4223
-
- def __init__(self, *args, **kwargs):
- """
- Initializes Industrial Analog Out 2.0 device.
-
- For arguments, see [autora.variable.tinkerforge.TinkerforgeVariable]
- [autora.variable.tinkerforge.TinkerforgeVariable.__init__]
- """
-
- self._ipcon = IPConnection() # Create IP connection
- self._iao = BrickletIndustrialAnalogOutV2(
- self._UID, self._ipcon
- ) # Create device object
-
- self._ipcon.connect(self._HOST, self._PORT) # Connect to brickd
-
- super(IVCurrent, self).__init__(*args, **kwargs)
-
- def disconnect(self):
- """
- Disconnect from up measurement device.
- """
-
- self._iao.set_enabled(False)
-
- self._ipcon.disconnect()
-
- def stop(self):
- """
- Disable current output
- """
-
- self._iao.set_enabled(False)
-
- def manipulate(self):
- """
- Sets the current output to the specified value.
- """
- self._iao.set_current(self.get_value())
- self._iao.set_enabled(True)
-
- def clean_up(self):
- """
- Clean up measurement device.
- """
- self.stop()
-
-
-class IVVoltage(IVTF):
- """
- An independent tinkerforge variable representing the voltage.
- """
-
- _variable_label = "Source Voltage"
- _UID = "MST"
- _name = "source_voltage"
- _units = "mV"
- _priority = 0
- _value_range = (0, 5000)
- _value = 0
-
- _HOST = "localhost"
- _PORT = 4223
-
- def __init__(self, *args, **kwargs):
- """
- Initializes Industrial Analog Out 2.0 device.
- """
-
- self._ipcon = IPConnection() # Create IP connection
- self._iao = BrickletIndustrialAnalogOutV2(
- self._UID, self._ipcon
- ) # Create device object
-
- self._ipcon.connect(self._HOST, self._PORT) # Connect to brickd
-
- super(IVVoltage, self).__init__(*args, **kwargs)
-
- def disconnect(self):
- """
- Disconnect from up measurement device.
- """
-
- self._iao.set_enabled(False)
-
- self._ipcon.disconnect()
-
- def stop(self):
- """
- Disable voltage output
- """
- self._iao.set_enabled(False)
-
- def manipulate(self):
- """
- Sets the voltage output to the specified value.
- """
- self._iao.set_voltage(self.get_value())
- self._iao.set_enabled(True)
-
- def clean_up(self):
- """
- Clean up measurement device.
- """
- self.stop()
-
-
-class DVCurrent(DVTF):
- """
- A dependent tinkerforge variable representing the current.
- """
-
- _name = "current0"
- _UID = "Hfg"
- _variable_label = "Current 0"
- _units = "mA"
- _priority = 0
- _value_range = (0, 2000)
- _value = 0
-
- _HOST = "localhost"
- _PORT = 4223
- channel = 0
-
- def __init__(self, *args, **kwargs):
- """
- Initializes Industrial Analog Out 2.0 device.
-
- For arguments, see [autora.variable.tinkerforge.TinkerforgeVariable]
- [autora.variable.tinkerforge.TinkerforgeVariable.__init__]
- """
-
- super(DVCurrent, self).__init__(*args, **kwargs)
-
- self._ipcon = IPConnection() # Create IP connection
- self._id020 = BrickletIndustrialDual020mAV2(
- self._UID, self._ipcon
- ) # Create device object
-
- self._ipcon.connect(self._HOST, self._PORT) # Connect to brickd
-
- if self._name == "current1":
- self.channel = 1
- else:
- self.channel = 0
-
- def disconnect(self):
- """
- Disconnect from up measurement device.
- """
-
- self._ipcon.disconnect()
-
- def measure(self):
- """
- Measures the current.
- """
- current = self._id020.get_current(self.channel)
- self.set_value(current / 1000000.0)
-
-
-class DVVoltage(DVTF):
- """
- A dependent tinkerforge variable representing the voltage.
- """
-
- _name = "voltage0"
- _UID = "MjY"
- _variable_label = "Voltage 0"
- _units = "mV"
- _priority = 0
- _value_range = (-3500, 3500)
- _value = 0
-
- _HOST = "localhost"
- _PORT = 4223
-
- channel = 0
-
- def __init__(self, *args, **kwargs):
- """
- Initializes Industrial Analog Out 2.0 device.
-
- For arguments, see [autora.variable.tinkerforge.TinkerforgeVariable]
- [autora.variable.tinkerforge.TinkerforgeVariable.__init__]
- """
-
- super(DVVoltage, self).__init__(*args, **kwargs)
-
- self._ipcon = IPConnection() # Create IP connection
- self._idai = BrickletIndustrialDualAnalogInV2(
- self._UID, self._ipcon
- ) # Create device object
-
- self._ipcon.connect(self._HOST, self._PORT) # Connect to brickd
-
- if self._name == "voltage1":
- self.channel = 1
- else:
- self.channel = 0
-
- def disconnect(self):
- """
- Disconnect from up measurement device.
- """
- self._ipcon.disconnect()
-
- def measure(self):
- """
- Measures the voltage.
- """
- value = self._idai.get_voltage(self.channel)
- self.set_value(value)
diff --git a/conda/autora/meta.yaml b/conda/autora/meta.yaml
deleted file mode 100644
index 652861a61..000000000
--- a/conda/autora/meta.yaml
+++ /dev/null
@@ -1,74 +0,0 @@
-{% set name = "autora" %}
-{% set version = "0.0.0" %}
-
-package:
- name: "{{ name|lower }}"
- version: "{{ version }}"
-
-source:
- path: ../../
-
-build:
- number: 0
- noarch: python
- script: "{{ PYTHON }} -m pip install . -vv"
-
-requirements:
- host:
- - python
- - pip
- - poetry
- run:
- - imageio >=2.9.0,<3.0.0
- - matplotlib >=3.2.1,<4.0.0
- - numpy >=1.22.1,<2.0.0
- - pandas >=1.4.2,<2.0.0
- - pytorch =2.0.0
- - python-graphviz >=0.14.1,<0.21.0
- - scikit-learn >=1.1.1,<2.0.0
- - scipy >=1.9.3,<2.0.0
- - seaborn >=0.11.1,<0.13.0
- - sympy >=1.10.1,<2.0.0
- - tqdm >=4.64.0,<5.0.0
-
-test:
- requires:
- - pytest
- source_files:
- - tests
- imports:
- - autora
- - autora.cycle
- - autora.cycle.plot_utils
- - autora.cycle.simple
- - autora.experimentalist
- - autora.experimentalist.sampler
- - autora.experimentalist.filter
- - autora.experimentalist.pipeline
- - autora.experimentalist.pooler
- - autora.skl
- - autora.skl.darts
- - autora.skl.bms
- - autora.skl.bsr
- - autora.synthetic
- - autora.synthetic.inventory
- - autora.theorist
- - autora.theorist.darts
- - autora.theorist.bms
- - autora.theorist.bsr
- - autora.variable
-
-about:
- home: "https://musslick.github.io/AER_website/Research.html"
- license: UNKNOWN
- license_family: OTHER
- license_file: LICENSE.md
- summary: "Autonomous Research Assistant (AutoRA) is a framework for automating steps of the empirical research process. This framework implements tools for autonomously and iteratively generating 1) new theories to describe real-world data, and 2) experiments to invalidate those theories and seed a new cycle of theory-making. The experiments will be run online via crowd-sourcing platforms (MTurk, Prolific)."
- doc_url: https://autoresearch.github.io/autora/
- dev_url: https://github.com/AutoResearch/autora
-
-extra:
- recipe-maintainers:
- - musslick
- - hollandjg
- - benwandrew
diff --git a/conda/autora/run_test.sh b/conda/autora/run_test.sh
deleted file mode 100644
index e47c0bba2..000000000
--- a/conda/autora/run_test.sh
+++ /dev/null
@@ -1,3 +0,0 @@
-#!/bin/zsh
-
-pytest tests/
diff --git a/docs/CODEOWNERS b/docs/CODEOWNERS
deleted file mode 100644
index 3e42d47ec..000000000
--- a/docs/CODEOWNERS
+++ /dev/null
@@ -1 +0,0 @@
-* @musslick
\ No newline at end of file
diff --git a/docs/contribute/core.md b/docs/contribute/core.md
new file mode 100644
index 000000000..0a0cbc887
--- /dev/null
+++ b/docs/contribute/core.md
@@ -0,0 +1,29 @@
+# Contribute to the Core
+
+Core contributions are changes to AutoRA which aren't experimentalists, (synthetic) experiment runners and theorists.
+The primary purpose of the core is to provide utilities for:
+
+- describing experiments (in the [`autora-core` package](https://github.com/autoresearch/autora-core))
+- handle workflows for automated experiments
+ (currently in the [`autora-workflow` package](https://github.com/autoresearch/autora-workflow))
+
+Suggested changes to the core should be submitted as follows, depending on their content:
+
+- For fixes or new features closely associated with existing core functionality: pull request to the existing
+ core package
+- For new features which don't fit into the current module structure, or which are experimental and could lead to
+ instability for users: as new namespace packages.
+
+!!! success
+ Reach out to the core team about new core contributions to discuss how best to incorporate them by posting your
+ idea on the [discussions page](https://github.com/orgs/AutoResearch/discussions/categories/ideas).
+
+Core packages should as a minimum:
+
+- Follow standard python coding guidelines including PEP8
+- Run under all minor versions of python (e.g. 3.8, 3.9) allowed in
+ [`autora-core`](https://github.com/autoresearch/autora-core)
+- Be compatible with all current AutoRA packages
+- Have comprehensive test suites
+- Use the linters and checkers defined in the `autora-core`
+ [.pre-commit-config.yaml](https://github.com/AutoResearch/autora-core/blob/main/.pre-commit-config.yaml)
diff --git a/docs/contribute/index.md b/docs/contribute/index.md
new file mode 100644
index 000000000..cec202889
--- /dev/null
+++ b/docs/contribute/index.md
@@ -0,0 +1,17 @@
+# Contributor Guide
+
+Contributions to AutoRA are organized into one "parent" and many "child" packages.
+
+[`autora`](https://github.com/autoresearch/autora) is the "parent" package which end users are expected to install.
+It includes vetted "child" packages as optional dependencies which users can choose to install.
+
+Each experimentalist, experiment runner or theorist is a "child" package.
+For details on how to submit child packages for inclusion in `autora`, see
+[the module contributor guide here](./module.md).
+
+[`autora-core`](https://github.com/autoresearch/autora-core), is the "core" package which includes fundamental utilities
+and building blocks for all the other packages. This is always installed when a user installs `autora` and can be
+a dependency of other "child" packages. For more details, see [the core contributor guide here](./core.md).
+
+It's possible to set up your python environment in many different ways.
+One setup which works for us is described in [the setup guide](./setup.md).
diff --git a/docs/contribute/module.md b/docs/contribute/module.md
new file mode 100644
index 000000000..2477d61d1
--- /dev/null
+++ b/docs/contribute/module.md
@@ -0,0 +1,151 @@
+# Contribute an Experimentalist, Experiment Runner, or Theorist
+
+Each experimentalist, experiment runner or theorist is a "child" package based on either
+
+- the [cookiecutter template (recommended)](https://github.com/AutoResearch/autora-template-cookiecutter), or
+- the [unguided template](https://github.com/AutoResearch/autora-template).
+
+!!! hint
+ The easiest way to contribute a new child package for an experimentalist, experiment runner or theorist,
+ start from the [cookiecutter template](https://github.com/AutoResearch/autora-template-cookiecutter).
+
+!!! success
+ New **synthetic** experiment runners may be submitted as pull requests to the
+ [`autora-synthetic`](https://github.com/autoresearch/autora-synthetic/CONTRIBUTING.md) package, providing they
+ require no additional dependencies. This is meant to simplify small contributions.
+ However, if your contribution requires additional dependencies, you can submit it as a full package following
+ this guide.
+
+Once your package is working, and you've published it on PyPI, you can **make a pull request** on
+[`autora`](https://github.com/autoresearch/autora) to have it vetted and added to the "parent" package.
+
+The following demonstrates how to add a package published under autora-theorist-example in PyPI in the GitHub
+repository example-contributor/contributor-theorist
+
+## Creating a new child package
+
+### Install the "parent" package in development mode
+
+Install this in an environment using your chosen package manager. In this example, we use pip and virtualenv.
+
+First, install:
+
+- python: https://www.python.org/downloads/
+- virtualenv: https://virtualenv.pypa.io/en/latest/installation.html
+
+Create a new virtual environment:
+```shell
+virtualenv venv
+```
+
+Activate it:
+```shell
+source venv/bin/activate
+```
+
+Use `pip install` to install the current project (`"."`) in editable mode (`-e`) with dev-dependencies (`[dev]`):
+```shell
+pip install -e ".[dev]"
+```
+
+Check that the documentation builds correctly by running:
+```shell
+mkdocs serve
+```
+
+... then viewing the documentation using the link in your terminal.
+
+
+### Add the package as optional dependency
+In the `pyorject.toml` file add an optional dependency for the package in the `[project.optional-dependencies]` section:
+
+```toml
+example-theorist = ["autora-theorist-example==1.0.0"]
+```
+
+!!! success
+ Ensure you include the version number.
+
+Add the example-theorist to be part of the all-theorists dependency:
+```toml
+all-theorists = [
+ ...
+ "autora[example-theorist]",
+ ...
+]
+```
+
+Update the environment:
+
+```shell
+pip install -U -e ".[dev]"
+```
+
+... and check that your package is still importable and works as expected.
+
+### Import documentation from the package repository
+Import the documentation in the `mkdocs.yml` file:
+```yml
+- User Guide:
+ - Theorists:
+ - Overview: 'theorist/overview.md'
+ ...
+ - Example Theorist: '!import https://github.com/example-contributor/contributor-theorist/?branch=v1.0.0&extra_imports=["mkdocs/base.yml"]'
+ ...
+```
+
+!!! success
+ Ensure you include the version number in the `!import` string after `?branch=`. Ensure that the commit you want
+ to submit has a tag with the correct version number in the correct format.
+
+Check that the documentation builds correctly by running:
+```shell
+mkdocs serve
+```
+
+... then view the documentation using the link in your terminal. Check that your new documentation is included in
+the right place and renders correctly.
+
+## Updating a child package
+
+!!! warning
+ Please note, that packages need to be vetted each time they are updated.
+
+Update the version number in the `pyproject.toml` file, in the [project.optional-dependencies]
+section:
+```toml
+example-theorist = ["autora-theorist-example==1.1.0"]
+```
+
+Update the version number in the `mkdocs.yml`:
+```yml
+- User Guide:
+ - Theorists:
+ ...
+ - Example Theorist: '!import https://github.com/example-contributor/contributor-theorist/?branch=v1.1.0&extra_imports=["mkdocs/base.yml"]'
+ ...
+```
+
+Update the environment:
+```shell
+pip install -U -e ".[dev]"
+```
+
+... and check that your package is still importable and works as expected.
+
+Check that the documentation builds correctly by running:
+```shell
+mkdocs serve
+```
+
+... then view the documentation using the link in your terminal. Check that your new documentation is included in
+the right place and renders correctly.
+
+
+Once everything is working locally, make a new PR on [github.com](https://github.com/autoresearch/autora) with your
+changes. Include:
+
+- a description of the changes to the package, and
+- a link to your release notes.
+
+Request a review from someone in the core team and wait for their feedback!
diff --git a/docs/contribute/pre-commit-hooks.md b/docs/contribute/pre-commit-hooks.md
new file mode 100644
index 000000000..4e8827f1e
--- /dev/null
+++ b/docs/contribute/pre-commit-hooks.md
@@ -0,0 +1,53 @@
+# Pre-Commit Hooks
+
+We use [`pre-commit`](https://pre-commit.com) to manage pre-commit hooks.
+
+Pre-commit hooks are programs which run before each git commit, and can read and potentially modify the files which are to be committed.
+
+We use pre-commit hooks to:
+- enforce coding guidelines, including the `python` style-guide [PEP8](https://peps.python.org/pep-0008/) (`black` and `flake8`),
+- to check the order of `import` statements (`isort`),
+- to check the types of `python` objects (`mypy`).
+
+The hooks and their settings are specified in the `.pre-commit-config.yaml` in each repository.
+
+## Handling Pre-Commit Hook Errors
+
+If your `git commit` fails because of the pre-commit hook, then you should:
+
+1. Run the pre-commit hooks on the files which you have staged, by running the following command in your terminal:
+ ```zsh
+ $ pre-commit run
+ ```
+
+2. Inspect the output. It might look like this:
+ ```
+ $ pre-commit run
+ black....................Passed
+ isort....................Passed
+ flake8...................Passed
+ mypy.....................Failed
+ - hook id: mypy
+ - exit code: 1
+
+ example.py:33: error: Need type annotation for "data" (hint: "data: Dict[, ] = ...")
+ Found 1 errors in 1 files (checked 10 source files)
+ ```
+3. Fix any errors which are reported.
+ **Important: Once you've changed the code, re-stage the files it to Git.
+ This might mean un-staging changes and then adding them again.**
+4. If you have trouble:
+ - Do a web-search to see if someone else had a similar error in the past.
+ - Check that the tests you've written work correctly.
+ - Check that there aren't any other obvious errors with the code.
+ - If you've done all of that, and you still can't fix the problem, get help from someone else on the team.
+5. Repeat 1-4 until all hooks return "passed", e.g.
+ ```
+ $ pre-commit run
+ black....................Passed
+ isort....................Passed
+ flake8...................Passed
+ mypy.....................Passed
+ ```
+
+It's easiest to solve these kinds of problems if you make small commits, often.
diff --git a/docs/contribute/setup.md b/docs/contribute/setup.md
new file mode 100644
index 000000000..d30244df0
--- /dev/null
+++ b/docs/contribute/setup.md
@@ -0,0 +1,206 @@
+# Setup Guide
+
+It's possible to set up your python environment in many different ways.
+
+To use the AutoRA package you need:
+
+- `python` and
+- packages as specified in the `pyproject.toml` file.
+
+To develop the AutoRA package, you also need:
+
+- `git`, the source control tool,
+- `pre-commit` which is used for handling git pre-commit hooks.
+
+You should also consider using an IDE. We recommend:
+
+- PyCharm. This is a `python`-specific integrated development environment which comes with useful tools
+ for changing the structure of `python` code, running tests, etc.
+- Visual Studio Code. This is a powerful general text editor with plugins to support `python` development.
+
+The following sections describe how to install and configure the recommended setup for developing AutoRA.
+
+!!! tip
+ It is helpful to be familiar with the command line for your operating system. The topics required are covered in:
+
+ - **macOS**: Joe Kissell. [*Take Control of the Mac Command Line with Terminal, 3rd Edition*](https://bruknow.library.brown.edu/permalink/01BU_INST/528fgv/cdi_safari_books_v2_9781947282513). Take Control Books, 2022. Chapters *Read Me First* through *Bring the Command Line Into The Real World*.
+ - **Linux**: William E. Shotts. [*The Linux Command Line: a Complete Introduction. 2nd edition.*](https://bruknow.library.brown.edu/permalink/01BU_INST/9mvq88/alma991043239704906966). No Starch Press, 2019. Parts *I: Learning the Shell* and *II: Configuration and the Environment*.
+
+## Development Setup
+
+### Clone the Repository
+
+The easiest way to clone the repo is to go to [the repository page on GitHub](https://github.com/AutoResearch/autora)
+and click the "<> Code" button and follow the prompts.
+
+!!! hint
+ We recommend using:
+
+ - the [GitHub Desktop Application](https://desktop.github.com) on macOS or Windows, or
+ - the [GitHub command line utility](https://cli.github.com) on Linux.
+
+### Install `python`
+
+!!! success
+ All contributions to the AutoRA core packages should work under **python 3.8**, so we recommend using that version
+ for development.
+
+
+You can install python:
+
+- Using the instructions at [python.org](https://www.python.org), or
+- Using a package manager, e.g.
+ [homebrew](https://docs.brew.sh/Homebrew-and-Python),
+ [pyenv](https://github.com/pyenv/pyenv),
+ [asdf](https://github.com/asdf-community/asdf-python),
+ [rtx](https://github.com/jdxcode/rtx/blob/main/docs/python.md),
+ [winget](https://winstall.app/apps/Python.Python.3.8).
+
+If successful, you should be able to run python in your terminal emulator like this:
+```shell
+python
+```
+
+...and see some output like this:
+```
+Python 3.11.3 (main, Apr 7 2023, 20:13:31) [Clang 14.0.0 (clang-1400.0.29.202)] on darwin
+Type "help", "copyright", "credits" or "license" for more information.
+```
+
+#### Create a virtual environment
+
+!!! success
+ We recommend setting up your development environment using a manager like `venv`, which creates isolated python
+ environments. Other environment managers, like
+ [virtualenv](https://virtualenv.pypa.io/en/latest/),
+ [pipenv](https://pipenv.pypa.io/en/latest/),
+ [virtualenvwrapper](https://virtualenvwrapper.readthedocs.io/en/latest/),
+ [hatch](https://hatch.pypa.io/latest/),
+ [poetry](https://python-poetry.org),
+ are available and will likely work, but will have different syntax to the syntax shown here.
+
+ Our packages are set up using `virtualenv` with `pip`
+
+In the ``, run the following command to create a new virtual environment in the `.venv` directory
+
+```shell
+python3 -m "venv" ".venv"
+```
+
+Activate it by running
+```shell
+source ".venv/bin/activate"
+```
+
+#### Install dependencies
+
+Upgrade pip:
+```shell
+pip install --upgrade pip
+```
+
+Install the current project development dependencies:
+```shell
+pip install --upgrade --editable ".[dev]"
+```
+
+Your IDE may have special support for python environments. For IDE-specific setup, see:
+
+- [PyCharm Documentation](https://www.jetbrains.com/help/pycharm/configuring-python-interpreter.html)
+- [VSCode Documentation](https://code.visualstudio.com/docs/python/environments)
+
+
+### Activating and using the environment
+
+To run interactive commands, you can activate the virtualenv environment. From the ``
+directory, run:
+
+```shell
+source ".venv/bin/activate"
+```
+
+This spawns a new shell where you have access to the `python` and all the packages installed using `pip install`. You
+should see the prompt change:
+
+```
+% source .venv/bin/activate
+(.venv) %
+```
+
+
+If you execute `python` and then `import numpy`, you should be able to see that `numpy` has been imported from the
+`.venv` environment:
+
+```
+(.venv) % python
+Python 3.8.16 (default, Dec 15 2022, 14:31:45)
+[Clang 14.0.0 (clang-1400.0.29.202)] on darwin
+Type "help", "copyright", "credits" or "license" for more information.
+>>> import numpy
+>>> numpy
+
+>>> exit()
+(.venv) %
+```
+
+You should be able to check that the current project works by running the tests:
+```shell
+pytest
+```
+
+It should return something like:
+
+```
+% pytest
+.
+--------------------------------
+Ran 1 test in 0.000s
+
+OK
+```
+
+
+!!! hint
+ To deactivate the `virtualenv` environment, `deactivate` it. This should return you to your original prompt,
+ as follows:
+ ```
+ (venv) % deactivate
+ %
+ ```
+
+
+### Running code non-interactively
+
+You can run python programs without activating the environment, by using `/path/to/python run {command}`. For example,
+to run unittests tests, execute:
+
+```shell
+.venv/bin/python -m pytest
+```
+
+It should return something like:
+
+```
+% .venv/bin/python -m pytest
+.
+--------------------------------
+Ran 1 test in 0.000s
+
+OK
+```
+
+### Pre-commit hooks
+
+If you wish to commit to the repository, you should install and activate `pre-commit` as follows.
+```shell
+pip install pre-commit
+pre-commit install
+```
+
+You can run the pre-commit hooks manually by calling:
+```shell
+pre-commit run --all-files
+```
+
+For more information on pre-commit hooks, see [Pre-Commit-Hooks](./pre-commit-hooks.md)
+
diff --git a/docs/cycle/cycle_results_plots.ipynb b/docs/cycle/cycle_results_plots.ipynb
deleted file mode 100644
index d01f36ef0..000000000
--- a/docs/cycle/cycle_results_plots.ipynb
+++ /dev/null
@@ -1,643 +0,0 @@
-{
- "cells": [
- {
- "cell_type": "markdown",
- "source": [
- " # Examples of using cycle results plotting functions"
- ],
- "metadata": {
- "collapsed": false
- }
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "outputs": [],
- "source": [
- "# Uncomment the following line when running on Google Colab\n",
- "# !pip install autora"
- ],
- "metadata": {
- "collapsed": false
- }
- },
- {
- "cell_type": "code",
- "execution_count": 1,
- "metadata": {
- "collapsed": true
- },
- "outputs": [],
- "source": [
- "from autora.variable import VariableCollection, Variable\n",
- "from autora.cycle import Cycle, plot_results_panel_2d, plot_results_panel_3d\n",
- "from autora.experimentalist.pipeline import Pipeline\n",
- "from autora.experimentalist.pooler.general_pool import grid_pool\n",
- "from autora.experimentalist.sampler import random_sampler\n",
- "from sklearn.linear_model import LinearRegression\n",
- "import numpy as np\n",
- "import random\n",
- "%matplotlib inline"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 2,
- "outputs": [
- {
- "data": {
- "text/plain": ""
- },
- "execution_count": 2,
- "metadata": {},
- "output_type": "execute_result"
- }
- ],
- "source": [
- "# Simple linear regression cycle\n",
- "random.seed(1)\n",
- "\n",
- "def ground_truth(xs):\n",
- " return xs + 1.0\n",
- "\n",
- "# Variable Metadata\n",
- "study_metadata = VariableCollection(\n",
- " independent_variables=[\n",
- " Variable(name=\"x1\", allowed_values=np.linspace(0, 1, 100))\n",
- " ],\n",
- " dependent_variables=[Variable(name=\"y\", value_range=(-20, 20))],\n",
- ")\n",
- "\n",
- "# Theorist\n",
- "lm = LinearRegression()\n",
- "\n",
- "# Experimentalist\n",
- "example_experimentalist = Pipeline(\n",
- " [\n",
- " (\"pool\", grid_pool),\n",
- " (\"sampler\", random_sampler),\n",
- " (\"transform\", lambda x: [s[0] for s in x]),\n",
- " ],\n",
- " params={\n",
- " \"pool\": {\"ivs\": study_metadata.independent_variables},\n",
- " \"sampler\": {\"n\": 5},\n",
- " },\n",
- ")\n",
- "\n",
- "# Experiment Runner\n",
- "def get_example_synthetic_experiment_runner():\n",
- " rng = np.random.default_rng(seed=180)\n",
- "\n",
- " def runner(xs):\n",
- " return ground_truth(xs) + rng.normal(0, 0.1, xs.shape)\n",
- "\n",
- " return runner\n",
- "\n",
- "example_synthetic_experiment_runner = get_example_synthetic_experiment_runner()\n",
- "\n",
- "# Initialize Cycle\n",
- "cycle = Cycle(\n",
- " metadata=study_metadata,\n",
- " theorist=lm,\n",
- " experimentalist=example_experimentalist,\n",
- " experiment_runner=example_synthetic_experiment_runner,\n",
- ")\n",
- "cycle.run(5)"
- ],
- "metadata": {
- "collapsed": false
- }
- },
- {
- "cell_type": "markdown",
- "source": [
- "## Plotting 2D\n",
- "The plotter will create a panel for each cycle.\n",
- "* Default shows black points for previous data and orange points for new data to the cycle.\n",
- "* The theory is plotted as a blue line.\n",
- "* Default panel configuration is 4 plots to a row."
- ],
- "metadata": {
- "collapsed": false
- }
- },
- {
- "cell_type": "code",
- "execution_count": 3,
- "outputs": [
- {
- "data": {
- "text/plain": "",
- "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkcAAAGzCAYAAAAlqLNlAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8o6BhiAAAACXBIWXMAAA9hAAAPYQGoP6dpAABusklEQVR4nO3deXxM1/sH8M9M9j1CNhHEvmcRYqmi1aKqdEEVCUVbDbX1q5SumqqWb3WxVO1bqb1fWktp7EISCRFiC7EkkSC7bHPP749p5pfIIsskNzPzeb9e84rM3Hvnmcwx95lzzn2OQgghQEREREQAAKXcARARERHVJkyOiIiIiAphckRERERUCJMjIiIiokKYHBEREREVwuSIiIiIqBAmR0RERESFMDkiIiIiKoTJUQUJIZCWlgbWzjRsbAfENkBsA/qLyVEFpaenw87ODunp6bLFcPPmTSgUCkRERMgWg6GTux2wDciPbYDkbgMA20F1YXJUDRISEjBp0iQ0adIEZmZmcHd3x8CBA3Ho0CG5Qyvi/Pnz6NGjB8zNzeHu7o5vv/1W7pD0hi60gezsbIwePRrt27eHsbExBg8eLHdIekUX2kBwcDAGDRoEV1dXWFlZwcvLCxs3bpQ7LL2iC+0gJiYGvXv3hrOzM8zNzdGkSRPMmTMHeXl5cocmG2O5A9A3N2/eRPfu3WFvb4/vvvsO7du3R15eHvbv34/AwEBcvnxZ7hABAGlpaXjxxRfRp08fLFu2DBcuXMDbb78Ne3t7vPPOO3KHp9N0pQ2oVCpYWFjggw8+wPbt2+UOR6/oShs4efIkOnTogI8++gjOzs7Ys2cP/P39YWdnh5dfflnu8HSerrQDExMT+Pv7w8fHB/b29oiMjMT48eMhSRK+/vprucOTh6AKSU1NFQBEampqiY/3799fuLm5iYyMjGKPPXr0SAghxJgxY8SAAQOKPJabmyscHR3FihUrhBBCqFQqMX/+fNG0aVNhamoq3N3dxVdffSWEECI2NlYAEOfOndPsf+HCBdGvXz9hZWUlnJycxMiRI0VSUlKpr2PJkiWiTp06IicnR3PfRx99JFq2bFmuv4OhK6sd6EobKCwgIEAMGjSoXNuSmr61gQIvvfSSGDNmTIX2MVT6cj4oydSpU8UzzzxToX30CYfVtOjhw4fYt28fAgMDYWVlVexxe3t7AMC4ceOwb98+xMfHax7bs2cPsrKyMGzYMADArFmz8M033+CTTz5BdHQ0Nm3aBGdn5xKfNyUlBc899xy8vb0RGhqKffv2ITExEUOHDi011lOnTuHZZ5+Fqamp5r6+ffsiJiYGjx49qszLJ+hWG6DqoettIDU1FQ4ODhXah4rT5XZw7do17Nu3Dz179qzAK9YzcmdnuqasbwohISECgNixY8dTj9OmTRsxf/58ze8DBw4Uo0ePFkIIkZaWJszMzMSvv/5a4r5PflOYO3euePHFF4tsc/v2bQFAxMTElHiMF154QbzzzjtF7rt48aIAIKKjo58av6ErrR3oUhsojD1HFadvbUAIIbZs2SJMTU1FVFRUubY3dPpyPijQtWtXYWZmJgCId955R6hUqqfGrq/Yc6RFogKXc44bNw6rV68GACQmJuKvv/7C22+/DQC4dOkScnJy8Pzzz5frWJGRkfjnn39gbW2tubVq1QoAcP369Qq+CqoKtgHS1Tbwzz//YMyYMfj111/Rtm3bcr8GKpkutoMtW7YgPDwcmzZtwt69e7FgwYJyvwZ9wwnZWtS8eXMoFIpyTbLz9/fHzJkzcerUKZw8eRIeHh7o0aMHAMDCwqJCz5uRkYGBAwdi/vz5xR5zdXUtcR8XFxckJiYWua/gdxcXlwo9P/0/XWoDVD10sQ0cOXIEAwcOxPfffw9/f/8KPS+VTBfbgbu7OwCgTZs2UKlUeOeddzB9+nQYGRlVKAZ9wJ4jLXJwcEDfvn2xePFiZGZmFns8JSVF8++6deti8ODBWL16NdasWYMxY8ZoHmvevDksLCzKfamnj48PLl68iMaNG6NZs2ZFbiWNdQNA165dcfTo0SKXah48eBAtW7ZEnTp1yvmK6Um61AaoeuhaGwgODsaAAQMwf/58XqmqRbrWDp4kSRLy8vIgSVK599Er8o7q6Z6nXZ1w/fp14eLiItq0aSO2bdsmrly5IqKjo8UPP/wgWrVqVWTbAwcOCFNTU2FkZCTu3r1b5LHPP/9c1KlTR6xdu1Zcu3ZNnDp1SnPlwpNjzHfv3hWOjo7ijTfeEGfOnBHXrl0T+/btE6NHjxb5+fklxpmSkiKcnZ3FqFGjRFRUlNi8ebOwtLQUv/zySxX/QoahrHagK21ACPU8s3PnzomBAweKXr16iXPnzhW56oVKpw9t4PDhw8LS0lLMmjVLxMfHa24PHjzQwl9I/+nL+WDDhg1iy5YtIjo6Wly/fl1s2bJF1K9fX4wYMaKKfyHdxeSogp72n0EIIe7duycCAwNFo0aNhKmpqXBzcxOvvPKK+Oeff4psJ0mSaNSokXjppZeKHUOlUomvvvpKNGrUSJiYmIiGDRuKr7/+WghR8qWbV65cEa+++qqwt7cXFhYWolWrVmLKlClCkqRS44yMjBTPPPOMMDMzE25ubuKbb76p2B/DgD2tHehKG2jUqJEAUOxGT6cPbSAgIKDE979nz56V+psYGn05H2zevFn4+PgIa2trYWVlJdq0aSO+/vpr8fjx44r/UfSEQgguClMRaWlpsLOzQ2pqKmxtbat0rIyMDLi5uWH16tV47bXXtBQh1QRttQO2Ad3FNkA8H+gvTsiWgSRJSE5OxsKFC2Fvb49XXnlF7pCohrENENsAAWwHtRWTIxnExcXBw8MDDRo0wJo1a2BszLfB0LANENsAAWwHtRXfBRk0bty4QjUwSP+wDRDbAAFsB7UVL+UnIiIiKkSnk6N58+ahU6dOsLGxgZOTEwYPHoyYmJin7rd161a0atUK5ubmaN++Pf78888aiJaqW9itRzh5PVnuMIiISMfpdHJ05MgRBAYG4vTp0zh48CDy8vLw4osvllhwq8DJkycxfPhwjB07FufOncPgwYMxePBgREVF1WDkpG0PMnIQuDEcI1eE4MDFBLnDISIiHaZXl/InJSXByckJR44cwbPPPlviNsOGDUNmZib27Nmjua9Lly7w8vLCsmXLnvoc2rx0k7RDJQmMXn0Gx64mo4mjFf6Y+Ayszap3Oh3bAbENENuA/tKrCdmpqakA1GXbS3Pq1ClMmzatyH19+/bFrl27Stw+JycHOTk5mt/T0tKqHihp1c+Hr+HY1WSYmyixdETHakmM2A6IbYDYBnRHVm4+Lt5LQ6fGpecDZdHpYbXCJEnClClT0L17d7Rr167U7RISEuDs7FzkPmdnZyQklDwUM2/ePNjZ2WluBQvzUe1w/GoyFh26AgAIGtweLV1squV52A6IbYDYBnSDJAlM2RyBN5efxrawO5U6ht4kR4GBgYiKisLmzZu1etxZs2YhNTVVc7t9+7ZWj0+Vl5Cajcmbz0EI4M1O7ni9Y4Nqey62A2IbILYB3fDdgRgciE6EkUIBj3qWlTqGXgyrTZw4EXv27MHRo0fRoEHZJ0gXFxckJiYWuS8xMREuLi4lbm9mZgYzMzOtxUrakaeSMOm3cDzIzEUbV1t8/krban0+tgNiGyC2gdpvW9gdLA2+DgCY/0Z7dGxkgMNqQghMnDgRO3fuxOHDh+Hh4fHUfbp27YpDhw4Vue/gwYPo2rVrdYVJ1WDB/hicvfkINmbGWDLCB+YmRnKHREREMjp78yFm7TgPAJjYuxle9a78aIJO9xwFBgZi06ZN2L17N2xsbDTzhuzs7GBhYQEA8Pf3h5ubG+bNmwcAmDx5Mnr27ImFCxdiwIAB2Lx5M0JDQ7F8+XLZXgdVzIGLCfjl6A0AwHdDOqBxPSuZIyIiIjnFPcjCu+vDkKcSeKm9C6a90KJKx9PpnqOlS5ciNTUVvXr1gqurq+a2ZcsWzTZxcXGIj4/X/N6tWzds2rQJy5cvh6enJ7Zt24Zdu3aVOYmbao+4B1mYvjUSADD2GQ/0a+cqc0RUm9xPz8b4daFITMuWOxQiqiFp2XkYu/YsHmbmokMDOywc4gWlUlGlY+p0z1F5SjQFBwcXu2/IkCEYMmRINURE1Sk7T4X3N4UhPTsfPg3tMbN/K7lDolokIycfb685i6i7acjIzsdv73SROySSycrjsWjpbINnmteTOxSqZvkqCZM2ncPV+xlwsTXHr/6+sDCt+jQLne45IsMyd080ou6moY6lCX5+ywcmRmy+pJankhC4MRxRd9NQ18oU815rL3dIJJNNIXGYuycab685i9jk0ldLIP3w1d5LOHIlCRYmRlgR4AtnW3OtHJdnF9IJu87dxcaQOCgUwPfDvFDf3kLukKiWEEJg1o4Lmg/IlaM7cR6agfoj8h5m77oAABjXwwMebAd6bf3pW1hz8iYA4PthnmjnZqe1YzM5olrv2v10fLxT/YE3qXcz9GrpJHNEVJv89+AVbAu7AyOlAotHeMPL3V7ukEgGhy8nYtqWCAgBjOzSEP/p21LukKgaHb+ajM//uAgA+E/fllqff8rkiGq1rNx8TNgQjqxcFbo3q4vJfap2BQLplw2nb+Gnw9cAAEGD2+G5Vs5P2YP00ekbDzBhQzjyJYFBXvXx5SvtoFBUbUIu1V7X7mdgwsYwqCSB13zc8H6vplp/DiZHVGsJITB7ZxSu3s+Ak40ZFg3zhlEVr0Ag/XHgYgI+3R0FAJjSpzne7NxQ5ohIDhfupGLc2lDk5Evo09oJC4Z4VvlKJaq9HmXmYuzas0jPzodvozqY91r7akmEmRxRrfXbmdvYee4ujJQK/PyWDxxtWJmW1MJuPcIHm89B+nfpmMnPN5c7JJLB1cR0+K8KQUZOPro0ceCFGnouN1/CexvCcOtBFhrUscAvozrCzLh6CgCzFVGtFHU3FZ//Tz2e/OGLLdHZo3Il4En/XE/KwLi1Z5GdJ6F3S0d8NZhDKIbo9sMsjFwZgkdZefBsYIcVAZ1YKV+PCSHwya4ohMQ+hLWZMVYGdEJd6+r7wszkiGqd1Md5eH9jOHLzJTzfygnvPttE7pColrifno2AVWc0J8TFI3xgzJ4Cg3M/LRsjV4YgMS0HzZ2ssWZMZ1ib6XTZPt0kSUDGffXParbiWCy2hN6GUgH89JY3WrrYVOvz8VOFahUhBGZsi0Tcwyy42Vtg4VDOHyC1giKPdx49RqO6llg5uhMsTXlC1CvlONmmZOVi1MozuPUgC+4OFtgwzg91rExrMEgCoH6Pji0Adk9U/9RigiRJEhITEyH9e8y/oxPx9V+XAABzBrRB7xq4YpmfLFSrrDwei/0XE2FqpMSSET6wt+SHHqmLPE7YEKYp8rh2TGfUq8YudZJBwcn2TijQwBfo8SGgLPr9PSMnH6NXn0VMYjqcbMywcWwXrRX9owrKSla/VxmJ6p9ZyYB11ZMWSZIQFBSEkJAQ+Pn54bW3J2Hy5nMQAnjLryHGdG9c9djLgckR1RqhNx/im78uAwDmvNwanqxXQ1D3Jn60/TyOXU2GhYkRVrHIo356ysk2O0+Fd9aFIuJ2CuwtTbB+rB8a1rWUMWADZ1lPncQWJLOW2lmqJSkpCSEhIUhISMDxsPPYozyLzH9LuXzxStsam1/I5IhqhQcZOZi46RzyJYGBnvUxqksjuUOiWmLhgSvYEa6+anHJCB8mzfqqjJNtnkrCpN/O4eT1B7AyNcLaMZ2rfc4JPYVSqe7dy0pWv1dK7czScXR0hJ+fH06dCUVSmyFISs9Fk3pWWPJWx5KvRJQkrccAMDmiWkAlCUzZEoGEtGw0qWdVbXUrSPdsOH0LP/+jLvI479X26N2K1dH1ViknW0kS+GjbeRyMToSpsRIrAjoxQa4tlEqtDKUVPaQSH3/8MSasO4PomIewszDBytGdYGdpUnzjcgzFVjoOrRyFqAp+PnwNx64mw9xEiaUjO/KqEwJQtMjj1D4tMLSTu8wRUbUrONn+e4ITQuCL/13EjnN3YaxUYOkIH3RtWlfmIKm6/fzPDRyIeah+z0f6lL5GXklDsVrC5IhkdfxqMhYdugIACBrcnl3lBEBd5HHSb+oij8M7u+OD55vJHRLJ4L8Hr2DtqVtQKICFQz3xfGsuD6Pv9py/h+//Vp8T5g5uh25Ny5jLVDAUa+2s1XlPAIfVSEYJqdmaqxDe7OSO1zs2kDskqgWuJ2Vg7NqzyPm3ztXcQSzyaIh+PXpDs27el4PaYZCXm8wRUXWLuJ2C6b9HAgDGPuOB4U9bEqia5j0BTI5IJuoJluF4kJmLNq62+PyVtnKHRLVAQZHHlKw8eLrb46e3vFnk0QD9diYOQX+q69r8p29LXqBhAO6lPMb4deo18p5r5YSPX2pdvh2rYd4TwGE1ksmC/TE4e/MRbMyMsWSED8v+EzJy8jFmtbrIY+O6llgV4MsijwZoz/l7+HjnBQDAez2bIrA3h1T1XWZOPsauDUVSeg5audjgx+HyLzLO5Ihq3MHoRPxy9AYA4Ns3OrBmDSE3X13k8eK9f4s8vt25WtdNotrpn5j7mLolAkIAwzs3xEf9WsodElUzSRKYuiUCl+LTUM/aFCsCfGvFRTlMjqhG3X6Yhem/RwAA3u7ugf7tXeUNiGQnhMDMHeoij5amRlg9phMa1WXCbGjOxD7EhA1hyFOpa51xQWHD8O3+GBz4t0zDL6N80aBO7SjsyeSIakx2ngoTNoYhLTsf3g3tMbN/K7lDolpgwYEYTZHHxSN80KGBvdwhUQ2LupuKsWvOIjtPQu+WjvjvUE/Zh1Wo+m0NvY1lR64DAL59vQM6Nqojc0T/j8kR1Zi5e6IRdTcNdSxNsPgtH5gas/kZuvWnb2HxP+oPx3mvta+RBSWpdrl2PwP+q84gPScfnT0csHRkKZWQSa+E3HigmVs26blmGOxdu65GZAukGrE74i42hsQBAL4f5oX69hYyR0Ry238xAZ/9W+Rx2gstMNSXRR4Nze2HWRi5IgQPM3PR3s0OKwN8eXGGAbj1IBPv/TuE+lJ7F0zt00LukIphckTV7tr9dMza8f/fEHqxd8Dghd16iA8KFXmc9ByvSDI099OzMWplCBLSstHMyRpr3+4MG/MSloggvZKWnYexa0PxKCsPHRrYYeEQLyhr4RAqkyOqVlm5+ZiwIRxZuSp0a1oXU2rhNwSqWdfuZ2Ds2lAWeTRgqVl58F95BjcfZKFBHQtsGOsHBytTucOiapavkjBx0zlcu58BF1tz/OrvCwvT2tlTyOSIqo0QAnN2RuHq/Qw42Zjhhzflr11B8rqfxiKPhi4zJx9j1pzB5YR0ONqYYeM4P7jYmcsdFtWAuXuicfRKEixMjLAiwBfOtrX3feenElWbzWdvY8c59VVIPw33hqMN69YYsvTsPIxZcxZ3U1jk0VDl5Kvw7vowhMelwM7CBBvG+rFsg4FYd+om1p66BUA977Sdm53MEZWNyRFVi6i7qfjsj4sAgA9fbAm/JlxJ25CpizyG4+I9daE3Fnk0PPkqCR/8dg7HryXDytQIa9/uzIWmDcTRK0n44n/RAIAZ/VqiXzsXmSN6OiZHpHVp2XkI3BSO3H/nlLz7bBO5QyIZCSEwc/t5HL+mLvK4ajSLPBoaSRL4aPsF7L+oLvb3q78vvNzt5Q6LasC1++kI3BQOlSTwmo8bJvRsKndI5cLkiLRKCIH/bI3ErQdZcLO3wMKhnrXySgSqOd/tj9EMry5hkUeDI4TAl3uisT38DoyUCvw83BvdmtWTOyyqAQ8zc/H2mlCkZ+ejU+M6mPdae525+ILJEWnVyuOx6m+HRkosGeEDe0tegWLI1p26iSXB6iKP37zWnmUcDNCiv69izcmbAIAFQzrgxba1f0iFqi43X8J7G8IQ9zAL7g4WWDayI8yMa+eVaSVhckRaE3brIb756zIAYM7LreHJbnODti8qQTPvbPoLLTCERR4Nzsrjsfjh0FUAwBevtMWr3g1kjohqghACs3dewJnYh7AxM8bKgE46N8eQyRFpxYOMHARuPId8Sb1o5KgujeQOiWQUevMhJm8+p1ldfSKLPBqc38/extw96km4H77YAgHdGssbENWY5UdvYGvYHSgVwE9veaOFs+5NvGdyRFUmSQJTf49EQlo2mtSz0qlxZdK+wkUe+7R2wtxBbdkeDMyfF+Ixc8d5AMA7zzZBYG8mx4biYHQivtmnHkH45OU2OjuUzuSIquznf67h6JUkmJsosWSkD6zNWLvGUBUUeUx9nAcvd3v8NNyHRR4NzJErSZi8Wb00zJud3DGrfysmxwbi4r1UTY/xyC4NMVqHewv5qUVVcuJaMr7/+woA4KvB7dHKxVbmiEgu6dl5GL1aXeTRo54VVo3uVGuXBqDqEXrzId5dH4o8lcCADq4IepW9yIbifno2xq8NRVauCs80q4fPBup2jzGTI6q0xLRszbeEYb7ueKMjJ1saqoIij9Hx/xZ5HNOZa2UZmIv3UjFmzVlk50no1dIR3w/14nJBBiI7T4Xx68JwLzUbTRytsHiED0x0vMdYt6Mn2eSrJEzadA7JGblo7WqLLwa1lTskkokQAh8VKvK4enRnNKxrKXdYVINuJGXAf+UZpGfno3NjBywd0RGmxjy9GAIhBD7cGonI2ymwtzTBqoBOsLMwkTusKmPrpUr57kAMztx8CGszYywZ4QNzEw6fGKpv98dgZ6Eij+0b1O41k0i77qY8xsgVIXiQmYt2brZYMbr2rrRO2rfo76vYcz4exkoFlo7oiMb19KP6PZMjqrCD0Yn45cgNAMB3b3SAh578Z6CKW3vyJpayyKPBSkrPwagVIbiXmo2mjlZYO6YzbM11v9eAyuePyHuaOlZBr7ZD16b6s4YmkyNSkyQg4776ZxluP8zC9N8jAABjujdG//auNRAc1RRJkpCYmAjpKe0AAPZFxePz/7HIo74pbxtIfZwH/1VncCM5E272Flg/1k/nCv1RycrTBs7FPcKHWyMBqMs1DOvUsKbCqxFMjkidEB1bAOyeqP5Zyn+I7DwV3t8YjrTsfHi522NW/9Y1HChVJ0mSEBQUhLFjxyIoKKjMD8azNx/ig80REAJ4y49FHvVFedtAVm4+3l5zFpfi01DP2gwbxvmhvr1FDUdL1aE8beBuymOMXxemWVz8o36tZIi0ejE5IiArGbgTCmQkqn9mJZe42Vd7o3HhbirsLU2weIQPJ1zqmaSkJISEhCAhIQEhISFISkoqcbtr99Mxbm0ocvMl9GntjC9f0e1Ldun/lacN5OSr8O76MITdegRbc2OsH9uZQ+t65GltIDMnH+PWhiI5IwetXGzww3BvvbwqkWc3AizrAQ18AWtnwK0jIKRivUe7I+5iw+k4AMD3w7zgxm+JesfR0RF+fn5wcXFB586dIUlSsW+NiWnZCFh1FqmP8+Dd0B4/DfdmkUc98rQ2kK+SMGVzBI5dVV+ZuObtzmjtytpm+qSsNqCSBCZvjvi3x9AUKwJ89bbor0IIIeQOQpekpaXBzs4OqampsLXVow+FgjlH4WuBu2HqZKnHh4BSiWv30/HKzyeQlavCxN7N8GHflnJHKzt9bQcFcw2WL1+Os2fPws/PD7Nnz4ZSqUR6dh6G/nIal+LT4FHPCtsndDPoWkaG1gYABWbuOI/fQ+/A1EiJVaM74Znm9eQOV1aG1gbm74vBL0dvwNRYic3vdIFPwzpyh1pt9DPlo4pTKtW3u2FFhteyTB3w/sZwZOWq0LVJXUx9oYXckVI1UiqVUCqVOHv2bJFu9Tp1HfHehjDNHBMWedRfJbWB+/fvY/nZh/g99A6MlAr8ONzb4BMjfVZSG1gVfAm/HL0JQH2Vsj4nRgCH1aiwwsNrDXwhLOpizs4oXEnMgKONGX4Yzoq3hqBwt7qfnx/q1q2HGdsiceLaA1iZGmHNmE4s8qjnnmwDmy+kYtWJWADA/Nc7oF87F5kjpOpWuA009H0e8w/dAgB88HxzDPJykzm66sdhtQrS125UDUlST8i2rIffQu9g1o4LMFIqsGmcH/yalFLDotA+UBpGvq3v7UCSJCQlJcHR0RHf7r+CZUeuw1ipwKrRnfBsC8cyt1eyDeiFgvd0z5VMzN17CQDw2cA2GNPdo8zt2Qb0hyRJOHf1NsZujkHK4zwM6OCKn970hrKML8n60g50N3KqHkolYO2EqPh0fPaHuobNhy+2LDsxKkcZANItSqUSzs7OWHfqFpYd+bfI4+sdSk2MylsCgHSHUqnEsTt5msRoap8WZSZGbAP6Jz1HhRl7YpHyOA+eDeywcIjnUxMjfWkHTI6omLTsPARuCtfUsHj32Salb1zOMgCke/66EI8v9kQDAP7Tt2WpCwuXtwQA6ZZ9UQmYsU1d5G/cMx744PnSa1mxDeiffJWEiZvCcT0pE6525vjV3/epy0TpUztgckRFCCHwn62RuPUgC272Flg4tOxvCk/OU4IlJ2nqgzOxDzF5i7rI4wi/hni/V9NSt31yfoqjY/HeJdItx64m4YPfzkESwFDfBpg9oHWZtazYBvTPF/+LxrGrybAwMcKv/r5wsjV/6j761A50es7R0aNH8d133yEsLAzx8fHYuXMnBg8eXOr2wcHB6N27d7H74+Pj4eJSvgmG+j7GvOLYDXy19xJMjBTY9l43eLrbP30nzjmSOxytunY/Ha8vPYXUx3no09oZv4zq+NSJ+Poyz6Ai9LUNhN16hJErQvA4T4WX2rvgp+E+5boQg21Af9rA2pM38dkfF6FQAMtGdkTftuWfgK8v7UB3IweQmZkJT09PLF68uEL7xcTEID4+XnNzcuJimQAQdushvvnrMgBgzoA25UuMAM08JUNJjPRZ4SKPPv8WeSzPibFgjpIufxgSEH0vDWNWn8HjPBV6NK+H74eV/wpVtgH9cORKEr74d83EGX1bVSgxAvSnHeh0naP+/fujf//+Fd7PyckJ9vb22g9Ihz3MzMXETeeQLwkM6OAK/66N5A6Jalh6dh4CVp3B3ZTHaOJohZUBnWBhWvYcA9IfscmZ8F8VgrTsfPg2qoNfRnWEmTHff0NyNTEdEzeGQxLA6z4N8F7PMuab6jmdTo4qy8vLCzk5OWjXrh0+//xzdO/evdRtc3JykJOTo/k9LS2tJkKsUZIkMGVLBOJTs9GknhXmv96Ba2U9Qd/bQW6+hPc2hOFyQrqmyGMdFnksQp/bwL2Uxxi5IgTJGblo42qLlaM7wdLUIE8PZdLnNvAwMxdj14YiPScfnRs74OvX2hn0eUC3+70qyNXVFcuWLcP27duxfft2uLu7o1evXggPDy91n3nz5sHOzk5zc3d3r8GIa8bP/1zD0StJMDdRYslIH71dK6cq9LkdSJIoVuTR3YFFHp+kr20gOSMHI1eGqHsM61lh3djOsLMwkTusWklf20BOvgrvrQ9D3MMsNHSwxDL2Gur2hOzCFArFUydkl6Rnz55o2LAh1q9fX+LjJX1TcHd315sJeCeuJWPkyhAIASwY4lnq5dqGTp/bwby/LuGXIzfKLPJI+tkGUh/nYfjy04iOT0N9O3NsndCNi0qXQR/bgBAC/9l2HtvC7sDGzBg73u+G5s42coclO4PvIujcuTOOHz9e6uNmZmYwMzOrwYhqTmJaNiZvPgchgGG+7kyMyqCv7WDNiVj8cuQGAPWyEEyMSqdvbeBxrgrj1p5FdHwa6lqZYsM4PyZGT6FvbQAAfjl6A9vC7kCpAH4e4cPE6F8GNaxWkoiICLi6usodRo3LV0mYtOkckjNy0drVFl8Mait3SFTDnizy+DqTY4NRMMfs7M1HsDE3xrqxndHE0VrusKiG7b+YgPn71FcofzawLXryy5GGTvccZWRk4Nq1a5rfY2NjERERAQcHBzRs2BCzZs3C3bt3sW7dOgDAokWL4OHhgbZt2yI7OxsrVqzA4cOHceDAAblegmy+OxCDMzcfwtrMGEtG+Dy18inpl8JFHkd2KbvII+kXlSQwdUsEjlxJgoWJEVaP7oS29e3kDotq2MV7qZiyWf0ZMKpLIwR0ayx3SLWKTidHoaGhRYo6Tps2DQAQEBCANWvWID4+HnFxcZrHc3NzMX36dNy9exeWlpbo0KED/v777xILQ+qzg9GJmqGUb9/oAI96VjJHRDXpamI6xq09i9x8CS+0ccYXrxj2VSmGRAiBj3dcwN4L8TAxUuCXUR3h29hB7rCoht1Py8a4taGaelafDWwjd0i1jt5MyK4pul4R9fbDLAz48RjSsvMxpntjfDaQw2mVoavtICE1G68tOYF7qdnwaWiPTeO7sNewknStDQghELT3ElYcj4VSASx+ywf92xvelAJt0rU2AADZeSoMW34akbdT0NTRCjve786rE0tg8HOODElOvgqBm8KRlp0PL3d7zOrfWu6QqAalZedh9OozuJearSnyyMTIcPx8+BpWHI8FAHzzegcmRgZICIEPt0Yi8nYK7C1NsDKgExOjUjA5MiBf7bmE83dSYW9pgsUjfGBqzLffUOTmS3hvvbrIo6MNizwamrUnb2LhwSsAgE9fboOhvvpRn4cqZtHfV7HnvHpIddnIjmjMKRWl4tnRQPwReQ/rT98CAHw/1IuX7BoQSRL4z7ZInLyuLvK4ejSLPBqSHeF38Nkf6rWyJj/fHG8/4yFzRCSHPyLv4YdDVwEAQYPbo0uTujJHVLsxOTIA1+5nYOb28wCAwN5N0bsVF9o1JPP3XcbuiHswViqwdGRHtHPjlUmGYv/FBPxnm/r//pjujTGlT3OZIyI5hMc9wodbIwEA7z7bBEM7sefwaZgc6bms3Hy8vzEMWbkqdGnigKl9WsgdEtWg1Sdi8cvR/78ykUUeDceJa8mYtOkcVJLAGx0b4JMBbXhVogG68ygL76wLRW6+hD6tnTGjXyu5Q9IJTI70mBACc3ZF4UpiBhxtzPDjcG8YG/Etr3UkCci4r/6pRX9eiMeXhYo8vubDIo+1lSRJSExMhKSlNhAe9wjj14UiVyWhX1sXfPNaeyiVTIxqO223g4ycfIxbG6op9vvDm14wYjsoF54p9diWs7exI/wulArgp+HecLIxlzskepIkAccWALsnqn9q6UPxTOxDTGGRR50gSRKCgoIwduxYBAUFVfnEeCk+DaNXnUFWrrqGzQ/DvfilSAdoux2oJIHJv53D5YR01LM2w4oAX1hxUfFy4/8YPXXxXio+/XcS5od9W3LyXW2VlQzcCQUyEtU/s5LLv28pPU5XChV5fJFFHmu9pKQkhISEICEhASEhIUhKSir3vk/2NNxMzoT/qjNIy85Hx0Z18Et5V1evpt5LKr/KtoPSepu++esSDl2+D1NjJX717/jUi3C03Wul65gc6aG07Dy8vzEcufkSnm/lhPeeZa9BrWVZD2jgC1g7q39a1ivffqX0OCWkZmN0oZPjj8O92Y1eyzk6OsLPzw8uLi7w8/ODo2Mp88KeSGCe7Gm4+ygTI1aEICk9B61dbbEqoBMsTcvRU1BNvZdUMeVpB08mMKX1Nm05G4dfj6lrWi0Y4gnvhnXKfG5t91rpA/ax6RkhBP6zNRK3HmTBzd4CC4d6cq5BbaZUAj0+VPcYWdZT/14eJfQ4pRnX0RR5bOpohRX+vizyqAOUAGZPHo+krHFwdHKGsqQ2UJDA3AlVJ9E9PizS03AiNBKHfj2NuynZ8KhnhXVvd4adZTmL+5XUe2nNK1rlMG7cOIwbNw7OzsXbQUECExISAj8/P8yePbvE3qYbGcaYvTMKgLp0wyue9Z/6vCUdx9nZuVpeo65gz5GeWXXiJvZfTISJkQKLR/jA3pKF/mo9pVJ9MipvYgQU63HKMa2Dd9f9f5HHNSzyqBv+TXqU//sAzjHrS/9ALiGBKehpcKzvjuS2Q3HzYTZc7cyxfmxnONqYlT+GyvZektYUJD7jx4/HihUrStympATmyd6mTKUlJmwMQ74k8HIH13KXbih376UBYc+RHgm79Qjz/rwEAJgzoA283O3lDYiqT6EeJ8m8LmZsO49TNx7A2swYa8awyKPOKG+vTUECU9BzZFkPSqUS0/4zE2G/nkTy3Qw4WJli/Vg/NKhTwfe+sr2XpDXl6bkpSGAKeo4cHR2hVCo1PUim1vZ4fdkppGTlwdPdHguGeBadayhJpb7HhY9TcFxDx+RITzzMzMWkTeHIlwQGdHCFf9dGcodE1e3fHqf5f14qVOTRB23rs8ijzigh6SmVjz/g7a/pZczNlzDxt3OIuJsBGzNjrHu7M5o5WVcujoLeS5JFSYlPSUoadlMqlXCo54gxq8/iRlIm6tuZ41f/jkWH1EsYli0pQTL0obTCmBzpAUkSmLIlQr2gaD0rzH+9A69OMhBPFnns0Zzd4TqlPL02JZzYVJLAtN8j8E9MEsxNlFg5uhMrn+uwp/XclDTfqIAQAl/87yKOX0uGpakRfg3wLV62hfPKKox9Z3pg8T/XcPSK+kNyyUgfWLOWhUEoXORxRj8WedRZT5tz9sSJTWQmYc6uKM0CoktHdkRnD4eajZm0rqDnpqQhrbIu81978iY2nI6DQgH88KZ3yT3HnFdWYTyL6riT15Lx/d/q1bbnDmqHVi62MkdENaFwkUf/ro0woSfLNeitQkNvws0X3xx9gN/OxEGpABYN80bvluwB0HelDbsFx9zXfEGa2a8VXmhTyrAY55VVGJMjHZaYlo0PNp+DJIChvg0wxNe9zEl3pB8KF3ns29YZnw1sW2QYVZIkTqzUJ4VObEvOpOKXY+ovQ/Nea48BHVxL3IVtQL+UNOx2NTEdkzapP/+HdGyAd55tUmy/Yu2AQ2nlxv81OipfJWHSb+eQnJGLVi42+HJQOxZzMwDxqY8RUKjI4w9vFi3yyGJuekqpxPoLWfjugDoxmjOgNYZ1aljipmwD+qnwsNuDjBy8vfYs0nPy0dnDAUGvti82z5TtoGqYHOmoBQeu4EzsQ1ibGWPpyH+vTKjKUhRU66U+zsPoVWcRX0aRx6osRUG1165zd/HJbvVyQJOea4ZxPYr3EhRgG9BvOfkqvLchDLcfPkZDB0ssG9kRpsYVm6dET8fkSAcdupSIZUeuA1BfoeRRz0r9ACfd6Y8nlorIyVfh3fWhiEksu8gji7npF0mSsPVkDKZvjQQABHRthGkvtChzH7YB/VJ4yRAhBD7eEYWzNx/BxtwYq0b7wqGUYq9sB1WjEEIIuYPQJWlpabCzs0NqaipsbWt+8vPth1l4+afj6l6Ebo3x+Stti27AOUc1olrbwROXbkvdp2Py1vP4X+Q9WJsZY8u7XcqsZcT5JjWjuj8LJElC4Jc/YF9WEwilMV71ro+FQ7zKtRwQ20DNqIk2UPgSfodn3sR3+6/ASKnA6tGd8GyLshMetoPK44RsHZKTr0LgpnCkPs6Dl7s9Pn6pdfGNOOlO9z0xPDpvzzn8LzKx3EUeWcxNPwRfiMX+TA8II2PYpN3Ah892LPc6iWwD+qHw0NjB6PuIy1TPOft8YJunJkYA20FVMJXUIUF7L+H8nVTYW5pg8QifEseZSQ8UGh5dmfcifj2dCIBFHg1JTEI6pu26DsnIBFYZd/CaSypcnfmlx9AUDI3ZNW6He41eAKAu3TGqa2N5AzMA7DnSEX9E3sO6U7cAAN8P9YKbvYXMEVG1+ffS7T2hV/DVTvXcMhZ5NBxxD7IwamUIUh7nwcvdDt+/4o1Gbi4cFjFASqUS4yZNxx8/H0d+Rh56NK+HT19uI3dYBoHJkQ64dj8DM7efBwAE9m6K3q34DVLfnb75CNN2x7LIo4FJSM3GiJWncT89By2dbbBmTGfYW5Y84Zb03+NcFd7dEI6kjDw0c7LG4hE+MDZiklwT+Feu5bJy8/H+xjBk5arQpYkDpvYp+0oV0n0xCekYvy4UuaqSizySfnqUmYtRK0Nw++FjNKprifXjmBgZMkkSmL41AufvpKKOpQlWBvjC1txE7rAMBpOjWkwIgTm7onAlMQOONmb4cbg3vzXoufjUxxi9+gzSs/PhW0KRR9JP6dl5CFh9BlfvZ8DF1hwbxvoVXzyUDMqiv6/gzwsJMDFS4JdRvmhU10rukAwKz7S12Jazt7Ej/C6UCuDHN735YannihV5DChe5JH0T3aeCuPXheL8nVQ4WJliw7jOcHewlDssktGuc3fx4+FrAICvX23PhYVlwOSolrp4LxWf/qGuiDv9xZbo2rSuzBFRdSpc5NHJxgxr3+aQiiHIU0mYuCkcp288hI2ZMda93RnNnGzkDotkFHbrEWb8O8f03Z5N1GtmUo1jclQLpWXn4f2N4cjNl9C7pSMn4+o5SRL4cOt5nL6hXg5mzZjOaFCHPQf6Tv2+R+LvS/dhZqzEigBftHMru4YV6bc7j7Lw7vpQ5OZLeKGNMz7q20rukAwWk6NaRgiBj7adx60HWXCzt8B/h5avIi7prnl/XcL/Iu/9O7egI9rUr2Cl3SeWGqHaTwiBT3ZHYXfEPRgrFVg2siP8mlS+d7jwEhOkmzJy8jFubSiSM3LR2tUWi4ZV/LOf7UB7mBzVMqtO3MRfUepJeItH+JS4fhbpj5XHY/HrsVgAwHdveKJ7swquh1ew1Mjuieqf/FDUCd/uj8HGkDgoFMD3w7yqVJ6Dq6/rPpUk8MFv53A5Qb124soAX1iZVazSDtuBdjE5qkXC4x5h3p+XAACzX2oNL3d7eQOiarXn/D18tTcaADCzfysM9nar+EGeWGoEWclajpK0bWnwdSwNVhf3/PrV9hjoWb9Kx+Pq67pv3p+XcPiyenj1V39f1K9EkV+2A+1iclRLPMrMxcSN4ciXBAa0d0VAt8Zyh0TV6PSNB5i2JRJCAKO7Nca7zzap3IEKLTWCBr7q36nW2nD6FubvuwwAmNW/FYZ3bljlY3L1dd22+UwcVhxX9x4vHOpZ6S/FbAfapRBCCLmD0CXVsQqzJAm8vfYsgmOS4FHPCn9M7A4bFvuq1arSDmIS0vHGspNIz85Hv7YuWDzCp2q1jCRJ3WNkWU+99AjViIq2gd0RdzFlSwSEACb2boYP+7bUWixcfV0eVT0fnLr+AKNWhiBfEpjapwUm92lepXjYDrSHf71aYEnwNQTHJMHMWIklI3yYGOmxeymPEbBKXeSxU+M6WPSmlzoxqsqkaqUSsHZiYlSLHbqUiOm/q3sKR3VphOkvllzpvrITagtWX+cJUXfEJmfivQ1hyJcEXvGsjw+ebwagapOq2Q60h39BmZ28loz/HrwCAJg7uB1au2qnN4pqn9THeRi9+gwS0rLRzMkav/r/W+SRk6r12ukbD/D+v0Pmr3q74YtXSl4OhhNqDUdqVh7GrjmL1Md58HK3x7dvdIBCoWAbqEWYHMkoMS0bH2w+B0kAQzo2wFAW+9Jb2XkqvLMuFFcSM+BkY4Y1Yzr9f5FHTqrWW+fvpGDsmrPIyZfQp7Uzvn2jQ6mXZ3NCrWHIU0l4f1MYbiRnor6dOZb7d9RUwmcbqD2YHMkkXyVh0m/nkJyRi1YuNpg7uJ3cIVE1US8gGYmQ2FKKPHJStV66mpiOgFVnkJmrQtcmdfHzW94wKWNtRE6o1X9CCHz+x0WcuPYAlqZGWDm6U5FloUpsA6xjJouKFVIgrVlw4ArO/HuyXDLCh2to6bGgPy9h7/n40os8KpVAjw85qVqP3H6YhZErQ/AoKw+e7vb4tRzr5CmVSsyePZsTavXYmpM3NfWtfnzTu9g0imJtAFAPtd8JVX9x6vEhPx9qCP/KMjh0KRHLjqjrnMx/vQOaOFrLHBFVlxXHbmDl8XIUeeSkar1xPy0bI1aEIDEtBy2crbF2TCdYl7OgHyfU6q9/Yu5j7h51XbNZ/VuhTxvnErcr0gY45C4b/g+sYbcfZmHa75EA1PVtBnRwlTkiqi5/RN7DV3vVRT0rXeSRdMqjzFyMXBmCuIdZcHewwPqxflxAmBCTkI5Jm9TzS4f6NsD4HuWsa8Yhd9lwWK0G5eSrELgpHKmP1V3tH7/UWu6QqJqcuv4AHxZKgitd5JF0RkZOPkavOauZdL9pXBc425o/fUfSa8kZORi79iwycvLh5+GArwa3L/FqxRJxyF02TI5qUNDeSzh/JxV2FiZY/JY3TI3Z0PXR5YQ0vLM+FLkqCf3auuCTl9uU/8OQdNbp6w9w/k4K7C1NsGGcH9wdLJ++E+m1nHwV3lsfhjuPHqNRXUssG9mx4p/7BUPuVKOYHNWQ/0Xew7pTtwAA3w/zLHq1EumNeymPMXrV2eJFHknv9WnjjJ+Ge8O9jiVaONvIHQ7JTAiBWTsuIPTWI9iYG2NlgC8XEtchTI5qwPWkDMzcfh4AENi7KZ5rVfJEPNJthYs8Nneyxgr/TrwK0cC83KFqi8iS/lgSfB07wu/CSKnAkhE+aObEhFmXcFynmmXl5uP9DeHIzFWhSxMHTO1T8rIBpNsKF3l0tjXDmrc7w86Sy8AQGaJ9UfH4bn8MAODzV9qiR3PWrNI1TI6qkRACc3ZFISYxHY42ZvhxuDeMyygCR7rro+3nERL7EDb/Fnl0s7eQOyQikkHU3VRM3fL/F2OM6tJI5oioMnimrka/h97GjvC7UP5b8KtwJVTSL6941oetuTF+GdWR6+MRGajHuSqMXxeKx3kqPNvCEXMG8IpkXcXkqJpE30vDp7svAgCmv9gSXZvWlTkiqk7Pt3bG8ZnPoVtpRR6JSO9ZmBphzoA26NDADj+/xZECXcYJ2dUgLTsP728MQ06+hN4tHTGhZ1O5Q6IaYGvOOUZEhm5AB1f0b+dS6gLDpBuY1mqZEAIfbTuPmw+y4GZvgf8O9eJ/EiIiA8LPfN2n08nR0aNHMXDgQNSvXx8KhQK7du166j7BwcHw8fGBmZkZmjVrhjVr1mg1ptUnbuKvqASYGCmweIQP61oQERHpGJ1OjjIzM+Hp6YnFixeXa/vY2FgMGDAAvXv3RkREBKZMmYJx48Zh//79WoknPO4Rvv5TvZbW7Jdaw8vdXivHJSIiopqj03OO+vfvj/79+5d7+2XLlsHDwwMLFy4EALRu3RrHjx/H999/j759+1YplkeZuZi4MRz5ksCA9q4I6Na4SscjIiIieeh0clRRp06dQp8+fYrc17dvX0yZMqXUfXJycpCTk6P5PS0trdg2kiQw9fcI3EvNhkc9K3zzegUWFiSdUJ52QPqNbYDYBgyHTg+rVVRCQgKcnYsu3eHs7Iy0tDQ8fvy4xH3mzZsHOzs7zc3d3b3YNkuCryE4JglmxkosGeEDG161pHfK0w5Iv7ENENuA4TCo5KgyZs2ahdTUVM3t9u3bRR6/9SAT/z14BQAwd1BbFgDUU09rB5IkITExEZIkyRQhVbentQGA7UDfsQ0YDoMaVnNxcUFiYmKR+xITE2FrawsLi5KXezAzM4OZmVmpx2xUxwJLvOIQEpeBoVkXAelDQMmcU9+U1Q4kSUJQUBBCQkLg5+eH2bNnQ8k2oHee9lnAdqD/KtUGACArGbCsx3ODDjGod6pr1644dOhQkfsOHjyIrl27Vv6gWcnol/8PPrPdA9wJVf8nIIOSlJSEkJAQJCQkICQkBElJSXKHRDJgO6BibeB+InBsAbB7ovone5N0hk4nRxkZGYiIiEBERAQA9aX6ERERiIuLA6DuAvX399ds/9577+HGjRuYMWMGLl++jCVLluD333/H1KlTKx+EZT2ggS9g7az+acnlIwyNo6Mj/Pz84OLiAj8/Pzg6cgVuQ8R2QMXagKVC/aU5I5FfnnWMQggh5A6isoKDg9G7d+9i9wcEBGDNmjUYPXo0bt68ieDg4CL7TJ06FdHR0WjQoAE++eQTjB49utzPmZaWBjs7O6SmpsLW9t/5RZLEblMD82Q7kCQJSUlJcHR05FCKgSjps4DtwLA8tQ0A6h6jO6HqL889OO1CV+h0ciSHEpMjMjhsB8Q2QOVqA/zyrJMMakI2ERFRjVIqAWsnuaOgCmIaS0RERFQIkyMiIiKiQpgcERERERXCOUcVVDB/nWvq6BYbGxutrnfHdqB72AYI0G47YBvQTeVpA0yOKig9PR0AuKaOjtH2FUUPHjwAwHagS7TdBvhZoJu02Q7YBnRTedoAL+WvIEmSEBMTgzZt2uD27du8hLeWSUtLg7u7e7H3Rtu9BikpKahTpw7i4uJgZ2enteOSdpTUDrTdBvhZULvVxGcB20DtVpU2wJ6jClIqlXBzcwMA2Nra8j9DLVXd701BgT87Ozu2gVqsOtsBPwt0A9sAVea94YRsIiIiokKYHBEREREVwuSoEszMzPDZZ5/BzMxM7lDoCTX13rAN1G5sB8Q2QFV5bzghm4iIiKgQ9hwRERERFcLkiIiIiKgQJkdEREREhTA5IiIiIiqEyRERERFRIUyOiIiIiAphckRERERUCJMjIiIiokKYHBEREREVwuSIiIiIqBAmR0RERESFMDkiIiIiKoTJEREREVEhTI6IiIiICmFyRERERFQIkyMiIiKiQpgcERERERVSqeQoJCRE23EQERER1QqVSo66du2KFi1aYO7cubhx44a2YyIiIiKSTaWSow0bNqB58+aYO3cumjdvju7du2PZsmV4+PChtuMjIiIiqlEKIYSo7M7JycnYvHkzNm3ahNOnT8PU1BT9+vXDyJEj8corr8DU1FSbsRIRERFVuyolR4Vdv34dmzZtwsaNG3H16lXY2dnhjTfegL+/P5555hltPAURERFRtdPa1WoWFhawtLSEubk5hBBQKBTYvXs3evbsiU6dOiE6OlpbT0VERERUbaqUHKWnp2P16tXo06cPGjVqhI8//hiNGzfGtm3bkJCQgHv37mHLli24f/8+xowZo62YZSWEQFpaGrTU4UZERES1TKWG1Xbv3o2NGzdiz549yM7ORqdOneDv748333wTdevWLbb9r7/+isDAQOTm5molaDmlpaXBzs4OqampsLW1lTscIiIi0jLjyuz06quvwt3dHVOnToW/vz9atmxZ5vaenp4YMWJEpQKk4m7evAkPDw+cO3cOXl5ecodDRESkVyo1rHb48GHcunULQUFBT02MAKBz585YvXp1ZZ5KJyUkJGDSpElo0qQJzMzM4O7ujoEDB+LQoUNyh1aia9euwcbGBvb29nKHQkREJLtK9Rz16tVLy2Hoj5s3b6J79+6wt7fHd999h/bt2yMvLw/79+9HYGAgLl++LHeIReTl5WH48OHo0aMHTp48KXc4REREsuPaalr2/vvvQ6FQ4MyZM3j99dfRokULtG3bFtOmTcPp06cBAG+//TZefvnlIvvl5eXByckJK1euBABIkoRvv/0WzZo1g5mZGRo2bIigoKBSnzcqKgr9+/eHtbU1nJ2dMWrUKCQnJz813jlz5qBVq1YYOnRoFV41ERGR/mBypEUPHz7Evn37EBgYCCsrq2KPFwxbjRs3Dvv27UN8fLzmsT179iArKwvDhg0DAMyaNQvffPMNPvnkE0RHR2PTpk1wdnYu8XlTUlLw3HPPwdvbG6Ghodi3bx8SExOfmvAcPnwYW7duxeLFiyv5imsBSQIy7qt/EhERaUGlhtWoZNeuXYMQAq1atSpzu27duqFly5ZYv349ZsyYAQBYvXo1hgwZAmtra6Snp+OHH37Azz//jICAAABA06ZNSy2m+fPPP8Pb2xtff/215r5Vq1bB3d0dV65cQYsWLYrt8+DBA4wePRobNmzQ3avuJAk4tgC4Ewo08AV6fAgome8TEVHV8EyiRRWpijBu3DjNJPXExET89ddfePvttwEAly5dQk5ODp5//vlyHSsyMhL//PMPrK2tNbeCBO369esl7jN+/Hi89dZbePbZZ8sdc62TlaxOjDIS1T+znj6MSERE9DTsOdKi5s2bQ6FQlGvStb+/P2bOnIlTp07h5MmT8PDwQI8ePQCoq41XREZGBgYOHIj58+cXe8zV1bXEfQ4fPow//vgDCxYsAKBO7CRJgrGxMZYvX65J1Go1y3rqHqOCniPLenJHREREeoDJkRY5ODigb9++WLx4MT744INi845SUlI0847q1q2LwYMHY/Xq1Th16lSRCuLNmzeHhYUFDh06hHHjxj31eX18fLB9+3Y0btwYxsble0tPnToFlUql+X337t2YP38+Tp48CTc3t3IdQ3ZKpXooLStZnRhxSI2IiLSAZxMtW7x4MVQqFTp37ozt27fj6tWruHTpEn788Ud07dq1yLbjxo3D2rVrcenSJc3cIgAwNzfHRx99hBkzZmDdunW4fv06Tp8+rbmS7UmBgYF4+PAhhg8fjrNnz+L69evYv38/xowZUyQBKqx169Zo166d5ubm5galUol27dqhTp062vuDVDelErB2YmJERERaw54jLWvSpAnCw8MRFBSE6dOnIz4+Ho6OjujYsSOWLl1aZNs+ffrA1dUVbdu2Rf369Ys89sknn8DY2Biffvop7t27B1dXV7z33nslPmf9+vVx4sQJfPTRR3jxxReRk5ODRo0aoV+/flAyaSAiIqqQSq2tZsi0ubZaRkYG3NzcsHr1arz22mtaipCIiIiqgj1HMpAkCcnJyVi4cCHs7e3xyiuvyB0SERER/YvJkQzi4uLg4eGBBg0aYM2aNeWeRE1ERETVj2dlGTRu3LhCNZGIiIio5uj0bN158+ahU6dOsLGxgZOTEwYPHoyYmJin7rd161a0atUK5ubmaN++Pf78888aiJaIiIh0gU4nR0eOHEFgYCBOnz6NgwcPIi8vDy+++CIyMzNL3efkyZMYPnw4xo4di3PnzmHw4MEYPHgwoqKiajByqg4nrydj7/n4p29IRERUBr26Wi0pKQlOTk44cuRIqctiDBs2DJmZmdizZ4/mvi5dusDLywvLli176nNo82o10p7bD7Pwys/H8SgrD0tH+KB/+5IrgxMRET2NTvccPSk1NRWAulJ1aU6dOoU+ffoUua9v3744depUidvn5OQgLS2tyI1ql6zcfIxfF4pHWXno0MAOvVs5yR0SERHpML1JjiRJwpQpU9C9e3e0a9eu1O0SEhLg7Oxc5D5nZ2ckJCSUuP28efNgZ2enubm7u2s1bqoaIQT+s/U8Lieko561GX4Z1RHmJkZyh0VERDpMb5KjwMBAREVFYfPmzVo97qxZs5Camqq53b59W6vHp6pZEnwdey/Ew8RIgWUjfeBqV7FFe4mIiJ6kF5fyT5w4EXv27MHRo0fRoEGDMrd1cXFBYmJikfsSExPh4uJS4vZmZmYwMzPTWqykPYcvJ2LBAfXViV8OagffxqUPpxIREZWXTvccCSEwceJE7Ny5E4cPH4aHh8dT9+natSsOHTpU5L6DBw8WWxSWardr9zMw+bcICAGM7NIQwzs3lDskIiLSEzrdcxQYGIhNmzZh9+7dsLGx0cwbsrOzg4WFenjF398fbm5umDdvHgBg8uTJ6NmzJxYuXIgBAwZg8+bNCA0NxfLly2V7HVQKSQKykgHLekChBXRTH+fhnXWhSM/JR+fGDvj05bYyBklERPpGp3uOli5ditTUVPTq1Quurq6a25YtWzTbxMXFIT7+/2vfdOvWDZs2bcLy5cvh6emJbdu2YdeuXWVO4iYZSBJwbAGwe6L6pyQBAFSSwOTN53AjORP17cyxZKQPTI11uhkTEVEto1d1jmoC6xzVkIz76sQoIxGwdgYG/QxYO2H+vstYGnwdZsZKbJ/QDe3c7OSOlIiI9Ay/clPtZFkPaOCrTowa+AKW9fBH5D0sDb4OAPj2jQ5MjIiIqFro9Jwj0mNKJdDjQ82co6j4dMzYFgkAePfZJhjk5SZzgEREpK/Yc0S1l1IJWDvhQVYe3l0fhuw8Cc+2cMSMfq3kjoyIiPQYkyOq1fJUEiZsDMfdlMdoXNcSP73pDSOlQu6wiIhIjzE5olpt7p5onIl9CGszY/zq7ws7SxO5QyIiIj3H5Ihqrc1n4rDu1C0AwPfDvNDc2UbmiIiIyBAwOaJaKezWQ3yyOwoAMP2FFnihjfNT9oC6FlLGfU1NJCIiospgckTlJkkSEhMTIVVz8pGQmo33NoQjTyXQv50LJj7XrDzBlVg0koiIqKKYHFG5SJKEoKAgjB07FkFBQdWWIGXnqfDu+lAkpeegpbMNFgzxhEJRjgnYWcnAnVB10cg7oerfiYiIKoHJEZVLUlISQkJCkJCQgJCQECQlJWnt2AU9UiqVCrN3RiHyTirsLU3wq78vrMzKWYqrhKKRRERElcEikFQujo6O8PPzQ0hICPz8/ODo6KiV4xb0SIWEhMDK52WE5LrDSKnA4rd80LCuZfkP9ETRyMIL1RIREVUEkyMqF6VSidmzZyMpKQmOjo5Qain5KOiRisu1RFqOG6AAZr/UGt2bld7zI0lSyXH8WzSSiIioKpgcUbkplUo4O5fjqrEKcHR0ROtOPXApvRmgUOJ1HzeM6d641O0L9zT5+flh9uzZWkvUiIiIAM45Ipk9zpMQadsFKmNzeDawQ9Cr7cucgF2dc5+IiIgAJkckIyEEPtwaiSuJGXC0McMvo3xhbmJU5j4Fc59cXFy0OveJiIiogEIIIeQOQpekpaXBzs4OqampsLW1lTscnfbToatYePAKTI2U+O2dLujYqE659it1zhEREZEWcM4RyeJgdCIWHrwCAPhqcLtyJ0ZA9cx9IiIiKsCv3VTjriamY+qWCABAQNdGGNrJXd6AiIiICmFyRDUqNSsP49eFIiMnH12aOGDOy23kDomIiKgIJkdUY1SSwMTfwnHzQRbc7C2w+C0fmBixCRIRUe3CMxPVmG//uoRjV5NhbqLEcv+OqGttJndIRERExTA5ohqxO/wOfjkWCwD4ru0ttHWxkTkiIiKikjE5omp34U4qZuw4DwCYYHcaA1WH1WugERER1UK8lJ+qVVJ6Dt5dH4qcfIFejun40PkK0MBXvTgsERFRLcTkiKpNbr6E9zeG4V5qNprUs8IP7/WBkXhOnRixeCMREdVSTI6o2nzxv4s4e/MRbMyMsdzfF3ZWZgCc5A6LiIioTPz6TtViU0gcNobEQaEAFr3phWZO1nKHREREVC5MjkjrQm8+xGd/RAEAPnyxJZ5vzaU+iIhIdzA5Iq26l/IY720IR55KYEB7V7zfq6ncIREREVUIkyPSmuw8Fd5dH4bkjBy0crHBd0M6QKFQyB0WERFRhTA5Iq0QQmDWjgu4cDcVdSxN8Ku/LyxNOd+fiIh0D5Mj0ooVx2Kx89xdGCkVWDzCB+4OlnKHREREVClMjqjKjl5Jwry/LgEAPhnQGt2assAjERHpLiZHVCW3HmRi0m/nIAlgqG8DBHRrLHdIREREVcLkiCotIycf49eFIvVxHrzc7TF3cDtOwCYiIp3H5IgqRZIEpv8egSuJGXCyMcMvozrCzNhI7rCIiIiqjMkRVcqPh69i/8VEmBop8cuojnC2NZc7JCIiIq1gckQVti8qAYv+vgoACHq1Hbwb1pE5IiIiIu1hckQVEpOQjmm/RwAAxnRvjCG+7vIGREREpGVMjqjcUrJyMX5dKLJyVejWtC5mv9Ra7pCIiIi0jskRlUu+SsKk384h7mEWGtSxwM9v+cDYiM2HiIj0D89uBACQJAmJiYmQJKnEx7/56zKOXU2GhYkRlo/yhYOVaQ1HSEREVDOYHBEkSUJQUBDGjh2LoKCgYgnSjvA7WHE8FgCwYIgn2tS3lSNMIiKiGsHkiJCUlISQkBAkJCQgJCQESUlJmsfO30nBzB0XAAATezfDgA6ucoVJRERUI5gcERwdHeHn5wcXFxd07twZkiRBkiTcT8/GO+vCkJsv4flWTpj2Qgu5QyUiIqp2CiGEkDsIXZKWlgY7OzukpqbC1lZ/hpcK5hwtX74cZ8+ehW/nLrjg+BzCbj1CU0cr7AzsDltzE7nDJCIiqnbGcgdAtYNSqYRSqcTZs2eRkJCA3XdM8SjrEWzMjfGrvy8TIyIiMhgcViONguE109bP4ZFDWygUwE/DvdHE0brM/Z52pRsREZEuYXJEGkqlEi+8NQGJ7r0AAB/1a4VeLZ3K3OdpV7oRERHpGiZHpHE35TECN52DShIY6Fkf7z7b5Kn7lHWlGxERkS5ickQAgMe5Kry7PhQPMnPRtr4tvn29AxQKxVP3K3ylm5+fHxwdHWsgWiIiourDq9UqSB+vVhNCYPLmCPwReQ8OVqb4Y2J3NKhjWe79JUlCUlISHB0doVQy3yYiIt2m02eyo0ePYuDAgahfvz4UCgV27dpV5vbBwcFQKBTFbgkJCTUTcC21/OgN/BF5D8ZKBZaM8KlQYgSo5yo5OzszMSIiIr2g02ezzMxMeHp6YvHixRXaLyYmBvHx8Zqbk1PZk471WXDMfXyz7zIA4LOBbdClSV2ZIyIiIpKXTtc56t+/P/r371/h/ZycnGBvb6/9gHRMbHImJv12DkIAb3Zyx8gujeQOiYiISHY63XNUWV5eXnB1dcULL7yAEydOlLltTk4O0tLSitz0QXp2HsavC0V6dj46NqqDLwa1LdcEbCIiIn1nUMmRq6srli1bhu3bt2P79u1wd3dHr169EB4eXuo+8+bNg52dnebm7u5egxFXD0kSmLolAtfuZ8DZ1gxLR/rAzNhI7rCIiIhqBb25Wk2hUGDnzp0YPHhwhfbr2bMnGjZsiPXr15f4eE5ODnJycjS/p6Wlwd3dXaevVvvvgRj8ePgaTI2V2PpuV3i628sdEhERUa2h03OOtKFz5844fvx4qY+bmZnBzMysBiOqXn9diMePh68BAOa92p6JERER0RMMalitJBEREXB1dZU7jBpxOSEN07dGAgDGPuOB1zs2kDkiIiKi2kene44yMjJw7do1ze+xsbGIiIiAg4MDGjZsiFmzZuHu3btYt24dAGDRokXw8PBA27ZtkZ2djRUrVuDw4cM4cOCAXC+hxjzKzMX4daHIylWhe7O6mNW/ldwhERER1Uo6nRyFhoaid+/emt+nTZsGAAgICMCaNWsQHx+PuLg4zeO5ubmYPn067t69C0tLS3To0AF///13kWPoo3yVhMBN4bj98DHcHSzw83AfGBsZfKchERFRifRmQnZN0cXlQ778XzRWnYiFpakRdrzfDa1cdCNuIiIiObD7QM9tC7uDVSdiAQD/HerJxIiIiOgpmBzpsYjbKfh45wUAwAfPN0e/doYx8ZyIiKgqmBzpqftp2Xh3fShy8yW80MYZU55vLndIREREOoHJkR7KyVfhvQ1hSEzLQXMna3w/zAtKJZcGISIiKg8mRzKTJAmJiYmQJEkrxxNC4NNdFxEelwJbc2P86u8LazOdviiRiIioRjE5kpEkSQgKCsLYsWMRFBSklQRp/elb2BJ6G0oF8NNbPmhcz0oLkRIRERkOJkcySkpKQkhICBISEhASEoKkpKQqHe/U9Qf44n/RAICZ/VuhZwtHbYRJRERkUJgcycjR0RF+fn5wcXGBn58fHB2LJzMlDbuVdN+dR1kI3BQOlSQwyKs+xvdo8tTn1/aQHhERkT5gEcgK0mYRyILkBACcnZ2hVCqLPR4UFISQkBD4+flh9uzZAFDsvux8CW8sPYXo+DS0c7PFtve6wdzE6KnP/eRxnnx+IiIiQ8SzoUwKkpPx48djxYoVJW5T0rDbk/fdv38fM7adR3R8GupZm+KXUb5PTYxKOzYRERExOZJNeZKTkobdnrxv+6V07DkfD2OlAktGdISbvYVm/7KGzcozpEdERGSIOKxWQdoaVivvsJYkSUhKSoKjo6Pm8YL7oh4KjFsXBiGArwa3w8gujSp0/JKOTUREZOhYAEcmSqUSs2fPLjM5KS15USqVyFRaYcqWExACGN65YZHECCi5Z8rZ2blYDE/eR0REZOjYXSCjguSktMSotBpIadl5GLcuFOnZ+fBtVAdfvNK22P4cNiMiIqoc9hzVUqX1/KgkgambI3AjKROuduZYOrIjTI2LJ1fl6ZkiIiKi4njGrKVK6/n578EYHLp8H2bGSvwyqiMcbcyK7Fd4EnZZPVNERERUMk7IriBt1jl6mifnHO09H4/ATeEAgEXDvDDY263Y9qxdREREVDU8c9ZihXt+ou+l4cOtkQCA8T08iiVGAGsXERERaQOTo1royfpEDzNzMX5dKB7nqdCjeT181K9ViftxEjYREVHVcVitgqp7WO3JobEZM2dh9OpQnLrxAI3qWmJ3YHfYW5qWuT8nYRMREVUer1arZZ4cGvtk+zmcuvEAVqZG+NXft8zECGDtIiIioqpi10ItU3horI5Pf/wecR8A8P0wL7RwtpE5OiIiIv3HYbUKqomr1SRJwuHzsXh/awxyVQJT+jTHlD4tquW5iIiIqCj2HNVCSRm5+HhvLHJVAn3bOuOD55rLHRIREZHBYHJUy2TnqfDu+jDcT89BC2drLBzqBaVSIXdYREREBoPJUS0ihMCcXVGIuJ0COwsT/OrvC2szzpknIiKqSUyOapE1J29iW9gdKBXA4rd80KiuldwhERERGRwmR7XEyWvJ+GrvJQDAxy+1xjPN68kcERERkWFiclQL3H6Yhfc3hUMlCbzm7Yaxz3jIHRIREZHBYnIks6zcfIxfF4qUrDx0aGCHr19rD4WifBOwn1xmhIiIiKqOyZGMhBD4z9bzuJyQjnrWZvhlVEeYmxiVa9+CZUbGjh2LoKAgJkhERERawuRIRkuCr2PvhXiYGCmwbKQPXO0syr3vk8uMJCUlVWOkREREhoPJkUwOXUrEggMxAIAvXmkH38YOFdq/8DIjfn5+cHR0rI4wiYiIDA6XD6kgbSwfcu1+OgYvPomMnHyM7NIQXw1uX6njSJKEpKQkODo6QqlknktERKQNrDBYw1If5+GddWHIyMlHZw8HfPpy20ofS6lUwtnZWYvREREREbsbapBKEpi8+RxuJGeivp05lozwgamxkledERER1SJMjmrQd/tjEByTBDNjJZb7+6KetRmvOiMiIqplmBzVkD8i72HZkesAgG/f6IB2bnYAeNUZERFRbcPkqAZE3U3FjG2RAIB3ezbBIC83zWMlXXXGYTYiIiL58Gq1Cqro1WoPMnLwys8ncDflMXq2cMSq0Z1gpCxaAbvwVWcAEBQUhJCQEPj5+WH27Nm8Eo2IiKgG8axbjfJUEiZsDMfdlMdoXNcSP77pXSwxAv7/qjOlUslhNiIiIpkxOapGX/4vGmdiH8LazBgrAnxhZ2ny1H1Y3JGIiEheHFaroPIOq20+E4eZOy5AoQB+HeWLPm0K1SOSJCArGbCsB5QwZMbijkRERPJhEchqEHbrIT7ZHQUAmNanRfHE6NgC4E4o0MAX6PFhsQSJxR2JiIjkw24JLUtIzca768ORpxLo384FE59rVnSDrGR1YpSRqP6ZlSxPoERERFQiJkdalJ2nwrvrQ5GckYNWLjZYMMQTCsUTE7At66l7jKyd1T8t68kTLBEREZWIw2paIoTAxzsvIPJOKuwtTfCrvy+szEr48yqV6qG0MuYcERERkXyYHGnJqhM3sSP8LoyUCix+ywfuDpalb6xUAtZONRccERERlRu7LbTg+NVkBO2NBgDMfqk1ujfjUBkREZGuYnJURXdTHmPib+GQBPC6TwOM6d5Y7pCIiIioCjisVkVONmZ4xbM+Iu+kIujVdsUnYBMREZFO0emeo6NHj2LgwIGoX78+FAoFdu3a9dR9goOD4ePjAzMzMzRr1gxr1qypUgwmRkp8OagdNo/vAnMToyodi4iIiOSn08lRZmYmPD09sXjx4nJtHxsbiwEDBqB3796IiIjAlClTMG7cOOzfv7/KsViYMjEiIiLSB3qzfIhCocDOnTsxePDgUrf56KOPsHfvXkRFRWnue/PNN5GSkoJ9+/aV63nKu3wIERER6Sad7jmqqFOnTqFPnz5F7uvbty9OnTpV6j45OTlIS0srciMiIiL9ZVDJUUJCQrE1y5ydnZGWlobHjx+XuM+8efNgZ2enubm7u9dEqERERCQTg0qOKmPWrFlITU3V3G7fvi13SERERFSNDOpSfhcXFyQmJha5LzExEba2trCwsChxHzMzM5iZmZV5XEmSkJSUBEdHRyi5HAgREZFOM6gzedeuXXHo0KEi9x08eBBdu3at9DElSUJQUBDGjh2LoKAgSJIESZKQmJgISZKqGjIRERHVMJ1OjjIyMhAREYGIiAgA6kv1IyIiEBcXB0A9JObv76/Z/r333sONGzcwY8YMXL58GUuWLMHvv/+OqVOnVjqGpKQkhISEICEhASEhIUhMTCyWLBEREZHu0OnkKDQ0FN7e3vD29gYATJs2Dd7e3vj0008BAPHx8ZpECQA8PDywd+9eHDx4EJ6enli4cCFWrFiBvn37VjoGR0dH+Pn5wcXFBX5+fgBQJFlKSkqqwiskIiKimqY3dY5qSkl1jgrPOQKAoKAghISEwM/PD7Nnz+Y8JCIiIh3C5KiCylMEkhO0iYiIdJdBXa1WU5RKZbF6SkRERKQb2K1BREREVAiTIyIiIqJCOKxWQQVTtLjGmm6xsbGBQqGQOwwiItIBTI4qKD09HQC4xpqOKWsCPRERUWG8Wq2CJElCTEwM2rRpg9u3b/OEW8ukpaXB3d292HvDniMiIiov9hxVkFKphJubGwDA1taWyVEtxfeGiIgqixOyiYiIiAphckRERERUCJOjSjAzM8Nnn30GMzMzuUOhJ/C9ISKiquKEbCIiIqJC2HNEREREVAiTIyIiIqJCmBwRERERFcLkiIiIiKgQJkcVtHjxYjRu3Bjm5ubw8/PDmTNn5A6JABw9ehQDBw5E/fr1oVAosGvXLrlDIiIiHcXkqAK2bNmCadOm4bPPPkN4eDg8PT3Rt29f3L9/X+7QDF5mZiY8PT2xePFiuUMhIiIdx0v5K8DPzw+dOnXCzz//DEC9zpq7uzsmTZqEmTNnyhwdFVAoFNi5cycGDx4sdyhERKSD2HNUTrm5uQgLC0OfPn009ymVSvTp0wenTp2SMTIiIiLSJiZH5ZScnAyVSgVnZ+ci9zs7OyMhIUGmqIiIiEjbmBwRERERFcLkqJzq1asHIyMjJCYmFrk/MTERLi4uMkVFRERE2sbkqJxMTU3RsWNHHDp0SHOfJEk4dOgQunbtKmNkREREpE3GcgegS6ZNm4aAgAD4+vqic+fOWLRoETIzMzFmzBi5QzN4GRkZuHbtmub32NhYREREwMHBAQ0bNpQxMiIi0jW8lL+Cfv75Z3z33XdISEiAl5cXfvzxR/j5+ckdlsELDg5G7969i90fEBCANWvW1HxARESks5gcERERERXCOUdEREREhTA5IiIiIiqEyRERERFRIUyOiIiIiAphckRERERUCJMjIjII8fHxmDlzJnr37g0bGxsoFAoEBwfLHRYR1UJMjojIIMTExGD+/Pm4e/cu2rdvL3c4RFSLMTkiIoPQsWNHPHjwAFeuXMG0adPkDoeIajEmR0Sksx4/foxWrVqhVatWePz4seb+hw8fwtXVFd26dYNKpQIA2NjYwMHBQa5QiUiHMDkiIp1lYWGBtWvX4tq1a5g9e7bm/sDAQKSmpmLNmjUwMjKSMUIi0kVceJaIdJqfnx9mzJiB+fPn49VXX0ViYiI2b96MRYsWoUWLFnKHR0Q6iMkREem8zz//HHv27EFAQAAyMjLQs2dPfPDBB3KHRUQ6isNqRKTzTE1NsWrVKsTGxiI9PR2rV6+GQqGQOywi0lFMjohIL+zfvx8AkJ2djatXr8ocDRHpMiZHRKTzzp8/jy+//BJjxoyBt7c3xo0bh9TUVLnDIiIdxeSIiHRaXl4eRo8ejfr16+OHH37AmjVrkJiYiKlTp8odGhHpKE7IJiKd9tVXXyEiIgKHDh2CjY0NOnTogE8//RRz5szBG2+8gZdeeqnItgBw8eJFAMD69etx/PhxAMCcOXNqPngiqpUUQgghdxBERJURHh4OPz8/TJgwAT/++KPmfpVKha5du+Lu3bu4ePEi7O3tAaDMSdr8KCSiAkyOiIiIiArhnCMiIiKiQpgcERERERXC5IiIiIioEF6tZgBUKhXy8vLkDoOIiGohU1NTKJXsKymMyZEeE0IgISEBKSkpcodCRES1lFKphIeHB0xNTeUOpdbg1Wp6LD4+HikpKXBycoKlpSXXmiIioiIkScK9e/dgYmKChg0b8jzxL/Yc6SmVSqVJjOrWrSt3OEREVEs5Ojri3r17yM/Ph4mJidzh1AocZNRTBXOMLC0tZY6EiIhqs4LhNJVKJXMktQeTIz3HLlIiIioLzxPFMTkiIiIiKoTJEdG/1qxZo1mDi4iosoKDg6FQKHilsA5jckS1zujRo6FQKKBQKGBqaopmzZrhyy+/RH5+frU+77Bhw3DlypVqfY6nKfzaTUxM4OzsjBdeeAGrVq2CJEkVOhaTvaoreD+++eabIvfv2rWrxociCtqFQqGAlZUVmjdvjtGjRyMsLKzCx+rVqxemTJmi/SANQOH3oaTb559/LneIpAVMjqhW6tevH+Lj43H16lVMnz4dn3/+Ob777rsSt83NzdXKc1pYWMDJyUkrx6qKgtd+8+ZN/PXXX+jduzcmT56Ml19+udoTRCrO3Nwc8+fPx6NHj+QOBatXr0Z8fDwuXryIxYsXIyMjA35+fli3bp3coRmM+Ph4zW3RokWwtbUtct+HH34oW2za+iwkJkdUS5mZmcHFxQWNGjXChAkT0KdPH/zxxx8A1N/mBw8ejKCgINSvXx8tW7YEANy+fRtDhw6Fvb09HBwcMGjQINy8eRMAcODAAZibmxfr5p48eTKee+45ACX3tCxduhRNmzaFqakpWrZsifXr12seu3nzJhQKBSIiIjT3paSkQKFQIDg4GADw6NEjjBgxAo6OjrCwsEDz5s2xevXqcr12Nzc3+Pj44OOPP8bu3bvx119/Yc2aNZrt/vvf/6J9+/awsrKCu7s73n//fWRkZABQd+uPGTMGqampxb7Rrl+/Hr6+vrCxsYGLiwveeust3L9//2lvicHq06cPXFxcMG/evDK3O378OHr06AELCwu4u7vjgw8+QGZmJgDg559/Rrt27TTbFvQ8LVu2rMjzzJkzp8znsLe3h4uLCxo3bowXX3wR27Ztw4gRIzBx4kRN8vbgwQMMHz4cbm5usLS0RPv27fHbb79pjjF69GgcOXIEP/zwg6Zt3Lx5EyqVCmPHjoWHhwcsLCzQsmVL/PDDDxX+e+k7FxcXzc3Ozg4KhaLIfdbW1pptw8LC4OvrC0tLS3Tr1g0xMTFFjrV79274+PjA3NwcTZo0wRdffFHkC1BcXBwGDRoEa2tr2NraYujQoUhMTNQ8/vnnn8PLywsrVqyAh4cHzM3NsW7dOtStWxc5OTlFnmvw4MEYNWpUNf1V9A+TI9IJFhYWRb4VHTp0CDExMTh48CD27NmDvLw89O3bFzY2Njh27BhOnDgBa2tr9OvXD7m5uXj++edhb2+P7du3a46hUqmwZcsWjBgxosTn3LlzJyZPnozp06cjKioK7777LsaMGYN//vmn3HF/8skniI6Oxl9//YVLly5h6dKlqFevXoVf/3PPPQdPT0/s2LFDc59SqcSPP/6IixcvYu3atTh8+DBmzJgBAOjWrVuxb7UF32jz8vIwd+5cREZGYteuXbh58yZGjx5d4ZgMhZGREb7++mv89NNPuHPnTonbXL9+Hf369cPrr7+O8+fPY8uWLTh+/DgmTpwIAOjZsyeio6ORlJQEADhy5Ajq1aunSaLz8vJw6tQp9OrVq8LxTZ06Fenp6Th48CAAIDs7Gx07dsTevXsRFRWFd955B6NGjcKZM2cAAD/88AO6du2K8ePHa9qGu7s7JElCgwYNsHXrVkRHR+PTTz/Fxx9/jN9//73CMVWFEAJZufk1fquOesizZ8/GwoULERoaCmNjY7z99tuax44dOwZ/f39MnjwZ0dHR+OWXX7BmzRoEBQUBUBdnHDRoEB4+fIgjR47g4MGDuHHjBoYNG1bkOa5du4bt27djx44diIiIwJAhQ6BSqTRfJgHg/v372Lt3b5Hnp7KxCCSViyRJSEpKgqOjY42uwSOEwKFDh7B//35MmjRJc7+VlRVWrFihqc+xYcMGSJKEFStWaOaCrF69Gvb29ggODsaLL76IN998E5s2bcLYsWMBqBOslJQUvP766yU+94IFCzB69Gi8//77AIBp06bh9OnTWLBgAXr37l2u+OPi4uDt7Q1fX18AQOPGjSv1dwCAVq1a4fz585rfC88Zady4Mb766iu89957WLJkCUxNTYt8qy2s8AdkkyZN8OOPP6JTp07IyMgo8q231pIkICsZsKwH1FBbfPXVV+Hl5YXPPvsMK1euLPb4vHnzMGLECM170rx5c/z444/o2bMnli5dinbt2sHBwQFHjhzBG2+8geDgYEyfPl3TM3PmzBnk5eWhW7duFY6tVatWAKDpJXVzcysytDNp0iTs378fv//+Ozp37gw7OzuYmprC0tKySNswMjLCF198ofndw8MDp06dwu+//46hQ4dWOK7KepynQptP99fY8xWI/rIvLE21e0oMCgpCz549AQAzZ87EgAEDkJ2dDXNzc3zxxReYOXMmAgICAKj/L86dOxczZszAZ599hkOHDuHChQuIjY2Fu7s7AGDdunVo27Ytzp49i06dOgFQD6WtW7cOjo6Omud96623sHr1agwZMgSA+vOxYcOGlUq+DRV7juipJElCUFAQxo4di6CgoApPDK6MPXv2wNraGubm5ujfvz+GDRtWZKJj+/bti6wDFBkZiWvXrsHGxgbW1tawtraGg4MDsrOzcf36dQDAiBEjEBwcjHv37gEANm7ciAEDBpQ6afnSpUvo3r17kfu6d++OS5culft1TJgwAZs3b4aXlxdmzJiBkydPlnvfJwkhikwC/vvvv/H888/Dzc0NNjY2GDVqFB48eICsrKwyjxMWFoaBAweiYcOGsLGx0Xx4x8XFVTq2GiNJwLEFwO6J6p810BYLzJ8/H2vXri3x/Y+MjMSaNWs0bc/a2hp9+/aFJEmIjY2FQqHAs88+i+DgYKSkpCA6Ohrvv/8+cnJycPnyZRw5cgSdOnWqVNHWgh6PgrahUqkwd+5ctG/fHg4ODrC2tsb+/fvL9f4uXrwYHTt2hKOjI6ytrbF8+XLdaBe1VIcOHTT/dnV1BQDNEHZkZCS+/PLLIm2moDcvKysLly5dgru7uyYxAoA2bdrA3t6+SBts1KhRkcQIAMaPH48DBw7g7t27ANRTBgouLqDyYc8RPVVSUhJCQkKQkJCAkJAQJCUlwdnZuVqfs3fv3li6dClMTU1Rv359GBsXbapWVlZFfs/IyEDHjh2xcePGYscq+ODo1KkTmjZtis2bN2PChAnYuXNnkTk8FVXQg1a4O76gMnmB/v3749atW/jzzz9x8OBBPP/88wgMDMSCBQsq/HyXLl2Ch4cHAHUvwcsvv4wJEyYgKCgIDg4OOH78OMaOHYvc3NxST7KZmZno27cv+vbti40bN8LR0RFxcXHo27evbkzmzEoG7oQCGYnqn1nJgHXNTKJ/9tln0bdvX8yaNavYMGRGRgbeffddfPDBB8X2a9iwIQD1FWLLly/HsWPH4O3tDVtbW03CdOTIEU2SWlEFJ8qCtvHdd9/hhx9+wKJFizRz0qZMmfLU93fz5s348MMPsXDhQnTt2hU2Njb47rvvEBISUqm4KsvCxAjRX/at0ecseF5tK7wUR0FiUvDlMiMjA1988QVee+21YvuZm5uX+zme/CwEAG9vb3h6emLdunV48cUXcfHiRezdu7ei4Rs0Jkf0VI6OjvDz80NISAj8/PyKfUupDlZWVmjWrFm5t/fx8cGWLVvg5OQEW1vbUrcbMWIENm7ciAYNGkCpVGLAgAGlbtu6dWucOHFC0+0NACdOnECbNm0A/H/SFR8fD29vbwAoMjm7gKOjIwICAhAQEIAePXrgP//5T4WTo8OHD+PChQuYOnUqAHXvjyRJWLhwoSZJe3JuiKmpabHlAC5fvowHDx7gm2++0XwjDQ0NrVAssrKsBzTwVSdGDXzVv9egb775Bl5eXpqLAAr4+PggOjq6zDbbs2dPTJkyBVu3btUMb/Tq1Qt///03Tpw4genTp1cqpoK5ZX369AGgbqODBg3CyJEjAahPxleuXNG0W6DktnHixAl069ZNM4wMQNPrWpMUCoXWh7dqIx8fH8TExJTaZlq3bo3bt2/j9u3bmv+r0dHRSElJKfJelmbcuHFYtGgR7t69iz59+hTpgaJyEKSXHj9+LKKjo8Xjx4+1cjyVSiUSEhKESqXSyvHKEhAQIAYNGlShxzMzM0Xz5s1Fr169xNGjR8WNGzfEP//8IyZNmiRu376t2e7q1asCgOjQoYMYO3ZskWOsXr1a2NnZaX7fuXOnMDExEUuWLBFXrlwRCxcuFEZGRuKff/7RbNOlSxfRo0cPER0dLYKDg0Xnzp0FAM02n3zyidi1a5e4evWqiIqKEi+//LLo3Llzma+tX79+Ij4+Xty5c0eEhYWJoKAgYW1tLV5++WWRn58vhBAiIiJCABCLFi0S169fF+vWrRNubm4CgHj06JEQQogTJ04IAOLvv/8WSUlJIjMzU9y/f1+YmpqK//znP+L69eti9+7dokWLFgKAOHfuXKlx1SoqlRDpieqf1ayktjZq1Chhbm4uCn98RkZGCgsLCxEYGCjOnTsnrly5Inbt2iUCAwM120iSJBwcHISRkZH466+/hBBCnDt3ThgZGQljY2ORkZFRZiwAxOrVq0V8fLy4efOmOHDggHj99deFkZGR2Lhxo2a7qVOnCnd3d3HixAkRHR0txo0bJ2xtbYu8jvHjx4tOnTqJ2NhYkZSUJFQqlfjhhx+Era2t2Ldvn4iJiRFz5swRtra2wtPTs/J/QD335GdGgX/++afI/0Uh1O81ABEbGyuEEGLfvn3C2NhYfP755yIqKkpER0eL3377TcyePVsIoW4vXl5eokePHiIsLEyEhISIjh07ip49e2qO+dlnn5X6/qSkpAhLS0thamoqNm/eXObr0Pb5Qh8wOdJTutzYK5McCSFEfHy88Pf3F/Xq1RNmZmaiSZMmYvz48SI1NbXIdgUJzOHDh4vcX9IH3ZIlS0STJk2EiYmJaNGihVi3bl2Rx6Ojo0XXrl2FhYWF8PLyEgcOHCiSHM2dO1e0bt1aWFhYCAcHBzFo0CBx48aNMl8bAAFAGBsbC0dHR9GnTx+xatWqYonpf//7X+Hq6iosLCxE3759xbp164p9IL/33nuibt26AoD47LPPhBBCbNq0STRu3FiYmZmJrl27ij/++EO3kqMaVFJbi42NFaampuLJ75ZnzpwRL7zwgrC2thZWVlaiQ4cOIigoqMg2gwYNEsbGxiI9PV0Iof7SUadOHdGlS5enxlLQLgAIc3Nz0bRpUxEQECDCwsKKbPfgwQMxaNAgYW1tLZycnMScOXOEv79/kdcRExMjunTpIiwsLDQn7OzsbDF69GhhZ2cn7O3txYQJE8TMmTOZHJWhKsmREOoEqVu3bsLCwkLY2tqKzp07i+XLl2sev3XrlnjllVeElZWVsLGxEUOGDBEJCQmax8tKjoRQJ/IODg4iOzu7zNehy+eL6qIQohquXyTZZWdnIzY2VlP7goiIDMvzzz+Ptm3b4scffyxzO54vitP/gV0iIiID8ujRIwQHByM4OBhLliyROxydxOSIiIhIj3h7e+PRo0eYP39+sYsHqHyYHBEREemRgoKgVHksAklERERUCJMjPcf59kREVBaeJ4pjcqSnCiqzPm0pCSIiMmwF1dONjLRfJVxXcc6RnjIyMoK9vb1mHR9LS0uuq0NEREUULCpuaWlZbJkmQ8a/hB4rWHG7IEEiIiJ6klKpRMOGDfkFuhAWgTQAKpWq2IKoREREgHqtvYI1GkmNyRERERFRIUwViYiIiAphckRERERUCJMjIiIiokKYHBEREREVwuSIiIiIqBAmR0RERESFMDkiIiIiKuT/AF+eft1hdH5gAAAAAElFTkSuQmCC\n"
- },
- "metadata": {},
- "output_type": "display_data"
- }
- ],
- "source": [
- "# Plot cycle results with each cycle as one panel\n",
- "plot_results_panel_2d(cycle); # Add semicolon to supress creating two figures in jupyter notebook"
- ],
- "metadata": {
- "collapsed": false
- }
- },
- {
- "cell_type": "markdown",
- "source": [
- "### Default parameters can be changed by passing in keywords"
- ],
- "metadata": {
- "collapsed": false
- }
- },
- {
- "cell_type": "code",
- "execution_count": 4,
- "outputs": [
- {
- "data": {
- "text/plain": "",
- "image/png": "iVBORw0KGgoAAAANSUhEUgAAAysAAAGZCAYAAACJyq4LAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8o6BhiAAAACXBIWXMAAA9hAAAPYQGoP6dpAACB4UlEQVR4nO3dd3iUZdbH8W8mPZBCSaEECJBG6CgREAFFQhHBsrrqCqLoqtixISgoImAvi7q7rqCuvnZB6R2kGAXpCQkldBISSgohbeZ+/xjJilKSkGRmkt/nunKFTJ6ZOcPkJM957nLcjDEGERERERERJ2NxdAAiIiIiIiJno2JFRERERESckooVERERERFxSipWRERERETEKalYERERERERp6RiRUREREREnJKKFRERERERcUoqVkRERERExCmpWHFyxhhycnJQ706RmkN5LVLzKK9FqoaKFSeXm5tLYGAgubm5jg6l1J49e3Bzc2Pjxo2ODkXEJSmvRWoe5bVI1VCxUgOlp6fz4IMP0rJlS7y9vQkPD2fw4MEsWbLE0aGdYfPmzfTs2RMfHx/Cw8N5+eWXHR2SiNNyhbwuKCjgjjvuoF27dnh4eDB06FBHhyTi1Fwhr5cvX86QIUNo1KgRderUoWPHjnz66aeODktqEQ9HByCVa8+ePfTo0YOgoCBeeeUV2rVrR3FxMQsWLGDUqFFs377d0SECkJOTQ79+/ejbty/vv/8+W7Zs4c477yQoKIh77rnH0eGJOBVXyWur1Yqvry8PPfQQ33zzjaPDEXFqrpLXa9asoX379jz11FOEhoYye/Zshg0bRmBgINdcc42jw5PawIhTy87ONoDJzs4u0/EDBgwwTZo0MXl5eX/63vHjx40xxowYMcIMGjTojO8VFRWZ4OBg88EHHxhjjLFarWbq1KmmVatWxsvLy4SHh5sXX3zRGGNMWlqaAcyGDRtK779lyxbTv39/U6dOHRMSEmL+9re/mczMzHPG+e6775p69eqZwsLC0tueeuopEx0dXabXKeLKampe/97w4cPNkCFDynSsSE1QG/L6tIEDB5oRI0aU6z4iFaVpYDXIsWPHmD9/PqNGjaJOnTp/+n5QUBAAI0eOZP78+Rw+fLj0e7NnzyY/P5+bb74ZgDFjxjBlyhSeffZZkpKS+OyzzwgNDT3r8544cYIrr7ySTp06sW7dOubPn09GRgY33XTTOWNdu3YtV1xxBV5eXqW3JSQkkJKSwvHjxyvy8kVqJFfKaxEpG1fP6+zsbOrXr1+u+4hUmKOrJTm/8lypSUxMNID59ttvL3hsmzZtzNSpU0u/Hjx4sLnjjjuMMcbk5OQYb29v8+9///us9/3jlZqJEyeafv36nXHM/v37DWBSUlLO+hhXX321ueeee864bdu2bQYwSUlJF4xfxJXV1Lz+PY2sSG1TG/LaGGO++OIL4+XlZbZu3Vqm40UulkZWahBTju0SR44cyfTp0wHIyMhg3rx53HnnnQAkJydTWFjIVVddVabH2rRpE8uWLaNu3bqlHzExMQDs2rWrnK9CRH5PeS1S87hqXi9btowRI0bw73//m7i4uDK/BpGLoQX2NUhkZCRubm5lWpQ3bNgwnn76adauXcuaNWuIiIigZ8+eAPj6+pbrefPy8hg8eDBTp0790/caNWp01vuEhYWRkZFxxm2nvw4LCyvX84vUZK6U1yJSNq6Y1ytWrGDw4MG88cYbDBs2rFzPK3IxNLJSg9SvX5+EhASmTZvGyZMn//T9EydOlP67QYMGDB06lOnTpzNjxgxGjBhR+r3IyEh8fX3LvHVi586d2bZtGy1atKB169ZnfJxtLi5At27dWLlyJcXFxaW3LVq0iOjoaOrVq1fGVyxS87lSXotI2bhaXi9fvpxBgwYxdepU7dgp1c/B09DkAsq7u8iuXbtMWFiYadOmjfn6669NamqqSUpKMm+99ZaJiYk549iFCxcaLy8v4+7ubg4ePHjG9yZMmGDq1atnPvroI7Nz506zdu3a0p1H/jgH9uDBgyY4ONjceOON5ueffzY7d+408+fPN3fccYcpKSk5a5wnTpwwoaGh5vbbbzdbt241n3/+ufHz8zP//Oc/y/k/JOJ6ampeG2Nfe7ZhwwYzePBg07t3b7Nhw4YzdiISqalqal4vXbrU+Pn5mTFjxpjDhw+Xfhw9erSc/0MiFaNixcmV95efMcYcOnTIjBo1yjRv3tx4eXmZJk2amGuvvdYsW7bsjONsNptp3ry5GThw4J8ew2q1mhdffNE0b97ceHp6mmbNmpmXXnrJGHP2rRBTU1PNddddZ4KCgoyvr6+JiYkxjzzyiLHZbOeMc9OmTebyyy833t7epkmTJmbKlCllfo0irqwm53Xz5s0N8KcPkZqupub18OHDz5rTvXr1KvPrFLkYbsaUY5WXVLucnBwCAwPJzs4mICCgUh87Ly+PJk2aMH36dK6//vpKfWwROTfltUjNo7wWqRpaYF8L2Ww2srKyeO211wgKCuLaa691dEgicpGU1yI1j/JaRMVKrbRv3z4iIiJo2rQpM2bMwMNDPwYirk55LVLzKK9FtBtYmU2ePJlLL70Uf39/QkJCGDp0KCkpKRe831dffUVMTAw+Pj60a9eOuXPnVkO059eiRQuMMezfv7/Me7OLiHNTXovUPMprERUrZbZixQpGjRrFTz/9xKJFiyguLqZfv35n3XLwtDVr1nDLLbdw1113sWHDBoYOHcrQoUPZunVrNUYuUnOkpOc6OgQRERGpRlpgX0GZmZmEhISwYsUKrrjiirMec/PNN3Py5Elmz55dettll11Gx44def/998v0PFW5YE/EVRzJLWDC99uYtzWdr+/tTpfmrt2LR3ktUvMor0WqhkZWKig7OxuwN3Y6l7Vr19K3b98zbktISGDt2rVVGptITWGM4ev1B7j69ZXM3ZKOxc2NbYeyHR2WiIiIVBOt1KoAm83GI488Qo8ePWjbtu05j0tPTyc0NPSM20JDQ0lPTz/nfQoLCyksLCz9Oicn5+IDFnFB+4/l88x3W/hxRxYAbZsEMPWG9sQ1DnRwZOWnvBapeZTXItVDIysVMGrUKLZu3crnn39e6Y89efJkAgMDSz/Cw8Mr/TlEnJnVZvhwVRoJb67kxx1ZeHtYeHpADDPv7+GShQoor0VqIuW1SPXQmpVyeuCBB5g1axYrV64kIiLivMc2a9aMxx57jEceeaT0tvHjxzNz5kw2bdp01vuc7UpNeHi45sBKrZCakcuTX29m4/4TAHSNqM/UG9oT0bCOYwO7SMprkZpHeS1SPTQNrIyMMTz44IN89913LF++/IKFCkC3bt1YsmTJGcXKokWL6Nat2znv4+3tjbe3d2WELOIyikpsvLt8J9OW7aTYavD39uDpgTHccmkzLBY3R4d30ZTXIjWP8lqkeqhYKaNRo0bx2WefMWvWLPz9/UvXnQQGBuLr6wvAsGHDaNKkCZMnTwbg4YcfplevXrz22msMGjSIzz//nHXr1vGvf/3LYa9DxNls3H+Cp77eTEqGfVviq2JCePG6tjQK9HVwZCIiIuJoKlbK6L333gOgd+/eZ9w+ffp07rjjDsDeadZi+d8yoO7du/PZZ58xbtw4nnnmGSIjI5k5c+Z5F+WL1Bb5RSW8vjCVD1enYTPQoI4X46+NY3D7Rri5uf5oioiUTUGxFR9Pd0eHISJOSmtWnJz2bZeaaPXOLJ7+djP7j50C4LpOTXj2mjbUr+Pl4Miqh/JaxL6Zxlfr9vP6olRe/UsHrogKdnRIF0V5LfI/NpvBZgwe7he/l5dGVkSk2mTnFzNpbhJfrjsAQONAHyZd344+0SEOjkxEqosxhhWpmUyeu710+ucnP+11+WJFROz5vTw1k1cXpHBdpyaM7Nnyoh9TxYqIVIv5Ww/z7KxtZObad88Z3q05T/SPoa63fg2J1BZJh3KYPC+5tH9SoK8nD10Vyd8ua+bgyETkYq3bc4yX56fw855jAOQWlDCiRwTuF7lRjs4SRKRKHcktYPysbczbat+UomVwHabe0J5LW9R3cGQiUl3Sswt4bWEKX/96AGPAy93CsG7NeeDK1gT51Y7pnyI11bZD2by2MJWl248A4OVhYXi35tzXu/VFFyqgYkVEqogxhq/WH+DF2UnkFJTgYXHj3l6teODK1lpMK1JL5BWW8M8Vu/j3j7spKLYBcE37RjyZEEOzBn4Ojk5ELkZa1kleX5TKD5sOAeBuceOmS8J56KrWlbqjp4oVEal0+4/lM+bbLazaaZ/q0bZJAFNvaO+yHehFpHxKrDa+WLefNxalkpVXBMClLerxzMBYOjWr5+DoRORiHM4+xdtLdvDlugNYbfZ9ugZ3aMxjV0dVSRNnFSsiUmmsNsOMNXt4dUEKp4qteHtYePTqKEZeHlEpO4KIiHMzxrAs5Qgvzd3OziN5ALRo4MfTA2JJiAvVtuQiLuzYySLeXbaTj3/aS1GJfaT0ypgQHu8XTZvGVbcDnooVEakUqRm5PPn1ZjbuPwFAfER9ptzQvkqusoiI89l6MJtJc5JZu/soAPX8PHn4qkhujW+Ol4cuVoi4qtyCYv6zKo0Pfkwjr7AEgK4t6vNE/+hqWX+qYkVELkpRiY13l+9k2rKdFFsN/t4ejBkYy18vDcdSCQvrRMS5HTpxilcXpPDthoOAfXHtnT0iuK93KwJ9PR0cnYhUVEGxlf/+tJdpy3ZyPL8YgLjGATyREE2vqOBqGylVsSIiFbZh33Ge+mYzqRn26R59Y0N5cWhbwgJ9HByZiFS13IJi3lu+i/+sSqPwtykhQzo25vF+0YTX1+J5EYew2SA/C/wagqViI5rFVhtfrz/AW4t3kJ5TANh38nzs6igGtm1U7RciVayISLnlF5Xw2sJUPlydhjHQoI4Xzw+JY1C7RpqTLlLDFVttfP7zPt5cvIOjJ+2L57tG1GfcoFjaNw1ybHAitZnNBj++CgfWQdNLoOfj5SpYbDbD7C2HeWNRKmlZJwF78+ZH+kZxfecmDlt7qmJFRMpl1Y4sxny3mf3HTgFwfacmjLumDfXrqFeCSE1mjGFRUgZT5m1n928nMi2D6zBmQCx9Y0N0oULE0fKz7IVKXob9c34W1A254N2MMSxPyeSVBSkkHc4BoH4dL0b1ac1t8c0c3m5AxYqIlEl2fjEvzkniq/UHAGgS5Muk69rSO/rCvwhFxLVtPnCCF+ck83OavTN1/TpePNo3kr92bYandvoTcQ5+De0jKqdHVvwaXvAuP6cd45UF2/llz3EA/L09uPuKltx5eQR1vZ2jTHCOKETEqc3bcpjnvt9GZm4hbm4w7LLmPNE/xml+kYlI1ThwPJ9XFqQwa6O96Zu3h4W7Lo/g3t6tCPDR4nkRp2Kx2Kd+lWHNytaD2by6MIXlKZmAPbfv6N6Ce3u1op6TzZTQmYaInNORnAKem7WN+dvSAWgVXIepN7TnkmrYqlBEHCf7VDHvLt/J9NV7SvspXN+pCY8nRNM4qPI6U4tIJbNYzjv1a1dmHq8vSmXO5sMAeFjcuOnScB66MtJpN8dRsSIif2KM4at1B3hxThI5BSV4WNy4r3crRvVp7fC5qyJSdYpKbHyWuJe3luwo3aq0e6sGPDMwlrZNAh0cnYhU1KETp3hr8Q6+/tXedd7NDa7t0JhH+0bRwsn7oalYEZEz7DuazzPfbWHVziwA2jUJZOoN7au0O62IOJYxhgXb0pkybzt7juYD0DqkLmMHxtI7uvr6KYhI5TqaV8i0Zbv47097KbLaR0n7xoYwul80sY1c4++6ihURAcBqM0xfncZrC1M5VWzF28PC6H5R3NkjwmHbFYpI1ft133EmzUlm/V77AtuGdb149Ooobr4kXLkv4qJyCor54Mc0/vPjbk4WWQGIj6jPk/2j6dLctaZyq1gREVLSc3nqm81s3H8CsP9Cm3pDe6cfGhaRitt3NJ+pC7aXzl338bRwT8+W3NOrlTbPEHFRBcVWPl67h3eX7+LEb1M52zUJ5ImEaHpGNnTJUVL9NhKpxQpLrLy7bBfvLt9JsdXg7+3BM4NiufmS8GrvUCsi1eNEfhH/WLqTj9fap4W4ucGNnZsyul+00y6wFZHzK7ba+HLdft5esoOMnELAvinO4/2i6d82zCWLlNNUrIjUUr/uO85TX29mx5E8APrGhvLi0LY6WRGpoQpLrHyydi/vLN1J9in7FdfLWzfkmYGxWpMm4qJsNsMPmw/xxqLU0vVmTYJ8eaRvJNd1clzX+cqkYkWkljlZWMKrC1OYsWYPxkCDOl48PySOQe0aufSVFxE5O2MMc7ekM3X+dvYds5/MRIf68/TAGHpHafG8iCsyxrB0+xFeWZDC9vRcwL7ebFSf1twa3wxvj5qzc6eKFZFaZGVqJmO+3cLBE6cAuL5zE54d1MbpGkCJSOVYv/cYL85JZsO+EwAE+3vzeL8obuwSjrumeoq4pJ92H+WVBSmlm2L4+3jw9ytaMqJHBHVq4HqzmveKRORPTuQX8eKcZL5efwCwDxFPuq4tvaPP3ThKRFzXnqyTTJ2/nXlb7Q1dfT3dueeKltxzRcsaeTIjUhtsPZjNywtSWJlq7zrv42lhePcW3NerFUF+Nfeio35jidRw87Yc5tlZ28jKK8TNDYZ3a8ETCdE6YRGpgY6fLOLtpTv47097KbYaLG5w0yXhPHZ1FCEBWo8m4op2Hsnj9UUpzN1iv/jgYXHjr13DefDKSEJrQV7rbEWkhjqSU8Czs7ayYFsGYN8V5OUb27vc/uoicmGntyt9Z+lOcgtKAOgVFcwzA2OJDvN3cHQiUhEHT5zizUWpfPPrAWwG3NxgaMcmPNI3kuYNak9rARUrIjWMMYav1h1g4pwkcgtK8LC4cV/vVjxwZesateBORP63E9DL81NK16LFhPkzdlAsPSODHRydiFREVl4h05bt5NOf9pV2nb+6TSij+0URE1b7du5TsSJSg+w7ms+Y7zazeudRANo3DWTqDe2JbVT7frmJ1HQ/px1j0pwkNh3IBiA0wJvR/aK5oXNTLZ4XcUE5BcV8sHI3H6xKI/+3rvPdWjbgif7RdG5Wz8HROY6KFZEawGozfLgqjdcWpVBQbMPH08JjV0dxZ4+IGrHHuoj8z+7MPKbM287CJPsUzzpe7tzbqxUje7bE10ujpyKu5lSRlY/W7uG95btKeyB1aBrIEwkx9GjdoNZvL65iRcTFbU/P4amvN5deXe3WsgFTbmhXq+azitQGR/MKeXvJDj5N3EeJzeBucePmS8N5tG8Uwf7ejg5PRMqpqMTGF+v2886SHRzJtXedbx1Sl8f7RZEQ59pd5yuTihURF1VYYmXa0p28u3wXJTaDv48HYwfGcvOl4foFJ1KDFBRb+XB1Gu8t20VuoX3x/FUxITw9IIbIUC2eF3E1Vpvh+00HeWPRjtJGrU2CfHn06iiu69RE0zj/QMWKiAtav/c4T32zmZ1H8gDo1yaUiUPb1ootDEVqC5vNMGvTQV6Zn8Kh7AIA4hoHMHZgLN1bN3RwdCJSXsYYFicf4dUFKaRknO46780DfVpxSw3rOl+ZVKyIuJCThSW8ujCFGWv2YAw0rOvFC0PaMqCthotFapI1u7J4aW4yWw/mANA40Icn+kczpEMTLLrqKuJy1uzK4pUFKWzYdwKAAB8P/t6rFSN6tMDPS6fj56P/HREXsTI1kzHfbindnvT6zk14dlAb6tWpuV1rRWqbnUdymTx3O0u2HwGgrrcH9/dpxZ09IvDx1FVXEVez+cAJXlmQwo87sgDw9XRnRI8W/P2KVgT6eTo4OtegYkXEyZ3IL+LFOcl8vf4AYJ/X+tL17egVpR4KIjVFZm4hby5O5fNf9mP9bfH8bfHNeOiqSBrW1eJ5EVez80gury5IZf42e9d5T3c3bunajAeubE2Iv6Zsl4eKFREnZYxh7pZ0xn+/jay8QtzcYHi3FjyREE0db6WuSE1wqsjKBz/u5v0Vuzj5W1+Fq9uE8vSAGFoF13VwdCJSXvuP5fPWkh18+7uu89d1asKjfaMIr+/n6PBcks54RJxQRk4Bz87cWtpHITKkLlNuaE+X5rW3KZRITWK1Gb799QCvLUwlPce+eL5D00CeGRhLfMsGDo5ORMorM/e3rvOJeym2GgAS4kIZ3S+aKO3ad1FUrIg4EWMMX/yyn0lzk8ktKMHD4sb9fVozqk8r7RIiUkOs2pHFpLnJJB+2L55vEuTLk/2jGdy+sRbPi7iY7FPF/GvlLj5ctYdTxfbR0ctbN+TxhGg6hgc5NrgaQsWKiJPYe/QkY77dwppdRwH7VdYpN7QntlGAgyMTkcqQkp7L5HnJLE/JBMDfx4MH+rRmePcWWjwv4mJOFVmZviaN95fvIqfA3v+oQ3gQTyVEa2vxSqZiRaQibDbIzwK/hmCxXNRDlVhtTF+9h9cWpVBQbMPH08Lj/aIZ0SNCjaFEqpHNZiMzM5Pg4GAsF5nXv3ckp4A3FqfyxS/7sRnwsLjxt8ua89BVkdTXbn4iVaqy87qoxMYXv+zj7aU7yfyt63xUaF0euzqahLhQtRGoAipWRMrLZoMfX4UD66DpJdDz8QoXLMmHc3jqm81sPpANQLeWDZhyQzuaN6hTmRGLyAXYbDYmTZpEYmIi8fHxjB079qJPbPKLSvjXyt38a+Vu8n9bPN8/LoynBsQQ0VA5LlLVKjOvrTbDrI0HeWNxKvuP2VsIhNf35dG+UQzpqK7zVUnFikh55WfZC5W8DPvn/CyoG1KuhygssTJt6U7eXb6LEpvB38eDcYNiuemScF2VEXGAzMxMEhMTSU9PJzExkczMTEJDQyv0WFab4ev1+3ltYSpHfrvy2jE8iHGDYrmkRf3KDFtEzqMy8toYw6KkDF5bmFradT7Y35uHrmzNzZc2w8uj8kZh5exUrIiUl19D+4jK6ZEVv4blmha2fu8xnvpmCzuP5AH23UJeGNKW0ADtuy7iKMHBwcTHx5degQ0ODq7Q9JEVqZm8NCe59KQmvL4vT/WPYVC7RroQIVLNLjav1+zM4uUFKWzcfwKwd52/r3drhndvrq7z1cjNGGMcHYScW05ODoGBgWRnZxMQoIXWTuP3xQmUaVrYycISXlmQwkdr92AMNKzrzQtD4hjYrlE1By+Oprx2Tr8/iQHKNX0k+XAOL81NLu1SHejryYNXtub2bs21k18tobx2ThXJ6437T/DKgu2s3mnf8MbX0507L2/BPT3Vdd4RVBaKVITF8r+pX3lHLjgtbEVqJs98u4WDJ+zzXG/s0pRxg2IJ8tPiWhFnYbFYSqeIZGRklGn6SHp2Aa8vSuGr9Qcwxt6leli3Fjx4ZWvlt4gTKE9ep2bk8uqClNIeZ57ubtwW35z7+7RS13kHUrEicrHONi3sNyfyi5g4O5lvfj0AQNN6vrx0XTuuiAou33NU4u5jInJhZ5s+8nt5hSX8a8Uu/vXjbgqKbQBc074RTybE0KxB2bpUV9XuYyJydufK6/3H8nljcSrfbTiIMWBxg+s6NeWRvpHl7jqvvK58mgbm5DSs7CL+UEwYY5i7JZ3x328lK68INzcY0T2C0f2iqONdzmsElbj7mDgH5bVrONtJR4nVxpfrDvD6olSy8uyL5y9pXo9nBsXSuVm9cj12Ze8+Jo6lvHYNv8/rrJNFTFu6k89+3lfadb5/XBij+0URWYGu88rrqqGRFZHK8LtpYRk5BYybuZVFvw0jR4bUZcoN7enSvOwnMmeohN3HRKT8fj99xBjD8pRMXpqbzI7fNsdo0cCPpwfEkBAXVu7F85W5+5iIlJ3FYsHHvz6vLkxl+ur/dZ3vGdmQx/tF0+Eius4rr6uGihWRSmKM4Ytf9jNpbjK5BSV4WNy4v09rRvVpdXELbM8zzUxEqt7Wg9lMnpdcutg2yM+Th6+K5Lb45hXetvRC08xEpPLlF5UwffUe/rnif13nOzUL4omEaLq3uvi/rcrrqqFpYGW0cuVKXnnlFdavX8/hw4f57rvvGDp06DmPX758OX369PnT7YcPHyYsLKzMz6thZdewJ+skY77dwtrd9pOZDk0DmXpje2LCKuk905qVGkV57RoOnTjFqwtTSuexe7lbGNGjBff3aU2g78XvCKS57TWL8tp5FZXY+L+f9/HO0p2l0zejQ/15PCGavrEhlbqtuPK68mlkpYxOnjxJhw4duPPOO7n++uvLfL+UlJQzfmmFhGj6Tk1SYrXx4eo0XluYSmGJDR9PC4/3i2ZEj4jK7Wb7+93HRKRK5RYU8/6KXXzwYxqFJfbF89d2aMwTCdHlXmx7Pr+fZiYilc9qM3y34SBvLk7lwHH7bpzN6vvx2NVRDO7QuEq6ziuvK5+KlTIaMGAAAwYMKPf9QkJCCAoKqvyAxOGSDuXw9Leb2XwgG4DurRow5fr2Zd4JSEScS7HVxuc/7+PNxTs4erIIgK4R9Rk7MPai5rGLSPUyxrBgWwavLUwpXWMW4u/Ng1dFcvMl4eo672JUrFSxjh07UlhYSNu2bZkwYQI9evQ47/GFhYUUFhaWfp2Tk1PVIUo5FZZY+cfSnby3fBclNoO/jwfPDmrDXy5pqg7VclbKa+dmjGFx8hEmz0tmd+ZJAFo2rMPTA2K4uk2o8lrOSnntfIwxrNqZxSsLUkovJAb6enJf71YM79YCXy81aHVFKlaqSKNGjXj//fe55JJLKCws5IMPPqB3794kJibSuXPnc95v8uTJPP/889UYqZTH+r3HeOqbLez87UpN/7gwXhgSR0iAmkXJuSmvndfmAyeYNCeZxLRjANSv48UjfSO5pWszPN119VXOTXntXH7dd5xXF6SwZpd97aiflzt3XR7ByJ4tK2WNmTiOFthXgJub2wUX2J9Nr169aNasGZ988sk5jznblZrw8HAt2HOwk4UlvLIghY/W7sEYaFjXm4lD4hjQrpGjQxMXoLx2PgeO5/PKghRmbTwEgJeHhZGXR3Bv71YE+OjERi5Mee0cUtJzeXVhSmm7AC93C7dd1oxRfVrTsK63g6OTyqCRlWrUtWtXVq1add5jvL298fZWcjmT5SlHGPvdVg6esC/O+0uXpowb1IZAP53QSNkor51H9qli3l2+k+mr91D02+L56zs1YXRCNE2CfB0cnbgS5bVj7Ttq7zo/c+P/us7f2KUpD10VSdN6Wjtak6hYqUYbN26kUSNdiXcVx08WMXF2Et9uOAhA03q+TLm+PZdHqs+JiKspKrHxWeJe3lqyg+P5xQBc1rI+4wa1oW2TQAdHJyJllZFTwDtLd/D5z/spsdknBw1sF8ZjV0fTOqSug6OTqqBipYzy8vLYuXNn6ddpaWls3LiR+vXr06xZM8aMGcPBgwf5+OOPAXjzzTeJiIggLi6OgoICPvjgA5YuXcrChQsd9RKkjIwxzN58mAnfb+PoySLc3GBE9wgeT4jCz0spI+JKTu8KNHX+dtKy7IvnWwXX4ZmBsVwZU7n9FUSk6pzIL+K9Fbv4aM0eCorto6JXRAXzRL9o2jXVBYeaTGdeZbRu3bozmjw+9thjAAwfPpwZM2Zw+PBh9u3bV/r9oqIiRo8ezcGDB/Hz86N9+/YsXrz4rI0ixXmkZxcwbuZWFifb575GhtRl6o3t6dysnoMjE5Hy2rDvOC/NTeaXPccBaFjXi0evjuLmS8Lx0OJ5EZdwsrCE6avT+OfK3eT+1nW+S/N6PJEQzWUtGzg4OqkOWmDv5NQRt3rYbIbPf9nP5LnJ5BaW4Onuxv29W3N/n1Z4e2irQ6lcyuuqtf9YPi8vSOGHTfbF8z6eFu7u2ZK/92pFXW9do5OqobyuXIUlVj5L3Me0ZTvJyrP3PYoJ8+eJhGiNitYy+q0ttd6erJM8/e1mftpt37q0Q3gQL9/QnugwfwdHJiLlkZ1fzD+W7eCjNXspstpwc4MbOjdldL8oGgVq8byIKyix2vh2w0HeWryjdGOb5g1+6zrfvjGWKug6L85NxYrUWiVWG/9Zlcbri1IpLLHh6+nO4wnR3NG9Be76ZSjiMopKbHzy017eXrKD7FP2xfOXt27ImIExxDXWXHYRV2CMYf7WdF5dmMKu35qzhgZ489BVkdx0Sbj6HtViKlakVko6lMNT32xmy0F7h9vLWzdk8vXtCK+v7Q5FXIUxhnlb05k6fzt7j+YDEBVal2cGxtIrKljTRERcgDGGH3fYu86f/psc5OfJ/b1bMaxbC3w8NRW7tlOxIrVKQbGVfyzdyfsrdlFiMwT4eDDumjb8pUtTndiIuJD1e48zaU4Sv+47AUCwvzejr47ixi5NtXhexEWs33ucVxZsL52GXcfLnbt6tuTunhH4qzmr/EbFitQa6/Yc46lvNpcOLw9oG8bzQ+II8fdxcGQiTsBmg/ws8GsIFuc92d979CRT529n7pZ0AHw93fl7r5bc3bMldbR4XuQMNpuNzMxMgoODsThRXicfzuG1hSksTj4C2LvO/+2y5ozq04oG6jovf6Df7FLj5RWW8Mr87Xz8016MsV+BnTgkjv5t1aBTBLAXKj++CgfWQdNLoOfjTlewHD9ZxDtLd/LJT3sothosbvCXLuGM7hdFSIAuOIj8kc1mY9KkSSQmJhIfH8/YsWMdXrDsyTrJG4tT+X7TodKu83/pEs5DfSNpEqRNMOTsVKxIjbY85Qhjv9tauqPITZc0ZezANgT6aXhZpFR+lr1Qycuwf87PgrohVfNc5RzBKSyx8vGavbyzdAc5v/VY6B0dzJgBsdqxT+Q8MjMzSUxMJD09ncTERDIzMwkNDa2S57rQCE56dgFvL93Bl7/8r+v8oPaNeOzqKFoFq+u8nJ+KFamRjp8sYuLsJL7dcBCApvV8mXJ9ey6PbOjgyESckF9D+4jK6ZEVvyrKk3KM4BhjmL35MFPnb+fAcfvFhpgwf54ZGMsVUcFVE59IDRIcHEx8fHzpyEpwcAXypgwXF843gnP8ZBHvr9jFjDV7KCyxd53vHR3M4/2iadukknfqc5GprFJ+KlakRjl9gjPh+20cPVmExQ1G9IhgdL8o/Lz04y5yVhaLvXCo6j/0ZRzB+TntGJPmJrNp/wnAvn3p6H7R3NC5qbYVFykLmw1LfhZjnxlDZtbRiq1ZKePFhbON4NQJasCHq9L498rd5BbaR0QvaV6PJ/vH0DWifmW8wgrFKq5JZ29SYxzOPsWzM7eWLtiLCq3L1Bva06lZPQdHJuICLJaqm/p12gVGcHZn5jF1/nYWbMuwH+7lzr29WjGyZ4QuNoiU1e9O3C1NLyG0oifuZby48PsRnC5dL+OH1DzeW76ZoyftXedjGwXwZEI0vaOrcDvx6pzKKtVOv/3F5dlshv/7ZR9T5m4nt7AET3c3RvVpzf29W+PloSsrIk7jHCM4R/MKeXvJDj5N3EeJzb54/q9dm/FI30jt1idSXpV14l7G6aEWi4Wnnh7DRytT+PDndA7P2Q5AiwZ+PNYvmmvaNar6rvPVNZVVHELFiri0tKyTPPXNZn5Os+/R3qlZEFNvaE9UqBbeijil343gFBRb+XB1Gu8t21U6VaRPdDDPDIwlUjksUjGVceJ+ev3H5Y/BqWPnnB5qs9kbs762KIXdv7UFCAvw4aGrIvnLJU2rr+t8dU1lFYdQsSIuqcRq44NVabyxKJXCEhu+nu48nhDNHd1baE67iJOz2QzfbzrEKwtSSnfqi2scwNiBsXRvrSuiIhflYk/cy7D+wxjDitRMXl2YwtaDOQDU8/Pk/t6tub1bc8d0na+OqaziECpWxOUkHcrhqW82s+VgNgA9Ixvy0nXtCK/v5+DIRORC1u46yqS5SaUnOI0CfXgiIZqhHZtU/VQRkdriYk7cLzCNbN2eY7y8IKV0RoO6zktVU7EiLqOg2Mo7S3fwzxW7KbEZAnw8ePaaNtzYpWnVLdoTkUqx80guU+ZtL90Ao663B/f1bsVdl0c45iqsiJzdOaaRJR3K4dWFKSzd/lvXeQ8Lwy5rzv19WlO/jpcjI5YaTsWKuIR1e47x5DebS+fEDmwXxoRr4/63+Fb7q4s4pay8Qt5cnMr//bwfq83gbnHj1q7NeLhvJA3rep/3vhdqNCciVeAP08jSjp3i9UWp/LDpEADuFjduuqQpD10VSaPAinWdV25LeahYEaeWV1jCy/O38/HavQAE+3szcUhb+rcN+99B2l9dxOmcKvpt8fzyXeT9tni+b2woTw+IoXXIhTtWn6/RnIhUMYuFw1Z/3p65lS/XHcD6W9f5wR0a89jVUUQ0rFPhh1ZuS3mpWBGntWz7EcZ+t4VD2QUA3HRJU8YObEOg3x/mxGp/dZHqc4FRTJvN8O2Gg7y6IIX0HHvutm8ayDMDY7msZYMyP83ZGs2FhoZW2ssQkf/5/UjHiVMlvLd8Jx+t3UvRb13n+0QH83hCNHGNL77rvHJbykvFijidYyeLeOGHbczcaB9yblbfj8nXt6PHuXYJ0v7qItXjAqOYq3dmMWlOMkmH7YvnmwT58kRCNNd2aFzuxfO/bzQXHx9PcHBwpb4UEbE7PdKx5pdf8ekwkB2WcPIKrQB0bVGfJ/pHc2mLyus6r9yW8nIzxhhHByHnlpOTQ2BgINnZ2QQEBDg6nCpljH070+d/SOLYySIsbnBnjwge6xd14e7VWrMiLsRl8zrvCMx6wD6KWTcUhvwD6oaQmpHL5LnJLEvJBMDf24NRV7bmju4tLmrxvOa1iytx1bzed/AwNz3zDhkNOmK87NO74hoH8HhCNL2jqqbrvHJbykMjK+IUDmefYtx3W1ny2y4j0aH+TL2xPR3Dg8r2ANpfXaTq/WEU84jVnze+3cIXv+zDZsDD4sbfLmvOg1e2psEFFs+XhcVi0fQQkSpSYrXx9foDvLVkB+mNegAQ6FbApL9exsB25R8NLQ/ltpSHihVxKJvN8NnP+5gybzt5hSV4urvxQJ9I7uvdCi8PXW0RcSq/7RKUfyKDD37N5f3XVpBfZJ8u0j8ujKcGxFzUwlsRqXo2m2Hu1sO8vjCV3Vn2HTYbBfpwZ9dQhl8Rg5enTg3FuegnUhwmLeskT32zubSxVKdmQUy9oT1Rof4OjkxEzsZqM3zz60FeW5hCRk4hAB3Dgxg7KLZS57SLSOUzxrA8JZNXFqSUriurX8eLUX1ac1t8M/U7EqelYkWqXYnVxr9/TOONxakUldjw9XTnyf7RDOvWAnd1sBZxSitTM3lpbjLb03MBCK/vy1P9YxjUrpGasoo4uZ/TjvHKgu38suc4YG/KenfPltzVM4K63joVFOemn1CpVlsPZvPUN5vZdsh+VadnZENeuq4d4fX9HByZiJzN9vQcXpq7nZWp9sXzAT4ePHhlJMO6N8fbQ1diRZzZ1oPZvLowheW/bX7h7WFhePcW3NerFfXUdV5chIoVqRYFxVbeXrKDf67cjdVmCPT1ZNygWG7s0lRXZUWcUEZOAa8vTOWr9fuxGfB0d2N4txY8cGVrgvx0kiPizHZn5vH6olRmbz4M2De/uOnScB66MpKwQB8HRydSPipWpMr9nHaMp7/ZXLqQb1C7Roy/tg0h/vqFKeJsThaW8K+Vu/nXyt2cKrYvnh/UrhFP9o+meQMtnhdxZodOnOLtJTv4ar2967ybG1zboTGP9o2ihTa/EBelYkWqTG5BMS/PT+GTn/YCEOLvzcShbUmIC3NwZCLyRyVWG1+tP8Dri1LJzLUvnu/SvB7PDIylS/N6Do5ORM7naF4h7y7fxSc//a/r/FUxIYzuF02bxq7T80XkbFSsSJVYuj2Dsd9t5XB2AQB/vTScMQNjCfT1dHBkIvJ7p3cImjwvmdSMPACaN/Dj6f4x9G8bVvXTNNXQVaTCcguK+fePafznx92c/G0b8a4R9XkyIZpLHLhDn5o+SmVSsSKV6mheIS/MTmLWxkMANKvvx5Tr29G9dUMHRyYif7TtUDYvzU1m9c6jAAT5efLwVZHcFt+8evoc2Wzw46ulTSbp+bgKFpEyKCi28snavby7fCfH84sBaNskgCcSYrgisqFD14LabDYmTZpEYmIi8fHxjB07VgWLXBQVK1IpjDF8v+kQz/+QxLGTRVjc4K7LI3js6mh8vbRjkIgzOXTiFK8uTOG7DQcxBrzcLdzRowWj+rSu3tHP/Cx7oZKXYf+cnwV1Q6rv+UVcTLHVxlfrDvD2kh2k59hnLrQMrsPj/aIZUB0joWWQmZlJYmIi6enpJCYmkpmZqW71clFUrMhFO3TiFONmbmXp9iMAxIT5M/WG9nQID3JsYCJyhtyCYv65Yjf//nE3hb/Na7+2Q2OeSIh2zPbhfg3tIyqnR1b8NAIrcjY2m+GHzYd4Y1Eqe47mA9AkyJeHr4rk+s5N8HB3npGL4OBg4uPjS0dWgoODHR2SuDg3Y4xxdBBybjk5OQQGBpKdnU1AgHMtkrPZDJ/+vI+p87aTV1iCl7uFB65szb29WlXPFBIRF1XdeV1itfF/v+znzUWpHD1ZBMClLeoxdlAbOjr6ooLWrEgNURV5bYxhWcoRXlmQSvJvXecb1PHigStbc2t8M6ftdaQ1K1KZNLIiFbI7M4+nv9nCz3uOAdC5WRBTb2hPZKi/gyMTkdOMMSxJPsLkecnsyrRvHR7RsA5PD4ihX5vQs08Zqe7iwWLR1C+Rs0jcfZRXFqSwbq+967y/twf3XNGSOy+PoE45u85Xd/FgsVg09UsqjYoVKZdiq41//7ibNxfvoKjEhp+XO08mRHN7txa4Wxw/V1ZE7LYcyGbS3CR+2m2/oFDPz5NH+kZxa3wzPM81ZUQL3kUcbuvBbF5ekMLK1P91nb+jRwvuvaJiXee14F1cnYoVKbOtB7N56pvNbDtkH4q+IiqYl65rS9N6DpjrLiJndfDEKV5dYF88D+DlYeGuyyO4r3crAnwusHheC95FHGbnkTzeWJTKnC3/6zp/86XhPHiRXee14F1cnYoVuaCCYitvLdnBv1buxmozBPp68tw1bbi+cxOn2HlERCCnoJh3l+3iw9VppU3hruvUhNH9osp+QUEL3kWq3cETp3hrcSpfrz+AzYCbGwzp0JhHr46ieYOL7zqvBe/i6rTA3sk5eoF94u6jPP3tFtKy7PPdB7VrxIRr4wj29672WERqisrM62Krjc8S9/HWkh0c+23x/GUt6/PMwFjaNw0q/wNqwbtIhZQ3r7PyCpm2bCef/rSPIqv9AsPVbUIZ3S+KmLDK/XuvBe/iyjSyImeVW1DMlHnb+TRxHwAh/t5MHNqWhLgwB0cmImBfPL8wKYMp87aXXkxoGVyHZwbEclVsSMVHPbXgXaRK5RQU8++Vu/nPqjTyf+s6361lA57oH03nZvWq5Dm14F1cmYoV+ZMlyRmMm7mVw9n2hlN/vTScMQNjq7dZnIic08b9J3hpTnLpbnwN6njxyNVR/PXS8HMvnhcRhyootvLRmj28t2IXJ37rOt++aSBPJERzeWvHdp0XcWYqVqTU0bxCnv8hie83HQKgeQM/Jl/fju6tNG9dxBnsP5bPywtS+OG3HPXxtDDy8pb8vVdL/C+0eF5EHMoY+M+qNE7kF9M6pC6P94siIc45us6LODMVK4IxhlkbD/H8D9s4nl+MxQ1G9mzJo32j8PVyzoZTIrVJdn4x05bvZMbqPRRZbbi5wQ2dmzK6XxSNAn0dHZ6IlIGvlzvjrmlDYbGV6zs31Xb/ImWkYqWWO3TiFGO/28KyFPt+7jFh/ky9oT0dHN3VWkQoKrHx35/28vbSHaXTRnq0bsAzA2OJaxzo4OhEpLyu7dDY0SGIuBwVK7WUzWb4NHEvU+Zt52SRFS93Cw9d1Zq/92qlOe8iDmaMYd7WdKbO387eo/kARIXWZcyAWHpHB2vaiIiI1BoqVmqhXZl5PP3NZn7ZcxyALs3rMfWGdrQO8XdwZCICsOVgNvd/+isAwf7ejL46ihu7NMVDFxJERKSWUbFSixRbbfxr5W7eWrKDohIbfl7uPNU/htsva45Fc2dFnEb7pkEM6diYFg3qcM8VLanjrV/VIiJSO+kvYC2x9WA2T369maTDOQBcERXMS9e1LXtnaxGpVm/e3FHTvUREpNbTnIIyWrlyJYMHD6Zx48a4ubkxc+bMC95n+fLldO7cGW9vb1q3bs2MGTOqPM4/Kii2MmXedoZMW03S4RyC/Dx57S8d+GjEpSpURJyYChUREREVK2V28uRJOnTowLRp08p0fFpaGoMGDaJPnz5s3LiRRx55hJEjR7JgwYIqjvR/EncfZcBbP/L+il1YbYZr2jdi0aO9uKFLU50IiYiIiIjT0zSwMhowYAADBgwo8/Hvv/8+ERERvPbaawDExsayatUq3njjDRISEqoqTAByC4qZMm87nybuAyA0wJuJQ9rSLy6sSp9XRERERKQyqVipImvXrqVv375n3JaQkMAjjzxSpc+7OCmDcTO3kp5TAMAtXZsxZmAMAepuLSIiIiIuRsVKFUlPTyc0NPSM20JDQ8nJyeHUqVP4+p6963RhYSGFhYWlX+fk5JTp+bLyCnn+hyR+2HQIgBYN/Jh8fXu6tWpQwVcgIpWlonktIs5LeS1SPbRmxclMnjyZwMDA0o/w8PDzHm+M4bsNB7j69RX8sOkQFjf4+xUtmffwFSpURJxEefNaRJyf8lqkeqhYqSJhYWFkZGSccVtGRgYBAQHnHFUBGDNmDNnZ2aUf+/fvP+/zfLluP49+sYnj+cXEhPkzc1QPxgyMxdfLvVJeh4hcvPLmNYDNZiMjIwObzVYNEYpIeSmvRaqHpoFVkW7dujF37twzblu0aBHdunU77/28vb3x9vYu8/MMad+IDxf8wuA6Sfy9gzeejS+vULwiUnXKm9c2m41JkyaRmJhIfHw8Y8eOxWLRtSURZ6K8FqkeypIyysvLY+PGjWzcuBGwb028ceNG9u2z77g1ZswYhg0bVnr8vffey+7du3nyySfZvn077777Ll9++SWPPvpopcblU3ycOS2+5AG/xXgeWgf5WZX6+CJS/TIzM0lMTCQ9PZ3ExEQyMzMdHZKIXCTltUjFqFgpo3Xr1tGpUyc6deoEwGOPPUanTp147rnnADh8+HBp4QIQERHBnDlzWLRoER06dOC1117jgw8+qPxti/0a4hHeBeqGQtNLwK9h5T6+iFS74OBg4uPjCQsLIz4+nuDgYEeHJCIXSXktUjFuxhjj6CDk3HJycggMDCQ7O5uAgICzH2Sz2UdU/BqChpRFnF5Z8tpms5GZmUlwcLCmioi4AOW1SNXQmpWawGKBuiGOjkJEKpHFYvnT9uci4tqU1yLlp7JeRERERESckooVERERERFxSipWRERERETEKWnNipM7vf9BTk6OgyMRcS3+/v64ubk5OoyzUl6LVIzyWqTmuVBeq1hxcrm5uQCEh4c7OBIR13LeHfQcTHktUjHKa5Ga50J5ra2LnZzNZiMlJYU2bdqwf/9+p/0lXRvk5OQQHh6u98HByvo+OPMVWOW181BeOwfltVQm5bXzKMt7oZEVF2exWGjSpAkAAQEBSjonoPfBObjy+6C8dj56H5yDK78Pymvno/fBeVzMe6EF9iIiIiIi4pRUrIiIiIiIiFNSseICvL29GT9+PN7e3o4OpVbT++Acasr7UFNeh6vT++Acasr7UFNeh6vT++A8KuO90AJ7ERERERFxShpZERERERERp6RiRUREREREnJKKFRERERERcUoqVkRERERExCmpWBEREREREaekYkVERERERJySihUREREREXFKKlZERERERMQpqVgRERERERGnpGJFRERERESckooVERERERFxSipWRERERETEKalYERERERERp6RiRUREREREnJKKFRERERERcUoqVkRERERExClVqFhJTEys7DhERERERETOUKFipVu3bkRFRTFx4kR2795d2TGJiIiIiIhUrFj573//S2RkJBMnTiQyMpIePXrw/vvvc+zYscqOT0REREREaik3Y4yp6J2zsrL4/PPP+eyzz/jpp5/w8vKif//+/O1vf+Paa6/Fy8urMmMVEREREZFa5KKKld/btWsXn332GZ9++ik7duwgMDCQG2+8kWHDhnH55ZdXxlOIiIiIiEgtUmm7gfn6+uLn54ePjw/GGNzc3Jg1axa9evXi0ksvJSkpqbKeSkREREREaoGLKlZyc3OZPn06ffv2pXnz5jzzzDO0aNGCr7/+mvT0dA4dOsQXX3zBkSNHGDFiRGXFXKsYY8jJyaGSBsBExAkor0VERMqmQsXKrFmzuOmmmwgNDeWuu+4iNzeXN998k0OHDjFz5kyuv/56PD09cXd358Ybb2TcuHFs2LChsmOvFXJzcwkMDCQ3N9fRoZTas2cPbm5ubNy40dGhiLgk5bWIiEjZVKhYue6660hMTOTRRx8lOTmZxMRERo0aRYMGDc56fIcOHbjtttsuKlApu/T0dB588EFatmyJt7c34eHhDB48mCVLljg6tFIpKSn06dOH0NBQfHx8aNmyJePGjaO4uNjRoYk4JVfI69/buXMn/v7+BAUFOToUERFxYR4VudPSpUvp3bt3mY/v2rUrXbt2rchTSTnt2bOHHj16EBQUxCuvvEK7du0oLi5mwYIFjBo1iu3btzs6RAA8PT0ZNmwYnTt3JigoiE2bNnH33Xdjs9l46aWXHB2eiFNxlbw+rbi4mFtuuYWePXuyZs0aR4cjIiIurEIjK+UpVKR63X///bi5ufHzzz9zww03EBUVRVxcHI899hg//fQTAHfeeSfXXHPNGfcrLi4mJCSE//znPwDYbDZefvllWrdujbe3N82aNWPSpEnnfN6tW7cyYMAA6tatS2hoKLfffjtZWVnnPL5ly5aMGDGCDh060Lx5c6699lpuu+02fvzxx0r4XxCpWVwlr08bN24cMTEx3HTTTRfxqkVERCpxNzBxvGPHjjF//nxGjRpFnTp1/vT909MxRo4cyfz58zl8+HDp92bPnk1+fj4333wzAGPGjGHKlCk8++yzJCUl8dlnnxEaGnrW5z1x4gRXXnklnTp1Yt26dcyfP5+MjIxynajs3LmT+fPn06tXr3K8YpGaz9XyeunSpXz11VdMmzatgq9YaiybDfKO2D+LiJSVEaeWnZ1tAJOdnX3BYxMTEw1gvv322wse26ZNGzN16tTSrwcPHmzuuOMOY4wxOTk5xtvb2/z73/8+633T0tIMYDZs2GCMMWbixImmX79+Zxyzf/9+A5iUlJTzxtGtWzfj7e1tAHPPPfcYq9V6wdhFXF1NzeusrCwTHh5uVqxYYYwxZvr06SYwMPCCcUstYLUas3yqMf/9i/2zfteLSBlpZKUGMeXYBnXkyJFMnz4dgIyMDObNm8edd94JQHJyMoWFhVx11VVleqxNmzaxbNky6tatW/oRExMD2JuFns8XX3zBr7/+ymeffcacOXN49dVXy/waRGoDV8rru+++m1tvvZUrrriizDFLLZGfBQfWQV6G/XP+hacTiohABRfYi3OKjIzEzc2tTItthw0bxtNPP83atWtZs2YNERER9OzZE7A3+CyPvLw8Bg8ezNSpU//0vUaNGp33vuHh4QC0adMGq9XKPffcw+jRo3F3dy9XDCI1lSvl9dKlS/n+++9LLzoYY7DZbHh4ePCvf/2rtHCSWsivITS9xF6oNL3E/rWISBmoWKlB6tevT0JCAtOmTeOhhx760/z2EydOlM5vb9CgAUOHDmX69OmsXbv2jKadkZGR+Pr6smTJEkaOHHnB5+3cuTPffPMNLVq0wMOj4j9SNpuN4uJibDabihWR37hSXq9duxar1Vr69axZs5g6dSpr1qyhSZMmZXoMqaEsFuj5uH1Exa+h/WsRkTLQb4saZtq0aVitVrp27co333zDjh07SE5O5u2336Zbt25nHDty5Eg++ugjkpOTGT58eOntPj4+PPXUUzz55JN8/PHH7Nq1i59++ql0R6E/GjVqFMeOHeOWW27hl19+YdeuXSxYsIARI0acceLye59++ilffvklycnJ7N69my+//JIxY8Zw88034+npWXn/ISI1gKvkdWxsLG3bti39aNKkCRaLhbZt21KvXr3K+w8R12SxQN0QFSoiUi4aWalhWrZsya+//sqkSZMYPXo0hw8fJjg4mC5duvDee++dcWzfvn1p1KgRcXFxNG7c+IzvPfvss3h4ePDcc89x6NAhGjVqxL333nvW52zcuDGrV6/mqaeeol+/fhQWFtK8eXP69++P5Rx/lDw8PJg6dSqpqakYY2jevDkPPPAAjz76aOX8R4jUIK6S1yIiIpXNzZRn9aZUu5ycHAIDA8nOziYgIKBSHzsvL48mTZowffp0rr/++kp9bBE5N+W1iIhI2WhkpRay2WxkZWXx2muvERQUxLXXXuvokETkIimvRUSkJlKxUgvt27ePiIgImjZtyowZMy5qUbyIOAfltYiI1ESaeFxGkydP5tJLL8Xf35+QkBCGDh1KSkrKBe/31VdfERMTg4+PD+3atWPu3LnVEO35tWjRAmMM+/fvL3PPBRFxbsprERGpiVSslNGKFSsYNWoUP/30E4sWLaK4uJh+/fpx8uTJc95nzZo13HLLLdx1111s2LCBoUOHMnToULZu3VqNkYuIiDivo3mF5Wp+KiK1ixbYV1BmZiYhISGsWLHinN2ab775Zk6ePMns2bNLb7vsssvo2LEj77//fpmepyoX4oqIYyivRaDYamP66jTeXLyDN27uSEJcmKNDEhEnpEnNFZSdnQ3YG7ady9q1a3nsscfOuC0hIYGZM2ee8z6FhYUUFhaWfp2Tk3NxgYqIwymvRc70c9oxxs3cQmpGHgA/bDqkYkVEzkrTwCrAZrPxyCOP0KNHD9q2bXvO49LT0wkNDT3jttDQUNLT0895n8mTJxMYGFj6ER4eXmlxi7iyE/lFvLt8Jzab6w0GK69F7LLyChn95SZu+udaUjPyqF/Hi5dvbM/bf+3k6NBExElpZKUCRo0axdatW1m1alWlP/aYMWPOGI3JycnRiY3Ualab4fNf9vHqghSO5xfToI4XN1/azNFhlYvyWmo7q83w2c/7eGX+dnIKSnBzg1u6NuPJhGiC/LwcHZ6IODEVK+X0wAMPMHv2bFauXEnTpk3Pe2xYWBgZGRln3JaRkUFY2LmHur29vfH29q6UWEVc3S97jjF+1jaSDtunTUWH+tOiQR0HR1V+ymupzTbtP8Gzs7ay+YB9+nRc4wBeHNqWTs3qOTgyEXEFKlbKyBjDgw8+yHfffcfy5cuJiIi44H26devGkiVLeOSRR0pvW7RoEd26davCSEVcX3p2AVPmJTNz4yEAAnw8eOzqKP52WXM83DV7VcQVZOcX88rC7XyauA9jwN/bgyf6R3NbfHPcLW6ODk9EXISKlTIaNWoUn332GbNmzcLf37903UlgYCC+vr4ADBs2jCZNmjB58mQAHn74YXr16sVrr73GoEGD+Pzzz1m3bh3/+te/HPY6RJxZYYmV/6xK4x9Ld5JfZMXNDf56aTiP94umQV2NTIg4hM0G+Vng1xAsF75YYIzhm18PMnluMkdPFgEwtGNjnhkUS4i/T1VHKyI1jIqVMnrvvfcA6N279xm3T58+nTvuuAOwd5C2/O4Xeffu3fnss88YN24czzzzDJGRkcycOfO8i/JFaiNjDEu3H2Hi7CT2HM0HoHOzIJ6/ti3tmgY6ODqRWsxmgx9fhQProOkl0PPx8xYsKem5PDtzKz/vOQZA65C6TBzSlm6tGlRXxCJSw6jPipNTPwap6XZl5jFxdhLLUzIBCPH3ZszAGIZ2bIKbW82cKqK8FpeRdwRmPQB5GVA3FIb8A+qG/Omwk4UlvLVkB/9ZlYbVZvD1dOfhvpHc2SMCLw9N3RSRitPIiog4RG5BMf9YupMPV6dRbDV4urtx1+UteeDK1tT11q8mEafg19A+onJ6ZMWv4RnfNsYwf2s6L8xO4nB2AQAJcaE8NziOJkG+johYRGoYnRGISLWy2QzfbTjIlPnbycy1N0q8MiaEZ69pQ0RD19vpS6RGs1jsU7/OsmZlT9ZJnvt+GytT7aOizer78fy1cfSJ+fPIi4hIRalYEZFqs+VANuO/38qv+04AENGwDs9eE8uVMaHnv6OIOI7FcsbUr4JiK+8t38V7K3ZRVGLDy93Cvb1bcX/vVvh4ujswUBGpiVSsiEiVy8or5NUFKXyxbj/GQB0vdx68KpIRPVrg7aGTGxFXsSzlCONnbWPfMftGGFdEBfP8tXEaFRWRKqNiRUSqTLHVxidr9/LG4lRyC0oA+xamYwbGEhqgLUxFXMWhE6d44Yck5m+zb9sfFuDDs9e0YWC7sBq7EYaIOAcVKyJSJVbvzGLC99vYcSQPgLZNApgwOI5LWtR3cGQiUlZFJTY+XJ3GW4t3cKrYirvFjbsuj+ChqyIrZyOMcvZwEZHaR8WKiCPVwD/U+4/lM2lOcukV2Hp+njzZP4abLglX12qpFWw2G5mZmQQHB5/Re8vV/LT7KM/O3Fp6weHSFvWYOLQtMWGVtN12OXu4iEjtpGJFxFFq2B/qU0VW3l+xi/dX7KKwxIa7xY3bL2vOo32jCPTzdHR4ItXCZrMxadIkEhMTiY+PZ+zYsS5XsGTmFjJ5bjLfbjgIQIM6XowZGMsNnSu591F+lv33X16G/XN+1ll7uIhI7aZiRcRRXOgP9fmuFBtjmLc1nUlzkjl44hQA3Vo2YPy1bSrvCqyIi8jMzCQxMZH09HQSExPJzMwkNNQ5d7v7Y15bbYZPE/fyyoIUcgtKcHODW7s244mEaIL8vCo/gAv0cBERARUrIo7jIn+oz3elOCU9lwnfb2Pt7qMANAnyZeygWAa01aJbqZ2Cg4OJj48vzZfg4GBHh3RWf8zra4aN4tnvt7H1YA4A7ZoEMnFoWzqGB1VdEOfp4SIicpqKFRFHcZE/1Ge7UuzjX583FqfyyU97sdoM3h4W7u3Vint7tcLXq4xbEdfA9ToiFouFsWPHOv2aldN5fSgrm2/3e/Phe2sxgL+PB0/2j+HWrs0qvMasXGt2/tDDRUTkj1SsiDiSC/yh/v2V4ku7xrM47RSvLlzG8fxiAPrHhTF2UCzh9f3K/qA1bL2OyO9ZLBannfp1WoMGDanXeQDJ+aFYPXwBuL5zE8YMiCXY37vCj1sT1uyIiHNRsSIi53X6SvHijbt5e9Vhps/cBkDrkLpMGBzH5ZEVmL7mQut1RGqa5MM5PDtzK+uKWoAHRIXUZeLQtsS3bHDRj+1Ka3ZExDWoWBGR88rIKWDKvO1899vOQP7eHjzcN5Lh3Vvg6V7BK6Yusl5HpCbJKyzhzUWpTF+zB6vN4OflziN9IxnRI6LiufwHrrJmR0Rch5sxxjg6CDm3nJwcAgMDyc7OJiBAOytJ9SkssfLhqj28s3QH+UVW3Nzg5kvCeTwhmoZ1Kz5NpFQtXrOivJbqZIxhzpbDTJydREZOIQAD2obx7DVtaBzkW+nPV1P6zIiIc9DIioj8ydLtGbzwQxJ7juYD0KlZEM9fG0f7pkGV9yQusF5HxNXtzsxj/Pfb+HFHFgDNG/jx/LVx9I6uutxzhTU7IuI6VKyISKm0rJO88MM2lqVkAhDs782YATEM7dgEi7rPi7iMgmIr05bt5J8rdlNkteHlYeG+Xq24r3crfDzLuGOfiIgTULEiIuQVlvCPpTv5z6rdFFsNnu5u3NkjggeviqSut35NiLiSpdszGP/9NvYfszdp7RUVzPPXxtGiYR0HRyYiUn46CxGpxYwxzNp4iJfmJnMk1z6XvVdUMM8NbkOr4LoOjk5EyuPA8Xxe+CGJhUkZADQK9OG5a9rQX01aRcSFqVgRqaW2Hsxm/PfbWL/3OGCfy/7cNW24MiZEJzYiLqSoxMYHq3bzzpKdnCq24mFx467LI3joqkjqaGRURFycfouJ1DJH8wp5dWEqn/+yD2PAz8udUX1ac9flEZrLLuJi1uzK4tmZW9mVeRKArnXSebFTHlH9+9e6XfZEpGZSsSJSS5RYbfz3p728viiVnIISAIZ0bMyYAbGEBfo4ODoRKY8jOQVMmpvMrI2HAGhYx4Nn6i3jOo+1uGWHQv4t2m1PRGoEFSsitcCaXVk8/30SKRm5ALRpFMCEa+PoGlHfwZGJSHmUWG188tNeXl+YSm5hCW5ucPtlzRndN5LAdZvgQKgarYpIjaJiRaQGO3A8n8lztzNny2EAgvw8eSIhmr9e2gx3bUUs4lJ+3Xeccd9tJelwDgAdmgYycWjb//U/6vl4rW20KiI1l4oVkRqooNjKP1fs5r0VOykotmFxg9vimzO6XxRBfl6ODk9EyuH4ySJeXrCd//t5PwABPh482T+GW7r+4aKDGq2KSA2kYkWkBjHGsGBbOhNnJ3PwhL3HQnxEfSZcG0dsowAHRyci5WGzGb5av58p87ZzPL8YgBs6N2XMwBga1vV2cHQiItVDxYpIDZGakcvzP2xj9c6jgL3HwthBsQxq10hbEYu4mKRDOYybuYVf950AIDrUnxeva8ulLbTOTERqFxUrIi4u+1Qxby5O5eO1e7HaDF4eFu69oiX39m6Fn5dSXMSV5BYU8/qiVD5aswebgTpe7jx6dRTDu7fA013rUESk9tGZjIiLstoMX63bz8sLUjh2sgiAhLhQxg1qQ3h9PwdHJyLlYYzhh82HeXF2EkdyCwEY1L4Rzw5qo63FRaRWU7Ei4oJ+3Xec8bO2seVgNgCtQ+oyfnAbekYGOzgyESmvnUfyeG7WVtbssk/hbNHAjxeGtOWKKOWziIiKFREXciSngCnzt/PtrwcB8Pf24OG+kZoiIuKCThVZ+ceyHfxr5W6KrQZvDwuj+rTmnita4uPp7ujwREScgooVERdQVGJj+uo03l6yg5NFVgD+0qUpT/aPIdhfuwKJuJrFSRmM/35b6a59faKDef7atjRroCmcIiK/p2JFxMktSznCxB+S2J11EoCO4UFMuDaOjuFBjg1MRMpt/7F8nv8hicXJGQA0DvThucFxJMSFatc+EZGzULEi4qT2ZJ1k4uwklmw/AkDDut481T+aGzo3xaLu8yIupbDEygc/pvHO0h0UFNvwsLhx9xUtefDK1tq1T0TkPPQbUsTJnCwsYdqynXzwYxpFVvtJzZ2XR/Dgla3x9/F0dHgiUk6rdmTx3KytpaOjl7Wsz8QhbYkM9XdwZCIizk/FioiTMMbw/aZDvDQ3mYwc+9alPSMbMn5wHK1D6jo4OhEpr4ycAl6ck8wPmw4B9tHRcYNiGdKxsaZ8iYiUkYoVESew9WA2z/+wjV/2HAegWX0/nr2mDX1jQ3RSI+JiSqw2Plq7lzcWpZJXWILFDYZ1a8GjV0cR6KvRURGR8lCxIuJAx04W8erCFP7v530YA76e7ozq04qRPbV1qYgrWr/3GGO/28r29FwAOoQHMWloW9o2CXRwZCIirknFikgF2Gw2MjMzCQ4OxmIpf3+TEquNz37ex2sLU8k+VQzA4A6NGTMghsZBvpUdroiUwcXk9bGTRUyZl8yX6w4AEOjrydMDYrj5knBtiCEichFUrIiUk81mY9KkSSQmJhIfH8/YsWPLdWKzdtdRnv9hW+mV19hGAUwY3Ib4lg2qKmQRuYCK5rXNZvhi3X6mzt/OiXz7hYebLmnKU/1jaFBXPZBERC6WihWRcsrMzCQxMZH09HQSExPJzMwkNDT0gvc7dOIUk+YmM2fzYQCC/DwZ3S+aW7s2w11XXkUcqiJ5vfVgNuNmbmXj/hMAxIT5M+m6tnRpXr8aIhYRqR1UrIiUU3BwMPHx8aVXYIODg887faSg2Mq/Vu7m3eU7KSi2YXGD2+Kb89jVUdSr4+WgVyEiv1eevM4pKOb1hal8vHYPNgN1vNx59Ooo7ujeAg/38k8LFRGRc3MzxhhHByHnlpOTQ2BgINnZ2QQEBDg6HPnN709igLNOHzHGsDApg4mzkzhw/BQAXVvUZ/y1bYhrrMW2tZny2jldKK/d3Nz4ftMhXpyTTGaufXvxwR0aM25QLKEBPo4MXUSkxtLIikgFWCyW0ikiGRkZf5o+kuvmx/M/JPHjjiwAwgJ8eGZQLIPbN9JWxCJO6nx5/fP2fby1Kp21u48C0LJhHV4Y0pbLIxs6MmQRkRpPxYrIRfr99JFOXbvxz5+z+HjtXkpsBi93C3dfEcGoPq3x86p4ul3s7mMiUj6n83rtz+uxdBzM7Z8mUWw1eHtYeOiqSEb2jMDb4+K2F1dei4hcmKaBOTlNF3ENJSVWpq/YzvtrDnH0ZBEAV7cJZdygWJo3qHNRj32xu4+J81FeOz9jDAu2pTNh1lbSc+053Tc2hPGD4wiv73fRj6+8FhEpG42siFykDfuOM+H7bWw6kA1Ay+A6PHdNG3pHh1TK41d09zERqZh9R/OZ8MM2lm4/AkCTIF8mXBvH1W0qL++U1yIiZaNiRaSCjuQW8PL8FL5eb28CV9fbg4evimR49xZ4eVTeFdKz7VIkIpWvsMTKP1fsZtqynRSW2PB0d+OeK1ryQJ9IfL0ubsrXHymvRUTKRtPAymjlypW88sorrF+/nsOHD/Pdd98xdOjQcx6/fPly+vTp86fbDx8+TFhYWJmfV9NFnE9RiY2P1uzhrSU7yCssAeDGLk15sn80If5VsyOQ5rbXLMpr57MyNZPx328jLeskAN1bNeCFIW1pHVK3yp5TeS0icmEaWSmjkydP0qFDB+68806uv/76Mt8vJSXljJORkJDKmRokjrEyNZMJP2xjd6b9hKZD00AmXBtHp2b1qvR5f79LkYhUnvTsAibOSSpt1hrs782z17Splp37lNciIhemYqWMBgwYwIABA8p9v5CQEIKCgio/IKlW+47mM3FOEouSMgBoUMeLp/rHcGOXpljUfV7E5RRb7SOkbyxK5WSRFYsbDO/egkevjiLAx9PR4YmIyG9UrFSxjh07UlhYSNu2bZkwYQI9evQ47/GFhYUUFhaWfp2Tk1PVIcp55BeV8O6yXfzrx90UldjwsLgxrFsLHu4bSaCvTmikbJTXzmXdnmOMm7mV7em5AHRuFsTEoW3VrFVExAmpWKkijRo14v333+eSSy6hsLCQDz74gN69e5OYmEjnzp3Peb/Jkyfz/PPPV2OkcjbGGH7YfJiX5iSTnlMAwOWtGzJ+cBsiQ/0dHJ24GuW1cziaV8iUedv56rdNMYL8PBkzIIa/dAnXCKmIiJPSAvsKcHNzu+AC+7Pp1asXzZo145NPPjnnMWe7AhseHq6FuNUo6VAOE77fxs97jgHQtJ4vz17Thn5tQtV9XipEee1YNpvh81/2M3X+drJPFQPw10vDebJ/DPXreDk4OhEROR+NrFSjrl27smrVqvMe4+3tjbe3dzVFJL93/GQRry1K4bPEfdgM+HhaGNW7NXdf0RIfz8rdtlRqF+W142w5kM24WVvZtP8EAG0aBTBxaFu6NK/aTTFERKRyqFipRhs3bqRRo0aODkP+wGozfPbzPl5bmMKJfPtV10HtG/HMwFiaBPk6ODoRqYjsU8W8tjCFT37aizH2PkiPXR3FsG7N8XDXNsEiIq5CxUoZ5eXlsXPnztKv09LS2LhxI/Xr16dZs2aMGTOGgwcP8vHHHwPw5ptvEhERQVxcHAUFBXzwwQcsXbqUhQsXOuolyFkk7j7KhB+SSD5sX/AcE+bPhGvjuKxlAwdHJiIVYYxh5saDTJqTTFZeEQBDOjZm7MBYQgKqpg+SiIhUHRUrZbRu3bozmjw+9thjAAwfPpwZM2Zw+PBh9u3bV/r9oqIiRo8ezcGDB/Hz86N9+/YsXrz4rI0ipfodOnGKyfO288OmQwAE+noyul8Ut3ZtpquuIi4qNSOXZ2duJTHNvt6sZXAdXhzSlu6tGzo4MhERqSgtsHdy6nRduQqKrXzw426mLdvFqWIrbm5wa9dmjO4XrYW2Um2U15XrZGEJby/dwX9+TKPEZvDxtPDQVZGMvLwlXh66+CAi4so0siK1gjGGRUkZTJyTxP5jpwC4tEU9xg+Oo20T9VYQcUXGGBZsS+eFH5I4lG3fYvzqNqE8d00bwuv7OTg6ERGpDCpWpMbbeSSPF2YnsTI1E4DQAG+eGRjLtR0aaytiERe19+hJxn+/jeUp9rxuWs+XCYPj6Nsm1MGRiYhIZVKxIjVWbkExby/ZwfTVeyixGbzcLYzsGcGoPq2p460ffRFXVFBs5f0Vu3h3+S6KSmx4uVv4e6+W3N+7Nb5e2mJcRKSm0Rmb1Dg2m+HbDQeZMm87WXn2RnxXxYTw7DVtaNGwjoOjE5GKWpGayXOztrL3aD4Al7duyPND4mgVXNfBkYmISFVRsSLlZrPZyMzMJDg4GIvFuRavbtp/gvHfb2Pjbw3gWjasw7OD29AnOsSxgYk4OWfO68PZp5g4O4m5W9IB+1TOZ69pw6B2jTSVU0SkhlOxIuVis9mYNGkSiYmJxMfHM3bsWKc4scnMLeTl+dv5av0BAOp4ufNw30ju6B6h3YBELsBZ87rYamP66jTeXLyD/CIr7hY37ujegkevjqKupnKKiNQK+m0v5ZKZmUliYiLp6ekkJiaSmZlJaGjZF7SW9eptWY8rttr4aM0e3lq8g9zCEgBu6NyUp/pHV0oDOGe+2ixSWS42r6Hycztx91Gem7WNlIxcALo0r8eLQ9sS2+jit3pWXouIuA4VK1IuwcHBxMfHl16BDQ4OLvN9y3r1tqzH/bgjkwnfb2NX5kkA2jcNZMK1cXRuVq/iL7ACcYi4uovJa6jc3M7KK+Slucl8++tBAOrX8eLpATHc2LkpFsvFT/lSXouIuBYVK1Jmp69GjhkzhqNHj5b7qmRZr95e6Lj9x/KZODuJhUkZADSo48WT/aP5S5fwSjmZKW+8Iq7sYvMaKie3rTbDZz/v45X528kpKMHNDf56aTOeTIimXiU2bFVei4i4FhUrUiaVcTWyrFdvz3VcflEJ7y3fxT9X7qaoxIa7xY1h3ZrzSN8oAn09L/o1VjReEVdVWaMMF5vbm/af4NlZW9l8IBuAuMYBvDi0LZ0qaZS0IrGKiIhzcDPGGEcHIeeWk5NDYGAg2dnZBARc/FztisrIyOCuu+4iPT2dsLAw/vOf/1ToamRF5rW7ubkxZ8thXpqTXNqlukfrBowfHEdUqP+FnhDys8CvIVTgJExz26Uq1LS8horldm6BlVcWbufTxH0YA/7eHozuF8Xt3Vrgfp5R0ovNS+W1iIjr0MiKlEllzGk/fXJQlpMhi8VCaGgoyYdzmPD9NhLTjgH2LtXjBsWSEBd24S1LbTb48VU4sA6aXgI9Hy93wXI6DpGaqDJGGSqS2yEhIXz760FempvM0ZNFAFzXqQljBsYQ4n/+jTEqYzRIeS0i4jpUrEiZWCwWxo4dW6GrkRU5uTiRX8Qbi1L55Ke92Az4eFq4t1cr7u3VCh/PMnapzs+yFyp5GfbP+VlQV/1WRE67mLyGiuV2Snouz87cys977BcgWofUZeKQtnRr1aBMz6k1JyIitYuKFSmzil6NLM/JhdVm+L+f9/HawhSO5xcDMKhdI8YMjKFpPb/yPbFfQ/uIyumRFb+G5Y5dpKa7mFGG8uR2XmEJby1O5cPVe7DaDL6e9l5Id/YoXy8krTkREaldVKxIlSvrycUve44xftY2kg7nABAVWpcJg+Po3vrCRcZZ56BbLPapXxexZkVEzq0suW2MYd7WdF74IYn0HPuas4S4UJ4bHEeTIN/zPv7Z8vpiR4NERMS1aIG9k3OWhbgX63wLWtOzC5g8L5lZGw8BEODjwWNXR/G3y5rj4X7hExH1TRBXU1PyGs6f23uyTvLc99tYmZoJQLP6fjx/bRx9Yi48HVN5LSIioJEVqSZnm2pSUGzlP6vSmLZsJ/lF1tK+Co/3i6JBXe8yP7bmsIs4zrly+93lu3h/+S6KrDa83C3c27sV9/cu+5oz5bWIiICKFalC57riaoxhSfIRJs5JYu/RfAC6NK/H89fG0bZJYLmfR3PYRarPhbb9XZZyhPGztrHvmD23e0Y25Plr42gZXLdcz6O8FhER0DQwp+eq00XONYVjV2YeL/yQxIrfpoWE+HvzzMBYhnRsfOGtiC/wfJrDLq6ipuU1wKETp3jhhyTmb0sHICzAh2evacPAdmXYZvw8z6e8FhGp3TSyIlXij1M40g6k8+XWbD5cnUax1eDp7sZdl7fkgStbU9f74n8M1TdBpOqdbWpW/YbB/GdVGm8t3sGpYivuFjdGdG/BI1dHXXRuK69FRETFilSJ01M4fkpMpH7nAfz1kyQycwsBuDImhGevaUNEwzoOjlJEyuOPU7N251r426c/suNIHgCXtqjHxKFtiQlzndEiERFxbpoG5uRcdboIwMZ9xxn33Sa2Hj4JQETDOjx7TSxXxuhKqdRurpzXNpuN7XsO8a+fM5n52w5+Dep4MWZgLDd0bnJR0zlFRET+SCMrUumy8gp5ZX4KX67fjzFQx8udB6+KZESPFnh7lLH7vIg4HavN8N+f9vHqwhRyC0pwc4Pb4pvxRL8YAv08HR2eiIjUQCpWpNIUW218vHYvby5OJbegBIDrOjXh6QExhAb4ODg6EbkYG/Yd59lZW9l60N60tX3TQCYOaUuH8CDHBiYiIjWaihWpFKt2ZPH8D9tK5663bRLAhMFxXNKivoMjE5GLcSK/iJcXpPB/P+/DGPD38eDJhGhujW+Ou0VTvkREpGqpWJGLsv9YPpPmJJduV1q/jhdPJERz0yXhOpERcWE2m+HrXw8wZd52jp0sAuD6zk0YMyCWYP+yN20VERG5GCpWpEJOFVl5b8Uu/rliF4UlNtwtbtx+WXMe7RuluesiLi75cA7PztzKur3HAYgMqcuLQ9sS37KBgyMTEZHaRsWKlIsxhnlb05k0J5mDJ04B0K1lAyZcG0d0mH+VPa+aw4lUvbzCEt5clMr0NXuw2gx+Xu480jeSET0i8HSvmrxTbouIyPmoWJEyS0nP5fkftrFm11EAmgT5MnZQLAPaVrxDdVmcr2u2iFw8Ywxzthxm4uwkMnLs/ZAGtgvj2Wva0CjQt8qeV7ktIiIXomJFLig7v5g3FqfyyU97sdoM3h4W7u3Vint7tcLXq+q3Ij5b12x1tRapHLsz8xj//TZ+3JEFQIsGfjw/pC29ooKr/LmV2yIiciEqVuScrDbDF7/s55UF2zmeXwxA/7gwxg6KJby+X7XF8ceu2cHBVX8SJVLTFRRbmbZsJ/9csZsiqw0vDwujerfm771a4uNZPf2QlNsiInIh6mDv5BzV6XrdnmOM/34b2w7ZeypEhtRlwrVx9GjdsNpi+D3Na5eaxNEd7Jduz2D899vYf8y+7qxXVDAvDImjeYM61R6LcltERM5HIytyhvTsAqbMS2bmxkOAvafCo32juL1b8z8tsK3OkwyLxaLpISIX6cDxfJ7/IYlFSRkANAr0YfzgNiTE/W/dWXUXD8ptERE5HxUrAkBhiZUPV+3hnaU7yC+y4uYGN18SzhMJ0TSo++eeCloYK+I6ikpsfLBqN28v2UFBsQ0Pixt3XR7BQ1dFUsf7f38GlNciIuJsVKwIS7dn8MIPSew5mg9Ap2ZBPH9tHO2bBp3zPloYK+Ia1uzK4rlZ29h5JA+ArhH1eXFoW6JC/7zVuPJaREScjYqVWiwt6yQTZyexdPsRAIL9vRkzIIahHZtguUD3+TItjLXZID8L/BqCrs6KVKsjOQVMmpvMrN+mdDao48XYQbFc16nJObcaL0tea42JiIhUJy2wd3JVsRA3r7CEfyzdyX9W7abYavB0d+POyyN48MpI6nqXvX4970mLzQY/vgoH1kHTS6Dn4ypYRH5TlQvsS6w2/vvTXl5bmEpuYQlubnD7Zc0Z3S+aQF/PC97/fHmtaWIiIlLdNLJSixhjmLnxIJPnbudIrr3xW6+oYJ4b3IZWwXXL/XjnXRibn2UvVPIy7J/zs6BuyMWELyIX8Ou+44z7bitJh+27+HVoGsiLQ9vRrmlgmR/jfHmtaWIiIlLdVKzUElsOZDP++638uu8EAM0b+PHcNW24MiakarrP+zW0j6icHlnxc8yWxyK1wfGTRby8YDv/9/N+AAJ9PXkiIZpbujbD/QJTOstDfVFERKS6aRqYk7vY6SJH8wp5dWEKn/+yH2PAz8udUX1aM7JnBN4eVdz4TWtWRM6qsqaB2WyGr9bvZ8q8/zVu/UuXpjw9IOasu/j9dqeLykutWRERkeqkkZUa6vS89dcXpZJTUALAkI6NGTMglrBAn+oJwmLR1C+RKrLtUDbPzvzfaGl0qD8vXteWS1vUP/edKmEtmfqiiIhIdVKxUgOt2ZnF8z8kkZKRC0CbRgE8PyTu/CcxIuIScguKeX1RKh+t2YPNQB0vdx69Oorh3Vv8qXHrn2gtmYiIuBgVKzXIgeP5vDQ3mblb0gGo5+fJ4wnR/PXSyp23LiLVzxjDD5sP8+LspNINMga2C+PZa9rQKNC3bA+itWQiIuJiVKzUAAXFVt5fsYv3lu+isMSGxQ1ui2/O6H5RBPl5OTo8EblIuzLzeG7WVlbvPApAiwZ+vDCkLVdElXOBu8Vin/qltWQiIuIiVKy4uJ92H2X0l5s4eOIUAJe1rM/4wXHENqrc3g0iUv1OFVn5x7Id/GulvSeSt4eFUX1ac88VLfHxrOAGGVpLJiIiLkTFiosL8vMkPaeAxoE+jB3UhoHtwqpmK2IRqVaLkjKY8P220gsRfaKDmXBtHM0b1HFwZCIiItVHxYqLiwkL4INhl3BZywb4elXxVsQiUi027j/B3R+vA6BxoA/jr42jX5tQXYgQEZFaRxOWy2jlypUMHjyYxo0b4+bmxsyZMy94n+XLl9O5c2e8vb1p3bo1M2bMqJLY+sSEqFARqUE6hgcxqH0j7uvdisWje5EQpxFTERGpnVSslNHJkyfp0KED06ZNK9PxaWlpDBo0iD59+rBx40YeeeQRRo4cyYIFC6o4UhGpCf5xSyee6h+Dn5cGwEVEpPbSX8EyGjBgAAMGDCjz8e+//z4RERG89tprAMTGxrJq1SreeOMNEhISqipMEakhNJIiIiKikZUqs3btWvr27XvGbQkJCaxdu9ZBEYmIiIiIuBaNrFSR9PR0QkNDz7gtNDSUnJwcTp06ha/v2Zu4FRYWUlhYWPp1Tk5OlcYpIlVPeS0iIlIxGllxMpMnTyYwMLD0Izw83NEhichFUl6LiIhUjIqVKhIWFkZGRsYZt2VkZBAQEHDOURWAMWPGkJ2dXfqxf//+Cz6XzWYjIyMDm8120XGLSOVTXouIiFSMpoFVkW7dujF37twzblu0aBHdunU77/28vb3x9vYu8/PYbDYmTZpEYmIi8fHxjB07FovF8seDID8L/Brau1eLSLWqiry22WxkZmYSHBz855wXERGpIfQXrozy8vLYuHEjGzduBOxbE2/cuJF9+/YB9iunw4YNKz3+3nvvZffu3Tz55JNs376dd999ly+//JJHH320UuPKzMwkMTGR9PR0EhMTyczMPPMAmw1+fBVmPWD/rKu0Ik7vQnl9upi56667mDRpkkZfRESkxlKxUkbr1q2jU6dOdOrUCYDHHnuMTp068dxzzwFw+PDh0sIFICIigjlz5rBo0SI6dOjAa6+9xgcffFDp2xYHBwcTHx9PWFgY8fHxBAcHn3lAfhYcWAd5GfbP+VmV+vwiUvkulNcXvEghIiJSQ7gZY4yjg5Bzy8nJITAwkOzsbAICAs56zHmng5weWTmwDppeAj0f11QwEQe72Lwu0/RPERGRGkDFipMry0nNBWnNiohTqYy81poVERGpDbTAvjawWKBuiKOjEJFKZLFY/tTLSUREpKbR5TgREREREXFKKlZERERERMQpaRqYkzu9pCgnJ8fBkYi4Fn9/f9zc3Bwdxlkpr0UqxpnzWkSqhooVJ5ebmwtAeHi4gyMRcS0XtSlFFVNei1SMM+e1iFQN7Qbm5Gw2GykpKbRp04b9+/frl7QD5eTkEB4ervfBwcr6PjjzFVjltfNQXjuHmpDXIlI1NLLi5CwWC02aNAEgICBAf0ydgN4H5+DK74Py2vnofXAOeh9E5I+0wF5ERERERJySihUREREREXFKKlZcgLe3N+PHj8fb29vRodRqeh+cQ015H2rK63B1eh+cg94HETkXLbAXERERERGnpJEVERERERFxSipWRERERETEKalYERERERERp6RiRUREREREnJKKFScxbdo0WrRogY+PD/Hx8fz888/nPf6rr74iJiYGHx8f2rVrx9y5c6sp0pqtPO/DjBkzcHNzO+PDx8enGqOtmVauXMngwYNp3Lgxbm5uzJw584L3Wb58OZ07d8bb25vWrVszY8aMKo+zLJTXzkF57Xg1Ka9FpHqpWHECX3zxBY899hjjx4/n119/pUOHDiQkJHDkyJGzHr9mzRpuueUW7rrrLjZs2MDQoUMZOnQoW7durebIa5byvg9g77Z8+PDh0o+9e/dWY8Q108mTJ+nQoQPTpk0r0/FpaWkMGjSIPn36sHHjRh555BFGjhzJggULqjjS81NeOwfltXOoKXktIg5gxOG6du1qRo0aVfq11Wo1jRs3NpMnTz7r8TfddJMZNGjQGbfFx8ebv//971UaZ01X3vdh+vTpJjAwsJqiq50A89133533mCeffNLExcWdcdvNN99sEhISqjCyC1NeOwfltfNx5bwWkeqnkRUHKyoqYv369fTt27f0NovFQt++fVm7du1Z77N27dozjgdISEg45/FyYRV5HwDy8vJo3rw54eHhDBkyhG3btlVHuPI7zpgPymvnoLx2XcoHETlNxYqDZWVlYbVaCQ0NPeP20NBQ0tPTz3qf9PT0ch0vF1aR9yE6OpoPP/yQWbNm8d///hebzUb37t05cOBAdYQsvzlXPuTk5HDq1CmHxKS8dg7Ka9fljHktIo7h4egARFxVt27d6NatW+nX3bt3JzY2ln/+859MnDjRgZGJSEUpr0VEnItGVhysYcOGuLu7k5GRccbtGRkZhIWFnfU+YWFh5TpeLqwi78MfeXp60qlTJ3bu3FkVIco5nCsfAgIC8PX1dUhMymvnoLx2Xc6Y1yLiGCpWHMzLy4suXbqwZMmS0ttsNhtLliw54+re73Xr1u2M4wEWLVp0zuPlwiryPvyR1Wply5YtNGrUqKrClLNwxnxQXjsH5bXrUj6ISClHr/AXYz7//HPj7e1tZsyYYZKSksw999xjgoKCTHp6ujHGmNtvv908/fTTpcevXr3aeHh4mFdffdUkJyeb8ePHG09PT7NlyxZHvYQaobzvw/PPP28WLFhgdu3aZdavX2/++te/Gh8fH7Nt2zZHvYQaITc312zYsMFs2LDBAOb11183GzZsMHv37jXGGPP000+b22+/vfT43bt3Gz8/P/PEE0+Y5ORkM23aNOPu7m7mz5/vqJdgjFFeOwvltXOoKXktItVPxYqTeOedd0yzZs2Ml5eX6dq1q/npp59Kv9erVy8zfPjwM47/8ssvTVRUlPHy8jJxcXFmzpw51RxxzVSe9+GRRx4pPTY0NNQMHDjQ/Prrrw6IumZZtmyZAf70cfr/fvjw4aZXr15/uk/Hjh2Nl5eXadmypZk+fXq1x302ymvnoLx2vJqU1yJSvdyMMcYxYzoiIiIiIiLnpjUrIiIiIiLilFSsiIhIjXT48GGefvpp+vTpg7+/P25ubixfvtzRYYmISDmoWBERkRopJSWFqVOncvDgQdq1a+focEREpAJUrIiISI3UpUsXjh49SmpqKo899pijwxERkQpQsSIiIi7j1KlTxMTEEBMTw6lTp0pvP3bsGI0aNaJ79+5YrVYA/P39qV+/vqNCFRGRSqBiRUREXIavry8fffQRO3fuZOzYsaW3jxo1iuzsbGbMmIG7u7sDIxQRkcrk4egAREREyiM+Pp4nn3ySqVOnct1115GRkcHnn3/Om2++SVRUlKPDExGRSqRiRUREXM6ECROYPXs2w4cPJy8vj169evHQQw85OiwREalkmgYmIiIux8vLiw8//JC0tDRyc3OZPn06bm5ujg5LREQqmYoVERFxSQsWLACgoKCAHTt2ODgaERGpCipWRETE5WzevJkXXniBESNG0KlTJ0aOHEl2drajwxIRkUqmYkVERFxKcXExd9xxB40bN+att95ixowZZGRk8Oijjzo6NBERqWRaYC8iIi7lxRdfZOPGjSxZsgR/f3/at2/Pc889x7hx47jxxhsZOHDgGccCbNu2DYBPPvmEVatWATBu3LjqD15ERMrFzRhjHB2EiIhIWfz666/Ex8dz33338fbbb5febrVa6datGwcPHmTbtm0EBQUBnHfRvf78iYg4PxUrIiIiIiLilLRmRUREREREnJKKFRERERERcUpaYC9SA1mtVoqLix0dhoiIOBlPT0/c3d0dHYZImalYEalBjDGkp6dz4sQJR4ciIiJOKigoiLCwsPNuQCHiLFSsiNQgpwuVkJAQ/Pz89IdIRERKGWPIz8/nyJEjADRq1MjBEYlcmIoVkRrCarWWFioNGjRwdDgiIuKEfH19AThy5AghISGaEiZOTwvsRWqI02tU/Pz8HByJiIg4s9N/J7S2UVyBihWRGkZTv0RE5Hz0d0JciYoVEamVZsyYUdrlXERERJyTihURcag77rgDNzc33Nzc8PLyonXr1rzwwguUlJRU6fPefPPNpKamVulzXMjvX7unpyehoaFcffXVfPjhh9hstnI9loqvynH6PZkyZcoZt8+cObPar0af/tlwc3OjTp06REZGcscdd7B+/fpyP1bv3r155JFHKj9IAWD58uW4ublpJ0aRKqBiRUQcrn///hw+fJgdO3YwevRoJkyYwCuvvHLWY4uKiirlOX19fQkJCamUx7oYp1/7nj17mDdvHn369OHhhx/mmmuuqfKCTc7Ox8eHqVOncvz4cUeHwvTp0zl8+DDbtm1j2rRp5OXlER8fz8cff+zo0GqN3xeNZ/uYMGGCo0MUqdFUrIiIw3l7exMWFkbz5s2577776Nu3L99//z1gv9I9dOhQJk2aROPGjYmOjgZg//793HTTTQQFBVG/fn2GDBnCnj17AFi4cCE+Pj5/usr58MMPc+WVVwJnH4l47733aNWqFV5eXkRHR/PJJ5+Ufm/Pnj24ubmxcePG0ttOnDiBm5sby5cvB+D48ePcdtttBAcH4+vrS2RkJNOnTy/Ta2/SpAmdO3fmmWeeYdasWcybN48ZM2aUHvf666/Trl076tSpQ3h4OPfffz95eXmA/aruiBEjyM7O/tMJ1CeffMIll1yCv78/YWFh3HrrraXblsrZ9e3bl7CwMCZPnnze41atWkXPnj3x9fUlPDychx56iJMnTwLwj3/8g7Zt25Yee3pk5v333z/jecaNG3fe5zjdD6NFixb069ePr7/+mttuu40HHnigtJg6evQot9xyC02aNMHPz4927drxf//3f6WPcccdd7BixQreeuut0p+PPXv2YLVaueuuu4iIiMDX15fo6Gjeeuutcv9/1XSHDx8u/XjzzTcJCAg447bHH3/cYbFV1sUbEWemYkVEnI6vr+8Zf4SXLFlCSkoKixYtYvbs2RQXF5OQkIC/vz8//vgjq1evpm7duvTv35+ioiKuuuoqgoKC+Oabb0ofw2q18sUXX3Dbbbed9Tm/++47Hn74YUaPHs3WrVv5+9//zogRI1i2bFmZ43722WdJSkpi3rx5JCcn895779GwYcNyv/4rr7ySDh068O2335beZrFYePvtt9m2bRsfffQRS5cu5cknnwSge/fufzqJOn0CVVxczMSJE9m0aRMzZ85kz5493HHHHeWOqTZxd3fnpZde4p133uHAgQNnPWbXrl3079+fG264gc2bN/PFF1+watUqHnjgAQB69epFUlISmZmZAKxYsYKGDRuWFrbFxcWsXbuW3r17lzu+Rx99lNzcXBYtWgRAQUEBXbp0Yc6cOWzdupV77rmH22+/nZ9//hmAt956i27dunH33XeX/nyEh4djs9lo2rQpX331FUlJSTz33HM888wzfPnll+WOqSYLCwsr/QgMDMTNze2M2+rWrVt67Pr167nkkkvw8/Oje/fupKSknPFYs2bNonPnzvj4+NCyZUuef/75M0ZQ9+3bx5AhQ6hbty4BAQHcdNNNZGRklH5/woQJdOzYkQ8++ICIiAh8fHz4+OOPadCgAYWFhWc819ChQ7n99tur6H9FpBoZEakRTp06ZZKSksypU6ccHUq5DB8+3AwZMsQYY4zNZjOLFi0y3t7e5vHHHy/9fmhoqCksLCy9zyeffGKio6ONzWYrva2wsND4+vqaBQsWGGOMefjhh82VV15Z+v0FCxYYb29vc/z4cWOMMdOnTzeBgYGl3+/evbu5++67z4jtL3/5ixk4cKAxxpi0tDQDmA0bNpR+//jx4wYwy5YtM8YYM3jwYDNixIgKvfY/uvnmm01sbOw57/vVV1+ZBg0alH79x9dzLr/88osBTG5ubpnjrE1+/55cdtll5s477zTGGPPdd9+Z3//JvOuuu8w999xzxn1//PFHY7FYzKlTp4zNZjMNGjQwX331lTHGmI4dO5rJkyebsLAwY4wxq1atMp6enubkyZPnjAUw33333Z9uP3XqlAHM1KlTz3nfQYMGmdGjR5d+3atXL/Pwww+f97UbY8yoUaPMDTfccMHjKovNZjMnC4sd8vH73x9lda48W7ZsmQFMfHy8Wb58udm2bZvp2bOn6d69e+kxK1euNAEBAWbGjBlm165dZuHChaZFixZmwoQJxhhjrFar6dixo7n88svNunXrzE8//WS6dOlievXqVfoY48ePN3Xq1DH9+/c3v/76q9m0aZPJz883gYGB5ssvvyw9LiMjw3h4eJilS5ee9XW46t8LqZ3UFFJE/sRms5GZmUlwcDAWS9UPwM6ePZu6detSXFyMzWbj1ltvPWMeeLt27fDy8ir9etOmTezcuRN/f/8zHqegoIBdu3YBcNttt3HZZZdx6NAhGjduzKeffsqgQYPOuQg9OTmZe+6554zbevToUa5pMffddx833HADv/76K/369WPo0KF07969zPf/PWPMGQu6Fy9ezOTJk9m+fTs5OTmUlJRQUFBAfn7+eXvrrF+/ngkTJrBp0yaOHz9eunB/3759tGnTpkKxVTubDfKzwK8hVMPP42lTp07lyiuvPOs0n02bNrF582Y+/fTT0tuMMdhsNtLS0oiNjeWKK65g+fLl9O3bl6SkJO6//35efvlltm/fzooVK7j00ksr1BfJGAP8b/tZq9XKSy+9xJdffsnBgwcpKiqisLCwTI89bdo0PvzwQ/bt28epU6coKiqiY8eO5Y6pok4VW2nz3IJqe77fS3ohAT+vyj0NmjRpEr169QLg6aefZtCgQRQUFODj48Pzzz/P008/zfDhwwFo2bIlEydO5Mknn2T8+PEsWbKELVu2kJaWRnh4OAAff/wxcXFx/PLLL1x66aWAferXxx9/THBwcOnz3nrrrUyfPp2//OUvAPz3v/+lWbNmFRq5E3E2mgYmImew2WxMmjSJu+66i0mTJpV7V6qK6NOnDxs3bmTHjh2cOnWKjz76iDp16pR+//f/BsjLy6NLly5s3LjxjI/U1FRuvfVWAC699FJatWrF559/zqlTp/juu+/OOQWsLE4XbadPFOHPDdUGDBjA3r17efTRRzl06BBXXXVVheezJycnExERAdjXy1xzzTW0b9+eb775hvXr1zNt2jTg/HPWT548SUJCAgEBAXz66af88ssvfPfddxe8n1Ox2eDHV2HWA/bP1fDzeNoVV1xBQkICY8aM+dP38vLy+Pvf/37Gz9+mTZvYsWMHrVq1Auw7cC1fvpwff/yRTp06ERAQUFrArFixovSktrySk5MBSn8+XnnlFd566y2eeuopli1bxsaNG0lISLjge/z555/z+OOPc9ddd7Fw4UI2btzIiBEjXOdnwwm1b9++9N+NGjUCKF0jtmnTJl544QXq1q1b+nF6al5+fj7JycmEh4eXFioAbdq0ISgoqPQ9B2jevPkZhQrA3XffzcKFCzl48CBgX5N3emc7EVenkRUROUNmZiaJiYmkp6eTmJhIZmYmoaGhVfqcderUoXXr1mU+vnPnznzxxReEhIQQEBBwzuNuu+02Pv30U5o2bYrFYmHQoEHnPDY2NpbVq1eXXvUEWL16denow+mTg8OHD9OpUyeAMxbbnxYcHMzw4cMZPnw4PXv25IknnuDVV18t82sDWLp0KVu2bOHRRx8F7KMjNpuN1157rbRo+uO6Ai8vL6xW6xm3bd++naNHjzJlypTSE6B169aVKxaHy8+CA+sgL8P+OT8L6lbfLm5TpkyhY8eOpRs7nNa5c2eSkpLO+3Pbq1cvHnnkEb766qvSK9y9e/dm8eLFrF69mtGjR1coptPrk/r27QvYf06HDBnC3/72N8B+wSE1NfWMkbOz/XysXr2a7t27c//995fednpksrr4erqT9EJCtT7n75+7snl6epb++3ShcPqCT15eHs8//zzXX3/9n+7n4+NT5uf448UbgE6dOtGhQwc+/vhj+vXrx7Zt25gzZ055wxdxSipWROQMwcHBxMfHk5iYSHx8/J+u4DmD2267jVdeeYUhQ4bwwgsv0LRpU/bu3cu3337Lk08+SdOmTUuPmzBhApMmTeLGG2/E29v7nI/5xBNPcNNNN9GpUyf69u3LDz/8wLfffsvixYsB+6L/yy67jClTphAREcGRI0f+tJPTc889R5cuXYiLi6OwsJDZs2cTGxt73tdSWFhIeno6VquVjIwM5s+fz+TJk7nmmmsYNmwYAK1bt6a4uJh33nmHwYMHs3r16jN2lQJo0aIFeXl5LFmyhA4dOuDn50ezZs3w8vLinXfe4d5772Xr1q1MnDix3P/fDuXXEJpeYi9Uml5i/7oatWvXjttuu4233377jNufeuopLrvsMh544AFGjhxJnTp1SEpKYtGiRfzjH/8A7FfZ69Wrx2effcbs2bMBe7Hy+OOP4+bmRo8ePS74/CdOnCA9PZ3CwkJSU1P55z//ycyZM/n4449LpzRGRkby9ddfs2bNGurVq8frr79ORkbGGcVKixYtSExMZM+ePdStW5f69esTGRnJxx9/zIIFC4iIiOCTTz7hl19+KR2xqQ5ubm6VPhXLWXXu3JmUlJRzFrixsbHs37+f/fv3l15cSEpK4sSJE2Wasjly5EjefPNNDh48SN++fc8YoRFxaY5dMiMilaUyF0xarVaTnp5urFZrJUR2fudbZH6+7x8+fNgMGzbMNGzY0Hh7e5uWLVuau+++22RnZ59xXNeuXQ3wp4WmZ1so++6775qWLVsaT09PExUVZT7++OMzvp+UlGS6detmfH19TceOHc3ChQvPWGA/ceJEExsba3x9fU39+vXNkCFDzO7du8/72gADGA8PDxMcHGz69u1rPvzwwz/937/++uumUaNGxtfX1yQkJJiPP/7YAKUbBhhjzL333msaNGhgADN+/HhjjDGfffaZadGihfH29jbdunUz33///Z82CnB6VqsxuRn2z1XsbD9vaWlpxsvLy/zxT+bPP/9srr76alO3bl1Tp04d0759ezNp0qQzjhkyZIjx8PAo3dDAarWaevXqmcsuu+yCsZz+2QCMj4+PadWqlRk+fLhZv379GccdPXrUDBkyxNStW9eEhISYcePGmWHDhp3xOlJSUsxll11mfH19DWDS0tJMQUGBueOOO0xgYKAJCgoy9913n3n66adNhw4dyv4fVstcaIH97/Nxw4YNpf/Xxhgzf/584+HhYSZMmGC2bt1qkpKSzP/93/+ZsWPHGmPsmw107NjR9OzZ06xfv94kJiaedYH9ud6fEydOGD8/P+Pl5WU+//zz874OLbAXV+JmzO8mYIuIyyooKCAtLa10O0sREalcM2bM4JFHHvlTD6fly5fTp08fjh8/XjritXHjRjp16kRaWhotWrQAYMGCBbzwwgts2LABT09PYmJiGDlyJHfffTdg3/jiwQcfZMmSJVgsFvr3788777xTOhV3woQJzJw586xTUAGGDRvGnDlzOHTo0HlHkvX3QlyJihWRGkJ/fEREarerrrqKuLi4P01b/CP9vRBXUjsmioqIiIjUUMePH2f58uUsX76cd99919HhiFQqFSsiIiIiLqxTp04cP36cqVOn/mnnOhFXp2JFRERExIXt2bPH0SGIVBk1hRQREREREaekYkWkhtGeGSIicj76OyGuRMWKSA1xunNyfn6+gyMRERFndvrvxOm/GyLOTGtWRGoId3d3goKCOHLkCAB+fn64ubk5OCoREXEWxhjy8/M5cuQIQUFBuLu7OzokkQtSnxWRGsQYQ3p6+p8alomIiJwWFBREWFiYLmiJS1CxIlIDWa1WiouLHR2GiIg4GU9PT42oiEtRsSIiIiIiIk5JC+xFRERERMQpqVgRERERERGnpGJFRERERESckooVERERERFxSipWRERERETEKalYERERERERp6RiRUREREREnNL/AxMUDpcFOLfDAAAAAElFTkSuQmCC\n"
- },
- "metadata": {},
- "output_type": "display_data"
- }
- ],
- "source": [
- "# Change wrap to 3 and Adjust dimensions\n",
- "plot_results_panel_2d(cycle,\n",
- " wrap=3,\n",
- " subplot_kw=dict(figsize=(9,4.5))\n",
- " );"
- ],
- "metadata": {
- "collapsed": false
- }
- },
- {
- "cell_type": "markdown",
- "source": [
- "Above the wrap is changed to 3 panels per row and the dimensions of the figure are adjusted.\n",
- "\n",
- "* Keyword arguments can be supplied to the underlying matplotlib plotting functions as dictionaries.\n",
- " * The above example supplies figure dimensions to the [subplot](https://matplotlib.org/stable/api/_as_gen/matplotlib.pyplot.subplot.html) function using the keyword `subplot_kw`. The subplot function controls the layout and configuration of the entire figure of panels.\n",
- " * Below shows ways to specify the parameters of the [scatter](https://matplotlib.org/stable/api/_as_gen/matplotlib.pyplot.scatter.html) points and theory [line](https://matplotlib.org/stable/api/_as_gen/matplotlib.axes.Axes.plot.html)."
- ],
- "metadata": {
- "collapsed": false
- }
- },
- {
- "cell_type": "code",
- "execution_count": 5,
- "outputs": [
- {
- "data": {
- "text/plain": "",
- "image/png": "iVBORw0KGgoAAAANSUhEUgAAA4QAAAHFCAYAAACq1TfbAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8o6BhiAAAACXBIWXMAAA9hAAAPYQGoP6dpAACDvElEQVR4nO3dd3iUVdrH8e9kII2QIAZCERAEBJRqRVRUWJFVFMvK2kDsigW7uHZUQGRtbwRcV1BXxd5wRRABFbAAoSMRgQUpEUQSJgkQJ+f942SGmZCemUz7fa4rl5kzz8xzPySezP2cc+7jMMYYREREREREJObEhToAERERERERCQ0lhCIiIiIiIjFKCaGIiIiIiEiMUkIoIiIiIiISo5QQioiIiIiIxCglhCIiIiIiIjFKCaGIiIiIiEiMUkIoIiIiIiISo5QQRgljDHl5eRhjQh2KiEQo9SMiUhvqQ0QikxLCKLFnzx7S0tLYs2dPqEPxs3HjRhwOB0uXLg11KCJSCfUjIlIb6kNEIpMSwhi3fft2brnlFtq1a0dCQgKtWrVi0KBBzJ49O9Sh+Vm+fDmnnHIKiYmJtGrViqeeeirUIYlIiUjoR/bu3cuVV15J165dqVevHoMHDw51SCJSIhL6kLlz53LeeefRvHlzGjRoQI8ePXjjjTdCHZZIQNQLdQASOhs3bqRPnz40atSI8ePH07VrV4qKivjiiy8YMWIEP/30U6hDBCAvL48zzzyT/v37M2nSJFasWMFVV11Fo0aNuO6660IdnkhMi5R+xO12k5SUxK233sr7778f6nBEpESk9CELFiygW7du3HvvvWRkZDB9+nSGDh1KWloa55xzTqjDE6kdI1EhNzfXACY3N7fKrxk4cKBp2bKlcblcBz33xx9/GGOMGT58uDn77LP9ntu/f79p0qSJefnll40xxrjdbjNu3DhzxBFHmPj4eNOqVSvz+OOPG2OM2bBhgwFMVlaW9/UrVqwwZ511lmnQoIFp2rSpufzyy82OHTvKjfPFF180hxxyiNm3b5+37d577zVHHnlkla9VRCoXzf2Ir2HDhpnzzjuvytcoIlUTK32Ix1//+lczfPjwar1GJBxpymiM2rVrFzNmzGDEiBE0aNDgoOcbNWoEwDXXXMOMGTPYtm2b97np06dTUFDAkCFDABg1ahRjx47lwQcfZPXq1bz55ptkZGSUed7du3dzxhln0LNnTxYtWsSMGTPIycnh4osvLjfWhQsXcuqppxIfH+9tGzBgAGvXruWPP/6oyeWLSABEUj8iIuEn0vuQ3NxcGjduXK3XiISlUGekEhjVvSv3/fffG8B88MEHlR7bpUsXM27cOO/jQYMGmSuvvNIYY0xeXp5JSEgw//rXv8p8bem7cqNHjzZnnnmm3zGbN282gFm7dm2Z7/GXv/zFXHfddX5tq1atMoBZvXp1pfGLSNVEcz/iSyOEIsERK32IMca8/fbbJj4+3qxcubJKx4uEM40QxihTjZLQ11xzDVOmTAEgJyeHzz//nKuuugqANWvWsG/fPvr161el91q2bBlz5swhJSXF+9WpUycAfvnll2pehYiEkvoREamNSO1D5syZw/Dhw/nXv/7FUUcdVeVrEAlXKioTozp06IDD4ajSYu2hQ4dy3333sXDhQhYsWEDbtm055ZRTAEhKSqrWeV0uF4MGDWLcuHEHPde8efMyX9OsWTNycnL82jyPmzVrVq3zi0jgRFI/IiLhJxL7kHnz5jFo0CCeeeYZhg4dWq3zioQrjRDGqMaNGzNgwAAyMzPJz88/6Pndu3d7vz/00EMZPHgwU6ZMYerUqQwfPtz7XIcOHUhKSqpyaehevXqxatUqDj/8cNq3b+/3Vdb6AYDevXvz9ddfU1RU5G2bNWsWRx55JIccckgVr1hEAi2S+hERCT+R1ofMnTuXs88+m3HjxqnKuUSXEE9ZlQCpSWWvX375xTRr1sx06dLFvPfeeyY7O9usXr3aPPfcc6ZTp05+x86cOdPEx8cbp9NptmzZ4vfcI488Yg455BDz6quvmnXr1pmFCxd6q36Vnre/ZcsW06RJE3PRRReZH374waxbt87MmDHDXHnllebPP/8sM87du3ebjIwMc8UVV5iVK1eaadOmmeTkZDN58uRq/AuJSGWiuR8xxq49zsrKMoMGDTKnnXaaycrK8qs6KCK1E819yFdffWWSk5PNqFGjzLZt27xfv//+ezX+hUTCkxLCKFGTTtgYY7Zu3WpGjBhh2rRpY+Lj403Lli3Nueeea+bMmeN3XHFxsWnTpo3561//etB7uN1u8/jjj5s2bdqY+vXrm9atW5snn3zSGFN2qefs7Gxz/vnnm0aNGpmkpCTTqVMnM3LkSFNcXFxunMuWLTMnn3yySUhIMC1btjRjx46t1nWKSOWivR9p06aNAQ76EpHAiOY+ZNiwYWX2H3379q3WtYqEI4cx1VjRK2ErLy+PtLQ0cnNzSU1NDfj7u1wuWrZsyZQpU7jgggsC/v4iEnrqR0SkNtSHiEQmFZWRChUXF7Nz504mTJhAo0aNOPfcc0MdkohEGPUjIlIb6kNEgksJoVRo06ZNtG3blsMOO4ypU6dSr55+ZUSketSPiEhtqA8RCS79HyUVOvzww6u1T5CISGnqR0SkNtSHiASXtp0QERERERGJUUoIA2zMmDEcd9xxNGzYkKZNmzJ48GDWrl1b6eveffddOnXqRGJiIl27duW///1vHUQrIiIiIiKxTAlhgM2bN48RI0bw3XffMWvWLIqKijjzzDPL3HDVY8GCBVxyySVcffXVZGVlMXjwYAYPHszKlSvrMHIREREREYk12nYiyHbs2EHTpk2ZN28ep556apnHDBkyhPz8fKZPn+5tO/HEE+nRoweTJk2q0nmCXepZJGYZ4HWgJ9A1xLEEmfoREakN9SEikUkjhEGWm5sLQOPGjcs9ZuHChfTv39+vbcCAASxcuDCosYlIJTYCZwHDgKsBd0ijEREREQk4VRkNouLiYkaOHEmfPn04+uijyz1u+/btZGRk+LVlZGSwffv2cl+zb98+9u3b532cl5dX+4BFxHIDmcD9gGe294/A58A5oQoq8NSPiEhtqA8RiQ4aIQyiESNGsHLlSqZNmxbw9x4zZgxpaWner1atWgX8HCIxaTVwCnAbB5LBlsCnRFUyCOpHRKR21IeIRAclhEFy8803M336dObMmcNhhx1W4bHNmjUjJyfHry0nJ4dmzZqV+5pRo0aRm5vr/dq8eXNA4haJWfuB0di1gr6ztW/EJolRlgyC+hERqR31ISLRQVNGA8wYwy233MKHH37I3Llzadu2baWv6d27N7Nnz2bkyJHetlmzZtG7d+9yX5OQkEBCQkIgQhaRLOw6wRU+bR2AfwF9QxJRnVA/IiK1oT5EJDooIQywESNG8Oabb/Lxxx/TsGFD7zrAtLQ0kpKSABg6dCgtW7ZkzJgxANx222307duXCRMmcPbZZzNt2jQWLVrESy+9FLLrEIkp+wDPLi9O4C7gYSApZBGJiIiI1AlNGQ2wiRMnkpuby2mnnUbz5s29X2+//bb3mE2bNrFt2zbv45NOOok333yTl156ie7du/Pee+/x0UcfVViIRkQC6ETgVqAH8AMwFiWDIiIiEhO0D2GU0N4/IlW0G1tB9D7saKBHIXbORP0QxBQm1I+IBNleIDHUQQSP+hCRyKQRQhGJHR8BXYAHgOdLPZdETCeDIhJk44FTgeJQByIi4k8JoYhEvxzgYuB8wDNb+yns3XoRkbpwBnY/08DvRCUiUitKCEUkehngVaAz8K5P+9nYtYJRPHVLREKoCNhYqu0Y4BbgzzqPRkQi2RJgZnBPoSqjIhKdNgLX49+JHoqdKnoJ4AhBTCIS3QzwCXAPdgr6Uvw/aZWeqi4iUp61wIPYG9qtgJ+BIO3yohFCEYk+/wccjX8yeAmwBrgUJYMiEng/AqcBg4FsYBUwNXThiEiE2gRcAxzFgdlNmwlqf6IRQhGJPj8D+SXftwQmAeeELhwRiWIbgfuBt0q1n4LdykZEpCp+A8YALwL7fdozsMXwrgzeqZUQikj0eQI7bessYByg6uciEmi7gSeB5/D/8NYRW7TqXDQbQSTCFZki6juCXII8F5gAPAO4fNrTsNPPbwMaBDcETRkVkcj2AwffmU8BlgMTUTIoIoH3KXAEdisJTzKYDrwArATOQ8mgSIRb5lpG/2X9We5aHtwTPQiM5kAymITdK3kDdvZBkJNBUEIoIpEqH7gT6I2da7+h1PMN6zwiEYkV7bF39cEWebgPWAfcjPYzFYkSmVszcRW7yNyaGdwT3Y3tR+oDI4BfsFNHDwnuaX0pIRSRyDMb6Ab8E7vJc0HJ9yIiwbCn1OPOwHXA5dhKgGOw07tEJCpkubJY7FoMwCLXIrJcWbV/02LgTeCNUu2tgCnAT9iieM1rf6rqUkIoIpHjD+BqoD+wvqQtARiLnXsvIhJI64EhQE/81wmC/eD2OtCmroMSkWCbuHUiTpwAOHEyaeukmr+ZwU4z7wlcBtyB/1pBsJXQ29X8FLWlhFBEIsOHQBfgFZ+2U7FrBe9FJbJEJHB2YT+0dQLewU7herHUMfoEJRKVPKODbtwAuHHXfJRwLtAHW2TKsxTxN+CDgIQaMOrORCS8/Q78DbgA2F7S1hBbMGYOtqKfiEgg7MNOPz8CO+ugqKS9CdA4VEGJSF3yHR30qPYo4SJgAHA6sNCn/XjgS2BorcMMKCWEIhLe4rGVRD3OBlYDN6AeTEQCw2BHAjtji1XtLmlPBP6BLRgTZh/gRCTwSo8OelR5lHANcBFwHDDTp70LdqbTd0C/QEYcGPo4JSLhrSEwGXuH/k3sPPzDQhqRiESTVdhqxUM4UK3YAQwDsoHH0fY1IjGirNFBjyqNEr4EvO/z+HDgVex00cGE7XY0SghFJHy4geeBjaXaz8IWd7iEsO1MRSRCNQB8b/r3A5YAU7HV/0QkJpQ3OuhRpVHC+7F7ITcDMrFViIdCOTlm2FBCKCLhYRV24fVtwPXYKVy+Uuo8IhGJRsWlHh8O3AocBfwXmAX0qNuQRCT0Jm6diKOSu84OHHaUcDfwAPBsqQOaYPuRdcBN2GUvEUAJoYiE1n7gMWw55u9L2mbiv25QRKS29gJPAV2xe5f6ehRYCgxEsxBEYpDbuFmZvxJz0N1ofwbDitwVuNu74Qls3/FHqYNOwc48iCAq1C4iofM9cA2w0qetI/AycEJIIhKRaFMMTMNO5fpfSds/sXf3PZLrOigRCSdOh5OZ3WZS4C59t6hEEbaOwXOQvDEZZ37JHNB84BvsthIRTAmhiNS9fOBB7FQLz804J3AP8BC2sp+ISG3NA+7CloD3cAA7QxOOiISvFGcKKc5S61Pc2ETwYQ4UnQI7x/KKkva2dRRgECkhFJG69TVwJf4da0/shvM9QhCPiESftcC9wMel2gdgp412q/OIRCTS/Bfbj6ws1X4+tvpwlzqPKGi0hlBE6paLA8lgIjAWu16wR6gCEpGo8TtwM7ZAjG8y2A34ApiBkkERqZrv8E8G+2OXunxAVCWDoIRQROraX4HLgb7YfXnuRXMVRCQw9gNTwFs1vgV29sES4MxQBSUiEaF0BeI7gcbYmgazsRWIj6/roOqGEkIRCZ7twBgO3kJiMvAV0KHOIxKRaNYcuxa5Abb6XzYwnLDfA0xEQmg1cAG2toGvNOBHYCFwRl0HVbeUEIpI4BnsXfrO2Mp+/yn1fDLqfUSkduZgR/12l2q/C/gZW6Aqwkq/i0gd2oitadAV+BBb6G57qWPaERNb0egjmYgE1gZs4YarOPBB7QkOTOESEamNNcAg7B37Wdh1yL4aYEcKRUTKsh24BbvN1ascmCqair2ZFIOUEIpIYLiBZ4CjsR/SPC4HvkVTtkSkdnKAG7B386f7tH+NbjiJSOV2Y2ctHQH8H3ZvQYBDsDeWfsFuKh+DVMpBRGpvJXaD+e992lph1woODElEIhItCrAbyY/DVin2aAk8ib3ppNvbIlKRTOAB/KeYJwO3Y6eZN6r7kMKJEkIRqTmDLdzwJAfutAHchL3b1jAUQYlIVHADr2E/xG31aU8BRgEjsR/oREQq4+JAMhiPnW1wP5ARqoDCixJCEak5B3a+vScZPBJ4GTg5ZBGJSLTIBe7gwIc4J3Ad8DD6ECci5XMDe/EvKnULdproX7B9SJsQxBXGNMlCRGrnWaAZ8A9gKUoGRSQwGmNHBwHOBVYAL6JkUETKZrDVQrthZxH4SgZ+wu5LqmTwIEoIRaTqvgQ+LtXWBFgHPA4k1nlEIhINtgEjgN9Ktd+MLRrzMXYbGxGRsswGTsTuJ7gamAT8r9Qx2oamXJoyKiKV+wO4E7u34KFAb6Cpz/PqZEWkJlzABOApbPEYB3Zal0cCMVv1T0Sq4HvsDKXZpdqPBfbUfTiRSiOEIlKxD4Au2GQQ4HfgpdCFIyJRwI1db9wBeASbDAJMQx/iRKRyK4HzsaOCvslgV+ATYD52GyypEiWEIlK27cBFwIUl34PdtHUytjKXiEh1GWAG0AO4lgN9Sz1s0Yc1qDqxiFTsLuw6wY982o4A3sDWMhiEnW0gVaYpoyLiz2BHA+/Ef7+eQcBE7N5fIiLVtQy4G5hVqv187DY1Hes8IhGJRG2xn1UAWgAPAVcB9UMWUcRTQigiB/wKDMcWj/FoArwAXIzuuIlIzewH/or/foLHY9cPqjKxiJTnD+zWVr51C64FpgJDsMWokuo+rGijKaMickACkOXz+Apsta4hKBkUkZqLx97FBzgceAv4DiWDIlI2F/AkdjTwvlLPxQM/YKeOKhkMCCWEInJAE+A5oDXwOfAakB7SiEQk0vyJLfm+uVT71dg1yD8Bf0c3mUTkYPuws5KOwFYPzQVexfYbvtR/BJQSQpFYtQ94AthRqv1S7KjgWXUekYhEMgNMxxZ7uBF4sNTz9YDrsDMRRER8ubHTQI8EbuXAnqRx2KUsqaEJK1YoIRQJM0WmKPgn+Q7oBTwAjCz1nAPtKygi1bME6IctPrWmpO01YEPIIhKRSGCA97HbRQzHfzP5v2FvUL+MLR4jQaOEUCSMLHMto/+y/ix3LQ/OCVzYBPAkbCcL8A7wc3BOJyJRbjMwFDgGmOPT3hu7D1jbUAQlIhHjYuwWV2t82s4CFmM/nxwZiqBijxJCkTCSuTUTV7GLzK2ZgX/zmdhNWp/jQLnmY4BF2M2hRUSqKg+7H2lH4HWf9nbYD3HzsUmhiEhFBvl83weYh61h0Cs04cQqJYQiYSLLlcVi12IAFrkWkeWy5T5rPYV0F3YaxgAOTMVIBJ7CTh3tXru3F5HwsnNLHutX5LBzS15wTmCw00PHAHtL2hoDz2Dv8v8NFXwQiWBB60NWAOtLtV2GrWQ+HfgGODWwp5Sq0T6EImFi4taJOHHixo0TJ5O2TuKmFjdx67pbeaH9C3RL6Vb9N/0EW8Qhx6etL3Y+fvuAhC0iYWTJ7PXM/zSbva79JKbE02dQR3r1axfYkziA27Ef5OKBW7DVAA8J7GlEpO4FpQ/5BXgYeBM7PfQdn+ecwLTavb3UnkYIRcKAZ3TQjRsAN24WuRYxbvO42k0hzeVAMpgKvAR8hZJBkSi0c0se8z/NhmJDRps0KDbM/zS79nf5f+Tgu/p/x04Z/Ql4GiWDIlEg4H3IVmzF4U7AG9jZBe9ii1BJWFFCKBIGPKODvuKIY23hWsB/Cmm1XI6dKnoutojMtVT4f32dVDgVkaDI21XIXtd+0pokExfnIK1JMnvz97Np7c6aTf/aiB0FPB64u9Rzcdhta1Q0RiRqBKwP+R24F3vzeRJ2b1KAQ7E3kDoHIXipFU0ZFQkx37WDvoop9n7vmUI6uePk8t9oPfABcJdPm6OkLYlK1/Qscy2r3fRUEQmp1MZJJKbEk7ujgLQmyeTuKGB/4Z/MeWc1xX8WV336127s+sDnsPuVgu1HvgNODOIFiEhI1boPcQHPAuOxhac8UoA7gTvQfoJhSiOEIiFW1uhgaZ4ppGWOErqBCdgKoncD/y31fDJVKvAQ1AqnIhJ06S1T6TOoI8Q5yNmUS9H+PzEY4uOdVZv+tR94AXtX/ykOJIOHlrQfUwcXISIhU+s+5BzgQQ4kgwnYJHA98AhKBsOYRghFQqi80cGylDlKuAK4GrvGx2MM8Neax+FJPHum9Kzem4hIyPXq147WndLJ21XI7h35zH5zpd/0r5xNueTtKiS9pc8nMwN8iJ3itc7nzRKw+5aOAtIqP/fOLXnk7SoktXGS//uLSMSoUR/icSt22wgntrr5Q0Cr6p1f/UhoKCEUCaGJWyfiwIHxbgxYPt9Rwp71e9r1O2M4MDffAYwAnqxZHKUrnFY4PVVEwlZ6y1TSW6ayc0veQdO/EhvEk9o4yf8FVwFTS73J5cDjQJuqnbNOqpuKSJ2otA9plATvYTeN7+rzwvOxxaaGYfcorSb1I6GjKaMiIeI2blbmr6xSMujhxMmknybZDVtHcyAZ7AR8i53W1bB6cZRX4bRGRWxEJGyUnv5FnIM+53Y8+K77+T7f98XOOHidKieDQatuKiIhdVAf4nDQp3VH0gen2v1G7y31Agf2ZnUNkkH1I6GlEUKREHE6nMzsNpMCd4G3bWX+Su7eULqc3wFu3CyKW0RWfBY96Wn/Dx6F3QMsoWZx+I4OemPTKKFIVPCd/pXaOIn05FT4H/7J3iDs1PPzsGuAqrmpvKcyYUabtKpNKxORiOHtQ+YWkjo5ifTnff6f/hy7hUSv2p9H/UhoaYRQJIRSnCk0jW/q/Zq2YxqOSj6NOYodTLphEhwLLAYeo8bJYOnRQQ+NEopEj/SWqbTrmEH6O6lwBHBdqQMcwMvYxLCaySD4VyYsLjblT00VkcizDNKvT6Xd5Rmkf+OTmPXAFrELULkB9SOhpYQwCL7++msGDRpEixYtcDgcfPTRRxUeP3fuXBwOx0Ff27dvr5uAJSxUdQqpiTOs6LUC9wI31HJ3iIoqnHpGCUUkghngHey+X3cAfwAzgS8Cd4oqT00VkcjxM3ApNvH7zKe9I/A29ob0QGp0E6ks6kdCS1NGgyA/P5/u3btz1VVXccEFF1T5dWvXriU19cAvftOmTYMRnoQpvymkBtsBpwGnlDqwEJJTknE6K96qojKVVTj1K2KjiqMikWc+dl/S73zaHMAVQJfAnuqgqan6ECcS2Ybi33ccht06YhhByx7Uj4SOEsIgGDhwIAMHDqz265o2bUqjRo0CH5BEjBRnCik5KbZa6EdAa2Al/oVi4gNzrqpUOHXg0FpCkUizDrgPeL9Uez/shtFBur/jqUwoIlHgUWAAkI6tHHojkBj806ofCQ1NGQ0jPXr0oHnz5vzlL39h/vz5oQ5H6prBruPpgk0GATYBbwX+VFWenophRf4K3MZd4XEiEiaew/YhvslgF+xan1kELRkUkQi1B1uLYEGp9r8A/8ZuKn87dZIMSuhohDAMNG/enEmTJnHssceyb98+Xn75ZU477TS+//57evUqu3TTvn372Ldvn/dxXp7K8ka0ddhCD3N82poC/wdcFPjTlVXhtDzJzmScjtpNT5XwpH4kCnUFikq+z8B+0LsK/bWXoFAfEsH2AhOxexfvBL7EbirvWRPowPYdEhP0JyIMHHnkkRx55JHexyeddBK//PILzzzzDK+//nqZrxkzZgyPPvpoXYUowfIn9o7+g0ChT/swYAJwaPBOneJMIcWZErwTSNhTPxLhioFd2CldHmdg9wfrjF0/WM19SUWqQ31IBPoTmIqdEvqrT/sCYDVwVAhikpBzGGOqviu2VJvD4eDDDz9k8ODB1Xrd3XffzbfffsvChQvLfL6su3KtWrUiNzfXrzCNhLG12OIOP/q0tQEmY+ftiwSZ+pEI9g1wJ1Af+Bb/Sn+GgFX+E6mI+pAIUgy8h70BnV3quUuwswna13VQEi40Qhimli5dSvPmzct9PiEhgYSEGm4+J+EhAVhV8r0DuAV4AtCgndQR9SMRKBu4lwPrjAE+AC70eaxkUOqI+pAIYLDbzNwPlN5a+GzgcezWEhLTlBAGgcvlYt26dd7HGzZsYOnSpTRu3JjWrVszatQotmzZwmuvvQbAs88+S9u2bTnqqKPYu3cvL7/8Ml999RUzZ84M1SVIXTgcO3d/Mnbhdu+QRiMi4WwH9g7+JOyUL4+uQJOQRCQikWIs/sngqdjPH31CE46EHyWEQbBo0SJOP/107+M77rgDgGHDhjF16lS2bdvGpk2bvM/v37+fO++8ky1btpCcnEy3bt348ssv/d5DIpwLeAq4G/81PTcDN2BHC0VESivErjMeA/jW62gOjAauBFTzSUTK4+BA8ter5Psz0UwC8aM1hFEiLy+PtLQ0zdsPRzOxFUT/h50W+nxowxEpj/qRMDMTuAbY7NPWALgHu36wQSiCEimf+pAQywYewt4oOqvUc18DJ6MN56RM+rUQCZZd2E55ADYZBHgF+C1UAYlIREnjQDIYh00Of8Z+4FMyKCIem4FrsXuOvo1dL1hc6phT0ad+KZemjIoEmsFW8roZ/+TvDOAl7P6CIiKlFWGrhnqcAAzBThV9Cjg6FEGJSNjagZ1O/iKwz6f9V+yG8qoaKlWkhFAkkLYCNwEf+7SlYfcUvArN2RcJgCJTRH1H/coPjBS/AQ8Di4Dv8F8TOBVIDEFMIhK+8oB/Yj9buHzaU7H7j45Ee5BKtWjwWCRQXsVO1/BNBgdjN3q9GiWDIgGwzLWM/sv6s9y1PNSh1F4BdquZI7DVQxcB/yl1jJJBEfEw2ESwHXZjeU8ymIgtWrceu8+gkkGpJiWEIoGyC8gt+b4p8A52f7AWIYtIJOpkbs3EVewic2tmqEOpOTf2BlJH4AEOfKhLwSaJIiJlcQBfAb+XPK6HrVT+C3Za+aEhiksinhJCkUC5Fbvm50pgDfA3NCooEkBZriwWuxYDsMi1iCxX6V2Wg6PIFAXuzb4EjsX2E1tK2pzYD3XrgBsDdyoROdjOLXmsX5HDzi15lR9ciYD2DWUpxo4K+noc22dchv2sMZEa33gOevwSMZQQitTEcuCFUm1OYA4wBWhc5xGJRL2JWyfiLFlg58TJpK2Tgn7OgE1R/Rn4K/AXYKlP+znY/mQikFG7U4hIxX6Ync1b4xfw/nPf89b4BSyZvb7G7xXU6esG+Ay7b+D7pZ7rAWzATi+vRdGYqJp+L7WmhFCkOvZh5+cfA9yGLQDhK6nOIxKJCZ7RQTduANy462SUMGBTVPcCX/g87oWd+vUpdu2xiATVvA0LuLXBcH479H9ktEmDYsP8T7NrPFIYtOnrXwOnYG8WLcNOK/+z1DGtan+aqJh+LwGjhFCkqhZg78w9ju2cDfB0KAMSiR2+o4MewR4lDOgU1a7AcKA18DrwI3B67WMUkar59+5/URS/l+UnfEVcnIO0Jsnszd9P3q7Car9XdfuGKk1TzQIGAn2B+T7tKUBOtUOsUKim30v4UkIoUpk92PWBJwM/lbTVx5aJfyNUQYnEjtKjgx7BHiWs0RRVN/BvbLJXennOeGwfcjn66ytSh7JcWawydmrkr+nr2Jz2C7k7CkhsEE9q4+pP7alO37Bk9vqKp6muxe432guY4dPeCbun8Y9Ay2qHWKFQTL+X8KY/SSIVmYHdDPoFDizsPh5YAjwCJIQmLJFYUtbooEewPszUaIrqF0BP4BpgLvBSqecPQdPKRULAtw9xFDv4uvV0iHPQ59yOpLdMrdZ7Vadv2Lklj/mfZkOxOXiaajFwLXAUtiq5R2tsLYIVwIUEvDhdqKbfS3hTQihSFhcwFDt9Y1NJWxJ2/58F2CRRRIKuvNFBj2B9mKnWFNXlwADgLOyHOA99vhIJudJ9iIkz/HbYRrre1pBeZ7Sr9vuN3zz+oLby+oa8XYXsde0nrUnywdNU47AbzHu6tqbA80A2tgpxvWqHViWhmH4v4U8JoUhZkrDTODzOwH7Qux3KGagQkSCYuHUijkpukTtwBPTDTJWnqG4BrsKuLZ7pc+BxwDzg5YCFJCI1VF4C9FbRa9V+ryxXFmsL1x7UXt6NqdTGSSSmxJO7o4DivebgaaqjsXsHPo7dS/AWgjrzKFTT7yX8KSEUKYsT+2GuScl/vwSOCGlEIjHHbdyszF+JOWgjLn8Gw4r8FbhN2aOI1VXpFNXNk+Ah7MbyUzgwnbwN8Ba2+vCpAQlFRGoh0AlQWaODHmWNsqW3TKXPgI6wwUHOB7mwpdQ01Y7Ar8A/sMVjgiwU0+8lMgRpQFokghRjk74e2PWB2M1a63etD/9Da35EQsTpcDKz20wK3AWVHpvsTMbpqP3wvW/1vbK4cbOocBFZn2fRs6CnbUzDloa/GUisdQgiEiCeBKisKeeeBGhyx8lVeq/yRgc9fJPMnik9bVGpV6DXY+1ovTOdvPqFpBYkkd6n1JrFOuozqtS3+cYvMUUjhBLbfsZOB70eO/Vrf6nNWpUMioRUijOFpvFNK/1KcQbm9nqVp6g+MslWG74NO9XrLpQMioSRQK8/rmh00MM7ff1NoDNwA7AV0ven0q4gg/RTUiG/6tcQSKGYfi+RQwmhxKY/gaeAbti1PgCrgM+0WatIrKrWFNUWK3CvcsOz2DVAIhJWApkAuY2b7MLsSo8zGFbsWoH7Cre9UeRxHrb41GtA40rfJuBCNf1eIoemjErsWYotC+87c+JwYDJknZTF4mz/zVo1dUIkchWZIuo76lfpWL8pqluxN43ex64RHAWMOHBssjMZp7P8Kao7t+SRt6uQ1MZJ1S5rLyK1U5MEqKIp58vzl1f4XuPbjOfo4UfDd5BckIyzuOS9TgeeBE6s/jUEsg8JxfR7iSxKCCV27MVW9BrHgTLPDuyUr9FACkzMPrDeoLrrC0QkvCxzLePWdbfyQvsX6JbSrUqvSclPIWVcit1iZq/PE69j+4oqzKtZMns98z/NZq9rP4kp8fQZ1JFe/apf3l5EaibQCVBlaxHf/v1tzmh6BuwoaTwOeALoT432EQxGH5LiTAnY1HqJPpoyKrFhEbZozJMcSAa7YPcUfAZI0WatItGmWtO/i4CJQHtsP+FJBg8BJgALqdJfzAo3ohaROhOo9cdVXot4fxb0Aj4Avgf+Qo2SQfUhEgpKCCU2xHNgPn994GFgCX7TOLRZq0j08K2oV+GNHQN8gl1PfBMH7vDHA3di+407qPLeYBVuRC0iEWXnljye+fn5qq1F/HOSvfl8PjVKBD3Uh0goKCGU2NANuA+7rcQS4BH8PuBps1aR6OJ7g6fCGzu/AX8HfvJpuxhYAzyNHSGsBr+NqIvL2IhaRCLCktnreePpb/mpaHXV1yKWM4pYHepDJBS0hlCiz07s+p9HsHf5PR4saStjqUAg9yoSkdAqvd9WhftrZWBHAJ8A+mCTwBoUgPBIb5lKn0Edmf9pNjmbcklsEO+/EbWIhD3PtM24/Q6uHf8Yv2/eDW4YvO1YGu9vaPcevRFboK5ku5lAFWNRHyKhoIRQoocB3gZuxU77SgQe8nk+vqwXabNWkWhT1g0eJ04mbZrE5Lcn26mgvp+t7gWOAQZTq6leHr36taN1p3RVGRWJUHlbC9n7034y1qcRt89BCxLJScwlvjCFptc3hbup9uyB6lAfInVNU0YlOvyK3efnEg6sAXoRqLzAmDZrFYkiFU7/3ruIrE+y7HYSvhpS63U/paW3TKVd1wx9kBOJNPsh9e9JJK6LJ7e4gGIMuQkFJLaKJ3V2ki06FcRk0EN9iNQlJYQS2YqBSdiKoZ/6tF+I3W8wueKXa7NWkehSVnEoD+efTibdMAkygfy6jUtEIkQ8pA9Kpc/vHcHhIKdNLpzmoM/9HUnvoeRMopOmjErk+hk7f/9rn7Zm2A97F1TtLbRZq0j0qHT6dz03i45bRNYPWfRsoOnfIjHPANOBM4AGPu33Q6+cdrS+Pp28QzVtU6KfEkKJPAa7d+A/8N84+ipqVBVQm7WKRAfP9O+KRvwdOJhkJjEZFYkSiWlzgPuB74Ax2ErkHk2BtyCdVNJRIijRT1NGJTLt4kAy2BaYBfybOpnXLyLhp66nfxeZolq9XkRC5EfgTOyo4HclbeOA3JBFJBJyGiGUyOMAHgA+BAYAo/Gf6iEiMcc7/fuFAlv04VBsNdFLOegvXW2nfy9zLePWdbfyQvsX6JbSrRZRi0idWYP97PBBqfajsNvOaCBQYpgSQgl/32I78mt92hKBxXj3/xGRGGOA94HTsckfJdO/r0+x1YVvJmgf8DK3ZuIqdpG5NVP7k4qEu43YPYhfxxai82gLPIatTq7yABLjNGVUwlceMAI4Bfvhbk2p55UMisSmBdhN5P8GPF7quSTsuqAgJYO+hWs8+5OKSJgqBHoBr3IgGfQUn/sJuJyQJIM7t+SxfkUOO7fk1f3JRcqghFDC03+Bo7F7CQLsB/4vdOGISBhYh00C+wALS9oygc11F4LvthZOnNqfVCScJQE3lnx/CDAW+AW4CYgPTUhLZq/nrfELeP+573lr/AKWzF4fmkBEfCghlPCyE3vH7mwOfMhLxlYVfT5UQYlISP0O3I7db/Q9n/Yu2LXEh9VNGKU3vXfj1iihSLjIB8YDu0u13w08DKwH7qXS/YmDaeeWPOZ/mg3Fhow2aVBsmP9ptkYKJeSUEEp4MMBbQGfgDZ/2/sBKYCSa4y8Sa/Zht5I5AngW8BT2zAAmQ9HSInvzyFE34ZS16b1GCUVCbD92pkB74B5sn+GrEXYNYaO6DKpsebsK2evaT1qTZOLiHKQ1SWZv/n7ydhWGOjSJcUoIJfR2AudiqwHuLGlrBEwBZmIXfotIbDHAqdi7+55y8EnYKoE/w7JLl9F/VX+Wu5bXSTilRwc9NEooEiJu4DXgSGydge0l7S8ArlAFVbHUxkkkpsSTu6OA4mJD7o4CEhvEk9o4KdShSYxTQiihlwJk+zy+CFtA5krq7M6/iIQZBzDU5/vhwM/YbWYa+lf6rAtljQ56aJRQpA4Z4COgOzAMW0XU40Ls+uKUOo+qStJbptJnUEeIc5CzKRfiHPQ5tyPpLbXnhYSWtp2Q0EsEXgb+jr2zd0FowxGREMjGVgZt5tN2HZAF3IL98FeirEqfPVN6Bi003/OVxXeUMJhxiMS82dgqwj+Uaj8Tu5fgsVV/q51b8sjbVUhq46Q6Tch69WtH607pITm3SHk0Qih160/gKQ7eQuIUbOUvJYMisWUncCt2c+gHSj1XH3uzqLt/c11X+py4dSKOSqYrOHBolFAkmFzYGUS+yeCJwBzgC6qVDIa60md6y1Tadc1QMihhQwmh1J2lwAnYKl/X4r9BLGhfQZFYshcYhy0Y8wL2ZtErwIqKX1bXlT7dxs3K/JUYTIXHGQwr8lfgNu4KjxORGkrBfn4A6Ap8gt2T9LTqvY0qfYocTFNGJfj2Ao9hRwY9n5UWYjvyk0MVlIiERDG2ovD9wCaf9mRsAZlKikh5Rgd9i7t4Rgknd5wc8HCdDiczu82kwF1Q6bHJzmScDpVDFqm1DcCTwOPYqsIetwKHAxdT4yENT6XPjDZp3kqfOZtyydtVqBE7iVlKCCW4vgGuwb9ozNHAv4HjQxKRiITKXOAuwHc5XhxwFfamUfOKX17eWr5gr+FLcaaQ4gzTKhUi0WQ7Ngl8CbvNTDLwnM/zydh6A7XgW+kzrUmyKn2KoCmjEix5wAhs2XhPMlgfeBT7YVDJoEhsuRE4Hf9k8CzsVPJ/UWkyCKr0KRK1/gBGAe2wewp69hx9BwjwFn2q9ClyMI0QSuB9hS0F/atP24nY4hBHhSQiEQm1EwBPvtYNu3n0X6r+clX6FIlC+dgRwKc4sN8oQAPgDuBO7P6jAaZKnyL+NEIogVePA8mgZ7rHtygZFIkVBcCOUm1XAGcDU4AlVCsZBFX6FIkq+7HFpI4A/sGBZDAeuA1Yj51Gnha8EFTpU+QAjRBK4J2KnR62DphMpUUiRCRKuIH/YD/gnQxM83nOCUyv4dvWoNKniruIhLEi7L6BOSWP44ArgYeB1iGKSSSGKSGU2tkMTMQuAvcdb34Ge6ev4hv6IhItvsRWCV1a8vhtYCR2ungtqdKnSJRpgN139Bbs3oKjgU4hjUgkpikhlJopxo7+3QvsAQ4DbvJ5PiEUQYlInVuFTQQ/L9U+CGgcuNOo0qdIlLkOOAnoFepARERrCKX6srEbwd6ETQbBrhP8M1QBiUid2479QNcN/2SwF7aw1CdAxxDEJSKRIR4lgyJhQgmhVF0RMBb7AfAbn/arge/QeLNIrJgMtMduF1Fc0tYKeB34Ebu9hIiIiEQEfYSXqsnCJn5ZPm3tsJvH9gtJRCISKunYcvEADYH7sZUBta+ziIhIxFFCKBUz2IqBT2ErCIIdV74dWxI6OURxiUjoXAD0BY7GVgVsEtpwREREpOaUEErFHMAuDiSDXYF/A8eFLCIRCTUHMBu7lYSIiIhENK0hlMqNw04PfQxYhJJBEVEyKCIiEiU0Qij+PgN2A5f5tKUBq9FWEiIiIiIiUUYjhEHw9ddfM2jQIFq0aIHD4eCjjz6q9DVz586lV69eJCQk0L59e6ZOnRr0OP3sAC4FzgFuxG4470vJoIiIiIhI1FFCGAT5+fl0796dzMzMKh2/YcMGzj77bE4//XSWLl3KyJEjueaaa/jiiy+CHCm2aMwbQGfgrZK2PcArwT+1iIiIiIiElqaMBsHAgQMZOHBglY+fNGkSbdu2ZcKECQB07tyZb7/9lmeeeYYBAwYEPL4iU0R9R307CngD8F+fJxsDzwBXBPy0IiIiIiISZjRCGAYWLlxI//79/doGDBjAwoULy33Nvn37yMvL8/uqimWuZfRf1p/lry2HLvgngxdj1woOxVYRFJGoVtN+REQE1IeIRAslhGFg+/btZGRk+LVlZGSQl5dHYWFhma8ZM2YMaWlp3q9WrVpV6VyZGzJxFbvILMwEV0ljC+Aj4G0go9yXikiUqWk/IiIC6kNEooUSwgg1atQocnNzvV+bN5euAnOwLFcWi4sWA7DouEVk9ciCa4FVwHnBjVdEwk9N+hGAnVvyWL8ih51bNBogEsvUh4hEB60hDAPNmjUjJyfHry0nJ4fU1FSSkpLKfE1CQgIJCdUr/Tlx60ScOHHjxul2MmnSJCafMLnGcYtIZKtJP7Jk9nrmf5rNXtd+ElPi6TOoI736tQtShCISztSHiEQHjRCGgd69ezN79my/tlmzZtG7d++AnSPLlcVi12LcuAFwO90sqr+ILFdWwM4hItFt55Y85n+aDcWGjDZpUGyY/2m27vKLSJWoDxEJT0oIg8DlcrF06VKWLl0K2G0lli5dyqZNmwA7xWLo0KHe42+44QbWr1/PPffcw08//cSLL77IO++8w+233x6wmDyjg76cOJm0dVLAziEi0S1vVyF7XftJa5JMXJyDtCbJ7M3fT96ustc6i4j4Uh8iEp6UEAbBokWL6NmzJz179gTgjjvuoGfPnjz00EMAbNu2zZscArRt25bPPvuMWbNm0b17dyZMmMDLL78csC0nSo8Oerhxs8ilUUIRqZrUxkkkpsSTu6OA4mJD7o4CEhvEk9q47KntIiK+1IeIhCeHMcaEOgipvby8PNLS0sjNzSU1NdXvueuyr2Opa+lBCSHYUcKeKT2Z3FFrCUViXUX9iId3/U/+fhIbxNPn3I70OkPrf0REfYhIpFJRmSjnGR0sj+8oYc+UnnUYmYhEol792tG6Uzp5uwpJbZxEesuyP/SJiJRFfYhI+NGU0Sg3cetEHJXsMu/AobWEIlJl6S1Tadc1Qx/kRKRG1IeIhBclhFHMbdyszF+JoeJZwQbDivwVuM3BU0pFRERERCR6acpoFHM6nMzsNpMCd0GlxyY7k3E6nJUeJyIiIiIi0UMJYZRLcaaQ4kwJdRgiIiIiIhKGlBBGCU+x2Lw8be4qEi4aNmyIw1HxGt5won5EJLyoDxGR2qpKP6KEMErs2bMHgFatWoU4EhHxqKj0ejhSPyISXtSHiEhtVaUf0T6EUaK4uJitW7dijKF169Zs3rw5ov6IVCYvL49WrVpF3XVB9F5btF4XVP3aIu3ufnFxMWvXrqVLly4x/XOLNNF6XRC91xbNfYg+i0SmaL22aL0uCGw/ohHCKBEXF8dhhx3mnaaRmpoadb/4EL3XBdF7bdF6XRB91xYXF0fLli2B6Ls2X9F6bdF6XRC91xZt16XPIpEvWq8tWq8LAnNt2nZCREREREQkRikhFBERERERiVFKCKNMQkICDz/8MAkJCaEOJaCi9bogeq8tWq8LdG2RKlqvLVqvC6L32qL1ujyi9fqi9bogeq8tWq8LAnttKiojIiIiIiISozRCKCIiIiIiEqOUEIqIiIiIiMQoJYQiIiIiIiIxSgmhiIiIiIhIjFJCKCIiIiIiEqOUEIqIiIiIiMQoJYQiIiIiIiIxSgmhiIiIiIhIjFJCKCIiIiIiEqOUEIqIiIiIiMQoJYQiIiIiIiIxSgmhiIiIiIhIjFJCKCIiIiIiEqOUEIqIiIiIiMQoJYQiIiIiIiIxSgmhiIiIiIhIjFJCKCIiIiIiEqOUEIqIiIiIiMSoGiWE33//faDjEBERERERkTpWo4Swd+/edOzYkdGjR7N+/fpAxyQiIiIiIiJ1oEYJ4X/+8x86dOjA6NGj6dChA3369GHSpEns2rUr0PGJiIiIiIhIkDiMMaamL965cyfTpk3jzTff5LvvviM+Pp6zzjqLyy+/nHPPPZf4+PhAxioiIiIiIiIBVKuE0Ncvv/zCm2++yRtvvMHPP/9MWloaF110EUOHDuXkk08OxClEREREREQkgAJWZTQpKYnk5GQSExMxxuBwOPj444/p27cvxx13HKtXrw7UqURERERERCQAapUQ7tmzhylTptC/f3/atGnD/fffz+GHH857773H9u3b2bp1K2+//Ta//fYbw4cPD1TMUgZjDHl5eQRowFdEYpD6ERERkdhTo4Tw448/5uKLLyYjI4Orr76aPXv28Oyzz7J161Y++ugjLrjgAurXr4/T6eSiiy7igQceICsrK9Cxi489e/aQlpbGnj17Qh2Kn40bN+JwOFi6dGmoQxGRSqgfERERiT01SgjPP/98vv/+e26//XbWrFnD999/z4gRIzj00EPLPL579+5cdtlltQpUgmP79u3ccssttGvXjoSEBFq1asWgQYOYPXt2qEPzWrt2LaeffjoZGRkkJibSrl07HnjgAYqKikIdmogQGf2Ir3Xr1tGwYUMaNWoU6lBERERCrl5NXvTVV19x2mmnVfn4448/nuOPP74mp5Ig2rhxI3369KFRo0aMHz+erl27UlRUxBdffMGIESP46aefQh0iAPXr12fo0KH06tWLRo0asWzZMq699lqKi4t58sknQx2eSEyLlH7Eo6ioiEsuuYRTTjmFBQsWhDociVJFpoj6jvqhDkNEpEpqNEJYnWRQwtdNN92Ew+Hghx9+4MILL6Rjx44cddRR3HHHHXz33XcAXHXVVZxzzjl+rysqKqJp06b8+9//BqC4uJinnnqK9u3bk5CQQOvWrXniiSfKPe/KlSsZOHAgKSkpZGRkcMUVV7Bz585yj2/Xrh3Dhw+ne/futGnThnPPPZfLLruMb775JgD/CiJSG5HSj3g88MADdOrUiYsvvrgWVy1SvmWuZfRf1p/lruWhDkVEpEoCVmVUIsuuXbuYMWMGI0aMoEGDBgc975lKdc011zBjxgy2bdvmfW769OkUFBQwZMgQAEaNGsXYsWN58MEHWb16NW+++SYZGRllnnf37t2cccYZ9OzZk0WLFjFjxgxycnKq9eFs3bp1zJgxg759+1bjikUk0CKtH/nqq6949913yczMrOEVi1Quc2smrmIXmVv1eyYiEcJIVMjNzTWAyc3NrdLx33//vQHMBx98UOmxXbp0MePGjfM+HjRokLnyyiuNMcbk5eWZhIQE869//avM127YsMEAJisryxhjzOjRo82ZZ57pd8zmzZsNYNauXVthHL179zYJCQkGMNddd51xu92Vxi4iVRfN/cjOnTtNq1atzLx584wxxkyZMsWkpaVVGrdIdSzZs8T0WtzL+7Vkz5JQhyQiUimNEMYoU42y8tdccw1TpkwBICcnh88//5yrrroKgDVr1rBv3z769etXpfdatmwZc+bMISUlxfvVqVMnAH755ZcKX/v222+zZMkS3nzzTT777DOefvrpKl+DiAReJPUj1157LZdeeimnnnpqlWMWqa6JWyfixAmAEyeTtk4KcUQiIpWrUVEZiXwdOnTA4XBUqeDD0KFDue+++1i4cCELFiygbdu2nHLKKQAkJSVV67wul4tBgwYxbty4g55r3rx5ha9t1aoVAF26dMHtdnPddddx55134nQ6qxWDiARGJPUjX331FZ988on3RpIxhuLiYurVq8dLL73kTU5FairLlcVi12LvYzduFrkWkeXKomdKzxBGJiJSMY0QxqjGjRszYMAAMjMzyc/PP+j53bt3e78/9NBDGTx4MFOmTGHq1KkMHz7c+1yHDh1ISkqqcnn5Xr16sWrVKg4//HDat2/v91XWGqTyFBcXU1RURHFxcZVfIyKBFUn9yMKFC1m6dKn367HHHqNhw4YsXbqU888/v3oXLlIG39FBD40SikgkUEIYwzIzM3G73Rx//PG8//77/Pzzz6xZs4bnn3+e3r17+x17zTXX8Oqrr7JmzRqGDRvmbU9MTOTee+/lnnvu4bXXXuOXX37hu+++81YOLG3EiBHs2rWLSy65hB9//JFffvmFL774guHDh+N2u8t8zRtvvME777zDmjVrWL9+Pe+88w6jRo1iyJAh1K+vst4ioRQp/Ujnzp05+uijvV8tW7YkLi6Oo48+mkMOOSRw/yASkzyjg278f/98RwlFRMKVpozGsHbt2rFkyRKeeOIJ7rzzTrZt20aTJk045phjmDhxot+x/fv3p3nz5hx11FG0aNHC77kHH3yQevXq8dBDD7F161aaN2/ODTfcUOY5W7Rowfz587n33ns588wz2bdvH23atOGss84iLq7s+xP16tVj3LhxZGdnY4yhTZs23Hzzzdx+++2B+YcQkRqLlH5EJJg8o4OlE0I4MEo4uePkEEQmIlI5h6lOVQAJW3l5eaSlpZGbm0tqamrA39/lctGyZUumTJnCBRdcEPD3F5HQUz8iUn1Zriyuyb6m0uNe7viy1hKKSFjSrVSpUHFxMb/99hujR4+mUaNGnHvuuaEOSUQijPoRiWYTt07EgaPCYxw4tJZQRMKWpoxKhTZt2kTbtm057LDDmDp1KvXq6VdGRKpH/YhEK7dxszJ/JYaKJ1sZDCvyV+A2bpwOVcYWkfCiv8pSocMPP7xae42JiJSmfkSildPhZGa3mRS4Cyo9NtmZrGRQRMKSEkIRERGRGkpxppDiTAl1GCIiNaY1hCIiIiIiIjFKCWGAjRkzhuOOO46GDRvStGlTBg8ezNq1ayt93bvvvkunTp1ITEyka9eu/Pe//62DaEVEREREJJYpIQywefPmMWLECL777jtmzZpFUVERZ555Jvn5+eW+ZsGCBVxyySVcffXVZGVlMXjwYAYPHszKlSvrMHIREREJmgJgaaiDEBE5mPYhDLIdO3bQtGlT5s2bx6mnnlrmMUOGDCE/P5/p06d720488UR69OjBpElVK1Md7P3DRCT6qR8RCZJPgVuAvcBaIC204YiI+NIIYZDl5uYC0Lhx43KPWbhwIf379/drGzBgAAsXLiz3Nfv27SMvL8/vS0SkOtSPiATZRuA84Fzgf0AO8FAoAxIROZgSwiAqLi5m5MiR9OnTh6OPPrrc47Zv305GRoZfW0ZGBtu3by/3NWPGjCEtLc371apVq4DFLSKlFAP/AVyhDiSw1I+IHFBkigL3ZvuBMUAX4BOf9jOAGwN3GhGRQFBCGEQjRoxg5cqVTJs2LeDvPWrUKHJzc71fmzdvDvg5RAT4AegNXAGMDXEsAaZ+RMRa5lpG/2X9We5aHpg3fAe4HygsedwMeBP4EugUmFOIiASKEsIgufnmm5k+fTpz5szhsMMOq/DYZs2akZOT49eWk5NDs2bNyn1NQkICqampfl8iEkD7gKuBE7BJIcDTQPkD9xFH/YiIlbk1E1exi8ytmYF5w0uA47Gfsm4DfippcwTm7UVEAkkJYYAZY7j55pv58MMP+eqrr2jbtm2lr+nduzezZ8/2a5s1axa9e/cOVpgiUpl4wHfArAvwGfZOv4hEjSxXFotdiwFY5FpEliurem/wJzCrVJsT+DewGHgWFZERkbCmhDDARowYwX/+8x/efPNNGjZsyPbt29m+fTuFhYXeY4YOHcqoUaO8j2+77TZmzJjBhAkT+Omnn3jkkUdYtGgRN998cyguQUTA3sl/Dkgv+e9SoF8oAxKRYJi4dSJOnAA4cTJpa9WqewOwEDgWOBOYX+q5o4EeAQlRRCSolBAG2MSJE8nNzeW0006jefPm3q+3337be8ymTZvYtm2b9/FJJ53Em2++yUsvvUT37t157733+OijjyosRCMiAbQeOB9bGt5XZ+wo4a1A/boOSkSCzTM66MYNgBt31UYJdwLXACcBy0raRgDayEtEIpD2IYwS2j9MpAbysYVixmPXDB4BrAISQhlU6KgfkVhzXfZ1LHUt9SaEYEcJe6b0ZHLHyQe/oBh4BbgX2OXT3gN4EVuASkQkwmiEUERij8FWAewMPI5NBsEmiNmhCkpE6lLp0UGPckcJlwJ9gGs5kAw2xK4R/BElgyISsZQQikhsWQ6cDgzhQNGY+sA9wFqga4jiEpE65bt2sDS/tYT7gJHAMcB3Pgddiu0zbgPqBTFQEZEgU0IoIrFhF3Az0BOY59M+EFgJjAM0S1IkJpQ3OujhN0pYH1iEnS4Kdh/B2cAbQPPqn7vIFNUoZhGRYFFCKCKxYSSQyYEPdUcAn2C3kugYophEJCQmbp2Io5JNAR047ChhHHZ9YCrwJLaIzBk1O+8y1zL6L+vPctfymr2BiEgQKCEUiXK6G13iEWyxmAbAGGzxmEFoo2iRGOM2blbmr8RUUhLUYFiRvwK3cUM37BTzUdg9Smsoc2smrmIXmVsza/4mIiIBplnvIlFsmWsZt667lRfav0C3lG6hDqfubAH+hy0J79EO+A+28EPLUAQlIuHA6XAys9tMCtwF/k/MBB4CfgU62MfJick4HSXrDGs5pdwzTRXwTkftmdKzdm8qIhIAGiEUiWIxdzd6H3b070jg79iqob4uQsmgiJDiTKFpfFP7taUpTS9sStNBTWma1ZSmO5rSdFFTmi5uSoozJWDn9C1i41e0RkQkxJQQikSpsu5GRy0DTAeOAu7HJoKbgX+GMiiRyLdzSx7rV+Swc0teqEMJvH3AE0AXbP/h0R9YAZwauFOVLmJT7tYWIiIhoIRQJErFzN3otcDZ2PWAv5S0xWErio4o/2VaWylSsSWz1/PW+AW8/9z3vDV+AUtmrw91SIEzC7su8AFgb0lbC2AadupogAtNlbXFRVT3yyISUZQQikShSL8bXaVRiTzs3oFdgc992vsCWcALQOOyX6pKfyIV27klj/mfZkOxIaNNGhQb5n+aHVEjheX2I2OBM4HsksdO4HZgDXZ/0gAXmipvi4tI65dFJHopIRSJQpF8N7pKoxJfY9cJjgc8A32HAW8Dc7B3/isQc2srRaopb1che137SWuSTFycg7QmyezN30/ersJQh1YlFfYj52H3FgRbeGoxdnp5kPYhLas/9oiUfllEopsSQpEoE8l3o6s8KtEOO0IIdiuJB4GfgIup9O5+TK2tFKmh1MZJJKbEk7ujgOJiQ+6OAhIbxJPaOCnUoVXqoH6kqFQ/0hkYDbwCfAN0r/l5KpvJUF5/7BEJ/bKIRD8lhCJRJpLvRpc7KrGj1KjEYcA/gMHYaV6PYfcXrIKYWVspUgvpLVPpM6gjxDnI2ZQLcQ76nNuR9JZBGkYLIG8/0jCZuG8cpH2TzN49pUY37wWGU+NPQVVdXzlx60QcldylcuBQPyQiIaV9CEWiiO/oV1l870aH4/5XvqMSaU2Syf2tgMTf4km9JAm+A9J8Dr6Pan+YK/3vE+7/HiKh1KtfO1p3SidvVyGpjZMiIhkESG2UROKueHLnF5BWkExu/QIStwVudLP0CGTujgLmf5pN607pfv9GbuNmZf5KDKbC9zMYVuSvwG3cB/Y8FBGpQ0oIRaKI5250RR9APHejJ3ecXIeRVY1nVGL+p9nkLMsl8Zd4+mzsSPruVDvF62mfg2twZ98zOug7fcszShiO/x4ioZbeMjViEkEAlkD6Tan0WduR+Ydmk5OYS2JcPH26BW500zMCmdEmzTuTIWdTLnm7Cv3O4XQ4mdltJgXugkrfM9mZrGRQREJGCaFIlIiWu9G9jmhH6/Xp5H1VSGpREun7Sz5gubD7DdawAmB5o6caJRSJAruxa4lfBIqhF+1oXZBO3qBCUh9IIr1H4JLag2YyVLC+MsWZEtDN7UVEgkEJoUiUiPi70QXAOOApSN+bSrqn5N8J2C0kjqvd25c1OuihUUKRCGWAN4C7gByf9s6Q/mIq6acFfnTTbybDplwSG8RHzPpKEZGyKCEUiSIReTfaAO8BdwKbfdozsAniFdS6/FWkr60UiXVFpoj6jvoHP7EZuAbYV/I4GXgYGAnEBy+eSF1fKSJSFlUZFZHQ2oX9QOdJButhk8O1wDAC0kup0p9I5FrmWkb/Zf1Z7lp+8JOtsQWm4EDV4XsIajLokd4ylXZdM5QMikjEU0IoIqF1KPBoyfcDgBXY4jFp5b6iWmqytlJEwkfm1kxcxS4yt2bCdOz0cl/3Al8AH2ITRBERqRZNGRWRuuMGpgDnYxNBjxHYzaLPpMZFY8oT8WsrRWKY73TvRa5FZD2YRc/vesLjPgclYfsOERGpESWEIlI35gO3AFnAEmw1QI/62NHBIInItZUiwsRfJ+IsduKOc+P808mkGyYx+ZbJcC3QJtTRiYhEB00ZFZHg2ootDHMyNhkEmAz8L2QRiUgEyPoqi8UFi3HH2Wnc7npuFh23iKz3szQ1VEQkgJQQikhw7MNWCe0I/MenvRswB93dF5Gy/Qr8DSb+PBHnn/5TuJ04mXTkpIBPLRcRiWVKCEUk8D4DjsZW/8svaWuMnSa6GDg1RHGJSHjLBDpB1rosFh+3GHc9/yJPvlvEiIhIYCghFJHAGgacA6wreRwH3ARkAzeilcsiUr48IB8m3jARp7vsAk9OnNoiRkQkgJQQikhg9fH5/lRsAZlM/KuKioiU5U7IGlwyOugsewsYjRKKiASWEkIRqTnDwXuCXQ0MAt4C5gLd6zgmEQl/bmAiMLpUezxMHDMRRyWLBB04NEooIhIgmrwlIjWzGLgV6ABM9Wl3Ap+EIiARiQiLsNPHF2E/hZyPXXMMuI2blYUrMZgK38JgWJG/Ardxa+9QEZFaUkIoItWzA/gH8DJ2hHABcANwYiiDEpGw9wfwAHZk0JPv/Ql8jjchdDqczOw2kwJ36akHB0t2JisZFBEJACWEIlI1f2I/yD0E7PZpPxI7/UtEpCwGeB24G/jNp/0obOXhUlWHU5wppDhT6io6EZGYpzWEIlK5r4Ae2Cmiu0vaGgITgOX4F5IREfFYBZyGrT7sSQYbAE8BWWgLGhGRMKARQhEp3/+AO4H3S7VfCYwBmtV1QCISMb4G+mFnF3hcCDwDtApJRCIiUgaNEIpI+b7GPxk8DvgOmIKSQRGpWG+gU8n3R2DXCr6HkkERkTCjhFBEync59kNdU+AVbDJ4QkgjEpFw9Uepx/Wx644fAVYCZ9V1QCIiUhVKCEXEWoWdBlraG0A2MBz1GCJysL3YpO8w7LpAXycDDwOJdRyTiIhUmT7eicS63cBt2A3k78duJu+rLZBWtyGJSISYgd0y4lGgALu/YHFIIxIRkWpSQigSq9zYvQQ7AM9zYOuIf/oc46jroEQkImwGLgIGAr+UtNXDVg0tClVQIiJSE6oyKhKLFgK3AIt92pKwI4R3hiQiEYkERcCz2BHBfJ/2U7F7Ch4VgphERKRWlBCKxJJtwL3YTaJ9DcHuC9a6ziMSkUjxNXATdr2xR1PgaWwBKs0oEBGJSEoIRWLFOqAn4PJp64qdLnpaKAISkYhhgNs5kAw6sMnh40CjEMUkIiIBoTWEIrHiCOD4ku8PAf4PWIKSQRGpnAM7JdSB3Y/0R2wf0iiEMYmISEBohFAkjOzckkferkJSGyeR3jK1dm+2FWjh89iBHQ38P2A0kF67txeR8BSQfuRH7D6CPXzaTsBWIe4DOGsXo4iIhA8lhCJhYsns9cz/NJu9rv0kpsTTZ1BHevVrV/03cgFPYKuFfgj81ee5o7AbRYtIVKp1P7IL+AcwGZsM/oh/8ndqAIMVEZGwoCmjImFg55Y85n+aDcWGjDZpUGyY/2k2O7fkVf1NDHYT+SOBscB+7Jqf/cGIWETCTa36EQNMBToBk0oeZwH/CWLAIiISFpQQioSBvF2F7HXtJ61JMnFxDtKaJLM3fz+b1u5k/Yqcyj/QZQGnYCv9bS1piwcu4MD+giIS1Wrcj6zAjvwNB3aUtKUAE4BL6yJyEREJJU0ZFQkDqY2TSEyJJ3dHAWlNksndUcD+wj+Z885qiv8sLn/q107gAeAl7B19j0HYKaPt6+oKRCTUqt2P7AEeAZ7D/8bR34BngJZ1fAEiIhISGiEUCQPpLVPpM6gjxDnI2ZRL0f4/MRji451lT/0y2OIwHbBrfTzJYEfgv8AnKBkUiTHV6ke+BDpjbxx5ksEOwBfAOygZFBGJIRohFAkTvfq1o3WndPJ2FbJ7Rz6z31zpN/UrZ1MuebsKbdVAB/aD2+6SF6cADwG3YaeKikhMqnI/0jgVtpW8KBFbSOZuICF0sYuISGgoIRQJI+ktU0lvmcrOLXkHTf1KbBBPauOkAwc/A8wChmCLyDSv3bkDuuWFiIRMlfqRlsAI4BfgBaAGBY1LUx8iIhKZlBCKhCHP1K/5n2aTsyGXxJx4+pzc0f9DVnvsh7kATO0K2JYXIhI2vP3Iv7PJWZRL4rHx9DnXpx+ZgP0U4Kj9udSHiIhELiWEImGq1xntaL0pnbwnC0ndlET6ylQ7JTTZ56AAJIOlS9Xn7ihg/qfZtO6Urrv8IpFsE/TKbEfrz9LJq19I6llJpJ/h8/90/cCcRn2IiEhkU1EZkXC0GjgT0q9Kpd26DNL3p8IW4OvAn6q8UvV5uwoDfzIRCb79wDhs0ZgPIX1/Ku3yM0hflOpfjThA1IeIiEQ2JYQi4SQXu5l8N2wVQI9+wHLgrMCf0rdUfXGxKXu9oohEhrlAD+A+oKCkLQN4A/iYgEwPLU19iIhIZFNCGARff/01gwYNokWLFjgcDj766KMKj587dy4Oh+Ogr+3bt9dNwBJ6xcAr2G0jnuVAGfjDgfexxWO6BOfUpUvVE+fwX2ckIuFvO3A5cDqwpqQtDrgZWIvdYD4IySCoDxERiXRaQxgE+fn5dO/enauuuooLLrigyq9bu3YtqakH/oA2bdo0GOFJOHoQeNLncRIwCrir5Psg8y1VrwqBIhFmD3A08LtP2wnARKBn3YSgPkREJHIpIQyCgQMHMnDgwGq/rmnTpjRq1CjwAUn4ux67jUQh8DdgPNCmbkPwlKoXkQjTELgSWzX0EOz6waup8zlA6kNERCKTEsIw0qNHD/bt28fRRx/NI488Qp8+fco9dt++fezbt8/7OC8vry5ClEDYD/wMHOXT1poDe4GdHoqgJBapH4lQv2OTwHiftoexU89HAU1CEZSIiEQqrSEMA82bN2fSpEm8//77vP/++7Rq1YrTTjuNJUuWlPuaMWPGkJaW5v1q1apVHUYsNfYFtmBMf+w0L19Xo2RQ6pT6kQjjWWt8JHY00FdD4J8oGRQRkWpzGGOCUIRaPBwOBx9++CGDBw+u1uv69u1L69atef3118t8vqw7+61atSI3N9dvHaKEiV+AO4BPfNruwU7tEgkR9SMRZBlwE7Cg5HEStnhMHU8tFxGR6KMpo2Hq+OOP59tvvy33+YSEBBISEuowIqkRFzAGeBo7VdTjJGBISCIS8VI/EgHysNNBX+BA9WGAcwH96EREJACUEIappUuX0rx581CHITVlgGnA3dgN5T2aYwvGBLEEvIhEAQO8g92XdJtPe0cgEzvtXEREJACUEAaBy+Vi3bp13scbNmxg6dKlNG7cmNatWzNq1Ci2bNnCa6+9BsCzzz5L27ZtOeqoo9i7dy8vv/wyX331FTNnzgzVJUhtrAOuAr7xaasP3Ancj13rIyJSnrXY/QO/9GlLBB7AbkWjkUEREQkgJYRBsGjRIk4//UB1kDvuuAOAYcOGMXXqVLZt28amTZu8z+/fv58777yTLVu2kJycTLdu3fjyyy/93kMiSAqw1Ofx2dgtJTqEJBoRiTSv458MDgKeA9qGJhwREYluKioTJfLy8khLS1MxiHAxAZgEPItNCEUigPqRMFEAdCn5/nnsekEREZEg0bYTIrUxD+gH/FGq/VZgJUoGRaRiG7FrBX0lA58Bq1EyKCIiQaeEUKQmfgUuAU4DvsJWAfRVH63zEZHy7QOexI4EDsVuTePrKGxiKCIiEmRKCEWqYy/wBHZj6Gk+7d8DRSGJSEQizWygO/APoBCbHD4SyoBERCSWKSEUqQqD3VT+KGylv4KS9nTgJexm0fVDE5qIRIht2C1n+mMriYL9K3wb8H+hCkpERGKdqoyKVOYnYCTwhU+bExiBvat/SN2HJCIR5E/s3oEPAnt82nsDLwI9QhCTiIhICSWEUmd2bskjb1chqY2TSG8ZIRUM92HXCeb4tJ2Orfx3dCgCEoltEdePbATOx38rmkOBccBwNE9HRERCTgmh1Ikls9cz/9Ns9rr2k5gST59BHenVr12ow6pcArZgzE1Aa+x2EhcCjlAGJRKbIrIfaQa4fB5fC4zBJoUiIiJhQPcmJeh2bslj/qfZUGzIaJMGxYb5n2azc0tejd9v/YqcKr2+OscC8APwW6m264AXgDXARdQ6Gax2TCIS0H4kqH1IaYnY9YE9gIXYNccBSAbVj4iISKBohFCCLm9XIXtd+8lok0ZcnIO0JsnkbMolb1dhtad8VWeEoFqjCTnAKGAKcDXwss9zTuDmAw+LTBH1HTWrIBORIxwiYSBQ/UjQ+hCw00JvAyYBnX3aBwB/IWC3YNWPiIhIIGmEUILuzyI3xcWGHZvzKC425O4oILFBPKmNk6r1PtUZIajysUXAP4GO2GQQ4BUgq+wYlrmW0X9Zf5a7llcr9urGLyL+AtGPBKUPAcjFJoLHAF9jC06ZUscE6K+t+hEREQk0JYQSVEtmr+eL15ZTkLePrRv+YN2y7RDnoM+5Has9OugZIUhrkuwdIdibv5+8XYU1O3YW0A24E/B8lkrDJojlFIzJ3JqJq9hF5tbMasVe3fhF5IBA9SMB70MM8BbQCVtoqrikfRsHTz0PEPUjIiISaEoIJWh872Qf0T2DFu0OoUFqIgOGdqPXGdWf3pTaOInElHhydxRUOkJQ4bHrsVX/zsRuKQF2XeA1QDZ2i4kyZoRmubJY7FoMwCLXIrJc5QwjBiB+EbEC2Y8ErA8Bu6a4H3Zfwe0lL0rCFoxZBmSUfz21WfunfkRERAJNCaEETek72U0OSyXO6aBefWeN37N996YU7f+TnE25FY4QpLdMpc+gjhDn8D/2nVToAnzkc3Bv4EfgX0DT8s89cetEnNjYnTiZtHVStWIvN6ZIKJ0vEiKB7kdq3Yc0SrXrjbsDc3xecC42SbwPiC/73Etmr+et8Qt4/7nveWv8ApbMXl/t+NWPiIhIoKmojASN753stCbJtbqT7VtEIa5eHEf3PozjBhxR4YegXv3a0bpTuv+eZZuwewuCLQf/FHAZld4a8R0dBHDj9o4S9kzpWeXrKDMmESlXoPqRgPUhA4EZPgcdjq1CfE7F5y+99i93RwHzP82mdaf0avcD6kdERCSQNEIoQROoO9mlP0jFxztZtzyn8hcC6S1Sadc148A5hwKnAHdjp4deQZX+L/AdHfSoySgh2H8Xv5hEpFyB6Edq1YeU/v/13pIn4oEHgFVUmgxC4Nf+qR8REZFA0QihBFUg7mTXqNz8LuAhbLGY13za47DTvKox26z06KBHTUcJRaR6atuP1HjLin3A70ALn7bTgPHAIODIqscQyBkTIiIigaQRQgm62t7JrlYRBTd2D7AOQCbwOvBtqWMqSQZLF30oa3TwwFvVbJRQRKqnNv1IjQqxfImtQnwxB6qHetxFpclg6X5Ea/9ERCRcaYRQwp7ng9T8T7PJ2ZRLYoP4sj9IfQvcgt0c2qMBtqroyVU7V+kNn5uc72Zxw4NHBz00SigS/qrchwBswW5F83bJ42zsLIMrq36+8jaO19o/EREJR0oIJSJU+EFqC3AP8GapF10GjANaVu0cZRV9eN01BUdDB+agXaYPcOBg0tZJTO44uXoXJSJ1ptJk7E9scZiHAJdP+0lAr6qfp7LiMZ4vERGRcKGEUMLSzi15B31wO+iD1F7gGeAJIN/nxT2xH+z6VO+cpdcZNWySyI4mmytMBgEMhhX5K3AbN05HzbfUEJHAKt2PlJuMzQduApb7tKVjbyhdSbUWV9R4vaKIiEiIKCGUsFPedKuDzADu93l8KDY5vIZqFY3xKF30Yc+OvQx5dxRn39KVxs0aVvjaZGeykkGRMFKlfmQndnbBFJ82B3Ad8CTQuPrnVfEYERGJNCoqI2Gl9HQrig3zP832Fmbwcx624l8ccDN2rc/11CgZhLKLPpw+sBudWh9B0/imFX6lOFNqeMUiEmhV7key8U8GewILsYWpapAMgorHiIhI5NEIoYSVcqdbbS4kfVaqf2EHBzAR2I+tBhgAKvogEvmqPG3zJGA48D52dsGN1PiGki/1IyIiEkmUEEpYKXO61R/xpF6UZIvHtADO9HlBp8DHoKIPIpGtzH4kPp7Ud5OgC/5J33js9NBmgY1B/YiIiEQKTRmVsOI33WpVLix00Gd2R9K3lHywug8qqfEiIjHOrx/5Xy5sddDns46kj06Fl0sdfCgBTwZFREQiiUYIJez06tqO1lPTyZteSGpREun7S5LB84EJ2KmiIiIV6NWvHa3rpZP3QCGpP/j0I48DVwH1QxmdiIhI+FBCKOGjCMgEHoH03FTSKfkA1xl4DvhLyCITkUiSD4yG9AmppP/pM23zfOBZlAyKiIj4UEIo4WEXcAqw2qctFXgUGIE+wIlI5QzwEXAbsNmnvR12b9K/hiAmERGRMKc1hBIeDgHalHzvwE7pygZGomRQRCrnxm5FcwEHksF44EFgJUoGRUREyqERQgmNvUACB9YDOoBnABfwNHB8iOISkcjkBFr6PD4T+D+gQ2jCERERiRQaIZS6ZYB3gY7AJ6WeOxL4GiWDIlI1pSsOP4ndXP4dYAZKBkVERKpACaHUnZVAP+Bi7JSu27EjhXVo55Y81q/IYeeWvLo9sYgEzq/A37AjgL4OARaXPBfEasTqR0REJJpoyqgE3x/Aw8CL2HU+Hh2A3dTZHmBLZq9n/qfZ7HXtJzElnj6DOtKrX7u6ObmI1F4RtuLwI9hKojOBi4DmPscEeVsa9SMiIhJtNEIoweMGXsImfi9wIBlsh50uOoM6SwZ3bslj/qfZUGzIaJMGxYb5n2brDr9IpPgGOx30bmwyCHYdcnbdhaB+REREopESQgmO+cBxwPXA7yVtydg1PquAQdTpBvN5uwrZ69pPWpNk4uIcpDVJZm/+fvJ2FdZdECJSfb8BVwKnYvsOsH3HjcBaoG/dhaJ+REREopESQgmOZ4Asn8d/x354GwUk1n04qY2TSEyJJ3dHAcXFhtwdBSQ2iCe1cVLdByMilXMDE7HFpl71aT8G+B47Bf2Qug1J/YiIiEQjJYQSHE9jE7/u2MqhbwGH2aeqWpChyBQFLJz0lqn0GdQR4hzkbMqFOAd9zu1IesvUgJ1DRALon8BN2HXGAGnYJPB74LjQFHZRPyIiItHIYYwpXbhbIlBeXh5paWnk5uaSmlrHH04+w5Z/P6dU+yLsmh/ngaaqFmRY5lrGretu5YX2L9AtpVvAQt25JY+8XYWkNk7ShziRUkLajxwUDNAJ2AYMBZ4CMuxToS7son5ERESiiUYIpeZ+Bs7GJoI3YDeV93UsfslgdQoyZG7NxFXsInNrZkBDTm+ZSruuGfoQJxJODLCmVFsq8G9gHnbKaEkyGA6FXdSPiIhINFFCKNW3B7gPOAr4b0nbFuA/Fb+sqgUZslxZLHYtBmCRaxFZrqyy3k5EosFKbGGY47D7C/oaiC0m46M6hV20X6CIiEjllBBK1Rls0nckMA67JxjYtYFvYSuKVqCqBRkmbp2Is2Ro0YmTSVsnBfQyRCQMuIB7sNPKv8FuJXH7gafLW0Nc1X5kyez1vDV+Ae8/9z1vjV/Aktnrg3QhIiIikU0JoVTNYuBk4Arsmh6AeOAfwE/YKqKVbCNRlYIMntFBd8mmhW7cGiUUiSYGeB/oDIwH/ixpPwK42n67zLWM/sv6s9y1/KCXV6UfCYdppSIiIpGiXqgDkAgwFbgK+0HO4zxgAvZDXDX06teO1p3Syy3I4BkddHt3sT8wSji54+SaxS8i4WEdcAsww6ctAbsdzb14t6TxXUNc1v/3lfUjnmmlGW3SvNNKczblkrerUOv+REREStEIoVTuTKBByfdHYj/MfUS1k0GP8goylB4d9NAooUiE2ws8AhyNfzI4ELvZ/MN4k8GqriGuqLCL9gsUERGpOiWEcrAdpR63AMZgRwSXAwOCc1rftYOlaS2hSAT7E1sxdF/J48OAD7Bb1pS6sRSINcTaL1BERKTqNGVUDvgfcCd2I/lsoJHPczcH99S+owJl8R0l7JnSM7jBiEhgpQDPAUOAO4AHS9pKKd0P1Ob/+8qmlYqIiIilEUKBQuBR7CbQ72NHCB+t2xAmbp2Io5KqNA4cGiUUCXdFwNPAhlLt52NvNI2jzGQQyp4lUJvZAdovUEREpHJKCGOZb7W/R7DrfACaAj3qLgy3cbMyfyXGr2rNwQyGFfkrcBt3hceJSIh8je077gZuK/WcA2hb/ku1hlhERCQ0NGU0Vq3CfmCb7dNWD7gVeAhIq7tQnA4nM7vNpMBdUOmxyc5knI6y1xmKSIjkYPcUfM2nbTqwAuhatbcoq8KwhyoNi4iIBI8SwliTi63o93/g97nrL9g1Pp1DERSkOFNIcZYzj0xEwpMbmAzcj+1bPI4DXqTKyaDWEIuIiISOpozGmv3AqxxIBttit5D4gpAlgyISgX4ATgBGcCAZPASYBCwEjq36W2kNsYiISOgoIYw1TYDHgCRgNLAau8l8xZ/FREQOGA2cCPgO6l0J/ARcD+XsHlMmrSEWEREJLU0ZjUU3Yiv+HRbqQEQkIvUEb/52NDAROLlmb6U1xCIiIqGlhDAW1UPJoIjU3DnA5djE8Bagfu3eTmuIRUREQkdTRoPg66+/ZtCgQbRo0QKHw8FHH31U6Wvmzp1Lr169SEhIoH379kydOjXocYqI1Njr2E3ma5kMioiISGgpIQyC/Px8unfvTmZmZpWO37BhA2effTann346S5cuZeTIkVxzzTV88cUXQY5URERERERimaaMBsHAgQMZOHBglY+fNGkSbdu2ZcKECQB07tyZb7/9lmeeeYYBAwYEK0wREREREYlxSgjDwMKFC+nfv79f24ABAxg5cmS5r9m3bx/79u3zPs7LywtWeCISpdSPiIiIiKaMhoHt27eTkZHh15aRkUFeXh6FhYVlvmbMmDGkpaV5v1q1ahXQmIpMUUDfT0TCT7D7EREREQl/Sggj1KhRo8jNzfV+bd68uUqv27klj/Urcti5pfyRgGWuZfRf1p/lruWBCldEwlAw+xERERGJDJoyGgaaNWtGTk6OX1tOTg6pqakkJSWV+ZqEhAQSEhKqdZ4ls9cz/9Ns9rr2k5gST59BHenVr91Bx2VuzcRV7CJzayaTO06u1jlEJHIEsx8RERGRyKARwjDQu3dvZs+e7dc2a9YsevfuHbBz7NySx/xPs6HYkNEmDYoN8z/NPugOf5Yri8WuxQAsci0iy5UVsBhEJLJVtR/xHKtRRBERkfCnhDAIXC4XS5cuZenSpYDdVmLp0qVs2rQJsNO0hg4d6j3+hhtuYP369dxzzz389NNPvPjii7zzzjvcfvvtAYspb1che137SWuSTFycg7QmyezN30/eLv81ihO3TsSJEwAnTiZtnRSwGEQkslW1H1kyez1vjV/A+899z1vjF7Bk9voQRSwiIiKVUUIYBIsWLaJnz5707NkTgDvuuIOePXvy0EMPAbBt2zZvcgjQtm1bPvvsM2bNmkX37t2ZMGECL7/8ckC3nEhtnERiSjy5OwooLjbk7iggsUE8qY0PTEn1jA66cQPgxq1RQhHxqko/Up1RRBEREQk9hzHGhDoIqb28vDzS0tLIzc0lNTW1zGO8a3/y95PYIJ4+53ak1xkH1v5cl30dS11LvQkh2FHCnik9tZZQJAYEoh9ZvyKH95/7now2acTFOSguNuRsyuXCW0+gXdeMMt9TREREQkdFZWJIr37taN0pnbxdhaQ2TiK95YEPfL5rB335jhL2TOlZl+GKSBiqqB8B/1HEtCbJZY4iioiISPjQlNEYk94ylXZdMw76EOe7drA0rSUUEV/l9SOe5/oM6ghxDnI25UKcgz7ndizzWBEREQk9jRBKuaODHholFJHqqGwUUURERMKHRgiFiVsn4sBR4TEOHBolFJEqq2gUUURERMKHEsIY5zZuVuavxFBxbSGDYUX+CtzGXeFxIiIiIiISOTRlNEp4isXm5VW/tPt7h79Hobuw0uOSnEnk78mv9vuLxKqGDRvicFQ8+h5OatOPiEjgRVofIiKRSQlhlNizZw8ArVq1CnEkIuJR0fYN4Uj9iEh4ibQ+REQik/YhjBLFxcVs3boVYwytW7dm8+bNUfVHJC8vj1atWkXddUH0Xlu0XhdU/doi7e5+cXExa9eupUuXLjH9c4s00XpdEL3XFq19iIhEJo0QRom4uDgOO+ww71Sv1NTUqPrj6RGt1wXRe23Rel0QfdcWFxdHy5Ytgei7Nl/Rem3Rel0QvdcWrdclIpFFRWVERERERERilBJCERERERGRGKWEMMokJCTw8MMPk5CQEOpQAiparwui99qi9bpA1xapovXaovW6IHqvLVqvS0Qik4rKiIiIiIiIxCiNEIqIiIiIiMQoJYQiIiIiIiIxSgmhiIiIiIhIjFJCKCIiIiIiEqOUEIa5zMxMDj/8cBITEznhhBP44YcfKjz+3XffpVOnTiQmJtK1a1f++9//+j1vjOGhhx6iefPmJCUl0b9/f37++edgXkK5qnNt//rXvzjllFM45JBDOOSQQ+jfv/9Bx1955ZU4HA6/r7POOivYl3GQ6lzX1KlTD4o5MTHR75hI/ZmddtppB12bw+Hg7LPP9h4TDj+zr7/+mkGDBtGiRQscDgcfffRRpa+ZO3cuvXr1IiEhgfbt2zN16tSDjqnu/7vBFK39SLT2IRC9/Ug09iEQG/2IiEQxI2Fr2rRpJj4+3rzyyitm1apV5tprrzWNGjUyOTk5ZR4/f/5843Q6zVNPPWVWr15tHnjgAVO/fn2zYsUK7zFjx441aWlp5qOPPjLLli0z5557rmnbtq0pLCysq8syxlT/2i699FKTmZlpsrKyzJo1a8yVV15p0tLSzK+//uo9ZtiwYeass84y27Zt837t2rWrri7JGFP965oyZYpJTU31i3n79u1+x0Tqz+z333/3u66VK1cap9NppkyZ4j0mHH5m//3vf80//vEP88EHHxjAfPjhhxUev379epOcnGzuuOMOs3r1avPCCy8Yp9NpZsyY4T2muv9WwRSt/Ui09iHGRG8/Eq19iDHR34+ISHRTQhjGjj/+eDNixAjvY7fbbVq0aGHGjBlT5vEXX3yxOfvss/3aTjjhBHP99dcbY4wpLi42zZo1M+PHj/c+v3v3bpOQkGDeeuutIFxB+ap7baX9+eefpmHDhubVV1/1tg0bNsycd955gQ61Wqp7XVOmTDFpaWnlvl80/cyeeeYZ07BhQ+Nyubxt4fAz81WVD3L33HOPOeqoo/zahgwZYgYMGOB9XNt/q0CK1n4kWvsQY6K3H4mFPsSY6OxHRCS6acpomNq/fz+LFy+mf//+3ra4uDj69+/PwoULy3zNwoUL/Y4HGDBggPf4DRs2sH37dr9j0tLSOOGEE8p9z2CoybWVVlBQQFFREY0bN/Zrnzt3Lk2bNuXII4/kxhtv5Pfffw9o7BWp6XW5XC7atGlDq1atOO+881i1apX3uWj6mf373//m73//Ow0aNPBrD+XPrCYq+/8sEP9WgRKt/Ui09iEQvf2I+hB/kdSPiEj0U0IYpnbu3Inb7SYjI8OvPSMjg+3bt5f5mu3bt1d4vOe/1XnPYKjJtZV277330qJFC78/lmeddRavvfYas2fPZty4ccybN4+BAwfidrsDGn95anJdRx55JK+88goff/wx//nPfyguLuakk07i119/BaLnZ/bDDz+wcuVKrrnmGr/2UP/MaqK8/8/y8vIoLCwMyO93oERrPxKtfQhEbz+iPsRfJPUjIhL96oU6AJHqGjt2LNOmTWPu3Ll+hRP+/ve/e7/v2rUr3bp144gjjmDu3Ln069cvFKFWqnfv3vTu3dv7+KSTTqJz585MnjyZ0aNHhzCywPr3v/9N165dOf744/3aI/FnJpEvmvoQiI1+RH2IiEjwaIQwTKWnp+N0OsnJyfFrz8nJoVmzZmW+plmzZhUe7/lvdd4zGGpybR5PP/00Y8eOZebMmXTr1q3CY9u1a0d6ejrr1q2rdcxVUZvr8qhfvz49e/b0xhwNP7P8/HymTZvG1VdfXel56vpnVhPl/X+WmppKUlJSQH4PAiVa+5Fo7UMgevsR9SH+IqkfEZHop4QwTMXHx3PMMccwe/Zsb1txcTGzZ8/2uxPsq3fv3n7HA8yaNct7fNu2bWnWrJnfMXl5eXz//fflvmcw1OTaAJ566ilGjx7NjBkzOPbYYys9z6+//srvv/9O8+bNAxJ3ZWp6Xb7cbjcrVqzwxhzpPzOwWxjs27ePyy+/vNLz1PXPrCYq+/8sEL8HgRKt/Ui09iEQvf2I+hB/kdSPiEgMCHVVGynftGnTTEJCgpk6dapZvXq1ue6660yjRo285cSvuOIKc99993mPnz9/vqlXr555+umnzZo1a8zDDz9cZrn4Ro0amY8//tgsX77cnHfeeSHbwqA61zZ27FgTHx9v3nvvPb/y4nv27DHGGLNnzx5z1113mYULF5oNGzaYL7/80vTq1ct06NDB7N27N2yv69FHHzVffPGF+eWXX8zixYvN3//+d5OYmGhWrVrld+2R+DPzOPnkk82QIUMOag+Xn9mePXtMVlaWycrKMoD55z//abKyssz//vc/Y4wx9913n7niiiu8x3vKxd99991mzZo1JjMzs8xy8RX9W9WlaO1HorUPqcm1RUo/Eq19iCeWaO5HRCS6KSEMcy+88IJp3bq1iY+PN8cff7z57rvvvM/17dvXDBs2zO/4d955x3Ts2NHEx8ebo446ynz22Wd+zxcXF5sHH3zQZGRkmISEBNOvXz+zdu3auriUg1Tn2tq0aWOAg74efvhhY4wxBQUF5swzzzRNmjQx9evXN23atDHXXnttSP5wVue6Ro4c6T02IyPD/PWvfzVLlizxe79I/ZkZY8xPP/1kADNz5syD3itcfmZz5swp83fLcy3Dhg0zffv2Peg1PXr0MPHx8aZdu3Z++6J5VPRvVdeitR+J1j7EmOjtR6KxDzEmNvoREYleDmOMqbvxSBEREREREQkXWkMoIiIiIiISo5QQioiIiIiIxCglhCIiIiIiIjFKCaGIiIiIiEiMUkIoIiIiIiISo5QQioiIiIiIxCglhCIiImFo27Zt3HfffZx++uk0bNgQh8PB3LlzQx2WiIhEGSWEIiIiYWjt2rWMGzeOLVu20LVr11CHIyIiUUoJoYiISBg65phj+P3338nOzuaOO+4IdTgiIhKllBCKiIjUkcLCQjp16kSnTp0oLCz0tu/atYvmzZtz0kkn4Xa7AWjYsCGNGzcOVagiIhIjlBCKiIjUkaSkJF599VXWrVvHP/7xD2/7iBEjyM3NZerUqTidzhBGKCIisaZeqAMQERGJJSeccAL33HMP48aN4/zzzycnJ4dp06bx7LPP0rFjx1CHJyIiMUYJoYiISB175JFHmD59OsOGDcPlctG3b19uvfXWUIclIiIxSFNGRURE6lh8fDyvvPIKGzZsYM+ePUyZMgWHwxHqsEREJAYpIRQREQmBL774AoC9e/fy888/hzgaERGJVUoIRURE6tjy5ct57LHHGD58OD179uSaa64hNzc31GGJiEgMUkIoIiJSh4qKirjyyitp0aIFzz33HFOnTiUnJ4fbb7891KGJiEgMUlEZERGROvT444+zdOlSZs+eTcOGDenWrRsPPfQQDzzwABdddBF//etf/Y4FWLVqFQCvv/463377LQAPPPBA3QcvIiJRx2GMMaEOQkREJBYsWbKEE044gRtvvJHnn3/e2+52u+nduzdbtmxh1apVNGrUCKDCQjP68y0iIoGghFBERERERCRGaQ2hiIiIiIhIjFJCKCIiIiIiEqOUEIqIiIiIiMQoJYQiIiIiIiIxSgmhiIiIiIhIjNI+hCISdtxuN0VFRaEOQ0REwkz9+vVxOp2hDkMkqighFJGwYYxh+/bt7N69O9ShiIhImGrUqBHNmjWrcJ9OEak6JYQiEjY8yWDTpk1JTk7WH3sREfEyxlBQUMBvv/0GQPPmzUMckUh0UEIoImHB7XZ7k8FDDz001OGIiEgYSkpKAuC3336jadOmmj4qEgAqKiMiYcGzZjA5OTnEkYiISDjz/J3QWnORwFBCKCJhRdNERUSkIvo7IRJYSghFRERERERilBJCEZEINHXqVBo1ahTqMEQkCsydOxeHw6EKzyIxSgmhiEgtXHnllTgcDhwOB/Hx8bRv357HHnuMP//8M6jnHTJkCNnZ2UE9R2V8r71+/fpkZGTwl7/8hVdeeYXi4uJqvVe0J7hFpm7WOnl+JmPHjvVr/+ijj+p8mp3nd8PhcNCgQQM6dOjAlVdeyeLFi6v9XqeddhojR44MfJAxwPfnUNbXI488EuoQRSTElBCKiNTSWWedxbZt2/j555+58847eeSRRxg/fnyZx+7fvz8g50xKSqJp06YBea/a8Fz7xo0b+fzzzzn99NO57bbbOOecc4KeFEeKZa5l9F/Wn+Wu5XVyvsTERMaNG8cff/xRJ+eryJQpU9i2bRurVq0iMzMTl8vFCSecwGuvvRbq0GLGtm3bvF/PPvssqampfm133XVXyGILVH8oIrWjhFBEpJYSEhJo1qwZbdq04cYbb6R///588skngB2xGTx4ME888QQtWrTgyCOPBGDz5s1cfPHFNGrUiMaNG3PeeeexceNGAGbOnEliYuJB07duu+02zjjjDKDsEbWJEydyxBFHEB8fz5FHHsnrr7/ufW7jxo04HA6WLl3qbdu9ezcOh4O5c+cC8Mcff3DZZZfRpEkTkpKS6NChA1OmTKnStbds2ZJevXpx//338/HHH/P5558zdepU73H//Oc/6dq1Kw0aNKBVq1bcdNNNuFwuwE5XGz58OLm5uQeNWrz++usce+yxNGzYkGbNmnHppZd69yCLFJlbM3EVu8jcmlkn5+vfvz/NmjVjzJgxFR737bffcsopp5CUlESrVq249dZbyc/PB+D//u//OProo73HekYYJ02a5HeeBx54oMJzeDYQP/zwwznzzDN57733uOyyy7j55pu9Cevvv//OJZdcQsuWLUlOTqZr16689dZb3ve48sormTdvHs8995z392Pjxo243W6uvvpq2rZtS1JSEkceeSTPPfdctf+9ol2zZs28X2lpaTgcDr+2lJQU77GLFy/m2GOPJTk5mZNOOom1a9f6vdfHH39Mr169SExMpF27djz66KN+N342bdrEeeedR0pKCqmpqVx88cXk5OR4n3/kkUfo0aMHL7/8Mm3btiUxMZHXXnuNQw89lH379vmda/DgwVxxxRVB+lcREV9KCEUk6uzcksf6FTns3JIXkvMnJSX53fmePXs2a9euZdasWUyfPp2ioiIGDBhAw4YN+eabb5g/fz4pKSmcddZZ7N+/n379+tGoUSPef/9973u43W7efvttLrvssjLP+eGHH3Lbbbdx5513snLlSq6//nqGDx/OnDlzqhz3gw8+yOrVq/n8889Zs2YNEydOJD09vdrXf8YZZ9C9e3c++OADb1tcXBzPP/88q1at4tVXX+Wrr77innvuAeCkk046aOTCM2pRVFTE6NGjWbZsGR999BEbN27kyiuvrHZMoZLlymKxy06RXORaRJYrK+jndDqdPPnkk7zwwgv8+uuvZR7zyy+/cNZZZ3HhhReyfPly3n77bb799ltuvvlmAPr27cvq1avZsWMHAPPmzSM9Pd1786CoqIiFCxdy2mmnVTu+22+/nT179jBr1iwA9u7dyzHHHMNnn33GypUrue6667jiiiv44YcfAHjuuefo3bs31157rff3o1WrVhQXF3PYYYfx7rvvsnr1ah566CHuv/9+3nnnnWrHJNY//vEPJkyYwKJFi6hXrx5XXXWV97lvvvmGoUOHctttt7F69WomT57M1KlTeeKJJwAoLi7mvPPOY9euXcybN49Zs2axfv16hgwZ4neOdevW8f777/PBBx+wdOlS/va3v+F2u7030cDuMfjZZ5/5nV9EgsiIiISBwsJCs3r1alNYWFir91n85S/m+ds+N09d/bF5/rbPzeIvfwlQhGUbNmyYOe+884wxxhQXF5tZs2aZhIQEc9ddd3mfz8jIMPv27fO+5vXXXzdHHnmkKS4u9rbt27fPJCUlmS+++MIYY8xtt91mzjjjDO/zX3zxhUlISDB//PGHMcaYKVOmmLS0NO/zJ510krn22mv9Yvvb3/5m/vrXvxpjjNmwYYMBTFZWlvf5P/74wwBmzpw5xhhjBg0aZIYPH16jay9tyJAhpnPnzuW+9t133zWHHnqo93Hp6ynPjz/+aACzZ8+eKscZSteuvdYct/g402txL3Pc4uPMdWuvC+r5fH8mJ554ornqqquMMcZ8+OGHxvdP/tVXX22uu84/lm+++cbExcWZwsJCU1xcbA499FDz7rvvGmOM6dGjhxkzZoxp1qyZMcaYb7/91tSvX9/k5+eXGwtgPvzww4PaCwsLDWDGjRtX7mvPPvtsc+edd3of9+3b19x2220VXrsxxowYMcJceOGFlR4XcBOMMS2r8DWojNcOquJrJ9Q+zPL+P5szZ44BzJdffult++yzzwzg7ZP79etnnnzySb/Xvf7666Z58+bGGGNmzpxpnE6n2bRpk/f5VatWGcD88MMPxhhjHn74YVO/fn3z22+/+b3PjTfeaAYOHOh9PGHCBNOuXTu/PtJXoP5eiIilEUIRiRo7t+Qx/9NsKDZktEmDYsP8T7ODPlI4ffp0UlJSSExMZODAgQwZMsSvUEPXrl2Jj4/3Pl62bBnr1q2jYcOGpKSkkJKSQuPGjdm7dy+//PILAJdddhlz585l69atALzxxhucffbZ5RZeWbNmDX369PFr69OnD2vWrKnyddx4441MmzaNHj16cM8997BgwYIqv7Y0Y4xfEZMvv/ySfv360bJlSxo2bMgVV1zB77//TkFBQYXvs3jxYgYNGkTr1q1p2LAhffv2BezUtHDnGR104wbAjbvORgkBxo0bx6uvvlrm78CyZcuYOnWq9/cvJSWFAQMGUFxczIYNG3A4HJx66qnMnTuX3bt3s3r1am666Sb27dvHTz/9xLx58zjuuOO8G4RXhzEGOLCXnNvtZvTo0XTt2pXGjRuTkpLCF198UaWfcWZmJscccwxNmjQhJSWFl156KTS/G3nAlip87SjjtTuq+No6mPDQrVs37/fNmzcH8E7RXrZsGY899pjf74xn1LagoIA1a9bQqlUrWrVq5X2PLl260KhRI7/fwTZt2tCkSRO/81577bXMnDmTLVu2AHZKvKdAkogEX71QByAiEih5uwrZ69pPRps04uIcpDVJJmdTLnm7CklvmRq0855++ulMnDiR+Ph4WrRoQb16/l1rgwYN/B67XC6OOeYY3njjjYPey/NB6bjjjuOII45g2rRp3HjjjXz44Yd+a/KqKy7O3v/zfBgHO+3P18CBA/nf//7Hf//7X2bNmkW/fv0YMWIETz/9dLXPt2bNGtq2bQvY9YvnnHMON954I0888QSNGzfm22+/5eqrr2b//v3lJhX5+fkMGDCAAQMG8MYbb9CkSRM2bdrEgAEDIqIYxcStE3Hi9CaEAE6cTNo6ickdJwf9/KeeeioDBgxg1KhRB02zdblcXH/99dx6660Hva5169aArez50ksv8c0339CzZ09SU1O9SeK8efO8yXl1eZIDz+/H+PHjee6553j22We960xHjhxZ6c942rRp3HXXXUyYMIHevXvTsGFDxo8fz/fff1+juGolFWhZheOalNNWldcGrwvzql+/vvd7TzLmqRjscrl49NFHueCCCw56XWJiYpXPUbo/BOjZsyfdu3fntdde48wzz2TVqlV89tln1Q1fRGpICaGIRI3UxkkkpsSTu6OAtCbJ5O4oILFBPKmNk4J63gYNGtC+ffsqH9+rVy/efvttmjZtSmpq+Z/yLrvsMt544w0OO+ww4uLiOPvss8s9tnPnzsyfP59hw4Z52+bPn0+XLl2AA4nmtm3b6NmzJ4BfgRmPJk2aMGzYMIYNG8Ypp5zC3XffXe2E8KuvvmLFihXcfvvtgB3lKy4uZsKECd7EtPQ6r/j4eNxut1/bTz/9xO+//87YsWO9ow6LFi2qViyh4rt20JfvKGHPlJ5Bj2Ps2LH06NHDW8zIo1evXqxevbrC39u+ffsycuRI3n33Xe9awdNOO40vv/yS+fPnc+edd9YoJs960f79+wP29/S8887j8ssvB2wCkp2d7f3dhbJ/P+bPn89JJ53ETTfd5G3zjLDXuTtKvmrik8oPCQe9evVi7dq15f7OdO7cmc2bN7N582bv/6+rV69m9+7dfj/L8lxzzTU8++yzbNmyhf79+/uNNIpIcGnKqIhEjfSWqfQZ1BHiHORsyoU4B33O7RjU0cGauOyyy0hPT+e8887jm2++YcOGDcydO5dbb73VrwjIZZddxpIlS3jiiSe46KKLSEhIKPc97777bqZOncrEiRP5+eef+ec//8kHH3zgLc6SlJTEiSeeyNixY1mzZg3z5s07qELkQw89xMcff8y6detYtWoV06dPp3PnzhVey759+9i+fTtbtmxhyZIlPPnkk5x33nmcc845DB06FID27dtTVFTECy+8wPr163n99df9qlUCHH744bhcLmbPns3OnTspKCigdevWxMfHe1/3ySefMHr06Gr9W4eKZ3SwLJ5RwrrQtWtXLrvsMp5//nm/9nvvvZcFCxZw8803s3TpUn7++Wc+/vhjb1EZsNMHDznkEN58802/hPCjjz5i3759B01RLsvu3bvZvn07//vf/5g1axYXXXQRb775JhMnTvROf+7QoQOzZs1iwYIFrFmzhuuvv96vMiXY34/vv/+ejRs3snPnToqLi+nQoQOLFi3iiy++IDs7mwcffJAff/yxdv9gUq6HHnqI1157jUcffZRVq1axZs0apk2b5u1H+vfv7/19W7JkCT/88ANDhw6lb9++HHvssZW+/6WXXsqvv/7Kv/71LxWTEaljSghFJKr06teOS+4+iQtvPYFL7j6JXme0C3VIB0lOTubrr7+mdevWXHDBBXTu3Jmrr76avXv3+o0Ytm/fnuOPP57ly5eXW13UY/DgwTz33HM8/fTTHHXUUUyePJkpU6b4VYF85ZVX+PPPPznmmGMYOXIkjz/+uN97xMfHM2rUKLp168app56K0+lk2rRpFZ53xowZNG/enMMPP5yzzjqLOXPm8Pzzz/Pxxx/jdNqEqHv37vzzn/9k3LhxHH300bzxxhsHbYlw0kknccMNNzBkyBCaNGnCU089RZMmTZg6dSrvvvsuXbp0YezYsTWavlrXSq8dLK2u1xI+9thj3ml/Ht26dWPevHlkZ2dzyimn0LNnTx566CFatGjhPcbhcHDKKafgcDg4+eSTva9LTU3l2GOPLXPqX2nDhw+nefPmdOrUiRtvvJGUlBR++OEHLr30Uu8xDzzwAL169WLAgAGcdtppNGvWjMGDB/u9z1133YXT6aRLly7eqcPXX389F1xwAUOGDOGEE07g999/9xstlMAaMGAA06dPZ+bMmRx33HGceOKJPPPMM7Rp0wawvy8ff/wxhxxyCKeeeir9+/enXbt2vP3221V6/7S0NC688EJSUlIO+vmLSHA5jO+CEhGRENm7dy8bNmzw7k0lEqmuy76OJa4lGMr/8+rAwTEpx9TJWkKRSNGvXz+OOuqog0a0S9PfC5HA0hpCERGRAHEbNyvzV1aYDAIYDCvyV+A2bpyOsqeWisSKP/74g7lz5zJ37lxefPHFUIcjEnOUEIqIiASI0+FkZreZFLgr3k4DINmZrGRQBFtl9I8//mDcuHEHFUASkeBTQigiIhJAKc4UUpwpoQ5DJGJs3Lgx1CGIxDQVlREREREREYlRSghFJKyozpWIiFREfydEAksJoYiEhfr16wNQUFD52isREYldnr8Tnr8bIlI7WkMoImHB6XTSqFEjfvvtN8Du1edwOEIclYiIhAtjDAUFBfz22280atTIu9epiNSO9iEUkbBhjGH79u3s3r071KGIiEiYatSoEc2aNdNNQ5EAUUIoImHH7XZTVFQU6jBERCTM1K9fXyODIgGmhFBERERERCRGqaiMiIiIiIhIjFJCKCIiIiIiEqOUEIqIiIiIiMQoJYQiIiIiIiIxSgmhiIiIiIhIjFJCKCIiIiIiEqOUEIqIiIiIiMSo/wcD3MmwgJOL6wAAAABJRU5ErkJggg==\n"
- },
- "metadata": {},
- "output_type": "display_data"
- }
- ],
- "source": [
- "# Change wrap to 3, Adjust dimensions, adjust scatter plot and line colors, shapes, and sizes\n",
- "fig = plot_results_panel_2d(cycle,\n",
- " wrap=3,\n",
- " subplot_kw=dict(figsize=(10,5)), # Panel configurations\n",
- " scatter_previous_kw=dict(color='rebeccapurple', marker='o', s=10), # Previous data point\n",
- " scatter_current_kw=dict(color='limegreen', marker='^', s=50, alpha=1), # Current cycle data\n",
- " plot_theory_kw=dict(color='magenta', ls='--', lw=2, zorder=0), # Theory line\n",
- " );"
- ],
- "metadata": {
- "collapsed": false
- }
- },
- {
- "cell_type": "markdown",
- "source": [
- "Saving the figure to an object (above) will allow you to cycle through the axes to make panel-specific edits."
- ],
- "metadata": {
- "collapsed": false
- }
- },
- {
- "cell_type": "code",
- "execution_count": 6,
- "outputs": [
- {
- "data": {
- "text/plain": "",
- "image/png": "iVBORw0KGgoAAAANSUhEUgAAA4QAAAHFCAYAAACq1TfbAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8o6BhiAAAACXBIWXMAAA9hAAAPYQGoP6dpAACSNElEQVR4nOzdeXxU1fnH8c9kyEpIEANhERBUxAUQrFqkrqCIFkVrtdYq4tYq7tYF69ZqRVyq1qaAtYJad61atCqIohVxAcKOIAI/lCWCSIZJQhJmzu+PM5PMhGyTzOTO8n2/XvflzJ07M+cS8+Q+95zzHJcxxiAiIiIiIiIpJ83pBoiIiIiIiIgzlBCKiIiIiIikKCWEIiIiIiIiKUoJoYiIiIiISIpSQigiIiIiIpKilBCKiIiIiIikKCWEIiIiIiIiKUoJoYiIiIiISIpSQpgkjDF4PB6MMU43RUQSlOKIiLSGYohIYlJCmCR27txJfn4+O3fudLopYdavX4/L5WLRokVON0VEmqA4IiKtoRgikpiUEKa4LVu2cPXVV9O3b18yMzPp2bMno0ePZvbs2U43LcySJUs45phjyMrKomfPnjzwwANONykqfMCiwOZztCUiLZcIcWTXrl1cdNFFDBgwgHbt2jFmzBinmxQViiGSDBIhhsyZM4czzjiDbt260b59ew477DCee+45p5sVFYoj0s7pBohz1q9fz7Bhw+jYsSMPPvggAwYMoLq6mvfee4/x48fz1VdfOd1EADweDyeffDIjRoxgypQpLF26lIsvvpiOHTty+eWXO928VtkFDA489gLtHWyLSEskShzx+XxkZ2dzzTXX8NprrzndnKhRDJFElygx5NNPP2XgwIHccsstFBYW8tZbb3HhhReSn5/Pz3/+c6eb1yqKI4KRpFBaWmoAU1pa2uz3jBo1yvTo0cN4vd49Xvvxxx+NMcaMGzfOnHbaaWGvVVVVmc6dO5snn3zSGGOMz+czkyZNMvvtt5/JyMgwPXv2NPfee68xxph169YZwBQXF9e8f+nSpeaUU04x7du3N126dDG/+c1vzNatWxts59///nez1157mcrKypp9t9xyiznwwAObfa7xqswY0z2wlTncFpFkjiOhxo4da84444xmn2M8UwyReJIqMSTo1FNPNePGjYvoPfFIcUQ0ZDRFbd++nXfffZfx48fTvv2e94I6duwIwKWXXsq7777L5s2ba1576623KC8v59xzzwVgwoQJ3H///dxxxx2sWLGC559/nsLCwnq/d8eOHZx44okMHjyY+fPn8+6771JSUsI555zTYFvnzZvHscceS0ZGRs2+kSNHsmrVKn788ceWnH7cyAE2BrYch9siEqlEiiPJSjFEElmix5DS0lI6deoU0XvikeKIqIcwSUR6V+7zzz83gPn3v//d5LEHH3ywmTRpUs3z0aNHm4suusgYY4zH4zGZmZnmH//4R73vrXtX7p577jEnn3xy2DHffvutAcyqVavq/YyTTjrJXH755WH7li9fbgCzYsWKJtsvIs2TzHEkVDL1EIrEk1SJIcYY89JLL5mMjAyzbNmyZh0vEs/UQ5iiTAQloS+99FKmTZsGQElJCe+88w4XX3wxACtXrqSyspLhw4c367MWL17Mhx9+SG5ubs3Wv39/AL755psIz0JEnKQ4IiKtkagx5MMPP2TcuHH84x//4JBDDmn2OYjEKxWVSVEHHHAALperWZO1L7zwQm699VbmzZvHp59+Sp8+fTjmmGMAyM7Ojuh7vV4vo0ePZtKkSXu81q1bt3rf07VrV0pKSsL2BZ937do1ou+PN7uACwKPnwWyHGyLSKQSKY4kK8UQSWSJGEM++ugjRo8ezSOPPMKFF14Y0ffGK8URUQ9hiurUqRMjR46kqKiIsrKyPV7fsWNHzeO9996bMWPGMG3aNKZPn864ceNqXjvggAPIzs5udmnoIUOGsHz5cvbdd1/233//sK2++QMAQ4cO5eOPP6a6urpm36xZszjwwAPZa6+9mnnG8ckHvBrYVOpZEk0ixZFkpRgiiSzRYsicOXM47bTTmDRpUsJXOQ+lOCKaQ5gkWlLZ65tvvjFdu3Y1Bx98sHn11VfN6tWrzYoVK8xjjz1m+vfvH3bszJkzTUZGhnG73Wbjxo1hr919991mr732Mk8//bRZs2aNmTdvXk3Vr7rj9jdu3Gg6d+5szj77bPPFF1+YNWvWmHfffddcdNFFZvfu3fW2c8eOHaawsNBccMEFZtmyZebFF180OTk5ZurUqRH8C8WnKmPM3wJblcNtEUnmOGKMnXtcXFxsRo8ebY4//nhTXFwcVnUwESmGSDxJ5hjywQcfmJycHDNhwgSzefPmmu2HH36I4F8oPimOiBLCJNGSIGyMMZs2bTLjx483vXv3NhkZGaZHjx7m9NNPNx9++GHYcX6/3/Tu3duceuqpe3yGz+cz9957r+ndu7dJT083vXr1Mvfdd58xpv5Sz6tXrzZnnnmm6dixo8nOzjb9+/c31113nfH7/Q22c/HixeZnP/uZyczMND169DD3339/ROcpIk1L9jjSu3dvA+yxiUh0JHMMGTt2bL3x47jjjovoXEXikcuYCGb0StzyeDzk5+dTWlpKXl5e1D/f6/XSo0cPpk2bxllnnRX1zxcR5ymOiEhrKIaIJCYVlZFG+f1+tm3bxsMPP0zHjh05/fTTnW5SUvEDwXpm+6FJvZKcFEdiRzFEUoFiSGwpjogSQmnUhg0b6NOnD/vssw/Tp0+nXTv9LxNNFUC/wGMvkFrlMCRVKI7EjmKIpALFkNhSHBH9Rkmj9t1334jWCZLI5TvdAJEYUxyJLcUQSXaKIbGnOJLalBCKOKg9sMPpRohIwlIMEZHWUhwRDROOsokTJ3LEEUfQoUMHunTpwpgxY1i1alWT73vllVfo378/WVlZDBgwgP/+979t0FoREREREUllSgij7KOPPmL8+PF89tlnzJo1i+rqak4++eR6F1wN+vTTTznvvPO45JJLKC4uZsyYMYwZM4Zly5a1YctFRERERCTVaNmJGNu6dStdunTho48+4thjj633mHPPPZeysjLeeuutmn0//elPOeyww5gyZUqzvifWpZ4lNiqB3wYeTwUyHWyLNMAAzwKDgQEOtyXGFEcSj2KIxBPFkMSkOCLqIYyx0tJSADp16tTgMfPmzWPEiBFh+0aOHMm8efNi2jZx3m7g6cC22+G2SD3WA6cAY4FLAJ+jrRHZg2KIiLSW4oioqEwM+f1+rrvuOoYNG8ahhx7a4HFbtmyhsLAwbF9hYSFbtmxp8D2VlZVUVlbWPPd4PK1vsLS5dOCBkMcSJ3xAEXAbEBzt/SXwDvBzpxoVfYojiU8xRJykGJIcFEdEPYQxNH78eJYtW8aLL74Y9c+eOHEi+fn5NVvPnj2j/h0SexnATYEtw+G2SMAK4BjgWmqTwR7ADJIqGQTFkWSgGCJOUgxJDoojooQwRq666ireeustPvzwQ/bZZ59Gj+3atSslJSVh+0pKSujatWuD75kwYQKlpaU127fffhuVdoukrCrgHuxcwdDR2ldgk8QkSwZBcUREWkcxJMbuvhtcLth339Z/1vr19rNcLpgzp/WfJ0lFCWGUGWO46qqreP311/nggw/o06dPk+8ZOnQos2fPDts3a9Yshg4d2uB7MjMzycvLC9sk8fiBjYHN73BbUlox8BPgTmxiCHAAMAf4O5Ckv16KI4lPMUScpBjSiOOPj14yF2OKI6I5hFE2fvx4nn/+ed588006dOhQMw8wPz+f7OxsAC688EJ69OjBxIkTAbj22ms57rjjePjhhznttNN48cUXmT9/Pk888YRj5yFtowII9h97sYvDigMqgeAqL27g98BdQLZjLRJpFsUQEWktxRFRD2GUTZ48mdLSUo4//ni6detWs7300ks1x2zYsIHNmzfXPD/66KN5/vnneeKJJxg0aBCvvvoqb7zxRqOFaCR5tEN3Zhz3U+Aa4DDgC+B+lAxKwlAMEUlAt94KhxwCHTtCejp07w5jx0LI9WGY//wHDjoIsrLg6KNh6dLw1995B447Djp0gOxsOOYY+PDDZjdHcSS16WcfZc1Z1nFOPWO3f/nLX/LLX/4yBi2SeNYeqHa6EalmB7aC6K3Y3sCgidiIqBJrkkAUQxLMLiDL6UZIXHj3Xdi4EXr2hN27YdUqeOYZWLkSvvgi/NgtW+BXv4I+fcDvh3nzYNQoWL0acnLgpZfgvPPAGOjdG9LS4JNP4KSTYNYsOOGERpuiOCLqIRSR1PEGcDBwO/DXOq9lo2RQRGLnQeBYNElLrGefhe3bbU/fypUQnCb05ZfwzTfhx1ZWwuuvw/LlMGOG3bdxo00gwfY2GgMXXwzr1tn3n3km+Hxw551td06SsJQQikjyKwHOAc4EgqNxHsDerRcRaQsnYtczjf5KVJKIFi2CI46A3FxbfOayy2pf27Qp/Ni99oKRI+3jkSPtc7DJ5NattoIowFNP2d7BtDSbQAJ8/nksz0KShIaMijioErgh8PgvQKaDbUlKBngGuB74MWT/acBkNHRLEp5iSJyqxpZs3Ddk3+HA1cBuJxokceWTT+x8QWNg773h4IPB67U9hWB79lqib1/o3HnP/VVVe+4LoTgS5xYC24CTY/cVSghFHLQbu6oB2A4rBeEoWg/8FpgZsm9v7FDR8wCXA20SiTLFkDhjgP8AN2OHoC8i/Eqr7lB1SX7GwK46w1E+/9zuB9vL160b3H8/TJhQ/2f8+KOdCxicE/hj4A7ngAE2AezdG/7v/2DIEHjhBWgX+J9u9Wq7P6Px5eYVR+LUKuAO4BWgJ/A1MfvhKCEUcVA6dnWD4GOJkr9hi8aUhew7D3gMqOfmqUiiUgyJI19il6z5OGTfdOBSR1oj8WLDBlv1M9QDD9Q+DiZ133/f8GdkZsIZZ9gewK+/tvu6dYMLL7SP77sPzj8fXn0VPvoIevSw1UpLSmxP5EknNdpExZE4swH4EzZ+BDuLvw08/21svlJzCEUclAHcHdgav38nEfma2mSwBzADeB4lg5J0FEPiwHrg18CRhCeDx2CXshGpKz0dJk2yS01UVED//jB5csPHd+0KL75YO5T0pz+1y0zk5Njnv/41vPWWXXaiosJWLO3QwSaMlzZ9R0JxJE58j53icgDwT2qTwULgceCi2H21yzRnnQSJex6Ph/z8fEpLS8nLy3O6OSLO8gIDgFOASYB+JZpFcUQkAjuA+7AjD0KnaPXDjrs7nZQbmq4YIsmm2lST7opxv2kp8DDwCPb6JSgfO/z8WuzaIDGkHkIRBxnsNcWOwGNpgS+AF+rsywWWYAvH6JpEkphiiENmAPthl5IIJoMF2Lv4y4AzSLlkUBKX4kj9FnsXM2LxCJZ4l8T2i+4A7qE2GczGTntZB9xGzJNBUEIo4qhyYK/AVu5wWxJOGXAjMBQ7R2ddndc7tHmLRNqcYohD9sfe1Qdb5OFWYA1wFZqEJQlHcaR+RZuK8Pq9FG0qiu0X3YSNI+nAeOAbYCL2B9JGlBCKSOKZDQzE1sf2Y/+C/cXRFolIMttZ5/lBwOXAb7CVACdih3eJSFIo9hazwLsAgPne+RR7i1v/oX5sPYPn6uzvCUwDvsIWxevW+q+KlBJCEQflYEcbVQUeSxN+BC4BRgBrA/sygfuxY+9FUoxiSIytBc4FBhM+TxDshduzQO+2bpRIdCmO7Gnypsm4cQPgxs2UTVNa/mEGO8x8MHA+dtFHb51jzgP6tvwrWksJoYiDXNgRAuloukmTXgcOBp4K2Xcsdq7gLWgRHUlJiiExsh170dYfeBk7hOvvdY7RFZQkCcWRcMHeQV+gzKcPX8t7CecAw7BFpoJTEb8H/h2VpkaNwpmIxLcfgF8CZwFbAvs6YAvGfIit6CciEg2V2OHn+2FHHVQH9ncGOjnVKBFpS6G9g0ER9xLOB0YCJwDzQvYfCbwPXNjqZkaVEkIRB1Vh5xLfxJ6jkSQgA1tJNOg0YAXwOxTBJOUphkSJwfYEHoQtVrUjsD8L+AO2YEycXcCJRIviSK26vYNBze4lXAmcDRwBzAzZfzB2pNNnwPBotjg6dDkl4qBq4KHAVt3EsSmrAzAVe4f+eew4/H0cbZFI3FAMiYLl2GrF51JbrdgFjAVWA/ei5WskqSmO1KqvdzCoWb2ETwCvhTzfF3gaO1x0DHE7JlezbkQclA78PuRxyvMBRdix9vuG7D8FW9wh14E2icQxxZAoaA+E3vQfjr0yPsyR1oi0OcURK7SyaH1CewkH5w6u/6DbgCex1yt3YJfFyoh+W6NNCaGIgzKw6xoL9i79JcDnwNvAu4TfSVMyKLIHxZAW8BM+Pmpf4BrgHew/5inE7V18kVhQHLEmb5qMCxcG0+AxLlxM2TSFqV2m2htHBcB1IQd0Bv4LDKFNFpSPFg0ZFRFnVQF/wpZj/jywbybh8wZFRFprF/AAMIA9V9/+I7AIGIWSQZEU5DM+lpUtazQZBDAYlpYuxbe/D/6MjR0/1jnoGBIqGQT1EIo4ygC7A4/bkYLXIZ9jh1MsC9nXDzvc4ihHWiSSUFI+hjSHH3gRO5Tr/wL7/gLcHnKMFl+TFKY4Am6Xm5kDZ1Luq3u3KKAaW8fgMchZn4O7LDDPsAz4H3aqSwJTQijioHJqR0J6SbgbSi1Xhh1b/yjU3IxzAzcDd2Ir+4lIk1I2hjTXR9jJUfND9rmAbc40RyQeKY5Yue5cct115qf4sIngXdQWnQI7xvKCwP4+bdTAGFJCKCJt62PgIsID62DsgvOHOdAeEUk+q4BbgDfr7B+JHTY6sM1bJCKJ5r/YOLKszv4zsdWHD27zFsWMEkIRB+VQO/Q8ZUYsealNBrOAu7HrfikaiUQsJWNIY37A3rGfAmHLiA3EVs042YlGicQ3xZEGfEZ4MjgCO2/wSGeaE0u6BBNxkAvo6HQj2tqpwG+Ab4F/AAc42xyRRJaSMaQxVcA0apPB7tg7+RdCA0uLiaQ8xZGAuhWIb8QuhXUAcB9wohONahuqMioisbMFmAh7FO2aCnyAkkERia5u2LnI7bHV/1YD41AyKCINWwGcha1tECof+BKYR1Ing6CEUMRRVdgRk3cHHicNg71LfxC2st+/6ryeg6KPSBQkbQxpjg+xQ0B31Nn/e+BrbIGqVK2OIRKBlI0j67E1DQYAr2ML3W2pc0xfUqLsqssY0/iCG5IQPB4P+fn5lJaWkpeX53RzpJnKSMLKXuuA3wKzQvYdiF14Xnfp45riSOJJyhjSlJXYXsC3As9vAe53rjlSSzEkMaVcHNmCnQs4FbucRFBX4GXsOoIpRnMIRRzUDrgy5HFC8wF/xa7tFbqMz2+AR1AyKBIDSRVDmlKCLRjzJOEFYz4OPFeMEWmRlIkjO7BVhh8j/DplL+yNpatJ2ao6Sf1zF4l3mdj5yglvGXaB+c9D9vXE3n0b5UiLRFJC0sSQxpRjF5KfhO2+COqBLfTwGzQEXaQVUiKOFGFvWO8I2ZcDXI8dZt6x7ZsUT5QQikjLGWzhhvsIH3ZxJXYIVwcnGiUiScEHPIO9iNsUsj8XmABcR8rezReRCHmpTQYzgN9haxwUOtWg+KKEUERazoUt3hBMBg/EDuf6mWMtEpFkUQrcQO1FnBu4HDtsVBdxItIQH7CL8MmQVwN/A07CxpDeDrQrjmmQhYiDyoD0wFbmcFta7FHsROw/AItQMijShpIihjSkE7Z3EOB0YCnwd5QMikRZ0sQRg60WOhA7iiBUDvAV8BRKBuuhHkIRh+12ugGReB/71+KMkH2dgTWkQFkykfiUUDGkIZuxC8jfBXQJ2X8VcCQpWfVPpC0lfByZjR0C+kXg+dfYheVDkz9dpzRICaGIg7KB70Iex60fsYF1GrA3MJTwizYFWRFHJEwMaYgXeBhb+a8cOwz9byGvZ6JkUCTGEjqOfI4doTS7zv6fADvbvjmJSkNGRRyUhi2U14M4/mX8N3AwNhkE+AF4wrnmiEithIgh9fFh5xsfgF0NO1gC/kV0ESfSxhIyjiwDzgR+SngyOAD4DzAXONSBdiWohPm5i0gb2wKcDfwi8BggD7uUxG1ONUpEEpoB3gUOAy6jNra0wxZ9WImqE4tI436PnSf4Rsi+/YDnsLUMRmNHG0izacioiIOqsOujAlyLrYTsOIPtDbyR8PV6RgOTsbcQRSQuxGUMachi4CZgVp39Z2KXqenX5i0SERIsjgD0wV6rAHQH7gQuxlbFkRZxGWNM04dJvPN4POTn51NaWkpeXp7TzZFmKsMuqQV2Ko3jU/G+A8Zhi8cEdQYeB85Bd9ySnOJI4om7GNKQKuxFXOh6gkdi5w+qMnHSUAxJTHEdR37ELm0VWregChgGnAuMJwEnPsYf9RCKOKgdMDbkseMygeKQ5xcAfwEKnGmOiDQu7mJIQzKwd/F/B+wLTMRezOkmk4jj4jKOeIG/YgtOnYVdLiIoA1tNVPEjauLm5y6SijKB6U43IlRn7LiR27BzBU9xtjki0ri4iyFg69c/CZwG9AzZfwn2Am4stuEiEhfiKo5UYgvX3Qt8H9j3NHAz0D/kOCWDUaWiMiKpqhL4M7C1zv5fAytQMigikTHAW9hiD1cAd9R5vR1wOUoGRWRPPmxWeiBwDbXJYBp2KotGIMeUEkKROFNtqmP/JZ8BQ4DbgevqvOYiziYQiEjcWwgMxxafWhnY9wywzrEWiUgiMMBr2OUixgH/F/LaL7E3qJ/EFo+RmFFCKOKgMqBjYCsDFnsXM2LxCJZ4l8TmC73YBPBobJAFeBn4OjZfJyKxVTeGtLlvgQuBw4EPQ/YPxa4D1seJRolIJByNI+dgl7haGbLvFGAB9vrkwLZuUGpSQijisNLABlC0qQiv30vRpqLof9FM7CKtj1FbrvlwYD52cWgRSUihMaTNeLBzjfsBz4bs74u9iJuLTQpFJCE4EkfAjioIGgZ8BLyDHcUkbUZFZUQclA2sDjz+ylvMAu8CAOZ751PsLWZw7mCqTTXprlYsrrMdu6bg9JB9WcCfgOtRFBBJYKExJFh5fdtGD57tFeR1yqagRwwm3hjs8ND5Ifs6YecMXkkCLGImIqHqxpGYxZCl2CkpfUP2nQ/8F1vV/FRULMYhuhQUcVAatZ1zl2+ajBs3Pny4cTNl0xSu7H4l16y5hsf3f5yBuQMj/4L/YIs4lITsOw47Hn//VjZeRBwXGkMAFs5ey9wZq9nlrSIrN4Nho/sxZHjfht7eMi7szaTzscnf1cAfgL2i+zUi0jZC40hMYsg3wF3A89jhoS+HvOYGXmzdx0vracioSBwoDvQO+vAB4MPHfO98Jn07qXVDSEupTQbzsKWcP0DJoEgS2rbRw9wZq8FvKOydD37D3Bmr2bbR07oP/hJYW2ffr7BDRr8CHkLJoEgSiHoM2YStONwfeA47uuAVbBEqiStKCEUcVA0UAVeVrcRVZ5xVGmmsqlgF1A4hjdhvgJHA6dgiMpfR6G99m1Q4FZGoCcaQIuCH7RXs8laR3zmHtDQX+Z1z2FVWxYZV21i7tCTyi7r12F7AI4Gb6ryWhl22RkVjRBJeaBwpq6hufQz5AbgFe/N5CnZtUoC9sTeQDor2GUhruYwxpunDJN55PB7y8/MpLS0lL0+LtSSKMiA38HjQomG4/bvqPc6Nm8G5g5nab2rDH7YW+Dfw+zr7y7GTApoYl7/Yu7h1w1Ml4SmOJJ7QGLJ+k4f/PPAp+A35nXMo3VqOZ3sFWbkZ+Hf7mz/8awcwEVuAqjJk/zzgp9E/B0keiiGJKTSOPHjzLDJ37W5ZDPECjwIPYgtPBeViaxncgNYTjFPqIRRxkBvos3MBe/04G5fxN3hccAhpvb2EPuBhbAXRm7CTs0Pl0KxJ2jGtcCoiMeHGTsk5Gyjsnsew0f0gzUXJhlKqq3ZjMGRkuJs3/KsKeBx7V/8BapPBvQP7D4/12YiIE0LjyLBR+7c8hvwcW1wq+HImNglcC9yNksE4pqIyIg5a6S1mr68vb9b0m2ChmbBewqXAJdg5PkETsZW6IlDcQIVTEYlvWdgpOUFDhvelV/8CPNsr2LG1jNnPLwsb/lWyoRTP9orwyoEGeB07xGtNyIdlYtctnQDkN92WmFc3FZGYCIsjJ/ThgH57RxZDgq7BLhvhxi4yfyfQM7K2KI44QwmhiIMmb5qMCxeGpkduh/YSDk4fbOfvTKR2bL4LGA/c17J21K1w2ujwVBGJWwU98ijokce2jR6ycjMo3VpeM/wrq30GeZ2yw99wMeHL0oCdf3wv0Lt539km1U1FpE00GUM6ZsOr2EXjB4S88Uxssamx2DVKI6Q44hwNGRVxiM/4WFa2rFnJYJAbN1O+mmIXbL2H2mSwP/AJdlhXh8ja0VCF0xYVsRGRuFHQI3wIKWkuhp3eb8+77meGPD4OO+LgWZqdDMasuqmIOGqPGOJyMaxXPwrG5MEvsaMKQrmwN6tbkAwqjjhLPYQiDnG73LwxcCaD0uzd+nnVP7C2bBk3ratbzq+WDx/z0+ZTnFHMYAbb3+AJ2DXAMlvWjtDewZq2qZdQJCGUU7t+2NfYKcOhQoeQ5nXKpiAnD/6P8GRvNHbo+RnYOUARLgztCVQ3Leyd37xhZSISVxqLIzUxZE4FeVOzKfhryO/0O9glJIa0vg2KI85SD6GIg9q7c9nicrPF5aZzRhde3Poiriauxlx+F1N+NwV+AiwA/kSLk8G6vYNB6iUUSQwGu9TXpsDj+hT0yKNvv0IKXs6D/YDL6xzgAp7EJoYRJoMAeZ2ya4aV+f2m4aGpIhKXGo0ji6Hgt3n0/U0hBf8LScwOwxaxi1K5AcURZykhjIGPP/6Y0aNH0717d1wuF2+88Uajx8+ZMweXy7XHtmXLlrZpsDgmCygObOnNHEJq0gxLhyzF96kPWrk6RLB3sD7BXkIRiV+hMSSrvgMM8DJ23a8bgB+BmcB70WtDs4emikhcqjeOfA38Gpv4vR1ycD/gJewN6VG06CZSfRRHnKUhozFQVlbGoEGDuPjiiznrrLOa/b5Vq1aFrdvTpUuXWDRP4ogbG2sBcLmZOXAm5b5yexH3Nray3zF13lQBObk5uN31J3LNFVpZtD5hRWxUcVQkLoXFkLrmYtcl/Sxknwu4ADg4uu3YY2iqLuJEEka9ceRCwmPHPtilI8YSs+xBccQ5SghjYNSoUYwaNSri93Xp0oWOHTtGv0GSMHLdueSW5NpqoW8AvYBlhBeKyYjOdzWnwqkLl+YSiiSaNcCtwGt19g/HLhgdo/s7wcqEIpIE/giMBAqwlUOvoIFhCNGlOOIMDRmNI4cddhjdunXjpJNOYu7cuU43R9pANbba+3Sg2mDn8RyMTQYBNgAvRP97m1vh1GBYWrYUn/E1epyIOCMshgA8ho0hocngwdi5PrOIWTIoIglqJ1TfC9O/DokjACcB/8QuKn89bZIMinPUQxgHunXrxpQpU/jJT35CZWUlTz75JMcffzyff/45Q4bUX7qpsrKSysrKmucej8ryJqIq7NqtAL88DdLfCXmxC/A34Ozof687dHhqE3LcObhdrRueKvFJcSTxhcUQIH0AtVd0hdiiUxejv/YSE4ohCWwXMBm4D6rKYdztdvcvgXSww8svdqpx0tb0JyIOHHjggRx44IE1z48++mi++eYbHnnkEZ599tl63zNx4kT++Mc/tlUTJUbcu+HUDcBqcH8Q8sJY4GFg79h9d647l1x3buy+QOKe4kiC84N7O5xaYJ+6AU7EXtEdhJ0/GOG6pCKRUAxJQLuxXYF/BL6zu9yZcOp/gWPArZiRklzGmOavii0Rc7lcvP7664wZMyai991000188sknzJs3r97X67sr17NnT0pLS8MK00gcW4Ut7vBlyL7ewFTsuH2RGFMcSWD/A27E3sr/hPBKf4aoVf4TaYxiSALxA68CdwCr67x2HnY0wf5t3SiJF+ohjFOLFi2iW7duDb6emZlJZmYLF5+T+JAJLA88dgFXA38G1GknbURxJAGtBm6hdp4xwL+BX4Q8VzIobUQxJAEY7DIzt2HXlQh1GnAvjZQqllShhDAGvF4va9asqXm+bt06Fi1aRKdOnejVqxcTJkxg48aNPPPMMwA8+uij9OnTh0MOOYRdu3bx5JNP8sEHHzBz5kynTkHawr7AfdgewX8CQx1tjYjEs63YO/hTsEO+ggYAnR1pkYgkivsJTwaPxV5/DHOmORJ/lBDGwPz58znhhBNqnt9www0AjB07lunTp7N582Y2bNhQ83pVVRU33ngjGzduJCcnh4EDB/L++++HfYYkOC/wAHATYXN6yq+CQVcDabAYyHGkcSIStyqwlUMnAqH1OroB90D5RTAoUPNJMURE9uCiNvkbEnh8MmEjCcqBQYHHiiOpSXMIk4TH4yE/P1/j9uPRTOBy4P+ww0L/WvtSGbUjRL1A+zZumkgoxZE4MxO4FPg2ZF974Gbs/MH2iiESXxRDHLYauBO4CDilzmsfAz+j3gXnFEdEPYQisbIduAF4OmTfU8Dt2CUlsMv6fELtYxGRGvnUJoNp2BLwf8L2DgYohogI32JjwzTAh00MTyY8+Tu24bcrjogSQpFoM9hKXlcB34fsPxF4gppkEGyZeA3hFxHArh+YHvL8KOBc7FDRB4BD93yLYohICtuKHU7+d6AyZP932AXlm1k1VHFElBCKRNMm4ErgzZB9+dg1BS9G1f9EoqDaVJPuSm/6wETxPXAXMB/4jMCCggHT0S17EQnnAf6CvbbwhuzPw64/eh1ag1QiUs9IYhFpkaeBgwlPBscAK4BLqDcZ3A28Eth27/myiNSx2LuYEYtHsMS7xOmmtF45dqmZ/bDVQ+cD/6pzTBPJoGKISAox2ESwL3Zh+WAymIUtWrcWu85ghMmg4oioh1AkWrYDpYHHXYC/AWfTaK9gJXBO4LEX/UKKNKVoUxFev5eiTUVM7TfV6ea0jA+b+P0B2BiyPxebJEZAMUQkhbiAD4AfAs/bYQtP3QF0b/nHKo6IfuYi0XIN8BJwEHYYR6em35IGHBfyWEQaVuwtZoF3AQDzvfMp9hYzOHdwzL83qkNU38feyV8Uss8NXAbcDRRG9nGKISKR2bbRg2d7BXmdsino0bpKqDEfvu7HJoGhN5bvBd4FfoWNGc2cJ1ifYPsVR0Q/d5GWWAI8XmefG/gQW+WrGckgQDYwJ7BlR6ttIklq8qbJuAMT7Ny4mbJpSsy/M2pDVL8GTgVOIjwZ/Dk2nkwm4mQQFENEIvHF7NW88OCnvPbY57zw4KcsnL22xZ8V0+HrBngbu27ga3VeOwxYhx1l0IpkMLT9iiOihFAkEpXYoRmHA9diC0CEUiQViYlg76APHwA+fDW9hLEUOkS1VXYB74U8H4Id+jUDO/dYRGLqo3Wfck37cXy/9/9R2Dsf/Ia5M1azbaOnRZ8XtdhQ18fAMdibRYuxS1XVndjXs/VfE7P2S0JSQijSXJ9i78zdiw3OBnjIyQaJpI7Q3sGgWPcS1jdEtcUGAOOAXsCzwJfACa1vo4g0zz93/IPqjF0sOeoD0tJc5HfOYVdZFZ7tFRF/VqSxYdtGD2uXljSefBYDo7BjN+eG7M8FSiJuYqOiGtskKSghFGnKTuz8wJ8BXwX2pWPLxD/Xuo+uwOaYhwUei8ie6vYOBsW6l7BFQ1R9wD+xyV51ndcexMaQ3xC1v76KISJNK/YWs9zYoZ3fFazh2/xvKN1aTlb7DPI6RT60J5LYsHD22saHqa7Crjc6BDs3MKg/dk3jL4EeETexUXXb/7fN/1QcSXFKCEUa8y52MejHsT2CAEcCC7GTuTNb9/F+7IiQxYHHIrKn+noHg2LVS9iiIarvAYOxVf/mAE/UeX0voj6sXDFEpGmhMcTld/Fxr7cgzcWw0/tFXFgmktiwbaOHuTNWg9/sOUzVjy0mdQjwcsibemFrESwFfkHU1y+ur/0LyooVR1KcEkKR+niBC7HDNzYE9mVj1//5FJskRkEWMDOwae1pkT011DsYFKtewoiGqC4BRgKnYC/igtpgFJZiiEjj6sYQk2b4fp/1DLi2A0NO7Bvx5z347YN77GsoNni2V7DLW0V+55w9h6mmYReYD4a2LsBfgdXARcRsHYD6Ylu638ep3z2qOJLClBCK1CcbO4wj6ETshd710EBHRYu4sUUHT4rux4okjcmbJuNq4ha5C1dUewmbPUR1I3AxdpzVzJADjwA+Ap6MWpMapBgi0riGbu68UP1MxJ9V7C1mVcWqPfY3dGMqr1M2WbkZlG4tx7/L7DlM9R5gb2xtgm+Aq2n1yKOm2l9fbPNTzZbvn6XAW6w4kqKUEIrUx429mOsc+O/7wH6Otkgk5fiMj2VlyzA147XrZzAsLVuKz9TfixipJoeofjsF7gT6YYd2BZvXG3gBW3342Kg0RURaIdrzj+vrHQyqr5ewoEcew0b2g3UuSv5dChvrDFPtB3wH/AFbPCbGnBh+L4lBC9OL+LFJ32HY+YEEFmsdkA7/R0yXkthNbSX6kegXUiSU2+Vm5sCZlPvKmzw2x52D29X6e9uh1ffq48PH/Ir5FL9TzODywXZnPrY0/FW0+XgrxRCRhgUToPqGnAcToKn9pjbrsxrqHQwKTTIH5w62RaWegiF/6kuvbQV40ivIK8+mYFidOYttFDMai20GN9vzhjIb+NJbzBG5g9umURI31EMoqe1r7HDQ32KHflXVWWw2xusKVmKXGvp54LGIhMt159Ilo0uTW647OrfXmz1E9e4pttrwtdihXr/Hkck3iiEi9Yv2/OPGegeDaoavPw8cBPwO2AQFVXn0LS+k4Jg8KGv+OURTY7HNn5bON/s/xjf7P8bkzU+1ccskHighlNS0G3gAGIid6wOwHHi7bRdrTQN+Etj0yyjirIiGqHZfim+5Dx7FzgFyiGKISP2iOf/YZ3ysrljd5HEGw9LtS/Fd4LM3ioLOwBafegbo1OTHRF1Tsc1lDDlly8kpW87yKA6/l8Sh0SWSehZhy8KHjpzYF5gKxUcXs2B1+GKtg2M4dCIbu8SQiMRGtakm3ZXerGPDhqhuwt40eg07R3ACML722Bx3Dm53w0NUt2304NleQV6n7IjL2kdCMURkTy2Zf9zYkPMlZUsa/awHez/IoeMOhc8gpzwHtz/wWScA9wE/jfwcohlDIhp+P+CtqAy/l8SihFBSxy5sRa9J1JZ5dmGHfN0D5MLk1bXzDSKdXyAi8WWxdzHXrLmGx/d/nIG5A5v1ntyyXHIn5dolZnaFvPAsNlY0oxtu4ey1zJ2xml3eKrJyMxg2uh9Dhkde3l5EWiba84+bmov40g8vcWKXE2FrYOcRwJ+BEbRoHcFYxJBcd27UhtZL8tEIE0kN87FFY+6jNhk8GLum4CNAbgsXohaRuBXR8O9qYDKwPzZOBJPBvYCHgXk06y9mowtRi0ibidb842bPRbytGIYA/wY+x64F04JkUDFEnKCEUFJDBrXj+dOBu4CFhA3jiGgh6iipAIYFtoqYfYtI6gmtqNfojR0D/Ac7n/hKau/wZwA3YuPGDTR7bbBGF6KOAcUQkdjZttHDI1//tXlzEXdPsTefz6RFiWBQW8cQUBwRJYSSKgYCt2KXlVgI3E3YBV601ypqLj+2k/LTwGMRiY7QGzyN3tj5HvgV8FXIvnOAlcBD2B7CCIQtRO2vZyHqKFMMEYmNhbPX8txDn/BV9Yrmz0VsoBcxEm0dQ0BxRDSHUJLRNuz8n7uxd/mD7gjsq2eqQDTXKopEJvB6yGMRab26623tsT5YqEJsD+CfsbfHH6JFBSCCCnrkMWx0P+bOWE3JhlKy2meEL0QdZYohItEXHLaZVuXisgf/xA/f7gAfjNn8EzpVdbBrj16BLVAXWG4mWmuhtnUMAcURUUIoycQALwHXYId9ZQF3hryeUd+bmrkQdYwqjrYDxkT1E0Wkvhs8btxM2TCFqS9NtUNBQ6+tbgEOx/4ytmKoV9CQ4X3p1b+gTaqMKoaIRJ9nUwW7vqqicG0+aZUuupNFSVYpGRW5dPltF7iJiEcPRKItYwgojoiGjEqy+A67zs951M4B+jvQdIGxqK5VJCLOanT49675FP+n2C4nEaoDrZ73U1dBjzz6DiiM+YWciERZFeT9KpusNRmU+svxYyjNLCerZwZ5s7Nt0akYJoNBiiHSlpQQSmLzA1OwFUNnhOz/BXa9wZzG396StYqiyQfMCWxaBlak9eorDhXk3u1myu+mQBFQ1rbtihXFEJEoy4CC0XkM+6EfuFyU9C6F410Mu60fBYclZ3KmOCIaMiqJ62vs+P2PQ/Z1xV7sndW8j4j2WkWR2oVdtxbAC7SP6qeLpJYmh3+38zH/iPkUf1HM4PbRHf7tFMUQkVYwwFvAiYT/8twGQ0r60uu3BXj2bpthm05SHBElhJJ4DHbtwD8QvnD0xbSoKqCTi7W6sJ2bwcci0nLB4d+N9fi7cDHFTGEq0S8S5QTFEJEW+hC4DfgMmIitRB7UBXgBCsijgORNBIMUR0QJoSSm7dQmg32AJ4ARzjWnpXKA5U43QiQJtGT4d2t6/KtNNemu9Ba/P1oUQ0Qi9CX2hvKskH2TsFVD8x1pkeMUR0QJoSQeF3A7tkbySOAeNL5BJMXVDP9+vNwWfdgbW0301+zxl661w78XexdzzZpreHz/xxmYO7AVrRaRNrMSe+3w7zr7D8EuO5P8HYEiDVJCKPHvE2wgvyxkXxawgJr1f0QkxRjgNezEl73trlx3Lrm/zbXVha8iZhd4RZuK8Pq9FG0qisn6pCISReuxaxA/S/iq632AP2Grk0e3PIBIwlGVUYlfHmA8cAz24m5lndeTIBmsAE4KbBUOt0UkYXyKXUT+l8C9dV7Lxs4LilEyGFq4Jrg+qZMUQ0QaUQEMAZ6mNhkMFp/7CvgNjiSD2zZ6WLu0hG0bPW3/5fVQHBH1EEp8+i/wO+DbwPMq4G/YIJ5E/MD7IY9FpBFrgAnAqyH7ioAbgJ5t04TQRe/duJmyaYqjvYSKISKNyMbODQyuHXgLcDVNLkkVSwtnr2XujNXs8laRlZvBsNH9GDK8r3MNQnFElBBKvNkGXAc8F7IvBzu+/2onGhRbmcC/Qh6LSD1+wPYEFgHVIfsPxi4yv0/bNKPushY+fDW9hINznVnGQjFEJKAM+Dt2eknHkP03AenYa4uOdd/UtrZt9DB3xmrwGwp751O6tZy5M1bTq3+Bo8taKI6IhoxKfDDAC8BBhCeDI4Bl2ECehGP82wHnBzbdnRGpoxK7lMx+wKPUJoOFwFSoXlQNp9FmddLrW/Q+2EvoFMUQSXlV2JtF+wM3Y2NGqI7YOYQd27JR9fNsr2CXt4r8zjmkpbnI75zDrrIqPNudHaipOCJKCMV524DTsdUAtwX2dQSmATOxE79FJLUY4Fjs3f3SwL5sbJXAr2HxrxczYvkIlniXtElzgr2DPnxh+0N7CUWkDfmAZ4ADsXUGtgT2P45dXT0O5XXKJis3g9Kt5fj9htKt5WS1zyCvU7bTTZMUp4RQnJcLrA55fja2gMxFJP0KqT7skkhfBh6LSIALuDDk8Tjga+wyMx3CK322hfp6B4Oc7CVUDJGUY4A3gEHAWGwV0aBfAPOw1xVxqKBHHsNG94M0FyUbSiHNxbDT+zk6XBQUR0Q9wxIPsoAngV9h7+yd5Wxz2tIu4MjAYy9aTlFS2GpsZdCuIfsuB4qx84cH1e6ur9JnLOfw1Z07WJeTcwkVQySlzMZWEf6izv6TsbUGftL8j9q20YNnewV5nbLbNCEbMrwvvfoXOPLdDVEcESWE0rZ2A38BRmPnCwYdA3xDUiwlEQkX0DvksUjK2YZdC2wy9m7/kyGvpdd5HtDWlT4nb5qMCxcG0+AxLlyOVBxVDJGU4cWOINoRsu+nwETg+Mg+yulKnwU98uIiEQxSHBENGZW2swg4Clv2+TL2rG2cYskg2AKq6wObg1WwRdreLmAStmDM49ibRU8BSxt/W925fLGew+czPpaVLWs0GQQwGJaWLcVn2nbAlWKIpIxc7PUDwADgP9g1SY+P7GPqVvrEb5g7Y3XcrAnoBMURUQ+hxN4ubA/AA9QOTp+HDeQ/c6pRIuIIP7ai8G3AhpD9OdgCMk0UkQrtHQyKZS+h2+Vm5sCZlPvKmzw2x52D25WE5ZBF2to67NqB92KrCgddA+wLnEOLuzSClT4Le+fXVPos2VCKZ3tFXPXaibQlJYQSW/8DLiW8aMyhwD+pHbAuIqlhDvB7IHQ6XhpwMfamUbfG397QXL5Yz+HLdeeS647TKhUiyWQLNgl8ArvMTA7wWMjrOdh6A60QWukzv3OOKn2KoCGjEiseYDy2bHwwGUwH/oi9GFQyCNjO0zGBbZejLRGJsSuAEwhPBk/BDiX/B00mgxC/lT6dpBgiSeFHYALQF7umYHDN0ZeBKC/RF6+VPp2kOCLqIZTo+wBbHOK7kH0/xRaHOMSRFsUtH/BmyGORpHUUEMzXBmIXjz6p+W+P50qfTlIMkYRWhu0BfIDa9UbBlrm8AbgRu/5olMVjpU8nKY6IEkKJvnbUJoM52Apg46GBG/spLQM7Mib4WCQplGMv9DqH7LsAeBVbJfACIo4H8Vzp00mKIZKQqoCp2KUiSkL2Z2BHE9wGdIltE+Kt0qeTFEdECaFE37HYgL4GG/CbKBKRytKxBVdFkoIP+BfwB2zBqBdDXnMDb7XwY1tQ6TNVirsohkhCqiY8GUwDLgLuAno51KYUpjgiSgildb7Frh92L+EzUh/B3mbSgjYiqeF9bJXQRYHnLwHXYYeLt5IqfYokmfbA7cDV2FED9wD9HW2RSEpTQigt48f2/t0C7AT2Aa4MeT3TiUYlHj+wMvD4IFTlSRLQcmwi+E6d/aOBTtH7GlX6rJ9iiCSsy4GjgSFON0QUR0QJoURuNXYpif+F7HsMG9z1f1REKrCrcAB4sTdNRRLCFuBO7BIy/pD9Q7AFY05wolGpRzFEElYGSgbjhOKI6CaANF81cD+2QmBoMngJ8BlKBluoILCJJIypwP7Y5SKCyWBP4FngS5QMtjHFEBFpLcWR1KZLeGmeYmziVxyyry+2LNVwR1qUFNoDW51uhEikCrBVRAE6YCsCXktMysNL4xRDRKS1FEdECaE0zmArBj5A7eI0acD1wJ+wy0qISGo5CzgOO8boLsKXlxAREZGEooRQGucCtlObDA7Azhk6wrEWiYjTXMBstLaoiIhIEtAcQmnaJOzw0D8B81EyGEW7gPMD2y6H2yISESWDcUExRERaS3FE1EMo4d4GdmCjQlA+sAItJREDPuD5wOMnnGyIiCQkxRARaS3FEVEPYQx8/PHHjB49mu7du+NyuXjjjTeafM+cOXMYMmQImZmZ7L///kyfPj3m7QyzFfg18HPgCuyC86GUDMZEBvBIYMtwuC0ikngUQ0SktRRHRAlhDJSVlTFo0CCKioqadfy6des47bTTOOGEE1i0aBHXXXcdl156Ke+9916MW4otGvMcdiXSFwL7dgJPxf6rBdKB6wJbuqMtEZFEpBgiIq2lOCIaMhoDo0aNYtSoUc0+fsqUKfTp04eHH34YgIMOOohPPvmERx55hJEjR0a9fdWmmnRXuu0F/B3w35AXO2FvEV0Q9a8VEREREZE4ox7CODBv3jxGjBgRtm/kyJHMmzevwfdUVlbi8XjCtuZY7F3MiMUjWPLMEjiY8GTwHOxcwQuxVQQl5vzA+sDmb/RIkehraRyR+KEYIk5SDEkOiiOihDAObNmyhcLCwrB9hYWFeDweKioq6n3PxIkTyc/Pr9l69uzZrO8qWleE1++lqKIIvIGd3YE3gJeAwgbfKjFQAfQJbPX/pEVip6VxROKHYog4STEkOSiOiBLCBDVhwgRKS0trtm+/rVsFZk/F3mIWVC8AYP4R8yk+rBguA5YDZ8S2vdKwnMAm0tZaEkcAtm30sHZpCds2qjcgHiiGiFMUQ5KH4khq0xzCONC1a1dKSkrC9pWUlJCXl0d2dna978nMzCQzM7LSn5M3TcaNGx8+3D43U6ZMYepRU1vcbmm99kCZ042QlNWSOLJw9lrmzljNLm8VWbkZDBvdjyHD+8aohdIUxRBxkmJIclAcEfUQxoGhQ4cye/bssH2zZs1i6NChUfuOYm8xC7wL8OEDwOf2MT99PsXe4qh9h4gkt20bPcydsRr8hsLe+eA3zJ2xWnf5RaRZFENE4pMSwhjwer0sWrSIRYsWAXZZiUWLFrFhwwbADrG48MILa47/3e9+x9q1a7n55pv56quv+Pvf/87LL7/M9ddfH7U2BXsHQ7lxM2XTlKh9h4gkN8/2CnZ5q8jvnENamov8zjnsKqvCs12zTkSkaYohIvFJCWEMzJ8/n8GDBzN48GAAbrjhBgYPHsydd94JwObNm2uSQ4A+ffrw9ttvM2vWLAYNGsTDDz/Mk08+GbUlJ+r2Dgb58DHfq15CJ1Vip3FeFngsEs/yOmWTlZtB6dZy/H5D6dZystpnkNep/qHtEnuKIZJIFEPik+KIuIwxxulGSOt5PB7y8/MpLS0lLy8v7LXLV1/OIu+iPRJCsL2Eg3MHM7Wf5hI6oQzIDTz2YsfxizilsTgSVDP/p6yKrPYZDDu9H0NO1PwfpyiGSDxRDElMiiOiojJJLtg72JDQXsLBuYPbsGUCkA7cG/JYJN4NGd6XXv0L8GyvIK9TNgU96r/ok7ahGCKJRjEk/iiOiHoIk0RDd+UuX305C70LMTT8Y3bh4vDcw9VLKJLimnN3X0SkIYohIolJcwiTmM/4WFa2rNFkEMBgWFq2FJ/Zc0ipiIiIiIgkLw0ZTWJul5uZA2dS7itv8tgcdw5ul7vJ4yS6DLAt8LgAcDnYFhFJPIohItJaiiOihDDJ5bpzyXXnNn2gOKIc6BJ4rIncIhIpxRARaS3FEVFCmCSCU0E9Hi3umkjKQh57oJ46sJLIOnTogMuVOPdaFUcSj2JIclMMkbagOJLcmhNHlBAmiZ07dwLQs2dPh1siLdXd6QZI1CVaYQXFkcSmGJJ8FEOkrSmOJJ/mxBFVGU0Sfr+fTZs2YYyhV69efPvttwn1R6QpHo+Hnj17Jt15QfKeW7KeFzT/3BLt7r7f72fVqlUcfPDBKf1zSzTJel6QvOeWzDFE1yKJKVnPLVnPC6IbR9RDmCTS0tLYZ599aoZp5OXlJd3/+JC85wXJe27Jel6QfOeWlpZGjx49gOQ7t1DJem7Jel6QvOeWbOela5HEl6znlqznBdE5Ny07ISIiIiIikqKUEIqIiIiIiKQoJYRJJjMzk7vuuovMzEynmxJVyXpekLznlqznBTq3RJWs55as5wXJe27Jel5ByXp+yXpekLznlqznBdE9NxWVERERERERSVHqIRQREREREUlRSghFRERERERSlBJCERERERGRFKWEUEREREREJEUpIRQREREREUlRSghFRERERERSlBJCERERERGRFKWEUEREREREJEUpIRQREREREUlRSghFRERERERSlBJCERERERGRFKWEUEREREREJEUpIRQREREREUlRSghFRERERERSlBJCERERERGRFKWEUEREREREJEUpIRQREREREUlRSghFRERERERSVIsSws8//zza7RAREREREZE21qKEcOjQofTr14977rmHtWvXRrtNIiIiIiIi0gZalBD+61//4oADDuCee+7hgAMOYNiwYUyZMoXt27dHu30iIiIiIiISIy5jjGnpm7dt28aLL77I888/z2effUZGRgannHIKv/nNbzj99NPJyMiIZltFREREREQkilqVEIb65ptveP7553nuuef4+uuvyc/P5+yzz+bCCy/kZz/7WTS+QkRERERERKIoalVGs7OzycnJISsrC2MMLpeLN998k+OOO44jjjiCFStWROurREREREREJApalRDu3LmTadOmMWLECHr37s1tt93Gvvvuy6uvvsqWLVvYtGkTL730Et9//z3jxo2LVpulHsYYPB4PUerwFZEUpDgiIiKSelqUEL755pucc845FBYWcskll7Bz504effRRNm3axBtvvMFZZ51Feno6brebs88+m9tvv53i4uJot11C7Ny5k/z8fHbu3Ol0U8KsX78el8vFokWLnG6KiDRBcURERCT1tCghPPPMM/n888+5/vrrWblyJZ9//jnjx49n7733rvf4QYMGcf7557eqoRIbW7Zs4eqrr6Zv375kZmbSs2dPRo8ezezZs51uWo1Vq1ZxwgknUFhYSFZWFn379uX222+nurra6aa1mg9YFNh8jrZEpOUSIY6EWrNmDR06dKBjx45ON6XVFENERKS12rXkTR988AHHH398s48/8sgjOfLII1vyVRJD69evZ9iwYXTs2JEHH3yQAQMGUF1dzXvvvcf48eP56quvnG4iAOnp6Vx44YUMGTKEjh07snjxYi677DL8fj/33Xef081rlV3A4MBjL9DewbaItESixJGg6upqzjvvPI455hg+/fRTp5vTaooh8anaVJPuSne6GSIizdKiHsJIkkGJX1deeSUul4svvviCX/ziF/Tr149DDjmEG264gc8++wyAiy++mJ///Odh76uurqZLly7885//BMDv9/PAAw+w//77k5mZSa9evfjzn//c4PcuW7aMUaNGkZubS2FhIRdccAHbtm1r8Pi+ffsybtw4Bg0aRO/evTn99NM5//zz+d///heFfwVnuYDugc3lcFtEWiJR4kjQ7bffTv/+/TnnnHNacdbxQzEk/iz2LmbE4hEs8S5xuikiIs0StSqjkli2b9/Ou+++y/jx42nffs97ysGhVJdeeinvvvsumzdvrnntrbfeory8nHPPPReACRMmcP/993PHHXewYsUKnn/+eQoLC+v93h07dnDiiScyePBg5s+fz7vvvktJSUlEF2dr1qzh3Xff5bjjjovgjONTDrAxsOU43BaRSCVaHPnggw945ZVXKCoqauEZxx/FkPhTtKkIr99L0abk+f9MRJKckaRQWlpqAFNaWtqs4z///HMDmH//+99NHnvwwQebSZMm1TwfPXq0ueiii4wxxng8HpOZmWn+8Y9/1PvedevWGcAUFxcbY4y55557zMknnxx2zLfffmsAs2rVqkbbMXToUJOZmWkAc/nllxufz9dk20Wk+ZI5jmzbts307NnTfPTRR8YYY6ZNm2by8/ObbLdIJBbuXGiGLBhSsy3cudDpJomINEk9hCnKRFBW/tJLL2XatGkAlJSU8M4773DxxRcDsHLlSiorKxk+fHizPmvx4sV8+OGH5Obm1mz9+/cH4Jtvvmn0vS+99BILFy7k+eef5+233+ahhx5q9jmISPQlUhy57LLL+PWvf82xxx7b7DaLRGrypsm4cQPgxs2UTVMcbpGISNNaVFRGEt8BBxyAy+VqVsGHCy+8kFtvvZV58+bx6aef0qdPH4455hgAsrOzI/per9fL6NGjmTRp0h6vdevWrdH39uzZE4CDDz4Yn8/H5Zdfzo033ojb7Y6oDfFkF3BB4PGzQJaDbRGJVCLFkQ8++ID//Oc/NTeSjDH4/X7atWvHE088UZOcJhrFkPhR7C1mgXdBzXMfPuZ751PsLWZw7uBG3iki4iz1EKaoTp06MXLkSIqKiigrK9vj9R07dtQ83nvvvRkzZgzTpk1j+vTpjBs3rua1Aw44gOzs7GaXlx8yZAjLly9n3333Zf/99w/b6puD1BC/3091dTV+v7/Z74lHPuDVwKaS8ZJoEimOzJs3j0WLFtVsf/rTn+jQoQOLFi3izDPPjOzE44hiSPwI7R0MUi+hiCQCJYQprKioCJ/Px5FHHslrr73G119/zcqVK/nrX//K0KFDw4699NJLefrpp1m5ciVjx46t2Z+VlcUtt9zCzTffzDPPPMM333zDZ599VlM5sK7x48ezfft2zjvvPL788ku++eYb3nvvPcaNG4fPV//lzHPPPcfLL7/MypUrWbt2LS+//DITJkzg3HPPJT09sct6ZwB/C2wZDrdFpCUSJY4cdNBBHHrooTVbjx49SEtL49BDD2WvvfaK3j9IG1MMiQ/B3kFfnbQ8tJdQRCReachoCuvbty8LFy7kz3/+MzfeeCObN2+mc+fOHH744UyePDns2BEjRtCtWzcOOeQQunfvHvbaHXfcQbt27bjzzjvZtGkT3bp143e/+12939m9e3fmzp3LLbfcwsknn0xlZSW9e/fmlFNOIS2t/vsT7dq1Y9KkSaxevRpjDL179+aqq67i+uuvj84/hIPSgfFON0KkFRIljiQrxZD4EOwdrJsQQm0v4dR+Ux1omYhI01wmkqoAErc8Hg/5+fmUlpaSl5cX9c/3er306NGDadOmcdZZZ0X980XEeYojIpEr9hZz6epLmzzuyX5Pai6hiMSl1LqVKhHz+/18//333HPPPXTs2JHTTz/d6SYlFT/wdWBL7NmQIg1THIkdxRDnTd40GReuRo9x4dJcQhGJWxoyKo3asGEDffr0YZ999mH69Om0a6f/ZaKpAugXeOwFml9WRyRxKI7EjmKIs3zGx7KyZRgaH2xlMCwtW4rP+HC7ErcytogkJ/1Vlkbtu+++Ea01JpHLd7oBIjGmOBJbiiHOcbvczBw4k3JfeZPH5rhzlAyKSFxSQijioPbADqcbISIJSzHEebnuXHLduU43Q0SkxTSHUEREREREJEUpIYyyiRMncsQRR9ChQwe6dOnCmDFjWLVqVZPve+WVV+jfvz9ZWVkMGDCA//73v23QWhERERERSWVKCKPso48+Yvz48Xz22WfMmjWL6upqTj75ZMrKyhp8z6effsp5553HJZdcQnFxMWPGjGHMmDEsW7asDVsuTqgELgpslY62REQSkWJIAikHFjndCBGRPWkdwhjbunUrXbp04aOPPuLYY4+t95hzzz2XsrIy3nrrrZp9P/3pTznssMOYMqV5ZapjvX6YxEYZEJx5ogqB4jTFkcSjGJIgZgBXA7uAVagSkIjEFRWVibHS0lIAOnXq1OAx8+bN44YbbgjbN3LkSN54440G31NZWUllZe39YI/H07qGiiPSgQdCHou0JcWRxKcYEufWA9cC/wnZdyfwmCOtERGpl4aMxpDf7+e6665j2LBhHHrooQ0et2XLFgoLC8P2FRYWsmXLlgbfM3HiRPLz82u2nj17Rq3d0nYygJsCW4bDbZFG+IF/YbtgkojiSOJTDImealMdvQ+rAiYCBxOeDJ4IXBG9rxERiQYlhDE0fvx4li1bxosvvhj1z54wYQKlpaU127fffhv17xAR4AtgKHABcL/DbYkyxRERa7F3MSMWj2CJd0l0PvBl4DagIvC8K/A88D7QPzpfISISLUoIY+Sqq67irbfe4sMPP2SfffZp9NiuXbtSUlIStq+kpISuXbs2+J7MzEzy8vLCNkk8fmBjYPM73BapoxK4BDgKmxQCPAQ03HGfcBRHEp9iSHQUbSrC6/dStKkoOh94HnAk9irrWuCrwD5XdD5eRCSalBBGmTGGq666itdff50PPviAPn36NPmeoUOHMnv27LB9s2bNYujQobFqpsSJCmCfwFbRxLHSxjKA0A6zg4G3sXf6ReKEYkjrFXuLWeBdAMB873yKvcWRfcBuYFadfW7gn8AC4FFUREZE4poSwigbP348//rXv3j++efp0KEDW7ZsYcuWLVRU1P6pvvDCC5kwYULN82uvvZZ3332Xhx9+mK+++oq7776b+fPnc9VVVzlxCtLG2qHqTnHJhS38UBD47yJguJMNEqmfYkjrTN40GTduANy4mbKpedW9AZgH/AQ4GZhb57VDgcOi0kQRkZhSQhhlkydPprS0lOOPP55u3brVbC+99FLNMRs2bGDz5s01z48++mief/55nnjiCQYNGsSrr77KG2+80WghGkkO7YHqwKZy8Q5aC5yJLQ0f6iBsL+E1qISjxCXFkNYJ9g768AHgw9e8XsJtwKXA0cDiwL7xgBbyEpEEpHUIk4TWDxNpgTJsoZgHsXMG9wOWA5lONso5iiOSai5ffTmLvItqEkKwvYSDcwcztd/UPd/gB54CbgG2h+w/DPg7tgCViEiCUQ+hiKQeg60CeBBwLzYZBJsgrnaqUSLSlur2DgY12Eu4CBgGXEZtMtgBO0fwS5QMikjCUkIo4qBK7Cij8dTmJBJjS4ATgHOpLRqTDtwMrAIGONQukRZQDGm50LmDdYXNJawErgMOBz4LOejX2JhxLZrEKSIJTQmhiIN2Y0cZ/T3wWGJoO3AVMBj4KGT/KGAZMAnQKElJMIohLdNQ72BQWC9hOjCf2nU9+gOzgeeAbpF/d7WpblGbRURiRQmhiIPSgbsCm2qWxNh1QBG1F3X7Af/BLiXRz6E2ibSSYkjLTN40GVcTiwK6cNlewjRsxp0H3IctInNiy753sXcxIxaPYIl3Scs+QEQkBjTIQcRBGcDdMf6OalNNukuXityNnTfYDrgduJ6ULR4jyaMtYkiy8Rkfy8qWYZooCWowLC1bis/4cA902yHmrRxFULSpCK/fS9GmovqL1oiIOEAJoUgSW+xdzDVrruHx/R9nYO5Ap5vTdjYC/4ctCR/UF/gXtvBDDycaJSLxwO1yM3PgTMp95eEvzATuBL4DDrDPc7JycLsC8wxbmQwGh6kCNcNRB+cObt2HiohEgYaMijjIADsCWyzWfwm9G50SKoGJwIHAr7BVQ0OdjZJBSSqxjiHJKtedS5eMLnbb2IUuv+hCl9Fd6FLchS5bu9Blfhe6LOhCrjs3at8ZWsQmrGiNiIjDlBCKOKgc2CuwlTdxbKTquxudtAzwFnAIcBs2EfwW+IuTjRKJvVjGEIBtGz2sXVrCto2eGHy6wyqBPwMHY+NH0AhgKXBs9L6qbhGbBpe2EBFxgBJCkSSVMnejVwGnAaOBbwL70rAVRcc3/DZV+hNp3MLZa3nhwU957bHPeeHBT1k4e63TTYqeWcBA7HziXYF93YEXsUNHo1xoqr4lLpI6LotIQlFCKOKgHKAqsOVE8XMT/W50s3olPNi1AwcA74TsPw4oBh4HOtX/VlX6k2QRqxiybaOHuTNWg99Q2Dsf/Ia5M1YnVE9hg3HkfuBkYHXguRtbZGoldn3SxouPRqyhJS4SLS6LSPJSQijiIBe2VHw60b0GSeS70c3qlfgYO0/wQSDY0bcP8BLwIfbOfyNSbm6lJK1YxRDP9gp2eavI75xDWpqL/M457CqrwrO9IorfEjuNxpEzqF2j42hgAXZ4eYzWIa0vHgclSlwWkeSmhFAkySTy3ehm90r0xfYQgl064g7gK+AcmrwqTqm5lSItlNcpm6zcDEq3luP3G0q3lpPVPoO8TtlON61Je8SR6jpx5CDgHuAp4H/AoJZ/T1MjGRqKx0GJEJdFJPkpIRRxUBVwU2CritJnJvLd6AZ7JbbW6ZXYB/gDMAY7zOtPQPvmfUfKzK2UlBCLGAJQ0COPYaP7QZqLkg2lkOZi2On9KOgRo260KKqJIx1ySPufi/z/5bBrZ53ezVuAcbT4Kqi58ysnb5qMq4m7VC5cikMi4iitQyjioGrgocDju7GLTLdGaO9XfULvRsfj+lehvRL5nXMo/b6crO8zyDsvGz4D8kMOvpWIL+bq/vvE+7+HSFOiHUNCDRnel179C/BsryCvU3ZCJIMAeR2zydqeQenccvLLcyhNLydrc/R6N+v2QJZuLWfujNX06l8Q9m/kMz6WlS3DNLEgiMGwtGwpPuOrXfNQRKQNKSEUcVA68PuQx60VvBvd2AVI8G701H5To/CN0RXslZg7YzUli0vJ+iaDYev7UbAjzw7xeijk4Bbc2Q/2DoYO3wr2Esbjv4dIU6IdQ+oq6JGXMIkgAAuh4Mo8hq3qx9y9V1OSVUpWWgbDBkavdzPYA1nYO79mJEPJhlI82yvCvsPtcjNz4EzKfU0vCJLjzlEyKCKOUUIo4qAMbF2UaEiWu9FD9utLr7UFeD6oIK86m4KqwAWWF7veYAsrZzTUe6peQklk0YwhCW0Hdi7x3wE/DKEvvcoL8IyuIO/2bAoOi15Su8dIhkbmV+a6c6O6uL2ISCwoIRRJEgl/N7ocmAQ8AAW78igIlvw7CruExBGt+/j6egeD1EsokqAM8By2m7QkZP9BUPD3PAqOj37vZthIhg2lZLXPSJj5lSIi9VFCKOIgA+wOPG5H68vGJ+TdaAO8CtwIfBuyvxCbIF5Aq8tfJfrcSpGGRDuGxKtqU026q55Bsd8ClwKVgec5wF3AdUR3QmUdiTq/UkSkPqoyKuKgcuw1S0bgcUrajr2gCyaD7bDJ4SpgLFGJUqr0J8kqFWLIYu9iRiwewRLvkj1f7IUtMAW1VYdvJqbJYFBBjzz6DihUMigiCU8JoYg4a2/gj4HHI4Gl2OIx+Q2+IyItmVspIvGjaFMRXr+Xok1F8BZ7Zr63AO8Br2MTRBERiYiGjIo4KAf4MeRx0vMB04AzsYlg0HjsYtEnE/Uxbwk/t1KkEckeQ0KHe8/3zqf4jmIGfzYY7g05KBsbO0REpEWUEIo4yAV0dLoRbWUucDVQDCzEVgMMSsf2DsZIQs6tFGmGZI8hk7+bjNvvxpfmw73bzZTfTWHq1VPhMqC3060TEUkOGjIqIrG1CVsY5mfYZBBgKvB/jrVIRBJA8QfFLChfgC/NDuP2tfMx/4j5FL9WrKGhIiJRpIRQxEFVwN2BrcrRlsRAJbZKaD/gXyH7BwIforv7IlGQlDHkO+CXMPnrybh3hw/hduNmyoFTkrecqoiIA5QQijioGltP5Y+Bx0njbeBQbPW/ssC+TthhoguAYx1ql0iSSboYUgT0h+I1xSw4YgG+duFFnkKXiBERkehQQijioHbAlYEtaSb0jgV+DqwJPE/DnuBq4AqS6ERFnJd0McQDlMHk303G7au/wJMbt5aIERGJoqT4+yGSqDKxN8STyjDgmcDjY4G/AoOca45IMku6GHIjFH9hewcbEtpLODh3cBs2TkQkOamHUERazrDnmmCXAKOBF4A5KBkUkT35gMnAPXX2Z8DkiZNxNTFJ0IVLvYQiIlGiHkIRaZkFwDXAAcD0kP1u4D9ONEhEEsJ87PDx+dirkDOxc44Bn/GxrGIZBtPoRxgMS8uW4jM+rR0qItJKSghFHFRG7RpiO4D2jrUkAluBPwBPYnsIPwV+B/zUyUaJpKaEiiE/ArdjewaD+d5u4B1qEkK3y83MgTMp99UderCnHHeOkkERkShQQijisN1ON6C5dmMv5O7EXnkGHYgd/iUijoj7GGKAZ4GbgO9D9h+CrTxcp+pwrjuXXHduW7VORCTlKSEUcVA2dsmt4OO49QF2eOjykH0dsIufXQVkONAmEYn/GLIcWwL145B97YG7gOuAdAfaJCIiYZQQijgoDejhdCMa83/AjcBrdfZfBEwEurZ1g0QkVFzHkI+B4YR3Yf4CeATo6UiLRESkHqoyKiIN+5jwZPAI4DNgGkoGRaRxQ4H+gcf7YecKvoqSQRGROKOEUMRBVcCDga3K4bbU6zfYi7ouwFPYZPAoR1skIiHiKob8WOd5Onbe8d3AMuCUtm6QiIg0h8sY03htZ0kIHo+H/Px8SktLycvLc7o50kxlQLB0gheHKwQuxy4XMSFknwHWA52AfAfaJG1KcSTxxEUM2QXcj81KPwG0VryISELRHEIRB7UDxoY8dsQObIGHImy10KHA8SGv92n7JolI8zgeQ97FFpb6JvD8CuxSNBp/JCKSMJQQijgok/A13duUDzsXcAKwLWT/X6hNCF1t3CYRiYhjMeRb4HrC5xi3wy4hUY1tmIiIJAQlhCKpaB5wNbAgZF82cBu2qqiISH2qgUeBP2LHqwYdi11T8BAH2iQiIq2ihFAklWwGbsEuEh3qXOABoFebt0hEEsXH2DUFQ9cj7QI8hC1ApREFIiIJSQmhiIPKqF1DbCMxLgixBlvswRuybwDwV8LnDIpIwmizGGKwQ0SDyaALmxzeC3SM1ZeKiEhb0LRvEYeVBraY2w84MvB4L+BvwEKUDIokuDaJIS7skFAXdj3SL7ExpGOsv1hERGJNPYQiDsoGVoc83rbRg2d7BXmdsino0cqy/5uA7iHPXdjewL8B9wAFrft4EXFe3RgCUYojX2LXETwsZN9RwBxgGOBu2ceKiEj8UUIo4qA04IDA44Wz1zJ3xmp2eavIys1g2Oh+DBneN/IP9QJ/xlYLfR04NeS1Q7ALRYtIUgiNIRCFOLId+AMwFZsMfkl48ndsq5ssIiJxRkNGReLAto0e5s5YDX5DYe988BvmzljNto2e5n+IAZ4DDsQuEl2FnfNTFYsWi0i8aVUcMdj1K/oDUwLPi4F/xbDBIiISF9RDKOKgauAJ7DKAmRXVdN8nj7Q0F/mdcyjZUMqGVduaN/SrGLuMxNyQfRnAWdj1BkUkKQVjCMCI7RXs8lZR2Ds/sjiyFFsg5pOQfbnYpSV+HeMTEBERxykhFHFQFXAVQI88HszPonRrOfmdcyjdWk5VxW4+fHkF/t3+hod+bQNux14RmpD9o7FDRvdvk9MQEYfUxBBg/d7ZZOVmND+O7ATuBh4j/MbRL4FHqC1fKiIiSU1DRkUc5AbODmzDRu0PaS5KNpRSXbUbgyEjw13/0C+DLQ5zAHauTzAZ7Af8F/gPSgZFUkBoDCnsnsew0f2aF0feBw7C3jgKJoMHAO8BL6NkUEQkhaiHUMRBWcArwScn9OGAfnvj2V7Bjq1lzH5+Gfmdc8KGfnm2V9ghXy7shduOwHtzgTuBa7FDRUUkJYTFEGDI8L706l/QdBzplAebQz7kD8BNQGZbn4GIiDhNCaFIHCnokUdBjzy2bfTsMfQrq30GeZ2yaw9+BJgFnIstItOtdd8d1SUvRMQxzYojPYDxwDfA40ALChrXpRgiIpKYlBCKxKGCHnbo19wZqylZV0pWSQbDftYv/CJrf+zFXBSGdkVtyQsRiRs1ceSfqymZX0rWTzIYdnpIHHkYexXgav13KYaIiCQuJYQiDiqndg2xr4GckNeGnNiXXhsK8NxXQd6GbAqW5dkhoaEHRSEZrFuqvnRrOXNnrKZX/wLd5ReJc43FEDbAkKK+9Hq7AE96BXmnZFNwYsjvdHp02qAYIiKS2FRURsRBBtgU2EKLhLICOBkKLs6j75pCCqryYCPwcfTb4AmUqg+dZ7SrrArP9orof5mIRFW9MaQKmIQtGvM6FFTl0beskIL5eXUCTXQohoiIJDYlhCIOysIuIVgceEwpdjH5gdgqgEHDgSXAKdFvQ16n2lL1fr+pf76iiMSlPWLIHOAw4FZs9yFAIfAc8CZRGR5al2KIiEhiU0IYAx9//DGjR4+me/fuuFwu3njjjUaPnzNnDi6Xa49ty5YtbdNgcYwbe+12mB/cT2GXjXiU2jLw+wKvYYvHHBybNgTnGQVL1ZPmCp9nJCJxqyaGbAH3b4ATgJWBF9OwixSuwi4wH4NkEBRDREQSneYQxkBZWRmDBg3i4osv5qyzzmr2+1atWkVeXu0f0C5dusSieRKP7gDuC3meDUwAfh94HGOhpepVIVAkwewEDgV+CNl3FDAZGNw2TVAMERFJXEoIY2DUqFGMGjUq4vd16dKFjh07Rr9BEreqsSO5uAHOfxzSdwK/BB4EerdtW4Kl6kUkcVQDz3UA/gbnXwDpHbDzBy+hzccAKYaIiCQmJYRx5LDDDqOyspJDDz2Uu+++m2HDhjV4bGVlJZWVlTXPPR5PWzRRoqEKWw7wEPtwHMDe8MvHIb0XdsiXSBtQHElQPwAdgIyQGPIr+OUiSL8R6Oxg20REJOFoDmEc6NatG1OmTOG1117jtddeo2fPnhx//PEsXLiwwfdMnDiR/Pz8mq1nz55t2GJpsfewBWNGADvt/J9TA5t7LEoGpU0pjiQYP/AUcCB2DUHqxJD7UTIoIiIRcxljYlCEWoJcLhevv/46Y8aMieh9xx13HL169eLZZ5+t9/X67uz37NmT0tLSsHmIEie+AW4A/hOy72bs0C4RhyiOJJDFwJXAp4Hn2djiMW08tFxERJKPhozGqSOPPJJPPvmkwdczMzPJzMxswxZJi3iBicBD2LFdQUcD5zrSIpEaiiMJwAPcBTxObfVhgNMB/ehERCQKlBDGqUWLFtGtWzenmyEtZYAXgZuwC8oHdcMWjIlhCXgRSQIGeBm7LunmkP39gCLssHMREZEoUEIYA16vlzVr1tQ8X7duHYsWLaJTp0706tWLCRMmsHHjRp555hkAHn30Ufr06cMhhxzCrl27ePLJJ/nggw+YOXOmU6cgrbEGuBj4X8i+dOBG4DZsMYiAcmBQ4PFiIKdNGigicW0Vdv3A90P2ZQG3Y5eiCekZVAwREZHWUkIYA/Pnz+eEE2qrg9xwww0AjB07lunTp7N582Y2bNhQ83pVVRU33ngjGzduJCcnh4EDB/L++++HfYYkkFxgUcjz04BHgAP2PNRg88fgYxERniU8GRwNPAb02fNQxRAREWktFZVJEh6Ph/z8fBWDiBcPA1OAR7EJYQN8wGeBxz/FVgwUcYriSJwoBw4OPP4rdr5gAxRDRESktZQQJgldyDnkI+BPwKvAXiH7q7El4lX0QRKI4ogD1gNfAOfU2b8c2yOoMaAiIhJjWodQpCW+A84Djgc+wFYBDJWOkkERaVglcB+2J/BC7NI0oQ5ByaCIiLQJJYQikdgF/Bm7MPSLIfs/x/YKRmg38Epg29361olIIpiNrQTzB6ACmxze3bKPUgwREZHWUlEZkeYwwAxsCfi1IfsLsHf5L6ZFk3cqqR0p5kW/kCJJbTO22vALIfvSgKuBP7bsIxVDRESktfS3Q6QpXwHXAe+F7HMD47F39ffa8y3NlQYcF/JYRJLQbuzagXcAO0P2DwX+DhzW8o9WDBERkdZSQihtZttGD57tFeR1yqagR4IUrKjEzhMsCdl3Arby36Gt//hsYE7rP0YkZSRcHFkPnEn4UjR7A5OAcbQ6i1MMERGR1lJCKG1i4ey1zJ2xml3eKrJyMxg2uh9Dhvd1ullNy8QWjLkS6IVdTuIXgMvJRomkpoSMI12xYzmDLgMmYpNCERGROKARJhJz2zZ6mDtjNfgNhb3zwW+YO2M12zZ6Wvx5a5eWNOv9kRwL2PLv39fZdznwOLASOJtWJ4MRt0lEohpHYhpD6soC/oYdFjoPeIKoJIOKIyIiEi3qIZSY82yvYJe3isLe+aSlucjvnEPJhlI82ysiHvIVSQ9BRL0JJcAEYBpwCfBkyGtu4Krap9WmmnRXekTtbqhNh59xIFee0Aew14rZLfpUkeQXrTgSsxgCdljotcAU4KCQ/SOBk4jaLdjQdqXtlcUTdx5HdodMxRAREWkR9RBKzO2u9uH3G7Z+68HvN5RuLSerfQZ5nSK7dImkh6DZx1YDfwH6YZNBgKeA4vrbsNi7mBGLR7DEuySitjfUpk/fWcNiYDF2HXsRqV804khMYghAKTYRPBz4GFtwytQ5Jkp/beu2yxhY3SFTMURERFpMCaHE1MLZa3nvmSWUeyrZtO5H1izeAmkuhp3eL+LewWAPQX7nnJoegl1lVXi2V7Ts2FnAQGwZ+OA1Xj42QWygYEzRpiK8fi9Fm4oiantDbfLtqODpdT8yEzuyTET2FK04EvUYYrBLSPTHFpoKZmSb2XPoeZTUbVdBx0wu/cs8nl73o2KIiIi0iBJCiZnQO9n7DSqke9+9aJ+XxcgLBzLkxMgLQeR1yiYrN4PSreVN9hA0euxabNW/k7FLSoCdF3gpsBq7xEQ9I0KLvcUs8C4AYL53PsXeBroRI2h/Tk4Gp2a4OYkWLWMokvSiGUeiFkPAzikeDvwa2BJ4Uza2YMxioLDh82nN3L+67dr5fTkDN5RyaoZbMURERFpECaHETN072Z33ySPN7aJdessvW/Yf1IXqqt2UbChttIegoEcew0b3gzRX+LEv58HBwBshBw8FvgT+AXRp+Lsnb5pM8JLLjZspm6ZE1PYG25QIpfNFHBLtONLqGNIxz843HgR8GPKG07FJ4q1ARv3fvXD2Wl548FNee+xzXnjwUxbOXhtx+xVHREQk2lRURmIm9E52fuecFs8dhDpFFNqlcejQfThi5H6NXgQNGd6XXv0Lwtcs24BdWxBsOfgHgPNp8tZIaO8ggA9fTS/h4NzBzT6Pum3q2COPtwOvjUS/kCJ1RSuORC2GjALeDTloX2wV4p83/v115/6Vbi1n7ozV9OpfEHEyF9qunE7ZLAjEEcUQERFpCfUQSsxE60523QupjAw3a5aUNP1GoKB7Hn0HFNZ+54XAMcBN2OGhF9Cs34LQ3sGglvQSgv13CbapEnsd+XNq81QRqRWNONKqGNKjTgy5JfBCBnA7sJwmk0GIbP5iJO3q0CNPMURERFpFNxMlpuq9wx6hFpWb3w7ciS0W80zI/jTsMK8IRpvV7R0MamkvYag04Cchj0VkT62NIy1esqIS+AHoHrLveOBBYDRwYPPbEM0RE6EUQ0REpLX090Nibo877BGKpBAEPuwaYAcARcCzwCd1jmkiGaxb9KG+3sHaj2pZL2FQNnb64pdo/TCRxrQmjkQUQ4Lex1YhPoc913P4PU0mg3XjSKzm/imGiIhIa6mHUOJe8EJq7ozVlGwoJat9Rv0XUp8AV2MXhw5qj60q+rPmfVfdhag7n+ljQYc9eweDotFLKCKx1ewYArARuxTNS4Hnq7GjDC5q/vc1tKB9NEZMiIiIRJsSQkkIjV5IbQRuBp6v86bzgUlAj+Z9R31FH571TsPVwYXZY5XpWi5cTNk0han9pkZ2UiLSZppMxnZji8PcCXhD9h8NDGn+9zRVPCa4iYiIxAslhBKXtm307HHhtseF1C7gEeDPQFnImwdjL+yGRfaddecZdeicxdbO3zaaDAIYDEvLluIzPtyuyErhVwAjAo/fR0O+RKKpbhxpMBmbC1wJLAnZV4C9oXQREU2uaPF8xRZSDBERkdZSQihxp6HhVnt4F7gt5Pne2OTwUlq0ynvdog87t+7i3FcmcNrVA+jUtUOj781x50ScDIKdmvRpyGMRiY5mxZFt2NEF00L2uYDLgfuATpF/b6yKxzREMURERFpLRWUkrtQdboXfMHfG6prCDGHOwFb8SwOuws71+S0tSgah/qIPJ4waSP9e+9Elo0ujW647t0XfmQm8HtgyW9ZsEamj2XFkNeHJ4GBgHrYwVQuSQWj7heMVQ0REpLXUQyhxpcHhVt9WUDArL7ywgwuYDFRhqwFGQVsXfWgHjInpN4iknmYP2zwaGAe8hh1dcAUtvqEUqi3jiGKIiIi0lhJCiSv1Drf6MYO8s7Nt8ZjuwMkhb+gf/Tao6INIYqs3jmRkkPdKNhxMeNL3IHZ4aNfotkFxREREEoWGjEpcCRtutbwU5rkYNrsfBRsDF1a3QhM1XhKKD5gT2HyOtkQkeYTFkf8rhU0uhr3dj4J78uDJOgfvTdSTwbakGCIiIq3lMsYk0eV16vJ4POTn51NaWkpeXoLflf4ett3owfN6BXnV2RRUBc7nTOBhoI+TjYuuMiA4+9CLXTZRxClJFUeAbR958NxeQd4XIXFkH+zapOlOtix6FENERKS1NGRU4kc1UATcDQWleRQQuIA7CHgMOMmxlsWMCzuCLfhYRKKgDLgHCh7Oo2B3SGJ7JvAoSZMMgmKIiIi0nhJCiQ/bgWOAFSH78oA/AuNJqgu4UDnAcqcbIZIsDPAGcC3wbcj+vti1SU91oE0xphgiIiKtpTmEEh/2AnoHHruAi7El4a8jaZNBEYkiH3YpmrOoTQYzgDuAZSRlMigiIhIN6iEUZ+zCLpoVHOPkAh7BToJ5CDjSoXaJSGJyAz1Cnp8M/A04wJnmiIiIJAr1EErbMsArQD/gP3VeOxD4mJRKBiuwUyNPCjwWkQjULYl2H3Zx+ZeBd0mJZFAxREREWks9hNJ2lgHXAB8Gnl8PjASy2q4J2zZ62mzR+ebwA++HPBaRZvgOGz+OBa4O2b8XsICYV1eJpziiGCIiIq2lhFBi70fgLuDvhC+UdQCwgzZbA2zh7LXMnbGaXd4qsnIzGDa6H0OG922bL29AJvCvkMci0ohqbMXhu7GVRGcCZwPdQo6JcTIYb3FEMURERFpLQ0YldnzAE9jE73Fqk8G+2OGi79JmyeC2jR7mzlgNfkNh73zwG+bOWM22jZ62aUAD2gHnBzbdnRFpxP+ww0FvwiaDYDOg1W3XhHiMI4ohIiLSWkoIJTbmAkcAvwV+COzLwc7xWQ6Mpk0XzfJsr2CXt4r8zjmkpbnI75zDrrIqPNs160Ykrn0PXIQdHhpcX8EFXAGsAo5ru6YojoiISDJSQiix8QhQHPL8V9iLtwm06ZzBoLxO2WTlZlC6tRy/31C6tZys9hnkdcpu+8aE8AFfBjZfE8eKpBQfMBlbbOrpkP2HA59jh6Dv1bZNisc4ohgiIiKtpYRQYuMhbOI3CFs59AVgH/vSto0e1i4taXKYVbWpjlpzCnrkMWx0P0hzUbKhFNJcDDu9n+MFIXZhi6oeGXgsIgF/Aa7EzjMGyMcmgZ8DRzQ/jkRTPMYRxRAREWktlzGmbuFuSUAej4f8/HxKS0vJy2vji5O3seXff15n/3zsnB937a7mFmRY7F3MNWuu4fH9H2dg7sCoNTWeqgMClAMHBx6vwI6qFXGKo3Fkj8YA/YHNwIXAA0Chfcnpwi7xFEcUQ0REpLXUQygt9zVwGjYR/B12UflQPyEsGYykIEPRpiK8fi9Fm4qi2uSCHnn0HVDo+EVcUA6wPrDpQk5SlgFW1tmXB/wT+Ag7ZDSQDMZDYZd4iiOKISIi0lpKCCVyO4FbgUOA/wb2baS29nkDmluQodhbzALvAgDme+dT7C2u7+NEJBkswxaGOQK7vmCoUdhiMiEiKezixLBSERGRRKOEUJrPYJO+A4FJ2DXBwM4NfAFbUbQRzS3IMHnTZNyBrkU3bqZsmhLV0xCROOAFbsYOK/8fdimJ62tfbmgOcXPjyMLZa3nhwU957bHPeeHBT1k4e22MTkRERCSxKSGU5lkA/Ay4ADunByAD+APwFbaKaBPLSDSnIEOwd9AXqJfnw5fUvYS7gDGBTQUhJCUY4DXgIOBBYHdg/37AJfbhYu9iRiwewRLvkj3e3pw4Eg/DStuKYoiIiLSW1rGVpk0HLsZeyAWdATyMvYiLwJDhfenVv6DBggzB3kFfSAH1YC/h1H5TW9b+OOYD3gx5LJLU1gBXA++G7MvELkdzCzVL0oTOIa7v976pOBIcVlrYO79mWGnJhlI82yviYt5fNCmGiIhIaykhlKadDLTHDvE6EHgMGNnyjyvokVfvRVno3MFQob2Eg3MHt/yL41AG8ETIY5GktAu4P7BVhuwfBTxO2I2l+uYQ1/d731AcgfBhpfmdc+JivcBYUQwREZHW0pBR2dPWOs+7AxOxPYJLaFUy2JjQuYN1JetcwnTgssCW7nBbRGJmN7ZiaDAZ3Af4N3bJmjqjDKIxhzge1wuMFcUQERFpLfUQSq3/A27ELiS/GugY8tpVsf3qhnoHg5K5l1Ak6eViRxacC9wA3BHYV0fdONCa3/umhpWKiIiIpR5CgQrgj9hFoF/D9hD+sW2bMHnTZFxNVKVx4Uq6XkI/sDyw+R1ui0hUVAMPAevq7D8Te6NpEvUmg1D/KIHWjA6Ip/UCY0UxREREWksJYSoLrfZ3N7Ul6roAh7VdM3zGx7KyZZiwqjV7MhiWli3FZ5KndEIFcGhg23MVNZEE8zE2dtwEXFvnNRfQp+G31q0wHJTslYZbSzFERERaS0NGU9Vy7AXb7JB97YBrgDuB/LZritvlZubAmZT7yps8Nsedg9tV/zzDRFXgdANEWqsEu6bgMyH73gKWAgOa9xH1VRgOSuZKw9GgGCIiIq2hhDDVlAJ3AX8jvEb5Sdg5Pgc50SjIdeeS625gHFkSa8+eNXxEEoYPmArcho0tQUcAf6fZyaDmELecYoiIiLSWhoymmirgaWqTwT7AG8B7OJYMikgC+gI4ChhPbTK4FzAFmAf8pPkflapziEVEROKBEsJU0xn4E5AN3AOswC4y3/i1mIhIrXuAnwKhnXoXAV8Bv4UGVo+pVyrPIRYREYkHGjKaiq7AVvzbx+mGyC7gksDjfwJZDrZFpNkGQ03+digwGfhZyz4q1ecQt5ZiiIiItJbLGNP4bVlJCB6Ph/z8fEpLS8nLS94S68mmjNoK/F7sfCARp0QURy7AJoZXoxXRHaQYIiIiraUhozHw8ccfM3r0aLp3747L5eKNN95o8j1z5sxhyJAhZGZmsv/++zN9+vSYt1OclwE8EtgyHG6LSESexS4yr2TQUYohIiLSWkoIY6CsrIxBgwZRVFTUrOPXrVvHaaedxgknnMCiRYu47rrruPTSS3nvvfdi3FJxWjpwXWDTdbWIREoxREREWktzCGNg1KhRjBo1qtnHT5kyhT59+vDwww8DcNBBB/HJJ5/wyCOPMHLkyFg1U0REREREUpwSwjgwb948RowYEbZv5MiRXHfddQ2+p7KyksrKyprnHo8nVs2TGPIDGwKPe6Eue2lbiiOJTzFERERaS3874sCWLVsoLCwM21dYWIjH46GioqLe90ycOJH8/PyarWfPnlFtU7WpjurnSf0qsEtB9gk8FmlLsY4jEnuKISIi0lpKCBPUhAkTKC0trdm+/fbbZr1v20YPa5eWsG1jwz0Bi72LGbF4BEu8S6LVXGlETmATaWuxjCPSdhRDRESkNTRkNA507dqVkpKSsH0lJSXk5eWRnZ1d73syMzPJzMyM6HsWzl7L3Bmr2eWtIis3g2Gj+zFkeN89jivaVITX76VoUxFT+02N6DskMu2xZeNFnBDLOCJtQzFERERaSz2EcWDo0KHMnj07bN+sWbMYOnRo1L5j20YPc2esBr+hsHc++A1zZ6ze4w5/sbeYBd4FAMz3zqfYWxy1NohIYmtuHAkeq15EERGR+KeEMAa8Xi+LFi1i0aJFgF1WYtGiRWzYYKf+T5gwgQsvvLDm+N/97nesXbuWm2++ma+++oq///3vvPzyy1x//fVRa5NnewW7vFXkd84hLc1FfuccdpVV4dkePutk8qbJuHED4MbNlE1TotYGEUlszY0jC2ev5YUHP+W1xz7nhQc/ZeHstQ61WERERJqihDAG5s+fz+DBgxk8eDAAN9xwA4MHD+bOO+8EYPPmzTXJIUCfPn14++23mTVrFoMGDeLhhx/mySefjOqSE3mdssnKzaB0azl+v6F0azlZ7TPI61Q7JDXYO+jDB4APn3oJY6wSuCywVTZxrIjTmhNHIulFlNZTDBERkdZyGWOM042Q1vN4POTn51NaWkpeXl69x9TM/SmrIqt9BsNO78eQE2vn/ly++nIWeRfVJIRgewkH5w7WXMIYKQNyA4+92PlAIk6JRhxZu7SE1x77nMLe+aSlufD7DSUbSvnFNUfRd0BhvZ8pLacYIiIiraWiMilkyPC+9OpfgGd7BXmdsinoUXvBFzp3MFRoL+Hg3MFt2dyUkA7cG/JYJN41FkcgvBcxv3NOvb2IEj2KISIi0lrqIUwSzbmz35j6egeD1EsokhpaG0eCmupFFBERkfihHkJpsHcwSL2EIhKJpnoRRUREJH6oqIwwedNkXLgaPcaFSxVHY8AAWwObuuolmRT0yKPvgEIlgzGmGCIiIq2lHsIU5zM+lpUtwzRxKWEwLC1bis/4cLvcbdS65FcOdAk8VkEIEYmUYoiIiLSWEsIkEZwK6vFEXtr91X1fpcJX0eRx2e5synaWRfz50rDQf00P1DODUxJZhw4dcLka732PJ62JI+IMxZDklmgxREQSkxLCJLFz504Aevbs6XBLpKW6O90AibrWFmdpa4ojiU0xJPkkWgwRkcSkKqNJwu/3s2nTJowx9OrVi2+//Tap/oh4PB569uyZdOcFyXtuyXpe0PxzS7S7+36/n1WrVnHwwQen9M8t0STreUHynluyxhARSUzqIUwSaWlp7LPPPjVDvfLy8pLqj2dQsp4XJO+5Jet5QfKdW1paGj169ACS79xCJeu5Jet5QfKeW7Kel4gkFlUZFRERERERSVFKCEVERERERFKUEsIkk5mZyV133UVmZqbTTYmqZD0vSN5zS9bzAp1bokrWc0vW84LkPbdkPS8RSUwqKiMiIiIiIpKi1EMoIiIiIiKSopQQioiIiIiIpCglhCIiIiIiIilKCaGIiIiIiEiKUkIY54qKith3333JysriqKOO4osvvmj0+FdeeYX+/fuTlZXFgAED+O9//xv2ujGGO++8k27dupGdnc2IESP4+uuvY3kKDYrk3P7xj39wzDHHsNdee7HXXnsxYsSIPY6/6KKLcLlcYdspp5wS69PYQyTnNX369D3anJWVFXZMov7Mjj/++D3OzeVycdppp9UcEw8/s48//pjRo0fTvXt3XC4Xb7zxRpPvmTNnDkOGDCEzM5P999+f6dOn73FMpL+7sZSscSRZYwgkbxxJxhgCqRFHRCSJGYlbL774osnIyDBPPfWUWb58ubnssstMx44dTUlJSb3Hz50717jdbvPAAw+YFStWmNtvv92kp6ebpUuX1hxz//33m/z8fPPGG2+YxYsXm9NPP9306dPHVFRUtNVpGWMiP7df//rXpqioyBQXF5uVK1eaiy66yOTn55vvvvuu5pixY8eaU045xWzevLlm2759e1udkjEm8vOaNm2aycvLC2vzli1bwo5J1J/ZDz/8EHZey5YtM26320ybNq3mmHj4mf33v/81f/jDH8y///1vA5jXX3+90ePXrl1rcnJyzA033GBWrFhhHn/8ceN2u827775bc0yk/1axlKxxJFljiDHJG0eSNYYYk/xxRESSmxLCOHbkkUea8ePH1zz3+Xyme/fuZuLEifUef84555jTTjstbN9RRx1lfvvb3xpjjPH7/aZr167mwQcfrHl9x44dJjMz07zwwgsxOIOGRXpude3evdt06NDBPP300zX7xo4da84444xoNzUikZ7XtGnTTH5+foOfl0w/s0ceecR06NDBeL3emn3x8DML1ZwLuZtvvtkccsghYfvOPfdcM3LkyJrnrf23iqZkjSPJGkOMSd44kgoxxJjkjCMiktw0ZDROVVVVsWDBAkaMGFGzLy0tjREjRjBv3rx63zNv3ryw4wFGjhxZc/y6devYsmVL2DH5+fkcddRRDX5mLLTk3OoqLy+nurqaTp06he2fM2cOXbp04cADD+SKK67ghx9+iGrbG9PS8/J6vfTu3ZuePXtyxhlnsHz58prXkuln9s9//pNf/epXtG/fPmy/kz+zlmjq9ywa/1bRkqxxJFljCCRvHFEMCZdIcUREkp8Swji1bds2fD4fhYWFYfsLCwvZsmVLve/ZsmVLo8cH/xvJZ8ZCS86trltuuYXu3buH/bE85ZRTeOaZZ5g9ezaTJk3io48+YtSoUfh8vqi2vyEtOa8DDzyQp556ijfffJN//etf+P1+jj76aL777jsgeX5mX3zxBcuWLePSSy8N2+/0z6wlGvo983g8VFRUROX/72hJ1jiSrDEEkjeOKIaES6Q4IiLJr53TDRCJ1P3338+LL77InDlzwgon/OpXv6p5PGDAAAYOHMh+++3HnDlzGD58uBNNbdLQoUMZOnRozfOjjz6agw46iKlTp3LPPfc42LLo+uc//8mAAQM48sgjw/Yn4s9MEl8yxRBIjTiiGCIiEjvqIYxTBQUFuN1uSkpKwvaXlJTQtWvXet/TtWvXRo8P/jeSz4yFlpxb0EMPPcT999/PzJkzGThwYKPH9u3bl4KCAtasWdPqNjdHa84rKD09ncGDB9e0ORl+ZmVlZbz44otccsklTX5PW//MWqKh37O8vDyys7Oj8v9BtCRrHEnWGALJG0cUQ8IlUhwRkeSnhDBOZWRkcPjhhzN79uyafX6/n9mzZ4fdCQ41dOjQsOMBZs2aVXN8nz596Nq1a9gxHo+Hzz//vMHPjIWWnBvAAw88wD333MO7777LT37ykya/57vvvuOHH36gW7duUWl3U1p6XqF8Ph9Lly6taXOi/8zALmFQWVnJb37zmya/p61/Zi3R1O9ZNP4/iJZkjSPJGkMgeeOIYki4RIojIpICnK5qIw178cUXTWZmppk+fbpZsWKFufzyy03Hjh1ryolfcMEF5tZbb605fu7cuaZdu3bmoYceMitXrjR33XVXveXiO3bsaN58802zZMkSc8YZZzi2hEEk53b//febjIwM8+qrr4aVF9+5c6cxxpidO3ea3//+92bevHlm3bp15v333zdDhgwxBxxwgNm1a1fcntcf//hH895775lvvvnGLFiwwPzqV78yWVlZZvny5WHnnog/s6Cf/exn5txzz91jf7z8zHbu3GmKi4tNcXGxAcxf/vIXU1xcbP7v//7PGGPMrbfeai644IKa44Pl4m+66SazcuVKU1RUVG+5+Mb+rdpSssaRZI0hLTm3RIkjyRpDgm1J5jgiIslNCWGce/zxx02vXr1MRkaGOfLII81nn31W89pxxx1nxo4dG3b8yy+/bPr162cyMjLMIYccYt5+++2w1/1+v7njjjtMYWGhyczMNMOHDzerVq1qi1PZQyTn1rt3bwPssd11113GGGPKy8vNySefbDp37mzS09NN7969zWWXXebIH85Izuu6666rObawsNCceuqpZuHChWGfl6g/M2OM+eqrrwxgZs6cucdnxcvP7MMPP6z3/63guYwdO9Ycd9xxe7znsMMOMxkZGaZv375h66IFNfZv1daSNY4kawwxJnnjSDLGEGNSI46ISPJyGWNM2/VHioiIiIiISLzQHEIREREREZEUpYRQREREREQkRSkhFBERERERSVFKCEVERERERFKUEkIREREREZEUpYRQREREREQkRSkhFBERiUObN2/m1ltv5YQTTqBDhw64XC7mzJnjdLNERCTJKCEUERGJQ6tWrWLSpEls3LiRAQMGON0cERFJUkoIRURE4tDhhx/ODz/8wOrVq7nhhhucbo6IiCQpJYQiIiJtpKKigv79+9O/f38qKipq9m/fvp1u3bpx9NFH4/P5AOjQoQOdOnVyqqkiIpIilBCKiIi0kezsbJ5++mnWrFnDH/7wh5r948ePp7S0lOnTp+N2ux1soYiIpJp2TjdAREQklRx11FHcfPPNTJo0iTPPPJOSkhJefPFFHn30Ufr16+d080REJMUoIRQREWljd999N2+99RZjx47F6/Vy3HHHcc011zjdLBERSUEaMioiItLGMjIyeOqpp1i3bh07d+5k2rRpuFwup5slIiIpSAmhiIiIA9577z0Adu3axddff+1wa0REJFUpIRQREWljS5Ys4U9/+hPjxo1j8ODBXHrppZSWljrdLBERSUFKCEVERNpQdXU1F110Ed27d+exxx5j+vTplJSUcP311zvdNBERSUEqKiMiItKG7r33XhYtWsTs2bPp0KEDAwcO5M477+T222/n7LPP5tRTTw07FmD58uUAPPvss3zyyScA3H777W3feBERSTouY4xxuhEiIiKpYOHChRx11FFcccUV/PWvf63Z7/P5GDp0KBs3bmT58uV07NgRoNFCM/rzLSIi0aCEUEREREREJEVpDqGIiIiIiEiKUkIoIiIiIiKSopQQioiIiIiIpCglhCIiIiIiIilKCaGIiIiIiEiK0jqEIhJ3fD4f1dXVTjdDRETiTHp6Om632+lmiCQVJYQiEjeMMWzZsoUdO3Y43RQREYlTHTt2pGvXro2u0ykizaeEUETiRjAZ7NKlCzk5OfpjLyIiNYwxlJeX8/333wPQrVs3h1skkhyUEIpIXPD5fDXJ4N577+10c0REJA5lZ2cD8P3339OlSxcNHxWJAhWVEZG4EJwzmJOT43BLREQkngX/TmiuuUh0KCEUkbiiYaIiItIY/Z0QiS4lhCIiIiIiIilKCaGISAKaPn06HTt2dLoZIpIE5syZg8vlUoVnkRSlhFBEpBUuuugiXC4XLpeLjIwM9t9/f/70pz+xe/fumH7vueeey+rVq2P6HU0JPff09HQKCws56aSTeOqpp/D7/RF9VrInuNWmbeY6BX8m999/f9j+N954o82H2QX/33C5XLRv354DDjiAiy66iAULFkT8WccffzzXXXdd9BuZAkJ/DvVtd999t9NNFBGHKSEUEWmlU045hc2bN/P1119z4403cvfdd/Pggw/We2xVVVVUvjM7O5suXbpE5bNaI3ju69ev55133uGEE07g2muv5ec//3nMk+JEsdi7mBGLR7DEu6RNvi8rK4tJkybx448/tsn3NWbatGls3ryZ5cuXU1RUhNfr5aijjuKZZ55xumkpY/PmzTXbo48+Sl5eXti+3//+9461LVrxUERaRwmhiEgrZWZm0rVrV3r37s0VV1zBiBEj+M9//gPYHpsxY8bw5z//me7du3PggQcC8O2333LOOefQsWNHOnXqxBlnnMH69esBmDlzJllZWXsM37r22ms58cQTgfp71CZPnsx+++1HRkYGBx54IM8++2zNa+vXr8flcrFo0aKafTt27MDlcjFnzhwAfvzxR84//3w6d+5MdnY2BxxwANOmTWvWuffo0YMhQ4Zw22238eabb/LOO+8wffr0muP+8pe/MGDAANq3b0/Pnj258sor8Xq9gB2uNm7cOEpLS/fotXj22Wf5yU9+QocOHejatSu//vWva9YgSxRFm4rw+r0UbSpqk+8bMWIEXbt2ZeLEiY0e98knn3DMMceQnZ1Nz549ueaaaygrKwPgb3/7G4ceemjNscEexilTpoR9z+23397odwQXEN933305+eSTefXVVzn//PO56qqrahLWH374gfPOO48ePXqQk5PDgAEDeOGFF2o+46KLLuKjjz7iscceq/n/Y/369fh8Pi655BL69OlDdnY2Bx54II899ljE/17JrmvXrjVbfn4+LpcrbF9ubm7NsQsWLOAnP/kJOTk5HH300axatSrss958802GDBlCVlYWffv25Y9//GPYjZ8NGzZwxhlnkJubS15eHueccw4lJSU1r999990cdthhPPnkk/Tp04esrCyeeeYZ9t57byorK8O+a8yYMVxwwQUx+lcRkVBKCEUk6Wzb6GHt0hK2bfQ48v3Z2dlhd75nz57NqlWrmDVrFm+99RbV1dWMHDmSDh068L///Y+5c+eSm5vLKaecQlVVFcOHD6djx4689tprNZ/h8/l46aWXOP/88+v9ztdff51rr72WG2+8kWXLlvHb3/6WcePG8eGHHza73XfccQcrVqzgnXfeYeXKlUyePJmCgoKIz//EE09k0KBB/Pvf/67Zl5aWxl//+leWL1/O008/zQcffMDNN98MwNFHH71Hz0Ww16K6upp77rmHxYsX88Ybb7B+/XouuuiiiNvklGJvMQu8dojkfO98ir3FMf9Ot9vNfffdx+OPP853331X7zHffPMNp5xyCr/4xS9YsmQJL730Ep988glXXXUVAMcddxwrVqxg69atAHz00UcUFBTU3Dyorq5m3rx5HH/88RG37/rrr2fnzp3MmjULgF27dnH44Yfz9ttvs2zZMi6//HIuuOACvvjiCwAee+wxhg4dymWXXVbz/0fPnj3x+/3ss88+vPLKK6xYsYI777yT2267jZdffjniNon1hz/8gYcffpj58+fTrl07Lr744prX/ve//3HhhRdy7bXXsmLFCqZOncr06dP585//DIDf7+eMM85g+/btfPTRR8yaNYu1a9dy7rnnhn3HmjVreO211/j3v//NokWL+OUvf4nP56u5iQZ2jcG333477PtFJIaMiEgcqKioMCtWrDAVFRWt+pwF739j/nrtO+aBS940f732HbPg/W+i1ML6jR071pxxxhnGGGP8fr+ZNWuWyczMNL///e9rXi8sLDSVlZU173n22WfNgQceaPx+f82+yspKk52dbd577z1jjDHXXnutOfHEE2tef++990xmZqb58ccfjTHGTJs2zeTn59e8fvTRR5vLLrssrG2//OUvzamnnmqMMWbdunUGMMXFxTWv//jjjwYwH374oTHGmNGjR5tx48a16NzrOvfcc81BBx3U4HtfeeUVs/fee9c8r3s+Dfnyyy8NYHbu3NnsdjrpslWXmSMWHGGGLBhijlhwhLl81eUx/b7Qn8lPf/pTc/HFFxtjjHn99ddN6J/8Sy65xFx+eXhb/ve//5m0tDRTUVFh/H6/2Xvvvc0rr7xijDHmsMMOMxMnTjRdu3Y1xhjzySefmPT0dFNWVtZgWwDz+uuv77G/oqLCAGbSpEkNvve0004zN954Y83z4447zlx77bWNnrsxxowfP9784he/aPK4qHvYGNOjGdvoet47upnvfbj1zWzo9+zDDz80gHn//fdr9r399tsGqInJw4cPN/fdd1/Y+5599lnTrVs3Y4wxM2fONG6322zYsKHm9eXLlxvAfPHFF8YYY+666y6Tnp5uvv/++7DPueKKK8yoUaNqnj/88MOmb9++YTEyVLT+XoiIpR5CEUka2zZ6mDtjNfgNhb3zwW+YO2N1zHsK33rrLXJzc8nKymLUqFGce+65YYUaBgwYQEZGRs3zxYsXs2bNGjp06EBubi65ubl06tSJXbt28c033wBw/vnnM2fOHDZt2gTAc889x2mnndZg4ZWVK1cybNiwsH3Dhg1j5cqVzT6PK664ghdffJHDDjuMm2++mU8//bTZ763LGBNWxOT9999n+PDh9OjRgw4dOnDBBRfwww8/UF5e3ujnLFiwgNGjR9OrVy86dOjAcccdB9ihafEu2DvowweAD1+b9RICTJo0iaeffrre/wcWL17M9OnTa/7/y83NZeTIkfj9ftatW4fL5eLYY49lzpw57NixgxUrVnDllVdSWVnJV199xUcffcQRRxxRs0B4JIwxQO1acj7f/7d3/zFV13scx5+HEyeF4xGZpyuWYIYuMLFz0DQStAvz1PJeHLq5pMmaFZGN0U3W3IrNXw3zR2orkrZkNhzOrcKpU+gHZLhpjlWGR7Hlr0jyR2I7nlBD7h/nnu/1iCgov/S8HtvZ4Lvv9/P5cL4fvt/zPp/P5/1tYfHixYwZM4bIyEisVis7d+7s0Dl+//33SUxMxG63Y7VaKS4u7p2+8SfQ0IHX6esce7qDx/bAhIeEhATj56ioKABjivYPP/zAokWLAvqMf9TW6/XidrsZNmwYw4YNM8qIj48nIiIioA/GxMRgt9sD6n3xxRepqKigoaEB8E2J9ydIEpHud09vN0BEpKv8+cdfNHsu8Y+YgYSEmBhoD+P34+f584+/GHy/rdvqffLJJykqKsJisTB06FDuuSfw0hoeHh7wu8fjITExkdLS0jZl+T8ojR8/noceeoiysjJycnL47LPPAtbkdVZIiO/7P/+HcfBN+7va008/zbFjx9i+fTuVlZWkpqYyb948VqxY0en63G43Dz74IOBbvzht2jRycnJYunQpkZGRfPvtt8ydO5dLly61G1RcuHABl8uFy+WitLQUu93O8ePHcblcd0QyiqLfijBjNgJCADNmPvztQ9aNWtft9aekpOByuViwYEGbabYej4fs7Gxyc3PbHBcdHQ34MnsWFxeza9cuHA4HNpvNCBKrq6uN4Lyz/MGBv38sX76cNWvWsHr1amOdaV5e3k3PcVlZGfPnz2flypU8/vjjDBgwgOXLl7Nnz55batdtsQH3d2A/ezvbOnJs913CDKGhocbP/mDMnzHY4/GwcOFCMjIy2hzXr1+/Dtdx7fUQwOFwMHbsWDZs2MDUqVOpq6tj27ZtnW2+iNwiBYQictewRfann9XC+dNeBtrDOH/aS79wC7bI/t1ab3h4OLGxsR3e3+l0smnTJu677z5stvY/5WVmZlJaWsoDDzxASEgIzzzzTLv7xsXFUVNTQ1ZWlrGtpqaG+Ph44P+B5smTJ3E4HAABCWb87HY7WVlZZGVlkZycTH5+fqcDwq+++or9+/fz2muvAb5RvitXrrBy5UojML12nZfFYqGlpSVg28GDBzl79iyFhYXGqMO+ffs61ZbecvXawatdPUrosDq6vR2FhYU8+uijRjIjP6fTyYEDB27YbydPnkxeXh6bN2821gpOmTKFL774gpqaGl5//fVbapN/vWhaWhrg66fp6ek899xzgC8Aqa+vN/ouXL9/1NTUkJSUxCuvvGJs84+w97j//O91K7bcfJe+wOl0cujQoXb7TFxcHCdOnODEiRPG/+uBAwdoamoKOJfteeGFF1i9ejUNDQ2kpaUFjDSKSPfSlFERuWsMvt/GE/8aBSEmfj9+HkJMPPHvUd06OngrMjMzGTx4MOnp6ezatYsjR45QVVVFbm5uQBKQzMxMamtrWbp0KTNnzuTee+9tt8z8/HxKSkooKiri8OHDrFq1ik8//dRIztK/f38mTpxIYWEhbreb6urqNhkiCwoKKC8v5+eff6auro6tW7cSFxd3w7/l4sWLNDY20tDQQG1tLW+//Tbp6elMmzaNOXPmABAbG8vly5d57733+OWXX/jkk08CslUCDB8+HI/Hw5dffsmZM2fwer1ER0djsViM47Zs2cLixYs79V73Fv/o4PX4Rwl7wpgxY8jMzGTt2rUB29944w12797Nq6++yvfff8/hw4cpLy83ksqAb/rgoEGD2LhxY0BA+Pnnn3Px4sU2U5Svp6mpicbGRo4dO0ZlZSUzZ85k48aNFBUVGdOfR44cSWVlJbt378btdpOdnR2QmRJ8/WPPnj0cPXqUM2fOcOXKFUaOHMm+ffvYuXMn9fX1vPXWW3z33Xe394ZJuwoKCtiwYQMLFy6krq4Ot9tNWVmZcR1JS0sz+lttbS179+5lzpw5TJ48mXHjxt20/NmzZ/Prr7/y0UcfKZmMSA9TQCgidxVn6giezU9iRu4Ens1PwvnPEb3dpDbCwsL45ptviI6OJiMjg7i4OObOnUtzc3PAiGFsbCyPPfYYP/74Y7vZRf2mT5/OmjVrWLFiBaNHj2bdunWsX78+IAvkxx9/zN9//01iYiJ5eXksWbIkoAyLxcKCBQtISEggJSUFs9lMWVnZDevdsWMHUVFRDB8+nKeeeoqvv/6atWvXUl5ejtnsC4jGjh3LqlWrWLZsGY888gilpaVtHomQlJTEyy+/zKxZs7Db7bzzzjvY7XZKSkrYvHkz8fHxFBYW3tL01Z527drBa/X0WsJFixYZ0/78EhISqK6upr6+nuTkZBwOBwUFBQwdOtTYx2QykZycjMlkYtKkScZxNpuNcePGXXfq37Wef/55oqKiePjhh8nJycFqtbJ3715mz55t7PPmm2/idDpxuVxMmTKFIUOGMH369IBy5s+fj9lsJj4+3pg6nJ2dTUZGBrNmzWLChAmcPXs2YLRQupbL5WLr1q1UVFQwfvx4Jk6cyLvvvktMTAzg6y/l5eUMGjSIlJQU0tLSGDFiBJs2bepQ+QMHDmTGjBlYrdY2519Eupep9eoFJSIivaS5uZkjR44Yz6YSuVO9VP8StZ5aWmn/9mrCRKI1sUfWEorcKVJTUxk9enSbEe1r6X4h0rW0hlBERKSLtLS28NOFn24YDAK00sr+C/tpaW3BbLr+1FKRYHHu3Dmqqqqoqqrigw8+6O3miAQdBYQiIiJdxGwyU5FQgbflxo/TAAgzhykYFMGXZfTcuXMsW7asTQIkEel+CghFRES6kNVsxWq29nYzRO4YR48e7e0miAQ1JZUREREREREJUgoIRaRPUZ4rERG5Ed0nRLqWAkIR6RNCQ0MB8HpvvvZKRESCl/8+4b9viMjt0RpCEekTzGYzERERnDp1CvA9q89kMvVyq0REpK9obW3F6/Vy6tQpIiIijGedisjt0XMIRaTPaG1tpbGxkaampt5uioiI9FEREREMGTJEXxqKdBEFhCLS57S0tHD58uXeboaIiPQxoaGhGhkU6WIKCEVERERERIKUksqIiIiIiIgEKQWEIiIiIiIiQUoBoYiIiIiISJBSQCgiIiIiIhKkFBCKiIiIiIgEKQWEIiIiIiIiQUoBoYiIiIiISJD6LzPkiTXpmPRAAAAAAElFTkSuQmCC\n"
- },
- "execution_count": 6,
- "metadata": {},
- "output_type": "execute_result"
- }
- ],
- "source": [
- "# Loop by the axes to draw annotations\n",
- "for i,ax in enumerate(fig.axes[:-1]):\n",
- " ax.axvline(x=.5, c='cyan', ls=':') # Vertical line at .5\n",
- " if i == 2: # label on panel 3\n",
- " ax.text(.47, .8, 'Label', c='red', fontweight='bold', ha='right', transform=ax.transAxes)\n",
- "fig\n"
- ],
- "metadata": {
- "collapsed": false
- }
- },
- {
- "cell_type": "markdown",
- "source": [
- "### Querying\n",
- "You can query which cycles you wish to plot by using the `query` keyword. `query` accepts two types of inputs:\n",
- "1. **List index**: A list of index values\n",
- "2. **Slice**: Constructed with `slice()` or `np.s_[]`"
- ],
- "metadata": {
- "collapsed": false
- }
- },
- {
- "cell_type": "code",
- "execution_count": 7,
- "outputs": [
- {
- "data": {
- "text/plain": "Text(0.5, 0.98, 'Last Cycle')"
- },
- "execution_count": 7,
- "metadata": {},
- "output_type": "execute_result"
- },
- {
- "data": {
- "text/plain": "",
- "image/png": "iVBORw0KGgoAAAANSUhEUgAAAtgAAAEzCAYAAAALuHTZAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8o6BhiAAAACXBIWXMAAA9hAAAPYQGoP6dpAABr9ElEQVR4nO3dd1iT19sH8G/C3qgsEVCcOEEUEUfVlorWWu1wD0QcrdpWrbVabdVaq3ZqraNDwb1Xq3XVPUEEVMQtuNjK3uQ57x+85CcKyggEwvdzXbkwycmTO5Gb3DnPGTIhhAAREREREamEXN0BEBERERFpEhbYREREREQqxAKbiIiIiEiFWGATEREREakQC2wiIiIiIhVigU1EREREpEIssImIiIiIVIgFNhERERGRCrHAJiIiIiJSIRbYRETVXIMGDTBq1Ch1h0FERP+PBTYRkQrdvXsX48ePR8OGDaGvrw9TU1N07twZS5cuRWZmprrDU6m///4brq6u0NfXh4ODA+bMmYO8vLwyHSsjIwPLly9Hz549UbduXZiYmKBt27ZYuXIlFAqFymJ+8803IZPJMGnSJJUdk4joedrqDoCISFPs378fAwYMgJ6eHkaOHIlWrVohJycHZ86cweeff45r167hjz/+UHeYKnHgwAH0798f3bt3x7Jly3D16lV8++23iIuLw8qVK0t9vHv37uHjjz/GG2+8galTp8LU1BSHDh3ChAkTcOHCBaxdu7bcMe/atQvnz58v93GIiF5FJoQQ6g6CiKi6i4iIQJs2bWBnZ4djx46hbt26he6/c+cO9u/fj08//VTlz92gQQN0794d/v7+Kj92cVq2bAkdHR0EBQVBWzu/r2b27Nn47rvvEB4eDicnp1IdLyEhAbGxsWjZsmWh20ePHg0/Pz/cvn0bjRs3LnO8WVlZaN68OUaPHo2vv/4aEydOxG+//Vbm4xERvQyHiBARqcD333+PtLQ0rF69+oXiGgAaN26sLK67desGZ2fnIo/TrFkzeHl5Ka9LkoSlS5eidevW0NfXh6WlJXr16oWgoKCXxpOUlITJkyfD3t4eenp6aNy4MRYvXgxJkgq127JlC9q1awcTExOYmpqidevWWLp06UuPHR4ejvDwcIwbN05ZXAPAhAkTIITAjh07Xvr4olhYWLxQXAPAu+++CwC4fv16qY/5rO+//x6SJGHatGnlOg4RUUmwwCYiUoF//vkHDRs2RKdOnV7ZdsSIEbhy5QrCwsIK3X7x4kXcunULw4cPV97m6+urLJQXL16MGTNmQF9fHxcuXCj2+BkZGejWrRs2bNiAkSNH4tdff0Xnzp0xc+ZMTJ06VdnuyJEjGDJkCGrVqoXFixdj0aJF6N69O86ePfvS+ENCQgAA7du3L3S7ra0t7OzslPerQkxMDID8ArysHjx4gEWLFmHx4sUwMDBQVWhERMXiGGwionJKSUnB48eP0a9fvxK1HzBgAD7++GNs2LABixYtUt6+YcMGGBkZ4b333gMAHD9+HP7+/vjkk08K9Sp/9tlneNnovp9//hl3795FSEgImjRpAgAYP348bG1t8cMPP+Czzz6Dvb099u/frxzrrKWlVeLXGx0dDQBF9tTXrVsXUVFRJT7Wy+Tk5GDJkiVwdHSEm5tbmY/z2WefoW3bthg8eLBK4iIiehX2YBMRlVNKSgoAwMTEpETtzczM0K9fP2zevFlZKCsUCmzduhX9+/eHkZERAGDnzp2QyWSYM2fOC8eQyWTFHn/79u3o2rUratWqhYSEBOXF09MTCoUCp06dAgCYm5sjPT0dR44cKdXrLVgNRU9P74X79PX1VbZayqRJkxAeHo7ffvut0FCU0jh+/Dh27tyJJUuWqCQmIqKSYIFNRFROpqamAIDU1NQSP2bkyJF48OABTp8+DQD477//EBsbixEjRijb3L17F7a2tqhdu3ap4rl9+zYOHjwIS0vLQhdPT08AQFxcHID8MdNNmzZF7969YWdnh9GjR+PgwYOvPH7BMIvs7OwX7svKylLJMIwffvgBf/75J+bPn4+33nqrTMfIy8vDJ598ghEjRpSrB5yIqLQ4RISIqJxMTU1ha2v7wpjql/Hy8oK1tTU2bNiA1157DRs2bICNjY2yCC4PSZLw5ptvYvr06UXe37RpUwCAlZUVQkNDcejQIRw4cAAHDhyAn58fRo4c+dJl8QqGhkRHR8Pe3r7QfdHR0ejQoUO54vf398cXX3yBDz/8ELNnzy7zcdatW4ebN2/i999/R2RkZKH7UlNTERkZCSsrKxgaGpYrXiKi57EHm4hIBd5++23cvXu3xOssa2lpYejQodixYwcSExOxZ88eDBkypNBY6EaNGiEqKgpPnz4tVSyNGjVCWloaPD09i7w4ODgo2+rq6qJv375YsWKFcpOcdevW4c6dO8Ue38XFBQBeWMkkKioKjx49Ut5fFnv37sWYMWPw3nvvYfny5WU+DpA/uTE3NxedO3eGo6Oj8gLkF9+Ojo44fPhwuZ6DiKgoLLCJiFRg+vTpMDIywpgxYxAbG/vC/Xfv3n1h+bsRI0YgMTER48ePR1paWqHVQwDg/fffhxAC8+bNe+F4L5vkOHDgQJw/fx6HDh164b6kpCTlbotPnjwpdJ9cLkebNm0AFD38o0DLli3h5OSEP/74o9AuiytXroRMJsMHH3xQ7GNf5tSpUxg8eDBee+01bNy4EXJ5+T6iBg8ejN27d79wAYC33noLu3fvhru7e7meg4ioKNxohohIRf7++28MGjQIBgYGhXZyPHfuHLZv345Ro0bh999/L/SY1q1bIywsDM2bN0d4ePgLxxw5ciTWr1+P3r17o1evXpAkCadPn0aPHj2U230/v9FMRkYGunbtiitXrmDUqFFo164d0tPTcfXqVezYsQORkZGwsLDAu+++i6dPn+L111+HnZ0d7t+/j2XLlqFBgwa4dOnSSwvcffv24Z133kGPHj0wePBghIWF4bfffoOvr2+h3SojIyPh6OgIb2/vl26Ec//+fTg7OyMnJwc//vijclx7gTZt2iiL/4LXXHD80pLJZNxohogqliAiIpW5deuWGDt2rGjQoIHQ1dUVJiYmonPnzmLZsmUiKyvrhfbff/+9ACC+++67Io+Xl5cnfvjhB+Hk5CR0dXWFpaWl6N27t7h06ZKyTf369YW3t3ehx6WmpoqZM2eKxo0bC11dXWFhYSE6deokfvzxR5GTkyOEEGLHjh2iZ8+ewsrKSujq6goHBwcxfvx4ER0dXaLXunv3buHi4iL09PSEnZ2dmD17tvLYBa5evSoAiBkzZrz0WMePHxcAir3MmTOnUHsLCwvRsWPHEsX5PABi4sSJZXosEVFJsAebiEiNli5diilTpiAyMrLQ2GhNsWLFCkyfPh13796FtbW1So4ZHh6Oli1bYt++fejTp49KjklEpEocg01EpCZCCKxevRrdunXTyOIayF+H+pNPPlFZcV1wTA8PDxbXRFRlsQebiKiSpaen4++//8bx48fx559/Yu/evXjnnXfUHRYREakIC2wiokpWMPHP3NwcEyZMwIIFC9QdEhERqRALbCIiIiIiFeIYbCIiIiIiFWKBTURERESkQiywiYiIiIhUiAU2EREREZEKscAmIiIiIlIhFthERERERCrEApuIiIiISIVYYBMRERERqRALbCIiIiIiFWKBTURERESkQiyw1UAIgZSUFHCXeqKKxVwjqhzMNaLCWGCrQWpqKszMzJCamqruUAAAkZGRkMlkCA0NVXcoRCrFXCOqHMw1osJYYFcDMTEx+Pjjj9GwYUPo6enB3t4effv2xdGjR9UdWiFXrlxB165doa+vD3t7e3z//ffqDomoVKpDrp04cQL9+vVD3bp1YWRkBBcXF2zcuFHdYRGVSnXItWfduXMHJiYmMDc3V3coVE1oqzsAernIyEh07twZ5ubm+OGHH9C6dWvk5ubi0KFDmDhxIm7cuKHuEAEAKSkp6NmzJzw9PbFq1SpcvXoVo0ePhrm5OcaNG6fu8Iheqbrk2rlz59CmTRt88cUXsLa2xr59+zBy5EiYmZnh7bffVnd4RK9UXXKtQG5uLoYMGYKuXbvi3Llz6g6HqgtBlS45OVkAEMnJya9s27t3b1GvXj2Rlpb2wn2JiYlCCCF8fHxEnz59Ct2Xk5MjLC0txV9//SWEEEKhUIjFixeLRo0aCV1dXWFvby++/fZbIYQQERERAoAICQlRPv7q1auiV69ewsjISFhZWYnhw4eL+Pj4YuNcsWKFqFWrlsjOzlbe9sUXX4hmzZq98jUSVRRNzLWivPXWW8LHx6dUjyFSJU3OtenTp4vhw4cLPz8/YWZm9sr2REIIwSEiVdjTp09x8OBBTJw4EUZGRi/cX3CqasyYMTh48CCio6OV9+3btw8ZGRkYNGgQAGDmzJlYtGgRvvrqK4SHh2PTpk2wtrYu8nmTkpLw+uuvo23btggKCsLBgwcRGxuLgQMHFhvr+fPn8dprr0FXV1d5m5eXF27evInExMSyvHyiSlOdcq0oycnJqF27dqkeQ6QO1S3Xjh07hu3bt2P58uVlfMVUY6m7wq+JSvpNPyAgQAAQu3bteuUxW7RoIRYvXqy83rdvXzFq1CghhBApKSlCT09P/Pnnn0U+9vlv+vPnzxc9e/Ys1Obhw4cCgLh582aRx3jzzTfFuHHjCt127do1AUCEh4e/Mn6iiqCJufa8rVu3Cl1dXREWFlai9kQVQRNzLSEhQdjb24uTJ08KIQR7sKlU2INdhYlSLHc0ZswY+Pn5AQBiY2Nx4MABjB49GgBw/fp1ZGdn44033ijRsS5fvozjx4/D2NhYeXFycgIA3L17t5Svgqjqq665dvz4cfj4+ODPP/9Ey5YtS/waiNSlOuXa2LFjMXToULz22msljpmoACc5VmFNmjSBTCYr0YSPkSNHYsaMGTh//jzOnTsHR0dHdO3aFQBgYGBQqudNS0tD3759sXjx4hfuq1u3bpGPsbGxQWxsbKHbCq7b2NiU6vmJKlt1yrUCJ0+eRN++ffHLL79g5MiRpXpeInWpTrl27Ngx/P333/jxxx8B5H85kCQJ2tra+OOPP5TFPlUDkgRkJACGFoC8cvqW2YNdhdWuXRteXl5Yvnw50tPTX7g/KSlJ+e86deqgf//+8PPzg7+/P3x8fJT3NWnSBAYGBiVe/sjV1RXXrl1DgwYN0Lhx40KXosbMAYCHhwdOnTqF3Nxc5W1HjhxBs2bNUKtWrRK+YiL1qE65BuQv1denTx8sXryYq/RQtVKdcu38+fMIDQ1VXr755huYmJggNDQU7777buleOKmPJAGnfwT2Tsr/KUmV87zqHaFSM5VmtvXdu3eFjY2NaNGihdixY4e4deuWCA8PF0uXLhVOTk6F2h4+fFjo6uoKLS0t8fjx40L3zZ07V9SqVUusXbtW3LlzR5w/f145E/v5sWqPHz8WlpaW4oMPPhCBgYHizp074uDBg2LUqFEiLy+vyDiTkpKEtbW1GDFihAgLCxNbtmwRhoaG4vfffy/DO0SkGpqYa8eOHROGhoZi5syZIjo6Wnl58uRJGd4hItXQxFx7HsdgV1OpsUJsGCDEqtfyf6bGVsrTssBWg9L8IRJCiKioKDFx4kRRv359oaurK+rVqyfeeecdcfz48ULtJEkS9evXF2+99dYLx1AoFOLbb78V9evXFzo6OsLBwUF89913QoiilzO6deuWePfdd4W5ubkwMDAQTk5OYvLkyUKSpGLjvHz5sujSpYvQ09MT9erVE4sWLSrR6yOqKJqYa97e3gLAC5du3bqV6DUSVQRNzLXnscCuphQKIU4szi+uTyzOv14JZEKUYsYBqURKSgrMzMyQnJwMU1NTlR03LS0N9erVg5+fH9577z2VHZeoumKuEVUO5hpVaWoYg81JjhpAkiQkJCTgp59+grm5Od555x11h0SkkZhrRJWDuUYqJZcDxlaV+pQssDXAgwcP4OjoCDs7O/j7+0Nbm/+tRBWBuUZUOZhrVN3xN1YDNGjQoFRrixJR2TDXiCoHc42qOy7TR0RERESkQiywiYiIiIhUiAU2EREREZEKscAmIiIiIlIhFthERERERCqk0QX2woUL4ebmBhMTE1hZWaF///64efPmKx+3fft2ODk5QV9fH61bt8a///5b6H4hBL7++mvUrVsXBgYG8PT0xO3btyvqZRBVCQ+fZiD4QaK6wyAiIlIJSaq4lWo0usA+efIkJk6ciAsXLuDIkSPIzc1Fz549kZ6eXuxjzp07hyFDhsDX1xchISHo378/+vfvj7CwMGWb77//Hr/++itWrVqFgIAAGBkZwcvLC1lZWZXxsogq3Z24VAxYdR7eawIRHpWi7nCIiIjK5UlaNgb8fh4HrkZXyPFr1Fbp8fHxsLKywsmTJ/Haa68V2WbQoEFIT0/Hvn37lLd17NgRLi4uWLVqFYQQsLW1xWeffYZp06YBAJKTk2FtbQ1/f38MHjz4lXFU1JayRBXhyqMkeK8JRGJGLppYGWO9rztszPTVHVaJMNeIKgdzjaqTyIR0jPILROSTDFib6uHk5z2gr6Ol0ufQ6B7s5yUnJwMAateuXWyb8+fPw9PTs9BtXl5eOH/+PAAgIiICMTExhdqYmZnB3d1d2eZ52dnZSElJKXQhqg4u3HuCoX8GIDEjF852Ztg23qNKF9fMNaLKwVyj6ir4QSLeW3kOkU8yYFfLABvHdFR5cQ3UoAJbkiRMnjwZnTt3RqtWrYptFxMTA2tr60K3WVtbIyYmRnl/wW3FtXnewoULYWZmprzY29uX56UQVYqj12PhvSYQadl58GhYBxvHdkQtI111h/VSzDWiysFco+ro0LUYDP3zAp6m56B1PTPsmtAJja2MK+S5akyBPXHiRISFhWHLli2V/twzZ85EcnKy8vLw4cNKj4GoNPaGPsb49ZeQnSfBs7k1/HzcYKynre6wXom5RlQ5mGtU3fifjcCHGy4hK1fC605W2DKuI6xMKu6MbNX/xFSBSZMmYd++fTh16hTs7Oxe2tbGxgaxsbGFbouNjYWNjY3y/oLb6tatW6iNi4tLkcfU09ODnp5eOV4BUeVZf+E+vt4bBiGAd9vWw/cftIGOVvX4Ls5cI6oczDWqLiRJYOGB6/jzdAQAYKi7A755pyW0K/hzrXp8apaREAKTJk3C7t27cezYMTg6Or7yMR4eHjh69Gih244cOQIPDw8AgKOjI2xsbAq1SUlJQUBAgLINUXUkhMDy43fw1Z784trboz5+GuBcbYprIiKiZ2XlKvDxlhBlcT29VzMs6N+qwotrQMN7sCdOnIhNmzZh7969MDExUY6RNjMzg4GBAQBg5MiRqFevHhYuXAgA+PTTT9GtWzf89NNP6NOnD7Zs2YKgoCD88ccfAACZTIbJkyfj22+/RZMmTeDo6IivvvoKtra26N+/v1peJ1F5CSGw6MAN/H7qHgDgk9cbY8qbTSGTydQcGRERUeklZeRg7LogXIxMhI6WDD984Iz+betV2vNrdIG9cuVKAED37t0L3e7n54dRo0YBAB48eAC5/H/fZDp16oRNmzZh9uzZ+PLLL9GkSRPs2bOn0MTI6dOnIz09HePGjUNSUhK6dOmCgwcPQl+/6q6uQFQchSQwa/dVbLmYP4Zydp/mGNO1oZqjIiIieoYkARkJgKEFIH95D/TDpxkY5ReIu/HpMNHTxu8j2qFTY4tKCjRfjVoHu6rgeqFUVeTkSZiyNRT7r0ZDLgMWvdcGA900ZzUA5hpR5WCuUYWSJOD0j8CjIMCuPdB1WrFF9tVHyfDxv4iEtGzUNdOHv08HNLMxqeSANbwHm4iKl5GThw83BOPUrXjoaMnw6+C26N267qsfSEREVJkyEvKL67TY/J8ZCYCx1QvNjt2IxcSNIcjMVcDJxgT+Ph3UtncDC2yiGig5Mxe+/hcRdD8RBjpa+H1EO7zW1FLdYRERgOM346CnJa/0U9pEVZahRX7PdUEPtuGLubEp4AFm77kKSQBdGltg5XBXmOjrqCHYfCywiWqY+NRsjFwTiOvRKTDV14afjxva1S9+d1Miqhx5Cgm//HcLy4/fhYWxLv79pCusTDm3hwhyef6wkCLGYAsh8OPhm1h+/C4A4IN2dlj4Xmu1r4DFApuoBnmUmIERqwMRkZAOC2M9rPftgOZ1OV6SSN3iUrPwyeYQXLj3FADQu1VdmBqor/eNqMqRy18YFpKTJ2H6jsvYExoFAPj0jSaY7NmkSqyAxQKbqIa4E5eGEasDEJ2chXrmBtgwxh2OFkbqDouoxjt/9wk+3hyChLRsGOlqYeH7bfCOs626wyKq0lKycvHh+ks4d/cJtOQyLHy3dZWapM8Cm6gGCHucjJFrAvE0PQeNLI2wYYw76poZqDssohpNkgRWnryLnw7fhCSAZtYmWDHcFY0sjdUdGlGVFpWUCR+/i7gZmwojXS2sGN4O3arYPCIW2EQaLjDiKXz9LyI1Ow+t6plirU8H1DHmFsdE6pSYnoMp20Jx4mY8gPxxo/P7tYKBrpaaIyOq2sKjUjDa/yJiUrJgZaKHNaPc0KqembrDegELbCINdvxGHD7ccAnZeRI6ONbGau/2ap1VTUTApfuJ+HhTMKKSs6CvI8c3/VphYPuqc2qbqKo6fTseH20IRlp2HppYGcPPxw12tQzVHVaRWGATaai/L0dh6tZQ5EkCbzhZYfkwV+jrsHeMSF2EEFh9JgKLDtxAniTQ0MIIK4a7wsmGE42JXmXHpUeYsfMK8iSBjg1r4/fh7WFmWM4Oo1LsDllaLLCJNNDGgPuYvScMQgD9XGzx4wBntS9ZRFSTJWfmYvqOyzh0LRYA8Habulj0fhsY6/FjmOhlhBD49egd/PLfLQD5n2nff9AGetrl7DAqxe6QZcHMJtIwK07cwfcHbwIARnSsj3nvtIRcrv4li4hqqrDHyZiwMRgPnmZAV0uOr95ujuEd61eJpcSo5pEkCfHx8bC0tIRcxb22qparkDBr91VsC3oEAPioeyN83rOZaj7TSrg7ZFmxwCbSEEIILD54E6tO5i+2P7FHI0zr2Ywf4kRqIoTApsAHmPdPOHLyJNjVMsDyoa5wtjdXd2hUQ0mShAULFiAgIADu7u6YNWtWlS2y07LzMGFjME7diodcBnzTrxWGd6yvuicowe6Q5cECm0gDKCSBr/aGYVPAAwDAl285YdxrjdQcFVE1V47xmenZeZi1+6pyAwzP5tb4aYBz+ceMEpVDfHw8AgICEBMTg4CAAMTHx8Pa2lrdYb3Qqx6bkgUfv4sIj06BgY4WfhvaFm80V3GcL9kdUhVYYBNVczl5EqZuC8W+K9GQy4Dv3m2NwR0c1B0WUfVWjvGZt2JT8dGGS7gbnw4tuQxf9GqGsV0b8mwSqZ2lpSXc3d2VPdiWlupfO/r5XvUBYz7BaP8gRCVnwcJYF6u93SrurE8Ru0OqCgtsomosM0eBjzZewomb8dDRkmHp4LZ4q3VddYdFVP2VcXzmruBHmLU7DJm5CtiY6uO3oW3RvkHtSgiY6NXkcjlmzZpVpcZgP9urfjTsIbauOo+0bAUaWhjB36cDHOpUzWX4XoUFNlE1lZKVC1//i7gYmQh9HTl+H9G+yu1kRVRtlXJ8ZlauAnP/voYtFx8CALo2scCSQS7c1ImqHLlcXiWGhRQo6FU/dOMJHti/ASlbgfb1a+HPke1Ry0i31MerKpM4WWATVUMJadnwXhOIa1EpMNHXxppRbnBjLxmR6pRifOa9+DRM2BiMGzGpkMmAyW80xaTXG0OLq/cQvZJMJkOdLoPxKD1/Gb63Wtvg54EuZdq3oSpN4mSBTVTNPE7KxIi/AnAvIR0WxrpYO7oDWtpWvW1iiaq9EozP3H8lGl/svIK07DxYGOti6eC26NxYtasREGmqPIWEuf9cw4YL+RP0fbs4YtZbzcu8DF9VmsTJApuoGrkXn4bhfwUgKjkL9cwNsN63AxpaGqs7LKIaJztPge/2X8fa8/cBAB0a1MayoW1hbaqv5siIqoeMnDx8sjkE/12Pg0wGfNWnBUZ3cSzXMavSJE4W2ETVRNjjZHivCcST9Bw0tDTCBl932JobqDssohrn4dMMTNoUjMuPkgHkb37x2ZtNoc3dUolKJD41G2PWXsTlR8nQ05ZjySAX9FbBBP2qNImTBTZRNRAY8RS+/heRmp2HlramWDu6Ayw4eYqo0h29Houp2y4jOTMXZgY6+GWQM153qjoTxoiqurvxafDxu4gHTzNQy1AHf3m3R7v6qptDVFUmcbLAJqrijt+Mw0cbLiErV0IHx9r4y7s9TPW5WQVRZcpTSPjh8E38fvIeAMDZ3hzLh7aFXa3quYQYkToERT7FmHVBSMrIhUNtQ/j7uGnsMEcW2ERV2D+XozBlayjyJIHXnaywYphrmWZWE1HZxSRn4ZPNIQiMfAoAGNWpAb58qzl0tTkkhKikDlyNxqdbQ5GTJ8HZ3hyrvdtr9JlYFthEVdTmwAf4cvdVCAH0c7HFjwOcocMxnkSV6sztBHy6JQRP0nNgrKeN7z9ow82ciErpr9P3sODf6xAC8GxujWVD2sJAV7M7i1hgE1VBq07exaIDNwAAw9wdML9fqzIvW0REpaeQBJYdu42lR29DCKB5XVOsGOYKRwsjdYdGVG1IksC3+69jzdkIAMBIj/qY07dljVgjngU2URUihMD3h25i5Ym7AIAJ3Rvhc69mkMk0/48RUVWRkJaNKVtDcfp2AgBgSAd7zOnbksOziEohK1eBKVtDcSAsBgAwo7cTxr/WsMZ8nmn0+eZTp06hb9++sLW1hUwmw549e17aftSoUZDJZC9cWrZsqWwzd+7cF+53cnKq4FdCNYFCEpi9J0xZXM/o7YTpvZxqzB8joqogMOIp+vx6GqdvJ8BARws/D3TGwvfasLgmKoWn6TkY9ucFHAiLga6WDL8OaYsPuzWqUZ9nGt2DnZ6eDmdnZ4wePRrvvffeK9svXboUixYtUl7Py8uDs7MzBgwYUKhdy5Yt8d9//ymva2tr9NtIlSBXIWHqtsv453IUZDLgu3dbY0gHB3WHRVRjSJLAn6fv4ftDN6GQBBpbGWPFMFc0tTZRd2hE1cr9J+kYtSYQEU8yYCrPxp/to+Deupe6w6p0Gl0Z9u7dG7179y5xezMzM5iZ/W/L6T179iAxMRE+Pj6F2mlra8PGxkZlcVLNlpmjwMRNwTh2Iw46WjL8MsgFb7exVXdYRDVGUkYOpm2/jP+uxwHIn1T83butYaSn0R+RRCoX+jAJvv4X8SQ9B/V00uBvtRVNMrSBjIGAsZW6w6tU/OvxEqtXr4anpyfq169f6Pbbt2/D1tYW+vr68PDwwMKFC+HgwN5GKr2UrFyM8Q9CYORT6OvIsXJ4O/RoVrP+CBGp0+WHSZiwMRiPkzKhqy3H12+3wDB3hxp1KptIFY6Ex+LjzcHIypXQytYUa5rdhFWCNmDXHjC0UHd4lY4FdjGioqJw4MABbNq0qdDt7u7u8Pf3R7NmzRAdHY158+aha9euCAsLg4lJ0acSs7OzkZ2drbyekpJSobFT9fAkLRvefoEIe5wCEz1trPFxg1sD1e1mVRMx16ikhBBYf+E+5u8LR65CwKG2IVYMc0WremavfjAx16iQdecjMffva5AE0L2ZJZYPdYWRTmcgIyG/uFbjluXqUvNecQmtXbsW5ubm6N+/f6Hbe/fujQEDBqBNmzbw8vLCv//+i6SkJGzbtq3YYy1cuFA5/MTMzAz29vYVHD1VdVFJmRj4+3mEPU5BHSNdbB7XkcW1CjDXqCRSs3IxaXMIvt57DbkKAa+W1tj3SRcW16XAXCMgf+7CwgPX8fXe/OJ6sJs9/hrZPn94lVyePyykBhbXACATQgh1B1EZZDIZdu/e/ULBXBQhBJo2bYq3334bv/zyyyvbu7m5wdPTEwsXLizy/qK+6dvb2yM5ORmmpqYlfg2kGSIS0jH8rwA8TsqErZk+1o9xRyMN3Sq2sjHX6FWuR6dgwsZgRCSkQ1suw8y3mmN05wYcElJKzDXKzlNg2vYr+OdyFABgWs+mmNijMXPp/3GISBFOnjyJO3fuwNfX95Vt09LScPfuXYwYMaLYNnp6etDT09ztQKnkwqNSMHJNABLSctDQwgjrx7ijnrmBusPSGMw1Ko4QAtuCHuLrvdeQnSfB1kwfvw1zhatDLXWHVi0x12q25IxcjF0fhMCIp9CWy7Do/Tb4oJ2dusOqUjS6wE5LS8OdO3eU1yMiIhAaGoratWvDwcEBM2fOxOPHj7Fu3bpCj1u9ejXc3d3RqlWrF445bdo09O3bF/Xr10dUVBTmzJkDLS0tDBkypMJfD1VvQZFP4eN/EalZeWhR1xTrfDvAwpgfUEQVLSMnD1/tuYadwY8A5I8R/WWgC2oZ6ao5MqLq51FiBkb5XcSduDQY62lj1fB26NKk5k1ifBWNLrCDgoLQo0cP5fWpU6cCALy9veHv74/o6Gg8ePCg0GOSk5Oxc+dOLF26tMhjPnr0CEOGDMGTJ09gaWmJLl264MKFC7C0tKy4F0LV3ombcfhwwyVk5UpoX78WVo9yg5mBjrrDItJ4d+JSMWFjMG7FpkEuAz7r2QwfdWsEeQ3YqplI1cIeJ8PH/yLiU7NhY6oPPx83NK/LIUFFqTFjsKuSlJQUmJmZcaxaDbH/SjQmbw1BrkKgW1NLrBreDga63BWuMjDXara9oY8xc9dVZOQoYGmih18Ht4VHozrqDksjMdc034mbcZiwMRgZOQo42ZjAz8cNdc04xLE4Gt2DTaRuWy8+wMxdVyEJ4O02dfHzQBfoatfMGdVElSUrV4H5+8KxMSD/DKVHwzpYOsQFVib6ao6MqHraevEBvtwdBoUk0LlxHawc3g6m+jwL+zIssIkqyB+n7uK7f28AAIZ0cMC3/VtBi6eliSrUgycZmLDpEsIe56/L/PHrjTHZsylzj6gMhBD45cgt/Hosfz7be671sOi9NuwoKgEW2EQqJoTAj4dvYvnxuwCA8d0aYkYvJy5dRFTBDl2LwbTtl5GalYdahjr4ZZALunNnVKIyycmTMGPXFewKfgwA+OT1xpjyZlN+lpUQC2wiFZIkgTl/X8P6C/cBANN7NcOE7o3VHBWRZstVSFh84Ab+OhMBAHB1MMdvQ11hyyUwicokJSsXEzYE48ydBGjJZVjQvxUGd3BQd1jVCgtsIhXJVUj4fPtl7AmNgkwGzO/XCsM71ld3WEQaLSopE5M2BSP4QRIAYGxXR0zv5QQdLZ7CJiqL6ORM+PhdxI2YVBjqamH5MFf04JmgUmOBTaQCWbkKTNoUjP+ux0FbLsNPA53Rz6WeusMi0mgnbsZhytZQJGbkwkRfGz8OcIZXSxt1h0VUbd2IScGoNRcRk5IFSxM9+I1yQ6t6ZuoOq1pigU1UTqlZuRizNggBEU+hpy3HyuGueN3JWt1hEWkshSSw5L9b+O34HQgBtKpnihVD28GhjqG6QyOqts7eScCH6y8hNTsPja2M4TfKDfa1mVNlxQKbqByepudglF8grjxKhomeNlaPckMHx9rqDotIY8WlZuHTzaE4f+8JAGB4RwfM7tMC+jpcW56orHYFP8L0HVeQJwl0cKyNP0e0h5khl+ErDxbYRGUUnZyJEasDcScuDbWNdLFudAeeSiOqQOfvPsEnW0IQn5oNQ10tLHyvNYdiEZWDEALLj9/Bj4dvAcjfr+Gngc7Q0+YX1vJigU1UBhEJ6Rj+VwAeJ2Wirpk+1vu6o7GVsbrDItJIkiSw8uRd/HT4JiQBNLU2xoph7ZhzROWQp5Awe08Ytlx8CCB/SdkvvJwg55rxKsECm6iUwqNSMHJNIBLSsuFoYYT1vh1gV4vj1IgqQmJ6DqZsC8WJm/EA8je6+LZ/Kxjq8uOLqKzSs/MwcVMwTtyMh1wGzH2nJUZ6NFB3WBqFf6GISuHS/afw8buIlKw8NK9rinWjO8DSRE/dYRFppEv3E/HxpmBEJWdBT1uO+f1aYUB7O250QVQOcalZGO1/EWGPU6CvI8eyIa54swUn5qsaC2yiEjp1Kx7j119CZq4C7evXwupRbjAz4CQQIlUTQmDN2Ugs/Pc68iQBRwsjLB/qiha2puoOjahauxOXCu81F/E4KRN1jHSxepQbXOzN1R2WRmKBTVQCB65G45MtIchVCHRtYoHfR7TjKWqiCpCSlYvp26/g4LUYAECf1nWx6P3WMNHnl1mi8gi49wRj1wUhJSsPjhZG8PdxQ/06RuoOS2OxQiDNJklARgJgaAHIy7az27agh5ix8wokkf9h/8sgF+hqc5c4omdJkoT4+HhYWlpCXsZcC3ucjAkbg/HgaQZ0tGSY3acFRnrU55AQomeUJdf+vhyFadsuI0chwdXBHH95u6G2kW4FR1qzscAmzSVJwOkfgUdBgF17oOu0UhfZf52+h2/3XwcADGpvj+/eaw0tzrAmKkSSJCxYsAABAQFwd3fHrFmzSlVkCyGwKfAB5v0Tjpw8CfXMDbB8mCtPXRM9p7S5JoTAH6fuYeGBGwAAr5bWWDq4LdeNrwQssElzZSTkF9dpsfk/MxIAY6sSPVQIgV+O3MKvx+4AAMa91hAzezuxJ42oCPHx8QgICEBMTAwCAgIQHx8Pa+uSTZpKz87DrN1XsSc0CgDwhpMVfhroDHND9q4RPa80uaaQBOb9cw3rzt8HAPh0boDZfVqwk6iS8Dw3aS5Di/yea2Pr/J+GFvm92mlx+T+LIUkCc/++piyup/VsyuKa6CUsLS3h7u4OGxsbuLu7w9LSEpIkITY2FtJLcu1WbCre+e0M9oRGQUsuw8zeTvhzZHsW10TFeD7X6tSpU2SeZeYo8OGGS1h3/j5kMmB2n+aY07cli+tKJBNCCHUHUdOkpKTAzMwMycnJMDXlrPgK9ewYbOCVQ0ZyFRKm77iC3SGPAQDz+7XECK4NWm0x1yrPs+NCAbzyNPau4EeYtTsMmbkKWJvq4behrnBrUFsdoZMKMNcqT0Gu1alTBwsXLnwhz56kZcN3bRBCHyZBV1uOJYNc8FbruuoOu8bhEBHSbHL5/4aFpMW9dMhIVq4CkzaF4L/rsdCSy/DTAGf0b8ttmIlKQi6XK09Vx8bGFnsaOytXgbl/X1PuHtelsQWWDHaBhTHXkycqiYJcKyrPMrSMMcovEPefZMDcUAd/jmzPL65qwgKbao6CISMFPdgFvdoA0rLzMGbtRVy49xS62nKsGOoKTy68T1QmBaexC3rWCnq1IxPS8dHGYFyPToFMBnz6RhN8/HoTnrYmKoPn8+xhpjbGrjuLxIxc2Nc2gL9PBzSyNFZ3mDUWh4ioAU+lqVERy/Y9Tc/BKL9AXHmUDGM9bfw5sj08GtUp1zGpamCuqc/zS4n9ezUa03dcQVp2HuoY6WLJYBd0bWJZrmNS1cFcU4+CnAiOU2Dy1svIzpPQxs4Mq73dyrXLMHOt/NiDTTXLs0NGAMQkZ2HE6gDcjktDLUMdrB3dAW3szEt+PBUsBUikiQpOY+fkSfhu3zX4n4sEALg1qIVlQ1xhY6ZfquOVdylAIk0kl8vx750MfLMvHELkr8KzbGjbcm2ExlxTDRbYVGPdf5KOYX8F4FFiJmxM9bFhTAc0tjIp3UHKsRQgkaZ7lJiBiZtCcPlhEgBgfLeGmNazGXS0Sv9hXZ6lAIk0kSQJLPj3OlafiQAADHN3wLx3WkK7DPn1LOaaarDAphrpRkwKRqwORHxqNhrUMcR6X3fY1zYs/YFeMq6bqCY7diMWU7ZeRnJmLswMdPDTAOdyzWsoblw3UU2UlavAZ9suY//VaADA9F7N8FG3RipZTpa5phocg60GHKumXsEPEuHjdxHJmblwsjHBOt8OsDIp3enqQjgGu8pirlW+PIWEn47cwsoTdwEAznZm+G2oa9m+wD6H40KrLuZa5UlMz8HYdUEIup8IHS0ZfhzgjH4uql3xirlWfuzBphrlzO0EjFsfhIwcBdrVr4U13m4wM9Qp30GfG9dNVFPFpmTh480hCIx4CgDw9qiPL/s0h562arZlfnYpQKKa6OHTDHj7BeJefDpM9LXx+4h26NRI9WdOmWvlp9FfS06dOoW+ffvC1tYWMpkMe/bseWn7EydOQCaTvXCJiYkp1G758uVo0KAB9PX14e7ujsDAwAp8FaQqB8OiMdr/IjJyFOjaxALrfTuUv7gmIgDA2TsJ6PPraQRGPIWxnjaWD3XFvH6tVFZcE9V0Vx4l4d0VZ3EvPh22ZvrY+VGnCimuSTU0usBOT0+Hs7Mzli9fXqrH3bx5E9HR0cqLldX/eie3bt2KqVOnYs6cOQgODoazszO8vLwQFxen6vBJhbYHPcSEjcHIUUjo3coGf3m3L9csayLKJ0kCvx69jeGrA5CQlgMnGxP8Pakz+rThznFEqnL0eiwG/X4BCWk5aFHXFLsndkZT61JOyqdKpdEVRu/evdG7d+9SP87Kygrm5uZF3vfzzz9j7Nix8PHxAQCsWrUK+/fvx5o1azBjxozyhEsVZPWZCMzfFw4AGNjeDt+927rcs6yJCHiSlo3JW0Nx+nYCAGBQe3vM69cS+jrstSZSlY0B9/HVnjBIAujaxAIrh7eDsZ5Gl28agf9DRXBxcUF2djZatWqFuXPnonPnzgCAnJwcXLp0CTNnzlS2lcvl8PT0xPnz54s9XnZ2NrKzs5XXU1JSKi54UhJC4Jf/buPXo7cBAGO6OGJWn+YqmWVNVRNzrfJcjHyKjzeFICYlC/o6cizo3xrvt7NTd1hUSZhrFU8IgR8O3cSK/58wPLC9HRa827pMy1xS5eP/0jPq1q2LVatWYefOndi5cyfs7e3RvXt3BAcHAwASEhKgUCheGPhvbW39wjjtZy1cuBBmZmbKi729fYW+Dso/bT3vn3BlcT2tZ1MW1zUAc63iCSHwx6m7GPzHBcSkZKGRpRH+ntSFxXUNw1yrWNl5CkzeGqosrid7NsHi99uwuK5GaswyfTKZDLt370b//v1L9bhu3brBwcEB69evR1RUFOrVq4dz587Bw8ND2Wb69Ok4efIkAgICijxGUd/07e3tuZxRBclTSJi+8wp2BT8GAHzTryVGejRQb1BUKZhrFSs5Ixefbb+M/67HAgD6udjiu3dbw4inq2sc5lrFSc7Mxfj1Qbhw7ym05TJ8915rDGzPLzDVDf8qvkKHDh1w5swZAICFhQW0tLQQGxtbqE1sbCxsbGyKPYaenh709PQqNE7Kl5WrwMebQ3AkPBZachl+HNAG77Zlz1pNwVyrOFceJWHCxmA8SsyErpYcX/dtgWHuDjwrVEMx1yrG46RM+PgF4lZsGoz1tLFimCtea8qNXqojnmt4hdDQUNStmz8bXldXF+3atcPRo0eV90uShKNHjxbq0Sb1SMvOw2j/izgSHgtdbTlWDW/H4pqonIQQWH8+Eh+sPI9HiZlwqG2IXRM6YXjH+iyuiVToWlQy3ltxFrdi02Blooet4zuyuK7GNLoHOy0tDXfu3FFej4iIQGhoKGrXrg0HBwfMnDkTjx8/xrp16wAAS5YsgaOjI1q2bImsrCz89ddfOHbsGA4fPqw8xtSpU+Ht7Y327dujQ4cOWLJkCdLT05WripB6JKbnYJT/RVx+mAQjXS386d2e64MSlVNadh5m7LyCfVfyt2P2ammN7z9whpkB148nUqVTt+Lx0YZLSM9RoKm1Mfx8OqCeuYG6w6Jy0OgCOygoCD169FBenzp1KgDA29sb/v7+iI6OxoMHD5T35+Tk4LPPPsPjx49haGiINm3a4L///it0jEGDBiE+Ph5ff/01YmJi4OLigoMHD3LHIzWKTcnCiNUBuBWbBnNDHaz16QBne3N1h0VUrV2PTsHEjcG4l5AObbkMM3o7wbeLI3utiVRse9BDzNx1FXmSgEfDOlg1oh2/xGqAGjPJsSpJSUmBmZkZJ4OowIMnGRi+OgAPnmbA2lQP633dufg+KTHXymZb0EN8tScM2XkS6prp47ehbdGufm11h0VVGHOt9IQQWHr0Npb8l7/a1btt62Hx+22gq83Ru5pAo3uwSbPdik3F8L8CEJeaDYfahtg4xh32tQ3VHRZRtZWZo8BXe8Ow49IjAEC3ppb4ZZALahvpqjkyIs2Sq5Dw5a6r2P7/uTaxRyNM69mMZ4g0CAtsqpZCHyZhlF8gkjJy0czaBOt9O8DKVF/dYRFVW3fj0zBhQzBuxqZCLgM+69kMH3VrBLmcH/hEqpSalYsJG4Nx+nYCtOQyzO/XCkPdHdQdFqkYC2yqds7dScDYdUFIz1HAxd4c/j5uMDdkDxtRWf1zOQozdl5Beo4CFsZ6+HWICycJE1WAmOQs+PhfxPXoFBjoaGHFMFf0cLJSd1hUAVhgU7Vy6FoMPt4UghyFhC6NLfD7iHbc5IKojLLzFPh233Wsv3AfANCxYW38OqQtrEx4NohI1W7FpmLUmkBEJWfBwlgPa0a1Rxs7c3WHRRWElQlVGzsvPcL0nVegkAR6tbTB0iEu0NPWUndYRNXSw6cZmLAxGFcfJwMAJvVojMmeTaDNrZiJVO7c3QSMX38JqVl5aGhphLU+HThnSMOxwKZqwe9sBOb9Ew4A+KCdHRa915qFAFEZHb4Wg8+2X0ZqVh5qGerg50Eu6NGMp6mJKsKekMf4fMdl5CoE3BrUwp8j23NYYw3AApuqtOeXMRrd2RGz+zTnxCuiMshVSPj+4A38eToCANDWwRzLh7rClhtaEKmcEAIrTtzFD4duAgD6tK6LnwY6Q1+HZ15rgjIV2AEBAXB3d1d1LESFSJLA/P3h8DsbCQCY+mZTfPx6Yy5jRFQG0cmZmLQpBJfuJwIAxnRxxPReTlxzl6gC5CkkfP33NWwKyN/MbmxXR8zszc6hmqRMBbaHhwcaN26MESNGYNiwYWjYsKGq46IaLk8hYcauq8r1eOf0bQGfzo5qjoqo9CRJQnx8PCwtLSGXq6eYPXkrHpO3hCAxIxcm+tr44QNn9Gplo5ZYiCpKVcg1AEjPzsPHm0Nw7EYcZDJgztstMIqfXzVOmX4DN2zYgCZNmmD+/Plo0qQJOnfujFWrVuHp06eqjo9qoOw8BSZuCsaOS4+gJZfhpwHOLK6pWpIkCQsWLICvry8WLFgASZIq9fkVksDPh29ilF8gEjNy0dLWFPs+7sLimjSOunOtQFxqFgb/cQHHbsRBT1uOlcPasbiuocpUYA8dOhT79+9HVFQUli5dCiEEJkyYAFtbW/Tv3x87duxATk6OqmOlGiA9Ow++/kE4dC0WulpyrBzmivfb2ak7LKIyiY+PR0BAAGJiYhAQEID4+PhKe+641CwM/ysAvx67AyGAoe4O2PlRJ9SvY1RpMRBVFnXmWoE7cWl4b8U5XH2cjNpGutg8riO/zNZg5TqHYmFhgUmTJuHcuXO4ffs2Zs2ahRs3bmDQoEGwsbHBuHHjcObMGVXFShouKSMHw1cH4MydBBjqasHPxw09W/KPE1VflpaWcHd3h42NDdzd3WFpaVnyB0sSkBaX/7PYJhJiY2Nf6K27cO8J+vx6BufvPYGhrhaWDnbBd++2Vt3kqhLERlSZypNrxeVRadpcjHyK91eew6PETNSvY4hdH3WCq0OtUr+OssRGVZPKVhExMDCAoaEh9PX1IYSATCbD3r17sXr1ari6umLt2rVo0aKFqp6ONExcShZGrA7EzdhUmBvqwN+nA1zszdUdFlHZSRLkGQmY9eVMxCc8Kd24UEkCTv8IPAoC7NoDXacBzz224JR4waTzWbNmAZBh5cm7+OnwTUgCaGptjBXDXNHYykSlr+tVsRFVpoKx1zNnzsSTJ6XLtaLy6PnHvqrN/ivRmLItFDl5ElzszbHauz3qGOup5HW9Kjaqusr1P5Wamgo/Pz94enqifv36+PLLL9GgQQPs2LEDMTExiIqKwtatWxEXFwcfHx9VxUwa5uHTDAz4/TxuxqbCykQPW8d5sLim6q2gCN07CfIzP8O6tJOuMhLyC9i02PyfGQkvNHn+lPidB9HwXXsRPxzKL67fc62HPRM7q7a4LmFsRJXl2bHXCxcuLPUEx5IMLSmujRACf52+h4mbgpGTJ+HNFtbYPLajSorrksZGVVeZerD37t2LjRs3Yt++fcjKyoKbmxuWLFmCwYMHo06dOoXafvDBB0hMTMTEiRNVEjBpltuxqRi+OgCxKdmwr22Ajb4d4VCHu1tRNVdUEWpcio1cDC3ye4cLeokNLV5oUnBKPCAgAI7te2DUlhuISsqCnrYc8/u1woD2dhWzpGUJYiOqLEUVodbW1iV+/LN5VNzQkqLaKCSB+fvC4X8uEgDg7VEfX/dtCS0VLsNXktio6pIJIURpHySXy2Fvb4/hw4dj5MiRaNas2UvbBwYGYuXKlfDz8ytzoJokJSUFZmZmSE5OhqmpqbrDUZvLD5OUqxs0szbBOt8OsDbVV3dYpEHUlmuqGEYhSfmFuaFFsY9VKBT47fA1/HbmEXIVAo4WRlg+1BUtbCv4tZYgNqpZ1JVrqhhGUZLl/Z5tk6MQ+HRLCA5diwUAfPmWE8Z2bVjsF9ryLB9YVZYepNIrU4F94sQJdO/evQLCqRlYYAPn7iZg7NogpOco4GJvDn8fN24dSyqn1lyr4CI0JSsXX+y4ggNhMQDyd4lb9H5rmOjrqPy5iF5FnblWmUXo0/QcjFl7EcEPkqCrJcfPg5zxdhvbl8bGcdQ1U5mGiLC4pvI4Eh6rHLPWqVEd/DmyPYz0VDbflqhqkMtLNyykQAkK87DHyZi4KRj3n2RAR0uG2X1aYKRHfe5ySjWSXC4v1bCQAqUtzCMT0jHKLxCRTzJgZqCDP0e2RwfH2i99THmHsFD1xaqGKtXukEeYtv0KFJJAzxbW+HVIW9UtHUZU3b1iaIkQApsDH2LuP9eQkyehnrkBlg9z5aRgolIqbc9yyINE+K4NwtP0HNjVMoC/j1uJJhBzHHXNxQKbKs3ac5GY8/c1AMD7rnZY/H5raGvxVBmR0ksmR6Zn52H2njDsDnkMAHjDyQo/DXTm0CqiMihNz/LhazH4ZEsIsnIltK5nhtWj2sPKpGTzheRyOWbNmsVx1DUQC2yqcEIILDt2Bz8fuQUA8OncAF/1aQG5CmdbE2mEYlbouB2bio82BuNOXBq05DJ87tUM47o2ZA4RlVFJe5bXnovE3H+uQQigRzNL/DbUtdRDGss6hIWqtzJNcqTyqUmTHIUQ+Hb/daw+EwEAmOzZBJ++0SR/rChXIqAKVi1z7bm82BX8CLN2hyEzVwFrUz0sG+L6ynGfLx6SKxFQxaqOufayvJAkgUUHb+CPU/cAAEM62GN+v1avPOvKXKMC7MGmCpOnkDBz11Vsv/QIAPD12y0wuotj/p3cDY6oaP8/OTIrV4F5e65gc+BDAECXxhZYMtgFFqXcxIKrGBAVrbie5axcBaZtv4x9V6IBAJ97NcOE7o1eOYmYuUbPYoFNFSI7T4FPN4fi4LUYyGXA9x8444N2dv9rUN6NOIg0WGRCOiZsDEZ4dApkMuDTN5rg49eblGkTC65iQFRySRk5GLfuEgIjn0JHS4bvP2iDd9vavfqBYK5RYfxqRSqXnp2HMWuDcPBaDHS15FgxrF3h4hr431hTY2vuBkc1niRJiI2NhSRJOHA1Gm8vO4Pw6BTUMdLFutEdMNmzaZl3iCsYa2pjY8NVDKhGezbPivLwaQbeX3kOgZFPYaKnjbU+HUpcXAPMNSqMY7DVoDqOVSup5IxcjPIPRMiDJBjqauGPEe3RpUkxxTPHYFMFqw65VnBa+XzgRcic38W1vPwzOW4NamHZEFfYmJV/d1OOC6WKVtVz7VXDN64+SoaP/0UkpGWjrpk+/H06oJnNq5fhK+p5mGsEaHgP9qlTp9C3b1/Y2tpCJpNhz549L22/a9cuvPnmm7C0tISpqSk8PDxw6NChQm3mzp0LmUxW6OLk5FSBr6L6iEvNwqA/ziPkQRLMDHSwYYx78cU18L+NOPhHiGqw+Ph4nA6+hlt2bymL6/GvNcSmsR1VUlwD/xtryg98qqmKGr5R4PiNOAz64zwS0rLhZGOC3RM6l6m4Bphr9D8a/RuQnp4OZ2dnLF++vETtT506hTfffBP//vsvLl26hB49eqBv374ICQkp1K5ly5aIjo5WXs6cOVMR4VcrD59mYMCq87gRkwpLEz1sHd8Rrg611B0WUZV39YnA/WZDkGdmD13k4Y8Rrpj5VnPocI14IpUpbvjG5sAHGLMuCBk5CnRpbIHtH3qo7Ist1WwaPcmxd+/e6N27d4nbL1mypND17777Dnv37sU///yDtm3bKm/X1taGjY2NqsKs9u7EpWL4X4GIScmCfW0DbPB1R/06RuoOi6hKy1NI+OnILaw8cReANppbG+L3kW5wqGOs7tCINM7zG77IZDL8eOgmfjt+B0D+5meL3m/NL7akMhpdYJeXJElITU1F7dqF15y9ffs2bG1toa+vDw8PDyxcuBAODg5qilK9rjxKgveaQCRm5KKJlTHW+7rz2z/RK8SmZOHjzSEIjHgKAPD2qI8v+zSHnraWmiMj0lwFwzdy8iTM2HkZu/5/V9RP3miCKZ5NXrkMH1FpsMB+iR9//BFpaWkYOHCg8jZ3d3f4+/ujWbNmiI6Oxrx589C1a1eEhYXBxKToMVvZ2dnIzs5WXk9JSanw2CvD+btPMGbtRaTnKOBsZwZ/nw6oZcRtm0l9qkOunb2TgE+3hCAhLQdGulpY9H4b9HW2VXdYRKVSHXKtKClZufhowyWcvfMEWnIZvnu3FQa51cwOMqpYPBdSjE2bNmHevHnYtm0brKz+tz5z7969MWDAALRp0wZeXl74999/kZSUhG3bthV7rIULF8LMzEx5sbe3r4yXUKH+C4+Ft18g0nMU8GhYBxvHdmRxTWpXlXNNkgR+PXobw1cHICEtB042Jvjn4y4srqlaqsq5Vpzo5EwMXHUeZ+88gZGuFtaMcmNxTRWmxizTJ5PJsHv3bvTv3/+Vbbds2YLRo0dj+/bt6NOnzyvbu7m5wdPTEwsXLizy/qK+6dvb21fZ5YxeZXfII0zbfgUKSeDNFtZYNqQt9HV4apvUr6rm2pO0bEzeGorTtxMAAAPb2+Gbfq2YN1RtVdVcK8716BT4+F1ETEoWrEz0sGaUG1rVM1N3WKTBOETkOZs3b8bo0aOxZcuWEhXXaWlpuHv3LkaMGFFsGz09PejplW5746pq3flIfL33GgDg3bb18P0HbTgphKqMqphrQZFPMWlTCGJSsqCvI8e3/Vu/uPESUTVTFXOtOKdvx+OjDcFIy85DEytj+Pm4wa6WobrDIg2n0QV2Wloa7ty5o7weERGB0NBQ1K5dGw4ODpg5cyYeP36MdevWAcgfFuLt7Y2lS5fC3d0dMTExAAADAwOYmeV/0502bRr69u2L+vXrIyoqCnPmzIGWlhaGDBlS+S+wEgkhsPz4Hfx4+BaA/ElZc/q2hLyMu8sRaTohBP46HYFFB29AIQk0tDTCymHtyry+LhGV3o5LjzBj5xXkSQIdG9bG78Pbw8xQR91hUQ2g0QV2UFAQevToobw+depUAIC3tzf8/f0RHR2NBw8eKO//448/kJeXh4kTJ2LixInK2wvaA8CjR48wZMgQPHnyBJaWlujSpQsuXLig0VuiCiHw3b/X8efpCADAJ683xpQ3m3LGNVExkjNyMW3HZRwJjwUA9HW2xcL3WsNYT6P/5BJVGUII/Hr0Dn75L79TqJ+LLb7/oA1X6qFKU2PGYFclVX1L2WcpJIEvd13F1qCHAIDZfZpjTNeGao6KqGTUkWtXHiVhwsZgPErMhK6WHF/1bYHh7g78QkoarSp9ruUqJMzeHab83PqoeyN83rMZz7hSpWJ3ChUrJ0/ClK2h2H81GnIZsOi9NhjoVvVnihOpgxACGy7cx/x915GjkGBf2wArhrZDaztOpCKqLGnZeZiwMRinbsVDLgO+6dcKwzvWV3dYVAOxwKYiZeTk4cMN+X+kdLXkWDrYBb1b11V3WERVUlp2Hmbuuop/LkcBAHq2sMYPA5xhZlB5Yz0lSVLuUieXc+Ix1TyxKVnw8buI8OgUGOhoYdmQtvBsYa3y52GuUUmwwKYXJGfmwtf/IoLuJ8JARwt/jGyHrk00d4w5UXnciEnBhA3BuJeQDm25DDN6O8G3i2OlDgmRJAkLFixAQEAA3N3dMWvWLH7wU41yKzYVPn4X8TgpExbGuljt7QZne3OVPw9zjUqKBTYVEp+ajZFrAnE9OgWm+trw8+mAdvVrqTssoippe9BDfLU3DFm5Euqa6eO3oW3Rrn7tSo8jPj4eAQEBiImJQUBAAOLj42FtrfqeO6Kq6MK9Jxi3LggpWXloaGEEf58OcKhTMcvwMdeopFhgk9KjxAyMWB2IiIR0WBjrYb1vBzSvW7UnYRKpQ2aOAl/vDcP2S48AAK81tcSSQS6orabdTC0tLeHu7q7sVdPkVY2InrU39DE+334FOQoJ7erXwl8j21forsLMNSopriKiBlVptnWBO3FpGLE6ANHJWahnboCNY9zRwMJI3WERlUtF5Nrd+DRM3BiMGzGpkMuAKZ5NMbFHY7WvUMBxoaROlf25JoTAqpP3sPjgDQBA71Y2+GWQS6Xsjspco5JgDzbh6qNkePsF4ml6DhpbGWODrztszPTVHRZRlfPP5SjM2HkF6TkKWBjr4dfBLujU2ELdYQEA5HI5T1VTjZCnkDD3n2vYcCF/HwvfLo6Y9VbzSvuSy1yjkmCBXcMF3HsC37VBSMvOQ+t6Zlg7uoPaTnMTVVXZeQp8u+861l+4DwBwd6yNZUPawsq05F9E2etFVH4ZOXn4ZHMI/rseB5kM+KpPC4zu4qi8n3lGVQUL7Brs2I1YfLQhGNl5Etwda+Mv7/Yw0ecWskTPevg0AxM2BuPq42QAwITujTD1zabQ1ir5hzdXHiAqv4S0bPj6X8TlR8nQ05ZjyaDCy8cyz6gqYYFdQ+0NfYzPtl1GniTwhpMVlg9zrZSxa0TVyZHwWHy2LRQpWXkwN9TBLwNd0MPJqtTH4coDROVzLz4N3n6BePg0E7UMdfCXd/sXVuxhnlFVwgK7Btpw4T6+2hsGIYB+Lrb4cYAzdErRG0ek6XIVEn44dBN/nLoHAGjrYI7fhrqinrlBmY7HlQeIyi4o8inGrAtCUkYuHGobwt/HDQ0tjV9oxzyjqoSriKiBOlcRWXHiDr4/eBMAMKJjfcx7p6XaVz8gqihlybXo5Ex8vCkEQfcTAQCjOztiRm8n6GqX70sox4aSJquoz7UDV6Px6dZQ5ORJcLY3x2rv9rAw1iu2/cvyjDlIlYk92DWEEAKLDt7A7yfze+Qm9miEaT2bVepuc0RV3enb8fh0SyiepufARE8bPwxog16t6r76gSXAlQeISmf1mQh8uz8cQgCeza3w65C2MNR9edlSXJ5xfDZVNhbYNYBCEpi9JwybA/OXNPryLSeMe62RmqMiqjoUksDSo7ex7NhtCAG0tDXFimGuqF+Ha8ETVTZJEvh2/3WsORsBABje0QHz3mkFrXKcbeX4bKpsLLA1XE6ehCnbQrH/SjTkMmDhe60xyM1B3WERVRnxqdmYvDUEZ+88AQAMdXfA12+34KRfIjXIylVgytZQHAiLAQDM6O2E8a81LPfZVo7PpsrGAluDZeYo8OGGSzh5Kx46WjIsGdQWfdqo5nQ3kSYIuPcEH28OQVxqNgx1tfDdu63Rv209dYdFVCMlpudg7LogBN1PhK6WHD8MaIN+LqrJR7lcjlmzZnEMNlUaFtgaKjkzF77+FxF0PxEGOlpYNaIdujXlN3aiAg+fZmDYXwHIkwSaWBlj5XBXNLYyUXdYRDXSgycZ8PYLRERCOkz1tfHHyPbo2LBO0Y0lCchIAAwtgFIUypwHQZWJBbYGSkjLxsjVgQiPToGJvjb8fdxeWC+UqKazr22IMV0bIi4lC9++2+qVk6eIqGKEPkyCr/9FPEnPQT1zA/j7uKGJdTFfdiUJOP0j8CgIsGsPdJ1WqiKbqLLwE0XDPE7KxIi/AnAvIR0WxrpYN9odLWwrdylAoupiulczyGTgajpEanIkPBafbA5BZq4CLW1N4TfKDVam+sU/ICMhv7hOi83/mZEAGJd+8yeiisYCW4PciUvDiNUBiE7OQj1zA2wY4w5HC66CQFQcrgFPpD7rz0dizt/XIAmgW1NLLB/mCmO9V5Qlhhb5PdcFPdiGFpUTLFEpscDWEGGPk+G9JhBP0nPQyNIIG8a4o65Z2XadIyIiqiiSJPD9oZtYdfIuAGBQe3t8+26rku0oLJfnDwspwxhsosrEAlsDBEY8ha//RaRm56FVPVOs9emAOi/Z6YqIiEgdsvMU+Hz7Ffx9OQoAMPXNpvj49calG6Yll3NYCFV5LLCrueM34vDhhkvIzpPQwbE2Vnu3h4m+jrrDIiIiKiQ5Ixfj1gchIOIptOUyLHq/DT5oZ6fusIgqBAvsauyfy1GYsjUUeZLA605WWDHMlZtjEBFRlfMoMQM+fhdxOy4NxnraWDncFV2bcOlY0lwssKupTQEPMGvPVQgBvONsi58GOpds/BoREVEluh6dgpFrAhGfmg0bU334+biheV2ubkWajQV2NbTyxF0sPngDADC8owO+eacVV0MgIqIqycxAB3IZ4GRjAj8fN07ApxqBBXY1IkT+zOuVJ/JnXk/o3gifezXjGr5ERFRl2ZobYOOYjrAy1YMp5whRDaHRYwpOnTqFvn37wtbWFjKZDHv27HnlY06cOAFXV1fo6emhcePG8Pf3f6HN8uXL0aBBA+jr68Pd3R2BgYGqD/45Cklg9p4wZXE9s7cTpvdyYnFNRERVXmMrYxbXVKNodIGdnp4OZ2dnLF++vETtIyIi0KdPH/To0QOhoaGYPHkyxowZg0OHDinbbN26FVOnTsWcOXMQHBwMZ2dneHl5IS4urqJeBnIVEiZvDcXGgAeQyYCF77XG+G6NKuz5iIiIiKjsZEIIoe4gKoNMJsPu3bvRv3//Ytt88cUX2L9/P8LCwpS3DR48GElJSTh48CAAwN3dHW5ubvjtt98AAJIkwd7eHh9//DFmzJhRolhSUlJgZmaG5ORkmJq+fKJHVq4CH224hOM346GjJcMvg1zwdhvbEj0PUU1XmlwjorJjrhEVxjHYzzh//jw8PT0L3ebl5YXJkycDAHJycnDp0iXMnDlTeb9cLoenpyfOnz9f7HGzs7ORnZ2tvJ6SklKieFKycjHGPwiBkU+hryPHquHt0L0ZF9cnKk5Zc42ISoe5RvRyGj1EpLRiYmJgbW1d6DZra2ukpKQgMzMTCQkJUCgURbaJiYkp9rgLFy6EmZmZ8mJvb//KWJ6kZWPIHxcQGPkUJnraWO/rzuKa6BXKkmtEVHrMNaKXY4FdCWbOnInk5GTl5eHDhy9tH5WUiQG/n8e1qBTUMdLF5nEd4dagdiVFS1R9lTbXiKhsmGtEL8chIs+wsbFBbGxsodtiY2NhamoKAwMDaGlpQUtLq8g2NjY2xR5XT08Penp6JYohK1eBgb+fx6PETNia6WPDGHc0tDQu/YshqoFKk2tEVHbMNaKXYw/2Mzw8PHD06NFCtx05cgQeHh4AAF1dXbRr165QG0mScPToUWWb8tLX0cLE7o3QsI4+dozvyOKaqAJJkoTY2FhIkqTuUIg0GnONahqNLrDT0tIQGhqK0NBQAPnL8IWGhuLBgwcA8k9xjRw5Utn+ww8/xL179zB9+nTcuHEDK1aswLZt2zBlyhRlm6lTp+LPP//E2rVrcf36dXz00UdIT0+Hj4+PaoKWJAzJ2op/bf6E7dXlAP8YEVUISZKwYMEC+Pr6YsGCBfzgJ6ogr8o1Ft+kiTR6iEhQUBB69OihvD516lQAgLe3N/z9/REdHa0stgHA0dER+/fvx5QpU7B06VLY2dnhr7/+gpeXl7LNoEGDEB8fj6+//hoxMTFwcXHBwYMHX5j4WGYZCcCjIOhnxAKPgvKvG3NyI5GqxcfHIyAgADExMQgICEB8fLzq8piIlF6WawXFd0BAANzd3TFr1izI5Rrd90c1hEYX2N27d8fLlvkuapfG7t27IyQk5KXHnTRpEiZNmlTe8IpmaAHYtc8vru3a518nIpWztLSEu7u78oPd0tJS3SERaaSX5Rq/6JKm0ugCu1qSy4Gu0/J7rg0t8q8TkcrJ5XLMmjUL8fHxsLS0ZK8ZUQV5Wa7xiy5pqhqzk2NVwh2viCoHc42ocpQn1yRJ4hdd0jjswSYiIiK1kcvlHBZCGodfFYmIiIiIVIgFNhERERGRCrHAJiIiIiJSIRbYREREREQqxEmOalCwcEtKSoqaIyFSPRMTE8hkMnWHAYC5RpqNuUZUOcqSayyw1SA1NRUAYG9vr+ZIiFSvKi2Jx1wjTcZcI6ocZck1roOtBpIk4ebNm2jRogUePnxYZf5AapKUlBTY29vz/a0Ar3pvq1KvGnOtYjHPKhZzjQow1ypOSd5b9mBXE3K5HPXq1QMAmJqaMlkqEN/filMd3lvmWuXge1uxqsP7y1yrHHxvK46q31tOciQiIiIiUiEW2EREREREKsQCW0309PQwZ84c6OnpqTsUjcT3t+JUt/e2usVbnfC9rVjV7f2tbvFWJ3xvK05Fvbec5EhEREREpELswSYiIiIiUiEW2EREREREKsQCm4iIiIhIhVhgExERERGpEAvsCrR8+XI0aNAA+vr6cHd3R2Bg4Evbb9++HU5OTtDX10fr1q3x77//VlKk1U9p3lt/f3/IZLJCF319/UqMtvo4deoU+vbtC1tbW8hkMuzZs+eVjzlx4gRcXV2hp6eHxo0bw9/fv8LjfB5zreIw1yoGc42ex1yrGOrKNRbYFWTr1q2YOnUq5syZg+DgYDg7O8PLywtxcXFFtj937hyGDBkCX19fhISEoH///ujfvz/CwsIqOfKqr7TvLZC/Q1N0dLTycv/+/UqMuPpIT0+Hs7Mzli9fXqL2ERER6NOnD3r06IHQ0FBMnjwZY8aMwaFDhyo40v9hrlUc5lrFYa7Rs5hrFUdtuSaoQnTo0EFMnDhReV2hUAhbW1uxcOHCItsPHDhQ9OnTp9Bt7u7uYvz48RUaZ3VU2vfWz89PmJmZVVJ0mgOA2L1790vbTJ8+XbRs2bLQbYMGDRJeXl4VGFlhzLWKw1yrHMw1Yq5VjsrMNfZgV4CcnBxcunQJnp6eytvkcjk8PT1x/vz5Ih9z/vz5Qu0BwMvLq9j2NVVZ3lsASEtLQ/369WFvb49+/frh2rVrlRGuxlP37y1zreIw16oWdf/eMtcqDnOtalHV7y0L7AqQkJAAhUIBa2vrQrdbW1sjJiamyMfExMSUqn1NVZb3tlmzZlizZg327t2LDRs2QJIkdOrUCY8ePaqMkDVacb+3KSkpyMzMrPDnZ65VHOZa1cJc01zMtapFVbmmrerAiKoaDw8PeHh4KK936tQJzZs3x++//4758+erMTIizcJcI6oczLWqjz3YFcDCwgJaWlqIjY0tdHtsbCxsbGyKfIyNjU2p2tdUZXlvn6ejo4O2bdvizp07FRFijVLc762pqSkMDAwq/PmZaxWHuVa1MNc0F3OtalFVrrHArgC6urpo164djh49qrxNkiQcPXq00DfOZ3l4eBRqDwBHjhwptn1NVZb39nkKhQJXr15F3bp1KyrMGkPdv7fMtYrDXKta1P17y1yrOMy1qkVlv7elnYFJJbNlyxahp6cn/P39RXh4uBg3bpwwNzcXMTExQgghRowYIWbMmKFsf/bsWaGtrS1+/PFHcf36dTFnzhyho6Mjrl69qq6XUGWV9r2dN2+eOHTokLh79664dOmSGDx4sNDX1xfXrl1T10uoslJTU0VISIgICQkRAMTPP/8sQkJCxP3794UQQsyYMUOMGDFC2f7evXvC0NBQfP755+L69eti+fLlQktLSxw8eLDSYmauVRzmWsVhrtGzmGsVR125xgK7Ai1btkw4ODgIXV1d0aFDB3HhwgXlfd26dRPe3t6F2m/btk00bdpU6OrqipYtW4r9+/dXcsTVR2ne28mTJyvbWltbi7feeksEBwerIeqq7/jx4wLAC5eC99Pb21t069bthce4uLgIXV1d0bBhQ+Hn51fpcTPXKg5zrWIw1+h5zLWKoa5ckwkhRJn70YmIiIiIqBCOwSYiIiIiUiEW2EREREREKsQCm4iIiIhIhVhgExERERGpEAtsIiIiIiIVYoFNRERERKRCLLCJiOiloqOjMWPGDPTo0QMmJiaQyWQ4ceKEusMiIqqyWGATEdFL3bx5E4sXL8bjx4/RunVrdYdDRFTlscAmIqKXateuHZ48eYJbt25h6tSp6g6HiKjKY4FNRFRDZWZmwsnJCU5OTsjMzFTe/vTpU9StWxedOnWCQqGAiYkJateurcZIiYiqFxbYREQ1lIGBAdauXYs7d+5g1qxZytsnTpyI5ORk+Pv7Q0tLS40REhFVT9rqDoCIiNTH3d0d06dPx+LFi/Huu+8iNjYWW7ZswZIlS9C0aVN1h0dEVC2xwCYiquHmzp2Lffv2wdvbG2lpaejWrRs++eQTdYdFRFRtcYgIEVENp6urizVr1iAiIgKpqanw8/ODTCZTd1hERNUWC2wiIsKhQ4cAAFlZWbh9+7aaoyEiqt5YYBMR1XBXrlzBN998Ax8fH7Rt2xZjxoxBcnKyusMiIqq2WGATEdVgubm5GDVqFGxtbbF06VL4+/sjNjYWU6ZMUXdoRETVFic5EhHVYN9++y1CQ0Nx9OhRmJiYoE2bNvj6668xe/ZsfPDBB3jrrbeU7QDg2rVrAID169fjzJkzAIDZs2erJ3gioipKJoQQ6g6CiIgqX3BwMNzd3fHRRx/h119/Vd6uUCjg4eGBx48f49q1azA3N3/ppEd+jBARFcYCm4iIiIhIhThEhKgICoUCubm56g6DiIiqGB0dHe5wSq/EApvoGUIIxMTEICkpSd2hEBFRFWVubg4bGxuuF0/FYoFN9IyC4trKygqGhob840lEREpCCGRkZCAuLg4AULduXTVHRFUVC2yi/6dQKJTFdZ06ddQdDhERVUEGBgYAgLi4OFhZWXG4CBWJ62AT/b+CMdeGhoZqjoSIiKqygs8JztWh4rDAJnoOh4UQEdHL8HOCXoUFNhGVib+/P8zNzdUdBhERUZXDApuomhs1ahRkMhlkMhl0dXXRuHFjfPPNN8jLy6vQ5x00aBBu3bpVoc/xKs++dh0dHVhbW+PNN9/EmjVrIElSqY7FLwyqUfB/smjRokK379mzp9J7/Qp+N2QyGYyMjNCkSROMGjUKly5dKvWxunfvjsmTJ6s+SAIAnDhxAjKZjCs4kcZggU2kAXr16oXo6Gjcvn0bn332GebOnYsffvihyLY5OTkqeU4DAwNYWVmp5FjlUfDaIyMjceDAAfTo0QOffvop3n777Qr/kkFF09fXx+LFi5GYmKjuUODn54fo6Ghcu3YNy5cvR1paGtzd3bFu3Tp1h1ZjPPtFp6jL3Llz1R0ikcqxwCbSAHp6erCxsUH9+vXx0UcfwdPTE3///TeA/B7F/v37Y8GCBbC1tUWzZs0AAA8fPsTAgQNhbm6O2rVro1+/foiMjAQAHD58GPr6+i/0Jn366ad4/fXXARTd47ty5Uo0atQIurq6aNasGdavX6+8LzIyEjKZDKGhocrbkpKSIJPJcOLECQBAYmIihg0bBktLSxgYGKBJkybw8/Mr0WuvV68eXF1d8eWXX2Lv3r04cOAA/P39le1+/vlntG7dGkZGRrC3t8eECROQlpYGIL/3zMfHB8nJyS986K9fvx7t27eHiYkJbGxsMHToUOUSXVQ0T09P2NjYYOHChS9td+bMGXTt2hUGBgawt7fHJ598gvT0dADAb7/9hlatWinbFvSAr1q1qtDzzJ49+6XPUbBecYMGDdCzZ0/s2LEDw4YNw6RJk5RfAJ48eYIhQ4agXr16MDQ0ROvWrbF582blMUaNGoWTJ09i6dKlyt+PyMhIKBQK+Pr6wtHREQYGBmjWrBmWLl1a6vdL00VHRysvS5YsgampaaHbpk2bprbYVNXhQPQ8FthEGsjAwKDQB8fRo0dx8+ZNHDlyBPv27UNubi68vLxgYmKC06dP4+zZszA2NkavXr2Qk5ODN954A+bm5ti5c6fyGAqFAlu3bsWwYcOKfM7du3fj008/xWeffYawsDCMHz8ePj4+OH78eInj/uqrrxAeHo4DBw7g+vXrWLlyJSwsLEr9+l9//XU4Oztj165dytvkcjl+/fVXXLt2DWvXrsWxY8cwffp0AECnTp1e+OAv+NDPzc3F/PnzcfnyZezZsweRkZEYNWpUqWOqSbS0tPDdd99h2bJlePToUZFt7t69i169euH999/HlStXsHXrVpw5cwaTJk0CAHTr1g3h4eGIj48HAJw8eRIWFhbKL2O5ubk4f/48unfvXur4pkyZgtTUVBw5cgQAkJWVhXbt2mH//v0ICwvDuHHjMGLECAQGBgIAli5dCg8PD4wdO1b5+2Fvbw9JkmBnZ4ft27cjPDwcX3/9Nb788kts27at1DFpMhsbG+XFzMwMMpms0G3GxsbKtpcuXUL79u1haGiITp064ebNm4WOtXfvXri6ukJfXx8NGzbEvHnzCp2pevDgAfr16wdjY2OYmppi4MCBiI2NVd4/d+5cuLi44K+//oKjoyP09fWxbt061KlTB9nZ2YWeq3///hgxYkQFvSuk8QQRCSGEyMzMFOHh4SIzM1PdoZSKt7e36NevnxBCCEmSxJEjR4Senp6YNm2a8n5ra2uRnZ2tfMz69etFs2bNhCRJytuys7OFgYGBOHTokBBCiE8//VS8/vrryvsPHTok9PT0RGJiohBCCD8/P2FmZqa8v1OnTmLs2LGFYhswYIB46623hBBCRERECAAiJCREeX9iYqIAII4fPy6EEKJv377Cx8enTK/9eYMGDRLNmzcv9rHbt28XderUUV5//vUU5+LFiwKASE1NLXGcNcmz/ycdO3YUo0ePFkIIsXv3bvHsR46vr68YN25coceePn1ayOVykZmZKSRJEnXq1BHbt28XQgjh4uIiFi5cKGxsbIQQQpw5c0bo6OiI9PT0YmMBIHbv3v3C7ZmZmQKAWLx4cbGP7dOnj/jss8+U17t16yY+/fTTl752IYSYOHGieP/991/ZTlUkSRLp2blquTz796Okisuz48ePCwDC3d1dnDhxQly7dk107dpVdOrUSdnm1KlTwtTUVPj7+4u7d++Kw4cPiwYNGoi5c+cKIYRQKBTCxcVFdOnSRQQFBYkLFy6Idu3aiW7duimPMWfOHGFkZCR69eolgoODxeXLl0VGRoYwMzMT27ZtU7aLjY0V2tra4tixY0W+jur6eUGVhxvNEFUASZIQHx8PS0tLyOUVf6Jo3759MDY2Rm5uLiRJwtChQwuNa2zdujV0dXWV1y9fvow7d+7AxMSk0HGysrJw9+5dAMCwYcPQsWNHREVFwdbWFhs3bkSfPn2KnQh4/fp1jBs3rtBtnTt3LtUp848++gjvv/8+goOD0bNnT/Tv3x+dOnUq8eOfJYQoNKnuv//+w8KFC3Hjxg2kpKQgLy8PWVlZyMjIeOna55cuXcLcuXNx+fJlJCYmKidPPnjwAC1atChTbJVOkoCMBMDQAqiE38cCixcvxuuvv17kEIDLly/jypUr2Lhxo/I2IQQkSUJERASaN2+O1157DSdOnICnpyfCw8MxYcIEfP/997hx4wZOnjwJNze3Mq1bL4QA8L+l1hQKBb777jts27YNjx8/Rk5ODrKzs0t07OXLl2PNmjV48OABMjMzkZOTAxcXl1LHVFaZuQq0+PpQpT3fs8K/8YKhrmrLiAULFqBbt24AgBkzZqBPnz7IysqCvr4+5s2bhxkzZsDb2xsA0LBhQ8yfPx/Tp0/HnDlzcPToUVy9ehURERGwt7cHAKxbtw4tW7bExYsX4ebmBiB/WMi6detgaWmpfN6hQ4fCz88PAwYMAABs2LABDg4OZTpDQgRwiAiRykmShAULFsDX1xcLFiwo9WoWZdGjRw+Ehobi9u3byMzMxNq1a2FkZKS8/9l/A0BaWhratWuH0NDQQpdbt25h6NChAAA3Nzc0atQIW7ZsQWZmJnbv3l3s8JCSKPiiUVDcAC9u0tC7d2/cv38fU6ZMQVRUFN54440yj8+8fv06HB0dAeSP/3777bfRpk0b7Ny5E5cuXcLy5csBvHwMZnp6Ory8vGBqaoqNGzfi4sWL2L179ysfV6VIEnD6R2DvpPyflfD7WOC1116Dl5cXZs6c+cJ9aWlpGD9+fKHfv8uXL+P27dto1KgRgPyVO06cOIHTp0+jbdu2MDU1VRbdJ0+eVBZipXX9+nUAUP5+/PDDD1i6dCm++OILHD9+HKGhofDy8nrl//GWLVswbdo0+Pr64vDhwwgNDYWPj0/1+d2ogtq0aaP8d8E25AVzHi5fvoxvvvkGxsbGykvBsJ2MjAxcv34d9vb2yuIaAFq0aAFzc3Pl/zkA1K9fv1BxDQBjx47F4cOH8fjxYwD5c0wKVsQhKgv2YBOpWHx8PAICAhATE4OAgADEx8fD2tq6Qp/TyMgIjRs3LnF7V1dXbN26FVZWVjA1NS223bBhw7Bx40bY2dlBLpejT58+xbZt3rw5zp49q+xdAoCzZ88qe3kLPtCio6PRtm1bACg04bGApaUlvL294e3tja5du+Lzzz/Hjz/+WOLXBgDHjh3D1atXMWXKFAD5vdCSJOGnn35SFvrPj5PV1dWFQqEodNuNGzfw5MkTLFq0SPmhHRQUVKpY1C4jAXgUBKTF5v/MSACMK2/1l0WLFsHFxUU5ubaAq6srwsPDX/p7261bN0yePBnbt29X9iR2794d//33H86ePYvPPvusTDEVjLf39PQEkP972q9fPwwfPhxA/pfkW7duFTpDUdTvx9mzZ9GpUydMmDBBeVvBGaDKYqCjhfBvvCr1OZ99blXT0dFR/ruguC3opEhLS8O8efPw3nvvvfA4fX39Ej/H8x0OANC2bVs4Oztj3bp16NmzJ65du4b9+/eXNnwiJRbYRCpmaWkJd3d3BAQEwN3d/YWekqpg2LBh+OGHH9CvXz988803sLOzw/3797Fr1y5Mnz4ddnZ2ynZz587FggUL8MEHH0BPT6/YY37++ecYOHAg2rZtC09PT/zzzz/YtWsX/vvvPwD5Ey87duyIRYsWwdHREXFxcS+sAPH111+jXbt2aNmyJbKzs7Fv3z40b978pa8lOzsbMTExUCgUiI2NxcGDB7Fw4UK8/fbbGDlyJACgcePGyM3NxbJly9C3b1+cPXu20GoUANCgQQOkpaXh6NGjcHZ2hqGhIRwcHKCrq4tly5bhww8/RFhYGObPn1/q91utDC0Au/b5xbVd+/zrlah169YYNmwYfv3110K3f/HFF+jYsSMmTZqEMWPGwMjICOHh4Thy5Ah+++03APm9mbVq1cKmTZuwb98+APkF9rRp0yCTydC5c+dXPn9SUhJiYmKQnZ2NW7du4ffff8eePXuwbt065XCnJk2aYMeOHTh37hxq1aqFn3/+GbGxsYUK7AYNGiAgIACRkZEwNjZG7dq10aRJE6xbtw6HDh2Co6Mj1q9fj4sXLyp7xiuDTCZT+TCNqsrV1RU3b94s9ktZ8+bN8fDhQzx8+FD5hTg8PBxJSUklGs41ZswYLFmyBI8fP4anp2ehnnCiUlPvEHCiqkOVk1YUCoWIiYkRCoVCBZG93Msm+r3s/ujoaDFy5EhhYWEh9PT0RMOGDcXYsWNFcnJyoXYdOnQQAF6Y7FPUZKUVK1aIhg0bCh0dHdG0aVOxbt26QveHh4cLDw8PYWBgIFxcXMThw4cLTXKcP3++aN68uTAwMBC1a9cW/fr1E/fu3XvpawMgAAhtbW1haWkpPD09xZo1a15473/++WdRt25dYWBgILy8vMS6desEAOWkTSGE+PDDD0WdOnUEADFnzhwhhBCbNm0SDRo0EHp6esLDw0P8/fffL0zWrPIUCiFSY/N/VrCift8iIiKErq6ueP4jJzAwULz55pvC2NhYGBkZiTZt2ogFCxYUatOvXz+hra2tnFSqUChErVq1RMeOHV8ZS8HvBgChr68vGjVqJLy9vcWlS5cKtXvy5Ino16+fMDY2FlZWVmL27Nli5MiRhV7HzZs3RceOHYWBgYEAICIiIkRWVpYYNWqUMDMzE+bm5uKjjz4SM2bMEM7OziV/w2qYV01yfDYfQ0JClO+1EEIcPHhQaGtri7lz54qwsDARHh4uNm/eLGbNmiWEyJ/w6eLiIrp27SouXbokAgICipzkWNz/T1JSkjA0NBS6urpiy5YtL30dnORIryIT4pkBkUQ1WFZWFiIiIpRLNxERkWr5+/tj8uTJL6yxf+LECfTo0QOJiYnKMwuhoaFo27YtIiIi0KBBAwDAoUOH8M033yAkJAQ6OjpwcnLCmDFjMHbsWAD5k48//vhjHD16FHK5HL169cKyZcuUw/Tmzp2LPXv2FDk8DQBGjhyJ/fv3Iyoq6qVn7Ph5Qa/CApvo//EPJhFRzfbGG2+gZcuWLwxpeh4/L+hVasbALSIiIqJiJCYm4sSJEzhx4gRWrFih7nBIA7DAJiIiohqtbdu2SExMxOLFi19Y8YaoLFhgExERUY0WGRmp7hBIw3CjGSIiIiIiFWKBTfQczvslIqKX4ecEvQoLbKL/V7CDWEZGhpojISKiqqzgc+LZnSeJnsUx2ET/T0tLC+bm5oiLiwMAGBoaKrfqJSIiEkIgIyMDcXFxMDc3h5aW6reLJ83AdbCJniGEQExMzAubIBARERUwNzeHjY0NO2GoWCywiYqgUCiQm5ur7jCIiKiK0dHRYc81vRILbCIiIiIiFeIkRyIiIiIiFWKBTURERESkQiywiYiIiIhUiAU2EREREZEKscAmIiIiIlIhFthERERERCrEApuIiIiISIX+Dz2SlY5y7xD9AAAAAElFTkSuQmCC\n"
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "text/plain": "",
- "image/png": "iVBORw0KGgoAAAANSUhEUgAAAbYAAAGVCAYAAACSMdToAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8o6BhiAAAACXBIWXMAAA9hAAAPYQGoP6dpAABReElEQVR4nO3dd1gU1/s28HuXsnQQpKkoYi8IlgTRGBsJlqAmRkw0ijUxamKLRsVYotiiRhNN+ya2xETFHjV2saDBChZQg4IaBQSV3nfP+wc/9g1WyrIDw/25rr10Z2d2ngPL3ntmzpxVCCEEiIiIZEIpdQFERES6xGAjIiJZYbAREZGsMNiIiEhWGGxERCQrDDYiIpIVBhsREckKg42IiGSFwUZERLLCYCMiAIBCocDs2bOlLoOozBhsVKWsXbsWCoUC586d08v+IiMjMXv2bMTGxpZou/DwcHzwwQdwcXGBSqWCra0tfHx8sGbNGqjV6vIplkgmDKUugEjOIiMjMWfOHHTq1Amurq7F2ubnn3/GqFGj4OjoiEGDBqFBgwZIS0vD4cOHMXz4cMTFxWH69OnlWzhRJcZgI6pA/v77b4waNQre3t7Yu3cvLC0ttY+NHz8e586dw5UrVySskKji46FIoifk5uZi5syZaN26NaytrWFubo4OHTrg6NGjT627ceNGtG7dGpaWlrCysoK7uztWrFgBoOCwZ79+/QAAnTt3hkKhgEKhQEhIyHP3PWfOHCgUCmzYsKFIqBVq06YNhgwZAiEEXF1d0bt376fWyc7OhrW1NT766KMiy2bPno2GDRvCxMQEzs7OeOedd3Dz5s0X/izu3buHYcOGwdHRESqVCs2aNcPq1atfuA2R1NhjI3pCamoqfv75Z7z//vsYOXIk0tLS8Msvv8DX1xdnzpyBp6cnAODgwYN4//330bVrVyxatAgAEBUVhdDQUIwbNw6vv/46Pv30U3zzzTeYPn06mjRpAgDaf5+UmZmJw4cP4/XXX0ft2rVfWKNCocAHH3yAxYsX49GjR7C1tdU+9ueffyI1NRUffPABAECtVuOtt97C4cOH8d5772HcuHFIS0vDwYMHceXKFdSrV++Z+0hISEDbtm2hUCgwduxY2Nvb46+//sLw4cORmpqK8ePHl+THSqQ/gqgKWbNmjQAgzp49+9x18vPzRU5OTpFljx8/Fo6OjmLYsGHaZePGjRNWVlYiPz//uc8VHBwsAIijR4++tLaIiAgBQIwbN+6l6wohxPXr1wUA8f333xdZ3qtXL+Hq6io0Go0QQojVq1cLAGLZsmVPPUfhOkIIAUDMmjVLe3/48OHC2dlZJCUlFdnmvffeE9bW1iIzM7NYdRLpGw9FEj3BwMAAxsbGAACNRoNHjx4hPz8fbdq0wYULF7Tr2djYICMjAwcPHtTJflNTUwHgmYcgn6Vhw4bw8vLChg0btMsePXqEv/76CwMHDoRCoQAAbN26FdWrV8cnn3zy1HMUrvMkIQS2bt0KPz8/CCGQlJSkvfn6+iIlJaXIz4KoImGwET3DunXr0KJFC5iYmMDOzg729vbYs2cPUlJStOuMHj0aDRs2RPfu3VGrVi0MGzYM+/btK/U+raysAABpaWnF3mbw4MEIDQ3F7du3AQDBwcHIy8vDoEGDtOvcvHkTjRo1gqFh8c88JCYmIjk5GT/99BPs7e2L3IYOHQoAePDgQbGfj0ifGGxET/jtt98wZMgQ1KtXD7/88gv27duHgwcPokuXLtBoNNr1HBwcEB4ejl27dqFXr144evQounfvjoCAgFLtt379+jA0NMTly5eLvc17770HIyMjba/tt99+Q5s2bdCoUaNS1VCosJ0ffPABDh48+Mxb+/bty7QPovLCwSNET9iyZQvc3Nywbdu2IofqZs2a9dS6xsbG8PPzg5+fHzQaDUaPHo0ff/wRX3zxBerXr//cQ33PYmZmhi5duuDIkSO4e/cuXFxcXrqNra0tevbsiQ0bNmDgwIEIDQ3F8uXLi6xTr149hIWFIS8vD0ZGRsWqxd7eHpaWllCr1fDx8Sl2G4gqAvbYiJ5gYGAAoOA8U6GwsDCcPn26yHoPHz4scl+pVKJFixYAgJycHACAubk5ACA5OblY+541axaEEBg0aBDS09Ofevz8+fNYt25dkWWDBg1CZGQkJk+eDAMDA7z33ntFHu/bty+SkpKwcuXKp57vv238LwMDA/Tt2xdbt2595nVziYmJxWoPkRTYY6MqafXq1c88HzZu3Di89dZb2LZtG95++2307NkTMTEx+OGHH9C0adMiYTNixAg8evQIXbp0Qa1atXD79m18++238PT01A7p9/T0hIGBARYtWoSUlBSoVCp06dIFDg4Oz6yrXbt2WLVqFUaPHo3GjRsXmXkkJCQEu3btwrx584ps07NnT9jZ2SE4OBjdu3d/6rkHDx6M9evXY+LEiThz5gw6dOiAjIwMHDp0CKNHj37mtXAAsHDhQhw9ehReXl4YOXIkmjZtikePHuHChQs4dOgQHj16VKKfOZHeSDomk0jPCof7P+929+5dodFoxPz580WdOnWESqUSLVu2FLt37xYBAQGiTp062ufasmWLePPNN4WDg4MwNjYWtWvXFh999JGIi4srss///e9/ws3NTRgYGBR76P/58+fFgAEDRI0aNYSRkZGoVq2a6Nq1q1i3bp1Qq9VPrT969GgBQPz+++/PfL7MzEwRGBgo6tatK4yMjISTk5N49913xc2bN7Xr4Inh/kIIkZCQIMaMGSNcXFy023Xt2lX89NNPL20DkVQUQjznWAQRVRoTJkzAL7/8gvj4eJiZmUldDpGkeI6NqJLLzs7Gb7/9hr59+zLUiMBzbESV1oMHD3Do0CFs2bIFDx8+xLhx46QuiahCYLARVVKRkZEYOHAgHBwc8M0332jnsCSq6niOjYiIZIXn2IiISFYYbEREJCsMNiIikhUGGxERyQqDjYiIZIXBRkREssJgIyIiWWGwERGRrDDYiIhIVhhsREQkKww2IiKSFQYbERHJCoONiIhkhcFGRESywmAjIiJZYbAREZGsMNiIiEhWGGxERCQrDDYiIpIVBhsREckKg60MhBBITU2FEELqUoiI6P8w2MogLS0N1tbWSEtLk7qUl4qNjYVCoUB4eLjUpRARlSsGWwURHx+PTz75BG5ublCpVHBxcYGfnx8OHz4sdWnPFB0dDUtLS9jY2EhdChFREYZSF0AFvan27dvDxsYGX331Fdzd3ZGXl4f9+/djzJgxuHbtmtQlFpGXl4f3338fHTp0wKlTp6Quh4ioCPbYKoDRo0dDoVDgzJkz6Nu3Lxo2bIhmzZph4sSJ+PvvvwEAw4YNw1tvvVVku7y8PDg4OOCXX34BAGg0GixevBj169eHSqVC7dq1ERQU9Nz9XrlyBd27d4eFhQUcHR0xaNAgJCUlvbTeGTNmoHHjxvD39y9Dq4mIygeDTWKPHj3Cvn37MGbMGJibmz/1eOGhvhEjRmDfvn2Ii4vTPrZ7925kZmaif//+AIBp06Zh4cKF+OKLLxAZGYnff/8djo6Oz9xvcnIyunTpgpYtW+LcuXPYt28fEhISXhpWR44cQXBwMFatWlXKFhMRlS8eipRYdHQ0hBBo3LjxC9dr164dGjVqhF9//RVTpkwBAKxZswb9+vWDhYUF0tLSsGLFCqxcuRIBAQEAgHr16uG111575vOtXLkSLVu2xPz587XLVq9eDRcXF9y4cQMNGzZ8apuHDx9iyJAh+O2332BlZVXaJhMRlSv22CRWkksFRowYgTVr1gAAEhIS8Ndff2HYsGEAgKioKOTk5KBr167Feq6IiAgcPXoUFhYW2lthuN68efOZ24wcORIDBgzA66+/XuyaiYj0jT02iTVo0AAKhaJYA0QGDx6MqVOn4vTp0zh16hTq1q2LDh06AABMTU1LtN/09HT4+flh0aJFTz3m7Oz8zG2OHDmCXbt2YcmSJQAKQlmj0cDQ0BA//fSTNmSJiKTEYJOYra0tfH19sWrVKnz66adPnWdLTk7Wnmezs7NDnz59sGbNGpw+fRpDhw7VrtegQQOYmpri8OHDGDFixEv326pVK2zduhWurq4wNCzey+D06dNQq9Xa+zt37sSiRYtw6tQp1KxZs1jPQURU3ngosgJYtWoV1Go1Xn31VWzduhX//PMPoqKi8M0338Db27vIuiNGjMC6desQFRWlPZcGACYmJvj8888xZcoUrF+/Hjdv3sTff/+tHTH5pDFjxuDRo0d4//33cfbsWdy8eRP79+/H0KFDi4TXfzVp0gTNmzfX3mrWrAmlUonmzZujWrVquvuBENGLaTRA+oOCf+kp7LFVAG5ubrhw4QKCgoIwadIkxMXFwd7eHq1bt8b3339fZF0fHx84OzujWbNmqFGjRpHHvvjiCxgaGmLmzJm4f/8+nJ2dMWrUqGfus0aNGggNDcXnn3+ON998Ezk5OahTpw66desGpZKfd4gqLI0GOLEE+PccUKsN0OEzgH+zRSgEJzostdTUVFhbWyMlJUVvowTT09NRs2ZNrFmzBu+8845e9klEFUj6A2DnWCA9AbBwBHqvBCwcpK6qQmHMVxIajQYPHjzA3LlzYWNjg169ekldEhFJwax6QU/NwrHgX7PqUldU4fBQZCVx584d1K1bF7Vq1cLatWuLPeCDiGRGqSw4/JiZVBBqPAz5FL47VhKurq78ehwiKqBU8vDjCzDqiYhIVhhsREQkKww2IiKSFQYbERHJCoONiIhkhcFGRESywmAjIiJZYbAREZGsMNiIiEhWGGxERCQrDDYiIpIVBhsREckKg42IiGRFFsG2YMECvPLKK7C0tISDgwP69OmD69evv3S74OBgNG7cGCYmJnB3d8fevXv1UC0RUfm7mZiOiLvJUpchCVkE27FjxzBmzBj8/fffOHjwIPLy8vDmm28iIyPjuducOnUK77//PoYPH46LFy+iT58+6NOnD65cuaLHyomIdEujEVgbGoOe35zA2D8uID0nX+qS9E4hZPglX4mJiXBwcMCxY8fw+uuvP3Od/v37IyMjA7t379Yua9u2LTw9PfHDDz8Uaz+pqamwtrZGSkoKrKysdFI7EVFp3U/OwpQtl3AyOgkA8Fr96vi6vyfsLVUSV6Zfsvyi0ZSUFACAra3tc9c5ffo0Jk6cWGSZr68vduzY8dxtcnJykJOTo72fmppatkKJiHRACIEd4fcwc+dVpGXnw8RIiek9muADrzpQKhVSl6d3sgs2jUaD8ePHo3379mjevPlz14uPj4ejo2ORZY6OjoiPj3/uNgsWLMCcOXN0VisRUVk9ysjFjB2XsfdywXuXh4sNlvl7oJ69hcSVSUd2wTZmzBhcuXIFJ0+e1PlzT5s2rUgvLzU1FS4uLjrfDxFRcRy5loApWy4jKT0HhkoFPu3aAKM71YOhgSyGT5SarIJt7Nix2L17N44fP45atWq9cF0nJyckJCQUWZaQkAAnJ6fnbqNSqaBSVa1j1URU8aTn5CNoTyT+OHMXAFDfwQJf+3vCvZa1xJVVDLKIdSEExo4di+3bt+PIkSOoW7fuS7fx9vbG4cOHiyw7ePAgvL29y6tMIqIyOxv7CN1XHMcfZ+5CoQBGvFYXuz95jaH2H7LosY0ZMwa///47du7cCUtLS+15Mmtra5iamgIABg8ejJo1a2LBggUAgHHjxqFjx45YunQpevbsiY0bN+LcuXP46aefJGsHEdHz5OSrsezgDfx0/BaEAGramGJJPw9417OTurQKRxbD/RWKZ4/6WbNmDYYMGQIA6NSpE1xdXbF27Vrt48HBwZgxYwZiY2PRoEEDLF68GD169Cj2fjncn4j0IfJ+KiZuDse1+DQAwLuta2GWX1NYmhhJXFnFJItgkwqDjYjKk1oj8OPxm/j64A3kqQXszI0x/x13+DZ7/lgAksmhSCIiyWk0QGYSYFYdUJZ9+MLthxmYuDkC528/BgC80dQRC95xR3ULDmB7GQYbEVFZaTTAiSXAv+eAWm2ADp+VOtyEEPj9zB0E7YlCZq4aFipDzO7VDH1b1XzuaRcqisFGRFRWmUkFoZaeUPBvZhJg4VDip3mQmo0pWy8h5HoiAKCtmy2W9PNArWpmuq5Y1hhsRERlZVa9oKdW2GMzq17ip9h96T5m7LiC5Mw8GBsqMcW3EYa1r1slp8QqKwYbEVFZKZUFhx9LcY4tOTMXM3dexa6I+wCA5jWt8LW/Jxo4WpZXtbLHYCMi0gWlssSHH4/fSMTkLRFISM2BgVKBMZ3q4ZOuDWBUxafEKisGGxGRnmXm5mPB3mv49e/bAAC36uZY6u+BlrWrSVyZPDDYiIj06MKdx5i0OQIxSQVfhBzgXQdTuzeBqbGBxJXJB4ONiEgPcvM1+ObwP/guJBoaAThZmeCrfi3QoYG91KXJDoONiKic3UhIw4RN4bh6v+DLid9uWROz/ZrB2oxTYpUHBhsRUTlRawRWn4zBVweuIzdfg2pmRgh62x093J2lLk3WGGxEROXg7qNMTAqOwJmYRwCAzo3ssahvCzhYmUhcmfwx2IiIdEgIgeBz/2LOn1eRkauGmbEBvnirKd57xYVTYukJg42ISEcS03IwbdslHIp6AABoU6calvl7orYdp8TSJwYbEZEO7LsSj+nbL+NRRi6MDBSY+EYjfPi6GwykmhJLx982UJkw2IiIyiA1Ow+zd13Ftgv3AACNnSzxdX9PNHGW8DsadfhtA5URg42IqJRORSfhs+AI3E/JhkIBfPR6PUx4owFUhhJfbK2jbxuorBhsRFSERqNBYmIi7O3toaxCn/JLIjtPjcX7rmN1aAwAoLatGZb6e+AVV1uJK/s/Ovi2gcqMwUZEWhqNBkFBQQgLC4OXlxcCAwMZbk+4/G8KJmwOR/SDdADAAK/aCOzRBOaqCvR2WoZvG5CDCvSbICKpJSYmIiwsDPHx8QgLC0NiYiIcHR2lLktvXtRbzVNr8N3Rm/j2yD/I1wjYW6qwuG8LdG5cQQ/xleLbBuSCwUZEWvb29vDy8tL22Oztq848hi/qrd5MTMfETeGI+DcFANDT3Rnz+jRHNXNjKUum52CwEZGWUqlEYGBglTzH9qzeqr29A9afjsXCfdeQnaeBlYkh5vZpjl4eNXixdQXGYCOiIpRKZZU6/Fjoyd5qnpEFBq8+g5PRSQCADg2qY/G7LeBsbSpxpfQyCiGEkLqIyio1NRXW1tZISUmBlZWE16wQkU5oNBo8ePAAp+7lYdafkUjLzoeJkRLTezTBoLZ12EurJNhjIyL6P8lZ+Zhz6B7+uhIPAPB0scEyfw+42VvorQZeblF2DDYiIgCHoxLw+dbLSErPgaFSgfE+DTCqYz0YGugvXHi5hW4w2IioSkvPyce83ZHYePYuAKCBgwW+7u+J5jWt9V5LVb/cQlcYbERUZZ2JeYRJweG4+ygLCgUwvH1dfObbCCZG0kyJVZUvt9AlDh4pAw4eIaqccvLVWHbgBn46cQtCADVtTLGknwe869lJXRrPsemAbH5qx48fh5+fH2rUKLi+ZMeOHS/dZsOGDfDw8ICZmRmcnZ0xbNgwPHz4sPyLJSLJRN5PRa9vQ/Hj8YJQ69e6FvaN71AhQg34/5dbMNRKTzY/uYyMDHh4eGDVqlXFWj80NBSDBw/G8OHDcfXqVQQHB+PMmTMYOXJkOVdKRFJQawRWHY1G71UncT0hDXbmxvhpUGt81c8DliZGUpdHOiSbc2zdu3dH9+7di73+6dOn4erqik8//RQAULduXXz00UdYtGhReZVIRBKJTcrApOAInL/9GADwRlNHLHjHHdUtVBJXRuVBNj22kvL29sbdu3exd+9eCCGQkJCALVu2oEePHs/dJicnB6mpqUVuRFRxCSGwIew2enxzAudvP4aFyhBL+nngp0GtGWoyVmWDrX379tiwYQP69+8PY2NjODk5wdra+oWHMhcsWABra2vtzcXFRY8VE1FJPEjNxtC1ZxG4/Qoyc9XwdrPDvvEd8G7rWpxBROaqbLBFRkZi3LhxmDlzJs6fP499+/YhNjYWo0aNeu4206ZNQ0pKivZ29+5dPVZMRMW1+9J9vLn8OEKuJ8LYUIkv3mqKDSO8UKuamdSlkR7I5hxbSS1YsADt27fH5MmTAQAtWrSAubk5OnTogHnz5sHZ2fmpbVQqFVQqHr4gqqiSM3Mxc+dV7Iq4DwBoXtMKX/t7ooGjpcSVkT5V2WDLzMyEoWHR5hsYFFyUyUv7iCqf4zcSMXlLBBJSc2CgVGBM5/r4pEt9GOlxSiyqGGQTbOnp6YiOjtbej4mJQXh4OGxtbVG7dm1MmzYN9+7dw/r16wEAfn5+GDlyJL7//nv4+voiLi4O48ePx6uvvooaNWpI1QwiKqHM3Hws2BOFX8PuAADcqptjWX9PeLrYSFsYSUY2wXbu3Dl07txZe3/ixIkAgICAAKxduxZxcXG4c+eO9vEhQ4YgLS0NK1euxKRJk2BjY4MuXbpwuD9RJXLhzmNM3BSO2IeZAIAhdR7i86FvwpTXpVVpnFKrDDilFpE0cvM1+ObwP/guJBoaATgbZeAru914zT4b6L0SsHCQukSSkGx6bERUNdxISMOETeG4er/gOtK3PWtgdvXDsE7IBmq1AcyqS1whSY3BRkSVglojsPpkDL46cB25+RpUMzNC0Nvu6OHuDGg8gMykglDjHItVHoONiCq8u48yMSk4AmdiHgEAujR2wMJ33OFgZVKwglLJw4+kxWAjogpLCIHgc/9izp9XkZGrhrmxAWa81RTvveLC2UPouRhsRFQhJablYNq2yzgUlQAAeMW1Gpb280RtO84eQi/GYCOiCmfflXhM334ZjzJyYWygxMQ3G2JkBzcYKNlLo5djsBFRhZGanYfZu65i24V7AIDGTpb4ur8nmjjzchoqPgYbEVUIodFJmBwcgfsp2VAqgI861sN4nwZQGRpIXRpVMgw2IpJUdp4ai/Zdw5rQWABAbVszLPP3QBtXW2kLo0qLwUZEkrn0bzImbArHzcQMAMAAr9oI7NEE5iq+NVHp8dVDRHqXp9Zg1dFofHskGmqNgL2lCov7tkDnxrwWjcqOwUZEehX9IB2TNocj4t8UAEBPd2fM69Mc1cyNJa6M5ILBRkR6odEIrD8diwV/XUNOvgZWJoaY26c5ennU4MXWpFMMNiIqd/eTszB5SwRCox8CADo0qI7F77aAs7WpxJWRHDHYiKjcCCGw/eI9zNp1FWnZ+TAxUiKwRxN80LYOe2lUbhhsRFQuHmXkInD7Zfx1JR4A4Olig2X+HnCzt5C4MpI7BhsR6dzhqAR8vvUyktJzYKhUYFzXBvi4Uz0YGvArZaj8MdiISGfSc/Ixb3ckNp69CwBo4GCBr/t7onlNa4kro6qEwUZEOnEm5hEmbg7Hv4+zoFAAI16ri0lvNoKJEafEIv1isBFRmWTnqfH1wRv46cQtCAHUtDHFUn8PtHWzk7o0qqIYbERUalfvp2DipghcT0gDAPRv44IZbzWBpYmRxJVRVcZgI6ISy1dr8OPxW1h+6Aby1ALVLYyx4J0WeKOpo9SlETHYiKhkYpMyMHFzOC7cSQYA+DZzxPy33WFnoZK2MKL/w2AjomIRQmBD2B0E7YlCVp4alipDzO7VDO+0qsmLralCYbAR0UslpGZjypZLOHYjEQDg7WaHJf4eqGnDKbGo4mGwEdEL/RlxHzN2XEFKVh6MDZX4vFtjDG3nCqWSvTSqmBhsRPRMyZm5+GLnVfwZcR8A4F7TGsv8PdDA0VLiyohejMFGRE85diMRU7ZEICE1BwZKBcZ0ro9PutSHEafEokqAwUZEWpm5+Zi/Nwq//X0HAOBW3RzL+nvC08VG2sKISkA2H7+OHz8OPz8/1KhR8KWFO3bseOk2OTk5CAwMRJ06daBSqeDq6orVq1eXf7FEFdD524/RY8UJbagNaeeKPZ92YKhRpSObHltGRgY8PDwwbNgwvPPOO8Xaxt/fHwkJCfjll19Qv359xMXFQaPRlHOlRBVLbr4GKw7fwPchN6ERgLO1Cb561wOvNagudWlEpSKbYOvevTu6d+9e7PX37duHY8eO4datW7C1tQUAuLq6llN1RGWj0WiQmJgIe3t7KJW6O9ByPT4NEzaFIzIuFQDwdsuamN2rGaxNOSUWVV6yORRZUrt27UKbNm2wePFi1KxZEw0bNsRnn32GrKys526Tk5OD1NTUIjei8qbRaBAUFIThw4cjKChIJ0cV1BqB/x2/Bb9vTyIyLhXVzIzw3cBW+Lq/J0ONKj3Z9NhK6tatWzh58iRMTEywfft2JCUlYfTo0Xj48CHWrFnzzG0WLFiAOXPm6LlSquoSExMRFhaG+Ph4hIWFITExEY6OpZ+T8e6jTEwKjsCZmEcAgK6NHbCgrzscLE10VTKRpKpsj02j0UChUGDDhg149dVX0aNHDyxbtgzr1q17bq9t2rRpSElJ0d7u3r2r56qpKrK3t4eXlxecnJzg5eUFe3v7Uj2PEAKbz95Ft+XHcSbmEcyNDbCorzt+DmjDUCNZqbI9NmdnZ9SsWRPW1v//m32bNGkCIQT+/fdfNGjQ4KltVCoVVCpO9Er6pVQqERgYWKZzbIlpOZi27RIORT0AALziWg1L+3mitp2ZrsslklyV7bG1b98e9+/fR3p6unbZjRs3oFQqUatWLQkrI3qaUqmEo6PjU6Gm0WiQkJDwwvNu+67Ew3f5cRyKegBjAyWmdW+MjR96M9RItmQTbOnp6QgPD0d4eDgAICYmBuHh4bhzp+CanGnTpmHw4MHa9QcMGAA7OzsMHToUkZGROH78OCZPnoxhw4bB1JQTu1LF97JBJanZeZi4ORyjfjuPRxm5aOJshV2ftMdHHevBgPM8kozJ5lDkuXPn0LlzZ+39iRMnAgACAgKwdu1axMXFaUMOACwsLHDw4EF88sknaNOmDezs7ODv74958+bpvXai0njRoJJT0Un4LDgC91OyoVQAozrWw3ifhjA2lM1nWaLnUgghhNRFVFapqamwtrZGSkoKrKyspC6HqpjCHltYWBi8vLwQGBiIXLXAon3XsCY0FgBQx84My/w90LqOrbTFEukRg60MGGwktf9euH3lfiombArHzcQMAMBAr9qY3qMJzFWyOTBDVCx8xRNVYkqlErbV7fHNkWh8eyQaao2Ag6UKi95tgc6NHPReT3nNkEJUEgw2okos+kE6Jm0OR8S/KQCAni2cMa93c1QzN9Z7Lc86NMpwIykw2IgqIY1GYN3pWCz86xpy8jWwMjHEvLfd0cujhmQ16XqGFKLSYrARVTL3k7MweUsEQqMfAgA6NKiOr971gJO1tLOHFM6QUthjK+0MKURlxcEjZcDBI6RPQgjsCL+HmTuvIi07HyZGSgT2aIIP2taBQlExrkvjOTaqCNhjI6oEHmXkInD7Zfx1JR4A4Olig6/7e6JudXOJKyuqcIYUIikx2IgquMNRCfh862UkpefAUKnAeJ8GGNWxHgwN2CMiehYGG1EFlZ6Tj3m7I7HxbMG3SDR0tMAyf080r2n9ki2JqrZSB1vhCWIi0r0zMY8wKTgcdx9lQaEARnZww8Q3GsLEyEDq0ogqvFIHm7e3N+rXr49BgwZh4MCBcHNz02VdRFVSdp4aXx+8gZ9O3IIQQE0bUyz190BbNzupSyOqNEp9kP63335DgwYNMHfuXDRo0ADt27fHDz/8gEePHumyPqIq4+r9FPReGYofjxeEWv82Ltg3vgNDjaiEyjzcPykpCRs3bsTvv/+Ov//+G8bGxujWrRs++OAD9OrVC8bG+p8BQV843J90IV+twY/Hb2H5oRvIUwtUtzDGgnda4I2mHF1IVBo6vY7t5s2b+P3337Fhwwb8888/sLa2xrvvvovBgwfjtdde09VuKgwGG5VVbFIGJm4Ox4U7yQAA32aOmP+2O+ws+E3tRKWl0/HCpqamMDMzg4mJCYQQUCgU2LlzJzp27IhXXnkFkZGRutwdUaUlhMBvf99G9xUncOFOMixVhljazwM/fNCaoUZURmUOtrS0NKxZswY+Pj6oU6cOpk+fDldXV2zZsgXx8fG4f/8+Nm3ahAcPHmDo0KG6qJmoUotPyUbAmrOYseMKsvLUaFfPDvsmvI6+rWtVmBlEiCqzUo+K3LlzJzZs2IDdu3cjOzsbr7zyCpYvX4733nsPdnZFT3a/++67ePz4McaMGVPmgokqs10R9/HFjitIycqDylCJqd0bI8DbFUolA41IV0odbG+//TZcXFwwYcIEDB48GI0aNXrh+h4eHhg4cGBpd0dUqSVn5uKLnVfxZ8R9AIB7TWt83d8D9R0sJa6MSH5KPXgkJCQEnTp10nE5lQsHj1BxhFx/gClbLuFBWg4MlAqM7VwfY7vUhxGnxCIqF5zdvwwYbPQimbn5CNoThQ1hdwAAbvbm+NrfEx4uNtIWRiRznCuSqBycv/0YEzeH4/bDTADAkHau+LxbY5gac0osovLGYCPSodx8DZYfuoEfjt2ERgDO1iZY0s8D7etXl7o0oiqDwUakI9fj0zB+Uzii4lIBAG+3rInZvZrB2tRI4sqIqhYGG1EZqTUCv5y8hSX7byBXrUE1MyMEve2OHu7OUpdGVCUx2IjK4O6jTEzaHIEzsQWTf3dt7IAFfd3hYGkicWVEVReDjagUhBDYfO4uvvwzEhm5apgbG+CLt5qi/ysunD2ESGIMNqISSkzLwbRtl3Ao6gEA4BXXaljazxO17cwkroyIAAYbUYnsuxKH6duv4FFGLowNlJj0ZkOM6OAGA06JRVRhMNiIiiE1Ow+zd17Ftov3AABNnK3wdX8PNHbihflEFY1s5vQ5fvw4/Pz8UKNGDSgUCuzYsaPY24aGhsLQ0BCenp7lVh9VXqHRSej29XFsu3gPSgUwpnM97BzTnqFGVEHJJtgyMjLg4eGBVatWlWi75ORkDB48GF27di2nyqiyys5TY86fVzHw5zDcT8lGHTszBI/yxmTfxjA2lM2fDpHsyOZQZPfu3dG9e/cSbzdq1CgMGDAABgYGJerlkbxF3E3GxM3huJmYAQD4oG1tTOveBOYq2fzJEMlWlf4rXbNmDW7duoXffvsN8+bNe+n6OTk5yMnJ0d5PTU0tz/JIAnlqDVYeicbKo9FQawQcLFVY/G4LdGrkIHVpRFRMVTbY/vnnH0ydOhUnTpyAoWHxfgwLFizAnDlzyrmyikOj0SAxMRH29vZQKuV/6C36QRombIrA5XspAIC3WjhjXp/msDEzlrgyIioJ+b9bPYNarcaAAQMwZ84cNGzYsNjbTZs2DSkpKdrb3bt3y7FKaWk0GgQFBWH48OEICgqCRqORuqRyo9EIrD4Zg57fnMTleymwNjXCivc8sXJAK4YaUSVUJXtsaWlpOHfuHC5evIixY8cCKHgjF0LA0NAQBw4cQJcuXZ7aTqVSQaVS6btcSSQmJiIsLAzx8fEICwtDYmIiHB0dpS5L5+4lZ2FycARO3XwIAHi9oT0W920BJ2tOiUVUWVXJYLOyssLly5eLLPvuu+9w5MgRbNmyBXXr1pWosorD3t4eXl5eCAsLg5eXF+zt7aUuSaeEENh24R5m77qKtJx8mBoZYHrPJvjAqzanxCKq5GQTbOnp6YiOjtbej4mJQXh4OGxtbVG7dm1MmzYN9+7dw/r166FUKtG8efMi2zs4OMDExOSp5VWVUqlEYGBghT3HVpbzfw/TcxC4/Qr2XY0HALSsbYNl/p6oW928PEp9qap2LpOovMkm2M6dO4fOnTtr70+cOBEAEBAQgLVr1yIuLg537tyRqrxKSalUluvhx9K+oRee/yvsTQYGBhZ7+0ORCZi67RKS0nNhqFRgvE8DjOpYD4YG0gRKWdpCRM+mEEIIqYuorFJTU2FtbY2UlBRYWXEWipIoyxt6QkIChg8fjvj4eDg5OeGXX355aQCn5+Rj7p+R2HSuYMBPQ0cLLPP3RPOa1mVuS1mUpi1E9GL8aEhFaDQaJCQklPsoyGcNTimuwvN/Tk5OxTr/dybmEbotP45N5+5CoQA+fN0Nu8a+JnmoASVvCxG9HHtsZSC3Hps+D4uVdV/FOYyZnafGsoM38L8TtyAEUKuaKZb284CXm52umqETPMdGpFsMtjKQW7Dp+7BYeb6hX72fgombInA9IQ0A4N+mFr54qyksTYx0uh8iqnhkM3iEyk7fQ/zLY3BKvlqDH4/fwvJDN5CnFqhuYYwF77TAG01Lvx/2qIgqF/bYykBuPTagcr+JxyRlYNLmcFy4kwwA8G3miPlvu8POovQX1XPUIlHlwx4bFVFRh/i/iBACv4Xdwfw9UcjKU8NSZYjZvZrhnVY1y3yxdVWZgYVIThhspDfl0fuJT8nGlK2XcPxGwahKbzc7LPH3QE0bU12ULPsZWIjkiMFGeqPr3s+uiPv4YscVpGTlQWWoxNTujRHg7QqlUndTYlX0GViI6GkMNtIbXfV+kjNzMWPHFey+FAcAaFHLGsv8PVDfwVKX5WqV9+FZItItDh4pAzkOHilvZT3HFnL9AaZsuYQHaTkwUCrwSZf6GNO5PowkmhKLiCoe9thIr0rb+8nMzUfQnihsCCuY79PN3hxf+3vCw8VGxxUSUWXHYKMK7/ztx5i0ORyxDzMBAEPbu+Lzbo1hYmRQ5ueuzJc3ENGzMdiowsrN12DF4Rv4PuQmNAJwtjbBkn4eaF+/uk6en9eoEckTg40qpGvxqZiwKQJRcakAgHda1cQsv2awNtXdlFi8Ro1InhhsVKGoNQI/n7iFpQduIFetQTUzI8x/2x3d3Z11vi9eo0YkTxwVWQYcFfl8pTl3dedhJiYFh+Ns7GMAQJfGDljY1x0OliYVqk4iqtjYYyOdK+m5KyEENp29i7m7I5GRq4a5sQFm+jWFfxuXMk+J9TK8Ro1IfhhspHMlOXf1IC0b07ZexuFrDwAAr7hWw9J+nqhtZ6bPkolIRhhspHPFPXf11+U4TN9+GY8z82BsoMSkNxtiRAc3GOhwSiwiqnp4jq0MeI7t+V507iolKw9zdl3Ftov3AABNnK3wdX8PNHbiz5CIyo49NioXzzt3FRqdhMnBEbifkg2lAvi4Uz2M69oQxoYcuEFEusFgI73IzlNj4V/XsPZULADA1c4MS/090bpONWkLIyLZYbBRuYu4m4yJm8NxMzEDADDQqzYCezaBmTFffkSke3xnoXKTp9Zg5ZForDwaDbVGwMFSha/6eaBjQ14ITUTlh8FG5SL6QTombg7HpX9TAAB+HjUwt3cz2JgZS1wZEckdg410SqMRWHsqFov2XUNOvgbWpkaY26c5ennUkLo0IqoiGGykM/eSszA5OAKnbj4EALze0B6L+7aAk3X5TYlFRPQkBhuVmRAC2y7cw+xdV5GWkw9TIwME9myCgV61y31KLCKiJzHYqEwepudg+vbL2H81AQDQsrYNlvl7om51c4krI6KqSjZXxR4/fhx+fn6oUaMGFAoFduzY8cL1t23bhjfeeAP29vawsrKCt7c39u/fr59iZeJgZAJ8lx/H/qsJMDJQYLJvIwR/5M1QIyJJySbYMjIy4OHhgVWrVhVr/ePHj+ONN97A3r17cf78eXTu3Bl+fn64ePFiOVda+aVl52HKlgiMXH8OSem5aORoie2j22NM5/owNJDNS4qIKilZzhWpUCiwfft29OnTp0TbNWvWDP3798fMmTOLtX5VnCvy71sP8VlwBP59nAWFAhjZwQ0T32gIEyMDqUsjIgLAc2xaGo0GaWlpsLW1fe46OTk5yMnJ0d5PTU3VR2kVQnaeGksPXMfPJ2MgBFCrmimW9vOAl5ud1KURERXB40b/Z8mSJUhPT4e/v/9z11mwYAGsra21NxcXFz1WKJ0r91LQa+VJ/O9EQaj1b+OCfeNfr5ChptFokJCQAI1GI3UpRCQRHooE8Pvvv2PkyJHYuXMnfHx8nrves3psLi4usj0Uma/W4IdjN7H80D/I1whUtzDGwndawKdpxfzG6ZJ+czcRyVOVPxS5ceNGjBgxAsHBwS8MNQBQqVRQqVR6qkxaMUkZmLg5HBfvJAMAujVzQtDbzWFnUXHbX5Jv7iYi+arSwfbHH39g2LBh2LhxI3r27Cl1ORWCEAK/hd3B/D1RyMpTw1JliDm9m+HtljUr/MXWxf3mbiKSN9kEW3p6OqKjo7X3Y2JiEB4eDltbW9SuXRvTpk3DvXv3sH79egAFhx8DAgKwYsUKeHl5IT4+HgBgamoKa2trSdogtfiUbEzZegnHbyQCANrVs8NX/TxQ08ZU4sqKR6lUIjAw8Lnf3E1EVYNszrGFhISgc+fOTy0PCAjA2rVrMWTIEMTGxiIkJAQA0KlTJxw7duy56xeHnIb77wy/hy92XEFqdj5Uhkp83q0xhrRzhVJZsXtpRERPkk2wSUEOwZacmYsZO65g96U4AECLWtZY5u+B+g6WEldGRFQ6sjkUSSUXcv0Bpmy5hAdpOTBQKvBJl/oY07k+jDh7CBFVYgy2KigjJx/z90ZhQ9gdAICbvTm+9veEh4uNtIUREekAg62KOX/7ESZujsDth5kAgKHtXTHFtzFMjV88JZZGo+GgDCKqFBhsVURuvgbLD93AD8duQiOAGtYmWNLPA+3qV3/ptrzwmYgqEwZbFXAtPhUTNkUgKq5gbst3WtXE7F7NYGViVKzteeEzEVUmDDYZU2sEfj5xC0sP3ECuWgNbc2PMf7s5ujV3LtHz8MJnIqpMONy/DCrycP87DzMxKTgcZ2MfAwB8mjhgwTstYG9ZuimxeI6NiCoL9thkRgiBTWfvYu7uSGTkqmFubIBZfs3Qr02tMk2JpVQqS3T4kUFIRFJhsMnIg7RsTN16GUeuPQAAvOpqi6X+HnCxNdNrHRxsQkRSYrDJxF+X4zB9+2U8zsyDsYESn/k2xPDX3GAgwZRYHGxCRFJisFVyKVl5mL3rKrZfvAcAaOpsha/7e6KRk3RTYnGwCRFJiYNHykDqwSOh0Un4LDgCcSnZUCqAjzvVw7iuDWFsKP1hP55jIyKpsMdWCWXlqrFo3zWsPRULAHC1M8NSf0+0rlNN2sL+o6SDTYiIdIXBVslE3E3GhM3huJWYAQD4oG1tTO/RBGbGJfxVajRAZhJgVh1gj4qIZITBVknkqTX49kg0Vh2Nhloj4GCpwuJ3W6BTI4eSP5lGA5xYAvx7DqjVBujwGcONiGSDwVYJRD9Iw4RNEbh8LwUA4OdRA3N7N4ONmXHpnjAzqSDU0hMK/s1MAixKEZBERBUQg60C02gE1pyKxaJ915Cbr4G1qRHm9mmOXh41yvbEZtULemqFPTazl0+ETERUWTDYKqh7yVn4bHMETt96CADo2NAei99tAUcrk7I/uVJZcPiR59iISIYYbBWMEAJbL9zDnF1XkZaTD1MjAwT2bIKBXrXLNCXWU5RKHn4kIllisFUgD9NzMH37Zey/mgAAaFXbBsv8PeFa3VziyoiIKg8GWwVxKDIBU7ddQlJ6LowMFBjv0xAfve4GQwMeJiQiKgkGm8TSsvMwd3ckNp/7FwDQ0NECX/f3RLMa1hJXRkRUOTHYJPT3rYf4LDgC/z7OgkIBjOzgholvNISJkYHUpRERVVoMNglk56mx9MB1/HwyBkIAtaqZYmk/D3i52UldGhFRpcdg07N7yVkYsvoM/nmQDgDo38YFX/g1hYWKvwoiIl3gu6me2VuoYGigRHULYyx8pwV8mnKiYCIiXeLX1pRBab+2JjYpA5YmhrCzUJVjdUREVRN7bBLgdWlEROWHF0kREZGsyCbYjh8/Dj8/P9SoUQMKhQI7dux46TYhISFo1aoVVCoV6tevj7Vr15Z7nUREVL5kE2wZGRnw8PDAqlWrirV+TEwMevbsic6dOyM8PBzjx4/HiBEjsH///nKulIiIypMsB48oFAps374dffr0ee46n3/+Ofbs2YMrV65ol7333ntITk7Gvn37irWf0g4eISKi8iObHltJnT59Gj4+PkWW+fr64vTp0xJVREREulBlR0XGx8fD0bHoNWSOjo5ITU1FVlYWTE1Nn9omJycHOTk52vupqanlXicREZVMle2xlcaCBQtgbW2tvbm4uEhdEhERPaHKBpuTkxMSEhKKLEtISICVldUze2sAMG3aNKSkpGhvd+/e1UepRERUAlX2UKS3tzf27t1bZNnBgwfh7e393G1UKhVUKs4WQkRUkcmmx5aeno7w8HCEh4cDKBjOHx4ejjt37gAo6G0NHjxYu/6oUaNw69YtTJkyBdeuXcN3332HzZs3Y8KECeVeq0ajQUJCAjQaTbnvi4ioqpFNsJ07dw4tW7ZEy5YtAQATJ05Ey5YtMXPmTABAXFycNuQAoG7dutizZw8OHjwIDw8PLF26FD///DN8fX3LtU6NRoOgoCAMHz4cQUFBDDciIh2T5XVs+lKa69gSEhIwfPhwxMfHw8nJCb/88stTozOfpNFokJiYCHt7eyiVsvksQkRULvguqWf29vbw8vKCk5MTvLy8YG9v/8L12cMjIiqZKjt4RCpKpRKBgYHF7oElJiYiLCwM8fHxCAsLQ2Ji4kt7eEREVRl7bBJQKpVwdHQs1mHFkvbwiIiqOp5jKwN9zRXJc2xERMXHQ5GVQGEPj4iIXo4f/4mISFYYbEREJCsMNiIikhUGGxERyQqDjYiIZIXBRkREssJgIyIiWeF1bGVQeG17amqqxJUQEemWpaUlFAqF1GWUCoOtDNLS0gAALi4uEldCRKRb5T2jUnnilFploNFocP/+fQghULt2bdy9e7fSvhCKKzU1FS4uLlWirUDVam9VaitQtdpbmrayx1ZFKZVK1KpVS3so0srKSvZ/IIWqUluBqtXeqtRWoGq1t6q0lYNHiIhIVhhsREQkKww2HVCpVJg1axZUKpXUpZS7qtRWoGq1tyq1Faha7a1KbQU4eISIiGSGPTYiIpIVBhsREckKg42IiGSFwUZERLLCYCumVatWwdXVFSYmJvDy8sKZM2deuH5wcDAaN24MExMTuLu7Y+/evXqqtOxK0tb//e9/6NChA6pVq4Zq1arBx8fnpT+biqakv9tCGzduhEKhQJ8+fcq3QB0qaVuTk5MxZswYODs7Q6VSoWHDhpXmtVzSti5fvhyNGjWCqakpXFxcMGHCBGRnZ+up2tI7fvw4/Pz8UKNGDSgUCuzYseOl24SEhKBVq1ZQqVSoX78+1q5dW+516pWgl9q4caMwNjYWq1evFlevXhUjR44UNjY2IiEh4Znrh4aGCgMDA7F48WIRGRkpZsyYIYyMjMTly5f1XHnJlbStAwYMEKtWrRIXL14UUVFRYsiQIcLa2lr8+++/eq68dEra3kIxMTGiZs2aokOHDqJ37976KbaMStrWnJwc0aZNG9GjRw9x8uRJERMTI0JCQkR4eLieKy+5krZ1w4YNQqVSiQ0bNoiYmBixf/9+4ezsLCZMmKDnyktu7969IjAwUGzbtk0AENu3b3/h+rdu3RJmZmZi4sSJIjIyUnz77bfCwMBA7Nu3Tz8F6wGDrRheffVVMWbMGO19tVotatSoIRYsWPDM9f39/UXPnj2LLPPy8hIfffRRudapCyVt65Py8/OFpaWlWLduXXmVqFOlaW9+fr5o166d+Pnnn0VAQEClCbaStvX7778Xbm5uIjc3V18l6kxJ2zpmzBjRpUuXIssmTpwo2rdvX6516lpxgm3KlCmiWbNmRZb1799f+Pr6lmNl+sVDkS+Rm5uL8+fPw8fHR7tMqVTCx8cHp0+ffuY2p0+fLrI+APj6+j53/YqiNG19UmZmJvLy8mBra1teZepMadv75ZdfwsHBAcOHD9dHmTpRmrbu2rUL3t7eGDNmDBwdHdG8eXPMnz8farVaX2WXSmna2q5dO5w/f157uPLWrVvYu3cvevTooZea9amyvj+VBCdBfomkpCSo1Wo4OjoWWe7o6Ihr1649c5v4+Phnrh8fH19udepCadr6pM8//xw1atR46g+nIipNe0+ePIlffvkF4eHheqhQd0rT1lu3buHIkSMYOHAg9u7di+joaIwePRp5eXmYNWuWPsouldK0dcCAAUhKSsJrr70GIQTy8/MxatQoTJ8+XR8l69Xz3p9SU1ORlZUFU1NTiSrTHfbYSGcWLlyIjRs3Yvv27TAxMZG6HJ1LS0vDoEGD8L///Q/Vq1eXupxyp9Fo4ODggJ9++gmtW7dG//79ERgYiB9++EHq0nQuJCQE8+fPx3fffYcLFy5g27Zt2LNnD+bOnSt1aVQK7LG9RPXq1WFgYICEhIQiyxMSEuDk5PTMbZycnEq0fkVRmrYWWrJkCRYuXIhDhw6hRYsW5VmmzpS0vTdv3kRsbCz8/Py0yzQaDQDA0NAQ169fR7169cq36FIqze/W2dkZRkZGMDAw0C5r0qQJ4uPjkZubC2Nj43KtubRK09YvvvgCgwYNwogRIwAA7u7uyMjIwIcffojAwEAolfLpAzzv/cnKykoWvTWAPbaXMjY2RuvWrXH48GHtMo1Gg8OHD8Pb2/uZ23h7exdZHwAOHjz43PUritK0FQAWL16MuXPnYt++fWjTpo0+StWJkra3cePGuHz5MsLDw7W3Xr16oXPnzggPD6/Q36Remt9t+/btER0drQ1vALhx4wacnZ0rbKgBpWtrZmbmU+FVGOhCZtPpVtb3pxKRevRKZbBx40ahUqnE2rVrRWRkpPjwww+FjY2NiI+PF0IIMWjQIDF16lTt+qGhocLQ0FAsWbJEREVFiVmzZlWq4f4laevChQuFsbGx2LJli4iLi9Pe0tLSpGpCiZS0vU+qTKMiS9rWO3fuCEtLSzF27Fhx/fp1sXv3buHg4CDmzZsnVROKraRtnTVrlrC0tBR//PGHuHXrljhw4ICoV6+e8Pf3l6oJxZaWliYuXrwoLl68KACIZcuWiYsXL4rbt28LIYSYOnWqGDRokHb9wuH+kydPFlFRUWLVqlUc7l9Vffvtt6J27drC2NhYvPrqq+Lvv//WPtaxY0cREBBQZP3NmzeLhg0bCmNjY9GsWTOxZ88ePVdceiVpa506dQSAp26zZs3Sf+GlVNLf7X9VpmATouRtPXXqlPDy8hIqlUq4ubmJoKAgkZ+fr+eqS6ckbc3LyxOzZ88W9erVEyYmJsLFxUWMHj1aPH78WP+Fl9DRo0ef+TdY2L6AgADRsWPHp7bx9PQUxsbGws3NTaxZs0bvdZcnfm0NERHJCs+xERGRrDDYiIhIVhhsREQkKww2IiKSFQYbERHJCoONiIhkhcFGRESywmAjIiJZYbAREZGsMNiIiEhWGGxERCQrDDYiIpIVBhsREckKg42IiGSFwUZERLLCYCMiIllhsBERkaww2IiISFYYbEREJCsMNiIikhUGGxERyQqDjagCiouLw9SpU9G5c2dYWlpCoVAgJCRE6rKIKgUGG1EFdP36dSxatAj37t2Du7u71OUQVSoMNqIKqHXr1nj48CFu3LiBiRMnSl0OUaXCYCPSo6ysLDRu3BiNGzdGVlaWdvmjR4/g7OyMdu3aQa1Ww9LSEra2thJWSlR5MdiI9MjU1BTr1q1DdHQ0AgMDtcvHjBmDlJQUrF27FgYGBhJWSFT5GUpdAFFV4+XlhSlTpmDRokV4++23kZCQgI0bN2L58uVo2LCh1OURVXoMNiIJzJ49G7t370ZAQADS09PRsWNHfPrpp1KXRSQLPBRJJAFjY2OsXr0aMTExSEtLw5o1a6BQKKQui0gWGGxEEtm/fz8AIDs7G//884/E1RDJB4ONSAKXLl3Cl19+iaFDh6Jly5YYMWIEUlJSpC6LSBYYbER6lpeXhyFDhqBGjRpYsWIF1q5di4SEBEyYMEHq0ohkgYNHiPRs3rx5CA8Px+HDh2FpaYkWLVpg5syZmDFjBt5991306NFDux4AXL16FQDw66+/4uTJkwCAGTNmSFM8USWgEEIIqYsgqiouXLgALy8vfPzxx/jmm2+0y9VqNby9vXHv3j1cvXoVNjY2LxxMwj9boudjsBERkazwHBsREckKg42IiGSFwUZERLLCYCMiIllhsBERkaww2IiISFYYbEREJCsMNiIikhUGGxERyQqDjYiIZKXCTIKsVquRl5cndRlERFTBGBkZwcDAoNjrSx5sQgjEx8cjOTlZ6lKIiKiCsrGxgZOTU7G+aV7yYCsMNQcHB5iZmRWraCIiqhqEEMjMzMSDBw8AAM7Ozi/dRtJgU6vV2lCzs7OTshQiIqqgTE1NAQAPHjyAg4PDSw9LSjp4pPCcmpmZmZRlEBFRBVeYE8UZi1EhRkXy8CMREb1ISXKiQgQbFc/atWthY2MjdRlERBUag60UhgwZAoVCAYVCAWNjY9SvXx9ffvkl8vPzy3W//fv3x40bN8p1Hy/z37YbGRnB0dERb7zxBlavXg2NRlOi52JQ60bh72ThwoVFlu/YsUPvR0MKXxsKhQLm5uZo0KABhgwZgvPnz5f4uTp16oTx48frvkgCAISEhEChUMhyRDqDrZS6deuGuLg4/PPPP5g0aRJmz56Nr7766pnr5ubm6mSfpqamcHBw0MlzlUVh22NjY/HXX3+hc+fOGDduHN56661yD3d6NhMTEyxatAiPHz+WuhSsWbMGcXFxuHr1KlatWoX09HR4eXlh/fr1UpdWZfz3A8azbrNnz5a6xHLFYCsllUoFJycn1KlTBx9//DF8fHywa9cuAAWfoPv06YOgoCDUqFEDjRo1AgDcvXsX/v7+sLGxga2tLXr37o3Y2FgAwIEDB2BiYvLUp6dx48ahS5cuAJ7dw/n+++9Rr149GBsbo1GjRvj111+1j8XGxkKhUCA8PFy7LDk5GQqFAiEhIQCAx48fY+DAgbC3t4epqSkaNGiANWvWFKvtNWvWRKtWrTB9+nTs3LkTf/31F9auXatdb9myZXB3d4e5uTlcXFwwevRopKenAyj4tDh06FCkpKQ89cf266+/ok2bNrC0tISTkxMGDBigHepLz+bj4wMnJycsWLDgheudPHkSHTp0gKmpKVxcXPDpp58iIyMDALBy5Uo0b95cu25hj++HH34osp8ZM2a8cB+F1xu5urrizTffxJYtWzBw4ECMHTtWG7wPHz7E+++/j5o1a8LMzAzu7u74448/tM8xZMgQHDt2DCtWrNC+PmJjY6FWqzF8+HDUrVsXpqamaNSoEVasWFHin5fcxcXFaW/Lly+HlZVVkWWfffaZZLXp6oP+izDYdMTU1LTIL+zw4cO4fv06Dh48iN27dyMvLw++vr6wtLTEiRMnEBoaCgsLC3Tr1g25ubno2rUrbGxssHXrVu1zqNVqbNq0CQMHDnzmPrdv345x48Zh0qRJuHLlCj766CMMHToUR48eLXbdX3zxBSIjI/HXX38hKioK33//PapXr17i9nfp0gUeHh7Ytm2bdplSqcQ333yDq1evYt26dThy5AimTJkCAGjXrt1Tf3CFf2x5eXmYO3cuIiIisGPHDsTGxmLIkCElrqkqMTAwwPz58/Htt9/i33//feY6N2/eRLdu3dC3b19cunQJmzZtwsmTJzF27FgAQMeOHREZGYnExEQAwLFjx1C9enXth6C8vDycPn0anTp1KnF9EyZMQFpaGg4ePAgAyM7ORuvWrbFnzx5cuXIFH374IQYNGoQzZ84AAFasWAFvb2+MHDlS+/pwcXGBRqNBrVq1EBwcjMjISMycORPTp0/H5s2bS1yTnDk5OWlv1tbWUCgURZZZWFho1z1//jzatGkDMzMztGvXDtevXy/yXDt37kSrVq1gYmICNzc3zJkzp8iRmTt37qB3796wsLCAlZUV/P39kZCQoH189uzZ8PT0xM8//4y6devCxMQE69evh52dHXJycorsq0+fPhg0aFDZfwBCQllZWSIyMlJkZWVJWUaJBQQEiN69ewshhNBoNOLgwYNCpVKJzz77TPu4o6OjyMnJ0W7z66+/ikaNGgmNRqNdlpOTI0xNTcX+/fuFEEKMGzdOdOnSRfv4/v37hUqlEo8fPxZCCLFmzRphbW2tfbxdu3Zi5MiRRWrr16+f6NGjhxBCiJiYGAFAXLx4Ufv448ePBQBx9OhRIYQQfn5+YujQoaVq+5P69+8vmjRp8txtg4ODhZ2dnfb+k+15nrNnzwoAIi0trdh1ViX//Z20bdtWDBs2TAghxPbt28V//8SHDx8uPvzwwyLbnjhxQiiVSpGVlSU0Go2ws7MTwcHBQgghPD09xYIFC4STk5MQQoiTJ08KIyMjkZGR8dxaAIjt27c/tTwrK0sAEIsWLXrutj179hSTJk3S3u/YsaMYN27cC9suhBBjxowRffv2fel6uqLRaERGTp4kt/++fxTX8/7Ojh49KgAILy8vERISIq5evSo6dOgg2rVrp13n+PHjwsrKSqxdu1bcvHlTHDhwQLi6uorZs2cLIYRQq9XC09NTvPbaa+LcuXPi77//Fq1btxYdO3bUPsesWbOEubm56Natm7hw4YKIiIgQmZmZwtraWmzevFm7XkJCgjA0NBRHjhx5ZjtKkheSzzyiKxqNBomJibC3t4dSWf4d0d27d8PCwgJ5eXnQaDQYMGBAkePW7u7uMDY21t6PiIhAdHQ0LC0tizxPdnY2bt68CQAYOHAg2rZti/v376NGjRrYsGEDevbs+dwBFlFRUfjwww+LLGvfvn2JDs18/PHH6Nu3Ly5cuIA333wTffr0Qbt27Yq9/X8JIYoMVjh06BAWLFiAa9euITU1Ffn5+cjOzkZmZuYLr108f/48Zs+ejYiICDx+/Fg7KOXOnTto2rRpqWrTO40GyEwCzKoDeng9Flq0aBG6dOnyzENNERERuHTpEjZs2KBdJoSARqNBTEwMmjRpgtdffx0hISHw8fFBZGQkRo8ejcWLF+PatWs4duwYXnnllVJddyqEAPD/h2yr1WrMnz8fmzdvxr1795Cbm4ucnJxiPfeqVauwevVq3LlzB1lZWcjNzYWnp2eJayqtrDw1ms7cr7f9/Vfkl74wM9bt23ZQUBA6duwIAJg6dSp69uyJ7OxsmJiYYM6cOZg6dSoCAgIAAG5ubpg7dy6mTJmCWbNm4fDhw7h8+TJiYmLg4uICAFi/fj2aNWuGs2fP4pVXXgFQcPhx/fr1sLe31+53wIABWLNmDfr16wcA+O2331C7du1SHRF4kiwORWo0GgQFBWH48OEICgoq8ei80ujcuTPCw8Pxzz//ICsrC+vWrYO5ubn28f/+HwDS09PRunVrhIeHF7nduHEDAwYMAAC88sorqFevHjZu3IisrCxs3779uYchi6Mw4AvfVICnL27s3r07bt++jQkTJuD+/fvo2rVrqY+/R0VFoW7dugAKzu+99dZbaNGiBbZu3Yrz589j1apVAF58jD0jIwO+vr6wsrLChg0bcPbsWWzfvv2l21UoGg1wYgmwc2zBv3p4PRZ6/fXX4evri2nTpj31WHp6Oj766KMir7+IiAj8888/qFevHoCCkYghISE4ceIEWrZsCSsrK23YHTt2TPsGWFJRUVEAoH19fPXVV1ixYgU+//xzHD16FOHh4fD19X3p73jjxo347LPPMHz4cBw4cADh4eEYOnRo5XltVEAtWrTQ/r9wuqrCc9oRERH48ssvYWFhob0VHh7OzMxEVFQUXFxctKEGAE2bNoWNjY32dw4AderUKRJqADBy5EgcOHAA9+7dA1AwhqBwhG9ZyaLHlpiYiLCwMMTHxyMsLAyJiYlwdHQs132am5ujfv36xV6/VatW2LRpExwcHGBlZfXc9QYOHIgNGzagVq1aUCqV6Nmz53PXbdKkCUJDQ7WfpgAgNDRU26spfCHFxcWhZcuWAFBkIEkhe3t7BAQEICAgAB06dMDkyZOxZMmSYrcNAI4cOYLLly9jwoQJAAp6XRqNBkuXLtUG7JPnQYyNjaFWq4ssu3btGh4+fIiFCxdq/1jOnTtXolokl5kE/HsOSE8o+DczCbDQ32jWhQsXwtPTUztoqVCrVq0QGRn5wtdtx44dMX78eAQHB2s/OXfq1AmHDh1CaGgoJk2aVKqaCs+n+vj4ACh4nfbu3RsffPABgIIPpzdu3CjSI3/W6yM0NBTt2rXD6NGjtcsKj3joi6mRASK/9NXrPv+7b10zMjLS/r8wVAo7B+np6ZgzZw7eeeedp7YzMTEp9j6e/KAPAC1btoSHhwfWr1+PN998E1evXsWePXtKWv4zySLY7O3t4eXlhbCwMHh5eT31yaAiGDhwIL766iv07t0bX375JWrVqoXbt29j27ZtmDJlCmrVqqVdb/bs2QgKCsK7774LlUr13OecPHky/P390bJlS/j4+ODPP//Etm3bcOjQIQAFA1ratm2LhQsXom7dunjw4MFTI9pmzpyJ1q1bo1mzZsjJycHu3bvRpEmTF7YlJycH8fHxUKvVSEhIwL59+7BgwQK89dZbGDx4MACgfv36yMvLw7fffgs/Pz+EhoYWGV0HAK6urkhPT8fhw4fh4eEBMzMz1K5dG8bGxvj2228xatQoXLlyBXPnzi3xz1tSZtWBWm0KQq1Wm4L7euTu7o6BAwfim2++KbL8888/R9u2bTF27FiMGDEC5ubmiIyMxMGDB7Fy5UoABZ/eq1Wrht9//x27d+8GUBBsn332GRQKBdq3b//S/ScnJyM+Ph45OTm4ceMGfvzxR+zYsQPr16/XHlZv0KABtmzZglOnTqFatWpYtmwZEhISigSbq6srwsLCEBsbCwsLC9ja2qJBgwZYv3499u/fj7p16+LXX3/F2bNntT1BfVAoFDo/HFhRtWrVCtevX3/uh6EmTZrg7t27uHv3rvaDaGRkJJKTk4t12mDEiBFYvnw57t27Bx8fnyI9vzIpxrnHcqPLwSNqtVrEx8cLtVqtg8pe7EUDKF70eFxcnBg8eLCoXr26UKlUws3NTYwcOVKkpKQUWe/VV18VAJ46ifqsk8DfffedcHNzE0ZGRqJhw4Zi/fr1RR6PjIwU3t7ewtTUVHh6eooDBw4UGTwyd+5c0aRJE2FqaipsbW1F7969xa1bt17YNgACgDA0NBT29vbCx8dHrF69+qmf/bJly4Szs7MwNTUVvr6+Yv369QKAdjCMEEKMGjVK2NnZCQBi1qxZQgghfv/9d+Hq6ipUKpXw9vYWu3btemoQTIWnVguRllDwbzl71ustJiZGGBsbiyf/xM+cOSPeeOMNYWFhIczNzUWLFi1EUFBQkXV69+4tDA0NtYN11Gq1qFatmmjbtu1Layl8bQAQJiYmol69eiIgIECcP3++yHoPHz4UvXv3FhYWFsLBwUHMmDFDDB48uEg7rl+/Ltq2bStMTU0FABETEyOys7PFkCFDhLW1tbCxsREff/yxmDp1qvDw8Cj+D6yKedngkf/+PV68eFH7sxZCiH379glDQ0Mxe/ZsceXKFREZGSn++OMPERgYKIQoGEjj6ekpOnToIM6fPy/CwsKeOXjkeb+f5ORkYWZmJoyNjcXGjRtf2I6S5IVsgo2IiJ5WlmAToiDc2rVrJ0xNTYWVlZV49dVXxU8//aR9/Pbt26JXr17C3NxcWFpain79+on4+Hjt4y8KNiGEGDRokLC1tRXZ2dkvbEdJ8kIhxH9GFuhZdnY2YmJitNc2EBFR1dK1a1c0a9bsqUPnTypJXlSNA8VERFShPH78GCEhIQgJCcF3332n0+dmsBERkd61bNkSjx8/xqJFi54awVtWDDYiItK7wnlyy4MsLtAmIiIqVCGCTcLxK0REVAmUJCckDbbCK94zMzOlLIOIiCq4wpz470wpzyPpOTYDAwPY2Nho5yUzMzPT+zf+EhFRxSWEQGZmJh48eAAbGxsYGLx8WjFJr2MDCoqOj4+X5deTExGRbhR+gW1xOj+SB1shtVr91MzzRERERkZGxeqpFaowwUZERKQLFWJUJBERka4w2IiISFYYbEREJCsMNiIikhUGGxERyQqDjYiIZIXBRkREsvL/AJxvSFx1sy9ZAAAAAElFTkSuQmCC\n"
- },
- "metadata": {},
- "output_type": "display_data"
- }
- ],
- "source": [
- "# Querying using indexing\n",
- "fig = plot_results_panel_2d(cycle,\n",
- " query=[0, 2, 4],\n",
- " subplot_kw=dict(figsize=(8,3), gridspec_kw={\"bottom\": 0.25})\n",
- " );\n",
- "fig.supxlabel('x1', y=0.1)\n",
- "fig.suptitle('Cycles 0, 2, 4')\n",
- "\n",
- "# Last Cycle\n",
- "fig = plot_results_panel_2d(cycle,\n",
- " query=[-1],\n",
- " subplot_kw=dict(figsize=(4,4), gridspec_kw={\"bottom\": 0.25})\n",
- " );\n",
- "fig.supxlabel('x1', y=0.1)\n",
- "fig.supylabel('y', y=0.55, x='-.05')\n",
- "fig.suptitle('Last Cycle')"
- ],
- "metadata": {
- "collapsed": false
- }
- },
- {
- "cell_type": "code",
- "execution_count": 8,
- "outputs": [
- {
- "data": {
- "text/plain": "Text(0.5, 0.1, 'x1')"
- },
- "execution_count": 8,
- "metadata": {},
- "output_type": "execute_result"
- },
- {
- "data": {
- "text/plain": "",
- "image/png": "iVBORw0KGgoAAAANSUhEUgAAAtgAAAEVCAYAAADaTZLyAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8o6BhiAAAACXBIWXMAAA9hAAAPYQGoP6dpAABiWUlEQVR4nO3dd1zV9ffA8de97I3KcuDeC0QRNc0sy8xMG2pOxFWplZmZZqVlpratLCsVnDkqtbQcmSNTQUVUxC1uQFD25t737w9+3q84AS9cuJzn43EfeO9933vP58rhnvv+vIdGKaUQQgghhBBCGIXW1AEIIYQQQghhTqTAFkIIIYQQwoikwBZCCCGEEMKIpMAWQgghhBDCiKTAFkIIIYQQwoikwBZCCCGEEMKIpMAWQgghhBDCiKTAFkIIIYQQwoikwDYBpRQpKSnIHj9ClCzJNSFKh+SaEAVJgW0CqampuLi4kJqaaupQADh37hwajYaIiAhThyKEUUmuCVE6JNeEKEgK7HIgNjaWV199lbp162JjY4O3tzc9e/Zk69atpg6tgMOHD9OpUydsbW3x9vbmk08+MXVIQhRJeci17du306tXL6pWrYqDgwO+vr4sW7bM1GEJUSTlIddudvr0aZycnHB1dTV1KKKcsDR1AOLezp07x0MPPYSrqyuffvopLVq0IDc3l02bNjFmzBiOHz9u6hABSElJ4YknnqBr167MmzePI0eOMGzYMFxdXRk1apSpwxPivspLru3evZuWLVvy9ttv4+npyfr16xkyZAguLi48/fTTpg5PiPsqL7l2Q25uLv3796dTp07s3r3b1OGI8kKJUpecnKwAlZycfN+23bt3V9WrV1dpaWm33ZeYmKiUUiooKEj16NGjwH05OTnK3d1dzZ8/XymllE6nU7Nnz1b16tVT1tbWytvbW3300UdKKaWio6MVoA4ePGh4/JEjR9STTz6pHBwclIeHhxo0aJCKj4+/a5zfffedqlSpksrOzjbc9vbbb6tGjRrd9xiFKCnmmGt38tRTT6mgoKAiPUYIYzLnXJs4caIaNGiQCg4OVi4uLvdtL4RSSskQkTLs+vXrbNy4kTFjxuDg4HDb/TdOVY0YMYKNGzcSExNjuG/9+vVkZGTQr18/ACZPnsysWbN47733iIqKYvny5Xh6et7xdZOSknj00Udp1aoV+/fvZ+PGjcTFxdG3b9+7xrpnzx4efvhhrK2tDbd169aNEydOkJiYWJzDF6LUlKdcu5Pk5GQqV65cpMcIYQrlLdf++ecfVq9ezdy5c4t5xKLCMnWFXxEV9pt+aGioAtRvv/123+ds2rSpmj17tuF6z5491dChQ5VSSqWkpCgbGxv1008/3fGxt37Tnz59unriiScKtLl48aIC1IkTJ+74HI8//rgaNWpUgduOHj2qABUVFXXf+IUoCeaYa7dauXKlsra2VpGRkYVqL0RJMMdcS0hIUN7e3mrHjh1KKSU92KJIpAe7DFNFWO5oxIgRBAcHAxAXF8dff/3FsGHDADh27BjZ2dk89thjhXquQ4cOsW3bNhwdHQ2Xxo0bA3DmzJkiHoUQZV95zbVt27YRFBTETz/9RLNmzQp9DEKYSnnKtZEjRzJgwAAefvjhQscsxA0yybEMa9CgARqNplATPoYMGcKkSZPYs2cPu3fvpk6dOnTq1AkAOzu7Ir1uWloaPXv2ZPbs2bfdV7Vq1Ts+xsvLi7i4uAK33bju5eVVpNcXorSVp1y7YceOHfTs2ZMvv/ySIUOGFOl1hTCV8pRr//zzD7///jufffYZkP/lQK/XY2lpyY8//mgo9kU5oNdDRgLYu4G2dPqWpQe7DKtcuTLdunVj7ty5pKen33Z/UlKS4d9VqlShd+/eBAcHExISQlBQkOG+Bg0aYGdnV+jlj/z8/Dh69Ci1a9emfv36BS53GjMH0L59e3bu3Elubq7hti1bttCoUSMqVapUyCMWwjTKU65B/lJ9PXr0YPbs2bJKjyhXylOu7dmzh4iICMPlww8/xMnJiYiICJ599tmiHbgwHb0e/v0M1o3N/6nXl87rmnaESsVUlNnWZ86cUV5eXqpp06bql19+USdPnlRRUVFqzpw5qnHjxgXabt68WVlbWysLCwt1+fLlAvdNmzZNVapUSS1atEidPn1a7dmzxzAT+9axapcvX1bu7u7qhRdeUGFhYer06dNq48aNaujQoSovL++OcSYlJSlPT081ePBgFRkZqVasWKHs7e3VDz/8UIx3SAjjMMdc++eff5S9vb2aPHmyiomJMVyuXbtWjHdICOMwx1y7lYzBLqdS45Ra2kepeQ/n/0yNK5WXlQLbBIryh0gppa5cuaLGjBmjatWqpaytrVX16tXVM888o7Zt21agnV6vV7Vq1VJPPfXUbc+h0+nURx99pGrVqqWsrKxUzZo11ccff6yUuvNyRidPnlTPPvuscnV1VXZ2dqpx48Zq3LhxSq/X3zXOQ4cOqY4dOyobGxtVvXp1NWvWrEIdnxAlxRxzLTAwUAG3XTp37lyoYxSiJJhjrt1KCuxySqdTavvs/OJ6++z866VAo1QRZhwIo0hJScHFxYXk5GScnZ2N9rxpaWlUr16d4OBgnnvuOaM9rxDlleSaEKVDck2UaSYYgy2THM2AXq8nISGBzz//HFdXV5555hlThySEWZJcE6J0SK4Jo9JqwdGjVF9SCmwzcOHCBerUqUONGjUICQnB0lL+W4UoCZJrQpQOyTVR3slvrBmoXbt2kdYWFUIUj+SaEKVDck2Ud7JMnxBCCCGEEEYkBbYQQgghhBBGJAW2EEIIIYQQRiQFthBCCCGEEEYkBbYQQgghhBBGZNYF9syZM/H398fJyQkPDw969+7NiRMn7vu41atX07hxY2xtbWnRogV//vlngfuVUrz//vtUrVoVOzs7unbtyqlTp0rqMIQoEy5ezyD8QqKpwxBCCCGMQq8vuZVqzLrA3rFjB2PGjGHv3r1s2bKF3NxcnnjiCdLT0+/6mN27d9O/f3+GDx/OwYMH6d27N7179yYyMtLQ5pNPPuHrr79m3rx5hIaG4uDgQLdu3cjKyiqNwxKi1J2+mkqfeXsIXBhG1JUUU4cjhBBCPJBradn0+WEPfx2JKZHnr1BbpcfHx+Ph4cGOHTt4+OGH79imX79+pKens379esNt7dq1w9fXl3nz5qGUolq1arz55ptMmDABgOTkZDw9PQkJCeHFF1+8bxwltaWsECXh8KUkAheGkZiRSwMPR5YMD8DLxdbUYRWK5JoQpUNyTZQn5xLSGRocxrlrGXg627DjrS7YWlkY9TXMugf7VsnJyQBUrlz5rm327NlD165dC9zWrVs39uzZA0B0dDSxsbEF2ri4uBAQEGBoc6vs7GxSUlIKXIQoD/aevcaAn0JJzMjFp4YLq15qX6aLa8k1IUqH5Joor8IvJPLc97s5dy2DGpXsWDaindGLa6hABbZer2fcuHE89NBDNG/e/K7tYmNj8fT0LHCbp6cnsbGxhvtv3Ha3NreaOXMmLi4uhou3t/eDHIoQpWLrsTgCF4aRlp1H+7pVWDayHZUcrE0d1j1JrglROiTXRHm06WgsA37ay/X0HFpUd+G30R2o7+FYIq9VYQrsMWPGEBkZyYoVK0r9tSdPnkxycrLhcvHixVKPQYiiWBdxmZeWHCA7T0/XJp4EB/njaGNp6rDuS3JNiNIhuSbKm0W7z/Hy0gNk5erp0sidFaPa4eFUcmdky/4nphGMHTuW9evXs3PnTmrUqHHPtl5eXsTFxRW4LS4uDi8vL8P9N26rWrVqgTa+vr53fE4bGxtsbGwe4AiEKD1L9pzj/d+PohQ826o6n7zQEiuL8vFdXHJNiNIhuSbKC71eMWvjcX7ceRaA/m29md6rOZYl/LlWPj41i0kpxdixY1mzZg3//PMPderUue9j2rdvz9atWwvctmXLFtq3bw9AnTp18PLyKtAmJSWF0NBQQxshyiOlFHO3nea9dfnFdWD7Wnzex6fcFNdCCCHEzbJydby24qChuH6rWyM+frZFiRfXYOY92GPGjGH58uWsW7cOJycnwxhpFxcX7OzsABgyZAjVq1dn5syZALz++ut07tyZzz//nB49erBixQr279/Pjz/+CIBGo2HcuHF89NFHNGjQgDp16vDee+9RrVo1evfubZLjFOJBKaWY+df/vuG/9mh93ni8IRqNxsSRCSGEEEWXlJHDqMUHCDt3HSsLDZ+80JJnW917FIMxmXWB/f333wPwyCOPFLg9ODiYoUOHAnDhwgW02v99k+nQoQPLly/n3Xff5Z133qFBgwasXbu2wMTIiRMnkp6ezqhRo0hKSqJjx45s3LgRW9uyu7qCEHej0yumrDnCin35Yyjf7dGEEZ3qmjgqIYQQ4iZ6PWQkgL0baO/dA33xegZDg8M4E5+Ok40l8wa35qH6bqUUaL4KtQ52WSHrhYqyIidPzxsrI9hwJAatBmY915K+/uazGoDkmhClQ3JNlCi9Hv79DC7thxptoNOEuxbZRy4lExSyj4S0bKq62BIc5E9jr9L/nTTrHmwhxN1l5OTx8tJwdp6Mx8pCw9cvtqJ7i6r3f6AQQghRmjIS8ovrtLj8nxkJ4OhxW7Ntx68yZnk4GTk6Gns5ERLU1mR7N0iBLUQFlJyZy/CQfew/n4idlQU/DG7Nww3dTR2WEALYduIqNhZaOpTyKW0hyix7t/ye6xs92Pa358by0Au8ty4SnV7Rsb4b3w/yw8nWygTB5pMCW4gKJj41myELwzgWk4KzrSXBQf60rnX33U2FEKUjT6fny79PMnfbGdwcrfnztU54OMvcHiHQavOHhdxhDLZSis83n+TbbacBeKF1DWY+18LkK2BJgS1EBXIpMYPBC8KITkjHzdGGJcPb0qSqjJcUwtSupmbx2s8H2Xv2OgDdm1fF2c50vW9ClDla7W3DQnLy9Lz962HWHLwMwOuPNWBc1wZlYgUsKbCFqCBOX01j8IJQYpKzqO5qx9IRAdRxczB1WEJUeHvOXOPVnw+SkJaNg7UFM59vyTM+1UwdlhBlWkpWLi8vOcDuM9ew0GqY+WyLMjVJXwpsISqAyMvJDFkYxvX0HOp7OLJ0eIDJJn4IIfLp9Yrvd5zh880n0Cto5OnEd4P8qOfuaOrQhCjTriRlEhS8jxNxqThYW/DdoNZ0LmPziKTAFsLMhZ69xohF+0nNzqNFdRcWDWtLZQdrU4clRIWWmJ7DG6si2H4iHsgfNzq9V3PsrC1MHJkQZVvUlRSCQsKIS8nGw8mGhUP9aV7dxdRh3UYKbCHM2LbjV3l56QGy8/QE1KnM/MA2Jp1VLYSAA+cTeXV5OFeSs7C10vJhr+b0bVN2Tm0LUVb9eyqeV5aGk5adRwMPR0KGtaW6q52pw7ojKbCFMFO/H7rC+JUR5OkVjzX2YO5AP2ytpHdMCFNRSrFgVzSz/jpOnl5R182B7wb5mWQTDCHKm9X7LzL5tyPk6RXt6lbmh0FtcLF/wA6jIuwOWVRSYAthhpaFnufdtZEoBb18q/FZHx+TL1kkREWWnJnLxF8OseloHABPt6zKrOdb4mgjH8NC3ItSiq+3nubLv08C+Z9pn7zQEhvLB+wwKsLukMUhmS2Emfl++xlmbzwOwOB2tfjgmWZotaZfskiIiirycjKjl4Vz4XoG1hZa3nu6CYPa1SoTS4mJikev1xMfH4+7uztaI/faGluuTs+7ayJZuf8iAK88Uo+3nmhknM+0Qu4OWVxSYAthJpRSzN54gnk7zgAwpks9JjzRSD7EhTARpRTLwy7wwR9R5OTpqVHJjrkD/PDxdjV1aKKC0uv1zJgxg9DQUAICApgyZUqZLbLTsvMYsyycHSfj0Wrgw17NGdSulvFeoBC7Qz4IKbCFMAM6veK9dZEsD70AwDtPNWbUw/VMHJUQ5dwDjM9Mz85jypojrI24AkDXJp583sfnwceMCvEA4uPjCQ0NJTY2ltDQUOLj4/H09DR1WLf1qselZBEUvI+omBTsrCz4dkArHmti5DjvsTukMUiBLUQ5l5OnZ/yqCNYfjkGrgY+fbcGLbWuaOiwhyrcHGJ95Mi6VV5Ye4Ex8OhZaDW8/2YiRnerK2SRhcu7u7gQEBBh6sN3dTb929K296n1GvMbwRQe4nJSJm6M1CwL9S+6szx12hzQWKbCFKMcyc3S8suwA20/EY2WhYc6LrXiqRVVThyVE+VfM8Zm/hV9iyppIMnN1eDnb8u2AVrSpXbkUAhbi/rRaLVOmTClTY7Bv7lXfGnmRlfP2kJato66bAyFBbalZxd7UIRaLFNhClFMpWbkMD9nHvnOJ2Fpp+WFwmzK3k5UQ5VYRx2dm5eqY9vtRVuzLn4zVqYEbX/XzpYqjTWlEK0ShabXaMjEs5IYbveqbjl/ngvej6LN1tKlViZ+GtKFSMTZFKyuTOKXAFqIcSkjLJnBhGEevpOBka0nwUH/pJRPCmIowPvNsfBqjl4VzPDYVjQbGPdaQsY/Wx0JW7xHivjQaDVU6vsil9Pxl+J5q4cUXfX2LtW9DWZrEKQW2EOXM5aRMBs8P5WxCOm6O1iwa1pZm1creNrFClHuFGJ+54XAMb/96mLTsPNwcrZnzYiseqm/c1QiEMFd5Oj3T/jjK0r35E/SHd6zDlKeaFHsZvrI0iVMKbCHKkbPxaQyaH8qV5Cyqu9qxZHhb6ro7mjosISqc7DwdH284xqI95wFoW7sy3wxohaezrYkjE6J8yMjJ47WfD/L3satoNPBej6YM61jngZ6zLE3ilAJbiHIi8nIygQvDuJaeQ113B5YOD6Caq52pwxKiwrl4PYOxy8M5dCkZyN/84s3HG2Ipu6UKUSgJadkMD9nHoUvJ2FhqmfOiL082f/AJ+mVpEqcU2EKUA2HR1xkeso/U7DyaVXNm0bC2uMnkKSFK3dZjcYxfdYjkzFxc7Kz4sp8PjzYuOxPGhCjrzsSnMTQ4jIvXM6lkb8X8wDa0rmW8OURlZRKnFNhClHHbTlzllaUHyMrV07ZOZeYHtsHZVjarEKI05en0fLr5BD/sOAuAj7crcwe0okal8rmEmBCmsP/cdUYs3k9SRi41K9sTEuRvtsMcpcAWogz749AV3lgZQZ5e8WhjD74b6FesmdVCiOKLS8ni1eUHCTt3HYChHWrzzlNNsLaUISFCFNZfR2J4fWUEOXl6fGq4sGCov1mfiZUCW4gy6uewC7yz5ghKQS/fanzWxwcrGeMpRKnadSqB11cc5Fp6Do42lnzyQkvZzEmIIpr/71lm/HkMpaBrE0++7u+LvbV5l6DmfXRClFPzdpxh1l/HARgYUJPpvZoXe9kiIUTR6fSKb/45xZytp1AKmlR15ruBftRxczB1aEKUG3q94qMNx1j4XzQAg9vVYtozzSrEGvFSYAtRhiil+GTTCb7ffgaA0Y/U461ujdBozP+PkRBlRUJaNm+sjODfUwkA9G/rzdSezWR4lhBFkJWr442VEfwVGQvApO6NeenhuhXm88yszzfv3LmTnj17Uq1aNTQaDWvXrr1n+6FDh6LRaG67NGvWzNBm2rRpt93fuHHjEj4SURHo9Ip310YaiutJ3Rsz8cnGFeaPkRBlQVj0dXp8/S//nkrAzsqCL/r6MPO5llJcC1EE19NzGPjTXv6KjMXaQsPX/Vvxcud6FerzzKx7sNPT0/Hx8WHYsGE899xz920/Z84cZs2aZbiel5eHj48Pffr0KdCuWbNm/P3334brlpZm/TaKUpCr0zN+1SH+OHQFjQY+frYF/dvWNHVYQlQYer3ip3/P8smmE+j0ivoejnw30I+Gnk6mDk2IcuX8tXSGLgwj+loGztpsfmpzhYAWT5o6rFJn1pVh9+7d6d69e6Hbu7i44OLyvy2n165dS2JiIkFBQQXaWVpa4uXlZbQ4RcWWmaNjzPJw/jl+FSsLDV/28+XpltVMHZYQFUZSRg4TVh/i72NXgfxJxR8/2wIHG7P+iBTC6CIuJjE8ZB/X0nOobpVGiMdKGmRYQkZfcPQwdXilSv563MOCBQvo2rUrtWrVKnD7qVOnqFatGra2trRv356ZM2dSs6b0NoqiS8nKZUTIfsLOXcfWSsv3g1rTpVHF+iMkhCkdupjE6GXhXE7KxNpSy/tPN2VgQM0KdSpbCGPYEhXHqz+Hk5Wrp3k1ZxY2OoFHgiXUaAP2bqYOr9RJgX0XV65c4a+//mL58uUFbg8ICCAkJIRGjRoRExPDBx98QKdOnYiMjMTJ6c6nErOzs8nOzjZcT0lJKdHYRflwLS2bwOAwIi+n4GRjycIgf/xrG283q4pIck0UllKKJXvPM319FLk6Rc3K9nw30I/m1V3u/2AhuSYKWLznHNN+P4pewSON3Jk7wA8Hq4cgIyG/uDbhluWmUvGOuJAWLVqEq6srvXv3LnB79+7d6dOnDy1btqRbt278+eefJCUlsWrVqrs+18yZMw3DT1xcXPD29i7h6EVZdyUpk74/7CHycgpVHKz5eVQ7Ka6NQHJNFEZqVi5jfz7I++uOkqtTdGvmyfrXOkpxXQSSawLy5y7M/OsY76/LL65f9Pdm/pA2+cOrtNr8YSEVsLgG0CillKmDKA0ajYY1a9bcVjDfiVKKhg0b8vTTT/Pll1/et72/vz9du3Zl5syZd7z/Tt/0vb29SU5OxtnZudDHIMxDdEI6g+aHcjkpk2outiwZEUA9M90qtrRJron7ORaTwuhl4UQnpGOp1TD5qSYMe6i2DAkpIsk1kZ2nY8Lqw/xx6AoAE55oyJgu9SWX/p8MEbmDHTt2cPr0aYYPH37ftmlpaZw5c4bBgwfftY2NjQ02Nua7HagovKgrKQxZGEpCWg513RxYMiKA6q52pg7LbEiuibtRSrFq/0XeX3eU7Dw91Vxs+XagH341K5k6tHJJcq1iS87IZeSS/YRFX8dSq2HW8y15oXUNU4dVpph1gZ2Wlsbp06cN16Ojo4mIiKBy5crUrFmTyZMnc/nyZRYvXlzgcQsWLCAgIIDmzZvf9pwTJkygZ8+e1KpViytXrjB16lQsLCzo379/iR+PKN/2n7tOUMg+UrPyaFrVmcXD2+LmKB9QQpS0jJw83lt7lF/DLwH5Y0S/7OtLJQdrE0cmRPlzKTGDocH7OH01DUcbS+YNak3HBhVvEuP9mHWBvX//frp06WK4Pn78eAACAwMJCQkhJiaGCxcuFHhMcnIyv/76K3PmzLnjc166dIn+/ftz7do13N3d6dixI3v37sXd3b3kDkSUe9tPXOXlpQfIytXTplYlFgz1x8XOytRhCWH2Tl9NZfSycE7GpaHVwJtPNOKVzvXQVoCtmoUwtsjLyQSF7CM+NRsvZ1uCg/xpUlWGBN1JhRmDXZakpKTg4uIiY9UqiA2HYxi38iC5OkXnhu7MG9QaO2vZFa40SK5VbOsiLjP5tyNk5Ohwd7Lh6xdb0b5eFVOHZZYk18zf9hNXGb0snIwcHY29nAgO8qeqiwxxvBuz7sEWwtRW7rvA5N+OoFfwdMuqfNHXF2vLijmjWojSkpWrY/r6KJaF5p+hbF+3CnP6++LhZGviyIQon1buu8A7ayLR6RUP1a/C94Na42wrZ2HvRQpsIUrIjzvP8PGfxwHo37YmH/VujoWclhaiRF24lsHo5QeIvJy/LvOrj9ZnXNeGkntCFINSii+3nOTrf/Lnsz3nV51Zz7WUjqJCkAJbCCNTSvHZ5hPM3XYGgJc612XSk41l6SIhStimo7FMWH2I1Kw8Ktlb8WU/Xx6RnVGFKJacPD2TfjvMb+GXAXjt0fq88XhD+SwrJCmwhTAivV4x9fejLNl7HoCJTzZi9CP1TRyVEOYtV6dn9l/Hmb8rGgC/mq58O8CParIEphDFkpKVy+il4ew6nYCFVsOM3s15sW1NU4dVrkiBLYSR5Or0vLX6EGsjrqDRwPRezRnUrpapwxLCrF1JymTs8nDCLyQBMLJTHSY+2RgrCzmFLURxxCRnEhS8j+OxqdhbWzB3oB9d5ExQkUmBLYQRZOXqGLs8nL+PXcVSq+Hzvj708q1u6rCEMGvbT1zljZURJGbk4mRryWd9fOjWzMvUYQlRbh2PTWHown3EpmTh7mRD8FB/mld3MXVY5ZIU2EI8oNSsXEYs2k9o9HVsLLV8P8iPRxt7mjosIcyWTq/46u+TfLvtNEpB8+rOfDegNTWr2Js6NCHKrf9OJ/DykgOkZudR38OR4KH+eFeWnCouKbCFeADX03MYGhzG4UvJONlYsmCoP23rVDZ1WEKYraupWbz+cwR7zl4DYFC7mrzboym2VrK2vBDF9Vv4JSb+cpg8vaJtncr8NLgNLvayDN+DkAJbiGKKSc5k8IIwTl9No7KDNYuHtZVTaUKUoD1nrvHaioPEp2Zjb23BzOdayFAsIR6AUoq5207z2eaTQP5+DZ/39cHGUr6wPigpsIUohuiEdAbND+VyUiZVXWxZMjyA+h6Opg5LCLOk1yu+33GGzzefQK+goacj3w1sLTknxAPI0+l5d20kK/ZdBPKXlH27W2O0sma8UUiBLUQRRV1JYcjCMBLSsqnj5sCS4W2pUUnGqQlREhLTc3hjVQTbT8QD+RtdfNS7OfbW8vElRHGlZ+cxZnk420/Eo9XAtGeaMaR9bVOHZVbkL5QQRXDg/HWCgveRkpVHk6rOLB7WFncnG1OHJYRZOnA+kVeXh3MlOQsbSy3TezWnT5sastGFEA/gamoWw0L2EXk5BVsrLd/09+PxpjIx39ikwBaikHaejOelJQfIzNXRplYlFgz1x8VOJoEIYWxKKRb+d46Zfx4jT6+o4+bA3AF+NK3mbOrQhCjXTl9NJXDhPi4nZVLFwZoFQ/3x9XY1dVhmSQpsIQrhryMxvLbiILk6RacGbvwwuLWcohaiBKRk5TJx9WE2Ho0FoEeLqsx6vgVOtvJlVogHEXr2GiMX7yclK486bg6EBPlTq4qDqcMyW1IhCPOm10NGAti7gbZ4O7ut2n+RSb8eRq/yP+y/7OeLtaXsEifEzfR6PfHx8bi7u6MtZq5FXk5m9LJwLlzPwMpCw7s9mjKkfS0ZEiLETYqTa78fusKEVYfI0enxq+nK/EB/KjtYl3CkFZsU2MJ86fXw72dwaT/UaAOdJhS5yJ7/71k+2nAMgH5tvPn4uRZYyAxrIQrQ6/XMmDGD0NBQAgICmDJlSpGKbKUUy8Mu8MEfUeTk6anuasfcgX5y6lqIWxQ115RS/LjzLDP/Og5At2aezHmxlawbXwqkwBbmKyMhv7hOi8v/mZEAjh6FeqhSii+3nOTrf04DMOrhukzu3lh60oS4g/j4eEJDQ4mNjSU0NJT4+Hg8PQs3aSo9O48pa46wNuIKAI819uDzvj642kvvmhC3Kkqu6fSKD/44yuI95wEIeqg27/ZoKp1EpUTOcwvzZe+W33Pt6Jn/094tv1c77Wr+z7vQ6xXTfj9qKK4nPNFQimsh7sHd3Z2AgAC8vLwICAjA3d0dvV5PXFwc+nvk2sm4VJ75dhdrI65godUwuXtjfhrSRoprIe7i1lyrUqXKHfMsM0fHy0sPsHjPeTQaeLdHE6b2bCbFdSnSKKWUqYOoaFJSUnBxcSE5ORlnZ5kVX6JuHoMN9x0ykqvTM/GXw6w5eBmA6b2aMVjWBi23JNdKz83jQoH7nsb+LfwSU9ZEkpmrw9PZhm8H+OFfu7IpQhdGILlWem7kWpUqVZg5c+ZteXYtLZvhi/YTcTEJa0stX/Xz5akWVU0ddoUjQ0SEedNq/zcsJO3qPYeMZOXqGLv8IH8fi8NCq+HzPj70biXbMAtRGFqt1nCqOi4u7q6nsbNydUz7/ahh97iO9d346kVf3BxlPXkhCuNGrt0pzzIsHBkaHMb5axm42lvx05A28sXVRKTAFhXHjSEjN3qwb/RqA2nZeYxYtI+9Z69jbanluwF+dJWF94UolhunsW/0rN3o1Y5OSGf0snCOxaSg0cBrjzbgtccayGlrIYrh1jy7mGnJyMX/kZiRi3dlO0KC2lLP3dHUYVZYMkTEBORUmgndYdm+6+k5DA0O4/ClZBxtLPlpSBva16vyQM8pygbJNdO5dSmxP4/EMPGXw6Rl51HFwZo5L7aiYwO3+z/RPZ5TlB2Sa6ZxIyfCr+oYt/IQ2Xl6WtZwYUGg/wPtMiy59uCkB1tULDcPGQFik7MYvCCUU1fTqGRvxaJhbWlZw7Xwz2eEpQCFMEc3TmPn5On5eP1RQnafA6Bt7cp8M6AVns62RXq+B10KUAhzpNVq+fN0Bh+uj0Kp/FV4vhnQ6oE2QpNcMw4psEWFdf5aOgPnh3IpMRMvZ1uWjmhLfQ+noj3JAywFKIS5u5SYwZjlBzl0MQmAlzvXY8ITDbG0KPqH9YMsBSiEOdLrFR//eYz5u6IBGBhQkw+eaVas/LqZ5JpxSIEtKqTjsSkMXhBGfGo2tavYs2R4AN6V7Yv+RPcY1y1ERbb1WBzjVx0iOTMXFzsrvujrw2NNiv8hfbdx3UJURFm5Ot5cdYgNR2IAmPhkI17pXM8oy8lKrhmHjME2ARmrZlrhFxIJCt5HcmYujb2cWDy8LR5ORTtdXYCMwS6zJNdKX55Oz2ebTzJvxxkAfGq48O0Av+J9gb2FjAstuyTXSk9SRg4jF+9n37lErCw0fNbHh16+xl3xSnLtwUkPtqhQdp1KYNSS/WTk6GhdqxILA/1xsbd6sCe9ZVy3EBVVXEoWr/58kLDo6wAM7VCbd55qgrWlcT6gb14KUIiK6OL1DAKDwzgbn46TrSU/DG5Nh3rGP3MqufbgzPpryc6dO+nZsyfVqlVDo9Gwdu3ae7bfvn07Go3mtktsbGyBdnPnzqV27drY2toSEBBAWFhYCR6FMJaNkbEMC9lHRo6OTg3cWDK87YMX10IIIP/L61Nz/iUs+jqONpbMHeDHtGeaGa24FqKiO3wpiWe/+4+z8elUc7Hll5c7lEhxLYzDrP/ypaen4+Pjw9y5c4v0uBMnThATE2O4eHj8r3dy5cqVjB8/nqlTpxIeHo6Pjw/dunXj6tWrxg5fGNHq/RcZvewAOTo9T7XwYn5gmweaZS2EyKfXK+b8fYrBC0O5lp5DYy8nfh/7ED1ays5xQhjL1mNx9PthLwlpOTSt6syaMQ/RyKuIk/JFqTLrCqN79+507969yI/z8PDA1dX1jvd98cUXjBw5kqCgIADmzZvHhg0bWLhwIZMmTXqQcEUJWbArmunrowDo26YGM59rKRtbCGEE19KyGbcygn9PJQDwor83055phq2VhYkjE8J8LAs9z3trI9Er6NTAje8HtcbRxqzLN7Mg/0N34OvrS3Z2Ns2bN2fatGk89NBDAOTk5HDgwAEmT55saKvVaunatSt79uy56/NlZ2eTnZ1tuJ6SklJywQsDpRRf/n2Kr7eeAmBkpzq881QTo8yyFmWT5Frp2XfuOq8uP0hsSha2Vlpm9G7B861rmDosUUok10qeUopPN53gu+35E4b7tqnBjGdbYPWAy/CJ0iH/SzepWrUq8+bN49dff+XXX3/F29ubRx55hPDwcAASEhLQ6XS3Dfz39PS8bZz2zWbOnImLi4vh4u3tXaLHIfJPW3/wR5ShuJ7wREMprisAybWSp5Tix51nePHHvcSmZFHP3YHfx3aU4rqCkVwrWdl5OsatjDAU1+O6NmD28y2luC5HKswyfRqNhjVr1tC7d+8iPa5z587UrFmTJUuWcOXKFapXr87u3btp3769oc3EiRPZsWMHoaGhd3yOO33T9/b2luWMSkieTs/EXw/zW/hlAD7s1Ywh7WubNihRKiTXSlZyRi5vrj7E38fiAOjlW42Pn22Bg5yurnAk10pOcmYuLy3Zz96z17HUavj4uRb0bSNfYMob+at4H23btmXXrl0AuLm5YWFhQVxcXIE2cXFxeHl53fU5bGxssLGxKdE4Rb6sXB2v/XyQzVFxWGg1fNanJc+2kp61ikJyreQcvpTE6GXhXErMxNpCy/s9mzIwoKacFaqgJNdKxuWkTIKCwzgZl4ajjSXfDfTj4Yay0Ut5JOca7iMiIoKqVfNnw1tbW9O6dWu2bt1quF+v17N169YCPdrCNNKy8xgWso/NUXFYW2qZN6i1FNdCPCClFIv3nOOF7/dwKTGTmpXt+W10Bwa1qyXFtRBGdPRKMs999x8n49LwcLJh5UvtpLgux8y6BzstLY3Tp08brkdHRxMREUHlypWpWbMmkydP5vLlyyxevBiAr776ijp16tCsWTOysrKYP38+//zzD5s3bzY8x/jx4wkMDKRNmza0bduWr776ivT0dMOqIsI0EtNzGBqyj0MXk3CwtuCnwDayPqgQDygtO49Jvx5m/eH87ZifaOrJp318cLGT9eOFMKadJ+N5ZekB0nN0NPR0JDioLdVd7UwdlngAZl1g79+/ny5duhiujx8/HoDAwEBCQkKIiYnhwoULhvtzcnJ48803uXz5Mvb29rRs2ZK///67wHP069eP+Ph43n//fWJjY/H19WXjxo2y45EJxaVkMXhBKCfj0nC1t2JRUFt8vF1NHZYQ5dqxmBTGLAvnbEI6lloNk7o3ZnjHOtJrLYSRrd5/kcm/HSFPr2hftwrzBreWL7FmoMJMcixLUlJScHFxkckgRnDhWgYDF+zl4vVMPJ1tWDI8gIaesvi+yCe5Vjyr9l/kvbWRZOfpqepiy7cD/Ghdq5KpwxJlmORa0SmlmLP1FF/9nb/a1bOtqjP7+Zay+6mZMOsebGHeTsSmMnhBKFdTs6lVxZ6lwwPwrmxv6rCEKLcyc3S8ty6SXw5cAqBzQ3e+7OdLZQdrE0cmhHnJ1el557cjrP7/XBvTpR4TnmgkZ4jMiBTYolw6eCGRoJB9JGXk0tjLicXD2uLhbGvqsIQot87EpzF6aTgn4lLRauDNJxrxSud6aGXXUyGMKjUrl9HLwvn3VAIWWg3TezVnQEBNU4cljEwKbFHu/Hc6gZGL95ORo6NVTVeCh/rjai89bEIU1++HrjD518Ok5+hwc7Th6/6+MklYiBIQm5xFUMg+jsWkYGdlwXcD/ejS2MPUYYkSIAW2KFc2HY3l1eUHydHp6VjfjR8Gt5ZNLoQopuw8HdPXR7F0b/5k73Z1K/N1/1Z4OMnZICGM7URsKkODw4hJzsLN0YaFQ9vQsoarqcMSJUQqE1Fu/HrgEhN/PYxOr3iymRdz+vtiY2lh6rCEKJcuXMtgzPJwjlxOBmBsl/qM69oAS9mKWQij230mgZeWHCA1K4+67g4sCmorc4bMnBTYolwI/i+aD/6IAuCF1jWY9VwLKQSEKKbNR2N5c/UhUrPycLW34st+vnRpJKephSgJaw9e5q1fDpGrU/jXrsRPQ9rIsMYKQApsUabduozRsIfq8G6PJjLxSohiyNXp+WTjcX76NxqAVjVdmTvAj2qyoYUQRqeU4rvtZ/h00wkAerSoyud9fbC1kjOvFUGxCuzQ0FACAgKMHYsQBej1iukbogj+7xwA4x9vyKuP1pdljIQohpjkTMYuP8iB84kAjOhYh4lPNpY1d4UoAXk6Pe//fpTlofnzG0Z2qsPk7tI5VJEUq8Bu37499evXZ/DgwQwcOJC6desaOy5RweXp9Ez67YhhPd6pPZsS9FAdE0clRNHp9Xri4+Nxd3dHqzVNMbvjZDzjVhwkMSMXJ1tLPn3Bhyebe5kkFiFKSlnINYD07DzGLg9n24l4NBqY+nRThsrnV4VTrN/ApUuX0qBBA6ZPn06DBg146KGHmDdvHtevXzd2fKICys7TMWZ5OL8cuISFVsPnfXykuBblkl6vZ8aMGQwfPpwZM2ag1+tL9fV1esUXm08wNDiMxIxcmlVzZv2rHaW4FmbH1Ll2w9XULF78cS/bTsRjY6nl+4GtpbiuoIpVYA8YMIANGzZw5coV5syZg1KK0aNHU61aNXr37s0vv/xCTk6OsWMVFUB6dh7DQ/az6Wgc1hZavh/ox/Ota5g6LCGKJT4+ntDQUGJjYwkNDSU+Pr7UXvtqahaD5ofy9T+nUQoGBNTk11c6UKuKQ6nFIERpMWWu3XD6ahrPfbebI5eTqexgzc+j2smX2Qrsgc6huLm5MXbsWHbv3s2pU6eYMmUKx48fp1+/fnh5eTFq1Ch27dplrFiFmUvKyGHQglB2nU7A3tqC4CB/nmgmf5xE+eXu7k5AQABeXl4EBATg7u5e+Afr9ZB2Nf/nXZvoiYuLu623bu/Za/T4ehd7zl7D3tqCOS/68vGzLYw3uaoQsQlRmh4k1+6WR0Vps+/cdZ7/fjeXEjOpVcWe317pgF/NSkU+juLEJsomo60iYmdnh729Pba2tiil0Gg0rFu3jgULFuDn58eiRYto2rSpsV5OmJmrKVkMXhDGibhUXOysCAnyp5UR/jgJYTJ6PdqMBKa8M5n4hGtFGxeq18O/n8Gl/VCjDXSaALc89sYp8RuTzqdMmQJo+H7HGT7ffAK9goaejnw30I/6Hk5GPa77xSZEabox9nry5Mlcu1a0XLtTHt362Pu12XA4hjdWRZCTp8fX25UFgW2o4mhjlOO6X2yi7Hqg/6nU1FSCg4Pp2rUrtWrV4p133qF27dr88ssvxMbGcuXKFVauXMnVq1cJCgoyVszCzFy8nkGfH/ZwIi4VDycbVr3UXoprUb7dKELXjUW76ws8izrpKiMhv4BNi8v/mZFwW5NbT4mfvhDD8EX7+HRTfnH9nF911o55yLjFdSFjE6K03Dz2eubMmUWe4FiYoSV3a6OUYv6/ZxmzPJycPD2PN/Xk55HtjFJcFzY2UXYVqwd73bp1LFu2jPXr15OVlYW/vz9fffUVL774IlWqVCnQ9oUXXiAxMZExY8YYJWBhXk7GpTJ4QShxKdl4V7Zj2fB21Kwiu1uJcu5ORahjETZysXfL7x2+0Uts73ZbkxunxENDQ6nTpgtDVxznSlIWNpZapvdqTp82NUpmSctCxCZEablTEerp6Vnox9+cR3cbWnKnNjq9Yvr6KEJ2nwMgsH0t3u/ZDAsjLsNXmNhE2aVRSqmiPkir1eLt7c2gQYMYMmQIjRo1umf7sLAwvv/+e4KDg4sdqDlJSUnBxcWF5ORknJ2dTR2OyRy6mERgcBhJGbk09HRkyfAAPJ1tTR2WMCMmyzVjDKPQ6/MLc3u3uz5Wp9Px7eajfLvrErk6RR03B+YO8KNptRI+1kLEJioWU+WaMYZRFGZ5v5vb5OgUr684yKajcQC881RjRnaqe9cvtA+yfGBZWXpQFF2xCuzt27fzyCOPlEA4FYMU2LD7TAIjF+0nPUeHj7crIUP9qeQgW8cK4zJprpVwEZqSlcvbvxzmr8hYIH+XuFnPt8DJ1sroryXE/Zgy10qzCL2ensOIRfsIv5CEtYWWL/r58HTLaveMTcZRV0zFGiIixbV4EFui4gxj1jrUq8JPQ9rgYGO0+bZClA1abdGGhdxQiMI88nIyY5aHc/5aBlYWGt7t0ZQh7WvJLqeiQtJqtUUaFnJDUQvzcwnpDA0O49y1DFzsrPhpSBva1ql8z8c86BAWUX5JVSNK1ZqDl5iw+jA6veKJpp583b+V8ZYOE6K8u8/QEqUUP4ddZNofR8nJ01Pd1Y65A/3w9XY1XcxClENF7Vk+eCGR4Yv2cz09hxqV7AgJ8i/UBGIZR11xSYEtSs2i3eeY+vtRAJ73q8Hs51tgaSGnyoQwuMfkyPTsPN5dG8mag5cBeKyxB5/39cHVXoZWCVFURelZ3nw0ltdWHCQrV0+L6i4sGNoGD6fCzRfSarVMmTJFxlFXQFJgixKnlOKbf07zxZaTAAQ9VJv3ejRFa8TZ1kKYhbus0HEqLpVXloVz+moaFloNb3VrxKhOdSWHhCimwvYsL9p9jml/HEUp6NLInW8H+BV5SGNxh7CI8q1YkxzFg6lIkxyVUny04RgLdkUDMK5rA15/rEH+WFFZiUCUsHKZa7fkxW/hl5iyJpLMXB2ezjZ809/vvuM+b39KWYlAlKzymGv3ygu9XjFr43F+3HkWgP5tvZneq/l9z7pKrokbpAdblJg8nZ7Jvx1h9YFLALz/dFOGdayTf6fsBifEnf3/5MisXB0frD3Mz2EXAehY342vXvTFrYibWMgqBkLc2d16lrNydUxYfYj1h2MAeKtbI0Y/Uu++k4gl18TNpMAWJSI7T8frP0ew8WgsWg188oIPL7Su8b8GD7oRhxBm7FxCOqOXhRMVk4JGA68/1oBXH21QrE0sZBUDIQovKSOHUYsPEHbuOlYWGj55oSXPtqpx/wciuSYKkq9WwujSs/MYsWg/G4/GYm2h5buBrQsW1/C/saaOnrIbnKjw9Ho9cXFx6PV6/joSw9Pf7CIqJoUqDtYsHtaWcV0bFnuHuBtjTb28vGQVA1Gh3Zxnd3LxegbPf7+bsHPXcbKxZFFQ20IX1yC5JgqSMdgmUB7HqhVWckYuQ0PCOHghCXtrC34c3IaODe5SPMsYbFHCykOu3TitvCdsHxqfZzmal38mx792Jb7p74eXy4PvbirjQkVJK+u5dr/hG0cuJRMUso+EtGyqutgSEtSWRl73X4bvTq8juSbAzHuwd+7cSc+ePalWrRoajYa1a9fes/1vv/3G448/jru7O87OzrRv355NmzYVaDNt2jQ0Gk2BS+PGjUvwKMqPq6lZ9PtxDwcvJOFiZ8XSEQF3L67hfxtxyB8hUYHFx8fzb/hRTtZ4ylBcv/RwXZaPbGeU4hr+N9ZUPvBFRXWn4Rs3bDt+lX4/7iEhLZvGXk6sGf1QsYprkFwT/2PWvwHp6en4+Pgwd+7cQrXfuXMnjz/+OH/++ScHDhygS5cu9OzZk4MHDxZo16xZM2JiYgyXXbt2lUT45crF6xn0mbeH47GpuDvZsPKldvjVrGTqsIQo845cU5xv1J88F2+syePHwX5MfqoJVrJGvBBGc7fhGz+HXWDE4v1k5OjoWN+N1S+3N9oXW1GxmfUkx+7du9O9e/dCt//qq68KXP/4449Zt24df/zxB61atTLcbmlpiZeXl7HCLPdOX01l0PwwYlOy8K5sx9LhAdSq4mDqsIQo0/J0ej7fcpLvt58BLGniac8PQ/ypWcXR1KEJYXZu3fBFo9Hw2aYTfLvtNJC/+dms51vIF1thNGZdYD8ovV5PamoqlSsXXHP21KlTVKtWDVtbW9q3b8/MmTOpWbOmiaI0rcOXkghcGEZiRi4NPBxZMjxAvv0LcR9xKVm8+vNBwqKvAxDYvhbv9GiCjaWFiSMTwnzdGL6Rk6dn0q+H+O3/d0V97bEGvNG1wX2X4ROiKKTAvofPPvuMtLQ0+vbta7gtICCAkJAQGjVqRExMDB988AGdOnUiMjISJ6c7j9nKzs4mOzvbcD0lJaXEYy8Ne85cY8SifaTn6PCp4UJIUFsqOci2zcJ0ykOu/Xc6gddXHCQhLQcHawtmPd+Snj7VTB2WEEVSHnLtTlKycnll6QH+O30NC62Gj59tTj//itlBJkqWnAu5i+XLl/PBBx+watUqPDz+tz5z9+7d6dOnDy1btqRbt278+eefJCUlsWrVqrs+18yZM3FxcTFcvL29S+MQStTfUXEEBoeRnqOjfd0qLBvZToprYXJlOdf0esXXW08xaEEoCWk5NPZy4o9XO0pxLcqlspxrdxOTnEnfeXv47/Q1HKwtWDjUX4prUWIqzDJ9Go2GNWvW0Lt37/u2XbFiBcOGDWP16tX06NHjvu39/f3p2rUrM2fOvOP9d/qm7+3tXWaXM7qfNQcvMWH1YXR6xeNNPfmmfytsreTUtjC9sppr19KyGbcygn9PJQDQt00NPuzVXPJGlFtlNdfu5lhMCkHB+4hNycLDyYaFQ/1pXt3F1GEJMyZDRG7x888/M2zYMFasWFGo4jotLY0zZ84wePDgu7axsbHBxqZo2xuXVYv3nOP9dUcBeLZVdT55oaVMChFlRlnMtf3nrjN2+UFiU7KwtdLyUe8Wt2+8JEQ5UxZz7W7+PRXPK0vDScvOo4GHI8FB/tSoZG/qsISZM+sCOy0tjdOnTxuuR0dHExERQeXKlalZsyaTJ0/m8uXLLF68GMgfFhIYGMicOXMICAggNjYWADs7O1xc8r/pTpgwgZ49e1KrVi2uXLnC1KlTsbCwoH///qV/gKVIKcXcbaf5bPNJIH9S1tSezdAWc3c5IcydUor5/0Yza+NxdHpFXXcHvh/Yutjr6wohiu6XA5eY9Oth8vSKdnUr88OgNrjYW5k6LFEBmHWBvX//frp06WK4Pn78eAACAwMJCQkhJiaGCxcuGO7/8ccfycvLY8yYMYwZM8Zw+432AJcuXaJ///5cu3YNd3d3OnbsyN69e816S1SlFB//eYyf/o0G4LVH6/PG4w1lxrUQd5GckcuEXw6xJSoOgJ4+1Zj5XAscbcz6T64QZYZSiq+3nubLv/M7hXr5VuOTF1rKSj2i1FSYMdhlSVnfUvZmOr3ind+OsHL/RQDe7dGEEZ3qmjgqIQrHFLl2+FISo5eFcykxE2sLLe/1bMqggJryhVSYtbL0uZar0/PumkjD59Yrj9TjrScayRlXUaqkO0XcVU6enjdWRrDhSAxaDcx6riV9/cv+THEhTEEpxdK955m+/hg5Oj3ele34bkBrWtSQiVRClJa07DxGLwtn58l4tBr4sFdzBrWrZeqwRAUkBba4o4ycPF5emv9HytpCy5wXfeneoqqpwxKiTErLzmPyb0f449AVAJ5o6smnfXxwsSu9sZ56vd6wS51WKxOPRcUTl5JFUPA+omJSsLOy4Jv+reja1NPoryO5JgpDCmxxm+TMXIaH7GP/+UTsrCz4cUhrOjUw3zHmQjyI47EpjF4aztmEdCy1GiZ1b8zwjnVKdUiIXq9nxowZhIaGEhAQwJQpU+SDX1QoJ+NSCQrex+WkTNwcrVkQ6I+Pt6vRX0dyTRSWFNiigPjUbIYsDONYTArOtpYEB7Wlda1Kpg5LiDJp9f6LvLcukqxcPVVdbPl2QCta16pc6nHEx8cTGhpKbGwsoaGhxMfH4+lp/J47IcqivWevMWrxflKy8qjr5kBIUFtqVimZZfgk10RhSYEtDC4lZjB4QRjRCem4OdqwZHhbmlQt25MwhTCFzBwd76+LZPWBSwA83NCdr/r5UtlEu5m6u7sTEBBg6FUz51WNhLjZuojLvLX6MDk6Pa1rVWL+kDYluquw5JooLFlFxATK0mzrG05fTWPwglBikrOo7mrHshEB1HZzMHVYQjyQksi1M/FpjFkWzvHYVLQaeKNrQ8Z0qW/yFQpkXKgwpdL+XFNKMW/HWWZvPA5A9+ZefNnPt1R2R5VcE4UhPdiCI5eSCQwO43p6DvU9HFk6PAAvF1tThyVEmfPHoStM+vUw6Tk63Bxt+PpFXzrUdzN1WABotVo5VS0qhDydnml/HGXp3vx9LIZ3rMOUp5qU2pdcyTVRGFJgV3ChZ68xfNF+0rLzaFHdhUXD2prsNLcQZVV2no6P1h9jyd7zAATUqcw3/Vvh4Vz4L6LS6yXEg8vIyeO1nw/y97GraDTwXo+mDOtYx3C/5JkoK6TArsD+OR7HK0vDyc7TE1CnMvMD2+BkK1vICnGzi9czGL0snCOXkwEY/Ug9xj/eEEuLwn94y8oDQjy4hLRshofs49ClZGwstXzVr+DysZJnoiyRAruCWhdxmTdXHSJPr3issQdzB/qVytg1IcqTLVFxvLkqgpSsPFztrfiyry9dGnsU+Xlk5QEhHszZ+DQCg8O4eD2TSvZWzA9sc9uKPZJnoiyRArsCWrr3PO+ti0Qp6OVbjc/6+GBVhN44Icxdrk7Pp5tO8OPOswC0qunKtwP8qO5qV6znk5UHhCi+/eeuM2LxfpIycqlZ2Z6QIH/qujve1k7yTJQlsoqICZhyFZHvtp/mk40nABjcrhYfPNPM5KsfCFFSipNrMcmZvLr8IPvPJwIw7KE6TOreGGvLB/sSKmNDhTkrqc+1v47E8PrKCHLy9Ph4u7IgsA1ujjZ3bX+vPJMcFKVJerArCKUUszYe54cd+T1yY7rUY8ITjUp1tzkhyrp/T8Xz+ooIrqfn4GRjyad9WvJk86r3f2AhyMoDQhTNgl3RfLQhCqWgaxMPvu7fCnvre5ctd8szGZ8tSpsU2BWATq94d20kP4flL2n0zlONGfVwPRNHJUTZodMr5mw9xTf/nEIpaFbNme8G+lGriqwFL0Rp0+sVH204xsL/ogEY1K4mHzzTHIsHONsq47NFaZMC28zl5Ol5Y1UEGw7HoNXAzOda0M+/pqnDEqLMiE/NZtzKg/x3+hoAAwJq8v7TTWXSrxAmkJWr442VEfwVGQvApO6Neenhug98tlXGZ4vSJgW2GcvM0fHy0gPsOBmPlYWGr/q1okdL45zuFsIchJ69xqs/H+Rqajb21hZ8/GwLereqbuqwhKiQEtNzGLl4P/vPJ2JtoeXTPi3p5WucfNRqtUyZMkXGYItSIwW2mUrOzGV4yD72n0/EzsqCeYNb07mhfGMX4oaL1zMYOD+UPL2igYcj3w/yo76Hk6nDEqJCunAtg8DgMKIT0nG2teTHIW1oV7fKnRvr9ZCRAPZuUIRCWeZBiNIkBbYZSkjLZsiCMKJiUnCytSQkyP+29UKFqOi8K9szolNdrqZk8dGzze87eUoIUTIiLiYxPGQf19JzqO5qR0iQPw087/JlV6+Hfz+DS/uhRhvoNKFIRbYQpUU+UczM5aRMBs8P5WxCOm6O1iweFkDTaqW7FKAQ5cXEbo3QaJDVdIQwkS1Rcbz280Eyc3U0q+ZM8FB/PJxt7/6AjIT84jotLv9nRgI4Fn3zJyFKmhTYZuT01TQGLwglJjmL6q52LB0RQB03WQVBiLuRNeCFMJ0le84x9fej6BV0bujO3IF+ONrcpyyxd8vvub7Rg23vVjrBClFEUmCbicjLyQQuDONaeg713B1YOiKAqi7F23VOCCGEKCl6veKTTSeYt+MMAP3aePPRs80Lt6OwVps/LKQYY7CFKE1SYJuBsOjrDA/ZR2p2Hs2rO7MoqC1V7rHTlRBCCGEK2Xk63lp9mN8PXQFg/OMNefXR+kUbpqXVyrAQUeZJgV3ObTt+lZeXHiA7T0/bOpVZENgGJ1srU4clhBBCFJCckcuoJfsJjb6OpVbDrOdb8kLrGqYOS4gSIQV2OfbHoSu8sTKCPL3i0cYefDfQTzbHEEIIUeZcSswgKHgfp66m4WhjyfeD/OjUQJaOFeZLCuxyannoBaasPYJS8IxPNT7v61O48WtCCCFEKToWk8KQhWHEp2bj5WxLcJA/TarK6lbCvEmBXQ59v/0MszceB2BQu5p8+ExzWQ1BCCFEmeRiZ4VWA429nAgO8pcJ+KJCkAK7HFEqf+b199vzZ16PfqQeb3VrJGv4CiGEKLOqudqxbEQ7PJxtcJY5QqKCMOsxBTt37qRnz55Uq1YNjUbD2rVr7/uY7du34+fnh42NDfXr1yckJOS2NnPnzqV27drY2toSEBBAWFiY8YO/hU6veHdtpKG4nty9MROfbCzFtRBCiDKvvoejFNeiQjHrAjs9PR0fHx/mzp1bqPbR0dH06NGDLl26EBERwbhx4xgxYgSbNm0ytFm5ciXjx49n6tSphIeH4+PjQ7du3bh69WpJHQa5Oj3jVkawLPQCGg3MfK4FL3WuV2KvJ4QQQgghik+jlFKmDqI0aDQa1qxZQ+/eve/a5u2332bDhg1ERkYabnvxxRdJSkpi48aNAAQEBODv78+3334LgF6vx9vbm1dffZVJkyYVKpaUlBRcXFxITk7G2fneEz2ycnW8svQA207EY2Wh4ct+vjzdslqhXkeIiq4ouSaEKD7JNSEKkjHYN9mzZw9du3YtcFu3bt0YN24cADk5ORw4cIDJkycb7tdqtXTt2pU9e/bc9Xmzs7PJzs42XE9JSSlUPClZuYwI2U/YuevYWmmZN6g1jzSSxfWFuJvi5poQomgk14S4N7MeIlJUsbGxeHp6FrjN09OTlJQUMjMzSUhIQKfT3bFNbGzsXZ935syZuLi4GC7e3t73jeVaWjb9f9xL2LnrONlYsmR4gBTXQtxHcXJNCFF0kmtC3JsU2KVg8uTJJCcnGy4XL168Z/srSZn0+WEPR6+kUMXBmp9HtcO/duVSilaI8quouSaEKB7JNSHuTYaI3MTLy4u4uLgCt8XFxeHs7IydnR0WFhZYWFjcsY2Xl9ddn9fGxgYbG5tCxZCVq6PvD3u4lJhJNRdblo4IoK67Y9EPRogKqCi5JoQoPsk1Ie5NerBv0r59e7Zu3Vrgti1bttC+fXsArK2tad26dYE2er2erVu3Gto8KFsrC8Y8Uo+6VWz55aV2UlwLUYL0ej1xcXHo9XpThyKEWZNcExWNWRfYaWlpREREEBERAeQvwxcREcGFCxeA/FNcQ4YMMbR/+eWXOXv2LBMnTuT48eN89913rFq1ijfeeMPQZvz48fz0008sWrSIY8eO8corr5Cenk5QUJBxgtbr6Z+1kj+9fqLakbkgf4yEKBF6vZ4ZM2YwfPhwZsyYIR/8QpSQ++WaFN/CHJn1EJH9+/fTpUsXw/Xx48cDEBgYSEhICDExMYZiG6BOnTps2LCBN954gzlz5lCjRg3mz59Pt27dDG369etHfHw877//PrGxsfj6+rJx48bbJj4WW0YCXNqPbUYcXNqff91RJjcKYWzx8fGEhoYSGxtLaGgo8fHxxstjIYTBvXLtRvEdGhpKQEAAU6ZMQas1674/UUGYdYH9yCOPcK9lvu+0S+MjjzzCwYMH7/m8Y8eOZezYsQ8a3p3Zu0GNNvnFdY02+deFEEbn7u5OQECA4YPd3d3d1CEJYZbulWvyRVeYK7MusMslrRY6TcjvubZ3y78uhDA6rVbLlClTiI+Px93dXXrNhCgh98o1+aIrzFWF2cmxLJEdr4QoHZJrQpSOB8k1vV4vX3SF2ZEebCGEEEKYjFarlWEhwuzIV0UhhBBCCCGMSApsIYQQQgghjEgKbCGEEEIIIYxICmwhhBBCCCGMSCY5msCNhVtSUlJMHIkQxufk5IRGozF1GIDkmjBvkmtClI7i5JoU2CaQmpoKgLe3t4kjEcL4ytKSeJJrwpxJrglROoqTa7IOtgno9XpOnDhB06ZNuXjxYpn5A2lOUlJS8Pb2lve3BNzvvS1LvWqSayVL8qxkSa6JGyTXSk5h3lvpwS4ntFot1atXB8DZ2VmSpQTJ+1tyysN7K7lWOuS9LVnl4f2VXCsd8t6WHGO/tzLJUQghhBBCCCOSAlsIIYQQQggjkgLbRGxsbJg6dSo2NjamDsUsyftbcsrbe1ve4i1P5L0tWeXt/S1v8ZYn8t6WnJJ6b2WSoxBCCCGEEEYkPdhCCCGEEEIYkRTYQgghhBBCGJEU2EIIIYQQQhiRFNhCCCGEEEIYkRTYJWju3LnUrl0bW1tbAgICCAsLu2f71atX07hxY2xtbWnRogV//vlnKUVa/hTlvQ0JCUGj0RS42NralmK05cfOnTvp2bMn1apVQ6PRsHbt2vs+Zvv27fj5+WFjY0P9+vUJCQkp8ThvJblWciTXSobkmriV5FrJMFWuSYFdQlauXMn48eOZOnUq4eHh+Pj40K1bN65evXrH9rt376Z///4MHz6cgwcP0rt3b3r37k1kZGQpR172FfW9hfwdmmJiYgyX8+fPl2LE5Ud6ejo+Pj7MnTu3UO2jo6Pp0aMHXbp0ISIignHjxjFixAg2bdpUwpH+j+RayZFcKzmSa+Jmkmslx2S5pkSJaNu2rRozZozhuk6nU9WqVVMzZ868Y/u+ffuqHj16FLgtICBAvfTSSyUaZ3lU1Pc2ODhYubi4lFJ05gNQa9asuWebiRMnqmbNmhW4rV+/fqpbt24lGFlBkmslR3KtdEiuCcm10lGauSY92CUgJyeHAwcO0LVrV8NtWq2Wrl27smfPnjs+Zs+ePQXaA3Tr1u2u7Suq4ry3AGlpadSqVQtvb2969erF0aNHSyNcs2fq31vJtZIjuVa2mPr3VnKt5EiulS3G+r2VArsEJCQkoNPp8PT0LHC7p6cnsbGxd3xMbGxskdpXVMV5bxs1asTChQtZt24dS5cuRa/X06FDBy5dulQaIZu1u/3epqSkkJmZWeKvL7lWciTXyhbJNfMluVa2GCvXLI0dmBBlTfv27Wnfvr3heocOHWjSpAk//PAD06dPN2FkQpgXyTUhSofkWtknPdglwM3NDQsLC+Li4grcHhcXh5eX1x0f4+XlVaT2FVVx3ttbWVlZ0apVK06fPl0SIVYod/u9dXZ2xs7OrsRfX3Kt5EiulS2Sa+ZLcq1sMVauSYFdAqytrWndujVbt2413KbX69m6dWuBb5w3a9++fYH2AFu2bLlr+4qqOO/trXQ6HUeOHKFq1aolFWaFYerfW8m1kiO5VraY+vdWcq3kSK6VLUb7vS3qDExROCtWrFA2NjYqJCRERUVFqVGjRilXV1cVGxurlFJq8ODBatKkSYb2//33n7K0tFSfffaZOnbsmJo6daqysrJSR44cMdUhlFlFfW8/+OADtWnTJnXmzBl14MAB9eKLLypbW1t19OhRUx1CmZWamqoOHjyoDh48qAD1xRdfqIMHD6rz588rpZSaNGmSGjx4sKH92bNnlb29vXrrrbfUsWPH1Ny5c5WFhYXauHFjqcUsuVZyJNdKjuSauJnkWskxVa5JgV2CvvnmG1WzZk1lbW2t2rZtq/bu3Wu4r3PnziowMLBA+1WrVqmGDRsqa2tr1axZM7Vhw4ZSjrj8KMp7O27cOENbT09P9dRTT6nw8HATRF32bdu2TQG3XW68n4GBgapz5863PcbX11dZW1urunXrquDg4FKPW3Kt5EiulQzJNXErybWSYapc0yilVLH70YUQQgghhBAFyBhsIYQQQgghjEgKbCGEEEIIIYxICmwhhBBCCCGMSApsIYQQQgghjEgKbCGEEEIIIYxICmwhhBBCCCGMSApsIYQQ9xQTE8OkSZPo0qULTk5OaDQatm/fbuqwhBCizJICWwghxD2dOHGC2bNnc/nyZVq0aGHqcIQQosyTAlsIIcQ9tW7dmmvXrnHy5EnGjx9v6nCEEKLMkwJbCCEqqMzMTBo3bkzjxo3JzMw03H79+nWqVq1Khw4d0Ol0ODk5UblyZRNGKoQQ5YsU2EIIUUHZ2dmxaNEiTp8+zZQpUwy3jxkzhuTkZEJCQrCwsDBhhEIIUT5ZmjoAIYQQphMQEMDEiROZPXs2zz77LHFxcaxYsYKvvvqKhg0bmjo8IYQol6TAFkKICm7atGmsX7+ewMBA0tLS6Ny5M6+99pqpwxJCiHJLhogIIUQFZ21tzcKFC4mOjiY1NZXg4GA0Go2pwxJCiHJLCmwhhBBs2rQJgKysLE6dOmXiaIQQonyTAlsIISq4w4cP8+GHHxIUFESrVq0YMWIEycnJpg5LCCHKLSmwhRCiAsvNzWXo0KFUq1aNOXPmEBISQlxcHG+88YapQxNCiHJLJjkKIUQF9tFHHxEREcHWrVtxcnKiZcuWvP/++7z77ru88MILPPXUU4Z2AEePHgVgyZIl7Nq1C4B3333XNMELIUQZpVFKKVMHIYQQovSFh4cTEBDAK6+8wtdff224XafT0b59ey5fvszRo0dxdXW956RH+RgRQoiCpMAWQgghhBDCiGSIiBB3oNPpyM3NNXUYQgghyhgrKyvZ4VTclxTYQtxEKUVsbCxJSUmmDkUIIUQZ5erqipeXl6wXL+5KCmwhbnKjuPbw8MDe3l7+eAohhDBQSpGRkcHVq1cBqFq1qokjEmWVFNhC/D+dTmcorqtUqWLqcIQQQpRBdnZ2AFy9ehUPDw8ZLiLuSNbBFuL/3RhzbW9vb+JIhBBClGU3Pidkro64GymwhbiFDAsRQghxL/I5Ie5HCmwhRLGEhITg6upq6jCEEEKIMkcKbCHKuaFDh6LRaNBoNFhbW1O/fn0+/PBD8vLySvR1+/Xrx8mTJ0v0Ne7n5mO3srLC09OTxx9/nIULF6LX64v0XPKFwThu/J/MmjWrwO1r164t9V6/G78bGo0GBwcHGjRowNChQzlw4ECRn+uRRx5h3Lhxxg9SALB9+3Y0Go2s4CTMhhTYQpiBJ598kpiYGE6dOsWbb77JtGnT+PTTT+/YNicnxyivaWdnh4eHh1Ge60HcOPZz587x119/0aVLF15//XWefvrpEv+SIe7M1taW2bNnk5iYaOpQCA4OJiYmhqNHjzJ37lzS0tIICAhg8eLFpg6twrj5i86dLtOmTTN1iEIYnRTYQpgBGxsbvLy8qFWrFq+88gpdu3bl999/B/J7FHv37s2MGTOoVq0ajRo1AuDixYv07dsXV1dXKleuTK9evTh37hwAmzdvxtbW9rbepNdff51HH30UuHOP7/fff0+9evWwtramUaNGLFmyxHDfuXPn0Gg0REREGG5LSkpCo9Gwfft2ABITExk4cCDu7u7Y2dnRoEEDgoODC3Xs1atXx8/Pj3feeYd169bx119/ERISYmj3xRdf0KJFCxwcHPD29mb06NGkpaUB+b1nQUFBJCcn3/ahv2TJEtq0aYOTkxNeXl4MGDDAsESXuLOuXbvi5eXFzJkz79lu165ddOrUCTs7O7y9vXnttddIT08H4Ntvv6V58+aGtjd6wOfNm1fgdd599917vsaN9Ypr167NE088wS+//MLAgQMZO3as4QvAtWvX6N+/P9WrV8fe3p4WLVrw888/G55j6NCh7Nixgzlz5hh+P86dO4dOp2P48OHUqVMHOzs7GjVqxJw5c4r8fpm7mJgYw+Wrr77C2dm5wG0TJkwwWWzG6nAQ4lZSYAthhuzs7Ap8cGzdupUTJ06wZcsW1q9fT25uLt26dcPJyYl///2X//77D0dHR5588klycnJ47LHHcHV15ddffzU8h06nY+XKlQwcOPCOr7lmzRpef/113nzzTSIjI3nppZcICgpi27ZthY77vffeIyoqir/++otjx47x/fff4+bmVuTjf/TRR/Hx8eG3334z3KbVavn66685evQoixYt4p9//mHixIkAdOjQ4bYP/hsf+rm5uUyfPp1Dhw6xdu1azp07x9ChQ4scU0ViYWHBxx9/zDfffMOlS5fu2ObMmTM8+eSTPP/88xw+fJiVK1eya9cuxo4dC0Dnzp2JiooiPj4egB07duDm5mb4Mpabm8uePXt45JFHihzfG2+8QWpqKlu2bAEgKyuL1q1bs2HDBiIjIxk1ahSDBw8mLCwMgDlz5tC+fXtGjhxp+P3w9vZGr9dTo0YNVq9eTVRUFO+//z7vvPMOq1atKnJM5szLy8twcXFxQaPRFLjN0dHR0PbAgQO0adMGe3t7OnTowIkTJwo817p16/Dz88PW1pa6devywQcfFDhTdeHCBXr16oWjoyPOzs707duXuLg4w/3Tpk3D19eX+fPnU6dOHWxtbVm8eDFVqlQhOzu7wGv17t2bwYMHl9C7IsyeEkIopZTKzMxUUVFRKjMz09ShFElgYKDq1auXUkopvV6vtmzZomxsbNSECRMM93t6eqrs7GzDY5YsWaIaNWqk9Hq94bbs7GxlZ2enNm3apJRS6vXXX1ePPvqo4f5NmzYpGxsblZiYqJRSKjg4WLm4uBju79Chgxo5cmSB2Pr06aOeeuoppZRS0dHRClAHDx403J+YmKgAtW3bNqWUUj179lRBQUHFOvZb9evXTzVp0uSuj129erWqUqWK4fqtx3M3+/btU4BKTU0tdJwVyc3/J+3atVPDhg1TSim1Zs0adfNHzvDhw9WoUaMKPPbff/9VWq1WZWZmKr1er6pUqaJWr16tlFLK19dXzZw5U3l5eSmllNq1a5eysrJS6enpd40FUGvWrLnt9szMTAWo2bNn3/WxPXr0UG+++abheufOndXrr79+z2NXSqkxY8ao559//r7tjEWv16v07FyTXG7++1FYd8uzbdu2KUAFBASo7du3q6NHj6pOnTqpDh06GNrs3LlTOTs7q5CQEHXmzBm1efNmVbt2bTVt2jSllFI6nU75+vqqjh07qv3796u9e/eq1q1bq86dOxueY+rUqcrBwUE9+eSTKjw8XB06dEhlZGQoFxcXtWrVKkO7uLg4ZWlpqf755587Hkd5/bwQpUc2mhGiBOj1euLj43F3d0erLfkTRevXr8fR0ZHc3Fz0ej0DBgwoMK6xRYsWWFtbG64fOnSI06dP4+TkVOB5srKyOHPmDAADBw6kXbt2XLlyhWrVqrFs2TJ69Ohx14mAx44dY9SoUQVue+ihh4p0yvyVV17h+eefJzw8nCeeeILevXvToUOHQj/+ZkqpApPq/v77b2bOnMnx48dJSUkhLy+PrKwsMjIy7rn2+YEDB5g2bRqHDh0iMTHRMHnywoULNG3atFixlTq9HjISwN4NSuH38YbZs2fz6KOP3nEIwKFDhzh8+DDLli0z3KaUQq/XEx0dTZMmTXj44YfZvn07Xbt2JSoqitGjR/PJJ59w/PhxduzYgb+/f7HWrVdKAf9bak2n0/Hxxx+zatUqLl++TE5ODtnZ2YV67rlz57Jw4UIuXLhAZmYmOTk5+Pr6Fjmm4srM1dH0/U2l9no3i/qwG/bWxi0jZsyYQefOnQGYNGkSPXr0ICsrC1tbWz744AMmTZpEYGAgAHXr1mX69OlMnDiRqVOnsnXrVo4cOUJ0dDTe3t4ALF68mGbNmrFv3z78/f2B/GEhixcvxt3d3fC6AwYMIDg4mD59+gCwdOlSatasWawzJEKADBERwuj0ej0zZsxg+PDhzJgxo8irWRRHly5diIiI4NSpU2RmZrJo0SIcHBwM99/8b4C0tDRat25NREREgcvJkycZMGAAAP7+/tSrV48VK1aQmZnJmjVr7jo8pDBufNG4UdzA7Zs0dO/enfPnz/PGG29w5coVHnvssWKPzzx27Bh16tQB8sd/P/3007Rs2ZJff/2VAwcOMHfuXODeYzDT09Pp1q0bzs7OLFu2jH379rFmzZr7Pq5M0evh389g3dj8n6Xw+3jDww8/TLdu3Zg8efJt96WlpfHSSy8V+P07dOgQp06dol69ekD+yh3bt2/n33//pVWrVjg7OxuK7h07dhgKsaI6duwYgOH349NPP2XOnDm8/fbbbNu2jYiICLp163bf/+MVK1YwYcIEhg8fzubNm4mIiCAoKKj8/G6UQS1btjT8+8Y25DfmPBw6dIgPP/wQR0dHw+XGsJ2MjAyOHTuGt7e3obgGaNq0Ka6urob/c4BatWoVKK4BRo4cyebNm7l8+TKQP8fkxoo4QhSH9GALYWTx8fGEhoYSGxtLaGgo8fHxeHp6luhrOjg4UL9+/UK39/PzY+XKlXh4eODs7HzXdgMHDmTZsmXUqFEDrVZLjx497tq2SZMm/Pfff4beJYD//vvP0Mt74wMtJiaGVq1aARSY8HiDu7s7gYGBBAYG0qlTJ9566y0+++yzQh8bwD///MORI0d44403gPxeaL1ez+eff24o9G8dJ2ttbY1Opytw2/Hjx7l27RqzZs0yfGjv37+/SLGYXEYCXNoPaXH5PzMSwLH0Vn+ZNWsWvr6+hsm1N/j5+REVFXXP39vOnTszbtw4Vq9ebehJfOSRR/j777/577//ePPNN4sV043x9l27dgXyf0979erFoEGDgPwvySdPnixwhuJOvx///fcfHTp0YPTo0YbbbpwBKi12VhZEfditVF/z5tc2NisrK8O/bxS3Nzop0tLS+OCDD3juuedue5ytrW2hX+PWDgeAVq1a4ePjw+LFi3niiSc4evQoGzZsKGr4QhhIgS2Ekbm7uxMQEEBoaCgBAQG39ZSUBQMHDuTTTz+lV69efPjhh9SoUYPz58/z22+/MXHiRGrUqGFoN23aNGbMmMELL7yAjY3NXZ/zrbfeom/fvrRq1YquXbvyxx9/8Ntvv/H3338D+RMv27Vrx6xZs6hTpw5Xr169bQWI999/n9atW9OsWTOys7NZv349TZo0ueexZGdnExsbi06nIy4ujo0bNzJz5kyefvpphgwZAkD9+vXJzc3lm2++oWfPnvz3338FVqMAqF27NmlpaWzduhUfHx/s7e2pWbMm1tbWfPPNN7z88stERkYyffr0Ir/fJmXvBjXa5BfXNdrkXy9FLVq0YODAgXz99dcFbn/77bdp164dY8eOZcSIETg4OBAVFcWWLVv49ttvgfzezEqVKrF8+XLWr18P5BfYEyZMQKPR8NBDD9339ZOSkoiNjSU7O5uTJ0/yww8/sHbtWhYvXmwY7tSgQQN++eUXdu/eTaVKlfjiiy+Ii4srUGDXrl2b0NBQzp07h6OjI5UrV6ZBgwYsXryYTZs2UadOHZYsWcK+ffsMPeOlQaPRGH2YRlnl5+fHiRMn7vqlrEmTJly8eJGLFy8avhBHRUWRlJRUqOFcI0aM4KuvvuLy5ct07dq1QE+4EEVm2iHgQpQdxpy0otPpVGxsrNLpdEaI7N7uNdHvXvfHxMSoIUOGKDc3N2VjY6Pq1q2rRo4cqZKTkwu0a9u2rQJum+xzp8lK3333napbt66ysrJSDRs2VIsXLy5wf1RUlGrfvr2ys7NTvr6+avPmzQUmOU6fPl01adJE2dnZqcqVK6tevXqps2fP3vPYAAUoS0tL5e7urrp27aoWLlx423v/xRdfqKpVqyo7OzvVrVs3tXjxYgUYJm0qpdTLL7+sqlSpogA1depUpZRSy5cvV7Vr11Y2Njaqffv26vfff79tsmaZp9MplRqX/7OE3en3LTo6WllbW6tbP3LCwsLU448/rhwdHZWDg4Nq2bKlmjFjRoE2vXr1UpaWloZJpTqdTlWqVEm1a9fuvrHc+N0AlK2trapXr54KDAxUBw4cKNDu2rVrqlevXsrR0VF5eHiod999Vw0ZMqTAcZw4cUK1a9dO2dnZKUBFR0errKwsNXToUOXi4qJcXV3VK6+8oiZNmqR8fHwK/4ZVMPeb5HhzPh48eNDwXiul1MaNG5WlpaWaNm2aioyMVFFRUernn39WU6ZMUUrlT/j09fVVnTp1UgcOHFChoaF3nOR4t/+fpKQkZW9vr6ytrdWKFSvueRwyyVHcj0apmwZEClGBZWVlER0dbVi6SQghhHGFhIQwbty429bY3759O126dCExMdFwZiEiIoJWrVoRHR1N7dq1Adi0aRMffvghBw8exMrKisaNGzNixAhGjhwJ5E8+fvXVV9m6dStarZYnn3ySb775xjBMb9q0aaxdu/aOw9MAhgwZwoYNG7hy5co9z9jJ54W4Hymwhfh/8gdTCCEqtscee4xmzZrdNqTpVvJ5Ie6nYgzcEkIIIYS4i8TERLZv38727dv57rvvTB2OMANSYAshhBCiQmvVqhWJiYnMnj37thVvhCgOKbCFEEIIUaGdO3fO1CEIMyMbzQghhBBCCGFEUmALcQuZ9yuEEOJe5HNC3I8U2EL8vxs7iGVkZJg4EiGEEGXZjc+Jm3eeFOJmMgZbiP9nYWGBq6srV69eBcDe3t6wVa8QQgihlCIjI4OrV6/i6uqKhYXxt4sX5kHWwRbiJkopYmNjb9sEQQghhLjB1dUVLy8v6YQRdyUFthB3oNPpyM3NNXUYQgghyhgrKyvpuRb3JQW2EEIIIYQQRiSTHIUQQgghhDAiKbCFEEIIIYQwIimwhRBCCCGEMCIpsIUQQgghhDAiKbCFEEIIIYQwIimwhRBCCCGEMCIpsIUQQgghhDCi/wMaXaWwmRk0tgAAAABJRU5ErkJggg==\n"
- },
- "metadata": {},
- "output_type": "display_data"
- }
- ],
- "source": [
- "# Querying using slicing with the slice() function\n",
- "fig = plot_results_panel_2d(cycle,\n",
- " query=slice(0,5,2), # (Start, Stop, Step)\n",
- " subplot_kw=dict(figsize=(8,3), gridspec_kw={\"bottom\": 0.25})\n",
- " );\n",
- "fig.supxlabel('x1', y=0.1)"
- ],
- "metadata": {
- "collapsed": false
- }
- },
- {
- "cell_type": "code",
- "execution_count": 9,
- "outputs": [
- {
- "data": {
- "text/plain": "Text(0.5, 0.98, 'Last 2 Cycles')"
- },
- "execution_count": 9,
- "metadata": {},
- "output_type": "execute_result"
- },
- {
- "data": {
- "text/plain": "",
- "image/png": "iVBORw0KGgoAAAANSUhEUgAAAtgAAAEzCAYAAAALuHTZAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8o6BhiAAAACXBIWXMAAA9hAAAPYQGoP6dpAABr9ElEQVR4nO3dd1iT19sH8G/C3qgsEVCcOEEUEUfVlorWWu1wD0QcrdpWrbVabdVaq3ZqraNDwb1Xq3XVPUEEVMQtuNjK3uQ57x+85CcKyggEwvdzXbkwycmTO5Gb3DnPGTIhhAAREREREamEXN0BEBERERFpEhbYREREREQqxAKbiIiIiEiFWGATEREREakQC2wiIiIiIhVigU1EREREpEIssImIiIiIVIgFNhERERGRCrHAJiIiIiJSIRbYRETVXIMGDTBq1Ch1h0FERP+PBTYRkQrdvXsX48ePR8OGDaGvrw9TU1N07twZS5cuRWZmprrDU6m///4brq6u0NfXh4ODA+bMmYO8vLwyHSsjIwPLly9Hz549UbduXZiYmKBt27ZYuXIlFAqFymJ+8803IZPJMGnSJJUdk4joedrqDoCISFPs378fAwYMgJ6eHkaOHIlWrVohJycHZ86cweeff45r167hjz/+UHeYKnHgwAH0798f3bt3x7Jly3D16lV8++23iIuLw8qVK0t9vHv37uHjjz/GG2+8galTp8LU1BSHDh3ChAkTcOHCBaxdu7bcMe/atQvnz58v93GIiF5FJoQQ6g6CiKi6i4iIQJs2bWBnZ4djx46hbt26he6/c+cO9u/fj08//VTlz92gQQN0794d/v7+Kj92cVq2bAkdHR0EBQVBWzu/r2b27Nn47rvvEB4eDicnp1IdLyEhAbGxsWjZsmWh20ePHg0/Pz/cvn0bjRs3LnO8WVlZaN68OUaPHo2vv/4aEydOxG+//Vbm4xERvQyHiBARqcD333+PtLQ0rF69+oXiGgAaN26sLK67desGZ2fnIo/TrFkzeHl5Ka9LkoSlS5eidevW0NfXh6WlJXr16oWgoKCXxpOUlITJkyfD3t4eenp6aNy4MRYvXgxJkgq127JlC9q1awcTExOYmpqidevWWLp06UuPHR4ejvDwcIwbN05ZXAPAhAkTIITAjh07Xvr4olhYWLxQXAPAu+++CwC4fv16qY/5rO+//x6SJGHatGnlOg4RUUmwwCYiUoF//vkHDRs2RKdOnV7ZdsSIEbhy5QrCwsIK3X7x4kXcunULw4cPV97m6+urLJQXL16MGTNmQF9fHxcuXCj2+BkZGejWrRs2bNiAkSNH4tdff0Xnzp0xc+ZMTJ06VdnuyJEjGDJkCGrVqoXFixdj0aJF6N69O86ePfvS+ENCQgAA7du3L3S7ra0t7OzslPerQkxMDID8ArysHjx4gEWLFmHx4sUwMDBQVWhERMXiGGwionJKSUnB48eP0a9fvxK1HzBgAD7++GNs2LABixYtUt6+YcMGGBkZ4b333gMAHD9+HP7+/vjkk08K9Sp/9tlneNnovp9//hl3795FSEgImjRpAgAYP348bG1t8cMPP+Czzz6Dvb099u/frxzrrKWlVeLXGx0dDQBF9tTXrVsXUVFRJT7Wy+Tk5GDJkiVwdHSEm5tbmY/z2WefoW3bthg8eLBK4iIiehX2YBMRlVNKSgoAwMTEpETtzczM0K9fP2zevFlZKCsUCmzduhX9+/eHkZERAGDnzp2QyWSYM2fOC8eQyWTFHn/79u3o2rUratWqhYSEBOXF09MTCoUCp06dAgCYm5sjPT0dR44cKdXrLVgNRU9P74X79PX1VbZayqRJkxAeHo7ffvut0FCU0jh+/Dh27tyJJUuWqCQmIqKSYIFNRFROpqamAIDU1NQSP2bkyJF48OABTp8+DQD477//EBsbixEjRijb3L17F7a2tqhdu3ap4rl9+zYOHjwIS0vLQhdPT08AQFxcHID8MdNNmzZF7969YWdnh9GjR+PgwYOvPH7BMIvs7OwX7svKylLJMIwffvgBf/75J+bPn4+33nqrTMfIy8vDJ598ghEjRpSrB5yIqLQ4RISIqJxMTU1ha2v7wpjql/Hy8oK1tTU2bNiA1157DRs2bICNjY2yCC4PSZLw5ptvYvr06UXe37RpUwCAlZUVQkNDcejQIRw4cAAHDhyAn58fRo4c+dJl8QqGhkRHR8Pe3r7QfdHR0ejQoUO54vf398cXX3yBDz/8ELNnzy7zcdatW4ebN2/i999/R2RkZKH7UlNTERkZCSsrKxgaGpYrXiKi57EHm4hIBd5++23cvXu3xOssa2lpYejQodixYwcSExOxZ88eDBkypNBY6EaNGiEqKgpPnz4tVSyNGjVCWloaPD09i7w4ODgo2+rq6qJv375YsWKFcpOcdevW4c6dO8Ue38XFBQBeWMkkKioKjx49Ut5fFnv37sWYMWPw3nvvYfny5WU+DpA/uTE3NxedO3eGo6Oj8gLkF9+Ojo44fPhwuZ6DiKgoLLCJiFRg+vTpMDIywpgxYxAbG/vC/Xfv3n1h+bsRI0YgMTER48ePR1paWqHVQwDg/fffhxAC8+bNe+F4L5vkOHDgQJw/fx6HDh164b6kpCTlbotPnjwpdJ9cLkebNm0AFD38o0DLli3h5OSEP/74o9AuiytXroRMJsMHH3xQ7GNf5tSpUxg8eDBee+01bNy4EXJ5+T6iBg8ejN27d79wAYC33noLu3fvhru7e7meg4ioKNxohohIRf7++28MGjQIBgYGhXZyPHfuHLZv345Ro0bh999/L/SY1q1bIywsDM2bN0d4ePgLxxw5ciTWr1+P3r17o1evXpAkCadPn0aPHj2U230/v9FMRkYGunbtiitXrmDUqFFo164d0tPTcfXqVezYsQORkZGwsLDAu+++i6dPn+L111+HnZ0d7t+/j2XLlqFBgwa4dOnSSwvcffv24Z133kGPHj0wePBghIWF4bfffoOvr2+h3SojIyPh6OgIb2/vl26Ec//+fTg7OyMnJwc//vijclx7gTZt2iiL/4LXXHD80pLJZNxohogqliAiIpW5deuWGDt2rGjQoIHQ1dUVJiYmonPnzmLZsmUiKyvrhfbff/+9ACC+++67Io+Xl5cnfvjhB+Hk5CR0dXWFpaWl6N27t7h06ZKyTf369YW3t3ehx6WmpoqZM2eKxo0bC11dXWFhYSE6deokfvzxR5GTkyOEEGLHjh2iZ8+ewsrKSujq6goHBwcxfvx4ER0dXaLXunv3buHi4iL09PSEnZ2dmD17tvLYBa5evSoAiBkzZrz0WMePHxcAir3MmTOnUHsLCwvRsWPHEsX5PABi4sSJZXosEVFJsAebiEiNli5diilTpiAyMrLQ2GhNsWLFCkyfPh13796FtbW1So4ZHh6Oli1bYt++fejTp49KjklEpEocg01EpCZCCKxevRrdunXTyOIayF+H+pNPPlFZcV1wTA8PDxbXRFRlsQebiKiSpaen4++//8bx48fx559/Yu/evXjnnXfUHRYREakIC2wiokpWMPHP3NwcEyZMwIIFC9QdEhERqRALbCIiIiIiFeIYbCIiIiIiFWKBTURERESkQiywiYiIiIhUiAU2EREREZEKscAmIiIiIlIhFthERERERCrEApuIiIiISIVYYBMRERERqRALbCIiIiIiFWKBTURERESkQiyw1UAIgZSUFHCXeqKKxVwjqhzMNaLCWGCrQWpqKszMzJCamqruUAAAkZGRkMlkCA0NVXcoRCrFXCOqHMw1osJYYFcDMTEx+Pjjj9GwYUPo6enB3t4effv2xdGjR9UdWiFXrlxB165doa+vD3t7e3z//ffqDomoVKpDrp04cQL9+vVD3bp1YWRkBBcXF2zcuFHdYRGVSnXItWfduXMHJiYmMDc3V3coVE1oqzsAernIyEh07twZ5ubm+OGHH9C6dWvk5ubi0KFDmDhxIm7cuKHuEAEAKSkp6NmzJzw9PbFq1SpcvXoVo0ePhrm5OcaNG6fu8Iheqbrk2rlz59CmTRt88cUXsLa2xr59+zBy5EiYmZnh7bffVnd4RK9UXXKtQG5uLoYMGYKuXbvi3Llz6g6HqgtBlS45OVkAEMnJya9s27t3b1GvXj2Rlpb2wn2JiYlCCCF8fHxEnz59Ct2Xk5MjLC0txV9//SWEEEKhUIjFixeLRo0aCV1dXWFvby++/fZbIYQQERERAoAICQlRPv7q1auiV69ewsjISFhZWYnhw4eL+Pj4YuNcsWKFqFWrlsjOzlbe9sUXX4hmzZq98jUSVRRNzLWivPXWW8LHx6dUjyFSJU3OtenTp4vhw4cLPz8/YWZm9sr2REIIwSEiVdjTp09x8OBBTJw4EUZGRi/cX3CqasyYMTh48CCio6OV9+3btw8ZGRkYNGgQAGDmzJlYtGgRvvrqK4SHh2PTpk2wtrYu8nmTkpLw+uuvo23btggKCsLBgwcRGxuLgQMHFhvr+fPn8dprr0FXV1d5m5eXF27evInExMSyvHyiSlOdcq0oycnJqF27dqkeQ6QO1S3Xjh07hu3bt2P58uVlfMVUY6m7wq+JSvpNPyAgQAAQu3bteuUxW7RoIRYvXqy83rdvXzFq1CghhBApKSlCT09P/Pnnn0U+9vlv+vPnzxc9e/Ys1Obhw4cCgLh582aRx3jzzTfFuHHjCt127do1AUCEh4e/Mn6iiqCJufa8rVu3Cl1dXREWFlai9kQVQRNzLSEhQdjb24uTJ08KIQR7sKlU2INdhYlSLHc0ZswY+Pn5AQBiY2Nx4MABjB49GgBw/fp1ZGdn44033ijRsS5fvozjx4/D2NhYeXFycgIA3L17t5Svgqjqq665dvz4cfj4+ODPP/9Ey5YtS/waiNSlOuXa2LFjMXToULz22msljpmoACc5VmFNmjSBTCYr0YSPkSNHYsaMGTh//jzOnTsHR0dHdO3aFQBgYGBQqudNS0tD3759sXjx4hfuq1u3bpGPsbGxQWxsbKHbCq7b2NiU6vmJKlt1yrUCJ0+eRN++ffHLL79g5MiRpXpeInWpTrl27Ngx/P333/jxxx8B5H85kCQJ2tra+OOPP5TFPlUDkgRkJACGFoC8cvqW2YNdhdWuXRteXl5Yvnw50tPTX7g/KSlJ+e86deqgf//+8PPzg7+/P3x8fJT3NWnSBAYGBiVe/sjV1RXXrl1DgwYN0Lhx40KXosbMAYCHhwdOnTqF3Nxc5W1HjhxBs2bNUKtWrRK+YiL1qE65BuQv1denTx8sXryYq/RQtVKdcu38+fMIDQ1VXr755huYmJggNDQU7777buleOKmPJAGnfwT2Tsr/KUmV87zqHaFSM5VmtvXdu3eFjY2NaNGihdixY4e4deuWCA8PF0uXLhVOTk6F2h4+fFjo6uoKLS0t8fjx40L3zZ07V9SqVUusXbtW3LlzR5w/f145E/v5sWqPHz8WlpaW4oMPPhCBgYHizp074uDBg2LUqFEiLy+vyDiTkpKEtbW1GDFihAgLCxNbtmwRhoaG4vfffy/DO0SkGpqYa8eOHROGhoZi5syZIjo6Wnl58uRJGd4hItXQxFx7HsdgV1OpsUJsGCDEqtfyf6bGVsrTssBWg9L8IRJCiKioKDFx4kRRv359oaurK+rVqyfeeecdcfz48ULtJEkS9evXF2+99dYLx1AoFOLbb78V9evXFzo6OsLBwUF89913QoiilzO6deuWePfdd4W5ubkwMDAQTk5OYvLkyUKSpGLjvHz5sujSpYvQ09MT9erVE4sWLSrR6yOqKJqYa97e3gLAC5du3bqV6DUSVQRNzLXnscCuphQKIU4szi+uTyzOv14JZEKUYsYBqURKSgrMzMyQnJwMU1NTlR03LS0N9erVg5+fH9577z2VHZeoumKuEVUO5hpVaWoYg81JjhpAkiQkJCTgp59+grm5Od555x11h0SkkZhrRJWDuUYqJZcDxlaV+pQssDXAgwcP4OjoCDs7O/j7+0Nbm/+tRBWBuUZUOZhrVN3xN1YDNGjQoFRrixJR2TDXiCoHc42qOy7TR0RERESkQiywiYiIiIhUiAU2EREREZEKscAmIiIiIlIhFthERERERCqk0QX2woUL4ebmBhMTE1hZWaF///64efPmKx+3fft2ODk5QV9fH61bt8a///5b6H4hBL7++mvUrVsXBgYG8PT0xO3btyvqZRBVCQ+fZiD4QaK6wyAiIlIJSaq4lWo0usA+efIkJk6ciAsXLuDIkSPIzc1Fz549kZ6eXuxjzp07hyFDhsDX1xchISHo378/+vfvj7CwMGWb77//Hr/++itWrVqFgIAAGBkZwcvLC1lZWZXxsogq3Z24VAxYdR7eawIRHpWi7nCIiIjK5UlaNgb8fh4HrkZXyPFr1Fbp8fHxsLKywsmTJ/Haa68V2WbQoEFIT0/Hvn37lLd17NgRLi4uWLVqFYQQsLW1xWeffYZp06YBAJKTk2FtbQ1/f38MHjz4lXFU1JayRBXhyqMkeK8JRGJGLppYGWO9rztszPTVHVaJMNeIKgdzjaqTyIR0jPILROSTDFib6uHk5z2gr6Ol0ufQ6B7s5yUnJwMAateuXWyb8+fPw9PTs9BtXl5eOH/+PAAgIiICMTExhdqYmZnB3d1d2eZ52dnZSElJKXQhqg4u3HuCoX8GIDEjF852Ztg23qNKF9fMNaLKwVyj6ir4QSLeW3kOkU8yYFfLABvHdFR5cQ3UoAJbkiRMnjwZnTt3RqtWrYptFxMTA2tr60K3WVtbIyYmRnl/wW3FtXnewoULYWZmprzY29uX56UQVYqj12PhvSYQadl58GhYBxvHdkQtI111h/VSzDWiysFco+ro0LUYDP3zAp6m56B1PTPsmtAJja2MK+S5akyBPXHiRISFhWHLli2V/twzZ85EcnKy8vLw4cNKj4GoNPaGPsb49ZeQnSfBs7k1/HzcYKynre6wXom5RlQ5mGtU3fifjcCHGy4hK1fC605W2DKuI6xMKu6MbNX/xFSBSZMmYd++fTh16hTs7Oxe2tbGxgaxsbGFbouNjYWNjY3y/oLb6tatW6iNi4tLkcfU09ODnp5eOV4BUeVZf+E+vt4bBiGAd9vWw/cftIGOVvX4Ls5cI6oczDWqLiRJYOGB6/jzdAQAYKi7A755pyW0K/hzrXp8apaREAKTJk3C7t27cezYMTg6Or7yMR4eHjh69Gih244cOQIPDw8AgKOjI2xsbAq1SUlJQUBAgLINUXUkhMDy43fw1Z784trboz5+GuBcbYprIiKiZ2XlKvDxlhBlcT29VzMs6N+qwotrQMN7sCdOnIhNmzZh7969MDExUY6RNjMzg4GBAQBg5MiRqFevHhYuXAgA+PTTT9GtWzf89NNP6NOnD7Zs2YKgoCD88ccfAACZTIbJkyfj22+/RZMmTeDo6IivvvoKtra26N+/v1peJ1F5CSGw6MAN/H7qHgDgk9cbY8qbTSGTydQcGRERUeklZeRg7LogXIxMhI6WDD984Iz+betV2vNrdIG9cuVKAED37t0L3e7n54dRo0YBAB48eAC5/H/fZDp16oRNmzZh9uzZ+PLLL9GkSRPs2bOn0MTI6dOnIz09HePGjUNSUhK6dOmCgwcPQl+/6q6uQFQchSQwa/dVbLmYP4Zydp/mGNO1oZqjIiIieoYkARkJgKEFIH95D/TDpxkY5ReIu/HpMNHTxu8j2qFTY4tKCjRfjVoHu6rgeqFUVeTkSZiyNRT7r0ZDLgMWvdcGA900ZzUA5hpR5WCuUYWSJOD0j8CjIMCuPdB1WrFF9tVHyfDxv4iEtGzUNdOHv08HNLMxqeSANbwHm4iKl5GThw83BOPUrXjoaMnw6+C26N267qsfSEREVJkyEvKL67TY/J8ZCYCx1QvNjt2IxcSNIcjMVcDJxgT+Ph3UtncDC2yiGig5Mxe+/hcRdD8RBjpa+H1EO7zW1FLdYRERgOM346CnJa/0U9pEVZahRX7PdUEPtuGLubEp4AFm77kKSQBdGltg5XBXmOjrqCHYfCywiWqY+NRsjFwTiOvRKTDV14afjxva1S9+d1Miqhx5Cgm//HcLy4/fhYWxLv79pCusTDm3hwhyef6wkCLGYAsh8OPhm1h+/C4A4IN2dlj4Xmu1r4DFApuoBnmUmIERqwMRkZAOC2M9rPftgOZ1OV6SSN3iUrPwyeYQXLj3FADQu1VdmBqor/eNqMqRy18YFpKTJ2H6jsvYExoFAPj0jSaY7NmkSqyAxQKbqIa4E5eGEasDEJ2chXrmBtgwxh2OFkbqDouoxjt/9wk+3hyChLRsGOlqYeH7bfCOs626wyKq0lKycvHh+ks4d/cJtOQyLHy3dZWapM8Cm6gGCHucjJFrAvE0PQeNLI2wYYw76poZqDssohpNkgRWnryLnw7fhCSAZtYmWDHcFY0sjdUdGlGVFpWUCR+/i7gZmwojXS2sGN4O3arYPCIW2EQaLjDiKXz9LyI1Ow+t6plirU8H1DHmFsdE6pSYnoMp20Jx4mY8gPxxo/P7tYKBrpaaIyOq2sKjUjDa/yJiUrJgZaKHNaPc0KqembrDegELbCINdvxGHD7ccAnZeRI6ONbGau/2ap1VTUTApfuJ+HhTMKKSs6CvI8c3/VphYPuqc2qbqKo6fTseH20IRlp2HppYGcPPxw12tQzVHVaRWGATaai/L0dh6tZQ5EkCbzhZYfkwV+jrsHeMSF2EEFh9JgKLDtxAniTQ0MIIK4a7wsmGE42JXmXHpUeYsfMK8iSBjg1r4/fh7WFmWM4Oo1LsDllaLLCJNNDGgPuYvScMQgD9XGzx4wBntS9ZRFSTJWfmYvqOyzh0LRYA8Habulj0fhsY6/FjmOhlhBD49egd/PLfLQD5n2nff9AGetrl7DAqxe6QZcHMJtIwK07cwfcHbwIARnSsj3nvtIRcrv4li4hqqrDHyZiwMRgPnmZAV0uOr95ujuEd61eJpcSo5pEkCfHx8bC0tIRcxb22qparkDBr91VsC3oEAPioeyN83rOZaj7TSrg7ZFmxwCbSEEIILD54E6tO5i+2P7FHI0zr2Ywf4kRqIoTApsAHmPdPOHLyJNjVMsDyoa5wtjdXd2hUQ0mShAULFiAgIADu7u6YNWtWlS2y07LzMGFjME7diodcBnzTrxWGd6yvuicowe6Q5cECm0gDKCSBr/aGYVPAAwDAl285YdxrjdQcFVE1V47xmenZeZi1+6pyAwzP5tb4aYBz+ceMEpVDfHw8AgICEBMTg4CAAMTHx8Pa2lrdYb3Qqx6bkgUfv4sIj06BgY4WfhvaFm80V3GcL9kdUhVYYBNVczl5EqZuC8W+K9GQy4Dv3m2NwR0c1B0WUfVWjvGZt2JT8dGGS7gbnw4tuQxf9GqGsV0b8mwSqZ2lpSXc3d2VPdiWlupfO/r5XvUBYz7BaP8gRCVnwcJYF6u93SrurE8Ru0OqCgtsomosM0eBjzZewomb8dDRkmHp4LZ4q3VddYdFVP2VcXzmruBHmLU7DJm5CtiY6uO3oW3RvkHtSgiY6NXkcjlmzZpVpcZgP9urfjTsIbauOo+0bAUaWhjB36cDHOpUzWX4XoUFNlE1lZKVC1//i7gYmQh9HTl+H9G+yu1kRVRtlXJ8ZlauAnP/voYtFx8CALo2scCSQS7c1ImqHLlcXiWGhRQo6FU/dOMJHti/ASlbgfb1a+HPke1Ry0i31MerKpM4WWATVUMJadnwXhOIa1EpMNHXxppRbnBjLxmR6pRifOa9+DRM2BiMGzGpkMmAyW80xaTXG0OLq/cQvZJMJkOdLoPxKD1/Gb63Wtvg54EuZdq3oSpN4mSBTVTNPE7KxIi/AnAvIR0WxrpYO7oDWtpWvW1iiaq9EozP3H8lGl/svIK07DxYGOti6eC26NxYtasREGmqPIWEuf9cw4YL+RP0fbs4YtZbzcu8DF9VmsTJApuoGrkXn4bhfwUgKjkL9cwNsN63AxpaGqs7LKIaJztPge/2X8fa8/cBAB0a1MayoW1hbaqv5siIqoeMnDx8sjkE/12Pg0wGfNWnBUZ3cSzXMavSJE4W2ETVRNjjZHivCcST9Bw0tDTCBl932JobqDssohrn4dMMTNoUjMuPkgHkb37x2ZtNoc3dUolKJD41G2PWXsTlR8nQ05ZjySAX9FbBBP2qNImTBTZRNRAY8RS+/heRmp2HlramWDu6Ayw4eYqo0h29Houp2y4jOTMXZgY6+GWQM153qjoTxoiqurvxafDxu4gHTzNQy1AHf3m3R7v6qptDVFUmcbLAJqrijt+Mw0cbLiErV0IHx9r4y7s9TPW5WQVRZcpTSPjh8E38fvIeAMDZ3hzLh7aFXa3quYQYkToERT7FmHVBSMrIhUNtQ/j7uGnsMEcW2ERV2D+XozBlayjyJIHXnaywYphrmWZWE1HZxSRn4ZPNIQiMfAoAGNWpAb58qzl0tTkkhKikDlyNxqdbQ5GTJ8HZ3hyrvdtr9JlYFthEVdTmwAf4cvdVCAH0c7HFjwOcocMxnkSV6sztBHy6JQRP0nNgrKeN7z9ow82ciErpr9P3sODf6xAC8GxujWVD2sJAV7M7i1hgE1VBq07exaIDNwAAw9wdML9fqzIvW0REpaeQBJYdu42lR29DCKB5XVOsGOYKRwsjdYdGVG1IksC3+69jzdkIAMBIj/qY07dljVgjngU2URUihMD3h25i5Ym7AIAJ3Rvhc69mkMk0/48RUVWRkJaNKVtDcfp2AgBgSAd7zOnbksOziEohK1eBKVtDcSAsBgAwo7cTxr/WsMZ8nmn0+eZTp06hb9++sLW1hUwmw549e17aftSoUZDJZC9cWrZsqWwzd+7cF+53cnKq4FdCNYFCEpi9J0xZXM/o7YTpvZxqzB8joqogMOIp+vx6GqdvJ8BARws/D3TGwvfasLgmKoWn6TkY9ucFHAiLga6WDL8OaYsPuzWqUZ9nGt2DnZ6eDmdnZ4wePRrvvffeK9svXboUixYtUl7Py8uDs7MzBgwYUKhdy5Yt8d9//ymva2tr9NtIlSBXIWHqtsv453IUZDLgu3dbY0gHB3WHRVRjSJLAn6fv4ftDN6GQBBpbGWPFMFc0tTZRd2hE1cr9J+kYtSYQEU8yYCrPxp/to+Deupe6w6p0Gl0Z9u7dG7179y5xezMzM5iZ/W/L6T179iAxMRE+Pj6F2mlra8PGxkZlcVLNlpmjwMRNwTh2Iw46WjL8MsgFb7exVXdYRDVGUkYOpm2/jP+uxwHIn1T83butYaSn0R+RRCoX+jAJvv4X8SQ9B/V00uBvtRVNMrSBjIGAsZW6w6tU/OvxEqtXr4anpyfq169f6Pbbt2/D1tYW+vr68PDwwMKFC+HgwN5GKr2UrFyM8Q9CYORT6OvIsXJ4O/RoVrP+CBGp0+WHSZiwMRiPkzKhqy3H12+3wDB3hxp1KptIFY6Ex+LjzcHIypXQytYUa5rdhFWCNmDXHjC0UHd4lY4FdjGioqJw4MABbNq0qdDt7u7u8Pf3R7NmzRAdHY158+aha9euCAsLg4lJ0acSs7OzkZ2drbyekpJSobFT9fAkLRvefoEIe5wCEz1trPFxg1sD1e1mVRMx16ikhBBYf+E+5u8LR65CwKG2IVYMc0WremavfjAx16iQdecjMffva5AE0L2ZJZYPdYWRTmcgIyG/uFbjluXqUvNecQmtXbsW5ubm6N+/f6Hbe/fujQEDBqBNmzbw8vLCv//+i6SkJGzbtq3YYy1cuFA5/MTMzAz29vYVHD1VdVFJmRj4+3mEPU5BHSNdbB7XkcW1CjDXqCRSs3IxaXMIvt57DbkKAa+W1tj3SRcW16XAXCMgf+7CwgPX8fXe/OJ6sJs9/hrZPn94lVyePyykBhbXACATQgh1B1EZZDIZdu/e/ULBXBQhBJo2bYq3334bv/zyyyvbu7m5wdPTEwsXLizy/qK+6dvb2yM5ORmmpqYlfg2kGSIS0jH8rwA8TsqErZk+1o9xRyMN3Sq2sjHX6FWuR6dgwsZgRCSkQ1suw8y3mmN05wYcElJKzDXKzlNg2vYr+OdyFABgWs+mmNijMXPp/3GISBFOnjyJO3fuwNfX95Vt09LScPfuXYwYMaLYNnp6etDT09ztQKnkwqNSMHJNABLSctDQwgjrx7ijnrmBusPSGMw1Ko4QAtuCHuLrvdeQnSfB1kwfvw1zhatDLXWHVi0x12q25IxcjF0fhMCIp9CWy7Do/Tb4oJ2dusOqUjS6wE5LS8OdO3eU1yMiIhAaGoratWvDwcEBM2fOxOPHj7Fu3bpCj1u9ejXc3d3RqlWrF445bdo09O3bF/Xr10dUVBTmzJkDLS0tDBkypMJfD1VvQZFP4eN/EalZeWhR1xTrfDvAwpgfUEQVLSMnD1/tuYadwY8A5I8R/WWgC2oZ6ao5MqLq51FiBkb5XcSduDQY62lj1fB26NKk5k1ifBWNLrCDgoLQo0cP5fWpU6cCALy9veHv74/o6Gg8ePCg0GOSk5Oxc+dOLF26tMhjPnr0CEOGDMGTJ09gaWmJLl264MKFC7C0tKy4F0LV3ombcfhwwyVk5UpoX78WVo9yg5mBjrrDItJ4d+JSMWFjMG7FpkEuAz7r2QwfdWsEeQ3YqplI1cIeJ8PH/yLiU7NhY6oPPx83NK/LIUFFqTFjsKuSlJQUmJmZcaxaDbH/SjQmbw1BrkKgW1NLrBreDga63BWuMjDXara9oY8xc9dVZOQoYGmih18Ht4VHozrqDksjMdc034mbcZiwMRgZOQo42ZjAz8cNdc04xLE4Gt2DTaRuWy8+wMxdVyEJ4O02dfHzQBfoatfMGdVElSUrV4H5+8KxMSD/DKVHwzpYOsQFVib6ao6MqHraevEBvtwdBoUk0LlxHawc3g6m+jwL+zIssIkqyB+n7uK7f28AAIZ0cMC3/VtBi6eliSrUgycZmLDpEsIe56/L/PHrjTHZsylzj6gMhBD45cgt/Hosfz7be671sOi9NuwoKgEW2EQqJoTAj4dvYvnxuwCA8d0aYkYvJy5dRFTBDl2LwbTtl5GalYdahjr4ZZALunNnVKIyycmTMGPXFewKfgwA+OT1xpjyZlN+lpUQC2wiFZIkgTl/X8P6C/cBANN7NcOE7o3VHBWRZstVSFh84Ab+OhMBAHB1MMdvQ11hyyUwicokJSsXEzYE48ydBGjJZVjQvxUGd3BQd1jVCgtsIhXJVUj4fPtl7AmNgkwGzO/XCsM71ld3WEQaLSopE5M2BSP4QRIAYGxXR0zv5QQdLZ7CJiqL6ORM+PhdxI2YVBjqamH5MFf04JmgUmOBTaQCWbkKTNoUjP+ux0FbLsNPA53Rz6WeusMi0mgnbsZhytZQJGbkwkRfGz8OcIZXSxt1h0VUbd2IScGoNRcRk5IFSxM9+I1yQ6t6ZuoOq1pigU1UTqlZuRizNggBEU+hpy3HyuGueN3JWt1hEWkshSSw5L9b+O34HQgBtKpnihVD28GhjqG6QyOqts7eScCH6y8hNTsPja2M4TfKDfa1mVNlxQKbqByepudglF8grjxKhomeNlaPckMHx9rqDotIY8WlZuHTzaE4f+8JAGB4RwfM7tMC+jpcW56orHYFP8L0HVeQJwl0cKyNP0e0h5khl+ErDxbYRGUUnZyJEasDcScuDbWNdLFudAeeSiOqQOfvPsEnW0IQn5oNQ10tLHyvNYdiEZWDEALLj9/Bj4dvAcjfr+Gngc7Q0+YX1vJigU1UBhEJ6Rj+VwAeJ2Wirpk+1vu6o7GVsbrDItJIkiSw8uRd/HT4JiQBNLU2xoph7ZhzROWQp5Awe08Ytlx8CCB/SdkvvJwg55rxKsECm6iUwqNSMHJNIBLSsuFoYYT1vh1gV4vj1IgqQmJ6DqZsC8WJm/EA8je6+LZ/Kxjq8uOLqKzSs/MwcVMwTtyMh1wGzH2nJUZ6NFB3WBqFf6GISuHS/afw8buIlKw8NK9rinWjO8DSRE/dYRFppEv3E/HxpmBEJWdBT1uO+f1aYUB7O250QVQOcalZGO1/EWGPU6CvI8eyIa54swUn5qsaC2yiEjp1Kx7j119CZq4C7evXwupRbjAz4CQQIlUTQmDN2Ugs/Pc68iQBRwsjLB/qiha2puoOjahauxOXCu81F/E4KRN1jHSxepQbXOzN1R2WRmKBTVQCB65G45MtIchVCHRtYoHfR7TjKWqiCpCSlYvp26/g4LUYAECf1nWx6P3WMNHnl1mi8gi49wRj1wUhJSsPjhZG8PdxQ/06RuoOS2OxQiDNJklARgJgaAHIy7az27agh5ix8wokkf9h/8sgF+hqc5c4omdJkoT4+HhYWlpCXsZcC3ucjAkbg/HgaQZ0tGSY3acFRnrU55AQomeUJdf+vhyFadsuI0chwdXBHH95u6G2kW4FR1qzscAmzSVJwOkfgUdBgF17oOu0UhfZf52+h2/3XwcADGpvj+/eaw0tzrAmKkSSJCxYsAABAQFwd3fHrFmzSlVkCyGwKfAB5v0Tjpw8CfXMDbB8mCtPXRM9p7S5JoTAH6fuYeGBGwAAr5bWWDq4LdeNrwQssElzZSTkF9dpsfk/MxIAY6sSPVQIgV+O3MKvx+4AAMa91hAzezuxJ42oCPHx8QgICEBMTAwCAgIQHx8Pa+uSTZpKz87DrN1XsSc0CgDwhpMVfhroDHND9q4RPa80uaaQBOb9cw3rzt8HAPh0boDZfVqwk6iS8Dw3aS5Di/yea2Pr/J+GFvm92mlx+T+LIUkCc/++piyup/VsyuKa6CUsLS3h7u4OGxsbuLu7w9LSEpIkITY2FtJLcu1WbCre+e0M9oRGQUsuw8zeTvhzZHsW10TFeD7X6tSpU2SeZeYo8OGGS1h3/j5kMmB2n+aY07cli+tKJBNCCHUHUdOkpKTAzMwMycnJMDXlrPgK9ewYbOCVQ0ZyFRKm77iC3SGPAQDz+7XECK4NWm0x1yrPs+NCAbzyNPau4EeYtTsMmbkKWJvq4behrnBrUFsdoZMKMNcqT0Gu1alTBwsXLnwhz56kZcN3bRBCHyZBV1uOJYNc8FbruuoOu8bhEBHSbHL5/4aFpMW9dMhIVq4CkzaF4L/rsdCSy/DTAGf0b8ttmIlKQi6XK09Vx8bGFnsaOytXgbl/X1PuHtelsQWWDHaBhTHXkycqiYJcKyrPMrSMMcovEPefZMDcUAd/jmzPL65qwgKbao6CISMFPdgFvdoA0rLzMGbtRVy49xS62nKsGOoKTy68T1QmBaexC3rWCnq1IxPS8dHGYFyPToFMBnz6RhN8/HoTnrYmKoPn8+xhpjbGrjuLxIxc2Nc2gL9PBzSyNFZ3mDUWh4ioAU+lqVERy/Y9Tc/BKL9AXHmUDGM9bfw5sj08GtUp1zGpamCuqc/zS4n9ezUa03dcQVp2HuoY6WLJYBd0bWJZrmNS1cFcU4+CnAiOU2Dy1svIzpPQxs4Mq73dyrXLMHOt/NiDTTXLs0NGAMQkZ2HE6gDcjktDLUMdrB3dAW3szEt+PBUsBUikiQpOY+fkSfhu3zX4n4sEALg1qIVlQ1xhY6ZfquOVdylAIk0kl8vx750MfLMvHELkr8KzbGjbcm2ExlxTDRbYVGPdf5KOYX8F4FFiJmxM9bFhTAc0tjIp3UHKsRQgkaZ7lJiBiZtCcPlhEgBgfLeGmNazGXS0Sv9hXZ6lAIk0kSQJLPj3OlafiQAADHN3wLx3WkK7DPn1LOaaarDAphrpRkwKRqwORHxqNhrUMcR6X3fY1zYs/YFeMq6bqCY7diMWU7ZeRnJmLswMdPDTAOdyzWsoblw3UU2UlavAZ9suY//VaADA9F7N8FG3RipZTpa5phocg60GHKumXsEPEuHjdxHJmblwsjHBOt8OsDIp3enqQjgGu8pirlW+PIWEn47cwsoTdwEAznZm+G2oa9m+wD6H40KrLuZa5UlMz8HYdUEIup8IHS0ZfhzgjH4uql3xirlWfuzBphrlzO0EjFsfhIwcBdrVr4U13m4wM9Qp30GfG9dNVFPFpmTh480hCIx4CgDw9qiPL/s0h562arZlfnYpQKKa6OHTDHj7BeJefDpM9LXx+4h26NRI9WdOmWvlp9FfS06dOoW+ffvC1tYWMpkMe/bseWn7EydOQCaTvXCJiYkp1G758uVo0KAB9PX14e7ujsDAwAp8FaQqB8OiMdr/IjJyFOjaxALrfTuUv7gmIgDA2TsJ6PPraQRGPIWxnjaWD3XFvH6tVFZcE9V0Vx4l4d0VZ3EvPh22ZvrY+VGnCimuSTU0usBOT0+Hs7Mzli9fXqrH3bx5E9HR0cqLldX/eie3bt2KqVOnYs6cOQgODoazszO8vLwQFxen6vBJhbYHPcSEjcHIUUjo3coGf3m3L9csayLKJ0kCvx69jeGrA5CQlgMnGxP8Pakz+rThznFEqnL0eiwG/X4BCWk5aFHXFLsndkZT61JOyqdKpdEVRu/evdG7d+9SP87Kygrm5uZF3vfzzz9j7Nix8PHxAQCsWrUK+/fvx5o1azBjxozyhEsVZPWZCMzfFw4AGNjeDt+927rcs6yJCHiSlo3JW0Nx+nYCAGBQe3vM69cS+jrstSZSlY0B9/HVnjBIAujaxAIrh7eDsZ5Gl28agf9DRXBxcUF2djZatWqFuXPnonPnzgCAnJwcXLp0CTNnzlS2lcvl8PT0xPnz54s9XnZ2NrKzs5XXU1JSKi54UhJC4Jf/buPXo7cBAGO6OGJWn+YqmWVNVRNzrfJcjHyKjzeFICYlC/o6cizo3xrvt7NTd1hUSZhrFU8IgR8O3cSK/58wPLC9HRa827pMy1xS5eP/0jPq1q2LVatWYefOndi5cyfs7e3RvXt3BAcHAwASEhKgUCheGPhvbW39wjjtZy1cuBBmZmbKi729fYW+Dso/bT3vn3BlcT2tZ1MW1zUAc63iCSHwx6m7GPzHBcSkZKGRpRH+ntSFxXUNw1yrWNl5CkzeGqosrid7NsHi99uwuK5GaswyfTKZDLt370b//v1L9bhu3brBwcEB69evR1RUFOrVq4dz587Bw8ND2Wb69Ok4efIkAgICijxGUd/07e3tuZxRBclTSJi+8wp2BT8GAHzTryVGejRQb1BUKZhrFSs5Ixefbb+M/67HAgD6udjiu3dbw4inq2sc5lrFSc7Mxfj1Qbhw7ym05TJ8915rDGzPLzDVDf8qvkKHDh1w5swZAICFhQW0tLQQGxtbqE1sbCxsbGyKPYaenh709PQqNE7Kl5WrwMebQ3AkPBZachl+HNAG77Zlz1pNwVyrOFceJWHCxmA8SsyErpYcX/dtgWHuDjwrVEMx1yrG46RM+PgF4lZsGoz1tLFimCtea8qNXqojnmt4hdDQUNStmz8bXldXF+3atcPRo0eV90uShKNHjxbq0Sb1SMvOw2j/izgSHgtdbTlWDW/H4pqonIQQWH8+Eh+sPI9HiZlwqG2IXRM6YXjH+iyuiVToWlQy3ltxFrdi02Blooet4zuyuK7GNLoHOy0tDXfu3FFej4iIQGhoKGrXrg0HBwfMnDkTjx8/xrp16wAAS5YsgaOjI1q2bImsrCz89ddfOHbsGA4fPqw8xtSpU+Ht7Y327dujQ4cOWLJkCdLT05WripB6JKbnYJT/RVx+mAQjXS386d2e64MSlVNadh5m7LyCfVfyt2P2ammN7z9whpkB148nUqVTt+Lx0YZLSM9RoKm1Mfx8OqCeuYG6w6Jy0OgCOygoCD169FBenzp1KgDA29sb/v7+iI6OxoMHD5T35+Tk4LPPPsPjx49haGiINm3a4L///it0jEGDBiE+Ph5ff/01YmJi4OLigoMHD3LHIzWKTcnCiNUBuBWbBnNDHaz16QBne3N1h0VUrV2PTsHEjcG4l5AObbkMM3o7wbeLI3utiVRse9BDzNx1FXmSgEfDOlg1oh2/xGqAGjPJsSpJSUmBmZkZJ4OowIMnGRi+OgAPnmbA2lQP633dufg+KTHXymZb0EN8tScM2XkS6prp47ehbdGufm11h0VVGHOt9IQQWHr0Npb8l7/a1btt62Hx+22gq83Ru5pAo3uwSbPdik3F8L8CEJeaDYfahtg4xh32tQ3VHRZRtZWZo8BXe8Ow49IjAEC3ppb4ZZALahvpqjkyIs2Sq5Dw5a6r2P7/uTaxRyNM69mMZ4g0CAtsqpZCHyZhlF8gkjJy0czaBOt9O8DKVF/dYRFVW3fj0zBhQzBuxqZCLgM+69kMH3VrBLmcH/hEqpSalYsJG4Nx+nYCtOQyzO/XCkPdHdQdFqkYC2yqds7dScDYdUFIz1HAxd4c/j5uMDdkDxtRWf1zOQozdl5Beo4CFsZ6+HWICycJE1WAmOQs+PhfxPXoFBjoaGHFMFf0cLJSd1hUAVhgU7Vy6FoMPt4UghyFhC6NLfD7iHbc5IKojLLzFPh233Wsv3AfANCxYW38OqQtrEx4NohI1W7FpmLUmkBEJWfBwlgPa0a1Rxs7c3WHRRWElQlVGzsvPcL0nVegkAR6tbTB0iEu0NPWUndYRNXSw6cZmLAxGFcfJwMAJvVojMmeTaDNrZiJVO7c3QSMX38JqVl5aGhphLU+HThnSMOxwKZqwe9sBOb9Ew4A+KCdHRa915qFAFEZHb4Wg8+2X0ZqVh5qGerg50Eu6NGMp6mJKsKekMf4fMdl5CoE3BrUwp8j23NYYw3AApuqtOeXMRrd2RGz+zTnxCuiMshVSPj+4A38eToCANDWwRzLh7rClhtaEKmcEAIrTtzFD4duAgD6tK6LnwY6Q1+HZ15rgjIV2AEBAXB3d1d1LESFSJLA/P3h8DsbCQCY+mZTfPx6Yy5jRFQG0cmZmLQpBJfuJwIAxnRxxPReTlxzl6gC5CkkfP33NWwKyN/MbmxXR8zszc6hmqRMBbaHhwcaN26MESNGYNiwYWjYsKGq46IaLk8hYcauq8r1eOf0bQGfzo5qjoqo9CRJQnx8PCwtLSGXq6eYPXkrHpO3hCAxIxcm+tr44QNn9Gplo5ZYiCpKVcg1AEjPzsPHm0Nw7EYcZDJgztstMIqfXzVOmX4DN2zYgCZNmmD+/Plo0qQJOnfujFWrVuHp06eqjo9qoOw8BSZuCsaOS4+gJZfhpwHOLK6pWpIkCQsWLICvry8WLFgASZIq9fkVksDPh29ilF8gEjNy0dLWFPs+7sLimjSOunOtQFxqFgb/cQHHbsRBT1uOlcPasbiuocpUYA8dOhT79+9HVFQUli5dCiEEJkyYAFtbW/Tv3x87duxATk6OqmOlGiA9Ow++/kE4dC0WulpyrBzmivfb2ak7LKIyiY+PR0BAAGJiYhAQEID4+PhKe+641CwM/ysAvx67AyGAoe4O2PlRJ9SvY1RpMRBVFnXmWoE7cWl4b8U5XH2cjNpGutg8riO/zNZg5TqHYmFhgUmTJuHcuXO4ffs2Zs2ahRs3bmDQoEGwsbHBuHHjcObMGVXFShouKSMHw1cH4MydBBjqasHPxw09W/KPE1VflpaWcHd3h42NDdzd3WFpaVnyB0sSkBaX/7PYJhJiY2Nf6K27cO8J+vx6BufvPYGhrhaWDnbBd++2Vt3kqhLERlSZypNrxeVRadpcjHyK91eew6PETNSvY4hdH3WCq0OtUr+OssRGVZPKVhExMDCAoaEh9PX1IYSATCbD3r17sXr1ari6umLt2rVo0aKFqp6ONExcShZGrA7EzdhUmBvqwN+nA1zszdUdFlHZSRLkGQmY9eVMxCc8Kd24UEkCTv8IPAoC7NoDXacBzz224JR4waTzWbNmAZBh5cm7+OnwTUgCaGptjBXDXNHYykSlr+tVsRFVpoKx1zNnzsSTJ6XLtaLy6PnHvqrN/ivRmLItFDl5ElzszbHauz3qGOup5HW9Kjaqusr1P5Wamgo/Pz94enqifv36+PLLL9GgQQPs2LEDMTExiIqKwtatWxEXFwcfHx9VxUwa5uHTDAz4/TxuxqbCykQPW8d5sLim6q2gCN07CfIzP8O6tJOuMhLyC9i02PyfGQkvNHn+lPidB9HwXXsRPxzKL67fc62HPRM7q7a4LmFsRJXl2bHXCxcuLPUEx5IMLSmujRACf52+h4mbgpGTJ+HNFtbYPLajSorrksZGVVeZerD37t2LjRs3Yt++fcjKyoKbmxuWLFmCwYMHo06dOoXafvDBB0hMTMTEiRNVEjBpltuxqRi+OgCxKdmwr22Ajb4d4VCHu1tRNVdUEWpcio1cDC3ye4cLeokNLV5oUnBKPCAgAI7te2DUlhuISsqCnrYc8/u1woD2dhWzpGUJYiOqLEUVodbW1iV+/LN5VNzQkqLaKCSB+fvC4X8uEgDg7VEfX/dtCS0VLsNXktio6pIJIURpHySXy2Fvb4/hw4dj5MiRaNas2UvbBwYGYuXKlfDz8ytzoJokJSUFZmZmSE5OhqmpqbrDUZvLD5OUqxs0szbBOt8OsDbVV3dYpEHUlmuqGEYhSfmFuaFFsY9VKBT47fA1/HbmEXIVAo4WRlg+1BUtbCv4tZYgNqpZ1JVrqhhGUZLl/Z5tk6MQ+HRLCA5diwUAfPmWE8Z2bVjsF9ryLB9YVZYepNIrU4F94sQJdO/evQLCqRlYYAPn7iZg7NogpOco4GJvDn8fN24dSyqn1lyr4CI0JSsXX+y4ggNhMQDyd4lb9H5rmOjrqPy5iF5FnblWmUXo0/QcjFl7EcEPkqCrJcfPg5zxdhvbl8bGcdQ1U5mGiLC4pvI4Eh6rHLPWqVEd/DmyPYz0VDbflqhqkMtLNyykQAkK87DHyZi4KRj3n2RAR0uG2X1aYKRHfe5ySjWSXC4v1bCQAqUtzCMT0jHKLxCRTzJgZqCDP0e2RwfH2i99THmHsFD1xaqGKtXukEeYtv0KFJJAzxbW+HVIW9UtHUZU3b1iaIkQApsDH2LuP9eQkyehnrkBlg9z5aRgolIqbc9yyINE+K4NwtP0HNjVMoC/j1uJJhBzHHXNxQKbKs3ac5GY8/c1AMD7rnZY/H5raGvxVBmR0ksmR6Zn52H2njDsDnkMAHjDyQo/DXTm0CqiMihNz/LhazH4ZEsIsnIltK5nhtWj2sPKpGTzheRyOWbNmsVx1DUQC2yqcEIILDt2Bz8fuQUA8OncAF/1aQG5CmdbE2mEYlbouB2bio82BuNOXBq05DJ87tUM47o2ZA4RlVFJe5bXnovE3H+uQQigRzNL/DbUtdRDGss6hIWqtzJNcqTyqUmTHIUQ+Hb/daw+EwEAmOzZBJ++0SR/rChXIqAKVi1z7bm82BX8CLN2hyEzVwFrUz0sG+L6ynGfLx6SKxFQxaqOufayvJAkgUUHb+CPU/cAAEM62GN+v1avPOvKXKMC7MGmCpOnkDBz11Vsv/QIAPD12y0wuotj/p3cDY6oaP8/OTIrV4F5e65gc+BDAECXxhZYMtgFFqXcxIKrGBAVrbie5axcBaZtv4x9V6IBAJ97NcOE7o1eOYmYuUbPYoFNFSI7T4FPN4fi4LUYyGXA9x8444N2dv9rUN6NOIg0WGRCOiZsDEZ4dApkMuDTN5rg49eblGkTC65iQFRySRk5GLfuEgIjn0JHS4bvP2iDd9vavfqBYK5RYfxqRSqXnp2HMWuDcPBaDHS15FgxrF3h4hr431hTY2vuBkc1niRJiI2NhSRJOHA1Gm8vO4Pw6BTUMdLFutEdMNmzaZl3iCsYa2pjY8NVDKhGezbPivLwaQbeX3kOgZFPYaKnjbU+HUpcXAPMNSqMY7DVoDqOVSup5IxcjPIPRMiDJBjqauGPEe3RpUkxxTPHYFMFqw65VnBa+XzgRcic38W1vPwzOW4NamHZEFfYmJV/d1OOC6WKVtVz7VXDN64+SoaP/0UkpGWjrpk+/H06oJnNq5fhK+p5mGsEaHgP9qlTp9C3b1/Y2tpCJpNhz549L22/a9cuvPnmm7C0tISpqSk8PDxw6NChQm3mzp0LmUxW6OLk5FSBr6L6iEvNwqA/ziPkQRLMDHSwYYx78cU18L+NOPhHiGqw+Ph4nA6+hlt2bymL6/GvNcSmsR1VUlwD/xtryg98qqmKGr5R4PiNOAz64zwS0rLhZGOC3RM6l6m4Bphr9D8a/RuQnp4OZ2dnLF++vETtT506hTfffBP//vsvLl26hB49eqBv374ICQkp1K5ly5aIjo5WXs6cOVMR4VcrD59mYMCq87gRkwpLEz1sHd8Rrg611B0WUZV39YnA/WZDkGdmD13k4Y8Rrpj5VnPocI14IpUpbvjG5sAHGLMuCBk5CnRpbIHtH3qo7Ist1WwaPcmxd+/e6N27d4nbL1mypND17777Dnv37sU///yDtm3bKm/X1taGjY2NqsKs9u7EpWL4X4GIScmCfW0DbPB1R/06RuoOi6hKy1NI+OnILaw8cReANppbG+L3kW5wqGOs7tCINM7zG77IZDL8eOgmfjt+B0D+5meL3m/NL7akMhpdYJeXJElITU1F7dqF15y9ffs2bG1toa+vDw8PDyxcuBAODg5qilK9rjxKgveaQCRm5KKJlTHW+7rz2z/RK8SmZOHjzSEIjHgKAPD2qI8v+zSHnraWmiMj0lwFwzdy8iTM2HkZu/5/V9RP3miCKZ5NXrkMH1FpsMB+iR9//BFpaWkYOHCg8jZ3d3f4+/ujWbNmiI6Oxrx589C1a1eEhYXBxKToMVvZ2dnIzs5WXk9JSanw2CvD+btPMGbtRaTnKOBsZwZ/nw6oZcRtm0l9qkOunb2TgE+3hCAhLQdGulpY9H4b9HW2VXdYRKVSHXKtKClZufhowyWcvfMEWnIZvnu3FQa51cwOMqpYPBdSjE2bNmHevHnYtm0brKz+tz5z7969MWDAALRp0wZeXl74999/kZSUhG3bthV7rIULF8LMzEx5sbe3r4yXUKH+C4+Ft18g0nMU8GhYBxvHdmRxTWpXlXNNkgR+PXobw1cHICEtB042Jvjn4y4srqlaqsq5Vpzo5EwMXHUeZ+88gZGuFtaMcmNxTRWmxizTJ5PJsHv3bvTv3/+Vbbds2YLRo0dj+/bt6NOnzyvbu7m5wdPTEwsXLizy/qK+6dvb21fZ5YxeZXfII0zbfgUKSeDNFtZYNqQt9HV4apvUr6rm2pO0bEzeGorTtxMAAAPb2+Gbfq2YN1RtVdVcK8716BT4+F1ETEoWrEz0sGaUG1rVM1N3WKTBOETkOZs3b8bo0aOxZcuWEhXXaWlpuHv3LkaMGFFsGz09PejplW5746pq3flIfL33GgDg3bb18P0HbTgphKqMqphrQZFPMWlTCGJSsqCvI8e3/Vu/uPESUTVTFXOtOKdvx+OjDcFIy85DEytj+Pm4wa6WobrDIg2n0QV2Wloa7ty5o7weERGB0NBQ1K5dGw4ODpg5cyYeP36MdevWAcgfFuLt7Y2lS5fC3d0dMTExAAADAwOYmeV/0502bRr69u2L+vXrIyoqCnPmzIGWlhaGDBlS+S+wEgkhsPz4Hfx4+BaA/ElZc/q2hLyMu8sRaTohBP46HYFFB29AIQk0tDTCymHtyry+LhGV3o5LjzBj5xXkSQIdG9bG78Pbw8xQR91hUQ2g0QV2UFAQevToobw+depUAIC3tzf8/f0RHR2NBw8eKO//448/kJeXh4kTJ2LixInK2wvaA8CjR48wZMgQPHnyBJaWlujSpQsuXLig0VuiCiHw3b/X8efpCADAJ683xpQ3m3LGNVExkjNyMW3HZRwJjwUA9HW2xcL3WsNYT6P/5BJVGUII/Hr0Dn75L79TqJ+LLb7/oA1X6qFKU2PGYFclVX1L2WcpJIEvd13F1qCHAIDZfZpjTNeGao6KqGTUkWtXHiVhwsZgPErMhK6WHF/1bYHh7g78QkoarSp9ruUqJMzeHab83PqoeyN83rMZz7hSpWJ3ChUrJ0/ClK2h2H81GnIZsOi9NhjoVvVnihOpgxACGy7cx/x915GjkGBf2wArhrZDaztOpCKqLGnZeZiwMRinbsVDLgO+6dcKwzvWV3dYVAOxwKYiZeTk4cMN+X+kdLXkWDrYBb1b11V3WERVUlp2Hmbuuop/LkcBAHq2sMYPA5xhZlB5Yz0lSVLuUieXc+Ix1TyxKVnw8buI8OgUGOhoYdmQtvBsYa3y52GuUUmwwKYXJGfmwtf/IoLuJ8JARwt/jGyHrk00d4w5UXnciEnBhA3BuJeQDm25DDN6O8G3i2OlDgmRJAkLFixAQEAA3N3dMWvWLH7wU41yKzYVPn4X8TgpExbGuljt7QZne3OVPw9zjUqKBTYVEp+ajZFrAnE9OgWm+trw8+mAdvVrqTssoippe9BDfLU3DFm5Euqa6eO3oW3Rrn7tSo8jPj4eAQEBiImJQUBAAOLj42FtrfqeO6Kq6MK9Jxi3LggpWXloaGEEf58OcKhTMcvwMdeopFhgk9KjxAyMWB2IiIR0WBjrYb1vBzSvW7UnYRKpQ2aOAl/vDcP2S48AAK81tcSSQS6orabdTC0tLeHu7q7sVdPkVY2InrU39DE+334FOQoJ7erXwl8j21forsLMNSopriKiBlVptnWBO3FpGLE6ANHJWahnboCNY9zRwMJI3WERlUtF5Nrd+DRM3BiMGzGpkMuAKZ5NMbFHY7WvUMBxoaROlf25JoTAqpP3sPjgDQBA71Y2+GWQS6Xsjspco5JgDzbh6qNkePsF4ml6DhpbGWODrztszPTVHRZRlfPP5SjM2HkF6TkKWBjr4dfBLujU2ELdYQEA5HI5T1VTjZCnkDD3n2vYcCF/HwvfLo6Y9VbzSvuSy1yjkmCBXcMF3HsC37VBSMvOQ+t6Zlg7uoPaTnMTVVXZeQp8u+861l+4DwBwd6yNZUPawsq05F9E2etFVH4ZOXn4ZHMI/rseB5kM+KpPC4zu4qi8n3lGVQUL7Brs2I1YfLQhGNl5Etwda+Mv7/Yw0ecWskTPevg0AxM2BuPq42QAwITujTD1zabQ1ir5hzdXHiAqv4S0bPj6X8TlR8nQ05ZjyaDCy8cyz6gqYYFdQ+0NfYzPtl1GniTwhpMVlg9zrZSxa0TVyZHwWHy2LRQpWXkwN9TBLwNd0MPJqtTH4coDROVzLz4N3n6BePg0E7UMdfCXd/sXVuxhnlFVwgK7Btpw4T6+2hsGIYB+Lrb4cYAzdErRG0ek6XIVEn44dBN/nLoHAGjrYI7fhrqinrlBmY7HlQeIyi4o8inGrAtCUkYuHGobwt/HDQ0tjV9oxzyjqoSriKiBOlcRWXHiDr4/eBMAMKJjfcx7p6XaVz8gqihlybXo5Ex8vCkEQfcTAQCjOztiRm8n6GqX70sox4aSJquoz7UDV6Px6dZQ5ORJcLY3x2rv9rAw1iu2/cvyjDlIlYk92DWEEAKLDt7A7yfze+Qm9miEaT2bVepuc0RV3enb8fh0SyiepufARE8bPwxog16t6r76gSXAlQeISmf1mQh8uz8cQgCeza3w65C2MNR9edlSXJ5xfDZVNhbYNYBCEpi9JwybA/OXNPryLSeMe62RmqMiqjoUksDSo7ex7NhtCAG0tDXFimGuqF+Ha8ETVTZJEvh2/3WsORsBABje0QHz3mkFrXKcbeX4bKpsLLA1XE6ehCnbQrH/SjTkMmDhe60xyM1B3WERVRnxqdmYvDUEZ+88AQAMdXfA12+34KRfIjXIylVgytZQHAiLAQDM6O2E8a81LPfZVo7PpsrGAluDZeYo8OGGSzh5Kx46WjIsGdQWfdqo5nQ3kSYIuPcEH28OQVxqNgx1tfDdu63Rv209dYdFVCMlpudg7LogBN1PhK6WHD8MaIN+LqrJR7lcjlmzZnEMNlUaFtgaKjkzF77+FxF0PxEGOlpYNaIdujXlN3aiAg+fZmDYXwHIkwSaWBlj5XBXNLYyUXdYRDXSgycZ8PYLRERCOkz1tfHHyPbo2LBO0Y0lCchIAAwtgFIUypwHQZWJBbYGSkjLxsjVgQiPToGJvjb8fdxeWC+UqKazr22IMV0bIi4lC9++2+qVk6eIqGKEPkyCr/9FPEnPQT1zA/j7uKGJdTFfdiUJOP0j8CgIsGsPdJ1WqiKbqLLwE0XDPE7KxIi/AnAvIR0WxrpYN9odLWwrdylAoupiulczyGTgajpEanIkPBafbA5BZq4CLW1N4TfKDVam+sU/ICMhv7hOi83/mZEAGJd+8yeiisYCW4PciUvDiNUBiE7OQj1zA2wY4w5HC66CQFQcrgFPpD7rz0dizt/XIAmgW1NLLB/mCmO9V5Qlhhb5PdcFPdiGFpUTLFEpscDWEGGPk+G9JhBP0nPQyNIIG8a4o65Z2XadIyIiqiiSJPD9oZtYdfIuAGBQe3t8+26rku0oLJfnDwspwxhsosrEAlsDBEY8ha//RaRm56FVPVOs9emAOi/Z6YqIiEgdsvMU+Hz7Ffx9OQoAMPXNpvj49calG6Yll3NYCFV5LLCrueM34vDhhkvIzpPQwbE2Vnu3h4m+jrrDIiIiKiQ5Ixfj1gchIOIptOUyLHq/DT5oZ6fusIgqBAvsauyfy1GYsjUUeZLA605WWDHMlZtjEBFRlfMoMQM+fhdxOy4NxnraWDncFV2bcOlY0lwssKupTQEPMGvPVQgBvONsi58GOpds/BoREVEluh6dgpFrAhGfmg0bU334+biheV2ubkWajQV2NbTyxF0sPngDADC8owO+eacVV0MgIqIqycxAB3IZ4GRjAj8fN07ApxqBBXY1IkT+zOuVJ/JnXk/o3gifezXjGr5ERFRl2ZobYOOYjrAy1YMp5whRDaHRYwpOnTqFvn37wtbWFjKZDHv27HnlY06cOAFXV1fo6emhcePG8Pf3f6HN8uXL0aBBA+jr68Pd3R2BgYGqD/45Cklg9p4wZXE9s7cTpvdyYnFNRERVXmMrYxbXVKNodIGdnp4OZ2dnLF++vETtIyIi0KdPH/To0QOhoaGYPHkyxowZg0OHDinbbN26FVOnTsWcOXMQHBwMZ2dneHl5IS4urqJeBnIVEiZvDcXGgAeQyYCF77XG+G6NKuz5iIiIiKjsZEIIoe4gKoNMJsPu3bvRv3//Ytt88cUX2L9/P8LCwpS3DR48GElJSTh48CAAwN3dHW5ubvjtt98AAJIkwd7eHh9//DFmzJhRolhSUlJgZmaG5ORkmJq+fKJHVq4CH224hOM346GjJcMvg1zwdhvbEj0PUU1XmlwjorJjrhEVxjHYzzh//jw8PT0L3ebl5YXJkycDAHJycnDp0iXMnDlTeb9cLoenpyfOnz9f7HGzs7ORnZ2tvJ6SklKieFKycjHGPwiBkU+hryPHquHt0L0ZF9cnKk5Zc42ISoe5RvRyGj1EpLRiYmJgbW1d6DZra2ukpKQgMzMTCQkJUCgURbaJiYkp9rgLFy6EmZmZ8mJvb//KWJ6kZWPIHxcQGPkUJnraWO/rzuKa6BXKkmtEVHrMNaKXY4FdCWbOnInk5GTl5eHDhy9tH5WUiQG/n8e1qBTUMdLF5nEd4dagdiVFS1R9lTbXiKhsmGtEL8chIs+wsbFBbGxsodtiY2NhamoKAwMDaGlpQUtLq8g2NjY2xR5XT08Penp6JYohK1eBgb+fx6PETNia6WPDGHc0tDQu/YshqoFKk2tEVHbMNaKXYw/2Mzw8PHD06NFCtx05cgQeHh4AAF1dXbRr165QG0mScPToUWWb8tLX0cLE7o3QsI4+dozvyOKaqAJJkoTY2FhIkqTuUIg0GnONahqNLrDT0tIQGhqK0NBQAPnL8IWGhuLBgwcA8k9xjRw5Utn+ww8/xL179zB9+nTcuHEDK1aswLZt2zBlyhRlm6lTp+LPP//E2rVrcf36dXz00UdIT0+Hj4+PaoKWJAzJ2op/bf6E7dXlAP8YEVUISZKwYMEC+Pr6YsGCBfzgJ6ogr8o1Ft+kiTR6iEhQUBB69OihvD516lQAgLe3N/z9/REdHa0stgHA0dER+/fvx5QpU7B06VLY2dnhr7/+gpeXl7LNoEGDEB8fj6+//hoxMTFwcXHBwYMHX5j4WGYZCcCjIOhnxAKPgvKvG3NyI5GqxcfHIyAgADExMQgICEB8fLzq8piIlF6WawXFd0BAANzd3TFr1izI5Rrd90c1hEYX2N27d8fLlvkuapfG7t27IyQk5KXHnTRpEiZNmlTe8IpmaAHYtc8vru3a518nIpWztLSEu7u78oPd0tJS3SERaaSX5Rq/6JKm0ugCu1qSy4Gu0/J7rg0t8q8TkcrJ5XLMmjUL8fHxsLS0ZK8ZUQV5Wa7xiy5pqhqzk2NVwh2viCoHc42ocpQn1yRJ4hdd0jjswSYiIiK1kcvlHBZCGodfFYmIiIiIVIgFNhERERGRCrHAJiIiIiJSIRbYREREREQqxEmOalCwcEtKSoqaIyFSPRMTE8hkMnWHAYC5RpqNuUZUOcqSayyw1SA1NRUAYG9vr+ZIiFSvKi2Jx1wjTcZcI6ocZck1roOtBpIk4ebNm2jRogUePnxYZf5AapKUlBTY29vz/a0Ar3pvq1KvGnOtYjHPKhZzjQow1ypOSd5b9mBXE3K5HPXq1QMAmJqaMlkqEN/filMd3lvmWuXge1uxqsP7y1yrHHxvK46q31tOciQiIiIiUiEW2EREREREKsQCW0309PQwZ84c6OnpqTsUjcT3t+JUt/e2usVbnfC9rVjV7f2tbvFWJ3xvK05Fvbec5EhEREREpELswSYiIiIiUiEW2EREREREKsQCm4iIiIhIhVhgExERERGpEAvsCrR8+XI0aNAA+vr6cHd3R2Bg4Evbb9++HU5OTtDX10fr1q3x77//VlKk1U9p3lt/f3/IZLJCF319/UqMtvo4deoU+vbtC1tbW8hkMuzZs+eVjzlx4gRcXV2hp6eHxo0bw9/fv8LjfB5zreIw1yoGc42ex1yrGOrKNRbYFWTr1q2YOnUq5syZg+DgYDg7O8PLywtxcXFFtj937hyGDBkCX19fhISEoH///ujfvz/CwsIqOfKqr7TvLZC/Q1N0dLTycv/+/UqMuPpIT0+Hs7Mzli9fXqL2ERER6NOnD3r06IHQ0FBMnjwZY8aMwaFDhyo40v9hrlUc5lrFYa7Rs5hrFUdtuSaoQnTo0EFMnDhReV2hUAhbW1uxcOHCItsPHDhQ9OnTp9Bt7u7uYvz48RUaZ3VU2vfWz89PmJmZVVJ0mgOA2L1790vbTJ8+XbRs2bLQbYMGDRJeXl4VGFlhzLWKw1yrHMw1Yq5VjsrMNfZgV4CcnBxcunQJnp6eytvkcjk8PT1x/vz5Ih9z/vz5Qu0BwMvLq9j2NVVZ3lsASEtLQ/369WFvb49+/frh2rVrlRGuxlP37y1zreIw16oWdf/eMtcqDnOtalHV7y0L7AqQkJAAhUIBa2vrQrdbW1sjJiamyMfExMSUqn1NVZb3tlmzZlizZg327t2LDRs2QJIkdOrUCY8ePaqMkDVacb+3KSkpyMzMrPDnZ65VHOZa1cJc01zMtapFVbmmrerAiKoaDw8PeHh4KK936tQJzZs3x++//4758+erMTIizcJcI6oczLWqjz3YFcDCwgJaWlqIjY0tdHtsbCxsbGyKfIyNjU2p2tdUZXlvn6ejo4O2bdvizp07FRFijVLc762pqSkMDAwq/PmZaxWHuVa1MNc0F3OtalFVrrHArgC6urpo164djh49qrxNkiQcPXq00DfOZ3l4eBRqDwBHjhwptn1NVZb39nkKhQJXr15F3bp1KyrMGkPdv7fMtYrDXKta1P17y1yrOMy1qkVlv7elnYFJJbNlyxahp6cn/P39RXh4uBg3bpwwNzcXMTExQgghRowYIWbMmKFsf/bsWaGtrS1+/PFHcf36dTFnzhyho6Mjrl69qq6XUGWV9r2dN2+eOHTokLh79664dOmSGDx4sNDX1xfXrl1T10uoslJTU0VISIgICQkRAMTPP/8sQkJCxP3794UQQsyYMUOMGDFC2f7evXvC0NBQfP755+L69eti+fLlQktLSxw8eLDSYmauVRzmWsVhrtGzmGsVR125xgK7Ai1btkw4ODgIXV1d0aFDB3HhwgXlfd26dRPe3t6F2m/btk00bdpU6OrqipYtW4r9+/dXcsTVR2ne28mTJyvbWltbi7feeksEBwerIeqq7/jx4wLAC5eC99Pb21t069bthce4uLgIXV1d0bBhQ+Hn51fpcTPXKg5zrWIw1+h5zLWKoa5ckwkhRJn70YmIiIiIqBCOwSYiIiIiUiEW2EREREREKsQCm4iIiIhIhVhgExERERGpEAtsIiIiIiIVYoFNRERERKRCLLCJiOiloqOjMWPGDPTo0QMmJiaQyWQ4ceKEusMiIqqyWGATEdFL3bx5E4sXL8bjx4/RunVrdYdDRFTlscAmIqKXateuHZ48eYJbt25h6tSp6g6HiKjKY4FNRFRDZWZmwsnJCU5OTsjMzFTe/vTpU9StWxedOnWCQqGAiYkJateurcZIiYiqFxbYREQ1lIGBAdauXYs7d+5g1qxZytsnTpyI5ORk+Pv7Q0tLS40REhFVT9rqDoCIiNTH3d0d06dPx+LFi/Huu+8iNjYWW7ZswZIlS9C0aVN1h0dEVC2xwCYiquHmzp2Lffv2wdvbG2lpaejWrRs++eQTdYdFRFRtcYgIEVENp6urizVr1iAiIgKpqanw8/ODTCZTd1hERNUWC2wiIsKhQ4cAAFlZWbh9+7aaoyEiqt5YYBMR1XBXrlzBN998Ax8fH7Rt2xZjxoxBcnKyusMiIqq2WGATEdVgubm5GDVqFGxtbbF06VL4+/sjNjYWU6ZMUXdoRETVFic5EhHVYN9++y1CQ0Nx9OhRmJiYoE2bNvj6668xe/ZsfPDBB3jrrbeU7QDg2rVrAID169fjzJkzAIDZs2erJ3gioipKJoQQ6g6CiIgqX3BwMNzd3fHRRx/h119/Vd6uUCjg4eGBx48f49q1azA3N3/ppEd+jBARFcYCm4iIiIhIhThEhKgICoUCubm56g6DiIiqGB0dHe5wSq/EApvoGUIIxMTEICkpSd2hEBFRFWVubg4bGxuuF0/FYoFN9IyC4trKygqGhob840lEREpCCGRkZCAuLg4AULduXTVHRFUVC2yi/6dQKJTFdZ06ddQdDhERVUEGBgYAgLi4OFhZWXG4CBWJ62AT/b+CMdeGhoZqjoSIiKqygs8JztWh4rDAJnoOh4UQEdHL8HOCXoUFNhGVib+/P8zNzdUdBhERUZXDApuomhs1ahRkMhlkMhl0dXXRuHFjfPPNN8jLy6vQ5x00aBBu3bpVoc/xKs++dh0dHVhbW+PNN9/EmjVrIElSqY7FLwyqUfB/smjRokK379mzp9J7/Qp+N2QyGYyMjNCkSROMGjUKly5dKvWxunfvjsmTJ6s+SAIAnDhxAjKZjCs4kcZggU2kAXr16oXo6Gjcvn0bn332GebOnYsffvihyLY5OTkqeU4DAwNYWVmp5FjlUfDaIyMjceDAAfTo0QOffvop3n777Qr/kkFF09fXx+LFi5GYmKjuUODn54fo6Ghcu3YNy5cvR1paGtzd3bFu3Tp1h1ZjPPtFp6jL3Llz1R0ikcqxwCbSAHp6erCxsUH9+vXx0UcfwdPTE3///TeA/B7F/v37Y8GCBbC1tUWzZs0AAA8fPsTAgQNhbm6O2rVro1+/foiMjAQAHD58GPr6+i/0Jn366ad4/fXXARTd47ty5Uo0atQIurq6aNasGdavX6+8LzIyEjKZDKGhocrbkpKSIJPJcOLECQBAYmIihg0bBktLSxgYGKBJkybw8/Mr0WuvV68eXF1d8eWXX2Lv3r04cOAA/P39le1+/vlntG7dGkZGRrC3t8eECROQlpYGIL/3zMfHB8nJyS986K9fvx7t27eHiYkJbGxsMHToUOUSXVQ0T09P2NjYYOHChS9td+bMGXTt2hUGBgawt7fHJ598gvT0dADAb7/9hlatWinbFvSAr1q1qtDzzJ49+6XPUbBecYMGDdCzZ0/s2LEDw4YNw6RJk5RfAJ48eYIhQ4agXr16MDQ0ROvWrbF582blMUaNGoWTJ09i6dKlyt+PyMhIKBQK+Pr6wtHREQYGBmjWrBmWLl1a6vdL00VHRysvS5YsgampaaHbpk2bprbYVNXhQPQ8FthEGsjAwKDQB8fRo0dx8+ZNHDlyBPv27UNubi68vLxgYmKC06dP4+zZszA2NkavXr2Qk5ODN954A+bm5ti5c6fyGAqFAlu3bsWwYcOKfM7du3fj008/xWeffYawsDCMHz8ePj4+OH78eInj/uqrrxAeHo4DBw7g+vXrWLlyJSwsLEr9+l9//XU4Oztj165dytvkcjl+/fVXXLt2DWvXrsWxY8cwffp0AECnTp1e+OAv+NDPzc3F/PnzcfnyZezZsweRkZEYNWpUqWOqSbS0tPDdd99h2bJlePToUZFt7t69i169euH999/HlStXsHXrVpw5cwaTJk0CAHTr1g3h4eGIj48HAJw8eRIWFhbKL2O5ubk4f/48unfvXur4pkyZgtTUVBw5cgQAkJWVhXbt2mH//v0ICwvDuHHjMGLECAQGBgIAli5dCg8PD4wdO1b5+2Fvbw9JkmBnZ4ft27cjPDwcX3/9Nb788kts27at1DFpMhsbG+XFzMwMMpms0G3GxsbKtpcuXUL79u1haGiITp064ebNm4WOtXfvXri6ukJfXx8NGzbEvHnzCp2pevDgAfr16wdjY2OYmppi4MCBiI2NVd4/d+5cuLi44K+//oKjoyP09fWxbt061KlTB9nZ2YWeq3///hgxYkQFvSuk8QQRCSGEyMzMFOHh4SIzM1PdoZSKt7e36NevnxBCCEmSxJEjR4Senp6YNm2a8n5ra2uRnZ2tfMz69etFs2bNhCRJytuys7OFgYGBOHTokBBCiE8//VS8/vrryvsPHTok9PT0RGJiohBCCD8/P2FmZqa8v1OnTmLs2LGFYhswYIB46623hBBCRERECAAiJCREeX9iYqIAII4fPy6EEKJv377Cx8enTK/9eYMGDRLNmzcv9rHbt28XderUUV5//vUU5+LFiwKASE1NLXGcNcmz/ycdO3YUo0ePFkIIsXv3bvHsR46vr68YN25coceePn1ayOVykZmZKSRJEnXq1BHbt28XQgjh4uIiFi5cKGxsbIQQQpw5c0bo6OiI9PT0YmMBIHbv3v3C7ZmZmQKAWLx4cbGP7dOnj/jss8+U17t16yY+/fTTl752IYSYOHGieP/991/ZTlUkSRLp2blquTz796Okisuz48ePCwDC3d1dnDhxQly7dk107dpVdOrUSdnm1KlTwtTUVPj7+4u7d++Kw4cPiwYNGoi5c+cKIYRQKBTCxcVFdOnSRQQFBYkLFy6Idu3aiW7duimPMWfOHGFkZCR69eolgoODxeXLl0VGRoYwMzMT27ZtU7aLjY0V2tra4tixY0W+jur6eUGVhxvNEFUASZIQHx8PS0tLyOUVf6Jo3759MDY2Rm5uLiRJwtChQwuNa2zdujV0dXWV1y9fvow7d+7AxMSk0HGysrJw9+5dAMCwYcPQsWNHREVFwdbWFhs3bkSfPn2KnQh4/fp1jBs3rtBtnTt3LtUp848++gjvv/8+goOD0bNnT/Tv3x+dOnUq8eOfJYQoNKnuv//+w8KFC3Hjxg2kpKQgLy8PWVlZyMjIeOna55cuXcLcuXNx+fJlJCYmKidPPnjwAC1atChTbJVOkoCMBMDQAqiE38cCixcvxuuvv17kEIDLly/jypUr2Lhxo/I2IQQkSUJERASaN2+O1157DSdOnICnpyfCw8MxYcIEfP/997hx4wZOnjwJNze3Mq1bL4QA8L+l1hQKBb777jts27YNjx8/Rk5ODrKzs0t07OXLl2PNmjV48OABMjMzkZOTAxcXl1LHVFaZuQq0+PpQpT3fs8K/8YKhrmrLiAULFqBbt24AgBkzZqBPnz7IysqCvr4+5s2bhxkzZsDb2xsA0LBhQ8yfPx/Tp0/HnDlzcPToUVy9ehURERGwt7cHAKxbtw4tW7bExYsX4ebmBiB/WMi6detgaWmpfN6hQ4fCz88PAwYMAABs2LABDg4OZTpDQgRwiAiRykmShAULFsDX1xcLFiwo9WoWZdGjRw+Ehobi9u3byMzMxNq1a2FkZKS8/9l/A0BaWhratWuH0NDQQpdbt25h6NChAAA3Nzc0atQIW7ZsQWZmJnbv3l3s8JCSKPiiUVDcAC9u0tC7d2/cv38fU6ZMQVRUFN54440yj8+8fv06HB0dAeSP/3777bfRpk0b7Ny5E5cuXcLy5csBvHwMZnp6Ory8vGBqaoqNGzfi4sWL2L179ysfV6VIEnD6R2DvpPyflfD7WOC1116Dl5cXZs6c+cJ9aWlpGD9+fKHfv8uXL+P27dto1KgRgPyVO06cOIHTp0+jbdu2MDU1VRbdJ0+eVBZipXX9+nUAUP5+/PDDD1i6dCm++OILHD9+HKGhofDy8nrl//GWLVswbdo0+Pr64vDhwwgNDYWPj0/1+d2ogtq0aaP8d8E25AVzHi5fvoxvvvkGxsbGykvBsJ2MjAxcv34d9vb2yuIaAFq0aAFzc3Pl/zkA1K9fv1BxDQBjx47F4cOH8fjxYwD5c0wKVsQhKgv2YBOpWHx8PAICAhATE4OAgADEx8fD2tq6Qp/TyMgIjRs3LnF7V1dXbN26FVZWVjA1NS223bBhw7Bx40bY2dlBLpejT58+xbZt3rw5zp49q+xdAoCzZ88qe3kLPtCio6PRtm1bACg04bGApaUlvL294e3tja5du+Lzzz/Hjz/+WOLXBgDHjh3D1atXMWXKFAD5vdCSJOGnn35SFvrPj5PV1dWFQqEodNuNGzfw5MkTLFq0SPmhHRQUVKpY1C4jAXgUBKTF5v/MSACMK2/1l0WLFsHFxUU5ubaAq6srwsPDX/p7261bN0yePBnbt29X9iR2794d//33H86ePYvPPvusTDEVjLf39PQEkP972q9fPwwfPhxA/pfkW7duFTpDUdTvx9mzZ9GpUydMmDBBeVvBGaDKYqCjhfBvvCr1OZ99blXT0dFR/ruguC3opEhLS8O8efPw3nvvvfA4fX39Ej/H8x0OANC2bVs4Oztj3bp16NmzJ65du4b9+/eXNnwiJRbYRCpmaWkJd3d3BAQEwN3d/YWekqpg2LBh+OGHH9CvXz988803sLOzw/3797Fr1y5Mnz4ddnZ2ynZz587FggUL8MEHH0BPT6/YY37++ecYOHAg2rZtC09PT/zzzz/YtWsX/vvvPwD5Ey87duyIRYsWwdHREXFxcS+sAPH111+jXbt2aNmyJbKzs7Fv3z40b978pa8lOzsbMTExUCgUiI2NxcGDB7Fw4UK8/fbbGDlyJACgcePGyM3NxbJly9C3b1+cPXu20GoUANCgQQOkpaXh6NGjcHZ2hqGhIRwcHKCrq4tly5bhww8/RFhYGObPn1/q91utDC0Au/b5xbVd+/zrlah169YYNmwYfv3110K3f/HFF+jYsSMmTZqEMWPGwMjICOHh4Thy5Ah+++03APm9mbVq1cKmTZuwb98+APkF9rRp0yCTydC5c+dXPn9SUhJiYmKQnZ2NW7du4ffff8eePXuwbt065XCnJk2aYMeOHTh37hxq1aqFn3/+GbGxsYUK7AYNGiAgIACRkZEwNjZG7dq10aRJE6xbtw6HDh2Co6Mj1q9fj4sXLyp7xiuDTCZT+TCNqsrV1RU3b94s9ktZ8+bN8fDhQzx8+FD5hTg8PBxJSUklGs41ZswYLFmyBI8fP4anp2ehnnCiUlPvEHCiqkOVk1YUCoWIiYkRCoVCBZG93Msm+r3s/ujoaDFy5EhhYWEh9PT0RMOGDcXYsWNFcnJyoXYdOnQQAF6Y7FPUZKUVK1aIhg0bCh0dHdG0aVOxbt26QveHh4cLDw8PYWBgIFxcXMThw4cLTXKcP3++aN68uTAwMBC1a9cW/fr1E/fu3XvpawMgAAhtbW1haWkpPD09xZo1a15473/++WdRt25dYWBgILy8vMS6desEAOWkTSGE+PDDD0WdOnUEADFnzhwhhBCbNm0SDRo0EHp6esLDw0P8/fffL0zWrPIUCiFSY/N/VrCift8iIiKErq6ueP4jJzAwULz55pvC2NhYGBkZiTZt2ogFCxYUatOvXz+hra2tnFSqUChErVq1RMeOHV8ZS8HvBgChr68vGjVqJLy9vcWlS5cKtXvy5Ino16+fMDY2FlZWVmL27Nli5MiRhV7HzZs3RceOHYWBgYEAICIiIkRWVpYYNWqUMDMzE+bm5uKjjz4SM2bMEM7OziV/w2qYV01yfDYfQ0JClO+1EEIcPHhQaGtri7lz54qwsDARHh4uNm/eLGbNmiWEyJ/w6eLiIrp27SouXbokAgICipzkWNz/T1JSkjA0NBS6urpiy5YtL30dnORIryIT4pkBkUQ1WFZWFiIiIpRLNxERkWr5+/tj8uTJL6yxf+LECfTo0QOJiYnKMwuhoaFo27YtIiIi0KBBAwDAoUOH8M033yAkJAQ6OjpwcnLCmDFjMHbsWAD5k48//vhjHD16FHK5HL169cKyZcuUw/Tmzp2LPXv2FDk8DQBGjhyJ/fv3Iyoq6qVn7Ph5Qa/CApvo//EPJhFRzfbGG2+gZcuWLwxpeh4/L+hVasbALSIiIqJiJCYm4sSJEzhx4gRWrFih7nBIA7DAJiIiohqtbdu2SExMxOLFi19Y8YaoLFhgExERUY0WGRmp7hBIw3CjGSIiIiIiFWKBTfQczvslIqKX4ecEvQoLbKL/V7CDWEZGhpojISKiqqzgc+LZnSeJnsUx2ET/T0tLC+bm5oiLiwMAGBoaKrfqJSIiEkIgIyMDcXFxMDc3h5aW6reLJ83AdbCJniGEQExMzAubIBARERUwNzeHjY0NO2GoWCywiYqgUCiQm5ur7jCIiKiK0dHRYc81vRILbCIiIiIiFeIkRyIiIiIiFWKBTURERESkQiywiYiIiIhUiAU2EREREZEKscAmIiIiIlIhFthERERERCrEApuIiIiISIX+Dz2SlY5y7xD9AAAAAElFTkSuQmCC\n"
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "text/plain": "",
- "image/png": "iVBORw0KGgoAAAANSUhEUgAAAtQAAAEzCAYAAAARhJRXAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8o6BhiAAAACXBIWXMAAA9hAAAPYQGoP6dpAABlU0lEQVR4nO3dd1hUR9sG8HuX3hFpIk2k2jti1xARSzRNX2PsJTGaGHvvUdSUV2NMTLO+GmOMmnwWLCh2MRaMShEQOyCo9L473x8bNqL0trtw/66LS/fs7O4ziM95mDMzRyKEECAiIiIiogqRqjoAIiIiIiJNxoKaiIiIiKgSWFATEREREVUCC2oiIiIiokpgQU1EREREVAksqImIiIiIKoEFNRERERFRJbCgJiIiIiKqBBbURERERESVwIKaiIjU2t27dyGRSLBlyxZVh0JEVCQW1EREVWTLli2QSCS4fPlyjXxeWFgYlixZgrt375apfVBQEMaMGQN3d3cYGhrCxcUF48aNQ1xcXLk+Nzg4GG+99RZsbW2hq6sLa2trDBgwAHv37q1AL4iINB8LaiIiDRUWFoalS5eWuaCePXs2goOD8eabb+Lrr7/Gf/7zH+zevRutW7dGfHx8md5j8eLF6NmzJ27evIkPPvgAGzduxMyZM5Geno63334bO3furESPiIg0k7aqAyAioprx1VdfoUuXLpBK/x1L6dOnD7p3745vvvkGn332WYmv37NnD5YtW4Z33nkHO3fuhI6OjvK5mTNn4siRI8jLy6u2+ImI1BVHqImIalBubi4WLVqEtm3bwszMDEZGRujatStOnjz5Sttdu3ahbdu2MDExgampKZo3b45169YBUEwveffddwEAPXv2hEQigUQiQXBwcLGf3a1bt0LFdMExCwsLhIeHlxr7woULYWFhgU2bNhUqpgv4+fmhf//+SE9Ph5GREaZMmfJKm4cPH0JLSwsBAQHKY8nJyZg6dSqcnZ2hp6cHe3t7jBgxAklJSSXGExERgXfeeQcWFhbQ19dHu3bt8OeffxZqk5eXh6VLl8LNzQ36+vqoX78+unTpgmPHjpXaXyKismJBTURUg1JTU/HTTz+hR48eWL16NZYsWYLExET4+fkhNDRU2e7YsWMYOnQo6tWrh9WrV2PVqlXo0aMHzp07B0BRCH/yyScAgHnz5mH79u3Yvn07vLy8yhVPeno60tPTYWlpWWK7qKgoREREYNCgQTAxMSmxrbGxMd588038+uuvkMlkhZ775ZdfIITAsGHDlJ/ftWtXrF+/Hr1798a6devw4YcfIiIiAg8fPiz2M27duoWOHTsiPDwcc+bMwZdffgkjIyMMGjQI+/btU7ZbsmQJli5dip49e+Kbb77B/Pnz4ejoiKtXr5b2rSEiKjtBRERVYvPmzQKA+Ouvv4ptk5+fL3Jycgode/78ubCxsRFjxoxRHpsyZYowNTUV+fn5xb7Xb7/9JgCIkydPVjjm5cuXCwAiKCioxHZ//PGHACD++9//lul9jxw5IgCIw4cPFzreokUL0b17d+XjRYsWCQBi7969r7yHXC4XQggRGxsrAIjNmzcrn3vttddE8+bNRXZ2dqH2nTp1Em5ubspjLVu2FP369StTzEREFcURaiKiGqSlpQVdXV0AgFwux7Nnz5Cfn4927doVGjU1NzdHRkZGtU5NOH36NJYuXYrBgwejV69eJbZNTU0FgFJHpwv4+vrCzs4OO3bsUB67efMm/v77b7z//vvKY7///jtatmyJN99885X3kEgkRb73s2fPcOLECQwePBhpaWlISkpCUlISnj59Cj8/P0RFReHRo0cAFN/HW7duISoqqkxxExFVBAtqIqIatnXrVrRo0UI5p9fKygoHDx5ESkqKss1HH30Ed3d3+Pv7w97eHmPGjEFgYGCVxRAREYE333wTzZo1w08//VRqe1NTUwBAWlpamd5fKpVi2LBh2L9/PzIzMwEAO3bsgL6+vnLuNwDExMSgWbNm5Yo9OjoaQggsXLgQVlZWhb4WL14MAHjy5AkAYNmyZUhOToa7uzuaN2+OmTNn4u+//y7X5xERlYYFNRFRDfrf//6HUaNGoXHjxvj5558RGBiIY8eOoVevXpDL5cp21tbWCA0NxZ9//ok33ngDJ0+ehL+/P0aOHFnpGB48eIDevXvDzMwMhw4dKtOos6enJwDgxo0bZf6cESNGID09Hfv374cQAjt37kT//v1hZmZW4dgBKL9PM2bMwLFjx4r8cnV1BaCYax4TE4NNmzYpf3lo06ZNmX6JICIqK26bR0RUg/bs2QMXFxfs3bu30JSGgpHVF+nq6mLAgAEYMGAA5HI5PvroI3z//fdYuHAhXF1di50SUZKnT5+id+/eyMnJQVBQEBo0aFCm17m7u8PDwwN//PEH1q1bB2Nj41Jf06xZM7Ru3Ro7duyAvb097t+/j/Xr1xdq07hxY9y8ebNcfXBxcQEA6OjowNfXt9T2FhYWGD16NEaPHo309HR069YNS5Yswbhx48r1uURExeEINRFRDdLS0gIACCGUx0JCQnDhwoVC7Z4+fVrosVQqRYsWLQAAOTk5AAAjIyMAim3nyiIjIwN9+/bFo0ePcOjQIbi5uZUr9qVLl+Lp06cYN24c8vPzX3n+6NGjOHDgQKFjw4cPx9GjR7F27VrUr18f/v7+hZ5/++23cf369UI7cxR48Xv0Imtra/To0QPff/99kXd5TExMVP795e+jsbExXF1dld9DIqKqwBFqIqIqtmnTpiLnO0+ZMgX9+/fH3r178eabb6Jfv36IjY3Fxo0b0aRJE6Snpyvbjhs3Ds+ePUOvXr1gb2+Pe/fuYf369WjVqpVya7xWrVpBS0sLq1evRkpKCvT09NCrVy9YW1sXGdewYcNw6dIljBkzBuHh4YX2njY2NsagQYNK7NeQIUNw48YNrFixAteuXcPQoUPh5OSEp0+fIjAwEEFBQa/cKfG9997DrFmzsG/fPkycOPGV/atnzpyJPXv24N1338WYMWPQtm1bPHv2DH/++Sc2btyIli1bFhnLhg0b0KVLFzRv3hzjx4+Hi4sLEhIScOHCBTx8+BDXr18HADRp0gQ9evRA27ZtYWFhgcuXL2PPnj2YPHlyiX0lIioX1W4yQkRUexRsm1fc14MHD4RcLhcrV64UTk5OQk9PT7Ru3VocOHBAjBw5Ujg5OSnfa8+ePaJ3797C2tpa6OrqCkdHR/HBBx+IuLi4Qp/5448/ChcXF6GlpVXqFnpOTk7FxvbiZ5cmKChIDBw4UFhbWwttbW1hZWUlBgwYIP74448i2/ft21cAEOfPny/y+adPn4rJkyeLhg0bCl1dXWFvby9GjhwpkpKShBBFb5snhBAxMTFixIgRwtbWVujo6IiGDRuK/v37iz179ijbfPbZZ6JDhw7C3NxcGBgYCE9PT7FixQqRm5tb5v4SEZVGIkQx19SIiIiqwJtvvokbN24gOjpa1aEQEVULzqEmIqJqExcXh4MHD2L48OGqDoWIqNpwDjUREVW52NhYnDt3Dj/99BN0dHTwwQcfqDokIqJqwxFqIiKqcqdOncLw4cMRGxuLrVu3wtbWVtUhERFVG86hJiIiIiKqBI5QExERERFVAgtqIiIiIqJKYEFNRERERFQJLKiJiIiIiCqBBTURERERUSWwoCYiIiIiqgQW1ERERERElcCCmoiIiIioElhQExERERFVAgtqIiIiIqJKYEGtAkIIpKamgnd9JyKqGOZRIlInLKhVIC0tDWZmZkhLS1N1KMW6e/cuJBIJQkNDVR0KEdErmEeJSJ2woNZQ8fHx+Pjjj+Hi4gI9PT04ODhgwIABCAoKUnVoSpGRkejZsydsbGygr68PFxcXLFiwAHl5eaoOjYhII/Loi6Kjo2FiYgJzc3NVh0JEL9FWdQBUfnfv3kXnzp1hbm6Ozz//HM2bN0deXh6OHDmCSZMmISIiQtUhAgB0dHQwYsQItGnTBubm5rh+/TrGjx8PuVyOlStXqjo8IqrDNCWPFsjLy8PQoUPRtWtXnD9/XtXhENFLOEKtgT766CNIJBJcunQJb7/9Ntzd3dG0aVNMmzYNFy9eBACMGTMG/fv3L/S6vLw8WFtb4+effwYAyOVyrFmzBq6urtDT04OjoyNWrFhR7OfevHkT/v7+MDY2ho2NDYYPH46kpKRi27u4uGD06NFo2bIlnJyc8MYbb2DYsGE4c+ZMFXwXiIgqTlPyaIEFCxbA09MTgwcPrkSviai6sKDWMM+ePUNgYCAmTZoEIyOjV54vuBQ4btw4BAYGIi4uTvncgQMHkJmZiSFDhgAA5s6di1WrVmHhwoUICwvDzp07YWNjU+TnJicno1evXmjdujUuX76MwMBAJCQklCu5R0dHIzAwEN27dy9Hj4mIqpam5dETJ07gt99+w4YNGyrYYyKqdoJqXEpKigAgUlJSyv3akJAQAUDs3bu31LZNmjQRq1evVj4eMGCAGDVqlBBCiNTUVKGnpyd+/PHHIl8bGxsrAIhr164JIYRYvny56N27d6E2Dx48EABEZGRkiXH4+PgIPT09AUBMmDBByGSyUmMnIipJXcmjSUlJwsHBQZw6dUoIIcTmzZuFmZlZqXETUc3iCLWGEeXYImrcuHHYvHkzACAhIQGHDx/GmDFjAADh4eHIycnBa6+9Vqb3un79Ok6ePAljY2Pll6enJwAgJiamxNf++uuvuHr1Knbu3ImDBw/iiy++KHMfiIiqmibl0fHjx+O9995Dt27dyhwzEdU8LkrUMG5ubpBIJGVaMDNixAjMmTMHFy5cwPnz59GoUSN07doVAGBgYFCuz01PT8eAAQOwevXqV55r0KBBia91cHAAADRp0gQymQwTJkzA9OnToaWlVa4YiIiqgibl0RMnTuDPP/9UDkQIISCXy6GtrY0ffvhBWdwT1XlyOZCZBBhaAtKaHy/mCLWGsbCwgJ+fHzZs2ICMjIxXnk9OTlb+vX79+hg0aBA2b96MLVu2YPTo0crn3NzcYGBgUObtodq0aYNbt27B2dkZrq6uhb6KmoNYHLlcjry8PMjl8jK/hoioKmlSHr1w4QJCQ0OVX8uWLYOJiQlCQ0Px5ptvlq/jRLWVXA6c+QL4Y7LiTxXUGCyoNdCGDRsgk8nQoUMH/P7774iKikJ4eDi+/vpr+Pj4FGo7btw4bN26FeHh4Rg5cqTyuL6+PmbPno1Zs2Zh27ZtiImJwcWLF5Ur1182adIkPHv2DEOHDsVff/2FmJgYHDlyBKNHj4ZMJivyNTt27MDu3bsRHh6OO3fuYPfu3Zg7dy6GDBkCHR2dqvuGEBGVk6bkUS8vLzRr1kz51bBhQ0ilUjRr1gz16tWrum8IkSbLTAIeXgbSExR/Zpa+c05V45QPDeTi4oKrV69ixYoVmD59OuLi4mBlZYW2bdviu+++K9TW19cXDRo0QNOmTWFnZ1fouYULF0JbWxuLFi3C48eP0aBBA3z44YdFfqadnR3OnTuH2bNno3fv3sjJyYGTkxP69OkDaTGXVrS1tbF69Wrcvn0bQgg4OTlh8uTJmDp1atV8I4iIKkhT8igRlYGhJWDfTlFM27dTPK5hElGe1RlUJVJTU2FmZoaUlBSYmppW62elp6ejYcOG2Lx5M956661q/SwioprCPEpEhah4DjVHqGspuVyOpKQkfPnllzA3N8cbb7yh6pCIiDQK8yiRBpFKAWNrlX08C+pa6v79+2jUqBHs7e2xZcsWaGvzn5qIqDyYR4morJgdailnZ+dy7bVKRESFMY8SUVlxFQQRERERUSWwoCYiIiIiqgQW1ERERERElcCCmoiIiIioElhQExERERFVQq0uqAMCAtC+fXuYmJjA2toagwYNQmRkZKmv++233+Dp6Ql9fX00b94chw4dKvS8EAKLFi1CgwYNYGBgAF9fX0RFRVVXN4iIiIiokqpz155aXVCfOnUKkyZNwsWLF3Hs2DHk5eWhd+/eyMjIKPY158+fx9ChQzF27Fhcu3YNgwYNwqBBg3Dz5k1lmzVr1uDrr7/Gxo0bERISAiMjI/j5+SE7O7smukVEREREZZQvk2Pbhbt467vzyMmXVctn1KlbjycmJsLa2hqnTp1Ct27dimwzZMgQZGRk4MCBA8pjHTt2RKtWrbBx40YIIWBnZ4fp06djxowZAICUlBTY2Nhgy5Yt+M9//lNqHDV5y1wiotqIeZSIyiI48gk+OxiO6CfpAICAt5pjaAfHKv+cWj1C/bKUlBQAgIWFRbFtLly4AF9f30LH/Pz8cOHCBQBAbGws4uPjC7UxMzODt7e3ss3LcnJykJqaWuiLiIjKjnmUiMojKiENIzddwqjNfyH6STrqGepg+aBmeLetfbV8Xp25U6JcLsenn36Kzp07o1mzZsW2i4+Ph42NTaFjNjY2iI+PVz5fcKy4Ni8LCAjA0qVLKxM+EdVhV+8/R2R8WrWMqmgK5lEiKotnGblYe/w2doTch0wuoKMlwahOzpjcyw1mBjrV9rl1pqCeNGkSbt68ibNnz9b4Z8+dOxfTpk1TPk5NTYWDg0ONx0FEmiU2KQOfH4nAoRvx0NWWoqubJezrGao6LJVgHiWikuTmK+ZJfx0UhdTsfABA7yY2mNvXC40sjar98+tEQT158mQcOHAAp0+fhr19yUP9tra2SEhIKHQsISEBtra2yucLjjVo0KBQm1atWhX5nnp6etDT06tED4ioLnmanoP1J6Lxv4v3kC8XkEiAQa3soKtdp2bpFcI8SkRFEUIgKPwJVhwKR2ySYtMJT1sTLOrfBJ1cLWssjlpdUAsh8PHHH2Pfvn0IDg5Go0aNSn2Nj48PgoKC8OmnnyqPHTt2DD4+PgCARo0awdbWFkFBQcoCOjU1FSEhIZg4cWJ1dIOI6oisXBk2nYvFd8ExSM9RjLD08LDCHH9PeNpy4R0R0YvC41Lx2cEwnIt+CgCwNNbDjN7ueLedA7SkkhqNpVYX1JMmTcLOnTvxxx9/wMTERDnH2czMDAYGBgCAESNGoGHDhggICAAATJkyBd27d8eXX36Jfv36YdeuXbh8+TJ++OEHAIBEIsGnn36Kzz77DG5ubmjUqBEWLlwIOzs7DBo0SCX9JCLNJpML/H7lIb48FomE1BwAQLOGppjr74XONTjCQkSkCRLTcvDVsUj8+tcDyAWgqy3FuC6N8FFPVxjrqaa0rdUF9XfffQcA6NGjR6HjmzdvxqhRowAA9+/fh1T672XUTp06YefOnViwYAHmzZsHNzc37N+/v9BCxlmzZiEjIwMTJkxAcnIyunTpgsDAQOjr61d7n4io9hBCIPh2IlYdikBkQhoAoKG5AWb6eeCNlnaQ1vAICxFRtZDLgcwkwNASkFZ86lp2ngybz93FhpPRyqt4/Vo0wJw+nnCwUO36kjq1D7W64P6pRHTzUQpWHgrH+RjFpUpTfW183MsNw32coK+jpeLo1B/zKJGGkMuBM18ADy8D9u2ArjPKXVQLIXD4ZjwCDofjwbMsAEALezMs7N8E7Z2L3wq5JtXqEWoiInXz4FkmvjgaiT9CHwMAdLWkGNXZGR/1aAxzQ10VR0dEVMUykxTFdHqC4s/MJMDYuswvv/EwBcsPhOHS3WcAABtTPczy88SbrRuq1VU8FtRERDUgOTMXG05GY+v5e8iVyQEodu6Y3ttD5ZcqiYiqjaGlYmS6YITasGzrQhJSs/H5kUj8fvUhhAD0daSY0K0xPuzuAkNd9Stf1S8iIqJaJDtPhu0X7uGbk9FIycoDAHRqXB/z+nqhWUMzFUdHRFTNpFLFNI8yzqHOzpPhx9N38N2pGGTmygAoBh9m9fGEnblBTURcISyoiYiqgVwu8Of1x/j8SCQeJSvm/HnammCOvye6u1tBIlGfS5VERNVKKi11mocQipy5+nAEHqdkAwBaO5pjUf8maO1YryairBQW1EREVex8dBJWHg7HzUepAABbU31Me90db7e1r/G9UYmI1N3V+8+x/EAYrt1PBgDYmeljtr8n3mhppzGDDyyoiYiqSER8KlYdjkBwZCIAwFhPGxN7NMaYzo1goMudO4iIXvQ4OQtrAiOw/59F2oa6WpjYvTHGd3PRuN2OWFATEVVSXEoWvjp6G3v+WTyjLZXg/Y5O+LiXK+ob83bZREQvysjJx/enYvDDmTvIzpNDIgHeaWOPGX4esDHVzHt6sKAmIqqg1Ow8fH8qBj+fjUV2nmLnjr7NbTHTzxONLI1UHB0RkXqRywX2XnuEz49EKO8K26GRBRb1b6Lxi7RZUBMRlVNuvhw7Q+7h6xPReJaRCwBo51QP8/p5oY0GLJ4hIqppf919hmX/F4Ybj1IAAA4WBpjn74U+zWxrZp50Fd2tsTgsqImIyqjgbl1rAiNw92kmAMDF0giz/T3Ru4mNxiyeISKqKQ+eZSLgcDgO3YgHoFhb8nEvV4zq7Aw97RqaJ10Fd2ssDQtqIqr239xrg8t3n2HFoXDlKnRLY1186uuO/7R3gLYWv2dEBMjlciQmJsLKygrSOp5L07LzsOFkDDadjUWuTA6pBBjS3hHTXneHlUkNry2p5N0ay4IFNVFdVwO/uWuymMR0rAmMwJFbCQAAAx0tTOjmgvHdXGCsxxRKRApyuRwrVqxASEgIvL29MX/+/DpZVMvkAr9dfoAvjt5GUrpinnRn1/pY0K8JvBqYqiaoCt6tsTx4NiCq62rgN3d1UZ7Ro8S0HKwLuo1fLj2ATC6UoytTfd1graGr0Imo+iQmJiIkJATx8fEICQlBYmIibGxsVB1WlSspj56PScLyA+EIj1Pswd/I0gjz+nrB18tatVPiynm3xopgQU1U19XAb+7qoKyjR5m5+fjxdCy+P/3vbW99vWwwx98DrtYmNR02EWkIKysreHt7K3OMlZWVqkOqcsXl0btJGVh5KBxHwxRX8kz1tfHJa24Y4eMMXW01GaUvw90aK4MFNVFdVwO/uauD0kaP8mVy7L78EP89fhuJaYrLlC3tzTC3rxc6utRXVdhEpCGkUinmz59fq+dQv5xH7zyIw683U7Dl/F3kyQS0pBK87+2IKb7usDDSVXW4NYoFNRFV+2/u6qC40SMhBILCn2BVYASin6QDUGznNMvPE/1bNKiay5Rc9ElUJ0il0lo5zaNAQR69GHIJJm36YvDWW3iWmQcA6Olhhfn9vKrtSp66L/iUCCGEqoOoa1JTU2FmZoaUlBSYmqpogj5RHfRyQg59kIyVh8JxKfYZAMDcUAef9HLDsI6OVbedExd9VgvmUSLVCI5IwNI/byL2WTYAwM3aGPP7eaGHR/UNymjCgk+OUBNRnVEwenTvaQY+PxKJA3/HAQD0tKUY06URPuzeGGYGOlX7oXVo0ScR1V7RT9Lw2cFwBEcmAgDqGepg2uvuGNrBsdq3DtWEBZ8sqImozniWkYv1J6Lwv4v3kCcTkEiAN1s3xIzeHrAzN6ieD60jiz6JqHZ6npGLtcdv438h9yGTC2hLJRjVyRkf93KDmWEVD0AUQxMWfHLKhwrwUiVRzcrOk2HTuVh8dzIGaTn5AIBu7laY08cTTexq4P8g51BXOeZRouqVmy/H9ov3sO74baRmK/Kmr5cN5vX1hIuVcY3Ho+5zqDlCTUS1lkwusO/aI3x5NBJxKYr5fk0amGJuX090davBEY46sOiTiGoHIQRORDzBioPhuJOUAQDwtDXBwv5N0NlVdVfY1H3BJwtqIqqVTt9ORMDhCOUNBuzM9DG9twfebN0QUqkKbzBARKSmIuJT8dmBcJyNTgIAWBrrYnpvDwxu5wAt5s0SsaAmolrl1uMUrDocgTNRihOCib42JvV0xahOztDXqaKdO4iIapGk9Bx8dew2dl26D7kAdLUUC7Un9WwME/2amSet6VhQE1Gt8Cg5C18ejcS+a48gBKCjJcEIH2dM7umKenXsBgNERGWRky/DlnN38c2JaOX6kr7NbTGnjxcc6xuqODrNwoKaiDRaSlYevg2OxuZzd5GbLwcADGhph5m9PXhCICIqghACR27FY+WhCNx/lgkAaNbQFIv6N0WHRhYqjk4zsaAmIo2Uky/D9gv38M3JaCT/c6cu70YWmNfXCy0dzFUbHBGRmrr5KAXLD4Qh5J8bWlmb6GFWH0+8xfUllaJ++45UodOnT2PAgAGws7ODRCLB/v37S2w/atQoSCSSV76aNm2qbLNkyZJXnvf09KzmnhBRAblc4M/rj+H71Sl8djAcyZl5cLM2xqZR7bBrQkcW00RERXiSmo2Zv13HgG/OIiT2GfS0pfiklytOzuiBd9ras5iupFo9Qp2RkYGWLVtizJgxeOutt0ptv27dOqxatUr5OD8/Hy1btsS7775bqF3Tpk1x/Phx5WNt7Vr9bSRSGxdiniLgcDj+fpgCQDGyMvV1d7zb1r7a79RFRKSJsvNk+OnMHXwbHIPMXBkAYKDZHcxqnY+Gvn7cG7+K1OpK0N/fH/7+/mVub2ZmBjMzM+Xj/fv34/nz5xg9enShdtra2rC1ta2yOImoZLcT0rD6cASCIp4AAIx0tfBh98YY27URDHVrdRojIqoQIQT+7+84rD4cgUfJWQCAVg2NsEh/N9rIbwFPbYDMYdwjv4rwTFSCn3/+Gb6+vnBycip0PCoqCnZ2dtDX14ePjw8CAgLg6OiooiiJaq+E1Gz899ht7L78AHIBaEkleK+DI6b4usHSWE/V4RERqaXQB8lYfiAMV+49B6DYh3+2vyfeaG4LydlLwMMkwL6d4u6tVCVYUBfj8ePHOHz4MHbu3FnouLe3N7Zs2QIPDw/ExcVh6dKl6Nq1K27evAkTE5Mi3ysnJwc5OTnKx6mpqdUaO5GmS8/Jx/enYvDjmTvIzlPs3NGnqS1m9fFQyS1vSfWYR4lKF5eShTWBiu1DAcBARwsTezTG+K4uMND9Zx/+rjOAzCRFMc3pHlWGBXUxtm7dCnNzcwwaNKjQ8RenkLRo0QLe3t5wcnLC7t27MXbs2CLfKyAgAEuXLq3OcIlqhTyZHLsu3ce6oCgkpecCANo4mmN+Py+0deJWTnUZ8yhR8TJz8/H9qTv4/nSMchDi7Tb2mOnnAVsz/cKNpVJO86gGEiGEUHUQNUEikWDfvn2vFMhFEULA3d0d/fv3x3//+99S27dv3x6+vr4ICAgo8vmiRlYcHByQkpICU1PTMveBqLZS7ImagDWBEbiTlAEAaGRphNl9PODX1BYSCVef13XMo0SvkssF9oc+wprASMSnZgMA2jvXw8L+TdDC3ly1wdUxHKEuwqlTpxAdHV3siPOL0tPTERMTg+HDhxfbRk9PD3p6nO9JVJQr955j5aFw5Vy/+ka6+NTXDf/p4Agd7txB/2AeJSrs8t1nWHYgTLnrkYOFAeb6e8G/GQchVKFWF9Tp6emIjo5WPo6NjUVoaCgsLCzg6OiIuXPn4tGjR9i2bVuh1/3888/w9vZGs2bNXnnPGTNmYMCAAXBycsLjx4+xePFiaGlpYejQodXeH6La5E5iOj4/EonDN+MBAPo6Uozv6oIJ3Vxgoq+j4uiIiNTTg2eZWBUYgYN/xwEAjPW0MamnK0Z3doa+jpaKo6u7anVBffnyZfTs2VP5eNq0aQCAkSNHYsuWLYiLi8P9+/cLvSYlJQW///471q1bV+R7Pnz4EEOHDsXTp09hZWWFLl264OLFi7Cysqq+jhDVIknpOfg6KAo7Q+4jXy4glQDvtnXAtN7usDHVL/0NiIjqoPScfHx7Mho/nY1Fbr4cEgnwn/YOmPa6B6xMePVG1erMHGp1kpqaCjMzM879ozolMzcfP5+JxcZTMcj45+YCvTytMbuPJzxsi94hh6g4zKNUV8jkAnuuPMDnR24jKV2xjsDHpT4W9m+CJnb82VcXtXqEmohUr+Bk8NWx20hIVZwMmjc0w9y+nujUmHugEhEV50LMUyw/EIawOMU2kc71DTGvrxdeb2LDedJqhgU1EVULIQSCIxMRcDgctxPSAQD29Qww088DA1rYQSrlyYCIqCh3kzIQcDgcR24lAABM9LUx5TU3jPBxhq42F2urIxbURFTlbjxMwcpD4bhw5ykAwMxABx/3csVwHyfoaXPRDBFRUVKz8/DNiWhsPheLPJlQ3h126uvusDDSVXV4VAIW1ERUZR48y8TnRyLx5/XHAABdbSlGd3bGR91dYWbInTuIiIqSL5Nj11+KqXHPMhQ3termboWF/bzgZsM1JpqABTURVVpyZi6+ORGNbRfuIVemWH0+qFVDTO/tDvt6hqoOj4hIbZ2+nYjPDoYpp8a5Whtjfj8v9PTg3Qw1CQtqIqqw7DwZtp6/iw0no5GanQ8A6OJqiTn+nmjW0EzF0RERqa/oJ+lYeSgcJyKeAADMDXUw1dcd73nzplaaiAU1EZWbXC7wx/VH+OLIbTxKzgIAeNqaYG5fL3Rzs+TqcyKiYiRn5mLt8Sj87+I95MsFtKUSjOzkjE96uXFqnAZjQU1E5XI2KgkrD4Urt3GyNdXHtN7ueLuNPbS4cwcRUZHyZHL87+I9rD0ehZSsPACAr5c15vX1gouVsYqjo8piQU1EZRIel4qAwxE4fTsRAGCip42JPRtjTOdGvN0tEVExhBA4GfkEnx0Mx53EDACKK3oL+jVBFzfuxV9bsKAmohLFpWThy6O38fvVhxAC0NGS4P2OTvi4lxu3cSIiKkFkfBo+OxiGM1FJAID6RrqY3tsDQ9o78IpeLcOCmoiKlJqdh43BMfj5bCxy8uUAgH4tGmBmbw84WxqpODoiIvX1ND0HXx27jV8u3YdcALpaUozu4oxJPV1hqs950rURC2oiKiQ3X44dIfew/kS0cj/UDs4WmNvXE60d66k4OiIi9ZWTr9j5aH1QNNJyFDsf9Wlqi7l9PeFUnwMRtRkLaiICoJjnd+hGPNYcicC9p5kAgMZWRpjj7wVfL2vu3EFEVAwhBI6GJWDloXBl/mxqZ4qF/Zugo0t9FUdHNYEFNRHhUuwzrDgUjusPkgEAlsZ6mPa6Owa3s4c290MlIirWrccpWH4gDBfvPAMAWJnoYZafB95uYw8p50nXGSyoiTSAXC5HYmIirKysIJVWXYEb/SQdqwMjcCwsAQBgqKuFCd1cML6rC4z0mB6IqPao6jz6JC0bXx65jd1XHkAIQE9bivFdXTCxR2PmzzqI/+JEak4ul2PFihUICQmBt7c35s+fX+mTwZO0bKw9HoVf/3oAmVxASyrBkPYO+NTXDdYm+lUUORGReqjKPJqdJ8PPZ2Px7cloZOTKAABvtLTDbH9PNDQ3qMqwSYOwoCZSc4mJiQgJCUF8fDxCQkKQmJgIGxubCr1XRk4+fjh9Bz+euYPMf04Erzexwew+HnC1NqnKsImI1EZV5FEhBA78HYdVhyOUd4ht5WCOhf2boK0TF2zXdSyoidSclZUVvL29lSMrVlZWAMp3+TJfJseuvx5g7fEoJKXnAFCcCOb19UKHRhbV3gciIlUqLo8CZcul1x8kY/mBMFy+9xyA4g6xc/w98UZLO86TJgCARAghVB1EXZOamgozMzOkpKTA1NRU1eGQBng54Zf18qUQAsfCErA6MAIx/9yhy6m+IWb5eaJvc1vu3EEai3mUyquowrm0XBqfko01gRHYe+0RAMBARwsfdm+MCd1cYKDLO8TSvzhCTaQBpFJpocuTZbl8ee3+cwQcisClu4qV5xZGuviklyve83aCrjZ37iCiuuXlPAoUn0uzcmX4/nQMNp6KQXae4sZWb7VpiFl+nrA14zoTehULaiINVNLly3tPM7AmMBIHb8QBUKw8H9e1ET7o3ph36CIiesHLubR+fUvsu/YQawIjEZeSDQBo51QPC/s3QUsHc9UGS2qNUz5UgJcqqSq8fPnyWUYuvg6Kwo6Qe8iTCUgkwNtt7DG9tzsamFXPyvPq2s6PqDTMo1RVCvLY/UxtfHYoQrkff0NzA8zt64l+zRtU6/Q45tHagSPURBqq4PJlVq4Mm85FY2NwjPJWt93drTC3ryc8bauv0KiO7fyIiGra45RsrAp6hAN/K67qGelqYVIvV4zp3Aj6OtU7T5p5tPZgQU2koWRygd+vPsRXR28jPlVxabKpnSnm+nuhi5tltX9+VW7nR0RU09Jz8vFdcDR+PBOL3Hw5JBJgcFsHTPdzr7H9+JlHaw8W1EQaRgiBU7cTsepwBCLi0wAoLk3O8HPHwJYNa2wLp5LmcRMRqSuZXOD3Kw/x+dFIJKYpthH1camPBf290NTOrEZjYR6tPTiHWgU4948q6uajFKw6HIGz0UkAAFN9bUzu5YoRPs7VfmmyKJz7R6rCPEoVcfHOUyw/EIZbj1MBKLYRnd/XC683sVHZNqLMo7UDR6iJNMDD55n48uht7PtnL1RdLSlG+Dhhci9XmBvqqiyuorahIiJSN/eeZiDgUAQCb8UDAEz0tfFJLzeM6OQEPW3V7ifNPFo71OpfhU6fPo0BAwbAzs4OEokE+/fvL7F9cHAwJBLJK1/x8fGF2m3YsAHOzs7Q19eHt7c3Ll26VI29oLosJTMPAYfC0evLU8piemArOwRN744F/ZuotJgmIlJ3qdmKHPr6V6cReCseUgnwfkdHBM/ogfHdXFReTFPtUatHqDMyMtCyZUuMGTMGb731VplfFxkZWegSorW1tfLvv/76K6ZNm4aNGzfC29sba9euhZ+fHyIjIwu1I6qMnHwZtl+4h/UnopGSlQdAMcdvXl8vNLev2Tl+RESaJl8mx6+XH+Cro7fxNCMXANDVzRIL+jWBh62JiqOj2qhWF9T+/v7w9/cv9+usra1hbm5e5HNfffUVxo8fj9GjRwMANm7ciIMHD2LTpk2YM2dOZcIlglwu8H9/P8bnRyLx8HkWAMDdxhhz/b3Qw8OKtwonIirF2agkfHYwTLlo28XKCAv7NWEOpWpVqwvqimrVqhVycnLQrFkzLFmyBJ07dwYA5Obm4sqVK5g7d66yrVQqha+vLy5cuFDs++Xk5CAnJ0f5ODU1tfqCJ411PiYJAYcicONRCgDAxlQP0153xzttHaBVQzt3EKkr5lEqzZ3EdKw8FI7j4U8AAGYGOpjq64ZhHZ2go1WrZ7iSGmBB/YIGDRpg48aNaNeuHXJycvDTTz+hR48eCAkJQZs2bZCUlASZTPbK4gEbGxtEREQU+74BAQFYunRpdYdPGioyPg2rAyNwIkJxEjDW08bEHo0xpnMjGOhyfh8RwDxKxUvOzMW6oChsv3AP+XIBbakEw32cMOU1N64zoRpTZ7bNk0gk2LdvHwYNGlSu13Xv3h2Ojo7Yvn07Hj9+jIYNG+L8+fPw8fFRtpk1axZOnTqFkJCQIt+jqJEVBwcHbvdUx8WnZOO/x27jtysPIBeAtlSCYd6O+Pg1N1ga66k6PCK1wjxKL8uTybHj4j2sDYpCcqZirclrntaY188Lja2MVRwd1TUcoS5Fhw4dcPbsWQCApaUltLS0kJCQUKhNQkICbG1ti30PPT096OmxQCKFtOw8fH/qDn46ewfZeXIAgH8zW8z084ALTwJERWIepQJCCARHJuKzg2GIScwAAHjYmGBBfy90deONUUg1WFCXIjQ0FA0aNAAA6Orqom3btggKClKOdMvlcgQFBWHy5MkqjJI0QZ5Mjl8u3ce641HKVedtnephXl8vtHWqp+LoiIjU3+2ENCw/EIYzUYqbW1kY6WJ6b3cMaecAbc6TJhWq1QV1eno6oqOjlY9jY2MRGhoKCwsLODo6Yu7cuXj06BG2bdsGAFi7di0aNWqEpk2bIjs7Gz/99BNOnDiBo0ePKt9j2rRpGDlyJNq1a4cOHTpg7dq1yMjIUO76QfQyIQQCb8ZjzZFIxCYpRlNcLI0wq48n/Jqq7u5cRESa4ml6Dv57/DZ2htyHXAA6WhKM7twIk3u5wlRfR9XhEdXugvry5cvo2bOn8vG0adMAACNHjsSWLVsQFxeH+/fvK5/Pzc3F9OnT8ejRIxgaGqJFixY4fvx4ofcYMmQIEhMTsWjRIsTHx6NVq1YIDAzkXY6oSFfuPcOKg+G4ej8ZAGBprIspvu74T3sHrjonIipFbr4c2y7cxbqgKKRl5wMA/JraYK6/F5wtjVQcHdG/6syiRHWSmpoKMzMzLqapxe4kpmNNYKTyNrcGOloY380FE7q5wFivVv8eS1QjmEdrNyEEjoUlYOWhcNx9mgkAaNLAFAv7N4FP4/oqjo7oVTyzE1WhxLQcfB0UhZ2X7kMmF5BKgCHtHTDV1x3WpvqqDo+ISO2FPU7F8gNhuHDnKQDA0lgPM/24Jz+pNxbURFUgMzcfP52JxfenYpCRKwMA+HpZY3YfT7jZ8Da3RESlSUzLwZdHI/Hr5QcQAtDVlmJ810aY2MOVV/ZI7fEnlKgS8mVy7LnyEF8du40naYo9clvYm2GuvxcvSxIRlUF2ngybzsXi25MxSM9RzJPu36IBZvfxhIOFoYqjIyobFtREFSCEwImIJ1h1OAJRT9IBAPb1DDCrjyf6N28AKS9LEhGVSAiBQzfiEXA4HA+fZwEAWtqbYWH/JmjnbKHi6IjKhwU1UTldf5CMlYfCERL7DABgbqiDj3u54f2OjtDT5q3CiYhK8/fDZCw/EIa/7j4HANia6mO2vwcGtmzIAQnSSCyoicro/tNMfH40Ev93/TEAxfy+MZ0bYWKPxjAz4D6oRESliU/JxpojEdh79REAQF9Hig+7N8aEbi4w1GVJQpqLP71EpXiekYv1J6Kx/eJd5MkEJBLgzVYNMd3PAw3NDVQdHhGR2svKleGH03ew8VQMsvIUC7ffbN0Qs/p4oIEZ8yhpvgoV1CEhIfD29q7qWIjUSnaeDJvP3cW3wdHKGwp0dbPEHH9PNLUzU3F0RETqTy4X+PP6Y6wOjEBcSjYAoK1TPSzs3wStHMxVGxxRFapQQe3j4wNXV1cMHz4cw4YNg4uLS1XHRRpCLpcjMTERVlZWkEprx53/5HKBfdce4cujkXj8zwnAq4Ep5vp7opu7lYqjI6LapjbmUQC4cu85lh8IQ+iDZABAQ3MDzPH3RP8WDSCRcJ401S4VulPizp07sWPHDhw7dgwymQwdO3bE8OHDMXjwYFhYcGVuaWrLHb7kcjlWrFihvGIxf/58jT8ZnIlKxMpDEQiPSwUA2JnpY1pvD7zZuiFvKECkRphH1dej5CysPhyBP/9Zb2Kkq4WJPRpjXFcX6Otw4TbVTpW69XhSUhJ27dqFnTt34uLFi9DV1UWfPn3w/vvv44033oCurm5Vxlpr1JYTQUJCAsaOHYv4+HjY2tri559/ho2NjarDqpCwx6kIOByOM1FJAAATPW181NMVozs78wRApIaYR9VPRk4+Np6KwQ+n7yAnXw6JBHi3rT1m9PbgnWKp1qvUr8GWlpaYPHkyzp8/j6ioKMyfPx8REREYMmQIbG1tMWHCBJw9e7aqYiU1Y2VlBW9vb9ja2sLb2xtWVlU3HUIulyMhIQFyubxaX/M4OQvTd19Hv/VncCYqCTpaEozp3AinZvXExB6Na6yYrkjsRKT51C2PVuR1crnAb5cfoOcXwVh/Iho5+XJ0dLHA/03ugjXvtKyxYpp5lFSpUiPUL3r8+DF++eUXbN++HX///Tfq1asHbW1tJCUloU2bNti6dSuaNGlSFR+l8TR9ZOXF+X4AqnzuX0UugZb3NSlZefguOAabzsUiN1+RfPu3aICZfh5wqm9UJf0oq9p4yZeoujGPlv7+Fckr5X1dyJ2nWH4wDDcfKabJOdU3xFx/L/g1tanRedLMo6RqlfppS0tLw+bNm+Hr6wsnJyfMmzcPzs7O2LNnD+Lj4/H48WP8+uuvePLkCUaPHl1VMZMKFSStsWPHYsWKFQAAGxubKk1ciYmJCAkJQXx8PEJCQpCYmFhlr8nJl2HT2Vj0+PwkNp6KQW6+HB0aWWD/pM745r02NV5MAxXrLxFpLnXNo+V53f2nmZj4vysY8sNF3HyUChM9bczr64mjU7uhTzPbGl90yDxKqlahXT7++OMP7NixAwcOHEB2djbat2+PtWvX4j//+Q/q169fqO0777yD58+fY9KkSVUSMKlWUUmrquf7FVwCLRhpKMsl0NJeI4TAgb/jsOZIBB48U9zi1tXaGHP6eOI1L2uVrjivSH+JSHOpax4ty+vSsvPwzclobD57F7kyOaQSYGgHR0x93R2WxnpV2ofyYB4lVavQlA+pVAoHBwe8//77GDFiBDw8PEpsf+nSJXz33XfYvHlzhQOtTTT5UmVNXVaryDZSxb3m4p2nCDgUjusPUwAAViZ6mOrrjsHt7KGtVc7Y5XIgMwkwtASqsN+1ddssourCPFq2z6lIXinqdTK5wK9/PcCXRyPxNCMXgGJf/vn9vOBpW77vf3XlO+ZRUqUKFdTBwcHo0aNHNYRTN2jyiQDQnKQVlZCG1YEROB7+BIBi66YPujfGuK6NKnaLW7kcOPMF8PAyYN8O6DqjSotqIio75tGacy46CcsPhCEiPg0A4GJphAX9vdDTo/xX9zjXmWqrCk35YDFdt0ml0mrZ1qmqTjBPUrPx3+O38etfDyAXgJZUgvc6OOKT19xgZVKJS5KZSYpiOj1B8WdmEmBsXfH3I6I6S93zKADcSUzHykMROB6eAAAwM9DBlNfcMNzHCTrlvbr3j5qY7kKkChUqqImqWlWMWqTn5OOH03fw4+k7yMqTAQD8mtpgVh9PNLYyrnyQhpaKkemCEWpDy8q/JxFRFamq0d+UzDx8fSIKW8/fRb5cQEsqwfCOTpjymhvqGVXu/hKc60y1FQtqUguVGbXIk8nx618PsPZ4FJLScwAAbRzNMa+vF9o5V+GdO6VSxTSPaphDTURUWZUd/c2XybHz0n3899htPM/MAwD09LDC/H5ecLU2qZIYpVIp5s+frzHTXYjKigU1qYWKjFoIIXA0LAGrAyNwJzEDAOBc3xCz+3hW37ZNUimneRCRWqrM6O/JyCdYcTAc0U/SAQBu1sZY0L8JurtX/QhydU13IVKlKruxC5Wdpi+mqS7lmft39f5zBBwKx193nwMA6hvpYoqvG4Z2cKzw3L7yxkBEqsM8WrTy5rCohDR8djAcp24r9m2uZ6iDaa+7Y2gHx/LvglTBGIhqA45Qk9ooy6hFbFIGPj8SgUM34gEA+jpSjOvigg+6u8BEX6dSn8/V50Sk6co6+vssIxdrj9/GjpD7kMkFdLQkGNXJGZN7ucHMoOK5lHmU6ioW1KQRktJzsD4oCjtC7iNfLiCVAO+0tce01z1ga6ZfJZ/B1edEVNvl5sux7cJdrAuKQlp2PgCgdxMbzOvrBWfLyt8plnmU6ioW1KQSZb0kmJUrw89n72DjqTtIz1Ek/54eVpjt71numwmUhqvPiUiTlGdqhRACx8ISEHA4ArFJijUnXg1MsbC/Fzo1rrodi5hHqa7iHGoVqOtz/8pySVAmF/j9ykN8eSwSCamKnTuaNTTFPH8vdHKtvu3qOPePSDMwj5Z9akV4XCqWHwjD+ZinAABLYz3M9HPHO20doCWt+sXbzKNUF9Xqn/TTp09jwIABsLOzg0Qiwf79+0tsv3fvXrz++uuwsrKCqakpfHx8cOTIkUJtlixZAolEUujL09OzGntR+xR1SbCAEAInI5+g77ozmPX730hIzUFDcwOsHdIKf07qUq3FNPDv/EOeBIhInZWUR5Vt0nIwd+/f6Pf1GZyPeQpdbSkm9miMkzO6Y0h7x2oppgHmUaqbavWUj4yMDLRs2RJjxozBW2+9VWr706dP4/XXX8fKlSthbm6OzZs3Y8CAAQgJCUHr1q2V7Zo2bYrjx48rH2tr1+pvY5Ur7pLgzUcpWHkoXDmKYmagg497uWK4jxP0tLVUGTIRkVopaWpFTr4Mm8/dxTcnopVT5fo1b4A5/p5wsDBUVchEtVqdmfIhkUiwb98+DBo0qFyva9q0KYYMGYJFixYBUIxQ79+/H6GhoRWOpa5fqgQKXxJ8lJyNL49GYn/oYwCArrYUozs546MerjAzrNzOHURUOzGPvjq1QgiBwzfjEXA4HA+eZQEAWtibYWH/JmhflTe5IqJXcGi1BHK5HGlpabCwKJyIoqKiYGdnB319ffj4+CAgIACOjo4qilIzSaVS6JnUQ8DhCGw9fw+5MjkAYFArO8zw84B9PY6iEBGV5MUt8m48TMHyA2G4dPcZAMDGVA+z/DzxZuuGkFbT1A4i+hcL6hJ88cUXSE9Px+DBg5XHvL29sWXLFnh4eCAuLg5Lly5F165dcfPmTZiYFH1r1pycHOTk5Cgfp6amVnvs6iw7T4ZtFxSXI1P/2baps2t9zPX3QrOGZiqOjojUEfNo0RJSs7EmMBJ7rz2EEIq9+Sd0a4wPurnASI+neKKawv9txdi5cyeWLl2KP/74A9bW/95q2t/fX/n3Fi1awNvbG05OTti9ezfGjh1b5HsFBARg6dKl1R6zupPLBf68/hifH4nEo2TF5UgPGxPM7euJ7u5W1XOrcCKqFZhHC8vKleHHM3fwXXAMsvJkABRX+Gb18YSduYGKoyOqeziHugi7du3CmDFj8Ntvv6Ffv36ltm/fvj18fX0REBBQ5PNFjaw4ODjUqbl/56KTsPJQOG49Vowq2ZrqY9rr7ni7rX21rTQnotqDeVRBCMXAxOrDEXickg0AaONojoX9m6C1Yz0VR0dUd3GE+iW//PILxowZg127dpWpmE5PT0dMTAyGDx9ebBs9PT3o6elVZZgaIyI+FQGHInDqtmJLJ2M9bUzs0RhjOjeCgS537iCisqnLebTA1fvPsfxAGK7dTwYA2JnpY7a/J95oaccrfEQqVqsL6vT0dERHRysfx8bGIjQ0FBYWFnB0dMTcuXPx6NEjbNu2DYBimsfIkSOxbt06eHt7Iz4+HgBgYGAAMzPF3N4ZM2ZgwIABcHJywuPHj7F48WJoaWlh6NChNd9BNRaXkoWvjt7GnquKeX3aUgne7+iEj3u5or5x3T4pEhGVx+PkLKwOjMAf/+yEZKirhY96NMa4ri7Q1+HABJE6qNUF9eXLl9GzZ0/l42nTpgEARo4ciS1btiAuLg73799XPv/DDz8gPz8fkyZNwqRJk5THC9oDwMOHDzF06FA8ffoUVlZW6NKlCy5evMjbq/4jNTsP35+Kwc9nY5Gdp9i5o1/zBpjp5wFnSyMVR0dEpDkycvLx/akY/HDmDrLz5JBIgHfa2GOGnwdsTPVVHR4RvaDOzKFWJ7Vx/9TcfDl+uXQf64Ki8CwjFwDQ3rke5vb1QhvO6yOiKlYb82gBuVxg77VH+PxIBBJSFfPGOzSywKL+TbgTEpGaqtUj1FT9Cm4ksCYwAnefZgIAXKyMMKePJ15vYsN5fURE5fDX3WdY9n9huPEoBQDgYGGAef5e6NPMlvmUSI2xoKYK++vuM6w8FK5cIGNprIepr7thSDsHaGtJVRvcC16+mxgRkbp58CwTqw5H4OCNOACKBdyTe7liVCdntZgnzTxKVDIW1FRu0U/SsSYwAkfDEgAABjpamNDNBeO7ucBYzW4kIJfLsWLFCoSEhMDb2xvz58/nyYCI1EZadh6+DVasO8nNl0MqAYa0d8S0191hZaIeC7iZR4lKp17VD6m1J2nZWHc8Crv+egCZXCgT/1RfN1ir6QKZxMREhISEID4+HiEhIUhMTFTeqpeISFVkcoHfLj/AF0dvIyldMU+6s2t9LOjXBF4N1GtOOPMoUelYUFOpMnLy8eOZO/jh9B1k5iruyOXrZYM5/h5wtS76duvqwsrKCt7e3sqRFe7GQkSqdj46CcsPhiM8TnGjKxdLI8zr64XXvKzVcp408yhR6bjLhwpoyur0fJkcuy8/xH+P30ZimmIEpaWDOeb5e8Lbpb6Koys7zv0jqn00JY++KDYpAysPhePYP9PlTPW1McXXHcM7OkFXW71zE/MoUck4Qk2vEEIgKPwJVgVGIPpJOgDA0cIQs/p4oF/zBmo5glISqVTKy5NEpDIpWXlYHxSFrRfuIk8moCWV4H1vR3zq6456RrqqDq9MmEeJSsaCmgq5/iAZKw6F41LsMwBAPUMdfPKaG4Z5lz6CwhEMIqJ/5csU+/N/dew2nmfmAQB6eFhhQT+vYqfLMY8SaSYW1AQAuPc0A58ficSBvxVbNulpSzGmSyNM7NEYpvo6pb6eq8CJiP516nYiPjsQhqh/rvK5WhtjQT8v9PCwLvY1zKNEmosFdR33LCMX609E4X8X7yFPJiCRAG+1tsf03u6wMzco8/twFTgRERD9JA0rDobjZGQiAMVVvqmvu+O9Do6l7s/PPEqkuVhQ11HZeTJsOheL707GIC0nHwDQ3d0Kc/w9K7RlE1eBE1Fd9jwjF+uCorD94j3I5ALaUglGdnLGJ73cYGZY+lU+gHmUSJNxlw8VUOXqdJlcYN+1R/jyaCTiUrIBAE0amGJeXy90cbOs1HuXa+6fXA5kJgGGlgAvaRJROanLLh+5+XJsv3gPXwdFISVLMU/a18sG8/p6wsXKuNzvV548yvnWROqDI9R1yKnbiQg4FI6I+DQAgJ2ZPmb4eWBQq4aQSiu/c0eZV4HL5cCZL4CHlwH7dkDXGSyqiUijCCFwIuIJVhwMx52kDACAp60JFvVvgk6uFR+cKGse5XxrIvXCgroOuPU4BasOR+BMVBIAwERfG5N7umJkJ2fo62jVfECZSYpiOj1B8WdmEmBc/EIdIiJ1EhGfis8OhONstCKnWhrrYnpvDwxu5wCtKhicKAvOtyZSLyyoa7GHzzPx1dHb2Bf6CEIAOloSjPBxxuSerqrd+9TQUjEyXTBCbVi5qSZERDUhKT0HXx27jV2X7kMuAF0txW5Ik3o2hkkZdkOqSpxvTaReOIdaBap77l9KVh6+PRmNzefvIjdfDgB4o6UdZvp5wMHCsMo/r0I4h5qIKqEm51Dn5Muw5dxdfHMiWrmIu29zW8zp4wXH+qrLqZxDTaQ+OEJdi+Tky/C/i/ex/kQUkv+5iUBHFwvM6+uFFvbmqg3uZVIpp3kQkVoTQiDwZjwCDkfg/rNMAECzhqZY1L8pOjSyKPsbVdMAAu9eSKQ+WFDXAnK5wIEbcfj8SAQePMsCALjbGGOuvxd6eFhp3K3CiYhU7eajFCw7EKa8a6y1iR5m9fHEW63LuYibi7CJ6gQW1BruQsxTBBwOx98PUwAokv60193xTlv7Um8iQEREhT1JzcbnRyKx5+pDCKG4a+yEbi74sHtjGOlV4JTJRdhEdQILag11OyENqw9HICjiCQDASFcLH3ZvjLFdG8FQl/+sRETlkZ0nw89nY7HhZDQyc2UAFGtPZvt7omE57hr7Ci7CJqoTWHlpmITUbPz32G3svvwAcgFoSyUY2sERU3zdYGmsp+rwiIg0ihAC//d3HFYfjsCjZMWUuVYO5lg0oAnaONar/AdIpYppHlyETVSrsaDWEGnZefjh9B38eOYOsvMUO3f0aWqLWX08KnQ3LiKiui70QTKWHwjDlXvPAShudjXb3xNvtLSr2rUnXIRNVOuxoNYAJyOfYMbu63iakQsAaOtUD/P6eqKtUzlWmRMREQAgLiULawIjse/aIwCAgY4WPurRGOO6usBAVwU3uyIijceCWgM41DNEclYeGlkaYXYfT/g1teHOHURE5ZSZm4+Np+7gh9Mxyit977S1x0w/D9iY6qs4OiLSZCyoNYCrtTH+N9Yb7ZzrQYc7dxARlVvY41SM3nIJCak5AIAOzhZY2L8JmtubqTgyIqoNWFBrCJ/G9VUdAhGRxmpkaQQtiQT29Qwwr68X/JvZ8kofEVUZFtRERFTrGehqYcuYDnC0MIS+DudJE1HVqtXzB06fPo0BAwbAzk6xYnv//v2lviY4OBht2rSBnp4eXF1dsWXLllfabNiwAc7OztDX14e3tzcuXbpU9cETEVGVcrcxYTFNRNWiVhfUGRkZaNmyJTZs2FCm9rGxsejXrx969uyJ0NBQfPrppxg3bhyOHDmibPPrr79i2rRpWLx4Ma5evYqWLVvCz88PT548qa5uEBEREZEakwghhKqDqAkSiQT79u3DoEGDim0ze/ZsHDx4EDdv3lQe+89//oPk5GQEBgYCALy9vdG+fXt88803AAC5XA4HBwd8/PHHmDNnTpliSU1NhZmZGVJSUmBqalrxThER1VHMo0SkTmr1CHV5XbhwAb6+voWO+fn54cKFCwCA3NxcXLlypVAbqVQKX19fZZui5OTkIDU1tdAXERGVHfMoEakzFtQviI+Ph42NTaFjNjY2SE1NRVZWFpKSkiCTyYpsEx8fX+z7BgQEwMzMTPnl4OBQLfETEdVWzKNEpM5YUNeAuXPnIiUlRfn14MEDVYdERKRRmEeJSJ1x27wX2NraIiEhodCxhIQEmJqawsDAAFpaWtDS0iqyja2tbbHvq6enBz09vWqJmYioLmAeJSJ1xhHqF/j4+CAoKKjQsWPHjsHHxwcAoKuri7Zt2xZqI5fLERQUpGxTXeRyORISEiCXy6v1c4iIaivmUSKqLrW6oE5PT0doaChCQ0MBKLbFCw0Nxf379wEoLiGOGDFC2f7DDz/EnTt3MGvWLERERODbb7/F7t27MXXqVGWbadOm4ccff8TWrVsRHh6OiRMnIiMjA6NHj662fsjlcqxYsQJjx47FihUrSj8ZyOVA+hPFn0REVO48yuKbiMqjVk/5uHz5Mnr27Kl8PG3aNADAyJEjsWXLFsTFxSmLawBo1KgRDh48iKlTp2LdunWwt7fHTz/9BD8/P2WbIUOGIDExEYsWLUJ8fDxatWqFwMDAVxYqVqXExESEhIQgPj4eISEhSExMLP7z5HLgzBfAw8uAfTug6wxAWqt/byIiKlV58mhB8R0SEgJvb2/Mnz8fUuZRIipBrS6oe/TogZK22S7qLog9evTAtWvXSnzfyZMnY/LkyZUNr8ysrKzg7e2tTO5WVlbFN85MUhTT6QmKPzOTAGPrGouViEgdlSePlmsQg4gItbygri2kUinmz5+PxMREWFlZlTxSYmipGJkuGKE2tKy5QImI1FR58mi5BjGIiFCH7pSoTqr9Dl9yuWJk2tCS0z2IqFaq7jwql8vLNohBRASOUNdOUimneRARVYJUKuU0DyIqM/7aTURERERUCSyoiYiIiIgqgQU1EREREVElsKAmIiIiIqoELkpUgYKNVVJTU1UcCRHVdiYmJpBIJKoOo8oxjxJRTSlLHmVBrQJpaWkAAAcHBxVHQkS1XbVtz6lizKNEVFPKkke5D7UKyOVyPH78GEIIODo64sGDB7XqhJeamgoHBwf2S0OwX5qlvP2qrSPUzKOaif3SLOyXAkeo1ZRUKoW9vb3yUqWpqWmt+kEtwH5pFvZLs9TWfpUV86hmY780C/tVOi5KJCIiIiKqBBbURERERESVwIJahfT09LB48WLo6empOpQqxX5pFvZLs9TWflVUbf1+sF+ahf3SLNXRLy5KJCIiIiKqBI5QExERERFVAgtqIiIiIqJKYEFNRERERFQJLKiJiIiIiCqBBXU127BhA5ydnaGvrw9vb29cunSpxPa//fYbPD09oa+vj+bNm+PQoUM1FGn5lKdfP/74I7p27Yp69eqhXr168PX1LfX7oCrl/fcqsGvXLkgkEgwaNKh6A6yg8vYrOTkZkyZNQoMGDaCnpwd3d3e1/Fksb7/Wrl0LDw8PGBgYwMHBAVOnTkV2dnYNRVu606dPY8CAAbCzs4NEIsH+/ftLfU1wcDDatGkDPT09uLq6YsuWLdUeZ01jHmUeVQfMowrMo8UQVG127doldHV1xaZNm8StW7fE+PHjhbm5uUhISCiy/blz54SWlpZYs2aNCAsLEwsWLBA6Ojrixo0bNRx5ycrbr/fee09s2LBBXLt2TYSHh4tRo0YJMzMz8fDhwxqOvGTl7VeB2NhY0bBhQ9G1a1cxcODAmgm2HMrbr5ycHNGuXTvRt29fcfbsWREbGyuCg4NFaGhoDUdesvL2a8eOHUJPT0/s2LFDxMbGiiNHjogGDRqIqVOn1nDkxTt06JCYP3++2Lt3rwAg9u3bV2L7O3fuCENDQzFt2jQRFhYm1q9fL7S0tERgYGDNBFwDmEcVmEdVi3lUgXm0eCyoq1GHDh3EpEmTlI9lMpmws7MTAQEBRbYfPHiw6NevX6Fj3t7e4oMPPqjWOMurvP16WX5+vjAxMRFbt26trhArpCL9ys/PF506dRI//fSTGDlypFqeCMrbr++++064uLiI3NzcmgqxQsrbr0mTJolevXoVOjZt2jTRuXPnao2zospyIpg1a5Zo2rRpoWNDhgwRfn5+1RhZzWIeLRrzaM1iHlVgHi0ep3xUk9zcXFy5cgW+vr7KY1KpFL6+vrhw4UKRr7lw4UKh9gDg5+dXbHtVqEi/XpaZmYm8vDxYWFhUV5jlVtF+LVu2DNbW1hg7dmxNhFluFenXn3/+CR8fH0yaNAk2NjZo1qwZVq5cCZlMVlNhl6oi/erUqROuXLmivJx5584dHDp0CH379q2RmKuDJuSMymAeLR7zaM1hHv0X82jxtKsyKPpXUlISZDIZbGxsCh23sbFBREREka+Jj48vsn18fHy1xVleFenXy2bPng07O7tXfoBVqSL9Onv2LH7++WeEhobWQIQVU5F+3blzBydOnMCwYcNw6NAhREdH46OPPkJeXh4WL15cE2GXqiL9eu+995CUlIQuXbpACIH8/Hx8+OGHmDdvXk2EXC2KyxmpqanIysqCgYGBiiKrGsyjxWMerTnMo/9iHi0eR6ipRq1atQq7du3Cvn37oK+vr+pwKiwtLQ3Dhw/Hjz/+CEtLS1WHU6Xkcjmsra3xww8/oG3bthgyZAjmz5+PjRs3qjq0SgkODsbKlSvx7bff4urVq9i7dy8OHjyI5cuXqzo0onJhHlV/zKN1D0eoq4mlpSW0tLSQkJBQ6HhCQgJsbW2LfI2trW252qtCRfpV4IsvvsCqVatw/PhxtGjRojrDLLfy9ismJgZ3797FgAEDlMfkcjkAQFtbG5GRkWjcuHH1Bl0GFfn3atCgAXR0dKClpaU85uXlhfj4eOTm5kJXV7daYy6LivRr4cKFGD58OMaNGwcAaN68OTIyMjBhwgTMnz8fUqnmjS8UlzNMTU01fnQaYB4tCvNozWMe/RfzaPE0r+caQldXF23btkVQUJDymFwuR1BQEHx8fIp8jY+PT6H2AHDs2LFi26tCRfoFAGvWrMHy5csRGBiIdu3a1USo5VLefnl6euLGjRsIDQ1Vfr3xxhvo2bMnQkND4eDgUJPhF6si/16dO3dGdHS08sQGALdv30aDBg3U4iQAVKxfmZmZryT7gpOdYu2K5tGEnFEZzKOFMY+qBvPov5hHS1CuJYxULrt27RJ6enpiy5YtIiwsTEyYMEGYm5uL+Ph4IYQQw4cPF3PmzFG2P3funNDW1hZffPGFCA8PF4sXL1bb7Z7K069Vq1YJXV1dsWfPHhEXF6f8SktLU1UXilTefr1MXVenl7df9+/fFyYmJmLy5MkiMjJSHDhwQFhbW4vPPvtMVV0oUnn7tXjxYmFiYiJ++eUXcefOHXH06FHRuHFjMXjwYFV14RVpaWni2rVr4tq1awKA+Oqrr8S1a9fEvXv3hBBCzJkzRwwfPlzZvmC7p5kzZ4rw8HCxYcOGWrltHvMo86iqMY8qMI8WjwV1NVu/fr1wdHQUurq6okOHDuLixYvK57p37y5GjhxZqP3u3buFu7u70NXVFU2bNhUHDx6s4YjLpjz9cnJyEgBe+Vq8eHHNB16K8v57vUhdTwRClL9f58+fF97e3kJPT0+4uLiIFStWiPz8/BqOunTl6VdeXp5YsmSJaNy4sdDX1xcODg7io48+Es+fP6/5wItx8uTJIv+vFPRj5MiRonv37q+8plWrVkJXV1e4uLiIzZs313jc1Y15lHlUHTCPMo+WRCKEho7RExERERGpAc6hJiIiIiKqBBbURERERESVwIKaiIiIiKgSWFATEREREVUCC2oiIiIiokpgQU1EREREVAksqImIqERxcXGYM2cOevbsCRMTE0gkEgQHB6s6LCIitcGCmoiIShQZGYnVq1fj0aNHaN68uarDISJSOyyoiYioRG3btsXTp09x+/ZtTJs2TdXhEBGpHRbURER1VFZWFjw9PeHp6YmsrCzl8WfPnqFBgwbo1KkTZDIZTExMYGFhocJIiYjUGwtqIqI6ysDAAFu3bkV0dDTmz5+vPD5p0iSkpKRgy5Yt0NLSUmGERESaQVvVARARkep4e3tj1qxZWL16Nd58800kJCRg165dWLt2Ldzd3VUdHhGRRmBBTURUxy1ZsgQHDhzAyJEjkZ6eju7du+OTTz5RdVhERBqDUz6IiOo4XV1dbNq0CbGxsUhLS8PmzZshkUhUHRYRkcZgQU1ERDhy5AgAIDs7G1FRUSqOhohIs7CgJiKq4/7++28sW7YMo0ePRuvWrTFu3DikpKSoOiwiIo3BgpqIqA7Ly8vDqFGjYGdnh3Xr1mHLli1ISEjA1KlTVR0aEZHG4KJEIqI67LPPPkNoaCiCgoJgYmKCFi1aYNGiRViwYAHeeecd9O3bV9kOAG7dugUA2L59O86ePQsAWLBggWqCJyJSExIhhFB1EEREVPOuXr0Kb29vTJw4EV9//bXyuEwmg4+PDx49eoRbt27B3Ny8xEWKPI0QUV3HgpqIiIiIqBI45YOoCDKZDHl5eaoOg4iI1IyOjg7vIEqvYEFN9AIhBOLj45GcnKzqUIiISE2Zm5vD1taW+7WTEgtqohcUFNPW1tYwNDRksiQiIiUhBDIzM/HkyRMAQIMGDVQcEakLFtRE/5DJZMpiun79+qoOh4iI1JCBgQEA4MmTJ7C2tub0DwLAfaiJlArmTBsaGqo4EiIiUmcF5wmutaECLKiJXsJpHkREVBKeJ+hlLKiJqEK2bNkCc3NzVYdBRESkciyoiTTcqFGjIJFIIJFIoKurC1dXVyxbtgz5+fnV+rlDhgzB7du3q/UzSvNi33V0dGBjY4PXX38dmzZtglwuL9d78ReEqlHwb7Jq1apCx/fv31/jo3oFPxsSiQRGRkZwc3PDqFGjcOXKlXK/V48ePfDpp59WfZAEAAgODoZEIuEOS6SxWFAT1QJ9+vRBXFwcoqKiMH36dCxZsgSff/55kW1zc3Or5DMNDAxgbW1dJe9VGQV9v3v3Lg4fPoyePXtiypQp6N+/f7X/UkFF09fXx+rVq/H8+XNVh4LNmzcjLi4Ot27dwoYNG5Ceng5vb29s27ZN1aHVGS/+YlPU15IlS1QdIlGlsaAmqgX09PRga2sLJycnTJw4Eb6+vvjzzz8BKEYMBw0ahBUrVsDOzg4eHh4AgAcPHmDw4MEwNzeHhYUFBg4ciLt37wIAjh49Cn19/VdGi6ZMmYJevXoBKHpE97vvvkPjxo2hq6sLDw8PbN++Xfnc3bt3IZFIEBoaqjyWnJwMiUSC4OBgAMDz588xbNgwWFlZwcDAAG5ubti8eXOZ+t6wYUO0adMG8+bNwx9//IHDhw9jy5YtynZfffUVmjdvDiMjIzg4OOCjjz5Ceno6AMXo2OjRo5GSkvLKSX779u1o164dTExMYGtri/fee0+5ZRYVzdfXF7a2tggICCix3dmzZ9G1a1cYGBjAwcEBn3zyCTIyMgAA33zzDZo1a6ZsWzDCvXHjxkKfs2DBghI/o2C/YGdnZ/Tu3Rt79uzBsGHDMHnyZGXB//TpUwwdOhQNGzaEoaEhmjdvjl9++UX5HqNGjcKpU6ewbt065c/H3bt3IZPJMHbsWDRq1AgGBgbw8PDAunXryv39qu3i4uKUX2vXroWpqWmhYzNmzFBZbFU1wEDEgpqoFjIwMCh0oggKCkJkZCSOHTuGAwcOIC8vD35+fjAxMcGZM2dw7tw5GBsbo0+fPsjNzcVrr70Gc3Nz/P7778r3kMlk+PXXXzFs2LAiP3Pfvn2YMmUKpk+fjps3b+KDDz7A6NGjcfLkyTLHvXDhQoSFheHw4cMIDw/Hd999B0tLy3L3v1evXmjZsiX27t2rPCaVSvH111/j1q1b2Lp1K06cOIFZs2YBADp16vTKib7gJJ+Xl4fly5fj+vXr2L9/P+7evYtRo0aVO6a6REtLCytXrsT69evx8OHDItvExMSgT58+ePvtt/H333/j119/xdmzZzF58mQAQPfu3REWFobExEQAwKlTp2Bpaan85SsvLw8XLlxAjx49yh3f1KlTkZaWhmPHjgEAsrOz0bZtWxw8eBA3b97EhAkTMHz4cFy6dAkAsG7dOvj4+GD8+PHKnw8HBwfI5XLY29vjt99+Q1hYGBYtWoR58+Zh9+7d5Y6pNrO1tVV+mZmZQSKRFDpmbGysbHvlyhW0a9cOhoaG6NSpEyIjIwu91x9//IE2bdpAX18fLi4uWLp0aaErUffv38fAgQNhbGwMU1NTDB48GAkJCcrnlyxZglatWuGnn35Co0aNoK+vj23btqF+/frIyckp9FmDBg3C8OHDq+m7QrWOICIhhBBZWVkiLCxMZGVlqTqUchk5cqQYOHCgEEIIuVwujh07JvT09MSMGTOUz9vY2IicnBzla7Zv3y48PDyEXC5XHsvJyREGBgbiyJEjQgghpkyZInr16qV8/siRI0JPT088f/5cCCHE5s2bhZmZmfL5Tp06ifHjxxeK7d133xV9+/YVQggRGxsrAIhr164pn3/+/LkAIE6ePCmEEGLAgAFi9OjRFer7y4YMGSK8vLyKfe1vv/0m6tevr3z8cn+K89dffwkAIi0trcxx1iUv/pt07NhRjBkzRgghxL59+8SLp5yxY8eKCRMmFHrtmTNnhFQqFVlZWUIul4v69euL3377TQghRKtWrURAQICwtbUVQghx9uxZoaOjIzIyMoqNBYDYt2/fK8ezsrIEALF69epiX9uvXz8xffp05ePu3buLKVOmlNh3IYSYNGmSePvtt0ttV1XkcrnIyMlTydeL+aOsivt/dvLkSQFAeHt7i+DgYHHr1i3RtWtX0alTJ2Wb06dPC1NTU7FlyxYRExMjjh49KpydncWSJUuEEELIZDLRqlUr0aVLF3H58mVx8eJF0bZtW9G9e3fleyxevFgYGRmJPn36iKtXr4rr16+LzMxMYWZmJnbv3q1sl5CQILS1tcWJEyeK7Iemni+o+vDGLkTVQC6XIzExEVZWVpBKq/9C0IEDB2BsbIy8vDzI5XK89957heYlNm/eHLq6usrH169fR3R0NExMTAq9T3Z2NmJiYgAAw4YNQ8eOHfH48WPY2dlhx44d6NevX7EL98LDwzFhwoRCxzp37lyuS+ATJ07E22+/jatXr6J3794YNGgQOnXqVObXv0gIUWgR3PHjxxEQEICIiAikpqYiPz8f2dnZyMzMLHHv8StXrmDJkiW4fv06nj9/rlzseP/+fTRp0qRCsdU4uRzITAIMLYEa+HkssHr1avTq1avIS/rXr1/H33//jR07diiPCSEgl8sRGxsLLy8vdOvWDcHBwfD19UVYWBg++ugjrFmzBhERETh16hTat29foX3jhRAA/t36TCaTYeXKldi9ezcePXqE3Nxc5OTklOm9N2zYgE2bNuH+/fvIyspCbm4uWrVqVe6YKiorT4Ymi47U2Oe9KGyZHwx1q7aMWLFiBbp37w4AmDNnDvr164fs7Gzo6+tj6dKlmDNnDkaOHAkAcHFxwfLlyzFr1iwsXrwYQUFBuHHjBmJjY+Hg4AAA2LZtG5o2bYq//voL7du3B6CY5rFt2zZYWVkpP/e9997D5s2b8e677wIA/ve//8HR0bFCV0CobuKUD6IqJpfLsWLFCowdOxYrVqwo924TFdGzZ0+EhoYiKioKWVlZ2Lp1K4yMjJTPv/h3AEhPT0fbtm0RGhpa6Ov27dt47733AADt27dH48aNsWvXLmRlZWHfvn3FTvcoi4JfLAqKGeDVmyL4+/vj3r17mDp1Kh4/fozXXnutwvMrw8PD0ahRIwCK+dv9+/dHixYt8Pvvv+PKlSvYsGEDgJLnUGZkZMDPzw+mpqbYsWMH/vrrL+zbt6/U16kVuRw48wXwx2TFnzXw81igW7du8PPzw9y5c195Lj09HR988EGhn7/r168jKioKjRs3BqDYWSM4OBhnzpxB69atYWpqqiyyT506pSy8yis8PBwAlD8fn3/+OdatW4fZs2fj5MmTCA0NhZ+fX6n/xrt27cKMGTMwduxYHD16FKGhoRg9erTm/GyooRYtWij/XnBb74I1C9evX8eyZctgbGys/CqYhpOZmYnw8HA4ODgoi2kAaNKkCczNzZX/5gDg5ORUqJgGgPHjx+Po0aN49OgRAMUakYIda4jKgiPURFUsMTERISEhiI+PR0hICBITE2FjY1Otn2lkZARXV9cyt2/Tpg1+/fVXWFtbw9TUtNh2w4YNw44dO2Bvbw+pVIp+/foV29bLywvnzp1Tjh4BwLlz55SjuAUnsLi4OLRu3RoACi1QLGBlZYWRI0di5MiR6Nq1K2bOnIkvvviizH0DgBMnTuDGjRuYOnUqAMUos1wux5dffqks7F+e56qrqwuZTFboWEREBJ4+fYpVq1YpT9KXL18uVywql5kEPLwMpCco/sxMAoxrbneWVatWoVWrVsrFsAXatGmDsLCwEn9uu3fvjk8//RS//fabcqSwR48eOH78OM6dO4fp06dXKKaC+fK+vr4AFD+nAwcOxPvvvw9A8Uvx7du3C12BKOrn49y5c+jUqRM++ugj5bGCKzw1xUBHC2HL/Gr0M1/87Kqmo6Oj/HtBMVswKJGeno6lS5firbfeeuV1+vr6Zf6MlwcYAKB169Zo2bIltm3bht69e+PWrVs4ePBgecOnOowFNVEVs7Kygre3N0JCQuDt7f3KSIg6GDZsGD7//HMMHDgQy5Ytg729Pe7du4e9e/di1qxZsLe3V7ZbsmQJVqxYgXfeeQd6enrFvufMmTMxePBgtG7dGr6+vvi///s/7N27F8ePHwegWCjZsWNHrFq1Co0aNcKTJ09e2aFh0aJFaNu2LZo2bYqcnBwcOHAAXl5eJfYlJycH8fHxkMlkSEhIQGBgIAICAtC/f3+MGDECAODq6oq8vDysX78eAwYMwLlz5wrtFgEAzs7OSE9PR1BQEFq2bAlDQ0M4OjpCV1cX69evx4cffoibN29i+fLl5f5+q5ShJWDfTlFM27dTPK5BzZs3x7Bhw/D1118XOj579mx07NgRkydPxrhx42BkZISwsDAcO3YM33zzDQDFaGW9evWwc+dOHDhwAICioJ4xYwYkEgk6d+5c6ucnJycjPj4eOTk5uH37Nr7//nvs378f27ZtU05fcnNzw549e3D+/HnUq1cPX331FRISEgoV1M7OzggJCcHdu3dhbGwMCwsLuLm5Ydu2bThy5AgaNWqE7du346+//lKOfNcEiURS5dMu1FWbNm0QGRlZ7C9hXl5eePDgAR48eKD8BTgsLAzJycllmp41btw4rF27Fo8ePYKvr2+hkW6iUql2CjeR+qjKRSYymUzEx8cLmUxWBZGVrKSFeSU9HxcXJ0aMGCEsLS2Fnp6ecHFxEePHjxcpKSmF2nXo0EEAeGVxTlGLi7799lvh4uIidHR0hLu7u9i2bVuh58PCwoSPj48wMDAQrVq1EkePHi20KHH58uXCy8tLGBgYCAsLCzFw4EBx586dEvsGQAAQ2trawsrKSvj6+opNmza98r3/6quvRIMGDYSBgYHw8/MT27ZtEwCUiyyFEOLDDz8U9evXFwDE4sWLhRBC7Ny5Uzg7Ows9PT3h4+Mj/vzzz1cWV6o9mUyItATFn9WsqJ+32NhYoaurK14+5Vy6dEm8/vrrwtjYWBgZGYkWLVqIFStWFGozcOBAoa2trVwEKpPJRL169UTHjh1LjaXgZwOA0NfXF40bNxYjR44UV65cKdTu6dOnYuDAgcLY2FhYW1uLBQsWiBEjRhTqR2RkpOjYsaMwMDAQAERsbKzIzs4Wo0aNEmZmZsLc3FxMnDhRzJkzR7Rs2bLs37A6prRFiS/+f7x27Zryey2EEIGBgUJbW1ssWbJE3Lx5U4SFhYlffvlFzJ8/XwihWKDZqlUr0bVrV3HlyhUREhJS5KLE4v59kpOThaGhodDV1RW7du0qsR9clEgvkwjxwoRGojosOzsbsbGxyq2UiIioam3ZsgWffvrpK3vcBwcHo2fPnnj+/LnyykFoaChat26N2NhYODs7AwCOHDmCZcuW4dq1a9DR0YGnpyfGjRuH8ePHA1AsFv74448RFBQEqVSKPn36YP369cppd0uWLMH+/fuLnG4GACNGjMDBgwfx+PHjEq/I8XxBL2NBTfQPJkgiorrttddeQ9OmTV+ZovQyni/oZXVj4hURERFRMZ4/f47g4GAEBwfj22+/VXU4pIFYUBMREVGd1rp1azx//hyrV69+ZUcaorJgQU1ERER12t27d1UdAmk43tiFiIiIiKgSWFATvYTrdImIqCQ8T9DLWFAT/aPgDl2ZmZkqjoSIiNRZwXnixTs7Ut3GOdRE/9DS0oK5uTmePHkCADA0NFTe+paIiEgIgczMTDx58gTm5ubQ0qr626+TZuI+1EQvEEIgPj7+lZsOEBERFTA3N4etrS0HXUiJBTVREWQyGfLy8lQdBhERqRkdHR2OTNMrWFATEREREVUCFyUSEREREVUCC2oiIiIiokpgQU1EREREVAksqImIiIiIKoEFNRERERFRJbCgJiIiIiKqBBbURERERESV8P9h+GScY9J/swAAAABJRU5ErkJggg==\n"
- },
- "metadata": {},
- "output_type": "display_data"
- }
- ],
- "source": [
- "# Querying using slicing with np.s_[]\n",
- "fig = plot_results_panel_2d(cycle,\n",
- " query=np.s_[0:5:2], # [Start:Stop:Step]\n",
- " subplot_kw=dict(figsize=(8,3), gridspec_kw={\"bottom\": 0.25})\n",
- " );\n",
- "fig.supxlabel('x1', y=0.1)\n",
- "fig.suptitle('Cycles 0, 2, 4')\n",
- "\n",
- "# Last 2 Cycles\n",
- "fig2 = plot_results_panel_2d(cycle,\n",
- " query=np.s_[-2:], # You can use other list slicing conventions\n",
- " subplot_kw=dict(figsize=(8,3), gridspec_kw={\"bottom\": 0.25})\n",
- " );\n",
- "fig2.supxlabel('x1', y=0.1)\n",
- "fig2.suptitle('Last 2 Cycles')"
- ],
- "metadata": {
- "collapsed": false
- }
- },
- {
- "cell_type": "markdown",
- "source": [
- "## Plotting 3D\n",
- "The 3D plotter has similar functionality as the 2D plotter but will only work with problem spaces where there are exactly 2 independent variable values. Only one dependent value can be plotted at a time."
- ],
- "metadata": {
- "collapsed": false
- }
- },
- {
- "cell_type": "code",
- "execution_count": 10,
- "outputs": [
- {
- "data": {
- "text/plain": ""
- },
- "execution_count": 10,
- "metadata": {},
- "output_type": "execute_result"
- }
- ],
- "source": [
- "# Simple multiple linear regression cycle\n",
- "random.seed(1)\n",
- "\n",
- "def ground_truth(X):\n",
- " return X[:, 0] + (0.5 * X[:, 1]) + 1.0\n",
- "\n",
- "# Variable Metadata\n",
- "study_metadata = VariableCollection(\n",
- " independent_variables=[\n",
- " Variable(name=\"x\", allowed_values=np.linspace(0, 1, 10)),\n",
- " Variable(name=\"y\", allowed_values=np.linspace(0, 1, 10)),\n",
- " ],\n",
- " dependent_variables=[Variable(name=\"z\", value_range=(-20, 20))],\n",
- ")\n",
- "\n",
- "# Theorist\n",
- "lm = LinearRegression()\n",
- "\n",
- "# Experimentalist\n",
- "example_experimentalist = Pipeline(\n",
- " [\n",
- " (\"pool\", grid_pool),\n",
- " (\"sampler\", random_sampler),\n",
- " (\"transform\", lambda x: np.array(x)),\n",
- " ],\n",
- " params={\n",
- " \"pool\": {\"ivs\": study_metadata.independent_variables},\n",
- " \"sampler\": {\"n\": 10},\n",
- " },\n",
- ")\n",
- "\n",
- "# Experiment Runner\n",
- "def get_example_synthetic_experiment_runner():\n",
- " rng = np.random.default_rng(seed=180)\n",
- "\n",
- " def runner(xs):\n",
- " return ground_truth(xs) + rng.normal(0, 0.25, xs.shape[0])\n",
- "\n",
- " return runner\n",
- "\n",
- "example_synthetic_experiment_runner = get_example_synthetic_experiment_runner()\n",
- "\n",
- "# Initialize Cycle\n",
- "cycle_mlr = Cycle(\n",
- " metadata=study_metadata,\n",
- " theorist=lm,\n",
- " experimentalist=example_experimentalist,\n",
- " experiment_runner=example_synthetic_experiment_runner,\n",
- ")\n",
- "cycle_mlr.run(5)"
- ],
- "metadata": {
- "collapsed": false
- }
- },
- {
- "cell_type": "code",
- "execution_count": 11,
- "outputs": [
- {
- "data": {
- "text/plain": "",
- "image/png": "iVBORw0KGgoAAAANSUhEUgAAAh8AAAGrCAYAAABg7vUvAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8o6BhiAAAACXBIWXMAAA9hAAAPYQGoP6dpAADtVUlEQVR4nOy9d5xkZ3Xm/33vrZw6p+k8OUmjSZJmFBBREmIBG2N214hgbK8JJu0CZn/Y2IuNTVgv4ACs14sWsGUMGAMSYAQSCgil0fTkHDun6lS56r7v74/33tvVPT0z3T3d0z2jevzBmq5w61bdc9/3Oec85xyhlFKUUEIJJZRQQgklXCUYS30CJZRQQgkllFDCSwsl8lFCCSWUUEIJJVxVlMhHCSWUUEIJJZRwVVEiHyWUUEIJJZRQwlVFiXyUUEIJJZRQQglXFSXyUUIJJZRQQgklXFWUyEcJJZRQQgkllHBVUSIfJZRQQgkllFDCVUWJfJRQQgkllFBCCVcVJfIxDW1tbbzjHe9Y6tMoYYlRsoMSSjZQApTsYLGwrMnHqVOn+C//5b+wcuVKAoEAsViM2267jS9+8Yuk0+mlPr1Z48iRI9xzzz1EIhEqKyu5//77GRwcXOrTumZwPdjBc889x3ve8x62b9+O1+tFCLHUp3RN4Vq3ASklDzzwAK9//etpbm4mHA6zefNm/uzP/oxMJrPUp3fN4Fq3A4C///u/52Uvexl1dXX4/X7a29t55zvfydmzZ5f61K4qPEt9AhfDww8/zJvf/Gb8fj9ve9vb2Lx5M7lcjqeeeoqPfOQjHDp0iP/9v//3Up/mZdHV1cWdd95JWVkZn/70p0kkEnz+85/nwIEDPPfcc/h8vqU+xWWN68UOfvSjH/F//s//4cYbb2TlypUcP358qU/pmsH1YAOpVIp3vvOd3Hrrrfz+7/8+tbW1/OpXv+KTn/wkP//5z3n00UdLhPQyuB7sAGDv3r20t7fz+te/noqKCs6cOcPf//3f89BDD7Fv3z5WrFix1Kd4daCWIU6fPq0ikYhav3696unpueD5EydOqC984QuL8tmtra3q7W9/+4Id793vfrcKBoPq3Llz7mOPPPKIAtRXv/rVBfuc6xHXkx309fWpVCqllFLqve99r1qmt96yw/ViA9lsVv3yl7+84PE//dM/VYB65JFHFuRzrldcL3ZwMbzwwgsKUH/xF3+xqJ+znLAs0y6f/exnSSQS/MM//AMNDQ0XPL969Wo+8IEPAPCyl72MLVu2zHicdevWcffdd7t/Syn54he/yA033EAgEKCmpoZ77rmHF1544ZLnMzo6ygc/+EGam5vx+/2sXr2az3zmM0gpL/tdvvvd7/K6172OlpYW97FXvepVrF27ln/5l3+57Ptfyrie7KCuro5gMHjZ15UwFdeLDfh8Pnbv3n3B47/2a78G6NRsCRfH9WIHF0NbW5t73JcKliX5+OEPf8jKlStnvFmn4/7772f//v0cPHhwyuPPP/88x48f561vfav72Lve9S7XYD7zmc/wh3/4hwQCAZ555pmLHj+VSvGyl72Mb37zm7ztbW/jS1/6Erfddhsf//jH+fCHP3zJc+vu7mZgYIAdO3Zc8NzNN9/M3r17L/v9Xsq4XuyghPnjereBvr4+AKqrq+f1/pcKrkc7GB4eZmBggBdeeIF3vvOdALzyla+c9fuveSx16GU6xsbGFKDe8IY3zOr1o6OjKhAIqI997GNTHn//+9+vwuGwSiQSSimlHn30UQWo97///RccQ0rp/nt6iO1Tn/qUCofD6vjx41Pe84d/+IfKNE11/vz5i57b888/rwD19a9//YLnPvKRjyhAZTKZWX3PlxquJzuYjlLaZXa4nm3Awate9SoVi8XUyMjInN/7UsH1agd+v18BClBVVVXqS1/60qzed71g2UU+xsfHAYhGo7N6fVlZGW94wxt48MEHUUoBYFkW3/rWt3jjG99IOBwGdPpDCMEnP/nJC45xKaHXt7/9be644w4qKioYGhpy//eqV70Ky7J44oknLvpeR33t9/sveC4QCEx5TQlTcT3ZQQnzw/VuA5/+9Kf52c9+xl/+5V9SXl4+p/e+lHC92sGPf/xjfvSjH/E//+f/pKWlhWQyOav3XS9YdtUusVgMgImJiVm/521vexvf+ta3ePLJJ7nzzjv52c9+Rn9/P/fff7/7mlOnTrFixQoqKyvndD4nTpxg//791NTUzPj8wMDARd/r5Piz2ewFzznldSUdwMy4nuyghPnheraBb33rW3ziE5/gXe96F+9+97vndB4vNVyvdvDyl78cgHvvvZc3vOENbN68mUgkwvve9745nc+1imVJPlasWHFBvu5SuPvuu6mrq+Ob3/wmd955J9/85jepr6/nVa961RWfj5SSV7/61Xz0ox+d8fm1a9de9L2OMKq3t/eC53p7e6msrJwxKlLC9WUHJcwP16sNPPLII7ztbW/jvvvu4ytf+coVn9f1juvVDoqxatUqtm7dyj/+4z++ZMjHskw8/97v/Z4C1NNPPz3r93zoQx9SFRUVKh6Pq0gkoj70oQ9Nef69732vEkKo4eHhSx5nen5v48aNateuXXM6/2LU1NSoN7/5zRc8vnbtWvWKV7xi3sd9KeB6soPp57BMb71lh+vNBp555hkVDofV7t273dLrEi6P680OZsJNN92kNmzYsODHXa5YlivgyZMnVTgcVhs3blR9fX0zPj+9pvvFF19UgHrzm9+sALVnz54pz89XXPQnf/InClA/+clPLnjfyMiIyufzl/wuv//7v6+CweAUEdLPfvYzBagvf/nLl3zvSx3Xkx0Uo0Q+Zo/ryQYOHz6sqqqq1KZNm1Q8Hr/ka0uYiuvFDvL5/IzX/tlnn1Wmaar777//ou+93iCUshU5yww/+MEPeMtb3kIwGJzSze7pp5/m29/+Nu94xzv46le/OuU9N9xwAwcPHmTDhg0cPnz4gmO+7W1v4xvf+Ab33nsv99xzD1JKnnzySV7+8pe7oa62tjbuuusuHnjgAUCXVd1xxx3s37+fd7zjHWzfvp1kMsmBAwf4zne+w9mzZy9ZJtfZ2cnWrVspLy/nAx/4AIlEgs997nM0NTXx/PPPl9Iul8H1Ygfnzp3jG9/4BgAPPfQQzz77LJ/61KcAaG1tnZKLLmEqrgcbmJiYYNOmTXR3d/PpT3+axsbGKc+vWrWKXbt2LcCvdf3ierCD0dFRmpqaeMtb3sKmTZsIh8McOHCAr33ta26J75o1axb2h1uuWGr2cykcP35c/e7v/q5qa2tTPp9PRaNRddttt6m//uu/nrFE9bOf/awC1Kc//ekZj1coFNTnPvc5tX79euXz+VRNTY269957pzDimbrZTUxMqI9//ONq9erVyufzqerqarV79271+c9/XuVyuct+j4MHD6rXvOY1KhQKqfLycvVbv/VbM7L3EmbG9WAHjz32mFtWN/1/L3vZy+b8m7zUcK3bwJkzZy56/YFF76B5veBat4NsNqs+8IEPqBtvvFHFYjHl9XpVa2urete73qXOnDkzr9/kWsWyjXzMB1/84hf50Ic+xNmzZ6d0FC3hpYWSHZRQsoESoGQHyxnXDflQSrFlyxaqqqp47LHHlvp0SlgilOyghJINlAAlO1juWHaltnNFMpnkBz/4AY899hgHDhzg+9///lKfUglLgJIdlFCygRKgZAfXCq75yMfZs2dpb2+nvLyc97znPfz5n//5Up9SCUuAkh2UULKBEqBkB9cKrnnyUUIJJZRQQgklXFtYdrNdSiihhBJKKKGE6xsl8lFCCSWUUEIJJVxVlMhHCSWUUEIJJZRwVVEiHyWUUEIJJZRQwlVFiXyUUEIJJZRQQglXFSXyUUIJJZRQQgklXFWUyEcJJZRQQgkllHBVUSIfJZRQQgkllFDCVUWJfJRQQgkllFBCCVcVJfJRQgkllFBCCSVcVVzzg+UuBSkl+XweAI/Hg2EYCCGW+KxKuJpQSlEoFLAsC4/Hg2maJRt4iUEp5a4FhmHg8XgQQpTs4CUGKSWFQgEpZWktWAa4LsmHUgrLsigUCqRSKQCEECilME2TYDCIaZolMnKdw9lwcrkcuVwOw9CBPqUU4XAY0zRLC9B1DqUU+XyeQqFAOp1273nLsvD7/fj9ftcGSnZwfaKYfGYyGSzLwjAMlFIYhkEwGCw5p0uA6458KKUYGRlhfHyc2tpaPB4Pzuy8EydOALBy5UoMw3C9IIcFl4zv+oBDPk+fPk1dXZ1LMgzDYGJigr1797J7926EEBfYQImMXD+QUtLX1wdAeXm5G/FQSrFv3z4aGxupra1FCIFpmni93im2UsK1D6UUyWSS3t5eGhsbp9zfPT09DAwMcMMNN7hrgdfrLe0HVwnXFfmwLIt8Ps/IyAjd3d3U19cDuF6Nw3YdQmJZFpZlkc1mZ9yISsZ37cHxdC3L4tixY1RVVU3xbE3TBHQaDvQGlcvlLmoDJTJy7aE48tnX14dpmlRUVABT1wLn+jqpOSdFO5MNlMjItQcn2pFMJjl+/DjNzc1YljVlLRBCuPuBUopMJgNQIiNXAdcF+XAWj0KhAOCSjOlwvJ7iBch5f/GCVWycxYtQKTS7vOGQTynlJRcKxwYAl4w49iKlJJvNksvlgJk3opINLF8Uk0/gktfqUmuBk66DEhm51lC8ljtrwaVeW7yuO2R0JjIyfT8okZErwzVPPhx2K6UEmBLhmAkXIyUzLUCON1QiI8sbxeTTyeM612b69b7Y9SpefKYvQNPJiBOeL+WJlxecKFYx+byUIzITZloLnDXGiYw43nKJjCw/TCefTnp9PjYAU8mI45hkMplS2n4BcM2Sj+JFYTp7nWnTcR6fDeZCRkp54qWFo2AvXmwuZwcXI6bFmK03VArNLj0cT9dZC6bbgOOYzPS+y6E4Vee853JkxNGWlHB1MRP5hIuvAzD3tcB5Tyltf+W4JsnHTKHV4ot8pcY2HZcjI1AKzV5tXIp8OphL5ONyKJGR5YlLkU+4ckdkpvddjIzkcrkpepJix6RkA4uHS5FPuNAGLrZezBaXStsXkxGHiBYT0pIdTOKaIx/Oje6US810MRd6wZnpOKU88dJhusbnYjd1scZn+vuvFKU88dJiNuQTFt4Rmen4syEjJd3Q4mCmNMvFnJD5RkEvh1Lafn64ZsjHTCKiy4nJ5vL4laCUJ756KCafxb/5TLhU5GMmUnIlKOWJrx5mSz6d5xbTEZnpuDOJmEsVVQuP2QrM5/r4laKUtp8drgnyMRt2W4y5CowWGqU88cJjruQTFjbtMleU8sSLg7mQT1j8yMflPhtmrqgqkZH5Y6bqxkv9XsUOx0zHWmzMloy81JzTZU8+LiYiuhyWasGZCaU88ZVhruTTwcXSLs4xr+bvW8oTXxnmQz7h6kc+LncuUCrvvhJMr26czQZ9MfKxVL9pKW2vsWzJx8XKJ2eDpY58XA6lPPHsMV/yCUsb+bgcSnni2WO+5BOWNvJxORSTkVJ596VRvEbOdS1Y6sjH5XA5MnK9RkaWJfm4nIJ9NnCMavrisxyMbTpKeeILcTkF+2zgXPtUKkUmkyEWi005/nJCKU88M66EfMLU+7/4vcvx3pmtiPmlVlF1JeQTll/k43KYj4bwWkzbLyvyMVsF++XgXLSenh6OHTtGKBSioqLCXcSWM0p54itfbIoxODhId3e360WsWLECgEwmQzgchkIWDBOMZXUrvOTzxAtBPuHSZZbLjYBOR4mMzK668XK41HuWuw3A3NL206OkyxnLZsWdi4L9cnAuzJEjR1i3sgXP8DHGe87Rl40ihcn+/fupqKigsrKSUCi0rC/SpcjIyZMnKRQK7qC85557jnw+z2tf+9olO98rRfGGcyU24Ogoenp6WLduHU8//TTd3d2k02kqKip47rnnqGCMxsI5QuXV+DbcizdSucDfZuFwMTIyMTFBR0cHN998M6Zpkk6neeCBB/jYxz52zRKRhSSfxSRjus5nuW08Rv8BvIe/g4yuIL/lbeANTnn+UmTkxRdfpKamhtraWkzT5Ac/+AGbNm1i69atS/FVrhjz1fjMhOLIR/E9sRzX/bGxMf7u7/6OoaEh3vnOd7J58+YLXnMxMtLb20tfXx+bN2/GMAxOnTrFgQMHePvb3341v8KssSxWJ8erL27YNV/DSKVSHDx4EKUUu3fvpsE7QX3mBGt9fayrNikrK6OsrIzh4WGef/55fvnLX3L48GF6e3vJZrML+bUWBcXh9+LFWSnFQw89xPe///0lPsP5oTjHeaXEI5FI8Ktf/QopJevWrcM0Tfr6+sjlcu7xd+/ezeoqD/5cnMT5A+x94sc8//zznDx5kng87v62yxUOERFCj4f3er0IIeju7uZP/uRPlvr05g2HNDozlq7Ui19OgtPLwXP8YYz+g3jOPo4xcOiyry/2ePP5vFvKLaXkK1/5Cnv37r0KZ73wcNaCK416OVjumo9iPPfcczz66KPs2bOHH/7wh7N6j7MfSClRSrnE9LnnnuPv//7vF/mM548ljXwsJLsFGBgYYP/+/dTU1JBOpwkGg1iGB2V4EaYH4fHhFV5aW1tpbW3FsizGx8eJx+N0d3dz5MgRwuGwGxVxxnAvVzibjsPmk8kkZWVlS3xWc8d8FOwXQ29vLwcPHqSlpYXh4WE8Hg8VFRWsX7/e9QoGBwcxDINo8yZMkUR5A1Q23sZwssDIyAhHjhwhl8tRVlZGZWUllZWVRKPRZblhWZY1RYiaTqcJh8PL8lwvhbmWT84Wy1lwOh2yvBVz8DAqUI6K1M7tvVK6YlTQBDwajS7GaS4qZtu7Yy64ljQfTU1N1NTUkEwmaWtrm9N7i9cC0zRJpVI6tbxMsWQ760KGVqWUnDhxgvPnz7N582ai0SgDAwP6uao1KNMHwiA3YaBGx9z3OaO2nXHb+Xye0dFR4vE4J0+eJJ1OE41GqayspKKigrKysmUVyrYsi0Ag4P6dSqVobGxcwjOaG65EwT4dUkqOHj1KT08PW7Zsoba2lmeffRalFB6PhzvvvBPQC87jjz+uP7+inUKkDgwPXtNHfRTq6+tRSpFOpxkZGSEej3P+/HkAysvLXVtYLuk6JxfuIJFILOsFZybMNBxyoX5bh3yMj49z7tw5YrEYlZWVy+LaTUdh428ga29ABStRsRVzem+xHTgi62vJDhaLfDoQQlAoFDh79iwAVVVV7ucuJ2zYsIE///M/Z2xsjBtuuGFO751pLYhEIgt9iguGJSEfV6pgL0Ymk2Hfvn3k83l27dpFJBIhmUxOCksND7JipV7Qkl2XPJbX66Wmpoaamhr32M4G1NPTQ6FQcMlKZWXlVfUwLSnJW4qcJZESykNepJRTcn/JZJJQKHRVzudKsZDkM51O09HR4aZTin+D4kqH4lSVu+h4L/y9hBCEQiFCoRCNjY2utmJkZITBwUFOnjyJ1+t17aCiogK/3z+vc58rpFJk8xbZgiLkM11vx4Gz6SzHzXU6FpJ8XgqZTEZrfCoqeOGFF8jn89TU1JBKpQgGg8RiMaSUS3/vmF5k3YU5/tlguh0kk8llvfEUYzHJZzH27t2L1+tlfHyc559/nurqajweD52dnVRWVqKUIhgMTvkdlwLt7e3zet/0/WC5E9CrSj4WSsHuYHh4mH379lFdXc327dvdFMlCqZsDgQANDQ00NDSglCKZTLpk5MyZMxiGMWUDCganCsTyliRvSXKFSeKQt5T7uPPvgqX0v6UkW5DkC5KClBQUSAukkkhHB6HghsYyykPea3bBWQgFu4PBwUH2799PfX0969evn/J7zBRyn69aPhaLEYvF3HTd2NgYIyMjdHZ2cvjw4Tml67IFi1xB20Umb5GzFNmCJJu3yFmSnKXIF4ptxLIfsyhIAEXY7+H1W1bMSECX84LjYCHJ58VgWRZdXV2k02m2b9/OwYMHOXfuHOFwmPLycoQQHD58mCeeeIJcLsftt9/OLbfcsuwinLPBTGvBcreDhapuvBz6+vpQSlFRUUEsFqOjo4NkMkksFsPn8zE0NMSPf/xjTp06RVtbG/fddx/19fX4fL4FP5fFxLW2H1w18rGQi41SitOnT3P69GnWr19PU1PTBTX8jgq8GJf7PEvqhd4hCrmCJgS5gkMQJDkVpVAWwQitYCyR5NzQBONnzjGRPIbHY+APRQgEw/gDAQzDnJT0SvS/lf6fUgqJ9mSFUhiGQCr7d0GBAiEMlNBvE4YACfXlQW5o0v0qpofZlruxLaTGx6n2OXfuHJs2bXJLaIvh2MFMn3El4VYhBIFIjEp/hEhNI4l0lqH4GCeHRhk8cZhUJocvGMIXjOAPhjA8PhSCglRIBSgF085JCIVCk0upJEqBEmBZ+jmBgRAKQxgI4LZVVXhN44IFZ7mHWmFhyefFkEql2Lt3L5ZlEYlEqKqqIpVKkc/nyWazGIZBVVUV1dXVPP300ySTSQ4dOkQkEsGyrCkptuUeSXI28ekbz3LWfEzfDxaDeBSn4w3DoK2tjd7eXtcOHHHm1q1b2bt3L6Zp0tXVxcGDBzl58iSRSMS1gfLy8iWPiFwOjgbQQSKRoLq6egnP6NK4KuRjIUVEuVyOAwcOkEgkuPnmm2cUWE4//ng6z+G+BH0DCYbjGXo9/VhSUpBQsBRSKQqWxFIg0Iu+ewRnjxK4m4Zwyl0xIRgjFiwnoiTpdIp0KkX/4CDZbJ5AwE8oFMQfDBIKBPWB7X3HQGAI7M1EohB4DAPszVKhAAlKITFR0iLg83D7qoopv+v0MNty3XgWknxms1n27dtHNpt1U20z4WKRD6UU2YJFVubJWTqFkc1r0pktSHKWJFuwyBeU+29LKgo2GZWAsA+rKDINsxxPdTn+bJZMOkN8LEmqexAlFMFAmHA4SDAUIuD36wMofZ2VAmXp4yr7gNoWwOsBEPb/aRNaVxejvkxH2aYT0OUcal1ogfnF4AjPGxsbKS8v58yZMwBs3boVn89HLBZzI1M1NTWsWbOG4eFhbr31VrZs2UIymSQejzM8PMypU6fweDzuJlRZWXnVUmyzheNoOWtBLpejUCgsW/JxNchnNpulo6PDTcc7+q/m5mZ2795NOp2mubmZri6dit+8eTPZbJb6+npe+cpXIoRwo9xHjx4ln89TVlbm2sByFKBbljXFNlOp1LK1AVhk8rHQIqLR0VE6OjqIxWLs3r17CssrRrG6OVuw+PnRAZI5i7GxHBNpC38ig/Yfna0DTSrs96BACYFAaUKiFBj6eaQEIfTzSoHQZa4CCAbDhAIhKqsgny+QTqVIZ9KM9/VjSUUw6NNagmCYQDAA6M3HsI+B0jlPy/mnfWqGkHhMg5evrcbnmSQbxd6OkxZajuRjIclnPB5n3759VFZWsm3btkumN4rJR96SPHygn0Q2z+EuxdkXe/B5vfonFpMEwhAC6faFsJ9TCmUIO4il7UYV2Y/CIaP6IY/XR8zrIxqLIeoU2XyOVCJFMpVmaGgYhCAQDBEMBgiFQni9fgwh8BgCcOxK2MER/TkSUAhCHoOtzZOE+1oJt1+NNItSihMnTnDu3Dk2b95MQ0MDAwMDrg1UVlZyxx13IITgyJEjKKUIh8O88Y1vJJPJuAt1JBIhEonQ0tKClJKxsTHi8ThdXV1uRZxTBbUcPOLi3xS0xwssOzu4WuRzZGSEjo4OKisr3XS8sxZ4PB62bt2KYRiMjY3R2dkJwM6dO1m/fj2hUMhdU+rq6qirq3MF6PF4nHg8zrlz5y6bcl9MZPIW6bxFNi9J5SwUilU1kWtOA7ho5GMhyyeVUpw/f57jx4+zevVq2traLmm0znOWlDx+fIhUTmLgGLoCqZzsh85pSL28CwEIgYGC4VOYyV5EeSsy1mKfh2YEUtopHQNAIZRdcw8Iw0BKhd/nw+/zUqbKQEAumyOTTpFIJonHR0FAOBgiaAsbvV6PTXh0VESZIKVyN8XtLeVUR6Z6XMs95L6Q5FMpxZkzZzh16hTr1q2jubn5sscqTrs8cybOeCaPADwqh6EslPJoG1AgLQWGAaqAEAbCEChpEY8PE/AHiZXFsHkpIFBKR8oQ0r3+wk6bGQ5pVAqJwOvxU1bhJ2JFEcIgl83qKFkiwcjwEKbHQyQUJhQKEQ6H9HmgsJT+nILSn2EaBneurcEsupeWuw3A4pRPTkcul2Pfvn1kMpkp0bDZ9Pnwer0XdWScTaaiooJVq1aRz+ddj/jYsWNks9kFLcnWDpOcssFk7L8zeUk2XyBt64OkEuxaVUm5LU1w7CCRSLii6eWCq0U+z507x/Hjx1m3bh0tLS3uZ1xO/+XoumaCEIJo/CDl556grWY9udvvYSKho2O9vb0cO3aMQCAwhZBezJ5mQt6ySOUmr7lzrdP2f1PZPDlLkSvo6CwAhtBeqhDcsVanVl7ymo+FVrAXCgUOHjzIyMgI27dvp7Ly8l0onc978sQQg4msji4YAgzlVj3oTUdv7tLQG77WYoDMJTDjJ5DZJCKfRYXrwfTqTcmOfQvbG9V/2p0GMbT3bKAJjtCetEDh9/sJBPyUV5RjFfTvk0wlmUhMMDA4hGEIwuEQ/kCAWCSK1+PBNEAog6bKIGvrLgyfLWdjW0gF+2xSbTPBWXCO9I7TOZLGNASMdFKROoNnWCHqN7pk0eMRIBQC0458wfFTpzly5AiBQIDtO3dQUV6h9ThCIISB17BfaCiEchY3O3KmX2kTWhAGGIYHoQTeUIhQKIiorsaSFplUmmQqxeDQMJ3dvXh9XsKhIOFwhFAoiM/QZGhjQ/QCArqcBafF5HMhBOYXgxMRLSsrY9euXRdEwxayz4fX66W2tpbaWt2HI5VKXVCS7XjEsbJyDK9fk4aCJhIOccjkJVlLbzTZvLS1ZhJL2hE4dzimmozA2fZs2L/h6tow9bEAyWRyym/r2MByEc1eDfJZvE/s3LnTbZ/g4GIkdFY2YOUxTz+CMdaJSA9j1m+jrGwFZWVltLe3UygU3BYNp06dYiKZxB+KEoqWE4jEMH1BcpYibZOLdK7gpnjzdrrVUK4cECWl3liEgWHrvZxYqxsNtW1iVV2E1kpNMpfzfjATFpR8OOx2//79tLW1EYlErsjQnNbRgUCA3bt3zzrXKoTg7AT4R9I2UQAdzjZQEjesrm9srb1wNwoAjx/hi2LIPDJQhml67Hy8m+F3P0dHyLWBaCGA4eoJnVc6nybdlI7C4/NR7vdSXlEJCtKpBOlMmsT4OEMDQ/j9OkVTXxHl5tb6Gb/ncqztd8jn+fPnyeVytLa2XpENjI2NsXfv3sum2maCEIKRVIFDfSMgFZZSGKlBDJmB7ChGIY3yhTENw77+RQs9gvHxcTLZtBYpplOYVZUY9jXXgS9HHCS0Tkg413pSEFJkau61dxYQS0oUhhanBkJUVQtkoUA6nSaVSjI42I+0LALBIPUVMVbGyi4Q0M6k+6mrq5v3771QkFKSSqU4cOAAW7ZsWTRP14mIrlmzZkZbW6gJ13lLks5ZZAsWmYIkndUVS5mCJF0IkPPWkSqrIpFMcrg7ydixM6QyWUzDJBwJuelWbGcE25ExhK0XYpKcazuSOh2LY5f6fULoqFh50MvONu2IXSzcvtSaBId8Hjt2jLKyMmpqahblnBKJBHv37sXv9190n7iSyjcpTBLhVjJjCTJGM2MTXjITY26EIlOwyOclOStCxgyQ9udJj6dI9sVJpzrJFxThcJBIOEwoEsLn9dl2YEfR7fXDcM7RNLT43HV0tX0ooVBSR0MRgoqQj5vbJknWS7bUVilFLpfDsizi8TgrVqy4IkPr7u7m8OHDtLW1sXr16jkd6/RQinMTsNbp9SH0ym+gQCibbAjba7Vvaud7AML0Y63YgcpNIP1lKCelYh9L2EJBe9UAjMlNyBGjKmW/xtEOKHezMoUJtobAoTORaIRINGrfsBapdIpsOk11oZ9f/bLrArGT85s7xpZOp5FSLrnAyPF0U6kUyWTyitIsc0m1zYS8pXime5RwtAILMBEQrsMy+5GBKoQ3qHWfhl7clTWp4VBAe3sbmWyWcChETU2tey2VABxJsJPCsxcRh1g4qRc31QdIWz8iEaCkztoZ2jKF/RrD6yHmjRGJRBEGZHM5spk0a2MW+/btA5jSa6ZQKEwpCVwO3o7Tx8eyLLfZ30JvOoVCgUOHDhGPx9mxY8cFnm4xpm862YJFIifJZ/J4hlM6KlGQkxGKgkW+YFe7WZJsQWlJuPYt3CiXQwz0hwAIhBkgWuEnWlmJLEiSqRTpVJqR4Ti92X4CAR+RcJhAKEQ4GLQ3FU1KbcPC0RS5FXuG8z2E3mAMuGNNtRsBmanqbak3neI0y/j4uNv+f6HhdDRubW1lzZo1F/2M6ZVv2YLFSCrPUMri5MCEm+Jw0112y4N8QZGTEkPuQkTWo7wxVGcSQRJhE1tle5vO+u7zePCXxygrL0MpSTaXI51KkUqmGBwewjRNO+UeJBQM4/V5J70UA7swQWpBugGWnV4xbKW7EAZej+CudZM2ABc6o8u94mnBIx/OrIH5zsawLIsjR47Q39/PTTfd5Db8mi16xzI8czqOJcGyJIapIxESXFFpUS0LSkqUnXaRSmEokEKgPH6UNwBC5+6xNwwQSKH0oqEUypI2rVEo1/VVbu5f2KUz9n7lFLy4xAP0BiaVchmtYRrEYlFuu6mV9uqIK3YaGRmhq6sLKaWbeshkMvh8PpLJJMCSbzzODe7xeOZtA/NJtc2EfX1Z8paBaWphj8BARhuJhxOEy9rwSk01pFQYoFNz9iZiGLoL4h233wa28FgpsJS+Vi6BRWEaBoY5aVn6EKLomuvjGvYDwrZH5YRPXRJbtOEIhVQCv8/HrjV1bGzQjbASiQTxeJyBgQFOnDiBEIJwOEwwGKSysnJRycdf/MVf8K//+q8cPXqUYDDI7t27+bd/+7cZX+uI++DC6MyVIpFI0NHRgdfrvWxEdHrk41en45wZTHLiZA9SwapUAMN5WuiIhL5W2tN0QtxKWnrjUs697uixBIbhkFZbFyacxw2i0QjRWARUDZZVIJlMkkqmGe3pRUpJMBjQRCQUxufzIQzh6ocU2t6UpVMtQoFhCnatrCYWnIwAzqT7Wery4OLN3uPxLPg0cSklx44do7u72+1oPJvzAegeTfPkiWFGxkY5eWKY0UAvvkBAr+92tEGHn5QrOC/gQXoq8JiGSxKV1FFMJxqloEhPaEcshEHAHyDg91NRUYm0CqTTGVKpNCMjY/T1DxDweQmFwgRCQYKBINgRL1OAkJOOjEQhLZ0ivnVlDRH/1CjwSzbtIoRwb/T5bjypVIqOjg6EEOzevXvOCuLxdJ4njg/aFST6wgs7Z+qE1KVUWLIoGSIM2xvV7FLZxubk6nWpq37M8Ua0ENQWphrGZCGkUgjHnQX9CjEZCXFi+kop8nIyRG8IA8PQR3Rsfk1thPZqbTjBYJDGxka322YikWBgYIB4PM7evXvxeDz86le/oqGhgaGhoUXxema78VypDTiptkuFUGeD/V2jxNMWHq9NB+yGKQIwTAPTRFeXCIGJ7c2i1xypsEXIOlWDtFNyhq5IUaooRA44nur0pd4VKCu9ULlXXOjPVtLJ50p3sbOrrdFpQqgI+9jYoIVwhmG4zc7a2tqwLIsXX3wRr9dLZ2cn3//+9+no6CCXy3HPPfewYcOGef12F8Pjjz/Oe9/7Xnbu3EmhUOC///f/PuPrnLXAFX4v4JC+vr4+Dh48SHNzM2vWrJmVrsHZdA73jnNmMMng4ABHjhzRkcJQkBXNTXqjtDed4uueyaTYu28fqfEEm7dspqGuYVLj46RNpMJC25CwU7miiLjocwAhTMKRGKFIjBqlyOXypDOajIwMxxGmwB8IEg6GiEQi+HweXXJtpwEVivbqMCtrpt7fy7Xk3hlydyXO6EzIZDJ0dHRgWdYFHY0vBod8jKXz/PLkELlcnoP7D3Lu/DmEYbB92zbsxRupJI6cS184gzOnjnPm9Flq62q58YYbUA6ZUcKthjSEnW9HFZEQpTmN9kQxTA+hSIRQJEyl3Wwyk9ZR4on+QQpWgUAg4HZYDgQCmtw4a4ahWFMXpbXywjV+udrBxbAo1S7zMbb+/n4OHDhAY2Mj69atm7NYKpO3+OmhflI5y14QdLULpolNLSarSQxHqzEp9tDn68bKtUdsL1qGLeAw7ASNIbSnLO1NyEmvCCeBazNmiUJKUMqyNSGTbNg09bEFBo5cRNphkcqwlx2t5TN+TyEE0WgU0zQ5f/48d955J2NjY/zkJz9hfHyc7du309/fv+Dlf3PZeEDbgFPlMltcSaqtGH1jGfZ3jmIhMZ1oBQpDCu1ZOpu73UtDoMObhtIyYoEAIRGAqQTCoz1Z7IiXow5z1hk3gmUTU4VuWKftRmkPxigiLHbY3jANHQIRAkfEbEllT6cUeL0mL1t78cifaZqYpkldXR0NDQ2sXLmSf/7nfwZ0ueFC4yc/+cmUvx944IFLvt4Rd8/VDmaClJLjx4/T1dXF5s2bqa+fWQc1HQ4Z7hpJ0dE5hkSRyWXJ5/Ja7JvP4zRYUTYB1DxTX7vR0VF6e7qwCpJzZ89RW1eHYYElFIYS5LXLgGk7LmAglNTkReGm4gyctccAJZEY+AM+fH4f5WUVgCKdzpBOJUkkJhgaHMLv9+ry/XCQYDBIeTjALe0XRgGn5/oTicSyqnRZKBuAya7WNTU1bNy4cdbrnBCCbL7A02f6dcfpQoFMNouUFulUhkIhj8fr1U6loe9Hw46E5XMFTpw6xdjIKOlsmvb2Nspi5drlEDoVpqRCCsAuPtApGOFWLgK2xsteIw3wmAamYRDwllFeVuZKF9KpFOl0kt7RERQQdCvhwtSVhdjROnOKsdgOpJTLIv12KSwa+Zitsc13USmGJRWPHh0gnctrdojAMAXC1PuEtL0RpSR5JSlYuqxWb/i6OsUwDLByCCsP/vCk0Efo1h6gc/YOv3BC8zoqotuEKak3LGmHSJ3wrb17uaF1mMw9KqnsXmLae/KaJneurZqSy5vxO9ss1ykFfN3rXse3v/1tTp06tSh9B+a68cyFgF5pqq0Y6VyBx470kStolYclJaYykFh2qFy4m73T08XZKPTeY//DDkbYnVjQ6RL9l9Ol1E2VYSCRGE4UxdBlsQ6JdZN9whE7O4uWJhrSJT36faZhYhiCm9sriPgvfYsWeztVVVUkk0n++I//mN27d8/7N5wtxsbGLnutriT95mD6/Ka5LqiJrMWTJwZRUmIYgrqaWhobm7CkRUNtnXZ4VZGzo7knUkE0GqW8rIJ0NkV1dZVd5qw0KbVFQAKwlKU3LDua5hWGG/lSCnfhkFLqtIrh2KKTvDMIhe1Sa/R1TSaTJJJJevv7UJbilatjnD+XcXVfjoO2XMPtzhrn8XjIZrNXdKziUvuZulpf/v2SJ0/GyQg/CvAHArSvbCNfyLNqzSpMU99nTgzTiVMKBabPpKG2DiuXo6q6mlAo4p6TsL+nEE6KRveAmjyO3TRS6V5NQojJ7A6411/aKXefz4/X56O8ohwpJdlsllQyxcT4OEODA7S0BDh+bMztL+II8Kd3uXXS8C8ZzUdxI5fZLDhXuqg4eOL4IIPjGfdvnTdHrx4e7dGYwl7YsZs52VFRw3ZfVWYco2cPFDLI2o1Q1oYwnJQNLhFxFxs7d+8WwODcbAJDaY2AIXTkw4mcOOJDJ/3jRlbs93qF4GVrqgj7Ln9ZLlZiWTzldjFxuY1ntjbgtME2DGNeqbZiKKV44vgAeSXxeAxd8izcFK0meEphWYq8VcAoePTNL7R3qqMiRc29bIIxmXrTM3Yc8bBAYHo8dqhdtz/XkTBhp+n0caQTCbPsc7DsXLGhO9z6XHXqpDHVlwVYU3v5haN447maIjMpJR/84Ad56KGHLniueFO40pB7cVO54vlNs0VBQsdAgeao1PHPgsSTGWbtijJy/nKC4RB21Fynx+x7UqeOBLFYlDvvuJ1sLmf38AAlJyOkhi3mMaXpRjDd/JvTPFAADlGxQ/tOWk8YTuBFOyGWfTIKQSQa05+JYMuKEBVmlng87jbGclrAZzKZKb/5ciEfDq7UBvL5PAcOHGB8fHxOpfYu0iN0nzrAhFmJr3EjphFgdGwUq2DR3NhEfW2dfa8zmYI3cMkhwE033UR7WzvhWASfR7dqMOz13knAFil/sGvhXCLjVC459qW3Jze3M6nzEXpfsSyJRODz+vFVBqiqqWZ3ezlRkXNnix08eNCduu78Jg4hdcjHSzLycTljm2/4bDr2nBuhM57SIWyHCRgCj6kvvBDCFQcKu7xJ2XoObVd6cTByY3jSw4CkkBpEVbTq6EfRxuWIwITNcB2RkVQA0l54DExD4LFbppv2e6SzmYGtKRGYwqnf1ia6aUWMxvLZbb5LOc10NhvPbGzgSlNt09HROcrAeE6HOoWzLDhLg+Gm2wxD5089pvPL2wtAcbvzyUcR2CkUQ+BVtlTY9W4Am3hoL9eJiOD+23GhhBB2ZKO454ly/+t0zfWYBrtXzk5ku1Tlde9973s5ePDgRZ93HJH5bjxKKc6ePcvJkydn3VRupmM8eXKIjKXFexgmYuw0Zv9+YpkcY9H1SFmriaGd/hJMij3tbQOfLRiUCl0R5S4KgPN6m7AqId13ap0Prkfs1PQL9OsLUmJY+jjKMDAN8NjpWccuhBK0VofZ3KJHwBdPWXaEx6OjoxiGwZEjR6isrGR8fHxZiI4dXEnaZXx8nI6ODkKhELt3757XsLdDx08xMJ4iFASRGWVcRnj0F78gHo8Ti8bYvHkjytYHCme2lnMvW8p1XmLlFRiGnZhVRfdt0b+k0ml1V2PorCs2uXEiIY7D6aTtpVQoafejAkyPiakNA0PAmroI7TVa++XMa8lms27X1Z6eHv1dDx2isrKSvr4+vF7voo0CmMkOPvOZz7Bu3bpZH+Oqkw+lFKdOneLMmTNs2LCBpqameX/Oif4JDveOa09BFYW3wR7aJlHKtE1JulUEwg6FOkRCKSBUg4w0IAppKNPn5Gg5EFocaBkKLCd7or0WIXQJpxAe/frJeJpOx9h/6xCtHXFBuWImJ/JSGwuwpWn2jH56eZ2jcL8auNzGA5e2gXml2pTEePEBjL59WJt+A9V2x5Sne0bTHOoZ0+FLbI0G9gYgACFRmAihK5G0QEwUeaWTG4pARyWknNxn9MucgljbaBSQGdaRtkAlln2tlZK2iFiXVU/xhh3K4kRGbAPUbfx1PPa2VZUEZxH9gqUJub/vfe/joYce4oknnrjsa+ez8RQKBQ4cOMDY2Bg7d+6kvLx8Xuf5zOlhhhIFpNKpWSUV5POofA5VyGKSm7yH3Ms/qdvRt7/lmocW/unrbgDSzu8jbVGxkHZETLlk00ncSaUr44QbAQWv6UEpeaF42bYXpRRBv4eb2yumfC+nG6cjPD5x4gSpVAqPx8P+/fv5u7/7O6qrq3nFK17BW97ylnn9dhfDbLVfxZgvAXU0YO3t7axatWpejtX54SQvxj0UzBDSG0Z5guQnchSyWZSUZLMZ1yHU0WwduTCEDpvq6CQ4lWmWZVcKOOM27HOaTJMLPYVc6rVFT+YybGcTEAaWk2q1pK2L0lE2R1jq7km2RZSHfGxrmWoDAH6/3526nkwmefbZZ6msrCQej/OJT3wCwzB417vexf/9v/93wZ3SmezgNa95jTvhezZY8LQLaGPLZDIXPJ/L5di/fz+pVIpbbrnlou1sZ4Oe0TTPnInbJVyabkgnhiClnRKxOakj7LDzbcX5fWWTC8v0YzXfapeHmeg1x8np2aFVAMOe/2F7w05e0Amvam/H8Xyk60UbQmtEDMdDsvcuS0qCfg93rqma0/dfqjzvbDceJ+0yvSlWsVJ9Lqk2MXAYc98/QmYMz3gP+dbbcNTpyUyeR4/2kc9ZuieLkyPTMXLyuZyblvI4KQp7wqx0BsXZ4dLxiQTDg0O6j0ZFuSa0bgnuZE2/kgox3onoek7bSNMOREWbnabzUGQYKITrBTt2p83QFjdiL0wIGisDtFXPnkQWk9BCoUAmk1k0O1BK8Qd/8Ad873vf4xe/+AXt7e2Xfc9cNR/TGwvOd6z5kZ5xTvRP6MUcu/ICoLwZZJrMRJJMoNZdA5wN3/F+DZRNYPUGpO9lu9JN6I3KSI0hPH7whfDYuhHH05VKOz8CLXI2hEJ4TJwQu7LtSbfx1yk/qyBdQqNQ+D0eXr6uBq956YigUopQKMSaNWtYs2YNb3rTm8jn8zNOer5SzEX7Vaz5mIsNSCk5cuQIfX19V6QBiydzPHViEMsbJRFdiaeiHG+wkiqvxY1btjHQ34PfH8AUAguFxy5AUE4KxCEkFmAoPaLDMCazasD4RIJ0OkVlldbp6aiHXRWHwlAmdnALh8Wa9gwn5XTMZjLCDrqvh16TLHweDy9bO7Wfx0xw5A4tLS20tLTw8Y9/nN/7vd9j586dixINn8kOamtr2bNnD3feeeesjrEokY+ZjG16C+S5dKqcjtFUjseODercuRNqMAy3RboQpl26Cg6VVEqCklhKTyh1y6icfBsgjMmfw41UOPl4h4maerEyHAJh5wiVcsSEmgiZhrA3BXvztRcyhyK5VRCY3LWmGr9nbmmni9X2LxZmu/EUE1DnPJ08/dDQEPv27aO2tnbOqTYVrARfBHJJVKQe109Uil8cH9D80jRtb8QJWAly+Txnzp7BMEx6evvx+TzkC5JkKoPp9WmRqJ3ftyzJgb176e3vo7qiitvvuB1/wK8jIFPa4CrdOyQ7gZmfQABWZsw2J/28VG5vKH2eTDaZE87vpJPAukrG3mxuWzX7EdjTRWbOQLHF0ny8973v5Z/+6Z/4/ve/TzQapa+v76JRq/mkXXp6ejh06NAVVzv1jqV54dwwONFQASAZGYnj9XoI1dxA1hOHgq5w09Ew5z4X9r2sI1g6RTIpPncnT4+cR8RPghlArtiC8kVx73WUTSYN3OFRmC4RdxrSSWnrC5RCSL1xeQynH4XBtpZyKkKXJ1/Tp5lms1l2797NHXfccYl3LQxmIzqeiw2k02n27t0LcEUasHTO4rEjeqCnaZjg8SOFj8REgmw2w6rV7axavZKzp88gUXYKnEmRue27eBEoQ9gRVTUZJFWK8fFxnn3mGZKZNBvWb2DDunW6YsrJ2yk1mc5hMnqiHRTl7k9KgXSIJ2AKnYITeLh9dQ2hWURBp0fC8/k85eXlvOc975nX7zdXjI2NAcypJ9Oip12cYT8nTpy4aAvkuSCTt/j5kQEsa3IQnAKwFJaQdq3+pLDQlBaW1JUIwjAxbE0G2PYhijqNOqflpE0MbTJOLEMqibKEu2BgezCmob1t0zazyV4N+jj2D4GySzR1WFeBMNjZVkZNdO55uaud65/LxgNTyYdpmleeaoutoHDP5xDDx5HNu9yL9cK5OPFEzi5fs390+8bPZLKkEknq6uuJRMNYlm75PdDfz0h8iLGRYYKhsG57bP92+XwBJSU5WdCeq9BesBvBAJBQEBJR1oRI9mlPtbyNSQ+mWC9il1raIXgnUmcVCkUhWwOvaXDHmip8ntnrXpzGTc5vnUqlgMVrNPflL38ZgLvuust97HKzMWaz8UgpOXr0KD09PbNqGHUpTGTyPHFs0I4s6rVASTh9+oz9WYp8oYDP68E0TPL5LD6ff3K/APt6gRaM2gd2OIzjGecTGCqLKuQRuQTKF8Hhk/plwq7IligBUlqus4K9XhgmmMqYJMs4KV1Bc2WI9fWzI5EX038tNi6l/SrGbFNvg4OD7N+/n/r6ejZs2DBvDZglFT891MuEPUhSoYXi4xMTpJNJ/IEAQ8PDeDwmSkEykSQUDCFMw70OgL2+22kYhN2hGDsaCql0molUEitfYHR0zA6O2jEOm8AaDmGxjydseyzYqT2h9LwbwyMwivoHKWB9fZSmivlrAK9WubVjB7fddhubN2+e9fsWLe3itNk+cOAAo6Ojl22BPBtYluSnh/qYyOa0p2AzUqEEmALP5O1rh8Am1b9OEzDHEDTD1VEKXakgJ5/DKZ3Vhqf9EJtv2OkXYYtFJwfD6He6sxqE09DMCb8C0snvAUrQWBGY9QJz4W9xYUvlxUy7zHXjcZpMpVIp9u/fTzqdvuJUm6pei6pe6/59bjjJ0d4Jt925o1hHSfoHBkilEoTCYcrLy5DKwjS8+MvKiA8Ns6KhHiUMUskko6Mj9PX34fP5aG5tIVZWTn1DLb5AkHyhwGTHQWV/NzvdFizDWvkKe3ggrhRECMOthJJKgnTa7esXGYbCa5ouuQXByuowTRVzWyycTb24vC4QCCzaiPf5DGLzeDyX3HgymQx79+5FKTWrhlFKKTo7OwmHw1RVTU1V5vIW/36gj1Q2rxd6IJnOgoBgIEBtRRRMDzlLMDA4QC6T4czZ85iGIByOEIlECIVCKCXp7OxECEFLSwuGYYKtJZLYXWhjzch8DuENcm4oyfCJfbS0tlBRWanXDyntCKtdmmtH18DWHDk8WTgpP7u5mZQEfR5uXTn7tXKmyrerkYKdjegYLp92KdYBbty4kcbGxst+9vj4OMPDwzOOXXjq+ABj6RymaWtxCrrdv5KS2vo6lFQ01NczkUwyODBI/0A/0pIEQyHCwRChSASf10N/3wDj42PU19cTjUQw7HIm5y6oqa6mvW0VycQENbXV7Nm7j1g0RPvKVbrrcVHnU0taCISuehHKbnAIoig+6srOpKQy4mdbS/llfwcHSznd2rGDp556ak7vW7S0Sy6X4+mnnyYYDHLbbbfNO3dbjMePDzKSyunF3QRHsKmYrFTQOXUxtbRJ2T0/bLIhbHn6JKfV9MLJwzrHKa7/d3QbUqnJJmW2yyKVXX5rkxV7RAimTUY8tt6k2HuOBTzcvnpuOo9izGRs0xfjhcR8Nh7DMNi7dy8VFRXs3r17zmWSl0Iik+eJYwPkCxKnLb0QBtIq0NnTDZakorwCyypo78eei+DwUwsI+P34/H5iFeXkCxapZAojlQQB6XSGvt5eIhEdGfGYHvf6O4udgb25OBzCJhx5y9KjGdBVFoYh7MVIn7uuuLKjKUoQ9pvsaJv9ZuPAWdCd81kObbWn41KRj+HhYTo6OuaUhnv44Yf58pe/TDgc5s/+7M9Yu1aTUaUUjx0fIFWw7Hb6MDI6Sl9vH0pBTQRE30Esrw9P5Vr8/gCG4aGutpZ0JkU6lWJ4aIjefJ7BwUFOnTqF1+/HUpL21jY71O5URIAIxlCN2xgZG+XpX/yU0bExOnu7uefuuzFt4m2Yjqh5MnXriI0l2OkXpyoCTMDjMXj5uhp8cyCQV9sRgbmLji9mA/PRAfb19fHRj36UwcFB3vKWt/COd7zDfa7j/AjnR1JuVDqXy9LZ2YmSklA4wuFDh0mlkqxes4YVDSsYGBikraWNbL5AKpVkbCLBwNAQ+XyOw4ePkMtmaGlt4847btcaEKkQThMg0+SmrVsQCB5//HFOnjxBMKinUdfU1bl9roUAbyGB9+RPQCkKa+6BgL7fXfdWapuwJAR9Jnetm9sQvpk0gFcj+lVsB3ONaC8K+RgZGSGZTLJ69ep5q5Sn47kzcbrGMpPlsi7/tBu82OEMnaN12pzrJlCagHicmKZLMd3ahaLoxaSgUP8tpcQUhk1EFIZQqGwKs68DKQysupuQ3gDYHS2FEHiVQhimfZaqeG8CFB7D4GVrqy8rJLsUZgqztba2zvt4CwUn13/27Fksy6KpqYn169cv6IYopeJnR/ptnYeuNBJANpPh/PlOQuEgDc0NxOMjFAoFdy6LbnUs9OjyguVWGhhCEPR5CfrKqK4sAwWZbJZEMsnY6DiDAwP4fD7CoRChSJRgIIAQQo8/x/Zw7WSwYegSasOLJr3O4DFHpCom6/udBsy7V1XNyxYcG5g+Sn05oDgKmsvlpjynlOL06dOcPn16zmm4559/nt7eXjweD4cOHXLJx/Nn4wyMaZG7JSUD/QOMj42yoqGGgc4zGBkwVRYjl0VaKQw7F2+YglBQD/iqrIJ8IcfY2ASFfIFcLkdvdw+hoG7+FQqGwbCdFN0UYrKTpQCvaeA1TD3npygD6P7bkkjh6El00NQw7Koo+3U3NZdTHZlbGnZ6r5fFbKs9H9GxaZpa2C3lFJJUPLF6LjrA48ePc+bMGTKZDL/85S9d8nFmMMGB7jHbCVCkkim6e7qIxcoYHR1hYjzB2NgY2Xye4aH4pCBXCEKBAOFggOqKCvJK0d/XhyUliWSG/v5+zp3r1MM/w2G8Xp87/026q7r2agxD2GlUsyjCDkb385jDx5FKYforyK+5W1fF2LuZ0yXX9MAdq6tmpfMoxvTfdrEJ6HzsYDoWlHxIKTlw4AD9/f14vV5Wr169IMc91j/B0d5xe+6KLnGbFGk4MxlsjxJ0uZTS3mtnZxdKQTAYwO/z2RsFmpSghajO+x3yYqD1AwqBaecBwRYhAWLwMGbvHkwEpukj37DNnlLrlErZHg12y3Q0ibGUwiMMdq+qoDw0f8EtXCgyc8ZoLzUKhQIdHR2MjY0RCASorq5ecE/82TPDJLKFSZEgMD42TndvD9VV1ToCJHQqTro6jMlmbz7TsAcg2k2vnUYNDks0IBDwEwgEqKmqpFCwSKRSJBJJ4t3dWAVJIBggEo4QiYbx+/yalE7mXWwSjF0xUaQZkVpHgpXFyIyytr2dutj8GsNdrNHccot8FKddnIZRExMT82oY9epXv5rDhw8Ti8XYuXMnAMf7xjnaNw5Kdxrt6uzGKuRZ2dKE/9TDBOPdmL5NyHAt0vSDL4bIJAB7BpRpuverx/Bx442b3IZidXU1ZLM5hgaHKRT68fv9RKJhIuEIPp+f8ooy7rh9NyPxOE1Nzbp6RU3qupQrQrdnOCEwTcdWJtO/SihWlAfdOT5zwdUMuc9VdAxMGTDotrvv6uLo0aOsWrWK9vb2OdnsjTfeyLZt2zh//jxveMMbABiayPDUqSF77haMjo7Q399PXX0DRw4f5oknHycaibJt6zby+QItTU1a/+cEpWzRtwA8QrBiRT2379rFxESCmppqPF4PyUSS4aEhPB4P4VCIcCRCKBTEEIKdO7ZRU11JJBKhrr5Of39wI+PSF0O3fRD632itlwkoYbi6ww0NMRrnmH51fturGfmYyQ4AysrKZi0SXlDyMTAwQDKZZMuWLe747yuClaN374957lQKVb0eEaoolldMwlnpnSFu6NB3f/8QtfVV+LwBMukUE4lx8nnJ6dOniEQ0iw0Gg3iGDmAkBynU3QiROkfcoSMXrg4Ed5iUMDxIPNqLNTy6itcmMrqEU5duKbssT89yMfCAHgw1h1LKi+FqM93ZwjRNotEomzZtYs+ePQs6UArg9ECCk/0T4IgJlWJwcJDh4TiNjY3EolF9szv1k7Yo01VXOCTTWfSV0zxuMq2kLPutSNezCYZChEMRhCHIZbMkUwnGRuKcPXOS6upqwuGIni4bCNopQcfrtfvKOMTVMFD5JN5n/o5wfpDbxoLkVn5tXr/FchylPh3F+f7x8XH27t1LJBJh165d80rF3n777Wzfvh2v14vH42FgLMNzp4dRCrK5LF2dnfj9Plra2zEnehAT/Zj5NEb8BFbjzeCP6PvRSNkb3uTv5+x/Xp+P9etWTz6oFBi15LN5kukkyUTKHgRnEA6FiUZj1NXWgTDIWdJNBws7qiGURAiTSRmy06hO24i0JH6fwe5Vs68UKMbVLLufr+gYJu318OHDDA4Osm3btnmlisvLy/mrv/orMpkM4XCYZLbAo0cHUZYuChjo62N8fIym5hZCwSBHjxwlk8qSy+QAwa233orpMbGsgt1czplOK9x9RSBoaW62e0gBSlFRUYGUWrSeSKQYGBygUCgQCoYIhkKsXbMGn8+n0yeWvXbY25LZuBPlC4OUiLpNOkKsPwhhd7uujPrZ2jw3Mu7gapOPmewA4Gtf+9qUNNilsKDko6GhgaqqKtLp9IJsOqOdh3li7xGEZWEqhWzZjVOaiCmQlrM2OCs9IKC/vw/LgpqaKspjFUgrTyhYTjAUoK+3l7raOpLJJP0DA/gz/TQP/xKhcnjGuylsfbstHLQjJFLa3Ul1Et80DajdjDK8KAFW1XqkpcPnUtqiREPgEQbCnOpRl4e83DqtYdB8sZznOaxZs2bOZZazwVg6z69OD9niTYVVkPR0dZHOZmhqbSXg95O3dDWJDorojcVQkEdiysn8+2RptNZdjCcSnDh2jKrqalpaWxGG0pEtZc/hUBJlp+f8AR9ShnjkhUcYHo6zclU7W7dso7e3BykVoXCEcDhIJBTG6/fZsxy0mNCSCoa78eSSvNq7D/+ZCXJWHsy5R8KWUmR2OUzvdNvV1cWRI0dYuXIlK1euvKLojONZJbIFfnF8EAkkkgl6uroor6ikurpGC49D1RBdgUqf0Pyh+1kKTbsQgbCbhtND3uzpwqqowZfzPdwHFB6flzJfGbFYuT17JU0qnWRgcJBC3iIU9BMOhwlHInh9vsnqOeGMldN9Qiy7+kIqnfL1egzuWlc753J7B8URMKfF/mKmXeYKZ8rxxMQEx48fxzRNdu/efUWjIEzTJBwOU7AkjxzsJZnLYxXydHd3o6SkvX0VPp8PYcDmzZvo7e+lkMtz9NgxomXlrF29CkvZLRekAI8ToRT29bf/zxk6CHZa1SQcitgbey35XJ6JRILxxAQDg0OYpiAajREJhYiEwzrK6UgA6jZP/ob272jZWo+Q18Nda2vnfV/MtB/U1dXN+/e9HOZjB9Ox4JoPZ5Kl04NgvuVSqVyBn56VZM0gWGksT1h3gFTOwibwGNpIhD3EwyoU6O7qIl/IE/CZ+H0esJ+3pG7eghCEQkFtPAIKIyZqyKRgCSaSWfpPnSIUjhKJhAgGg7rmWggUptZ9SJAeL6p+s22Y+jsKwDQkhnA6qmofRzes0bNG7prFwLjZYqnK62aDK22tPRMKluTfD/aQzVsoAflcju6uLkzTw6qVK/F6vTpgZUcdwClEku6NYtkNxTQJsNwhXwbw8EM/5Ozp0wRCIX7rP/8n6urq7WuoMM49iRE/g6xej2q5BRCMjo4wODRENpOlr7uP+tfUIox6stksyUSSiYkEff2DmIZBKBwh5JARjwdR1cxNZUmqMxPk179hXsQDlra8brYQQpBIJDh27Bhbt251W0NfKQqW5KcHe0lk8sRHhhkaGKJhRT1lZeVaFCoEwgwgN76R8cSDVAYEKptEZpMUDD+ZXJ5CwSJvl+FPlts7KVy9P+ihg9KNYkkBHgM8pkl5WYTyMr3J5/MFUskkiVSSkZE4QpgEQ0FCobAu43Sq7oQtQBYCj52eu6GxjNp5lNs7KI6AZTIZpJTLgoQWb6RCCDo6OmhqalqQUQoOnjg+wHi2QCGbpbPrPH5/kMbmFSAMLCWhANt33szo6DjHTxwjk8uSTOgKOWXZQ92k5Q57A10hYzqNPoSOVgpdYYC0iwqEpSvZPF4PlZUVVFVVIqUknUqTTCUZGhqir6/XFqBqG/D4fG65tTPl2ukzdPvqKkK++VepLVXF05Vg0UptQef/5xNaLViSnx8ZIOOrRLTcBoUMZrQebBapF4ZJF0UJyGezdHZ14vX6aG9r5/z584yNjQOabBTyOYYG+ggFQxQsLTaUQmFGG8mtvQdvZohg9XpqVYBUMslgfz9SKcLBEMFImEgojMejW6jrSbn21mRor1ZrB0zXY5JKasIjCxjC4K51lYT9V6bzKMZSDRSbCxZylPbTJ4dI5zWJSyaSdHd3UVYWo7a2frJ00XAmRIKQeQLDhygkxhkN+gnHyjE9Hnp7ehFI/D4v0tKqdQtFMpnCkpAvFEil0rqqSQhEdhzP8EnIJhCDR8jXb0H4gtTW1rGyrZ3e3l5u3LIFZbdNFoZJKBYjXBYDqchmM7qcd3iI4YF+gsEQ9ZUxmu//CglSqOj8u1Au1+iXg1QqxYkTJ7AsizvuuOOKhgZOx+PHBhnP5Bjs7yWRTLKyvZVAMAQoPcDPHgqJMogH2jHECP7oCsxINZlkiomJMWqqa3SmVkoKSL2+CGWTF3TEQjDZyVjYDcaK+vjYsjO8Pg8x5SEqc8jqFlKZAsl0kuHhYfoL/QQDfsKRCOFQiEAggDP7ozYW4IbG+YXaQd/7xXbgDBRbLnYgpeTkyZNYlsWqVatYs2bNgh37hbNxukbTJCYm6OrqorKqiurqGt1nCcFkL1JYubKNieQEfr+PtpVtFCyL7p4uHcVEYVj26HJ0O4TJ4gRnYrHdvsHRkHkEHntcgxMZMQxBMBRgKD5ELBolFImQTKSYGE8wMDCEx+shEgoRsvUiTnPLjStirJjlTK+LwbKsKYLd5eSMXgyL1mQMmJfXq5TisWMDjCSzgECGqyfz9TjpEOH8hTAEyVSCrs5uysrKqK2tRUpFVXUN4+Pj9A/0UyhoMVE0HKSqugavz6tLm2yvRlatwTLWooCIMIhEdMOgbCbLRDLB2Ng4/f2DeL0m4XDErgcPauNROsQvUUgnzydxy+w8HpP1DTEayxfWI70WmO5CjFMHON4/wdnhBAKDkeE4A4N91NU1UF5e4XYKdCppHV2H6u0g3PccgYLFCHDSt1IvEB5BfU0dptevIzRS5+hf+YpX8MKeF6ivraO5uUlvMsIAfwQVrsKkQCFai/AEAIXHY3L3va8lm8ni8fnIF7QA1qMnGup+Zx7w+aJEIhGUVGRzOXLZNKtCWZ7bo1uIV1Ul3fHYc+3PsZxtIB6P8/zzz1NZWUmhUFhQ4rHn3Ajnhsbp6uxCAW1t7XbkS7kVLEKBZVe91bZvZiKRYCCZxDp1GqWgvKKMSDSiNThKRz9Q0k27GHbzL8CedoxdHj1JPKSUDA7HOXr0GFXlUTbnO/BkRqBsBd5NbyIW1dHVfCFPOpVmIpEgHh/GECaBYICKWJRbbph/QzXnHGByzU0kEhiGsaC/93xRKBTYs2cPmUyGUCg07xk9M+FE3ziHukeID8cZGB6kqamJaCyKUwnpRLKU1ORsRVMTkUiEZCrF0OAww4PDBAI+6urr8ft8dnpdE1fLJiLOUFLTMN3ePqDHb+hutXoPsQoWHfsOkM9nGR0do6NjLz5fgLf8xzfT2NBIdXUFlqVIZ1KkkimGhofp6e0jGAjQVFPG6vIKpo+hmCssy5qSxlpOKdiLYVHIh5N6mc/G89zZOL1jaVcn4fTg0CJTu5+DIxQ0BMPDowz291PfUEssVoadxNOplVCI4XicoaFhyqIRLKvAmTPn8Po8RCNhIpGIbsqE03lSUbAKuHX4wiQWLScWLQcUqVSaZCrBQF8vKAjYLDYUDuOxDdRj6LJcZbtE1RE/2+YpIroUlqK2f65YiLTLcCLL87agsK+vh4mJcZpbWgkFQ4B0x6Aru5kb2HqOXB6f1JUMkUgY0zLw+Xz4vF4GhwZRg/3aCwlHiEajrFq5kpXt7Tjlr7pBnI7aWCvvgcwIMlCFtCyUPVzQEIJQKOA6Sfo/ukGdtEVqznOmaRAMBLhtXR0bG8ooFAqMjo4yPDzM8ePHyeVylJeXU1VVRWVlJaFQ6LKL0UzDBZeLDQSDQTZs2EA0GuXZZ59dsOOeHJjghRM9dHZ2EolGqa+vd1tjO56pvnclWDpNEomVEYlF6enpJZVMEolGyKRSnBnVFVmRSIRoNIzH62V4eJhcNqvz5Zb+/S1L0d3dwzPP/opwNMadt99JMBTAQPDE449z5uwZmsu83LihgEkekRggV8gjvH6UEng8XsIRk2A4gpSQTqfIZdMce/zfuOUP/pGtW7fyyU9+UjezikbntAlNJx/LqeLJNE3q6upYsWIFzz///IKlYPtH0/zy1CA9XT2kMinaW9t1NEk5IzVs2BoeAQT9PoL19UyMT9DT200kFEYJQdf5TjANouEQ0UiMQDBILpujb6CPmtoaAr6APf9Jkc3mePKJJxkZG+Xmm3fS2tqGlHDo8HGe+uWTWJaFULrkv5DLMtjfT9OKJpQC0xSEQmHCwRBV1VVks3kKuSzB0TO85jW/h1KKT3ziE9xyyy1UVFTMuSfSTI7IcouET8eipF1gfhvP0d5xjvVNaNe1aMS1IwAFYRe0aMY52NPP+MQYLa3NhIIhPcjMrl+TStHX108yOUFTUyPhkaMYmUGs5u1MFHykkgl6erqxFIQCQTckKkxTC0vtTcjJA4IgFo0SjeqoSDqdIZVKMTE+xuDAIIGAj3A4TDQSwe8PoJQk4DV52ZqqRVkIikOtjgJ7uYTZLtXjYS7IW5JfHOsnk8/T3dlJXkqaW9t1E7u8NSnocxU2uBVPvqabMEWBTCbL+UIlVdWVVNnDn6RUZLIZkskk42NjDPT34w8GiITChCIRvF4fCMhJyx4oJhD+Kkx0K30hBEMDg0gkDXUNeviUtPVHYjICY9hpQscLq4362digiajH46G6uprq6mq3N0M8Hmd4eJhTp07h8/moqqqiqqqK8vLyGRejmTQfV9pFeKEQCoVYsWIFqVSKQqFwxZ4dwOBEhh+/cIru3l5qa2qoqqxyZgu6sNAVTo6YOJPJ0t/bS75g4fH4aG1vx2vqnj+FQoFEMkEykSQ+PMTA4BBPPfUUUsBdd9zFjp079BomFAcOH6K7uxfTHKC9pZX1G9bpMl2lh1iO5j2kok3EcgPk67ZiGV49rwP0emIIPKaOoviiEdavruXtH/sn4vE4Tz31FHv27KGxsREhBJWVlS4JvVza2lljHRK6nMiHEILW1lacoWcLkYJNHv53Hnv2KMPZMIWoLtM1TY9OtRbSiK7nEYUMsnE7yh9zRb3dPT1kMhmsgsWKFQ1EIjEEYClJKpkhmZygv7+fTDbPL37xGKMjcRpWNHL//W8FdHOx851dHDt5kkIhT8e+/bS2tGKaAq+d7kVKWtva6Onppawsxuo1q/VIDjvKLtw0nkE4FOCum5r5P1/6HufPn0dKycMPP0x1dTXpdJqysjL3/p/N9bwW9F/TsSiRD5h7vr8znuL5c3GtSkf38hBKoeyGX8IWAoHEKkg6u85TKBRoam7F9JhkC3nXG5WWoqe3h0I+T3tbG77EeTynfgyygBjrJrrjXYSjUWoRpLNpUokk4+NjDPYP4vd7icaihMNh/L6ALueUlt2oyl7U8ml8/gDBYBXVNVVIS5JKJJlIJjnf2YVUEI6Eue+GBky3d+HCotjYUqkUSqllx3Q9Hg/pdHre73/82ABDY0k6z5/HHwiyqkULyQwhtJHY2TctGlN2JZRe6DGDxMs2M5Dtp76hgbJYGYlEgiPHjtJQ38CKxhX4/QEqKqvI5XMkEkkmEkkGBodB6OFssWhU1/GbWlOipMJSkn379vHgg/+EUII3/vqvseuWW+3R23Z5tiNgtKMfln1OFyulFELoKolwmObmZizLYmRkhHg8zokTJ8hkMlOiIs5itJw1H9N7PEz3zOaKZDbPt36xn76hOC0tTUTCepCb7qOgy6KVEigk0rIwDJN8vsB3v/1dunq6aaiv57d+67fwOHlxpfB4vMRi5USiMZBwrrPHrtSTHDl6mKamFYTDISKRCA21tXSfO4/P76WyotytlnrZy+6ivuEEFRWVmOtWkxCG7bwYmCZ4XIG8rqkRQlAT8bGttZJ169bxwgsvUFVVxV133UVdXZ3bNvz8+fMcOXKEaDTqbkIzRUWc6NdybDQHCys+z6XHeejpfQwPDRMKxKhcsxPsYaACMEbOYPQfAApgGBTa7wIUzz37PE/+8kkMDN7whtcTDEXdaidDGEQiYaKRELKujsHBAUYnJshksvT2dHPw8FFW1NUSiUSorKqkLBYlnUxRV1NjR1wVq9asIZfLksnmueHGTQT8Qe0wC11BZQjd7VbJSZK4sUHrPNatW2e39Ffs2rWLW2+9lXQ6zfDwMPF4nLNnz+LxeKYQ0os5Is6xl6sGcDoWpdrFYbqzNbZ4MstjxwewCs4oYceXVXbu3RYRCijk8nR1d+Lz+fTcBSGQlrQnmiry+TydXd14fV7aWtswPSbC0rlcoRSCAgKFaddvhwNBQoEQNaIGq5AnmUqRmJhgJB4HBKFomHAoTCAYwhAC/4kf4e15DhmuIb3lXSiPH0sqPIEglcEQ1bW15HNZmoMFUsO9PHX+JLFYzF1AIrbQ6EpRvJgvN5GZgytZcA71jHL0fB89PT0o4MTxY/T2dLNt61Z8fr9OvSX6ME49gvJGUKvvBtPn2l9/fx9j4+M0N7cQDIYoSMU3H3yQ8+fOEwwEeOfv/A7VVZWAwGN6qKwop7KyAqQkk84wkUwwNDRILp/XdfxhnabzeT2cOnnCzS0fO3aMW2++GaRAYrmNzyybCIHmSTvbK4nMUnBsmqYbFQFNLp3F6PTp03i9Xqqqqtw+Bw6W44IzfcDgfJDN5fn7h59laCJNU1MLgWCAfEHaM5LQInQ73SoUGB4PAkH/8BB9/f06MphOk8nmCBqGnbbFFZaahoFhCLZtvZFzZ0+SyWS54/bbtEYgmWBocIiKikruuOMOKirKqamr15ETSxItK2P7zh16cioKU9nVd0LPc5HCGU6m1zCvCbevqcIwDB544AF++ctfsmnTJhoaGgDdw6K8vJxVq1aRzWbdaJgza2Z6VORi/R2WQ+SjGFdKPpRSfPe5c3QlvFSGY/gqG1G+ENjiUqXA8gSQhhcssMyQrfeQHD95glwqgzfgI51OY9rCYql012FL6iGlBlBdXc22G7dw5NgRNqzfwKq2FlKplC6jV4pdt9wKAh1xsbvdGoZiw6bN4IhRcQZJTu4z5tEf4hk4QKHxZspufC1bmnQE9Dd/8zdpbW3Fsix2794N6JRlU1MTTU1NSCnd9OyZM2c4dOgQZWVlrh04+8lydkQuhkWNfMzG2FLZAj893K870wk1ObJa1zgB4LQpTySSdHV1U1VZQU1NLUrprqGGqXXN6XSaru4uYtEyamprEDbzlFWrUatejUoNIVdst5t/OZX3TusHiWl4CEeiBEMRlJKkMzq1Mjw0RC5vEQl4Wdn9LBITORGHsR5U9Uo8Bvbx9CLTXFvOK9bXYBgG2WyW4eFhhoeHOXfuHKZpukTkYiz2cpBSut4E6M3J6/VO6Xi6lJje42GuGBhP8+PnjjM0NERD4wqOHjnK4IBuJNbU2EhjcxOgME7+DDF8AiGE7l7ZdAtWwaKnt4dcPk9zcytej8/u/SEZGopjWQWyuQzJsVFW1NfauiJbnAYoQxAIBQkEg9TW1JIv5EkkEiQTE4wMDeL1eVm7dh1793Zob+XWXbqsT+oGR1ZBezrOhgaK+liQNXXzJwUhW1vkREVGR0eJx+OMjY0Rj8eZmJggEAiQy+UWLdT6xBNP8LnPfY49e/bQ29vL9773Pd74xjde9n2ONzbfyrdkMsn//fGzjGQUE2PjvNDdw4aN66itnexhoJSOSClHJKxgZHSE0dEEGzdtpqenixs230gkFNKRMiHsfg62q2M7NlWVVfzOu37H6TGIUlBWXoaSkkQyxXhigvFEgvGTp4hGI4SL5v5IJSe1YspCKUFOi0+w3Db+BnesmxyRHovFuPfeey/63f1+Pw0NDTQ0NCClZHx8nHg8TmdnJ4cPHyYajbpEw0lrLddN50oq36SUfOfxDg6dG0CUrePwudPU+MpZj8C00/AohSprgdWvRBRyGJXt5PIFOru7WL92HdIqEInEbJ2GbhDlEAWfx9AtEezU7b2vvYfX3P0aPKYmF7GyGEop0ukME8kJEhNJTp48Q8Du6xKLRgj4A3ZZv6NBk3ZqTyCSfXi6nqegBN4zv+Dlr73PXSOF0E3PLgbDMKisrHRH1afTaZeQFu8nuVxuSu+NxWyxv1BYUvKRtySPHBkgV9BqcyWKBUPKDVkpIB4fYWBwkPr6OsrKynUuzX4eBGPjY/T09lNTXUVFRTm6ilLqPLwC2bhTt9RmchCc0oUpKGnpxciwp096BAITv9dLeTSKopZcLk8ikSQZaiSY7kGYfsYsD+F8Dn9Ah9mkJQn5TXavLHdvNMMwqKurc1sQj42NXcBi55LbgwvzvIlEYlYCxauN+eR5U5kcX39kD+PJFKtWteP3B6iprqKvv4+AL0A0FgOlNT3KG8ZQJiCQngiZXJ6enm5Mw9T5WEeMKUAIk/vuvYfHn3icltYW2leuQhe6qMkyOoGtM1L2e8Dv8xKorKCqshJpWSSSSYLBEG9/5zsp5CXhWJTR8XFikQhejwePnZqTUpIrKLweg1vbtT3oOR5X1t+gmLw6VQR+v59HH32UX/7yl3R0dLBu3TruuOOOK/qc6XA6F//2b/82v/7rv37Z1xcvrvOtehoeHuZ7j79I1ogS8kteOPUChXwewxTU1dZrx0JJVHoUYfgxfEGUEAwO9DE2NkZbWxMbN65z5zJNugeAkPamjb53lUMadPWLlMIuqxUYwiQWjVIei2IpyGWzpJIJksP9JM/1Uog2Eo6VEw5HdDRCCj3GwSYdetAcrK8L01Dmn1f/I8Mw3KjIypUryeVyDA8P09vbSy6X48knn6SyspJDhw4taqXLXEnobCfbXgy5XI4fPPECh/vStLa08vOfP8rwSJyRRIampmbKKyoRwHhigmw6S2VVKxh6mnZ3VzfRWIyV7Su5+ead4AygpGg2mBB2RFwXCUz24bD7AtnpNaHA5/dTEwxSW60rXCaSCRLjCZ4/qtNjDQ0Numt2OAQI3eVUSfBG8XqCeGSaV0W68Aaj8+6BFQwGaWxspLGxESmlu5/k83kOHjxIWVkZ8XicSCSyaHYwX0dkOhY17XKpjUcpxc+P9DOazNq9O4SdwrWFaU6axZL09/cxMT5Bc0sTAX+IfMFyzUcBw0ODjI6MUr+inmg44m4kWoDo1GZrMiOdc5TSzc0jDD2TQTokaDL1IxUgwev1UVnpQ936X7DGO0mKCDJj0dvbg2UpnRsOR7h7QxvhYECLX+1NqPimi0ajlJWVsXr1ajKZjBsVOXPmjBtOr6qquqTiefoodWea6XLDXCMfqVSK//OjZ0nnBe3tK/HYw5lWrVpNZVUlfl+AcDiEROdardWvxgzXIfwR0tGVdJ8/SzgSpb6uDhDunA2HYGzefAM3bL5B24Z93ysEzmBaJ2zqtD5WyukbYnu0CEKhCIFQhOraOt1mPZkgMT7G4MAAHr+XUDBCOBQmFAoQ9Brsai8n6J0crAW4OXqn8+N84ZTXNTY28ra3vY0vfOELvOMd72DDhg3zPubFcO+9917SS78U5moHSinOnz/PU3uPkg7UUltezujoGJFImGQySVmsHKkspFQYQyew+g+TzkNg3cvpjyfJ5TK0tbbhdSItCsCeSIxgIpWkkMsTjcUmvUXbiTEECMPEY/fuceOjtk2YAoKBAAHTwnvoO1jZDPlEHV3m6xkYjGMaWpgejoQJh0OYhr725UEPW5tj7proXPv52oDP56OhocGNKKxbt47BwUF+8pOfcPz4cd7//vfzpS99ac7HvRzmSkIdmKZJNpud/Qfl01iPf45Tx09wLngfLau3Yxom5RUVjCcm7M01BAqG48M8/uQTjMZH2HLTVla1t9HT20dtXR2VFWVF97JA2Yu7ZUlGRuKUl1fgMT22ns+OWggFyh74J3QTMGFozZeGwPR6qCgr52eP/IxfPfM0puHlP7/1fsLhBPm8RSgYIBbVZfa+UAzr5t9jMycIb9mFJbxQ5JzO1ykxDIOKigoqKiro6elh48aNZLNZvve97zEyMsKuXbs4ceLEgqdi52sD07FkkY9nz8QZmMja4U294TsDvvQlFhQKBbq7uynk87StXKlvZGVpYmB7qL29vWQzadrbWvAH/DiDwtwYil15oHO89lJihyiduR1O82PhpnmcwVC4i5Ow8zOGx4OqaCOIwC8lFbKGbC5HKpmg0Zfi0N7nOBeJuDl758JbluVuQM4m5PF4qK+vp6GhAaWUy2JPnTpFOp12RYZVVVVTIhsOay4WmS2nENt80i7ay91DxojS0lJXVFeviWNFRaUOa9vehFIK4QlgNd3MxMQ4vZ3nqamqprzCnv9jezGOulxLEe3raDjktoik4gwqlRScYYA2u1XovK77vZyKGp8fj9dHrLwSaRVIp1Nk0ikG+rsxELTXlVNmBDHNiPtbOCkzxwauZBOa3mgunU5z++23L1gX0SvFfMSGUkoOHz7Mqa5+kpFmIgEdKYjGYuy67TYyqTTVNbV2vl6SHe3l3LGDpLI5Oo8OsuW2u2lpbXMHQipAWXZkUyjOn+/kwX/8J/KFPP/hP7yerdu2FsdD3Oq6SauYnO2hbPGwUgpGuiCdwWNCINVLa2MdmFpTkEgkGR4apq+3l0AgSEUsyj3r2/D5fO61n+6UzHcTsiwLj8dDWVkZZWVl/Nqv/RonT57kve9975yOM1vMl4TONe0ydvCnZPf9hI7cBuqMMyjjFhSKnTu3s7K9jXAshs/vI2/lGR4Z4fDRo4yNjHG+s4t7730tGzasJRSK2MJSJ6oJKEW+YPG1Bx6gu7ObltZm3vrW+/GaBkLoVKkQk71cHOg1wNBOiKXTNpaCA/sPAiaWlIzEh7jpxrvI5XIkk0mSySRDw4N4TA8tNeWs2PpqjPJyPIbh2oBSakEIqWVZhEIhqqurefe7382XvvQlvvOd7yyKBuxKHJFiLAn5ONQzzomBCXthdwa4Kfd2Vwqy2QydXZ0E/H6a29vQnot0RVyyUKCrpwsQtLS24fF43DXDmVIr7ZiqM7PBmVzptF82nXapOAuCKmpipisUDCcVZDeUKVh6AUIpTNPA6zHweQLc0FzFHWuq3XDo0NAQHR0dAFRVVblk5FKbUFlZGeXl5axZs2ZK6eXp06enlF56PJ4Zy6qWW9pltpvO+fPneWbfUVKBGmrKypAKrIKFUHbPBkd0DDgzdgxb7DUSHybbuZc1niRetQHMKjeUXmwLMLVxlHPdlV0tYSnlaoF0lzjhtsIXdiWFdFIq6E3KNMBjGhgo8PgJ+f3IsgqkslCFHDfXGZw5c8YNh9bU1FBdXe2GQx07mO8mNL2CZLmW18025J7NZuno6CCbGic5MYrPSCH868HwIFBUlpejysq1l4pEmAaDhRA9YwXiKcXp7Cj3NjYCgoKltBOinEiT1vOcOnGSicQ4UkoOHjzAju1bmVx5JqNk2EJ2Z92Q9prhEXpzODMO/ok87eUGT5232IaJBx0WDwb1JpDL5UmmkqyM5DnYsQe/3++uA2VlZXozu8JNaKb+DlVVVaxbt24+l2rBMde0i1KKM2fO0HlulCcHNtI5ZrE+EqRcSbt5o4dqu5FkvqAH0tfX16MKBZCSXD5LwO4mK+3yd2lZuJFQFPHhON1dXWQzGc6fPUcyMa6dGyYj8MJ2YKVNOpXSaRjsajahHHIt9ZrEJGf1+334/X4qKyrJWxa5bIqbagVHjx4ll8tN2Q8c0fBMUfLZrgUzaQD9fr8rYF2uWJS0C1yc6Z4bTvLi+RF3gzDsDUBHHXS/hFTfMYb7uok0bKC2tl736FcWQhhYSs/16OruJBQMUV9fpzciKZF2WYwTPnM2GKGEnbsVuE0YgIJSKMumJAI9SMy0Iwr2wqXzygKpBIZSYAj8Rc0FFIpY0MfuVXo6oxMOLY5mDA4OcvbsWVfj4Ries1HMtAn5fD5WrFhBU1OTW3rpNKRywpednZ1UVVVdleZSf/u3f8vnPvc5+vr62LJlC3/913/NzTfffMn3XM7bkVJy5MgRzvf0MhZqIuz1Y1l2rwwMlIE98toeRa/dD7uMVdHX10suMUK76MOTSaD60hQqWjG8AR0mt23Ajazb0Qw9mA49p8d+3BAGwlBaJKq1g3qxsVXxAq2G95pTFwMdGTNcEonQNvTyjS002aOx0+k0Q0NDDA0NuT08HBsoLy+/gJDOdhOaqdHccqt2gdl5vePj47z44ovEysoY7hlAnn8Bj/AgDQNqN6IQFKTumaDs+lohBN6adg5l6xlNjLFu3WpOnzrF6jWrXcG62ycI3fVy/YZ1PPf8s+TzeW688UYs9HW1pDYGRdEka6HXDVMIvEKH7J2OurHyKv7ymTwmikh5Jdsc0TGATWf8fh+bWyq5dWUVlmURj8cZGhriyJEj5HI5Kisrqa6upqamZt6b0Ew2sFx6vRRjNo6IZVkcPHiQeDzOvkIr/3rqeZKpBGeNMf7zNgNh71bSsrRzYL/P5/OxbdsO9u7roKysglQmw/jYBJFIGITddRjcKGZNdRWtLS2cO3uW9pVtdqdkfY9bStuJVOg9RRVFPO1omhN5R8GKxhWcOHECgBWNjaC0llFKvfZ4PSZv2LGa+rIASikSiQRDQ0P09vZy9OhRwuGw65RcKkp+qVTtTF1ul2PF03QsauQjn89PeWw4keWJYwPkndyZnVsTAruZEyTOvkjw7M9oNEGV+5GqVnfJcFhdMklPdw9lFRVUVWkv17JndGAzVF1loI3Tyd8LJxKijKJUisL0OJndydyuLZ62xy0LDENg6CJtVyHthGG9Hg+vXFeje0tMgxDCFYmtWbOGTCbjbkJONMPZhCorK92SqZk2oYqKCiorK1m7di09PT2cPn2aoaEhTp48yVe/+lUSiQRPPfUUt99++wJfSfjWt77Fhz/8Yb7yla9wyy238IUvfIG7776bkZGRGV9f7O0432X6jZDL5di7dy/5fJ5MxWp8WYlzZzvpEEcDpCxbAAoIw6BQKNDT041Uiub21YhTp1FWBuWPoEyvFqRKJ91muZ6tk4YB51iacILtISlBwdJvlEITHyEMvOakeBLl2NEkwTUM7HCt3pxWVkdd4gHaG25ubp7Sw2NoaMj1hJxNqLq6Gr/fP2XhudQmVJx2yefz5HK5ZUU+Zpt26evr48CBA6xcuZKuQpR49qh+v504cdKfypL272ygBIyOxBmNx7n/rW/l8JHD7N2zh8eHhzFMk9Wr1uA0nHM0HwhoamriAx/4IHnLIhoKU8hbrs3pKiU7ZKb0rBchHJuZPJYUUFldxXvf9wecOn2GLVu22F9YD0dVSiAFxIIebm7THrVpmtTU1FBj94dIJp3hY30cO3aMcDg8JVXrrAXKXmcuRkhnKrFsbm5eqEu4YLicDWQyGV588UX93erXkR05izA9IDxYdiRCr8nOoEj9G2ezWbo7O7nhhhu48cZN/PSRn/P8s88wMjzIPffci8M4nIGBGgbvfOc7iI+OUh4rA6XLbZVDPm1H2DD0vqAd5Mk1wD2MUNx//9t4/vk91NTW0t6+irxlYRoGHrv1w+bGMurLAu57o9Eo0WiU9vZ28vm8ux/MNUo+3QZgagHCctQATseikY/pYbaCJXnuzAjR4OSoadO+s4Wdi+vp6aYseY4m/xgGEil6KZQHXRGgvlA93Li6mcrKShQKj7vo29oNTUuZ5KgO9BbkKM9d3UjRZjTJP8QU0aqr3LdDr875CKAi5CMSmN3PGAgE3Prt4k3o2LFjZLNZKioqXBZ8qU3INE38fj9bt24ln8+zfft2HnvsMR599NFFIR9/9Vd/xe/+7u/yzne+E4CvfOUrPPzww5d9X3GPh2LxrOPllpeXY9SsJNGXsG+cyaiUs7lLACE1lTT0YtPV2amFlisaMIRBvv0VkBpChWohX0AZwi2dw9Z7TApJJ4fPTYZUlW0zAlPYHpZypSH6dOwoCdKOjgi7QsYuydTiVkXQ62Fn28U9z+IeHuvWrXM3of7+fo4dO0YoFJriCQkhLhqatyzLtc1EIgEsv14vcPGNRynFyZMnOXv2LFu2bKE34+NsfxxVf6O+lz0eVPVanMnEpqFJh1Iw0N/PRGKClpZmQsEgsmDZTkjBJRSWtHNq9mdJm1f4g0ECSs9fMvWT7tRZd7MyDFcr5mx2OrKhyygNBC2tLbS1ttpdEXV3VUtpo/GbJq9cX+f2fSmGEIJIJEIkEqGtrY18Pu+mavft24dSyrWRqqoqvF7vRaMiThWVg+XU6bgYl4p+jY6OsnfvXq1VqmjiROcoDfX1vOqVr2JwaJBNmzbZ6VEdknTW4GQyRU9PN5WVVVRXVdHb14eyf6eCZd8nOqlvp2wn73epFLFoGWrkNJ4D/4IwvVg33Q+xel0d6ThCNnF1nFhs3Y+U+lp4AwHuvPN2W1vmbhgIBTXRADe1XHwt8Hq9F0TJh4aG5hwlz+VyU5w7p8z2JRf5uJjY0GMa3HtD/dQXSwuSA+S85XTsP0B5NM+233gz4WfOQ3aC/O57UDW1KKU4fvw4ZmGAu+/esaADipYKxZuQ0157cHBwyibkPB+LxdxNyAnfer1e1+jKy8vZvXs3f/zHf7zg55nL5dizZw8f//jH3ccMw+BVr3rVrL4j6AXSIR/FXq6vvJ5fHB/Ui7xUUwigQiLlpLhWCUgmknR1d1NRXk5VVTVSCj08zBNClbXg6XkRs+dFVLgGufa1KNOLKsrdYmuLbO2hrWIXbuWLTuu4shKbcEyKl4VSCNP9C9crl2ChyypvW12Fx5ydWGw2m1CxJ1S8CY2Ojroh91wux/j4OMCibTyJRIKTJ0+6f585c4aOjg5uuummy753po2nUChw4MABxsfHufXWWxnJGXR09gMGwhOC5ltsYTHu6HNhaq1Xd083Vl7SZmu9LAUbN9+AMkx8Pi+t7W3k8nk3cmEIMISJoZT2YkXRZsJkdNTmEAD2bB+94enUjcQQ6NlNpomT1VVKa0Mc5wc7ZbtrVeWsnRKv10t9fb3WLhRtQufOnePQoUPEYjE3PVO8CeXzeUZHRykvLyeXy2EYBhMTE8uKfFxO89Hd3c3hw4dZs2YNRrSax48NuSn5DZs2sFFtQAn9fd1UmlCMxEcZHBygvqGesrJyAOrr69m16zZGRuOsXbvWbm8/WRXpkAMhwGNHuMzOZxCFFCIP9O5Bxu5zHQsn/eYMILXc9K0mrh7TSevpNcFpkKmkwuc1uXPN7IXfxVFypxJyepS8qqqKmpqaC6Lkzn5QKBQQQpBIJKYMmVuuWLr26tLC/PknUZ3PEjca8d74PrZuvRkhBJnXfG4ypFQosH//fjKZDLfccsuymNa40Chur+1sQk5++MCBA0gpXbHp+Pg4IyMj3HTTTW5q64c//OGiebxDQ0NYlqUHbRVh+t8zwUkROBum4+XeeOONRMqr+OG+breqSCiFtMvZJsOreqGwlGJsdJSB/gHq6usoLyvTH2Cn2JwSOKNvH2QTCJnDSvRDWZNNauy0jSEwlU6joYpCXrYGRCrAciIZmlq46TTlxN8dkepkGa7WExlsqI9SF5u/fU7fhMbHxxkaGuL8+fMcPnzY3YQCgQBHjx5lzZo1hEIhpJT87Gc/QwhBLpebV+O6y+GFF17g5S9/ufv3hz/8YcCJCsyMi208qVSKvXv34vV62bVrF8k8PHWiB7dSzV74bXmfmyvLZrKc7+zE6/PS0NyMMgR5KRFAJBJm1807UcChQ4co5PJs3LwRv3+yAk6zRhPD1v44jqG007UFKScrotC25TdNPXJdGI6p6DSAQ2LtTqZOWsdQsLIuSlv1/AjApTYhp9W2k6bt6urCNE1aW1sxDIPR0VGee+65yTTQImAmEjobTHdGHYeys7OTrVu3YgajPLSvh7xUtsDbTsfbQnA374qkv3+QibFxmlpaCAaDmijaRHX12tUotJNz4oXnaW1tob6+HsP2OKSThLVTqFS2I4aPIwyBLGubXH/sNKywtX/CMPAayo1qTIZFlasTks65CoOXra0m4Jv/fTibKHl1dTWWZblrqmnqsu5//dd/5dy5c/P+7MvhYo5IZWUlLS0tsz7OVUu7XIDkINa5X1EY66MmnKN2VYOuYikqI02n03R0dOD3+9m5cyde7+zaU1/r8Hq91NXVUVdX525Cg4ODnDx5klwuRyQSYXBwkEQiwd/+7d+Sz+f56le/utSn7aI43OcMlzt+/Ljr5YbDER7a30065/Rrsf+/3djJ2W8M+wYfHBpkdHSE5uYmwqGgSxQEUJB2IkWCWd6OWTiKCpRhhqp1VANdxm3YCgKdznfGYTs6ECffNqkFERT1CbFFQM6kWiWUrpQywGMfN+r3sPUSIdb5/IZO+aTTatsRqo2MjODxeEgmk5w8eZJTp07xiU98gj//8z9ftGqXu+6665JE41Io3nji8Th79+6loaGB9evXk7cUPz/SQ85xK6We02LlCzizN5SATDpNT4/uXlxXV2ePubc1N0xGLA4fOsyjP/8ZlmWRyqS47fbbtQ4M4YbeLTuFZdlqZCdabhh2NQuTxAQoEp7bIX97czLta+9URaEU0aDP1XksBIo3ISklIyMjDAwMcOjQIaSUVFRUMDAwwMDAAP/1v/5Xdu7cycc+9rEF+/zpmImEfuhDH7rs+4qd0Xw+z759+0in0+zatQvT6+eh/d0oBB4DnCnmlqOvwnZCLEl3Tw/5XJbG5hY8Pq8WCisdnfSYJiiLzNnn+emPnmIwUaC2tpb73/pWvD6vnUoV7nqDUljNuylEG7GEFxFdYc9fAVOYuqRegjANnD4hbi7GXg+kPTQOpR0VwxTc2FR+RU7ITL/d9Cj50NAQXV1dJJNJAoEA8Xicnp4efvazn/HEE0/wwAMPLNjnT8fFHJG3v/3tc/rcq5Z2KYZSinODSbyikRUxhadtN9lg9RTiMTY2RkdHB7W1taxbt+6KO0NeqxBCEIvFGBgYAGDHjh2k02n6+/t5wxvewPj4OB/5yEfYsWPHony+I3zq7++f8vj0v2c6b0doun//foLBILt27cLn8/GrU0OMpvOuuE+h3BwqOLpTA0tKent6yOWyNLe04vX6KVgKYWgBmCH05gRoncaqu6DhBkQghjD9tndid7il2Eu3S+TsdUQ3mnN2myKNgJwMuxpuTteVoCGl1hUIAXeuqZ5RdLxQ8Pv9RKNRjh8/zpo1a4hGowwNDfG5z32Ob33rW6xfv573vOc9i/b5VwKnwVRnZydHjx5l/fr1NDc3I6Xip4d6GM/k7D46aA6oFB6P4eqqRkdH6esfoLa2hsqKKhDKpqy6dFq/VXu0hUIeS0oKUpIvWPYapHsyWDgpFB2p8tp5PmFM6s4cKOX0wLRt1I6OOI+YTiUNEstSFKSFaZi8bO3M4vOFgNNU6ty5c0SjUdavX8/IyAgdHR3cf//9+P1+/t//+3/unJjFwFxJaPF+oJRiYmKCjo4OgsEgt956K4bp4d8P9JDK6ntf36dFwlIlEYYgl8vT1d2Fz+ulrb0d02PoNJdNDHVFvUJ0P4dx8hHURAJRCGAV8kXHstNkSnefBb3OUNZiX09s23LKD2zbALv7qXLJhkCvBwGfidc08NhVUdGgl5uayxfwF7/w9wyHw4yPj5PJZLjpppuQUjI4OMi73/1uDh48yOte97p5dRydLa7EESnGVe/z4TQRGhwc5KY3/hXKkyMbrEIyqeDt7+/n0KFDrF69mubm5mUvnFlMKKU4deoUPT097Nixg3A4TFlZGZ///OeJRqP89V//9axSIPOFz+dj+/bt/PznP3cNWkrJz3/+88u+d3h4mFwuR01NDVu3bsUwDLpGUpwaSLjiYK0z1QJRZejeKYYhKORydHV1EvKYbFq9Bp/Xq3O1jk5D6JvdWeddwRexSU9W6AZjhr2AGIauZjCKXq/Q/VycxcQwtJdsOqJSJgXGhqFph26ZbXfDFAKPYRD0Lfzk4mKMj4+zZ88e2tvbaWtrA+DYsWM89NBD/Omf/im1tbXEYrFFPYf5wjRNRkZGGBwcZPv27e6cimdODzGSKtiDvgAl9TRre/AXSjA0NMjIiB31Coc1oVWOjFDZKZLJsPe6detJJDPkc1m2bt0G2NF6Q+ATHpcQ66Caw3iYVBbjBNId7Y90SdBkRZPDUxQeITC9Jl7Ty41NZZSFFi86K6WeqJzP59m2bRterxfTNPnyl7/Mbbfdxu///u8vSnfbhYCTCnz22Wdpbm5m7dq1CCH4xdEBhpI5rc1SwhVcGXYfFyE8pFJpuru7iEZi1NXVIpwUGNjRSu2ISAQinybihbtX+zmj6lh1y92URUKYhqH78tj/9XkMvIahiYOp72GPKfCYel0xDYHPo0nFlNfYf88kJL5a6O3t5ciRI2zZssWu+FT88Ic/5PTp03z5y19elqXWM2FR0y7TNR9OeaVlWdxyyy34/X67cctk6PL06dOcPXuWG264gZqamsU6vWsGp0+fpru7m+3btxMOh5FS8vGPf5yHH36Yxx57jNWrVy/6OXz4wx/m7W9/Ozt27ODmm2/mC1/4gjtJ92I4d+4cx44dc2cROJGrpooQb93V5r5OKeUKpxzyOT4+zj/+4z/y7GOPcfPNN/Pa1908r6Fk1wsmJiZ48cUXpxCP5557jt/4jd/g05/+NO9973uXJUF3NChdXV3kcjluu+02Ny10uGeMk4NJnEokqWxpoJpsZd3T20Mmm6G5tUUP7nIDV9o3NdFk0ZmfYpoCT8TPG+5+GV5D6L+FftwQuJuKYRNHj2ngsQmn3pT0856i/xqGcJ9z/l4KOMQjl8u5xCOdTvObv/mbKKV4+OGHl1WZdTGUUnR2dgKwevVq14aP9I4xmEgTCXgx0ENFhVD2tdMl7mOjo6RGu9m9vpkVDfUXkAWvIfB6TDyG7sHj2XgfwaePILAo3PYhVHTxokBLgb6+vguIx9e//nU+8YlP8IMf/IC77rprqU9x1rhqaRdnAY3FYmzevNmt3gDcTn+HDx8mHo+zc+fOZXsjXU2cPn2azs5OduzYQSQSQUrJn/zJn/Dd7373qhEPgLe85S0MDg7yx3/8x/T19XHTTTfxk5/85KKvV0oRj8fZvn07J0+evGiZZXGraYd4DAwMcPDgQX70ox9x6tQpzpw5w65du7jtttsW8ysuW0xMTLBnzx5aW1vdRfvFF1/k137t1/jkJz+5bIkH6GjN888/j9frJRqNusRD2o0Ad7RU2BEo3dhJbyICq5Dn6JFDNNYKkokCif6D3HvPa4hFwi/J9KuUkv3795PNZtm+fTter5dMJsN/+k//iXQ6zb//+78v2/VSd5I9yNDQEEKIKa3/NzSUsaGhbMo6AJN7yJkzZ8iOd7KjrZJjx/bSXradtWvXXvoDfbUU7vnson2fpYSTESgmHg8++CAf+chH+P73v39NEQ9Y5LSLY1RDQ0Ps37+f1tZWVq1adcGGk8vl2LdvH1JKNyLyUseZM2c4f/68SzyUUvzFX/wF3/jGN3j00Uevevvk973vfbzvfe+b1WuFEGzbts1t/TydfExfbJwN5ezZs5w+fZpNmzaxdu1azp8/TyQSeclGwBKJBHv27KGlpYX29nYA9u/fzxve8Ab+8A//kA9+8IPLlniA7uy6YsUKYrEYp06dch83DMHmxrIZo14TExN0HNhHXXk5/f39fOqTnyCVSnH21PEp5d4vFUgpOXDgAJlMxiUe2WyW+++/n3g8ziOPPEKZU/21DOHoLXbt2sXTTz8941rgVMPBVEd0ZGSEG264gd/93d/l2LFjtLa28uCDDy5tWiGfxvfTjyLip8jf9UfI5l1X5WP7+/s5ePAgN954o0vgvvvd7/LBD36Qb3/727zyla+8KuexkFhU8gHaez9z5gybN2+mvr5+yqh5IQTJZJK9e/cSjUbZvHnzlG59L1WcOXOGc+fOsX37dpd4fP7zn+erX/0qjz76KJs2bVrqU5w1pqffLrbYHD161NUElJWV8cd//Me84hWvoKWl5fLeznWIRCLBCy+8QHNzMytXrgTg8OHD/If/8B/4wAc+wEc/+tFlTTxA912oqqpieHj4AhuYKerllJa3tLSwcuVKjh07RiqVIpfLuYLrlxIc4pFKpVzikc/necc73kF3dzc///nPl31+3+v1smXLFmbqdDsT+Sx2RG+++WYymQyjo6MUCgUmJiaWvH28efi7eA59B4XA95OPkPndpxb9M51o8I033ug6Yt///vd597vfzYMPPrggQ96WAotGPpyF0fHey8rK3E3HMbTh4WH2799PU1MTq1evXvaL6dXA2bNnXeIRjUZRSvGlL32JL37xizzyyCPceOONS32Ks8JM6beZFpt8Ps/+/fvJ5XLccsstbnOcsrIy7rvvviU7/6VEMplkz549NDU1sWrVKkCLS1/3utfxe7/3e/zRH/3RNXWvTLeBmWZWnD9/npMnT7Jx40bq63UzwnvuuYdjx465Sv6XEpx0hUM8fD4fhUKB3/md3+HUqVM8+uijVFVVLfVpzgnF5bYzrQUzOaJ+v5+PfvSjPPTQQ9x11100NTUt7ZcI17r/VJHFE/o7GBwc5MCBA1M0kA8//DC/8zu/w9e//nVe//rXL/o5LBYWRfPhCEsBbrzxRmKx2JT+80IIurq6OHbsGBs2bGDFihULfRrXJM6dO8eZM2emEI+vfOUrfPazn+UnP/kJ27dvX+pTnDOcjae4NbhjA06zqVAoxM6dOxelOda1hmQyyQsvvEBjY6NLPE6ePMnrXvc67r//fj71qU9dU8QDptrATFGvY8eO0dfXx7Zt26Z0L45EIvx//9//t0RnvXSQUnLo0CESiQQ7duxwh845pZSPPfYYtbW1lz/QMkPxrJLpUS/HEW1ubmbVqlVTbPy1r30tr33ta5fwzCdhrX4N2dd/FTFymsKWty7qZw0ODrJ//342b97sXu9HHnmEd77znfzDP/wDb3rTmxb18xcbC67eyufz/OpXv8Lv9+P1ei8QlgIcP36ckydPsnXr1hLxsHH+/HlOnz7N9u3bicViKKX4h3/4B/7H//gfPPTQQ9xyyy1LfYrzguPtOJuOM5lxZGSE5557jqqqKkZGRvinf/onent7l/p0lxQO8VixYoW7AJ89e5bXve51vOlNb+Izn/nMNSW4LO5wWigUKBQKSCnd7sWFQoGOjg7i8Tj19fV897vf5fHHH1/is15aKKU4dOgQExMTbsTDsiz+4A/+gOeee46f/exnbmToWkGxHeTz+Qsi4F1dXXR0dNDe3k5HRwcPPvigO6toOcJa/3oKuz4Iodm3T58rHJ3k5s2b3VYKjz32GL/1W7/F3/3d3/GWt7xl0T77amHBXU2v18vmzZupqKjgqaeeoru7222UZVkWBw4cIJlMsnPnzmU1g2Apcf78eU6dOsW2bdtc4vGNb3zDLZ+6Vis9nDzvyMgI/f39VFdXI4Sgp6eHI0eOsG7dOkZGRvirv/or4vE4hw8f5i//8i+X+rSXBKlUij179tDQ0OCmIDs7O12v7wtf+MI1RTyK4Zz3uXPnqKurIxQKTelevGPHDt73vvexZ88eampqaGhoeEnqfKYTD2e45Ic//GGeeOIJHnvsMRobG5f6NOcFh2z09/cTCATcXi/Hjx+np6eHbdu28fjjj/PFL36RQqFAOp3mXe961xKf9dLAIR6bNm1yiceTTz7Jf/yP/5EvfvGL3H///ddc9HMmLEqcu6qqikKhwPr16+nu7mbPnj3uUKxAIMDOnTtf0n0bitHZ2ekSj7IyXQHwz//8z3zkIx/h3/7t36658qliWJZFQ0MDuVyOU6dOcejQIQKBAJlMhhtuuIHa2lp3doyUknw+v9SnvCRIpVK88MIL1NXVsWbNGoQQ9Pb2ct999/HKV76Sv/3bv70miYej7zBNk40bN9LX18epU6cIBoNks1mqq6vdsnsnKlKsB3kpQSnF4cOHGRsbY8eOHS7x+NjHPsa///u/84tf/ILW1talPs15wUm3rVy5kq6uLg4cOABMVkQ6aeZiG7jkaI7rGE76acOGDW6E61e/+hVvfvOb+cxnPsNv//ZvXxfEA0CoheiTWoQ9e/bwuc99jte//vW8+tWvJhwOuyOTHbW2aZrU1tZSW1tLRUXFdfNjzhVdXV0cP358Sq77O9/5Du95z3v49re/fc2qmAHuv/9+Nm7cyBvf+EZaWlqwLIt9+/YxPj7ulgtWVlZSW1vLnj176Ovr4+67775mF9j5Ip1O88ILL1BbW+t2fezv7+fee+/l5ptv5mtf+9o1WwH29a9/naeffpo3vvGN7Nq1C6/XS1dXF0ePHiUUCrnj32traxkfH+epp55izZo13H333S+pNcEhHiMjI+zYsYNAIICUkj/6oz/iX/7lX/jFL37BmjVrlvo054XR0VHuv/9+Xve613HfffdRUVFBJpNhz549bhmulJKamhpisRi/+MUvyOfzvOlNb7ouppfPBfF4nI6ODjZs2OC2yH/hhRd4/etfz5/+6Z/y/ve//7q6LxacfJw9e5a/+Zu/4Xvf+x4DAwPceuut5HI5/tf/+l+sW7cOpZQbhnfK5xwiUllZeU16ePOBQzy2bt3qlo794Ac/4F3vehcPPvjgNa1illLy5S9/me9+97s8+eSTbNy4EaUUH/jAB/j1X/91/H4/yWSSgYEB+vv7SSQSVFRUUFdXR01NzUumz4tDPGpqali3bp1bbvra176WzZs3881vfvOaFuE+88wzfPWrX+WHP/whhmGwadMmWlpa+OQnP+mW3Q8NDdHf38/Q0BCBQMBdC2Kx2HW10F4MSimOHDlCPB53iYdSik996lM88MADPPbYY8u2ZfpsMDIywt/8zd/w3e9+l8OHD3PLLbeQSCT47Gc/q2e7GAZjY2PucLxcLkd1dTV1dXVUVVVd0/Y/FzjEY/369a4OsqOjg/vuu4///t//O//tv/236+5+WHDy4UBKyde+9jXe8573sGHDBo4fP86rXvUq3vjGN3Lvvfe6cyicKY0DAwNYlkVNTQ21tbVUVVVdsx7f5dDd3c2xY8emEI8f/ehHvP3tb+frX//6Na9idqCUou//b+/O46Ou7v2Pv76zJJnse0IgEHaQHQIKLoiiQFkSaqkVRLBqbavWpVdLl6v1equ1Lj+0VXtrrYhWayEsCiKyBdksEEjYd8KafSGZbLN8z++PyXxNEGQxmRnC5/l42JLJZL5nhsPMO+d8zjmFhcY0W2FhId27dyczM5PMzEzjN/26ujojiFRVVREV5Tm5NDEx0Vh629bU1dWRk5NDXFwcvXr1QtM0ysvLGT9+PF27duXjjz9uM6c4O51OHn30Ud5//306dOhASUmJcfjVzTffbBRVlpWVGUHEYrEYQSQ6OrrNvfGC59/Hvn37KCsraxY8XnzxRd566y1Wr15Nv379/N3MFqGUYtOmTdxyyy10796dvXv3csMNN5CZmcmkSZOM2obq6mrj86Curo64uDiSkpKIj49vM/8ezlZRUcH27dvp2bOnUdOza9cuvve97/H444/zm9/8pk32/1YLH/D1oWhdu3Zl165dzJs3jwULFnDo0CFuueUWMjIyjKE44KpIwKdPn2bfvn0MHDjQKLpauXIlU6dO5e233+auu+7ycwtb3qFDh+jSpQuVlZUsXryYrKwsVq5cSdeuXcnIyGDy5Mn07t0bk8lEfX09JSUlFBUVUVlZSWRkpPEh1FrHxftafX09W7duJTY2lt69e6NpGpWVlUycOJGUlBSysrLaXE2Ud4Oo+Ph41q9fz/z581m0aBF2u53x48eTkZHB6NGjjSmHsrIyiouLKSkpQdO0ZtO0bWF0VCll7GGSnp6OzWZDKcXs2bN55ZVXWLVqFYMGDfJ3M1vcwYMH6datG/n5+WRlZbFw4UI2b97MtddeS0ZGBhkZGbRv3x5N07Db7cYvJTU1NcTGxhqjo23l38e5gsfevXsZN24cP/3pT3n22WfbZPCAVg4f5+JN+/Pnz2fhwoXs2rWLkSNHkpGRwcSJE42tY9tiAvaeRtg0eKxdu5YpU6bw5ptvtpkq5otx5swZPv30U7Kysli+fDkdOnQgIyODzMxMBgwYgMlkwuFwGEGkvLyc8PBw40MoPDzc30/hspwreFRVVZGZmUl0dDSLFi1qs6M9Z3O73WzatMn4ECovL2fs2LFkZGRw++23GwcpNh0dVUo1Gx29EoPI+YLHG2+8wQsvvMDy5csZNmyYv5vpE0opTp06xYIFC8jKymLjxo0MHjyYzMxMMjIy6NSpk7EnkDeIVFdXEx0dbQSRK/XfS2VlJdu2baNHjx7G5mkHDhxg3LhxzJgxg+eff/6K7N8Xy+fhoynvyIg3iGzbto3rr7+ejIwMJk2aRHJycrMEXFxcjN1uvyIT8NnHIAOsX7+eO+64g//3//4f991331UTPM5WXV3NZ599RlZWFsuWLSM+Pp5JkyYxefJk0tPTMZlMOJ1Ooz6grKwMm81mBJGIiIgr4rVraGhg69atREdHc8011xh921sHs2TJEmw2m7+b6Re6rrN161bjveD06dPcfvvtZGRkMG7cOGPTvcrKSuO9wOVyNRsdvRKmaZVSHDhwgOLiYoYMGUJoaChKKd5++22eeeYZli1bxogRI/zdTL/wTtMuWrTI2POlX79+xi8l3iXo9fX1RhA5c+YMkZGRxjTtlfLvx7sIo1u3bqSmpgKeo0jGjh3LlClTeOWVV9p08AA/h4+mlFIcO3bM+C3oP//5D8OGDTOG4jp06NAsARcXF1NVVUVMTIzxIRSohYqFhYXs2bOnWfD4z3/+Q2ZmJs8//zw///nPr4gPT1+ora3l888/Jysri6VLlxIZGcnEiRPJzMzkuuuuMzYta1ofEBQUZPSBqKiogHwtvcEjKiqKPn36GH35Bz/4gXEk+pU6mtPSvMfHz58/nwULFpCfn8+tt95qTNN6D1Krqqoy3gvq6+uNIBIfHx+Q07RKKQ4ePEhhYSHp6elG8HjvvfeYNWsWS5Ys4aabbvJ3MwOCUoqysjIWL17M/PnzjcM0J02aRGZmpjFq2NDQYIyOVlRUEB4ebgSRQN1H6syZM2zbtq1Z8Dh27Bhjx45lwoQJ/PnPf27zwQMCKHw01XQobsGCBWzYsIFBgwYZQ3FpaWnnTMBRUVHGh1CgJGDvMchNTyPMyclh0qRJ/P73v29zy6daUn19PStWrGDBggUsXryY4OBgJk6cyOTJk7n++uuxWCxGoaK3PiAQl3E3NDSQk5NDZGSkETzq6+u58847qamp4fPPPzcKsEVz3o23vCMie/fuZdSoUWRmZjJ+/HgjzDcdHa2trW02OhoI07RKKQ4dOkRBQUGz4PHPf/6TX/7yl3zyySeMGjXK380MSN4Rr08++YSsrCxWrFhBp06djHqxvn37GqOj3iBSVlZmLOP2TtMGwnuBN3h07dqVjh07Ap4FCGPGjGH06NH89a9/vSqCBwRo+GhKKUVRUVGzobg+ffoYQ3HeTZkCMQF7g0fTQ4Hy8vIYP348v/71r/26fOrLL7/kpZdeIicnh4KCAhYuXEhmZqZf2nIxHA4Ha9asISsri0WLFqGUMlZMjBw5kqCgIHRdp7y83PgQ0jSNhIQEkpKS/Fao6HA42Lp1q3FYlrevTps2jdLSUr744gu/7WdwpfUB75RFVlYWCxYsIC8vjxtvvNGYpk1MTDQOKGu6jNu7n0xiYqJfpmm908unTp0iPT2dsLAwlFLMmzePhx9+mKysLMaMGePzdnldaf2gqqqKJUuWkJWVxeeff05ycrLxeTB48GBj6/6SkhKKi4sDZhl3VVUVOTk5dOnSxdjPqLCwkLFjxzJixAjeeecdv00d+qMPBHz4aEopRXl5uRFEVq1aRY8ePYz6AO9QXCAk4OLiYnbu3NnsGOTdu3czbtw4HnvsMX7729/6NYkvW7aMDRs2MGTIEL7//e8H/BtOUy6Xi3Xr1jFv3jwWLVpEXV0dEyZMICMjg1tuucVYsniuZdxJSUnExsb65B+5w+EgJyeHsLAw47czh8PBPffcw4kTJ1i1apVReOwPV3IfUEpx9OhRI4hs2bKFESNGMGnSJDIyMkhJSTnnMu7o6GjjvcBXhYqHDh1qFjwAFi5cyE9+8hM+/vhjJkyY4JN2nM+V3A/sdjvLli1jwYIFLF26lJiYGGNqZtiwYcZhdqWlpUYQ8S7jTkpK8tk0bXV1NTk5OaSlpZGWlgZ4PiPGjRvH4MGDee+99/w6VeiPPnBFhY+mlFKcOXOGTz75hAULFrB8+XI6duxoDMX169fPbwnYexqhdwtxgH379jFu3DgefPDBgFs+pWnaFfWG05Tb7Wbjxo3G0s3KykrGjh1LZmYmt912mzG8fb5l3PHx8a0SRM4VPJxOJ/fddx/79+9nzZo1xjRcILiS+4BSihMnThjTtJs2bWLIkCHGb8MdO3Y0prp8vYz78OHDnDx5kiFDhhg1PUuWLOHee+/lgw8+YPLkya1y3ct1JfeDuro6vvjiC7KysozibW+92IgRI7BYLOddxp2UlER0dHSrjI6eK3iUlpYyfvx4evXqxYcffhgQU4NevuoDV2z4OFtVVRVLly5lwYIFLFu2jMTEROPNZ8iQIZhMJp8k4HMFj4MHDzJu3DimT5/OCy+8EHBzelfyG05Tuq6zefNmI4gUFhZy++23k5mZyZgxY4wVE629jNvpdJKTk4PNZmsWgh988EHy8vJYs2aNsalSoGgrfUApZQwbL1iwgC+//JL+/fsb9WLe04IdDofRB1prGfeRI0c4fvw46enpxmN+/vnnTJ8+nXfffZcf/vCHLXKdltRW+oHD4WDlypVkZWWxePFizGYzEyZMYPLkydx4441YrVafLOO22+1s3bqVTp060blzZ8Czt8eECRPo2LEj8+bNC7gVmxI+vgNvEZ93xUR0dLQxHHvttddiNptbJQGf6zTCo0ePMnbsWH7wgx8E7PKptvKG05Su62zfvt0Ylj927Jixw+73vvc9Y9SrpTcy8gaPkJAQ+vfvb4Tehx9+mE2bNpGdnW1snxxI2mIfUEpRWlpqBJHVq1fTq1cvI4h4d5b1TtMWFxc3W8adlJR02dO0R48e5dixY8ahaQCrV6/mRz/6EX/961+ZNm1aQI1+erXFfuB0Olm7dq3xS4nT6Wy2w25wcHCrLOP2Bo+OHTvSpUsXwFNwOmnSJBISEli4cGFArtCU8NFC6urqWLFiBVlZWXz66aeEhIQYc4JNh+K+awL2Bo9rrrnGOI3w+PHjjBkzJuCXT7XFN5ymlFLs2rXLWLp54MABY4fdCRMmGKtizt7I6FKXcTudTrZt20ZwcLARPHRd57HHHmPNmjWsWbPGqHAPNFdDH6ioqGi2YqJLly7G6GifPn2MEaqmo6PeZdxJSUkXPU2bn59Pfn5+s+Dx5ZdfMmXKFF5//XVmzpwZkMED2n4/cLvdrFu3ztjSwW63873vfY/MzExuvfVWY8M37zLuoqIi4wTmS1nGbbfbycnJoUOHDnTt2hXwTL9kZmYSHh5ufBYFIgkfrcDhcLB69Wrmz5/P4sWL0TTNGIq76aabsFqtl5WAy8rKyMvLaxY8Tp8+zZgxY7j11lsDfvlUW3/Dacq7u6R3RGTnzp3cdNNNxg67CQkJl7WM2xs8goKCjB1adV3nqaee4rPPPmPNmjXGsGsgupr6AHh+A/WumFi+fDkpKSlG4frAgQONEatLXcZ9ruCxceNGvv/97/OnP/2JBx98MGCDB1xd/cDtdvPVV18ZQaS0tNTYYXfMmDHGqqSmo6N1dXUXXMZdU1PD1q1bad++Pd26dTNuu+OOOzCZTCxdujRg9yABCR+tzuVyNRuKczgcjB8/nszMTEaNGmUMxV0oAZ/rGOTCwkLGjRvH8OHD/bp86mJdTW84TSmlOHLkiLGHRE5ODiNGjDCWbrZr1+6cy7gjIiKMD6GwsDBcLhfbtm3DYrEYH1y6rvPb3/6WrKwssrOzjTehQHW19gHw/JbadIfduLg4Yz+ZoUOHGn+fF1rGfezYMY4cOcKQIUOMfVu2bNlCRkYGzz33HA8//HBABw+4evuBruvk5OQY7wWnTp3itttuM3bY9f59XmgZd9Pg4a0vqqurY8qUKTgcDpYtW2aE0kAl4cOH3G4369evNxJwdXU148aNIzMzk9GjRxtDcWcn4IiICKqqqujZs6exU11xcTHf+973GDhwIHPnzg3InRbB84Z76NAhAAYNGsSrr77KqFGjiI2NDdipgdaklOL48eNGH/jqq68YOnSoscNuamrqOZdxh4aG4nK5CAkJYfDgwVgsFpRSPPvss7z//vusWbOGXr16+fvpnZP0gW+qra1l+fLlRr1YWFiYMU07fPhwzGbzOZdxh4aGYrfbGTx4sHFQ5vbt25kwYQK/+93veOKJJwI2eEg/aE7XdXbs2GFM0x45cqTZDrveU5bPXsYdERFBbW0tycnJRj1RfX09d911F2fOnGH58uXG7ryBxh99QMLHWXRdbzYUV1JSwpgxY4yhOG/VekFBAbt37yY4OJiGhgZiY2NZv349H374IT169OCjjz4KqOVTZ8vOzj7njoozZsxgzpw5vm9QAFFKcfr0aWPp5vr16xk4cKBRqNi5c2fjjSUnJwen04nb7SYkJISCggI2bdrE/Pnzyc7Opk+fPv5+OuclfeDb1dfXs3LlSmOHXavVaizdvOGGG4xp2oMHD3L8+HGsVitutxubzcb69et57bXXePLJJ5k1a1bABg+QfvBtlFLs2bPHGBHZs2cPN998M5mZmUyYMIG4uDg0TaOiooLc3FzMZjMOh4PIyEh2797Np59+SmlpKStWrDBCaSDyRx+Q8PEtdF1n27ZtRgI+efIkt912G/369cPtdvPjH/+Y9u3bU1dXx759+7j77rs5duwYjz/+OK+88oq/my9agFKK4uJiY2O77OxsrrnmGr73ve9x4sQJ7r33XoYOHQp4io6ffPJJFi9eTGJiIvv375fzWtoIp9PZbIddt9vNhAkTiIiIoFevXkyePJmoqCiqq6v59NNPmTVrFlVVVbz33ntMnTrV380XLcAbNL1BJDc3lxtuuIGRI0dSVFTET37yE3r06IHT6aSgoIC7776b7du3c9ttt7F8+XJ/Nz/gSPi4SLqus2vXLmbPns3cuXPp0aMHaWlpZGRkcNNNNzFjxgzi4uJ44403qKurC+jfeMXl8e6wO3/+fH77299iNptJTk5m/PjxTJ48mVWrVvGnP/2JJUuW4HK55JCwNsrlcrF+/XqeffZZ1q9fT7du3Rg8eLBxBHxGRgb33nsv06ZNIyYmhvbt2/u7yaKFKaXIz8/n73//O6+88grt27enXbt2xgq6Z555ht27dxsbH3p/QRFfk/BxiY4fP052djbp6elGAs7Ly6NPnz5s3rw5YA60E61H13Vef/11pkyZwurVq1mwYAGfffYZuq6zbt06rrvuOn83UfjA2rVrATCbzcZ7wYkTJ5gxYwbvvPNOQK9wEy2jurqaf/zjH0yePNnYT2bdunXExsaya9cuY/Wj+CYJH9+RUorly5fTq1cvY+tccfUpLS1l7dq13HHHHf5uivATXdf54IMPuOuuuwK63ku0HqUUeXl51NXVMXz4cH83J6BJ+BBCCCGET8m4oBBCCCF8SsKHEEIIIXxKwocQQgghfOqywscbb7xBWloaISEhXHvttWzevLml2yUCnPQBAdIPhPQBcXkuOXx8/PHHPPHEEzzzzDNs27aNAQMGMGbMGIqLi1ujfSIASR8QIP1ASB8Ql++SV7tce+21DB06lL/85S+AZ3lZamoqjzzyCLNmzWqVRorAIn1AgPQDIX1AXL5LGvlwOBzk5OQwevTorx/AZGL06NFs2rSpxRsnAo/0AQHSD4T0AfHdXFL4KC0txe12k5SU1Oz2pKQkCgsLW7RhIjBJHxAg/UBIHxDfjax2EUIIIYRPXVL4iI+Px2w2U1RU1Oz2oqIi2cP+KiF9QID0AyF9QHw3lxQ+goKCGDJkCKtWrTJu03WdVatWyT72VwnpAwKkHwjpA+K7sVzqDzzxxBPMmDGD9PR0hg0bxuzZs6mpqeHee+9tjfaJACR9QID0AyF9QFy+Sw4fd955JyUlJTz99NMUFhYycOBAPv/8828UHYm2S/qAAOkHQvqAuHxyqq0QQgghfEpWuwghhBDCpyR8CCGEEMKnJHwEGH8d0jR37lzi4uJoaGhodntmZibTp0/3SRvE1/zRD6QPBBZ5LxDQht8LlAgY//rXv1RQUJD6xz/+oXbv3q0eeOABFR0drYqKilr92rW1tSoqKkr9+9//Nm4rKipSFotFrV69utWvL77mr34gfSBwyHuBUKptvxdI+Aggw4YNUw899JDxtdvtVikpKeqFF17wyfV/9rOfqXHjxhlfv/LKK6pLly5K13WfXF94+LMfSB8IDPJeIJRq2+8FMu0SIALhkKYHHniAL774glOnTgEwZ84cZs6ciaZpPrm+8H8/kD7gf/7uAyD9IBD4ux+0dh+Q8BEgAuGQpkGDBjFgwADmzp1LTk4Ou3fvZubMmT65tvDwdz+QPuB//u4DIP0gEPi7H7R2H5DwAXz55ZdMnDiRlJQUNE1j0aJF/m6S39x///3MmTOHd999l9GjR5OamurvJvmE9IGvSR+QPgDSD6QftG4fkPAB1NTUMGDAAN544w2/tSFQDmmaOnUqJ0+e5O233+bHP/6xz67rb4HQByAw+oH0AekDIP1A+kEr94EWqRxpQwC1cOFCv1x72LBh6uGHHza+drvdqn379j4rMvOaPn26io2NVfX19T69bqDwZx9QKjD6gfQB6QNKST+QftB6feCSz3YRrSdQDmk6deoU06ZNIzg42KfXFR6B0A+kD/hXIPQBkH7gb4HQD1qtD7RolGkD8HPS/fOf/6w6duyogoKC1LBhw9RXX33ls2uXl5erBQsWKJPJpPbt2+ez6wYaf/cBpfzXD6QPeFzNfUAp6QdeV3M/aO0+IOHjLIHQ2fylU6dOKjIyUr300kv+bopfSR+QPnA19wGlpB94Xc39oLX7gEy7CEN+fr6/myD8TPqAAOkHovX7gKx2EUIIIYRPycgHYLfbOXTokPH10aNHyc3NJTY2lo4dO/qxZcJXpA8I6QMCpB/4iqaUUv5uhL9lZ2czatSob9w+Y8YM5syZ4/sGCZ+TPiCkDwiQfuArEj6EEEII4VNS8yGEEEIIn5LwIYQQQgifapXwUVJSQnJyMs8//7xx28aNGwkKCmLVqlWtcUkRgKQfCOkDAqQfiHNold1DlFJLly5VVqtVbdmyRVVVVakuXbqoxx9/vLUuJwKU9AMhfUAoJf1ANNeqBacPPfQQK1euJD09nZ07d7JlyxY5I+AqJP1ASB8QIP1AfK1Vw0ddXR19+/blxIkT5OTk0K9fv9a6lAhg0g+E9AEB0g/E11q14PTw4cOcPn0aXddlu96rmPQDIX1AgPQD8bVWG/lwOBwMGzaMgQMH0rNnT2bPns3OnTtJTExsjcuJACX9QEgfECD9QDTXauHjySefZP78+eTl5REeHs7IkSOJiopiyZIlrXE5EaCkHwjpAwKkH4iztEYV65o1a5TFYlHr1q0zbjt69KiKjIxUb775ZmtcUgQg6QdC+oBQSvqB+CbZXl0IIYQQPiU7nAohhBDCpyR8CCGEEMKnJHwIIYQQwqckfAghhBDCpyR8CCGEEMKnJHwIIYQQwqckfAghhBDCpyR8CCGEEMKnJHwIIYQQwqckfAghhBDCpyR8CCGEEMKnJHwIIYQQwqckfAghhBDCpyR8CCGEEMKnJHwIIYQQwqckfAghhBDCpyR8CCGEEMKnJHwIIYQQwqckfAghhBDCpyR8CCGEEMKnJHwIIYQQwqckfAghhBDCpyR8CCGEEMKnJHwIIYQQwqckfAghhBDCpyR8CCGEEMKnJHwIIYQQwqckfAghhBDCpyR8CCGEEMKnJHwIIYQQwqckfAghhBDCpyR8CCGEEMKnJHwIIYQQwqckfAghhBDCpyR8nCUtLY2ZM2f6uxlCCCFEmxXQ4ePw4cM8+OCDdOnShZCQECIjI7n++ut57bXXqKur83fzLpnT6eSaa65B0zRefvllfzdHCCGE8AuLvxtwPkuXLmXKlCkEBwdzzz330LdvXxwOB+vXr+fJJ59k9+7d/O1vf/N3My/Jn//8Z44fP+7vZgghhBB+FZDh4+jRo/zoRz+iU6dOrF69mnbt2hnfe+ihhzh06BBLly71YwsvXXFxMf/zP//Dr371K55++ml/N0cIIYTwm4CcdvnTn/6E3W7nnXfeaRY8vLp168ajjz4KwMiRIxkwYMA5H6dnz56MGTPG+FrXdV577TX69etHSEgICQkJjB07lq1bt35reyorK3nsscdITU0lODiYbt268eKLL6Lr+kU/p1mzZtGzZ0/uvvvui/4ZIYQQoi0KyJGPTz/9lC5dujBixIgL3nf69Ok88MAD7Nq1i759+xq3b9myhQMHDvC73/3OuO2+++5jzpw5jBs3jvvvvx+Xy8W6dev46quvSE9PP+fj19bWMnLkSE6dOsWDDz5Ix44d2bhxI7/+9a8pKChg9uzZF2zj5s2bee+991i/fj2apl34BRBCCCHaMhVgzpw5owCVkZFxUfevrKxUISEh6le/+lWz23/xi1+osLAwZbfblVJKrV69WgHqF7/4xTceQ9d148+dOnVSM2bMML5+7rnnVFhYmDpw4ECzn5k1a5Yym83q+PHj39o+XdfVsGHD1F133aWUUuro0aMKUC+99NJFPT8hhBCirQm4aZeqqioAIiIiLur+UVFRZGRk8NFHH6GUAsDtdvPxxx+TmZlJWFgYAFlZWWiaxjPPPPONx/i20Yh58+Zx4403EhMTQ2lpqfHf6NGjcbvdfPnll9/avjlz5rBz505efPHFi3o+QgghRFsXcNMukZGRAFRXV1/0z9xzzz18/PHHrFu3jptuuomVK1dSVFTE9OnTjfscPnyYlJQUYmNjL6k9Bw8eZMeOHSQkJJzz+8XFxef92aqqKn7961/z5JNPkpqaeknXFUIIIdqqgAwfKSkp7Nq166J/ZsyYMSQlJfHBBx9w00038cEHH5CcnMzo0aO/c3t0Xee2227jqaeeOuf3e/Tocd6fffnll3E4HNx5553k5+cDcPLkSQAqKirIz88nJSWFoKCg79xOIYQQ4koRcOEDYMKECfztb39j06ZNDB8+/IL3N5vNTJ06lTlz5vDiiy+yaNEiHnjgAcxms3Gfrl27snz5csrLyy9p9KNr167Y7fbLCjLHjx+noqKCPn36fON7zz//PM8//zzbt29n4MCBl/zYQgghxJUq4Go+AJ566inCwsK4//77KSoq+sb3Dx8+zGuvvdbstunTp1NRUcGDDz6I3W7/xpLWO+64A6UUzz777Dcez1srci4//OEP2bRpE8uXL//G9yorK3G5XOf92V/84hcsXLiw2X//93//B8DMmTNZuHAhnTt3Pu/PCyGEEG2Rpr7tk9ePPvnkE+68805sNluzHU43btzIvHnzmDlzpvFB7tWvXz927dpF79692bNnzzce85577uH9999n3LhxjB07Fl3XWbduHaNGjeLhhx8GPGe73HzzzcyZMwfwLLW98cYb2bFjBzNnzmTIkCHU1NSwc+dO5s+fT35+PvHx8Rf9vPLz8+ncuTMvvfQS//Vf/3X5L5AQQghxhQrIaReASZMmsWPHDl566SUWL17MW2+9RXBwMP379+eVV17hgQce+MbP3HPPPTz11FPNCk2bevfdd+nfvz/vvPMOTz75JFFRUaSnp3/rfiKhoaGsXbuW559/nnnz5jF37lwiIyPp0aMHzz77LFFRUS32nIUQQoirQcCOfFyO1157jccff5z8/Hw6duzo7+YIIYQQ4hzaTPhQSjFgwADi4uJYs2aNv5sjhBBCiPMI2GmXi1VTU8Mnn3zCmjVr2LlzJ4sXL/Z3k4QQQgjxLa74kQ9vAWd0dDQ///nP+cMf/uDvJgkhhBDiW1zx4UMIIYQQV5aA3OdDCCGEEG2XhA8hhBBC+JSEDyGEEEL4lIQPIYQQQviUhA8hhBBC+JSEDyGEEEL4lIQPIYQQQviUhA8hhBBC+JSEDyGEEEL4VJsPH7KBqxBCCBFYrviD5c5HKYXL5aKurg5N07BarZjNZsxmMyZTm89cQgghRMBqk+FD13WcTidutxtd142vKyoq0DSNxMRELBaLhBEhhBDCD9pU+FBK4Xa7OX36NEVFRfTt2xeTyYTJZELTNCorK1FKERMTg9PpBEDTNCwWixFGLBYLmqb5+ZkIIYQQbVebCR9KKWO0o+l0S1Pery0Wi/Ez3lERh8OBpmmYTCYjhHgDiYQRIYQQouW0ifCh6zoOhwNd142RjnMVmmqa1ux2TdMwm83G198WRprWjEgYEUIIIS7fFR0+vNMsTqcTpZQxvXJ2yDj7Z86naRjx3u9cYaTpqIiEESGEEOLSXLHho+k0C2AED/jmCIfXpYQE733PFUYcDgcNDQ0SRoQQQojLcEWGD+9oh3ea5Vy1HZcz8vFtvi2MNDQ04HA4ACSMCCGEEBdwRYUP794dLpcL4JzBA7595KOlNh1rGkbMZjNKKeO/s8OIt17EYrGct81CCCHE1eKKCR/e2gtd1wGM2o5zacmQcbGatufsMFJfX2/cxxtGvCMjEkaEEEJcbQI+fDRdgXK+aZaz+WLk40IkjAghhBDnFtDh49uKSr+NP0Y+LuRiw8jZe4xIGBFCCNHWBGz4aLpF+qV+ADcNH+f7s7+dL4zoum6EEe+eJRJGhBBCtCUBFz68e3e4XK6LnmY5WyCFjIt1vjDidrtxu93U19dLGBFCCNEmBFT4uNxplrMFQs3HxVJKcfDgQTRNo1u3bs32KvHWhHjv1zSMNDQ0UFtbi6ZpxMTENDuXRsKIEEKIQBYw4eNCe3dcipbYZMxX1q5dy1/+8hc0TePRRx/lhhtuOOf9zhVGioqKcLlchISEoGkab731FlVVVfzxj3/05VMQQgghLonfz5L3jnY0PZvlu4aE1thkrLUcO3aMkpISSkpKOHbs2EX/nPc5Wq1WYx+RU6dOUV1d3YqtFUIIIb47v4586LqOy+X6ztMsZ2saPnRdbzaVEWhGjhzJrl270DSNm2666ZJ+1u12Gyf0appGbW0tiYmJrdFMIYQQosX4JXw03btDKdXidQqapqHrOidOnGDfvn0EBwcTGxuLrutG0AkUaWlpvPTSS5f1s263u9mpvHa7nS5durRU04QQQohW4fPwcXZRaWsUSOq6jlKKQ4cOkZaWRk5ODvv37yclJQWLxcLWrVsxmUzU19fTs2dP4uLiWvT6vnJ2+KitrSUsLMyPLRJCCCEuzKfh47vs3XGxamtryc3NBWD48OHs3LmTw4cPA5CSkkJ0dDRxcXF89NFHHD58mOTkZDIzM0lMTCQmJoawsLCAnJ45F13XvzHyER4e7scWCSGEEBfmk/DREnt3XIzi4mJ27NhBcnIyNTU1BAcHEx4eTlRUFJqmERYWhtlsJj4+npiYGJKTk0lMTCQiIoKysjIOHz6MxWIhNjaW2NhYYmJiCA4ObvF2tpRzjXxERET4sUVCCCHEhbV6+GipvTu+ja7rHDp0iGPHjtG3b19iY2M5efIkSim6du1KaGgoJpMJl8tFaWkpYWFh3HrrreTn59OlSxejTsLtdnPmzBkqKio4ceIEe/bsISwszAgj0dHRzT7s/c07guRVU1NDaGioH1skhBBCXFirhg9d11t0Ce25NDQ0kJeXR0NDA8OHDyc8PNw4zt5bzJqcnIzJZOL06dPGKphu3brRrVu3Zo9lNpuNoBEfH8/x48eJjIykrq6O/fv309DQQFRUlHGfiIgIv07RNB35UEpRU1MjIx9CCCECXquED+80i3c1S2sFj4qKCnJzc4mJiWHw4MHNlp1623E5amtr+dvf/saRI0fo378/Dz74IJqmUVdXR0VFBeXl5Rw/fhyAmJgYI4zYbLaWeWIX6eyaj5qaGqn5EEIIEfBaPHzouk5dXR3w9cFoLR08lFIcP36cAwcO0L17dzp16tTsGucLHxe7vXp1dTWFhYXU1dVx6tQpHA4HISEhhIaGEhoaSvv27VFKUVVVRXl5OUVFRRw4cMBY0uutF7FarS36vM8mq12EEEJciVosfDTdu2PdunUMHDiQmJiYlnp4g8vlYvfu3ZSXl5Oenn7OazQNH5cTfBITE7ntttvIy8vjxhtvJCQk5JzXiIqKIioqis6dO+NyuaisrKSiooKjR4+ya9cuIiIijDASFRXVrD7ju/KOLnkf0+12U1dXJyMfQgghAl6Ljnx4ay3MZnOrbOZlt9vJzc0lKCiIESNGnHclyvnCx8WOfGiaxtixYxk7duxFt81isRAfH098fDzgqUUpLy+noqKCXbt24XC6iIiKISIykvDIaIJsNnQdnLqO261w6Y3/uXXcusKp67jcCofL87XLraPQ0JVOv/bRtIvyPHfvyIfdbgeQmg8hhBABr8XCR9NDzywWS4uHj8LCQnbu3EnHjh3p3r37t44inGu0w+12s2XLFg4ePEhSUhIdOnTw3N74we5y6zi9f9YVxaVlFBQWkdSuPcEhNly68oQC99dhwK00XLrna115/nM33k/XvX8Ow20NxeFuoKakltqjhdTWHsJkNjdO44RhCw3FbDGjKXDrYNIUmEyYUGg0bg1v8gSn1NhQOsSG4nQ6ga/DR21tLYCMfAghhAh4LTry4R1ZaMmRD13XOXDgACdPnqR///4kJSVd9M96RzmKq+pZtuUAK786THVVDYWf/IfB6W50HRQKFGDSQPeMlNQ31LN+wwbKy8pISUlh+IjhmDGhNPV1HFAKNBMajY/x9auA5wE999OVwgRYg4KIDg4iKjIaHUV9XT01NXYqKiooKirAGhRMWGgoNlsooWGhWDQNpWloSqErQFdEh1m5vlsCQLOly4Cxr4m36FYIIYQIVK3ySWU2m3G5XN/5cerr68nLy8PpdDJ8+PCLLqb0btmulKKixsHaAyU4NAuW4DCUpQFrSDhu3RMYPLlDQ7l1NJMnODgaHNTV1uJyu6ix16DcgFUDvfG+WuOUjlJfBw9NQ1cKTYEyKdD1r29HQ2sMCZqm0HQag0aI5xwat6dIt66mltKSYpwFTmy2UEJCQwkLtREcHEKI1cqoXkmYTZ6REG+xqXeUx263X1G7swohhLh6tcrIR0tMu5SXl5Obm0t8fDzp6emXtLmX2+2muLiYw8dPsbPMRIPLRWhoGH379qGwsJhu3brgGRRRmDCha43TGmigQXhYGL179aS4uIROaWmYzF/XiiilULpnZEM3AWiewKEUJs0EKDTlGbVQemM4UQqlaZ77al+Pipg1E0oDi8VMREQ4EeHhKBJwulzU1tZQW1PHqfIKTCaNm7vHUV6sQeOS3rM3GPOGDyGEECLQtdrIx+WGD6UU+fn5HDp0iJ49e5KamnrJv83n5uay4avN/KfQTbfefQkJCmb79jzKK8tJSUnBarU0FqOCrtwoNBqziGfWRNPo3LU7Xbp0B+/nu/d7qrGmROEJIcozFQOga18flqeUhmbWMCnPSInxFDQNTXkfCBqHUUAp3I1/NJstREZEEhkRhVnT6J0UTIypgeLiYg4ePEhwcLARNJxOJ1ar1VhmKyMfQgghAl1AhQ+Xy8XOnTs5c+YMQ4cOJTo6+rKuX155hpPEEVNdh6OhgdLSUvYe2EtDfQNOh4OB/QegmbzTJSYaByNQ6J5RCzSU0kEzoeueaKHjqb8A0DQTmkk1BgtPkNBoHO1wO9FqytHMFrDFeu7vvYfyXEg1lpl4lyd790Ix0RhSmgSI7kkRDOrseZy0tDTcbjeVlZWcPn0al8vFunXriIiIYNWqVQQHB9PQ0NAq59G88MILLFiwgH379mGz2RgxYgSLFi1q8esIIYRo+1pu44kmLqfmo7q6mo0bN+JyuRgxYsRlBw+3rigPTiE2oR0dO6URFR3tWVUSFkaQNYiQEBu60lFKR1eeglaldM+0iqaBSWusGfFM85hNGprmqdXwlpXqyo3b7Tambmj8UU2BuaYQc/kBTKUHoP4MaFpj8AAdz2iJqXwf5vw1mCqPoWlNh1YwQpDSdRIjgkhPi8Fy8DOC1v4v5pP/wWw2ExcXR1JSEhEREVx//fWkpqZy6NAh9u3bx/jx4y/rdbuQtWvX8tBDD/HVV1+xYsUKY7WNEEIIcalavOYDPEttGxoaLvrnTp8+ze7du0lLS6Nbt26XPXWglGL13kIaNCupHVPp1KkjQUFBJCcmceuoUVSUl2M2mTxDEXhGGnQaP/Z1zz4amHQ0ZfJMxHinRfAUmjqdDg4cPIzS3XTr3g1biMUzgqE1PoamoTVOxYBCKXdjYaqGp/xUw91wBsupXEyOKsy15RCZgmYORqnG0ZbGkZdwm5WRPZMwVZ3AuvktTDXFmIt2UPf9uWAJMWo+goODSU5O5vbbb8dqtfLPf/7zsl67C/n888+bfT1nzpxWuY4QQoi2z6/TLrqus2/fPgoKChg4cCAJCQnf6bpf7i/idGWtZxoFcDQ4OH3yFErz7H8RFx9PZWUlmvJOb3hCBXjygmexiwlMjfmBxnoNPIWkJ06cYtfunShdx2q10rNXT2gc8VC6J6y4whM9D6xZICTaCFKNszNYzBbMdUVo9dXoweFgsjaWfHimedwuNxarmVt6JhBkMYElBCxBYLKggsKgcUTm7K3Vvee6tMausudy5syZ7/z3JYQQ4urkt6W2dXV15ObmopRi+PDh3/ko+M1HSjleXgtoaI1TJ6cLC4iOjMBiDaa2tpbamhp0pVNYVEhoWBhhoWGYzJ69OrTGGSiFjknzjHzo0GRPD7BazVitQShdx2K14HA4sFisnoCheVbKmCw2VGSqZ8DEuzJGA01paGiYKo5hqjuDrrtRteW4dG+5qwJNx2wxc0O3eKJCgzztCUukYdT/YCraiTt1OJg958Wcfaic3W732QZjuq7z2GOPsWTJEp9cTwghRNvSatMu3zbyUVZWRm5uLklJSfTu3fuCy2idTidLliyhrq6OiRMnfmML8dzj5ewvrAKlMKFRXl6K2+0iOjqGhoYGampq6dAhFYezgcKCQqwWC5Xl5RQXFhIcEkJoaDgWi4k9e/dSW1ND/wEDSEhI9CyLVV8Xi7bvkIrZbMHldlFaUsqWnBxSktsxfMQINJOGSddQJk99iAmNwuJCbLYwoqKijKW6ekgkblMwaE4IS8JsMqMal/wC9O8QRce45ktm9cQ+6Il9mt129lLbmpoany21feihh9i1a5dPriWEEKLt8em0i1KKI0eOcOTIEXr37m1scX4hy5cvZ/bs2TgcDqqrq3nwwQeN7+0rrGLHSc9Uiq4UhYWFVNurMZut1NTUsG/ffty6GzQTiYkJmExm4hMSiEtIQHe5sNfWYq+uZv++Y+zesxvNpGG1WIi7MQbNbEbTPWMgSnmCRXK7djidLr76z2aqKs/gdrroV3WGmJhYlKlx/ETT+HLdl6xetZogaxDT75lOSocOnj1Cwtvh7vtDzHWVuON7YNJ0YzVNakwo/TpEX9Rrcq4TbVNSUi7qZ7+Lhx9+mCVLlvDll1+2+rWEEEK0TT4LH06nkx07dmC327n22muJjIy86Mdzu93ouo6u680e92iJna1HS9GUhsvt5OSJE7h1nbDwULZs2UJCbCKg0EzKs7Mo4NZ1UJ6lsSaTmYjwCCIiIggNC6Wssowaux2zxcqhw4exhdg8O5GGhWMLaVy+qmlYgiy0a9cep9NJQnw84RGRKLyFpZ5plP37DlLX4MDhdHI0/xgpKe090zsmE1psGigwa417guiKaJuVG7rFX9JrcnbNR2uOfCileOSRR1i4cCHZ2dl07ty51a4lhBCibWuVaZezaz6qqqrYvn074eHhjBgxAqvVekmPO2bMGGpqaqirq+P73/8+AKcr61h/sBhd16lvaODE8eOE2Gx0SEnh3ffe4/TJU8TERjN2zFiCg4Npl9IeR4MDk9ZkL7HGrco1IDoyhlEjR1HvaiAmIhbd5aSm3lMnUl5RAZpGmC2MiMgwQmyhXD/iOvr17U1YeAQWsxkNb/AAXWmkpw+huKiAYJtnt1Tvlu/evT50zXOOjK7rBFnM3NwrCYv54lc+u91ugoKCjK9rampa9UTbhx56iA8//JDFixcTERFBYWEhycnJrXY9IYQQbVerjHw0rfk4efIke/fupUuXLnTp0uWyltGGhIQwdepU4+vS6nrW7isEpaiuquZ0YQEJcQnExsXicjlxNjhwO11UV1ZRWFhMevoQzxbp6OiN+3uYNIXuhsYd1UHTiAgPJ1wL92w0ZvYcBBcTFY1CUV/fQE1jEGko8NSKhIeF4XI6MJtDUHj3DFGYNI3+/frRq3dvrBYzZrMZXfdcxw0ot+4JQM4abAc/4XbbXiI7/wY9pNdFvybnKjhtzZGPt956C4Cbb77ZuM1bxyKEEEJciladdtm1axdFRUUMGjSI+PiLn1L4NmdqHazYXUCDw0VJWRnlZSW0S+lARERE49bkVsaOG8uSTz+lweHk0OGDJCUl0KVLV0xoaJoJi8nk+fA2eYpJPUWlnk3ElO49mA68e5Oa0AgNCcEWEkJcQiwupxu7vZoaex2lZWUAhIeFEx7uWUFjtphRQIgl2PMBrTQ0zRN8TJoJZTKhUFhOfcWIykW0ry7AvcZJ3ZSPLvp1OLvgtLa2tlVXu0jQEEII0VJaZdrF4XAAnumWESNGYLPZWuTxaxpcfLGngAani9OFBdTV1dGlSzeCQ7wf8p4RjS5du9Cr1zXkHzuGJciKNSgIXSnsdbW4dZ0GRwPm2mKC8teCNRR399sgKAyUhrlxyaxnUzDPKbWuxsf1nOeiYbFYiImKISY6Bl0pGurqsdfWcObMGYqKiggJCcEWGkp4WBhBQSGYNIVL1zGh4dJ0LGbPlu7dE2z0KjzlKWYNT7qk18LXNR9CCCFES2nxkY+SkhLy8vIAGDRoUIsFj3qnm893nuZMVS3HT57ApJnplJaGxWRG6TrontELvTEA9ejRHWuQ54C22JhoKsvLqKquol1yO6xWK+aiPEz2U566i5KOqHZDUBroTU6dNXY81zC2YvcGLF13Y9bMnDp9krwdO2ifksKgQYM8J9Laa7DX1lBeXo6maYSHhREeFoYtNAyrxQpKERcRzJBr76Q+WaHVVeAYNPOSXo+m4UMp1eo1H0IIIURLadHwYbfbyc3N5ZprrmHXrl0tNlTvdOus2F1ISUUVJ08eJzI8isR2yY3FoxpabTk4qiE0Dt0aCrpOx46pJLdLwl5dQ2lpGS63G6vVSl1dPWaLlTBbnGfDLi0IPSTKc1YLjbUY3vNWNCgt9uwZktI+BavF82F/4sQJVq5aRbA1iJKSEsrKy9kVFka76DBSXQewWcKI7HgDmFJoaGigrraGM1VnKCwqwmoNorqilPH9U1Ak4ew/7bJek7NrPryn2gohhBCBrkXDR3h4OCNHjiQoKIi9e/de1sm2ZyssKmLR5sNUOaGirIykxCSiY2MbqzEU9rIiTMU7CNMaICwZLWWQp4hUM2ExW7DbqwkKCqJTUgL1tTXY65ycOnUS9DhiE0YSHBbJvvwqSkpW0b9/P5KSkjz1H7oi/+hR1qxdi9J1bhhxPX369kFD48D+AxQXFWFq3CDMYrFiNpkwFW5Db8jHZDFjscWgtxuIzRZMSEgIUTGxOJ0uVnzxORv//Sb/dtXz5JNPcuONNxIXF0dcXNwlnUZ7rk3GfLXDqRBCCPFdtHjNh3f55+WcbGuorwJLMBXVtfz6tfc5WFBGfGwsY8aOITw0vPG8FTh06AhrVn2BqeEMYwelkhKWgNI0CgsLycvNA5NG/379SU6Mx1J2iBBHNVGR7dDbdaeuoRa7vYbdR46ycsUXNDQ4OHTkCPf9eCbB1iCwmDhzpooaux1dd1NaVo7L5QYNktq1JyLqIBazhWHXXkdlWTntO7SjPYcxFR0DTcNtDsat4yk2NXleG1twEPXH8nDaK9HNZnRdJzw8nNOnT7N//37CwsKIjY0lLi6OqKioZuHibE2nXZxOJw0NDTLtIoQQ4orQ4jUfmqahlLrgFuvn/flj6zHvXoCyxbLSeTNHiipxNDRgCbISagszlsYq4NTJk5RXVIOmc7w+kuT4nqBpfLZsGadOniA0LIK+ffuiOWtx15WD24myl6OHdyAoyEZsTAiOVAfWoCCcTidmTXHy5EnMJhNhYRF06NCBbt264nK66d27FxoaCkWvnt1JSozHbDYRHRPj2TNEM+F0pWIJjUW3hFJiSqRo7366de+KRbNgNmn0aR/FY/ffzW+O7CE5OZkpU6aQlJRE586dcTqdlJeXU1ZWxq5du9B13QgisbGxhISENHudmoYPu90OICMfQgghrgitstQWLv5k27OZTvwHqk6x9bSDg84jpHXqiL3WTv++/Tw1Ho1LV5Wmk9alK0fzj6KZTXTqm44KiqC8rBy304XFGkyoLYQgaxBaUDiEJ6A57KjIdsbmYgDtU9ozccJEiouK6du/D3GxcdTU1lJjt1Ntr6NH956EhYVjtlhxut0EBVlRuk5sXCzoCrfLjWYC3e1GMwXhTBxCWWkpr7/2Ki6ni169evHj+35MuygbA1KjIfVmNm7c+I3nbbVaSUpK8kz7KEV1dTVlZWUUFBSwf/9+QkNDjemZyMjIZjUftbW1AFLzIYQQ4ooQcOFD7zCU3COFfFkVQVD7dlgqjuOod3D61Ck6derUeIKsZ9lrSkoyd/7oR5g0E2azmaLiIuz2aiZmTOL4sePExcV7Nh5DQ4vuCrgxmayeRSwamJSGW1dcc01veve+BhoLTkNCbISE2IhLSMDR4KC2toYaezVlJcVYg4I8+3mERxAcEoxJ19CVG0wKTemYNI1Tp07gcjhRwLFj+USGWLmpx8UfP69pGpGRkURGRn5jVGT37t3G61pcXExiYiI1NTXYbLYLHtB3ub788kteeuklcnJyKCgoYOHChWRmZrbKtYQQQrR9rTrtcqk1H0eOHGFdbg2H6kaQ2LM9NlMQZeW51NXVU1JRhtPhxGK1UN/g4ODBw2iaRrduXdBMcOzEcdxuF6mpHbFYrCQnfb31twaNdSKWxokTb7kqmDTPgXTgvZPCYjIBntEVmy0Emy2YhLh4z8Zpu3ezctVK2rVrR8+ePQgLDSMsPJywsHCsFjO6UlzTuzcdUjtQUFjIbaNv5cZuMWgodF3/1jqO8zl7VKSiooLc3FxKSko4fPgwH374IbGxsaxZs4Zbb731kh//QmpqahgwYAA//vGPje3thRBCiMsVMCMfGzZs4NHfPEtNRCdG3zaa7lFxKBTdu/XixPF8unbriiXICrri8OEjrFuXTXVVNQMHDKBHzx5YLFY6dkrDpJnRNNUYMbx7p8O+vXs5feo0gwYPIiYmFlCgmTzFI8q7v6nnZjfeg+g8Z7EowK10XLrOP//5IU6Xk/37DnDNNX0ICQnhTGUlRQUFBIeEEBYWji00lJ8/9Agmk8bo3omEB1ubvRYmk8kIIZcaRjRNM/ZOGTx4MC6Xi5ycHFauXMnLL7/cKuFj3LhxjBs3rsUfVwghxNUpIMJHfX09WUtXUGFNxOxyUl5WZiyX7dv3Gvr2vQZdgcvtRLnB7dI5feo0DqeDTZu+okvXrnTq2AkNE2jNRzbAc77Mxx//m4b6enbv28dDP/9Z41krnvZpJhpPudXQlcKEybPnh1KeFStGiYjC5XYZgUTTIC4unri4eJwuJ9XVNdTW1lBRUYFJ0xjaOZ4gdwRms814Pbznv3hHhTRNw2QyGf9/MbzFppqmYbVa6dOnD0lJSSxbtuxi/3qEEEIIv2mVaRe4+KW2lZWVrPsqB5XSB7P5GA1OBxFR0eg6oOnGuSso0JSG2WKiW9c0QkNt6NUugkODSU5OwmyxGKfKAsaflIKG+gZ0t47SoKG+DrNmwmTx3ktDKW+7PYfCoSnQPV+bTRqe9KHjcrtBd6O0xv3XVeMptoDFbCEmOprYmGiUUrQL00gLc3H48GF27txJdHQ08fHxxMfHY7PZUMozDaPr+jlHRb4tiJy9wZhsrS6EEOJK0qojHxcKH6dOnSJnx25OEQdUYrKaCTaFUFRYiGYCY3jBrdA1hcVsQleKmtpabh55MyVlpdRU21mxYgXXX3+9p86jMURofH0YWufOXRh16y2cPn2aYdddi668UzLNg4dSjZnC5RmdQPOEAQ3P/wcHh5A+bBhbt2ylQ6dOtGvfAZfbE0asjYfFoSA+IoRb+7bDZNLo3r07dXV1lJaWUlpayuHDhwkKCiIhIYH4+HiioqIueVTk7A3G7Ha7LLMVQghxxWi18GGxWGhoaDjn95RS7N+/nyPHT1AanILNaiM+IYHIyGganA20T2nv+SDWv57zMDWeRFtQUEhdXS1D0odw+PBRstesxl3qYu/e/SQkJKErz/krCh1NaSgNTJrGTSNvxIQJR0M9OVtziE+Ip1OnTp6pGbeO0jw1IBoaZvPX26t7akLArStQiilTfsikiZMIsdkwaSZPfYkySkcICbJwS+8kTE2W89psNlJTU0lNTcXtdlNeXk5paSl79+7F4XAQGxtLfHw8CQkJBAUFGSMi5xsVOftQOdlaXQghxJXE5zUfTqeTvLw8qmtqsUd2xuL2FH2mpnbg7qk/oqGhgYSkRDSloWsmNM0zAuByuT3boqORlpaG2WIhOiaaiMhInC4XCQmJaBpYTGY8czRmTIDSARN4Q8yH//yQPXv3YjKb+OlPf0paWmewaI2rdxsnazSMDcXQvOtjVGOogdDQUM8Ai9a450hjdYnFbOLWa5IIsZ5/yavZbCYhIYGEhATjQLjS0lIKCwuNXU690zMRERFomuY5d0YpY1SkoaHBCCGapsm0ixBCiCuKT2s+ampq2LZtGyE2G9URadTXORtXmng+x2NiYz0fsroyRjA0NOrrGjh5+gShtjCSk5M8B78pSGnXjokTJ9JQ30BCUgKgeeo+PHMpniW0mtakDgQKiktQGriVoqi4hNSOaaApzJ6U43kOgK50PIMdygglmuZZmutdTqyUwuV2e1bFaDC8RzJxYRd/PoumaYSHhxMeHk5aWhpOp5OysjJKS0vJy8tDKUVcXBwJCQnExcVhtVqpra3l+PHjxMXFGeHu+PHjl7+V/UWw2+0cOnTI+Pro0aPk5uYycODAVrumEEKItktTLXX0bCO3243L5aKgoIBjx45x3XXXAVBSUkJeXh4dOnTguCuSgsraxg3DPB/kJsCtAKU3rjjxfNLbq+2cOn2K2JhYYmLj0TTvOhbPfRTgcrn5YuVyigqKGH7dCPr07Q1K4Z200d0Kb43o7t17WbrkU5KSE5l21zSCg62YNE+9hq40lNJRuucKZpPmCUCNoUR560IaA5MJzQgjvVMiSU+La7HXUSnFmTNnjFoRu91OREQEdXV1REdHe7aN1zQOHDjAqFGjGDFiBJ9//nmLXb+p7OxsRo0adc42CiGEEJeq1cJHcXExBw8eZMSIERw7doyDBw/Sp08fjtgtHC21N21C44d9Y5En3noNE2UV5ZSVlpCcnExEZGTjvRtrQBo3Bzt65AjzsrKoqjxDWFg4KSntmDFzpvHBqGtgbvwpT12G8hSzesYrPCMvnqEOlGZMtniW3mqapxZENd7P2z4NTN6CWKBdtI1beyfTmqqqqti+fXvjFJQLi8XCvHnz+OKLL5g0aRJ//vOfL2sDMyGEEMLXWnXaxel0smvXLkpLSxk6dCj7y10cLa0yPrRpPKtFV26Ut2LT5AkFRSXFVFWdITW1o+dQNWXUfqKhcDcGirVffklleTlOl4tQWwgdOnQwajBU4/+4G6dNzI0rR77WOIbSONKB0huLTj1FqnrjUlq3rjeOuODZfEzTPMWsKCJCLNzUI7GlX8ZmGhoa2LVrF3FxcfTp0welFHv27GH79u3Y7XYqKysleAghhLhitFrBqa7rNDQ0YLfbGT58OCEhIQwIczMgNebr4frGmgld1z0rR0yewtKdO3fSIdZJ/1HDG/fEoHGCpTE4eIcxNDi0MphDq7YRZrbwyIz/4q6pPyLIGoxRSAKoxm3TvaMm3hEMjDEO5R3coHk0aX65Zn9ufIxgqxmrufU++B0OBzk5OURERNCnTx80TeP06dP86Ec/YvTo0WzduvW8q4qEEEKIQNTi0y66rlNaWkpOTg5Op5PRo0ef88AzpZSxt4V3L4u6ujpyc3MJDg6mX79+WK3WC17P5XKxevVq4uPjGTx4cEs+Fb/zBo+wsDD69u2LyWSisLCQMWPGcP311/POO++02mFyQgghRGtp8V/Zz5w5w+bNm2nfvr2nkPQc0wHe/SuaBo/Kyko2b95MZGQkq1atYtq0aXz66acXvJ7FYuH2229v1eBx4sQJjhw50mqPfy7nCh7FxcWMHz+eoUOH8ve//12ChxBCiCtSi4ePyMhI0tPT6dy5M0CzvT68W4p7963wBo/CwkK2bdtmHB//8ccfk5uby+zZs1t1CenFWLZsGX369KF///588MEHPrmm0+lk27ZthIaGGsGjtLSUiRMn0qdPH9577z0sllabMRNCCCFaVYuHD5PJRExMjPHh6A0f3mkW79fews8jR46wZ88e+vXrR8eOHUlKSiImJobg4GA6d+7s99/uly5damx7fjEjMd+V0+kkJyeHkJAQ+vXrh8lkoqKigoyMDLp06cKHH354UdNRQgghRKBqtdUu3v0xvKMc3mkW7zkluq6zZ88eKioqGDp0KBEREQC0a9eOt99+m3379nHdddedtTrF9+68804++ugjXC4Xd999d6teyzviERISQv/+/TGZTJw5c4bMzEzatWvHv//9b4KCglq1DUIIIURra/GCU8BYfbFy5UqGDRtGaGhos/oOh8NBXl4euq7Tr18/bDab30PGt6mqqkLXdaKjo1vtGt7gERQUxIABAzCZTFRXV5OZmUl4eDiffPIJNput1a4vhBBC+EqrrBFtuteHw+FoFjzsdjubN28mODgYTdO47777+OlPf0pBQUFrNKVFREZGtmrwcLlcbN++HavVagSPmpoapkyZQnBwMIsWLZLgIYQQos1olfDhLSwNCwtjx44d7N+/3zjJdcuWLSQnJ9OvXz+WLVvGvn372LZtG+vXr2+NpgQ8l8vFtm3bsFgsRvCoq6vjzjvvRNd1Pv30Uzk0TgghRJvS4jUfdXV1lJeXExkZyYABAzhz5gwlJSXs2LEDl8tFdHQ0UVFRKKXo168fGzZswGaz0aNHj5ZuSsDzjniYzWYGDBiA2Wymvr6eqVOnUltby/Lly41aGCGEEKKtaPGaj6VLlzJ58mRuvvlmMjMzGTt2LLt27cJsNtOtWzfq6uooKirC6XQSHx+P3W6nQ4cOdOzYsSWbEfDcbjfbtm3DZDIxcOBAY4rq7rvvpqCggJUrVxITE+PvZgohhBAtrlUKTvfv309WVhbz5s3jwIEDpKSk8Itf/ILx48eTlJQEQHV1NcXFxRQVFVFfX098fDyJiYkkJCS0+T0s3G4327dvB2DQoEHGOTgzZszg6NGjrFq1ivj4eD+3UgghhGgdrRI+vHJzc/nlL3/JTTfdxOeff86WLVsYPnw4kyZNIiMjg/bt2wNQU1NDUVERxcXF1NTUEBcXZwSRtra01O12k5ubi67rDB48GLPZjMvl4v7772f37t2sWbOGxMTWPahOCCGE8KdWDR9NKaU4ceIECxYsYOHChWzYsIH09HQyMjLIyMigU6dOaJpGbW2tEUSqq6uJiYkhMTGRxMREgoODfdHUVtM0eAwaNAiLxYLb7eZnP/sZW7ZsITs7m3bt2vm7mUIIIUSr8ln4aEopRUFBAQsXLmTBggV8+eWX9O/f3wgi3bp1Mw6aKy4upri4mDNnzhAVFWUEkStt6anb7SYvLw+Xy8XgwYON4PHII4+wfv16srOz6dChg7+bKYQQQrQ6v4SPppRSlJaWsmjRIrKysli9ejW9evUygkjv3r3RNI2GhgYjiFRUVBAREUFiYiJJSUmEhob68ylckK7r5OXl4XQ6jeCh6zpPPPEEK1asYM2aNaSlpfm7mUIIIYRP+D18NKWUoqKigk8++YSsrCxWrFhB586dycjIYPLkyfTp0weTyYTD4aCkpITi4mLKysoICwszgkhYWFhA7ZbqDR4Oh4PBgwdjtVrRdZ1Zs2bxySefsGbNGrp27ervZgohhBA+E1Dh42xnzpxhyZIlLFiwgM8//5x27dqRkZFBZmYmgwYNwmQy4XQ6KS0tpbi4mNLSUkJCQkhKSiIxMZGIiAi/BhFd19mxYwcNDQ3NgsfTTz/Nv/71L7Kzs6/K/U2EEEJc3QI6fDRlt9v57LPPWLBgAZ999hmxsbFMmjSJzMxMhg4ditlsxu12U1paSlFREaWlpVitViOIREVF+TSI6LrOzp07qaurY8iQIVitVpRS/O///i//+Mc/WLNmDddcc43P2nO2L7/8kpdeeomcnByj/iYzM9Nv7RFCCHH1uGLCR1Pe3T8XLFjAkiVLCAsLY+LEiWRmZjJ8+HCjmLO8vNyoEzGbzUaxakxMTKsGkfMFjz/96U+8+eabrF69mn79+rXa9S/GsmXL2LBhA0OGDOH73/++hA8hhBA+c0WGj6bq6+tZuXIlCxYsYPHixVitViZMmMDkyZO54YYbjKmOiooKioqKKCkpQSllBJHY2FhMppY74kbXdXbt2kVNTQ1DhgwhKCgIpRSvvfYaL7/8MitXrmTw4MEtdr2WoGmahA8hhBA+c8WHj6acTifZ2dnMnz+fRYsW4Xa7GT9+vLHduzcIVFZWGnuJuN1uEhISSExMJC4uDrPZfNnXP1/wePPNN3n++edZvnw5w4YNa8Fn3DIkfAghhPClNhU+mnK5XKxfv5558+axaNEiampqGD9+PBkZGYwePZqQkBCUUlRVVRlBxOFwGNu8x8fHX9I270opdu3aRXV1Nenp6Ubw+Pvf/87TTz/NsmXLGDFiRCs+48sn4UMIIYQvtdnw0ZTb7WbTpk1kZWWxcOFCysvLGTt2LBkZGdx+++2EhYWhlMJutxtBpK6urtk271ar9byPr5Ri9+7dVFVVMWTIEIKDg1FK8d577zFr1iw+/fRTRo4c6cNnfGkkfAghhPClqyJ8NKXrOlu2bDGCyOnTp7n99tvJyMhg3LhxxhH2drvdKFa12+3ExsYadSJNz5tRSrFnzx4qKytJT083gseHH37IE088weLFi7nlllv89XQvioQPIYQQvnTVhY+mvBuAzZ8/nwULFpCfn8/o0aOZNGkS48ePN5bn1tbWGkGkqqqK6OhokpKSSEhI4PDhw1RWVjJkyBBCQkIAmDdvHg899BDz589n7Nixfn6WFybhQwghhC9d1eGjKe/Uyfz581m4cCH79u3j5ptvJjMzkwkTJhAbG4umadTX11NcXExRURGVlZWYTCY6depE+/btsdlsLFq0iJ/85Cd89NFHTJw40d9P67zsdjuHDh0CYNCgQbz66quMGjWK2NhYOnbs6OfWCSGEaMskfJyDUooDBw6QlZXFggULyMvL48YbbyQzM5OJEycSHx9vTLV06NCBiooKiouL+f3vf8/Ro0d54YUXePjhh/39NL5VdnY2o0aN+sbtM2bMYM6cOb5vkBBCiKuGhI8LUEpx9OhRI4hs3ryZ3r1706FDB1599VU6deqEpmksWbKEZ599FpvNxg033MDs2bP93XQhhBAiIEn4uARKKf7617/y29/+ln79+rFhwwaGDh1Knz59+Oijj/jrX//K3XffHVAH2wkhhBCBRsLHJVJKUVpaSnx8vHEmynPPPccdd9zBX/7yFwkeQgghxAVI+GgBuq6jaZoEDyGEEOIiSPgQQgghhE+13IlqQgghhBAXQcKHEEIIIXzqssLHG2+8QVpaGiEhIVx77bVs3ry5pdslhBBCiDbqksPHxx9/zBNPPMEzzzzDtm3bGDBgAGPGjKG4uLg12ieEEEKINuaSC06vvfZahg4dyl/+8hfAs9IjNTWVRx55hFmzZrVKI4UQQgjRdlzSyIfD4SAnJ4fRo0d//QAmE6NHj2bTpk0t3jghhBBCtD2XFD5KS0txu90kJSU1uz0pKYnCwsIWbZgQQggh2iZZ7SKEEEIIn7qk8BEfH4/ZbKaoqKjZ7UVFRSQnJ7dow4QQQgjRNl1S+AgKCmLIkCGsWrXKuE3XdVatWsXw4cNbvHFCCCGEaHssl/oDTzzxBDNmzCA9PZ1hw4Yxe/ZsampquPfee1ujfUIIIYRoYy45fNx5552UlJTw9NNPU1hYyMCBA/n888+/UYQqhBBCCHEucrCcEEIIIXxKVrsIIYQQwqckfAghhBDCpyR8BBg5tE8IIURbJ+EjgPjz0L65c+cSFxdHQ0NDs9szMzOZPn16q19fCCHE1UMKTgOIPw/tq6uro127drz99ttMmTIFgOLiYtq3b88XX3zBqFGjWvX6Qgghrh4y8hEg/H1on81mY+rUqbz77rvGbR988AEdO3bk5ptvbvXrCyGEuHpI+AgQgXBo3wMPPMAXX3zBqVOnAJgzZw4zZ85E0zSfXF8IIcTV4ZI3GRNt16BBgxgwYABz587l9ttvZ/fu3SxdutTfzRJCCNHGyMgH8OWXXzJx4kRSUlLQNI1Fixb5vA2Bcmjf/fffz5w5c3j33XcZPXo0qampPru2EEKIq4OED6CmpoYBAwbwxhtv+K0NgXJo39SpUzl58iRvv/02P/7xj312XSGEEFcPmXYBxo0bx7hx4/zdjIA4tC8qKoo77riDpUuXkpmZ6bPrCiGEuHpI+AgggXJo36lTp5g2bRrBwcE+va4QQoirg+zzcRZN01i4cOFV+Vt/RUUF2dnZ/OAHP2DPnj307NnT300SQgjRBsnIhzAMGjSIiooKXnzxRQkeQgghWo2ED2HIz8/3dxOEEEJcBWS1ixBCCCF8SkY+ALvdzqFDh4yvjx49Sm5uLrGxsXTs2NGPLRNCCCHaHik4BbKzs895cNqMGTOYM2eO7xskhBBCtGESPoQQQgjhU1LzIYQQQgifkvAhhBBCCJ9qlfBRUlJCcnIyzz//vHHbxo0bCQoKanZ2iRBCCCGuPq1W8/HZZ5+RmZnJxo0b6dmzJwMHDiQjI4NXX321NS4nhBBCiCtEqxacPvTQQ6xcuZL09HR27tzJli1b5LwQIYQQ4irXquGjrq6Ovn37cuLECXJycujXr19rXUoIIYQQV4hWLTg9fPgwp0+fRtd12bpbCCGEEEArjnw4HA6GDRvGwIED6dmzJ7Nnz2bnzp0kJia2xuWEEEIIcYVotfDx5JNPMn/+fPLy8ggPD2fkyJFERUWxZMmS1ricEEIIIa4QrTLtkp2dzezZs3n//feJjIzEZDLx/vvvs27dOt56663WuKQQQgghrhCyvboQQgghfEp2OBVCCCGET0n4EEIIIYRPSfgQQgghhE9J+BBCCCGET0n4EEIIIYRPSfgQQgghhE9J+BBCCCGET0n4EEIIIYRPSfgQQgghhE9J+BBCCCGET0n4EEIIIYRPWfzdAF9wu904nU5/N0MIIUSAsVqtmM1mfzfjqtOmw4dSisLCQiorK/3dFCGEEAEqOjqa5ORkNE3zd1OuGm06fHiDR2JiIqGhodKxhBBCGJRS1NbWUlxcDEC7du383KKrR5sNH2632wgecXFx/m6OEEKIAGSz2QAoLi4mMTFRpmB8pM0WnHprPEJDQ/3cEiGEEIHM+zkhtYG+02bDh5dMtQghhPg28jnhe20+fAghhBAisEj4EADMmTOH6OhofzdDCNEGZGdno2marDQU59VmC06vVDNnzuS9994DPOvPO3bsyD333MNvfvMbLJbW++u68847+d73vtdqj38xmj53i8VCbGws/fv356677mLmzJmYTBeflefMmcNjjz0mb37fkffv5IUXXmDWrFnG7YsWLWLy5MkopXzWlqZD46GhoaSkpHD99dfzyCOPMGTIkEt6rJtvvpmBAwcye/bsFm5ly/l/X+zz2bUev73XRd/3QlMUzzzzDDfffPN3bJFo62TkIwCNHTuWgoICDh48yC9/+Ut+//vf89JLL53zvg6Ho0WuabPZSExMbJHH+i68zz0/P59ly5YxatQoHn30USZMmIDL5fJ3865KISEhvPjii1RUVPi7Kbz77rsUFBSwe/du3njjDex2O9deey1z5871d9OuGgUFBcZ/s2fPJjIystlt//Vf/+W3trXU+6FofRI+AlBwcDDJycl06tSJn/3sZ4wePZpPPvkE8PwmmpmZyR/+8AdSUlLo2bMnACdOnOCHP/wh0dHRxMbGkpGRQX5+PgBffPEFISEh3xgFePTRR7nllluAc0+7vPXWW3Tt2pWgoCB69uzJ+++/b3wvPz8fTdPIzc01bqusrETTNLKzswGoqKhg2rRpJCQkYLPZ6N69O+++++5FPff27dszePBgfvOb37B48WKWLVvGnDlzjPu9+uqr9OvXj7CwMFJTU/n5z3+O3W4HPEO+9957L2fOnEHTNDRN4/e//z0A77//Punp6URERJCcnMzUqVONNf7i3EaPHk1ycjIvvPDCt95v/fr13HjjjdhsNlJTU/nFL35BTU0NAH/5y1/o27evcd9FixahaRp//etfm13nd7/73bdew7sZVFpaGrfffjvz589n2rRpPPzww0Y4Kisr46677qJ9+/aEhobSr18/PvroI+MxZs6cydq1a3nttdeM/pGfn4/b7ea+++6jc+fO2Gw2evbsyWuvvXbJr1dbl5ycbPwXFRWFpmnNbgsPDzfum5OTQ3p6OqGhoYwYMYL9+/c3e6zFixczePBgQkJC6NKlC88++2yzXzKOHz9ORkYG4eHhREZG8sMf/pCioiLj+7///e8ZOHAgf//73+ncuTMhISHMnTuXuLg4Ghoaml0rMzOT6dOnt9KrIi6VhI8rgM1ma5boV61axf79+1mxYgVLlizB6XQyZswYIiIiWLduHRs2bCA8PJyxY8ficDi49dZbiY6OJisry3gMt9vNxx9/zLRp0855zYULF/Loo4/yy1/+kl27dvHggw9y7733smbNmotu93//93+zZ88eli1bxt69e3nrrbeIj4+/5Od/yy23MGDAABYsWGDcZjKZeP3119m9ezfvvfceq1ev5qmnngJgxIgR3/iNzPvbmNPp5LnnniMvL49FixaRn5/PzJkzL7lNVxOz2czzzz/Pn//8Z06ePHnO+xw+fJixY8dyxx13sGPHDj7++GPWr1/Pww8/DMDIkSPZs2cPJSUlAKxdu5b4+HgjqDqdTjZt2nRZw/WPP/441dXVrFixAoD6+nqGDBnC0qVL2bVrFz/5yU+YPn06mzdvBuC1115j+PDhPPDAA0b/SE1NRdd1OnTowLx589izZw9PP/00v/nNb/j3v/99yW0SHr/97W955ZVX2Lp1KxaLhR//+MfG99atW8c999zDo48+yp49e/i///s/5syZwx/+8AcAdF0nIyOD8vJy1q5dy4oVKzhy5Ah33nlns2scOnSIrKwsFixYQG5uLlOmTMHtdhu/sIFnD4+lS5c2u77wL6n5uAgul4sjR47QpUuXVq27OJtSilWrVrF8+XIeeeQR4/awsDD+/ve/ExQUBMAHH3yAruv8/e9/N+Zj3333XaKjo8nOzub222/nRz/6ER9++CH33Xcf4AkwlZWV3HHHHee89ssvv8zMmTP5+c9/DsATTzzBV199xcsvv8yoUaMuqv3Hjx9n0KBBpKenA5CWlnZZrwNAr1692LFjh/H1Y489Zvw5LS2N//3f/+WnP/0pb775JkFBQc1+I2uq6ZtPly5deP311xk6dCh2u73Zb2wBze2CinyISQOzb/rj5MmTGThwIM888wzvvPPON77/wgsvMG3aNOPvpXv37rz++uuMHDmSt956i759+xIbG8vatWv5wQ9+QHZ2Nr/85S+NkYXNmzfjdDoZMWLEJbetVy9PvYJ3pK99+/bNhv4feeQRli9fzr///W+GDRtGVFQUQUFBhIaGNusfZrOZZ5991vi6c+fObNq0iX//+9/88Ic/vOR2CfjDH/7AyJEjAZg1axbjx4+nvr6ekJAQnn32WWbNmsWMGTMAz7/H5557jqeeeopnnnmGVatWsXPnTo4ePUpqaioAc+fOpU+fPmzZsoWhQ4cCnqmWuXPnkpCQYFx36tSpvPvuu0yZMgXwvEd27NhRalECiIx8XIDL5WL48OH07NmT4cOH+6TuYMmSJYSHhxMSEsK4ceO48847jWkDgH79+hnBAyAvL49Dhw4RERFBeHg44eHhxMbGUl9fz+HDhwGYNm0a2dnZnD59GoB//vOfjB8//rwrXPbu3cv111/f7Lbrr7+evXv3XvTz+NnPfsa//vUvBg4cyFNPPcXGjRsv+mfPppRqVui2cuVKbr31Vtq3b09ERATTp0+nrKyM2trab32cnJwcJk6cSMeOHYmIiDDeGI8fP37ZbfMptwveGQ1/GeL5f7fv6mBefPFF3nvvvXP2gby8PObMmWP0v/DwcMaMGYOu6xw9ehRN07jpppvIzs6msrKSPXv28POf/5yGhgb27dvH2rVrGTp06GVtCugtevX2D7fbzXPPPUe/fv2IjY0lPDyc5cuXX9Tf8RtvvMGQIUNISEggPDycv/3tb1dO3whA/fv3N/7s3brcO82Zl5fH//zP/zTrM97RqNraWvbu3UtqaqoRPACuueYaoqOjm/XBTp06NQseAA888ABffPEFp06dAjzTyjNnzpT9PAKIhI8LOHLkCFu3bgVg69atHDlypNWvOWrUKHJzczl48CB1dXW89957hIWFGd9v+mcAu93OkCFDyM3NbfbfgQMHmDp1KgBDhw6la9eu/Otf/6Kuro6FCxeed8rlYnhXnjRd7XD27oDjxo3j2LFjPP7445w+fZpbb731sovR9u7dS+fOnQHPb7gTJkygf//+ZGVlkZOTwxtvvAF8e8FZTU0NY8aMITIykn/+859s2bKFhQsXXvDnAkpFPpze7vnz6e2er33kpptuYsyYMfz617/+xvfsdjsPPvhgs/6Xl5fHwYMH6dq1K+BZYZKdnc26desYNGgQkZGRRiBZu3atEQQvlfeDyNs/XnrpJV577TV+9atfsWbNGnJzcxkzZswF/47/9a9/8V//9V/cd999fPHFF+Tm5nLvvfdeOX0jAFmtVuPP3g9+XdcBT5959tlnm/WZnTt3cvDgQUJCQi76Gme/HwIMGjSIAQMGMHfuXHJycti9e7dMrwYYmXa5gC5dupCens7WrVsZOnQoXbp0afVrhoWF0a1bt4u+/+DBg/n4449JTEwkMjLyvPebNm0a//znP+nQoQMmk4nx48ef9769e/dmw4YNxpAowIYNG7jmmmsAjN80CgoKGDRoEECz4lOvhIQEZsyYwYwZM7jxxht58sknefnlly/6uQGsXr2anTt38vjjjwOe0Qtd13nllVeMEHT2vHxQUBBut7vZbfv27aOsrIw//vGPxm9T3mB5xYhJg5RBnuCRMsjztQ/98Y9/ZODAgUahs9fgwYPZs2fPt/bbkSNH8thjjzFv3jxj+Pvmm29m5cqVbNiwgV/+8peX1SZvfc/o0aMBTz/NyMjg7rvvBjwfdgcOHDD6Lpy7f2zYsIERI0YYU42AMXIoWt7gwYPZv3//eftM7969OXHiBCdOnDD+ve7Zs4fKyspmf5fnc//99zN79mxOnTrF6NGjm42gCP+TkY8LsFgsbNq0if3797Nx40af1nxcrGnTphEfH09GRgbr1q3j6NGjZGdn84tf/KJZgeC0adPYtm0bf/jDH/jBD35AcHDweR/zySefZM6cObz11lscPHiQV199lQULFhgjFzabjeuuu44//vGP7N27l7Vr135jpcLTTz/N4sWLOXToELt372bJkiX07t37W59LQ0MDhYWFnDp1im3btvH888+TkZHBhAkTuOeeewDo1q0bTqeTP//5zxw5coT333+/2aoJ8NSB2O12Vq1aRWlpKbW1tXTs2JGgoCDj5z755BOee+65S3qt/c5sgftWwsM5nv/3Uc2HV79+/Zg2bRqvv/56s9t/9atfsXHjRh5++GFj1G7x4sVGwSl4huBjYmL48MMPm4WPRYsW0dDQ8I1pvnOprKyksLCQY8eOsWLFCn7wgx/w4Ycf8tZbbxlTiN27d2fFihVs3LiRvXv38uCDDzZbIQGe/vGf//yH/Px8SktL0XWd7t27s3XrVpYvX86BAwf47//+b7Zs2fLdXjBxXk8//TRz587l2WefZffu3ezdu5d//etfxvvI6NGjjf62bds2Nm/ezD333MPIkSONOrJvM3XqVE6ePMnbb78thaaBSLVRdXV1as+ePaqurs7fTbkkM2bMUBkZGZf8/YKCAnXPPfeo+Ph4FRwcrLp06aIeeOABdebMmWb3GzZsmALU6tWrm93+7rvvqqioqGa3vfnmm6pLly7KarWqHj16qLlz5zb7/p49e9Tw4cOVzWZTAwcOVF988YUC1Jo1a5RSSj333HOqd+/eymazqdjYWJWRkaGOHDnyrc8NUICyWCwqISFBjR49Wv3jH/9Qbre72X1fffVV1a5dO2Wz2dSYMWPU3LlzFaAqKiqM+/z0pz9VcXFxClDPPPOMUkqpDz/8UKWlpang4GA1fPhw9cknnyhAbd++/bztupqdq78dPXpUBQUFqbPfPjZv3qxuu+02FR4ersLCwlT//v3VH/7wh2b3ycjIUBaLRVVXVyullHK73SomJkZdd911F2yLt28AKiQkRHXt2lXNmDFD5eTkNLtfWVmZysjIUOHh4SoxMVH97ne/U/fcc0+z57F//3513XXXKZvNpgB19OhRVV9fr2bOnKmioqJUdHS0+tnPfqZmzZqlBgwYcPEv2FXmXO8bSim1Zs2ab/x73L59u/Fae33++edqxIgRymazqcjISDVs2DD1t7/9zfj+sWPH1KRJk1RYWJiKiIhQU6ZMUYWFhcb3n3nmmW/9+5k+fbqKjY1V9fX13/o8rtTPiyuZppQPtyj0ofr6eo4ePWqs/RZCCHF1ufXWW+nTp883RurOJp8Xvhd4cwhCCCHEd1BRUUF2djbZ2dm8+eab/m6OOAcJH0IIIdqUQYMGUVFRwYsvvviN4mgRGCR8CCGEaFO8G86JwCWrXYQQQgjhU20+fLTRelohhBAtRD4nfK/Nhg/vznoX2m5bCCHE1c37OdF0R1bRutpszYfZbCY6Oto4RyA0NFT29RdCCGFQSlFbW0txcTHR0dGYzWZ/N+mq0Wb3+QBPxyosLKSystLfTRFCCBGgoqOjSU5Oll9QfahNhw8vt9v9jUPPhBBCCKvVKiMefnBVhA8hhBBCBI42W3AqhBBCiMAk4UMIIYQQPiXhQwghhBA+JeFDCCGEED4l4UMIIYQQPiXhQwghhBA+JeFDCCGEED71/wGFz0xpeBmBcgAAAABJRU5ErkJggg==\n"
- },
- "metadata": {},
- "output_type": "display_data"
- }
- ],
- "source": [
- "# Plot cycle results with each cycle as one panel using defaults\n",
- "fig = plot_results_panel_3d(cycle_mlr); # Add semicolon to supress creating two figures in jupyter notebook"
- ],
- "metadata": {
- "collapsed": false
- }
- },
- {
- "cell_type": "code",
- "execution_count": 12,
- "outputs": [
- {
- "data": {
- "text/plain": "",
- "image/png": "iVBORw0KGgoAAAANSUhEUgAAA5QAAAIzCAYAAAB/WFaqAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8o6BhiAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOy9d5Bk2XWf+d3nX9pyXe3NzPSYxsxgHGYw3UMYYUEABBEkFApoV6slFlwSKzOkCDGCoogQJS4hAQuBCgq7UtCEzITAgJbiik6QBCwISwIgBma6p7333VXdXTbtc/fuH/e97Krqqupybed+ERM1VV2Z+aoq8+Q95/zO7willMJgMBgMBoPBYDAYDIZlYt3pCzAYDAaDwWAwGAwGw72JSSgNBoPBYDAYDAaDwbAiTEJpMBgMBoPBYDAYDIYVYRJKg8FgMBgMBoPBYDCsCJNQGgwGg8FgMBgMBoNhRZiE0mAwGAwGg8FgMBgMK8IklAaDwWAwGAwGg8FgWBEmoTQYDAaDwWAwGAwGw4owCaXBYDAYDAaDwWAwGFaESSjvY3bs2MFHPvKRO30ZBoPBcNdh4qPBYDAsjImRhuVgEsrbxMmTJ/lbf+tv8eCDDxIEAbVajZdeeonPfvazdDqdO315S+bw4cO8733vo1KpMDAwwE/91E9x9erVO31ZBoPhHuZ+iI+vvvoqf/fv/l2ee+45XNdFCHGnL8lgMNwn3OsxUkrJK6+8wk/8xE+wdetWyuUyTzzxBP/0n/5Tut3unb48wxrg3OkLeCPwX//rf+VDH/oQvu/z4Q9/mCeeeII4jvmLv/gLfumXfomDBw/yu7/7u3f6Mm/KhQsXePvb3069XueTn/wkzWaT3/iN32D//v28+uqreJ53py/RYDDcY9wv8fG//bf/xr/5N/+GN7/5zTz44IMcO3bsTl+SwWC4D7gfYmS73eanf/qnefHFF/nbf/tvMzw8zHe+8x3+yT/5J3zlK1/hq1/9qinC3eOYhPIWc/r0af6n/+l/Yvv27Xz1q19l48aNvX97+eWXOXHiBP/1v/7XO3iFS+eTn/wkrVaLH/zgB2zbtg2AF154gR/90R/llVde4X//3//3O3yFBoPhXuJ+io9/5+/8HX75l3+ZMAz5uZ/7OZNQGgyGVXO/xEjP8/jWt77Fnj17el/76Ec/yo4dO3pJ5bvf/e47eIWG1WIkr7eYf/7P/znNZpN/+2//7axAULBz505+4Rd+AYB3vOMdPPXUU/Pez6OPPsp73/ve3udSSj772c/y5JNPEgQB69at433vex/f//73F72eyclJPvaxj7F161Z832fnzp18+tOfRkp505/lP//n/8wHPvCBXjIJ8O53v5tHHnmE//Sf/tNNb28wGAwzuZ/i4/r16wnD8KbfZzAYDEvlfomRnufNSiYL/upf/auAHqcy3NuYhPIW81/+y3/hwQcfnPeFNJef+qmf4vXXX+fAgQOzvv69732PY8eO8b/8L/9L72s/8zM/03tRf/rTn+Yf/sN/SBAE/OVf/uWC999ut3nHO97B7/3e7/HhD3+Y/+v/+r946aWX+JVf+RV+8Rd/cdFru3jxIleuXOEtb3nLDf/2wgsv8Nprr9305zMYDIaZ3C/x0WAwGG4F93uMHBkZAWBoaGhFtzfcRSjDLWNqakoB6id/8ieX9P2Tk5MqCAL1y7/8y7O+/vf+3t9T5XJZNZtNpZRSX/3qVxWg/t7f+3s33IeUsvf/27dvV//r//q/9j7/xCc+ocrlsjp27Nis2/zDf/gPlW3b6ty5cwte2/e+9z0FqP/wH/7DDf/2S7/0SwpQ3W53ST+nwWAw3E/xcS4vv/yyMm+vBoNhNdzPMbLg3e9+t6rVampiYmLZtzXcXZgO5S1kenoagGq1uqTvr9fr/ORP/iT/8T/+R5RSAGRZxu///u/zwQ9+kHK5DGjpqRCCf/JP/skN97HYUPMf/MEf8La3vY3+/n6uXbvW++/d7343WZbxzW9+c8HbFi5ivu/f8G9BEMz6HoPBYLgZ91N8NBgMhrXmfo+Rn/zkJ/mzP/sz/s//8/+kr69vWbc13H0YU55bSK1WA6DRaCz5Nh/+8If5/d//ff78z/+ct7/97fzZn/0Zo6Oj/NRP/VTve06ePMmmTZsYGBhY1vUcP36c119/nXXr1s3771euXFnwtsVsUBRFN/xbYfls5ocMBsNSuZ/io8FgMKw193OM/P3f/33+0T/6R/zMz/wMf+fv/J1lXYfh7sQklLeQWq3Gpk2bbtCzL8Z73/te1q9fz+/93u/x9re/nd/7vd9jw4YNa+J+JaXkR3/0R/kH/+AfzPvvjzzyyIK3LYbBL1++fMO/Xb58mYGBgXm7lwaDwTAf91N8NBgMhrXmfo2RX/7yl/nwhz/Mj//4j/Pbv/3bq74uw92BSShvMR/4wAf43d/9Xb7zne+we/fum36/bdv8z//z/8wrr7zCpz/9af74j/+Yj370o9i23fuehx56iC996UuMj48vq8L00EMP0Ww2VxRYNm/ezLp16+Z1AHv11Vd5+umnl32fBoPhjc39Eh8NBoPhVnC/xcjvfve7/NW/+ld5y1vewn/6T/8JxzFpyP2CmaG8xfyDf/APKJfL/OzP/iyjo6M3/PvJkyf57Gc/O+trP/VTP8XExAR/62/9LZrN5ixnLoC/9tf+Gkop/o//4/+44f4K3fx8/PW//tf5zne+w5e+9KUb/m1ycpI0TRf9Wf7aX/trfOELX+D8+fO9r33lK1/h2LFjfOhDH1r0tgaDwTCX+yk+GgwGw1pzP8XIw4cP8+M//uPs2LGDL3zhC2ZM6j5DqMWePYY14U//9E/5H//H/5EwDPnwhz/ME088QRzHfPvb3+YP/uAP+MhHPsLv/M7vzLrNk08+yYEDB9i1axeHDh264T4//OEP87nPfY4f+7Ef433vex9SSv78z/+cv/JX/go/93M/B8COHTt45zvfySuvvAJoy+e3ve1tvP7663zkIx/hueeeo9VqsX//fv7f//f/5cyZM4taN58/f55nnnmGvr4+fuEXfoFms8lnPvMZtmzZwve+9z0jeTUYDMvmfomPZ8+e5XOf+xwAX/jCF/jud7/LJz7xCQC2b98+a4bJYDAYlsr9ECMbjQaPP/44Fy9e5JOf/CSbN2+e9e8PPfTQkjqwhruYO+Qu+4bj2LFj6qMf/ajasWOH8jxPVatV9dJLL6n/+//+v+ddt/HP//k/V4D65Cc/Oe/9pWmqPvOZz6jHHntMeZ6n1q1bp37sx35M/eAHP+h9z1zLZ6WUajQa6ld+5VfUzp07led5amhoSO3Zs0f9xm/8horj+KY/x4EDB9R73vMeVSqVVF9fn/qbf/NvqpGRkeX9MgwGg2EG90N8/NrXvqaAef97xzvesezficFgMBTc6zHy9OnTC8ZH4IbHMdx7mA7lXcpnP/tZ/v7f//ucOXOGbdu23enLMRgMhrsGEx8NBoNhYUyMNNxuTEJ5F6KU4qmnnmJwcJCvfe1rd/pyDAaD4a7BxEeDwWBYGBMjDXcCY690F9FqtfjTP/1Tvva1r7F//37+5E/+5E5fksFgMNwVmPhoMBgMC2NipOFOYjqUdxFnzpzhgQceoK+vj7/7d/8u/+yf/bM7fUkGg8FwV2Dio8FgMCyMiZGGO4lJKA0Gg8FgMBgMBoPBsCLMHkqDwWAwGAwGg8FgMKwIk1AaDAaDwWAwGAwGg2FFmITSYDAYDAaDwWAwGAwrwiSUBoPBYDAYDAaDwWBYESahNBgMBoPBYDAYDAbDijAJpcFgMBgMBoPBYDAYVoRJKA0Gg8FgMBgMBoPBsCJMQmkwGAwGg8FgMBgMhhVhEkqDwWAwGAwGg8FgMKwIk1AaDAaDwWAwGAwGg2FFmITSYDAYDAaDwWAwGAwrwiSUBoPBYDAYDAaDwWBYESahNBgMBoPBYDAYDAbDijAJpcFgMBgMBoPBYDAYVoRJKA0Gg8FgMBgMBoPBsCJMQmkwGAwGg8FgMBgMhhVhEkqDwWAwGAwGg8FgMKwIk1AaDAaDwWAwGAwGg2FFOHf6At7oSCnJsgzbthFCIIS405dkMBgMdwVKKdI0xbIsLMsy8dFgMBhylFJkWQbQO0MaDHcKk1DeIYpAEMcxnU4H27axbRvHcXAcxySYBoPhDU2WZSRJQrvdRghxQ3w0CabBYHijIqUkSRI6nQ5Syhvio0kwDbcboZRSd/oi3mgopUiShCzLUEoRxzFCCKSUKKV6iaRlWbiuO+sAZTAYDPczRVcyTdNZ8VEp1fuvSCYdx8F1XZNgGgyGNwRFMyJNU6SUvTiplEJK2YuBlmXN26QwGG4VpkN5mymq7lLKXoJYJI/F50VwOHPmDM1mk127dvUOTzOrTybBNBgM9xNF1V1KCVyPjTMPQkV8nJyc5NChQ7z44ou97zMdTIPBcL8ysxkBzIpxRQI5s/D2la98heeff54wDHsNiiLJNPHRsNaYhPI2UVTdDx06xNDQEIODg72q+1yKDmVRUSqCRJIkxHEMcMPhySSYBoPhXqWorp85c4Y0Tdm+fTtCCJrNJhcvXqRWq9HX1zdrFMC2bYBefMyyjCzLiKJolsKjOECZEQKDwXCvIqXk6tWrXLx4kTe96U03PT8W/1+cDZVSdLvd3tfnU8CZ+GhYDSahvA3MrLpPTk5SrVaX/MKdK4EtvlbcZ5IkAKaDaTAY7klmVt1brRZJkiCE4NKlSxw8eJBarcalS5eI45harUZ/fz/9/f2zDk1z4+NMWdjMBNTMqBsMhnuJIpYlSUIURUxMTCw7bhWxcW4Hc2aCaWbUDavFJJS3kJmJXyFxXU6St9CLeWZ1fu7jLJRgFhV6g8FguFso4laWZb34KKVk//79XLlyhSeffJK+vj4Aut0uk5OTTExMcOnSpV6sO336NP39/dRqtd4haL4EM03TXrJaxNCig2kKcAaD4W5jPonrcmxP5jvzzSykzUwwpZS9BLOIxSbBNCwHk1DeIhbSui8kU1jsfm7GYglmYWhhBrQNBsPdwlxjiSI+xnHMlStXqFarvPTSS3ie14thpVKJUqnEpk2bUEpx9epVDh06RLPZ5MKFC2RZRl9fX6+DWalUTIJpMBjuSeb6bRQxbLk+mjf7/sUSzCiK6Ha7JsE0LAmTUN4C5lbdZ77olpNQrvTFutQE01hMGwyG2818xTaAc+fOceHCBcrlMi+88ELP+Xo+hBA9o4knn3wSpRStVouJiQkmJiY4e/YsSqkbEszi8LRYgllckxkhMBgMt5uZLtcw23hnuQ2JlZzp5o4CzBwhMDPqhsUwCeUaslDVfSa3okN5M2YmmMX9SSmJ45jvfe97PPLII5TLZZNgGgyGW8p8VfckSThw4ACTk5Ns3ryZLMtmHaAWYm6hrlKpUKlU2Lp1K0opGo1GTyJ7+vRphBC95LKvr49yubxogpkkCYcPH6ZerzM8PGwSTIPBcEuZ63I9N8Ys9/wIqz9DLjajfuHCBaIo4oEHHjAz6gaTUK4Vi9k5z+R2dCiXcp9FgtlsNnvXFMfxrOqTSTANBsNasFDVfWJign379vUkrhcvXmRqampZ9zsfQghqtRq1Wo1t27YhpaTRaDAxMcHVq1c5ceIEtm33Esz+/n7CMLwhwYyiqBfTzYy6wWC4Fcznt7Gc82Nh3jjf9681M+PjzI7lfCMEcyWyhvsbk1CuAfNV3RfiTnQob8ZCHcwoihZdU2IOUAaD4WbMt1sS4OTJk5w6dYqHH364tyZkvvi4mDnZUrEsi3q9Tr1eZ8eOHUgpmZ6eZmJigtHRUY4dO4bnebMksmEY9g5qNxshmJlgmhl1g8GwVJbajIA706FcCvPtUTcz6m88TEK5CmZW3ZVSSxpSvtMdyqU+ZvGin2kxPTfBNEtyDQbDQixUdY+iiNdff51Op8MLL7xAvV7v3eZ2Fdwsy6Kvr4++vj4eeOABsixjamqKiYkJLl++zNGjR/F9HyklnucxNDSE7/u9a1yqCdrMA5SJjwaDYSaL+W3Mx+2YoVwO83VGzYz6GxeTUK4QKSVpmi6pqjSTu61DuVIHMLMk12AwLMRCVferV6+yf/9+BgcHeeaZZ3Cc2W9Bd6rgZts2AwMDDAwMAJCmKVNTUxw9epTJyUm+9a1vEYbhLIms53m96zAmaAaDYaksxW9jPu7WDuViLDajPp/CwySY9y4moVwmMw8LRXVmOQeDu71DeTNMgmkwGBZjvqq7lJJjx45x7tw5du3axebNm1c9Yw637rDkOA6Dg4OEYcj69esZHh7uGfycPXuWgwcPUi6XewY//f39uK7b+xkWMkEzM+oGwxub5Uhc53K3dShXwnwJptmjfn9gEsplUASCQ4cO0dfXx4YNG5b9JL9bDkwzWc0LdSkJ5sjICOvWres5yZoE02C4/yiq7mfPnqXVavHII48ghKDdbrNv3z6klOzevZtKpbLgfdytBTfHcRgaGmJoaAjQBj3FipLTp09z4MABKpXKLBfZmYegxRLMiYkJPM9jYGDAJJgGw31MlmWMjY1x/PhxnnvuuVt+foQ736G8GTdTeLRaLaIoYsOGDWZG/S7HJJRLZGbVvdPpUCqVVvSEXu6B6W4PBnOZL8E8e/ZsL5k0S3INhvuPmVX3OI5pt9sIIRgZGeHAgQNs2rSJRx99dNbBYT7uxoLbfLiuy/DwMMPDwwBEUdTrYB4/fpxOp0O1Wp2VYM48BM1MMEdHR6lWq5TLZWOCZjDch8z028iyjEajccvPj8X330oWcpddDXMTzEajwfj4OIODg2ZG/S7HJJQ3YSGt+0ILt2/G3ZYk3uprKX7e4nC02JJck2AaDPcec12uLctCSsmBAwcYGRnhiSeeYMOGDUu6r5V0KG/FoWa5+L7P+vXrWb9+PQDdbpeJiQkmJyc5evQoURRRq9V6yWW9Xp91CCpGBOaaoC20RNzER4Ph3mC+3ZJrdX5M05RTp05hWRaDg4NUKpUb4sLddN5cKcX5EMyM+t2MSSgXYSGtu2VZK36R3u8dyvmYeeBbaEB7boJZHJxm6udNgDAY7h4WcrmO45jx8fHebskwDJd8n3eb5HWlyWoQBGzcuJGNGzcC0Ol0ehLZS5cukaZpL8EsDkVgZtQNhvuFhfw2itf1SphZRGs2m+zdu7eXSJ09exYhRE8VURiM3etnyLkx2Myo372YhHIBiifofA5ct6tDebteAHdSFnEzi+mZQXiuft4ECIPhzjCfyzXA+fPnOXPmDL7v88ILLyzbqW+lM0J3eywIw5AwDNm0aRNKqVkJ5vT0NNPT01y7dq13GKxWq733naUkmPMtEb/bfycGw/3K3GbEzNfxas+PABcuXODIkSPs2LGDbdu29WJmIQ+9cuUKx48fB+Ds2bN0u10GBgZ6q4/uJaSUi54fYfEZdZNg3j5MQjmHoltWVJXme2O+XR3K4nrudZZz4FtOgmmW5BoMt5eFqu5JknDw4EEmJibYvn07U1NTK3pN3o0Ft7VGCEGpVKJUKrF582Zee+21nonP5OQk586dQynVc4/t7+/vSdkWSjCllL0E08yoGwx3jpvtllzN+bFIRI8dO8YzzzzD0NDQrMeq1+vU6/Xebt3vfOc7OI7DhQsXOHz4MKVSadbqo8KZeqXcjmLecs+PMDvBXGiPukkw1x6TUM5gqbslV6uBX+ptb5ek63Y8xkp/FpNgGgx3BzMlrnD9tTk5Ocm+ffsol8vs2bOHsbExJiYmVvQY8yWUN0sy74eiWyGR3bp1a0/ONtNFVggxK8Esl8uLJpjFCIExQTMYbg9L3S1ZxLPlnouazSavvfYaAG9961sXdcsGeqqFTZs2MTAwQJIkPeOwwpl6PuOwu421OD/CjQoPM6O+9piEkuXvllzNbKPpUK6OhRLMq1evcvr0aZ555pl5q08mwTQYVs7MqvvMOfLTp09z4sQJdu7cyY4dO277jPmt5k5U4IUQVKtVqtUq27ZtQ0rZSzDHxsY4efIktm3P2oFZuI4vFB+TJOGb3/wmL7zwAp7n3XCAMiMEBsPKWc5uyZmvzaW+5i5evMihQ4fYunUrrVZrWdLVIp66rsu6detYt24dQG9l0cTExCzjsIGBAfr7+6nVanfFuelWnB/hxgTzu9/9Llu2bGFoaMjMqK+QN3xCuVDVfTEsy+oFjuWyUAV+oe+9HdzKxyl+1lv1GHOr9IWT7EwHMCGESTANhhWwUNU9iiL2799Pq9Xi+eefp6+vr3eb1Sg4ise8ld9/t3GzA5NlWdRqNWq1Gtu3b0dKyfT0NBMTE1y5coUTJ07gOM4sKVsQBLNioxCCLMt6yWPxNzUz6gbD6ljMb2M+in8vvn8xsizj0KFDXLlyhaeffpqBgQHOnDkzK+bdrPmxEL7vs2HDBjZs2HDDXPeFCxeQUlKv13sJ5nwOsjd7jLXgVhb1Zsa5Ij4WBVEzo7583tAJ5XxV96VwKzqUC71o7ofDEnDLE7hicHu+Cn3xd06SBOCGBHPmAnKDwaBZqOo+NjbG66+/Tn9/P3v27LlhDmc18XE53c375TW73AOTZVn09fXR19fXm5UqEszLly9z9OhRPM+blWAW8bA4DC3XBM0U4AyG2SzFb2M+Zr72FqNwcXVdl5deeokgCHqFupm3vdn9LCWezp3rVkrRarUYHx/vSWSLuFM4yIZheNtGpm5H/Jm59goWnlE3CebCvCETyqVq3RdiOXOQ89127otwoQPF7aj83GpudYeyYKFqX/Hin3k9c3cYzUwwZ1boDYY3KvNV3aWUHD9+nLNnz/LYY4+xZcuWBeOW6VAundVW4Av5a39/P6Ar7ZOTk0xOTnLx4kWOHDnSk8hduXKF/v7+3udmRt1gWD5L9duYj+K1s1iMLCSu27dvZ+fOnb3bFI9xq4tuQggqlQqVSqUnu5/rIOt5Ho7j4HkeURTdMgfZ25lQzp0hXUgiK6UkiiIzoz6HN1xCqZSi0Whw+fJltm3btqI//P3m8novS14LliIfKa7jZgmmZVk3HKDeiMHB8MajKLYdO3aMzZs34/s+Qgg6nQ779u0jTVNefPFFqtXqgvexmvg497ZpmnLu3DmCILjBlfB+naFcLbZtMzg4yODgIKB/h6Ojoxw9epRz585x6NChWW6PfX19eJ4H3DzBhPkdEk2CaXgjUJwXzp07R7lcplarLfu1u1hSOFfiWsw7zncdy7nm1TKfg+zU1BSnTp2i2WzyrW99a80dZAtuRwyGxdeTFMwdBZhrgrbQmpI3SoL5hkooi6p7q9Xi1KlT7NixY0X3s1qX1+IFrpTiwoULnD17dtYw9Mw393uduy2hnMvMBLO41vkSTGMxbbjfmSlxPXHiBOvXrycIAkZHRzlw4ADr169n165dN3UCXKsOZSH5Av2a7HQ6PVfCgYGBnsvhG71DeTMcx6Fer+M4Di+88MINbo+tVotKpdKTs/X19fUOg4uZ/JgZdcMbiZl+GxcuXGDTpk3U6/Vl38/MGcqZFPHOcZyexHW+2y6nKXGr4opt2wwMDDA+Pk6tVuOBBx64ZQ6ytzOhXMne5Pni4xt1Rv0NkVDO1bo7jrOqA89qZoSK60nTlEOHDnHt2jV27NhBp9Ph7NmzHDx4kEqlwsDAwKqvcynXcau52xPKmcyUNsD8S3KVUkxOTjI8PIzneSbBNNwXzIyPxRtkUS2/dOkSjz/+OBs3blzSfa2FguPy5cscOHCAbdu2sX37doQQxHHcm+k5ePBgz0jtwoULrFu3bkHTiLud23Fgmhkf57o9xnHMxMQEk5OTnDx5kna7PeswWCSjMP8Bau6M+uTkJPV6nVKpZGbUDfcFc/02bNte1dlsboy8dOkSBw8eZNu2bTz88MM3PcvcLSq3pTjIHjlyhDiOV+wgezcnlHNZyghBq9WaVeS7nxLM+z6hnM9YYrUuhKvtUCZJwl/+5V/iui4vvvhirx1eHJomJiYYHx9nZGSEOI754Q9/2HshVqvVe6r6ey8llHOZL8GM45gDBw7w0ksv9Q60poNpuFdZyOXasiz27duH67rs2bOHUqm05PtcTXwsrufgwYM89dRTrFu3rpfoRlFEkiQ89NBD7Nq1i2azyfe+9z2mp6c5f/48lmX1kqCBepnQ98ENV3QdM7kdsetOPobneaxfv57169cD868TmJtgFjFxvhGC48ePs3Pnzt6/mxl1w73KQn4bqz1DFiqOLMs4fPgwo6Oji0pcZ3IvGJetlYMs3L6xg1sxqzlfgnnx4kV838fzvPtuRv2+TiiLqvtc450iGKz0ibqaDmWj0WBiYoIdO3bw8MMPI4S24AcQrSv4WcL64Y2sX7+e8fFxDh061Pv/c+fOoZTqSb5m7h9bDbfyxXorO6wzuR2D28WbgBCiJ0suAlEURcRxzFe/+lX+9b/+13z1q1+9pddiMKyWoupevEaLg8qFCxdIkoShoSGefPLJFcmAVhIfO50OBw8eRErJj/zIj1AqlXr302q1+OIXv8jo6CiPP/4473rXu3qS1127duG6bs80Yuz8cVp/+S08S5Bt30Nl865ZowTL4XapOG5HQrlUydnMwyDov0shZzt8+DBxHFOv13sS2Xq9Pss0JMsyPM/Ddd0bZtQbjQYvvvgiR48epVar3bKf12BYLQu5XMPqZf2WZdFqtdi3bx+O47Bnzx7CcOnFr6WuDZn7vXcCIVbmIDtz1vRWxkfr4vexzn2LddMKS7x0yx4Hrj9vXNftxce5M+o/8RM/wa/92q/x7ne/+5Zey63gvkwo51bd5w7Ezuw4reSJupLqlJSSI0eOcPnyZSqVCo8++uisaxCNy9hnvoZIumRbX0QOP9677s2bN/deiEVCevXqVU6cOIHrurMSzFvltLVSej/fPdihnI8sy254Y4HrDmCTk5O0Wq1bfh0Gw0qZecifWWybKcP3fZ8tW7as6DW1kvh45coV9u/fz+DgIO12+4aOaLvdZmpqijiOGRsbu8E2f6ZphFWNsFSFbqfNlXj8hlGC1c70rDW3oxi2mi5oGIaEYcjGjRtv6DZcunSJNE2p1+u9DmaWZQt2MNvtNiMjI8s6PBsMt5ub7ZZcreRVKcXrr7/O9u3blyRxnclyvne141lLfYzlfv9SHGSLeFLMIt4Skg7e65+DiTNs79jY3b8O/qZb81g5xRkS5u9gFmqbe5H7LqGcW3WfL5mZadu8UiOX5bxIO50Oe/fuRSnFQw89xPj4+I33mXYQUQNkoj9y4wtVCDFrwXXhtDUxMcH58+c5dOgQ5XK5l2D29fX1Zl/m436pvsPtTSgXOogW+vhyuXzLr8NgWAkLVd2npqbYt28fQRCwZ88evv/976/aeGwpr30pJSdOnODs2bM8/vjj1Go1rly5csP3DQwM8Nxzz3H58mWeeOKJG5z2Zt1neT2ifwdBLWHzthfZVN00a5SgkHEWSdDAwMAdHSW43TOUq2G+bkO73e4lmOfPn++5BA8ODvbGNIqfr9VqEYbhXZPMGwwzmeu3sZA750olr4XENU1THnnkER588MEVXeftUn7djLWIXQs5yBby2EajwfT0NJ1OZ80dZLFdlN+HsBwSy0d4Sx/tWCmLnSGBnknavch9k1AuVHWfj6XsAVqM5QSTq1ev8vrrr7NhwwYee+wxLl++PG8iJ6ubyTY+g0g7ZEOP9r6+WNJXOG0NDAzw0EMPkSRJ7439+PHjdLtdarVa79C0nEHoteJ2JpSLJc9rxf0cDAz3NzONJYr4qJTizJkzHD9+nAcffJAHH3xw1TNCS5UqRVHE3r17SZKE3bt3U6lUaLVa88Y8y7J49tlnF3ysWYT9ZA+/H1Bga5nrzDnBmV228fFxzp8/3xslKGLlzFGC2zG/c68klHMRQlAulymXy2zZsoUsy/jGN75Bf38/U1NTnD17FoC+vj7CMOSHP/wh5XJ51T/vpz71Kf7wD/+QI0eOEIYhe/bs4dOf/nRP+TMfr7zyCj/90z8962u+7/cWlhve2CwmcZ3LSuLjTBfXIAhW5BBbPPZMFnst3Y4O5Voz91y7d+9egiBACLHmDrJYDvFbXya9uJdjJyd4MVjZ32Q53M9nyPsioVxOICj+HVaeUC7lRTq38r5p06bFb+v4yC1vveFxloPrugwPDzM8PAwwS5q0f/9+pJSzdOqFLfWtPMzcTTuE1upxFgsG7Xb7ng0GhvuThYwl4jhm//79NBoN3vKWt9Df39+7zWoSypnynYUYGxvj9ddf73UeZ7qILvcANO/32wtXsOfrsjWbTcbHx7l27RonT57EcRwGBgaI47g323KruJcTyvkeB2Dr1q04jjNrTOM73/kOv/ALv4CUkg996EP82I/9GD/zMz+zosf5xje+wcsvv8zzzz9PmqZ8/OMf5z3veU9PpbMQtVqNo0eP9j435kAGWNhvYyEKF+ylMtfF9Vvf+taquoxLve398PwWQlCtVtm8eTMwv4PsTMn9chsnqjxMtOVHiC69esfPkFmW0e1279kz5D2fUM5Xdb8ZhQz2VnUooyhi3759RFF0wxLw5R6YVlNdKmZfNm3atOAgNMDIyAjr1q2bd+/RarkfJa+LPY6RvBruJhYqto2Pj7Nv3z76+vrYs2fPDYY1a5FQzvfGqZTi1KlTnDp1ikcffZStW7fOig/LNWJYi9hSHFiq1eoNowRJknDkyBHOnTvXm7/s7+9fUzXE7XIxvJ0J5cwZypljGuVymV/91V/l2Wef5dixYyt+nC9+8YuzPn/llVcYHh7mBz/4AW9/+9sXvJ0Qomc2ZDDczG9jISzLWlKhaaaL61NPPdUr9q+mczj3+q5du0an02FwcHBeD427bYZyucxtFizFQbZonNzMQXahx7iVLHaGbDabACahvN0sVHVfKquVdC30Ii0OagMDAzz77LM3HDyWE0jW8gk+3yD0xMQE+/btY3R0lBMnThAEwaxD01ro1O/HhHKxDmWz2bxng4Hh/mK+qrtSihMnTnD69Ol5E7qCtZK8zqToiDabTV544YV5JV8rcfZb6wPTTMnV2NgY27Ztw7ZtxsfHOXnyJJ1Oh2q12ouVM11OV8L91KG8WWE3iiIGBwf5+Mc/vqaPOzU1BehZ28VoNpts374dKSXPPvssn/zkJ3n88cfX9FoM9wbzuVwvlaXEx1arxd69e7Es6wYX19Xu6pVSIqXk6NGjXLx4kTAMOXLkCOVyedYZ7nYUqm41i8XH1TrIFtyu+AiLnyELQ8d79Qx5TyaUy5W4zsdyJQtzbzs3mCilOH36NCdPnlz0oHY7O5SLUQxCAzz11FMIIZicnGR8fHyWTn3moWklOvV7OaFMsowkA9cWuLa+76Xo34t9bgbDnWChqnu322Xfvn3Eccxb3/rWRdc2rDY+wmxZ1tTUFK+99hq1Wo09e/YsWKxaiWPgrcZxHIaGhno74rrdbm/+snA57evrW9JOtbks1bxotdyK+KiUIs4kSkHg6ph4MwXHrSi4SSn52Mc+xksvvcQTTzyx4Pc9+uij/Lt/9+9485vfzNTUFL/xG7/Bnj17OHjwIFu2bFnTazLcvSzHb2MhbpZQXr58mQMHDrB161YeeeSReeceV1Owi+OYV199lSzLeOGFF3Bdt9ckGB8f59ixY0RR1NtpWKlUZplj3UssJz4u10F2YGAA3/fvqoQyCILb4gdyK7jnrjrLMkZHR7l69SqPPvroil8ga9mhTJKE119/nUajsWDlfeZtl/M4twMhRO/QNDQ0BFzXqY+Pj3P48GGSJJm1iHapwel2JpQAUZqRZJIoVSSpJJGKOJUkmSTJFKlURGmGVNCJ9YG5GWXYFjS6KZYFzW6GJQTdNKPiO3zo2U3k56UlzVAayavhTiGlpNVqceDAAZ5++umevL9YyzE8PDxrZnEhVltBL65FKcW5c+c4duwYO3fuZMeOHTc1kShuu9SD3q2sks9330EQsHHjxt4ajVar1YuVRUV85iqnpazIuFMJZSolUSKJU0k3LT5mpJmik2SkmaQdZ6RS0YmL2CrpJhIhoJtIPvj0Rjb16Z/xZgW3WxEfX375ZQ4cOMBf/MVfLPp9u3fvZvfu3b3P9+zZw65du/id3/kdPvGJT6zpNRnuTopmRLGyY6VJ1kLnxyzLOHLkCCMjI7MkrvPdfqVxS0rJwYMHGR4e5vHHH+/9TK7rUiqVGBgYwHEc2u02+/fvp9vtsnfvXoAbdpjfC6xGrn8zB9nDhw/3Opwzf4+3iqKYsVhCuRa75e8U90xCObPqXiQ7q/mlr3ZGqLjt1NQUe/fupVKpzDuLNJflVqbulEPXXJ16YQ0/Pj7OmTNnEELccGia7+9xs2CgEz1JnOkEMM4TvzjNSKT+9ziVJKkkVYpuIpFK0U0ylIJWnOFYgiOnOqy7OoU4mVD1HRpROuOjTaOrP+9mEt+2SKXEybuOQgkQCgEgBZ4tUEDVd3jPrnW96jssbYbyXpUrGO5dZlbd0zTtrd5QSnHkyBEuXLgwyxzsZqwmPha3T5KEY8eOMTExwXPPPXdTOSLMn1gtJQG9U8ysiG/duhUpJdPT00xMTHD58mWOHj1KEASzYuXMA0sR31f6cyiliFKZ/5cR5bGyk0jSTH/MlOLk2QZZmnGwc1EnwVGGVLrYNlNmbFmCNFN4jiBOJYFrkaSKkmeTSInvWCQSAtciU4pnN9V7ySQsTcGxlgnlz/3cz/GFL3yBb37zm8vuMrquyzPPPMOJEyfW7HoMdy8z/TbGx8fZtGnTmjYkFpO4LuX2N6Nw5O52u2zbto1du3YhhOgpUfbu3ctrr73G+vXrede73kWpVCIIAgYHB9m8eXOvUzc6OsoPfvADoiji4YcfZtOmTasacbqXXLDn24wwOTnJpUuXSJKEP//zP187B9l5mDtjPpdms3lPNyTuiYRSSkmapj0JluM4K5ZjFay2Qyml5Ny5cxw9epSHHnqIBx54YM1NJO4W/ftMa/hNmzfTjVMmpqa5OjbJoTOXmNh3DNtxCas1SpUqQakClk2cKianpjgzkjJxYJRWrBfUNrspji2Y6iSUPIdWlFL2HVpxRsVzaMYpZdeik0oqvkM3kYSuRSIlnm2RSoVjCTIJlgWJVASWRFiCvsAhzhR9gUM7yaj4Fq04JXBtWkmGY1l00gyBIJOSTIFnC6I0peS5xElK6DqkUvHWHXWGa7ONim73gclguBlzRwCKg0Gj0eDgwYOA7sYs53m5Gslrwd69eymVSuzZs2des4j5mNmhXCp3ky1+Ma/T19fHAw88QJqmTE5O9uZ5ZlreDwwMUKlUSKWiFaU0EogSnRTGme4cJpmkk2RkmaKd6E5hO87IpO4SpplCUfz8AlAIBLKXHEoCx2JksotnW6hOgudYCBSBY+HYAtuCNAPHFsSJpOTZtOOMauDQ6KZUfJfpKKHsO0x2UkquzVSUMlD2eMv2/lk//80UHGtVcFNK8fM///P80R/9EV//+td54IEHln0fWZaxf/9+3v/+96/6egx3L/P5bdi2var4Njc+Xr58uSednk/iOpflNhaSJGH//v1MT09TKpUYGhq64Xx4/PhxxsfHeyY1GzdunLX6qDDHGhwcZN++fZw+fZqJiQmeeuqpWSNOAwMDS54Lv9MzlKvFdd3eKEMcx7z5zW9eUwfZucwc05uPIj7e6ULpSrmrE8qZVffiSSWEwLbtVS92XU1CWQSoEydO8OyzzzI4OLjk296JGUo9C6iIUzWrI9iJYs41Yd/FaTIlyJQiSmTe+UsRQDPOsIWgEaW4lmC6m1LOk76q79FIhyj3DXNtqok1FjFx5iIqjXFcj3olRAqbKFZcbcbYFmRS4dqCRCrqgUsiFX2hS5RJ6qFDO8qoBw7T3ZSKrz9WfYepbkrF0weasmcz3UkJHYs41cllIkEgSJXCtkCi8s6iouw7oMCxbASQSgvbFsSpouwKmlFGxfd63czpKOWR4QqPb7pxxizLskUreaZDabidLOZy/eqrr7JlyxYeffTRZb8JriY+Xrx4ESklg4ODPP7447e0iHY73nhv6hCotIw+SuSMbqH+L8kk3USQiX7a1RpxkHB6fJr2lQmuTl4AmdFOFPs7RxBuQH+1RDvOKPkO7bzQ1o51DIzSjMC1SfIOoiPA920yeb2z6FgQpYrQFrQSXZBrRCmeLehkqlfIq/oOE/nH6XZK6Nt0YolrWyR5EqqUVmkooaiHLlIqKr6DVDq2/g+PDePMeV7drhnKl19+mc9//vP8yZ/8CdVqlZGREQDq9XqvM/ThD3+YzZs386lPfQqAX//1X+fFF19k586dTE5O8pnPfIazZ8/ysz/7s6u+HsPdyUJ+G6s9QxbxcabE9cknn1yyf8JyJK+NRoPXXnutV5z7/ve/P+9tH3vsMTqdDsPDw7PUIHO/t9vt0mw2cRyHMAx54YUXiOO4Z2Rz8ODBWXPhAwMDa7I7dqXcjrGpIm7dCgfZuY8DCyeU9/rI1F2bUM4NBEUyCay6ugQrPzAVy2mVUuzZs2fZqzbmSyjnfk1LkTJacUYjVoxMdYkzXY2OZySEqcwTQHTVWiBoximOEEx1EzzbYrKjK8uNPCFr5pXmdpzhW4pj4yAvTqMQ+LZFkkocx0JJBRZYCGIUrqWr3rXAIZGSeuDQTSW1QFezB+tVOkmJhwaHaHRiRBox3miTdhu0Y4k8fxbHLzNQK2M5Hl7ecXQsnch6tkApKPs2qdSPU3yMU0nFt4nTjNC1idIMxxZEUv/OZKalW6lE/1yOlX+vQ5JJQtcmlgrPFaQpBK4glVDyIJVQLzmkeVczlpKNNZ93PjK/PG+xCnwhDb6XA4Lh3mAhl+s0TTl8+DCgDxhbt25d0f2vJD7OtMh3HGdBY7LFuFMdyjjNiFKdGBbzhFGacWIioXGhgT+u8uRQkkhJN8nIMmgnuvAWZwrftuimWk3RSTKtvohTKq5NlCl81yKTCr9UwgnK9A8KOt0OF86fJ0ki4ulJJq8JquWQrhfSVwlpxVANZhfWqnmnsBo4THYSqp5DK8oIPYsoTzalgopvIxW6UDepqHoOUkItcImSjJJr005SbMvSM5EKpJJzJK82nUTPkkeJpORZZBLevLnOuuqNXeelzFAupwC7EL/1W78FwDvf+c5ZX//3//7f85GPfASAc+fOzTq4TUxM8NGPfpSRkRH6+/t57rnn+Pa3v82b3vSmVV+P4e5jsd2Sqz1D2rZNmqZ897vfRQjB7t27lzWTuNQOZbG/8oEHHuChhx7qnYPni3lPPvkkO3fuxPf93vN+vvg7NDTESy+9xMWLF3nyyScRQuD7/qJz4bZt91QVhZHN7eJOrVWaz0G22Wz2EsyZDrI3G/0qKM6PC32PkbzeAm62W3It5FgrOTAVL+5NmzZx/vz5Fe1tXKxDebUR8aevj2Bbgnac4QnJ0UswcfgqjW5CxXfoJCklVyd1rmMhM7BtUEp36AQKJYTu2mU68YvyZKmT6i5gM9YJ2lQ7xrWhHWWUfZdGN8V3bZr5xzTK8F2bTEps2+q9sHXfD3xHvwDLvnYYqwa6el4vecSZw7ZKhfHpBtbkBF5YI4k6nDo3hWUpPD+kUgrxgpDAcxDCwhYghKUlXBYIpQCBa+sgGrgWCHCEg7AUqQRb6M6raykUgrJn04gyqr5LI0qpBQ6T3ZSKZzPZ1t3NqY6u9EepxLUEsdLzkxngWjZ/5dEh3EUWz95sbcjMvaMGw1qzUNV9enqaffv24Xle741upRQHpqXSbrd57bXXsG2bPXv28N3vfndFBbuVzlBmudlWN82IU0WUZMSZ6klIo7T4XJJKbTSjFDSjFEvoQlShvKj4Ds1IJ2yHr2VMO20sT8fMbiLxXSvvBmr3Z0vQM+2q2Lbu4Hk2qZT4tqCTSWwh6OTz3o2uwrUt2lmKJWw6KWwb3oBUiixNaLdadNtNzo5fw7EtWqUS1VKZ2A6pBy5xpjuPnTgjcK1cyi9oRxm2gFam3wtAgQIhoJOk2I5DpiQ2Wurq2ALHcnR3UyocoRUeZU93OauhTlSL30fZ0wnt+mrAs9v75v17LGUkYK0krzfj61//+qzPf/M3f5Pf/M3fXPVjG+5ulrJbcrVnyMnJSVqtFtu3b1+RAuRmSjUpJYcPH2ZkZISnn366J8u82W3nm9ucr4Hx7LPP8uyzzy54bXPnwgsjm4sXL3L48GHK5TL9/f10Op1b7kh6t7hgC3F9X/FcB9nR0VGOHTs2r4PsTO73kam7KqFc6m7J2y15nfnifuqpp6jVapw/f35FT/SFgkEzSvnq0au9w0otcGh2IkoOdJKMaujmXUaXZpwQ5lVpz7boRrJnJCOEwEIhxfXZGDfvAoZ5clj1bFKlqAU2IwrdBZSKcmDT6qaEnpZZhZ6eawxdm3aeXLY7MaHnkMR50plJPMdCSoVjWzhC/2499ERPYAnatsX6oT6UqiOlIooTmq0WnXabq9fGcR0LLwiolcvYnk858GhFepax2Y6pBHqOsuTZxKnEdwRJBp4NqRSUPC3PqgQ2CugLHZJM0Rc6RKmk6uvkMXQtukmGlSfbWf73ixPdzWzEGe/dNUh/aWFjJWPKY7iTLLRb8uzZsxw7dqxXyf7a1762JpKupTA6Osr+/fvZvHlz73C1Ulv8+XZYzvz/752ZYHS6Sya1C+nRcyn7upewPQ/P0h3CkmfRmjEDWM3lnGXfIUp0MSlVCkvouUEL3bWTSlHLY0ctcOnEKaEDrViyrmzrrqDv9iSjU7ksv9lNqQRuLkm1yFJdbMuEwhaQ5UmdkoAASyr9ubJIU70cXSqtlnBdj7DqUuvrJ04y0iRmutnkyvg4nU5MOfTwg4B6tYLnh3iOhWtpyWsmFbbQ4wS2EESpTn6bUarfJzIYsqzr3c5OPlbQSah4No1Ydzm7iU4uswxKroUQUA+cPLa6vOuxIawF3veWcmAyBTfDrWLubsmZyraZrPQMmWVZb/ej53ns2rVrRde5mOS10+n0VHDzdT7nniFvtWlZ4Vrd39/Pgw8+SJIkvS5dYUA2NTXV615Wq9U1XcFxtySUc1nIQXZ8fHyWg2zxu+vv77/vz493TUK5nN2SRTBYzRNtqQGl3W73LJeLF3ccx8DNDQjmY76EMk4zvnL4Ku1E4lrkHUCF71hIpah4FqnUiVKc6tnDdiFZijN81yJOtWtplikQOpnLUoVrgczAtSySLMO1BXGmcB2IM7At3d0MXS1lqocucZ7Qxpmi6tt0U0k50J3Lsu/qanV+kCrktCXPYaodUwlcWt2E0LdJUgVCW0bo6rc+aNmWRa0UkCqwlKTZ6RJ1WkxPT5HEEVgu9UqJthswVC/TjHX3c6bca9Y8ZTfVJhWpouQokvzXm0lwLIElBL6jD0Z6jlIn2HaeWNZCl3ac8dTmGjuHF68OLXZgKiSv93JAMNydzKy6F/IcIQRJknDgwAEmJydnOamuhenEzeKjlJJjx45x4cIFnnjiCTZs2DDr9qtZOzLfbY+ONHj9wpR2Hs20DF8phe8IfM/WM3+2lsxXfYdunFH1nHxG2maqqxPByVztMd0pzMASQt8lTTM8x8FCAYrQs7EQVAM9e90XuMRSqzw6saQW6CJf2XeYzu+7SNImOwlV32Wym0tSY30NUaq0wVimKPsWHSQlBzzHoiQEidTzi91UUQk82pbFtmqZRpRScgRXp5pYacSZS1dxSZG2z2CthHJ9hmolOokidCwSpZ1YpYJa6DCNoh7o+cd6oJPmqu/QTfWIQCct1i4pskyiHJsoTrVBT3K9a/sjO4cYKC8sdzNrlQx3goX8NhZiJfGxOAsKIXjyySd7owUrYaH4eu3aNfbt28f69evZtWvXvK+lO73L3HVdhoeHGR4e7iVilUqFiYkJzp8/DzBr/vJmMtCbcbsSytU+xkwHWaDnIDsxMcGpU6dot9uEYUiWZYyNjc3rIGs6lGuAlJI4jpe8e6zI8LMsW3G7fSkHpmJ328aNG3nsscdu0KWv5IV6w7ykVHzp0FUuT0f4jqCdKBzHwpLavVQpSHIzhVTq2ZZMKsq+lpfWQj3/V3zuOHolRvEbzHIpbJTJ61Jax2K6k+FaiigDJaATSwJXEGf05hp9R5BJQclzyHITnVSqPOmU1ENXd08DfWirlrzeeo7i43QkcSyLyW5KzdeSspJr00mlNtVRgmq5RKkUsm6dIEky4m6b6VaHqDHOybErlAKPjl+iVikRpVrW2k2zfGYp0wdrqX/WTEGS6J+xlaSUfTuXs+WHOUcQS4lnabdY39FzTZvqAbsfvPlag8UOTFEUkaapSSgNa8pcl+siRk5MTLBv3z6q1SovvfTSrJVFq5V03Sw+FrvNsixj9+7dN7wJrnZx99zYOtaM+fqxa/iOxVQ+Fz7ZTRCWpU1nArR6wbUR6O5j4OpZlVqeSPXlcas/1AW5WujQ6Ga9IlnFd2h0E0r5mqHAtWmnel7dSjJcRyfJWb5aCLTKQ88puqRSx8Q4ldQCrfIoe7aOeblctOxpM5yyZzPRTvGEpJUKUIp2mq/lyBShbZGSz5IrrbbIJGwe6iPOJOvXC5rtiCSOmGg0SSanGB1RVEohrh9QKZWwXTfvJCptuBMonCRDeI4uSggLz7ZwbSsvvkGqwPH0zHnouvmcvJ6539wX8ubNNxqVzeR2mfIYDAWL+W0sxHJHnkZGRjhw4EBPhdFsNlelAJkbH5VSnDp1ilOnTrFr165FV+AsJ6FcbvK5ElzXZfPmzb05w0IGeuXKFY4fP47v+7PmL5e7nuRu7VCmudN2N8noJnqsopNkRImiE6ckUtKOJc/v2M4jjzxCFEWcPXuW0dHRBR1k1yKh/NSnPsUf/uEfcuTIEcIwZM+ePXz605/m0UcfXfA2r7zyCj/90z8962u+79Ptdpf12Hc0oSwkrkVVaamLrIsD/a2SdEkpOX78OOfOneOJJ55g48aNN9x2pY8/9wX+zePXuDTZIXAF3VT1DhSW0DKoWOqPzSglcC06scR3bLqJwreFTiJzuVNgW6RK28FLVQSt3FReWWQoPMcijWO8rEMkQiygE2s5ayPKCBzd8Qsdi1aaG00kel1HnEkcWyebrq27pyVPuwwWJjr1UBvh9AUOnURScQVXW7DRt5iO0t6MY8nTHcfQtZjuaqmYNtSxsYISg0EZYekOTNTt0Gq2uXx5hExKSmFAWCpTLoUEnoclwEZR9rTktZIfgKr5gVEntvqxJ7sZoWsx1U1xbYtOIvEcwTseHsK2bv7cW6xD2Wq1AMyBybAmLFR1V0px8uRJTp06xcMPP8z27dtviJtr5WI4H0upoq9lhzJOJd84fo2Sp6X11dwQrOo7XEgV613regGrm+QdQ50QRknaU3rYlo2FLtD5hYtpoDub/SWdCPaVHD0/GLi04xTf1tLRatmmFaWUfP0xcG3a3RTPtUmSDN+zkZlEOHqOHSxC10aIXE6L7hTKTFH1bBIJoWvT6iS4FnRSiQ20kwxLQJRJLARdPciAyNeB2LZOPpUQlEIfuxTQV6/pOcluRLfTptlqc3V6HIVFuRRi+yGu0KZlYVHsC5zrHdtOQsVzmOjoeNxOJa6ti4kCkFJQ8R3e9di6m74/Z1m2qGHHvV6BN9xd3MxvYyGW2qGUUnLkyBEuXbo0y8V1Lfb0FjEujmP2799Pq9XirW99K7Xa4kWb5UhebzVzk72Z60l27NhBlmVMTk4yPj7O2bNnOXjw4Ky1SfV6/aYqv9uRUEZJRidVXGlEeYKo/4tSPW+vVzvp3b2Nrl5/V4w+NKIZc/e+TSfRRpCpVDy4rsRwbl7m+z7VapVWq8XTTz99g4Psf/gP/4EDBw4wPDzM3r17efOb37wi6fA3vvENXn75ZZ5//nnSNOXjH/8473nPezh06NCisbdWq3H06NHe5yv5nd+xhHKhqvtSmNmhXCkLBYRut8u+fftIkoTdu3fPmxysxIlw5m2LYLD33CRnxlpUfIdUSqq+lrYGrk4EZQa2gDjLcO3cEMKxafSSI20204j0x1a+rzFKtWyq6GxKCZYtsJTAUjHBlR9CNIVb2YQlSnq2UkHg6KTRzR1UHQs6iU4iW7FOwJpR3hmUen4zyfI1HZnCQie2hblD4Ao6QMW1sBDUfV1tL37ekmeTZNqqPs0kloBUKqRUYAniOMN3HCy/zHClRjtOcIVkutEm6ra5OjaGa4MXlHEEpFlGxffJ5AyZcHDdNTbJJGXXRqJ/L5aAFMW7H1tPNVjaS2GxhLLZbPacwQyG1TDXWKJIJrvdLvv376fT6fDCCy9Qr9fnvf2tkLwqpThx4gRnzpxZ0yr6YrdtNpv8my++yuVGSl+tihcEVMslfFsgBJQcQEFfySVJdReym2RUA5dWXCSAeg68kysXskyrGoRSZErPfkcpuLZFnBfoGs0mlVKAEIK6b2MJ6CsVIwfa4KwSOD35/8xDRTmfSyz7Tj6TbhEleoYzyRSBZ2Gji3KZY+E7gpJrY1mQZQrLQhuN2YJuqvfktmJJOU9mi1Ugeo4zX/3R1WucpHDY1t9PJ8kgjZlutYnbDaI4QmbjXMliKuUSaRrmMVFR8pw87utOpVSA0PPmhVHRux5dRy24eWfhZiMBZobSsBYs1W9jISzLuqnp2Mxxpz179sx6X19tQll0KKempti7dy+VSoXdu3cvqXu30KaApX7v7cS2bQYHB3vOzsV6kvHxcQ4fPkySJLNcUudbw7GchFLlK5y6idJJYSp1sphIkiyjFWVkChpdPbs+2U5wLMHpixOUXEEwfrE3e18LHLrFzL3UmwgyCXbewOnP3w/6csVLxbf1+TifWx8oe7z00GxH65mFj7kOspVKhV/7tV/j0qVLvO1tb+OTn/wkP//zP7/s3/kXv/jFWZ+/8sorDA8P84Mf/IC3v/3tC95OCDFrbGUl3PaEcrla9/kQQtwSSdfY2Bj79u1jaGiI5557bkE57VpIXk9ebfK9s+N4tqArJZ6lzRT0m7r+KKSFY0Ho6etwHT2XWLgNVvLDUtnTHbierXygk82qbzPd1S597Vx2lbRalKJJkqSL27mKxVZsC+z8Zyq6dApAKhwXpKTXkbQtnSyC6ElyM5W7zAqVf9Sfu7au/KQovSvNFlgKLAtsBHb+d7QEZJmNJQSplDiOTSIVNdemnWhTnUZUGBNlDA8N0IhShjdYjE23UUmXsQzOnb8IlkW1HFIKywRhCJ5DpsBSOjl38qBQSF2f3trHtoEbndEWYjFJVzE/ea8upTXcHcysuhexDuDq1avs37+fwcFBnnnmmUXl/msdH+M4Zt++fXQ6HV588cWbJgWrOXAVMXJ0dJT/8q19jKcVNgyHXJtsohrXOH8xpVoKCRywmiNkXkrkP5jPRFt4uTS15tukPTmqlqfGqcTzbOJEYtkC7YmjD3cxEhS8fuQwFy+ep69/gOGBfpqJxPElcZYnnbKYb9fdx0xqSWoqoT90iVJJvaTnsrWs9nrSWcxZFis/PKCd6njR7GaU8znLwNbGQaV8DrKvpJO9vvxn6euNHTi0Y5mvhErxHR3zXVuQWh7Vuoes9dE6fx6vXKGbZTSujNGNYqolHz8sUa+UcLwAz7WQEq06UVrymmSKR9ZX2LVx8a5JgZmhNNxqluO3sRC2bRNF0YL/PlfiOvc9v+gwrrR7ZlkWU1NTvPrqqzz00EM88MADS76f5Upe7yY8z5u157HdbvcSzGINR5Fc1vv6UbbDVDdjZDpGdFrEqU4O4yyjFUkyKWlGGVIqprsJAkEn0eZinVgSejadfBY8leDl51jHAqlEr+FSdiFDj0d04oyyZ/XGHhrdlMCxmIozPAdUZuFakKS6qCmVbuAAVPNVTW7g8J43DePaN+7pXWgu9plnnsH3ff723/7bvPzyyyRJsia/86mpKYBZu0nno9lssn37dqSUPPvss3zyk5/k8ccfX9Zj3daEslgUev78ebZt27aiZLJgLSVdM/Xrjz32GFu2bLmpc9ZqXAwnupL/7+Aovmsx1UkpuYLJjq6ItGJtthOneuZRAnqRhjaX8XJJVcm3kfL6Xsi+XAZWz+WetcCm0dVVk0ZUSJxSqqU64+E2au41xoNtMJ3RjmVuopPvbMz0Oo3UEvqj0K6BUqn8BaRNf6TSMqxU6sNZnGpprH5B23TiDNuymE7pSQTKvkOjnWhL+ljLT6NMy3VjqXCd6wlfKqGSB4J64JDI3FBC6rmeKMkYqJaIEh97bIItW7fS7kSkcZeRa+MImYDtMVAtodyAdbWydmr0bJpRyua+kGe39i3r77fYganZbFIqle66IG64Nyiq7qdPn2ZoaKhnZjBTgv+mN72JTZs23fQ5tpbxcWJigr1799Lf33/TRLZgNTOUAGfPnuXI2Ut0y5t4cF2JOM3oq1XpJhlCZlybauBMnCDrXiMaHWMqhqA+rH9nto1raafXwLHpZhmhYxNnueRfQehZZFIQhLpAZjkWmZQoJbk6cpl2o4GUkkqpxCB6b61UCqn0ITZOwRKCjtRFNqW0o2tqaafrLNPmO0rpQ4pC5KY4OimMMm3qM9mM8R1oxRm+I2h0tUnOdJTiO0IrRCyLLC4eByyhkLb++yjLxncElgUV38lXmGipbSYL4zGFb2vJ1aZ6lUaUEtpwdaqJSiJOXRjFERnCCeirlrBcn0oY0lZ6d+bcKvti3O8uhoY7i5SSixcv4roufX19a35+lFL2XFznGo3NZObY03KNGbMs4+rVq7RaLZ577rll72W906Y8KyHJdNcwSlM6ibreNUwzWnFIGmyiUV9Hu9PmB2cadA6dZrx5mErg0uxKTqTn8cIygesgpcRzHTKZbxjQW+Z6yWIlcEgz7fatz7IWUaqwgLbUq5W6iT7TWraW9WdSq9ZAF9QQUA20z4bevauVKyBIU4nlWD1X72asXb6TVKvylIIXtvcxUL5xW8BS1s5VKhVc1132rOl8SCn52Mc+xksvvcQTTzyx4Pc9+uij/Lt/9+9485vfzNTUFL/xG7/Bnj17OHjw4KJKpLnctoSyqLp3Oh2OHDky79zPclgLSVccxz39erPZXFRCNt/tV/JCbUQZe6/BI4M64ar4Do1OTNm3mY4yakFhR28z3U4QwGQ7php4dJMM39VyUdfSLyTQ3UWJTsIkuoN5fZ5R76CMMp2MtRNJdesTTHcTSragM3ma0NPJZzXQczTaCVFfQyO3xu+mksDRXUnP1i+0Ys4mcLRktuJZZArqoZbC1kOXkaai4mk31WKvWS10mM5nGwu57mQ3d2ztaHnaVJziOYIoRc9IFjJjJbDyLWueo3dXKgm+DSXfoxb6JLLKlg2CVpyQRh0mptukzatcGR2lWgqY9gIG6xXe9ejQsp6DRXd9sRlKU303rISZVfdTp05RqVQolUq022327duHlHJBCf58rEV8LJLbEydO8Mgjj/SKgEu9/UriYxzHpGnK5SvXmChtx7W0E6mFIs5k3kWz2Dw8iHRbNNojOOU6TuAzOT3JxLUr2K5HWCoRBCEiCLVkPzfVme7q6vVUJ6PsO0y0E6qBRScld1+1eGDbFk4prYSolkKqnoXrWHoNU6ryvY0SK59R1zOPYDkWcSJRjsil/Ndn3Iv1SplUeI6Nklo24Vl6Z3DF106yeaEbW1gIS+/lFXkxz7YFnSijVBiN5VLXwrG2p1DprTJxdJHP0d3NsuuAgHrgIlFsHuonU4r1G/SoR6fdod3p0hgbZ9wCyyvxnjcNQxqj3IWXcc9ksQNTHMckSWIkr4ZlM9Nv49KlS705vJUyX3xcTOI6l5UmlMVjJEnCunXrlp1Mwp3vUGpJqTaiudxIEF2bhjdFJ0qJM0U7zkgymX/U0tNM6k5upooEL+uNWvl5E8G1BRke6wYHSQcG2YJkqtEmG7nM2PgklryGdHwG6mWwffqrJabauknRTSUlX/t5eJaFskRvrEkI1VOpxVIX/pI8HncTSeDatGJJtSR03PQd4kT7ilhCb0jIhEI42hgzCHVcrQb6drXAZbrnJJ4tquhYioJjLePjyy+/zIEDB/iLv/iLRb9v9+7d7N69u/f5nj172LVrF7/zO7/DJz7xiSU/3i1PKOdq3YusezUOrbA2kq5ut8u3v/1tarUae/bsWVZFYCUHpijJ+PrxMWR+u7Lv5IY2NlGm6A8duqnKbel1gnc+g4qfrwnxHNpRiu9atOLCOEHiCJBouaoApND3ryT5HjSFZ+kKu5ZQadOJbhxTtvXcYl+gnVfrgUMzzq7LTGccUmau7aj6DpNtPb/TTCQl16KbV8LjTOD2dmAqUkTPvKcaOMhcIpbkSW43zah4tnZfdSziLNOrUyS5VNbqDTo3ctONqULSG0l8S5FI3TWOMr16JZXguw6hW6NaqYAQxFFCu92i0+myPrnI9//y8qwltDezt54psZmPZrNJuVw2HUrDspjrcl0cdi5fvszBgwfZtGkTjz766LIOLquNj1JKut0uZ8+e5fnnn6evr29Zt19Jh3J6eprXXnsNgGveRuLY1qMAicpdSSFKdIxoRSmlykauBlNsGFpHqTrMgCOIcpfoRrPN1PgV0lRq865SGTsMKfs+aaYIPR139GFCf5zO1x9t2PEQW3fsIFYWYyMXmeqmDAeKTqx3+SZSz7KnUlENtRlZ6OpiW+hoJUXgQDdVlD1tNlbKZxGLOctKngzaQDu9brxW83XRr+RZvUNPmhVFQugvOaRKrzBJVLFrV/WkWqVcfeHZeo7HEYJWnBGnkq5UpN0Mz9FqksDVlfuKb2M5HkNDIUmm2GZBu9OlbieEyRTf/e45PM/rSdEGBgZmOQrP5GYz5mBMywzLY67fhuM4a76HvNilu2nTplmO/ovdvri2pXLlyhVef/11Nm3ahO/7NBqNFV37WnUopVJzHEolcSp7CWErSkkyve83zmcRu6lWqaWZdtQ+e7FDvSQpN8e1J4bUKrU03yqQKXp7ygEkOp55+by6LaAV6dtMJ9p4Ms5EPpIk6KtVGB2FnTu2kklF1O0w1WgRR5NcHVX0VUpM5+vlptqSauAy2Umo+U4+O2/Nmn/UyhSou9q/o5Yr+0JXr9Fb588ZH+udd23d0MnjsWvr5VLVPC7XQz2HPlz1eccjCxcJlrKnd608OH7u536OL3zhC3zzm99cVpcRtHPvM888w4kTJ5Z1u1uaUM6ndV+rhHI1ki6lFNPT04yNjfHII4+wY8eOFc1xLufxpVR88eAIV6cjpIQkzXBsC6kkjUYL2xbYVimv1mj31DjNCB09z6ifsOS7zPSBoxtLXEe7EHq2RZJKbMsiK2ZTldQegUIPNtr5deukk95HL3/hB47udFZ8GymhP3CIczltVLz48uHjVpxQ8nXyGeQOsb5r0ciDQyN3hm3FEikVnUQilMK2LZSS6ClKPYvp2RaWJfAtCxvd9bQs8pUlEGeSWujQTST1kkMzuj5XWfZsJpsRttAHMjd3oxXo6n6W5Xs6E71DU9l13vHEdp7cXOvZW1+9epXjx4/f9NBUPI8XCghmPsiwXNI0vcHl2rIszpw5w9TU1CxnweWwmvg4PT3NoUOHUEqxZ8+eBZOHxVhuwe3SpUscPHiQBx98kK/vP0NXZNQrvp6p9hzSREsVbEt36zzHpptJlF+loUoMWSJXdjh03ZANG2o0ugm+yBifbtFpt7hy9Sq+6xCEIbVyBT8s4bkWnqNlSoVTddV3iDOLiiW4mEqGXJtGJHNH6oTQc5jqJJQ83eEsezaTsVZatFNJYOv1S74jkAqqgUOmFH0lJ5+DdEgybSQ0MRVTdkXPAGc60klto5sSujbTnZTAKRQbujPpWPk8uwBp6SiqlMBzLL13t5C+KoEt9PuBb+tDUCXQLoSFOqTocpY8bSTkOTadWFLyA37y+Z0Erj1rYff58+d7boFFrOzr6+u9ly/FBduYlhmWSlFsm+m3Ydv2TQ11bkZRtFuqxHUuxXlxKUW7mWZmjz/+OJs2beLMmTNr5oI9MjLCtWvXGBgYoFytM9HNjWhSyclrEbFKOJ9dpdnVLqXNbkqmdKIIotex812bKNFz3Emq8NwiedJzhghB4Irc40OPRvm2oJso+h0rV0vYenyrcDv19Do7L19F5woLR2iXaj2DmncQUdiWlY8SQCtOcSyLTpySSogyvRfYcatU61WQWvHQaLXottucPTuG5zhM+iF91RITmU+95PU8RCY7KRXfotnNjSuTPMnMzSiVhFrJRqEbOlGqPUrasXYJb8YZrq3HKGwh6AIiN1ZTUmG5eszirzw6hLdIwphl2YLvp2tlWqaU4ud//uf5oz/6I77+9a/zwAMPLPs+sixj//79vP/971/W7W5pQlm86ObOSgohVlU9h5VX4NM05cCBA4yPj1Ov11f0y4blJ5RfO3qVc+NtPM8mkrqj2IpSroyO0um0ezM4fliiWgkJ/DK+q6sfjiAfKL6ebKaKnrS16tu6G+jZpJnCsfJdlLYgSfMZHCkhl2gJoXWiaaZIMminEkuBsAVK6e9HQSK0Nl2il4iD3u0GumuqFLnxhaLi6UNTsbKkmLnUAcPSO+IcXa2f22mseNelte1E69KjTOE7kGRaciCllqRlslgPoqvySukuwLhFz6ZfZAIn31FZLjqtgZbZPryuzJu3aFnzXHvrmx2a5pqkzKXoUBoMS6U4GBTJZKPRoN1uk2UZL730EmG4dMOomaxE8qqU4sKFCxw5coRNmzZx+fLlFSWTsPT4WBzoLl26xNNPP03sVDgyfprtoWQq0ussukmmVyTJXB6V6YKTcmxsoeeshdAS+yjN8m5dmruwwvp1AzSjlI0bLa5OtRBpxLkrY1jZZZTjM1DVpjR9tRKZFNgOOJY2RAssXWEPgnwlkeUgUZRydUmQu2q7tl63YQtBK/9YzMEXc5aZ1A6uAi3FUqlAIFH5ocay9JylQiehCihbOsYFjoWw9A5M2xLEscTLpa+F62ulZ8rmMt1NqPr6Y8W36aZ6RijJZC9GV30HRD7jqbRiRgC2ZfOux9b1Yv3chd1xHPdWARw/fpxut0utVmNgYIA0TRcszhYjASuxwje8cZlr3ug4zqKGOkvBtm2SJOG73/1ur3C2nEJHcQ64WYxbyMxsLfb0zkyGh4eHOXnqFF8/3aaDR7kUUi2XmW5EeI5Ny27j2YI0NycsYopCmy76rk2U5k2B3BysMA9rRVmumNAz6Ero9UUWAgvtWq3y2cVO7gHSiLQkfyrv7k12Eq28SyQlV+Su0jZSSVxXFz9Vfj4FhSXzdkNu8KibEgoLhURhI7Acl1qfVpgpJYm6Ee12i4mJCeI4Zsr1KJdLZHFIqRTSiXXDpR3ruNzMdHKogCjLCPPH0TJXgSUsSp7+fTuW7sAILCwLkjgj9Jw8/mp1y9sfHmSosvDKJFhah3K1Z8iXX36Zz3/+8/zJn/wJ1WqVkZERAOr1eu888eEPf5jNmzfzqU99CoBf//Vf58UXX2Tnzp1MTk7ymc98hrNnz/KzP/uzy3rsWy55nVupLipMq00oV3IfjUaDvXv34vs+Dz74IOPj4yt+/OVU4H94doKz423qoUsnSghsiKKI0csjYFls3boVhJ7p7HbajE00yJIxlKXf4EcmGwz3VWnG2oynnUh8R2gzG0dLB3pmNq6WwYa2duoLfCefe9Rdx8KsQdiCOFG9gWTb1klfsZvRtQVJbl2fJHpVSCQzSo5Nkuq9a1mmEI5OPoWlsBVYQlfPfUdXxksuJJk+KEWZpB7adBJdBWrFklo+O1pY35c97VJY8iymOzrAdaIMJze+kOjh6yzThhFpJvWONmHhF3s489UgFc9GInIHRsXGms9feXRo3r/RYoemY8eOEUVRz8F1amqKarV6w8HIGE4YlotlWb1Ycv78eY4cOYLv+2zfvn3FyWRxv8txiUvTlEOHDnHt2jWeffZZPM/j0qVLq3r8m8XHKIrYu3cvaZrq+Q3H47997zyeDe04Y6CkO3Ul12ayE1EL3bzSrA8q5VytIZXSs42u6s1ah54NCOqBq7uDoUuSSTYOVOmmFYbXDTHdjlBpxLXJFkxPc/Gyor9aAtdnXV+FVqYPT9PdFNeHbqxVDlki8V0LULiORSrAtgqnaz1iINAVeQtBjF69lGYSx7J70tR2lIEQdDJQiN4OzVYuuSoOK1GmY1qSKSo+ustZcskU9IXWbNfXwKGT6ENdK05xLUE70b+jOANLSWQuDS75Nu0Z605qgXam3bWhyraBhQ/XnucxPDzM8PAwQG+f2vj4OGma9gycimJcMQawFiMBK1naDfAHf/AH/Oqv/ipnzpzh4Ycf5tOf/vSyq++G2898Bdy1OD9OTU3RarXYtm3bkiSu83GzGDc5OcnevXup1+vs2bNnliJvtXt60zTl+9//PnEc8+KLL+I4Dn9xYpy+7gRhp0Oj2ebi1GWkkliOi+24OF5ArezTTRWhY5HkRjNZvuPW8R2yTOo9v0nWm8Uu57OB1+WfFu1IF9PyDW84loUAyr6NVIqarSWgtUBvGNCmkHm3sBih6sS5S7Wea08zPf+YSYmbnx89SxcNA88mU/mqt0ThuCJfo2fRzruo2B79AyHVusSxFM1mm6jbYWJslLErEj8ItPt/KcR1fVSmi3PdJNM7fxNFTQimO1q50Y4TKr7uVgaulY8y6OvqL7nE2fWRg0fWV3hy8839V27HDOVv/dZvAfDOd75z1tf//b//93zkIx8B4Ny5c7Oe8xMTE3z0ox9lZGSE/v5+nnvuOb797W/zpje9aVmPfUf2UK6VZGE5FZ6LFy9y6NAhduzYwc6dO7l48eKa7BG6GSeuNNl7fhLHEWQZeI5+Mo1cPE+93sf64XWkmUIpSeiFVMsB64cGtF692+HipVGak+Ncu3qNWjnA9kIG6mWmE5vKDBOdqY5+8rciqS2TU0ngCuJU5ZWp3ERnRrJX9vSLteo7pPnC7SiTlH29N63k5h3FfD1JxbNp9ioyGRWv2H+Wfwz0/E7Z03KHwNXSL0dcN/PJJISuloIV+yj7At3lrAU2We7smuUvXtR1U55OKikVBy3vug3/1UaKJQQTXS0/03Ix7RJriXy21BK845GhG2ycF2K+Q9OlS5dotVq8/vrrSCln7U8ql8u9tSG3ipUepgx3L0IIkiTh4MGDTExM8Oyzz3L+/PlVzwgt59DVbDbZu3cvruuyZ88egiCg1Wrd0vhYOMcODAzwxBNPYFkW/23/ZaQCx4ayZ+NYeuVHnGbUAzefuXZpJ2lu7JX2ZiDLFYvpTqpl+N0Uz9UjA1qupchsC5QkEdryXSqolwIy5dNfq5MqSRonTDdbRN0Wp06PE3p6bqYvi2m0Y+plL+/46f2Ptd4By9X7IANHm5v5tp7L8bRztq7uQy3UyW1/Wf8sfSWHiekuFVfH5Xru8t2To3q641jKJba+a9Pu6DmeVnxdeWIJQZY7HFpCm1HoMQJ90EszSWBrdUnou0T57rRO/ntt5rb6jW5CLXTZ/dDi9vJzCcOQMAzZuHEjV65c4YknnqDdbjM2NsbJkydxHN1l/dKXvrTsWdy5rGRp97e//W3+xt/4G3zqU5/iAx/4AJ///Of54Ac/yA9/+MNFnQ8NdyerSSiLrt6FCxdwXXfZB+alXEdRHDx69Cg7d+6cd6RqNR3KJEkYGRlhcHCQZ599FsuyeO3MNc6MtamFAZnvMdBXR0rFocNH6LSbXAXIEi5aLoO1MhOOz1C9QjM390pyN1Rb6MQwdPX6i3puQNMXzo5NlXzXrhCCZiypKUWc6MRL5g2LQtWmz3mKvsAlyrJekqnjaNYrEFYDh8lukptH6k0B3TjrGZVphRr4oZ5/rAY62Svnc+PlGfPpzSilWqth+SHDw8NMtyNIOky1OkxNjCGFTbUU4pVK1CplxpRewZRmilro9lY9FWMUk51i97sedSjUJ4nSM+hvf3hp5kqLuWAnSUIURavuUC6lUPH1r3991ue/+Zu/yW/+5m+u6nHhDiWUjuPctg5llmUcPnyY0dFRnn76adatWwesfjHtUipMl6c6/H+HRvEdi6m2XldxfvQaAugbHGbjYD/dLMMRkEjt8CfQVRPLEoRuhWv2KDu2bUMpSaPZottpc+7sBL5rMeGH9FXLTEufSuDRLHZSdmfsO5tZEco17s1YdwCj4kUhFZ6jTXQCT1ep9C4yHVBSCX2hTZLpucpuXgnvJnq+shEXjrB5spnPNja6GQJFK1X0KUUj0ge8LNadBGELUKByOZhna0FDkfQV1bMAh1Qp+l2XRCr6A5s4N/bp5onvpEIPdPfWrQhSmRG6Oji9+7F1DM5j47xUwjCkv7+fK1eu8OKLL9JsNpmYmOgdmv7sz/6M7373u5RKJS5evMjmzZtX/FgLsZLDlOHuZmpqiu9973uUy2X27NmD7/tcvnx51QW3pY4EXL58mQMHDrBt2zYefvjh3pudbdur3rM2X3ycedh6+OGHe27ff3lqjJNXm7nsHVKpzSF81yJNJUIobKElWqX8sNMXukwIqAV6BrKe74Cs5F26orhU8nVXMHBt2lFhdJP15jEFek7dth1q9TpWfx/rlaTb6ZJevsTU9BRyfIzpIKBSKtGRJephSKzU9blyz6aZzz02opTQs5nuJNqxuqMT36lOiu/q7/MdQZQIVKbIlMjN0/ShSQg9zwmz5aigFSHCEthSYFta/RG41qzDnu4kaMnrZCeh5Fq0Uv0zTncSXEvQ7T2mInRsHFvgBIL/4bEbd6ctleLvXavVGBoaYtu2bb3l7d/5znf40pe+xPHjx3nsscf4m3/zb/KP//E/XvZjrGRp92c/+1ne97738Uu/9EsAfOITn+DLX/4y/+pf/St++7d/e9nXYLizrLQhUThmK6V48sknOXjw4KquY76ksFB6jI2N8dxzzy24+2+lHcqLFy9y5coV+vr6ePrppxFCcOZak++cGidw9Q5bP3cjnRi/xpnTJ0nTlOeeG2T91h0kcZfx6RZZ8xoHr1yhvxIw5oYM1Su0E0sb6yS6+5gpEErkXh+Kkutol9YsYv+Bo1RLAcoJ6A+sXqNBxz5d1AtcPXqld/YqpMg7iegkUxfR7LyTafditp7p1vPjvg2tVJ+LW5HuZMZpfl6VUMpNd+qhq9fnhdpkp5Y3Nyq+ox1YSwHNyGFzvY9GN8VRCVONNo2pKUZHrmALGJ+cor8PMquki3/5ero41WfMONNKk0RKMgkI7fr9Y0+sx3eWZpi3FNOye9kF+5YnlPMdRtZCsrCUA1Nh0SyEYM+ePbMkZGu5p20+pjoJXzw4SuDovYyBIzh27gIiiWhnsLNeYyJ3Kp1sx5Rdi+lOQtl3aUYpJVe7EAJkUhL4Hv19LvZAP1JKOp0unXabqVwvPun5VCslWmmJWjnQL9J8JrHi27QiXVlpRllejc7wbEE7H4Ke7OS2x+2Yknv9ANaROsGLUy2PSJTeUSnRO3ek0p1N7Tzo5AvE9R6gsm/TUArf1lUrOz+5ZQocW8uuQs+mVZhDRNeHuqu+zVQ+/9NIJGH+e3QsQST1DrgsX12SoPAcQWALUgGOrTucJdcjziTPbKnx6PrVdw6LYCCEoFqtUq1We4cmx3HYv39/byXOpz71qd4BZq1YyWHKcHfjeR7bt2+ftUbpdowESCk5cuQIly5d4qmnnup14gtWs2cN5j9sFcW9K1euzDpsnRtrsf/CJH2hq91bXT3nsr5q5wcTQaubErj6DbwwFsukJM1na/xQ6Rmf3ECi5OY7H8suWZZLXvPYFGeSkufQSfIOZ6QTwU6iY143zvBcG+UEZMKhb2CYwHNpNFs0O11GxsZxLQvfD6jVKgRBiO16VANHz9vkhbKK76DQSpCZbodCCBR6NCFTiljqjmk31oloO0+C24XRT6INIqJEu8zGUvZmOOuh6El6i1VRaaZnMNNMH4SiRO9ey6SO11hWbgJ0/dA12Ul4ZmsfG+vBsv/WM/++MNu0zLIs+vv7ef/730+z2eS3fuu3+Mf/+B/3Dk+rZSlLu7/zne/wi7/4i7O+9t73vpc//uM/XpNrMNw65js/rqQhMdPF9dFHH6XT6ayJCmTmfbRaLV577bWe0sP3F56nW76p4/VZ83Xr1vX2XU+0Y750YATHtnRDoTDFCRxa3YQ0TUmlIk0SfNfB96rUqlVSqZBpzOR0mzhqcersBIEjEF7IQK1CkgYEnkMryXDyXY2WpbCxOHLsGMePHcPzfXY+9BD91S096Wc1l82XfDuXy+ozZzhDOZZkev1dsfuxkMuGrt2bHy/Oj+1ugifIx7z0z+g7FtNdiW9bOvbbOnG1LXoOslJpczWZKz+S3Clby1dt0sxiYMAnU/0MSsm58+dJpODSlWvEUUq17OOHIfVKBc/3cWwLO5+FT3OpcJRKdj/Uz/ra0mPmUkzL7uXmwB2TvK7FgWmxF2QRQDZv3syjjz56Q5t5tR3Kxaybu0nGlw+PYgFYAt+SnD17ntB1WbdtO2dPn9SLukOPVpxRD12m2jHVwKURFZLShJJn08kABI284tONUlzHRrg+fYMhtXwgudVq0e10mJi4xBUgDEuUyyXKlTIWFrV8lqjqO6RKywVa7a6e50xlL4n0XS3Xcuw8gbNFb4g5yoeYM6UQSu9jU+gB5kwpyF/INgJLCGyhq+C2rQ9TltBS19BFzzo6LlGm6Cu52sE1sGnH2sG1sPJvRoXhRaYPkUrPIvlOfijK5bYWFtORpOoL3dmwBZ00Y6Dk8cIDK99XNZOFgoFlWfzIj/wIn/vc53jb297G3//7f39Z82srZSmHKcPdTalUYseOHbO+VhhGrIbF4uPMSv1CZhSrTSjnVuA7nQ6vvfZar7gXBPpNuNFJ+Maxq7036pKv35Kqvo0F9Jc8okTLoZJMJ1Td3CE7kwLQRl1xbmcfZVoK2k5SfMfuHWY6kTYDi1JtSpPI66s46rkUtc/RSZmXrzSqBTaX0PJbadkMD/bRijM2exsYb7QRacTo+DSkV8mEw2C1jHK1lKyb6hnuKFWEnoVMi5UjilIeL0uuzUQsqLjacKTosPaVXL2vN3Bp5O8D0/ks6VQ3IXC1vNe1teGPPnQrpNQznZnUhyalJJ6j32sDWx/YHFv/nsMiAQ1cUinZWA946wOriyNLWatUr9f5iZ/4iVU9TsFSl3aPjIzc4JS8fv36nlmF4e5m7llrOefHmcY1jz/+OBs3bpx1HytVYMDsM+TIyAgHDhxgy5YtPPLII0taO7LUDmUxa54kCbt37+bcuXMopYiSjC8fGsF3Lbr5mrl2ct2PYtOG9Vza+iA2CfWh9SRSoWSGY9sgFJbjs27QR6o+Nm+CRj5zOD4xQRrFCM+jVinjeAHlUkiWKhIysFxwAyzXQQrt1p9KhW8LMnTsTvI57yjVDv3tPNltdlPKgUMrSvJOZpYry7TJTbGP0sodvX1HKzEqgQ1SG4ZJlc9+5uqSRGolTSoFSkqEpcccgtzsx3XsXP4vsBwbBHi2/runmcR2tFfJusE+lO3jW4prU01UGnHy3CV8G4TrM1gr4fglKqFHnMHmvpCntvQt6zmzWELZbrcJw3BF77d3C3dM8nqrJF1SSo4dO8b58+d58sknF7SBXgvJ63y3zzLJlw6McK0R4bs2U1PTjI5cpt7Xx/C6YSyhq9G+o5/0Zc8hTlL6Sg5pJvJKj6QeunpPmq0XyVZDn1as52mKIeYiAYwzRblSww2rDAxBs90hjSPGJqe4PHoN27GoVysEfpgnmHpliOPoIecwd/NzLF1R9/K1IY6l3VRt7T+ByHc9ZpnEdfVSWF3Zvy5zuO7cqj8qKekofQedWBJ4Ft3c7CeWCtdGG+zkK0tCTwfiiqevpeLra5PKwhH6NmEu7aiFLq04JXQF01JbWk938wQ00Y/xPzw2pF1r14BiT+BCFA5dq50TWuq1LOUwZbj3sG2bTqez6vuYLz5euXKF/fv3s3HjxkXNKFayZ20mM528x8bG2Lt3Lxs2bGDXrl0z7lvxpYMjTHXj3MlZ6c6dEjS6CWFZ0Y0SHSsSSeg5xHnMzPJu45ilZaJ+LhWVMneWtq2egiFO9ZxhO9aJ6HSU4Ns2U7GeN5/q6M5gK58l7MSqZ8LgWTLfN+b0zBhSCev7KqSyzPDQoLa2jzqMTbfI2uMcGr1CXyVg3A1YV68wlTpUAt0FLHv6Y8mzacYpSZbRTkEoSSfJ580zPX+u8n3BADVfuwyWc6O2kqcPU6kQufGOLq4VktfGjF1qnlC0Uz3v0+zo1Urt/BDmOBYCwdt2DmFbq9ufW8wHLXRAX+sZ86Uu7TbcXyxV8trpdNi7dy9SSnbv3j2r81Mc2ldaMIPrZ9CjR49y/vz5Za8dWUpsnZqa4rXXXqOvr4/nnnsOx3HyRCjjK0eu0OwkWEKfjUAXv7JcAhqnGQ/v2EQrSumrlnsjBN1UarMjMmL02rgYqFRLlMol1q0bohsnRJ02080WrekpxjJJuVLC9UvseGA75WpFd2ClopMqKpmik69oS5RuMiQZ+T5JRTmfo+wveXpkKnR7pmPNKKPiu/lspt1bP9LIJa9604EgQvZ8OIqioFUkhbb2/fC9653R1gwH1opvM9lOeuvniuKem5tX+rbejlDJzc22DvfTTSXrN8Bko0OWRFybapNEY2DZ9FdLvGvbFuI4XpYT+mLPt/thj/k9K3m1bZs4jmd9rdvtsm/fvl4lZ7E3r1vVofzq0aucm2gTeg7nL1+hMTXB4Lr19NdqRPl+xDSDbiIJhCKRGUIookQ7WyWZbuFnasaKDs/qVbALSWlRYS+GkrvJdefAerVMJw4YHOyn1U1RacTEdIvp5jU6l0aplgNsP6AWenTypdpxqiv4caYIbG3a4+ZzlXoNicJ1dQcycHUlqR5auVGGlpbqJLhw9tLmFFdTPePUjGS+LiTTi8ljLV+NUyB3aU3yKlWc6p8lznTVK87t+ZM0N/ZR2qWsMBaaaEPF1RWtsmfnTouCdz0yRC0/kK0Ft8PyeamYw9T9y1rMmM+Nb1JKTpw4wdmzZ3u70BajiNsrjZHF458+fZoTJ06wa9euG5Yr/+Wpa1rW7mkzBMexSGTR5RK9Ge8iVkzmux/1fKDDRCeBXA5VBaJUx4k0K2RNEltox2drRrx2Le3+HHrapdB1bOJU4lja+MsWel7HtgTtVJBmikaU4liCVqxwreuy/TQDx7ZwShW2lCu6Yp4ktNptuu02Fy9dxAIaYZlyKSQmJHTd3n63Tu68nSpIUolw9MEocG06cSF91cYVzXwWvpNIyp6l56VcfQ2VQK9WqocOMt91mUqdCHejiMDRow2uLfIupZbNNqOUF3YMsK66uN39UrjZ4Xwt4+NylnZv2LCB0dHRWV8bHR1d8uHfcHexlPhYFM42bNjAY489dsPzcrUKjIITJ04ghODFF19cVrFkKR3KCxcucPjw4RuMfYQQvHapw6TV0GNM3RjHAin1jlo7d/L3HN06KLn5mE6gzXc8xyLJdKEMoJvHomY3I3Qtmt2MkucgSlVq9TpppsjiSO987DSZGuviug6ebRGlEbbwSZXKVyVpWWg71psCOrEeK4gz7Z8RZQpXaKfqkmeRKUE9V4TUi13jgV47UvIdJpodXFvk5pMz5LxR1pvRdIsZT98iy7SqRc9T2kQp1AObZqxn66eLlSjFnGZXz7l3UkWmoJNm+YonncRaQjBQK6FUicGBAZSUtDodnh2CK5cvcvLYESqVyqz1cos9nxYz5bmd58dbxX0jeR0bG2Pfvn0MDQ3xlre85aZBYi0Syrm3//6Zcc6Nd6h6FmcuXCCNI7Zs2Uq1FGq5KHqtRWFCE2W6dd9JJK6AZpQROPpJHrg23URP/nZSRdml59iqHVNF/qLM90D6DqmCWj5DUw8c0qhFv6OI/Ap91QrdVGLJjGvTTWTc4eylSQJbcfrCZYbqZTqxT1/JY3KGs1U1r6zrbqA282knGYHj5GtG9JCya+v5nMDRH0ueNvWouFq+UA2cvFJl50u5LRDkq0m0jK0aOPnOyMLgR89Vlj2bqbaW/E53dWDqKP1m4Dk23TiFfO9b4Gh7/V0bK2wfXNsF2ktJKG/H2pDlHKYM9x5rPUM5VzK1lOfoUvesLYRSirGxMcbGxnj++edv6NqfvNpk34UpSoUM1RXaZMFzcG1B6AhK+eoP19JmF15e5a74+WoMz2Ykhaol8vlr7YZa9V0m29fdWCu+k+9l1DG15Oe7LR1dKPMdnYxpOb9OvLJcCudZWqHhWnopryVBWBYyycDSMcdztGTLyxeD+66DE5QZqtYodWMcIZmcbjLdmKY9eoVS4OGH2l3QsfQ+Yc+xKeVV88CxiKWiXowChDNm3yN9QJvu6k5jo6u7r1GqtEOuVXQ49c9a9m2iROJY+m8Suvmce/5+sW2gxHPb++b7Ey6b2xEfV7K0e/fu3XzlK1/hYx/7WO9rX/7yl/WqGsNdz3IkrzMVak888URP4jqX4nmaZRmuu/yi88TEBNPT09RqNZ5//vlZK0GWwmIdymK+/fLlyzzzzDMMDc1edXZyPOLMRMzWzXrmPPAcmt2klyhGhUdFqlUIcaZjWCbJC24Kx7WQSiDQcaNw/+8m+kzVyONNsUIjFi6Dg4PEaT+eDVONNknUohlFpHFE1G1TLpUJSiVs20Xk50Db0p1EAXSSfPYwUzi2QqUWrp2bkhUyVVsglTYj03HK5hpQD21akbzu4u/pawzzcYDQLcakLJIkw7W1YZlj6Z3vFc9CouczZb67PcnnLZNMIhVIpZUwnmPRTrXqrtUtVocoAg9SJdj9yEae3dYH6PVyxcqko0ePEscx9Xq9tzapWq32CgHF7tDFZihNh3IFrNXakEIDf+rUKU6dOsWuXbvYvHnzkv4ga+3yeny0wesXp5Bpwpnz5/E9ly07HsDvuaY6KAmeBa4Fni3wXAulIHRs4izFd7STlJ8fsjzHIpJ6EW0zr6gUlZWp3MZ4qispe4JWomeDogw8G5LGVYLRH5Iqm3DTm4lLw5Rcm1RZbBke0LKtpMvpMxfoL7mMj0+SxhHjnkdfpcxkHNBXKfUMcxqFg2FXzzY2ugm+Y9GIdFWsm2bY5KYPKFzH1pUtqRBKS2ylzB3IlMCxdZXfK/YWObkkIt8ZWc+7sFVf30/oWbkMVwefJNFVtFasD4bjXYFn69/Plr6Qt+5Ym7nJmdzphHIlhynD3c1CCo61io9jY2O8/vrrDA4O9iRTS2WlMbLVanHhwgUAXnrppRvMKaY6CX92aBTHEr3ds8V+ycm2tqKfjjIqCjpxkstPIbSvrwEqeTYCQcnVMzb10EXmpjRJKqkHLp18nqiVW+NPzzCg6a368N3rSWg3oRq4WiKVu2BrFajA9/KVR6HuWBYziIFr66TU1StCaoF2GawGOgmsl3ymo5RNG9bR6KZscgVXJ5vIJOLUxVEclZIoG8cbAyegVgqIFPpAlEosdLchdCxsW1DzXRAKz3a0QzYCy9KGRK5l0ckLc3rNk6U7qza0M/1e04i0RC7Sa8P5kZ2DWGt0gLlZfGw2m6t2MFzJ0u5f+IVf4B3veAf/4l/8C378x3+c/+f/+X/4/ve/z+/+7u+u6loMd4aimTB3BGWmxHXPnj2LdnuEELNk+UtFKcXZs2c5fvw45XKZTZs2LTuZhIU7lHN3886db7840ebgaBdXb1SjFrrEufFiKhUin0XPMt0p7GZgo5jupFQCm+mOLjIlmcLPnVIdS2Ap/Ttx80ZFxc9HqXJzMH32u26eWK2WaXk+pThFOJ4u2rU6TE6MgbColMvax6NSQghttuPkvz8hFGDlu3EFSknEjD+DjvEWCkUqJRYKpYoCI1QDLeste7oA5+cOrJbQu9MVWqEmZaYT2jTTeyylJHC1W7Zt6Rlz29a+HoGl7yfw9N7fWujSzJsaPV+TTsbW/pBntl7fN+l5HuvXr2f9+vUopeh0OoyPjzMxMcG5c+cQQtDf39/rXgI3TSjvZe6I5NVxnFWbThSLu3/wgx/Qbrd561vfSq1WW9btV9MFmHnYujjZ4cuHr5B225y6cJmNg3XKfYM4tpZ2ho522vMdfehwcrdTR+i1GJYtEELPsjj5hmzX0zM7gaNfhOVAy7JKnt1btKo7hbnxhKuTu9DVOyLL0RTT7S6hlTI5PUUQDNHIJWHtWOLZekckQK1/gP7+QVKZ0Wm1aLc7tKdGGL8C5VKJpBRSKZexLJuKrzXnpVwu5jl6KFulAtsWJKnUqzrifDlsIhkILaa611eYVHybyW7uMtiJtfNXnjinmf7luPkbhSUEtqWDoxTg50l4kHcX6oHD1Zai5llIJRkse/zorqFbUuVZrLqklLrleyiXcphaC86cOTNvsvqOd7zjhv1FhtUztwK/FpLXYr/lD3/4Qx577DG2bNmy7NfEShLKK1eu8Prrr1OtVnFd94ZkMs0kXzuiVymBwnMcsny/ZJTL5kczxZBr6V1igct0OyZ0RG8n2FQ76S2eziQ0uwlhWerZ7vx+Jaq3/kLL4AX1wMlXIWnJaT1wc8t6V6/+8HWlv+QVq5UcOqlACPICnsNEW89BTuTzkK1OSugJurGWk8Y9p1lFxbfyQ58uJhaPv3Gwj0wqhocVV66O0Wq3aLY6NDvjjNkWTr4OynJ8qqXr66Cm8qRbS19dGlGSryuRvU6vl5tVhK4FQlf6O52EkiPwHQvHtvRy8Ezxlh399JdWvkppLovJuUDPUK5WZrqSpd179uzh85//PP/oH/0jPv7xj/Pwww/zx3/8xyuePTfx8c5SJHAzn283k7jOx3Kd/tM05cCBA0xOTvL8889z+vTpFa3+gPlj6+TkJK+99lpvN+/cn2G6k/DfD4yQSkknkQgUUe5H0Y1VfiYChzbW2DEyLErWEK1MJ2PNXO6pd4ZrBVrFs/O1b7oQ5zsWEj0q4Dva6Kzq20ilVWY6Xjq9RsNICoOhA0GVzfV+prsJrkqYmG4xOTnBxZFRKqGHH5apVcp4vo+Xz8Dr9U0S29LFOzdX6wVuvhkhX4ekhE2jE1P2XWIp8R0bpcB1dGy2LUFmaUVJJiWWJfKEWRtNVgL3+u7M7nXVXbE3uOxZel+6pX9/XuFvElgolb9vSMVg2ePdu9Yt+D4qhKBUKlEqldiyZQtSShqNBuPj44yMjHDs2DEATp48yeDgIH19fbO6481m87Yo3G4ld6xD2e12V3UfURQxOTnJunXr2L1797JlC0WFaKUuX8UhsLBtbk6OM3JtnO2bNuAEZb1PJ9LV4qmu1n0XSVUrEyihmOrEVAKXVpToKksi8VydqGkjHJXbNesqfODaCMD2bEDh2k7PHjmTMl8gq2UBcbAOvzpIrARudR1Rpqs+3VSv7+imilRCoiDJFInShhhuqUItKNE/NEQ3ikmiDhOT01y7OoawtLmPF4TUKiWE0FVzKSHwLVIUdcfTjoklvby74pLvjHP0i9vP5z1d/dGx9NLvTCksO3f7ch0a+fcWv7Nih+ZUJyV0LNpSD2ILpUjSFN1IELzj4UFK3q15Wt9MHnOrA8JSDlNrwdatW7l8+XLv85GREd797neb1SS3idVKXuM45siRIyileOGFF6jX6ze/0TwsJ6FUSnHy5ElOnz7NE088QRzHjI2N3fB9f378KufG2lQCh26s5VqJlFiWjS1Er1gEUA89pNKup1Gc0JcbJtRLHt3c+XVEQt3TEtgi2Sos64PcubqQonqOrlb7rk2a5nKR/D3As7UjddV3dCIW5o7Ujp57r/gOUmqlSZJpy/oozbAsiDNtBCRT/XtI85GGQn7qOVoa6+eFxXLg9ubEHcemGnqsW78RR0Cj3SbqdGhMT5JEEVOeT7VcohWUqObroCp5Mu3Zlj5YCuikkkwqlCOIEqlnLyOdBE93UizLur6HOJJs7gt5YtPSC7BL4XbMmK9kaTfAhz70IT70oQ+t6rELTHy8s8yUq9q23ZO4LmU2fO79LDXONptNXnvtNYIgYM+ePXietyqV29wi4kLzkgVxmvGF1y+RZpJMWtgWetYxV1yUHT1rXnIdkomLeOPHEQiCSkrqb8YSglo+q9iXmxnWcvMuPVt4fX+tds6Pe7HOc+y8mG5p6T+5SRnXz3f1wjcjcGhGgo3rSzSjlI0OWpGRdjl5/hKBJbH9Ev3VMl4QUgp8MqUdsVMF9dxHpFB6lF2LKxLKgZcXGHWntJcQ+0Xn1O7FWL1BwOoZtyX5TLn+2fP3Cs+m1U3wc7WdAlqJxHUEKo/jjmMhM92kkQpeemhgWWdLy7Ko1+vU63UeeOABms0mr776KpZlcerUKdrtNtVqlYGBATzPY2pqatXx8VOf+hR/+Id/yJEjRwjDkD179vDpT3+aRx99dNHb/cEf/AG/+qu/ypkzZ3j44Yf59Kc/zfvf//5lP/49N0NZSA5Onz6N53m95a7LpahsrWZxdztOefXAZS5dvEA3injsoR14no9l0XvhxmlGPcidWwMtvyo50IoyhupBvsTVYbodUw08mvm+yEJi2km1c2yjk/YMa4JcXuXmT3RdiBdYQulBYhuCch1Reqm3usQDyHXi2g0RRN4VdC1dWXcdQRRreUA7yqiUQlqOx47+ARrdBFvGXJ1qQXucsxdH6a8EKDdgXV8ZKVxKvu6a+rY2yLDzik+AIpPg5wlx6OWJsWX3VolYAm1nH+gq1MzfWTvOemtNXEvPkGZS/9zdJNMOjqngqc31Ve1RuxlZlvXWHczH7ZC83g5s2+51ErrdLh/84AfZvXs3v/Zrv3ZbHv+NzmriY+EKWDwPVyMxXOqBKUkSXn/9dZrNJi+++CLVapVz587dcNujI9McvjxNLXTzmUbdZdOSem2O0IwyUgWdRNKJU1BKy+iVJEu0PCvNMr3bVkHZ1bF7IC9g9Zf0AaIWOsSpoha4vV28ek+bNqIpe3mV3bsu5Zrq5CY43ZSS79COEqTU5kAB+uAUOAI912mRKb2iROrVjmSZXqWUZhLHtYgyRTWvthfOq5XQ1QeiXHJrCZiOYUgpJqOMkh8iLY+N9QHaUUIatWl2unQnL3FZKcIwpFauEIQhgWOjsHrzUb3VK55NnF5fx1RyBVNSOy52Em0+9M5H117FsRRTnnu9Ag8mPt5u5j5Pi/nuYs94lmU3lbjOx1Lj7OXLlzlw4ADbt2/n4Ycf7l3PahPKQrZ7+PBhRkZGePbZZxkcHLzhe5VSfO3IVe0R4dp6L28C5aAo0jtMtyOqoZbt1xyPSVWm5EhaMkAqSSozHCxs0B4Xro1EqzWSTNIXOHRSqaWeUUrZ1yuLingZena+AzJf25YbNBbnTwU9VUQ9tHuqk26asXGwTiuqMDQ8zGSjA2nE6EQD0qskOHodhxcyUCvTRa8KySSEjkUzgZILAh3P4lRfq16PYs/aqx7ms+WBazMVpfiOoJvq9wypBBY6hnu2jSXyIiFQciwci56Co9hV2Yqv+3g8v72PrQOr9+SwbZtHHnkE0E2x8fFxxsfH+df/+l/zuc99jsHBQf7lv/yXfOADH2Dnzp3Lvv9vfOMbvPzyyzz//POkacrHP/5x3vOe93Do0KEFXx/f/va3+Rt/42/wqU99ig984AN8/vOf54Mf/CA//OEPl63iuGOS15XMCBWSg4mJCXbu3MmlS5dWtUMIbi7TWYhMKr5xfILz16YoBQGbtm7PZaoSJQVWvrjadfKqe955rPgOApHLCKA/dOnGKX2hSyT1C7qb5FXoRK8N6aaK/ur1tRzFAajRqybpJLRIThvthEqgdwCFrkOUL+yOpewNIXu2RZKAb+nOZcXWXcIg1Lb4faXCwVV3EPpKHlHq8GClQjvJ2KQkY1MNsqjDiTOTeLbADUKq5RJxEOq/sZR0M4mvhA5Kbr6s29cLcyueThKD/PBVJLZWvuvSyQNV4OodlpZl6/1DUjuKpUoRui7tacUD/e4sbfutYLEK/O2QvN4J/rf/7X+j0Wjw5S9/eUWvE8PNmc90YrnxUSnFuXPnOHbsGDt37mTz5s189atfvemqm8VYcCxASaxj/w3aY0xvfic/PHKWUqnEnj17eh38uTNC462IV0+PUfFtpFT0hR5SSvrzRLAv1DtpK77DFaWbh2kub0qSDKH07yhTALojaAlBJwVPKiY7CYGTL7p2LKJES15jqeevs9wBNVN6TjuROvYmMj+oZDI3wcmo5SY41dDlrITAzddwzJBKTXWT65/3TIBsWrlTYjc3d0ilInT0+qWq76BUIX3Vye61lh4fUFy3/HfyPU22bVGu1/FKFUreeiabHUQacWWqibh2jVjZDNRK4AQM1is0cpOJTqxNOKS0UEofeD1LELj69/DCjv41db8uWIrk1cRHw1oghOCHP/xhbxXRSnflLpYQztxh+dRTTzE8PHzD7Vda+Cse+9VXX+3NfC40tvKXp8Y4fa1J6Gk/CdvS694soecJk1R34tJMG3i1rc2Utvs0YoWlXBrtGLB6a5NkKnFsgUAr5azcZTp07V5cSqXKz3wZ1VxdVsrHEMq+ntEOPe2O6km0OZBjkSod9/Q+cpWPNkAlcFBKMVQvk2QhAwP9dJKUpNNlqtmm0Rrn8ugo5TDA9UPq1TLCdsiSjDjTzQal9DxlhtAqllzSL1FUAu1VEuYxVCe5Ovm1hCDOJbTNji4WFslikmpDTAUEjk2G0GNdPadsxY7BEm9ZA0+OuQU33/fZuHEjGzdu5DOf+QxCCPbu3cuXvvQlOp0Ov/Irv7Lsx/jiF7846/NXXnmF4eFhfvCDHyyooPjsZz/L+973Pn7pl34JgE984hN8+ctf5l/9q3/Fb//2by/r8e+ZDmWj0eC1114jDENeeuklGo1Gz/hhJaxmz5pSim+fbXJitMnGdf2U6wO4jt17wWZKYaHlqkViVCxs1Q+ndLUpgDiTOLbuaOo2va70ZLnD1WUhqPn6WvvKLklaHL7yNR2JNoBoxZJqkFe/Qy+vgucD1HOko7VAzzJ6QtBIdfWnGenOZCuW+LlDmGvppNK2BBItC1NogwiEzaZ1/cAAW6Sk0+3SarXpNKcZu3qVMPDwwhIO2kGrGmiXrsLJteLpayvls5+eo62mhRB6tUruvtid0cGoBdclbe1ES8miNMOz4PnNt36YebGEstPpIKW8rw5M//Sf/lO+9KUv8eqrr67aTMOwdBxHyyuXqp6YWWh7y1veQn9/fy+uZVm2ItMIWPjAJU5/A/sv/gVZt8F46c/Z+CO/zM6dO2dd68zbJpnkv+8fodHNEEKvycjiDNcRZCl5Iij1CgypCFy9c7GeF7fqtqAbJziOrnyLohsotExVKv3/iQTQsctC0ZYZthBEicKxBe1YJ5mtLMOzLLoKPAfasV79URTapIJyHnNLjgKhqPv5/GXgkkhJ1XdJUm1w0U21oVon1mtOOo0xrOYo3dIAqjxMQlEg0wccvaZEm4l1U4mDnmkMHQspdNc1yaBe0gfIvtDVM5d9JbKsxLqBAaIsI+50mW61aDcmmbh2BcfzqJbL2F7AQK2Ud2Ydxroptq33bT4wWGbXxrWVuhbcTWuVbgcmPt5+pJQcP36cLMt48MEHe92elbDYObTb7c7qfs41x4HVdSgbjYZ2XQ7DeeclC46MTPO9MxO6iNVOeqsvUFK7N9sCqSRS6RgnpaLsu6TuBuoWXLk2TsnV3xO4Np1C+p+p3HAs7zIK6CqFb9ukKH0mlXptW5bv/i2SzCS7bj4W2lrBMeBpib3eR66TzUZXO/PHxRqnfDuBY1lYFpRcB8ur0lev5A6rMa1Wi1arzeVLkzrJ9fVKkiRJ6WLpa49TPSKW6sfp7TEXeq4ykyLfqHDdayMIdbGwHrq9vZTTxTaDZgQKpvNVJJ1YK0+E0B4h73xkaE2MyxaLj0U+snv3bv7lv/yXq36sgqmpKQAGBgYW/J7vfOc7/OIv/uKsr733ve/lj//4j5f9eLcloVyO7fN8XLx4kUOHDrFjx47ewWUtTHVg+QmlUoo/+ov9nBtrMtxXZt26IRzLJskkZU8PLfsWxFIfBoXSbXaRd99sSxBLC4nebeY7Ns0oxbcF04mu8rRjSZib5ygUnVRS9/XaENe6nmxlUukXlJJU86pKPdQDxP2hQ5zpj1Gq6AttOokOBJ1Yv6AmGhGBDY38hdSK9GLaVpLpg1eSYnPdvEcPPSvtIptKgkKC61k4fsBwGJKoAWxgutkk6nRIooQsHiON2pTLJWJK1AM9Z1n39cqTsq9XjNhCYAuLWEoqeZW/1y0IHKZz86FmviOum+jn1PObPHx35buklspi3Z5WqwVw3ySU//k//2d+/dd/nf/+3/87Dz300J2+nDcUM2eEbpYMNhoN9u7d25vtKUxwigXza2U8NhOVxUTdNjLqsn5bP/7DD9/wPTNj/jeOXaEdJ4SenhO3hEAKpWX3QCefpdYO0pbe9eiq3ADH5tSFEay0g+WXGKyXwfEp+TZJCr6rDygVT1fX9TVr6WmW29VLqW2mBTqZtYWFEpClGe0kw3ZcQOaVbdH7mEpJnAk6sQQrQ2YKL99vaeUyLFtYeLalpa+2wlYZYvR72K0R0nAQ9dCPktohjg1RoqiEDu08njW6Kb4FjUgxbAumousO3oFrMdXWO9Y6UptjiFTvBfadXNpaLuEEIZs2CDpRQtLt0Gi1aU2MMj0GpVJIFpYIHUkTwUDJ4x2PDN3wt1orbqbguF8kr2Di4+2kKFR1Oh327dtHmqaUSiX6+1fXNVroDFmsoFu3bh1vetObFk0CVhJfz58/z+HDhwF48sknFzxTjEx1+cuTY/SHDt1UUc9Xt5V9m7GOjnGdJNNquEwvtNUqr6y3McCxIFYQurkqIvfZ8Fxbz64L/X3ad1UQZRJbQDvVyVk7X88UxfkWglTh5e6woWujhKAe6BGmeugSpYpqLsUtFzL/XJp6PYnTa+CqgZ5nDD09oxn6Hp7rsW6gnzSTJHHE2MQkMu5y7uxZwsDF8kr010q0pUct9K4rR7r5nsq2/tjITdWiVObxUn+U6rpSpR5qQ7iSp98PvPxMrdC+Jd0k40ffNEzZX5s0aSkKjrkrYlaDlJKPfexjvPTSS4tKV0dGRli/fv2sr61fv75n+rgc7uq1IVmWcfjwYUZHR2/Yx7Nch665FLbRy7mPJEn4L3/+A75/oUW9WkHYDq6dV0Ac0bMwVgrKjp5TxFa9BbLk7lHFXG/o2vqJ7trESYZXdAbzir3nWMRSL1dtRFm+pkPLwFodrRVvRwmeaxFJHTySTGBZkKb5oll5fQeRn0upwsJ+2XeYEGjZgJJUfO2eZeezjpbQVZok05X9KH/xt6JiJijLh6L151NRSsVzaMQp5UoVyyvR7ES6U2kJxqaadEfG/n/2/jTGsiw9z0Ofvfa895lizIyMnCtr6ip1dVePWSTFpkmp1aLpS0rmxb0wRAqCLmhc2bIsA7Slqx+GQcA/BEEGbMOSNdqCBP8gQEuUSXFosdVsq8lmdVfWPFdWjjFHnPnsca3741vnRGRVzpmVVV3MD2iczqw8Q8Q5e521vu99n5cwUPhhzHyzgR/FRIFLpR181/oorTQrDdUMYQ3QilwwDm4gU0xt4Oypecrt4QORG91swzQcDnFd96Yeyx+WeuWVV/iFX/gF/uv/+r/mqaeemi0sQRDctNP1sO5PTT9jVVXd9EB5vUbbwbof0UgfvH9RFLy022Lu0J/lxFJK+Ox/ct37TtfW1672eG9zROiJFEkOgpowFKCY40zhaOwHVPuW4Kzg3fcv4BiDn7agzHj34jqRCwQRi+0Gg0wTRUY2FNE0h1JI183AlS56IBuh0JeJXxoqxpOMl7//RwxGYz7z5OMcPXbC+h8NkS+gndSTaWXsS0e/Mdsgia9oRg20eZctS7Gew9CrI1JthBabGLLSECjJgJtCHhqhTzaARuDiKJFvGWNIQ896kkTWWzqibhkXskZPN1GDKfV2UgmMI0iYjxtUWlPmBVk2Yas7QJc5RQ1fMl1GvZBgbu6usvduVbfyUN6P2JBPQj1cHx98bW1t8dJLL3Ho0CGefPJJvve9793XrF6Qpsf58+d59913b4uMrZSiKIrbfj6tNa+99hobGxs888wzvPDCCzfkIgyykm++vmGjM2TSVhs5rGUjiUsCM4Mbal2jlEtZi5d6NB1WFKLWGNlmVW6VcKVlWuhaCNHaGBwb+6YBpQy1EQl9VokdaVzUBK6inwmJdZBpjNFklaGBqCxCV9QY6VQ2qgrqnavMBSET7wjtyLNwnf39Y29iVXQHbhuhi1YB7VaTLC94/Ngq/dGEfDJic2MLoyv6UUK7kTA2Ma0oIrOgs2EuU9hRUeEph2GhcRB2SK3lZ9Fmug4bXMBXisQCfRKlqLTmCyfmOH4ffJPTetAKjr/yV/4Kr7zyCt/5znfu22Peqj6WA+XtYPFHoxHnzp3DdV1+5Ed+5EMb9fsR/n0nG67hcMhv/d/P8/1txamTJ7i8vk2EoTuRDcXuuKQV+4xyicMY57VAdOqayPMoKuunROJCXLtJmObh+I4BxyF0RV7qB/Jht2cp0bfrKRpaYj/KWnJ0ytqggKIGxzHU9qxeIYdZmRbIZEBkB/IY1GZGWK1rwSUXte3oGAiVXGBpMJXgelRmmhXJTIrVifdx0mWtadh8oMCTKUXg+8y1msSNFrGv2O2PoMq5vLmDZyq0GzDfkslDuxGLNE05aETO5ruSLyQh3TIRzSvDmaWUxw83eGnz7n1id1I3WxDG4zFpmn4qfDTPP/884/GYX/mVX+FXfuVXZn//EIv/0dT1DoI3my4ebLR97nOfY2lp6br/7l7XyA827abAn3a7zYmf/f/d9LCrlKKb1Zx7c4vQU/Qt4GFvvO89bIUevUlxoKMt64ZyHHRdcuni+6RxwsrKYXkdjmLVGMZZxmQ8ptvt4VQZWzsFc52KqohoN1ILahBJ/RS2IwevcpZDOerucXm7B+WEty+uc/TocUa5UBLzSpQQsvnSGKxXxxxc8/xr83Ijn7yqSaOQ4aEv4TfWGYQLuH7MuBRSbGZqas1M+iqbHtsozKagIJleZqUmDWQzF9o4gIb13bcOeDEN4suH/XgUpR0aYUIWR6wsL3B5Y4d5N+fkfMT58+d59dVXaTabLCwszMK378e6dauJ+qfFQ/lwfXywdfnyZV5++eVrKK73K6t3JssvS15++WUGg8Ftk7HvZP84ldBO/ZLT6+R6B8qy1vxfL63Ry0ocZL84KauZN9u1EvrQUxRlzd7mOr3BEN/3iJOEOE6Jk5hSC0SnnxuWPSWZv6HL3vTgZqd5WaVlIFLv+75dV80UJIHdRypHhiWBpygqifsoaogcaXb5rkw0hT4tt3rnPbz+JbQXEh5JMd48qW0mdmI5ALen2b2hgHBiX1Rpoa/oD2vAYVRBlIicvzUnkViTyZjecMRkcxvf84iTmEYjJYkTlLJEWnuIdG0kSfwB2E4z9NjOKhzlsJdVJIFiklcsN0O+dLJzex+k26zbOVDer4bbf/af/Wf863/9r/n2t7/N0aNHb/pvDx8+zMbGxjV/t7GxcVcRT59Iyev6+jqvvPIKq6urPP7449f9spsuBndLaT34GLeq9fV1vvuDlzhfzvPoyUWKSjoro7xkJfQYFgJwmGbc9Ga3pUwBpxsZm582qmCh1vTHJWkstMHIdaSL7u0f+kTbLhNKX8kh1HHYN1Tb2acxDkwlZI5IvOTwaC/6SjIwx4VAe0a2u747yfE9RySlB3yW3Q9mRk4qUl/RqyT3Mq9qPBeqyk4KQcaFSl6va9HSrlJ4SgBEnuvQ8Xybw9aiqg0rh5YYZQVFNqE/GDGZ7LGzBVEU02qkqCCimYR2IuruB8xmNYuNgB89M29/fvOxHyiHw+Gnxh/0F//iX7yvMSQP687rRk238XjMCy+8gOu6NwU5wH3O2rXT0EceeYRTp07dcs0ta8ML6wWrJ2Qda8Y+dS3QsbyoaYU+w2Laqd5fN1uhR3dSQJmRtOc5fGiRYV4RKMiqktBTGOXR6czRbLXZ3FzHwaGuKnrddXY2IU1SdJrQSFNcR3yPApuwDa/QwzRaHFpoMxgFHD28JMh412FUVLjKYZCJrH5SiSRMFzXKsfYF2+3WRuMrK7V1pMPvKvCbiwSdZZTWuI7YG1xHmniiImGWJ5zag2vbZqWldgIZeyIP813FKJdokHIGepPGWhKKb79pQW3N0LObJmU98KJMaYWKLx9p8qiVJmdZNqMLXrp0CYC5uTnm5+eZn5+/60zb25G8fhrWyIfr44OtQ4cO0Wg0rmlG3I+s3un6OOVzJEnC2bNnCYLby2a93f3j3t4e586dY2Fhgaeeeuqa/e8H72+M4ZuvbzDIKgIljfyp/3pcCFxxWGqMga3emO7WGjUep04eZ5wVlMWEnZ1N9EZNlMQoRxEpg4NMN/NqSkcVkmv/wNorsSFyyBxZ8KM08L3ZYVNrS7SeegyV+C+D6bDEWgZAFHuO41PjYZwAXSlMXuG5AiEzRoCVBkPoKpt5KU2ypitquchVjB1mmcLg4CiF4/rMzc2TlRWHXMXeYIQpc65s7KD0OsoPmWsmBHFKM46oLQizNvuwnU7iyzrqOexqsRIUlfyuf+rJ5fvimzxYt0PBvh+xSv/5f/6f82u/9mt861vfum5e7gfr7NmzfPOb3+Sv/bW/Nvu73/md3+Hs2bN3/PwfK5Tng4fBg1Stp59++qYn5IOU1vsNnZiWMYa3336bt949z054lMV2Ag6EvsLBIXSFDtWKJAdyzuakdWa30mluxx6TQiA6w7wi9R3GpeZQUyA6ie/St/TAflbSCH16luA6KiUnrTsRiuA4FxDEuJTDYV4KLrmokamlNgSeSGljf5pLKZrxjqUaCllRXvcecoEV1X5GTyuU2zQQMpjAIySSpKg1GEOFdLRCT5HbaWw/E8lr78DB2hhNP9eEsWFUTgFEtslQI52ldou00SRwHYbjjDwbMxj0KfJtur5PsxEzqhJaaYrBYS72+fpnlvHukdR7p3WzBeHTsll6WJ+Mul7TbWNjg5dffvmmjbZbPcad1HTD9dprr7G2tvYh28HN6jvne+xNKlYMlKUmCCz1VRu7OTB2smahM3Z9WtvYxC0nhGmTU0eWre/bpzfJ7fpY7UdwhB5Z7dBpxARxk8WlQ3SHY3SZs77Tw2xsgfKYa6W4fsSchT/4jkMax/zo2bNkeU6zkVJrg1KgXduUE9slviPyLkeJVzOvpgAxmYKOiutLYLu2idjLbDMxK2RtnAiCf1TU+K6Na1IycYj9aQPOQynwXA/XFRmuZ+OSfMclryWbc1zUNmTcEgyLGs/6qmoNeA55WfHM4ZjI3/+ei6KII0eOcOTIEYwxs/DtjY0N3nrrLaIomk0vO53ObX+/3uxAmWUZdV1/KiSvD+vBVhAEH2pg3Q+Fmuu69Ho93nvvPU6dOsUjjzxyR8OJ29k/Xrp0iTfffJPHHnuM48ePzx5/evvBCeX3L+xxtZvNJK6+ay0B2MlgrUkCl7VuSb52BS9ucPrIIVF6NBoM84gT80sMRhN0lbO7u4eua94/f55Go0GapHhJQjOaTglFPdeORVXXOiilP7CWTXMfmzbHNg1ksOAqWSfF0qBR1rYg8lJwlk5RRw2UF1L6DUJPJLqR784OyNOIvHFeHcjo9Sh1jatkuhh7DjUOsa+sf1NR1OKDHBeGQ/NNBlnCoeUl9kYZTpWz0x+h93rkNbTTGDeI6DRTK/eX37sMbEQtGHkSpfJjZxZoRvf/aHSrfer98Jj/lb/yV/gX/+Jf8C//5b+k2WzO5PjtdnvWKPyFX/gFVldX+e//+/8egP/iv/gv+PEf/3H+zt/5O/z0T/80/8f/8X/w/PPP87/+r//rHT//x3aghGsPgwepWmfPnr3l5nz6GPfbIzStsix58cUXGQxH7LUeIS9A14ayrvHswa2oDbXR1BUiOTViaK60nsFzpqh2yf0RJPMGDu1IYZhCczSdxKOskA5+JTCaSalJfYes1My3/Vmg64zgOjUiX3M7RdnLZHT675JAJnyhqxhV4tcsao1jjEhmFRa4o8ARfbmjIFUSgWJckeRqu2jUNcS+Q6llw5dX04OzdMDGuZVo1NByFZPK4BhDrUWiG/kSxNsIDmzCsopGHFEpn5X2HOO8opiMGWUZW3vrKMAPI37yiSW8OscYbzb9flATyptBedI0ve/Zbg/r01/X+8wclHRprXnrrbe4fPnyLRttH3yMe1kfpxuiIAg4e/bsdUmH16sXL3W5sCeboulBazCpZpCGyHcZV7VkOVpVhdGatbU1qjInTFoEvkDFQk9R1fXM391JfHRtZnEjzUBJRlks+bVLnQZZGbO8OE9/XODUBVvdIWa4zdrGJvPNBPxI/p12aCaJ3TBJE296aG3Z2CbXkUzdto1RSkOhvArYATp2+tlJfOp6H4bWjuS2YQO3I0+RVUKdLWtDVYs/sqg1ruvNcPy9A77IplW1TNUtSaAYWbBbZl/bNFbJcxWBa3CsP8hVUNfwxOEmh+lyo7234zi0Wi1arRYnT56kqir29vbY3d3l7bffJssy2u32bHrZbDZvuMbd7ED5aYOWPayPt+71QKm1ptvtMh6P+fznP39D28DN6mb7x6lfcnNzky984Qsf8tZOr6GD9397Y8B3390htfCaNBQZfeS7su9ULoGr2J2McHXJ0vIhFhfmyEvJOp+UogAZZBXtRsIg85mbd9jrDVlc6LDXHzHY2qIoKhppTBInNJsJfhBijENibVbtWIis7dlhU7LAm9EBXobdsw0LQ9pw6E7K/Zz1wBWyq6coa59wbpVKG1pKzR63rM2MFNuMLHgx2U8nmD7+Vi7+x25W0wgUo0r21HmFZW7YVASrQNHGsNCIqHRIp9OmqDR5LgkE/eGAfncH40iTUfniw+9lFa5y6U1KPnu0zanFj2Yw8CA8lP/L//K/APC1r33tmr//J//kn8xUFRcvXrxmH/vcc8/xL/7Fv+Bv/a2/xd/8m3+TRx99lP/z//w/7ziDEh6g5PWaJ7WHyOmBcnt7mxdffHFmuL6dTKGDE8q7rRstCAclEMO5RxjuZYJcLmoB6FS19TjJxsBgwICjINcWUW/lq+OiJnIdxlqw8FllwBgmpSayVC1PQV5oyQgy+1CaxHcxODRC+f11ZgRXOwGNPOlWx54gkS01qxlO5a1iTA59l3EpHfGs0rgKJpUcJEvtkJe1ACnsgVLyK13Gdlo6KiW7Z9pZykuLi67FyznFQdfaEHoujiOYaceByJXDY+QrXNu1SgLZVHUi6baLhr6ebb4CTx5LuYpOp01YNlhdkRy2Uy1o6BHPP/88vu8zPz9Pnuf3tHG+nZrKqx9OKB/Wg6ippOtOG20H6142XXt7e2xubpIkCV/5ylduO+dtozfh3KU92pFLz6o2Kg2dNKCqbZ5tqWmEIn0NPYfBJGdz7SpGuRw7fpLNrW0qbSgrTQlIzJKQYOtCchrLoiJ0FeNS03CNkGJd8faErvV8JwFGB7SbTWpjqIqc/nBENhny/oUdosBjHKW0GilZ4dhGmA3Knubm1g6e49DPBHLRzwohrxZmJu9yRI8KZkqXFUy+NjJR9FSN7yk865+sjcELZN1s+A6OcphL/JlKZEpKzCtNZDv6yoFSS5PSsx6lNPBmTcbetHk4KUl8l2FW04p9vnJqnvPv7t52w83zPJaWlmYb7MlkMpPHXrx4EcdxrpHHHmQb3ErB4TjOXctpH9Yf37pVw+1OazKZ8MILL1AUBYcOHbqrwyTceP+YZRkvvPACIHLC633mp1DI6YRyo5/xrTe3rNpBGlz9adbtuJC88XFBv7vN3l6fKAxoz7VnubVVJYqy2lJMp5LOzYkh9sELIo6tpIyLChdNdzBiNJmwvr2D77mEUUyr2SCKIgLfwwHG44x+r0un0yGJQrRxbIavoZN45IUm8R0mlWa56dpm2IE4jsm+ZaphZbaJr+gOJ2ytXyFttFk5vIzW2BxNWf+m+ed5LZaAraEcIselUK/HhdgRinqf3F0f2INO197AcTCuImkkNJOE1UNiV8unFqveDm9tb9pcSs2JAM6e/uigWrdjCbhXBceNIE8H63o+75//+Z/n53/+5+/pueFjmlBOoRNVVXHx4kXef/99nnzyyVuaRw/W/YoO+eCCsL6+zssvv8zJkyfZcefYXh+Shj61lqlhrSEIPTJP4SuD74JC8sOMNmBzKKcHLV9JuLZIkQy+51AYWSBHhcin+nmNpyArhE41trdlpamNZlRolK8pp3lBen+D4dnJom916ZGnAIdGINotLxBNgqfkgyxZkhqjHZTn4DrGdsAEejMu9v2KzdifdaT6WUUayGKR+C49S50d5vVMa14bkQ5M84EmeY3WhnFpSBMYl7ZTX2p8VyBCynEseEfhOg6hqwTdbyBVErjb8QQC9NhKhz/zlGjb67qm1+uxu7tLURS8/vrrXLlyZbbRabVa93VqOf2c3WzD9LD7/rDuV7muS7fb5dVXX72jRtvBuhvKqzGGixcv8tZbb9HpdGg2m7f9vFlZ8xuvrJOXNePCUBqsxFMxzmyTqqgsAALi0KU3GLJz9QqtVoeVQ8sYHJJAoj+SUEBkGINjFEqJd1EhgIjaAAhArDYGXQn+vtIajHjMHcdgKjsFdTySVpu42WZOTzvXI9Y2NqirijRNSZIEv5HSDH0cxyHxwFcQWzS363r2+TWemlK5HbJC28iTeibJPbgp7E0EutOdSBTKXiE+yUGhiUJDf1LKxsgIedFVLgqZPpa1g6dEhusFarYm1haMVtmmXKXFmwkij/vJx5eFnKv1XVNd4zhmdXWV1dVVtNYMBgN2dna4evUqb7zxBmmaztbcqqpuquBoNBoPFRwP676U53nkeX7H95vSYg8fPszS0hJZlt31a7je+rq7u8u5c+fI85y1tTWAG3rRpvcf5RXfemOTwJ3GWoj6ohP7ZFVNO/HpjQt2N9cZ5SWHDi2zvdulqm2juypgsE7hBfiNJSHme9K0D1yHDIdmJIfMViQwsSNLIUVVc9SB3f6IqsjY2NqGusILQtI45pXXXqPX7bKwuMjZr3wZRynrnRSIo+fKtRx7sjZPJ4RTr3ozdMnsnm9KiB0WNT944QXeO3+BRhzzIz/2J1mY79jYEtCI7EIb8JXDBEPsOYSewld2L+uKaq6oReWSVfuwndnedQYf8tibVDQCl36miX0HP4xZTlKMMVRFSa+7h65HLIwv8gffXZutZ/Pz87ftp72d0lrfElr2wz6U+FgOlCAX08svv0xRFHz1q1+9q5P5vUq6Di4IxhjeeustLl26xGc/+1m26ojn39yiEbiMyprEErYiT3w0nmMjQFwl3hblUDH94ncQQaua8rEAYwmuENoLMfEtJt9T5DYcW+SyMv1UyqE2CowgmQFqB4yZgo7kMFdrCWIttYAl8qIkDj2KqiIOfIqiIgym0iuXsnYIPIcst6/FgTiQqeh+nqVLXUu3S1uaoeQYCYQiDRQaCBxlZWGi7Z+U+kCkiM/FCksYsxmXhci+ar2fpzkqJbOodyBTqBG67E1kujsyhsT3+PFHF2aHV9d1Zxf91tYWp0+fRmvN7u4uL7/8MsaY+wKamNb0c/LHAcrzsB5sfXCTbYwhyzL29vZ46qmn7qjRdrDudEJZ1zWvvvoqOzs7fPGLX2Rzc/O27z+FSVS1rEGeqzBaKNRFZfAcxcQ2ygYWO3/h6g7D7g7N+UWWl+at99pnWGgSjxnqPqtEvVEbiTyqLPlU1iGJSWqEHpWlXlf1PpTMUwK/8V2RiQauNM2S0KcyDoebDcZ5hYdmpz9kMBxxaX2bRuTjBBG1NvTyivkgEI9PaBUaluA99ak3ZsAHocDur5siiZ0e+NLAwiY82RwpxMdTGyzldd+TOaXhTqWwsSdIfN/dz0vzlENRaZJQMoETC+R56kiLlY5MD2+Wn3snpZSi3W7Tbrc5ffo0ZVnO5LFvvvkmWZbx3nvvMRqNmJ+fv+YAOV0fHx4oH9b9qDtd24wxvPvuu5w/f57PfOYzrK6ucv78+fs2kDjol3z00Uf57/67/46XXnqJlZUV/qf/6X/ixIkTH7q/4wiH4ndeX2NnmON7yj6WYyXrss5NJjm7Vy/jhRGfOXOU3mBI5AkQ0XMdyu4aTv8iqIBCBaikwygTEOOg0PbQWkt8Ur0PfowDGSQcnm9T6pbk2WYZk8mYza1dttYuMyoqjKnZ2t1jeWGeSSn7uImFmGW1IdaGSSEKjsoOU1wl8SWRr1COI4MMB3zXoxiLz71QUFUFynFEjeHLd0RslReJ3UcCDLOKhqVfR77ELyWBS1Wzv/YmHlXNzBfaiqZ+TVF0iMXAUGvwreolDgIqN+Rzqw5/5se+QLfbnakxXnvtNZrN5mwP2W6372kdrev6pgfUT8NQ4mM5UO7t7c38aAcRynda9ws6URQFL730EpPJhK9+9avsFopvvXaVJNiHP/SyitY0QDXyGJRiPN6zSPruuKQR+XTHhd0UVcShb2VLHkWpCQMHU2lcJYxWz3WotYNScvh0lYOn3NnUznEgdIU+FXrKdrBBYagMeI74emJ/2qVRklUW+5bc6l+TWdb6AM3Lc2BQCWlrGqY9zEXGKs8DjnYw2hDYbLjAVWi7KJU2aqSqp5mRhmZoZReRHDwTTzw/kc0/8XwX5cjkMVbSRWvHPlkpC8C4kE3RpNR4jiXIGvipJxZvGDCrtSYMQzqdDisrK9eAJtbX13nrrbeI43i2MMzNzd3xtGf6eb3RhujTgsR/WB9vFUXBiy++SJ7nHD9+/K4Pk3BnlNfxeMy5c+dQSnH27FmiKGJ7e5uyLG/r/j+4sMeVvYlVO0j2o3JE9aCtLNRoZxa+fXV9jXw45OjRozTSlLISlPs4r4htnMaSJ8CGJHDpjXOakb/vKbQE7UFhaCeO9Y3b/MlQmn+xL5L6xJfctZY91HUSn1rDfBpYSJncnkgiilpzDMPeYESdT9jQsLN+hb3dmPlWSlFGNJOIflbKhi0v8ZQ8n3IcMiRTc5ppKYj9KThNmm65JbEWtSHxwXWV9WIKkVbb0G1tbEawFoCRsVEBvqss6l86/w2b7ZbaqJSFNOBLp/ZD3+/XgfKD5fs+y8vLLC8vY4zh93//95mfn6fX6/H+++/jui5zc3OkacqVK1fuS8Pt29/+Nn/7b/9tvv/977O2tsav/dqv8bM/+7M3/Pff+ta3+Imf+IkP/f3a2tpdYfEf1oOve5W8Tvd34/GYr3zlK7RaLeD+UbCn4LKtrS2++MUv0mq1qKoKrfXsv9/o/t96c4vNgSaykBtPKau2ENXW7k6f7uYajc48q4eXqDQEFtQT+QLCCQKFdh2MC7XnUjuOjf8Q+X+3lsbTMBfLUm9SkYQu3bGozYalgMLyqiaJQgI/YHFuDtcxvP/ee8wvLUEx5sL7PRpJhBcmtJspVe3hK/GYd3yXoSXD9m0TbLpWj2y6QFlpIt/hmc99jkYa055b4OTqYbRxJIu81rQTn7w0tOOAcSkAy+2Jw2pg8yntbRLI6w99xSATtZxxEN4HktEJitBVKAX+bF8tlNrSkrXHpeaxhZATqbwf0z0iQJ7nM7n/K6+8gtZ6NqRYWFi44yHFzSSvRVFQluUPPbTsgXoojTFcuHCBt99+myAIOHXq1F0fJuH+BHePx2O++93v0mw2+epXv0o/1/y7t9ZFGmClRKXep2F1YjESt0LFxsjYoNaaVjQ9vAUzudOUltW3pL/euJQv/9LQhFmMyKWNbTwq3DBhoZkwLMQfk5faehvBtbj5wB7kInfaZZKDXCOcbkTkQDdnc9I6sbvftak17cidZUb2BjmRayhqjW/zhyTxw7EyKZdJIYvEMK9peobRhRdpqpxe5ynSRoOuvbh7EyvTLWRj5WDQtaHShqysiSPIKvFTFlaKIfRCK9kV4KP1WjooR/InKw1fWm2y2rnxxfvBDdPNQBNvvfUWeZ7T6XRmi8ftSLFuh9D1cEL5sO6lpnj5ubk5Dh06dE9rI9y+gmPqYV9ZWeGJJ56Yfc5vd329vDfmu+/tyJf8pLBrnuSHTTcVwyntdDCmv7NJVlY8cvIUGvnCVzZyKA1cxq5D6kv8UCv20VrWYQ2z9bgViddQlCM1HRtoLdRAue1npWygMgEBdScWu59XRJ7QCkNPMapFgp9X0lXXBpqNFNVssLPXY3V1lSLPmYzHTLJt+q5PkiaoNCGOEly7CXSVoqynUlhNM3Jt5NF+5lnf5k127cSxXxiaHgzyyvqBZLIqZG19bTZlJSHkuW0eVlp+fgM0Iw8Hh3bs85NP7hOw4cHEKk39YCsrK6RpitZ6Zkn47d/+bX75l3+ZRqPBf/Pf/Df8zM/8DD/6oz96V88zGo145pln+Et/6S/x5/7cn7vt+7355puzgwTA8vLyXT3/w/pk1O0OE6bZua1Wi7Nnz14j/b4fCreqqvje974HCNxk6in+G3/jb/B7v/d7PP7445w+ffq693+vpynrnFaaUGtNatUOOJJFvrm9TXd3l4XlwyzOtRlkouTq26ld35L/s3gFfyGgxCNIWjgGXEdRK0PuOkSeg+s6pK48/sGm1qSSCd6scWcPm3uTitOPPMKR46dIPLFtKVMxGI7JJmMuX97DdR20cUiiEm0Pg0UlYKBJIR7uKThyuv51JxVLS0vErTnbAKxsI1EOhUU1ZYloYk8xwdAI5HjYtrLdZuhS1YbQlzXHVdKoLKuayJf1Mj3w2BJHNc24lJ/ddwUoudDw+fycw3Dw4cZpGIasrKzMhhTD4ZCdnR02Nzd5++23iaLomiHFrb6vbxU7Bz/80LIHNqEsy5JXXnmFXq/Hl770JV577bV7Bqnc64SyKAref/99Tp8+zSOPPMK4qPnNV9eZWIIeQGUEK1xpg6tcC55RTFCEjpl1kSvbVa41+8ZlazCeS6YkV18koYGiqAyH2h7vXVpD5yMmXoQz2GRt3bDYSuj5McudBqMSFhzoZaIL79ouzcGMyEboinE7cBlVshmZ+jbL2tjMSgfHQG3ksIYBz5PDW+SpWcaap1x7UPWptJ7RFOcil2rjNeY3vkuhYc7UjOOzpIGSkG5332AuWH0jEoXaIQpkERQdu4SGD/N9Y7XW0snPKqG+9vJ97fuphYRnjt48ZPhWHfgPgibG4/Gs8zTtpN9KN3+rDKHhcMjCwsKtPnIP62Fdt86fP88777wzw8u/8cYb9wWLf7PHMMZw/vx53n333ZkM7GDdzoFylFf8/ltbtEKRxLdjC9+JA67ag59Ef3hs98bsba2BF/HoI8dtwLQ7i0iaRSUVGhfDwB4Is6LGdwy53WTUtcZ1XBxE2uq6ErfRiDwUDr7rAA6eDbZuKPmaSwNXfOaB2AjET24sQV5osq6NBol8OQziOBRa0e7M4SVNDvuKrd4QU+VcuLqNT4XxQpbaKSpMaCUR5ZROO6N7Qyv0MDYT0yB5a1hoWeg5RL6Lq5CpZWgjQawXc5pNGXmKYVGhbJB4rTWh75IVckgdFSVfOTXPUiO85j36qCaUB8sYc03TTSnF3Nwcc3NzPPLIIyil+Pt//++zvb3Nr/7qr971gfIb3/gG3/jGN+74fsvLy3Q6nbt6zof18dcHs8xvlUNpjOHy5cu88cYbN8zOvdf943A4JM9zlpaW+MxnPnPNNfbkk0/y5JNP3vC+720NebtrOJFq8koyHisbw1ZWms3NdSbjCY+cPE4cJ5Ra04g8ijxjrv862d6I5PhR+jk0w4BuOU8j8oSGGro2rsinqCV2rtYQuDKpVMrBtUyNpiuTzKb1PabhfsNqyvIY2HiPSaVotlt4cYPFZUV3MKK7u8leb0i32yMIQhqNlCRJSaLQfh9Y6f+M7CoHuoaNTgo9ufWUEqo2DgXynjjAONeYWsCRoS9qF99X9iApa2vi79NeSwv2yUptJ5AVaaAk4cATSKXryDDGcRx+4vEleptXb7k+Oo5Ds9mk2WzOhhTdbpednR3eeeeda2jYCwsL1x1S3A4F+3ZJ6p/UeiAHyn6/z/PPP0+SJDz33HMEQXBPlK5p3a1kYeqXHAwGrKyscObMGcpa8+svrdEbl/iuyJHkA1FbCRPiVXQdysJQGxhX8qWelfaQWRsCF7IKPCXdFulaG+t7EWiCAQJHc+HiRVyjWT1+At910DiUeUZvOCIb93h3d5tAQbffZ2l+jqJyaIUuuQXoZGVNYvN8Ql8IsnJIk4VXa4PRBtd1yGyeZG7phf28xDUwrgCcfUmvPbAO85LYEwmtpxRZbfCMonI8HKfCOLIB8pXCQX5OPQXpaOhEihpD4ooAYUqobUWyKESe3L+yC0ReTzef+5TaduTxk08s3nJ6eKcbpiRJSJKEo0ePXtNJv5lu/naQz9fzSTysh3WrGgwGXLx4kS996UuzTa/ruhRFcU+Pe7P1saoqXn75ZXq9Hl/+8pdptz/ctLnV+qq14bdeXWdnWBD6Mp0LXIM2AtJRYKl7im6vz876VRYXl1haXBQVRSIyp7kkEPXHtMMdefStxHVkD1TdcT5TgTQO5FCOSk1DKYvZ9xjk9lCal3LIshaFSWlx9pUW+X697yFKEpHtJ56iMoY49qmMYS71WUPWLIPAMvKyZmW+zbisWFxcpDfKqIqMncGYYmuXK8olTRLSNCEII0sFF+qrkFlde5D2GGYVDg6jQtN2DJNCDpd5Wc+yKRNf4SpFGspm0LdNwFqbWfMvSiRH+Nh8zLPHO9d5nz76A+WtPOYAx44d4x/9o3/0kb6OG9XnPvc58jzn6aef5r/9b/9bfuRHfuRjeR0P6/7UzQ6DByWozz777A0bvfeyf7x48SJvvvkmruvecbzC9jDnt17dwFNyWFtOnFlk0dYgo7e1Rqnh9MmTaCTGTSEWpHj7Fbj6hxyvCtTmPJ3VZymqWiLbbONuqowb5BWBp9itROE2bdgNRgVpJIq72PcskwM8C7qMfYGfTTMw/cijroWbUWmrktOaZprQ6wV0Wi3CKGIyHtMfTdjY2cNxFEkc0WikRHFC7HuAxuASenJASwORofqW46GNgMiKWjgik1KmkP0CIn+65ssQZZpz3ghcukVNEigKSwAvKontkymni+NAI3RQjjQZleNQGcNzj8wzlwTs3cX66Hkei4uLs1zmyWTCzs4Ou7u7XLhw4Rr57Pz8PGEY3laO+YOIv/so64EcKI0xrK6ucvr06dnh4FYdptupu+kwTT1KWZaxtLREkiQYY/i3b2wymuSkFkrjuc7M+6OnjTElmyhXCVXQQTrKrkJMyp7DuDQEnjMjuGaFwHbGuXRYRnlFWRsubezQakQsHjqK4ziMSsmGNF7A3FwEc/NoXXPx4kXqquTSlcs4BtJGgziOaTQaxL5nQ1lFL6pdZpNGB/FhKtu9aUayeZri6Nuxz+6gJPEQH04ofqXIdxna1z4uRQJb1Fp0/fNnGNeGRJUMWo/SQM0yMOXilqlibHX5vuuQV5DXBq/SFsIjm6DQdygrQ2ihRqGNCok88Sk2Io+vP7lE6N3c62iMuSdJ1wc76UVRzKaXr776KnVdMzc3d91w5YP1aSB0PayPp1qtFj/2Yz92zWf4fgV3X69pNxwOeeGFF4iiaNbgu17dakL5h+d3WOtOZIJmD3TjoiK2BzkNjLKSfq/LXrfL4cNHSJsNBlmF5zqMagGVTcqayBPfdGCbeb4D2ojKoa4Nc5FPjTOD3nSspL8VSJdarAjy91PS6qgQkMPggNy0EXr0p773iRw698YliZXMxoHLcGIlsVVNVcv6GAYuWsv1XxlRf7hK0Ukj3GbM0vwcCsNgJJKwQXeXuioIwphWM6U0Ce04JKv2O+dxoFgvatqRIPGNgbyGqtaz4O+pZaIZ7pNiB0Upa2xe4SsHs/Ym7tZr/MRXHkE5P/uh90lr/ZHDcG5Fwf64POYrKyv8vb/39/jiF79Inuf8w3/4D/na177GH/7hH/Lss88+8NfzsO5P3WhtG4/HvPDCC7iue40E9UaPcacquYPgsqeffppXX331ju4/Liq++doGSSCqsGYgMMV25LPdG7CzuYYKU86cWLHZtA4Dy7eY5DVBbdBagVH4tRYitAtVBZEvxMaOVcx1Io+dzJB6EhHXiqVBN817bFgpaiN06Vn71XBSSERcVpFEPmUtKgitDJ4lvCpHhgeOA4EyhB6koU8j6lB0WrhAdzimyjM2t/dw9CZ4IfOtFMcLmWuljO3zjqaHQZsvWVrYTllDM4RsKL8jg5k1HNs2Ji8JbByecshszrnGUNfSNMxyAfuM83r2XGkgVoJHFlMePyR+xfvRcIvjmKNHj86GFP1+n52dHS5fvszrr79Oo9Egy4QqvrCw8KHn+7RAyx7IgbLT6Xxos32/Nkx3siD0+31eeOEFms0mZ8+e5Y033kBrzXff3eHyG88T9C9SNo/hH/kTAqDxxPTsW5yzY6NBHOVQei6+MjNMe+jJQS4IjZU6iQ4+9t1ZNk6tNUU+ZjjOSJOY5cOrOA6UtWwmSi0EV+0YjNGCxsdlvj2HH8boMqc3HDHa7XLx6hbNNET5IYudFhpFq/8meXeN8NBjZI3jhL5g7WeHNteh1IbIk+535DkYIAkVCslhEyyzi4NIJBzHQVsPZ6UN8epnJPvSbgBbkVzcDTsxFW+khNEqRxD3oecyntFf943Vkafo29gRB3n8KZHra48tstS88ZfBtKbv//3q7ARBwOHDhzl8+PBMN7+7u8va2trMb3s93fxH7aG8UxjFw/rhqWkE0sH6qBpum5ubvPTSSxw7doxHH330ptfNzQ6UF3dGvLHepxl5FnAjeZNzSWA3Lx6eA/2dDcZZwaOnTqJ8D9dRYLT4BTGCiQcrzYKJrtEGslq83XVhUAqKosK361jgOowKUYNMpgTXSkvzq9KEroDGGoGHAVqhj3EEmQ+ihDBGZKiVMTQCwd1LfplAL7RFOzjKgtCUw6So7fRz3xs/7ZS3Qo9eXtNIU7QXcnxhid4ooy4mbPdGVNk2ynVJkoRmo0EYxwSuInRFqhX7Lr6S9bkRula6FVBpbf3vhmbo2aabi8HgOg6+nlC9+X/xJ92XWPnmeUaPfAXTXLnmvXoQE8rp5+xmsSEfR8Pt8ccf5/HHH5/9+bnnnuPdd9/l7/7dv8s/+2f/7IG/nod1d3U7ktfp2ra6usrjjz9+y8/8ne5Bp/mVU3DZzYA716u61vz2Kxv0JuWM6Ko1hK5Lt9dld32NxaVlFhfm5fpPArEBRS6Twqoc5j+DWxZs7Q04tPQUejICP5LXojW+62KsYqzWxkawCW1Vaxko1EYab6VdW/LK0E58RnltJ5v1NQyQ3qwBV818j83ItSAyGVj4ruz10kCks4fmmtSmwerhZSZ5QTGZsDsYUma7bG0q5pspQz9iqdOkn4kdqnsAthP5LuOqJq9qylp+d9rId4TWjsTMKQfluHiOQ2XEBlFqIz5zC3s8GCWS+GK56iQ+P/ro/tT6fnvMlVJ0Oh06nc41Q4o33niDS5cu8f7771+TQJAkyX1ZHz8JwLKPLTbkQUte19bWeOWVVzh9+vRsUqqU4s2tCeeH67R779MbZzTN+3SbJ2k2m3Qn5T7BdYpyj6X7rhxFWckCV1jiXqUNnieRIa7rgLYjdmVwgc29Lrs727QTn3anQeK74Bhq5VBV2mLkRfrqWjlT6MlC2ghdMjfmaJowqWp8DNu9IZQT3r1wmTkGsP1HtE2PQX+T6Nn/F70Js+zIyFf0Mi1T01IkvJNSk1dQlIZSi14+t4HZk0pCa7NSDnmi83cotJ55MwPFjDyolEPs2wxJbexFLpJX5Th0ph6ryLMQITmIK0fuM+1MZaXmM4ebPLVye7Sr6ZfMR7FhOqib9zyPzc1Njh07xu7uLu+++y6TyYR2u81rr71GVVUfqf79bmEUD+uHs+5Hw+3g+miM4Z133uH999/nT/yJP3FbXxg3OlAOspLfenUdY2BUy3RxmMtha892uvcGORjJnj1z+hQ1Qh6UvFuJ+IgCl7o2uIGNSbJ068xX1CVErqJyDAZD7YCy0i8DluMnNGrXOORWGVJYP1JRTbN87bpmZaeCkXft4dCdrXelPagVtSYMBPoQJw6uIzAIlCN+8gPT0fY0AzKWznnsOXz79/89u3s7PPPMMxw+soobBURpk9BT7A1GUGZc3dzBNSXGDfGpxP/eMKLu8ETF4rkOEyN2C9+VeIHEFx9SHCjyShqBZeZwUm3yOXVeTr/qwxPCByV5dV33hh324XD4iQFOfPnLX+Y73/nOx/0yHtY91MH10RjD22+/zYULF3j66adZWVm5xb2l7mT/uLOzw7lz5zh8+DBPPvkkSqlZhuXtXl+/9+YWl/ZGouDIa7SjGBcVe1fXGfT3OHR4lXY7pahl/1RrQ2yjOBrTHMlmysD5PLm+jLvzJsHgMkV8CL38FFpD7Vioj23qZ5WhNoZhVhG4wqkIPUuUtetK4DroWkjStT1kVtowF/vk9XQiKMODoZ0s9i3TY1RCUzn7UW9j8Sz2M03qKyZ1ReD7uJ7L8XYTrQ1FljEcjSlHPc7vbRGHIXmS0mik1LVjI6E0zNqOgKMY59Mokf2DbtNCdxqhmkWalDUESpQkcaBwbPMQB1qez5/+jOTzTutW+ZD3WtMhxVtvvcUzzzyDUord3V22t7d55513WF9f51d/9VeJooh+v39d+8nt1CcBWPZAKa8H60FNKLXWvPXWW1y+fJlnnnnmml/W+rDm5fUJR48cIt9ZpF1fZRIu0WmkDItaLiCbjXaQ3NoMPTbHE5SDlVG5cvi0WPvUEl3TSA6jSeDyzqWrmGLC/OFVsn6XcV7TwTApakIXC3IQeWnoOpSVQ+ArHOSgZmAW+C2dalhdnkObDqtHYLy7RnN3Ql0agrLP5StXaDSa5DomjSK0McS+XKAoYzcs0uUvtSYNpoGw0wxJl34usoJBJlr8YS4ZkiVmliGZlda7ZLtXU0jQXiYB5uNaJrC6rDFMMfpyeCxqmZ4WWha1Sotv6UfPzN/2Z+B+Tyhv9jzX083v7u7yP/6P/yPf+973ePHFF/nt3/5tfuVXfoVTp07d1+e/WxjFw/rhqA924O9Hw226PpZlyYsvvsh4PL6jzN/rra+1lrxJT0mmbuyKJzq29NHIc9npDtjeXCfT8MSRFUal5CT2bINub1zQDGWtbNk1shn59DK5HRUi1RiX+1S+KJBmV+S5VHa9qg00AoXGoW03QUkgNGyJ6TBEsUQ3CRRoyPqlCzTmlzi+sjyLVOpn042JpXFPStLApTuq0AZ6WUUSia/bU4qJlkgnB7FA+J746zeuXublV1+inIypypL/98+fpNCaJFTUNazMN6lNk5VDkBclk/GYza1t8mGX86M+cRKjkwZ+GBF6solLQyEwNqw3KrENwsCViCfPjXnu5/6/1O8do3zsz2LSD28GHtSE8lYU7Lm5uRv+9wdZ586du+1Dx8P6ZNZ0bZpMJrzyyitkWcbZs2fvqGlxO/vHg8kETzzxBMeOHZv9t+nn/Xaurxcvdbm4O541nxqBizGGXneXqtYcO34SPwjIS4PvwtCufdP91CCrZw13z1NQV0SjS1TZiNRUjKvT+GGKsTlrxpFb1+aWT32D4Mwmi0Up0v3MUk/HpfBD8ko8jLnWlh0i6jbDwQmnNLdSX9R7ndAjqwS4OCm1hexoXAXjsrbqEfl+c/yQuBXQnpujKEuqPGMwGjHo7Ul0UiMlSlKajYSxgiBwcZVDJwn2/aKFntkahNwt+bzjXFvVH/u0bCuPzSrDj52ZZ/FjgJZNn8fzPJIkodFocPz4ceq65sUXX8TzPC5evMjCwgK/9Eu/xP/8P//Pd/z4nwRg2cc2ofQ877Yzzm5UtzqUHsx0O3v27DUj5a1BxgvrGRgtBKwTX6LK+kRRE42iGUGtsRsVIbeKpMunrDSdyKMHluAqXeusNrQTj6wUCcE4r0l8ePv8RSIP2keOMd+IeGuvy3ysxIht/UfNSBDLqe/SyyvSwGVvmKONpjsuWQ41w0zPvD6hJ3AgX0kHR7UOM3niZ3EG69TtE8RVwGQyYXN7l9BThElCp5kSRAmxr6iNQxIqesqRrDMDndilthEjlZZpojaGRiBSWFdNgRAQ+yJTayf+rHs1LmrpSpW17arvTw+LWqRlw3y/q5QG4r0MPEVeSz7nTz6+dE336FY1/UJ4EB6hDy46cRyzurrKP/7H/5hnnnmGv/pX/yq7u7sPvZQP657rfkle8zzn3//7f0+j0fgQNv9WJXL3azdc3313m7VuRhq6FIV4Dgsj+bRObRj09tjZ2OTIymGurq3hKYck8GdQm+lkr7RewqySyKVxUc3iRWLfZWdsWHEdemOJIRkWhjTwGWT2sDcuSQMl64iv2BsVNCKPvbFMSgeZzbMt9ieU/+Zf/0suX75CI0n4T37hF+i0WjMcvYF9KWwkUSWN0MUzJc3Bu6iyCemqZAcbmWYOi2om429GPk6QkAQBQzw67RZ7k4LYd+nZzU49O4hK/nCUNqm2exxeaFPiQjFhc2cXqgI/jGmmMSZJSeNAJLyhi6sUzdCRddgYvnJ6nuTQKbLHvnbD9/FBHShvBuSZTCb3lKk6reFwyDvvvDP78/nz5zl37hzz8/McP36cv/E3/gZXrlzhf//f/3cA/of/4X/g1KlTPPXUU2RZxj/8h/+Qf/tv/y2//du/fc+v5WE9uPrg9/t0ovQHf/AHzM3N8fnPf/6Op0zT/aMx5rr7h4N+yYPAtIP3B255KL2wPeJ753dsNiT4nstkkkGV4/oBZ86cwlEuxoBxpUkVBy6lzdKdxl2IT91lZ1RjlMdeeIymvsSuf4hm0mJSyVBiGotR1xpfaVxHE3rO7PdojEB3Km0NB2pf9aGN/K/UAldztDP7/RgjKhJjDNqT4UZt4WtKIWkBysFzJQ1SnsexcXQS6+G5onqb/lyNKGToeBxtd+hnJT4VW3sDJntdzl/ZIA0cjAqIkglBGNooOTP7eWZgH6vMqI0zy5mceixbsXwfnFlOeXr1w9O/B0XBvh6Ux3Vdnn32Wb7+9a+T5zn/5J/8E3Z2dj7S1/LBup/Aso9V8jqVDNxt3UyyMPVLtlqtDy02w7zi119aJ68lG7GsDWUNftBmVGgCV1PmYkae1HIxjgqZrk1KCYsdaYOja4rK4FuyaeTt44tFilVy/v3LdJKYQ4dX8Dzp5jcDB61rWqEAJeZSG80RBxRaM5eGZGVF1t+lqDSHGzFZWeMrmEyxx7VdABDvYeA6ZMkqcfs4eVEx3/IYFS0OH1Zs94Y4Vcb7V7fxTA1+yGK7QVbLfXsTOdTVtQYMbi1St3CaeRa45JV4LvPaELkOeS3Y/aoys8iQxBeiVmLR1HWlSTzR16dWutGxHa6WPaymgYfjSKfsT55ZoJPc/oYX9heDB3GgvNmGaTr9OXv27Ef6Oh7WH4+6HwqOXq/HYDDgzJkzPPLII3d8jXxQ8vrO5oAfXNyjGQnQZnrbslPHUXeHre6AR44fx7g+Bod+VtJyPXILtinrGuO5aGNsdqN0vkMbXdSMPKqJQ+yJh7EVeeBIvqIxMJeG0uhLFFvbu9TZCL95iNCFcV7iOo69VUwqkU3lVU1Va/YGYyrHY1Ibtrt94rQhnktfpK9x4DK20t2xzQJuDN4h6V0m85skZ36SLF2hEXpUtZXvG4kC0cZw8sgSP/Mz/yHdbo8TJ44TBC7gkNhNT6WNBZVp4sBnVFTEHmS1w+JcyqSIODG3wLgoKSYTBpMx69t7BJ7CDWMWWg2MF9BJQ7pZyamFfbDEzeqTcKCcQifutZ5//vlrfD9//a//dQB+8Rd/kX/6T/8pa2trXLx4cfbfi6Lgv/qv/iuuXLlCkiR89rOf5Xd/93ev6x16WD8cNY0EATh69Chnzpy5q+//gxPGD352x+Mx586dQynFc889RxiGN73/jWp3VPBvXl3HVc4MBra23aW/vUFuXJbnO2S1IXEdKl0TuO4M+qUCF4WD5zkYO9woakMr9NjUhvjo0/SGJ2mkKf1coj9mw4lJiaoLLqztcGSpY3OAxYsZh64AEX1ReUxZIcoXAJrsqzXKdSgrmYhmZU3guTPZ6TgXZdqkNHQcx/os3dntuBB1hRCulZXqu1QaWhFUZjq4YOYRb8c+eeVy7HBEVtUsaM36+obAKa9clbilNMEPI+ZaDYoa2zwsZzm9sedSVrJnr7QRdZ9xONQM+dpjS9d9jz4JHvMp1PH48eMcP378I30t0/oogGU/9JLX6005r169yquvvnqNX3JaRaX5zZfXLa3VwXVkiua7Mnnz3X0vZF4JuXVi/TljG70xyCscRzGu5SA1yOSi6U0kv6eX11T5mItX1ji8uEDaaqM1DLNSOiy47G7vMcpymklK2mjgeS61lShUVcX61Ssox+HMqRP2IAqgqWuD40j3yLWeoyiQA+xU9jWX+OS1YS6Wi+zwQpO8bLC0tMQoy8knE7rDIdkkxxjY292h2UhQXkgaeYwLbT2jNc1I9PKSbSTG5l5Wz6JVMEL/Kuqa2PcYl/U+kdBzGFVQY+jlFZ5yKJALOLKStNiTSJInDzU4vXTnG44HQTCEW2+YRqPRJ8Yj9LB++Op6kte7XR+11rz55ptcvnyZKIo4c+bMXT3OQUlYd1TwB+/t0In8GdShNrLWTPKS/uZV8trw9KOnqR1F6Cq0cWiEIt2c0lanXvQ0EDvBVC6fHKBMTyrDYDTh7fMX6bQaeGFMM4nIy4rY98iriv7eLt3BgBPHj+P5Pr7r4JUaT4nE3nWExO0pMI5D4vn8xJ/8UX7w/B9x7PhJzhw/OpuWClxMyKutSCT/041KbCb0dEhc5/QmGX5sGGQVrpJ4KCywp7I0xKg5z+nFJclww5mBLSZWwpZZkm1Za2Ib4J34Ct91cEMPV0Hgh7iNiFp3UA6MxhnZZEh3b4+qzOkGEZ1myuc/M3fD6coHPw8PykN5o7pf6+PXvva1a66TD9Y//af/9Jo///Iv/zK//Mu/fM/P+7A+GVVVFa+++iq7u7s4jsORI0fu+vv/4ITx4Gd36pdcWVnhiSeeuOG14zjOdVUc08rKmt95bZ3QVdSWg7G+tU1vd4fWwhJRNmaQGzodz6rVPPFTRz49C6iZVEKcro3Gsdm7OA4uhksXLtBopEw8j3YcS8M+CcjKGpOPeH99ixNHDqHCxLI0RN3RG8ukc3dU0Io89ibWapDXJKGiKLXN0RUlRmWm/koZflS13BaVSF5rbViIPIZFvQ9enFK1LWwntSDG2HfpWoXdRMvecfrr00bSFVzHmSUYjOMA11V05hcoi5xef0Q+7vPezjZpFNALExZaDQYZJIE8t++KPUveHwEf/ZmnDxF4138fPwkU7I9j//hRAMs+Vsnr/fAIHZxyHvRLfu5zn5sF2e//d8PvvbnJIC8JPAdfCfQh8NQM9sCB21DSOAhC6Yr5lrKXhh6TSUWoRCiQBB6VFnlCpWtGvT02d3c5cvgwjaZ8SAothKqi0nTm5kgbDUajMbu9Ppc3NkmikDBKSOKAtY1t2mlMe2ERR3kzJP8oF3P2YFKShC7DrCLxBCsd+4pBWRO5ilFlCFyZLrqOSHflWnJIwpBmHDHX6ZBNxqytrxN7sLezjalrhnFMs5FSqoROFFIZkabVRjTr2oiUwHGgrsFzlY0jEa9S+4D0dZSXeA5UtQEjgKLJjPYqpu5eXnO4FfLV07fvm7z2PX0w+ve6rq/bpZy+ho8Li/+wPp11tx7KPM85d+4cZVny1FNP8fbbb9/1a5hOKKta829eXac3Lm2ckvx3R0F3krG+doUoSjhx/DA1Smis00xKrWkn4SzqozYwF/vSoU5sBIhVaLRjj2zY5Wj/Beb8iEnnDDuDMfXuNmv4LLYbDLyAcjxglNecOXWSrHKI3altYLpW+gysD7KXlaShSy/Peeyxx1g9+QjNwJtl946LaXNMlCcaQyOQ9aQZelxqPMKJoIsbd0iXjqOUwrfSr+m6KmRBn6zStBKPSX7A3xO4jCyhdlzIpiJHz6JBJhU4Sjr8zQM5wN1CAD1ZVeN5AWFzjsW0g0LTH455vGN4+41XeOdNZ0YLXFhYuG4EzP2mGF6vbuWhfLg+Pqx7reFwyLlz5/B9n+eee47vfOc797SHnG7u67rG932MMbz//vu88847PPnkk7cl0b4RuExrw+++tsEwq/AEkc/6+jrD4ZCTJ06QJBEXLo5ohs5sbczKmlbiM8osbTUTDsco35e8Bq6oxI4eP8VgOGSUTdjavYRSijQWb95kMmY4HHLm5CpRlKAcIVXPN0LKSjPfEDJ/O3bsYyv6k0IIqyN7sJ2UNCKPbrZ/GExCJcMTz2Vi7VYa8Fxm1qiphUAbZgDGZujaaaH4310F2jiWQguToiZmzFAHpHFE74AtqjaGooZ5pXC8kOWlmNos4Jia4XDEZDzm6tpVHGNI05Q4SfCSBM8Te0BRa86emWO5ef29m7xXD6bhdj2a+7Q+KQOJewWWPbAD5f3swE/roOS1KArOnTtHURQf8ktO69vvbPPmxnBGbkUphoXglgd2lC/SJ89STV3KSvIjq9rgT3XogGM/GMqRC8pBuiEb6xtkkwmPnTpBEkWCnHcEe4wjyGPlu5jAZ76ZUNYGx2j2+gPGwz4b63tigHYcVJWTOQ6tyBdIUCxShlZs4UBxKJ4jm//mKxgVFUqJVMEBXHvgE8KhBQZZCMWgkAspbC2wsLjM3nCCKTM2dvuU2TZe4BLHMa1mkyAMbfSJGLRzGz9S1DK9rbWYyWsjVFjlCExIsPguriua+7lYiIrtWHLdFtOArz+5hKvurkP0IA3VN5MrGGM+EQvCw/p0lOd5aK1vawI1rW63y7lz5+h0OnzhC19gNBrdcc7awZpulr7z9vasu51Z2nNeasaDIZfX1lleXKDVmaM2DhpNVWiU41BoaWrVdiM0yg2hrxiWouQY2rV2NK6IfEcgYJf/gGLjTVKl8ZMmcyeeptKafDym2+8z7O1hLLhhNBzRbjYwyGG01nJbVNKpzytNKwktlEEmpZ5yGBUVjgOTQuKajDE2sFvosJHvMskrkkDRddocOfE5+jU0nClRcL/7Psg1sacYl5IJWVQGzxUQRuy7eK6SzEpLUvSUwDHcQDZZDU+AGU0LuZDNl9wXDL6rCFxRyaT2wPy5R1b4U08uo7VmMBhck3fWbDZZWFhgYWGBZrM5m6B83JLXjys25GF9Ompzc5MXXnjhmrije/WZTyeMdV1T1zWvvPIKu7u71/VL3qhudKD8d29t8d7W0BKvJ2xvrlNpw7FjJ8CT6Z5Bsrhdq3CIfHdmB6q0oZMGIq23a5rwKSriUKA0C/MdsrLFineY/mhCNh5xaW0DjCEIQ/b6Y5IKYpvFqZUj+eRA4Iuctp16GA2+Jx7vVmihZ75DUcigIq+k6ZaVGtdxmFQaF5hoQ1EZ8srglQLDqbUMaLTWVkprCHyFMnIAnVL9NQKZrDWka3+IXnuRRhjTf+zP004aNsLEZas0NCKHYVZZcFBl99oObpgy32iSFDVKl+z1RxR7Xa6sb9KIA8Io5ZGVzi0TAz4J6+NwOLxtWN5HWfcKLPtYPZT3i/La6/V44YUXaLfbPPvss9c1Z5+7uMfrawPakceoqGnHPleGhtCFUaFpRoEd1Qv4oRH5DG2HqD8pZxKoxN76jsO4NGigNykJFLxz4TKx5zB/+Ch+ENrNhysTxUB05Y1AaFgSxSHm4qJWBA5sTXKOHTmE4/pk4yGb29vURUUURzQaKZlJaUchGmhF8uFsJz7GOLTtOL/WBgdNXUtHpLIkrlJrmqErGOhIpKmNQLFXI/CKqiaNI3QUEjVauI6hNxhjyozLaxsEjoYgZqmdMvQiWkk4k77mlXgvPVeRl/to58iFUQXgzHInR4UQv5R9bT/x+GEa0Z35Jg/Wg5xQ3kyuAHykB8pbwSge1g93ffDQeLB7fjuwiUuXLvHGG2/w6KOPcuLEiVk39F7WWKUUl/oV1caAKNinM1faMBnssb27x6PHV4nTFE+JREopkeE7OASuZNlGlmgYBdJUjHzHylHlAOc4Ig9zgJwIVykmTojGI7PrRaahOxzRaLRptlpMRmO29npcXt/E930aaUocxzTSREARjpzqXKUIfZfAdQh8aymop/lpGoVIrSJXpPnt0KMCOqlPUdYknig8WpHPpKxoBCJfDVzxaCpEfVLXYkHISi3qEQvsESmbT29c0ghEXhb5LkN7AB2XhqTUeKW2v19FWWnS0GVSGqLAldcRyOZsIQ35kzZDTSlFu92m3W5z+vTpWd7Zzs4OL730EsaYGVn1XtVAt6qbrY/GGEaj0Sdiw/SwfjjL932efvrpa+KO7tcecuqX9Dzvhn7JG9X1DpQvXe7y3vaITuLTG07YWruMF8acOLJCXgvApqg1tZHYDlFJOIyzktBTjC23IrMWq7wy+I6l8Yc+2kArtgfASNbjThLy/vYmrTSiPb9AXRTs9AZ0u3toFJ1mAz+MaTdTqhJ8T6CJvivRSqEnh1nXdcDUKNfBw+A6kruuHEnmVcoB44CSKWzgOigHkbAegAhNrQ2zeA/rt3/z1Rd558IVPvvEo5w48ziJ71BsvUNQDiiqnGC8ho7OEHtKeBwe+MqZxczVWppyRW2II5dxIdCdfuaweihmWNQsO4a9wQhdZrRGl/nOdy7PFBzz8/Mfen8/CRTs8Xh819mP0/okAMt+qHMop4vB9773PR555BFOnTp13W7++a0h5y73aARC2WraQOt25LI5krydWhs6iSeU08QGSie+DZj2KbShHUvXux37DLOC2IOyqvGpeef8ZeabCenckkwSMxsCOylnERyt6CCafj8sdtLfZXO3z+njR9HKJwpc8ELa8+J5LCYTdvojrmzu4HkucZLQSlO8MCQJfLKyJAn92XQ1Kw1xIPTVyDdklUwPi6rGcxyKsiJQMDEC2PFdobcqlxmZS2toLHYotWb1sMM4y8kmQwaDAflkm57vkqQN0jSx9C1vFpQ7qWShG04KQoVMNZTgpY0RM/io0Hzl5BzH5uJ7+gx8Ug6Uvu/f0RfRndatYBQP69NV089aVVU3PVBqrXnttdfY3Nzk2WefZWFhP7D5Xjdc3UnFKzvw5BL0xuJz3Bvl9Ha26I0zHj1xggIFjsPepKQV+fQspGeQl7jKYVxq0sQhq8WXU1YC4Cm1wfMdSut7rI2SzdnJL+OlKVrFcPhRtFEM+n0219dZOXSIRrOF7zrEYcjh5QVGeUmdT9juDRkP+1xZg4V2Cn7E8lxrJoXtTSR6o39AGpsEHsO8JPGEFhv5iqHd1A21wcOh1JJnVtcaZeTgH7oOoedSaOm619rgHZR1GejYDd90ctq0dokk8HAsFdezNOskdClrbUPF96NBfFcxyioMoI2mqDU/+cQyoXf9dWiad3b48GHx9g8GbG1tAfC9732PRqMx21S12+37um4+KA/lw/rjWfPz89dk5cH9OVA6jsOLL77IkSNHbuqXvFF98EB5eW/MH53fxXNht9tna2ON+YUllhYXqbSm5SsqIz7qwHXwHAisx9K3ajKRxwtYRnyHDt2spmHX12boMpxo0kiaW1QFFy9fod1KWVw8ZGmyKUsLc5SVJs/G9AYjRr0ddrc3aCQxfpQw12qSl8baqaoP3wYug7wi9R1RZESSwR77irKCyFdUWrN28X12ooRHz5wGx9nfR1vVRTsWxV85GfD8Cy8xGvQZ9vscO3WKiePjLTyOXs+ogxbEKxS5DFwmmUYbGFeGeceZZQiXU1WckQacMQ6tUABordDFOLASdvhTTy5zqBXy/e9/n1//9V/nscceY25ubrYOLiws0Gq1Hpgl4KNWcHwSgGUfm+T1XuUKWosmfTwe8+yzz37ILzmtjX7Gv3ltE1/BsJQw7dFE5EzDXKN1TT+zE8RcNj2TUhP6AuUJLHxmGi4dekJYjeyXepWPuHp1nSOLC3TmF/CUY8l/Et7digWo05keWuP9cOysrBjsrJPlFU88cgJHeTb3RxDMBojDgDQMabZauAq6/SFVMeHKxhY+NU4Qs9RuUJQRnTSaTVOnpu5BYbN4ao1CNjmVlpyh3jinNoa9UU4z9umPBeHft7r57qSamacd5ZI0O4RpC9dxGAzHVMWYK2vreBj8KKHdSNBxSuC7GA2eEt9k6CnZeBnBPFda8+hSyheO312A6wc/B5+EA2Waph+psftWMIqH9ekqpdQtJ4xZlvHCCy8AcPbsWeL42uaMUmqGK7/Ta6SoNL//7i6Bku54EHlkRcHO+hVc1+UzZ06iUbQ8RW4zeyX6w2eQyxo0qRyWFbMmWj8T6E3XSu67I4n+6GZ23ZlUNKOY7vznbD5kSTHYZX2ny6ljq7h+TOBKxFDiu5Ta0IoDqtBnvtOi0lAVGb3BiPGoy3u7WyRJSBE3aDUaGOPSspuchl2f08hD15BGgfjkXSzIQaOdmlKD5xjptkdyUG6GPns2U7M7KUl8l2Eu2ZAjrVHOPv3R94QgmwSKSWlohIqsEpBaUWo8pdHaIQ4lNqAReCjl0AhAWZuAZyniT660OD6f3Nb75zgOrVaLKIq4cOECzz33HN1ul93dXV555RW01td07SMri7vbeggte1gfZV3vu/VeOBxTv2RZlpw6deoaOMmd1MEDZXdc8Bsvr+EA71/eYjLs0VlcYX6hTd9CdyZFTRwI/dSzao7AddDIpE/br/jADivSYJ9RkVVCoh4W2voeS3Q54cLldVYPLeInInHfs1noo0ktsRpBwpHDQrTGlPT6Q7LRiPO728SBzyRt0G40wLjoyYB+4THfbjEpazqxzzCv6aSRVeiJci8JFLvDnPPnz/PG2+/hUtMd53zu6ScZF+B5DtTgOoZKK1wHkjgmDT3yIXQaEc0wwCiFOv5F9PKTeEFEgUvTVRaU5rJVaTqRop9VMx+p74paxnFkra6spUsUJAI+++LJDofbEf1+n1/6pV9ifX2dlZUVfuu3fouyLNnd3eXll1/GGIMxhr29PZrN5kc2FHgQDbdPArDsh1Lymuf5LKg7SZIbHiYHWclvvrKOr0TyGXryJR54inFpCAOX7UqwyaO8JrIZj3HgMpjIbT+rZrfJlFQVyAZCA+9eXOfE0RW8MKHWRjIi3elUTvDInutSavlZKy1Js0VRceXKZQLf5+jRo/i+Z03KggeavuZIyVQ18gVRv7LYodZtjq3AOMuZjEf0B33yfIuu79NqNFA6oRnHGPalAp7r4iCH1dR12NnrMenv0ZpboBVZHLSn6I9ziUspK9G6G6Fkxb47I7gO8pr5TpNBnrCwuEx3OKHMJ2zs9cnXt4lDHz+M6aQR40okHl37+xvayeyffHThvhzAHqSH8kYLwnA4JElub6P3sB7W7dbN1sjd3V3OnTvH8vIyTz755HU/mwcphnd6jfzem5usdTNqoDspUKbi/QuXWJyfozO3AI6L0QZTi0zKGAh9F+XIYQ0cUl/85q3YR9smWqUlOqioZMMwVYDklaYVe2SFyD1HeUl/Z4v+KOP0iWPUjkfoycYiChT9vCL09jcYk0LjuQrtBDTbAWlrjrquGI9GdIdj1rd3wHFpNxKCMGa+06TShsTzyLX4IIvaCFK/NrhoLl5eZ2W+ieu6ND2otSb1JPJpCihrhC4YhzhwUQ442sVXkFeG2ALKmrGFBQUug7yW2Km8kmw27ZBVNaFBNkShHKRlqiq+1b2JWDS+cmruDj9B+5EGYRh+aHq5s7PD2toab775JkmSzLr2dzO9vB3J60MP5cO6n3W3e8iqqnjllVfodrvEccz8/N0BAWH/QJmXNb/96gYehktXrlKWBUeOHqMRRwwn1jqV76vSmqHHsIJGCN1JSTq1WIU+WVER+g611riuwvcclOOQ+HJ9BZGH1oZq3GdzZ4fTx1YI49RmPIpffJzLPnWqeOhNbVelotOZY5y0WPIcdnsDymzCe5eu8P577/DSK68Seoqf+/P/MSeOHcPg0IxcgewkAdoY5hshWVEx3Nuiqmp0mWGUoi4yiqpGG1C1oqplj53nFXHgUTo+P/Mz/xEX17Z45MQRhqWmEUouZRQ3KStN4IriI/bkOyV2xR7VijxJFAglE30KhMxKTTMS8FkzlPX1+HzMs8c6gBzUhsMhdV0zGAyoqupD6+C5c+fY3d3l8uXLpGk6a7TdTxXH7cTOfRoabh/7gfJOoBPAzC/Z6XQ4efIkb7zxxnX/XVFpfuf1TUDG454RDHHgGzAQ+jCqFJGSDnAQe2ib9SPadCG3tiKPspaMn7LWpIFLUdcMdrepNZw8tkoUC0mrqEW+VdQahXSdQDogdW3wXIei1uiq4MLlK8y1mjQ783ieOyO59iclrb1XGL7/PI32PN2Tf5ZGEgl1K/TojqeTx5ooCPATl0ONNlVdMx6PmWQTNneuyM8Upcy3BbufRB5lLZ2vze1d9nZ2OHxkhUbaAAxJKBuPNHJQgGu16rWBKJTcuLlI/EXt6e8q8tAY5psJTitheXEBTM1gOCYfj9jY3CL2DJcur9FqpJROQuR7/OnPLBH5N7647qQehFwBbq6Bn3aXHkR8ycP6dNbtRisZY7hw4QJvv/02TzzxBMeOHbvhY96pD3NaL1/ucn5rSDvxeb+Gajzg8uYuJ1ZXcKOUKNyP/BgWEuUxLGzkR6kJfPFGlkY8035ZU9X78AkHQ601vn19ZW0wGGmouaDris2rl/Fcj0dPHyfwvVmothe6KCWEbgBfeeAYfFcgE5WSzn9eaSI/wPd8Di3OM8xKqAu29gYU/V3WNjdl3fJjluaadEslG69xhS4zLl5ZY3F+jrTdoTIC0qlqjedAXk1/VvEKjfKabLBLkDSZb6USDeIpqlpy0bQ2pL6LpxzS0MNXEGiF5zr4StQrrnLoxILm70SiYmmEQktMApefemIJ373zdW5KFzz4+ZpOL1utFqdOnZp17Hd3d3n11Vep65q5ubnZAfN2ppd1XV+XMAv70LKHHsqHdT/rbg6U4/GYH/zgB/i+z9mzZ/nBD35wzz7zqq755hsbbPXHbF69jHI9Tp86iass9TTxZ6q10lqr8lLyyCel5nDi24xK4XfIOlTQiHwGuRwQhRitKIqa4bDHhQuXabcSjhw5SprGdn1EGls4uLEHBlp2r9aMfGmIBWJNinxFVUOn1UI3WywsGV566WWyrCBXih+ce4mi0sRJQjNN8Twf35c9sWs0Fy9dIo0jnnvuLO1mQl0bPvf0kwS+5IrXWqwNVa1pBC6l1rRjj7Hb5JnPdBjmMnEcWnnrwEJ3ilLPAJd1bSg16ELT0npf4VEam20pP4c2hobvoh2HpUbATz6xPFvvVlZW+Jt/82/yr/7Vv+Lnfu7nOHTo0Oy9m66DSimefPJJ4jieedCn6+D9UnHcykP5aWm4PVDJ6zVPbDc4d7LZuXLlCq+99trML9ntdq+7GGht+M1X1rmyN7HmZrsBKCqiwLPkVsk/rLUht5ugWgt5q9Za8nHk7InjMAM8mLpi/fIlHCX690Yc4nqSnVPWoByD1oIs1hhcBPbgePLBLyYj1tbXObq8SLPdIXAdG+q6H+5a/+D36RS7ZFt7tA5dZuKfsoRF0ZDnlby+upbYEseR55rvtBkXDY6srLDTG0KVcXlzF1eXaDdgvt2gP86psjFLh4/gBTF5pWcZalkp+WtDu6jJVFaxNy6IPEW/LvGUmkkzosCbASPGpSYJXLJS0Ww0xF/Zyrl69Qp+4DPo91jf3OSzh2PG2xV9FmcUwnupT5Lk9WE9rPtZH5R03SmJcHpt3cmGaXOQ8fz7u4SeS1WL2mJnb48nTh8njGJcF5tHFlgYhE9V70v5W7FLUUMj9HCVQ+w7GBziwGFs88dGNudxXNSzkOzE+nZcat67eIW5RkJzbhHXdelPbF5ltg95mPp8xA8pE8NxUYmvqBB1yQxyUxuasU+tPU43ErSGqiwZjoYMh0MuvL9NEPhkaQNw2N3b5djKYdrtFtqA60hIdhp4TCrNXOQzzCpakdC2f+s3/hXnXnmd0Hf5y/+fX2Ku3SY3Av0JfZkapME+XbtrVRp745K6NvTymgQ9O1SHniKrxFM5LiqePdbhcPvuvOa3sz76vs+hQ4c4dOgQxhiGwyE7OztsbGzw1ltvEcfx7HDZ6XSu+3g3U3A8CGjZw/p0140abncied3a2uKll17iyJEjPP7447dlK7hVKaX43oUeb27ldLfX8eMmR44cYlxpQld8z4GrcMw+ZbWqJW/ROIrYFZ9gJ/YoNbQjIWnPpaGoOGIhujYiOXz197b41X/5f1GOB3zui1/hkUfOzA5nIysLzQo5pJVVTRiItD/wlf2dOThKSKu+a8RiVUsSwef+xFNsrF0ijBLOfvmLuH5INhlx8XKXyFOoMKGThlzd3GV5vkXcmqcZefyJZ78y86V7nnBD0kAaboES4JqnIC+mnnNN6isc5dCMJJvPc1wc23D0XJEEx5HLhjZ0Qo9RoYVFktUHpK8ORV1hjGMtaTU/+cQKSXDtOvSLv/iL/OIv/uIN38PpGnmjdfB+qDhuR8HxaVgfP9YJJdzegVJrzRtvvMHa2hqf//znWVxcnD3GjZDNV7oT2z2uZoTWNPQZF6VIAoqKwHPJKoPnKcnjCdzZ7Uz6mk2lAzWOLnjvwhXmWymt+UWG59+jNynpNDzJ8fEVg1I6Mr28nMlDk8BlVNZkgy7r29Lp96METzlklcZXQvLylPVpNuao9gYELlTxPKFnoTmOku6869ocNOuvMZAE/myDV2vD4bkGlW5waGmRrCgZD4ds7+xQVyKjyEd9AkcTxgmNyKOoJW9yUtU27LumGQcUlSYJZBFwwGZJSobkcCrNsnJWCfx2KGrZTDlAYRSHlxYZ5DWfnw/53KIzCw52HGfW/VlYWMD375z2+vBA+bA+rXWwAz8ej3nhhRfuiEToOM4N18jrVV7W/ObLa2Slpqor1tfWyDWcWF2hUj6q1gxzTRwohpkcBrtjWV+7dhMxzMXfmFvYTlkb2jaOY+qf7iQBtYFOYgmFNpfS0zmXrqxxdHGe1tw8niskwk7iWRiaJxNQKn7v298l9l2e/vwXJHfSSrz6E2keTqWwg0xyz/IKDAbXEZBE4Hp4cZOV9hyjrMSUGWtbuzh1Tq4dRqMR46JmqdMk1w6xnUgKFVFUGwqHZuzwyksvosuSyaRm4/IFVpeesYAeZfPYXPl5reS3ZfPZ0sDDcSQuQKjfmiSSaUQzkinwQhry5VN3L8m70/XRcRyazSbNZpOTJ09SVdWsa//6669TluU108upb/dW66Pruh8ptOxh/fGr251QGmM4f/487777Lk899RRHjhy55jHuJVrpQq/izb1tstGAhaXDLC10RG7qyXoReS5ZXRMoRV1JtAaOg9aGWkNWaOYqzbjWBC7ktSGw/vDAc2RvF0q8RqQ0z7/5JllvG+X69LfXAZl8Zjbfe1zUpKE783wPbRNuYJtYfZsv2RtPb8XXPilqnnziUY4eP0ESeBjl4rsOte5w0jH0RxMGvS7bW9tEjtjOoqzPhJRWHDKxzzvKZWgzqTSeJ+s7ylBadoenHIpKz2LsGqHLpDJCzy5kr5xXZiZ9jZQBBa3Iw2BvjSENXYl8sWC0rNJ8+eQcq507b7xdb4384Dp4ryqOH5bYkHutj+1AqZSaZQDdrKZB3VVVcfbs2Wu8atdbUM5d6vL+zphm5EmGT+Ltd9RrQycOhL6X+IzGNZErUqq2hTW0YpeqZjYxbNkMIIoxF66ssbq8SNqaI/IVtfUoToqKNFCMS5HIHgzZbtjYkWF3h93+iNPHj1M7ciAc5DWBjdJwXSEeOjiUj/159O4F/OYiuWoRGRhOD8aTauavmQVhR9Ltjn3FMNOEvmJSiwRCKSEqdgcDjOvxyMmjDCcZVTZmbXMLp64JophWM0UnCWEQYIDQkyxJx3MI3/03mI3XUUe/SHbix4l9iQhohrIYp76Dg+QkKQUah1S5DMcVDV/IsUfaET/1mUP4rmJlZQWtNf1+n52dHS5evMjrr79Oq9WaXaC3KyGdSro+ypqCTR4eKB/WR1U3k7xer7N+u3UnsrBvv7WJ1gZlStavXCKNY3TpEPkenoL33nuHSZZz4sRJmo2U0ko7s7LG92T9812HYVETuA4MN1DOhG6YELoO40JiMPpZJaTn3N6WNZNhn/WtHVYPH8KLE2qNNP1cya10XUNWglKG3/7W7/GH3/0DlONggB957jkaoYOrHFw7GfVc8BxF7WobZQKuA6WB1FEU2tDxffJaMisvru0SOjXzR47hew47e32K4YDXt7aIopAkkdDsRhJJ91xJ/FQaejz71R/lD37/92gvrfLoo4/Rz2XD1J1UeFbNYWBGcUwjX3D3kUdeg+8YsqomUA6FvdUG0sDjp+4hoxfuveHmeR7Ly8ssLy/POuk7Oztsbm7y9ttvzzxoWZbd8DGm6+ODaPw9rD8+5XkeeZ7f9N9UVcXLL79Mr9fjy1/+Mu32tSDAe2F5XNkdce7qGF1XHD16jFazIY2i0Jc8ydCnNpqm61EbyWesLXVHO0jWuGMorA0gKy3hNa8JfDWbxvWyGuqC9y9e4fTpR+gOxwz3dvns578wi2uKA5GwNkNvXzmiDXOJT1HLn/NS0058xrlA0AZ5OSNfN2Yk7NDuNY3Yq0KXQVZT5AWb3SGrh5cJophsPKLXHzHZ2Mb3fZIkod1qEkcRrqsIlIOjbAauo6iMwXccJlVNEjqM8nK2R05Dl+6kIAlkXyt7YrHCZTWo0hDXmsyut5NS0wiUTTGQYcxKO+LZ4507fg+ne7tb7SFvNL1cX1/nrbfemk0v5+fnr6viuBWUZzwefyr2kB+b5BVuTema+iXn5uZ46qmnPjTJnBqipz7MdzaH/P7b2xImO5YJ4d7Y5oGNyxnwIAk9hvl0MgiugqwUaE9us3TyWtsveE1/b4et7V1OHV0lTFN8V7rckWtBDYGLcRSt0KXGxo9oaMc+RVXR31qjMoYnz5zEdV1LEWQfmKOUBM6qqc8owj/yBEVtaHqSbSbZkSKBGBc1TQt8EDpthW+hEo7djFTGEHsu/XFOd2ud2vF45MQxyeBsNBj6Eafnl+iPM4pszE5vyHh9mzjw8MKYpbkWWvm0610GF1+hwZj+u3+Ie+iLjFUsh02w5FvF2GZu9sZCJhtWhrqsyCvJT/rxRxeu8QAppeh0OnQ6HR555BHyPGdnZ4ednR0uXLiA67qzw+X8/PwNp9gPYkI5JYHdDMrzaZArPKxPVimlWF9fZ3d390Od9Tt5jNvpwL9wcY/X1wdQTHjv0hqrywtEjTaj8ZhJWTPZ3eXFV17DlBOqquLLX/g8jrLWAAsTq12N6zqE2uBe/C4nN34XZ8NB+/8RevlpQl8OV56VJLmBvLb+7g6D4YDjR1eJoshuuiytzoZle64SyqEvsUigwI8oq0o2JdF+3tl+s628JjKkO7GblwOqE1c5XLmyRpHnHD12VLxCriIMI3zXIS9K8mxMvz+ku9Wli0MrbWDSlHYzRQP/8c/8Wf6DHztLI0lRnj977coRynVW1nKgttm/w6wg9hW9cYELjCvwPKgcyCvxOY3yiq+emmexcW9Tvfu5PjqOQ6PRoNFocOLECaqqYm9vj52dHcbjMW+99Rbb29szxcm0+Xs/1sdvf/vb/O2//bf5/ve/z9raGr/2a7/Gz/7sz970Pt/61rf463/9r/Pqq69y7Ngx/tbf+lv8xb/4F+/pdTysj6fuRvI6Go144YUXCIKA55577roe37uVvG73R/z93/wjyrqm0ZojShJ6B8jPzUh85WkgFqXQl2ZS4Ip8PnRdQtfBUZKFrhwHHEkE8D2ZXk5J1sVkyJX1TVYOLZOkTX76G0flMT3FIJdc295EDlejrCbybPPOU4xKjec55KXA04SIqjBIlJGxPktjxOtZHhiipKFHWdcMe112u3usrhwhTQU+2e7MEadtAgv20UXGu5fWCJTG8WMW2g3cIKaTBjKp9RWF9W7WGhpxgGMcOqmL0Zp27IAB5TmAxlHgK4XjGIn7qw2t2LdxTxLDF3mKoYWz/cTji3c1WJhSUW922PtgXW96OV0HX3vttWuml/Pz88RxfFMP5UPJ632qm3WHLl++zOuvv86ZM2c4efLkDRcUkC/NrVHJN9/YJAldMosPHmbSgRkeyNRJAleAEoFHb6xxlbGHzWlchpVvhS5744L+7ibdYcYjJ05QOzJ2744LMUjjcfHiZYI4pdNK8YKIwHOZaJl65rl4COMoYvHQIYzjMCnkAihq6WLnpYTYio/ToahkIShq8d+Utc0205rIU0Jc9YTYmgRym4aelcBqlKswNg9tPMnobV4mTVscXllG18jEtjaiXTfQSWNUM6ZemEc5ht5gRDEZcfXqGgpN31ecVAWVFllW5QV4YCcTmnYcMMxr2mkocmFf5GkYKMuKCofnTrZpR+5NNzdhGHLkyBGOHDmC1pper8fOzg7nz5/n1Vdfpd1uzw6YByM6HlQoLXDD5/m0ELoe1ienqqpiMBigteYrX/nKhzLYbrdupwO/1p3wvfM75IM91rb2OH3sCAQRjdBnUkvsT8+44tMhIY5C2TSF3oFNVGGhYfLnYXeHhjEMTIRef4++e5SlTpOshmboMi40sQcXL1/F0SXHjh0njcWXmQSSy9iOxZ+ZxIrSGDqewC2+/hM/SmAq/MDjK1/6Mo3E5p0lHmW1n3vWjDzyqbe7qAk8h7ysZ57IsqpZ21ynrOH0yRPkFYTKmSlMJMbEJ69TVo60GGYVps7Z643Y3dzmwuU1oiik2ZDQcOO6M1/n0Hb9x0Utvv3aEAVWxuULEdZDPEahC7HvUOMQJz51bTgxn/D5u+i4f7A+SmiZ53ksLS2xtLREt9vl2LFj1HXN9vY277zzDlEU4Xke/+7f/bu7/vxOazQa8cwzz/CX/tJf4s/9uT93y39//vx5fvqnf5r/9D/9T/nn//yf881vfpO//Jf/MisrK3z961+/p9fysD4ZdbO1bWtrixdffJGjR4/y2GOP3fAauBvJ685el7//G88T+hG+lxL7At6a9Pd4b2uH1cPLDGmJ39v6pnsTG5lkCa/dcYFyXTZ2hxTVFYIoYbHTwiiPwJEDn+fC9vY2g36PMydWSZMUHAdjBGgmOYzy3JFlgPiuZOe6Cgo7DS0qua20wRgbi2SMKDdsM1DX+xwR1xFOhufA+tYm+WTMmZPHieNIFCw2ezfyBDK0utRhUmhWVw6xN5xQFxM2d3tQbXLVDZhrpXhhQiOJJboEOUBXWqa2eWlmXvpGKAOS0FXkVYWqK/kOcAXS0wwl16kVydHFdxVfe3yRJLi7o8z0vb8XlZvv+9dVcRz0oDuOQ5qm192vZllGXdcPJa/3WtdbEG7kl7zR/QH2hhm/9+YOoSemZy+0hKvElw5M5KHZ12G3YyFedWKP9dl/l85MVYvHJctL9jauoHF48sxJMVArOfDF1vB85tRxxqMxw/GYjY1NykrTSGNCm8V4dX2DpbkOabtDHEz17RYmEXoHQrfL2QZm6keaEgdDX6BCrgKDg9HSaSpqmaRO7GMOrJ+xP5bbtZ0e3e0NkvYcnfk5RlmNg7E4Z00cTDdbkvkTeSIdaDdTqrTBwqIhywsGgwGXjv5HqN4l6s5JvF6fuVaKISINZFFLA0E5T0Ec2hjGwwGbezucfXSVR5fTa97nqRn+Rou8Uoq5uTnm5uY4c+YMk8lk5uM5f/48vu/PDpdVVT2wA+XNJK8PY0Me1r3UwS+04XA4y5dcXV29p834rQ6Uk6Lid19fY+3qFaqy4LHTJ4gimYoZDA1fNjCnjx0i9r5IWeQcXlklCgPKWjMX+yIfTXyKUg5zWalpHvss+fAKTaW5PPcU5ajHa5tbzDUiukHCfDPmtQsbtOOA5tJRolBIh2kkh9I0nN5KbEZyYLJovIQ/89P/IXmlcT2H/qSe+SQdbdBGgsJdbXCUgCg84+xPCZTDOC/obl4hDiLOrKxgHIc4QMiHsUdlpPmmtf1+MBKH4uCRxgmuchhnBWU2Zrc/pN7bZsPxmW+ljMcx7WbK0EaD5JWm0obIE0J4I/LZ6Y/oba2j4ibKddmblJJjmckB8KefPsRs93cP9SBjldI0pdPpcPz4ceq6Zm9vj9///d/nH/2jf8TW1hZ/+k//af7CX/gL/MIv/MIdP/43vvENvvGNb9z2v/97f+/vcerUKf7O3/k7ADz55JN85zvf4e/+3b/78ED5Q1q3k2VujOG9997jvffeuy1Vx51KXtfW1vhn//ZFVDLPkeVFLl9ZExVFmfP95/+Ind0dNg8d5qd+UsLhO9ZK1bHrYjv2GecScdHTCU+cOclWd0CZjXn17R1aSYATJCy2G1zdEqBiZ/kIYZwwsPEieaWJfQ+tZShRIGq7WskgY0rE1kayGmv757qWW/EwKiaFROWN8/19acPKUBNf8cb5ywSOprO8ShiG9OzecmCzzielJvAkIsl3EZ94GkMjZnF+gcrGNg1HQ/a2rtLFIYpFGuuEsVXZ6X17WCjDnyTwGWQFO5sbVLgoPySrNGVVWu+lphn5DPOKL5yYu+1s3uvV9ED5Uao4dnd3effdd9nZ2eHb3/72hzzo4/EYuDdo2SdFwfGxSl4/KFm4mV/yeiX+QPj1l9aZ1OBagtT0ohJpqaWzIn82GpTaX5gqoKhq2/mR6d4wy7h06SLNZoul5WU8TxYdx3FwHfEmOp6LpxR+s8F8p0mtl6mqkl5/wKC/R7+QbovnKWIlXR3RtcPcATLiFEohWGWfSmuasYeuJeNMG1C+wsWhMhrfl+lmK/TILKhielFOSk0aeqxv77G7vc3i0hKpJanWtXTqp3LZ6QU8zdccWNnspDQ24Fuhlcfy8hKj9hzxqafZ3OtTFBNef6+L70Icp8RxQquZUmksgbFE5yPev7rJU6dW+X989QkcG52itZ5JlKfvu+M4Mz/tjS7qOI5ZXV1ldXWVuq5n08t3332X8XhMFEVEUTSTWd1vT+VUrnCjxx2NRjfMQn1YD+tOan19nZdffnn2ZXSzoOLbqZtJuowx/OsXLvLS6++RhD5Lh4+i/IBhUeFbb05pZOPh5pr2/JJQsB3oT0pc1yErBPJVlEK4LgtwjWGSHsH7yl+mMA6HRc3EkapkOBoz6PW43NshVA5BkBJQgfFm0qt91P0061Fuk0DWh9BXOMh6L/9PyICTQpOE0w2SANYa0T6QojeuaEQu690he5vr+EmDxUPLDIpaMiy1mYF7SqsIycr9x2xGHoNc1C+TUpNEAbnvc6Ldoa41k8mYyXhIf3eT/o4mSlI6jZQwSWlY737o+YwnE7qbV2m3OywtScM08IR2WNWaZ4+3aYaKqqpua328WT1IaNnB53Fdl8XFRX7u536O8XjMP/gH/4Cf+ZmfmW2ePur67ne/y0/91E9d83df//rX+Wt/7a89kOd/WB99ffAwOPVL9vv921Z13K7k1RjDu+++y2/+4F3qxiEOLXToTUocZWWXsaHERTs+RS1Nes/VaC0RGKWNjatrTeTL4a5jcx1PrixSasMxo+kORkyGfS5evozngIobBE7NcFLQSgKGmagmplm13XFJM/LtUMKnP7utaMaiBEl8ta9804YkFFhOKxaA49Rv2bGS1zRweP/iJRJfsbC8amNLxF41zGsCT24912FS7Mv7JQrKIbdxSZPSkDSaqDBl5bBLdzimyodsbu9QFwVBHNNsJKi0QTMKZAgU+VR1RXdzjdDzOH5sldAV8m0jcBlZ+NAwLznUDPn80cZsqHA369z0+/WjVHEsLy+zsbFBu91mfn7+Gg+667r8b//b/8ahQ4fuad/6SVFwfGImlN1ulxdeeIH5+Xmefvrp29I0awMv7jg0/YI0jiwkQjrCgZ24BZ5LYQNTi1rIWYWlSOWVwQHBzEcBk6Imz0ZcurLOyvIicbOFchSDrCT2XbqjYnZRNexFPDUzNyOPSS2eoEGuObm6wjCryPMJr23ukgQuKohZaKe4QUzoCd3KdaRrbowBVyI8fE9Z5LxHVWki1yGrpx1uuViLWhN5roTHegKnCF2Hvd0dBnu7nD5x1GL+ZfFKfJfK7Ps7hawo01gch2bk2NRMUDjUGCL/2gPv6tIcle5w+JAhyzKGwxGT/h4725u00ohxmKDQbO12efTEKj//1TMWKOHM3m+QTc40g3T6/6d1q+ml67rMz88zPz/Po48+yssvv0xd1+zu7vLee+8RBMGs+zM3N3dH2vgbfs5uYageDoecPn36np/nYf3xLWMMb775JpcuXeKzn/0shw4d4q233qIoint63JtJuv7tS+/zwmtvszTXZnFxGc/6eyI/oKjqGV06cB2UAk+5NmtXNmHKcaiMg2ejllDSnAtchVW9Wwy8eHc8VyA0o6yg2VkgjUO6/QF7V9aEMt1I8aOY+VaDQguUZlxOyX/aRidpIk/W8jR0KStDM5JGXNtOFluRi8ahFfsYu8YZ5KA6HA7pbl5lcWGRufl5HGNwfcHoVxp8V56rFXhMypp25DG0BMNBVhH6FqLmSIac1gblK/La0Gg2UEHMoUMr7AxGUOZc2elh1jbAC2g1GihXsb29w/KSeFS1YXbwHWYVR+cSPnd8AZBD2p2ujx+sBwEtg5tTDMfjMYuLi/zVv/pXP/LXMa319fVrMucADh06RL/fZzKZzOi0D+uHtw7uH0ejET/4wQ+IooizZ8/eMBP1eo9xqzV2elB97coe/sJxjsbRDOY16DpELnh+yJe+8HnWNndZXVlCO3J95vX+gEMbYzN4DUHRI8snhO0lMnzrrXSIAp+tccZ8u0Gz1SEbj4TOXxb0I2neF6rBXBKQ25g5IWD7dlggWZZCdN0fGky9nfvKD7lNQo/BuCT2FBNtQJdcuXyVOI44fPgwjpK9ZRK4M084yHcCyPeWq/YzIYtaYETjsqIVywE39WF46UVaccyoeZpjc4uMs5J8MqI3HHNlY4fQ9/DDmLlGwpWtHRYaEe3FZXxP1nzfdamMKOoMsBB4/KnPLOO57h0PKA7WdFD0Ua+R0/Xxg9PL9957j9FoxN7eHktLS/zcz/0c//yf//M7fvxPioLjYz1QTiULU7/ko48+yokTJ277zf2/39lmXDsc8kTz3YgkeLUVCV1LwlsNceRayZFkQUahQ20g9DwUkAZi/s2Ge2zv7PHoyVWiJMV3xEjcsljmVuRZeVcgf7bxGq1IOjjD3Q3644LHTx2jdjwOpS5Z2WRpWdEbjsjGY65ubFPXNWmSEMUJnVaDCsHST6mBU+RzfwqXyPalsEL9qvCVQ15VGLBB3hWDvV32+kPOnDhOiUvkQM8uHnuTkshXDHON6ygcRzZ7EtC9L3VoRgIuin3F2OZdloBGE7qu9XQqdBixkibk9SJUJf3hkO7eLnWt8T2Xx5sVxahHHXz4UHdwQzSdWB48YB6UIUwv9pvJY6fm6KnMamdnZ7YZ73Q6swPm3cpSbxVKO5lMPhWErof18VVRFHS7Xb761a/OpC+e5zGZTO7pca8n6TLG8IevvMOvf+9djq8cwotTcLD+R5fBpCQJXStpcigrTceXxlwaCCiiYaMvoliogqGnKCtDFIvNIFVQaogDya2MfVjf3GbU22P1yAqdVoOiMsy3m2SlxlQ5u70h+bDHm1tWGusnLM83GeaGVuTbjZFkkU0tAXHg0puUhL5ifGDSCMzgZ54r9NR8MuTK+hYnVw+jggQwDPJpBNL+VDPyFFkhB2HJkZMpQxK4eK5sqnylqIxgGgFAywABAABJREFU8GstgeK19XFqDUvtFGNSFhfmqaqK0XhMv9ulP5kQew5FXpCGY3KV0Ahd8lJiqv6DJ5Zm6+UHG3B3o+64VTPsftTtULAfeswf1r3W9SSvVVWxubnJSy+9xLFjx3j00UfvKwV7Mpnwgx/8gEGl6CdHCW0OuDTNZN0TGbtLdGiZ1cPL4kNU1iPoK6pKBga1MTg4qHwAa+dwqwlVcQqWniSrDNlkxNW1dRYX5mm2OviewrghR+cWGE4KymzEdndAsbGF5/m0mg0ajZQkTqw3W0YCbWvxaseexBZZ5VvLxsMJbMceAKsaT0k8STbJ2NhYI2m0WFpeJCsNoe8wLq2KrZjm/8q+dKoEmZSW91EZAhdqI9FRxkhqgvvavyJe+yMMDt5n/p/ow5/FSxxUElLNz+E6hr3+iHw84NLaBoELg7zGHw7Ii5g49JnUNdqIR7SoND/92RUWWrKfu9GA4uDe8WZAnI8rds7zPB577DH+y//yv+T73/8+3/zmN3n33Xc/8tcCH52C42M9UCqluHr1KqPRiGeffZaFhYXbvu8fvb/Hucs9cBz2xgVLQcieBUXMbseiVReAhE8/r2mEisGBYG2lHAaTkkl/nd4455ETxzFeYLNtBOGeFTW+J4G0oSdyqNCTyV/kK4qiYvPqZZRyeezUcdSBD04aeDjKYXmuhTPXpDaGuijpDQZMRn0u7W0ThyF5I2Wu1cDBE4+nkWgT8XT6aCNUrhrrWUSM1a5FzQ93NpnkJZ955ASVo2h5skmZkroi3xU5l3JmF+UUWNQIpTs+zZIU2YIYuJWlFE717dOOV+QLJVGiSTz64xyDYv7wCk8filiJcl5//XWKomB+fp6lpSUWFxc/lNczvZhvtHk6aJq+3ubp4IIwlVktLi5ijGE8HrOzszODRNxOQPf16nYyhB4eKB/WvVQURXzlK1+55u/uBWk/rQ9SXrXWfP/FV/j1F9d55PhRvDDEcxTjXK7pcSEbjaH1K44rh4ZjpNNsm1pTafsUwpMEil62L7Vq2LV3KjNNAsW7l9dwqozO8hGajUQAaZ7IVCNPUTghK4ciar2AriqGozHj0ZD339+VLnWjSbOR4pDQioWkOgUzuJFkQvqugwK0cVBKpqJ+IIqVfNhla7fL4yePghcS+fuZw9P4pnGhwTEUtRHJqxLJaxru57n1Z8RYOXR3xxWBp6hymT4oVw7gsc1Va0Yek0rWqb1RzvEjK1QosvGIq5s7ZNkarUZMGCf8qadXaUYfzuL9YAPu4P9uNb18EBPK6efrkxSrdPjwYTY2Nq75u42NDVqt1sPp5KeklFIURcGLL77I008/zcrKyl09xo3W2N3dXc6dO0drYZnX+wkKY5tsSqxCoceoNHgY2WtOORiRDAcSz8IWXchLTegLxdVTJZgJ4+EuG3sT5prHKMuK7e1tjq+ukKYNDLJmBK5Q+6PAJw7naLbmMEYzGo8Yj8bsXL4KQJKkNNKUOIlxXZdut8eg3+XI6jFC37XARslu9JSDYxw8eyj2lEO332d3c43Dy8sszM3ZHF1pqE1zyVuxJ2qKcBr3YfeCgTTkfFfWUAcHx5FJrO8p6kGfhICxCWlMthkXQtvOK1n7yxriwGd7c8yRxTlanTaj4ZDRaMhoa4sw9EnSBq1GA9eL+MKJOU4tpte8h9cbUBxcJ6f/7oMDik9Cjvk0MuQzn/kMTz311Ef+WuCjU3B8bB7KPM/Z29sD4LnnnrujH+DtjSE/uLBHO/a4YpRkQZY1rVDkSVPKXisUvLAcJqfTNwHiTG+zGna21iiNy5nTJ8kqSJRD1+Y6TqeCg6yeBWYHnktmOzvjUcb6+hpJnLCwtERpHCq7QRHMvctkUu2bnkOPiVbMLywwTNsc8hy29vpkkzGvbe4SeBDFDZpN8SfKAiBdsDjwKEtNEnhkFsU8zAq2165SOy4nTxxDoyT7TGuUEtoXRtnFQy7gWkMayuLWDKWL1bSbs4NgHc/mts15AZUReYU+IJP1lHTur169ilfnHD1xjGMLTb7+meVZN3E4HLK9vc3a2hpvvPEGaZqyuLjI0tISrVbrQxfzzRaH622ebjQ9nFK10jTl+PHj1yDupwHdU7z9FO18o7rVgXI0Gn0qCF0P6+OtD3bg78eB8uBj5HnOD154gX9/acLq0eOkSUhZS9fXdSXHMXBFveDZ20aoUIi3xSDQHa2hbWWmzdClrGs6cUCppUlVVpo0dK38Fd69cAnXGBYPrxIFAZNSi2S0krincSlf+LU2tknmEiZN0maLdllRlTl7vQHd/jpZqZlvpagwZqnTIqvMbF1vhB79A+qO1E4zezubDIYTjh89ihuEYGVnoefguwongMBVlK78LqrakLoutZ4Sts1+t99OIJvW7zmLfrKTy6LSJJFPVstEYFJqslGfze1tjh45QpzEFLVhrpUyziUHeXNvQMst6F54je+svcPCwgJLS0vMz8/flrrjZt70W6kr7kfdioL9cUwoz549y2/8xm9c83e/8zu/w9mzZx/o63hYH01VVcVbb72F1pof+ZEfuevv3xtZAi5dusQbb7zBI2ce46Wui6dKPEeI17VVaBSVlqi0YcGRUFIFBJBYz2CLaaDojiuasb/fjHI61N4K3379Xd7fuED45oif+vEf5dCRo3Ra6cyiVWtZl7U2uI4jE07HQRtFGrapO23AMB5PGI9H7O7uoLdK+sOc3/2tf035/2fvvePjqM/88ffMbN/VrnovluXeJEuyjcFgEww2bjIkJpdyBnIh1eRLIEcCuSQXkhAucIQESCDJL5i0o9lgg+luFBtsq3fZ6m2rtL3OzOf3x+yMV31lNQP7foWXImm1mpV3n/08z/MuhMHqlctw7fVbhesKnz9FvaU9LNnqNFrhcw4gLjENCQZD2BhHFl6ohBMHZBR4XmBpAECcWg4Kgg4TBJApaVAg4HkaNB1OJwgbPnLpq2FtMkNBE9gSChEno+H0CfIBp59DwO+Fsd8IQ0IiDEmJ8Ic4GBISIdPokaGgYR5wggv50Nbdizg5UKJPQV9fAMnJySOozZNdUMyGqaN4HePFzkUmF3ySMScbSlEvKbp1TqaZ7Lf7cKrNBpU8TF+VCUJnvYYBgWBJT8hFp754jWBwkxDWDiaoZYIblUYGt9sLFU2gUCixMCcLHKFgkANs2J6Y5fghDRdPBC0iAcDIabjdbpiNRqQkJcIQnwB5+MUnTl/0Khl8kmHORWpsnEoGd0BwLvQHOSQnGMDyeiSlChQLp8sNi8WKQJBDgl4DWqlBakJcWJB9cTtgcfowYO4HLVchMz0VQQ5hS2kaAZaDRila31/8GYdP2EQEgpxEfQ3xFx1jI7cPg35WyDZiBbdCmqIQksx9wpuHjl7IKB6JKZmQy+S4ZuHFPKDIvJ78/HyEQiFpY1hVVQUASEpKQnJyMpKSkiZdHEKhEEKhkPT18ahfkRb3o1k7i8G0SUlJMBgMI6b8EzWUsQ1lDNONiXJ6o4HYUDqdTlRUVKAroIYsPhNqtTyiJggHIZEe7w0I20lfkANHKDgDLLQcH442ohEIMzaCIUEvGeJ5AEJtoGQXXQZDoSAsRiPUSgVyMjPAhbU3LEfCBmrhj4RARgkyBIYGWB6QKYSPGrkCIV6B5Pg4BFkCNhSA3elCwONAi9UCvVYFj0qIbfKFEHYtZMMB4Sz6jUaA55GRnQW5UgF/iIMm7Lg9RFbgC0GnEjaOGsXFzaOb40FRGGHUo1XJ4AlTcN1hxovTx0Ipo+AOcqAogiABrDYL/G4XsrNzkBCnFpy0FRRCPEGcShjq5WUk4abVWYIGfnAQVqsVzc3NCAQCSEhIkAZww98nx6qPkdQvUR82FeOKiTBRQ+l2u8d1a48GbrcbFy5ckD5vb29HVVUVEhMTkZubi/vuuw+9vb3429/+BgD41re+hSeeeAL33nsvvva1r+HYsWN44YUXcOTIkSldRwxzB/FcIbpgi+eFqbz3Dt9QRqYMlJSU4ExvAL2DLmgU8rCunAkP/SjIGIEJoWCEa9Or5WGKqRDNplcJMoF4jTysdxSzxBVoRBIajH4EOCX0jkEkpGXDoFOHnVQj/Dm8Ec2fmBAQjiNSK2gEWUCv00Cj0SA9NRW+QBDlZz+Gz+sFFwqguakJG65cBz+Jg0GjQkiSbAnn0e5+M3xuJxJSM5AQp4UrzFRxBwSmmjfEgQKFEAXwYYp/iCVQymmhlipl8AbDy5kQJ2W4q2RC9JNKRuPpN0+h7YIJBMBuTaMwAAgzMfweJwZM/chMT0NSgkGoj2q5kNmrlMETZJGUoEeIjUNiCoUbFxsQdNvR3d2N+vp66PV6qT7GhQ0oh//7jregCAQCoChqRusjMP5SYi4GbjPF4Jj1hlKc/CxcuBCBQGBSBya7N4jXao3gCAm7t1II8GHKZ4ATMnjCE/dQkESYQVBggzxk4SwbigacThcsJjNAU9Dp9QhwBDzPgaOFSBBZ+GCjpGmwHAeaDhvgyAUqqddlh9FsQ05WOlQaXfh3AWo5MyQ7UiOnwQHQyIWGVKsQnFt1ChoUTUOrFFbwinC+j0quRUq8DixPwLEhOJxueD1OtA9aoVYqENRqoY+Lg88nxJoYDAakJKcIDrYEQsYaIVDL5eHiITh3xYU1TzqlDIQIBj+yMM9fLZchGHad9YWEqVswzLEnRNBoCk0qL5lUqGUULrR3Q8ZQSE3PAEUz2LI8TZpgjQa5XI709HSkp6eDEAKHwwGr1YrOzk6pOIjUWJ1ON25x4DgO58+fh9/vR0JCwqSMK4ZbO0cG09bX14PjOGl7mZSUNG4xEKm1MY1QDNON6aK8ulwudHV1QZmcDd6rRCIlxGokaMLRH+JHrRxB9qLRg14lxwAoaOWUVDs8QRYaBRVuohh4Ajy0Sjk8gQgWhoqBadAFp9UEhdaA7FQ9PB3liKMDsCesgC4uXjIyEz/axem9N6wX9wq0KHtYL2n3clDJKbCQIzEhCVx8EpLYEHw+L9weNzoHraAYGeLj4qDSaKBUKtFv7INWxiAtIwdKuZCZppaJ5mRhh0OVHBwEQx+OAHq10OTplGF6GENBTgnOhVqFDD6Wh17NwBcUBof+EBc2gOME67Gw26FWwaCj1wiEfEhIy0ScRgVHuEl1hXgQCE7aQZbHNYtTpBy14ZR9i8UCs9ksDb3E749G2R9+eDIajejr68OyZcsmrU2fDMT6ONaEfTrq47lz53DttddKn999990AgFtvvRX79+9Hf38/urq6pO/n5+fjyJEj+P73v4/f/e53yM7Oxl/+8pdYZMgnHKJeMjc3F/n5+Th69OiUtvCRG8pgMIiqqioEg0GsX78edSYfWsxuxMEH9+AAtPGpcAVCUCsEBpxSzsAbIgiwBL4gB4CAUAQUoUCFt4ki9V5GiQMyYcNZkJOBJYuXYNBmxTWbNiFFrxbiRTQXa7CfFRz/JYfpcLat2GyKMUsOHxsxGJSjYFkhsusbYXN6cMUVa2D3hhAa6AJPKOh1Omh0OujUavSaLAj4vMjLy4VCoQRFAXoVBVCAnJEJG8fwcJDlBeZIkOMRp6aHxn2IUSMKUQ5Fw+kPQUYLxpiEUYCWK0FoGQgYSRbRZxmA125FQmo6EuMN8LM8ZBQQ5AS3WFCCZEzGUFAwBBsWJCMnVQekJaGgoACBQABWq1U6Q0ZKnpKSkiCTDW1vhg/gnE4nzp8/j8zMzCkZ+0SD8Z6jnyYGx6w1lDzPo66uDmazWdJLtra2IhAIRPXz/hCHN+pMoCnBmZUIXE4oZHR4Kye4UQkfCRha8BalKADhCBEQCjwIHLYBWAcHkZuViT6TCTRFIxjioZSFtUQyGr4QB41CyLqRNDQqGRzeILyOAVgcbizMzUGIkoGm6SEaI42CkTaBXlawV+Z5AlCCg6oo5vYHQtK2T9oMiocrpeAaG5+QAIVWjyQQuNweOLweGG2DgrZSowJhlOB5An+YZuYKCi9oV5CDPOy+RXiENaA8lDIGQV4w1vGHBNpXkOOF5pzjQYd9XmWUcOAJ8QTqsBmPNmw3LaN4dHf3QKtSICczEzworM4xIMOgGudfcCgoikJ8fDzi4+OxYMEC+P1+qTi0t7dDJpMNKQ6RDR0hBC0tLbBarVizZo2ky7xU44rhwbRutxs2mw39/f1obm6GXC6HTCaD3W4flaYbM52IYTow3ZRXcWhjt9uxYNlKHG33gRAeIY4TXK9ZYUDmCYTp/QEOWgUNd4CDSsbAx3KQh/U/yfIw7V4ubCL1KpnA6FALzankHq2RwTYwCJfVjNTUdCQmGMCbmpE0WI0QT5AoUyAQtwYGjRzBEA+9WqDI6lUyBFlh0xdkubC2JjwcDNcnnlDgwQMUjRDLQqNUgKcYJCYkwOUPguaCsAy64HQaBemDUgai1YPjCQa9QoaZh2Uhoyn4iJCzKaMFYwq1XGCRiMY8kdFKjrDLtzPAQkYJdROUsKVgGDpszCHY7Yd4YTPR3dsHmg0iMycHCrkcFCWwZxiKBicjYCght21Rmg4FKSNrRyRlf968eWBZVmJ31NbWgud5SZuelJQEpVI55OeNRiOamppQWFiI5OTkSWvTJ4PZYHBs2rRp3Aid/fv3j/ozYp5rDJ98tLW1oaWlBStXrpSG0oDwvi+Xj9QeRwOxxrpcLlRWViIuLg7FxcXoGPChoc+JRM4CruUdJHJ+BLKvRHzGSgQ4Pkx5FTTYHo9w/vSFCORh2rt45qOJ4HYd9kSFnwDBgA+9ff1Ys2494hOTwtpDYYnhD+Gi/puhBIOzsLOpaLajV8tAwk79oXD8B8vx0CllCPE8kg063Hr71wAImbzCoIvA5/PD5/XAaLKA51hwhEJaciLcAQ56GS9lmnvCZ11JohUSGGxBnpcov5qwweVFA6CLme8E4UgnShhE/tvNZXj72AkkxGlRVFwCrZJBt8kKr9OOxLCm3hNkAQKQsL+HRiF4dojRKCuyDChIHVonlUqlFCfH8zzsdjusVitaW1tRW1srsTuSk5NH1B+RsZObm4v58+dPWps+WUy0oZxqjvnlwuCY1YaS4zisX79eWqkOz6EcCxxP8G6jGd5ASIjU4AhkMhosKzzBKUKgUtDgOICmw1bGlGADr5ILlCqGAkIshwGzEX6fH8sW5EMmk8NhM4OhgbiwE6wQYg0Y5Az4iIyeBI0c/hALt82EQIjDigV5IDQDXXhzJ76o41Qy8JGbQLmgQeIoCA0eT4Qw2vAhyh/e+nlDF6mxWqWg0VTKhIaQYWjIaEAbp4OMJnB5vMhKTYLLH4J70AqjyYTEOA3sCjUS9HEIhAAQgKdI+MU5Mn/S4WOhkgmGFBQFyAiGvJB1KhkcfhZahdAkyxkaPEvgDwZhNfWDUaiRmZkOZ4BDQYoOhTnxU3p+qFQqZGdnIzs7GzzPY3BwEBaLBS0tLUOoX0lJSejo6MDg4CBKS0uHrOcv1bgiEpE03Xnz5iEUCqGpqQkulwu1tbUghAzZXsrl8hlvKJ988kk8/PDDMBqNKCwsxOOPP461a9fO2O+L4fJAtPVxNLAsi5qaGrjdbiQkJqLKzAFhEy8BFGRMuBmghUZIRgN+VjBx8bOCYVmApyCjeLgDrBCxxAtNmJvlIZcBvqCgH/RyPBgaMFus8LidSE3LglKjhsvPgYECASoOoEIgUIMNcZBxBCzHgQcDNkxXZ3kCGSMMARVyYXunlAumDfKwBlyjkAkZvhoh19GgkYPnCZI0CrBEATlDo7vHjcwkAyhGBo/HifYBC9RqFXS6OKg1GihlSvBEdH8VTCf8oYt1WKcUhnxKGQ1vkAVNC3RcnieQKaihtTS8KRCHiAxF0NZvBMdxyM3ORoCjIJMBnrBcwe4XzHxcfoHStX5+dEZ0MpkMaWlpSEtLAyEETqcTVqt1BPUrOTlZmrwXFRUhMTERwOS16eL/jwYTbYhiA7cYpgOJiYm44oorJL1kpA7uUiHGhnz88cfIy8vDggULYHUH8U69SchZHLRB43fAy9NQefrhZ5dDIRMaPpVcBi9FQc0IOYyinjxOJQMHCEMjDgAFadM36HDAbDIhKSkZifHxCIWzb33+ADweNwyGeMhkwtmTpijp53giMNhEZh4vGt4QYQHAE6EuyygaMgagKQYMLUTr0RQFnuehjdchoFYi5PeAUqphiNPC7vLAOWiDlVEgUa9FMKBBol4Lt58Na9AF+YPTLzhpu/wsZLRgfCYN5DgunDspsEkElhsNf1Dw/dDoDbjl8zeB4wloAGarFUGPA/l5uZArFKCZi/nwLE+gUTASYy7A8sgwqLFhwfh1kqZpKU5u0aJF8Hq90oLi/PnzUKlUEjWWoihUV1dj/vz5yMvLk35+Mtr0yQzgxPuYScrr5cLgmLWGUi6Xo6ioaITtczQT+KNNZrRZ3NCp5IK1vUoGuycInUoOdwhQqgnsnpCQDRn+fmT2jk4pg9Xlg93SD+VAExaQHjiZEujmlcDD0UjgOAx6gtAqGLhDnBQQq1XQcPoJ1DIaNrcPFnM/aEaB7OxsBHgKNCFC/hoB2LDRAx22YFaGN35quZCjo5QJ4bJKmXCIUcmFCbxSRiNEhK/zBFAyNBiKhlImmDywnKCJDPIEQdcABu12LJmfDYVCjRRaKFShQEAIDHe60Dtog1wlhyEuDmqNFgaVSrKQFkPDSVgTSkEw35CFM9iEw5pwwOJ4wV2WhGm6NE3B6/Nj0NgDQ1w8MtJTEOII0vUqfG7x1PQxw0HTtNSwidQvq9UKs9mM5uZmUBSFzMxM+Hw+KJXKqI19CCGXtL3UaDRQKBRYtGgRXC4XrFarFHXz4IMPIjk5GefPn8eSJUum3aL/+eefx913342nnnoK69atw2OPPYYtW7agubkZqamp0/q7Yri8EG19HA6v14uKigoolUrMmzcP77eYEdAEBO10iJe2fyq5oHNRh5s1hqbBh2nzXPggo5HTAAFUMlrKqRUONBCoUTTCGkMOxv5+BANBzM/LBSOTS46n8uR5CNIMlBQLryYLatnFiCRhGygPN2eMxAQRDSwEOpcQDSK6qqoUDNzekGBVHxAOIpIBmMUMQ2IiEhITBAOfpCQ4PQFQbABmuxOwWREiMiQZBGOfBJ0WngAnMTSEY5LggKiU0aBpSBtIjUIu5Kyp5OAhuG4DwuaRpmmoZSz6+/qglDHIm5crGKSFDSrEbUKcSpA8aJUyfG5pKpTyydcLiqJgMBhgMBgk6pfNZoPFYkFHRwd4nkdycjJCoRBYlp2Q+jWVWBJgYtOymCQghulAQkLCiObxUmskICwe+vv7EQqFUFRUhPT0dHgCLI7U9glDNo5AnpgLz+A8qHgPHPol0FAQqKbh9ACaouAM8MiEwILQq+VhdgQDX4iEz3nCBtNossDjtCM7MxMJhjghyo6m4PP58d7Rt2EbHMSCgvm46qqrQTF0uJkUTXFowSlWJmwzNWGtu0bJSHIDp/9iLvrQj4JO3GL3wG7ug0ytQ15mGoIcYEhIAsuyCPg8cLo98Dr6MGChEKfVAjoddFodaJqGTCUwAmU0QFMIu8MKQz+9Ui54g6hlcIUNKF1SEoDACPGGYz8GrRY43F4U5OUiQGjIKcDpZSW9qEYR/hmGho+nwFAUPrc0BTJmcttBjUaD3Nxc5ObmguO4IeyOUCgEnU4HhmHg9/ujTh64lNx08ecj72843G73lOvj5cLgmNPYkGgoXR+3D6BrwCtwy7mwwDksdPaHeOiVAh0zJcw5N2jk8AZ5xIenzQaVDDanBzZjL1QMQW6wBe4QEG86BXvKYmjkFMyDLqQly+ANUeENHSdQwUKCFfKgywOT0Yg4fRySkpLBQzxw0QiEOMEIIihMqaUDkT/C7CG8EdRGmOI4/SHImDDHHIJOUaCUMfD4QxFuXDIMeoNw2a2wu3zIz81BCAwIy4FAoBQoZArINTLkJCTC6RUPTy4Q6wCChEZ8nBYKtQYatRpymbAdFQuSKPjWKmSwe4NC4WIFOpgyfFudSgar3YUBcz/0CUlITU4Str40jU2Lky/pUBQtROqXWq2G3W6HVqtFXl4e7Hb7EOqXOJ0fTv2ajuIQqRHS6/XQ6/WYP38+vF4vdu7ciUceeQS33347tFotOjo6RhzgpoJHH30Ud9xxB26//XYAQiDtkSNH8Ne//hU/+tGPpu33xDD3GK5BE/U9JKzHiQY2mw1VVVXIzMzE4sWL8WFtK5qsASzKpy+a8PhZ6MO1SR9+/YtGEGI90IeHcwAFq8sDlcYDnlHAoFZIukcxt3bQ7Yfd2g8WDObPy0WQo6CSUfAFBX12gOOgSspBiAfiGNGKngHLCwMuLjzoEtxjhc9FV1W9WgYQQK+WgxCBxUFAoFMxoIhg3kPTFKy2AThtVmRkZCAxPg7+4MWw78Q4NTwBOebr9fAFQwj4/XC7PfA4zLCZCGQqNZIMcaDlKhi0Ssn8TDo4eoWa7QgK5mRBipcyfP0hHjoVA1t4YMnScszLyITTz0POEPgIwBEiHQh1KoFSuyLLgNzEqdGcRCiVSmRmZkqN5ZIlS+Dz+Ualfmk0mkkbVwy/3Vj1cSzETMtimClcqiyA4zjU1dVhYGAANE0jPT0dLMfjaKMJhEfY9BGgFHooVu4E4Qn0YY8OvVpweDWoZLD4ADkJwWQdRHKCPnz+k0tnN2ExweB8Ry8oLoD41CzExWkw6L1ouuNzOmCxu+H3eNDVZ8IGigj+HWFjG7VccObXK2URbvsI68CBeI1wO/FsLMZ8GNSCCaROJYPF7sKA2QS13oD0lCS4g4L22xdkQVMAo9LCoNQiMTkVbq8fQb8X3UYrKL4ftEKNFIMOjFINg1aJAAupUVbJxa2iMHgU0wLiVDJJg04DYHkepn4jgsEQli3IAwcG2rC0TKtg4A1w4W0nAQdATglxddcvS0OCRjHuv2U0z5HU1FQwDIP+/n7Mnz8fYmRhU1MTdDqdVB8NBsOk6mM02vSJTMu8Xi8MBsOUHuPlgjlvKMejKxidfnQNeJESpwDLAQky4QWdFNb2JetosC45VAoaSTplmLcOMAwFwhMwDAWbbQD8YA+W52ciLSEOzKnXwXjMgCEHocx4uAxKDAxY4RzsAcMw0MTHIzM+HvF6HUDRGBy0ocPcj2tX5CI5JQUMJWg1GUrQYzIUQEBBZJIJuk2BPy58TqQnmfg8pcO3gfC/i7cNfy7eBwDwHIvGxkawiTxWXlMClUIBUFTE74F0P5T0dYACBZ7wcIR55TabFaGgCcn6JCQnC7b0KqVS+t00PfaB1Ww2o67uPBZfuwRZWVmX9o89BXAch5qaGgQCAaxZswZyuRxZWVkghMDlcsFisaCnpwcNDQ1DqF96vX5aigPHcaM2iRqNBnv27MFPfvITuN1uSfs5XQgGgygvL8d999035Po3b96M06dPT9vvieHyhHhIH+v5FwlCCLq6utDS0oKlS5ciOzsbg54gavq90DDCVFk6iKjDB5EwEyEhbNwVr5EjxF6kGulVDCg+Dkk8h75+ExiKx6BSg8T4OLiggk6pgNXhgd1qBK3QID8zDd4QD42ChtMn0J+c/hBUCjF2SbCJV8goOP2CY2BYWg5QAOGFTFmWF7LeAiFR28iGB2DDNI4BYXvZ3mME63MjIS0TBq0WHn/Y5TXcALIcBzlNgaEAlVwGg9qABEMcFDQFl8eHgM8Dh92OUNAPp0oNXZwOAUoLvUqotXqVDFTYqIKhAY4HGIVwuIuXM/D4ArCbe6FSa5GWlgqAgkpOQU4LuiMdQ8PHCgdRb5BDolaBK+cnTtvzhBCCtrY2dHd3Y82aNRIlcDj168KFC1AqlRL1KyEhYVR2h/jcE2vhRNvLiUzLYrFKMUwHRhuqXUpD6ff7UVFRAZqmsXr1anz00UcghOBYkxkdVo/AnPBxAt0+xEOpYAR2GSVQTTmKklgcBq0aXDAeXrcdbQMWaDVqhDQ6xBviBCaCgkJXdxeUFJCclQOdWgFvcGimI6c1oCAvCz1mNVYtWwR3gA9vFoNDTHcGfWIsSfijV1gECNnBgiu3jBEWEwomLPmSMXA5nRg0G5GRng6DQQ+AgoIR44540GFqrriVTTZo4deqkZmegkGXHwj5YLa7gZAFvZQcieHmMk6jQZAVtmJCnb3o/ipoMcNsQm8QDms//CyQn5sDllBgaIIQR0DTwtlTLRei7bhwbBTHE6xMM2Bx+vTUDYvFgtraWixbtkzKK83Pz0cwGByRPBDp3TFcm3spuekTJRB4vd45OVfPBGa1oRxuOjERXSFdr8Kekuxx77NRJmRZLl06NNRWNG6h/L3YfH3JRdvy+feDMtUjlLYKRGkINw3zJd2e2WyGxdIN7yALlUoFhc+HmzesHBECOhvw+/2orKxDik6FVatKLolOqVenIicjVXpjt1gssJiMaD3fgri4OMlVdTTLZUDImGxsbMSKFSvm5G/AcRyqqqrAcRxKSkqGvMAjN4YFBQUIBoPS4amrqws0TUvFITEx8ZKLQygUgkqlGjUE1+PxQKlUQq1WY8WKFdP62K1WKziOGzWAtqmpaVp/VwyXH8Tn5Wi0xUjwPI+GhgaYzWaUlpYK1DCOxxt1/XAHeQQ4XqJ1CpoawRFaAAEJCYMpf0jQuARZgCIEIUIglysQn5yKhESCYCgIt9sFq3UAgWAAKqUCwUBQ2IClJIOmaOhowdkwTs2ABg29ShikKVQygCKQ00JTpmDCmWphrRAHgAHAEgINLUcoTL0PsDwMks09Ax8rahw5qGQU2rp7wQaDSMvIhlwuQ5AnAh2XgRBxFG5EdcqwNjwiJsXuY6FSKcEzcqTrExAMsXC7PXC4hOm8TimTIps4SiFsb8OUW1dQoHL5AwH09vYiOTEeGn08KJqC2y9qLAUjIHcwTKkN61OvXZICxTSxOgghOH/+PPr7+1FaWjqCOjWc+jUwMACLxYL6+nqwLDuE3TEW9WsibXowGAz/W44eEh7TUMYwU5iszlyMrEtJScGyZcsQCoUAAOUdA2i3emBQy8N0fCFzXKsSY5SEj0o5A28wJHh0cDxomoLOkIi4+ESEQiG43R4MOpzoN1mgkMvAciw0ajXSMzOFa+UIFAwl0d4JIUjUKrFp4yYQwoOi6XBjFzYsC1Psg5zQpAVYLixd4CBnGPjDWb4BNnxmAcBzwjIlyLLwuhwwWweQm5MFSqYEywPeQChcQ8NO1UE+HEHCQ8EILthqGQ2eBxJ0KgAqJCYkguc5eDweuD0eOCz9sIOCRqOFIU4HmVqDOBUjxKNo5EKzrJLB6Q3AajKCp2hkZWWAJRQ4qfG8SI8dHl+VqFPgyoLo9OUTwWQyoa6ubtQzrEKhQEZGBjIyMsDzPJxOJywWC9rb21FXVweDwSDVx4mSB8Zid/j9/iEDuuE1Usyh/DRgzjeU0xHcLRYFEZGGFFdccYX0ZkYIAdGkgM+7RnjzC2+ggKG6vYULF6K6uhpOpxMqlQq1tbXo6emRcgynktMSLUTXseTkZCxZsmTK9sWRURniZMZqtUq6GzGnUWy+GIZBZ2cnWltbsXr1asncYTbBsiwqKytBURSKi4sn3NIoFApkZmYiMzNzVNev+Ph4aTofLfVrYGAAg4ODSEtLk964Im8n0rk+DaG0Mcwtxno+jlcjA4GANHCJNDx7/7wF3mBYW0MEh2bR5CYo5kmGOMhl4egLhoafJZAxNPxBNuwKDSgZCoGQIAHgGTkSk5Kh0XNwOwZhtg1Cp1Ki3zoIl8cLmVKD5IQ4cJBBq5LBFQhFuAYycPs4KSIkDh64HDZok7LgZBmBHua/qAVSySm4/ARKhobHz4KhKQQ5weGbJwBNePT39YHiCRbNzwNP0VCEKWlapWCQFq9WgOWFjSs3xJFQqCP6cJMroxjQDA2lnEGCTokQlwAZBdhdHvg9LvT29YMmBA61BlqdDkpGA5VchlDAh/6+XmSnJkEZZ4BaJuS3KeU0PAEWNCXQ5jgegsNsgEVxXgIyDNPz/kEIQXNzszRImOhQwjDMkCxet9sNq9WK/v5+NDU1QavVSu8B0VK/vF4v+vv7kZKSMur2kqKomIYyhhnDZDSUvb29aGhowKJFi5CbmwuKosAwDMxegu6uQajlDDhe0ESz/EXjr3iNQnDVV8kQ4nho5YzgSK0QHPMZSqB/qpUK0IwMSUnxGHS4YLWYwTByeHx+nG/vgF6ng1qjgUatEbz06YsDNdF8h4RYwZSHEBAieGQQCN9jaKGOMBQgpxnQEaY7HM+DpoWmhQn7c9gdNtidbiyenwvCKKCSUxGadUH+IMR9CFEeKgUDVyAsxeIjNo88CTNGeGi0OhC5GqlpaRhwekGCHvSarQAXgiJs9MPrdFDK5WBDIdiMvdCqhdvLGOFxyZTC9lQpF95jDGphgKhTCfmdWqUMW5alQT5J3eRo6O/vR2NjI1atWoWUlJRxb0vTtJQ8sHDhQil5wGKxoK2tDQqFYsiCYviCZ7QFRSgUQnd3N7Ra7Zja9E9TffxUNJR+v1/63OfzoaKiAnK5HFdccYUUfhvp2gRcpDQORyAQQHV1NSiKwlVXXQWFQgGfzyds9sKuo+Ibb0pKyqi0yqliYGAA1dXVyMvLQ35+/ow0K8ObL9FVtampCcFgECqVCoFAACtXrpyTZjIUCqGyshIymQyFhYWT3s4Od/3y+XxScWhtbZWoX8nJyUhISBi1ONjtdtTV1WHRokVIT08flfplt9ul59h0Izk5GQzDjBpAm56ePiO/M4bLC+PVSNH6PD4+HitXrpSeww19DtT3OaFT0PCzPGjCwc/yUMsYBFiBHhXkeCGiQzooEeiUDEIsjzgVAy5sVx/ihUxbMa82xBH4HTZ43R4sK5gHuVIJEA4Olwd+jxu93T2QMzQ8Wh0SDHHgeVrQ9oQjQgIsjzjKB67+VcQHB+G1FUC9+EZ4gwIVNhDiwvQpABA2lyzPQ84IDtgaJQOHxw+HxQiWkqMgLzNMEaNg97Jh4x7BkdATDIGhaaH2EwIFI+RFahSyi06t4SbXGTaEsPsFbZGX4yFTqKBXaaAycKAJC5vDBad9AD39RuhUcnj8IaQnJ0Gl04OhabCEh0JGQSGjQIEOu3QTqMObhgyDCuvyp6eWEkLQ2NiIgYEBrFmzZtJDzkg367GoX0lJSVKNHI3dEQgEUFNTI0U/RTI7xOcsz/MxDWUMM4ZozpDi4KW3txerV6++yFYDMOgNocoGLIznEGAJ1AoGdh8nGTrqw7FBOjkDT4iHkhG0fWqF4N2hkgn0TK2SCbv8M7ANDMJpsyAnIx0GgwEcx8Hn88HlcsFuNcPK8YjTaSFXaRCv1yHEAwpGjKqTSX4covmOSxy0ReZODjfdCW9U4xQ03AEWdosRngCLgnm5oBghy1HIEmbAERKOHhHo/ACFODUFEECukAGUkKzAiDnlCmHoeJGmy8Ad4JCg18IbUGJeQjJ8gSB8Hi8GnR70GK1QK2XwBTkk6rXQxCeDpi9q+IUIJxp+PycYQtI0OI6HSimYnV2Rn4AknXLsf9Ao0dvbi+bmZhQWFiIpafLbzsjkAY7jMDg4CKvViubmZil5QBzAjVV/xfP06tWrpS3lcG261WodwQ75pGLWKa9Dfnl4ujQZ04nhoGkackc76IoKOHQFONsTQlpaGpYuXSpNDCJdPsWfGQ0ulwtVVVWIj4/HsmXLpAOaWq2WaEOhUEhqTCoqKoZMfRMTE6e8Sezv70dDQwOWLl2KzMzMKd1XtIjczi5atAi1tbUYGBiARqNBdXU14uLipM3eWNTY6UQwGJRcKletWjUtzqlqtRo5OTnIycmRqF9WqxWNjY0IBoNSpptI/XI4HKisrMSCBQuQnS3QrodTv1iWxe9//3s4HI4pPYfHgkKhQElJCY4ePYrdu3dLv/vo0aPYt2/ftP6uGC5PjEXpMhqNqK2txfz58zF//nzpuWdzB3Cy2QIFQ8MV4KGUyeAJATJaCJvWhDeA2jDFSKMUcr60SgZ2j/DR4eegU8ox6BVuNxj+vtUdhMNqhjfIYX5uLvxhp2tvgECr04FWaJCQQsHu8iDo96K1qx/gWWh0Omh1Gug0OjAUhZDPCTroBuFY0F4LZIKfAxQyYTMgp8VNI4UQB2gUNEI8YJDJ4fX5YDf1QqvTIyM9RQjrVoVz2iQHa8FASx7OQuOBcIwUD7VcgSAvmLeJ0U1BTjg08YRALhM2AYRQQo5wkINeJYc7SCEnPQWeQCJULgfMVhuUSiUsAwMwDzqRZNCBUqiQGh8HV1g/6vCxkDNU2OQM2LkoJSK25dIhUpwdDgdKS0un5TASSf0S80utVis6OjpQX18/gvol6rsNBgOWL18ubXvE6xPfc//6178CEHRCMcQwFYyloRyP8hoKhVBdXQ2fz4crrrhiyGDDF+TwbpMF8rB+W6MStJJasZkLO46KrAnhNR2CPtzMxUkOqkL6gFbBoLXbCNbvRnxKJvRxOsGkR8lAplQjQ6dFMMSDcCEMOl3wOe0YsJgRp9VArdUiXh8HigYS1AqECA+DRgaOE7J9g5xgxhMMG0/6gvwQHaY7yEGtoDHoDWLAYkSIp5CbnQ0/T0FGEYFuDwpBioAjQo0NcHw47kMYxHnD2b2+IA+1QqDRqsLRdUo5BY4HNHIGoAC9Sg5QBHEqGWgKUDIqJOjU4EkiAj4fOrt7BOqr14eAvxMOlQb6uDj4aBXkMoG5AQAK+UVzSJc/hEVpcVieOXWDmu7u7hHRSVMBwzBS/RPlY1arFSaTCc3NzdBoNNL34+PjAQC1tbXwer0oKSkZsnSI1KaXl5ejrq4OHR0dU77GywFzvqEEojOdGAsysMhrfBoI9APQY/GW3yNr0XLp+5Gc5rG2kgAkS+GJtoJyuXwI51rc7DU0NIBlWanxGm2qOx4IIejo6EB7e7sURj3b4HkedXV18Hg8WL9+PVQq1RBqbGdn56jU2OlEIBBARUUFNBoNVq5cOeUGfTRMRP1SqVTw+/3SdGo4xGu699570draisbGxhm5TkDIE7r11ltRWlqKtWvX4rHHHoPH45FcX2P49GC0mjOc0kUIwYULF9DZ2YnCwsIh0TFBlsfxJjNUckGHo2BoBCkOSoaHnKYgD4dO61VCXboYfyFMTkVKaLxacTFTlxDoVDL4/QHYjL2QyxVYmJ8LQgFqIlC2lGFHRLmMAgEFnVYLWZwWhoQkUDwLm90Jl92Bvn4zEuM0oOUqZCUvgstlgzZ7JZxhk53IqBCtUiZsHBUM7F7BIMPqdMNiNiIhIRE6Qzy8QYIQz0Elo+EP8eEYEuE+XOEDnzOcp+bwC1RUUf8UZHlwHAEvo4RDpJKBl+WhC+eoqeTCNlcpF7a0Cpnw+va5HXDbBzAvJwsJeh0CIQ4hvxd2lxueAROcVhO0Wi2ITgu1RgulQsglXpltQErc1KfuYo12u90oLS0d4Wo9HaAoSqJ+LViwQKJ+Wa1WtLW1QS6Xg+M46HQ6LFmyZFRqLCEE//d//4cHHngA7777LpYvXz7Gb4shhkvHeBtKj8cjnSWuuOKKIecxnid4p8EIpzcIhqEAIuTxKhmAZihoaBoUhGxJAgKdQojxSFDLwRLAoJEjxIo6bw5xShqtnT1gCIvUjGzotSpJGyhG2DnD5jpulkFqcjLccfFIZwjMA064XG509Vug1yhBKzXQyCl09ZqQmZqEhOQUKBihHgl56sKmlBBALReGZzolDTbEYtDcC7VShfz0dFC0MGgTZAIENCiwhEAlxX3I4A2NQoFViiZqF2M/giwFAj78/3moFYIJkC6iuXb6QgAbQEdPHzJSkqDTG0BTFELBAJwuFwYHbPAHgtBr1VBpdTDE6cJmccL7TIZBhU2Lx6elRgPxHF1cXCw1d9OJSPmYmFUuLijE5AHxXFxcXDyCwSaeFWtqavD5z38eDz74IP7zP/9z2q9zLkCR8cJLphksyw558fM8j7fffhvXXnvtJb8x9rafh+H1b0LtN4JJyAb2/A2IE+iA0TaTXV1duHDhApYtW3bJVMJIx1GLxQK32434+HikpqZOqLskhKCpqQlmsxmrV6+GXq+/pGuYCliWRXV1NViWxerVq0elcUY20BaLBcFgUKJFpaSkTPlw4/f7pan3smXLZqxJGw8DAwOorKyETqeDz+cDMJL6xfM87r33Xrz22ms4ceIE5s+fP6PX9MQTT+Dhhx+G0WhEUVERfv/732PdunUz+jtjmH2ImotInD59Gvn5+YKtfYQ2vLi4eITu4s26frSYXJJuUauUweHxob+nC7n5BVArZPAFWajlQgi1sIFjBZ1kmArrD0+l/Ww4QzfEgYQCaO/uQVpSAuIMCdAoBFt6tUI45AhZu0JjF+CETN0QK5hPBDki6THBhWB3uuH1uuHx+qBSKKCN00Gv1UGuVEqmQRQVdg0KB1/yBHA6HTCaTMjMSIdWp4eMhtDo0eLvCGtDZRT8LA8FTSPAcWBoGhzPg5CLLoYquZDlpgsfnHQqGdx+FmoFDV9QyIzjiXDoFLSmgnlFV78ZrNeF+JQMJOo18AQ4IVycE3ROcoaC0+MDQn5Y7W7QfBBEpsS8VAO+tL4AcaOYOkz2+VFTUwO/3z/qQWU24Pf7cfbsWelxiNQv8T1ArVaDEIIXX3wR+/btw0svvYStW7fO+nXG8OkDIQTBYHDI15qamkAIwdKlS4d83WKxoLq6Gjk5OVi0aNGI192xRhPqeh3QqWSoa7qA+blZAKMQqJgsgSKcF04DYZ0jAAJQDA0KRHLFpyFsQfv6+yBnGGRkZkLGCNpsigA8BBM0jidgGBosRyAT83kZGgGWh4wBAiGhWRxwuOD3efDOu8dgtZihN8Rj+7btgukZTV9sDsMus3JaGIgRLoiO7l4kx+uhNSQIlPwAizglA2+Ih1bBIMDxUMmEjwrpWnDRaRtCOoDouE1RwvUzAFhAMiISr1slo+AN8eH4EQ4+rwd9RpPgIG3QC/F0YQqvWGMVNIFl0Ak24IXD7YNKIYdWq4VGq8VXrixAqn5qbIu2tjZ0dXWhuLh4Ts7Roomky+WCSqWC2+2GXq9HUlLSEIZfXV0dbrzxRtx99924//77PzUeHLPaUHIcN4Ke8NZbb2HDhg2XpLFgWRZnzpyB3FiBYoMdsvwrQeZ/DsBQR7qxmkme59HS0iId1KdzmhGpuxwcHBxTd8lxnLQaX7169awY/gxHMBgcoleMZls8xDXWYoHT6ZwSNdbn86G8vByJiYlYunTpnLzAnE4nysvLMX/+fOTl5Q2hflmtVrjdbvzpT3+S9J0ffPABFi1aNOvXGcOnE6M1lGfOnEFmZiYSExMlGnhhYeGIZqK2x45zHQOQMeEgbZpGkOdBcSwaz1/AimVLEOIARbh5VDAUvEEOShkFf0hoCj1BDhoFDW9QiP5w+TnwAQ86+kzIy0gFo9INyZ8c7aOorxHjPUQtkEohNGYKGYUQCwC8kAXp8cDv84JQFAxxOihUGiTodeGNo2ByE/Q40WcZQEFuFnhaITm2ivetCNOyaFyMHVHJBY2TWi5sL0UdkFJOI8QCMgbgOOGgSMLHKSZskiFnqLCuiUKI58FQFPr6jfB6PcjOzoFSGdbl8wQULURVyRiA5YU8YZYTDpyBQBB+vxeF8SGEPA4olUqJ3TFaZMd44DgO1dXVCIVCKC4unhT7Zbog0ly1Wi1WrFghGe5YLBZYrVbY7XYcOXIE/f39ePvtt/Hcc89JVP0YYpgOBAKBIZ+fP38egUBAclgnhKCzsxPnz5/H8uXLR5UN1XTbUd45CBkDBDmgs+0CklMzoI/TIig2eiEODA34QiyUMgYBVsiSDbK8MCBjBSdVj9cHk8kIjUaL1JQUyWyH8EJ8GyHCR4QdXEGExpInBHKKBgceMpoGzxPIZIKWkAKw/9m/wWQyQqlUYcOGKxFviBfyuLVa6OPiQCgKMkoYkAX8HnT29CMjNRlKrT6stwxBp5LDHZY3eAKstFVUymkEWQIZDfCEkq5JzEH3BbkhbA93gEWcUtCdq+U0ghwPGUNLTuEMRWHQbseA1YK0jAwY9HHgpEGioMXkeCEihOMAigZ4Xqhpfp8XdqcbOUof8vS0dH5MSkqaFGuREILW1lb09vaiuLh4TmKKCCGoq6uDy+VCaWkpFAoFAoGAdH602WyorKzEhx9+iKqqKtx222349a9//alpJoHLoKE8evQo1qxZM+lpgtfrRUVFhRRFsmHDBgAjzXdEp7nhEKf9fr9/xhu5SN2lzWaTKJcJCQno7OwETdMoKiqak0OCmMkkHhIulcIaSY212WyQyWRScZiIGitSU1JSUrB48eI5eYG5XC6Ul5dj3rx5mDdv3qi38Xq9+M53voP33nsPLpcLSUlJkilFDDFMFaM1lOXl5VCr1ejv70dmZiYWL148ohExOf04UN4DBUOFN4fCJlKjlMHlDaC3ox05+QXQqgRTHHEjKaeFxkklF7Z8irCJjJwGWI7APmCFze5ATlYmVGoNmPBBQHQllByyKQKeUBCTdwEiUK2kDWPYwZCIDZho+CA0YsEQj1DAj0GnCwGPCwGOID5OA7lKCzbgg93lRV6OsEGQM4KlPiiAIpRghBOemKvDAdniNFxscjVK4eti40lRCDszijmXF39GalaVYtg20Gc0IRgMIDc7GzzooVmY/ouNrXDIIuB4PvxvwOGaRclYlR0/JLLDYrGA5/khzIfxto0sy6KqqgqEEKxevXpas26jRSgUkp6LY0kRQqEQHnnkEfzzn//E4OAgCCE4dOgQNm7cOOvXG8OnE8Mbyra2NjidThQVFYHnedTX18NqtaK4uHjUsPhOmwdHavqhCjMP1HIGLa1tyEpPhVKjhZKhEOKF+CSWE17TPIFgusXxYMLmNgwAu9MJk8mIxKRkJCYkgiU8ZFS44aIpBMObQJEN4gtdbNhGM9/xhvWangALS38PquqbkJuRgkXLVkEODha7E5zfDbefRbxODaVGBzl4GK025GZmQK2LE2o0ETanQg0WqvKQYz4BeEp0zBY042KciTfEQy2n4QkIH90Bwf01EBJzg4XaLlFf5Qz6LDYE3HYYktMFDXlYbyoO+zhe/BkaQVaotb6g4JLrZ3nkJmqwZXkaHA6HVB+9Xu8Q0xuNRjPmc0KMCDSZTCgpKZkTAzBCCOrr6+F0OlFSUjIqW4/neRw6dAgPP/wwuru74XK58NBDD+Huu++e9eudKcx5Q3nixAkUFhYiISEh6vsZHBxERUUFMjIykJqaioaGBlxzzTVRm+/4fD5UVlZCpVJh5cqVs9rIibTRvr4+yb0zJSUFqampk9ZdThViI5eYmIhly5ZNWyM3GWqs2+1GeXk5MjIysHDhwjltJkX97GgghOChhx7CU089hePHj2PhwoX4+OOPcc0118zy1cbwacVwShchBKdPn4bL5cLy5ctH1fMGQhxeONcNX4gDz1+M1aAooZEDgJaW81hQMB9U2GqeZUUqaHhazpMIC3vBVdViMsMfDCArIwNyhQIknF8pBE8LhyoZLTRoChktGTj4pYaWk5oyKQNyWKOnVTHw+LlhE3QW4Fg4XC64nXYQQqBSqZAYb4Bao4VeoxLyJUW6rYKRDjYhMeMNAENdPEzJw42ecLgBlDIKHAHkYR2SEB+FcKMpDCCFTSOHtgvnwfM8li5ZDLlcDoYSKGF0ONxc+P/hz2nhfsQ4KpoCkrSKETWNEAKn0ykN4NxuNwwGg3R4iowhEtkQDMOgqKho2jXr0UBsJlUqFVatWjXm++qbb76Jf//3f8df//pX7NmzBxUVFViwYEFs4BbDtCEYDA5pjrq6umCxWLBixQpUVlZKQ5fRjKoGvUG8cLYbFIAgJ7AYfEEO5r5uaPQJSEsyCCwLBQ2nXzCK8YxSt3QqGXpNVvgcA0hKy0BSfByCrFBf2HA9lAZzhJKYD8IQTWjMOF4YxLEEYdoqD7mMliKafEFBQuAJCtICt/9isymneFjtLvhcDniDQkamWheHOJ1OGkzRNCVtCQOhi5pHbbgW61UyyXhI2L4CIQ6QMeFrDTM3KOpifrz4HiGjhaZbTgG9Jgs8LgcysnKg1agEmjAtRCURngh6dV6g2grvAcLWVGw49Wo5vliaDeWwXF6v1yvVx8HBQWg0Gqk+xsfHD2mUm5qaYLVaUVJSMm7jOVMghKChoQF2u31cXXtbWxu2bt2KW265BY888gja29sBAAUFBbN5uTOKWW0oR5vAv//++1iyZMmEGTEienp60NjYiMWLFyM3NxeDg4Oorq7Gxo0bJTve8fSSdrsd1dXVSEtLw6JFi+ZEp+dwOFBVVYW0tDRkZGQMOVhEq7ucKsTIgaysLCxYsGDGGrnxqLFarRaNjY3Izc0d4lQ5m3C73Th37px0DaOBEIJHH30Ujz32GI4ePYqioqLZvcgYPhOIbChFJ8++vj6kp6dj1apVo/7MqVYrOq2ecGMl6ANZXqBnCR8plFdUo3DFMlAMAwUjHGYUMhoElNRUycIfeY7FhQsXIGcoFCxYALVCAQJIzZLYRDHhDkxGAaAoqYETG6mLzZnQYNER/5+CcOChwx+lz6mLcRRVVVVgGAaLFi2C3W4fIR1ITU2dUcfpS5EBXCoi884GBgYkamxCQgLa2tqm1e16sgiFQkMct8d6vzx27Bj+7d/+DU899RS+8pWvfKpoXDFcPhjeUPb29qKzs1Nyal++fPmor5NAiMOr1f1wB0PC9o5QIBBYFu3tHUhKiIdaFweaIuHBlKALV8rEzSINT4CDSk6jo6cfCPlhSElHkl4ztNmUhmdC4xTZhLojPmoVTJiKT4cbOkFnLpMBPAfQjHCNNCXa6lxkfBACGE398Hp9yMjMRCgYgsvlhMfrAU0xiIuLg0qjhUGnQYCDlD+pUTBDrjFyi8hyRKrPF3MnLw4FJeMeUW8up9HVZ0LI70NmVhbUSoUwsCOATsEgJEWpEGjkQlSJjKHBUADDCJnBAIWFaTqkTmBWxrIsbDabRK0HIDE7LBYLHA4HSkpK5kQuFtlMlpSUjOm43dnZia1bt2Lnzp34/e9/Pyd9x2xgzhvKU6dOYf78+ROa4URmCRUVFUm5Mk6nE2fPnpUayvGaSaPRiIaGBixYsAC5ubnT86AmCYvFgtraWhQUFCAvL2/I96LVXU4VYs5lfn7+mPTOmYJIje3r68Pg4CAYhkF6enpU1NjphthM5uTkjDklIoTg8ccfx29+8xu89dZbWLNmzaxdXwyfLYgNpdhQcRyHuLg4yGSyEaYTk8E777yDtWvXQq1Wj1sfXS4XKisrJcbCXLzpeTweVFZWSnEUkdcQKR2wWq2S4/R0RTaJEM3B4uLisGLFiln9O4jUWJPJBKPRCADSY5yIGjvdEJtJhUKBwsLCMf8O7733Hvbs2YPf/e53uP3222PNZAwzhuENZWNjIzo7O7F48WLMmzdvDK8MgsPVfegZ8AqmOxwPRXhbKGcYdHV1Qa/XI04XB5oJD7goQe9I0ULjI1DZOfT19gIgyMzMgkIhD0sABNMdGUNJGstgSNwOih85ycxGTtOCMU7YvEzGCMZhgpRAaBwphNkgovkOI5iOyRmgs6cXMoogISUd8VolfEEeBrXACqG5AAYcTrA+N0IcQaJehzh9HBLiDVDIZGBoSvpPwQgDQLn0kQZNAXKaBh2+jYwWKLEMTUMWjmGiKR6NDfUI+P0oLZ5d3w/R18JsNqO3txcsyyI+Ph5paWkTUmNn4lrELODx4pt6e3uxZcsWXH/99fjjH//4qW0mgTmODQFG2uKPBtGB1Ov1jsgSomkaLMuira0NqampI5wPAeEfvr29HR0dHVi5cmXU29DpRk9PD5qbm7FixQqkpaWN+P7wvEubzQaz2TyteZdmsxl1dXVYvHgxsrKypvqQJg2FQgGNRgOXy4UFCxZAr9fDYrFIAbDT6Ro7HkSq7UTN5NNPP42HHnoIb7zxRqyZjGFGQVGUxByIj4/HypUr0dbWNkI3NBkQQsAwDDo6OpCZmTmmtEAcdOXn50On06G3txc5OTmX/HsvBXa7HVVVVWOyJkaLbDKbzVOObIqEKANISkqaE3MwhhE2DOfPn0dKSgry8vJgs9nQ1dWFhoYGKQ8yJSVlCDV2usGyLCorKyGXy8dtJk+dOoVbbrkFDz/8cKyZjGHGIdIvCSE4f/48enp6oFQqx5SqAMAH5y0wOvxDqPUiVdQX4MAwMtgGHaBpIS9SGXatltE0OJYDTQkGW/3GfigVCqSlpSFEaLAB4dwqYyipGVTIaMgZGkqZ0LBBDSgZIXpEKaMBUFDIBLdWMYpIwdCgKEAuo0GL+bnhZo6mBWq9jKHABgNoqK/H8gUaFBWuhEqhGDPXVkwdMJvNsFgs8Fj6JE3iVNhvgp67FuB5XLF2zaz7flAUBb1ej87OTqhUKixbtkzSXra0tIxJjZ1uiFTbiZpJo9GI7du3Y+PGjfjDH/7wqW4mgVneUI5m+1xeXo6UlJQxN4ai+Y5KpUJhYaH0BBaLCsdxMBqNMJvNsNlsUKlUEmXUYDBIK+nBwUEUFRXNmftTa2sruru7UVRUNCm9KDBSkxgKhS7p8NTX14fGxkasXLlySH7dbGJgYABVVVVYuHDhkAPrdLvGjgePx4Nz584hKysLBQUFo94vIQTPPPMM7r//frz22msxrWQMM45QKIR33nkH8+bNkyjgbW1tcLlcKCwsnPT9ieZkg4OD6O/vh8ViAXBRsy0Oprq6utDa2orly5djYGAA3//+9+H1enHXXXfh5ptvnu6HOSrEQdfwuhANIiObzGYzPB7PJR2eHA4HKisrkZ2dPWZdmGmIbtcJCQkjdO1jUWMvxTV2PLAsi4qKConuOxZr5OzZs9i1axd+8Ytf4M4774w1kzHMOEKhEILBoBSftGDBArS0tGDTpk2j3t7o8ONcxwCUMho8AJVMyGZUygSXUhlN4Pf74bDZMGgfBBcKIDEhAanJSUhJToJSIYfLYUdTYwNysrOwoGA+ZIywrZOFN3mzAbfbLbFHli5dOunX+nD2m06nk+pjtGerYDA4hLEwFxR8juNQU1ODQCAwIjppLGqsuISZruY3UrdZWlo65vuL2WzGjTfeiOLiYjz77LNzYqY225jzhrKqqgoGg2HUCZOYCTjc3XC4+Y6o3eE4TnrDtVgs0u1lMhmKi4vnhGMtaqEGBwexevXqUTeok8Gl5l12dnaira0NhYWFSExMnNI1XCqsVitqamqwZMmSUe28IzEV19jxIDaTmZmZY2pHCSH4xz/+gR/84Ac4fPgwrr322kv6XTHEMFk4HI4h087Ozk7YbDYUFxdHfR+RwzbgYn3keV7SI5rNZoRCISgUCgSDQRQVFSExMRH//Oc/8eCDD4JlWWzfvh2PPvrotD/G4eju7sb58+exYsWKaRl0jSUdGE93KcoAxMiguYDX60V5eTmSk5OxZMmScQ95U3GNHQ/iZlJ0Hh+rzlZWVmLHjh348Y9/jHvuuSfWTMYwK3A4HDh37hyUSiWKiorg8/lw9uxZXHfddZO6n9EyysWhttlshtlshtvthlqths/nw8KFC+esLgwODqKqqmravCbGkg6kpqaOOZjy+XyoqKiYExmACDHjkeM4rF69etwGUaTGXopr7HgQpXcWi2XcZtJqtWL79u1YsmQJ/vWvf81JgsNcYM4byrq6OiiVSixcuHDI10XznSVLlozYZEVjvuN0OiV3PLFwJCcnS26qszFdEam6wWBwTOexqWIi3SUAXLhwQcrnmYuwV0CY1tTW1mL58uUT6mWHYzKusePB6/Xi3LlzSE9PH9NRlhCCF154AXfeeScOHDiALVu2TOpaY4hhKhiuEerp6UFfXx/Wrl0b1c9H1kexkRzteS6azvh8Psjlcvh8PiQmJiIQCOA3v/kN3G43fvjDH2Lz5s3T9thGu1axNk13DrCIsSKbIqUDJpMJ9fX1UQ26Zgoejwfl5eWSWdxkDo1jucZOlhrLcRwqKiombCZra2uxbds23HPPPbjvvvtizWQMs4aPP/4YSqVSWjB4PB588MEHUb9Pi8M2nueFGKMx6qOoj+vv74dGo4HH40FcXBxSU1NhNBpRV1eHa665BosXL57uhzgEYm1atGjRqC7fUwXP80MGUxzHISkpaQj7ze12S7FuEw26ZgrioIuiKBQVFU162xeta+x4EONJzGbzuM3k4OAgduzYgdzcXLz44ouzqnufa8x5Q9nY2AiKorBkyRLpNk1NTejr6xtiviN+b/hUaTTYbDbU1NQM0cc5nU5p8uT3+6UXTUpKyoz8gwcCgSEalNlYd0fqLsXDk0wmQzAYRElJyZzQfQGhKNbV1U0L1fZSqbHRNJMAcPDgQXzzm9/E888/jx07dkzpWmOIYbIY3lAajUa0t7dj/fr1E/5sZH2kKGrMKbLX60VVVZWUKSiTyeD1eqX6aLPZoNFokJeXh9TU1BkxOhAz4xwOB1avXj0r2WGRgymz2QyWZaHVauFyubBs2bI5ayZFPfd4rInJ4FKosRzHobKyEgCwevXqMZvJhoYG3Hjjjfjud7+Ln/3sZ7FmMoZZxfD66Pf7ceLECdxwww0Tbs2izSjnOA61tbXweDwoKiqCVqtFMBiExWJBc3MzfvCDH2BgYAD5+fl47rnnkJqaOiOvg87OTrS2ts6a78cI3WW4iXa73cjKypqzjHAxOmkiCn60GM81NikpadRtoqjZNRqNKC0tHfM90eFwYNeuXUhJScHLL788oz4glyNmtaEERgbTtrS0IBQKYfny5QiFQqiurobP5xuRKSMWgomaSdH4ZunSpWMeENxut3SocLlc0x7VIfLdRR3MXNADxImO2+0GwzBgWRZJSUmznnfZ19eHpqamGSuK0VBjfT4fzp07h9TU1HGn/6+++iq+9rWv4R//+Aduuummab/WGGKYCKFQSDrwAJAOMRs2bBj356IdtonGN+np6WPGJgUCAak+DgwMQKvVIjU1VTI9mw7KVXV1NTiOQ1FR0Zy86YrUpZ6eHqhUKvj9/mkxrZgsRBOm3Nxc5OfnT/uBLRpqrEgl43kexcXFYx7YmpubceONN+L222/Hgw8+GGsmY5h1sCw7xMSRZVm8++67uO666yakQEaTUe73+1FVVSU1L8Pvs7e3F3v27EF/fz9SU1Pxs5/9DDqdTjo/ToeWWdyEGY1GFBUVwWAwTOn+LhV9fX1oaGiQaL/i+8B0e1qMB1G3OVPRSdFQY0UmTX9//7jNpMvlwu7du6HT6fDqq6/OCCPxcsesN5TDJ0ytra1wu91YuHAhysvLoVarxzTfAcaeKokvwv7+fhQWFkZtfOP3+6WJjChWFg9Pl+KiJ/Ldxe3oXNEDqqurwbKsxDV3u93S4xR1lyJvfqYOTz09PWhpaUFhYeGQTfNMYTRqbHx8PJxOJ1JTU0eYXERCDOV+5plncMstt8z4tcYQw2gY3lAODAygpqZmTNMJIPpmsr+/Hw0NDVi0aFHUxjfD9TZyuVyqj5fiouf3+1FZWQmVSjVn2YritLm/vx+rV6+GXq+ftcimSDgcDlRUVMxafNNo1Fi9Xo9gMAiZTIaSkpIxD+Wtra3YunUr/u3f/g0PP/zwp96tMIbLExzHgWVZ6XNCCN566y1s2rRpzAN8tPXR6XSiqqpKcnge6zn+2muv4cMPP8TWrVtx9dVXS27TZrMZPM9L56qkpKRJ1zeO41BXVwe3243Vq1fPagxGJERW2bJly5CRkXFJusupIhAIoKKiAhqNBitXrpyVmjMaNZZhGHi9XqxZs2ZMDxSPx4PPf/7zoGkaR44cmRXGzeWIOW8oOzo6YDQa4fF4RqzVxzLfGQ6WZVFXVwePxzOlF2EoFJIm86JjrPiiMRgMEx4qxBfh4sWLZ4TvHg2iCeT2+XywWq0wm80zdngSnSMvxdV2OkAIgc1mQ21tLWiaRigUGpMae/ToUXzpS1/C008/jS9/+cuxyXsMc4bhDaVoQjGa6cRkhm1tbW3o6urCypUrkZycfEnXJm67xMEUMNQxdqLDk5hzKZrOzEVTwvO8lB1WXFw86ht/NLrLqUIcPBYUFMxZJrJIfQ4EAuB5fkxqbEdHB2688cZPfSh3DJc/hjeUAPD222/jyiuvHDMyLppmUnSZFk25LuUMELntipRWiVu9iVhhoVAIVVVVIISgqKhozrR34iJgLFZZZGSTxWKZtsimSIhZwAaDYc5YfqFQCA0NDbBardJzZzRqrM/nw549exAMBvHGG2/MmbTscsCcN5Q1NTXo6+vDihUrhjRh0eqBRIqCXC7HqlWrpo3KyXGcpEcUHWPFyfxoE5nZ5ruPBr/fj4qKCmi12qgnOqLuUpw8TcfhqaOjA+3t7SguLp4zuobf78e5c+eQlJSEJUuWjDgkymQyfPTRRwCARx55BI8//jhuu+22WDMZw5xiOKXL4/Hgww8/xA033DDkdpPRA0VqFafqMh35++12uzSZnyjKSHRRzcvLmxFqZzQQp/8ejwfFxcVRUZKmK7IpEjabDdXV1TNmtBENeJ5HVVUVWJZFcXExKIoaQY1tb2+HzWbD/v37ccMNN3zqQ7ljuPwxWkN57NgxlJSUDDlrRJrvjNdMEkIkB/zpcpkW73e4Y6xIpUxNTR1Re3w+HyorK6Vt3FwxNzo6OtDR0RH1ImC6IpsiIUYniREpc3Uma21tRU9PD0pKSqDVakdQY8XrrKiogNvtxltvvTVn593LBbPeUIoTeJ7nh2hYrr76auk2k6EoVFZWSu5TM/VmN9zMgeM4yTE2MTERbW1tEn1qrp5Q0xHIPdrhaTK6S3ET0t3dPaeOsmIzOVZBEh/nD3/4Q7z22mvw+/3YunUrfvvb30omTjHEMBcY3lCOZjoRrR4oEAiguroaAGZ04k0IkSj14qEiMTFRmswPDAygoaFhXF37TEOUAURjOT8WLjWyKRIWiwW1tbVYunQpMjIyLuWhTBk8z0vu48XFxSP+FuLj/NOf/oQ//elP6Ovrw/r16/Hf//3fuP766+fkmmOIARCeu6FQaMjXTp48iZUrV0pxaNEO20S2gtVqlajvMwWRUm82m2G32yXH2JSUFPA8j8rKSqSlpc2Z8U2kbrO4uPiSt2yjSQcmo7sUo5NSUlLm7G8BQGL0lJaWjjqE9Xq9OHbsGH7605+ipaUFCxcuxL59+3DnnXfOwdVePpiTpE3RlMHv92PJkiXo7OyUvhdtMynaKU+FohAtaJpGUlISkpKSsHjxYskx9sKFC/B6vaBpGvPnz5+TnEvgorFDVlbWlFwChz9O8ZDY2dmJ+vr6cXWXonC5r69vzBfhbECkSiQkJIzZWNM0jdbWVhw5cgS/+tWvsGnTJrz22mtzls8ZQwxjQZxUizFJ0dZH0RgsPj4ey5Ytm9GJN0VRiIuLQ1xcHAoKCiTH2L6+PjQ2NgIAMjMzZyQWJBqIMgC5XI6SkpJL/ltQFAW9Xg+9Xo+CgoIhh6eWlpYJpQNidNKKFSuQlpY2HQ9t0piomQSEx+nz+fCvf/0LmzZtwoMPPog333xzzv79YohhPIimg0D0wzbxDMqyLNatWzfjBipqtRq5ubnIzc2VjATNZjNaW1tBCEFCQsKk49SmC2JWut1ux5o1a6ak24x8nJGssM7Ozgl1l6LbdUZGxrhO/DON9vb2cZtJAJDL5fjXv/4FpVKJtrY2nDt3bpav8vLErG8o7XY7zp07B41Gg8LCQjidTtTW1uKaa66JWg80ExSFyULku7Msi5SUFNhsthlxjJ0IIpVspo0d/H6/NGEbrruMi4vD+fPnYTKZJHrAXCAQCODcuXPSIXqsglRRUYGdO3fiJz/5Cb7//e/HaK4xXDYYTunieR5vv/02Nm3aBKVSGVUzabVaUVtbO21B2JcC0UXVaDQiOzsbTqdTcowVDxWz4RQ4W4HcE+kuTSYTGhsb5/Q9i+d51NTUwO/3j2vAY7VasW3bNixbtgz/+te/ZiXyKoYYosFoG8rTp09j3rx5SE9Pj6o+er1eVFZWQqvVYsWKFXP2/BZdVLOzs8GyLCwWi1Q3ZtLsJhJiRIrP55uxrHRgYt2luAjIzs6eMzNLQGgmOzs7x43ZY1kW//Ef/4HGxkYcO3Zszur55YhZbyhPnToFrVYrrbMdDgfKy8uxcePGqCkKNpsNRUVFc0apHIvvPrzpmqpj7EQQheSLFy9GVlbWtN73eBiuuxR1rosXL0ZGRsac6GwCgQDKy8uh1+uxfPnyMf/WNTU12LZtG+6991788Ic/jDWTMVxWGMt0Yv369VCr1RMelrq7u9HS0iK584kghMDr9UKj0cz4c148pHi9XqxevVoarLEsK03mIx1jRbv96b6uuQrkHs1tmhAiRYPMVmTT8GsSD47jNZMDAwPYsWMH8vPz8fzzz3+mQrljuPwxWpb52bNnkZ6ejoyMjAnr4+DgIKqrq5GRkTEiQszr9UKpVM64fpEQIjUuhYWFEjMqsumKdIwVm67pvi5xS8vz/CXLAC4Fo+kuAUh+F3PF9BP1o+M1kxzH4dvf/jbKy8tx/PjxOdsqX66Y8xxKl8uF06dP48orr4RSqYyKolBUVDRnGS+ibjM1NXXcQ4roGCs2XUqlUmouo3GMnQi9vb1SvuNcTUgIIairq8PAwACSk5MxMDAg6S7FQjgbRSoYDOLcuXPSFmKsv60Yyr1v3z789Kc/jTWTMVx2GM0W/9ixY1i2bBmSk5PHZW6IG8GioqIh9ERCCJ544gkcP34c69evxz333DNjQ59gMIiqqipQFIWioqIxX/+R+YhmsxnA5BxjJ4LD4UBlZeWcT7y7urpw/vx5pKWlwe12X5LucqrgeV4yIyopKRmzSbTb7di5cyfS09Nx8ODBz1wodwyXP0ZrKMvLy6HVapGfnw+GYcZ8rYsU/NFc+F9//XU89dRTyMrKwq9+9asZk7/wPI+mpiZJtzlW4yJG/IjNZaRjrJgfOxWI+Y4KhQKFhYVzYgIECDWnoqICiYmJ4DhuCPtttlgsACTWY0lJyZiLKo7j8L3vfQ8ffPABTpw4MatLnE8KZr2hjDSdEItDVVUV7HY7DAYD0tLSRrhgeTweVFVVzTlFQXTnE+ml0T7RIx1jrVYrKIoacnia7OFOdFGNnG7NNsRDitvtRklJCZRK5RBzjtnKuwwGg9IbyniUNjGU+2tf+xp+9atfxZrJGC5LRFK6RAlAc3Mzent7oVarkZqairS0NOh0Ouk5zLKstH0qKioaoYGx2Wz4j//4D/T39yMlJQVPP/30jLwZilQynU6HFStWRH1IiXSMFTd6kzEDGw6xThcUFCAvL+9SHsq0QDykrF69WmrwZzvvMtpm0ul0Yvfu3dDr9Th8+PBnMpQ7hssfkQ2laL7T29uL8+fPg6KoUZ34CSFobW1Fd3c3Vq1aNWom9je+8Q2cO3cOCoUCv/rVr0aNaZoqxDrt9/snRS8VHWPF4dtUpVWiDEBkc82Vc/PAwACqqqqwcOFCKRd5NiKbhkOMuBuvmeR5HnfffTfeeecdnDhxYk7fVy5nzJkHuHhYoigKJSUluPrqq5Geng6LxYIPPvgAH3/8MTo6OtDf34+zZ88iJSVlzFzF2UBfXx+qqqqwdOnSSdveMwyD1NRUrFixAtdcc40U6dHQ0ICTJ0+itrYWJpNpBNVtOMRAbnEtP5fNZE1NDTweD0pLS6VJtmjOUVBQgCuuuAIbNmxAWloabDYbPvzwQ5w+fRoXLlyAw+HAdMwxom0mL1y4gB07duCrX/0qfvnLX07roe29997Dzp07kZmZCYqi8Morr0z4MydOnEBxcTGUSiUWLFiA/fv3j7jNk08+iXnz5kGlUmHdunU4c+bMtF1zDJc/Is13Fi9ejI0bN2L+/Pnwer04e/YsPvzwQ7S0tMBsNuPMmTPgeX5MQ4WEhATJBXHZsmUzEmvkcDhw9uxZJCcnY9WqVZOaeFMUhYSEBCxevBhXXXWVFCDd0dGBkydPoqKiAt3d3SPYLaPBZDKhuroaS5YsmdM3/fb2dik6KXJbLJpWlJSUYOPGjcjPz4fX60VFRQXef/99yXUyMov0UkEIQX19vTT0G6uZ9Hg82LNnD9RqNV555ZVpbyZjNTKG6UZkfczIyMA111yDFStWAADq6urw3nvvob6+XqoHRqMRa9asGbWZBID169cjKSkJ8+bNw5IlS6b9ekVJDsdxKC0tndRrjKIo6HQ65OfnY926ddiwYQNSU1NhNpvx4Ycf4qOPPkJbWxvcbveE5yq3242zZ88iKSlpRjXlE8FqtaKqqgpLliyRmklAMLvJyMjAqlWrsHHjRkm+1NDQgBMnTqCmpgb9/f0jdLSXCrGZHC+VgOd5/OhHP8Kbb76Jd999d9rfVz5N9XFONpSR0SGj8d2DwSAsFgu6urrgdruhVCqRnZ2N1NTUWXcPjeS7jzXdmsp9O51OafLk8/mG2O1HHgAIIZJ+dKxA7tkAx3Gorq5GKBQa0yVwNIyWdxkZvTLZwhYKhVBeXg61Wj1u5mZHRwe2bt2KsrIy/O53v5v2AvrGG2/gww8/RElJCW6++Wa8/PLL2L1795i3b29vx4oVK/Ctb30LX//613H06FHcddddOHLkCLZs2QIAeP7557F371489dRTWLduHR577DG8+OKLaG5ujgnAP+XgeR7BYFByKhyN4ioyHnp6eqQpbkZGBtLT0xEfHz/qwCQYDKKrqwvZ2dnT3jCIURgzsRH0er1SfXQ4HNDr9VJ9HF4DJwrkng2I2xAxvyxa+/3pzrsUm0mn0ykxSEaD1+vFnj17wLIs3njjjRl5f43VyBimE36/HzzPS87Xw+udyHjo7+9HX18fCCFITU1FRkYGkpKSRh12iee8hISEqPIXJwOPx4PKykoYDIZp3whGOsbabDaoVCqpPg6XVokygJycnDkzawMuul0vX748ag3iaJFNU8277O7uxoULF8bNS+d5Hj/96U/x/PPP4/jx41i0aNGkf89E+DTVx1lvKP/2t79hxYoVWLhw4bhhsxcuXEBPTw+WLVsGnudhMplgs9kk2tds8Kuj5btPF8QgXIvFAqfTCYPBING+Lly4MKlA7pkAx3GoqqoCz/Pj6qMmwlh5l9HqLqNtJru7u7FlyxZs3boVf/jDH2Z8GkdR1ITF4Ic//CGOHDmCuro66Wv/9m//BrvdjjfffBMAsG7dOqxZswZPPPEEAOHvlZOTgzvvvBM/+tGPZvQxxDC3eOutt8AwDEpLSyGXy6OKTdJqtVLTJdLp09LSZsUlsKenB83NzbMShREIBKSaYbPZoNFopPcCm802qUDumYDIIOnv70dJScklN2dTlQ6IzaTD4RjCIBkOv9+PL37xi3C73XjzzTdnJUM5ViNjmArq6+tRX1+PTZs2jWt06HK5UFVVhfj4eOTk5Ej10e/3Izk5GWlpaUhOTp5xxpvdbkdVVdWUI92iAcdxEl10uGOsaMq1YMEC5Obmztg1TASTyYS6urope3+MJR2Iti8Qh4/DGSSRIITgl7/8JZ555hnJx2Cm8Umvj7PKHyWE4OWXX8Ydd9yBhQsXoqysDDfddNOQvECO41BXVweXy4W1a9dKU+iMjAywLAubzQaTySTx3afT6CYSHMehpqYGPp8Pa9eunZUmThSW5+fnS46xJpMJLS0toGkaOTk5CIVCUCqVsz5dYlkWlZWVoCgKq1evnlIhHivvsqurCw0NDdLhKSUlZQSFT2wmVSrVuM1kf38/tm/fjs997nN48skn54zaMRynT5/G5s2bh3xty5YtuOuuuwBcpPHed9990vdpmsbmzZtx+vTp2bzUGOYAp0+fxu9+9ztoNBrs3LkTu3fvxpVXXim93gghkoY6chMnOpmKWsS6ujoQQqQ32aSkpGl9DRBCpPDn4uLiWWniRKaKaLMvTubPnDkDQgjS09MlXdVsv95FUySLxTLlLLfhuZ4+n096rOfPnx9Xd0kIQUNDAxwOx7ibyUAggK9+9asYHBzEO++8MyvNZLSI1cgYxkJLSwvuvfdeDAwMSMyjG264YQhbQWRMzJs3T5InxcfHY8GCBdJZo729HfX19UhMTERaWtqMGAiKdThSIziTYBgGaWlpSEtLG+IYW1NTA5ZlYTAYpOipuTDh6e/vR2NjI1atWjVlBslYeZfl5eUT6i7FZjJS2z4chBD85je/wV/+8pdZayajxeVcH2e1oaQoCgcPHoTD4cDhw4dx8OBBPProo8jNzUVZWRnWr1+PF154AXfccQfWrl07QvMhk8mkF4zoEmgymVBZWSnpFEVB9lQarkAggKqqKjAMgzVr1syJzbtKpUJaWhr6+voQHx+PjIwM2Gw2nDlzZtodYydCKBRCRUUF5HL5tDuCDT88iY20xWIZcXhSq9WorKyEUqnEqlWrxjw0mkwmbN++HevXr8ef//znOXMwGw1Go3HEJictLQ1OpxM+nw+Dg4PgOG7U2zQ1Nc3mpcYwB/jv//5v3H///Xj33Xdx4MABfPWrXwXDMNixYwe2b9+Ol19+Gdu3b8e11147gjFB0zQSExORmJiIxYsXw+FwwGQyoampCaFQSGoup2pBL8Y3DQwMSHrH2YZMJpM2kwqFAgUFBXA4HKitrZUa6ZSUlDEpbtMJsYkbHBxEaWnptJuPqdVq5OTkSANFUTpQUVEx5PCUkJCA5uZm6TrGGoKGQiHcdttt6Ovrw9GjR+dsozsWYjUyhrFw0003oaysDOfOncNLL72E//7v/8Y3vvEN3HDDDdi1axeampqQkpKCm2++eQSdcvhZQ2SEiYPshIQEqbmcqsNxd3c3zp8/P2e5s+LQ3uv1gud5LFy4EKFQCBcuXEBdXd2Y0qqZgtjEFRYWTqtsDLiouxRjY0T2W2Nj4wjpgNlslprJseoeIQSPPfYYHn/8cbz77rtYuXLltF7vVHE518dZd7gRp0V79+7F3r174XQ6ceTIEfz1r3/FY489hkWLFuHQoUNgGAYlJSVjNg2Rb6Tik8hkMqGmpgYApIZrsvo8ke+u1+vnVLTs9/tRUVEBrVYrbeKys7Ml/ZTFYpHs+afiGDsRRHtplUo1bhM3XVCpVGMenjiOg1KpRH5+/pjic4vFgp07d6KwsBDPPPPMZdVMxhBDNFAoFNi2bRu2bduGp556CidPnsTf//53fOUrX5HeBBUKBa699toxDz5inY2Pj8eiRYvgcrlgMpmkA4WoX05JSZkU24BlWdTU1CAQCGDNmjVzSr8Xsy5FBklWVpakn7JYLGhpaZmyY+xE4Hle0ipO1mzjUiCXy5Geno709PQRh6dAIACKorBw4cIx654Yyt3a2orjx49P++EuhhhmGjRNY+3atVi7di0eeughVFdX44UXXsA999yDQCCAz33uczAYDNi+ffu4A/dIRpjP54PZbEZfXx+amprGTByYCKJcq7e3d1w65Uwj0vsjkkGycOFCuN1uWCwW9PT0oLGxccZjjETjm/GauOnCcPabqLvs7OyUKKLj+QgQQvDkk0/ikUcewVtvvYXi4uIZvd5PG+bGMjUCer0eZWVluOeee3D//fdjxYoVOHjwIHbt2oX4+Hjs2rULZWVlWLdu3ZhvkpFPoqVLl0qr/oaGBnAcN4T2NV6DMZt89/Hg8XhQUVEhPZ7I64jcxPI8L1HcGhsbwbLskMPTVPUBojOZGAMw2821eHhKTk5GeXk5AOH50tzcPKrucmBgADt37sTChQvxj3/8Y84cgcdDeno6TCbTkK+ZTCbo9Xqo1WowDAOGYUa9TSxE97MHuVyOzZs347e//S22bduGO+64A0eOHMH3vvc9uN1ubNu2Dbt378Z111035mGAoijo9Xro9XosWLAAHo8HJpMJHR0dqK+vl2rGRNPqQCCAyspKyOVyrFmzZs5eXyzLSlru4QwS0TE2ISFBOjyZzWbpsSYkJEiPdarNn6hL8nq942oVZwri+15iYiJ4nofVapVYLS0tLSN0lxzH4Vvf+hbq6+tx/PjxOTMumgixGhlDtKBpGqtXr8abb76JrKwsPProozh16hSeeOIJ7Nu3D5s2bcLu3buxY8cOJCYmjnmmU6vVyMvLQ15e3gi5kWgElpqaOi6VXRwuORwOrFmzZs6MEwkhaGlpgdFoRGlp6Qgmi06nk1xj/X6/pNVuaWmBTqeTHut4GtVoIcozxjO+mSlEvu9pNBo0NDQgKysLHo8HH3744QjpAAD8+c9/xq9+9Su88cYbWLt27axeb7S4nOvjrJvyjAWj0Tjkwfp8Przzzjs4cOAAXn31VahUKuzcuRM33XTTEE3ReCCEwOFwSOGwwWBQEmQnJSUNuQ+R7z7XomXRiWuyTa3ogiU+Vq/XKzVcqampk6Y1+P1+lJeXS85kc9Vci9pNmqZRVFQEhmEk0wpRaN/Z2Ynf/e534DgOycnJeOutt2aFxjEc0QqqX3/9ddTW1kpf+/KXv4yBgYEhguq1a9fi8ccfByC8UeXm5mLfvn0xw4nPKMxmM5KTk6WhDsdx+Oijj3DgwAG8/PLLsFqtkqZoy5YtUR9mRNqXmG8mNlypqalDGiS3243KykokJCRg2bJlc8bcmEogt7iFiHSMFevjZA9/osY+EAiguLh4TuoNMFS7GUm3FQ/FZrMZAwMD+PWvfw25XI6Ojg6cOnVqVjRdoyFWI2OYCXi9XrAsKzUGokHWSy+9hIMHD6K6uhpXX301du/ejZ07dyI1NTWqM00wGJRqxsDAwJCGK5LqHwqFUF1dDY7jUFRUNOvDJRE8z6OhoQF2ux3FxcWT0nKHQiGpZoiOsWJ9nKy0StyQihr7sSI5ZgOidjOSbjs873L//v0YGBjA6dOncfjw4REaxdnCJ70+XjYN5XgIBoM4duwYXnrpJRw6dAgURWHHjh246aabcPXVV0f1Zj684fL5fEhKSkJaWhoCgQDa2trmjO8uYmBgANXV1cjPz8e8efOmdF+RQbiRjrHRuAT6fD6cO3du1A3pbILjOFRUVAxpJkfDhQsX8N3vfhcXLlyAzWbDhg0bcOzYsVm5RrfbjQsXLgAAVq9ejUcffRTXXnstEhMTkZubi/vuuw+9vb3429/+BuCi5fN3v/tdfO1rX8OxY8fwve99b4Tl86233oqnn34aa9euxWOPPYYXXngBTU1NM+6kGcMnDzzPo7y8HC+99BJefvll9Pb24vrrr0dZWRluvPHGqN/MhzdcYs1QKpVobGxETk4OCgoK5qweiIHccXFxU2ZMiNFU4uEp0jF2IpdA0e2a4zisXr16TjT2wMVNhNlsHle76ff7cccdd+Cjjz6Cy+VCXFwcqqqqZm1DGauRMcwlxObmwIEDOHjwIM6dO4f169ejrKwMu3btkvL/JsLwhktMHIiPj0dLSwvUavWkM3inE+KQy+/3SxmFU7kvm80mbS9pmpaYHRNJq0Tab19f35TcrqcDRqMRDQ0N42o3OY7Dgw8+iOeeew5erxderxcvv/zyrDWVn6b6+IloKCPBsixOnjyJF198EYcOHUIgEMCOHTtQVlaGz33uc1G/iNxuN0wmE7q7uxEKhWAwGJCVlTVrIuXhEDekS5YsQWZm5rTed+S0WrRYjpyyRRZTj8eD8vJypKamYvHixXPaTFZWVgIQXmRjFWm3242bb74ZCoUCR44cQSgUQnNzM9asWTMr13nixAlce+21I75+6623Yv/+/bjtttvQ0dGBEydODPmZ73//+2hoaEB2djZ+8pOf4Lbbbhvy80888QQefvhhGI1GFBUV4fe//z3WrVs3w48mhk86eJ5HTU2NNJlva2vDddddh7KyMmzfvn3MnMrhCAQCMJvN6OnpgdvthkqlQnZ2NtLS0qbkYHqpcLvdqKiokNxsp7MuRTrGWq1WyOVyaTIfHx8/5PAk0m0JIVN2u54KxGbSZDKhtLR0zH8Tnufxwx/+EK+++ipOnDiB7OxsfPTRR7j66qtnrbbHamQMlwsIIeju7sbBgwdx8OBBnD59GqWlpdi1axd2796N3NzcqF4XYs3o6+uTsoCzsrKQnp4+wnl5NhAKhVBVVQUAU4p0Gw2RWm2z2SwxwUQZWWQNjKxLJSUlc0b7BS5GlBQWFiI5OXnU2xBC8NJLL+G73/0uXnrpJWzZsgVVVVXIy8tDYmLirFznp6k+fuIaykhwHIcPPvhAon25XC7ceOONKCsrw+bNm6Pmuy9dulQyrXC5XIiPj5fcvmbDdKK3t1fKcpvpDam46hcPT0qlUjo8yWQyVFRUIDMzc041pOIGQDy0jdVMer1efOELXwDP83j99dfndBIWQwyXG0T3UXFz2dDQMERTlJSUNO5rvLOzE62trVi6dCl4npcm8+JAKi0tbVp0NhNhNgO5eZ7HwMCANJknhEiHJ71ej5qaGjAMMy5jYqYh0vlEjdR4zeR//dd/4cUXX8SJEyewcOHCWb7SGGK4fEEIQX9/P15++WUcPHgQ7733HlatWoXdu3ejrKxsQjaGyCjLycmBXq+XasZ0Jg5EA1HbfikygMmCEAKn0yk9Vp/PJznGJicno7W1FTabDSUlJXMyeBQhNpMTRZS88soruOOOO/Dcc89h586ds3iFn058ohvKSPA8P0RTZLFYsGXLFklTNJzvXlNTg1AohNWrVw/ZaooiZZPJJOlsRLevmXDAEkXLhYWFszYRERHpGGs2m8GyrGSpPd25dZO5JtFwY7wNgBjK7fF48Oabb84pRz+GGC53RGqKXn75ZVRVVWHDhg0S7SstLU06+IhT5v7+fqxevXqImcLwgZQYbxRtoPRkYbPZUF1dPSfa9kgNvslkgt/vh0KhwIIFC5CamjonVNdIOllpaemYGwBCCB544AE8++yzOH78OJYuXTrLVxpDDJ8cEEJgtVql5vLYsWNYsmSJ1FwOZ0X09/ejoaEBS5cuHcIoixxImc1myYU/LS0NCQkJ036m8vl8Q7wuZvvMFqnBdzqdoGka8+bNQ2Zm5oycl6OB2WxGbW3thM3ka6+9httvvx1///vfcfPNN8/iFX568alpKCPB8zwqKiok2ldPT4+kKVq+fDkOHDiAXbt2YdWqVeNSlgKBgOT2NTg4CJ1OJx2eprrKH24vPZcNkcPhQHl5OdLT00HTNCwWi5TfM12OsdGA4zhJ2D5eMxkIBPCVr3wFFosF77zzzpxZc8cQwycRhBB0dHRImqIzZ85g/fr12LVrF2644Qb89a9/xdatW7FmzZpxp8wcx8FqtcJkMklUUbE+Tkc+rslkQn19PZYuXYqMjIwp3ddUILpdK5VKGAwGWK1WuN3uaXWMjQaEELS2tqK3t3fCZvKhhx7CU089hWPHjl12OWoxxHA5gxCCwcFBHDp0CAcPHsQ777yD+fPno6ysDGVlZXjjjTewaNEiXH311WNSKQEMceEXqaJic5mYmDjlTaIoA5hreRLP86irq4PT6URWVhYGBgak8/J0OsZGA4vFgpqaGqxcuXJctt9bb72Fr371q/jrX/+KL37xizN+XZ8VfCobykiI1u4vvfQS/u///g+9vb1YuXIlvva1r2HHjh1RUxJEQbbJZBpC+xpNhxjNNYnB4MXFxXPKMx8cHERVVRUKCgqkDcB4jrHTEfo7GnieR1VVFViWRXFx8ZjNZDAYxN69e9Hd3Y133313RnLUnnzySYl7XlhYiMcff3xMC+lNmzbh5MmTI76+bds2HDlyBABw22234dlnnx3y/S1btkiOXDHEMFcghKCnpwcHDx7E888/j6qqKqSmpuL222/Hnj17kJeXF1Vt4zgOAwMDMJlMI2hfw3WI0UAMwl65cuWcxluIecBxcXFDNgDT6RgbLVpbW9HT0zOu0QUhBL/97W/x29/+FkePHkVRUdG0X0esPsbwWYLD4cCrr76KAwcO4M0334RCocCXvvQlfPWrX0VRUVFUtW0420Ec2KelpSE5OXnSzaXdbkdlZSVyc3NnXAYwHiKjk0pKSiT/EfG8bLFYJGmV+H4wHcPG0SA2kytWrBjXeOb48eP44he/iD/+8Y/46le/OiPX8lmtkZ/6hlJEX18fli9fjq985StISUnBK6+8gvr6emzcuFHSFCUnJ0ctyBZpoiLtS3yxTCTI5jgOdXV18Hg8KC4unrNgcEDQAFRVVWHRokXIzs4e83ZjOcampKRMC0+e53lUV1cjGAyiuLh4TCpZKBTCf/zHf6C5uRnHjh2bkYPm888/j7179+Kpp57CunXr8Nhjj+HFF19Ec3PzqBOvgYEBBINB6XObzYbCwkL85S9/kUTSt912G0wmE5555hnpdkqlcsZDfmOIIVrwPI+1a9ciKSkJN954I1599VVJUyRO5qPVVYsmDmJzSQiR6mM0DoEdHR3o6OhAUVHRnL5GRDqZGJUy1mOPdIwdGBiQ3B/FfLPpOLC0traiu7sbpaWl4zaTTzzxBB566CG8/fbbM2JMFquPMXxWcdddd+GNN97AnXfeiffffx+vv/46kpOTJUOfNWvWRN1cigN7kUofyQabiEpvtVpRU1Mz5xF3IqMsFAqNe26LdIy1Wq0SDTia94NoYbVaUV1dPWEz+f777+MLX/gCfve73+H222+fkWbys1wjPzMNJQCcO3cOpaWlAC5STkVNUWVlJa666ipJU5Senh71ZF7UFFksFsjlcsmwYvgkhmXZIVlFc5VdBlwsSpN1lRXdHy0WCwYGBqa0qQWibyZZlsU3v/lNVFdX49ixYzMW0Lpu3TqsWbMGTzzxhHR9OTk5uPPOO6PK73nsscfw05/+FP39/dKm4rbbboPdbscrr7wyI9ccQwzTgcrKSsn2XtQUHTp0CC+99BKOHz+OxYsXS81ltHFCIn1sOO1LdAiMnMyLOs/+/n4UFxePCOSeTXi9XpSXlyM5OXlSrrIsyw45PE11UwsAbW1t6OrqmrCZ/NOf/oSf//zneOONN7B+/fpJ/55oEKuPMXxW0dbWhvj4eMnrwuv14q233sKBAwdw5MgR6HQ67Ny5E7t378b69euj2joSQuDxeGAymWA2m+HxeJCUlCQNpIafEY1GI+rr67Fs2bI5lQFcanTSaDTgsRxjo4V4ll22bNm458LTp0/jpptuwv/8z//gW9/61oxtdT/LNfIz1VCOBUIIOjs7JU3Rxx9/jCuuuAK7du1CWVkZsrOzo57MR2b3UBQ1xA2xqqoKMpkMhYWFc2Y3D1yMKJnoBTgRIg06bDYbFArFELv9if5mYsSB3+9HSUnJuBOuffv24fTp0zhx4sS0x6qICAaD0Gg0eOmll4YEy956662w2+04dOjQhPexcuVKrF+/Hn/605+kr91222145ZVXoFAokJCQgM997nP45S9/OSN03RhimG6ITeHhw4clTdG8efNQVlaG3bt3R50JKToEioenYDAoHSYSExNx/vx5DAwMzLlDoBidlJaWhkWLFl3ywWM8x9jhzfRYaG9vR2dnJ0pKSsZssAkh2L9/P+677z689tpruOaaay7peidCrD7GEMPo8Pv9ePfdd3Hw4EEcOnQIcrkcO3fuxE033YSrrroq6obL6/VK9dHlckk67dTUVJjNZpw/fx6rVq0aV7s502BZFpWVlaAoCkVFRZd8lhXfD0R2R6RjbLTxfaJp20Q6+7Nnz6KsrAwPPPAA7rzzzhlrJj/rNTLWUA4DIQS9vb04ePAgDhw4gFOnTqG4uFiazM+bN29StK9IzrxKpcLixYuRnJw8Jw6qwMUJ10Si5clC1FBFNtOi5nI0x1iRe+/z+cZtJnmex1133YXjx4/j+PHjM0rx6OvrQ1ZWFk6dOjVkwn/vvffi5MmT+Pjjj8f9+TNnzmDdunX4+OOPh/Dln3vuOWg0GuTn56O1tRX3338/dDodTp8+PWfRAzHEcKlwOBx47bXXcPDgQbz55pvIyMjArl27cNNNN2H16tVRN5diFrDJZILX6wXDMCgoKEBmZuacOKgCgMvlQkVFBbKysiaMDZgMIjVUZrMZgUAAycnJUo0c7fGK1N+Jmsl//OMf+MEPfoDDhw+Pmmc2XYjVxxhimBihUAjHjx/HgQMH8Morr4DjOOzYsQO7d+/Gpk2bomam+Xw+ybfDbrcDAHJycpCXlzdnDqqhUAgVFRWQy+XTHlEiOsZaLJYh0qqxEhZEydZEzWRlZSV27NiBH//4x7jnnntmVG/6Wa+RsYZyHBBCYDKZ8PLLL+PAgQN47733sGLFCqm5XLhw4YRPTnHaHRcXB7VaDYvFApZlx6R9zST6+vrQ1NQ04xMukdYgTp6GO8bSNC3pSCOF3KPdz7333osjR47gxIkTyM/Pn7FrBqZeDL75zW/i9OnTqKmpGfd2bW1tKCgowLvvvovrrrtuWq49hhjmAm63G2+88QYOHDiA119/HYmJidJkfs2aNRPWNpZlUVVVJdUIm80Gt9stTapTU1NnTRrgdDpRUVEhGV3MFESam9hcjuYY29nZiba2NpSUlIzpAE4IwYsvvoh9+/bhwIED2LJly4xdMxCrjzHEMFmwLIsPPvgAL774Il555RV4vV5s374du3btwubNmyf00IiMcMrOzobD4cDg4CDi4uIk9ttssTmCwSAqKiqgUqmwatWqGV2K+P1+6fwoOsaKZ2adTieZSU4k2aqtrcW2bdtwzz334L777ptx86LPeo2cO97lJwAURSE9PR3f/va38a1vfQs2mw2HDh3CgQMH8OCDD2LRokUS7Ws0TZEYyJ2dnS1NuxcvXiwFw7a0tAyhfc1kPIfomlhUVDTjeZc0TSMxMRGJiYlYtGiRJEBvb29HXV0d5HI5KIpCcXHxuM3kj3/8Yxw+fBjHjx+f8WYSgOS2ZjKZhnzdZDJNSA32eDx47rnn8MADD0z4e+bPn4/k5GRcuHDhsioGMcQwWeh0OuzZswd79uyB1+vF22+/jQMHDuDzn/88NBqNZFixfv36EbVNPKAoFAqsXbsWDMNg4cKF8Hq9MJvN0gAsPj4eaWlpMxrPIbomzp8/H3l5eTPyO0RQFAWdTgedTof58+cP2UQ0NzdDqVQiGAxixYoV48ZJvfLKK9i3bx+ee+65GW8mgVh9jCGGyUImk2HTpk3YtGkTfv/73+PUqVM4cOAA/vM//xN2ux1bt25FWVkZbrjhhhGNIc/zaGhogN1ux9q1a6XvR5qAtba2Sj4WorRqJpomMTpJp9NFLXGYClQqFXJycpCTkzNEWtXR0QG5XI5gMIi8vLxxN5ONjY3YuXMn7rzzzllpJoFYjYxtKC8BhBDY7XbJSvrtt99GXl6e1FyuXLkSZ8+ehdvtxoIFC8Y8oIi0L5EWK3LIxcPTdNG+urq60NraitWrV89pZiMhBFVVVXA6nVCpVHC5XDAYDNLkSSyYhBD8/Oc/x9///nccP34cS5YsmbVrXLduHdauXYvHH38cgFDUc3NzsW/fvnEF1fv378e3vvUt9Pb2Tshr7+npQW5uLl555RXs2rVrWq8/hhguB/j9fhw9elTSFDEMI20uN2zYgM7OTrS3tyM9PX3cQG6/3y/VRzGeQ8y6nC7a1+DgICorK7Fw4ULk5ORMy31eKtra2tDe3g69Xg+n0wm1Wi3Vx0jHWDGU+x//+AduuummWbu+WH2MIYapg+d5nD17VjKFNBqNuP7667F7925s3boVFEXh5MmTSExMRHFx8ZhRbZHNVmTiQFpaGuLi4qalifL7/SgvL4fBYMCyZcvmTK4FCJrJqqoqxMXFwev1jukY29LSghtvvBG33XYbHnzwwVmNVfks18hYQzkNcDqdOHLkiJRTlJycDKPRiP/93//FrbfeGvULUKRBmUymaaN9tbe3o6OjA8XFxTAYDJd0H9MBQgjq6+vhdDpRUlICpVKJQCAwxG5fqVTi8OHDEpXr+PHjWLFixaxe5/PPP49bb70VTz/9NNauXYvHHnsML7zwApqampCWloa9e/ciKysLv/71r4f83NVXX42srCw899xzQ77udrvx85//HJ///OeRnp6O1tZW3HvvvXC5XKitrZ2RTM8YYricEAqFcOLECUlT5Pf7QdM0vvCFL+Chhx6Keuso1guTySTRoMTm8lKzH0VTh8WLFyMrK+uS7mO60N3djQsXLki1ejTH2BMnTkClUuE3v/kN9u/fj1tuuWVWrzFWH2OIYXohZnCLzWV7ezsyMjKQlZWFf/3rX0hKSpr2xIFoIUYnJSYmRu3sPVOw2+2oqKiQYu4iHWNFKVl9fT2CwSD++Mc/4otf/CIeeeSRWW+AP8s1MtZQTjP++Mc/4vvf/z42bNiAM2fOICEhQaJ9ibSuaODz+SS3L6fTifj4eKm5jOYARghBW1sburu7xzV1mA2M1kwORygUQnNzM/bt24eKigqkpaXhlltuwcMPPzzrjrhPPPGEFEpbVFSE3//+91i3bh0AIYR23rx52L9/v3T75uZmLFmyBG+//Tauv/76Iffl8/mwe/duVFZWwm63IzMzEzfccAN+8YtfjJuXFEMMn0acPn0aW7duxbJly9DV1QWPx4Pt27ejrKwM1113XdRbRzE422QywWazXVJ8kRiEPdcW/MBFSUJxcfGoLBLR5O273/0u3n33XdA0jZtvvhm//OUvZz2LLlYfY4hhZmA0GrFp0yYQQqDRaNDQ0IBrr70Wu3fvxvbt25GYmBh1cymaJJrN5kuKLxL9P1JTU7F48eI5byYrKyuxYMGCUVkkYrbno48+imeffRY2mw1btmzBfffdhw0bNsz69X5Wa2SsoZxm/OMf/0BOTg42btwIn88naYpee+01qNVqKafoyiuvjLpREmlfZrMZdrsder1emjyNdgATMzb7+vpQUlIyZnbZbIAQIukASktLx5ymEELw+OOP4ze/+Q0OHz4Mu92OM2fORMUnjyGGGD4ZqKqqwqlTp/Cd73wHHMfh9OnTOHDgAF5++WUMDAxgy5Yt2L17N2644Yaot44sy8JqtcJkMg2hfQ2niUbCZDKhrq5uwiDs2YDYTK5evXrcoOr33nsPe/bswWOPPYalS5filVdewY9+9KMZ18THEEMMs4OBgQE8+uij+NnPfgaZTIaWlhYcOHAABw4cQE1NDa655hqUlZVh586dSE1NnVTigMlkkuKLxPoYSRONhNvtRnl5OTIzM7FgwYI5bSYdDgcqKirGbCZF9Pb24oYbbsANN9yA73//+zh8+DCuvvrqGcvkjWEkYg3lLCEYDOLdd9/FgQMHcPjwYdA0jR07duCmm27C1VdfHbVeMhgMSs3lwMAAdDrdEEE2IQTNzc2wWCwoLi6+ZCrYdIAQgsbGRgwMDKC0tHTMzSohBE8//TQeeOCBGQ3ljiGGGC5P8DyPc+fOSbSvvr6+IZqi8cxpIsFxHGw2m9RcymSyIZN5iqLQ39+PxsZGrFy5EikpKTP8yMZHb28vmpubJ2wmT506hZtvvhm/+c1v8M1vfnNOD3gxxBDD7EJknIlZ6eXl5Vi/fj3Kysqwa9cuZGZmRlUTRP8P8Qw5WuKAy+VCeXk5cnJyMH/+/MuimSwoKBiXiWE0GrFlyxZs2LABf/nLXy6rKI3PEmIN5RwgFArh5MmTeOmll/DKK68gFAphx44dKCsrw7XXXhs1J1qkfZnNZthsNqjVatA0jWAwiNLS0jkNB59MM/nMM8/g/vvvx5EjR3D11VfP8pXGEEMMlxN4nkd1dbXUXLa1tWHz5s0oKyvD9u3bo9YD8TwvaRDFbFytVguHw4HCwsI5DQcHLsY4TeS8LYZy/+IXv8C+fftizWQMMXyGQQhBV1cXDh48iIMHD+L06dNYs2aNZAqZk5MTdXMpJg6YTCYEg0EYDAbY7XbMmzcPBQUFs/BoxobT6UR5efmEzttmsxk33ngjiouL8be//S3WTM4hYg3lHIPjOHzwwQdSc+lyubBt2zaUlZVh8+bNUWuKgsEgqqur4XK5QAiBUqmUDCvGon3NFAghaGpqgs1mm7CZnK1Q7hhiiOGTB5Ey/9JLL+HgwYNobGwcoimK1rCC53m0tLSgp6cHDMMMcQdMSkqadeOGaJtJMZT7v/7rv3D33XfHmskYYohBAiEEfX19ePnll3Hw4EG8//77KCwsxO7du1FWVhb1hlG8n8bGRsjlcrAsi6SkJCkbd7oSB6KFuCWdN28e5s2bN+btrFYrtm/fjqVLl+Jf//rXrPttxDAUc+f/GwMAgGEYbNy4EY8//jg6Ozvx+uuvIz09HT/60Y8wb9487N27FwcPHoTH4xnzPnieR1NTE0KhEK666ips2rQJixYtQiAQQEVFBd5//300NTVhcHAQMz0/ECm3VqsVJSUl4zaTL7zwAu655x4cOHBgxprJJ598EvPmzYNKpcK6detw5syZMW+7f/9+UBQ15L/h108IwU9/+lNkZGRArVZj8+bNOH/+/IxcewwxfNZBURSWL1+On/3sZ6iqqkJdXR02btyI/+//+/9QUFCAnTt34s9//jNMJtO4ta2rqwv9/f0oLS3Fpk2bUFhYCJlMhqamJpw8eRK1tbUwm83gOG7GH1N/fz+amppQWFg4bjNZW1uLXbt24d57752xZjJWH2OI4ZMLiqKQlZWFffv24ejRo+jt7cUdd9yB999/HyUlJbjyyivxP//zP2hqahq3Pg4ODkrGMBs3bsQVV1wBvV6Prq4unDx5EhUVFejp6UEwGJzxxyQ2k3l5eeM2k4ODgygrK0NBQQH+8Y9/zFgzGauR0SO2obxMwfM8ysvLJdpXb28vNm/ejN27d+PGG2+UNEU8z6OmpgZ+vx/FxcUj4kV4nh/i9iVO5tPS0pCQkDCtk3lCCFpaWmA2m1FaWjrudvXgwYP41re+heeffx7bt2+ftmuIxPPPP4+9e/fiqaeewrp16/DYY4/hxRdfRHNzM1JTU0fcfv/+/fh//+//obm5WfoaRVFDTDv+53/+B7/+9a/x7LPPIj8/Hz/5yU9QW1uLhoaGGQtdjyGGGIaCEIL29nZJU3T27FlceeWV2LVrF8rKyoZoitra2tDV1YXi4uIRWsxI2pfZbIbf70dycjLS0tKQnJw87YcUo9GI+vp6FBUVjZs11tDQgBtvvBH79u3DT3/60xlpJmP1MYYYPp0ghGBwcBCHDh3CgQMH8O6776KgoECixUbmSVqtVtTU1GDJkiXIzMwccV9er1eqj5eSODAZuN1unDt3Dnl5ecjPzx/zdg6HAzt37kRaWhoOHjw4Y9EZsRo5SZBLwBNPPEHy8vKIUqkka9euJR9//PG4t3/hhRfI4sWLiVKpJCtWrCBHjhwZ8n2e58lPfvITkp6eTlQqFbnuuutIS0vLpVzapxIcx5HKykry4x//mCxbtowolUqybds28vjjj5PNmzeT/fv3E7vdTjwez7j/uVwu0t3dTcrLy8nrr79Ojhw5Qs6cOUM6OjqIy+Wa8OfH+8/tdpOKigry5ptvEovFMu5tn3vuOaLRaMjLL788o3+3tWvXku9+97tD/o6ZmZnk17/+9ai3f+aZZ4jBYBjz/nieJ+np6eThhx+Wvma324lSqST/93//N23XHcMnG7H6OLvgeZ50dnaS3/72t+Tqq68mMpmMrFu3jvzqV78ie/fuJT/+8Y+J0WiMqoYZjUZSU1ND3n33XXL48GHywQcfkPPnz0dVXyf6r62tjRw+fJh0dnaOe7uKigqSlpZG7rvvPsLz/Iz93WL1MYa5QKw+zj7sdjv5+9//Tnbv3k3UajVZuHAh+cEPfkB+/vOfkz179pDW1taoapjNZiONjY3k5MmT5NChQ+T48eOkvr6eWK3WKddHk8lEjhw5Qmpra8e9ndFoJOvWrSPXX3898fl8M/p3i9XIyWHSDeVzzz1HFAoF+etf/0rq6+vJHXfcQeLj44nJZBr19h9++CFhGIb85je/IQ0NDeS//uu/iFwuJ7W1tdJtHnroIWIwGMgrr7xCqqurya5du0h+fv6MP1k+ieB5ntTX15P777+fxMXFkfT0dHL99deTJ598knR2dhK32x11A9jb2ys1ga+++ir56KOPSFtbG3E6nZNuJisrK8kbb7wxYTP50ksvEa1WS1544YUZ/TsFAgHCMMyIpnXv3r1k165do/7MM888QxiGIbm5uSQ7O5vs2rWL1NXVSd9vbW0lAEhlZeWQn7vmmmvI9773vel+CDF8AhGrj3MLnudJb28vefzxx0lOTg5Rq9XkyiuvJA888ACprq6Ouj56PB5iNptJXV0dOXr0KDl06BB5//33SXNzMxkcHLzkZrKjo2Pc21VXV5PMzExyzz33EI7jZuzvFKuPMcwFYvVx7uF0Oslzzz1HrrjiCsIwDCktLSXf+973yPHjxye1WBgcHCTNzc3k/fffJ4cOHSJHjx4ldXV1xGw2X1Iz+frrr5OampoJa/KGDRvIpk2biNvtntG/U6xGTh6Tbign27HfcsstZPv27UO+tm7dOvLNb36TEPLp79hnCvv27SPXXXcdqaqqIg8++CApLS0lMpmMbNq0ifz2t78lra2tk2ou+/v7SXV1NXn77bfJ4cOHyalTp8iFCxeIw+GY8GerqqrIG2+8MWEhOXz4MNFqteSf//znjP99ent7CQBy6tSpIV//z//8T7J27dpRf+bUqVPk2WefJZWVleTEiRNkx44dRK/Xk+7ubkKI8OYGgPT19Q35uT179pBbbrllZh5IDJ8oxOrj5YHnn3+e5Obmko8//pg8/fTTZMuWLUQul5OVK1eSn/zkJ+TcuXOTai6tVitpaGggx48fJ4cOHSInT54kjY2NxGazTfiz7e3tUTWT9fX1JCcnh+zbt29Gm0lCYvUxhrlBrD5eHmhvbydxcXHk5ZdfJgcOHCBf/vKXicFgINnZ2eQ73/kOefvttye1WLDb7eT8+fPkww8/JIcPHybvvPMOqampIUajccI6azabyeuvvz7hwM9qtZJNmzaRDRs2EJfLNeN/o1iNnDwmJaALBoMoLy/H5s2bpa/RNI3Nmzfj9OnTo/7M6dOnh9weALZs2SLdvr29HUajcchtDAYD1q1bN+Z9xgD88pe/xKuvvorCwkLcd999OHPmDFpaWrB9+3a88MILWLx4MbZu3Yonn3wSPT094wqyKYqCXq/HggULcOWVV2LdunXQ6XTo6OjAiRMnUFlZid7e3hGCbEIIWltb0dfXh5KSknEzL9977z18+ctfxhNPPIEvfelL0/Z3mE6sX78ee/fuRVFRETZu3IiDBw8iJSUFTz/99FxfWgyfAMTq4+WDL3zhCzh79izWrl2Lb3zjG3jjjTdgNBpx9913o7KyEldddRXWrFmDX/ziF6itrQXP8+Pen1qtRl5eHtauXYsNGzYgLS0NZrMZH3zwAc6cOYOOjg54vd4RP2c2m1FbWzth5mVPTw+2b9+Obdu24Xe/+92su85Gg1h9jGEqiNXHywfz5s3D+fPnsXv3btx888345z//CaPRiD/84Q/wer344he/iEWLFuGuu+7CyZMnwbLsuPcnl8uRmZkp1Yb58+fD4/Hg7Nmz+PDDD3H+/Hk4HI4R51CPx4Nz584hMzMTBQUFY2rF/X4/vvSlL8Hv9+O1116DTqebtr/FdOKzXiMn5ThgtVrBcdwQgSkApKWloampadSfMRqNo97eaDRK3xe/NtZtYhgJg8Ew5HOKopCfn48f/OAHuOeee9DT0yPlFN1///0oKSlBWVkZysrKkJeXN+YLl6Io6HQ66HQ6FBQUwOPxwGw2o6enB42NjUhISJAE2T09Pejt7UVpaem4zeSHH36IW265Bf/7v/+LW2+9dVas75OTk8EwDEwm05Cvm0wmpKenR3Ufcrkcq1evxoULFwBA+jmTyYSMjIwh91lUVDQ9Fx7DJxax+nj5gKbpIaYJFEUhMTERt912G2677TY4HA689tprOHDgAD73uc8hMzMTu3btwk033YSioqJxGzqVSoWcnBzk5OQgGAxKhhUXLlyATqeT6qPP50NtbS1WrFgxqoGDiP7+fmzbtg3XXnstnnzyyVlpJmP1MYbZRqw+Xl4Y/jdTqVTYuXMndu7ciWAwiOPHj+PAgQO49dZbQQjBjh07sHv3bmzcuHGE+WMkZDIZ0tPTkZ6eDo7jpCzgiooKyGQyqT7K5XJUVFQgMzMTCxYsGPNcGAgE8O///u8YGBjAO++8M+LsO1OI1cjJ4/Ibg8YwZVAUhZycHPy///f/cOLECXR1dWHv3r04evQoCgsLcc011+CRRx7B+fPnJ4wR0Wq1yM/Px7p163DVVVchOTkZRqMR7733Htrb25GZmTnuAejMmTP4whe+gAcffBB33HHHrOWoKRQKlJSU4OjRo9LXeJ7H0aNHsX79+qjug+M41NbWSi/8/Px8pKenD7lPp9OJjz/+OOr7jCGGGOYeBoMBX/nKV3Dw4EGYTCb86le/Qk9PD7Zt24aVK1fiRz/6ET7++OMJN5cKhQLZ2dkoLi7Gxo0bkZubC6fTiY8++ghVVVVITk6GRqMZs86aTCZs374dV1xxBf785z/PWih3rD7GEEMMY0GhUGDLli3405/+hL6+PrzwwgtQq9X49re/jfz8fHzzm9/E66+/Dr/fP+79MAyD1NRUrFixAhs3bsTSpUvBsiyqqqpw+vRpyOVyJCYmjlkfQ6EQbrvtNvT29uKtt95CQkLCTDzcURGrkZPHpBrKS+nY09PTx719ZMce7X3GED0oikJGRga+853v4J133kFfXx++/e1v4/Tp01i7di3Wr1+PX//612hoaJiwuRRpX0lJSZDJZJg3bx6cTic+/PBDfPzxx2hvbx9C+6qoqMBNN92En/3sZ/jud78766Hcd999N/785z/j2WefRWNjI7797W/D4/Hg9ttvBwDs3bsX9913n3T7Bx54AG+//Tba2tpQUVGBr371q+js7MTXv/51AMLf8q677sIvf/lLHD58GLW1tdi7dy8yMzOxe/fuWX1sMVx+iNXHTyZ0Oh1uueUWPP/88zAajXj00UcxMDCAm2++GUuWLMEPfvADfPDBBxNmVIq0r+zsbABATk4OKIqSaF8tLS1DaF9WqxU7d+5EYWEh9u/fP2vNpIhYfYxhNhGrj59MyGQyXHvttfjDH/6A7u5uHD58GImJibj77ruRn5+P22+/HYcOHRqV8h8JmqaRnJyM/Px8qdGMj49HXV0d3nvvPdTX18NisUhDPJZl8fWvfx2tra14++23x41ZminEauQkMVnR5dq1a8m+ffukzzmOI1lZWeOKqnfs2DHka+vXrx8hqn7kkUek7zscjpioeobB8zwZGBgg+/fvJzt37iQqlYosWbKE/PCHPySnT58e0+2rrq6OHDlyZIgN/+DgIGlpaSEffPABOXToELnnnnvI3r17SUJCAnnwwQdn1Pp+Ijz++OMkNzeXKBQKsnbtWvLRRx9J39u4cSO59dZbpc/vuusu6bZpaWlk27ZtpKKiYsj9iRblaWlpRKlUkuuuu440NzfP1sOJ4TJHrD5+euDz+cirr75Kbr/9dpKYmEjS0tLI17/+dfLaa6+NGSPS1dVFXn31VXLhwgXpa06nk7S3t5OPP/6YvPbaa+TRRx8le/bsIStXriRlZWUkGAzO2WOM1ccYZhOx+vjpAcdx5PTp0+See+4h8+fPJ1qtltx0003k2WefHTOmyWq1kjfffJOUl5dLBjzDEwdeeOEFsnXrVnLjjTeSRYsWkf7+/jl9nLEaGT0uKTZEqVSS/fv3k4aGBvKNb3yDxMfHE6PRSAgh5N///d/Jj370I+n2H374IZHJZOSRRx4hjY2N5Gc/+9mots/x8fHk0KFDpKamhpSVlZGkpCSSm5sbVVbRn/70J7JhwwYSHx9P4uPjyXXXXTfi9rfeeisBMOS/LVu2TPbhf2rhcDjIP//5T3LzzTf//+y9d5icV3n3/3n69NmqVe/FsuRuy5YMGF6DDYTX9puE0I0JOARMCOENBPgFSIDYGJM3lAQIBGwSagwYEkIgxNgGRzbYWL1asqRV29Vq6/Snnd8fZ57x7mp700o6n+vaS9qZp5zZnb3n3O17i0QiIVasWCH+7M/+TPzyl7+sOZe//vWvz3Amh1L7+tSnPiVWrlwpTNMUa9asmfYRIQrFbEHZx/MT13XFz372M/FHf/RHYs6cOaKxsVG8+c1vFg899FBtjMiuXbvOcCYHf+VyOfGjH/1IXHHFFcJxHDFnzhzx0Y9+9Gy/PIViRlD28fwkCALx9NNPiw984ANi9erVIhaLiVe96lXin/7pn8SJEydEPp8Xhw4dOsOZHGpqwI4dO8SLX/xikUwmRTweF7//+79/VoNuirEzbodSiPF57ELIwbSrV68Wtm2LdevWDTuYNvLY169fLyzLGvOsote//vXiH/7hH8SWLVvEnj17xB133CGy2aw4duxY7Zg3v/nN4uUvf7k4efJk7aurq2siL/+8J5fLiX/9138Vr3nNa0Q6nRZLliwRr3jFK8TSpUvF0aNHR5SAjoZyf+hDHxK5XE48+OCDA94fCsX5jrKP5zee54lHHnlEvPOd7xTz588XdXV14pZbbhGZTEY89thjI9rHkydPimuvvVbcdNNNIpfLiV/84hfi+9///tl+SQrFjKHs4/lNGIZi+/bt4iMf+YhYv369sG1b3HjjjaKlpUXcd999I866zOVy4m1ve5tYtmyZOHTokNi+fbv4whe+cLZfkmKMTMihnG7GO6toML7vi3Q6Lb7+9a/XHnvzm98sbr311qle6nlPsVgUf/iHfyhs2xYrV64U8+fPF3/8x38sfvrTn54xozIayv3nf/7n0z5HTaG4UFH2cfbg+7743Oc+JyzLEmvXrhWZTEa8+tWvFt/85jdFR0fHAPvY3t4urr/+evGSl7xEFAqFs710heK8RNnH2UMYhuKRRx4RDQ0NYunSpcKyLHHjjTeKz33uc+LQoUMDMpW5XE68853vFIsWLRIHDx4820tXTIBZp/I6kVlFgykWi3ieR0NDw4DHH330UebMmcOaNWt4xzveQWdn55Su/XxE13UOHDjA448/zo4dO/jyl7+M67q84Q1vYNWqVbz73e/mkUce4cCBA7zqVa/i937v97j33ntn5Rw1heJcR9nH2YVhGOzYsYMvfelL7Ny5k//6r/9iyZIlfOQjH2Hp0qW84Q1v4MEHH6S9vZ0/+IM/QNd1/u3f/o1EInG2l65QnHco+zi70DSNw4cP87u/+7scOHCA3bt387KXvYxvfOMbrFq1ile+8pV86Utf4vjx43z4wx/mhz/8IQ8//DDLly8/20tXTABNiFGkPWeYEydOsGDBAjZv3jxARvf9738/jz32GL/+9a9HvcY73/lOfvazn7Fr1y5isRgA3/nOd0gkEixbtoyDBw/yoQ99iFQqxRNPPDHj6nrnGkKIMxRaPc/j0Ucf5fvf/z4PPfQQp0+f5tWvfjXf+ta3lDOpUEwTyj7OPoayj2EYsnXrVr73ve/x0EMPsX//flasWMHTTz9NJpM5SytVKM5vlH2cnQy2kUIIWltb+f73v88PfvADNm/eTDwe5+mnn2bt2rVncaWKSXE206NDcfz4cQGIzZs3D3j8fe97n9iwYcOo599zzz2ivr5ebNu2bcTjDh48KADx3//935Nar0L2FP393/+9KJfL03qfv//7vxdLlixRjfaKCxZlH889wjAU3//+98Xu3bun9T7KPioudJR9PPeIei5/9KMfTet9lH2cfmZdKmkis4oiPv3pT/PJT36S//qv/+LSSy8d8djly5fT1NTEgQMHJr3mCx3TNLnrrrtwHGfa7vHd736X9773vXz0ox/lmWee4bLLLuPmm2/m1KlTQx7/6KOP8rrXvY5HHnmEJ554gkWLFnHTTTdx/PjxAce9/OUv5+TJk7Wvb3/72xNe4z//8z/T2NhIpVIZ8Phtt93Gm970pglfV6GIUPbx3EPTNH73d393WiPvyj4qFMo+notomsYll1zCLbfcMm33UPZxhjjbHu1QjHdWkRBC3HvvvSKTyYgnnnhiTPc4evSo0DRt2qMiiqnhXGi0LxaLIpvNDhiT0t7eLkzTFL/4xS+m7D6KCxtlHxWDUfZRoZAo+6gYjLKPM8Osy1ACvPe97+UrX/kKX//619mzZw/veMc7KBQKvOUtbwHg9ttv54Mf/GDt+HvvvZcPf/jDfO1rX2Pp0qW0tbXR1tZGPp8HIJ/P8773vY8nn3ySw4cP8/DDD3PrrbeycuVKbr755rPyGhVj51xptI/H47z+9a/n/vvvrz32jW98g8WLF/PiF794wtdVKPqj7KOiP8o+KhTPo+yjoj/KPs4gZ9ujHY7xzCpasmTJGbXMQG1gdLFYFDfddJNobm4WlmWJJUuWiDvvvFPcfffdY66pvv/++8+4vuM4A46J5iHNnTtXxGIxceONN4r9+/dP6c/lQmSyfRFCCPGOd7xDLF++XJRKpdpj3/72t2vDkB966CGxdu1acc011wjf9ye81meeeUYYhlGbYXXJJZeIj33sYxO+nkIxFMo+KiKUfVQoBjIT9rGtrW1cfXnKRp4dlH2cOWatQzndfOc73xG2bY95+O39998vMpnMgMG2bW1tA4755Cc/KbLZrPjhD38otm3bJm655RaxbNmyAW9Cxfg51xrtr7zySnH33XeLp59+Wui6LlpbWyd1PYViplH28dxB2UeFYuZRNvLcQNnHmeOCdSjHW1N9//33i2w2O+z1wjAUc+fOFffdd1/tsZ6eHuE4jvj2t789Zeu+EKlUKsIwDPHQQw8NePz2228Xt9xyy4jn3nfffSKbzYqnnnpqTPdqamoSX/rSlya6VCGEEF/4whfE6tWrxV133SVuuummSV1LoTgbKPt47qDso0Ix8ygbeW6g7OPMMSt7KKebidZU5/N5lixZwqJFi7j11lvZtWtX7blDhw7R1tY24JrZbJZrr712zHXaiqGxbZurrrqKhx9+uPZYGIY8/PDDA2ZNDeZTn/oUH//4x/npT3/K1VdfPep9jh07RmdnJ/PmzZvUel//+tdz7NgxvvKVr/CHf/iHk7qWQjHTKPt4bqHso0Ixsygbee6g7OPMcUE6lKdPnyYIAlpaWgY83tLSQltb25DnrFmzhq997Wv86Ec/4hvf+AZhGLJp0yaOHTsGUDtvPNdUjJ1zqdE+m83ye7/3e6RSKW677bZJXUuhmGmUfTz3UPZRoZg5lI08t1D2cWYwz/YCzhU2btw4IJqxadMm1q5dyz/+4z/y8Y9//Cyu7MLgNa95DR0dHXzkIx+hra2Nyy+/nJ/+9Kc149va2oquPx8f+eIXv4jruvz+7//+gOt89KMf5a/+6q8wDIPt27fz9a9/nZ6eHubPn89NN93Exz/+8SmZp3n8+HHe8IY3TOtsToVitqDs49lF2UeFYnajbOTZQ9nHmeGCdCgnM/w2wrIsrrjiitpg2+i89vb2ASnv9vZ2Lr/88qlZ+AXOu971Lt71rncN+dyjjz464PvDhw+PeK14PM7PfvazKVrZ83R3d/Poo4/y6KOP8oUvfGHKr69QTDfKPp6bKPuoUMwMykaeeyj7OP1ckCWvE62p7k8QBOzYsaP2h79s2TLmzp074Jp9fX38+te/HvM1Fec+V1xxBXfccQf33nsva9asOdvLUSjGjbKPiulC2UfF+YCykYrp4Jy3j2dbFehs8Z3vfEc4jiMeeOABsXv3bvFHf/RHoq6uribj/KY3vUl84AMfqB3/13/91+JnP/uZOHjwoPjtb38rXvva14pYLCZ27dpVO+aTn/ykqKurq82mufXWW5Xks0KhOOdQ9lGhUCiGR9lIhWIgF6xDKcT4ht++5z3vqR3b0tIiXvnKV4pnnnlmwPWiobQtLS3CcRxx4403in379o1r+O0NN9ww5JDdV77ylbVj3vzmN5/x/M033zx1PxiFQnHBM1P2UQihbKRCoTjnUHtIheJ5NCGEmKFk6AXJd7/7XW6//Xa+9KUvce211/KZz3yGBx98kH379jFnzpwzju/q6sJ13dr3nZ2dXHbZZfzTP/0Td9xxBwB33HEH7e3t3H///bXjHMehvr5+2l+PQqFQTCXKRioUCsXQKPuoOFe4IHsoZ5L/9//+H3feeSdvectbuPjii/nSl75EIpHga1/72pDHNzQ0MHfu3NrXz3/+cxKJBK9+9asHHOc4zoDjzhVD8A//8A8sXbqUWCzGtddey29+85sRj3/wwQe56KKLiMViXHLJJfzkJz8Z8LwQgo985CPMmzePeDzOS1/6Up599tnpfAkKhWIKUTZyIMpGKhSKCGUfB6Ls4+xFOZTTyESH3/bnq1/9Kq997WtJJpMDHn/00UeZM2cOa9as4R3veAednZ1Tuvbp4Lvf/S7vfe97+ehHP8ozzzzDZZddxs0338ypU6eGPH7z5s287nWv461vfStbtmzhtttu47bbbmPnzp21Yz71qU/xuc99ji996Uv8+te/JplMcvPNN1Mul2fqZSkUigmibORAlI1UKBQRyj4ORNnHWc5ZLbg9zzl+/LgAxObNmwc8/r73vU9s2LBh1PN//etfC+CMevlvf/vbtabthx56SKxdu1Zcc801wvf9KV3/VLNhwwZx11131b4PgkDMnz9f3HPPPUMe/wd/8Afid37ndwY8du2114q3v/3tQgjZbzB37lxx33331Z7v6ekRjuOIb3/729PwChQKxVSibORAlI1UKBQRyj4ORNnH2Y3KUM5ivvrVr3LJJZewYcOGAY+/9rWv5ZZbbuGSSy7htttu48c//jFPPfXUGbN0ZhMTibQ98cQTA44HuPnmm2vHHzp0iLa2tgHHZLNZrr322jFH7xQKxbmLspHKRioUiqFR9lHZx5lEOZTTyGSG3xYKBb7zne/w1re+ddT7LF++nKamptqA3NnI6dOnCYKAlpaWAY+3tLTQ1tY25DltbW0jHh/9O55rKhSK2YOykc+jbKRCoeiPso/Po+zj7Ec5lNPIZIbfPvjgg1QqFd74xjeOep9jx47R2dlZG5CrUCgU5wLKRioUCsXQKPuoOJdQDuU08973vpevfOUrfP3rX2fPnj284x3voFAo8Ja3vAWA22+/nQ9+8INnnPfVr36V2267jcbGxgGP5/N53ve+9/Hkk09y+PBhHn74YW699VZWrlzJzTffPCOvaSJMJNI2d+7cEY+P/p1I9E6hUMwOlI2UKBupUCgGo+yjRNnH2Y9yKKeZ17zmNXz605/mIx/5CJdffjlbt27lpz/9aS3F3traysmTJwecs2/fPh5//PEhSxUMw2D79u3ccsstrF69mre+9a1cddVV/OpXv+LXv/41//t//2/mz5+Ppmn88Ic/HHV9jz76KFdeeSWO47By5UoeeOCBM44Zr0zzUEwk0rZx48YBxwP8/Oc/rx2/bNky5s6dO+CYvr4+fv3rX48avVMoFLODmbKRn/rUp/j93//9WWkfQdlIhUJxJso+SpR9PAc426pAiqnjJz/5ifj//r//T/zgBz8QgHjooYdGPP65554TiURCvPe97xW7d+8Wn//854VhGOKnP/1p7ZjvfOc7wrZt8bWvfU3s2rVL3HnnnaKurk60t7ePe33f+c53hOM44oEHHhC7d+8Wf/RHfyTq6upEW1ubEEKIN73pTeIDH/hA7fj/+Z//EaZpik9/+tNiz5494qMf/aiwLEvs2LGjdswnP/lJUVdXV1Msu/XWW8WyZctEqVQa9/oUCsX5y2y3j9H1lI1UKBQzjbKPyj5OFuVQnqeMxSC8//3vF+vWrRvw2Gte8xpx8803174fr0zzaHz+858XixcvFrZtiw0bNognn3yy9twNN9wg3vzmNw84/l//9V/F6tWrhW3bYt26deI//uM/BjwfhqH48Ic/LFpaWoTjOOLGG28U+/btm9DaFArFhcFstY9CKBupUCjOLso+Kvs4ETQhhDibGVLF9KBpGg899BC33XbbsMe86EUv4sorr+Qzn/lM7bH777+f97znPfT29uK6LolEgu9973sDrvPmN7+Znp4efvSjH03fC1AoFIppQtlHhUKhGBplHxUT4YLooezo6GDu3Lncfffdtcc2b96Mbdtn1FdfSAwnqdzX10epVJqQTLNCoTi3UPZxaJR9VCgUyj4OjbKPisGYZ3sBM0FzczNf+9rXuO2227jppptYs2YNb3rTm3jXu97FjTfeeLaXp1AoFGcNZR8VCoViaJR9VCjGxgXhUAK88pWv5M477+QNb3gDV199NclkknvuuedsL+usMpykciaTIR6PYxjGhIfqKhSKcwdlH89E2UeFQgHKPg6Fso+KwVwQJa8Rn/70p/F9nwcffJBvfvObOI5ztpd0VhlNUnkyQ3UVCsW5hbKPA1H2UaFQRCj7OBBlHxWDuaAcyoMHD3LixAnCMOTw4cNnezlTTj6fZ+vWrWzduhWAQ4cOsXXrVlpbWwH44Ac/yO233147/o//+I957rnneP/738/evXv5whe+wL/+67/yZ3/2Z7VjRhuqq1Aozg+UfVT2UaFQDI2yj8o+KkbhbMvMzhSVSkVcdtll4s1vfrO4++67xZw5cyY8C2e28sgjjwjgjK9IRvnNb36zuOGGG8445/LLLxe2bYvly5eL+++//4zrjiTTrFAozn2UfVT2UaFQDI2yj8o+Kkbnghkb8r73vY/vfe97bNu2jVQqxQ033EA2m+XHP/7x2V6aQqFQnFWUfVQoFIqhUfZRoRidC6Lk9dFHH+Uzn/kM//Iv/0Imk0HXdf7lX/6FX/3qV3zxi18828ubNpYuXcodd9xxtpehUChmMco+KhQKxdBcqPZRoRgvF4RD+eIXvxjP83jBC15Qe2zp0qX09vbyjne8Y0bWcPDgQd7+9rezfPlyYrEYmUyG66+/ns9+9rOUSqUZWcNk+cpXvsINN9xAS0sLjuOwbNky3vKWt5yX/QQKxYWCso9Tj+d5XHzxxWiaxqc//emzvRyFQjFBZoN9VCjOBS6YsSFnk//4j//g1a9+NY7jcPvtt7N+/Xpc1+Xxxx/nfe97H7t27eLLX/7y2V7mqGzZsoVly5Zxyy23UF9fz6FDh/jKV77Cj3/8Y7Zt28b8+fPP9hIVCsU5xvliH/vz+c9/viZmoVAoFArF+Y5yKKeZQ4cO8drXvpYlS5bwi1/8gnnz5tWeu+uuuzhw4AD/8R//cRZXOHa+8IUvnPHYbbfdxtVXX80///M/84EPfOAsrEqhUJyrnE/2MeLUqVN87GMf4y/+4i/4yEc+craXo1AoFArFtHNBlLyeTT71qU+Rz+f56le/OmCzFLFy5Ur+9E//FIAbbriByy67bMjrrFmzhptvvrn2fRiGfPazn+WSSy4hFovR3NzMy1/+cp5++ukR19PT08N73vMeFi1ahOM4rFy5knvvvZcwDCf0+pYuXVq7rkKhUIyH89E+fuADH2DNmjW88Y1vHPM5CoVCoVCcy6gM5TTz7//+7yxfvpxNmzaNeuyb3vQm7rzzTnbu3Mn69etrjz/11FPs37+fv/zLv6w99ta3vpUHHniAV7ziFbztbW/D931+9atf8eSTT3L11VcPef1iscgNN9zA8ePHefvb387ixYvZvHkzH/zgBzl58iSf+cxnxvSaOjs7CYKA1tZWPvaxjwFw4403julchUKhiDjf7ONvfvMbvv71r/P444+jadroPwCFQqFQKM4HzvbckvOZ3t5eAYhbb711TMf39PSIWCwm/uIv/mLA4+9+97tFMpkU+XxeCCHEL37xCwGId7/73WdcIwzD2v+XLFlSmyEkhBAf//jHRTKZFPv37x9wzgc+8AFhGIZobW0d0zodx6nNKGpsbBSf+9znxnSeQqFQRJxv9jEMQ7Fhwwbxute9TgghxKFDhwQg7rvvvjG9PoVCoVAozlVUyes00tfXB0A6nR7T8dlslltvvZVvf/vbiOp40CAI+O53v8ttt91GMpkE4Pvf/z6apvHRj370jGuMFBV/8MEHeeELX0h9fT2nT5+ufb30pS8lCAJ++ctfjmmd//mf/8lPfvIT/vZv/5bFixdTKBTGdJ5CoVBEnG/28YEHHmDHjh3ce++9Y3o9CoVCoVCcL6iS12kkk8kAkMvlxnzO7bffzne/+11+9atf8aIXvYj//u//pr29nTe96U21Yw4ePMj8+fNpaGgY13qeffZZtm/fTnNz85DPnzp1akzXeclLXgLAK17xCm699VbWr19PKpXiXe9617jWo1AoLlzOJ/vY19fHBz/4Qd73vvexaNGicd1XoVAoFIpzHeVQTiOZTIb58+ezc+fOMZ9z880309LSwje+8Q1e9KIX8Y1vfIO5c+fy0pe+dNLrCcOQl73sZbz//e8f8vnVq1eP+5orVqzgiiuu4Jvf/KZyKBUKxZg5n+zjpz/9aVzX5TWveU1tLu+xY8cA6O7u5vDhw8yfPx/btie9ToVCoVAoZhvKoZxmXvWqV/HlL3+ZJ554go0bN456vGEYvP71r+eBBx7g3nvv5Yc//CF33nknhmHUjlmxYgU/+9nP6OrqGlcUfsWKFeTz+SnZfPWnVCpRqVSm9JoKheL853yxj62trXR3d7Nu3boznrv77ru5++672bJlC5dffvm4r61QKBQKxWxH9VBOM+9///tJJpO87W1vo729/YznDx48yGc/+9kBj73pTW+iu7ubt7/97eTz+TPk53/v934PIQR//dd/fcb1ot6iofiDP/gDnnjiCX72s5+d8VxPTw++7w97ru/7dHd3n/H4b37zG3bs2DGscqJCoVAMx/liH9/97nfz0EMPDfj6x3/8RwDuuOMOHnroIZYtWzbs+QqFQqFQnMtoYqRPWMWU8G//9m+85jWvIR6Pc/vtt7N+/Xpc12Xz5s08+OCD3HHHHbXNR8Qll1zCzp07Wbt2Lbt37z7jmrfffjv/8i//wite8Qpe/vKXE4Yhv/rVr3jJS15SKz1dunQpL37xi3nggQcAKYv/whe+kO3bt3PHHXdw1VVXUSgU2LFjB9/73vc4fPgwTU1NQ76Gnp4eFi5cyGte8xrWrVtHMplkx44d3H///cRiMZ588klWrVo1tT84hUJx3nM+2MehOHz4MMuWLeO+++7jz//8zyf+A1IoFAqFYrZz9gRmLyz2798v7rzzTrF06VJh27ZIp9Pi+uuvF5///OdFuVw+4/hPfepTAhB33333kNfzfV/cd9994qKLLhK2bYvm5mbxile8Qvz2t7+tHTNYFl8IIXK5nPjgBz8oVq5cKWzbFk1NTWLTpk3i05/+tHBdd9j1VyoV8ad/+qfi0ksvFZlMRliWJZYsWSLe+ta3ikOHDk3oZ6JQKBRCnPv2cSjU2BCFQqFQXCioDOUs5bOf/Sx/9md/xuHDh1m8ePHZXo5CoVDMGpR9VCgUCoVi9qAcylmIEILLLruMxsZGHnnkkbO9HIVCoZg1KPuoUCgUCsXsQqm8ziIKhQL/9m//xiOPPMKOHTv40Y9+dLaXpFAoFLMCZR8VCoVCoZidqAzlLCIScairq+Od73wnf/M3f3O2l6RQKBSzAmUfFQqFQqGYnSiHUqFQKBQKhUKhUCgUE0LNoVQoFAqFQqFQKBQKxYRQDqVCoVAoFAqFQqFQKCaEcigVCoVCoVAoFAqFQjEhlEOpUCgUCoVCoVAoFIoJoRxKhUKhUCgUCoVCoVBMCOVQKhQKhUKhUCgUCoViQiiHUqFQKBQKhUKhUCgUE0I5lAqFQqFQKBQKhUKhmBDKoVQoFAqFQqFQKBQKxYRQDqVCoVAoFAqFQqFQKCaEcigVCoVCoVAoFAqFQjEhlEOpUCgUCoVCoVAoFIoJoRxKhUKhUCgUCoVCoVBMCOVQKhQKhUKhUCgUCoViQiiHUqFQKBQKhUKhUCgUE0I5lAqFQqFQKBQKhUKhmBDKoVQoFAqFQqFQKBQKxYRQDqVCoVAoFAqFQqFQKCaEcijPMmEY4nkeYRgihDjby1EoFIpZgxACz/MIgkDZR4VCoVAoZinm2V7AhYoQgiAIcF2XUqmEYRgYhoFpmpimiWEYaJqGpmlne6kKhUIx4wRBgOd5FItFNE07wz7quq7so0KhUCgUswBNqLDvjDM46u66Lpqm1bKUkSOp6zqWZQ3YQCkUCsX5jBAC3/fxfX+AfRRC1L4iZ9I0TSzLUg6mQqFQKBRnEZWhnGGiqHsYhjUHMXIeo++jTdPhw4fJ5/OsXbu2tnmKnEvlYCoUivON/i0A8Lxt7O8oRvaxp6eH3bt3c91119WOUxlMhUKhUChmHuVQzhBR1H337t00NTXR2NhYi7oPJspQRmWvhmHUspqu6wKcsXlSDqZCoThXEUIQhiGHDx/G932WLFkyoGoDqDmH/e0jULOPQRAQBAGVSmVAhUdUKqtaCBQKhUKhmB6UQzkD9I+69/T0kE6nx7yxGVwCGz0WXdPzPACVwVQoFOck/VsACoUCnueNyT4OdjAHV3gEQYDv+wMcUNWjrlAoFArF1KMcymmkv+MXlbiOx8kbbrPTPzo/+D7DOZhRhF6hUChmC5HdCoJg3PYRGLHCY7CD6ft+zVmNbGiUwVQBOIVCoVAoJo5yKKeJ/lF3oNbPM1yZ60jXGY2RHMxI0ELX9SEj9AqFQjHT9M8gRsG28drHsdov5WAqFAqFQjG9KIdyGhgcde+/8ZmODdNQ543FwRxcIqscTIVCMd0MF2yD8dnH6FrjZTQHM1qTaiFQKBQKhWJsKIdyChku6t6fmdgwDaa/gxldLwxDXNflqaeeYvXq1SSTSeVgKhSKaWWwyvVo9nEkGzRV9mk4B9PzPPbs2UM2m2XOnDnKwVQoFAqFYhiUQzlFjBR1789MZCjHcs3Iwczn87U1ua47QCFROZgKhWIq6D9bEqbGPkbXnWr6O5iVSqVm01WPukKhUCgUQ6McyilgtKh7f2bDhmkww2UwK5XKiGNK1AZKoVCMxlCzJUcSHBts80Y6drqJVLZHayHo72CqHnWFQqFQXGgoh3IS9I+6CyHGNEj7bGcox3rPyGmMyr+EEGc4mP1nvKkh4gqFoj9DqVxPpX2M7jHTjEcErb/Ij7KPCoVCoThfUQ7lBAnDEN/3Ry1xHcxs2zCNdv3+2YTBDma5XK4dEzmYUXReOZgKxYXLWFsABjPbA25DoUTQFAqFQnGhoxzKcdJ/sxCVQ41nY3Aubpj6oxxMhUIxEiOpXI/GbAy4jddujSSCpnrUFQqFQnE+ohzKcRBF3Xfv3k1dXR1z586d0GZjNm2YYHKO61gczLa2Npqbm2tKssrBVCjOPyKV6yNHjlAoFFi9evW02sdzwX4MFkEbysHs7u7Gtm0aGhqUg6lQKBSKcxLlUI6R/lH3UqlEIpGY0Af+eDdMZ6NHaDIM5WAeOXKk5kyWy2V0XT8jQq8cTIXi3KV/iavruhSLxWm3j9F9zyWGcjDb29tJp9Mkk0klgqZQKBSKcxLlUI7CcLMlI8XC8TJ4w9TV1UVbWxt1dXXU1dVh2/ZULX1MTPeGLHq90eYoyl4GQUAQBMOWgCkHU6E4Nxiscq3r+oTtymD7WCqVeO6550gmkzQ0NBCPxwccCxMrS50tROuOWgQGi6D1t49KBE2hUCgUsxXlUI7AcMISU7FhEkLw3HPPcfDgQZqbmzl06BCFQoFUKkV9fT0NDQ2EYXjOReCHov+Gb7gh4oMdzGjj1H/Gm9pAKRSzh+FUrqfKoWxvb2fHjh3U19eTy+XYv38/juNQX19PfX09yWRyKl/OkMyEsxr97ED1qCsUCoXi3EQ5lMMQ9bgMJXc/2Qyl7/s8/fTTlEolNmzYQCwWQ9d1XNelu7ubrq4u9u3bR7lcxjAMnnvuOerr68lms7WNx1QyExumkWbJDeVg+r6P53m15yPHsv+MN7WBUijODiOpXE/WPoZhyJ49ezh+/DgXX3wxjY2NgMyE9vb20tXVRWtrK/l8HoD9+/fT0NBAfX09pnnufaSNxT7CyA7mYPuoHEyFQqFQzCTn3qfvNBNlyyIV16E+mCcTga9UKnR0dNDc3MwVV1xRcyQBbNumpaWFlpYWAI4dO8aRI0colUocP36cIAioq6urRejT6fQ5sWkYT5R/PA5m/xlv0+FoKxSKgYxF5Xoy9tHzPAqFAkIINm7cSCKRqNlH0zRpbGysOZiFQoFf//rXCCE4ePAgpVKJdDpds4/ZbHbAOI/ZykTsIwx0MMMwrDmYqkddoVAoFDONcij7MdbZkrqujzsCH5W4tre3U1dXx2WXXTZqJN9xHGzbZt26dQghKBQKdHd3093dzeHDh9E0rbZ5qq+vn5BQ0EyU1E6mbEw5mArF7KB/iSswbJXARDOUp06dYu/evei6znXXXVdzmIYT6rEsC4BVq1ZhGAblcrlmH3fv3o3v+2Sz2QEBuNloF6bCPsJABzNqIVAiaAqFQqGYCZRDyfhnS45XidB1XbZv306hUGD+/Pnj+jCP7qNpGqlUilQqxaJFiwjDkFwuR3d3Nx0dHRw4cADTNGulX/X19cRisTGvcTqZyj6k4RzMjo4ODh06VMv6DlZInI0bSYXiXKG/ynX/v7+hGG+GMgxD9u/fz9GjR1m8eDEdHR1jyiwOtimxWIx58+Yxb948hBAUi8Wag9na2ooQYkAALplMjmqXZqqHcrrto+d5/PKXv2TDhg3Ytn2GyI9qIVAoFArFZLjgHcqxRt37o+t6LYs5Gl1dXWzbto26ujo2bdrE4cOHqVQqA44ZqX9mpDVks1my2SxLly6t9Rd1d3dz/Phx9u7dSywWG+BgRhH98dxnsvR3iKeD6PcVXT9SkvU8D9d1a88pB1OhGD/DqVyPxHgqOEqlElu3biUMQzZt2kSxWOTUqVPjXuNgNE0jmUySTCZZuHAhQohaAK6zs5ODBw9iGEZNAK2+vn6AguxMMp1Oa3/7GARBzXmMfqeqR12hUCgUU8EF7VCOJ+ren7FkKIUQHDp0iIMHD7J69WoWL15c+5Ae6tzhNhVjjfQbhkFDQwMNDQ0A+L5PT08PXV1dHDp0iJ07dw5QkM1mszMiYBGtf7oduDAMB2ye+kfoo9+z53kAZziY0SZLoVA8z3Aq16Mx1gqOU6dOsWPHDlpaWli7dm2tbHU8c3rHiqZpZDIZMpkMS5YsIQzDWgDu5MmT7Nu3b4CCbENDw4yNcJqpLChQC6aNVwRNBeAUCoVCMRIXpEM5kah7f0brEepf4rphwway2eyAcwdvmIbbUExmk2GaJk1NTTQ1NdXW1NXVRXd3N/v27aNSqZDJZADo7e2tlUFNNdOdoYyIfo+DiTZH/dcTOZhDZTD7R+gViguVkVSuR2M0+9i/xHXdunXMnz9/wPPj7eueSB+4rus15xFkAK6/guzu3btJJpN4nkcul6OpqWnaAnAz4VBGv4/B91E96gqFQqGYCi44hzIqfTp58iSLFy+ekDjBSD1C3d3dbN26tVbiOrjMdLz9l1MlmmPbNnPnzmXu3LmALDXr6uqit7eX/fv3s2fPnmlRkD3bDuVgxuJg6rp+xgZKOZiKC4Eo2LZ//34WLFiA4zhTah9LpRLbtm0jCAI2btxIKpUa87mDmcq/ycEKsp7n1YJv7e3tHDt2bNoUZGfKoRzLZ91oDiagetQVCoVCcQYXlEMZRd0LhQLPPfccS5cundB1huoRGq7EdTDjcSinc5MRj8eZP38++/bt45prrsH3/SlXkIXZ51AOpr+DGa11KAdz8AZKOZiK843+Ja4HDhygpaVlQsJew2UohypxHW4d4133VGNZFnPmzKG1tZVFixaRzWanTUF2Jh3K8TKSyI/qUVcoFApFxAXhUA6eLWma5oQHb8OZTqHruuzYsYN8Pn9Gietw6xnP2qeLmVCQne0OZX/6y+/DQAfTdV0qlQpCCHp6epgzZw62bSsHU3Fe0N8+Rg7ERG3P4HPDMOTZZ5+ltbV1yBLX/syWgNtgpkNBNmI2O5SDGUuPek9PD9lslkQioXrUFQqF4gLhvHcohxKWmMgcyf70P7+7u5tt27aRzWaHLHEdzGzdMPVnKhVkzyWHcjBDOZiu67Jz506uv/76mjKwymAqzlWGU7k2DGPCNrK/fYxKXH3fH7LEdTDjbQmIXsN0MlTf4VQqyEaCYtPJdN1jqBaCZ599lpUrV9aeVz3qCoVCcf5zXjuUUdR9cP9ItOGZaGQ4Kul67rnnOHjwIKtWrWLJkiUTUkAcyxy06Wa0NQylIBtF50dTkJ2M4z4W8vk83/zmNzl27Bgve9nLpvVe0e9d07SaAmRUAlapVHBdl1/84hf8wz/8A7/4xS+mdS0KxWSJMkvR32j/gMxkgm6Rjevo6GD79u2jlrgOde5Y7zPdjGUtk1WQnc4MZRiG/OAHP2D79u2sXr2a66+/flruExGNJLFtG8uyzuhRz+VyXHfddezbt68mCqdQKBSKc5/z0qEcHHUfLEbQP+M0kQ/yMAzp6+ujWCxyzTXXUFdXN+Zzh9owDbeGiUTrZwLTNGlubqa5uRkYXkE26r2E6dv8PfbYY/zgBz8gl8thmiYvetGLpuU+EUEQDHg/9c9iRuWwhUJhWtegUEyG/pv84cRaJlvFEQQBW7duHbXEdTDjHasUPTebGKuCbHTMdFRXROzdu5dvfOMbdHR0sHfvXt74xjdOy336E4Zh7TN2cAazWCzS1tZ21mZ+KhQKhWJ6OO8cysFR96EGNEcf3hP5IO/u7ubAgQMAYypxHcxsisBPp4Jsd3c3XV1dHDt2DICtW7dOuYIsQCaTIZFI4LruuBz7iRIEwbCZFk3TKBQKJJPJaV+HQjERxjpbcqIOZblcZvv27QBcd911pNPpcZ0/Efs42xzKwQxWkHVdl56entpnied57Nmzh6ampilXkE2n0ySTSbq7u2fEPsLINrJQKBCPx6fs9SkUCoVidnDeOJRjibpH9Hcox3P9w4cPc+DAAebOnUsulxu3Mwlnb2zITBKPx2sqsrlcjt/+9rc0NjZOuYIswAte8AIsy2L//v1cc801U/xKzmSkzRLIDdNofWIKxdkgso+Ds+xDMRGHMipxbWxspK+vb0KBlfHax5koe53qe9i2zZw5c5gzZw4gqyzmzJlDqVSacgXZRYsW8eEPf5gtW7bUAn7TSdRKMtx68/n8uASLFAqFQnFucF44lGONukeM16GMVFxzuRzXXHMNlUqFXC43obXOpgzlTN1H13UWLVo0rIKsZVkDHMzxjCrQNI3rrruObDaL4zjT+Cok/cu5hqJYLCqHUjGriFSufd8f8zzC8TiU/VVcL774Ypqbm2lra5tQMGy2ifLMVEBvzpw5JJPJKVeQBbjooovIZDK0t7dP4yuQRJ/BI2UoVQWHQqFQnH+c8w7leKLuEVEZ7Fg2TD09PWzdupVMJsP111+PZVl0dHRMWrAiwvM8jh07RiqVIpvNnhHZPRczlP0Z3Ps0lQqy/ZnOPqT+RO+z4VAbJsVsYrzBtoixOpTlcplt27bheV5NxTXqXR8t+DIU/ctYI1t54sSJ2tiiSOxr8PHnMv1t5FgUZE3THOBgjqUfcaSs4VQSvWdGcyjPh9+bQqFQKJ7nnHUoJxJ1789oG6b+Ja6DVVwnI5bT/9y+vj62bNmCYRhUKhXCMKSurm6Aoup0MhPO6mjCR5NRkO3PTDqUI22S8/m8ylAqZgXDqVyPhbE4lFGJ65w5c1i7dm3t73IyvY39z/U8j23btlEoFNA0jV27dpHJZGr2IurPPN+Cbv2ZrIJsxEwH3IZ7PSrgplAoFOcn56RDOdGoe390Xa+dP5jBJa6DxQymQlL/+PHj7N69m2XLlrFw4UJAftgOnmXm+z5tbW3DbhRmO+NV0h2PgmwkYBH9PmaDQ1koFGhpaZn2dSgUwzGayvVYGMk+hmHIgQMHOHLkCBdffDELFiw449zouPESrbOnp4ft27eTzWbZsGEDuq5TqVQGiH2FYUgYhrS1tTFv3jzi8fi0zVqcLqKxQ2O9x3gUZBsaGqirq8M0zVlTwaECbgqFQnF+cs45lEEQ0N7eTkdHB2vWrJnwh/1wTmFU4ppOp9m0adOQTtxkMpRCCEqlEnv37uWKK66gsbER13UBiMViNDY2snjxYoIgoK2tjf3793P06FF27949IFNXV1c3ZUp5071hmsz1R1KQPX78OEEQUFdXR6lUIp1OT+tMNxhbD6WKwCvOFmEYUigU2LlzJ5dffvmQKtdjQdf1IW3cUCWug4nuN5mxI08//TSrV69myZIltSyr4zik02nmzZsHUBP86u7u5ujRo1iWVcte1tfXT0kAbqaynxO1WSMpyD777LOUy+WaqrZhGKMGxCbLaNdX9lGhUCjOT84Zh7J/1D2KVE/GcRjsUAohOHLkCM8++ywrV65k6dKlI6rETmSzVCwWefbZZwmCgBe+8IXE4/HahiWfz/Pwww/T19fHddddx+rVq2vZt2uuuQbXdWuO1O7duzl27Bj19fVcdNFFtfKv2diXMtW9O/0VZIUQtazuoUOHaG1trf1cpkJBdijG0kOpIvCKmaa/yrXv+5w6dQqYuKMylI07ffo027dvp6mpiauuumrI0vP+54/XGfN9nz179gBwxRVX1KoUNE0jCAIee+wxDh8+zEUXXcT1119PJpPBMAwuuugi4vF4zZE6cuQIjz32GLZts3btWpqbm6d0FMdUEv2MpspGDVaQLZfLNXGfXC7Hr371qylTkB2KsVRwKIdSoVAozj/OCYcyDEN836+VYJmmOWw51ljpv2HyPI8dO3bQ19fH1VdfXSsnGo6JZCijfqO6ujo0TTtDSKGjo4MjR47g+z4HDx5k9erVAzYZtm3T0tJCS0sLzzzzDIcPH+a5554bcK0oMt/Q0DBmoYbpZjozhpqmkUqlSKVStLe3s2jRImKx2JQpyA6F2jApZhuDWwAiEavRgh8j0b/ktX+J69q1a2sl+iMxVtGziEKhwJYtW2pOajabHfB8Lpfj0KFDtdmNV199de1vWQiBYRi1TF1raytPPPEEnZ2deJ7H/Pnz8TyPbDZby2CmUqlZEYCbaodyMLFYjHnz5pHP5wnDkIULF06pguxgRqvgUAE3hUKhOD+Z1Q5l/6h75JhEpTuTKaeC5x3KsZS4DnfuWF/DwYMHOXToEBdffDGO49Si8P2ZM2cOy5cvp7e3l5UrVw44fzD5fB7f9zFNk0WLFnHRRReRy+Xo6uqqlclORCl1OpjuEtSIaCMzmoJsPB4fsIEa788lCIIRz1EbJsVMMpLK9WRsZGTjohJX13W57rrrakI4Yzl/rAGrtrY2du7cyaJFi1i+fDkPP/zwGcdkMhlWrFjBkSNHWLNmTc2ZHMq2FAoF8vl8TfBr06ZNFIvFWi/24cOHa72IkYM5UqBpulsCpvse8Lx9nA4F2f6oHkqFQqG4MJm1DuXgqHv/XqCoF2QyaJpGe3s77e3to5a4DnXuWDZrruuyfft2isVibTPW2dl5xkYrkop/xStege/7I26WANavX0+xWCQWi7F8+fIBoziWLVuG7/v09PTQ1dXFoUOH2LVrF+l0eoBSav8P/dncQzlWhhKdGKuCbOR4D6cgO/g+w0XgoxlyKkOpmG5GUrmO/j8ZG6nrOoVCgc2bN4+pxHUwY6niiOZXHj16lPXr1zN37tyaXR1sX3Vd5yUveQmlUukMJ2fwfZYtW8YLXvACCoVCrY80cqSiWbh9fX10dXXVlFKjQFNkC6LXOt1VHDPpUA4OhI1HQXasfalj6aGM+j0VCoVCcf4wKx3K0WZLjqRAOBY8z6NUKlEqlcZU4jqYsUTfe3t72bJlC5lMho0bN9Y+zEfaaJmmecambahjGxoaePnLXz7svU3TpKmpiaamJgAqlQpdXV10dXWxa9eumpBNVFY23YPBz5ZDOZiJKsj2ZyxjQ8aaxVEoJsJYVK4nYyOFEPT29tLT08O6detYsGDBhFRiRwq6VSoVtm7dWhP3iYIwQ92n/7imRCIx5HP9icVi3HDDDSOura6urqbeHQWaurq6OHjwIKVSqWYHgiCYVvsY/YxmwqEczT6OpCB75MgRdu3aNaSCbH/G0hKgMpQKhUJx/jGrHMqxzpacTMlrb28vW7duBWD58uXjdibhzOHb/RFCcOzYMfbu3Ttk5nM8/ZdTtclwHId58+Yxb968mpBNV1cXnZ2dADz55JMD+i8dx5mS+4LcyMwWh3IwY1WQjX4uqVRKifIozipjnS05URtZLpfZvn07+XyepqamMfVLDsVIVRzd3d1s3bqVhoaGMzKfQ82wHM1eTtbhGxxoKpfLtQBcpVJh586dA+zjVAp9zWSGcrz2cawKsv0DcGNxKFXATaFQKM4/Zo1DOZ7ZktFmaTzZr8Eqrl1dXZMSrIAzyx+DIGDXrl2cPn2aK6+8csjSnvEK+kx1dLy/kM3cuXN5/PHHueiii+jt7eXYsWPs2bOHZDJZKxWd7HiSmcxQjvc+oRCUvYCiG1D2QopugCuSFJIxsOfS3ZfnVL7IGq2Hw4cP165v2zZ1dXVnbCyjklflUCqmmv4q15Fy8kjv94m0BfRXcW1sbCSXy014vUNVcfS3wWvWrGHRokXDZiRnOujWn1gsxvz585k/fz5PPPEEixYtIggCTp8+zcGDB2vjSSIHczLjSfprA0wnU6G2PZyCbHd3N7t378b3fWzbxrZtent7h1SQVS0BCoVCcX4yKxzKMAxxXXfUqHtE9CEVBMGY+no8z2Pnzp309vbWSlx7e3snnOUcKopeKBTYunUrhmGwadOmYUUeJrJZmm6nrKGhgaamJlasWIHnebUsXVQG2l8dcbzjSWbaoSx5ASU3oOwFlKrOYsUPKVQC3CCQ//rSefSCkFAACDS0ap+RThgIHEsHNF55+QqaUg5hGJLL5dixYwe5XI6nnnrqDAXZaNM/WYfynnvu4Qc/+EFNRGjTpk3ce++9rFmzZthzHnjgAd7ylrcMeMxxHMrl8qTWojj7DFa5HquNHKtDKYTgwIEDHD58mLVr17JgwQJaW1snJeozOEPp+z47duygt7eXa665plZuOty5ZzPoNphEIkFDQwNLliypCX11dXXR2tpamw8cOZjjDcDNlH2cjOLvcEQKslHlS7FYrH1mbNu2bUgF2akQ5VH2UaFQKGYfZ9WhjEpcIxXXsWyUgNoH9lg2PFGJayqVGqDiOtFZktG5/e9/6tQptm/fzoIFC1izZs2IH9xnO/oOQKUPrXAa4nPOeMqyrAFR6GKxWHMwW1tbAQaINAzuaRrMZDdMrh9Q8kKKrl/LIpYjp7HqGLp+wJZWn32cJETHtgxcL8C2DHw/IG6b+CLE1nUCITB0DV2DmGXgBwG6blB2A+KOSb7ik3JMchWfl6xppikly38j4SPTNFm1ahXZbHaAguwzzzzDBz7wAebOncvDDz/MK1/5ypoY0Hh57LHHuOuuu7jmmmvwfZ8PfehD3HTTTezevXvE6H4mk2Hfvn2172fDWATFxBlO5XosjLXkNSpxrVQqA1RcJ2Mfo/P7z9jdsmULsVhsTEra47WRU+1QVioVWltbaWlpOeO5wUJf/ecD7927tzaeJLKRowXgZsqhnOp5wIOJhI/i8Th1dXUsW7bsDAXZv/mbv6FYLPI///M/bNiwgaVLl07oXso+KhQKxezjrDmUE4m6R/TPUA6HEILW1lb279/PihUrWLZs2YDrT2bDFF3H930OHz7MkSNHWL9+PfPmzRvTuePdAE3ppsPNYz/zVbS+44g5lwELRjw8kUiQSCRYsGBBTWa+q6uL9vZ29u/fj+M4tQ3WUGM4Bq/dC6SDWHJlBrHiBRTcEC8IyZV9glDQW/LQNegsuMQtk1zFI1118tKOScUPiVs6fgiWqeH7IaYGlqHj2BZlPyQZM8mXA5LReTGT3rI8v+SGxE0dPwyxLZ0ghFTMJAgFdXGLih9y8bw0F8/LnPHziHqEBm8sC4UCd911F5/4xCe49957ueuuu+js7ByXMmbET3/60wHfP/DAA8yZM4ff/va3vOhFLxr2PE3Tav2ginOb/iWuwLicSRhbyWtnZyfbtm2jsbGRK6+8csB7dbIOZWTnTp48yc6dO1myZAmrVq0a02uYDidxPHzrW9/it7/9LUuWLOHqq68e8dj+84GFEJRKpVr/5ZEjRwaMJxlqDMdsEi2bCiL7OJSCrOu6vO997+ORRx7hC1/4Ar/5zW+44oorxn0PZR8VCoVi9jHjDuVkou4RmqaNWNIVlbj29PQMq+I6FQ7l9u3bayqFYy3jOdsZSq3UjZZvR3PzGD1HQIzuBPdfT7RJiOY8dnZ109bRyZY9B+jJFTHjSWLJDHY8heHEOdHeS1dvmV2Vo5S9AD8QaBoEQmBqGqEAywChaZiaLD41NI1ACFKOiReEZOMWRTeoZQ5TjnQOU45Jb9EnYYMXgqHr+KEgZmoEIWTjBl4AdbXzDXIVn6Rt0lfxidsGvUWfuKXjCemQBqGgPmHxgpVNQ/4MhisdSyaTvOhFL0IIwbZt28jlchNyJoeit7cXYNSMZz6fr23errzySu6++27WrVs3JWtQzBz9Va4jWzdeRrKP/WfjXnTRRSxcuHBIldjJOpRHjx6lt7eXyy67rFbxMNZzz1aG0vM8nnvuOXK5HCdOnKCvr29c46SiANzChQtrZfL9x5NE84Gj/vTzzaEcbqySruu87GUvo7u7mwcffJA1a9aMe8blcCj7qFAoFGefGXUoowju0aNHWbx48aTECIYr6YpKXJPJJNdff/2w5VWT2TD19PQAUgXv6quvnvL5bIOZyg2TSM8nWLQR/fR+3IWb4LnKGcIyJU9mEZ8XrAmqpaUh+YpPIAR9JR8NQXfRJ+nEyIsW4nVwujuPnsvTmz+FQYBuWBi6RrxUImY7GJpGiEATgBAIAX6oEQqBDyBCTFNufDRAr/68krZBEAqycQvXD0k6JiU3wDF18mUPISDvBjgmuICpaQhkaWsoBDHLQAhBJmbhByFx28APZPmrF0IYCkIheyp/59JmLGPozddIcyjz+XxNqCcayTJZwjDkPe95D9dffz3r168f9rg1a9bwta99jUsvvZTe3l4+/elPs2nTJnbt2jVhpU7FzBK1ABw6dIimpibi8fiU28eov61cLg8ocR3MZOxjuVwmn89jmiabNm0atSx+MGcz6GZZFq94xSt4+OGHWbdu3YTL1uH5Mvmh5gNH40kSiQRBENDT00Mmk5k2p2+m1LbHqoI9VcJlyj4qFArF7GDGHMoo6l4qldi7dy9LliyZ1Afc4JKu0UpcB6PrOq7rjuue/e+haRpr1qwZdxZquM3SUJHqqdoARAI1ssw0pJJ9CYXYiyiWymzp2E1lVxu9JR9N0+jMu6RiBrmSTzJmUqp4JBzphNmmLA81dbk2PxRk4iauH5KJyf7DlqY68hWfOXNMOvNFKrlucsUKx4+2IjSTdDJOLB4nnUyBoWMbsvTU0jTKXoBt6pS9EMfSKbgBtqERhlIkJxCgI++v6xoJu9pLa2hoGtIR1TT8IEQzoFSprjmQfZReGBIzDQxdk19aiK7J0lnDhLIfcsPqRhqTQwchouz6cA5loVCYcgXDu+66i507d/L444+PeNzGjRvZuHFj7ftNmzaxdu1a/vEf/5GPf/zjU7omxdTTX+X6ueeeI5VKjdsR689QJa8jlbgOZqIOZXQPwzBYtmzZhF7DYBs5mh2c6vLYTZs2sWnTJgA2b948ZdcdPB+4XC5z/Phxjh49yo4dOwjDkLq6uloGcyrHk8x0yetQuK6L53lTOjZE2UeFQqGYHUy7Qzl4tmTUYzdWhdbh6F/S1b/E9aqrrhpTVHm8Gybf99m1axddXV1cffXVPPPMMxNa91RkKF0/rGYRg37OYkjFC2oZxN6SjwZ0FVwSTtVBdKSDGHMsgjBECwN6KoKOnIuuaYQipC5uUvZDsnGTfCUg6VjkyvLcfNknZhkU3ZCYZRCGsnzV0uWmJ+1Y+KEsUS25AQ2pBMeLRbIpg0RdI5bwOd2bx+3p4UTbKVKOjR1PkE4ncZwY6ZiFF4Sk4wYVLyRpG7US16hUtbco+yHLbkDMrvZR6hqmrpGyDHwBjmngBoKUo5OvPF8qm3ZMekoeGcesPq5T8QWOoREIjdUtKS6ae2bfZET/ft+hyOfzJJPJKdsEvutd7+LHP/4xv/zlL8cdRbcsiyuuuIIDBw5MyVoU08dgleuJjPwYTH/7OJYS16HOH499FEJw6NAhDh48yNq1a2lvb5/w2s92W8BMEYvFaGxspL29nY0bN5LP5weI2JimWXMuJzueZDY4lPl8HmDKspPKPioUCsXsYVodyqFmS06VQxmVdI21xHUw49kw5fN5tm7dim3bbNq0CcdxRhzcPRKDR4G4rsuzzz6LZVk0NTWRD6TTU/FD8iWX7Z0hpd2nKPmCMBT0FD0cS6+pkRbKLqmYjReE2KZBKAS6BjqyDzETs6gEAZm4SaHik4hZFCs+jmVQ9EN8QVXpVEfXNLxQyKyggHTMxAsE2YR0EJMxs+aY5ivSuSyXfWKOSeDL++uAAOKWTiggaWsUy5CJWxQqGvNbmii5AS2GRldfntAvc/TkKbTQw3Hi1QxmklQihi9k/6PrSye1UPHJxGT/Y9ox6S3Jf7vLHpomqAQhliHvG7M0ggCycRMvFGRj0lFO2Sa5SkDc0ukt+cRMg95yQH3CZNOKM+eG9id6Hw+3YZqqGWtCCP7kT/6Ehx56iEcffZRly5aN+xpBELBjxw5e+cpXTno9iunD9/0zVK6nwqGM7GOlUmH79u2USiWuvfZaMpnhAyb9Gc/YEc/zauN0NmzYQDabpaOjY8KZw/4OZRiGHDp0CNd1aWxspK6u7gzHaDoFfKa7x7G/jkA6nSadTrN48eLaeJLu7m6OHj1aUzCdyHxgIQQVX6piU/LwgxA/FARBiBcK/EDghaF8PBD4Qj7mByFCyMoNTYOSG2DqGvmKj2nIVoOF9QlectHz/bEjOZSFQgFgUpn36PUo+6hQKBSzi2l1KKMP4sG9kpqmTXrDpGka7e3ttLW1sXz5cpYvXz6uD/6xOpRtbW3s2LGDxYsXs2rVqtpmZiocynw+zzPPPFPrlfrNniNs6QhpzCQwnTh16SQdJWjIV9B0o9pLaOIGwfMZxJhNvuITt02KFR/T0NAQ/RzEENvQCATVDKCQGT4vxDF0fAEhuiwTRQMNDDR0Q0OEAtMAISBhGfhCOpcVPyQdM8mVfRLV+8Ztk3zZw7EM/KqzGYRyQ2IZGjqQdkypqFpVam2sy1DxUzQ1aeRLLoFbpjtfwO/qQqCRTkgZ+lQyQaDbJB2DIKSmxJp2TAquj21oVEIDgUauHOAYGmVP1ER2NEDoGk61NzNdVXSNW9IBd0ydm9fNHbZvMmI0kZQoQzlZ7rrrLr71rW/xox/9iHQ6TVtbGwDZbLYmZHH77bezYMEC7rnnHgA+9rGPcd1117Fy5Up6enq47777OHLkCG9729smvR7F9BE5Q/1Vrk3TnBKHslAosHnzZurr67niiivGFcAbq33s6+urBfQ2btxYC+hN1D5G5wohcF231u+ZTqfZvXs3vu/XVFMn0984W/D8ADeEXMnDD6VjFwRC/j+wEek5JOPNWJ5LZ3cfJ072cXrPSVzPxY4lSadSmLEk8ViMih8iNEHFk73gXiCvJYCDh1z2Be1oRhe2oeH6sq2g7AYkHIOKL0jYsjIkZmt4AfK4QGBX7aiuQxiCoWmU3IB03OL6QeJlY2kJmGymVNlHhUKhmH1Me8lr/3lkwJRE4H3fp1wuUywWx1ziOtS6RtrwhGHI/v37OXbsGJdeeukZM8kGv66xEm0aT548ye7du1m6dCmLFy+mI1fmqb42ljhlOnsLVPI5jrd1EDfheHsH9Zk0jhMDU/YKhkKQdmQGMRMzKVX7DkuezNIFgRSZsQytWhaq44XV54QgbuuUyj5xXfYlGrqOG4RSYTUM8ULZZ1jxQtnnqMnexTCkOnJDCuRE9y96UignV5a9l/mqimq+7OOYmiwtNXXQpBBOzNRBA8uQpbOpuEPg2CRTGQSCSqVCqVSiuy/HyY4OLEMnmUySjMdJp9NYujw/5ViUih6OIdAQ2AYITa4zFALXFzimRrHskXBs/CAgZpsIITOqQQjXLq+nYZi+ycHviZGyApHgxGT54he/CMCLX/ziAY/ff//93HHHHQC0trYO2Jh1d3dz55130tbWRn19PVdddRWbN2/m4osvnvR6FNOHrutnbLAnax+FELXs1sUXXzymEteh1jWaQ3j8+HF2797NsmXLWLFixRljmSaToSwUCuzcuZNMJsOGDRtqmbxCoUBXVxenT5/m4MGDCCE4duwYYRjS0NAwZcrKYSidurIf0lf2CfIV6aCFovavGwiCQOAJ6bjVnhMCzxdV+yO/9wOBH4Z4gaw08UL5b75QoLurwl6/tdp2IGrtB5oGuiZrPgxNR2gahpnFaMgQC3zyhSLdnXkKhXY0TSMej8tZkIkEtmVhaBqGBUEosAwpcJawDTlWKZq5G7PIRZUf5ep4pWoVSm/JJ2Zp5MsBlqUjPEAIAkPHNDT+15pmbHPge3ckUZ6paglQ9lGhUChmH2dlDqVhGLX5auMliogLIVi+fPmEo9QjbZjK5TLbtm3D9302btw4ZNZpohH4aJO1e/duLrvsMpqbm+ktlHh032litoFhxFmaTFD0QhpKRZ7ZuYd5mkZfroAmQuLxGKlkklQqiWVZmIaGCKsZxDAkactRG7oOhBp+AIauUXQDYtVS2bhl4IYCU9cQQMySDmLCkEqq6FIoRyCze5VAYOpQ8GS02g1C6aAGIaYuy2NTjlRNzSasqkiPRb7ik7AN8m6AaWj0lj3ZF1nySTgmfhDimHKj5BjSkdU0jSAUxKwEiXgMvbGeYsWHwKO7L09XTy9HTpwim3CwYjEaMik8P8TUdUxDRzfkpixuQcUXZGI6eTcg6djk3eqokZJX3Th5XDQ3zZqWsYlEjKZgWCwWp8ShHMtG/NFHHx3w/d/93d/xd3/3d5O+t2JmGWpzPRmHMipxzeVyNDY2smjRogldZyT7GAQBe/fupa2tjSuuuKImMtOfyWQofd9n7969rFixguXLl9cE3TRNI5lM4sQTNM2dT75Q4t/+/d9J9hQ51pWnWHZJJJIkM1mSqQxOLE4owK06gEHVwRNCOooIqFTLOYsVaaPyFR/b1MmXfVIxk92HPQ4Gp/G0HtKOSb7ikXJMim5AMmZRcWXgzPWlAJgXiJpN1DWtZkOj70MhfyaWJsXELEP2f1u6RnWeEroGQXUMklct4y/7AbahUwxkgMwLNbLZOirJNHNbdHLFIn6lQk9vHx2nTqGbFulkAiceJ1UtMY3b8uM+aRt4oeyXrwRC9s170maXvYCkrVN2/drrkUJngiCUWcuyF/CqtfPJJgYG4SK9hJloCRgNZR8VCoViZjkrDuVESrqEEBw9epR9+/axfPnycc0HG4rhNkxdXV1s3bqVpqYm1q1bN+yH40Qi8FEJF8A111xDXV0dnh/w8z2nKFR8TFOvbUaSts5TOw5w7NB+CJZx1ZVX4AuolMv05Qu0dXQSswyceIK6VAInnsCxTcIgxLE0wlCT8x0F+GFYU0+1TZ39h1qpFPrINDSDgKIbELcNvPD5MtGYpRMEoBky0yc3OOALWRpb8gMsXa8ps3qBwDKkM2gbcjRIOm6Q7xVkbL2WycxVN2q56hzJnpJPplq6mqg6w7Yh50gmLLmm+qRDJbCoSycpuiGLdcGpnhy6X+HgsTZsLaTsQ3dXF4YdJ5uM4QUaTnUeZToqlY1ZVAJZKltyAxqSNi9cNfS8yaEYabMEU1fyqriwMU1zQgG3zs5Otm/fTn19PUuXLq3N55sIhiFL7Af3EJZKJbZs2YKmaWzatGnYWYITsY9RVUilUmHFihWsWLECoLYO1w/50dbjdBddNDSOHDnMM1vbyaZzrL+smbmNLbTm8oRdXfTmj2NrAiueIJtK4sQSxGM2QRiiVwNpmtBAk5lFQ5dl8nHT4ET7KU6faiNV10DClCrZ9ZlY1XZJkbK0Y9JX8qpCXzKz11dVxi66AXHHoOz6xC0TNwywDenEWbqGL2SQDxFiaFKx2jJl5YhpyDJ8ebwcl1TxQxK2QckNZICuug7ZR2+QqwSkkknypsOihnpyJQ8jcOnOFyl2dnLsxEksXdB+uotsKoUTd2rjkkxdtkPITOPz45UStvwZSTVs8AJBzJaO7fUrm1jUcGYfZPT7HstYJYVCoVCcX0y7QzkVEXjf99m5cyfd3d21Etft27dPqixs8Jw2IQSHDx/mwIEDrFmzhkWLFo06dmQ8Efi+vj62bNlSy2AlEgmEEPz3nnZO9JSxdPAqAaapY+iyxyVwKwgBwq+ACMgmUwTxGPV1dQgRkC+UqVSKHDvViSHaEaZNcyaJFUuQTsarpU46Gs+Xl3Z29/Dsnp3kCiXmNJ2med5CLFOnp+SRcgzyZdlT4/qi2mMpI+S6LtCQzq4QAj0EgcyE+qF0MoteiKWDKzQMHYJAkyVSaNJBDQWZuBxBEinBpqsiOQnHoLfkkbLlBi1pGxTckJgpo/S2rhEKjWQ1E7qwuY6KH9Iyt4W2ji60vh46cyXCSjfH0Egn41h2jFQqgWPZaBqgg2lo6GikYxY3r2sZtW+yP6M5lIVCYcrmTyouXMZrH4UQPPfcczz33HM123Xs2LFJ2ccoE9+/zLujo4Pt27czd+5c1q5dO2K2frwZStd12bp1K67rkkqlzhAP8sOQn+/ukBnE6t+s53qIwKXix7A0QSXUaG6oJ19J09Ji0NlXQPMrtHX2QHAKNJP6bArTjpHNJBECjOjvX8iAmRf67NqxnY7Tp6mrS7Nw0VLmO9EMXNn7XRezKPkB2ZhJwQ2eD5Q5z//bV5KBs56yR8o2alURhapTWPFDmWkMBAYyg2npsj3B1mXFiFN1MhO2gR+KASJplapQWdmT9y9UAlKOQaESkI7bFCo681uSFN2AJuFz8PBRHN/n0PET6GFAPCn7LtOpJIZpYVsGQRBKxzasBgcFOLqGLwTxahXLRXMzXLqwbsjf4WiiZVPVEqBQKBSK2cdZK3kd62YnKnGNx+M1hdXoGhMtqYKBDqHv++zYsYPe3t5a5nA0xiNtf+LECXbt2sXy5ctZunQpP//5zxFC8JtDXRztKpKwdYpugFUtOfWqpaCLVqwiny+wdMUqMukUfiCqKqYCMGmsS+H6SebO0egrVhBumc6+AvT0ctgXNGYS6FaM5ro0QjOwTR3HNLFNA1MLcWyLuCnV/NLVnpqkU+2lcSx6yh6ZmCUj7tbzvZghYJrSuUSTPTrV/yCQGU0RVoU1AjlapOIHSPdcR0M+F7d1hIBMzMAPZdlsxZeluWUvxDQ0Cm4gezn9EF3TMPoJPRm6vFYqZuGVLBYuWkAYhhRLZQrFIn25Pnq6OkE3qcsk0UyHhmwSN4D/dVEz9YnxyfCP5lAWi0UWLFgwrmsqLmyGC7h5njem84dTcZ0K+wjPj5uIxo5cfPHFY3qPjydD2dvby5YtW8hms1x55ZU89dRTA84NQ8Fj+0/TXXQxdZlJE8DKpYvp6jpNc2M99Q2NxG2TkicdvXwloCmbJFeJsbKxkb5iBS106erNE+ROc+zkSTLJBLYTJ5tJYegmpimrMkzbRtM1DMOWGcNQlvwHITimbAeIHKyUI6sqslWhsGxV8CwbM8m7AelqBjFds6sGvSXZs9hb8jE0KASgE1KoQMLRKHkhMavaWlAVxrGqVRs1R8+Un19RP3sq9rzT6QeCVMzEq2U2QwxN0Nw8h4ZGgQh9enMFyuUyp053EbcNNDtOYyaJMGzqU7HqqCgZ1HNMjXIQ0pB0zhDh6c9YxyopFAqF4vzjrJW8jlbSNbjEdbCK63hk7YcicihzuRxbtmypOaxTOXakv7DPZZddxpw5c2obpWdP5dhzMkfcNqi4gqRjIISMVCNkaVFTQz2NCxYxf95ceoo+mbhFyfWJO3LTYOkatiGvV5+M4cVtGuqzFN0ALfBo78mhFfPs7DhNNm6DadNUl2H9ZZfjlsvU1dVxuuMUjmkgqPY/eiHZmEXRq5Z1lWXPUG/Vyeytfu/6chalHDMio9q2Lfs4nWoJrF4V+Ik7Nq4XYlsygu6YGr4X4thy3Ihj6WgaGJpO3NIB2aMp3VTpkAaeQLdk/07MMmqiP8WKT1jtj5LJBp36dIJ0MsmCliYqfohbLtLdV8Tv62JfxylWz0lgFzV6e0PS6fSYVQdHm+UWqRgqFJPBMAxKpdKox3V1dbFt27YhVVwnK+wTvc8rlQrbtm2jWCxy3XXXjXko/ViVvKNg24oVK1i2bFlNEby/Q/k/Bzo42lUgZsm+azMSFkskWL5kEdm6ehKODEolbAM/kErObnWebsULqUs6lFyTpQvS5CseBiHdfXlct8yhw11YlokTi5NMxLl43Xrmzl9AfbaOnt5uKbITgq7JAJmpa/ihqAmYmaZGEETjlmSgzA8j0bSwNvqoLmZR9mVGsehKJ7Mt7xM3dfoqYS2zmag6nQnboLfokbANChUpjuYFsjy32tpI9FMKBejVuJ5pyM9J25CVKbYuHVHH1KttmgbpRAzXD1lsaHTnigi3RHtnN/gV2nSb+owsoc2mkxRdQdw2uOniFlmqOwxRj/lwlT1T1WOuUCgUitnHrCx57V/ieuWVV9LYeOZ8QMMwcF13wuvSdR3P83jyySdZunQpK1euHFdvx2gZyv4lXP2FfTRNo6ci2L+ng3TSoezJDYLvh1imzFBqusA0LOmMGVByfTKJGH1l2bPTW/RIOkZtbIfsO5SlsgKNhGMQhgbLFsSpeCELCenoLSDcEodPtGNrIZoVo+y6VHwIRFjLfhq6jP8nbJMwFGRjFm4gN2b5sixFzVXnQPaUPOlklnzSMYOyFxKrZjIdU5d9kKaGpmukYiZuIGRZVrVfMpql2VvtSYqu6/rgWHLTFrOiiLyBF0AmZlbHlljV8jKLE30yuyvnUlr0ljwSjkHJA8fQ0ONJFiVThEDcgOvmmfT2dNfUIfuPIYhGuAzFWEpelUOpmCyj9ZgPVeI6+D073pL8wUTXe+qpp8hms2zcuLE2Q3gsjJahDMOQffv2ceLECS6//HKam5sH3Ds6d/OBDrYd7SFh6eTKnhxTVBWMqQQhAtm3HYYamiYIQg2jKvBlmTphdTyQH8qgneuHpB0LPwyZ39xQDXxBX75IpVyiq6sb3/ewHAe/OsLDC8AMpGqroYHnS5vtUXXuPIGmCUKhoWvgh1EwTWBUnUzb0AgQOJZOWB2dJEXUdLqL0q65fkiqqsIatwxK1eBZpXo/NwjRkRUhgqrITxhg6Dq+FxC3TEquT8KqfiZYOn4oVbzRdCxD9k06Jvgh1TYEaMomCcIETc3NuJ5HuVQiXyhS6Omku6ONeDzBK9a34FeKCDs9rH0ciwq2so8KhUJxfjLrSl6HK3Ed6hoT3TCFYcjhw4fxPI+rrrpqwGZmrIzUIzS4hKt/5iBX9njmNCxdKuXYU45Jb7FC0tYpVKSj5QuBqcuNjq5B0pFCDXVxi5IXyp6danlqlKkruAGWqUEoMAxdbjwCsE2NMDSY31iHG2SYOxdyxQpepcip7hymAXuePUR9OolhxahLJwk1rbbx0QypQCgEpONmrf+x4lXnQFZkBD1XlsqtPaVqD1HV+XQDSFgygh6r9udE40bqErZ0lmMmuXJA0jHoLXs1Z1VeR/YGlT2pbhgIcCyZzc3G5cYp5Wj0VDRSjknB9bAMvVrmBYUQNMBFqibecul86hI2ixYuqM0C7erqoqOjgwMHDmBZVs25rK+vH5CxHotDqSLwiskykn10XZft27dTLBbZsGHDsD27k8lQRqM4AObNm8eaNWvGLaQykn2Msp5RsG3woPvIodxypItnDneRjln0Fiuk4hb5SkDcksGrqBQ+HoRUwhBNgKELfF/OSvSrKtR+KKsX/FCKzwQCbMPAF2HVzgkasinCTIq5c5pwvYBisUC+WABC2k+eIB6PE0skSMQTWKZJIGRPuedLZWo57kMG46QDJ+cBa4GGpiNn/CIQmlbtRRfV0n9qfdy2KVsA4tbzM4eFEFUBHwirTQNBtQRWtgcYFKLPArdaVVJ5fvxHOmbSWfLQREiu7FePF1gm+IGGrglEoBECmhAYukE2myGVTmNoUHY9LqrXscMiW7duBagF4Orr6wf87pR9VCgUiguXWTM2JNrE7N27d8i5ZkNdYyIbplKpxNatW/F9H8MwJuRMwvAR+P79koPLdF0/5OfbW8lUTmJ0CxLNyyj5Gpm4SU/RJRO36atG4fMln5ht4IVUy6mozY/0A+lcVgLZM1N2Azmk2pMKqRVflolCiK6BqelUwgDLkH2P2aRDEHfIpJIcPNTK8oXz6OrLU8j10HbqFNlkDM2OUZ9Oopk2MUv2EVmmjgjlnEfb1BBC9i+GQtRKzJK2QdH1cUydgusjEBR8QToUlNyg2oMkMA2NIAifL7eNm7XZlhVPOpFF18c2DPKVAEvXyFfkJjLavJmGjkDOc7MM2V+ZdEw0wKxmCVxf9mIW3YCXXNREXb++SU3TSKfTpNNplixZQhAE9Pb20tXVxZEjR9i1axepVKrmYHqepzZMiilluAqOoVoC+pe4jpYxnKh9DIKA3bt309HRga7rLFiwYEKqnMPZxyjYVldXd0awLbr/rl27+MUz+7AWrKW5oYGy55ONywqHKMtoGXKUhV4tjQ+rf+9lT2YBI+XqaHRR0ZUl+mVPZu7cIMSuzt61TZ2g6nwGoUbMMbGtLA11GQ4cfI7m5mY8z6NQyNPTeRrbsmrOpROPo2uA0GrjQYSm1dYTCoEu5LgQXdPwAx+7qqBtmzoVL0Bo8rPBrgqXSVEeKRIUamCiEQjZ4hBUxXpqIj0h1CVsOaqpWt6bjVsUXdmvWajOAXaFgWHIOcWGBhUPqTKr63hBgGMZ9JVc0o5FvuyTsOWxFy+oZ9MK2TcphCCXy9HV1UV7ezv79+/HcZyafRRCjKqCPdaSaYVCoVCcW5yVklfTNAeITvi+z65du+js7By2xHUwE+mhPH36NNu2baOlpYUlS5awefPmcZ0/+P79I/BRCdfx48fPKOEC+WH8i73tdJ9uJ+F2YuYDtGSaZHYhrhfURlpkYiZ7Dhyi/eRx5sxbAJpG2ReEeoihaXhQmwVpVwUako6JF4akY3Kz5ZjSkdKrzpcrQnSe7z90fdn36PkCQxPEEnEWJeMEIYSBT2++SKVU4PiJNkxdgBWjMZMCyyGTcMiVXRK2hef7MluIjLZLNViNVPW+CcukS1TVYgMZyfcCWa7lBSEgJelBivyIUKBrOpZZFduxNYQGhm5UxxcAaHI2m2VQrAQkHKkSa2paTVTIq/Zl+qGQvVUBXLowzao5Izt7hmHUNkcgs0FdXV10d3ezZ88eXNfFtm2OHDlCQ0MDqVSq9v4WQpw3PUKHDx9m2bJlZzx+ww03nDHfTTF5BpfPDy557V/iunr1ahYvXjyqkzcR+1gsFtmyZQuGYbBp0yY2b9484SqQoTKUx48fZ/fu3axcuZKlS5cO+Rra2tp4eu9hTumNLAmP0Vhfj2PqVFz5Nx2EUOjtYs/e/WSzGdKZDLoubaIfCOksVvu7S57MZuYrQa1FIFUd75GOqiFiJoVyQNyWATlpO6XNkn2TYFkWddkMDY2NMtNXKFIqFOk83UEQ+MTjcRKJBLF4AsdxENWZkzJwptcc4IoX4lgGFS8kZhsU3QBd1yhV2x76ip4URSt5NUGcRFVoKBIqc/qNaPJDMDUZaJTBPkHMlM5swpbtE+mYRa5QIW7JgJtuVstyA9liUa4K9xTcgHTMJld5vsJkSWOCjcuf/yzWNI1MJkMmk2Hp0qUEQUBPTw9dXV0cOnSIQqFQE3BqaGggm80O6DkvFovMnTt3Qu+n2YSyjwqFQnEmY5+ZMIX0j57ncjk2b96M67pcf/31Y3Imo2uMdbMjhODgwYNs2bKFNWvWsH79ekzTrM03mwj9N4Gu6/L000/T2dnJxo0bh8x6bj54mv1tObAcesMEgeHgYeOH0lHyhSBm6hRLZfZs38LBAwfZs30LbsWVTp2QziNAwQ0QAvKVAKpDumX0GmKmgaFpJGwTS9eJmQamXhW9MTS86s+s6AWEQDnQCANByZWDvtENmuqzzJ03j3VrlrNgwQKa03F6czk6Tx7l4KEjlPq66ejpwzQ0cmUf0OgteQhkv6euyVIuQwdDEziGRswyiNs6tqkRszR0kJu3IMQwdArlADSNvpJPGMrZmOhS7MLS5Ty0mG1gGRrZhIWua2TjFkEo5Ky4QApy9JU9dB16Sh6hEPQUPRxL57rl9eP+Hdu2XRuRsGnTJpqbm0kkEvT29vLMM8/w+OOPs3PnTk6cOEFbWxv5fH7SDuU999zDNddcQzqdZs6cOdx2223s27dv1PMefPBBLrroImKxGJdccgk/+clPJryGRYsWcfLkydrXli1baGxs5EUvetGEr6kYO/3to+u6/Pa3v+XYsWNs2LCBJUuWjCljON6WgFOnTrF582YaGhrYsGEDsVhsUn2Y/TOUYRiye/du9u7dyxVXXFET3xmKXGDQFZuPrssZu5omHTxDF7LPW9PYum0Hzz67Typzd3djanJMUczSMTRI2rJKQfYpPj9uIxUza6OK8pWg5jjFLJ2+so9l6PSWA0xDjlHSNensaZpOoRKgIxVXM6kU9U1NrFyxjIWLFpNOpSgWS7SdOMbhQ4foPH2KXL4Pq9q2kHRMdE0jHTPRNFmaL4QU7fFDQaLqzEaK2lGQLF61Z5ap01v2MQ2N3rLMXPeWfKlo7Yb4fojrB/hhiB9q+CKsjncCNPn5F/2MnGrQL26boGmkHAM0aUtDIWcF+2FIS9rhZWtbRq0SamxsZNWqVVx77bWsWrWKWCxGpVJh165d/PKXv2Tr1q20trZy/PjxKVF5VfZRoVAoZidnteT16NGjYy5xHeoaY4nAe57H9u3byefzA2T1o8jp4MHdYyXabI1WwgWw50Qve070kYlbFCoZ/PQCCtm5JOKNBL7A9X0sHUoh2KZJLJnE7OsllkgQt01MXcO2ZGlXEArsqiNmGTr5SkjC1mu9i/lKQMLW8cKwqr4a4hgagdCwoaokK2RkvCJ7i8qBVFUteLIkta8slQd9IYjHYjixGPWNjfh+QKVcIpcvUOk7zYHTp8gkYuTtOA2ZJPmyRjpuSbGemBTb0aqbMF3XquJB0vFN2AYBUNdvplrJC8jEI3n9foPDa9/7JC2Dihdg6lLp0TF1+oCMI0utMo6FFwQkLENmMg2dl69rqY4bmDiR+mQ0ND4MQ/r6+uju7ubEiRP8n//zf9A0jc9//vOcPn2al7/85cP2/47EY489xl133cU111yD7/t86EMf4qabbmL37t3DbsY2b97M6173Ou655x5e9apX8a1vfYvbbruNZ555hvXr1497DYZh1DIJ5XKZ2267jY0bN/JXf/VX476WYvxEtq27u5utW7dSV1fHpk2bxiWKYxgyqz+aMnEYhhw4cIAjR46wfv165s2bV3tuMg5llKGsVCq1FoOh+iX705Er89hzOZYtW0qAwbJli+ktuqRiBrmirMDIuz6pVLUUP+Zg2I5UOxXIXkUh+xhNUwa1HFPa9sieJaszHTNxWaJfV52Hm43JMtFMdZZkOi5Fv2xTVj40Zp1af3dvWfYmSlEyG6GbLKrLUnJDRFChN1egt6eHk22nSMUc7ESCbDIJTqyWYXSqvZxxHQoIMnoZL7DIxm3cQFBXnXmZqY4hSdqR6JlO2QuwDB23GmH0BYSBzIZ6nqwayZU8UjGTXMlDA8qhhqZByfexq5lJywA3oNpfKp1fgIRl8NKLW3Cs4ctXh0LXdeLxOBdffHGtYqOrq4uuri7e//73s2vXLk6cOMG8efP4nd/5HZqahh9BMhzKPioUCsXsRBMTTdGNg0qlMuD7I0eOcPDgQQAuu+yyMWcl+3Pq1Cn279/PC17wgmGP6evrY8uWLaRSKS699NIBGzLP83j44Ye58cYbx7VRi9ixYwee59HZ2TlA8n4wx7tL/PeeNinXHspI8e59+1i8eDGG6QACPwjwg1B+0HshwitxvL2DhS1NHG9rZ8WSxeiWhVnN/FX1HaR4j6ZTDmSvYaGfUE+6Omw72pDELA0/iEQpqv1G5TJHjx5l+YqVhFXlQD8Ma+Valq5Vy6t03CAgbugEyFmUgZDzzAr5AsVigUKxjGFoxOIJ0qkkmhkj4VgcaD1Gc10aI5YkZUvhiJRt1gZ7h4BZzWYYmlYb/+GFUlij4oeYOpQiJzKUSovRNlcDTnV04FgGDQ1NtTlxco1w/YoGVoxS6jpWtm/fTn19PYsWLTrjuc7OTi6//HJuueUWnnnmGTZv3nzGcPaJ0NHRwZw5c3jssceGjYC/5jWvoVAo8OMf/7j22HXXXcfll1/Ol770pUnd//Wvfz3btm3jySefVP1P04TneQMct6hqQ9f1MZe4DnXNhx9+mJe+9KVDBrngeXGcSqXCFVdccUZ2/fHHH2f16tXMmTNn3K/p2LFjHD16lEqlQn19PevWrRt2HQA9RZcfbjlGGAoOtx4lk04QS2RJOCb5skfchLwbko6ZdPUV6evqQLNjGKGH6cRpbmiQ83stHd8PMU3pUOvVShJd02ql+f1FdEIhqx/86qxJPxK8qf6799mDLF20EHRLCtq4fk2ELNVPmXrAv1XbGzfhdE8evBI9+SImIVYsQTadwHESJGIOHZ2dmH2tNNgemh0naFiNZlYDUZGt1zSECNHRCYV8nwhRLSjRqNloaVNl/2ikxp1yTNq6enELvdTPmU+iWgrcf7QTmsD3Q2K2FF17+fq5LG4cfyaxtbWV3t5eLrnkkjOeK5fL3HrrrTQ3N3Pq1Ck+8YlPcOONN477HoNR9lGhUChmBzOeoczlcjz33HOEYcgLX/jCCWVxYPSSrmPHjrFnz54hxXFg4ODu8RJlJovFIldeeeWwkdbeksdPdpyoOpNyFIYbSCcQIaTYjZBS8JYunamkY1DU4qxesYxixcfUZblTgyXFEpIxU/b4WDqGkBuKuGbWypW8QArcFCphv2Halhw5EpPZw0y19EvOUQNDk2quugaWkFFpKxSEgKVV5eA1HTeUcyFLoRT7CUKNeCpDIpOlWQjcSoViUaqmVioujuNgiwDX9WhKy77PuKVT8gIMXaPkh1WnUQ74FtWeyhDZT4lhYBsahq7J+WYIguoavOo8umJV6KfiUy0Jk6NMekoe6xdkpsyZhJFVDGOxGL29vdx33320tLRM2T17e3sBan2dQ/HEE0/w3ve+d8BjN998Mz/84Q8nde9PfOIT/OxnP+M3v/mN2izNEK7rsmfPHoQQXHPNNdTV1U3oOtH7NAiCIR25KPtZX18/bGXFZDKUPT099Pb2smbNmmH7JSMKFZ//2nkSjao9s3SEkKXtkchMvuySjZsU3ZDGTBzHXkDCMTh45DiNSaPWH150A2xDZvEMXWZJNU1DI6yuofq9DkEQ9RPKCgqpBit7Ey1dIwzB0mSgTfYkylmRfnWMkhuE1MflbMlszKwpcBfdgJQtFaebG7KU3BRNc3T6CmUCr0xHd57AO43QTBzLIF4qUglC8ELCeBEjYVWFxoxqoFH2jv9/WIUAAPFkSURBVBq6XIupaYRVBXA/hLilEXQ8Szp/DLd+Jem6RfhhpIItSNoa5YJGypblrDFTrzmjpgFlNyQRMylUAjauaDzDmdR6j2I++5+IzHz8Vb8DExirFIvFKBaLvPGNb+TVr371hN5TQ6Hso0KhUMwOZsShjMqfjh8/zp49e2hubiafz0/YmYThRSeCIGDPnj20t7dzxRVXDOvsTdShjEq4KpUK8+fPH/b6FS/gx9tPEAoIqtnHXEmKQhQDQMh+w4Rt1OaZRYOppWMoe2qOB4KUbVDo1/OTqpaDxm2DkucTs025cdKrsygFJB059qM2VDtuSeGFmnNp0tnnY1T7cjIxk7IbErOlWI9tSpELy9Sr0XzZzwhSUEevKiJSVVK1DB1h2mTqG0lk6jE1yOcL9HR30tfXQ76vl1g8TiIp1RFt0yYMBWiyXMvQq6VctkGhHEhxirJHyjbIl4PqCBLpSPuBIG5L6f66mEW+WzrTQSjIxCwKrk9z2uH6lePPfI/ESOWDhUIBYEpFecIw5D3veQ/XX3/9iKVZbW1tZzixLS0ttLW1Tfje3//+9/nYxz7Gf/7nf7JixYoJX0cxdrq7u9m2bVttczqZ91I0YH6wjRRC0Nrayv79+1m1atWIPZkTcSjDMGTv3r2cPHmSZDI5pHhJfyqez892niRXcTF1Q47HEKAj8ENRVUSVgagghKSt10pWI2cpqM6Y9EJBwjKq7QBypIdhRFUNMniGJsdjCNmyXZstGfjSUXM1ganJMlK9OmoEIZ4XFQul0nQQCkxdthbIeZcQt6MZk1VBnLhFEMheziAU1KcSeGGM+ro6/CCkVCrR1dVFQSQRhU4C28Ep+RiiRDYZp+BKxW9p841q6b9BX7WtoeiGJCydYr6XRNsWvEoRs9iDm5yLbpoEoVZVoJXVJqahoWk61XgmMV2OlsomZHvAuvkZrlx8Zq+5/eRnMY9uRjhpwuRcwgVXD/m7HMmhFEJMuQq2so8KhUIxe5gRhzJScT19+jRXXnklADt37pzUNYfKUBaLclaWpmls2rSJeDw+7PlRT9x4Nkz9+yVTqdSwzkUYCn6x9xS+L6PLelWZNBUzKZR94qZGX8VnTiJBd9HDMQT5ikc67uD5svcxKtGyTapjNWzcQEbCi56MlOeqGctCdRZl3g2wq4O0o9lmhNRGbSSryn91MSnBn46ZnArol8mszi6rZvjStsG+g0dwCznmLVxIU30doaCqnCpwqhlRxzBxQ9nnU3B94pZJwfWpq8tyuqePlqYsPgZ64NLdk6ezowPNsMikEjjxBJlkElEVhpDzKav9lNXSsaRt0Fst5+0pybmXPUVXKtYKCMKQQFBVjBVkYxY3XTxn0n2Tgxlpw5TP5zEMg1gsNmX3u+uuu9i5cyePP/74lF1zLOzcuZPbb7+dv/iLv2DdunW1jZdt2yNmAhQTI1JxPXjwIKtXr2bhwoX8/Oc/x/f9EctER2OwQxjZ4a6uLq6++mrq60cWqhqvQ9m/X3L16tUcP358xOO9IOTft53gVG8RyzAo+wG6DgFyhqQQ4Hkhui4ouR4J25bKptXSd9vQAQ1b+qHVObdyjmMQgmnLYJily1JRA1kFgdAIEXJmpCb/rwMB0tn0Qvn54PmCQEDZF2AIQkIMAZ4mK1F1XedUxyk62ttpbGxi4YL5hEJAKIN6uiyyqM6glBnB6HPH0HXidhqvUkZLxMhk11KplOnLF3H7TtKJTjaVoGjFaMymKFaCWkltypEBxrhtkKsEOIZNQUthaS4VI0MQgC4ErucRr44B0TWdousTt3QqHtiWhuvJXlMvCKlP2Lxg5TA9jZr8OUtvfPhMcxiGMzo2RNlHhUKhmD1Mu0MphODJJ5/Esiw2bdpUKw2c6NDtiMGiPB0dHWzfvp158+Zx0UUXjShEETGeDVNUQhtJ3u/fv3/Y1/A/B07T2pUnbpmIMARNxzINhIBM3OIkUkTG8wOM0GXvoWPYuqDNcqhPpzBth3jMQROy/CoU4IfVEi5BTViiLvG8Yygl8p+fv1byZNYwCIOq2IKGqcudkEAq/vmeIFYto6qLmVRCUctkphyTY+2d7N+9k1zFp7cvxyVXXUPaNugrBSQcnYoncCxZKibl6iEbt3D96pxMPyRpCdwA5tQn6as4LK2vp6/kYgQep/vy5AodtB4/SSYeI5ZIkEkl0JwYjim3f9mYhS9k5tEPpMS9H8jsQChk/1AQCjlaRUC+7PPydS0D5k1OFSM5lMVikWQyOab33Vh417vexY9//GN++ctfsnDhwhGPnTt3Lu3t7QMea29vn7BE/9NPP02xWOQTn/gEn/jEJ2qPK1n86WHXrl10dHSwYcMGstkswJDZxfHS30bm83m2bt2Kbdts2rRpTNUh41GK7enpYcuWLTQ0NLB+/Xo6OztHVNAOQ8FPd5ygvbeMY0mBHKOqVB2E8m+55AZoIuDQkaMQVNBMh4ZsCtOOU59OVBVYpQNoVWdKWoZWG6sROZ2+CLG0atlo1YHUhAzYASA0BDLoJqn2WwoNDanCXY1VgS7Hchi6RrFcYceOnXR2dVNf104ikyWdiFPwfOK2SaniEbdNXF+W41b8kJhpUAmqPYxR32aokYjFsB2H+nqZvXQrZfL5IqVijuc6O3Aci2IiSTqZJAwd0jETPxAkbJMw1NGXbEQrdxLE52BbBmU3JB2XY0Bilk5XGeaaBr3VAF2u5OOYshokVhXhMY2hbZd73Z8SNq1GpBcSzrty2N/pcOXVEVM5VknZR4VCoZhdzMgcyksuuYR0Ol0rrZro0O3+RJudMAw5ePAghw8fZt26dcyfP3/c1xiJ/iVc/UtodV0fMEszYvuxHrYc7ZYqpyW5oSh5PjFT3svQpWx7EAgq+V7a2ztYOn8OhmlTLpfozRWodJ4m0AwyqSR+KMtnTVPghwG2pVNxpUS+F4hqf40gZVv4IiQbe34AeKU6t6zkhjiWVlX203DDEA1w/QBPyI0XerU3JxTVHiY5MNuwLKxyCd2ySVazoPFqGWrcMugt+cQtWYYVs3QqgZwJ5wUhdnWDmLR1QqhmIEPqEg5lz2BhIk7FDxFhQD5fpFAq0dHVg6ZBIhEnFo9Tn06h6yaGFfX86Bi6LGGTkvsa3ZrMsnphyKULsqxonp5ZkKNlKCcriQ8yAPMnf/InPPTQQzz66KOjlgwCbNy4kYcffpj3vOc9tcd+/vOfs3Hjxgmt4Y477uCOO+6Y0LmK8bN06VJWrVo1QBxs8CzKiRC1BbS1tbFjxw4WL17MqlWrxhz0GGvALQq29S+hHan6QwjBI3vbOJUrk6yWh8aqfZNCSGcwFALfLXHk2HEa67LEEnMhcOnsyyN6ezl2EhrTCfpKPk1WSHe1N7yvHJCOGRTdkLhlUHR9YraBW50B6QUhlg4+sk/SF6LmyFq6hhDagJFQhq4RNw1MQ8fWBGEos3t+KMvuTdPC1ASGYZGwTSpeQDJmUSh7pGKWFEjrVwHSU1WK7SlFIj4BCUsnX/GIOXK2rm1qGGaM+gaHOuoJg4ByqUy+WKCtrQ3fD0gmk8STcZKJJJbbS3zvDwiCAOui/42vZcgmdDwfsjGTU/mQtK3hV9snvFB+LoDANDRevr6FpDP8VkBkFuBd+bZR3wdjKXmdrI1U9lGhUChmJzNS8lpXVzdgcxE5lBMd2QHP90A+/fTTlMtlrrvuunGX04y2YRpJ8n7wMHKA1s4Cvz3cJaXoPalImC9Xo9W+j12Nors+dJw+TanisnTxQizLkXPUYg6NDfV4foBbLtFbKGAQcurkCexYjHg8QTwh1QELlQDH0ukteiQcnUJVUt4NwTalgETS0fFDjUxcOnhJ28D1QxxTbrQMXcevqgUWXelsRmqzQghS6TRXXn455XKJljktmLpG2pG9i6mqAxerbtJMXcMNQNMEJa/qsGohZS/ADQVmEKKhExVPxSwDDZlZAINEzEYTdVT8gMBz6eorUM7n2HvqNHUJB2HFaM6m8HWr1icZs6Uwhi5ChKYxNxNn04qp7Zvsz0glXVOxWQJZxvWtb32LH/3oR6TT6Vo5VTabrZVw33777SxYsIB77rkHgD/90z/lhhtu4G//9m/5nd/5Hb7zne/w9NNP8+Uvf3nS61FMP+l0+gzncSqCbrquc+TIETo7O7n00kvHLRY1mn0Mw5A9e/bQ1tbGlVdeOUCtu/8cysE8cfA0rZ1FLEOX4jOm/FerOnSGpuF7FU4e72bxvBZS6QyaCPFCh/pshpIXQODR1ZvHEkVOdnSRyefptuM016XoKVqkYxa9ZY+UI4NeqdqYD1M+HrPoK3nS+avI2Y9lTwbJKr4U9vFDgY4gFCGmUVW+NnQCIW1oKHQ2Xn0Fp0530thQj+M4JKvjkbJxGy8MqYtLle1s3KTkhmQck4IXVEc8+TLg50OdaVAsB9imTskVGJrAj0YDawa6k6ApkaTs+pi6oCdXoJgvcrL9NIsLO6DQQ0xUqBx7Bm3dIlz/eRVbjRA0DcsAXdNkr70mA5HXLm9gbnb41pDxMJJDWS6XCYJg0iWvyj4qFArF7OSszaGE0UtkRiKfz9eutWnTpgldZ6QN0+ASrsEflIPP7c5XeHR/h1Q/FVIcwg8F2YSN5wckLVNuEAKPIPAoIViydAmhJgdL95ZckjGDigtx20DEk8xPpSjm87TMmYPr+RQLBU71dqPrOolEEjsWJ5VKUHblXLNcOSBhG/Ja1eHdstRKPu8HIXHbIBAyW1go+cRMQIiqyENA3DJlr40tNzyNzc2U3ADTkmNJErYp+4MMsNCrWUPpHIZCoCFnX2qaTtnzsQ0d1xekdU32Q0YbOlvOQkvYBq4vM65+IHtDA8usZmcFmgjoyRVxSwVaT7Shi4BTToJsKkHZjuE4NqVAEBdww+omDH1iAYqxEATBiKI8yWRywgGSiC9+8YsAvPjFLx7w+P3331+Lire2tg5Yx6ZNm/jWt77FX/7lX/KhD32IVatW8cMf/nBCM9YUM89Q75loVu9EKZfLVCoVwjBk48aNEwp2jGQfy+UyW7duJQzDIfvVhzv36cOdbD3aTdI2KFV84o5Zc+A8P5DKzaUSvuexaPFCUskUYRgSBNR6JRO2gR8aLJgX43jg0eDYaKaFVy5y7MRJTAQ9sQT16SRF4mQcm0IlkDMmKz6pmJwxmY5ZNcGb3pJHyunvdMrxH0VfvpZ8xSdu6xS9oDoLUmb5nGSK5em0VIjVqDqdUrE7ckqdasVHwtEJqj3rfijVawu9soLD0Kp2X4BtIvvuQ9m2UPEC4qZB0QtIxW3yFZ95TQ3kKj5z5+n0tJZJFZ6jO8zSV7HpO9RKKpkgHotjOw5eICi7IQKNYtVpLrkBa+enWTN38qONIkZyKKdKtEzZR4VCoZidzJjK64CbVp2/iTiUQgiOHj3Kvn37AFi7du2EndLhNj1DlXANpn+GsuwF/Pv2k5Q8Hz+Q5VuF0Cduyoygret4QiACl+NHW7F0jblzm3FsC13TKLlSVKdYkaWq/Tc3GjLz19hQTzqTxdShUCxRKhTI93bRfbqdWCyOE4+TSaVwfSlKUfR8Svkcp72A+XOa6K2K2UinTqfiCznOUmjELKOmkOqHgmy1/zEdSeDXxCBM+io+xd4uTvfkWblkAR4mmZhB2Zelsl41w+mHgnTcpEODbEyW8mUTFkU3qGVuk5Fqrd1PbKcko/ahD6YuVQmzmTR6Nk1Li8B1XfKFIoVCgZ7O0ximQRDA5c0GiWl8N4dhKGdlTnOGcixjYYfq03n1q189pXL8irPLZEpeu7q62Lp1K4ZhsHLlygm/L4ezj9HIkcbGRtatWzfk38RQFRw7j/ew+cBpMrGq+FfMpKfgVrOFPrYBBw4dgdDHSaSIxRJUXF+O9PBDDFNmPUOkTkwYaOg6hJpGUzZLmMkwZy4Ui2XKxQI9fX245XYsO0Y6mYBEgkwyjh9IYbLO3hy+W8LSG6piZ1IIrFAVwMmXfWKmRq4SUJ+ya7MnI6Xt3rJXs2GJqt2OOwanOnrp7uqgsWkOjXUZXA/QQK+K9YCQr0NQq9LRAEOXIkJRCW7ClMG/dMwkqPanR1lP16+OLvEF9UvW49Y1YeORjrWgF4pUKiWOd/XgmBqe0EnHbXoKZepTMfrKPosaEmxcPowIzwQZrYJD07QRhfLGgrKPCoVCMTs5KxnK4STtRyMIgppa7FVXXcXTTz894Tlp0Tr6nx+VcB0/fpzOzk7a29vJZDJDKrdF5wah4Kc7T+IGgSzhNDQZvbZ0OfbCMekue+CWOHL0OPPnNtPT24eh6Zi6hq5p5LpO09vXx9yWFkI7SSZmUXID0o7B0QBaLIOeqpPZV/ZJJRJg2jJ7WHHx3BL5XIHjPT1oukYykSSXy7F77140wLv0cpYsWkDRlRnLXDkkbuvkKwFCyHmZScug6Mt1u4FUmg2FkNF0IcePeEGIl+/ll7/6H0r5PjpPr+WFmzbQW91g9fRzhJO2QaEsCANZ8hof0J8pFV2lE1sVl7Ck2I6hawRCCnNoGrieLKvNuwFJx8DHpKGhgXSmDsuAXKGIkWvHKnfz+OOPk06naWxspKGhgUwmM+mMYUT0Xh1pwzSVkviKC5uJlLwKITh8+DAHDhxgzZo1kxqLAEM7lK2trezbt49iscihQ4dIJBKsXLly1HMPtOd48uBp6hOy9DMblzYuE5OK0CY+zx48SiaVwBcOtilnS1qGTkdXN6c7OshkMzQ2NqMBgSfLUCs+aIag7AWYBnge2I6D5TjUNdTj+YJKqUiumKen7SQnQkE6kSQQATt2bKdYrLBmzUouvvgSkrYc75GKmQShdNhOhLIPMQjlfN+KJ+f7lv2AlG3I7KGlU67a1kLR5cknN3P6dBfNzU38r5f8LwzTRNc0KmF1RmZF2tli2UWIkJIf0qBrFFy/Wikig5KVqOe9OmPXC6L5v9TGQ1lGVTm2fi4GOgaCdCKGHwoWa1Aoluk8fQrXdamcPEq3adFcl+aqlgxChMDwqqzjZbQKjlQqNWX2WKFQKBSzi7PiUML4N0yFQoEtW7YMUIsdjwrhUPTf9PQv4QL4p3/6JwoFKYLw53/+52ecG0XgHz/QQVfBxdZ1hC43dbYph2WnYxbFik8l18PxU10sX7wQrBh6Lkdf2SOehNO9Pezeu4fe3j56erq56qqrAUHcNgiFIGVK56ouaVJwQzJxq+aoyqyhjS905s7LUiy7aMKnN5ejrb2NU+3tGLpGZ0cbC+Y2k445hKEgHZN9jzFLr5VmlfwQ09ApVOSmJ+f5OIZG2ZczzHxkxrBccfHKJYIwxC/l0ZAZSDcISTmy/8gxDcqeVG2shFL0p+CFgEATIdrhx4jnjxMsvBarZS2aJsUhjBDZ2yNkr48XVgeFeyGZuNkvQ+CRtOXrn1OfZV6ih7UXXUQikaCrq4uuri6OHj0KyIHX0ddkRnpE74vpFuVRXHgMV/I6Hvvo+z47duygt7eXa665hrq6Ok6fPj2pPsz+s37DMGT37t2cOnWKefPm8aEPfYgTJ07wy1/+kq9+9atn/F30z1Ae7Sqw+WAHjilVq2PV8UXJah82XpnDx44xr6mJuoYGOjo6CEJpAz0/4MD+fZzqOE02kyZ5ZZJ4LC7VWoWGVi0zRROUq1UNZU86YpVAYBtatf8wgRcIRODRly/QfrydE20dhEFA69ETLF6yglgshmlUS/aRjptOSFh13ISQgmNCk1UgQkRlqoKEY8p5j1qAVy4jfBevVAKknfX8kIRlUglkYCxfCUg5Fqc8QV3KGJD93LdzG09t3cGaFcvYsPF6bEM6l3pVbjYMI0fTJ+GYVNyQhKPXxN8qflCdkSmIJxxMyyYeN6lvqKdSKnF5s8bhg8/y7N7dZLPZWgBusiX7YxEtUw6lQqFQnJ+cNYfSNM0x9wi1t7ezY8cOFi5cyOrVq2tR0MkKV0QbpsElXI8++mhNNGi4Neq6zt6OCl09vWQcQ36YWyaBkJsaw4AwCOk5fZJCqcK6VUvQDBvL1GkLNept2ZMYsy0CLDTdINCkYxaGQvYlaoIATQ7eDp8fF1Ift3ADQX3cpugFZONV5zJuk6vozGtpwbTjaIZJvuSRzdZx8FArMdvAiSfIplPEYnEsXcM2NGxLx6pWEpm6Xr2/zBQKAV4oHWU/hExjExdfehm5vhwXrVmJH8jB3rr2vCKipkFY7au0tOosTk2KBRVPHaHu1BbyoUnq0M/pyq6szb/MOCZ5N5DDyf0Qu7qGhCVHhGRiZvVfOUIkE5fzJnc8cxhd14nFYsyfP5/58+cjhKCvr4+uri5OnDjBvn37SCQSNeeyrq5uxJlpg4mi78NtiKZSEl+hGE8PZS6XY8uWLcTjcTZt2oRty5E5/R3CiRApWZfLZbZs2QJIxcxTp05V+xqDmp0cTKTy2t5X4ue72qoOmsA0dFw/xNJlz2RvdxftpztZvHABiWRKqmCjoWmyFNQx5cglU5PzJOOWiW3pEEI0CkmKzejEqsE3x5TCOZah44UysOWHQpaUajYN9Q6pVBpfCDo7u1kwfx7HTraBCHFicZLJBPF4HMs08ULZ0oBhICK7GIRYpoFf7XEMhFSIDYQgnUxy9VVXceL4URYuWkI2GSesOp7ShpvV3noTP4CUrVUrNkw8X2Dj8/P//m+KxQJdp9pYu/Yimpqa0TQwDSh7IQlHzh6Wwj5BzX4mHYO+shwTUnB9TE3DAzm32NIpeoJXXrGMpU1JhBAUi8VaAO65557DNGX1R2NjI/X19bX30VgZy1glhUKhUJyfnJUeShibMxiGIc8++yytra1ccsklZ8yNGu/g7cHouk5nZ+cZ/ZI33HADXV1d9PT0cMsttwx57tGeCrs7XFYuM+mteFWBBzkmJFfx0IKAY8ePYZsWS5csqZY9gQgFcVMDIahPWri+yZWXrqWzp4+W5ia5qbB0vCBA12REv+SH6H4IWnXemi/QDfDCkLipEQiNdEyWkNbFTcq+oKUhS/qqDcQsKSiRtA06ewvglzna1okeegjdwCQkVyiRTcbxqoISoaZh63JDqGtSWELT5AYwaVusXL2GhC03Nbqu0Vf2SdpyU5NyTMpuQNI2qARSqELTNFKOjhdCNpNFM0zqRYFybOnzcy+rGceYpZOrBFiGRt4NqyMIBL4vBYX8UBCTdV5cv6KRTNyS6xxUaqVpGtlslmw2y7Jly/A8j+7ubrq6uti7dy+e540rOj9SORdMXQ+lQgFj76E8ceIEu3btYunSpaxcuXLAe3gqKjhKpRJPPPEETU1NXHzxxRiGwZIlS/i///f/smfPHm644YYhe9h1XSdXCfm3LccRCNxqj3Wu2nfYU6yQ6+6gJ19kxeJFCNNG16RojKZptQoHz9e47JL1HG9upqmuHttxMDWNQAOj+qVrstUAqIlyGULOsbUMQ86UJFKd1QkJsQybKy67DCFA06Qj6rkuuUKRYj7PqVOnicdsAgGeWwHdIG6btTm/+aqt7yvJ1yP73qWi7PJlS2lZsIhEdS6wY8m5wLYZlbHK0lxNl5UstiMDdqahoWGRTMYpF/I4lkFdJoVl6sSqY5KycR0/hPqEiRtQ7aeUrQNedU5vWJ2/qWvgBiExE/wQrl3WwNImaaM0TSOZTJJMJlm0aBFhGNLT00NXVxdHjhxh165dpNPpmoOZyWRGHTczUg9lPp8nkUioDKVCoVCcp8zaktdKpcK2bdtwXZeNGzcOmf2ZTIYyDEPy+Tye53HVVVcN6JM0TXPEBv7TuTLPHM9jmwIQ1CUsqWQatyhVfPBcDrYeoyGbob6pmQANEQi8IOD0qTa2bNvBmhUrSGezmIZGXX09dXV1ALVIvmUZeFXlwNr8bSGqvZpyjqWl65QCuVERgZTf90OImTKjl3Jk9Fz2Pwpa6tOU/QRzmpvozlfwSzlOnu7h1MkTtIYajekEWFJ6v+RJNUU3ELVStYRj4IdyEyP/tXDDkGxMiu1kqqI9qapKYsoxyfswB+guSmexYtZjrfsDtHwHNK1Cq/ZVUhWfEAKSDoDAD2S2t+QJktWZblFZ2OUL61hW3RwN5VAOxrIs5syZw5w5c0aNzjc0NAyYCRjdY6SMZj6fHzA2QaEYKxMJuPWfj3v55ZfT3Nw87muMhBCC3t5eurq6WLt2LYsWLRqwzpe85CW85CUvGfb8ghvw9KmAlVnpzCSq/YZJx6SvUKLrVDuVEC5asZyiL8iYBr1ln7BS4Mkt26lLONQ1NpOOW7hYLF60mGLFAwG5skfCtii6PmgabiANpOtLWyV7wI2q4ir4ocxk+nLcLhpSVTUQGjqyNNc2wDHjpJNxgrABDUEun6e9rY3O0x1oGtixBJlkgrKIk447tR7QKEuYq/ik48/bvr5qIC8fZQ3LPrapU6gIDB1EAJVAYAWQK8kxSGUv5PY3vYm9+59j5dJFGHYMHaj4MsjmBtJplmNBpHiPXnWiTV06kaEme/NDIX+uXUKwqjnOVUvP1AKI0HW9Vr0B8vM3so87duwgDEPq6+tr9nGwuI4QYkw9lAqFQqE4PzmrDuVwJV1RCWpDQwNXXnnlsCquEy3pikq4fN9n8eLFQ4ruDEfR9fmP7ScpewLPlxsZ3xc4Val4r5jjRFs7i+e2kM7WSQdRCEQo8D2Pn/z053S0n6T12AkWLVmMMGwSpk6h4pOs9iI6pl4b9m3oELd1HEN+UIeaQISghXJMh6GBF8iZY0VX9s6U3KAqXQ+OoeEiMKsbjLglI9hN6Tg5PSST72PBoqX4XoXO3jx+oYfdHR1kEw6aHaepLkXJNatZBZ+EZVAIquI9ocCMxqTYBmHVefUjsZ1Q4OhCDg23ZaZThOAl5uE5c+VIkYpPzJICHOmYnCsZs3T+f/b+O1rS7KzvxT/7zW/lk2Of07knd5igmRFKSAgNSAbrgsERWYYlLtdcG8OVL75r/a6v77r+wwEDNssCE2QZLWMM2GDJoCxLghlJMx1mOkx3T+fTJ8fKb9h7//7Yb1V3z3Tunu6xVN+1RqUTquo951Q/tZ/n+YZEkrnPQjEw9+089lR/jqe3Xvqb3UxDeTleP52XUnYPz5dP5y8397kenQvMgWl6evqmr6GHHq4H27aJ4/iqX2u1Whw8eBCt9RvycS/H7dZHKSVHjx5lZWWFUqnE1NTULd2/Fad8+dUllDJNT+gag6+871BrNFiZmyXI59k2PkqioJIz0Rjl0OE/ffYrnDz6Cm6uyNTUJuzRCUqhy3ojohh4pmnzXWrthEJgdOWFwM6aTKOvNrcxOe+Si+xGKyHvuyb2w7OziCSbKDX1J8qM1BJptnuJUvSVy8zPL7BtyzSpVLSaTer1OvHKIkuOT7GQR4YhhVyIQneNy8qBQ6I0Zd8lltLQXLXCd+1sEwkCQaI1jtAkSjHou9Tj7GejyNNPPU6tneLYHRqrTa1tTIqiVCG0ofDGUhG6No0kpeCboVveNxEjvmM+H9iCt02Vb+lv6Ps+Y2NjjI2NobWmVquxurrKwsICJ06cIAiC7gCuUql0hw09jXkPPfTQw3cn7hvl9WqULq01586d4+TJk+zcuZOpqanrUmRuZwJ/uV4yl8vdko4ulYrPHJqjEUu0MA2doTRZrDcTGusrrFZrbJnahBfk8BxBIjW+ZaFsjUwFJG20kuikTZRIKqGZYPsZHaybhRY4VJsJlhC0E0khb1z+XEsgAS8LAzc7UvO7s7VAZxNrmdnTR1Kb6BGtsom2whEWwlYorZFaYNsWjh0yGQQgLGSaUKs3aLUaXJiZwbYEjpejkM+hwxDPcWglyhyKhKYrodLguRZSGh2T0IaS5juWoatKheNZXUOgKDWOio1IUggus+Nvmcn+Risxk/3IRK+kNriWzbt3DnWpbVobC/5baShfD9u2bzidz+fzSClptVpXtb7vaYR6uJu4Vm1bXl7m0KFDjIyM8OCDD163ft1OluXleslt27axsrJyS/ePU8mfvTLHWjNGCEikBGGucXVtnfn5OYZHRuivVNBa4FoCJTWBY4x6SFooYSHjJlIZnbSJyMgijbKhWzlnPl/ws6GT79JKTR1pRoq859CIJcXwsiY0YzjU2mk3a9LUW/Nx53Yto69WWwlCK5NhmffBcqhUKrTjlCRuU6s32dhY4KKU5HI58vkc+VwOy/OxhYDMbMyyBEJZJuJEmXgQqSBwYVWYOBAtjFwhkSa2KUkVJd80pnnPRmpN4FggzGbTc0yOr9FRXsrWzHum8fQdm2ZsGtEnx1xc5/broxCCUqlEqVRi8+bNpGnalQ+cPHmSdrtNqWTyLJvNJq7rvuF9u6cx76GHHnr4zsZbhvKapimHDx9mbW2NJ554gr6+vpt6jJvVCF2eX9lpVo8cOXJLGqOvnVyiGSXkPAsZWQhM49SKEpYX5mklkm1bNhMpQWDBWtNoK+ux0Ri6rs9zP/AcL+3fz7atWynlfdIkppzzieKEUujSjlVGozIOfhdS6LetbuB259DTmUTH2WRdSrqbTV8IlM7osxoEmkSZsGyJER3FqSJVhnKVSEUiM/2kTPA9m1yhSF+lzLDUpHFErV6nWVtnZXmRMPAJcnmK+TzCcfEdm3pktESNLLeyGpnrbCRmGl9tpxR9s4n0HHOg8h1jfV/0zXazHJoIkYLvdJtSpU3TLLI4lvc+OkAxuPSy7fz97qShfD2uNp0/d+4cjUaDF154gSAIutvLSqWC4zh3RUP5ta99jX/+z/85L730EnNzc/yX//Jf+OEf/uFrfv9Xv/rVq9IO5+bm3qA37uGti5sZuGmtOX36NKdPn+bBBx9kcnLyho97qwO3Tn7l8PAwDz30EHNzc7dUH6XS/PeXZ7m43sK1LNqp+VwapSyvLFNdX2d8YpJCIUc71Ti2RsosEiNROI7Fu977fnLF5/H9HNNTm1iv1ikVckSJac6UNrRWqczwSgO+Y2pEx/CmGBhqfjk0zWcluzX5upJK6NLKNqKt2FD2G7GpT43Y5OI2IpMt2VIWnmNRb2exIJHEdWxsL8fAYB6pBkmSmFazyepGnfnFZYTtUC7kcLyAgXLBZPl6Dq0sWqSd6SnbqUajSSTkMRpJK4tXsi1ACBwbbCEQ2UBQaQgc44Bd9G1SDaXQyfTzLlKZJlNrjWPZfP9kzMx8clfro+M4DA0NdWnWzWaThYUFNjY2OHTo0BX02YGBATzP69XHHnrooYfvcLwlKK/1ep0DBw7g+z7PPvssvu/f1GPcLKWrQ+FaWlq6Qi95K6Y+L55d5bWFOoErMKZ/FkJrlExYnL2A5wc8OLXJaBZ9Q2Et+g61tmkqN7Lt48DoJE886VBvtvnvf/o54lTy9JNPMjA0iCU75hKCom8cTfOOMd/p78RnZJu8om9oXB2Hv2K22Sz55uASekaD6VkWqYbQNYcw37XN1tSxqSaa0DaxHqFrIkPyWTN7uQ4yEg79g4Pkkn48odhoNElaDWYubuAIbZrLYh6lcvTlXKLUHOKasSSwNc1UUQjNdZvmM8WxzIFKIBCYsPLOlsJ3LLQNjjCxJjlXkCjN49MVNg9ceSjpOEzezQPT5ehM5/v7+5FS8sgjj3Sn8ydOnCCKIv7kT/6EZrPJ8vLyLdNvL0ej0WD37t189KMf5cMf/vBN3+/48ePdDQHA8PDwbT1/D28dXN4MJknCyy+/TL1e521ve9sVf+vr4Wbro9aa8+fPc+LECXbt2tXVS95KfdRa84UjcyxU2+Q8iyhROBbEccLy8iJxnDK9eQuu62ZxHEbz6NiCdiwzbWHKwEA/ux9/mqhZ48++9DXq6yts3fkgj+7aQS1S5DyHujQRHK3IxHtEKVhoYqlxLMMKcSyR1T9h3FgtCylNpq2UJpJEZiY2qVLku5tOB6mzLaFU5GyNADPkUqob5+Q5FpA50boBrucxNNhHvZ1gyYTljTq0VplfXGKgmGPN8RnqK1Ft62yL2KH6a3JaGzMisrikjMHRjmNDE05Scp5NM1aEnqARKzwn+7ktSFLQKCxMw20ou/A9Z3+VHS/8PhPBCIub/vCm/o63g1wux/DwMOfPn+cd73hHVz4wMzPDsWPH2L9/P9/61rfI5/PEcXzL7rEd9OpjDz300MNbF/fd5XVubo7Dhw8zPT3Njh07bskF7mY2lJdTuDr5lR3c7IHp5EKN50+tUAic7qawHklSKTlx6jQjgwNU+gcRwpg9KA0530Ep6MsMeyqh29UJzqWa2voqC6sbkEacmZmlb3CQRjvFyh7AcUzshkLgWNljZvEZxhTHBG3HiaGB1eNLRhCdZrAYOKx3aLRNM4FvxqZ5TJTGt82EvzPRr+RckmzSbZpCh0akLhlO+A61SNFXLlEPcgwO26zVGsi4xeziKiqdx/N8ivkc+XwePwhAmMOYYwkKvnm52cI21K3UbEWbySXqlqGiJaZhbicUPOOgOFIKeHLzG7fWb8aG8mromPJcbTp/9OhRvvSlL/FP/+k/5dd+7df4sz/7M/bs2XPLz/Hcc8/x3HPP3fL9hoeHu6ZOPfzPictzG+HSwK1arXLgwAEKhQLPPvvsG8yiroebqY+dYdvy8vIbmCG3wgD5xskl5tabhK5hH+Q8G1vA0vxFfD9getsktmU0hFgCrTSesEiVIvQuOZRGqSJwLGbXqywvzNFOUi6eO822bVsJXCtz0rbZaJlmq5EoQsemGpkhWq2dEnpGdxh6NhuRJHAFLSnxHWOMYzIcyeJETFOqtdkWmlbXbFaNBayREFhCgG0iTRTZtjCTFyiFod5qGMj5JNqjv1QkkgolEzZqDaJWkzNnV/Fdl3oYUiwUUJaPk7nUWpmDdzsxOZVGBuBeVndNU1lrSzxH0IpBoLD1JR1lhxWy1kp4bDRkz/O/D0CuvUC4egzGN9/0a+dW0THksSyLvr4++vr62LZtG3Ec02g0+NM//VNeeOEF+vv7+Tf/5t/wkY985Jafo1cfe+ihhx7eurivG8qlpSVmZmbYvXv3bU0Nb0Tp6lC4hoaGupb3r7//jTRGC9U2f/7aMuXQ6W7eau0U2W7QjBVbpyZw/BwaaCYSSxiKqRAic+MzTqWpMoY4UmuKvoU1MMhoZY5Y5tkyMYoQFmFg04xSPNscrByhaaeKdqyw3RRhGT2OrQWWNi6Fjg0KTaFDGw0yrVHoEmUNbCuW5DzbZDxmh62cZ7PRlmiEMdvxLOJsQxpLjWuJrjujeVyTsVkOzOS+4DnESlHK55C5kFLFbPAazSbNVouF1VlcC9oJbFSreEGeUs7PHBjN5rHg26RKUAkNVbccuCSZbirK8ihbqbHdf//DI+ZQ9zp0Drxvth39tRwMc7kcP/MzP8Nv/MZv8Ed/9Efk83l27Njxpl7L67Fnzx6iKOKRRx7hH//jf8zb3/72e/r8Pdx9OI5Du93mm9/8Jlu3bmXr1q23/Bq/UX1stVocOHAAy7J45plnrhi2waUsyRvhW2dWeHVuA8+xiVJJ4FisbdSwhCCXzzM5Pk6qFLZtWBK2ECjLbOOEMNmutrDRQM4TtCzBUKXI2vAgG+vrbN68mb5CQCo1vqOJUknBt4lTSWAZnWboCpLUGO3EqZEBRIlpIjub0CjV2JkrrAUkSoM2WketzXVFKs2yMs19W6mJetpoRhQCl0ZipAitrIFtJ6Y+RYkxU4syumpbKhOZ5Lj0V/qw+vpQStFut6jV66wsLZKkqXmPaLco5XPYlk2poxXtDA0DB6lMBq+UmrxvgwZLaBzLmAgVA5so0ZQDY8Yz1R/y9l1jJMe/D/fUF2j6wyTDj97Sa+dWcS3TMs/z+NCHPsRnPvMZPvCBD/AjP/IjN71hv1vo1cceeuihhzcf96WhbLfbzM3NkaYpzz777DVdCm+Ea1G6rkXhutr9r3dgqrUSvnB0Hq01qQbPEaRSUVtZoNZoUvQsCoUCjiOIY2Us61OFsEzDJFONbQlaiTTT9ZYk9C0iCeVykfe+//3YAlw/6G42+/LG7t7XipnZOVyh8TwPS0CUSDxbECuTr6Yg09WYzDatTUOotTF/8GwLjSDnmTf6ku1mjZzZCISuxapSuNlhy4IuDTURKstoM4dKzzFUL2ELcwC0wbesS5ofIUi1TSn0iNIy045gZaPOysIci2tVbLnMRdtnsJxHOwF9pRzrLfN7aSVg22BnlC0s8GyB7Vg4tsU7dwx2t5uvR4diei8ayhu5vFYqFZ555pk39Toux9jYGJ/4xCd44okniKKI3/zN3+Td73433/zmN9m3b989u44e7i6klJw/f54oinjiiScYHBy8rce5HuV1ZWWFQ4cOdfWSVxuW3AyD49D5NV44tUwpcDIKvs2Z2SWa1TVaKUxV+qi2InK+a7IbXYdmkprmM9NTx6nEzfTfjm02tY7j8K53v5s0jsnncoDAtkw9CrPNabu6QaNRZ3R0FIGpGVqb3EVUSrh+HGV5uIM7L6uNpr6BqbeWgFSC7Zjs347jtKGYpvgZg6KcDzIGhZ1JDi5JAmqtS1tR37GIElP34w4dv0tjtVG2x9DQCM04xROSU+cv4kRtTpw+S+DaeKHRpoe50Jj3AAplWB2Wwhbmc55t9OWB23EEN/rK/rzP9z00imVZtH/ot4jWzvKNV87waPDmNnE3qo/1ep1CocBjjz32pl7H5ejVxx566KGHe4d7TnntHGSCIKBUKt12MwlmAp8kyRWfu1wveSNzn+sdmBKp+Owrc1TbCRaG8lRrRizPz6KwmBwf59zMDL5rkUoIfKP/y3mOaYoQaEAqM7lOEoXrWDQjhevYzC6tUWlF2H7IUMWmpQS5wOSQOUJzbuYirqXZsnka1zbmC6GjiKSxjk+kwhGCKIsZiRJJkBk/+K5NPTLus+3YbB+TVBN45ho9x8LRFsoWeLYgdM01CyDVxhgiTk2j2UokOc+hkRkL1SJzu9HqZEKaQ2QzMVS1Tm6l1NBXzLM8D7u2bEIqTbvVYKPWpL2+zsqSJgzy5PI5XD8gb3s04yynrkvTTdg3VWF64NqvEaXUPQnLvpmG8l67GO7atYtdu3Z1P3722Wc5deoU/+pf/Sv+w3/4D/f0Wnq4M3Qor81mk4MHD6KUwnXd224m4eqU1cudtB944AE2bdp0S/e/HK/OVfnm6eWuuU3RtzhzYRYZNRkanWB5/iKNWNJfCozJjWdo7aFnmBiBZ9OIMypqbJgZjXaKtmzWak1iOY8f5tDCxrJtXMfoGx0BcwsLRM0mw2MT5HIhqTSRSYmSeFogLnwLZ+FFUhyETkkGHsTpbEizuu9aFkorfM9ICXKOjZRQ8l0SNEXfRQhjegOXTMMqHefZLOYo7zuk2YBOaXCzWJCO1rIVp+S9LBYkc2M1FH8TjeQX+xgZz7FRaxJFLeYWl0hkSiEMcf2AgXKRppYUQ7fbxG60EvKeMRFyLJM9aQvBD+4aInCzOiUsdP9WUi7cM0nAtdCrjz300EMP39m4ZxtKrTVnzpzh1KlTPPDAAwDMz8/f0WPatk273e5+3KFwCSHeoJe8Gq7VUGqt+fKxBRqRMZFRSlNvNJmfmyXIFdg0PkKtESHInFx9m2pbUvQc2qk0GsWMPmphZ/SkLIPME7gDA1RKJdZrdaJGjaOLS5TyPrafo5wLuDC/RF8xpNA3iGXZ1LJYjUgJAt8nTSU5x8RwFByjAyp4Ro+U92xiqSn4VqZNNFTXQqbD6RxGTDNotheNWJL3LCKpjYOghLxvk0pNOfRIlaKv65jo0Eo0xcChGZlmc7XeAhkTB3kCx6aWme7EaUqsMLlpCAqFIkGuiGcLGs0W7VaTer3KxvIi675PKZ+nqXKUcgGRVExWQt52Fd3k5bgTE5xbgZTymmZRSqm3jC3+U089xTe+8Y37fRk93AaWlpZ4+eWXGRsbY3JykhdeeOGOHu/1lFcpJUeOHGFlZeWmnLSvN3A7s1Tnm6eXTRyQ0riW5uy5C9gCNm3ZQuC6LC8ISkGnGTNNWDEwzVc+sEklWb1S5DLaqGcLdBCyfes0axt14qjF6ZUVQs/FDUIqhTyLq2vYQjM4NkE+DIx7qmc2nznXpRElFGXERuqRs1I2mjFBn2K1FlMMXBqRNA7UcUrOtbL727SizAxHmhzfRGrQilRqXEshpciilzSWZeKaHFtgIRCOhQXdCCOlBb4w28OiZ7O6sU5/pYzSJh4klVAKbJa1MemxLZv+ShEhikip0FKyXq+TtpucOb9O6Nqs+znKxTwNPHzHSDAQGEZMqvi+R0YYKLyxRt1prNLN4FqSgA569bGHHnro4Tsb96ShlFJy8OBBNjY2eOqppyiXy8zNzd1W6PbluJzSdTMUrqvd/2oHpm+dWWVmrYlr20ilaNRrLM7PMTI0zEB/H6nSlAKHi9kBqdbqOLmmlAL3UsRH04Rv19sJoecQZ1Qv27bxPZcwCBECpJLU6nWqG1Vm59bwbaO5JI2otjTF0KPaSs32rpWQD5xsym0m/HnXpp1KPAtiKXEtkFJQcCwkgnJmL98x2ylngeB532I5NcHjl2ey5X2HtWZistzaCaFr0UqUsfeXGs8WoKHgOVRrVf7gP/5HqvU6zz7zNE89/QweNpaliRONa0MsTQNai9Ku420xDEktl4m+fhrtBBm1qTUbROtrzCMoF/O8a3KcJEmu6/p7rxrK6z1Ps9lEa/2WODAdPHiQsbGx+30ZPdwiTp48yenTp3n44YcZHx+n3W6jlDIUzdvcwF++YbyRXvJquFZ9nF1r8uVj8wgBsYI0bnPuwgyVYoHB4RFcxyJWGscyTI/QNsMuw+bQ+K6dxQaB1KaZNDpIi1Qap2mlHSaG/Yw5oanVzfBpfn4OgcbJ5RFJRGxbFAKPKM0GelJRDF3ao49TQFIjpDDxINVEUQw96m2TMbnWjDKHbFOjTX3NzHzczPzGFkTSuGTLxDA4EAqlNI6dUWQdi3piHrORmPzLzva1GStcC37/D/+IC+fPsmXLVv7yD/8wacfYx7SgpikVGte2SBV4rk1q24wO9qN0P+NK02g2aTUbrK0skyQxuTBHmMsZyYVls2/rAFuH3lh/tNb3pEbeDIPjrZDT26uPPfTQQw9vDu5JQ2lZFuVymYcffrhrGX6rGWlXQ+cxzp49e1MUrqtd1+sPTMfmqnzzzAqlwGWtGdGqrrK4vMa26Sm8IAQhEEKDEHhmJE1fziORmr7wysiMUuiaBtBzqGWuhPWM+lVtJgSeocL6rkOSSFqtFmNjIya3q15ndWWZNInZCHIU8zna5CkEPnEiDd2pQxtLlNEmZTln9SghcAUbUYJvCdraaG6iDt1LQ963qCeQd427YSlwSaVxdI0v0xLZFkSpBjSr6xs8/8ILuLbNE297GwPlEifOzLC8soJEcOTwYZ56+hkC1yJVmoJnYwF9odttaDtUsVZinAlbicRxbFyngBPm8RxBrdHmqVGbjeUF/uLMa+Tz+W7uY7lcvuJwdC83lNc6MDUaDYA7bijr9TqvvfZa9+MzZ85w8OBB+vv7mZqa4hd/8Re5ePEin/rUpwD45V/+ZbZs2cLDDz9Mu93mN3/zN/nyl7/M5z//+Tu6jh7uPcIw5Omnn6ZYLAJ0X2tSShzn9sp0Z+C2srLCwYMHGR0d5cEHH7zpfy9Xq4/LtYj/duhipunWxM06F+bmmRgZwsuVsC2LaiulEDg0UgFas96MKQbZMCyLUsp5Ds1YETjCaCpt0TW4STLjrk7sUaI0nutQbzQZ7K+QL5aImi02qhvES/M4bkCxkEflCxRyOcPYKPeRFj9AwQYpNQOBIJWavoJNkkr6chZRarIc41SaaKJEmoxhpcm5hgHiWBpbGO8exzJRJ75j6lb+MmfqWpTiC8V//9I3aFXXeGzfk0xPjjG3vMbMzAxRojl34SKrG1VyuQK+a1NtxgTRMvVayECYY61lhoRrLdNcx5HCdgAtsDyfvlxIIVU4KFarDVrtJgvLq4wWHML+NktLKX19fVe8Xt7sWKUOrlcftdY0Go3ua/t20auPPfTQQw9vXdwzDeW2bduuaot/p49brVap1Wo3ReF6PV5vWjG73uL515aNk2srpro8z0YzYdf2rUTKwrIEtVaKn23sEgVxopC2wBLGNdC2jSFOzjd5Z+XQIU4l5ZxHIo2DaSuW5Hw7C892OD87T9ys0z8yTqGYJ0oU5T6fQnkAgaRWq9NoNllYWsb3XPL5AoVCnkIYgrAo+OYQZFxTNTnfJZXamAhp0wy2U3MwNImPRifZilPWqw3WXjnK5PgIlb5BLEuYDaMA1za3UmksLF46/ipnThzDcgNGB/vJP7qH7Vsm+PboJM31ZbY/vAdLCNazJnqjlSI11GOJYwmUEig0GmF0nJbAsQSWhYkasIx5xffsGuHJzSYrtNVq8elPf5pqtcqePXuwbbsbmD0wMPCWaShd173p/NRr4cUXX7wiiPsf/IN/AMBP/MRP8MlPfpK5uTnOnz/f/Xocx/z8z/88Fy9eJJfL8dhjj/HFL37xqmHePby1sWnTpitqUee1lqbpHTWUaZqyf/9+HnzwQSYnJ2/5/lrr7pZ0oxXzp6/MGs12Kmmsr7C8utZ1ug46ekHfodFOyTmCepQy3J8zRjaBQ23xPMX2RWruEIXRray3zHZvo5VQzAZwxY7BTxbTpOImZy8uMD0+jO3nCUMHJVym+irUoxQVN1mtNllbnyFVUC7m8YIclVIBqSxsG+LUGPAoDY5tHGU9xwIBLiAAR5ioEAuNJcz9VBpz/NVXGegrMzE5hR+YjWXZcZFKU8l1dJUOR48d58Thg5m5kMX05AcZGaiwaXKcCzMXmZ4cp1QsGlptoumb+zre4ivk1x2q3o8RlgZpRhI3y9LUwtBp26lpXhux7DavQwN91KMi05Mu4fzL/PEfv8DevXvxPI9KpdKtkZ2a9J2goezVxx566KGHty7umYby9TlrjuPc0Yay1Wpx+vRppJS84x3vuCkK1+vROTABbDRjvvLqIpYFrXbEwsUZXM/jkZ1bkAhydnZYymI4fMciBTSaRCqEMEYMUitD84wVnp1RvjyzsfMck9GW9x2k0pQCmwszs5DGTG7aRD70aSWS0LO6zWYzUvT399GMioyMWqxW66RRizMXZnGEwvVD+sslgjCHYwnW1tYYHhrEtWyEWRCAoJu3FmfRJs04RSYx3z74Mq3qOpWhUT78oedoJm43x7KU5W3mPZtEKSqlPH4QYqEplEqUAxcVlPmpv/Xj1JotKqVyN08ukdKYRWBcYLEtmlkjXe3SaxNKmUti3je/15FSwOPTlwYDn/70p/n//r//D4Cf+7mf4yMf+QgrKyvMzc1x/PhxPM9Da83a2tobtpd3EzdqKPP5/B2bA7373e++4t/I6/HJT37yio8//vGP8/GPf/yOnrOHtyY6mX63WyOllBw/fhzgtoZtnWsA0yxEUvP5w8bxWivF0vwscZSwc9sWHM/rulQXAtNolUKXBSEo+UaDXgldkiSmr3WeuFWn4rdptkYo+TlipankPVqxpHwZu6MRpbRr6yysrLN9agJle11X1XzWWOV9lwZ5Nk2UaUYpQiasVGs019e4OL9AIQzwwxzFQh7LdlhfW6NYLOJ6fpZDKXFtmzjbjtbbiYlYilJcoXjl6AmW5i+SK5T5gQ+8j/6h0a4Jmm0L4kQjLOMUWygWCXM52u02fX19WJbAFTY/+iM/QqNWJV8s4Tpm0Bi6AlGboaBqiNSnFC8irUHcwAFtoqDsLG6q7Lqk0jA8Eqkohw6J1PTnPMbTOX7q//h5ms0m73nPe/iN3/gNVlZWWFlZ4cyZM93c0pWVFQYGBm57OHEj3AvTsl597KGHHnp46+K+5lDe7mGpQ+Eql8vYtn1bzSRc2lDGqeQzL52itnCGVgKzdShW+hkfHSKWELhZY+gaLWIhsEkSTWiZ7DLHUqjGEsqrIJyAJJUIoJUoPNum3tb4LiY2xLXZiFI8JOcuzhG6NuMTmwh8Bykh7znZ5Nszh4mcS5KaXMlWohgdKFNr5xkdHWGt1kInLeZXN0hbF/na89+ivrrE1PYH+Cs//EGiRGf5koamlSpNITROr0nc4uLyEnbSQimJam7Qakf0lTyaUUo+C8ruOLuGns3U9gf5/nwZiWB60yS1yDjgOo5NLlfAbD7BsSxswPEsfEtQCh1SBZWcQyw1lcChlaquUZBnW123x/c+MHRF3uTi4iJpmqK1Znl5mVKpRKlUYsuWLSRJwunTp1lcXOTIkSNIKenv7+9O52/3dXE1XG8CX6/X78ituIcerobbrZHNZpMDBw50X6+3SzXsNJSNdsxnDs2y/8iraCnBsijm84xvmsJyjM5cY3TVyjITrFSarWaiFIEQzM7NkwsD7LAfR7ZJvTKe66EwGm6pNKFnms+cb5Omio2VBVqtiF1bN2F7Pk5miFPOuaTtBmVHkGBTCh0SCaXAJZEWU/kQqTRSptRqDRqNBjMzq+zff4CZ8xeoDAzw137sR8EPCRwTD5L3TQNbyfvU2imupTl1bhYLiXICkrjNSq1N34Bio5XFg8RmkymUYXEMj4zyvg/8IGnUYnB0AgvBeuZYjV8ABBuNhMA1Lt3uyBPoWhUdDuKWtxDFipxv004UgWcRZc7gcWriQhJp+B1KGXOgd+0a4tDzR4jjGKUUc3NzhGHI5OQkk5OTSClZWlri6NGjnDlzhqNHj1Iul7vsjrsxBOvgZiivbwUNZQ899NBDD28O7ntDeSumE5db3j/44IOEYciRI0du+xosy5hAfP7IAs2ZI+iFI6QxjE0/TX54kHZijCQ2WpK8bxuzncCh3jZam1SDZWn0qa8SVE+TBkPoB34A23EQCAx5yri9pspkhjXjmJnz56k1WkyMDFPqH8B2bDaaxhRivZmSzwKzA9cmSnV2f7oHrnIWfj1SyRHLkJGhQU6fu0BtZYFICs6dPMbBozsZHSiz5gYMV4pstBT5wBgFxc0qswvLTE9N4QYh506fYmpqir5KCa0h55psy4IrUNpsKFWWX5mbmkJmfzOlwXctmokk7zndzeNGO6Or1VM0mlpbdmletm2Rao2XUV2LvoMQ4CN4985B8q/Lm/zoRz/K+fPnkVLyUz/1U1d8zXVdSqUSzWaTPXv2UK/XWVlZYX5+nhMnTpDL5bray0qlckfby+u5GHam7/civqSH70xc7bVzOw3l8vIyhw4dYmxsjJ07d/LFL37xtnWYVpan+6evzHHg1dfY/9JL1BttHn30YbZt34mwstxdIYCMGqtNbq1tCWIFidS88OIBDh14CccPee5976E8MILtBkhp4aNppArXEUSJxhVw7sIFlhaXGRgcYHLTFJZtIZRGCsMIUY11rNVTIDRWZSvkB7CFRghwbCNNEIDneHiuy9BAH0ma8rnPfoY4arI81+LQoUNs2zJNmCtQKhYQItsAKo2nY87PzDIx1M/Qu9/D0SOvUCiW2bV1GoUmJ8zvxQZsoU0z7Bp37a2bxk38kWfcubtad8fK9OJGhiA1OMMPcXzDY/v0JuraoejZWRyTuQ1dw1SxhCAVKosmsanFKe/aOcR4JWTwve/lJ37iJzh+/Dh/7+/9vTe8fkqlEkIInn76aVqtFisrK6yurnL27Fkcx+kO3/r7++9oeyml7PojvB4d07I71VD20EMPPfTw1sU9pbxe8cTZm9fNHnaklBw+fJjV1VWefPJJKpUKa2trd0SbtSyLY8spntWkXV/HTtoMFStQLoJj4TvCRHP4TlfHUmt33FZTLAEbjTaDzQXWY5sc69Q21shXhomUCbJOU6OnEUJhCcEXvvolDr9ymFKpzLYf+RGKgduliUapsa1vJQov0x/5jkW9bZrLass4EDazbV4zazbjVDExOsK2rdu5cOE8jz72GA9vn2aj1qDdrHJyZZF8EFIPQ1Qas1ZrMrVpAscLmJ6aZmpqGq0hVSLTJAri7BoSKfFtTaI0gWMBgtCxUAJCt6Mj6mxRHeLUGPy0EnOIirJpepRqlNa4KOJUEXo2tSzLst5OeXK6j039b9zyjY6O8olPfOKaf8OOhlIIQbFYpFgssnnzZpIkYW1tjZWVFY4ePYqUkr6+vu7hKQzDW3qt3AzltYce7iYcx7lpnbnWmrNnz/Laa6919ZIdeuAt1ch2FVQCuQG0hpeXFBW3TdKs02w2CX2X/r4yvmuhNdiWQGuTuquFQCuwss85lkAqxeLiPI1WGzuKWFxdp29wBzK7byQNtTNOFZaweOnQK3z96/8D23H5vve9z1DmpSJ7BkPjb7VwopbJlMy1iO0Uz7VotLLBVTsh57s0Wkm2eTQDwT1PvI0DL36TkfFJHt+3m1ozplGvMbewSM73CHI5LEuwurrG6OgolXIJpTXf+73f2/25UqWxhZE5OJnm27YEWmkCWxiX2izXsuibQVwxcNAaXNtCCMwW1jPb1rwjQIgunbUUuiSpiXvSGnzHxrYglZowMFEhuycrPDJRBsDzPP6f/+f/ueaf83KN+eXbS6UU6+vrXWrskSNHKJfL3QbzVgdk12Nw3C3Tsh566KGHHt66uK8bSri5hrJD4XIch2effbZrNHCj4O0b4dWFBifWUirRBVrWBLu2jdO2Q4LiqDFWsARWtknLuaaZ6mwHKzmX8xrKoU9z8FFKK6+wFk6TLw9Sj6RxNWwazeVGKybn2ZyfX+T8+Rmk5dBuR6xubDA4OIBjCWxL4GS/E882B0Q301qGmfOgZwtiqbAExNJoItupsbPXWPzgD/1l2lEb3/OwbJtKn487OEA7imm3miwvr4A2VvftRg1LK8JCHqUzUyGp8D2bVqIohNlBLPCptRNDgW2bLepqMyLv2VQTk1spE2FcGVMwZxBN4NjEKiF0MoOi7PeZSE0Ymg1sKXBoRJKJSsiTN8ibvBauZcrjui7Dw8MMDw+jte5uLxcWFjhx4gRhGHapXzezvew1lD3ca9zshjJNUw4fPsz6+no3lgnMEO+WauTaGZxv/TrImPSxv8bX65tYi4CVJYIg5N1vfzuW67Bt6xZsBMLOtpG2ZeI9hEBbIIRGa4FnCwJHsPvhB6mtrZAvFNg2vQkv2yIqDZ5jhN4am3q9zvmzp4jbTRzXY2N9FdvaihCmQbOF2Xh6hT6SeBDXgrZbJnA7tFWHRpRSCLJ4kMA4yhYDY/bz7ne+nUd276G/mKMZSwYHCjSjEkOjgrVqnfrGOs0owhKwXq3RThTlYp4UQc418VCFwOT3FgPX1MXOBtIWme5SECWGeePYVsbisDMtvUuUKHwnG9i5FrExDCfNImLQRjZgW6bmB7Yww7zMOXusHPDMtoGbfg1dqz5altWVB4DxJFhdXWVlZYVz585h23a3Pvb19XW1mNfCjeqjbdt3bFrWQw899NDDWxf3raHsbJVudGC6nML1wAMPXPHmeCc6zAurTf7itSUCSyEtl507p6hnLnrVVtrNejSOrhLXstAobCGMCUOWsxYrRTDxCNHog5Q6zn8hxEpTCh2ixGRVnr4wh4pbPPHMOzh6aD+VwRGmJiapthJyvkO9Zaz020lKzndJlMK37YzGZWOhTOSH0girY3AkkFpjIUz+pGOhtI/n2rRiE09Sj1ICx2FhrUrgeZQHhnGFZHm9RnN5ifMXZ6kUc/hhnkqxmLnGOkhtmmapNH15nyRV9BfM9RV8lzg1kSKJVEgNaJ1tWh2qsaTgO1RbEiEsqpmTYzOShEsHkPUV3MknUXY/lZzL+x8avm26qFLqhvd9/fYyTdPu4enYsWOkqbHb70znX7+97GS59RrKHt4s3C7l9fJh2zPPPPOGQ/ut1Ehr5RSsnwUl+fPDr3GAENCs1iN2bttGW2qKgUszSggdTbOdEvoOzSghcB3ascT3jGGN7zqkyrASxic38eM//ldRWuO5xpTGsgRKmi1mqqC+vsb80hJP7NtLksQ4lsUDO3fiOw5Kq65Dq+dYpDIgP/4gqYKSwNSq0CPVinJWsyp5w5qo5FwSaWQCsdSM9BWIU0UpMHruQuCQSoVO2iiZsGVqk2Ge1Oq0GxssLS1SzPms+zmGKkUaEUb2EBnznkYs8VybRGkcxwU0KjUGP83oUnZwwbdZa0TGwbYtCR2LWislVZpYatLI3OflV1/j9PEjbH/gER7etY21lnmejZZxyf3eB0awrVvbHN4M1T8MQyYmJpiYmEApxcbGxhXby1Kp1G0wr7a9vJEkIJ/P3xM37h566KGHHu4P7hvlFa5P6boahev16OSk3Wr491oj4r996zWWFufQGnZMTSC1pi/0iKWiknNpp4p8YNOOJYFj04olnmsRSYWjjXNprCyiWBrjHscmjlNDQVVm4yiVxhGa8+dncFGMTk8Teg57H3kQxzY5bmXHohmnWWZlmk2+zeGh2jZ5bhtNMxnvHCqakSTnG7MG3zGT65xrmsBS0NmgmpiSnANnz5+nFHj0DY6Yhq+dMj2Ro96WuEKytF6jUW9wcX6ZvO/iBCGVYgHPD7BtgS0sFAobG9e2cWwL13GwMv2QyJxufcdM4gueRRSn5FzBkoTANaY77toZkuNfRCOwNy7QeOxv894Hhsl5t/8yvJ3YEMdxrtheNhoNVlZWWFxc5OTJk93tZUd72XEovp4pT4/O1cPdxo2ilTrDtvHxcXbt2nXNTdTNbijV8IOIoQd4cdnjhdowq/UZImWxa3qclqS76SuEbratc6m3jRt1LcvXrbWznN1WgmXbVFsJYU7TSBQ538SB5NxLA7S1RkyjusbKWpUtU5Moy+HH/sqP0YwlBd+mFiUUPBOZ0WngQtfKMnctWqnGdyzaqezS/13LuK9attlomg2gxrZMpJMtAGGaWaE1C/NzyCRh8/Q0YeghpaaUz5nIJamo1us0G3VmZmawBNTzBYrFArg5SoEL2Ua2Q2ctBMaFdcBziFOV5RQryp2MX8do1F1b4KCxLYtC6LCyVuX3/v1voR2PF7/9bX7u//iHlAqFLALK4gOPjBJ613ZSverf9Dbqo2VZ9PX10dfXx/bt22m3213tZWd7ebn20nXd624oe/Wxhx566OE7H/dtQwnXnp5fi8J1tfvDjTOwLkcrTvntLx5ibmmVwaERluYXaMQSWyhOnDmHYws2TU0Rep4JyA6cTNtiGjbfsUlSkzfpuTZzsxcJcwXyhTy5MCRSmGYxVmiZcu7CRYo5n8rgGLZld91MEwmebWJGcp6D0ibTTCqo5FxiqSiHLu1UUs4ZI6BiYBsNZ2BTbcksry2lEBjDoHzgUGvFFHxDJdUy4fyFGfpKBQaGzGRbaSiHDrJ767BpxEcqzZiS1OtNavU68wtzRhdZzGN7IYN9RWqJzhrbS9Svgm/TTBQ5xxyWHDvb3tqCejMmsMFGk3MtHNHGFjGWlsSywNNb+5jsuzUt4+txpzmUQggKhQKFQoHp6WnSNO1qL1999VWSJKFSqQAQRdFVjSeazWbvwNTDXce16qPWmjNnznDq1CkeeughJiYmbvkxrorSBK/s+Lt8o3mWtcVFKv2DWOurKK3pCx1On7tA1GoyPrmJcjHfdZ+OpaIUuERSUgxdothoFleERWtjjYtRm/5ykaYOKIYezVhR8Bzq7YSNlQXq7YRd26ZpS5E1qUl3oFYMXKoZfbWaNbHVTv1pXdoAmqgPU1trkWkuZaq7jtEKjS2M+6znWrRbKb4Np89fJHQtysPjeJ7LejOh6DlUM2frttQUCyW8XJ4BAc1Wm0ajzsLCMu04opjP4QU5+stFtOVkRmoKzxYk0pgEacAWFgJj5NPRXiqZIiyBZ+nMGVyiEaioCbaDZwk8R6C04O3bBhkq3rprtdb6jjeDQRBcdXt57tw5jh49SqlUot1uE0XRVYe7zWazx+DooYceevgOx33loFztsNNsNvnmN79JFEU888wz12wmO/eHmzediOOE3/jsCyytbbB5eppioYDKNH/HT53hwIEDfOvAy5w/f571VgwINprGZa+ZSCwhTDNpGa3Lrq2bmRwfJfQE6yuLzJw7xerSHI1albjd4PyFc/SV8gwMj+A5Nu3UmEs0Y4VSUIsM5anaTkikotZOkUrTThQWhk7q2gKpoODbgKAUOKCNllNmtNpEGqv9zja1GStazSanzl6gXK5Q6BsiThXtRNJMUlqJotlOSKQmTiVk7omB61CplNg6PcGu7Tt4YOs0ucBHRzXOnD7N+uJFFhaX8Uhpxyk5zzyXbVm0UkWqQWqbWAkazRYzCytU+vuptiVKKtYLO0kmnqbZ/xCVx/8yezdVbuNVcyXutKF8PRzHYWhoiAceeIBnn32WJ554outO+OKLL/L8889z4sQJVlZWuq+7RqNxx7EhX/va1/jQhz7E+Pg4Qgj+63/9rze8z1e/+lX27duH7/ts3779DTlsPfzPg2sxOF5f29I05dChQ5w/f56nnnrqus0k3FpDeWqhyp98+zXmFhYZGhlneGgQhYUlNBfnF9n/4rf49kv7OX7sKFJqfNu4nZqmxzidKqUJXQutFFMTo2zaNEkpF7C6tsb8zBnOX7hA3Nig2WyysnARATy0fTOO61LJGcpoX85DAZXQywZtbjYIc69wuS6FrjG9Cc3Xc66NEOY6bGFMcBzbOL76tjHIyXk2Sarwbc1rZ89TDl36hkap5DwzrMtikjzHbEEtSxApidIAFrbnMzI8wtD4JNu3bkV4OeKoxdFT55g5f45TF+ao1xtsNBMSKWklikYkUVpTj8wWrx4rlFK8du4ipWKJRoKREHh5PvSX/xd2PvwYH/rwjxHmclRbCQ+MFtk2fHsDq7tdHzvby+3bt/PUU0/x7LPPMjY2hpSSU6dO8Y1vfIOjR48yPz9PkiTApfp4Jy7YvfrYQw899PDWxn2lvL6e0nU9veTV0Pn6zRyYms0mn/rcN1lvCXZt24LI9Ii+ZUxwfEujtMSWkkTqbMtn9I21ttENbjSTLNojoRS4VCNJIZ9HuAFDQyPUG02TV7ayipYJvuPguzaWTvEdv5vVhm0OYIFjDmAdAwYhrK7ZTqowZjsyu8X8j20J0wDqSzpKxxI4loXjGdpVs7HB8sI8m8ZGKZfLpMpoP6NUdV1ic9kWsxiYoPDuttN3WG8YzU9bW1T6+0llP8NI6o0mzUad8xfWQAhKhQJhPk+ukIfs8JZITVprMD+/wNZNYzh+3jjWthN832Vj07sJHZvv2TtGkiQIIbp62ts5+NzKdvpW0dleCiG4cOEC3/M938Pa2hqrq6scP36cOI555ZVXOHPmDOPj43f0XI1Gg927d/PRj36UD3/4wzf8/jNnzvCDP/iD/PRP/zSf/vSn+dKXvsRP/uRPMjY2xvd///ff0bX08NbA6+tjo9HgwIEDeJ7Hs88+e82YhsvRydq9Ec4uVfmdL+xHpzEDY5soFkOqrQTbtqi2UtCaWHigY5qpadLWWjFF32Gjaaj5682EvGuxHqUUvIy5EARgu/QPDNBoxyRRk+W1KjJaQAuH/lyOjXqTYj4kSgWuLYhSiS0EicqGeNIY1aRaZywLY/Cltdk6WoCTUfOlFibKQ1s4wiJREs83dbbgGJMzV6ecuzDDUKXE0NAQthBITaYZh1LoGlfWrNYqDbYFUhln6zgzZYtTzfTYAFGqmRSwUW/QbjZYXFxASkmhkMMP8vSXi938zGYscUXK6bMzDFUqlPr7zHuj1kgteWLfHh5+5FHynkWtnbB1MM++TeXbbgzvdkP5evi+z/j4OKdOneLRRx8FTE70+fPnOXbsGMvLy3zmM5/B9/07upZefeyhhx56eGvjLUF5vRUK1+XoNCE30gitrKzwR/9jP7NJns2bRqjHioIvaMYJCDMd3rJ1q+n1LIvNm6exhMhoriafLE4VxcAymzkHTp45T6UYAv0UOk1nLuTceg2tJIWBEUJHsLRWY2V1lVRb9JcL+EGevnIBhcgor4IgO7QIAdosMbMG02iAbAGRNHrJVtJpCi9plYw2KSbnOVxcWCaqrzEwMkFfJU8kFYFtkShN3rdIlTBUVwWVnNN1rI1T2TURynu2MSKyLeJUs7Awz4ULF9ixcxcjo2O04hRLpcbYZ2WFMxfm6C8G2H4eG8nq2jqbJibI5fMmjVMISqGLJQSB6/CeXUOUcl7X7ObyA69lWd3/bgZKqRs6EN4pOk1rZ3s5NDSE1ppms8mpU6d47bXX+NznPsdXvvIVfu3Xfu22DizPPfcczz333E1//yc+8Qm2bNnCv/yX/xKABx98kG984xv8q3/1r3oHpu8Q2LZNHMcALC0tcejQISYmJq6pl7zWY9yoPp5bWOM3/+wlPNdhYHIT+dCjlRlrXZQw4AicQj9P7X2UjXqL7VumqEdZ5E9mPFPLaKfVzPn0xPmL5FxB2j9sNJftlLzvUa03UXFMrjJIORewvFFjvTrPuVRTKeZx/JC+Up62tnAdizSVWQyJcbMGcSV91bFoRJLAs6nHMXnfYaOjPc9yg40bq9k8yqjFuZlZRocHKZQqSKlIspGdUiYWxHMsklTju5ahrzqWYYtYFrHUODaZ27bRrzfqNY4cPsLU9CY2bdrE0JBCy4T1ap2oVefUyjKh7xLmCriuzdLSMqNDgwwM9GeUVIFSkPMdlILAdZFaMZnz+d4HhlBKdf+Gt1Mf70U+rpQS13XJ5/NUKhW2bdtGFEV8/etf5+LFixw4cICRkRH+4T/8h/zCL/zCLT9+rz720EMPPby1cV8bSsdxSJKEQ4cO3VAveS1cj9KltWbp23/EyYN/TiP/LrZt2U69nVL0bapRQsF3aSYgEESpYNu2HUSpQmIRxwmOZQMmUButSVOjm9z/0iGOHz9GLlfgPe96JwT9lEObczOziDhibGITpXxArZ2yY3PZGFSomKW1GvXGIudm5xgo5RFeyHBfiXpK12wnH1zKo0xSoz1MNZRci1RBJbRJs2l3nBraV5S5Fp65OE/abtA3MkFfKd8NyV5vGXrqelMSehaNyByS0kThCAtpyez3BY5j4QgILQdbwOraGr/xa79qGutigf/jF/8RlbxHK3bYMpGjEUtGtWRlo0attkEUJzi2zVq1TiOR9BXzRKnO9J0pT23pZ2rgkp6mY6rUGSy8/vAkhLju9vLNnsDD1R0MhRDk83n+zt/5O3zxi1/kIx/5CI8++ig7d+58U6+lg+eff573ve99V3zu+7//+/n7f//v35Pn7+Hu4lqU187Q4vTp0zz88MO3vAm/EeX1S19/nn/5e19kYHiE97znPdiZ5i/nOWits7gkKAYe+enNWBYmQ1KA1IJyziWVmnJgE2WGZidPneHAt7+JxuLpp54gP72Fcugwv7hMc2OdkdERyqUSiVRsKxaIpSKNY6q1Go36BmvLC+TCkDCfp5DPY9seSohLTaRtE6emiWxlcSH1yDSR9czQrNZOjd6ynXTzg+NmnYsLS0yMjRLm8mgNCSClifBoZMyNjilapyGtZvr0ajshcG1qbYVjAWhSpfn13/hNVqs1RBrz0z/795keG6YWWwz091OPSvRbsFGts16rErXbaATNdpv20hojfUVqkSbv2dRbpi6b67F5/6MThs6bDd06tbKztb4ZdsebyeDo4Fou2L7v8773vY/Dhw8zPj7OL/zCL9wzp9defeyhhx56uLe4rw2l1prTp09TKBRumsL1elyL0qWU4vjBb5J//t9xprWZgebzpOPbKQY5pIa+zE6+4IFUJnexQwltxcbCvZ2auJB2KjHGgCbAut5s05YWq3MLHDr6Kk898Tizs3M4tsXEpim8zHG1mGl+KnkXqVxKRWNZj4xZWa8Rt+q8urxMMfRY8/MM95dYbxrDisMnzjLSX8YNixmdzDSH1XZKzrVpJxrfNuYODpoLM7OINGF6ejqbcOvssGdiS1KpyHl2l/6qtXE8FA60Ytl1aMx3jX7M7fpGFe2GEDWotWK0kkSJwMuoZznPRmCxoRM8FFObp1AdZ8S1ZVYX5ykVcjT9HNvHB96QN9k5YFxusHT54anTXF7r8HQ3TCduhOs5GIJxMezv7+eDH/zgm3odl2N+fp6RkZErPjcyMkK1WqXVar0h+qSH/zmxtrbG+vo6b3vb2yiVSrd8/+sxOI6dPMP/79/9F5ZW1ri4sMzU5i1Mb96MpUEjEEKTAqlMu1R8KUFoTYxAWBqZAlqZKBDbRIDEUUQUJ1Q3Njh87FXGJiZZXFih1WoyMbkJP/BBgJvZrXq2hZfLEYShYWMkMe1mk41anbm1VSzbplgokMsXKORzaAQra0tsKJicGCVVgkrOJVVQznkopSiHHaMz47AaNTZYW1tj++ZJgsD82zCMEI3l2KZeZtEi3ducYaZ0hnY530Zr41ptIq8UOVewtrGBajcRXkjS2KCVDJDzHdqJxHMs0EajLpOIwZERyqHP4lqVtL7O4cVFSvmADT9HIZ/HsTykhvc/NEo5dLt/w06N6wzcOv/diN1xLzaUndfX9WKVisUib3/729/U67gcvfrYQw899HBvcd80lEtLS6ysrFAqlXjiiSduuym4GqUriiIOHjxIu9HgrHiKmDpS5LG1MNlpnkUz1viOQGoLzyajGtlorSnmTANWcG0SpQhdo82xBKRS8eBDD3Ly1GusrK7yF8+/QJyk7NyxnYHBYZQQ1COJYwuaUYprG+2N5wjSLHdN2R7DQwPAIONKUqvVaTXqXDh/Hse2+LOX9nP08CsE+SI/8bf+Ju7AkNksxuaAYm4FjVijleTi7By2JRgZnSRRFiqWWWabud7AdRDCHNyE0LiuOUDlPNuEZ2fB2+XQIU415dChmUjyno0eHmNqYpzZhQX27t6DxEalGm1DlEpC1+bszBy2iimPTBCGIa1YMjaaJ04VKo2pNxokrQb+ygovvDDL4OAgQ0NDlEqlN/zdX3946mwvr3V4ul7+2d3CjRrKzoGphx7uBJ14GjCvqXPnzqGU4h3veMdtDdvg6htKpRQHXznCfz04S6FviNVqA8v1sB0PqTSqo9rWGq0tYmm2eEqDJcyG0hIamRoaqlTGmEunpnkZnZyicOI1zl64yMbLR4hiyaO7H2N8fBPKtolT04A6jjE581yLKE5MvFAiCX0HvDwT4xXqUYJII5bWq1Rrc7RTxdLcLF//ixfQacRzH/ohntizx2gTLYu2NPrLlKyJU4rZuXniqM34xCT5XEicSnzHJs6MhWKp8WxBLDVuljFsWZpUgp29b7m2iYJKpcKxLKQGzzNskWee3Me3vvVtRkaG2LJ1K45tIRDYno0lBMurqzQ3lpmanKBYyJMq2JILUVoj05R6o0GtXmdpbhXLdnliSx++bCCl/4a6c7X62Gkur7a9vFf1sXNtV0Oj0ei5YPfQQw89fIfjnm8oO1vJ06dP09/fT7FYvKM3vNcfmKrVKvv376dYKrNc2km6I4+1cR5Km0iEi2tZtGKF71rU2oYuud5MGSwHJg7Dd6g3U/KuoJGY7LNEanzXmEOEro070EdfIcdsGhMlEZ4tmBwbRQijhRG2CfS2BCiAzFgCzGHl9WY7fpgnyBfo05qo3WZmZpY4TUmq6xw9cpgnnngSt1Cg4DsIAV5GS1NJxMXZi4S+z9joGLFUeI6gFUvymelOIaNqFQKH9eznW8+oXOvNhLxn0YrNgSrKstpSJfBtC8sSVFcWOXv6JEIIDr74TX7oQz+A65mGu+jbnLlwEQ9F3+g4oWe0Uh2HRLTGdjyCgsOPv+MhhvMOKysrLC8vc/DgQQAGBgYYHBxkYGDgDYfmG20vkyQhSZLu52/X2OdGuBFtrBPcfS8xOjrKwsLCFZ9bWFigVCr1pu//k2NxcZGXX36Z/v5+2u32bTeT8Mb6GMcxL+4/wDfONpicmmJwaJijx47RV+lj89REtrYDs6O0cG2Ba2nTJHUMarQ2zaVlmjbHsk0xy0zH8rmQkZFBjh0VJHGbOIrYvGkSqY3pTpwoPMcmSlOCzCTM1Ku0GxtyKT7EpdaGLZNjVNspjk555cgx2s06wg04fuwYY+OTlIt5pOOaaxRZkwucuTiLIzT9w+OEYWAiR/xL0UfrWR7mess0tPVIY1mGjSKV6kaM5H2TB1wM3Ev3baZ4tuDFQ0dJtMXFhWXOzswxNTFOOzEa09MX50lbNSrD4/hBSLWV4tiAFiaGyrVxcwU2VSrU2wnjBcHOkuT48eNEUURfX193APf6f9fXqo+Xa9M7Gtw0TW9Je3kruFFDWa/XGRwcvOvPez306mMPPfTQw73FPW0o0zTllVdeYWNjg7e97W1XWIvfLi6ndM3Pz/PKK6+wdetWzsV5NpYb2IUhZmqSAa9EznMAje8YM5pi6KCBvCdoJylF3xg45Dyb9XZCKfCyLLQO5dRhPdMl7nh4NxvVKv3Dozzz9NuQGnzbtIieZez0bWEiP4Qwk36y4GsyupRlmSBux7aIEkXg2SRewLve/U6+8OWvUs7n2LR1J6vr65y5OE85H+AGOYYqRVpxysrCLPlSH2MjQyilKXouUmoqOYtUQjnnIGWWa5kqKqFDK5HGgTE2pjvt1DS6idJIBa4jiJKE0HOot1JAYIdFVLuBFeSx0LSy3M7zMzPYlsXE5CSWZWNnbrOWRXebkSrNk5sHmKiYN/HR0VFGR0fRWrOxscHy8jLnzp3jyJEjlErGdXFwcLDrrvr6v/Xlzr4nT56k3W7T19d3R8Y+N8L1NpQdc557PYF/5pln+O///b9f8bkvfOELPPPMM/f0Onq4e9Bad/WSjzzyCI7jcPz48Tt6zMvrY61W48WXXuLVDZfKyCSB52LbLtu2bMZyXBzLIlXZBk4ZR1XLMi6qlhDYtiBNFcICpMJxLJS2zOAsc0JNlcazBLt27ODsayfBtnnu/e/Fc2yzOczqrtTgOYaab/J3ReayqjP6qu7SWCuZTrMSuqTK4V1PP87Fs6fQSrFvzx500mZ2ZgXbcSjmC+QKeTzX5eLsHHnXZmh0jNDtZPq6RImhscaJkQN0YpdUVv86dSvnGz17KXRpxZJi4NLKGsV2N09YmumgShGOj28L2okxNDozM4eKW/SPTJAPfaK0Q9+3iFLZNTUqZtmaY5WQD+2dxM5MiJrNJktLSywuLnLixAlyuRyDg4MMDg5SqVRuyO6Yn59ndnaWhx566Ja16beCTn28FrW2Vx976KGHHr7zcc8ayjiOeeGFF66wvF9aWqLdbt/R43as9U+ePMnZs2d57LHHON9yOTy7TDFw+OM//RJnThyl0D/Ej/3lH8L1fALPRmmFo63Mfr5jQgHFwOgMKznPNGOhkx0qjPNpMbA5fWGevGfxof/lxxgqF4yJg2tdit3IYjg6t83Y6G/i1Di1pkoTZHQp83zgO1Y3a23vnr08vmcPidK4jkU7VkxZioXVGjpp8urp8wSWRrsB+VzIejOmGHisN0wzXGtLAtc4wrqORZoYClSqwLYFlhCErmn89GUHQgtBqjV+ziZOJOXQwR0Z48MffI4TZ87zticep5kCOuHsxVlcx2VsbNTEA3gW9ezn75gB1SLJZH+OPVfJmxRCUKlUqFQqbN++nXa7zfLyMsvLy5w5cwbHcbqHp4GBgSsaOq01J06cYHl5mSeffJIgMIHft2tccSPciDZ2Nyhd9Xqd1157rfvxmTNnOHjwIP39/UxNTfGLv/iLXLx4kU996lMA/PRP/zT/5t/8Gz7+8Y/z0Y9+lC9/+cv8/u//Pp/97Gfv6Dp6uD/QWnPw4MHusK1UKrG6unrTGZLXgm3bRFHEwsIChw4dYlYMkuRyeI7NRivm5LHDfP35b+HZ8N73P8fW6Uk2WgmhZ9NoJYCgFqWUNNQbCb5rqPwdh+kwM7HJ+y71ZkLed5mZX6a+vsJ7n/sQYwN9NGKJEFDPsmsbkTSbyVQSOBbN2NTFZmxMaVqJxLMt2onCtiBKTUObKo3WmrHxCf73v/e/YwtTM11HECeSJGqzXq2zOD9nsiY9h1yhgiMgUcq4akuNY5uGzck0nI4Ftm0hMcO9VCkCJ3PG9kxzHXoWWkPomjoU+jZWpv/86N/667zwzW+xc/t2JibGsYELFy9iy4Sp6anMhdpsdW0hUNnjmPcZ0ywPlwKee3TMxEJxyfQrn8+zefNm0jTtsjteeeUVlFL09/czNDTEwMAAvu9f8Xefn5/n1VdfZffu3QwODt6yNv1WcC8YHL362EMPPfTw1sY9ayg9z2Pz5s2Mj49fQdW5PGftdmBZFufOnSNNU55++mkWWvDyhSXKOZdWJFk4f5p2qhGrS8wurbB98ybqWcNVi1MUFo0owXJTtDYHFtsSmXsoJFLgOgKlBL4FFy7M4KiUsalpAt8zAduBzfLqGqHnkDh5SuFlGY9t02RVL8t67NBNi4HDWpbhVs2asGZkrq3TZKYKQs9GacHkcIWVNcjX61QGBlBSsbCwgJKStTBHsZDHIodjm1gQjYkhiaQxG6pnuZrVdkohsKm2ZNfNsOA7NBLjnBgnEscyNF3fETz55JM88eQT2MKiHbWZmZmhnM8zPjJCitnwthJFOefSiFJzGI0lec/h+x4cuSlTiCAImJycZHJyEqUUa2trLC0tceLEiSuoXwMDA5w9e5a1tTWeeOKJK+hLt2tccSPcjIbyThvKF198kfe85z3dj//BP/gHAPzET/wEn/zkJ5mbm+P8+fPdr2/ZsoXPfvaz/NzP/Ry/8iu/wuTkJL/5m7/Zs8T/nxRCCMbHx3nooYe6FNe7VR/X19eZm5ujUZwiimyKtmUomYHDhdkFGhurtLyA2uoS0fhYlsFrmr9FBTlP0IoSQtdkIxZD7zJ6akoh8Lo01bMXF5AZxXO4UuzS7edWqngoklyBUhbl0Ylb6hiChVmz6TuCZmziQtLUZO0KYfSQrm3Taps61cgcXk1tdWmnPpWKxfJ6laH+MrEUrK2tc2FugUIY4oc58vkcge+TKo3vmN+DobPGWV2OKQQua82sqY4Ujm2kDBrz/FFiKLq1yNTwgdFN/JUf3UwzlkRxyoXZWbSUbNo0STvV2I42tF7Pph5JQteiHqU4liDOmuV3PzCcMWiuDsdxGBkZYWRkBK011WqV5eVlLly40GV3dAZw1WqVkydPsmfPHvr7+7uvg1vRpnf+/83gXgzcevWxhx566OGtjXtqyrNp06au6QSYN8k7mcA3m03W19dxXZdnnnmG9bbiGyfnjKV9akxnnnjySb79rW8ysWkTO6fG0ZDRnBQFzzVug5bRyziWIFHZpk5qLI0xppCQpgkXL84R+C4DwxMgjDmOKwTHXzvJi99+AdvxeM+738PI6Aj5zBGwHJpssb7LHAOTVFEKHeOu6ts0ojTLUZP4rkU9MuY71bYx32knhj66tLxCrbbB2NgkYRDgWhaVvgG0SqnW6jTrNZYWF8mHPmG+SDmfx3F90+gqqOQ82qnKTHdM1EgtSgld0wC6tkUrNn8PqTVpajQ+7cQ0oisbddaX5nDCAmOjwzQTRehYtFKFa0MqNYFrYQmBYzl830MjhN6tW9ZblsXAwAADAwNd6tfy8jKLi4scP368e/hutVr4vn/Txj6dgcGtbi+vN4GXUtJqte74wPTud7/7in8br8cnP/nJq97nwIEDd/S8Pbx1MDo6eoXB2J3WRykl8/PzNJtNvPEHWF9PyHkWUinyvoPS8PijD7KyMEvge2zbvp1SzjV0+dAl1ZqCbxs6feiQpoq+vJ/RVF2kgnJGUy36NhdmLiKSmKmpacLAI1GaSugxv7TIV7/wBaI05Zknn6Sw6wHKoXHZLocuidIUA+PKms+er7MR1F0joEyqIBWF0CZJzX2jy1xYRdrm3MU5pseGCQpFs22UCiUl9UaDer1ObX0FLIe+coHIz9FfytNKJKXA7TaorTjFd4xRmS3AAlKlCD2HZnwplqQTRxK4Ns1EAYoLF+fQCDZPTxGl+pImNPte3zVMF41GYyQP739kjOFicNN/VyEE5XKZcrnczXtcWVlhaWmJs2fPopRicHCQJElI0xTHufJt/kba9FutjzcauN0NymuvPvbQQw89vLVxX2NDbpSRdj2srq5y4MABPM9jfHycWFt85uUZEqm6gdfNlmTP3r3sePARCoFDO9WENsbdLwurDmxBo15j0HNwXUOHlapziNAIAY1mk9nZWYqFEgODg8adTxvaVCJgbnGZjXqEZcXML61QGRjsagjRgBDYCvOBzMwstDH6sRAUffNncHwHNLi+QGuB43ZCvDWLiws0mi02T21CYuPaVmZmYdOIbAYHB6i3y4y5sLhaI4paHFtcJecKnLBAfymP6wfZQQk8S5jm2ndAiMtMNzSWEIbm5RqNUDl0Wdmos7Y4R1jqY2Swn3pkGvBmolBag2MRJYbyVm2nPLNtgPHKnZsfdKhfYRiyvr5OPp9nenqa9fX1K6hfnen866lfN2Nccfn3Xm17eb0DU6PRAOi5GPZwx3j9Jr/jYK21vuXoh1arxYEDB5BSsqJzrC62yWcbxpxr04gVoWfRPzbB3/7IT5ja6Fk02llWbUZDjVNIoibLa1X6SwVaiRl6tRKF7wiiRIHWnLtwAc9xGJvYhO8bmYBjCSIpWVleZq1aQ6UpF2bn2L5zF6kyPj5Sa0wlsgBTewBsS5CkhgKbKI1vWSTaOFKn0gy60iyvUUlFY2OdpeVlNk2MUSgYx2XLEqYhdG0C32VksI9UKqJWk41qneryAqtLmkI+R5ovmMxLS5D3jB5QaSMPUNqwRKTS9HXiSUIXpaEUZm+hWnPxwiw532PTxDhSQ+gZDX0pcFCYWy3AtW1syzT2uzdV2DlyZw7Rvu8zPj7ebSwfeOABWq0Wp06d4pVXXumyOwYHB8nlctfVpt/M9vJW6iPcH9OyHnrooYce7i3ue0N5O5SuCxcu8Oqrr7Jr1y5qtRpxKvn8kXkE4FhWd1vWyZQMPYd6pMh7dneybBxObdxCH7Jd59UzM+Q8CyfIM1wpYnkBOc9meXWd1aUFhoeGGejv6+pgpFIIS6CVYNe2LawszuJ5PpsmJ4yToTSmPJFS+LYgyvSTzcRY1jczemk9SQldsxnMe8Y0J+87xFISug7tOGF5fhYlUx4Y9tCuheN6pErRl3OIpdl+RtnmsZ0qxof6aMUlhoYFG/U67WaTi/OLpKmkkM/hBzn6ygVSLchlU/dC4FDL6Lj1jIYWpSmuZbG6UWNxfpbRkRHK5Qoiy5CzhOiGnKcaQtciSjXbhwvsm6rctdeJlJKXX36ZKIp48skncV2XiYkJtNbUajWWlpaYmZnh6NGjV1C/SqXSLR2ermVcIaV8w5S/g15D2cObhc4h/Xqvv6thbW2NAwcOMDw8zJr0OXjmAru2mdpnXJ/Nv/NqOzMii8xt5+ONrhY6pr+vzOxiyuryEjNzCwyUclhejqG+ItWWxtYpp89fpL9coFgZwHaMhtt3LBqRxHUs+kfGmZjcRKvVZsu2HcQqo69aFklimsZGmpBzjS7zkqNqRxrgGofqwDV1O6OoGofYmPXVFarVGo7rkSiot1MCz6LVzqipmVvsRtM8Rmr5DA3nacYDKBlTqzWYW1olnZ3H8Xz6y0UsN6CvGBp9fKaHzzkWjchEighMQ+i7NvVmxOrCLJYfMj42apgmtkU9VljC5OQmqYlDaceSnGfRjFI29ed4cvPAHb9OOs7pFy5c4Mknn+xGGO3cubPL7lheXua1117D9/2ua2xfX99V2R2d116nFt5oe3kj07JerFIPPfTQw3c+7mlDeXnOGtw6pUspxauvvsrc3ByPP/44/f39HD16lBfO1UgDh8CxMht7Cwtj/+7YDlpoypmzazmXufv5Nu1EMtpfohHnGR0TLK3X0XGL0zPz+JYiwcHRKcWBESp9FXPQCi7FbjQiScG3GRwZ4Uc+/OErdI8FX1xhvuO7FjL7eiINhSxKFEXfoRlLCr6bOf453UPMSq3FxvI8sbZ4YPUrNE6vUsjnWH/0o4SBTyPT4zTjjsOiae4AQs/CEhZepYTVV0IqTZrEbNTqtBo1zq4tUwg9GmGBvlKBVgw5z8poWRaNOMUWgvWNdeYXlpgcH8PyQ5SGRqYL3ejoQ9uGNttMFKHv8K6dQ3ctTFtKycGDB5FS8vjjj2cGF5deT6VSiVKpxLZt24jjuHt4On/+PJZldZvL/v7+K+4LN6Z+dQ5USZIQBEGmq73yANZoNPB9/w2P3UMPd4rO6/JqtMVrYWZmhmPHjrFr1y5U2MeXXzxFztagoZLRSw39vuOaqq64TZRxg44SSSkwNXPH9ARxKlFJzOpGjXZjnZMri+R8j1YUMzbQR6lvANc2RjP5bJsXeoa+OlAp8gMf+H6U1ti2hVLge4aOmvdsYqUo+Q5RqimFLu1EZreZw2piHFaNe6pNO1XkfIc4TVleWiCOYk6+dpJv/sWfE+QLfOwn/w5WpZ9i6NCMzM9Rj8wgsRmZeJA4lTi2he0E2I7H2PAg1WYEacTSeg2SFebnbfrLBVqtkFIhR5S9VTmWee/IBw6rGw3Wl+Zxc0UmR4eoR0Y6EEtlXLM9MywsZIO6jl6+L+/xvoduTl9+PWitOXnyJHNzczzxxBNvGGzlcjmmpqaYmppCSsnq6ipLS0scOXKENE2vYHd0zM06eL2W8lra9DiOs8isN9ZH6OVQ9tBDDz18N+C+byhvtqGM45iDBw8SxzHPPPMMuVwOgCNLMWdWI7ZuEqx3ptutmNBzaEcpnmUOLq5jo5VCKYHKtHSeI9Dort5xrL+M1CVGh4c4PzODFUVo26G+ssCZeo3+coGqDCnng67ZTqfJvHyS3ZmsF/xL5jv1tiTnm5iOjoNg4Fqk2tBOpdaUM2pUOefSbLZYX7yIH+bZ3Beizs5TICFqJPjJOrEzjCWEifuQgBBEiSR0bENryybzHZ1PMXCItM3gQD/tch9jSDZqDdrNBmfPreLYFoVigXyugOuFeL7N2vo66yvL7JyexA1DXEvQzvSfzVgSejbNOMWyzHWkSvOhB4dvSzd5NaRpyoEDBxBCsG/fvhseqjv05/HxcZRSrK+vs7y83KV+VSqV7nT+Zqlfq6urrK2tMTIy0p3OX/59HTrX3Wqge/juxbVejzdTI5VSHD9+nNnZWfbt20di5/izw3OmRkgFQhNLjciiijqf79zawrA6bAuiRCKERmlhqKfZ9wnPZ2Q4QDPI0uIi6+vr+J7Lysoa1VqdYqlEPp/HDQMQYAsLKZR5DDShJUiUMQi7dAuBYyG1yCiihlmitKmPWkPo2CAMJVcgCF2NVprFuVlsYMvUFH/0+7+HlCn1tWVOnz7N258dQSlNIdOKFgIbEOR9B0sIXNsM36Q2jq1SagZLIVKFDPT1kUpJu9WkWqtTW1mkuqwI83nKxSLCyVEOXeqNJtXluUzv3Y/SUAwtky+sNbYnMr2ph1RG8ymVpr/g8wOPjuE5d1YntdYcP36cxcVFnnjiiRvSSm3bZmhoiKGhIbTW1Ot1lpeXmZub49VXXyWfz3djm8rl8k3Vx2azydzcHENDQ1fdXgoh7ktsSA899NBDD/cW/1M0lLVajQMHDlAsFq9oLF6dq3J2LaHgmoOBMZ2RWVSHJOcYs5nQdWgnEteGVpxiW1YWzG1cHzRkukEFWjE3O4dtweT0FjzHJk5SWo0atXqddmORVd+jVCjS0nnKudA0g6FDLBXl7kQ9u4Zs65fzbGot04RVM3OGatuYPzTTFNe2jBGQZfRPc3MXGewfoK+/DywL0b8Fe/UEfmkYysNILGzLaHQsj+wg5mbX4BGlklJgqLWFrLkMMpdBxxLE2iLMFSgUSxRTiU4iVjfq1OuL1KOUUuBSbSdsmRxDOT5Ca6LUaEqVAt+1cQTYwug5U6V5bLKPsfLdCY1OkoQDBw7gOA67d+++rkbnarAsi/7+fvr7+9m5cyetVovl5WWWlpY4depUl/o1ODhIX1/fGx6/4455+PBhdu7cyejo6FWpX+vr63cUPN9DD9fDzdTIJEk4ePAgURTxzDPP0FY2f/LSBdCaVmoGPa1I4TqCJKOhtpPOrfl8OzHNZBKZ5lIBtmW2bEbzTbdRWlxcotVqMjI2SS4MiJOUOGqxXq2zvLKG1IK+cgHHDxkoF7PNXIe26rDWjClmTqod52sjQzBOr6ZWm+bSpGgIpM4cVtMUV2hOn5uhlPMp9g/huDaPP/NOvvqFP6MwNMaOnTupthI8x5ir0TXWMc1rK+kwTS5lDOdci3pbZY7eoIXGDXLkLY/hkRHWag1I2swsrkAyi7ZdpIzp7x/Ez5eIU5W5v7o0kpSca2KTfFuY9xyhEVm+5/c+OEIld2c1Q2vNsWPHWF1d5cknn7zC7fpmIISgWCxSLBbZsmULcRx3Y0kOHjwIwMDAQLdGXo3dEUURL7/8cjf66XJmR+c1q5TqaSh76KGHHr4LcM8pr1c8eUZ5vZ7pxOLiIi+//DLT09Ns3769+31z6y3+x4lFhAWtROJ2p98ZpdR3SDVUchZJqsj7FlIq8p6ZWAsBUoGwNKnUCCCKYhYW5vH9gOGRYTRmIyeEhV8oExQrJGlK1GyxUa+xsLKCZdkUCwUKhQKFMIcURjMpMBRSIQSl0AKdmTPo7NqUIufZKG1osOb3A416jdn5RSZHR3HDHLawqEUp+cf+KtXaBoVimXpbUgwE681MC9U0kSONKMVzBLGUmemDJsiCuouBiyXAtayua6KFRaqVaURdh75SgUYsWV2cZ63WJB94nJ2ZI/A98vk8fpijnA+pZ5rLTgTKWjNh8+DV8yZvB3Ecs3//fnzf57HHHrvlZvJqCMOQTZs2sWnTpi71a3l5mWPHjhHHcTfTrUP92tjY4MCBA2zfvp3JyUngjdSvNE351V/9VTY2Nm7LOKWHHm6EG+nM6/U6+/fvp1Ao8PTTT9NMNJ95eQZHGEOvnOewoowBj8wo+EppQtdBakXg2khlojqkMkY7GnCEyee1bNNIKgFaSWZnZ0ErJicnCQOToZgLPFzHpq9cpp2kqDhidaNGa3WJxYUFBkp5WkGOwUqJVqwoBkYrXghcmpmzajsxcUmJ1Lgd3r4A27KIU3OdrUTh6JTXzl5kuFIkLPcb9kckec87386ePY+SC0KEZYEAjUBlP3Mrq1n1tokYuZy94bs2UaqwbAFYpEqS8x2aUUohNNEo/aU89bbPtko/C8urrK2uEAYhy8urtOo1LD/HcKYrzfsutXaK61hEUqOU7lJf375jiKmBO2uulFIcPXqUjY0NnnjiiTdQVW8HnucxNjbG2NgYWms2NjZYXl7m7NmzHDlyhHK53G0uC4UCcRzz0ksvUS6XefjhhxFCXCEd6GjTf/u3fxswTq899NBDDz185+K+byjh6qYTWmvOnDnDqVOnePTRRxkdHe1+rdpK+OwrcwgEkRSgodpOyXt217RhrWWMGNYaMQXPRHEUAhPdETgWkVT4rkUqIefZVOs1VhfmGOzrY3BgAI1AoFHKNMJSGVtC7Vj4pSK5Qh5bCGqNJu1Wk5m5eSyt8YIc5VKepZVVZBwzMTVNIQxM9IZndJOhnzWStqGTea6FlJpGdZ215RV2Tk/gh3kcR5BKRV/OI5KKcrkvs8l3MhMfm3o7wXNN5IhjmU2DRmcUNnVF7EetLbsbgULg0IgScp45qLmOIEolK4vzJEnMzm1bCHyHOE5pNRvUag02Fi+yIWzKxQI6yVMq5kikoj/v8b0PDN+VhiqKIvbv308ul+PRRx+97bDt6+FG1K8gCGi3291czNejc00f//jHOXXqFMeOHXtTrrOH7y5c7d/P9XTmS0tLHDp0iKmpKXbs2EErkXz+8BxSmuxEqQWubSMyXbkQhrqKsBBCYykbk40ksABhCWzbNJ525m5qCY1UQBpzfmaG0PcZGZ3M9JKanGshNXh+Jz7EI/XMcCpWmiSK2KjVaFbXeW15kVyYIyoUiNotTq2ssHl6GtsvkfMcY/YF2GQDL0t0m99EaRwVcWHmIpuGByj19XevseDbCGCoUsbKnKptYeimOc9BSrq000rONVr60EFpQSkw0VGe3XF01eQ88z2V0EWSRaNIo+9cXV2lXVtl+/QkQS6HjaZab9Jq1pmbnUUA9VyOQqGA7+XBcXAyau0jE0X2TvXd0WtEKcXhw4ep1+s88cQTb3C1vhsQQlCpVLqbx3a73dWmnz59Gtd1kVJSKBR44IEHrkqN1VrzH//jf+Sf/JN/whe/+EUefvjhu36dPfTQQw89vHUg9PXCne4y0jS94nCklOLzn/8873nPe654Y5RScvjwYdbW1ti3bx+lUqn7tTiVfOblOWqtBI2mulFlZW2NLZunzXTbEbRiReDY1C8L4y4FHvXo8im103U9vLiwQrO6SrFviNHBCu1EkvPM1DpwzITcd22SVHbpnY4tSKUxw+lQsxrNNq1mg+OvneKFv/hzJBaPPvQAb3vHu+nLdJeXm+7Uum6LCc2NVZbWa2yfniTFyQwkUnK+TZwqXNsyByXLHP8EHQ6awLIMDdW2BKlW2AhSDU7HXdYWtBLzszRik3HZiiW+a34GALRmZnYWR2j6h0Yp5X0a7Ssz1+rtBJW0qdYbNBs1UIpcLs8P7p7g4S3jd3y4abfb3an3Qw89dF+atE4cTaFQoNVqAW+kfiml+PjHP85nPvMZvvrVr7J169Z7fp09fOdBKUWSJFd87vnnn2fLli1XDNS01pw9e5bXXnuNRx55hLGxMeJU8kcvXWC5EeHZWa1yLJqtmJnzZ9m8fTteZhbj2aameI6gHUu8rE6EnnEhDT3jRp3zTA0SMub0hVlG+suEpb6uE3QnY7Gz8bu8ptazmtGIOjRWhVCSjVqd1ZVlvvyVr9BsNhkdGeaDH/ohSoWQKMsONiZlzhUmZbLd4PzsApNjw3i5Ao4FSptcJjtzUQ08s+nMd+7rm+vKeXZW7yySjLZv9OeSwDERJzk/e1/wzXAucAVRorFtQBsn09rGOsvrG2yf3oQUjrnWJMW1TWalQJMmCevVGipqUW1FVHIBVpBneqTCj71tK+4d6CaVUrz88su022327dt3X6j27Xabb3/7290mMoqibizJ0NAQYRiiteY//+f/zN/9u3+XP/iDP+ADH/jAPb/OHnrooYce7i3uK+W1I9xP07TbjLTbbfbv349lWTzzzDNXNClaaz53ZJ6Lqw1yvksiJUpjtoeITBMJYeb2WvCMVrKSc1EKyqFxLazkMkdB3+bC3DztRp2B4TEGyvlLTV7rSlpn12TnMt1N5/vyvtnyFajixQv05z2EZSPbTUMduniOdc+nXMjTokg5DJDKXFc7SamvLtJoRezaOoXEIrQsWnGKYwvaSeY0KjVS6WyTmEWNREaz04n76LjP1uI0O0SZZjLOaGQSky1pWQLHd7AskLYGKTk/c5GCZzE0OkHg2ETSbELbiSLnGc2VYwtsN4/tBYyPjrBRb7GrAml1ia9//RTFYrF7sCgWi7e0sWy1Wrz00kv09/fz4IMP3hf6aLVa5dChQ2zfvp3p6ekrqF/nzp3jyJEj/MZv/EZX3/mNb3yj10z28Kbi9ZRXKSVHjhxhZWWFp556inK5TCoVnz00y0rNRGmYiKLs1rWNAZhttImhZ9NKJIFjoisC16KVGIpnK0ovUT19h0YskVGDc7OLbB4fxvLzlzWP5rajzy5k9NGcZ9OIpKGoZsOrJDP7abTaXJi5QCmfx3IchFY02jFL8xeZFw6DlSJNL2S4UugO/2rtlGZ9ncXldaYmJ/CCADBmL0qqjM4qyQfuFQMwc9+EIIticmyjN1eAb1uZY6x72ZAxY3FEqdHNp1l8kLBop5LG+ior1QY7tkwTK0HomuGcbVkoZWitOd9BKpgaG6bWThmzNMsbprnsr5/jmy8sdGn1V4vsuB6klBw6dIgkSd7gdn2vEMcxBw4coFwu88gjj3QNd5aWllhcXOTEiRN89rOfZW5ujs9//vP83u/9Xq+Z7KGHHnr4LsE93VBKKd+gB/rSl77Ek08+SalUYn19nQMHDjA0NHTVDdXXTyxy8MIG+UwvmPMcltY3qK2tMjY5lR1eFBamyRQYGhfabO8ABAIhQGvJ3Ow8qUyYnJjA8zy0AtsWpEphC4tUKZMpmZqGrJ0YmmwjMhvMenTpAJVXNaIDv0dBbrAaTHOgPUG10eZtj+8lKJRJY2NaEbcaaGFRLuYJwhwbq6tYtsXY+Di+66GUoaupzAxDad0N17aEiSJxLIilxsuuKXANpTfIri1wrW6wuNJ0o1Ti1GRyti7bAAS25uTZGco5n76hYQq+OajYtsB3LCwhCF0zVQ9dG43RfNqWIPRsHp0oA3QjO5aWllhZWcFxnG5z2d/ff8Pg6/379zM0NMSuXbvuSzNZq9V46aWX2Lx5M5s3b77q9zSbTX7mZ36Gr33ta9RqNQYGBrqmFD30cKe42obypZdeYnBwkOnpadrtNgcOHABg3759+L6PUpovHZtnZq2ZmXTpK26TJOW1kyfYvmMnruNkdFadObeCQuBk5l6GbdGJINKsriyzurrOpk0T+EEON8ub7Xzdti6rU4qMNSEysYDGqBgtlDaa43/7iU+wMD9PsVTme97+LEtLyzz2yMNMbd7SNfVpNWokqaJUzBPmCrRaDRqNJhOTk4SB2X5Zgks/p778ujVKCSzLSBRsYfSgGFYvSmnzs2bvB+YxzH0todGIzH3IUG1tyyKVksWFOdpRzNSmSSzbpVOetMpouRqcy343UtH9HgF838NjDBXcbmTH0tISSqkrmA/X2zamacrBgwfRWrN3795byiS9W0iShJdeeokwDK8pRUiShH/xL/4Fn/70p1lbW0NrzR//8R/zrne9655fbw899NBDD/cW91VDCZdcDC9evMjRo0fZuXMnU1NTb2gqjs5WeW2pQSXnkGbbRqmM0U1NKwq+oR35liCWhiKaKEP/TLRCaHNIEAKSNGF2dhbXdRgenUAJkylpWwKZaBxL09YqayKNHqez5VPamO2A0e6AoBw6sLZOoNZRSjKYzvPO7/kxs31VRo0pPZswV0AITb3eotWsMTM7j2cLXDtHs9Gk5SpKOa+rcexsRzdaqdFNZu6xRt/joIFyaJq7oZIgcMzGt3Pbafxc29x6ttFIOdnnkqjFK4cO8uS+IR575OE7auReH9mxtrbG0tISr776KnEcdw9PQ0NDV2yd6/U6L730EmNjY+zYseO+NpPT09PXbCa11vzKr/wKX/nKV/jKV77Cjh07+OY3v9lrJnu4a7iehnJjY4P9+/czODjIww8/3D3Qv3B6mXMrDfKeQyO+NOAq+MbROfRcEiVMLUuN7rrWukRHzfvmfnnPOGLnfYd6K2ZteYFqM2L7ls2kWNgWNGOz8WwlZvMYJSYSRKad6wcplRnKpSZ7txWnhL5DtdGmurYGjkfUrDM+tYV3fM/bqbdTHNsidgJGRvJEyQAyTahWa8zOL4DWuL5Ps9killDJB5eus93RgqeGzh9lQ7TUtLOubdHOvrcRpRR9h2pkDMxqHYftWGFZmBqfyuz312GhRGwsL9BMJFOTk0RSoGVmtpOobgZvwXdYb6f4jkUjNoNMN9uCft/Do4yWjWnO5brtarXazcs9evQo5XK5u728PIaow4awbZu9e/feFYOyW0WnmQyC4Lq69i996Uv80i/9Er/927/Nj/7oj7J//362b99+j6+2hx566KGH+4F7uqG82gT+a1/7GsVikdXVVXbv3s3g4OAb7jez1uSPD1wkzN7sC75DI0kpeg6rtQZrC7Ns2rId1+IKvaFjd6bQJpJDWJpmo83s7EUKxSJDQ4OZ+Y7ZSgphTHA6DqmdKXbHrKFza1vm+x3Lyg5QFkpKCue+iK5eJNz6NOnIbnKeybc0t5rAtREC0qjFqddOMTzYx8jwEPWNDTY21oiaDfoqZUaGBhkdHqKYz+HaJgvOse+unrBarbJ//34mJiaucM+929Ba02g0upP5arXapcbm83mOHTvG1NQUW7duvS/NZL1e58UXX+xew9WgteaXfumX+OVf/mW+9KUvsWfPnnt7kT18V0BrTRzHV3zu8OHD3UiHHTt2MD09fUv/TrTWfO5zn+Od73ynYWFk5b6TEfh6RFHEwYMHsSyL3bt331Wd3r//9/+eT37yk3zf930f/+f/+X9eszHpXINt2+zcuZP19XWWlpZYW1vrZiUODw/fMq3+VtChd3Zii97MrWDH9GZpaYnV1VV832doaIi+vj5Onz59V92ubxVJklzhuH2tv9mXv/xlfvzHf5xPfOIT/PW//td7jtc99NBDD99luK8NZZIkfPWrX8VxHJ566qmrZlWtN2P+y/4ZNNBOJJ5jNDM536YZpThacuLMeR7ZtZ1qO6YUemZy/TpTh3LOZXl1g9rKAn2DQ0yNDSEV5Hxjo59zbbTANH1A4Jjmz3M62z0ra+zMds+5YvNndIk3g6WlJV555RW2bdvG9PT0FV9rtVrdxuvyw9PQ0BClUumuvUmvrq5y6NAhtmzZcs2N3JuFDjV2dnaWtbU1bNtmdHT0pqixdxudZnLTpk1s27btqt+jteZf/+t/zT/7Z/+Mz33uczz55JP37Pp6+O7C6xtKrTXPP/889XqdvXv3MjQ0dFuP+4UvfIGnnnqKMAy7uvWroZP329/ff99MsRqNRlend/kmFsz7RafxWl5exnGcbn3s7++/a9fbMQcrFos88sgj9/T30Ik0WlhYYH5+Hri02bwRNfZuo9NMep7H7t27r/l7+NrXvsaP/uiP8iu/8iv87b/9t3vNZA899NDDdyHuW0PZyU9LkoQdO3YwNTX1hu/XWvON15aptxP8rMHzHRvbAse2cSxI44iXDx5gemoTI0MDlIsFPMfGsS1cW+BYFo4FZ8+e5ezZszz66KO3fTC7U8zMzHD8+HEeeeQRRkZGrvu9SZKwsrLC4uIiKysrV0Rd3MnhaXFxkcOHD7Nr1y4mJiZu6zHuFB2t7ObNmymVSt0m+nrU2LuNDtV2cnLyus3kr//6r/NP/sk/4U//9E955pln3rTr6aEHMNs5MLq5Q4cOsb6+Tn9/P3v37r2tx9Na85WvfIWBgQHGx8fp6+u76oG/M+jqDJnuR1Owvr7OwYMHb4o10aHVLy4usrS0RJqm3brRcWO+HXT03AMDA/fNHKxjTJfP55menmZlZYWlpSXq9Xo3D3JoaOgKauzdRpqm7N+/H8dx2LNnzzXfb/7iL/6CD3/4w/yzf/bP+NjHPtZrJnvooYcevktxTxvKzgS+k5+2adMmarUaw8PDV20ob/RYnfDk+fn5buMVBAHDw8MMDQ1RLpfRWnP06FHW1tbYs2cPxWLxTfrprn+tp06d4sKFC+zZs4e+vlvLIrtck7i0tESSJLd1eJqdneXYsWM8+uijDA8P386PcsdYXV3l4MGD7Nixg02bNnU/fz1q7O24xl4PjUaDF198kYmJCbZt23bVx9Va8zu/8zv8o3/0j/jMZz7DO9/5zrvy3D30cD3EcdwdtoVhSLlcptlssnv37lt+LKVUt3bMzc2xtLQE0KWMdgZT58+f59SpUzz88MM3HHS9WegMul5fF24GWmtqtVrXbbTRaNDX19cdwIVheFOPs7GxwYEDB7pDpvvRHHXcrvv6+njooYeuuIZrUWNvxzX2eri8mdy9e/c1WSPf/va3+Ut/6S/x//6//y8/+7M/22sme+ihhx6+i3HPN5QnTpzgtdde4+GHH2Z8fJyDBw9SLpfZsmXLTT9Op5F8vR5IStl9w11aWuq+wTqOw759+276YHE3oZTqNrR79+6lUCjc0eNdfnjqTK0rlUq3ib7Wz3ju3DlOnz7N7t276e/vv6NruF0sLy/z8ssv88ADDzA+Pn7d770T19jrodNMjo+PX3MLorXmd3/3d/mFX/gF/uRP/oT3vOc9t/VcPfRwq5idne1u6Xbt2sX58+dZWVlh3759N/0Ylw/b4FJ9VEp19YiLi4skSYLnecRxzJ49e+5bXbhw4QInT57kkUceuSuDrmtJB66nu+zIALZu3foGKcK9QrPZ7Lr6PvDAA9dt0DrU2Ntxjb0e0jTlwIEDWJbFnj17rllnDxw4wAc/+EH+r//r/+Lnf/7ne81kDz300MN3Oe5pQ1mtVnn++efZu3cv5bKJmzh8+DC+77Njx46begytNUoppJTX1QNVq9WuO56UEqUUg4ODlEolvvGNb+B5Hj/0Qz/0pmpSOrS1OI7Zu3cvQRDc9ee4ke4S4LXXXuPixYvs27ev+7l7jcXFRV555RUefvjhK0Labwav39DeLjW22Wzy4osvMjo6ek1HWa01v//7v8/P/uzP8od/+Id8//d//y1daw893C6klHzlK19h69atXTr6zMwMs7OzPPXUUzf1GJfXx04jebXXecd0ptVq4bourVaL/v5+hoaGOHToEMvLy3zwgx+8qkna3YLWulub9uzZ86Y4Jl+uu7yWdGBhYYEjR47c1KDrzUKj0eCll15iZGSEnTt33rLxUsc19k6osVLKbgb09ZrJV155hR/4gR/g53/+5/nFX/zFXjPZQw899NDDvae8ttvtK6g5x44dQwjBAw88cFP37zSH12smV1ZWePnll68wW6lWqywuLvJbv/Vb/OEf/iGO4/AzP/MzfOxjH3tTmsooijhw4ACu677pLoEdXE136TgOcRzz+OOPX5/umzQRKyfRQw+CfXd/HwsLCxw+fPiuUG1vlxp7M80kwB/90R/xsY99jP/0n/4TH/zgB+/oWnvo4VbRbreveG3Oz89z5syZm9LvXl4fhRDXpEA2m00OHjzYzRR0HIdms8ni4iJf/OIX+aVf+iWiKOK9730vv/zLv0wul7trP18HSimOHDnCxsYGe/fuvaoh25vxnJ3B1OLiImmaks/nqdVqPPTQQ9dtJpVSvPLKK0xNTd2yZOFG6Oi5r8eauBXcDjVWStnNOL1ePMnRo0d57rnn+N/+t/+N//v//r97zWQPPfTQQw/APc6hvNohx7btN0SJXA0dPdCNmsmO8c2DDz54xQGhXC5TLpcZGxvDtm2UUszNzfG1r33tpiijt4J6vc6BAwe6Oph75RLoui6jo6OMjo52qUv1eh3btvn2t7/NwMAAw8PDb9RdJk2C33kf1voZ5Ohuor/xWbDujtvq7Owsr776Ko899thdMUMSQlAoFCgUCmzZsuUKauy5c+euSo3t6JJGRkau20z+t//23/jYxz7G7/7u7/aayR7uCzq16fKPO9TV6+Fmh20d45vR0VF27tzZrU25XI7NmzczNTWF67pEUcT6+jp/8Rd/QT6fZ3h4mOHhYQqFwh03EUmScOjQIaSUPPnkk2+q+dblsCyLgYEBBgYG2LVrF8ePH2dmZoYgCDh69Chzc3PX1F1+9KMf5Q/+4A/o6+vjhRdeuGuGZp34pqmpKbZs2XJXGrQgCJicnGRycvIKauzhw4evSo2VUnLw4EG01uzbt++azeTx48f54Ac/yE/+5E/2mskeeuihhx6uwD3dUIKhWl3+lKdOnaJer1/TdOJaeqCrfd+JEyeYm5tj9+7d15wir6ys8O/+3b/Dtm1+6qd+iiAIuk6Ba2trFAqF7uHpdlz01tbWOHjwYHc7ej/edDtU2zRN2bt3L67rUq/Xuz9nR3fZ0RXlNk4SfuoStbP1vx5AF2+Nlno1zMzMcOLECXbv3s3AwMAdP96NcDVqbKVSoVqtMjw8/AaTi8vxZ3/2Z/zNv/k3+Z3f+R3+yl/5K2/6tfbQw9WQJMkVDeXq6iovv/wy7373u695n5ttJufm5jh69Cg7d+68pvFNmqb81m/9FrOzs/yNv/E32Lx58xVRHa7rdutjpVK55frWbrc5cOAAQRDct2xFrTUnT55kbm6OvXv3UiqVbigdGBwc7G6PP/WpT/HhD3/4jq9jY2OD/fv337P4pqtRY0ulEnEc4zgOjz/++DUN3k6dOsUHPvABfvzHf5x//s//+X2JlOmhhx566OGti/veUJ49e5bV1dWrmk5cy3zn9UjTlMOHD9NoNNi7d+9tU7SSJOnSoTqOsZ2mq1wu3/Dw1KF27tq1i8nJydu6hjvFzQRyt1otlpeXWVxcNE106PH00X9Mbu0Y6Zb3EP/Ip+EOG+GOc+TtuNreDWitWVlZ4ZVXXsGyLJIkuSY19ktf+hJ/9a/+VX7913+dv/bX/lpv8t7DfcPrG8qNjQ1efPFF3vve977he29l2Hb69GnOnz/Po48+etu6yM62qzOYgisdY2/UHHZyLjumM/ejKVFKcezYse57ztWotlfTXX7qU5/i937v95iamuJrX/vaHWtLO4PHbdu23bLD+d1Ch/ocRRFKqWtSY8+ePctzzz3Hhz70IX71V3+110z20EMPPfTwBtz3hnJmZoa5ubk3BMbfrB6o3W5z8OBBXNflscceu+38sddDStnVI3YcYzuT+avpUM6dO8epU6fua87l5flljz766E298Xd0l0uLC9TmTpEGAwxl9N/bzbs8e/YsZ86cYd++fV3zpXuNdrvNiy++yMDAAA888MAbDomO4/DCCy8A8C/+xb/gX//rf81HPvKRXjPZw31FmqZXUFwbjQZ//ud/zvvf//4rvq9jvtNpPq/VTEopr9Aq3qnL9OXPv76+zuLiYtcx9npRRh0X1enp6btG7bxVSCm7g8d9+/bdlEna5ayHEydOEAQBo6Ojd5R3ubKywqFDh9i5c+d9GzwqpTh48CBpmrJv3z6EEG9wjT1z5gwrKyt88pOf5P3vfz//9t/+214z2UMPPfTQw1VxzxvK10/g5+b+/+3deVxU1f8/8Newg+y7KMqiIiqyg7ikJokrg6UtWoCZlUWllqaWWmlq5ac0tUxL0azcADEtd8FUFGUXEERAZJlh3/eZ8/vD39yvoywDMgzo+/l48Cju3Llz7jicue97znm/C5CdnS2VdELWKVySTK4mJiZyveP9aDIHkUgEY2Nj7s58ZmYmN31KUQFUVxTkbqneZavrLlsgGQm5f/++QjPKSoJJQ0PDFt8LyXl++umnOHHiBOrr6zFlyhT88MMPXBInQhTh0YCyvr4eERERmDx5Mte/PTpzo7V+r6GhAQkJCQAAJycnuWW0ZoxxU+oldSANDQ25demlpaVISUl5bF17d5IsAxCJRNwygI7qbMmmhxUVFSEpKQn29vbo27dvZ07liYnFYi77uIuLy2PvheQ8d+3ahV27diE/Px9eXl744osv8MILLyikzYQQQnq2bk3K05JHk07IGkxKUr1L6obJ8473o8kcJBljMzIyUFtbCyUlJdjY2CikziXwf4kd+vXr90RZAh89T8lF4r1795CcnCy17vLRc5WUAMjPz4ebm1uXjYR0VH19PVcYvLXAWklJCXfv3sXJkyfx9ddfY8KECThx4oTC6vAR0hrJNFJJmSRZ+0dJYjB9fX0MGzZMrmsVeTwedHR0oKOjA1tbWy5jbH5+PlJTUwEAFhYWcikLIgvJMgBVVVW4urp2+r3g8XjQ1dWFrq4ubG1tpdZdpqenP7bu8tF/G0nppBEjRsDMzKwrTq3D2gsmgQfnWVdXhz///BMTJkzAhg0bcOrUKYX9+xFCCOn5FD5CWVpaiqSkJDz33HMyrwe6d+8eMjMzu6wQdmc0NTVxU4ZMTExQUlKCqqqqLs8Y2x7JVDJ5J3aor6/nRmgfTVqho6ODO3fuQCgUwtXVtVtKALSkoaEBN2/e5C6iW7vYjo2NxcyZM7F69WosWbKEprmSHkMkEqG5uZn7XSwW48yZM5gwYQLU1dVlCiaLi4u5Ehc2NjYK+XwzxpCWlgaBQID+/fujsrISpaWlXL9hamraaomfrlRXV4fY2Fjo6OhgxIgRcpvF0l69S6FQiNTUVIV+Z4nFYiQmJqK+vr7NBDzFxcWYNm0ahg0bhj///LNbSl4RQgjp3RT+TSEZoZRlPZAkoUJJSQnc3NykplSKxWLU19fLpWbao+rq6hAXFwctLS0uzfqgQYOkgq709PQnzhjbnsLCQi4JUFelsW+NhoYGLC0tYWlp+X/rLouKEBsby61ztbOzU9gobUNDA2JiYqCnp9dmMJmYmAhfX198+umnFEySHk9JSYlLKqWiotJuMHn//n2kp6dj2LBhUlMqJfVb5dEPPUokEiEpKQm1tbXw9PTk+oTm5mYuGdjNmze5jLEmJiYwMDDo8nZVV1cjNjaWWxIhz/NWVVVF37590bdvX6mlA6mpqVzeAHnUsJSVpI5me8FkaWkpfH19MXjwYBw4cICCSUIIITLp9hHKR9cIVVVVISoqCqNHj4a6unqrd5Altcuam5vh5OQklVChqqoKa9euxd27d+Hv74+XXnpJbu2XrNs0NTVt8yJFkjFWkm5fXV2dCy5lyRjbnry8PNy+fRsODg4Ku+PNGMOtW7dQWloKY2NjlJaWcusuJXfnuypJUlsaGxtx8+ZNbhSitfdWUpQ7KCgIa9asoWCS9DiPjlAyxnDhwgUMGzYMxsbGbc7ckIwIOjk5SU1PZIzhhx9+wIULFzB69Gh8+umncpsC29jYiPj4ePB4PDg5ObX69/9wfcTCwkIAHcsY256KigrExcWhf//+CivfBDzIdn3nzh2YmZmhurq6U+sun5RYLOaSEbm6ura6lra8vBwzZ86Eubk5QkNDu60+KCGEkN5PoQElY4y7ACkvL4eenh7MzMxgamoqFTDW1NQgPj4effr0wYgRIx67a3rt2jUsW7YMtbW1sLe3x4EDB+TSdkl2Psn0UlkvUh7OGFtcXAwejyd18dTRaViSLKqOjo4KW/cnuUiprq6Gq6sr1NXVpZJztFTvUh4XT42NjYiJieE+G629l2lpaZg6dSrefPNNfP311xRMkh5JLBajqakJwP+tJ09LS0NeXh40NTVhamoKMzMzaGtrc5/h5uZmJCUloa6uDk5OTo/N0iguLoa/vz8EAgGMjY2xZ88euWQXra2tRVxcHLS1tTFixAiZg8KHM8ZK6sd2JBnYoyT9tK2tLQYOHNiZU+kSkqUZzs7OXIDfXr3Lru6XZA0mKysr4efnB11dXRw/flymDLiEEEKIhMJygEsulng8HlxdXTFu3DiYm5ujqKgIly9fxvXr15GdnY2CggLcuHEDJiYmrdZVtLW1hY2NDYyMjDBmzBi5tDc/Px/x8fGwt7fvcNp7ZWVlmJqaYsSIEXjuuee4kh4pKSmIjIxEUlIShEKh1MhESyQFubOzs+Hq6qrQYDIxMRE1NTVwc3Pj7mRLknPY2tpi1KhRGDt2LMzMzFBSUoIrV64gKioKGRkZqKioQFfcx5A1mMzIyMCMGTPw+uuvY/369V160Xbp0iXMnDkTFhYW4PF4OHbsWLvPiYiIgIuLC9TV1TFo0CAEBwc/ts+OHTtgZWUFDQ0NeHp6Ijo6usvaTHq+h5Pv2NnZYfz48bCxsUFtbS1u3LiBK1euID09HYWFhYiOjoZYLIa7u3uLU/4NDAzg4OAAAwMDDBs2TC4zGioqKnDjxg0YGxtj5MiRHRph5PF4MDAwgJ2dHcaMGQN3d3doa2sjOzsbkZGRiI2Nxf3799HQ0NDusYRCIRISEjB06FCFBpNZWVlc6aSHR4s1NTUxYMAAuLq6Yvz48bC2tkZtbS1iY2Px33//ITU1FcXFxVJ5BjqLMYbk5GTupl9rwWRNTQ3mzJkDTU1NHDt2rMuDSeojCSHk6aeQEUpJYp7W1gM1NjaiqKgIOTk5qK6uhrq6Ovr37w9TU9NWs4dWVlaiqKgI1tbWXZp4gTGGrKws3Lt3DyNHjoSRkVGXHlvS7sLCQtTV1Uml23/4AoAxxq0fba0gd3cQiURISEhAU1NTq1kCW/Lwusvi4mIoKytLlV7p6L9ZU1MTYmJioKmp2WbNzezsbEyZMgV8Ph9bt27t8qQc//77L65cuQJXV1e8+OKLCAsLg5+fX6v7Z2VlYcSIEXj33Xfx1ltv4fz581i8eDFOnjwJHx8fAMChQ4fg7++PnTt3wtPTE1u2bMGRI0eQlpamsOnNpHuIxWI0NjZyZUFamuIqmfGQm5vLJYDp27cvzM3Noa+v3+INk4aGBuTk5MDS0rLLAwZJKQx5jAjW1tZy/WNFRQV0dXW5/vHRPjA3Nxfp6ekKrQXMGMPdu3eRm5sLV1dX6OjoyPS8lko2tVXXU5Z2JCcno7KykptB0pLa2lrMmTMHzc3N+Pfff+WSnZv6SEIIefp1e0C5f/9+jBgxAoMHD241uYSkBEVubi6GDRsGsVgMoVCIkpISbtpXd2QJFIvFuH37NoqLi+Hs7CzzxUFn1dTUcNO+Kisroaenx037ysjI6FBBbnkQiUSIj4+HWCxuc31Ue1qrdynruktZg8n79+/Dx8cHU6ZMwU8//ST3otw8Hq/di6VPP/0UJ0+exK1bt7htr776KsrLy3Hq1CkAgKenJ9zd3bF9+3YAD94vS0tLfPDBB1ixYoVcz4Eo1unTp6GsrAw3NzeoqqrKVDapT58+XNAlmU5vZmYGAwMDuX/mc3NzkZaW1i2lMBoaGrg+o6SkBFpaWtx3QUlJCbKzs+Hk5KSwxDeSGSQFBQVwdXXtdHD2pEsHJMFkRUWF1AySR9XX1+OVV15BdXU1Tp061S01lKmPJISQp1O3pnBjjCEsLAwLFy7E4MGDwefzMWvWLKl6gSKRCLdu3UJVVRU8PDy4u9B9+/ZFc3MzSkpKIBQKcfPmTaipqXVpopuHiUQiJCYmoq6uDh4eHt0SxPXp0wfW1tawtrbmMsYKhUKkp6dDSUmJy7Cqrq7e7WsAm5ubERcXBx6PB2dn5yfK/tdavcucnBykpKRwF08mJiaPTeGTBJMaGhptBpMFBQWYPn06nn/+eezYsUPuF9ayioqKgre3t9Q2Hx8fLF68GMD/TeNduXIl97iSkhK8vb0RFRXVnU0lChAVFYWtW7dCS0sLM2fOhJ+fH0aPHs39vTHGuDXUD4/ESTKZStYi3rp1C4wxLggxMjLq8pkbmZmZyMnJgYuLS7cEcZKZKv3795fKGBsdHQ3GGMzNzcEY42a+dCdJUqSioqJWpx7L6tG6nnV1ddy53rlzp811l4wxpKSkoKKios2RyYaGBrz++usoKyvD2bNnuyWYlBX1kYQQ0vt0a0DJ4/EQGhqKiooKHD9+HKGhofj+++8xYMAA8Pl8eHl54fDhw1i4cCE8PDweW/OhoqICMzMzmJmZcVkChUIh4uLiuHWKpqamT5yCvqGhAfHx8VBWVoa7u3u3ZCp9lIaGBszMzJCfnw99fX307dsXJSUliI6O7vKMse1pampCbGwsVFVV4ejo2KUZIh+9eJIE0kVFRY9dPGlqaiIuLg7q6uoYOXJkqxeNQqEQ06dPh5eXF3bv3i3Xou4dJRAIHhvJMTMzQ2VlJerq6lBWVgaRSNTiPrdv3+7OphIF+OKLL7Bq1SqcO3cOISEheP3116GsrIwZM2Zg+vTpCAsLw/Tp0zFx4sTHZkwoKSnB0NAQhoaGsLOzQ0VFBYRCIW7fvo2mpiYuuDQ2Nn6ivwlJ+abS0lJuvWN3U1FR4UYm1dTUYGtri4qKCiQlJXGBtImJCYyMjOT+9y8J4srKyuDm5tblycc0NTVbLdn0cL1LAwMDpKWlce1o7SZoU1MTAgMDkZ+fj/PnzytsRLc11EcSQkjv0+1Fpng8HvT19eHv7w9/f39UVlbi5MmT2LNnD7Zs2YIhQ4YgPDwcysrKcHV1bTVoePiLVDKFUigUIjExEQC4gKuj6/NqamoQFxcHXV1duRbCbk99fT1iY2PRp08fbiSuf//+3PqpoqIiLj3/k2SMbU9jYyNiY2OhoaHRZhDXVdqqdykSiaCurg5ra+tWk/oUFRVh5syZcHR0xN69e3tUMEmILNTU1DBt2jRMmzYNO3fuRGRkJH7//XfMmzePu/hXU1PDxIkTWx2BkvSz+vr6GDJkCKqqqiAUCpGRkYFbt25x65dNTEw6NNugubkZiYmJaGhogLu7u0Kn30tqXUpmkPTr14/LGFtUVIT09PQnzhjbHrFYzK1VbCuI6yqqqqowNzeHubn5Y/UuGxoawOPxMHjw4Fb7vebmZixYsAB3797FxYsXuzQnACGEkGeXwqsW6+rqgs/n4+OPP8aqVaswYsQIhIaGwtfXF/r6+vD19QWfz4enp2erX5IPT6G0t7dHWVkZCgsLkZKSApFIJDXtq60Ao7y8HPHx8ejXrx8GDRqksNISNTU1iI2N5c7n4XY8PBIrFou5KW6pqalobm6Wunh60qLUDQ0NiImJ4coAdHdwLbl4MjY2RkxMDIAHn5e0tLQW112WlpZi5syZPboot7m5OYRCodQ2oVAIXV1daGpqQllZGcrKyi3uY25u3p1NJT2AqqoqvL298cMPP2DatGlYuHAhTp48iQ8//BDV1dWYNm0a/Pz8MGnSpFZHxng8HnR1daGrq4tBgwahpqYGQqEQ2dnZSE5O5vqMRxOBPaqhoQFxcXFQVVWFu7u7wv6+mpububXcj84gkWSMNTAwwODBg7np9JJzNTAw4M71SYM/sVjMBbVtrVWUF8n3nqGhIcRiMYqLi7lZLenp6Y+tuxSJRHj33XeRnJyMixcvKixxUXuojySEkN6n25PytEYgEEh9GdTV1eHs2bMICQnB33//DQ0NDcycOROzZs2SWlPUFsYYKioqUFhYiMLCQjQ2NsLY2BhmZmYwMjKSOoZk3dGgQYMwYMAAuZyjLCQFuTsa1DLGUFVVxZ1rbW0tF3CZmpq2eaHYkvr6esTExEBPTw/Dhw9XWHAtWbuppKQEJycnKCsrc0krJIlI7t27h61bt0IkEsHY2BinT5/u8Pl2BVkTTvzzzz9ISkrits2dOxelpaVSCSc8PDywbds2AA8uXAcMGICgoCBKOPGMKiwshLGxMXdTRyQS4dq1awgJCUFYWBiKi4u5bMY+Pj4yZ4GWJAIrLCxEVVUVF3CZmppKBUjV1dWIi4vjSo8oauaGZMaEmppah6ff19XVcecqyRgr6R87mjVbssa+oaEBLi4uCulvAOm1mw9Pt5UsHSgsLERpaSk2btwIVVVVZGdn4+rVq7C0tFRIe6mPJISQp1OPCSjb0tjYiAsXLuDo0aMIDw8Hj8fDjBkzMGvWLIwbN06mL/NHA666ujoYGRnBzMwMDQ0NyMzMxIgRIxSacry0tBQJCQmwtraGlZXVEx2rpqaGu6B4OGOsLFkC6+rqcPPmzRZHSLuTSCRCbGysVDDZkoyMDLz//vvIyMhASUkJxo4diwsXLnRLG6urq5GRkQEAcHZ2xvfff4+JEyfC0NAQAwYMwMqVK5GXl4f9+/cD+L+U+O+//z7efPNNXLhwAR9++OFjKfEDAgLwyy+/wMPDA1u2bMHhw4dx+/ZtuWfSJL2PWCxGTEwMjh49irCwMOTl5eGFF14An8/H1KlToaurK9NxHg24JH2Guro6UlNTYWlpCVtbW4X1B3V1dYiNjYWOjs4Tz5iQlKYqLCx8LGNse9nDJdmuRSIRnJ2dFbLGHnjwnSapRdrW2s36+nosXLgQ165dQ1VVFXR0dBAfH99tI5TURxJCyNOvVwSUD2tubkZkZCSOHDmC8PBwNDQ0YMaMGeDz+Xj++edlnnZUXV0NoVCI+/fvo6mpCXp6eujXr1+7077kRTJCOnToUFhYWHTpsR++W11WVoY+ffpwF0/a2tpSF081NTWIiYmBqakp7OzsFBpMxsXFAXhwEdJaMFldXY0XX3wRampqOHnyJJqampCWlgZ3d/duaWdERAQmTpz42PaAgAAEBwcjMDAQ2dnZiIiIkHrOkiVLkJKSgv79+2P16tUIDAyUev727dvx3XffQSAQwMnJCT/++CM8PT3lfDaktxOLxUhMTMTRo0cRGhqKzMxMTJo0CXw+H9OnT2+1TuWjGhoaUFhYiNzcXFRXV0NDQwP9+/eHmZnZE2Uw7azq6mrExsZy2Wy7sl96OGNscXExVFVVuZFLfX19qcBVMt2WMfbE2a6fhCSYFAqFcHNza/XfRCwW49NPP8Xff/+NiIgI9O/fH9euXcO4ceO6rW+nPpIQQp5+vS6gfJhIJMLly5e5aV9VVVWYOnUq+Hw+vL2927zwkSRTqKiogL29PZe0oqqqCvr6+jAzM+uSdTayyMvL42q5yXuEtKmpSeriSV1dnbt4UlFRQWxsLCwsLBS6hlQyAiC5aGstmKytrcXs2bMhFovxzz//KCTbJCE9lST7qGTkMiUlBRMmTICfnx9mzJgBIyOjNv/G7927h7t378Le3h5isZgbzZPckDIzM0OfPn3k3k9IlgFYWlrCxsZG7rWHS0tLuRqQjDEugZGuri4SExOhrKzc5owJeZPUuxQIBO0Gk59//jmOHDmCiIgIDB48uJtbSggh5FnRqwPKh4nFYqk1RUVFRfDx8eHWFD0cbDQ1NSExMRFNTU1wdnaWGtWsr69HYWEhhEIht87GzMxMpqminSGpKefo6AhDQ8MuP35bHs4YW1hYiObmZq58R1fXretImyQJN9oaAZAU5a6pqcGpU6dkntZHyLNIEoRIgsv4+HiMHTsWfD4fvr6+MDMz4wI1yehXQUEBnJ2dpWoUPnpDSlLeSJapop1RUlKChIQEhaxtf3gNvlAoRH19PdTU1DBo0CCYmpoqZKorYwwZGRnIz8+Hm5tbq2s/GWP46quvsG/fPly8eBH29vbd3FJCCCHPkqcmoHyYWCxGbGwsN+0rNzeXW1M0fPhwhISEwNfXFyNHjmxzylJDQwOKioogFApRVlYGbW1t7uKpo0kcHiW5MMjLy4OLi4tCA6KKigrExMTA3NwcSkpKKCoqQlNTE3dnvisyxspCJBIhISGBW5vU2ms2NDRg3rx5KCoqwtmzZ6Gvry/3thHytGCMITs7GyEhIQgNDUV0dDS8vLzg6+uLyZMnY8+ePZgyZQrc3d3bnOUhEolQXFwMoVDITRWV9I9dUR9XKBQiOTkZ9vb26Nu37xMd60lIsl2rq6tDT08PxcXFqK6u7tKMsbJgjOHu3bvIy8trN5jctGkTdu7ciQsXLsDBwUHubSOEEPJseyoDyodJUrsfPXoUf/31F/Ly8uDg4IA333wTM2bMgIGBgUwXPk1NTVxw+fC0r5bWIcrSJklhcBcXlycOTp9EWVkZ4uPjYWtry40AtJUx1sTERC7p8cViMeLj49Hc3AwXF5dWg8nGxkb4+/vj/v37OHfunFzqqO3YsYNbm+Po6Iht27bBw8OjxX0nTJiAyMjIx7ZPmzYNJ0+eBAAEBgZi3759Uo/7+PhwGQsJURTGGHJzcxEaGopDhw4hPj4epqammD9/PubMmYOBAwfK1LeJRCKUlpZCKBSiqKhIqrzRo+sQZZGbm4v09HQ4ODgotLyFpB6wjo4Ohg8fzp1HV2aMldXdu3eRm5sLV1fXVqf3M8bwww8/4IcffsD58+fh5OTU5e2g/pEQQsijnvqAUiI/Px/Dhw/HvHnzYGJigmPHjiE5ORnjx4/n1hQZGxvLdPHU3NzMTROVTPuSXDzp6uq2myHw1q1bqKmpgYuLi8IKgwMPssrGx8djyJAh6N+/f6v7tZYx1sTEpEsSdIjFYiQkJKCxsREuLi6tTiVramrCggULkJaWhgsXLsjlQvPQoUPw9/fHzp074enpiS1btuDIkSNIS0trcX1raWkpGhsbud9LSkrg6OiIX3/9lUsiERgYCKFQiL1793L7qaurc0XqCVE0sVgMDw8PGBkZYerUqfj7779x6dIljBw5Enw+H3w+X+Z11WKxGGVlZVxwyRjj+kdDQ8M2g0vJ6Gl2djacnJwU+jdSV1eHmJgYrlRKa+f+cMbY0tJSaGpqcv1je98Hsrp79y7u378PNze3NoPJ7du3Y9OmTThz5oxcEpNR/0gIIaQlz0xACQA3b96Em5sbgP+bcipZUxQXF4cxY8Zwa4rMzc1lvjMvWVNUVFQEVVVVLmHFo9O+mpubuSmdTk5OCqtdBgDFxcVITEzscFZZSfbHoqIilJaWPtFILSB7MNnc3Ix33nkHCQkJuHDhgtwKWHt6esLd3R3bt2/n2mdpaYkPPvhApvpmW7ZswZo1a1BQUMCNVAQGBqK8vBzHjh2TS5sJ6QpxcXEYOXIkV+u1uLgY4eHhOHr0KC5evAg7OzsuuJS1nBBjDGVlZdxonkgk4kbyjIyMpBLbSNZ5FhQUwMXFBTo6OvI83TbV1tYiJiYGxsbGHcoq29zcjJKSEu5m45OO1AJAZmYmcnJy2g0md+3ahS+//BL//vsvvLy8Ovw6sqD+kRBCSEueqYCyNYwx3Lt3j1tTdP36dYwaNQq+vr7g8/no37+/zHfmJRcTRUVF4PF4UtkQ4+PjoaKiAkdHR4Wlmwf+r0TJsGHDnigwezhBR0lJCdTU1KTS7bf3nklKHNTX18PV1bXVYFIkEiEoKAhRUVGIiIjo8rIqEo2NjdDS0sLRo0elCm8HBASgvLwc4eHh7R7DwcEBXl5e2LVrF7ctMDAQx44dg5qaGgwMDPD8889j/fr1cpmuS0hXkwSFx48fR2hoKM6ePQsrKyvw+Xz4+fnJXBOSMYbKykoIhUIUFhaisbGRW6dtaGiIO3fuoLS0FK6urgopTSIhKZ1kZmaGIUOGdHqEsa2MsY8G063JysrCvXv34Orq2mqAzRhDcHAwVq5ciRMnTuC5557rVHvbQ/0jIYSQ1lBA+QjGGPLy8hAaGoqQkBBcvXoVLi4u3J15KyurDk37kmQIbGpqgoaGBuzs7GBsbKyQDKoAIBAIkJycDAcHhy4tUSJZQ/VwMC1Zc9lSxljJ2ta6uro2g0mxWIzFixfj4sWLuHjxolwzPebn56Nfv364evWq1B3+5cuXIzIyEtevX2/z+dHR0fD09MT169el1hQdPHgQWlpasLa2xt27d7Fq1Spoa2sjKipKYaUHCOmsiooKnDhxAqGhoTh16hT69u0LX19fzJo1C87OzjIHl5JawEKhELW1tVBWVoatrS0sLCwUkkEVAKqqqhAbG4t+/frB1ta2y7LWPpwxtrCwEA0NDTA2Nub6yJbOVzL1t71g8sCBA/jkk09w/PjxFus9dhXqHwkhhLSGAso2MMYgFAoRFhaGkJAQXLp0CSNGjOCCy8GDB7d7wSG5262jowNNTU0UFRWhubm51Wlf8pSfn4/bt29j5MiRMDY2ltvriMVilJeXc+uKHs0Yq6SkxK0jdXV1bXXqr1gsxvLly3Hy5ElERETA2tpabm0GnvyC6Z133kFUVBQSExPb3C8zMxO2trY4d+4cJk2a1CVtJ0QRqqur8e+//yIkJAT//PMPDA0NMXPmTMyaNQvu7u7t9m3Nzc2Ij4/n+oiSkhJUV1fD0NCQmyraXUsDKisrERsbiwEDBsDGxkZur8MYQ01NDRdctpQx9t69e8jMzISrq2urGcAZYzhy5AiCgoIQEhICHx8fubUZoP6REEJI6xQ377IX4PF4MDc3x6JFi/Duu++ipKQE4eHhCAkJwYYNGzBkyBBu2ldLa4okBbn79+/P3e22s7NDZWUlCgsLkZ6eLjXtS57lOSRZE52cnORe71JJSQmGhoYwNDTEkCFDuIyxWVlZuHXrFlRVVcHj8eDi4tJmMPnZZ5/h+PHjuHjxotyDSQAwNjaGsrIyhEKh1HahUNju1OCamhocPHgQX331VbuvY2NjA2NjY2RkZNAFE+nVtLW1MWfOHMyZMwe1tbU4c+YMQkJC8NJLL0FLSwu+vr7w8/ODl5fXY31bY2MjYmNjoaamBg8PDygrK2Pw4MGora1FYWEhdwNMX18fZmZmci3PUV5ejri4ONjY2GDgwIFyeQ0JHo8HbW1taGtrw8bGBnV1dVwG8bS0NKirq6OxsREjRoxos5zUsWPHEBQUhIMHD8o9mASofySEENI6GqHsBMYYysvL8ffffyMkJARnzpzBwIEDueDSwcEBN27cQHV1NQYNGtTqBYpk2pdkWmxdXR0MDQ25i6eumvaVk5ODu3fvwtnZWaE1GxljiI+PR2VlJTQ0NFBVVQU9PT1utFaybooxhi+//BK///47Ll68iKFDh3ZbGz09PeHh4YFt27YBeBDYDhgwAEFBQW0mnQgODsa7776LvLy8dtf+5ObmYsCAATh27Bh8fX27tP2E9AT19fU4f/48QkNDER4eDmVlZW7kcuzYsbh37x6ysrJgbm4uVY6jpeNI+kdJeQ5JrUtNTc0uaWtZWRni4uIwePBgWFpadskxOyszMxNZWVnQ1dVFZWUlNDU1uf7x4YyxJ06cwPz583HgwAHMmjWr29pH/SMhhJCWUEDZBSorK3Hy5EmEhITg1KlTMDY2hkAgwP/+9z8EBATIvF5SMg1KKBR22bSvrKwsZGdnw8XFBXp6ep06RldgjCE5ORmVlZVwdXWFuro6GhoapNLtq6ur4/jx49xUrosXL2LEiBHd2s5Dhw4hICAAv/zyCzw8PLBlyxYcPnwYt2/fhpmZGfz9/dGvXz9s3LhR6nnjxo1Dv379cPDgQant1dXV+PLLL/HSSy/B3Nwcd+/exfLly1FVVYWkpCS51PQkpCdpampCREQEQkJCcOzYMdTX10NJSQmzZ8/Gpk2bZB51lPQXQqEQZWVl0NbW5oLLztZ+LCkpQUJCAuzs7NCvX79OHaOr3L9/HxkZGVxf3VLG2IiICGhoaODbb79FcHAwXn755W5tI/WPhBBCWkIBZRf7+eefsWTJEowdOxbR0dEwMDDgpn1JpnXJoq6ujsuGWFlZCX19fS64lOUCjDGGzMxM3L9/v82kDt2hpWDyUU1NTUhLS0NQUBBiY2NhZmaGl19+Gd999123Z8Tdvn07V7jbyckJP/74Izw9PQE8KNRtZWWF4OBgbv+0tDQMHToUZ86cwQsvvCB1rLq6Ovj5+SEuLg7l5eWwsLDA5MmTsW7dOpiZmXXnaRGicFFRUZgyZQqGDRuGnJwc1NTUYPr06eDz+Zg0aZLMo45NTU1ccFlSUtKp8kVFRUVITEzEsGHD0Ldv3yc9tSciWZLg4uLS4iwSSZK3999/H+fOnYOSkhJefPFFrF+/Xq6JylpC/SMhhJBHUUDZxQ4cOABLS0uMHz8edXV13JqiEydOQFNTEzNnzoSfnx9Gjx4tc6AkmfZVWFiI8vJy6OrqcuVIWroAk9TYzM/Ph6ura6u1y7oDYwwpKSkoLy+Hm5tbq3ecGWPYtm0bvv32Wxw/fhzl5eWIjo6Wac0NIaR3iI+Px9WrV/Hee+9BJBIhKioKISEhCAsLQ2lpKXx8fODn54fJkyfLPOrY3NyM4uJiCIVCFBcXQ0NDgwsuH54m+jChUIhbt25hxIgRCg9cJMGks7MzDAwMWt3v0qVLmDNnDrZs2QJ7e3scO3YMK1askPuaeEIIIaQ9FFB2k8bGRpw7dw4hISE4fvw4lJSUMGPGDMyaNQvjxo2Teb1kY2MjF1yWlpZCW1tbqtYlYwxpaWkoKiqCi4tLp6eCdQXGGFJTU1FaWgo3N7dWR1YZY/jll1/w1VdfybUoNyGkZxKLxbh58yaOHj2KsLAw5Ofn44UXXoCfnx+mTJnSZnKah4lEIpSUlHDBpYqKChdcSmrjFhQUIDU1FQ4ODjAxMZHzmbUtLy8PaWlp7QaTV69exYsvvohvv/0W77zzTpeVMyGEEEK6AgWUCtDU1ITIyEgcPXoUx44dQ1NTE2bMmAE+n4+JEyfKvG5EMu2rsLAQJSUl0NTUhJKSEhobG+Hm5qbQ4uAdCSb37t2LVatW4eTJkxg3blw3t5QQ0pOIxWIkJCRwwWVmZia8vb3B5/Mxffp06OnpyVwLWLIGUVIbt0+fPqioqICjo6NcSyfJQpLFtr3M2zdu3ACfz8e6desQFBREwSQhhJAehwJKBROJRLh8+TIXXFZVVWHatGng8/nw9vaWeU1RY2MjEhISUFVVBcYY1NXVuYQVrU37khfGGG7fvo2SkpJ2g8nuKspNCOl9JFPmjx49itDQUKSmpmLixInw8/PD9OnTYWRkJHNwmZ6ejtzcXCgrK4PH40nVApY1cVpXkTWYjIuLw4wZM/D5559j6dKlFEwSQgjpkbr3W5Q8RllZGePHj8e2bdtw7949/PPPPzA3N8eKFStgZWUFf39/hIaGoqamptVjiMVi3L59G01NTRgzZgwmTJiAIUOGoKGhAbGxsfjvv/9w+/ZtlJWVQd73DyRTbouLi+Hq6tpmMHn48GF8/PHHCAkJkVswuWPHDlhZWUFDQwOenp6Ijo5udd/g4GDweDypn0fbzxjDmjVr0LdvX2hqasLb2xt37tyRS9sJedbxeDwMHz4ca9euRXx8PG7duoXx48fjt99+g62tLWbOnIndu3dDKBS22bfl5OSgoKAAbm5umDBhAhwdHaGiooLbt28jMjISSUlJKCwshEgkkvs5FRQU4Pbt23B0dGwzmExKSoKvry+WL18ut2CS+kdCCCFdgUYoeyixWIyYmBhu2ldeXh68vb3h5+eHqVOncmuKxGIxEhMTUV9fDxcXl8fKi4jFYpSWlnLrLiV35s3MzGBgYNCld+YZY0hPT0dhYSHc3NzaHF0NDQ3Fu+++i0OHDmH69Old1oaHHTp0CP7+/ti5cyc8PT2xZcsWHDlyBGlpaTA1NX1s/+DgYHz00UdIS0vjtvF4PKmkHd988w02btyIffv2wdraGqtXr0ZSUhJSUlLkVnSdECKNMYasrCyEhIQgNDQUN27cwOjRo+Hr6ws+nw8LCwsuAMvMzEROTg5cXFweW4vJGENlZSXXP9bX18PY2BhmZmYwNjbu8gzTAoEAycnJcHJyarMeY0pKCqZOnYqgoCCsWbNGLsEk9Y+EEEK6DOuE7du3s4EDBzJ1dXXm4eHBrl+/3ub+hw8fZnZ2dkxdXZ2NGDGCnTx5UupxsVjMVq9ezczNzZmGhgabNGkSS09P70zTnkoikYjFxcWxzz77jA0bNoypq6uzadOmsW3btjFvb28WHBzMysvLWU1NTZs/VVVV7P79+ywmJob9888/7OTJkyw6OpplZ2ezqqqqdp/f1k91dTWLjY1lp06dYkVFRW3ue/DgQaalpcXCwsLk+r55eHiw999/X+p9tLCwYBs3bmxx/7179zI9Pb1WjycWi5m5uTn77rvvuG3l5eVMXV2d/fXXX13WbtK7Uf/YvcRiMbt37x774Ycf2Lhx45iKigrz9PRkX3/9NfP392efffYZEwgEMvVhAoGAJSYmsnPnzrHjx4+zy5cvszt37sjUv7b3k5mZyY4fP87u3bvX5n6xsbHMzMyMrVy5konFYrm9b9Q/EkII6SodHp46dOgQli5dirVr1yI2NhaOjo7w8fFBYWFhi/tfvXoVr732GhYsWIC4uDj4+fnBz88Pt27d4vb59ttv8eOPP2Lnzp24fv06+vTpAx8fH9TX13c+Un6KKCkpwcnJCevXr8etW7cQGxsLJycnrFq1Crdu3cIff/yBP/74A8XFxW1O+1JSUoKhoSGGDh2K5557Dk5OTty0r4iICCQlJUEoFHZ42hdjDHfu3IFQKISrq2ubyYD+/fdfLFiwAMHBwfDz8+vQ63REY2MjYmJi4O3tzW1TUlKCt7c3oqKiWn1edXU1Bg4cCEtLS/D5fCQnJ3OPZWVlQSAQSB1TT08Pnp6ebR6TPDuof+x+PB4PAwYMwOLFixEZGYl79+7h9ddfx86dO3HkyBFcvHgRu3btQkZGRpv9I4/Hg46ODmxtbeHl5YVRo0ZBX18fOTk5iIyMRGxsLHJzc9HY2NjhNkrKlIwcObLNZEAZGRmYMWMGXn/9daxfv15uayapfySEENKVOhxQfv/991i4cCHmz5+PYcOGYefOndDS0sKePXta3H/r1q2YMmUKli1bBnt7e6xbtw4uLi7Yvn07gAfByJYtW/D555+Dz+dj5MiR2L9/P/Lz83Hs2LEnOrmnEY/Hw7Bhw1BZWQkPDw+cOnUKEydOxN69e2Fra4sZM2Zg165dEAgE7V486evrw87ODmPHjuWmqGZkZCAiIgIJCQkoKChAc3Nzm+1h/7/mpUAgaDeYPH/+PAICArBr1y7MmTOn0++BLIqLiyESiR6rMWdmZgaBQNDic+zs7LBnzx6Eh4fjwIEDEIvFGD16NHJzcwGAe15HjkmeLdQ/KhaPx4OFhQVMTU3B4/EQERGBgIAAXLlyBW5ubvDy8sKmTZuQmpra7nryPn36wNraGqNGjcKYMWNgZGSE/Px8XLp0CTdv3kROTo5MQX1hYSEXTLZVpiQ7OxszZszgyoPIM1EQ9Y+EEEK6Uoe+sTpzVzMqKkpqfwDw8fHh9qe7mp2zfv16/P3333B0dMTKlSsRHR2N9PR0TJ8+HYcPH4adnR2mTJmCHTt2IDc3t93gUldXF4MGDcLo0aPh6ekJbW1tZGdnIyIiAnFxccjLy3vszjxjDHfv3kV+fj5cXV3brHl56dIlzJ07F9u3b8drr73WZe9DV/Ly8oK/vz+cnJwwfvx4hIaGwsTEBL/88ouim0Z6Aeofe47Zs2fjxo0b8PDwwNtvv41///0XAoEAS5cuRVxcHMaMGQN3d3esW7cOSUlJEIvFbR5PU1MTAwcOhIeHB8aOHQszMzMUFhbi8uXLiI6ORnZ2Nmprax97XmFhIZKSktqteZmbm4vp06dj2rRp2Lp1a7dnnZUF9Y+EEEJa06Fvrc7c1RQIBG3uT3c1O0dPT08q6Q2Px4O1tTU++eQTXLlyBZmZmZg9ezZOnDiB4cOHY9KkSdi6dSuys7PbDS61tbW5aV9eXl7Q19dHbm4uLl26hJiYGNy/fx8NDQ3IzMxEXl4e3Nzc2gwmr1y5gpdffhn/+9//EBAQ0C2p742NjaGsrAyhUCi1XSgUwtzcXKZjqKqqwtnZGRkZGQDAPe9JjkmeXtQ/9hxKSkpSiWV4PB4MDQ0RGBiIv//+G0KhEJ999hnS0tLw/PPPw9nZGatXr0ZsbGy7waWGhgYsLS3h5uaG5557DhYWFigtLcXVq1dx7do1ZGZmorq6GkVFRUhKSsKIESNaTHIjUVBQgGnTpmHixInYsWNHtwST1D8SQgjpSj3vNih5YjweD5aWlvjoo48QERGBnJwc+Pv74/z583B0dMRzzz2HzZs3486dOzJP+/L09MSYMWNgbGwMgUCAS5cuISsrCxYWFm1eAEVHR2P27NnYsGEDFi5c2G111NTU1ODq6orz589z28RiMc6fPw8vLy+ZjiESiZCUlIS+ffsCAKytrWFubi51zMrKSly/fl3mYxJCFE9PTw/z5s1DaGgohEIhvv76a+Tm5mLatGlwcHDAihUrcP369XaDSzU1NfTv3x8uLi4YP348BgwYgMrKSly7dg3x8fEwNjaGlpZWq/2sUCjE9OnTMWrUKOzevRvKysryON0W2039IyGEkK7SoYCyM3c1zc3N29yf7mrKF4/HQ9++ffHee+/h7NmzyM/Px6JFixAVFQUPDw94eXlh48aNSElJaTe4lEz7MjIygoqKCqysrFBZWYkrV67g+vXryMrKkpr2FRsbi1mzZmHt2rV4//33u70o99KlS7F7927s27cPqampWLRoEWpqajB//nwAgL+/P1auXMnt/9VXX+HMmTPIzMxEbGwsXn/9ddy7dw9vvfUWgAfv5eLFi7F+/XocP34cSUlJ8Pf3h4WFhVwTDJHegfrH3klbWxsvv/wyDh06BIFAgO+//x6lpaV48cUXMXToUHzyySe4fPlyu8nKVFVVYWFhgf79+wMALC0twePxcOPGDVy5cgXp6emoqKjg+tni4mLMnDkTjo6OCA4O7rZgUoL6R0IIIV2lQ0W2Hr6rKfmCkNzVDAoKavE5Xl5eOH/+PBYvXsxtO3v2LHfH8uG7mk5OTgD+767mokWLOn5GpFWSGpRvvfUWFixYgPLychw/fhwhISHYvHkzrKyswOfz4efnhxEjRrQ48piVlYWcnBy4ublBR0cHwIO1Y0VFRSgsLMTdu3dx6dIlFBUV4e+//8by5cuxZMmSbg8mAeCVV15BUVER1qxZA4FAACcnJ5w6dYqbPpiTkyN1jmVlZVi4cCEEAgEMDAzg6uqKq1evYtiwYdw+y5cvR01NDd5++22Ul5dj7NixOHXqFNVYI9Q/PgW0tLQwa9YszJo1C/X19Th37hxCQ0Px2muvQVVVFTNnzoSfnx/Gjh0LVVXVx55fUlKCxMREDB8+nBu5E4lEKCkpQWFhIWJjY5Geno6oqCjcvn0bgwYNwoEDB7q83qUsqH8khBDSZTpaZ+TgwYNMXV2dBQcHs5SUFPb2228zfX19JhAIGGOMvfHGG2zFihXc/leuXGEqKips8+bNLDU1la1du5apqqqypKQkbp9NmzYxfX19Fh4ezhITExmfz2dGRkZswIABMtVy27VrFxs7dizT19dn+vr6bNKkSY/tHxAQwABI/fj4+HT09J9aFRUV7I8//mAvvvgi09LSYra2tmzJkiXs0qVLXI3K69evs5MnT7ZZ0628vJx9++23bNCgQUxFRYXZ2dmxw4cPK/r0COkW1D8+nRobG9np06fZ22+/zUxNTZmRkRELCAhgYWFhrKysjNXU1LDk5GT2999/s4yMjDZrAYeHhzNnZ2emrq7OTE1N2dq1axV9eoQQQsgT6XBAyRhj27ZtYwMGDGBqamrMw8ODXbt2jXts/PjxLCAgQGr/w4cPsyFDhjA1NTU2fPjwVgt3m5mZccW9VVVV2Z49e1hycjJbuHAh09fXZ0KhsMX2zJ07l+3YsYPFxcWx1NRUFhgYyPT09Fhubi63T0BAAJsyZQorKCjgfkpLSztz+k+9qqoqdvjwYfbKK68wHR0dNnDgQDZ16lRmZWXF7t+/L1NR7lWrVrGqqip25MgRqc8HIU876h+fbk1NTezixYvsvffeYxYWFkxfX5/5+voyXV1dFhkZ2Wb/WFBQwDw9PdnkyZNZVVUVu3DhAgsJCVH0KRFCCCFPhMdYOwvnFMDT0xPu7u5cLTaxWAxLS0t88MEHWLFiRbvPF4lEMDAwwPbt2+Hv7w8ACAwMRHl5OdVu66C6ujoEBQXhwIEDGDBgAGpra+Hr6ws/Pz94eXlJTdXKyMjA1KlTMXfuXHzzzTc9MvU9Ib0d9Y89h0gkwk8//YSPP/4YgwYNQl5eHnx8fODn54fJkydL1eWtrq7Giy++CDU1NZw4caLNmr2EEEJIb9Ljrvg7U8vtUbW1tWhqaoKhoaHU9oiICJiamsLOzg6LFi1CSUlJl7b9aaSkpISMjAxcvnwZSUlJ2LVrFxobGzFv3jwMHjwYH374IS5evIiMjAzMmDEDL730EgWThMgJ9Y89i7KyMpKSkrBz507cunULZ86cwcCBA7FmzRpYWVlh3rx5OHLkCIRCIV5++WUoKSnh+PHjFEwSQgh5qvS4Ecr8/Hz069cPV69elUo1vnz5ckRGRuL69evtHuO9997D6dOnkZyczCUDOHjwILS0tGBtbY27d+9i1apV0NbWRlRUVLdn1+ttGGOPJdVpampCREQEQkJCEBYWhuLiYsyZMwd//vknBZOEyAn1jz1PS/2jWCxGfHw8jh49irCwMKSnp8PW1hY3b96Erq6uglpKCCGEyMdTd+W/adMmHDx4EGFhYVKZ5V599VX4+vrCwcEBfn5+OHHiBG7cuIGIiAjFNbaXaClDq6qqKl544QXs3LkTeXl5+PHHH7Fv3z65BpM7duyAlZUVNDQ04Onpiejo6Fb33b17N8aNGwcDAwMYGBjA29v7sf0DAwPB4/GkfqZMmSK39hOiaNQ/dr2W+kclJSW4uLhgw4YNSElJwZEjRxAeHi7XYJL6R0IIIYrS4wLKztRyk9i8eTM2bdqEM2fOYOTIkW3ua2NjA2NjY2RkZDxxm591KioqeP/996Guri631zh06BCWLl2KtWvXIjY2Fo6OjvDx8UFhYWGL+0dEROC1117DxYsXERUVBUtLS0yePBl5eXlS+02ZMgUFBQXcz19//dXpNu7fvx9GRkZoaGiQ2u7n54c33nij08clRIL6x96Hx+PhxRdfhL29vdxeg/pHQgghCqXIjECt8fDwYEFBQdzvIpGI9evXj23cuLHV53zzzTdMV1eXRUVFyfQa9+/fZzwej4WHhz9xe4n8eXh4sPfff5/7XSQSMQsLizY/Ew9rbm5mOjo6bN++fdy2gIAAxufzu6yNtbW1TE9PT6pMilAoZCoqKuzChQtd9jrk2Ub9I3kU9Y+EEEIUqceNUALA0qVLsXv3buzbtw+pqalYtGgRampqMH/+fACAv78/Vq5cye3/zTffYPXq1dizZw+srKwgEAggEAhQXV0N4EF2vWXLluHatWvIzs7G+fPnwefzMWjQIPj4+CjkHInseksiEk1NTcydOxd79+7ltkmy406YMKHTxyXkYdQ/kodR/0gIIUThFB3RtqYjtdwGDhz4WFFuAFzB6NraWjZ58mRmYmLCVFVV2cCBA9nChQvZhg0b2MCBA2UqDr53797Hjq+uri61j6RenLm5OdPQ0GCTJk1i6enpXfq+PIvy8vIYAHb16lWp7cuWLWMeHh4yHWPRokXMxsaG1dXVcdv++usvrlh8WFgYs7e3Z+7u7qy5ubnTbY2NjWXKyspcjT8HBwf21Vdfdfp4hLSE+kciQf0jIYQQReuxAaW8HTx4kKmpqclcHHzv3r1MV1dXqvC3QCCQ2mfTpk1MT0+PHTt2jCUkJDBfX19mbW0t9SVNOu5JL5g2btzIDAwMWEJCQpv73b17lwFg586de6L2uri4sA0bNrCbN28yJSUllpOT80THI6S7Uf/Ye1D/SAghRNF65JTX7vD9999j4cKFmD9/PoYNG4adO3dCS0sLe/bsafU5PB4P5ubm3I+ZmRn3GGMMW7Zsweeffw4+n4+RI0di//79yM/Pp2LhT6i3JSJ56623EBwcjL1798Lb2xuWlpZPdDxCuhv1j70H9Y+EEEIU7ZkMKDu75qS6uhoDBw6EpaUl+Hw+kpOTuceysrIgEAikjqmnpwdPT0+Z17GQlqmpqcHV1RXnz5/ntonFYpw/f16qFt+jvv32W6xbtw6nTp2Cm5tbu6+Tm5uLkpIS9O3b94naO3fuXOTm5mL37t148803n+hYhHQ36h97F+ofCSGEKNozGVAWFxdDJBJJ3UEHADMzMwgEghafY2dnhz179iA8PBwHDhyAWCzG6NGjkZubCwDc8zpyTCK73pSIRE9PDy+99BK0tbXh5+f3RMcipLtR/9j7UP9ICCFEkVQU3YDewsvLS+pu7+jRo2Fvb49ffvkF69atU2DLng2vvPIKioqKsGbNGggEAjg5OeHUqVPcBWpOTg6UlP7v/sjPP/+MxsZGzJ49W+o4a9euxRdffAFlZWUkJiZi3759KC8vh4WFBSZPnox169Z1ST3NvLw8zJs3T661OQnpKah/VCzqHwkhhCjSMxlQPsmaEwlVVVU4Oztz60kkzxMKhVJTgoRCIZycnLqm4c+4oKAgBAUFtfhYRESE1O/Z2dltHktTUxOnT5/uopb9n7KyMkRERCAiIgI//fRTlx+fEHmj/rF3ov6REEKIojyTU147u+bkYSKRCElJSdzFkbW1NczNzaWOWVlZievXr8t8TNL7OTs7IzAwEN988w3s7OwU3RxCOoz6RyIv1D8SQsjT6ZkcoQQerDkJCAiAm5sbPDw8sGXLlsfWnPTr1w8bN24EAHz11VcYNWoUBg0ahPLycnz33Xe4d+8e3nrrLQAPMhwuXrwY69evx+DBg2FtbY3Vq1fDwsKC1ok8Q9q7809Ib0D9I5EH6h8JIeTp9EyOUAIP1pxs3rwZa9asgZOTE+Lj4x9bc1JQUMDtX1ZWhoULF8Le3h7Tpk1DZWUlrl69imHDhnH7LF++HB988AHefvttuLu7o7q6GqdOncJvv/0GKysraGhowNPTE9HR0a22a8KECeDxeI/9TJ8+ndsnMDDwscenTJkih3eJEPIs6s7+UUNDAzt27KA+khBCCOmleIwxpuhGPM0OHToEf39/7Ny5E56entiyZQuOHDmCtLQ0mJqaPrZ/aWkpGhsbud9LSkrg6OiIX3/9FYGBgQAeXCwJhULs3buX209dXR0GBgZyPx9CCOlK1EcSQgghvdszO0LZXTpaINzQ0FCqOPjZs2ehpaWFOXPmSO2nrq4utV9vuVDqyEgEABw5cgRDhw6FhoYGHBwc8M8//0g9zhjDmjVr0LdvX2hqasLb2xt37tyR5ykQQroQ9ZHSqI8khBDS21BAKUedLRD+sN9++w2vvvoq+vTpI7U9IiICpqamsLOzw6JFi1BSUtKlbZeHQ4cOYenSpVi7di1iY2Ph6OgIHx8fFBYWtrj/1atX8dprr2HBggWIi4uDn58f/Pz8cOvWLW6fb7/9Fj/++CN27tyJ69evo0+fPvDx8UF9fX13nRYhpJOoj5RGfSQhhJBeiRG5ycvLYwDY1atXpbYvW7aMeXh4tPv869evMwDs+vXrUtv/+usvFh4ezhITE1lYWBizt7dn7u7urLm5uUvb39U8PDzY+++/z/0uEomYhYUF27hxY4v7v/zyy2z69OlS2zw9Pdk777zDGGNMLBYzc3Nz9t1333GPl5eXM3V1dfbXX3/J4QwIIV2J+khp1EcSQgjpjWiEsgf77bff4ODgAA8PD6ntr776Knx9feHg4AA/Pz+cOHECN27ceKzWWE/SmZGIqKgoqf0BwMfHh9s/KysLAoFAah89PT14enrKPLpBCOm9qI+kPpIQQojiUUApR09SILympgYHDx7EggUL2n0dGxsbGBsbc0XEe6Li4mKIRCIuS6SEmZkZBAJBi88RCARt7i/5b0eOSQjpOaiP/D/URxJCCOmtKKCUoycpEH7kyBE0NDTg9ddfb/d1cnNzUVJSwhURJ4SQ3oD6SEIIIaT3o4BSzpYuXYrdu3dj3759SE1NxaJFix4rEL5y5crHnvfbb7/Bz88PRkZGUturq6uxbNkyXLt2DdnZ2Th//jz4fD4GDRoEHx+fbjmnzujMSIS5uXmb+0v+25nRDUJIz0B95APURxJCCOmtKKCUs44WCAeAtLQ0XL58ucWpXMrKykhMTISvry+GDBmCBQsWwNXVFf/99x+uX7+OmTNnwsLCAjweD8eOHWu3fREREXBxcYG6ujoGDRqE4ODgx/bpaBr7lnRmJMLLy0tqfwA4e/Yst7+1tTXMzc2l9qmsrMT169fbHd0ghPQM3dVHfvvtt5g9e3aP7B8B6iMJIYT0YorOCkS6zj///MM+++wzFhoaygCwsLCwNvfPzMxkWlpabOnSpSwlJYVt27aNKSsrs1OnTnH7HDx4kKmpqbE9e/aw5ORktnDhQqavr8+EQmGH23fw4EGmrq7OgoODWUpKCnv77beZvr4+EwgEjDHG3njjDbZixQpu/ytXrjAVFRW2efNmlpqaytauXctUVVVZUlISt8+mTZuYvr4+l9GRz+cza2trVldX1+H2EUKeXj29f5Qcj/pIQgghvQ0FlE8pWS6Yli9fzoYPHy617ZVXXmE+Pj7c7x1NY9+ebdu2sQEDBjA1NTXm4eHBrl27xj02fvx4FhAQILX/4cOH2ZAhQ5iamhobPnw4O3nypNTjYrGYrV69mpmZmTF1dXU2adIklpaW1qm2EUKeDT21f2SM+khCCCG9D48xxhQ7RkrkgcfjISwsDH5+fq3u89xzz8HFxQVbtmzhtu3duxeLFy9GRUUFGhsboaWlhaNHj0odJyAgAOXl5QgPD5ffCRBCiJxQ/0gIIYR0nWdiDWVRURHMzc2xYcMGbtvVq1ehpqb22PqTZ0lrKecrKytRV1fXqTT2hJDehfrHllH/SAghhMhGRdEN6A4mJibYs2cP/Pz8MHnyZNjZ2eGNN95AUFAQJk2apOjmEUKIwlD/SAghhJAn8UwElAAwbdo0LFy4EPPmzYObmxv69OmDjRs3KrpZCtVaynldXV1oampCWVm500XHCSG9B/WPj6P+kRBCCJHNMzHlVWLz5s1obm7GkSNH8Mcff0BdXV3RTVKo9lLOP0nRcUJI70L9ozTqHwkhhBDZPFMB5d27d5Gfnw+xWIzs7GxFN6fLVVdXIz4+HvHx8QCArKwsxMfHIycnBwCwcuVK+Pv7c/u/++67yMzMxPLly3H79m389NNPOHz4MJYsWcLt017RcULI04H6R+ofCSGEkE5RdJrZ7tLQ0MAcHR1ZQEAA27BhAzM1Ne10rbCe6uLFiwzAYz+SNPMBAQFs/Pjxjz3HycmJqampMRsbG7Z3797HjttWGntCSO9H/SP1j4QQQkhnPTNlQ5YtW4ajR48iISEB2traGD9+PPT09HDixAlFN40QQhSK+kdCCCGEdNYzMeU1IiICW7Zswe+//w5dXV0oKSnh999/x3///Yeff/5Z0c0jhBCFof6REEIIIU/imRmhJIQQQgghhBDStZ6JEUpCCCGEEEIIIV2PAkpCCCGEEEIIIZ1CASUhhBBCCCGEkE6hgJIQQgghhBBCSKdQQEkIIYQQQgghpFMooCSEEEIIIYQQ0ikUUBJCCCGEEEII6RQKKAkhhBBCCCGEdAoFlIQQQgghhBBCOoUCSkIIIYQQQgghnUIBJSGEEEIIIYSQTlFRdAMIIbIRiURoampSdDMIIYT0MKqqqlBWVlZ0MwghzygKKAnp4RhjEAgEKC8vV3RTCCGE9FD6+vowNzcHj8dTdFMIIc8YCigJ6eEkwaSpqSm0tLToYoEQQgiHMYba2loUFhYCAPr27avgFhFCnjUUUBLSg4lEIi6YNDIyUnRzCCGE9ECampoAgMLCQpiamtL0V0JIt6KkPIT0YJI1k1paWgpuCSGEkJ5M8j1Ba+0JId2NAkpCegGa5koIIaQt9D1BCFEUCigJIYQQQgghhHQKBZSEkKdGcHAw9PX1Fd0MQshTICIiAjwejzJsE0JIOygpDyGkywUGBmLfvn0AHtRHGzBgAPz9/bFq1SqoqMiv23nllVcwbdo0uR1fFg+fu4qKCgwNDTFy5Ei89tprCAwMhJKS7PfxgoODsXjxYrqgfUKSf5ONGzdixYoV3PZjx45h1qxZYIx1W1senpaopaUFCwsLjBkzBh988AFcXV07dKwJEybAyckJW7Zs6eJWdo0fztzu1tdbMnmozPu2Nz107dq1mDBhwhO2iBBCng00QkkIkYspU6agoKAAd+7cwccff4wvvvgC3333XYv7NjY2dslrampqwtTUtEuO9SQk556dnY1///0XEydOxEcffYQZM2agublZ0c17JmloaOCbb75BWVmZopuCvXv3oqCgAMnJydixYweqq6vh6emJ/fv3K7ppz4yCggLuZ8uWLdDV1ZXa9sknnyisbV3VHxJCSHehgJIQIhfq6uowNzfHwIEDsWjRInh7e+P48eMAHowY+fn54euvv4aFhQXs7OwAAPfv38fLL78MfX19GBoags/nIzs7GwBw5swZaGhoPDZa99FHH+H5558H0PKU159//hm2trZQU1ODnZ0dfv/9d+6x7Oxs8Hg8xMfHc9vKy8vB4/EQEREBACgrK8O8efNgYmICTU1NDB48GHv37pXp3Pv16wcXFxesWrUK4eHh+PfffxEcHMzt9/3338PBwQF9+vSBpaUl3nvvPVRXVwN4MN1u/vz5qKioAI/HA4/HwxdffAEA+P333+Hm5gYdHR2Ym5tj7ty5XA060jJvb2+Ym5tj48aNbe53+fJljBs3DpqamrC0tMSHH36ImpoaAMD27dsxYsQIbt9jx46Bx+Nh586dUq/z+eeft/kakgL0VlZWmDx5Mo4ePYp58+YhKCiIC3hLSkrw2muvoV+/ftDS0oKDgwP++usv7hiBgYGIjIzE1q1buc9HdnY2RCIRFixYAGtra2hqasLOzg5bt27t8Pv1tDM3N+d+9PT0wOPxpLZpa2tz+8bExMDNzQ1aWloYPXo00tLSpI4VHh4OFxcXaGhowMbGBl9++aXUjaOcnBzw+Xxoa2tDV1cXL7/8MoRCIff4F198AScnJ/z666+wtraGhoYG9u/fDyMjIzQ0NEi9lp+fH9544w05vSuEENI5FFASQrqFpqam1J338+fPIy0tDWfPnsWJEyfQ1NQEHx8f6Ojo4L///sOVK1egra2NKVOmoLGxEZMmTYK+vj5CQkK4Y4hEIhw6dAjz5s1r8TXDwsLw0Ucf4eOPP8atW7fwzjvvYP78+bh48aLM7V69ejVSUlLw77//IjU1FT///DOMjY07fP7PP/88HB0dERoaym1TUlLCjz/+iOTkZOzbtw8XLlzA8uXLAQCjR49+bOREMmrS1NSEdevWISEhAceOHUN2djYCAwM73KZnibKyMjZs2IBt27YhNze3xX3u3r2LKVOm4KWXXkJiYiIOHTqEy5cvIygoCAAwfvx4pKSkoKioCAAQGRkJY2Nj7uZDU1MToqKiOjVVcsmSJaiqqsLZs2cBAPX19XB1dcXJkydx69YtvP3223jjjTcQHR0NANi6dSu8vLywcOFC7vNhaWkJsViM/v3748iRI0hJScGaNWuwatUqHD58uMNtIg989tln+N///oebN29CRUUFb775JvfYf//9B39/f3z00UdISUnBL7/8guDgYHz99dcAALFYDD6fj9LSUkRGRuLs2bPIzMzEK6+8IvUaGRkZCAkJQWhoKOLj4zFnzhyIRCLuJhzwoMbkyZMnpV6fEEJ6AlpDScgzorm5GZmZmbCxsZHrOsZHMcZw/vx5nD59Gh988AG3vU+fPvj111+hpqYGADhw4ADEYjF+/fVXbn3T3r17oa+vj4iICEyePBmvvvoq/vzzTyxYsADAg6C0vLwcL730UouvvXnzZgQGBuK9994DACxduhTXrl3D5s2bMXHiRJnan5OTA2dnZ7i5uQEArKysOvU+AMDQoUORmJjI/b548WLu/62srLB+/Xq8++67+Omnn6CmpiY1cvKwhy8obWxs8OOPP8Ld3R3V1dVSIys9mqgZKMsGDKwA5e75PM6aNQtOTk5Yu3Ytfvvtt8ce37hxI+bNm8f9uwwePBg//vgjxo8fj59//hkjRoyAoaEhIiMjMXv2bERERODjjz/mRgCjo6PR1NSE0aNHd7htQ4c+WP8nGZHv16+f1LTLDz74AKdPn8bhw4fh4eEBPT09qKmpQUtLS+rzoaysjC+//JL73draGlFRUTh8+DBefvnlDreLAF9//TXGjx8PAFixYgWmT5+O+vp6aGho4Msvv8SKFSsQEBAA4MHf47p167B8+XKsXbsW58+fR1JSErKysmBpaQkA2L9/P4YPH44bN27A3d0dwINprvv374eJiQn3unPnzsXevXsxZ84cAA/6yAEDBtDaTkJIj0MjlIQ8A5qbm+Hl5QU7Ozt4eXl1yzq+EydOQFtbGxoaGpg6dSpeeeUVbsomADg4OHDBJAAkJCQgIyMDOjo60NbWhra2NgwNDVFfX4+7d+8CAObNm4eIiAjk5+cDAP744w9Mnz691cyuqampGDNmjNS2MWPGIDU1VebzWLRoEQ4ePAgnJycsX74cV69elfm5j2KMSSUDOXfuHCZNmoR+/fpBR0cHb7zxBkpKSlBbW9vmcWJiYjBz5kwMGDAAOjo63MVuTk5Op9vWrUTNwG/ewHbXB/8Vdd+60m+++Qb79u1r8TOQkJCA4OBg7vOnra0NHx8fiMViZGVlgcfj4bnnnkNERATKy8uRkpKC9957Dw0NDbh9+zYiIyPh7u7OFZjvCEliIMnnQyQSYd26dXBwcIChoSG0tbVx+vRpmf6Nd+zYAVdXV5iYmEBbWxu7du3qPZ+NHmjkyJHc//ft2xcAuCnmCQkJ+Oqrr6Q+M5JR49raWqSmpsLS0pILJgFg2LBh0NfXl/oMDhw4UCqYBICFCxfizJkzyMvLA/BgSn9gYCDVmySE9DgUUBLyDMjMzMTNmzcBADdv3kRmZqbcX3PixImIj4/HnTt3UFdXh3379qFPnz7c4w//PwBUV1fD1dUV8fHxUj/p6emYO3cuAMDd3R22trY4ePAg6urqEBYW1up0V1lIMq4+nOWzqalJap+pU6fi3r17WLJkCfLz8zFp0qROJ+xITU2FtbU1gAcjUTNmzMDIkSMREhKCmJgY7NixA0DbSTlqamrg4+MDXV1d/PHHH7hx4wbCwsLafV6PUpYN5Mc9+P/8uAe/d5PnnnsOPj4+WLly5WOPVVdX45133pH6/CUkJODOnTuwtbUF8CCzakREBP777z84OztDV1eXCzIjIyO54L6jJMGF5PPx3XffYevWrfj0009x8eJFxMfHw8fHp91/44MHD+KTTz7BggULcObMGcTHx2P+/Pm957PRA6mqqnL/LwnmxGIxgAefmS+//FLqM5OUlIQ7d+5AQ0ND5td4tD8EAGdnZzg6OmL//v2IiYlBcnIyTW0nhPRINOWVkGeAjY0N3NzccPPmTbi7u8PGxkbur9mnTx8MGjRI5v1dXFxw6NAhmJqaQldXt9X95s2bhz/++AP9+/eHkpISpk+f3uq+9vb2uHLlCjcdDQCuXLmCYcOGAQA3IlBQUABnZ2cAkErQI2FiYoKAgAAEBARg3LhxWLZsGTZv3izzuQHAhQsXkJSUhCVLlgB4MMooFovxv//9jwtsH13npqamBpFIJLXt9u3bKCkpwaZNm7hRD8nNgl7DwAqwcH4QTFo4P/i9G23atAlOTk5cMigJFxcXpKSktPm5HT9+PBYvXowjR45wUw8nTJiAc+fO4cqVK/j444871SbJellvb28ADz6nfD4fr7/+OoAHAUx6ejr32QVa/nxcuXIFo0eP5qZ5A+BG+EnXc3FxQVpaWqufGXt7e9y/fx/379/n/l5TUlJQXl4u9W/ZmrfeegtbtmxBXl4evL29pUY6CSGkp6ARSkKeASoqKoiKikJaWhquXr3arWsoZTVv3jwYGxuDz+fjv//+Q1ZWFiIiIvDhhx9KJVGZN28eYmNj8fXXX2P27NlQV1dv9ZjLli1DcHAwfv75Z9y5cwfff/89QkNDuRFGTU1NjBo1Cps2bUJqaioiIyMfy9C5Zs0ahIeHIyMjA8nJyThx4gTs7e3bPJeGhgYIBALk5eUhNjYWGzZsAJ/Px4wZM+Dv7w8AGDRoEJqamrBt2zZkZmbi999/l8oWCjxYV1ldXY3z58+juLgYtbW1GDBgANTU1LjnHT9+HOvWrevQe61wyirAgnNAUMyD/3bTGkoJBwcHzJs3Dz/++KPU9k8//RRXr15FUFAQN7oeHh7OJeUBHkx/NDAwwJ9//ikVUB47dgwNDQ2PTbFuSXl5OQQCAe7du4ezZ89i9uzZ+PPPP/Hzzz9z07cHDx6Ms2fP4urVq0hNTcU777wjlRkUePD5uH79OrKzs1FcXAyxWIzBgwfj5s2bOH36NNLT07F69WrcuHHjyd4w0qo1a9Zg//79+PLLL5GcnIzU1FQcPHiQ60e8vb25z1tsbCyio6Ph7++P8ePHc+uy2zJ37lzk5uZi9+7dlIyHENJzMUJIj1VXV8dSUlJYXV2dopvSIQEBAYzP53f48YKCAubv78+MjY2Zuro6s7GxYQsXLmQVFRVS+3l4eDAA7MKFC1Lb9+7dy/T09KS2/fTTT8zGxoapqqqyIUOGsP3790s9npKSwry8vJimpiZzcnJiZ86cYQDYxYsXGWOMrVu3jtnb2zNNTU1maGjI+Hw+y8zMbPPcADAATEVFhZmYmDBvb2+2Z88eJhKJpPb9/vvvWd++fZmmpibz8fFh+/fvZwBYWVkZt8+7777LjIyMGAC2du1axhhjf/75J7OysmLq6urMy8uLHT9+nAFgcXFxrbbrWdbS5y0rK4upqamxR78Go6Oj2QsvvMC0tbVZnz592MiRI9nXX38ttQ+fz2cqKiqsqqqKMcaYSCRiBgYGbNSoUe22RfLZAMA0NDSYra0tCwgIYDExMVL7lZSUMD6fz7S1tZmpqSn7/PPPmb+/v9R5pKWlsVGjRjFNTU0GgGVlZbH6+noWGBjI9PT0mL6+Plu0aBFbsWIFc3R0lP0Ne8a01G8wxtjFixcf+3uMi4vj3muJU6dOsdGjRzNNTU2mq6vLPDw82K5du7jH7927x3x9fVmfPn2Yjo4OmzNnDhMIBNzja9eubfPf54033mCGhoasvr6+zfPord8XhJDej8fYQ4uHCCE9Sn19PbKysrjaZIQQQp4tkyZNwvDhwx8bUX8UfV8QQhSl5817I4QQQgh5xpWVlSEiIgIRERH46aefFN0cQghpFQWUhBBCCCE9jLOzM8rKyvDNN988lkCKEEJ6EgooCSGEEEJ6mOzsbEU3gRBCZEJZXgkhhBBCCCGEdAoFlIT0ApQ7ixBCSFvoe4IQoigUUBLSg6mqqgIAamtrFdwSQgghPZnke0LyvUEIId2F1lAS0oMpKytDX18fhYWFAAAtLS3weDwFt4oQQkhPwRhDbW0tCgsLoa+vD2VlZUU3iRDyjKE6lIT0cIwxCAQClJeXK7ophBBCeih9fX2Ym5vTTUdCSLejgJKQXkIkEqGpqUnRzSCEENLDqKqq0sgkIURhKKAkhBBCCCGEENIplJSHEEIIIYQQQkinUEBJCCGEEEIIIaRTKKAkhBBCCCGEENIpFFASQgghhBBCCOkUCigJIYQQQgghhHQKBZSEEEIIIYQQQjqFAkpCCCGEEEIIIZ3y/wA6bjJSrPM+MgAAAABJRU5ErkJggg==\n"
- },
- "metadata": {},
- "output_type": "display_data"
- }
- ],
- "source": [
- "# Change wrap to 3 and Adjust dimensions\n",
- "plot_results_panel_3d(cycle_mlr,\n",
- " wrap=3,\n",
- " subplot_kw=dict(figsize=(12,6))\n",
- " );"
- ],
- "metadata": {
- "collapsed": false
- }
- },
- {
- "cell_type": "code",
- "execution_count": 13,
- "outputs": [
- {
- "data": {
- "text/plain": "",
- "image/png": "iVBORw0KGgoAAAANSUhEUgAAA5QAAAIzCAYAAAB/WFaqAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8o6BhiAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOz9eZRt11Xfi3/W7k7fVHv7RtJVcy3J6ixZ9wrb5PeMbWw/YwbDySM89EzAjySicRiPEDwg4WFiRzEZxHlhAB4voADDCZjGgCHoGcsNthTJlnX7vm+r6t6qc6pOv5u1fn+svU+dqlt91W21PsMepap7ml3NmWfNOb/zO4VSSmEwGAwGg8FgMBgMBsMysW72BRgMBoPBYDAYDAaD4fbEJJQGg8FgMBgMBoPBYFgRJqE0GAwGg8FgMBgMBsOKMAmlwWAwGAwGg8FgMBhWhEkoDQaDwWAwGAwGg8GwIkxCaTAYDAaDwWAwGAyGFWESSoPBYDAYDAaDwWAwrAiTUBoMBoPBYDAYDAaDYUWYhNJgMBgMBoPBYDAYDCvCJJR3MNu3b+ejH/3ozb4Mg8FguOUw8dFgMBjmx8RIw3IwCeUN4uTJk/zkT/4kd999N+l0mmKxyDPPPMNnP/tZWq3Wzb68JXP48GHe9773kc/n6e/v50d/9Ee5cuXKzb4sg8FwG3MnxMfXXnuNf/7P/zlPPPEErusihLjZl2QwGO4QbvcYKaXkhRde4EMf+hBbtmwhl8vx0EMP8Wu/9mu02+2bfXmGNcC52RfwZuCv//qv+chHPkIqleLZZ5/loYcewvd9vvnNb/LzP//zHDx4kM997nM3+zIX5cKFC7zzne+kVCrxqU99inq9zq//+q+zf/9+XnvtNTzPu9mXaDAYbjPulPj4N3/zN/y//+//y1vf+lbuvvtujh07drMvyWAw3AHcCTGy2WzyYz/2Yzz99NP803/6TxkeHuaVV17h3/ybf8NXvvIVXnrpJVOEu80xCeV15vTp0/xv/9v/xrZt23jppZfYsGFD99+ee+45Tpw4wV//9V/fxCtcOp/61KdoNBq8/vrrbN26FYCnnnqK7/u+7+OFF17g//w//8+bfIUGg+F24k6Kj//sn/0zfuEXfoFMJsNP/dRPmYTSYDCsmjslRnqex7e+9S12797d/drHPvYxtm/f3k0q3/3ud9/EKzSsFiN5vc78+3//76nX6/yX//JfZgSChB07dvCzP/uzALzrXe/ikUcemfNx7r//ft773vd2P5dS8tnPfpaHH36YdDrN0NAQ73vf+/jOd76z4PVUq1U+/vGPs2XLFlKpFDt27OD5559HSrno9/Knf/qnfPCDH+wmkwDvfve7ue+++/jjP/7jRe9vMBgMvdxJ8XHdunVkMplFb2cwGAxL5U6JkZ7nzUgmE37wB38Q0ONUhtsbk1BeZ/7qr/6Ku+++e84X0mx+9Ed/lH379nHgwIEZX//2t7/NsWPH+N//9/+9+7Uf//Ef776on3/+ef7Vv/pXpNNp/uf//J/zPn6z2eRd73oXf/iHf8izzz7Lf/pP/4lnnnmGX/zFX+Tnfu7nFry2ixcvMjY2xtve9rZr/u2pp57ijTfeWPT7MxgMhl7ulPhoMBgM14M7PUaOjIwAMDg4uKL7G24hlOG6MTk5qQD1Az/wA0u6fbVaVel0Wv3CL/zCjK//zM/8jMrlcqperyullHrppZcUoH7mZ37mmseQUnb/e9u2ber/+D/+j+7nn/zkJ1Uul1PHjh2bcZ9/9a/+lbJtW507d27ea/v2t7+tAPX7v//71/zbz//8zytAtdvtJX2fBoPBcCfFx9k899xzyry9GgyG1XAnx8iEd7/73apYLKpKpbLs+xpuLUyH8joyNTUFQKFQWNLtS6USP/ADP8B/+2//DaUUAFEU8Ud/9Ed8+MMfJpfLAVp6KoTg3/ybf3PNYyw01PyFL3yBd7zjHfT19XH16tXu/9/97ncTRRHf+MY35r1v4iKWSqWu+bd0Oj3jNgaDwbAYd1J8NBgMhrXmTo+Rn/rUp/i7v/s7/t2/+3eUy+Vl3ddw62FMea4jxWIRgFqttuT7PPvss/zRH/0Rf//3f8873/lO/u7v/o7R0VF+9Ed/tHubkydPsnHjRvr7+5d1PcePH2ffvn0MDQ3N+e9jY2Pz3jeZDep0Otf8W2L5bOaHDAbDUrmT4qPBYDCsNXdyjPyjP/ojfumXfokf//Ef55/9s3+2rOsw3JqYhPI6UiwW2bhx4zV69oV473vfy7p16/jDP/xD3vnOd/KHf/iHrF+/fk3cr6SUfN/3fR//8l/+yzn//b777pv3vskw+OXLl6/5t8uXL9Pf3z9n99JgMBjm4k6KjwaDwbDW3Kkx8stf/jLPPvssH/jAB/jt3/7tVV+X4dbAJJTXmQ9+8IN87nOf45VXXmHXrl2L3t62bf7xP/7HvPDCCzz//PN88Ytf5GMf+xi2bXdvc8899/Diiy8yMTGxrArTPffcQ71eX1Fg2bRpE0NDQ3M6gL322ms8+uijy35Mg8Hw5uZOiY8Gg8FwPbjTYuSrr77KD/7gD/K2t72NP/7jP8ZxTBpyp2BmKK8z//Jf/ktyuRw/8RM/wejo6DX/fvLkST772c/O+NqP/uiPUqlU+Mmf/Enq9foMZy6AH/qhH0Ipxf/9f//f1zxeopufi3/4D/8hr7zyCi+++OI1/1atVgnDcMHv5Yd+6If40pe+xPnz57tf+8pXvsKxY8f4yEc+suB9DQaDYTZ3Unw0GAyGteZOipGHDx/mAx/4ANu3b+dLX/qSGZO6wxBqob8ew5rwl3/5l/yjf/SPyGQyPPvsszz00EP4vs/LL7/MF77wBT760Y/yO7/zOzPu8/DDD3PgwAF27tzJoUOHrnnMZ599lj/4gz/g+7//+3nf+96HlJK///u/5x/8g3/AT/3UTwGwfft2vvd7v5cXXngB0JbP73jHO9i3bx8f/ehHeeKJJ2g0Guzfv58/+ZM/4cyZMwtaN58/f57HHnuMcrnMz/7sz1Kv1/nMZz7D5s2b+fa3v20krwaDYdncKfHx7Nmz/MEf/AEAX/rSl3j11Vf55Cc/CcC2bdtmzDAZDAbDUrkTYmStVuPBBx/k4sWLfOpTn2LTpk0z/v2ee+5ZUgfWcAtzk9xl33QcO3ZMfexjH1Pbt29XnuepQqGgnnnmGfX//D//z5zrNv79v//3ClCf+tSn5ny8MAzVZz7zGfXAAw8oz/PU0NCQ+v7v/371+uuvd28z2/JZKaVqtZr6xV/8RbVjxw7leZ4aHBxUu3fvVr/+67+ufN9f9Ps4cOCAes973qOy2awql8vqR37kR9TIyMjyfhgGg8HQw50QH7/61a8qYM7/v+td71r2z8RgMBgSbvcYefr06XnjI3DN8xhuP0yH8hbls5/9LP/iX/wLzpw5w9atW2/25RgMBsMtg4mPBoPBMD8mRhpuNCahvAVRSvHII48wMDDAV7/61Zt9OQaDwXDLYOKjwWAwzI+JkYabgbFXuoVoNBr85V/+JV/96lfZv38/f/EXf3GzL8lgMBhuCUx8NBgMhvkxMdJwMzEdyluIM2fOcNddd1Eul/nn//yf82//7b+92ZdkMBgMtwQmPhoMBsP8mBhpuJmYhNJgMBgMBoPBYDAYDCvC7KE0GAwGg8FgMBgMBsOKMAmlwWAwGAwGg8FgMBhWhEkoDQaDwWAwGAwGg8GwIkxCaTAYDAaDwWAwGAyGFWESSoPBYDAYDAaDwWAwrAiTUBoMBoPBYDAYDAaDYUWYhNJgMBgMBoPBYDAYDCvCJJQGg8FgMBgMBoPBYFgRJqE0GAwGg8FgMBgMBsOKMAmlwWAwGAwGg8FgMBhWhEkoDQaDwWAwGAwGg8GwIkxCaTAYDAaDwWAwGAyGFWESSoPBYDAYDAaDwWAwrAiTUBoMBoPBYDAYDAaDYUWYhNJgMBgMBoPBYDAYDCvCJJQGg8FgMBgMBoPBYFgRJqE0GAwGg8FgMBgMBsOKMAmlwWAwGAwGg8FgMBhWhHOzL+DNjpSSKIqwbRshBEKIm31JBoPBcEuglCIMQyzLwrIsEx8NBoMhRilFFEUA3TOkwXCzMAnlTSIJBL7v02q1sG0b27ZxHAfHcUyCaTAY3tREUUQQBDSbTYQQ18RHk2AaDIY3K1JKgiCg1WohpbwmPpoE03CjEUopdbMv4s2GUoogCIiiCKUUvu8jhEBKiVKqm0haloXrujMOUAaDwXAnk3QlwzCcER+VUt3/J8mk4zi4rmsSTIPB8KYgaUaEYYiUshsnlVJIKbsx0LKsOZsUBsP1wnQobzBJ1V1K2U0Qk+Qx+TwJDmfOnKFer7Nz587u4am3+mQSTIPBcCeRVN2llMB0bOw9CCXxsVqtcujQIZ5++unu7UwH02Aw3Kn0NiOAGTEuSSB7C29f+cpXePLJJ8lkMt0GRZJkmvhoWGtMQnmDSKruhw4dYnBwkIGBgW7VfTZJhzKpKCVBIggCfN8HuObwZBJMg8Fwu5JU18+cOUMYhmzbtg0hBPV6nYsXL1IsFimXyzNGAWzbBujGxyiKiKKITqczQ+GRHKDMCIHBYLhdkVJy5coVLl68yFve8pZFz4/JfydnQ6UU7Xa7+/W5FHAmPhpWg0kobwC9VfdqtUqhUFjyC3e2BDb5WvKYQRAAmA6mwWC4LemtujcaDYIgQAjBpUuXOHjwIMVikUuXLuH7PsVikb6+Pvr6+mYcmmbHx15ZWG8CambUDQbD7UQSy4IgoNPpUKlUlh23ktg4u4PZm2CaGXXDajEJ5XWkN/FLJK7LSfLmezH3VudnP898CWZSoTcYDIZbhSRuRVHUjY9SSvbv38/Y2BgPP/ww5XIZgHa7TbVapVKpcOnSpW6sO336NH19fRSLxe4haK4EMwzDbrKaxNCkg2kKcAaD4VZjLonrcmxP5jrz9RbSehNMKWU3wUxisUkwDcvBJJTXifm07vPJFBZ6nMVYKMFMDC3MgLbBYLhVmG0skcRH3/cZGxujUCjwzDPP4HleN4Zls1my2SwbN25EKcWVK1c4dOgQ9XqdCxcuEEUR5XK528HM5/MmwTQYDLcls/02khi2XB/NxW6/UILZ6XRot9smwTQsCZNQXgdmV917X3TLSShX+mJdaoJpLKYNBsONZq5iG8C5c+e4cOECuVyOp556qut8PRdCiK7RxMMPP4xSikajQaVSoVKpcPbsWZRS1ySYyeFpoQQzuSYzQmAwGG40vS7XMNN4Z7kNiZWc6WaPAvSOEJgZdcNCmIRyDZmv6t7L9ehQLkZvgpk8npQS3/f59re/zX333UculzMJpsFguK7MVXUPgoADBw5QrVbZtGkTURTNOEDNx+xCXT6fJ5/Ps2XLFpRS1Gq1rkT29OnTCCG6yWW5XCaXyy2YYAZBwOHDhymVSgwPD5sE02AwXFdmu1zPjjHLPT/C6s+QC82oX7hwgU6nw1133WVm1A0moVwrFrJz7uVGdCiX8phJglmv17vX5Pv+jOqTSTANBsNaMF/VvVKpsHfv3q7E9eLFi0xOTi7rcedCCEGxWKRYLLJ161aklNRqNSqVCleuXOHEiRPYtt1NMPv6+shkMtckmJ1OpxvTzYy6wWC4Hszlt7Gc82Ni3jjX7dea3vjY27Gca4RgtkTWcGdjEso1YK6q+3zcjA7lYszXwex0OguuKTEHKIPBsBhz7ZYEOHnyJKdOneLee+/trgmZKz4uZE62VCzLolQqUSqV2L59O1JKpqamqFQqjI6OcuzYMTzPmyGRzWQy3YPaYiMEvQmmmVE3GAxLZanNCLg5HcqlMNcedTOj/ubDJJSroLfqrpRa0pDyze5QLvU5kxd9r8X07ATTLMk1GAzzMV/VvdPpsG/fPlqtFk899RSlUql7nxtVcLMsi3K5TLlc5q677iKKIiYnJ6lUKly+fJmjR4+SSqWQUuJ5HoODg6RSqe41LtUErfcAZeKjwWDoZSG/jbm4ETOUy2GuzqiZUX/zYhLKFSKlJAzDJVWVernVOpQrdQAzS3INBsN8zFd1v3LlCvv372dgYIDHHnsMx5n5FnSzCm62bdPf309/fz8AYRgyOTnJ0aNHqVarfOtb3yKTycyQyHqe170OY4JmMBiWylL8NubiVu1QLsRCM+pzKTxMgnn7YhLKZdJ7WEiqM8s5GNzqHcrFMAmmwWBYiLmq7lJKjh07xrlz59i5cyebNm1a9Yw5XL/DkuM4DAwMkMlkWLduHcPDw12Dn7Nnz3Lw4EFyuVzX4Kevrw/Xdbvfw3wmaGZG3WB4c7McietsbrUO5UqYK8E0e9TvDExCuQySQHDo0CHK5TLr169f9h/5rXJg6mU1L9SlJJgjIyMMDQ11nWRNgmkw3HkkVfezZ8/SaDS47777EELQbDbZu3cvUkp27dpFPp+f9zFu1YKb4zgMDg4yODgIaIOeZEXJ6dOnOXDgAPl8foaLbO8haKEEs1Kp4Hke/f39JsE0GO5goihifHyc48eP88QTT1z38yPc/A7lYiym8Gg0GnQ6HdavX29m1G9xTEK5RHqr7q1Wi2w2u6I/6OUemG71YDCbuRLMs2fPdpNJsyTXYLjz6K26+75Ps9lECMHIyAgHDhxg48aN3H///TMODnNxKxbc5sJ1XYaHhxkeHgag0+l0O5jHjx+n1WpRKBRmJJi9h6DeBHN0dJRCoUAulzMmaAbDHUiv30YURdRqtet+fkxufz2Zz112NcxOMGu1GhMTEwwMDJgZ9Vsck1Auwnxa9/kWbi/GrZYkXu9rSb7f5HC00JJck2AaDLcfs12uLctCSsmBAwcYGRnhoYceYv369Ut6rJV0KK/HoWa5pFIp1q1bx7p16wBot9tUKhWq1SpHjx6l0+lQLBa7yWWpVJpxCEpGBGaboM23RNzER4Ph9mCu3ZJrdX4Mw5BTp05hWRYDAwPk8/lr4sKtdN5cKcn5EMyM+q2MSSgXYD6tu2VZK36R3ukdyrnoPfDNN6A9O8FMDk69+nkTIAyGW4f5XK5932diYqK7WzKTySz5MW81yetKk9V0Os2GDRvYsGEDAK1WqyuRvXTpEmEYdhPM5FAEZkbdYLhTmM9vI3ldr4TeIlq9XmfPnj3dROrs2bMIIbqqiMRg7HY/Q86OwWZG/dbFJJTzkPyBzuXAdaM6lDfqBXAzZRGLWUz3BuHZ+nkTIAyGm8NcLtcA58+f58yZM6RSKZ566qllO/WtdEboVo8FmUyGTCbDxo0bUUrNSDCnpqaYmpri6tWr3cNgoVDovu8sJcGca4n4rf4zMRjuVGY3I3pfx6s9PwJcuHCBI0eOsH37drZu3dqNmYk8dGxsjOPHjwNw9uxZ2u02/f393dVHtxNSygXPj7DwjLpJMG8cJqGcRdItS6pKc70x36gOZXI9tzvLOfAtJ8E0S3INhhvLfFX3IAg4ePAglUqFbdu2MTk5uaLX5K1YcFtrhBBks1my2SybNm3ijTfe6Jr4VKtVzp07h1Kq6x7b19fXlbLNl2BKKbsJpplRNxhuHovtllzN+TFJRI8dO8Zjjz3G4ODgjOcqlUqUSqXubt1XXnkFx3G4cOEChw8fJpvNzlh9lDhTr5QbUcxb7vkRZiaY8+1RNwnm2mMSyh6WultytRr4pd73Rkm6bsRzrPR7MQmmwXBr0CtxhenXZrVaZe/eveRyOXbv3s34+DiVSmVFzzFXQrlYknknFN0SieyWLVu6crZeF1khxIwEM5fLLZhgJiMExgTNYLgxLHW3ZBLPlnsuqtfrvPHGGwC8/e1vX9AtG+iqFjZu3Eh/fz9BEHSNwxJn6rmMw2411uL8CNcqPMyM+tpjEkqWv1tyNbONpkO5OuZLMK9cucLp06d57LHH5qw+mQTTYFg5vVX33jny06dPc+LECXbs2MH27dtv+Iz59eZmVOCFEBQKBQqFAlu3bkVK2U0wx8fHOXnyJLZtz9iBmbiOzxcfgyDgG9/4Bk899RSe511zgDIjBAbDylnObsne1+ZSX3MXL17k0KFDbNmyhUajsSzpahJPXddlaGiIoaEhgO7KokqlMsM4rL+/n76+PorF4i1xbroe50e4NsF89dVX2bx5M4ODg2ZGfYW86RPK+aruC2FZVjdwLJf5KvDz3fZGcD2fJ/ler9dzzK7SJ06yvQ5gQgiTYBoMK2C+qnun02H//v00Gg2efPJJyuVy9z6rUXAkz3k9b3+rsdiBybIsisUixWKRbdu2IaVkamqKSqXC2NgYJ06cwHGcGVK2dDo9IzYKIYiiqJs8Jr9TM6NuMKyOhfw25iL59+T2CxFFEYcOHWJsbIxHH32U/v5+zpw5MyPmLdb8mI9UKsX69etZv379NXPdFy5cQEpJqVTqJphzOcgu9hxrwfUs6vXGuSQ+JgVRM6O+fN7UCeVcVfelcD06lPO9aO6EwxJw3RO4ZHB7rgp98nsOggDgmgSzdwG5wWDQzFd1Hx8fZ9++ffT19bF79+5r5nBWEx+X0928U16zyz0wWZZFuVymXC53Z6WSBPPy5cscPXoUz/NmJJhJPEwOQ8s1QTMFOINhJkvx25iL3tfeQiQurq7r8swzz5BOp7uFut77LvY4S4mns+e6lVI0Gg0mJia6Etkk7iQOsplM5oaNTN2I+NO79grmn1E3Ceb8vCkTyqVq3edjOXOQc9139otwvgPFjaj8XG+ud4cyYb5qX/Li772e2TuMehPM3gq9wfBmZa6qu5SS48ePc/bsWR544AE2b948b9wyHcqls9oKfCJ/7evrA3SlvVqtUq1WuXjxIkeOHOlK5MbGxujr6+t+bmbUDYbls1S/jblIXjsLxchE4rpt2zZ27NjRvU/yHNe76CaEIJ/Pk8/nu7L72Q6ynufhOA6e59HpdK6bg+yNTChnz5DOJ5GVUtLpdMyM+izedAmlUoparcbly5fZunXrin7xd5rL6+0seU1YinwkuY7FEkzLsq45QL0Zg4PhzUdSbDt27BibNm0ilUohhKDVarF3717CMOTpp5+mUCjM+xiriY+z7xuGIefOnSOdTl/jSninzlCuFtu2GRgYYGBgANA/w9HRUY4ePcq5c+c4dOjQDLfHcrmM53nA4gkmzO2QaBJMw5uB5Lxw7tw5crkcxWJx2a/dhZLC2RLXZN5xrutYzjWvlrkcZCcnJzl16hT1ep1vfetba+4gm3AjYjAsvJ4kYfYowGwTtPnWlLxZEsw3VUKZVN0bjQanTp1i+/btK3qc1bq8Ji9wpRQXLlzg7NmzM4ahe9/cb3dutYRyNr0JZnKtcyWYxmLacKfTK3E9ceIE69atI51OMzo6yoEDB1i3bh07d+5c1AlwrTqUieQL9Guy1Wp1XQn7+/u7Lodv9g7lYjiOQ6lUwnEcnnrqqWvcHhuNBvl8vitnK5fL3cPgQiY/Zkbd8Gai12/jwoULbNy4kVKptOzH6Z2h7CWJd47jdCWuc913OU2J6xVXbNumv7+fiYkJisUid91113VzkL2RCeVK9ibPFR/frDPqb4qEcrbW3XGcVR14VjMjlFxPGIYcOnSIq1evsn37dlqtFmfPnuXgwYPk83n6+/tXfZ1LuY7rza2eUPbSK22AuZfkKqWoVqsMDw/jeZ5JMA13BL3xMXmDTKrlly5d4sEHH2TDhg1Leqy1UHBcvnyZAwcOsHXrVrZt20YUSkbPVRm/MsHVSzUuXbrUlZtduHCBoaGhGaYRY8EYdVnn7tTdK7qOG8mNODD1xsfZbo++71OpVKhWq5w8eZJmsznjMJgkozD3AWr2jHq1WqVUKpHNZs2MuuGOYLbfhm3bqzqbzY6Rly5d4uDBg2zdupV777130bPMraJyW4qD7JEjR/B9f8UOsjdKJbJWZ8jFRggajcaMIt+dlGDe8QnlXMYSq3UhXG2HMggC/uf//J+4rsvTTz/dbYfvb+/nQvMCD4YPMjExwcjICL7v893vfrf7QiwUCrdV9fd2SihnM1eC6fs+Bw4c4Jlnnuk6A5sOpuF2ZT6Xa8uy2Lt3L67rsnv3brLZ7JIfczXxMbmegwcP8sgjjzA0NES71eHEd0cZPTsFgO1kuOvhLZQ2eHz7299mamqK8+fPY1lWtxr+S8EvcVVe5Y/v+mOy1tKvfS5uROy6mc/heR7r1q1j3bp1wNzrBGYnmElMnGuE4Pjx4+zYsaP772ZG3XC7Mp/fxmrPkImKI4oiDh8+zOjo6IIS115uB+OytXKQheufUJ7zz/FzF36OD7gfYJe1a00fe64E8+LFi6RSKTzPu+Nm1O/ohDKpus823kmCwUr/UFfToazValQqFbZv3869996LENqCP1Qhnxz5JFfDqzyx7Ql2rtvJxMQEhw4dYt26dUxMTHDu3DmUUl3JV+/+sdVwPV+s17PD2suNGNxO3gSEEF1ZclKB6nQ6+L7PSy+9xG/+5m/y0ksvXddrMRhWS1J1T16jyUHlwoULBEHA4OAgDz/88IpkQCuJj61Wi4MHDyKl5Hu+53vIZrNaETDWZPTcFOV1OVzPpl5tc/F4laHNWwHYuXMnrut2TSNeGn+JM9kzoOBzxz7HD/f98IxRguVwo1QcNyKhXKrkrPcwCPr3ksjZDh8+jO/7lEqlrkS2VCrNMA2JogjP83Bd95oZ9VqtxtNPP83Ro0cpFovX7fs1GFbLfC7XsHpZv2VZNBoN9u7di+M47N69m0wms6xrS1gsdtzskYCVOsj2zppez/j4X8f/K1ejq3yl/BX+sfjH1+15YPrvxnXdbnycPaP+oQ99iF/5lV/h3e9+93W9luvBHZlQzq66zx6I7e04reQPdSXVKSklR44c4fLly+Tzee6///4Z1/Di1ItcCa9gYfH747/PL2/45e51b9q0qftCTBLSK1eucOLECVzXnZFgXi+nrZWSfH+3Y4dyLqIouuaNBaYdwKrVKo1G47pfh8GwUnoP+b3Ftl4ZfiqVYvPmzSt6Ta0kPo6NjbF//34GBgZoNpszOqJRKFFS4Xo6brsph3bdJ4qmLfQT04hiscgnz30Sy7eQQvKi/SKPn32c8GDYHSVY7UzPWnMjimGr6YJmMhkymQwbNmy4pttw6dIlwjCkVCp1O5hRFM3bwWw2m4yMjCzr8Gww3GgW2y25WsmrUop9+/axbdu2JUlce1nObVc7nrXU51ju7ZfiIJvEk2QW8Xpw1j/LV+pfAeBC6gL7/H08mXryujxXQnKGhLk7mIna5nbkjksoZ1fd50pmem2bV2rkspwXaavVYs+ePSiluOeee5iYmJjx76EK+a/j/xWBQCJ5qf4Sz/rPUhbla563d8F14rRVqVQ4f/48hw4dIpfLdRPMcrncnX2Zizul+g43NqGc7yCa6ONzudx1vw6DYSXMV3WfnJxk7969pNNpdu/ezXe+851VG48t5bUvpeTEiROcPXuWBx98kGKxyNjY2Izb5Eop0nmPiZEGmbxLrdJmcFOeVNbtfk8JLzde5pR/qvt5mzbnd5znI/mPUKlUmJiY6Mo4kySov7//po4S3OgZytUwV7eh2Wx2E8zz5893XYIHBga6YxrJ99doNMhkMrdMMm8w9DLbb2M+d86VSl4TiWsYhtx3333cfffKZrxvlPJrMdYids3nIJvIY2u1GlNTU7RarTV3kP398d/HxiYiQijBC5UXeFv+bdc1Hi90hgS6Jmm3I3dMQjlf1X0ulrIHaCGWE0yuXLnCvn37WL9+PQ888ACXL1++JpF7sfYiV6IrM772++O/z89kf2bBpC9x2urv7+eee+4hCILuG/vx48dpt9sUi8XuoWk5g9BrxY1MKBdKnteKOzkYGO5seo0lkviolOLMmTMcP36cu+++m7vvvnvVM0JLlSp1Oh327NlDEATs2rWLfD5Po9G4JublSinufXwd5w+P47cjhjcXufuRIWz72hj/pckvzfhcofiryb/iR/p/pDsn2Ntlm5iY4Pz5891RgiRW9o4S3AhDiNsloZyNEIJcLkcul2Pz5s1EUcTXv/51+vr6mJyc5OzZswCUy2UymQzf/e53yeVyq/5+P/3pT/Nnf/ZnHDlyhEwmw+7du3n++ee7yp+5eOGFF/ixH/uxGV9LpVLdheWGNzcLSVxns5L42Ovimk6nV+QQmzx3Lwu9lm5Eh3KtmX2u3bNnD+l0GiHEmjrIXvQvdruTAEooDnYOsq+9j0cyj6zltzSDO/kMeUcklMsJBMm/w8oTyqW8SGdX3jdu3Djvffe39s/4XKHY09qDyC3vTdd1XYaHhxkeHgaYIU3av38/UsoZOvXElvp6HmZupR1Ca/U8CwWDZrN52wYDw53JfMYSvu+zf/9+arUab3vb2+jr6+veZzUJZa98Zz7Gx8fZt28f/f39PPHEEzNcROe6X//6HP3r80ShxHFnxvfe2//k4E/yvZ3vnXHfze7mGZ/P1WWr1+tMTExw9epVTp48ieM49Pf34/t+d7blenE7J5RzPQ/Ali1bcBxnxpjGK6+8ws/+7M8ipeQjH/kI3//938+P//iPr+h5vv71r/Pcc8/x5JNPEoYhn/jEJ3jPe97TVenMR7FY5OjRo93PjTmQAeb325iPxAV7qcx2cf3Wt761qi7jUu97J/x9CyEoFAps2rQJmNtBtldyv9TGiStc3p59O23VRkaSqdoUg+VB8tb1Pb8tdIaMooh2u33bniFv+4Ryrqr7YiQy2OvVoex0Ouzdu5dOp3PNEvC5Dkz/1/D/xY8PzHxjzdt5wnq4qupSMvuycePGeQehAUZGRhgaGppz79FquRMlrws9j5G8Gm4l5iu2TUxMsHfvXsrlMrt3777GsGYtEsq53jiVUpw6dYpTp05x//33s2XLlhnxYaHupmUJLG/m482+zfbUdranti/repMDS6FQuGaUIAgCjhw5wrlz57rzl319fWuqhrhRtvg3MqHsnaHsHdPI5XL88i//Mo8//jjHjh1b8fP87d/+7YzPX3jhBYaHh3n99dd55zvfOe/9hBBdsyGDYTG/jfmwLGtJhaZeF9dHHnmkW+xfTedw9vVdvXqVVqvFwMDAnB4at9oM5XKZ3SxYioNs0jhZyEF22B3m+U3PA7p7/PqZ13nXQ++6rt8LLHyGrNfrACahvNHMV3VfKquVdM33Ik0Oav39/Tz++OPXHDzmuq8jHIacoWuuvyZqK7q++a559iB0pVJh7969jI6OcuLECdLp9IxD01ro1O/EhHKhDmW9Xr9tg4HhzmKuqrtSihMnTnD69Ok5E7qEtZK89pJ0ROv1Ok899dSckq+VOPut9YGpV3I1Pj7O1q1bsW2biYkJTp48SavVolAodGNlr8vpSriTOpSLFXY7nQ4DAwN84hOfWNPnnZycBKC/v3/B29XrdbZt24aUkscff5xPfepTPPjgg2t6LYbbg7lcrpfKUuJjo9Fgz549WJZ1jYvranf1SimRUnL06FEuXrxIJpPhyJEj5HK5GWe4G1Gout4sFB9X6yCbcKPiIyx8hkwMHW/XM+RtmVAuV+I6F8uVLMy+7+xgopTi9OnTnDx5csGD2nIrU9frBZsMQgM88sgjCCGoVqtMTEzM0Kn3HppWolO/rRPKKADlg+WCpTs4S9G/J/vcDIabwXxV93a7zd69e/F9n7e//e0Lrm1YbXyEmbKsyclJ3njjDYrFIrt37563WLUSx8DrjeM4DA4OdnfEtdvt7vxl4nJaLpeXtFNtNks1L1ot1yU+KgWyAyiw9WF5MQXH9Si4SSn5+Mc/zjPPPMNDDz007+3uv/9+fvd3f5e3vvWtTE5O8uu//uvs3r2bgwcPsnnz5nnvZ7izWI7fxnwsllBevnyZAwcOsGXLFu6777455x5XU7DzfZ/XXnuNKIp46qmncF2XVr3DyMWrTFUmGRs7iu/73Z2G+Xx+hjnW7cRy4uNyHWT7+/tJpVK3VEKZTqdviB/I9eC2u+ooihgdHeXKlSvcf//9K36BrGWHMggC9u3bR61Wm7fy3nvf5TzPjUAI0T00DQ4OAtM69YmJCQ4fPkwQBDMW0S41ON3QhBIgaoP09UEn8hHK159HHZ0cyhAh2yglEWETUBDWQNiIYBIlHEQwCcKCqAVOgeiufzLjeRaboTSSV8PNQkpJo9HgwIEDPProo115f7KWY3h4eMbM4nystoKeXItSinPnznHs2DF27NjB9u3bFzWRSO671IPe9aySz/XY6XSaDRs2dNdoNBqNbqxMKuK9q5yWsiLjpiWUMtRxLvJBtuL42QYZQNgEFSDCRs/nvr5N1AIERC3Uth+BnN4JuljB7XrEx+eee44DBw7wzW9+c8Hb7dq1i127pheX7969m507d/I7v/M7fPKTn1zTazLcmiTNiGRlx0qTrPnOj1EUceTIEUZGRmZIXOe6/0rjlpSSgwcPMjw8zIMPPohSirELVU7vv0pzqoPjpth4z70M3ZXj4MEDtNtt9uzZA6BnDPNlooaDbblk8h6DmwtY1q2baK5Grr+Yg+zhw4e7Hc7kb2OtHGTnIilmLJRQrsVu+ZvFbZNQ9lbdk2RnNT/01c4IJfednJxkz5495PP5OWeRZrPcytTNcuiarVNPrOEnJiY4c+YMQohrDk1z/T4WDQYy6CZ/+rDS0UlgFIDq6H+POgjZARXqw4wKEWEbJRQiqIHlsLF6mLwawqmBcouIYArplrCCSZRbhGAKZZcQqoWy0lgqQAkPUCAEguTaQ5Tl6c/cEtHGD3er77C0GcrbVa5guH3prbqHYdhdvaGU4siRI1y4cGGGOdhirCY+JvcPgoBjx45RqVR44oknFpUjwtyJ1VIS0JtFb0V8y5YtSCmZmpqiUqlw+fJljh49SjqdnhErew8sSXxf8fehVJwEtnTRLCmoRU2QASJqomREduI46TBEnH4NlNRFNCXjDmMSzyQIW8dZ4el/szP68Zw8SB9lpxEyQFlZBCGq77FuMglLU3CsZUL5Uz/1U3zpS1/iG9/4xrK7jK7r8thjj3HixIk1ux7DrUuv38bExAQbN25c04bEQhLXpdx/MRJH7na7zdatW9m5cydCCDptnzMHr9KuBwxsKNBuBlw4VqE0lCOdTjMwMMCmTZuo1WpcGbvKnq+fYuTMJI7jkMtnue/xjTy8664VJ1K3kwv2XJsRqtUqly5dIggC/v7v/35NHGTnY/aM+Wzq9fpt3ZC4LRJKKSVhGHYlWI7jrFiOlbDaDqWUknPnznH06FHuuece7rrrriUbAi3nea4nS01WZ1jDb9qIDFvUJyeYrIwxcXE/Fw5PkHItysUMxUKGUj6FY4GQbbypCsOtM1gXLiCCBkoI3QG0XPAr+qAS1sAtIIJaNxlUdgFkE+UUEFELZWf1Qcb2EDJEWQ5CRShhg/TxyWAJC+WVQXaQbj8iqiOdAiJogJ1ByBoIFxE1AYEQoT5UWS6EPsrLIaI2ys6BCpD974DMhhk/ixt9YDIYFmP2CEByMKjVahw8eBDQ3Zjl/F2uRvKasGfPHrLZLLt3757TLGIuejuUS+VWssVP5nXK5TJ33XUXYRhSrVa78zy9lvf9/f1aHqsCRFgDKXV3MGrr5FC2dFIYNkBGEMWdwij5vKk7jEjoFsRU/N9xcihDhJ3CaY4irTT4EcpOIZSlC2eWi8JBqEDHwagNTg7CBsopIcJJcAqIoIpyClj+BMrOIcIJSA3C4DMzvv/FFBxrVXBTSvHTP/3T/Pmf/zlf+9rXuOuuu5b9GFEUsX//ft7//vev+noMty5z+W3Ytr2q+DY7Pl6+fLkrnZ5L4jqb5TYWgiBg//79TE1Nkc1mGRwc7MbKoBPRaQTkyimEJcjkPRrVNn4rnLH6qFgs0pkS5Owmjz+9mU7Q5srlCoe+c4YrjXP0D5a6ydZS58Jv9gzlanFdtzvK4Ps+b33rW9fEQXY+esf05iKJjze7ULpSbumEsrfqnvxRCSGwbXvVi11Xk1AmAerEiRM8/vjjDAwMLPm+N2WGstvt87v/F7KD8FsUoxNYlQwWIUqFOqFC6QMOAhHWUMLWSZ7lIvwqtlugP5iizy0hCpNE5QKd+hj1tkNnYoJTHUEuZeNlS7iWxJZtRHtUy0lViBKeTg69vvhjPyJqx0lgTSeF/iS4BayginJLWEEF5Rax/Ik4SayirAxC+fpxZQcQIEN9QEKCnQUBys3rRqTjohTxNcT3cTI6ofUKWMFU/FxVZOkhVP/j1/4oo2jBSp7pUBpuJAu5XL/22mts3ryZ+++/f9lvgquJjxcvXkRKycDAAA8++OB1LaLdiDfeRZ9DyWkZqOzMSAidyGcoajFYCBGZBkHo06rupzHWonZqlIkQ7pJ1antfJp8CL9evE0g3B0ED3LyWmrpF/bhxx1BZKYRwUE4aQQgknUUnvp0HYQOcPCKcQlopXFUHMaSTQreEFUzESWMFnIK+vfAgCsHKIoQCtwQopNunC3h2AYSemVQb/1ewZh4hbtQM5XPPPcfnP/95/uIv/oJCocDIyAgApVKp2xl69tln2bRpE5/+9KcB+NVf/VWefvppduzYQbVa5TOf+Qxnz57lJ37iJ1Z9PYZbk/n8NlZ7hkziY6/E9eGHH16yf8JyJK+1Wo033nijW5z7zne+M+O+bsomlXOpTbRx19u0GwG2bZHKOlCbeYaMQomSCjfl4KULeE6GZq3DI09uph3UqVQqHDx4cMZceH9//5rsjl0pN2JsKolba+Ugu9DzwPwJ5e0+MnXLJpSzA0GSTAKrri7Byg9MyXJapRS7d+9e9qqNuRLKa76mJEQdrLCGG01C86JOfroJYSwTVaHu3imFiBooLKxwSnfv/Io+dPjjKCcfJ0ta+ombh6CBI9IMdo5gV1oIJcHxIIqwLL0/TBe9Y9dFy9MHCrcPVAflleMksIQVNkjnh8hkG6jBe5CdKZqBRac+TrUlEUGd8+cU+YxNqtBP2rXASoEM4iQzQllpQOqOpApRbhmhQn2QkW2kU0REHd2pjFrQk0QKQizpYwldvReWB2GAcrKIyEc5WX3NIoPA13ItFaCcPKgAnH4EAdLrR8gOMrsZue775/z9LVSBT6TBt3NAMNwezOdyHYYhhw8fBuCBBx5gy5YtK3r8lcTHXot8x3HmNSZbiJvWoYw6cXcwSQj1LGGufQi3chUReNPJovQhbIGKIKzHF+GDlY47fBmdBDo5RFhH2QUdq+w0ropwcymKORs1VKbTbnDm/CU6fsjEpI/NJKlsiXy6TTrbRypsgFPUBTS3hAgqKKeok8FuUliEqK47i7IDdkq/h7gFkBLp9qPkJSKnDEiUW4Koo5UYYSNOQhvxD0JeI3kVURPsWPLqxEqR/ichc+36jaXMUC6nADsfv/VbvwXA937v9874+u/93u/x0Y9+FIBz587NOLhVKhU+9rGPMTIyQl9fH0888QQvv/wyb3nLW1Z9PYZbj4V2S672DGnbNmEY8uqrryKEYNeuXWSz2SXff6kdymR/5V133cU999zTPQf3xjzbsbj7rUOc2neVymgDx7XZsnOA8nCWC2Mz42+hL022lGL8Up1M3qNebTO8tUixL0efXZh3Lty27a6qIjGyuVHcrLVK8+0rThLMXgfZxUa/EpLz43y3MZLX68BiuyXXQo61kgNT8uLeuHEj58+fX9HexgU7lO0R7HP/TSeEQR1PpdnqH8a6dEHLRJ0ihE2UGydKdhpUhBA2KLAEKASgUNiIqANun06SvD7dfXT7EFEsMW1XkXaqWxHX84hpCGsIKz09MxNFKMvRnUshUMLRyioro5/LLcTV6xIiCrDSfRTcDvncVtK1CSoVQSnv0OyETF44icQhl3FJZfJk0x6ul9a/Y2GhhIUC3VkEXSW3PECg7AwgYpkW+jmxEDIgJIWF1Ie4OHnudhz9CX2N/lXd3Qwn4u5mW38vQurnJEJZKeT6D4A9dxdyKWtDeveOGgxrzXxV96mpKfbu3Yvned03upWSHJiWSrPZ5I033sC2bXbv3s2rr766ooLdimcoVaQ7hGGcGMqZiaHozha2tGIjagAKghoI0dPNq6GcIiKcQjkl+jsHcWrbIRBxt7CjY6IKUMJF2Cn0DGJaP57laOmqndVqCSutpavC1s9puRBWQaQQso5j2biyzoZ1WxBIWp2IVqvBVD3gytWzCMsll2uSyRbI4eN4ZYh8lFPQ7wV2RieTwu2aixH6aMOceD4T/f1ZbtzFJA2Wg8JFuI6OoURd6auy8vF7RXnWzyOvFSOZjTC469pfBksbCVgryetifO1rX5vx+W/8xm/wG7/xG6t+bsOtzVJ2S672DFmtVmk0Gmzbtm1FCpDFlGpSSg4fPszIyAiPPvpoV5Y5331Lg1ke/p4ttBs+jmuTLXpzrm/KlVLsfHojp/aO0WlFbLirzD2PrcO2rRmPP3suPDGyuXjxIocPHyaXy9HX10er1brujqS3igt2777i2Q6yo6OjHDt2bE4H2V7u9JGpWyqhXOpuyRstee19cT/yyCMUi0XOnz+/oj/0eQNJMIV96Uv6gCADnfh1pvBFHhE24mr0ZDxjWIur3zWdbEXt+CADwrJQSoAltFRVxSYzMkJZWSDQBwQVErl9CEaRTglbtbXsKX5swnqcnNXBySKiuk42gwa4WYTsoOwMIgpQdmq6o2nZ2iHV1sl2JDIou0OxfwMFJUFuoOP7tJo1Gs0WlatjCCdFLm2TzpXJpizsVD6+jiy0tRxVRG2Uk9fPa6VBxbIvFaCcnJZHu9pdV3oDCOnrjmPcRe3OYUYtwNbGPypemBt29PcYTBJt+kFIzV9BN6Y8hpvJfLslz549y7Fjx7qV7K9+9atrIulaCqOjo+zfv59NmzZ1D1crtcWf6xA0I15e+SaidTHuDjbZ1DhK6vQ3EZ41HQvj2Kg7epNxB6+pC3JRU8tGE9m7cHQhyy0jkCi3HMffMoQNApHDimrgrNOqjx6pqO4SFiGYjCWpcUyMC1M69joIGemYSKTHHa34QGG5EIQIFEJFoEIyKYeMm6G/XEBFBVp+RLs+xVSlydVLTex0gVwmRSZfJJtOIWwPIbweMx09U47l6OQ5LhBKK42jmmANTHc5w56PdgEhJ7XUNYwVICrUnUkh9M8DUF4/asMH4u/nWpZyYDIFN8P1YvZuyV5lWy8rPUNGUdTd/eh5Hjt37lzRdS4keW21Wl0V3Fydz9lnyOT7S2UcUplr957Ppn99nr51OaJQ4riLG84krtV9fX3cfffdBEHQ7dIlBmSTk5Pd7mWhUFjTFRy3SkI5m/kcZCcmJmY4yCY/u76+vjv+/HjLJJTL2S2ZBIPV/KEtNaA0m82u5XLy4vZ9H1jcgGAu5kwoow7W5b9CRU2EcFHCAiTSyoCSes6lR5Kp3LJ277OzWo5kpXVV3nIhChACiAQQgfAQtFF4CNXUzqYy0AcdOoTK1QcpO9cjNdUHKiF9PUMTtcAuxOY5cSLrFBDBlK7qB5M6CW1XIVVA+HXwclqiioXuOTp61sfxSFsOXrZInwqJpIXfrlFv+lQnJ7nUici6V0hl+8inmqQKwzjx4bA7Rxkf5IQ/jnTyiLCClBG2bKJUFpSKO5gSZbmABXYWhdBzR91E2+n5eTaQ/U+higu/QSx0YEokr7dzQDDcmvRW3RN5jhCCIAg4cOAA1Wp1hpPqWphOLBYfpZQcO3aMCxcu8NBDD7F+/bQEcrVrR+a8b3U/YuLbKCvdLZSBRApPyzyJZ/6kr2WdYUsnk914NTFDNir8iu46+nWEm9WJmJ2ia3Bj51BYSKcMCD3jrXyU1w9BQ8v/g0lw87EktahjVK8k1Y8lqUFNy/lpx+qIAGXnUVGLwCqBnUKJnC502VmI2givRNaqkc1vZSCYIrS20qmNUfctqqOnGYlS5LwQLzdELiXxckNYshl3RwOwcoAeU1DUiZw+UEp/H7Iz/TNKuqgQz9qHYCsIkuS8oa89rCHXvRvSQ9f+bnr+JsxaJcONZj6/jflYSXxMzoJCCB5++OHuaMFKmC++Xr16lb1797Ju3Tp27tw552tpLXw4hBBLSibnwnVdhoeHGR4e7iZi+XyeSqXC+fPnAWbMXy4mA13K9d+IhHK1z9HrIAt0HWQrlQqnTp2i2WySyWSIoojx8fE5HWRNh3INkFLi+/6Sd48lGX4URStuty/lwJTsbtuwYQMPPPBA93nnqqIvlbnmJa1Lf45oXYjnCju64ozAUr6+rfLj5CdECW3CoJx83J0rdecBhQpRtouQga4gKxVLnARCtcByEVGdjhBcqB1jW+otuLR0py5qXtv5szydbDqF+CBV1vMz7gBCtmL5bFMf0sIpVErLTKVbwvKrSLeEE46BsBDBBNIt69vZBaywiXIyWCIglSuRyYZIMYQKfZrtgFZjipFKQHTlBJ6XI5/tkM4VyVqd+HCjD0IiagMWNh2EinRVXQbT0l0nB1FbHyBlS89PSh9peVjdn2eEzG5FDf+DRX9/Cx2YOp0OYRiahNKwpsx2uU5iZKVSYe/evRQKBZ555pkZK4tWK+laLD4mu82iKGLXrl3XvAmudnH3NbG1PYYY+VuwUoigCk4Byx/XooiwBqTjmb80OiEU2jhGCC37J+omhNIdQER1bQqWJIThlE78/GTGfBLsDI6sI1QJIhXHZXR31I4lrm5RJ2len47Pbl+c0Ja1U2pSiHNycUewEHc49fUrlSalJnUMlnWw4sTWSsXFxDKCEOkOYKuATN9WsrIDw+sJ2lM0OyGd+jiXJ0OEvEwqUySbdshkC3iuVosIFEQNbOVAaCEcoWcssXQia7lawSJiyavjIqSP8rJ6Z6/bB2ENldsG/U8u+Lu7UaY8BkPCQn4b87HckaeRkREOHDjQVWHU6/VVKUBmx0elFKdOneLUqVPs3LlzwRU4y0kol5t8rgTXddm0aVN3zjCRgY6NjXH8+HFSqdSM+cvlrie5VTuU0zt8W1r5ErUhbCJkG8IGnvQZjhoMbXkH3HcfnU6Hs2fPMjo6Oq+D7FoklJ/+9Kf5sz/7M44cOUImk2H37t08//zz3H///fPe54UXXuDHfuzHZnwtlUrRbreX9dw3NaFMJK5JVWmpi6yTA/31knRJKTl+/Djnzp3joYceYsOGDdfcd6XPf80LfOT/QzTOx4lOKz5I6BkYoSQuHT0nGbRiiWldf5RtpEjHJjOePgCIFKgI5WR0d47YSEcAKpZV2Sm+W/t79rUP8J64GypkC+w0IpzScrCgElfRW/qjbKCslJ7dsfShQ1ppLKKusY1y+hAEKLcfoTqx3LRBaBdxGEW5G7V7ateCPofwqygnixVUwMpiyQZYKQoZQT47wBAQhBGtVptmo87k5ctEUUQmmyObTZPN5ki5GZSwCaWjV5Cg4lnT+gyZsBVUkG58mLNzWGFVrxBR+jnV+vdqudgiLNShbDS0sYU5MBnWgvmq7kopTp48yalTp7j33nvZtm3bNXFzrVwM52IpVfQ17VBGHZ1MOjmIolg10Ua5JWzOI+31iLAajwPo9RZJQiiCjjYbkwoRy/GFCvS/IXVRjKArk1deP36jTqeTwrXqhCKDJVtgJeMAeW1sZme1MY+t46KIZbT0nknsrE5oRRkhVGxoFqKcUtfghlYDJVytMBGWnofEAvR+SEG84gihY7gd6ZUhjoWbylJMO4hSCaVs/E6TRqtNo1nnSvUqtojIZArkMoJQpbAJ9LhCPFvelb76cYIbjKMs3ZHESiGI4sH8CNxiLHVd+P05iqIFDTtu9wq84dZiMb+N+Vhqh1JKyZEjR7h06dIMF9e12NObxDjf99m/fz+NRoO3v/3tFIvFBe87n+T1ZjA72UvWkxSLRbZv304URVSrVSYmJjh79iwHDx6csTapVCotqvK7IQll2MGRDWhd7iaJImzquBw24uRRr3YSYVV7lPgT3TV3JLvOnRJCNrur58jf1109l0qlKBQKNBoNHn300WscZH//93+fAwcOMDw8zJ49e3jrW9+6Iunw17/+dZ577jmefPJJwjDkE5/4BO95z3s4dOjQgrG3WCxy9OjR7ucr+ZnftIRyvqr7UujtUK6U+QJCu91m7969BEHArl275kwOVuJE2HvfbjAYfxVqx1BuQRs4OMXY7CGtXVeFj8SByAfbjWWuab0bzC5gB+OxOUNV3zdqxDLY6TlDnTTpVR2KiIZq8t3OUSJh8Yq/j7epx/V9iLTJTuRrmazq6DmaqAGWNz2vGTbBSmFFLX074ccmPR2dnBL2OLdmUKpNaBVACaRb1gmvW4w7nTlEFICIk2gh9KFMRQhLgQzw7BReBkqFYQiatFWKTqNCrdWhOj5GJFIUsi4RLlKGSDuPpSKkU8Ai0i6xRLo7KgOkW0DI2F5f2Hrf5KYPxfb4i7NQQlmv17vOYAbDaphtLJEkk+12m/3799NqtXjqqacoleb+u70eklelFCdOnODMmTNrWkVf6L71ep1zL/8nUv450vl+cmmPdK6ILTxCGfHl3Hd4yG/wVHa3LnS5/QjZBLfclegT1mIZaCuONUF3BlDHWRdBByyPydEql07WCP0A4XgoL2BoeCMg9HqjnpEDelyzRTDVY15TAL+qv+7H7qtBG7x8LCdNg7BRVgplRUQi051VRM6ag5RtbeAT1bqyU+UUe4zH4jGAsEIqVSLlhFDeiopatAJFq1FjoubjdzqMBCkKwRUymTxZK8RO5kXtfOy47QEBehhf6blzK147svED4JUX/d0tNhJgZigNa8FS/Tbmw7KsRU3Heseddu/ePeN9fbUJZdKhnJycZM+ePeTzeXbt2rWk7t18mwKWetsbiW3bDAwMdJ2dfd9nYmKCiYkJDh8+TBAEM1xS51rDsayEUqnYjK3Z0z1s67Oz9BFhXRfIgkkAhD8BwmFg9CShlcc67emzYDAZq/9acXz09flXhdrMrFuE7Oj3hbChjR+DKd3wCafAG0Cuf/eMy+stfMx2kM3n8/zKr/wKly5d4h3veAef+tSn+Omf/ull/8z/9m//dsbnL7zwAsPDw7z++uu8853vnPd+QogZYysr4YYnlMvVus+FEOK6SLrGx8fZu3cvg4ODPPHEE/PKaddE8jp5BK58M5a5tkCk452KnjZ1EC7YAomNsrMgFDhxJ9IpIqIW0i3qF4iT75kvrGjJaWIYEU7qg0hUR9l59tRfIxIKWyquRBWuuFfZIXaihA1YcaIFghRKSZ3IKhl3TiPAiT8CBLryLyL9QhbaYbZbTbe0dEqoCKUisCxQQh+YLD1XqbpdgzCebQxQZPXPwsnMlNR6RTLBJOn+dZSDKaQ9hN+4Sq0jSHGVixfO4lqQyuTI5fJkMmksJ40iiruPAoELlqW/XxWh+p9C5e5e8u9vIUlXMj95uy6lNdwa9Fbdk1gHcOXKFfbv38/AwACPPfbYgnL/tY6Pvu+zd+9eWq0WTz/99KJJwWoOXEmMHB0d5cx3/4S7UqM4xY10amNcqQOXz+JlioykzhEyxf7O6zwSPkjajmcQrbSWi7olLUP1+nVX0tLrMohl8Agnjr0KVETYbnHl7FUsFVHsTxG2m1y52safmoDMkH4M4eqClJ0FIj0GoCJ9uFDxISNqo1L9iKCu/z3QO3VF11QtNvfxx4EUHnVAxYlvARLDM+VrsxwVIL3B6ceXQc8cZJ+W1jpFCKd0shpOIiyXrBuQLecZKEsunK+RzduoqEHl6hRX/BZOukQu65HOlsmkbYSbiyWvurAp45+nLD4I5UeW9LszM5SG681y/Dbmw7ZtOp3OvP8+W+I6+z0/6TCutHtmWRaTk5O89tpr3HPPPdx1111LfpzlSl5vJTzPm7HnsdlsdhPMZA1Hklz295VIOxI7nMBqXwApppPDqKONImWo46aS2jRNWHFjJTfdYAlbWpVGGBfNpI79SH3OViGB0A2IxE9DOXlENKXvnyj2gioID4iVevjxaJmMNxCgz9xIlFVAbfqw9jXpYb6CmxCCxx57jFQqxT/9p/+U5557jiAI1uRnPjmpk+dktnM+6vU627ZtQ0rJ448/zqc+9SkefPDBZT3XDU0ok0Wh58+fZ+vWrStKJhPWUtLVq19/4IEH2Lx586JW9atxMfSiq3DxdS0z9SsIKweJYURUj/+YW4Cr51+EpQ89It7fCFoyKmX8AvCJvH6sqKXngsK6nuGJ3QetYBLplmh3LrCvfYiSDKhbNqUo5HjmBLvDx3Q1PWppGZbsoERKy7SEE9vf2925G20xL2I5rV7boSxb71pLuphOVn8UFq5q6p+nX9W70fwJcEpx1T2n53Tihd3SSmMlkloVxpLaSM8SqcSYyI87jh28/AB9qQ6TEw7btmzG7zRotiMmxy9zObTJeRIvO0g+FeHlh7HjvW0imkJltqEG5ra/n4+FDkz1ep1sNnvLBXHD7UFSdT99+jSDg4NdM4NeCf5b3vIWNm7cuOjf2FrGx0qlwp49e+jr61s0kU1YzQwlwNmzZ5m4eIBHh6bIZnegog75wn0MyBZBaNGYGuENeRRPKXwh+faVb/Jo5gmy2Qy2JfS8uF+LZa9NsHNaRZGs/HByem4wnqtEZAhaLdodl2zOQ2LjpEHJGqEf6a6mUiBCXRSTLZJYqA3H9CFFiAiwddLpZBFK6c5eYobT3a2r5yyVX9EdyrAWJ4NTYMdzopanu62Wq5UiwkZIBZaNEEl3RYKd1sU4p6ClWI4bdzlDXcSTAaFIk0l5ZAqbGAwnCcjRqY9S60Bz5AS+8sh5Ci/XRy4lSKULCBo6OV//vyz593anuxgabi5SSi5evIjrupTL5TU/P0opuy6us43Geukde1quMWMURVy5coVGo8ETTzyx7L2sa2HKc8OJApDNnu5hGytskpM+ebfG1qEQVZ6k1WzSmrpEc7TNaOsKlldgkz9FeGov5FyEk+2OLBBFepxBSRCWNmlTShfXVKiTSunr+ClbceOiEY8WtHRjAQeEQCXr9wS6I4nSpmUyig0rI3TDBZA+QgkI23E3sonyijqmW1l9Xh1+x5zmZUtZO5fP53Fdd9mzpnMhpeTjH/84zzzzDA899NC8t7v//vv53d/9Xd761rcyOTnJr//6r7N7924OHjy4oBJpNjcsoUyq7q1WiyNHjsw597Mc1kLS5ft+V79er9cXlJDNdf8VdSjDKYb9l8G+NzaLKUCnZ8dXd29iEatd1d3CTkW7p4ZNvVg6ClCWi0IilN4LaSkV76WU2tFQhTq5lPFco2xzVE7gqohJ26YQSeqOTSGapCJ8BoIq0i12n1skiVcYV9WjaUMbZad09dzyYiOgbDwbNPt5+1DyMqFd7BpViHAKEjt/t6S/53iORzp5LH8CnCxWUNcJt9KdBCVClEK/wBG6G2q5gIMUEJLG9nKk0yWyxQDFVqKgTqMt6TSucmk8QowexMsUyKWnSOeHcO7+4LL+BpPu+kIzlKb6blgJvVX3U6dOkc/nyWazNJtN9u7di5RyXgn+XKxFfEyS2xMnTnDfffd1i4BLvf9K4qPv+4RhSOXqJd6+4SKe6yCjFkrZ3e6j50Yczk3SqncIbRsX2GedYePk3URXKqRdm0wmSy6bIpO2EJaj51+6hj5Z7fDq6N20OCWQDexUmlQKGnVBviioNz0QLla6rBMrYceGX4kk1dYdT2HphJOk4+npA5TlxEmdA1GIsD0gQlgpnZwCyvK0E7VTiAuGjk5YHa2o0NJcKz40uRDPfIuwruNtvBalV6GinJKW4jqFeKWU3lcsnYI+MLl9OEpi920hpyIU6wg6bVqtJs1mk6mJKaSokE8L5KYPU/AtMvbSOjELHZh83ycIAiN5NSybXr+NS5cudefwVspc8XEhietsVppQJs8RBAFDQ0PLTibhFuhQRm09Py5buO1zpBAwPq6LXtKPZw478UdfjwckCZmK4m0EWoVhEenxLEKE8Mg6EZmBYQb7A0K5iXazysXLksnqVcau2hRSEV5ukJxXJ5Ub0F1JOx+bRObi+KwNzbB0YU1hxSuVhN7fLmwtZcXrNlGssIaVLiH8GsrNx3veUzrZFG583Rkd552M/v7csm6KeKUe9ckEqvQQlN86549uKQqOtYyPzz33HAcOHOCb3/zmgrfbtWsXu3ZNN1d2797Nzp07+Z3f+R0++clPLvn5rntCOVvrnmTdq3FohbWRdLXbbV5++WWKxSK7d+9eVkVgRQemqI0z+jfx4UBo6ZWM4t1nHZQ7ALKlK9lRHemWcdR5lFfAChs9uycz8V5ITy/txtYzL8IGJVAi0i8iYhlpvBftofQD9NtlIEJZNsrvMHq5Qt9QHmmlEbKpO39RfXqHm1vE8meu67D88XhtxwTYRYSc0hX/qKXNe6Svl34TIkUKIVpIO6+vwynFErH+WLqlO43SKSAiv2tyoQ9pep4SYevdaE4Wwsn4IBhb/0eTKDI4og1CYEUdfUBTPrabpuQKVCGrDX78kGazQbPV4tCV7XQmXp+xhHYxe+teic1c1Ot1crmc6VAalsVsl+vksHP58mUOHjzIxo0buf/++5d1cFltfJRS0m63OXv2LE8++STlcnlZ919Jh3Jqaoo33ngDATwycB5PdIA0qLZ+I5cWqBbK8jhS+xYCRVEpGkLgEXB1sMbbvIdptANajRqXrtRQ0QSZbI5cLkM24+B5ujOJndNVaiejk007iydqrL+njyunLtGY8kh7bYrDLvlMEyhoaWly2HAysaur3umryGpTMjLx6o9MdycmUSNetzTVNXHQc5BVwMFTNUDFUli9K7N3565e4xQX61IDcZezf1qxESXSVz3WoLudnu52Wg5EdYTsYKsWhIFOeGUHYemDkXAKeK7AzQxRKgVIsR2/3WBSDnCxXmTy1VfxPG9aitbfP8NRuJfFZszBmJYZlsdsvw3HcdZ8D3myS3fjxo0zHP0Xun9ybUtlbGyMffv2sXHjRlKpFLVabUXXvmYdSiW7iWH3YywpJeroXeTS10oz2dGO+pHu9CF9lJ2hr3YaO+jHsjJdIxoldKMB4cRnz0x32wBEOv5aXqxoc/RcuJXSZzk7jYU2mLRFRDbfh2CMjVvuR6mARiug06hwoRpgqyt42T4KqSlShWFSfkXPtfsTeg4yrE/vXo/3Aks3p939vb54o0EfQjYJrTwp2uAOdZsdotvgqcTNkmQTQqjjq5LT3VCvXyfJ6Q2o9e+b93exlD29a+XB8VM/9VN86Utf4hvf+MayuoygnXsfe+wxTpw4saz7XdeEci6t+1ollKuRdCmlmJqaYnx8nPvuu4/t27evaI5zWc+vJJz/c6zWZT2TGPlxxVlSr9ewLJtsxoklWVE899jBJ6e1+m5fPFdY0ImbndUvcDte5i08/ZiWjYhkjxufAgRCWDjKYqszrJNNIQjcCD+KX9xESDsbP7c+JCXOh9LrQ0QdpFdGhE2kU0QEDe14GNW1rCycAit2irVSWtZgeVhhDSElVtTU1XHh6tlMKeK9kEL/HKx4wbiwECKaToTRnQnl6he+7nJOLy2XTh7RqujgFdb0jFPY0bErrkwJKw1RB8/L4zlpind/H8N9b+vaW1+5coXjx48vemhK/o7nCwhmPsiwXMIwvMbl2rIszpw5w+Tk5AxnweWwmvg4NTXFoUOHUEqxe/fueZOHhVhuwe3SpUscPHiQu+++m+qJ/w87nIRcOXY0deN4CSht+DWc2koprFPzA9Y7FqGbYr1ysB2HUrpFsbCedf4kHZWmVZug3mgyMTYCboZ8OkUmXySXTWHZru74KQVumWJfSPqtdxM0GtheitHRE1r5ETtgC78Cdi7ucOZ0cc0pIMIJsPMIVY8r2clOy2SWs2fO0h3Qs4leP3QmCKxCnEQmpg56ryXx/I5+3rqOr7IeS7gifRhTke5oKglWWo8eiHwcR1NxYS4iUGlE0gmNmrqwlxTnwqp+Tr8KVhorqpJO50jd848YtjMzFnafP3++6xaYxMpyudx9L1+KC7YxLTMslaTY1uu3Ydv2ooY6i5EU7ZYqcZ1Ncl5cStGu18zswQcfZOPGjZw5c2bNXLBHRka4evWqfj0Ws7jRVQjbCNkk1zqO2+ogLh/XI1BK6URJKd1RBPQ5KYi3CLS0aq67uiiKnf3jJkXiZm3ndCNAZHBlA2UlCVjSeIgbE04u3nueimfQPUgaHkqiJftWHM9iFYqw4oaJGyezEUK2cNws5YILxQLrlKLt6/Vy1WYbf+IMwklTyFRJ58rkogmsdN/0NcVx2gqmYllqfGYmjBPecSKnrH+uXr+eg3eK2vHaTncbOPqMaYOUunljufHomVbMqY3v12fyeYiiaN7307UyLVNK8dM//dP8+Z//OV/72te46667lv0YURSxf/9+3v/+9y/rftc1oUxedLNnJYUQq6qew8or8GEYcuDAASYmJiiVSiv6YcMKEspLfwP1k+CksWmjUKiwzsjoGK1WCyUlUtnkcmnSuRL5jAdORg8S48TS0pSuitsFIJiWmLqxftvJxTruaZdWZEe/MFUI6BeCEAIkWDLEJpYkAFZsXKM7nAr9P0t7Vliuzk3tHKBizbjU8ioV6sNU4hSbDD0rUEJhWSJ2cU3HJkJJpzGP8Kd6pFsFPRBt5fValGTeKTEqsmKrfycefPb6EEoS2QUQ1Xgw2pr+GUQt/Rxdm/xJZPEtqP4nEXCNvfVih6bZJimzSTqUBsNSSQ4GSTJZq9VoNptEUcQzzzxDJpNZ0eOuRPKqlOLChQscOXKEjRs3cvny5RUlk7D0+Jgc6C5dusSjjz7KYLbJmcNvgNwOfmxmE7b0TLfy49nukO8tfQCQnDtzhoHiEPlsuhvvlFvSBxG3SDqcIjWwnr5wisjegF8fpe471MfPMDri6Bnr3AC5lEUq349FhJdK4aXyKFyisax2Y3XTOumMYw9OPp6viTuRltudqyRq6I+0ATues7QRUfwxWQmiFJJ4T6SVRQlLu9Mq4v2W6HgrRLz30tKHGWGD6uh4GsXS1zCRvlZ7RglKEFTBKWKplo7hMtAKFyQ4JRTEuy6VTjZBzxZt/IA+PHLtwm7f97urAI4fP0673aZYLNLf308YhvMWZ5ORgJVY4RvevMw2b3QcZ0FDnaVg2zZBEPDqq692C2fLKXQk54DFYtx8ZmZrsae3NxkeHh7m9KkTVKp/Q9Gtk8nkSOfyZBp1XViqVXWiI6PYgDGOXaiu2aKIkpnASW0GlpiHJZ0+Fe/5VTZYDkpYKGwiK6dnF92SPr+5+bjLFyvJYgMy5fbpsS07HxuPeXpnupUBEcRJZrxL1NIFAwXYVoQQkZ4njw0fERZpzybtFOnrLyOj9bQ6bVrNNhMTk1z2fdLeFNlsgVy6Sjqb000Ny9HJYbyZQBtFKmTUwVZpQOrOo+XFctdYTWHp86wQQhftkvGzsK4TT38Stf49kF64+LuUDuVqz5DPPfccn//85/mLv/gLCoUCIyMjAJRKpe554tlnn2XTpk18+tOfBuBXf/VXefrpp9mxYwfVapXPfOYznD17lp/4iZ9Y1nNfd8nr7Ep1UmFabUK5kseo1Wrs2bOHVCrF3XffzcTExIqff1kV+Cuv6GTS60f4DUIy+O0Ol0ZGcSzFls1bEEIHn2arTXPyClevRKRt3V3s1C5hFddh+ZOxFKoR74fsaImpCmJpVKhNdaJQJ2Uq1AchGeodleikUjseWqjQR6l4z5jlda2RRdTqymmxvHjPWgpCvTtNxC6EWpcey4SFrWOTrY0jpCWwVERk5bW0wC3F0qxyrHfvizuN5WlpQbynUu+KzMf7KdMgG7F8AhL3WL1mJQ1RhFICSwh9wCIexibS61hUbLxBiMxuQW6Yu+Ky0KHp2LFjdDqdroPr5OQkhULhmoORMZwwLBfLsrqx5Pz58xw5coRUKsW2bdtWnEwmj7scl7gwDDl06BBXr17l8ccfx/M8Ll26tKrnXyw+djod9uzZQxiG7Nq1i4ynUCf/iEh4ev4mOxDvk8xjdSbAK3dl98KfACePLVu6WixDsONkC6ETNERsuhMi3QEs5ZMqbiItW6jBIWS7Sr0j8OtjXJ60sEcu4uYGKaQiUoV1eNQQKOywilDDcZKa0/E12fVrpREi0FV8Kael+sLS14QdV8NdiEKwXf29OTktKUPgqiYIqavnyWoQtxRLbIs6XibxPV57pLz+WFWSdD1j11enDFFsdZ9U+aMGQkls1YFIxHJYLce1okZ33Yl0y7oiX3oY8vM7X3uex/DwMMPDwwDdfWoTExOEYdg1cEqKcckYwFqMBKxkaTfAF77wBX75l3+ZM2fOcO+99/L8888vu/puuPHMVcBdi/Pj5OQkjUaDrVu3LkniOheLxbhqtcqePXsolUrs3r17hiJvtXt6wzDkO9/5Dr7v8/TTT+M4DvbYlwmvFmi2PNrNKa6eqdKuR7g2hJ2IoaEUdqasvTtiKT2Wg+5QqtgAUe/JFVFrWp7v6t3hiZxUqxu0oSJEWgwnYnMbJ0kuy3FxT8cULfGvxI813uMVok0kZbcZktL+G7YeKZC2h1SOTmhFGLu46ngqorbuooZtbMsj7ylymTJDfXlCHJrNOo1Wh8tXJomiCTIZj2w2Ry6bJuVpw0sl9Do+hKX3DRN3WpO5TKcEMt4BT4C0M/os6fXsW5dtVOkhVP/bFv3d3YgZyt/6rd8C4Hu/93tnfP33fu/3+OhHPwrAuXPnZvzNVyoVPvaxjzEyMkJfXx9PPPEEL7/8Mm95y1uW9dw3ZQ/lWkkWllPhuXjxIocOHWL79u3s2LGDixcvrskeoUWZPKz3TSZdQkcfEk9fGKWvVGRoeB0qCpEo0m6WVDaCgXXIsEOj1aEzcp6xiQbiyiHcTIl8eoJ0fpCUXdGV52Q9iD8BTlEPFTtZLQ+1YsdWK61fpEnCZWV0pcrJo4SjX+xxgiaiTvxiauuOZ1Dvzm4qp4AVJvvPqjM+iqCCdEqxZKuIFTVRdhZLdohEnABaaX0IsjJYKKRbmjYNIkR6fSADLamVoU4mideMCEfLaJ187GJbxAqm9GM0R/X8ZDCuJbCJU2J8wFNCf5Tr36cT5CUw16Hp0qVLNBoN9u3bh5Ryxv6kXC7XXRtyvVjpYcpw6yKEIAgCDh48SKVS4fHHH+f8+fOrnhFazqGrXq+zZ88eXNdl9+7dpNNpGo3GdY2PiXNsf38/Dz30kD5gnfsTXR0WKW0gY3n6wCB9pNuPJTsot1/PPHq6ECWdDFZUA2t97CKdgyCWKYWduLIstSuqEAi07EqgsFN9lFISVepjSIW0OhHtZpVqM8CfOImws4ioRT0o43aqsYRqsmsippxkPVMyZ5PsLytOjyWoJJ4G3RUjKjWou61eP6pTwbeL2jQnKbI5pa5iIymuaQlsIn1NaelrvO8XYekim5I6VlquVmgIq+vS7ZNF2BmUl9GdCK8/XsnUB2FNF+GCSfDKqPX/v2X9rjOZDJlMhg0bNjA2NsZDDz1Es9lkfHyckydP4jgOSilefPHFZc/izmYlS7tffvllfviHf5hPf/rTfPCDH+Tzn/88H/7wh/nud7+7oPOh4dZkNQll0tW7cOECrusu+8C8lOtIioNHjx5lx44dc45UraZDGQQBIyMjDAwM8Pjjj2uDydFXoXYCJ12imArxnAL1qxN0ahO0laJTu8z4uEe5fJFUbih2vR/CDurdxFA3B3RKoKWqISrVrxNQrx8R1oisApUzF6hUHFLuZULPJuPWgFhJYmf1mIIdjzIhUG7s1O/1dRUkusNX6M6N6+Qy6WTGclkrD1GTCAdLgLRzWCqIk9VAbwqQLd1kCWv6Y7yf1wmmKBSKFNOghofwW1M0O9BqTjE+MYktJOlskXzWI5MrouREvGc4MY+MFXNd35AJlBuv57MzWCo29xEBOEXdnVwCC7lgB0FAp9NZdYdyKYWKr33tazM+/43f+A1+4zd+Y1XPCzcpoXQc54Z1KKMo4vDhw4yOjvLoo48yNKStfFe7mHZJFabmebj4RS0dCqoop0B17AwKwYahIuW+jSDbhMLVBw88BAJlOViuTd7Jcnl0nHu2biOSekl1rdXh6nmtF8+nq6RzfeTlFMIrxA6qhR7ZU1LNH48ln/G6jjBZ19EhEjaoAGl5+sXqJDOccbUqpR1bp010BrQc1e1HyMb0ISheT6Lcgt6F6ehDkFTgqCmEKmopmOVhxcu7LRFXxiypuwy2he4uxH+Wlt55qUQyCD0QG1T0QzyDJKIWkZ3HZjKeK40NfVDayMPOYoV1oo0fgtS1Ns5LJZPJ0NfXx9jYGE8//TT1ep1KpdI9NP3d3/0dr776KtlslosXL7Jp06YVP9d8rOQwZbi1mZyc5Nvf/ja5XI7du3eTSqW4fPnyqgtuSx0JuHz5MgcOHGDr1q3ce++93Tc727ZXvWdtrvjYe9i69957u27favRrMHUE3KI2qZFlCPQqDSUDULHckwhiW3fp9gGTRE4JLcPv1/bwbhxrnJx2O3XzuitoZ/TXRSqW4MfJJgCCjGuRKZXpKwukHKbVaXHxUsDU5BTj4xGZdJ1MtkA+08LL9OlDhdsHUUPPHQU1cLVkDDs3PQfpV6adZe0MIpqK1RRtpFLYsUOsUFFX4qqcslZ3uWW08Es7tOoZpmSXr6PdZO1Mt8imDX9KMxLeyMqTooYgiuckvbi6H+8UtjO6Um85qA0fXHLRba7fLehRgsHBQbZu3dpd3v7KK6/w4osvcvz4cR544AF+5Ed+hH/9r//1sp9jJUu7P/vZz/K+972Pn//5nwfgk5/8JF/+8pf5z//5P/Pbv/3by74Gw81lpQ2JxDFbKcXDDz/MwYMHV3UdcyWFidJjfHycJ554Yt7dfyvtUF68eJGxsTHK5TKPPvqovoapk9hjL+lRoli1VqtM0WoKMqUclgBLpsh4UBws0KmPc3k8who9gJMdoJC6qk1trNj4UemZR4j07kcRG9DYBcZOX+XSaUEm06FRTyGDq6Qz6ymX6nH3cVI3NIKa9gOJwvix9Mo5cHV866rHYnMct6wLXN3xp7yeHxcZUmjzIiusxSMGndgUJ1npEXRXMenCY3vaa8MpIoJJvEyRlDNFubwJ/EnakUe7XqEy1eLK6AiRsBDVcaCPXDbCcsszDTOdXHy2tLXhkIo7s1EbueWH4pGExVmKadnt7IJ93RPKuQ4jayFZWMqBKbFoFkKwe/fuGRKytdzTNid+Bc7/uV6AHTaRIs3Y+aPUfYsUdQrFHYhgXK/qaI8T2ToRw4uNGZycftNHgozwvBSe20epz0KpDbRaLZrNJpVqlcudgEyqSjZXJJdpkMqUsWQndmxtxCY6tWltu6M/IlKkqWtZSTAxrXl38rGOPqflClYaIh8l9DJX7eAaxQ5actrEp9tpLEMUxEGjjhTxOhNs4t0fsYmQdm4VYb0nEdZyNuWW9M/QLiBkLZZANOLFtPHgtop0N0Pp7qeyUiAclOXqXZZ2Hkv6RP1v11bOqyQJBkIICoUChUKhe2hyHIf9+/d3V+J8+tOf7h5g1oqVHKYMtzae57Ft27YZa5RuxEiAlJIjR45w6dIlHnnkkW4nPmE1e9Zg7sNWUtwbGxubcdhStZOo8e+CNwDhFJGd14YR7gbwp2JzmlrsyBrEBSMQSiJkoGdrVErPjSdGEnaxxxU10MmmCkCUdDIZV7+x07qj6WTizzMQtbDsFLmUwrMlG4by2G6aVmOKRnuKS+MNlOWQyaTJ5ovkMhlc2wavqFcaue6seUstA+va2Sd7hWWIpUIc1QEi7bRoZ/X1uHlEoOcj9V7fAqi2LprJDkok8/NlBDIu+MUxWCZVfB9l51BhG6lsLCJ9PULow5ul1RwqUboMPA25Lcv+Xff+fmGmaZllWfT19fH+97+fer3Ob/3Wb/Gv//W/7h6eVstSlna/8sor/NzP/dyMr733ve/li1/84ppcg+H6Mdf5cSUNiV4X1/vvv59Wq7UmKpDex2g0GrzxxhtdpUcqlZr3vsvtUPbOmg8NDXX3XavOOJz/M5TlafWYU9Ar2JSFZ7UIhN4Xbtl63rFQyFMoFBiUEZ1Q0qpXqLUCxs+fRFlpiukrpPMDZNMdbCcuwFkOCguJoDraJJ1VeLk8aSSXzmRo12OX00TiGpvx6G5hXp89nayONVYaEQbx3vF4hYiIu6J2FlDTscvJg98kFCktS7VTOkm00/ocG28mUFYq3ssbe43EcVa5pe7IE6oTK0fa4GTIWAGZgX76lERGinMXzuOIDpUrFxnzO3iZEtlsimy+RNpzEbFxpBIOkKyIaqOG/wFkNi7597gU07LbuTlw0ySva3FgWugFmQSQTZs2cf/991/TZl5th3JB6+awBRf+snvw6ag0F8+dwXbybN86yLGTZ1FRR3f/woZ2UfUr4BW7LXsRVFFOHk81QKh4XUgaQj3PmEsJspkyor9IEOk/xla7xcVqBdRobJWfJZvL4woRy61ClFfWrltuCdWuE5CFqBNLRVuxo1UzrmLHjoJhLTa8aINlaZdaKRCWpYvnsaxMS/GjeJbJAhwkDpblgOUhLRtLRUiyWERIqw9LdbryK+n2xetSijrJtDMg67FeXrvECiV1t9JKQdRCxPs7hRC6Q+vk9W4gK4MVtVCpQdTQu1b8e+5lvmBgWRbf8z3fwx/8wR/wjne8g3/xL/7FsubXVspSDlOGW5tsNsv27dtnfC0xjFgNC8XH3kr9fGYUq00oZ1fgW62WXgkSF/fSaV3Rlf4UXH5xeubQzgNjhHYZEJAahKiFdMp6BjBZ92G5INtYFvpgIjv69rKj44XUSaLwp8DKIZSexUS1dRIpk3nE6WRTS+8DlFXWC7GdEnAJ6eRJ2SGF8nqKUQ25YTNB4yr1jk178jJXxywyToCXGySfkqTyQwjZBregC3F2DkGnu2hbWbnYXC2HFBMEdgGErU3GeuRlyi3rGVInr51Yndx0lzOs6tisQkiMfaRC2K5We1hprf6w0yghCUQWnOz0Oqdk9tLp10XCzBbU8Ori5FLWKpVKJT70oQ+t6nkSlrq0e2Rk5Bqn5HXr1nXNKgy3NrPPWss5P/Ya1zz44INs2LBhxmOsVIEBM8+QIyMjHDhwgM2bN3Pfffctae3IUjuUyax5EATs2rWLc+fOafVI1IYLfxHHs3Y8+9hAuSUK2TEm7RS0rtBRGbLpKYr9Q4iwg7L0vGPKtUn1DdNXjpBiM+3mJPWmT6UywSU/IucqMvkS2bRFKlPAkhLH8Ql8hYMiwsa2O0gK8b7dVCzdj00iPb0GbzrJTCSphTjJ1DJ77S7ro9zstJ9HrMBQVhqpXHCLejuAHasqLDeW+6MLhUoCYfxRF+wUqVh+m9JfsxyUyMT/7WnVCz7C1f4cxfI6sl5EQIZ2bYy6r7h68Tg+GQophZsdIpe1cdNF7Uab2wYDTy3rb2ahhLLZbJLJZFb0fnurcNMkr9dL0iWl5NixY5w/f56HH354XhvotZC8znl/GcGFP4f2KNgp6lNTXLw8SrmvyPDwelBCV5TjN3xt497pmSOMzRW8Poha+CKnW/ypojZxcLKxqUM2TvzSuKJDuZilnHdQQ/34rRqNjqQ+eYWrY5dxHZtMvkg2nSKTK2IJgUCA5emKup3TL0CRjx0HUygVIWwHhUJYtpZbSdBdxlhyECW7IZvxnOXU9I7IZMmrkjiyhhIDWGEjnqtsx060cbdT6qqSQHblbNrBVoHjalMvQn1b5aNEdoaxT2jl8LgM1kZt7y88nZBaHnLDB6cltKsk2RM4H4lD12rnhJZ6LUs5TBluP2zbptVqrfox5oqPY2Nj7N+/nw0bNixoRrGSPWu99Dp5j4+Ps2fPHtavX8/OnTu7j62URJz/M1SnGr9GFSiFRYgdVkGmQLWAVGw4k51enUSAskpIKtpl0M6gNaLx92zHhwnLi01xbD17KTztHmunEX5Ddz/DcR2/gpr+KBvaeVAGREqvFNFOqCHS0omYm99If85HDQwzHDZptCM69auMVCRi9CBOpp9CepxUYZh0NAG91vX+ePdwhQxxpV78LaIe0zQ7qw9HThElhD6UJe6v+iccG6FZ0/Plc+y6tIIJQpUmRV0nn8lqJSLdrLS1qZpa/32xpHjlJPNB8x3Q13rGfKlLuw13FkuVvLZaLfbs2YOUkl27ds3o/CSH9pUWzGD6DHr06FHOnz+/7LUjS4mtk5OTvPHGG5TLZZ544gkcx9H3jUK4+CUdy4SLwsECbcZFRGZoPRuY5OwpH0/VGdy8hXI/sTpB7+zWhzoVO2i3yeSKZLIRDA0TBW3qrQ6t+iQTk02EnCCby+MVbFojHeqVCCUhlbUolYI4tug9jVYYaJdUqZ39IULaBb2xwBvQyW/cPJg2IStMN1P8xLxnEkUaWwTdgqOyU7Hzfyb2BbFj52o7nluP5f92vudxZyrfRNTQOzPxY5+OEF9lEbaN9Mo40ic/sI1C1EKK9QTNcZodRacxRmUiwrW0M7i660P0+f6ynNAX+nu7E/aY37aSV9u28X1/xtfa7TZ79+7tVnIWevO6bh3Ky38N9VPg5JgYPcv4ZJONw/0UimWdgIGWaYWt+NDj64Xdsh2vBQmQIoWlQpSVxQIip4gjmO4yumX9onKK0yY6sQmOCBukcn2kUg1kQeKFdbLREO36OFevTqEun8HNlimkBXaqhCObOnmM2vFAdYCyUyBld02JrgqFKCcVz9xox0Fp92FJrV+3VJwUy2bPXGUJW17truzQ8tZJ9L7KuOup2vpshKUDg60DBY62qVak9SHSSuu5SSvd/dkIJVFOAaUmCJ0iWDZYRb15U0VEG94PXnnFv+PZ3AjL56ViDlN3LmsxYz47vkkpOXHiBGfPnu3uQluIJG6vNEYmz3/69GlOnDjBzp07r1murEa/1l0Nog8fiTMqyGQ1Bo52KxVuPAOexwrG9XxgqF267aiuJaBRJ97jG8cHmcj0k/kdFVvOO1py6sQGElZKF+0sJ47RVpx8OjiqDrJvuiModVIqVEt/FG2E5VDIuRSyWxi0BH4Q0mw2aDTbXLl4CRDkMg0yuRy5dAfXzcUVfd1lFSK27peBfk8I2/GohJa+WkG968Sq3LJ2f3W0cZruRGpjCC3z6gcirXqREcopIf02kcjq70t4sfNrU8tqwynk0Dshs7SD8EIsdjhfy/i4nKXd69evZ3R0dMbXRkdHl3z4N9xaLCU+JoWz9evX88ADD1zzd7laBUbCiRMnEELw9NNPL6tYspQO5YULFzh8+PA1xj5CCLK1V0CO6vVFnUmEcHUtzbLjOb+IwlCZDXQIZZ6+4QJg6Xn0+Jyp92Cgi/O2F3cL9RnNdvKUcopScStK+rR9SasxSSDbkI8I2jbZkkMmY2OnPa0aw0LIjn7+sKaLeWFDm9igPUIQPt39j04OoaK4iaI9Maww2TU+pWNcc1zHcF8X5bp+IInLrAzASYEM9YaAOfan6+R1ep5SJ5mV7pymsrO4qgZqQG84ELY+7woXIQRefhAvp6B/ECklnVaDy+73cPXSFQ4ePUU+n5+xXm6hv6eFTHlu5PnxenHHSF7Hx8fZu3cvg4ODvO1tb1s0SKxFQnnN/a98C2qniOwSIxdO0/Ijtm7eTCqb1weWeMm0bSn0wLM2hhCyAbjx3GJGzxLaOYSq6dGbxNpddpBCV2ik8LDiXUJ6RUZRrw/x+hAqIHAL/NX4F/AV/HjfPyZfuIfBqEUnsujUr1JrQVg5Q2RlGL98Ei8/TN4bR6T7sPyKnu30J7SLqj8B8ZAzVg5kQye7shN3DZPFtVHsbBib+qAIrDy2sLp6duEU4u5nBqWElltZnu62uvoFL92SNvhxilihXiXSXfAdVPXPDAmRRNgeImhiQTyQrp0VZfkxyO9Y8e93LpaSUN6ItSHLOUwZbj/WeoZytmRqKX+jS92zNh9KKcbHxxkfH+fJJ5+8pmsvp47A+Le1OkK29Ufl6wOS8JBWNt55S9yBC+M5wlDPFUZ6n5nDCNJeF+9dLGoXPid2C+x+XoSwqrt7shUX4No6ZlkijmGhdu1LZhxVBAgikdb7G5NuILGcX/pgydggIgVh/DFo49kZvKygXOhH+Sna0qVVrzA1WWN8tI7t5snltbugFC6RXdLmQ3Y+lt6mp6W4sseJNTY6U3ZWx0HL0/t8sYF2PKfpgPQR8SyoVsC0kMIBJMrNxQW7MogQlbsbBnev6Hc8mxsRH1eytHvXrl185Stf4eMf/3j3a1/+8pfZtWvXqq7FcGNYjuS1V6H20EMPdSWus0n+TqMownXdZV9TpVJhamqKYrHIk08+OWMlyFJYqEOZzLdfvnyZxx57jMHBwRn/nmoexmsdg75tsemYdn8WdpzYSYUUjnbqByylxwBQAcrJYMlAxzQi3akUkS4+2em4sZDSCZ2di89+BbJ2m0z/IAPlDuGmLbQaVepNn/pUlSsTDRrNgEw2Rz6bJpV2wBJxLHW0PBSBoIkuEDb19aB0siiS24X6GpI5ShUSOWUspteLaNOe2GPEr2rVSmcC5WjzRWVnsOS08k0/j4x3t8v4caPuGjuSXeeALWRcpNNFva65kKtnL5WTxRIRmc3v4q7BXdyFXi+XrEw6evQovu9TKpW6a5MKhUK3EJDsDl1ohtJ0KFfAWq0NSTTwp06d4tSpU+zcuZNNmzYt6Rey5i6v1YMw8W06vuTixTNYboa7tg9jO6l4XUgu1ncLJB5SpHSlGBU7//nx/GL8USZy1pY+6IQ6ybSCSte+WM8Lxu39qBYbNuidZUcbrzMpW3jAXv84T2QeRjk5PDvE699KkYCWP8zFc6dRqUEmq+Ncbkty6QqpbB/5dIVUrk87a/W6d0WTsUxsUtvXR1P6RRu1YqMcpQtfjl4VIlSk5yyF0F1PkdKuisJBiBBFQctZnT6958cb0N3P2FVWOSUtAXOyejZI2NPP5+p1JtJO46pxsDZiBRPI3HbU4DtW/Ludj5udUK7kMGW4tZlPwbFW8XF8fJx9+/YxMDDQlUwtlZXGyEajwYULFwB45plnrjGnUH4FceGvtMFBMKljo39Vd9mCq3pXcVgFCtqgJpaf4iQOpy44NgoIRAGUpQ3IktUbMnFfbcb7HOtaip8UqYLYATWs9Lhhl+LYWoJwEmUVECoxs1Fxoayn8+n1x8qJTM++Xx/cctz9K0E4hUiVyYaTZIY3MxBMElob6NRGqXUk1ZETtCMPT3SoTNjkPIWbKeqYaXm62k8yM5TVc5ZOCYVAuC666xqbnclO3HlsdSv8OEVEOIkUHmlR1462fjWWtrZAiFjquvwdfHOxWHys1+urdjBcydLun/3Zn+Vd73oX/+E//Ac+8IEP8N//+3/nO9/5Dp/73OdWdS2Gm0PSTJg9gtIrcd29e/eC3R4hxAxZ/lJRSnH27FmOHz9OLpdj48aNy04mYf4O5ezdvLPn21X9HNn6d+ngATKONx1dZFMBiQvp3039Dyzh8bh6kAA3lnsWsPxqXOz3tWxU6Y6hsvXPQbmpeMd3IY6jiTlYrtvdc4IK+XyRQqrGxSBL2gPLzdNq1jhfqWIJSOfyFHJpMtk8jq2ltfr8hpbbx6oMofTsNyKegQcd4y1Xj2GpEIWt/9vN67lwrzw9A5+4XMfu/jpmqvjcGcXeH0G8Si82A4pNIZWlC3BCRbHkNYVy9aoo5ZV7/Ewmp6W4+bu0eVmM53msW7eOdevWoZSi1WoxMTFBpVLh3LlzCCHo6+vrdi+BRRPK25mbInl1HGfVphPJ4u7XX3+dZrPJ29/+dorF4uJ37Ln/aroAMw5bjbNw6S+ptyLGLp4i37eR4b6srhaHdV1pD1ux5XsnrhbH1WSl9IslWZnhuPq15mhzhVBktVLLLurVIo6urmNntQOXnYmTyUzc4cwi/at8p/U6ZRnRtCyO1V7hEfd+HJqxW2odZaewpY9SMNhfgIEyURjSaLVpNepcHG2BqpDJ5shmJdlcjpSw9UxPbG8vkLqakwxYCgdkMlfZALeALRsIazDuevasMgkmdOcxnNDfg2oBOsnU5SKFQukAmTy2HcVBMELZenWI8vpRaozILmvJV2oYufEH4hmBtWWh6pJS6rrvoVzKYWotOHPmzJzJ6rve9a5r9hcZVs/sCvxaSF6T/Zbf/e53eeCBB9i8efOyK58rSSjHxsbYt28fhUIB13WvTSZliLr4P7SRhGJasumVdZfP7cNSY0T2oE423RKiUwUrGxuVxTt33TwibGCLABHUEDILykeI2L5dqen1F3ZezyE6fQgRaSdUFeikU3biDmBTP3Yw1TMPnsOjjhLr4yS0gOVf7fmY1wU2K55nt9O6c2mn49GAYnwQ6gMk0u3DVhHZ0mayhCg1xMTVMZpNm3azRnW8jrAmyKUd0vkyWU9gp2Kpa+/OtmAyHiNIuq/aCVcnlSk9z2TrOKTcMipsEVp5/f6TGF5IHzX0PZAaWNbvdyEWknOBnqFcrcx0JUu7d+/ezec//3l+6Zd+iU984hPce++9fPGLX1zx7LmJjzeXJIHr/XtbTOI6F8t1+g/DkAMHDlCtVnnyySc5ffr0ilZ/wNyxtVqt8sYbb3R3887+HpRfhfN/AirEki2deKkO2C5E7bjbFnFRXuVIcA5bwVZ7B6UInRiGNZSdzBSWsIKrM2SgyE48iw4IK173IVBe7JbqlWMJaSleU1TAUSNY7hB9ORWv5KjSCj3a9QkmKh3Cy5ewU3kK+TSZbIFMyu0qTbASpYetZ+QtT28VsDN6ztHJYAV1LBEhOlOxusLXSaHSZ09lo8+IwtHzlIn0VgW62xk2ug0RYrNL3BJ0V+lNIu08Nm3dtZX6folLrOiuNglR6WHUhg/Ne7YUQpDNZslms2zevBkpJbVajYmJCUZGRjh27BgAJ0+eZGBggHK5PKM7Xq/Xb4jC7Xpy0zqU7XZ7VY/R6XSoVqsMDQ2xa9euZcsWkgrRSl2+uofAzjhc+CJXJhpMjl9meMM2ijk7Nnmodvc/Kk9LR5VXIh3v1aFTBa+o95dZGS1RcNJdFyvtwiBQWLqKLNL6c1ub5yjLjecI9WJsLYsNOBicpRM1iSwLVyqmRIcj7T08lHlE72kTFiJsggpxha8r6ygcoJS1KaWLqKE+/HaLRieiMTnOlatXcC3I5MvkMx6ZXAlbiPjwFGr3LBV25ytV3GH0KeARId3B2Mm12F2Aq/XqWoqhA4SlJWROFqtbHZqIE9HpBbjSzukOrnCAEBn5iLjKHq1/r+54XAcWk8dc74CwlMPUWrBlyxYuX77c/XxkZIR3v/vdZjXJDWK1klff9zly5AhKKZ566ilKpdKKHmc5CaVSipMnT3L69GkeeughfN9nfHz82hte/v+gdjKOe01w9dw2wuoa80iR0duF3H5AgtcPYbL7NnGFboBbwlaj3fVI07sg81oKmswhxlIuLRENYmlYlHhS6Nhjp/Q1uCUUaIk/kkDk4gJfHGPtvD50WGkdq7D0HDhKdyaT/bcyiguGgZ4Zkh1Ech9XG60JJ4fluNipPBs2DCOVQ7tVo9HqUJmscakdkknVyOQK8TqoEnbUiRPfuj7wRY1YgttCS9hiGa6T6/5MhF/VRmxJAhpMQXYL9D2+or+L+bgRM+YrWdoN8JGPfISPfOQjq3ruBBMfby69clXbtrsS16XMhs9+nKXG2Xq9zhtvvEE6nWb37t14nrcqldvsIuJ885IJKurA2T8GGWERm9HErvZ0JkDkY0lonm/XX0YJCwTskwd4RnwPYOndtombdVTXCaI/nWhNG9fk4wQuVmPYsYEkKnaJFvGIlSSwiqRUhPIGdcLqlciKKTLDm+gPpgjF+tgxNeTqpRN0VJp8xiaT6yeX8XBSudh1Oh+b9vTFWwjKCNkmcvLYjIIXm5h1k8KksFiC2IBMyHacbMbxWUVIr4wVxco32QGvP04y41V6ThqCSQQKO6zHyrq2fk8QsYTYideZDP8vOnYvEcuyKJVKlEol7rrrLur1Oq+99hqWZXHq1CmazSaFQoH+/n48z2NycnLV8fHTn/40f/Znf8aRI0fIZDLs3r2b559/nvvvv3/B+33hC1/gl3/5lzlz5gz33nsvzz//PO9///uX/fy33QxlIjk4ffo0nud1l7sul2mnwVUs7g4bROde4tKFS3Q6HTbf/SBpz4k7df70bp7YsVW5/RDWCEReH3wKQwg/3gvpV8Er6RdNrA/HyeKqJkKGsW48ow9UdhYiH+yUtlK2bH0wiq2RD/kn6AiBAkJLgIIDwWkezL1dJ6ICQCItn0jZXfdULE9Xuhxd2UllC6S9Ov1921HBFM3AoVMbY3zcRo2cxskMUEhF2snQiWLHrka8H6gdG2KEKJGO91bqhBg7qwOepWVbggiFHQcWPZspvX5E1EJ6ZUTQjNeaNFHCizX5sZwhagI2rqoj+z+gD0rXiSiKuusO5uJGSF5vBLZtdzsJ7XabD3/4w+zatYtf+ZVfuSHP/2ZnNfExcQVM/g5XIzFc6MD00uRLvFZ/jV/Y+AuEYci+ffuo1+s8/fTTFAoFzp07d819VfUAqrJXdyOTSnEwGUtdp7oJoCUC3fGL6nHCp/SaItWK7eKTLqAkFPr7k96glqB6091HITv6OaIG2AXtcOrkpzt+8Vyi7oTm9c5LJx/vxc1pua2K9AGDjJZbOSlEhDaxkGHX9EfPXwZoF+xAdw2Sin/U0N9jOBWvhprUUv6ggsLClVVQQ9jhBNlMjqwbQt96Ir9Jsx3SbtcZudxEYpFNp8nkiuQyaVwnixDRrBnQIDbs6ehDVNQktPLYTOmDYdTU9vkb37/mKo6lmPLc7hV4MPHxRjP7fJbMdyd7xqMoWlTiOhdLjbOXL1/mwIEDbNu2jXvvvbd7PatNKBPZ7uHDhxkZGeHxxx9nYOBaxYBSCi79TXdeWzlZlF/TZmZBE5wSolNBeSXGmoe5EF2iGGp12rg8R0VcZb3qiwvwNiBjQxwZm3cFOtHqkcurOIGbnlnM6vOXlepZESIRQs9BomTsMKvic69uKjhRk1zfRvJBHTU8hN+coNGxaNcuc/WqRdrq4OWGyGUs0vlBbOIZxtgfBFUnEHn9NpAa0IVBty9ej5K4WcfNGyfbNdkRYQVEWn9PwkVIPW6GiuLOq9VNiqWdI1SOlrxabuwWm9WeIYnkdeh7IL/6ESPbtrnvvvsA3RSbmJhgYmKC3/zN3+QP/uAPGBgY4D/+x//IBz/4QXbsWL4HyNe//nWee+45nnzyScIw5BOf+ATvec97OHTo0Lyvj5dffpkf/uEf5tOf/jQf/OAH+fznP8+HP/xhvvvd7y5bxXHTJK8rmRFKJAeVSoUdO3Zw6dKlVe0QgsVlOvMhVERq7G84VzmDk85x15YN2K5Ndx+OsLtteVQ0PQPoFBACIqcU68EHEGErfmHHi2FlPIMT1QlFBlQL3IG4QpO077VBA04e/KruygX64wdSuxjPBNjSJ7LTWJFPKbVueumr9BFWCkFAJFIIy0GJdNxhLM3oMCZrTEj1k3PaZPP30B828aMNtOtXaLRtqheOI0WKXMbVsoZMB8d2EUJLMyyVgmAK4cRLu53C9IB1ItuVsUmG9HWvVIVx8oienRLaEENZekZAYndNiZS6SCt9P6WBt6/ob2GpLFSBvxGS15vBP/kn/4RarcaXv/zlFb1ODIszl+nEcuOjUopz585x7NgxduzYwaZNm3jppZcWXXWzEPONBXRkh89c/gyT0SRPu09jHbHIZrPs3r2728GfPSMk21dh9Bta7oQCb0DHG28glrz268TNLSK4otcqxTvERBg7ryqpv6Yg3nmBQx1k7AJoZ7QCw0rFM+ip2Dk1F0u2+hAycQEMtGqCOAnt6XzqvWlT4JVwOdt1p9ZmP/G8ZfIxmIjnMmM5blSjIRRfnfwLni6+i0FR0kZmSB3TUUinD4Ge90RdJbLi2SAnT3fZtwLbsikU8xRzLoPrNhM2x6n7Nn59lPFxi5To4OUHyXuSdGEQR7V08U614lkqGXcWQAlPz3+KEDX0zjV1v05YiuTVxEfDWiCE4Lvf/W53FdFKd+UulBD27rB85JFHGB4evub+Ky38Jc/92muvdWc+5x1bGfsaTJ2Iz5ABYCGVA1ix0VhcQFM+3/KPkJKKuuOQD0Oats2ZcB87uVcXyuJxK2U5KGUhRATJecvOTM+hq0Cv+IhasYFNU5v0JO6rYR3lZLGjBpZy4lUdaW3uY3lopYbUzYWko4nCyw/jZXzo60eFLZptn06jysRESDR6GTedJ5d2yOTLpByBiiSO6OjkNerE899SxzLQ85RKxslh2DWFBEerNWSIEHZsspOJu5LJ9et9khIPS6DvKwKkU9R70j29Ior8vajB71nR77mX2QW3VCrFhg0b2LBhA5/5zGcQQrBnzx5efPFFWq0Wv/iLv7js5/jbv/3bGZ+/8MILDA8P8/rrr8+roPjsZz/L+973Pn7+538egE9+8pN8+ctf5j//5//Mb//2by/r+W+bDmWtVuONN94gk8nwzDPPUKvVusYPK2FVe9aUIlP5O9rVIxQHNzGUzEvG1V+6j2kBEWBDJHUHMLbF18PDGZB6plJEAdJOY8WyKqFCvftMjCCdsn7auG2vD0DxLh/ZjF/w9a4mPJ/ZSDGYQqa0W6rMFLGCKaTrdA0oRDAOpEkpLb/tmu6EjTix0w6uRIGuwivZTfCUncW1we3fTAFAbaLVbtFsNpmYauKPTeClMuSyHr5MkU306GFNS8lieYUVVJHJvJKV0v+OFUvRYjv/sKWTZ39yRkXKippacy/bRCJDs7T2JjyzWSihbLVaSCnvqAPTr/3ar/Hiiy/y2muvrdpMw7B0HMdBSrlk9URvoe1tb3sbfX193bgWRdGKTCNg/gPXFytfZCqaQiD4zYu/yb9d/29nVO5n31fJAHH+T1HBVOwqGK8IEilQTW04Q5wAqlA7vCrA7QMC8NLgt7vri3RyGYKwkLhapSHiziDozqAQsRzU1jFEuIioDiKOM8Kj05gikg6pNDiptI7JVibeh6sPQL4qACKeuwzjj74275GBdg+M2igr032+A/WXGQkusKf2Td5deDfgx8VFbRAhrJReF2KlEbKBEJ6WaYkswlL6o/JjRUrYNSpzchvoywWo/iGGwg6tdodWo8bEZBv/ynFSnkMmWySXtkjlB6bdwYOrCCuO/YV7oe+tK/p7WIxbaa3SjcDExxuPlJLjx48TRRF33313t9uzEhY6h7bb7Rndz9nmOLC6DmWtVkMpRSaTmXNeMkFV98PYN+O5P706ww6mdKE9ascjQ/HWAOGy2VkPCGwkoWtR8jtkrKHYxTXZXZ6Kx5xsQOlCnnCAljZNFAHgovc0pgCpV3LEiauWzZa1+kFk41GtgWnznnBq+ixppyGKDdWSzqZwdMHLzZFz8+QKffQjCXyfZqNOs9WkcukSlgpxU9pMJwraOFbcoJEd3RgJw9ioLYgVK5aeg1SRnssk1PsmlQ9WWRtWen1xN3N6P6XVmgAUdljRc5uxC60l9Ao9teF9a2JctlB8TPKRXbt28R//439c9XMlTE5OAtDf3z/vbV555RV+7ud+bsbX3vve9/LFL35x2c93QxLK5dg+z8XFixc5dOgQ27dvZ8eOHV3Jw2pNdWD5CaVSigtv/HeiqdNkCusZGhyaPsw4uXifmRcfmIQenCZut8eufW5ccdFzPimsoE5kpbTZgpVFyEldDYr02hARtVAU9QsptkOWIo1FiLRzcRJaBKIeyddAfPAZ0G6Fbj9CtrrzRtIpIpoTRFZGS7GsrK5gWSl98LK8uCJkdavcIpYMCOFOO2dFbXByZFMOmcw6Bvt8QmxajUnqDR8/6DAyHlJvXySdzZHPdnDdPqzYpELE5hUKibAslOXoYGdlQU7vJMLVSXFXihDbYgNUcu/AdeaXoq4VC3V7Go0GwB2TUP7pn/4pv/qrv8r/+B//g3vuuedmX86bit4ZocWSwVqtxp49e7qzPYkJTrJgfs2Mx2I6ssMLV17QhlnARe8i1Y3VOWVpScxXl16EoK4r7FEbvXojVnJggWzorlxYAzuNI6eAfgiugpPnyqUT1Ds2+YwgnR8i46HHAqSvO3KWpw8IKopln4lCRK/+6CahQgAWCovRM1Wqo1NEkUUmJ9iwY5BMzgIRxPOVNsgIW7QRYR1hSx377LjrmcQbW++01MU2l4bq8HrnKL4lOBqe5620GbbL+uAXtcHRypNEAitFGkdNgTWkXWedvN63aetVADoONwBLX76KEEIb7+SyWXJpFzW8kShoUm9FtJtTnL/Swho7QypbIJ9VRORBTKFSQ6gN37/iv4fFWEzBcadIXsHExxtJEltarRZ79+4lDEOy2Sx9fX2retz5zpDJCrqhoSHe8pa3LJgErCS+nj9/nsOHDwPw8MMPz3umUM2LMPp18AZBNsHrg6CmXf5bY3FhrgnKQsgIATyZeZynkDrhUiET1Tp+u4l0cnp/t1uKjXDiXbhCxAmk9usQqoN2jdYz2iKK90iqFsrKxsmZF8+T5xBinMjpQ5v3JCZnZd3gcIqoYII/qf8dj7l3c0/u8dhYLNkDWUIo3flEShwvS8nzKPavAxnQ7oRMVq/S6ShOnz2P42UpZASZXD9Ztzk9IuaWwJ/22ND72Sd1Y0a2YolrqIt+SsZJcRRfb0ho5RHiSpxoS/SsqKXvu+l/1dLiNWApCo7ZK2JWg5SSj3/84zzzzDMLSldHRkZYt27djK+tW7eua/q4HG7ptSFRFHH48GFGR0ev2cezXIeu2SS20ct5jCAIOP7an5Ke/BbZQpmUTfziCmK3wniAV0Vge/rQpCAeBEIfbiShSKMQsetrvHsn7IDtxZItL07qUriiBYi4i5eBaBLsDFZYjz82YqlBWydjKkCpeC8ZNnqRrBvPMHp6hjLe7ybdIpKq7oQqLcdVSiJsR1+tbWuLeunrA1PUiuVftXhH5JTeV9l1DdMOrm4wiZ3PU0g3uODb5LMuWDbN2lWqoy0sL00u5ZIp9pNNe1hO/HOw0np1iJWN5az5brdAge5yIvQMEHrPUTT0D/AvQOoGyI0WOjDV63Vs215wxvJ24cCBAzz77LP8wi/8Ag8++GA3sHiet2Cly7A2JH9jYRgumFDOVWjrZS1WI82+/59c+RMmo8kZX/vc2Od4Kv/UjK91Z4Qm9sDUER27VKDdR5Verh1v4o4NEIhjqUTaeVQUEFLk8pkTRMqiL2/R8C3ql44TiAzFtCKVH8aOqig13LP6Q68EIV4RImQs1Ypnz4X0qVY9xi51cNMl0jlFdSJEnW5x1yMbsAh08ic74Ohupa5yd+Jxg6kepURsJd+ziuTQ1DdRQtEXSeqWw77aN3l3+UN6zZGVir93bfKAU0Sqq0i7qF0V3VLcmS3GHc2Mno+XxGqNes8MaEnLcF29a1PYOcoZH3J9rB8I6PgBrXaH9tQojY7EVj6nau8kN9Gkry+1ot17i7HYDOVarA25FTDx8cZz5coV9u3bx7p169i5cyevvfbamu7qBV30OH36NCdPnlySM7ZlWfi+v+Tnk1Jy6NAhRkdHeeSRR3jjjTfm9UVQ/hRc+CtAxrFAz4zjlUGMEljx68jOosI2YShxbL3XG+zY0TWNE03RUbZe/2bn4+5eetoFVQbak4Ok+BbL5C0rLvZ7cZLp6AaHldJqNjuLiKZQSmHJNhDH9TiRVbZeB7cvusxYOMqX5RTbMjv5/7P33zGSZdl9LvrtfUycEyd8pKnKLN/ejGuOq6YbSiLnDZ1I6lIX774nkiIESAAliqIAQhIIPOGCuAIewUsBuoIoiRRJCaSk+ygNecVLSUOj4UxzTE/PdLWvru7yVenD2+P2fn/sHZFZ3eWrurqnWQsYnMnsjMiojIgVe631W9/P9RuWKlu90o5jr32TLQqLXkZerpDGU/YfeJTJuM9onNLf2iLNNaVwSBjViIIRXlBD5hNL3p4NRuzgIRuaf5vAqAcdD1SOtmd1jaHEKtdYQ5l9+Qy18K1QunvNonut4Pipn/opXn75ZZ555pm7dp83ineloLwZLP5oNOLEiRM4jsO3fuu3vu2gfjfMv2/lwDUcDnn12f+bA/kzLB85Rnf7ApkuIpKW0W8nLdNByvpmTygdGbDDzEZDxYYahQZc460jfdCOsWjEMwNNaYhawi2gdU5GiEJYbbjx3DHSAd+AeYRj5Qti90pqJqMiMXnC2noIHKMpn3XZlcBRMSZpJeZ3W2yy0KlZalap1ZqnaKdm5Q5NU/h5DQPSKTQReWymnyoxJNfcyCW0Bs/zicoNauUA5UTEwx2GsaS/c5GN1KdUyPCjBUoFhV+sIdXIJAJtukUIz3pRRkbTLyOEnqArj0HtSdSFF+/J/sr1EsJ4PCaKovfFHs1zzz3HeDzmF37hF/iFX/iF+ffvY/HfmbhaIXi96eLeRtuHP/xhFhcXr/pzd5oj39q06/V6nDx/kkKxYF7n9mHHKn7bbaWUuFkLsfanRvaUdmxebJnp3IzQl3QspMfmS52hkaS54uyFixTDEiv7VlF5TlmC1geIpyNG4wm9XpfJ1GGSbpNmDUphm6BYtZYfJWRmpE27hOiW6ZqPt9BKUwqGpJSoVsZMp0X0tAtBxRR/jsmFqQ4NeMI11Fc1y31+wyhFvKZdP6gxTtt8PX0dP8+ZCkmoc84m52nHF2m4dsqgdqWvOAWcfICQoV05mFFqq0ZG65ZME8+xu1Nuhbk5N1g7Em0KaKGBkplaCIdCVKEQTNCNFXo7F2hly+TRQ5w9e5ZXXnmFcrlMs9mcm2/fjbx1o4n6+2WH8n5+vLdx6dIlXnrppSsornfLq3eW39I05aWXXmIwGNw0GftWzo8zCe1sX3L2PrlaQalVChf+o4GFwa7aQobG3kgb2CFOQJ4mXN7sMuz38DyPKAqJigFhWMRRKUoGOLqHlst2Klg2eXBP4WameOaMqp2CgfSIAMiNw8CsqMUzQxO7EoVwcPQU8K26zQc1sqtIEzLpcmL4ZRQa1JiX4zf4sPNha8exx2vcb5gdzZkdiRuZYlWGyKyFEBpPD/CigEog0Av7iNOM8XjKeNSltTXB8TzCYkgUlYnCIlI6lhqOncR6prnoXgnbwasi0y2EkPbvYaeawX64C3uTe+NmCsq71XD723/7b/P7v//7fOELX+DAgQPX/dl9+/axubl5xfc2Nzdvy+LpPSl53djY4OWXX2Z1dZVHHnnkqh92s2Rwu5TWvfdxo9jY2ODkC8/wROlVFhYeNsWTY9Ht3j7TOfaqttOy23GZ2YSIeFZ0Gg28rwegGwam45UMqUvsTjoFGRozpkc45pAgPVDS0FEdu5AtZkaxAo22tFRpwQ6W+Cdc6/ETIrKR9Yg0Rt8ybqFmUluvsusVaYETs2JZJjuGsppav0sd26lnbAew5nlAYIhfwjXro9JBC5fcraClC24TqVKC6kFCFaOX9pPHI4aTmOmoz+XOFC06RGFhvgvkFiqm2zabCnj2gBgso5a+GzBJ+d0uKIfD4ftmP+gnfuIn7qoNyf249bhW0208HvP888/jOM71QQ7cGTRidvtZfpxNQ//6A3+d//Xo/3rDnCt0QnX0ZfTSftPx9momv3l1s2vu1XaLpznxtWvzaJveVLLcCKgt7jfTRlGAdIKQAYGrCBo1mrWIyxs7SKHJ85y1jS5adAjDiCiCYlTGF85cWq+9mgGSBTWk2GCSBPj+hMFIUqrESK9p5KjCNfJb4eKJsbH8yM00Vdj1BSEEKI2Q1vJISGJSCrKEIkZJ89kihMvEca0kN0M7VkXiRog8JpMVIyfz6mYFwivP/YRF2jXT0qyPqd7F7m55PjHTSistI7HSr9zupNrVC6EzcrfOtPydPP7QQ4A53M7oghcvXgSgXq/TaDRoNBq37Wl7M5LX90OOvJ8f720sLy9TKpWuaEbcDa/eWX6c8TmKxSLHjx/H9/2buv3Nnh87nQ4nTpyg2WzyxBNPXHH+fRsJW2u4/PvWSs7aVswk+LlRpbmqDxrS4SYXNwd4IuXI0WNk8YjBNGNrp02WtQiDACkFiiIgLGtjaveqB3N/xpm13Sz34lZhRsLODczG0FF9hBaWqZGjNeQiQAvPngvVnkEAvDF5mSQfEWLGKC+PvsKT7hE8NzRzAjkjryqT34UwuWzWJEMZCyms5RPmx4VwCNyMQq1GozxBySWmwzajBHo759nIPEJfEEQNSkUfP6ggRYpyq0i9C2WjYOyoDAW7beyllNlL1as/cFf2JvfGzVCw74at0t/5O3+Hz372s3z+85+/ql/uW+P48eP88R//MT/zMz8z/94f/uEfcvz48Vv+/e8qlOetxeBeqtaTTz553Qp5L6X1bkMnZqG15o033uDi2df56NIlqsUFs4fjBAgxJLe+kHjW+LXQNBCbQgPyxFyzicEoZyOrge8bzXY+Am+/6ZK4JWTctZrwru2etMEr4+kB6CX7Rjd0VNwSZENj9JpN7fTSLipbOZlQZiHZHF7sYcaf0bsMYj936wjRm9ubKNspUl4NkY1QTnmP0ewEpGuQ/bPmgE6Nt1o23uO7abyMTGHaQWuNm/VA+WZyIHyEGJu/m0pwXJdqtUi1UjKgjMmQ4SSmNxiwvpMSej2CYolScUxYrCG1RhcWyFd+eN6Bul1S763G9RLC++WwdD/eG3G1ptvm5iYvvfTSdRttN7qPW4nZgevVV19lfX39bWsH14vCzh/ipdugl6wvovUyEzPPRyz1VO36TXoNtrfW6U49aqUCtaWju8Vn3DV4/Ky7p7lUwWeMFzaoRS56qUk67jKKNZPuGq0tKLiKoNSk6DuE5QZCa6qLEaNuhfZmwngAhVKJxaM1C3hQdm/c/N1y7aFkaCW57txAfFd+utvsqruL/GTlh8yBLevvXm0+NyCIjs2VQ0tztfAzckOjFQ7arVofOc8QCskwdiTWpsRaUhmfyer8oDkrglEj8/dUGqGmjMpPI9gtEoMgYGVlhZWVFbTWc/Ptzc1NTp06RRAE8+llrVa76c/X6xWU0+mUPM/fF5LX+3Fvw/f9tzWw7oZCzXEcer0eZ86c4ejRozzwwAO3NJy4mfPjxYsXef3113n44Yc5dOjQ/P5n17dNKLf/DEYXjcSVDAPH0SZ3OgXIY5RbRqeXOHs5ph5JGvseQMcd/KhKVOijm4dJxz2GiabfaZFkgrNnzxFFJYpRRLHoIX17ZvWboKbmbJiN5t6UJmd1dovMuUflrBgtQR5buzeBdnzIMzMQ0Rk5gq9MTjCVAk9rciGR+ZST2Wk+IB7chfa4RQvzKSKmI7RfNgMQN4I8NzYe0kE5IVIrI8/ViV2hMPuaMh8RVvdTzHroxUfJJ21GiUM83GatC64+g1+sERUkYamK5/nmCCswhTo5SgZ25Uqjlr/bfjbd3bjROfVu7Jj/1E/9FL/927/N7/3e71Eul+dy/Gq1Om8U/tiP/Rirq6v8k3/yTwD4u3/37/Kd3/md/NIv/RLf933fx3/4D/+B5557jn/1r/7VLf/+d62ghCuLwb1UrePHj9/wcD67j7u9IzSLNE154YUXmIwGfNuhSxTUGJQHeb5bWKnUFHBamw/yPDGHkdwmApXbPUlrG2I18EJsk7lWruSZN7Tym0gdW3LrZJeiJctGDhAuGGKrV929JlfuLu5OFtvzyaLpPnUs7Gds5Kz5EC19pJqitJVY4M5tRQQYeakARBkthDn84FwBvpjTCP2a9Yw0SUl5VVuIRjj6MsgyQk/tXzYzfyfX7n/axKXsvyMIK4Rugq7tR6VDxpOU8XTEzvoWqXaIQo985fsppz6Rr+fT73s1obwelCeKotuelt+PP79xtdfMXkmXUopTp05x6dKlGzba3nofd5IfZwci3/c5fvz4VUmHV73dzrO4o9Nk0hY58wlayfpNhtZTzeZIIVBKs7G+xiTOqJUCXLdgfRyN75l2K0Zy6jevsP5IZR1XYwnYU7zSPurhEJrLqLjDKJHEgy02BwK5tYYXLVAuKJaOLNFc7JHRJPTHuJFvgRHV+ZVshMJDqhjt1EzTzi1b6JmV+/sNg9q3iHk1h6HNABUVc/ByQktldAwUwwKJZD5FeNEez7eu3cns7ClEK1YybCFowjdXbPHmhGbHXfomN+/19a19iHh4AHmNw7cQgkqlQqVS4ciRI2RZRqfTod1u88YbbzCdTqlWq/PpZblcvmaOu15B+X6Dlt2PdzfutKBUStHtdhmPx3zkIx+55trA9eJ658fZvuTW1hbf8i3f8rbd2tl7aO/tde9VYxHilCHrml3qWQNr5jcuC4zGHUapz77lJo3GEjqfkM2J/4Zi6kU1Gn4fKZpMBzuU64tMhh1a2302kpgwKhOGIVGpYgp2ra03pbUzUgndTkAWd/DCkGrVWNnNJ5pWjecpA3SUcdsCFAemGFRTKt4CoQoxp0vIXIkvI7a3PCb9NtIrsLg/xi9ZuE6hOpeh7u5VGimmTCzEJx/YotLsdc7gQGYVwMB2nOIilSCDapXFPCWOY0bjIYNhn+12n4KrKERNSgEUSouItGPWTNIuuv5RqNw+Ofh6cS92KP/Fv/gXAHzqU5+64vu//uu/PldVXLhw4Ypz7NNPP81v//Zv8/M///P8o3/0j3jooYf43d/93Vv2oIR7KHm94pe6u5Ml13XZ2dnhhRdemC9c34yn0N4J5e3GtRLCTAIRFYs8fWgbZ9Izeyz52B5wYgP10am1AdFAamUJmZWnjizi2KDq0Yk17h6iAZmNgcC8MYSLyBMLzcktlCZDOSUEG+SO9S+z+HhzTSzCfjZZnBhpVz42BNdsbGSq2dBMVPOxhf2MjRxWjdE6xSU100dhOuBC+pZGWEQkI9OZysZWWz5Cy5K5rQxNp1x65sAnA1NsytCAc9wSWghSiuYwJQNbiOYot4ScT0RjW4hOUG4ZkcdzQpmUDqVKRDnyUcsHyCZtOs6jrE/qvP7cc3ieR6PRII7jOzo430zM5NX3J5T3417ETNJ1q422vXEnh65Op8PW1hbFYpFPfOITN+3zpsZr0HrWyEt1D7wFIIXCgsmBXgP01JDz7GEpnfS5tLGFLxVHjhyitbOFIDaFl0pAC7uT7SLyzBRUlgjrqAFKW8WHtREy3esMWahT9nNK5RoLOmOS5ExGfTrjKUn7HI4XUi7myEIVJ59a8urQ+EGmfXCKeAxB7jPdeidAZF0rJR0BLoKZFBZAm4miyncPgUgQrin43Bxtb6PxEKRksoon9XyfyNC4p6agzae2EN3Nz2aHyTNNRtfKY/fAiMzVWjH5NVj6dlT/3E033FzXZXFxcX7Ankwmc3nshQsXEEJcIY/dyza4kYJDCHHbctr78ec3btRwu9WYTCY8//zzJEnC8vLybRWTcO3zY7c94P/69WfobyUce+QAPP52Ce0MCjknYU/W4PJ/NTkoNVR7ks7unrlXRscdNlsDht02QSGkUasBGUq4/JfeZzlaeJgPBo/ZJldipo+jDXJpvB2L0SEWsiGJ8piMWowmY/rtTYTjEYWBLTKLCCfn8uku7ctj8lwjnQELB6qsPqjnZ0/tNyCfkooSxXyC9pZ3FWppF+lV+CvF77wSYKYmXDyTcP70RbLcQege7c2IRz9awAuqCJXP8yD2TJs7ZRy1ZSFARgYssoEprnVsWSFY2I5vm48zMKbJTX4UUiiWYfEAKksYTWMmwx5rrRS2TiG9CJkPmYojeMt/gXdqJHAzKwF3quC4FuRpb1xtz/tHf/RH+dEf/dE7+t3wLk0oZ9CJLMu4cOEC586d47HHHrvh8ujeuFvWIW9NCBsbG7z00kuGnFi5jOhumDe5zqy0NTNFpUzIyK22e2YNos0LHbWrfxcekFoQg/G38ZgaG5BsFwuv8UyRKQOkGtrrGFRuqFWqgmBsO8+phfqYq5kaFizB1X5gWwNx7ZQN7Mf17N/NNwRXodBSorW0fmcJyJLxUvMqkA3QfnV3vzLtorzyngNL1yxnZzOarDGyFdKDLDYFaTo208N8jKZo/p3S+Pxo4YFKjLRL5aaIlALwjcxB5wZSoVO0Y7r/bv0Jmgd+hKYwz3uv16PdbpMkCa+99hqXL1+eH3QqlcpdnVrOXmfXOzDd777fj7sVjuPQ7XZ55ZVXbqnRtjduh/KqtebChQucOnWKWq1GuVy+6d+rswniwu+gs6nJXToFa4GBGhnVgxpZYmEKbpHxsMeFyy3q1SrLyysY+ZHplOOWzMFAa9OzmxFPhdgFVQhwtLX6yCfmgQhThBrStbB7j5LQUYSVkEYlQKka40nMaDxia3OdPMsIo4hisUhUCvC9ClpIMiKTwz3rjel6Jt3n0kpgDZ3bNBuLb9n3rtpDVtVMHN0yMjPgB2n3JB3VRegQkRiPTiFzC5FwAccoRkRmbUmy+fqCcma+mE07MbX+cE7JUhoL6P3fD9JHKXXbVNcwDFldXWV1dRWlFIPBgFarxdraGidPniSKonnOzbLsugqOUql0X8FxP+5KuK5LHL8dBnajmNFi9+3bx+LiItPp9MY3ukZcLb/ubLf49//7n9I5n1OuRLzyzBrb50f8lb/3cUq14Kq31+kQ1v4rM89H/LpRv/lNA3X06+Rxl0sbHUgHLC3vo9/dNjk0U5ybvslafI5Oss7D/hEK2rOAHGOrhIgNjV9naL+GpzK8wiGqakrOAeJhm9E0o9PaZCMDJ4f2ZYgil0IYkMYJvY0WjQVJWC3a/DLLURolI0BaSFhuc1Fi8mBuV7LyIWnu0lvbwCu4VCNNrlxG3Q69DZfFA8bvV9icbnY2PZSeopyiPXN7pmByTA4Wud1Jzydz2I7eA9sh3qPcs+ti0i1SCRzKxSWWgCTJaXc7DEeaZ9cPQusr83zWaDRuep/2ZkIpdUNo2Tf7UOJdKSjBvJleeuklkiThk5/85G1V5ncq6brCfFtrTp06xcWLF/ngBz/IsrcG61+y+4oDs9+STyxpyxrBqtySW1PAB3LbObE4fKF3OyhaAQGgyGRoCik3MsWUUzRF2Mx6ZAboERJHZAi0AeFogRA5oA3lK1fMdmuEdCG3E8ZsCl4RkcWmW5NNEZ75HaZ4nKGjY3IZWA18yUi23AqS3OxR6j2SLq9uOuteDa1zhFMyICAp0dKxtieR9Y6sWO/IMp6+AM4SIuvZSekAcBEiewtgooxIBrtQILeCTHeMd5AagRui9n16vijtOM78Tb+9vc2xY8dQStFut3nppZfQWt8V0MQsZq+TPw9Qnvtxb+Oth2ytNdPplE6nwxNPPHFLjba9casTyjzPeeWVV2i1Wnz0ox9la2vrpm+vtUZf/n1LL/VNUafsKoBKLOjGkgCt7LW3dZbN9pjVhYhyc8kUn14VT/VJhc27bsnmXet95paMMsINEToll2VyxBxTbySlGUhpHot0dwnb+cQcRrIR0osokVIq74dsSKJ8psNtBqMhve0L4FeoBNrkurRrvOCyoQVVTHatSNzIrD+4ptm4my/3XjN7yDI4fWa7QIDWEoFrTbjLbytI54Vo2jIHs6RvJpQ6t2ALW9R6JTvxLYGeousfgeggcH3/3FsJKSXVapVqtcqxY8dI03Quj3399deZTqecOXOG0WhEo9G4ooCc5cf7BeX9uBtxq7lNa83p06c5e/Ysjz/+OKurq5w9e/auDSRm6wHPf+UVpjsO+w5UKZYLqFyxdanPhdd2ePz4lXlcCIHOU7jwWZhs2Qkb4Fh5q4U0xtMxFy51CAOX/Qc/wHjQRYmigdjg8uzoa7hCkpJycvI8Hy5+1EB1ZICT99BKIdOhgeuoXR9J5RSROjX7h5UULVbJ4jGbawPSeJ2uyvGnQ6RTRCQJWb5gFW4Fc8aUPo6eIOfDgsBOCqWFSTqGHiuEaWxlGUkW4DiCXAtjBacFWptcrd3QquGKlnpdwsl6CMSuXZOaopzQTEndIujUnBm1dRuw1FhUDF7N5uqiedxIsyqglYFi5zG+X6TkpXRqn+Dpj30v3W53rsZ49dVXKZfL8zNktVq9ozya5/l1C9T3w1DiXSkoO53OfB9tL0L5VuNuQSeSJOHFF19kMpnwyU9+khKbcP4PzGEm7YO/h9xqvXI8tWFqxdQgmM1hqAJxG/yqvZ39kHdDuw8UglII4aC1sDRUAdoUn1q6CHzjUWm76rkooGRg9mRsB0cj7Q6jsQwxbxiLl89H4O/6pcnUekXO9i3n+5UtED4F3Tfek2kbnKKZjgofOTMdF3biKszE9WvTl+mlW/zF2vdai5HQFqIlI9O1JC3tmm5VQgktHLQXmQOQ4+7ZwfTMocwCJmYwIO1EkI8NMZYchEKt/OA1DWaVUhQKBWq1Gvv3778CNLGxscGpU6cIw3CeGOr1+i1Pe2av12sdiN4vSPz78e5GkiS88MILxHHMoUOHbruYhFujvI7HY06cOIGUkuPHjxMEATs7O6RpelO31ztfhtF5a3ERg1sixzHvWW1zCbZDL3zW19cZjFIOHlglLJbNXrVXgXSEkkWcbADOgkHnuyXE1Mi/ZtYfMjUEal91EaJuJ3/Gf9IoLMZor2Q75BZO5lcNrKxgVgd0YcECbhbwdYIXHqOSx+QcYjpsM5zkOGxwbq1LOegQlJpEhRZuYGRdOIG5Sg/0BHAQuVGqiCtWCIxiw1xLNm8WLeU1wnOc+aRxVoCaBp61CNHKqjUwnyHCsX/joim6vRkEqGygRYVFWPz2+XNztwrKt4bneSwtLbG0tITWmi9+8Ys0Gg16vR7nzp3DcRzq9TpRFHH58uW70nD7whe+wC/+4i/y9a9/nfX1dT772c/yQz/0Q9f8+c9//vN813d919u+v76+fltY/Ptx7+NOJa+z8914POYTn/gElUoFuHsU7Bm4bHt7mw984AOc/8LLu49ZiDlT52q3lxt/AOm6PRvGdm0qx6jcPIbdTS5v9mjWSywsHgRStFNAo0AWeWP8Kmt6iCuM+P7Z6cs8Fn4EfwZmlAUc3TFny8xS+tOuUUmkbdPEmu0l5jFuIWJxv0NvQ5FNp2jHZToaoqTP+tY6nUmZcjimGNUouAm5CGzRVjOwnvkeeHluUyKyCdot4/sZ5UaJ9nqHNAtQWYr0KxTrZXQhMkBLr25hO3VEPiJzyrh6G+0esJ6/5V17j7SNdkKklcLKHONyIK3/uwDtFADXkFuFxPjoOWb9wjfnzWnxSWL1IFLK+RkRII7judz/5ZdfRik1H1I0m81bHlJcT/KaJAlpmn7TQ8vu6Q6l1prz58/zxhtv4Ps+R48eve1iEm5P0vXW24/HY7785S9TLpf55Cc/iZd34OLnDN5ep3bnJ5l3PYx2fELu1pFqDe0fsR/qNXOY8St7FpevXGA2WvgKXj4AysZGxC3T3zlPnPmUiwI/WrD7MaX5bqPQKZqyeaPJwEgZnNB6RJZsB7y6pxOeGkiF3uMV6TesR6TZ0VFeDZIumTD3Mzfdnk1WlZXt5mPr6TZg6DicHPwZPSn44PgkS+FDiKRlisnM7BhJNQQco0PXCqFTpBojMLun2oIljN+m2RtFZVayizHqFdIU3dIuXdc/ho4OX/N5fOuB6XqgiVOnThHHMbVabZ48bkaKdTOErvsTyvtxJzHDy9frdZaXl+8oN8LNKzhmO+z79+/n0Ucfnb/Obza/6uE5xOb/MLuHSQu8Kk62Y/5jYn0nM5P78lGHyzsDdDbh6NEH8YSlqmI62ngltJyQy7KRmvo1UAa4IIQtsFRqr1Nyp2QMrZ391gO4aIvQIiKxIJsZ0CYxTTORmAmpyAeGiJ1b39t8AsLDETFRVCIqOZzqtVhdWSWOY4bjCds7Exx3QFQsEkUOxbCIlK7dbbTTWOnZRmLVPqaK2XV0q7uHuaSNdoq4eQ+pK2aFwPTiTSHq2IOaW4J0aP4O+WjuxYuwfsRuBFpYL0qJ9uvolR+cE7CBewItm+2D7d+/nyiKUErNVxI+97nP8XM/93OUSiX+wT/4B/zAD/wA3/Ztt+fxNhqN+NCHPsRP/uRP8iM/8iM3fbvXX399XkgALC0t3dbvvx/vjbjZYUKv1+P555+nUqlw/PjxK6Tfd0PhlmUZzz77LGDgJp7rc/CRdd58foPJMCGeZjT3lzj4SPNtt6+mryEmQwirFtxYsnJ3QCvaO1vsdLqsLDcoVxch74Jb5uT4i3RdzbF0kT8bfJlQ5UyEoamORcJL8St8S/ETaCcHkZDJIkgHLcu2mWUbbdJIUbVTtPkpQiQd/EKJow8JLp7zUMmIYLHGwWNF3FKR6bjPYJTQ7l5E4yNlxiivEeYKx+5Valuoaa82l/zPQGdHHx7helWmXdMYPHDYJar4phiVoSn0MNRrA9+Zkjqmmab9ujkrehXzd3ICa1UiTeFuG3ciG1pLlK5tUlo6bT6wHubT3XNnYZlReBzZH73t+SkUCuzfv38+pBgOh7RaLba2tnjjjTcIguCKIcWNPq9vZDsH3/zQsns2oUzTlJdffpler8fHPvYxXn311TsGqdzphDJJEs6dO8exY8cMMjobwaX/DNnEHnK0kW5hMfLCny/7SjEh1aFpPXlV8wIvNM0b1m/aoq6x+7WaGk18PiJzK9a4ej9ba2/Sn2jK/oRLWw6eWscrLVEpdCmUl/H1AE3Tklxn3pBlc3WtWffsa6eEUENLck0s8S81XRuhbJfMTjbRaOmRC8/s2wjHdMSFPRw5kfVNszICr8Hzw/9BR0p8rfli/Ap/pXDEgHTmBaltCzkF+6au4OoJwinOF7Nl0pknMKPBT+bSV5FN7FS1M5+mqvJD6MbHrvs83qgD/1bQxHg8nneeZp30G+nmb+QhNBwOaTbf/qFxP+7HzcTZs2d5880353j5kydP3hUs/vXuQ2vN2bNnOX369FwGtjdupqDU6RC9/ofg1sz7eJ7zGgi9YX0nR+DViIdbXNzoGcrq0YdNQedWLcG0ArGBT7j5AKU940vphCYf4xkJqxtaOI1jlR3SKDikB9LsPYrZodGr2L1H421mdjI1yKL5Wrh2P1MbpYjKdotBa8MhBRTEhKhep1mW5HKZeLjFINZ0t86xnhcoFXIKpSVKgbRwicSsL6jUEBtRtuDDFMJgyK1CkokivlWgIDzzOWF32fWsSWkPR1oGRvkiHNBjO/mdFZ7GU04tfieEy1c8R+/UhPKK14HWVzTdpJTU63Xq9ToPPPAAUkr+5b/8l+zs7PA7v/M7t11QfuYzn+Ezn/nMLd9uaWmJWq12W7/zfrz78VYv8xv5UGqtuXTpEidPnuSBBx7g6NGjd916ZDgcEscxi4uLPP744/PX/qd//INUmiEb53pUGiGf+L4HqTSvnGbp3uvU0pdQ+qhVrwWQp3bnOWVtfYfJZMrBQw8SBqHJJV6F3nSLL+WvUZI5ffFJVkTIhtdgMUsZuR6lPCMQBVvAVYwCTGO9yV2T34REi5JRxc1ANl7VWN1ZMGJYr/NQeUqmGrgyQXghIh/jVypUoxFKNpiOOmxs9ZkMtjndbVEMfMKoQqkY4gcREoX2GkBmrjrBiZocfXyKoolUpoFnvH8929iToKemQAREPsTR2oAgsbAdGYLQKGk9L8XMHi8y/wY79NF+w1JnLZxS+OYzR7hWAitQK9+LWh/cMD8KISiXy5TL5fmQotvt0mq1ePPNN6+gYTebzasOKW6Ggn2zJPX3atyTgrLf7/Pcc89RLBZ5+umn8X3/jihds7hdycJsX3IwGLB//34efPBBUCnds79CLZ11mBN2jU3Vnt0cA5MR5LhqaMETlv462xFSE8A33Rb783NIjxMh2CIj4MKF82TK59ChZaT0WCBnEmdMRj22Bznpzhk0IU6/g1NfoiCN745QU0tEtR3sbGxNWe1EM4+Zwyi0QkjHJquC8cN0i8Y4F4+CHoAAmXaM5DRpm0OQ7ptujrUYGWctXhy/hINGobmcrrGWbbO/cAhzB6YQ1cLuYvoN0DlTSiDEfFKqvSoahRDhHG2vRWT/TTXrg1k1BalfR+3/gXlyuVbc6oGpWCxSLBY5cODAFZ306+nmbwb5fPjwtaeo9+N+XCsGgwEXLlzgYx/72PzQ6zgOSZLc0f1eLz9mWcZLL71Er9fj4x//ONXq2323bpRftVZw8bMw3TIHImV3yZVGaI3CFmlOSL/fY22ty+Jik2ZzCchAWgKsv2AKqULDTB3dGsQ9o/rI+kbyGnesT++V/o5uPgBZmcurZNqzMisjvyIdWPz+xO6sW0iESkwjTiWmM69StD+7zkiGTWDTYPRRKK+BVBPC6gphPoKFRdJph9FUMR3vcKmV4jqXKRYjwmKRMCggHQPHwJntB5XmzTaRdgGBkw9Al03h7RSsvUjBNi+tN6VTMbvqTmEPiM1FkNLWCf+j+zt8R/NHaS683Yz6XhSUN9oxBzh48CC/9mu/9o4+jmvFhz/8YeI45sknn+Qf/+N/zLd+67e+K4/jftyduF4xuFeC+tRTT12z0Xsn58cLFy7w+uuv4zjO2+wVipUCf/F/ubblgp5uwqXfNSs/ad80gGKzMpWNt7i40cch4ciRB/GEhdQICUi+PHkBEAwcyddGX+PTS/8LqJhUSVOQOUXDr3BL1uPcx1MtkCs2R5YQcc/4PVqmBlqBdq2qwUG7AWiJ8H08NMaNYOZrnllgZEqxWCbw+5TLDcLQZzyeMh53WG+vI6QgDIqEpRJRUER61rMdbUFjhr1hvlcwV52BkIg8NRLdfIySRVw6Vqpr1xmSlh04dOa+50YCO5zDHhGeBfvYXVO3Yn+Hb4vWFL38F6DQRKneLedH13VZWFiY+zJPJhNarRbtdpvz589fIZ9tNBoUCoWb8jG/F/Z372Tck4JSa83q6irHjh2bV+036jDdTNxOh2m2ozSdTllcXDQdAa159c3/L3+09mv8P2rfz8PhMQvbmXXnrSZb2o62dJF6gkLaF69jZUgG+GCofwMLoJiYQi4dWUPsAVol9HfOUwhrHNpfRwtNng3B8Sn6mtCv06hDlisuXLxAkikuX76I1hCVS5SKIcXIx3GLcwNsgLW8xecHX+SHKt9P0UJ2tLD+km7R+Kj5VSN38OqIpEUiSsZvzbV0LLdoOkbSN3RZHISa8tLoOVwUnlJMHYeqynh2/Cw/LEq7b+qZ96UbIVLTCXL1xEjJtLO7O6QyK9mNDYVMGxqZQO3ajngV8pUfnqOfrxVa6zuSdL21k54kyXx6+corr5DnOfV6/armynvj/UDouh/vTlQqFb7927/9itfw3TLuvlrTbjgc8vzzzxMEwbzBd7W4oXH35hdgfNHsSSZmkkY2BLeIzMZINCod0O4O6HY7HNy/j6hUhKxnp3G2AafHtkM/BlFA6oQEqwZxqxa80DSwML+xBxaWkTo1PPI9Un6ze6PdmilG/Rm2fiY3rVhStVV3uGV7LdlmWoRIWlYSOwSVGUy9KCCkpc3qHPBBOnhhnWrRo1ZfQCEZD4f0B2OG7RFJ0qdY9AmjKuUwxQ0ahnDt1cwE0okQ2QZa1kwTUmszrVDpbgFqC88rSbE9e1sD6Hlp8EXayQa/5l3k58Tb86BS6h2H4dyIgv1u7Zjv37+fX/mVX+GjH/0ocRzzq7/6q3zqU5/iq1/9Kk899dQ9fzz34+7EtXLbeDzm+eefx3Ecnn766Stsba52H7eqktsLLnvyySd55ZVXbun2OhvBpd83BZ90yJ2KJbrWmQy2ubTRoRpqFlceMnnHLRuVghPQm6xzZvIKvtbkUvDa6GUOeQc5Fj7IzI9RoOZARe3VEZMWibCNM+sTOfN7nBFRjTzUFpvzid4I7UVG6WYLTLOHKAAHIY3XbYZhfDh+SNkvU6lUUcIhHplGW7+1yVbmUPS13UHX+FFz9/fn1opOxwa2o2awnQTlVYFtUmmanTObPLy6HaZERlUoPTNM0SDQdvBTgGyyW2h6lV2rpXyCLj8C1Q+Y+70LDbcwDDlw4MB8SNHv92m1Wly6dInXXnuNUqnEdDplNBrRbDbf9vveL9Cye1JQ1mq1tx2279aB6VYSQr/f5/nnn6dcLnP8+HFOnjxpsM2b/4MXtn6XVAi+OniGB8OHDZTG0rBMcTlb5lWAQDs5GUO7wzL7DWr3NpbgimM7QE4IKmcwTonHQ4rFIisri+a+rJel0ClobUmuCk86BDKlXqsTBh5xohiPunTbQ3bWz+KFVUoFSVBZpCAznhn9GeNkk6+PT/Ad0UetV2SMkoHpuAuD69cyROicXBYR2hxSQBjZg8DIDwDErlG2citEWZXUEVTRJFJQEgWUX7Oel3b5WhbMNFRgCm8ycANkNjI0rtmhLjEL1SLvWvBPbA5vThGRjcj3fwbCG0MTZs//3ers+L7Pvn372Ldv31w33263WV9fn+/bXk03/07vUN4qjOJ+fPPEzAJpb7xTDbetrS1efPFFDh48yEMPPXTd9811jbsHp6H7opWVKigsWtBB0+6e11BijUubA7JkzMEjD1PwxB7qq7DKA2u3pGJTUIkxktxaJsUw83vMpuD4Rk4qfIQ2/r6OGqGwBwqkyaEz/P5s98atoQXmgIUySgih7R5mZoE3ykwDdW6720a+L4QwXpPSNc1Cb3bomhV6lbkHZPvsRc6cjHEZ4lfqHHssJBUO4+EWF7YzXFcShiHFUpUoDJCOTy5CtIzs7rhnpVsV4zMsZ37DdWsNYlYrzK6RBhy6asLZ6Rt8vVLh1fir/Gh8lqOFo1c+V/dgQjl7nV3PNuTdaLg98sgjPPLII/Ovn376aU6fPs0v//Iv8+/+3b+754/nftxe3IzkdZbbVldXeeSRR274mr/VM+jMv3IGLpsBeW42tMrh4u+aaaQToNFWhVCi2+2wvtFhealJo7locmShYXexK5CNeHb6Ep5WxFJSUJpMwJ90/m/i7Nt4tPCYPW/6SLRVLyh7ne0j5nPWxlv9JLVfN7JQzwAdmdtvGCDlFbuIs73IfIRGGgijKBhWh1NCkFKorhKWE/TSKlkyYThJiIdtWp0MT+xQiBqUC0PCyjJO1r0StpO00W4RmXXRWYyrE1ApQsxgO8rsQAoH7TrADPLoms8eq3gzYJ+B3eGc7Yh2odBA7/vu3eflLu+YSymp1WrUarUrhhQnT57k4sWLnDt37goHgmKxeFfy43sBWPau2Ybca8nr+vo6L7/8MseOHZtPSqWU+MMXuTD4b2zlbeoqpy16XBh+gyOlD8+nbiRt24Xvg182ElMpkCo2L3BlLT/IjVQJZQ5OtqgyPosOrfYWOztt/KBCWGmAG9n6NEfNlrGlRGINsHVqLEa0Bq9EIKcE0SEa2ZhU+0wHWwxjQe/SG2z4U6aFNWLpcH78PKPihyilUwPMSTuWANu1ktwxCAcnn+AyNYcxZRDVJoEZVL9Z3h6jnYinww9zPPqEmS4KB4QysgitzQFHSEOila6VY3mgE6aUEUJeSS/UZrFaa42QwvhOqtRQGdUYVfswuvaRm3peZx8y78SBaa9u3nVdtra2OHjwIO12m9OnTzOZTKhWq7z66qtkWfaO6t9vF0ZxP74542403PbmR601b775JufOneMDH/jATX1gXKug1EkPcfF3zYFoti+Y9y0VuwVumWzSQiuByMccOvowrkh2SYZOCUjt15n1l8yt1UdO7sQooayMNgMEigyhJALHgmsECI2cFaR5PPdem19FwfpEFiCZsHExYdrrIYMSq4d93Khq8p0X7SFWa6OW0CnaraNYQ3kNs29ksfRGvj8jsiZor053s8PrL4wRJGjXZ7zW4bwu8ujxA1TLPloGxKM2w6mgv3OJjcyj5OekqmAkXIR7rEEGtqk3Ng1G6dr90T2EWBWDV+YbvT/jUiHk1bCIg8Nvtn+Tf7z/H1/xfN0ryavjONfssA+Hw/cMcOLjH/84zzzzzLv9MO7HHcTe/Ki15o033uD8+fM8+eST7N+//6bu41bOj61WixMnTrBv3z4ee+wxpJRzD8ubfn+t/QEMz5p8k/ZxhUJnI7bWO3R7Aw6t7CMq2ZwkC/N1AVQOXoWUnKlbxFWKWGgEKamQfG30DR7wHsXRGqmMRFboGJDIfIzUqSmoZAGhx8YyTk3sOlY6l9cbj9tdFYj2GzbPGAq/9uoG3rOnqPT1AC3Lu6qPbKb66JgCLh/jegE114HyYZZ0ziROGI+G7PQz0tZZfD+gFKUUoxKBzK16zeR9ITRSmCGOyIZ24jh7DLNCt2sUKNbnHJWYwYaV6cKe3XW/hl79IfMZYeNG/pB3GrMhxalTp/jQhz6ElJJ2u83Ozg5vvvkmGxsb/M7v/A5BENDv96+6fnIz8V4Alt1TyuveuFcTSqUUp06d4tKlS3zoQx+64o8VpBcJB8/x37yX8TV0pUNRaf7H5EV+Inhod4dn1uGYyae8Ku54A4U771Ize3En7T1XQ3JVTonti6cYTODoap3tXoJMB2hdhWxMLkMECbkOkHlMJgMkiXnjg5kkgvU8U8a2RKe4zYOUtELrA3yl/e/p5i4Omo4UfHH7C3zMf5pSMcYvlMzysgzsZMAAeWBMLgpWYlWye0m7cgiZdlBuybxxncBIrHARQs9BOmQThGfe5GpuIms8JJUs4qsBQiUGpz97DDP/NmK0U7CaeR/I0P4iavm7r/pcXuv5hXemoHzr77mabr7dbvPP/tk/49lnn+WFF17gc5/7HL/wC7/A0aNHb3CPtxa3C6O4H98c8dYO/N1ouM3yY5qmvPDCC4zH41vy/L1aftUqR1/+L8xMrXFc22Uv2mIuZDLY5vJGC09MWF55HFfZYjNpm257akiwMyLsbs401iBuPmSKtLvhESqfoJ0Qnccgi8b30akgychkGSly02HXKRoLaPDMniRODfIJJ09M2DqzzjTxCf0OWxebPPUdAqdYt93rmaTUQsHcEiLeQZDzwuCPWA0fZMVpGqADxmdYENvJpmKwMyRNc6oNn1wVEFKyvSM5ljr4RQMuK1QOEFQyNCtk6ZTReMJ4e4vtXk6rf5ZiMSSKoBh4OK7dpfRKcyuUmTebzLpoWaA/vciZ+HX+rLkIQpCT8/nh5zmfnOewv7vPfa8mlDeiYNfr9Xf0MdxsnDhx4qaLjvvx3oxZbppMJrz88stMp1OOHz9+S02Lmzk/7nUmePTRRzl48OD8v81e7zfz/tI7z8LwjKU1J+CV0XqdVnuA0AlHDh/E9yyUS7hW5hranFmCbMj31o1V2yTRPLf2Zb5aPIGnNC0R81ryBk8EHyBHobUwjTYBSrhWQGemeCAQagoIywlx7YDBAz1GSx/JFI2HEPa/68wAwVB2wpnPgZOpNEWodusINZkXkUjXylEduzolgRgBRL4gcgMWG2WyNGYYaybDPp3uAKlzglKFUhQQRhWUmJA7BZAu2rFOC/MCt2KkuW4Rkfd217SENP+2PT7nBlg5MWfL4N5Dy2a/x3VdisUipVKJQ4cOkec5L7zwAq7rcuHCBZrNJn/zb/5N/vk//+e3fP/vBWDZuzahdF33pj3OrhU3Kkr3erodP378ypHyZIPy6Mus6R266TZagIdkLDRx3uGi6nOIyNqHZJbcmqH9BVAxym+g6e8SXL266b57dbMP49chG5KJEhsXXicj4uiBEk6xidd5HeUsQNxBuVU78q/ipl1yp2wLuTLEO2itkGkbpZZtwWd3Z0SA0GMQLpfTi3SyTQpCoJVGCMl5cYaHJ4/RaSVIt0AUFiiWahRDD+lGRvLqlIG+0dbrnHxvZ0rncy80ZtNEx9njIekbWYFfN1NMr2a8JN2y+VpaKJEQCOmYfUnrizkvVr2ykSA4hvCKdMlXvs90zm4yZh8I92JH6K1JJwxDVldX+Tf/5t/woQ99iJ/+6Z+m3W7f36W8H3ccd0vyGscxX/rSlyiVSm/D5t8ohBBvLyg3/wRGl+y+5NjuXOdmCqgk7e6Q7a0Oy/sOsL6+bhQaXhFQ1oIpMyTYPNnNlW7NwsIqkPbRThEn30bLfei4jfbK+Lnx0yXpohxjT6LcEk7WQTllmO6gvApO3poTT3EiyEeMRpLNs9soAipVSZJV6G6N2FxvsvKAkcKCNrtHaLN/iUK7FXbcV/hG+hon1WX+X9W/aiA7lgI7AwOJtI/0i4TeJnleI/CG9McupWCII7XZzZQ+Qo/AWoN45NTKAeNOSqm+gi8TBhNJt73JeiKIQoegWCUqagpB2UxO3YpRh9hrqoacrj9MqRAyO0Z7wiNRV8Kc7lVBeT0gz2QyuSNP1VkMh0PefPPN+ddnz57lxIkTNBoNDh06xD/8h/+Qy5cv82//7b8F4J/+03/K0aNHeeKJJ5hOp/zqr/4qf/Inf8LnPve5O34s9+PexVs/32cTpa985SvU63U+8pGP3PKUaXZ+1Fpf9fywd19yLzBt7+2BGxelg9Ow/YxVTmTgFIjjMeNEEnouB48+iCPBQGMUoGxeTUyjLhub4jLtg1tGpFu8XniDRq4YSEkty/ja9Os8GTyEEBHoGCXM+SvDJ9euGVIIEEIyZ4Oo3P5tNTO/TKFzIDe7iNp4ocOeq3Dn0lqUQmtlXQSEmQ5KxwwrtACZm/tVuYXtJBa2MzFFYDbAKVSoyT61ygF00mOaF5gONum0J7TWz6BkmYKvmExCwoJnOSYp2rI1ZutauI59HOZ3GRBayRaeNdOMqz4GjbfvTd8rCvbVoDyO4/DUU0/x6U9/mjiO+fVf/3VardY7+ljeGncTWPauSl5nkoHbjetJFmb7kpVK5e3JJh3Ahf+IVFMayufbKp9AqIRcOjjWE3EJzxx+8rGVdI2sDGFk/RZHZEqaInK2Y+kEtlsfAopJ5nH50lmCsMnhfUsIx/jrpE4VqXJyr2newNYzkkITRyUQLEA2YaMTQ57ghfvQmUkSIpmYAo0U6+6JozVNt4mrMmLHIVAZuRexvxZQ8A4bzP3Uobd9hs3MpxQogtIiLhPQmTXn9pEqs4lAglLgzqaJxoR7DtKRAcYT00w3NRao40R2AhqhhYPOUxJKBoXtlI1MzG8g1My4Owe3bNRrwiXf9z1mB+sWYpYM7kVBeb0D02z6c/z42ymL9+N+3GrcDQVHr9djMBjw4IMPGlukW3yPvFXyqnuvwc5X9kwV91zjFhutCdPBJocOPkTo5WyRQdIFp2qgZY7F32MJpnrmP6mtekIaCI/okFBCaQl+HYk2V60haCJVhpJ1Ou0tumPN/iWXXAaIdESGi0hHCCHnaHidjHFESsHXuBKk5yDcGJ2OIRXmceXG3mi2J2ngaiUuBqfIEEyyPifzSzwujxh5lU52kfh+nYUDCWtnFxh0JgxwcBzBwiMHcH3PEBSFNGAy6VvibAmyAako4uoxQWmJIBjBwmGyeMx4EjOZ9NloX0bLgHIo8UuLlPwcETSQaYdm+XH+t4P/nxs+j++FgnIGnbjTeO65567Y+/nZn/1ZAH78x3+c3/iN32B9fZ0LFy7M/3uSJPz9v//3uXz5MsVikQ9+8IP80R/90VV3h+7HN0fMLEEADhw4wIMPPnhbn/97J4xvfe2Ox2NOnDiBlJKnn36aQqFw3dtf87HGO3DxPxtORNIDr8S4e4mLmwNCOaXaOISjpyAiuzplc6NwwHHMeUr6prjz6qAS1sWURAxJhCRSOSPHoZQNOK82eFAuov0qTtJlmLgMts9Srq8i0oEZUqixIcGq2HjdkqOdgin6XENznfvpCtdAckTBgBydYFd2mg3RXglPDRHMJLBl671eMUAxp2TOi3Z1wcB2UpRXQ+7Z41R+00hr/QahmhKEh6lnY7J8ge2tNdJcsbl2DoEmLJaIAo+g1MAl3rUE8Wrz9azdFbTM7I6i0eEKet/Vp3fvhR3zGdTx0KFDHDp06B19LLN4J4Bl3/SS16tNOdfW1njllVeu2JecR57Axd8BnSOki0PIt0QPwLwjIzC7kI4tFj1TVDq+pZ8WIO0jhMDXIwNHyHvGGycfzg8ng0nG1vo56s0VmtUikEI2BeHhiZR2a0A8HVOMSpRKEa7jgchAOOR5yqXLGwghOXjkIaRjukIKiVaZwfFbbLwkZ6nwCH8leACEhyRDCQ+ppkYym08IqiuEpRi9tEQ2HTCcxIyHXSZTI9naaXUoFiuEBYHwIkv4MtNE5VWRSXc+VTRkra4ly1qQhnQhTRBuEZHa2yZtMqdEQB/IjWxWuOa5mBWrOkYLk9x09QNQfvSWXwP3gmAINz4wjUaj98yO0P345ourSV5vNz8qpXj99de5dOkSQRAYW6TbiL2SMBW3YfPzRnmhlJky2mZYlk64uD5CqgkHjn0QV2YgyzjigsG151O769KzgIm+pRf29xBiI0iHIEO+En8ONy/jXOgTlhuUAgcvqCCyGLwQnU3ZbA8YD7ocPHiEwJdoEaDz2Ei8VIbCAXKE8ChUCohClWF/jOMXIDPd68pCGfwq5OM5ZGLXqqTM+vgk2+6QqsqZSIdX+1/k0cYBZNbBfHROMG19h4Kb8qFvW6B1fps4K1Cp5tQP1iEd7N63W7Q08II99Bi4jpYl0/m3k0c3KFAuOlRUjsIhng4YjmO6nQ4bSU5Y6FGM6jjLT1O5xnTlra+He7VDea24W/nxU5/61BXvk7fGb/zGb1zx9c/93M/xcz/3c3f8e+/HeyOyLOOVV16h3W4jhGBlZeW2P//3Thj3vnZn+5L79+/n0UcfveZ7RwhxVRXHLHQ2gYu/t8vX8Eq0dzbYavdZXSjRHYc4Wd8oNPY26Ga50THTRqQdVEjz71x0Fnl4/GEcH3w/ICj4+H7IQfeAsZHLJ3RGgvb2WRaWj1IrgnJK6KRnFGRpG+VWjALOq5rdba+KzIeGFJtPzbCADOUUjQ2cV7FF4MKupZKKjeSVHO0vvm1lylC1y4jErhBYD3Kp2iACpB4bEJmYsJVt03AXcKVnYTsRjiuRhRqBdFho1pjGKZNhl9YgIds5jVOoUAn7hKUmIV1Lvu6aAjzrW+ib8ZBXB37EqGiuEu8FCva7cX58J4Bl76rk9W7sCO2dcu7dl/zwhz88N7Kfh1aw/gcGriMDEB65tt6SOJjRvjA1paX8GXJrYDtEwS4cIZ+QisD8iBOZzo5jOjCt3ojOzjbL+w9Qnr1IdGY8tFXMQqNKpRwxHg0Z9tq0Ni/hF4qUIh/Xj2hvr1MoVlleqCAc5mhnN+tbb7U+SpbR2cAQAvMuSkYI3SeXIVIP7W7i1JKvMjQOoHELRWpBhXq9znCUsLV5mUxGbLY6pBmUiiOCqEK5mOJ6jbmnpAHp1NA6R7iRATLqHO14u0hqNUZbqa9yy5AMyTHAndm+1QyFvyt97aLDA6il2+sY3yv9e57nV+1Szh7Du4XFvx/vz7jdHco4jjlx4gRpmvLEE0/wxhtv3PZjmE0otcoQF/8TOunYnRploNdCEk8nXLy8STEssP/AYYTIjGJDp2TM8mYVUJYAmxnfSZ1CYXZtGnm8V+fc5HVOsk4UbvKE/2Gmwz7bO5rQWadQXqLk92kNcmQ24NCRh/H0GKSxBMGr4qQ9c1hKujYHtRFumQ8dj3j1axoVd8m9iIefqlJuRkZOJkwOQ4YwU00AzyQvkwnoOw4a2NBjTqUXebTwkGk46gxwQSdoL8KXU/Y9dtR0zGdev671hZtZSgGgmVmDuHoEzoI9fFUt3KKMTHrm8JX3CT2PsOpDpUmmHCbjHuvOh1h/5TRCnJnTApvN5lUtYO42xfBqcaMdyvv58X7caQyHQ06cOIHneTz99NM888wzd3SGnB3u8zzH8zy01pw7d44333yTxx577KYk2tcEl2kFl/+LaZY5PiqD9a1NRsMxhw8dIQwjeuOzpE7NNOgKDchmq1KD3QacVzaNNrcIWR8lfEKR8h0HPspkMGAUJ4y6I7QQ7BR3iMpTxuOY0XDA/oMPEQUBWkgEOSJYROoE5S7iZmPyQgPSAbkTIeIumVtCxm3DCkk64FtrJc9Cdxy7v+2E5qwnfIRW5MLfA/VRdoVAmbOgzg1jRJlpoc5TslTi+rl5TMKlk6zz2cF/4YPuAxyvfY/llFhvYa3w9BQhmhT9jLC5TKOZk6lVJqMhw9GE9to6GoiiCVEYUow8XGl8NYWKzdkyvPbO9L1quF2N5j6L98pA4k6BZfesoLybHfhZ7JW8JknCiRMnSJLk7fuSs9j4HKL7ksGvJy2k1Dh5H/S+3TdvNjbd8iw2U7Q8BteCa7T9sBbSGLMq48ljdN0OSmvWNjaZTGIOHn2IILDjdm0mirnGwHEcScFTFKImdZWSKcF40KHbHxN3NtEiJBCaYeIQiQmOXzOoeq9mDh5+DSftoQtl2wEvotMhSvqQDVDCgTwxHTSrORdOaA84BrJjTMG7COmwv+aiFg6TTdoMY5j21mhvJBR8n6AYUixVKBZ8cEPrbRkaT0snADsJhcxIX7UyZrJSomVIRgHcoiG5WpkDOjWL1eSoYBm18kPmgHYbcS8Xqq8nV9BavycSwv14f4TruqaYu4kJ1Cy63S4nTpygVqvxLd/yLYxGo1v2Wdsb84Jy449ME84tmUOPDEBNGAxHbK5fpNFcplEvA5ntyY1BS3w5QeVTSM3eEPnA+k0OrJKjb+yV0iHIAJX1+PLwWQIFE6E5577B8YPfjtI5w3HMsNfhYmeEQBGWGoyGI4qlKj7aTkxT8BpIHUOhgVQxOqgjswlRs87HvrtIkiziuiCkQKVDszYgc2sN4lsqbAjZiGHepZobSVmU5wwdh2m8BsFD1retbDrhTmABFD5iRpvVyjQYHQ+Ea/H9maF3k6OdMkKnxKJiphwz+rX13ZzRCZGenWiOwavgpV3c1Y9TWv1+HlCKwWBwhd9ZuVym2WzSbDYpl8vzCcq7LXl9t2xD7sf7I7a2tnj++eevsDu60z3z2YQxz3PyPOfll1+m3W5fdV/yWnFNa6X1/w7918EzxOvLGy2Ezjh66CCeB+RT49CmYhBVu1tprD3wTA6YWzD5hs+Ry8hAEN0INx9TbixQziewvI/ppMdgFNPauIBSgkLgk4xauCqiEIT2wRrbDWnXs1wBODWz3+f4RgUna5Bn4JQRaQxOhMymNrdNzNl3ZtGkRkg9xdETRG6ngSpHOL4lrBZt4ywAoWhtppx5fo04hmLJ4cGnVqk0XL6UnkSheS4/ywfyLiVv0Z53Kzj5zhwYaSS4I7C8E68oqJTq6CxgmrlMRi06vZSdrcs4foVS5BE0HyGofYTrZb/3Qn4cDoc3Dct7J+NOgWXv6g7l3aK89no9nn/+earVKk899dTVl7N3vgqdF0z3JB+CV0eqS2QiNC9ef3dUj/XhmReZM9PutGdphV0EBVw9BBQkHTIKbFx8k0yGHFup4fg+JGbkr9OhpfONjM+P1XoLNUHLEJcpmfCI4xGL+w7hu4LBaEprZ5vLSU5U7FKMypSjCV6hhtQWHCE0FBoIpRCBjwS0ClEatEpRtntufHlScGtGCmvNv3O3gqO7KDdC5BO8Qol6QUE5QOEwHXYZxtDevMiGDigXlJ0SDJFBzXSxpA+6b/7G0oU0RrglRNIjo0iBIQJtOl1OiFADs09kpQh6//eCX3n783WTcS8nlNeTKwDvaEF5IxjF/fjmjrcWjXu75zcDm7h48SInT57koYce4vDhw/Nu6J3kWCklxeQMdAdWnhmb/KcTtjoxvU6L5QOPUInCOSzBTO6M0iOngBa+lbdjCjWhTXGplZlk5jEgUPmEi+klBukmAgg1vDJ+gQ8XHid0Qjw9Zjru0KyWKFeqTMYjhr0tdrYu4Hs+URRRDIsEUdnQDKUBXAgpEK6PlAVQBWTgoPLUFHkqRWnrsyscHJ2DWzTeuYUFfrz+47xx+jwPHFlBekVEPjaNuWxkmmn5xMIsUjutdMz3Zl6V1sPNyMrs5DFrG9uPvA/Sw1VDZB4gcsfsLbklg713ygg1BlnctVpRGbqwhN73PfPnp1qtUq1WOXbs2NzvrNVq8eKLL6K1npNV71QNdKO4Xn7UWjMajd4TB6b78c0Znufx5JNPXmF3dLfOkLN9Sdd1r7kvea24WkGpW1+H3uvgN5iOu1y41KIcOiyvHEbmU5Mz8gQpMlNwZUNr4WH4HCR2IqlGIEO0ilF4aJUi/LJVw9VM8enWQCfIoM546xxeWGepUWaS5EwGO7TafTyZE5ZqRKFHMaoaXofjW+m/j8hTHCcAjN2G1pihhPBQ2jHrBFogpQYhkcKq93TOoO8w3Orj+RkLSw6VfQu7uc/SqUk6jOOQC8+/zmToU44Sei2PM8+dYt+3LXJp8jqZEHhK8bXxi3xX5bvmPI5URkjhGSkv0vy9pN3tdIqG6lqoEYouwcIBGtmAjEWmozbDqeLZc4u8+R//K/nEYflgje/6n5+k2rjynPZeoGCPx+Pb9n6cxXsBWPZN7UM5SwbPPvssDzzwAEePHr16N7//BrSftYeh3Ozx6AztVVF6+0qCq+1yQ2akWCqxHSLbKcqNLEEkAxIRofOEaR6wcekNCsUGhxcjhG+KLeVVTVHplI2006/aznYFYX17RNJiqztl3Nvk4IEHCD1jQhv5ChYOkMZDRuOE8XCLS9sxjutavHyFsOAivCIimxr6q5qCU8RVUzO1zMcoQlBTcgqIPCYTDiJLELKA0lOUCMzBzpUWFW2oXULnhI0yoUqBgyTxiOEopj/osTlJKHgDilFEMXLM9NKajmuvYfDMXh3iPqkIDQ1W+pg9VWxHf0i++J3o6M7sNd4rBaXnebf0QXSrcSMYxf14f8XstZZl2XULSqUUr776KltbWzz11FM0m7tQqzs9cMm0zULyLPA4pF1wi6i4xdr2ADXtcOjwIxTkFAj2WIAY6w/Snjkk5ROQZTPZdGaKjxDyFBwPlSdoaYrQZ6YnmAhBLgSO1igUJ+KTPKY/wPbGNgtLB6hXIpAugR9Qb66Qp0OGE8V0uM3lwRRXXaJQWqQcKMLKPpy0b/YkrTm3TLtI2yxUboRIe+ROhJN0UE6ISPvksoDQAxAOLikSgaNn3sIOyMCsFAhjdyRUhnZcS8guGoNvC1oznpXmswaVm4ORxuziC0Pc1W7ZfL5YU/H5nrr0zTRXAygj31r9fvN3vErM/M727duH1prBYMD29jYAzz77LKVSiWazSaPRoFqt3tW8ea92KO/Hn89oNBpXeOXB3SkohRC88MILrKysXHdf8lrxNnDZ8DxsfQGER7/X4vJ6i6XFBs3GIrCnEPQKaOmjhLfbYJOeYXxIK4+XATrpopwQsjbCK89t2ci65hybj5mksHbpPGG5zv7FBkL6FKKMWmMZncfm/DjqsbEzRm+2CcIy5aJDsdzAy2JrTTRgmhQYbF5Gu2WaixoZVnGSvqFqpz2UW51LZCGmvZWz+fqIPPXwvJT1Cz6Pf7RIbWWW+5rGD9NrMFrbotsv0GhoFBG12pTxUPPi4Eu4CBw0QmtOT1/l44VHiLxFRDJG6BxHjxA0za67G+36TJKjnZLZQ3drZmXSq+IAUW0Vb/H7eeN/O8351/qoXHH+RI/Xv3GZ7/jrB1haXqDZbFKpVO7ZSsA7reB4LwDL3jXJ653KFZRSbGxsMB6Peeqpp96+LzmLyRpc+s/mw1tNLIZ5AE4RJx+gcgWZRcxnM0mWPfxkE0t2tWbZOrEk1wwtQySK3lixuXGBZnOVZrOGEI5ZAvYaaJWSuw0cMlShgVD5rrTJa6CyKWtbI7J0ysrhx/BdiRZGNpBIF1+D50dUCyVq1TIKj8nQdF5aW5eYqgKVQFMoL1MO2jhhw+7imIIVN8LN+iALOGqExkHr1HjJaQ89bQMKHdul7KwFfs3YlLhlRNy21LEJBVdQqBVoVprkwmMy6jOcKLY2LpMql3LRJYxqlIrKeKjpHI2LxjXTDWn86rQTIXRGXn4c3Xz6tp//va+D90JBGUXRO7rYfSMYxf14f4WU8oYTxul0yvPPPw/A8ePHCcPwbfcxw5Xf6ntE5wly83NkFAw4wS+QxlMuXu7iuYLVo0/iCAXSWn94VWsjYg4deGV8fR4lFneBE2lnD3iiYvKOUzKQG6/GsvbJ3DpRnjJyPYp5SjLJaXfPsbL6IFGAhaPFpoOvExy/RtVPqdaaLKmU8TRlMuqz2ZuQbZ+hEEaUixlRqUJBa4RvSIl4VaQt4lyVQ6Fk/lZ4Bj+vFFkucUlQSGQ6mBek2qvu+u0mLVMApn1rf2QKUWH+iEb+lU2NtFdNwCnvfg7pKakuIMjsHr4tLoULjmMQ++RoHFOk1j4EpWM39fwJIahUKgRBwPnz53n66afpdru0221efvlllFLzvctGo0EQXL1Ivdm4Dy27H+9kXO2z9U44HLN9yTRNOXr06BVwkluJvQWljttw8f8HWrCzdYZ2P+bQvgpRtXFFAYhTtMoMz+xPzsiuSCzqAmQBlaemAaUS8CuWtGrPqW4R0h6DiWZn4yz1hYM0So6RpKZttFOGvINwI0qhoFRaYWkxJskEo0GX7ihhs3UO1wsoRVPyaYE3nj3DsK/w3TZRo8K3fJePHzUMOCho4KQ9cr+ESE2R2blwjizVLCwmIEvEwx6b5x0aiwKNh5SpOc/qFOF5CAHT2MfxXZKpJnFS3hCXUELgIEglBFrxcn6ZT7p1tFdDqm3jP5l2bZ7t2kbbdBe6o1K0E0I2NmdfNUYvfDtnT/tcfL1NWPJwPYcsyRltZTiTCnEc89JLL6G1RmtNp9OhXC6/Y0OBe9Fwey8Ay74pJa9xHM+NuovF4rWLyaQHF/+TlROk1v7DUrPyCcIJcPSOpULZvZ50AF5o5a1FkwicyHTonWj+tZMNEFrRXj/F6spRSoFjdPD5wMgG8ilaeDhMQLhIlZjJn8hAa9Is5vLly7hegYOrB3A8az0iHAZ6wG+2/j3fUfokH4i+xRwmpKFthbVViuRofZA0GdMfTekPumxspQR+n2K5QjkcE4RV66lWNoAh1zMOaBZCNOjusNlOWF4oodw6IhuQyQgx7YEbIDNjTgtqDhya0V/dtE+p0qQc9lCLx0gnHYaTjFFvg/bmFK9QpBS6uEEdn6HxokzaKNckI7wyev+nbUK4s7iXO5TXSgjD4ZBisfiOP4b78ecrrpcj2+02J06cYGlpiccee+yqr829FMNbfo+s/QFyfBEpFCruEOcO6xfOUKovs9ysWFsy41mGcAFtpK1gKIUIUlkybDO/YX7Wb9pJXAOVJyi3itSp9aWc8hebP2I9HguodMjGdpds0mP50FEKbmYaU2lv9+oEhrAtfNBjhHCJvJyoHrFQK5LlGaPxmPGoTbe1jiMhjKqUQo+wvGB+t1e004EQoac4bh10wnjqsb5xnqByACE9chGYRpioIJVCuAZQJt0qvdaY7sYUL8zZd7hovCrV1BSP+Qhm6xRuCZH1jFw264OQODo2MjgKc2CZUbHMZLIlZNYzgIul77i155BdS4NCofC26WWr1WJ9fZ3XX3+dYrE43728nenlzUhe7+9Q3o+7Gbd7hsyyjJdffplut0sYhjQajdt+DPM983wKl36PXLusXb5IkuQcPrCfQriHZj2XgLbNPrTuo8Xu13s5HrkM0SpHOI5pSgkHnCJJnLN9SZOnPbSbkage+1Yeolz0TR7OJ6YIzYZGCTIHhHXBLeKLMX6jRr0yIhcLTAc7DCYZbzx3nn5HUCwLwGew0+fsySKPPBWZx6Y0+E0cMnCaqHRKq6NwHIWWVSQ5SruoLCHPM4QjIbfsjnxIYylk5QBsXIrxky5ZXuTwAx6HKp8hzQekjo+rMjLhcrRwEC1CQJOKCE9Ik/+U2vWdxJxjjRd6FZEOdwmzpWPo5idJT62hlUYak0+kI9EaylGVxx5fmefBEydO0G63uXTpElEUzRttd1PFcTO2c++Hhtu7XlDeCnQCmO9L1mo1jhw5wsmTJ6/+g3kMa//F/P+ZvEhI+/8xMoNkRELR/DfPopn9mimgvJqRv7o1S3at2GsZnSes7wyAnOXVY0RhAbMTmKKFi1YJIBAoBArIQWcI4UGeMkk1m5fPUiw3WWqUwXPnJFeRdnlu/HVKasJXx8/yhHcQx2sgs5bpiKdttBshsx6+V2SxLKGyRK4yRuMJo9GYtdYGSnpU7MEpCl0cvziftHZb22y1O6ysLFMqVYw5rSyhNEb+ICS5ctDCQ+oM7UQ45FYanKL9OkIrlF9HKIUfLVKPBA2dkynBZNRjMEqZbm+S6RIbaxcISxWiIMH1QvLVH7ZenXce90KuANfXwM+6S/fCvuR+vD/jZq2VtNacP3+eN954g0cffZSDBw9e8z5vdQ9zFqr1deifQhYaSH2ezjCnv3OOhZWjVIvCFGHJ7JA065bPQDsjk1uzGFdkiHwAmSFNo1xQmd3xVkjHMwbaM8WYViAc0ixj7fIOOA6rhx/F9QxFELvXg5BmUqm1JXQL5l6PatfyyfVDqq5Htb4PlQ6YJJJJf5PNTorYegk3WqBS2CGsLuPnbZP7kjajWLO1fp5abZFGPUSIxE56jeqCJDby2HzE+TMZp750itEkIvCnvLmwwLd9/wGkH5jPDycErczEQLhmp154COGjpYcSvjksSYlyGhZc1kCo1EjbtEY7EXrlB0zj8xZjRhfc+/qaTS8rlQpHjx4lTVPa7TbtdptXXnmFPM+p1+vzAvNmppd5nl+VMAu70LL7O5T3427G7RSU4/GYb3zjG3iex/Hjx/nGN75xx3vmKs/g0u+TjLa4eHkTzxEcPnoM13FMjvIN9RS/vgvbURNyp4aTj8DfZ/x6bVGZOyVIOkaan/Vtfh2SpC6vfukMnW2Fyqco4fHYx5colyKbO6X5WaQla2vwZh6WhrRqlBIpyCKOTokqdaKy4k21RbmcGSGZmpKR0d1co72VGHWH59icm5Moh7WL56gshHSnMBpopIA0Danua6K9KloZFZ9QKThVpI459vFHqSyuM5kuUYpimoeXcdQYXTiEyKe7BHENaOORLnWCm2egyoh8YmFmEzOpzWO0MCRx7ZZAaHSwz+RKITj4SINSPWDYmeIVHNI4p9wIOfCw2Suf5UEpJY899hhhGM530Gd58G6pOG60Q/l+abjdU8nrFb/YHnBu5bBz+fJlXn311fm+ZLfbvXoy0Aou/ScYntv1/nICSKe2axODEyDziZnY2a64eaN55o0nJOako+0kTYB0STPNpUvrIBwUHn5QNvIkYTwitRIglTHWRhu5ks7QFjPfH+dsblyi0TxCs1YyhwQV2w5MTF96nJq8wkS6hPmEF7MLPCVDg2TOJwZskxt/TKGtB6eQOEJTrjSoRCP0ygrxcIfBVDJoX2AjcSkVcoLSAtm0x3CacXj/IkHgQG506jgFnHyC9qwtiVOCtIOSJWS6Q+oUcFSKkI6V9SprVD61nfcR2i3hMqZUrlAu5UymIZfX1vF8n253yPZ0k0nlYwROzMJCf04hvJN4L0le78f9uJvxVknXrZIIZ++tWzkwqck6bD1jYBA6JRNFOu02K4cfN40za0NEsGD3ymckQktZdWpzSakQWyhpu64ygnxkdrbzAcIzOYN5N70E2YA499i8/CZ+scm+ZoRwpd1/LENiyKprr53l0tmMgjth38OH2LcqzJ5kOjDT0Xxi876VxqoU6VWJvIwoepAmOUmcMRqP6A1GbLTP4/kFSlECAjqtDvv2HaZatXYnGAiE4/qQjw2pOumRUOaNL3+NOAkoBmOy3GXS3ubCax5Hnlyyyo7QQNjcsqVrzyaPRi6LzpBpF2TRNB91bgzH84n18BxA8zgUb2xhcNXn8ybyo+d5LC8vs7y8jNaa4XBIq9Vic3OTU6dOEYbhvLis1WpXvb/rKTjuBbTsfry/41oNt1uRvG5vb/Piiy+ysrLCI488clNrBTcKKSVu6wtMxi9yabNPreSwsHzY0kgLZldcuvYM6exCvGSAFB0yHdqi01gn5W4NnScIv2kgaF7NNOm8MttvnKOzrQjCEYkK8XTK+hsDVg/3EG5k8qgTmvOsG1inAktalQXzu6VtyAnXNOGsX29QqdFa61Eo+kZmr3MqzSKTTNC7fAElAyqhwAkbDFqXCCvLHD5Q4HItp3NpnSQvcexRwfKDRu2mZQmdj1CiAPmEXLoIUhaPLSGFRAthro5npf4ORr46mzzGBrqjt8idBUQ23ONtGVlfc88Ay7Be6CpFHfp+UzQDlWbI//MfHuf3/o+v090es3ykyl/+209Rblw5zJjlyGvlwbuh4rgZBcf7IT++qxNKuLmCUinFyZMnWV9f5yMf+QgLCwvz+7g6svm/weiCNdEe2E56/y2HlyHCLSDzsXmT7e20u0WzV2l16rMO0TSTbFw8TVBqsm+hzKkzAyNXcOoQD9BOZMxhvTIitaSrzEB5SAe0ejHd9jr79x+mXPTQwjPSKOGZw4/w+PrgCyQCHDSxgK+NvsYHCk/gCsdgmIUwt5sd7GYwCKdoaIVOA6ly/PIqC+UElpbJkimD4Yh2a4csy3Edl+4gpqgLlIo+wi2aN3ChbmRXfh0nG6ELVWQWc4E2f9T5Q74/+jT1wioys4TYtG8Mb5OOsSPJeoBj4EAqQwhJQUxpLjzIQtonKX6UTf/puXGwEGLe/Wk2m3ied8uvo/sF5f14v8beDvx4POb555+/JRKhEOLaOfIqofMp4sJ/QucT8jxnbX0DV49Z3X+EtNfjzZMJIp9QatZZXPGQfmk3r6bWkDvrz31612SLNEuoOE+gshgtS6aBV2iYJta8GDXXfuKzuXaRWvMwC40SQvh2f6hh8qRf5/yLF3j5y318d0KcFmhvnIRvf4h9B2YrCtZjOO3v5nXhAIk5uAkDHCt4HoWSQ6O6jEqHDBNBf+cyo8TBFxOGoxEyHxJWlnGx9ib5GBzP2JJ4RdJhzHjioXDI44BcO7ha0el4HMAHGRlEv1s3kjBv1893BuhRWprDnxOa3Ur7NzS08QEUltC3IXWdxa3mRyEE5XKZcrnMkSNHyLJs3rV/7bXXSNP0iunlbG/3RvnRcZx3FFp2P/78xc1OKLXWnD17ltOnT/PEE0+wsrJyxX3cibVSMXmT6egFtgZT9i81qNWXbGEXWbVGYAo86Zlchx1OMEGQ4uRTUHV0PkTJAqipaSjpxA45ckt+zuiPQ5Kkg/YrVCKf8VhDkpHLKi5TM4W051uR9XfPoW7ZSO3dsqVOlxFJ2w4PuuBVeexjVZ7/QkoyHJFmPsuHijz41AN4nkJxhOloQLs3YLS9g6KIk8S0xyFLh31WH/4gYvZvzUbGXk6NwXVxdGr3FGPD7hAuOo/RbojOTb4TaoJwzW65ge7EFuKYkxEghTByVrTJnVrvSl+18T0WaoJa+A6IDl/x/Bx6rMnf+effQ54pHPfqefBqOfKtefBOVRzfLLYhdxrvWkEppZx7AF0vZkbdWZZx/PjxK3bVrppQdr4KgzftiH9P57zQMC8+f3atgxoRCyPxNHKEzEhe1eyamA6RiulPHTbXztFYPESzGhqojziPciuobIxyykhlddxZf45N1p4x2d5ojUlGOxw4+CCBm6GltCS/ANQAcJmqPqcnLxMIcDRkQuBmI05NX+MJ7wjaK1mt+IwSWzXX2ddOhMwHIAtIPQYECCMbGPZ7FBzNoSMPkk6GDCYZra01LmeSctEjjKqUI43n+1aiFRiJlgNf7H+Dkcj5Un6Sv+wdQzkBUufkoma8i5yKaRLJotkXFQrtuuhsSCINmU2FB5EHf4D90mf//v0opej3+7RaLS5cuMBrr71GpVKZv0FvVkI6k3S9kzEDm9wvKO/HOxXXk7xerbN+s3ErsjC99t9BKaaZx6WLa4TFEmqaMx7CxukpKsuRrs/gbAetG+w7ZDvfM4VHNrKEwgETcl51vgxJwKHpMtKxthtuaORd7swX11y7gyntnTWW9x2kEgpzkMo7c/ksuKCnnH+tjZQ50g0peILRxOX8yR77jh69UhIrPdu1tnYes11PnZqf0cnckkMETaadc0xUyOEDNbQsMOlv0xmkbG2/gl8IiaIixWJIIYgQKgE3ohjEuJ6D54wZT0PK4YhJHLCwECOFgqyDFi6onFyAkB6oBOGXEPnI7EnqifmZfGJhE9bnUytwS+jVH7htj16484ab67osLS2xtLQ076S3Wi22trZ444035jto0+n0mvcxy4/3ovF3P/78hOu6xHF83Z/JsoyXXnqJXq/Hxz/+cas62I07YXmowQWC3pfp53D44ArFqAZkVm6agqxZmWnFSPaltAUQoJXdBJQolaARRi02IzvLwDBA3BCSAeNEkGWXkK5L6GRMpy4qmVJcbuA6OYiSXdGqAplRvGm7pqQStN1TN7Z5I1OY2d1OkXaJ6jWOf7em39+HK0ZEC4tI1QUdIbM+WZKR9NfZv+8gYcFjMI4ZD7vsbE3wPJ+oGFIqC4phCSEdu4pgrOGEhYohXMMW8SJ0OkC5ZudRuSUDgPRKyKSDlgXTtBMSR09xlESoGSyzZOz2nJJ1DzB2Vjo8CAvHr/lcXauYnJ3tbnSGvNb0cmNjg1OnTs2nl41G46oqjhtBecbj8fviDPmuSV7hxpSu2b5kvV7niSeeeNskc74QPdvD7L0Gm39ouh6WXCqSHYNsTzp2Ytkz3eZsiBQujhoz9w+ToX3RhmaULn1QKVvtId32JvtWj1IpWZsNnZFSROU5uV8xxEOLhNZe0yLk6+RpyqV1A/BZOfIkrisMRVArU2xqDXggwFGCR0pPkeYTciFxycmEy5LbNHuL+ch6SA5NMZkNDTU1HdouTWylFWZnUzsh+bTHxc0+oZuyePAhnHyAV6oSBX304jHSSY/RJGU83KGzNcL1Q0qhS7GyROjlnNcd0mQdIR26kzdohessOhVAWJlvgpIhpMO5DUrmlpCqj84Unp5AnqIOfuaKHSApJbVajVqtxgMPPEAcx7RaLVqtFufPn8dxnHlx2Wg0rjnFvhcTyhkJ7HpQnveDXOF+vLdCSsnGxgbtdvttnfVbuY+b6cDrna9A90UGE8H22mnqCwdpVgu8MR4x7fVIEk297qJEgelY0d5O2XfYA8czhyTpgZztL+Y8N/wzBo5A6QkvZxf5kP8BA5cAoxhBgxuhlWKrPWA4HLKyesRMvPKU3VUD7GHMNQciDYFvaIehMyGduvjOwPy8tQYh6RgJbNw2Hrfz77etdLZtSItqgNIO62uniZOMwwdX8R0XHJ8wKNCQHmkyZTRJGA37bK/1cWSPYqlMqSgoRk0+8t3w1f96DilyRtOQ/UcrHHziKNIBLUpo4aLyKVoUIB+ROxVEbCaeIumicZBqMi92hYrtCsEQtfQpCJZv+TnfG3czPwohKJVKlEolDh8+TJZldDodWq0W4/GYU6dOsbOzM1eczJq/dyM/fuELX+AXf/EX+frXv876+jqf/exn+aEf+qHr3ubzn/88P/uzP8srr7zCwYMH+fmf/3l+4id+4o4ex/14d+J2JK+j0Yjnn38e3/d5+umnr7rje7uS12S4xfqX/nd0nrFYi3CEx/rrZxhPC5SKMY1Dq3jOyErwp1aKalatjATVBxmYglKExi9X6N3zoFY2R6X0hgk7W5c59PBBqtGYy2dGeHpEebnMIx8JAWUUIk5oFHkyBGWhPDMbkjy2U9LM8iu0yY1KmyKTHCdqUg9zENbGyC1BntLqjOh12+xfWSWMiqAyGvUKjUqAEj6TQZthrGitv8G6KlAOISgtEoUCN2jskm11Yqav5FCo4GjQThOlc7RTQ2vIZQTanpGFh9IC5ZpiWXu1K+BmZp2gD06IWvnMbUEeZ1TU6xV7b42rTS9nefDVV1+9YnrZaDQIw/C6O5T3Ja93Ka7XHbp06RKvvfYaDz74IEeOHLlmQgFb/ccbsPb7xgA6m8wlQ9qzMizrpWM8d0xnRiYdFK7F2VfstWwPICV03GZ9e0g6aXP40IOGNKg1pG20E1J0JqxdOk85cgmjOsXANYQ/PTJwicmUtcsb+GHAvsUFhMwRaYJ2Q4OAdosIO/4XKsaVId8WfRJEAMRGg68TTHfeLDlDjpaRWUB2y+YqIvMzZIBrvCSdMtPpkItrA6rliMXlFSu3sp0rr2p2tsMGtVBSa+TkWjIZ9hiME3rra6TK4evlZxhIF1fnTIXDs+Pn+L7y9xgftnyM8OvIrI8O6pAOUV7RUgshzVIkGcnCXwDXAHyu9aYqFAqsrKywsrKCUoper0er1eLs2bO88sorVKvVeYG516LjXpnSAtf8Pe8XQtf9eO9ElmUMBgOUUnziE594mwfbzcbNdOD16CJ684tsdxP67XWWVx+gFGhj/cEZlNyPL7ZQYgFPDBjnPpHfB7lscqZbmVuBkLaZOB5nBs8hJFSV4muDL3N0WqNU2YejrTQrH5OJIptr54kzycGDB/ALZaMKKRivMWOlkVqQRAJOnX0PDHn9OfBcxTAL8dycxiErcyo0zMHJr5urVzHTTS/atYDKJmaCqTPyPOXy5jqOSjh86AHz2JzAfk4YD2HPq1BjSq2yD50MmCSCyahNZ6fN9vpZgkKB4z+4SD5KKZTrLCwJQzjMhginhFBjpGf2ObUbIrTxGVZI0twjo0BOgHBCBDnCjxA6R0UPQPOTt/WcX/HcvoPQMtd1WVxcZHFxkW63y8GDB8nznJ2dHd58802CIMB1Xf70T//0tl+/sxiNRnzoQx/iJ3/yJ/mRH/mRG/782bNn+b7v+z7+1t/6W/zWb/0Wf/zHf8zf+Bt/g/379/PpT3/6jh7L/XhvxPVy2/b2Ni+88AIHDhzg4YcfvuZ74HYkr/3uDpe/9E8pFwqEJZ+cAhdObtFrZRS8Cd0th3h8ngNPHjHrQDOrJL+6x6+3jeMI4t46a3lKKXQoVpfwHW3yFClaeGxvt+h2hxw48BDFYpFqU7D8YEqea4JQIqUwDTcntI033+5oOiZnaozaQ2O+RmOUa5rZBHG+PiVDezX7lkp4bG1vMRzHHDz0EIWgCOTgOEAKThGpEqLGAaJ8jN53gGTcZjhRDHsbbG1JQn+NsNQgCgYEYRmwE2Vhp5fSN7Jfr4TORminjM5GKBGi8ylx7qBVRiarSJ2bv50A7dbMpFf66P3fa4rf24jZc38nKjfP866q4ti7gy6EIIqiq55Xp9MpeZ7fl7zeaVwtIVxrX/JatwfIJy2cjT8wbwgBSGse7dkPMddStrwapjNjiir8BlpvouyOy5zC5dXJ0gkX13o4Imf16BO4QtvOT2pf7Cmrhx9iMhkxHo3Z3tokzzPCYolSVEA6BbY3L1GuLbFQK4JXtHLVsvEqs5JY3KpZNJ4vHJcRWXt38VgGoMe7BCyUXUZODKAnG1utfMfIHbIO2q0w6V/k8maPpXpItV5BZH3zN5EO5JkpZq1mXWRjtFvEVVNK5SqlUgpLDc6MztIe9tBaoDQkUnM2Ps9lf8BK0beWJLm1CQDcMlI64OUMBhN22ttUDn4KVXkcved5ni3DXyvJSymp1+vU63UefPBBJpPJfI/n7NmzeJ43Ly6zLLtnBeX1JK/3bUPux53E3g+04XA495dcXV29o8P4jQpKlY5RF3+ftbVN4iTlwOFHKAQBs4NHIio0qwUG7QV6rQkaH9dVVFYPmTvwG7twHjUFr8GJ3p+wIyDSip7jUFITvjE+zeHtFm6xQSXo4EVN2hsvIwo1jqyUkH64O0mMW7ax1zINwLhlisq0zcMfWcBjxKUzEzw3ZeXhZQ496JgCMpuYx6RzSwuUtmvtgtTWQDwBEZDEQ86v9YgKIcsrD+OQgyiaA5XXAHK7HpHbzw2F8CsUPYy8Sbok8YjhOGMybDFyFXmyxla3QbkwIYjqyGxg8+3E7JQ7AY6agl8mGe2wvjmgWRI4rkAkLWM3lQ4QwkEd+KsIDfIO1fz30lYpiiJqtRqHDh0iz3M6nQ5f/OIX+bVf+zW2t7f5nu/5Hv7aX/tr/NiP/dgt3/9nPvMZPvOZz9z0z//Kr/wKR48e5Zd+6ZcAeOyxx3jmmWf45V/+5fsF5Tdp3IyXudaaM2fOcObMmZtSddyq5HVjfZ2Nr/8Kq1XNwtJB1tcuMhnm9FoppVqIdCPcJGdnR9EcpkTVpl2dapg84DcgG5K7VSrFLuGxx5kONulPcjqtlxB+jUqoKZSXGLTeZJI5HF2p4hUL1tIuouDbZptK7MqUtmq6zMrjFdbXCVN95ZaAbWGTKjZDi3w054Ngz6XmLNkjlyW2Lr/KVAUcXangBAW7XjWzQamYFQenYKefPkIrCsU6hSKwsECWZozHY4bDIe1uD+hRKoYUy1VKIThuGdTYAtV6CK+CTPtorwhxn/XNFgWZEhWqiGyCzhOUExpFh1dBpANYeBpKR2/6+XtrzArKd1LF0W63OX36NK1Wiy984Qtv20Efj8fAnUHL3isKjndV8vpWycL19iWvFlJKpE4QF/4DMLJF1+zNo8xhQmlwpH3TyTmYAeMKaTrG+cT8rKNBKSbJkMsXL1CMKuzft4BwXFOEIdFaooSLkBIpPKKSR7G8yIJKSdKc0aDHdmdIlg1w3ApCekyICJGoQhOpDBZe6sxAGkiNjFXnlvSaoV1DF9RuCVCgw3lHx9BdYyPnzSdGCpuN7O7mGO2WGHQ22Nxus7zUpFIq2b+D6YyLfGQIjFnPSFTT3q4xt/AQ+djKLXwW3AKPFB/Bz6aMHR8vHjPRLsO1c5wVO5SKAcViSBjVcEjmJMPuGDobZ1g++EFKT/7PKC3mWvWZRHn2vAsh5vu013pTh2HI6uoqq6ur5Hk+n16ePn2a8XhMEAQEQTCXWd3tncqZXOFa9zsaja7thXo/7sctxMbGBi+99NL8w+h6RsU3E9eTdGmtSc78n2y8+TzCiziy2sTxhbUAMbRrX8YUCgkPPBbQa4HKc4qVEtVmBlpAMto1msZDM+LU9CwFINYCFxgj6EVdDix/G6PRgE5vQNy+jJQhFc9nnIcUNUi/bnKPLeDwqyaPuxXAwCkkmgc+cpAHnnJsJ943haTjmQOOV5ofkMwBrLrH/80UrPHgMpc2ejRKDo2l/dYs2zP5FXYPX47d25nB3PyqhRAZf0m/ENFwp1A7jFK5OTyNYtZ2+uRbQ5MfS3VKRQ/PrzCzEZlMRlxcG1CvVVhYXEQAyimgEKBS8sYnUU4Vsuym8uP14l5Cy/b+HsdxWFhY4Id/+IcZj8f863/9r/mBH/iB+eHpnY4vf/nL/KW/9Jeu+N6nP/1pfuZnfuae/P778c7HW4vB2b5kv9+/aVXHzUpetdacPn2a7qnf5dGFmKi2AknHnAPzPo4QeGKMyYEZjtCm0aZikydJQRTQdiCxEa/xZnKObyt9En/xGBWdkOtDTAYdusMJ7UvnyfGoliTTPMBJ+shC3XI59gwhkvaV17Rj1Xk25+Wj3eLTUvlxS3YSWTePq9Cw+5amOZiKMpcvnkU6ZQ6u1nG8ImQjtFOCdAbfGZjzdjY2Q5xsNin1jMzWCXHVmEqpRCWEl2o7VFIfJwnotjdZjzVR4FEsVSlFDn6halZL3RpZnnFpo4fjBKweOIx0C+hsYnYt8xHKNcWkClbIaseRdqhwO3lu9vn6Tqo4lpaW2NzcpFqt0mg0rthBdxyH3/zN32R5efmOzq3vFQXHe2ZC2e12ef7552k0Gjz55JM3pWkWWrE/+zI6KUJQtsRUQ8qaH3JmlK1ZJ2XPVeRTU1vmEyuLGtEfpWyvX6CxuEKjEphiLDF7lzqegW86tkPSRrtlZNoGr0og+vS1ws27LK0cQ6R9+tOYwbmX0U6JcgBBeZEokGingNQTwEGI1JCrtIdQCdoNELmdQKoMLYPdrhKxXUROzFWlxgRWa5QIaLc6tNtDVg8+QDEsoIS1LXFLxtvMaxgs9Pxaw2hfK5i3lsZIbFPKxaN8d3AALXxDHRMGzayXNZNJzHjUZ7OToDbP4IdVytGEVDn0O1usHHiE8LEfB+HMu+x7JcozD9LZ/5/FjaaXjuPQaDRoNBo89NBDvPTSS+R5Trvd5syZM/i+P+/+1Ov1W9LGXytutFA9HA45duzYHf+e+/HnN7TWvP7661y8eJEPfvCDLC8vc+rUKZIkuaP7vZ6kq3f6v7J56uuUK/vYt9Qwu+FY78Q8MTs4wiUXBaKoQFC2klTHwmNm0ikB5DlKCnSW8D/VfpBx3kVL1+YvlwpFfCcnJkYlQ5abZbxCifGgw9ZaB6GmBKU6pcAlrDRwdWKKw3xs1hVUbAu7id3HmYJjc75fM5NHuwtkrspOGi2ATRsfuOGwz9p6n4XmAo1G3f4lpNnRnBWo+RT8yByW/Lol15bN58BsT0kYy6XZJFSqKaVShVIwRO9bJh1tM4glk+4Ftjch9DTFqILjSNqtbRaa+2hUfPM40wHSducpHUYufQKNKdJuNT++Ne4FtAyuTzEcj8csLCzw0z/90+/445jFxsYGy8tX7p8uLy/T7/eZTCZzOu39+OaNvefH0WjEN77xDYIg4Pjx49f0RL3afdwox84K1az1Ih9YVRSCQyYf+XUkQ5yoTLk+pdPKCQojktilvuQSllx7JnVAKZTWaC1AZXxh8EcMkh0OuUsc9lZA+jjEOH5AMtkmLDepV8sMJ1N2WjtcTnJKxSFhuUYlSvA8YyuivYaho3p1yAwUctb0epvyLWnZa9sMK7KWpdFaCBAZcQprly/hB0VW9u/bXUt0Igs7s0X6jIdhhxy7q1mxaeJlQ5OX0y4dMr7e+2OkW+H/Xf1hZOMgWTJmNJkyHrW4vHMB6QaUQgev2KC3cxmv2GRlsWL27rMJQhZwdAZ+hFQa7S2Srf5lpOPe8oBib+R5/jaf3nciZvnxrdPLM2fOMBqN6HQ6LC4u8sM//MP81m/91i3f/3tFwfGuFpQzycJsX/Khhx7i8OHDN//kbv4RBTEgF4um8JuZtzqVXV25ysC32nAnMBNKx1L0/AClL5PLClLAdjel195m/4GHKUXB3NtGezV0PkF5NaSKwW+Y6aA3A+XU0OmQte0x+bTL/iOPUhAZurSfcjZGLS8wHXUZjmNa25fYzHKiYokoKlAs1XCFnR5mM8uRvpkizhNCZ48Utmg76r45VAEIB50lbLcHTIdtDh16iMCJ0QRIe1uZtOa/AyERMymEE+zxSdtrdRIgE0NtFCI1k9MZzloWiYKMYrTCYh4T55rxsE+n3SXJc3zXZ50PU+ln1OtvP2jsPRDNJpZ7C8y9MoTZm/168tjZcvRMZtVqteaH8VqtNi8wb1eWeiNT2slk8r4gdN2Pdy+SJKHb7fLJT35yLn1xXZfJZHJH93s1SZfWmsun/ozpyd9hcekwtZIEhJWYzsBlJesb6Vs/x7r1NyvZ4q1mJ25F0CnKC9B5iigUKWpF0V+0REPjv6txae2s0+pOWNl/gFKpDjqmVG6yqCZMEpgMdmj1M/LtU7jFBtWgS1jdR0H37P5R104ezY672dssmq9lYORTc5WKxfOr3a55b5jQ3r7I/v1HKQf2M2Yu3xqYQ1M2NPeVTawnsd1lF8LIbmf0WGEBF7P9IzeynzXGEsUv7aMZ5dBokuU549GIdrdPPOmDLBEnKb1piZKIcbwyZFNzHyvfj7T58q0NuNtRd9yoGXY34mYo2Pd3zO/HncbVJK9ZlrG1tcWLL77IwYMHeeihh+4qBXsymfCNb3yDoujykX0bOO6eAYVKQQRIN+HA40fxz7eYThS1yGHpcB3pgpGcKpRWaJuXzmUX6KYthBD82eYXkKO/xIGH6oymMdsbl6k1FmlUI3A8igUFjVXS6ZDhJGPc36C1keH7LlGpQqkUEQQlA7pxzPkm1RHrr7dIYk1z34j6Pqt884zXuVlVmk0sk3kOm07GrG1sUq1ENBcWbDNvZgVSRKQjew4150Rjj1KxP2fvSxbsWTvCNPUqfLX73+lJB9SQk/kaj3tP4AYu1bBGtZahcJkOW3SHGb2NC+SiQCXr0x96REGC61t5Lgq0h1Qx90STuQABAABJREFUevWv4kdGFXatAcXes+P1gDjvlu2c67o8/PDD/L2/9/f4+te/zh//8R9z+vTpd/yxwDun4HhXC0opJWtra4xGI5566imazebN33j7GUTrWYSQiLQFwZIlu87G/1XTkZkvRFdMh3nm72VJekJIVNLl4uaULO5z8PAxAk/bDrSh86lsgpY+Umd2pzFFy4K9FsnShEuXtnEcwerhR3Acx2CghTaTQeEQlguEFSNbjRMjjW0NJ6zvXMYrFKmUEoqlOiHCSmEztN+wU8UaaLUrhXVKFj3tgnTRWcyl7SE6mbBy5Ek8maJlzZpjlxFWgiC0MsWn9A1y2S2Z5OCaHUvtFs1+pzSTUgAtHFNw7vXWTLumOE17ICS+lPQnPbSAoyt1xqWPspYf5LXXXiNJEhqNBouLiywsLLzNr2f2Zr7W4Wnv0vTVDk97E8JMZrWwsIDWmvF4TKvVmkMibsag+2pxMx5C9wvK+3EnEQQBn/jEJ6743p0g7WfxVsqrUoqTL30N58L/yeqBBygWXCtdMv5hc3Ps1JBIC4zQomQp2TO/ycpu8Rm3DIUv6SC8KmJOVG3NyarKKbGz/hqDWHJ4f5VCceZXWTSofCeg6KcUF1dpNnOSfB/j0YjhcMzWuXM4nkcpiimVKoSeQPo1uyNfM/8o1/rXSteuBig7FUjB9dH5lO1+yqC9xb6DjxL52k4ah5b4PTDT2XyEKULj3X2jmeR1Vngm3V3IhhuZ7zsFc19gVRyJvd8ReBVcNTKk6GmLlf2H8UTKcBTT3bnM9nSKH1UpFX0Kh3+QomekX299Dvc24Pb+70bTy3sxoZy9vt5Ltkr79u1jc3Pziu9tbm5SqVTuTyffJyGlJEkSXnjhBZ588kn2799/W/dxrRzbbrc5ceIEK4slHnZPIbRjrZEKxr/RiXD1gEz5BE6PQ48s7KoZ1ASIQE3JCdBqinAKQM6fjp8jFhIlYBIO+OpLb7K5cYDKAc3+/UcolyNA2zxWAK3wCiH1gqZejVBaMx6NGY1GrF/eRiCIopBiVMJzfL7xRxcYtCZoLTjjwGPHj3DwwQo4wpwbhQP4tjlmmn6Dfo+19R7LiyvU6gu24IzsJLZmJK9eHWbnxbRvp5xdU8imPbt+EMPMa1PntLMha+PX8BxJkCu+1P0Kjy4cRPpV20QLkJYoOx5doNJYpVqtMByN6Q2GbGyN8fwC5SgkKlUJCw4sfCuUH7riObzagGJvnpz93FsHFO8FH/OZZcjjjz/OE0888Y4/FnjnFBzv2g5lHMd0Oh0Ann766Vv7B/RehZ0vo/06nrhM7lTA7hOS9uceO0ZrbjXnyR7tuV81yHavii/GrG12KMiY1SMP4aiJgfqkXZRTNAcpp4jMDJ5YZH3bhRmD8JhOu6yvb1IsFllabJhpXja2h4ypLbxmJrNmbzGQI4Jmg2a1TyaWmfQ36Y8n9HcuoUVIuewTRlWiMDB1o+MZCeycChuZIs8pkiVDLq1t48qclYNHcRyF1qZLrzGHRS2VfcymABYqRTtmL2l3X9PSs4RjDkXkaOEhdIqWTVPgenUEyspkMXI4JJvrlxjHPocO7sOtHqG6+oNUbTdxOByys7PD+vo6J0+eJIoiFhYWWFxcpFKpvO3NfL3kcLXD07WmhzOqVhRFHDp06ArE/cyge4a3n6GdrxU3KihHo9H7gtB1P97deGsH/m4UlHvvI45jTjz/DWr9P+LIoRW8gvUuEx44rjloSN9KmwogIHMqKO3sAZo1zNTPM11v5VbRKkX4dYROd/1/3RLkUzJRYOPimyjtcGh/E88PTUd7JhlF2iuQZ6AVvnTwI49aZQGVlRnHOZNBm831LiKfUCg1qYSCoLKMq8a2STgr+HoW6NMFt4xOuqxvD4gnfVYPHCYIHMOq0DYnCs8ciOYTB0tJdGeTx9D+ey2op1A3X/sVux1QNtNL4e3i+f2ilc3WIBvT7id0WpvsXzlAsRhCLglKTRayIakoMult0M7+/+x9d3hc5ZX+e+/0Pupdsty7ZEm2Mc0mFIObDAmksQayYVMw2QQSEsiGbEhC2MASCJCQ8gOTtjQbbDDd2KYZbKvLarZ6m977zL3f749bNJJVRlYzMO/z8AhJo9EdeebMd855SyraW/2Qd36AtLQ0ZGRkIDU1NSF2x3ja9InYFdOBiVyw52JDuWHDBrz22mvDvvb2229jw4axs+qS+PQgFouhra0NLMvioosuOuf337EkAb29vWhpacGSRfNRQD4GIlIAEn6hwGdLshGwMj2ogAuQ5fA1SEgTMABRJxhaByrGObvSMRfaGRtI1AKKlkDPMPBJJPAvOg3ThwYsWl0InYFngtBKcFmWMu4jZKI/CA0GWqMWWgMLAiAU8MPrD8Fud2DgTAgeuw+EUkKlisDvl6OzugN5CysgiXl4Jppr2OLFY+2C2RlGfoYGGqMRYDgWBVenFbwmUg0uY1PLybOEM6DwkZaCO0DGRGkUaDUOt78Oj1ECPcvCJ5FCx3pwfKAZF+Qu5R5j1INAIASTyYSMFCMMaZw3iCLFgHQdjRidi5DHBE8wBnP/GYQpIyIRA9KZAaSnp59FbZ7sgmI2TB2F6xgvdi4+ueDTjDnZUAp6ScGtc1LNZKAPML/LU60YMLQaLMvwga7cih2E8Loalgt2FQJeBeEx//VgwIsQ0UAnlyMnfxFosIBUCUJiIBLuoASZARRheGMIFkSiASgWIGp4fV6YTVakpGYiLUUvUquIVMdtAGUGrvGT8x9lRn4jaADFeEGkWkhjAegMGdDpoyAkFcFgEH6/FzarFdZYEApNKvQqCip9NqQxoUnmaKwxvxl9JifUCgqZ2XmgEAZinKEOoiEQmXbI/TXqAJHqQUccQ+Y8FE914zMrqZhwOOOcYukoT5NlfABFgaIkXHGRcdtdzgmsFRFWjuJcIyQyKdjszRCI9/F5PcXFxYhGo+LGsLa2FgCQlpaG9PR0pKWlTbo4RKNRRKNR8evjUb/iLe5Hs3YWgmnT0tJgMBjOmvJP1FAmN5RJTDcmyulNBEJD6fF4UF1djXxZG4qzCCiFeijyQ4z+4GOTovz2MBqAlIpxmV+sepgWnVAyECbCufuxUVDg89UkvCGaVIZwlEHfoBUqhRpndJ04GazFteobQLECVZThGlnhczAAJLxzNEeVpRUaaOVRaA2ZSGdCCIYJgj47rJ4IGGsbZEo99Bo/1No0yGMBUBI1v0WQg436MGgygWUJCvKyIZVLOSorn0PMPVYXd/gLO+I2qxogEr95pIaMeqQqbmAomv4IzSwfN0UrgYgXoGgQhGG32eD0hlCQXwClhqOcQZbC04YNkIGFLGM+9MU3ooBSwul0wmazobW1FeFwGCkpKeIAbuT75Fj1MZ76JejDYlMwrpgIEzWUPp9vXLf2RODz+XDmzBnx887OTtTW1iI1NRWFhYW4++670d/fj7/97W8AgG9/+9t4/PHHcdddd+Eb3/gG3n33XTz//PM4ePDglK4jibmDcOAWXLCF88JU3ntHbijjUwbKy8uR4j8Kp60ObgmLeZIs3ima5eoVJQVF0YiBH8LxZ07IU0BYBqw0BYQJAfI0/jyYAleoER6JBDqGhV8igY5l4NVFMU8bhkyhG2LXRUf5KOXNduQG3mFVDYqNQKUxQqWOAFnZ8Ay0wxQGFCoWLp8KUoqB06OExx2AIS0VFIlwZ2AmBFZmhN3cA5c3jIJsI1efYl7ed8TDpwnw9Y9EuEEaLePrvJKvg1qeiaGL07tzme6ECWNQYYcEgJeiQYHATUvQ7u/DBTKOjeP1hDFgciEnMx96YypHyZWncBtRqQ6SmB8aQxo0uihApcGTcT2s7hh6e3tx6tQp6PV6sT7qdLqzmrKJFhThcBgURc1ofQTGX0rMxcBtphgcs95QCpOfRYsWIRwOT+7AFHYAPc9xL1o2BlAyyBHiLeOFF0CEt1CODJlMgJ/yUFLuRQEaXq8bJpMZcppGqiEdNBsSqVKEjYKFDDSJAqD5jZ6EM5iQKAEmAIc7BKdtEFnZRdBpZSC0gjPU4QNcCZ+hRiRaADH+c5bnr3M5kaAojjZA0QCRAZQUKokKKkMW0tkYQhEWAZ8LNl8IEXsnZHIV9NooNDo9SDCEvkE3jHoj7zBKgVDs0GPls9xYeRpHX5UZOT2oVMdNmCSCRjQGUGqu0MhSQbEBjtLAhrkmE4Tfcsq5mBFZCijGgxilhqm3DYSWoTA3AzRNgc2/jjusjQGZTIbs7GxkZ2eDEAK32w2bzYbu7m6xOAjUWK1WO25xYBgGp0+fRigUQkpKyqSMK0ZaO8cH0546dQoMw4jby7S0tHGLgUCtTWqEkphuTBfl1ev1oqenB4tzJSigQwCdzk2S5WkQIz9IFFCkDTU8vNkNRTkRo7VckyczAFEvWAlH9SRSHReNITZXQ01W0GNCn8WHNJ0UdLoOnZZqeCU0+nz1KNCs4JpYeXwj5+Dv38E3Z+4hnaRMA4TtoCQqqKURqFOMSDMSRJk0BAIBeL0+WO2dkEkoaHQp0KqVkCpkGBg0gZJokZ+fCYlEGaf55B87iQ1Fg4hRUryzrEzLb2xlcTRWLW/glsLRY2U67lBF87oqiubYXmBApCrYBjrhDVGYl2uETMXThmkFQNz8Pw6/0Sy8CpBqIAHOouxbrVZYLBZx6CV8fzTK/sjDk8lkwsDAAJYvXz5pbfpkINTHsSbs01EfT548icsuu0z8/I477gAA3HTTTdizZw8GBwfR09Mjfr+4uBgHDx7ED37wAzz66KPIz8/HX//612RkyKccgl6ysLAQxcXFOHTo0JS28PEbykgkgtraWkQiEWzYsAEq30kQVwNe9R9GLGLHDVnfhCYa5gdSbkCihIT1gyZhrqniySUsaHBEE4qLURMMDcFgje4SFIZW4sShbkSjYVCUBNmEgizDAKVGCiLlmypZCm+2Y4wz2+EkW1TEGWe2oxfjPKiIAynpGhg0A4gwKhjUIfgDUhgMYVhtA3A4+qDSGqDVqKFSaWA19yEYiKCgsAgKuYK7eFrPudJKBdMdXj5Aorzzt5Aj7OfNd7hhmkiBjTp5yYQbgATz310JRhYBy0ogoWOIMnIU5emAZSw89n6Y7CHkZxuh0XOPmzuT8md3iuZqLi3lqLlZV0JvKII+HViwYAHC4TBsNpt4hoyXPKWlpUEqHd7ejBzAeTwenD59Grm5uVMy9kkE4z1HP0sMjllrKFmWRWNjIywWi6iXbG9vRzgcTuwOYkGgdy8APluMlgAgILQcLCF888jyHwnXXFIAl0VGuBcJIQBYDNotCLrcyM0vhNXcDwp8Ng+tBBv1g0hUoBnOgp7TDeq4mA3+4GN2hBD2mpFXsBgqaQSEUovmN9wkic+QlAhiYil3bQCEUG0uZDskRnYMZUlyv4NI9VDRPihT9EjTyxAjRgT8HgT8LvTbTaBIBEpVCjRybiJNMz5OE8m4eVqrBwRS0KIWUsrTV1Vc7Ait5mmzSoCNcFRXNsy5kInUVwUIeLdHEuEKBokhysrR298PuVyH3JwCUBQLNm09oM5P+PlAURSMRiOMRiMWLlyIUCgkFofOzk5IpdJhxSG+oSOEoK2tDTabDWvXrhV1medqXDEymNbn88Fut2NwcBCtra2QyWSQSqVwuVyj0nSTphNJTAemm/IqDG1cLhfKVs5Huns/d/8RH79p9AJSJf+5CmDiNIUSbhNHKBm/mUznBlQSNUdxlaWAhtCQxYaaUnkqnE47zBY/crIzYTCk4x33a3BLpJAQgiPhRtyoXgZKkco1UzIjd4CQG0T2A+fCrQIYwXU1yh9qWJ6qSgNsEDK5BgY6BkNKEUjEDX9UiqDbjH6zB5IYZ2yWoWNAWAZg7Px9evmIkAAAljusMNHhm8eYlzcBEuJGXLxOyANAAiAoHh65w46SOzTSOoANg5WmwDTQjVBYgoLCPMikcgAUd9+CmQ/4jaxhBaBfOupzQaDsz5s3D7FYTGR3NDQ0gGVZUZuelpYGhUIx7OdNJhNaWlpQUlKC9PT0SWvTJ4PZYHBs2rRp3AidPXv2jPozQp5rEp9+dHR0oK2tDatWrRKH0gD3vi+Tyc7pPoUa6/V6UVNTA51Oh7KyMkj8ZwBnHU6zLjhiDsQkNKr8J3Gp4Yq4pioESNQgrKCr9IOVKLitJCUDRbHckIrln7cUBYqw0KhYFCxkYO+RgiYsNCla5C/SwNrngVojgS6VW0Jwxossp2Uk4DeghGs242PmhGWBTI+8hWG4rLkYPGNFOCyB3kBh9cYFMKSrEQoF4fcH4LAOIBIjkIKBMS2LGwpKaTF2iTOHFLxGDPzmUQ0x95LE+MEc4RmBiEsL4K4RUm57m1uch85GJ2TSKMJROVTyEHIWFsNl64XNFUJhjhFKjY6ryyD83yvKmwC5h6i5qeWAYXidVCgUYpwcy7JwuVyw2Wxob29HQ0ODyO5IT08/q/4IjJ3CwkLMnz9/0tr0yWKiDeVUc8zPFwbHrDaUDMNwkx9+pToyh3LsH2aAgVd4Bz65aLYgZOuwhOIOCyQa5/LH28BTKn7KQoNlojhuasRx+iNUFnwJGlUKTFYPGEoKVqIHSAysLAU0OIdYwRgHiIGVp4GNhdBv9oMwEeQVr4ZUQkBoLdeQyYwcdVT4KOW45qDjMiR5sxuxqZMahrZ+/BRKyJKkmCDnwMpz0qUSKfRaLRgiR8DfC316IRB1w2QPgDbXQa5Jh07lglqbCikCAAgoiuboaXyRgKgp5RpfURMKitc0RfjberjGNubkriXqEItbJBJC36AdOiWFtJxC0IwLRL8USFs3peeHUqlEfn4+8vPzwbIsnE4nrFYr2trahlG/0tLS0NXVBafTiYqKimHr+XM1rohHPE133rx5iEajaGlpgdfrRUNDAwghw7aXMplsxhvKJ554Ag8++CBMJhNKSkrw2GOPYd26qf29kzj/kXB9HAWxWAz19fXw+XxISzUiLXyM64EoKZd5TQhPX4qrlbRgc0+JOkcpQiBEBkQ9YMHRPilaCioW4n/ez3/0gVBS2K1meHwBFOVkQKWWwxPuQUegCRq+AwtGTOgNtqJQWQzEYoCU4bST4Oz0Oc0QzTe8/AEGYYDi3WWlGn5angYgCsjSACoKSpEOrYIBTcvg9PdAZSyAVELB7vUjbO2CUqWEVhODVqOCXKrkXBEpOUDCXEQIE+AOQ8LmMern3V4FaUCMp+IqRbMdRD282ZuLowhHHGAhxeBgBwgTQ2H+PEhJEICUO5zJ9UNmPvxkH1mXjfbPdxakUimysrKQlZUFQgg8Hg9sNttZ1K/09HRx8l5aWorU1FQAk9emC/+fCCbaECUHbklMB1JTU3HBBReIesl4Hdy5QogN+eSTT1BUVISFCxcCITPQ9zIIJUOt+zAoACqWQXWwHuXqUmikafzZUw2KDiFKaQDQYGVGTiYlNfD1RcIPjyhwCwUKHo8TZrMF+YtzsHJtCthYBN3NTnSfsoBhAJmcQsHSDGQWavmfI0MfWf4cKQ7XhIaT8MsSCpREhhWXzMe8VVmIRSlo9VJIFZzzqlKng0QRhDvAQqUG1FoDAj4nrHYPVHIblNp06JUOKLTpoPmNI+f4L5juKHgmoIT7fYTlaz9v+sgEOEYeG+AinZgAVm2aD7miA71n/NAqgIVlRZBoI7C6YygoLIZSIcXQwoXfhEp1/JY2FWBDIOp8IOuKUf/9BNA0LcbJLV68GIFAQFxQnD59GkqlUqTGUhSFuro6zJ8/H0VFReLPT0abPpkBnHAfM0l5PV8YHLPWUMpkMpSWlp5l+5zQBH7gVcDTGkeN4twFIdNDznrAkrRhroIcLWC442ssYEGPyY1ueTUIRdDi/wBFmhuggBeEMQJ8Rg8d8/AZky5uexhzgUjViAWs6Bu0QyEHsnMLIKFCIAxXMCiWgEjAZ67RoFgGRKIQaaNgQyC0EhQJiZmSXIZkhPuc1zByVFglR7uV8EYPJArCH/isrig8bgdyC5dDrZQBVAbSCItwOAaf3wuHz4sB6wCUShnUOgN0GhkUylTQYECkgqGOEB5uACEAJZHx9x/j+O+Ici6zJCoGjHO0XAlCwQB6B9xI0euRlpnHPT5VHkjOtml9rtA0LTZsAvXLZrPBYrGgtbUVFEUhNzcXwWAQCoUiYWMfQsg5bS/VajXkcjkWL14Mr9cLm80mRt3cf//9SE9Px+nTp7F06dJpt+h/7rnncMcdd+DJJ5/E+vXr8cgjj2Dz5s1obW1FZmbmtP6uJM4vJFwfRyAQCKC6uhoKhQLz5s0DO/A2EPICtIZ/s1eJByJuGyiPayj5rR3LWdwTiRYMAVhaBULRoCSEozbyBxguj4wGQ6QYGDQjFokir3ABFFKuflV7GxCiACVLEKJpqFmCY8F6FMryAPlIHWK8uY5rqAGT6Yaor0JUSIwfcrE+7oADAp/PA7PFgexUPfSpRiAWQEZ6PmJBF3xhGiGvGd12GkpJGEptBrQqCiotp2sHpNzfAjT32Cgp1zwyNB8zFeZzL7n8OU6vb+Sn9AaAohGjgN5+E6QSJXIK5kFKxdHFFKlc4yzTg5vka4G8bdx9TxIURcFgMMBgMIjUL7vdDqvViq6uLrAsi/T0dESjUcRisQmpX1OJJQEmNi1LSgKSmA6kpKSc1Tyea40EOAbH4OAgotEoSktLua1n1Af0vAhQEnQFW2Fl3FARgjBNQ8swqArU4lJVmViTKIqCNOYEQ3KAiI2TCTBebiAvbPZIGIRSwG4ZhN3tR35OATR6I8DG4HSyGOgJQaHUQa2k4ffE0NPmhSE7DQoFnzbAhkVGG6RKbtgl0wJRHy8L8PG0U25ZQEed0Bp5J1aZUtRhRrwm9A56odNQyMgpBkXCSDUawbIR+Pxh+H0e9LpCoCgX1GottDoJtGo9aJriKbsAIB1qlCmpKI1A1BtHy+WvRaKGhPFg+QU5WL6eBWEZWGxOhDxuFBUshIIOgoCPxYv7GURcPMOQ4ZiIudt405/EoVarUVhYiMLCQjAMM4zdEY1GodVqIZFIEAqFEk4eOJfcdOHn4+9vJHw+35Tr4/nC4JjT2JCEKF2W9wFfO+8uyL+Z81mQYIJgZAbImSggz+T0LYKgV/goS0HIZ0XPoBMBjRmDdBAalkUzBrHGfwYxWouAxwypJAdK+ACZhjPOkahAxfyARI6Qz4FBkwU6nRbp6ekclYGNgZLQ3FZPogQV9YnbPYHfDqkgqtaDjjr4bZ8zLnJDCiAM8DpF8BpMzriH3yLyFvWDNj9iQQeK8udDLglzBz7CAmChlMuhpCVISy0AG3bBF5Yg5DGhz0FBToWg0qZAo5JBpVKDlshH2Vo6hjaREq7x5XSWKq5plOoR9FrQa3IhI0WLlPRszqiIloLNuYbbJswQBOqXSqWCy+WCRqNBUVERXC7XMOqXMJ0fSf2ajuIQrxHS6/XQ6/WYP38+AoEAtm/fjoceegi33HILNBoNurq6zjrATQUPP/wwbr31Vtxyyy0AuEDagwcP4qmnnsJPfvKTafs9Scw9RmrQBH0PISRhBzi73c5Z3efmYsmSJTC3HQEbqAMylgJRu+g+yNUV4XOhzoz4esQFCgRMwAq/XwmNPAZKboyLX+IMImIBO3pNHsglERQWLYSEhESXQIMiB/NYD6K0FDLCIAIaOZI0XrMY5fSIYLhDCcvGaRmNXLMmNG9iE2cAQLgpNgGn66EkcDqssNh9yMvOhVafxh3m+PcAqSoNRrkf0C9AZiyAQDCCQMAHs8UH1myDViWDSpcOjQKQKI1DTa6Qexlx8HRZB0+3DZ9l0BML2NFr9kAtjSAzdz6omJPftrLc45IoOIqcoDNNLQe086fleaNQKJCbmys2lkuXLkUwGByV+qVWqydtXDHydmPVx7GQNC1LYqZwrrIAhmHQ2NgIh8MBmqa5ZpKNAf2vcnVHosapaA8iFI0wRUCDgoem0Rpsw6X6L/DMhhTQAQuCjAI+5yDUhkzOOFEqNEncR0aig62/Bb6IBPNz9ZBpePMdqR4I2QEG0KjCiLIaaDRR+LxSxMIhKNQGiBFEgr5bGE4Rhv8Y4z6yUc54kuF1l3xOOvizZNBjRr/ZhTSDAilpubysQQYwPtAUDb2ahl5tAJCKUNALXzAGt6UL5pgEWiWg1GVCq6IhU6aIVF+QMMfAY6P8MoLw5pjgKLOgefMiGiwbQ7/JDCYaQ968lZDRMRCaY4Zw8SO8vIJEwUkRaG7jmbOD0/ZP8TmSmZkJiUSCwcFBzJ8/X4wsbGlpgVarFeujwWCYVH1MRJs+kWlZIBCAwWCY0mM8XzDnDeW4dIVAP+A7AyhzeI0Kr9OhFDztKRNwEISkKkCZyU0xBAcuwk3aHXYbekxS5OSuwgGmHtaYEgwFUKCxDz34csFXYLc70G/yQSpRQG80wmicB53OCJoGbA4XeixdyJtXjvTMNBDw2k1Kym38IAFFEbCgOWIDxT1puBxKPo+HonnCFw1C8R+HfZ//yP8nfI+AQizGoKm5GYyUxYoNKyGVK8FSGLq94NTK/wwFCjpQ0FEU0lgCl8sNq92GVpsdYWcEaekZSEtNR0ZmJhQKJf/ziLvG4SDghPCNPY1YsnoJjHl5IMCot50pMAyD+vp6hMNhrF27FjKZDHl5eSCEwOv1wmq1oq+vD01NTcOoX3q9flqKA8MwozaJarUa119/PX72s5/B5/OJ2s/pQiQSQVVVFe6+++5h13/FFVfg2LFj0/Z7kjg/IRzSx3r+xYMQgp6eHrS1tWHZsmUcdTxsh8pzHA5wlCwu+oIdisCQp3GNkSKdo5fKeSoXTzVipSnQ69xwsBmwmPsQY+XQq11Q69OgIV5IZAaEvBb0md0wqCikZy/gHKGlGs49VarGGmkh1qQs5YZ9EiW3BaRlXDNKScHpEfl8NMICLM+WoLnBl9i0SbVxzqxe3hCC09g4TO1w+hgU5aRAqdFy36dkHH2VUEOaRVoCWqqG1pgCrT4FhJYjFPDCG4zA4XJhIByFWumFRqeHVh2GXGHkPHZkem4qL5GD01Ay3P2RCCBPRTjsR++gB1q1AplZhdzPSFT8BjUMyJS8mY+RuyZFOpD1hWl7nhBC0NHRgd7eXqxdu1akBI6kfp05cwYKhUKkfqWkpIzK7gCGm5VMtL2cyLQsGauUxHRgtKHauTSUoVAI1dXVoGkaa9aswccff8xtdwYOAt7TotP15dpLsEa+CKyUN1yk5NBRaoCnsxKWgVxtgN7AwuoOIGbrgFKlhU7LQKs1QkYIIpQeg71dIFCjKD8NEoWGX3QYgZgXMl0q1Go7PF41tGo3XB4pjIYQFGql2HRyJjw6jnUn+nRoucGeVMO7qiq4Oink79Jy7jqlGrg9HphNHmRl5cBg0PMSLN50h4qjmvKGOEpdJpTqIJCZh2jABl+IRshrgtVGQS3th0KbBp3KA6VaxzWVAHefLMMNzqJBXovJpRKwIQf6zB7QJISCgvmQULxJkVCXKQlAq7kGlzCARAIgBmIoB4yrzv0JEwer1YqGhgYsX75czCstLi5GJBI5K3kg3rtjpDb3XHLTJ0ogCAQCyMvLm5bHOdeY1YZypOnEhHQFdR4w/5Zx79PjawYA5BYuG/Z1wbil16JG6fodOKM4g309EdBIAQUKLFh8CAu+UFSGBUsWiLo9i8WCrkErYr0xKJVKBIM6rFzzVWRmZYlN1EQfpwuhUAg19TVQKnOwevXqSdMpaQCpWQakZhViMf/GbrVaMWC2ouV0B3Q6neiqOprlMgAMDAygubkZK1euPCsIdTbAMAxqa2vBMAzKy8uHvcDjN4YLFixAJBIRD089PT2gaVosDqmpqedcHKLRKJRK5aghuH6/HwqFAiqVCitXrpzWx26z2cAwzKgBtC0tLdP6u5I4/yA8L0ejLcaDZVk0NTXBYrGgoqICKSkpIGwMVM9e0Kybc7COeYcGbSJlFUN6STEPkgYQAgEFwkYhl8mQk2EESTciFI3A6/XBYbdiMByBXGFDOBxBaloq0lPTQNESgNJzWzy5gbsvmYw7bFAycMY0HEXWR7xoDbdgjaqEd0IUIkNiPDU3wm0pmRDPRhE0jgHRZZClVTD3tiMcjaEoL4t7fbP8hJsC1ySLjWg8nZaLR6EiTqgUaqikDGDIQiwWgd/vg8/vhMfaBch0fN5lNtTSKCg5v82VqjlbfUgQijgx2N8HozET6UYV9/eMp/FKlHz0CM3Rw0ADeVv55nTqIITg9OnTGBwcREVFxVnUqZHUL4fDAavVilOnTiEWiw1jd4xF/ZpImx6JREBR1Jgh4UkNZRIzhcnqzIXIuoyMDCxfvhzRaBQAQCwfgfK0cayGqBeQ6qCKupGnXsBRSxXqoaFY1A+WTwOQUBJkpqiRmapBNBKD3++Fz+WA3dIPWqYCG4tAqdYgNzsTtJSXEtBKcNs8LXSpQObCeehvs8PlVUCllSJv5TxIZTQIZeTNdoycTErKGZYRiRDhxA+sQPGNHW9qQ7gEBLARON0BuOwm5OcVQy3nvi/koYsDOibAGf+wfP6lIIcgDGSqNKSoAaSmIYuNwef3w+/zodfkBuCBVqOCVmuARi0FLVMPsQh5Yx8m5ES/yQ4ZzSA7J4/LaWe5PE2KCQ5RXUV5Gv+5IgPIunxaniNmsxmNjY2jnmHlcjlycnKQk5MDlmXh8XhgtVrR2dmJxsZGGAwGsT5OlDwwFrsjFAoNG9CNrJFCDuVnAXO+oZyO4G6hKAiIN6S44IILoNVqEYlEsDNlJxgypKVT0kqkSodMCwTd3qJFi1BXVwePxwOlUomGhgb09fWJOYZTyWlJFILrWHp6OpYuXTpl++L4qAxhMmOz2UTdjZDTKDRfEokE3d3daG9vx5o1a0Rzh9lELBZDTU0NKIpCWVnZhFsauVyO3Nxc5Obmjur6ZTQaxel8otQvh8MBp9OJrKws8Y0r/nYCneuzEEqbxNxirOfjeDUyHA6LA5d4wzMy+Bb3pi41gCU+jiLKhHldIK/FiQV5Y5rgkJuqRAY2GuRikEgEFK/5pmgFVBIWqvQ0EKMKNqcfXqcZKoUOPns/gj4vdCoaakMmFHQUlEzHWeuLESBxm8WoEx8GP8aAvwl6WotFkswhcxshG5JWcT8nZkHSvMaRAggLhqXRPzgIsBTyipZARjN8JAdvOS8Y9/BbRM6JltePy1MwlFUMbjJPSSCVMDAo02BIiYCh5Aj6nPD6wnAN9oMhFHQqDzRaLdQaAimthC8UhaXfBGN6IVL1cu5QJuS4CfmV4A94QmObsWFSbtjjgRCC1tZWcZAw0aFEIpEMy+L1+Xyw2WwYHBxES0sLNBqN+B6QKPUrEAhgcHAQGRkZo24vKYpKaiiTmDFMRkPZ39+PpqYmLF68GIWFhaAoChKJBKrYAFibCxKpeohaGh+nJNQPqYEzbpRqwTJhUFItKBKBwFaQKdQwSikYU9Phczthttohl1IIB3zo7ToDtVYLjVoFlVoDiiIAaFBgkTdPhoysNETDBAoVDamS5uoWZBCdrSmePirhDRRpQcvIgtN9x/jPGYDiBnImhxsBrwu585ZDKWV5524vn2vp5redbhCpho/7EMx3pJxeE4gzlJSDjoWg12pgULJgs7IQDtjhCQAOex8GByhoNHKoNQZoNQQyuRLRSBS9A04olVpkZ2eCEjaQUm47SWjOSJPIUwAmyjW5LMM1zvk7ecnA1DA4OIjm5masXr2aj9cbGzRNi8kDixYtEpMHrFYrOjo6IJfLhy0oRi54RltQRKNR9Pb2QqPRjKlN/yzVx89EQ2kNWXFPzz34bvZ3kcakobq6GjKZDBdccIEYfpsjy8GdWXcOW0mP1gSEw2HU1dWBoihcdNFFkMvlCAaDsFqtouuo8MabkZExKq1yqnA4HKirq0NRURGKi4tnpFkZ2XwJrqotLS2IRCJQKpUIh8NYtWrVnDST0WgUNTU1kEqlKCkpmfx2doTrVzAYFItDe3u7SP1KT09HSkrKqMXB5XKhsbERixcvRnZ29qjUL5fLJT7Hphvp6emQSCSjBtBmZ2fPyO9M4vzCeDVSsD43Go1YtWrV0BuZsw5w1ABSPSSsCzGW5qfram4KLUyjpTxliZ+AQ2YAy4TByoygEQMl0QAQLOK5DEeWjcJkjyAYCCC3eBVUciliLAW/zwWvPwR7bz9Ay6HXBqHRpUAjYUDJ0zhaFr9xdNAsOgMtiEgkqPZ+gIVpN4KKBfjmMcgfYoQhIcu7egt6RS1iQSd6zV6oJBFkFi3ijNQk+uHGPRIV50BLCTEfvCMhI+TIjXRqdQ7lXtJKSEgAWiUFrUoDkipDiJEg5LXB4fTAauoBJdODjfpgTM9Gil4BEIE2JuMaW8Gplg0Dcj77Ul0AZGyclucFIQTNzc1wOBxYu3btpIec8W7WY1G/0tLSxBo5GrsjHA6jvr5ejH6KZ3YIz1mWZZMayiRmDImcIYXBS39/P9asWYP09HTxe3TEhuzYR2CZRZAQvkaGeQdmwegx6uJqZcwPhlYBTBCUVAOKhIdqI6Xl5AMyI5xOGyxWH3KyCqA3GEHYKHyBEAI+LwYtHoC1cnmQKhk0OiMkiEKuVkOuCPKGYwHuo2C6E/XwEXYuvgl08RTYIZ0mt3H0ABIdSNSLPpMLbDSA/KKFkEsJQPE1SKoDwHIGOkBc3Aev4aMl4NgUvCEOG+XeL5gAV79jXhCpHnTMA6U6BUqFH0grRjTih98fhN/ngNPSDVquAWIBKDRpyE1XcppIYQMZsXMmlLHQUHMsRJGABTIv4yRsU0R/fz9aW1tRUlKCtLTJ6zDjkwcYhoHT6YTNZkNra6uYPCAM4Maqv8J5es2aNeKWcqQ23WazncUO+bRi1imvw345P12ajOnESNA0jTfwBo54j4BECa7svhJZWVlYtmyZODGId/kUfmY0eL1e1NbWwmg0Yvny5eIBTaVSibShaDQqNibV1dXDpr6pqalT3iQODg6iqakJy5YtQ25u7pTuK1HEb2cXL16MhoYGOBwOqNVq1NXVQafTiZu9saix04lIJCK6VJ4L1Xc0qFQqFBQUoKCgQKR+2Ww2NDc3IxKJiJluAvXL7XajpqYGCxcuRH4+t1EYSf2KxWL4/e9/D7fbPaXn8FiQy+UoLy/HoUOHsHPnTvF3Hzp0CLt3757W35XE+YmxKF0mkwkNDQ2YP38+5s+fLz73SMgCauB1EAln8U5LFJCyPm66HXXx+kYntzETPobtgFQLNmwHpDpIYryTdtQed7DSgg1Z0G/xgIr5UViwADL4AaKBlPHDoFXDoKZAMo0I+p3wBWKwDZyGiaGg1aqgVuuh0aohoWlUeY9xPmSEwMG4cTrShcXyIo5uRUU4jTwiXDQU4Q0fSBSQpyAU8qNnwAODToPMzAWgBLdVEECRwhngCIcjip/igxEds7n7Cg+ZvMmMHDVWouFjSxT8QUrCu+D6QMmNUEU9UGUUIiXmg9OtgMNuhkKhgMtuQcBlhlKXAZ2SQKHLBh11882pc0gLCgCFX+YPbFODQHF2u92oqKiYlsNIPPVLyC+12Wzo6urCqVOnzqJ+Cfpug8GAFStWiNse4fqE99ynnnoKAKcTSiKJqWAsDeV4lNdoNIq6ujoEg0FccMEFwwYbJBYANfAKGMi5s6FUy5vgaLkBnJR3UpVqQCIusFJ+WCU3cCaLIk2T+8hKdXAMtsHpZzEvRw+FlmNpUBI9dCoJdNpcZDEhBKOA3+uEzRWEyeqEUqWHTquEWmeEgqLASIwwt9vgdcegVEaQvSADCjCcyQ4b5g0nA7wO08c3k15AqgYTdqDf5IQEEeQWzIOECvK69IjwV+R1ijK+7g0N6sQhW8zPvU8wYX4oxt+OxDina4rwjSgAmpM2yJRyGFXpMBIGvmAEg/1dkMpTEQ4G0NYTgV7tgUarh4YEOWNIwoKj/SqHIvOibhDDCiBlzZSfK729vWdFJ00FEolErH+CLtxms8FsNqO1tRVqtVr8vtFoBAA0NDQgEAigvLx82NIhXpteVVWFxsZGdHV1TfkazwfM+YYSSMx0Yiz4KB+O0kcBAEeDR7GjeAdWFK8Qvx/PaRbWzKNBsBSeaCsok8mGca6FzV5TUxNisZjYeI021R0PhBB0dXWhs7NTDKOebbAsi8bGRvj9fmzYsAFKpXIYNba7u3tUaux0IhwOo7q6Gmq1GqtWrZpygz4aJqJ+KZVKhEIhcTo1EsI13XXXXWhvb0dzc/OMXCfA5QnddNNNqKiowLp16/DII4/A7/eLrq9JfHYwWs0ZSekihODMmTPo7u5GSUnJsOgYwkRA+l/j6KK0FEJmb5iouf8XKETCYYBvxFiZEYQwgCwFNMUANJe9C5mBe+OX6REJhdA/6IJcJkVO4RLQFAGg4b4vUYHTLcpAAVBr9FBrJSBpeoRjFAIeGxxuN2yWPoQ1MvRJ2hClaWhZBj6JFI2e97EwcyHoqHOMqBA7IFEh4DVj0GJDRooRRqMaFOMfvr0U9ZKCfT2/XRA2j8LWEjRAhfitZYy/Dy03MZdxmwgIOiVRU6QEQMHhCcPmCiAvfz402hSwTBi+QBRBnwt9Vj9gPgO1Rg2tloJWrYZEqgIQBVIqANXUWQVCjfb5fKioqDjL1Xo6QFGUSP1auHChSP2y2Wzo6OiATCYDwzDQarVYunTpqNRYQgj+7//+D/fddx/eeecdrFixYozflkQS547xNpR+v188S1xwwQXDzmOEsEDfASDsAk1LwJ3xaY4uT0sAqDktuMwAQlgwQrakPB0UFeUzEoWsxCBiEj2n52akmJeXCqnSOMzxX3R+leqhlnigSs9EhtGDCFQIuk1w+6JwWbpAyY3w93tg7qUgl0QQYeRwmuxYcdECyOQhMQ2AY0Gw3CCMogCpHpFYDL0DLqhUauRkFYOiaUDIsYzfONLqYXEfkBu4LegwCqybq5dRL/dzsQiG505y9XdIA2kAFXXCF6Zh6e9AenoOUgw6gFAIRhn4fW5Y7S6YIkEoVAbotEpodEbIKZr7GyLG5U3mbpnyc0I4R5eVlYnN3XQiXj4mZJULCwoheUA4F5eVlZ3FYBPOivX19fjiF7+I+++/Hz/60Y+m/TrnAp/6hvLV6KtgwBUUCSXBG7I3sAEbACTeTPb09ODMmTNYvnz5pKiE8Zu9JUuWiI6j3d3dOHXqFIxGIzIzMyfUXRJC0NLSImph9Hr9JP4C04NYLIa6ujrEYjFUVFSIL4KJqLECLSojI2PKh5tQKCROvZcvXz5jTVo8RlK/HA4HampqoNPpYDKZYDKZzqJ+sSyLu+66C2+99RaOHDkihuPOBL785S/DarXi3nvvhclkQmlpKd544405MUhKYvYRf2AaTRs+DP2vAoFerikKc02ZhPFwmznedZVrvFQctVSiBBH0kmwIlFTNOfSJ31cBTAiBCGDu64AmNQsZRi0oiYT7vlTDU2lV3LZPquWNHbjPKXkKlLIIlKpFSEUE4RhQ7foYLlYCKQicNPexGz54Y24YZPHaxriPMgNcHjcsZjeysotg0Gv4g1WUaxYZYeMYb+Cj5yfsav4QxZsCUTR3faJRj9B4erjbRlz8VtHH/W5CAUwIRKqF09IFh49BUbYBCjW3raBpOfTKGPRKLTIzUxAJuOEN0/Dae2EyyaBTxCBPWQBlzgpopshiYFkW9fX1CIVCw2r0TCOe+hUKhXDixAnIZDKEw2EcPXpUjCUR3ucIIXjhhRdwxx134MUXX8Tll0+PuUYSSYzEWBpKq9WKuro6FBQUYPHixWe/7gZe5x1d9ZAjAALCU0aVXK6jVAFEI2BBg7AMKIpz8Qcd5WoCuC0TSBSRGMHAQBdoiQqFhdn8uZYS6aRiwyRP4TSCgmZQngIZE4YsrQB6JgSGZMNpsaCzj4VEEgaRSaFSROGxxuAcsCKz0Aggxv1uSsIxKiQyIBZFKEpg6uuE3pCBjBQVQJEhEzLGz8U4sUG+NkeG4j6kGrHGAgRE0JVLDQAoQCob0lFS/KZToh5qphl+Qxr1wxuIwWLqR0ZmJnR6HX//aqgRhiozBxlRD8IkByGPGV6/B05rNyQyFbQaNTQaNRTLrgdFT62mdXR0oKenB+Xl5bN2jpbJZMjKykJWVpZoIun1eqFUKvHxxx9Dr9cjLS1tGMOvsbER27dvxw9/+EP86Ec/+sx4cFBkvDTMaQbDMGfRE958801cfPHF56SxsIasuO7MdWCooYJCgcI/F/4ThbJCkZo4VjPJsiza2trEg/p0TjPidZdOp3NM3SXDMOJqfM2aNbNi+DMSkUhkmF4xkeZeWPsLj9Hj8UyJGhsMBlFVVYXU1FQsW7ZsTl5gHo8HVVVVmD9/PoqKioZRv2w2G3w+H/785z+L+s4PPvgAixcvnvXrTOKzCUHEH4/jx48jNzcXqampIg28pKTkrGaCtVcB1g+5zSTD28aTMKIxoON0C5YsW8VRPSkF3/QpwMb8IJQSFBvkm0k+8iPm4+lebrgDBA5zJ1KyimFUUyO2f54ROkRPnPmOELyt4YK4JZxLIpHI4YpawbAEoWAQwWAA4SADLRRQa418JmQqKCYo2vfbPTF4HX3IyFsEjSwW97v5+6aV3EGHUHxOJMM1xWyY1//w2iQmKDa7oGW8bT0fuUQIr+Vhhr5HcR8JJYV5sB9efxBFBXmQKxS8pTdvuQ/+sCXGiUQBSoJoNAS/P4Ru6kLYPAwUCoXI7hgtsmM8MAyDuro6RKNRlJWVTYr9Ml0QaK4ajQYrV64UDXesVitsNhtcLhcOHjyIwcFBvPXWW3j22WdFqn4SSUwHwuHwsM9Pnz6NcDgsOqwTQtDd3Y3Tp09jxYoVo8qGiP0kYP2Ij8mI4nR7F/Ky06DWGvhYIznABMBCztFiJUqAcDWTG1LJuaaMkiEU9GHQZIFWo0Z6RqZotjPMTVv8KAWEzHEI8XZCveE++pwBnHy7G3I5BUgAJhaF1xlB1iI5suenQqdRQaPVQ0IPZZd7A1FYBjqRkpGLVJ2M00lG3dzGMebht4he3h02GGdeJuHdvlnRFRYSFZf/KNVxeeiyoe0l2AC/3Qzzrt38Y6NouJxOWGxO5OVkQqM1Ahiqn0NmQXxtpjhjNZaJwh+MIOB1oje6CD7ZIvH8mJaWNqklEyEE7e3t6O/vR1lZ2ZzEFBFC0NjYCK/XKw78wuGweH602+2oqanBhx9+iNraWtx88834zW9+85lpJoHzoKE8dOgQ1q5dO+lpQiAQwGu1r+GPuj8iSkWHHJYgwQP5D6BUVQpgbPMdYdofCoVmvJGL113a7XaRcpmSkoLu7m7QNI3S0tI5OSQImUzCIeFcKazx1Fi73Q6pVCoWh4mosQI1JSMjA0uWLJmTF5jX60VVVRXmzZuHefPmjXqbQCCA7373u3jvvffg9XqRlpYmmlIkkcRUMVpDWVVVBZVKhcHBQeTm5mLJkiVnNSIkMAB0PANCK3gLeDX3UaoBG/agrWMAixfkg5brxKaKZUIgkIFCFJREmFrzmkVKBkKisNjc8LrsyM4rhFbNZzAKjoPgD04gfIYkIP5P/EEKJO57cZN1Sgpu2i4FYcPwh2Lwe53w+MKg2BCUmhToNVL4gjGE/E7k5hdDKSU85SrK3x8gZlayIV4fOpLyOkrjKWwq2Vic2Y/QCPM/wxv3sJDCYh5EJBJGTl4R5yYr3FZsooX7l/FbTYbf7gaAnM1AWsWwyA6r1QqWZYcxH8bbNsZiMdTW1oIQgjVr1kxr1m2iiEaj4nNxLClCNBrFQw89hH/+859wOp0ghGD//v3YuHF6jIiSSGJkQ9nR0QGPx4PS0lKwLItTp07BZrOhrKxs1LB44m0Hup/nt2xBQKJFV0cL0rPyuRrHZ+UykIGwUVASGSgxhiM6lJ9IS+F1OTBotiAjPRXGlFT+dhK+lsp4yjxfk+PNdkZ+jPrFARxLadD0QQusJkCrjcAfUECriWD+2vkAnHAHCJiIF3JVCvQaGWKQw2k3ISunEHqtKq5JpLgtJSQQt6lcUDr3dcJiqCbH0WgZf5xbtYbf2qr4940411l6qAF12fph80SRn6mDUp8FKurhaLMxP9+8xviBnSxOoxrg9JhsENDOB8m/Fm63W6yPgUBgmOmNWq0e8zkhRASazWaUl5fPiQEYIQSnTp2Cx+NBeXn5qGw9lmWxf/9+PPjgg+jt7YXX68UDDzyAO+64Y9avd6Yw5w3lkSNHUFJSgpSUlITvx+l0orq6Gjk5OcjMzERTUxMuvfTShM13gsEgampqoFQqsWrVqllt5ATa6MDAgOjemZGRgczMzEnrLqcKoZFLTU3F8uXLp62Ri6fGWq3WcamxPp8PVVVVyMnJwaJFi+a0mRT0s6OBEIIHHngATz75JA4fPoxFixbhk08+waWXXjrLV5vEZxWEEEQikWGfHzt2DF6vFytWrBhVz0uYEEj709ybt1DKxek4d5A4fboN8xcshISfJrNMlDerYUEJpjUY+siyMZjNVkTCIeTk5kIuF2oSf5+UJG6DFx0ynhGoslI1b/AgbClHNGtyAx8lIjR8/PelapBYAOEYDZ/XBZfbB5YASoUCOmM6tGolZCojT68VTCM0/CZSxTWLgrYIEr7xBXd9YPnDjZADxzeihD9QAfztJfzUXQqGZdB6ugOEZbFoyXLIZbzJD0WB01sJ/y/8jPA7+YaVogFFJn+b4f/OHo9HHMD5fD4YDAbx8BQfQySwISQSCUpLS6dds54IhGZSqVRi9erVY76vvvHGG/i3f/s3PPXUU7j++utRXV2NhQsXJgduSUwbIpHIsCzznp4eWK1WrFy5EjU1NeLQZTSjKhK2A+1PgdMU8rroWBBd/VakG5TQpuSARNxgpXzUkdwAOubldZAeblsX4fSCTmsPbM4wcnNSodWlc+wPCa+3FnTXtGz48ExoRiEDEIXIZhAGYhT3MRCQoLO6E047C602isKVhUhNZ7ns3KgXEaJAwG2BwxMCG/VDIlNDr1NBo9FBoeBrtUiJlYvUf4rxg0h1vIGPgdOT03H5kyQKrpYR/v0B4KaB8e8RwmY1CkJJYTMPwOkJoCg/CwoVH00lbCLFASIvPYhxjJZhDafcCMz/d16jPoRAICDWR6fTCbVaLdZHo9E4ZELHy8VsNhvKy8vHbTxnCoQQNDU1weVyjatr7+jowNVXX40bbrgBDz30EDo7OwEACxYsmM3LnVHMakM52gT+/fffx9KlSyfMiBHQ19eH5uZmLFmyBIWFhXA6nairq8PGjRtFO97x9JIulwt1dXXIysrC4sWLZ0WnNxJutxu1tbXIyspCTk7OsINForrLqUKIHMjLy8PChQtnrJEbjxqr0WjQ3NyMwsLCYU6Vswmfz4eTJ0+K1zAaCCF4+OGH8cgjj+DQoUMoLS2d3YtM4nOB+IZScPIcGBhAdnY2Vq9ePfrPmN4FvO0gUjUolgu9ptgIiEQFio2CSJSor63CkuUlkEkpEIo7OFASJSjwU2Ow3GEGLCIxzvQHtAyLFi6ATK6GeKjgGy1u8i3l2aJCMyblGye+sQLFm1vENVegx/9/0AAfR1FbWwuJRILFixfD5XKdJR3IzMycUcfpc5EBnCvi884cDodIjU1JSUFHR8e0ul1PFtFodJjj9ljvl++++y6+8pWv4Mknn8TXv/71zxSNK4nzByMbyv7+fnR3d4tO7StWrBj1dUKYEND9HBDxiuQGjkVBo6u7A0ZjGgxaFVjwDRCtAEWCXKMl6s59IBINbAPt8IYo5GfpIddm8M2m0CjpOZqp8FFsRkd8lGg5CqlE0J0rhppNigEoCViGBUXToIQLjmuiTCYTAoEgcnOyEY1F4PP64Pf7IaEpaHR66DQKqDQGUPHNnDQ+gsQLIlVzA0CRAkvz+lAud5IzKdMOd2Hlm1pWooFtsAu+YAz5+bmQyZVcU0gYPo6KNzoTdZrMkOERxRvGUQD0ywFVzrj/5rFYDHa7XaTWAxCZHVarFW63G+Xl5XMiF4tvJsvLy8d03O7u7sbVV1+N7du34/e///2c9B2zgTlvKD/66CPMnz9/QjOc+Cyh0tJSMVfG4/HgxIkTYkM5XjNpMpnQ1NSEhQsXorCwcHoe1CRhtVrR0NCABQsWnGXmkqjucqoQci6Li4vHpHfOFARq7MDAAJxOJyQSCbKzsxOixk43hGayoKBgzCkRIQSPPfYYfvvb3+LNN9/E2rVrZ+36kvh8QWgohYaKYRjodDpIpVIsW7bsnO/37bffxrp166BSqcatj16vFyc+qULMrUBebgHyF6XCkD67E1+/34+amhoxjiL+jTdeOmCz2UTH6emKbBIgmIPpdDqsXLlyVt/8BWqs2WyGyWQCAPExTkSNnW4IzaRcLkdJScmYf4f33nsP119/PR599FHccsstyWYyiRnDyIayubkZ3d3dWLJkCebNmzfqc48QFuj6P8DfJVJaBQds0Ap093ZCr02BXq8BaCk3LxPjfYRmjiAWYzEw0A+WpZCfnwOpjGc8gDetoaVDm0kmzDVQJDTUnEnkPA1WxusQ5XwjF681ZId+5zDzHTnARMBSMpj7uxAhMuRnGSFRpXBNoTwFJOaHPyKF32OHy8cCJAKVNg16vQ46fSokMjnfzEm55pFWcL+LlvPDPRmnQafiPxcaQP4jJQFDaDScakEoFEHpmgooZ7GRE3wtLBYL+vv7EYvFYDQakZWVNSE1diauRcgCHi++qb+/H5s3b8aVV16JP/7xj5/ZZhKYY5dXYGyXrngIDqSBQOCsLCGaphGLxdDR0YHMzMyznQ/B/cN3dnaiq6sLq1atSngbOt3o6+tDa2srVq5cOapL58i8S7vdDovFMq15lxaLBY2NjViyZAny8vKm+pAmDblcDrVaDa/Xi4ULF0Kv18+Ya+x4EKi2EzWTf/rTn/DAAw/g9ddfTzaTScwoKIoSmQNGoxGrVq1CR0fHWbqhyYAQAolEgq6uLuTm5o4pLbBaraj6pA5d7zNwDnhwkrXAmKlB5W3lyFuYuBxhKnC5XKitrR2TNTFaZJPFYplyZFM8BBlAWlranJiDSSQS6HQ6nD59GhkZGSgqKoLdbkdPTw+amprEPMiMjIxh1NjpRiwWQ01NDWQy2bjN5EcffYQbbrgBDz74YLKZTGLGQVEUCCEghOD06dPo6+uDQqEYU6oCABh8Bwj2c5uzmI/f2AkGZAFIJXL4PFZIJBQ0Kinn8MqEhiiqlASRSBiDAyYo5DJk5WWBQgSIRritIS2FqCenFVzDKFHyVHsjT7EnXKYjKP4jhmietJz7eZp3VKVlPH1eOqyZC4VjaDjVDJnxAqxcXQqJXBVHTeXaUC3/XyYh8Hq9sFgsaLZa4bf6RU1iRuq5s98EPTfLUihfe8Gs+35QFAW9Xo/u7m4olUosX75c1F62tbWNSY2dbghU24maSZPJhK1bt2Ljxo34wx/+8JluJoFZ3lCO1AgBnOlERkbGmBvDQCCA6upqKJVKlJSUiE9goagwDAOTyQSLxQK73Q6lUilSRg0Gg7iSdjqdKC0tnTP3p/b2dvT29qK0tHRSelHgbE1iNBo9p8PTwMAAmpubsWrVqmH5dbMJh8OB2tpaLFq0CAUFBeLXp9s1djz4/X6cPHkSeXl5WLBgwRhTTYKnn34a99xzD1599dWkVjKJGUc0GsXbb7+NefPmiRTwjo4OeL1elJSUTPr+BJdrp9OJwcFBWK1WAEOabWEw1dPTg/b2dgR7dKh7awApWRrQUhr2AS8KlqTh3+69eLof6lkQBl0j60IiIPzhyWq1wmKxwO+POzxNQjrgdrtRU1OD/Pz8MevCTENwu05JSTlL1z4WNfZcXGPHQywWQ3V1tUj3HYs1cuLECezYsQO//OUvcfvttyebySRmHNFoFJFIRIxPWrhwIdra2rBp06ZRb08C/YD1A15jLWTmEp6eScBAilAoDIvdBafThVCEhdGYipT0TKSmZUImU8Lp9uBUUyty8goxf8FCULSM395Jh3TaMwyfz4eamhrRBX+yr/WR7DetVivWx0TPVpFIZBhjYS4o+AzDoL6+HuFw+KyMx7GoscISZrqa33jdZkVFxZjvLxaLBddccw3KysrwzDPPzImZ2mxjzhvK2tpaGAyGUSdMQibgSHfDkeY7gpMrwzDiG67VahVvL5VKUVZWNicca0EL5XQ6sWbNmlE3qJNB/OFpMrrL7u5udHR0oKSkBKmpqVO6hnOFzWZDfX09li5dOqqddzym4ho7HoRmMjc3d0ztKCEE//jHP/DDH/4QBw4cwGWXXXZOvyuJJCYLt9s9bNrZ3d0Nu92OsrKyhO8jftgGDNVHlmVFPaLFYkE0GoVcLkckEkFpaSk+fL4LjR/0IT2PG7p5nSFI5TRuf+yqGW0Went7cfr0aaxcuXJaBl1jSQfG010KMgAhMmguEAgEUFVVhfT0dCxdunTcv/lUXGPHg7CZFJzHx6qzNTU12LZtG37605/izjvvTDaTScwK3G43Tp48CYVCgdLSUgSDQZw4cWLSWaejZZQLQ22LxQKLxQKfzweVSoVgMIhFixahqKgIXmcIH796Gi5LAOl5OlywbSFU2pmloTudTtTW1k6b18RY0oHMzMwxB1PBYBDV1dVzIgMQIGQ8MgyDNWvWjNsgCtTYc3GNHQ+C9M5qtY7bTNpsNmzduhVLly7Fv/71rzlJcJgLzHlD2djYCIVCgUWLFg37umC+s3Tp0rM2WYmY73g8HtEdTygc6enpopvqbExXBKpuJBIZ03lsqphIdwkAZ86cEfN5ZivsdSQsFgsaGhqwYsWKCfWyIzEZ19jxEAgEcPLkSWRnZ4/pKEsIwfPPP4/bb78de/fuxebNmyd1rUkkMRWM1Aj19fVhYGAA69atS+jn4+uj0EiO9jwXTGeCwSBkMhmCwSBsLRTa3nfBmK6BVC6Fy+zH/JJMfOXHG6bt8Y28VqE2TXcOsICxIpvipQNmsxmnTp1KaNA1U/D7/aiqqhLN4iZzaBzLNXay1FiGYVBdXT1hM9nQ0IAtW7bgzjvvxN13351sJpOYNXzyySdQKBTigsHv9+ODDz5I+H1aGLaxLAtCyJj1UdDHDQ4OQq1Ww+/3QynToOZlJ5x9IUhkErAMwcLSTNzwowsgkc5MgyXUpsWLF4/q8j1VsCw7bDDFMAzS0tKGsd98Pp8Y6zbRoGumIAy6KIpCaWnppLd9ibrGjgchnsRisYzbTDqdTmzbtg2FhYV44YUXZlX3PteY84ayubkZFEVh6dKl4m1aWlowMDAwzHxH+N7IqdJosNvtqK+vH6aP83g84uQpFAqJL5qMjIwZ+QcPh8PDNCizse6O110KhyepVIpIJILy8vI5ofsCXFFsbGycFqrtuVJjE2kmAWDfvn341re+heeeew7btm2b0rUmkcRkMbKhNJlM6OzsxIYNEzd18fWRoqgxp8iBQAC1tbVipqBUKkUgEEB/7yDe3tME0xk/aIpGWq4WO3dXoGDh9NPjhcw4t9uNNWvWzEp2WPxgymKxIBaLQaPRwOv1Yvny5XPWTAp67vFYE5PBuVBjGYZBTU0NAGDNmjVjNpNNTU245pprcNttt+HnP/95splMYlYxsj6GQiEcOXIEV1111YRbM6GRZFkuTmmsZpJhGDQ0NMDv96O0tBQajQaRSAQnDrXizb80QaYBpDIJKCIBE6Gw695LULAk7az7mSq6u7vR3t4+a74fAvvNYrHAarXC7/dDp9PB5/MhLy9vzjLCheikiSj4iWI819i0tLRRt4mCZtdkMqGiomLMDafb7caOHTuQkZGBl156aUZ9QM5HzGpDCZwdTNvW1oZoNIoVK1YgGo2irq4OwWDwrEwZoRBM1EwKxjfLli0b84Dg8/nEQ4XX6532qA6B7y7oYOaCHiBMdHw+HyQSCWKxGNLS0mY973JgYAAtLS0zVhQTocYGg0GcPHkSmZmZ407/X3nlFXzjG9/AP/7xD1x77bXTfq1JJDERotGoeOABOLOc1tZWXHzx+DrGRIdtgvFNdnb2qLFJTIxF3xkbrBYbGKkf3oAbGo0GmZmZounZdFCu6urqwDAMSktL5+RNV6Au9fX1QalUIhQKnZPucqoQTJgKCwtRXFw87Qe2RKixApWMZVmUlZWNeWBrbW3FNddcg1tuuQX3339/splMYtYRi8WGmTjGYjG88847uPzyyyekQCaSUR4KhVBbWys2L/H32XSsH/sePQFjlhoME0PQH4LPFUHF9WlYWlYgRv1M9bwnbMJMJhNKS0thMBimdH/nioGBATQ1NYm0X+F9YLo9LcaDoNucqeikRKixApNmcHBw3GbS6/Vi586d0Gq1eOWVV2aEkXi+Y9YbypETpvb2dvh8PixatAhVVVVQqVRjmu8AY0+VhBfh4OAgSkpKEja+CYVC4kRGECsLh6dzcdET+O7CdnSu6AF1dXWIxWIi19zn84mPU9BdCrz5mTo89fX1oa2tDSUlJcM2zTOF0aixRqMRHo8HmZmZZ5lcxEMI5X766adxww03zPi1JpHEaBjZUDocDtTX149pOgEk3kwODg6iqakJixcvTtj4ZqTeRiaTifXxXFz0QqEQampqoFQq5yxbUZg2Dw4OYs2aNdDr9bMW2RQPt9uN6urqWYtvGo0aq9frEYlEIJVKUV5ePuahvL29HVdffTW+8pWv4MEHH/zMuxUmcX6CYRjEYjHxc0II3nzzTWzatGnMA3yi9dHj8aC2tlZ0eB75HPc6gvjbLz6A0+SHXCVFOBhFdrER23Yvh8vrgMViAcuy4rkqLS1t0vWNYRg0NjbC5/NhzZo1sxqDEQ+BVbZ8+XLk5OSck+5yqgiHw6iuroZarcaqVatmpeaMRo2VSCQIBAJYu3btmB4ofr8fX/ziF0HTNA4ePDgrjJvzEXPeUHZ1dcFkMsHv95+1Vh/LfGckYrEYGhsb4ff7p/QijEaj4uZScIwVXjQGg2HCQ4XwIlyyZMmM8N0TQSKB3MFgEDabDRaLZcYOT4Jz5Lm42k4HCCGw2+1oaGgATdOIRqNjUmMPHTqEr371q/jTn/6Er33ta8nJexJzhpENpWBCMZrpxGSGbR0dHejp6cGqVauQnp5+TtcmbLuEwRQw3DF2osOT1+tFTU2NaDozF00Jy7JidlhZWdmob/yJ6C6nCmHwuGDBgjnLRBaoz+FwGCzLjkmN7erqwjXXXPOZD+VO4vzHyIYSAN566y1ceOGFY0bGJdJMCi7TginXmFnmXS4c+lcTXCY/Mgp1uOLGlUjN1oq/S9h2xUurhK3eRKywaDSK2tpaEEJQWlo6Z9o7YREwFqssPrLJarVOW2RTPIQsYIPBMGcsv2g0iqamJthsNvG5Mxo1NhgM4vrrr0ckEsHrr78+Z9Ky8wFz3lDW19djYGAAK1euHNaEJaoHEigKMpkMq1evnjYqJ8Mwoh5RcIwVJvOjTWRmm+8+GkKhEKqrq6HRaBKe6Ai6S2HyNB2Hp66uLnR2dqKsrGzO6BqhUAgnT55EWloali5detYhUSqV4uOPPwYAPPTQQ3jsscdw8803J5vJJOYUIyldfr8fH374Ia666qpht5uMHiheqzhVl+n43+9yuURd+kRRRoKLalFR0YxQOxOBMP33+/0oKytLiJI0XZFN8bDb7airq5sxo41EwLIsamtrEYvFUFZWBoqizqLGdnZ2wm63Y8+ePbjqqqs+86HcSZz/GK2hfPfdd1FeXj7srBFvvjNeM0kIER3wp8tlWrjfkY6xApUyMzPzrNoTDAZRU1MjbuPmirnR1dWFrq6uhBcB0xXZFA8hOkmISJmrM1l7ezv6+vpQXl4OjUZzFjVWuM7q6mr4fD68+eabc3bePV8w6w2lMIFnWXaYhuWSSy4RbzMZikJNTY3oPjVTb3YjzRwYhhEdY1NTU9HR0SHSp+bqCTUdgdyjHZ4mo7sUNiG9vb1z6igrNJNjFSThcf74xz/Gq6++ilAohKuvvhq/+93vRBOnJJKYC4xsKEcznUhUDxQOh1FXVwcAMzrxJoSIlHrhUJGamipO5h0OB5qamsbVtc80BBlAIpbzY+FcI5viYbVa0dDQgGXLliEnJ+dcHsqUwbKs6D5eVlZ21t9CeJx//vOf8ec//xkDAwPYsGED/vu//xtXXnnlnFxzEkkA3HM3Go0O+9rRo0exatUqMQ4t0WGbwFaw2Wwi9X2mIFDqLRYLXC4XdDqdWDdYlkVNTQ2ysrLmzPgmXrdZVlZ2zlu20aQDk9FdCtFJGRkZc/a3ACAyeioqKkYdwgYCAbz77ru499570dbWhkWLFmH37t24/fbb5+Bqzx/MSdKmYMoQCoWwdOlSdHd3i99LtJkU7JQnoihMB2iaRlpaGtLS0rBkyRLRMfbMmTMIBAKgaRrz58+fk5xLYMjYIS8vb0ougSMfp3BI7O7uxqlTp8bVXQrC5YGBgTFfhLMBgSqRkpIyZmNN0zTa29tx8OBB/PrXv8amTZvw6quvzlk+ZxJJjAVhUi3EJCVaHwVjMKPRiOXLl8/oxJuiKOh0Ouh0OixYsACBQAAWiwUDAwNobm4GAOTm5s5ILEgiEGQAMpkM5eXl5/y3oCgKer0eer0eCxYsGHZ4amtrm1A6IEQnrVy5EllZWdPx0CaNiZpJgHucwWAQ//rXv7Bp0ybcf//9eOONN+bs3y+JJMaDYDoIJD5sE86gsVgM69evn3EDFZVKhcLCQhQWFopGghaLBe3t7SCEICUlZdJxatMFISvd5XJh7dq1U9Jtxj/OeFZYd3f3hLpLwe06JydnXCf+mUZnZ+e4zSQAyGQy/Otf/4JCoUBHRwdOnjw5y1d5fmLWN5QulwsnT56EWq1GSUkJPB4PGhoacOmllyasB5oJisJkIfDdY7EYMjIyYLfbZ8QxdiIIVLKZNnYIhULihG2k7lKn0+H06dMwm80iPWAuEA6HcfLkSfEQPVZBqq6uxvbt2/Gzn/0MP/jBD5I01yTOG4ykdLEsi7feegubNm2CQqFIqJm02WxoaGgYFoTtdYbgdQShNSqhT5v5uiS4qJpMJuTn58Pj8cDhcIh1IzMzc1acAmcrkHsi3aXZbEZzc/OcvmexLIv6+nqEQqFxDXhsNhu2bNmC5cuX41//+tesRF4lkUQiGG1DeezYMcybNw/Z2dkJ1cdAIICamhpoNBqsXLkSUqkUIX8EDpMfcqUUablTd7JOBIKLan5+PmKxGKxWq1g3ZtLsJh5CREowGJyxrHRgYt2lsAjIz8+fMzNLgGsmu7u7x43Zi8Vi+Pd//3c0Nzfj3XffnbN6fj5i1hvKjz76CBqNRlxnu91uVFVVYePGjQlTFOx2O0pLS+eMUjkW331k0zVVx9iJIAjJlyxZgry8vGm97/EwUncp6FyXLFmCnJycOdHZhMNhVFVVQa/XY8WKFWP+revr67Flyxbcdddd+PGPf5xsJpM4rzCW6cSGDRugUqkmPCz19vaira1NdOcDgNYTg3hvbwtCvggUahkurFyMlRfNnHZPOKQEAgGsWbNGHKzFYjFxMh/vGCvY7U/3a3GuArlHc5smhIjRILMV2TTymoSD43jNpMPhwLZt21BcXIznnnvucxXKncT5j9GyzE+cOIHs7Gzk5ORMWB+dTifq6uqQk5MjRoiZu9x4/ak6OM1+SGQ0VmzIx2VfWQZaMjPnGEKI2LiUlJSIzKj4piveMVZouqabZSJsaVmWPWcZwLlgNN0lANHvYq6YfoJ+dLxmkmEYfOc730FVVRUOHz48Z1vl8xVznkPp9Xpx7NgxXHjhhVAoFAlRFEpLS+cs40XQbWZmZo57SBEcY4WmS6FQiM1lIo6xE6G/v1/Md5yrCQkhBI2NjXA4HEhPT4fD4RB1l0IhnI0iFYlEcPLkSXELMdbfVgjl3r17N+69995kM5nEeYfRbPHfffddLF++HOnp6eMyN4SNYGlpqUhPdNsCeP7BTxAORKFPV8HrCEEqo/HFH6xDet70u9FFIhHU1taCoiiUlpaO+fqPz0e0WCwAJucYOxHcbjdqamrmfOLd09OD06dPIysrCz6f75x0l1MFy7KiGVF5efmYTaLL5cL27duRnZ2Nffv2fe5CuZM4/zFaQ1lVVQWNRoPi4mJIJJIxX+sCBT/ehZ9lCf756w9h6nQhNVuLSCiGoDeCzd9YjRUbpn/oxrIsWlpaRN3mWI2LEPEjNJfxjrFCfuxUIOQ7yuVylJSUzIkJEMDVnOrqaqSmpoJhmGHst9lisQAQWY/l5eVjLqoYhsH3vvc9fPDBBzhy5MisLnE+LZj1hjLedEIoDrW1tXC5XDAYDMjKyjrLBcvv96O2tnYYRWEuILjzCfTSRJ/o8Y6xNpsNFEUNOzxNdqMnuKjGT7dmG8Ihxefzoby8HAqFYpg5x2zlXUYiEfENZTxKmxDK/Y1vfAO//vWvk81kEucl4ildggSgtbUV/f39UKlUyMzMRFZWFrTaIVpWLBYTt0+lpaXDNDDdTTa8/PhJpOVoIZFyGkxztwc7vlOGBaXTq+MTqGRarRYrV65M+JAS7xgrbPQmYwY2EkKdXrBgAYqKis7loUwLhEPKmjVrxAZ/tvMuE20mPR4Pdu7cCb1ejwMHDnwuQ7mTOP8R31AK5jv9/f04ffo0KIoa1YmfEIL29nb09vZi9erVwzKxg94Invqvo5BIKaj13ADF0uPBhu2LcNHOxdN67UKdDoVCk6KXCo6xwvBtqtIqQQYgsLnmyrnZ4XCgtrYWixYtEnORZyOyaSSEiLvxmkmWZXHHHXfg7bffxpEjR+b0feV8xpx5gAuHJYqiUF5ejksuuQTZ2dmwWq344IMP8Mknn6CrqwuDg4M4ceIEMjIyxsxVnA0MDAygtrYWy5Ytm7TtvUQiQWZmJlauXIlLL71UjPRoamrC0aNH0dDQALPZfBbVbSSEQG5hLT+XzWR9fT38fj8qKirESbZgzrFgwQJccMEFuPjii5GVlQW73Y4PP/wQx44dw5kzZ+B2uzEdc4xEm8kzZ85g27ZtuPHGG/GrX/1qWg9t7733HrZv347c3FxQFIWXX355wp85cuQIysrKoFAosHDhQuzZs+es2zzxxBOYN28elEol1q9fj+PHj0/bNSdx/iPefGfJkiXYuHEj5s+fj0AggBMnTuDDDz9EW1sbLBYLjh8/DpZlRzVU0BgVkCul8Ls5ZojPFYZCJRUPT9MFt9uNEydOID09HatXr57UxJuiKKSkpGDJkiW46KKLxADprq4uHD16FNXV1ejt7T2L3TIazGYz6urqsHTp0jl90+/s7BSjk+LNbATTivLycmzcuBHFxcUIBAKorq7G+++/L7pOxmeRnisIITh16pQ49BurmfT7/bj++uuhUqnw8ssvT3szmayRSUw34utjTk4OLr30UqxcuRIA0NjYiPfeew+nTp0S64HJZMLatWuHNZMAIFdJodLJEfBwtPRIiDuDaQzTWx8FSQ7DMKioqJjUa4yiKGi1WhQXF2P9+vW4+OKLkZmZCYvFgg8//BAff/wxOjo64PP5JjxX+Xw+nDhxAmlpaTOqKZ8INpsNtbW1WLp0qdhMApzZTU5ODlavXo2NGzeK8qWmpiYcOXIE9fX1GBwcPEtHe64QmsnxUglYlsVPfvITvPHGG3jnnXem/X3ls1Qf52RDGR8dMhrfPRKJwGq1oqenBz6fDwqFAvn5+cjMzJx199B4vvvI6dZ03LfH4xEnT8FgcJjdfvwBgBAi6kfHCuSeDTAMg7q6OkSj0TFdAkfDaHmX8dErky1s0WgUVVVVUKlU42ZudnV14eqrr0ZlZSUeffTRaS+gr7/+Oj788EOUl5fjuuuuw0svvYSdO3eOefvOzk6sXLkS3/72t/HNb34Thw4dwve//30cPHgQmzdvBgA899xz2LVrF5588kmsX78ejzzyCF544QW0trYmBeCfcbAsi0gkIjoVjkZxFRgPfX194hQ3JycH2dnZMBqNZ93+xJsdOPF6O8LBGGRKKdZcVoQLK6fPRU+IwpiJjWAgEBDro9vthl6vF+vjyBo4USD3bEDYhgj5ZYna70933qXQTHo8HpFBMhoCgQCuv/56xGIxvP766zPy/pqskUlMJ0KhEFiWFZ2vR9YxgfEwODiIgYEBEEKQmZmJnJwcpKWlnTXs6qi34K09DfC5QqAkFOavysDW/1gDuXJ6lhd+vx81NTUwGAzTvhGMd4y12+1QKpVifRwprRJkAAUFBaJZ21xAcLtesWJFwhrE0SKbppp32dvbizNnzoybl86yLO69914899xzOHz4MBYvnt6tNfDZqo+z3lD+7W9/w8qVK7Fo0aJxw2bPnDmDvr4+LF++HCzLwmw2w263i7Sv2eBXJ8p3ny4IQbhWqxUejwcGg0GkfZ05c2ZSgdwzAYZhUFtbC5Zlx9VHTYSx8i4T1V0m2kz29vZi8+bNuPrqq/GHP/xhxqdxFEVNWAx+/OMf4+DBg2hsbBS/9pWvfAUulwtvvPEGAGD9+vVYu3YtHn/8cQDc36ugoAC33347fvKTn8zoY0hibvHmm29CIpGgoqICMpksodgkjUYjNl0CnT4rK0ukfRFCMNjhgsfOubzmLZo+A5y+vj60trbOShRGOBwWa4bdbodarRbfC+x2+6QCuWcCAoNkcHAQ5eXl59ycTVU6IDSTbrd7GINkJEKhEL785S/D5/PhjTfemJUM5WSNTGIqOHXqFE6dOoVNmzaNa3To9XpRW1sLo9GIgoICsT6GQiGkp6cjKysL6enpIuPNMeiDudsNuVKKouXpkMqnR1PocrlQW1s75Ui3RMAwjEgXHekYK5hyLVy4EIWFhTN2DRPBbDajsbFxyt4fY0kHEu0LhOHjSAZJPAgh+NWvfoWnn35a9DGYaXza6+Os8kcJIXjppZdw6623YtGiRaisrMS11147LC+QYRg0NjbC6/Vi3bp14hQ6JycHsVgMdrsdZrMZJ0+ehFwun1ajm3gwDIP6+noEg0GsW7duVpo4QVheXFwsOsaazWa0tbWBpmkUFBQgGo1CoVDM+nQpFouhpqYGFEVhzZo1U6Iej5V32dPTg6amJvHwlJGRcRaFT2gmlUrluM3k4OAgtm7dii984Qt44okn5ozaMRLHjh3DFVdcMexrmzdvxve//30AQzTeu+++W/w+TdO44oorcOzYsdm81CTmAMeOHcOjjz4KtVqN7du3Y+fOnbjwwgvF1xshRNRQx2/iBCdTQYvY2NgIQoj4JptdnIbcBdPXaBFCxPDnsrKyWWniBKaKYLMvTOaPHz8OQgiys7NFXdVsv94FUySr1TrlLLeRuZ7BYFB8rKdPnx5Xd0kIQVNTE9xu97ibyXA4jBtvvBFOpxNvv/32rDSTiSJZI5MYC21tbbjrrrvgcDhE5tFVV101jK0gMCbmzZsnypOMRiMWLlwonjU6Oztx6tQppKamIisri9Po5UyvyYpQh+M1gjMJiUSCrKwsZGVlDXOMra+vRywWg8FgEKOn5sKEZ3BwEM3NzVi9evWUGSRj5V1WVVVNqLsUmsl4bftIEELw29/+Fn/9619nrZlMFOdzfZzVhpKiKOzbtw9utxsHDhzAvn378PDDD6OwsBCVlZXYsGEDnn/+edx6661Yt27dWZoPqVQqvmAEl0Cz2YyamhpRpygIsqfScIXDYdTW1kIikWDt2rVzYvOuVCqRlZWFgYEBGI1G5OTkwG634/jx49PuGDsRotEoqqurIZPJpt0RbOThSWikrVbrWYcnlUqFmpoaKBQKrF69esxDo9lsxtatW7Fhwwb85S9/mTMHs9FgMpnO2uRkZWXB4/EgGAzC6XSCYZhRb9PS0jKbl5rEHOC///u/cc899+Cdd97B3r17ceONN0IikWDbtm3YunUrXnrpJWzduhWXXXbZWYwJmqaRmpqK1NRULFmyBG63G2azGS0tLYhGo2JzOVULeiG+yeFwiHrH2YZUKhU3k3K5HAsWLIDb7UZDQ4PYSGdkZIxKcZtuCE2c0+lERUXFtJuPqVQqFBQUiANFQTpQXV097PCUkpKC1tZW8TrGGoJGo1HcfPPNGBgYwKFDh+ZsozsWkjUyibFw7bXXorKyEidPnsSLL76I//7v/8Z//Md/4KqrrsKOHTvQ0tKCjIwMXHfddWfRKUeeNQRGmDDITklJEZvLqToc9/b24vTp03OWOysM7QOBAFiWxaJFixCNRnHmzBk0NjaOKa2aKQhNXElJybTKxoAh3aUQGyOw35qbm8+SDlgsFrGZHKvuEULwyCOP4LHHHsM777yDVatWTev1ThXnc32cdYcbYVq0a9cu7Nq1Cx6PBwcPHsRTTz2FRx55BIsXL8b+/fshkUhQXl4+ZtMQ/0YqPInMZjPq6+sBQGy4JqvPE/juer1+TkXLoVAI1dXV0Gg04iYuPz9f1E9ZrVbRnn8qjrETQbCXViqV4zZx0wWlUjnm4YlhGCgUChQXF48pPrdardi+fTtKSkrw9NNPn1fNZBJJJAK5XI4tW7Zgy5YtePLJJ3H06FH8/e9/x9e//nXxTVAul+Oyyy4b8+Aj1Fmj0YjFixfD6/XCbDaLBwpBv5yRkTEptkEsFkN9fT3C4TDWrl07p/R7IetSYJDk5eWJ+imr1Yq2trYpO8ZOBJZlRa3iZM02zgUymQzZ2dnIzs4+6/AUDodBURQWLVo0Zt0TQrnb29tx+PDhaT/cJZHETIOmaaxbtw7r1q3DAw88gLq6Ojz//PO48847EQ6H8YUvfAEGgwFbt24dd+AezwgLBoOwWCwYGBhAS0vLmIkDE0GQa/X3949Lp5xpxHt/xDNIFi1aBJ/PB6vVir6+PjQ3N894jJFgfDNeEzddGMl+E3SX3d3dIkU0Pz9/zH9TQgieeOIJPPTQQ3jzzTdRVlY2o9f7WcPcWKbGQa/Xo7KyEnfeeSfuuecerFy5Evv27cOOHTtgNBqxY8cOVFZWYv369WO+ScY/iZYtWyau+puamsAwjNhwTTStnk2++3jw+/2orq4WH0/8dcRvYlmWFSluzc3NiMViww5PU3XEFZzJhBiA2W6uhcNTeno6qqqqAHDPl9bW1lF1lw6HA9u3b8eiRYvwj3/8Y84cgcdDdnY2zGbzsK+ZzWbo9XqoVCpIJBJIJJJRb5MM0f38QSaT4YorrsDvfvc7bNmyBbfeeisOHjyI733ve/D5fNiyZQt27tyJyy+/fMzDAEVR0Ov10Ov1WLhwIfx+P8xmM7q6unDq1CmxZkw0rQ6Hw6ipqYFMJsPatWvn7PUVi8VELfdIBongGJuSkiIeniwWi/hYU1JSxMc61eZP0CUFAoFxtYozBeF9LzU1FSzLwmaziayWtra2s3SXDMPg29/+Nk6dOoXDhw/PmXHRREjWyCQSBU3TWLNmDd544w3k5eXh4YcfxkcffYTHH38cu3fvxqZNm7Bz505s27YNqampY57pVCoVioqKUFRUdJbcSDACy8zMHJfKLgyX3G431q5dO2fGiYQQtLW1wWQyoaKi4iwmi1arFV1jQ6GQqNVua2uDVqsVH+t4GtVEIcgzxjO+mSnEv++p1Wo0NTUhLy8Pfr8fH3744VnSAQD4y1/+gl//+td4/fXXsW7dulm93kRxPtfHWTflGQsmk2nYgw0Gg3j77bexd+9evPLKK1Aqldi+fTuuvfbaYZqi8UAIgdvtFsNhI5GIKMhOS0sbdh8C332uRcuCE9dkm1rBBUt4rIFAQGy4MjMzJ01rCIVCqKqqEp3J5qq5FrSbNE2jtLQUEolENK0QhPbd3d149NFHwTAM0tPT8eabb84KjWMkEhVUv/baa2hoaBC/9rWvfQ0Oh2OYoHrdunV47LHHAHBvVIWFhdi9e3fScOJzCovFgvT0dHGowzAMPv74Y+zduxcvvfQSbDabqCnavHlzwocZgfYl5JsJDVdmZuawBsnn86GmpgYpKSlYvnz5nDE3phLILWwh4h1jhfo42cOfoLEPh8MoKyubk3oDDNduxtNthUOxxWKBw+HAb37zG8hkMnR1deGjjz6aFU3XaEjWyCRmAoFAALFYTGwMBIOsF198Efv27UNdXR0uueQS7Ny5E9u3b0dmZmZCZ5pIJCLWDIfDMazhiqf6R6NR1NXVgWEYlJaWzvpwSQDLsmhqaoLL5UJZWdmktNzRaFSsGYJjrFAfJyutEjakgsZ+rEiO2YCg3Yyn247Mu9yzZw8cDgeOHTuGAwcOnKVRnC182uvjedNQjodIJIJ3330XL774Ivbv3w+KorBt2zZce+21uOSSSxJ6Mx/ZcAWDQaSlpSErKwvhcBgdHR1zxncX4HA4UFdXh+LiYsybN29K9xUfhBvvGJuIS2AwGMTJkydH3ZDOJhiGQXV19bBmcjScOXMGt912G86cOQO73Y6LL74Y77777qxco8/nw5kzZwAAa9aswcMPP4zLLrsMqampKCwsxN13343+/n787W9/AzBk+XzbbbfhG9/4Bt59911873vfO8vy+aabbsKf/vQnrFu3Do888gief/55tLS0zLiTZhKfPrAsi6qqKrz44ot46aWX0N/fjyuvvBKVlZW45pprEn4zH9lwCTVDoVCgubkZBQUFWLBgwZzVAyGQW6fTTZkxIURTCYeneMfYiVwCBbdrhmGwZs2aOdHYA0ObCIvFMq52MxQK4dZbb8XHH38Mr9cLnU6H2traWdtQJmtkEnMJobnZu3cv9u3bh5MnT2LDhg2orKzEjh07xPy/iTCy4RISB4xGI9ra2qBSqSadwTudEIZcoVBIzCicyn3Z7XZxe0nTtMjsmEhaJdB+BwYGpuR2PR0wmUxoamoaV7vJMAzuv/9+PPvsswgEAggEAnjppZdmran8LNXHT0VDGY9YLIajR4/ihRdewP79+xEOh7Ft2zZUVlbiC1/4QsIvIp/PB7PZjN7eXkSjURgMBuTl5c2aSHkkhA3p0qVLkZubO633HT+tFiyW46ds8cXU7/ejqqoKmZmZWLJkyZw2kzU1NQC4F9lYRdrn8+G6666DXC7HwYMHEY1G0drairVr187KdR45cgSXXXbZWV+/6aabsGfPHtx8883o6urCkSNHhv3MD37wAzQ1NSE/Px8/+9nPcPPNNw/7+ccffxwPPvggTCYTSktL8fvf/x7r16+f4UeTxKcdLMuivr5enMx3dHTg8ssvR2VlJbZu3TpqTuVoCIfDsFgs6Ovrg8/ng1KpRH5+PrKysqbkYHqu8Pl8qK6uFt1sp7MuxTvG2mw2yGQycTJvNBqHHZ4Eui0hZMpu11OB0EyazWZUVFSM+W/Csix+/OMf45VXXsGRI0eQn5+Pjz/+GJdccsms1fZkjUzifAEhBL29vdi3bx/27duHY8eOoaKiAjt27MDOnTtRWFiY0OtCqBkDAwNiFnBeXh6ys7PPcl6eDUSjUdTW1gLAlCLdRkO8VttisYhMMEFGFl8D4+tSeXn5nNF+gaGIkpKSEqSnp496G0IIXnzxRdx222148cUXsXnzZtTW1qKoqAipqamzcp2fpfr4qWso48EwDD744AOR9uX1enHNNdegsrISV1xxRcJ892XLlommFV6vF0ajUXT7mg3Tif7+fjHLbaY3pMKqXzg8KRQK8fAklUpRXV2N3NzcOdWQChsA4dA2VjMZCATwpS99CSzL4rXXXpvTSVgSSZxvENxHhc1lU1PTME1RWlrauK/x7u5utLe3Y9myZWBZVpzMCwOprKysadHZTITZDORmWRYOh0OczBNCxMOTXq9HfX09JBLJuIyJmYZA5xM0UuM1k//1X/+FF154AUeOHMGiRYtm+UqTSOL8BSEEg4ODeOmll7Bv3z689957WL16NXbu3InKysoJ2RgCo6ygoAB6vV6sGdOZOJAIBG37ucgAJgtCCDwej/hYg8Gg6Bibnp6O9vZ22O12lJeXz8ngUYDQTE4UUfLyyy/j1ltvxbPPPovt27fP4hV+NvGpbijjwbLsME2R1WrF5s2bRU3RSL57fX09otEo1qxZM2yrKYiUzWazqLMR3L5mwgFLEC2XlJTM2kREQLxjrMViQSwWEy2109LS5kQnJTSTLMuOuwEQQrn9fj/eeOONOeXoJ5HE+Y54TdFLL72E2tpaXHzxxSLtKysrSzz4CFPmwcFBrFmzZpiZwsiBlBBvlGig9GRht9tRV1c3J9r2eA2+2WxGKBSCXC7HwoULkZmZOSdU13g6WUVFxZgbAEII7rvvPjzzzDM4fPgwli1bNstXmkQSnx4QQmCz2cTm8t1338XSpUvF5nIkK2JwcBBNTU1YtmzZMEZZ/EDKYrGILvxZWVlISUmZ9jNVMBgc5nUx22e2eA2+x+MBTdOYN28ecnNzZ+S8nAgsFgsaGhombCZfffVV3HLLLfj73/+O6667bhav8LOLz0xDGQ+WZVFdXS3Svvr6+kRN0YoVK7B3717s2LEDq1evHpeyFA6HRbcvp9MJrVYrHp6musofaS89lw2R2+1GVVUVsrOzQdM0rFarmN8zXY6xiYBhGFHYPl4zGQ6H8fWvfx1WqxVvv/32nFlzJ5HEpxGEEHR1dYmaouPHj2PDhg3YsWMHrrrqKjz11FO4+uqrsXbt2nGnzAzDwGazwWw2i1RRoT5ORz6u2WzGqVOnsGzZMuTk5EzpvqYCwe1aoVDAYDDAZrPB5/NNq2NsIiCEoL29Hf39/RM2kw888ACefPJJvPvuu+ddjloSSZzPIITA6XRi//792LdvH95++23Mnz8flZWVqKysxOuvv47FixfjkksuGZNKCWCYC79AFRWay9TU1ClvEgUZwFzLk1iWRWNjIzweD/Ly8uBwOMTz8nQ6xiYCq9WK+vp6rFq1aly235tvvokbb7wRTz31FL785S/P+HV9XvCZbCjjIVi7v/jii/i///s/9Pf3Y9WqVfjGN76Bbdu2JUxJEATZZrN5GO1rNB1iItckBIOXlZXNKc/c6XSitrYWCxYsEDcA4znGTkfo72hgWRa1tbWIxWIoKysbs5mMRCLYtWsXent78c4778xIjtoTTzwhcs9LSkrw2GOPjWkhvWnTJhw9evSsr2/ZsgUHDx4EANx888145plnhn1/8+bNoiNXEknMFQgh6Ovrw759+/Dcc8+htrYWmZmZuOWWW3D99dejqKgoodrGMAwcDgfMZvNZtK+ROsREIARhr1q1ak7jLYQ8YJ1ON2wDMJ2OsYmivb0dfX194xpdEELwu9/9Dr/73e9w6NAhlJaWTvt1JOtjEp8nuN1uvPLKK9i7dy/eeOMNyOVyfPWrX8WNN96I0tLShGrbSLaDMLDPyspCenr6pJtLl8uFmpoaFBYWzrgMYDzERyeVl5eL/iPCedlqtYrSKuH9YDqGjaNBaCZXrlw5rvHM4cOH8eUvfxl//OMfceONN87ItXxea+RnvqEUMDAwgBUrVuDrX/86MjIy8PLLL+PUqVPYuHGjqClKT09PWJAt0EQF2pfwYplIkM0wDBobG+H3+1FWVjZnweAApwGora3F4sWLkZ+fP+btxnKMzcjImBaePMuyqKurQyQSQVlZ2ZhUsmg0in//939Ha2sr3n333Rk5aD733HPYtWsXnnzySaxfvx6PPPIIXnjhBbS2to468XI4HIhEIuLndrsdJSUl+Otf/yqKpG+++WaYzWY8/fTT4u0UCsWMh/wmkUSiYFkW69atQ1paGq655hq88soroqZImMwnqqsWTByE5pIQItbHRBwCu7q60NXVhdLS0jl9jQh0MiEqZazHHu8Y63A4RPdHId9sOg4s7e3t6O3tRUVFxbjN5OOPP44HHngAb7311owYkyXrYxKfV3z/+9/H66+/jttvvx3vv/8+XnvtNaSnp4uGPmvXrk24uRQG9gKVPp4NNhGV3mazob6+fs4j7gRGWTQaHffcFu8Ya7PZRBpwIu8HicJms6Gurm7CZvL999/Hl770JTz66KO45ZZbZqSZ/DzXyM9NQwkAJ0+eREVFBYAhyqmgKaqpqcFFF10kaoqys7MTnswLmiKr1QqZTCYaVoycxMRisWFZRXOVXQYMFaXJusoK7o9WqxUOh2NKm1og8WYyFovhW9/6Furq6vDuu+/OWEDr+vXrsXbtWjz++OPi9RUUFOD2229PKL/nkUcewb333ovBwUFxU3HzzTfD5XLh5ZdfnpFrTiKJ6UBNTY1oey9oivbv348XX3wRhw8fxpIlS8TmMtE4IYE+NpL2JTgExk/mBZ3n4OAgysrKzgrknk0EAgFUVVUhPT19Uq6ysVhs2OFpqptaAOjo6EBPT8+EzeSf//xn/OIXv8Drr7+ODRs2TPr3JIJkfUzi84qOjg4YjUbR6yIQCODNN9/E3r17cfDgQWi1Wmzfvh07d+7Ehg0bEto6EkLg9/thNpthsVjg9/uRlpYmDqRGnhFNJhNOnTqF5cuXz6kM4Fyjk0ajAY/lGJsohLPs8uXLxz0XHjt2DNdeey3+53/+B9/+9rdnbKv7ea6Rn6uGciwQQtDd3S1qij755BNccMEF2LFjByorK5Gfn5/wZD4+u4eiqGFuiLW1tZBKpSgpKZkzu3lgKKJkohfgRIg36LDb7ZDL5cPs9if6mwkRB6FQCOXl5eNOuHbv3o1jx47hyJEj0x6rIiASiUCtVuPFF18cFix70003weVyYf/+/RPex6pVq7Bhwwb8+c9/Fr9288034+WXX4ZcLkdKSgq+8IUv4Fe/+tWM0HWTSGK6ITSFBw4cEDVF8+bNQ2VlJXbu3JlwJqTgECgcniKRiHiYSE1NxenTp+FwOObcIVCITsrKysLixYvP+eAxnmPsyGZ6LHR2dqK7uxvl5eVjNtiEEOzZswd33303Xn31VVx66aXndL0TIVkfk0hidIRCIbzzzjvYt28f9u/fD5lMhu3bt+Paa6/FRRddlHDDFQgExPro9XpFnXZmZiYsFgtOnz6N1atXj6vdnGnEYjHU1NSAoiiUlpae81lWeD8Q2B3xjrGJxvcJpm0T6exPnDiByspK3Hfffbj99ttnrJn8vNfIZEM5AoQQ9Pf3Y9++fdi7dy8++ugjlJWViZP5efPmTYr2Fc+ZVyqVWLJkCdLT0+fEQRUYmnBNJFqeLAQNVXwzLWguR3OMFbj3wWBw3GaSZVl8//vfx+HDh3H48OEZpXgMDAwgLy8PH3300bAJ/1133YWjR4/ik08+Gffnjx8/jvXr1+OTTz4Zxpd/9tlnoVarUVxcjPb2dtxzzz3QarU4duzYnEUPJJHEucLtduPVV1/Fvn378MYbbyAnJwc7duzAtddeizVr1iTcXApZwGazGYFAABKJBAsWLEBubu6cOKgCgNfrRXV1NfLy8iaMDZgM4jVUFosF4XAY6enpYo0c7fEK1N+Jmsl//OMf+OEPf4gDBw6Mmmc2XUjWxySSmBjRaBSHDx/G3r178fLLL4NhGGzbtg07d+7Epk2bEmamBYNB0bfD5XIBAAoKClBUVDRnDqrRaBTV1dWQyWTTHlEiOMZardZh0qqxEhYEydZEzWRNTQ22bduGn/70p7jzzjtnVG/6ea+RyYZyHBBCYDab8dJLL2Hv3r147733sHLlSrG5XLRo0YRPTmHardPpoFKpYLVaEYvFxqR9zSQGBgbQ0tIy4xMugdYgTJ5GOsbSNC3qSOOF3KPdz1133YWDBw/iyJEjKC4unrFrBqZeDL71rW/h2LFjqK+vH/d2HR0dWLBgAd555x1cfvnl03LtSSQxF/D5fHj99dexd+9evPbaa0hNTRUn82vXrp2wtsViMdTW1oo1wm63w+fziZPqzMzMWZMGeDweVFdXi0YXMwWB5iY0l6M5xnZ3d6OjowPl5eVjOoATQvDCCy9g9+7d2Lt3LzZv3jxj1wwk62MSSUwWsVgMH3zwAV544QW8/PLLCAQC2Lp1K3bs2IErrrhiQg+N+Ain/Px8uN1uOJ1O6HQ6kf02W2yOSCSC6upqKJVKrF69ekaXIqFQSDw/Co6xwplZq9WKZpITSbYaGhqwZcsW3Hnnnbj77rtn3Lzo814j5453+SkARVHIzs7Gd77zHXz729+G3W7H/v37sXfvXtx///1YvHixSPsaTVMkBHLn5+eL0+4lS5aIwbBtbW3DaF8zGc8huCaWlpbOeN4lTdNITU1FamoqFi9eLArQOzs70djYCJlMBoqiUFZWNm4z+dOf/hQHDhzA4cOHZ7yZBCC6rZnN5mFfN5vNE1KD/X4/nn32Wdx3330T/p758+cjPT0dZ86cOa+KQRJJTBZarRbXX389rr/+egQCAbz11lvYu3cvvvjFL0KtVouGFRs2bDirtgkHFLlcjnXr1kEikWDRokUIBAKwWCziAMxoNCIrK2tG4zkE18T58+ejqKhoRn6HAIqioNVqodVqMX/+/GGbiNbWVigUCkQiEaxcuXLcOKmXX34Zu3fvxrPPPjvjzSSQrI9JJDFZSKVSbNq0CZs2bcLvf/97fPTRR9i7dy9+9KMfweVy4eqrr0ZlZSWuuuqqsxpDlmXR1NQEl8uFdevWid+PNwFrb28XfSwEadVMNE1CdJJWq01Y4jAVKJVKFBQUoKCgYJi0qqurCzKZDJFIBEVFReNuJpubm7F9+3bcfvvts9JMAskamdxQngMIIXC5XKKV9FtvvYWioiKxuVy1ahVOnDgBn8+HhQsXjnlAEWhfAi1W4JALh6fpon319PSgvb0da9asmdPMRkIIamtr4fF4oFQq4fV6YTAYxMmTUDAJIfjFL36Bv//97zh8+DCWLl06a9e4fv16rFu3Do899hgArqgXFhZi9+7d4wqq9+zZg29/+9vo7++fkNfe19eHwsJCvPzyy9ixY8e0Xn8SSZwPCIVCOHTokKgpkkgk4uby4osvRnd3Nzo7O5GdnT1uIHcoFBLroxDPIWRdThfty+l0oqamBosWLUJBQcG03Oe5oqOjA52dndDr9fB4PFCpVGJ9jHeMFUK5//GPf+Daa6+dtetL1sckkpg6WJbFiRMnRFNIk8mEK6+8Ejt37sTVV18NiqJw9OhRpKamoqysbMyotvhmKz5xICsrCzqdblqaqFAohKqqKhgMBixfvnzO5FoAp5msra2FTqdDIBAY0zG2ra0N11xzDW6++Wbcf//9sxqr8nmukcmGchrg8Xhw8OBBMacoPT0dJpMJ//u//4ubbrop4RegQIMym83TRvvq7OxEV1cXysrKYDAYzuk+pgOEEJw6dQoejwfl5eVQKBQIh8PD7PYVCgUOHDggUrkOHz6MlStXzup1Pvfcc7jpppvwpz/9CevWrcMjjzyC559/Hi0tLcjKysKuXbuQl5eH3/zmN8N+7pJLLkFeXh6effbZYV/3+Xz4xS9+gS9+8YvIzs5Ge3s77rrrLni9XjQ0NMxIpmcSSZxPiEajOHLkiKgpCoVCoGkaX/rSl/DAAw8kvHUU6oXZbBZpUEJzea7Zj4Kpw5IlS5CXl3dO9zFd6O3txZkzZ8RaPZpj7JEjR6BUKvHb3/4We/bswQ033DCr15isj0kkMb0QMriF5rKzsxM5OTnIy8vDv/71L6SlpU174kCiEKKTUlNTE3b2nim4XC5UV1eLMXfxjrGClOzUqVOIRCL44x//iC9/+ct46KGHZr0B/jzXyGRDOc344x//iB/84Ae4+OKLcfz4caSkpIi0L4HWlQiCwaDo9uXxeGA0GsXmMpEDGCEEHR0d6O3tHdfUYTYwWjM5EtFoFK2trdi9ezeqq6uRlZWFG264AQ8++OCsO+I+/vjjYihtaWkpfv/732P9+vUAuBDaefPmYc+ePeLtW1tbsXTpUrz11lu48sorh91XMBjEzp07UVNTA5fLhdzcXFx11VX45S9/OW5eUhJJfBZx7NgxXH311Vi+fDl6enrg9/uxdetWVFZW4vLLL0946ygEZ5vNZtjt9nOKLxKCsOfagh8YkiSUlZWNyiIRTN5uu+02vPPOO6BpGtdddx1+9atfzXoWXbI+JpHEzMBkMmHTpk0ghECtVqOpqQmXXXYZdu7cia1btyI1NTXh5lIwSbRYLOcUXyT4f2RmZmLJkiVz3kzW1NRg4cKFo7JIhGzPhx9+GM888wzsdjs2b96Mu+++GxdffPGsX+/ntUYmG8ppxj/+8Q8UFBRg48aNCAaDoqbo1VdfhUqlEnOKLrzwwoQbJYH2ZbFY4HK5oNfrxcnTaAcwIWNzYGAA5eXlY2aXzQYIIaIOoKKiYsxpCiEEjz32GH7729/iwIEDcLlcOH78eEJ88iSSSOLTgdraWnz00Uf47ne/C4ZhcOzYMezduxcvvfQSHA4HNm/ejJ07d+Kqq65KeOsYi8Vgs9lgNpuH0b5G0kTjYTab0djYOGEQ9mxAaCbXrFkzblD1e++9h+uvvx6PPPIIli1bhpdffhk/+clPZlwTn0QSScwOHA4HHn74Yfz85z+HVCpFW1sb9u7di71796K+vh6XXnopKisrsX37dmRmZk4qccBsNovxRUJ9jKeJxsPn86Gqqgq5ublYuHDhnDaTbrcb1dXVYzaTAvr7+3HVVVfhqquuwg9+8AMcOHAAl1xyyYxl8iZxNpIN5SwhEongnXfewd69e3HgwAHQNI1t27bh2muvxSWXXJKwXjISiYjNpcPhgFarHSbIJoSgtbUVVqsVZWVl50wFmw4QQtDc3AyHw4GKiooxN6uEEPzpT3/CfffdN6Oh3EkkkcT5CZZlcfLkSZH2NTAwMExTNJ45TTwYhoHdbhebS6lUOmwyT1EUBgcH0dzcjFWrViEjI2OGH9n46O/vR2tr64TN5EcffYTrrrsOv/3tb/Gtb31rTg94SSSRxOxCYJwJWelVVVXYsGEDKisrsWPHDuTm5iZUEwT/D+EMOVrigNfrRVVVFQoKCjB//vzzoplcsGDBuEwMk8mEzZs34+KLL8Zf//rX8ypK4/OEZEM5B4hGozh69ChefPFFvPzyy4hGo9i2bRsqKytx2WWXJcyJFmhfFosFdrsdKpUKNE0jEomgoqJiTsPBJ9NMPv3007jnnntw8OBBXHLJJbN8pUkkkcT5BJZlUVdXJzaXHR0duOKKK1BZWYmtW7cmrAdiWVbUIArZuBqNBm63GyUlJXMaDg4MxThN5LwthHL/8pe/xO7du5PNZBJJfI5BCEFPTw/27duHffv24dixY1i7dq1oCllQUJBwcykkDpjNZkQiERgMBrhcLsybNw8LFiyYhUczNjweD6qqqiZ03rZYLLjmmmtQVlaGv/3tb8lmcg6RbCjnGAzD4IMPPhCbS6/Xiy1btqCyshJXXHFFwpqiSCSCuro6eL1eEEKgUChEw4qxaF8zBUIIWlpaYLfbJ2wmZyuUO4kkkvj0QaDMv/jii9i3bx+am5uHaYoSNaxgWRZtbW3o6+uDRCIZ5g6YlpY268YNiTaTQij3f/3Xf+GOO+5INpNJJJGECEIIBgYG8NJLL2Hfvn14//33UVJSgp07d6KysjLhDaNwP83NzZDJZIjFYkhLSxOzcacrcSBRCFvSefPmYd68eWPezmazYevWrVi2bBn+9a9/zbrfRhLDMXf+v0kAACQSCTZu3IjHHnsM3d3deO2115CdnY2f/OQnmDdvHnbt2oV9+/bB7/ePeR8sy6KlpQXRaBQXXXQRNm3ahMWLFyMcDqO6uhrvv/8+Wlpa4HQ6MdPzA4Fya7PZUF5ePm4z+fzzz+POO+/E3r17Z6yZfOKJJzBv3jwolUqsX78ex48fH/O2e/bsAUVRw/4bef2EENx7773IycmBSqXCFVdcgdOnT8/ItSeRxOcdFEVhxYoV+PnPf47a2lo0NjZi48aN+H//7/9hwYIF2L59O/7yl7/AbDaPW9t6enowODiIiooKbNq0CSUlJZBKpWhpacHRo0fR0NAAi8UChmFm/DENDg6ipaUFJSUl4zaTDQ0N2LFjB+66664ZayaT9TGJJD69oCgKeXl52L17Nw4dOoT+/n7ceuuteP/991FeXo4LL7wQ//M//4OWlpZx66PT6RSNYTZu3IgLLrgAer0ePT09OHr0KKqrq9HX14dIJDLjj0loJouKisZtJp1OJyorK7FgwQL84x//mLFmMlkjE0dyQ3megmVZVFVVibSv/v5+XHHFFdi5cyeuueYaUVPEsizq6+sRCoVQVlZ2VrwIy7LD3L6EyXxWVhZSUlKmdTJPCEFbWxssFgsqKirG3a7u27cP3/72t/Hcc89h69at03YN8Xjuueewa9cuPPnkk1i/fj0eeeQRvPDCC2htbUVmZuZZt9+zZw/+8z//E62treLXKIoaZtrxP//zP/jNb36DZ555BsXFxfjZz36GhoYGNDU1zVjoehJJJDEchBB0dnaKmqITJ07gwgsvxI4dO1BZWTlMU9TR0YGenh6UlZWdpcWMp31ZLBaEQiGkp6cjKysL6enp035IMZlMOHXqFEpLS8fNGmtqasI111yD3bt34957752RZjJZH5NI4rMJQgicTif279+PvXv34p133sGCBQtEWmx8nqTNZkN9fT2WLl2K3Nzcs+4rEAiI9fFcEgcmA5/Ph5MnT6KoqAjFxcVj3s7tdmP79u3IysrCvn37Ziw6I1kjJwlyDnj88cdJUVERUSgUZN26deSTTz4Z9/bPP/88WbJkCVEoFGTlypXk4MGDw77Psiz52c9+RrKzs4lSqSSXX345aWtrO5dL+0yCYRhSU1NDfvrTn5Lly5cThUJBtmzZQh577DFyxRVXkD179hCXy0X8fv+4/3m9XtLb20uqqqrIa6+9Rg4ePEiOHz9Ourq6iNfrnfDnx/vP5/OR6upq8sYbbxCr1TrubZ999lmiVqvJSy+9NKN/t3Xr1pHbbrtt2N8xNzeX/OY3vxn19k8//TQxGAxj3h/LsiQ7O5s8+OCD4tdcLhdRKBTk//7v/6btupP4dCNZH2cXLMuS7u5u8rvf/Y5ccsklRCqVkvXr15Nf//rXZNeuXeSnP/0pMZlMCdUwk8lE6uvryTvvvEMOHDhAPvjgA3L69OmE6utE/3V0dJADBw6Q7u7ucW9XXV1NsrKyyN13301Ylp2xv1uyPiYxF0jWx9mHy+Uif//738nOnTuJSqUiixYtIj/84Q/JL37xC3L99deT9vb2hGqY3W4nzc3N5OjRo2T//v3k8OHD5NSpU8Rms025PprNZnLw4EHS0NAw7u1MJhNZv349ufLKK0kwGJzRv1uyRk4Ok24on332WSKXy8lTTz1FTp06RW699VZiNBqJ2Wwe9fYffvghkUgk5Le//S1pamoi//Vf/0VkMhlpaGgQb/PAAw8Qg8FAXn75ZVJXV0d27NhBiouLZ/zJ8mkEy7Lk1KlT5J577iE6nY5kZ2eTK6+8kjzxxBOku7ub+Hy+hBvA/v5+sQl85ZVXyMcff0w6OjqIx+OZdDNZU1NDXn/99QmbyRdffJFoNBry/PPPz+jfKRwOE4lEclbTumvXLrJjx45Rf+bpp58mEomEFBYWkvz8fLJjxw7S2Ngofr+9vZ0AIDU1NcN+7tJLLyXf+973pvshJPEpRLI+zi1YliX9/f3kscceIwUFBUSlUpELL7yQ3HfffaSuri7h+uj3+4nFYiGNjY3k0KFDZP/+/eT9998nra2txOl0nnMz2dXVNe7t6urqSG5uLrnzzjsJwzAz9ndK1sck5gLJ+jj38Hg85NlnnyUXXHABkUgkpKKignzve98jhw8fntRiwel0ktbWVvL++++T/fv3k0OHDpHGxkZisVjOqZl87bXXSH19/YQ1+eKLLyabNm0iPp9vRv9OyRo5eUy6oZxsx37DDTeQrVu3Dvva+vXrybe+9S1CyGe/Y58p7N69m1x++eWktraW3H///aSiooJIpVKyadMm8rvf/Y60t7dPqrkcHBwkdXV15K233iIHDhwgH330ETlz5gxxu90T/mxtbS15/fXXJywkBw4cIBqNhvzzn/+c8b9Pf38/AUA++uijYV//0Y9+RNatWzfqz3z00UfkmWeeITU1NeTIkSNk27ZtRK/Xk97eXkII9+YGgAwMDAz7ueuvv57ccMMNM/NAkvhUIVkfzw8899xzpLCwkHzyySfkT3/6E9m8eTORyWRk1apV5Gc/+xk5efLkpJpLm81GmpqayOHDh8n+/fvJ0aNHSXNzM7Hb7RP+bGdnZ0LN5KlTp0hBQQHZvXv3jDaThCTrYxJzg2R9PD/Q2dlJdDodeemll8jevXvJ1772NWIwGEh+fj757ne/S956661JLRZcLhc5ffo0+fDDD8mBAwfI22+/Terr64nJZJqwzlosFvLaa69NOPCz2Wxk06ZN5OKLLyZer3fG/0bJGjl5TEpAF4lEUFVVhSuuuEL8Gk3TuOKKK3Ds2LFRf+bYsWPDbg8AmzdvFm/f2dkJk8k07DYGgwHr168f8z6TAH71q1/hlVdeQUlJCe6++24cP34cbW1t2Lp1K55//nksWbIEV199NZ544gn09fWNK8imKAp6vR4LFy7EhRdeiPXr10Or1aKrqwtHjhxBTU0N+vv7zxJkE0LQ3t6OgYEBlJeXj5t5+d577+FrX/saHn/8cXz1q1+dtr/DdGLDhg3YtWsXSktLsXHjRuzbtw8ZGRn405/+NNeXlsSnAMn6eP7gS1/6Ek6cOIF169bhP/7jP/D666/DZDLhjjvuQE1NDS666CKsXbsWv/zlL9HQ0ACWZce9P5VKhaKiIqxbtw4XX3wxsrKyYLFY8MEHH+D48ePo6upCIBA46+csFgsaGhomzLzs6+vD1q1bsWXLFjz66KOz7jqbCJL1MYmpIFkfzx/MmzcPp0+fxs6dO3Hdddfhn//8J0wmE/7whz8gEAjgy1/+MhYvXozvf//7OHr0KGKx2Lj3J5PJkJubK9aG+fPnw+/348SJE/jwww9x+vRpuN3us86hfr8fJ0+eRG5uLhYsWDCmVjwUCuGrX/0qQqEQXn31VWi12mn7W0wnPu81clKOAzabDQzDDBOYAkBWVhZaWlpG/RmTyTTq7U0mk/h94Wtj3SaJs2EwGIZ9TlEUiouL8cMf/hB33nkn+vr6xJyie+65B+Xl5aisrERlZSWKiorGfOFSFAWtVgutVosFCxbA7/fDYrGgr68Pzc3NSElJEQXZfX196O/vR0VFxbjN5IcffogbbrgB//u//4ubbrppVqzv09PTIZFIYDabh33dbDYjOzs7ofuQyWRYs2YNzpw5AwDiz5nNZuTk5Ay7z9LS0um58CQ+tUjWx/MHNE0PM02gKAqpqam4+eabcfPNN8PtduPVV1/F3r178YUvfAG5ubnYsWMHrr32WpSWlo7b0CmVShQUFKCgoACRSEQ0rDhz5gy0Wq1YH4PBIBoaGrBy5cpRDRwEDA4OYsuWLbjsssvwxBNPzEozmayPScw2kvXx/MLIv5lSqcT27duxfft2RCIRHD58GHv37sVNN90EQgi2bduGnTt3YuPGjWeZP8ZDKpUiOzsb2dnZYBhGzAKurq6GVCoV66NMJkN1dTVyc3OxcOHCMc+F4XAY//Zv/waHw4G33377rLPvTCFZIyeP828MmsSUQVEUCgoK8J//+Z84cuQIenp6sGvXLhw6dAglJSW49NJL8dBDD+H06dMTxohoNBoUFxdj/fr1uOiii5Ceng6TyYT33nsPnZ2dyM3NHfcAdPz4cXzpS1/C/fffj1tvvXXWctTkcjnKy8tx6NAh8Wssy+LQoUPYsGFDQvfBMAwaGhrEF35xcTGys7OH3afH48Enn3yS8H0mkUQScw+DwYCvf/3r2LdvH8xmM37961+jr68PW7ZswapVq/CTn/wEn3zyyYSbS7lcjvz8fJSVlWHjxo0oLCyEx+PBxx9/jNraWqSnp0OtVo9ZZ81mM7Zu3YoLLrgAf/nLX2YtlDtZH5NIIomxIJfLsXnzZvz5z3/GwMAAnn/+eahUKnznO99BcXExvvWtb+G1115DKBQa934kEgkyMzOxcuVKbNy4EcuWLUMsFkNtbS2OHTsGmUyG1NTUMetjNBrFzTffjP7+frz55ptISUmZiYc7KpI1cvKYVEN5Lh17dnb2uLeP79gTvc8kEgdFUcjJycF3v/tdvP322xgYGMB3vvMdHDt2DOvWrcOGDRvwm9/8Bk1NTRM2lwLtKy0tDVKpFPPmzYPH48GHH36ITz75BJ2dncNoX9XV1bj22mvx85//HLfddtush3Lfcccd+Mtf/oJnnnkGzc3N+M53vgO/349bbrkFALBr1y7cfffd4u3vu+8+vPXWW+jo6EB1dTVuvPFGdHd345vf/CYA7m/5/e9/H7/61a9w4MABNDQ0YNeuXcjNzcXOnTtn9bElcf4hWR8/ndBqtbjhhhvw3HPPwWQy4eGHH4bD4cB1112HpUuX4oc//CE++OCDCTMqBdpXfn4+AKCgoAAURYm0r7a2tmG0L5vNhu3bt6OkpAR79uyZtWZSQLI+JjGbSNbHTyekUikuu+wy/OEPf0Bvby8OHDiA1NRU3HHHHSguLsYtt9yC/fv3j0r5jwdN00hPT0dxcbHYaBqNRjQ2NuK9997DqVOnYLVaxSFeLBbDN7/5TbS3t+Ott94aN2ZpppCskZPEZEWX69atI7t37xY/ZxiG5OXljSuq3rZt27Cvbdiw4SxR9UMPPSR+3+12J0XVMwyWZYnD4SB79uwh27dvJ0qlkixdupT8+Mc/JseOHRvT7auxsZEcPHhwmA2/0+kkbW1t5IMPPiD79+8nd955J9m1axdJSUkh999//4xa30+Exx57jBQWFhK5XE7WrVtHPv74Y/F7GzduJDfddJP4+fe//33xtllZWWTLli2kurp62P0JFuVZWVlEoVCQyy+/nLS2ts7Ww0niPEeyPn52EAwGySuvvEJuueUWkpqaSrKyssg3v/lN8uqrr44ZI9LT00NeeeUVcubMGfFrHo+HdHZ2kk8++YS8+uqr5OGHHybXX389WbVqFamsrCSRSGTOHmOyPiYxm0jWx88OGIYhx44dI3feeSeZP38+0Wg05NprryXPPPPMmDFNNpuNvPHGG6Sqqko04BmZOPD888+Tq6++mlxzzTVk8eLFZHBwcE4fZ7JGJo5zig1RKBRkz5495P+z995hcp3l3f/ntOltu3ovluUmF9mSA4bXYIPhtf2SEFPiQsAQMCGEKyaGN4EEiI2x8wslAQIBm4QaQ4x5geCAsQEjd6tXq65W0tbZnZ0+pzy/P845o9nV9qaV9HyuS9dKs+ecObM7uuf5Pvd9f+9du3aJ9773vSKVSon29nYhhBC33nqruOeee6rH//73vxe6rosHH3xQ7N69W3zyk58c0vY5lUqJxx57TGzbtk3cdNNNoqGhQSxatGhMs4q+9rWviT/4gz8QqVRKpFIpce21155y/O233y6AAX+uv/768b78s5ZMJiO+853viLe85S0iEomI5cuXi7/8y78Uv/3tb6vi8rnnnjtFTA7l9vW5z31OrFixQui6LlavXj3tI0IkktmCjI9nJ5VKRTz++OPive99r2hubhYNDQ3i9ttvF48++mh1jMjOnTtPEZOD/2SzWfHYY4+JdevWiWAwKJqbm8UnP/nJ0/3yJJIZQcbHsxPbtsWLL74o7rnnHrFq1SoRCoXEm9/8ZvFv//Zv4vjx4yKXy4lDhw6dIiaHmhqwfft28ZrXvEZEo1ERDofFH/3RH53WTTfJ2Bm3oBRifIpdCHcw7apVq0QgEBBr164ddjCtr9gvuOACYRjGmGcVveMd7xD/8i//IjZv3ix2794t7rjjDpFMJkVbW1v1mNtvv1284Q1vECdOnKj+SafTE3n5Zz3ZbFb853/+p7jllltEPB4XixcvFm984xvFkiVLxNGjR0e0gPaHcn/84x8X2WxWPPLIIwPeHxLJ2Y6Mj2c3pmmKJ598UnzgAx8Q8+bNE6lUStx4440ikUiI3/zmNyPGxxMnTogrr7xSXHfddSKbzYpf//rX4kc/+tHpfkkSyYwh4+PZjeM4Ytu2beITn/iEuOCCC0QgEBDXXnutaGlpEQ888MCIsy6z2ax4z3veI5YuXSoOHToktm3bJr785S+f7pckGSMTEpTTzXhnFQ3GsiwRj8fFt771repjt99+u7jpppum+lbPegqFgvjTP/1TEQgExIoVK8S8efPEn/3Zn4lf/OIXp8yo9Idy/9Vf/dW0z1GTSM5VZHycPViWJb74xS8KwzDEmjVrRCKREG9961vFd77zHdHV1TUgPnZ0dIirr75avPa1rxX5fP5037pEclYi4+PswXEc8eSTT4r6+nqxZMkSYRiGuPbaa8UXv/hFcejQoQGZymw2Kz7wgQ+IhQsXigMHDpzuW5dMgFnn8jqRWUWDKRQKmKZJfX39gMefeuopmpubWb16Ne9///vp6emZ0ns/G1FVlf379/P000+zfft2vva1r1GpVHjnO9/JypUr+dCHPsSTTz7J/v37efOb38wf/uEfcv/998/KOWoSyZmOjI+zC03T2L59O1/96lfZsWMH//M//8PixYv5xCc+wZIlS3jnO9/JI488QkdHB3/8x3+Mqqr85Cc/IRKJnO5bl0jOOmR8nF0oisLhw4d5y1vewv79+9m1axevf/3r+fa3v83KlSu54YYb+OpXv8qxY8f427/9W3784x/zxBNPsGzZstN965IJoAgxirXnDHP8+HHmz5/Ppk2bBtjofvSjH+U3v/kNzz333KjX+MAHPsDjjz/Ozp07CYVCAHz/+98nEomwdOlSDhw4wMc//nFisRjPPPPMjLvrnWkIIU5xaDVNk6eeeoof/ehHPProo3R3d/PWt76V7373u1JMSiTThIyPs4+h4qPjOGzZsoUf/vCHPProo+zbt4/ly5fz4osvkkgkTtOdSiRnNzI+zk4Gx0ghBK2trfzoRz/iv/7rv9i0aRPhcJgXX3yRNWvWnMY7lUyK05keHYpjx44JQGzatGnA43fffbdYv379qOffd999oq6uTmzdunXE4w4cOCAA8atf/WpS9ytxe4r++Z//WZRKpWl9nn/+538Wixcvlo32knMWGR/PPBzHET/60Y/Erl27pvV5ZHyUnOvI+Hjm4fdcPvbYY9P6PDI+Tj+zLpU0kVlFPg8++CCf/exn+Z//+R8uuuiiEY9dtmwZjY2N7N+/f9L3fK6j6zp33XUXwWBw2p7jBz/4AR/5yEf45Cc/ycsvv8zFF1/M9ddfT2dn55DHP/XUU7z97W/nySef5JlnnmHhwoVcd911HDt2bMBxb3jDGzhx4kT1z/e+970J3+O///u/09DQQLlcHvD4zTffzK233jrh60okPjI+nnkoisJb3vKWad15l/FRIpHx8UxEURQuvPBCbrzxxml7DhkfZ4jTrWiHYryzioQQ4v777xeJREI888wzY3qOo0ePCkVRpn1XRDI1nAmN9oVCQSSTyQFjUjo6OoSu6+LXv/71lD2P5NxGxkfJYGR8lEhcZHyUDEbGx5lh1mUoAT7ykY/w9a9/nW9961vs3r2b97///eTzed71rncBcNttt/Gxj32sevz999/P3/7t3/LNb36TJUuW0N7eTnt7O7lcDoBcLsfdd9/Ns88+y+HDh3niiSe46aabWLFiBddff/1peY2SsXOmNNqHw2He8Y538NBDD1Uf+/a3v82iRYt4zWteM+HrSiS1yPgoqUXGR4nkJDI+SmqR8XEGOd2KdjjGM6to8eLFp9QyA9WB0YVCQVx33XWiqalJGIYhFi9eLO68805x7733jrmm+qGHHjrl+sFgcMAx/jykOXPmiFAoJK699lqxb9++Kf25nItMti9CCCHe//73i2XLlolisVh97Hvf+151GPKjjz4q1qxZI6644gphWdaE7/Xll18WmqZVZ1hdeOGF4lOf+tSEryeRDIWMjxIfGR8lkoHMRHxsb28fV1+ejJGnBxkfZ45ZKyinm+9///siEAiMefjtQw89JBKJxIDBtu3t7QOO+exnPyuSyaT48Y9/LLZu3SpuvPFGsXTp0gFvQsn4OdMa7S+99FJx7733ihdffFGoqipaW1sndT2JZKaR8fHMQcZHiWTmkTHyzEDGx5njnBWU462pfuihh0QymRz2eo7jiDlz5ogHHnig+lhfX58IBoPie9/73pTd97lIuVwWmqaJRx99dMDjt912m7jxxhtHPPeBBx4QyWRSvPDCC2N6rsbGRvHVr351orcqhBDiy1/+sli1apW46667xHXXXTepa0kkpwMZH88cZHyUSGYeGSPPDGR8nDlmZQ/ldDPRmupcLsfixYtZuHAhN910Ezt37qx+79ChQ7S3tw+4ZjKZ5MorrxxznbZkaAKBAJdddhlPPPFE9THHcXjiiScGzJoazOc+9zk+/elP84tf/ILLL7981Odpa2ujp6eHuXPnTup+3/GOd9DW1sbXv/51/vRP/3RS15JIZhoZH88sZHyUSGYWGSPPHGR8nDnOSUHZ3d2Nbdu0tLQMeLylpYX29vYhz1m9ejXf/OY3eeyxx/j2t7+N4zhs3LiRtrY2gOp547mmZOycSY32yWSSP/zDPyQWi3HzzTdP6loSyUwj4+OZh4yPEsnMIWPkmYWMjzODfrpv4Exhw4YNA3YzNm7cyJo1a/jXf/1XPv3pT5/GOzs3uOWWW+jq6uITn/gE7e3tXHLJJfziF7+oBt/W1lZU9eT+yFe+8hUqlQp/9Ed/NOA6n/zkJ/m7v/s7NE1j27ZtfOtb36Kvr4958+Zx3XXX8elPf3pK5mkeO3aMd77zndM6m1MimS3I+Hh6kfFRIpndyBh5+pDxcWY4JwXlZIbf+hiGwbp166qDbf3zOjo6BqS8Ozo6uOSSS6bmxs9xPvjBD/LBD35wyO899dRTA/59+PDhEa8VDod5/PHHp+jOTtLb28tTTz3FU089xZe//OUpv75EMt3I+HhmIuOjRDIzyBh55iHj4/RzTpa8TrSmuhbbttm+fXv1P/7SpUuZM2fOgGv29/fz3HPPjfmakjOfdevWcccdd3D//fezevXq0307Esm4kfFRMl3I+Cg5G5AxUjIdnPHx8XS7Ap0uvv/974tgMCgefvhhsWvXLvHe975XpFKpqo3zrbfeKu65557q8X//938vHn/8cXHgwAHx0ksvibe97W0iFAqJnTt3Vo/57Gc/K1KpVHU2zU033SQtnyUSyRmHjI8SiUQyPDJGSiQDOWcFpRDjG3774Q9/uHpsS0uLuOGGG8TLL7884Hr+UNqWlhYRDAbFtddeK/bu3Tuu4bfXXHPNkEN2b7jhhuoxt99++ynfv/7666fuByORSM55Zio+CiFkjJRIJGcccg0pkZxEEUKIGUqGnpP84Ac/4LbbbuOrX/0qV155JZ///Od55JFH2Lt3L83Nzaccn06nqVQq1X/39PRw8cUX82//9m/ccccdANxxxx10dHTw0EMPVY8LBoPU1dVN++uRSCSSqUTGSIlEIhkaGR8lZwrnZA/lTPL//X//H3feeSfvete7OP/88/nqV79KJBLhm9/85pDH19fXM2fOnOqfX/7yl0QiEd761rcOOC4YDA447kwJBP/yL//CkiVLCIVCXHnllTz//PMjHv/II49w3nnnEQqFuPDCC/n5z38+4PtCCD7xiU8wd+5cwuEwr3vd63jllVem8yVIJJIpRMbIgcgYKZFIfGR8HIiMj7MXKSinkYkOv63lG9/4Bm9729uIRqMDHn/qqadobm5m9erVvP/976enp2dK7306+MEPfsBHPvIRPvnJT/Lyyy9z8cUXc/3119PZ2Tnk8Zs2beLtb3877373u9m8eTM333wzN998Mzt27Kge87nPfY4vfvGLfPWrX+W5554jGo1y/fXXUyqVZuplSSSSCSJj5EBkjJRIJD4yPg5ExsdZzmktuD3LOXbsmADEpk2bBjx+9913i/Xr1496/nPPPSeAU+rlv/e971Wbth999FGxZs0accUVVwjLsqb0/qea9evXi7vuuqv6b9u2xbx588R999035PF//Md/LN70pjcNeOzKK68U73vf+4QQbr/BnDlzxAMPPFD9fl9fnwgGg+J73/veNLwCiUQylcgYORAZIyUSiY+MjwOR8XF2IzOUs5hvfOMbXHjhhaxfv37A429729u48cYbufDCC7n55pv56U9/ygsvvHDKLJ3ZxER22p555pkBxwNcf/311eMPHTpEe3v7gGOSySRXXnnlmHfvJBLJmYuMkTJGSiSSoZHxUcbHmUQKymlkMsNv8/k83//+93n3u9896vMsW7aMxsbG6oDc2Uh3dze2bdPS0jLg8ZaWFtrb24c8p729fcTj/a/juaZEIpk9yBh5EhkjJRJJLTI+nkTGx9mPFJTTyGSG3z7yyCOUy2X+5E/+ZNTnaWtro6enpzogVyKRSM4EZIyUSCSSoZHxUXImIQXlNPORj3yEr3/963zrW99i9+7dvP/97yefz/Oud70LgNtuu42Pfexjp5z3jW98g5tvvpmGhoYBj+dyOe6++26effZZDh8+zBNPPMFNN93EihUruP7662fkNU2Eiey0zZkzZ8Tj/a8T2b2TSCSzAxkjXWSMlEgkg5Hx0UXGx9mPFJTTzC233MKDDz7IJz7xCS655BK2bNnCL37xi2qKvbW1lRMnTgw4Z+/evTz99NNDlipomsa2bdu48cYbWbVqFe9+97u57LLL+N3vfsdzzz3H//7f/5t58+ahKAo//vGPR72/p556iksvvZRgMMiKFSt4+OGHTzlmvDbNQzGRnbYNGzYMOB7gl7/8ZfX4pUuXMmfOnAHH9Pf389xzz426eyeRSGYHMxUjP/e5z/FHf/RHszI+goyREonkVGR8dJHx8QzgdLsCSaaOn//85+L//t//K/7rv/5LAOLRRx8d8fiDBw+KSCQiPvKRj4hdu3aJL33pS0LTNPGLX/yiesz3v/99EQgExDe/+U2xc+dOceedd4pUKiU6OjrGfX/f//73RTAYFA8//LDYtWuXeO973ytSqZRob28XQghx6623invuuad6/O9//3uh67p48MEHxe7du8UnP/lJYRiG2L59e/WYz372syKVSlUdy2666SaxdOlSUSwWx31/Eonk7GW2x0f/ejJGSiSSmUbGRxkfJ4sUlGcpYwkIH/3oR8XatWsHPHbLLbeI66+/vvrv8do0j8aXvvQlsWjRIhEIBMT69evFs88+W/3eNddcI26//fYBx//nf/6nWLVqlQgEAmLt2rXiZz/72YDvO44j/vZv/1a0tLSIYDAorr32WrF3794J3ZtEIjk3mK3xUQgZIyUSyelFxkcZHyeCIoQQpzNDKpkeFEXh0Ucf5eabbx72mFe/+tVceumlfP7zn68+9tBDD/HhD3+YTCZDpVIhEonwwx/+cMB1br/9dvr6+njsscem7wVIJBLJNCHjo0QikQyNjI+SiXBO9FB2dXUxZ84c7r333upjmzZtIhAInFJffS4xnKVyf38/xWJxQjbNEonkzELGx6GR8VEikcj4ODQyPkoGo5/uG5gJmpqa+OY3v8nNN9/Mddddx+rVq7n11lv54Ac/yLXXXnu6b08ikUhOGzI+SiQSydDI+CiRjI1zQlAC3HDDDdx55528853v5PLLLycajXLfffed7ts6rQxnqZxIJAiHw2iaNuGhuhKJ5MxBxsdTkfFRIpGAjI9DIeOjZDDnRMmrz4MPPohlWTzyyCN85zvfIRgMnu5bOq2MZqk8maG6EonkzELGx4HI+CiRSHxkfByIjI+SwZxTgvLAgQMcP34cx3E4fPjw6b6dKSeXy7Flyxa2bNkCwKFDh9iyZQutra0AfOxjH+O2226rHv9nf/ZnHDx4kI9+9KPs2bOHL3/5y/znf/4nf/mXf1k9ZrShuhKJ5OxAxkcZHyUSydDI+Cjjo2QUTrfN7ExRLpfFxRdfLG6//XZx7733iubm5gnPwpmtPPnkkwI45Y9vo3z77beLa6655pRzLrnkEhEIBMSyZcvEQw89dMp1R7JplkgkZz4yPsr4KJFIhkbGRxkfJaNzzowNufvuu/nhD3/I1q1bicViXHPNNSSTSX7605+e7luTSCSS04qMjxKJRDI0Mj5KJKNzTpS8PvXUU3z+85/nP/7jP0gkEqiqyn/8x3/wu9/9jq985Sun+/amjSVLlnDHHXec7tuQSCSzGBkfJRKJZGjO1fgokYyXc0JQvuY1r8E0Tf7gD/6g+tiSJUvIZDK8//3vn5F7OHDgAO973/tYtmwZoVCIRCLB1VdfzRe+8AWKxeKM3MNk+frXv84111xDS0sLwWCQpUuX8q53veus7CeQSM4VZHycekzT5Pzzz0dRFB588MHTfTsSiWSCzIb4KJGcCZwzY0NOJz/72c9461vfSjAY5LbbbuOCCy6gUqnw9NNPc/fdd7Nz506+9rWvne7bHJXNmzezdOlSbrzxRurq6jh06BBf//rX+elPf8rWrVuZN2/e6b5FiURyhnG2xMdavvSlL1XNLCQSiUQiOduRgnKaOXToEG9729tYvHgxv/71r5k7d271e3fddRf79+/nZz/72Wm8w7Hz5S9/+ZTHbr75Zi6//HL+/d//nXvuuec03JVEIjlTOZvio09nZyef+tSn+Ou//ms+8YlPnO7bkUgkEolk2jknSl5PJ5/73OfI5XJ84xvfGLBY8lmxYgV/8Rd/AcA111zDxRdfPOR1Vq9ezfXXX1/9t+M4fOELX+DCCy8kFArR1NTEG97wBl588cUR76evr48Pf/jDLFy4kGAwyIoVK7j//vtxHGdCr2/JkiXV60okEsl4OBvj4z333MPq1av5kz/5kzGfI5FIJBLJmYzMUE4z/+///T+WLVvGxo0bRz321ltv5c4772THjh1ccMEF1cdfeOEF9u3bx9/8zd9UH3v3u9/Nww8/zBvf+Ebe8573YFkWv/vd73j22We5/PLLh7x+oVDgmmuu4dixY7zvfe9j0aJFbNq0iY997GOcOHGCz3/+82N6TT09Pdi2TWtrK5/61KcAuPbaa8d0rkQikficbfHx+eef51vf+hZPP/00iqKM/gOQSCQSieRs4HTPLTmbyWQyAhA33XTTmI7v6+sToVBI/PVf//WAxz/0oQ+JaDQqcrmcEEKIX//61wIQH/rQh065huM41b8vXry4OkNICCE+/elPi2g0Kvbt2zfgnHvuuUdomiZaW1vHdJ/BYLA6o6ihoUF88YtfHNN5EolE4nO2xUfHccT69evF29/+diGEEIcOHRKAeOCBB8b0+iQSiUQiOVORJa/TSH9/PwDxeHxMxyeTSW666Sa+973vIbzxoLZt84Mf/ICbb76ZaDQKwI9+9CMUReGTn/zkKdcYaVf8kUce4VWvehV1dXV0d3dX/7zuda/Dtm1++9vfjuk+//u//5uf//zn/OM//iOLFi0in8+P6TyJRCLxOdvi48MPP8z27du5//77x/R6JBKJRCI5W5Alr9NIIpEAIJvNjvmc2267jR/84Af87ne/49WvfjW/+tWv6Ojo4NZbb60ec+DAAebNm0d9ff247ueVV15h27ZtNDU1Dfn9zs7OMV3nta99LQBvfOMbuemmm7jggguIxWJ88IMfHNf9SCSSc5ezKT729/fzsY99jLvvvpuFCxeO63klEolEIjnTkYJyGkkkEsybN48dO3aM+Zzrr7+elpYWvv3tb/PqV7+ab3/728yZM4fXve51k74fx3F4/etfz0c/+tEhv79q1apxX3P58uWsW7eO73znO1JQSiSSMXM2xccHH3yQSqXCLbfcUp3L29bWBkBvby+HDx9m3rx5BAKBSd+nRCKRSCSzDSkop5k3v/nNfO1rX+OZZ55hw4YNox6vaRrveMc7ePjhh7n//vv58Y9/zJ133ommadVjli9fzuOPP046nR7XLvzy5cvJ5XJTsviqpVgsUi6Xp/SaEonk7OdsiY+tra309vaydu3aU7537733cu+997J582YuueSScV9bIpFIJJLZjuyhnGY++tGPEo1Gec973kNHR8cp3z9w4ABf+MIXBjx266230tvby/ve9z5yudwp9vN/+Id/iBCCv//7vz/len5v0VD88R//Mc888wyPP/74Kd/r6+vDsqxhz7Usi97e3lMef/7559m+ffuwzokSiUQyHGdLfPzQhz7Eo48+OuDPv/7rvwJwxx138Oijj7J06dJhz5dIJBKJ5ExGESN9wkqmhJ/85CfccssthMNhbrvtNi644AIqlQqbNm3ikUce4Y477qguPnwuvPBCduzYwZo1a9i1a9cp17ztttv4j//4D974xjfyhje8Acdx+N3vfsdrX/vaaunpkiVLeM1rXsPDDz8MuLb4r3rVq9i2bRt33HEHl112Gfl8nu3bt/PDH/6Qw4cP09jYOORr6OvrY8GCBdxyyy2sXbuWaDTK9u3beeihhwiFQjz77LOsXLlyan9wEonkrOdsiI9DcfjwYZYuXcoDDzzAX/3VX038BySRSCQSyWzn9BnMnlvs27dP3HnnnWLJkiUiEAiIeDwurr76avGlL31JlEqlU47/3Oc+JwBx7733Dnk9y7LEAw88IM477zwRCAREU1OTeOMb3yheeuml6jGDbfGFECKbzYqPfexjYsWKFSIQCIjGxkaxceNG8eCDD4pKpTLs/ZfLZfEXf/EX4qKLLhKJREIYhiEWL14s3v3ud4tDhw5N6GcikUgkQpz58XEo5NgQiUQikZwryAzlLOULX/gCf/mXf8nhw4dZtGjR6b4diUQimTXI+CiRSCQSyexBCspZiBCCiy++mIaGBp588snTfTsSiUQya5DxUSKRSCSS2YV0eZ1F5PN5fvKTn/Dkk0+yfft2HnvssdN9SxKJRDIrkPFRIpFIJJLZicxQziJ8E4dUKsUHPvAB/uEf/uF035JEIpHMCmR8lEgkEolkdiIFpUQikUgkEolEIpFIJoScQymRSCQSiUQikUgkkgkhBaVEIpFIJBKJRCKRSCaEFJQSiUQikUgkEolEIpkQUlBKJBKJRCKRSCQSiWRCSEEpkUgkEolEIpFIJJIJIQWlRCKRSCQSiUQikUgmhBSUEolEIpFIJBKJRCKZEFJQSiQSiUQikUgkEolkQkhBKZFIJBKJRCKRSCSSCSEFpUQikUgkEolEIpFIJoQUlBKJRCKRSCQSiUQimRBSUEokEolEIpFIJBKJZEJIQSmRSCQSiUQikUgkkgkhBaVEIpFIJBKJRCKRSCaEFJQSiUQikUgkEolEIpkQUlBKJBKJRCKRSCQSiWRCSEEpkUgkEolEIpFIJJIJIQWlRCKRSCQSiUQikUgmhBSUpxnHcTBNE8dxEEKc7tuRSCSSWYMQAtM0sW1bxkeJRCKRSGYp+um+gXMVIQS2bVOpVCgWi2iahqZp6LqOrutomoaiKCiKcrpvVSKRSGYc27YxTZNCoYCiKKfER1VVZXyUSCQSiWQWoAi57TvjDN51r1QqKIpSzVL6QlJVVQzDGLCAkkgkkrMZIQSWZWFZ1oD4KISo/vHFpK7rGIYhBaZEIpFIJKcRmaGcYfxdd8dxqgLRF4/+v/1F0+HDh8nlcqxZs6a6ePLFpRSYEonkbKO2BQBOxsZaoejHx76+Pnbt2sVVV11VPU5mMCUSiUQimXmkoJwh/F33Xbt20djYSENDQ3XXfTB+htIve9U0rZrVrFQqAKcsnqTAlEgkZypCCBzH4fDhw1iWxeLFiwdUbQBVcVgbH4FqfLRtG9u2KZfLAyo8/FJZ2UIgkUgkEsn0IAXlDFC7697X10c8Hh/zwmZwCaz/mH9N0zQBZAZTIpGckdS2AOTzeUzTHFN8HCwwB1d42LaNZVkDBKjsUZdIJBKJZOqRgnIaqRV+fonreETecIud2t35wc8znMD0d+glEolktuDHLdu2xx0fgRErPAYLTMuyqmLVj6F+BlNuwEkkEolEMnGkoJwmanfdgWo/z3BlriNdZzRGEpi+oYWqqkPu0EskEslMU5tB9Dfbxhsfxxq/pMCUSCQSiWR6kYJyGhi861678JmOBdNQ541FYA4ukZUCUyKRTDfDbbbB+OKjf63xMprA9O9JthBIJBKJRDI2pKCcQobbda9lJhZMg6kVmP71HMehUqnwwgsvsGrVKqLRqBSYEolkWhnscj1afBwpBk1VfBpOYJqmye7du0kmkzQ3N0uBKZFIJBLJMEhBOUWMtOtey0xkKMdyTV9g5nK56j1VKpUBDolSYEokkqmgdrYkTE189K871dQKzHK5XI3pskddIpFIJJKhkYJyChht172W2bBgGsxwGcxyuTzimBK5gJJIJKMx1GzJkQzHBse8kY6dbnyX7dFaCGoFpuxRl0gkEsm5hhSUk6B2110IMaZB2qc7QznW5/RFo1/+JYQ4RWDWzniTQ8QlEkktQ7lcT2V89J9jphmPCVqtyY+MjxKJRCI5W5GCcoI4joNlWaOWuA5mti2YRrt+bTZhsMAslUrVY3yB6e/OS4EpkZy7jLUFYDCzfcNtKKQJmkQikUjOdaSgHCe1iwW/HGo8C4MzccFUixSYEolkJEZyuR6N2bjhNt64NZIJmuxRl0gkEsnZiBSU48Dfdd+1axepVIo5c+ZMaLExmxZMMDnhOhaB2d7eTlNTU9VJVgpMieTsw3e5PnLkCPl8nlWrVk1rfDwT4sdgE7ShBGZvby+BQID6+nopMCUSiURyRiIF5Rip3XUvFotEIpEJfeCPd8F0OnqEJsNQAvPIkSNVMVkqlVBV9ZQdeikwJZIzl9oS10qlQqFQmPb46D/vmcRQArOjo4N4PE40GpUmaBKJRCI5I5GCchSGmy3pOxaOl8ELpnQ6TXt7O6lUilQqRSAQmKpbHxPTvSDzX6+/OPKzl7ZtY9v2sCVgUmBKJGcGg12uVVWdcFwZHB+LxSIHDx4kGo1SX19POBwecCxMrCx1tuDft98iMNgErTY+ShM0iUQikcxWpKAcgeGMJaZiwSSE4ODBgxw4cICmpiYOHTpEPp8nFotRV1dHfX09juOccTvwQ1G74BtuiPhggekvnGpnvMkFlEQyexjO5XqqBGVHRwfbt2+nrq6ObDbLvn37CAaD1NXVUVdXRzQancqXMyQzIVb9nx3IHnWJRCKRnJlIQTkMfo/LUHb3k81QWpbFiy++SLFYZP369YRCIVRVpVKp0NvbSzqdZu/evZRKJTRN4+DBg9TV1ZFMJqsLj6lkJhZMI82SG0pgWpaFaZrV7/vCsnbGm1xASSSnh5FcricbHx3HYffu3Rw7dozzzz+fhoYGwM2EZjIZ0uk0ra2t5HI5APbt20d9fT11dXXo+pn3kTaW+AgjC8zB8VEKTIlEIpHMJGfep+8042fLfBfXoT6YJ7MDXy6X6erqoqmpiXXr1lWFJEAgEKClpYWWlhYA2traOHLkCMVikWPHjmHbNqlUqrpDH4/Hz4hFw3h2+ccjMGtnvE2H0JZIJAMZi8v1ZOKjaZrk83mEEGzYsIFIJFKNj7qu09DQUBWY+Xye5557DiEEBw4coFgsEo/Hq/ExmUwOGOcxW5lIfISBAtNxnKrAlD3qEolEIplppKCsYayzJVVVHfcOvF/i2tHRQSqV4uKLLx51Jz8YDBIIBFi7di1CCPL5PL29vfT29nL48GEURakunurq6iZkFDQTJbWTKRuTAlMimR3UlrgCw1YJTDRD2dnZyZ49e1BVlauuuqoqmIYz6jEMA4CVK1eiaRqlUqkaH3ft2oVlWSSTyQEbcLMxLkxFfISBAtNvIZAmaBKJRCKZCaSgZPyzJcfrRFipVNi2bRv5fJ558+aN68Pcfx5FUYjFYsRiMRYuXIjjOGSzWXp7e+nq6mL//v3oul4t/aqrqyMUCo35HqeTqexDGk5gdnV1cejQoWrWd7BD4mxcSEokZwq1Lte1//+GYrwZSsdx2LdvH0ePHmXRokV0dXWNKbM4OKaEQiHmzp3L3LlzEUJQKBSqArO1tRUhxIANuGg0OmpcmqkeyumOj6Zp8tvf/pb169cTCAROMfmRLQQSiUQimQznvKAc6657LaqqVrOYo5FOp9m6dSupVIqNGzdy+PBhyuXygGNG6p8Z6R6SySTJZJIlS5ZU+4t6e3s5duwYe/bsIRQKDRCY/o7+eJ5nstQK4unA/3351/edZE3TpFKpVL8nBaZEMn6Gc7keifFUcBSLRbZs2YLjOGzcuJFCoUBnZ+e473EwiqIQjUaJRqMsWLAAIUR1A66np4cDBw6gaVrVAK2urm6Ag+xMMp2itTY+2rZdFY/+71T2qEskEolkKjinBeV4dt1rGUuGUgjBoUOHOHDgAKtWrWLRokXVD+mhzh1uUTHWnX5N06ivr6e+vh4Ay7Lo6+sjnU5z6NAhduzYMcBBNplMzoiBhX//0y3gHMcZsHiq3aH3f8+maQKcIjD9RZZEIjnJcC7XozHWCo7Ozk62b99OS0sLa9asqZatjmdO71hRFIVEIkEikWDx4sU4jlPdgDtx4gR79+4d4CBbX18/YyOcZioLClQ308ZrgiY34CQSiUQyEuekoJzIrnsto/UI1Za4rl+/nmQyOeDcwQum4RYUk1lk6LpOY2MjjY2N1XtKp9P09vayd+9eyuUyiUQCgEwmUy2DmmqmO0Pp4/8eB+MvjmrvxxeYQ2Uwa3foJZJzlZFcrkdjtPhYW+K6du1a5s2bN+D74+3rnkgfuKqqVfEI7gZcrYPsrl27iEajmKZJNpulsbFx2jbgZkJQ+r+Pwc8je9QlEolEMhWcc4LSL306ceIEixYtmpA5wUg9Qr29vWzZsqVa4jq4zHS8/ZdTZZoTCASYM2cOc+bMAdxSs3Q6TSaTYd++fezevXtaHGRPt6AczFgEpqqqpyygpMCUnAv4m2379u1j/vz5BIPBKY2PxWKRrVu3Yts2GzZsIBaLjfncwUzl/8nBDrKmaVY33zo6Omhra5s2B9mZEpRj+awbTWACskddIpFIJKdwTglKf9c9n89z8OBBlixZMqHrDNUjNFyJ62DGIyinc5ERDoeZN28ee/fu5YorrsCyrCl3kIXZJygHUysw/XsdSmAOXkBJgSk526gtcd2/fz8tLS0TMvYaLkM5VInrcPcx3vueagzDoLm5mdbWVhYuXEgymZw2B9mZFJTjZSSTH9mjLpFIJBKfc0JQDp4tqev6hAdvw6misFKpsH37dnK53CklrsPdz3jufbqYCQfZmRCUQghsy570IqbWft+/LpzciCiXywgh6Ovro7m5mUAgIAWm5KygNj76AmKisWfwuY7j8Morr9Da2jpkiWsts2XDbTDT4SDrM92CUgiBZU4+PsLQAnNwj3pfXx/JZJJIJCJ71CUSieQc4awXlEMZS0xkjmQttef39vaydetWksnkkCWug5mtC6ZaptJBdjoFpeMIdj7dxo6n2+jPZGlcGuK81TZGYGpK0YYSmJVKhR07dnD11VdXnYFlBlNypjKcy7WmaROOkbXx0S9xtSxryBLXwYy3JcB/DdPJUH2HU+kg6xuKTQdHdnXzwn8fpK8nhwgVuXhtiXjd1I2TGqqF4JVXXmHFihXV78sedYlEIjn7OasFpb/rPrh/xF/wTHRn2C/pOnjwIAcOHGDlypUsXrx4Qg6IY5mDNt2Mdg9DOcj6u/OjOchORriPxisvtbPpsVdQdZVK2ebgS328vPAQV75pxbQ8n/97VxSl6gDpl4CVy2UqlQq//vWv+Zd/+Rd+/etfT8s9SCRThZ9Z8v+P1mawJrPp5se4rq4utm3bNmqJ61DnjvV5ppux3MtkHWSnK0PZfSzLk9/bTSFbQQsIeg6UeeoHu7nhzovRtOkpSfVHkgQCAQzDOKVHPZvNctVVV7F3796qKZxEIpFIznzOSkE5eNd9sBlBbcZpIh/kjuPQ399PoVDgiiuuIJVKjfncoRZMw93DRHbrZwJd12lqaqKpqQkY3kHW772E6Vn8HXulF9t2aFwQJ5OxcWyHwzu6p01QgrtJUft+qs1i+uWw+Xx+2p5fIpkstYv84cxaJlvFYds2W7ZsGbXEdTDjHavkf282MVYHWf+YifY3jkb7oQy5vhItS5KUyyWKZZ2OwxlyvSWSjZEpfz4fx3Gqn7GDM5iFQoH29vbTNvNTIpFIJNPDWScoB++6DzWg2f/wnsgHeW9vL/v37wcYU4nrYGbTDvx0Osj29vaSTqdpa2sDYMuWLVPuIKsHVBxLeK9DYFsCIzg15a7DYdv2sJkWRVHI5/NEo9FpvQeJZKKMdbbkRAVlqVRi27ZtAFx11VXE4/FxnT+R+DjbBOVgBjvIVioV+vr6qp8lpmmye/duGhsbp9RBVtNVFAUcWyAECEugaiq6cfpiZD6fJxwOT5lDrkQikUhmB2eNoBzLrrtPraAcz/UPHz7M/v37mTNnDtlsdtxiEk7f2JCZJBwOV11ks9ksL730Eg0NDVPuILv6irkc3tHNiYMZSqUiwYjOha9eOA2v6CQjLZbAXTCN1icmkZwO/Pg4OMs+FBMRlH6Ja0NDA/39/RPaWBlvfJyJstepfo5AIEBzczPNzc0A/OY3v6G5uZlisTilDrJLLmhkzpIUxw/2YVkmpik4b/1cIonA6CdPEL+VZLj7zeVy4zIskkgkEsmZwVkhKMe66+4zXkHpu7hms1muuOIKyuUy2Wx2Qvc6mzKUM/U8qqqycOHCYR1kDcMYIDDH6iDbsjjJG999EQe2dnL82HHmLk+x8tI50/paasu5hqJQKEhBKZlV+C7XlmWNeR7heARlrYvr+eefT1NTE+3t7RPaDJttpjwztaHX3NxMNBqdUgfZcCzAG959EbufPU7H8S5EoMyVb14+rfHe/wweKUMpKzgkEonk7OOMF5Tj2XX38ctgx7Jg6uvrY8uWLSQSCa6++moMw6Crq2vShhU+pmnS1tZGLBYjmUyesrN7JmYoaxnc+zSVDrIATQsTNC1MsHNneUYWKv77bDjkgkkymxjvZpvPWAVlqVRi69atmKZZdXH1e9dH23wZitoyVj9WHj9+vDq2yDf7Gnz8mUxtjByLg6yu6wME5kj9iNFkkMuvX8qxYwG6u7unzYzHx3/PjCYoz4bfm0QikUhOcsYKyonsutcy2oKptsR1sIvrZMxyas/t7+9n8+bNaJpGuVzGcRxSqdQAR9XpZCbE6mjGR5NxkK1luowtBjNayWsul5MZSsmsYDiX67EwFkHpl7g2NzezZs2a6v/LyfQ21p5rmiZbt24ln8+jKAo7d+4kkUhU44Xfn3m2bbrVMlkHWZ+ZjI8jvdfkhptEIpGcnZyRgnKiu+61qKpaPX8wg0tcB7u4ToWl/rFjx9i1axdLly5lwYIFOI6g63iadE8fHce7qrPMLMuivb192IXCbGe8TrrjcZD1DSz838dsEJT5fJ6WlpZpvw+JZDhGc7keCyPFR8dx2L9/P0eOHOH8889n/vz5p5zrHzde/Pvs6+tj27ZtJJNJ1q9fj6qqpDv76e5Mk+7qp62tDcdxcByH9vZ25s6dSzgcnpbM13Rm0/yxQ2N9jvE4yNbX15NKpdB1fcYF5XDIDTeJRCI5OznjBKVt23R0dNDV1cXq1asn/GE/nCj0S1zj8TgbN24cUsRNJkMphKBYLLJnzx7WrVtHQ0MDxWKJQ9u66DicwbYd4nX1XHLJavLlPvbt28fRo0fZtWtXNVNniAiiYqAbGg1zY0QSwQndS+3rmS4mO2NtJAfZY8eOYds2qVSKYrFIPB6ftpluPmPpoZQ78JLTheM45PN5duzYwSWXXDKky/VYUFV1yBg3VInrYPznm8zYkRdffJFVq1axePFiTNPk6N5uju5OUy7ZhKJRVl20hHCdwksvvURvby9Hjx7FMAzq6+uJBOLYBR1N00k2hkk1T/z/40xlPycas0ZykH3llVcolUpVV21N00bdEJsso11fxkeJRCI5OzljBGXtrnu5XKa3t3dSwmGwoBRCcOTIEV555RVWrFjBkiVLRnSJnchiqVAo8Morr2DbNq961asIh8MIIeg5luPY/l4SDRGMoEb6eJbWXWmWrkuhqipXXHEFlUrFdUnde4K9zx+gmKsQDIZomp/ksv+1nJb5DbOyL2Ukx7+JUOsgK4Qgn89Xy2NbW1tpa2ubEgfZ4RhLD6XcgZfMNLUu15Zl0dnZCUxcqAwV47q7u9m2bRuNjY1cdtllQ5ae154/XjFmWRa7d+8GYN26ddUqhVxfmSO7etANjcZ5Yfp7ihza3sUlr12Mpmmcd955hMNh+vr6ONHWxTO/2k1fV5FAwCBZH+eiVy9m2Zp5s3JUhf8zmqoYNdhBtlQqVc19stksv/vd76bEQXY4xlLBIQWlRCKRnH2cEYLScRwsy6qWYOm6Pmw51lipXTCZpsn27dvp7+/n8ssvr5YTDcdEMpR+v1EqlUJRlAFGCpWSBUIQDLu/jkgiSClfwal5iYFAgJaWFo7vLDJvjk6iKUg2m+X4gTTPPPkyDYtPGtnU19ePaXD0bOihnAyKohCLxYjFYnR0dLBw4UJCodCUOMgOh1wwSWYbg1sAfBOr0TY/RqK25LW2xHXNmjUsWLBg1PPHanrmk8/n2bx5c1WkJpPJ6vcqJYtKySLV5P6/itWFyHQX3LiJ+/o1TaOhoYHsCYdUtMKylREKxTwnDqd58andHOs+QDKZrPZfxmKxWbEBN9WCcjChUIi5c+eSy+VwHIcFCxZMiYPscIxWwSE33CQSieTsZFYLytpdd1+Y+KU7kymngpOCciwlrsOdO9bXcODAAQ4dOsT5559PMBis7sL7BMM6iqJQypsYQY18pkzj/BiafqpwNcs2gZBOMBgkGAwiigEWrqlnzsoo6XSa9vZ29u3bNy6n1OlkuktQffyFzGgOsuFweMACarw/F9u2RzxHLpgkM8lILteTiZF+jPNLXCuVCldddVXVCGcs5491w6q9vZ0dO3awcOFCli1bxhNPPDHg+8GwTiBkkE0XiSaDZNNF9zEvbtZimg6qqhAIGAQCKdQFQYyQxoWXz60KqcOHD1d7EX2BOdJG03S3BEz3c8DJ+DiVDrJDIXsoJRKJ5Nxk1grKwbvutb1Afi/IZFAUhY6ODjo6OkYtcR3q3LEs1iqVCtu2baNQKFQXYz09PacstBrnx5m/qp6OwxnyGYdkY4QlFzShqqc+R+O8GPu3dKJqJRzbQdEUUk3RqpBaunQplmXR19dHOp3m0KFD7Ny5k3g8PsAptfZDfzb3UI6VoUwnxuog6wvv4RxkBz/PcDvw/gw5maGUTDcjuVz7f59MjFRVlXw+z6ZNm8ZU4jqYsVRx+PMrjx49ygUXXMCcOXOqcbU2vsZSIZZc0EDr7jS97QWCUZ1lF7cQirgbO7XPk2wIoxkqfV0FdF2lmKswd0VztZLBn4Xb399POp2uOqX6G01+LPBf63RXccykoBy8ETYeB1n/5zLahutYeij9fk+JRCKRnD3MSkE52mzJkRwIx4JpmhSLRYrF4phKXAczlt33TCbD5s2bSSQSbNiwofphPtRCS9VUll7YxJwlSWzLIRIPYAR1CoXCKccuOr8R2xF0tWbRdJ1lFzXTvCgx4Bhd12lsbKSxsRGAcrlMOp0mnU6zc+fOqpGNX1Y23YPBT5egHMxEHWRrGcvYkLFmcSSSiTAWl+vJxEghBJlMhr6+PtauXcv8+fMn5BI70qZbuVxmy5YtVXMffxNmqOdRFIV5y+uonxOnUrIIRQxCUWPI45sWxjlv/Vxa96RxLIelFzWxdG3TKfeWSqWq7t3+RlM6nebAgQMUi8VqHLBte1rjo/8zmglBOVp8HMlB9siRI+zcuXNIB9laxtISIDOUEolEcvYxqwTlWGdLTqbkNZPJsGXLFgCWLVs2bjEJpw7frkUIQVtbG3v27Bky8znczr2qKsRSA8uuhnrtuqGxct0cll3UjIIrRkcjGAwyd+5c5s6dWzWySafT9PT0APDss88O6L8MBifnGluL4zizRlAOZqwOsv7PJRaLSVMeyWllrLMlJxojS6US27ZtI5fL0djYOKZ+yaEYqYqjt7eXLVu2UF9ff0rmc6gZlv7fI/EAkfipGbLaYxVFYf7KeuYur/N6K0ePCYM3mkqlUnUDrlwus2PHjgHxcSqNvmYyQzne+DhWB9naDbixCEq54SaRSCRnH7NGUI5ntqS/WBpP9muwi2s6nZ6UYQWcWv5o2zY7d+6ku7ubSy+9dMjSnvEa+gx37FgWSkNRa2QzZ84cnn76ac477zwymQxtbW3s3r2baDRaLRVNpVKTckecyQzluJ9HOGAXwcqDXSBs5QmHSsxvziEaypRzneSKRzjWdwmHDx+uXj8QCJBKpU5ZWPolr1JQSqaaWpdr3zl5pPf7RNoCal1cGxoayGazE77foao4amPw6tWrWbhw4bAZybHGyOGduBVgYnEnFAoxb9485s2bxzPPPMPChQuxbZvu7m4OHDhQHU/iC8zJzAeu9QaYTqbCbXs4B9ne3l527dqFZVkEAgECgQCZTGZIB1nZEiCRSCRnJ7NCUDqOQ6VSGXXX3cf/kLJte0x9PaZpsmPHDjKZTLXENZPJTDjLOdQuej6fZ8uWLWiaxsaNG4c1eZjIYmmqRVnGzvBU9imuD18PQH19PY2NjSxfvhzTNKtZOr8MtNYd0Z9pNlZmtORVUcAqgO39sYooVg5hl1CsLDgVMLMgyihmDhwTcGovAloAhA1qiJCqEFz1VhpCzTiOQzabZfv27WSzWV544YVTHGT9Rf9kBeV9993Hf/3Xf1VNhDZu3Mj999/P6tWrhz3n4Ycf5l3veteAx4LBIKVSaVL3Ijn9DHa5HmuMHKugFEKwf/9+Dh8+zJo1a5g/fz6tra2TMvUZnKG0LIvt27eTyWS44oorquWmw507FZtuE6XjSIZcb5lgRMexBZFIhPr6ehYvXlw1+kqn07S2tlbnA/sCc7wbcDMVHyfj+DscvoOsX/lSKBSqnxlbt24d0kF2Kkx5ZHyUSCSS2cdpFZR+iavv4jqWhRJQ/cAey4LHL3GNxWIDXFwnOkvSP7f2+Ts7O9m2bRvz589n9erVI35wT8Xu+2T5t+5/4//1/z+ijVFUBt6rYRgDdqELhUJVYLa2tgIMMGmIRCIjPtekF0x2Gey8JxSLYOVQqlnFEtg5sMoszL9M6MgLqKorBnFK7le7DEbcFY9aEIQFig6KitDCIExQVBSriNCjKFY/wkigmP04c2+AkPtzUFW1atqzcuVKksnkAAfZl19+mXvuuYc5c+bwxBNPcMMNN1TNgMbLb37zG+666y6uuOIKLMvi4x//ONdddx27du0acXc/kUiwd+/e6r9nw1gEycQZzuV6LIy15NUvcS2XywNcXCcTH/3z/TiXy+XYvHkzoVBoTE7a442RUyko9zx/nB2/a8Os2KiqghPNsXr1yZ/DYKMvfz5wOp1mz549mKZZnfM4lg24mRKUUz0PeDCKohCNRgmHw6RSKZYuXXqKg+w//MM/UCgU+P3vf8/69etZsmTJhJ5LxkeJRCKZfZw2QTmRXXef2gzlcAghaG1tZd++fSxfvpylS5cOuP5kFkz+dSzL4vDhwxw5coQLLriAuXPnjunc8S6ApnLR0W628/P+nwPwcN/DvIt3jXh8JBIhEokwf/78qs18Op2mo6ODffv2EQwGqwusocZwnHLvtlkjEF1RqNh5hF1GMfsRwkatpBGKilLuBC0KZgaMpPc1BXYRR4ugCAuhBsCp4KCjqAbCiKPYRYSeQLH6wYihmH1gJKCSdq9j5xBq1BWTagiEhWOkUEQFJ1CP4pQQqUug7pJTfh5+j9DghWU+n+euu+7iM5/5DPfffz933XUXPT0943LG9PnFL34x4N8PP/wwzc3NvPTSS7z61a8e9jxFUar9oJIzm9oSV2BcYhLGVvLa09PD1q1baWho4NJLLx3wXp2soPTj3IkTJ9ixYweLFy9m5cqVY3oNUy0Sx0o+U2bv8yfQgxoN8+OU8ib7d3fSfSxPY1PjkOf484FbWloQQlAsFqv9l0eOHBkwnmSoMRyzybRsKvDj41AOspVKhbvvvpsnn3ySL3/5yzz//POsW7du3M8h46NEIpHMPmZcUE5m191HUZQRS7r8Ete+vr5hXVynQlBu27at6lI41jKe052h/E76Owjc52+z2tgd3s1ree2Y78dfJPhzHvt6e+jrPk7bKy9xIJ8mEdVIxYMkozqxkEqkuw0l14Ny4Fk3s+iYuL1NjpspdCyEGnS7nVQdBYFAR8HC0ZMoThkC9W7pqp5AMfsQRgLV7K1+tZQYmlJBKDoIC6GFUYSNY9ShiDIY9Sh2zss8ZhCeyBR6BKXSi9BCqFQQioEiLAg0IOa8bsifwXClY9FolFe/+tUIIdi6dSvZbHZCYnIoMpkMwKgZz1wuV128XXrppdx7772sXbt2Su5BMnPUulz7sW68jBQfa2fjnnfeeSxYsGBIl9jJCsqjR4+SyWS4+OKLqxUPYz33dGQoKyULs2wTb3BFXyhq4Nhglcf2c1AUpboBt2DBgmqZfO14En8+sN+ffrYJyuHGKqmqyutf/3p6e3t55JFHWL169bhnXA6HjI8SiURy+plRQenv4B49epRFixZNyoxguJIuv8Q1Go1y9dVXD1teNZkFU19fH+C64F1++eVTPp9tMFO1YPKzk47XN6ig8GTySd7P+2ufzOs/9PsQ82C7vYg4ZbCy4NgoZi8KCk2VHhr1OEpdP1Z9lGK2k2yfRs+JDCdsg6AOjqpRLoYIBEIomgZCoDi2+1wKKMJ0/y4q7i2oAfdbKoAGwkHoMRA2IlAHThmhx1GsAqhBFLMfEGh2FkUJgigjVAMFB4QGqoPQo+51jBQ4plve6njlrsICYaMoDuDgzLkF1KHfNyPNoczlclWjHn8ky2RxHIcPf/jDXH311VxwwQXDHrd69Wq++c1vctFFF5HJZHjwwQfZuHEjO3funLBTp2Rm8VsADh06RGNjI+FweMrjo9/fViqVBpS4DmYy8bFUKpHL5dB1nY0bN45aFj+Y07XpFk0GiTeESbfnSDVFyWfKBMIq8fqJuV77ZfJDzQf2x5NEIhF3Y66vj0QiMW2ib6bctsfqgj1VxmUyPkokEsnsYMYEpb/rXiwW2bNnD4sXL57UB9zgkq7RSlwHo6oqlUplXM9Z+xyKorB69epxZ6GGWywNtVM9ZQsAqwh2ga29P2VBKUfAcYg6DoZwiDlpeo/8G82OerLMVI+D2e+Wj1YKiEAUbMs1rHEc0FQEqptdNOrAKSGMFLqVJVY3l7jZjzCaMfPddPaZWOV+Wo8eQ1cdQpEk0XCQSCyOrgJKyDXLUTW3VFULuJlMNQhWyRV2joXQIq5ZDgqgg6ohlCggcFSBEAqK6v0uhIUiFLAr7nUqFYQR8/ooQ6BobnZUVRGKBpiA+/zOnDdAqGnIH6OfXR9OUObz+Sl3MLzrrrvYsWMHTz/99IjHbdiwgQ0bNlT/vXHjRtasWcO//uu/8ulPf3pK70ky9dS6XB88eJBYLDZuIVbLUCWvI5W4DmaigtJ/Dk3TWLp06YRew+AYOVocnKoNt0BI5/LrlvLyrw6T6y0RjhksnB8l0Tg1mbTB84FLpRLHjh3j6NGjbN++HcdxSKVS1QzmVI4nmemS16GoVCqYpjmlY0NkfJRIJJLZwbQLysGzJf0eu7E6tA5HbUlXbYnrZZddNiYzlPEumCzLYufOnaTTaS6//HJefvnlCd33lGQo7fLALKJdRLHynptpv5ttq/Qi8AViFMx+rtMjXO68ClsPIhDYjqCzrYumpOUKK6eMY9S7gs6ocw1qAlG3t9GIuf9Wwyh2GaGEagReABAIPeGWnAbqUKw8RqSRWOEoJS3J4vowRTtAKdtFX6ZMV+cxlECMeCRIOJogEtJQjSQ4FYSeRHEKbhbRF7Zmxs1Kmn0II+mKTzUMWAjFQKgGGHGEY4EeQqlmMbNeiWvmZB+lngQrizDibtZVCbrXSV4AqQuH/T3U9vsORS6XIxqNTtki8IMf/CA//elP+e1vfzvuXXTDMFi3bh379++fknuRTB+DXa4nMvJjMLXxcSwlrkOdP574KITg0KFDHDhwgDVr1tDR0THhez+dbQEN82K89u1rKOZMgmGdF19+fkqvX0soFKKhoYGOjg42bNhALpcbYGKj63pVXE52PMlsEJS5XA5gyrKTMj5KJBLJ7GFaBeVQsyWnSlD6JV1jLXEdzHgWTLlcji1bthAIBNi4cSPBYHDEwd0jMXgUSKVS4ZVXXsEwDBobG4mpfSiVXhSniFbO0lR5AfVYD4qTB+GgVHpcUWf1ewLJFUZK1cVUgKIgFNUzm/H6EI06NKufxsgStx9RC2GXCxSdjJshVHRQNLf8VAujOL5RTRlh1LnGOdUexpgr9LQwipl1s4eO7ZWJuosWv0TV0uIodh6MFBE1R7hpAfVWHlttoZTtJlcRpDsO027phMOGl8EMEQhH0bA8kxzvHqwswkidFJVmL8JIQqUHRaius6sSdEtjdf811KGIivcaCm4fpdWP0CLu+WoYxe4Dox6n5doRf3f++3i4BdNUzVgTQvDnf/7nPProozz11FMsXbp03NewbZvt27dzww03TPp+JNOHZVmnuFxPhaD042O5XGbbtm0Ui0WuvPJKEonEmM4fz9gR0zSr43TWr19PMpmkq6trwpnDWkHpOA6HDh2iUqnQ0NBAKpU6RRhNtYGPbmjE67TqtaezVLTWRyAejxOPx1m0aFF1PElvby9Hjx6tOphOaD6wEAi7jOoUoOK4lRrCcmO2UwbHcg3KHKvme6b7uYBw3bRRXBM1RXfbHlQDKhmILYV5J2PMSIIyn88DTCrz7v/MZHyUSCSS2cW0Ckr/g3hwr6SiKJNeMCmKQkdHB+3t7Sxbtoxly5aN64N/rIKyvb2d7du3s2jRIlauXFldzEyFoMzlcrz88svVXqnuQ79nTvn3GNFGYmGNYLSesN0OpTioGuAgtLjbI2jUodiemLSyrsGMlQPFQCi4H/yoKFhun6GwXfElvAygXUCoQTRsFIS7sHB/MqBYCDSvx1AHBI4eRxEmItDgZgeNpCsq9ahnmBPxMpghFMtys4fC7ZN0MEBVEIqXwTQSaHaZSKKJqFNENNVjlbIUyg6lfDfHe2wU1SEYShKNhglH4gQMB6HHARsRqAe75N1DDkcNEVCPgwDFzrii0i66fZSKg9uo6SD0MKAg9KQrOrUoinCFsLPwLe4iaQRGM0nxM5ST5a677uK73/0ujz32GPF4nPb2dgCSyWTVyOK2225j/vz53HfffQB86lOf4qqrrmLFihX09fXxwAMPcOTIEd7znvdM+n4k04cvhmpdrnVdnxJBmc/n2bRpE3V1daxbt25cG3hjjY/9/f3VDb0NGzZUN/QmGh/9c4UQVCqVar9nPB5n165dWJZVdU2d6Fie2YSwTTRRdh2sq4LORHMs6nWT+kab5fUGphknl+miP3OIjqNdHDUrxCM68ViceEQnFAqh2CW3YMQqAc5JsQgsyO0n2LoYdMVtXbDLoIXdKhcj5m7GaVFXPOrhk+0CogJKALDdpnbHAVX1zkvCoE24sbQETDZTKuOjRCKRzD6mveS1dh4ZMCU78JZlUSqVKBQKYy5xHeq+RlrwOI7Dvn37aGtr46KLLqKlpeWU8yeyM+4vGk+cOMGuXbtYsmQJixYtQhTb0YKdFMtLKeW66O1TKBw8SrEcotU8ROOCJmKJiGtUo7gC0dFTKMLtX1TsvJsxtAsoigGiDI6DUAIoiolQg16vYsDL4EURdgFLCbvZTEVDcSqgCLcHERPwXFiVIIpieue6YlHBRARSbomq//y6V5pqxKtiUzWzaGrQLZNVQ94PQUNo7t+FaoCw0EMJkkGLZCxCM1CulCkWiuSzPfR0HkfTdELRBOFwmGgsgaZ5mWgjjmMVsBVv11s1AOFmc3HcBZIaBLPkZlYd0xWWQrgjR4SNaL4GgkOPBRj8nhgpK+AbTkyWr3zlKwC85jWvGfD4Qw89xB133AFAa2vrgIVZb28vd955J+3t7dTV1XHZZZexadMmzj///Enfj2T6UFX1lAX2ZOOjEKKa3Tr//PPHVOI61H2NJgiPHTvGrl27WLp0KcuXLz9lLNNkMpT5fJ4dO3aQSCRYv359NZOXz+dJp9N0dXWx9bm9FPpMelstVl9cZOGyuVPmrIxwM3mqXXTHDpW8jJ1juSLLsb2vtVk97+/4GT4vAyjsmmMq1WsjbEL5HHOzvfDKC6Ao1QoThMDdCHPjjaFo1AlBXVxDRAWmrZHP5yj0d3O8PYdAIxwJEY1EiYbDGIEAoIHmOl+bBFEUFfSIKx71mJtpDLj98u5Ypj6v6qXX66PvBTUCIuuKSn9zzlHdjcb5N7hVMTWMZMozVS0BMj5KJBLJ7OO0zKHUNK06X228+DviQgiWLVs24V3qkRZMpVKJrVu3YlkWGzZsGDLrNNEdeH+RtWvXLi6++GKampowi70oJ/4b9AhhtUIosgy7tZ1suQk7d4Kegkqu7wCRhiDhaJhILOZm7QJOjUCMee6lXl8gOopiV4WhYmURWphCupv2NgfHLGFEwjhCgBJ2y0L1mLvoEb7zqruAUETZdUu1+90RH6LkikNhVnevHT3mzoWsZg9TKFY/th5Fs/oRaotbYqrHUSoZRCDuzqRUg4AKqg6OhtA1ECbBcJhQMEyqoRlh5ilWoJRLk+krke44ghpKEQvphGIN7utWdFANr7fT8hZCJTASbubWiFfLhJWKWyqrVnoRqYsgObw7YC2jORgWCoUpEZRjWYg/9dRTA/79T//0T/zTP/3TpJ9bMrMMtbiejKD0S1yz2SwNDQ0sXLhwQtcZKT7ats2ePXtob29n3bp1VZOZWiaTobQsiz179rB8+XKWLVtWNXRTFIVYNEosEkQvqvTli6RPdOF09fPy8UMcXQr1TVFSiSjJeIRYJIiC7WbbhDVI0JU8R+sSoIKdA9XAzKZpbytjZtOo4RQtHCdwYiV0VjzR1e/2YNs5V3TZRbdH3S66hl9OBRQDcHAdqr3MHr5Q9H4mXouBQwBH0d3456YXXREpKu7mmF3xMopF96tVQlEDBBSTQDJBXTyIo7ZQLuXIl2xy/b10dnQSMDRCkQTRSJBQJOY+vxFzRaERd68bqHPv16h3r2+k3J58Peb+W3Uds1EUwATb9u6lAItugcDAz17fL2EmWgJGQ8ZHiUQimVlOi6CcSEmXEIKjR4+yd+9eli1bRn9//6R2OodbMKXTabZs2UJjYyNr164d9sNxIjvwfgkXwBVXXOHOIbNMlLafIMysu5usGlilCululXAsQKESZ05jgnwuSkMqAAEo5vrp7T6BooeJhoOEovVEIwFUPeTukmthV9wRwC19skANUclnadufxy5mEXqcUv8JCgLEyhwYETf7qATc0lY1DNi4IysdFMedG6kIb9SGnfcWPEWEFvKym24GEy3kZlADdSCOYWlJFNvLZFoZt4+x0ufuhptpd6Fm5RBa1C3JVUMowsTRY6jChGADEaNEJFZHg53DYhGl/nZyFY38iVcoizCGyNObThAJqwRCSVdIe8ZBQksAlrtwEmUwkihWHoKNiDnXjfn3N9JiCaau5FVybqPr+oQ23Hp6eti2bRt1dXUsWbKkOp9vImiahhDilB7CYrHI5s2bURSFjRs3DjtLcCLx0a8KKZfLLF++nOXLlwNU7wO7DEe+C+UerD1pFhoOzYv6CEZSOMUSqXATYaVMthO6j/TSTpBYxCAcTRINBzCCES8W6tXNMhQ8czEdu5yn9UCJbFcGPRjFyfaRrwRonpuHuiYvk5dwM3l6ws3gGQmo9HhiM+OKTCvvxlMr74nNkic2TTdmCstrJbBxVFdYuuLt5AYhesA9Xo96GcWIW2bqGaxhJMDbIFPNfsKRBGGjH+oW4Zj9FMo6pUIPPT15rBOtCAJk0icIR5OEQw6q6lafuPfhuPeHAC3iCm3NddBG6F6pqwlGyH0tLa9zeycH4f++xzJWSSKRSCRnF9MuKKdiB96yLHbs2EFvb2+1xHXbtm2TKgsbPKdNCMHhw4fZv38/q1evZuHChaOOHRnPDnx/fz+bN2+uZrAikYj7AXz8JyjFowjFQLEqCM3AcUARFSCIqggsJQSUUANJEnU6qVQ9QtiUCjnyRZNM9xE6LJ1oQBCINROL6ATCCa8/0B2PAZDPBynme4k3NKBSpliIo/S2Y5oaQdGL0BOoVsbLVFa8bKTbg+n2VQbdxRCAaqF4wyIVpwyoIPK4ZbIlt3/RthFCQVUctxwXv0zXPGmSo3smOXqsmsFUKz3uVyeLUKOeE6srjoUeR3MsIvWL3f7Llrn09xwnnYFKoYvetEBXWglGkkSCOuFIAiMQRCiKu9OuuAskYaQQC/7PqH2TtYwmKPP5/JTNn5Scu4w3PgohOHjwIAcPHqzGrra2tknFRz8TX1vm3dXVxbZt25gzZw5r1qwZMVs/3gxlpVJhy5YtVCoVYrHYqeZBjgXHfwxmDqEEsCwNVXWwMdCoYIkQhlIgUTeXRLwfR1uNme8iV9HI9R6ns1MjpNmE4o1EQxrhaAoVT1wCKA6lgkO+r0Q4EccwwCZF3+F28oUAsZTtZvCcspuZs/Jg1Lllo0bKFZO+2DQS4G+YVdJe+WifK0Kt3EmRqXobcaqfyfTEpupvzIXdKhA97mYsvR54gm4VyMn7SLn3oSfB6kc14sSUHLHYfBqtPGWrgWNH92OZAbqPH8RyFCKRMMFQmEg0QdBQUfSw1xIRAk62N7hC13IFrbAgdRE0XD7k73A007KpagmQSCQSyezjtJW8jnWx45e4hsPhqsOqf42JllTBQEFoWRbbt28nk8lUM4ejMR5r++PHj7Nz506WLVvGkiVL+OUvf+me2/k05A6DHkUxC6AZKI5FULeJJoLk0n2US4Jyf5ZANEY4olZ3shUE4XiIcMyE5jnYpQy5kqCc7+ZYn4ouDmFEm4iGFMLxFgzNQVFUFDQcW0FoYYRTpGRHUbA8gxt/xEafVxKaRugp1/xH80pq1YCXpQwjsEEooHhlsg64KU3HNfQRAsUpoioqilNyx5ioeH1BAqFHQDgII+XNtEy4xhJeLyiq4Zapqrq7gFJUt7RVUV2hi4ECKIE4umHRsmAhwrEolYoUCgWy2T46ezKEdEEwWkc0CMFYI5oo48x705j6JmsZTVAWCgXmz58/rmtKzm2G23AzTXNM5w/n4joV8RFOjpvwx46cf/75Y3qPjydDmclk2Lx5M8lkkksvvZQXXnhhwLlCOHDiF644Q0dRBfGGKJ1Hc1SKgn7bIBpWCCSbPMGXQjWzBONNBM1+aFiFXeqjYGqUst10Zh3ECW/TKRQkHEsQ1DVUVbhxxVFx0MCxEYCqOtWMImrQFbd61P1qJL3nrHNjlFHvuqEaKVc8GqmTIrO2R9FIgplGoGE4OUA9KTatvCsm7ZI3+7fsldHaXhWI7Qo/x3YzicK/D9MTnebJ+9KjaE4RB52W5iYQ9ZiWoJjPkC9X6E/vx9EjxEMQiDYRC2TRwg2eAPb6LLWwO8s41ARzhnfCHutYJYlEIpGcfZy2ktfRSroGl7gOdnEdj639UPiCMpvNsnnz5qpgncqxI7XGPhdffDHNzc3VhZLo2wV9W1xHPbOMo0VRFTfjh2LQMt9BM1IUioeIpJppmSswwkF33qQePdlb49ZsoYUbSAZNqGug2cxRsjRK/SfI5DTSXVtRgynCqk0gHCCf7gMtjGNZRJIaRiTqCrsBJjt+9rDPK1FN14hMd06ko0dRqCAIoGAjtABgApq32625i0HdXRQpashdNKlBV5xq3q63FnRfh6IjtLD3d8N9aYoKQnHdahXNdZjVwyhm3nOWLYFw3GwDGooqCEVTRCJxRNN8HKtEoWRSyvXQ3mujdO7Gil+AGopST4Z4PD5m18HRZrn5LoYSyWTQNI1isTjqcel0mq1btw7p4jpZYx//fV4ul9m6dSuFQoGrrrpqzEPpx+rk7W+2LV++nKVLl1YdwQeI0fYnUHKH3JJLLECnYV4MRdE4ciBHKKLTvLiJWEL3hFaNoAq4/YFauJ64niceW0qjlcN0dIq5NIVihb7egyhagEgwQCQpyKWzaCUNy3KIJh3CUa+nEQ2ouBtijgWoXgltsNpW4Jar1ohN2+tRrN5LAQIpMHOgJ1CsEzhqBKzMyUymEfMEXRTKvV5GM+/Ge+GNeBKWFxsdrzfTxh/Z5JbV4vWnKziKjaMEUbQAKDoB3SQQTpJ0ijjKIsr5NPmSINd3gs6ySsRoJxCrJxrIEYqmUH2hu/CmqknQUPg95sNV9kxVj7lEIpFIZh+zsuS1tsT10ksvpaGhYchrVCqVCd+XqqqYpsmzzz7LkiVLWLFixbh6O0bLUNaWcNUa+yiKguF0wYnnIVQHdsHtW6TsZR/d0kwtkqJlkUmmkmTeogB6KOn1HSZdceeb2xgxbzGjeAsM13whpNsEw8tJ2SVssZBSroNcCUKpTkpCI6QWCcVSWIpnWOE43nrEm7/mGfSIQL1bwhpIoZg5tzTV8jOYPe5Xq88Vn07Rc3K1EVoEVZhYShRNUdwMqF1y79tyM55uqatvkpNwHWL1BDhlt0TW6+VUhYXQvJ13tc59HiPpZi/1OKrVhqIGUMw0wkigmn0ILY7iFFC1ILGISiy6iEYcTKJ0Rv4X6d5+2tracBxnwBgCf4TLUIyl5FUKSslkGa3HfKgS18Hv2fGW5A/Gv94LL7xAMplkw4YN1RnCY2G0DKXjOOzdu5fjx49zySWX0NTUVP2ecMAsW27vZMeT0P08aDGoZL3exByqHqJxboCCEyaViJJIehuBju0JKrs6kxYt4vUjxsGpoBhJAk6ZQP18kqKCwzxK+X7yxTJ6rB+lXEFxFBL1YRxNQ9esk+6uiuYZ1bjjlFD8XkRf3Kk1//ZLah0vttueWZjlZiodC1tLoCg9bobTKnmGOaUao5+wl6HUqlUavnFa1eRH0b3XGXKvoXuvVwtWDcs0hepGnit8LdAiqMImHG8iHLWgqRnbLFMoFSnkcnSkC9idGUKhEGLha0kWHOLx4edyjsUFW8ZHiUQiOTuZdSWvw5W4DnWNiS6YHMfh8OHDmKbJZZddNmAxM1ZG6hEaXMJVmzkQlQxd+pd5LCf4Y+3NrqlCuRdbi3uCzS1hcoSGqmgoiurNnnRwjHp3OHXV3MYfzxFxRZoacKd+qDooitdDGUIXNpHUfKJOBdEyh/mlfvJFi2J/O1YlyNEDuwjG6okGFUKxOnRFuGM9hHDHiOBd10i4C5RAnSsOjYRbJqtHvHEhXh+kkUA1exFaDFWUEUrULR/zzIIcox5FlL2ZlvmqI2y1j9JIeGK1VhwW3dEn+GNLHBwjheKYWGoSBc9B1sqDGkCxc15GMwco3o69jr7kbcwLNjBvPtVZoP4Ygv3792MYRlVc1tXVDchYj0VQyh14yWQZKT5WKhW2bdtGoVBg/fr1w/bsTiZDKYSgra0NgLlz57J69epxG6mMFB/9rKe/2VY76L7zaD9HtvTTe0DFPLSZ+YktaKEklHohkKiWYDqVPIpmoNklECE3E4jwhJdnfuN4TqnC/7cnsjzjMFd8hlCxicQbicRtaJqLubBCsVggn8+Ry1U4fryDcCRMJBIiEo5gGH6GUHHFpagRk26g8V6N6jmk4glBvHgKrgusAtje+CLh3VutMU7MM+rxxKvQ3HOECZrhzZIMudlOI+71cyZO9nP6pbXlLtdbzcy417bynqu2dVKUCkA4aJpOPF5HPBYHNEyzRNq4mM5ymENbtgBUN+Dq6uoG/O5kfJRIJJJzl1kzNsRfxOzZs2fIuWZDXWMiC6ZisciWLVuwLAtN0yYkJmH4HfjafsnBZbrCrnD80Fc5FuhEMwUHRC/LbcPNtpV7IZCk1NvJ0QNlKoU8RjiKFSojhOtYqniZP0VYCL0eRMnL1BW8GZRFT0yVvIUCoCiu0PT6cBQcjFAddSGTcDRJ4cgr1M9dQSnXTU/Gwuncix5KEgsphGL1hAy8fh4LdE/cCxDe4kcYCcD2MpDlqqgTWhDFzgIC3ckBcbdMVQujOMXqAs8Xh8JIuo6svljV4+64DzWIYve7r8vKervxBdzyVtdqXwjbnWep6KDHEQpeyaziusuqBoqVw5nzJgiezHYrikI8Hicej7N48WJs2yaTyZBOpzly5Ag7d+4kFotVBaZpmnLBJJlShqvgGKoloLbEdbSM4UTjo23b7Nq1i66uLlRVZf78+RNy5RwuPvqbbalU6pTNtv6eIvteOoFZEsSTr2Ae305XMU7LQqtqiGNaIY7taqe/18QIOGhRm3jS8USjawjmzp3Nupk6M+tl+7Juv6FdANXL+qlBr3XAy9wpGmBjBEIYgQCJZD37979CY3MzplUhkyvQ2d2HYQSq4jISDtaUwSu4QlF4AtMBp3aupOqN3jBcMasEEHbFNTertjDYgDd2xOs1d19XTebV21jD2+Aj0ACi5PVxFt3SWjPr9WlmEWoYQ+nwXLnznuguUxXgjukK03LWFe1mv1e2W8BoWEfLnNfSgvsZnc1mSafTdHR0sG/fPoLBYDU+CiFGdcEea8m0RCKRSM4sTkvJq67rA0wnLMti586d9PT0DFviOpiJ9FB2d3ezdetWWlpaWLx4MZs2bRrX+YOfv3YH3i/hOnbs2CklXOBZqh//KS/2PI6CikDwTP/vWd54q1viGajHKhc4sNvEzPWiBaMUevsoWSb24gKK5riGNJgIJQBUqqVLwoi74sxIVBdIil2u7pgrTsldOFgFd8QHZW80RwFHMYhGQkSiS2gQJpYtKOb6yBYqZE4cxSJAPCgIxRuIBArooYRr2qNHUZyK2/MoAFVxeygVFaHEXXGoRRGi1+3fcUzAc4QVuOVjAu8eOdn3o6nujj2qKw6hWl7mbvKr3vMG3OymHkW1MmhKoFpCi112HWqxcfQoqrBw6q+A5MhDrDVNqy6OwM0GpdNpent72b17N5VKhUAgwJEjR6ivrycWi1Xf30KIs6ZH6PDhwyxdeupYgGuuueaU+W6SyTO4fH5wyWttieuqVatYtGjRqCJvIvGxUCiwefNmNE1j48aNbNq0acJVIENlKI8dO8auXbtYsWIFS5YsOeU15DIlykWL5vpOmoyd6HqYcq6E5cRRMRF6mNYdJ+hsMwlHVPJZKHebxFOCRNJ3Jw26mUk97M1UjLjjNar9iXF3VJGerBn/ka0pMY14mb+gG5cVjUBAJ5Gso6HewnYUioUs+UKRzu5eLMsiHA4SicSIRUIEgkEUcFsXsFyHbX+kkj8+xC9ltfMoioou8qC2eM6w8ZMZxqpJT8F7PX5bRMV1YXUsz6zHG5HkWK5YFrbbhylcZ1qn0o+jRgFvPIni97h78y19852gP/rEMxCKLYeW1wz4nSYSCRKJBEuWLMG2bfr6+kin0xw6dIh8Pl81cKqvryeZTA7oOS8UCsyZM2dC76fZhIyPEolEcipjcyOZYmp3z7PZLJs2baJSqXD11VePSUz61xjrYkcIwYEDB9i8eTOrV6/mggsuQNf1k/PNJkDtIrBSqfDiiy/S09PDhg0bhs56djxBV9dvOFI5QsSqoOHQa3ZwqPwKOK5raSGvUMyWMBJNBCIGgUQdZtGhkHNfpyIsFOF4mT8Hxex3r+2UvNlqticYdYQeQ6hBhBbyBJoCqjdHElCsrJutFHkQNqqdBwG6BvFkE/PmzmHR8ouYP38BaqSZbH8/h46maTu8n86+EsX+ThwlgGJmXA+dci8g3JJTxd2pF4qOI3R38aSFEHrUvSc9BEJxs5xOBaHqbjZSwe0TFQ6KlUN4/UhCMUDRcLQoimq4fZ2q5o4eETamEkcThWrJLKqGava6Zj2VtCt6m18z7t9xIBCojkjYuHEjTU1NRCIRMpkML7/8Mk8//TQ7duzg+PHjtLe3k8vlJi0o77vvPq644gri8TjNzc3cfPPN7N27d9TzHnnkEc477zxCoRAXXnghP//5zyd8DwsXLuTEiRPVP5s3b6ahoYFXv/rVE76mZOzUxsdKpcJLL71EW1sb69evZ/HixWPKGI63JaCzs5NNmzZRX1/P+vXrCYVCk+rDrM1QOo7Drl272LNnD+vWraua75x6zypB5wTN4hm3p9ty45qmVBCKhlUqk+mpEImpBCJhoqkQlYpKIeu4oze0sCuW9Jgr6IyEJ6qSroAyEp44S3oi0ze/CbszJbWgKzY1zXWUVXU3Piq6m7VDRaNMLJqgpbGOZUtXsGTRAmKxFOVigSNtJzh08AjHO9L0Z3OYIgBobukqqvv8iuLeD6LqzGprcQ4WdpLXDM8Z1r+viPtVDbjlq4ru3ie44lNY7vG2DU4BsLx+eNvNkDqiWu2Pormbd2rI/apHAcX9WYCb1RS2OwpFWBCeBwtuOlmyOwSaptHQ0MDKlSu58sorWblyJaFQiHK5zM6dO/ntb3/Lli1baG1t5dixY1Pi8irjo0QikcxOTmvJ69GjR8dc4jrUNcayA2+aJtu2bSOXyw2w1fd3TgcP7h4r/mJrpBIuH9G7FXq38py5h4BjU9E0QgJMRWFz/7MsSjYiCKDhZRXtMrYaQthlLBFA1QOe+6njlUqF3PJSLej2TupRz9gmjur92zVjCLrzLDXXhVAQdK8hHFBVhFlEKLqXwTRQ7JxXOtvnmepUCAVDhEIBaGjAsSvki2VK+X5OpE1E1ysEQgkS4RyhWCMhs98zDXJ7dxSzF6GAJooIUiD8sSMWjhFzzXYC9V6Gts4tlTVS1bElvlmPanoOs2YfQouCKFbt84UaQpBF6Cn3Z22kXJGqRd2sqBpALLj55Ly5CeK7T/pD4x3Hob+/n97eXo4fP87/+T//B0VR+NKXvkR3dzdveMMbhu3/HYnf/OY33HXXXVxxxRVYlsXHP/5xrrvuOnbt2jXsYmzTpk28/e1v57777uPNb34z3/3ud7n55pt5+eWXueCCC8Z9D5qmVTMJpVKJm2++mQ0bNvB3f/d3476WZPz4sa23t5ctW7aQSqXYuHHjuExxNE1DCDGqM7HjOOzfv58jR45wwQUXMHfu3Or3JiMo/QxluVyuthgM7pccTH1djqWpJ2k74qDZvWjxZpoaK6h6HaLch6rHCeglypUQoXARywmiKTaKquLGNbd3HMUrExV4cxUdry+xpkzUixPuLMeCZ4rjj/nIQMDN1tlKENXsg2CTK+aMpPc1AWYPgUCSgO5Ql1qIsPIUKgqlfB/pvn6szhPowSixSJBwNEk4CKoW9MpzXfMyW43QoxzhV8XfssZu4w3JG2scYUuuwLMLbobVLnplu37LQAW3zNZ0e9QV3Y15WggqXl9lpQ/hKOh4VSpOwctmlrxZkxXPSMhz50a4Qnb+/3avMw5UVSUcDnP++edXKzbS6TTpdJqPfvSj7Ny5k+PHjzN37lze9KY30dg4vrFNIOOjRCKRzFYUMdEU3Tgol8sD/n3kyBEOHDgAwMUXXzzmrGQtnZ2d7Nu3jz/4gz8Y9pj+/n42b95MLBbjoosuGrAgM02TJ554gmuvvXZcCzWf7du3Y5omPT09AyzvByPyrdD2E0BlZ2Ebh802Cn19hKMxAqqgSW/motBahO2KrbZdx+g45qArJcpOFC3Yz9qN5xEO6t4iSVA1fhCmZzxTqhGXnlGPkXSzh0YKnIIrxJyKKzK9ERzlUpHWo22sXLHccw705rB5ZhGge4ufgJdJDKIgvJJbm4oFhXyWXKFIueAaPcQiAcLRJNGgg2bE6GjbRyjeQiqqnHR41eMoTtlzhPVdCgWoGopj4yiaN+tSc+dXKrrXH+obSWictMtX6OruQmgBmhoaPPFsu9cSDk7LtZA4b9y/36HYtm0bdXV1LFy48JTv9fT0cMkll3DjjTfy8ssvs2nTplOHs0+Arq4umpub+c1vfjPsDvgtt9xCPp/npz/9afWxq666iksuuYSvfvWrk3r+d7zjHWzdupVnn31W9j9NE6ZpDhBuftWGqqpjLnEd6ppPPPEEr3vd64bc5IKT5jjlcpl169adkl1/+umnWbVqFc3NzeN+TW1tbRw9epRyuUxdXR1r164d9j4ARDmNc+i7OBWTQ6/sxwjGaaoPEa6rR1QyWEoE1c7S3iboPNBG2QyjqwVMVWf52jgNc+a5fYRquMaEx40DrrmY6mbsVBV/1NLAOGedNO5RDc9ZNcDBA7uYt2AZId2u6cmMnSxLNTOeyKz96vYh2kqUYraTbEmhXOjFdALEIzrBSIpoJEAgGCXd08nj9q/poQsHwTvq30Gj7gst/z6pud8aUx/hPeaYtNqd/DbzOG+q+0PqMLwS3wwYcfJ9J0hnLRbOSXrlrXmvdLZGRDo26N7IlUVvcctdPSxh8X+P/19uSt7ExtjGYX+Hra2tZDIZLrzwwlO+VyqVuOmmm2hqaqKzs5PPfOYzXHvt8DMtx4qMjxKJRDI7mPEMZTab5eDBgziOw6te9aoJZXFg9JKutrY2du/ePaQ5Dgwc3D1e/MxkoVDg0ksvHXanVVR6ofWRqoPe2vAFrA2tZl/HERY2zSEccUuybNvyRodYzF+ziEiii1IlRThQIl2JoNsZFBqh0u/2SwrLzdApGqC58xxx3CydqLiloHbOE5Uns31u1jDtzZnMg2KgYiEUze37UVUQAa9UzVuw+G6xvshDQREFQCGoOATjIVKJKEI0Uiqb5AsFent7aC9XCAV7se0gmlnG0ZtQnYo7Q9IugKJ7X1WghDvTTfF8Ivw5agpCCbr3pWoIB9Acz2yn7GY77TyOEiAgSiiKftLZsNKLqLt0ysQkjOxiGAqFyGQyPPDAA7S0tEzZc2YyGYBqX+dQPPPMM3zkIx8Z8Nj111/Pj3/840k992c+8xkef/xxnn/+eblYmiEqlQq7d+9GCMEVV1xBKpWa0HX896lt20MKOT/7WVdXN2xlxWQylH19fWQyGVavXj1kv2QtwszhHP0xQiiohk4wmSQc0gnXNyNst7+cchaMeloWZgmEl1LuS0OgHlt0oIUjrtmMHnbFkub1BqKCZXp9jL4BjX8fvvuqBoo7w9Y15vE36lwDHFsEUHBqZkv6Rjh1XoazwTPCqXMznUbKy3Qm0Co5YqkWYlYeoTVRKfZRKAuK2Q56uhwCuqDPKFAIdKALga5qvJT9Pdcn3+iZ7wQ8M7SQJ5J98yBvA1R152EKLcIz/ZvoFiVeLLzA65M3uMcH6sGuYGkJFLrd3kjf4RbFdadVDe++vT7Klv81QEwCPN7/OM8VnuNw5TDro+vRlaGXDaPFx0KhwJ/8yZ/w1re+dczvo9GQ8VEikUhmBzMiKP3yp2PHjrF7926amprI5XITFpMwvOmEbdvs3r2bjo4O1q1bN6zYm6ig9Eu4yuUy8+bNG15M2iU48p9uL5Cw3MyZ1Qd6AoMsQpl30mzBdwBUAqg6NCyZX90pz7yyE1tPVi3hXUOcGmMcu+AZ43gugOigCITujho5WVJa7/Yl1ohM1exCUXS3z1BPofiZTOGa2hR6c3QcLWCbJtFkmOaFEfSAhuKYCEWtGv8oThlFNYgEHCKhOE2pMBY6hVyOznSGvkw/ff15IuEQkUiUSCRMIOA5FqK42UovC+mOQPHmXVa8UUrtHz0AAPJbSURBVCBm3hud4pvtWDi6WzLrGHUIkcM26hBY3kiVHCI0B9HyunH9bkdjpPLBfD4PMKWmPI7j8OEPf5irr756xNKs9vb2U0RsS0sL7e3tE37uH/3oR3zqU5/iv//7v1m+fPnoJ0gmTW9vL1u3bq0uTifzXvIHzA+OkUIIWltb2bdvHytXrhyxJ3MigtJxHPbs2cOJEyeIRqNDmpcMON4qIVr/C6ecQdEMHEe4rs9obkm7HnTHgOhhwELRE9S3mDAnAaLCseNlFOFUZ0y6MyfLXlVF2TP7snA3rKyqjqxWeTglqnMcVf2k8PSqOBRMhPBiuKKcrJBwbMolhc4jHeRzFuGITvPiFOGocEtNHdstmxWWu5HnmAQjDQRDJnWpOhzbpFAs8Xzu525xhqqiCofD5hE6ckdoji12+8r1qFtiqyfcvk4/8+gb6ehRjhb30m51ERSCPeV9XG5eTp1aB6o3D9NxXBds1XAFtaICtjfj0oRgnfu1bh00XjXg92MJi4fTDwPQYXXwy+wveWPijUP+LkcSlEKIKXfBlvFRIpFIZg8zIih9F9fu7m4uvfRSAHbs2DGpaw6VoSwUCmzZsgVFUdi4cSPhcHjY8/2euPEsmGr7JWOx2LDiQggHjv3MW+AE3Z4V2/TMILLYasw1nwnPgUoahxCikkUJxk8ubLxB2bYS9GYu1rn9kL4w1OOuq6kRPzkL0sq6CynLW0AIr5dIcW3o3RmXNk6gAcUp4egpNLoGZTLTYCSpZDo5uq+CU3LFXbG/B8sULDwvidBc51RheCVSesgVhXrMLWnVouhWlniyjnx/F5HUXEJqhVxFo5DtobNLENAhHE0RiwQIRRLoqoPQ6twMa6De7acMpFAq/rxNr0fU7HWdXc00Qg2hKmUcYaNi4r+dRaAOMf/mSfdNDmakBVMul0PTNEKh8fUdjcRdd93Fjh07ePrpp6fsmmNhx44d3Hbbbfz1X/81a9eurS68AoHAiJkAycTwXVwPHDjAqlWrWLBgAb/85S+xLGvEMtHRGCwI/TicTqe5/PLLqaurG9f5o1HbL7lq1SqOHTs24vHCMeHI93Hyx1G0EMIsev2QFogKjnBQbBshFOxKETUY8bKHunuMFkRRHGzV25jUvdmS3ixfd46j5cUBb+6jsD0HVq91QNHc7yne96C60YVjomK5ztS2N69RcUtmbcuhbV8v2Z4iRihAX3+eSqnCkrUNGMHAyQpV1ZsdqeqACpp7vqpq6JpGeymNQEVFUFRVAkLwUv9+1nTZBKMp4sEioXgjhp07paQWLYIwM7xQeIG442ChEHQEW7PP8prE/4KK53Zr5VAV5eQoFafk9nB6o6RcUdkAc15/yu/o8f7H6bK6AFBQeLjnYV4ff/2QWUrHcWZ0bIiMjxKJRDJ7mHZBKYTg2WefxTAMNm7cWC0NnOjQbZ/BpjxdXV1s27aNuXPnct55541oROEzngWTX0LrW97v27dv+NfQ/ivIHfSMILwFkOYtMgIpFE7g6Cmwy+TMAB1Hd2MSIhZoJxSvIxLUCATCKIqCppg4tlPtKXR37eMowvSyj5WaWZR+di9SnUmJncc181U8kQmK4t2TKFMRrugWxsBMZi4fRJQ7CNc1YJAnXwpRyXRgl2IYet7NgNolbxi3jVDdDIJj1Lvi0qgHp0RFiZMQZQKxZhrMDKJ+CaKcoWAalHOddHcpONYRd/ZlJEgomiQUVEALowiBCKTc6xsp19RHi6I4fvbABsdCcWw0pwjYKGY/zoK3QHDqP9hHEpSFQoFoNDqm991Y+OAHP8hPf/pTfvvb37JgwYIRj50zZw4dHR0DHuvo6JiwRf+LL75IoVDgM5/5DJ/5zGeqj0tb/Olh586ddHV1sX79epJJ13VzqOzieKmNkblcji1bthAIBNi4ceOYqkPG4xTb19fH5s2bqa+v54ILLqCnp2dEB20hHJwjP0Lkj6PqQYRdQVU1hLDRsD3n6QIVW+XE0QMUKwqhoEIw2kA8rBGM1KE6BRxUVKcMap0rkLSgW+aqGW42UQt4AtEA7OrmmisuhdeW6Pg35X5VhNeqaCGEiuKPNvL7F4VFuWBT7s8Rrwujqw52NECxr59SLoqhlDznWK8CxSl740hKrui13ZFPIUVwnfJmKuRJJhtRsXAUnRatAasiKOSzpLMlKt0HMYwQ0WiJSDROWLVRPYfYNqeXTqsLFMXNuQrBLvMgl1mXEA/OBbMfRw1jiG7Q5nrusZ6LbHWEiWfCM2gDrjY76b56QYfVwa+yv+INiTec8jsdrrzaZyrHKsn4KJFIJLOLGZlDeeGFFxKPx6ulVRMdul2Lv9hxHIcDBw5w+PBh1q5dy7x588Z9jZGoLeGqLaFVVXXALE0f0fMidD9X7ePDiHo7wyG3/BWv71FY9GQcurvaaZyznLChUCiWKeb66O6uEFAtwrEEimOhOCUUoYFlemNBSq6Ac0y3lxIbx4ijChMRqAO74mYL7aI7b9IuuqWiVXdAy92ld0w0xXQXXIrwRKbjijY1S9lKEHIEFTWB4uSwRBTFySG0OIqVcQWs2XdSyGphVCrumA88Mx9h42j1gKgKYCVYT0wvEI0uosEuYdqNFAs58vk8md4uFEUhHI4QDocJx+rQNcUTrgpoAYTQvXutADEEvW5fqFNB1F8xpX2TtYyWoZysJT64GzB//ud/zqOPPspTTz01askgwIYNG3jiiSf48Ic/XH3sl7/8JRs2bJjQPdxxxx3ccccdEzpXMn6WLFnCypUrB5iDDZ5FORH8toD29na2b9/OokWLWLly5Zg3Pca64eZvttWW0I5U/SGEwDn2M0SxHYwYwrFBDyMcxy3XVwPgCPIli/ZjR4glG2iJBSmaCqVsNyeyCprTRiDaiFrpww42Q6XHrQAp97klp1beFUpW4WQZrBY6uQnm+GZj/ixH2+shd3DbDxzAwEFHaCHQdLfnEAsIgVrAFiGE7WCrrjCzCaKKMhgNbsw3Eu54EsOb62gkTvZ4mz1gJGmwwFabaVaj3szJIqARCNhEQnU01glsR5AvFCjk85xobwfbJBSNEQ2HUYNBGow5nLA70VAI6PXM1RJubycCAvUIpwNLTbibm34PqOq1WqgGLHyL+zMbhC1sEmoCWzv5PlRQht0oGEvJ62RjpIyPEolEMjuZkZLXVCo1YHHhC8qJjuyAkz2QL774IqVSiauuumrc5TSjLZhGsrwfPIwcQGQPQdcmzwyh4PbQVLJe2ZEn5mwbjRLpni4q5RILFi4hHNCx0EgFQyTrGhF2hUKpQjGXwRIax050EgoFiUZCRMIWgVDYKy0Nu6WgehzVzladXFEDgIWjeQPBjQTYpicyXTGq2HlQNTRRcU13fLFpWQgtQCyuEk8a9PcUUHQD4Wi0LImjRVKu6NTdhYnQIt54Dt0tyUWpcYoVqHYRRZRRbA2hKe7jiuIKYkUFXUPXVeKBCPGUirBLlEyHcrabvmyJnq5dqKE64kGHYLyFiJ51s7xWFqFGgAqWo6EqDiK8GNHyv8b1HhgPI5V0TcViCdwyru9+97s89thjxOPxajlVMpmslnDfdtttzJ8/n/vuuw+Av/iLv+Caa67hH//xH3nTm97E97//fV588UW+9rWvTfp+JNNPPB4/RTxOxaabqqocOXKEnp4eLrroonGbRY0WHx3HYffu3bS3t3PppZcOcOuunUM5GNH+JKL/kJs9rGYRHU+0uf2ThbJFT287zXMWk4xHsYVKImiSSNTRZJcomVDM9tBbCFLqOUYulyQR6iUYbyEselECyZO9h2baE3M9Xi+i35PY54nPnNeTWPRitZfpdCpeL6fjjSmqeMY4NsFEnGRTie4TeXStjGVp1LUECdU1A5b7GeCUwah3R3UYdW61iG/ao3tOsFoYXRTcDKvptSw4BbcaxTZBCDRFIxFWScQaEGaJijAo5nrJ5QtUuvsox2xCKpRU0ITJGxM3oArfhMj2zG0V73PB/+qVDTdfA5H5Q/6egmqQbyz+xpjfLyMJylKphG3bky55lfFRIpFIZienbQ4ljF4iMxK5XK56rY0bN07oOiMtmAaXcA3+oBx8rih3w4n/xh3nYXvDrCueG2DZXbA4JpZtYVoOuiiyeNFiDM3GUQzUSga0OKrIIvQYsbAgGptPLlegsXkOtlUhn8/R3duFpilEwlGi4RKRaAzNzruZSCvjZhfNXkpmiEK6G0uJkEgpBGOuO6xvZiP0OrCyWKorgoQWRbHzrgurlccIR1i0KkBvt45TyROMJ0k1aJQLJj3H+rBsjWhCp35uEkXTESg1pWNeSapVwFEDqE4JocZRzIxbrlvp9cStZ7bjlNz7xwI9Tli3CEWSpEQFy1lMKd9LtmDSf+IIlqMSC3cSiqaIBIsYgRCaKKASQsx9g9cTNT3Ytj2iKU80Gp3wBonPV77yFQBe85rXDHj8oYcequ6Kt7a2DriPjRs38t3vfpe/+Zu/4eMf/zgrV67kxz/+8YRmrElmnqHeM/6s3olSKpUol8s4jsOGDRsmtNkxUnwslUps2bIFx3GG7Fcf7ly7cxOi5wXQo4hKHtWIIOwSiuqWvQpFp1QsUDEtFi5cSDQWc69j254AFShalLBmEQ4vpGwdRQ/UETRU8gWTvhNHsYRBPNJPOJoiGsqjB1OeqVmq2oNoF3rJZAwwjxFI1BOL+qLT++qJUEP0gzLfPU+LuWJQi6I5ReatrCccUygWFEJhSM2tQzgmx48UsUq96JEgLfMVtEC05jPBdq8vLFdkiiKOFvc216KeeNU8AyBvhIlddHsfrRxKME7Q7CfYOJeU2U+b42D3dmIrKgnbJisyvHzsNywPriQcCRMMBNxKFLvkZiQdf5ZlHuouhtTUxYiRBOVUmZbJ+CiRSCSzkxlzeR3wpJ74m4igFEJw9OhR9u7dC8CaNWsmLEqHW/S8+NtdPPPfu0nEUqQ2JFE4dcFXm6EUVhGO/MAtrxIWKEEQZW94dcmb+WVRNKHt6DEcJUh9czNGIESp4NBzvINyEWLxHMm5zeiVNMJIoJZ7EIrAoES8roFUMoqjGG55aK5Ed28Os7OPUChMLFIkHI0TUsoUSgbH97aSy6roahfpcJLFKwuEUvWoVp/nAFvEQXcdFav9j3UoouyWzToljFgDLeEcQmtAMTOU7SCtWw/Qm9YIGkU6RRS7mKF5xSIUu4SjRVBEBaGEUTBxjCSCbhzD7WcURn11nIkw+7wxJl6G1XRFpmqlEVoIlTJCaOgqxOIpYnEV0dJCpVKhkM+Rzefp7s6gahqKsOgKbmSeEmP8E0XHhuM4CCGmPUM5lrGwQ/XpvPWtb51SO37J6WUyJa/pdJotW7agaRorVqyY8PtyuPh4+JXjPP6d58EyOO+SpSgXnxp/h6zg6HkZ2p9A8doBFCOJKKdRAgmE2YejhDjR+gqWBalYiEgkhFUo0NVeIN9XIBgNUT8nQigS8ASXjUBDVQSJZB2JhIOgmXKxQK5Qor8/Q3unSSjQQziaIBbJEYrU4VRKHHrFptDTiyV0QsHjzF0xl/qmUs3YjySY/VhqFNXqh3BD1aUbsxeMBLqdoWlBsprhdMq9HNydp+9EH7Yw0BSbQibJsrUNqKrmGa3htrQ7AlSBIxxUz+jHLb21EIqOVamgGVFUxQLNHS/lbk7640DKYNSxo++35FWNgICK51Z7KNDKfHM5mePHsNUwQaUMgQRWKY0ernfvP7YUWl47offFcIxWweG2MgxvlDcWZHyUSCSS2clpyVAOZ2k/GrZtV91iL7vsMl588cUJz0nz76P2fMdxePqXL/Hb7x1AFyGscJknW3dRKVlcecOKIc8Vjg1HH3U/4FGqZjeoIbAzXmlVD/0ljY5jh0g1zSeX6QXFoFKBtoN9lPoVtIAg1w8Vs4/m5U1odgFhJAmIowhtjjdHMoFm9hENJ4gFFERLI2YpT6Fkkc/n6Ok7jqooFHsU8j0q9S1BFDVCPp2lu8NgYczPQPYjtDCa1YuCqPZBqmS93kzXNAJhIYwEimPiBBroO9xFT0+AukYFR2lEK/Rxok2jaX4agknUSo8rhM0e15HVziEcB1WUQEm519Oj7Cnt5ne53/OO1C1EAym3dFaP1pTOuqYcigpYBe+eC6DHCKkVgvUN1CVjOEqQYqGfA91B+jNhDj79NPF4nIaGBurr60kkEpPOGPr479WRFkxTaYkvObeZSMmrEILDhw+zf/9+Vq9ePamxCDC0oNy76wA//uJLmFmNaCLA8z8/SKazyJvftw5VU4c9V2R243T8BhFocEcdGXVu2X0ghbByVOwAJ1r3YERSpIImQjMQZp721jz93Vk0Q6O/q4hVzDNvRR26Bqg6qii6ozDsImCgiAqhUJBQyICGOmyrTL5QplDIcaK9D+GcwMoH6DtRIVEfIxpUyGZ0Oo70kmxegCa8DKJjgVGPItpdgzFhe0LOE512wR3hYZe97GGRfF4h25UhHA9jBMCsqGQ7MxTmh4jVRdyZkloAzLI7ssPsc0tanRwo9WBl6etR2PH0fvr7FKIxh/OuWkrLogiguz2QuGWsroGOYFX4AiJGPQiBQEFFUGc0Mje4AMFiSsUcHV1phFnmYFuFoJ4hlGhGb3oVKUcwginruBmtgiMWi01ZPJZIJBLJ7OK0CEoY/4Ipn8+zefPmAW6x43EhHIraRY9fwnVwWw8GEeatqENRFHo78mz/3VGueMNytw/Fo7oD3/4rKHe7PTYquA6CIXdBoifBytPZZ5JLH2TO/BXEQw75nIpq9lGsJKnk+4nXJ3BsC93QyGZs6ss2asgtf6ooCXeOmNGAYmdd8xnP4EGp9GEEEqTUfpKJFjAL5E2Vw53HMC2bnp4CuhHEsaBQsBFG3F146HFwTBw9giq6QQugOK4rrGL1uxlVs++koY8SQMHGdhRU1cYigobAJIbqOFhaEgPbnY9pl1yHVqsAqoYqyijYKLZbomzbDi9lfodJia2FF9kYfy2gukY+mu452fqz3kww3H5P93VnXIFb6UUYMVdcJ+eSK6xgzXlriEQipNNp0uk0R48eBdyB1/6fyYz08N8n023KIzn3GK7kdTzx0bIstm/fTiaT4YorriCVStHd3T2pPszaWb+O47Br1y52bGpFlAIsXFGPpqsUcxUO7+qi50SOpgWJAa/JzyY5ucOI9l/jqEG33F6Lui7VRhzFMekvKbS3HaK+cQH19Qm6utIIx6JiBsln0oRiUTTNQaCQzxQp5SxidQHAQVFUVFFxn9Tx+9QL1VJRTQ2SiCgkog0Ix6RswYmDHViVErn+PKgGuqJRLhrYZhEtEPDij2vA43gGam4PpePGRhy3bBTHNV1zHDB0bCePaYYIRA1soSJUB9t2sBUv7uieOZARd8d+6HE0pxOhN4DZR8WOsut3W8j26UTDZYo5g72/30MscR7RuIprFoT7fJoBVoVlgSUs0+a45bJO0RWq3uamIiqEw2FCAQ3DSJFMpSgWK7QHrqbzlSOYu/aTTCarG3CTLdkfi2mZFJQSiURydnLaBKWu62PuEero6GD79u0sWLCAVatWVXdBJ2tc4S+Yent72bJlCw0NDSxeFKdr96HqMW6VkvAs5ZUB54YLWyF93BWOdsFbMNjuYkbRsR2H4x0ZyqU8C5ZcRCggQA2i0YGjN6CWckAA1cmBGkCjjKMoKE4BHHcRoio2jjdoW+gxFGHhBBrd2WiB+pO7/VYGEYgRU/ppmd+CUj4GRhxhZ8lUFMqVTg4eLBGNBIjEUkRDQVAMbCWEUINeWa7wjDFsFMXwzHWEO7IEh0QCwmGbSn+/u54pqjQsjKIbuA6Iio7QIoCCohoIVGxheIswFaEG2J97iYxSIurYbCvt4tLAasLBFhTTLfNVrH6EHnMXRarrYCu8xZswUrhusW7plwikEPNvxjm+E1VVCYVCzJs3j3nz5iGEoL+/n3Q6zfHjx9m7dy+RSKQqLlOp1Igz0wbj774PtyCaSkt8iWQ8PZTZbJbNmzcTDofZuHEjgUAAGCgIJ4LvZF0qldi8eTMA5523hrbnd+L/N3CF48mJGz6+y6uTP4Y4+hgOCopj4agBFKeMoxgodpmudJbeng5a5i8mEYu4FQqKgq0aoCg4BN05lBjuXF6CCM2LV4BQdBzVwJ3xGHY38tSg51ztubkqbnZPUTVChk1TSwPFtIWDiqJY5PrLBKJFjraWPOOzKJFIGF030EQZxSl5rtjOSZdsLeCa5mhujEIJEI0HCCVC5PoKaMEgdrlCOBknEg+6Jj9ejzjCK1sVJhU1QUTYEGggezRNb2+AUNjBIkowbFEoCvo6CkQTCbck1i56brBZCHjzKA2/DDfuGg1pYff7ig5UUOwCqqGiO3niK/+IeHwlK4SgUChUN+AOHjyIruvU19fT0NBAXV1d9X00VsYyVkkikUgkZyenpYcSxiYGHcfhlVdeobW1lQsvvPCUuVHjHbw9GFVV6enpGWB5fzSQZvczx+hs7UcPaFimzbrXLhlQzgWgFw8RL7wMTas9S/ik5xoYBbOfiq1wrO0YqmGwZPESdF2lWIQjO45yvNWivqmLZZcsIZropjcNhlbCcjSa5mgYQXfRBRoaJqqTR7Hd5xeqjoL7PRx/t9/vf3RnUzbMLVCpzCPX1YOlpFixyqFhyTysUg/Zskq2+wgdlk5IsxEiQLnQTyCScs/XDG8MWwhFWAhF80qtVGKpMgvOn0/34eOUK0HmLXJoWdmMava7Zju+KLSLVcdZG81dXOoxHFHmN+ZOQKFX0wgLh+etA1yjJ73zs255q9nvOc5mObkrb3sjU/yZlyBaroWA6yA8uNRKURSSySTJZJKlS5dimia9vb2k02n27NmDaZrj2p0fqZwLpq6HUiKBsfdQHj9+nJ07d7JkyRJWrFgx4D08FRUcxWKRZ555hsbGRs4//3wK/Sab57XScbSfYEinXDRZfnELDXNjp5yr2xnE4e/juj1XQA+jmBl3VEi5h+PdeSqFNIsWrSJoOAhH4eiOw7QezhIIWIQvTZKqN+hqL6OqJSxbJ1FnEE5GcMd86IDmOrH6Dqaal8nD8VSugdu46JmGqRBrEDQvh67WDI6j07wgwbzlCYQiKBSyZPMFero70QJhECalsomhgaKFPVOeiJdhjJ50iq2kMYIJVl4Q4MgBFSvfj55KsGhFGCOguSY4WhCckisMvfjubtpFQAjUQABFUbAsDVXXsS0wHQ01EPIMfSzQUq6gDTS4rQnemCgCKferb+yjBnA/IyrYSghVmND8BoivBNz4GI1GiUajLFy4EMdx6OvrI51Oc+TIEXbu3Ek8Hq8KzEQiMeq4mZF6KHO5HJFIRGYoJRKJ5Cxl1pa8lstltm7dSqVSYcOGDUNmfyaToXQch1wuh2maXHbZZdTXu8Yxi85r4Pp3XczWp45QLlksu7CZy14/cNaVKHYQyvyeAhH8WV84ZfdD3cxRqMCJo/uJJRtobqxHUUzsisme3x+g64QFosKxTAWzcJDzX7WMUDxLqQSRmEayMQqK7c1iM905aA7u8yBcoamoJzOhVgGhBlGdSvUcRQ8zb0UQa1EKsNECQRRRRgvMJWQXEY3N2KUe+vICO91G2wkIcIRArIl40CEUb0HDG0MiKu5OP65DbF2LRWrO+e48SW8WpFDr3TEeXjmuMBLVrwGRBVpQK2n2mq1g9iOAoKJgAjsKW1kfuZyQoiGMJCAQug5CoKgqQtG9LGzMFZr+tRvWQ3xV9Xc52mLHMAyam5tpbm5GjLI7X19fP2AmoP8cI2U0c7ncgLEJEslYmciGW+183EsuuYSmpqZxX2MkhBBkMhnS6TRr1qxh4cKFKIpCvE7jze9dx3M/20+mp0jL4gQb/vcqNH3g/z/VztJU+v/Z+/NgydKzvBf9fWvMlXPmnueaq7qrx1IPqpYEEsgIGQlzdG0fcxwnIGSfA5cw99hAyIEd/gffcNxw+CDAEIF9CazA5hoLM1gWBoQmS0JqSd01dE1d87Cr9pQ753kN33f/+FZm7aquuaqrG5FPRPeqzJ251sqda7/re9/3eZ/na0h26KTJTkHYAztN2K1xda2GTZfFHU/qGUIrx/nvnObimz622aDS8zjTO8YT738C1+3R7nq4Vp/szBhW2AQnBX4LDIGI+nF4jO0+otg6SQVbOomWFsIRFhAxPlugMJVFRvpHhmECEYlkDlRIpASdVpOVtQ02NytsKIOUZ5NI5Uh7PWw3D1FLx/ywEYv41PEKY+x7toE0JzGiplb3DhpxEhrbgqherEatMGQXAxP8BvmxBPPbTa5eDDBkEz90mZyxmVjM6UTUGCSitk4mB11TYcZiPxZggYjQfscRmB5K1QgzT8LEK7f9vg3DGLI3QN9/B/Hx2LFjSCkpFArD+HizuI5S6p5mKEcYYYQRRvjexDuaUN6O0jWgoBaLRQ4cOHBbFdcHpXQNKFxhGLK4uDi8iQ6w89kpdj57a882Fbbhyn+FqIdQsRCPCvVCRkVU2hGltRXGp7Yzlk/pmz4R9Y0mtU2fbM6g51ukzJB6uUu/ss743BTSbyHstE7QhBt34hIgTJSZ0jQvBfp/EmEMbDoMhPT1NmwPZ4iUcLBFhDKdeBGiF1LK1IbWZmKClGpRq+fZsTRL14/oNTfZbESo0nFMt0DGK5FIT5Cw2rESawVlpTCinjb7loGutqtQdxhVhHKKunNq64VZgIeQIVg2RSPFdnsRZRgYKiIUJillYsoIIet6BlP1Y3/JvqbPqgBl52Kqb1EvTtM7UJPXFQrvJaHcipur81EUDRfPW6vzW8V97kTnAr1gWlpauudzGGGEO8E0TXzfv+XPut0uR44cQSn1Fn/crXjQ+BhFESdPnqRcLpPNZllcXLzh5xPzWT72Uwdu+34VdhDXPo8YdBGFo4W2rAydToOr1ypk0gmmpnch8FFWkajb5soFSSIREYg8KbdDrZagem2Dhae3ke1VEE7xOsXT1/YfVriCcrIQ1nXy5td0ly6It70KOBno1+OktqVHE6IOppnCFF2d7EUDNW4tSGZKn0y2gLG+xtziLpAB7XaPVqtJqdTHccp4ySzppCKRzGIib+gaGjLQ4j3S1zRXGWgqqpI6Zsa2IBGOFiNzUoigyVPfv4/C5GVqNYtM2mfuySUs1QAxSEhtnThD7FXp688TNLUAXFSPxYJasTBcm9Dw8Ivfd1/XgOu6zMzMMDMzg1KKZrNJpVJhfX2dM2fOkEgkhgW4fD4/LIqMZsxHGGGEEf564h2jvN6K0qWU4vLly5w9e5Y9e/awuLh4R4rMg1Tgt85LJpPJ+5qjUzLU9iBBE1NI3SUMm7oK3KuyVunQbpaZX9xJKhHPDsoQsFDCJwwdgshGqi79UCd6zaZButsAJ4kRd/WMoIKyc9riQwiE6oKIk03DQcgQZbgIQhRGnFhKULZeuAlLL+YEcUdTxFQrU88WGRYgUCrCECHCsEl6NklvkTGhCMKIdqtBp9OjfG0ZDJNUokIqmSHpKUzb0cmrMK4vbgbJrplAyEgnwEIgMcFyUXaSKXOJDyd26s6BsBGyG/tnNuKuZiy6E1T0vKhfiRVeWyBsDBGgDAc189Gh36RSCqXUfSWUN8M0zbtW51OpFFEU0e12byl9P5oRGuFR4naxbXNzk6NHjzI1NcUTTzxxx/j1IF6WW+cld+7cSblcvq/3y8hHXflDDH9Tx4QwAMtCKqg3yqyvrTM1OUEuX0QIiRI2QkmkkcAQkn6UwLYDeoGHUiGNpovf7WM6RYTytXej7INbgKhPaOWwlQ/2JIRtnWyGLZ1UhU1w4znDG+YNazd4TeKX4w5jJR5d2IztQWqaPRo2sb0criUpFheQQYd2L6LTrrO+UUGGEYlkknQqRTKZwrENwNRUfcPWcVIIGMRqY+BV7KGoIp2C/l3FiejC07tYkP24IxmAkdb3GtNFFzBV3IntXP+cdlZ7ZVqZ2DMzgQpbrKsGm8m/wZx5f/OQWyGEIJvNks1m2bZtG2EYDscHzp49S6/XI5vVgkydTgfbtt9y3x7NmI8wwggjfG/jwVfhD4mbF0xhGHL06FEuXrzICy+8wNLS0l3nLe5nRkgpxZUrV3jttdfYsWMHTz/99P3PGK3+2fUKt+EiEWB6REGH5bUyQWeTxaVdpKyYltov64VE2CI7liRXtOk0AvptSbPs0/NtVi60OH2kQ78Taspo1NcduaCJstI4sqU7ln5FKxr6FQRoxddBhVrECaLparl9M4kyE3pruCjh6k5nTLMCNGVVRVp0QvURYUuLTwRtLANyqSQzs7Ns37GbmdkFTCdDud7l/OV1Ll/dpFzv0A1AKaE7qSrQM45hC2XYWokWA0c1EULoZBETEXWHIhnKSDAQ2xGgxXZQKDurF16mi5ASFPrcZQ81/UN60Rdj8P09TEJ5MwbV+f379/P+97+f559/Htd1CcOQV199lW9961ucOXOGzc3N4YL9UcxQfu1rX+PjH/84s7OzCCH44z/+4zu+/qtf/ar+3d7038PaRYzweHEvBTelFOfPn+fw4cPs3buXp5566q7FsPstuFUqFb75zW+SyWR4+eWXcV33vuKjkhFc/n1U6zIIA5OeLoKFHcrrVyivLrM4O04un9bFJBkgoh5KRViWz9hcFoIu3VaE3+zg9xT1jRrHX92gsdkYinRhJuL4kMBAEgkPUDqpQunOIOj5QhWPJKgI7GI8f1jUnUO7oDuTTiFORnM6ORskaVYKW3R18jboDgYNDNMk48HUxBjbF6ZZmJsklTDpNMssXz7H8qVTbGys0qmuI2Wk34uhjyEMCLuABVEPqYRWqRWxHQhx0U/EtV5h6o6mYYHh6XOwM4AAK6+T1sHntIvx8xkQFldVlZ/lK/yF++1HGh8ty2JiYoK9e/dy8OBBXn755WEx7ujRo3zjG9/gxIkTrK6uDrvso/g4wggjjPC9jXcF5bXVanH48GFc1+WVV17Bdd172se9UroGFK5SqXTDvOT9iPqojb+E+psxbSnQKqbKoOdLlq9u4iVsZhaewiQEoxhXjWOhHieH7dd56vu2ceWNiyxf9LFFn+J8HicBjUqba+cVO59xtbQ+Ip4njAiEpkspuxjbZ+TiTl5u6E05qKwLvxx7pLXj+ccAZbraR9JMYiiJsmOqquVBv04ovFjwJhnPQcbiOHZG79/KkjR7eGNjTOS7BCTotms0OwG12lWksEknEyRTWVKewnCLiMjX3m1RC58kRtRGuVlEVIe4I6mpsj22KufqhWKoqVqGQgpX02jtNIb0kYVXhqISw+8llpd8lAumrRhU54vFIlEU8dRTTw2r82fOnKHf7/O5z32OTqfD5ubmfdNvt6LdbvPss8/yyU9+kk984hP3/L7Tp08POwQAk5OTD3T8Ed492JoMBkHAG2+8QavV4uWXX77hu74T7jU+DoptZ86cYe/evcN5yfuKj0ohlz+H6qxo6mnYQ2IRBj7rpQpR2GNp2xKWbWuGBUY8921jRB0wXJ44kCHhCdYvXqNRM5iZF3i5FN1GlSunAtLpCMNNY8hm7P3YQWFgDuJItGXOUMTdPRHPUgr3emyRERjJuEuYjj0nM3GSquMudkGrsIo4CbIzsRVUKn5fApSOXm4igevYFAqTSL9JJzDotUqsVQRGaRU7OU7GrZDITuEE1biLWAUriSVbCOXoQqUQDEcojAQE3dhipK7PM2rpuB22YvZLF10T9gEZv19bmyjp8x+Ny5Rsl6/Ir/C/if/tnr7HB0EymWRycpIrV67wgQ98YDg+cPXqVU6dOsWhQ4f4zne+QyqVwvf9+1aPHWAUH0cYYYQR3r14x1VeV1dXOX78OEtLS+zevfu+VODupcO4lcI18K8c4F4XTKp+Eja+omlQfgWcHEZYJ4pCrlx8k8L4NBPFor6hD/zKrIxeeDhjei7HKZI0O+x75Qn60SEalSzpdECoPDyvjd82UH4TJSwiJMJ0EAqMmBYGUiu6IpG2niVUdlFTWZ1CnAwOxHAyiKCqabP9ckyjraKsnO4gWlqBVZqu1kO0sxgqRDpjCBUng6ofm4+3tojt5LCDOlauQDbZQJrj+O0yrZ6iWbnKel+RSNh4yQzpVBrX1b9rZWXBsFBi0Hk0AIGIFMp04nPSliEDCXxl5zD8qp7d9CsobxYmPvCW7+bt6FDeCgNRnkF1fiCC0ul0OHnyJF/60pf4V//qX/Ebv/Eb/Nmf/RnPPffcfR/jox/9KB/96Efv+32Tk5Pk8/n7ft8I7x5s9W2E6wW3RqPB4cOHSafTvPLKK28Ri7oT7iU+Doptm5ubvPDCCxQKhft6/wBq9Yuo9rIuuMX+jBKLKytl3ITL4vwSwjAAhRKatqliWw+tCB1gehl2Pesi7BB1ZoNkvoAheliJFNJv4QfjuKJBaCUx+nWEncKMGvr9QT2endyyNT0Iq7qzp3TSekPSaVjxSAJa3Eap6wI3ItIPB88JE0Qs6iO2KMnGs/MYGSDCSIyRToSks0XGpE8/UHTbNeptn43KRUw7QTrZxktnSBIRCQcMU+/TcHT30kpvsQWpDwV/MFOxwE9Md4W4szmYo6wPKbznUjm+EOhOnC98/qz/Z/yf/J/3fO3cLwaCPIZhUCgUKBQK7Ny5E9/3abfb/Omf/imvvvoqxWKRX//1X+cnf/In7/sYo/g4wggjjPDuxTtKed3c3OTEiRM8++yz7Nmz574lxe9G6RpQuNLpNC+99NJbjO3vZcGkuiuw9mVNLxr4hwVt6h2FEbWZmV1gIp8AITWlKWzryrHs6kWK9AE7rmonQSiUnUdGik5Pz+V1Oi6pjIXhpDHQM42EXeSAEha2UUFHCwJFfiwGJONKdpxsWlkEAuno7qtyigjp605m2EGZaT2raDgIvwYIjKAKSJ24yRAjbKEr5PE5E+lZRhTK1rQqvdXHM1RIIpljvJBmfn6eHUuzFLJJIr/D+rXzXLp4Blt1aDVrRL06g0WYMlwQBtLOgDCRdhEESLuIUlInsrKPslKaImsmUHM/Fi/kbsTg+3u75ehvp2CYTCb5mZ/5GYQQ/OEf/iGf/exn2b179y328PbhueeeY2Zmhr/xN/4Gf/mXf/lYjz3C2wPLsuj1enz7299mfn6eAwcO3FcyCXePj91ul29/+9u0220OHjx4QzIJ170k7wa5/g1k9SjKMOPuoEWnWUMJk1TKY35hCWEaCEMnY0JYIEwEBhg2wjD17LWwNM004eBLj15X4Ycpup0I3AKJZALhanq8tDJEYUggkijpI80kamCbEflgJnij9R3Oh9f0nLdhxecm4pgstdetDHRcj3o6nkZtIIgti0Is1dZz6f0qILSiKyJ+naETO2HE7zf0MZQ+hsAk4RgU8mMszM+yfeceJiYnkJhsbFQ4f2mZnq9od3z60tXz8E4+prEW0fTdgj5XO6+PZ2ViCqwT308MnXDKUL827KJSO/g0xzDi27sSij/q/RHtqH1f18/94HaiZY7j8PGPf5xdu3bxcz/3c3zzm9/kgx/84Nt2HrfCKD6OMMIII7z9eEcor71ej9XVVcIw5JVXXrmtSuHdcDtK1+0oXLd6/50WTMpvwPLndDKoBAgXGQVc22jSbTeRZo5MOh1XvHuaBiV7aPGFSC9QsPSiw0zEczlpxqYh7CXwOx2CyCI3nmR614z2urTGtPqf6bKxukyAjes62oQ76hMaDkbUB9PGIIqPpXSVWwm9aEMBke4AoFBWWm+NvH7eziIivQgTqqoXdbEdiQjjBRKx2M7Av810EVEYi+0AWCgTwEQgNfXMjEi7OdLZHkpso9cucXW1Sqe+zuamTcq5hpuaIJ2QOKmxWDXWw4jasfJhFAtOKJRhg3BQwo7nJm9N8xtQTB9HQnk3ldd8Ps/Bgwff1vPYipmZGX7zN3+TF154gX6/z2/91m/xwQ9+kG9/+9scOHB7Fc4R3t2IoogrV67Q7/d54YUXGB8ff6D93InyWi6XOXr0KJOTkzz55JO3LJbcC4NDbn4Htf4VhJ1D+BWwslTXz7NR7eGqNmOFBVS/irDTyKCOsFLIqIUwEsh4dEBG/XgbIQyLdMGmMO3gt3x6nQA3abPtyXFMO6ZKmh5KSir1Hu1Wh6npaaQyQCRASoSRoBJV+Er/EF7fYX7sJ3GFBZajrUOMLb6UwogLc27ctUzqYqCpFWEjkUREHfAK1zuAQ1GfmL7q13RyFw66h62406mtnoi9fE3DI21HpKcmUEEHXzmsLp+n17e5eukUwkyRSdokUhlSXkJbmRjE5yziDql9nRJLFHdf42IlEhKTXJl8jpPXfvOG76mrunyt9TU+mrv/Dt+94G7xsdVqkU6neeaZZ96W498Ko/g4wggjjPD48Ngpr4OFTCKRIJvNPnAyCboCHwTBDc9tnZe8mcJ1M+60YFIygCv/RS8iAIRJ2OuwvFrFFCGzs/OsXLukZ1pUoGdcVKDpSshY+yZWgjUSuipuuBC0cBIOuakNlMqSTigKU2O4ThvIQtQhVDYrVy8jsdm2NBfTXwMilUREfSLDQUQ+kWFjyn6c7PXA9PScpZHQiyDDhbCn5yOlj7KS8fm4ccKmkCIR23NE6EwxBEyE7OluZtjWncKwpa1Bwka81QqJ0q9SLpsov0N6vEAiqT+vIMJJjgNVphafBBnS7vTotOtcrXcRqoyXTJJK9kkmLEzHiWdE01rQJ6ZuqfGDkNl12+9QSvlYzLLvJaF83CqGe/fuZe/evcPHr7zyCufPn+fTn/40//E//sfHei4jPBwGlNdOp8ORI0eQUmLb9gMnk3BrBsZWJe19+/axsLBwX++/YV/VY6j1r8Xz3S2kmWNj5QLNjmRpbozL1wQqbGKkx1FBE8NK68dWChW2MEwPFbQwzES8dVFBA9uCzHgHUfRwbIv8eJ50KtQxVAYgLDY2Vmh1AhZmJ0kkPVQUIA0HFYYow+a19rcRGATK52jvBC94z2AIG4wopomG2qNSynguPp6nJAIzG1sh5UGsIZ0i5kDcR/pbfIe10ix2NrYFSW5hjRj6fmAkaG5W6HRtUskK6YkJCBoIK4sbNhBWgom8TSK9i16rRrvrUymtUIoCEok0qYRFIjuOK1oxBbYSK9BWYo/L1lDxGmHC4t9k1s3zL6b/BV3ZBeD0mdNsX9rO+9Lve+Br6W64m0/vKD6OMMIII3xv47F1KJVSXLx4kfPnz7Nv3z6Ah1ZbM02TXq83fNztdjl8+DBCiLfMS94Kt0solVJw7fPXxQ9URKfTZmV1hUwqweT0NoJeQ3ct+5uxOmBVCyiEPT3Pony9sDDMmGZlaQdJ02ZszCWdzdNp1Wh1fK5ePoXt5ch4ZcxEnmrpNHZyjJmxJMI0Y2+xLJbsgeOhZEBkpHSSaWT1PKWR1d5nZlr7UloZnaANk8CbbDnsLGZY02OfW+YqlZnQIj5WZuj9aKhAz1fKPoHIYQRdDCeP6tc59mqNxtoGPd8hnb7Knpe3MTZpa+uS0MeUfW3eLSCbTZHNJFCGQ7/TotXxqTUbrGwEeIkGyWSWVKpLIlHAiDqo1DbU+Pff8Tt8GBGc+0EURbcVi5JSvmtk8V966SW+8Y1vvNOnMcIDoFQq8cYbbzAzM8P8/DyvvvrqQ+3vZsprFEWcOHGCcrl812Ib3LngJutnUev/Mxb7CglUgmvLl5DYbN8+jWl7GKKMtOJjOHlNSbVzKOmDndFFOzuDivpgp5FRF4RHKgmL23bTaVVodUI21i+zaXukPYtEqkCjukyIxdLcGJabgqiDMD3MsAV2kmrvKheDC2SiiK5hcrbxLZ629+CEdXCyGFET4WTi+J7WWzMVM0kGnpSO9sRF6OTRdOJ5y4EaqxUzQ+LkUVggLKJIICMTy1II2+PC0RXOHSnrRFPY7HmPYNv+aZ1s2gWUqiCtDIZhkcyMk8wIlAoJQui0azQ6IeUrFxFWkoxXI5EqknR18q39hdH3mKgH8z8KiQls4AczPzj8rtLtNC+lXyJpPnjx9m643UjAAKP4OMIII4zwvY3HklBGUcSRI0eo1+u89NJL5HI5VldXH8h0eyu2UrruhcJ1q/ffcsG08XVoXop9vwKqjR7rayUmJqcZK4xr9VQ7B/JaLJgwMNuuxcquZXByWsDHzkC/jbTTqLAHpothGnh2Gs9LMiYEYbBIu92k3mjSq60ghEdCBbT6ghQ1DCemWVlabAcrix3VUVYWFTRRZgYVdZHChchHCgcRhmBmMIh0B4EA5WgRn4HYTmRksNUmykpq0R0rqwVw7AyGX9bqqn4TZadQ/RZnj1WpXGsiMZjalsN2TFYvNXHcDG4Smo2AU99e55WP70AYJkppFUch+ygnh4h/T8KvkvByeFaAKs4j/SatnqLbabCy4gPreKksLH2cYhDcUfX3cSWUdzpOp9NBKfWuWDAdOXKEmZmZd/o0RrhPnD17lgsXLrB//35mZ2fp9XpIKVFKPXAHfmuHcVBsMwyDgwcP3rXYBrePj7K9jLz2eZQwENKn0w9ZuXoJL1VgZnoMDFczIoQNykcKPW+tTA+hAlpEpIWDMjwgBDuFCgMQKRQBws5imwG5sQVyxRDFNtrtBvVGh+rqGhEmmZRJs2+QMfpYTkYnVHYGZI9X/ZM4UtI0DdJSUjHhbOcQT2VeAb9BZGURPa2MPYx3N6ivxuI3hoOluhgyhDBEJ47EIjw2hH6sutpFWWnWTl/mwhkfmy6JQoG5bS7nj5aw7RDDdon6PuePbDA2kyaTd0Ao1oxVkuRI48W2KCFCJHHMACcxQ74YEak5ep0WrU6PUrlCGAQkPI900sNLZ3GFgZj8IGT3vOW7Uko9lhh5LwyOd4NP7yg+jjDCCCO8PXgsCaVhGORyOfbv3z+UDL9fj7RbYbCPS5cu3ROF61bn9RZKWPUN2PifupLe32Sj1qdVWWd+YRfphKaJgoEhIgJcTW11ixAFWtFV9jQlKmxpSpRfJbIy0K+BnUaEseS9X49nLn0sM4GK+vS6HaamZrEcl3arzWa5xkoQkEw0SKazpJNdHDenPdxiJUBheYioCbaHGbZRlocKGkjh6WMbLkJ1NA1V9BCGpWcerQxhVGNjxaFbXcVNJZjZFmA5er5SmR4i7IFhIaIeV0+XKF2q4zoglcnGuau46RQJq4Np5zCNEMNxCfo+/cAmYQkiK4tkA+WOI1SAdIp6VtPOI6JOLLrTwbRscmnIpQoo4eD3GqwnPsTaRoO//PJX2TwbkkgkeOYDizz3fTtvWBw9zg7l7RZM7bYWu3jYhLLVanHu3Lnh44sXL3LkyBGKxSKLi4v84i/+IteuXeN3fud3APiVX/kVtm/fzv79++n1evzWb/0WX/7yl/nCF77wUOcxwuOH53m8973vJZPJAAyvtSiKsKwHC9ODglu5XObIkSNMT0/zxBNP3PPfyy3jY3cdden3EBiIsEu9E7C5eoni5AKFjKMFdgJtZ+TQRKlphF/RBbigyjXZ4vObv8f78x/hSXe7TiqDFghPdxotL55ldDXLw9TJqbBcet11MoVJ8rkkrVafZr3B+rpPwrFIprJk0govmaIW1WgZBhZQNwQ2sGqEPGua4I0jwj7SHYOoT2jl9Dy5kUFEAcJMYSgJVhIV+tQ3BeebZRzbYGKpQCqFnluMOmCn42JijuqVFc4db5OwO4SkaK+vcrGVwTba2K6HafSRJvTaffrNGpn8OOXuBV73DlHvXOUjqb8LQXlI9cdMgWyDsDCBlCtIJfNQ8OhLh26rTKvbZ235DMuXi1ypN9j+1BE+8GP7cdzr4k1vt63SAHeKj0op2u328Np+UIzi4wgjjDDCuxePbYZy586dt5TFf9j9NhoNms3mPVG4bsbNohWqfQXWvwxOgajf4Np6C/wq8zv24opYdCdoaEXCqINJHxX1EFhD4QVEbL5tZUAFWrk07CPcMYTsabW+sBVXwZtgpymvXabWDlicKZBIpSDqkRrLQNHDlyadZp1Wp015Yx3LSZBKJUmn03jJLIYgFgWKKJfAb1dJ5hLkilpN1ZARClCyg1KapQv6H8tvrFBd7tBN9ImkRXMzyd6Di5imC5gow9GiFVJSWgNh2uB6uEafWtXEDbv4kUdGtAhkGocawsmRMBpABiOoIVSEETZQwkEMRHeEQpkeCBPFQIZ/QCPzsec+zPzE+2l/d5WTf3KVfidAqRbnvrvJ2dPnefKVOcbGxhgbG3vXJJS2bd+zf+rt8Nprr/GhD31o+Pjnfu7nAPiJn/gJPvOZz7C6usqVK1eGP/d9n5//+Z/n2rVrJJNJnnnmGb74xS/esI8R/mpgYWHhhlg0uNbCMHyohDIMQw4dOsQTTzzB/Pz8fb9fKTXskqp+FXnlD1BGAhX12Kx0qFdLzMzvJpUwwfJQQTsWrGkRGbrTJ5LTsZBNjjdKn6dnCI43vs4TU3s1i2OLHRN+9cZtv0KjqyivXWRsajv5pADHI2GEUFxEBk2aXUWvVebq1QomPh9If4iMZ5JMFzAN3U00lKJR6dGqdrETNhMzJpg2SggkDhKFwkJJAwkIYbF8tsLGBYWX6BBJg821kCdfWSSZFmAW9NykMw7Sp1JNEIU1SBdxRERPZem2fSKVJOoqnIRFvyuxLXAzBVAh3/JP4UaSM+YGz/cuMenOQ9DWnUrp62KlYWgrETsTextncYMGbmECV1Q4eczm64efJIrqXDhU4+yJK7z8vyxQLBYZGxsbxqTHZat0OzyKGcpRfBxhhBFGePfisc1Q3uyzZlnWQ3Uou90uFy5cIIoiPvCBD9wThetmDBZMALJf4XPHf5pd7jZ2GjtYXi6RcC1mdzyLKSIQSYi6OlGMVVtNIhQKFfU40zvLjsROHMx4QdBGChclewgzgVD+cB4TW4s+RHaBtWuX6YcmiwvT2PE8kBZbaICdxlFtnOI4+bCNnJmk1yzT6gVsXjtPH4eUa5HMjnHtZJWVCx1NzbJt9h6YYmn/OEJJUAKlApQyUFEPJSzapTLVjZBU2ieRzmOqNrVSl/b6GtmZKURQiReGTZSVIZGQ1MsGiVREP/JAtnELU0wlA1YvtzDpY3k5nnl5Ehxd7VdY+nenIoSQQ2qYnuXMIPx6bGtSR5kZhGqjEnMw/goA3/rcOYJeSHbMA6BV61M+ZZL+oTSrq6ucPn0ax3FQSlGtVsnlcm/bwuluCWUqlXpocaAPfvCDN/yN3IzPfOYzNzz+1Kc+xac+9amHOuYI704MPP0eNEZGUcTp06cBHqjYNjgH0MnCyqlrNI/9J4Rsk5v06KsmQeCzuGMvrmMjMTCQmtquQpSTR4h1IitPq9ahXhE05DlOOSVsW3FV9HizfYy93jPaBskt6tjn5LX1kpOHoMlm3adZXWVqbjdJJ9KJlV9nVbUQ3RWmk7vIGW1yuQWmgja9wKDTKlOrhZTXV7C9DGnPobkJV46V8H2JaQgmljI88fI8ggjTcDBjqxHpN5BWCtmvsnKhTsL1Seaz2IZPddOnurJOcs+svhcIW28NE9uO4uQ70u4iASSSDjO7Clw+vk6zJnATJgtPz5MpJtgIK1zyLxCZBiaCb/aP8WOJbTr2i1glXFjXraoGW+lrexAVcOWi4Dsn3kMql0YYgl47YONURPZ/L1Cr1bh48eLQaqZcLjM2NvbAxYm74XGIlo3i4wgjjDDCuxfviG0IPBzldUDhyuVymKb5QMkkXO9QqqjPuTP/itXOKSqdCxiNgLFcnsnJOVA9TcdSAxW/CKwsIvS1B5qwOONf5outr3EgavC+zEGUDHQ3UHYQhgNRUyu9hjVqFehUakSGR2hWMNwUS/PTmFasEGhl9NYtxt5ieU39snMYUZdkfpZk0EBNzRJ2Nmn2DDYvXWb5dEjS6yOdDBZNzh9VTM6aePk8qEAntTLQCoaENPwEvX6E4WoVyZ7MgGzRj1KooI0y0xhBrOga1JjdVaTXvES7ZmIZdVIZj6WdFqlChoW9GcJ+SHoii5fUCbXCQFk2kXBRdj7+bB5EfT3TKduxQFAjVqltajuA2R8Z+k32uwHCEMNEzTAEUQjbt29n+/btBEHAhQsX2NjY4MSJE0RRRLFYHFbnH/S6uBXuVIFvtVoPpVY8wgi3woPGyE6nw+HDh4fX64NSDQcJ5ZWTy6z/z/8vpqwilcHqpatMbsuw9+klhCW0X64wdWdPSSQCoQIUgtpajSvHWwQ9n1JYZSy3jerTl7HciK93XmO3tx/TTKItMJK0610qaz7QJTB7IPrMLT2J65ixOmtEaGf4k9Lv0UfxfyQWcaxcnHDlSJghidQSRRkRhhGtVpN6tcnp1zYRUmJ5DkJJVi50GJ+pMbl9SjNG7AwETQwvj+E3aEkXwjLCzOBZbfzIw3NqhGEW2a8hTBdUHyEMUILpeYvysk2vVaUXeSQTfeb3bWdmQTA5v4OgWcHJ5MlkJciAo82vY0cKSygMpbjmX2ajd5lJbzuEHa04G3ViMaC+/uyRj7Yh0XYna/2D+EEDKw49hilQEibHpti5extRFFEqlTh58iQXL17k5MmT5HK5IbvjURTBBrgXyuu7YYZyhBFGGGGEtwfveEJ5P6ITWyXvn3jiCTzP48SJEw98DoZhIKMQtfzHvFb7CiECpfo0xio8UdwLMvaPDGp6XsavxIqudQwjg0lAqEy+3fwmPnCoe4xn0y/jiYQWbxDEM5cOyIDVK30uvXGNvq9QYRevkOU935/CHMwdWal4fiYDqhPP0fR1x1NF+udKJ5mCCDs9QzHp0y5b2PZ5pJnHMjp0ug6OqHLtWopp2cLLTmNFlVjptUKlGdLvLJMbSxC2u3SUi/RDvEySTNFBGjYoRWRkEFIhzAz5Kcmel3dTXWsgRERhJksmDcpyKY6HKKuo50OFpq+p2JdOoHRH0kwigg7KsIBQe2QKA2Vltf+l4SJn/qZe2MXY+9IM185W6TZ9bRunFHtfnB7+3LZtstksnU6H5557jlarRblcZm1tjTNnzpBMJhkbG6NYLJLP5x+qe3knFcNB9f1x2JeM8L2JW107D5JQbm5ucvToUWZmZtizZw9f/OIX72sOc9VfpRE12Ovt1f6uKqJ36j9jqxJ22qPdrOA6Lra0MAyFkj4GoFSIoSTKMDFUhMLCos/qmS4i8nGLFqq3QaKeYmwtT2NhEykbXOydZ5ezCIZNfbPGiW+t4Xf6+H6Ak7R47kM7cW2BpumHIATHO0fpyj5KwJHOMV7KvAzKAgyteIpW1rYch3zRwVQZDNFEOBaKiG6oiPyQ5ZUudqFBKp3FEULPvKuAdphgbe0SieIU7VKXejOBinwMK0t2zEOZHlIpwNKzpDLCTud48hWT9avjiKhNamwbxfEIrDTZbAsKE3FiaBFGPZb7l1GGwJWKrmmSiiLOhMtM+vnYFqQce1s2h58HGej5+6AOMz/M3LNzmJ/7Jp2Gj2kbhP2IbU9NkMonhtdPNptFCMF73/teut0u5XKZSqXCpUuXsCxrWHwrFosP1b2Momioj3AzBqJlDztDOcIII4wwwrsXj5XyesOB45vXvS52oiji+PHjVCoVXnzxRfL5PNVq9aFos4ZhkO0d5lz1AteiGqYQ9IXB4ehNnhev4MRzkNgZTW2yMxDWh2qrCpPL7depySZ5GdEWcKz+dV7K/6C27jDizqawiCLJheN1+j0brBArWaDbiNhYhbkdSieLUV97osl27CHZ0J3NoAFWAvxWLGvfjrt9PgiLdFYADjKQSCeLofpEZpFk1qXUDAhLZ3ESKTLJNv0goteqMb+0jbkZyeU3q3QbfRJjDov7iiQToZ65jHyUcHS31fRQUZ9kziOVdxCGixAR0rAwZIB0xxDS16I7UQ+cPCLsIE0PizUQ2tcSJXV+Hfa1sqzfiLuUVdTE+yG9/Ybv5wOf2EuvFXDoi5dAwQs/tJ0P/fiTN7xmMEMphCCTyZDJZNi2bRtBEFCtVimXy5w8eZIoiigUCsPFk+d593Wt3AvldYQRHiUsy7rnOXOlFJcuXeLcuXPDeckBPfBeY6RUkl+48gtsBBv80Z4/Iik8xv1XMaRPs2Nhhk2S6TGkoYgGXrZcF35RQoFSKGHp/E9ZhP02pu1gG1C0JwmtCJsFdiVnEcJg2szpwpvsce3NTaJeG9OVZDyToK8oXSiRzw+KSIpQSY41X8VBYUrF8c5rPO/swrbTEPRjJkgzFszRW8/rY7sOst/GsFKYVpee5TA+ZtBsdSiXVjFtj3QqAYZFtVJmanKKpcU0l06VqK71sByPxX2TFKc9wERGARJNSZXCARlhJrPM740Qxjh6EtNEq9hmARWruBpYRsSPjv/v9GSLqysbTE/kMZwk02Yhju++TiqV1PeQwXy+ndSib2MvQvEAu4rw8Z9+ni/97gn63ZDt75ngx372PRjG9Xvt1hlzz/OYn59nfn4eKSW1Wo1yuczFixc5ceIEuVxumGDeb4HsTgyORyVaNsIII4wwwrsX72iHEu4toRxQuCzL4pVXXhkKDdzNePtusJpvkO0f46u1I+RlRNMy8aKIrtHjROcIz6dfBhVTrcykrhI7xViMYQzFMv+zf5yEUjQNk7SMeD04zbP+UyTcKZ0oWRnwqwSBplBJbLIpC2G6tPttAl/qWRnD1FsA4QIKrEFncmCY7eoZGsPQMvlCgAopjFvsfjbDlVNloqCP5xnsfmGaqZkMmA6B36PV6VMplwkihWV61Jp9Uqkke17egUGojy197b8WdRBOBhE2kY6e55RWBoKa3vZLSCuNIWtIw0PQ1e8Tvj4nlBbuECGRkUKZKQQRSlhc61/keP8sP5R8n+60hk1Uagk1/oG3XiOWwQ9/8hl+6CeeAsAw39ohvJ0oj23bTE5OMjk5iVJq2L1cX1/nzJkzeJ43pH7dS/dylFCO8Lhxrx3KMAw5fvw4tVptaMsEuoh3PzHy682vc7F/EYDfL3+WnwhmSUSbhGaKSPYwozRhF8BmbDp3nTlhmPHMn6FFt4gTESuBkzZobPbwDAcvHCdAsnt8kplsAa06IwAJyqHRDOn6glQiie3Y+H2fXlddP44wOdF+nQYBtlL0hcCJ+hz1z/KCeOJ6Eulk4mQyC0EDy8vx9MtNjr2qMKI6gUqy5+kES/sWIOogGaPTqlKtNfH7XUxh0G1XMVSXHU/mMfcHuuAX6sSIoIZh5zCCOlhpbd1kuKhQMzBU2CNUaEVtJcFKYKi+juNRD4wE40Ya7CK9sMOMNY9rOXSaPY6+ep52tUOqkOapg9N42VRclEwCASTnYeoHht/Zgb+xjec/vISMFKZ17/HRMIzheABoTYJKpUK5XOby5cuYpjmMj4VCYTiLeTvcLT6apvnQomUjjDDCCCO8e/GOJZSDrtLdFkxbKVz79u274eb4MHOYqnWRaPXL9FSKrBLU7CzTMqRtWxTCEIGpqUVmQs+0GDZEUm8FoHwaZpuObBAJgYmiblpYKuKcrPGUmkDZBZAdlJ2jvnGO0PDwrB5RlMYMaphWglymD0jwmzHFqQd2Ss9NGol4zaUr25rOFel/E4Eyho+X9k8xtjRB2GqQyGVJuCGYFgRNTNOjW7+EbSfZNpehJ126jQ02Sh3UymXcVIF00iWVyeOYDEWDlFNEqBDccUzlgzWBEXaQdlZ7S2KhpD8U/hHKByuJ4WuPTCOoIoSIPS7TqKjJl5v/k1ZU46y9wB5zN8odQ839rTgRvc21cotEcgAp5V0r6Td3L8MwHC6eTp06RRiGFAqFYXX+5u7lwMttlFCO8HbhQSmvW4ttBw8efMui/V5jpFSSf7/x72NpHcmpi79Bx/oICkgmGjz98g5a62VCkaIwJijMpFF+E2EnUUEbYSZQUVdvYyEyA5+5JwtYb1ZpVENMQzK7Z4zpxVw8DxnHqCigUm+hLB+UDcqi0zOQkSBdzOvXCgeQnAqWkUDLMLCBlmly1r/AC5lXdNFtIGDjjmuKqTMGqk9xaZH3jrdpNSQJV5EqpHRh0ExjqIh2TxGEirnF7SgMus06lUbAxsY5rESObLKOl5kkIVrx2EMjZpW0EVYCoQKwLEAgowhl6gRTWmmEXyW0shi9Mjg6LmImwW8gZIih+gSdLt/6b5eQfptuL0HQqvGN9RY/8P+YxUxk9By+nYXZj+nfx03XjmndOgbeqwq253nMzc0xNzeHlJJ6vX5D9zKbzQ4TzFt1L+82EpBKpR6LGvcII4wwwgjvDN4xyivcmdJ1KwrXzRj4pN2v+bfqlam/+VlWVssIIv727D+gutGguuljCJ/cZJ5C0tCLmLAVm1e3Y9/IXkxBUhSlxydSH0OIAGm68QyRw4w9GSv0hYTSZWXlClK5PP/907z5WgW/1SYUGbY/lSG/MBuLQuR04uXkYhXULMKvxZTQwfxjVc8cRrHtiAr0OSm9MErnAsin42q+DbJPIDKsLF/AcPIsTOYQdopU0CA1s52JoEFfztBtrNNsB1RLyxh2moxn4mUKeK6NMCwQoe48mBbCtDENG5SNxETIkEgJTY0VCZB9IiOLEfUIRRpLbaIsDxG1ueBfwo+qJBQcbn+L3eaUXiBZD06FehDbEMuybuhettttyuUyGxsbnD17dti9HMxeDhSK7yTKM6JzjfCocTdrpUGxbXZ2lr179962E3UvHcqt3cmnWi12NZt8NTrMHjHFxOw+6LZpuRksv06kxlH9GkYihwoaGHZGb600KqjrrV9DCAvPbvHk++YImg0MN43r+Loe5td0DOtV2Kh16NZLPP3yEtdOrrKxqnDNFrmdkyzutnXnM2yCleZvZX6AqvIxZB9puJiqT8qaiDt/dhyfnZjBYYDqAwaoADfp4qYESKkLWIaFUgYrKyv4oWRxaRuWo9kgXipPUQYEEXTaDVqtLuWrV1HCIJNqk0pnSSUFhp3TRT+coTqr4WR0smqnULJPZIwjVB9pFSD0kSKJkAqEixQ2GCbry4pexycIkriOT6eXxAmbbKxFzCyFYLqw8LcZKvDcIx4kPhqGQaFQoFAosGvXLnq93nD2ctC93Dp7adv2HTuUo/g4wggjjPC9j3esQwm3r57fjsJ1q/fD3T2wtkIFHTZe+7c0KivMTY2zsrpBZXWDy282ESokkhb1chf15CzFcaVVVqUfq63GN3blowDTcumv+WSSHsl0kqSXjBmfCsImfghr1y5hJbLMTOQQtseLH5qk2zOwbYXtJhh6VhKhnOKwM4j0UU4Boi7KLkLYQFmxxYaV3ZJ0VuKks6yTTV+bihM16PUFK9eukMwWmJoY06bjSukKOwrlFHBkhDOxRE6GSDlDu92i026ytrqGkH0S6SLphMDLTmLLmj62X0XZWcw4wbWiljYCjwKkYaNUhMLGD1pEwiNSFgiPb/SO0hcmoVD0ZYND6SwHUtvu/8LZgof1oRRCkE6nSafTLC0tEYbhcPbyzTffJAgC8vk8AP1+/5bCE51OZ7RgGuGR43bxUSnFxYsXOX/+PE8++SRzc3P3vY+b8d+r/x2AnZ02+zptaqaBsq6xw99Ht+2zciYk6HZQhoMobRIEE8xul9reI46PKuqDndPWRFYG26iwXumT6a2QzBZJWYGOPVEb7AzSb7Cy0UD5dWa3PYFNh70H97K9UUbZOVwr9rT0a+DorecU8fw6uFN6ttyZgKClxwOCRlz8a8TWTcGw+AfxaEEUgOWC3yISLutXzxMZKZZmMhi2E8fPDPR1F9FWPXKZJLmUAypPp9ej3W6xWVpjze/gJvNkkjbJzDiu5esZ+ChOapWPMGws5FA0SAoTiYWKk1UURCRQsoof2JhC0fddhFD4gYNUji4aTv0geFP3fQ0ppR66M5hIJG7Zvbx8+TInT54km83S6/Xo9/u3LO52Op0Rg2OEEUYY4Xsc7ygH5VaLnU6nw7e//W36/T4HDx68bTI5eD/cu+hEGPhc/Mav0KqXWFjcRiqVwTAUtfUOluiQLnoUxyOiQNJev6aprUFFV56j9nDOMMJGSljYtofJmXmkmWS11ODMhRWurVepNds0OyFXlq+QzBSZnRpDmLpqLgxB0vOxHQFRQ9O+gpoWYggaICMtAKSMeEHkooUdtEKesrWfnHIKoKS25JA+yhrIzHsQtWh3uqxePUuxkGF6LKlFccKO/hxRRx8r8jUtTOm5R8NKkskWmZrbxfZd+5he2o/tJim3BBcuXODCSpPK5hqdKKE9Jc2U7pYaFkRdBCGmCLHo0e+1aGxeoVjMYwQ1zvbPEQYVpJIklGTTsvnl6FtI9eAzsPDwCeXNsCyLiYkJ9u3bxyuvvMILL7wwVCd87bXX+Na3vsWZM2col8vD667dbj+0bcjXvvY1Pv7xjzM7O4sQgj/+4z++63u++tWvcuDAAVzXZdeuXW/xYRvhrw5ux+C4ObaFYcjRo0e5cuUKL7300h2TSbj3hPL/mv6/+NfZf8jPtp/h6e5z/JDz/fzI2I9hi4hGJcRvt0kVs2QLFsL2qK7WkcpGKIkyEghk3D1TKDMJUjExs42FhXnMRJ5qpcq5yyWuLF9hsxHQ7nS4uFJHAHPbn8G2LU1XReHkZ3A9U9NVkeCO6a6iU9TxMS686SKf1EmqioXNQMdAIXRSJ+y4G+nFr02B9AlUgmtXzoKbZ2E6h+EW44Q0pbdmQqt8C0MnzERgQNI1mJicZvv8ONt27CHvKdq9gJVLx7h46SqbK2fptNsov6bfF3Xi2ctIq4ObJpZsIKVi8+qbZLMZbNmgOO2QzQS4Th/H7pNMdEikDCYmI8g/Dbl9d7+IboFHHR8H3ctdu3bx0ksv8corrzAzM0MURZw/f55vfOMbnDx5krW1NYIgAK7Hx4dRwR7FxxFGGGGEdzfeUcrrzZSuO81L3gqDn9/LgqnT6XDhL/8dGVVhdvteLFMQSUmoXMAmkCk8ICSNIeqEKqfnGu20nqV0tB1GZGSor1yl3UngGG2yM9NMjcHk5AR+r0mzG1Epb+JHCtt0wUjQC01cN4EQKqZH2dcV/Ig0VUuFaG8MPz7jMH7tFigVU2m1ZD1SghnPFw1FfQT1epe19QozU0tkc7nrlfqoH89ptsFKa0GcAdXWzsXU2gzCL4OVwTM6mKk05XMNmjULL9/Hnneo1K6AEKTSWdLJBMmUh2kOzi2g1o7YXFtncmYX2aShqbDN00jDIqsUfcPg27lJXOXT9bskrARCiAda+NxPd/p+MeheCiFYXl7m/e9/P9VqlUqlwunTp/F9n2PHjnHx4kVmZ2cf6ljtdptnn32WT37yk3ziE5+46+svXrzIj/zIj/DTP/3T/O7v/i5f+tKX+If/8B8yMzPDRz7ykYc6lxHeHbg5PrbbbQ4fPozjOLzyyiu3tWnYioHX7t0w3e3DqcP0/DxPT+/ASRYgbHHRMLBkDTBwqBGSxrPqRKQhqKCcvN7aOW0XZCRpVUrUKhaWaJMeH2Mi78LYNkK/RbMT0aqXKPUiHENiJcfodaokk9nY89fWBbWBSNjAf3GgdCriOXJhaUsmNUgYY2EzJdEU1xBMW8c+I63fY6QBSSd0Wbl6mUx2iqmJiZiqKm9MVAV6nxDH3fi4pk5IcYvYkY81to3NN65SWc/huBJ7m0djfYMoikilUqQ8l2R2DHsw3xm16EmX1SvnSOcnmSho26S0Ay98ZBtHvr5J1GlgJsd47gM5zOIeouIriAdMDB91QnkzXNdldnaW8+fP8/TTTwPaJ/rKlSucOnWKzc1NPv/5z+O67kOdyyg+jjDCCCO8u/GuoLzeD4VrKwZJyJ1mhC73L/OLl36Rn7z8BM/bm4xN70BEDTCyGGEbIaAwbtOq+jQrfRQBwkiQn8zorqAYVMb7RFae0qV1rpz1sagRRC6F8gUWntpOwq7jJDIY9UtIpViYSBIaKXqNda5UwDEivPQ46aSNlylgoPSCJ1Yv1AshoR9jAHGCOUgGZV+rvEZd3QkIO3rr13XS22+Alaa2uUyp7rM4U8TL5GPl1oROVO14vtIuADG1VgWaUqv6sYjQoPPYJYxMvvnHx+k1+khlYIiQTnmCFz48RTe06DVLlMstNlfPY3rjZDyDQFk0amWmZhfJpLQyrkDwZPYVnsy/H5RETv8In/Tmh2I3Wxe8hmEM/7sXSCnvqkD4sBgkrYPu5cTEBEopOp0O58+f59y5c/z5n/85X/nKV/iN3/iNB1qwfPSjH+WjH/3oPb/+N3/zN9m+fTv/9//9fwPwxBNP8I1vfINPf/rTowXT9whM08T3dYGpVCpx9OhR5ubmbjsvebt93C4+dts+X/+DN1k5eYrF7J8zvi3NvienMdwMKuyAncVUK7j5CZKVMpWyhevU6PkuC9tAODlE2AA7g/K18FZzY4OLp3oov4EfJUmvXmDuySWy2TqWk8Fur9L3I2aKCSwvT7dRYm1NIuQlvFSBtGfiZYqYsXI0sou234jjI3ADfdV0tV2I6ekYaGtVauyMpsraWc0AsTIQNWh1FOurlyiOz1DMxXPoSoEUYISxaq2jk1jTu+4DLH1duJP9mJHhAwavf+Esy2cqGMIAQ7FyscsP/K+7kaZFp1Wj1u6zvnkey/HIphMYlku5tMHY2AzFsbE47ltARH52jg/+3WnAQKmIyMogZ38EJaUuHvJg8fFx+ONGUYRt26RSKfL5PDt37qTf7/P1r3+da9eucfjwYaampvin//Sf8gu/8Av3vf9RfBxhhBFGeHfjHU0oLcsiCAKOHj1613nJ2+FOlC6lFL968VcJO2/Sc1cYn/7bsUdZDvwaws5iqza5yW3YRkBl08LEJzeZIV9UWuABhdLpH1HYZ325i2mCHyTptnpUSworWWdh/xTrK5fp9U2W5saxvTyEdXLZvUwFNdqBRa+xznoJxOolnPQE2YTCy01jq0YstqNni2prFTbXIlxXMrVjAsdBL25UAGYxTg7zeuvkQfaQdp7y6nkaHcnSTB4nPRZ3HjNx5zENfiX2OWvo5FRFgAlG/PsTEWBr5UXDYvnNTaqbEEUelimJIpf+xQa1xnYKRUUyvZNi0CSQM3QaJar1FlHQw7Iseq0KZtQkkSpiql7c+ayjJr8PI7t9yLUeiCoNCgtSyuECeKAEfKfu5dtdgYdbKxgKIUilUvyDf/AP+OIXv8hP/uRP8vTTT7Nnz5639VwG+Na3vsWHP/zhG577yEc+wj/+x//4sRx/hEeL21FeB0WLCxcusH///vvuhN9pDvMLn3mD068eZ8/0X9KuCdS5kPkFm5wrkHYKQymkkcJN2szv387m1Rqhn2F83GFivoAQMp73DlBWHiV9NtYs/F6A6RbptxpUSxDIDZ754A7KpTXKtR6z01OkMwWQPunMbiZCn24Q0mnWKNd7+KULJBJJUimPVCqF65ialm9YIAO6HYPSpQ0kLlNzPl6hGKug5mI2SU4X2uK5ywHLpN7yqZRWmJqeI5300HYlIUShnqsMu5oSGzTi91avz3Da2jYJM6ktSYRJu9ajdGkV27SwrS69wMMIaiyfrbPziQSJYpFipklEkW6rSr1Ro9vrY4kIv5egVengZWcwZVULk4XNOC4HCMPFXvpbCCc7LLoNYuWgaz2Ii3eLj28Xg2PrtXSr47iuy4c//GGOHz/O7Owsv/ALv/DYlF5H8XGEEUYY4fHiHU0olVJcuHCBdDp9zxSum3E7SpeUki+e/CJvBl/jB5oNzqo6m0GJcXsSiOK5HB/fyKKkJD83Q346roqHbTAdCPsow0JG/XiOUmLSo9UKaJeb+IGmSp15vUdPlknmkiwtzWKajq48W3mdtLljpJyAVGoPY7JPP4R2o0SlHRJunsRyc+SSVbzcNNXzFznylzUcs0237zFx+grP/fAzuEZde1qGtZh21Y19KQMiZbO6sowfGCwuLWLbLhDp+UoVaTqaDPT7VOw5qVPk4fwjVhIRNOLErzqkwgog7bXp9D1cp48f2kS9Nhh6hhMzjWVCN3QIVcj84iKBVHTadVY2e7B+HjeZJ5fs4I3vwx5//1u+P7hRYGnr4mmQXN5u8fQoRCfuhjspGIJWMSwWi3zsYx97W89jK9bW1piaulGkY2pqikajQbfbfYv1yQh/NVGtVqnVarz88stks9n7fv/tGBzdps+5w6d5Yu7rZLNgOTatapfKaplMcUK7QwqBKUKkDMjmk6RyRc0yFQKhAqQ0gD4oUCpACBMlA3xfUb9aIgwkKFg+08dInscbUywtzuE6sbWJETMLTBvPdrW6MgZB4NPudGk165TK69iWQSqTJZPy8NsGr/3ZebrtCMNUvOk4HPwRj9xkQcdapwAM5iyjoW/wZj2kVqsxu7CbZCIRNztFTHX19GymW9BjATEjRVNUe7poF/VjhofUcVeY+P0ufT+BbQd0uikc16fTT6L8NtjjQ89JE4VU0O1HzEyNYyTydOtrbNYFauMNLC9HxqvhpTK4rqltmBZ+DOEUht/hIMYNCm6D/+7G7ngcHcrB9XUnW6VMJsP73ve+t/U8tmIUH0cYYYQRHi/esRnKUqlEuVwmm83ywgsvPHBScCtKV7/f58iRI3ze+i/8cKuOKSW2ErzW/CY/nPmB2GC6DYaHLULUoFtnptECOAWQAdJ2UVEApo1QEZZrkC6kuHJmBQO0sA4CGfbobFrsfaKAEFFcaXb0IkS4erFiOPGMkInrgDs2Q3FcEUZztFtNmq0OG5eucObrHS3UIzK4iZDSusHVE9fY8fxcnOi6sRCODVGLUMLatasI02Tb3DSG0ddUMBmBldD/tpPxTFAipsAOZjbjz2smtbCPXQTZ09TXqI2TLZBwVgkjG8/toZRBwvHJ5NBy/KGPMj1KKxfpBhbbZrNYSY9E2CaTnmVqvEfPj2h3OlTaARebBRKlVxkfH2diYoJsNvuW7/3mxdOge3m7xdOd/M8eFe6WUA4WTCOM8DAY2NOAvqYuX76MlJIPfOADD1Rsg1t3KKWUnHnzKHvGv0omGeG6CVARplCYQmKoEIXAUAohJEL6ICMMFaGEqbcYCBWhlEDJKFaQ9skXTa6daoIM8DwDJUGqgMqlTd737JOYZqjZqzK4Ti21XPD7Oj5FPWwrSd5T5LNzKL9J2xd0miVWVhusvrFJp22STkcEkY6Fb35nhZc/Mh/Htbj4N5xBD1ldW6HbC1iYn8H10rEKq6fjsaGtjhCuPhfD0swPYV4vvin01rB0bDYsUBFeoYgwLtLtu1impO87GEKRyOX1LKhlACaVSolSucfi/BJeKgsqwPN2UVQRYbhAq92k3WqxUStjmQIx+T6y3RRF761x51bxcZBc3qp7+bji4+DcboV2uz1SwR5hhBFG+B7HY+9QDrqSFy5coFgskslkHuqGd/OCqdFocOjQIfq5NuOtb+CUXcy2B3bA5fFzVFIvUgyVVvEL6nrh4JfBndRbKwthlcjIgGyizBSG6g8pp9O7Zznx3U38PphCoWKhHcfNI6yUnscxYpEHYiEHpeLkEk1bHUJgKUkuZZFLF+h30lw0zhAphZQBvpREkUGlErIQmdh2BhBxcirxI1i+do2Um2Rqehah4oVRqKmzWnQnE/tZ5hB+Obb92Go1ktavFwkQ3Vh8IgSRoF1v0PEToAxEZKGkwDQknW4CN2MRmQnWr13Aly6Ls3lMO6npYoajk2oUCcciYbuMPfNJ5pwZyuUym5ubHDlyBICxsTHGx8cZGxt7y6L5bt3LIAgIgmD4/IMK+9wNd6ONDYy7Hyemp6dZX1+/4bn19XWy2eyo+v5XHBsbG7zxxhsUi0V6vd4DJ5Pw1vjo+z5HDr9GtvYFtu/Lc+XNGu1mgFSKdD7J2OIEyrB1804JMG2kcLRnIzYohcS6Ht+EQpjxbUTA+JyNmy7RakiUEkihMEyBMJKYphEnkT0dT8PBPHg7pqU2Y2ppc0hbFU6OtKiTTm9nMqhz7VCPlFfFDxI4Voueb+O3K/j+JI4dXhfYUSESi7VrlwmVzdJMHjORvE5jDSoxnbUS002r8T2hE8dA4qKcC0H3upWIkxvuo19dRYiIdKJHpAwEIAyJ3+4M7Ucqa+eotCTbZrK4nqufH4j9yAjLTpBPW+TzCyi/SctaYlU8xenTp+n3+xQKhWEB7ua/69vFx62z6YMZ3DAM72v28n5wt4Sy1WoxPj7+yI97J4zi4wgjjDDC48VjTSjDMOTYsWPU63VefvnlG6TFHxRbKV1ra2scO3aMHTt24ImvUjk5DyeLmAoiBGq6Szhp6VkbGYKTwxArREY2np/JQdAgMlN6oeHkMcMtCqh2FtdosLCrwMaFq3Qjj4QVEgqP8ZlEbKzt6+o3YVzljkV2BvOKA7EdFcTCEjF1NerhJF2yeahVBF4ioN+3cBJdrITH8rmjWF6ejGfi5aZQQZurqzUKuSRjk/MIAhBZXVV3Yz9LuxBvx0D19LxT2I6psx3dmY26WiVR9fUCKqb6YiaxRRPLELh2h27fI5Ho0u0nELJLGDmsXr2AMkwW5ucxDUMv5gyL6yIa2lCcsQ9AahEbfaOfnp5GKUW9Xmdzc5PLly9z4sQJstksExMTjI+PD9VVb/6utyr7nj17ll6vR6FQeChhn7vhTh3KgTjP467AHzx4kP/xP/7HDc/9xV/8BQcPHnys5zHCo4NSajgv+dRTT2FZFqdPn36ofW6Nj81mk0Ovf5c5DrE0m6bieFw7U6XTBcOKEKaFaYEw7GHXUQgTqXSnTRgmUkYMxcMMAy2QE8c5YYERMrtnlnr5Mr1AYduCIDRZWCjqxE1Fev6bUFNJVaTjlbwet4aPnTHdLYzHE3DGKE7XuXTCx0kI+kEaKUOMVIJLy6tYlkk6nSGdSmLZLqsryxhWhvnpcQzb00W9Ia21oBNbOxuPAyRjCr8DmPo5O+5m2vl4vj0PYUsnl2EHKRIYIkIqQRSZOJZPP0hg0gNrjs2V8zR7iqXZAnYi3pf+UiDsbUme9ZymkZonu+3vkjPMYVwplUpsbGxw5swZkskk4+PjjI+Pk8/n78ruWFtbY2VlhSeffPK+Z9PvB4P4eDtq7Sg+jjDCCCN87+OxJZS+7/Pqq6/eIHlfKpXo9XoPtd+BtP7Zs2e5dOkSzzzzDJPiLMGVK8xe3oudamF4OUTUolXOoa5FsD1CU6IMEBYKPQuIUkRWFiVDhDOGIE7GZFfPI0YdpJVjfHGDWj2D2+0SkWH3HhvTdqleWSYzNYkt4g6gX43Fdlrx4qQf+6H58QImjD3UIjATCBXyxPc9xZEvnqVVj3CckMkdizz9cpFIJOg2Vmn0DGqXThLgkXYlXnIC+pvgDGw/YlEJIwmqE3uxdbSohQjix0bsGbdlIUgYP44psrLH+I4lnNc36fU8Ek6PUNpMzUAyZ7Ny5SyOYzM1NY2IWmCk4hnMLCKMP3dYg9R2GHv5Ld+bEIJ8Pk8+n2fXrl30ej02NzfZ3Nzk4sWLWJY1XDyNjY3dkNAppThz5gybm5u8+OKLJBIJgAcWrrgb7kYbexSUrlarxblz54aPL168yJEjRygWiywuLvKLv/iLXLt2jd/5nd8B4Kd/+qf59V//dT71qU/xyU9+ki9/+ct89rOf5U/+5E8e6jxGeGeglOLIkSPDYls2m6VSqdyzx+7tYJom/X6f9fV13jh6lP3580y6PYSV4dqJMwgD5pYgiNL4rQrXziTZsb+PsFIov4kpFCKoI8ii/CYYCVTQ0myMoKdjhd8EJz3syuXG2uTnTfxqjyBMMbvNpjiToXx5leRYEc8bdChb17dGQitXG07spzsodhl6iwH47H1hinatT22jicJkfCbJ8z+wB8cOafUknWaFq6slkH0My2Mi7aFETPE3HZ2oYqETYVvv17C30FljqxE7cT2plKGeP0eBkdJMEytFbjKNl8tRL/cxhKTTT+O6UNyxjZXVFXq+zeLiHJZta9qsEavTqgicWGF2YFXizcDi39bUYa6LfqVSKbZt20YYhkN2x7Fjx5BSUiwWmZiYYGxsDNd1b/je19bWePPNN3n22WcZHx+/79n0+8HjYHCM4uMII4wwwrsbjy2hdByHbdu2MTs7ewNVZ6vP2oPAMAwuX75MGIa8973vJS2vwcp36UVZhLxKaGdJGT0CMjhmhSA0NB3T9CBsYooIghYqjOeXlMQQpr75I4B+LB6hCEmwenWZUDq89yPbMKwE7WqD04fK+BevEUmbsYnL7HxhCVe0485mPRa6qcU000GyeeMWvwZWmnw+4n2f2E+31sRwE6QzJhgWllJkiktE1U1azQxjY3kiqVhfXyeMFKlknXQyQyrVxbIcIIgFJKLrEvixr6YI6rH6a3XoH4ed1UqJRhJUF7BI5+Dljz/F8W9co9NymJjM8uTBCa6sbpBO5ZmamkUQan+3qKs7omFTJ7Vh7OE5/7d0B/QuSCQSzM/PMz8/j5SSarVKqVTizJkzN1C/xsbGuHTpEtVqlRdeeOEG+tKDClfcDfcyQ/mwCeVrr73Ghz70oeHjn/u5nwPgJ37iJ/jMZz7D6uoqV65cGf58+/bt/Mmf/An/5J/8E371V3+V+fl5fuu3fmskif9XFEIIZmdnefLJJ4cU10cVH2u1GqurqxyYLZOniTJzqLBNs2mRSHTxZQbb7NGKkgTdNthzqKAJVhpDlojsJDJo6yKY30A4WZ0EOoMOW7y1s5TXLlBrSZ59eYJEZoqgVeHM0TZX3jhHL0iSy5ZYem4H2Uw97tDVY8ppY0uS6ULQ2mKnRJxYhjgJh/d+ZJpGcwYj6pAaH9MFLTNHxqlj5gp0G2fwclM49KjXq5TXL+N4mdgzN43juFrZdUBxtTPQr+jiXr+sY2G/rItu/WYc/2UcTx3we2CnMWSL9//YHk795Sk2VhS5vGTPS0s0aheIIliaX8CUHVAZXVQ0M7rYZ3o61mKB6AMGYu6jOkm/DSzLYmpqiqmpKZRSNBoNNjc3WV5eHrI7BgW4RqPB2bNnee655ygWi8Pr4H5m0wf/vhc8joLbKD6OMMIII7y78VhFeRYWFoaiE6Bvkg9Tge90OtRqNWzb5uDBg9hhGa79BQiTRFIh3DT9ZgelkkjfJ5RZUlkvTp58vZBAEGFrKpdhI9SAqqp9xrSwgyIIQtZWrmHaLnOz4ximBNlm+XSFoNUiVUiCVGxu+KQuVll6chJQsddjeF1e3y6A7GtD8LCjZxiDlhbQiRNdW7Wwx2OxCGxNx8WgXC5RbzRZnJvDS7h6oTOWxQ8VzWaDarPDWmkTx02SzXgk0zkSlolwUrra7o7pxM8paOqrndMLQSt5XUhItuMvLIIgpDDh8oGPT4Odxm+XubK2SiFlUJwcdCaTmr41EPqxkvr3Zmd1Mmkl7/t7NQyDsbExxsbGhtSvzc1NNjY2OH369HDx3e12cV33noV9lFIP1L28UwU+iiK63e5DL5g++MEP3vC3cTM+85nP3PI9hw8ffqjjjvDuwfT09A0CYw8bH6MoYm1tjU6nw8HdimSvhDIyCBmg7Cy5sRQrlyQpU9IPHMAnkZ9AoFBOHqFCpJXVMdEuoGQfkRi7rp6qYloqAdLKs3rtCr3AYnFxGjuRAumzds2kttElWZggZ0TUyibGqRL7P7BdC4Y5WgANK6v3O6DFWkk9e466PhdpxV1DN0vWDsDI6+6lo7eNvkVp9RLjU9vIpfUIQkEGhHKWVqtFp9WgVGnhmAovUyTt9UmmxzSd1cnrOBzTWbUHZQCGqe8HUQBWKqa+xvYkdhaXBs/94BMge0RSsbq6holkZnEHhuyCG1uYDJJnM6E7sMSz9lEfsfBjCG/mnr9XIQS5XI5cLjf0eyyXy5RKJS5duoSUkvHxcYIgIAxDLOvG2/zdZtPvNz7ereD2KCivo/g4wggjjPDuxjtqG3InD8m7oVKpcPjwYRzHYXZ2Flv04cpn9SJABdimw9Mvpjn5Wojs11BGir1PZyhMZXSiZiZA+UjTo9nqYNrjeAlLLySGc456XqjTabGyuko2nWFyYlw/r3TFOux1cBMK2/RRhiDh+kT9tq60C0Mvigaqg4NG3WCBZCT0osLOAgoG1Cjb0u8zNTVLCVhd22DFv8xTC8+TMBWYDiKeh3SNJs7YBOO5BoGYoddYo9Ht0yyfIDJSZFMWifQYac9GmG68UHLjY2V1B9GwGcroDxQOY/VX3ALd5iZXVxtM5B3yYzNxN9MC2UFX71U8F5RGhA3U1IcgufCwl8iQ+uV5HrVajVQqxdLSErVa7Qbq16A6fzP1616EK7a+9lbdyzstmNptnYCPVAxHeFjcPIM2ULBWSt239UO32+Xw4cNEUcRsYhWvtYI00wi/prdhg13PTyP9FuVShGv1Gd8xweJOB4mBCFtIw8NQPdqdkHZjPU6+unFSFG9lhyA0WLl2DsPy2D43heEkYiVVi7DfBcA2Q5SERELRbcfej3C9A6l/A3GsjOmoqj/0ZWQQt6xBopeIY5RWqF2+Umf10iZjYwXS6axWWBU6GbQsk3whQX5sGhX5tDo+nVadq+stjPUqyVSGdEqSSqUxMXXiaBh6pnxAUbXiEQVzTB/fKaLtSfIAhFJwZeUaCSfFzOwiEOpzVZFWDSfSgj4K/dmEDSKEsZcQ+f0PcLVch+u6zM7ODhPLffv20e12OX/+PMeOHRuyO8bHx0kmk3ecTb+X7uX9xEd4Z0TLRhhhhBFGeLx4xxPKB6F0LS8v8+abb7J3716azab2iVz+Y/3DLfLuualxXvxBj27XwLF93Ew+rixnwK8QmRmmcga1tmJj+SSRkSabMvEyU6Q8A2EmadRKrG5UmZqYIF8cjy1A4nkbYeLlcqxfqiFsExlBFJokMmmdpAkzlrG3QPZiafq2XiSFHb0Y8rsxBWqgeNi7Pm9pJ4mCLldXylwTV3g1eQQryvBc4oUtYjv9uPvZR9lFLNkhXZwjHXZQYoJeu0qr06eyscxGGJFMpkklHZKZIhYB2ClE0I4psM149rGuZ0plF4RLq1FhZaXE5PQ0+VwW0LOnevYy0p9TBuAk9Xlkn4CxRyd+EEURb7zxBv1+nxdffBHbtpmbm0MpRbPZpFQqcfXqVU6ePHkD9Subzd7X4ul2whVRFL2lyj/AKKEc4e3CYJF+p+vvVqhWqxw+fJjJyUnG7A38C68iJvYh4q6aCGpg5/DcOk9/aC+9qp7B9twewklCEM9A+xWyuTEIr7K+UcVYu4qbHieTgGR2EsOv0gst1q+dJ5EZZ6qQAsuMZ7gTEDVJpk1sq6d1vkxF5PuMz2V0IUpYOg5aCQjaOv75zWF8ZkjHz2lKqpPV26Eqqx5bOHN8jQvf3UQpxaZqsn52lZc+th9L9ON91XUy168gnCwZxyczOc5UsUPPl3Q6DRqVKhtrEUnHJJEdJ+2CkxyHoHqdEmt6IFsME18VguER9BpcWauR8WByehGiemwX1dNFxEGH007GiXhK7ye1DTH5/rt8m3fHQDl9eXmZF198cWhhtGfPniG7Y3Nzk3PnzuG67lA1tlAo3JLdMbj2BrHwbt3Lu4mWjWyVRhhhhBG+9/FYE8qtPmtw/5QuKSVvvvkmq6urvOc976FYLHLq5Em8ylcgFydm0o+V+nSF2kraZJKgu29hTLHyiawchF0S2RlmUm3UzDS9xjqNnqCydo5VlcAzfTqhw/xEilShqEV2BnOPlp45XHxigqjfpbopMc2IsaUJprYVdEWdQIvwEA1tR3RV34/VBbt6G7bihV79+tylnSPqlFheb+AaPc565ygEEa93vsvT9iKmldPvszy9KBOxoA6m/qxWCiEMvOwkXtZEqQjfD2m36lRaPdY3L2Mn0mSTHbx0EU/E9NtwsBhsAQbN5jqljXVmp+dJe4CSugM5mAe1shDUrn8uKwUzP3xPc5P3giiKOHLkCFEU8Z73vAfbtoc/E0KQzWbJZrPs3LkT3/eHi6crV65gGMYwuSwWize8F+5O/RosqIIgIJFIIKV8ywKs3W7juu5b9j3CCA+LwXV5K9ri7XD16lVOnTrF3r17mcv5NE+/Shtd7BjQ7nHGNaXfGUPIAG98Nu76pVDS14WqqIuyCjgEjM/vZTzq0/MlrWaFzbpPsHEOy00R+m3yxVkmitnYzigEKxNvU0wsOrQaIeWVFkpCZizHwr7xWJxsIHoziIe9IX1Vq7C2dSIYdfU2jO07Iq1CraKAldUy516rapIEDpYZUFpTXH7jGjtf2BnPeg6o/WmduJqJWCDNJuEZJFyT4vgsYa9O2zfoNta5VDbwjDUSmXHSiQ5eMqt/Z0qzQ4j0ufitTZbXGxTTJoWJhZi5YccjE/K62JCd1Ym2nYGghkiMw/yP3nfn+WYopTh79iyrq6u88MILbylsJZNJFhcXWVxcJIoiKpUKpVKJEydOEIbhDeyOgbjZADfPUt5uNt33fYQQt4yPMPKhHGGEEUb464B3vEN5rwml7/scOXIE3/c5ePAgyaSezUt3X8ftnobirriaHfuFWclYPdCJZeFdkBFKSJSSKBTCdDUL1UwjhMLLzePlIqLJGVaXL9HpmziW4upGh3TzPF5mjGyihuUVEYEW2UlYDfa8tES/rsUcPLcLlqE9HreI8GjxiYxeFJmJ61L1MoqVXkOUrWlUyi7S77VYXmmSSbpU8n069TqRYeCGXY73L/Cs8URMywpiFcKBOqIXz+ykrwsChVWwc7hmD3dsjGK+R6im6bRqNNt9KlcvgzBIZ7KkUx7JpINhOFSqDcrlBrMLe0l5tl4oRbHibdhGmamY2hvboKgI5j7+QHOTt0IYhhw+fBghBAcOHLjronpAf56dnUVKSa1WY3Nzc0j9yufzw+r8vVK/KpUK1WqVqampYXV+6+sGdK6HXRiOMMLtrsd7iZFSSk6fPs3KygoHDhygkOihlv80/mEfqUCoAIVAyD4KA6F8vZU+SsRb9FyfwkBsZR8Ik4RrkHCmGR+XbGyUqNXq2HaCaqVMu9nQ8SOdIpGwY6aIgWEJdj6/wOzOFlLZeEmB4TjXlVMHcRCdgGql1Zgqaqbi0QBPU0UtDxBgJoik4NrKNfo9QRSYhJGDbSu6voMpQqp1LaSGFato21n9XsMETC1WNvAJNlNAiJWaIueF5PLjTMmAVrdPu9ngWqmFki0dGzM50kkD0ynSaTdZXmsxOVakMDYRs1fiEQKl9P5FeH3edEB9TUygFv82hune4pu8dyilOH36NBsbG7zwwgt3pZWapsnExAQTExMopWi1WmxubrK6usqbb75JKpUa2jblcrl7io+dTofV1VUmJiZu2b0UQrwjtiEjjDDCCCM8XvyVSCibzSaHDx8mk8nckFio6nESvbP0jKy+mTvF69XsoK0XCsMuXhdpOKiwDcLCUDL2UWPL3GBEGAlW11YAk53b5jEthyDwabQ6tFsNNjb6uG6ddDpHJtXF9YoYKsQbm44r52PXBW/CNspMXxe+Ceo64Rts/VqsNNjSdh6qBZh0ul1WV9YoFMcp5HP8Wf0LRAhCAcpQfKt3hP2p57CMeN7TiruTW2YeiXqx1Uk7TmhjdcGgpVVj6ZNNu2QzKVSUputDt7nJxnoDEZ6LDbwbzMzuJOVGoGw9F6XMLfOflv69DQR5ii9Acv6RXBtBEHD48GEsy+LZZ5+944zOrWAYBsVikWKxyJ49e+h2u2xublIqlTh//vyQ+jU+Pk6hUHjL/gfqmMePH2fPnj1MT0/fkvpVq9Ueynh+hBHuhHuJkUEQcOTIEfr9PgcPHsQz2sjz/xkFmKqLkiFG1EEZDobsowwXQ3bibVc/H3WRMTVTYepk0rB0XMVAi+MIkDqZbHe7LM1N4XpJZOjT7vp0mlWuVUtYIsDLjJNJGHjZcQgaeJlYCdaKaasDJVU7GxcC03prJXWcMZyYcTGI0VFsKdInUDbrV89juXnml1JcSNRJyCb9wCOdaNLzXcaKgZ6VV+3BbzKegfQ0C8NOX+8Y+pU4djZjGr9EKMh4NhnLg8lx+p0qzZ6gsbnMmi/w7Iier5gYL1DIaB9hol5cNGzG957GjfYnQvsRi7kfQbjFh7oulFKcOnWKSqXCiy++eIPa9b1ACEEmkyGTybB9+3Z83x/akhw5cgSAsbGxYYy8Fbuj3+/zxhtvDK2ftjI7BteslHI0QznCCCOM8NcAj53yesPBY8rrnUQnNjY2eOONN1haWmLXrl3D16n2Mqz+qR5RCTpgTGua0aC6bef0gsQtQtQnMrP6sZXRi6UBBRYDCABBv99ndW0dL+EyOTmJMCKQXWxTMJZ1GMtNIKOAdqdPu1nharmHYRqkUhnS6QzJZAqhQlot2Li8QRgq8pOSibmsZoDauVitMItOBNNxchZXqpVBs9WhtL7MxNQi2ZTNiioR+VUwTXJRRMs0ccMWl4PL7DImtliOxNL0hqsT24GYhOHpz2hn0JX52HtNRbpaLwOEmSZp9UhmdlMMWqysV/HbZUwnxcbKeWpuYjh76SbzWgxoaDuSRfhlVGbXLf0mHwS+73Po0CFc1+WZZ56572TyVvA8j4WFBRYWFobUr83NTU6dOoXv+0NPtwH1q16vc/jwYXbt2sX8vE6Sb6Z+hWHIr/3ar1Gv1x9IOGWEEe6Gu82Zt1otDh06RDqd5r3vfS+mbCEv/j5q8Pdvp5BqE2Ultcq0pVkRykyCilCmh5IBynDj7qCLQMWJ1aDLBsSJwsrKOpFULCwsYMVejYadJmP2yGSLTIVd2r6i09xkZTNCrJdwMxNkvS7J7CRm1CGQadZPXqXbs0inW0ztnMIIe3EyGcSCPApU7BEp+8M5837ksHr1LF52kqmCVux+8cNdvv2FENvs0vdtphfcWGWbmKLqQdiO6abNLfTT9PVCm+zFc+9AFOl5xyCm3AZ13NQYrtOAwk5qlTXK5RpewqNeLtFodsl4Ai87TVLW4uM0YnZMH019tSHsIGY+jMjseKhrQkrJyZMnqdfrvPDCC2+hqj4IHMdhZmaGmZkZlFLU63U2Nze5dOkSJ06cIJfLDZPLdDqN7/u8/vrr5HI59u/fjxDihtGBwWz6b//2bwNa6XWEEUYYYYTvXbzjHUq4teiEUoqLFy9y/vx5nn76aaanp6//zK/Bld8HBCZ9JCKmeaZiEYUs+Jtg56FfJjIzulpsZRGqp5Ms2YuppyGYaVrNBtdWqowXJyiOjSOEYqh6iohpXwLDgEw2QSbtoTDpdhq0Oz6l9WUiaWArg2tv+oS9PhKHymVJ1J1jZimhzy+MzcCjSNNUla/NwlVIudGlWq4wPb+PTCoBwmZKJvnA+P+CinpIw8KUfZRw2WZMXrccMV09uyOs2ARcxVS1MPZ0615XX7WzOhG0BjTctJ5VEg4q7LG6XsEPAha27cNyPKKwT6vTpd1qUFppYZsNvHSebLKJl85hyADlTsDsxx/J3GS/3+fQoUMkk0mefvrpBzbbvhPuRv1KJBL0er2hL+bNGJzTpz71Kc6fP8+pU6felvMc4a8XblWQuNOcealU4ujRoywuLrJ7926IOsgrf4ySIcKwUMrEMCFSJkKYKMNAIFCGqbeY15OogdCMETMQRBz7DM3c8MOIa8tXsV2PxfkJrRatQrBcIAQjnpt0sqTskFQ6z4QK6PYj2s0qpVqXcP0ctuuxfqpDsxJhGvq4tZrBEy/OaMaIiAteRGifxii2Cwlp+Q6rK1coFhcZK2aHRbPiwhwf+vEJ6qUOlmMzNu3p7iqxDYkMdWFRRvE2fItKK4YzZKnc8J6hRYp+bblSoVrtMbOwm1QygcKg027QaPWprawgMUknOyTTadJpF9M09OdREooHEOMPV3STUnL8+HFarRYvvPDCW1StHwWEEOTz+WHnsdfrDWfTL1y4gG3bRFFEOp1m3759t6TGKqX4z//5P/NLv/RLfPGLX2T//odTsh1hhBFGGOHdDaHuZO70iBGG4Q2LIyklX/jCF/jQhz50w40xiiKOHz9OtVrlwIEDZLPZ4c9UFNuD9GsA1OoNGrUyi9t2aG/JuBKM5UHQJDKTscpfHmOYUDVuEL9pbF5hvdpjdjxFqjAbzyKmNYXJ9HSV2fBiGft4/meo9GqBClDCpNxe47tHzmKdT2AmLFxH0uva5HKS93z0mfj4ubeI7+DXWK/06DXXmVrYg2f6KCujq+pmUiedg6q9YcSLvYHEfmxLIgcdx5iqpgLA1omz4erPFP9OMGOhCDP+LIBUgrWVZSJlMzddwHDziLB5/TwtXXXv9BStToNWs0ukFKlUErH4dynOP/PQi5terzesej/55JPvSJI2sKNJp9N0u9ry4Gbql5SST33qU3z+85/nq1/9Kjt2PFzHYYQRQMfDIAhueO5b3/oW27dvv7GgphSXLl3i3LlzPPXUU7qrFPWRF34H1S0hTFd7RhoOQa/NxSvX2L1zG8J0UJGvfx71wHRRYQ8lHITSQjdahTQW+rJSELbpBAYb186Tyk8zkXdjH8ZGTIuv3+DLqDt/8XZQrDI9VNDl8uk6G8tlaht93BRYjoGMLCwkz3xoN6k08TFbW/al913vSCprlxmLmRuaZh+h/RwtCAOwvVi4J31jJzL+HEPhMETsARlcp9jaqZiSm4ln72MfYBF7EauIUq1Nq7bBzOJuEkaojxPGrBAZgIKeH9FpVWl0FVG/juUVyCUFXnEH7t5PYpgPLt4lpeSNN96g1+tx4MCBd4Rq3+v1+O53vztMIvv9/tCWZGJiAs/zUErx+7//+/yjf/SP+K//9b/ywz/8w4/9PEcYYYQRRni8eEcpr4PB/TAMh8lIr9fj0KFDGIbBwYMHb0hSlFKw/EfQvByrA/YxRISMwut+jwKwkigU0kqDVFrNkGiocqicmAZr5SmvXabW8lmYKZBITcRJXnYouqNpnbnrIjt+RT+OtwQ1sNKIqMM3g0PUoyZjxh7y2SQ9XwE9NquCSxcvkc7lSSe7JLyiFshwxpBhl5VSh6jfZmbbEzgiRBkpvaAzBnYj6KRSRnrWMowpYEHnuviOndUqtFbuOgVWtmMxokEiLMGIPdYGFFgREUq4du0KwsgwPzuFYemZIOXkIexq8Z2oC4ZNMmWSTBhMTs4RdKuUrGdZLitOXPw6mUxmuLDIZDL3RQHtdru8/vrrFItFnnjiiXeEPtpoNDh69Ci7du1iaWnpBurX5cuXOXHiBP/+3//74XznN77xjVEyOcLbipspr1EUceLECcrlMi+99BK5XA4lQ+Tl30f1Sjp5k10w9FZYHkIGKNPTVh1mChV1NOU1aKMMDyE7sRVH6/oMYEwPrXcklfXzFKa2k08KneCFjetJpZ2NHw9mJAesiaQuYhkORD7H/3KVtUsNlAoJfIFtKIxEGoMWzabNypXz5GZmyCTaeNnpLYqodSr1HvXqGlNzSyQTcRIllO76DYpjTnz8YZKbiRkYg/Ow4hEHpWNi2LmRAus3YgZJM46VA0VXE8Iu6+Uu/XaJuaV9OCK2eAqacQc3jOnFSRK0SUwvUfTrhEzTaZRo9uCNlTmsyreHtPpbWXbcCVEUcfToUYIgeIva9eOC7/scPnyYXC7HU089NRTcKZVKbGxscObMGf7kT/6E1dVVvvCFL/B7v/d7o2RyhBFGGOGvCR5rhzKKorfMA33pS1/ixRdfJJvNUqvVOHz4MBMTE7fsUKnVv4DN72ypQKdp1zYoVVtsm5/S9KvIR2KgYssHMUgyhakrzYauOEcSVldX8MOIhfl5bMe9Ls4z7Pb5wwWR3sbekWHruuhCfC6b9Pnc5u8iNwvMnp4lzRwJx6fTsZjf4TK5d4xus0KrE2AKhZfOkPRSVGpVhLCYm53BtN3riTGSoQohMX0LEz3vaW9JEjtgJGMhiMG5ebEsvqU/k4pneKQPVlLPQFoZRNgkwGNt+QyGm2dmsoCwM/Hvy9YLLyFiFUZxXb3VdPW5WCkovgdgaNlRKpUol8tYljVMLovF4l2Nrw8dOsTExAR79+59R5LJZrPJ66+/zrZt29i2bdstX9PpdPiZn/kZvva1r9FsNhkbGxuKUowwwsPiVh3K119/nfHxcZaWluj1ehw+fBiAAwcO4LquVqy++t+RrctbGArXtyrwefPMefbt2YUwHSDUVNco0MquyJj9MGBbhHGsDNko12hUS8zOLZH0nOviW2xhQIjBHLrcsjWJfTxACOqbbb7xR2cxLYUwTPx2nyCA/IRLJC2KEza73jtDr9ug2eqCDPDSWTKpBO12n06nxfzCPK6buM7SiKIhHfdGZkYUMzbkdQaHUtcpvAPvXCwgvB7vMUDE4w0Kff7CQsmAa6sbhH6XuYUlbMsg5ggT31C4IVYP9jeI4cKE+R9FudNDy45SqYSU8gbmw526jWEYcuTIEZRSPP/88/flSfqoEAQBr7/+Op7n3XYUIQgC/s2/+Tf87u/+LtVqFaUU/+2//Te+//u//7Gf7wgjjDDCCI8X7+gMJVxXMbx27RonT55kz549LC4uviWpUNWj0Dil/clUCO5Y7KmWI5JxlVn6SMNDxYmgUEFMWdKiO6gIpCAIQlZXVjAtm22zExhGpBPUmL6KsHRnExtUF60Q2I/ne6ROpEBX6VFgF/hO7b/TMmzEZIPlvsWulXFslWJ2h8fSM5PYDmRTHpMKet0W9WaXjbVllGGT8SSdTpuU29ZU06C2RfQmF1uP5LTojp2PxYYKsWZGUS9axIxOKIXQCaUwNBVLWJraKszhY2VYYNi0uiFHjh4nP/+DPLn/mYdK5G627KhWq5RKJd5880183x8uniYmJm7oOrdaLV5//XVmZmbYvXv3O5pMLi0t3TaZVErxq7/6q3zlK1/hK1/5Crt37+bb3/72KJkc4ZHhTjOU9XqdQ4cOMT4+zv79+4cLerX+VVTzPGLYYUzpDuGw+5bCFD7SsLFkJ1adbmhxsrgTKcLmsMCkrDTKb7Ky0SDsVlncthvHCGJa6cDDcUCXH8TGcPAB4oTOiv2AtRhO6Cscq48UKTynh5QJLLNBJJPMLhhsf36RZDIkl51karxPL5C0m3VK6ytICV7CottpY8oeVrKACFrx+Tb0NmihzETcMdxSRDOdeGY9jQiaMeOkjrLTW7xz2zGzxYRwS8HNziL7FVY26oiww8LcIiZdCCSYLiLqxeewhclierF/L2DaEPYQCz+KSM4B3DC33Wg0hn65J0+eJJfLDbuXW22IBmwI0zR5/vnnH4lA2f1ikEwmEok7zrV/6Utf4pd/+Zf57d/+bf7O3/k7HDp0iF27dj3msx1hhBFGGOGdwGPtUN6qAv+1r32NTCZDpVLh2WefZXx8/C3vU61LcOn/F9OM4vmamJ7VaVe4ulJjz855pOEiwz7CdBBqIHsfV94JAUG30+HaygqZTJrJiYlY0ZD4dbGvYyzvPhRpuO1WJ6DlqMkfVj5LzzQQStExLMbMHD8x8Y+wLCP2OVO60yeg1ZWcO3eOfHGK8clpKrUW1VqDZscnmytSHJ9ibGIGL5mJxSKsWGTi0aHRaHDo0CHm5uZuUM991FBK0W63h5X5RqMxpMamUilOnTrF4uIiO3bseEeSyVarxWuvvTY8h1tBKcUv//Iv8yu/8it86Utf4rnnnnu8JznCXwsopfB9/4bnjh8/PrR02L17N0tLS/f1d6KU4s///M/5vu/7PhzHYRDuBx6BN6Pf73PkyBEMw+DZZ599JHN67Uaf3/h//QX1UgfXs/H7AY5n83/8fz7IzI7Cbc/BNE327NlDrVajVCpRrVaHXomTk5P3Tau/HwzonQPborezKzgQvSmVSlQqFVzXZWJigkKhwIULFx6p2vX9IgiCGxS3b5dMfvnLX+bv/b2/x2/+5m/y9//+3x8pXo8wwggj/DXDO9qhDIKAfr9PFEW8973vvaVXlepX4Op/iymmWwUXUhDUMcwEtqoTsQS9TYSTxxjaWVTi6nEF5RRo1Upc3WgzNTFFYXIpVilMAzJO+oi7e2gRHmHohM643t3DsK//J/T2q/X/zu/YX7/hvA0MfmTxw0zb0zc8XyqVOHbxGDv3fJylpSUA0guwiJ4jLJVKrJdKvHnp1HDxNDExQTabfWQ36UqlwtGjR9m+ffttO3KPCkII0uk06XR66He2ubnJysoKFy5cwDRN+v0+m5ubd6XGPmoMksmFhYU7JpP/9t/+Wz796U/z53/+56NkcoTHhkEnq9Vq8fzzzzMxMXHf+xjYOQRBgGVZw7n1W2Hg91ssFh+pKFYq6/K/fuq9/NdPf4dmpUs6n+Dj/88Dt0wm2+32cE5v0InNZrMsLi4SBMEw8XrttdewLGsYH4vF4iM734E4WCaT4amnnnrbxcESicRQUXpgabS+vs4bb7wBaMuj9fX1u1JjHzUGyaTjOHdMJr/2ta/x4z/+4/zar/3aKJkcYYQRRvhrinesQznwTwuCgN27d7O4uPiW1yulYO2LsVdYAjDiuT5z2Lnr9EMOHznG3MI2imNTpDJ5PStk2HEyaKOwuHjpEpcuXeLpp59+oIXZnaCUYj1cZ+uvMmEkKFg3LpiuXr3K6dOneeqpp5iamrrjPoMgoFwus7GxQblcvsHq4mEWTxsbGxw/fpy9e/cyNzf3QPt4WAxmZbdt20Y2mx12L+9EjX3UGFBt5+fn2blz5y1fo5Ti3/27f8cv/dIv8ad/+qccPHjwbTufEUYA3Z0DPTd39OhRarUaxWKR559//oH2p5TiK1/5CmNjY8zOzlIoFG654C+VShw7dmxYZHo7kgIZSTpNHy/tYFpvjV+1Wo0jR47cE2tiQKvf2NigVCoRhuEwbgzUmB8Eg3nusbGxd0wcbCBMl0qlWFpaolwuUyqVaLVaQz/IiYmJG6ixjxphGHLo0CEsy+K555677f3mm9/8Jp/4xCf41//6X/NTP/VTo2RyhBFGGOGvKR5rQjmgdA380xYWFmg2m0xOTt4yobzbvgbmyWtra8PEK5FIMDk5ycTEhFZAVIqTJ09SrVZ57rnnyGQyb9Onu/O5nj9/nuXlZZ577jkKhbdW5u+ErTOJpVKJIAgeaPG0srLCqVOnePrpp5mcnHyQj/LQqFQqHDlyhN27d7OwsDB8/k7U2AdRjb0T2u02r732GnNzc+zcufOW+1VK8R/+w3/gn/2zf8bnP/95vu/7vu+RHHuEEe4E3/eHxTbP88jlcnQ6HZ599tn73peUchg7VldXKZVKAEPK6KAwdeXKFc6fP8/+/fvvWuh6uzAodN0cF+4FSimazeZQbbTdblMoFIYFOM/z7mk/9Xqdw4cPD4tM70RyNFC7LhQKPPnkkzecw+2osQ+iGnsnbE0mn3322duyRr773e/yoz/6o/zLf/kv+dmf/dlRMjnCCCOM8NcYj71DeebMGc6dO8f+/fuZnZ3lyJEj5HI5tm/ffs/7GSSSN88DRVE0vOGWSqXhDdayLA4cOEAikeD0d1d58zsrCARPvjLH7gPTdzrUQ0NKOUxon3/+edLp9EPtb+viaVC1zufzwyT6douny5cvc+HCBZ599lmKxeJDncODYnNzkzfeeIN9+/YxOzt7x9c+jGrsnTBIJmdnZ2/bBVFK8Z/+03/iF37hF/jc5z7Hhz70oQc61ggj3C9WVlaGXbq9e/dy5coVyuUyBw4cuOd9bC22wfX4KKUcziNubGwQBAGO4+D7Ps899xzFYpHVCzVe/4uL9DsBi0+Oc+AHt92ym/gosby8zNmzZ3nqqaceSaFrMDpwP3OXgzGAHTt2DEcRHjc6nc5Q1Xffvn13TNAG1NgHUY29E8Iw5PDhwxiGwXPPPXfbOHv48GE+9rGP8c//+T/n53/+50fJ5AgjjDDCX3M81oSy0WjwrW99i+eff55cLgdo0QnXddm9e/c97UMphZSSKIruOA/UaDSG6nhRFCGlpLNqc/RPN5GxLlAiZfPxnz7A3hdnHsnnuxkD2prv+zz//PMkEolHfozbLZ4Gc5cA586d49q1axw4cGD43M0IVMBr7dd4OfUyhnj0C8iNjQ2OHTvG/v37bzBpvxfc3KF9UGpsp9PhtddeY3p6+raKskopPvvZz/KzP/uz/MEf/AEf+chH7utcRxjhQRFFEV/5ylfYsWPHkI5+9epVVlZWeOmll+5pH1vj4yCRvNV1PhCd6Xa72LZNt9vFDFK89gcluo0Q0zIRAl75W3v44N994pF+zq3nOohNzz333NuimLx17vJ2owPr6+ucOHHijoWu5dNlrrxZJpNPsP998488yW6327z++utMTU2xZ8+e+xZeGqjGPgw1NoqioQf0nZLJY8eO8Tf/5t/k53/+5/nFX/zFUTI5wggjjDDC46e89nq9G6g5p06dQgjBvn377un9g+TwTslkuVzmjTfeYGFhYTgf12g0+N3/9zdZPVfHy5vYtk2nGrHnhRl+/J++8mg+4Bb0+30OHz6Mbdtvu0rgALeau7QsC9/3ec973nNHuu/vlX+P3yj9Bv9i5l/wQ7kfeqTntb6+zvHjxx8J1fZBqbH3kkwC/OEf/iE/9VM/xX/5L/+Fj33sYw91riOMcL/o9Xo3XJtra2v8/9u787ioqv9/4K9hG/Z9EwXFDVGRHcQlNUlcGTS10gLMrCwrszK11MpcKj9lLmVWimblBohLuYumIi6sAoLsss2w78swc35/+Jv7ZZTdgUF9Px8PHuWdO3fOHYYz933POe93RkZGu9bvNu0feTxei1Mga2pqEBMTw9UUVFNTQ01NDU7vi8btU/ehacCDuro6GmsBTW0+PtgxGWoaik2WJZVKkZCQgPLycjg7OzebkE3Rmt6YEolEaGxshI6ODiorKzF06NAWg8lrx+7hyP8iH5SnZEB/R3Ms/t9Ehb0nsvXcrc2a6IjOTI2VSCRcjdPWypMkJiZiypQpePfdd7F27VoKJgkhhADo5oAS+L+kEzIpKSkQi8UYNmxYq8+TrQdqK5iUJb6xt7d/5AIhaPVlFGSWQc9UEw0NDSjNr4Z+bzWMD+jb5pTRjqiqqkJ0dDS3DqarswQ2RzZ1qaqqCqqqqmhsbISJiQnMzc0fWXdZK63F7NTZqJBWwErdCn/1/wuqPMVcLOXl5eHu3btdkgwJaN/U2NraWty6dQvm5uat3v0/fvw4Xn/9dezfvx8zZ85UeFsJaYtYLIZUKuX+XVhYiOTkZIwZM6bV57X3Zpss8Y2lpSUGDx4s1zdd+DsB18LuwchSG2KxGBWlNZBKJJj4rjWselvC3Nwcurq6jx1EiMVixMbGQiKRwMnJqUuTb7WEMYbk5GTk5ORAU1MTdXV1za67rKmsxxpBMCSN0gfZv/HgP7M+cMeYWXaP3Q5Z+SYbGxvY2toqPEBrz9RYiUSCmJgYSKVSuLi4tBhMJicnY8qUKViwYAE2bNhAwSQhhBBOt5cN4fF4ctlQZRf8LXl4PVBLF0uMMaSkpCA/Px8uLi7NJr4Z4mmF/IwyVJXUAwzQ1tHCmKlDYG6uicLCQqSkpEBXVxfm5uYwNzfvVBa90tJSxMTEcKOjyvjSlU21lUqlGD16NNTV1VFVVQWRSISsrCwkJCTA0NCQW1cUVhOGSmklACBPnIfzFecVMkqZk5ODlJQUODo6wsTE5LGP1xwNDQ1YWVnByspKbgTi7t27aGhogKGhISoqKtoMJk+dOoXXX38de/bsoWCS9Biym0GtaW8wmZ+fj8TERAwePLjZxDf9R5gj6lwmykW1UNNQhYpUHY7P2WLgoN4oLCzEzZs3oa6uzvWPhoaGHe7f6urqEB0dDU1NzVZHwroSYwz37t2DUCiEh4cH9PX15ZYOpKSkcEsHpNV8SCQPgknZuaqo8FCcV/XY7SgvL0dUVFSXlm9qOsW36dTY7OxsJCYmQl9fHw0NDVBTU4Orq2uLv4+0tDRMnz4d8+fPx/r16ymYJIQQIqfbRygbGhrkAsrMzEyUlJQ0m3SipeQ7D2tsbMSdO3dQXV0NZ2dnaGtrN/vakkYprp9MxZ3/7oPH48FxQl+4T+4PFZUHxxSLxdx0KFnGWFnQZWBg0OaXqGxqp52dHfr06dPu90SR2lOQu7a2FkVFRRCJRBCWCfFjrx9Ro1IDAOCBh17qvR57lFKWObIzWW0VgTGG4uJixMfHQ0VFBWKxuMWpsefPn8crr7yCX375BfPmzaOLJaI0D49QlpeX49atW5g4ceIj+7aUfKe5/dLT05GdnQ0HBweYmpq2+PpJkXm4fvweaqvF6D/CDBNeGgq+9oPZDLLRLlmpDkA+Y2xbwaGszqUs6YwyZm5IpVIkJSVx3znNTbVtuu5SmFeI098VQCJm3AglALy8fCQ8pw3sdDtkNx4HDBjQ4QzniiKb+lxfXw+pVNri1NjMzExMmTIFM2bMwNatW5XyeyOEENKzKT2gzMnJQX5+Ptzd3eX2a+96oLq6OsTExEBdXR0jRozodP2xh0kkEm49oixjrOzOfHPrULKyspCWltZlUzvbo2n9MgcHh3Z98Z8rPYcvhV8+sn29wXqMsRjTqYuHzMxMZGRkwMXFhUu+1N3q6upw69YtmJiYYMiQIY8k51BTU8P169cBAJs3b8a2bdsQGBhIwSRRqsbGRi5ABB4ka7l69SomTZKfMSBLviMLPlsKJiUSidxaxcfNMt309cvKyiASibiMsa2VMpJlUe3bt2+XTO1sD4lEwt14lGX9botUKkXEP0kI+T4G0sYH31v9nA0we7krzM3NOvV9U1xcjNjYWAwePFhpNx6lUiliYmLQ2NgIFxcX8Hi8R6bGZmRkoLi4GEFBQZg0aRJ+/vlnCiYJIYQ0q9sDyofvwOfn5yMzM1Mu6UR7p3DJMrmamZl16R3vh5M5SCQSmJqacnfm09PTkZ+fL5e9trt1tiB3vbQeEVURkODBSHB1VTVqK2thWWgJqVja4rrL5shGQu7fv99qRtmuJgsmjY2Nm30vZL/PTz/9FCdOnEBdXR0mT56MH374gUviRIgyPBxQ1tXVITw8HJMmTeL6t4dnbrTU79XX1yM2NhYA4OTk1OlSEm1hjHFT6mV1II2Njbl16SUlJUhMTGx2XXt3kS0DkEgkcHZ27nAgWCqsRs69EqioS8A3aURRUVG7SzY1VVhYiPj4eNjb26NXr67JLt4WqVTKZR93cXF55L2QlabatWsXdu3ahby8PHh5eeGLL77ACy+8oJQ2E0II6dm6fQ3lw2RlPWTaG0zKUr3L6oZ15R1vFRUVmJiYwMTEBHZ2dqioqIBIJEJqaipqamqgoqKC/v37KyShT2fIEjv07t27w1kC+Sp8jNcf/38b/n88zOxYq+suHz5XWQmAvLw8uLm5KWwkpKPq6uq4wuAtBdYqKipIS0vDyZMnsX79eowfPx4nTpxQWn1OQloim0YqK5PU3v5RlhjM0NAQQ4cO7dK1ijweD3p6etDT08OAAQNQU1MDkUiEvLw8JCUlAQCsrKy6pCxIe8iWAairq7e6TrA1RhY6MLL4v+mxAwcObHHdpaxk08O/G1nppOHDh8PCwuKxz6sz2gomgQe/z9raWvz1118YP348NmzYgFOnTint90cIIaTnU/oIZUlJCeLj4/Hcc8+1ez1QVlYW0tPTuULYjDGUFlSjrkYMI3MdaOl1zZ34h89DNmXIzMwMxcXFqKys7PAd68clm0rWlYkdgAeBmmyE9uF6l3p6elySC1dX124pAdCc+vp63Lp1i7uIbuliOyoqCjNmzMDq1avx4Ycf0jRX0mNIJBK5JDxSqRRnzpzB+PHjwefz2xVMFhUVIT4+HjY2Nujfvz94PB4qS2pRUVwLXSNNGJg2v8ZckWRZVAsKCtCnTx9UVFSgpKSE6zfMzc1bLPGjSLW1tYiKioKenh6GDx/eZbNY2qp3KRQKkZSUxH1nKYNUKkVcXBzq6urg6ura4ihtUVERpk6diqFDh+Kvv/7qlpJXhBBCnmxK/6aQjVC2Zz2QLKFCcXEx3NzcoK+vD6mU4UpIMuIu30djgwT6plrwCXBA70FdN9pUW1uL6OhoaGtrc2nWBw4cKBd0KSJjbFtEIhGXBEhWCL2raGpqwtraGtbW1ly9y8LCQkRFRXHrXO3s7JQ2SltfX4/bt2/DwMCg1WAyLi4Ovr6++PTTTymYJD2eiooKl1RKTU2tzWDy/v37SElJwdChQ7kplUmRebh0KAm11Q3ga6ljzMzBGPFc1yWCkUgkiI+PR01NDTw9Pbk+obGxkUsGduvWLS5jrJmZGYyMjBT+t1hVVYWoqChuSURX/q2rq6ujV69e6NWrl9wSiaSkJC5vgI2NjVISlAEPvjvj4+PbDCZLSkrg6+uLQYMGYf/+/RRMEkIIaZduH6F8eI1QZWUlIiIiMGrUKPD5/BbvIMtqlzU2NsLJyYlLqHAvqgAnd8WAr6UGvo46SguqYdpbD/M/HwU1dcVP85Kt2zQ3N2/1IkWWMbawsBBFRUXg8/lccNmejLFtyc3N5eo7KuuON2MMd+7cQUlJCUxNTVFSUgKxWAwTExPu7ryikiS1pqGhAbdu3eJGIVp6b2VFuZcsWYI1a9ZQMEl6nIdHKBljuHDhAoYOHQpTU9NWZ27IRgSdnJy46YllhTX4e+M11Nc2wsBEC5WldVBVU8HcT0bCrI+ewtvf0NCAmJgY8Hg8ODk5tfj337Q+okgkAtCxjLFtKS8vR3R0NPr06aO08k3Ag2zX9+7dg4WFBaqqqjq17vJxSaVSLhmRq6tri2tpy8rKMGPGDFhaWiIkJEQp9UEJIYQ8mZR6+5ExBg0NDRgYGODq1aswMDCAhYUFzM3N5TLwVVdXIyYmBjo6OnBycpK7a1omqoGkUQpdowf765loorK0FtXl9Qqf2iXLziebXtraRYq6ujpXH7FpxljZxVbTi6eOTsOSZVF1dnZW2ro/2UVKVVUVRo4cCT6fL5ecQ1bnrLV1l4rQ0NCA27dvQ1dXF8OGDWvxd5KcnIzp06dj0aJFFEySHqvp51K2BMDS0hLx8fHQ0tKCubk5LCwsoKury+3b2NiI+Ph41NbWwsPDQ65sUpmoGrWVDTDupQtVNRUYmmtDlF2BMlG1wgPKmpoaREdHQ1dXF8OHD281KGw6JdTe3p7LGJucnIyGhoYOJQN7mKyfHjBgAPr27fu4p9VpsqUZrq6uXIDf0XWXj6u9wWRFRQVmzZoFExMTBAcHUzBJCCGkQ5SWA1x2scTj8eDq6oqxY8fC0tIShYWFuHLlCiIjI5GZmYn8/HzcvHkTZmZmzdZV1DHgg6fCQ32NGIwx1JTXQ1NbHVq6il1HmZeXh5iYGNjb23c47b2qqirMzc0xfPhwPPfcc1xJj8TERFy6dAnx8fEQCoXtKmB+7949ZGZmwtXVVanBZFxcHKqrq+Hm5sZdfMiScwwYMAAjR47EmDFjYGFhgeLiYly9ehURERFITU1FeXk5FDEwLgsmdXR0Wl0flZqaiunTp+PVV1/F119/rdCLtsuXL2PGjBmwsrICj8fD0aNH23xOeHg4XFxcwOfzMXDgQAQFBT2yz44dO9CvXz9oamrC09MTN27cUFibSc/XNPmOnZ0dxo0bh/79+6OmpgY3b97E1atXkZKSApFIhBs3bkAqlcLd3f2RGry6hprQ0FJDdXk9AKC6vB4ammrQMVBswFBeXo6bN2/C1NQUI0aM6NAII4/Hg5GREezs7DB69Gi4u7tDV1cXmZmZuHTpEqKionD//n3U19e3eSyhUIjY2FgMGTJEqcFkRkYGVzqpaTIbLS0t2NjYwNXVFePGjYOtrS1qamoQFRWF//77D0lJSSgqKpLLM9BZjDEkJCSgqqqq1WCyuroac+bMgZaWFo4ePdquciodQX0kIYQ8/ZQyQilbL9l0PRCfz+fW6DU0NKCwsBDZ2dmoqqoCn8+HmpoaqqurH8keOtjNEunxIty7XQBJoRQ6BnyMnT0EGpqKOTXGGDIyMpCVlQUnJyeYmJg81vFUVFRgbGwMY2NjLmNsYWEh0tLScOfOHbl0+00vABhj3PpRd3d3pSW+kUgkiI2NhVgshpubW6ujB62tu1RVVZUrvdLRUVqxWIyoqChoa2u3GkxmZmZi+vTpmDVrFr799luFJ+Worq6Go6MjXn/9dcyaNavN/TMyMjBt2jS8/fbb+PPPP3H+/Hm88cYb6NWrF3x8fAAABw8exLJly7Bz5054enpiy5Yt8PHxQXJystKmN5Pu07QsiKx/VFNTg6WlJSwtLbkZDzk5OcjKyoKqqiqMjIy46ZRNb5iY9taD++T+iDyZBmFWOdT5anCZ2Be9+hsqrL2yUhiKGBFsLmNsYWEhCgoKkJycDH19fa5/fLgPzMnJQUpKilJrATPGkJaWhpycHLi6ukJPr+VRYHV1de53+vC6y7bqeranHQkJCaisrGw1mKypqcHcuXMBAMePH3/khoQiUB9JCCFPv25fQ7lv3z4MHz4cgwYNajG5hKwERU5ODoYOHQqpVAqhUIji4mJu2lfTLIGSRimykopQX9MI0956CpvKJZVKcffuXRQVFcHZ2bnViwNFqK6uhkgkQmFhISoqKmBgYMBN+0pNTe1QQe6uIJFIEBMTA6lU2ur6qLY0vXgqLCzs8LpLsViM27dvQ0tLixvtbc79+/fh4+ODyZMn46effuryotw8Hg+hoaHw8/NrcZ9PP/0UJ0+exJ07d7htL7/8MsrKynDq1CkAgKenJ9zd3bF9+3YAD94va2trvPfee1ixYkWXngNRrtOnT0NVVZW7WdOeskk6OjrcWkTZdHoLCwsYGRlxpUby0spQXlgDPWNN9BlsrLBR+pycHCQnJ3dLKYz6+nquzyguLoa2tjb3XVBcXIzMzEw4OTkpLfGNbAZJfn4+XF1dO106qenSgcLCQu5GQXuXDsiCyfLycrkZJA+rq6vDSy+9hKqqKpw6dapbaihTH0kIIU+nbh2hZIwhNDQUixYtwqBBgyAQCDBz5ky5eoESiQR37txBZWUlPDw8uLvQvXr1QmNjI4qLiyEUCnHr1i1oaGhwFxS2w80UOpVRIpEgLi6OW5fUHUGcjo4ObG1tYWtry2WMFQqFSElJgYqKCjfSx+fzu30NYGNjI6Kjo8Hj8eDs7PxY2f8eruvZ0rpLMzOzR+6Yy4JJTU3NVoPJ/Px8TJs2Dc8//zx27NjR5cFke0VERMDb21tum4+PD5YuXQrg/6bxrly5kntcRUUF3t7eiIiI6M6mEiWIiIjAjz/+CG1tbcyYMQN+fn4YNWoU9/fGGOPWUDcdiZNlMpWtRbxz5w4YY1wQ0qu/CXoPVFygxRhDeno6srOz4eLi0i1BHJ/PR58+fdCnTx+5jLE3btwAYwyWlpZgjHEzX7qTLClSYWFhs1OPO+LhUdra2lruXO/du9fqukvGGBITE1FeXg5XV9cWg8n6+nq8+uqrKC0txdmzZ7slmGwv6iMJIeTJ060BJY/HQ0hICMrLy3Hs2DGEhITg+++/h42NDQQCAby8vHDo0CEsWrQIHh4ej0zTUVNTg4WFBSwsLLgsgUKhENHR0dw6RXNz88dOQV9fX4+YmBioqqrC3d29WzKVPkxTUxMWFhbIy8uDoaEhevXqheLiYty4cUPhGWPbIpteqq6uDkdHR4UWSX/44kkWSBcWFj5y8aSlpYXo6Gjw+XyMGDGixYtGoVCIadOmwcvLC7/++muXFnXvqIKCgkdGciwsLFBRUYHa2lqUlpZCIpE0u8/du3e7s6lECb744gusWrUK586dQ3BwMF599VWoqqpi+vTpmDZtGkJDQzFt2jRMmDDhkRkTD0+nLy8vh1AoxN27dyEWi7ng0tTU9LH+JmTlm0pKSrj1jt1NTU2NG5nU0NDAgAEDUF5ejvj4eC6QNjMzg4mJSZf//cuCuNLSUri5uSk8+ZiWllarSwdk52pkZITk5GSuHS3dBBWLxQgMDEReXh7Onz+vtBHdllAfSQghT55uX0PJ4/FgaGgIf39/+Pv7o6KiAidPnsTu3buxZcsWDB48GGFhYVBVVYWrq2uLQUPTL1LZFEqhUIi4uDgA4AKujq7Pq66uRnR0NPT19bu0EHZb6urqEBUVBR0dHW4krk+fPtz6qcLCQoVkjG1LQ0MDoqKioKmp2WoQpyitrbuUSCTg8/mwtbVtMalPYWEhZsyYAUdHR+zZs6dHBZOEtIeGhgamTp2KqVOnYufOnbh06RL++OMPzJ8/n7v419DQwIQJE1ocgZL1s4aGhhg8eDAqKyshFAqRmpqKO3fucOuXzczMOjTboLGxEXFxcaivr4e7u7tSp9/Lal3KZpD07t0bjDGUlZVxWVQfN2NsW6RSKRISElBRUdFqEKcora27rK+vB4/Hw6BBg1rs9xobG7Fw4UKkpaXh4sWLj50TgBBCCAGUXDYEAPT19SEQCPDRRx9h1apVGD58OEJCQuDr6wtDQ0P4+vpCIBDA09OzxS/JplMo7e3tUVpaCpFIhMTEREgkEi7gautudVlZGWJiYtC7d28MHDhQaaUlqqurERUVxZ1P03Y0HYmVSqXcFLekpCQ0NjbKXTw9blHq+vp6riSHMoJr2cWTqakpbt++DeDB5yU5ObnZdZclJSWYMWNGjy7KbWlpCaFQKLdNKBRCX18fWlpaUFVVhaqqarP7WFpadmdTSQ+grq4Ob29v/PDDD5g6dSoWLVqEkydP4v3330dVVRWmTp0KPz8/TJw4scWRMR6PB319fejr62PgwIGorq6GUChEZmYmEhISuD7j4URgD6uvr0d0dDTU1dXh7u6utL+vxsZGbi33wzNIZBljjYyMMGjQIG46vexcjYyMuHN93OBPKpVyQW1raxW7iux7z9jYGFKpFEVFRdyslpSUlEfWXUokErz99ttISEjAxYsXlZa4qC3URxJCyJOn25PytKSgoEDuy6C2thZnz55FcHAwjh8/Dk1NTcyYMQMzZ86UW1PUGsYYysvLIRKJIBKJ0NDQAFNTU1hYWMDExETuGLJ1RwMHDoSNjU2XnGN7yApydzSoZYyhsrKSO9eamhou4DI3N2/1QrE5dXV1uH37NgwMDFqt79jVZGs3VVRU4OTkBFVVVS5phSwRSVZWFn788UdIJBKYmpri9OnTHT5fRWhvwol//vkH8fHx3LZ58+ahpKRELuGEh4cHtm3bBuDBhauNjQ2WLFlCCSeeUSKRCKamptxNHYlEguvXryM4OBihoaEoKirC5MmTIRAI4OPj0+4s0LJEYCKRCJWVlVzAZW5uLhcgVVVVITo6GkZGRhg6dKjSZm7IZkxoaGh0ePp9bW0td67l5eXQ19fn+seOZs2WrbGvr6+Hi4uLUvobQH7tZtPptrKlAyKRCCUlJdi4cSPU1dWRmZmJa9euwdraWintpT6SEEKeTj0moGxNQ0MDLly4gCNHjiAsLAw8Hg/Tp0/HzJkzMXbs2HZ9mT8ccNXW1sLExAQWFhaor69Heno6hg8frtSU4yUlJYiNjYWtrS369ev3WMeqrq7mLiiaZoxtT5bA2tpa3Lp1q9kR0u4kkUgQFRUlF0w2JzU1Fe+++y5SU1NRXFyMMWPG4MKFC93SxqqqKqSmpgIAnJ2d8f3332PChAkwNjaGjY0NVq5cidzcXOzbtw/Ag5T4w4cPx7vvvovXX38dFy5cwPvvv4+TJ0/KpcQPCAjAL7/8Ag8PD2zZsgWHDh3C3bt3uzyTJnnySKVS3L59G0eOHEFoaChyc3PxwgsvQCAQYMqUKdDX12/XcR4OuGR9Bp/PR1JSEqytrTFgwACl9Qe1tbWIioqCnp7eY8+YkJWmEolEj2SMlWUPb4ks27VEIoGzs7NS1tgDD77TZLVIW1u7WVdXh0WLFuH69euorKyEnp4eYmJium2EkvpIQgh5+j0RAWVTjY2NuHTpEg4fPoywsDDU19dj+vTpEAgEeP7559s97aiqqgpCoRD379+HWCyGgYEBevfu3ea0r64iGyEdMmQIrKysFHrspnerS0tLoaOjw1086erqyl08VVdX4/bt2zA3N4ednZ1Sg8no6GgADy5CWgomq6qqMGvWLGhoaODkyZMQi8VITk6Gu7t7t7QzPDwcEyZMeGR7QEAAgoKCEBgYiMzMTISHh8s958MPP0RiYiL69OmD1atXIzAwUO7527dvx3fffYeCggI4OTlh69at8PT07OKzIU86qVSKuLg4HDlyBCEhIUhPT8fEiRMhEAgwbdq0R+pUtqS+vh4ikQg5OTmoqqqCpqYm+vTpAwsLiy6pVdiWqqoqREVFcdlsFdkvNc0YW1RUBHV1dW7k0tDQUC5wlU23ZYw9drbrxyELJoVCIdzc3Fr8nUilUnz66ac4fvw4wsPD0adPH1y/fh1jx47ttr6d+khCCHn6PXEBZVMSiQRXrlzhpn1VVlZiypQpEAgE8Pb2bvXCR5ZMoby8HPb29lzSisrKShgaGsLCwkIh62zaIzc3l6vl1tUjpGKxWO7iic/ncxdPampqiIqKgpWVlVLXkMpGAGQXbS0FkzU1NZg9ezakUin++ecfpWSbJKSnkmUflY1cJiYmYvz48fDz88P06dNhYmLS6t94VlYW0tLSYG9vD6lUyo3myW5IWVhYQEdHp8v7CdkyAGtra/Tv379LX08qlaKkpISrAckY4xIY6evrIy4uDqqqqq3OmOhqsnqXBQUFbQaTn3/+OQ4fPozw8HAMGjSom1tKCCHkWfFEB5RNSaVSuTVFhYWF8PHx4dYUNQ02xGIx4uLiIBaL4ezsLDeqWVdXB5FIBKFQyK2zsbCwaNdU0c6Q1ZRzdHSEsbGxwo/fmqYZY0UiERobG7nyHSYmJkpZJyULJqVSaasjALKi3NXV1Th16lS7p/UR8iySBSGy4DImJgZjxoyBQCCAr68vLCwsuEBNNvqVn58PZ2dnuRqFD9+QkpU3as9U0c4oLi5GbGysUta2N12DLxQKUVdXBw0NDQwcOBDm5uZKmerKGENqairy8vLg5ubW4tpPxhi++uor7N27FxcvXoS9vX03t5QQQsiz5KkJKJuSSqWIioripn3l5ORwa4qGDRuG4OBg+Pr6YsSIEa1OWaqvr0dhYSGEQiFKS0uhq6vLXTx1NInDw2QXBrm5uXBxcVFqQFReXo7bt2/D0tISKioqKCwshFgs5u7MKyJjbHtIJBLExsZya5Naes36+nrMnz8fhYWFOHv2LAwNDbu8bYQ8LRhjyMzMRHBwMEJCQnDjxg14eXnB19cXkyZNwu7duzF58mS4u7u3OstDIpGgqKgIQqGQmyoq6x8VUR9XKBQiISEB9vb26NWr12Md63HIsl3z+XwYGBigqKgIVVVVCs0Y2x6MMaSlpSE3N7fNYHLTpk3YuXMnLly4AAcHhy5vGyGEkGfbUxlQNiVL7X7kyBH8/fffyM3NhYODA15//XVMnz4dRkZG7brwEYvFXHDZdNpXc+sQ29MmWWFwFxeXxw5OH0dpaSliYmIwYMAAbgSgtYyxZmZmXZIeXyqVIiYmBo2NjXBxcWkxmGxoaIC/vz/u37+Pc+fOdUkdtR07dnBrcxwdHbFt2zZ4eHg0u+/48eNx6dKlR7ZPnToVJ0+eBAAEBgZi7969co/7+PhwGQsJURbGGHJychASEoKDBw8iJiYG5ubmWLBgAebMmYO+ffu2q2+TSCQoKSmBUChEYWGhXHmjh9chtkdOTg5SUlLg4OCg1PIWsnrAenp6GDZsGHceiswY215paWnIycmBq6tri9P7GWP44Ycf8MMPP+D8+fNwcnJSeDuofySEEPKwpz6glMnLy8OwYcMwf/58mJmZ4ejRo0hISMC4ceO4NUWmpqbtunhqbGzkponKpn3JLp709fXbzBB4584dVFdXw8XFRWmFwYEHWWVjYmIwePBg9OnTp8X9WsoYa2ZmppAEHVKpFLGxsWhoaICLi0uLU8nEYjEWLlyI5ORkXLhwoUsuNA8ePAh/f3/s3LkTnp6e2LJlCw4fPozk5ORm17eWlJSgoaGB+3dxcTEcHR3x22+/cUkkAgMDIRQKsWfPHm4/Pp/PFaknRNmkUik8PDxgYmKCKVOm4Pjx47h8+TJGjBgBgUAAgUDQ7nXVUqkUpaWlXHDJGOP6R2Nj41aDS9noaWZmJpycnJT6N1JbW4vbt29zpVJaOvemGWNLSkqgpaXF9Y9tfR+0V1paGu7fvw83N7dWg8nt27dj06ZNOHPmTJckJqP+kRBCSHOemYASAG7dugU3NzcA/zflVLamKDo6GqNHj+bWFFlaWrb7zrxsTVFhYSHU1dW5hBUPT/tqbGzkpnQ6OTkprXYZABQVFSEuLq7DWWVl2R8LCwtRUlLyWCO1QPuDycbGRrz11luIjY3FhQsXuqyAtaenJ9zd3bF9+3aufdbW1njvvffaVd9sy5YtWLNmDfLz87mRisDAQJSVleHo0aNd0mZCFCE6OhojRozgar0WFRUhLCwMR44cwcWLF2FnZ8cFl+0tJ8QYQ2lpKTeaJ5FIuJE8ExMTucQ2snWe+fn5cHFxgZ6eXleebqtqampw+/ZtmJqadiirbGNjI4qLi7mbjY87UgsA6enpyM7ObjOY3LVrF7788kv8+++/8PLy6vDrtAf1j4QQQprzTAWULWGMISsri1tTFBkZiZEjR8LX1xcCgQB9+vRp95152cVEYWEheDyeXDbEmJgYqKmpwdHRUWnp5oH/K1EydOjQxwrMmiboKC4uhoaGhly6/bbeM1mJg7q6Ori6urYYTEokEixZsgQREREIDw9XeFkVmYaGBmhra+PIkSNyhbcDAgJQVlaGsLCwNo/h4OAALy8v7Nq1i9sWGBiIo0ePQkNDA0ZGRnj++efx9ddfd8l0XUIUTRYUHjt2DCEhITh79iz69esHgUAAPz+/dteEZIyhoqICQqEQIpEIDQ0N3DptY2Nj3Lt3DyUlJXB1dVVKaRIZWekkCwsLDB48uNMjjK1ljH04mG5JRkYGsrKy4Orq2mKAzRhDUFAQVq5ciRMnTuC5557rVHvbQv0jIYSQllBA+RDGGHJzcxESEoLg4GBcu3YNLi4u3J35fv36dWjalyxDoFgshqamJuzs7GBqaqqUDKoAUFBQgISEBDg4OCi0RIlsDVXTYFq25rK5jLGyta21tbWtBpNSqRRLly7FxYsXcfHixS7N9JiXl4fevXvj2rVrcnf4ly9fjkuXLiEyMrLV59+4cQOenp6IjIyUW1N04MABaGtrw9bWFmlpaVi1ahV0dXURERGhtNIDhHRWeXk5Tpw4gZCQEJw6dQq9evWCr68vZs6cCWdn53YHl7JawEKhEDU1NVBVVcWAAQNgZWWllAyqAFBZWYmoqCj07t0bAwYMUFjW2qYZY0UiEerr62Fqasr1kc2dr2zqb1vB5P79+/Hxxx/j2LFjzdZ7VBTqHwkhhLSEAspWMMYgFAoRGhqK4OBgXL58GcOHD+eCy0GDBrV5wSG7262npwctLS0UFhaisbGxxWlfXSkvLw93797FiBEjYGpq2mWvI5VKUVZWxq0rejhjrIqKCreO1NXVtcWpv1KpFMuXL8fJkycRHh4OW1vbLmsz8PgXTG+99RYiIiIQFxfX6n7p6ekYMGAAzp07h4kTJyqk7YQoQ1VVFf79918EBwfjn3/+gbGxMWbMmIGZM2fC3d29zb6tsbERMTExXB9RXFyMqqoqGBsbc1NFu2tpQEVFBaKiomBjY4P+/ft32eswxlBdXc0Fl81ljM3KykJ6ejpcXV1bzADOGMPhw4exZMkSBAcHw8fHp8vaDFD/SAghpGXKm3f5BODxeLC0tMTixYvx9ttvo7i4GGFhYQgODsaGDRswePBgbtpXc2uKZAW5+/Tpw93ttrOzQ0VFBUQiEVJSUuSmfXVleQ5Z1kQnJ6cur3epoqICY2NjGBsbY/DgwVzG2IyMDNy5cwfq6urg8XhwcXFpNZj87LPPcOzYMVy8eLHLg0kAMDU1haqqKoRCodx2oVDY5tTg6upqHDhwAF999VWbr9O/f3+YmpoiNTWVLpjIE01XVxdz5szBnDlzUFNTgzNnziA4OBgvvvgitLW14evrCz8/P3h5eT3StzU0NCAqKgoaGhrw8PCAqqoqBg0ahJqaGohEIu4GmKGhISwsLLq0PEdZWRmio6PRv39/9O3bt0teQ4bH40FXVxe6urro378/amtruQziycnJ4PP5aGhowPDhw1stJ3X06FEsWbIEBw4c6PJgEqD+kRBCSMtohLITGGMoKyvD8ePHERwcjDNnzqBv375ccOng4ICbN2+iqqoKAwcObPECRTbtSzYttra2FsbGxtzFk6KmfWVnZyMtLQ3Ozs5KrdnIGENMTAwqKiqgqamJyspKGBgYcKO1snVTjDF8+eWX+OOPP3Dx4kUMGTKk29ro6ekJDw8PbNu2DcCDwNbGxgZLlixpNelEUFAQ3n77beTm5ra59icnJwc2NjY4evQofH19Fdp+QnqCuro6nD9/HiEhIQgLC4Oqqio3cjlmzBhkZWUhIyMDlpaWcuU4mjuOrH+UleeQ1brU0tJSSFtLS0sRHR2NQYMGwdraWiHH7Kz09HRkZGRAX18fFRUV0NLS4vrHphljT5w4gQULFmD//v2YOXNmt7WP+kdCCCHNoYBSASoqKnDy5EkEBwfj1KlTMDU1RUFBAf73v/8hICCg3eslZdOghEKhwqZ9ZWRkIDMzEy4uLjAwMOjUMRSBMYaEhARUVFTA1dUVfD4f9fX1cun2+Xw+jh07xk3lunjxIoYPH96t7Tx48CACAgLwyy+/wMPDA1u2bMGhQ4dw9+5dWFhYwN/fH71798bGjRvlnjd27Fj07t0bBw4ckNteVVWFL7/8Ei+++CIsLS2RlpaG5cuXo7KyEvHx8V1S05OQnkQsFiM8PBzBwcE4evQo6urqoKKigtmzZ2PTpk3tHnWU9RdCoRClpaXQ1dXlgsvO1n4sLi5GbGws7Ozs0Lt3704dQ1Hu37+P1NRUrq9uLmNseHg4NDU18e233yIoKAhz587t1jZS/0gIIaQ5FFAq2M8//4wPP/wQY8aMwY0bN2BkZMRN+5JN62qP2tpaLhtiRUUFDA0NueCyPRdgjDGkp6fj/v37rSZ16A7NBZMPE4vFSE5OxpIlSxAVFQULCwvMnTsX3333XbdnxN2+fTtXuNvJyQlbt26Fp6cngAeFuvv164egoCBu/+TkZAwZMgRnzpzBCy+8IHes2tpa+Pn5ITo6GmVlZbCyssKkSZOwbt06WFhYdOdpEaJ0ERERmDx5MoYOHYrs7GxUV1dj2rRpEAgEmDhxYrtHHcViMRdcFhcXd6p8UWFhIeLi4jB06FD06tXrcU/tsciWJLi4uDQ7i0SW5O3dd9/FuXPnoKKiglmzZuHrr7/u0kRlzaH+kRBCyMMooFSw/fv3w9raGuPGjUNtbS23pujEiRPQ0tLCjBkz4Ofnh1GjRrU7UJJN+xKJRCgrK4O+vj5XjqS5CzBZjc28vDy4urq2WLusOzDGkJiYiLKyMri5ubV4x5kxhm3btuHbb7/FsWPHUFZWhhs3brRrzQ0h5MkQExODa9eu4Z133oFEIkFERASCg4MRGhqKkpIS+Pj4wM/PD5MmTWr3qGNjYyOKioogFApRVFQETU1NLrhsOk20KaFQiDt37mD48OFKD1xkwaSzszOMjIxa3O/y5cuYM2cOtmzZAnt7exw9ehQrVqzo8jXxhBBCSFsooOwmDQ0NOHfuHIKDg3Hs2DGoqKhg+vTpmDlzJsaOHdvu9ZINDQ1ccFlSUgJdXV25WpeMMSQnJ6OwsBAuLi6dngqmCIwxJCUloaSkBG5ubi2OrDLG8Msvv+Crr77q0qLchJCeSSqV4tatWzhy5AhCQ0ORl5eHF154AX5+fpg8eXKryWmakkgkKC4u5oJLNTU1LriU1cbNz89HUlISHBwcYGZm1sVn1rrc3FwkJye3GUxeu3YNs2bNwrfffou33npLYeVMCCGEEEWggFIJxGIxLl26hCNHjuDo0aMQi8WYPn06BAIBJkyY0O51I7JpXyKRCMXFxdDS0oKKigoaGhrg5uam1OLgHQkm9+zZg1WrVuHkyZMYO3ZsN7eUENKTSKVSxMbGcsFleno6vL29IRAIMG3aNBgYGLS7FrBsDaKsNq6Ojg7Ky8vh6OjYpaWT2kOWxbatzNs3b96EQCDAunXrsGTJEgomCSGE9DgUUCqZRCLBlStXuOCysrISU6dOhUAggLe3d7vXFDU0NCA2NhaVlZVgjIHP53MJK1qa9tVVGGO4e/cuiouL2wwmu6soNyHkySObMn/kyBGEhIQgKSkJEyZMgJ+fH6ZNmwYTE5N2B5cpKSnIycmBqqoqeDyeXC3g9iZOU5T2BpPR0dGYPn06Pv/8cyxbtoyCSUIIIT1S936Lkkeoqqpi3Lhx2LZtG7KysvDPP//A0tISK1asQL9+/eDv74+QkBBUV1e3eAypVIq7d+9CLBZj9OjRGD9+PAYPHoz6+npERUXhv//+w927d1FaWoquvn8gm3JbVFQEV1fXVoPJQ4cO4aOPPkJwcHCXBZM7duxAv379oKmpCU9PT9y4caPFfYOCgsDj8eR+Hm4/Ywxr1qxBr169oKWlBW9vb9y7d69L2k7Is47H42HYsGFYu3YtYmJicOfOHYwbNw6///47BgwYgBkzZuDXX3+FUChstW/Lzs5Gfn4+3NzcMH78eDg6OkJNTQ13797FpUuXEB8fD5FIBIlE0uXnlJ+fj7t378LR0bHVYDI+Ph6+vr5Yvnx5lwWT1D8SQghRBBqh7KGkUilu377NTfvKzc2Ft7c3/Pz8MGXKFG5NkVQqRVxcHOrq6uDi4vJIeRGpVIqSkhJu3aXszryFhQWMjIwUemeeMYaUlBSIRCK4ubm1OroaEhKCt99+GwcPHsS0adMU1oamDh48CH9/f+zcuROenp7YsmULDh8+jOTkZJibmz+yf1BQED744AMkJydz23g8nlzSjm+++QYbN27E3r17YWtri9WrVyM+Ph6JiYldVnSdECKPMYaMjAwEBwcjJCQEN2/exKhRo+Dr6wuBQAArKysuAEtPT0d2djZcXFweWYvJGENFRQXXP9bV1cHU1BQWFhYwNTVVeIbpgoICJCQkwMnJqdV6jImJiZgyZQqWLFmCNWvWdEkwSf0jIYQQhWGdsH37dta3b1/G5/OZh4cHi4yMbHX/Q4cOMTs7O8bn89nw4cPZyZMn5R6XSqVs9erVzNLSkmlqarKJEyeylJSUzjTtqSSRSFh0dDT77LPP2NChQxmfz2dTp05l27ZtY97e3iwoKIiVlZWx6urqVn8qKyvZ/fv32e3bt9k///zDTp48yW7cuMEyMzNZZWVlm89v7aeqqopFRUWxU6dOscLCwlb3PXDgANPW1mahoaFd+r55eHiwd999V+59tLKyYhs3bmx2/z179jADA4MWjyeVSpmlpSX77rvvuG1lZWWMz+ezv//+W2HtJk826h+7l1QqZVlZWeyHH35gY8eOZWpqaszT05OtX7+e+fv7s88++4wVFBS0qw8rKChgcXFx7Ny5c+zYsWPsypUr7N69e+3qX9v6SU9PZ8eOHWNZWVmt7hcVFcUsLCzYypUrmVQq7bL3jfpHQgghitLh4amDBw9i2bJlWLt2LaKiouDo6AgfHx+IRKJm97927RpeeeUVLFy4ENHR0fDz84Ofnx/u3LnD7fPtt99i69at2LlzJyIjI6GjowMfHx/U1dV1PlJ+iqioqMDJyQlff/017ty5g6ioKDg5OWHVqlW4c+cO/vzzT/z5558oKipqddqXiooKjI2NMWTIEDz33HNwcnLipn2Fh4cjPj4eQqGww9O+GGO4d+8ehEIhXF1dW00G9O+//2LhwoUICgqCn59fh16nIxoaGnD79m14e3tz21RUVODt7Y2IiIgWn1dVVYW+ffvC2toaAoEACQkJ3GMZGRkoKCiQO6aBgQE8PT1bPSZ5dlD/2P14PB5sbGywdOlSXLp0CVlZWXj11Vexc+dOHD58GBcvXsSuXbuQmpraav/I4/Ggp6eHAQMGwMvLCyNHjoShoSGys7Nx6dIlREVFIScnBw0NDR1uo6xMyYgRI1pNBpSamorp06fj1Vdfxddff91layapfySEEKJIHQ4ov//+eyxatAgLFizA0KFDsXPnTmhra2P37t3N7v/jjz9i8uTJ+OSTT2Bvb49169bBxcUF27dvB/AgGNmyZQs+//xzCAQCjBgxAvv27UNeXh6OHj36WCf3NOLxeBg6dCgqKirg4eGBU6dOYcKECdizZw8GDBiA6dOnY9euXSgoKGjz4snQ0BB2dnYYM2YMN0U1NTUV4eHhiI2NRX5+PhobG1ttD/v/NS8LCgraDCbPnz+PgIAA7Nq1C3PmzOn0e9AeRUVFkEgkj9SYs7CwQEFBQbPPsbOzw+7duxEWFob9+/dDKpVi1KhRyMnJAQDueR05Jnm2UP+oXDweD1ZWVjA3NwePx0N4eDgCAgJw9epVuLm5wcvLC5s2bUJSUlKb68l1dHRga2uLkSNHYvTo0TAxMUFeXh4uX76MW7duITs7u11BvUgk4oLJ1sqUZGZmYvr06Vx5kK5MFET9IyGEEEXq0DdWZ+5qRkREyO0PAD4+Ptz+dFezc77++mscP34cjo6OWLlyJW7cuIGUlBRMmzYNhw4dgp2dHSZPnowdO3YgJyenzeBSX18fAwcOxKhRo+Dp6QldXV1kZmYiPDwc0dHRyM3NfeTOPGMMaWlpyMvLg6ura6s1Ly9fvox58+Zh+/bteOWVVxT2PiiSl5cX/P394eTkhHHjxiEkJARmZmb45ZdflN008gSg/rHnmD17Nm7evAkPDw+8+eab+Pfff1FQUIBly5YhOjoao0ePhru7O9atW4f4+HhIpdJWj6elpYW+ffvCw8MDY8aMgYWFBUQiEa5cuYIbN24gMzMTNTU1jzxPJBIhPj6+zZqXOTk5mDZtGqZOnYoff/yx27POtgf1j4QQQlrSoW+tztzVLCgoaHV/uqvZOQYGBnJJb3g8HmxtbfHxxx/j6tWrSE9Px+zZs3HixAkMGzYMEydOxI8//ojMzMw2g0tdXV1u2peXlxcMDQ2Rk5ODy5cv4/bt27h//z7q6+uRnp6O3NxcuLm5tRpMXr16FXPnzsX//vc/BAQEdEvqe1NTU6iqqkIoFMptFwqFsLS0bNcx1NXV4ezsjNTUVADgnvc4xyRPL+ofew4VFRW5xDI8Hg/GxsYIDAzE8ePHIRQK8dlnnyE5ORnPP/88nJ2dsXr1akRFRbUZXGpqasLa2hpubm547rnnYGVlhZKSEly7dg3Xr19Heno6qqqqUFhYiPj4eAwfPrzZJDcy+fn5mDp1KiZMmIAdO3Z0SzBJ/SMhhBBF6nm3Qclj4/F4sLa2xgcffIDw8HBkZ2fD398f58+fh6OjI5577jls3rwZ9+7da/e0L09PT4wePRqmpqYoKCjA5cuXkZGRASsrq1YvgG7cuIHZs2djw4YNWLRoUbfVUdPQ0ICrqyvOnz/PbZNKpTh//jy8vLzadQyJRIL4+Hj06tULAGBrawtLS0u5Y1ZUVCAyMrLdxySEKJ+BgQHmz5+PkJAQCIVCrF+/Hjk5OZg6dSocHBywYsUKREZGthlcamhooE+fPnBxccG4ceNgY2ODiooKXL9+HTExMTA1NYW2tnaL/axQKMS0adMwcuRI/Prrr1BVVe2K02223dQ/EkIIUZQOBZSduatpaWnZ6v50V7Nr8Xg89OrVC++88w7Onj2LvLw8LF68GBEREfDw8ICXlxc2btyIxMTENoNL2bQvExMTqKmpoV+/fqioqMDVq1cRGRmJjIwMuWlfUVFRmDlzJtauXYt3332324tyL1u2DL/++iv27t2LpKQkLF68GNXV1ViwYAEAwN/fHytXruT2/+qrr3DmzBmkp6cjKioKr776KrKysvDGG28AePBeLl26FF9//TWOHTuG+Ph4+Pv7w8rKqksTDJEnA/WPTyZdXV3MnTsXBw8eREFBAb7//nuUlJRg1qxZGDJkCD7++GNcuXKlzWRl6urqsLKyQp8+fQAA1tbW4PF4uHnzJq5evYqUlBSUl5dz/WxRURFmzJgBR0dHBAUFdVswKUP9IyGEEEXpUJGtpnc1ZV8QsruaS5YsafY5Xl5eOH/+PJYuXcptO3v2LHfHsuldTScnJwD/d1dz8eLFHT8j0iJZDco33ngDCxcuRFlZGY4dO4bg4GBs3rwZ/fr1g0AggJ+fH4YPH97syGNGRgays7Ph5uYGPT09AA/WjhUWFkIkEiEtLQ2XL19GYWEhjh8/juXLl+PDDz/s9mASAF566SUUFhZizZo1KCgogJOTE06dOsVNH8zOzpY7x9LSUixatAgFBQUwMjKCq6srrl27hqFDh3L7LF++HNXV1XjzzTdRVlaGMWPG4NSpU1RjjVD/+BTQ1tbGzJkzMXPmTNTV1eHcuXMICQnBK6+8AnV1dcyYMQN+fn4YM2YM1NXVH3l+cXEx4uLiMGzYMG7kTiKRoLi4GCKRCFFRUUhJSUFERATu3r2LgQMHYv/+/Qqvd9ke1D8SQghRmI7WGTlw4ADj8/ksKCiIJSYmsjfffJMZGhqygoICxhhjr732GluxYgW3/9WrV5mamhrbvHkzS0pKYmvXrmXq6uosPj6e22fTpk3M0NCQhYWFsbi4OCYQCJiJiQmzsbFpVy23Xbt2sTFjxjBDQ0NmaGjIJk6c+Mj+AQEBDIDcj4+PT0dP/6lVXl7O/vzzTzZr1iymra3NBgwYwD788EN2+fJlrkZlZGQkO3nyZKs13crKyti3337LBg4cyNTU1JidnR07dOiQsk+PkG5B/ePTqaGhgZ0+fZq9+eabzNzcnJmYmLCAgAAWGhrKSktLWXV1NUtISGDHjx9nqamprdYCDgsLY87OzozP5zNzc3O2du1aZZ8eIYQQ8lg6HFAyxti2bduYjY0N09DQYB4eHuz69evcY+PGjWMBAQFy+x86dIgNHjyYaWhosGHDhrVYuNvCwoIr7q2urs52797NEhIS2KJFi5ihoSETCoXNtmfevHlsx44dLDo6miUlJbHAwEBmYGDAcnJyuH0CAgLY5MmTWX5+PvdTUlLSmdN/6lVWVrJDhw6xl156ienp6bG+ffuyKVOmsH79+rH79++3qyj3qlWrWGVlJTt8+LDc54OQpx31j083sVjMLl68yN555x1mZWXFDA0Nma+vL9PX12eXLl1qtX/Mz89nnp6ebNKkSayyspJduHCBBQcHK/uUCCGEkMfCY6yNhXNK4OnpCXd3d64Wm1QqhbW1Nd577z2sWLGizedLJBIYGRlh+/bt8Pf3BwAEBgairKyMard1UG1tLZYsWYL9+/fDxsYGNTU18PX1hZ+fH7y8vOSmaqWmpmLKlCmYN28evvnmmx6Z+p6QJx31jz2HRCLBTz/9hI8++ggDBw5Ebm4ufHx84Ofnh0mTJsnV5a2qqsKsWbOgoaGBEydOtFqzlxBCCHmS9Lgr/s7UcntYTU0NxGIxjI2N5baHh4fD3NwcdnZ2WLx4MYqLixXa9qeRiooKUlNTceXKFcTHx2PXrl1oaGjA/PnzMWjQILz//vu4ePEiUlNTMX36dLz44osUTBLSRah/7FlUVVURHx+PnTt34s6dOzhz5gz69u2LNWvWoF+/fpg/fz4OHz4MoVCIuXPnQkVFBceOHaNgkhBCyFOlx41Q5uXloXfv3rh27ZpcqvHly5fj0qVLiIyMbPMY77zzDk6fPo2EhAQuGcCBAwegra0NW1tbpKWlYdWqVdDV1UVERES3Z9d70jDGHkmqIxaLER4ejuDgYISGhqKoqAhz5szBX3/9RcEkIV2E+seep7n+USqVIiYmBkeOHEFoaChSUlIwYMAA3Lp1C/r6+kpqKSGEENI1nror/02bNuHAgQMIDQ2Vyyz38ssvw9fXFw4ODvDz88OJEydw8+ZNhIeHK6+xT4jmMrSqq6vjhRdewM6dO5Gbm4utW7di7969XRpM7tixA/369YOmpiY8PT1x48aNFvf99ddfMXbsWBgZGcHIyAje3t6P7B8YGAgejyf3M3ny5C5rPyHKRv2j4jXXP6qoqMDFxQUbNmxAYmIiDh8+jLCwsC4NJql/JIQQoiw9LqDsTC03mc2bN2PTpk04c+YMRowY0eq+/fv3h6mpKVJTUx+7zc86NTU1vPvuu+Dz+V32GgcPHsSyZcuwdu1aREVFwdHRET4+PhCJRM3uHx4ejldeeQUXL15EREQErK2tMWnSJOTm5srtN3nyZOTn53M/f//9d6fbuG/fPpiYmKC+vl5uu5+fH1577bVOH5cQGeofnzw8Hg+zZs2Cvb19l70G9Y+EEEKUSpkZgVri4eHBlixZwv1bIpGw3r17s40bN7b4nG+++Ybp6+uziIiIdr3G/fv3GY/HY2FhYY/dXtL1PDw82Lvvvsv9WyKRMCsrq1Y/E001NjYyPT09tnfvXm5bQEAAEwgECmtjTU0NMzAwkCuTIhQKmZqaGrtw4YLCXoc826h/JA+j/pEQQogy9bgRSgBYtmwZfv31V+zduxdJSUlYvHgxqqursWDBAgCAv78/Vq5cye3/zTffYPXq1di9ezf69euHgoICFBQUoKqqCsCD7HqffPIJrl+/jszMTJw/fx4CgQADBw6Ej4+PUs6RtN+TkohES0sL8+bNw549e7htsuy448eP7/RxCWmK+kfSFPWPhBBClE7ZEW1LOlLLrW/fvo8U5QbAFYyuqalhkyZNYmZmZkxdXZ317duXLVq0iG3YsIH17du3XcXB9+zZ88jx+Xy+3D6yenGWlpZMU1OTTZw4kaWkpCj0fXkW5ebmMgDs2rVrcts/+eQT5uHh0a5jLF68mPXv35/V1tZy2/7++2+uWHxoaCizt7dn7u7urLGxsdNtjYqKYqqqqlyNPwcHB/bVV191+niENIf6RyJD/SMhhBBl67EBZVc7cOAA09DQaHdx8D179jB9fX25wt8FBQVy+2zatIkZGBiwo0ePstjYWObr68tsbW3lvqRJxz3uBdPGjRuZkZERi42NbXW/tLQ0BoCdO3fusdrr4uLCNmzYwG7dusVUVFRYdnb2Yx2PkO5G/eOTg/pHQgghytYjp7x2h++//x6LFi3CggULMHToUOzcuRPa2trYvXt3i8/h8XiwtLTkfiwsLLjHGGPYsmULPv/8cwgEAowYMQL79u1DXl4eFQt/TE9aIpI33ngDQUFB2LNnD7y9vWFtbf1YxyOku1H/+OSg/pEQQoiyPZMBZWfXnFRVVaFv376wtraGQCBAQkIC91hGRgYKCgrkjmlgYABPT892r2MhzdPQ0ICrqyvOnz/PbZNKpTh//rxcLb6Hffvtt1i3bh1OnToFNze3Nl8nJycHxcXF6NWr12O1d968ecjJycGvv/6K119//bGORUh3o/7xyUL9IyGEEGV7JgPKoqIiSCQSuTvoAGBhYYGCgoJmn2NnZ4fdu3cjLCwM+/fvh1QqxahRo5CTkwMA3PM6ckzSfk9SIhIDAwO8+OKL0NXVhZ+f32Mdi5DuRv3jk4f6R0IIIcqkpuwGPCm8vLzk7vaOGjUK9vb2+OWXX7Bu3ToltuzZ8NJLL6GwsBBr1qxBQUEBnJyccOrUKe4CNTs7Gyoq/3d/5Oeff0ZDQwNmz54td5y1a9fiiy++gKqqKuLi4rB3716UlZXBysoKkyZNwrp16xRSTzM3Nxfz58/v0tqchPQU1D8qF/WPhBBClOmZDCgfZ82JjLq6Opydnbn1JLLnCYVCuSlBQqEQTk5Oimn4M27JkiVYsmRJs4+Fh4fL/TszM7PVY2lpaeH06dMKatn/KS0tRXh4OMLDw/HTTz8p/PiEdDXqH59M1D8SQghRlmdyymtn15w0JZFIEB8fz10c2drawtLSUu6YFRUViIyMbPcxyZPP2dkZgYGB+Oabb2BnZ6fs5hDSYdQ/kq5C/SMhhDydnskRSuDBmpOAgAC4ubnBw8MDW7ZseWTNSe/evbFx40YAwFdffYWRI0di4MCBKCsrw3fffYesrCy88cYbAB5kOFy6dCm+/vprDBo0CLa2tli9ejWsrKxoncgzpK07/4Q8Cah/JF2B+kdCCHk6PZMjlMCDNSebN2/GmjVr4OTkhJiYmEfWnOTn53P7l5aWYtGiRbC3t8fUqVNRUVGBa9euYejQodw+y5cvx3vvvYc333wT7u7uqKqqwqlTp/D777+jX79+0NTUhKenJ27cuNFiu8aPHw8ej/fIz7Rp07h9AgMDH3l88uTJXfAuEUKeRd3ZP2pqamLHjh3URxJCCCFPKB5jjCm7EU+zgwcPwt/fHzt37oSnpye2bNmCw4cPIzk5Gebm5o/sX1JSgoaGBu7fxcXFcHR0xG+//YbAwEAADy6WhEIh9uzZw+3H5/NhZGTU5edDCCGKRH0kIYQQ8mR7Zkcou0tHC4QbGxvLFQc/e/YstLW1MWfOHLn9+Hy+3H5PyoVSR0YiAODw4cMYMmQINDU14eDggH/++UfuccYY1qxZg169ekFLSwve3t64d+9eV54CIUSBqI+UR30kIYSQJw0FlF2oswXCm/r999/x8ssvQ0dHR257eHg4zM3NYWdnh8WLF6O4uFihbe8KBw8exLJly7B27VpERUXB0dERPj4+EIlEze5/7do1vPLKK1i4cCGio6Ph5+cHPz8/3Llzh9vn22+/xdatW7Fz505ERkZCR0cHPj4+qKur667TIoR0EvWR8qiPJIQQ8kRipMvk5uYyAOzatWty2z/55BPm4eHR5vMjIyMZABYZGSm3/e+//2ZhYWEsLi6OhYaGMnt7e+bu7s4aGxsV2n5F8/DwYO+++y73b4lEwqysrNjGjRub3X/u3Lls2rRpcts8PT3ZW2+9xRhjTCqVMktLS/bdd99xj5eVlTE+n8/+/vvvLjgDQogiUR8pj/pIQgghTyIaoezBfv/9dzg4OMDDw0Nu+8svvwxfX184ODjAz88PJ06cwM2bNx+pNdaTdGYkIiIiQm5/APDx8eH2z8jIQEFBgdw+BgYG8PT0bPfoBiHkyUV9JPWRhBBClI8Cyi70OAXCq6urceDAASxcuLDN1+nfvz9MTU25IuI9UVFRESQSCZclUsbCwgIFBQXNPqegoKDV/WX/7cgxCSE9B/WR/4f6SEIIIU8qCii70OMUCD98+DDq6+vx6quvtvk6OTk5KC4u5oqIE0LIk4D6SEIIIeTJRwFlF1u2bBl+/fVX7N27F0lJSVi8ePEjBcJXrlz5yPN+//13+Pn5wcTERG57VVUVPvnkE1y/fh2ZmZk4f/48BAIBBg4cCB8fn245p87ozEiEpaVlq/vL/tuZ0Q1CSM9AfeQD1EcSQgh5UlFA2cU6WiAcAJKTk3HlypVmp3KpqqoiLi4Ovr6+GDx4MBYuXAhXV1f8999/iIyMxIwZM2BlZQUej4ejR4+22b7w8HC4uLiAz+dj4MCBCAoKemSfjqaxb05nRiK8vLzk9geAs2fPcvvb2trC0tJSbp+KigpERka2ObpBCOkZuquP/PbbbzF79uwe2T8C1EcSQgh5gik7KxBRnH/++Yd99tlnLCQkhAFgoaGhre6fnp7OtLW12bJly1hiYiLbtm0bU1VVZadOneL2OXDgANPQ0GC7d+9mCQkJbNGiRczQ0JAJhcIOt+/AgQOMz+ezoKAglpiYyN58801maGjICgoKGGOMvfbaa2zFihXc/levXmVqamps8+bNLCkpia1du5apq6uz+Ph4bp9NmzYxQ0NDLqOjQCBgtra2rLa2tsPtI4Q8vXp6/yg7HvWRhBBCnjQUUD6l2nPBtHz5cjZs2DC5bS+99BLz8fHh/t3RNPZt2bZtG7OxsWEaGhrMw8ODXb9+nXts3LhxLCAgQG7/Q4cOscGDBzMNDQ02bNgwdvLkSbnHpVIpW716NbOwsGB8Pp9NnDiRJScnd6pthJBnQ0/tHxmjPpIQQsiTh8cYY8odIyVdgcfjITQ0FH5+fi3u89xzz8HFxQVbtmzhtu3ZswdLly5FeXk5GhoaoK2tjSNHjsgdJyAgAGVlZQgLC+u6EyCEkC5C/SMhhBCiOM/EGsrCwkJYWlpiw4YN3LZr165BQ0PjkfUnz5KWUs5XVFSgtra2U2nsCSFPFuofm0f9IyGEENI+aspuQHcwMzPD7t274efnh0mTJsHOzg6vvfYalixZgokTJyq7eYQQojTUPxJCCCHkcTwTASUATJ06FYsWLcL8+fPh5uYGHR0dbNy4UdnNUqqWUs7r6+tDS0sLqqqqnS46Tgh5clD/+CjqHwkhhJD2eSamvMps3rwZjY2NOHz4MP7880/w+XxlN0mp2ko5/zhFxwkhTxbqH+VR/0gIIYS0zzMVUKalpSEvLw9SqRSZmZnKbo7CVVVVISYmBjExMQCAjIwMxMTEIDs7GwCwcuVK+Pv7c/u//fbbSE9Px/Lly3H37l389NNPOHToED788ENun7aKjhNCng7UP1L/SAghhHSKstPMdpf6+nrm6OjIAgIC2IYNG5i5uXmna4X1VBcvXmQAHvmRpZkPCAhg48aNe+Q5Tk5OTENDg/Xv35/t2bPnkeO2lsaeEPLko/6R+kdCCCGks56ZsiGffPIJjhw5gtjYWOjq6mLcuHEwMDDAiRMnlN00QghRKuofCSGEENJZz8SU1/DwcGzZsgV//PEH9PX1oaKigj/++AP//fcffv75Z2U3jxBClIb6R0IIIYQ8jmdmhJIQQgghhBBCiGI9EyOUhBBCCCGEEEIUjwJKQgghhBBCCCGdQgElIYQQQgghhJBOoYCSEEIIIYQQQkinUEBJCCGEEEIIIaRTKKAkhBBCCCGEENIpFFASQgghhBBCCOkUCigJIYQQQgghhHQKBZSEEEIIIYQQQjqFAkpCCCGEEEIIIZ1CASUhhBBCCCGEkE5RU3YDCCHtI5FIIBaLld0MQgghPYy6ujpUVVWV3QxCyDOKAkpCejjGGAoKClBWVqbsphBCCOmhDA0NYWlpCR6Pp+ymEEKeMRRQEtLDyYJJc3NzaGtr08UCIYQQDmMMNTU1EIlEAIBevXopuUWEkGcNBZSE9GASiYQLJk1MTJTdHEIIIT2QlpYWAEAkEsHc3JymvxJCuhUl5SGkB5OtmdTW1lZySwghhPRksu8JWmtPCOluFFAS8gSgaa6EEEJaQ98ThBBloYCSEEIIIYQQQkinUEBJCHlqBAUFwdDQUNnNIIQ8BcLDw8Hj8SjDNiGEtIGS8hBCFC4wMBB79+4F8KA+mo2NDfz9/bFq1SqoqXVdt/PSSy9h6tSpXXb89mh67mpqajA2NsaIESPwyiuvIDAwECoq7b+PFxQUhKVLl9IF7WOS/U42btyIFStWcNuPHj2KmTNngjHWbW1pOi1RW1sbVlZWGD16NN577z24urp26Fjjx4+Hk5MTtmzZouBWKoYk9otufT1Vx/a/XlvTQ9euXYvx48c/XoMIIeQZQSOUhJAuMXnyZOTn5+PevXv46KOP8MUXX+C7775rdt+GhgaFvKaWlhbMzc0VcqzHITv3zMxM/Pvvv5gwYQI++OADTJ8+HY2Njcpu3jNJU1MT33zzDUpLS5XdFOzZswf5+flISEjAjh07UFVVBU9PT+zbt0/ZTXtm5Ofncz9btmyBvr6+3LaPP/5YaW1TVH9ICCHdhQJKQkiX4PP5sLS0RN++fbF48WJ4e3vj2LFjAB6MGPn5+WH9+vWwsrKCnZ0dAOD+/fuYO3cuDA0NYWxsDIFAgMzMTADAmTNnoKmp+cho3QcffIDnn38eQPNTXn/++WcMGDAAGhoasLOzwx9//ME9lpmZCR6Ph5iYGG5bWVkZeDwewsPDAQClpaWYP38+zMzMoKWlhUGDBmHPnj3tOvfevXvDxcUFq1atQlhYGP79918EBQVx+33//fdwcHCAjo4OrK2t8c4776CqqgrAg+l2CxYsQHl5OXg8Hng8Hr744gsAwB9//AE3Nzfo6enB0tIS8+bN42rQkeZ5e3vD0tISGzdubHW/K1euYOzYsdDS0oK1tTXef/99VFdXAwC2b9+O4cOHc/sePXoUPB4PO3fulHudzz//vNXXkBWg79evHyZNmoQjR45g/vz5WLJkCRfwFhcX45VXXkHv3r2hra0NBwcH/P3339wxAgMDcenSJfz444/c5yMzMxMSiQQLFy6Era0ttLS0YGdnhx9//LHD79fTztLSkvsxMDAAj8eT26arq8vte/v2bbi5uUFbWxujRo1CcnKy3LHCwsLg4uICTU1N9O/fH19++aXcjaPs7GwIBALo6upCX18fc+fOhVAo5B7/4osv4OTkhN9++w22trbQ1NTEvn37YGJigvr6ernX8vPzw2uvvdZF7wohhHQOBZSEPCMy7ohw/WQKMu4oJ/DQ0tKSu/N+/vx5JCcn4+zZszhx4gTEYjF8fHygp6eH//77D1evXoWuri4mT56MhoYGTJw4EYaGhggODuaOIZFIcPDgQcyfP7/Z1wwNDcUHH3yAjz76CHfu3MFbb72FBQsW4OLFi+1u9+rVq5GYmIh///0XSUlJ+Pnnn2Fqatrh83/++efh6OiIkJAQbpuKigq2bt2KhIQE7N27FxcuXMDy5csBAKNGjXpk5EQ2aiIWi7Fu3TrExsbi6NGjyMzMRGBgYIfbpExSJkV0VTSkTNotr6eqqooNGzZg27ZtyMnJaXaftLQ0TJ48GS+++CLi4uJw8OBBXLlyBUuWLAEAjBs3DomJiSgsLAQAXLp0CaamptzNB7FYjIiIiE5Nlfzwww9RWVmJs2fPAgDq6urg6uqKkydP4s6dO3jzzTfx2muv4caNGwCAH3/8EV5eXli0aBH3+bC2toZUKkWfPn1w+PBhJCYmYs2aNVi1ahUOHTrU4TaRBz777DP873//w61bt6CmpobXX3+de+y///6Dv78/PvjgAyQmJuKXX35BUFAQ1q9fDwCQSqUQCAQoKSnBpUuXcPbsWaSnp+Oll16Se43U1FQEBwcjJCQEMTExmDNnDiQSCXcTDnhQY/LkyZNyr08IIT0BraEk5BkQsjUSp/fFcv/28XfErPc9u+W1GWM4f/48Tp8+jffee4/brqOjg99++w0aGhoAgP3790MqleK3337j1jft2bMHhoaGCA8Px6RJk/Dyyy/jr7/+wsKFCwE8CErLysrw4osvNvvamzdvRmBgIN555x0AwLJly3D9+nVs3rwZEyZMaFf7s7Oz4ezsDDc3NwBAv379OvU+AMCQIUMQFxfH/Xvp0qXc//fr1w9ff/013n77bfz000/Q0NCQGzlpqukFZf/+/bF161a4u7ujqqpKbmSlJztRcgJfZn2JL/p+gRkmM7rlNWfOnAknJyesXbsWv//++yOPb9y4EfPnz+d+L4MGDcLWrVsxbtw4/Pzzzxg+fDiMjY1x6dIlzJ49G+Hh4fjoo4+4EcAbN25ALBZj1KhRHW7bkCFDAIAbke/du7fctMv33nsPp0+fxqFDh+Dh4QEDAwNoaGhAW1tb7vOhqqqKL7/8kvu3ra0tIiIicOjQIcydO7fD7SLA+vXrMW7cOADAihUrMG3aNNTV1UFTUxNffvklVqxYgYCAAAAP/h7XrVuH5cuXY+3atTh//jzi4+ORkZEBa2trAMC+ffswbNgw3Lx5E+7u7gAeTHPdt28fzMzMuNedN28e9uzZgzlz5gB40Efa2NjQ2k5CSI9DI5SEPOUy7ojkgkkAOL0vtstHKk+cOAFdXV1oampiypQpeOmll7gpmwDg4ODABZMAEBsbi9TUVOjp6UFXVxe6urowNjZGXV0d0tLSAADz589HeHg48vLyAAB//vknpk2b1mJm16SkJIwePVpu2+jRo5GUlNTu81i8eDEOHDgAJycnLF++HNeuXWv3cx/GGJNLBnLu3DlMnDgRvXv3hp6eHl577TUUFxejpqam1ePcvn0bM2bMgI2NDfT09LiL3ezs7E63rTs1skbsyt8FAPgl/xc0su5bV/rNN99g7969zX4GYmNjERQUxH3+dHV14ePjA6lUioyMDPB4PDz33HMIDw9HWVkZEhMT8c4776C+vh53797FpUuX4O7uzhWY7whZYiDZ50MikWDdunVwcHCAsbExdHV1cfr06Xb9jnfs2AFXV1eYmZlBV1cXu3btemI+Gz3RiBEjuP/v1asXAHBTzGNjY/HVV1/JfWZko8Y1NTVISkqCtbU1F0wCwNChQ2FoaCj3Gezbt69cMAkAixYtwpkzZ5CbmwvgwZT+wMBAqjdJCOlxKKAk5CknzCrr0HZFmTBhAmJiYnDv3j3U1tZi79690NHR4R5v+v8AUFVVBVdXV8TExMj9pKSkYN68eQAAd3d3DBgwAAcOHEBtbS1CQ0NbnO7aHrKMq02zfIrFYrl9pkyZgqysLHz44YfIy8vDxIkTO52wIykpCba2tgAejERNnz4dI0aMQHBwMG7fvo0dO3YAaD0pR3V1NXx8fKCvr48///wTN2/eRGhoaJvP60n+KfkH+Q35AID8hnz8W/Jvt732c889Bx8fH6xcufKRx6qqqvDWW2/Jff5iY2Nx7949DBgwAMCDzKrh4eH477//4OzsDH19fS7IvHTpEhfcd5QsuJB9Pr777jv8+OOP+PTTT3Hx4kXExMTAx8enzd/xgQMH8PHHH2PhwoU4c+YMYmJisGDBgifms9ETqaurc/8vC+ak0gdTtauqqvDll1/KfWbi4+Nx7949aGpqtvs1Hu4PAcDZ2RmOjo7Yt28fbt++jYSEhCduajsh5NlAU14JecpZ9DXs0HZF0dHRwcCBA9u9v4uLCw4ePAhzc3Po6+u3uN/8+fPx559/ok+fPlBRUcG0adNa3Nfe3h5Xr17lpqMBwNWrVzF06FAA4EYE8vPz4ezsDAByCXpkzMzMEBAQgICAAIwdOxaffPIJNm/e3O5zA4ALFy4gPj4eH374IYAHo4xSqRT/+9//uMD24XVuGhoakEgkctvu3r2L4uJibNq0iRv1uHXrVofaokyy0UkeeGBg4IGHX/J/wRTjKVDjdc9X0qZNm+Dk5MQlg5JxcXFBYmJiq5/bcePGYenSpTh8+DA39XD8+PE4d+4crl69io8++qhTbZKtl/X29gbw4HMqEAjw6quvAngQwKSkpHCfXaD5z8fVq1cxatQobpo3AG6Enyiei4sLkpOTW/zM2Nvb4/79+7h//z7395qYmIiysjK532VL3njjDWzZsgW5ubnw9vaWG+kkhJCegkYoCXnK2Q43h4+/o9w2nwBH2A5XfnmNpubPnw9TU1MIBAL8999/yMjIQHh4ON5//325JCrz589HVFQU1q9fj9mzZ4PP57d4zE8++QRBQUH4+eefce/ePXz//fcICQnhRhi1tLQwcuRIbNq0CUlJSbh06dIjGTrXrFmDsLAwpKamIiEhASdOnIC9vX2r51JfX4+CggLk5uYiKioKGzZsgEAgwPTp0+Hv7w8AGDhwIMRiMbZt24b09HT88ccfctlCgQfrKquqqnD+/HkUFRWhpqYGNjY20NDQ4J537NgxrFu3rkPvtTLdrLyJ/IZ8MDwYFWZgyG/Ix63K7guKHRwcMH/+fGzdulVu+6effopr165hyZIl3Oh6WFgYl5QHeDD90cjICH/99ZdcQHn06FHU19c/MsW6OWVlZSgoKEBWVhbOnj2L2bNn46+//sLPP//MTd8eNGgQzp49i2vXriEpKQlvvfWWXGZQ4MHnIzIyEpmZmSgqKoJUKsWgQYNw69YtnD59GikpKVi9ejVu3rz5eG8YadGaNWuwb98+fPnll0hISEBSUhIOHDjA9SPe3t7c5y0qKgo3btyAv78/xo0bx63Lbs28efOQk5ODX3/9lZLxEEJ6LkYI6bFqa2tZYmIiq62tfexjpccLWcSJZJYeL1RAy1oXEBDABAJBhx/Pz89n/v7+zNTUlPH5fNa/f3+2aNEiVl5eLrefh4cHA8AuXLggt33Pnj3MwMBAbttPP/3E+vfvz9TV1dngwYPZvn375B5PTExkXl5eTEtLizk5ObEzZ84wAOzixYuMMcbWrVvH7O3tmZaWFjM2NmYCgYClp6e3em4AGACmpqbGzMzMmLe3N9u9ezeTSCRy+37//fesV69eTEtLi/n4+LB9+/YxAKy0tJTb5+2332YmJiYMAFu7di1jjLG//vqL9evXj/H5fObl5cWOHTvGALDo6OgW29VT1DTWsONFx1lIYQj3c7zoOKtprOmy12zu85aRkcE0NDTYw1+DN27cYC+88ALT1dVlOjo6bMSIEWz9+vVy+wgEAqampsYqKysZY4xJJBJmZGTERo4c2WZbZJ8NAExTU5MNGDCABQQEsNu3b8vtV1xczAQCAdPV1WXm5ubs888/Z/7+/nLnkZyczEaOHMm0tLQYAJaRkcHq6upYYGAgMzAwYIaGhmzx4sVsxYoVzNHRsf1v2DOmuX6DMcYuXrz4yN9jdHQ0917LnDp1io0aNYppaWkxfX195uHhwXbt2sU9npWVxXx9fZmOjg7T09Njc+bMYQUFBdzja9eubfX389prrzFjY2NWV1fX6nko8vuCEEI6gsdYk8VDhJAepa6uDhkZGVxtMkIIIc+WiRMnYtiwYY+MqD+Mvi8IIcpCaygJIYQQQnqY0tJShIeHIzw8HD/99JOym0MIIS2igJIQQgghpIdxdnZGaWkpvvnmm0cSSBFCSE9CASUhhBBCSA+TmZmp7CYQQki7UJZXQgghhBBCCCGdQgElIU8Ayp1FCCGkNfQ9QQhRFgooCenB1NXVAQA1NTVKbgkhhJCeTPY9IfveIISQ7kJrKAnpwVRVVWFoaAiRSAQA0NbWBo/HU3KrCCGE9BSMMdTU1EAkEsHQ0BCqqqrKbhIh5BlDdSgJ6eEYYygoKEBZWZmym0IIIaSHMjQ0hKWlJd10JIR0OwooCXlCSCQSiMViZTeDEEJID6Ourk4jk4QQpaGAkhBCCCGEEEJIp1BSHkIIIYQQQgghnUIBJSGEEEIIIYSQTqGAkhBCCCGEEEJIp1BASQghhBBCCCGkUyigJIQQQgghhBDSKRRQEkIIIYQQQgjpFAooCSGEEEIIIYR0yv8DqgwLf9dAbWsAAAAASUVORK5CYII=\n"
- },
- "metadata": {},
- "output_type": "display_data"
- }
- ],
- "source": [
- "# Change wrap to 3, Adjust dimensions, adjust scatter plot and line colors, shapes, and sizes\n",
- "fig = plot_results_panel_3d(cycle_mlr,\n",
- " wrap=3,\n",
- " subplot_kw=dict(figsize=(12,6)), # Panel configurations\n",
- " scatter_previous_kw=dict(color='rebeccapurple', marker='o', s=10), # Previous data point\n",
- " scatter_current_kw=dict(color='limegreen', marker='^', s=10, alpha=1), # Current cycle data\n",
- " surface_kw=dict(color='orange'), # Theory surface\n",
- " );\n"
- ],
- "metadata": {
- "collapsed": false
- }
- },
- {
- "cell_type": "markdown",
- "source": [
- "### Change the Viewing Angle\n",
- "* You can change the viewing angle by supplying the `view` keyword with a tuple of elevation and azimuth degrees.\n",
- "* Azimuth is in reference to the XY plane.\n",
- "* Note that the default viewing angle is not a (0,0) elevation, azimuth. In the case above it is (30,-60).\n",
- "\n",
- "
\n",
- "
\n"
- ],
- "metadata": {
- "collapsed": false
- }
- },
- {
- "cell_type": "code",
- "execution_count": 14,
- "outputs": [
- {
- "data": {
- "text/plain": "",
- "image/png": "iVBORw0KGgoAAAANSUhEUgAAA3sAAAIzCAYAAAC5sQBWAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8o6BhiAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOy9eZhdV3Wn/e59zh1qrlJpnmXJkufZxpYb23SMwYEQaJrukA6OSSCTITj0Awl84ctggtuBfDTpdEMIBD8h7YSQgElMAjGDMUZCHmVbtmXZmuex5qo7nLP398fe+5xTsuSxqiSV1stjVHWnc+6te/fda63f+i1lrbUIgiAIgiAIgiAI0wp9ok9AEARBEARBEARBmHgk2BMEQRAEQRAEQZiGSLAnCIIgCIIgCIIwDZFgTxAEQRAEQRAEYRoiwZ4gCIIgCIIgCMI0RII9QRAEQRAEQRCEaYgEe4IgCIIgCIIgCNMQCfYEQRAEQRAEQRCmIRLsCYIgCIIgCIIgTEMk2JtmLF26lJtvvvlEn4YgCMJJiayRgiAIx0bWx+mJBHuTyObNm/n1X/91zjjjDKrVKp2dnVx99dV87nOfY2xs7ESf3svmmWee4c1vfjPt7e3MmDGD97znPRw8ePBEn5YgCKc402GNfPDBB/mt3/otLr30UkqlEkqpE31KgiBMA0719dEYw5133snb3vY2Fi1aRFtbG+eddx6f/OQnqdVqJ/r0TiviE30C05Vvf/vbvOtd76JSqXDTTTdx3nnn0Wg0eOCBB/jIRz7CU089xRe/+MUTfZovya5du7jmmmvo6uriU5/6FMPDw3zmM5/hySef5MEHH6RcLp/oUxQE4RRkuqyR//qv/8qXvvQlLrjgAs444ww2bdp0ok9JEIRTnOmwPo6OjvLe976XK6+8kt/4jd9g9uzZrF27lj/4gz/g+9//Pj/4wQ8kOTZFSLA3CWzdupVf+IVfYMmSJfzgBz9g3rx52XW33HILzz//PN/+9rdP4Bm+fD71qU8xMjLCI488wuLFiwG44ooreOMb38idd97Jr/3ar53gMxQE4VRjOq2Rv/mbv8nv/u7v0tLSwgc+8AEJ9gRBeE1Ml/WxXC7zk5/8hNWrV2eXvf/972fp0qVZwHf99defwDM8fRAZ5yTwp3/6pwwPD/PlL3953Ic0sGLFCj70oQ8BcO2113LhhRce83FWrVrFm970pux3Ywyf+9znOP/886lWq8yaNYs3v/nNPPzwwy96Pv39/dx6660sWrSISqXCihUruOOOOzDGvORz+ad/+ife+ta3ZoEewPXXX8/KlSv5h3/4h5e8vyAIwtFMpzVyzpw5tLS0vOTtBEEQXg7TZX0sl8vjAr3AO97xDsC1CAlTgwR7k8C//Mu/cMYZZxzzTX4073nPe3jiiSfYsGHDuMsfeughNm3axC/90i9ll/3qr/5q9oG74447+L3f+z2q1So//elPj/v4o6OjXHvttfzt3/4tN910E3/+53/O1Vdfzcc+9jE+/OEPv+i57d69mwMHDnDZZZe94LorrriCxx577CWfnyAIwtFMlzVSEARhopnu6+O+ffsAmDlz5qu6v/AqsMKEMjAwYAH78z//8y/r9v39/bZardrf/d3fHXf5b//2b9u2tjY7PDxsrbX2Bz/4gQXsb//2b7/gMYwx2c9Lliyxv/zLv5z9ftttt9m2tja7adOmcff5vd/7PRtFkd2xY8dxz+2hhx6ygP2bv/mbF1z3kY98xAK2Vqu9rOcpCIJg7fRaI4/mlltusfK1KgjCq2U6r4+B66+/3nZ2dtq+vr5XfF/h1SGVvQlmcHAQgI6Ojpd1+66uLn7+53+ev/u7v8NaC0Capnzta1/j7W9/O21tbYCTUyql+IM/+IMXPMaLNbh+/etf5/Wvfz09PT0cOnQo++/6668nTVPuv//+4943uD1VKpUXXFetVsfdRhAE4eUwndZIQRCEiWS6r4+f+tSn+N73vsf/+B//g+7u7ld0X+HVIwYtE0xnZycAQ0NDL/s+N910E1/72tf48Y9/zDXXXMP3vvc99u/fz3ve857sNps3b2b+/PnMmDHjFZ3Pc889xxNPPMGsWbOOef2BAweOe9/Qh1Kv119wXbDNlV4VQRBeCdNpjRQEQZhIpvP6+LWvfY3f//3f51d/9Vf5zd/8zVd0HsJrQ4K9Caazs5P58+e/QD/9YrzpTW9izpw5/O3f/i3XXHMNf/u3f8vcuXMnxKXIGMMb3/hGPvrRjx7z+pUrVx73vqExeO/evS+4bu/evcyYMeOYVT9BEITjMZ3WSEEQhIlkuq6P9957LzfddBNvectb+MIXvvCaz0t4ZUiwNwm89a1v5Ytf/CJr167lqquuesnbR1HEL/7iL3LnnXdyxx13cPfdd/P+97+fKIqy2yxfvpzvfve7HDly5BVlZpYvX87w8PCr+tAvWLCAWbNmHdOp6cEHH+Siiy56xY8pCIIwXdZIQRCEiWa6rY/r1q3jHe94B5dddhn/8A//QBxL6DHVSM/eJPDRj36UtrY23ve+97F///4XXL9582Y+97nPjbvsPe95D319ffz6r/86w8PD4xyUAN75zndireWP/uiPXvB4Qad9LP7Lf/kvrF27lu9+97svuK6/v58kSV70ubzzne/knnvuYefOndll3//+99m0aRPvete7XvS+giAIx2I6rZGCIAgTyXRaH5955hne8pa3sHTpUu655x5p/TlBKPtif2XhVfPP//zP/Nf/+l9paWnhpptu4rzzzqPRaLBmzRq+/vWvc/PNN/OXf/mX4+5z/vnns2HDBs4++2yefvrpFzzmTTfdxFe/+lVuvPFG3vzmN2OM4cc//jFveMMb+MAHPgDA0qVLue6667jzzjsBZ5v7+te/nieeeIKbb76ZSy+9lJGREZ588kn+8R//kW3btr2o/e3OnTu5+OKL6e7u5kMf+hDDw8N8+tOfZuHChTz00EMi4xQE4VUxXdbI7du389WvfhWAe+65h3Xr1nHbbbcBsGTJknF9M4IgCC+H6bA+Dg0Nce6557J7924+9alPsWDBgnHXL1++/GVVLoUJ4AS5gJ4WbNq0yb7//e+3S5cuteVy2XZ0dNirr77a/q//9b+OObLgT//0Ty1gP/WpTx3z8ZIksZ/+9KftWWedZcvlsp01a5a98cYb7SOPPJLd5mjbXGutHRoash/72MfsihUrbLlctjNnzrSrV6+2n/nMZ2yj0XjJ57FhwwZ7ww032NbWVtvd3W3/23/7b3bfvn2v7MUQBEE4iumwRv7whz+0wDH/u/baa1/xayIIgmDtqb8+bt269bhrI/CC4wiTh1T2TiI+97nP8Tu/8zts27aNxYsXn+jTEQRBOKmQNVIQBOHYyPooHA8J9k4SrLVceOGF9Pb28sMf/vBEn44gCMJJhayRgiAIx0bWR+HFEEucE8zIyAj//M//zA9/+EOefPJJvvWtb53oUxIEQThpkDVSEATh2Mj6KLwcpLJ3gtm2bRvLli2ju7ub3/qt3+JP/uRPTvQpCYIgnDTIGikIgnBsZH0UXg4S7AmCIAiCIAiCIExDZM6eIAiCIAiCIAjCNESCPUEQBEEQBEEQhGmIBHuCIAiCIAiCIAjTEAn2BEEQBEEQBEEQpiES7AmCIAiCIAiCIExDJNgTBEEQBEEQBEGYhkiwJwiCIAiCIAiCMA2RYE8QBEEQBEEQBGEaIsGeIAiCIAiCIAjCNESCPUEQBEEQBEEQhGmIBHuCIAiCIAiCIAjTEAn2BEEQBEEQBEEQpiES7AmCIAiCIAiCIExDJNgTBEEQBEEQBEGYhkiwJwiCIAiCIAiCMA2RYE8QBEEQBEEQBGEaIsGeIAiCIAiCIAjCNESCPUEQBEEQBEEQhGmIBHuCIAiCIAiCIAjTEAn2BEEQBEEQBEEQpiES7AmCIAiCIAiCIExDJNgTBEEQBEEQBEGYhkiwJwiCIAiCIAiCMA2RYE8QBEEQBEEQBGEaIsGeIAiCIAiCIAjCNESCPUEQBEEQBEEQhGmIBHuCIAiCIAiCIAjTEAn2BEEQBEEQBEEQpiES7AmCIAiCIAiCIExDJNgTBEEQBEEQBEGYhkiwJwiCIAiCIAiCMA2RYE8QBEEQBEEQBGEaIsGeIAiCIAiCIAjCNESCPUEQBEEQBEEQhGmIBHuCIAiCIAiCIAjTEAn2BEEQBEEQBEEQpiES7AmCIAiCIAiCIExDJNgTBEEQBEEQBEGYhkiwJwiCIAiCIAiCMA2RYE8QBEEQBEEQBGEaIsGeIAiCIAiCIAjCNESCPUEQBEEQBEEQhGmIBHuCIAiCIAiCIAjTEAn2BEEQBEEQBEEQpiES7AmCIAiCIAiCIExDJNgTBEEQBEEQBEGYhkiwJwiCIAiCIAiCMA2RYE8QBEEQBEEQBGEaIsGeIAiCIAiCIAjCNESCPUEQBEEQBEEQhGnIKRnsGWPo6+vDWnuiT0UQBOGkIqyPxpgTfSqCIAgnFdZa+vv7ZX0UTitOyWDv4MGDzJgxg4MHD0rAJwiCUODIkSPMmDGDAwcOyPooCIJQoL+/n56eHvbt20eapif6dARhSjglg72wgXn22WcZHh6WDI0gCMJRPPfccwwODsqGRhAE4Sg2b97M4OAgzWbzRJ+KIEw6p2SwF9i1axebNm1icHCQJElO9OkIgiCcNOzatYuxsTGefPJJxsbGpMonCILg2bVrF41Ggw0bNjAyMiLrozCtOaWDPXAf2FqtxoYNGxgdHZUPrCAIgkdrzfbt2xkcHGTDhg2SFBMEQfBordmxYwdDQ0M8+eSTNBqNE31KgjApnPLBHuQbmpGREUZHR0XWKQjCacvXvvY1Zs6ciTEGpVR2+ZYtWxgaGhJZpyAIQgGtNVu3bmVoaEhkncK0JD7RJzARFDc0mzZtYtmyZbS3t6P1tIhlhVeBUmrc+0IQppLbb7+db3zjG2zcuJGWlhZWr17NHXfcwapVq457nzvvvJP3vve94y6rVCrUarVXdOzLLruMyy67jNbWVoaGhgCytXDLli2cccYZtLW1EcfTYvkXXgWyPgpCTvgsbNu2jaVLl9LW1kalUhGl2GlCf9JPYhNmlmYC03N9nHbf9jt27GD+/Pns2rWLZcuWHTPgO3z4MIcPH2blypVTck67du3CWsuiRYum5HjGmGxTNxUB7xNPPMEZZ5xBe3v7pB8rSRIef/xxLrroIqIoOu7tlFJUKpVp94EVTg1+9KMfccstt3D55ZeTJAkf//jHueGGG3j66adpa2s77v06Ozt59tlns99fzft3+fLl/Pu//zu/8iu/wlNPPQWQqR127drFwoUL2bVr13HXh1qtxtNPP80ll1zyio/9aujv72fv3r2cffbZU3K8qV4ft2zZQmtrK3Pnzp30YwE89dRTLFy4kK6uruPeRtZHQXghu3btYtGiRWzatImVK1ceN9h74oknWL58+Yuu5RNF2PNcfPHFU7JeTfX6eODAAQYHB1mxYsWkHwtg+/btxHHMggULADDW8Gtbfo0xO8bfL/97YhVPy/Vx2gV74LLYmzdvZunSpcf8Y9XrdQYHB6fsDxmkpVN1PGstW7ZsYdmyZVNyzL6+PtI0nbLnd/jwYaCwETYJ1PZBbS/0XIbFvQbW2mn1YRVOHb7zne+M+/3OO+9k9uzZPPLII1xzzTXHvZ9SakKCAmMMSZJw/vnn8/jjj/Pkk09m12mtX3R9sNZy+PDhKfvsNJtNBgYGpu36ODw8jNZ6yp7fwMAAc+bMGXc8mzZgZCtU50KpU9ZHQTgOSim2bt3KihUrjhvsHDly5Lj7y4kmrMfh3KbieFO5PtbrdYaGhqZsLRoZGaFcLmfHe2DoAbY2tgLwvcHv8eauN0/L9XFaBnuB45Viw2VT+YecyrJw8flN9XOc9GMAJTuEGngK1dwPo7sgbYCpQ7kDeq8A/0EVhJOFgYEBAGbMmPGitxseHmbJkiUYY7jkkkv41Kc+xbnnnvuqjxsyz93d3YyMjAD56JqTaX2cyuOdiPXxRKzFtjmIGnoOO7zdBXqqBGf8srtO1kdBeFFe7DMbrpuSPc8Ur1fTfX0sPj9jDX918K/QaCyWLx/8Mm/seiMRx1eNnapM62BPmAYkYzC2G8b2wNhu9FgfCxuPow/sBZ2CaULUCkpBfHzZkiCcKIwx3HrrrVx99dWcd955x73dqlWr+Ou//msuuOACBgYG+MxnPsPq1aszWd5rYcmSJezevRuADRs2AE6ueay+vXq9jrX2FfcKvloajQbGmCk7XnAkPd7zn2jSNKXZbE7+87MWavvoGHuUaNtPSSoWVOTWxjSBOMaYCtTrlMvlyT0XQRCEk5wfD/2YrfWt2e97m3u5d+Be3tz15hN4VpODBHvCyYNJobYfantgdDfUD0OjD3QFSF0Fz0ZYNFbh5JtowGepy90n7NQF4XjccsstbNiwgQceeOBFb3fVVVdx1VVXZb+vXr2as88+m7/8y7/ktttum7DzaWtrY2ho6CXP57777puwY74cpvp4L/X8J5KDBw+yZcuWCX9cZRNazH5a0920mr1Yqylh2D/YYJ8uAQpjFFpbmrqdvTt/RFtbG1dfffWEn4sgCMKpxNcPfx0gq+SlpHz9yNcl2BOECcNaaA5kFTvG9rtAT1eBxAdygI5AaUjrYI3LVKNwAZ4BVXb/mgTi7hP1bAThmHzgAx/gnnvu4f7773/F1blSqcTFF1/M888/P6HndMYZZ7Bv3z5+5md+5piVrdHRUX784x/zpje9aUKPezz279/P5s2bWb169ZQcL0kSvv/97x/3+U8069evp6uri2XLlk3I49nmEAw9ByM7YHgzqBhsG9ilELWxdfOzzJw1j47OLkib7nqloG0JFyx6k0g4BUEQgPfOfi9XjV017rLlleUn6GwmFwn2hKkhrY8P7MZ2ARGQ4oI14zYkGvezTUCXyQI7m7rAz+Jubw3okgv2bMP9Xuk9cc9PEApYa/ngBz/IN7/5Te67775XtdFP05Qnn3ySn/3Zn52EM3zxnr0T0a8xXXv2Xuvzs9Zia/tRQ5uwA89Bsx90DCi3HkaRC+p8dlphUKrkr7egvfqh3JWdgwR8giCc7lzadimXtl067jI7TT0fJNgTJh5roH7QSTHH9rjAziTucqzrs7MG4ja3WUkSF9PpMljtbqt8RS88HgqiKiR1tPXyTeUudrfXEuwJJw233HILd911F9/61rfo6Ohg3759AHR1ddHS0gLATTfdxIIFC7j99tsB+OM//mOuvPJKVqxYQX9/P5/+9KfZvn0773vf+07Y8xBODNYk2OGtqKHnsUPPg1JYmzqpuwrmAcYFfVa7NTKqusvAJ8aM/90ny8o9J+bJCIIgCCcUCfaE10xkRomGN0F92FXumiPOHVPhq3RNiNtxkV0KaQqliruzTX1Fz78VbeKy0ZGv6pmmC+R0yf1rDBaFwrrrrd/cxC1Q6pjy5y4Ix+Lzn/88ANddd924y7/yla9w8803A24maNHau6+vj/e///3s27ePnp4eLr30UtasWcM555wzVactnEBsMgKDz2FHtsHQZlAlbOhVLrXn6gelXNCHBu2VDyExltaxKGxIqulKfvvKzBP47ARBEIQThQR7wisjbTgDlTH/X72fBbVHKR1aDK1VJyeKWtwGw+KDuUKfnbEQxYXfEyfFVAon58QFfqrkAkabukAP64JAm2CDKUsm/SxBqds/hiCceF6ODORoQ5LPfvazfPazn52kMxJONpw884Afj7DN9yzHft20rjqX1t366dc+VCVfV3UUHsivl/6BVYQK7z9dAtNwy235xcd+CIIgCNMTCfaE42Otk2Nmgd1hvyEpk8kxdRlL5PYZwVQlC/SCpMjbfJskNwsAn532wRqJswcn8psYv7nJzFhCcBdhiHB9e6mrAFoLpc6peU0EQRBeJdak2JHtLsAbes7nsFK3toUqr7UFpQMQldxah7/c1PO11aRezu417db9a23iAkAAUoja0KXWqXyqgiAIwkmCBHtCTnM477GrH3IDy4lB+Z4PG+dVOpsUqnaggqQyBHbWy4wiX5UzTS/PLLn7Zm6bJT8HyvfxRaXCCSkv58Rnp3XBmCDxfSm+4lfqnopXSBAE4RWhTI3SyF7MzsdheIuTZ9rUVe3iNlzvXVRYZ02uZgh9yUkjDwZN6ip8qELCqxAMWouyiV8rfaKsIlU9QRCEo7HGONOr0Z2uaNC29ESf0qQgwd7pikmgttcHd/vcGz0YqGS38RsJEv9zCWeXqY4yCrBYk+ZyTOtHIegq2YgE6zc0IShMmxBXcqc4rJd/hg0PrgpIBNYPI1aKXKjpK4I2dT2BIlESBOEkwFqLrR927pnDO+k98iDVlnbQPW69iit58soGp+ESrp+56StyXtGgS34t9FJNvOlKFOf9zSY8RhlIsTYlWylt6tbRUtcJejUEQRBOIqwhauzHHuqH0e0wus+txzqGudef6LObNCTYOx2wFhpHcjnm6C5IxnBjD0Jw1oC4Nf9ZxYWqWuI3G7rg8IbfiFiUTV3Qpn1VzjRz0xXbdIYs1kJcdo9jktxwxRp3Hdr/3nSBZByy1T5QxGWpneTJb4JUDKbmnoNkrgVBOEFYk2JHdzp55uBzYBKnqDR4iWUxqNOF4CwoJFS+DuooD9KUcm6bSnsFRHAqDj9rf5DUr58JVkdYXXLrqDFuLS1LsCcIwumHTevOGX50J4ztpffgw+ioDKUFfv+o80LENHYslmBvOpKO0Wr2og7eD419UB8EM+Y3BgrSGkS+fyNU0XTZ93v4AEv5vjjwv5fyLDRxLrc0TXI3OO+eaRNvA44PFCm4a6b5mAWM27Dosjdl0fkGxvqKIMpvemL/2Kl3oMPfxrr7l2XsgiAIU4dNaxBGIwxvAV3BmqZ3IvZjEII6wc2Y8QPQ/bqWrbdeIZF66aUKPxcMWEKFzzb9Wh3Wvmqht9m4xJrRzq3Y+gogInMXhMCuXbvo6OhgZGTkRJ+KMAnYxqBrRRrdAyNbodHn9rs2dYkza7FFVYXyknnstFaISbB3qmNSqO3zw8qdO6auHWR2cwv09+M2GNXCzLo0zxJbvBQozgMo42fYQSHgCjPv/JynKPa3SbO+PaV8Ntp6OWc4N2uOqhBGPtDT+XiGLPMd3DXjwmOVXDXQ96coVXIbGeMz37rkRi6M6/UTBEGYeGz9CHh5JqPbvdulnyGqCyMRwP2cqR3CRkOBMoWgLs3XR2XcqASb+t+VV0H4r+nQ96wgS8gplRllkXoZvtauD0X7iqARmbsgFJk1axadnZ08++yzJ/pUhNeAtTb3lxjdASOhHQm3PibDhd5lAINVkdtS2uATEfkCRQUVV6flQHWQYO/Uwlpo9LvRB6O7nTvm2O7ctMR4BzZvoqJs6uWXylfNGmSVMsircnGcG52EGXfB6ltX8sxHqNIFO+80cTFaNgqhCcS+D89nr3XsLqOBCzwLfSdZxtoHdpkUVIP156rJs9gq8nudxN0/GBbEMl9PEISJx1qDHd2NGnzWyTPTUb9G+TXVUuhn9nNEQ4LK2CyRZRW5NN1GuDVO5S6axlfnVOSUF0GeaX2yzibu9lHFS99VLj1S4fEa/udwHmVf9bOoqigfhJOH22+/nW984xts3LiRlpYWVq9ezR133MGqVauOe58777yT9773veMuq1Qq1Gq1V3TshQsXsmXLFowxlMsu0bJhw4ZX/iSEKceaxHtM7HCyzNpB32/n+6BN3Xk/ZD3LXhpvDG7/WXb7yGBuVXCBmO6O7hLsncykNd9nt9tlL0Z2FDK9vo8tyCdDSTqq5r1uJoW4lGd/rc8cK0s2GkGX3MbB+kAtZJmtz1Yr31+SNNz9ooo7VticxO72Nhi26FJ+bO0rgEGWhJ8hhcmDxpB5tj5TXTSJCRW+8Jx1hLXGfTzDbW1zWuusBUGYWmxaxw5vQQ1uwg5vxQ03b0JS9/J04wI2FflNBH6dVIWfvVwdhbIJiipZUBeqemE+HvigriDPJPLqBb9+Jg0XUCrlqoGqlK+lYTafr+qpYNCitDte3InSonwQTh5+9KMfccstt3D55ZeTJAkf//jHueGGG3j66adpa2s77v2Orsap1zBb11rLsmXL2Lt3L93d3QwODgJw4MCBV/2YwsRikzG3/x3Z4ffCe30LkjezMgnEfm0NLUnZnf3+ldDvbDLFvFO2HTXDOZZgT5gKTAr1A+4NXdsPI9shHSNzvFTKD9gtSCJ1nF+f9W2AxVtvoxk3KiFU+EJlTHl5pvGVtcjPzwtVvCi4wqWuwpaNVfABWRYYpm6Ib8h4Z/P2wsMZMgMWEl8xbHGP68/YBZ0hk13JNzBpw8mjlPKuc8plZUJ/IEYkSoIgvCZsox+GnsOObIfh7aBjl8CyiUtopYXAKySysoRZ2EGEOaJeRRH5xJc1vkfEr5uZPLPQqxfGLARjFh25zUzkjVaUH6uQNo66bUFyr/KxC86gxasrxLxKOMn4zne+M+73O++8k9mzZ/PII49wzTXXHPd+Sinmzp074eezcOFCduzYAbiePoCf/OQnxw0mG40G69evJ4qiY14/kQRZ4Zo1a15TcPtKj7d27dopOV6j0SBNUx544AEiM0wlPUA5OUA1OQA2QSnjljzTQClIVBWtjPvdWkxUARuhGAVKTqaJcaNLlcGoEtomaBo0aSFNmoBmbPAQxifbNAmD5TJD2x7AWssVV1xBpVKZ9Oc+lUiwdyKwFpqDPrDb68rRjQHytETk5EKq5L/UEzCxC7YyOabNq1vGW3D74EyFqlsI1rLh5qHq5jca2eDepvu3WMULmWGsN02J88dSKu8XSZsoDFaHgVC4Y+iy22zYpjMRyDZHoSfQO2/aiMx1LlT4YjUuU+3uW6gWqgib9b6UJNgThCli//YB/v1vnmC4v87yC+fwM794LlGsT/RpvXKshdHd2NEt2KFt0DySB2pAliDThTU0W8MK8h9FNtsuk1Za6yfUuESZJcKqUKkLioQECMPSTZ5oM0GWebTEM0g1kzzphsmrd2EtT1OU0u7sQuBY7p7kF1MQXhsDAwMAzJjx4t/lw8PDLFmyBGMMl1xyCZ/61Kc499xzJ/RcLr74YtauXcuqVauOG+w88cQTLF26lNbW1gk99rFIkoTHH3+clStXovXkr7XGGB577LHJP561qMZBBvY+RTKwhXntVVRzIEtaYatY3eqDPeucM3UZqyoo28CmKSpyCgtjQZsxrG5xt0/9PlO7tVenY1gsNqrQf8St9TM6WzC6hMI50HfOugDT7mTEUxHETzUS7E0FpkmpeQAO9juXoNphMCN+cxFBMuIqdto7BCn/JR7suI1vIg0W20G6o/Abh2DjHWbWBTdNcjmRLsiFbBijYH2glxbcM5vjxyiE7LH2x88qil62ZFOsit3PoWdQB+fNJvnIhlDFCwYs3nI8qrhzSBN/HhWyymIYuG6tN3OJxkukQq9iRfpRBGGyObhrkM/86j00GykmtTyzbjf7t/fznk+8/kSf2gv4bv93WTe8jk8s+ES2YbNpw8ky+59hcf27sOt5rCokv5QtBHUh8VaUZPpRMiooDULQ59e6KGSCfZAFbu0OASB+GHpQWaDB1vO12vgeafyar0pezZC4YDCTdUZe5RFk714NYZyTsVXecCCch8zYE05ijDHceuutXH311Zx33nnHvd2qVav467/+ay644AIGBgb4zGc+w+rVq3nqqadYuHDhhJ1PWC9mzpx53GBHa013dzddXZP/2Wo0Gtn5TEUQkiROmdXb20scT1yIYNOm85sY2Qm1AzC8FVCoZIhRBukoL4ZKp1t/TcMVOOJ2v8c17veoCsRgdL4fzMaHxRC3uLUvrfmWJe3WwMRL5nXMyFA/SsW0dXa5y5Ixt/+euwLVMsvNSZ2GJi0S7B0DYw0GQ6xexctjjeuvy3rtjtB7aAOGCKrzfNCi881AccYcFGSMYdRBkET6oCf1Df7KbyBMmLUUZEIAGovCZhuBoEsu9tL54CwbnA65aUo5q9pBKQ/u0ka+0QGCE6fF9YlgNUQ6P06o8AXzFl3xzzv0/IXn7IPTcF6ZrCnKg0KlXRCaJi4TEyRQKoL4+Bp/QRAmhrX/8lwW6AFg4aHvbOHtH7iMjp6WE3tyBcbMGP/f3v+PITPEm1uv5nLb7YK8ke0+KKqjjVczhBl3IXjL1ic/EsGVyMh6j7P1k6Pk6P42tjH+thYnO1dBZkkeUIbgMgoGLN512CRODUGSOxgHOX32nRRuW88VGNZkybLhdJAW1YE2qVT2hJOaW265hQ0bNvDAAw+86O2uuuoqrrrqquz31atXc/bZZ/OXf/mX3HbbbZN9msIrxCajziVzbDcMb3PmgmGvii80RK2ARRUVY5l6Iqx73uwq7BcJBQ6fGAuu8GH/aAtJuEzZpn1hIdyWfB8bzKymuUJMgr1j8Ildn+BIcoT/s/T/vLRmuTnsxx54d8zRnbjqlXestNq7Vaq8EpcFer7aFYVm+/SoqlvigrtShXyIbqE3LmQfsibTBChnv6vimAVTMFXJNgepqxhmYxNU7oaZBqfOKA8KM3dNvANS1T2cTd0HV7eQOR8plcuNTJNMlhTc66x1IxyyD18wPmi620SFSmRwt7MpyoSqpd9YlXsKH1pBECaLRi05zuXpMS8/EVhr+dc9X2bF4F7mNups7ft/uKz33RB6kbWFJPFrMgVVBAT77SzBlskzTb7uAVmfc5aAauRrahYMeqmmrvpRMbgElfH9dtl6XjBSyfqW/fqZpvk6mDYLygZ/bkS4fuo4X9tR1BnhntH7uFBdwDXtq6f9JkY4dfnABz7APffcw/333/+Kq3OlUomLL76Y559/fpLOTni5WGuh2Q8jfgRCbb/bD+uyr6wFJRu4fS5+H6yd30O2Vw0zSO142Xxm/qfG72NtAolP3MVhrUxzVRhhX1vOlGjKWp/D861ASkOpA5UVPaYnEuwdxcaxjfxw8IcArBtex5UdV+ZXpk3XYze2x7tjbnVBjyqTvamCwyX4rKzrs1NhrEEIvjKpYtm94YyfYad9IEPDvcnjCtmbP7gHBQdLFZO5uRlflYvdBkBlw9JLhQ+MKpxbkIrG/tyTwjw8PxohfNiy8yz2+IUsTArGuDl7ShXkQz54Mz7TPW48ROyTO36TqP24hqTuXpcoBJQhwIx8Wd/18NlQxVRWJJyCMEWcu3oh9//jxux3HSlmLeqkZ/bk9628GNY0scNbUUPP0RjcyL79X+ZMW8caw77oINvr21lSWeLWSgP4WUvuzl5BECp92RoVkmRekZAFYT7zTCEADLNEbVg3vblKyErbxOejlLs+VA+LxlRhyHpxfII1YP13S7hfGIeT2YnrXOqpnexzc7yFprI8PfIEl7RdSkelZwr+CoLw8rHW8sEPfpBvfvOb3HfffSxbtuwVP0aapjz55JP87M/+7CScofBiWGvcCISxXTC6F0a25Ql/0/DJrUJCDTteYRaUWyEgy2YtA8G7QhWSZsUCiSk4E4d9rC6s55p8PQ7zTSNfJTRNLHHe02wjd16l7il41U4sEuwdxZcOfImICGtS7trz57xudhVVO+CyFY3+8f1qac0HSCoP1LLgy8tswrBy6zcQ2r8JQ6lZ67y6lblnmly+EwIqQuajWJUL8/BMIcgMvSRgQ4ClQh9fkIamBUllyJQE7bMPWsddZwtVuYIZjK/S2axPJASYwXAlZMhDT0qwKY/B1gsZ8/ChxW+srM9ke1e6sEDEZVTSJJM3xWI+IAhTxdmvW8Av/O5V3P0XD1MbbbJoVS/vve1adDT1Bi22OezcM4c2u7VZlbG2yYahR6hRp6wsiVZY4MHBNSyZuYR8ZmdUUFl4FQXBjMWvpVEpX1uLPcfZehyCwWDvrdxmJwRy2YxSt3GxWTXQb2DS4gYmbIT82q6DmYv//kiKt/XrpEm9MgL/WO45DTf72VLagcWSAj9pPMWNaur/PoLwYtxyyy3cddddfOtb36Kjo4N9+/YB0NXVRUuLk4TfdNNNLFiwgNtvvx2AP/7jP+bKK69kxYoV9Pf38+lPf5rt27fzvve974Q9j9MFmzacem10jwvsxvb6pJNPOCWjXo4elBBF472wdvpkV5bw19k6nCktwhiEMAg922+G/WVQRgT1W+oeJ/RFh+JCMAA0SaGX2ikmrI58bBn25Hraz9gDCfZyklG29P2Y0f3f5Y3NBt3NBK32saP+VZZUlkE64uU+vknfhGoVEHTDFLIP6EJVzY86QJPpi43Jy84mddU93UL2Zqfwhh8nz/SPP87AJc0/WP4D4OxnGW+aYiyokGXxG5hQEg+Ol6kPGr1sMg/8NJhaHugRnpfCqMhJlY6WOxmT3zY7D1/KN6EnrxCoaj8QPh0tPD+fmfEz+6xNIbX+w2qgJBIlQShy6NChSbPMXv22lVz1c2diUjulLpzWWuzYPtTw89iRnX6zEXtFg4HIqQoMlqpqoWpT6lqjUWjl1QLG9/+GdTVU1rIB6DpPOhGBreE2DbgKX1TNE3VRMHHxa2fqx8BEZbfUB6m5qbt/g0Rdl/2aWwjaggzfmPFKjCAjDdJ90/CbmtB77R8rW1ObrDm8DgBlLalS/Lj2BJc1DzKrNGvK/laC8FJ8/vOfB+C6664bd/lXvvIVbr75ZgB27NgxziClr6+P97///ezbt4+enh4uvfRS1qxZwznnnDNVp33aENkxGHwWW9/jCx0Dfk9WcvuzzB/Ck5ml2MIaS0El5hVpmfLLF0mCSiIrcnglRZjJbJJxQSHG7z/DKBtrXAtQ2Mtm+1ObVwSLCT0VFwoTNsuvnQ5Fg1My2HvwwQfp6XkN0hSbUE4OwOGHvDvmQWgOsnHgXpbXR2m1FmssjUjz0PCDLKkshWCioqzTCAenn/BlbAuZCZO62Uw2BGM2l+aE5tK4SlaxCm/+zBQlIhuzEKph2puVpE2fjQgfBp8BzjIfeabZ4svlYYMQyumZlDMcq5Sfm/LHMnW/+SiTGQlYjnLLLIOK0MpntbU3aQhBYuSz1aYOmRzTb36CXDWrHPqFIEilMkc5fHU0BLKWRzqeYHB4iCs6rhAZpyAcxde//nVmzJhBpVJhz549E/74SimiePL7ZK1JsCPb3XDzoed9EsvLHYMMc1xSzHJp55Vc2nm1m1EatYJt5BLNQuO+ylQGkI1ECMkyVUiqRV7CmQ0p926ckG9ErJcgBWUFab7GWvzYhaOMVnQYq+Ml72lx7l4jf342KDL8g+GdOMc5fJbBNhjoH+NZ8wwag7IRGsughm/1fYv3zZbqh3Dy8HLcDu+7775xv3/2s5/ls5/97CSd0emLtdb1143tgpGdqKHtLK6vh/27XXEgOP9mxnwF34kXJPnTfA8X9rbWFtRdod/O39cbYdlgUFUca4P/Max/xvg2pbCvDoUKXUjkRePPKwp70sTvSeN8bFemyEgh7pqEV/bk4pQM9r71rW9x1VVXUa26cQF9fX3Hv7G10OjL3TFrB2k/sIl0ZBgOr3BZCgyoMosri0nRlG0ToyJSpVgQ9ZL3s/lMRHGfY31fXib7CWYFvopnvBmAl9m44byh0T7JJZRZVS7xFT9bCMaKPWzWVxhT91jYXM4Zsrw6RmFRJvWP5d/QwREucyzCb0pSv9kILqD4jU5h04MeX6WD7IWwxm9CggU5+HNujs9+hzl6YcSEVfk5mWDyEjIx/m+Xzdhz1ubbkz3sLx9iYOww57RfSHtZ+lGEk4/bb7+db3zjG2zcuJGWlhZWr17NHXfcwapVq170fl//+tf5xCc+wbZt2zjzzDO54447XnFPym/+5m/y53/+56RpSn9/PwCPPfZYdv3JbCttkxHs4POooU3YkR0QVbGm4QKguCWXy2dydUXW71HcjIT+uBDIAZl8PVsLwzgb/PqU5ut0kM1T/Dn0lxT787SXDvnzCH3aGF8l9Gtxtpb59TAbn+DXtzA+Ia3nsiTTdIGgCvKluCAbDdLS8FoYGrWIcwcvZMgMUm5pIUoNZX0mb+h8wyT/1QRBOFWwJoXaPlexG93lTFWU3wdaA80alsKaifHVtgLZmupVZ9ncZZ8AC2qGYGQ1znnd7zGVARvl63kYcZNV7Qrre6jMEdRv3mdCl8kqgAQPCgpqt1BECLJ6nPOntbkM1SZQmf4KsQkP9l7tJueV8Cd/8icsWbKEm266iWq1ypYtWwB4+umnAajVau6Goztg7z+TlXpNPR+2mDXPh6xExHkt53Be9dzCRkD7YLDQd0eJrNE0SIiKIwLgKCfJ0N9m/NgEOz5oUjG53bfJj2sbZI3/YeNAmjempv6NTqFvD0BpbHDizByLfPk766XzcqKQXU59tloXyuzELhgLEtQoyiprAJnjnEkK1cDCxikMtlTlfCM1TgLa9K+jd+TM+llCIOrPLwyNVxpr4aHhta7lRcPa+pO8UZ+S+QphmvOjH/2IW265hcsvv5wkSfj4xz/ODTfcwNNPP01b27FHhaxZs4Z3v/vd3H777bz1rW/lrrvu4u1vfzuPPvroi86fOhaHDh0iSRLOOecc1qxZw6JFi9i0aRMADz30EOAGAx9rjlSSJFhrWb9+/St70q8Ga0lG91Ea3MS2++6nlBx0Gw1vApXqKpGtMcYoA6rOXNuNoeyWK9vAqCqQYk2K9puG1FgiDcYqNA1QJQwR2tQwuoLy7sC79+wmooGh5EwxbQOrqijceAkVhQQcKK0xVqOpY1UJTBOlFKmqEtkxDLGTi9oUoyru3IjRCmqjw9RqMfVGA2M0WlvfetLEqhIWi7YWo0r+HEto3ztoVQllmxhbQmuTx4phFpQ/r4iUwT5L58FeOkozqJQjkpqG8pUMdQ+xnvxvWS6XOeussyb/bysIpyF7G3u5Y88dfGT+R1hQXnCiTweb1p1L/OhOF9w1hl1LTkhemaYzAswCKuvGxYSgKhtj4PeZRe8Ik7pxWyFQDEWCoJgIXhFA1m+XKRiaucILv9fMVBpHGQraUETwSbBQqdMhqWe8Wo5cLeZbf9yeP3K3Nd7/Qsc+4eZmGEqw9yp4NZucV0Oj0cD44OKSSy5h7dq1dHV10d/fn2WxH1jzKAsaz2BVTGpjYlUDYzGUsMqw8ZlniFUTo2IMEbGtYbJMg8UYRaQSt/lQoGyT1FbQ2kkerbVoBSkxkXe0DBsRm200IhKj0bZJX3+fkzziNiIRTVJV8m/1hNTELlGMIqIBVpGqEhEpxqh8FJ8FTUKqKl6yk2Bs5EbhERHTwKJ5bss2tLIkJiLSKdZqtJ8JlaoyGoMxhkilftOh0DRJjdtYkKbeiybC2JhI1Ult7D1nDNZYtFIkVrNzx3YMOvejsaAwbgNjm+6ctZv/ZyxoUlLKRKqJNZbNLVtoMa3Mb8xHY7Lr3BQHJ/M8GB3gYOtBrP+A/2j0MYZ+8A06zfjm2vnz58tmRjihfOc73xn3+5133sns2bN55JFHuOaaa455n8997nO8+c1v5iMf+QgAt912G/feey9/8Rd/wRe+8IXXdD4zZ87Mgr2zzjqLDRs20NXVdcxgr9lscujQockbGGxTovpuSrXtRGM7SOqDDCdjtMUzUKVWQGNNjNIxVsWo1HC/WcM+e4j/rG+kJepB0QSrMboFbRpYq1CR9kqKMkoZrDEoSqAjt+aoGEuEMjA0HFGtVonQWF1GmQSIsaqMsi4IU77Pzv0M1ihnz505vJWxVqOs8utcHai6fmmjsFELyjSo1zSlcplqJcaoKpoEi0KpKpmLchS5QBCNUWW0rYGKsdaiiDBRFZXWsKqMJsX6UQ3KJs5dToGODLZuOHJokDiFcrXCvFXL6Tzq71gqlSbn7yoIAncevJMHRx7krw/8NZ9Y+IkpP75tDGaSTGoHXBVPebOotOGkjUWDk6xxzSu8/F7QPZgpBFwFg71MgulbcDAueAsGWBayMVpKkY2TUWFkjB/tVZTjh8fOVGre0T2o3HRRPady1ZpJXSCXFV282VZ2XOv7+tw5K5RPKPrHqvSiMvnn9GXCg71Xs8l5rQQzggULFrB9+3Yuv/xyHnzwQS563Rto2bkVsC4QMWOgywwO1xgdPMScuQtQvh/MfWnX8tKvSdwXuOu2x2JQNnWbCxIwDawtoSLlMr6+md/qKoqG91Bxb+ZDh/vQtk7PzLnufE3qNjHKuk2Kbbr+Ot2KIsGa1Bme6Nh9kZtRtwnxow2s0q6Njhhl3bgCd9zUBUemwbade1iyaCFKGS8FchUy5ZtlDTHa1NxGRvkssbXumUYVdFonm4WHz5LbJlZX3PlaF5KiFNt27GLO7F4qLZ1u8+EtbVWk/ete9xsmi7Vuk6aiyF1nGxxKh3h+6HnKRFwy+2KqcdVn4htuI+blsI8NPkRqFdrPSRmIIzYv2sxv9PzGuPdDHEu1Tzi5GBgYAGDGjONnENeuXcuHP/zhcZe96U1v4u67757Qc+nsdMmRJUuWHPOzMjo6ytatW1+VHfrxsMkoduh51NBz2JHtTllQTaBUYjjupFZv0DtrJlnTvTHeBEWzu3aEAwMHwRqeK23hDT2rnBOyUs40JRn1/cP4zUwr0ITUuqyzNYBXGxgwps6Bw4P09nSjlZd2pmNedRC5rHfU6iSVQTaf1nNXt6TunICtwkmHTH6/bEPipU9mjLFag5ZqmRk93e58TS2XEJlGvnkK50iQcEZgGzQTTd/+UUhj2mZ00tbubxP6rHXZb4aq9M6o8ezTm5nRM4OeWT20XnLpC8x6bKgKCoIwoexp7OHb/d8G4DsD3+HmWTezqLJo0o7n+u0Ouqrd2F43vNw088qb9equ0CM3zl3YOrVZ7P0njAusrPbmftmIhFBlCDL3ooTTy96NV3LFZX8c/18Y55UZ7fl1K6xv3njFWvKg0lcXifxcUuODyOJxo1DFS8cHpNlM52C2ZQp7+jqQupgzqx5qN6v5NGDSd8UvZ5Mz0YQNTHtHF3HHHGgcBhMMViLiWoLWimql4t98Ljhxb1yX8aindf6u75+4uuNKVpXPIDNQIcgVyxC1uTeeMUCVzFEyMVDK39iRjtCUqJbDF7x2/Sd+aPqPhu6nzw7z8zPeiUq9QUD2AVNgW31fXhOM8hkPn5FJgzTS947oCsY4mWmlHDtpU+QlrNbb3WYuSBUvb22S9X+EDEkaDAd8HyEl9xoQu3NQ+QdKYSlXWqhWK5Aqd1sd54+pYn+/uvs3GMbg5gQ+OnA/kYWmTXjGPMOV5Svy+6mS2xzZMj3V2aQNJ9OttLTQVZ3NgtYFdHR0jPv7y2ZGOJkwxnDrrbdy9dVXv6gcc9++fcyZM2fcZXPmzMlsyU81bP0QDD6HHd7qNiKqhDXetTKMnNERViVOdh4GjvvAxT2I4aejD6OsS8o9VXuWS5Or6FRl8vl3vl8vk5QDSaHnLswnteA2L2HEQpD6hA2NYlwfXHY/nx3O+uwgk7jr8lHHSN1xwqaGyGfJ03xNtLjHN03cGujPPXPXjHwvoKVZt2x8ZA9DB0ewShG3DLHqol6653S79VTHPmB0/c+lkqWls0JXb5mWnlmT5soqCMIL+crOv2Huv15E6WAHzZnDfPkdd/KHZ05cdc+axK2lo7v88PLDbn8UWmCSYW9KEtaywkgX43uVgawi5vfEucNvMJGy7r8sUPLXl0L1zCfkSi1ZxcytQaFCVjDay0wJ/XqtKBQSrCsOhPOAQrBKXnkMSclgyoI/D6/IGOfzEEwEbULm5G7DGhu+V3x7ki5BaZIULCcZkxrsvdxNzqRS6oaxA5ANswWCy0qQMKXBvjq4a8ITY8/Qn/azZvDHrOhdRBS1+GAr9NJV3Js7DQ2s/rHTYHxSzGAoLKERv9Dsbw1H0sM8MfYURim21bazrDQnf6OHTU/4MKbhQ6EK8p/gAJdnYbKePUtucGK9sQAc1SuIf+PrPONTGHXgegf987FFJ83Qz2fz4C1rKCm4bIYgNdtQhYZZIFIcahzmudFNlICmVqwfeZSLWy+kErXniwpOMnVD58+QJgmbnt/Cqvkr0IvfCe1LJ/LdIggTzi233MKGDRt44IEHTvSpTCrWGuzITmeuMrwTkn4vy6GQaU79mkD2s6XhqvdK47K6yvdmNNjV3MXu5l40rs/NanhocB0/032df1wfsGXOlPngdPezN5MKmV2/9qpsgwG5u5zPRocEoPJJrTDHDnxWueLXJlu43me0jT8Ha9wGQ3uJE4W1NgqVPNxmw3i3u2CGkM3vi9i/c5ihQ0O0zWhDaxg41GDnpj66Z3e521mVr8+Z053CYk+bjLUgnAzsGt3Nc7enzNl8EcoqrLJse+YAW/98O8s6lryqx7TJGAxtZUbzcdhxxJkM6pJbr0zdrzEFKWRmJBX66XywFySLKuLIgRGeun8z9ZEROmZ2cMG1Z9DSHta8qt9KhspccdxX6N3D7039scKIrHGGfr7fTum8Ly6cVwqZM7FNnWFKcc8b+u+CYaEqmAxCnmDLknvB0AW/psdO+ZH5cVhQvirpx/UkzYR63VCpxlCWYO81c1JscsrdZHOKwhgAa7DZwMfQNIrfgCTUDDw8+hjaWsbSYTaObeLcjssgOPdkQVJo9iz5L93UvfGywereFS4rm/sKYuQDQZvy0OgjWKWJrWXN0E9YOvO/eFvwdPx90zAAsjBGIWiabdM9rnYbDhWGWEal/EOaDVxv+NfDS4WCnXewrwVnb2uCG1LYTIUZJsHwxTsnefMVG0r82pLNqgoum2EDk807IducPDT8Uywqcy9v0uSxsSe4svUyd0EUXttwv7KTogJUZ0/wm0UQJpYPfOAD3HPPPdx///0sXLjwRW87d+5c9u/fP+6y/fv3M3fu3Mk8xVfF2HCDXc8dIaLOwgWDlOrPY4e34frMUrcGZDPhCkFPWAeUXxtRKGuyvmi3zoUNRcrGkWcBiKylod0i/WztaX5GXe8ez3ilQFoIzpwmiExeFBJx1kse04YvrgU1hM+Kp83CRsJXAMP6pX2vngpZYuPWptTk62IakmH+caOyk/uHjHfINIdzyeSbfg0OGe2w0dIRaaOOtZpIu0C43FKiUWvk9wE/Q9BvjHwlUnH6yJME4WTg2cf20L55LiZOsJGFVNG+bQ7PPrqHZde+vGDP1vtcv93YPhjaDMkgypRoT7fDqK9YBWfLzNQOMpdz5WduhmqaDvJMJ48fHYH7vraJSNXQpAwNDDJ4+Fne8O4LiMP6qVKXfMsCOW+SVzReMSmUWvM1FsjCieLsUGvztRJ8da2EqzhSkHN6+T7KV+b8cUN1Mey9beQV7CHADEUXb/hXnLEX+vZMvgdupoa+vUOMDhoG9u2jc0aF2bM6wtlMayYt2Hslm5xJpTwzD74IfWk+QxHeILqcv6GBx8aeILFNytZNqls3+gir2i8mDhleXQYSvyHwFTDAZUa8q5FtkM2ws9YbAOCzuikYRV/az7O157KAc1+ynx31nSwpzfff5WGWXgj0dKFc7j/UxjfBRqU8IEPls52i0Ffi9dmowofHu26Gx7UmHyERhqCr4JYZzp084PVZcYVBZZnxZh5YhmyLDrruJP9b+E3UsBlFo4msJQVQmsHmkN8HlvKA1Ju02DBwPmqFuHVi3yuCMEFYa/ngBz/IN7/5Te67776X1f921VVX8f3vf59bb701u+zee+/lqquumsQzfeUc2b6DH/31v8DIZjpajrCvp5uLr51Hpapdz0bawC8YuXRGpXkFzDIuCLNYv175TYlyvXHWGLqeXsbioQhlDWlcZfmqDubPme0Dw0I2WYWKmiWT54SEVHAkLmST87mnxUALtxamdbIRDWGjUqzUGVPIchcloiEo9EoJv9FRIZNoQx9KWFstmUty6h8zVBW9eqKlvYpVI9THauhIUx9rMmdhex5QKr/ugztPk6KMcQGmBHuCMGXMMnOoqAqVUhtKK2xkqScJc9J5x7y9tcYZqIzuhtHtbgRCtreKoDmcua+7BHeSB1FApmQIP5tQDMCvMb6YAYR5dnu29JEmKaVSirGa1CiG+0fpOzDIrHmtuORb2GMFdVpQDITHDm6WYY/niylhP6os+Xgt/7P2yoUwVzTMjM6KCfVcRhoqdSHhFoK5kFQDt88M6jTTyI8TRuKosPdOCq+T5fCuQYYOJ8QtLUSliL69g9S2WJb3TvCb4SRkwoO9V7PJmVSqs8jmMFlFmEGXzw+JfWUsBatoKsvDIw+hbYpF0dAKY4Z5emwDF1TOzMvCYZ6SjvwHSRf6NxKv3HGVNWVDudm/cZMmRBEPja5HW0uKxSiNBR4aWsuS3ncWPsRHVwdN4QNdlGr6c9JR/sEyxjffug+LVZrdzb3Mj+eigxZbax/02nwhyex1Y5xFL7nkNcg8o1JWJcWfu/vg+w926q8b5+TkA0/rg1cV8a4Z7ySbt6cruaQpHMvk2u6soVZF2Lhzst4xgvCaueWWW7jrrrv41re+RUdHR9Z319XVRUuLG/R60003sWDBAm6//XYAPvShD3HttdfyZ3/2Z7zlLW/h7//+73n44Yf54he/eMKeB1CQZz6HHd3NjnsfpdoYpqW7hNYV+vcNs/3p/ay8LBgRpGSGKc46ON90REFR4NcCk2b9eFlSyyeR9u0Yom/LGDNbZ6LiMkMHDUNDKT0/NzsPDEPviYVsrExU9etUWN9DRTHKA8Awpy4bFuw3BKFSp0LQB5kENKoUBgzHeVCnvIw+m1Hq1yxbfD5pXh3Eyz+Nn/1kQlbeX0bklSYpsxb1MDJkOLT7CM2moXdOC0vOneOfn8XZiQczGBdkK39fCfYEYepYctZMWjrKjA01iGJNmhiq7SWWnDMTwPUrj+5xvXYjO1z1Tmu3jzQNt7bEYY6c7xNGO3ffrE3Hqx4sEFpvgN21nRhdYVFlPnliKfTb+T7pYDAFXpzgjFi0KuwxM48GnSewwj4um2dq86KGabqfs9akpLDn8/102hctbEG1AYQZy9arO9waWnXHS0PQG56vX+OCOs+7LGfHCb2BoQ8x69Nrksn2bMLoQI0kUc4M1DTRpTJHDkcsn5B3wMnNhAd7L2eTM6WUZ7g/flLzjavuzWpDk2f4YJnUXW/rLC4tIDXDpCoiQVG2hg5aC29iVz3LSsQ2Ad1CNrMkVMj8BsYqRV62DhuMiDnRTMbKC2mqiAhLgmJ+NINcKtTMsyKpb67VxYpelEuUwoBhlM8mU7jOldmfqm3ih/3f5We63sA5bReTlcKDY5EtfrCDhhuyD4vxmWttC5uWyA+p9L112lvaKnzF1G9KssHyYSGr5Blp74iaW/tGhYpl6GUhewyFgbIEe8LJy+c//3kArrvuunGXf+UrX+Hmm28GYMeOHeNGH6xevZq77rqL3//93+fjH/84Z555JnffffcJ6XdWtokZeAY1uMkZrCiNxWVbhwcSSiWFiiKUtkSlhNGB0A8XHkBlsVj2RY/v2c3WQJ1niQFCX7XPLNdGjRstEzv1RLmqSBoJjVpK3F5QN+D7AI3PSAd5pgrn4Y1QwF9f8nNIyVUNxd6T4KiprN+I+Q3DuL7AQh9yJlsK8s6wlvpKnQnrn3aJRR0XNiHka65phhef0LOntGHZ+bOZv6KbtJnQ0hpnIyay4DVIVrFus4Qb10DlNEhXC8JJQtesVt77R9fyd3esYfDwGL1zNe/+4AJ67E+xm3dA/TDE3tQvbTBeYp4nwF2SO8nWSGVCcaLg1xBac6ylbmp8d+DfGNMxvzbrVyg5jfr4pLkP5uYv72HDT3ZhbeQc1rWlo7tMz9wOv+44nwSbDSf3AVpQRwCZA2cwuQp7tKxI4PeA2bqowTuqu4BT5+ufH9tgKa6hofgQAkP/uMXWI+3Vatle3KvVCP3T4b7hdUoxacrYcJPRwYS4VkM1Epq2m+4zT0BccgKY8GDv5WxyphQdOdfMtE72BjC+8hYCk5AZUIqS1fx898/6SpZ2lSo/siG7b1QBG+SY+YeStJFnVLI3G+S656bLTnhJ44Wt53Jh+8VkjpPEPpvjM8VAbnYSejx0niUPAVnIEEP2IbQqcn1wvtpnlGbt0BoA1g0/zKrWC4my84nzjVKxchmCPm/JmxuzBEmU38goiwqzVorOSkEOUHR7ivzxMglVIZDMHJnCuYQNUN5oq9Im1ipsWTYywsnLy3GDve+++15w2bve9S7e9a53TcIZvTS20Y8d3IQ+tIHFtZ/CvgvdQF7rE2Feit7WVWFkYASdVrDGomxCtct/YWZ9JL5aH6SVWWbWyyxDP69SWBUMU/za56VMrZ0VtDY0alCqGOqjTTq6K1RadL7JKPaw2KN7WELPnZdfpnWyPrdMIeHX2dCXnFXqyB8LSyb1z65Ps01Edrlt5MFq6MkrbLRcIOklm5hcFp+ZKhi3UbHN/HdvAlOpANUWf1noG/dKChWebzhfN+NPB9tzQRAyNm/eTG9vL7VajUOHDgGQJMlrekxrLTT6OGPxPv6fT8c0+w5TKingEPT5gkCouAWzlKhKpgowPmGFTwiFtSLbJ3kM+Trng7knRp6gZprUSXli5HEurZ7r96tBSun3h0rR2q655j+fzeP3b6V/YJiZc1q5/NoziGMfSPn126Ly89QF8ykd5+tM2szXrqIpSyaVx627NnGVutCvHAoskU9MmcQXMQvBqQrS+ARseXy1MCjQgrGiLpMPSA9Oyz5I1eUs+Tc23ERHlpZ2RaNuadShEbUxb1nXa/rbnypMiozzpKPcA8kQITBSgA1ftOkYEI3vRyMEVT5LEPlMQaiuFTMVwTkubGJC+RhfmdIxyhrXsxdGNxCc3Ap666A5xuSZ6CjIgtLCz00gBEyMDzaNH83gr1NhwdCaZ4eeYiQdQivFkBlm4+iTnFs9O88U6XBujK+w2UJmB8ZnVrzT6LEySO52Qcdd0FFDntHK7HLDxitUAaO89B8kA1mPpN+Ilbpf5ZtBEAQArMWO7nLjEUZ3uf4RXYL6KDa4PGabDpX9fObFc6gNDdN3JCHWKTNmt7LsvPl5cidI28McpaTBeOfLQnIsyB1DoIO/jVbMWdhO/8pedjw3jBmp0dLWwjlXLiTSfqOQKRHiTL0QRhaMNzoJmyavTEi8i50FV6kru3+tIavaaZ91TpO8Zy+s9aFSFzLuwRQAXACaupmref+IDw7x63tQaIQEV0g66pCdhqxqp2N+MvQTdtSe57/Ouglt/OarqIoIGfS04XpalMJE7ZP3vhGEU5hKpUK1WqWlpYU9e/YA8OCDD2bXP/fccwBs2bLluKNLkmaDvVsfY0gdIW7sRSf96GQEo2LnYWAamKgNhXObtD5BYxhD00CZJiZqdS1FJkXRxKoKRkVEZszFQz5Zk6YuCXakr99tKU0d61Vqia3zaO1h9GgrcTNi/dDjLOiaSRR1uK2XhcjWsbrslhhbx+gK5toD7EqfJFaLGWnMY+hggjY1wJBat388dOQQsW1ifRFC2aZ7TsbtX905lzFqpDCzGYrjcIwaIzJjWGtRPmBLifzM5jGUaVCrjdBIFIcOHsSi0bbpZlwrgzVNrG5BkWKNQhHmj7q11c2XNhhr0VkSzK3l7n4J1lg0hpFBQ70xQmuPIqqXqJQ0TdPC3oN76BsdHwotXrx4Yt5sJxGT6sZ50lCZ6YZOpnWXSdYlLHWy+UThS9ZC5kwZ9Mpakc3oyFwtbZblzm24TWFTZN394xKYhv+wB9mR9c34PkOcZURCRc2Xt6O4cH5H2d+Gcna2cSpkqKMImybOTclnS1KTsG7kQTeMHYO28NPBn3J267loSyHw9BseW9iAhOtsYbBlkHwCwf3NhkzOODlmqAKSZ7yDXW4mRwjy1pDtCdVKk2evsspADEnTLZDlGZP0ZhGE0wTbxG7/J/9zsaoe5DVp/jv4z21Ea0eFS65fTv8RQ0SdrlktRJUKJGNkvb74bLJtkklrgnlK6HfzfWqKo2TxIUhUKasuX8S8FQ2S2hitPd1UK8VevSQf2kviA0DfkK8jbwBQfNw8uWaP7uVLG4V11ObBqI7IZ+pV86pbkNaPy0b7XupMEpq7Y+a9zG6zMtgcxJDQXZqVKz7CKIfw+lgYSYZ5ePhBlLI8M/oU57as8n8I3N8lbZKPXSD7u9nTZHaUcGpy++23841vfIONGzfS0tLC6tWrueOOO1i1atWL3u/rX/86n/jEJ9i2bRtnnnkmd9xxBz/7sz/7io69cOFCdu/ejbWWCy64gDVr1nD55Zfz0EMPAVCtullsIyMjebBnGpSSg5Sb+4ibh1gy9hyVA52oOMaQ0rSaSFksxo+9Skh13cnQbRNjI1TUxJKiTR2ANGmicZJOpTVWOWM94wMnkzTQpCSpwqqYesMpxzRN0jRGW8OzZgPsb6flSCexiajGDTbM3MLZs85Bk2AsJAqggbGGiIQxnfKMeobIGraabaw059BGF5Gpuf2idWqNRq2O0WBtwwVZKFLVQOMrgFoDDd+W3SDVGk2Csk2scd4RTZocsjuYoxa5+9kEQwmtLFbV0KZOkoJJU5qNGoYYpSzW1l1AqCIsdbRtkFJCa4u1Bm0bWCKMrhOZBqmK3VbdNlC2CURYPYa2iXtMLCYyaJUyVgNdMpgkRbW300xrpCN5UD9d5zSfHsFeuTevUEVVYNSPN/CNnGEguQpNnwbXWBoMS3w1Kwp9eX4TpIOjmt+4UNisZKYpLgiyWXY4OMFBbusdTGJ8oBcqfDYEm5APiNSFjHaxETY4Z7qKns36RRJ21PcwaEayVjoDDDLKrrGtLK6eSWb4Es4t9JYUB12G+VPhXEJTrrE+xoszSeeu5l5SGiwpL/OvU7kQEEf+9fY9M6EKGDLcmVygcNywAfIYFbuRGoIgvHp0GUrt0BiAzDTEubaBchWwbJxBkCoCKErVMrMWlCCNyCTkQbJtvLGSLnyWdeyDp4JhU1QBDNY2ffCV5iqCQh9d54wK+YiFRkFSGYIyP/IgPG5wS1YQRsO4+1jvSFyQmIc1J0iOzDGuD0FjkKlHZZew05DJ7FU4J7/GGf8dkiWqoiy4tEpzd98/0cTw3t6b0FkfduoCyiCP0opH+x8CpdDWsnb4p5zdcibaBGWFl6dmDqQ+ALUaK8oH4STmRz/6EbfccguXX345SZLw8Y9/nBtuuIGnn36atra2Y95nzZo1vPvd7+b222/nrW99K3fddRdvf/vbefTRR19zX3OplJvvL1q0iJ07d3L++eejDj0Ag5tcIiuMI6DC5n7FrFkznQ9F2sgkiQQjOevNRkhdpT9uI1MumZpbM6OqU5alDTdXLhup4K9HQzpGYmOef36IeXPnulso/9imwdpt9xMf7qLZ0iSNa6R1Td9Ag5mrZlMpe/MUDdkIBGX5yegjMOTWR6tjtle3cUPXjWDHQFdI04TnBw8zf8FCIuUlpmG+qIohGXX/RqE9B69W8M8nqCUUrBlexyND67ihZyaryme4x4lb/Z7V9ef19Q8xMjzEvLmzXcuVbeb7zKjkztsmzoE9KLxIsgJCfbTG3p0NklqNlrYSc5bMJKqUnSoD4+7nZzuP9oyw+dm9KGOYObubrkuvo3XOmePeCxLsncpUeska71FOI6yOtrGFrCqV3Rb/RQ/jmketLlT4vOwwDNfN+t5CP591za6hclXs/bM2l4h6N9DcPrboKOQ/GJGvsKmCnjszGojAZ4wITpvWbVwWVhfz5s4baFiLVtbtp6xifnmBG81gfFWzmKWGfOOmbb6ByYIvfzsdYbP5eZYEyz39/wIm4Zdnv5+WYHYQHO7CDD4dudex2DNTrFZm7pt+86dLUJ2PjXvYv30OZ+rT460rCJNKuQfqR3I1g02woUcD678oi0mpQkIo9XJIRf75BvI1EF/d8uMWQqN9GHOQDdwNx05xRlchMVTK1rBM5p31t0HufmkKUsvwuN7VMjwuFNaT2CkfCo5z1sZs37CPI/tHqVRKLDp3Np3dlYLiIPTfFYKrYN4SVBpp6tQcYUSPwlft/PeKl5duHH2G/nQQLDwz9jTntl+UKxls6N2rMNw8wuNjTzpnaKUYSAfZNLaRs9ouJHNett6oIBgo+DE+UtkTTma+853vjPv9zjvvZPbs2TzyyCNcc801x7zP5z73Od785jfzkY98BIDbbruNe++9l7/4i7/gC1/4wuSc6Ng+tz6GBH7YL4Y2FMAFgZC1rNigjAj7M69cQHl1WVE55fvOCEZ0hbYYIEugQb6WFlwzX9/2BjaXB2jr9vmlFosaq5AmBkrGj94KirESNVvj4aFHKPtRV4kyPFvbyKVtV9Dr1wwVziMcP+uT86q18Pyt9X1zwXnZFzP83rmWDPPI8CNYpVgztJaVMxahIp90C54QOnaBlQoqr5Ag9MULY1whJuvT86O9lFvvm2M1Nj9xmL4DDUqlJs0kojaWcMZ5vU4xEpQVpgG6Smt3G70LWom0Zc68WdAzZ0LeJqcCp8eOudybB1nW+v1J+NL2X8xhYxH6PTJHyCSf5RQc1sLnIMx5UtZvWjgqSHQBm7IJBi+3zAwIQsUrhaL1bWapHSp4QeZZcDwK8qgsuxwWCheU2dRLmay7roRmZXVFLnPK5ub5/pMw3iDMK7Hk8wAxQDhPyExa8AGotzC32p3jkyOPUW+OorXm0dHHuLrt0kK1kHxjYsLzjvPFK1QBFW4T2rIAWua7/0quB8U2m9T08MS/RwThdKTcnSdw/Pe4AjJVQVivMqVA6B92a5GJSq4nOUjRQ9BXnG2XWXaHDU6a3zZIKbNeNZXPA8Unh+IKmVOl9hJHYnd+oWcZyPreCmthkE1m56Bj10No8UFYA1SVZx7cxY6n95OmCqUMe7cNsfpty2ltrxTcNcmVH6r41VlQJ1gKz9VJQ5UxbkOjI2xaZ83wWtzkLMNPRx/m7NZz0Ph1jyQ7xuOjj9OwKSWlsChiYN3wQ5zVegGhHxxbc9n7ILPXikS3YiuzJuPdIgiTwsDAAAAzZhy/PWPt2rV8+MMfHnfZm970Ju6+++7JO7FSN+7zXvKJmIKBCfjPu85/Nkle5TNNn+wJhn2h8l8lc/bNRiT4tUzHjHcOjvI1xSfX3f7Nrb+d7T10t4MdHqPUUqY+mtLSUaZcDWqo4J/gDGGGm6NAgsVitEYbiLEMmkF66SaM7DLBZCsbhxPWc/JAN63l6oZsbrNPxqUJj489ThNDDPQ3D7O5vo0VravIe7S9J0Qm4w8FipR8tIOv4OnCHjfcLzUM9TcZOFyjo7dMHGvGxiI3NH1pJ22dvlpqGvnjmyZKK+fwrEtQ6piUt83JyOkR7EWxCx5qh93vxfkd7gbkMsOyD0IKkh181UxFBamhyT8E2by7UJHysiCcPFNZi8pMVPybO3OkTJ1ESYWNSdg0QeZsl73Rg+zUFj6EhYy330wp44PSTMKk82HpYQOmC88hq9qFzRn+Q1ghm18Szjl8GEOQFowLrCYxDR4ZWgeRwmJ5dPghLms5n0rsZ0kRjX+9osgFf1EHtC6E6mwX2FVmHfX3EQRhUij1FDLUuKqXNahgZpJV8I+STnp77G/0303VwFt73kFwGXabnfClHRQIoWfN9yGHzZKK/BDf0FNn83U3m8uk8y/9ICmNI7Ke5pCYU8E1LlQFvbtmJs/Mq3JZzx6aRmLY/dwBlI6ptrpRMkNDCXs2H2LFRQvJZPOhkldIHI5TPGRSzUK/MxqUQfk1fFP9efrNIBXcbNUxM8zTY89wXuuF/jWrgq2DiuktzWRZdSkap76wFrpLXf57KhjE+OdXmQ0dZ6I6z+Tg4Q3MkDmkwimCMYZbb72Vq6+++kXlmPv27WPOnPGVmDlz5mTjvSaFUjdZoBCCHzSZW2XWfuLXCJ+02ru1n53P7CdpNuld0MMZFy6kFPl9WkhIBZVEFjj6fVX2s/dHMNYrEUJAZFxyR0U06oa+fSOM9fdhVYV5Z3Qzf2k7cVTwcrB+TJdVzIx7+NCcD5D7K1h3fZA6BsVA0Q242C6kKvk6l5lKka+LXlpZs6M8Nvo4FuNmSWvFmtEHWd6y0hsHevO+NHg4FH0gyvlrnQ1k96qFzBfDBcYG99pr7dQZGkVaDDozN/fgSRHUIUDUelwDnunI6RHsAcSdwIGC62b4MAG+cZQwJ84khdJxIFT0fJlZ+aDQNPPsTHhz6dh/SF2vnx03VDLCBYGhad/3a6SpTxAFqZTNP3SZ81rJV9/M+De9u5IsA1+cYRWHn33lMQu2fPVQhwDUyxSCzDKTUhaCtPB71o/o+kSsv+7J0acYsnUi5U6/qVIeG32MKztf785V+wWoZSa0zneVu+q8gsmCIEwN27ZtY9myZS+4/Nprrz3mSIRpS3Um401EYmw6mql1yAxbfOUvC2QSdiUH2F7fSYs17G7uZUFpdr6JCDL1YCYV1sDQz1E0LcFAqv066Ktm2XiCUp5RzoLMKD9G1FKo+vlscwj6wmYkq0Z62ZEKzxeIIkwtcQYKGiKVklon8zSJzQPJEDwq3Oth6/nzCAEwfiOR9fvFkKaoMKKGlCdrTwHW5fh9sfGJ0Q2c13Kuf51zC/izqis5q/W8vGoI5BXQGNqXojrOwLYtQ8fVCX9rCKcvU7k+3nLLLWzYsIEHHnhgQh93Qqj05hJGn3QJpuUqc/AtGPOhOLhnlGcf2oOijlVldj57hCTVnHtZN9ncOds46r74tUMVkmZ+j5kW93xkAUwziXh6zXaG++q0tpUZHbUMHBhGqS4fICVkLsWRD66SkKwqBnOF4EqB9YYmLrg6epRCULyRJ+2yGXshKEvYVt9BDTdSwR1J0Z/0caCxhznRbK/KcOukDcaF2eib0DMdqqDBJyPKjwegIjq6S7R1aIaONIjLlkYtZea8Nlo6Wt1rjCIbHZG67yE3xD2F8ukldT99gr1yD9ncJZt6Pa//gGYN8VGenVHFAC1c5xtVQ7UtSISy/pRQjoZ8Nl3sGz59Tx4KlC9HB6mkKXyBZw39Oj9eMaMT7mcaXi9N4cNhnRtn4t04If8Ahs2H9X19UfGcyT/EYVOVBXp5+TurbPpSv5M3kfW/bG1sw2LBKj9IHh5Ld3Nl93lQnesCu9PsAyacnCxatIi9e/dmv+/bt4/rr7/+uP0i05bKzDzZFLkZRUql2PAlnwQZe5CWq0yyvnb4p2gLFs26oTX8p563FZJQ9hh9dDVy9+AGwXxKWYONfQIs0i4LbZpg8i/3TfWtzI9n0x615ZW6TLKZ5gFrOJbxvYD4TQOQOSqDq1x6VUS1pUTP7HYO7TqCtSVMUiculZi5oJssgPOyqUzSGTLHNn+cbNMWxjGk9UztYf3xrmm7mn3VAWISEjQx0B1158Gc9WqLkIEOmz8VOYOEtqXQuRLVtsjPNiXrKhCEiWKq1scPfOAD3HPPPdx///0sXLjwRW87d+5c9u/fP+6y/fv3M3fu3Ak9p3FUZ5KpnbKkjvK5pKCuKsjRVUzf/sOkzSZdvWWaaQtK1zm86zDmkm50UDNlY7uCvDPILsm9H/yez4060Pn+0Csmhg6PMTZUo7WrSrkEUcUyNjjK0JEG1c5QtSu2IdlCIt+Qz2c2+XOISu7XzOAq7JELa18mrQzqNJN/R1hXjVvRejZvi1oxxrqlX0VUrWF2PAvioplVicwYLKi9rHFBbii2ZP4WxUAvBq2pVBVnXLiQ3Zv7aI7VmDG7k0Vn96JVKEb455fNBPRJOTjtHN1Pn2CvOguf2sBa7bIJQOYWp+JCZqGoV6aQJUlzvbL1HxCtChLIsnsvhY2B3/g4WVRMNpvO+I1QMHUJIwZMocwPZD2CYTBlJlky5G6WBeMA37uirMESuT66MKAybEgyI4UgNw0BXGHBsT5TnkkG/HX4TZrFf/Ctew2IQMONve/icByTtMym2TKHtNTN7Mo8iE+vD5Vw8hNFUbZJqNVqvP3tb+eqq67iD//wD0/siU0xOm7BRK2Q9uHWPBe0GELyx3/uw8bAKyF2pQfY19iL9RKd3c1d7GnuZ351IZkRShYM+U1C6PcoOp35UTM2JNYo+0DN+tE1dfam/Xxn4DssLy3mLTN+3qsPIiD0eBzVs5c5eUbkgWCo9JUgqWHDzDsvGb3wmoVsWANH9o3S0lbijIsXM2Nua/44pumTbEG+H+VrX+h5JCqs+2FjFWOxvrrXZHZ5LrPVQrfG6iqYmj9/L18NstAgWa3ORrUvxnasQFd6J/ndIAiOyV4frbV88IMf5Jvf/Cb33XffMauIR3PVVVfx/e9/n1tvvTW77N577+Wqq66akHM6JqXOgqJK5cEJfilUlqxXj5IXQVg/I8712trUUKpaVLav8/8XeRdjk/iRU35fpiz51tz5JphMDh8KChE6VkRRikkttuT2llpbdKmcn1MwuBsXXPngJwsofeXMKyaUSfyoMF0I7sJ6HlQL/lxTN+bAKT/yNTYGzigvIrhyuu+Q0Xw+ahZo2iwXRxzW6SDpz6t/mb+FNV7ibyBNSRJFrWbpnlmhUm2lc1YXOhRTdMkn6kILlnuuyhjnjn+aObqfPsFeuTcLYlT4Ms7mMIXNgu9Nweuc8RLLoBeOfAneJC7IU3Hu1qm8JDLMayo6yXm77WL2x71ZQzCn8qqaDkYpoQ8vSDULm44g8cwaWAsBoZdWEkwTKGy6dOTOJ6sk+g9ssf8wy5yEPpmQacbdNmSjdMlVBVoWcLDSS++C/0jPzLm8eG5OEE4+fuVXfoWhoSHuvfdetNYvfYfpRtwJzSFcT4PrhXCJbN+3Z0JiSGducuuGHybC+hypIrKWdaOP8o7qAvc4RSMV5eWTmdsvRwWAka9OBaln6LlzMqM1w2uJrGVLfTv7mweZE/f48yoqD3w/ifUD0UOAarWPpXxm2qR+7dZ5Bc5aKtWIS69fzlg6Qotu9efnh8Gn/t+w0ck2EF4elElMvUw/mFypsA5rbKg6Zt8fPhDN1vVGnkhsXwSdq1Ady1FR1b/CgnBimIz18ZZbbuGuu+7iW9/6Fh0dHVnfXVdXlxtnANx0000sWLCA22+/HYAPfehDXHvttfzZn/0Zb3nLW/j7v/97Hn74Yb74xS9OyDkdC6UUttTpXDlDUp6Qr9K+KBeSRs5JeN7iVg5ujxk8kpAySqWUsOjM2c6JMiSYio6bITmWOa+HhL+BNHGz9zJndJVJKztnVOmd38murXWao3W0Tuie20X37PY8SZ+NnElcckkDQcIZkmCZr0PYG4b9YPF8Cl4VwT00HXOPlY0rC8Gk/56Awt42yCkh85sI+9LMdKUQmCnc3jqq4BKAYQ8b3DWbJLbM7i0D9B+sEWk3/H3WqGXuklayHvOgwojK7rGL5ocS7E1TKr3ghwUbtB98aXNLbevdeQhVM/+hsnUIzm5AlnkJ0sZQDVNhQ4S7LGQhYm+VG2bzBXcla51kiajQpBrlFbvwhkwauVtTZrAS+vOKlT//cxRBMwxA91sE5aSVBK14FkSGzUshIMwGqhez4xoqM6BlEbTMgep8J8f0j1+LGnmWShBOIT75yU/y3e9+lwcffJCOjtPHmWsclRlQ35cZRFmlXHASRqwYSyYxsi4ju6yynHZVJiEi9l/Ys6tL/aaiOEuvBGYMgsGT8RUtTC4dtWPerdKva5m7nWV/eoTtta2UAXTE2uG1vL3nbRD6Z7KRDMpvTozLCmezUSP/c7mw3kWoIMGCTJI+UD/C/z1yF1d3vp4LWy8qKB7Ig8MwVqe4ZuqyO0axhyUK3w8RFuuXXxcAjw6lJElCtb2VckVDqQ3VuhLbcSaqbXEmzxSEE81krY+f//znAbjuuuvGXf6Vr3yFm2++GYAdO3aMCy5Xr17NXXfdxe///u/z8Y9/nDPPPJO77777Nc/Ye0nK3TC6x1fcIPNJUIUAKLTvWGjvKnP+689g79ZBmk1L72zN3GXedC6MZQnmV8Y/joFcadBK1t7j1QEqUz54h02borVi1esW09Y7TGN4kGpLifkr5xBFoRoWZJDBA8KvYaH9KDsBkz0m1lf1ghMylnwkQqEal7UGhaDKB5NZH6O/XxZ0Fl8r/5yDM7xWPsdngIgDu0bYumEvaT2hY3YPqy6ZRbniZ2Bbsj3s6ECd4SPDtHe1Epcq1OqGgUND9Mxto9ISWq6i/H4AuuwNwawrAJ1GnD7Bno6dRrfZhxsboH1/SNAqh+Cq5t4cOmirTb7RMQVJZGZyEsrNobcv9k2wiqKrpgry0Ew2Gt78BVfNbJh44bziUvYYmTMRoUwd5R+mEHCmruxvCZVEn0EJFcosOCwElaFaqHyWJqpAqRfaFkLrAijPznv8BGGa8E//9E/88R//Mf/2b//G8uXLT/TpnDiqvTAYsr0tqGQMFda6TLpuXfXJjzG4pPUiaDvfrSdp061TxD6ww29qvFQyOG3aQtLJ1KHQ+2KDHD2sT35Q+bqRdUTWYrRrqt9W28r+5CBzSnPJJO1ZP7JlXMY4OG6GJFha98+p6WVKPhD0JgDrxh4mUYaHhn7KOS3nUQrGNFr7MTchqUb+/aC9+YrCPS/bZJxUVSm3uVAlMAnbnzrMvp2DjNXbSVpmc+FbrmOOf+9J9U44mZjM9fHlDK0+lhHMu971Lt71rndN6Lm8JGFmZUjUmwSrNFZFvqqncpM544xMOno76ZjR6tengutmSBiFypUKRQabr5lZMj+XoCsKQVKY4awrxLFl6VkzIG3xhi6+qqa9r0RoMQoGLaGwEBXWRl1y+9XEK8h873ZWqcM95+GBOvt3DxOpJjMXdtPeFWbmBT+HoIKIfYBIXhnMfg4eF76iGMVgvWGKVvQdrPPMgztIkyZxVGHP5j5UWuO8/7DcPU6WhIwwaQ1rrBujQEqEpWm0V6yG0WfhuKoQ9BnQrW7Q/WnE6bWDL3VB4zAQZJXe6lYXgjntf7dNMDrfMKQ+OxE2IuFDkrlV+jeTqftsjHdvCxprvBwz6JczN6aosCDgA8LwGCHoCz15YRPkgz5TMEpRthCMOvv0LCDMNkSFKmCQP6nYu2MudAYq1XlQap3iP4wgTC0bNmzgpptu4nd/93c599xzMxlRuVx+0VlP05LKzELSyW00XJFK+TWxCjTy9SX8a4PEPMgzg8wm9B6HtSYoE5L8i96SJZ2UipxhViYbdYmohjLsrG3FKHcEDTS1ZvPos8zpmufX4tATmKVu881HkPBk5+ETbEGmlPoKHJaBtJ9nxjYSYRmjzpNjT3BJ6wU+G28yFUOW6bYNwM+C0v64QapqTf4aYLHe9fjA4W4efrKTZnkppdZ2Du0cZvDbh3jHB5YRxVLNE04eZH0sUO7NgzkFKOtFDyFZH3rPfDUpcgUAkyYMHBrG2Ii2Dqi2VfN1xARjqRa310wbuCDEK6SK1TebeOVDqJQd1fJDwjifhyAtD2MVsoJECPzCDLsmqGp+XagGGusHq+dtPv0HR3jsvt2MjSSUooQtG45w2fVL6OyO8yJEVgAJHhfetTPyktTMtKuZVziJfCDrFBcD+wdp1BI6e9rdeakGfQdGqTcslXJ4Lu57o7UlotrewnDfGNVKyuiopmdW1aklgNxEkYJqxBVy0qjjtBq7AKddsNcDKkKHGSchI2zqZPbWWW8GXopTuF02eNgHadlj+FJ2cfBvaKaNXGCpsv5A/wHKAjH/GEblTkRFyVNRp5wZpaiC3LOweSr2HgZ5aeqzSuG5xd3QMtcPK1/g5sicjn1KwmnNww8/zOjoKJ/85Cf55Cc/mV1+2o1eABfshcHBft1SIdALUs5MfuSzt1E5/3IveedJ5S28g523DdnVsI4WTAeC2QkUArNi4qtEmZh39/4iI7ZBZBOsjjA2Ym7ck2ewMylm6iTzwXVN+cuisj9fr1wwLvjMM+VuPX5o5JFM7W4VPDi8jgtazye2ZJnkMNsqyxSrEDhWvNNoMZBVblPVvpyhwWUkM1cxsL3EwaFNzF/uKgVdM6sMH6lRG2nQ1iWjE4STB1kfC1R6IWg00WTyxHEOkqlfj5xyIUkN2x7fzeF9Y6RpREt7zNLz5tEzywdXWREA97g28a0wvvoXkv2Ask1XnFAap0rz66vywZzyfXJByaXLjFNPqIhczRYkmX4/GkaNWbIqnrIpNtzPOrOszU8cpj7WpK2zjFYxg31Ntm7Yy4XXLM6TbSHQg7wValwFMRRVfF+1b4XKA1nrYjIb+9a61FXuoti5awJZf7O1lNuqzF+h2b99kLTZoGtuldkLW9BRXKjo+b105iDvqntGn15VPTjdgr3qTBgArHNKGjfqIAuU/BwmQqYilN39mywzWAmSo8KbO+iDM2va0OcXsryFD6Q66vFDABcknuOyJBAyH5mjZuakFD5koUfEHccq5TLyrXNc1a5lnht/oE+vP7kgHIubb7456w053RgdHQVgYGCAKHJrVKmhwNacu2YzwWIZG6u5oMUOoWhiVQlrmyibYPUIytTcxqI+hjI1TGTQpuEc6LRBmbrLVNsmylqMrqBsDUvZu9UlWF2mURvDGMNYveHWX6tBNbFEtKgOWtIEpRUYjUGRGkjqQ4ALQK2vDtqGQdkGEHr2NFYlKJtgdAVta2AiDAYLjDaaRI0GozZh4+jTgEWpCG0NY7bOhoEnWFk5H03i2gOVwlIjmGpZUhQpxqRo5V4f4nZs2xmkrcug4vp0htkEtQZGW1KTMHBkmHJLzJEDI3TOqDLWGKXZX5uwv2+apgwPD1MqlY55vVLq9O1PFV4Wp/P6+ALKM3D7s4bbU6nYT42x4xPsyjq3SRSHd/VzeO8o1Y52dKyp9Q+y45mDdM9c5PqFgWz+WzY8PM76fLMAziRYtDfbs35WXJBIugSWsYqxwTrYBi0dXejI5H16quT+TRI/8sDmUk7tr8v67XzBwlonUQ09hLpCbSwl9gkzqzQ6NjRGvQwVCv18BZ+IYMKVGWGFPkRvFBj6nLWX3QOzFvewc/MwI/1DoDSWiGVndlIqhX037ry8I2drq2bZOTNJleFvDv5f5tZncGP7271BjHaPnck4g2mixcRdk/iGOTk5vXb+1Zk0vYOQDZlpVcg4WMgrYjXyACtIhAol+PBhsU3yYM7mkh8dQ1IH5Tci2uSPEeSYkFfmgp2txvfdRQX5Uag4hqqfTz8H17cwOqLaBa0LMaXZ7Nq+jDOXvxUdn15/YkE43bn//vs555xzKJfLbNiwAYAHH3wwu/6JJ54Y9y/ArLEhyskh16qvFIqUnbv3uaDMJijlqmGp1U4IkCbOqU5HGKPQymKNcbfXMcZqtHUbFa1S5yhnFFolGBWjbYI7SoyyDRITsXvXdqdGVzGKhJQKEU2sSVHaDTpPbQmtUvf42qKsITXKFRytcq3XqXFLJyq7zAVrFmsVSrk1dc/uHWhraSg4o7yMGobIz7yyCuwI7LK7iWyDlMhZemffEYaUEpGy1PRsavFcxqIFGF2FQwC7/X/QbDYZHBxEoanMbLB76xAmtVTaNfOXwpMbHp/Qv3+j0WDLli3HdU5sbW3l8ssvn9BjCsJ0RUUlbNwO9UNke7VgJBXkncEMxDumN8dqWBtTKmmMtZRaYhp1Q5KklKLEmbAEE78grYRC8j8YpkDWM516uWYoNihNo6HZ/MReRo4MYVF09I6x/PweSuVi31xBhm6dp0NmEJOGFiEvVwdscM0Mo7lQzJhdYeeRIRp1S6QSjLF0zur0j+/lkdm8PJ3JQbPnY8Nzi8AGv4qgrAsmLoqW9jIXXreIfZsP06gbunsrzDuj2xdRGqDSXMqZGSTCc6MbOZL2MWj6uKSxjzlRtws+jVd/BPf6qEKjsoikunRy3iwnMadVJPBEspsfH/wy/7H8M7SYDl8qV3m1TIUBj4nPTHjNdMi8oP0bLpTUQxZD41yIfGk+VNwyrbAtfHDChgH3eDaU08vuOCZIBciyHZlzUXYsnBtmda6TYrbOd7ry8IFOElK1fVJfS0EQTk6MMdTrdYwxzJ49m8HBQc4555wsuLvyyitZs2YNr3/964l9MsjsSaD/cVAlGo0627Y8z8pVq1zSK8yvsw2I2nzWNAVV9lnhYOFdJxtdQ4yb5xRGw3hrbWX8Gue/tA0MDQ9w6PARli1Z6I+jyExdwnqbradld06+YpiZZBlv0502yPuifbbZNPx5pWBSjIXnNj3LimXL0bECIs5hpTtt5eVHQYppvQQqjGKwEcQVaF0MXStRbUvz+VnHYf369XR1dbFs2TKuu86wd0s/jVrCjHltdM+aeDnRAw88wKpVq5g1a9Yxr7fWviyDDEEQPKUOaBwh9MIpLFZ78zzbcLcJa5dtUmkrg1Y0xuqoOGZsxNLZW6IU+eQ9XpJpmj5gzKtbPgpz61fc4gz/wkzjTAXm1rY9mw/St6+f9q4K1sYc3D1EW3vKolXzyaqGygdfikIwGYLHcrYOEwxZjEVT2G/alBUXzWFsxHBg1wgqajJv2SyWXzibbBa10oWewOBJAfk81Gb+3IKrqHb938r6XmcDmJT2jhZWXDTfF1VCT3aYC+j7FMMxlcaYBuuG1xGhiAz8dGgtPz/j59yxyl3Qusj917YIFbcx3HjquKqH6cxpFex98eBfMz9SPNZ8hKvUtbk0M8wRURFuyG3QK/s+kmAbmxmbRHnZPrzJg6wy9HZkhiqF4ZVAbkurfUm+EByGvhnre0tCZjaqOvvftoVu7EHLPIyK+O7Ad7mmYzlt0emnPxaEk5n777+fT3/60zzyyCPs3buXb37zm7z97W8/7u3vu+8+3vCGN7zg8r1792bDjV8u1113HZs3byZJEmbPns3zzz9Pe3v7i9+p3INb21zCyAa3YLyTmwWCq1rW34e/jXZf7llmOxknzQkOmLk7ZggQU9BlN2ogNXmWV8WFNdErJoK7poFseHnWz+zPzXipUziHYn+00vlaT+olWF5hEfnzCxuTMCfQpn6joaDc7Yabt5+Japn7qpv7o1izcOVpZnAhCKc65RkwtscHNF4WGPrr0qaTSAJ+gWLm/A5GBhoc3nOEZg3au1tZenZXVl3KArZsJFZQcxXGHISgMIzZCmtuZp4CY0MjlEqaqOSOX4phdCjJq2zg1rAw6gbv32AK+1eb4NY8V9xQBCl9HqRZ/BD3ckpJl6i2lV0fXeZzYfLEWzCrUT7AzFRsYR9t/Uw/5wKvQiKRFGPg0N5hktoIcaXKzPntzmMjmMfYYGxTdvc3lk215+gzQ1hrORKXeErv48KZ57O0azUqlpFggdMm2Fs/sp5HRx+lQ0ccTg5zIDrAMrvAfSiyuUy+kbQomQwGLuOGnIdmUZ3fL8s++4BQ+2DO4ppd8ZbdoSJogvST/MMbPjiVXmidBy0LnZFK6YX9FfcN/IDbdt/GL/T+Ar8997en4BUUBOHlMjIywoUXXsiv/Mqv8J/+03962fd79tln6ezszH6fPXv2ZJzeC6nO9AGO22RYpXIb7aBYyNzfIAsMQ19GNgomBGiQDTLPrleudyQEj9ZdZq1PemXZ6+CiFhQO1vdoFLPIhYCMyFfz/IbF97Jk55A5ZBYMEcJYiOIQdO3X8xD0tc6FjpVuuLlfg19diCcIwilNpdf/4AIoG0ZdHe2z4KtjCs3Ss3uZvaiVxFZobVXEUcG5Mxt9FZwqvUGLbXqzJ5UFTioYtoQAUflRCViq1Yj+RPmOpIRmYqm0VgtBUWE0mC5nlTrXR1ccch5u13TeM2FdVM6A6rn1Oziw6xAHoyN0q25qmw7R3gmLz57rgzmTB3rhOyBzp/equcznwitBSIGS3x8nWGPZtvEIe7cOoVWCtTHDR4ZZdu5MVDYPW+WyUBVD+wL+rvEdHu3qYbBUxSpFSsrfjN3PH/S+MHl6OnPaBHtfOvAlNJqBKGa+arKRDbzOXjQ+2xBmKmXDxckzFmHTEeRFMH4DEQZghg1RNphdeXkQZOYtWRYFiDtcI3/bImeiUpmVB4HHwVjDFw98EYB/OvJP/Lfe/0ZvqfdF7yMIwtRx4403cuONN77i+82ePZvu7u6JP6GXojyTvIJWcnP2sqpdAlGLT3oFWU2abxDSBsQhqAuOnc08AWb9bKW0MHMJ8koeujB6Ic7X4mz0w/i5daRNIByPfAOTjaYJcp9i1Y5cxqQiN5rGQlb5077/pmUpqnMVtm0JOmyGBEE4van0klXcohZAodIESqEap8HWfDCns2R+a2e7CwTTGplKLCTMgtHK0QqGMN7F/27D4JmQ7NJeWWYS5i2fwfCQZbh/FK0Mnb2dzF3WnasngrGLKnhFhLl7wegvK054N9GwPuLXeiyDBwapRTVMbBiKDtPTaGWor+n2v2HdBjKDwyzxh1v/rXfGjEIfnU8UolHWPc7wYJ3Du/qptFVoaalQG7Mc2jNI78IZdM2wbi5e68L8v3IPSinObavTWt867s/1uvbXTcKb4NTmtAj2nh17lkdHH0WhGI5LYEcZ1H3sau5jYXkeuYumHy6O8mVmL02KYpeR1l7CmW0q/IYkk3d6+WUIDn3fndUKhbfErc4suGPOz7Mrr4D7Bu9jR2MHAKlN+b+H/69U9wRhGnDRRRdRr9c577zz+MM//EOuvvrqKTmuKrU5N0lcP5fKRsOE3q5iMAYuk6tdP4kOhlGp75Hz62joNda+KheqZ2E2lXH3VSry627RrbjgLpwNSy8YVoVALyTrfKO+O0/fDxPuGzY7wQnOJC6brLVTTXSeiWo/A1rmZfJMqeAJwulJ6GcdGxvLTY5MK1Hdm/thsDYladZoxq045+AUZRI3UxODSpvYuNW5GBvr+9LKmLSBNmNYXXHigzTBqsjntRpo40e4GAO2gVVljJ9712zU0XEFkybuMVSMrpRYftEMBvvaiLSmtaeNKGrSbPpCg02wuCqkpYE2da+cSNw6qMtum5rUXdClY4w1KGVopikmdcZbpmwY60+gnGCNZqRZI4oNjXrNOSWnTawx7nlETXRay75PME1niqVibFpzoyS0C/KsbZKmFmOhMTpCkqS0tGhMmpJG3Rwcms3c8lVUFpwNcWH+swFqzsH4ba1vg2OMhh4bGzvm3zdJnLnY8a631lKpTD/557QI9oyf13TgwAEAnnrqKQDWrl2LUooBNcDrWl5HSkp7MsKC5Hmw0LdrgKaqkVJC4wdAolzy2EZEKiElJiLx+V83ANLYiEgbUmPRyos0vcOcsSW0TjFGkUbtNKNehtIV1HUvz+3t8fKiFNjl/3uFzxXD5zo/h9IKqywGw9cPfZ0zN59Jh3VSo7BYhec/2TQaDZ544onMxn0yeTnPbc6cOSxfvnzSz0UQJop58+bxhS98gcsuu4x6vc6XvvQlrrvuOtatW8cll1wy6cdXSmFLPWAPui/hLPAquKwF45LMsTjId0IA6CVJ4TLjK31QqAj6YE3j3d8UNpvDFOVmKmkxmeazxWFoufKy+Kx32pvCBElV5ginvKTzqCCyZS79pQosfTe6VRQRgnC6kiSunywMjYfcufjHP/7xuNsuGtuFUgZDRGTr7N6zF0OEJrgDByV6glKaJiVimtk6apXGGEusUufki/NzSFWlMN7FjT2w1qJJSVWZiBStLFu27QSlMRYiEgwxGgOkGD/O5uAAaBUSYm4Ndde5fjgnGlNYm7pRdH7va6xGaeVCWWPRWrN58xYiGhgbsXfuZmx/lfJgK2jNUPsRaqWI57eOoXCGLiYFotifX0qqSkS2ibEK5RVzLm+nXA8gDYwtuUDQKg4lJXb0z+fg5h4a5RnUhjSVdo3ZMUj50EMT/rffsWPHca+77rrrqFan1+zTUzLYW7duHf/hP/wHyuVy9jvA/v37Aejt7WVgYIAzzzwzC0Cu4Ap357SJefYvGB0dZuac+SgMFovKssfggrEy0ASjUMpideQLdgZLCU3d2XiD0wnH3ai4g7S6AFOZgynPJMxgqe/cSRlYtGjRa37u25JtHDxycNxlqUo5sugIl7Vc5n5PU9avXz/u+U8mjz/+OIsXL35pE4gJIEkSHn/88Rd9btMxKyNMb1atWsWqVauy31evXs3mzZv57Gc/y1e/+tWpOYlqL9T2AcYZtARLcFMvBGN+JpNNyG21jZPqhOpZZrQSepyD86Z3G45CcBhMsPxcJ2vdZcEYJlQLVZQV7xwmPy7426euWmiDeye5XIkI2pagOldA2zKwmsFN33NObYIgnFZs3LiR2bNnY63NArsjR45k15933nk8/vjj3HDDDePGl9ht/VA/AMby/PMbWbhoKdVqq5NoRj4wMA0I/c1aQ3PUq7d0oW/OuQK7Id8lX8kL8zsLxlC4ZFnSHOH557ew6qxznEtmSG5ZC74a55Jhfu4p3rzK+L68ICMNbvO24ZNhYd5dmIfqqn2p0Tz3/CbOWrmSSCWM2JQf7P8ucUsLUV8nWqcMzRpAzZ7DOe3nuHM3yq/rKfhKIsG9PvJrf2bgYiBqh0oPtC9l12HLwUG49NJLWXjFAD+95zmG+2u0nVnhdW85k3nLuif07//UU86Nc+XKlce8frq6FZ+Swd4999wD5BW9iy++mEcffZTzzz+fNWvWMHfuXLZs2cLMmTMza/Eifbt6qTfqdLR3AnX3xveSy8wynCDrzPSY/sOSus1OqcuNPKjOh9YF+Yf9GBw+fBhr7XGtsF8JM+1MvtT1JUbNaHaZVpoLWi8g9gMuQ7bqeM9/oomiiO7ubnp6eib9WM2mc4d6sec2XT+swunFFVdcwQMPPDB1ByzPIJM8Wl/Jg7zCZ4JcHS/FDDJPC3EJkjFcL13ogwtS+DLZeJvYu6ipOOuhUypyDnDBPdMUTFVMMF/xwWOo1IUZqWGobxY44s6x1I7qWIbtWIlqXTBeBeDXR0EQTj+6u7tJkoRGo8F1113HQw89xDnnnMOaNWsAaGs7jrt5uQdG92Trjmv59UkwZb3bpXV7QZt4dUJMzTY40jzC/HimX1shG2ejVL6GZokz7zZpbaaoyJJvob/Ypl4F4UcxWO8Zkc1wNoUZgH7t1DofTRNmRPsePbfWenMqL0UFQEVUrObK9quotzex811hxOgSiyqLyPu0IXMp1dolCAm9e0Dc7tzkWxZC22JUIdFmhraDOgzAnCVd/NxvXEJtNKHSEhPFL+5fIbx8Tslg77bbbmPevHn81m/9FuVy+RWXW025B+wucodNm8uTggwIk5uolHuhOss5Y7YugFI3TIE88lgopTin9ZwTcmxBEKaO9evXM2/evKk7YHmG3zzUvQFnWAv9Ohh660LAFazHIx8IKp8Uy4I1v7HRftMSKnoK78zp5U3Gu6ypMMIhzhNt2o+yCZXBsO4qfz626Sp6SkF1NqrjDOg4E1Xuzm4mCIIQmDt3LkeOHKFSqbyyeWvlHoIxlZuU1czXocz4xAdwhfmiP+z7DhtrW3jv7JvopkI+iqBUCL58cBcSa2EendIoXfKGUl4Vkc3PK/hH6IoP4EKwGNw1G644Efqng3lVMGApGgoqX41MfH+1T/rFOuKyztd5ebxP4invUg/uHNLgaeGDs3IvtJ/hXOVbF6JepBhyNDrStHaIOdZEM+HB3iudL3UiMFHIKngXzqK1d9TqzFNaFrjArjo3D/oEQRBeBsPDwzz//PPZ71u3bmX9+vXMmDGDxYsX87GPfYzdu3fzN3/zNwD8z//5P1m2bBnnnnsutVqNL33pS/zgBz/g3//936fupKszXWHPmHzjoHwm2TT9hsQ7qdng0umrdtnMpjADKjgcezMACu5s2WVhDl5wivMuyISqna8choG7hJv7Y+kStCz24xHOQEUi3xaEU4ETOYf0VVOekQdE3oMviL5yR0q/jvmg6lDjAFtrz2OU5qHhB3ljx3/0AWJcKCr4AM4mTg4fmv/8iBhrG6gw+zNININUNJtB5x2QDV66rsiMrXQIPnVBHqqdUs364xZn4oX7BSOuqOwCwjDXNDsH7QNTA+2LXOWudRFU57rZea+CxCb89rbf5s3db+ZtPW971X8q4YVMeLD3audLTRVD6RB7dI2ebKbdLCfHbJnvArz4GLY+giAIr4CHH3543Obkwx/+MAC//Mu/zJ133snevXvHNYg3Gg3++3//7+zevZvW1lYuuOACvve97x1zgzNZqFInVkd+g+H75ogyG/GsqlfIOjsjgKY3XPHzoMK8uqjsMtfu0fPNQpALeaMVGzYxCvK+vzAY3c9nUrhjxW2o9iXQuRLbsgAtiThBOOU45eaQAlRmeBVDikG5dcvg1QU++RTGKvjxXD8deQiDxirLptFnuLz1ErpLfoxDFnxZP6pGuRE2pknWNmRdYGVUkHyGNTaMM/Au75Zc/qlwj2FLhcARnEIj8b2CwSE5BG3KPY/gRF+cM50WqoDWy1TDqLDWhVCZNWFGgP8+8O+sH13P5tpmru+8ntZI9uMTxYQHe692vtRU8f/u/H95KnmET7R/mMUrf/6EyTEFQZi+XHfddS/aN3rnnXeO+/2jH/0oH/3oRyf5rF6czJGzXnOyoUzuEypvvsqWFns9bC5jUuC+UnzWOWxMssHsPgscssYq2MOFmXe+oT9I6VXkstKlWdC5EtWxAlWZkZ/vVL9AgiBMCKfcHFKAcjcuudXwfW2+Ny2TlENmWgUcauzjubHn0FoT+aDqwdHHuKHzjYA3a8E62eS4xwhz8NJMKeHalk0e6JlmLuvMBqgHiafvt47CUPM4l3HaQiXRBHfjqLDOO9WF62ryMvlqN1TnuKpdy0JUuWNSXt7EJnzpwJfciDQzzDf6vsEvzfylSTnW6chp1f349OjTrBtZx7BOuLf6qAR6giAIRaq9ZIPJs4HjQXIUpJkUgjmvYwqN+iHbDO7yMICd0PSvyGzBwxw8q7CZa6cfINy+FDXvelj+q+gzfgk984pxgZ4gCKcfF110EfPmzeONb3wjP/nJT6b02Eo5ZUFY35RJXD9y1m9nc6mlafLM2DOkWqOtRVlFouHZsWdITWGNTJs+6RUSazYPxoKnRKZ8OMbImxC04XuoU98PmLkbByWGyc8vGL8EdUWYgRr67SqzGY5XwLzrYeVvopa9BzXvBlTX2ZMW6IGr6u1r7sP6/3314FcZTUdf+o7Cy+KUNGh5tfzVgb8ichNA+FHpR/Qn/XTH3Sf6tARBEE4OvPmUsuSmKuNcOcO4Be/KSdigRM5+Wykv9wwz70J/ifKtIoWgLvTfaY1VVeg+B9WxHFoXobw8U9JxgiCc6DmkGeUZ0BxEp2lm1uLklaFK5nvnrObijiuYWV6ANg2MjlHK0kqFKCoDaUGSWfLLqPESSuulnAXDwJBkC1U8QkAImYuxDck3X6kLwWEIIrMA0OQjGnQFqrOhbbGTZlbmgLEcef570L4cFU1NiGCxfOnAl8ZdNmSGuLvvbn5x5i9OyTlMd06bYC9U9QIJCX9/+O/5jTm/cQLPShAE4SSi2gsqRmu/IbAJWX9J2ixkmcOMpjCCIcyG8gPMQ6BnvXkAeBOBlKZNiKMSqjIT1bGMRns3B+p9rJh39Yl73oIgnLScFHNIASq9MLwZpRKsLgPKJbkIzphe1hlVaDdwdstKvEY9l1fqKO9lVqVCQsy7FadNXC+eN7Ky2o1eCMYv2t/HGj/KpmjaMt4gxjlm6twQptTmPCpaF7t+u3LPC/vtglvoFLOkvIRWPb5HrzPqPM6thVfKaRPsfavvW+N+t8ryjSPfkGBPEAQhUJ6JtQnWhqZ9m5umRDFujl4jd3grznjSOpstlZmqqBLQzAwL0tbZ/F7/F5ndvpqPLbkVALt/P6j+E/J0BUE4NZnyOaTgxi8EqaXCJ7vKPhlWL/TbeVOTsMU2TfezJpdUZsoIP7vZDzUnmAf6PmirIj96oTB/NKvaeTdNSnlfHmH+qHJ9hm0+sGtdiIqPM0PwBKNQfHbpZ0/0aUxrTptg790z381ZLWcB0N/fT39/P68783Un+KwEQRBODvZs6aNvzxBdgzXSNIxEiPKZdwEdOYe2bNZeMF0J/SGpv10McSuqdSG240xU2xK+3f8vrBsZRQ1/n3fXf4WllaUv69z2N/cTE9Nb6p3gZy0IwqnIlM8hBR/sOaWCzYaj+2QYfoRXkFcSDFfCzD0/086mLiA0qXceDgGhT5QFJ+LgklmUyodRCyp21btgfKX9+lyZmwd3LfNRkcyrExwTHuy91HypE8XSytJsY7F7bDe7k91c0XHFCTsfQRCEk4Xn1+/j4X/fSqOWsKi1SRzVaZyZUC77jQYR2fy7UMkDn22uOLmQ9jOiSl3QsRzVuTKz5VZA0zT58sEvA6DRfOXgV/ijhX/0kueW2IRf3/LrtOpW/nbF36KDkYAgCKckp+QcUoDKzLy6hjdPSQvz8kKFLww8Txt5oAe5rD3I44MjZ5htp5Q3bcEpKUwTZTU2GLNE+EDPJ+JaF2aDy6nOcSYygnAMJjzYe6n5UoIgCMLJQ5oYnlqzC6UV85f30FqbxdCenfTtH2LOwja/uQkumv5OWaO/D/BaFubjEY4jFfp2/7c5nBx2xyTlewPf472z3ksLLS96fv/W/28cSA4A8KOhH/GGzpeePWhSQ200QWtFta30cl8KQRCmgFNxDimAispYXXW/BLMp66tukI+i0XjTFuX78rw8M4r94PIwKkGDqTkZp4rp39/Pob1DGBPRPaudWQtasFqhMFBud4PL2xa54K7UPWHz7YTpz4QHey81X0oQBEE4eUiaKWnTUGlxXwdp1AUobOI3KNb4nrvg+BY5uVLrElTXSmhbgtIv/VXy1UPOSCHCbYxSUr526GvcHN98/HOzCV8+8GWU/99f7f8rru249kWre7WRJs+v30ff/hF0pJm/vIcl58xEa9kYCcLJwKk4h7Rv/wj7tvXTMWRo1EFZL9eMSwW5pu/lCyYnwXQF6wLANPXraYRv+st+Hjg0wJYnD1IbtegY9uyKOaN0JvPOP5ed25ewcvlbUVH0gvNKE8PhvcOkzZSuWW20doh0U3ghp03PniAIgvBCytWYWYs62fLEAbAwMlqiI7K0doeKm5cMxe1OntlxppcMvbLg6Z0z3snOxs5xl13dcTW8yCilYlXPYtnW2PaS1b1tTx1k37Z+ume1kSSGbRsO0NpRZs6Srld0voIgCAAHdw2y9l+eY/DwGHNb6lSoMXvmCC3zZvhAz+J67PCVOz87zwQDlyi/XRhdYxNQFS/z1Bw40MbOwytom7ecBrM4uHuMgQ1tzFt9JkbtPOZ5NRspj9y7le1PHyJNUrpntXHFjcuZuWDy5uEJpyYS7AmCIJzGKKW49PplgNvURC0z6Wqv0jmjBVoWoDrOwLavQL/GgbrHm5e0f3T/ce/zj0f+EXA9fgAGwzcOf+O4wZ4xlsHDY7R1Vqm0lqgAowN1Rofqr+ncBUE4fdm8fj9DfWPMX95NO/MY3fYY/fvHmDk3qB3Kbjh6mImnYzC+chl5k6vUy96xbjh7pRfaljhpZmUWhzY+x4GRncynB3Dr8kup5HZuPMzmJ/bTO6eNUiVi/45BHv/Rdv7ju8990WTcwMFR7ntuLUlquPaMK+md3y6S0GmOBHuCIAinOa2dFV7/n86iUUuoN0ZZ/8Bu1Mr3oLTrdztR24DfnvvbbKltGXdZcFU+FlorKq0xR/YO09ZdIU0MxljKFfmqEwTh1VGvJZQrMUopErqxSpMmxgV0KszEa3iTFW/gov34A2uh1AktC6B1EbQtQpVeOD9u0Vm9bH58P/u3DaBjhUksKy6a86LnNTbcAAuVVrdOt3dXGRmokzQMpcoLJZ/gAr1H12zm/269G6sMHXtnctGVZzB7sSgfpjPyDSgIgnAasWvXLgAeeuihY15vjGFEz+en6x6ekvNpNpvU63XWrl17zOsXsnDc78MMs5Zj3xZgdCxh34ERtm51IyA6Z5XZsneAHYfG9/kd7/lPNKOjo/T397Nv374pO97GjRvHuR0WaWlp4YILLpiScxGE6cCcJV3sfu4IAwdHiSjTZqG1O3YDzkn8wHRyA6vqTGhbCi3zoXUBKqq+5DEWnjmDa955Fs8+vJe0aVh89kzOft18kvT4Q85bO8soBaNDDcrViOG+GvPO6D5uoAdwaM8Q6/Y/zPDsQygUj4w8wpytMyTYm+ZIsCcIgjDNaTQa2c99fX0ALF68GK1faHTSaDR45plnWLp06ZSc28DAAPv375/Q452xosnoYAOlFR0zqsSl/HkaY3jyySeP+/wnmm3bttHa2srs2bMn/VgAGzduZPbs2XR2vrB6ABAdw+RBEITjc+bFc2nWErY9dRBop31WC71zvaxdRVCdD23zXOWuOvdlGVYdjVKKJefMYsk5s8ZfkR7/PovPmsnhPcNs3XCQob6U3vntXPSGpS96nJFklEdHH8W2uz7oh8ce5trm1a/4fIVTCwn2BEEQpiljY2MAPPLII9ll559/PmvWrGHOnDnE8Qu/AkJlaKoGFmutOXLkyJQdL0kSnnzyyeM+/4lm//79dHZ2Ttnz27x5MzNmzGDWrFnHvN5aK47ZgnAcDh9242EefPDB8X1sZeg937o550eW89xgD2l9Honu9sPPAXb7/yYOYwzglAjH6quzHZbecxLSxNLSOcqmbRtg2/Ef798Gv0+9NEb5UDtWW9LU8K/1bxCtu949nl8bHn744Snp46vVaiRJwrp16yb9WOC+35RSWdLzWFx00UVUKpUpOZ+pQoI9QRCEacayZcsol8usX78egAsvvDD7WRAEQcgpJj+2bHE9wosWLTpusPP06DBLFy2ltbV10s8tSRIGBgZYuHDhhCgRdgw+z2C8h+reHlSqqM0ZYMfCGou63wu44LK/v3/CjvdSHDp0iOHhYRYtWjTpxwLXxhDHMXPnzj3m9dbaKXneU40Ee4IgCNOIL3zhCwwNDWGM4ZJLLuGRRx6Zkk2JIAjCqUQI8h5//PHssksuuYR169Yxb9684276n332WWbNmkVX1+T3uTUaDZ5++mnmzZs3IRLs/zXnf3F42eFxl/XGvbRFbYALLjds2MDcuXOnRPnQbDZJkoT58+dP+rHAtTGUSqXjHm+6Kh+mX/gqCIJwGvPOd76TQ4cOkSTJtJOiCIIgvFaUUkRRlAV5c+bkrpfTvae1LWpjcWXxuP9CoCdMXyTYEwRBmEYcr1dLEAThdOfpp59m1qxZ1Gq1LMibqn5aQThRSLAnCIIwwdx///383M/9HPPnz0cpxd133/2S97nvvvu45JJLqFQqrFixgjvvvHPSz1MQBOF0YsGCBQwNDQES5AmnDxLsCYIgTDAjIyNceOGF/O///b9f1u23bt3KW97yFt7whjewfv16br31Vt73vvfx3e9+d5LPVBAE4fShq6uLsbExSqXSiT4VQZgyJNgTBEGYYG688UY++clP8o53vONl3f4LX/gCy5Yt48/+7M84++yz+cAHPsB//s//mc9+9rOTfKaCIAhTiygfBGFqkWBPEAThBLN27Vquv/76cZe96U1vYu3atVN6HrWRJkNHaqTN6edGJgjCycGpqnxo1lMGj4zRrJkpPa4gvFZk9IIgCMIJZt++feMc4cA5xA0ODjI2NkZLS8ukn8OOjYd59qE9jAyNse/QKIcvGaJ3fsekH1cQhNOLG2+8kRtvvPFl376ofAA4++yzeeCBB/jsZz/Lm970psk6zXEc2TfMhgd2MdxfY+fuIRbO7KPr8skfvSAIE8G0DPb27NkDwGOPPXbMOSm1Wo1arcYjjzwyJeczPDwMwOjo6JQczxiXdTre859oms0mzz777JRo4F/Oc+vt7WXx4sWTfi6CMF3oPzjCU2t2goKOngrbtqY8+cBOVr9tJeXqtPyaEAThFOF4yodbb711So7fbKRs+Mku+g+O0DOnDbPDsunh/cxbMoue2TK2QDj5mVbf4iGY2rdvH+AsyI8VEPT395Om6ZRZlBtjsNZO6fEOHz583Oc/0fT19dHd3T0lg5vTNH3J59bWJouvcGoxd+5c9u/fP+6y/fv309nZOSVVvZGBOvXRhLnLumjUG7R0RYwM1BgbbkiwJwjCCeVEKx9qIw2G+2v0zGmjXI1p6Ypp1BJGB+oS7AmnBNPiWzxUe5544gkALrzwQtatW8fChQuJ4xc+xSiKqNVqU1b9GR0dxVo7ZcdLkoSNGzce9/lPNJs3b2bOnDn09PRM+rFCFfHFnpu1Fmul50g4dbjqqqv413/913GX3XvvvVx11VVTcvxyNSYqacaGG0QlaIwZStUS5ZZp8RUhCILwqilXYirVmJGBOuVqTLNmiDo0JUmECacI08KgJQR55557LuCCOUEQhBPF8PAw69evZ/369YAzGFi/fj07duwA4GMf+xg33XRTdvvf+I3fYMuWLXz0ox9l48aN/J//83/4h3/4B37nd35nSs63d34HZ5w/m+H+Ovu3D4KFsy6bR0tbeUqOLwjC/8/encfZUZWJ//+cqrpL751e0p19hRASIBAImwgMGQEXxBV1RsCFcQRmxn2ZRX/qjCt+hVHH0RkF0QFFHMURBXFBQZZACJAEkpB97fS+3qVu1Tm/P86p292QAFk76Tzv1ytK3773Vt1enr5Pnec8j9ibsa58yFSmOP6MSSgFbZt6KeY0U09ooGmK7GkWR4ej9rJEKpUq7xFrbGwkl8tRUyO/eEKIsff4449z4YUXlj/+0Ic+BMBVV13FLbfcwq5du8qJH8CsWbO4++67+eAHP8hNN93E1KlT+e///u/D1nzA8xTzz5rCxOm19PcOsvLZHqbPbzosxxZCiBcz1pUPANOOb6R2QgVD/UW8Fd0cf0YLnqcO2/GFOBBHZbL38MMP8+53v7u8Z2vatGls27ZtjM9KCCGsCy644EVLifc0I+qCCy5gxYoVh/CsXpznKZqn1lLVELB+h1RHCCEOjcHBQdavX1/+OKl8aGhoYPr06Xzyk59kx44d3HrrrYCtfPjGN77Bxz72Md797nfz+9//njvuuIO77777sJ53XXMldc2VrN2akkRPHFWOymTvpz/9KcuWLeP888/fY1OQKIoACMOwvJ9vpEKhgDGGMAwP+bk+/3wO9/H29PoPhVKpdFheX6lUAuw+yGw2u8fPf/SjH+Xqq6/mpJNOwvM8ampqUEoCsxBgmxzB3uND0ujqcMWrUqk0ZvH4cMRHrfVhi49g9yzn8/k9Hs8Yw1e+8hVOPPFELrnkEnzfl/goDrsjufJhZHzcUxO4OI6J4/iw/U4nxwjD8LBsUTrc8TH5eh6u+BjHMVrrvR7vN7/5DatWreLaa68lk8kAjIsYqcxR2Mmira2NSZMmcdttt1FZWck555zDQw89xFlnncUjjzzC6aefzvLly6VJxzEol8vxjne8Y9Rt27Zto7a2dlz8wgrxUjo7O2lubua2225j6dKlPPTQQ+UYCbB48WKeeOIJiY/HIImP4ljX09NDQ0ODxEexR3uLkVOmTDmq4+Mha9DyzW9+k5kzZ5LNZjnzzDNZtmzZoTpUmdYaz/N4/PHH5Rf1GFVRUcFtt93Gf//3f5dvmzZtGnV1dQwMDIzhmQkxdpIrtEopuRB2DJP4KMQLSXwUiYqKilHxEWyMPNrj4yEp4/zxj3/Mhz70If7zP/+TM888kxtvvJGLL76YtWvXMnHixIN+vKS0TynFOeec84LsW2vNc889R19fHwsWLDhsc9hyuRwrVqxg0aJFh3X2WxRFPPzww5x99tmHZfQCwJYtW+ju7mbRokWH7erHrl272LhxI8cdd9wLfq6MMcybN48PfehDDA0N8Y1vfANjDP39/XIFWxxzktKcM888s9zYKmGMYefOnWzevJl58+bR1HR4GrNorVm+fDlTp05l0qRJh+WYMDbxsbe3l2eeeYbTTz+ddPrwdDjt7+9n9erVTJw4kdmzZ4+KecYYzj77bP7t3/6N3/3ud3zxi19Eay3xURyTkvh4xhlnlEv3Rurt7eXZZ59l0qRJzJgx47D9fjz77LN4nse8efMOy/FgbOJjGIY8/vjjzJ8//7CM8AIoFousXr2aIAiYP3/+qL+Lxhj+4i/+gltvvZUbb7yRa6+9ljiOj+r4eEjKOM8880zOOOMMvvGNbwD2j/q0adP4u7/7Oz7xiU8c8PM/v4xTyjbFnuxpOR7Gx5K8EHszsozzla98JY8//jhLlizhsccekxgpRpGyTnGsGVnGecEFF7Bs2TLOOOMMqQgTLzCe4uNBL+MMw5Dly5ezdOnS4YN4HkuXLuXhhx8+2IdDKSW/pGKP9lSyBONjSV6Il8P3fTzPY9myZRIjxQvsrWRJyjrFscLzPLkQJvZoPJW9H/Q12s7OTuI4pqWlZdTtLS0trFmz5qAcI+mWlMvlWLx48R47FC1btoz/+7//49prr6W1tfWwZuBhGPKhD32ID37wg8yZM+ewHTcRxzHPPvss8+fPP6wD5o0x3HXXXWzevJkPfOADh+24YEt5n332Wb773e/ymc98hvr6+lHntWLFCnbv3s0nPvEJ8vk8Tz31FCeffDK1tbVH1dUZIV5Ksv8kl8sxODjIggULXvBGZteuXXzxi1/k2muvZe7cuYc1TgB87nOf45xzzuGiiy46rMeFsYuPAE899RTf//73ueGGG/bY6e9Q0VqzY8cO/v3f/533vOc9nHDCCeXPJfGxUCjwhS98gQceeIAvf/nLUtYpxqUkFuZyOYaGhvYYH4vFIp/61Kd4zWtew5IlS/bY+ftQuv322xkcHOQ973nPYY0TMLbxsbu7m3/5l3/hM5/5zGHbTpDo6uri+9//PnPnzuWyyy4b9TljDE888QQ/+MEP+N73vsf73ve+oy4+HvQyzp07dzJlyhQeeuihUQMvP/axj/HHP/6RRx999ICPsWXLFmbOnPmS95swYQI9PT0HfLz9EQQBcRyPydWiIAh485vfzJ133lmuRT9cKisry63bD7d0Oo3neRQKhZf9mL6+Pmpraw/hWQlxeG3bto3p06e/5P0qKyspFAqHbTzLSEopstks+Xz+sB97LONjKpUqt/4eC3V1dfT19e3TYyRGivHk5cbHVCpFNpsdsxWcsXovNZbxEez7uMM1huH5mpqa6Ozs3KfHHC3x8aAne2EYUllZyZ133snll19evv2qq66it7eXu+6664CPobVm586dVFZWytK7eNmMMQwODqKUKs+XkpU9Md5IfBT7Y0/xUSl11Fy5FuLlkPgo9kcSH8FerKyvrz+q4uMha9CyZMkSvv71rwP2l2v69Olcf/31B6VBixBCCCGEEEKIF3dI+qp+6EMf4qqrruL0009nyZIl3HjjjQwNDfGud73rUBxOCCGEEEIIIcTzHJJk74orrqCjo4NPfepTtLW1sWjRIu65554XNG0RQgghhBBCCHFoHJIyTiGEEEIIIYQQY+vw9nQVQgghhBBCCHFYSLInhBBCCCGEEOOQJHtCCCGEEEIIMQ5JsieEEEIIIYQQ45Ake+KY8s1vfpOZM2eSzWY588wzWbZs2Yve/yc/+QknnHAC2WyWk046iV/96lejPm+M4VOf+hSTJk2ioqKCpUuX8txzzx3KlyCEEIeMxEghhNizozY+GiGOET/60Y9MOp023/ve98w//dM/merqagOYU0891Tz66KMvuP+f//xn4/u+edOb3mROO+00k81mDWDOPPPM8v2/+MUvmrq6OnPhhRcaYNS/iy+++HC/RCGE2G8SI4UQYs+O5vgooxfEMePMM8/kjDPO4LzzzuPKK6/kP/7jP/jkJz/JzJkzee6551i7di0TJ04s3/+KK65gaGiIuro6zj33XM455xyuuuoqCoUCu3fvZtWqVZxxxhl8+MMfZtWqVezevZubbrqJk046iZtuuokrrriCCRMmjOErFkKIl09ipBBC7NlRHR8PWtooxBGsWCwa3/fNz372M7NkyRJz3XXXGWOMufLKK83ChQuN7/smCAKzZMmS8hWXadOmma997Wujnueyyy57wdWXdDptrrrqKvP617/eGGPMeeedZ5YsWWJaW1tNNps1F110kVm3bt3hfLlCCLFP9hYjlyxZYioqKgxgpk6dOuoK9vNj5M033/yC+AiYFStWlGOk1tpMnz7dVFZWSnwUQhwVjvb4KHv2xDGhs7OTOI5paGhg+fLlLF26FICenh5Wr17NmWeeyXnnnccpp5zCxRdfTHt7O21tbbS0tIx6ntraWpRSZDIZ/uVf/gWAxx57DID777+fiRMn8uijj/L444/z5S9/mUcffZSqqiouvvhiCoXC4X3RQgjxMu0pRv74xz9m+fLltLa2ctlll+H7fjk+AnuMkdlsloaGhlExMrnP/fffT01NDVu3bqW2tpZ7771X4qMQ4oh3tMfH4IAeLcRRpre3lziOy79cjz/+OM3NzZx77rnccccdbNy4kd7eXhYvXozWeo/PYYxBKcXnPvc5AE455ZTy58477zweeeQRUqkUH/zgB+nq6ip/rqKigosvvph77rnnEL5CIYTYfyNj5Ac+8AFOPvlkUqkUQ0ND7Nq1izAMWbx4MT/96U/3+HilFL29vWityzFy8uTJACxevJgtW7bQ1NTEzp07Of/888uPk/gohDjS7S0+zps3jyeffJKBgQGmTJnCaaedtsf3kEop8vn8qPeQSXwESKVSzJgxg56eHt74xjeW30NWVFQA7HeMlJU9cUxoamrC9306OzvLt4VhSFtbGzNmzGDNmjVs3bqVT3/60+UrNFpr1q9fP+p5li9fDkBdXR3Nzc0A/Nd//RerVq3C931e+9rXUiqVeNWrXkVXVxdnnHEGu3bt4qyzzuI973kPt99+++F70UII8TI9P0aWSiWWL19OXV0dcRxz//33M2XKlFFXsJubm9m9e/eo5ykUCmitaWpq4rzzzgPgzjvvxPd93vrWt9LZ2UljYyPTp08H4I477pD4KIQ4or1YfGxtbWXNmjVs27ZtVJXYnt5DFgoF8vk8NTU15fh43333ld9DlkolGhsbecMb3lB+D5nEx127du13jJRkTxwT0uk0ixcv5vHHH8f3fXbv3k17ezvGGBYvXszDDz/MjBkzmDNnDqtXr2bnzp0YY/j2t79dfo4bbriBtWvXsnjxYu655x7uuOMOMpkM1157LUuXLiWOY772ta8BcOmll5LJZAjDkNbWVorFIrfffjuTJk16We16hRDicHp+jFy/fj1xHJcbB8ydO5fJkyeX42Nvby9BEPC73/2u/ByPP/44AH/xF3/BnXfeSV1dHQDvete7iOOYm266CYBVq1YxZcoU0uk03d3dEh+FEEe0F4uPZ599dvk95PTp01mxYgW//OUvX/AecmR8/MlPfkJdXR1KKb7//e9z8cUXE8cxAE899RSXXHJJ+T3ktGnTeOKJJzjrrLP2P0Ye8K6/w+Qb3/iGmTFjhslkMqOaaOzNHXfcYebNm2cymYxZuHChufvuu0d9Xmtt/uVf/uVlNdHYl2N/5zvfMa94xStMfX29qa+vNxdddNEL7n/VVVftU4vVfTn+njaAZjKZ/X7t+3r8888/f48bUF/96lfv1+v/4x//aF772teaSZMmGcD87Gc/2+uxE3/4wx/MqaeeatLptJkzZ465+eabjTG2bW4mkzGzZ882p59+uqmqqjKAOe644wxgZs2aZd7ylreYs846y8ydO7d8bjfccIP58Ic/bDKZjPF936xcubJ8rA9/+MPlJi1/+Zd/aebMmWMA8//+3/8zgKmqqjI1NTUGMM3NzebPf/6zueaaa0x9fb3ZvXv3S74WIV6OsYyP+3p8iZEHL0YezPhozHCMbGxsLDcd8DzPeJ5nGhoazOzZs83kyZPL8XH+/PkmCIK9xsi1a9eWz/+cc84x73znOw1gmpqazBve8AYDlI8j8VEcKhIfJT4eyvj485//vPwect68eWby5Mnmf//3f1/yPWQYhqa+vt4Apqamxpxxxhnlx3zve98rv4cMgsAA5oILLtjvGHlUJHsjZ1usXr36JV9oMtviy1/+snnmmWfMP//zP5tUKjXqTXoy2+LnP/+5eeqpp8xll11mZs2aZfL5/AEd+x3veIf55je/aVasWGGeffZZc/XVV5u6ujqzffv28n2uuuoqc8kll5hdu3aV/3V3dx+U137zzTeb2traUc/d1tY26j4v97Xvz/G7urpGHXvVqlXG9/1RvzD78vp/9atfmX/6p38q/+K81C/rxo0bTWVlpfnQhz5knnnmGfP1r3/d+L5v7rnnHmOMMV//+tfLs1EaGxuNUsq0trYawJxwwgnmqquuMrNnzy6/mWltbTVNTU0GMNOmTTM/+MEPyuc8MDBgPvrRj5pUKmUA4/u+Oe2008q/oK2trebOO+80CxcuNBMmTDATJkwwZ5xxhgnD0EyePNl84QtfeNHXIsTLMZbxcX+OLzHy4MXIgx0fjTHm6quvHvUm6oQTTjCAqaysNGeffbaZM2eOmTp1avlC2R133LHXGPmBD3ygfFEtk8mU37TMnTvXzJw500yaNMksWLBA4qM4ZCQ+Snw8lPHxpJNOMul02gBm4cKF5fj4iU984mW9hzz++ONHvYdMnqe2trb8HrKystLMmDHDzJ8/f79j5FGR7I1sc2qMMXEcv+gLfetb32pe85rXjLrtzDPPNO973/uMMfaqRGtrq/nKV75S/nxvb6/JZDLm9ttvP6BjP18URaampsZ8//vfL982sk3/S9nX4998882mrq5ur8+3L699f47/fF/72tdMTU2NGRwcLN+2L69/pJfzy/qxj33MLFiwYNRtV1xxxairPkuWLDHnnXeemT59ulFKmYaGBgOYv/3bvzVxHJt0Ol1O2o477jgzY8aMPV5p+vSnP21e8YpXmHQ6bVKplGlubjZBEBillPF937S1tZXb9QZBYG688UYDmN/+9rfmyiuvNJdddtk+fw2EeL6xjI/7c/znkxh5cGLkwYyP1113nfn6179efhMDmDe+8Y0mjmMzZcoUM2vWrHJ8NMbsNUZOnz7dpNNp09jYaF71qleV3/QA5pprrjFbt26V+CgOKYmPEh+NOXTxUSlVTtYefPDBcnxMVh9f7D3kv/zLv5iKigrT0NBgqqury/GxsrLSpFIp09bWZjo6OgxgPvShD5kNGzbsd4w84vfshWE4qlU+gOd5LF26lIcffniPj3n44YdH3R9sB5vk/ps2baKtrW3Uferq6jjzzDNHPef+HPv5crkcpVKJhoaGUbcnbfrnzZvH+9///lFdGw/0+IODg8yYMYNp06bx+te/ntWrV5c/93Jf+8F6/d/97nd529veRlVV1T6//v3xUt/75DV96EMfYsuWLdx+++0MDg4C8OCDD/L+97+fyspKfvWrXwHQ3d3N29/+doy9MMJnPvMZ7r33XjZs2MBll13Gk08+SRiGfPjDH6a9vZ1SqcRVV11FHMf86U9/4oEHHiCOY5qbm3nf+95HU1MT69evp6Wlhba2toPymsWxayzj4/4e//kkRh6+GPly4+PSpUu5/vrrufXWW0mn0wCsW7eO97///QwNDZXv393dzSc/+Uk2b978gvi4fPlyuru7CcOQa665hnvvvZeOjg6uvvpqAP7yL/+SdevWSXwUh4zER4mP+2J/4+Ppp58OwGc/+9lyfLzlllsAGBgY2Gt8fO655ygUCgwODvKv//qvdHR08MUvfhGlFKVSia1bt/JXf/VXALzuda9j9uzZ+x0jj/hkL5lt8fxZFS/2Qvc022Lk/ZP/f6nn3J9jP9/HP/5xJk+ePOoH6JJLLuHWW2/ld7/7HV/60pf44x//yKWXXlrenHkgx583bx7f+973uOuuu/jhD3+I1ppzzjmH7du379NrPxivf9myZaxatYr3vve9o25/ua9/f+zte9/f308+n3/Ba7riiiv46le/iud5rFq1iieffJJ77rmn3GnT93127dpVfq6enh6uueYa5s+fz6tf/WrCMMT3fT7ykY+U7/PmN78ZgOuvv55Xv/rVAHzta1+js7OTrq4uJk2adMCvUwgY2/i4v8d/PomRhy9GSnwUxxKJjxIf98X+xMcbbriBVatWAZTjY0tLS3nsQmVlZfm5nh8f+/v7mTBhAnEc89d//dcAfOxjH+N1r3sdAK94xSvI5XIAZDIZtm/fvt8xUubsHUJf/OIX+dGPfsT9999PNpst3/62t72t/N8nnXQSJ598MnPmzOH+++/noosuOqBjnn322Zx99tnlj8855xzmz5/Pt7/97fJMj8Plu9/9LieddBJLliwZdfuhfP374/rrr+c3v/kNv/zlL7n22mupra3l/e9/PwBf+tKXuPrqq7nyyiuZMmUKX/va18odN8Fe0WppaaGxsbF8W3t7O7W1tVx55ZVcdtllXHjhhaxdu5Yvf/nLzJ07l4svvpif/vSntLa2HvbXKsSRRGLkkR8jJT4KMTYkPh4d8XHr1q387//+L9u3b2fNmjXU1tZy4403ApQHpycxcsuWLaMeX1dXx+zZs8sxUinFq171Kn71q1/xN3/zN+UYed9993HXXXftd4w84lf2ktkWz5/ls3v37r2+0NbW1he9f/L/L/Wc+3PsxA033MAXv/hFfvOb33DyySe/6H1HLs2OdCDHT6RSKU499dTyc7/c136gxx8aGuJHP/oR73nPe17yHPf2+vfH3r73tbW1VFRU7PU1TZgwgYULF/KpT32KRYsW8eSTTwJQX18PwNatW0ddwQZYu3Yt/f39lEqlUbffd999LFmyhKeffpo3velNaK254YYbWLx4MQ888ACpVIrf/e53owKqEPtjLOPj/h4/ITHy8MdIiY/iWCLxUeLjvtjf+Lh7924WLFjADTfccMTGyCM+2UtmW4yc5aO1ftEXevbZZ4+6P9gvXnL/WbNm0draOuo+/f39PProo6Oec3+ODfDlL3+Zz33uc9xzzz3lWt4Xs7el2f09/khxHLNy5cryc7/c136gx//JT35CsVgsL02/mANZmn6+l/rev9hresc73sHq1at59NFHy7NRNm3axJNPPsmtt97KLbfcwic/+UmuvPJKwJY7bNy4kfb2dj72sY+xZs0a/uM//oM77riDj3zkI9x77720t7dz++23E4Yh5557Lt3d3bz//e9ncHCQr371q3z+858vn8dDDz1EOp1+wfkLsTdjGR/39/ggMRLGJkZKfBTHEomPEh/3xYHEx7PPPpvrr7/+sMTIq6++mp07d9Lf318+j5eMjy+7lcsYSmZb3HLLLeaZZ54xf/M3f2Pq6+vL7WDf+c53mk984hPl+//5z38uz/559tlnzac//ek9ts6tr683d911l3n66afN61//+r2OXtiXY3/xi1806XTa3HnnnaPawg4MDBhjjBkYGDAf+chHzMMPP2w2bdpkfvvb35rTTjvNHHfccaZQKBzwa//MZz5j7r33XrNhwwazfPly87a3vc1ks1mzevXqfX7t+3P8xCte8QpzxRVXvOD2fX39AwMDZsWKFWbFihXl+XUrVqwwW7ZsMcYY84lPfMK8853vLN8/aZ370Y9+1Dz77LPmm9/85gta577Ya/rDH/6wx65JV111lTHGdoE6//zzR53jH/7wB7No0SKTTqfN7NmzR7UITnz9618vd6ZbsmSJeeSRR8zdd99tUqmUeeyxx0x/f7+ZPXu2+eAHP/iCxwrxYsYyPu7P8SVGWgcjRkp8FOLFSXyU+Hi44qMx5rDFyK9+9av7FB+PimTPmD3/MUicf/755S9k4o477jDHH3+8SafTZsGCBXsditnS0mIymYy56KKLzNq1aw/42C/Wpt8YY3K5nHnVq15lmpubTSqVMjNmzDDXXHPNC+aY7O/xP/CBD5Tv29LSYl796lebJ554Yr9f+74e3xhj1qxZYwDzm9/85gXPta+v/3C+uRgL1157rTn++OPNO97xDnPSSSftMVgL8VLGMj7u6/ElRh68GCnxUYiXJvFR4uOxHh+VMcbsdU1TCHFI5fN5Fi5cyLZt21i+fDknnXTSWJ+SEEIcESQ+CiHEnu1LfDzi9+wJMZ5t2LCBnTt3orVm8+bNY306QghxxJD4KIQQe7Yv8VFW9oQYI2EYsmTJEhYtWsS8efO48cYbWblyJRMnThzrUxNCiDEl8VEIIfZsX+OjJHtCjJGPfvSj3HnnnTz11FNUV1dz/vnnU1dXxy9/+cuxPjUhhBhTEh+FEGLP9jU+ShmnEGPg/vvv58Ybb+QHP/gBtbW1eJ7HD37wAx544AG+9a1vjfXpCSHEmJH4KIQQe7Y/8VFW9oQQQgghhBBiHJKVvaPcrbfeSmNjI8VicdTtl19+Oe985zvH6KyEEGLsSXwUQog9k/h47JBk7yj3lre8hTiO+cUvflG+rb29nbvvvpt3v/vdY3hmQggxtiQ+CiHEnkl8PHZIsneUq6io4B3veAc333xz+bYf/vCHTJ8+nQsuuGDsTkwIIcaYxEchhNgziY/HDkn2xoFrrrmG3/zmN+zYsQOAW265hauvvhql1BifmRBCjC2Jj0IIsWcSH48N0qBlnFi8eDFvfvObedWrXsWSJUvYvHkz06ZNG+vTEkKIMSfxUQgh9kzi4/gXjPUJiIPjve99LzfeeCM7duxg6dKl8osqhBCOxEchhNgziY/jn6zsjRN9fX1MnjyZKIq49dZbueKKK8b6lIQQ4ogg8VEIIfZM4uP4J3v2xom6ujre9KY3UV1dzeWXXz7WpyOEEEcMiY9CCLFnEh/HP0n2xpEdO3bwV3/1V2QymbE+FSGEOKJIfBRCiD2T+Di+SRnnONDT08P999/Pm9/8Zp555hnmzZs31qckhBBHBImPQgixZxIfjw3SoGUcOPXUU+np6eFLX/qS/KIKIcQIEh+FEGLPJD4eG2RlTwghhBBCCCHGIdmzJ4QQQgghhBDjkCR7QgghhBBCCDEOSbInhBBCCCGEEOOQJHtCCCGEEEIIMQ5JsieEEEIIIYQQ45Ake0IIIYQQQggxDkmyJ4QQQgghhBDjkCR7QgghhBBCCDEOSbInhBBCCCGEEOOQJHtCCCGEEEIIMQ5JsieEEEIIIYQQ45Ake0IIIYQQQggxDkmyJ4QQQgghhBDjkCR7QgghhBBCCDEOSbInhBBCCCGEEOOQJHtCCCGEEEIIMQ5JsieEEEIIIYQQ45Ake0IIIYQQQggxDkmyJ4QQQgghhBDjkCR7QgghhBBCCDEOSbInhBBCCCGEEOOQJHtCCCGEEEIIMQ5JsieEEEIIIYQQ45Ake0IIIYQQQggxDkmyJ4QQQgghhBDjkCR7QgghhBBCCDEOSbInhBBCCCGEEOOQJHtCCCGEEEIIMQ5JsjfOzJw5k6uvvnqsT0MIIY5IEiOFEEIcSyTZO4Q2bNjA+973PmbPnk02m6W2tpZzzz2Xm266iXw+P9an97L813/9F+effz4tLS1kMhlmzZrFu971LjZv3jzWpyaEOMqNhxg5UqlU4sQTT0QpxQ033DDWpyOEEEIQjPUJjFd33303b3nLW8hkMlx55ZUsXLiQMAx58MEH+ehHP8rq1av5zne+M9an+ZJWrFjBrFmzuOyyy5gwYQKbNm3iv/7rv/jlL3/JU089xeTJk8f6FIUQR6HxEiNH+vrXv87WrVvH+jSEEEKIMkn2DoFNmzbxtre9jRkzZvD73/+eSZMmlT933XXXsX79eu6+++4xPMOX7z/+4z9ecNvll1/O6aefzq233sonPvGJMTgrIcTRbDzFyER7ezuf/exn+fjHP86nPvWpsT4dIYQQApAyzkPiy1/+MoODg3z3u98d9SYmMXfuXP7hH/4BgPPPP59TTjllj88zb948Lr744vLHWmtuuukmTjrpJLLZLM3NzVxyySU8/vjjL3o+vb29fOADH2DatGlkMhnmzp3Ll770JbTW+/X6Zs6cWX5eIYTYV+MxRn7iE59g3rx5/PVf//XLfowQQghxqMnK3iHwf//3f8yePZtzzjnnJe/7zne+k2uuuYZVq1axcOHC8u2PPfYY69at45//+Z/Lt73nPe/hlltu4dJLL+W9730vURTxwAMP8Mgjj3D66afv8flzuRznn38+O3bs4H3vex/Tp0/noYce4pOf/CS7du3ixhtvfFmvqauriziO2bp1K5/97GcBuOiii17WY4UQYqTxFiOXLVvG97//fR588EGUUi/9BRBCCCEOFyMOqr6+PgOY17/+9S/r/r29vSabzZqPf/zjo27/+7//e1NVVWUGBweNMcb8/ve/N4D5+7//+xc8h9a6/N8zZswwV111Vfnjz33uc6aqqsqsW7du1GM+8YlPGN/3zdatW1/WeWYyGQMYwDQ2Npp///d/f1mPE0KIkcZbjNRamyVLlpi3v/3txhhjNm3aZADzla985WW9PiGEEOJQkjLOg6y/vx+Ampqal3X/uro6Xv/613P77bdjjAEgjmN+/OMfc/nll1NVVQXAT3/6U5RSfPrTn37Bc7zYleSf/OQnnHfeeUyYMIHOzs7yv6VLlxLHMX/6059e1nn++te/5le/+hVf/epXmT59OkNDQy/rcUIIMdJ4i5G33HILK1eu5Etf+tLLej1CCCHE4SRlnAdZbW0tAAMDAy/7MVdeeSU//vGPeeCBB3jlK1/Jb3/7W3bv3s073/nO8n02bNjA5MmTaWho2Kfzee6553j66adpbm7e4+fb29tf1vNceOGFAFx66aW8/vWvZ+HChVRXV3P99dfv0/kIIY5t4ylG9vf388lPfpKPfvSjTJs2bZ+OK4QQQhwOkuwdZLW1tUyePJlVq1a97MdcfPHFtLS08MMf/pBXvvKV/PCHP6S1tZWlS5ce8PlorfnLv/xLPvaxj+3x88cff/w+P+ecOXM49dRT+Z//+R9J9oQQ+2Q8xcgbbriBMAy54ooryrNHt2/fDkBPTw+bN29m8uTJpNPpAz5PIYQQYn9IsncIvPa1r+U73/kODz/8MGefffZL3t/3fd7xjndwyy238KUvfYmf//znXHPNNfi+X77PnDlzuPfee+nu7t6nK9dz5sxhcHDwoLwpGimfz1MsFg/qcwohjg3jJUZu3bqVnp4eFixY8ILPff7zn+fzn/88K1asYNGiRfv83EIIIcTBIHv2DoGPfexjVFVV8d73vpfdu3e/4PMbNmzgpptuGnXbO9/5Tnp6enjf+97H4ODgC9p3v+lNb8IYw2c+85kXPF+yj2VP3vrWt/Lwww9z7733vuBzvb29RFG018dGUURPT88Lbl+2bBkrV67ca3c7IYR4MeMlRv793/89P/vZz0b9+/a3vw3A1Vdfzc9+9jNmzZq118cLIYQQh5oyL/ZXUOy3X/ziF1xxxRVUVFRw5ZVXsnDhQsIw5KGHHuInP/kJV199dflNQeKkk05i1apVzJ8/n2eeeeYFz3nllVfygx/8gEsvvZRLLrkErTUPPPAAF154YbmccubMmVxwwQXccsstgG0rft555/H0009z9dVXs3jxYoaGhli5ciV33nknmzdvpqmpaY+vobe3l6lTp3LFFVewYMECqqqqWLlyJTfffDPZbJZHHnmE44477uB+4YQQx4TxECP3ZPPmzcyaNYuvfOUrfOQjH9n/L5AQQghxMIxdI9Dxb926deaaa64xM2fONOl02tTU1Jhzzz3XfP3rXzeFQuEF9//yl79sAPP5z39+j88XRZH5yle+Yk444QSTTqdNc3OzufTSS83y5cvL93l+W3FjjBkYGDCf/OQnzdy5c006nTZNTU3mnHPOMTfccIMJw3Cv518sFs0//MM/mJNPPtnU1taaVCplZsyYYd7znveYTZs27dfXRAghEkd7jNwTGb0ghBDiSCIre0eQm266iQ9+8INs3ryZ6dOnj/XpCCHEEUVipBBCCLFvJNk7QhhjOOWUU2hsbOQPf/jDWJ+OEEIcUSRGCiGEEPtOunGOsaGhIX7xi1/whz/8gZUrV3LXXXeN9SkJIcQRQ2KkEEIIsf9kZW+MJZv56+vrufbaa/m3f/u3sT4lIYQ4YkiMFEIIIfafJHtCCCGEEEIIMQ7JnD0hhBBCCCGEGIck2RNCCCGEEEKIcUiSPSGEEEIIIYQYhyTZE0IIIYQQQohxSJI9IYQQQgghhBiHJNkTQgghhBBCiHFIkj0hhBBCCCGEGIck2RNCCCGEEEKIcUiSPSGEEEIIIYQYhyTZE0IIIYQQQohxSJI9IYQQQgghhBiHJNkTQgghhBBCiHFIkj0hhBBCCCGEGIck2RNCCCGEEEKIcUiSPSGEEEIIIYQYhyTZE0IIIYQQQohxSJI9IYQQQgghhBiHJNkTQgghhBBCiHFIkj0hhBBCCCGEGIck2RNCCCGEEEKIcUiSPSGEEEIIIYQYhyTZE0IIIYQQQohxSJI9IYQQQgghhBiHJNkTQgghhBBCiHFIkj0hhBBCCCGEGIck2RNCCCGEEEKIcUiSPSGEEEIIIYQYhyTZE0IIIYQQQohxSJI9IYQQQgghhBiHJNkTQgghhBBCiHFIkj0hhBBCCCGEGIck2RNCCCGEEEKIcUiSPSGEEEIIIYQYhyTZE0IIIYQQQohxSJI9IYQQQgghhBiHJNkTQgghhBBCiHFIkj0hhBBCCCGEGIck2RNCCCGEEEKIcUiSPSGEEEIIIYQYhyTZE0IIIYQQQohxSJI9IYQQQgghhBiHJNkTQgghhBBCiHFIkj0hhBBCCCGEGIck2RNCCCGEEEKIcUiSPSGEEEIIIYQYhyTZE0IIIYQQQohxSJI9IYQQQgghhBiHJNkTQgghhBBCiHFIkj0hhBBCCCGEGIck2RNCCCGEEEKIceioTPa01vT09GCMGetTEUKII0oSH7XWY30qQgghhBhjR2Wy19HRQUNDAx0dHZLwCSHECN3d3TQ0NNDe3i7xUQghhDjGHZXJXvIGZu3atQwODsoVbCGEeJ7nnnuO/v5+4jge61MRQgghxBg5KpO9xPbt21m3bh39/f1EUTTWpyOEEEeM7du3k8/nWblyJfl8Xlb5hBBCiGPQUZ3sgX1DUygUWLVqFblcTt7QCCGE43keW7Zsob+/n1WrVslFMSGEEOIYc9QnezD8hmZoaIhcLidlnUIIASilyv+9ceNGBgYGpKxTCCGEOIYEY30CB8PINzTr1q1j1qxZVFdX43njIpcVL6G7bZDOnQPUN1UycXodYH8mRv5cCHEsS2Lhxo0bmT17NlVVVQTBuAj/4iUM9RfZuaGHbGXAlOMa8Twl8VEIIY4h4+6v/datW5k8eTLbt29n1qxZe0z4urq66Orq4vjjjz8s57R9+3aMMUybNu2wHE9rXX5TdzgS3qeffprZs2dTXV19yI8VRRFPPfUUixYtwvd9lv92E3d/50nCfESQ9rjwbSdy/lvmo5Qik8nIGxohRti+fTtTp05l+/bte40PhUKBZ555htNOO+2wnFNvby+7du1i/vz5h+V4hzs+bty4kcrKSlpbWw/5sQBWr17N1KlTqaurY9vaLm7/wkP0dxXwfMUJSybz1o+cSSoTSHwUQohjxLhc+vI8jw0bNmCMKV/BHPmvWCzS39+/x88din+5XI6hoaHDdjxjDBs3btzr6z/Y/3p6eojj+LAcC2yyDtCze8gmeoWIito0Wht+f9tqtq7pwhgj+zeF2APP8140Phhj6OrqOmzxqlQq0dfXN27j4+DgIIVC4bC9vr6+PkqlEgA/vfExejvyVNSkCVI+qx/ezrJ7Nkh8FEKIY8i4W9kbaWSC8PzbR/7/WJ7LoTrW4T7myOMejmMopejaOUiYj6isTeP7Hn51mv7uPB3b+pl+QuMhPxchjmZHUnw8nMcbi/g4FrG4mIvo68iRrQgIAo8g8CjmS3RsGzhs5yGEEGLsjcuVPXFsqG+uJEh7FHMljDG2lDPlU99cOdanJoQQYypTmaKiJk2xEGGMISrZxjx1Eh+FEOKYIsmeOGpNnF7H+W+x+3z6uwuUSprFfzmLOYtaxvjMhBBibHme4vXXLiZbnWagu0BuIGTG/CbOft1xY31qQgghDqNxXcYpxr+L3rGQOae00LF9gPrmSuaeahM92Y8ihDjWzT9zCu//6lK2rekkU5ni+NMnkUr7Eh+FEOIYIsmeOOrNXNDMzAXN5Y/ljYwQQlgTp9UycVpt+WOJj0IIcWyRMk4hhBBCCCGEGIck2RNCCCGEEEKIcUiSPSGEEEIIIYQYh2TPnjiqmbgAue32X34XzHjbWJ+SEEIIIYQQRwRJ9sRRwxgDhU5qoo2w89eY4g4I+8CvBhWDX4VSShoQCCGEEEIIgSR74ghm4hDyOyC3A3LbILcTTMCEaC0MRmByoALAgDGQqhvrUxZCCCGEEOKIIcmeOCIYY6DUOyKx2w5RHtBAAKYIJkSNTO6MAc+zH2MgLcmeEEIIIYQQiaMy2fvWt77F3Llzx/o0xAEwumT32CX77QqdEA+BXwkmgrgIKmWTOaVAa5vToVFgbwMwypZwmhhS9WP2eoQ4UvzmN7+hpaVFypmFEEIIcXQmew0NDZx11llks1kAoiga4zMSL8WEfa4kczvk22yiF1TZJM3EoCPwfHdnbf8pAyj7z8TgBXY1L7kPvr0NA7oE6Qlj8+KEOILU1dUxZ84cKisr2bRp01ifjhBCCCHG0H6NXvjCF77AGWecQU1NDRMnTuTyyy9n7dq1L/qYW265BaXUqH9JsravrrjiCv7nf/6HUqkEwPLlywEIw3C/nk8cXEbHmNwOTOejmG0/w6y5CTbeCrvug75nIb/b3lG5RE5rm8wp3+Z26BGfNy75M+ClQYFCo5LkT3n2/kZDpmFMXq8QzzeWMfLMM8/koYceolgslmPiunXr9ut1CCGEEOLotl8re3/84x+57rrrOOOMM4iiiH/8x3/kVa96Fc888wxVVVV7fVxtbe2oNzwqKcXbD8YY4jgGYP78+axataqc9OVyuf1+XrHvPFPAG3wOUxywK3fhoN1jp3zQMegQUtXYFTpjV/H8lP04SeaUP+LzIxM5BcTuv/3hxM9EoDKUV/0UkK4fqy+BEKMcCTFSa828efN46KGHCILhUN/X17ffzymEEEKIo8t+JXv33HPPqI9vueUWJk6cyPLly3nlK1+518cppWhtbd2fQ76o2tpaAE455RSefPJJnnrqKQAefvjhPb5ZKpVKRFHEgw8+eNDPZU+KxSIAXV1dB+05V6dWo9GcVDrpBZ9L9urs7fUfEKNJxT1kdCfpuIMg6qO12EH7k5V0+gqPmNik8DyN0QrlxShdIvIq8bCJmmeKGJVCqzQeJYzWdmSC8tFGEVAgJo1CoTAYE+NhiLwsnolQJmbL5s2YIIM2Hr4pEntV7O55CICJEyfKnk4xpo60GDl79mza2toAysnk3uKD1hpjzGGLj1EUEYbhQTterjdiw6P9lAqapplZpp1cNep1HtL4uAeFQoHu7m527NhxyI8F9mLn6tWrRyX4I1VUVHDqqacelnMRQggx9g7Knr3kSnFDw4uX0Q0ODjJjxgy01px22ml8/vOfZ8GCBQfjFACorKwEYPHixTz++OMcf/zxeN4LK1W7urro7Oxk3rx5B+3YL2b79u0YY5g2bdpBeb5BPcinuj6FNppXNb2KWq921Oe11qxYsWKvr3+fxHm8Yht+YReq1Imf34bBt/vrjMaYanbv6qG+YQLZbAbiPEZVoJTBoFA6RKHRfhWKGIxGxSHGT9sGLLqIwXMVnR4Yg9IFe3+j7QqeLoGfRqs0Ki6yY/sQTS2tKC+FUQoV5dBVM6lvsd/PTCZzYK9ZiIPsSImRYOPjo48+utf4UCwWWbVq1WGLj729vezateugHK+/M8/3/98jDPXa8tUtTwySVXWc95bhiz8HNT6+DBs3bqSqqoqWlpZDfiyA1atXM3XqVOrqXHdiYyAexAu70Olm/Eztiz+BEEKIceWAkz2tNR/4wAc499xzWbhw4V7vN2/ePL73ve9x8skn09fXxw033MA555xT/sN0MKXTaQAaGxv3eHUzDEP6+/tpbm4+qMfdm66uLowxB+14d7XfRWjsm5n7uI+/bf7bUZ9PGtbs7fXvjTEGwi7XRGUXDG2BKOdKKD0IFFRkbMdMpWwihs9u5VNZUUllRRpiz5VsajAeRIO2ZNOrABPajpo6BN+VYMYKvIzbqwfEIRBAUO26ckZABH4WvIC4CEYFVFbX4HuBa+7iQcN0lPv6GmOkE6E4YhxpMdL3bSOkvcWHXC6HUuqwxUetNR0dHQfleI/94klyfSGZbIDyFGEhYtkvNvOad51OpiIF7H983F87duygqqrqkH89jTGYYg/Vpo0GnaOuqCHfjolDlM6D8lCtV6LS9RIfhRDiGHLAf+muu+46Vq1a9ZIlOGeffTZnn312+eNzzjmH+fPn8+1vf5vPfe5zB3oax4yBeIDbu25HuyYmP+76MW9vfDt1wb7PmCsPLc/vhKGtUOgCUwCVtgleNGgTsWRvndaANzzbTmv7OeX+mdh10MSNSXDz70iaqBibAHpBcgL2di8FpuQ+r8FPfixdN04V2FMY2cgFZe8bF20yKZ04xRFKYuThUxgMAYXy7NUjz1dobSjmo3Kyd7QzRkPYgyl0QrEDCp3oYheq1I9RaepyzxH0NqFLWZQxEFTaeK5SKNnXLIQQx5wDSvauv/56fvnLX/KnP/1pn688p1IpTj31VNavX38gp3DM+XHXj8nrfPnjoilye9ft/G3L377Io0YMLR/aDnk31y6/066wqQB0EZuUuUQuaYSi3DiEJFnzA3sfUxpupILCJI1S8IbHI4BLBD33fLEbr+C5Fb5kZIZLCJUbt6B8e5uO7fGMcfcvle9tkz3cZAZfZuyJI5LEyMNrzqIWHvq/5yjmI3xfEcWaSbMmUF2/f52fx5KOI1SpGwqdmLAbCu3E+U5UNIjyPIxKo0yI1q483kuVL8QZY1xoTGOMvVhnArt3UVb1hBDi2LJfyZ4xhr/7u7/jZz/7Gffffz+zZs3a5+eI45iVK1fy6le/en9O4Zi1fGj5y7pNmRiGtmHCXVDogMGNLtnKArHLmNzoAxjuiJl0wDR6xIpdsqJmgGQWngE0KM8memA/9tK4zMwOPB+5imciUMmbLve83ohkUrvZeYw4psm4oenalngmq3rlTM+ds4xdEEcQiZFj4+RXTufSd53CfT9chY41U+ZM4MpPvxLPO/SNWPaX0SVMoRNV7MIUOyDsw+R3oeMinhtPY/AhzoEKUF5yUU5jdATKx/NsXDTaNrAyykO52Gtwc0wzUv0ghBDHov1K9q677jpuu+027rrrLmpqaspd3urq6qioqADgyiuvZMqUKXzhC18A4LOf/SxnnXUWc+fOpbe3l6985Sts2bKF9773vQfppYw9bTSeOrQb/r8242v0RD2jbpsQTMCU+u1eu1wbanAjM4sPw/a14Pt25S4ugJ8eLofUyiVabtyBiV3Jpiu9NK5EMynBHFXCmZRs2qvIqvwYGLUySGCPbQ/qEkQ1osRT25JRkuMHw5WfJnLJoLJJo/Ltf2OHqNs5eynb5AUFqX0vYxXiUJEYOZoxhlIxJpXxD2kHTKUUF/3VQl755vmEhRKVtZnD0nHz5dBRARV2YYpd9gJcsRNTGrIlmV7KxlGj0cpH6SJKZUliqcHYa29+2sXGGGO0LYTw0kA0fIEMVY6LxsQQl2zozhyePZhCCCGOLPuV7H3rW98C4IILLhh1+80338zVV18NwNatW0d1Ouvp6eGaa66hra2NCRMmsHjxYh566CFOPPHE/TvzI8z/9fwf3+v4HrfOuZUav+aQHSfrZWkNJkKhbXivXW67XfXy0zYBCgfcXPIkMXNlO0l5JNqtuCUfG1eyOaLc0ri9dEA5efP98oflkk2SNTYz+jnLs/Tcz0B5r13Cc3vxPNdkZcRsPWOAaMScPZdIKh+Msl06dQR+hb1fUI3yRj63EGNLYuSw51a08f1P/4n+rjzV9Vmu/PR5nLBk8iE9Zirjk8ocvpiwubiZGekZtkwyLriVug5MsZu63mVUDYXoQoMdJaN8lA4xOsKoNJ4XuJmkJbdSp1BeGqN8263YxGB8W5IJNvnTEeDZ25QCrdE6sqFS+aAMxmgX1pVd5cs0HravhxBCiCPHfpdxvpT7779/1Mdf+9rX+NrXvrY/hzviFXWRb+3+Fr1xLz/p+gnvnvjug/r8JhqC3A7IbbN77oq7baLkZWxny7jg9t7hcrkY4/m2BLM8tHxE4qeTVTHsbbrk7psc0JVsKs/+024vHd7wc+I+Dyg0aLfXTrkh6K7E03bsdAmcl3KPjW0ymiRoOra3eb4r9XTH9DIjrlanbDIYGTvCAeNer4Lg0CXXQuwPiZFWb8cQ3/7IbykVYwCG+gp85+O/459uewONk6rH+OwOjImGoNDB0z33c8v2r/D22tex2JsCOsR4aZQxaM8jCNtRfiVJgDbalOOcSvbYaew+aBRKuT3NymBMhDHK3U9h3IU0g0vgsEmdjdnpEVXxbh+fn3YjbICsJHtCCHEsOvR9p48BP+/5OX2xnaN1W9dtvKXxLfu9umeMhkL76PEHcQ78KvsGIQ5tAhQkK2baPTIpj9QM72dLPu8PJ3dmxCpekpSVV+lGJIdG2ZJN41bpjBp+PElJp03elNbDjVKUcuMSRuyrS/YHKt+t4kUu0UvKSIdXCYf3EfqjV/18V67pueRy5CplSuZGCXEk2rSyg7AQlz82BqJQs+HJ3UdFsmeMwZQGUMVOTLETU7DdL40uoqIhwGNl14+ZWcqzovgrTm36azw/Y5MyE4G2nY2NCjC4igSVwsY3363auf3RxsN4vk3pXJLnqQA8D+X246FSthGLClBojA5taFWBK4OPUNh9e0r5dq8frgw0JXv2hBDiWCTJ3gjGGJb9egMP/99zGG04beksznvTCS+6ub+oi3y/4/v2jzuQ1/l9Wt0zccGt2u2A3Fab4PkVrpQSl+iNaBmuR5Y3Jo1Ukg37CdcdM9kLV17VwyV/enhVzGhXojliP1+5JNMMJ3dJsuVeZ3m/HzEo2xDAvmFxIxnKXTRjbLLpPi6fk89woxjX2MW4N0gEw/c3EcOrhMn5gPECe946AmknLsRhsXFlO/fe8jSDvQXmnDyR11xzKpnKvY80yFTs+U9MpvLI+tNjuxX3EeZ3ogpd+GGfHWsQ9mG8wDY9MWDiEsozbtaoz5bCJrqKO/GUot/keLa4nhMrTnTVEraE0igXS6MQPIPyMigToPVwlYLyfJQKXIi0MU/hg9I2YdNFMMaNlHBNsVx3YqXcvmoUJi6BNvY2V5ZvdAiZ5sMyQF4IIcSR58j6izvGHrtnI3f+v0fRsS0R3LG+Bx1rLnzbgr0+5u7eu+mNe8sfGwz/0/U/vKPpHWS90e2+jTFQ7LSJXX778F67ZPSACd1etOQB0fDnyuWUyiZSSWJl3HiCkSt1I5M7tF2hS8o09ci9c0kylay64VbSjFs5dMkgSWOUESWfyp1DHNt9dO7p7Om6z49svJKs4umiOx72OPYdEQ8M/Jk6v46TsyeM2Oun3GseXsUzRtvnNm5F0MSQlk6cQhxqO9Z3818f/z1hIUIpaNvcS29Hjnd97vy9NkE5/vRJTJvXwI7netDa4HmKlpl1zD9rymE+e0vrGFPspjLegel4GB11Exd78MJeDIYf9/yUrPF4Q91lbmqMGxVDbBM9ZWxSpjyMLvFo30N4nk+ydvno4KPMT81FeZ5dWUvGHmhjq+JVavhCHLFN4PxU+WKhZez9lC2P7+8apGt7N1HsU99cRfPUyuFZp8peFDNGY1SMUh7as/v47J5AH4WPl206vF9oIYQQRwxJ9kZ49NfriWNDRZW9Ul3IlXjk7vUvmuxNTU/lzKozR91WF9TZshs3tLxicDlB2AbrfmeTHZVxJT4FW54JkDQ1SZIcNSLRUv5wYpfsnTNuzxrJOAS36uUaq5ikAybxiL178ejky5Tc3jiXuCVlk4H7OEkcvREfmxj8EeMb3Ow82zjAreKpEeMWdAy+N1xumnT91EnHTp/2qIflQ0+QwWNuajqVQSXlzp24vX7JKp4XuNfmkmPly8qeEIfBU/dvpVSMyVQEKKUohTFrlu2kvytPXVPlHh8TpHyu//rF3HfrSnZv6aN5ai2vuupk0plD+6fH6BgTdtvyy0IHhL2YfJuNyXGRxnADdOfQJBeffDaH22gLd5E1hu2lHUzPziDpOGzcRS6VxEKj6Qh3slt3uNjogTLk4wE2RVuYkz3OxVSNMhFKZWyppVL2glVsS9lVeWSCG03jpVFJJ01dYrB7iPVPdlPKhyhf0dvWR1SqJ5wSMjMzzY5Y0CVAo1TKJpjKQ2nbnVN5gT2uXBATQohjliR7Ixm7+lbIueHd2m2mfxFLqpewpHqJXbULeyC/w67Ybfof2147qCSTa7N/fHULbtPZcPnkqH1yrpwS93mdDCFn+LZklW9kCWcy7sFE4GUwWrtCTnf/JDnULkFLVsqSY5Y7YLrGJ8mPhY5HrOJ5toV3+VzclWXA4NtRCMZ74V68kSWwhhHn6/bu+WkeHXqs/AbqycJKzslcSHkfX9IR1LUbR6VHXBk3NnFMy14UIQ41Y+yw7kK+hDJ24EqQ8uDFQyQVVWkue//iQ3NOOoJiF6bYOTzOIOyDUi9GZWyZpDFoPJQp2jmj5ZJwe/FMqTQGwyMDf8YzoIzikaHHmFYxC2UMxsS2aN4LyvuWjYmp9+s5t/Z8tLEVFdooAgyt6WnDJZRuFIIZ2XnYNZdSXgpMbBM990VU7nE6tglcb0eR/FBMQ3MFBkNxMM+Tg6tY07ua19VdwtzsPMAOVDdJtYQxtkOnl7L/jZYYKYQQxzBJ9kaYenwDzz3RVi7JAZhy3J6viJo4tOMPctvdfrvtz9uXliRySbLjVuBGNjkp77VzV3WNW7VLumYqhpMdZZMxQ4pnH93JjrUdGHyOP62RmQsnDa/qjdy/l6yqlUuGnndOySqfu3pdLvFM9tO5ZMzNcRjRWCV5Ptv4xTx/L56JKHflVGl77jrGzt1LDb/RwtAWdbCxuLH8RnJF/mkWVZ9OJb57Y+bm7OliuWSJWFPMl0hnPIJMrYxdEOIwmH1yM7/5flye5AJQ31xJbVPFIT+2iUNMsdM1SumFQhum2IWJinbcgQpQxo4z2L5+gHXL2ygWDNOOq2XBWS0QZFAqjXYXyRR2TIHy0mjlsbWwnu6wHYDI89gRtbG9uIWpqUmg7Gqb9uyKmXHVCemgikWp0/B0ZFcSvQyeMmjl2b8PaFAZNwrBJaYYlJey5+yqPwy48QtuYqkbv+C5kk+l3PkSEHmKzU3P4WvNssGHmZudZ8c0GIPRBWzpu6FUhFIaUim3J1DKOIUQ4pglyd4Iuzf34flJIgQoaN9mu2yaUr8de5B3IxCiPEmrbDukvACqinKil4wWGJkIebYzmr1/MvwWm8wkiV55lS52OdnovXPPPNrGmsfaCHxNFHus+MN28FLMnN/wvJXCZP9e2j7H81cOy7PzMpRX4Ui5rp3KnZ9xQ83d18NTwwmtjty+EbvXT+mY4QHquEYvanivYbmjpjd8fsrjkf6H8Fz78Njz0DpixcBjnFu9ZHhfYvJ1UgFDvUP07MgTD3SSyfo0H9eCXLMW4tDbtqYbP/DQ2thrUQoGevPkBkKqajMH5Rh2Rl0HqtiFKXZAOIDJ77Tz5rDloxofFefsA/wKwA4YR0e0b+nn0V9vxfdiYu2x8akdRMWQRUtPANwe6KS7sG8boIBmxcBjbpyBvXCkTMyKwceZWv86lB+4i3G47pluPIK2e+qMK5csl8vH9mKeHY2Q/D2x8Vb5ycUx+1wqWeFzMd4YgzIG5duxM/XNGXZv9RnoKWKUYlfzJgwFfKAn7mVtuJ75mdl2PAOKsGDo2lYkt6uTVEWO5tYsTVMbUFLGKYQQxyxJ9kYo5Er4gUdFlU91po/KVDuT657BrG+HsNuuSikFcdGWDyooJzS4/07GAXjJl9b+8S5nj0milOxFA3t/oyFIShZHdLFMOq258svNqzvtkZQG42EMbFndwcx5dW5Fzp6Dh7FllcmqnSmNXvUzxiaf5c8nLcFdcpes8pkRq4C40Qp6ZPmndg+J3dcH11TFc4kmrqmLobz3MGnM4qXQpkQlKfK+R4DCoDEmcq/Fw75BU6BShMWY3Zt60CVNJpuiVCixaU2B9HHFg/ZmUwixZ8V8hOd7ZKt8lFJEpRitoZgr7fPvny7l7NDxQhepznU0DqwhWvcMqtTnxhSAZ2K0SqF0EeWn3YUjF0vwbOI0soOw8ti8ps+OGVAGpewFtS1rejnlL4xN7Fzc0smMOnfR7YTK+dRFTWjl4esIbWBKZrIbZO727BnPJoOehy7P//RtMghutELJ7rszNpYbHaFcpYPyU+ikWzEGfLfaaJS7cGhjZDIo3egSNROyzF00kY6tAxTiiI7JG9AK8GxHzkf6H2Re43RwHT53b+6kNFSgdmIa8Nm9fYh07UQmSPWDEEIcsyTZA0xpEPI7OPfsbayNn2ZCdTex9jFaMeOERggHsfvHXElhMrpg5N4xNeKPqY5H773DreIl/1SSiPkYDH27BwlzQwSVtUxoDlD+iFW3ZJWtfH9LodF4+LYYyN7o3sCoZP+dP+Lba8xwsprsr0tW4pIS0mR/XXKqyRB09wYG5dsVSzfbabgE1aBw+/V07O5f4a6aM6Ic1B1bKcC+GXpj/evsG52gxp4H2JJNt5+FuFTuNhoWS+QHCkBAqVgiW+nR2Zsh1y/JnhCH2nGntfKnn64hzEd4gUccaSbNnkB9856bsxhjIBqyDVKKnZhil50hGvbaJiJGozF4g32k4k5M3GQbiriGJfaiT5qhgZihvl48X9HQnEGlsyg/SaaSuZ1pt0IGntLl/cqx9t2Cm03OlJfGeK57sNagNMrLML/qJOYD2ngoE9rnc7HdGLcH2k+RxLukDF0l1Rrl5A+U2xOd7LuzlRvu74M2tiwz6WZcnrFn3G2Aid1KHUBAfXNAfXMF6wobKfaGRMojAAKj6S/1sDvqoDU7g7gYMtCfAwWlUJGtUsTFmHxYIdUPQghxDDvmkj2jY7ywg8riGsz2dhja7JIXn9NOB3+ogt0bQRvF5LmNLDhr0nBik2Rao7pkJ0PLA8oDzZOh5W7Vy17J9YYfnDRaMbD12U7at7RhtEaTo3VmDTPmT7RvGFRSQulm5SmfmQuaee7xHXYDvmvrPfPEevt8yWN0ZNf2khVHPXKVEJtUeSPHG7hVPM/u97Arj/6IxDBZxUterxm9F08pN/cuKc/EDWTXdjSDl8x8im1i51UOX2XXJVfemewD9GxiCXYFNUk8jSLMl8gPlhjq06S8IQp+TClTc8g7+wkh4IQlk3nD353O3f/1JKUwYtoJjbzzn19hZ8mFfTahK3RBsR0d9qOK7bY00cuiTAkdxygVu6TGxcu4BHFkmzyV58LZ1XzlBXTsGmTbqjaiUkikPZpaKphz6jS8lFuVU4FN8tyFphnzatm2thvjeWgdkApips+vs+ExGXugNcqtpKmku69rugKBvS2Jo27Ui/JSNqbqZFSO7+7nYeIiAAof5XnD++4Az0/b2Iixt3m+67bpSkJ1DCozomeMu5DmKZQK0CjXbRNmZ+dwyYTXEGHwdQljDL6fpSVowWhNXIrI90fkeg2eLlAYiEhnPLzK5sP6cyKEEOLIclS+S/7mN7/JOeecQxDY0y8UCnu9r4nybp/dTju0vNBNRV8XNflBGJoNpQGX+Ph4Hpx64XT0uY0YL4MfpCDO26TEGzHIHFxZpRpOxJISzWRoefkEbGJnymU0SclmhsG+Iru39JBJK9IV1eTyio5tvTS0VlE7IT18f60hZd8cnXjmJIqDeXZt7iUwHjNOmMC0eRPcKp5LNNG2KUAyNL3c1TJJ3nAllXr4fL3McImpl6bcGCV2q20kQ9BdiaXyyomhGVkuqqPR+/68kaWj7rm8ZL9LMgPQDUiPS24PTvI6RpS6apvoZaorUINF0BG5oqZiUsthaRAhxNHinnvuYfbs2QRBQHd3NwBa65d41EszRnPWxU2ced7JRIPtBKofhu4gXhuidBGUh8Gz++sMKM8rl27b5Cdp0mTjgdF2bh2uRNMkVQRGo/wsWmt2rO1E65DaCRnCKEXX7jy1uwZonZq1q2G+557flqK3zJrAKecr1i3fjgk1Ta0VLDx3ml2Bc4PRbSWD23+sDCYejtl2f15sVyXdHmilAuy+wMiu8Knh8vpk351tVmXjq8GuyiWrj+WRN3gu0YvK5aMqaZBlYlvy6eGOp8rJLG4voW8Uc9OzMCqwjWDw8NB2FVRrhgY0qWwF6Ww/JtaEcZFsdS2N06cd8PdeCCHE0euoTPYmT55MZWUlvm8TqBUrVgDwxBNPALBp0yYAtq35EzU992JUGq0CfFPExBHFyBCWIjo6O/DiIfDs5z00JtYoz2CUvZJrPx+4bm+2dNIzIUYN2TcbpoRRWbePxK50KRWjVdHuq9MhuXwRfI+OznY8XQSj0X6BoZ4CuVwe5cUMdRu0UZiwQFdHN6GusCtm2uCZItrPo9D07x6gbWs/RiuMgrbNHTxTXWLinEZXDeSh4jwGn67uTnwitMrYN1XufEGhvTyeKaEN9nV7drCvp4toVWFLjdxVduUFxKqAZ+wV7CS5NdrgEREb6OvtIzfQZ1uV+yn7hkTn0aRdHqjBRPZqtcqjdNEN/KW8GqnQaK8CZSJbVUqM8QJbRmVK9PRq/IymsjEgW+nhFQPyWZ+NGzeO+vmoqamhqUm6z4ljU2NjI5WVlXiex9atWwF45JFHyp/fsGEDYOOk53kveHwpLBLEfWxZeR9+1I1X6saL+vDiQYxKoUyMUbZJi2ciNGk8Zey1JRSeDssrdQaDMT4eBVABWvkoNMYkcdSnUIyJSiW62tvxCO2ePZVDhyFDgwMEnqa3RxPpkLgQ0tvZTrqiyj6fl8PTJTu0XGmKBcOGlR0YHeH70NeVY/kftjBnSQu+CdEGFAajfDq7OvFNRGx8fM9eFNNqwMZAAtebyq7UKVPCkLJ7AQFtNB4aTQbPizBaoYjt61X2fsb4eKZIGBaJjQfdGoO9zW6pttUTxngoSi4B9VHGoI19PfbrbZNRpTU99LCGrZzpnQrGQ2HHQhgvoL87T0yRqkYPRQoPhZ8psa1jCNO/ofz9TaVSTJ069dD9AAohhDiivPAv/cvwhS98gTPOOIOamhomTpzI5Zdfztq1a1/ycT/5yU844YQTyGaznHTSSfzqV7/an8Pzhje8gd/+9rcUizb5OOusswCYNWvWqPsN5hVhKSIslQjDkFIxT1QKKZUijNaExTylsESxFBGGIWExT1gqUgwjwmKRYrFAGBYphiXCYkgxDAmLRcJSTBiWKJZK9v5RibAU2vuWSvbzpRJhsUipWCBCoWNNMSwShnnCKCYslvD8COVF9O4OGegq0Lvbnk9ktH2+YoFiqUAYxfZcikV2b+ylFEKQCchmFcpodq4fIgwjSsUCxWKeYmTfAJSS8y9F9vyTjyPtXm/B/n8ptv9dLBKGUfnc8wOD9LYP0tORp5ArUCrmKBYjwmLJPTZPsWT3rkSlAsVSSDGGMCwRFvL2axTF9utQyFMqliiW3MdhgTB0X6dC3r1WKBaLhMWce6ymWCgSFXKEYYyfMYSFEKWMXVT0KvEqFENDQ6P+JT8XQoyVsYyRZ5xxBqtWrSIMQxYtWgTA6aefXv58UhExNDhAoXcrpa6n0e0P4u28i9SWW6jY9t+0Fv6A6rgf0/0Euv85wqFuimFIMSxQDIuUCjnCgvt9LhUoFguUCkOE+SLFkiYsxfZ+xZz73TYUw5iwGNrHhkXCkrZxqxSBjlw80YSlEsVikTgukMpAX1dEf1eR/o48YSFPKYoplmIbj/MFwmLOxp6Spn3LAPmhiFRGkcp6oFJ078gx2DtIGBYpRZGLWRAWbCJWiiMb88MCYcHGHnv+JcIwZ2NX6F6r+ztRKuYpFEv0duXo3j3I0MCQe00xxTCiVChQLOQJw5BYK6IoolTMu7gZUYg0pSROFmzcLYYxpUKeYpijVCza+BjaxxULRYpRxKN6Oev0GjaEz9m4HsUUwoiwMAR+Ca1j4tjDeAptSvhZGCxlRsXHXC63zz9TQgghjl77tbL3xz/+keuuu44zzjiDKIr4x3/8R171qlfxzDPPUFVVtcfHPPTQQ7z97W/nC1/4Aq997Wu57bbbuPzyy3niiSdYuHDhAb0IpWxp5YQJdhv6rFmz2LVrF/MXnYO//knXPMWHqB+8FL0DRfr7upnS2mJLevyMLZeJhmyJY5A0E/FA58DP2o910e0nc2MSTGz3+wVVbuWqBCYAz83U0yGYEm1dOSCmdWIzxAU7P85LQ5wn3w071/ehlO1yV1Orqamoo3VSvdtLmHKdLAOIC+xK96O8PKl0gNYKEwV4KsWUyZPs+AcvS6wjBgbWMamlGc/3Iai0zxWVbNmkF9jzi5PXlpQsub2GXopC/wBbnm1nsC8ApalpgNYTWklXuteqi7Z0yfcZWL+JxoY6Kqvqh0tbky6l7rxHlWQme/uCLMQhnTv66O8uojyfhtZq6ib4kKqyJV3ajZDwUrS0GLp2drF+3W4mNDRQM3kOjWeeUf7+J5KZfUKMlSMtRqbT6fJ/z5gxgx07drBgwXy8Dd8BwKgURBqooxTXMzi0gUmTWlDJHjLfrrhrY2x3SYCg0u4nMwatY1eSae+H0bbZCTa+Krf31w43L4GfLd/WP5Cjp7PA5MnT3IpYbFe0dBFTHKDQ2wYqxpiAyposlZk6Jk1qtvv7VAqPGK18PKPJ7d6B7w0RBGli4+GrCBNHTGycSPWENBoPopDB/h4mt7bgBZ4d5eD24hmVcquUPiSz8ry02zbsQ1zAGI0xAVuf6aRvdx5fRaSrssw4sZnquqxbPSyBZ1/jzh3byWTSNDRMAL/SfR21ff0o8NMoHdlVT13Elt27/YvKJ9c9SPuukE5vO931nXgY1gZrWdJynu1Yql0DGeUxYUKBDc9upLK6konNVTRMn0LqhNNG/SxIfBRCiGPLfiV799xzz6iPb7nlFiZOnMjy5ct55StfucfH3HTTTVxyySV89KMfBeBzn/sc9913H9/4xjf4z//8z/05jZemfEjVcV/Xz5iensG81BRGjiewXSKTWUiuy6Y/PPPI5nTJXrskiWG4+Up57ELyfLFLBnW5q5rd64YtxYncUPKkC5uOSacDJs5oIJO1m/vDXI6o5PaQmNgmY8lGfhPTPL2BnZvbCPOlclfPqbMmUN4LWN4/qG1SVd7zFo1I9JK9fMlrSTpour16Gtq39DDYG1PTUAkmpq9jkK7aFJPm1tjEEVMeL6GM21viuXlUOh6R2AHYIcQ2YXazCb0ADHTs6GHjyl60tglnd1sfx506idrm5OvpEnUMvleicVIN7YPdTD1+AkHD5BckekIcCY6GGKm8FLu2xuxctwUdGSbNqGHqCRPtrDe0S3aMG9qNi1kRxii8IGV/tY1xXTMDlKdsomM0RutyMxKt3TgaY+OCnd6SdK90oxBUyo0usLcplUZ5AemUR8OkDJXVafAriKMSJo4xcQnlubl4bq+xQdM8pRY/3Uc+V7Shw8TUN1dRWV8FlFzzqdg2ryp317QXupQK3H7ikiuttK9duyZZRnl2N56XpmdHPz3t/VTWVZEK0vR2ldi1oYu5iyZSbvLi5vIZHdvZeZ59jUaXQPlu7x/oZD+j8lBeCo2LqWhyfZrnnuxkcKDE+hNXQGxQvqJXD7Bm6FnmV8wBVzaqdURdY4qGyRmaWiZQW1MJFTJfTwghjnX7Vcb5fH19fQA0NOz9D8vDDz/M0qVLR9128cUX8/DDDx+MU9irdbqDZ/PP8Mfe3xK5lSu7ByPGNgxIkiPXUhuXXBgN6nmDwoHygPGk8YkK3JBe96bBTzpghvZj1xjFtvFOZtklT6mprK0gLkUYXaJUiom1Iludts+pGJ28KcW0ec3MP3MyldWKVDpgxoKJnHDGJNdGPBnirlG4DpvJYHKjhxPX5Mq87waujzyW6/BZyMf4aR/lgx9oPD9FseAGrbuudfYNnBvbkCTROhkGr0bc18eOWnCNCtTw17xz+wCx8ahryFLbkCYshHTvypfflA0/rzs/P8BXGo8YUvUH6adEiEPrSIyRax/bxcP3dNK9o5futj6efayNLc922QV+3IUtz8YIu/cuRuGhggwYhYkjl6h4w81IdMk1FnHNR8AmjcZ24VTJiJo4tEmQ6wqslAEduhl5QTluZSoVnq8olTziyBAOFamqSZqWpFxojMoXkeom1rB46UzqGlOkU4qJ0yZw2kVz7T5sbefd2bEutklU0jUzOVe7aucas3hJ06sIm4AOD10vFUNAEQS2GVWmQhEWXJLo2WZVpjyWJ7B7onX8vMYsoN3oCKV8FL7r0On2V6uAnrYBCoN54mmDDNT0UAo8u9BqDA8PPGj3PXue6ySq8LzAJdm2cQsZSfaEEOJYd8ANWrTWfOADH+Dcc8990VKjtrY2WlpaRt3W0tJCW1vbgZ7CXhljuGvoj1Sg0LrAqsIaFtWcbhMv11LbJnOR/QOr7MDcYq7ExhVb6dpdIF2RZdZJTTRPqceOI0iePBou6dRubEB51RCXQPmuG2UytHzEqqKxm/+Heot0bu/DRCHpmjrmnNJEQ1OW8niEpOTRJY5KKeaeMpG5C6tteaa72l7uuOl5qMi+gSmPQyBJsNyAdh3bq9rlUQx6xEpcBCagoraS3u5BKsIisTEjklBdTrqGRyv4w6udJh6xQpisFrpS1LjkOuAlnToVcey5uVi2jAnS9g2k1oyaA4hvn0dHrsmMJ29kxFHhSI2RKx/YxtBglolNWYzxyA2E7FzfwaS5dbaBip/C4LtxAwqb1PnoGDat2kHblj48z2fy3EamntDiLnolowqSEQRu1pxKu9Boyl0n7Wq/vU3p2K2aJWMJbCwpDEV07ihSyA3gZzLMObGW5un1qCBtVxVjW8Lo+Rm3ImaYOKOalqnz7UqZ8srdKhUeigBDCYjAMyh8G2dMaBMm47tETLkunTa+qyCwDWhim1SlKzKgfMJCSCrQFHMxja2VeL7vEmDjxj34aOUNJ4xeyjV4wY3kAc+NnrED2E151qB2K5goxVB6wHb5NOUoTsEUCeMcaa/GzQHMkHT+VCZGeR5KYqQQQhzzDjjZu+6661i1ahUPPvjgwTifg2pZbhmro52cbuxV2UdyT7CwapEtF0rKED0PYl1OeIyG1Y/spH93L16Qob8nz5pHdpA+P0VdYzIoPXlT4+bgKW3/+o5MzsAmOsneCGNc2ZAHxr4B2rF5iE3PdOH74KUCcv0lcv1FPCpHrJYxvBKn3LfL6OcljskQd+2uCseY8tVxtwrnpXDvVkas4sWAnWk1KlnzM7TMqKeQi8n39WFI0zy5mqZJWftOw7jn0tGoVTpwbdTx3ZV27OtVSXmWS9jKIxyyNEyqpbe7m1x/iTAKCFKKuqaM+34ErnzVjqpIVlCVcqMs0jIqWOyfzZs3v6ChE8D555/P/ffff1CPdaTGSK0NQ2Ed2rTZDpUk5enY+OHqEZRxSYqdMcCmVe1sfabDlnKaiA1PtqF8n6lzquxcOWxykwwj94K0m1EXYZRN6oZn1IW2tFGB8lNolNurnGagO2TNY+2USpqKKp/CUERPZ5GZC4NyMmhXsVxc1LEb35BCeT7amPKKn/I8lPHRJBfHwMY9ZctQGbmaF5fPHTy8wA159zwXOgMmtFaTGyjQtStHFBpqmqqZPKcW7fYwKlc1YUwJpbWbwRfY47sLZDYh9tzqorHlmJ5vO53GNk7XNVfTvn2Ihs2TOHvnRIpFj2nH1zPtuAkjxkAoFIF9vSbG4KFUYPflZRoP40+UEEKII9EBJXvXX389v/zlL/nTn/70kq2cW1tb2b1796jbdu/eTWtr64Gcwov6747/pj/w8Y0hBvImz8rc08zS07F/6O1esGQ/HCpFMR/S1zFEpiJFkM6Q0opC/wA9u3PUJfPcjNvjlyRyevT8KJucuRlT5dJFf/gxOgI/Rc+uIRSaipoUCo+wZOja0c/chfXDg8WTWXle1h0rcvvjhsum7KCnZP6fPZZJ9iC65M2ex8jE0L0R8tMuCcWWW3n2DVA67THnpGaKQ7Xg+2QzHkolZa9x+aq03XvnhqWX9z66PTpJGVRcslfxkwQ0dkmiMbROr0JrRe/uPlIqxeTpWRpbq4cfa0x5f1+yWmqSJFiSPbGfpk2bxq5du8oft7W1sXTp0r3up9tfR3KMPPGsyfzumTryA0V8T6O1z6TZjeAqH4wOsQO/7f48bTRKR7Rv70d5AdmqDMYY8v1DdO0cYtpx9eDSxiQOKRfHbHmmtqMLlO9+tV1jEZSbC+riBqA8j96OPFEYUlVXge8ZjOcx0JWnMFQgU5V93ow6e4FNqcBW4cdxuQrBDk53q4zGxX0VuHOIXAMWOydPJzPxVDAiYYxdXmjLODWglGHKcQ00TZmAMTHZbAYVxG5F1LPloMQ2YfQ88Hx0HNsKBzy3bTvZ921LNg0GozXGt59XKkVtk2LWwibatvajI0PrrFqmzqoEFdg9GAq0Kbk4mewD9F0Ca/CyMlBdCCGOdfu1Z88Yw/XXX8/PfvYzfv/73+/xCvnznX322fzud78bddt9993H2WefvT+n8LLExJRSdaS9FIGfIU2GyJRQumTfXLh8yO61s6tunlIozxBHNmEyxqCUwQtGlDwq3OBw9zEagtTw55MERUGyp82MXIlzK2t+Knmj4mGMh9aGVMqMKLkcUR7qSqDs1exkhS/Zi5ckb3bvnXGlQipOVteGG8LYpHPEKl7yIxCXbKKXDFc3EZ6nqKjNUlEV2EQvae6iI3fflLuq7J6nvBLpViVN0pAleU0jGsO4K+j5gQLpjEfLjAnMPaWFpinVrrxr+E1W+XwxbsXBoLxsef+MEPvK931aW1tpbW2lvr6ev/3bv+Xss8/m//v//r+D8vxHQ4xccO5U/uLK86ifWEF1Q5YTlkxhxoKJ2ItEBrvSpUZUCADKIxX4xBobEwxo7eGn7MUm437fy/vuMO425Vab7AUvY0bvlVNGu31ntkmJMRrf1zZExz7G2GTJ8w2+r+zwc1xSpSN3rq4ENDbk4xx39/6a3njAJa7u9ZQbcLlGUkqVmzyZOOLh/gfZFu5Aecrtn9PuPm5Pn6s0UHh4nk+mKqCiOoCUS7S84ZVCpdSoxBYFnpeUuNr9fMrzbKmnjsvVELbc1MMYKOZCdKxpmlzDzAUNTD1uAsr3yl83rWOIY5Tnu22OyfcOVLq+/DURQghx7Nqvlb3rrruO2267jbvuuouamprynpK6ujoqKuzq15VXXsmUKVP4whe+AMA//MM/cP755/PVr36V17zmNfzoRz/i8ccf5zvf+c5Beikv9L2Z37OD19f8u0uwAojz9JV60O7Kbrkc05XDpFOGKXNq2Lamh2Ixj44N9Y0ZmqfV2Cd1K4B24q5bHSsnZ+4Ptkr2sOFW/XD3Sa7k2qRp8pw6end3098dohQE6YCpx09wiZBny5k8b0R5aLKKB3bFLBou7Sw3cRmxmqgNpNwKoU46gboVs2SPYnnsAq7EMmlIgDtuyXYRVYy4fwwqbf8/KtlOo8rt4dOl4b042iXCySqddvscXdOa/q5Bdm3sp1BQ+JQIOnJMP34ClVUemCLllULjVgK9lLvwbzCp2oP3gyKOae9+97sZGBjgvvvu2+OQ8f1xNMRIpRSnLp1DNPN0VKkPnYyL0THG821nSO3iDgbl2REKU+bVk39sgMHuPCWdprIixZTZtZg4citgaaBkm7C4Zk0qWbnT9jabGAWgS258g3YrdT4mtkPHm6fWsH1DPz0dBVJBBMZn8okTSFdm3XUu19UySXyMJrk49kTuKTaWNhMMeFxSf4nb72xX5XDJIV7gZnZq0Jqd4U4eHXqCdYV1XJWeYSfe+IG9RGdijFGuBDVly1STxC/Z46c1dlkxWQG0z6vd6iVeyiW0QBy5kk3PvQ7wXPMu7SpNigXY8VwfuYEiHgY/7dE6O2BCc8aG1qS81jMu6dUoXBdUFCZVd0h+boQQQhxd9ivZ+9a3vgXABRdcMOr2m2++mauvvhqArVu3jnrjdM4553Dbbbfxz//8z/zjP/4jxx13HD//+c8PeH7US1FKYTINEHZTLmtMVrcwLqFKSiztUt+ckydRUV3JYPcQXibNtDk1VFS6/WPEoCrclWHXiXLkXj0duzl9yWs3NjEEt/KWdqteMfWNaRaeO4O27SHoEg2tNTS1upl+5aTKNWuJ3b6OwDU/iWObCJb38SVNWOxVcoVxYyUYsdroVsJ0yHBzGtc8oNy50yWkIxu2eGp49TBJvBTuqjduhc+uUpbCmHVP7aKnrZdUYJi5oIWWmRNcomrK90MbetryRBHUN9g3eX1dEQOdOSorK+z3wsvYx5Wb6YAytrmN7EURB8O//uu/cu+997Js2TJqamoO2vMeTTHSyzZjSn0QF93vsz+8f09Hdueal4xa0LRMrSDwp9DVVkCrgMlTs9Q2pTHKw/O88ngB5S4QKaXcGIIkBrjkaOSFJVf5YEs7bQKVrsxyyiunsf25fnRUoHpCNZNm1dn9c2ATL9dgyyZatiHLkMnz1NCTeBieyz/HkpqzafArXHMVF4OUD7iOlV4K5Xk8PLSMABiMB1hdeJaTKk5wewjdipvv9v25qghjjF1hTEpSTbJSh1tt9FzyO1zxYHTMtjW9bF/fg1KaidObmL2wHhWky6WXSbI40J0nP5inZkIlnqfIDRTp2tFNfdNEbPMZ384NNKE9Fy/p6Knt9ywjZe5CCCH2M9l7OQNZ99Tk4C1veQtvectb9ueQBybTAGHPcNOQcjt/194fNwMuKbVRiqnHTQBdBSpj36DAiFVAlxgmiWOS/JT3oinsmAW7t04ZRXm1zR8xi84YaptqqW22w3rLe9pgRPLmEj/PYMcXqOHE0hux947UiPJOe/XYJJ1AscN5d23qozgwSLY6oGVmC55KVvWU3bunI5fcZSmXchkzukyUwL0GlyS6N4FK29KldSu62P5cP5VVEQNDHmse302Q8WicWOk6gLoVSS9FbDyXY9rhyMqL0XFpeBW23DXVdy+jBNo1k0nXH5qfFXHM+OlPf8pnP/tZfv3rXzNnzpyD+txHVYzMTMD0Jh0k7e96UlaplFf+XTRuNp4XpGia3kjzNI3WHorQlmgqn+HGLDZhMXgYE2GIUMYmgxrPVQC4ckTPlczrEnaPoG02YrQmU+kze1ErHpFLvNzePD+ww8nLlQkG5duLaMv7l9nbPLt6t2zwES6ecHl5v6C9e2SrBHwPhc+O4jZ2hdtB272BDw08zILM3HIVhvK8cpJX7vLpGTu+we2ZTvbz2SYp2DmAuFJ9N5Jh+3P9bHh6F8rz8BRsWtlBkNZMn99ik0Wl7J8WY9C6ZP92eCmg5CYC2eHp9s+Pdsm0Z8vbTcmummr3t0M6cQohhGA/9+wdddL1gIaoaMuEklU9E7mOnK7JCPGIhEtRGCzS2TZEb0fObq4HynPyXGmTbXYynCjahEaNKIV08+h0ieHRDa40qpycMaIEE/eGZsTqWrnsKGkoM+K+yWBib+SeOD1cphpHYDxWP9zGU/dvZf2Tu1j54C5W/Xm7LbtCP6+LqEey16b8uWQWX3IcA+WZhCqwbwzRRLGia9cA6QqPTGWaytoKomJI7+7BcunmcGOXFDUT0kRFTS6nyfWHeF6JypqsS3LtnhY83z02+Xq6ZDeQEiWx/1atWsWVV17Jxz/+cRYsWEBbWxttbW10d3eP9akddibdCMrD89PuYlXkSgR9uy9WuflvSruVNIUxilKhSG/bAL3tBUol2wnTJImXqyIwbl9xMgDdJKXdSSfJpEy73NDF/u4rM3wfhSuRdHuQyzPxyjPqXBMWrRmKB3gy9ySxC1OYmA2F9XSXOl0TFD0cX32XtJmIP3b8CYNC+3Ym6mDcx6qB1fb4yXlr7Y7lucTXUG7cUm64gkuQfZsIlvc6+higa0cfaKiqyZKtyaICTef2/vLX2l16AwyVNZX4aZ+hvjyFXEgpD3VNVXb/oWvMZftc6eHvpVH2Ih4Gk2mio9TB99q/R5T8PRJCCHHMGdfJ3sbiRv5p2z+RCyrsH3jPAy/L8Jw9hssg9fAfZVD0dAyx5vE21j62k7WP7WDjyp3EJum4OWI4ePKxdnv5yiWYhmQ0gzIxBt8mggZbRlk+VnLfEat4SRIKrgQzSchwpaDKNYBJmrK4JNLN4zNe2l5Zdw1bujpy7NrYTZBWVFRXEKQC2jZ30dsxwPAsO9c4xgtsQhZHw6uY5VEVI1f4XCKmld0nomyDAN+zpUrG2GYMSplyIxd0ieH5gZrGliytMxsJggA/o2hqraa6oWrUmz9bZpp8v1KQDIyXTpziADz++OPkcjn+9V//lUmTJpX/vfGNbxzrUzssSgXNz7+xnJuuu4c7btrIUJ+9eJUsSNoCA5vkGFc0iVHuulRMYajI2uXtrF2+i7WP72Ldsm0Uh0rlYeFGuxLJJBFzJYy2cUngmrBE5aHmeLYjsY0dyRiEjA2HSXKYjGswsWu4kiR+qjy+oKhD0l6WNAEZExCQIvCy5Ci4PXY21hq7TGbPIYLeuM+ehk6+AD7buzvseZtkNdFmkMn8PeX2ARqTjEpQ5Y+Tvy82WcXGLG3wfZ+S8VzSaRNPP7Cx0hj7N8omjx7VdT6TZ9VRUZXG8wLqJ1ZS11zhVk49F7bd16q8l9t+j1AKlW7iP3f/J//d8d/8uvfXh+xnSQghxJHtgOfsHcn+o/0/WJZbxkmqhSuSfWmuE5oy0fAqnQKbwNl9azouseWZTopFqGvKYqISPTsHqW3KM3Fqlds/p4ZXq+LI7Y8bmbwl3TeTlbdklIK7IuwnTUwiCqEhKsSkMiGZjB5O/Iy2CV65o1pyNVm5VTvXsEUF2LqeCLwK9zg3C9DLUCrkMLpEKluBxiNIa0rFAmFRDSeM5Rl4hvIQduVBFLqv24hOnEk7cW3n9BlXZumrmClzJ7D+qV4Ge/OUIqibkKFlZoM9n6SzJhq0Hdo8cXoVnheyaWUnnVthx8Z+Zp/UTH1z9fDx/MzwvsDYrVpK8wFxAK6++ury3rljTRxrnvhpH/077Crm1mcN1QPruPAtc8nUVLnVO4PWdnRAUpKpjEZrjVKwc8MAA10FahpTGAP9PUV2bepj9sJGiG05oecaTRk3ey65zSaMEe4GktEqxl3kUtiEUbuqBV1SFIYi/CAiU2EvbNn9c8Hw2AHXMbMh1cj7mt+HMqFbKfNQJsLgmk0pH1TJXqByq5dhSTPvwXPAh1RaYUgx0FfiuFMaYaYtmwRcdYdB+anhvXvlRNRHodHGuL17KRTJyp52F758Js+tp7NtiIGePOCRSvtMPa4esCuUGB9jSm4/o6FuYjV+JsP6Fdtp2zZE28Yeps1rpHWWbVCVlH5qbYftKM+3ZbEqy864g3v67gHgu+3f5dL6SwnUuP6TL4QQYg/GbeTfkd7BstwyAG7pu4s3mL8g7WftSpuO8JJxAcmqFqqcRMVhSKmoSWfTeEpDCrTxCItuRc+UhhO98mwot0iqo+GVrPIAXzViFS8efiyGrl0DbFozRByGpNKG6cc30DTNNR8ZuScwSfR8N/IhTjpkjkjQsAmaSkog3fy8mgkZ0tkUucGIikqPqFgklUlR01Bpu3ImoydcQwYMEATDr83L2HOJQ/e8GXdVuuT296mkZooZC1pIV1TQ39mHylQwZVYt1bVp1xQmGXeRNHnxGewvsPGpdvJ5j4pqxWBvjvVP7eLkV84hnU4aOrivs18B6RZ6g4rh2YBCiH3SvmWA3u0lUumAVMrHV8z7ZwAAVzRJREFUaENfX5q2zQPMPLnG7dVLShQDdBJvAPwAhaE4VCDIgOcptEnhB5r8UIjRkV1l8uwqvDF2tp6nPIyyDVhMUjDghpSjY7v3zpYWYIea29mluf6I9U/tojg0hOf7NE+pYfr8iYCxCaPyyiWjutzUynMrbK4qQpnyUHWTdCkGV56qyWQVVbVpejoLeCpFXApRSlHbWGVLOOOwXHShfDd7zzWNUm7FU2s3Q88dK9m7h3tV9k+LpmFSNadcMIeOrV0YE9M8uZbGKXV2z6LRGGXHTdgB6xE6iln3xA4Gu4qkK7OUwiLrn+6gsjZNTaNrFIayMwzxbYW/1phUPTd33IyHR0xMe9TOr3t/zesmvO4w/IQJIYQ4kozbMs77a+/Hx74JGKDA8tIG9xnjSh2TgbwRxG7lzXWjDFIe2eoMhaEQHZco5GyDk0xVcnU4Kd9MyhtdiWV5IK9b1YuHS5Qwxu05cat+RpMfKrJ1TS+lUFNV46OjElvW9pIfLDJcT5Xs43Orb/aSNy4jo7z6lcz2cw1bFF65o15Vlc+JZ08nXZEiDkPS2RQnnjOTymp3//Koh8i+YfFdoqeTJNatGio1PJA92d/n2WMY9wZPKcXkWdWccMYU5p02iepat+ro2pPbNyd++Ws/1Fcgn9dU1WfJpBWVtZXkB4z9GqTrof5kaLkQ5rwHNfc9mKmX0x/MPYQ/OUKMb0YbG4aS0j8FQ4UatDZ27AF2P67y0sNxS7nVK+VjdExVbUAUakqhohRqdBxSVRO4vWduQLixCZCduee5pjXGXb/xbZIXJwmR3T+HtgPSk+HgW57ZzUBvnorqNH7gs3PzAD27+1wSaSsx7FgEW6KZ7AMs75/zgnLiZ1yZ+6j9zUaj/BQLXjGL2gkZSsUIpeC4UyYzcXqtPeeko6bnuVLUZC+h3Seok+dxF/Rs5HaNVIzNEo1bgVP41E+s4PjTWzn+9Kk20TPDe/uSVUT7DYJCIabQX6SiOiCVUVTWZIhKhqHe/PB5lctf7b5KlKLT09zTdw8xcfn7/t3278rePSGEOAaNy5W9tcW1bKjYUP7YYPht4QkWZ+eTLu+Pc3/wy/PnkuYmCuWnmbmgmS1PFykM5tCqksmzqmmaWAEU3MqdD3HejT9wq3ZxshLnusaZGPyUvWrr/njbPXJ2dbA4WKJY1FTWZtnctIKm7HRMm08xV6CiKl2+Ok55X0syQ88Mr5Il7bq9YLh0E4VWnm1yYDT4VbaniQ9GK4JshkzGtVZXydX0JIFMGtAkr8UvvykqdyaNS0Dg9uwNz3ZCKXJ9Q/S35zBeippGTXWNbYSAezOGcQmitquEqXQK31MUix6l9EQ6ehvoz09gwcxLUFNkX54QB9vE6TVUN/nkumN0pNHaEFHLxOlJo6nAVoVr93sP2D8Vphwypsypp5CPGOgcJIoDmibVMHmO/X01bsSMwrereUnpt7GJoJ11F7uqbhdLjRnem+cStqgQURgMSaV8coMxHppSQVMYjNx9bNMWg4fnu4QyucDmEiFN8hrcap/CPcauJNrOnzE6jlCBh+8HBGlFttpe8LIdNX37ec913cQlmMorJ8w2sbNfHLsy59l9fMlFO5coxsUSnW1FdFwiW5OhvtnuIbclnDYhtiuBPkprAt/HT3lEoSGTAh3ZhDVI+yiVAlN0JaK4ERf2lT2nOsppZ6Ij6mB7uJ0Z6RmH4KdKCCHEkWpcJnvdupuUTqF8Vb4t78cMRv00eLUkndHsOwLcXjIo73kjpqbW54QlLRSGYrqDPK3VNajyuAMo76dzM/PKw9S9pKGIK98sj11I9sQl3eAgVVlBkPLYldrC5rrnaM90sbDrHIK0GpG8udU2lQxHT0onPVfKmazM4ZrQ+Bgv5Zp+RkCKvp48q/68maFBQyqlKOSHeOaRLZxx8RzSlVm3Mpga3f0z2V/nur4NN4hJRiMkn7Ntvw2KoZ5B1j3ZTn4gwlOaVEXAcadOprYxWz4XPLuqQLoOKqdQ3zKZcNMAqx8fwGiDH3gsumAmDZPrD/JPhRACIEj7nPbWejqfyLJ9XQ/1Eyu59OrjyGQeAFKgYhvrlC43GNHGNVhyHTlTWcPxi1oZ6h+ikPeprPYIPLfPT9k9frb0uzS8AuUHriQy2WPn23EK5VUtO5NPm9gmOukAbRS97YMEgV0di6IAm+/YEvPyQHMTY7Az7uz+QtxKnu2eiedjoqKLx8kKmn1OYo+VD+ygtyNHECjComHdsp3U1M2grjkNDDdbMdiGNXaVziZ7JjbgGZf4JQmXsefiys2V0cTFEs892U737iK+V0L5KWYtaKB5Wi2Y2N4fO0pBu4tvQSZgynGNbF7dzkBPDqWgcVIdjZOq3RD14SHvOnm9wOk1l/LT1qtHJXxZL0tD0PCyxoIIIYQYP8Zlsnd2xdl8cscnWbp0KUFgX+Kdz/0j/7fzf3lH0zvtFdnkiq9Kxg4kzU/cildcJAh84rqQOzt+zCn6OC6qXWpXsIy28968pNzRlVEGyb43dzXcdd9Ubv/JcGdL212zqiZg8qwalvv3EyuPwYoe/Lk5qmsrGC4zMiP2B7rnTfawEdn9dG6WU3l/G8Z2fzP2Tc7uze0Uh0qk0hWkUoYoLDHYW2RoUJOuSLp9Jo1TkivjwfCqoR+40RH6hZ9LrmwbTfvWAYb6NBOa7Qpgf1dI26Y+apsbIN0AVTOgcjJUTEb5NnltD3fx0F/8gteeeAWmL6CuqZJZJ08c0V1OCHGwVdT6vOtfzycIAjav7uDhnz3BtPRmslU+006ciI0p9kKVIQbSbm6eW6lThjj26N4dMtBbxKNEdX2WyXOaCFK+3cOWxAuSxArX8MUlSTomGXOTJGy4/b/JyIeK6gBFjHFNW1JpDx1HNul0Zfo2wbQJnN23psvHVr6P0REmjsuJoC1jTcoxPbo68vR3DxH4EGQ8ohLkB0P6Ogapm1hnV/JwHTRJrg+q4Rl/boXPuBE0yjVsIY5cYmUf39M2RF/nEDUNFaSCFAN9MTs3dNM0uQY/5V5LEsexTa8GeotkKwKmHdcEniJb4dE0uQ4vUOArlPbQqWq8oAKVacbLNtHVsZG67CQmpVsOy8+SEEKII9u4TPZitw+kUCjg+z7dUTd3DvyWV+gcK4ZWMjs+DhOXCCO7h05hyoOAjQlBh3ZsgZ/l0cFlGGLW5tdwSmYxdX4tmAjjZez+CBOh4tCWa5YiVFzAeIFr8Fmyw3Fjg/Y0pVJom5yoADxb2jnU0k5uaBAPCIxiTfUqTorn23MoD1o3YEoYAlshqiO8OGeTOaMxOgR3VdsQYeICxkDJaFRYpBSW0Mazu/hUZLf8xbZLXlgs2kU6HeHpvG1JrpSdSehaemsd4umiHdyrgLjgSjdTaF0CHRPFMYWiRnmGks5S0E20F6ro6ZvJ9CmvKCeFAIQxkAfgP9v/k/sG76NpciNXL7wagGKxsNfvbRRFo763e+J5HqmUNHARYk+SlZ1CocBAd5H7fvg0uf6YKTNTDHQP8NzyDmqnG+JijtgD8DCeRumim/GpwPNp2z5Ib3sfFTVZlAroaS/gZwaYOMV1z01Kw5OOlMqmPcRDJGNdjPKIY43WJaKSqxTAQ0UhRqUJMh71rdWk07b8u1iAKNJEpQhV7sTp9u4R2tvwXMx0DaaMxvjKlrXrguuiqSjFBi8uUiyEGGOIlU8K8JRdoYxiQxSVUKboenAl8cbGfbt6Zy/I2b1xBqNs11JTKqAoYVTaPncUUgyTsQy2s6fyDVHJkC9qMslrMQrccPju3YN0tRXxlCbWUFFXT+30KejqicSZJsg0QrpxuLLDKXo9hKWIfD6/15+BTCZzUH+mhBBCHLnGRbLX1dUFwJo1awB49NFHAXjwwQcB+E39b+jOKjSKx4aWk+2tIoNm/fr1eG7fmzaB3UpmPHxCQDHgRaytfRZbvONzf/sfOTE3Hx9NTAZPRag4svtSvACNT2AKaFJugS0m1r7d2mY8BnvaXWrpo5Qh0rCs7lGMD77ba9FuOlm25VEmhM34KkLj47mrxTEp94ffw1d2r4rtvKmJVQaP2C7SKTscftOmTShiBkseKjCEuQI6jIlij8q6mPaubbR1p91zKns8FeAZO8suJnBlVQqfEjFpfJKRDnbPY2x8Yq+GNW0ZdvTP4rm1lah0BqUgzGkmVwzxxz/9ac/ft6CL+1rvAwU/6v4RrataqTAVL+t7nnxv92TKlCksWLDgZT2PEONZGNqZnjt27Cjf9sgjjwD2d6hrS8j2zYNUN/n0DEGlHzPY1UvFxIANmzah8fCUcTHHdr80xq5rdW7TmFKJXDSIAkqFmKFNfQyEKXdxyQ1a1z6eb2OoZ0q2LNRdnErupw2s37jZjndA4aHRpMgVQoYGi+R8u9pVinxStQM891wfPsZeNDP2GbX28b3hxwP2mMqgtcLzYpunuS6g69c/h6cMhbxHkDEUhkJyERij8NMe+aiT9ev68FRcjsO2wMJ23IyNZz9nPHxlKzqM2xpgCFwfTA8fW2IaDsbkC0WGhgYJ0opi3qO6HjZvXU+g7NdHKYhVlkKpirZtGQq6AZOppxhXMbTR0DKUoarRAB3u356tXLlyr5+rqqri3HPPPZAfKyGEEEeRozLZu+mmm3jta19LRYVNDLZt2wZATU0N3d3dLF68mOXLl7N06VL6TB9feO4LlLRHyfNImxJ9zX3MyE1h+rQZQGSvVgeVtjTR7THBS3FP/+8JhiACYmVoy+xk6ZSLqA/qbPlnXMA2R0k6VPpAiO2a6Wbd+ZW0796F1prWlka3901BXKTgefyx/X78WKOUIlYKDVS0pFhQc6J9DleyZLtZumN6KXflGrtS6KfsCmBcBC9NrCOeW7uG44+bg+enKcUeW6p2sGPjEOiYTKXP/CUt1DVW2+eKQzf3L7blqSYcnqs3cq8drmFLxWSomgKVUyHdzP1//COLFi3ijJo6nvjtJtav2I3BMHNBM6dfPJt0Zs8/Zp/d/ln8Pp+YmNiL6Tq1i/dOfO+Lfu9LpRK/+93vRpXoPp8dhCz7UsSx6Ve/+hULFiygoqKCxx9/HICBgYHy5xctWsSKFStYunQpO5/rpWf1cmoaK6ipn0U2Wkvga/xAc8L8+TYBMaFNXuxGYLT2UJSoq8jTua2H6gkpjFbk+gs0TWuiZXrFcPdJ5duKgLhgL3Jhm55oPJSOMF6KoYFeOjo7mTXDNQ7xMygTuX2CEbu39tPVlsNXmvpJdbRMrUT5aVveqQ3G82yhqApAh+VRpHbvm3LHSduk0g1WX7tuLfNPONFe4NMeO6vb2ba2h7AQkc7A9AWtTJ5dZ+OjTi6s2S6h2hiUMhgT2GRP+ShdshX3nuv8iW9L6f00O7dtIZOpoOGEOrpa+tm+oZc4VjRObea4M+ZS2TQNlW3ApBtRmQko5VEYKhH9diPpbEC2yq4OdmzrZ+G502iZUfei3/8HH3yQefPm0dzcvMfPS3wUQohjy1GZ7M2dO5df/OIXFAoFKioqWLRoEQ899BBTpkxhy5Yto0pUftr9U0qmhKd8Cl6KTFTgqegppjHVJkwal9j4YIrYzfhpIhPzbO4ZUmi3F8TuS1tZWMN51We5fXlmxLDvouvMGdiunMSuBDNJmDy3P5DynLmsn+V9Te8hpjR8X63IlAczufl5KmUfr7Xbl+eDKblGL24cQzKmSnnD+wjxQClSAcxa0EzD5CZMHFJRFVBZk3ZNVpIGMJ6bo+e5ciV3/EwTVE23CV7FFFSqaq/fFz/wOOOSOZxywQyMMaSzwV733m0rbuPevnvLDQQ0mts6b+OtjW+l1q89kB8PIY5pLS0t9Pf3UywWOf/883n00Uc54YQTeOihhwDKF8kAphzXwHGntbL28V34gx7TJkS0zqgjzvTbbpzJuAWGm6+gApQKaGqtpDAwRF97Dk3AhImVNLRWAgbPC9yEGLePLen6q2LXtdI1TnF7kT1tVwE9z3cz6mwHTc/3aZ1ZR8v0eiBGpbIoHaFH7BlWyrP78lzdhN1LPfo45e6iI7pn2vvYktQpxzVS3VhBHMakMz7VDTXDpZrl+2s3u8+NVfDUiG3UHkaN3Nfnzkulif0a4srJ+M0nMnFqE42vaCAyVWQq03jecHwcGSnTFQENLdXs2NBNWIgp5kvU1GepmZA9BD8xQgghxrOjMtl7zWtew3vf+96XdXVyUdUiLi1dCsDc0hoa8t0YnUGFjOhsqbGrWtrOkVM+QRxzUeoiOrq6KRVL+BgqajKc2HwSdhXP7b0DO/cuSZhMZJ8LvzyawL4BcOMZdES5ayeGQCkCVTnc3dJL25U8cGMhRswDVCnsaIQkmXPHSDp/uvOxDWF8O0vQRECAn0rR0JKCWI1IQrXbI+Iay/gZu1pX0QoVUyDbWh5YvC/S2Zf+sdoR7njBbTExHaUOSfaEOACLFy9m27ZtaK33uq814Qcef/GOhUw7oYmwu4aWoIe65jQbNg7YZEx5mLjk9gPbBMbeFtrZbknzEoPb9+wSH5NciNJ2oLl2jVKMTQRtd8wI47mmLJ6tTjAkM+s8u+PPNW1RgY8yCp00VzEeylPlVSp7ncteLEs6CJdn0BnX0EUpe/0sGQOTNIoBwFDbUIWnzOjXgjfqWpr9X7cy5lYv7TJiBlK1eOl6yDZBphmVbYKgmr7cU9TV1eE1zwJsu5qX2lHseYo5i1pIZX162nPUNlYw/YRGKmtlr50QQoh9s9/J3p/+9Ce+8pWvsHz5cnbt2sXPfvYzLr/88r3e//777+fCCy98we27du2itbV1f0/jJS2pXsKS6iUAmNQfoWcFvX399Gu7zw/Plv4QF4c7w7k/9lU7mvEHa6mq84lKUNgZ4VWnoCGySVIyT08pl4glSRjl8h/7piOwbyiSsQVe2q7MuavX5RU2zIhun+5NUHnOXXLFOnQrfMlgcvfGxU9GQNhh50Z5qCQJ9F1CaCKX6AVAZIeWV04f7pCZfvHyoJfSs3uIDU/tJj8Y0jipmrmntu418Tur5iwePPGF++6kC6cYD46W+AiQSvuceNYUdNSIXreMUlgCL3CJVOTmwCWD0UsYIhSK7vY8g70F6idWoLXPUG+Ozl2DtE63q//JCAQ7OF27ZCmwZY5J2HQdNUeuiJUTNONu8ZRdJXQXzZKZdiYZo4AHrqRTuYYtw90xVTlpG/mcZuTohfL9KVca2JU8e5ttcmzn62k/g5eqRWUaIduMyjRiMk14qSpe6rJYbiBk/Yo2ejtz1NRnmXtqCzUT9r5HOZ0NmLvo0H7vhRBCjH/7newNDQ1xyimn8O53v5s3vvGNL/txa9eupbZ2eOVm4sSJ+3sK+y7dAChUuXzH7bVLEq1kpc5ArD3CMCZTqfCUwc9UYIYG7BshlRkeu4AenolXLolMBpO7Df14tmOnwSV6ZnilLplHZYxdYUvOpzxsOHaPCyiPRlDp4c9pbUcjgE0gVRrjjUwC0y6JDaBiKlS22FW7isl2RtVBkusPWfvwTgZ6CmQrArp2DlDMRyy6cMZeEzhJ7MR4dTTGRy/IYlK1UOqxnSsxrutusg/NK48dwIMwH+KlUni+rVTwUxDl8hhThecPt0ghKWlMZtRhUJ5BGQ9tXEdkN5vP6BJGxXb6gAsPtoLDMKhzVPm1Iyo67DBxnYw7AFtyqmPMC8o1DcqVbBKFqBFJnUG5kk/fvjYFOqjAC6rwsi2ozARMphGVnYjvv7CM8uVEsTjSrHxwK7s29FBRnaZ75yBDfQXOuHgOmUrpHCyEEOLQ2e93+5deeimXXnrpPj9u4sSJ1NfX7+9hD0ymEbdpDuOlRqzMuQTNKLvK52Xxg4Bs2pAbKOAHVYRRhOdpUmlvVFJoi3LcvrzyTDzcnj5l94zoCOMxnMwlg26Vb1cUcSWU5dl/DJd1okc0gHHlnZ5nz9O4stPkccYDz06Fiv0aTN2JUDMDKqdAqv6QJld9HXn6u/K0zqxDKUW6IqB9Wx/5wZLdHyjEMeSojI9gV/tztuph5Apa0lhFGc+OW0GTqUwRdZSISyGxDohLhnR1xg5PLw9lt90yTZI8eimUicv7+ZKVNoxxoc+UB7Ir1/nS83yeHHqaB/t/z1sa3kZrZqKbc4cr+UyhlCnPvbMjdMoFlyhjXEnqiEoMsHE0qESlG/HStcOll5kmfH90zDrQyJnvL9G5PU/j5BrS2YDaRk37tgH6OnNMnH5gFRVCCCHEiznse/YWLVpEsVj8/9u78/ioqrMP4L87+2TfyUJCwhaQnUDYiqikBtSKfUVRKASrVKG2sijVtoq8vFZQVMCi1WLBqIi4oqgsoqEIyBIIEhLCkoQtG5B9mcxk7nn/mJkrAwkkIcmEye/7+fCB3Lkz59zJ8Mx97jn3Oejbty+ef/75ti0BrQuwJVBCZbvyq0yVtC9abjs7sCVMskBotBfO5UioLq+DUAkEh3rCN9A+7UZY7Aua2xYeti1HcMlIoUoHQGO/Z88xaqiyP09le8yRIKrtiafVvki6pP0l0ZMcVTHNttdUa+39tk/rtHXYltAZQgCPCAhdJ5w7/V/0DkuA1EDFypYm2d8+WRZQqyXIVsfV+jZpnsgtuDQ+AoAuAJKUA0DYCpoAkNQaW4Im2y6U2e5T0yEwFKipllFdVgVZCPgFeSIw1NNeN0UCoLYlfXKdvdCLBrKw33Mnqez31Mm2fE8IW6wQtsXWHSOIQlKhTjbjp8rdkCVgd9Ve3KO7A3Ds4XhN2OZb2u7BE8pNdpKkgqRS2xcetyV2stYfhafD0LPbPVDrG7fUy3WTbO+JbLUXpJKFfZF3zm4gIqLW1WbJXlhYGP71r39hyJAhqK2txapVq3DLLbdgz549GDx4cJv0QdIYIDSeEGqT7UqtvXiJ7YqvY1qlPZmS62D0MqLLTV6w1NRAUmlh9LTflSFbYCsqYB99E/hlRA/ikpE5x9RNtW3U0DGiBw0gTLbCLmpH5UtHWbdLX9Oe6MFeSMVRMVTnZ0/sOtumZOoDnUft7AuPtyX/UE8ERdSiMLcMGp0aslVGz8GhMHpyVI/oWtpDfAQAyRAMIcu2+33t69HZcj77yJykst3LB9tadFG9gmCqsFXgNHhooNJoIFRqCKsVArbpmCq1xn7HnhWAxjbVUlhtIU2CbZqopLLdc3dJ9UsBWzXNIzUZqEINdBDIMZ1Akfk8OulD7YVUbPcoSxIgJDWg8YKk9YXKEGQ7Fl0gJH0g1JcUmhJ1dTCrCiCp2276pIevDuHdjchNPw+1VoU6sxUR3QPgF9JwdWMiIqKW0GbJXmxsLGJjY5WfR44ciZMnT+K1117De++911bdAHRBkMSFX5YtcBREgWxLvGTZlqQBgEoNrUoFrVoLqA32e+RsI4NwjJgJqz3RE/YCLBr7z5L9CvYl69U57hlxTLtUqWBbUsFiSzQdVTGF/T5A2J4KXSfAI9SW3HlEQFIbUCvX4p3z7+Ber3vRqR3c+6b30GDQbdE4e7wYpioLfIM90LlHgKu7RXRDaC/xUeiDAHt1TCHUACy2ETNIELLt7jjHtEgJaghZwOittS/PINmSOKstYbPdeGerbvlL5UvH/XG2wimO255tVTslSEJtWwsPtoTPCiv2VuyBvUILNCoNfqreiwneUwGtP1SGAMAQAkkfCJXOtkYdAJSer0JFgQkqlYSAcOsvF+quolauRXpNOgZ7DG7xKe8qlYQ+IzvDJ9CIyhITjN46RMUGQqtrerVjIiKipnDp0gvx8fH48ccrKzK2Kp0fINtKiSuFVaD+peCKbK/Y5ri/zn7l+ZdkDrb76y6trAl7FUwJtmIpVgsg1f2ygLpSoVNlTzKtv4z2KY/ZK21qvABDlG3EzrOz7T6SeuZCbizZiPcvvI/zlvNY0HlBK79pjePho0fPuDBXd4PILbgiPkr6QNtMB2G1J3mOJRCE/VY3DSSVbEvIJEfxlUsXErdNTrAtgWC1TVBQqWzLM9inu0uSPXG0J3xQqe2VPqE8buuMGkcsZ3FSK6NU44NKrQ7FKqBCU4X4yLHorOtc7zGcP1uOrH15qK2xLfXg38kTNw3vDKPX1WcZrDm/Bu9eeBcruqzAEK8hLfOGXkKrU6NrvzYsSEZERAQXJ3tpaWkIC2vj5EDr88sN+o5RNLXednJjtVfTVNkXMbfW2itdSkCd2V6LRXvJyZA9CVSmYNoTRvvUIucF1R1zlmR7oqeynSzpQwCPMMAj0jZqp7n2tJ5auRarz68GAGwp24KHgh9ClD6qpd8pInIhV8RHlVprj5EqpbIlZDMktQqA2n7Pne1eYsmewMlW+0ifSm1L8GQrJElAJakhO5YzcCxELglb0RTJXrwKgFBpUafyheTdFSpDACR9EIQ+CJLWB2GWAvQs7QHZEWMBGFVGBGoCGzyGM0cvwmoVCInyhSwLnD9dhgvnKhAZ2/BzyurK8NHFjwAA/y76N+I841gtmIiI3EKzk73KykqcOHFC+TknJwdpaWkICAhAVFQUnnnmGZw7dw7JyckAgGXLliEmJgZ9+vSByWTCqlWr8P3332PLli3XfxRNoQ+0nahIgLLOnWOapYRLlk2wrb/kVLET9oIoSqVN+2OXJoyONfBUkn2ET0Co1LaFztUGe2Jnm44JfadmLVq+sWQjiq3FAAAVVFh9fnW7Gd0johs4PgIQugBIEBCybT09lUZjKygCGZC0tscgQwirLSFSaQFRd8non32tUskWXyUAUNuLUml8oTL42xcet91XZ7lQgeLabGg6j1T64EizwnRhmBEyo9F9l2WBOousTI9UqWzr9Fnr5Ks+b93FdTAL2/T9wzWHkVqV2iqje0RERG2t2cne/v37nRYBnjt3LgAgKSkJa9asQX5+Pk6fPq08bjabMW/ePJw7dw4eHh7o378/vvvuu3oXEm5V+gDYzkTsBVkk+Zc16SSNfWUEC6AywL4iMJQFzaGyTbWUNLbROdlyyXILEurMZuSfMqG6rAY6vRqhPSNhDOmKapMZddoQhHYfet3dv3RUDwCssHJ0j6iduWHjIwBo/fDL2gX2hcehhmQflRP2UTbbfXq2apqSvdqkJFQQkhYwBEGlD7QvZ2BbeBwqI7IPFOBs1kWodSr0HOyL8G6egFTZYl1XqSQEhnkh98h5SJKEujorNDo1vAMarrrpGNWT7SsDqqDi6B4REbmNZid7t9xyyyWL215pzZo1Tj/Pnz8f8+fPb25z181aJ+P00YuoLq2GZ0k1hNpeLMWxoLqjIIqj6qUk2UfwLn1M2IusOEb0YC/AIiAkPY5lmHHsaADMUieUVfoiuNAft0/rD4sx56rvVVWZCWUXa6DVqREY7g3VVcpx51vyUWotddomIJBZk8lkj6iduNHiIwDkZZegtLAKqloVrHWwTcmUbMmPkFQQos6+vIEKEgRkjSdUGi+ojCGQdAEQhkBI+mCo1forXlsCkL7zDPZ8YxvttNYJ5B0vwW2T+0C6xuoHZlMdigsqIUkSAkK9oNVffTZE1E1BEBC4eK4SBg8dOvcMQEBow9Pjvy//HiZhUn6WIeNwzWGcMZ9hTCUiohueS+/ZayuyLHDw+1wcP1AAWRaI1NfB09eMqGgrVJIVkOw37gszAK29Sibs96Y4lk2wAJLe/rMMaH1tUzGNEYBnJCrKtEg9dgAGLw08ffQwWmUU5pajILsUMDTct8JTZdi3+STKL9RAo1Oja/8QDLotGmpN/QvUReujsanXJmXKEWA7GfPT+LXEW0VEHdDJtEIc+D4HZpMVUl05OnuZYY0F1DodoDFA0gVApfd1Xnhc5bx0wdXGwIQQOLY/HxqdGoFhXhBCIO9kKU5lXEB0nHeDz6ssNWHPNydQdLockICwaD/E39EdHt4NF1vR6tToPjAUMX1tFT6vdvEMAMb6joVRZbTdW2jnofJAuC78qs8DALNsRqm1FCFaFl4hIqL2qUMke6VFVchJPw+fQCM8vHWQSgJRXXoSleU18PHTQymyIiT7ouW19kXMHcsfaGyFVDyjAGM4YAyHpL78ZKPaPvXplxMLe+HxBvtlrZOR9n0uKkpM6BTti9pqC44fLEBIpA+iegc1+Dy91YgTOy+gpKgaXn569BnZGWj4fImIqEHWOhmZe/OgUkkI7+qHmho9jqf3QWfLrxHdtxdU6pb5mrgsPOLSlUcbkrknD/nZpejUxQdCAGePF8M/NR8DbulylXYEjh/IR35OGbR6NWKHhCEwrOEA6aP2wTi/cU07GLsX8l7Azoqd+KznZ/BR+zTrNYiIiFpTh0j26iwyrHVW6Ay26T9C4w3IMmSrvdCKsADQ2Eb0JABaL9uInUeErZiKLuCa9254BxgQ0SMAJw4WoqbCDFO1BUER3giN9sPZgtJ6n2M21aG60gwffwNUKglGLx1Kz1ejpsrSYDtWq4yU9RnI3HPOXsJcIC+7FOOS+kPv0XaLBBORe6izWFFnsUJnsH0dqDUaXDRFotbq32KJniRJ6D6oE/Ztysb5s+WwWgQ8fPSI7BkAoOF4V1FcDYOnFhqtLXbrDGpUlJoa3B8ADm0/hd1fnUCd2Qohy8g5XITE6QMQFN6yV8Rya3OxtWwrAGD9xfV4JOSRFn19IiKiltAhkj2fACP8Qzxx/mwFvP0NMF9QI9xHCw9P+zIK+k6AZzRgDLON2mmucRNJPVRqFUZNiIW3vwFFZ8rh5W9A/9FR8PIzAAX1P0dn0MDTT48L5yqg99DCVGWBSiVddYrShXMVyP65EL5BRnj5GWGqtuDM0Ys4e7wY3QZ0anK/iahj0xu1CIn0QfbPRRACqKqogUZnuz+uJfUdFQm1RoXTmReg0WvQa0gYIroHoLCwsMHn+AZ7Ii+7FObaOggZMNda4RvYcHy21llxeMcZSBIQ3t0f1jor8k+W4mRaYYsne6uLVkMNNayw4sOLH2JS4CR4qznFgoiI2pcOkewZPLUYOq6bMmVSHxgNdWcDdL3uBHTBkFT13x/XnHbix3dv9P5qjQqDbo3G/i3ZuJBXAY1Wjdih4Yjo7t/gc+rMVljrBLR6269Op1dDyDLqzNbr7j8RdUwDb42GJEkoOlMODx89wgMN6NTFt0XbUGtU6DsqEn1HRTb6Ob3jw1FRXIPCU2WQJAldegehx+CG1x601tmXXrAXcVFr1LaqnJaWjY+5tbnYWr5V+dkkm/DRxY84ukdERO2OWyZ7ubm5AGzlzy+dfunRVUBvEaiTPVFuicLeQ7kAclu9P9XV1QCA8vLyeh/37maFJsQKtUZGrUcB9u1v+Eq32WRFnaoa2Rkl0HuqUVtthdFHg7zibJTuOQMAShXAy4+/tZjNZmRkZECjaf2PU2OOLSgoCDExMa3eF6IbUX5+PoAr/w+pQoBgfxkyZFRWarFnz5426Y/ZbIbJZGqwPV2EjEBP2zqoGr9SHEo/cNXXk/WVyDtaheLii6gzC0gqCcXV57BnTymAlomPn+o+BXSAStguFMqQsbZoLfrl9Lti38rKSpSVlaGoqKhZbTVVdXU1srKykJ2dXe/jBoMB/fpd2U8iInJPbpXs5eTkAABqamoAAJ07d4aqnlG7kpISFBcXIzKy8VeYr0deXh4AIDz82tXdGsP/gWCkbTuHymITgiO06H9LOEK7/nIVXpZllJaWNnj8La2iogIhISHw9Gy4vHlLsVqt1zw2o7Hp03CJ3JnV+svIlmPaZEP/h8xmM44ePdpm8dGRCLVUe0ETQ5H23RmcP1MJjVaNHkOD0WPIL9UyWyI+3lV3F8ItzvE8UBWIyIArj+HUqVPw8PBAcHBws9pqqurqagQHB8Pbu/4ppWr11ZeuICIi9+IWyZ4jyTOZbDfu9+7dG7t27UJoaGi9o01CCFRVVbVY8nUt5eXlEEK0WHvh4cBNg7vDYqqDVq+GSu18wlJXV4f09PQGj7+lZWVlISgoCP7+DU8/bSkWiwVHjhy56rEJZSFooo7NkeQdOPDLaNiAAQOwe/fuBv8POUaG2io+qtVqlJSUtGh7XXtGwVJrhVqjumIZm5aIj+EIx824uVH7FhUVwcfHp83ez+zsbAQEBDSYXDI+EhF1LK0/7NNK/P39odXaqk/W1tYCsCV5HYVKJUHvob0i0SMi0ul00Gg0SpLXrVs35bG2mNrtapIkQWfQNLheKRERUUdxQ34TLlmyBGPGjFFOWnr16uXiHhERtQ9fffUVunfvDpVKpSR5AQEBLu4VERERucINmewNGDAAKSkpMJvNru4KEVG7EhUVhbNnz6K2tpZJHhERUQd3QyZ748aNQ2lpqau7QUTU7gwYMADl5eUdYromERERXV2zk73//ve/+M1vfoPw8HBIkoQvvvjims9JSUnB4MGDodfr0b17d6xZs6a5zRMRtVuMj0RERNQeNDvZq6qqwoABA7By5cpG7Z+Tk4M777wTt956K9LS0jB79mw88sgj2Lx5c3O70GRCCFSV16KqzAzZympkRNQ6bsT4CACmKgsqik2wWhgfiYiI3EGz6/KPHz8e48ePb/T+//rXvxATE4NXXnkFgK1y5o8//ojXXnsNiYmJze1Go8lWGVn78nA66yJKS8oga03o36cWHj76Vm+biDqWGy0+AsCZrIvI2p+HqnIT8i9U42JcJQLDvNqkbSIiImodbXbP3u7du5GQkOC0LTExEbt3726T9s+dLMHxg4XQ6jQweutQmleLo/vz2qRtIqKrcXV8LDtfjYzdZ1FnkeEdoEdthYz0H8/AXFvXJu0TERFR62izZK+goACdOnVy2tapUyeUl5ejpqam1duvKquFkAU8ffXQGdTQe6lRWlgNWeZ0JSJyLZfHx/JamKot8A/xhFavgdFXjaqyWtRUsOIxERHRjeyGrMbZHHqjBgJAndkKIQQsNVYYvXVQqVixjog6Np1BA7VWpSR35hoZWoMaOmOzZ/oTERFRO9BmyV5oaCgKCwudthUWFsLHxwdGo7HV24/oHoDwrv64mF+J4rxq6D01iB0S1urtEhFdi6vjY0CYF2L6hqCy3ITC3HJACMQOCYfRU9fqbRMREVHrabPLtiNGjMA333zjtG3r1q0YMWJEm7SvM2gwaGw0ivMrkZ9XgApTMQJCWXyAiFzP1fFRpZLQe1gEQiJ9UFFWhcMZxYjqFdgmbRMREVHrafbIXmVlJdLS0pCWlgbAVjo8LS0Np0+fBgA888wzmDZtmrL/Y489huzsbMyfPx9Hjx7FG2+8gfXr12POnDnXdwRNoNWp0amLL4KjvKD3VLdZu0TUsdyI8VGlkhDc2QehMb4w+DA+EhERuYNmj+zt378ft956q/Lz3LlzAQBJSUlYs2YN8vPzlRMbAIiJicHXX3+NOXPmYPny5ejcuTNWrVrVKmXF6+psFeTMZjNkWb7icZPJBCEEzOa2KT5waX/aur36jr81WCyWNjk+i8UCAKiurobBYKj38aeeegrTp09Hv379oFKp4O3tDUnivZnUdtpzfLRarQAajg/V1dXK423BYrG4LB63RXyUZbnN4iNgW0+2pqam3vaEEHj55Zdx0003Ydy4cVCr1YyPRERuThJC3HDlKAsKChAWFoa1a9fCw8MDI0eOxK5duzB8+HD89NNPGDJkCFJTU3EDHhpdp+rqakyePNlp25kzZ+Dj48OTGuoQLly4gODgYKxduxYJCQnYtWuXEiMBIC4uDgcOHGB87IAYH4mIOh63qsYpyzJUKhX279/PE5kOymg0Yu3atVi1apWyLTIyEr6+vqioqHBhz4hcxzGCJUkSL4R1YIyPREQdj1vU1XZM7ZMkCSNHjrzi6qQsyzh+/DjKysrQp08feHp6tkm/qqurcfDgQQwcOLDN2gRs05R2796NESNGQKNpm1/xqVOnUFxcjIEDB7bZ1eH8/HxkZ2ejR48eCAkJcXpMCIHY2FjMnTsXVVVV+Oc//wkhBMrLy3kFmzocx9TFYcOGQavVOj0mhEBeXh5yc3MRGxuLoKCgNumTLMtITU1F586dERbWdpWRXREfS0tLkZGRgSFDhkCna5sKp+Xl5Thy5AhCQkLQtWtXp5gnhMCIESPwwgsvYNu2bVi8eDFkWWZ8JCJyQ24xjZPTNqk+9U1ZAmzTliIiInhCQ27p0mmcN998M/bv34/4+Hjs27ePMZKccFonEZH7u+GncUqSxGmbVK/6piwBtmlLnLJEHYFarYZKpcLevXsZI+kKRqOx3vjIaZ1ERO7jhpzG6agmV11djbi4OKjVV5YJ37t3L7766ivMmjULoaGhbXqF0mw2Y+7cuZgzZw66devWZu06WK1WZGZmonfv3vW+N61FCIENGzYgNzcXs2fPbrN2AdtU3szMTLzzzjtYuHAh/Pz8nPp18OBBFBYW4umnn0ZNTQ0OHTqE/v37w8fHh1evya047s+rrq5GZWUl+vTpc0Wil5+fj8WLF2PWrFno3r17m8YJAFi0aBFGjhyJsWPHtmm7gOviIwAcOnQI7777LpYuXQqVqu2utcqyjHPnzmHFihV4+OGH0atXL+UxR3w0mUx48cUXsWPHDrz00kuc1klE5CZuyGmcp06dQnR09DX38/f3R0lJSet3qB4ajQZWq9UlV9M1Gg0mTpyITz75RLlXp614eHgopdvbmk6ng0qlgslkavRzysrK4OPj04q9ImpbZ86cQVRU1DX38/DwgMlkarPlWS4lSRIMBgNqamravG1XxketVgur1eqS9xwAfH19UVZW1qTnMEYSEd3YbshkT5Zl5OXlwcPDg1OTqNGEEKisrIQkScr6UhzZI3fD+EjNUV98lCSJI3tERDe4GzLZIyIiIiIioqu74Qu0EBERERER0ZWY7BEREREREbkhJntERERERERuiMkeERERERGRG2KyR0RERERE5IaY7BEREREREbkhJntERERERERuiMkedSgrV65EdHQ0DAYDhg0bhr179151/48//hi9evWCwWBAv3798M033zg9LoTAc889h7CwMBiNRiQkJOD48eOteQhERK2GMZKIyL0w2aMO46OPPsLcuXOxYMECPPnkk8jIyMCwYcMwePDgek9odu3ahQcffBB9+/ZFnz59cOLECdx5550YPny4sv9LL72EFStWoHfv3jCZTNi2bRt69uwJSZIwbty4tj5EIqJmY4wkInI/khBCuLoTRG1h2LBhGDp0KEaPHo1p06bhjTfewDPPPIPo6GgcP34cWVlZCAkJUfafNGkSqqqq4Ovri1GjRmHkyJFISkqCyWRCYWEh0tPTMXToUMybNw/p6ekoLCzE8uXL0a9fPyxfvhyTJk2Cv7+/C4+YiKjxGCOJiNwPR/aoQzCbzUhNTUVCQgJeffVVzJgxAw8//DDGjx+PmpoaVFRUICIiwmna0u7du5GQkIAPPvgAs2bNwsCBAxEdHY1jx46hrKwMkZGRKCgowN/+9jcAgF6vR8+ePTFs2DCsXr0aN910E6ctEdENoaEYGRMTg/T0dJSWliIuLs5phO/yGJmWloaff/75ihiZkJAAwBYje/TogdDQUMybNw/h4eGMj0RErYzJHnUIFy5cgNVqRUBAgHJCAwAlJSU4cuQIhg0bhtGjR2PAgAFITExEUVERCgoK0KlTJ6fX8fHxgSRJ0Ov1ePbZZwEA+/btAwCkpKQgJCQEe/bswf79+/HSSy9hz5498PT0RGJiIkwmU9seNBFRI9UXIz/66COkpqYiNDQUd999N9RqtRIfAdQbIw0GAwICApxipGOflJQUeHt74/Tp0/Dx8cHmzZsZH4mIWpnG1R0gakulpaWwWq3Kycf+/fsRHByMUaNGYf369cjOzlauYMuyXO9rCCEgSRIWLVoEABgwYIDy2OjRo/HTTz9Bq9Vizpw5uHjxovKY0WhEYmIiNm3a1IpHSETUfJfGyNmzZ6N///7QarWoqqpCfn4+zGYz4uLi8Omnn9b7fEmSUFpaClmWlRgZHh4OAIiLi8OpU6cQFBSEvLw8jBkzRnke4yMRUevgyB51CEFBQVCr1bhw4YKyzWw2o6CgAF26dMHRo0dx+vRpLFiwQLmCLcsyTpw44fQ6qampAABfX18EBwcDAP79738jPT0darUad911FywWC26//XZcvHgRQ4cORX5+PoYPH46HH34YH374YdsdNBFRI10eIy0WC1JTU+Hr6wur1YqUlBREREQ4jfAFBwejsLDQ6XVMJhNkWUZQUBBGjx4NAPjkk0+gVqtx//3348KFCwgMDERUVBQAYP369YyPREStiMkedQg6nQ5xcXHYv38/1Go1CgsLUVRUBCEE4uLisHv3bnTp0gXdunXDkSNHkJeXByEE3nrrLeU1li5diqysLMTFxWHTpk1Yv3499Ho9Zs2ahYSEBFitVrz22msAgPHjx0Ov18NsNiM0NBS1tbX48MMPERYW1qhy5kREbenyGHnixAlYrValsEr37t0RHh6uxMfS0lJoNBps27ZNeY39+/cDAG677TZ88skn8PX1BQA89NBDsFqtWL58OQAgPT0dERER0Ol0KC4uZnwkImpN4gbxz3/+U3Tp0kXo9XoRHx8v9uzZc9X9169fL2JjY4Verxd9+/YVX3/9tdPjsiyLZ599VoSGhgqDwSDGjh0rjh07dt1tv/322+JXv/qV8PPzE35+fmLs2LFX7J+UlCQAOP1JTExskWNfvXr1Fa+t1+ubfexNbX/MmDFXtA9A3HHHHc06/u3bt4u77rpLhIWFCQDi888/b7Bthx9++EEMGjRI6HQ60a1bN7F69WohhBDr1q0Ter1edO3aVQwZMkR4enoKAKJHjx4CgIiJiRH33XefGD58uOjevbvSt6VLl4p58+YJvV4v1Gq1OHz4sNLWvHnzBACh0+nEr3/9a9GtWzcBQLz66qsCgPD09BTe3t4CgAgODhY7d+4UM2bMEH5+fqKwsPCax0LUGK6Mj01tnzGy5WJkS8ZHIX6JkYGBgcJoNAoAQqVSCZVKJQICAkTXrl1FeHi4Eh979+4tNBpNgzEyKytL6f/IkSPF1KlTBQARFBQkfvvb3woASjuMj0REreOGSPbWrVsndDqd+M9//iOOHDlyzS+DnTt3CrVaLV566SWRkZEh/v73vwutVut0kr548WLh6+srvvjiC3Ho0CFx9913i5iYGFFTU3NdbU+ePFmsXLlSHDx4UGRmZorp06cLX19fcfbsWWWfpKQkMW7cOJGfn6/8KS4ubpFjX716tfDx8XF67YKCAqd9GnvszWn/4sWLTm2np6cLtVrtdELRlOP/5ptvxN/+9jfx2WefNepkJjs7W3h4eIi5c+eKjIwM8frrrwu1Wi02bdokhBDi9ddfF15eXgKACAwMFJIkidDQUAFA9OrVSyQlJYmuXbsqJzOhoaEiKChIABCRkZHivffeU/pcUVEhnnrqKaHVagUAoVarxeDBg5UkLzQ0VHzyySeib9++wt/fX/j7+4uhQ4cKs9kswsPDxYsvvnjVYyFqDFfGx+a0zxjZcjGypeOjEEJMnz7dKcns1auXACA8PDzEiBEjRLdu3UTnzp2VC2Xr169vMEbOnj1buaim1+uFRqMRAET37t1FdHS0CAsLE3369GF8JCJqRTdEshcfHy/++Mc/Kj9brdarfhncf//94s4773TaNmzYMPHoo48KIWxXbUNDQ8XLL7+sPF5aWir0er348MMPr6vty9XV1Qlvb2/x7rvvKtuSkpLEhAkTGvX8pra/evVq4evr2+DrNeXYm9P+5V577TXh7e0tKisrlW1NOf5LNeZkZv78+aJPnz5O2yZNmuR0VTw+Pl6MHj1aREVFCUmSREBAgAAgHnvsMWG1WoVOp1OSth49eoguXbrUeyV+wYIF4le/+pXQ6XRCq9WK4OBgodFohCRJQq1Wi4KCAlFbWyvUarXQaDRi2bJlAoD47rvvxLRp08Tdd9/d5PeA6HKujI/Naf9yjJEtEyNbMj7+8Y9/FK+//rrQ6XRKvPuf//kfYbVaRUREhIiJiVHioxCiwRgZFRUldDqdCAwMFLfffruSFAIQM2bMEKdPn2Z8JCJqZe3+nr1L1/5xUKlUSEhIwO7du+t9jmPtn0slJiYq++fk5Dit/QPYCm4MGzbM6TWb0/blqqurYbFYEBAQ4LTdUaY/NjYWM2fOdKraeL3tV1ZWokuXLoiMjMSECRNw5MgR5bHGHntLHf8777yDBx54AJ6enk0+/ua41u/ecUxz587FqVOn8OGHH6KyshIA8OOPP2LmzJnw8PDAN998AwAoLi7Ggw8+CGG7MIKFCxdi8+bNOHnyJO6++26kpaXBbDZj3rx5KCoqgsViQVJSEqxWK/773/9ix44dsFqtCA4OxqOPPoqgoCCcOHECnTp1QkFBQYscM3VcroyPzW3/coyRbRcjGxsfExIS8PjjjyM5ORk6nQ4AcOzYMcycORNVVVXK/sXFxXjmmWeQm5t7RXxMTU1FcXExzGYzZsyYgc2bN+P8+fOYPn06AODXv/41jh07xvhIRNTK2n2y51j75/K1fK72ZVDf2j+X7u/4+1qv2Zy2L/eXv/xFWTjWYdy4cUhOTsa2bduwZMkSbN++HePHj4fVanV6bnPaj42NxX/+8x9s2LAB77//PmRZxsiRI3H27NkmHXtLHP/evXuRnp6ORx55xGl7Y4+/ORr63ZeXl6OmpuaKY5o0aRJeeeUVqFQqpKenIy0tDZs2bVIqbarVauTn5yuvVVJSghkzZqB379644447YDaboVar8eSTTyr7TJw4EQDw+OOP44477gAAvPbaa7hw4QIuXryIsLCw6z5OIsC18bG57V+OMbLtYiTjIxFRx8N19lrR4sWLsW7dOqSkpMBgMCjbH3jgAeXf/fr1Q//+/dGtWzekpKRg7Nix19XmiBEjMGLECOXnkSNHonfv3njrrbeUNY/ayjvvvIN+/fohPj7eaXtrHn9zPP7449iyZQs2btyIWbNmwcfHBzNnzgQALFmyBNOnT8e0adMQERGB1157Tam4Cdiu+Hfq1AmBgYHKtqKiIvj4+GDatGm4++67ceuttyIrKwsvvfQSunfvjsTERHz66acIDQ1t82Mlak8YI9t/jGR8JCK6sbX7kT3H2j+Xr+VTWFjY4JdBaGjoVfd3/H2t12xO2w5Lly7F4sWLsWXLFvTv3/+q+3bt2lWZvnKp62nfQavVYtCgQcprN/bYr7f9qqoqrFu3Dg8//PA1+9jQ8TdHQ797Hx8fGI3GBo/J398fffv2xXPPPYeBAwciLS0NAODn5wcAOH36tNMVbADIyspCeXk5LBaL0/atW7ciPj4eP//8M+69917IsoylS5ciLi4OO3bsgFarxbZt25xOOImaw5XxsbntOzBGtn2MZHwkIup42n2y51j759K1fGRZvuqXwYgRI5z2B2xfMI79Y2JiEBoa6rRPeXk59uzZ4/SazWkbAF566SUsWrQImzZtwpAhQ655jGfPnq13+kpz27+U1WrF4cOHlddu7LFfb/sff/wxamtr8bvf/e6afWzo+JvjWr/7qx3T5MmTceTIEezZs0dZXy8nJwdpaWlITk7GmjVr8Mwzz2DatGkAbNPBsrOzUVRUhPnz5+Po0aN44403sH79ejz55JPYvHkzioqK8OGHH8JsNmPUqFEoLi7GzJkzUVlZiVdeeQX/+Mc/lH7s2rULOp3uiv4TNcSV8bG57QOMkYBrYiTjIxFRB+TiAjGN4lj7Z82aNSIjI0P84Q9/EH5+fkq57KlTp4qnn35a2X/nzp3K2j+ZmZliwYIF9ZYW9/PzExs2bBA///yzmDBhQoNLLzSl7cWLFwudTic++eQTp7LZFRUVQgghKioqxJNPPil2794tcnJyxHfffScGDx4sevToIUwm03Uf+8KFC8XmzZvFyZMnRWpqqnjggQeEwWAQR44cafKxN6d9h1/96ldi0qRJV2xv6vFXVFSIgwcPioMHDyrr1x08eFCcOnVKCCHE008/LaZOnars7ygt/tRTT4nMzEyxcuXKK0qLX+2Yfvjhh3qryiUlJQkhbFXyxowZ49THH374QQwcOFDodDrRtWtXpxLqDq+//rpSmS4+Pl789NNP4uuvvxZarVbs27dPlJeXi65du4o5c+Zc8Vyiq3FlfGxO+4yRNi0RIxkfiYjoWm6IZE+I+r8MHMaMGaN82TisX79e9OzZU+h0OtGnT58GFw3u1KmT0Ov1YuzYsSIrK+u6275amX4hhKiurha33367CA4OFlqtVnTp0kXMmDHjinWemtv+7NmzlX07deok7rjjDnHgwIFmH3tT2xdCiKNHjwoAYsuWLVe8VlOPvy1PLlxh1qxZomfPnmLy5MmiX79+9Z7MEl2LK+NjU9tnjGy5GMn4SERE1yIJIURrjx4SUf1qamrQt29fnDlzBqmpqejXr5+ru0RE1C4wPhIRXb92f88ekTs7efIk8vLyIMsycnNzXd0dIqJ2g/GRiOj6cWSPyEXMZjPi4+MxcOBAxMbGYtmyZTh8+DBCQkJc3TUiIpdifCQiahlM9ohc5KmnnsInn3yCQ4cOwcvLC2PGjIGvry82btzo6q4REbkU4yMRUcvgNE4iF0hJScGyZcvw3nvvwcfHByqVCu+99x527NiBN99809XdIyJyGcZHIqKWw5E9IiIiIiIiN8SRvRtccnIyAgMDUVtb67T9nnvuwdSpU13UKyIi12N8JCKijo7J3g3uvvvug9VqxZdffqlsKyoqwtdff43f//73LuwZEZFrMT4SEVFHx2TvBmc0GjF58mSsXr1a2fb+++8jKioKt9xyi+s6RkTkYoyPRETU0THZcwMzZszAli1bcO7cOQDAmjVrMH36dEiS5OKeERG5FuMjERF1ZCzQ4ibi4uIwceJE3H777YiPj0dubi4iIyNd3S0iIpdjfCQioo5K4+oOUMt45JFHsGzZMpw7dw4JCQk8kSEismN8JCKijooje26irKwM4eHhqKurQ3JyMiZNmuTqLhERtQuMj0RE1FHxnj034evri3vvvRdeXl645557XN0dIqJ2g/GRiIg6KiZ7buTcuXOYMmUK9Hq9q7tCRNSuMD4SEVFHxGmcbqCkpAQpKSmYOHEiMjIyEBsb6+ouERG1C4yPRETUkbFAixsYNGgQSkpKsGTJEp7IEBFdgvGRiIg6Mo7sERERERERuSHes0dEREREROSGmOwRERERERG5ISZ7REREREREbojJHhERERERkRtiskdEREREROSGmOwRERERERG5ISZ7REREREREbojJHhERERERkRtiskdEREREROSGmOwRERERERG5ISZ7REREREREbojJHhERERERkRtiskdEREREROSGmOwRERERERG5ISZ7REREREREbojJHhERERERkRtiskdEREREROSGmOwRERERERG5ISZ7REREREREbojJHhERERERkRtiskdEREREROSGmOwRERERERG5ISZ7REREREREbojJHhERERERkRtiskdEREREROSGmOwRERERERG5ISZ7REREREREbojJHhERERERkRtiskdEREREROSGmOwRERERERG5ISZ7REREREREbojJHhERERERkRtiskdEREREROSGmOwRERERERG5ISZ7REREREREbojJHhERERERkRtiskdEREREROSGmOwRERERERG5ISZ7REREREREbojJHhERERERkRtiskdEREREROSGNK7uABE1zGq1wmKxuLobRETUDul0OqhUvG5PRA1jskfUDgkhUFBQgNLSUld3hYiI2imVSoWYmBjodDpXd4WI2ilJCCFc3Qkicpafn4/S0lKEhITAw8MDkiS5uktERNSOyLKMvLw8aLVaREVF8XuCiOrFkT2idsZqtSqJXmBgoKu7Q0RE7VRwcDDy8vJQV1cHrVbr6u4QUTvEid5E7YzjHj0PDw8X94SIiNozx/RNq9Xq4p4QUXvFZI+oneKUHCIiuhp+TxDRtTDZIyIiIiIickNM9ojohrdmzRr4+fm5uhtE5AZSUlIgSRKrIRORW2CBFiJqMdOnT8e7774LAEqFuGnTpuGvf/0rNJrWCzeTJk3CHXfc0Wqv3xiXHrtGo0FAQAD69++PBx98ENOnT2/SWlhr1qzB7NmzebJ5HRy/jxdffBFPP/20sv2LL77Ab3/7W7RlIepLp9p5eHggPDwco0aNwp/+9CfExcU16bVuueUWDBw4EMuWLWvhXrYc66Hn26wt9YCmtXWtaY8LFizALbfc0vwOERG1MxzZI6IWNW7cOOTn5+P48eOYN28enn/+ebz88sv17ms2m1ukTaPRiJCQkBZ5revhOPbc3Fx8++23uPXWW/HEE0/grrvuQl1dnau71+EYDAYsWbIEJSUlru4KVq9ejfz8fBw5cgQrV65EZWUlhg0bhuTkZFd3rUPJz89X/ixbtgw+Pj5O25588kmX9a2l4iER0aWY7BFRi9Lr9QgNDUWXLl0wc+ZMJCQk4MsvvwRgG22555578MILLyA8PByxsbEAgDNnzuD++++Hn58fAgICMGHCBOTm5gIAtmzZAoPBcMUo1xNPPIHbbrsNQP3TON98801069YNOp0OsbGxeO+995THcnNzIUkS0tLSlG2lpaWQJAkpKSkAgJKSEkyZMgXBwcEwGo3o0aMHVq9e3ahjj4iIwODBg/HXv/4VGzZswLfffos1a9Yo+7366qvo168fPD09ERkZiVmzZqGyshKAbQrZQw89hLKyMkiSBEmS8PzzzwMA3nvvPQwZMgTe3t4IDQ3F5MmTUVRUdK1fSYeVkJCA0NBQvPjii1fd78cff8To0aNhNBoRGRmJP//5z6iqqgIA/POf/0Tfvn2Vfb/44gtIkoR//etfTu38/e9/v2obfn5+CA0NRXR0NG6//XZ88sknmDJlCh5//HElGb148SIefPBBREREwMPDA/369cOHH36ovMb06dOxfft2LF++XPls5Obmwmq14uGHH0ZMTAyMRiNiY2OxfPnyJr9fHUFoaKjyx9fXF5IkOW3z8vJS9k1NTcWQIUPg4eGBkSNHIisry+m1NmzYgMGDB8NgMKBr165YuHCh00Wd06dPY8KECfDy8oKPjw/uv/9+FBYWKo8///zzGDhwIFatWoWYmBgYDAYkJycjMDAQtbW1Tm3dc889mDp1aiu9K0TkzpjsEbm5nPQi/PT1MeSkuyYpMBqNTlest23bhqysLGzduhUbN26ExWJBYmIivL29sWPHDuzcuRNeXl4YN24czGYzxo4dCz8/P3z66afKa1itVnz00UeYMmVKvW1+/vnneOKJJzBv3jykp6fj0UcfxUMPPYQffvih0f1+9tlnkZGRgW+//RaZmZl48803ERQU1OTjv+222zBgwAB89tlnyjaVSoUVK1bgyJEjePfdd/H9999j/vz5AICRI0deMeLgGG2wWCxYtGgRDh06hC+++AK5ubmYPn16k/vkKrKQcbDyIGQht0l7arUa//jHP/D666/j7Nmz9e5z8uRJjBs3Dvfeey9+/vlnfPTRR/jxxx/x+OOPAwDGjBmDjIwMnD9/HgCwfft2BAUFKRcFLBYLdu/e3aypf3PmzEFFRQW2bt0KADCZTIiLi8PXX3+N9PR0/OEPf8DUqVOxd+9eAMDy5csxYsQIzJgxQ/lsREZGQpZldO7cGR9//DEyMjLw3HPP4a9//SvWr1/f5D7RL/72t7/hlVdewf79+6HRaPD73/9eeWzHjh2YNm0annjiCWRkZOCtt97CmjVr8MILLwCwLXg+YcIEFBcXY/v27di6dSuys7MxadIkpzZOnDiBTz/9FJ999hnS0tJw3333wWq1KhfIAKCoqAhff/21U/tERI3Fe/aI3NhnK/Zgc/Ih5efEaQPwP38e1iZtCyGwbds2bN68GX/605+U7Z6enli1apWyPtT7778PWZaxatUq5X6a1atXw8/PDykpKbj99tvxwAMPYO3atXj44YcB2BLG0tJS3HvvvfW2vXTpUkyfPh2zZs0CAMydOxc//fQTli5diltvvbVR/T99+jQGDRqEIUOGAACio6Ob9T4AQK9evfDzzz8rP8+ePVv5d3R0NP7v//4Pjz32GN544w3odDqnEYdLXXqy17VrV6xYsQJDhw5FZWWl04hEe7WxeCMWnlqI57s8j98E/qZN2vztb3+LgQMHYsGCBXjnnXeuePzFF1/ElClTlN9Jjx49sGLFCowZMwZvvvkm+vbti4CAAGzfvh0TJ05ESkoK5s2bp4yc7d27FxaLBSNHjmxy33r16gUAyih2RESE0zTCP/3pT9i8eTPWr1+P+Ph4+Pr6QqfTwcPDw+mzoVarsXDhQuXnmJgY7N69G+vXr8f999/f5H6RzQsvvIAxY8YAAJ5++mnceeedMJlMMBgMWLhwIZ5++mkkJSUBsP1/XLRoEebPn48FCxZg27ZtOHz4MHJychAZGQkASE5ORp8+fbBv3z4MHToUgG3qZnJyMoKDg5V2J0+ejNWrV+O+++4DYIuRUVFRvJeQiJqFI3tEbionvcgp0QOAzcmHWn2Eb+PGjfDy8oLBYMD48eMxadIkZRoiAPTr109J9ADg0KFDOHHiBLy9veHl5QUvLy8EBATAZDLh5MmTAIApU6YgJSUFeXl5AIAPPvgAd955Z4MVODMzMzFq1CinbaNGjUJmZmajj2PmzJlYt24dBg4ciPnz52PXrl2Nfu7lhBBOhSG+++47jB07FhEREfD29sbUqVNx8eJFVFdXX/V1UlNT8Zvf/AZRUVHw9vZWTkRPnz7d7L61lTpRh7fz3wYAvJX/FupE293DuGTJErz77rv1/v4PHTqENWvWKJ89Ly8vJCYmQpZl5OTkQJIk3HzzzUhJSUFpaSkyMjIwa9Ys1NbW4ujRo9i+fTuGDh0KDw+PJvfLUSTG8dmwWq1YtGgR+vXrh4CAAHh5eWHz5s2N+v2uXLkScXFxCA4OhpeXF95+++0b4nPRnvXv31/5d1hYGAAo06YPHTqE//3f/3X63DhGXKurq5GZmYnIyEgl0QOAm266CX5+fk6fwy5dujglegAwY8YMbNmyBefOnQNgm6Y+ffp0rqlHRM3CZI/ITRWeKm3S9pZy6623Ii0tDcePH0dNTQ3effddeHp6Ko9f+m8AqKysRFxcHNLS0pz+HDt2DJMnTwYADB06FN26dcO6detQU1ODzz//vMEpnI3hqIx5aUVGi8XitM/48eNx6tQpzJkzB3l5eRg7dmyzizdkZmYiJiYGgG0U56677kL//v3x6aefIjU1FStXrgRw9QINVVVVSExMhI+PDz744APs27cPn3/++TWf1158U/wN8s35AIB8cz6+Lf62zdq++eabkZiYiGeeeeaKxyorK/Hoo486ffYOHTqE48ePo1u3bgBsFTBTUlKwY8cODBo0CD4+PkoCuH37diXpbirHSb/js/Hyyy9j+fLl+Mtf/oIffvgBaWlpSExMvObvd926dXjyySfx8MMPY8uWLUhLS8NDDz10Q3wu2jOtVqv825FoybJtCnJlZSUWLlzo9Lk5fPgwjh8/DoPB0Og2Lo+HADBo0CAMGDAAycnJSE1NxZEjR26o6dpE1L5wGieRm+rUxa9J21uKp6cnunfv3uj9Bw8ejI8++gghISHw8fFpcL8pU6bggw8+QOfOnaFSqXDnnXc2uG/v3r2xc+dOZYoVAOzcuRM33XQTAChX0vPz8zFo0CAAcCrW4hAcHIykpCQkJSVh9OjReOqpp7B06dJGHxsAfP/99zh8+DDmzJkDwDY6J8syXnnlFSXpvPzeKp1OB6vV6rTt6NGjuHjxIhYvXqyMFuzfv79JfXEVx6ieBAkCAhIkvJX/FsYHjIdGapuvocWLF2PgwIFKUSCHwYMHIyMj46qf2TFjxmD27Nn4+OOPlal0t9xyC7777jvs3LkT8+bNa1afHPdmJiQkALB9RidMmIDf/e53AGyJxbFjx5TPLVD/Z2Pnzp0YOXKkMm0ZgDIqTq1j8ODByMrKavBz07t3b5w5cwZnzpxR/r9mZGSgtLTU6ffZkEceeQTLli3DuXPnkJCQ4DRCSETUFBzZI3JTMX1DkDhtgNO2xKQBiOnr+iUKLjVlyhQEBQVhwoQJ2LFjB3JycpCSkoI///nPTkU1pkyZggMHDuCFF17AxIkTodfrG3zNp556CmvWrMGbb76J48eP49VXX8Vnn32mjMwZjUYMHz4cixcvRmZmJrZv335FNcXnnnsOGzZswIkTJ3DkyBFs3LgRvXv3vuqx1NbWoqCgAOfOncOBAwfwj3/8AxMmTMBdd92FadOmAQC6d+8Oi8WC119/HdnZ2XjvvfecKjsCtvv4KisrsW3bNly4cAHV1dWIioqCTqdTnvfll19i0aJFTXqvXWVfxT7km/MhYBtJFRDIN+djf0XbJav9+vXDlClTsGLFCqftf/nLX7Br1y48/vjjyoj0hg0blAItgG06n7+/P9auXeuU7H3xxReora29YspwfUpLS1FQUIBTp05h69atmDhxItauXYs333xTmY7co0cPbN26Fbt27UJmZiYeffRRp+qNgO2zsWfPHuTm5uLChQuQZRk9evTA/v37sXnzZhw7dgzPPvss9u3bd31vGF3Vc889h+TkZCxcuBBHjhxBZmYm1q1bp8SRhIQE5TN34MAB7N27F9OmTcOYMWOU+4CvZvLkyTh79iz+/e9/szALEV0fQUTtSk1NjcjIyBA1NTUt8nrZhwvF7o1ZIvtwYYu83tUkJSWJCRMmNPnx/Px8MW3aNBEUFCT0er3o2rWrmDFjhigrK3PaLz4+XgAQ33//vdP21atXC19fX6dtb7zxhujatavQarWiZ8+eIjk52enxjIwMMWLECGE0GsXAgQPFli1bBADxww8/CCGEWLRokejdu7cwGo0iICBATJgwQWRnZ1/12AAIAEKj0Yjg4GCRkJAg/vOf/wir1eq076uvvirCwsKE0WgUiYmJIjk5WQAQJSUlyj6PPfaYCAwMFADEggULhBBCrF27VkRHRwu9Xi9GjBghvvzySwFAHDx4sMF+tQfVddXiqwtfic/Of6b8+erCV6K6rrrV2qzvs5aTkyN0Op24/Ktv79694te//rXw8vISnp6eon///uKFF15w2mfChAlCo9GIiooKIYQQVqtV+Pv7i+HDh1+zL47PBQBhMBhEt27dRFJSkkhNTXXa7+LFi2LChAnCy8tLhISEiL///e9i2rRpTseRlZUlhg8fLoxGowAgcnJyhMlkEtOnTxe+vr7Cz89PzJw5Uzz99NNiwIABjX/DOqD64oYQQvzwww9X/H88ePCg8n47bNq0SYwcOVIYjUbh4+Mj4uPjxdtvv608furUKXH33XcLT09P4e3tLe677z5RUFCgPL5gwYKr/o6mTp0qAgIChMlkanCflv6+ICL3IwlxyU0rRORyJpMJOTk5yrpLRETU8YwdOxZ9+vS5YjT6Uvy+IKJr4T17RERERO1ESUkJUlJSkJKSgjfeeMPV3SGiGxyTPSIiIqJ2YtCgQSgpKcGSJUuuKChERNRUTPaIiIiI2onc3FxXd4GI3AircRIREREREbkhJntE7RRrJxER0dXwe4KIroXJHlE7o9VqAQDV1dUu7gkREbVnZrMZAKBWq13cEyJqr3jPHlE7o1ar4efnh6KiIgCAh4cHJElyca+IiKg9kWUZ58+fh4eHBzQans4RUf0YHYjaodDQUABQEj4iIqLLqVQqREVF8YIgETWIi6oTtWNWqxUWi8XV3SAionZIp9NBpeIdOUTUMCZ7REREREREboiXg4iIiIiIiNwQkz0iIiIiIiI3xGSPiIiIiIjIDTHZIyIiIiIickNM9oiIiIiIiNwQkz0iIiIiIiI3xGSPiIiIiIjIDf0/wQX6RksZ+tAAAAAASUVORK5CYII=\n"
- },
- "metadata": {},
- "output_type": "display_data"
- }
- ],
- "source": [
- "# Change the viewing angle to 0 elevation, 0 azimuth.\n",
- "fig = plot_results_panel_3d(cycle_mlr,\n",
- " wrap=3,\n",
- " subplot_kw=dict(figsize=(12,6)), # Panel configurations\n",
- " scatter_previous_kw=dict(color='rebeccapurple', marker='o', s=10), # Previous data point\n",
- " scatter_current_kw=dict(color='limegreen', marker='^', s=10, alpha=1), # Current cycle data\n",
- " surface_kw=dict(color='orange'), # Theory surface\n",
- " view=(0, 0), # Degrees (elevation, azimuth)\n",
- " );"
- ],
- "metadata": {
- "collapsed": false
- }
- },
- {
- "cell_type": "code",
- "execution_count": 15,
- "outputs": [
- {
- "data": {
- "text/plain": "",
- "image/png": "iVBORw0KGgoAAAANSUhEUgAAA5QAAAIzCAYAAAB/WFaqAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8o6BhiAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOy9d5hcd33v/zrT+2zvvWjVLVm2bMlgG67p3GCSQCAJjgkhBUNwyI8SHvKQC8S+xiSEQC4lYCtATAsYE0MAgy1LsmRbxVbX9qbV9j47O/Wc3x+z52hmd2Z32s4Wf1965lntzJwys3M+83l/P01SFEVBIBAIBAKBQCAQCASCFNGt9QkIBAKBQCAQCAQCgWBjIgSlQCAQCAQCgUAgEAjSQghKgUAgEAgEAoFAIBCkhRCUAoFAIBAIBAKBQCBICyEoBQKBQCAQCAQCgUCQFkJQCgQCgUAgEAgEAoEgLYSgFAgEAoFAIBAIBAJBWghBKRAIBAKBQCAQCASCtBCCUiAQCAQCgUAgEAgEaSEEpWBF6urquPfee9f6NAQCgWDdIeyjQCAQxEfYx1cOQlBuMDo7O/mLv/gLGhoasFgsuFwubrvtNr70pS8xPz+/1qeXNJcvX+aNb3wjDoeDgoIC3vOe9zA6OrrWpyUQCDYwm8E+vvjii3zgAx9g3759GI1GJEla61MSCASbgI1uH2VZ5tChQ/zO7/wO1dXV2O12du7cyec+9zl8Pt9an94rHsNan4AgeX7+85/zjne8A7PZzD333MPOnTsJBAIcO3aMj370o1y8eJFvfOMba32aK3L16lVuv/123G43DzzwAB6Phy984QucP3+eF198EZPJtNanKBAINhibxT7+4he/4Jvf/Ca7d++moaGBtra2tT4lgUCwwdkM9tHr9fLe976XW2+9lb/8y7+kpKSEEydO8OlPf5rf/va3PP3002IBbg0RgnKD0N3dzbve9S5qa2t5+umnKS8v1x6777776Ojo4Oc///kanmHyPPDAA8zNzXH69GlqamoA2L9/P6973es4dOgQf/7nf77GZygQCDYSm8k+/tVf/RUf//jHsVqtfPCDHxSCUiAQZMRmsY8mk4nnnnuOgwcPave9//3vp66uThOVd9111xqe4SsbkfK6Qfj85z+Px+PhW9/6VowxUGlqauLDH/4wAHfccQc33HBD3P20tLTwhje8QftdlmW+9KUvsWvXLiwWC8XFxbzxjW/k1KlTy57P1NQU999/P9XV1ZjNZpqamnjooYeQZXnF1/LjH/+Yt771rZqYBLjrrrvYsmULP/zhD1fcXiAQCKLZTPaxtLQUq9W64vMEAoEgGTaLfTSZTDFiUuXtb387ECmlEqwdQlBuEP77v/+bhoaGuBfTYt7znvdw7tw5Lly4EHP/yZMnaWtr44//+I+1+973vvdpF/ZDDz3EJz7xCSwWC88//3zC/Xu9Xu644w6++93vcs899/Cv//qv3Hbbbfzd3/0dH/nIR5Y9t4GBAUZGRrjpppuWPLZ//35eeumlFV+fQCAQRLNZ7KNAIBBkm81uH4eGhgAoKipKa3tBllAE657p6WkFUN72trcl9fypqSnFYrEoH//4x2Pu/+u//mvFbrcrHo9HURRFefrppxVA+eu//usl+5BlWft/bW2t8id/8ifa75/97GcVu92utLW1xWzziU98QtHr9UpfX1/Cczt58qQCKN/+9reXPPbRj35UARSfz5fU6xQIBILNZB8Xc9999ynia1ogEKTLZraPKnfddZficrmUycnJlLcVZA8RodwAzMzMAOB0OpN6vtvt5m1vexvf+973UBQFgHA4zA9+8APuvvtu7HY7EEk9lSSJT3/600v2sVxh849+9CNe/epXk5+fz9jYmHa76667CIfDHDlyJOG2aicxs9m85DGLxRLzHIFAIFiJzWQfBQKBIJtsdvv4wAMP8Jvf/Ib/+3//L3l5eSltK8guoinPBsDlcgEwOzub9Db33HMPP/jBDzh69Ci33347v/nNbxgeHuY973mP9pzOzk4qKiooKChI6Xza29s5d+4cxcXFcR8fGRlJuK1aG+T3+5c8prZ9FvVDAoEgWTaTfRQIBIJsspnt4w9+8AM+9alP8b73vY+/+qu/Suk8BNlHCMoNgMvloqKiYklO+3K84Q1voLS0lO9+97vcfvvtfPe736WsrCwrHbBkWeZ1r3sdH/vYx+I+vmXLloTbqgXhg4ODSx4bHBykoKAgbvRSIBAI4rGZ7KNAIBBkk81qH5966inuuece3vKWt/C1r30t4/MSZI4QlBuEt771rXzjG9/gxIkTHDhwYMXn6/V6/vAP/5BDhw7x0EMP8dOf/pT3v//96PV67TmNjY386le/YmJiIqVVpsbGRjweT1rGpbKykuLi4rhdwF588UX27NmT8j4FAsErm81iHwUCgSDbbDb7+MILL/D2t7+dm266iR/+8IcYDELKrAdEDeUG4WMf+xh2u50/+7M/Y3h4eMnjnZ2dfOlLX4q57z3veQ+Tk5P8xV/8BR6PJ6Y7F8Dv/d7voSgK/+f//J8l+1Nz5+Pxzne+kxMnTvCrX/1qyWNTU1OEQqFlX8vv/d7v8eSTT9Lf36/d99vf/pa2tjbe8Y53LLutQCAQLGYz2UeBQCDIJpvJPl6+fJm3vOUt1NXV8eSTT4oSqXWEpCz3lxesK372s5/xB3/wB1itVu655x527txJIBDg+PHj/OhHP+Lee+/l61//esw2u3bt4sKFC2zbto1Lly4t2ec999zDd77zHd70pjfxxje+EVmWOXr0KK95zWv44Ac/CEBdXR133nknhw4dAiJtn1/96ldz7tw57r33Xvbt28fc3Bznz5/nv/7rv+jp6Vm2fXN/fz979+4lLy+PD3/4w3g8Hh5++GGqqqo4efKkSHkVCAQps1nsY29vL9/5zncAePLJJ3nhhRf47Gc/C0BtbW1MHZNAIBAkw2awj7Ozs+zYsYOBgQEeeOABKisrYx5vbGxMKgIrWCXWqLusIE3a2tqU97///UpdXZ1iMpkUp9Op3HbbbcqXv/zluOM2Pv/5zyuA8sADD8TdXygUUh5++GFl69atislkUoqLi5U3velNyunTp7XnLG77rCiKMjs7q/zd3/2d0tTUpJhMJqWoqEg5ePCg8oUvfEEJBAIrvo4LFy4or3/96xWbzabk5eUpf/RHf6QMDQ2l9mYIBAJBFJvBPj7zzDMKEPd2xx13pPyeCAQCgaJsfPvY3d2d0DYCS44jyC0iQrnJ+dKXvsTf/M3f0NPTQ01NzVqfjkAgEKwbhH0UCASC+Aj7KEgFISg3MYqicMMNN1BYWMgzzzyz1qcjEAgE6wZhHwUCgSA+wj4KUkW0RtqEzM3N8bOf/YxnnnmG8+fP88QTT6z1KQkEAsG6QNhHgUAgiI+wj4J0ERHKTUhPTw/19fXk5eXxgQ98gH/8x39c61MSCASCdYGwjwKBQBAfYR8F6SIEpUAgEAgEAoFAIBAI0kLMoRQIBAKBQCAQCAQCQVoIQSkQCAQCgUAgEAgEgrQQglIgEAgEAoFAIBAIBGkhBKVAIBAIBAKBQCAQCNJCCEqBQCAQCAQCgUAgEKSFEJQCgUAgEAgEAoFAIEgLISgFAoFAIBAIBAKBQJAWQlAKBAKBQCAQCAQCgSAthKAUCAQCgUAgEAgEAkFaCEEpEAgEAoFAIBAIBIK0EIJSIBAIBAKBQCAQCARpIQSlQCAQCAQCgUAgEAjSQghKgUAgEAgEAoFAIBCkhRCUAoFAIBAIBAKBQCBICyEoBQKBQCAQCAQCgUCQFkJQCgQCgUAgEAgEAoEgLYSgFAgEAoFAIBAIBAJBWghBKRAIBAKBQCAQCASCtBCCUiAQCAQCgUAgEAgEaSEEpUAgEAgEAoFAIBAI0kIISoFAIBAIBAKBQCAQpIUQlAKBQCAQCAQCgUAgSAshKAUCgUAgEAgEAoFAkBZCUAoEAoFAIBAIBAKBIC2EoBQIBAKBQCAQCAQCQVoIQSkQCAQCgUAgEAgEgrQQglIgEAgEAoFAIBAIBGkhBKVAIBAIBAKBQCAQCNJCCEqBQCAQCAQCgUAgEKSFEJSCNUVRFGRZRlGUtT4VgUAgWFcoikI4HBb2USAQCBYh/Mf1hWGtT0DwykB1jGRZ1m7hcJhwOIxer8dsNqPX69HpdEiStNanKxAIBDlDdYyibaP6U5IkzT7q9XphHwUCwSuKxfYx2n9UFAWz2YzRaBT2cY2RFCHtBVlCUZS4jlEoFOLatWsUFxej1+u150qShCRJGAwGTUjqdLqY3wUCgWCzEM8+hsNhhoeHsdvtmM1m7bmqfdTpdBiNRu0+g8EgHCeBQLDpSLSwNjk5iaIoOJ3OmOerNtBkMgGg0+m0hTedTiRg5hoRoRSkTCLhqF786uMQueAVRaGtrU0TlIsdIdUIqPtsbW2lrKwMl8slHCeBQLDhWC4jQ7WN0Tayr6+Pmpoa7HZ7XPuo0+k0u9rf34/RaKSsrEzYR4FAsOFYLiNjcQqrJEkMDw8jSRJ5eXlx7Z3qPyqKwtjYGB6Ph9raWi04IcgNQlAKErJYOKoOkeoULRaO0Svq6n0A4XA45jmJUB8fGBjA7XZjtVoJhUJiRV4gEKw7kllYi35utH2MZwsTZWWEw2EMBoO2zdjYGFarlYKCArEiLxAI1i2J7GO0D6mynH2M9i8ToT4+NzfH8PAwVVVVWklVtP0UrB5CUAq0Czt6RT0d4bgSiZ63+H5FUTSjoigKwWBQCEuBQLAmpJqRof5MJBwTHSMcDjM9Pc3c3FzMze/3k5+fT0NDA0VFRUBs1FK1j6rjJISlQCDIJalmZKRqH1Mler+hUEgTlqJPx+oiBOUriESFzV6vl8nJSUpKSmKen65wzBbq8VWHLRAIiBV5gUCwKsQTjqFQiFAoxMDAAKWlpTG2MF37GAwGNbHo9XrxeDzMzc1x6dIlTCYTdrsdu91OUVERtbW12Gw2RkZGOH/+PBaLBb1ej81mW2Ifo5uciRV5gUCQTZZbWFNrwK1Wq/bcbAvHZLdfvLin2mdVWIo+HauHEJSbkOXy0xenGQDMzc3R29tLeXk5kH3hmGrfJ9UYqSx2nBavyAvHSSAQJEuqqfyKotDR0UFpaalmb5IhWjhG3wKBQIxwLCkpwefzUV9fT1lZ2ZL96HQ6Ghsbqaur4+rVq7S2tuLxeLBYLFRUVMRkc4BYkRcIBOmTTkZGf38/1dXVOByOVbE1qfqQi/1HIKZPx+LghLCP2UEIyg1MqoXNi1eMVNTOq6t9UaWywhTvuWJFXiAQJMtKrebVW3SaaryIoyzL2j7j2ZdAIBATcYwWjmazGZvNpglHVUSqXVtVrl69isGw/NexXq+ntraWiYkJJEmiu7ubjo4O6urqqK6u1uy4WJEXCAQrkSgjQ/1/KqVO8fzKXBGvZGq58irVh4x+zaKcKjsIQbkByFZh80rH2ChEGwUQK/ICwSuZVDMy0k1VDQQCMYJRvQWDQcxmsyYWS0tLsdvt2Gy2JcIxG0iShNvt5oYbbmB4eJiuri46Ozupq6ujpqZGO+biFXlJEiNHBIJXGtlqrpjMcVaTbJ5Hoqw3YR8zQwjKdcTi1XRZlgkGgwwNDVFUVKQ1YYDcFDZni0xTXhOxOJUhEAjQ1tZGS0sLFotFCEuBYBORSDiOjIxgs9m0WWSwfEbGSscIBoN4PB5NPHo8HgBOnjwZIxzLysq0/68UXUyGVDM4JEmirKyM0tJSxsbG6Orqoru7m+rqaurq6jCbzUscp7a2NoqKiigoKBCOk0CwiUiUkTE5OYkkSdjt9qwIx7Ugk5TXlZ4XbR/7+/vR6XRUVFSIPh1pIARljkm11Xw4HObKlSu86lWv2vAOwGqeu2oY+/v7aWxsFCvyAsEGJdWMjK6uLhoaGrRGNckeIzpVNfoWCoWwWCyaWCwvL2d6eppbbrkFu92+Wi87bSRJori4mOLiYiYnJ+nq6uLZZ5+lqqqK+vp6rFar5jgNDQ1ht9vj1qELBIL1T6oZGYODgxiNRlwuF7C+hWM2SCdSqtrHqakpzZ6KztmpIwTlKpFqYXOi1aLF9T2vBJKNUMbbDtAEpEhlEAjWL9lqNb/YVi4+RrLCsaKiQktVjY44KorClStXshKFXO69SOW5iexYfn4++/btY2Zmhq6uLo4ePUpZWRkNDQ04HI64I5kWlwsIBIK1J1s9MjZCBHIlUvUJM3mt0SOZRJ+O1BCCMkNWOz89Fx/e1T7GaqW8JjpO9Pscb+SIWJEXCHJDqhkZ6aTyq9e5z+dbIhq9Xi+hUAir1RojHB0OBzabTWtksx7ItGlZNC6Xiz179jA3N0d3dzfHjx+nuLiYcDgc1z6KztkCwdqw2j0yovtNrBbryVak6z9Gbyv6dKSHEJRJEt1ZVL3wvV4vwWAQi8WStcLmxajbbaSmOYnIlXBdHL1Y7Dgt7nwoEAgyI55w9Pv9zM3NYbPZEtrH6Fuyx1H3G327dOkSsizHCMf8/Hwt4pgN4bgRbbDdbmfnzp00NTXR3d3N8PAw7e3t6HQ6CgoKltjH6BV54TgJBNkjXkbG5OSklpKuPgey2yMjV9fverGPmZzHYjGq/l90zk4OISgXkUyreZWBgQE8Hg87duxY9bSC9XKx5oJsRCgXs9hxil5xEivyAkFyJGo1Hy8jY3Z2lkuXLnHw4MG0OgaqEUev1xvTJCccDmujOGw2G2azmYqKCqqqqlYl4pgLu7CcfV98/HTso8ViYdu2bYyMjOBwOHjppZew2+00NjZSXFyccEVeOE4CQfKkmpFx6tQp9u/fr9V/C/8xPrlKeU10HPU+0Tl7eV6xgjLVwuZ4EUe1pmY1o1ybYXUpnZTXTI6z3Hu2nLAUK/ICQYR4GRmppvIbDAatZm+54yRKVV0ccSwsLNREZPQ+p6amsFgs6yp9NR2ymfK6HFVVVWzfvp3+/n4uXryI0WikoaGBsrIy7X1VHSf17y+EpUBwnVR7ZKg/F0cc1Xq91fYho2fpbnayGaGMR6JyASEsXwGCMluFzfHIZW76Rl9hgtTEcbYjlPH2v3hFfnJyEr1eT35+vnCcBK8IksnIiP6STSWVP3rMkaIozM/PxwhG9f+KomCz2bSoYyLhuNLr2Mjk6vzVv6XBYKC+vp6amhoGBgZob2+nvb2dhoYGKisrNfsXvSI/PT2Nz+ejpKTkFe84CV4ZpJKRkW6PjNUWe6+06zQbNZTJsFhYzs/PMz4+TmVl5Su2T8emEZSrXdgcj1yt/Ky2cF1vH/xMUl5T3S46leHq1asYjUbsdrtYkRdsKrKRkZHscVThODk5STgc5sUXX8Tr9WrCUY04FhUVYbfbsVqtGa3Q52Jhbz2RTYdJr9dTU1NDVVUVQ0NDdHV10dHRQV1dHdXV1THlAJOTkwwMDJCfny9W5AWbiuiMjOha4mwJx0TkynZtdPsYz+YFg0FtcTI/Px+32609lgtBGX0sSZIIBoOcO3eOkpKSV2zn7A0pKGdmZnj55ZfZv39/3FbzV69eZW5ujpaWlqwVNscjl47MRjYIuV59z2R71UESOfKCjYqiKBw9epRdu3ZhNpuXZGTMzMzQ3t7OTTfdlFJGRjSyLDM/Px8TaVS/3FXhaLFYAKirq8uKcFxrcpWNksx5ZNthUod5l5eXMzIyQldXF11dXdTU1FBbW4vJZNKep37vRXfOfqU5ToKNzdmzZ3G73ZSWli4RjrIsc+LECW666SYsFktWhGMicpXltpH9x3A4TDAYZHZ2lo6ODjweD3Nzc/j9fkwmEzabjba2NgoLC2lqalr1lNflUD8r0amwr6Q+HRtSULa3t/O2t72Nrq4u7QMQ7RTpdDpkWV7VuWGQuwt1s3wIV9thyoagjF59FDnygo2Ioii89a1v5Ze//CVbt25dYh+NRqP2eV4JVTjGq3GUJCkm4lhSUoLdbsdisaDT6Zifn+fEiROUlJSs6uvd6A4TrJ9FN0mSKC0tpaSkhImJCbq6uujp6aG6uhqj0ZjQPorO2YKNxMc+9jHe+MY3cu+99wKxGRl6vR5ZlrWU79UkuixgtdgoolWdnKB+x6jCcX5+HkmSMJvNmEwmioqKqK2txeFwaDZJlmW6u7t58cUXMZlMOJ3OtM4hEx9S/cwsto+vpM7ZG1JQWiwW/H5/QudeFZSrTS4F5UZ2mFI591TqIONtm8mFqjafUFlsGMSKvGAjIEkSJpOJYDCI0Whc8ng8+5iscHQ4HJSWlmoRx5XECWR+Xa5ELmvZ18MxclEjJEkShYWFFBYWMjU1RVdXF6Ojo5jNZrxeb0xXyngNzl4pK/KCjYnJZMLv9ydcVNtsPuR6Qm3EpgpG9af6XaN+z+Tl5VFZWYnD4aCtrQ2Xy0VtbW3cfZrNZrZu3Up9fT1nzpxhdHSUkydP0tTURH5+fkrnloltTeQ/wiujc/aGFJRmsxm/379s+k4uLtJcGR1Y/RXszWDUshWhXIxYkRdsNFQbuRhVOIbDYbq6urQv8ugv81SFYyLU6yIXgvKVRK5TuvLy8rjxxhtpbW1lcHCQY8eOUVpaSkNDA06nc1lhudlX5AUbk0T2USVXPmQu+nCslWhVF+FVwRgtHqPr6ZP5rknWfpjNZvLz83E4HJjNZk6dOkVeXh6NjY0UFBQkdc7ZXqyL7tOhRiw3a+fsDSkorVar1m1Lre2IJhcXqXockfKaHKmsvqfy/MXbroagVFkulUGsyAvWE1arlStXrlBSUoIkSdoXupo+pK4Su1wuysvLtVTVbH5+oyOUq81GXxBL9fxz2XRCxWQykZeXx5YtW+jp6eHEiRMUFhbS2NhIXl7eK3JFXrAxUbPcErGZfMhcHENNV1X7l6jCMRQKaaOfHA4HBQUFKXfwVknFdhgMBrZs2UJdXR29vb2cOXMGl8tFY2MjhYWFCbfLRsrrcqhp1Gqt7mbr07EhBaXZbAbA5/PFFZSbLV1ho6dFpHPua5Xymmw6WDzHSazIv7J58MEH+clPfsKVK1ewWq0cPHiQhx56iJaWloTbHDp0iPe+970x95nNZnw+X1rn8Dd/8zf8z//8D11dXXz84x/n85//PPv378ftdmvCUZIkjh8/zrZt23ISOdwMDlMuWE8pr/FQ7aPNZmP79u00NjbS09PDyZMncbvdNDQ0UFhYGHdFPnrhTdhHwVpjNpsJBAIJH99MPmQ2r7VwOBwjGNWfgUAAr9eLy+XCbrdTUVGhZbvkej5w9PtpMplobm6mrq6Onp4eXnrpJZxOJ01NTRQUFCx5b3JlWzdrn44NKSjV7oGJDMJmMgYqq3mc9fThXcsOXYtz4FdCPZa6TW9vL4FAgKamJuE4vQJ59tlnue+++7j55psJhUJ88pOf5PWvfz2XLl3Cbrcn3M7lctHa2qr9nsln5jWveQ1veMMb+Nu//Vs++clP8ju/8ztLnhMMBoGIQFjNL3v1dWyWOWubQbRms0bIbDbT0tJCQ0MDfX19nD17FqvVSkNDA6WlpZrTpArLqakpenp6uOGGGza84yTY2CST8poLHzJXqbWpHkONOC5OV/X5fBgMBhwOR0wjto6ODiorKykvL18X57/YrhiNRk1Y9vb28vLLL2O322lqaopZBMumfUz2PFUdEQ6HeeGFF7jxxhuxWCwbsk/HhhaUiVbxN1sN5Wb40s1VymsmpGtM1G18Ph+BQGBT58gLEvPLX/4y5vdDhw5RUlLC6dOnuf322xNuJ0kSZWVlWTkHVUB++tOfTugwRQu9XAjK9egwrTdSbVyWiX3M9gq80WiksbGR2tparl69yuXLl2lvb6ehoYHy8nLN/qmt/zfTirxgY2KxWJidnU34eC5rKNcyQqko1+cGR4tHr9eLTqfTooz5+flUVVVht9sxmUxL9pnrKORyLCfsjEYjTU1NmrA8e/YsNpuNpqYmioqKVj3lNRHqdlNTUxu6T8eGFJTqm5woQrmZ8t9VNrLDtF5a4q9EJgZBPb7aBXaz5sgLkmd6ehpgxWYAHo+H2tpaZFnmxhtv5IEHHmDHjh0ZHXu5FfjoZjmriUh5TY1UF91SJRtt/Zc7R4PBQF1dHTU1NVy7do3Ozk7a29upr6+nqqpKs4+qsy46ZwvWCpPJtGzKay59yFxkcMiyjM/nW9IcR22QE92MraysLK2a+vWSupvMeRgMBm0RrK+vj3PnzmGz2bTsnXTIRoYcoNnBjdinY0MKSoisMC0XodxMgjIXx1krh0yWZYLBoFYXu9ZNeTJxaKLHjmzWHHlBcsiyzP33389tt93Gzp07Ez6vpaWFRx55hN27dzM9Pc0XvvAFDh48yMWLF6mqqkr7+MvVYeYyFXWzNJ3IZVqt6vhFD/CurKyksrIyowHr6nuUro1L1j7qdDqqqqqorKxkaGiIrq4uOjs7Y1LLEtnH6DpLgWC1sFqty9apb2QfMhAIxAjHiYkJ/H4/x48fj5kbXFRUpHVWXe/X23LvUTxbmKx9NBgMNDQ0UFNTQ39/P21tbbS1taHX6ykuLk5ZUGfqPwJaRke0fdwofTo2pKCUJEmbIxSPjWwMEh1nMxCdWhE9ewigqqqKhoYGLXVirQRlphHOxXOtFhsGsSL/yuC+++7jwoULHDt2bNnnHThwgAMHDmi/Hzx4kG3btvH1r3+dz372s2kff7mmE5Ik5dRG5mq00kYjGAxq9jAUCnH58mXm5+eRZRmr1arVKeXn59PT00NXVxeNjY1pZ1LkuiRAkiTKy8spKytjbGxMe31tbW3U1dVpqXPR9nGjrcgLNiYrRSg3gg8ZCoXiRhwDgQBms1mzH3l5eczPz7Nnz551lZq6WqTjxxkMBurr6xkYGMDtdnPx4kVMJhNNTU1ap/TVOG406ucteh+JGkCu13KqDSkoYfm2z7msoRQpr0sJhUIxonF6ehpZlnn++edjZg+pqRU6nY7Ozk6OHj1KRUVF2sddLymv8RAr8q8cPvjBD/Lkk09y5MiRlKOMRqORvXv30tHRkdE5iLb464fFDS5U2+j3+zGZTDgcDgBKSkooLCzEZrPFOH56vZ7a2loGBwfp6Ohgfn6e8fFxCgoKUrIbmUYo4y2YJYMkSRQXFxMIBOjp6WFmZoZnn32Wqqoq6urqtNlz8Ryn9b4iL9iYrGQf15MPKcuyJhajxaPP58NoNGr+VElJiSYio6/Ta9euEQgENryYzNX1X1ZWxvbt2+nv7+fSpUt0dHTQ2NioNRpLRDb8x0QLaOp9671z9oYVlMtFKDeTs5SL42RShLySo6QaOq/Xy+233x7XmTEajezZs4fZ2Vna2toAaGtro6GhQUuFXe3XAtkRpCs5a2JFfvOiKAof+tCHePzxxzl8+DD19fUp7yMcDnP+/Hne/OY3Z3Qu62lw92YRlCsdQ1EU/H5/zGKax+NZ0uCioKCAmpoaHA4HRqMRgCNHjlBUVKSJy8VIkkRFRQVlZWUcPnyYa9euMTIyQmNjI+Xl5UmvoGdCNuyj2WzmpptuYmZmhq6uLo4ePUp5eTn19fU4HA5t/6odXe8r8oKNyUr2cS18SFmWtSyuaOE4Pz+v2Q91lmN1dTUOhyPu2Lx4rOcFt2TIRdOy6OPo9Xrq6uqorq7m6tWrXLlyRROWZWVlcfefC/8R1vcsyw0pKCVJWrHpxGZK51rrL1DVUVqcrjo3N7eiowSRpiN9fX0rXixOp5MdO3Zw+PBhvF4vR44coaamhvr6+qQM52pGGJMhWYMAYpblZuS+++7jscce44knnsDpdDI0NASA2+3GarUCcM8991BZWcmDDz4IwGc+8xluvfVWmpqamJqa4uGHH6a3t5c/+7M/y+hcXmlt8XONmoWx2CaGQiFsNtuStvpqFC4Ryb5Harr89u3b8fv9tLW10dnZSVNTU0JHZ/ExMnG2smUfXS4Xe/bswePx0N3dzfHjxykpKaGhoQGXyxV3RV7dXrWRwj4K0mUt51BGLzzNz88zODjItWvXtPIfNYvL5XJRXl6Ow+HAbDZn1EF0s9SYJ0OmgjJ6WzU7RBWWra2tmrBcvJCXS/8R1mefjg0pKCG5Loap/oFSZbNEKKNR8/IXr7KrjlJ0ekUyjhKktzp24403MjMzQ0dHB88++yy1tbVa3c1yrHXKa6rbL16RP3v2LAUFBVRVVYkV+Q3GV7/6VQDuvPPOmPsfffRR7r33XoAlCyuTk5O8//3vZ2hoiPz8fPbt28fx48fZvn17RuciUl6zg5qFoSgK/f39miOoZmGo9rCiogKHw7EkXTUVUrnO9Xo9VVVVVFRUaI6OKiwTpWZlKihXwz46HA527dpFU1MTPT09PP/88xQUFNDQ0KB1R45eke/t7WVubo5t27atixV5wcYkV015AoHAklmOc3NzhMNhbDab9rOysnLDNMhJxGYQrYl8OJ1OR01NDVVVVQwMDNDe3h4jLNXPy1oENKKF5fT0NJcvX+bWW29dkz4dm1pQ5rIt/mp/2LP9WtT0CrULWCgU4vjx4/h8vhhHqby8XItA5iIHP9rpcbvd7Nu3j8nJSU1Y1tXVUVdXFxMBjX5N6z3lNRHqcf1+f0wqg1iR3zgkc40ePnw45vcvfvGLfPGLX8z6uZjNZubm5hI+vpmyOLJxXSyXhaF+WQeDQS0LQ53HthZE26loR6e/v5/Lly/T2dlJc3Pzki6F2YhQrpZ9tFqtbNu2jcbGRnp6ejhz5gwOh4PGxkaKioo0p0ldhV8vK/KCjUkyTXlS8bmiF+KjfwaDQSwWi+ZPqbMc1YWnixcvapkMq8V6rzFPhlymvC63rU6no7q6msrKSq5du0ZHRwednZ00NDRk7H9mur0kSYTDYQKBwJr16diwgnK5FXj1j7Lag7ujhetqfpllKpKiV8lUZ0lNr7Db7Vo6xdatW1PKy0+FZF9DPMORn5/PzTffzMTEBB0dHfT29mrCMl5X1XTJdcrCcvtQv9BkWdYc8nQaYghemZjNZiYnJxM+vhG6GKZCus5fslkYR44coaGhAbvdvubnHw+dTkdtba0mLC9cuIDFYqG5uVkTZOsp5TURJpOJLVu2UF9fT39/P+fPn8dsNtPQ0EBZWdkS+6h+v+n1+pTr7QWvXJYbOweJ7WM4HI7pG6HajuiMBbvdrjUcXNwgJ95xNnIGx3ok09eajH1URyNVVFQwODhIZ2cnwWAQq9Wath+YLf8xeo5ldLlAJmnTybJhPVSTybTsHErIzZw1WD+Du8PhcIyjFL1KFt2GXm3+oKarzs7OMjU1teIA9lyR6ENfUFDA/v37GR8f14RlfX09NTU1GAyGdTE2JNMLNnoRRF2VF2MXBKmykboYZkoi+xidhREtHBdnYZSVlWm2cS07Iaay6JboudHNJPr6+jh//jxWq5Xm5uakyhOWI5cZIEajkYaGBmpra7WU3vb2dqxWqybqo+2jiE4KUsFisWiRnESfHb/fz8jISIx49Hq9GAwGTSwWFhZmlLHwSqtvTJd0Rhbl4jg6nY7KykrKy8s5d+4co6OjHDlyhMbGxpi5wcmQzYAExNrHXC0obFhBudKcNcidoFztSCjEilZFUeI6SvPz8xiNRs05StZRWk/pusk8t7CwkIKCAsbHx2lvb6e7u1ubYbnWDlM2DYJAkC7LdcGGzVVDCZGo4/j4+JKUM0mSNOGYn59PVVXVqmVhrBaLbVIyTo9er6e+vl4TlmfPntUaQ6W7cLYWJQHRTTEGBwe5fPkyU1NT2Gw2rc5cIEgVtWRKURR8Pt+SWY4ejwcAr9eL3W7H7XZTUVERk9GVDXJlhzeraFUjxi6XKysZg+luq9PpcDqdQGT8U2dnp5YKW1VVlZTdy0am41r7jxvWGi+XsiBJUs5WxmF1L9ZAIEA4HGZsbCzGYQK0boJut1sr6laHRa83Vuo+GP14MucvSRJFRUUUFhYyNjZGe3s7Xq8Xs9msdUtNlfWU8rr4vASCVEgmQrkRBWW8WqWZmRlkWWZqaiphFkY2WM3rcLX2bTAYaGhooKamhvb2dmZmZnjxxRdpbm5OOSNlLe2jGglQ6/2vXbtGZ2enJjY3+oy9VwIPPvggP/nJT7hy5QpWq5WDBw/y0EMP0dLSknCbQ4cO8d73vjfmPrPZvGy66nJMT09z6NAhnnnmGcLhMLt37+bLX/6yluqu1jNOTk4SCoUybo62Ehu9aVmuUGsCx8bGYjLwvF4vkiRhsVhoamrKaI65epxMxKher6eiooLy8nKGhoaWCMvl7NRq+Y9wPVq52mxYQblS2+dcNoPIxsUana4anbYaDAa1LndqZE51lDZjJCud1Ibi4mKKioq4dOkS165d0+qdqqurUx78vR5SXjfj31WQW9bL2JB07XB0umq0PVSHeaszbsvKyjCbzeh0OrZt27YKr2D9kY6dMhgMVFVVcfXqVQoLCzlz5gxut5umpiby8/OT2sd6yOBQFEUbOTI+Pk5XVxfd3d3ccccdGyrq/Erk2Wef5b777uPmm28mFArxyU9+kte//vVcunRp2dpkl8tFa2ur9num39FPP/00JSUlGAwGHnnkEW666aYln0u1VGi1yYUdzlWAIVuiNV7p1vT0tJaZEG37HQ4HFouF0dFROjo66O7uRqfTJW3T4r2GbEQ3JUmivLycsrIyhoeH6ezspKurS8saiScsV1NQ5ooNKyjXwwp8OoJSTVdd3BRCzc1XLxZ1Jpfdbufs2bNUVlZSVla2Wi9lVcl2yms8JEnShv5WVlZqxiXZXHa1gHmtHaZ4BiFXq0uCzcN6qaFcaXU8maZhdrudvLy8hOmq8/PzhEKhVX8dq81q1wip9qmpqYna2lp6eno4deoU+fn5NDU1kZeXt+L2mTrz8bpzp7oPdZRSUVERRUVFTE9PY7FYMtqvYPX55S9/GfP7oUOHKCkp4fTp09x+++0Jt5MkKWu+T35+Pk888QRtbW0cOnSIm2++OeGYiI2YwZGI9RihjJ7HuTjqGO0Ll5WVEQqFqKyspLKycsl+ousYr169ypUrV+jp6dEyVVKxWZnYuHgLbupnt7S0lJGRkRhhWVNTEyMsRcrrGpLMCnwuUgmWW4EPBAJx29DLsqw5Si6XS5thlihdNRdGZz3l2GfahVC9gIeGhujo6KCrq4vGxkYqKioSXmzq6880pWujGwTB5mAl+7gWNZRquupim7hS07BkWI8OUyrkYtEt2mExGo00NzdrwvLkyZMUFBTQ1NSE2+1OuP16LAlwOBwZ7VOwNkxPTwOsmHrt8Xiora1FlmVuvPFGHnjgAXbs2JHRsc1mM6FQKGH/i1wuuOUi8LHW9lGNOs7Ozsb8VOdwRjdIczqdS3zhoaGhFW2HOkJpZGQEnU7HuXPncDgcKaX3ZxqhTHSOkiRRWlpKSUlJTDRVjVgaDIZVT3nNBRtWUC7X5RVyu8IUDoeZnZ1d0iQnEAjEzCAqKCjQZhCl8sHZ7NGp6Ne3GikHg4ODMcJSHUS7eNvF55Iqq2EQ1MipQJAKK5UErKZ9VBQFr9fL3NwcPp+P/v5+enp6tKZh2e6uuh4cplySzaY66piOuro6uru7efHFFyksLKSpqQmXy5WV46qIBTeBiizL3H///dx2223s3Lkz4fNaWlp45JFH2L17N9PT03zhC1/g4MGDXLx4kaqqqrSPr0a0fT5f3HTbzRShzKX/qDY5WjxpwOv1xpQqqEEUdR5nMvtN5XUUFxeze/duuru7OX36NPn5+TQ3NydcLEv3OKluK0kSJSUlFBcXMzY2pvml9fX12uOZsNb2ccMKSovFoq1wxWM1DMLii0WNNp48eVJrJe1wOCguLqaurg6Hw5G1LnQb2WHK1bnHu6AlSaKioiKhsFyctrweU14FglRJd85aKqjpqvGyMCCSrqooClardVWbhm0WQZmLbtuJjmEymWhpaaGuro6uri6ef/55iouLaWpq0roXrocaSlESsDm47777uHDhAseOHVv2eQcOHODAgQPa7wcPHmTbtm18/etf57Of/Wzax1cFpd/vjysoN1sX7NU4RjgcXpKq2tnZiSzLWq1jMhl42UZ9rQaDQcvC6O7u5oUXXqC4uJjm5uaEWQ2Zprwm6+9H9/4YGxujs7OTmZkZrFYroVAobd2w1v7jhhaUq9mUJxgMLqnrUQVkdGHw2NgYO3fupLCwcNUultU2OuupPmi1Voii8+wHBgZoa2ujq6uLpqYmSktLtc/KWqZ0qfOChKAUZMpKc9ZSTela3ChB/X8wGMRisRDyGBm8NI+kGGjYVcXe19Sj1+s5d+4ceXl562bGbSaslg1Odb+KotAf7OcfO/6Rz1R9hgZLQ9LbrWRbzWYz27Zto76+nq6uLk6cOEFJSQlNTU1rMjZkNfYhWFs++MEP8uSTT3LkyJGUo4xGo5G9e/fS0dGR0TlEC8p45CpCuZZzepMlXtRx8Zg6SZJwuVzaTM61vkaj7ZS6WFZbW0tXVxfHjx+nrKyMpqYmbDab9rxMgwrp+G7RwvLChQuMjIxw+PBh6urqqK2tTbnmXKS8pkm2aihlWcbr9S5xlPx+P2azWUvJUhtCLE5XvXr16qqvvGz01ddU64NWM+VAp9NRXV1NZWUlV69e5fLly1r7ecg8Qpmpw6WeYzRiBV6QKis15Um04LbSjFs1C6O0tFRrGjZxzcv3/+/zzIzPI0nQdWaCkA9ufWuTaIufAqksun176tt0+bv45sg3eaDmgaS3S/YYFouF7du309DQQGdnJ8ePH0eSpGU/UyshUl5f2SiKwoc+9CEef/xxDh8+rKX5pUI4HOb8+fO8+c1vzuhcDAYDOp0uYRbHemlalq1jJEv0WKbo20pRx3PnzuF2u7VshmyTiu1K9FzVptXV1dHR0cGxY8eorKyksbERi8WSFUGZ7raSJGG1WikqKqKqqoqOjg56enqora2lrq4uaWEZDodFhDIdUm2Lv7ijlHrReL1edDqd5igVFhZSU1ODw+FY8kccCg7hDXsp0ZVo923klIXNRioXtFrArQrLtrY2AEZHRykpKUnLMGQjQqmem0CQCcnYR5/Px8TERIw9jDfjdqWUpfNH+5kZn6egwo4kScyMz/Pi/3Sx/82NQlCuAiOGEZ71PgvA4dnDdPo6abQ0rrhdOg6PxWJhx44dNDQ0cOzYMS5evMjExASNjY3LjnpIdHwxp/eVy3333cdjjz3GE088gdPpZGhoCAC3243VagXgnnvuobKykgcffBCAz3zmM9x66600NTUxNTXFww8/TG9vL3/2Z3+W0blIkrRsnflmq6FcfIxkoo7RtY7JRB3Xy3W40nnYbDZ2795NQ0MD7e3tHDlyhJqamoyDCtkoCVDHAxYWFjIxMbFEWK40GimVtNvVYFMKylAoRDgcZnx8nOnpac1RCofDWjdBdTSHOsdmpQ9CSAnx11f/GoNk4Du130EvRQqJN0uXrvWySpZphDJV9Ho9tbW1FBQU8Nxzz3Hx4kUtFTaVltNq8xwhKAXrgWj7GG/G7fT0NLIsMz09rdnDdGfcBgNh4Po1rjfoCIdkFFnJWUrXarOax0j1/XnW9Sx69IQJo0fPt0a+lVSUMhPbarVaMRgMbN26lbGxMZ577jnKy8tpbGyMSRtbDpHy+srmq1/9KgB33nlnzP2PPvoo9957LwB9fX0xf9/JyUne//73MzQ0RH5+Pvv27eP48eNs3749o3ORJGnZxo65rKFc7eOEw2HC4TADAwNJRR3NZvOqnk+6JLJdiSYjrITD4WDv3r1MT09rEUuIvF/pkO0u2AUFBezfv5/JyUk6Ojp49tlnqampob6+PqGwjNe1OJdCf8MKSrXpRHd3N1arNSZM7/f7te6rRUVFKXeUisevZ37NSGgEgGdmn+Eu113A2qQsnPae5rGJx3ig4gHMuvV58UeTy6Y86V7QOp0OnU7H7bffTl9fH+fOncNut2stp1cyUNnqEquei2Bj8uCDD/KTn/yEK1euYLVaOXjwIA899BAtLS3LbvejH/2Iv//7v6enp4fm5mYeeuihtNK6/H4/P//5z3nmmWdwOp3ceuutPPDAAzGrziUlJdhsNgKBALt27Ur3pWrU7yjm3OF+pke96I06At4Qu++oQW/Q5cwxWy+r45mQjO3o8fVwyXpJ+z1MmMOzh+nyda1YS5mNObs2m41du3ZpqbDHjh2joqKCxsZGLcqUiGykvMZL6RIlARuDZK7Rw4cPx/z+xS9+kS9+8Yurcj7LlQVsxAilWq6weDyHKppHRkZwOp0pRR3XC6s5VsntdrNv3z5GR0c5ffo0x48fp76+ntra2pT0wmp1wc7Pz+fmm29mcnKSzs5OTVjW1dUtEf+bpoYyXUcqVS5dusSDDz7Is88+y+DgIPfccw9f/OIXsdvtFBQUaEXBra2t5OXlUV1dnfExQ0qIQxOHkIj8UR6ZeITXOF+DXtLnPOVVVmS+PPplegI9/Gz6Z7wj/x2rfuxssF4jlIuPazAYaGhooKamht7eXl5++eWkZhmth6Y+grXn2Wef5b777uPmm28mFArxyU9+kte//vVcunQpYYrg8ePHefe7382DDz7IW9/6Vh577DHuvvtuzpw5s2xL/XgoisLnPvc5amtrCQaDfPSjH+XgwYNLsjD6+/uXbWqWCltuLuOu9+zg+Sc7CPrDbNtfwV3viZy3SHnNLjIyZcEyzHaz9vc06UworPz6syEo1e3tdruWNtbZ2cnRo0epqqqioaFBa3gSb3sRoRSsF0wm07KCcj3XUIZCoZjyLVVAqjPO1XKFyspKAC5evMjevXuzffrrlnTsnDpSZNeuXXR0dNDb20tDQwPV1dVJ2ZxspbwmIj8/n5tuuompqSk6Ozs5cuQI1dXV1NfXa8IyG4t2mZA1QZmOI5UOFouFpqYmysrK+M1vfsMzzzyTcDBttlaYoqOTANeC17QoZa67dB2bO0ZPoAeA7058l99x/07GUcr1tLq72k15ErHYUTEYDDQ2NmrC8syZM7jdbpqamsjPz4+7PWQuKDOZxydYe375y1/G/H7o0CFKSko4ffo0t99+e9xtvvSlL/HGN76Rj370owB89rOf5amnnuIrX/kKX/va11I6vsVi4cyZMwwPD1NWVsab3/zmuJGjbEYOJUnixrvq2Pu/alEU0OmkmMdymcGhKApD3dPMjM1jc5uobC6IOZ9MWA9dXutMdfz58J/zmte8JuXUtNVYQXc4HNxwww3Mzs4ucXIWC8tspbxG20gxp1eQDpIkrYsI5Ur+4+ImaerN5/NhMpm0rJNETSMBZmdnX1FlB5nM6QUoKiqiuLiYkZER2tvb6e7upqmpiYqKimXtVzbsazLNd/Ly8ti3bx/T09NaxFK1uWvtQ2ZNUKbjSKVDQ0MDn/70p/nZz37Gk08+mfDNi+swKTIoYZDDoOjAuHyBq8oT00/Eve8u1105dZhkReaR8UfQoUNGZkae2RBRyo2Q8prIGBiNRpqamqitraWnp4dTp06Rn59PU1MTeXl52vPUz9pqtdVfT6JfkDzqrNzlotsnTpzgIx/5SMx9b3jDG/jpT3+a9nFVseHz+eLWuK2GwxRJPVx6nFxmcLz8TB8nf9lFYD6Ewahn56sque3tWzbE9aN+Z6nlG7Ozs3g8HkKhEPX19VRUVGS0/0z/DsvZV6fTyZ49e5idnaWjo0NrdBG9ep6pwwUiQinIHstFKNeihjI66rh4VJ0adczLy9PE40oNWqKPsdFZzZTXxdupKfSlpaWUlJRo88tVYVlWVhb3Pc12DeVKuN1ubrzxRmZmZrTFPKPRSFFRUczzclkSsGo1lMk4UpmQzJy1JQZB0kVuOiOEw+CfWRCYgBICOQSSHqyFECVUP1j8Qbr8XTG7ajI3RXaZwxqh5+ae06KTAApK1qKUq81az6HMdFuj0RgzJPfkyZMUFBTQ1NSE2+3OWg3lZjD+ggiyLHP//fdz2223LZu6OjQ0RGlpacx9paWlWhfEdFCd+OW6GOYqpStXTcumRr2ceaoHnU6itNbN3IyfC88NUL+7hMqmpVkFa40663hmZgaAM2fOaF3HnU4nDoeDsrIy9Hp9jEMD6dmZbKa8JsLpdLJ3715mZmaWCMtMxWA2Gp8JBCrLNXZcjQW3ufAcXxv7Gn+c/8c4Q048Hg8jIyN4vV6OHz+eUtQxFV6JkwgyiVAu3k9FRQVlZWUMDAxw5coVurq6aG5upri4OOY42Uh5TWd7l8ul2dyTJ0/S2trK3NwcDQ0NK9a1Z5tVEZTJOlKZoDblScSKBkGvB71r6f3BAHhGQAmCHkBml+xgl3QDGPPAlhfz9FzWCIWUEIX6wph6GZfeRUAJYGZ9C8pkWcuU12S2VYfk1tXV0d3dzQsvvEBRURGVlZXodLqMBeVadugSZJf77ruPCxcuaN3jcok64mO5OWsbrenEcscA8E77CfhC5JVEIrI2p4nZCR/emfRnJy4+RjosbtGvRh59Pp826xigpqaGvLy8JfWuBoOByspK+vr6uHjxIgAzMzNLVqKTOY9MbGsq27tcLm688Uatg+Kzzz6Loihpd1AEMadXkF1WSnmFzCPi0VHHH8z9gP/W/Tf9g/28bfJt2O12jEYjer2erVu3phR1TJX14Ef8fPrn1Jnq2GHdkdb2qQQlJq55megZwOowUd1SiN6w8t9QtW+JAlTV1dVUVFTQ39/PhQsXsNlsNDc3U1hYGLN9umT6WXO5XFitVioqKpiamuLo0aNUVlZSW1ur1YeuNqsiKHPhSC03QwgycJiMJnCXL70/FIC5URjqi0Qy5RAoEtK1iyhWBfJcYEmufXqqqB/S1zhfw2ucr1mVY6ymwcllymsmDlMqF7PZbGbr1q2asDx79iyyLDM7O5v2cF+RzrV5+OAHP8iTTz7JkSNHqKqqWva5ZWVlDA8Px9yn1kCmy0pz1jZTW3yIXL/uYhs2l5nJYS95xTY8Uz6sDiN5Jdmr4Z8KTeHSu9BJ8a9TWZbxer2aaFR/hsNhbDYbTqdTS1tzOp0YjUZCoRBHjhyhuLg44QwxnU5HXV0dZWVlHD58mJdeeomioiKam5s1QboS2Wh4lqp9UjsoTk1N8cILL/DSSy9RV1eX0rBuFdEFW5BNVopQQvK+y0q1jnqHnqfsTwFw1n6Wv932t1Sbq5mYmKCtrW3VMvlgfaS89gZ6eXjkYcoN5Xyn7jsYpNSkRyo+5GDrHGfOXUEOShiMOrbcVM5r37VjRVGZzDH0ej11dXVUVVXR29vLSy+9hNvtprm5Oecpr4n2Ybfbqaurw+Px0NnZyUsvvcQdd9yR0X6TJeuCMhVHKhOWW12CVXBkDCZwV0Zu0ccZCKLIIRi/CPIcyAogg2QFWwFYisCaB/rM3upMRdn3Jr7HHtsetlm2ZbSf1Wa9prwmwmKxsG3bNoqKinjppZc4ceIEpaWlNDY2Ju3oqax1y2dB5iiKwoc+9CEef/xxDh8+TH19/YrbHDhwgN/+9rfcf//92n1PPfUUBw4cSPs8VEG5UbsYpnMMu9vM7b/fwtH/amVmfB6T1cAtb2mkuCq9BZ7FTIYn+Yuev+B3836XPy/6c0KhkCYYVfE4NzeHTqfD4XDgdDopKyvD6XRmNLIqGnUfBw8epKenh+PHj1NZWUljY2PC7qoq2RCU6W6fl5eHTqdj+/btDAwM0NvbqwnLZAdxC0EpyCbL2Uetb0WcrCE1VT26u6rH4wEi3Y/tdjv5+fkxtY7fvPYIfo8fJECW+NbVQ/xD49+/YtJRvz3+bXToGAwN8vTs07ze9XoAfLKP+6/ez7vz380dzsxFz7wnQPfJGcwGK2X1Bfi9QVpfHKRhZwmNe0qX3TYVQag2bayurqanp4eTJ08umxGUDNmuMVcbpgUCgY1XQ5mOI5UJyxkDyGGXLqsdOa8QKheJZ78X5kZgshOujUdqNQlHhKY1H6wFYC0Cm5slnSwWkanROT9/nq+Pf53amVoerX10yer6WnfoyubxVzvlNRFGoxGj0citt95KZ2cnx48fp6ysjMbGxqS7HIumPBuf++67j8cee4wnnngCp9Op1UG63W6tnuGee+6hsrKSBx98EIAPf/jD3HHHHfzTP/0Tb3nLW/j+97/PqVOn+MY3vpHRuZjN5ldUyitA/a5iSmtdzE76sLnMOPOXF1nJoKZ7fn/y+/gUHz+c+CF17XUY5g1ayqrT6aSwsBCHw4HVak3pek2n4YTZbGbHjh3U1tbS3t7O0aNHqauro76+PqFAy7QkADKvEc/Pz6eyspLx8XGtNX9dXR21tbUrCstsnINAoJJMhNLj8RAIBGKijn6/X7vuHQ4H+fn5OJ1OrFZr3O/v6eAMP5j6AYoxcu0qOpnDoae5MvyHlJkLc1ZjvtrHSERvoJffen4beR4Sj44/ymudr8UgGfjZ9M+44r/CV8a+wm2O25aNXMY7RigUwuv14na7kSSJeU+AUEAhvyBS8mGxm5ga9uKdXbnsIZ33yGQysWXLFmprazl27Bitra1MT0/T1NSU8nSLbEUoF+/DYDBsPEGZjCOVTdR0rpSa8qwCCS9Wsw3MdVBQF3u/bxZ84zA7CGOXwDcT6TprtIIlH+wlYMkDe3FkH2T+Bfro+KNISPQGeznqOZqVlaBUiH5//H7/knQwk8lEc3MzRUVFOamDTHSOmaYrSJKE1Wpl586d2ny25557jvLychobG+N221y8D7H6vrH56le/CsCdd94Zc/+jjz7KvffeC0BfX1/M3/ngwYM89thjfOpTn+KTn/wkzc3N/PSnP824/nylOWvroS1+tog+hs1lxuZKvqZclhUmBj0oskJemQ2/37ck8jglT/Hr0K9BAlmSuVR1iQ+UfiCrNU+p2C71uQ6Hg7179zI1NUVrayt9fX3auKPFtmQtUl6jt4+2sYWFhRQUFDAxMUF7ezs9PT3U19dTU1OTUFiq9lEISkE2iBaUatQx+gZoc6gdDoc259zhcKSUrt020E1IF4y9U1I43X2Bt267M2diLxsRsHT49vi3kZBQFv6pUcrbHbfz3YnvAjAaGuVXM7/iLe63xN2HoigEg0HGx8dj/Mf5+XktI6SlpQVnnhuzXcf0uA+LzYp3NoDRYki67CHd98dsNmMymdi6dSuTk5M899xzVFRU0NjYmLT+WS1BmUuyJiiTcaSyifpHWq4t/rpM6bI4I7e8utj7/bPguQZzEzDaAz3jkSinyY7UP4Vizwe7H+xFEcGZ5MiT8/PnOTN/BgAdOh4Zf4RXO16dsAYoW6g1BbOzs4yMjDA/P8+xY8cIBALYbDYcDgcul4uKigrm5+d5+eWXycvLo7CwMCOjtxbpsur20ReyzWZj165dmrA8duzYigZmrY2BIHOSsQWHDx9ect873vEO3vGO7I3/WWnOWk5rKBWZ8/Pn2WbZlnLtTLLHSHc4+MToFP/zzfNcvTJFOCzjLNWx4w1uCkvdOBwOLX39oa6HUKTIMWRkfuH/Bffq7sXE6jTRSESi1NO8vDz279/P2NgYra2t9Pb20tzcTHl5eVYcykxTXuNtL0mSJizHxsbo6OiIEZaLUw1FBsfG58EHH+QnP/kJV65cwWq1cvDgQR566CFaWlqW3e5HP/oRf//3f09PTw/Nzc089NBDvPnNb07rHPr6+jhx4gRXrlzhypUrzM3Ncfvtt8dEHWtqarh06RL79+/PeI56ra6eNz38N5jsOkw2I3JYYXJkjp3v3ZuzOea5INHrOD1/OqaRJMAZ7xmmwlPMyrNAJHJ5aOIQb3C9AT16rR5VFY9er5dLly5htVq1Dtjl5eU4nU5MJhNXr17lpZdeIj8/n8aDTsYu6iNlD2YDN72pkaotK9eoZqNLq8ViYefOndTX12uZI9XV1TQ0NKw4N3g1xirlek5vVlNec4n6x/H7/XEFZS4dpqy8drMTzC1QGHWfooBvCgLHUeYnYbIVBl6AuSkwmcHsXohkOiKRTWshWN0Q9YFSo5MKCjJyylHKl7wv0env5Pfzfz/hc9TZaYsjj7Is43A4MBgMGAwGdu7cid1uX7ICbTQaqaqqoquri7a2NgwGAz6fb8WaoMWsVXRT3T6es2O329m9e7cmLI8ePUpVVRUNDQ1LXl84HBY1lKuI6qwu5o477ogr8jY6K0Uoc7XgdoELfOPqN/jLor/kXfnvWpVjLIeiKPj9/hjb5PF4mJ+fp/dFHz0ve7G7TFgMJuaGQwT689n35r3a9n7Zzwu2F1BQMGBAQSGgBPjZzM+4p+CejM8/W38HSZIoLi6mqKiIa9eu0dbWRnd3N1u2bMlK9od6jFR5evpp6o2R6y6RfVPPe3R0NEZYVldXa8JSLLitLrmwj88++yz33XcfN998M6FQiE9+8pO8/vWv59KlSwmF2/Hjx3n3u9/Ngw8+yFvf+lYee+wx7r77bs6cOZNWFsf3vvc9/uu//gu/309LSwtvfvOb2bt375Ko45UrV7JybRZWOqhtKabz5RECJggFwhSVuqnfVYwkhXPatFCWFc4f6afn4hhGk57tByqp31W8qsf9Tu13NOGo4tK5+MOeP9SEpoLCaGiUfz//72yf3K41l3E6nRQUFODxeNiyZQvFxUvPVa/X09DQQFVVFZ2dnZjzRtn+BjeVpfXkFThxFSafIZmtsW92u509e/YwMzNDe3s7R44coba2lvr6+oTR7WzYt0Q+ZK5YtTmUq43qjC83Z23Dp3RJEljzkYq2RH5vbo78lGWYH1u4TYBnEMYuw7wHQsGIqLS6kK15jA/+FrtJxu9wEFwQ4Rd9F5cIynivIagEeWD4AUZDo9xou5EGc4PWBjtaPKqNKNSVo4qKCq0RhU6nY2RkhN7e3mVbF6vpAhaLRRNeK12Ai8lll9fFrGQM1ALp6MHfi1euhMO0ulRXVzM4OKj9PjQ0xF133cXtt9++hme1eqizeuMR1z6G5yE4E1nIUlhU2y1FGkoAKNp/0O6UFn5X71rYXhcY51l+jCsY5L+HHuFtltuw6qyR5mUS17eP3j9EzkGSrv/UTkNaaHzG9e2D0+hC0+CfQJYVvPNerVGGZ87L3KyHYDiI1VGI3ZmPy+WisrISh8PB8Aunsdpk3IWRRUk5NM9g13TM22KQDLx27rVYii0xq8z7bfvjvrfpkoztSiZSKEkSlZWVlJWV0dfXx7lz53A6nTidzowzOFLdvtffy99f/Xu2mLfwTt65rH0785tuXvxlZN7ztlcVMzAwQHd3N42NjVRVVQn7uMrkwj7+8pe/jPn90KFDlJSUcPr06YTH+dKXvsQb3/hGPvrRjwLw2c9+lqeeeoqvfOUrfO1rX0v5HD7+8Y/z8Y9/nA996EOEQiH2749/HWfLh9Trdfzvv7qR5x5vY7BrClehldvubsZVaGVubi6nKa8vP93Hi7/oQm/QEQrKDPVM8zrjTmq2Fq6wl/Rx6p049c6YESqds50UKoWYMCEhodPp0Ol0lOeVc2P9jdjt9phrfWBgYMWmZiaTiW3btjE0NITeJNHac5Y66rC5E9eVR5ONCOVi++RyubQu1+3t7Tz77LPU19fHrRnfDHN6N6ygVGtX1kPTiVwUVcccQ6eLRCTtJbFPlOVIRNM3AfOj6PxTfNV1P765IbgWAIMB7C7yfOXgOQzmInAWgxw/FP/ziZ8zGhpFQuJfu/+VP5j8A+bn5zGZTJp4rKurw+l0Lpmdli4mkwm73c62bdtobW3lyJEjCWuCFrNWHWKT3V5RFP7L91+8ZvtraPQ3LhGWosvr6qLX67VRHD6fj7vvvpsDBw7wD//wD2t7YqvEck15VJsS87nVWwEdBMbBPw7+KfBPgDwL/pnrGytEhB7ygtiTQNIRaTqmXxB8CugkRsbP0xI8xxYJJBnOz3+a/babFgSnKhYVCEf9rqbjK0SOgRR5TJZAtyAygZAcxj/vIzwzi9M7R8/h3zDvm0dCwWK1YjObybeYseabMZmM6HXXwOgAyQm+PFDyKCmaoleeRw5bQJII+sO4CmMzB/SSnju8d7DTuTNn87yiib7+U3E+9Xo99fX1WvZHT08PZrOZubm5lNP40rWPj44+CkCrv5VOS2fCfZx4sp0fPvw8sqwgAW2nBvnDTx6k8QY7HR0ddHV1UVpaumT7te5euZlYC/s4PR1ZvFlubMaJEyf4yEc+EnPfG97wBn76059mdGyLxcL4+HjCx7MZLLA5TbzunqXR1Fw2zFEUhbZTQxjNevJL7SiKwlD3NL0Xx7IiKBVFwTcXjJhrvbwk8LDYd3zI+VDSTcxSeY8kSaK5uRlJkmhtbaW/v1/ryLqSD7laPmBeXh4333wz4+PjtLW10dvbS0NDQ0wGRjZ8UFjbOb0bVlCuNGdt3dZQpklSx9DpIqNKbAVAEwC2hRvhIHgnYH4c/JPgHYWJXuiZRpmYhNBVRv7nPLNhPZ6whUkF/rPyMXDKKHodL+tf5p6Ge9iXvy+tRhSpNpxwu93cfPPNMTVBW7ZsoaysLOG+1mPKazTHPcf595F/57TnNF+p/8qSwd8OhyPjeg1Bcvzpn/4ps7OzPPXUU5s26pHsnLWYz73eDNaKyC0aJRwRl+otMBERmcEZkBaG1csSKAsLXxIoYZmz4ZcWdKJCWCfxguckN1j2YNYZ0YSkDtAvbKvoI/cjR8RpGBRJIRAO45v34/fP4/f78ft9hAJh9JIOvdmMAuQX5VNuKcOkN0YFP3UL+yOy/6AHQh5QBkGC/bt9GMf7mJoIEwjbKW8s4MAbXDDXC+ZiMKzObOGYtzaN749UbJXRaKSlpQVFURgZGeG5556jqqqKxsbGFet6VNKxj73+Xp6afgoFBR06DrsO8wE+EPe5h39wCUVWMBgj39tyWOHZH17m/3vDWyktLWVoaIjW1lb8fj9Xr16loqJi016364Fc2EdZlrn//vu57bbblk1dHRoaorQ0duSD+pnIhOVKAiBOUEJRInZQDkXmkoeDkUW4DOaP56o0C67b+sXmJlMRMz8/z9ysl8tHRxjvu0wwGMRVoaPx5gLy8l1avaPD4Uja3sQj1fNU68pHR0djfMh4C1Pqa1ntoEJhYSG33noro6OjWjOyxsZGKisrM45QhsOR7+FsjKdKlw0vKFdagc/FeWyIomq9EZylyPbiSDqYwcOsNMsss3jMYyBP0hMK4DSEKDQH6PM9T83AKaqBIBDCwNPuf+TG5k9GajXtxWBJTvyk2hZffb1qbU1hYSHXrl3jypUr9PT00NLSEndFcy0jlCsZA0VR+MZwZAzEGe8ZXp57mT32PTGDv19++WVmZmawWq1pDf4WJMfnPvc5fvWrX/Hiiy/idGZnRuF6JJuDu5H0YCmO3KJRFAjOgn8sslDln4iIzOAsw+FexpUJQjowICEBQXy0+9vZad0K6EG3IEbDCuiMyAQJBoN45/34/AECfh8+nx8lFMJkMmM2m7BaLLjd+VisJkwGEzMzM4wND+O22q6fk0QkuKmEF6KaMii6BX0pE0nPlXC6Tdx0Vw2j17wQlimsMuCwXoL+S5F9GSxgdOL0DiBNBkBfD6YCMDpXHPeUKsmmvKZrpwwGA/n5+dTX19PW1saRI0dWHDWSyXHV6CREGhldM1/jRe+L3Oq4dclzQ4Hw9ezphVTnYCCs/V5eXg5AW1sbXV1ddHV10djYSGlp6Zo6UJuRXNnH++67jwsXLnDs2LFVO8ZyLFcSAHF8SEkCyQA6Q8QuKArMT8L0JMhBCAeILITpwOiKjIZboXliwoW9LBLtT229pZzn/7uD0f4ZwqHI7N763cnVUKq9MhZHHmVZZrjVz+DFAPklDpwuJ4EJGTfV7NxZnZXXkIkPWVJSQlFREQMDA1y+fFnzIfPz8xNulw7JLrqp51RcXMzQ0BDt7e10d3cTDAYzPj6s7ZzeDSsoYWWHacPXUC6QSRfD6Nb38QZvV1RUYKqr4+zZs+x/7Wu1bb83PMvp6W5MPh82nw/r/Dx9gS6Y6ADvKfDPRRb+bXkLNZuFYFeFZn6kaVAaxHudOp2OqqoqysrK6O3t5fTp0xQWFrJlyxYcDkfMtms9NiQRxz3Hafe3A5Fuu98c+SZfqf+K9nheXh7FxcWEQiGmpqZ49tlnqauri0mJEGTOj3/8Yz7zmc/wP//zPzQ2Nq716awqyQjKeIO7U0KSwOSK3Bb5ngXBWVp6K5ga66a22IU+OIc55KPRUAUohOQgPn8A/7wff8CPzzdP0B9ERsZitmC2mHE5XRQXmjBbzOglNXopLUQKgFAIkJB1OtAbIqIkHCbyoG6hnlOO1H3qIBLyJCpVF2x2E7UtxuvPkRfScBUZQj4I+bAEB9BPhmD+wsJxDGBwgckdEZjmArAUgTF2rrBP9vH07NO8zvU6jNLaLhCp9tHhcHDjjTcyOTmZdEpYOvbx8MzhJd0dD88cjiso9762jt/85wXCoesR7r2vrVtyDmazmf379zM4OEhHRwednZ3s2rVLS9UUZEau7OMHP/hBnnzySY4cOUJVVdWyzy0rK2N4eDjmvuHh4Yz/5ssFJCAJH1KSFrLBFiHL4BmCiUsQmotENGVd5Ke5CJzlYC+AqBE4uRCUiqKw+44ajGYDvZciTXm23lJOZVP+km0W+47q/6N9x7KyMpqbm7Hb7Xzv9GHsTj3l1RFxOjYwy0jfzJL95orF76VOp6O6upry8nJ6eno4deoURUVFNDc3az5ktjv9J3OO5eXllJaWcu3aNS5cuMC5c+doaWmhpKQk5XNZD3N6haDMkFxFQlcSlIFAQBONiXLW6+rq4uasxzOqHyn5CO8vfH/MfVadFXQLQlEOR1Jo/VMwNwq+SRgaiKTBeefAZI9EMC35KDNBpOkQzNZGRGeaeewGg0Fr0NDZ2cnx48eprKykqakJs9m85jWUyzlj3xj+Rky33egopYosy9hsNm644QZtPltvby+33357VufdvVK5cOEC99xzDx//+MfZsWOHljJlMpmWreHZqCy3Aq9+1lfTdpmMTva776ZrvIs9VXs0u9Q5O8381AChuWGsOh8Oswm72Ua+3YnFZMBiMSGpTXvUpjzq/xVQo4voIj91igxhOZKCJukWmvnoI+IwBBiU64181DCY1jxIiWyjLAhQWY7cJ4cjNecLx5fkiHBFZ1iIfAYhPBaJyNIVieAig04PBnekVtNcwP/4jvHI7E8Jyn7elv/2uO9TuqvvqbJ42/z8fG655ZaYlLDm5ua4ZQXppLw+1vQY46FIjdrc3ByXL1/mnVvfGfe5b3rfHoKBMC/8ogNJkjjwv5t53Xt2LTkHvV6PTqejsrKS8vJyrl69mnI3cEF8cmEfFUXhQx/6EI8//jiHDx+O21V2MQcOHOC3v/0t999/v3bfU089xYEDBzI6F6vVumyEMu1ggU4HrorILZpgAKavwvC5SOo9MpLfg2WqHeWqBaxF4CgDqyv1YyZBxEeR2HGwkh0HK7X7F/uO6pgOk8mkicfa2tpl6x1NNj3TgwGUBTsb9Iew2rO7gJas/Vnub2YwGGhqaqK6upqOjo4YHzIXKa/xUAMmly5doqysjIsXL9LV1UVzc3NKY/TWw5zeTS0oN0sNZfQxFEXB5/MtEY+BQGDJjJ5Uc9ajLwi9pCfPkJf4yTo9OIojt8Lm2MeC/kiNpncEArMw3g3+K3BuGIIhsFgjxtPmBFsZuMvBWQJGU1LvpdlsZvv27dTW1sakbmVSB7maNZSz8izd/u4lq/VnvWeXCEp1HwUFBezfv5/p6emM6g4E1zl16hRer5fPfe5zfO5zn9Pu36xjQ5ZbgY+OUGYTRVHwer2abZqYmGBubo7nnntOmz/rdOVRXlG11D4pCgRmIumzgXEITIN/GgJToPgjUUlJdz2dFQkkCVmvBz0RR04hkj5LmEhKrbTQ8EcfaeyjClJp4WfkXbjeJEjtYKtbEIjoIuJS0qFobWgXGgUpREStvBAxlYgI29A4BCbxTV/m6uQh7pSDDEx+lkC5B5MpH8z5YCyMRDTN16MDq53yGm/b6JQwtaygu7ublpYWCgsLl912JSpMFVSYIk71VGCK+fA8dn38Mgm9QcfbP3Qzb//QzQn3t9jGqo6YqKXMDrmwj/fddx+PPfYYTzzxBE6nUxOtbrdbm898zz33UFlZyYMPPgjAhz/8Ye644w7+6Z/+ibe85S18//vf59SpU3zjG9/I6FxSrqHMFKMJihoitwWkUAjf1SeRFSv6mT649iIwH/GTdOaIjXCUgasMbCVgSn3xJDpCqc4Gj+c7quJxse8YDIRpPz1E38wwJbWuuA18qrY78U7IDHZPIUkSeSV2WvZXLHleumR70c1sNrNjx44YH7KkpGTZbVY6ZjYEqTpSrq+vj7Nnz+J0Omlubl6SnhuP9TCnd8MKSrWGcl0M7l6l48iyrDlnXq+XM2fOaDnr0TN61NWjZFojxyMbHzZFUfiPif9gv30/2y3bwV0VuUFkvubALti3DwJz4BmJRDLnx2DiCgy/DH4PmKwoo/NIPgWqrGApAEdRwjoEu93O3r17tdSt6ZlpxsfHKS0tTdnJWM2UV5fexZNbn8Qnxzr3xYbY2oXF6YeSJG3qGr9cc++993Lvvfeu9WnkjOWalkHmDlM4HF6SEuXxeAC0AeF5eXkEg0FuvfXWlVNrJSkyW9fsBhal24X94BuFwORCF9oZCE5DYBY9kSYukRe1sJ+YrzY9KAEILdRQygvP0a7XhXClFCUwMVxvwiFFomIS4cjvWtdZrqfJLtwdiVICYZmX/OcIhIIoksJ8eJaLk8+x17YLZvu0QCmSDp1iotA7CCMmMOVH0uLMhZFoaBZZzuFRxVl5eTm9vb289NJLuN1uWlpacLlcGdvH1RjaLcguubCPX/3qVwG48847Y+5/9NFHtWP39fXF/J0PHjzIY489xqc+9Sk++clP0tzczE9/+tO0ZlBGs5z/CLnr4I/NhVK+A6KzkGQZ5qdg5irM9EWimoEJUEKgs4KrHKz5kZp2d3WkXjPKvkb7jrOzkRmQzz//vOY7OhyOpHzHoD/ET798hq5zIyiygtFi4M4/2Mq+18VGll3FZva9pQJDMOKvlDfk4S5a/YZmmWKz29i7dy9TU1OcP3+e+fl5+vv7qaysTMnWJOqwmsr2qo01GAxaB1g1PbegoIDm5mZcrsTR6/VgHzesoIT1k/KajQhlKBRibm4uZvVobm4OSZIwGo1IkhSTs77WH5zFvDT/EocmDnHYc5hHah5BJ10/vxhnwmSHgkVpLkZjxHnzzcCVk0j9PTDTA6PnwTMZiQJYFrrX2ksjdZr2Yk1o5ufnE94e5l97/pW/GP8LJp+bZMuWLSnloa92/rxL78KlXz6VJZ5ByGXLZ8HmIpkaoWRtl9/vXyIevV4vRqNRy4qorq7G4XBgs9m0z+zk5CRjY2OZ1wHrzWCvityiUcIER7uZmXoRCmojUc3gdORnWI4IN0kGTKBbiEQapIjDpuW9StdTYhUikc5waMFBizT0kWU5ks4lE+lIKxOJikIkXTb6ElXAR4BTc6dBTyR9V1Z4fv4EO2zbMUkGro9EAfwzmIJDMHFu4XzCETFpdIDBiWIpQrEWgrkQJWRe1bT+6CHhXV1dPP/885SWlqaUehWPbDg768FhEmRGMvYmXjT0He94B+94xzuyei7JpLzmRFAS533R6SJ1lvYCKN99/f5QCDzDMNkN8yMw1kno8pPMzUwwi5VZJOYwE8RGmAKsJXU4iiLprTt27KCgoCCla+jKi4N0nh3BmW/GaNYzM+7j2E/a2HZrJTZn7EK/I99MXV32opIqw8Fhvpb/NT4a/ih55K34/GR9OUVR+Jvev6HYWMynKj9Fc3Oz1iBHbdxTXFyc9L4g/eBMvO2NRiPNzc3U1tZqtrikpISmpqaY3iEq68E+bmpBuV5TXtWc9WgHbXHOek1NDU6nE6vVSl9fH7Ozs1RUZHaxzoZn6Qn0sMu6a+Unp4CiKHxr/FtISPQEenhu7jle7Xh1ajvR6cCWh1K4BZQCaNl3/bFQMNJB0jMWmbE52BOJaIYDoLci2wt4bPBBgsYxLpWf548s93Dx4kXNKOTl5a14+GykvIoVeMF6wmKxMDk5mfDxeCvwasrqYvEYCAS0lNVUUupXvSRA0iOZi/Gba6HktugXEuk26xuLrOwHJiPps8EZCM1ff45hIWQpRY0XkSMdZ5GDRBr7yCiypGnPiBhdSHlVuB4VXciQRVHo9fcSVAKgKJH+tnod8/I8g4EBak1VaGpUjoQ2I7YjqjutHI7MFGYafEMwvZB6GwxSOjuI3DMTaQpkKYostpmL0Rmtcd8i72yAn3/jDG0vX8VVbKH4o1UUli91SKIxmUxs3bqV2tpaOjo6uHjxIgaDgUAgkFY992oKSrHgJkgHk8mUtQW3dJEkieC8zPkjVyMC4sZSbK7ENjUgy8yGLXh01czKeXiUCrw6L6Y8BUd4CqfeQ4Eyi5M5rOFupMmLKD47V2ZOo2v9X+iKt4CpENxlYC0Gy/IZUN6ZiOA2WSJSwWI34vcGmZ8NxAjK1bTz35n4Dv3Gfr7r+S6fL/z8kscXX//JCsqTcyc5OXcSgHcXvhsbNkwmE/v376e/v58LFy5gt9uT8iEzbYizXIdW1RbX1dVpvUPKy8tpbGzEZrPF7GPx9rme07uhBaXFYlkx5XU1u2fB8kYnut4x2kHz+/0xOetlZWU4nc6Ezlm2zv/h4Yc5NneM79R+h0pT5cobJMlL8y9x0XcRiHQw/db4t7jNfltMlDIRiep6YjAYwVAC9jg57gEvh4ceZyDQS/H0PK1X/wVbcxG3F+XTPdDOyV8/T3FpC817DmBfZih5NlK6xAq8YD2xUsqrJElL6mkWp6wWFRVRX1+P3W5PK6U+Vwt7S44hSQsdWOOlz/oiq/sBdczJbORneD4SbdTp0caNqDZMWmjeo/4elq834gnKoFdrLfWgKDRZmnin7h2EJQVJkZABs6SjzFCOljIrSYAeJeRfmA0nRUQuMigLHWulBeEqLZxXKAiyH+YGgGswfb1pkayzRLrMWvLAGEmdVUyF/Nv9z3K1bQJFVhjpmeOf//znfOLbb8OZv3I9ltVqZdeuXTidTm1ebkNDA7W1tSl9HkTKq2C9sdLYkFxEKCcG5zj6jXH8nlFAwllg4a/++bUUVTmz4jvineHl4V/wkyuPMjln4d5QEOamIn0uDHqw2sGx0KHaXhLpiWGvjkRGJYniaicGo47ZCR9mm4HZCR9FlQ5chblphDUUHOIXM78A4MXAi7T72mm2NK+w1cooisI3Rr6BDh0SEo+MPsJ9+vuQJAmdTkdtbS2VlZV0dXVx8uRJiouL2bJlS4yAW7w/SD3ldfTqDB0vD2M06wiHlreRRoOJQnslzroiJueHOHbsmFZzabFY1oV93NCCcrmi6lzM94HrwjU6Zz3aAITD4ZicdTXymKpzlqlT1uXv4sjcESCy4vOJsk/EPUaq71V0dFLtYLo4SrncftNdXVKRjRb+3f8kY+WVyMjo0PGfBX4+XP4HVDQM8kLvIxQMXOO5X/0z1ZZ8GpvqMJndkZoDezHYirRmQOsxpSvXK0yCzYPFYtFW4ONlRQQCATo6OnC5XDidTqqqqrSsiGx9Ma3LOb16CzhqgJrY+5VwJJrpHQf/KIRmI5kRIS8oCymvirIgBgFCEYFpWAhd6hdsuiyj1+uoMlVHnqMsiEK9Gn7UR6KgC91lFYWopkESSAslAPLCsXQShKVI6r8ko1PFLcr1JkR6IoI47Aff8MJjMqOD85QprbhrrPiDFub9Trx+OxcPX+SWu29M+r2zWCzaan1rayt9fX1ax21FUvDLfmz6xDVTIuVVsN5QAxKJvvtzUUP5xL+dxu+RkXSRDAXPpI//+Nwz7P+j/Kz4jorVybcMx+htbOK70gz/u/79FOrywTMKU1fBMwBzwzDRC1dfhqAP9CawRzr019vLeNVbg5z9rRePp4jCykLe/P4bMJozlw7hkMzF5wYY6ZvG6jSx81VVS+ouvzvxXe3/OnQcmjjEP1b84/KvOQlf7uTcSS7NX9J+f2bmGd7qfOvCaKoIBoOBLVu2UFNTQ0dHB8eOHaO6uprGxsYlWRrppLxeeK6fb33ysDYqyVli4M7bQxhcS9/b6TEv3/zE0wx0RDKOmm4s452fuJn+gR6OHj1KTU0NDocjYQaHaMqTBMnOWcv2l1B0M4qRkRE8Hg9HjhzRZnw5HA5t5Sgb9Y7ZcMoOjR9Cj54wYX41+yveU/CerEQpw4TjdjBt9bWmnvZK6gLq6OxRegO92u8yMj+e/DH3FN/Dj70/5xF+zl/t/Svutvx/kW5e1yapr62kzpGH3j8F092AjNLXgc5gAJcPHAsF7ysMJY5GluW0myJF70M4TBufI0eO8PDDD3P69GkGBwd5/PHHufvuuxM+//Dhw7zmNa9Zcv/g4GBas9ZGRkY4fPgwTz/9NENDQ7zvfe/jj/7oj2K6QJeVldHe3k5zczNFRUUpHyNZct0FO7Md6cFcHLmx9fr9isLU6G8oLSkEaxh845E6zbAH/F4iabEhUNS0WTkiAPVy5D6J63WX6NDGn0gRgYgUjpy/orWvJTKiZGFbSbfQMEiO3JRIXWckNVe53t1WUjsO6RYe0xMKhdBLIezWGeyWWXTuYRQF3L4plLZTKOosTfNCgw9zIZIpL+HYkIKCAm699VaGh4dpa2ujp6eHJ8ufpFvp5nvN38MgxbeB2RKUi2txxYKbIF1WasqzGhHKaN9xdnaWvrbRhTWqSKaBIivMjYfZu3dvVnzHl+df5oLvQiSDAZnHJh/jQ8UfAldp5EZUaVEwCLPDMNkF84MwO4o00sqtZg87/pePecDtLMY82wqXSyPzNG3lS8ejJIGiKBx7vI2zz/QBIIdlei+O87YP3ojdHYm2DgeH+cXML5AXbKKMzHNzz9Hub6fZnDhKmYxNeHT00SX3/cT3E94pLR1rZLFY2LlzZ0xHWDVLQ7VHqaa8yrLCdz5zjHD4+udrdjTEb//zIr/zV/uWPP+HX3iegY5JLWGl/cwQz36vnd/7cGQSgDpizmQyEQqFMvZF02VDC8rlUl6jI5SZEAgEYlb11Y6rajMKvV6PxWJh165dCWf0ZEqm+4yOTgJISAmjlKlikAw83vA4ASU2dcShW75GZzlSeb35hnz22PYgKzLTM9PYbXbcZjdz4Tm+N/49AL4z9h1+d8vvsm/fPsbHxyPDvAeu0dTURGX1wchK5Ew+RrMZimsi8zUn2ojUVrEQMZAjtUrWwrhCc7VSXkVTno3H3NwcN9xwA3/6p3/K7/7u7ya9XWtra0wXt3TbmJ88eZLPf/7zmEwmiouLed/73sf+/fuXfMl0dXXlROythzm9GSFJhPUOZEc9LG7fHvZF6jT9kVEhBKcjs3lDnsg4Ef2CuFSUheY9qjg0AKGF9FpdJMIoRe5SU13lcAh/IIROD3arE5QQiqJD0YTmQt0lCz8V+fr/F2o8i0odmJ0Sfs+CIJV16A1QWuOGkB+Uicj5R95FIDIeRbHkR9JnrfmRESf+ABLXV+HLysooKSnhRN8Jjs0dA+DHAz/mD6r+IO5bmK0ac6Nx6Ww7YR8F6ZCMoMzEriTqlaH6jk6nk9JaN3MTYyBJkaQHvURFQ35Wurur2WM6dMgL/56YeoI/zP9DCg1LR39gNEJBVeQWzfwczrkRnDN9kY6zc6MwdDLSw0IJg9kMcz7QF0J4H9jLwVG17MzxuWk/rScHsTlNOPIthMMyo1dn6D4/ys5XRY7vV/xUGavwK358Ph8mkwmT3kRQCa742leyCfvs+yJz1aNoDjUvu53T6YzxIfv6+iI+ZGWlFhVN1hb55oLMe5amW49dm437/N5LYyhKZLwSREa59FwYBSIjd2666Sba2tro6+vTyhJqampybhs3tKBMNkKZDGq942Lx6Pf7sVgs2sp+aWkpTqcTk8mEJElcu3aN4eHhhLnV2SITw/bLmV/G/C4j8+vZX/O3pX+LUTJm/KEz68yYSVxInko6aaqvc7dtN/+v/v8BkUjP7prdFBQU8M2Rb2pjOubkOX48EYlaFhYWcuDAAYaGhrQV9paWlusOj9EcmYvpLl96ML8XPNeup6YZdBFnUGdADgbQWeM3xUiWcDgsIpSbgDe96U286U1vSnm7kpKSpBpIrcRb3vIW3vKWt/C1r32NH/zgBxw8eDDu83LVxXDdpbwmIBySmZvxY3eb0euXXoeLX0coGGakd56Az4zNVU9x9e7r56KEI0LNNw6hqUjqbGAmMpeXAJE5I0BYRlFkJBm88z58817mfX788/P4A0F0OgkFCafDQVlZMYoSighH7VR0C0JSezeup+QqCiaTjjvfvoMXf9XOxIgfs0Pilte3kOeyLgjY0IIwXagPVRaipr4JmBuDWR3IMobpaQpmZ5E7OiNC05wH5kKeDf0Qo6IjKMkcGj9E/XA927ZsW+IQixpzwXpjuYAEJG8fl+uVofqO0fWOqu8I8M6/LeVfPvALfDNhFCRchVbu/uubsvL6hkJDkehkFCFCPD37NO/IT6FjrtUO1nooqo+9f24KphZE5uUXITwFbUcgMB/pkG2xgSM/0pnfWRbp0O2sAKuLcEhGCSvoLZEIn04XWQBT0z8Bakw1fLvu2wAcPXqUPXv2JCW0k/E3/6zkz5bc19fXx6g0uuL+VR9ycHBQiwzW1tauuF00VocRe54Z77RaPx+hrDYv7vNdBVbmpv3XU2t10pL0YIvFgtvtpq6ujvb2dnp6erTxI7liQwvK5Yqq1Q9UPIOg1jtGpx6o9Y42mw2n00l+fr7WBj/eqqhKrjqBZXKMd+a/c0mKQL4hH8M6/fMnMgbfG/seR2aP8JW6r8TkuquohmQ2PMv3xr+npeEqKHx37Lv8XsHvYdfbkSSJ8vJySktL6evr49y5c0iSRGlp6fInZraBuW7p/YqCPH8JnTkI8/kLq3K6SPRBMkWaCiXBYqdLnU0keGWwZ88e/H4/O3fu5B/+4R+47bbbVt5oGdZD04lcCErIPEJ55cVr/ORfTuGbC2J1mvj9v7mZ5n2J040j9T9XGWifRJbBYNKxZV8ZDbsXosqSHqylkVs0sowcmGJuvJ+5qX78M8PMT08Txkh/bx9mixmrxYq9qBCLyYLZoEeWdAyODNPW1onb7VyIdoaAhcwJ3UJDIIgIWUWOjB2RAEUiv8jCG969i96BAWw2G8UFzoXIaCjyPDmMlmobJlKziQzGhdRavR4ZBZ0kRTrl+idgFoaVMaShn/BGvR6vpGPeMMGg/ocEjjSTX9pEw7absdpdCy9b1FAK1hfp1FBmu1dGYbmD195Xji1cgs1qo3Fv6ZJxHOlSZijjnyr/iTl5jkuXLlFfX4/NamOfbWlKZVrY8yK3yt1INILFAnV1MDMC072R+syZQRjrhZ6zke7aBhM43DjNLpoafXRfAV+wjBlPAY78PCqb8+MeKp599/v9zM7OEgqFqKioyDjNM5XAhyRJVFRUUFZWRl9fH1euXEFRFGZmZpadFRm9/Xs/cwff+NhvCfgitju/0sRdfxx/turb7tvHN//uGU1wW2xG3vSnN8Q8Ry0JKC4upqioiOHhYdrb28nLy8OaYbAjWdanokiSZNo+B4PBmLTV2dlZ5ubmAGI6ZTkcDux2e8rz0nI2/DYDigxFvM71uiydTXpkOg9yOjTNv4/8Oz7Fx9MzT/M6d/zXI0kS573nmZfnY+73yB4uz1/mJsf11T+dTkddXR2VlZU8//zzXL16lXA4THNzc2oXoCShWPORbPmRZj/RhEMQCizUQ0V1iYyDcJhemZSXl/O1r32Nm266Cb/fzze/+U3uvPNOXnjhBW688ca09xvdlCceuVgMy0VztExF6/ighx9+/gV83hBGs57ZCR/ff+h5PvRvryevOH7mycSgh4H2KfJK7JgsBmYnffRcGKO8IQ+r47pDGA6HtfnCMzMz2vePXq/H6azEWbwVW6WJrq4u7njVLUiBCfCNQmAKwmGQwpglqCtoZtbrobe3Gz9GRn02ivNdC7WUYSIpr8GFUSYLolJSFkac6EGnoISV691k5YXIpBxa6FZL5Ln6hSilTop0r9UByEih8PVj6fQgyZyceQlJ0oEs4VBk7OF5BnVP8brKMkZGfkPbLx8nv6iCsvJGDLNhLPM65LkSJEsxkn75cTPxECUBgmxisVhQFIVQKJRwFI7P5+Pq1aua/6jOBs9mrwyzTc+WbSXkL06nzxBJkjTxKPkl9lj24HRknkqbCGWhDhR3aeQWTSgIM9dguh88A+hmBrm1zIvNcZnpDh+1pVYa67dQNNwOnqJI2qy9HFyVoNejKApTU1OMjY1ptlQdZaXT6ejs7KSlpUXrOZCOTUjnO0r1IV0uF6dOneL555/X5sWv5ENu2VfOp77/dnovjhFS/EyFr2rjWRbTcnMF93/tTVw41o9Or2Pva+soqkycBaKWJRQXF2c+AzoFNrSgtFgsTE9Pa78Hg8GYlSNZljl16hRGozFmvuPi4duZsFFW4NfLMdI9h++Pf5+AEkBC4psj3+S1rtcuiVKqaasHHAf4XtP3CCkh7TGTZKLaHD/0r34+ysrKmJ+f5+jRo9TW1tLQ0LBsdHrxseN+oeiTv8REyusrk5aWFlpaWrTfDx48SGdnJ1/84hf5zne+k/Z+TSbTimNDcjm4ezUFZSZcbZvANxfC6oyk/+sNOnyeIAPtk5qgXHyMUFBGVhSM5ogNMlsNzEx4mRyfYnwqELN4GRGPkbS3uro6nE4nFotF26fH46G7uxvJYAVDJdhim6VJxsh5uYGK4jHOnTvHZY+OzoCJbdu2LeuIRrIcIkJwev4U+jwXVFcuiM7QQjfZUOT/sioaQyCFIRSOpL/KIYLhawR0E1DcuNBZNkil0YfHW4SEgk4Og05HqVSAxVlDjaOSuXkv14auceniGWxWC2Y90D+LosgoRjsYrGDKizQEMhcjWYoi70EChH0UZBN11Mb8fGTxOV6vDPUadTgcMbPBs2nLNpMPGU3AF6L7wigzo/NYnSbqdpbiqL+eGmoHDvi9MN4Dc4ORm2cEf38rs+FxZgkwixEvOozk0z9ejDu/kfzyJmp27MCxEAHW6/Vak7De3t6E57MSmXxH6fV6DAYDBw4coL29PWkfMq/YTt6ddiYnJzl79tqyx6hsKqCyqSDh4/HsY64X3LIuKFPtcJgOiqLQ399Pb28vk5OT/PM//zO33HLLknpHg8HA9u3bKSwsXLer4+vlGKtJque++G81HZrmB+M/0Lp99Qf6E0Yp1Quo1pxaTruiKJhMJpqbm6mrq6O1tTWmm9dKjsxqpXSJFfhXJvv37+fYsWMZ7SOZCGWuBOVqR98zsY9WuxGdXiIckjEY9cihSBt/iz2xI2BzGQla5rjSOYoZI9OjXkwuhfauadz5roTiUT3XFWfvJkCSJAwGA7fddhs9PT2cOnVq2RlpEfuhB50eWTKD0YnOnHokJDjXjV+ZRle2R7tvH3exXPKcE2jZBePj45w7d45gMIjJvo3KysqoHgcLIlYJR+pD5RCSbvU6xQrWnrXugq0oCj/96U954YUXKCwsZN++fXz5y1/G7XbH9MpQF4V2796d8jFSYSOUTaWKHJa5/Pw1rrZOYLYZGOmfYWZ8nhtfV4fFdt2u+tEzayphxmdhVipillkCzgC2sA+nNEO+MkmNPsClqZPsxo9jcgCmjkO/ZaEusxQpr5xydy2l+/fRNTDE9PQ0ly9fZtu2bVgsyc3L9M8HGe6ZJSyt3PAnHqpNt1qt7N69O2UfcrOUBGRdUKbb4TAVvvWtb/GXf/mXFBYWUllZSWFhIdu3b19S73jt2jUMBsOqOuS5MgYbnUxSXn808SN8Sqxj/M2Rby4RlJl0Eoze1uVycfPNNzM2NqZ182pubqa8vDzh/jPtYqg69mttEATrg5dffpny8jiNoVJAraFMtPKaS0G5mjYyU2epcU8pDbuL6Tw7QsgfRgG23FRO3c7IOJVwOEw4HGZ0dJShoaFI5NE7x/f2fJ1gSObdxz9Iw/YKdr+6jqIy97J24Nz8OT47+Fn+qeqfqDHVJHxeItS/pV6vp7GxkcrKStrb2zl27Bh1dXU0NDQkrCXKZAU+E/tWWFhIRUUF09PTdHd309PTw5YtWygpKUGn0xNpcbtyJoiY07s5WOsu2JIk8f/+3/+jrKyMYDDIP/7jP3LnnXcuSVH0+Xw5+XxtpMZlyTLvCTLSP0NeiQ2L3YgsKwx2T9LTOoDJLWtiXU1bdTqdFBQUUFtbqwWDogk++yzs2QOKF2b6YfZaJIV2rAt6z4AcQmfQ0WDL49pUL0w18Xzrr6lqvAnbtiYclnxchvi1jZ0vD/Pvf/c03pkASDD6Lom33bcvpfdssX1M1YcUgjIB6XY4TIV3v/vd/NEf/RH/+q//yokTJ/iTP/mTuM8TTSeSY70L1mJDMS2Wlpj7Es3QTPe1xOtCWFRURGFhIdeuXYvpCFtYuLTldqZdDIWg3Dx4PB46Ojq037u7u3n55Ze1Zg1/93d/x8DAAN/+dqSD3b/8y79QX1/Pjh078Pl8fPOb3+Tpp5/m17/+dUbnkUwXw1w5MrmwX+kKJr1Bx3s+fRsv/KKLsYFZnEUGGvbn0dp6JabmfmZmhsLCQoqLi7lguMDI2DAABe8O85r8GyKdCpdBURS+PvZ1RsOj/Mf4f/D35X+v3Z8si5+rjqyqqanh8uXLDAwM0NzcTGVl5ZL3IhNBmY0urQ6Hg5tuuomrV69y8eJFuru7aWlpSbp2LN4cSsHGY627YAM89dRTyLKMxWLhlltuiVvvlgv/ETaHD7n4OIGAH693jrn5aZTxEHPeeWaG/Viveqk0Fy4rHhMhGQyRusq8RQutOh3MT8PMNZSpPpSJaXaUmZgbucb5zi9wuPMZzBTz0eb/g2QvXthHDTiKCQbC/PvfPc28ZyEyqcDT379IzbYibvxfdSm95nj2sf+8hxP/OcXc7Dzn6sa54U0l7Ni1bYkPmY2SkPUwp3dD1lDa7XZg9ecIJUOu6pA28krscueejNPztoK38baCtyV1nEwcpkSd3iorKykrK6O3t5eXXnqJ/Px8tmzZEtPCOtPVIfUzJBymjc+pU6diUrQ+8pGPAPAnf/InHDp0iMHBQfr6+rTHA4EAf/u3f8vAQhfO3bt385vf/CZumlcqmEymnA/ujncMWJ8LYqFQSKuXmpmZwVA+i8vtxWQyMTMbmTtWXFyM0+nkpZdeoqGhgcLCQhRF4Tt930EX6VjDt2cP8dqCO4m0VU3MmfkzXPRdBOBpz9PcE7iHWlNtyq8h3nPdbje33HILQ0ND2or41q1bKSgoWHHbZMjU4VHto06no6amhoqKCi1lt7CwkC1btuBwLD+7OF6UVJQEvHLIdhdsiPiQicoCcuE/wsb2ISPiMYDP58Pr9XL27Flt3F7YKDE7KGNzWrCSR+Othdx4Vz1ma+qyY9lz1+mQnIXgLITSbfj69Ui3/S/yjUZGhh7jubYuHF4vP25/nteX7sLFBZibBIOO8SkbBaYOgo58/AE3nmAZiuSk99JoyoJysR269PwA3/+/JwiHwkg6Cc84WIxzBEJLfchsRSjXek7vhhSUKskIyo16oS4+xkYn0y6vq73tSilder2ehoYGqqqq6Ozs5MSJE1RUVNDU1ITFYhEprwKNO++8c1mbcOjQoZjfP/axj/Gxj30s6+ex0tiQXDblycVK/3LXfygU0tKs1JvXGxGP2pDxhRnDarOOaKL3e3zuOF2BLu33vmAfj44/SqO5kTuddyY8t0fGH9GGjOvQ8e3xb2tRymy8RnUcUklJCT09PZw+fTqmvjJbJQHpbh8diTAYDDQ1NVFdXU1nZyfHjx+nvLyc5ubmhHVP6yGlS5B7VqsLtiRJyy66baYIZTZ8yKvtE3RfGEHRBSndYsEX8GppqwaDAbPZTElJCbW1tTidTpQw9LWOMzM+j9VuonprYVpiMhW0OY2ShF/2c2jqMWYLC5krLOanNXO4B1ooLyun+UAz5tA8jv5ufI9+F5NxDKdzgAL9CQx6KCjYiXKuCxxl4K4FRwmSOfGs+Xj28fyRPsKhMBZ7pKlawBei68wkf/zJu+np7ebEiROazRMpr+uAlVK6NvLKz2I2coQyF6gzG1c7pctkinRWrK2tpa2tTevmlY0IpVhtF2ST9dCUB1bfRi5Oq00kHs1mc1LicbljAPxo6kcA2hzfECH+c/I/0Ut6dlt3U2BY2onv7PxZLToJECbM056n+dPAn+JUMm/lf+G5fn7+jZfwTPmo3V7M739kP5Wvjq2vXMuU10Tbm81mtm/fTm1tLe3t7Rw5ciRhd8TFKV1iTu8rg9Xqgg3L+5C58B/V46y3pjyKomhzHmdnZzl/5Cov/GiQcEhBkqCoxsbb/79dmnhsb2/HaDRSXR3VSV8PDbvSq3NN9BpS4cnJJ5kITwAgI9OtdGO50UK4P8zRo0dpaGigbssN3PwHOv7nkbPodBKKrFBcY2P/nftBHoW5Yeh+BkIzkffPaAV7CTiqwF4K7kqkhbEmSxoq6iWi33FFAUknxfUhF2eSpIMQlBmSTI1QLlK61psxSJfVOkai/YbDYbxeL06nU5sDlWlqVa6imzabjT179jA1NUVrayter5fR0VEKCgrSuqiXMwZCZArSwWw2I8syoVAobiqMTqcjFArF2TK7rKb9CgaD2uioS5cu4fF4mJ+fXyIeXS5XwllzqfLOvHeyy7pL+/3i/EXOzJ8BBb4/+X0+UPyBJds49A72WfcR4vr7bZEsGKXI3yWTDI6+K+M89sBzBP1hdAYdrSev8R+fPsoH//X1Wn3llStXmJ6eZnJyctnmYqkcNxVWcnbsdjt79uxhenqatrY2rTtiTU2NJiLXg8MkWB9kows2LF8WkKsFt1yl1iY6xmLxqJYABINB7HY7Noudl/97FBQdDnekwc7UQICBs34a35G36ue93Lknep4kSfxoIrLwp5YmyMj8zPMzvrDnC0xMTHDlyhWuXr3K3je3ULWlkNNHrmBx6Hnb+16F1W4Clk4KUObnYGYw0hRo6gR0e1CMBpSJaaQhL0qtLVKfac1j3131nPlND/Oe4EKwAPa/sRG9IXI+qg85PT3N2bNnmZ+fp7e3l+rq6qz5kBt+bEguMZvNy6Z0iZTX9YVqqKIHfOt0OiRJorm5merq6rTfy2hDkg7ppnTl5eWxf/9+fvvb3zI8PMzo6ChbtmyhtLQ05S5hwlkSZBO10YTP50tYW7GRHCZ1znD0TRWPEBElFRUVMQtUq8FBx0EOOg4CMC/P886pdwIRh+Xx6cd5V/67lkQpm8xN/FPVP8Xd38z8jPb/sBJeMl83mnjv45UXrxEMyFgckdSqUCDMta5JJoY8FFe5cLvd7N+/n6NHjzI0FGmrH6++cjkWp6ymSrL2ze12c9NNNzE+Pk5rayu9vb00NTVRWVkpbKRAIxtdsCVJWjYokcsMjlx2215OPKrdVuvq6nA4HOj1embG5wmHWjGa9Ug6Cb1OIiiFmR6fT3i8iSEPJ/+nG99cgPLGfPJLbAQDYfLL7JTVLd8JOxOi/cAPl32YHn9PzOM7bTsBKCgo4MCBAwwMDHDp0iXsdjt731KCyWRaEJPxkax2sDZBaVPM/XJ/P5L/NMgKDJyCgIcGm5X3/pmP0y8MMet103Drjbz2XUtTtN1uNzU1NVpvhd7e3g3rQ2ZdUK7U4TCbLFdQDZunKQ+sz6YWiZBlGa/XqwnHsbEx/H4/k5OTSwZ8W61WbW5Qf38/drs9bse1lchUUGaS0iVJEjqdjj179jA7O8vly5e1jrCpdDAULfEF2UQVWn6/P6aBlMp6TnlVxaNqQ2ZnZ/H5fNqcYafTSXl5OU6nE51Ox5EjR6iurl52iPRq8MT0E8zKs9fPWwkmjFImQn1vfjv7W/5t9N/4Zs0346bNqiy2cQaTDlBAASSQ5UhamsGkj9nGYDDQ3NyM1+tdUl+ZzDlmmvKayqxNtcP24OAg7e3t9PT0EA6HRVOeTcB66YINK0coN/LYkGjxGAgE6Orq4tKlSzHisbCwMEY8xsOeZ8aZb2FqxItOLyGHIt8ZpbXumNegMjUyx6OfOsr0qBcUCAU7cRfbKK52YrYauflNDWzZl3h+qByW0emX2ppUr/MDzgMccB5I+LgkSVRVVVFWVkZnZyc9PT3Y7Xb8fn/SpRAqik6HLr8CqXpvzP0tzbDlLV7wDMHcKAwcR9GbQNKDzgCmPHBXAJGMyxtuuIGBgQEuX75Md3c3W7du3VA+ZNYF5UodDrPJSnPWNksN5Xru8qooCl6vd4nzJ0kSDocDlyuyQh4KhbjhhhviOgTFxcUUFhbS29tLW1sbNpuN2tralIRlNgRlpilder2e6upqysvLtQ6GRUVFNDc3J9XBcK1XlwSbC7W5yXp3mAKBwJLI42LxWFlZidPpjCsYw+Hwap6+RrzXcMp7asl9J70nU963LMl8fezrTIQnlhWk8ezU3tfUcfTHV5idjCyuSsANd9aSV2xbsm30/MrWK208/dQRmlrqaWpqXDYCudopr/GQJImKigrKysro6+vjypUrnDt3jm3btmVtfIQg96yXLtiwfGPHjVRDGS0eo/2wUCiEzWZDURQcDofWTTmVbvJ6vY53fuwWHnvgBHNTfnQ6iRvurGHf6+viPv/lZ/qYHvViz7MQCoQJjIeYGZ9n+4FKZsa8nHu2j/qdRRjNsfZmtH+G7372OINdU9jdZu7+633ccEeN9vqSfR8gNT/QYDDQ0tKC3+9namqKI0eO0NjYSF1dXdI2a9lmaRYbWBqgqCF2G1kG7zhMdiFP9qHzzCHNFFHl0lF+43Z6RmZS7oK91j5k1gXlSh0Os8l6aDrxSkp5VRQFn8+nGSz1p2qsXC4XFRUVuFwubDabdt69vb14PJ5lX4dOp6O+vh6Px8P09DTHjh2jvr6e+vr6pIzfWqW8xts+uoNhR0cHx48fp6qqisbGxoQrX4mMwXr52ws2Hnq9HoPBsK5SuhaLx5mZGfx+P1arFafTicvlWlY8LsdaLLp9rvxzjIfGY+7LNyxdUfZM+ZgZmwcJ8krs2JyxaVUvWV5iJDQCsCRtdiUbkF9q56/++XU88/2LzE7MU7u9mDv/YPuyI5kmBubpOOxjasxE3/OttO7pZd9t2+POr4Ts2Md0nR2dTkd1dTVXrlwhPz+fkydPagt1yURXBeuL9dIFG5bvw7FeayhV8RgtHKPFo8vloqioiPr6ek08qteM2+1e+QBxqN1exIe/+gZGeqexOEyU1rri2heAgC+EJIEkgbKQLQGRyKPFYSLgCxH0h2MEpWfaz1f/5mk8kz4URcEz5ec/P3ucgjI71S2RmY2eKT9Tg35sThPu4uxf93q9nrKyMgoLC7X6ypaWFkpKSla0fenYR0mnA0cxOIqRp/XoDPNIeZGmRnq/j8YKA9WleXR293Di6GEqqqpoat6KeR13wd7QNZQmk2nNayij56ytpvOfa2dp8YqXarzC4TAOhwOn00lZWRnNzc3Y7fZlP8ipnLtOp6OkpISSkhIuXbrEwMAAW7duXfGiXsuU10Tbm81mduzYoXXzOnLkCPX19dTV1S2JBoimPILVYC1X4AOBADMzM4TDYTo7O/H5fFkTj9Es7vKaSyw6C5WmymWfMz3mpfXkIHPTfkDCVWBh6y0V2N2RxaWgHORp+9NISCgohJVwwihlou+ZkmoXf/DRxOld0dvOTvo48l+XmRmfx1lgJTguM9mq47K7LeH8ylymvMZD/Zw2NTVRV1enjRppamqK6QAqEKSCyWRa13Mo1UX8xRkcoVBIS1tdLB4THSPT12JzmqjbWbzi8+p3FvP8k53MTfvRSRKyDFargVAgzNToPFVbCrDYr9t7/3yQF3/RyczEvHauav5+64uDVLcUMtEb4FfHL+D3hrHYjOz9X7VsP7DU7ibyA8MhmbPP9kXqyiud7Lq9Bp0u/oJbYWEhBw8e5OrVq1y8eJHe3l62bdsWt2wketts2kfJbAGzBTOw/YZiaho9kS7YR4+m5EOKpjwpYLVaVxSUuYoerqagzFXK69jYWEz6arTRKi4uprGxEYfDkfF4DLXdu/qa1IHX0a8zLy9PK5q+ePEifX19bNu2LWHYfy1TXtXXkuh9cTgc3HjjjUxOTnLlyhX6+/u1RhPqNuthdUmwuZAkaVlBmc0Ft8WNHtTh1mq6ld1up6GhAYfDkfU6x1x8YWZyjMGuKeY9QYqrXaDA6NVZhvumtZb6x/zHmNZPa8+XkXl86nHe5XwXDp1Dq3/M9HtAtXGTQx6mx+YprXOj00lY7EZGr86ytWE3Af00p0+fpqioiJaWFi0CuBYpr4u3h8hn1mKxaAt1uUp3FmxOlpvVq9rH1Q4WqNd1tsRjInK14Na8r4w3vW83z3z/MkFfiOqtBeSX2gn4w1RuyefWtzbG1EiOD3jwTPpQZSQokREbEhjNBmYn5+l/aR6300JBuYPZCR+nftVNQYWNgnI7iqJgMpm093Hx30qWFR578Djnj15Po9538hrv/P9ujXlu9LahoMx4Z5hAbwH9/mkG+47RtK2G5ubmuA3fVts+OhwO9u7dy+TkJK2trfT19dHU1ERVVdW68iE3tKBcqSlPLrtnreYfM9uCMjrtTI0+QqQ43u12L+nylS6qMZZlGVmWYwy3+r5JkkQ4HNYEWfSFqRZNl5aWaqmj1dXVNDU1LXFK11JQRjs7y5Gfn8+tt97K8PAwbW1tWjev4uLidWEMBJuP5Wxkugtu8Wp1AoEANpsNp9NJXl4e1dXVOJ1ODAYDL7zwAsXFxUk3F0iX9VpnHvSFMZj0EfsigcGoIxSQNbtRSCFb/Fti0tHsOjs6Sac5teFweIl9TBV1W6NFj8Gkw+8NYnWY8HmDGE06LDYT1VWR+sro+ZUNDQ1rmvKqbg+x9t1ut6+6sy/Y3CxnH1czWLBYPE5OTjIwMJA18biYXPfhuPmNDex7fT3hkIzRpNfSXK0O45KGO+GwjCPfTGVzAQPtEyhyZF6jzWXihtdUMz3mJeiTcdSY0enAVWhmuGcWz6SPokoniqIQCoUSvsaOl4Y4f6wPg1GP0Rw5lzO/7eGWNzdRt+N6xFX9OyuKwvNPtnPxuasYTHqCgRB5M06mi+c4Mhipr6ytrY2xZ7lacMvPz+eWW26J8SFbWlri+pDRQZtcseEFZTgcXnbO2mqvYOYi3SqTD2ooFIpx/GZmZvD5fFraWV5eHhUVFZw7d46bbrop7eiB+oUfHYFUsdvt9PX10dnZSUNDA2azWeuMCtc/+IFAgEAgoDUTUTEajWzbto3q6mouX77M0aNH2bJlS0y9T6bvfyYOUypiVpIkysrKKCkpob+/n/Pnz2t/B1FDKcg2y5UFrBShjNdifrF4LCgooLa2FofDkbCpy2ov7K1lymsyuEtsjA96mJ3wIisQDIawugzaDNA99j3QDo6gQ2vglcg+qs5vOg6Muk1pjYumvWW0vjjI5IgXnU5ix8FKCisiKV0WiyVmfuWRI0cyHsOSqcOlCmphDwXZZLnRc9mK/CwWjzMzM3g8Hk08yrKM1WqlsbERu92esXiMx1pcNzqdhG6h07TJYsBkif/9YHdbMFuM3Pi6WpyFFkb7Zygot/O2D+7F5jYSDAax2E0M9I1QUVtE2KfDajeRX+zEbDZr9jEcDjM3N6eJwi5/F+OhcQyTxchhBYMt8jccftUFGDMzO/mqmPNQbdTctJ/u86O4iqw48izIYZmhnmkKrA1s2WHSssy2bt1KcXExkiRxLHiMOqku7fcqlZTZaB/y6tWrXLhwAbvdTjAYXPOgxIYWlCvNWdPpdASDwVU9h1w5M8nsPxQK4fF4YgSk1+vFbDbjcrlwOp3anLbo9ytV0a06h2r0cfG5Raew6nQ6ysrKcLvdtLa28uKLL9Lc3ExZWRkzMzNMT09rUVKPx4PJZKK8vDyuA+FwOLjpppsYGRnhypUr9PX1sX37dvLy8jRjsBY1lMlGKKPR6XTU1tZSUVFBd3c33d3dmEwmvF6vaDQhyAqSJC3buCxa6MUTj/Hmk60kHhMdZzM0LkvlNUQvrBXX2PHP5zF2dQZJkqjfVURprRu9PmInzWYzt912G52dnZw6dYra2lrq6uqYn5+PsZFq9+yamhrC4TB6vT6l163aSJ1ex6vubqGiMZ+5KT/OfAt1O4uX1BSp8yuHh4c5d+4c3d3d2ucgVbLhlK+1syTYfKzUlAdSu+7jiUe198Ti8iFVPLa3twPgcrkyf0ErnNtqkar9jbaPzkITNTsLGGifZNutZRy8u4m6HUWYLJE0/5LKfF73rn0c/elFeq8MY3VYuPVNLbhKzIyMjGj+4/T0NOFwmIKCAgKhAJ/o+wQjoRG+3vAfGM16fHNBwuVzXPnfz6D3G3GXvT/mnK5HKBctgEX5+EVFRVp95fnz53G5XATqA3w1+FVu0t/Eq3l1Wu+fLMspB3N0Oh01NTWaDzk5OUlbWxvbt2/HbrendR6ZsqEFpdoxM9EKUy4cmXSMTqrEex3hcBiPxxNjtObm5jCZTJp4LCsry8qQ7+iLf3GkQRWNkiRpDk6iWThlZZHZQ5cvX+bSpUvo9Xrcbjcul4vGxkZcLpe24hSdBhstFCVJorS0lKKiIrq7uzl58iSlpaVUV1dn9BpzkfIaD6PRyJYtWwC4du0ax44do7q6msbGRq1uSiBIl3hz1qK7Nfv9fl5++WVmZ2eXHW6dCblKt1qrCOVK9tFoMtCwu4T6nSXodDr0Bt0SWxEIBCgoKCAcDtPf3093dzeSJOF0OnG73VRVVeF2u2NqGtW5jMlG7qJtnN6go3lv4llw0edfVlZGT08PZrM5bn1lMmQqKFUBHc16jUgLNg4r1ZgDCbMrosVj9CL+cuIxHrkqzVoP9nFx9ppqjyoa8imvywMi9nKxrWi5uQxLHgz2jjLjnWRG38PRo73Y7Xbcbrf2PjudTiRJ4tdTv2YgOICExFO2/+Z3//rNPPFvp7l4+wuggGwJ8oz5V/wJf6IdQ7WPdreZ6q2FtJ68hs8bxO8Nkldip6IhUrKhCrny8nI6Ojr4P33/B0xwilP0+HuoM9el9R6lax/V+cKdnZ0YjUaee+45qquraWhowGg0iqY8yZLMnLVc1lCuFupFODAwECMeDQaD1i2xuLhYE2SZkKx4VKOQ8cSjz+eLiTzOzMwgy7J2rqWlpUxPT3Pt2jXsdjt1dXUxqzPRRepqpHKx06TX67XGNq2trZw6dUo7/1QvTPVYmQrKTC5cvV5PQUEB9fX1tLa2ah1h6+vr096nYO04cuQIDz/8MKdPn2ZwcJDHH3+cu+++e9ltDh8+zEc+8hEuXrxIdXU1n/rUp7j33nszOg+z2czg4CCdnZ0AMY0eLBaLtuqarVqdeOSqOVouHKaVnKPoBTD1vVxsj4LBIJOTk5qNnJ6eJhAIaKOXmpqa8Pv99Pf3YzQaqampiSveojNEFi+8xSPTtNPS0lK2bdum1VfW1tZqC18rkY0aI7G4Jsg2ZrMZr9cb9zH1elKvsZXEY0lJSVppq7ns9bGaRPuM8Uqf1HOI9h3jBSDC4TBTU1Mx2RlerxeLxYK70k21qxGdTsfVq1cBKC8vj8maCCthHp14VOua/V8T/8UfvuYP+ZN9N/He4X8FFBTgu2Pf5fcLfh+73q6df+R8JG77nS3YnGaGe6dwuC3sur1myagSo9HIfM08fT2RZj86RceXu7/Mw1seTtkHzUYGB8DWrVtpbGykra2No0eP0tzcTFNTU9r7TZUNLSgNBgN6vX7ZphMbZTCtiizLeL3emFmPHo8HRVEYGRnB6XRSV1eH0+nEYrFk/CWtFjQDzM/PayI9WedIHQ0QffGrkQ63201paalWFxS9beX/z957x7dZXv3/H1mWZVu2vPee8kyc5cQZBEpKKPAQWn6FsJIwUmYZeQqFllFKSwhJaWgSNhmUtkB4CrTQsglZznYS7xXveG/JU9L1+yPf6+aWLNmSrGE75/166QWRb93D1n3uc851zudERSEuLg5lZWU4fPgwUlJSEBERYbASyX+vOp1OcCiMy7y8vLyQk5ODhoYGFBcX4+DBg0hPT0dIyMTy1hz+t7P1hrZHORY3KL6+vpg/fz46OztRWVmJ6OhoobSbmD5oNBrMnj0bd9xxB372s59NuH1NTQ2uvvpq3HPPPfjb3/6Gb775BnfddRciIiKwcuVKq4//1ltv4f3338fZs2dRUFCAZ599Fj/+8Y8NgseBgQGcPn0a0dHRtlyixUzXkldjp2h4eFiwlcJKn6gqYzznSBw8Dg4OwsvLC0qlEv7+/oiLixMEjMTExcWhqqoK+fn5iIuLM5jJK7aP3Ia7ubmNWwY7WUEfrrBq3F9p3M9u7nc5WVEe6jEn7I1cLkd3d7fBe+LgkTGG4uJiDAwM2CV4NIWz7KO9j2Hc+qTX6wX7yI85kX3U6/Xo7+8f0/rk7u4uVK/xlinjSrvo6Gg0NDTg9OnTCA4ORmpqKjw9PfFt37doGm0SttMyLd5tfxdqvRp6/BAPaPQafNj1IdaGrBWug9sTubcMi66eOBB7s+1NuMENeuihl+iRr83HP/P/ieWpy632QSfrywMQfMh58+ahs7PT4O/hDKZ1QAlM3FTtjKy1rTcrY8xgTAfPevFSJ19fX8TExMDd3R1FRUWYM2eOzec4UWY9MDAQZ86cQUpKCsLCwkyuPup0OoPMel9fn+AccXXYhIQE+Pr6WmRkFQoF5s6di7a2NpSXlwszJ8XzfrgREme/TGXj/fz84O7ujri4OJw5cwYBAQFIS0uzqJbcGlEdU9hDodV4H0FBQQgICHDIihHheH7yk5/gJz/5icXbv/baa0hISMCf/vQnAEB6ejoOHjyIP//5zzYFlH5+frj++uvR29uLG2+8Eb/4xS/GbOOMzLgzjzMZWz9RZj04OBhVVVUYGRlBfHw8pFKpSedIXJXR29sLjUYDmUwGpVIJPz8/REREQKlUWtSGwMXIoqKiUFZWhubmZkHRz1TiTbxaaaoMdrIBpbG95f2VXMbe1PxK8e9msgHleCWDxPRiKlVwDA4O4siRIwgODjZYeeTiWIGBgUhNTZ30yDRzTJeWALFqv/G+AgMDUVpaCsYYUlJSIJfLTVavDQwMjKlek0gkUCqVUCqVSEhIgFKptGixhOtQhIWFobKyEocPH0ZiYiK+kX5jeFwwfKP+Bv5u/mP2UTZYZnB+1tiSLm0XzgycMXxTAtSH1OPs2bPw9/eHSqUyO+pOjD3HKnECAwOdXuY8rQNKiUQyoeyzMxwZSwJXcd+SOIBkjAmlTpGRkVAqlfD29jb4YnPlKkuxpexg7ty5aGlpQXl5Odra2pCamgqdTmdSNIdnjqKioqBUKic9lDwsLAxBQUGoqanBsWPHEB0dLdR/822My2CNVyu5MYiLi0NERAQqKytx6NAhQfZ+vLKsyQaUk80uAaYNCvUIXTzk5+djxYoVBu+tXLkSDz/8sE37+/nPfw4A+Pe//21WdGs6VnDY6xjjOUfGJf0SiQQpKSkIDQ1FSUkJ2tvbkZaWBrlcPkY0x83NTXCOEhMT4efnJ6ha24pSqcSCBQvQ1NSEkpIS+Pn5jelhFCfeeEUHt49iG2krpkpOeX9lSEgI6urqxu2vtEcGnkR5Zg6uruA4ePAgfve73+Hw4cMYGRmBu7s7HnnkEWHlkQePBw8eRHBwsEMFc5w5L91SrG19ioiIQEBAAMrKynD06FGkpKQgKChoTIJNp9MJfeFRUVFIT0+HQqGYlG3gVRNdXV0oKyvDjyQ/wlUJV8FX+cPCRJh7GEJloRjUDQq2xM3NDd7SH+yUtTYq0D0Q7yS9g35dP2pra+EmdUNsTCwyvDIgiZdMOOpOjCMCSlcwrQNKYOKmalc4TIwxg1ltYqUvHjyGh4cjJSUFCoXCoi+BOYNjreKqOdGcgYEBMMYQGhqKtrY2HD58GG5ubvD39zcQzTEe6WEveGNxREQEysvLcfjwYaSmpiI8PHzcbDwPLMXGwMPDA5mZmYiOjkZpaSmampqgUqkMSmrFTPZmtNcKpSmDQ9n3i4OWlhaEhYUZvBcWFmZQBWALE9nHyfYPW4KrS14n2xcOXFASHx4eRlBQENra2nDy5EkAEEb+iEVzHPG7lEguzOQNDQ0VymDj4+OF1VK+zXj95/ZcoRQjlUqRmJhoML/SuL+SSl4JMa6u4AgJCcHPf/5zZGdno6ysDK+//rrJ7ZzV3+jKFUp79YVrNBr4+flheHgYJSUlAC60JAUEBBiI5jgq6AkMDMSiRYtQX1+PcyXn4B7ijtTUVANdEV93X8Pr1AN66G3+GyR7XiiLlTEZ5FI5UhQpF37gAWRkZCAmJkZoDUhJSUF0dLTJ67dXyaupfTjTRlJAaSe6u7vR3t4uBJHiAbXGWS9rEX/ZLcmsG9eui5lINIdnvxljOHfuHEZHRxEaGmowdNuR+Pj4YO7cucLg1sbGRovKYE1l0P38/LBw4UI0NzejvLwcDQ0NSE9PH5NttEfJqyNWKAlisnh6ek44Z83RAaWzWg/EdtHS4JGfn5jR0VGDlUdj0Zy4uDjI5XI0NDRArVbD398fYWFhTnlwe3h4ICMjw2QZrPg6jfvP+d9gsj2U4yGXy5GVlYXY2FiUlpYK/ZWRkZGT7jMn+3hxY+8KDpVKBZVKhR07dqCwsNDsds4SdnRW0DpR8GhsI8frCzcpmvP/dDMSExPR3t6O5uZmeHl5ISoqyin3r5ubG+Lj4xEeHo6KigocOnQISUlJiImJEY5vruJtMjbKnG3lmhjt7e3CqLu0tDQEBwcbbGevhJurE2zTOqDkJa8TZeDtycjIyJgZQ6Ojo2hsbIS/v79d5fb5zc9HaAwODhpkoy3JrFsimpOammpypTQ8PBw1NTU4ceIEoqOjLVb0myy8lCo4OBjnzp0TymDFx+cGQKPRoLe3F52dnQaBt3hVMzIyEqGhoaiursaRI0cQFRWFlJQUoY/JHiWv9u6h5OfjagNBOIfw8HC0trYavNfa2gqlUjkpUaaJWgIAxzvrjnKYxM6RRCLB0NCQ1aJiE4nmBAQEmBXNCQkJQUtLixDYpaWlOU1Ai/cwNjU1obi4GH5+fiaPL04ecmwJLK1JmimVSoP+yrq6OgCTy5RTQHlx44oKDmB6K1Qbtz6NjIyMERWbSHF1MqI5ISEhiIqKQklJCVpaWpCeno6AgAC7X6cpPD09MWvWLKEM9vz580hLSzM4vkQiwejoqGD/ufilLfZxvM9IJBKEhoYiODgYdXV1OH36NAIDA6FSqQSNj8kuSkwV+zitA0rA9Jw1zmQdGa1WayCW09fXh6GhIXh5eQmlTjExMSgpKZn0zTJe5ojPliwoKIBKpRKyG6acI3HgOFnRHDc3NyQlJSE8PBwlJSXIz8+HSqVCaGiozddpDe7u7kKGu7S0FAcPHkR4eDjc3NyEa+QN3X5+foiJiYFWqx3TX8n3pVKpEB0djbKyMhw4cADJycmIiYkRbubJrFA6IqAkLh7y8vLwn//8x+C9r776Cnl5eZPa72TmrNkLezhME2XWQ0JCUFpaiqSkJCEb7mjRHIlEgoiICAQHB6OiogL5+flITExEbGysU+5l4zLYQ4cOISwsDF5eXoITqNVqhXFNmZmZcHd3tymbba2TJe6vrKmpQX9/P4qKipCenm7V/EoOlbwSjsCSgHK62Ef+X2P7CECwUXq9XkjMO1o0B/ihSqy+vh6nTp1CREQEUlJSJqW7YQ3iMthTp04hICAAfn5+0Gg0gn/s7e0NPz8/JCYmIiAgQGgVsMYntMR/c3NzQ0JCgtAacOjQIcTGxiIpKckhFRyu0OCY9gGlp6enXUpetVot1Gq1QQDJl/G54mpkZCR8fX3H3Ay8h89SLBn0aiy3nJubi4aGBhQVFSEiIgJJSUljSlcdIZoDXFBjnT9/Ps6fP4/i4mKhzMpR/ZTAD8F8b28vent7MTAwIKwEy2QyxMTEmGzoFpe6mTIKCoUC8+bNQ3t7O0pLS9HQ0ICEhASXZ4cooJxZqNVqVFVVCf+uqakRMpOxsbF44okn0NTUhHfeeQcAcM8992D79u147LHHcMcdd+Dbb7/FBx98gM8++2xS5zHeCqW45NWR2CKYw/9rqahYRkYGQkNDUVpaio6ODqSnp4Mx5hTRHJlMhszMTERGRhpk4x3ZJmC8ctDb2wvGGFpbW+Hm5obw8HDk5OSMSR6Ky2BNJd7MYavDI5VKERsbi6qqKshkMqvnV4qvl+zjxYujKjjG8x8B55Sj2rIKaq2oWExMDAIDA1FcXIxjx44hMzMTXl5eY6rXHCGaw8tQQ0NDhTFxKpXKoW0C4uCYvxhj6OrqQldXF4KCgqBSqeDv72/gH/PnjSVjmIyPZ+m1cI0P3hpw4MABADOjgmPaB5S29FDqdDqo1WqDslWNRiOsBPr6+iI8PBy+vr4WZ6onEs2ZzKBXfnO4u7sjNDQUzc3NaGxshFQqFYJHR4vmSCQSREVFGWTjk5OTER0dbZf+QV66yl8ajQaenp4Gs9qUSqXQ21lTUwOtVjtGwVXcX8mNgqnAMiQkBEFBQaitrUVJSYlQUmzLw8kePWhTJcNE2IcTJ07gsssuE/69YcMGAMDatWuxe/duNDc3o76+Xvh5QkICPvvsMzzyyCN4+eWXER0djbfeessmwQkxXInUFPyecLXDNJFzNNEsM+BCaader0doaChaW1tx6NAhSCQSwTlytGgOAAQEBCAvL8/ubQLcNnHbKA6O/fz8hNYFPz8/yGQyNDY2CiNOVCqVgU0z1X9uSTZ+MjaOHycrKwvx8fFCfyUXqbBkv1PFYSJcgysqOICp0UNpD1Gx0dFRDA0NITg4GC0tLThx4gQACK1PoaGhSE5Odqhojre3N+bMmSNMEzh//jzS09Pt0iYwMjJi4D9yXRCePIyPj4efnx88PT2FMtiqqiqTZbDG/aZiH9IctthHX19fLFiwAG1tbTh9+jRKSkqQlZWFoKAgq69/vAoOEuWxgoky8DyTK1Zb1Wg0cHd3F4LHkJAQKJVKAzUoaxB/AQHziquWOEeWiOakpaVhcHAQtbW18PLyQnx8vNNKCORyObKzs9HR0SH0DqWnpxuI5owHvz7x6iMvq+DBcXJysrByYApeBsuzXampqQbZLlNGwVQ23s3NDYmJiVAqlTh58iQOHjyIxMREA+VES6AVSsKYSy+9dNwgavfu3SY/U1BQYNfz8PLycnkGXpxws9Q5MicqBkwsmpOQkADgwqqwm5sbYmNjbSqztAV7tAmMjo6OcY546Sov7Tc1XooTExNjMJstISEBcXFx46rBivtMTe1zMj0+4h514/5KLlIxkRNFCbeZxVSp4PDy8sLIyIjZgMDZPZT2UFzV6XSCz2tKNCcyMlIQFRseHkZ4eLhNQYyt1zrZNgF+fWIbOTQ0BIVCAaVSidDQUKSkpJgVwQwKCkJeXh7q6upQUFAgbC/2N8WJN65hMl7izVb7KJFcGJvn4eGB4OBgnDp1yuzopfGYKv7jjAgouYqhXq/HwMCAEDj29PRAq9WioKBA6COJj4+Hr6+vxTXg4yEOGoeHh4WGZ8B02YG9RXN4iVV+fj7S09MNlP4cTXBwMPLy8gTRnNjYWCQmJo4JxLRarYHj19vbi9HRUYPZm7aUVfj4+GDevHlCtourwYqHyHKjO1E2XiaTQSaTYc6cOSgtLRX2FRoa6rTsOa/bF+Ps7BIx8xivxxxwbAZe7ByNjo4aqM2ayqzz8xEjdh7GE81RKpVjbE9ERASqqqpw5MgRJCUlITY21mn3k6VtAuLSVf4S970HBwfbJLfPy6q4GiwXpRCrC1qaeAMmJzxm3LMp7q+sq6uzyIkyZR/5vojpx1Sq4DC3IAE4zz7qdLox9tHYRpryIc2J5vC+cKVSabYvPDw8HI2NjThz5gzCw8ORmprqFNFFwPI2AS68KPYf+fVNprWL9zNyNdjDhw8jKSnJYKyHqcSbudXKyfZAMsYQHR2N5ORks6OXxsOcfXQ2Dvv27NixA5s3b0ZLSwtmz56Nbdu2ITc312771+v1qKioQFdXF7788ku4u7sjOTlZKHPy9fUVHIply5bZLXg0lVkPCAhAdXU1pFIpwsLCzJYd2Fs0x8vLC3PnzkVTUxOKiooQEhIClUrltNVKqVSKlJQUIRvf0tKC+Ph4ADAQveCZMXHp6mQVcAHDbNe5c+dw9OhRxMTEWF0Gyx0pXrLW2NiIoqIiKJVKpKenGwSppqCxIcRURZxwM4W9MvDjZdb9/PxQVlYGDw8PxMXFCfbJ0aI57u7uSEtLQ1hYGIqLi9Ha2orMzExBWc/R8DaBkJAQYbZuXFyc0LvU29uL/v5+oVrG2uuzBH9/fyxcuBCNjY0oLCxEYGAgUlNTrS6DnWzJq6nPWjK/ksMYs8szg5gaTJUKjonso70qOMZrffL29sbw8DDKy8uFuYnjtT6ZE83x8/OzSjSH91YGBwcbLEwYj7RwJMZtAny1VK1Wjyld9fPzMyhdtUcyycvLC7Nnz0ZHR4dQhpuWlgZ/f39hG7GfKB7DJA4sJ9v2xPdpbvRSVFTUuPufKqJlDgko33//fWzYsAGvvfYaFi5ciK1bt2LlypUoLy+3m0Lo448/jm3btsHHxwfZ2dmIi4vDggULDMqAhoaGDMoqLMXasoPU1FQEBASgtLQU3d3dUKlUAGBwUzhKNEciuaD0FxwcjNLSUhw+fBjp6ekOV2IVl+b29vZCIpFgeHhYcBzDw8MnLF21FzKZDCqVyuIyWOMyL7HDw41seHg4qqqqcPjwYcTExCA5Odns32my2SlgrEEwpdRGENbi6elp9wy8taJiERER8PX1RVFREbq7u5GVlQVvb2+DzLMjRXO402K8WunoBA6vPuFVGQBw7tw5SKVShISEIDY2Fn5+fvDy8nLog5/bNHEZbGJiIuLi4sbNxoud2sk4TBPZR1NOlHF/pV6vd1qilLh4mEiUx1b7yP9r6jluXL0ml8uxePFilJSU4MSJE8jIyEBwcLDQGuRo0RzxwkRhYSFCQ0ORmprq8PtNvMDC29DOnz+P5uZm+Pv7Izw8fNzSVXsSHByMwMBA1NXV4eTJk8KxxYm98cpgJ7uoYGxfzbUGBAYGmvz8VFmQcEhA+dJLL2H9+vW4/fbbAQCvvfYaPvvsM+zcuROPP/64XY7x5JNP4vnnn8ddd92F0NBQ/PjHPx6zjSUPQ3sMemWMwcfHBwkJCaivr8f3338P4IJTxTMrjhbN8fT0RE5ODpqbm4VsvEqlslumW9y3JC7N9fHxEUQv+MpjRUUFmpub4ePjY7fjWwIfItvc3Izy8nI0NTUhLS3NYEXClONkqlxAJpMhPT0d0dHRghKXuUwR9VASU5XJik7YQ1QMuFCCmZiYiLq6Ohw+fFjYhrciOFo0RyqVCsqC4tXKiaoPLMVc6SqXpOelq97e3qitrUV9fT08PT0tLqu3B+Iy2NLSUiEbL+6fMlUGy//mky15nQjuRLW1tRkMAQ8KCqKWAMIh2GMOpbWKq6buBTc3N8TExKCxsREFBQWQSqXQ6XROE80RL0w4oo2Kl66K/Udx6SoPkJVKJdra2lBRUQGZTIbg4GCn+UXGZbCHDh0aIzxprgx2sosK5uaQ89aA2tpanDx5EiEhIUhNTR3TGqDX66dEBYfdA8qRkRGcPHkSTzzxhPCem5sbVqxYgfz8fLsdR6lUAhg/Ay/Oboodp8kqrg4ODhpkjvr7+wXRnJCQEGi1WrS2tgozd5z1h5ZIJIiMjERQUBBKS0uRn58vlHxZg16vF1ZX+c0vLl2dqDR39uzZglPARXucWWYWGRmJkJAQVFdX48iRIyb7O7VarTDQtrOz0yDLJHZSuBJXa2srysrK0NDQgPT0dIOSCHuVvE4Fg0DMLKyRxZ9IVMzYLppzjiYSzfH390dLSwt8fHyQmZnp0PFDxvj7+2PRokVCiXxCQgLi4+OtcgZ46Zk4wcZLV3n1SUREhKC6aoy4TaC1tRXp6elOE8UADMtgz549KwzZFv8dePlxb28venp6hPdtWam0xj5ykQruRPH+St6qQBD2xNPTE6Ojo2afv8YJN3sork4kmhMfH4/29nbo9XpkZmY6dPyQMZ6enpgzZw6am5sn1UY1PDxs4D/ysR2WlOaK2wTsOU3AUsRlsGVlZcLChNjnAwCNRoOenh709PRArVYL3wtrz5N/zpx9k0qlwnzliooKHDx4EPHx8QatXTO25LWjowM6nW5MEBMWFoaysjJ7Hw4eHh4ma+DFN/vw8LDZm99S0Rxx6apYNCc8PBwqlWqMaE5CQgKKiopw9OhRZGVlCQGwM5DL5Zg9ezZaWlpQWloqNDybWi00Ll3lzhEvPePCQNaq4IaGhiIwMFAoM4uPj0dCQoLTnAKZTIa0tDQhG3/w4EGEhIRAr9cLcy29vLzg7++PiIgIBAYGmp09JM4U1dTU4Pjx40ITu1wud0jJKz8uZeCJyTBeQMkdfa1WO8aGip2j8RRXedmSOMFmiWhOYmKi4DCkp6cjPDzcvhc+Drz3OzQ0FMXFxWhra0NmZqZZpWouSS8OIMWq27aUrvr6+gqzhc+cOSM4bs6q6HBzu6B+GxYWJmTjQ0JCIJPJhPJj8epBXFwcJBKJTUO/bbGPbm5uBv2VfAZhTEyM04RDiJkPT6JwlVAx3GfUarUYHR012/o0nqiYeCSaNaI5ycnJqK2txYkTJ5zuO/GkfGBgoEVtVOLSVX6d/Pc5kbCkOTw8PCY1TcAecOHJuro6nDhxAgEBAfDx8RGSAQCEBGJWVhYCAgJsto/AxMGfp6cnZs2ahbi4OJSWlqKpqUmYeGCPRQ17MO0ts1wuF1YIjTPrjDF4eHigpqYGKSkpkMlk4waPWq12jGKWraI5CoUCCxYsQG1tLY4fP25TJnwycMGawMBAg2GyQUFBY0qztFqtQemqvUrPuChGRESEQTZePPfHEYyMjAirj1wVjDGG8+fPw9PTE3FxcYJUs5iJZg9JpVIkJycLyon79+9HcnKyXRS2popBIGYWPOFmLrPu6emJhoYGKBQKeHt7j5tZ55UL4gSbraI5MpkMWVlZaG1tRWlpKdrb25GWlubUPjk/Pz9htfLYsWOIj49HbGysgQNoXLoaEhJik+qqKSQSCWJjYxEaGiqI9qSkpCAyMtKhtkCr1RqsPvLVg/b2dri5uSE6OhqzZs0as3pgqv/ckvOcTDk/76/s7+/H0NCQQX8l9ZgTk4UnyYeHh+Hp6Tmm9Ukul6OxsRFBQUEICAgQvvfA2ODRnqI5EokECQkJCA4ORmFhITo6OpCVleW0Si/ghzaqlpYWQXRRpVKNGWvEnwE8+cTHGtkj8WPpNAF7Yqp9gTGG3t5edHd3IywsDPPnz4evr++E9hGYOFAUC6FZgp+fHxYuXChMOKivr4ePj8+UqHCze0AZHBwMqVQqZBQ5ra2tDslC19XVoaKiAiMjIybLsRYsWICSkhIUFBQgOztbWCkUl3WKM0dyuVzIHE1WNIdnWYOCglBcXCwYBWfNRNPr9RgaGkJgYCBGR0dRVFQEABaXrtoLfgPU19ejoKBAaHi2h/NornfJeAXZx8cHWq0W1dXVqKiowPDwMBISEgyu27jpmpfBGGebvLy8MGfOHHR2dqK0tBRDQ0OTCpK5kz8VDAIxs+jp6UFjYyO6u7uFB6A4g5qVlYXKykoUFBQYrBQal3U6SjQnLCwM/v7+KC4uRn5+PjIzM51W/snbF7y9vYUSy3PnzsHd3R3+/v7CzLbJCqdNhKenp8PaBMROLg8e+XPO+BkgkUjQ2NiI6upqDA4OIjU11aAM1ri/kr9nSkZfjD36w/mz1N3dXeivTE1NderKNjHz4N/bsrIyzJ8/f4yoGFelLioqQlxcHBITE4XvsjNEc3x9fbFw4UJUVVXh6NGjSE5ORkxMjNOSz8PDw5BKpQgPD0dLSwv2798PiUQiBI/2Ek4bD/E0Ad7KZc82AeMKvb6+Pri5uQnXKG5faG9vR3l5OUpKSsaMOTHVf25J4s3agJIfKyIiAqGhoaipqUF1dTW8vLyEBTDANXN6JcwBR124cCFyc3Oxbds2ABd+YbGxsXjggQfsJsrDeeONN/DUU08hOzsbb775JkJCQkyWHVRUVKCxsRF+fn5CMCku6+ROkqP6eXQ6HSorK3H+/HmLZICthTtH4sw6dwD59SkUCrS1taGrqwsqlQoRERFOXxUbHBxEaWkp+vv7BZEMa85hopvf399/Qgewr68PZWVlGB4ehkqlQkhIyJhzMBajMOc06fV6HD9+HD09PQgJCUFaWprVCQO9Xo8vv/wSl112mZAx5ceXy+XUO0TYzLFjx3DLLbcAAHbt2oWcnByT36empiaUlZXB29sbMpnMoC+c20ZHiuYwxtDY2IjKykpERkY6pPecl66KbaS4dNXX1xf9/f1oaGgQnEdnJ3m0Wi2qqqrQ1NRkU6kb718VV2iIZff5a7zn3PDwMCorK9HW1mZ26Lh4JUdsH019N1paWlBTU4O8vDzLfxFG5OfnC4IZer0edXV16OzsxMKFC6kElrCZwcFBXHrppSgtLcW2bdtw/fXXm7zfuru7hYQ8V6geHh4WEtfcRjpKNAcAurq6UFxcDIVCgYyMDLv7qrxyQVy+Ojw8LPS++/n5QavVoqamBoGBgUhLS3O4gr8xjDE0NDSgqqrKpjYB8Vxj/hoaGhIq9LgPOd5zTqfToba2FrW1tYiIiEBycrLJajfgh2TaePZxaGgI+/btwxVXXGHzd4crqA8NDQn9lcAPM9adhUMCyvfffx9r167F66+/jtzcXGzduhUffPABysrKrBaIsYTu7m7cddddOHz4MN566y1ER0cL6l1i0Rxvb28hgufZBWcHVJ2dnSguLoavry8yMjJsviHFZQfcAGi1WsE5Gs8BbGtrQ2lpqTBn0ZmiGMCFm62lpQUVFRXw9fVFenq6wVw0jvjm5w4SN3D8xrfVyeUlsJWVlVAqlUIfrKnteDmqucCyuLgYbm5u0Ol0OH/+/JiG6YnQarX4+uuvcfnllws3PwWUhL3QarV47rnnsGXLFjz33HO47rrrhISaWDTH29sbWq0WAKBSqRAaGur0755Go0FxcTG0Wu2kes+NHQfevqBQKAyCK1OS9P39/SguLnaJKAant7cXJSUlYIyZbRNgjBmIp/HyM96iwV+2Ornd3d0oLS0FALOS9eLEm7ls/Pnz59HQ0ICFCxdafQ6cQ4cOCX2vHJ1OB7lcTpUdxKRgjGHv3r24++67cf311+Opp55Ce3s7fHx8xojmSCQXxqPFx8cjLi7O6cmM0dFRlJeXo729fVK952LbwZ8B4soF8UKL8TWOjIygrKxMWJgIDw93uh89NDSE8vJydHd3m20TMNYH6enpMRBP4/6jreW5AwMDKC8vR29vr9AKNd7ChHF1EGdwcBDff/89Vq5cafPvsaSkBFKpFGFhYSgtLcXw8LCwmu3MSQsOCSgBYPv27di8eTNaWlqQk5ODv/zlL5N6oEzEK6+8gldffRXl5eXQ6XTC8fiNwRuCR0dHUVJSgp6eHmRnZ5ud6+JIRkdHUVZWhs7OTqSnp08YZIvLOvnNz0VluNPAs2OWPlzFhiklJcXuK6aWnkNlZSVaWlqQkJCA0NBQk8qJ/MafzM0/3jlUVVXh/PnziIuLG1MGC0xsFAoLC+Hp6YmUlBT09vYKZbCWGtuRkRF8++23+PGPfywcmwJKwp58+eWX2LRpE/bv3w+tVou7774b69atM8iu85msNTU1qK2tRWpqqlPV9Th6vR61tbWoqamxqPdcXNYp7psW93by67Q0W8tXwc6dO4eYmBgkJSU5PXDR6/Wor6/HuXPnEB4ejri4uDHXCWDM6qM9Vw30ej0aGhpQXV2N4ODgMWWwHJ54M247AYDGxkY0NzdjwYIFNp/HgQMHDIau8+NRQEnYg4qKCjz99NP497//jaGhIeTl5WHTpk0GgRV3zFtbW1FSUiII87ni+8d7z4OCgizqPeeBlbg8F4DB9U1UuWCMqxcm+DnwyprU1FTodDqD6gw+2k7sQ9p77m97e7swfz0tLc1kAlK8MGGceNNoNDh06BCuuOIKm8+hqKgIcrkcKSkpYIyhubkZtbW1WLRokcnFGkfhsIDS2bzyyisYGRmBr68vtmzZgpCQEOzcuRORkZFjtmWMoampCRUVFUKTryucdq7CKpZmFpeuivs7pVKpgWPk5+dnl8xDR0cHSkpKhDIKZ335dDqdcI0dHR1C47NCoUBgYKDDbn5zTKYM9uzZs1AoFEhKShK247Mwvb29kZ6ePu5KCy95EGeo+LEmat4nCEv4/PPPcfz4caSkpGD37t0oLS3Fnj17kJuba3L7rq4uFBUVQalUIjMz0yVD5fv6+lBUVAR3d3dkZmYKFQTi0lVuI3lZpzi4sse9o1arUVJSgtHRUWRkZDhcUIwj7vHv7OxEZ2enEEAFBgYKDpI1yomTYWhoCJWVlWhvb7e6DLahoQFtbW2YP3++zcf//vvvDRLAFFAS9qS6uhpvvPEG5syZg++++w5/+9vf8NJLL+GWW24xaUMGBwdRWFgInU6H7Oxsu82ztYbh4WGUlJSgv7/foPdcLLrF/yuu7OI20sfHZ9L2UbwwwRVHneGviJOI3d3daG9vx+joKKRSqYF9NFYXdxTiMtjIyEgkJyebfGaKE2/cPqrVahw5cgQ//vGPbT6+sQ/Kz8nDw8Opq+gzJqAU09fXh/vuuw9ffPEF3njjDVxxxRUmv+RqtRpnz56Fu7s7srOznRrJc3h5FReHGBwcNChd5TeFo3qXAMOVQq6gZ+/+TlMrCB4eHgbX2NnZifr6ekRFRSE5Odnp5STiMlg/Pz+oVCqT/ZDG2aaioiJBwU0MFwGqq6tDdHS0yVp74ELpxIEDB7By5UqDY1BASTgCnU6HzZs34/e//z2efPJJ/PKXvzT50B0ZGUFJSQn6+vqQnZ3ttGDK+BzKysrQ1tYGHx8fjI6OGkjSi50jRwVWjDHU1dWhuroaUVFRDunvFM9t6+npGdMbrlQqMTw8jOrq6nHbBBxNV1eXMP7LkjJYNzc3NDQ0oKurC3PnzrX5uN999x3mzJkjzIKjgJJwFIwxfPrpp7j99ttx5ZVX4qWXXjIZMOr1epw7d04QiHJFlZdOpxMqSrivotFohNJVcQWKI/2p9vZ2lJaWwsfHxyG2SavVGviPvMVLnEB0c3NDVVUVADhlmoApBgYGUFZWhr6+vnFLccWJN7VajZMnT+Lyyy+3+binT58e44Pq9XrIZDIKKO0BYww7d+7Eww8/jLvuugvPPPOMSWdep9OhvLwcra2tyMjIcEiPJ8ecIqmXl5cghBEaGor09HSXrAh0dnaipKQEXl5eyMjIsFmNVjzY3NTNz7NHpkokNBoNSktLMTAwgLS0NLOzjxyJuAw2Pj4e8fHxJstgh4aG0NPTg5qaGkRHRyM+Pt7kA4VfU29vL1JSUsaotKnVauTn5xtkqCigJBzNwYMHccsttyA9PR2vv/46QkJCxmzDRRAqKysdPg+NMQaNRmNgO3jpqpeXF9RqNby9vZGdne1U+XyORqNBSUkJhoeHkZGRYXO7hF6vH2MfjYUh+Oqj8b0vTv6ZWyl0NOJS3JCQEGEerzGjo6Po7u5GU1MT3NzcMGfOHJtt2TfffIMFCxYIlR7UEkA4mvr6etxyyy1oa2vDO++8g+zsbJPbdXZ2oqioCP7+/sjIyHCY78YYM0g88bYgAPDx8cHQ0BCAC8GUKVvuaEZHR1FRUYHW1tZJBdj8OWC8AMGnE3D/0VRvuHGbgL2mCVh7/lwNVi6XIy0tzWSFGp/f2dbWhpaWFlx22WU228dTp04hKCgIcXFxBvunFUo7U1xcjBtvvBEKhQK7du1CfHy8ye14XXxYWBhUKtWks57GsvvinkDjvh4e6Go0GhQVFQllFM4c4srRarWorKxEc3OzRRLV/OYX161rNBqLbv7x9nn+/HlUVFQgMDAQKpXKJfX5vb29KCsrw+joqNA71NPTI1yr2AmMi4uDt7f3uLOHeL2/VCpFenq64JD29fXh+PHjBhkqLiVNASXhSDo7O3HnnXfi+PHj2LlzJ5YuXWry+9bf34/CwkLIZDJkZ2fb5X7kzpG4PEusSCru65FIJFb3njsCscpgREQEUlJSxn1gGwtD8OvkwhDilzUPfi6YI5FIkJGR4RLhoKGhIVRUVKCjowOJiYkIDg42UJhVq9VCn39ERASCgoKsHvrN+eqrr5CXlyesFFFASTiD0dFR/O53v8PLL7+M559/HnfccYfJ79vIyAiKi4uhVquRnZ0trKRPBnHpKn+NjIyYTTyJ+74dnfwbD74w4e3tbVEbFReY5HZD/BwQ9z5a0xsunibAxwu5avW4rq4OkZGRiImJwcDAgOBDip8DISEhQgA+0RgmU5w4cQJhYWGIiYkxOD4FlA5Ao9Hg4YcfxocffohXX30V//M//zNuXbxWq8WsWbOsqovnfT1i54ivyokDyIl6AsWiGImJiWZXvRxNV1cXSkpKIJfLkZGRMWH/krFzZA9hiJGREaE+39nzl/h19vT0oK2tDQMDA8L8paCgoDFO4HhN12K44Eh1dbXQOzs0NITTp0/jsssuM9hOIpE4dL4TQQAXvmvbtm3Db37zG2zYsAGPPvqoyYeQTqdDWVkZ2tvbkZGRYVX1AM/Gim2kuHSVB5CWlK6a6j13NgMDAygpKcHg4CAyMjKE/iXxdXL7wYUhxLL09ugNF4sXObtNgF9nT08P2tvbBYEghUKB4OBgwRE0HoMEjD+GyRxffPEFli1bJlTNUEBJOAvGGL7++mvcdtttWLJkCbZv325WeKW+vh5VVVVISEhAQkKCxd9xvV4/ZlWOJ+aNFyAmWuww13vuTMwtTPDrFC9AcIFJcfBojxYGxhhaW1tRXl7u9DYB8XV2dHSgq6tLKNEX20feymbNGCZTHD16FNHR0YiKihLeo4DSgTDG8I9//AP33nsvbrnlFvzhD38wmWUX18Wb6yfkkvRix4H3QIoz65OZSdTb24uioiJ4eHggMzPT5vLTycBXBFpbW+Hj4wOdToeBgQHhOu15849HZ2cnSktL4eHhgfT0dLuv3IpLLLih02g08Pb2NhC/OH/+PFpaWsYtg7XUKHDZ67a2NoSHh6OzsxOXXnqp8HMeULpiZZa4ODl+/DhuuukmREdHY+fOnWYl6XlAx1foTN0HYueor69PKF0V243J9PUMDQ2hpKQEGo0GmZmZLlHr5sm/mpoaeHl5wc3NDRqNBjKZbIwytSP7/JzRJsDL+8Xy+/w6+ezf7u5u1NbWIjQ0FCkpKSaTipaMYTL1mS+++AKXXnqpYA8poCScTUtLC2699VacO3cOe/bswbx580xu19fXh8LCQsjlcmRlZY15hvOqBbH/2NfXJySsxQGkrYl5nU4nzLN1hC6GpbS2tqKsrExIjms0GgAYswDhyNEWvE2gubkZSUlJDmkTMF5l5Qk2cZUeb6UarwzWkjFMpsjPz0d8fDwiIiKE9/R6PTw8PJzaY37RBJSciooKrF69Gnq9Hnv27EFKSorJ7cQqhwkJCQa9PeJZNuKb396Zcp1Oh8rKSpw/f94pTd/G9fm9vb2QSCRQKBQYGBiATCZDZmamS5qddTqdEOhzZV5bbxReSiIuXxWvsnIDYMrI8bEgWq1WUIM1xpLZQ5zu7m6cPXsWQ0NDmDNnjqAuSwEl4Qp6e3tx991349tvv8Vbb72Fyy+/3OT3dmBgQCjPV6lUgmgCt5GMsTGZdXuXbzPG0NjYiMrKSmGFzpEPT7HdEPeG+/j4YGRkBDqdzqlKh2LEgmL+/v5IS0uz2XaIe/3F5f2+vr6CbfT39zf59+RlsJ2dnUhKSkJ0dLTFarDjDRL/6quv8KMf/UiwyRRQEq5Ap9Nh48aN2LhxI55++mncf//9Jr9/Wq0WZWVl6OjoEMZ6iANIXrUgtpGmeqYnS1dXF4qLiwUVf0f6E+Y0Qvgq3MDAAGJjY5GcnOySe9ZebQK8nU2cYOPzf8X20ZSKrrgMNioqCklJSeOqwVqaeDt8+DCSkpIM2kAooHQSQ0NDePTRR/HOO+9g69atuOGGG4Q/lrikkwccfJxFUFCQYACcNc4CuLBCV1xcDF9fX2RkZNilnNSc0yAuQfP39xeMnE6nQ3V1NRoaGpCYmIi4uDiXGIX+/n6UlpZiZGQE6enpQqmZOcTiOeLs+mR7PBsbG1FVVYWAgACoVCqTpRSWlsG2tLSgrKwMOp0Ofn5+SEtLE4wwBZSEs9Hr9XjrrbewYcMG3HPPPXjqqaeEh55xSWdnZ6cwYF5cCu6scRaAYe95VlbWuCN6LGUiYQj+4rN/xX3frizFHRkZQUVFBdra2ixuExCX94sVZsXOkbWryZ2dnSgrK4ObmxvS0tJMJiEtzcbzOb0rVqwwaDEg0TLCFTDGsH//ftx6662YNWsWXnvtNcEPEY/76evrQ2dnJ4aHhyGVSg3so7PGWQA/jPbo6Oiwa++5qd5wsTI1txvcDnZ3d6O4uFiounNFKa4tbQLiEXfcj9TpdAY9nv7+/latsmo0GpSVlUGtViMlJQURERETqsGOl3g7cOAA0tLShAUOV6lgX5QBJXDhF/7+++/jF7/4BebPnw8PDw88+OCDGB0dNSjpVCqV6Onpsaku3p6Mjo6itLQUXV1dVvcvAT/c/PyG6O/vN5htya91Iieot7cXxcXFcHNzQ2ZmpkuEg8QBXXBwMFQqlXAzcwVFcQA5OjoqZNfHU5i1lpGREUFxMSEhAXFxcSZvXlOzh8TfIT6Edv78+aisrERjYyNiYmKQkpLiEqNLEABQUFCA66+/HgqFAvHx8fif//kfhIeHjyld1Wq1KC0tRUBAgMsUqo17z61NePGSJfFLLBAknm05HkNDQygtLUVfXx/S09NdolINmG8TMBZR6+npwcDAgJBIFJf426PHs66uDjU1NRaXwZoKLPmc3iuuuEL4m1JASbia9vZ23HjjjSgqKsLSpUuRlZWFBQsWwM3NzUBYzMPDQxi14yqFauBC+WlpaSmCgoKEVVNL4W1e4uoM8WxL457A8fYzFRYmxmsT4AsQYl+Zj7jjPuRk2tk4jDG0tbWhvLwcXl5eSEtLM+lPW9J//v333yMrK0tIbFBA6WQYYwgJCRHKZmJiYvDcc89h4cKFJm+0ierinUVzczPKysoQGhoKlUplVjzD1M0vnm1pyc1vDt5nWldX51I1Md5H1d3djYCAAKEkzd3dfUx23ZE3VU9PD8rKyqDVapGWlobg4OAx24yXbWpqakJjYyMWLlwI4MIqbFlZmdl9EYQzWLVqFb7++mv4+/sjODgYd911F26++WaTTvzw8DCKi4uh0WjspnJoC7z3XCaTISsry+wcWb6KIBbA4Iqk3HbY2hvOGENzczPKy8sF582RPULm4H1UDQ0Nwpw2sYiauM/Tkec3ODiIiooKdHV12VQGOzAwgP379+PKK68csz0FlISr2LJlCx5//HGEh4fD19cXK1aswG9/+1v4+vqO+U7q9XpUVVWhsbERaWlpJleknAH3mdRqNbKysszOkRVXdYnbvIx7w23tge/p6UFJSQmkUikyMzOtEsC0F4wxNDU1oaKiAp6envDy8kJ/f7+gpGu8AOGov5dWq0VNTY0wg92WMtjvvvsOOTk5QiUIBZQuoKWlBWFhYRgdHcWTTz6JV199FZs3b8att95qti6eq47askpoL4aGhlBcXIyBgQFkZmbC09NzzGwiewpgmKOvrw/FxcUAgMzMTLuUmo0HdwTF2fXBwUF4enpidHQUcrkcKpUKQUFBLulh4qumgYGBSE1NNVsGa1zm1djYiNbWVsyfP1/YTq/XQyqVusQRJQjgQgY+ICAAUqkUf/3rX/HAAw9gzZo1eO6558yuNNXV1aG6utqlCtXGvechISFCmS4v6QQcLwwxPDyM0tJS9PT0OGXMCWMMg4ODBuWrarUaHh4egs1JTEw0GdA5g46ODpSXl0MqlSItLc1k0sGUfVSr1Thy5IjBnF4aq0S4mt7eXshkMnh7e+PIkSO4+eabkZCQgLfeesvsvd7R0YGioiIEBQUhPT3dqQqcHOPe84SEhDEJNl7VJbaP9m7zEutiJCQkID4+3uF2aWRkxMB/5GW6UqkUIyMjiI6Odqpathi1Wo3y8nKbymC//fbbKTGn96IOKMUwxvDf//4X69atw49+9CNs3brVbIDEVwnNqRw6ErEwRGtrK9RqNQAYlGaZE0xwBOJSs7i4OCQmJtrtCzyRcpa4Rl+r1aK6uhqNjY0uXTUVl8GOV9IhLoNtaGhAV1eXgWocBZTEVKOsrAyrV6+GVCrF7t27kZSUZHK73t5eFBYWwsvLC1lZWXbp+bYUcW94W1sburu7AQBeXl4ICAgwUKZ2hn3k0vVlZWUICAhAWlqa3X4fxpUovLyfPwvE2XXjNoHU1FSn/l044ll5fPC4KRsnzsar1WqcPHkSK1asMNgPQAElMXXo7u7G+vXrcfDgQezcuRPLly83+d0cHh5GUVERBgcHkZ2d7dQZslxQpre3Fx0dHWhvb4der4dMJhPsIy/pdJZf29vbi5KSEkgkEru2UYkrUXiCbXBwEAqFwqCCjVfq8TYBmUyGjIwMl7Vztba2oqKiwqoy2G+//XZKzOmlgNKIpqYm3HLLLWhqasKePXuQk5NjcruBgQEUFhaCMeawunjxzS8eFi2Xyw0agWtrawEAWVlZLrkJgAtlmsXFxdDr9cjMzLTaSBpfqzXKWWK4Cqter0d6erpLFGmBCyUd/DxUKpVB6Sq/1u7ubvT09KCrqwsBAQGYNWuWUOZFASUxFRkaGsKGDRvw97//HX/5y19w/fXXm7wfeV9lZ2cnsrKyHFa6PZEwhI+PD1paWtDd3e2UVUJzjIyMoKysDF1dXVCpVDYN2h4eHjbo7enr6xMqUcS9PeM5gnxcUVdXl8sUaQHDMtjk5OQxYw34tXZ3d6O7uxtarRaXXHKJgX2kOb3EVEOv1+PVV1/Fr3/9azzwwAP4zW9+Y3K1izGG2tpanDt3DklJSYiLi3PI93h0dHRMdYZOpxNWH5VKJfr7+9HQ0OC0VUJT2GNhgiuNixcgGGNj1PvH6x215zSByaDVanHu3Dk0NDQgOjoaSUlJBt8jfq3ch+zu7sbSpUuF3ncKKKcQWq0Wzz33HLZs2YI//OEPWL9+vck/irguXqVSTfrhzG9+8Q1hiTCE+GZ0pHGaCHH2OSYmBklJSWZvRkcoZ4nPo76+HufOnUNYWBhSU1NdJhTCVwX435ALYmi1WgMj5+/vD3d3d6HMizFGASUxJWGMYe/evbj77rtx/fXXY9OmTWYHRp8/fx5lZWWIiopCSkrKpB5ufEVOHEAODQ0JwhDjye/z2ZmuVGAFfpjLxtWczfXii9UieRDJr1VsM2wtQ2tvb0dZWRk8PT2RkZHhMqGQjo4OlJaWws3NDaGhoUIgOTg4aNDHxJ8FvMwLAKlgE1OWgoICrF69GqGhodi5c6fBwHkxPT09KCwshEKhQGZm5qSqBowFt3hvuKenp0HvoylBGS626O7ubrb33BnwhQnG2LijPXh5vzjBplar7dYHL54m4EotC7VaLajBhoeHgzEmtLXxvyt/eXt7G5TBUkA5hWCM4bvvvsOtt96KBQsW4JVXXjG72tXR0YHi4mIEBgZaXBc/kTDEeDe/ObgghYeHB7Kyssw6eY5GrVajuLgYWq0WmZmZ8Pf3d5pylpjBwUGUlZWhr68PqampNq0K2IK4VLe7uxt9fX1CxigoKAjx8fHw8/MzORCeZ95HRkag1Wpd1qdLEBNRXV2Nm266CYODg9izZw/S0tJMbqfRaFBYWAgAmDVrlkXOCheGMF595PN/ucNgTW+4ce+5KUEKZzAyMiLI+KtUKkRERECr1Ro4gnwGsHF23Z69Pa5qE+CJAZ5d7+npgU6nA2MMPj4+iI+PR3Bw8JigX2wf9Xo9ent7ERMT4/DzJQhb6O/vx3333Yf//ve/eP3113HllVea9D+4gn93d7eBUudEiEfccfsonqfNX5YGqc6ee24O8WgPvkoIwGCllSfljRcg7FnG76o2AbFWiDiZKJFI4OHhgdjYWISHh49JponLYIELcUlsbCwFlFOJ1tZWrFmzBmVlZdizZw9yc3NNbjdRXbzxzc/7AY1XHyf7hdXpdKioqEBzc7NdVk1tgT/sa2tr0dHRAalUCr1e71TlLA6vSS8vL4evr68w49Ge+xcHy1wIg5fq8pdCoRDUYPV6PdLS0gwknnt7e3H06FEcPnwY+fn5OHnyJB588EFs2rTJbudKEPZmZGQEjz/+ON5880386U9/wi233GLyntbr9aisrERTUxPS09MRERFh8HM+31IcVPHh3+Ls+mSFIRhjaGhoQFVVlVBK5OySJl7yXl9fj/Pnzwtzfvm4KrHNcIbt5m0COp0O6enpdg+0jedc9vb2wt3dXejZCggIgK+vL4aHh1FeXo7u7m6DMljGGIaHh3Hq1Cnk5+cjPz8fR44cQUZGBg4ePGjXcyUIe8IYw65du/DQQw/hjjvuwLPPPmu2Z/j8+fMoLy8XqrvEgYC4YoG/BgYGDEbccZsx2QDCEXPPrWVoaAitra2ora2FVqsFYwwymcwgeHRWn6e4TSAlJcXugTav1hPbR16qK/aXAQhlsDExMUhMTBQSjDqdDqWlpYL/mJ+fj/b2dnR1dTl1YYkCSgvQ6XTYvHkznnvuOTz55JP45S9/aVZopa6uTnBWvL29BSdpcHDQITe/OfiqqZ+fHzIyMhxaOmlKOYvPuPT29haGn7tyVWB0dNRALMfWzA1jTBDC4K+RkRGDOZfjZcr0ej0aGhrw3nvv4auvvkJ8fDyKiopQXFyM+Ph4LF68GEuWLMHSpUuRkZHhkn4GgrAGxhg+/fRT3H777bjyyivx0ksvmZWBb29vR1FREQICAhAcHCyUsKrVagOHwdHDvzUaDYqKiqDX6x3eez5eeb9SqRQcRVevCtijTcC4FI33wnt7e48pzzJ3ne3t7Thw4AA2bdqE+fPno6KiAidPnoSvr6+BfeTzowliqlNcXIzVq1fDy8sLu3btQkJCgsnt1Go1CgsLIZFIEB0dLag2G1csOHrcz+joKMrKytDZ2enw3nMeLIsDqqGhIfj6+kKpVEKr1aKtrQ3R0dFOF8EUY682Ae4v8xfvhff390dAQICgFWLO9+vv70dRUREef/xxqFQqdHR04OjRoxgZGcGCBQuwZMkSLFu2DIsWLXL6+C4KKK3g4MGDuOWWW5Ceno7XX38dISEhAC6sToodBl56IJPJEBERgaCgIGHArTPhQhBckMIe5ZPGylk8U2ZOOYt/hq8KcGVcV8gyAxeU2EpLSyGRSMat0eeIG7359QIwcI5Mla+K0el0KCsrE7JHR44cQW9vLwIDA9HQ0IB169bh6aefdpkzSRD2oL6+Hrfccgva2trwzjvvIDs7G8AP95DYRmq1WqFvLiQkxGkVC2LEvef2GnNiPMONVyx4eHgY2Avj8v6Ojg6UlJRAoVAgIyPDZe0K1rYJcFVdsYPElWaN+x/NwZ8PYvtYXl6OjIwMFBcXY8mSJdixYwfS09MpwUZMWzQaDTZs2IAPPvgAO3bswKpVq4TybZ5YEwdUABAQEIDw8HCnViyIcUTvubhaj18vF1ITJxTFPqJGo0FxcTFGRkaQmZnpMrFFa9sEeDWK2D6K/WX+Gq/yhjGG7u5uHDlyBIcPH8aRI0dw8uRJZGZmorS0FFFRUdixYwcuvfRSl6wmi3FoQLljxw5s3rwZLS0tmD17NrZt22a2ZBQA9u7di6eeegq1tbVISUnBpk2bcNVVVwk/Z4zhmWeewZtvvomenh4sWbIEr776KlJSUhx1CWM4f/48Vq9ejdLSUqSnp2PZsmXIzc0dIwzh4eEhLJNbUxdvbxhjaGlpQVlZGUJDQ6FSqawK5uyhnMUZGBhASUkJBgcHkZGR4bLfibhGPyoqymDukFhJsaenR+j1NM4ejXfzi8uzuAEwzh7l5eVBqVTiwIED0Gq1+NGPfuTMXwExRZhpNnJ4eBi//OUvsWfPHuTl5SE6Oho///nP4enpaWAzfHx8hBWx5ORkxMbGuiyZIu49z8zMtKok3jig6u3tFSoWxCVLlojHiKsoUlJSxiifOovx2gTE6oL8ueDm5mbgHE20smyqPOv8+fOYPXs2Fi9ejKVLl2Lp0qWIjIxETU0NDhw4gLVr1zrr8okpxEyzj3q9Hq+88goee+wxzJkzB1KpFI8++qhQ0SWuzuju7kZJSQlCQkKQlpbmspW5oaEhlJSUQKPRWF1lZiwUxAMqXrEgrtabyNYxxlBfX4/q6mpERka6dLXSXJuAXq8XqhLF/eHGCbbx/GV+neIEW0lJCZKSkgT7uGzZMqSmpkKtVuPtt9/GQw89NCWSbQ4LKN9//32sWbMGr732GhYuXIitW7di7969KC8vN7lSdvjwYVxyySXYuHEjrrnmGvz973/Hpk2bcOrUKWRlZQEANm3ahI0bN2LPnj1ISEjAU089hcLCQpSUlDhN7e3ee+/F3r17ERYWBnd3d6xYsQK//e1vTR5fXBfPB6a66o/OBSkGBwfNZnjE5Uri7Lq9lLP4MfhQXT6HzFWKi1w8aGBgAL6+vhgaGjKpLjjeagFjDD09PThy5IjgHJkqz5o3b57Ls0fE1GIm2si///3vuOuuu5CcnIyRkRFkZGTgz3/+s1DNYUzP/1M59PHxQWZmpstKGMWCFOP1nvNqFG4jxeX9lgZUE9HZ2YmSkhJ4eXkhIyPDZYqLvOyttbUVSqUSOp0OarUanp6eBv2P4zmDfMX25MmTBv2Po6OjyM3NNSjPUiqVVKFBCMxE+1hfX4/ExESoVCoMDw8jLCwMf/7zn5GZmWnyuz80NITCwkKMjo4iOzvbZWPhxH4bT8KbsnHiOencRoqFgrgPORk7r9FoUFJSguHhYWRkZLisjUq8MOHt7Q2pVIr+/n5IpdIxCbbx/GWdToeSkhIcOnRIsI/Nzc3IyckxSLBFRERMefvosIBy4cKFWLBgAbZv3w7gwi8/JiYGv/zlL/H444+P2f7GG2+ERqPBp59+Kry3aNEi5OTk4LXXXgNjDJGRkfjf//1f/OpXvwJwIUsQFhaG3bt3Y/Xq1Y64jDHwfhCJRILjx4/jpptuQkxMDN5++22Eh4eb/czZs2fh5uaG7OxslzkIvLSosrISsbGxiI+PHyNN72jlLM7g4KCQ9crIyHCKLLNY+IO/9Ho9PD09hZr9jIwMs/1fwNjyrPz8fIPsEXeQVCrVlMgYEVOXmWgjh4eH4ebmBplMhubmZtx22204d+4c9uzZg3nz5pn8zOjoKEpKStDT04Ps7GyXOQjAD73nSqUS6enpGB0dNUiwiQdjcxs5Xj+grWi1WlRVVeH8+fNISkpyygquOXVBb29vjIyMQCqVIj093WxygO/DVHmWn58flixZIiTY5syZQwk2Ylxmon3kJZAKhQLDw8N47LHHsGvXLmzduhU33nijyXucMYZz584Jq64xMTEuCyx47znXxPDw8DCwj3ychTh4tLd6P+CaNipzAoyenp5gjEGr1SIhIQFxcXFmr5fv48SJE4L/ePToUWi1WuTm5gqrj4sWLZpw5vpUxCEB5cjICLy9vfHhhx/iuuuuE95fu3Ytenp68Mknn4z5TGxsLDZs2ICHH35YeO+ZZ57Bxx9/jDNnzggDYAsKCpCTkyNss3z5cuTk5ODll1+292VYRG9vL+6++258++23ePvtt/GjH/3I5JeAZ8Cbm5uRlpY2RuXQGXAZ/vb2drS2tgp9njzb7EzlLODCzdXU1ITKykqEhobafV6kWF2Qj+/gzc/8xY3dyMgIKioq0NbWhqSkJERFRcHd3V3IHonLD8TlWcuWLZs22SNi6nCx2EidToeNGzdi48aNePrpp3H//febFTRrampCRUWFSZVDZ8DH/XR1daG5uRkjIyMG5Zw8y+7Mioquri6UlJQI5bj2nBdpqbqgu7v7mDaB+Ph4wZGqq6szsI+lpaVITk42KM+a7AxS4uLiYrGPjDF8/PHHuPPOO3Httddi8+bNZu/x7u5uFBYWQqlUOlxo0RS8nLO7uxvnz5/HwMAAABiUc5qak+5I+MLEwMCA3duojMWCesYRYDRuE0hOToZSqQRjDF1dXQbtTwUFBfD39x+TYJsJAmMOCek7Ojqg0+nGKEOFhYWhrKzM5GdaWlpMbt/S0iL8nL9nbhtX4Ofnh7///e946623cNNNN+Hee+/Fk08+OcbpkEqlwqiI4uJidHV1Wd3PaA3jKWf5+fkhPT0dvb29aGpqgp+fH+Li4pweEHEls+DgYCFoy8jIGDcDbo6J1AWjoqKE/ihT18kdtqCgILz66qv4+OOPERoaipKSEiF7tGTJEtx1111YtGgRfH19KYAkbOZisZFSqRS//e1vsWzZMtx6663Yv38/XnvttTEPfm4L/P39UVhYiO7ubmRnZztMnIavFIjLV8XjfhITEzE6Oora2lp4enoiLi7OJUJigYGByMvLQ1VVFY4cOYKkpCSbbbU5dUGuuJucnGy2ncHNzQ2JiYkIDg7GZ599hp/85CfIyMhAVVUVWlpahPKs3/3ud1i6dKnTZv4SM5OLxT5KJBL89Kc/xZw5c3DLLbdg+fLl2LNnDzIzM8dsGxAQgLy8PBQXF+PIkSPIyspyaDUH15MQi026u7vD398fkZGRkMlkqK2thUQiQUxMjEsq77y8vDB37lw0NTXh7Nmzk1qYmEiAMTo62qwAo0QiQXh4OAICAnDy5EksWrQI8fHxQpCZnJyMJUuWYP369Vi2bJlL298ciWukNmcYbm5u+MUvfoFFixZh9erVOHToEHbt2mVy6HJISAgWLVqEoqIiHD16FLNmzbJLXfxEyllRUVFjlLMiIyMRERGBoqIidHR0IDMz0yXqgp6enpgzZw6am5tRVFSE4OBgqFSqcTM2E6kLJicnW6Qu2NXVZVCederUKQQHByMsLAwnTpzAQw89hD/+8Y8zIntEEK5AIpFg+fLlKCgowLp167B48WLs2rULeXl5Y4IOHx8f5ObmoqKiQpg1aA/JeuM5l2KxBD8/PyQlJZmcAxwZGYni4mLk5+cjKyvLJeqCUqkUKpUKYWFhKC4uRmtrKzIzMycszR9PXTA6OhoBAQHjKuvyJJ24POvYsWPQarWYM2cOjh49iiVLlqCkpGRalmcRxFQhPj4e+/btw1NPPYXLLrsML774ItasWTMm6JDJZJg9ezYaGxtRUFBgkdKoJej1ekE8h9tIrifh5+cnJPuM1UgjIiJQWVmJI0eOuGzsEU9GBgUFobS0FPn5+ROW5gOGAozd3d2CGndAQIAQmE5k17RaLYqKigwqNNra2pCXl4eioiL4+PgIAeXFYB8dElAGBwdDKpWitbXV4P3W1lazfYbh4eHjbs//29raalAu2traalC+4EpmzZqFY8eO4cEHH0ReXh5ee+01XH311WO+SJ6enpg3bx5qampw7Ngxq+vijZWzent7DVbjwsPDkZaWZpFylr+/PxYtWiQ4cCqVyiXlmxKJBJGRkQgMDERZWRny8/ORlpYmOJNardbAOeIBM88excbGTiiGwWetmSrP4quPS5cuFcqz+Jw6CiYJe3Mx2sjg4GD861//wp///GesWrUKjz32GDZs2DDmnuW9eoGBgSgpKUFnZydUKpVVpfjGozv6+/sNZn3Fx8dPKJYAXLDVc+fORUNDA06dOoXY2FiXlOMCP9jqc+fO4ejRo0hMTBT6dSZSF0xNTbVIXbCzs9MgwVZQUICAgAAsWbIEV155Jf7whz8gJycHHh4eaG9vR0FBgcuEQoiZy8VoH2UyGTZu3Ijly5dj7dq1+P777/Hyyy9DqVQabMdXBHk1R1dXF7Kzs60qNeXl/WIfEoCwABEZGQmlUjnhSh+vvAsJCUFxcTHa29uRkZHhkv5oLy8vzJkzB+fPn0dRUZHBqBOxz8xfYgHGuLg4iwQYeYKN+5DHjh0DYwwLFy7EkiVLcN9992HhwoVQKBQYHR3Fv/71L6dOoXA1DhXlyc3NxbZt2wBccOZjY2PxwAMPmG2oHhgYwL///W/hvcWLF2PWrFkGDdW/+tWv8L//+78AgL6+PoSGhjpVlMcSGGP461//igceeABr167F73//e7M3WHd3t5DJMKdy6AzlLODC4NaSkhL4+/sjPT3dZYGUuOHaw8MDUqnUoByNvyYKmLVaLYqLiw0CSP7w4P2PS5YsofIswiVczDbyyJEjuPnmm5GQkIC33nrL7Crk4OAgioqKxlU5NDXHbXh4WHAWuI2c7JxLtVqNoqIiMMaQlZXl0kCqs7MTxcXFYIxBLpdDo9FYrS7I+yKN5z+mpKQI/T2XXHKJywJo4uLmYraP58+fxy233IKGhgbs2bMHc+bMMbmdTqdDeXm5ULVgSv1WXK3AbaRGozHwp7h6/2Ts4+joKEpLS9HV1YWMjAy7zD23lYGBARQVFUGtVkOhUGBgYEDwmcXXPFGCraOjw6D/8fTp0wgKCjLof8zJyXHZpIKphkPHhqxduxavv/46cnNzsXXrVnzwwQcoKytDWFgY1qxZg6ioKGzcuBHABcnn5cuX44UXXsDVV1+N9957D88///wYyecXXnjBQPL57NmzTh0bYg1lZWVYvXo1pFIpdu/ejaSkJJPbcZXD3t5eoc/PFcpZwIXS2dLSUvT09Njcz2gt5tQFfXx8oNPpMDIyMuFcNnPlWTqdTsgeLVu2DAsXLqTyLGJKcLHbyO7ubqxfvx4HDx7Ezp07sXz5cpP3pV6vx7lz51BXV4fU1FSEhoYaJNj6+vqEagVuI5VKpUN6HsXnMpl+Rmswpy7o5eUFqVQKjUaDqKgopKamjruKa648a+7cuYKAzpIlSxAWFkb2kXA5F7t91Gq1+OMf/4gXX3wRv//973H33Xeb9flaWlpQWlqK8PBwJCUlGaj39/b2GlQrcBvpqAWD5uZmm+ee2wrvD+czcnl/uKenJ9RqNfz9/ZGZmTnu31iv16OmpsbAPlZUVCA1NVWwjcuWLUNiYiIl2MzgsIASALZv3y4Mpc3JycFf/vIXLFy4EABw6aWXIj4+Hrt37xa237t3L5588klBHvnFF180OZT2jTfeQE9PD5YuXYpXXnkFqampjrqESTM0NIQNGzbg73//O7Zt24af/exnBg9rcalSc3Mz1Go1ANcqZzHG0NzcjPLycoSFhSE1NdWuRsEadUHgQklKaWmpULrl7e0tlGcZq2cFBQUZzO6ZPXs2lawSU5aL3Ubq9Xq8+uqr+PWvf40HHngAv/nNbwxsjbhUqa2tDV1dXWCMCeX93FZYUt5vT3p6elBUVAS5XI6srCy79p5boy4IXFhlKS4uBgCkpaUhICBAWJUwLs8CLqz8cPXV3Nxcp//uCMJSLnb7yBjDvn37cOutt2LevHl49dVXDfq4ebKpt7cXHR0daGtrg06ng0wmQ2BgoIF6vzODID73fGBgAJmZmXYVDzInwKhQKITZuOJ+z+HhYZSVlaG7uxspKSmIiIiAm5sbtFotCgsLDeY/dnZ2jkmwhYaGkn20EIcGlLawY8cOwYDMnj0b27ZtQ25urslt33zzTbzzzjsoKioCAMybNw/PP/+8wfbr1q3Dnj17DD63cuVKfP755467CCMYY9i7dy/uvvtuXHPNNcjNzUVkZCSCgoIMlLO4KERNTQ08PDzs7qhYy+DgIIqLizE0NISsrCz4+/vbtB+ePeru7haGgXN1Qe4cmVMX5AwNDeHgwYO45557kJ2djdraWlRWViI1NVUoP1i2bBmVZxEzmploHwHg1KlTuOmmmxAYGIi1a9fC3d0daWlpBuX9vMydS9a7SiSHo9PpUFFRgebmZqhUKkRGRtrkeJhSF5RIJGMSbOOtPvLxRvfccw/8/PygVqtx9uxZBAcHjynPcoVaLUE4g5lqH9va2rB27VoUFxfjsccew/DwMJYsWSIkm3h5v1KpRG9vL86fPw+VSuUSkRyOuHUpOjraZmXTiQQY+WsiEceGhgY8++yzqKiogEKhwJkzZyCRSLBo0SJhASI3N9chc4UvFqbUk+X999/Hhg0b8Nprr2HhwoXYunUrVq5cifLycpP12Pv27cNNN92ExYsXw9PTE5s2bcIVV1yB4uJiREVFCdtdeeWV2LVrl/BvZzcMSyQSVFdXw9fXF++++y6+++47/OIXv8DNN99sUjkrLCwM5eXldlU5tAUvLy/MmzcP9fX1OHnyJOLi4iZc7jenLsjVwngz+UT9TDx7JC4/6OjowMKFC3Hw4EFkZmaiqamJ+h+Ji4aZah8BoKmpCXK5HEePHkV5eTmuvPJKLF261OQoi/DwcEEkJz4+HomJiS6xAVw8yFiQYqKKCL6iIFYXlMvl8Pf3t1hdkJfeiu1jZWUl5s2bh5KSEri7u2Pfvn1YtGgRJdiIi4KZbB/7+vqgVqvR3NyMX/3qV5g1axZ+/OMfmxxlERkZidDQUBQVFaGrqwvp6eku6fGTSCSIjY1FUFAQCgsLcfToUYt6z+0hwMgYQ1tbmyAwlp+fjzNnziA2NhYSiQTl5eXYunUrbr/9dkqw2ZEptUK5cOFCLFiwANu3bwdw4aEZExODX/7ylyabsI3R6XQICAjA9u3bsWbNGgAXMkw9PT34+OOPHXnqE/LNN99Ap9Nhzpw52LhxI95880386U9/wi233GLWcWhtbUVJSQnCwsKsVjm0N2q1GoWFhZBIJMjKyhIk6ydSF+SviZqfTZVnSSQSoTyLZ48UCgW6u7vx9ddf44YbbnDW5ROEy5nJ9rGkpASlpaVYtGgRvvjiCzz00EO444478Oyzz5oN0Pr7+3H27Fmh7NSVPVDmes/HUxcMCAgQViEnqkQZHR0dk2Dr7OzEvHnzDMqzQkJCoNPp8O6775ocO0AQM5WZbB/7+vrwf//3f1i8eDHa29tx6623QqVS4Y033jCrczEyMoLi4mKo1WpkZ2fbXGFmD3h/Ym1tLRITExEfHy/4veL+cJ5gs1aAUa/Xo7q6WtDPyM/PR1VVFdLT0w0q2OLj4+Hm5oaPPvpIKGcl7MeUCShHRkbg7e2NDz/8ENddd53w/tq1a9HT04NPPvlkwn309/cjNDQUe/fuxTXXXAPggkH4+OOPhfkyP/rRj/CHP/xhzGBtZ8IYw6efforbb78dV155JV566SWzM8UGBwdRWFgIrVaLWbNmjTt7zNHo9XpUVFSgsbERAQEBQjBprbogYwzt7e1j1LNCQkKE0ize/0jZI4K4uOwjABQXF2P16tXw8vLCrl27kJCQYHI7nU6HsrIyYXXQlQ4CYwznz59HeXk5FAoFZDLZmJJdS9UFNRoNjh8/LgSQx48fh1QqNeh/XLBgAZVnEQQuPvvY1dWFO++8E0ePHsXOnTuxbNkyk3aAMYb6+npUVVWNCeRcQU9Pj7Aw4ePjg/7+fgNFbp5kmyg5ODo6irNnz+Lw4cOCD9nT02OQYFu6dCmCgoLIPjqRKRNQnj9/HlFRUTh8+DDy8vKE9x977DF8//33OHr06IT7uO+++/DFF1+guLhY+EK+99578Pb2RkJCAqqrq/Gb3/wGPj4+yM/Pd+mKHwDU19fjlltuQVtbG9555x1kZ2eb3I6XN9XX1zt1eKxYXZD3P/LyLK1WC7lcjrS0NAQGBlpcnnXkyBHk5+ejsrISaWlpBtkjewzoJYiZyMVoHzUaDR555BHs3bsXO3bswKpVq8zaGa4sGBERgZSUFKedO+8PFyvOipNgycnJiIyMnDDB1tbWZpBdP3PmDMLCwgz6H2fNmkUJNoIwwcVoH/V6PbZv344nnngCGzZswKOPPmrWPvT19eHs2bPw8vKaUO3UnpgTYHR3d8fIyAhiYmKQmJg4YYJNrVYLCbYjR47g2LFjkMlkQv/jkiVLkJubO6Z9jHAuM+bp9MILL+C9997Dvn37DG4W8Wyh7OxszJo1C0lJSdi3bx8uv/xyV5yqQGxsLL799lv87ne/w+WXX46NGzfi9ttvH+N8uLm5ITk5GYGBgSgsLERnZycyMjLsXhc/kbpgUlKSIByk1WpRUVGBs2fPQqVSISIiQriRxdkjXp7V1dWFefPmYcmSJdi0aROWLFmC4OBguvkJwglMR/uoUCjw+uuv47LLLsO9996L77//Hs8//7zJ8tCIiAj4+fmhsLAQx44dw6xZs6BQKOx6PuOpC/r7+yM6OtqgfLW+vh7l5eUYHBw0EAvj5VncPubn56O6ulooz3rwwQeF8iyyjwTheKajfXRzc8ODDz6IxYsX4+abb8b+/fuxc+dOREREjNlWqVRi0aJFKCsrw5EjR5CZmemQkXDDw8MG9rG/vx8eHh7w9/dHcHCwQU98R0cHiouLMTg4aNB7zhhDa2urYBsPHz6Ms2fPIjIyEosXL8ZPf/pT/OlPf8KsWbNcHtQThkyZgDI4OBhSqRStra0G77e2tiI8PHzcz27ZsgUvvPACvv76a8yaNWvcbRMTExEcHIyqqiqXGwQAkMlk+MMf/oDly5djzZo12LdvH7Zv3w4/P78x2wYGBiIvLw/FxcU4cuTIpOviJ1IXNNXwzXF3d0dGRgaCg4PxySef4MMPP8SCBQtw+vRpoTyLZ48efvhhKs8iiElwsdpHiUSCm266CfPnz8fq1avxox/9CHv27DEp8+/t7Y0FCxaguroaR48enZTyKjC+umBAQACSk5PHVReMi4tDUFAQ8vPzsX79elxyySWorKwUyrPmz5+PxYsXY8uWLVi6dOmElR4EQZjmYrWPADB//nwcP34c99xzD/Ly8vDWW2/h8ssvH2NL3N3dkZWVhfPnz6OwsBBRUVFISUmxuSpsPAFGLp4zngBjcHAw8vLyUFJSguuvvx7p6eno7e1Ffn4+zp07h8zMTCxZsgSPPPIIli5dSgm2acCUCSg9PDwwb948fPPNN0INvF6vxzfffIMHHnjA7OdefPFF/PGPf8QXX3yB+fPnT3icxsZGdHZ2msziuAqJRIIrrrgCBQUFuO2227BkyRLs2bMH8+bNG7Oth4cHcnJy0NDQgJMnTyIhIQEJCQkW3WhcXbC7uxs9/284trXqgrw8yzi77uvrixMnTuD222+n7BFB2JmL2T4CQEpKCg4fPoxHH30Ul1xyCbZu3Yobb7xxjK1yc3NDSkoKAgMDUVRUhM7OTotVDkdHR8ck2GxRF+TlWYcOHcKRI0dw8uRJxMTEYOvWrbjiiivwwQcfYMGCBVSeRRB24mK3j35+fvjb3/6Gt99+GzfffDPuuecePPXUUybtXmRkpEE1R3Z2tkXVHBMJMKampk4owAhcaBM4c+aMgQ8ZFhaG/fv3Iz09HRs3bsTll1+OgIAAso/TjCnTQwlckH1eu3YtXn/9deTm5mLr1q344IMPUFZWhrCwMKxZswZRUVHYuHEjAGDTpk14+umn8fe//x1LliwR9uPj4wMfHx+o1Wo8++yzuP766xEeHo7q6mo89thj6O/vR2FhoUvknydCp9Nh48aN2LhxI5555hncd999ZjNIfX19wnUYqxyaUxc0Ho49US29Xq9HVVWVQX9PdXU1MjIyDPof4+Li8M4778DPzw8//elP7fo7IQiC7CNwwa59/PHHuPPOO3Httddi8+bNZp2h4eFhYbh2dnb2mKqPoaEhoTfcVnVBxhhaWloM7OPZs2cRFRWFxYsXC/YxKysLR48exf79+y1SnCQIwjrIPl6gsLAQq1evhlKpxK5duxAbG2tyO71ej8rKSjQ1NSEtLQ2RkZEGPx8dHR3TH26LAGN/fz+OHTsm9D8eP34ccrkceXl5Qn/4ggUL0N7ejpdeegmbN292yZgTYvJMqYASALZv3y4Mps3JycFf/vIXLFy4EABw6aWXIj4+Hrt37wYAxMfHo66ubsw+nnnmGfzud7/D4OAgrrvuOhQUFKCnpweRkZG44oor8Nxzz7lstqMlMMawf/9+3HrrrZg9ezZeffVVs6piWq1WUDmMj48HAMEAiNUFuXrWRKIOo6OjOHPmDA4dOiT0P/b29mL+/PnCzb9kyRIqzyIIF0D28QK1tbW4+eab0dPTgz179iAzM9Pkdowx1NXVCcO1vb29hVVIri4YEBAgOEgTOYncCeO9Pfn5+aipqRHKs7i6YFxcHNlHgnAyZB8voFar8dBDD+Gjjz7Ca6+9hquvvtqsPero6EBhYSECAgIQHBwsrEJqNBp4e3sbBJATtS0xxtDc3GxgHwsLCxETE2OQYMvMzKQKthnIlAsobWHHjh2CEZk9eza2bduG3Nxck9vu3r0bt99+u8F7crkcQ0NDwr8ZY3jmmWfw5ptvoqenB0uWLMGrr76KlJQUh16HMR0dHVi3bh3OnDmDXbt2IS8vT7iZTakLMsbg5eWF6OhoBAQEwNfXd8LskVqtHpM98vDwMFDPovIsgpi+zFT7ODo6iieffBI7duzAiy++aDB30VhdkJdnubu7IyoqCkFBQRYl2EZGRnD69GmDEUf9/f1YsGCBwfxHKs8iiOnJTLWPjDG8++67uP/++7FmzRo899xzQsLMWICxu7sbIyMjkEgkCAsLQ1hYmCDAOB56vR7l5eUGFRp1dXXIysoyGN8RGxtL9vFigE1z3nvvPebh4cF27tzJiouL2fr165m/vz9rbW01uf2uXbuYUqlkzc3NwqulpcVgmxdeeIH5+fmxjz/+mJ05c4Zde+21LCEhgQ0ODjrjkgzQ6XRs8+bNzNPTk914443s+uuvZ1988QX7+OOP2VdffcWOHz/OKisrWXt7O2tra2Pffvst++abb1hbWxvTaDQGL7Vazaqqqthf//pXdu+997KcnBwmlUpZbGwsu+mmm9j27dvZmTNnmFardfp1Xmxs376dxcXFMblcznJzc9nRo0fH3f6DDz5gKpWKyeVylpWVxT777DODn+v1evbUU0+x8PBw5unpyS6//HJWUVHhyEsgpgEz3T7q9Xr2n//8hwUFBbHLL7+c3XTTTeydd95hn3zyCfvvf//L8vPzWWlpKWtubmbd3d3syJEj7D//+Q+rq6szaR+bm5vZJ598wh577DF2ySWXMG9vbxYQEMCuuuoq9vzzz7P9+/ezgYEBptfrnX6tFxNkHwlnMNPtI2OMlZWVsezsbJaWlsZuv/129sILL7B///vf7NNPP2UHDhxghYWFrKGhgfX29rKioiL2r3/9i5WUlDC1Wj3GPnZ1dbFvv/2W/fGPf2RXX301CwoKYp6enmzZsmXs17/+Nfv0009ZV1cX2UcnMBVt5LQPKHNzc9n9998v/Fun07HIyEi2ceNGk9vv2rWL+fn5md2fXq9n4eHhbPPmzcJ7PT09TC6Xs3/84x92O29LOX/+PAsNDWUymYwFBgayvLw8lp+fz7q7u8c4RBqNhvX397OCggL2/vvvsz/96U/s+PHjbPv27eyWW25hiYmJzM3NjWVnZ7O7776b/fWvf2U1NTV08zsZax9ihw4dYlKplL344ouspKSEPfnkk0wmk7HCwkJhm6n2ECOmBjPdPjLG2OLFi5lEImFKpZLl5OSw3bt3s46OjjEOEXeKKisr2b/+9S/27LPPssLCQrZnzx52zz33sNmzZzM3NzcWHx/Pbr75ZrZjxw529uxZSrA5GbKPhLO4GOzjhg0bmFQqZT4+Piw9PZ098cQTrLm52aR91Gg0rKmpiX3++efsj3/8Iztx4gT76KOP2KOPPsqWLVvGvLy8WGBgILvmmmvYxo0b2YEDB9jg4CD5kE5mqtrIaR1QDg8PM6lUyj766COD99esWcOuvfZak5/ZtWuXsCoXHR3Nrr32WlZUVCT8vLq6mgFgBQUFBp+75JJL2IMPPmjvS5gQvV7PDh48yAYHB1lXVxe7/vrrWVhYGPvss88MDIJarWbd3d3su+++Y88//zy7/vrrmY+PD3N3d2eLFi1iv/71r9m///1vyh5NAax9iN1www3s6quvNnhv4cKF7O6772aMTc2HGOF6Lgb7yBhjJ06cYF1dXWx0dJQ988wzzNvbm23ZsoX19/ePSbadOHGCbdu2ja1du5ZFRUUxmUzGVCoVu+eee9jf/vY3VldXR/bRxZB9JJzBxWIfy8rKWH19PdPr9Wzv3r0sICCA3XHHHay9vX1Msq2iooLt3r2b3XfffWz27NlMJpOx8PBwdsstt7BXXnmFFRUVMZ1O55LrIH5gqtpI2wbQTBE6Ojqg0+nGNEiHhYWhpaXF5GdUKhV27tyJTz75BO+++y70ej0WL16MxsZGABA+Z80+HYlEIsGSJUvg6emJgIAAfPDBB3jqqadwww034KmnnsLnn3+OZ599FldddRUiIyPxs5/9DIcOHcK8efPwzjvvYPny5fjxj3+MF154Addccw31+riYkZERnDx5EitWrBDec3Nzw4oVK5Cfn2/yM/n5+QbbA8DKlSuF7WtqatDS0mKwjZ+fHxYuXGh2n8TM52KwjwAwb948BAQEwN3dHc888ww+/fRTvPTSS1i9ejW+/vpr/PnPf8YNN9yAuLg4LFu2DHv37kVERAS2bduGO+64A9HR0Xj11Vdx8803U6+PiyH7SDiLi8U+qlQqxMTEQCKR4P/7//4/nDhxAsXFxbj00kvxn//8B2+99RbuvPNOZGVlIS0tDVu3bgUAPPbYY3juuecgk8nw6quv4t5770VmZqbNcysJ+zCVbeSUmUPpLPLy8pCXlyf8e/HixUhPT8frr7+O5557zoVnZhlubm64//77kZeXh0suuQTvvPMOrrzySqxevRo7duxAenq6gXrWqlWroNVqXXjGhJjxHmJlZWUmP9PS0jLuA2oqPsSI6cl0t48SiQSXXXYZCgoKsHTpUtxwww244oorsGzZMjzxxBOYN28e5HK5EDT+9Kc/NRDUIFwL2UdiKjPd7SMAJCYmYv/+/VizZg1uuOEGLF26FMuWLcPatWuRl5cHpVJpkFR76KGHJhwvRziPqWwjp3VAGRwcDKlUitbWVoP3W1tbER4ebtE+ZDIZ5syZg6qqKgAQPtfa2mowvLa1tRU5OTn2OXE7MHfuXNTW1sLf339cpUI3Nzd4eHg48cwIgpgKXMz2MTQ0FAUFBdBqtWPmTxpDzhJBXHxczPbRw8MD7777LrZt24aQkJBxtyX7SFjKtF679vDwwLx58/DNN98I7+n1enzzzTcGWaTx0Ol0KCwsFG7+hIQEhIeHG+yzr68PR48etXifziI4OHhC2XvCenbs2IH4+Hh4enpi4cKFOHbsmNlt33zzTSxbtgwBAQEICAjAihUrxmy/bt06SCQSSCQSREVFAQDuv/9+g23Ge4iFh4eP+9ATP8Qs3Scx87nY7aNCoZgwmCSsh+wjMRO42O2ju7v7hMEkYRsXq42c1gElAGzYsAFvvvkm9uzZg9LSUtx7773QaDTCrKA1a9bgiSeeELb//e9/jy+//BLnzp3DqVOncOutt6Kurg533XUXgAslUw8//DD+8Ic/4F//+hcKCwuxZs0aREZG4rrrrnPFJRJO5P3338eGDRvwzDPP4NSpU5g9ezZWrlyJtrY2k9vv27cPN910E7777jvk5+cjJiYGV1xxBZqamgy2u/LKK9Hc3Izm5mbk5ORg3rx5ws8meojl5eUZPKAA4KuvvhK2n04PMcK5kH0k7AnZR2ImQfaRsDcXtY20RlloqrJt2zYWGxvLPDw8WG5uLjty5Ijws+XLl7O1a9cK/3744YeFbcPCwthVV13FTp06ZbA/Po8lLCyMyeVydvnll7Py8nJnXQ7hQqxVzzJGq9UyX19ftmfPHuG9tWvXslWrVgn/fu+995hcLme7d+9mJSUl7Be/+AXz9/cX5lnddttt7PHHHxe2P3ToEHN3d2dbtmxhpaWl7JlnnjEp+ezv788++eQTdvbsWbZq1SqSxScYY2QfCftB9pGYaZB9JOzJxWwjZ0RASRD2wBYZcWP6+vqYp6cn+/e//y28t3btWubn58dCQkJYamoqu+eee9gLL7xg8UOMsQtDaVNTU5mHhwfLzMw0O5SWHmIEQTgCso8EQRDmudht5EUdUG7fvp3FxcUxuVzOcnNz2dGjR81uu3z5cgZgzOuqq64Stlm7du2Yn69cudIZl0LYgaamJgaAHT582OD9Rx99lOXm5lq0j3vvvZclJiYaZHX+8Y9/CFmfjz76iKWnp7MFCxbQwHRiSkP2kRBD9pEgfoDsI2HMxW4jL1pFF17n/Nprr2HhwoXYunUrVq5cifLycoSGho7Z/p///CdGRkaEf3d2dmL27Nn4+c9/brDdlVdeiV27dgn/lsvljrsIYkrxwgsv4L333sO+ffsMlNFWr14t/H92djZmzZqFpKQk7Nu3D5dffrkrTpUgxoXsI2FvyD4SMwWyj4QjmO42ctqL8tjKSy+9hPXr1+P2229HRkYGXnvtNXh7e2Pnzp0mtw8MDER4eLjw+uqrr+Dt7T3GIMjlcoPtAgICnHE5hB2YjIz4li1b8MILL+DLL7/ErFmzxt02MTERwcHBgtQ4QUw1yD4SxpB9JIgLkH0kTHGx28iLMqAcGRnByZMnsWLFCuE9Nzc3rFixAvn5+Rbt4+2338bq1auhUCgM3t+3bx9CQ0OhUqlw7733orOz067nfjFjjRTz7t27BZll/jKep8QYw9NPP42IiAh4eXnhqquuQmZmptUy4i+++CKee+45fP7555g/f/6E19HY2IjOzk6DOVUEMVUg+zh9caSN9PPzg0KhwP/93/8JPyf7SFxskH2cvpAP6WBcXHLrEiZb53z06FEGYEzN/HSpc56OvPfee8zDw4Pt3LmTFRcXs/Xr1zN/f3/W2tpqcvtdu3YxpVLJmpubhRdXwOK88MILzM/Pj3388cfszJkz7Nprr2WhoaHMw8PDYvWsF154gXl4eLAPP/zQ4Fj9/f2MMcb6+/vZr371K5afn89qamrY119/zebOnctSUlLY0NCQg35bBGE7ZB+nJ86wkfPmzWMA2BtvvEH2kbgoIfs4PSEf0vFMmYByz549LDAwcMwvaNWqVezWW2+167EmaxB+8YtfsOzs7Am3q66uZgDY119/bfO5EhewVop5165dzM/Pz+z+9Ho9Cw8PZ5s3bxbe6+npYXK5nK1bt85i9ay4uDiTzfbPPPMMY4yxgYEBdsUVV7CQkBAmk8lYXFwcW79+/RjDRBDjQfaRmAhn2Uh3d3cWFBRE9pGYUjjLRpJ9nJ6QD+l4pkxAOTAwwPz8/NgHH3wgvNfa2src3d3Zt99+a9djTUbaV61WM6VSybZu3WrRsYKDg9lrr71m66kSzLa/165du5hUKmWxsbEsOjqaXXvttayoqEj4OTfWBQUFBp+75JJL2IMPPmjvSyCISUH2kRgPspHExY6zbCTZx+kH2UfnMGV6KL28vHDzzTcbKFy9++67iI2NxaWXXmrXY3l4eGDevHlW1zkDwN69ezE8PIxbb711wuNM2TrnaUZHRwd0Oh3CwsIM3g8LC0NLS4vJz6hUKuzcuROffPIJ3n33Xej1eixevBiNjY0AIHzOmn0ShKsg+0iMB9lI4mLHWTaS7OP0g+yjc5gyASUArF+/Hl9++SWa1EuEAQAA9MRJREFUmpoAXGiKXbduHSQSid2PtWHDBrz55pvYs2cPSktLce+990Kj0eD2228HAKxZswZPPPHEmM+9/fbbuO666xAUFGTwvlqtxqOPPoojR46gtrYW33zzDVatWoXk5GSsXLnS7udPjE9eXh7WrFmDnJwcLF++HP/85z8REhKC119/3dWnRhA2QfaRsCdkI4mZhrNsJNnHmQ/ZR+uZUgHlnDlzMHv2bLzzzjs4efIkiouLsW7dOocc68Ybb8SWLVvw9NNPIycnB6dPn8bnn38uZBvq6+vR3Nxs8Jny8nIcPHgQd95555j9SaVSnD17Ftdeey1SU1Nx5513Yt68eThw4MCMnyVkjXLWpZdeOkY5SyKR4Oqrrxa24Q8A/oqKigIAm6SYOTKZDHPmzBFklvnnJrNPgnAmZB+nJ462jxKJBOvWrbNZrp5DNpKY7jjLRpJ9tB9kH2cQrq65NeaVV15hqamp7P7772dXXHGFq0+HmABrlbM6OzsNlKyKioqYVCplu3btErZZu3Ytu/LKKw22mzt3LnvggQeEbXQ6HYuKijLbUG2MVqtlKpWKPfLII4yxHxqqt2zZImzT29vL5HI5+8c//mHDb4IgHA/Zx+mFs+xjV1cXy83NJRtJXPSQjZw+kH2cWUy5gLKnp4d5e3szDw8P9t5777n6dAz4/vvv2TXXXMMiIiIYgDENvqb47rvv2Jw5c5iHhwdLSkoy+OJztm/fzuLi4phcLme5ublj5KSnMtYqZxnz5z//mfn6+jK1Wi28t3btWrZq1SqD7d577z0ml8stlmJ+9tln2RdffMGqq6vZyZMn2erVq5mnpycrLi4WtnnhhReYv7+/INW9atUqlpCQwAYHB235VRCEw5nK9pExspHGOMs+MkY2kiAYm9o2kuyjIWQfZxZTLqBk7MIf1pT8s6v5z3/+w37729+yf/7znxYZg3PnzjFvb2+2YcMGVlJSwrZt28akUin7/PPPhW2szdBMJSajdsbJyspi69evN3hv7dq1zM/Pj4WEhLDU1FR2zz33sI6ODrZt2zaLpZgffvhhYduwsDB21VVXsVOnThkcR6/Xs6eeeoqFhYUxuVzOLr/8clZeXm7dL4EgnMxUtY+MkY0U42z7yBgjG0kQbOraSLKPP0D2ceYxJQPKH/3oR+yXv/ylq09jXCwxBo899hjLzMw0eO/GG29kK1euFP492QyNK6EBvwThfKaDfWSMbCTZR4JwDdPBRpJ9JPs403B3QdumWbq7u7Fv3z7s27cPr7zyiqtPZ9Lk5+djxYoVBu+tXLkSDz/8MABgZGQEJ0+eNFADc3Nzw4oVK5Cfn+/MU3UJb7/9NrKzs5Gbm2vw/urVq4X/z87OxqxZs5CUlIR9+/bh8ssvd/ZpEsSUYKbZR4Bs5HiQfSQI65hpNpLso3nIPk49ppzK67p167Bp0yaoVCpXn86kaWlpMTmjpq+vD4ODgzbNxplKBAcH26ycpdFo8N5775lUPDMmMTERwcHBgroWQVyMzDT7CMxsG0n2kSCcy0yzkWQfTUP2cWoypQLK2tpa9Pb24le/+pWrT2Xasn//fvzP//wPIiMjIZFI8PHHH0/4mX379mHu3LmQy+VITk7G7t27x2xjStqZBvwShPMg+2gfnGUjT58+TfaRIJwI2cjJQ/aRsJUpFVDONMLDw01mX5RKJby8vCaVoTGHRqPB7NmzsWPHDou2r6mpwdVXX43LLrsMp0+fxsMPP4y77roLX3zxhbDN+++/jw0bNuCZZ57BqVOnMHv2bKxcuRJtbW004JcgCJuZ6TbyzjvvJPtIEIRNkH0k+zitcHUT53QFFjZUZ2VlGbx30003jWmonsxsHHuc42Sbvq1RzmKMsbKyMgaAffnll2POZ2BggF1xxRUsJCSEyWQyFhcXx9avXy9IOxMEMT0gG3nBRpJ9JAjCGLKPZB9nGhRQWkF/fz8rKChgBQUFDAB76aWXWEFBAaurq2OMMfb444+z2267TdieSz4/+uijrLS0lO3YscOk5PN4s3EmgyXGYNmyZeyhhx4yeG/nzp1MqVQyxuwj7UwQxMUB2cgfIBtJEIQYso8/QPZx5jGlVF6nOidOnMBll10m/HvDhg0AgLVr12L37t1obm5GfX298POEhAR89tlneOSRR/Dyyy8jOjoab731lsHS+4033oj29nY8/fTTaGlpQU5ODj7//PMxTdaOYqKm7+7ubrNN32VlZU45R4IgpgdkIw23IRtJEASH7KPhNmQfZxYUUFrBpZdeCsaY2Z+bakS+9NJLUVBQMO5+H3jgATzwwAOTPT2CIAiXQjaSIAjCNGQfiZkMBZQXORM1fUulUrs3fRMEQUwXyEYSBEGYhuwjwSGV14ucvLw8A9lmAPjqq68E2ebJjAaZyrS3tyM8PBzPP/+88N7hw4fh4eEx5vdBEMTFC9lIspEEQZiG7CPZRwEX93ASdma6NX27ks8++4zJZDJ2/Phx1tfXxxITE9kjjzzi6tMiCMKBkI20HLKRBHFxQfbRcsg+GkIB5Qzju+++YwDGvLj08tq1a9ny5cvHfCYnJ4d5eHiwxMREtmvXrjH7HU/aeTpz3333sdTUVHbzzTez7OxsNjQ05OpTIgjCgZCNtA6ykQRx8UD20TrIPv6AhLFxOoQJYoYzODiIrKwsNDQ04OTJk8jOznb1KREEQUwZyEYSBEGYhuzjD1APJXFRU11djfPnz0Ov16O2ttbVp0MQBDGlIBtJEARhGrKPP0ArlMRFy8jICHJzc5GTkwOVSoWtW7eisLAQoaGhrj41giAIl0M2kiAIwjRkHw2hgJK4aHn00Ufx4Ycf4syZM/Dx8cHy5cvh5+eHTz/91NWnRhAE4XLIRhIEQZiG7KMhVPJKXJTs27cPW7duxV//+lcolUq4ubnhr3/9Kw4cOIBXX33V1adHEAThUshGEgRBmIbs41hohZIgCIIgCIIgCIKwCVqhJAiCIAiCIAiCIGyCAkqCIAiCIAiCIAjCJiigJAiCIAiCIAiCIGyCAkqCIAiCIAiCIAjCJiigJAiCIAiCIAiCIGyCAkqCIAiCIAiCIAjCJiigJCYkPj4e69atc/VpEARBTDnIPhIEQRAXOxRQTjOqq6tx9913IzExEZ6enlAqlViyZAlefvllDA4Ouvr0LOLNN9/E8uXLERYWBrlcjoSEBNx+++2ora119akRBDGNmQn2Uczo6CgyMjIgkUiwZcsWV58OQRAEQZjE3dUnQFjOZ599hp///OeQy+VYs2YNsrKyMDIygoMHD+LRRx9FcXEx3njjDVef5oQUFBQgISEB1157LQICAlBTU4M333wTn376Kc6cOYPIyEhXnyJBENOMmWIfxWzbtg319fWuPg2CIAiCGBcKKKcJNTU1WL16NeLi4vDtt98iIiJC+Nn999+PqqoqfPbZZy48Q8t55ZVXxrx33XXXYf78+XjnnXfw+OOPu+CsCIKYrswk+8hpa2vD73//e/z617/G008/7erTIQiCIAizUMnrNOHFF1+EWq3G22+/beAscZKTk/HQQw8BAJYvX47Zs2eb3I9KpcLKlSuFf+v1erz88svIzs6Gp6cnQkJCcOWVV+LEiRPjnk9PTw8efvhhxMTEQC6XIzk5GZs2bYJer7fp+uLj44X9EgRBWMNMtI+PP/44VCoVbr31Vos/QxAEQRCugFYopwn//ve/kZiYiMWLF0+47W233Yb169ejqKgIWVlZwvvHjx9HRUUFnnzySeG9O++8E7t378ZPfvIT3HXXXdBqtThw4ACOHDmC+fPnm9z/wMAAli9fjqamJtx9992IjY3F4cOH8cQTT6C5uRlbt2616Jo6Ozuh0+lQX1+P3//+9wCAyy+/3KLPEgRBcGaafTx27Bj27NmDgwcPQiKRTPwLIAiCIAhXwogpT29vLwPAVq1aZdH2PT09zNPTk/361782eP/BBx9kCoWCqdVqxhhj3377LQPAHnzwwTH70Ov1wv/HxcWxtWvXCv9+7rnnmEKhYBUVFQafefzxx5lUKmX19fUWnadcLmcAGAAWFBTE/vKXv1j0OYIgCM5Ms496vZ7l5uaym266iTHGWE1NDQPANm/ebNH1EQRBEISzoZLXaUBfXx8AwNfX16Lt/fz8sGrVKvzjH/8AYwwAoNPp8P777+O6666DQqEAAPzf//0fJBIJnnnmmTH7GC8rvnfvXixbtgwBAQHo6OgQXitWrIBOp8P+/fstOs///ve/+M9//oM//elPiI2NhUajsehzBEEQnJlmH3fv3o3CwkJs2rTJoushCIIgCFdDJa/TAKVSCQDo7++3+DNr1qzB+++/jwMHDuCSSy7B119/jdbWVtx2223CNtXV1YiMjERgYKBV51NZWYmzZ88iJCTE5M/b2tos2s9ll10GAPjJT36CVatWISsrCz4+PnjggQesOh+CIC5eZpJ97OvrwxNPPIFHH30UMTExVh2XIAiCIFwFBZTTAKVSicjISBQVFVn8mZUrVyIsLAzvvvsuLrnkErz77rsIDw/HihUrJn0+er0eP/7xj/HYY4+Z/HlqaqrV+0xKSsKcOXPwt7/9jQJKgiAsZibZxy1btmBkZAQ33nijMJe3sbERANDd3Y3a2lpERkbCw8Nj0udJEARBEPaCAsppwjXXXIM33ngD+fn5yMvLm3B7qVSKm2++Gbt378amTZvw8ccfY/369ZBKpcI2SUlJ+OKLL9DV1WVVFj4pKQlqtdouzpeYwcFBDA8P23WfBEHMfGaKfayvr0d3dzcyMzPH/Oz555/H888/j4KCAuTk5Fi9b4IgCIJwFNRDOU147LHHoFAocNddd6G1tXXMz6urq/Hyyy8bvHfbbbehu7sbd999N9Rq9Rj5+euvvx6MMTz77LNj9sd7i0xxww03ID8/H1988cWYn/X09ECr1Zr9rFarRXd395j3jx07hsLCQrPKiQRBEOaYKfbxwQcfxEcffWTwev311wEA69atw0cffYSEhASznycIgiAIVyBh4z0ZiSnFv/71L9x4443w8vLCmjVrkJWVhZGRERw+fBh79+7FunXrBOeDk52djaKiIqSnp6OkpGTMPtesWYO//vWv+MlPfoIrr7wSer0eBw4cwGWXXSaUnsbHx+PSSy/F7t27AVyQxV+2bBnOnj2LdevWYd68edBoNCgsLMSHH36I2tpaBAcHm7yGnp4eREdH48Ybb0RmZiYUCgUKCwuxa9cueHp64siRI0hJSbHvL44giBnPTLCPpqitrUVCQgI2b96MX/3qV7b/ggiCIAjCUbhOYJawhYqKCrZ+/XoWHx/PPDw8mK+vL1uyZAnbtm0bGxoaGrP9iy++yACw559/3uT+tFot27x5M0tLS2MeHh4sJCSE/eQnP2EnT54UtjGWxWeMsf7+fvbEE0+w5ORk5uHhwYKDg9nixYvZli1b2MjIiNnzHx4eZg899BCbNWsWUyqVTCaTsbi4OHbnnXeympoam34nBEEQjE1/+2gKGhtCEARBTHVohXKG8/LLL+ORRx5BbW0tYmNjXX06BEEQUwayjwRBEAQxeSignMEwxjB79mwEBQXhu+++c/XpEARBTBnIPhIEQRCEfSCV1xmIRqPBv/71L3z33XcoLCzEJ5984upTIgiCmBKQfSQIgiAI+0IrlDMQLuLg7++P++67D3/84x9dfUoEQRBTArKPBEEQBGFfKKAkCIIgCIIgCIIgbILmUBIEQRAEQRAEQRA2QQElQRAEQRAEQRAEYRMUUBIEQRAEQRAEQRA2QQElQRAEQRAEQRAEYRMUUBIEQRAEQRAEQRA2QQElQRAEQRAEQRAEYRMUUBIEQRAEQRAEQRA2QQElQRAEQRAEQRAEYRMUUBIEQRAEQRAEQRA2QQElQRAEQRAEQRAEYRMUUBIEQRAEQRAEQRA2QQElQRAEQRAEQRAEYRMUUBIEQRAEQRAEQRA2QQElQRAEQRAEQRAEYRMUUBIEQRAEQRAEQRA2QQElQRAEQRAEQRAEYRMUUBIEQRAEQRAEQRA2QQElQRAEQRAEQRAEYRMUUBIEQRAEQRAEQRA2QQElQRAEQRAEQRAEYRMUUBIEQRAEQRAEQRA2QQElQRAEQRAEQRAEYRMUUBIEQRAEQRAEQRA2QQElQRAEQRAEQRAEYRMUUBIEQRAEQRAEQRA2QQElQRAEQRAEQRAEYRMUUBIEQRAEQRAEQRA2QQElQRAEQRAEQRAEYRMUUBIEQRAEQRAEQRA2QQEl4VIYY9Dr9WCMufpUCIIgphSMMeh0OrKPBEEQxJTG3dUnQFwccMdIr9cLL51OB51OB6lUCrlcDqlUCjc3N0gkElefLkEQhNPgiTWxbeT/lUgkgn2USqVkHwmCIIgph4RR6pOwE4wxk46RVqvF+fPnERISAqlUKmwrkUggkUjg7u4uBJJubm4G/yYIgpgpmLKPOp0Ora2tUCgUkMvlwrbcPrq5uUEmkwnvubu7U2BJEARBTClohZKwGnOBI8+q858DFxwgxhgqKiqEgNLYEXJzc4NUKhX2WV5ejvDwcCiVSnKcCIKYdoxXkcFto9hG1tfXIzY2FgqFwqR9dHNzE+xqQ0MDZDIZwsPDyT4SBEEQUwIKKAmzGAeO3CHiTpFx4CjOqPP3AECn0xlsYw7+86amJvj5+cHLywtarZYy8gRBTDksSayJtxXbR1O2cKKqDP6Zjo4OeHl5ITAwUEjG8XYBgiAIgnAFFFASgmMkzqjbEjhOhLntjN9njAnOFWMMo6OjFFgSBOESrK3I4P81FziaO4Y1iFctuX2USqVCuwBBEARBOBMKKC8ijJ0i7hgNDAygu7sboaGhBtvbGjjaC3587rCNjIxQRp4gCIdgKnDUarXQarVoampCWFiYgS2cavZRLHLm7u5ucTBLEARBEJOFAsoZyHiKgeJsOkej0aCurg4REREA7O8YWZt95+VhHGPHyTgjT44TQRCWYm0pP2MMVVVVCAsLE+yNI7B0v+PZRwDQarVCYEnK2QRBEIQzoIByGjNe4Gjcw2OcURc7GFx51dFOh60Ok/jzlJEnCMISzFVkGAeO4jJVUyuOer1e2Kej7Is1Sbfx7CMA4fx5YEnK2QRBEISjoYByGmCuf8fUiuNEwg/jHWO6QBl5giA41lZkuLpU1dHw6xErZ4+MjNDIEYIgCMJhUEA5hTDOpuv1eoyOjqKlpQXBwcGCCANge+DoCiZb8moOY8dpZGQEFRUVUKlU8PT0pMCSIGYQ5gLHtrY2eHt7w8PDQ9h2vIoMa3GWDZlsBYe5fYqrOioqKhAcHIzAwEAKLAmCIAi7QQGlk7FWal6n06GsrAxLly6d9g6AI8+dO44NDQ1ISkqijDxBTFOsrcg4d+4cEhMT4e3tTfe5GXhg2dLSAoVCYbIPnSAIgiBshQJKB2Gt1Ly5Mizj/p6LAWsy8MafAyAEkDRyhCCmLsajiox7HPk2wPgVGca2cjpijx5KSz9rPJLJuF2AIAiCIKyFAspJYq1ioLX9O85wkhx9DEeVvJo7jvj3bGrkCGXkCcI5WFuRYUsp/0y5lx1R8mruOKScTRAEQdgTCigtRKwsyh2jgYEBjI6OwtPTc9KBozn456aTaI45nBW4TjRyxFj5kCCIyWEqcBweHoZGo4G3t7dZ+yh+Tfb4jmYm2GC9Xj+ufRQrZ5PAGUEQBGEpFFAaYYnUPKepqQlqtRqZmZkOVwycCc6MpdhjhdIYY8dJrAxLGXmCsAxTgSO/l4wrMvr7+1FSUoLFixc71D6KFZ8dgTPswnjnb3x8e6xQmnrPlHI2jRwhCIIgLOGiDSjtITXv7n7h1+fIVS5nPcQd6ZDZUvI6meOM9zsbL7CkjDxBXMBURYa1pfzu7u5Cz54jmSn3qzNKXif6rLFyNv/7U2BJEARBjMeMDyjHCxyNe3islZp3dGacH4Nfx3THGkfE3iuUpvZvnJHv7u6GVCpFQEAAOU7ERYElFRniIMSaUn7xmCNnXMd0xpm/J2tGjohnWfb29mJoaAihoaEkcEYQBEEYMGMCSmul5q0VfjCFRCKBXq+31yWMe5zpXtJlDGMMg4OD0Gg00Ov1iIiIEFZ8J1Pyau3nxBn5xsZGyGQyKBQKysgTMwp7VGRYizMSbs48jjPhQmJqtRojIyMICwuDp6en8DNHrVCagn8Xuru70dTUhICAAFLOJgiCIAyYlgFlX18fTp8+jdzcXJNS842NjdBoNFCpVHYJHM3hTEdmujpMjDEMDQ0BAOrr66HRaIQXYwwKhQIAUFFRgYSEBMTGxk7qWJP5GzPGBAdJr9fTLEtiWsIYw4EDB5CdnQ25XD6mIqOvrw+VlZWYP3++VRUZ1jLTAj1HXcvo6Cj0ej06OjrQ1tYGtVoNjUYDrVYLLy8vyOVylJeXIzo6GgkJCU4PKMWIR46IlbNp5AhBEMTFzbQMKCsrK7Fq1SqcO3fOpNS8m5sb9Hq9sOLlKJyZgZ8OjIyMCMEid4q4YwRcSAQoFAoEBwdDoVDAy8tLcEi6urpQVVWFmpoaoXfHWuwRUI4nqU+BJTEdYIzhmmuuweeff460tLQx9lEmkwnfZ0cyUyo47IVOpxtjG/kKJAD09vbCz88PkZGRUCgUUCgUQrA2MDCA6upqHDhwAO7u7sJnrGUyNpIrxJJyNkEQBGHMtAwoPT09MTw8bNa55wGlo7lYS7q0Wq3BSiN3kEZGRiCXy+Hj4wOFQoHIyEj4+PhAIpHg2LFjyM7ONrk/iUSCkJAQBAcHo6OjAydPnsTRo0cRHx+PuLg4yGQyi85rsgElF58Qn5fYcaKMPDEdkEgk8PDwwOjoqMl7x5n2EZj8fWnJcZzVy24JfKSUceA4NDQEd3d3wT6GhIQgPj4eCoUCx44dQ0pKCvz8/Ezu09fXFzk5Oejv78exY8dQXl4OtVqNxMREeHt7W3xu9lzdJOVsgiAIgjMtA0q5XI7h4WGzD0dniUE4yzEDHF/yamr/er3eZOA4NDQk9Br6+PggNDRUcJJMrXoMDg5adA4SiQTBwcEAgMzMTNTX16O2thZxcXGIj4+fMLC01wqlqfOijDwxneA20hTOWjnk94UzAkpXIO4DFwePAwMDcHNzE1YZAwICEB0dDYVCAQ8Pj0mdr6+vL7y9vREeHo6+vj4cPHgQERERSEpKsiiwnGxAacrWkXI2QRAEMS0DSi8vL2H+mYeHx5ifz7RSK0c/jLkj0NbWZuAcDQ4OCo6Rj48PAgMDERMTAx8fH5O/9/GwRhIfAAIDAxEREYHOzk5UV1ejrq4OcXFxiIuLM3tsRwWUHGPHSTwEnDLyxFRivIDSWQk3ZypUO3rsEWMM3d3daG9vNwgeeR84t5Hh4eFQKBTw9PS0yhZYe/5eXl5ISEiARqNBdXU1Dh48iPDwcCQlJQl96eaO48iRI8bK2TTLkiAI4uJgWgaUcrkcADA0NGQyuKCSV9MwxjA8PDymFIs7RrW1tVAoFFAqlYiIiLDJMTJ3XGvhxwwKCkJQUBC6urpQXV1tsGJp/Le3R8mrrSNHKCNPTBUkEolFAaWzVg6dUY5qr2OY6wMHgNraWvj6+prsA7cH1iTd+LYKhQKzZs1CUlISzp07h0OHDiEsLAxJSUnw8fEZ97PWYo19BAxnWYoTb2QfCYIgZh7TMqDk8unmhAlmWkAJWO+Uccl5Y+dIp9PB29tbyKjzEtPy8nLk5uY64tStwtx1BgYGIjAwEN3d3aiqqsL333+P2NhYxMfHCwkGe6xQWuMc8mPxz9TV1WFkZATJycnkOBEuRS6Xj2sfgQsBglQqddg58O++o22xLfeYtX3gx48fR05OjlX9is5EoVAgOztbCCwPHz6M0NBQJCcnGwSWjih5HQ+J5IdZlj09PaitrcXs2bNJ4IwgCGKGMa0DSj6OwpiZ1kM53kOXO0bGwePo6Cg8PT2Fcizew+Pt7T3Giezr63P4g93akldz2wcEBGDBggXo6elBVVUV9u/fj5iYGEFOfzLY6mzxzwwNDWFkZEQY0UClXoSrkMvlZu2jONBzRkDpypJXe/WBO6PtwJptzZ2Pt7c3srKyxgSW4hVLV4wckUgkGB0dRX9/PylnEwRBzECmZUDJHXVzGfiZ1kMJXJCc7+/vHxM4Dg8Pw8PDQwgcw8LCkJiYaNYxcgWO+B35+/tj/vz56O3tFVYsQ0JCJrVPS0u6zMEz+DwjT7MsCVcxUckr4JxSVGcdx1zgaM8+cEdjbdJtPLy8vJCZmYnExETU1NQgPz9fqEaxFXvZR3HJNSlnEwRBzAymRsRhA56enuOuUE7XgFKv149RDhwdHUVBQQGkUqmQRQ8KCkJsbKygHDhZpspYkolWKI3x8/PDvHnz0Nvbi9LSUgwNDaGkpASJiYnCSrY1x56MQyMeO0KzLAlXYukKpSMx7jW2B6b6wLu6utDe3o7a2lqhnN/efeBT7X619Hy8vLyQkZGBxMREVFdXAwCKiorGHVFiDmfYR3GfJUEQBDF9mJYBJZ+zNl4GfqoHlIwxDA0NjSlX1Wg0kEgkwoqjUqlET08PVCoVQkJCppxjYykTqQNyrA0oOX5+fkhKSkJxcTGGh4exf/9+REdHIyEhAV5eXhbtwx6iPsarwjTLknAF4/VQSiQSp9pIW49jaR+4QqGAr68vkpOTp+39ZK+SV3N4enpCpVKhoaEBXl5eOHr0KIKCgpCcnGxxYGnvOb8AKWcTBEHMFKZlQAlceEC6WhbfkuPwIMKUcqBerxccI4VCgdDQUEE5UPwQbWpqgkwmm7YPVmcKF7m7u2POnDno7+9HdXU1Dhw4gKioKCQmJk4YWNqrpMsUlJEnnMl49hGYWm0Bxn3g4soM3gfu4+Njtg98cHAQMpls2t9DzurTVKlUSE5ORk1NDY4dO4bAwEAkJSXB399/3M+bSphZe3xz10jK2QRBENObaRtQjrdC6SpnaXR01GQfD3eMeDY9ICAAPj4+8Pb2tsgJcnSv5lR6UNu6Qsnhn/P19UVOTo5BYBkZGYnExESzSo2OyMCbOj/KyBOOZrweSsC5syj5cXQ6HQYGBibsA+ezHC3tA3dWL/tUaguwxUaIz18ulyMtLQ0JCQmora3F8ePHERAQgKSkJAQEBNj1uBxL7SPwQ58vzbIkCIKYHkzLgNKSOWuODCh1Oh00Gg26u7uh0+lw+vRpaDQaA8eID7nmgeNkMrsz4QFqT8EJc5haYeSBpVqtFgaAR0REICkpaUxgac8eoYmgjDzhSCwJKB1lI8V94Hq9HpWVlRgZGcHAwADc3d2FYNHefeDTGWtLXidzDLFdkcvlUKlUQmB54sQJ+Pv7IykpCYGBgWM+70z7CBjOsuSf5zaS7CNBEMTUYVoGlIBlKobWPMBModfrMTAwYFI50N3dXSihDA4ORlxcHHx8fCCTyWw+njmcqSbrCGw598muUBrj4+OD2bNnQ6PRCIFleHg4kpKSoFAoANin5NXazxtn5M+cOYPAwEBER0dTRp6wGWeUvFrSBw5cmJEYFxcHhUIBuVxu9+/zdLePHGt+L5NZoTT1WQ8PD6SmpiI+Ph51dXU4deoUlEolkpKSEBQUBMA19pGfLw8s6+rqoNFokJ6eTgJnBEEQU4gZHVBa6mRwx8i4FGtgYMBAIMff3x9RUVGC5Pzw8DAOHz6MqKioKTWnbDozmZJXSxwehUKBWbNmCXPaDh06hPDwcCQmJjqlpMsc/LjDw8MGI0coI0/Yglwuh0ajMftza1YoJ9MHzucgmiujtAfOuC+m0r032ZLX8T7r4eGBlJQUxMfHo7a2FgUFBYLg0WQDyskmePksS61WS8rZBEEQU4xpG1COl4E3N7ibO0amlAMZYwbKgeYEcsSIA1dHPsyc8aB01kw6R5+HpcdRKBTIzs42GAAOwOyoBUuYrMMk3gfvcdPr9YLjP1XmihJTH7lcju7ubrM/NxdQivvAxXbS1j7wi62/0Vac+TuyxEbKZDIhsKyrq8Pp06cBXAg4bX3eOcI+8me6VCqFXC6f1L4JgiAI25m2HqqHh8e4cygBoLu7W8isc+dIq9XCy8vLYNA1Vw609mHnzMHd091hsgZbA2hbHB1vb29kZWUhKSkJBw4cwNmzZ9Ha2oqkpCT4+vpata/JZvD5PngShPdZOkNgiphZWFLyOjAwgObmZgP7aO8+cGeI/8wU+2hN0s3eLQHmkMlkSE5ORnx8PA4fPozz58+jr68PycnJCA4Otmp/9ki8mrOPtDpJEAThWqZtQMnnrHGBHONVRwCoqKgQMuqRkZFCWZZ41XIymFsJdQTTWeXV3LnzIeVarVYQyJnMdU7GYeEr0XPnzkVbWxvy8/MREhKCpKQkKJVKi49vrww8QUwGXpI/Xh+4RqOBr68vfHx8HNYH7oxgbyYHE6OjoxgaGoKvr69BAtNRLQHmcHd3h7e3N2JiYsAYw9mzZ+Ht7Y2kpCSL5yPba4XS0c9agiAIwnqsCig3btyIf/7znygrK4OXlxcWL16MTZs2QaVSmf3M7t27cfvttxu8J5fLbS4t3L9/P7788kucPXsWJ0+eRG1tLa6++mohcAwJCUF8fDwKCgowd+5csyMi7IEzVyhnAn19fVCr1QYvrVYLiUSCiIgIJCcnA3DuCqXx5728vJCRkYHExEScO3cOR44cQXBwMJKSkiYcAG7Pki7j8yKmPlPBPlZWVmLv3r348MMP0draip/97Gd4+OGHhRVH3gdeW1uL8PBwREVF2XQcS5lJJa+OPAZXxu3v7zewj8PDw5BIJPD390dKSsoY5VVrmax9lMlkiI6ORmxsLBoaGlBUVARPT08kJydPGFjayz46QviOIAiCmBxWBZTff/897r//fixYsABarRa/+c1vcMUVV6CkpERQ9DOFUqlEeXm58O/JPNSKi4vR0tKC0NBQzJ07F4888gjCwsLG7NPRo0MAKnk1BV91FDtFfX19GB0dxenTp+Hj42NQSqdQKKDX63Hu3DkcPHgQoaGhkzq2vVQIPT09hcCypqYGR48eRVBQEJKTk80GlvYqeaUVyunJVLCPzc3NKCwsRFRUFJRKJTZt2oTU1NQx+2xsbHTaHEpn2OHpVBY+Ojo6JrEGAGfPnhXsY2BgIGJjY4UV4/r6epw8eRIBAQHQ6XQ2i/JMVlSHf97d3R0JCQlCYFlcXAwPDw8kJycjNDTU5HEcVcExXZ6NBEEQMxmrAsrPP//c4N+7d+9GaGgoTp48iUsuucTs5yQSCcLDw207QyPuvfdeAMAdd9wBf39/s/udSQGls45hLeJyY+NVR29vb8E58vX1RX19PZYuXWrS0ZDL5cjOzkZCQgJKS0uh1+tRWlqKpKQkq+bTTcZh4gIPxp/39PREenq6EFgeO3YMgYGBSEpKgr+//5h9OMJh4r1CxNRmKtjHSy65BJdccgnefvtt7N692+zqqDN6G4GZU/Jqa4np4ODgGPs4PDwMuVwu2MfY2FgUFxdj4cKFJitq3N3dkZycjNjYWNTU1KCjowPl5eVIS0uzqs/bngk3jlQqRXx8PGJiYtDQ0ICSkhJUVVUhKSlpTKLXHquL5hJuZB8JgiBcy6R6KHt7ewFgwjIctVqNuLg46PV6zJ07F88//zwyMzMnc2iLBnc7w5FxVgbe0dcy3v5NrTrysSru7u4mVx3FfS69vb1obGyc8KHv4+ODtLQ0HDlyBAMDA/j+++8RHx+P+Ph4ixyRyQaUAMwGhHK5HGlpacIA8OPHjyMgIABJSUnCSARaoSTETGX76KxVvZlU8joeplYd+dgWsQCceNVRTHFx8YS2w8PDAyqVCvX19ZDJZMjPz0d4eDiSk5Mtau2wR0BpzjaJA8vGxkaUlpYKgWV4eLjwfaMec4IgiJmJzQGlXq/Hww8/jCVLliArK8vsdiqVCjt37sSsWbPQ29uLLVu2YPHixSguLkZ0dLSthx9X5RVwzgolMHMy8BxLVx158GiPQeXiz3OnZd68eeju7kZlZSXq6+uF8qrxlCbtEVBO9Hm5XA6VSiUElidOnIC/vz+SkpIc4jDxlVNieuFq+8hFy8zhLPs401Rexb2OYjvJVx19fX2hUCgQFxcnqIc7wn4nJycjNTUV1dXVOHjwIKKiopCUlARPT0+zn3HECqUxUqkUcXFxQmBZXl4uBJa2luqKoYCSIAhiamJzQHn//fejqKgIBw8eHHe7vLw85OXlCf9evHgx0tPT8frrr+O5556z9fDw9PQUVgBMMZMCSsD+GXjGGIaGhqDRaNDZ2Qm9Xi+sDPJVR19fX7Orjs4494CAACxYsACdnZ2orKxEbW0tkpKSEBMTY9KpcEZAyfHw8EBqaqowp+3UqVPQ6XTo7++f1BB3cphmBlPBPl5MCTdHHIPPLFar1dDpdCgqKhJ+pzyxFhQUZHbV0VpsGXnEWwWqqqqwf/9+xMbGIjEx0WSrgD17KCfCzc0NsbGxiI6ORlNTEyoqKjA6Oip872y1cdQSQBAEMTWxKaB84IEH8Omnn2L//v1WZ9FlMhnmzJmDqqoqWw4t4OnpOW4GfiaVdE32GDqdzmQ5lk6ng7e3t5DVTklJgY+PDzw8POz+gLZ1xppEIkFwcDCCgoLQ1taGyspK1NTUIDk5GZGRkWNW82w9b/5dsdbR8fDwEAaAf/vttygvL0dzczOSk5MRGBho1fno9Xq79GESrmUq2Udz94QzeyinumAOH61ibCNHRkbg6ekJHx8fAEBERARCQkKEEUP2wtq/g/Hf1MfHBzk5Oejr60NlZaXZVgFnrFAa4+bmhpiYGERFReHw4cPo6OjAwYMHkZiYOMZ+WwIl3AiCIKYmVgWUjDH88pe/xEcffYR9+/YhISHB6gPqdDoUFhbiqquusvqzYqZCD6WzjmNNMDY0NDTGMRocHIRMJhOy6pGRkcKwcqlUCo1GgxMnTiAoKMgh52/N78ec0yKRSBAWFobQ0FA0NzejqqoK586dQ0pKitCj48wVSmNkMhnc3NywYMECdHR04PTp01AoFEhOTkZQUJDFc9qAsUEtZeCnB1PJPnp6el40PZTWHEO86ihOrkkkEsE+BgcHIz4+Hj4+PkKJ/f79+xEYGOiUMVQTYc7OKZVKoVWgoqJiTKuAI3soJ8LNzQ1yuRyxsbFwc3PDuXPnUF1djaSkJKsCSwooCYIgpiZWBZT3338//v73v+OTTz6Br68vWlpaAAB+fn7w8vICAKxZswZRUVHYuHEjAOD3v/89Fi1ahOTkZPT09GDz5s2oq6vDXXfdNakTtySgnCkOEzA2KDO16qhWq6HX64VeR6VSKQSPjlh1dAUSiQSRkZEIDw9HU1MTysvLhcByMqI4kw0ogQvODpfO56WwZ86cgbe3N5KTkxEcHDzhnDbA+lVSYmow3ezj6OjopI5hCa4KKC1ZdeTBo4+Pj91XHV1JQEAAcnNz0dnZiYqKCqFVYLLXOFnRMcYYpFIpoqKiEBkZiebmZlRXV///7P13mGR3eaeN3+dUzlXdXZ1z7p6o0cxIoywRJIzZ1YIDWBgwBuNdG5uV19o1y772Zdj1jxd7wTZr2VgWAl5wABYHkpBQGE3QJEkTejrnnCvnc87vj+pTququzmFmxLm56hJdc+qECs/5PunzZHosKyoq1rV92tgQDQ0NjZuTTTmUTz75JAAPPPBAzvNf/epX+chHPgLAyMhIjsFfXFzk4x//OFNTU3g8Hm6//XbOnDlDe3v7tk78ZlIx3M3jKIqCLMsEg0EGBwfXzTrabLYtOSQ3U5Z1I9uqpVTl5eWZAduCIGxKRj8bdbG03bEj6nuv1+tpaGigpqaGkZERrly5gtVqpaGhYdUB4JpDeWtzK9nHt5IojyRJJBIJRkZGcrKOoihmFFbzZR03w246m9stec1HvlaBRCKxLbXVnejBVI8riuIKx7K/v5/6+noqKytXPT8tQ6mhoaFxc7Lpktf1eOmll3L+/uIXv8gXv/jFTZ3URngrik6kUqm8CquSJGE0GvF4PLdk1nE3F5SqXH1lZSWXLl1ifn6e8+fP09zcvGJO5HrnuN3oO6xceOr1eurr6zMDwK9du4bZbKaxsXGFY6k5lLc2N5t9vBlaAnYy4LZW1lEUxYyY2K2addzIuW62kiK7VaC7u5vh4WFOnTqV0yqwUbbb350vw6lWnJSVlTE1NbXCsVwuBCdJktYSoKGhoXETsq05lDeSjcji36yDuzfb6zg4OIjb7aa6unqXrmL32ekM5XL0ej0ulwubzYbRaOTChQsUFBTQ3Ny8oazlTkTfYXVnUK/XZ/qZRkdH6ejoyJTHFhcX79icNg0NSNvHZDKJLMt51Zlv9oDbar2OatbR4XBQVFREXV0di4uLBAIBDh48uAtX8NZAEAQ8Hg/z8/NUV1fntAqsVjGxnN3swRQEgbKyMkpLS5mens70yNfV1VFVVZX5Dms2UkNDQ+Pm5JZ1KDcSgb8ZSrpWyzrKsozNZsNms+FyuSgvL8fhcOSVe99t5/hmiu5uV1hHp9PR3NxMTU0NAwMDnD17luLiYpqamrDZbKu+drsLlY1mF7MHgI+OjnL9+vVMD5HFYtnyaBYNjWzUns14PJ5XSOZmEeWRZTmvfUwmk1gslkxwzev1YrPZ8mYdg8Hgbl8GsHuVFpsVLYOt2WzVoVveKmCxWGhubl5XlG27PZQbsbGCIFBaWkpJSQkzMzM5jmV1dfWKAIk2p1dDQ0Pj5uCWdShvph5K9aYWjUYJh8OZodfBYJBYLIbRaMxE1VXH0Wq1btiBuZkcvq2wVzf87Ai4yWSira2N2tpa+vv7OX36NOXl5RnHLd9rdyJDudF9ZDuWY2NjdHZ2ZgIH+c7lVv8OaOwtJpMJgFgslteh3OuAm6IoebOOkUgEURQzjmNxcTH19fXYbLZN9Tq+FZyK3f6NZ79H2a0Cw8PDvP7667hcLpqamlZtFdhuyetmbGx2qe7s7Cx9fX0MDg4iSdJb4rPW0NDQeKtxyzqUG5mztpMLppmRAH1vTCOnFMoaXRRUGQmHw8RiMfr6+rh+/Xom62i323G5XFRUVGR6HbfLrX4T3e2S19Vea7FY2L9/f2b49yuvvEJlZSUNDQ2ZRfd2j6u+Hja/KNTpdNTU1FBVVZXT49TQ0EBZWdmWz0fjZxv1u71aW8BOVz2EfDE6X50gGkpQUGanap+DSDSCz+cjkUgwNTW1IutYXFyM3W7HbDZv67e3V0rbNwPbzVDm6/FuaGigurqawcHBNVsFdlKUZ6MIgkBxcTFer5fZ2Vlee+01zp8/n8lYahUdGhoaGjcHt7RDuduiPGrWcbhrmhe/1UNgPoosS+gM0HSPi/rDRZnelMrKyk1lHTfDjV4wRYIJTn67C99shIpGD3c92oROtzt9LIqiIKcURrvnSSUlCsscOAtXZhRXe+1qCx6bzcahQ4cIBoP09vZy8uRJqqurqaurw2g07lg511b3IYpiZtFUW1tLT08PfX191NfXU1pauuXz0vjZRBXsWs1G7pR9TCQSzE4t8vzXrjM9FERRJGRFpnyfhf0PlqAoChaLhYaGhk1nHTfKXmTv1zqGJMmc/Zc+xnoXcHut3PcLLVidplW3X85mS14VRWF6yE8ypuAoMOOtdG74tatdh8FgWLNVYLXKic2wnbYCQRAyJbnt7e0MDQ0xODhITU0N1dXVWgWHhoaGxg3mlnUoNyLKs5kFUyqVyisCIcsy468nCS7EKKlN9zj6p+Moiy4OHz7Ma6+9hsvlwm63b/hYM8kZuuJd3Ge/b0Pb78XNcrVFTSyS5C/+00+YnwghCHDx2UEGr83yq//P3ZvKOm6URCxF72k/A4lrKLKCs9DC3Y+2UFbn3tBx1jsnh8PBkSNH8Pl8Gceyrq4Oh8Ox4wqGW9mHTqejqqqKiooKJiYm6O/vR1EUGhoatrVvjZ8tBEFY00ZutiVAkqS8CqvJZBL/iMLMcIjCCitms4l4WEZeFGht3M/MwgTxeByXy7Wh48iSTO9r0/jnohSU2mg4XLwp9dO9RlEU/v5/nuWNF0cQdQKKAq+/MMx//ptHMNsMm9rXRq9z4lqMmXPXkVIKZpuBI2+ro/V4+YZeu94xVmsVqKurA7anQL0TKrEAXq+X0tJS5ufn6evrIxqNcuTIkS3vV0NDQ0Nj+9yyDuV6ojyrLZjUrOPyhZHa62i324nb4vQU9/Co51FsNhsvTXYx0zmMbzyJLMURRIFELJU5zmYXM5+f/jyXopd4uvpp6k31G3rNjVowvf78MHNjadEL9QyuvDTK1K/6kSWZKyfHiIYSVDZ5OPRgDSbL9r5SI9cXWBiL03bYjt6oY3rYz2s/HeTdH7tt3dduJoLudrs5duwY8/Pz9Pb2Mjg4iCiKSJK0pTKq7S6WYOWctsrKyk1L+2towJsO5Wo2crWS1/V6Ha1WG4ExBSkqUlhayv67a+g1zjD8agehWQlfIoTeIGJxGJGS8qbsoywr/PCpy1w9OYYsK+j0IsceruOhx9rX/A3cyAqO6eEAb7w4AoAspc9hfiLEa88P0X5XBa89P4RvOoKn1MaRt9fgKlrZz7q54/mZ609Q32LC4bbgmwlz+eVhKpo8ODxrV3Jsxj4ubxU4ffo0AMlkMqdVYDPsRBUIkKkEKSoqoqCgAEmStrxPDQ0NDY2d4ZZ1KDcyuDuVSuHz+VYsjhRFyfQ6ut1uKisrc3odPz3xac6Ez9Cua+d28XYsdgP+2QiSpCCKArKkUN7kyRxnM5H+z0+lnUmAZ+af4Y/L/3jd1+z2gmmtm3w0lEAQBRQ59/iTAz66zk8QCSQwWvS88eIIiWiKu9/bnHd/+Z5Tx6fIsozZbAYgHkmBAAZT+qtpdZqIBOKkkhJ6w/qO3mYXLIWFhRQUFGREH06ePEljYyMVFRWbchB3Qs4+3z7UxZPmVGpsFpPJtGbJqyRJBIPBjIhYdtbRarVmbKTa62gymXjxW51cOTmKLCmI4ixzw1Fa7ygn5IsRDSbQG0SSCZnSWhcWlxEhvHHb9caLw5z/4QCCAGabEVEUeO35IfbdU0lp7eoZzhv524gGV2aARVEgsBDl5X/qYnrIj8VhYG48SHAhysO/dnBF0G2t9yeRSBCPxzP9jNFQAimlYFsqqbW5zfimw8TCyR11KFXUVoGFhQXOnz/P2bNnqampoa6uDoNhcxnYnVLSzr4GQRC0PkoNDQ2Nm4Bb2qFURXmAFVlHn8+XcSgdDgc2my3jOK7V69gb6+VM+AwAT88/zRHLEWRFweo0pftIZNCbRJJRCVlWNuXszafm+VHwR5m/T4ZPMhAfWDdLeSMXTPWHinOcSUEAk9WAIimEfHFK61wIgkDQGGOka56j0RRma+5CQ+2/CYVCmQWs+v/VqHVNTU1a3dGdXkiGfDEMJh3BhRi17UUbcia3GgEXBAGn04nNZqOhoSGTsWxsbKSsrGxD+9ypkldtxprGTmE0GonH45mso/q7C4VCBAIBYrEYr7/+ekYkp6SkJNPrmG+RPjnoo+PMOBa7AavTRDSUoPPcJI4CC1a7EaNJRyolYy/QYTCLBOdjGxb/CSxEeeOFYZIJCbPNQCySRG/UodMJhP2rBw5V9iJDme8YpXUuzHYD8XAS9Z9lSaGgxMbVV0YprnaiM4jY3RKzY0EWJkOU1bvz7j8WixGJRHLsYyKRyAjTNDc34ygwYzALLE6HcXgs6f8WWLC7zRs6/63aKLWl4/bbb6e/v5+XX36Zuro6ampqNtQXq94DtutQbqdPXUNDQ0Nj99i0df+TP/kTjh07hsPhoLi4mEcffZTu7u51X/ftb3+b1tZWzGYzBw4c4Ic//OGWTliSJE6ePMm3vvUtysrKuPfee3nxxRc5f/48w8PDxONxPB4PJSUlFBYWcs8993Do0CEaGxspLS3FbreveVP76sJX0ZFeTHXEOngt+hqiKGBzmmg4XEzT7SV4SmyIuvRNbTMO5f+Z/T85f4uIPDP/zLqvu5ElXbX7ivjF/3IcnSH9nlldJn79T+7HZDOka2CzFlGCKCCKAqlUCr/fnxmH0dvbSzgc5tKlS0xMTABQWlrKkSNHuP/++7njjjsIBAKcPHkSgydBeauNZFwiuBCjvMHD0Yc3VhYMW3e+1cVOaWkpd999N/X19fT09HD69Gmmp6fXff93uuRV49bkRttHgCtXrvDVr34VRVF44okn+MY3vsHp06fp6+sjFApht9uprKxEr9dz7733cuTIEZqbmykvL8fpdK6a8YmHk6SSUvq3D5itBqSkRCKWwmQ1UHvAS/PtpZTVudEb0k7GRm3X4lQYSVIwWfRISRlRJxANJjCa9RSVr92ffiPto8Vu5GN/cj82dzpjqNOL/MLjx6hsKQBBQJLSWTVJUhCXKg1kWSYYDDI5OUlPTw+XL18G4MKFCwwNDZFIJCgoKGD//v3cd9993HfffRgMBk6fPs2sf5zyAxYMRh3+uQiOAgt3/FwDFvv6SuLbVdCGN1sFbrvtNmZnZzl58iRDQ0Prlp1uR51WZS37qDmZGhoaGjeWTWcoX375ZX7rt36LY8eOkUql+PSnP8073/lOrl+/vurg+DNnzvCBD3yAP/mTP+Hnf/7n+da3vsWjjz7Ka6+9xv79+zd90h//+MepqakhHo/z2GOPceTIEZxOZ87NZmxsbE0V2HxkZycBBASenn+aT7d9jq5zk8yMBNEbRGRJ4fCDZYiisOHFzHxqnhdDL+Y8JyPzSvgVkkoSg7B2+ZB6DP9shI6z4wQXYhSW29l3V8WGFhPb4Y53N3DkHbVEAnEcHjOiTsQ/F6HgnI2J/kUUZFKpFNWH7Lz2xkUikUimH9XhcOD1ellYWOD48eN5b/xOp5Njx44xNzfHtWvXKGiC+qoyCguKcBZaMRg3VtK0nQVTdoZR7V9Uh39fv36d/v7+zPDvfMfYCWdQkqS8+9AWSzvD0NBQRlwkm/vvv5+XXnppR45xM9jHz33uc8zMzCBJEvfccw/33HMPNTU1OY5iKBRiaGhoU9+twnI7do+ZhckwDo+ZkC+GzW2m+fZSpof9zAwHMJr1JGIpGm8rwV1sJTrp21BLgN4gYrUbqTvgZbhjjmRcwmDS8dBj7bi8a/cdZl9DPJqk4/Q4c2NBbG4T7Scq8JTkf983w1rvU+1+L//Ptx8luBjD6jRhMOpIJiQqmwoY6phBERQSsSRFNWaGprrpHApnZm86HA5KSkoIBALcc889ectI9Xo9+/fvp7a2lq6uLgprjFSWuikpKsfhsW5Y/Ge79jH7fVBbBWZnZ+nt7WVoaIiGhoZVWwWy+x+3ihZw09DQ0Lh52bRD+eMf/zjn72eeeYbi4mIuXbrEffflVy398z//cx555BF+//d/H4DPfvazPPfcc3z5y1/mr//6rzd1fJ1OR3d3N9FoFKvVyvve9768g5jz9jbKEigSKDLISVAUEC2wdBM/Gz6bs7mCwvXYdez1Im//1X1cPzNBIp6iuq2Q/fdUZo6zEYfyu77vopC7nVt086XKL63rTKo38Wgowal/7mF2NIjJqmey30doMca9v9Cy7TEe612D3iBitAnMzc9lyrGcLRFCShRB1lNc46LlaBlOlwOHw5Ej3DAzM4PP51t3MVNUVERzczN9fX1MzA4z55+kxdiSkYvfyDVsN0OZjSiK1NTUZIZ/X758GbvdTnNzMx6PJ2fb3eqh1Ng5qqqqmJyczPw9NTXF29/+9lXt1la40fYR4J/+6Z+AdHniXXfdRX39ygz/VsaGOAosvPPDB3jhmx1EAgmchRYefH875Y0e3vnhA7zx4jDB+RhFVQ6OvK0WnU7ccMCtpMZFZXMBI13zVLUXIiVk9t1TyW0P1Wzo3BRFQZYVzv9wgP43ZjDZ9EwM+FiYDPHQr+zD5tqakMxGEXUiFqeeQNCXKVm11gWxBmKkogIlxTZa7yij0OvGbrdjsVgytiqRSNDb27tuL6Ddbmf//v289NJLBCKLzPZO0dTURIW1YsN2b7szfpf3L6ozIqemptZsFdAcSg0NDY23NtvuofT7/QAUFBSsus3Zs2d5/PHHc557+OGH+ed//uctH1cV0NnUnDVRB6g3bTNIEiQDEI+DLPMr4l2csHsBAzjKwWDALtpx6Vy4WqCqZaVjs1H5/UZTIyesJ3KeKzWUUmuqXfe16jFmRgLMjQUprXUi6kRi4SSTAz4Cc9EdicJLkkwimkJvEonHYzm9PKFQCEmSMkIdBQUFVFdX43jEseOz5YxGI8eOHWN4eJjXX38dj8eTd9D2crbrUK72Wp1OR319PVVVVQwNDXHx4kU8Hg9NTU2ZcQjbndEGqy+YtAzlzqDT6TIzPWOxGI8++ignTpzgj/7oj3btmDfKPsLaojyqTcn53koxkKJgcIGQf+Feu6+IX/2jewj749icxox4lqfExoPvb1+x/UYDbnqjjhP/rpGyBjfxcBK7x0xNe/5qgHzXoigKIV+M8b5F3CVWrA4jspye1zgzEqDugHfd/ayHIivEwklEvYAkJ1f0gycSCSwWSybzWFZWxvET9i2romZfX+Yclt7LO++8k+npaXp6ehgaGqKlpYWioqI136/dso+CIFBWVkZJSQkTExP09PQwMDBAU1MTxcXFOUGFnS55vZHzmTU0NDQ03mRbnoAsy3zqU5/i7rvvXrM0a2pqipKSkpznSkpKmJqa2vKx15uztqGFjE4HujczTXqgiUYILkJkGuQoyCGQx9PZTIsXnGVgfHOBsNEI/EOOh3jI8dCGri0fmQgxQkb8YSdupqrSY3ghxbf/8iTBxSjoUpS1Wyir8+BwOCgtLc0IG21nMPVmtlWduMrKSvr7+zl79ixlZWU0NTVlFGGXs1Mlr6thMBhoamrKDP8+d+4cXq+XpqYmLUN5i/HRj36UYDDIc889t2vv+Y20j7C2ErZ6zTm/GZ05XcXh74T4PMQDYLCC0Q0GBxg9YPJgMOpwr1OGqrKZ/kajWU/z7aUb2nb5MTL/H8gykJve13JkWSYSiRANJnn+Hy7jm4kiSUmK6o1UtXsywbWamhrsdvuWgmtbseOiKGacuJGREa5cuYLD4aClpWXVmZ+7bR+Xtwp0dHRkHEurNf192Y5DuVpLgIaGhobGjWdbDuVv/dZvce3aNU6dOrVT57NhVIdyvQj8lnB40o9s4nEITMDsJSAFsgyJOELvBEpBCVSWg2lt2fatot6Ei6udeGucTA36MZl1JGIS9YeKcRVt7LjZSo/qfyORCEg6Jq7G0CsiBV43yaiCzm+jrakVq3P7pWJjqTH6dH0c5ei62y5f9BiNRtra2qipqaGnp4dXXnklowi7fPG2WxH45RiNRlpbWzPDv8+cOYPT6dzScbPRHMq94XOf+xzPPvss58+fXzfrvR1upH2EjTuUORhs4N6X/v+KBMFhCI+ArwOSkfTzeisYbUuOph30LjB50g6nmFu+vy07vAkURcHuNlPVWkjPxSnCgQTJmIS3ykHJGiNHskmlUoTD4ZzMYzgcBmDsaojovI6iMifIOgS/nuripjXHmWwEWZKZGwsSmEoSmI+t66gvt1OiKFJbW0tFRUUmyFVSUpLjxK322s2wmdeqrQIVFRWMjIxw+fJlrFbrtscfaRUcGhoaGjcvW3Yof/u3f5vvf//7nDx5ksrKyjW3LS0tZXp6Oue56enpTPnZVllvwbSjCxmTCbx1QK6oh+g/hzLfB70/BDmVjvALAjgqwFkJthKwbK8cVY3ym20G7vkPzXSdmyDsj+MpsdF6RzmibmUZUCy2smQ1Ho9jNptxOBw5mcfZ0QBXf3yKg8fK0elFZFlhdiRAYD62bYdSVmS+EP0Cs7ZZHkk9glvvXnP71aL1VquVw4cP4/P56O7u5uWXX6axsZGqqqr82ZZNshWVVrPZzL59+6irq+Py5cv4/X46OjpoaGhYNYu6FrIs73j5sEYu3/3ud/njP/5jfvSjH9HQ0LBrx7kV7COkv3Or9u4JOnDWpx8A0WkIDkJ4HOILEJ0HQV7KBIrpMlmdGYx2EK1gcKILpdDFgyDFQbc7fYyqfRRFgWOP1C0JB4WwOU20HC/D6lgpWrZacC1bTKy6uhqHw4EOA90vPEtpVQGFJWkHcnLAT2Ausi2HUpZkOs6MM3hthvGRGBdS/ey7q5LyRs/6L16GwWCgpaWF6upq+vr6OHXqFNXV1dTX12faQ/baPur1+kyrQE9PD36/n0uXLtHU1LSlAJym8qqhoaFx87Lp1auiKHzyk5/ke9/7Hi+99FJe1cTlnDhxgp/+9Kd86lOfyjz33HPPceLEidVftAH21KFcBcFZiGz3QHPzm0/GorDQDzO9ED8NqUR6vIbeArZi8NSkezQ34WiqjpbDY+bYI2+KbMiy/OZ8x1CQUDC0er+jI3+/o96UnvcWiySxOU3EI0l0Bh0G0/YHRr8ceplJeRIBgX/0/SOfKPrEuq9Za3Hgdrs5fvw4s7OzdHd3Mzw8THNzMyUlJXsWgV+O1WqlvLwcnU5HIpHg5MmTKxZzG0HrEdpdrl27xoc+9CH+63/9r+zbty9TUmo0GtfscdwMN5N9NJvNq7YEqN/1TdlIS0n6AZAKLzmXwxCbBklO27hUBJJh0hOpJAyhEHbfLPSOgs4ARhfo0s4mBmc6s2nypLOeWyT7d2sw6Tl4X1Xmb0VRiEaj6/Y7qsG1fP2OkiSj0wvEI6n0pSclUBT0G1SfXo3ZsSAjnfPYC8zYo3qklEL3xUm8VY5Mb+py1rNTFouFAwcOUFtbS3d3NydPnqShoYHq6updL3ldDYPBkBHEstlsvPrqq5lWAXW+5UbPYT3hIg0NDQ2NG8OmHcrf+q3f4lvf+hb/8i//gsPhyCzKXC4XFku69PJDH/oQFRUV/Mmf/AkAv/u7v8v999/Pn/3Zn/Hud7+bf/iHf+DixYt85Stf2dbJr+dQ7sViPG+PkNkC5fvTDxVJAt84BMZg9CLEpiAppUvELB5wloKrElxVYHHkPYYkSW86j1klWYIgsOhc5Ou2r/NE8RPc1nRbTr/jwlSIyS4/s8Y41a2FK2TmXUUWPDVGwr740jBygfrDxXhKt5dZlRWZv5v/u3Tfp6DwXd93+WX3L6+ZpdzIZ6aqCxYVFTE+Pk5nZyeDg4NIknRDFkzq641GI4cPH8bv99Pb28vLL79MbW0tdXV1G8o8aiVdu8vFi+mRNp/73Of43Oc+l3l+J8eG3Gz2cS3RMtikQ5mN3gae/emHIkFoBEJDEB4DKZJ+ThAQFAFFEEBUQEpCZGZJ8GdpiK2gA+R0ZlO0gMkJegeYXEsOZwHo13c60iqv6X7HFZUZ0ST+UYFEQMDhstJ6vIa6trLMbzISTDDaNc+sNE9Zg3tF2alOJ1LaYiUyJjI54EcAyho8VDRtPpOYTSKWQl6avQnpGb+xUIJETNqyQ6nicDg4evQoc3Nz9PT0MDw8jMPh2FLlxGaOuxqqM7i8VaC0tJTGxsYV5bmr7UOzjxoaGho3J5t2KJ988kkAHnjggZznv/rVr/KRj3wEgJGRkRzDf9ddd/Gtb32Lz3zmM3z605+mqamJf/7nf97SjDUVtYdyNYdyr3p3NnwcnQ4Kq9OPurvefD7kh8AozPdC/8sQnAdSJGQjIb2boN7OTFAhZipiamoKg8GAw+HAbrdnso4Wi4X/OvFfWYgs8H3x+9zpuDOz+7HuBV78++sEFmMIApTWuXn4IwdyZPRFUaS0xURLTSPRYAKLzUhZoxtR3N6N+uXQy4wlxzJ/J5XkulnKzSxcBEGgtLic0tJShoeH6enrYXBwMPP+bIatlHRlk+2Qulwujh49yuLiIj09PYyMjFBfX091dfWaEXYtAr+7fOQjH8nYqN3iZrGPwJqiZbCDVRyCDhx16QdAdAZCAxAeQxBjCAogC+lWAFEERQBBWXpOSjuYSgKkBIQC6X9TAJT0tohgsqeFgQxOMDqQRAehpIFgFOYXFojFYpw8eRJBEHKyjna7nZ6zcwQC83hc6eqL/guLeEsLcXv1BBai/OSZa8wM+1EAV5GVt32wnbI6d84lFlSZaD9QjRzXozeIlDV4Mo7gVrE6TRjNegJzEaSkgn82QkGpbcNzJTeCy+nhzjvvZHJykiuvX8Ng0lFSUkJRUdGm9rNd+5ht17NbBdTy3MrKSurr69d0eLUecw0NDY2bly2VvK5Hvmj/L/7iL/KLv/iLmz3cmtwUJa+bUDHMh2JzEtM1EDKUELQFCdqDhObniftGMDOPgwmMLGKITLEvUoPRVYogVYBUAEoVKCY648Ocj5wH4FT4FH3xPhpNjQCc//EAIX+ckhonUkphom+RrvMT3P6O3FI8QRSoaPTsaLT3+eDzmCfcWEeKEGSBaPkizwnPrVv2upFzGO9b4IW/7yAwH8VdbMP+njBfrvgiv5/4fc6cOUNFRQWNjY0bluzfbgQ+34LL4/Fw/Phx5ufnM/L+ak/RasO/lz+/XSELjb3lZrOPq2UoYRerOCzF6YcXUrZxQoEXwFYE8al0L6WgAwTQienKDbLstCCCrLzpcIoKiVSC2LyfWDxOJB4jEY2RSCTQiwImmxO33ooYVWjYdxiLzYtg8qRHn5jcxCISs2NBnEWWpSCahckBH4tTYdxeKx2nx5ka9FFc7UQUBWZGAlz6ySA//4nbVlyWp8y6Yv7sdigss1PZ4uHiTwaYnYjj2S/RcqwMnX51p2mjdiqwEOX5/+8qkwM+UNJZ2IAvhMEsMDPwKs23l9Lc3LzhXsadqOBYbtusVisHDx6kvr6e3t5eTp48SU1NDXV1dXlbBTSHUkNDQ+Pm5ZZWANmtkteIHOGJ8Sf4SOFHOGpdW5lUEAQWJ6N0hSZwFVkpq3evuu1qJVn5+x3vQ6/Xk4ynOPfCdYL+EHW3V2DST4GvDyY6oe80xBc4xXMcZxo/IlGbh2/HPs8fNP8lssFE2BfDbDMgCAJ6g4AoCkSCq2ctdpIPxz9BU28noUCEWCyGJ+zhUOnag8o38pkFF2P84G/fwDcTxuYyMdYzT99THcQeS3K28Cy/1/J7mQVKXV0dtbW165ac7sSCKd/rBUGgqKiIwsJCZmZm6O3tZWhoiIaGBsrLy3MWSNqCSWMnMZvNLC4urvrvW6nikCWZ7guTDF+fR6cXabq9dM15kYLBxnysmu6pZkxmgaqqCLroCETG032YgpDORgoCChCLxYkl48TjCWLRGLFYHCmVRG80YDFbsRjMuF1OLBYzRl06kzfWP8v0TD+dnOI9dY9gEQ1pp1QnopNNFIo+ZMmGOVFAAhtGUUAU09cd9sfR6cWME2eyGggt5r+n7DRhf5z5iRBWpxFbXI8gwNSgj8Jy+5q2aD07JUsyz371Mv1XZrA6jIx2zZNKSlicBlJxmYGXktS16Hj11VcpLS2lqakpU469GjtR8rqabbPb7dx22205rQL57LZW8qqhoaFx83JLO5Rms3ndktet3Ai/5/se12LX+PLsl3m6+mnEVYZ8A3SdnuXC90cRlDGMJh13/Hwj9/1CS45Yjvpftd/Rbrdjt9szJVk2my1vqWMskuRfv/wafVcmkVIyQ+ei/NzHD1Fz2x2ZbXp8l/nh5edxLJqwyXFKwvPEev+Rwd4QdbY2KmrijL0uopgbiCQLEEQbhWWbKwfdKskJkSKpmIpyBb/Pj8NUSGrYAAfe3Cbf57Pe5zU97MM3E8Zb6UDUifiNC8hjeszTbp6zPccnjJ/gtttuY3Fxke7ubkZGRmhsbKSysnLVRc1WSrpkWWHo2izhQJyIHMVRtHqpmiAIOG0emqoPEEn66e/vZ3BwkKamJkpKSjLfV82h1NgpdqPktfPcBBd/PIioF5ElhdnRADp9C1UthXm3H+/28eo35ziX8iHqRBpuK+Y//M696EoEIgsj9E0/jz4whS0cIxqNoyhgMhswG03YHVYKCouwmvTodUbSPZcsqcrKKIpMx8UpRjpnWIwnSZpsnA6/wdsPH2NpIiUGMU55ZYyp/imS0QEURaax3Exxqg/67NS64wSsixiiHlKCFSWmp/RQ66bek62yOBXGPxulrMFFVJjHU2JjaihA422pnLLXbBu5kYBbyB9nctCXHielgKwoCKKAIILVZSQWSKKPu7jn3hZ6e3tzRjEZDPlt2FZLXicHFpkbDyKJq2fKVaxmOzWlzZQUhpmYGWF4eDinVUCzjxoaGho3L7e0Q2k0Gjc3uHsDROQIf7/49wAMJYY4FT7Fffb78m47Nx7ktR9NIEsKrkIj4UCck9+9TkScxuSRVvQ72u32zDyujXDlpRGGOuawuU0opAguxnjhW9f5yGfvzezDZHVT0/BzpJS0AmEUkGQdBsMvQyjFUbqIRS6RHHmdIl2ExnuraIkdgGtV4KwAR21a+GIL75VvJkz/5RkSMYniKid1B705fZeCKKDILGUgICJFiaR8QOOb2yw73kbOwWDSo9OLJBMSRrPAYHAYRQeyMf0efH3u6zxR/gQej4c77riD6enpjDBFS0sLXq93S8fNRkrJ/POXL3Lt9CippIxoULjzvZW0t+ff/trpUZ595grxSBKL3ci7fv0QtjKZzs5O+vv7aW5uzju4W1N51dgqZrN53ZLXzTqUg1dn0Rl1maDU1KCPse6FvA6lLCu8+M0e4iGJwnIbiWiC66+OgS1EcZuOpJjkiyX/F3Ohmb+o+P/h1S1glecQY3Pp0lhIi8XKAiipdDZTENIOpSwwOxVMZ9/0EnFjCF3MwOQbQeZrQhS6HKS9KZnycicmvY5oOIneIOIusWGx6CEVoaZOJh6OMD80iaxA7QEHzS1z0Hd5afyJHYwOTLERiBWAZF11/ImkSPzBxB/woONB3uV8F7Fwkt5LUwR9MVyFFpqPluaK7QgAStpGAsHFOIloEt9chFJb/nEkG7KPRh06nUgyLmGy6BEQ0k6lICBLCoIAJoseq9XKoUOH8Pv9KxRh89mhzQZmz36/l59+8xrxSApRr1B5yMrdd+ffz8TAIv/y5YssTofRGXSceE8jB+5N91iqFR357KOGhoaGxs3BLe1QbnTO2mZuQt/zfY+wnB5mLSLy9PzT3GO7B1EQM/Md1Yxj/xvTxMJxjHaBWCyKwSwS8Sm4rF5uv7sBo9G4rXKc4GIMUDAYRRJJAavdSNgfJ5WUMSxJ1tcYa/hS5ZdW3Yez+T4eTskE5qPoEmEc4jTCQj/Mj8LANUjNAQJ6FuF8P3hrwFEDziowr66855+L8OI/dDI/EUKnE+m5MEUkFOfAPW9K9hdXO5no9zE3vkAkmqDD8Rrddee4J9WGV+/Nu9+NOFAVjR7qDnjpe32aQCqInNIRbB8jWrYIKPzb4r/xseKPUaAvSAv3lJZSXFzM2NgY165dw2az0dLSgtvtzjnuZr4n18+OcfWVEUw2A44CPXMTfi78yzgPvCeBxZ7b/zM7FuCHT71BPJLE5jIRXIzx/b99g4/9rwe47777GB0d5cqVK0iSlBmkrqGxXYxG47oZys0GLNJBovRrFEVBkdPZL5VEIpGxj3PTPhZmAuhNEI2E0en1oIBBsXH8+EH+LfZvROYjRIhw1d3Pu5zvSu9EkdLjSIIjEJkAJaSecbqUVRRBgHhcQpEFwlYfggSSWUIXF7nm6+R+57ElB1RE1Al4Kxwgy+keTUEERQZBwKDX0X64lHBTEaQULHY9OkFOjz+RIsAshMAR6UM3NQkB25IirR1MtqXxJy4wujiZeIPzkfNcj13nbuO9nPvuECOdc4i69GzfuYkQ97y3Gd3S3ODCcns6KzmyyHRPjOnYOGa7kVe+082Rt9fScKg4/2ewzj3FYjdy+MEazn6/j2gwgcGsQ4kqJGMSUlKmtr2YlqNlme1dLhfHjh1jbm4uZxRTaWlpzniZzdzL5idDvPCtDmRJxlNqJbgYYfBigMFrs9QfyL2uVFLiX758kelhP44CC4lokpPf6aKk5k5OnDjB9PQ0fX19RKNRPB7PpjO2GhoaGhq7zy3tUK5V8pqdodwoUTnK3y/+PUpaYhAZmaHEEN/u+zZNwaZMv6PVasXhcFBWU4TJOkUqJuEudSwppOqpaSzdsBjMWnhKbAiCQDyaQlZk4pE4lS0F6A2bi9Lq9CKeEhtgA4qhIqvmNJmEqV5SF/4FBAP0vwahnwARMHnB4YGCanAtPRxeEARGuxZYmAxTVp9Wg12cDtN9fpL2Oysy/UhFFQ4OP1hNx4UU3b4prtecJlqxwLcWvsXvFv/uque73sJFb9Dx879xhCsnR+idHiJqHKTgdhPOQCsOqwO32Y1eyP1qi6JIdXU15eXlDA4OcuHChcwsNJvNhizLq5Z75cM3G0GWFczW9GtMNj3JuExwIbrCoZwZCRAJJigsS3+eLq+IfzbK3HgQt9dGbW0tlZWVvPzyywwMDLCwsEBzczMul0sT5dHYMhaLZVX7CFvroWw6Usq57/czPewnlUyhNwvonDEuX76cHtERj2M2m3E4HHgKHbgKrcyOBSn0OkgmZAwGgcr6YkSzyDcnv5k+DwSemX+Gdzjekf7dCjqw16cfALE5CA1CeASiC5BSQBSw2kykxCSJIChmEX3UiKRPcpU3uEM5hFkykC6TFZaUZUUQ5LRTipB2KkURQQa7VZ/eLn1C6awoS2q0ioIsCmm1WgSQopCKQ3wmkzGVdCLdc0/xTiVMhBlOjX4WebSG2uoiBIOLUMTKSOc8i1NhiirSY6EsdiOHH6rh4vMpul9TqKh2Ulrnwjcb4Y0XhymtdeWoccPG72cn/l0z7mIbMyN+jGY9qaREX+cIriIrP/erd2Ky5to6QRDwer2ZUUxdXV0MDQ3R0tJCQUHBpjOU/tkIyXgKu8ecVmS36omEEvhnIyu2DS7E8M1GcHjMmCx6TBY985Mhpof9tBwto7S0lJKSEs6fP4/P5+PUqVOZVgH13DU0NDQ0biy3tEO50QzleqjzHaeCU3gkDwbZgLxUh6QTdCCwar/j1L8LcvafB/HPRjCY9Nz175sob9wZJcCD91cxOeij48woiUSK8toi3vGr+3f2BmowIJQ0gvsOOPZAOvoP4J+FhQHwjcD8GPReBMUHGMFdguQTsSCiExpRqEJnSPdUybJCdjdoUYWDRor4ZuD/kND7AfhX/7/yKwW/kjdLudEFk9Gs5+g76zlKPR/gISCtnnmw9uCaQ+r1ej1NTU1UVVXR19fH6dOnqaqqIpVKbWpGW2GZHVEnEA0lMFn0xEIpbC4jzsKVWV2r04TeIBKLJLHYjMQj6dI7q+PNxaJer0en03HgwAEWFxc5f/48hYWFNDQ0UFiYvz9NQ2Mt1moJgI2XvGaLiWEPUtSuMNUfQBQUyltc2IpEHA5XZoxRtpDKI79u5Nv/+1X8czFEnUDzsVIOP1TD9/zfJSAHAFBQmE5N81zwuTezlNmYi9KPomPpzGFwAMKjFJZNUXDIiP8NHfqoAcWcILxvDpNdTwIJs85I2nEUSCvJ6tLlsupYEt3S3yJLWcu0o4qsB6T034pCulaF9GtkaWn8iQLS0pOiyPVoFz45gCBJ2ASRwYWX2Wc4gcswBSK4zClcFgndRA/IxUvjT5zYjW7KqgTMdiFz33B4LPhnw0RDCWwuU46936hjJ4oC++6qZN9dlZnn3JeT6bYLx0oFVRVBEKisrKSsrIyhoSEuXbpEQUEBLpdrUxUcnhIbRouesC+O3WMiGkqhN4gU5Onft9iN6A06YpEkRoueVDL9ncw+T0EQsFgsFBYWYjQa6ezsZGBggPr6esrKylbsU0NDQ0Njb7mlHUqz2bxqSVd2qU42yWQyRygnGAwSiUQwGAzY7Xb+0PGHOFyODfc77r+/HL07QVlBDa4iK6V1+XtftoLeoONdv36IqkM2ZqfnuPuhozs6o2xNXN70gzcFgIhGwD8G8z2U+LoZcr5ObPRF9GYdlpAV79E2DH0z4K4FVw3Y0pL0vVIvPfqezG4UFL45/01+3frrBINBXC5Xjhz/Vh3mzUTRzWYz+/fvp6amhp6eHubm5kgmk0iStKFZkK13VHD7O+p5/YUh4pEYJquOe365Lu/nU9NexP57qrhycoRIIIGoEzn6jroVisCKomA0GmlpackM/+7t7dUcSo0tsZZ9hPwOpRpcW0tM7NDd9dz98OpiYtlUtxVy+y+5aKw4gNGip7KlAJ1O5IeTP1yx7Y8DP87vUGajt4Jnf/qhSNxT+hCNjW8w2nmW9pZKbDb9m86hzJs9l4KwlJ1ccgZZKntFZGnoJWrPJbK49LSQEQBCXtpKFHKdT0QUQeJ0+AyCoiDoRISURNgeIGwLIMyLmMw64lEJZ7EFuyUO4aXZvIIAkoQnFqK9dBBb4DpGewELAYFidwEiFUxPR9Dr9Tnlp1tlM2X9Op2OhoaGTOCtv78fo9FILBbbUODNU2Lj4Y8c4sdfvUxgPgaiQuu9BVS3rrRlZpuB+3+pjef/v6ssTKVL/mvbi3LaJ+DNOb3V1dVUVFQwMjJCb28vxcX5S4M1NDQ0NPaOW9qhVG9w+VCdC9VRUBdH2SVZdrudkpISHA7HlvsdBUHAXqjP6UnZSURRoKjShmwM750zuRoWK1iaobSZ0n0/z+Hrc3ScGSERGaWiNcChQgkmuqDrZSAMggOcxVwJvkipbYig203Y4UDWwff93+e2rttwOBz09vbi9Xppbm7etjz9Zl/rcDi4/fbbOXfuHOFwmJMnT9LU1ERFRcWa+xJFgZ//jds48lAt4UCcmcAolXX5HT9RFHjPJ47QdFsp/rkInhIbLcfKV+w/u9/XZDLR1taGJEmbuh4NDZX1RHkAQqEQw8PDGfuoBte2IyaWjSiKmOw6Go+U5Lz+j0r/iNHkaM62dca65S9fG0EH9hoczUWE/S5s+/ZDaCA9kiQ2tyToIy+J3+iWHEg5nVkUl5xIQS1/XcpGKjrQKWlnUlSzmyKCKKYdSmXpGjIOJSCLOLAhCnK6UtYgouhkCg4YcYzYifhTFNdbqWoowmBI7y99LEDUYXMbcFcYkHx+/FNz6HUS7gID4xcuYra5iFLAuKWMhkMPogiGTX8O50LnKNIXbanf0Gg00t7ejsFgYGxsjFdeeYXa2lrq6urWHcV0+9vrqG0vYn4yRCC6gM6WWPXcjz/SgLfSyeTAIhaHkfY7KzBZcu932fZRp9NRV1dHdXX1ploVNDQ0NDR2h1vaoTSbzfj9/kxJ1vLIuqIojI2N4XK5cLvdVFVVYbfbd/QGJAjCnggD3IhjzE+EGO9bREpJFFU4qGj0IOrejHDXtBdR014EHMk8J8sy4XCY4NQ4gaHLBP19VOOgNOjFGEyhJ4VCAcXOdo5XJRDcdmRHM72j45w6dQqXy7Xl/tPtzJI0Go0UFxdjNpvp6enJ9A8VFRWtPmNPEKhoSpfXBi9NrBn91+nFnPKzfORTMdT6gzS2iirKs1xMLDu4Fg6HcbvdOxJcy0e2eEr2PmtNtdSaanf0GJnSWIBUFIL9EBqB2AwoybQDKrDkFEqgiKT7JCHdaylmOZpS2rlcmpOpCDKCKC71WaYFfSKRJAsTIRIxmbc530VBiR2jYUmJlqUsqFcCvZjJliqKQDQaJp5IEIsniMbCxCJJHAV6xAIdesGMw2nB6bFjMZgQdQKCIDI938XQi+cw2bxYcJMKN6Gzlq37OS2kFnhi5AlKDCU8oTyx5c/VYDDgdrupq6uju7ub0dHRdUcxARSWOygsdzAwECUYTK15jLr9Xur25xdrA80+amhoaNzMbMmhPHnyJF/4whe4dOkSk5OTfO973+PRRx9ddfuXXnqJBx98cMXzk5OTlJaWbvr4g4ODPPvss7zwwgv4fD5+4zd+gw9+8IPY7XYcDgfFxcU0NDRw+fJl9u3bh9Pp3PQxNspeOJR75bRm45sJ03F6jHg0hV4vMjcWRJaUJQcyjeo8BgKBTPlwKBRCp9Nht9tx1t1OteMBCpe2ObxvHyyMgH8U5odg6BKEn8dEnP1mN9V6O68PhgjiZdwkUt56YMMLhsB8lNB8Cim5OZERFbUcrKysjJKSEkZGRrhy5QpOpzMjkLMWOzEjLd8+NFGeW48bbR/9fj//+q//yv/9v/8Xv9/Pgw8+yB/+4R9mxMQ8Hg9VVVWMjIzg8Xiorq7e9DE2SnbrwW6OfFhhH/WWrNJYeUnQZxKSQUgG0gquyeibDqZa/qoAyCCqpbzp7KWgOqGyDDqIxVJM9C4SCicwmkWCY1ESsRSVDQWIYnqsiYJEVJaILQaJxWLEYzFisTiyAmazAbPZgsvhwuWG6YlZ2lvq38x6ZpfsCiIlxaUUeYoYGR9DH5xg6uIsJcXlYKsAeyU6ex2i0bHiffnm3DdJKSkmfTOcmX+Nd1nftuX3VxAE3G43x48fZ2ZmJifwVlxcvKad2i37qKGhoaFxc7AlhzIcDnPo0CE++tGP8t73vnfDr+vu7s5x7rba+/D666/z3e9+F5vNRmlpKf/lv/wXWlpaVtzQtjJnbbNsRXp/s9wIh2JhKkwkmKC0Nu1ILc6GGbw+hc6Zm+nIOI9OZ0aUw2Kx5Jzz2NhYeiFgMEBJQ/qRTSoJCyM4Q6OUv3EGH1fpvfw8I5eNlNOMnkocTW04ahrBVYGQlWGWZYXnvnGViz8ZIBQIMXL6HL/8X+6iuGpzQYTs7KYoitTW1lJRUcHAwADnzp2jpKSEpqYmrNb8o1S2kx1VX68eW+PW5kbbR5/Px5NPPonX68VisfC//tf/4o477ljR7zgxMbHr9nEvxjusG3ATRLDXph/ZSElI+iHpg0QQUn5IhtPPpaLp2ZdLFbFpIR8h4/DFIkkikSROtxVRgKQuhW8ximluAYkU8ViUaCyBKMvoTWYsVhMOl4sSrwWzyYBoWBqBoghEYrGs8lqWVGiX+jhlCfRpxVmdQY+3yEs8FicYDLEwd43CwmkM4nUMegP24mKwlCE4qtHZq1mUA3xn4Tu4Xq+h/Pu30xlLEHRc5hd+x0LLsfJNvcfZ9k0QBEpKSvB6vYyNjdHR0cHg4CAtLS05vfCrvX6r5HMotbEhGhoaGjcHW3Io3/Wud/Gud60jnpCH4uLinNl/W+W9730v733ve/n85z/P2bNnaW1tzbvdXjiUb4WS13y9fJFImEAwgDQRJhaNsjgbxmjR46xPrOk8bun4VhtY24A2BF0d1nic29va+Om3X+YfnzuFSRim7HIPhw9ZabLrUfRGcJaAp5qrl+HVf5tFb3ShMwhMD/r557+8wMc//9CmziufYEUqoTB0NsZgh0API3TvG+XgnY00NDSsKJve7BzL5WgO5VuHG20fa2pqOHPmDGfOnOG9730vJ06cyPtb2Mtg2F7Yr033X+sMoMsqk81GUZaymYsQ9xMbV5AtHjAJKKkoiUSAeDyKEkqQSiaJRhPISRmjx4HLYcHpclFSbMFsMqZ9UGWpDFZYGkeyNMsTUVjqzeRNfSBV9EdYmpupZk5FUJAQ9QKNdfUMD0zy+k+HkeJgspuoblig6eACiq+DlGjgZPwCzeMJrD9oIxoxkrDGWPQH+ef/c4nf/IIbl3f1OcMr346V9k2RYeJqnIHTEIvN01PzCvvvraSlpQWbzbbu6zeLKsqjoaGhoXHzsac9lIcPHyYej7N//37+6I/+iLvvvntb+1trbAjs3YLpVnZaZVlOjwMAenp6CIVChEIhkhGQBZnAtB6L1Up5qYcDd1dT1bJ5xdG1zn35AlBdFC5Mhhl+A5yeE0hijO6JEFNRB95PP4DbJsPiKPhGmI6+jJdeCl1GZoUYslhOZMJLdLwFyzrCOvmOm/33D/72dTpfncBo1pGMScT9BgqL5xgfH6e+vp7q6urMAme75Vjqd0hbMP3sstP2cafGhmyHrcwD3ixr/cbjchyDYEAUNvnbFAQwOlEMDiJE8BsDkHIxsJBWCZdiJQSVIMJMBKctid4Qp7rBRHWjGTEVTfdgCsKSaixvzrhEHWEiZFReEUAQlzKgAqT7OwVQ9Kj9mioKQrr8VlaY7I0iiiYMBRALRujriGMrMFFe5wFZYcB3lmafmSLPNaLlSQIpF/FoJYnFNmbGApt2KJe/z+d/3M+L/3A93WYqKwTnBIqKo8zNnaayspKGhoZMP/xOlbwuPwetJUBDQ0Pj5mBPHMqysjL++q//mqNHjxKPx3nqqad44IEHOHfuHEeOHFl/B6uwEYfyVnb2so+xXVJJif7LM/jng1gKBAwOKadsFdKzELMzj/65KFODPlJJmcIyOyW1Wx+JslnHLjAfJRpKl9wKggO7w8FY/ywvP3+G4w/sp6yiHaFyH+buOqakq0RTVoKpEfTSAoWuAKbBH8KojCIKIJjAWQGeWvBUIxhXiv4sX6wEF2MMXp3F7jZhdZhQFIXZsSA2pYTGQx66u7sZHh6mubmZsrIyreRVY8vsln1cb2zIXgXDYGPzgLfLcqcnpaT46MhHOWQ5xBMlT6z72pHOeWbGF9GZZOylQo64G6SvobS0lKamJmw2G/FIirGeBWLhFM5Cc1q0zKhLO5EpPyR8EA8sldKG0hlPKQJyYikTKWREfwRFYUl+dmkWsJIWCErJ6Wyljjd9S0EgEk+SiMWxOYwYjHqsFjMLkz6GBkfRm1MUFxfxIddjjARn6TEs4BDtFBpT6PRjCPZpXPEYyckmBEctOlsFwjoOdz771nF6DFEU8JSks5GzYwEiU3oeec9d9PT0cPLkSerr66mpqUGW5XVVYddD66HU0NDQuHnZE4eypaWFlpaWzN933XUX/f39fPGLX+Qb3/jGlvdrNpvXdChv9exhNps9hizLmQXR4oKfU38/xHRfGEUBs03PsX9fxf673hxEfurUKerr63MyZG6vFfcmotg7ic1lwmQxEFyM4fCYiYckissKaT1Qm3Hm2trauP0ddVw/M8bEwCKxmB2Hq4QTH7wd3b01JOQEg/FBmlMl4BuD2W4YP4Mi6tOKj3oLOCqhoGFFSVZmrbf09VGW6tIEBIqKiigsLGRiYiIjTJFKpbadodSi7T+b7KZ9XGtsyF4E3GD3beRqZbXPBp5lPDnORHKCD3g+QJXxzbmGiqIQiUQIBoMEAgEu/WiEvlcXkVIKeqOe5hNF3P0fGjLO44ULF6isrMyZCWuxG2k6kkc0SRTB6Ek/7HlOOBVJO5sJHyQDKP5pJGMQdFZQYukEJiyNPFFFepYesoAggMWgw6A3EgvHMRr1yEkwWyyUlxXhD4VZ8M1TWlbOgbpGYo0DTPb7IAGKXqD2QBEeR4zY+GXikXMYbVYshVXgqEBnr0c0uVeccr6SVUHM/VwVJf2c3W7nyJEjLCws0N3dzcjICFarddX+yo2yvORVURSth1JDQ0PjJuGGjQ05fvw4p06d2tY+1nMo30qiPGsdI9t5VBVXw+EwOp0Oh8PBbE+SxdEU3go3JosR33SE3lcC3PuuQoxmPclkEti9srTN7FfNMpTUuLjtoVpef2GIqSE/FpuRYw830HqghsZUNYODg1y4cIGSkhJ++Q+O03dpltcvXuah99xJ48G04MST00/yjwv/yDcavkFD1X6o2p97rMA8+Cdg9AzK8CWEVC1KsAQEE3Z3LS3HSrj80hixSBIpJeEpttF0e3oBKQgCFRUVlJaWMjw8TE9PD729vZhMJhyOlWqL67FW9F1zMn/22An7aDKZkGWZVCqVd1SSKIqkUmuPctgJ9sqhTCgJLoQucLftbhQUnll4BgEBEZGnZ57mE/pPZGxkKBRCURTsdjtS2MDYlSgOtx1ngZWIP8HE1QjCI1YcFZv/La+L3pp+WNN2SjYFWJwqhKZ7QE6lRYLiviWHMwRKJC0SJAWRBSkd7DKINB4uoff1CXzzEXSiSHmjh9rmQsDLYiDI5OQk8/p52u8so6zGzdjwFIVeF00Hy5mbjDDcNUMilsJg1FHZGKK0dgxp+hySwQHWUgR7DaK9GlFnylvyevjBGp77+hXmxoPIsoLZauDAPW867QUFBdx5551MT09z9erVzIgar9e7JZumZSg1NDQ0bl5umEP5xhtvUFZWtq19mEymNUu63oolr5Ikpec8ruI8OhwOamtrcTgcmM1mBEHg7Ggfev0cFmu61NPqMBKPJomGEhjNK78CiqLQe2mKqUE/BpOesgYXqaSMTidS1uDGbN38HM/NlLyq2x97pJ6q1kLC/hjOQmtGuVWv19PU1ERlZSU9PT1cfP0cdQ11VCvWTI/nXHKO7y5+F4CnZ5/mf1b9z5Xn5CwEZyFwAHneidDcjFBcjOKbg8AIjzwQwu0KMjXow+yycPxoJR537oJGp9NRX1/P0NAQFouFs2fPUlZWRlNTE2azecPvj7ZY0shmJ+yjxWIBIBaL5XUo96KCA/Ym6AbwHd93+LvFv+P33L9HMBpkNjULgITEi5EXOR46Tr2tnrKyMpxOJ1arFVEUGbgyA/I4DpcFAQGr08jcRIiwf/Vg5eSAj/43ZlAUhbJ6N6JOQJHBW+3AWWDZ+kWIejAVpR9L6A2GjP1MjfURjF5FKG3AWxDEVjpFYH4Roy5CQaFhqQcTPB4XHoeN6Zl5hoYHcLkLKKox4S12EovIDHfOkkopOAqtRINJxvrmcBSasNmNacXbZAgl2IckiEgGD3p/EqxVKMqbaupH3laL3iDSdW4CUS9y8L5qmm/P/c4KgkBpaSmTk5MoisLVq1dxOBy0tLSsO4ppOZqN1NDQ0Lh52ZJDGQqF6Ovry/w9ODjIG2+8QUFBAdXV1fzBH/wB4+PjfP3rXwfgS1/6EnV1dezbt49YLMZTTz3FCy+8wE9+8pNtnbzJZFq3pOtWFuVRncf5+XlisRjnz59f13nMR0GZDVEUCPlimKwGgotRiiqd2FymzDVk8/rzw5z6Xg/JuEQinpbOr2jyYDTrKalxcuLfNWG25Xcq02VIIIpbz6ply9OX1blX3c5isXDo0CEWFxfp7OwEYGZmhsrKSr45903kpXrVFwMv0h/rp8HcsOq+sku6BHcRuIswAPe2ZG0TXATfIArK0pw6EfQG0DlBUairq6O5uZne3l5eeeUVampqqKury7uYX44mif/W4WayjwDxeDxv1vxWL3lVy1Z9Ph9xIc43578JAvzd3N+lbYhIRoxHFmSuV1znXSUr1Xc9JTYsdgP+uSh2j5mwL47FZsBTalux7XhinES/gWefukbYF0NKKSQTKYqrndjdFpxFFu78+QYKy/LVuqaRZSXHPm7qvdHbSRlL0RccBMBVCqpbpkgJ5PgCSsKPsjQKpcQWoKBkkcnxAWKxBAF/AKdFIJmQsBeY0OnB6tbjn44Sj0jY7MKS2qyy1NKpQGwWfXgaY7SXVE8vWEoQHNWI9joO3V/DoftrNnTqBQUFHDhwgMHBQc6fP4/X66W5uXnVUUwr3zdtTq+GhobGzcqWHMqLFy/mDOJ+/PHHAfjwhz/MM888w+TkJCMjI5l/TyQS/N7v/R7j4+NYrVYOHjzI888/n3eY92ZQRSdWk4u/lXooVedRzTpmZx7VTNdGnMd8NB8t5fZ31nL5pVFCizEKyuw8/GsH0BtWKopKKZlLzw0iigLFNU6mBnwEF2IgpKPvU0N+Rrrmab49t3dIURRee36Is//aRzIu0XC4mHd8aD8Wu3HTJa+bjUJ7PB6OHTvGT3/6U3p7e+mc7OS7tu8iLzUj6dCtmqXMPu5676ng8IAjtw9IURQILaD4xxFDVVhcbg42VBAocdHdN8bJ0VEaGxupqqpa87q06Ptbh5vJPgKrtgXsVeZwJ2yk6jxm28fsstUL9gvExfR1+vQ+7rffj1nIrRA4bjued9+eEhsP/Uo7L/59J6HFGCarnvt+sZWiZeWuE6kJPjX8KR788Qex+EoprnayOB0muBglFknSeKSE6aEAPRcnOfGephXHGeqY4/mvX8M/H6Wk2skjv34wc4ytqlFnI+iM6KylYM21zQagrk3mzMs/IiaHGF8IEEgZSPkVHAVJEv4gBoMek4k3m8ZZmrmpLAXPUikUoxGkOARHUYLDSOIZJKMLLKVL4j6VCGL+JYVq3wwGA83NzVRXV9Pb28upU6eoqqqioaEBo9G45nXvxOgRDQ0NDY3dYUsO5QMPPLDmAuGZZ57J+fuJJ57giSfWVtnbCjeD6MRWFkuSJGV6Hpc7jw6HA6fTmeM8Li4u0tPTs+VB54IgcP8vtXLw/ipioSSeUhsWe/6bdyopI6Vk9EYRRVaQl4QWZElGpxcREEjGpRWvu/STIX789BUUWcFo1nP5pRFkSeHRT94OpNcp85MhFFnB5bViMO7OeIy77rqLJwefJCWnlsa+CemSt8CL+FI+3Hp33tdtVaVVEARwFCLZS8FZRq9ukiZzE05bIcdchcwuzNLT28PwYD/NLa2UlJblPc5qDqUWfb/1uFnso06nQ6/Xr+lQ7lWGcjPHWc95dDqdlJeX43A4sFqthKUw/33gv6crBwABgZ5YD9+o/QZ6YWO3uPYTFVS1FhKYj+IoMOctW/1u7LtISPT5BzlgKF66LhB1IlIy7egZzTpioeSK1471LPBP/+85oqEEJpuBwWuz/N8vXeTDf3xvZhv/bIRELIXdY86xzzthA0RRBIOLhuZjJBIJzixcYbA7iWXOjsNl5cBdXuwHLAipAHJ8EVKhpdLXIKTi6XdWt3Qe6lxNRV7q9VxE8XeSQgeWErCWo3PWIpq9mePLskwiIjHSOYfRoqe42sWBAweorU2LrGUrwuYbnaSpYGtoaGjc3NywHsqdwGg03vAeyuw5a/lu/Ks5j3q9flNlq9uN8AuCQEHp6mVYKkazjsrmArovTKIokEqk56QZzXr8sxF0BhFXUe5ia3LQx2s/HSIaTmJ1GBF0Akaznr7Xp0klJRKxFD1nFugKhpEV8FY6uOPdDZmS2+XXme898M2GGbg8A0DdgeKMVH326wAMBgOPNT5G6XwpMzMzBINBvF4vtd5aHLrVBTa2G/1WFIVXY6/yhzN/yB+U/wHv8bwHLA6KKxwUldUyMTFBZ1c3g0PDtLS0UFBQkPN6TZRHYzdYa7TSXvVQrhV0UxQl0xO+3HlU7WO285jvN3Ih9GZ2EkBBYTI1yfXYdQ5aDm74PB0eMw5P/r7nOXGOlxMvAxCqn2J+ZAHznIlUMoUsKVicBkK+OPFICm9Vrp3xz0U494N+AvNRzHYDggI2p4n58RCzowFsXoGJjgjTFzpIxCWcBRaOPlxHcbUz7/uVzx7Ewkl6XpskHklRXu+moqkg72sjRKitrOW9Hyrl8sVOBntGqKz1UH97FXqTCahguTunyBKhyCu4LAIUOyDhh1QAkuH0Q0qBoIAiQXgSopNIcxeQdDawlYG1Gv+Yn1dfniUWkNEZRNruKOedHzqIw+Hg6NGjzM/PZxRhm5qaKC8vz7lOzaHU0NDQuLm5pR1Ki8WyrkO5V4I5iqLkqK1ux3nMd4y9Gk0iCAIP/Uo7gk5krHue4mon7uJ0RlGnEzlwXxkVTW+WfaaSEmPdC+gNOnQ6Ab1BJBWXkGUFk9WAqBMZ7wow1R+mvtWFIMBE3yJXTo5w9JFaIP05iaK46nVOD/v57hfPsTiTHnviKbHxvk8dp7TWnXPukH6vig3FvFN5D/0TUyzOB4gOLGCq1DPbNktJSUne930jJa9rvW+yIvN1X7on7u9m/o53ud+VyY6IokhlZWVGEfbSpUsUFhbS3NyM3Z528rWSV42dRhCENR3KvcpQqnY4n/MYDAYBVjiPNpttw7/Hu+138/5r76elrSXTr2wSTOwz79uxa3jB8gICAgoK88f6GIibqOh5Dw6jhYqmAiw2A3JSpulIKS3HcoVpJgfSs3x1ejFtH1NyuiJCJ6I36JgdCTDVE6WmvhCb28zCZJCLPxngwQ+0ojOk7aJer1/VPkbDCb79Z+cY7Z4HBcw2Aw9/5CD7767K2a5X18unZz/NFyxf4KByG7qoA4+xiumBBV4MvUxLWxM1NTV5xoPokHQuFJsHQ1HtiuPLySByfBEl4YdEIJ3ZTKWFfQj0Q2CQxBuX8Co2zNXVLIS8XH0lSUVjAQfvqwagsLCQEydOMDk5mRnF1NLSQlFRWpxIcyg1NDQ0bm5uaYdyPVGe3RbMCYVC+Hw+AC5cuEAkEtm285iPvXIoVaxOE+/++CFSCQlRn76BxyNJRJ2IyZL7lZFSClJKpnZ/EdNDfkL+OIqkYLLqOfauOhRFJuSLI4qgN6b3ZbLpWZwOZ65NkqRMhjCfY3f233pYmApTVJmO/M+NBzn9Lz2873ff7InKdigXZ8Kc+l4X/rkIBoMOSTLjcdm4fv16Zn6l05kb/d+OQynLMt2WbgYTgwDMpGb4ke9H6SxlFnq9noaGBiorK+nv7+fMmTNUVFTQ2NioOZQau8JaNnI3A26yLGfmPCYSCXp6ejLnsR3nMR9GwUhzrJkTlhObUlbeKEEpyGvG11BQ0KFD0StMPXAV96MneL/n/ej0IrFwEkVRMNsMK64lGZMoqXUxOeBjYTKELCnoDCL776mgqMrO+KlppJSCxZG2rXaPmbA/TiycxFFgQZZlJEla1T5efWWU0a553MVW9AaRxekwL/3jdVqPl2f65BVF4Vnrs0hI/PXoV/jga/+Z8f5FjCY9ybhIsa6QsdFxRkdHaWlpobi4eEWGcLXPSDQ4EA35qz8UKUFscYaBqShOu4TdIFNeOIiLENLoBKn5OxEddYhGN4IgUF5eTklJCSMjI1y+fBmn00lLy5uBgtW0EjQ0NDQ0biy3vEMpSdKac9YkaWW/32bJLltV+3pU51HNMFVXV+PxeDCZTDt+g7tRN0x9Vp/jaj2XRrMOt9dKJBDn6CN1DF6dRU7JHLi/ktsfrkGSJDxFdnrCk8xMz1JUVEAiJlHZZM8s/tTsRSKRIJFIYDKZ6HtjipmRAHa3Gd9cFL0pfS6RQJxUQmKib5FUUspZMKlMDvjwz0Yob/AgCAK+mTC+MYlHPnoPQ8ODvPrqq5SXl9PU1ARyemzAeEeYurIQzvaVZWbrIcsyLzlfQkRERkZAWJGlzMZkMtHe3k5NTQ09PT2cPHmSgoICbbGkseOs1RawUxnKbOcxe84jpJ1HQRAoKCigoqICq9W6a/Zxt5xji2jh0cijmAvNWG1vKpLeb78P3VLAbTXVawBXsZX5yRC3PVTF4LU5Qr44tQeKePD9rciyhMNtRRBhdHCSsqpiIsEkDrcZV4EDg0mXYx9Vp3xycJGhjjn0Bh2+mXRwTm/UEQ0mSCVlfLMRFqfDeCvT9uxi+CKjhlEARkdnuNrbS3tdA3qDjlgkiW8yytG3HSIq+ejo6GBkZITW1lZsVhtDHXMMveEnWWukunpzgTdBZ8TkKSdCJf5pkZS5gEQ8hX8uQn3pAXSOAuT4InIiiGByIxgc6HQ66urqqKysZGBggFdffZWioiJN0VVDQ0PjJuaWdijXm7MmiiLJ5EqBhLVYy3lUI+terxeHw5EZHP7yyy9TWFi4pkrddtmLweAbRV2EqmW+FS0uUlKKwFyUw2+rorq1CG9leiEpiiJHH2wl6lPouTzK7Ngw1Y3FtN9VTiAQwO/3EwgEMotQo9HI+BtJXv/xVVJJGUEAR4GFZDzF9IifWDhJKiFhthk498N+Tvx8I6Luzci9IAgo8pvZSkiLCilyWqSkpaWFqqoquru7efH5lxm/AIvjSfy+EP6+yzz8YWHFLLX1uBq5yoxxJjNEXUFhJjXDq6FXucdxz6qvs9ls3HbbbSwuLnLlyhVisRgjIyNUVlZq2UqNbSMIwprCZVup4FjNeRQEAbvdjsPhoKKiIjPnURAELly4gNvtxmZbOYZjp9hNR0Mv6DmROEGduQ5vgXf9F5B+n1RH0FttIx51MzcWoOV4KaV1LiqaCtDp0qX+TQcr8D+c4PKpfjpfH8Jb6ubgA00kUjHmFt60kcFgMG1Twy6++ucvEw2n7202pxFQmBnxEw0lScZSWBxGLjzbz4Pv34fZauArM19BUAQUQUFEpDvWQ7uQHqOUroBJa+1UVVVRWlqaqaCYv65nqitGMBCi3xogFTBw96Mtm3q/RZ1I830uhs8mmBkLoNMJNN1Wyr57qhCMenTG/PMoDQYDLS0tVFdXc/36dRRFobu7m/r6+g2NYtLQ0NDQ2DtuaYdSnbO2WgR+vVJR1XnMVhNcy3nMdxPNFuXZLfa65HU52Yuj5QtQQRCw2E203VGBIoHOoEOvz5V1sNhF7nhPPWUtVmZn50gIIS5deRWdTofL5cLpdNLQ0IDT6SQakHjyK8+DAG6vlUQ8RWA+irfCwcTAIjq9SGmdm5q2IoY6Zmk9VkZhuSPn/SmtdeHwWJgc9GEw6UjEUhy4pyqTzbRardx2222cHLnKaFcHVpceW6FIPCrxyv/touFQSSbzsBHqDHX83MLP0dDWgLA0WVwv6Dlo3ZggiMfjoaqqiunpaYaGhhgeHqa5uTkTldfQ2CpGo3HLPZSq87hcbXUt5zEfe9kDfiNYzz4ajHrqDxZTt78YURTR6cUVAaODD1TirtAzMzlHOOmnZ/QNescEHA4HLpeLyspKXC4XVquVJ//z80RCCdxeK7KsEJiLUlbvZqJ/EUVR8JTYaLq9jJnhAOO9C8Sa5+iIdiAgoENHvCjITOEonX1DlLtKiIWTVLUW4vKms68Gg4HW1lb0CQcXv3kGRZSwFerRyTpef3GY5qPlFFdtrpLDU2nk0O+0k/ALGMx6qlsL846tyofFYqGhoQGfz0cgEODkyZOZ1gEt8KahoaFxc3BLO5QbmbOm3uDzOY/hcBiDwYDT6dyQ85gPdbvdFLfYS6divcWRKp6jCuksv6ErikIsFsvJPAYCAWRZTi9AGwtwOGrw+/1MTExgs9mora3NRJznxxaRUjJmWzrqbjCKgELj4RJMNgPeCgdWl4lUUiayVN6lHlc9l8JyByf+XRO9l6aIx5KU1nloPbYy66jDhN1mx+4x4Pf7SCkxIsG0A7paiW8+TJg4Gj7KI0WPbOKdzkVRFGw2G/v372dsbIyOjg6sViuHDx/e1cy3xlsbdVZvPrJ7KNdzHp1OJ5WVlRm11U1lqPZIHG0vHMps+6g+ss9BtY+CIGTGXyy3kclkksXFxYyN9Pv9JBIJ7HY7hVVO6pylxONxRkdHMRgMVFdXY7Val46vEFyMYTLrEQTQLY3y8JTacBSY0el1eEps6PQiocUoUlKmzFDGLxf+MoMjgxSXFGP0GBHeY2RfbxX4DXhKbLTfWbHCwVNSOowGC+5SE4uLi0hylERQJhLMf79dC0VRcHuteJo962+cB1mW0el0HD16lLm5Obq7uxkeHmbfvn2Ul5dvaZ8aGhoaGjvHLe1Q6vV6dDrdipKubOcxEAhw7ty5HXEeV2MvFjO7sX91cZRKpQCIRqMZJ32ji6NEIpF5n9UFUjKZxGaz4XK5KCkpoampCbvdnvPaiooKampq6Orq4syZMzQ1NVFWVkZBqQ2by4x/LoLdbSYeTqI36KjZV0ginmJxJowkKYQWY5RUO3EvRdWXvz+lte4cFdh8FJbZ0elFpLhAKiEjRUX01iD9Qz00Nzdv2JHbiYHbqiiPKIpUV1dTXl7O8PCw5kxqbIt8ojyq8zg/P08ymeTixYs75jzmYy/s424E3bKdR0gHLlVbqR5Pp9OtCLRlI0kSPp8vx3mMRqNYLBacTidut5uamhocDgd6fe7tuKamhr6+Ps6ePUtNTQ11dXXodDoqGj30vjaN3qRDSqXbAsoa3MgpmaFr84T9MaKhJDaXmaIKB4UGB79b+rs8f+157mi7A4fDAeVA29rXX1Bmx+4yEV5IgSKSDCuIhhgjU30UVVsy+gEbfS+3YyPV1wuCgNfrpaioiLGxsV0RYdLQ0NDQ2DxbdihPnjzJF77wBS5dusTk5CTf+973ePTRR9d8zUsvvcTjjz9OR0cHVVVVfOYzn+EjH/nIVk8BALvdzunTpxEEgWg0mpN5NBqNiKJIfX39jjmP+djtBdNO7H+9yHpBQQGXL1+mqamJkpKSvNlHSZJyIuuBQCCzOHK5XBQUFFBXV4fD4cg7nHo5NpuNI0eOMDMzQ3d3N+Pj47S2tvLob9/Ov3z5EiF/HL1R5P5fbKP5WBkF5XYuvzRCyBenqrWA299Rj8mazmxuxalrPlrG7FiAKy+PkIwqNLSV8MAHWpnxj3Ly5EkaGxuprq5ed787odC6fB96vT6zgNS49bhZ7KPBYGBkZIQrV65gMplyMo9WqxVFUXbUeczHXs273I6NVM9vuRMJ6fMvKiqir6+PRCJBbW0tOp1uxW9eluWcqgy/358TyHS5XJSVleF0OjcUKDIYDLS1tVFRUUFHVwevz7zO/Y3383MfP8x3/vd5ZkYCCKLAwfurOfHzjcQiSfQGkdnRIIVldg7eX01h+Zvqq5tVsi4ss/Pg+/fx8nc6CU4G8BQ5eccHDyJbA5w5c4bKykoaGxs3dC074VBm20JBEKioqNCEejQ0NDRuErbsUIbDYQ4dOsRHP/pR3vve9667/eDgIO9+97v5zd/8Tb75zW/y05/+lI997GOUlZXx8MMPb/r4jz/+OD/5yU/w+/389//+3/nKV75Cc3NzTuZxcnKS6elpvN6NCSlsld0u6dqqaM5qiyMgp2RVEASOHDnC1NQU3d3dzMzM0NzcjCRJeUVz1L5HtX9qOwIJgiBQUlJCYWEhg4ODnD9/nsrKSj72/95PaDGB3WXCUZAWX/JWOnnbY/uQUvLS3Ms3Fxhbef9FUeCe/9DC/nsqePGnL/PIe45jtZupopi5uTm6uroyMvper3fVz2E7I0dU8i24bmTfrMb2uNH28amnnuKpp57i4sWLnD17FovFwrvf/e4c5zEajXLu3DlKS0u3cokbZq8ylJs5hmob1f8u39dy+9jU1ERxcTHXr19ndnaW1tZWTCZTTmVGMBhEFEWcTidOp5P6+npcLte2A5lOp5M3at/gWwvfQuqRaLG18P7/fpyoL61yXVCWHruiN+i46983I6UkdPq0fcy2TVv5DFqPl1PdVsTJF06z71AzVbUVQAVVVVV0dXXxyiuv0NjYSFVV1ZoO43ZtpDZWSUNDQ+PmZssO5bve9S7e9a53bXj7v/7rv6auro4/+7M/A6CtrY1Tp07xxS9+cUsLpsOHD3PffffxiU98gm984xucOHFixTZ7Nbj7Rpa8LldcXb5d9qJotbIsRVGIRCIoikJxcTEzMzOcOXMGURRxu905ojm7VWKk1+szZa/d3d28NnWB5uZm7J43FQDVaLRgEDLXqpbjbnXBIggCNrcJq0ePyfKmY1xUVMRdd93F6OgoV69exeVy0dramrfMa6cylPkccy36fmtyo+1jbW0tn/zkJ3nmmWe45557+NSnPrViGzUQthMBkbW40SWv2+0Lh7SSeDwep7CwkJmZGS5dugSkx6K43e4c0Zydfi8XU4t8Z/E7AFypvsLB0EEuXDxHbW0ttZW1b6pZZ9lHRVEysyvV69vq52x1GLEV6Jf62tPY7XaOHj3K7OwsXV1dmTEjqwVvd6rkdTmafdTQ0NC4OdizHsqzZ8/y9re/Pee5hx9+OO9CZyN86EMfQlEUPvWpT606GuSt4lBm738jkXXVyVrNeVxLNMflctHS0oKiKAwMDJBMJikuLsblyi/tvtPY7XaOHDnC9PQ0PT09jI2N0dramu77WXad2QvEtQZvr4f6Pi5/vSiK1NTUUFZWlpHRz1fmtZ1jZ+9Di8D/7LLT9lHd1w9+8INM399yshWqd3NhvheiPJAbVNuo86ieXzbJZDIn85gtmuN0OqmpqcFkMjE6OkooFMLtdlNSUrJr7+E/LPwDKSX9Gb4SeYVfr/91jlYcpauri8nJyUwFRfZ1qvcMSZIytmU7n/NqLQVer5fCwkJGRka4fPkyHo+HlpaWnMCb+nnshkOpoaGhoXFzsGcO5dTUFCUlJTnPlZSU5PThbRZBEDCZTGuqvO7FQma3eoTUxZEkSSiKQjQazZR5bjSyvhHRnObmZmw224rXl5aWMjg4yMWLF6msrKShoWGFcMRuIAgCpaWlFBUVMTAwkCmDzT6+umAKh8P4/X7m5+dzHO/NLJzWe43RaKStrW3VMq+dFOXJRusP+tlhN+wj5BflUclWqN7Nxfpu20fVUYrFYpsWFVtPNMfj8awqmuP1epmamso4dq2trVv+nFZDzU7KpN8/HTq+OvdVPlf5OY4fP874+DgdHR2ZCors40uKxHBoGEvYQiAQyDy/FcdyraCZKIrU1tZSXl5OX18fZ86coaqqisbGRgwGw5Zscr7jaw6lhoaGxs3LLa3yCmvPWdsrMYjdFs0xGo04nU5ef/11WlpaKCoqAvIvjrIdx+2K5oiiSENDA6WlpVy/fp2zZ8/S0tJCcXHxtq51o+j1epqbmykvL6ezs5NTp05RWlqKKIqZaxQEISN4UVVVRSqVysnQbgR1sbTe9svLvNT+Slj5WWwWbcGksRusF3CD3R15BHsjKub1euns7KShoYGKioq8AbadFs0RBIGysjKKioro6enh7Nmz1NfXb0jIa6M863+WhJJAWPqfhMTLoZdZSC1QoC+gsrKS4uJi+vr6OH36NCUlJVgsFoLBIN+RvsMp2ymeCD1Bvb2effv2odfrcxRTN8pGnFCj0Uh7e3sm8Hby5EmampoyPbpayauGhobGW5c9cyhLS0uZnp7OeW56ehqn07mtqK7ZbN7y4O6dYrOZ0PUWR7BSjv748eOMjo5y7do1ysrKaGhoWFG6uhuiOZBWYz169CgTExN0dHRkyqx2U7I9lUplFn1+v59IJEIymWRsbAyDwUBVVRVtbW3YbLacRUV2qVt2hmItNhuxX17mpaplbgfNofzZZrfs41oZyuyS191kK4I56n83KirW3t5OcXExnZ2dzM3N0dbWhqIoeyKaYzAYMvMQr1+/ztTUFG1tbTvSJvCg80F0gg6FN98Du2jHLtgztlG9RkVRmJ6eRhRF7KV2XhVfRUbmjYo3eHf5uwFyymA3E3jbTBWGw+HICbwNDw8Du+NQamhoaGjcHOyZQ3nixAl++MMf5jz33HPP5RXT2QzrReBvdIZyK4uj1URz9Ho9xcXFTE5OMjY2hk6nyziPuy2ao8q0Z0fjGxsbqays3JH+QbV0VX2Ew2HMZnPOrDan05np7RwcHCSVSlFfX59TipbdX5lKpXLe151Uac0u87py5Qpzc3N0dnZmyry28h5oKq8/u+ymfcwud8xG/U3sto1cL+C2Xl/4erMeIS2aI8syxcXFTE9PZ0ZJqX3huymao+LxeDhx4sSOtgmUGEr4Bc8vEI1GcxzIV4KvIIoiLpcr07rgcrkwGAyMjY3x5PSTJG1JEODZwLN8uOjDVBor8/afbyTwtlkbKQgCxcXFFBUV0d/fT39/P2+88Qatra3YbLZNvw+aQ6mhoaFxc7PlO10oFKKvry/z9+DgIG+88QYFBQVUV1fzB3/wB4yPj/P1r38dgN/8zd/ky1/+Mk888QQf/ehHeeGFF/inf/onfvCDH2zrAtaLwO9VD2X2DXo7i6ONiOa0trYSjUYZGhrCYrFQW1u77SzkRjGZTBw4cCAzVmNycpK2trYc0Zy1UK8vO/uolq6qznFjY2Mmc5APtQy2q6uLM2fO0NzcnCOKkS1KsVwNNt+iaDuLFaPRSHl5OYlEglAolCnzqqys3NQ+tQXTW4ubxT5aLJZVA26wN20B+UTF1hPNWU1UDNYXzamrqwPS77koilRXV2O1Wnf1GlV2ok0gmUzmBNcCgQCpVCpj/6uqqnA6nas6x44yB+cj59/sXUTgmdln+EzFZ9J/Z9lHNWOZ3We6mo3ciiMuiiKVlZX09/djMpk4ffo01dXVNDQ0bOqepQXcNDQ0NG5utuxQXrx4kQcffDDz9+OPPw7Ahz/8YZ555hkmJycZGRnJ/HtdXR0/+MEP+M//+T/z53/+51RWVvLUU09tSRI/G5PJRCKRyPtvu71YynYa4/F4jpricrGc1RZH2xHNUUuszp49S1tb267P28ymqKiIEydOZERzqqurqa+vX9GbmUqlchZ+fr+fZDKZWfyVl5fnLV1dD7vdzu23356ZnamqwWarC2aPFFkrGr8TM9IMBsMKGf22tjYKCws3tA9V4j8bTZTn1uVmsY9r9ZjD7lZxZDuPyWQyx05vVHFVkiSCweC6ojlOp3OF7SkrK6Ovr49XX32VhoYGqqur9+z3tNE2AVmWM9enPrL73ouKimhoaMDhcGw44PQj/4+IK3FExHTfpSLxk8BPeMzwGHXFdZntNhN4247wmOoM7t+/n+rq6oywmRp428hnks8+qtegoaGhoXHj2bJD+cADD6wZIXzmmWfyvub111/f6iHzslclr2tF1j0eD/39/eh0OkpKSlZVXN1p0RyLxcKRI0cYHx/n2rVreL1eWlpa9ixbqdPpMqILau9QbW0tQI7ohdlsxuVy5ZSubuT61iNbFGNgYIBz585RVVW16TLYnXAo1X2pZV7Dw8O8/vrrFBQU0NLSsm6Zl5ahfGtxM9nH1QJusHNVHGv1hbtcLrq6ujAajdTU1GTs026L5uj1elpbWykpKaGjo4Pp6Wn27du3pZLLraC2CXi9Xrq7uzlz5gw1NTVYLJbM9QWDQfR6/ZaubzXudtxNTMmq2lFACkr0d/QTmAzQ3Nyc05e7kTLY7djI7Oym0+nk2LFjzMzM5MyvXC/wpijKjtwzNDQ0NDR2h1te5XU9UZ6tDO5eTzRnuRx9c3MzHo+Hzs5OFhcXM8qfoVBo10VzBEGgsrKSoqIiOjs7OXPmDG1tbbuuxJpdmuv3+xEEgXg8nlk4lpaWrlu6ulMYDAZaWlo2XAa7vMxru3Mkl0fvRVGkrq6O8vJyent7OX36NDU1NWv2Uy13KJd/7zQ0toLZbF61JQC2FnTbrKhYWVkZDoeDa9eusbi4yP79+7FarYTD4T0RzVF7G5dnK3c7gKNWn6hVGQADAwPodDq8Xi/V1dW4XC4sFsuOZtqqjdX8WtGv5T7phURlgt7eXs6cOUN9fT01NTWZ92A1+7gTs0qX20dBECgpKcHr9TI0NMRrr71GUVERLS0tq5Ymq1UgGhoaGho3J7e8Q7kRWfy1bobrLY6Wl2at1vdot9upq6tjZGSEl19+GUgvqtTI826L5pjNZg4fPszk5GQmGt/S0rKtSHc22X1L2aW5drs9I3qhZh57enqYnJzEbrfv2PE3gqouODk5SXd3N+Pj4ytEIPItnFYrp9ooq2UXTSZTTplXdn/l8u+jlqHU2A3Wso+wvkO5E6JikC69ra+vZ3h4mDNnzmS2cTgcOJ3OXRfN0el0tLS0rMhWZpfIb4fVSletVmtO6arVamVoaIiRkRHMZjPFxcV7VrZpNBrZt28fFRUVdHZ2MjExsSI7mK8MVv3Mt1vyuhxRFKmvr6eiooKenh5OnTq1auBNawnQ0NDQuLm55R3KtSLw6s1GvaHtlOJqNBrNKcsKBoMZ0Ryv10sqlWJ6epqysjKampr2rFRHEATKy8spLCyks7OTs2fPZkq+NoMsy5nsquo8Zpeurleae+jQoUxJkyras5dlZuXl5Xi9Xvr7+3n11Vfz9nemUqnMQPP5+flMv+1WFinrZTjVMq/p6Wm6u7sz/ZUFBQU5+9BKujR2mrUqOCC3z3w9UbHldnGrojlut5upqSnsdjv79u3b1fFDy3G73dx5552ZEvm6ujpqa2s35SypqtvZATa1dFWtPikrK8uori4nu01genp6U73WO4Hb7eaOO+5gbGyMK1euZMrysz8HtfzY7/fj8/kyz28lU7mefVSF3pb3V1ZUVKy4h2toaGho3Jzc8g6l0WjM2yOUHXWPx+OrKgpuVDQnu3Q1WzSntLQ00yOX/fq6ujquXbvGuXPn2L9/P06ncwevem1MJhOHDh1iamqKzs7OzFy0fNnC5aWr6uJILT1ThYGcTuemSleLi4spKCjIlJnV1tZSV1e3Z4sCg8FAa2trJhp/6tQpvF4vsixn5lpaLBbcbjdlZWUUFBRk+is3OptNZSOCFYIgUFpaitfrZXh4mEuXLuWUeeVbMGkReI3tspZDqS70U6nUChu6UcVVtS88O8C2EdGc+vp6uru7M4JipaWlO3vha6D2fhcXF9PR0cHMzAz79u1bVak6kUisEBbLVt3eSumqw+HIzBa+fPlypv99ryo6VPXbkpISenp6OH36NF6vF4PBkCk/NhgMmbEkNTU1CIKQyRRuxjZtVNDH5XJx/Phxpqenc4TNPB6P5lBqaGho3OTc8g6lyWTKZAiXR9YVRcFoNDI4OEhTUxMGg2FN5zGVSuUoCm5HNMdms3Hs2DGGhoa4cOHCliLh20EVrCkoKMj0Fba0tFBYWLiiNCuVSuWUru5U6ZkqilFWVpYTjfd4PDt0lflJJBKZ7KPf7ycUCqEoChMTE5jNZmpqaigpKVmxeMv+/mQHGtZjM4sdnU63osyrtrY207OkobGTqAG31UTFzGYzo6Oj2Gw2rFZrTpBtOWrlQnaAbauiOQaDgf379zM9PU1nZyezs7O0trbuaZ+cy+XKZCvPnz9PbW0t1dXVmZm42Q6yWrrq9Xo3rbq6GoIgUF1dTXFxcUa0p6mpifLy8l21BalUKif76Pf7URSF2dnZzJiPgwcPYjabV6hhL+8/32n7mB14Gxoa4uLFi3i9XpLJ5Ip7rtZjrqGhoXHzICi3uFX+pV/6JXp6enjuuedyIqeq05hIJLh+/TrxeJwDBw5kMoXZZZ3ZojkmkykjCqGWL213keP3++no6ECv12cEKfYCta8nEAgwPT3N4uIiQKZ0VX1sVFV2u+cyMjLCwMAApaWlGQd/J/abr3dJzSCrD7vdTiqVor+/n/HxcWpqaqirq8u7SMkWclIXTWstnLq6upBlmfb29k2fv9/vp7OzE5/PR0tLC7W1tTk9niaTSYvMa2yZr33ta3zyk5/kypUrOByOHPuofqd7e3szwR41U7i8rDOfaI5qI7crmhOPx+no6CAUCrFv3749K/9Ur9Hv9zM3N8fs7CyyLKPX63G73RnbsRP3gI2gtglYrdYdaxPIvkbVeVTvc6rytnoPEASBsbEx+vv7KSwspLm5OW85shqUWF7+vBrT09P09/dz1113bfr8Y7EYPT09TExMUFxczMGDBzP9lZIkYTQaVxU609DQ0NDYO255h/IrX/kK/+N//A8OHDjA3/7t3+L1evPK0ff09DA2NobL5co4k9llneoCabf6eSRJore3l4mJCZqbm3P6Q3YCtbczO7KuLgDV67PZbMzMzLCwsEBLSwtlZWV7nhWLRqN0dnYSDAYzIhmbOYfl5bmBQCBzjeoCab0FYCAQoKuri3g8TktLC16vN+/ctWwxirUWTZ2dnQiCQGtr64avIxtJknjuuecwmUyYTCba2tpwu92aQ6mxbc6fP89jjz0GwFe/+lUOHz6c9/s0Pj6ecWYMBkNOX3i287hbojmKojA2NkZvby/l5eW70nuulq5m28js0lWHw0EwGGR0dJSampq8c3V3m1QqRV9fH+Pj41tqE1D7V7MrNGRZznx+6mOt+1w8Hqe3t5eZmRnq6+vzKuJmB96Wj2FaztTUFIODg5w4cWLjb8QyXnnllUx2tLm5mfLy8kwFktZ7rqGhoXHjueUdSoDFxUU+9rGPcebMGZ566ikqKysz6obZojlWqzVTwtrW1obL5dpzh2p+fp6Ojg4cDgft7e1bHqmRTCZXLI5SqVRmcbTWAnBmZobOzk6cTidtbW17KooB6cXI1NQUPT09OBwO2tracuaiqWQPNVcXSPF4PFOeq0bXt7LIVUtge3t7cTqdq86KVKPx2T23y4/V0dGBwWCgubl5c2/EEqlUiueff54HHniA8fFxBgYG8Hq9NDU14Xa7NYdSY1ukUik++9nP8qd/+qd89rOf5dFHH80E1LJFc6xWK6lUCoCWlhaKi4v3/LsXDofp6OgglUptq/c823aoNlKtXMh2rux2+4prDAaDdHR0IMsy+/btw+Vy7cSlbQq/38/169dRFGXVNgFFUXLE09S5nWqLRnYFylY+x8XFRTo7OwFobW3NERHLPgd1CbFaGezExASjo6Pccccdmz4HldOnT9PY2IgkSfT09GAymTLfUc2h1NDQ0LjxvCUcSoC/+qu/4sknn6S7uxtJkviLv/gL7rjjjsziQRXNSSaTXL9+HZ/Px4EDB/LeJHebZDJJV1cX8/PztLW1ravCml3WqS4AVVGZ7LKszZSuJpNJuru7mZ2dXaGot1ckk0l6e3uZmpqirq6O4uLivMqJy8vPdrLEKZlM0tfXx8TExLplsLByDinA1atXMZvNNDU1bekcEokEL7zwAu94xzvQ6XSZMi+bzUZra6vmUGpsm5/85Cd8/vOf5+TJk6RSKT7xiU/wkY98JKc6Q53JOjg4yNDQEM3NzXlH3Ow2siwzNDTE4ODghnrPs8s6s/ums3s7N1u6Kssyw8PDDAwMUFVVRUNDw547LsvbBGpqalZcJ7Ai+7iTc39lWWZ0dJT+/n6Kioq2VAY7NjbG5OQkx44d2/J5vPLKK7S1tVFUVIQkSQwMDBAMBjl+/LjmUGpoaGjcBLylHMpEIoHD4eBP//RP8Xq9PP3005SXl6/YVlEUxsfH6enpyYyUuBGLdlWFVVX4MxgMOaWr2f2dOp0uZ2Hkcrl2RBFwbm6O69evY7PZaG9vz5sp3A0kScpc49zcXEYYwmazUVBQkLnWnR76vRrbKYO9cuUKNpuNhoaGLR07Fovx0ksv8fDDD2eOqS7Q9ur6Nd7a/PjHP+bChQs0NTXxzDPP0NnZyde+9jWOHz+ed/uFhQWuXbuG0+lk3759N2SofCAQ4Nq1a+j1evbt25epIMguXVVtpFrWme1cLReV2QqhUIjr16+TTCZpb2/fdUExlewe//n5eebn55FlGZPJREFBQSbItlxdfLeIxWL09vYyOzu76TLY0dFRZmZmOHr06JaP//LLL+cEgNXyV7PZrDmUGhoaGjcBbxmHMptAIMB/+k//iWeffZavfOUrvPOd78y7sAiFQly5cgW9Xs+BAwf2zJnKRi2vUpUEo9FoTumq6kDuVu8S5GYKm5qadjwrsVoGwWg05lzj/Pw8IyMjVFRU0NjYuOdiC9llsC6XKzPSI9922TMrr127hsvloq6ubkvHjUQivPLKKzz88MM5x1AUZUcWxRoa2UiSxBe+8AX++I//mM985jN88pOfzLsoVwXNAoEABw4c2DNnavk5dHV1MTMzg91uJ5lMEovFMqJbqgOZr3R1p1AUheHhYfr7+6moqNiV/k61PUMt71/eG+50OonH4/T396/ZJrDbLCws0NXVBWysDFYURUZHR1lYWODIkSNbPu6LL77IbbfdhtvtzhxDdbA1h1JDQ0PjxvOWdCghfcN5+umn+dSnPsXHPvYx/vAP/zBvRk+SJLq7u5menqa9vX3d8tPtsJoiqcViyQhhFBcX09bWdkMyAvPz81y/fh2LxUJ7e/uW1WizB5tnjyZRF39qdD1f6VQ4HKazs5NIJEJrayvFxcXbvawtnb9aBltbW0ttbW3eMthYLIbP52NwcJDKysqMQutmCYVCnD17lne84x05+9ccSo3d5NSpUzz22GO0tbXxN3/zN3i93hXbKIrC6Ogovb29uz5LVlEUwuFwju1QS1ctFguhUAir1cqBAwd2RAF1s4TD4YxieHt7+5bbJWRZXmEfY7FYpjdcfdhsthW//ezg32qZwt0muxTX6/XS3Nyct8w2mUyyuLjI+Pg4oihy2223bdmW/fSnP+XYsWOZnlpNBVtDQ0Pj5uIt61CqdHR08Mu//MvYbDa++tWvUltbm3e76elprl+/TklJCS0tLduOei6X3c/uCVze16M6uuFwmGvXriFJEgcOHFh10PZukkql6O3tZXJyksbGRqqqqtZcBKiLwGxVwXA4nBlNki1Lv9Ebv5op7OnpoaCggJaWlj0XDoK0MEZXVxfJZDLTO+Tz+TLXmr0IrKmpwWq1Zr43m1k4BQIBLly4wNve9rbMc+qsQM2h1NhN5ufn+fVf/3UuXLjA008/zT333JP3+xYMBrl69SoGg4EDBw7syO9RzcpljybJViRV/6v+Bjbbe74bqA52X18fZWVlNDU1rVlJoQaelpfo6vX6HOfR5XJtqiJDFcwRBIH29vYbIhyk9nrPzc1RX19PUVFRjsJsKBTK9PmXlZVRWFi4phrsWjz33HOcOHECu90OaA6lhoaGxs3GW96hhLSj9qlPfYrvfOc7PPnkk7znPe/Je0OLRqNcvXqVVCrFwYMHMzevjaD29WQvjtSsXLYDuV5PXLYoRn19/ZazXttlYWGB69evYzKZaG9vX7d/afniaCeEIRKJREY4aCPO7U6iXqfP52NmZoZIJIIgCLhcLgoLC1csApeXwW506DekF4dvvPEGDz74YOY5dV/bnfGnobEesizzl3/5l3z605/m8ccf5/d///fzOjeSJNHV1cXs7Czt7e2bqh6QJCnHNqoBmex5sU6nc0Olq/l6z/eaSCTC9evXiUajtLe3Z2ZnZl+naj+SyWRO9tHtdu9Ib3S2eNFetwmo1+nz+Zidnc0IBNlsNoqKijKBRPU+sJkxTPl49tlnuffeezNVM5pDqaGhoXFz8TPhUEL6BvT3f//3/Mf/+B957LHH+NznPpc3yi7LMgMDA4yMjKzaT6hK0mcvHNQeyOzI+lbl2iGdHbt27RpGo5F9+/Ztufx0O6gZgenpaex2O5IkEYlEMte5lvT+TjI/P09nZydGo5G2trYdz9yqWdbs8SThcBir1ZojfjExMcHU1NSaZbAbnc22/PquXbvG/fffn3lOdShvRGZW42eTCxcu8IEPfIDKykqefvppSktL826nOnRqhi7f70D9PakOpFq6mm03tqPYHIvFuH79OuFwmH379t0QtW41+Dc4OIjFYkEURcLhMAaDYYUy9W72+e1Fm4Ba3q/ayGAwmLlOdfbv4uIiQ0NDFBcX09TUlDeouJExTPle8+yzz/LAAw9k7KHmUGpoaGjcXPzMOJQqPT09vP/970eWZb72ta+tOuohW+Wwrq4up7dHLV3Ndh5dLteOR8olSaK3t5eJiQmam5t3fbRHtjCE+hAEAZvNRiQSwWAwsG/fvhsizqFKxY+MjGSUebe6SEulUpnourpIys6yqovBfD23fr+fzs5OUqlURg12OeuNGVnO7OwsXV1d3HvvvZnnNIdS40bg9/v5xCc+wQsvvMBTTz3F2972trzf20gkkinPb2lpIZVK5WQfFUVZUdq/0+XbiqIwNjZGb29vJkO3m45btt3I7g232+0kEgkkSaK5uZny8vI9ryrIFhRzu920trZu2XZk9/pnl/c7HI6MbXS73Xk/T7UMdn5+noaGBiorKzesBrvaeyZJEs899xwPPfRQxiZrDqWGhobGzcXPnEMJ6Zve7//+7/P1r3+dL33pS/zSL/1S5maWXdKpOhzqOIvCwsLMImkvxznMz8/T0dGBw+Ggvb19R8pJV1s0ZJegud3ujDCEJEn09/czOjpKfX09NTU1N+RGHgwG6ezsJJFI0NbWlik1W41s8Zzs6Pp2ezzHxsbo6+vD4/HQ0tKSV3Fxo2Ww09PT9Pf3c9ddd2We0xxKjRuFLMs89dRTPP744/zmb/4m/+N//I9MsGx5Sef8/DySJGEymXJKwfdqnAXk9p7v378/I9yyHZZnWdWeQNVuqA919m923/eNLMVNJBL09PQwMzOz4TaB7PL+bIXZbOdxs9nk+fl5urq6EEWR1tbWvEHI5YG31eyjOqf37W9/e06LgSZapqGhoXHz8DPpUEL6hvSP//iP/MZv/AZHjx7FaDTyO7/zOySTyZySTqfTic/no6+vj7q6Ourq6m7IDSyZTNLZ2cnCwsKm+5eAjDCE6lgFg8Gc2ZYbHfzt9/vp6OhAFEX27dt3Q4SDsh26oqIiWlpaMpFrVUEx24FMJpOZ6PpaCrObJZFIZBQX6+rqqKmpyZshyR76nS8aPzk5ydDQECdOnMg8p26/k0PKNTQ2w+uvv8773vc+bDYbtbW1vOc976G0tHRF6WoqlaKzsxOPx3PDFKqX955vNuCVTCZXVGdkCwRlz7Zci1gsRmdnJ4FAgLa2thuiUg2rtwksF1Hz+XxEIpFMIDG7xH8nejyHh4cZHBzccBlsPsdSndP7zne+M/OZag6lhoaGxs3Fz7RD6fV6M2UzVVVVfPazn+WOO+7IuyAKBAJcvXoVk8nE/v37b1jmaHJykq6uLoqLi2lpaVlVPCMYDOaUZsXj8ZzZli6Xa8uzLdU+0+Hh4V0fJbAWah/V4uIiHo8nU5Km1+tXRNd3sxTO5/PR1dVFKpWitbWVoqKiFdusVeY1Pj7O2NgYd9xxR2Z7zaHUuNH8+3//73n++edxu90UFRXxsY99jF/5lV/Ju4iPx+N0dHQQDoc5cOBAZl7gXqP2nhsMBvbv37/qHNlQKJTjPIbD4YwiqWo7ttobrigKk5OTdHd3U1hYSGtra97y+d1GkiT6+voYHR3F5XIhimKOiFp2n+dunl80GqWnp4eFhYUtlcFGIhFOnjzJI488smJ7zaHU0NDQuDn4mXUoIS0uUVJSQjKZ5DOf+QxPPvkkX/jCF/jgBz+YdyGRSqUyqqNbyRLuFLFYjI6ODiKRCPv27cNsNucsjlTBhJ0SwFiNQCBAR0cHAPv27duRUrO1UBeC2dH1aDSK2WwmmUxiMploaWmhsLDwhvQwqVnTgoICmpubVy2DXV7mNTY2xvT0NEePHs1sJ8syOp3uhixENTQg3dvr8XjQ6XR84xvf4Ld/+7f50Ic+xGc/+9lVM03Dw8P09/ffUIXq5b3nXq83U6arlnQCK5Spd/q3Fo/H6ezsxOfz7cmYE0VRiEajOeWroVAIo9GYsTn19fV5Hbq9YG5uju7ubnQ6Ha2trXmDDvnsYygU4tVXX82Z06uNVdLQ0NC4ufiZdiizURSFH/3oR3zkIx/hoYce4ktf+tKqDpKaJVxN5XA3yRaGmJ6eJhQKAeSUZq0mmLAbZJea1dTUUF9fv2OLFbUMLTvTCmSuUc0+GgwGUqkU/f39jI2N3dCsaXYZ7Fqld9llsKOjoywsLHD77bdn/l1zKDVuNrq6unj/+9+PTqfjmWeeoaGhIe92fr+fq1evYrFY2L9//55m2bN7w2dmZlhcXATAYrHg8XhylKn3wj4qisL09DRdXV14PB5aW1t37P1YXomilver94Ls8v7lbQLNzc03pPpBLYMdGBigtLSUpqamvDYuuww2FApx6dIl3v72t+fsBzSHUkNDQ+NmQXMolzE+Ps5jjz3G+Pg4X/va1zh8+HDe7SKRCFevXkVRFA4cOJCZ07iTKIpCJBLJcapCoRAmkymzYDAajQwNDQGwf//+G9LTCGmxnI6ODmRZZt++fZsetL38Wn0+X6YMLbt8db2FoKrCKssybW1tN0SRFtJlsOp5tLS05JTBqte6uLiIz+djYWEBj8fDwYMHM2VemkOpcTMSi8V4/PHH+da3vsVf/MVf8L73vS/v71Htq5yfn2f//v15y8B36nyWz8UVRTHHcZyammJxcXFPsoSrkUgk6OrqYmFhgZaWFkpLSzftCMXj8Rxl6kAgkKlEUQNsqkjQasRiMbq7u1lYWLhhirSQWwbb2Ni4YjyXeq2Li4ssLi6SSqW47777cuyjNqdXQ0ND4+ZBcyjzkEql+OxnP8uf/umf8rnPfY6Pf/zjebNMsizT19fH2NgYLS0t2745J5PJFbL0GxGGyM4SNjQ0UFNTc0NustnR56qqKhoaGlZd3EiSlKOm6/f7kSQJp9OZ40BuxaGSZZmRkREGBgYoKSmhubn5hgmFqFkB9TNUBTFSqVROFsHtdqPX6zNlXoqiaA6lxk2Joih8+9vf5hOf+ATve9/7+PznP5+3vBtgYmKCrq4uKioqaGpq2lbVgJqRy3YgY7EYdrs9xz7mE5RRZ2feSAVWIJOtdLlca472kGU50+epOpHqtWbbjK2qjaujisxmM+3t7bsSEN0Ic3NzdHZ2IooixcXFGUcyGo1mrlV9GI3GTH8loKlga2hoaNxEaA7lKiiKwosvvsgHP/hBjh07xl/91V+tmu2am5ujo6ODgoIC2traNtSruJ4wRLYs/UYXYaoghdFoZP/+/asu8nabUChER0cHqVSKffv24Xa7M6M7slVmjUbjiuj6TpapRqNRurq6CAQCNDc3bykrsBWyS3UXFxcJBAKZ3qDCwkJqa2txuVx5B8KrkfdEIkEqlbphfboaGuvR39/PBz7wAaLRKF/72tdobW3Nu104HObq1asAHDx4MK9QznLUcT/Ls4/q/F/VqdpMb/jy3vOCgoKNX+wOkkgk6O7uZm5ujpaWFsrKykilUjmBRHUG8PLZuDvZB3+j2gTUwIBaoeHz+ZAkCUVRsNvt1NbWUlRUtMLpz7aPsizj9/upqqra9fPV0NDQ0FgfzaFch+npaT70oQ/R1dXF1772NY4fP553u3g8zrVr14hGoxw4cGBFyWf2fMvsfsDl2cft9rVIkkRPTw+Tk5M7kjXdCurNfmhoiLm5OXQ6HbIs50Sc1Uzrbp+b2sPU3d2Nw+GgtbV1Qwvazew/21lWhTDUUl31YbPZMmqwsizT2tqamaGpKAp+v59z585x5swZzp49y6VLl/id3/kdPv/5z+/YuWpo7DSJRIL/9t/+G3/7t3/Ln/3Zn/HYY4/l/U3Lskxvby/j4+O0tbVRVlaW8+/qfMtspyqZTOZk5HZi/q+iKIyOjtLX10dlZeWaVRS7hVryPjIywsTERGbOrzquKttm7IXtVtsEJEmira1txx3t5XMu/X4/er0+09Pq8XhwOBzE43G6u7tZXFzMKYNVFIV4PM5rr73G2bNnOXv2LK+++irt7e2cOnVqR89VQ0NDQ2NraA7lBpAkiS984Qt89rOf5TOf+Qyf/OQnVxVaGR4ezixWrFZrZpEUjUZz5luqC4bdigirWVOXy0V7e/uulk4mEokcYYhAIJCZcWm1WjPDz29kViCZTOaI5VRXV295JIAqhKE+EolEzpxLt9u9amBAlmVGR0f5h3/4B5577jlqa2u5du0aHR0d1NbWctddd3H33Xdzzz330N7efkOEhTQ0NoOiKHz/+9/n137t13jkkUf43//7f2O32/NuOzs7y7Vr1/B4PBQVFWVKWEOhEAaDIcd53M1xP+FwmGvXriHL8q73nq9V3u90OjOVKs3NzVRUVNywdoWdaBNQlWaz7WM4HMZqtebYx7VGVs3OzvLKK6/w+c9/nqNHj9LT08OlS5dwOBw59lGdH62hoaGhcePRHMpNcOrUKR577DHa2tr4m7/5G7xeL5DOTmYvGNRZXwaDgbKyMgoLC3E6nXt+81OFIFRBip0on8wu1VUXR+pg7OzenuwFQ3ZWQFXG3ekRJhtlcXHx/9/encdFVe5/AP8My7DDgGwCsiMCsomAgIoLP7E0sVu5oYDX3EpzKc3bLdFMUbOuG6lZsliGWm7pLTUTcwFURAUGEBXUFFCRUdmEmXl+f/CacxnZERiW7/v1mldx5pkzz4HxO+c55/t8H2RlZYHH48HZ2bnJ4kFisbjO1XUAcidH9aWv1iaRSJCdnc3dfUxOTsbTp09hYGCAe/fuISIiAsuXL1fYySQhbeHu3bsIDQ3Fw4cPER8fD1dXVwD/+zdUO0aKxWJu3pyRkVGHZSzUVnvueVstc1I7Y0F2rLKlO2rHi5fT+x8/fgyhUAgtLS04OzsrbLpCS6cJyKrq1h5AyirNvjz/sSGy74fa8TEnJwfOzs7IzMxEQEAAoqOj4eTkRBfYCCGkk2rXAWV0dDS+/PJLFBYWwt3dHVu2bGkwZRQA9u/fj88++wz5+flwcHDAunXr8Prrr3PPM8YQGRmJnTt3QiQSISAgANu2bYODg0N7HUIdDx48wKRJk5CVlQUnJycMGTIEPj4+dQpD8Pl8rppe//79ufTGjsYYQ2FhIbKzs2FsbAxHR8cWDeZqD6hkJ4SMsTpze5pzNbu8vBxCoRAVFRVwdnZW2O9EKpUiPz8feXl5MDc3h729Pfc7qV1JUSQScXM9BQIB9PX1m6w0+3J61oULF5CcnIyqqip4e3sjICAAQ4YMgZ+fH3R1dXH27FmIxWKMGDGiI38FpJPobjHyxYsXmD9/PuLi4uDn5wcLCwu88847UFdXl4sZ2tra3B0xe3t7WFpaKuxiSu255y4uLi1KiX95QPX06VMuY6F2+mpzisfUzqJwcHCoU/m0ozQ2TUD2fVBSUsJ9LygpKckNHpu6syyRSJCVlcUNIJOSkvDgwQO4u7vD398fgwcPxuDBg2FmZoa8vDycPXsW4eHhHXX4hBBCWqHdBpR79+5FWFgYtm/fDl9fX2zcuBH79+9HTk5OvXfKLly4gKFDhyIqKgpjx47Fnj17sG7dOly5cgX9+/cHAKxbtw5RUVGIi4uDjY0NPvvsM6Snp0MoFHZYtbe5c+di//79MDExgYqKCoKCgvDvf/+73vdnjOHBgwfIycmBhYUF7O3tFXaFVVaQoqKiAi4uLvUWGKqdrlT76rqsUJBs8Kitrd3q45Cth5abm8utQ6aoiouy4kHl5eXQ0dFBZWVlvdUFG7tbwBiDSCRCcnIyd3JUX3qWl5eXQtZ9I51Xd4yRe/bswbvvvgt7e3tUVVXB2dkZ//nPf7hsjpeJRCKkp6dDW1sbLi4uCkthlEgkyM3NxYMHDxqdey7LRqm9dIcsvb+5A6qmFBcXQygUQkNDA87Ozm0657slqqurkZ2djaKiIujq6kIikaC0tBTq6upy8x8bm+spu2ObmpoqN/+xuroaPj4+3AW2QYMGQVdXlzI0CCGki2q3AaWvry+8vb2xdetWADVXcvv06YP58+dj2bJlddpPnDgRZWVlOHr0KLdt0KBB8PDwwPbt28EYg5mZGT788EN89NFHAGquLJuYmCA2NhaTJk1qj8OoQzYfhMfj4dKlS5g8eTL69OmD77//Hqampg2+5vr161BSUoKrq6vCThBkqUW5ubmwtLSEtbV1ndL0YrG4ztId7TEQqqiogFAoRFlZGZydndttnbraahf+kD2kUinU1dVRWVkJHR0dODs7Nzj/C6ibnpWUlAShUAg7OztuADlkyBA4OjpSehZpVHeMkS9evICSkhJUVVVRUFCAadOm4fbt24iLi4OXl1e9r6muroZQKIRIJIKrq6vC5lkD/5t7rqurCycnJ1RXV8tdYKuoqODS+2UxsrH5gK0lFotx8+ZNPHjwAHZ2dh1yB1c2naF2fKysrISmpiaqqqqgrKwMJyenBi8OyPZRUlKC5ORkLjsjNTUVenp6CAgI4C6weXp60gU2QgjpRtplQFlVVQVNTU38/PPPGD9+PLc9PDwcIpEIhw8frvMaS0tLLF68GAsXLuS2RUZG4tChQ7h27Rpu374NOzs7pKWlwcPDg2sTGBgIDw8PbNq0qa0Po1mePn2K2bNn488//8T333+PESNG1PvFL7sCXlBQgH79+tWpctgRZGX4Hz16hKKiIm6ep+xqc3MWxm5LjDHcv38fubm5MDY2bvP1ImtXF5Qt3yEr/PHyUiVVVVW4ceMGHj58CDs7O5ibm0NFRQUSiQRCoVBufk/t9KwhQ4Zg8ODB6N27N11dJ83WU2KkRCJBVFQUoqKisHz5crz//vsNFjS7f/8+bty4wa1h29EXZGTL/Tx58gQFBQWoqqqSS+eUpex2ZEbFkydPIBQKuXTctlwvUlYsqHa6rmw6Q+1jVlFRqTNNwNraGurq6lwhutrxMSsrC/b29lz66pAhQ155DVJCCCGdW7tURnn8+DEkEglMTEzktpuYmCA7O7ve1xQWFtbbvrCwkHtetq2hNoqgp6eHPXv24LvvvsPkyZMxd+5cfPrpp3VOOpSVlbmlIjIzM/HkyZMWz2dsCdnC2LVPFmR34fT09ODk5ISnT5/i/v370NPTg5WVVYcPiHg8HiwsLGBoaMgN2pydnRu9At6QpqoLmpubc/Oj6jtO2Qlbr169sG3bNhw6dAjGxsYQCoUQi8Vceta7776LQYMGQUdHhwaQpNV6SoxUVlbGv//9bwwZMgRTp07FX3/9he3bt9eZPy2LBQKBAOnp6SgpKYGrq2u7FaeRLd1RO3219nI/tra2qK6uRn5+PtTV1WFlZaWQQmIGBgbw8/PDzZs3kZycDDs7u1bHalk1btlDdoFNVnHX3t6+wekMSkpKsLW1haGhIY4dO4bXXnsNzs7OuHnzJgoLC+Hh4QF/f3+sWLECgwcP7rA1fwkhhHQOiim12c0oKSlh1qxZGDRoECZNmoTz588jJiam3kWXjYyMMGjQIGRkZCAlJQVubm5tUrK+9jqXshMkJSUl7mqzubl5nYWxzczM0Lt3b2RkZODx48dwcXFRSHVBdXV1eHp6oqCgABkZGTA0NISjo2Oj86maqi5ob2/frOqCT548kUvPunLlCgwNDWFiYoLLly9jwYIFWL16NZWnJ6SVeDweAgMDkZaWhoiICPj7+yMmJgZ+fn51Bh3a2trw8fHBjRs3uLUGXx4gt8bL61yKRCJu6Q49PT3Y2dnVuw6wmZkZMjMzkZSUhP79+9c797y9KSsrw9HRESYmJsjMzERRURFcXFyaTM0vLy+Xi4+1q3FbWFhAX1+/0cq6sot0ly9f5tL7L168CLFYDE9PT6SkpCAgIABCobDRQmWEEEK6v3YZUBoaGkJZWRlFRUVy24uKihqcZ2hqatpoe9l/i4qK5NJFi4qK5NK7FMnNzQ0XL17EBx98AD8/P2zfvh1jxoyp80Wrrq4OLy8v5OXl4eLFi3BwcECfPn2a/YXMGENZWZlc5dXad+NMTU3Rr1+/Zi2MLRAIMGjQIO4EztHRUSHpmzweD2ZmZjAwMEB2djaSkpLQr18/7mRSLBbLnRzJBsyy1CxLS8smi2HI1lqrLz1Ldvdx8ODBXHqWbJ06GkySttYTY6ShoSGOHDmC//znPwgJCcHSpUuxePHiOv9mZXP1DAwMIBQKUVxcDEdHxxal4r+8dMfz58+5dHd9fX1YW1tDV1e3yTRMdXV1DBgwAPfu3cOVK1dgaWmpkHRc4H+x+vbt20hJSYGtrS2srKygpKQEqVRaZ364bMAsEAjQt29fCASCRtN1GWMoLi6Wu8CWlpYGfX19BAQEYPTo0fjiiy/g4eEBPp+PR48eIS0trV3X8CSEENI1tGtRHh8fH2zZsgVAzcm8paUl5s2b12DBifLycvz666/cNn9/f7i5uckVnPjoo4/w4YcfAgCePXsGY2PjDi3K0xyMMezevRvz5s1DeHg4Pv/88wYLEJSUlCAjI6PRKodisVjuZOHp06eQSqV1lu541YHPo0ePIBQKIRAI4OTkpLCBVO11K/l8PpSVleXS0WSPpgbMYrEYmZmZcgNI2cm1bP5jQEAApWcRhejJMTI5ORlTpkyBjY0NvvvuuwbvQlZUVCAjIwPV1dVwdXWtd/Aiy1aonZ3x4sULrlqzLEa+6jqXpaWlyMjIAGMM/fv3V+hAqri4GJmZmWCMQU1NDWVlZVBWVq6zfEdjA1/ZvMiX1390cHDgCugMHTpUYQNoQgghXUe7LhsSHh6OHTt2wMfHBxs3bsS+ffuQnZ0NExMThIWFwdzcHFFRUQBqSuIHBgZi7dq1GDNmDBISErBmzZo6JfHXrl0rVxL/+vXrHbpsSEtkZ2dj0qRJUFZWRmxsLOzs7OptJ6ty+PTpU26e38tX12XruDW0MHZbqaqqQlZWFkQiUavnM7ZUQ9UFtbW1IZFIUFVV1eS6bA2lZ0kkEvj6+nLVV319fSk9i3QKPT1GlpSUYObMmTh37hx27dqFwMDAev9dSqVS3L59G3fu3EHfvn1hbGwsd4Ht2bNnXLaCLEbq6uq2y5zH2n15lfmMLSFbeqN2fJRdYFNWVkZZWRnMzc3Rt2/fRu/iisViZGRkyA0gHz58iAEDBnAFdAICAmBiYkLxkRBCSIu024ASALZu3cot2u3h4YHNmzfD19cXADBs2DBYW1sjNjaWa79//358+umn3KLd69evr3fR7m+//RYikQiDBw/GN998g759+7bXIbyyyspKLF68GHv27MGWLVvwj3/8Q+7LunaqUkFBAUpLSwGAS1WSnSR15MkgYwwFBQXIycmBiYkJ+vbt26YnZy2pLgjUpOxlZWVxqVuamppcelZSUpJcelavXr3kFsd2d3enlFXSafX0GCmVSrFt2zZ8/PHHmDdvHj755BO5WFM7vf/hw4d48uQJGGNcer8sVjQnvb8tiUQiZGRkQE1NDf3792/TuecvF1QTiUSoqqqCjo6O3B1IWdbLs2fPkJmZCQDo168f9PX1uTmUly9f5gaQFy9eBFBzZ1xWfdXHx6fDf3eEEEK6n3YdULZGdHQ0d4Ll7u6OLVu2wMfHp962O3fuRHx8PDIyMgAAXl5eWLNmjVz7iIgIxMXFyb0uODgYv//+e/sdxEsYY9i/fz9mz56NsWPHwsfHB2ZmZujVqxeePXsGFRUV7sRITU0NeXl54PP5bX6i0lIVFRXIzMxEZWUl+vfvD4FA0Kr9yKoLlpSUcIuBy6oLyk6OGqouKFNZWYlz585hzpw5cHV1RX5+PnJzc9G3b18uPWvIkCGUnkW6te4YHwHgypUrmDx5MgwMDBAeHg4VFRX069dPLr1flub+4MEDlJeXK6xIjoxEIsGNGzdQUFAAR0dHmJmZtWpgJhaL61xg4/F4dS6wNXb3Uba80Zw5c6Cnp4fS0lJcv34dhoaGcus/enh4KKRaLSGEkO6tU32z7N27F4sXL8b27dvh6+uLjRs3Ijg4GDk5OTA2Nq7TPjExEZMnT4a/vz/U1dWxbt06jBo1CpmZmTA3N+fajR49GjExMdzPHb2gMo/Hw61bt6Cjo4MffvgBp0+fxqxZszBlyhQIBAJoaGjInYiYmJggJyenTasctoaGhga8vLxw9+5dpKamwsrKCra2to0O2BqqLqitrQ09PT306dOnWfOZxGIx0tPT5dKzHj9+DF9fX5w7dw4uLi64f/8+zX8kPUZ3jY8AcP/+faipqSElJQU5OTkYPXo0Bg8eXO9SFqamplyRHGtra9ja2iokBsiKBxkZGSEzMxOPHj2Cs7NzkxkRsvWAZRfZSktLoaamBoFAwK3H21Raviz1tnZ8zM3NhZeXF4RCIVRUVJCYmIhBgwbRBTZCCCHtrlPdofT19YW3tze2bt0KoOZLs0+fPpg/f369RSpeJpFIoK+vj61btyIsLAxAzRV4kUiEQ4cOtWfXm3Tq1ClIJBJ4enoiKioKO3fuxFdffYXQ0NAGTxyKioogFAphYmLS4iqHba20tBTp6eng8Xjo378/V7K+qeqCskdT1QXrS8/i8XhcetbgwYO59KySkhL88ccfmDBhQkcdPiEK153jo1AoRFZWFgYNGoTjx49jwYIF+Oc//4mVK1c2OEB7/vw5rl+/zqWdKnKOaENzz2un7MoeFRUV0NbWhr6+PncXsqlMlOrq6joX2IqLi+Hl5SU3/9HIyAgSiQQ//PADwsLCaDBJCCGkQ3SaAWVVVRU0NTXx888/Y/z48dz28PBwiEQiHD58uMl9PH/+HMbGxti/fz/Gjh0LoOaE6dChQ+Dz+dDX18eIESPwxRdf1FlYuyMxxnD06FFMnz4do0ePxtdff93gmmIVFRVIT0+HWCyGm5tbo2uPtTepVIobN27g77//hr6+PjeYbGl1QcYYHj16JDf/8erVqzAyMuJSs2TzHyk9i5CeFR8BIDMzE5MmTYKGhgZiYmJgY2NTbzuJRILs7Gzu7mB9d2o7CmMMDx48QE5ODrS0tKCqqlonZVeWvtrUBbaysjJcunSJG0BeunQJysrKcvMfvb29oampSRkahBBCFK7TDCgfPHgAc3NzXLhwAX5+ftz2pUuX4syZM0hJSWlyH++99x6OHz+OzMxM7mp1QkICNDU1YWNjg1u3buGTTz6BtrY2kpKSFHrHDwDu3r2L0NBQPHz4EPHx8XB1da23nSy96e7du+jbty/Mzc075CSidnVB2fxHWXqWWCyGmpoa+vXrBwMDg2anZyUnJyMpKQm5ubno16+f3PxHGxsbuqJOSD16YnwsKyvDokWLsH//fkRHRyMkJKTBOFNQUIDs7Gz07t0bDg4OHdZ32fzw2hVna18Es7e3h5mZWZMX2B4+fMhVp05KSsK1a9dgYmIiN//Rzc2NLrARQgjplLrNt9PatWuRkJCAxMREudSn2muvubq6ws3NDXZ2dkhMTMTIkSMV0VWOpaUl/vzzT6xYsQIjR45EVFQUpk+fXufkQ0lJCfb29jAwMEB6ejqKi4vh7Ozc6FXu1miquqCdnR1XOEgsFuPGjRu4fv06HB0d0bt3b+5kr7q6GtevX5dLz3ry5Am8vLwQEBCAdevWISAgAIaGhnR1nZAO0BXjo5aWFnbs2IHhw4dj7ty5OHPmDNasWVNvemjv3r2hp6eH9PR0XLx4EW5ubtDS0mrT/siWJqodH8vKyqClpQWBQAALCwu59NW7d+8iJycHFRUVcsXCpFIpbt26xcXHpKQk3Lp1C05OTggICMAHH3yAIUOGwNramuIjIYSQLqHTDCgNDQ2hrKyMoqIiue1FRUUwNTVt9LUbNmzA2rVr8ccff8DNza3Rtra2tjA0NMTNmzcVfsIEAKqqqvjiiy8QGBiIsLAwJCYmYuvWrdDT06vT1sDAAH5+fsjMzERycjJcXV1bXXkVaLq6oIWFRYPVBVVUVODs7AxDQ0McPnwYP//8M7y9vXH16lUuPWvQoEEYPHgwFi5cSOlZhLyCnhofeTweJk+ejIEDB2LSpEkYMWIE4uLi6l0GRVNTE97e3rh16xZSUlJeqfIqUDPwe/78udwAsrq6Grq6utDX14e9vT0EAkGDczytrKzQq1cvJCUlYebMmRg6dChyc3ORnJwMkUiEgQMHwt/fHxs2bMDgwYObzPQghBBCOqtOM6Dk8/nw8vLCqVOnuDlCUqkUp06dwrx58xp83fr167F69WocP34cAwcObPJ9/v77bxQXF6N3795t1fVXxuPxMGrUKKSlpWHatGkICAhAXFwcvLy86rTl8/nw8PDAvXv3kJqaChsbG9jY2DTrRERWXbCkpIRbHLul1QVl6VkvX13X0dHB5cuXMX36dHz11Vdwc3NTeMocId1FT46PAODg4IALFy5gyZIlGDp0KDZu3IiJEyfWiVVKSkpwcHCAgYEBMjIyUFxcDCcnp2Zlc1RXV9e5wKakpMTNfbS0tISurm6jcY0xhtLSUly6dAnnz59HcnIyUlNT0adPH2zcuBGjRo3Cvn374O3tXae6NyGEENJVdZo5lEBNWfzw8HDs2LEDPj4+2LhxI/bt24fs7GyYmJggLCwM5ubmiIqKAgCsW7cOy5cvx549exAQEMDtR1tbG9ra2igtLcXKlSvx1ltvwdTUFLdu3cLSpUvx/PlzpKenK6Q8flMkEgmioqIQFRWFyMhIvPfeew3Ov3n27Bl3HC9XOWyouuDLi2M3VRlRKpXi5s2bcvN7bt26BWdnZ7n5j1ZWVoiPj4eenh7efPPNNv2dEEIoPgI1ce3QoUOYMWMGxo0bhy+//LLB1NYXL14gMzMT5eXlcHV1rZP1UVlZyc0Nly3foaGhIRcftbS0mrzAVlhYKBcfr1+/DnNzc/j7+3PxsX///khJScFff/3VrIq8hBBCSFfSqQaUALB161Zu4W4PDw9s3rwZvr6+AIBhw4bB2toasbGxAABra2vcuXOnzj4iIyOxYsUKVFRUYPz48UhLS4NIJIKZmRlGjRqFVatWKWxtx+ZgjOGvv/7C1KlT4e7ujm3btjVYdVEsFnNVDq2trQGAG0DWri4oK1HfVFGH6upqXLt2DefPn+fmPz59+hQDBw7kikMEBARQehYhCkDxsUZ+fj6mTJkCkUiEuLg4uLi41NuOMYY7d+7g5s2bsLCwgKamJncX8sWLF9zyHbIBZFODaKlUitzcXK5CdVJSEvLy8uDi4iJXodrKyoriIyGEkB6j0w0oWyM6Opo7yXJ3d8eWLVvg4+NTb9vY2FhMnz5dbpuamhoqKyu5nxljiIyMxM6dOyESiRAQEIBt27bBwcGhXY/jZY8fP0ZERASuXbuGmJgY+Pn5cScp9VUXZIxBQ0MDFhYW0NfXh46OTpPVBUtLS3Hx4kWuAuulS5fA5/O5+Y8BAQGUnkVIF9Zd42N1dTU+/fRTREdHY/369XLrLkokErn0Vdn6uCoqKjA3N0evXr2adYGtqqoKV69elVvi6Pnz5/D29pZb/1FfX5/iIyGEkB6ry6/RsHfvXixevBiRkZG4cuUK3N3dERwcjIcPHzb4Gl1dXRQUFHCPl6/ir1+/Hps3b8b27duRkpICLS0tBAcHy51UdQRDQ0McOXIECxYswBtvvIEZM2YgLCwM586dw5kzZ3Dz5k2IxWJYWFjA398f/v7+UFVVRWFhIVRUVOoMJhljKCgowIEDB/DRRx9h8ODBMDc3x7x583Dnzh28/fbbuHDhAh49eoT//ve/+OSTTxAYGEjFdNpBdHQ0rK2toa6uDl9fX1y8eLHR9vv370e/fv2grq4OV1dX/Pe//5V7njGG5cuXo3fv3tDQ0EBQUBByc3Pb8xBIF9Cd46OqqirWrl2L/fv3Y/ny5Rg/fjzeffdd/PLLLzh9+jQyMjJQWloKQ0NDDBw4EIGBgTA0NERBQQEYY3UGk4wxPHv2DH/88QdWrlyJ1157Debm5vjHP/6Bc+fOwd/fHwcOHEBJSQn++usvrFu3Dm+88QZla7QDio+EENLFsC7Ox8eHvf/++9zPEomEmZmZsaioqHrbx8TEMD09vQb3J5VKmampKfvyyy+5bSKRiKmpqbGffvqpzfrdXA8ePGDGxsZMVVWVGRgYMD8/P5aUlMRKSkpYWVlZncfz589ZWloa27t3L/vqq6/YpUuX2NatW1loaCiztbVlSkpKzNXVlc2ePZvt3r2b5eXlMalU2uHH1ZMlJCQwPp/Pdu3axTIzM9nMmTOZQCBgRUVF9bY/f/48U1ZWZuvXr2dCoZB9+umnTFVVlaWnp3Nt1q5dy/T09NihQ4fYtWvX2Lhx45iNjQ2rqKjoqMMinVB3j4+MMebv7894PB7T1dVlHh4eLDY2lj1+/JiVlpbWiY+lpaUsNzeXHTlyhK1cuZKlp6ezuLg4NmfOHObu7s6UlJSYtbU1mzJlCouOjmbXr19nYrFYIcfVU1F8JISQrqdLDyhfvHjBlJWV2cGDB+W2h4WFsXHjxtX7mpiYGKasrMwsLS2ZhYUFGzduHMvIyOCev3XrFgPA0tLS5F43dOhQ9sEHH7T1ITRJKpWyc+fOsYqKCvbkyRP21ltvMRMTE3bs2DG5E6bS0lJWUlLCTp8+zdasWcPeeustpq2tzVRUVNigQYPYxx9/zH799Vf25MkTGkAqWEtP8idMmMDGjBkjt83X15fNnj2bMdY5T/KJ4vWE+MgYY5cvX2ZPnjxh1dXVLDIykmlqarINGzaw58+f17nYdvnyZbZlyxYWHh7OzM3NmaqqKnN0dGRz5sxhP/74I7tz5w7FRwWj+EgIIV1Pp1k2pDUeP34MiURSp4CEiYkJsrOz632No6Mjdu3aBTc3Nzx9+hQbNmyAv78/MjMzYWFhgcLCQm4fL+9T9lxH4vF4XIVGdXV17Nu3D9u2bcOECRMwa9YsDB48GCkpKdz8R3V1da66YGhoKKKjo+Hv74/PP/+8w/tO6qqqqkJqair+9a9/cduUlJQQFBSEpKSkel+TlJSExYsXy20LDg7GoUOHAAB5eXkoLCxEUFAQ97yenh58fX2RlJQkt3g96Tl6QnwEILe8UmRkJAIDAzF16lScPn0as2bNQnp6OleBtaKigpv/uGXLFhw/fhw3b97Etm3bFNJ3Io/iIyGEdE1dekDZGn5+fvDz8+N+9vf3h5OTE3bs2IFVq1YpsGfNo6SkhPfffx9+fn4YOnQo4uPjMXr0aEyaNAnR0dFwcnKSWyctJCQEYrFYgT0mtbXmJL+wsLDRE/jOeJJPuqauHh95PB6GDx+OtLQ0DB48GBMmTMCoUaMwZMgQ/Otf/4KXlxfU1NS4OY9vvvlmh8/9JA2j+EgIIV1Tlx5QGhoaQllZGUVFRXLbi4qKYGpq2qx9qKqqwtPTEzdv3gQA7nVFRUVyi3sXFRXBw8OjbTreBgYMGID8/HwIBIJGKxUqKSmBz+d3YM8IIZ1BT46PxsbGSEtLg1gsrrP+5MuaWouXEEIIIY3r0lVe+Xw+vLy8cOrUKW6bVCrFqVOn5K6yN0YikSA9PZ07ObKxsYGpqancPp89e4aUlJRm77OjGBoaNln2nrRcSyoM7ty5E0OGDIG+vj709fURFBRUp31ERAR4PB54PB7Mzc0BAO+//75cm8ZO8k1NTRsdFNQ+yW/uPkn319Pjo5aWVpODSdJyFB8JIYS8rEsPKAFg8eLF2LlzJ+Li4pCVlYW5c+eirKyMW0stLCxMbj7G559/jhMnTuD27du4cuUKpk6dijt37uDdd98FUJMytXDhQnzxxRc4cuQI0tPTERYWBjMzM4wfP14Rh0g6UEuXWUhMTMTkyZNx+vRpJCUloU+fPhg1ahTu378v12706NHcMgweHh5y876aOsn38/OTO4EHgJMnT3Ltu9JJPulYFB9JW6L4SAghpF6KrgrUFrZs2cIsLS0Zn89nPj4+LDk5mXsuMDCQhYeHcz8vXLiQa2tiYsJef/11duXKFbn9SaVS9tlnnzETExOmpqbGRo4cyXJycjrqcIgCtbTC4MvEYjHT0dFhcXFx3Lbw8HAWEhLC/ZyQkMDU1NRYbGwsEwqFbNasWUwgELDCwkLGGGPTpk1jy5Yt49qfP3+eqaiosA0bNrCsrCwWGRlZb1l8gUDADh8+zK5fv85CQkKoLD5hjFF8JG2H4iMhhJD6dIsBJSFtoTXLLLzs2bNnTF1dnf3666/ctvDwcKanp8eMjIxY37592Zw5c9jatWubfZLPGGP79u1jffv2ZXw+n7m4uLBjx47JPU8n+YSQ9kTxkRBCSEN69IBy69atzMrKiqmpqTEfHx+WkpLSYNvAwEAGoM7j9ddf59qEh4fXeT44OLgjDoW0gfv37zMA7MKFC3LblyxZwnx8fJq1j7lz5zJbW1u5K98//fQTd2X84MGDzMnJiXl7e9OC6aRTo/hIaqP4SAghpCE9tqKLbC7I9u3b4evri40bNyI4OBg5OTkwNjau0/7AgQOoqqrifi4uLoa7uzveeecduXajR49GTEwM97Oamlr7HQTpVNauXYuEhAQkJibKVY6svc6Zq6sr3NzcYGdnh8TERIwcOVIRXSWkURQfSVuj+EgIId1Xly/K01pff/01Zs6cienTp8PZ2Rnbt2+HpqYmdu3aVW97AwMDmJqaco+TJ09CU1OzzgmTmpqaXDt9ff2OOBzSBl5lmYUNGzZg7dq1OHHiBNzc3Bpta2trC0NDQ24pBkI6G4qP5GUUHwkhhDSkRw4oq6qqkJqaiqCgIG6bkpISgoKCkJSU1Kx9fP/995g0aRK0tLTkticmJsLY2BiOjo6YO3cuiouL27TvPVlLytXHxsZypehlj5fXm2OMYfny5ejduzc0NDTw+uuvw8XFpcXLLKxfvx6rVq3C77//joEDBzZ5HH///TeKi4vl1vEjpLOg+Nh1tWeM1NPTg5aWFn755RfueYqPhBBCgB46oHz8+DEkEglMTEzktpuYmKCwsLDJ11+8eBEZGRlcKX2Z0aNHIz4+HqdOncK6detw5swZvPbaa5BIJG3a/56opeXqAUBXV5crRV9QUIA7d+7IPb9+/Xps3rwZ27dvR0pKCrS0tFBYWIhvv/222cssrFu3Dp999hl27doFa2trFBYWorCwEKWlpQCA0tJSLFmyBMnJycjPz8epU6cQEhICe3t7BAcHt8NvipBXQ/Gxa+qIGOng4IAffvgBO3fupPhICCHkfxQ9iVMmLi6OGRgYsMrKSrntISEhbOrUqW36Xq9aXGDWrFnM1dW1yXa3bt1iANgff/zR6r6SGi0tVx8TE8P09PQa3J9UKmWmpqbsyy+/5LaJRCKmpqbGIiIiml1h0MrKqt5iJJGRkYwxxsrLy9moUaOYkZERU1VVZVZWVmzmzJlcCXxCmoPiI2lKR8VIFRUV1qtXL4qPhBBCOJ2mKM8777yDDz74AEeOHOHm3Tx8+BDHjh3DiRMn2vS9XmUuSFlZGRISEvD55583+T6154JQcYHWk6Xg1b7y3ZwUvNLSUlhZWUEqlWLAgAFYs2YNXFxcAAB5eXkoLCyUS+vT09ODr68vdHV161ypl0lMTJT7OT8/v9G+a2ho4Pjx400cISGNo/hIGtORMdLf3x8eHh7YtGlTnf1RfCSEkJ6p06S8amhoYMqUKXIVAH/44QdYWlpi2LBhbfpefD4fXl5eLZ4rBwD79+/HixcvMHXq1Cbfh+aCtI3WpOA5Ojpi165dOHz4MH744QdIpVL4+/vj77//BgDuda1N6yOkI1F8JI2hGEkIIUSROs2AEgBmzpyJEydO4P79+wBqigZERESAx+O1+XstXrwYO3fubPZcOZnvv/8e48ePR69eveS201yQzsXPzw9hYWHw8PBAYGAgDhw4ACMjI+zYsUPRXSOkVSg+krZEMZIQQkhb6VQDSk9PT7i7uyM+Ph6pqanIzMxEREREu7zXxIkTsWHDBixfvhweHh64evUqfv/9d+5q7N27d1FQUCD3mpycHJw7dw4zZsyosz9lZWVcv34d48aNQ9++fTFjxgx4eXnh7Nmz3X6ttZZUFhw2bFidyoI8Hg9jxozh2shOkmUPc3NzAGhVCp6MqqoqPD09uVL0ste9yj4J6UgUH7um9o6PPB4PERERrU5TlqEYSQghpNUUPYnzZd988w3r27cve//999moUaMU3R3ShISEBMbn89muXbtYZmYmmzlzJhMIBKyoqKje9sXFxaygoIB7ZGRkMGVlZRYTE8O1CQ8PZ6NHj5ZrN2DAADZv3jyujUQiYebm5g0WnHiZWCxmjo6ObNGiRYyx/xWc2LBhA9fm6dOnTE1Njf3000+t+E0Q0v4oPnYtHRUfnzx5wnx8fChGEkIIUYhON6AUiURMU1OT8fl8lpCQoOjuyDlz5gwbO3Ys6927NwPADh482ORrTp8+zTw9PRmfz2d2dnZyJwYyW7duZVZWVkxNTY35+PiwlJSUtu98O2lpZcGX/ec//2E6OjqstLSU2xYeHs5CQkLk2iUkJDA1NTUWGxvLhEIhmzVrFhMIBFw1wGnTprFly5Zx7VeuXMmOHz/Obt26xVJTU9mkSZOYuro6y8zM5NqsXbuWCQQCdvjwYXb9+nUWEhLCbGxsWEVFRWt+FYS0u84cHxmjGPmyjoqPjFGMJIQQojidKuUVqKki99Zbb0FbWxvjx49XdHfklJWVwd3dHdHR0c1qn5eXhzFjxmD48OG4evUqFi5ciHfffVeuql1r1g7rLDpyAfSgoKAWpeCVlJRg5syZcHJywuuvv45nz57hwoULcHZ25tosXboU8+fPx6xZs+Dt7Y3S0lL8/vvvdRb3JqSz6MzxEaAYWVtHxsfi4uIWpylTjCSEENJmFD2irc+IESPY/PnzFd2NRqEZV9+XLl3KXFxc5LZNnDiRBQcHcz+/6hVsRXrV9epSUlIYgDp3G3766SfuivjBgweZk5MT8/b2ZmKxuE37T0hX1BXiI2MUIyk+EkII6Sk6zTqUQM0V08TERCQmJuKbb75RdHdeWVJSktzVaQAIDg7GwoULAbR+7bDu4vvvv4erqyt8fHzktk+aNIn7f1dXV7i5ucHOzg6JiYm0Xh3psbpbfAQoRjaG4iMhhJCuolOlvHp6eiIiIgLr1q2Do6OjorvzygoLC+tdw+vZs2eoqKho1dphnUlbLIBeX0XIl9VeAJ2Qnqq7xUege8dIio+EEEJ6ik41oMzPz8fTp0/x0UcfKborXdZff/2FN954A2ZmZuDxeDh06FCTr0lMTMSAAQOgpqYGe3t7xMbG1mlTX+l7WgCdkI5D8bFtdFSMvHr1KsVHQgghPUKnGlB2N6ampvVendbV1YWGhsYrXcFuSEcXxaAF0AkhrdXdY+SMGTMoPhJCCOn+FD2Js6tCMwtO9O/fX27b5MmT6xSceJW1w9qij69aFGPLli3M0tKS8fl85uPjw5KTk7m2gYGBLDw8XG7/2dnZDAA7ceJEnf6Ul5ezUaNGMSMjI6aqqsqsrKzYzJkzudL3hJCugWJkTYyk+EgIIaS7owFlCzx//pylpaWxtLQ0BoB9/fXXLC0tjd25c4cxxtiyZcvYtGnTuPa3b99mmpqabMmSJSwrK4tFR0czZWVl9vvvv3Ntmlo77FU052RpyJAhbMGCBXLbdu3axXR1dRljjL148YIpKyvX2U9YWBgbN27cK/eRENJ9UIz8H4qRhBBCeopOVeW1s7t8+TKGDx/O/bx48WIAQHh4OGJjY1FQUIC7d+9yz9vY2ODYsWNYtGgRNm3aBAsLC3z33XdyqUkTJ07Eo0ePsHz5chQWFsLDw0Nu7bD21lRRjJKSkgaLYmRnZ3dIHwkhXQPFSPk2FCMJIYT0BDSgbIFhw4aBMdbg8/UVahg2bBjS0tIa3e+8efMwb968V+0eIYQoFMVIQgghpOehAWUP11RRDGVl5TYvikEIIV0FxUhCCCGkcVTltYfz8/OTK2sPACdPnuTK2r/K0iCd2aNHj2Bqaoo1a9Zw2y5cuAA+n1/n90EI6bkoRlKMJIQQ0gRFT+IkbaurFcVQpGPHjjFVVVV26dIl9uzZM2Zra8sWLVqk6G4RQtoRxcjmoxhJCCGkOWhA2c2cPn2aAajzkJWmDw8PZ4GBgXVe4+Hhwfh8PrO1tWUxMTF19ttY6fuu7L333mN9+/ZlU6ZMYa6urqyyslLRXSKEtCOKkS1DMZIQQkhTeIw1UkGBkG6uoqIC/fv3x71795CamgpXV1dFd4kQQjoNipGEEEKaQnMoSY9269YtPHjwAFKpFPn5+YruDiGEdCoUIwkhhDSF7lCSHquqqgo+Pj7w8PCAo6MjNm7ciPT0dBgbGyu6a4QQonAUIwkhhDQHDShJj7VkyRL8/PPPuHbtGrS1tREYGAg9PT0cPXpU0V0jhBCFoxhJCCGkOSjllfRIiYmJ2LhxI3bv3g1dXV0oKSlh9+7dOHv2LLZt26bo7hFCiEJRjCSEENJcdIeSEEIIIYQQQkir0B1KQgghhBBCCCGtQgNKQgghhBBCCCGtQgNKQgghhBBCCCGtQgNKQgghhBBCCCGtQgNKQgghhBBCCCGtQgNKQgghhBBCCCGtQgNKQgghhBBCCCGtQgNKQgghhBBCCCGtQgNKQgghhBBCCCGtQgNKQgghhBBCCCGtQgNKQgghhBBCCCGtQgNKQgghhBBCCCGtQgNKQgghhBBCCCGtQgNKQgghhBBCCCGtQgNKQgghhBBCCCGtQgNKQgghhBBCCCGtQgNKQgghhBBCCCGtQgNKQgghhBBCCCGtQgNKQgghhBBCCCGtoqLoDhBCOo5EIkF1dbWiu0EIIaQTUlVVhbKysqK7QQjpYmhASUgPwBhDYWEhRCKRortCCCGkExMIBDA1NQWPx1N0VwghXQQNKAnpAWSDSWNjY2hqatKJAiGEEDmMMZSXl+Phw4cAgN69eyu4R4SQroIGlIR0cxKJhBtM9urVS9HdIYQQ0klpaGgAAB4+fAhjY2NKfyWENAsV5SGkm5PNmdTU1FRwTwghhHR2su8Kmm9PCGkuGlAS0kNQmishhJCm0HcFIaSlaEBJCCGEEEIIIaRVaEBJCCEviY2NhUAgUHQ3CCHdQGJiIng8HlXZJoR0W1SUhxDSaUVERCAuLg5AzfpolpaWCAsLwyeffAIVlfYLXxMnTsTrr7/ebvtvjtrHrqKiAgMDA7i5uWHy5MmIiIiAklLzrwfGxsZi4cKFdEL7CmR/j6ioKCxbtozbfujQIbz55ptgjHVYX2qnJGpqasLMzAwBAQGYP38+vLy8WrSvYcOGwcPDAxs3bmzjXrYdybUVHfp+yu7Nf7+m0kMjIyMxbNiwV+sQIYR0cnSHkhDSqY0ePRoFBQXIzc3Fhx9+iBUrVuDLL7+st21VVVWbvKeGhgaMjY3bZF+vQnbs+fn5+O233zB8+HAsWLAAY8eOhVgsVnT3ehx1dXWsW7cOJSUliu4KYmJiUFBQgMzMTERHR6O0tBS+vr6Ij49XdNd6lIKCAu6xceNG6Orqym376KOPFNa3toqHhBDSFBpQEkI6NTU1NZiamsLKygpz585FUFAQjhw5AqDmrtH48eOxevVqmJmZwdHREQBw7949TJgwAQKBAAYGBggJCUF+fj4A4MSJE1BXV69zt27BggUYMWIEgPpTXrdt2wY7Ozvw+Xw4Ojpi9+7d3HP5+fng8Xi4evUqt00kEoHH4yExMREAUFJSgtDQUBgZGUFDQwMODg6IiYlp1rGbm5tjwIAB+OSTT3D48GH89ttviI2N5dp9/fXXcHV1hZaWFvr06YP33nsPpaWlAGrS7aZPn46nT5+Cx+OBx+NhxYoVAIDdu3dj4MCB0NHRgampKaZMmcKtQUfqCgoKgqmpKaKiohptd+7cOQwZMgQaGhro06cPPvjgA5SVlQEAtm7div79+3NtDx06BB6Ph+3bt8u9z6efftroe8gWn7e2tsaoUaPw888/IzQ0FPPmzeMGvMXFxZg8eTLMzc2hqakJV1dX/PTTT9w+IiIicObMGWzatIn7bOTn50MikWDGjBmwsbGBhoYGHB0dsWnTphb/vnoCU1NT7qGnpwcejye3TVtbm2ubmpqKgQMHQlNTE/7+/sjJyZHb1+HDhzFgwACoq6vD1tYWK1eulLtwdPfuXYSEhEBbWxu6urqYMGECioqKuOdXrFgBDw8PfPfdd7CxsYG6ujri4+PRq1cvvHjxQu69xo8fj2nTprXTb4UQ0tPQgJIQ0iJ5GQ+RfOwG8jIUM/DQ0NCQu/J+6tQp5OTk4OTJkzh69Ciqq6sRHBwMHR0dnD17FufPn4e2tjZGjx6NqqoqjBw5EgKBAL/88gu3D4lEgr179yI0NLTe9zx48CAWLFiADz/8EBkZGZg9ezamT5+O06dPN7vfn332GYRCIX777TdkZWVh27ZtMDQ0bPHxjxgxAu7u7jhw4AC3TUlJCZs3b0ZmZibi4uLw559/YunSpQAAf3//OndOZHdNqqursWrVKly7dg2HDh1Cfn4+IiIiWtwnRZEyKdJK0yBl0g55P2VlZaxZswZbtmzB33//XW+bW7duYfTo0Xjrrbdw/fp17N27F+fOncO8efMAAIGBgRAKhXj06BEA4MyZMzA0NOQuPFRXVyMpKalVaZKLFi3C8+fPcfLkSQBAZWUlvLy8cOzYMWRkZGDWrFmYNm0aLl68CADYtGkT/Pz8MHPmTO6z0adPH0ilUlhYWGD//v0QCoVYvnw5PvnkE+zbt6/FfSL/8+9//xtfffUVLl++DBUVFfzzn//knjt79izCwsKwYMECCIVC7NixA7GxsVi9ejUAQCqVIiQkBE+ePMGZM2dw8uRJ3L59GxMnTpR7j5s3b+KXX37BgQMHcPXqVbzzzjuQSCTcRTigZo3JY8eOyb0/IYS8CppDSQhptgObU3A8/hr3c3CYO/7xgW+HvDdjDKdOncLx48cxf/58bruWlha+++478Pl8AMAPP/wAqVSK7777jpvfFBMTA4FAgMTERIwaNQqTJk3Cnj17MGPGDAA1g1KRSIS33nqr3vfesGEDIiIi8N577wEAFi9ejOTkZGzYsAHDhw9vVv/v3r0LT09PDBw4EABgbW3dqt8DAPTr1w/Xr1/nfl64cCH3/9bW1vjiiy8wZ84cfPPNN+Dz+XJ3TmqrfUJpa2uLzZs3w9vbG6WlpXJ3Vjqro0+OYuWdlVhhtQJv9HqjQ97zzTffhIeHByIjI/H999/XeT4qKgqhoaHc38TBwQGbN29GYGAgtm3bhv79+8PAwABnzpzB22+/jcTERHz44YfcHcCLFy+iuroa/v7+Le5bv379AIC7G29ubi6Xcjl//nwcP34c+/btg4+PD/T09MDn86GpqSn32VBWVsbKlSu5n21sbJCUlIR9+/ZhwoQJLe4XqbF69WoEBgYCAJYtW4YxY8agsrIS6urqWLlyJZYtW4bw8HAANf8eV61ahaVLlyIyMhKnTp1Ceno68vLy0KdPHwBAfHw8XFxccOnSJXh7ewOoSXONj4+HkZER975TpkxBTEwM3nnnHQA1MdLS0pLmdhJC2gzdoSSENEtexkO5wSQAHI+/1u53Ko8ePQptbW2oq6vjtddew8SJE7mUTQBwdXXlBpMAcO3aNdy8eRM6OjrQ1taGtrY2DAwMUFlZiVu3bgEAQkNDkZiYiAcPHgAAfvzxR4wZM6bByq5ZWVkICAiQ2xYQEICsrKxmH8fcuXORkJAADw8PLF26FBcuXGj2a1/GGJMrBvLHH39g5MiRMDc3h46ODqZNm4bi4mKUl5c3up/U1FS88cYbsLS0hI6ODneye/fu3Vb3raOImRjfFnwLANhRsANi1nFzStetW4e4uLh6//7Xrl1DbGws99nT1tZGcHAwpFIp8vLywOPxMHToUCQmJkIkEkEoFOK9997DixcvkJ2djTNnzsDb25tbXL4lZIWBZJ8NiUSCVatWwdXVFQYGBtDW1sbx48eb9feNjo6Gl5cXjIyMoK2tjW+//bZLfC46Mzc3N+7/e/fuDQBcivm1a9fw+eefy31uZHeOy8vLkZWVhT59+nCDSQBwdnaGQCCQ+xxaWVnJDSYBYObMmThx4gTu378PoCalPyIigtabJIS0GRpQEkKapeiOqEXb28rw4cNx9epV5ObmoqKiAnFxcdDS0uKer/3/AFBaWgovLy9cvXpV7nHjxg1MmTIFAODt7Q07OzskJCSgoqICBw8ebDDdtTlkFVdrV/qsrq6Wa/Paa6/hzp07WLRoER48eICRI0e2umBHVlYWbGxsANTcjRo7dizc3Nzwyy+/IDU1FdHR0QAaL8pRVlaG4OBg6Orq4scff8SlS5dw8ODBJl/XWfz3yX9RUFUAACioKsBvT37rsPceOnQogoOD8a9//avOc6WlpZg9e7bcZ+/atWvIzc2FnZ0dgJrKqomJiTh79iw8PT2hq6vLDTLPnDnDDexbSjawkH02vvzyS2zatAkff/wxTp8+jatXryI4OLjJv29CQgI++ugjzJgxAydOnMDVq1cxffr0LvG56MxUVVW5/5cN5qTSmnTt0tJSrFy5Uu5zk56ejtzcXKirqzf7PV6OhwDg6ekJd3d3xMfHIzU1FZmZmV0qtZ0Q0vlRyishpFlMrAQt2t5WtLS0YG9v3+z2AwYMwN69e2FsbAxdXd0G24WGhuLHH3+EhYUFlJSUMGbMmAbbOjk54fz581w6GgCcP38ezs7OAMDdESgoKICnpycAyBXokTEyMkJ4eDjCw8MxZMgQLFmyBBs2bGj2sQHAn3/+ifT0dCxatAhAzV1GqVSKr776ihvYvjzXjc/nQyKRyG3Lzs5GcXEx1q5dy931uHz5cov6oiiyu5M88MDAwAMPOwp24DWD16DC65ivtbVr18LDw4MrBCUzYMAACIXCRj+zgYGBWLhwIfbv38+lHQ4bNgx//PEHzp8/jw8//LBVfZLNlQ0KCgJQ8xkNCQnB1KlTAdQMXm7cuMF9boH6Pxvnz5+Hv78/l+INgLu7T9rHgAEDkJOT0+DnxsnJCffu3cO9e/e4f69CoRAikUju79mQd999Fxs3bsT9+/cRFBQkd6eTEEJeFd2hJIQ0i01/YwSHucttCw53h01/xS+vUVtoaCgMDQ0REhKCs2fPIi8vD4mJifjggw/kCqmEhobiypUrWL16Nd5++22oqak1uM8lS5YgNjYW27ZtQ25uLr7++mscOHCAu8OooaGBQYMGYe3atcjKysKZM2fqVOlcvnw5Dh8+jJs3byIzMxNHjx6Fk5NTo8fy4sULFBYW4v79+7hy5QrWrFmDkJAQjB07FmFhYQAAe3t7VFdXY8uWLbh9+zZ2794tVzEUqJlXWVpailOnTuHx48coLy+HpaUl+Hw+97ojR45g1apVLfpdK8ql55dQUFUAhpo7wgwMBVUFuPy84wbErq6uCA0NxebNm+W2f/zxx7hw4QLmzZvH3Vk/fPgwV5QHqEl91NfXx549e+QGlIcOHcKLFy/qpFfXRyQSobCwEHfu3MHJkyfx9ttvY8+ePdi2bRuXuu3g4ICTJ0/iwoULyMrKwuzZs+WqggI1n42UlBTk5+fj8ePHkEqlcHBwwOXLl3H8+HHcuHEDn332GS5duvRqvzDSqOXLlyM+Ph4rV65EZmYmsrKykJCQwMWRoKAg7jN35coVXLx4EWFhYQgMDOTmZTdmypQp+Pvvv7Fz504qxkMIaXuMENKtVVRUMKFQyCoqKtpkf7fTi1jS0Rx2O72oTfbXmPDwcBYSEtLi5wsKClhYWBgzNDRkampqzNbWls2cOZM9ffpUrp2Pjw8DwP7880+57TExMUxPT09u2zfffMNsbW2Zqqoq69u3L4uPj5d7XigUMj8/P6ahocE8PDzYiRMnGAB2+vRpxhhjq1atYk5OTkxDQ4MZGBiwkJAQdvv27UaPDQADwFRUVJiRkRELCgpiu3btYhKJRK7t119/zXr37s00NDRYcHAwi4+PZwBYSUkJ12bOnDmsV69eDACLjIxkjDG2Z88eZm1tzdTU1Jifnx87cuQIA8DS0tIa7FdnUC4uZ78+/pUdeHSAe/z6+FdWLi5vt/es77OWl5fH+Hw+e/mr9OLFi+z//u//mLa2NtPS0mJubm5s9erVcm1CQkKYiooKe/78OWOMMYlEwvT19dmgQYOa7IvscwGAqaurMzs7OxYeHs5SU1Pl2hUXF7OQkBCmra3NjI2N2aeffsrCwsLkjiMnJ4cNGjSIaWhoMAAsLy+PVVZWsoiICKanp8cEAgGbO3cuW7ZsGXN3d2/+L6wHqi9uMMbY6dOn6/x7TEtL437fMr///jvz9/dnGhoaTFdXl/n4+LBvv/2We/7OnTts3LhxTEtLi+no6LB33nmHFRYWcs9HRkY2+jeaNm0aMzAwYJWVlY0eR1t/ZxBCuj8eY7Um/RBCup3Kykrk5eVx65IRQgjpeUaOHAkXF5c6d9VfRt8ZhJCWojmUhBBCCCHdVElJCRITE5GYmIhvvvlG0d0hhHRDNKAkhBBCCOmmPD09UVJSgnXr1tUpIkUIIW2BBpSEEEIIId1Ufn6+ortACOnmqMorIYQQQgghhJBWoQElIT0E1d8ihBDSFPquIIS0FA0oCenmVFVVAQDl5eUK7gkhhJDOTvZdIfvuIISQptAcSkK6OWVlZQgEAjx8+BAAoKmpCR6Pp+BeEUII6UwYYygvL8fDhw8hEAigrKys6C4RQroIWoeSkB6AMYbCwkKIRCJFd4UQQkgnJhAIYGpqShceCSHNRgNKQnoQiUSC6upqRXeDEEJIJ6Sqqkp3JgkhLUYDSkIIIYQQQgghrUJFeQghhBBCCCGEtAoNKAkhhBBCCCGEtAoNKAkhhBBCCCGEtAoNKAkhhBBCCCGEtAoNKAkhhBBCCCGEtAoNKAkhhBBCCCGEtAoNKAkhhBBCCCGEtMr/A7QUURN06Q1JAAAAAElFTkSuQmCC\n"
- },
- "metadata": {},
- "output_type": "display_data"
- }
- ],
- "source": [
- "# Change the viewing angle to +20 elevation, +60 azimuth\n",
- "fig = plot_results_panel_3d(cycle_mlr,\n",
- " wrap=3,\n",
- " subplot_kw=dict(figsize=(12,6)), # Panel configurations\n",
- " scatter_previous_kw=dict(color='rebeccapurple', marker='o', s=10), # Previous data point\n",
- " scatter_current_kw=dict(color='limegreen', marker='^', s=10, alpha=1), # Current cycle data\n",
- " surface_kw=dict(color='orange'), # Theory surface\n",
- " view=(20, 60), # Degrees (elevation, azimuth)\n",
- " );\n"
- ],
- "metadata": {
- "collapsed": false
- }
- }
- ],
- "metadata": {
- "kernelspec": {
- "display_name": "Python 3",
- "language": "python",
- "name": "python3"
- },
- "language_info": {
- "codemirror_mode": {
- "name": "ipython",
- "version": 2
- },
- "file_extension": ".py",
- "mimetype": "text/x-python",
- "name": "python",
- "nbconvert_exporter": "python",
- "pygments_lexer": "ipython2",
- "version": "2.7.6"
- }
- },
- "nbformat": 4,
- "nbformat_minor": 0
-}
diff --git a/docs/cycle/cycle_scoring.ipynb b/docs/cycle/cycle_scoring.ipynb
deleted file mode 100644
index ee048bd39..000000000
--- a/docs/cycle/cycle_scoring.ipynb
+++ /dev/null
@@ -1,420 +0,0 @@
-{
- "cells": [
- {
- "cell_type": "markdown",
- "source": [
- "# Scoring\n",
- "This notebook shows how to use autora.cycle scoring tools.\n",
- "\n",
- "We'll be using the [Iris toy dataset](https://scikit-learn.org/stable/datasets/toy_dataset.html#iris-plants-dataset) from sklearn to create a simple logistic regression cycle. This model will classify samples into different species of irises based on flower measurements. The dataset will be split between a training set and test set; the test set will be withheld for the scoring metrics."
- ],
- "metadata": {
- "collapsed": false
- }
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "outputs": [],
- "source": [
- "# Uncomment the following line when running on Google Colab\n",
- "# !pip install autora"
- ],
- "metadata": {
- "collapsed": false
- }
- },
- {
- "cell_type": "code",
- "execution_count": 1,
- "metadata": {
- "collapsed": true
- },
- "outputs": [],
- "source": [
- "import random\n",
- "import numpy as np\n",
- "from sklearn.linear_model import LogisticRegression\n",
- "from sklearn.model_selection import train_test_split\n",
- "import sklearn.pipeline as skp\n",
- "from sklearn.preprocessing import StandardScaler\n",
- "from sklearn.metrics import f1_score, accuracy_score, precision_score, recall_score, roc_auc_score\n",
- "from sklearn.datasets import load_iris\n",
- "from functools import partial\n",
- "\n",
- "from autora.variable import VariableCollection, Variable\n",
- "from autora.experimentalist.sampler import random_sampler\n",
- "from autora.experimentalist.pipeline import Pipeline\n",
- "from autora.cycle import Cycle, cycle_default_score, cycle_specified_score, plot_cycle_score"
- ]
- },
- {
- "cell_type": "markdown",
- "source": [
- "### Importing Data\n",
- "Data is split where 33% is reserved for testing."
- ],
- "metadata": {
- "collapsed": false
- }
- },
- {
- "cell_type": "code",
- "execution_count": 2,
- "outputs": [],
- "source": [
- "# Import and split data\n",
- "X, y = load_iris(return_X_y=True)\n",
- "X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=.33, random_state=1)"
- ],
- "metadata": {
- "collapsed": false
- }
- },
- {
- "cell_type": "markdown",
- "source": [
- "### Cycle Setup\n",
- "1. **Theorist** - Uses sklearn's `Pipeline` to create a logistic regression estimator with a scaling pre-processing step.\n",
- "2. **Experimentalist** - Uses autora's `Pipeline` to create a random sampling experimentalist with the training dataset's independent variables (`X_train`) as the condition pool.\n",
- "3. **Experiment Runner** - Creates an oracle that uses the full dataset to match experimental independent variables (flower measurements) and returns the dependent variable (species)."
- ],
- "metadata": {
- "collapsed": false
- }
- },
- {
- "cell_type": "code",
- "execution_count": 3,
- "outputs": [
- {
- "data": {
- "text/plain": ""
- },
- "execution_count": 3,
- "metadata": {},
- "output_type": "execute_result"
- }
- ],
- "source": [
- "# Set up cycle and run\n",
- "# Variable Metadata\n",
- "random.seed(1)\n",
- "study_metadata = VariableCollection(\n",
- " independent_variables=[\n",
- " Variable(name='sepal length', units='cm', value_range=(4.3, 7.9)),\n",
- " Variable(name='sepal width', units='cm', value_range=(2.0, 4.4)),\n",
- " Variable(name='petal length', units='cm', value_range=(1.0, 6.9)),\n",
- " Variable(name='petal width', units='cm', value_range=(0.1, 2.5)),\n",
- " ],\n",
- " dependent_variables=[Variable(name=\"species\", allowed_values=[0,1,2])],\n",
- ")\n",
- "\n",
- "# Theorist\n",
- "clf = skp.Pipeline([('scaler', StandardScaler()), ('lr', LogisticRegression())])\n",
- "\n",
- "# Experimentalist\n",
- "# Note that the pool is only the training split\n",
- "experimentalist = Pipeline(\n",
- " [\n",
- " (\"pool\", X_train),\n",
- " (\"sampler\", random_sampler),\n",
- " ],\n",
- " params={\n",
- " \"sampler\": {\"n\": 5},\n",
- " },\n",
- " )\n",
- "\n",
- "# Experiment Runner\n",
- "def oracle(xs, X_truth, y_truth):\n",
- " l_idx = []\n",
- "\n",
- " for condition in xs:\n",
- " l_idx.append(np.where((X_truth[:,0] == condition[0]) &\n",
- " (X_truth[:,1] == condition[1]) &\n",
- " (X_truth[:,2] == condition[2]) &\n",
- " (X_truth[:,3] == condition[3]))[0][0]\n",
- " )\n",
- "\n",
- " l_return = y_truth[l_idx].ravel()\n",
- " return l_return\n",
- "\n",
- "experiment_runner = partial(oracle, X_truth=X, y_truth=y)\n",
- "\n",
- "cycle = Cycle(\n",
- " metadata=study_metadata,\n",
- " theorist=clf,\n",
- " experimentalist=experimentalist,\n",
- " experiment_runner=experiment_runner\n",
- ")\n",
- "\n",
- "# Run cycle 20 times\n",
- "cycle.run(20)"
- ],
- "metadata": {
- "collapsed": false
- }
- },
- {
- "cell_type": "markdown",
- "source": [
- "### Scoring Metrics\n",
- "We can score the models in two ways:\n",
- "1. Estimator's default scoring metric - Sklearn estimators have a default scoring method.\n",
- " -`LogisticRegression()` default is [accuracy_score](https://scikit-learn.org/stable/modules/generated/sklearn.metrics.accuracy_score.html#sklearn.metrics.accuracy_score)\n",
- "2. Scoring functions - Sklearn has many available [scoring functions](https://scikit-learn.org/stable/modules/model_evaluation.html#the-scoring-parameter-defining-model-evaluation-rules). It is up to the user to determine what is compatible with their model.\n",
- "\n",
- "Autora has two functions to return scoring metrics of each cycle:\n",
- "1. `cycle_default_score` - Uses the estimator's default\n",
- "2. `cycle_specified_score` - Uses the one of Sklearn's scoring functions\n",
- "\n"
- ],
- "metadata": {
- "collapsed": false
- }
- },
- {
- "cell_type": "code",
- "execution_count": 4,
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "Default scorer - accuracy: [0.74, 0.8, 0.84, 0.86, 0.88, 0.84, 0.84, 0.84, 0.92, 0.94, 0.9, 0.92, 0.96, 0.96, 0.96, 0.96, 0.96, 0.98, 0.96, 0.96]\n",
- "\n",
- "Specified scorer - accuracy: [0.74, 0.8, 0.84, 0.86, 0.88, 0.84, 0.84, 0.84, 0.92, 0.94, 0.9, 0.92, 0.96, 0.96, 0.96, 0.96, 0.96, 0.98, 0.96, 0.96]\n",
- "\n",
- "Specified scorer - precision: [0.77, 0.82, 0.85, 0.87, 0.9, 0.87, 0.87, 0.86, 0.93, 0.94, 0.91, 0.93, 0.96, 0.96, 0.96, 0.96, 0.96, 0.98, 0.96, 0.96]\n"
- ]
- }
- ],
- "source": [
- "results_default = cycle_default_score(cycle, X_test, y_test)\n",
- "print(f'Default scorer - accuracy: {results_default}\\n')\n",
- "\n",
- "results_specified_accuracy = cycle_specified_score(accuracy_score, cycle, X_test, y_test)\n",
- "print(f'Specified scorer - accuracy: {results_specified_accuracy}\\n')\n",
- "\n",
- "results_specified_precision = cycle_specified_score(precision_score, cycle, X_test, y_test, average='weighted', zero_division=0)\n",
- "print(f'Specified scorer - precision: {np.around(results_specified_precision, 2).tolist()}')"
- ],
- "metadata": {
- "collapsed": false
- }
- },
- {
- "cell_type": "markdown",
- "source": [
- "Note that the \"default scorer\" and \"specified scorer 1\" results should be the same because the `LogisticRegression` estimator's default is the `accuracy_score` function."
- ],
- "metadata": {
- "collapsed": false
- }
- },
- {
- "cell_type": "markdown",
- "source": [
- "### Plotting\n",
- "These scores can be plotted using autora's `plot_cycle_score`.\n",
- "* The plotter will use the estimator's default scorer unless a `scorer` keyword is supplied with a sklearn scoring function.\n",
- "* Additional parameters for scoring functions are supplied with the `scorer_kw` as a dictionary.\n",
- "\n",
- "Below are several examples."
- ],
- "metadata": {
- "collapsed": false
- }
- },
- {
- "cell_type": "code",
- "execution_count": 5,
- "outputs": [
- {
- "data": {
- "text/plain": "",
- "image/png": "iVBORw0KGgoAAAANSUhEUgAAAdMAAAEmCAYAAAA5oXoHAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8o6BhiAAAACXBIWXMAAA9hAAAPYQGoP6dpAAA7SElEQVR4nO3deVxU9f4/8NfMwDAsAiK7oggiqCEaCuFSXUVBy8zrNbJFxbT0at3Ccim39JemFVcrc8sF9VrozcwWMSOXa6AoqGmisoggsisMi2wz5/cHMsVXVGAGzszwej4e83hcz5z5zPs8LvHinPM5n7dEEAQBRERE1GJSsQsgIiIydAxTIiIiLTFMiYiItMQwJSIi0hLDlIiISEsMUyIiIi0xTImIiLTEMCUiItISw7QRgiBAqVSC61kQEVFTMEwbUVpaChsbG5SWlopdChERGQCGKRERkZYYpkRERFpimBIREWmJYUpERKQlhikREZGWGKZERERaYpgSERFpiWFKRESkJYYpERG1WL6yEjN2JuLfh69CrW6/q8aZiF0AEREZpqxbFXhpyylcL6pAzB+5yLpVgdX/6AsTWfs7T2t/R0xERFpLzS/DhA3xuF5UASdrM8ikEuw7m41Zu5NQVasSu7w2xzAlIqJmuZhdgrCN8chVVqKHoxW+mzUE6198FHKZFIf+yMO0qDOoqK4Vu8w2xTAlIqImS7x+CxM3n0RReTUe6WyNPa8FwdlGgZF9nLF1ykCYm8rwv5RCTNqSgJI7NWKX22YYpkRE1CT/SynAS18moLSyFgPdO2L39MdgZynXvD/Eyx67pgXCWmGCM9dv44XNJ1FUViVixW2HYUpERA916I9cvLL9DO7UqPB4TwfsmBoIa4XpPfv5d+uIr159DJ0s5fjjphLPbYxHbkmlCBW3LYYpERE90Ldnb+Cf/0lCtUqNUY84Y/Mkf5jLZffdv4+rDfbMCIKLjQJpBeWYsDEOmUUVbVhx22OYEhHRfe06eR0Re85DpRYw/tEu+Gxif5iZ3D9I63k6WGHvjCB062SBrFt38I8NcbiaV9oGFYuDYUpERI1afzQNC/dfhCAAk4O64aNmPkPapaMF9r4WBG+nDsgvrULYxnhcuFHSihWLh2FKREQNCIKAjw5dxqqYywCAWX/zxNJn+kAqlTR7LEdrBaJfewx+XWxwu6IGEzefRMK1W7ouWXQMUyIi0lCrBSw98AfWHUkDAMwL9cE7IT6QSJofpPVsLeT4z/THENjdDmVVtZi09RSOXsnXVcl6gWFKREQAgFqVGu/893dExV+HRAIsf/YRzHzSUydjW5mZIGpqAIb5OKKyRo3pO87gpws5OhlbHzBMiYgIVbUqvP7VWXyTdAMyqQSRz/nh5ce66fQ7FKYybHjJH0/1dUGNSsDs3UnYeyZLp98hFoYpEVE7d6dahek7EnHwYi7kMim+ePFRjOvfpVW+S24ixafP90fYADeoBeCd//6O7b9da5XvaksMUyKidkxZWYNJW0/h+NUCmJvKsGXKAIT0cW7V75RJJfhwvC+mDu4OAFj6/SV8/msKBMFwW7gxTImI2qlb5dV4YfNJnM64jQ4KE+yaFoChXg5t8t0SiQSLnu6Ffw33AgB8/PNVfHjwssEGKvuZEpFRySm5g/NZxWKXoffUAvDvw1eRkl8GO0s5dkwNwCOdbdq0BolEgrdG9EQHhQn+34/J2Hg8HbcrqjHMx1En40slEoxs5bPsehLBUP8MaEVKpRI2NjYoKSmBtbW12OUQURPdqVZh2CdHkdMO1oLVFWdrBXZNC0QPRytR6/gqIRPvfnsBukwkc1MZkpeH6m7AB+CZKREZje1xGcgpqYSNuSm8RA4HQ+BobYYFo3rBzc5C7FIwMaAr7CzliIrLQHWtWidjmpm23Z1Mnpk2gmemRIanpKIGQ1f/CmVlLT6Z4Ifx/q0zG5WoMZyARERGYePxNCgra9HTyQrP9u8sdjnUzjBMicjg5SsrsfXus4pvj/SGrAVryBJpQ/QwXbduHdzd3aFQKBAYGIiEhIT77ltTU4Nly5bB09MTCoUCfn5+iImJabDP0qVLIZFIGrx8fHxa+zCISESf/pqCyho1+ne1xYjeTmKXQ+2QqGEaHR2NiIgILFmyBElJSfDz80NISAjy8xtfAHnhwoXYuHEjPvvsM1y6dAkzZszAuHHjcPbs2Qb79enTBzk5OZrXiRMn2uJwiEgE14vK8XVC3ZJ0c7VckJ2opUQN08jISEyfPh3h4eHo3bs3NmzYAAsLC2zdurXR/Xfu3Il3330Xo0ePhoeHB2bOnInRo0fjk08+abCfiYkJnJ2dNS97e/u2OBwiEkHk4auoVQt4vKcDgjw7iV0OtVOihWl1dTUSExMRHBz8ZzFSKYKDgxEfH9/oZ6qqqqBQKBpsMzc3v+fMMyUlBa6urvDw8MCLL76IzMzMB9ZSVVUFpVLZ4EVE+u/STSUOnL8JAJgb4i1yNdSeiRamhYWFUKlUcHJqeH/DyckJubm5jX4mJCQEkZGRSElJgVqtxuHDh7Fv3z7k5PzZxicwMBDbt29HTEwM1q9fj2vXrmHo0KEoLS29by0rV66EjY2N5uXm5qabgySiVvXxz1cgCMBTfV3afPUeor8SfQJSc6xduxZeXl7w8fGBXC7H7NmzER4eDqn0z8MYNWoUJkyYgL59+yIkJAQ//fQTiouLsWfPnvuOu2DBApSUlGheWVnG0RKIyJidzriFXy/nQyaVYM6InmKXQ+2caGFqb28PmUyGvLy8Btvz8vLg7Nz4WooODg7Yv38/ysvLcf36dVy+fBlWVlbw8PC47/fY2tqiZ8+eSE1Nve8+ZmZmsLa2bvAiIv0lCAJWHbwMAHhugBs8HLjaEYlLtDCVy+Xw9/dHbGysZptarUZsbCyCgoIe+FmFQoHOnTujtrYW33zzDcaOHXvffcvKypCWlgYXFxed1U5E4jpyJR9nrt+GmYlU03WESEyiXuaNiIjA5s2bERUVheTkZMycORPl5eUIDw8HAEyaNAkLFizQ7H/q1Cns27cP6enp+N///ofQ0FCo1WrMnTtXs8/bb7+NY8eOISMjA3FxcRg3bhxkMhkmTpzY5sdHRLqnVgtYHXMFADBlkDucbRQP+QRR6xN1ofuwsDAUFBRg8eLFyM3NRb9+/RATE6OZlJSZmdngfmhlZSUWLlyI9PR0WFlZYfTo0di5cydsbW01+9y4cQMTJ05EUVERHBwcMGTIEJw8eRIODm3To4+IWtf3v9/E5dxSdFCYYOaTnmKXQwSAC903igvdE+mn6lo1giOPIfNWBd4e2ROzh/ESL+kHg5rNS0TtW/SZLGTeqoC9lRnCB3cXuxwiDYYpUTtz/GoBXtl+GhdulIhdSrNUVNfi09gUAMDrw3rA0oztmEl/8KeRqB358fcc/Ovrs6hVC8i6XYGD/3rcYDqsbI/LQEFpFbp0NMfEgK5il0PUAM9MidqJPaez8PpXSahV102TuJpXhu/OZYtcVdOUVNRgw9E0AMCckT0hN+GvLtIv/Ikkage2nriGud/8DrUATAxwwzt317GNPHwV1bVqkat7uPXH6hp/ezt1wDN+bPxN+odhSmTEBEHAp7EpWPbDJQDA9KHdsWKcL6YO7g7HDma4cfsOvkp4cCMIseUpK7E9rq7x9zshbPxN+olhSmSkBEHAyoOXEXn4KgAgYkRPvDu6FyQSCczlMrx+d+Wgz35NQXlVrZilPtCnsXWNv/27dcTwXo5il0PUKIYpkRFSqQW8++1FbDqeDgBY9HRvvDHcq0Hj7OcHuqFbJwsUllVj22/XxCr1gTIKyxF9ur7xtzcbf5PeYpgSGZkalRpvRZ/DVwmZkEqA1eP74pUh9z6TaSqTIuJut5WNx9Jxu7y6rUt9qPrG3096OyDQg42/SX8xTImMSGWNCjN3JeLA+ZswkUrw6cT+eG7g/fvzjunril4u1iitqsX6Y2ltWOnD/XGzRNP4+x02/iY9xzAlMhLlVbWYuv00fknOh5mJFJsnDcDTfV0f+BmpVIK5d4MqKi4DOSV32qLUJvn4UN1i9mP8XNHHlY2/Sb8xTImMQElFDV7acgpxaUWwlMsQNTUAf/Np2mSdJ70dEOBuh6patWaFIbElXLuFI1cKYMLG32QgGKZEBq6gtAphm+JxNrMYNuam+M/0x/BYM+4vSiQSzA2tOzvdc+YG0gvKWqvUJhEEAatj7jb+HugGd3tLUeshagqGKZEByy6+g7CN8bicWwp7KzNEv/YY+rnZNnucAe52GO7jCJVawCd3H6URy6+X2fibDA/DlMhAXSssx4T1cUgvLEdnW3PsnREEH+eWtwx8O8QbEknd+r0Xs8VZBF+tFvDR3Xul4YO7w8majb/JMDBMiQxQco4SEzbE42ZJJTzsLbF3RhC6a3k5tJeLNcb61U1YWn030NragfN/afz9BBt/k+FgmBIZmLOZt/H8ppMoLKtCLxdr7JkRBFdbc52MHTHCGyZSCY5fLUB8WpFOxmyq6lo1PjlcF+IznvCEjYVpm34/kTYYpkQGJC6tEC9+eQold2rwaFdbfD39Mdhbmels/K6dLDTtzVYfugxBEHQ29sNEn85E1q07cOhghvDB7m32vUS6wDAlMhCxyXmYsu00KqpVGNyjE3a+EtgqZ2+vD+sBc1MZzmYW4/ClPJ2P35iK6lqsjU0FALwxrAcs5Gy1TIaFYUpkAEru1GD27rOorlUjuJcTtkweCEuz1gkcR2sFpg5xBwB8dOgKVOrWPTutqlVhzp7zKCyrQlc7C4QNZONvMjwMUyIDEJ9WhDs1KnS3t8T6lx6FwlTWqt/36uOesDE3RUp+Gfafbb0G4neqVZi+IxEHL+ZCLpPi/z37CBt/k0HiTy2RAfgttRAA8LiXPUxlrf+frY25KWY+WTebNvLwVVTVqnT+HcrKGkzaegrHrxbA3FSGLVMG4PGeDjr/HqK2wDAlMgD1YTq4h32bfefkIHc4djBDdvEdfHVKtw3Eb5VX44XNJ3E64zY6KEywa1oAhnoxSMlwMUyJ9Fx28R2kF5ZDKgEe82y7NmTmchn+FVzfQDwVZTpqIJ6nrETYxnhczFbCzlKOr6Y/Bv9udjoZm0gsDFMiPVd/VurnZgtrRds+e/ncADe4d7JAUXk1tp7QvoF41q0KTNgQj5T8MjhbK7DntSA80pkdYcjwMUyJ9Fzc3TAd0oaXeOuZyqSIGFm3CP7m4+m4pUUD8ZS8UvxjQxwyb1WgWycL7J0RhB6OVroqlUhUDFMiPSYIAk6k1q1ENMiz7cMUAJ72dUHv+gbiR1NbNMbF7BKEbTqJPGUVejpZYe9rQXCzs9BxpUTiYZgS6bGreWUoLKuCwlSKR7vZilKDVPpni7ao+OvNbiB+OuMWJm46iVvl1ejbxQbRrwbBkQvYk5FhmBLpsRN3L/EGdO8EM5PWfbb0QZ7o6YCA7naorlVj7S9NbyB+/GoBXt5yCqVVtQjobof/TAtER0t5K1ZKJA6GKZEe+01zv7TtZvE2RiKRYN7ds9O9iTeQ1oQG4jEXczEt6gwqa9R40tsBUeEB6NDGE6iI2grDlEhP1ajUOJVed7+0LZ8vvR//bnYI7lXXQDzy5wc3EP8m8QZm7U5CtUqNp3xdsOnlATCXi3dmTdTaGKZEeup8VjHKq1Wws5SjlxZNv3VJ00D8Qg4u3Gi8gfiO+AzM2XseKrWACf5d8OnE/lwikIwef8KJ9FT9/dIgz06QSiUiV1PHx9ka4/p1BlDXou3/WnckFYu/+wMAED7YHavG94VMT2onak2ih+m6devg7u4OhUKBwMBAJCQk3HffmpoaLFu2DJ6enlAoFPDz80NMTIxWYxLpq99EfL70Qd4a0ROmMgn+l1KIuLS6GgVBwKqYy/joUF1z7zeGe2Hx07315o8AotYmaphGR0cjIiICS5YsQVJSEvz8/BASEoL8/PxG91+4cCE2btyIzz77DJcuXcKMGTMwbtw4nD17tsVjEumj8qpanM0sBqB/YepmZ4EX6huIx9S1aFv83R9YfzQNAPDuaB9EjOgJiYRBSu2HRBCE1m1W+ACBgYEYOHAgPv/8cwCAWq2Gm5sbXn/9dcyfP/+e/V1dXfHee+9h1qxZmm3jx4+Hubk5du3a1aIxG6NUKmFjY4OSkhJYW+vHvSpqX45czkf49tPoameB43P/JnY59ygorcLjq4/gTo0K/dxscS6rGBIJ8MGzvnghkP1Iqf0R7cy0uroaiYmJCA4O/rMYqRTBwcGIj49v9DNVVVVQKBo+7G1ubo4TJ060eMz6cZVKZYMXkZhOaLrEiPtIzP04dDDDK0O6AwDOZRVDJpVgTVg/Bim1W6KFaWFhIVQqFZycnBpsd3JyQm5ubqOfCQkJQWRkJFJSUqBWq3H48GHs27cPOTk5LR4TAFauXAkbGxvNy83NTcujIzGJeLFFZ8RoudZcrz7hAWdrBeQmUmx8yR9j705MImqPRJ+A1Bxr166Fl5cXfHx8IJfLMXv2bISHh0Mq1e4wFixYgJKSEs0rKytLRxVTWzOGIM0vrcTl3FIA4q3H2xTWClMc/NdQnFowHMG9nR7+ASIjJlqY2tvbQyaTIS8vr8H2vLw8ODs7N/oZBwcH7N+/H+Xl5bh+/TouX74MKysreHh4tHhMADAzM4O1tXWDFxkmiURi8BNf4tPqFmro42oNOz1feq+jpZzLAxJBxDCVy+Xw9/dHbGysZptarUZsbCyCgoIe+FmFQoHOnTujtrYW33zzDcaOHav1mET64kSKfj4SQ0T3ZyLml0dERGDy5MkYMGAAAgICsGbNGpSXlyM8PBwAMGnSJHTu3BkrV64EAJw6dQrZ2dno168fsrOzsXTpUqjVasydO7fJY5JxEQTB4M9E/0oQBM390kEMUyKDIWqYhoWFoaCgAIsXL0Zubi769euHmJgYzQSizMzMBvdDKysrsXDhQqSnp8PKygqjR4/Gzp07YWtr2+QxifRZRlEFbpZUQi6TYqB7R7HLIaImEvU5U33F50xJLDtPXsei/RfxmIcdvn6VtyaIDIVBzeYlMna/8X4pkUFimJJBEQTBKB5/aYxKLWjWutXn50uJ6F4MUzIY9SFqTBOO/uqPmyVQVtaig8IEvp1txC6HiJqBYUoGwdiDFPhzCcHHPDrBRMb/NIkMiaizeYmayphDtJ6+tlwjoofjn7+k14z1/uj/VVmjwumM2wB4v5TIEDFMSW+1lyAFgDMZt1Fdq4aztQKeDpZil0NEzcQwJb3UHu6R/tVvf5nF216OmciY8J4p6aX2Fii/6Xn/UiJ6MJ6ZkuhS80uhrKwB0L4u7dYrrqjGhewSALxfSmSoGKYkGkEQ8PmvKQiOPI4J6+NRo1KLXZIo4tOKIAiAl6MVnKwVYpdDRC2gVZhWV1fjypUrqK2t1VU91E4IgoAPD17Gxz9fBQBcySvFfxNvtLvLu8Cfz5fyrJTIcLUoTCsqKvDKK6/AwsICffr0QWZmJgDg9ddfx4cffqjTAsn4qNQC3tt/ERuPpwMABnnW3Sdc+0sKKmtUYpYmiri7zcD5fCmR4WpRmC5YsADnz5/H0aNHoVD8eVkqODgY0dHROiuOjE+NSo2IPeew+1QmJBLgw7/7YuuUgehsa45cZSV2xGeIXWKbunG7AtcKyyGTShDoYSd2OUTUQi0K0/379+Pzzz/HkCFDGlyW69OnD9LS0nRWHBmXyhoVZu5KwnfnbsJEKsGnz/fH8wFdoTCV4c1gLwDAF0fTNJOR2oO41LqzUr8uNuigMBW5GiJqqRaFaUFBARwdHe/ZXl5e3i7vedHDlVfV4pWo0/glOQ9yEyk2TfLHGD9Xzft/f7QLejhaobiiBpvvXv5tD05wCUEio9CiMB0wYAB+/PFHzb/rA/TLL79EUBAbGlNDJRU1eHnLKfyWWgRLuQzbwwdimI9Tg31kUgneHukNANhy4hoKSqvEKLVNqdXCX54vZZgSGbIWLdqwYsUKjBo1CpcuXUJtbS3Wrl2LS5cuIS4uDseOHdN1jWTACsuq8PKWBCTnKGFjboqoqQHo52bb6L4hfZzg52aL81nFWHckFUuf6dO2xbaxK3mlKCqvhrmpDP27dhS7HCLSQovOTIcMGYLz58+jtrYWvr6++Pnnn+Ho6Ij4+Hj4+/vrukYyUDeL7+C5DfFIzlHC3soM0a89dt8gBequcMwLqTs7/c+p68i6VdFGlYqj/qw0oLsd5CZ85JvIkDX7v+CamhpMnToVEokEmzdvRkJCAi5duoRdu3bB19e3NWokA5RRWI4JG+KRXliOzrbm2DsjCD7O1g/93KAe9hjqZY8alYB//3K1DSoVD1uuERmPZoepqakpvvnmm9aohYzE5VwlJmyMR3bxHXS3t8SeGUHobt/0Tijv3D07/fZsNq7klrZWmaKqrlXj1LVbAHi/lMgYtOja0rPPPov9+/fruBQyBueyihG28SQKSqvg49wBe14LQmdb82aN0beLLUb7OkMQgI8OXWmlSsV1LqsYFdUqdLKUw8e5g9jlEJGWWjQBycvLC8uWLcNvv/0Gf39/WFo2POt44403dFIcGZb4tCJMizqN8moV+ne1xfYpAbCxaNmzk3NGeuPQH3n4JTkPiddvw7+bcU3QqX8kZlAPe0ilfJyMyNBJhBa06ejevfv9B5RIkJ5u2M8JKpVK2NjYoKSkBNbWD7/PR8CRy/mYsSsRVbVqDPLshM2TBsDSTLsOf/P++zuiz2QhoLsdol99zKieYf7H+jicuX4bq8b7ImxgV7HLISIttei33bVr13RdBxmwH36/iTe/PodatYDgXo74/IVHoTCVaT3uv4K98O25bCRcu4VjVwvwpPe9C4UYotLKGpzNKgYADPLk/VIiY6D1fHxBENplD0qqE306E298dRa1agHP+Lli/Uv+OglSAHC1Ncekx7oBqLt3qlYbx89ZwrVbUKkFdOtkATc7C7HLISIdaHGY7tixA76+vjA3N4e5uTn69u2LnTt36rI20nNbTlzDvG8uQC0AEwO64t9h/WAq0+3zkv/8Ww9YmZngj5tK/HghR6dji4Ut14iMT4t+80VGRmLmzJkYPXo09uzZgz179iA0NBQzZszAv//9b13XSHpGEASs/SUFy3+4BAB49XEPrBj3CGStMJHGzlKOVx/3AAB88vMVo2ggzudLiYxPiycgvf/++5g0aVKD7VFRUVi6dKnB31PlBKT7EwQBK35Kxub/1f1/PGdET8we1qNVJweVVdXiidVHUFRejRXjfPFCoOFO2MkvrUTAB7GQSICkhSPQ0VIudklEpAMtOjPNycnBoEGD7tk+aNAg5OQYx6U4updKLeDdby9ognTx073x+nCvVp9la2VmgtnDegAA1sZeNegG4vUt1/q4WjNIiYxIi8K0R48e2LNnzz3bo6Oj4eXlpXVRpH9qVGr86+uz+CohC1IJsHp8X0wdcv9HpHTthcCu6GxrjjxlFaLiMtrse3WN90uJjFOLHo15//33ERYWhuPHj2Pw4MEAgN9++w2xsbGNhiwZtsoaFWb9Jwmxl/NhKpNgTVh/PNXXpU1rMDOR4a0RPfH23vP44mgang/oChtzw2qmLQgC75cSGakWnZmOHz8ep06dgr29Pfbv34/9+/fD3t4eCQkJGDdunK5rJBGVVdUifNtpxF7Oh5mJFJsmDWjzIK03rn9neDlaoeRODTYdTxOlBm2kF5Yjp6QSchMpBrrbiV0OEelQi59j8Pf3x65du5CYmIjExETs2rUL/fv3b/Y469atg7u7OxQKBQIDA5GQkPDA/desWQNvb2+Ym5vDzc0Nb731FiorKzXvL126FBKJpMHLx8en2XURUFxRjZe+PIX49CJYmZkgamoA/ibiwgkyqQRv310Ef+uJDOSXVj7kE/ol7u5Z6YBuHXX2LC4R6YcWhelPP/2EQ4cO3bP90KFDOHjwYJPHiY6ORkREBJYsWYKkpCT4+fkhJCQE+fn5je6/e/duzJ8/H0uWLEFycjK2bNmC6OhovPvuuw3269OnD3JycjSvEydONO8ACfmllXh+00mcyyqGrYUp/jMtEI95dBK7LIzs7YR+bra4U6PC57+mil1Os/B+KZHxalGYzp8/HyrVvTMqBUHA/PnzmzxOZGQkpk+fjvDwcPTu3RsbNmyAhYUFtm7d2uj+cXFxGDx4MF544QW4u7tj5MiRmDhx4j1nsyYmJnB2dta87O35y6s5sovvIGzjSVzOLYVDBzNEvxoEvwc09W5LEokE80LrrjTsPpWJzCLDaCCuUguIS6ubycswJTI+LQrTlJQU9O7d+57tPj4+SE1t2tlCdXU1EhMTERwc/GcxUimCg4MRHx/f6GcGDRqExMRETXimp6fjp59+wujRo++pz9XVFR4eHnjxxReRmZn5wFqqqqqgVCobvNqr9IIyTFgfh2v1Tb1fC4K3nrUIC/LshKFe9qhVG04D8QvZJSitrEUHhQl8O9uIXQ4R6ViLwtTGxqbRzjCpqan3tGO7n8LCQqhUKjg5OTXY7uTkhNzc3EY/88ILL2DZsmUYMmQITE1N4enpiSeffLLBZd7AwEBs374dMTExWL9+Pa5du4ahQ4eitPT+TaZXrlwJGxsbzcvNza1Jx2BsknOUeG5jPG6WVMLDwRL/nRkE92Y09W5Lc0Pqzk73n8vG5Vz9/+OnfhbvIM9OrbJSFBGJq0VhOnbsWLz55ptIS/tzRmVqairmzJmDZ555RmfF/V9Hjx7FihUr8MUXXyApKQn79u3Djz/+iOXLl2v2GTVqFCZMmIC+ffsiJCQEP/30E4qLix/4yM6CBQtQUlKieWVlZbXaMeirpMzbCNsYj8KyavR2scae14LgYtO8pt5tybeLDZ7q6wJBAD42gAbiJ1L4SAyRMWvRc6arV69GaGgofHx80KVLFwBAVlYWHn/8cXz88cdNGsPe3h4ymQx5eXkNtufl5cHZ2bnRzyxatAgvv/wypk2bBgDw9fVFeXk5Xn31Vbz33nuQSu/928DW1hY9e/Z84OVnMzMzmJmZNaluYxSXWohpO86goloF/24dsXXKQIN4hnPOiJ6IuZiLX5LzcSbjFgbo6eMmd6pVSLx+G0BdM3AiMj4tvswbFxeHH3/8Ef/85z8xZ84cHDlyBL/++itsbW2bNIZcLoe/vz9iY2M129RqNWJjYxEUFNToZyoqKu4JTJms7hGD+y0xXFZWhrS0NLi4iPNspL775VIepmw/jYpqFYb0sMfOVwIMIkgBwMPBCs8NqPtjbnXMFb1tBXjm+i1Uq9RwsVHAQ08vmxORdpoVpvHx8fjhhx8A1M2qHDlyJBwdHfHxxx9j/PjxePXVV1FVVdXk8SIiIrB582ZERUUhOTkZM2fORHl5OcLDwwEAkyZNwoIFCzT7jxkzBuvXr8fXX3+Na9eu4fDhw1i0aBHGjBmjCdW3334bx44dQ0ZGBuLi4jBu3DjIZDJMnDixOYfaLhw4fxMzdiWiulaNEb2d8OXkAbCQt+hihWjeGO4FuYkUCRm3cPRqgdjlNOqvj8S09jrGRCSOZv3mXLZsGZ588kk8/fTTAIALFy5g+vTpmDx5Mnr16oWPPvoIrq6uWLp0aZPGCwsLQ0FBARYvXozc3Fz069cPMTExmklJmZmZDc5EFy5cCIlEgoULFyI7OxsODg4YM2YMPvjgA80+N27cwMSJE1FUVAQHBwcMGTIEJ0+ehIODQ3MO1ejtPpWJ9/ZfgCAAz/ZzxUcT/HTei7QtuNiYY8ogd2w6no7VMVfwhJcDpHo2wYdLCBIZv2a1YHNxccH333+PAQMGAADee+89HDt2TLMowt69e7FkyRJcunSpdaptI8begm3z8XR88FMyAODFwK5YPvYRvQug5rhdXo3HVx9BaVUt1j7fD2P7dRa7JI3b5dV49P8dhiAACe8Nh2MHhdglEVEraNaZ6e3btxs8ynLs2DGMGjVK8++BAwe2y5mwhkIQBPz7lxR8GpsCAJjxhCfmhXob/KXHjncbiH9y+CoiD1+FmYn+nGFfzFZCEICeTlYMUiIj1qwwdXJywrVr1+Dm5obq6mokJSXh/fff17xfWloKU1PDmLzSHv14IUcTpO+EeGPW33qIXJHuTB3SHVHxGbheVIEZu5LELucegzx5iZfImDUrTEePHo358+dj1apV2L9/PywsLDB06FDN+7///js8PT11XiRpr0al1jyPOfNJT6MKUgCwNDPB6n/0xcZj6VCp9WtWr5XCBOGD3cUug4haUbPCdPny5fj73/+OJ554AlZWVoiKioJcLte8v3XrVowcOVLnRZL29pzJQkZRBTpZyo0uSOsN83HCMB+nh+9IRKRjzQpTe3t7HD9+HCUlJbCystI8jlJv7969sLKy0mmBpL071Sqs/aXu8u7sYT1gZWZYj78QEem7Fv1WtbFpfKFuOzv9XIGmvYuKz0B+aRU625rjhcCuYpdDRGR09GfaI7WKkjs1WH+0bg3lt0b0hJkJm1ITEekaw9TIbTqehpI7NfBytMK4/vrz/CURkTFhmBqxfGUltp7IAFD3KAxbfxERtQ6GqRH77NdU3KlRoX9XW4zozVmuRESthWFqpDKLKvBVQiaAukbahr7KERGRPmOYGqnIw1dQqxbweE8HBHl2ErscIiKjxjA1Qsk5Snx3/iYAYG6It8jVEBEZP4apEfr40BUIAvBUXxc80rnxZ4KJiEh3GKZG5kzGLcRezodMKsGcET3FLoeIqF1gmBoRQRCwKuYyAOC5AV3g4cClHYmI2gLD1IgcvVKA0xm3YWYixRvDvcQuh4io3WCYGgm1WsDquy3WJg9yh4uNucgVERG1HwxTI/H97zeRnKNEBzMTzHyCPWWJiNoSw9QI1KjUiDx8FQDw2hMe6Ggpf8gniIhIlximRiD6dBauF1XA3kqO8MHdxS6HiKjdYZgauDvVKnwaW9f4+/VhXrBk428iojbHMDVw2+PqGn936WiOiQFs/E1EJAaGqQErqajB+qOpAICIET0hN+H/nUREYuBvXwO24XgalJW18HbqgLH92PibiEgsDFMDla+sxLbfrgEA3mbjbyIiUTFMDdSnv6agskaNR7vaIriXo9jlEBG1awxTA3S9qBxfJ2QBAOaFsvE3EZHYGKYGKPLwVdSqBTzR0wGBHmz8TUQkNoapgbl0U4nvztU1/n6Hjb+JiPQCw9TAfPxz3WL2Y/xc2fibiEhPMEwNyOmMW/j1buPvCDb+JiLSGwxTAyEIAlYdrGv8HTbQDd3tLUWuiIiI6okepuvWrYO7uzsUCgUCAwORkJDwwP3XrFkDb29vmJubw83NDW+99RYqKyu1GtMQHLmSjzPX6xp//4uNv4mI9IqoYRodHY2IiAgsWbIESUlJ8PPzQ0hICPLz8xvdf/fu3Zg/fz6WLFmC5ORkbNmyBdHR0Xj33XdbPKYhUKsFrI6pu1c6ZbA7nKwVIldERER/JREEQRDrywMDAzFw4EB8/vnnAAC1Wg03Nze8/vrrmD9//j37z549G8nJyYiNjdVsmzNnDk6dOoUTJ060aMzGKJVK2NjYoKSkBNbW1toepta+O5eNf319Dh0UJvjf3L/B1oL9SomI9IloZ6bV1dVITExEcHDwn8VIpQgODkZ8fHyjnxk0aBASExM1l23T09Px008/YfTo0S0eEwCqqqqgVCobvPSFIAiaFmsznvBkkBIR6SHRml8WFhZCpVLBycmpwXYnJydcvny50c+88MILKCwsxJAhQyAIAmprazFjxgzNZd6WjAkAK1euxPvvv6/lEbWOi9lKpBWUQ2EqxeRB7mKXQ0REjRB9AlJzHD16FCtWrMAXX3yBpKQk7Nu3Dz/++COWL1+u1bgLFixASUmJ5pWVlaWjirW3/1w2ACC4lxOs2PibiEgvifbb2d7eHjKZDHl5eQ225+XlwdnZudHPLFq0CC+//DKmTZsGAPD19UV5eTleffVVvPfeey0aEwDMzMxgZmam5RHpnkot4PvzdasdPcsWa0REeku0M1O5XA5/f/8Gk4nUajViY2MRFBTU6GcqKioglTYsWSaTAai7t9iSMfXZyfQi5JdWwcbcFI/3dBC7HCIiug9RrxtGRERg8uTJGDBgAAICArBmzRqUl5cjPDwcADBp0iR07twZK1euBACMGTMGkZGR6N+/PwIDA5GamopFixZhzJgxmlB92JiG5Lu7l3hH+7pAbmJQV+SJiNoVUcM0LCwMBQUFWLx4MXJzc9GvXz/ExMRoJhBlZmY2OBNduHAhJBIJFi5ciOzsbDg4OGDMmDH44IMPmjymoaisUeHgxVwAwLP9XEWuhoiIHkTU50z1lT48ZxpzMQczdiXB1UaBE/OGQSplz1IiIn3Fa4d6qr7N2ph+rgxSIiI9xzDVQ8rKGsRerlv+cKwfZ/ESEek7hqkeirmYi+paNbwcrdDLpYPY5RAR0UMwTPXQgbuXeJ/t3xkSCS/xEhHpO4apnslXViIurRAA8IwfZ/ESERkChqme+f73HKgFwL9bR7jZWYhdDhERNQHDVM/UL9Qwls+WEhEZDIapHkkvKMPvN0ogk0ow2tdF7HKIiKiJGKZ65MDdRe2HetnD3kr/Ft4nIqLGMUz1hCAImoUaeImXiMiwMEz1xIXsElwrrGsCPqL3/dvFERGR/mGY6on9Z+vOSkf0dmYTcCIiA8Mw1QMqtYDvf797iZfPlhIRGRyGqR44mV6EgtIq2FqwCTgRkSFimOqB/WfZBJyIyJDxN7fIKmtUiLnbBJyXeImIDBPDVGRHLuejtKoWrjYKDHS3E7scIiJqAYapyNgEnIjI8DFMRVRypwa/XqlrAv5sPzYBJyIyVAxTER262wS8p5MVfJzZBJyIyFAxTEX03fn6DjFsAk5EZMgYpiLJU1YiLq0IAJuAExEZOoapSL4/fxMCm4ATERkFhqlI6tutPcsOMUREBo9hKgI2ASciMi4MUxHUP1s61MsendgEnIjI4DFM21hdE/C6Wbx8tpSIyDgwTNvY7zdKkFFUAXNTGUb0dhK7HCIi0gGGaRurv8Q7orcTLNkEnIjIKDBM21CDJuCcxUtEZDQYpm0oPu3PJuBDvdgEnIjIWDBM29D+uxOPnmITcCIio6IXv9HXrVsHd3d3KBQKBAYGIiEh4b77Pvnkk5BIJPe8nnrqKc0+U6ZMuef90NDQtjiU+2rQBJyzeImIjIroM2Cio6MRERGBDRs2IDAwEGvWrEFISAiuXLkCR0fHe/bft28fqqurNf8uKiqCn58fJkyY0GC/0NBQbNu2TfNvMzNxn+c8cjkfZVW16GxrjgHdOopaCxER6ZboZ6aRkZGYPn06wsPD0bt3b2zYsAEWFhbYunVro/vb2dnB2dlZ8zp8+DAsLCzuCVMzM7MG+3XsKG6A1V/iHePHJuBERMZG1DCtrq5GYmIigoODNdukUimCg4MRHx/fpDG2bNmC559/HpaWlg22Hz16FI6OjvD29sbMmTNRVFR03zGqqqqgVCobvHSp5E4NjlwuAMBZvERExkjUMC0sLIRKpYKTU8PFC5ycnJCbm/vQzyckJODixYuYNm1ag+2hoaHYsWMHYmNjsWrVKhw7dgyjRo2CSqVqdJyVK1fCxsZG83Jzc2v5QTUi5mIOqlVqeDt1QC8Xa52OTURE4hP9nqk2tmzZAl9fXwQEBDTY/vzzz2v+t6+vL/r27QtPT08cPXoUw4cPv2ecBQsWICIiQvNvpVKp00CtX6jhGZ6VEhEZJVHPTO3t7SGTyZCXl9dge15eHpydnR/42fLycnz99dd45ZVXHvo9Hh4esLe3R2pqaqPvm5mZwdrausFLV/KUlYhPZxNwIiJjJmqYyuVy+Pv7IzY2VrNNrVYjNjYWQUFBD/zs3r17UVVVhZdeeumh33Pjxg0UFRXBxaXt253VNwEfwCbgRERGS/TZvBEREdi8eTOioqKQnJyMmTNnory8HOHh4QCASZMmYcGCBfd8bsuWLXj22WfRqVOnBtvLysrwzjvv4OTJk8jIyEBsbCzGjh2LHj16ICQkpE2O6a/qL/Fy4hERkfES/Z5pWFgYCgoKsHjxYuTm5qJfv36IiYnRTErKzMyEVNow869cuYITJ07g559/vmc8mUyG33//HVFRUSguLoarqytGjhyJ5cuXt/mzpmkFZbiQXQITqQRP9WWYEhEZK4kgCILYRegbpVIJGxsblJSUaHX/NPLwVXwam4K/eTtgW3jAwz9AREQGSfTLvMZKEAQcqG8C3p/LBxIRGTOGaSs5/5cm4MG92ASciMiYMUxbSf2i9mwCTkRk/PhbvpW8PbIngjw7oZOlXOxSiIiolTFMW4mJTIonerIBOBFRe8DLvERERFpimBIREWmJYUpERKQlhikREZGWGKZERERaYpgSERFpiWFKRESkJT5n2oj6tf+VSqXIlRARkT7o0KEDJBLJfd9nmDaitLQUAODm5iZyJUREpA8e1kWMLdgaoVarcfPmzYf+JfIwSqUSbm5uyMrK0qqVmz4y5mMDeHyGzJiPDTDu49PnY+OZaQtIpVJ06dJFZ+NZW1vr3Q+GrhjzsQE8PkNmzMcGGPfxGeKxcQISERGRlhimREREWmKYtiIzMzMsWbIEZmZmYpeic8Z8bACPz5AZ87EBxn18hnxsnIBERESkJZ6ZEhERaYlhSkREpCWGKRERkZYYpkRERFpimLaSdevWwd3dHQqFAoGBgUhISBC7JJ1Yv349+vbtq3moOigoCAcPHhS7LJ3Jzs7GSy+9hE6dOsHc3By+vr44c+aM2GXpTGlpKd58801069YN5ubmGDRoEE6fPi12WS1y/PhxjBkzBq6urpBIJNi/f7/mvZqaGsybNw++vr6wtLSEq6srJk2ahJs3b4pXcDM96PgAYMqUKZBIJA1eoaGh4hTbTA87trKyMsyePRtdunSBubk5evfujQ0bNohTbBMxTFtBdHQ0IiIisGTJEiQlJcHPzw8hISHIz88XuzStdenSBR9++CESExNx5swZDBs2DGPHjsUff/whdmlau337NgYPHgxTU1McPHgQly5dwieffIKOHTuKXZrOTJs2DYcPH8bOnTtx4cIFjBw5EsHBwcjOzha7tGYrLy+Hn58f1q1bd897FRUVSEpKwqJFi5CUlIR9+/bhypUreOaZZ0SotGUedHz1QkNDkZOTo3l99dVXbVhhyz3s2CIiIhATE4Ndu3YhOTkZb775JmbPno0DBw60caXNIJDOBQQECLNmzdL8W6VSCa6ursLKlStFrKr1dOzYUfjyyy/FLkNr8+bNE4YMGSJ2Ga2moqJCkMlkwg8//NBg+6OPPiq89957IlWlGwCEb7/99oH7JCQkCACE69evt01ROtTY8U2ePFkYO3asKPXoUmPH1qdPH2HZsmUNtun7zynPTHWsuroaiYmJCA4O1myTSqUIDg5GfHy8iJXpnkqlwtdff43y8nIEBQWJXY7WDhw4gAEDBmDChAlwdHRE//79sXnzZrHL0pna2lqoVCooFIoG283NzXHixAmRqmo7JSUlkEgksLW1FbsUnTl69CgcHR3h7e2NmTNnoqioSOySdGLQoEE4cOAAsrOzIQgCjhw5gqtXr2LkyJFil3ZfDFMdKywshEqlgpOTU4PtTk5OyM3NFakq3bpw4QKsrKxgZmaGGTNm4Ntvv0Xv3r3FLktr6enpWL9+Pby8vHDo0CHMnDkTb7zxBqKiosQuTSc6dOiAoKAgLF++HDdv3oRKpcKuXbsQHx+PnJwcsctrVZWVlZg3bx4mTpxocAuo309oaCh27NiB2NhYrFq1CseOHcOoUaOgUqnELk1rn332GXr37o0uXbpALpcjNDQU69atw+OPPy52affFrjHUbN7e3jh37hxKSkrw3//+F5MnT8axY8cMPlDVajUGDBiAFStWAAD69++PixcvYsOGDZg8ebLI1enGzp07MXXqVHTu3BkymQyPPvooJk6ciMTERLFLazU1NTV47rnnIAgC1q9fL3Y5OvP8889r/revry/69u0LT09PHD16FMOHDxexMu199tlnOHnyJA4cOIBu3brh+PHjmDVrFlxdXRtc9dMnPDPVMXt7e8hkMuTl5TXYnpeXB2dnZ5Gq0i25XI4ePXrA398fK1euhJ+fH9auXSt2WVpzcXG55w+CXr16ITMzU6SKdM/T0xPHjh1DWVkZsrKykJCQgJqaGnh4eIhdWquoD9Lr16/j8OHDRnNW2hgPDw/Y29sjNTVV7FK0cufOHbz77ruIjIzEmDFj0LdvX8yePRthYWH4+OOPxS7vvhimOiaXy+Hv74/Y2FjNNrVajdjYWKO4r9gYtVqNqqoqscvQ2uDBg3HlypUG265evYpu3bqJVFHrsbS0hIuLC27fvo1Dhw5h7NixYpekc/VBmpKSgl9++QWdOnUSu6RWdePGDRQVFcHFxUXsUrRSU1ODmpoaSKUN40kmk0GtVotU1cPxMm8riIiIwOTJkzFgwAAEBARgzZo1KC8vR3h4uNilaW3BggUYNWoUunbtitLSUuzevRtHjx7FoUOHxC5Na2+99RYGDRqEFStW4LnnnkNCQgI2bdqETZs2iV2azhw6dAiCIMDb2xupqal455134OPjY5A/m2VlZQ3Owq5du4Zz587Bzs4OLi4u+Mc//oGkpCT88MMPUKlUmjkLdnZ2kMvlYpXdZA86Pjs7O7z//vsYP348nJ2dkZaWhrlz56JHjx4ICQkRseqmedCxde3aFU888QTeeecdmJubo1u3bjh27Bh27NiByMhIEat+CJFnExutzz77TOjatasgl8uFgIAA4eTJk2KXpBNTp04VunXrJsjlcsHBwUEYPny48PPPP4tdls58//33wiOPPCKYmZkJPj4+wqZNm8QuSaeio6MFDw8PQS6XC87OzsKsWbOE4uJisctqkSNHjggA7nlNnjxZuHbtWqPvARCOHDkidulN8qDjq6ioEEaOHCk4ODgIpqamQrdu3YTp06cLubm5YpfdJA86NkEQhJycHGHKlCmCq6uroFAoBG9vb+GTTz4R1Gq1uIU/AFuwERERaYn3TImIiLTEMCUiItISw5SIiEhLDFMiIiItMUyJiIi0xDAlIiLSEsOUiIhISwxTImqRjIwMSCQSnDt3TuxSiETHMCUyYrm5uXj99dfh4eEBMzMzuLm5YcyYMQ3WjiYi7XFtXiIjlZGRgcGDB8PW1hYfffQRfH19UVNTg0OHDmHWrFm4fPmy2CUSGQ2emRIZqX/+85+QSCRISEjA+PHj0bNnT/Tp0wcRERE4efIkpk6diqeffrrBZ2pqauDo6IgtW7YAqOsItHr1avTo0QNmZmbo2rUrPvjgg/t+58WLFzFq1ChYWVnByckJL7/8MgoLC1v1OIn0AcOUyAjdunULMTExmDVrFiwtLe9539bWFtOmTUNMTAxycnI023/44QdUVFQgLCwMQF2XoA8//BCLFi3CpUuXsHv3bjg5OTX6ncXFxRg2bBj69++PM2fOICYmBnl5eXjuueda5yCJ9Agv8xIZodTUVAiCAB8fn/vuM2jQIHh7e2Pnzp2YO3cuAGDbtm2YMGECrKysUFpairVr1+Lzzz/H5MmTAdQ1Fx8yZEij433++efo378/VqxYodm2detWuLm54erVq+jZs6cOj5BIv/DMlMgINbUZ1LRp07Bt2zYAQF5eHg4ePIipU6cCAJKTk1FVVYXhw4c3aazz58/jyJEjsLKy0rzqwzwtLa0FR0FkOHhmSmSEvLy8IJFIHjrJaNKkSZg/fz7i4+MRFxeH7t27Y+jQoQAAc3PzZn1nWVkZxowZg1WrVt3znouLS7PGIjI0PDMlMkJ2dnYICQnBunXrUF5efs/7xcXFAIBOnTrh2WefxbZt27B9+3aEh4dr9vHy8oK5uXmTH6N59NFH8ccff8Dd3R09evRo8Grsvi2RMWGYEhmpdevWQaVSISAgAN988w1SUlKQnJyMTz/9FEFBQZr9pk2bhqioKCQnJ2vujQKAQqHAvHnzMHfuXOzYsQNpaWk4efKkZqbv/zVr1izcunULEydOxOnTp5GWloZDhw4hPDwcKpWq1Y+XSEy8zEtkpDw8PJCUlIQPPvgAc+bMQU5ODhwcHODv74/169dr9gsODoaLiwv69OkDV1fXBmMsWrQIJiYmWLx4MW7evAkXFxfMmDGj0e9zdXXFb7/9hnnz5mHkyJGoqqpCt27dEBoaCqmUf7eTcZMITZ2pQERGqaysDJ07d8a2bdvw97//XexyiAwSz0yJ2im1Wo3CwkJ88sknsLW1xTPPPCN2SUQGi2FK1E5lZmaie/fu6NKlC7Zv3w4TE/46IGopXuYlIiLSEmcFEBERaYlhSkREpCWGKRERkZYYpkRERFpimBIREWmJYUpERKQlhikREZGWGKZERERaYpgSERFp6f8DP4QNAytdBcQAAAAASUVORK5CYII=\n"
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "text/plain": "",
- "image/png": "iVBORw0KGgoAAAANSUhEUgAAAdMAAAEmCAYAAAA5oXoHAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8o6BhiAAAACXBIWXMAAA9hAAAPYQGoP6dpAABAzUlEQVR4nO3deVhU9f4H8PewDIMgIIJsIggipOIGQrh2lcQlM/OqoaXiUpq2SKlZat26aVpyNTW3xK3cKvOaJabkclUQ91wAEVQUAQGFYREYZs7vD2SKH6g4M3BmhvfreeZ54nDmO+/zSHw453zP9yMRBEEAERERacxE7ABERESGjsWUiIhISyymREREWmIxJSIi0hKLKRERkZZYTImIiLTEYkpERKQlFlMiIiItsZjWQhAEyOVycD0LIiKqCxbTWhQWFsLW1haFhYViRyEiIgPAYkpERKQlFlMiIiItsZgSERFpicWUiIhISyymREREWmIxJSIi0hKLKRERkZZYTImIiLTEYkpERBq7Ky/FlC1n8J8DV6FSNd5V48zEDkBERIbp1r0SvLr+JG7mlSDmchZu3SvB4n92hJlp4ztPa3xHTEREWrt2twgjVsfhZl4JnGwsYGoiwa5zGZi29SzKKpRix2twLKZERPRULmUUYNSaOGTJS9GmhTX+O60nVo3pCqmpCfZfzsakTadRUl4hdswGxWJKRER1dubmPYSvi0decTk6uNlg5xshcLaVoX97Z0SP7wZLc1P8LyUXY9cnoOCBQuy4DYbFlIiI6uR/KTl49dsEFJZWoJtnM2yd/CzsraTq7/f0ccB3k4JhIzPD6Zv3MXpdPPKKykRM3HBYTImI6In2X87CxI2n8UChRO+2jtg8IRg2MvMa+wV4NMO2159FcyspLt+RY+SaOGQVlIqQuGGxmBIR0WP9fO423vz+LMqVKgzs4Ix1YwNgKTV95P7tXW2xc0oIXGxlSM0pxog1J5CeV9KAiRseiykRET3Sd/E3EbnzApQqAcO7tsTy8C6wMHt0Ia3i7WiNH6aEwKN5E9y69wD/XH0CV7MLGyCxOFhMiYioVqsOp2Lu7ksQBGBciAe+fMpnSFs2a4If3giBr1NT3C0sw6g1cbh4u6AeE4uHxZSIiKoRBAFf7k/CopgkAMC0f3jjkxfbw8RE8tRjtbCRYccbz6JTS1vcL1EgfF08Eq7f03Vk0bGYEhGRmkol4JM9l7HyUCoAYPYAP8wM84NE8vSFtIpdEym+n/wsglvbo6isAmOjT+Jw8l1dRdYLLKZERAQAqFCqMPPHP7Ep7iYkEuCzlzpg6nPeOhnb2sIMmyYEoa9fC5QqVJi8+TR+u5ipk7H1AYspERGhrEKJt7adw09nb8PURIKokZ3w2rMeOv0MmbkpVr8agMEdXaBQCpi+9Sx+OH1Lp58hFhZTIqJG7kG5EpM3n8G+S1mQmprgmzFdMaxLy3r5LKmZCb5+pQtGBbpDJQAzf/wTG49fr5fPakgspkREjZi8VIGx0Sdx9GoOLM1NsX58IMLaO9frZ5qaSPDFcH9M6NEaAPDJL1ew4o8UCILhtnBjMSUiaqTuFZdj9Lp4nLpxH01lZvhuUhB6+Tg2yGdLJBLMe+EZvNPPBwDw1e9X8cW+JIMtqOxnSkRGJbPgAS7cyhc7ht5TCcB/DlxFyt0i2FtJsXlCEDq42TZoBolEghnPt0VTmRn+/Wsi1hxNw/2ScvT1a6GT8U0kEvSv57PsKhLBUP8MqEdyuRy2trYoKCiAjY2N2HGIqI4elCvRd8lhZDaCtWB1xdlGhu8mBaNNC2tRc2xLSMeHP1+ELiuSpbkpEj8boLsBH4NnpkRkNDaeuIHMglLYWprDR+TiYAha2FhgzsBn4G7fROwoCA9qBXsrKTaduIHyCpVOxrQwb7g7mTwzrQXPTIkMT0GJAr0W/wF5aQWWjOiE4QH1MxuVqDacgERERmHN0VTISyvQ1skaL3VxEzsONTIspkRk8O7KSxH98FnF9/v7wlSDNWSJtCF6MV25ciU8PT0hk8kQHByMhISER+6rUCjw6aefwtvbGzKZDJ06dUJMTEy1fT755BNIJJJqLz8/v/o+DCIS0dd/pKBUoUKXVnZ4vp2T2HGoERK1mO7YsQORkZH4+OOPcfbsWXTq1AlhYWG4e7f2BZDnzp2LNWvWYPny5bhy5QqmTJmCYcOG4dy5c9X2a9++PTIzM9WvY8eONcThEJEIbuYVY3tC5ZJ0s7RckJ1IU6IW06ioKEyePBkRERFo164dVq9ejSZNmiA6OrrW/bds2YIPP/wQgwYNgpeXF6ZOnYpBgwZhyZIl1fYzMzODs7Oz+uXg4NAQh0NEIog6cBUVKgG92zoixLu52HGokRKtmJaXl+PMmTMIDQ39K4yJCUJDQxEXF1fre8rKyiCTyapts7S0rHHmmZKSAldXV3h5eWHMmDFIT09/bJaysjLI5fJqLyLSf1fuyLHnwh0AwKwwX5HTUGMmWjHNzc2FUqmEk1P1+xtOTk7Iysqq9T1hYWGIiopCSkoKVCoVDhw4gF27diEz8682PsHBwdi4cSNiYmKwatUqXL9+Hb169UJhYeEjsyxcuBC2trbql7u7u24Okojq1Ve/J0MQgMEdXRp89R6ivxN9AtLTWLZsGXx8fODn5wepVIrp06cjIiICJiZ/HcbAgQMxYsQIdOzYEWFhYfjtt9+Qn5+PnTt3PnLcOXPmoKCgQP26dcs4WgIRGbNTN+7hj6S7MDWR4L3n24odhxo50Yqpg4MDTE1NkZ2dXW17dnY2nJ1rX0vR0dERu3fvRnFxMW7evImkpCRYW1vDy8vrkZ9jZ2eHtm3b4tq1a4/cx8LCAjY2NtVeRKS/BEHAon1JAICRge7wcuRqRyQu0YqpVCpFQEAAYmNj1dtUKhViY2MREhLy2PfKZDK4ubmhoqICP/30E4YOHfrIfYuKipCamgoXFxedZScicR1KvovTN+/DwsxE3XWESEyiXuaNjIzEunXrsGnTJiQmJmLq1KkoLi5GREQEAGDs2LGYM2eOev+TJ09i165dSEtLw//+9z8MGDAAKpUKs2bNUu/z/vvv48iRI7hx4wZOnDiBYcOGwdTUFOHh4Q1+fESkeyqVgMUxyQCA8d094Wwre8I7iOqfqAvdjxo1Cjk5OZg/fz6ysrLQuXNnxMTEqCclpaenV7sfWlpairlz5yItLQ3W1tYYNGgQtmzZAjs7O/U+t2/fRnh4OPLy8uDo6IiePXsiPj4ejo4N06OPiOrXL3/eQVJWIZrKzDD1OW+x4xAB4EL3teJC90T6qbxChdCoI0i/V4L3+7fF9L68xEv6waBm8xJR47bj9C2k3yuBg7UFInq0FjsOkRqLKVEjc/RqDiZuPIWLtwvEjvJUSsor8HVsCgDgrb5tYGXBdsykP/jTSNSI/PpnJt7Zfg4VKgG37pdg3zu9DabDysYTN5BTWIaWzSwRHtRK7DhE1fDMlKiR2HnqFt7adhYVqsppElezi/Df8xkip6qbghIFVh9OBQC8178tpGb81UX6hT+RRI1A9LHrmPXTn1AJQHiQO2Y+XMc26sBVlFeoRE73ZKuOVDb+9nVqihc7sfE36R8WUyIjJggCvo5Nwad7rwAAJvdqjQXD/DGhR2u0aGqB2/cfYFvC4xtBiC1bXoqNJyobf88MY+Nv0k8spkRGShAELNyXhKgDVwEAkc+3xYeDnoFEIoGl1BRvPVw5aPkfKSguqxAz6mN9HVvZ+DvAoxn6PdNC7DhEtWIxJTJCSpWAD3++hLVH0wAA815oh7f7+VRrnP1KN3d4NG+C3KJybDh+Xayoj3Ujtxg7TlU1/vZl42/SWyymREZGoVRhxo7z2JaQDhMJsHh4R0zsWfOZTHNTE0Q+7Lay5kga7heXN3TUJ6pq/P2cryOCvdj4m/QXiymRESlVKDH1uzPYc+EOzEwk+Dq8C0Z2e3R/3iEdXfGMiw0Kyyqw6khqAyZ9sst3CtSNv2ey8TfpORZTIiNRXFaBCRtP4WDiXViYmWDd2EC80NH1se8xMZFg1sNCtenEDWQWPGiIqHXy1f7KxeyHdHJFe1c2/ib9xmJKZAQKShR4df1JnEjNg5XUFJsmBOEffnWbrPOcryOCPO1RVqFSrzAktoTr93AoOQdmbPxNBoLFlMjA5RSWYdTaOJxLz4etpTm+n/wsnn2K+4sSiQSzBlSene48fRtpOUX1FbVOBEHA4piHjb+7ucPTwUrUPER1wWJKZMAy8h9g1Jo4JGUVwsHaAjveeBad3e2eepxAT3v082sBpUrAkoeP0ojljyQ2/ibDw2JKZKCu5xZjxKoTSMsthpudJX6YEgI/Z81bBr4f5guJpHL93ksZ4iyCr1IJ+PLhvdKIHq3hZMPG32QYWEyJDFBiphwjVsfhTkEpvBys8MOUELTW8nLoMy42GNqpcsLS4ocFraHtufC3xt992PibDAeLKZGBOZd+H6+sjUduURmecbHBzikhcLWz1MnYkc/7wsxEgqNXcxCXmqeTMeuqvEKFJQcqi/iUPt6wbWLeoJ9PpA0WUyIDciI1F2O+PYmCBwp0bWWH7ZOfhYO1hc7Gb9W8ibq92eL9SRAEQWdjP8mOU+m4de8BHJtaIKKHZ4N9LpEusJgSGYjYxGyM33AKJeVK9GjTHFsmBtfL2dtbfdvA0twU59LzceBKts7Hr01JeQWWxV4DALzdtw2aSNlqmQwLiymRASh4oMD0redQXqFC6DNOWD+uG6ws6qfgtLCRYUJPTwDAl/uToVTV79lpWYUS7+28gNyiMrSyb4JR3dj4mwwPiymRAYhLzcMDhRKtHayw6tWukJmb1uvnvd7bG7aW5ki5W4Td5+qvgfiDciUmbz6DfZeyIDU1wb9f6sDG32SQNP6praiowMGDB7FmzRoUFhYCAO7cuYOiInEf+CYyRsev5QIAevs4wNy0/ouNraU5pj5XOZs26sBVlFUodf4Z8lIFxkafxNGrObA0N8X68YHo3dZR559D1BA0+r/y5s2b8Pf3x9ChQzFt2jTk5OQAABYtWoT3339fpwGJ6K9i2qONQ4N95rgQT7RoaoGM/AfYdlK3DcTvFZdj9Lp4nLpxH01lZvhuUhB6+bCQkuHSqJi+8847CAwMxP3792Fp+deU/GHDhiE2NlZn4YiocpWjtNximEiAZ70brg2ZpdQU74RWNRC/hiIdNRDPlpdi1Jo4XMqQw95Kim2Tn0WAh71OxiYSi0bF9H//+x/mzp0LqVRabbunpycyMurv/gpRY1R1VtrJ3Q42soZ99nJkoDs8mzdBXnE5oo9p30D81r0SjFgdh5S7RXC2kWHnGyHo4MaOMGT4NCqmKpUKSmXNeyi3b99G06ZNtQ5FRH858bCY9mzAS7xVzE1NENm/chH8dUfTcE+LBuIp2YX45+oTSL9XAo/mTfDDlBC0aWGtq6hEotKomPbv3x9Lly5Vfy2RSFBUVISPP/4YgwYN0lU2okZPEAQcu1a5ElF374YvpgDwgr8L2lU1ED98TaMxLmUUYNTaeGTLy9DWyRo/vBECd/smOk5KJB6NiulXX32F48ePo127digtLcXo0aPVl3gXLVqk64xEjdbV7CLkFpVBZm6Crh52omQwMfmrRdumuJtP3UD81I17CF8bj3vF5ejY0hY7Xg9BCy5gT0ZGo6e+3d3dceHCBezYsQMXLlxAUVERJk6ciDFjxlSbkERE2jn28BJvUOvmsDCr32dLH6dPW0cEtbZHwvV7WHYwBV8M71in9x29moPXt5xGqUKFoNb2WD8uEE0b+L4vUUN46mKqUCjg5+eHvXv3YsyYMRgzZkx95CIi/DX5qGebhpvFWxuJRILZA3wxfFUcfjhzG5N7e8Hb8fH3O2MuZeHtbedQrlThOV9HrBoTAEupeH8QENWnp77Ma25ujtLS0vrIQkR/o1CqcDKt8n5pQz5f+igBHvYIfaaygXjU749vIP7TmduYtvUsypUqDPZ3wdrXAllIyahpdM902rRpWLRoESoqdPPcGRHVdOFWPorLlbC3kuIZLZp+65K6gfjFTFy8XXsD8c1xN/DeDxegVAkYEdASX4d34RKBZPQ0umd66tQpxMbG4vfff4e/vz+srKo3Jd61a5dOwhE1ZlX3S0O8m8PERCJymkp+zjYY1tkNu85lYPH+JGyZGFzt+ysPXcOXDxuLR/TwxLzB7fQmO1F90ujPRTs7OwwfPhxhYWFwdXWFra1ttdfTWLlyJTw9PSGTyRAcHIyEhIRH7qtQKPDpp5/C29sbMpkMnTp1QkxMjFZjEumr4yI+X/o4M55vC3NTCf6XkosTqZUZBUHAopgkdSF9u58P5r/AQkqNiCCi7du3C1KpVIiOjhYuX74sTJ48WbCzsxOys7Nr3X/WrFmCq6ur8OuvvwqpqanCN998I8hkMuHs2bMaj1mbgoICAYBQUFCg9TESaaKoVCF4z/lV8Ji9V0jPKxY7Tg3zd18UPGbvFYauOCZUKFXC3J8rv/aYvVdYc+Sa2PGIGpxEEASNmxXm5OQgObnyL1FfX184Oj7dQtXBwcHo1q0bVqxYAaByZSV3d3e89dZb+OCDD2rs7+rqio8++gjTpk1Tbxs+fDgsLS3x3XffaTRmbeRyOWxtbVFQUAAbG/24V0WNy6Gku4jYeAqt7Jvg6Kx/iB2nhpzCMvRefAgPFEp0drfD+Vv5kEiAz1/yx+hg9iOlxkejy7zFxcWYMGECXFxc0Lt3b/Tu3Ruurq6YOHEiSkpK6jRGeXk5zpw5g9DQ0L/CmJggNDQUcXFxtb6nrKwMMln1h70tLS1x7NgxjcesGlcul1d7EYnpmLpLjLiPxDyKY1MLTOzZGgBw/lY+TE0kWDqqMwspNVoaFdPIyEgcOXIEv/zyC/Lz85Gfn4///ve/OHLkCN577706jZGbmwulUgknJ6dq252cnJCVlVXre8LCwhAVFYWUlBSoVCocOHAAu3btQmZmpsZjAsDChQur3fN1d3ev0zGQftLiYoveEKPl2tN6vY8XnG1kkJqZYM2rARja2U3sSESi0aiY/vTTT1i/fj0GDhwIGxsb2NjYYNCgQVi3bh1+/PFHXWdUW7ZsGXx8fODn5wepVIrp06cjIiICJibaTbufM2cOCgoK1K9bt27pKDE1NGMopHcLS5GUVQhAvPV468JGZo597/TCyTn9ENrO6clvIDJiGlWhkpKSGmd/ANCiRYs6X+Z1cHCAqakpsrOzq23Pzs6Gs7Nzre9xdHTE7t27UVxcjJs3byIpKQnW1tbw8vLSeEwAsLCwUP9RUPUiwySRSCCRGPYM0rjUyoUa2rvawN5K+oS9xdXMSopmep6RqCFoVExDQkLw8ccfV1sJ6cGDB/jXv/6FkJCQOo0hlUoREBBQrZm4SqVCbGzsE8eQyWRwc3NDRUUFfvrpJwwdOlTrMYn0xbEU/XwkhogeTaNFG5YtW4awsDC0bNkSnTp1AgBcuHABMpkM+/fvr/M4kZGRGDduHAIDAxEUFISlS5eiuLgYERERAICxY8fCzc0NCxcuBACcPHkSGRkZ6Ny5MzIyMvDJJ59ApVJh1qxZdR6TjIsgCAZ/Jvp3giCo75d2ZzElMhgaFdMOHTogJSUF33//PZKSkgAA4eHhT901ZtSoUcjJycH8+fORlZWFzp07IyYmRn0JOT09vdr90NLSUsydOxdpaWmwtrbGoEGDsGXLFtjZ2dV5TCJ9diOvBHcKSiE1NUE3z2ZixyGiOtLqOVNjxedMSSxb4m9i3u5LeNbLHttf560JIkOh0T3ThQsXIjo6usb26OhoNgcn0sJx3i8lMkgaFdM1a9bAz8+vxvb27dtj9erVWociehRBEIzi8ZfaKFWCeq1bfX6+lIhq0qiYZmVlwcXFpcZ2R0dH9QIKRLpWVUSNacLR312+UwB5aQWayszg7/Z0DSOISFwaFVN3d3ccP368xvbjx4/D1dVV61BE/5+xF1LgryUEn/VqDjNT9v8kMiQazeadPHky3n33XSgUCvTt2xcAEBsbi1mzZtV5OUGip2HMRbSKvrZcI6In06iYzpw5E3l5eXjzzTdRXl4OoHIhhdmzZ2POnDk6DUiNm7E9R/oopQolTt24D4D3S4kMkVaPxhQVFSExMRGWlpbw8fGBhYWFLrOJho/G6IfGcGm3yrGUXLy6/iScbWSIm9O3URwzkTHR6saMtbU1unXrhlatWmHfvn1ITEzUVS5q5BpTIQWA43+bxdtYjpnImGhUTEeOHKluvv3gwQMEBgZi5MiR6NixI3766SedBqTGyRgWrH8ax/W8fykRPZ5GxfTo0aPo1asXAODnn3+GIAjIz8/H119/jX//+986DUjG79rdQshLFQCMo4Xa08ovKcfFjAIAvF9KZKg0KqYFBQWwt7cHAMTExGD48OFo0qQJBg8ejJSUFJ0GJOMlCAJW/JGC0KijGLEqDgqlSuxIoohLzYMgAD4trOFkIxM7DhFpQOPnTOPi4lBcXIyYmBj0798fAHD//n3IZPxlQE8mCAK+2JeEr36/CgBIzi7Ej2duN6pLu1WOXeOqR0SGTqNi+u6772LMmDFo2bIlXF1d8dxzzwGovPzr7++vy3xkhJQqAR/tvoQ1R9MAAN29K+8TLjuYglKFUsxoojjxsBk4ny8lMlwaFdM333wT8fHxiI6OxrFjx9Rt0ry8vHjPlB5LoVQhcud5bD2ZDokE+OJlf0SP7wY3O0tkyUuxOe6G2BEb1O37JbieWwxTEwmCvezFjkNEGtL40ZiAgAAMGzYM1tbW6m2DBw9Gjx491F/b2NggLS1Nu4RkNEoVSkz97iz+e/4OzEwk+PqVLnglqBVk5qZ4N9QHAPDN4VT1ZKTG4MS1yrPSTi1t0VRmLnIaItJUvS4A2hhnZlLtissqMHHTKRxMzIbUzARrxwZgSKe/1nF+uWtLtGlhjfwSBdYdbTx/gB3jEoJERoGraVO9KyhR4LX1J3H8Wh6spKbYGNENff2cqu1jaiLB+/19AQDrj11HTmGZGFEblEol/O35UhZTIkPGYkr1KreoDK+si8fZ9HzYWprj+8nPort37YUjrL0TOrnboaRciZWHrjVw0oaXnF2IvOJyWJqbokurZmLHISItsJhSvbmT/wAjV8chMVMOB2sL7HjjWXR2t3vk/hKJBLPDKs9Ovz95E7fulTRQUnFUnZUGtbaH1Iz/KxIZsnr9P7gxPjNIlW7kFmPE6jik5RbDzc4SP0wJgZ/zk5sGdG/jgF4+DlAoBfzn4NUGSCoetlwjMh6cgEQ6l5Qlx4g1ccjIf4DWDlbYOSUErR2s6vz+mQ/PTn8+l4HkrML6iimq8goVTl6/B4D3S4mMgUbF9NChQ3Xab9++fXBzc9PkI8hAnb+Vj1Fr4pFTWAY/56bY+UYI3Owsn2qMji3tMMjfGYIAfLk/uZ6Siuv8rXyUlCvR3EoKP+emYschIi1pVEwHDBgAb29v/Pvf/8atW7ceuV/Pnj2NpscpPVlcah7GrItHwQMFurSyw47XQ+DYVLN///f6+8LURIKDidk4c/O+jpOKr+qRmO5tHGBiwtshRIZOo2KakZGB6dOn48cff4SXlxfCwsKwc+dOlJeX6zofGYhDSXcxfkMCisuV6O7dHN9NDIZtE80XIfB2tMY/u7YEACyKSTK6WwYn1PdL2XKNyBhoVEwdHBwwY8YMnD9/HidPnkTbtm3x5ptvwtXVFW+//TYuXLig65ykx/b+eQeTN59GWYUKoc+0QPT4brCyMNN63HdCfSA1M0HC9Xs4cjVHB0n1Q2GpAudu5QPAIx8TIiLDovUEpK5du2LOnDmYPn06ioqKEB0djYCAAPTq1QuXL1/WRUbSYztOpePtbedQoRLwYidXrHo1ADJzU52M7WpnibHPegCovHeqUhnH2WnC9XtQqgR4NG8Cd/smYschIh3QuJgqFAr8+OOPGDRoEDw8PLB//36sWLEC2dnZuHbtGjw8PDBixAhdZiU9s/7Ydcz+6SJUAhAe1Ar/GdUZ5qa6nSD+5j/awNrCDJfvyPHrxUydji0WtlwjMj4a/eZ766234OLigjfeeANt27bFuXPnEBcXh0mTJsHKygqenp746quvkJSUpOu8pAcEQcCygyn4bO8VAMDrvb2wYFgHmNbDRBp7Kyle7+0FAFjye7JRNBDn86VExkejG1tXrlzB8uXL8fLLLz9ytq6Dg0OdH6EhwyEIAhb8loh1/7sOAHjv+baY3rdNvS7QMaFna2w6cQM38krww+nbGB3cqt4+q77dLSzF1ewiSCRAiBcnHxEZC43OTGNjYxEeHv7Yx17MzMzQp08fjYOR/lGqBHz480V1IZ3/Qju81c+n3le6srYww/S+bQAAy2KvGnQD8aqWa+1dbdDMSipyGiLSFY2K6cKFCxEdHV1je3R0NBYtWqR1KNI/CqUK72w/h20Jt2AiARYP74gJPVs32OePDm4FNztLZMvLsOnEjQb7XF3j/VIi46RRMV2zZg38/PxqbG/fvj1Wr16tdSjSL6UKJaZsOYO9f2bC3FSC5eFdMbKbe4NmsDAzxYzn2wKobCBe8MDwGogLgsD7pURGSqNimpWVBRcXlxrbHR0dkZlpHDMuqVJRWQUiNpxCbNJdWJiZYO3YQAzuWPPfviEM6+IGnxbWKHigwNqjqaJk0EZabjEyC0ohNTNBN097seMQkQ5pVEzd3d1x/PjxGtuPHz8OV1fXpxpr5cqV8PT0hEwmQ3BwMBISEh67/9KlS+Hr6wtLS0u4u7tjxowZKC0tVX//k08+gUQiqfaq7Syaniy/pByvfnsScWl5sLYww6YJQfiHbwvR8piaSPD+w0Xwo4/dwN3C0ie8Q79UrXoU6NFMZ8/iEpF+0Gg27+TJk/Huu+9CoVCgb9++AConJc2aNQvvvfdencfZsWMHIiMjsXr1agQHB2Pp0qUICwtDcnIyWrSo+Ut769at+OCDDxAdHY3u3bvj6tWrGD9+PCQSCaKiotT7tW/fHgcPHvzrIM20X42nsblbWIqx6xOQlFUIuybm2BQRhE6P6UXaUPq3c0Jndzucv5WPFX9cw6dDO4gdqc54v5TIeGlUZWbOnIm8vDy8+eab6vV4ZTIZZs+ejTlz5tR5nKioKEyePBkREREAgNWrV+PXX39FdHQ0Pvjggxr7nzhxAj169MDo0aMBAJ6enggPD8fJkyerH5SZGZydnTU5NAKQkf8Ar357Etdzi+HY1ALfTQyGr550NpFIJJg9wA/h6+Kx9WQ6JvX0Qqvm+r+KkFIl4ERq5UxeFlMi46PRZV6JRIJFixYhJycH8fHxuHDhAu7du4f58+fXeYzy8nKcOXMGoaGhf4UxMUFoaCji4uJqfU/37t1x5swZ9aXgtLQ0/Pbbbxg0aFC1/VJSUuDq6govLy+MGTMG6enpj81SVlYGuVxe7dVYpeUUYcSqE7he1dT7jRC9KaRVQrybo5ePAypUhtNA/GJGAQpLK9BUZgZ/N1ux4xCRjmm19pu1tTW6deuGDh06PHWrtdzcXCiVSjg5OVXb7uTkhKysrFrfM3r0aHz66afo2bMnzM3N4e3tjeeeew4ffvihep/g4GBs3LgRMTExWLVqFa5fv45evXqhsPDRTaYXLlwIW1tb9cvdvWFnquqLxEw5Rq6Jw52CUng5WuHHqSHwfIqm3g1pVljlffDd5zOQlKX/f/xUzeLt7t28XlaKIiJxaXwz8fTp09i5cyfS09NrtF7btWuX1sFqc/jwYSxYsADffPMNgoODce3aNbzzzjv47LPPMG/ePADAwIED1ft37NgRwcHB8PDwwM6dOzFx4sRax50zZw4iIyPVX8vl8kZXUM+m38f46ATISyvQzsUGmycGwcFaf3vR+re0xeCOLvj1z0x8tT8Z347rJnakxzqWwkdiiIyZRmem27dvR/fu3ZGYmIiff/4ZCoUCly9fxh9//AFb27pdwnJwcICpqSmys7Orbc/Ozn7k/c558+bhtddew6RJk+Dv749hw4ZhwYIFWLhwIVSq2tdstbOzQ9u2bXHt2rVHZrGwsICNjU21V2Ny4louXv32JOSlFQjwaIZtrz+r14W0ynvPt33YQPwuTt+4J3acR3pQrlQ3OO/OYkpklDQqpgsWLMB//vMf/PLLL5BKpVi2bBmSkpIwcuRItGpVt3VTpVIpAgICEBsbq96mUqkQGxuLkJCQWt9TUlICE5PqkU1NKx8xeFTz6KKiIqSmptb6XCwBB69kY/zGUygpV6JnGwdsmRgEW0vNm3o3JC9Ha4wMrGwgvjgmWW8biJ++eQ/lShVcbGXw0tPL5kSkHY2KaWpqKgYPHgygsigWFxdDIpFgxowZWLt2bZ3HiYyMxLp167Bp0yYkJiZi6tSpKC4uVs/uHTt2bLXZwUOGDMGqVauwfft2XL9+HQcOHMC8efMwZMgQdVF9//33ceTIEdy4cQMnTpzAsGHDYGpqivDwcE0O1ajtuXAHU747g/IKFZ5v54RvxwWiidSwHiN6u9/DBuI37uGwnjYQ//sjMfW9jjERiUOj35zNmjVTT+hxc3PDpUuX4O/vj/z8fJSUlNR5nFGjRiEnJwfz589HVlYWOnfujJiYGPWkpPT09GpnonPnzoVEIsHcuXORkZEBR0dHDBkyBJ9//rl6n9u3byM8PBx5eXlwdHREz549ER8fD0dHR00O1WhtPZmOj3ZfhCAAL3V2xZcjOum8F2lDcLG1xPjunlh7NA2LY5LRx8cRJno2wYdLCBIZP4mgwbWx0aNHIzAwEJGRkfjss8+wfPlyDB06FAcOHEDXrl3rbQJSQ5HL5bC1tUVBQYFR3j9ddzQNn/+WCAAYE9wKnw3toHcF6GncLy5H78WHUFhWgWWvdMbQzm5iR1K7X1yOrv8+AEEAEj7qhxZNZWJHIqJ6oNGZ6YoVK9RL+H300UcwNzfHiRMnMHz4cMydO1enAUl3BEHAfw6m4OvYFADAlD7emD3A1+AvPTZ72EB8yYGriDpwFRZm+nOGfSlDDkEA2jpZs5ASGbGnPjOtqKjA1q1bERYWVuMZUWNhrGeme/+8g+lbzwEAZob5Yto/2oicSHeKyyrQ58tDyC0qf/LOIhjf3ROfvNhe7BhEVE+e+szUzMwMU6ZMQWJiYn3koXqiUKrw1f5kAMDU57yNqpACgJWFGRb/syPWHEmDUqVfs3qtZWaI6OEpdgwiqkcaXeYNCgrC+fPn4eHhoes8VE92nr6FG3klaG4lNbpCWqWvnxP6+hnn1RIi0m8aFdM333wTkZGRuHXrFgICAmBlVf3ZuY4dO+okHOnGg3Illh2svE86vW8bWFsY1uMvRET6TqPZvP9/4QSgcvF7QRAgkUigVCp1Ek4sxnbPdPWRVHyxLwludpb44/0+sDBjL00iIl3S6BTl+vXrus5B9aTggQKrDqcCAGY835aFlIioHmhUTHmv1HCsPZqKggcK+LSwxrAu+vP8JRGRMdGomG7evPmx3x87dqxGYUi37spLEX3sBoDKR2HY+ouIqH5odM+0WbNm1b5WKBQoKSmBVCpFkyZNcO+e/nbwqAtjuWc6b/clbIm/iS6t7LBraneDX5yBiEhfabRUzP3796u9ioqKkJycjJ49e2Lbtm26zkgaSM8rwbaEdACVjbRZSImI6o/O1l3z8fHBF198gXfeeUdXQ5IWog4ko0IloHdbR4R4Nxc7DhGRUdPpIqZmZma4c+eOLockDSRmyvHfC5X/DrPCfEVOQ0Rk/DSagLRnz55qXwuCgMzMTKxYsQI9evTQSTDS3Ff7kyEIwOCOLujgZit2HCIio6dRMX3ppZeqfS2RSODo6Ii+fftiyZIlushFGjp94x5ik+7C1ESC955vK3YcIqJGQaNiqlKpdJ2DdEAQBCyKSQIAjAxsCS9Ha5ETERE1DvrT+JG0djg5B6du3IeFmQne7ucjdhwiokZDo2I6fPhwLFq0qMb2xYsXY8SIEVqHoqenUglY/LDF2rjunnCxtRQ5ERFR46FRMT169CgGDRpUY/vAgQNx9OhRrUPR0/vlzztIzJSjqYUZpvbxFjsOEVGjolExLSoqglQqrbHd3Nwccrlc61D0dBRKFaIOXAUAvNHHC82sav7bEBFR/dGomPr7+2PHjh01tm/fvh3t2rXTOhQ9nR2nbuFmXgkcrKWI6NFa7DhERI2ORrN5582bh5dffhmpqano27cvACA2Nhbbtm3DDz/8oNOA9HgPypX4Oray8fdbfX1gxcbfREQNTqPfvEOGDMHu3buxYMEC/Pjjj7C0tETHjh1x8OBB9OnTR9cZ6TE2nriBu4VlaNnMEuFBrcSOQ0TUKGnUNcbYGUrXmIISBXot/gPy0gpEjeyEl7u2FDsSEVGjpNE901OnTuHkyZM1tp88eRKnT5/WOhTVzeqjqZCXVsDXqSmGdmbjbyIisWhUTKdNm4Zbt27V2J6RkYFp06ZpHYqe7K68FBuOXwcAvM/G30REotKomF65cgVdu3atsb1Lly64cuWK1qHoyb7+IwWlChW6trJD6DMtxI5DRNSoaVRMLSwskJ2dXWN7ZmYmzMw4m7S+3cwrxvaEyisDswew8TcRkdg0Kqb9+/fHnDlzUFBQoN6Wn5+PDz/8EM8//7zOwlHtog5cRYVKQJ+2jgj2YuNvIiKxaXQa+dVXX6F3797w8PBAly5dAADnz5+Hk5MTtmzZotOAVN2VO3L893xl4++ZbPxNRKQXNCqmbm5u+PPPP/H999/jwoULsLS0REREBMLDw2Fubq7rjPQ3X/1euZj9kE6ubPxNRKQnNL7BaWVlhZ49e6JVq1YoLy8HAOzbtw8A8OKLL+omHVVz6sY9/PGw8XckG38TEekNjYppWloahg0bhosXL0IikUAQhGqTYJRKpc4CUiVBELBoX2Xj71Hd3NHawUrkREREVEWjCUjvvPMOWrdujbt376JJkya4dOkSjhw5gsDAQBw+fPipxlq5ciU8PT0hk8kQHByMhISEx+6/dOlS+Pr6wtLSEu7u7pgxYwZKS0u1GtMQHEq+i9M3Kxt/v8PG30RE+kXQQPPmzYULFy4IgiAINjY2QlJSkiAIghAbGyt07ty5zuNs375dkEqlQnR0tHD58mVh8uTJgp2dnZCdnV3r/t9//71gYWEhfP/998L169eF/fv3Cy4uLsKMGTM0HrM2BQUFAgChoKCgzu+pT0qlSgj7zxHBY/ZeYcFvV8SOQ0RE/49GZ6ZKpRJNmzYFADg4OODOncrZpR4eHkhOTq7zOFFRUZg8eTIiIiLQrl07rF69Gk2aNEF0dHSt+584cQI9evTA6NGj4enpif79+yM8PLzamefTjmkIfvnzDpKyCtFUxsbfRET6SKNi2qFDB1y4cAEAEBwcjMWLF+P48eP49NNP4eXlVacxysvLcebMGYSGhv4VxsQEoaGhiIuLq/U93bt3x5kzZ9TFMy0tDb/99hsGDRqk8ZgAUFZWBrlcXu2lLwRBULdYm9LHG3ZN2PibiEjfaDQBae7cuSguLgYAfPrpp3jhhRfQq1cvNG/evNam4bXJzc2FUqmEk5NTte1OTk5ISkqq9T2jR49Gbm4uevbsCUEQUFFRgSlTpuDDDz/UeEwAWLhwIf71r3/VKXdDu5QhR2pOMWTmJhjX3VPsOEREVAuNzkzDwsLw8ssvAwDatGmDpKQk5Obm4u7du+pm4fXh8OHDWLBgAb755hucPXsWu3btwq+//orPPvtMq3GrVnOqetW2iL9Ydp/PAACEPuMEazb+JiLSSzr77Wxvb/9U+zs4OMDU1LTGGr/Z2dlwdnau9T3z5s3Da6+9hkmTJgEA/P39UVxcjNdffx0fffSRRmMClWsNW1hYPFX+hqBUCfjlQuX96JfYYo2ISG9pdGaqC1KpFAEBAYiNjVVvU6lUiI2NRUhISK3vKSkpgYlJ9cimpqYAKu8tajKmPotPy8PdwjLYWpqjd1tHseMQEdEjiHrdMDIyEuPGjUNgYCCCgoKwdOlSFBcXIyIiAgAwduxYuLm5YeHChQCAIUOGICoqCl26dEFwcDCuXbuGefPmYciQIeqi+qQxDcl/H17iHeTvAqmZaH/3EBHRE4haTEeNGoWcnBzMnz8fWVlZ6Ny5M2JiYtQTiNLT06udic6dOxcSiQRz585FRkYGHB0dMWTIEHz++ed1HtNQlCqU2HcpCwDwUmdXkdMQEdHjSARBEMQOoW/kcjlsbW1RUFAAGxsbUTLEXMrElO/OwtVWhmOz+8LEhD1LiYj0Fa8d6qmqNmtDOruykBIR6TkWUz0kL1UgNukuAGBoJ87iJSLSdyymeijmUhbKK1TwaWGNZ1yaih2HiIiegMVUD+15eIn3pS5u1VrbERGRfmIx1TN35aU4kZoLAHixE2fxEhEZAhZTPfPLn5lQCUCARzO42zcROw4REdUBi6meqVqoYSifLSUiMhgspnokLacIf94ugKmJBIP8XcSOQ0REdcRiqkf2PFzUvpePAxys9W/hfSIiqh2LqZ4QBEG9UAMv8RIRGRYWUz1xMaMA13Mrm4A/3+7R7eKIiEj/sJjqid3nKs9Kn2/nzCbgREQGhsVUDyhVAn758+ElXj5bSkRkcFhM9UB8Wh5yCstg14RNwImIDBGLqR7YfY5NwImIDBl/c4usVKFEzMMm4LzES0RkmFhMRXYo6S4KyyrgaitDN097seMQEZEGWExFxibgRESGj8VURAUPFPgjubIJ+Eud2QSciMhQsZiKaP/DJuBtnazh58wm4EREhorFVET/vVDVIYZNwImIDBmLqUiy5aU4kZoHgE3AiYgMHYupSH65cAcCm4ATERkFFlORVLVbe4kdYoiIDB6LqQjYBJyIyLiwmIqg6tnSXj4OaM4m4EREBo/FtIFVNgGvnMXLZ0uJiIwDi2kD+/N2AW7klcDS3BTPt3MSOw4REekAi2kDq7rE+3w7J1ixCTgRkVFgMW1A1ZqAcxYvEZHRYDFtQHGpfzUB7+XDJuBERMaCxbQB7X448Wgwm4ATERkVvfiNvnLlSnh6ekImkyE4OBgJCQmP3Pe5556DRCKp8Ro8eLB6n/Hjx9f4/oABAxriUB6pWhNwzuIlIjIqos+A2bFjByIjI7F69WoEBwdj6dKlCAsLQ3JyMlq0aFFj/127dqG8vFz9dV5eHjp16oQRI0ZU22/AgAHYsGGD+msLC3Gf5zyUdBdFZRVws7NEoEczUbMQEZFuiX5mGhUVhcmTJyMiIgLt2rXD6tWr0aRJE0RHR9e6v729PZydndWvAwcOoEmTJjWKqYWFRbX9mjUTt4BVXeId0olNwImIjI2oxbS8vBxnzpxBaGioepuJiQlCQ0MRFxdXpzHWr1+PV155BVZWVtW2Hz58GC1atICvry+mTp2KvLy8R45RVlYGuVxe7aVLBQ8UOJSUA4CzeImIjJGoxTQ3NxdKpRJOTtUXL3ByckJWVtYT35+QkIBLly5h0qRJ1bYPGDAAmzdvRmxsLBYtWoQjR45g4MCBUCqVtY6zcOFC2Nraql/u7u6aH1QtYi5lolypgq9TUzzjYqPTsYmISHyi3zPVxvr16+Hv74+goKBq21955RX1f/v7+6Njx47w9vbG4cOH0a9fvxrjzJkzB5GRkeqv5XK5Tgtq1UINL/KslIjIKIl6Zurg4ABTU1NkZ2dX256dnQ1nZ+fHvre4uBjbt2/HxIkTn/g5Xl5ecHBwwLVr12r9voWFBWxsbKq9dCVbXoq4NDYBJyIyZqIWU6lUioCAAMTGxqq3qVQqxMbGIiQk5LHv/eGHH1BWVoZXX331iZ9z+/Zt5OXlwcWl4dudVTUBD2QTcCIioyX6bN7IyEisW7cOmzZtQmJiIqZOnYri4mJEREQAAMaOHYs5c+bUeN/69evx0ksvoXnz5tW2FxUVYebMmYiPj8eNGzcQGxuLoUOHok2bNggLC2uQY/q7qku8nHhERGS8RL9nOmrUKOTk5GD+/PnIyspC586dERMTo56UlJ6eDhOT6jU/OTkZx44dw++//15jPFNTU/z555/YtGkT8vPz4erqiv79++Ozzz5r8GdNU3OKcDGjAGYmEgzuyGJKRGSsJIIgCGKH0DdyuRy2trYoKCjQ6v5p1IGr+Do2Bf/wdcSGiKAnv4GIiAyS6Jd5jZUgCNhT1QS8C5cPJCIyZiym9eTC35qAhz7DJuBERMaMxbSeVC1qzybgRETGj7/l68n7/dsixLs5mltJxY5CRET1jMW0npiZmqBPWzYAJyJqDHiZl4iISEsspkRERFpiMSUiItISiykREZGWWEyJiIi0xGJKRESkJRZTIiIiLfE501pUrf0vl8tFTkJERPqgadOmkEgkj/w+i2ktCgsLAQDu7u4iJyEiIn3wpC5ibMFWC5VKhTt37jzxL5EnkcvlcHd3x61bt7Rq5aaPjPnYAB6fITPmYwOM+/j0+dh4ZqoBExMTtGzZUmfj2djY6N0Phq4Y87EBPD5DZszHBhj38RnisXECEhERkZZYTImIiLTEYlqPLCws8PHHH8PCwkLsKDpnzMcG8PgMmTEfG2Dcx2fIx8YJSERERFrimSkREZGWWEyJiIi0xGJKRESkJRZTIiIiLbGY1pOVK1fC09MTMpkMwcHBSEhIEDuSTqxatQodO3ZUP1QdEhKCffv2iR1LZzIyMvDqq6+iefPmsLS0hL+/P06fPi12LJ0pLCzEu+++Cw8PD1haWqJ79+44deqU2LE0cvToUQwZMgSurq6QSCTYvXu3+nsKhQKzZ8+Gv78/rKys4OrqirFjx+LOnTviBX5Kjzs+ABg/fjwkEkm114ABA8QJ+5SedGxFRUWYPn06WrZsCUtLS7Rr1w6rV68WJ2wdsZjWgx07diAyMhIff/wxzp49i06dOiEsLAx3794VO5rWWrZsiS+++AJnzpzB6dOn0bdvXwwdOhSXL18WO5rW7t+/jx49esDc3Bz79u3DlStXsGTJEjRr1kzsaDozadIkHDhwAFu2bMHFixfRv39/hIaGIiMjQ+xoT624uBidOnXCypUra3yvpKQEZ8+exbx583D27Fns2rULycnJePHFF0VIqpnHHV+VAQMGIDMzU/3atm1bAybU3JOOLTIyEjExMfjuu++QmJiId999F9OnT8eePXsaOOlTEEjngoKChGnTpqm/ViqVgqurq7Bw4UIRU9WfZs2aCd9++63YMbQ2e/ZsoWfPnmLHqDclJSWCqampsHfv3mrbu3btKnz00UcipdINAMLPP//82H0SEhIEAMLNmzcbJpQO1XZ848aNE4YOHSpKHl2q7djat28vfPrpp9W26fvPKc9Mday8vBxnzpxBaGioepuJiQlCQ0MRFxcnYjLdUyqV2L59O4qLixESEiJ2HK3t2bMHgYGBGDFiBFq0aIEuXbpg3bp1YsfSmYqKCiiVSshksmrbLS0tcezYMZFSNZyCggJIJBLY2dmJHUVnDh8+jBYtWsDX1xdTp05FXl6e2JF0onv37tizZw8yMjIgCAIOHTqEq1evon///mJHeyQWUx3Lzc2FUqmEk5NTte1OTk7IysoSKZVuXbx4EdbW1rCwsMCUKVPw888/o127dmLH0lpaWhpWrVoFHx8f7N+/H1OnTsXbb7+NTZs2iR1NJ5o2bYqQkBB89tlnuHPnDpRKJb777jvExcUhMzNT7Hj1qrS0FLNnz0Z4eLjBLaD+KAMGDMDmzZsRGxuLRYsW4ciRIxg4cCCUSqXY0bS2fPlytGvXDi1btoRUKsWAAQOwcuVK9O7dW+xoj8SuMfTUfH19cf78eRQUFODHH3/EuHHjcOTIEYMvqCqVCoGBgViwYAEAoEuXLrh06RJWr16NcePGiZxON7Zs2YIJEybAzc0Npqam6Nq1K8LDw3HmzBmxo9UbhUKBkSNHQhAErFq1Suw4OvPKK6+o/9vf3x8dO3aEt7c3Dh8+jH79+omYTHvLly9HfHw89uzZAw8PDxw9ehTTpk2Dq6trtat++oRnpjrm4OAAU1NTZGdnV9uenZ0NZ2dnkVLpllQqRZs2bRAQEICFCxeiU6dOWLZsmdixtObi4lLjD4JnnnkG6enpIiXSPW9vbxw5cgRFRUW4desWEhISoFAo4OXlJXa0elFVSG/evIkDBw4YzVlpbby8vODg4IBr166JHUUrDx48wIcffoioqCgMGTIEHTt2xPTp0zFq1Ch89dVXYsd7JBZTHZNKpQgICEBsbKx6m0qlQmxsrFHcV6yNSqVCWVmZ2DG01qNHDyQnJ1fbdvXqVXh4eIiUqP5YWVnBxcUF9+/fx/79+zF06FCxI+lcVSFNSUnBwYMH0bx5c7Ej1avbt28jLy8PLi4uYkfRikKhgEKhgIlJ9fJkamoKlUolUqon42XeehAZGYlx48YhMDAQQUFBWLp0KYqLixERESF2NK3NmTMHAwcORKtWrVBYWIitW7fi8OHD2L9/v9jRtDZjxgx0794dCxYswMiRI5GQkIC1a9di7dq1YkfTmf3790MQBPj6+uLatWuYOXMm/Pz8DPJns6ioqNpZ2PXr13H+/HnY29vDxcUF//znP3H27Fns3bsXSqVSPWfB3t4eUqlUrNh19rjjs7e3x7/+9S8MHz4czs7OSE1NxaxZs9CmTRuEhYWJmLpuHndsrVq1Qp8+fTBz5kxYWlrCw8MDR44cwebNmxEVFSVi6icQeTax0Vq+fLnQqlUrQSqVCkFBQUJ8fLzYkXRiwoQJgoeHhyCVSgVHR0ehX79+wu+//y52LJ355ZdfhA4dOggWFhaCn5+fsHbtWrEj6dSOHTsELy8vQSqVCs7OzsK0adOE/Px8sWNp5NChQwKAGq9x48YJ169fr/V7AIRDhw6JHb1OHnd8JSUlQv/+/QVHR0fB3Nxc8PDwECZPnixkZWWJHbtOHndsgiAImZmZwvjx4wVXV1dBJpMJvr6+wpIlSwSVSiVu8MdgCzYiIiIt8Z4pERGRllhMiYiItMRiSkREpCUWUyIiIi2xmBIREWmJxZSIiEhLLKZERERaYjElIo3cuHEDEokE58+fFzsKkehYTImMWFZWFt566y14eXnBwsIC7u7uGDJkSLW1o4lIe1ybl8hI3bhxAz169ICdnR2+/PJL+Pv7Q6FQYP/+/Zg2bRqSkpLEjkhkNHhmSmSk3nzzTUgkEiQkJGD48OFo27Yt2rdvj8jISMTHx2PChAl44YUXqr1HoVCgRYsWWL9+PYDKjkCLFy9GmzZtYGFhgVatWuHzzz9/5GdeunQJAwcOhLW1NZycnPDaa68hNze3Xo+TSB+wmBIZoXv37iEmJgbTpk2DlZVVje/b2dlh0qRJiImJQWZmpnr73r17UVJSglGjRgGo7BL0xRdfYN68ebhy5Qq2bt0KJyenWj8zPz8fffv2RZcuXXD69GnExMQgOzsbI0eOrJ+DJNIjvMxLZISuXbsGQRDg5+f3yH26d+8OX19fbNmyBbNmzQIAbNiwASNGjIC1tTUKCwuxbNkyrFixAuPGjQNQ2Vy8Z8+etY63YsUKdOnSBQsWLFBvi46Ohru7O65evYq2bdvq8AiJ9AvPTImMUF2bQU2aNAkbNmwAAGRnZ2Pfvn2YMGECACAxMRFlZWXo169fnca6cOECDh06BGtra/WrqpinpqZqcBREhoNnpkRGyMfHBxKJ5ImTjMaOHYsPPvgAcXFxOHHiBFq3bo1evXoBACwtLZ/qM4uKijBkyBAsWrSoxvdcXFyeaiwiQ8MzUyIjZG9vj7CwMKxcuRLFxcU1vp+fnw8AaN68OV566SVs2LABGzduREREhHofHx8fWFpa1vkxmq5du+Ly5cvw9PREmzZtqr1qu29LZExYTImM1MqVK6FUKhEUFISffvoJKSkpSExMxNdff42QkBD1fpMmTcKmTZuQmJiovjcKADKZDLNnz8asWbOwefNmpKamIj4+Xj3T9/+bNm0a7t27h/DwcJw6dQqpqanYv38/IiIioFQq6/14icTEy7xERsrLywtnz57F559/jvfeew+ZmZlwdHREQEAAVq1apd4vNDQULi4uaN++PVxdXauNMW/ePJiZmWH+/Pm4c+cOXFxcMGXKlFo/z9XVFcePH8fs2bPRv39/lJWVwcPDAwMGDICJCf9uJ+MmEeo6U4GIjFJRURHc3NywYcMGvPzyy2LHITJIPDMlaqRUKhVyc3OxZMkS2NnZ4cUXXxQ7EpHBYjElaqTS09PRunVrtGzZEhs3boSZGX8dEGmKl3mJiIi0xFkBREREWmIxJSIi0hKLKRERkZZYTImIiLTEYkpERKQlFlMiIiItsZgSERFpicWUiIhISyymREREWvo/dZ+ymKS7qY8AAAAASUVORK5CYII=\n"
- },
- "metadata": {},
- "output_type": "display_data"
- }
- ],
- "source": [
- "# Default\n",
- "plot_cycle_score(cycle, X_test, y_test,\n",
- " figsize=(5,3));\n",
- "# Specifying Scorer - Plots should be the identical.\n",
- "plot_cycle_score(cycle, X_test, y_test,\n",
- " scorer=accuracy_score,\n",
- " figsize=(5,3));"
- ],
- "metadata": {
- "collapsed": false
- }
- },
- {
- "cell_type": "code",
- "execution_count": 6,
- "outputs": [
- {
- "data": {
- "text/plain": "",
- "image/png": "iVBORw0KGgoAAAANSUhEUgAAAdMAAAEmCAYAAAA5oXoHAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8o6BhiAAAACXBIWXMAAA9hAAAPYQGoP6dpAAA/U0lEQVR4nO3deVhU9f4H8PfMwDDIKrIrggiKIm6YBNJyiytqmWmpaYlaVprLTSpNE9ebtJKmpqVpLllYGtdccOG6pKgoKC64sCkugIKyCwwz5/cHOr+4osLMwGGG9+t55nn0cOY771PIh3O+m0QQBAFERESkNanYAYiIiAwdiykREZGOWEyJiIh0xGJKRESkIxZTIiIiHbGYEhER6YjFlIiISEcspkRERDpiMa2FIAgoKioC17MgIqK6YDGtRXFxMWxsbFBcXCx2FCIiMgAspkRERDpiMSUiItIRiykREZGOWEyJiIh0xGJKRESkIxZTIiIiHbGYEhER6YjFlIiISEcspkREpLWKKhVm/nEG8/48hyqVWuw4ojEROwARERkmtVrAB5uSse10NgCgXKnCwsF+kEgkIidrfLwzJSIirXwWewHbTmfDRCqBVAL8knAVS/+bJnYsUbCYEhFRva2Nv4wfDmYAAL54tSvmvuQLAPh6zyVsTrwmZjRR8DEvERHVS+zZHMz98xwA4KPQjhjSsw0A4HrBXXx/IAPTN5+Go7UZnvJ2EDNmo+KdKRER1VnilTv4168nIQjAiN5t8d6z7TVfmx7qg4HdXFGlFjBhQxJSbhSJmLRxsZgSEVGdZOaVYtza46ioUuM5H0csGORbY7CRVCrBV0O7IqCdHUoqqjD2pwTcKLgrYuLGw2JKRESPlVdSgTFrEnCnTImubWywdGQPmMgeLCFmJjL8ENYL3o6WyC2qfk/hXaUIiRsXiykRET1SWWUV3lp7Alfyy+BmZ44fRz+BFvKHD7mxMTfFT2/2hqOVGS7llmD8+kRUVKkaMXHjYzElIqKHUqkFTPnlFJKvFsC2hSl+GtsbDlZmj31fa1tzrBn7BCzkMhzJyMf0309DEIRGSCwOFlMiIqqVIAiYs/Us9p7PhdxEilVhvdDewbLO7/d1tcHyN/xhIpUg5tQNfLnrYgOmFReLKRER1WrFgQxsOJoFiQRYPLw7ennY1buNpzs4IHKIHwDgu/3p2HD0ir5jNgkspkRE9ID/nLqOz2MvAAAiXuiM/n4uWrc1tJcbpoZ0AADM/s9Z7E3J1UvGpoTFlIiIaohPz8OHvyUDAN4Kboc3g9vp3OaU570wvJcb1AIw+ZeTOHW1QOc2mxIWUyIi0riYU4x31ydCqRIwwM8ZnwzopJd2JRIJ/j24C57u4IC7ShXe+uk4ruSX6qXtpoDFlIiIAAC5ReUYuyYBxeVVeMKjJaKGdYdUqr8dYExlUnz3ek/4ulojv7QSY9Ycx+3SSr21LyYWUyIiQnG5EmPWHMeNwnJ4OlhgZVgvKExlev8cSzMTrBnzBFrbmmtWVCpXGv4cVBZTIqJmTqlS472fk3A+uwj2lmZYO7Y3bFvIG+zzHK0VWPvmE7BWmCApqwD/+vUkVGrDnoPKYkpE1IwJgoCPN5/BX6l5aCGXYfWYXnCza9Hgn+vlaIWVYb0gl0mx61wuFmxLMehFHVhMiYiasW/2pmJz0jXIpBIsG9kTXdvYNtpnB3i2wtfDugEAfoq/jB8PZTbaZ+sbiykRUTP1a0IWvo1LBQD8++Uu+IePY6NnGNjNFTMH+FRn2H4e207faPQM+iARDPm+uoEUFRXBxsYGhYWFsLa2FjsOEdXDttM3sOHoFRh4F1zDE4DErDtQqQVM+ocXPgztKF4UQcDcreew9sgVyGVSdG9rq7e2v3/DHy0tGq7/976HL/tPRGRgbpdW4uPNZ1BSUSV2FIMxpEdrfNC3g6gZJBIJZg/0RXZhOXan5CIh87be2laq1Hpr61FYTInIaHy3Lw0lFVXwcbbC5Oe8xY7T5Nm2MEWgZ6saG3yLRSaVYPkb/jicloficv39MmRtbqq3th6FxZSIjML1grtYd28R9RkDOuGZDg4iJ6L6kkkleNpA/79xABIRGYXFey+hskqNJz3t8LS3vdhxqJlhMSUig5d2sxi/J14DAEzr59MkHltS88JiSkQG7+vdl6AWgH92dkLPti3FjkPNUJMopsuWLYOHhwcUCgUCAgKQkJDw0HOVSiXmz5+P9u3bQ6FQoFu3boiNja1xzty5cyGRSGq8fHx8GvoyiEgEyVcLsPNsDiQS4CMRp3dQ8yZ6MY2OjkZ4eDjmzJmDpKQkdOvWDaGhobh582at58+aNQvff/89lixZgpSUFIwfPx6DBw/GyZMna5zn6+uL7OxszevQoUONcTlE1Mi+2FW9gfWQHm3QwclK5DTUXIleTKOiovD2229j7Nix6Ny5M1asWIEWLVpg9erVtZ6/fv16zJw5EwMGDICnpycmTJiAAQMG4Ouvv65xnomJCZydnTUve3sOSCAyNodS83A4LR9ymRTvh3AqDIlH1GJaWVmJxMREhISEaI5JpVKEhITgyJEjtb6noqICCoWixjFzc/MH7jxTU1Ph6uoKT09PvP7668jKynpojoqKChQVFdV4EVHTJgiC5q50ZEDbRlmcnehhRC2meXl5UKlUcHJyqnHcyckJOTk5tb4nNDQUUVFRSE1NhVqtxp49e7BlyxZkZ2drzgkICMBPP/2E2NhYLF++HJmZmXjqqadQXFxca5uRkZGwsbHRvNzc3PR3kUTUIGLP5uD0tUK0kMsw6TkvseNQMyf6Y976Wrx4Mby9veHj4wO5XI5JkyZh7NixkEr//1L69++PoUOHomvXrggNDcWOHTtQUFCATZs21drmjBkzUFhYqHldvXq1sS6HiLRQpVLjy90XAQDjnvKEvaWZyImouRO1mNrb20MmkyE3N7fG8dzcXDg7O9f6HgcHB8TExKC0tBRXrlzBhQsXYGlpCU9Pz4d+jq2tLTp06IC0tLRav25mZgZra+saLyJqujYnXUPGrVK0bGGKt59qJ3YcInGLqVwuh7+/P+Li4jTH1Go14uLiEBgY+Mj3KhQKtG7dGlVVVdi8eTMGDRr00HNLSkqQnp4OFxcXvWUnInGUK1VYtLd627CJ//CClaJx1l4lehTRH/OGh4dj5cqVWLt2Lc6fP48JEyagtLQUY8eOBQCEhYVhxowZmvOPHTuGLVu2ICMjA3/99Rf69esHtVqNadOmac758MMPceDAAVy+fBnx8fEYPHgwZDIZRowY0ejXR0T6teHoFWQXlsPFRoE3nnQXOw4RgCaw0P3w4cNx69YtzJ49Gzk5OejevTtiY2M1g5KysrJq9IeWl5dj1qxZyMjIgKWlJQYMGID169fD1tZWc861a9cwYsQI5Ofnw8HBAcHBwTh69CgcHAxzAWUiqlZUrsSyfdXdNVNDOkBhKhM5EVE1bg5eC24OTtQ0Re2+iG//m4b2DhbY9f7TMJGJ/nCNCEATeMxLRI1LEARk5ZdBpTas36NvFVdg1aFMANXLBrKQUlPC70aiZkSlFhDxn7N4+st9+NevJx//hiZk2b40lFWq0K2NDUJ9ax/tTyQWFlOiZuJupQrjNyRiw9Hq1cC2nc7GgUu3RE5VN1dvl+HnY9Ubf3OLNWqKWEyJmoHbpZUYueoo9qTkQm4iRR+vVgCAeVvPobJKLXK6x/tm7yUoVQKCvezRx4vrbFPTw2JKZOSy8svw6vJ4nMwqgI25KX4eF4Dlb/jD3tIMGXmlWH04U+yIj3Qxpxh/nLwOgFusUdPFYkpkxM5cK8SQ5YeRkVeK1rbm2DwhEE942MFaYYqP+1fv8fttXCpyCstFTvpwX+2+CEEA+ndxRjc3W7HjENWKxZTISO2/eBPDfziCvJJKdHKxxpb3guDl+P/7fQ7p0Ro929qirFKFyJ3nRUz6cIlX7mBPSi6kEuCDvrwrpaaLxZTICP124ireWnsCZZUq9PFqhU3vPgkn65pbF0qlEswf1AUSCfCfUzdwLCNfpLS1EwQBn8dWb7E21N8NXo6WIiciejgWUyIjIggClsSl4qPfT0OlFvByd1esGdP7oevXdmltg5G92wIA5mw9hypV0xmMdODSLSRk3obcRIp/ceNvauJYTImMRJVKjZl/nMXXey4BACY82x5Rw7pDbvLof+Yf9u0I2xamuJBTjJ+PZTVG1MdSqwV8uat6i7XRge5wtTUXORHRo7GYEhmBssoqvLs+Eb8kZEEiAeYP8sX0fj6QSh8/H7OlhRwf3uuP/Hr3ReSVVDR03MfafiYb524UwdLMBBOe5cbf1PSxmBIZuPySCoxceQxxF27CzESK5a/7IyzQo15tjOjdFr6u1igqr8KXsRcbJmgdKVVqfH1v4+93nvaEnYVc1DxEdcFiSmTAruSX4pXl8Th1tQC2LUyx8e0A9OtS/6X2ZFIJ5g/yBQBsSryKU1cL9Jy07jaduIrL+WVoZSHHW8Hc+JsMA4spkYFKvlqAId/F43J+GVrbmuP38UHwd7fTuj1/dzsM6dkaggDM+c9ZqEVYCP9upQrfxlVv/D35OS9YmIm+SyRRnbCYEhmgfRdu4rUfjiK/tBK+rtb4470gvUwd+bi/DyzNTJB8rRC/JV7VQ9L6WXvkMnKLKtDa1hwjAto2+ucTaYvFlMjARB/Pwrh1J3BXqcJT3vaIfjcQjv8zh1RbjlYKvH9vGsrnsRdRWKbUS7t1UVimxHf3Nv4O/2cHmJlw428yHCymRAZCEAQs2nsJ0zefgUotYEjP1vhx9BOw1POj0NFBHvB2tMTt0kp8s/eSXtt+lO8PpqOovAodnCzxco/Wjfa5RPqgUzGtrKzExYsXUVVVpa88RPQQC3ecx6K91f2JE//RHl8P7fbYOaTaMJVJMfel6sFI645cxvnsIr1/xv9Ku1msWXD/o1AfyOowpYeoKdHqX2JZWRneeusttGjRAr6+vsjKqp7oPXnyZHz22Wd6DUhEQFG5EqsPXwYALHi5Cz4Kbdg9Pft42eMFPxeoBWDOf85BEBpuMNLuczl4eVk8ypVq9HJviZBOjg32WUQNRatiOmPGDCQnJ2P//v1QKP6/ryYkJATR0dF6C0dE1Y5l3IZKLcDT3gKjnnRvlM+c+UInmJvKkHD5NrYm39B7+2q1gKg9l/DO+kSUVFShdzs7rBjlz42/ySBpVUxjYmKwdOlSBAcH1/jG9/X1RXp6ut7CEVG1Q6m3AKBRN8ZubWuOif9oD6D6EXNJhf66c4rKlXhn/QnNNJgxQR74eVwA7C3N9PYZRI1Jq2J669YtODo++CimtLSUv1USNYBDaXkAGreYAsC4pzzh3qoFcosqsOS/qXppM+1mCV5edhh7z9+E3ESKr4Z2w9yXfGEq43hIMlxafff26tUL27dv1/z9fgFdtWoVAgMD9ZOMiAAA2YV3kX6rFFIJENi+VaN+tsJUhjkDOwMAVh/KRPqtEp3aq+4fPYyMW6VwtVHg9/GBeNW/jT6iEolKqzH1CxcuRP/+/ZGSkoKqqiosXrwYKSkpiI+Px4EDB/SdkahZO5RafVfatY0tbMxr30qtIT3n44TnfRwRd+Em5m49h3Vv9q73Eyi1WsCiuFTNY92AdnZY9npPPtYlo6HVnWlwcDCSk5NRVVUFPz8/7N69G46Ojjhy5Aj8/f31nZGoWbv/iPcp78Z9xPt3ES92hlwmxV+pedidkluv9xaVK/H2upr9oxvYP0pGpt53pkqlEu+++y4iIiKwcuXKhshERPcIgoDDIvWX/p2HvQXeedoTS/elYcG2FDzTwQEK08evUJR2sxjvrEtERl4p5CZSRA72wyt8rEtGqN53pqampti8eXNDZCGi/3Extxh5JZUwN5WhR1tbUbO894/2cLVR4Nqdu1hx4PGj9nfdmz+akVfdP7p5fBALKRktrR7zvvzyy4iJidFzFCL6X/f7SwM87URfq7aF3ASfvFA9GGn5/nRcvV1W63lqtYCo3Rfx7r35owHt7LB1cjD82tg0ZlyiRqXVACRvb2/Mnz8fhw8fhr+/PywsLGp8fcqUKXoJR9Tc3e8vDRbxEe/fDfBzRlD7VohPz8eCbSn4IaxXja8XlSsx9ddTiLtwE0B1/+gnL3TitBcyehJBi3XC2rV7+Ia9EokEGRkZOoUSW1FREWxsbFBYWAhra2ux41AzVVGlQvd5e3BXqULs+0/Bx7lpfC+m5haj/+K/UKUWsPbN3nimgwMA9o9S86bVnWlmZqa+cxDR/ziZVYC7ShXsLeXo6GQldhwNbycrjAnywKpDmZi39Rxi338a+y7exAebklFSUQVXGwW+H9WLj3WpWdF576b7N7Zc+YhIv+73l/bxsm9y/77+FeKNmFM3kJFXitdXHcXxy3cAcP4oNV9ad2SsW7cOfn5+MDc3h7m5Obp27Yr169frMxtRs9bU+kv/zkphihn9fQBAU0g5f5SaM63uTKOiohAREYFJkyahT58+AIBDhw5h/PjxyMvLw9SpU/Uakqi5KSxT4vS1AgBAsIiLNTzK4B6tse30DRzLvI0Fg7qwf5SaNa0HIM2bNw9hYWE1jq9duxZz5841+D5VDkAiscWezcH4DYlo72CBuA+eFTvOQ6nUAlRqoUE2KScyJFrdmWZnZyMoKOiB40FBQcjOztY5FFFzd7gJP+L9O5lUApm0afXnEolBq18nvby8sGnTpgeOR0dHw9vbW+dQRM2dpr/U20HkJERUF1rdmc6bNw/Dhw/HwYMHNX2mhw8fRlxcXK1Flojq7tqdMmTmlUImlSDA007sOERUB1rdmb7yyis4duwY7O3tERMTg5iYGNjb2yMhIQGDBw/Wd0aiZuX+I95ubWxgrWj8LdeIqP60HjXg7++PDRs2IDExEYmJidiwYQN69OihVVvLli2Dh4cHFAoFAgICkJCQ8NBzlUol5s+fj/bt20OhUKBbt26IjY3VqU2ipuRQWj4APuIlMiRaFdMdO3Zg165dDxzftWsXdu7cWa+2oqOjER4ejjlz5iApKQndunVDaGgobt68Wev5s2bNwvfff48lS5YgJSUF48ePx+DBg3Hy5Emt2yRqKtRqwWAGHxHR3wha8PPzE7Zv3/7A8Z07dwpdu3atV1u9e/cWJk6cqPm7SqUSXF1dhcjIyFrPd3FxEZYuXVrj2JAhQ4TXX39d6zb/V2FhoQBAKCwsrM+lEOns7PUCwX36NqFzxE6hskoldhwiqiOt7kxTU1PRuXPnB477+PggLS2tzu1UVlYiMTERISEhmmNSqRQhISE4cuRIre+pqKiAQqGocczc3ByHDh3Sqc2ioqIaLyIx3L8rDfBsxZ1WiAyIVv9abWxsat0ZJi0t7YHt2B4lLy8PKpUKTk5ONY47OTkhJyen1veEhoYiKioKqampUKvV2LNnD7Zs2aKZ36pNm5GRkbCxsdG83Nzc6nwNRPr019/W4yUiw6FVMR00aBDef/99pKena46lpaXhgw8+wEsvvaS3cLVZvHgxvL294ePjA7lcjkmTJmHs2LGQSrX/LX7GjBkoLCzUvK5evarHxER1U65U4fjl2wCAp5roEoJEVDutKtAXX3wBCwsL+Pj4oF27dmjXrh06deqEVq1a4auvvqpzO/b29pDJZMjNza1xPDc3F87OzrW+x8HBATExMSgtLcWVK1dw4cIFWFpawtPTU+s2zczMYG1tXeNFjSc+PQ+nrhaIHUN0SVfuoFyphqOVGbwdLcWOQ0T1oPVj3vj4eGzfvh3vvfcePvjgA8TFxeG///0vbG1t69yOXC6Hv78/4uLiNMfUajXi4uIQGBj4yPcqFAq0bt0aVVVV2Lx5MwYNGqRzm9T4DqXmYeTKYxi6Ir7ZF9S/7xLT1LZcI6JH03o/U4lEgr59+6Jv374AgIKCAq3aCQ8Px+jRo9GrVy/07t0bixYtQmlpKcaOHQsACAsLQ+vWrREZGQkAOHbsGK5fv47u3bvj+vXrmDt3LtRqNaZNm1bnNqlpKLyrxEe/JwMAlCoBE39OwrbJwWhpIRc5mTjuF1P2lxIZHq2K6eeffw4PDw8MHz4cADBs2DBs3rwZzs7O2LFjB7p161bntoYPH45bt25h9uzZyMnJQffu3REbG6sZQJSVlVWjP7S8vByzZs1CRkYGLC0tMWDAAKxfv77GHfHj2qSmYc5/ziK7sBwerVoAAC7nlyF80yn8OPoJSJvZ4ukFZZU4c70QAIspkSHSegu2n3/+GUFBQdizZw+GDRuG6OhobNq0CVlZWdi9e3dDZG003IKt4W0/nY2JG5MglQC/TwiCmYkUQ76LR0WVGh+FdsTEf3iJHbFR7TyTjQk/J8Hb0RJ7wp8ROw4R1ZNWfaY5OTma6SPbtm3DsGHD0LdvX0ybNg3Hjx/Xa0AyPjeLyvFJzBkAwHvPeqFn25bwdbXBgkFdAABf776I+HuPPJuLv/iIl8igaVVMW7ZsqZk+Ehsbq1kgQRAEqFQq/aUjoyMIAqZtPo2CMiV8Xa0x5fn/37Jv2BNuGOrfBmoBmPLrSeQWlYuYtHHdX6yBU2KIDJNWxXTIkCEYOXIk/vnPfyI/Px/9+/cHAJw8eRJeXs3r8RzVz8aELOy/eAtyEykWDe8OuUnNb8H5g7rAx9kKeSWVmLQxCUqVWqSkjefq7TJcyS+DiVSCAM9WYschIi1oVUy/+eYbTJo0CZ07d8aePXtgaVk9Jy47OxvvvfeeXgOS8bicV4p/bzsPAJgW2hHeTlYPnGMul2H5G/6wMjPB8ct38OWui40ds9HdH8Xbo60tLM20HmBPRCLSagBSXb3wwgtYtWoVXFxcGuojGgQHIOlflUqNYd8fQVJWAZ70tMPGcU8+csRu7NlsjN+QBABY8YY/+nWpfcENYzDx5yRsP5ON90O88X5IB7HjEJEWGnQl7YMHD+Lu3bsN+RFkIL4/mIGkrAJYmZngq6HdHjv1pV8XF4wLbgcA+Oi3ZFzJL22MmI1OrRZwOJ1brhEZOm5LQQ3u7PVCfLPnEgBgzku+aNOyRZ3eN72/D/zdW6K4ogoTNiShXGl8g9tSsotQUKaEpZkJurnZih2HiLTEYkoNqlypwtToU6hSCwj1dcIrPVvX+b2mMimWjeyJVhZypGQXYe7Wcw2YVBz3d4l50tOOW64RGTD+66UG9dWui0i9WQJ7SzMsHOxX7zVnnW0U+HZED0gkwK/Hr+K3E8a1o8/hND7iJTIGLKbUYI6k5+PHw5kAgM9f8UMrSzOt2unjZY/wewNzZsWcxfls49i8vVypQsK9LdeCOb+UyKCxmFKDKCpX4sPfkiEIwGtPuOH5TrqtizzxH154tqMDKqrUmLAhEUXlSj0lFc+Jy3dQWaWGk7UZ2jtwyzUiQ9agxXTmzJmws7NryI+gJmr+nym4XnAXbnbmmPViZ53bk0ol+GZYd7jaKHA5vwzTfz+NBpzV1Sj+SrsFAAj2cuCWa0QGTusZ4qmpqdi3bx9u3rwJtbrmKjWzZ88GAMyYMUO3dGSQdp3Lwe+J1yCRAFHDuuttIYKWFnJ894Y/hq6Ix86zOVh9+DLeujd9xhBp+ku9ueoRkaHT6qfcypUrMWHCBNjb28PZ2bnGb9USiURTTKn5uVVcgRlbqhexf/fp9njCQ79PJrq72SLixc6Y/Z9ziNxxHt3dbODvbnhPP26XVuLcjeq+Xy5uT2T4tCqm//73v/Hpp59i+vTp+s5DBkwQBMzYchq3Syvh42yFqf/0fvybtDDqSXccv3wHfybfwMSfT2L7lGCtBzeJJT49D4IAdHSygqOVQuw4RKQjrfpM79y5g6FDh+o7Cxm4TSeuYu/5m5DLpFj0WneYmcga5HMkEgkih/ihvYMFcorK8X70KajUhtV/ephbrhEZFa2K6dChQw1+A3DSr6z8Msz/MwUA8EHfDvBxbtg1jS3NTLD8DX+Ym8rwV2oeFselNujn6ZMgCJrFGrjlGpFx0Ooxr5eXFyIiInD06FH4+fnB1NS0xtenTJmil3BkGFRqAR/8dgqllSr09rDDuKc8G+VzOzhZIXKIH96PPoUl/01Fz7a2eLajY6N8ti6ybpfh2p27MJVJ0Lud4fX3EtGDtNo1pl27h4+glEgkyMjI0CmU2LhrTP2sOJCOz3ZegIVchtj3n4abXd3W3tWXWTFnsOFoFlq2MMW2KU+hta15o35+fW04egWzYs6idzs7bHo3UOw4RKQHWt2ZZmZm6jsHGajz2UWI2n1vEfuBvo1eSAEg4sXOOH2tEKevFWLiz0mY0d9HL+22d7SEfQMMbOISgkTGR+cJgPdvbDnpvPmpqKpexL5SpUZIJycM7dVGlBxmJjIsG9kTLy45hFNXCzD8h6N6aVdhKsV3r/fEcz66rd70dyq1gPj0fABcQpDImGhdTNetW4cvv/wSqanVAz86dOiAjz76CKNGjdJbOGravtmTigs5xWhlIUfkkPovYq9PbnYt8P0of3y28wKK9bDUYFmlCtmF5Xh7XSK+eKUrXvHXzy8KZ68XovCuElZmJuja2kYvbRKR+LQqplFRUYiIiMCkSZPQp08fAMChQ4cwfvx45OXlYerUqXoNSU3P8cu38f3BdADAwiF+cLASf57nk56tEDOxj17aUqrUmP77aWw5eR0f/JaMvJIKvPtMe53bPXTvEe+T7VvBhFuuERkNrYrpkiVLsHz5coSFhWmOvfTSS/D19cXcuXNZTI3cndJK/OuXkxAE4FX/Ngj1dRY7kt6ZyqT4amg32FuZ4YeDGYjceQF5JRWY0b8TpFLt78APcUoMkVHS6lfj7OxsBAUFPXA8KCgI2dnZOoeipksQBHz4WzJuFJajnb0F5r7kK3akBiOVSjBzQCfMHFA9oGnlX5n44LdkKFXqx7yzdncrVUi8cgcAF2sgMjZaFVMvLy9s2rTpgePR0dHw9m6YJeSoaVj1VybiLtyE3ESKpSN76G0R+6bsnafbI2pYN5hIJfjj5HW8tfYESiuq6t1OwuXbqFSp4WqjgKe9RQMkJSKxaPWTcN68eRg+fDgOHjyo6TM9fPgw4uLiai2yZBySsu7g89gLAIDZL3aGr2vzGUAzpGcbtLSQ470NSTh46RZGrjqGNWOegJ2FvM5t/H0JQY5+JzIuWt2ZvvLKKzh27Bjs7e0RExODmJgY2NvbIyEhAYMHD9Z3RmoCCsoqMXnjSVSpBbzY1QWvB7QVO1Kj+0dHR/z8dgBsW5gi+WoBXl0Rj2t3yur8/vtLCHJKDJHx0WoFJGPHFZBqEgQBb69LxN7zufBo1QJ/Tg6GlcL08W80Umk3SxD24zHcKCyHk7UZ1r0ZgI7OVo98T15JBXr9ey8A4PgnIU1i9DMR6U+d70yLiopq/PlRLzIuPx7KxN7zuZDLpFg6smezLqQA4OVoic3vBaGDkyVyiyowdEU8jl++/cj33F+owcfZioWUyAjVuZi2bNkSN2/eBADY2tqiZcuWD7zuHyfjcTLrDj7bWd1PGvFiJ3ThQgMAABcbc/z2bhB6ubdEUXkV3lh1DHtSch96/qHUWwA4JYbIWNV5ANJ///tf2NlV73Cxb9++BgtETUdhmRKT7vWTvuDngjeedBc7UpNi08IU698KwORfkrD3/E28u/4EFg72w2u9a/YnC4KgmV/KKTFExol9prVgn2l1AXhnfSL2pOSirV0LbJsSDOtm/nj3YapUasz84ww2nbgGAPgotCPee7a9ZsRuxq0SPPf1AchlUpya80+0kBv/dCKi5kar0byxsbE4dOiQ5u/Lli1D9+7dMXLkSNy5c0dv4Ug8aw5fxp6U6n7SZSN7spA+golMis9f6Yr3nq1ebvDLXRcx788UqNXVv6fenxLT092WhZTISGlVTD/66CPNQKMzZ84gPDwcAwYMQGZmJsLDw/UakBpf8tUCRO48DwD45IVO8GvDftLHkUgkmNbPB3MGdgYA/BR/GVN+PYmKKtX/T4nhI14io6X1fqadO1f/0Ni8eTMGDhyIhQsXIikpCQMGDNBrQGpchXeVmLgxCUqVgP5dnBEWyH7S+hjbpx1aWZrhg02nsO10NgrKlEi+VgAACPZ2EDccETUYre5M5XI5ysqqJ6vv3bsXffv2BQDY2dlxaowBEwQB035PxrU7d+FmZ47PX+3KlXq08FI3V6we8wRayGU4lJaH4vIqWCtM4MeR0ERGS6tiGhwcjPDwcCxYsAAJCQl44YUXAACXLl1CmzbibBBNulsbfxm7zuXCVCZhP6mOnvJ2wK/vPKlZbjCovT1kOuw2Q0RNm1bFdOnSpTAxMcHvv/+O5cuXo3Xr1gCAnTt3ol+/fnoNSI3j9LUCfLqjup905oBO6NrGVtxARqBrG1tsmRCEMUEe+KBvB7HjEFED0qqYtm3bFtu2bUNycjLeeustzfFvvvkG3377bb3bW7ZsGTw8PKBQKBAQEICEhIRHnr9o0SJ07NgR5ubmcHNzw9SpU1FeXq75+ty5cyGRSGq8fHx86p2rufh7P2morxPGBHmIHcloeNzbps7b6dHLDRKRYavzAKSioiLNnMvH9YvWZ25mdHQ0wsPDsWLFCgQEBGDRokUIDQ3FxYsX4ejo+MD5GzduxMcff4zVq1cjKCgIly5dwpgxYyCRSBAVFaU5z9fXF3v37tX83cSEUxJqIwgCPt58Gldv30Wblub44tVu7CclIqqnOleYli1bIjs7G46OjrC1ta31B64gCJBIJFCpVHUOEBUVhbfffhtjx44FAKxYsQLbt2/H6tWr8fHHHz9wfnx8PPr06YORI0cCADw8PDBixAgcO3as5oWZmMDZ2bnOOZqr9UevYOfZHJjKJFg6sidszNlPSkRUX6IuJ1hZWYnExETMmDFDc0wqlSIkJARHjhyp9T1BQUHYsGEDEhIS0Lt3b2RkZGDHjh0YNWpUjfNSU1Ph6uoKhUKBwMBAREZGom3b5rdt2KOcvV6If2+r7if9uH8ndHezFTcQEZGBqnMxfeaZZ2r9sy7y8vKgUqng5ORU47iTkxMuXLhQ63tGjhyJvLw8BAcHQxAEVFVVYfz48Zg5c6bmnICAAPz000/o2LEjsrOzMW/ePDz11FM4e/YsrKwe7LuqqKhARUWF5u/NYXpPUXl1P2mlSo1/dnbCm308xI5ERGSwtBqAtGbNGvz2228PHP/tt9+wdu1anUM9yv79+7Fw4UJ89913SEpKwpYtW7B9+3YsWLBAc07//v0xdOhQdO3aFaGhodixYwcKCgqwadOmWtuMjIyEjY2N5uXm5tag1yA2QRAwY/MZXMkvQ2tbc3zFflIiIp1oVUwjIyNhb//g0miOjo5YuHBhnduxt7eHTCZDbm7Nratyc3Mf2t8ZERGBUaNGYdy4cfDz88PgwYOxcOFCREZGQq1W1/oeW1tbdOjQAWlpabV+fcaMGSgsLNS8rl69WudrMEQbjmVh+5lsmEglWDqyB2xasJ+UiEgXWhXTrKwstGvX7oHj7u7uyMrKqnM7crkc/v7+iIuL0xxTq9WIi4tDYGBgre8pKyuDVFoztkwmA1B9x1WbkpISpKenw8XFpdavm5mZwdrausbLWJ29XogFf6YAAD7u74Mebbn/LBGRrrQqpo6Ojjh9+vQDx5OTk9GqVat6tRUeHo6VK1di7dq1OH/+PCZMmIDS0lLN6N6wsLAaA5QGDhyI5cuX49dff0VmZib27NmDiIgIDBw4UFNUP/zwQxw4cACXL19GfHw8Bg8eDJlMhhEjRmhzuUajrLIKk+71k4Z0csRbwQ/+QkRERPWn1eTLESNGYMqUKbCyssLTTz8NADhw4AD+9a9/4bXXXqtXW8OHD8etW7cwe/Zs5OTkoHv37oiNjdUMSsrKyqpxJzpr1ixIJBLMmjUL169fh4ODAwYOHIhPP/1Uc861a9cwYsQI5Ofnw8HBAcHBwTh69CgcHJr3QuOL41JxOb8MrjYKfDWU/aRERPqi1ebglZWVGDVqFH777TfNYghqtRphYWFYsWIF5HK53oM2JmPcHPxSbjEGLP4LVWoBP47uhec7OT3+TUREVCdaFdP7Ll26hOTkZJibm8PPzw/u7saxXZexFVNBEDD8h6NIyLyNf3Z2wsqwXmJHIiIyKjqtsefh4QFBENC+fXsu19eE/XHyOhIyb0NhKtVsXk1ERPqj1QCksrIyvPXWW2jRogV8fX01I3gnT56Mzz77TK8BSTeFZUosvLcbzJTnvdGmZQuRExERGR+tiumMGTOQnJyM/fv3Q6FQaI6HhIQgOjpab+FId1/tvoi8kkq0d7DAuGBPseMQERklrZ7NxsTEIDo6Gk8++WSNEaG+vr5IT0/XWzjSzelrBdhw7AoAYMHLXSA30ep3JyIiegytfrreunWr1u3RSktLOd2iiVCpBcyKOQtBAF7u7oqg9g+uWEVERPqhVTHt1asXtm/frvn7/QK6atWqh65cRI1rY0IWTl8rhJWZCWa+0EnsOERERk2rx7wLFy5E//79kZKSgqqqKixevBgpKSmIj4/HgQMH9J2R6ulWcQW+iK3edefD0I5wtFI85h1ERKQLre5Mg4ODkZycjKqqKvj5+WH37t1wdHTEkSNH4O/vr++MVE+RO8+juLwKvq7WeONJ45j7S0TUlNX7zlSpVOLdd99FREQEVq5c2RCZSAdHM/KxJek6JBLg3y93gUzKPmwiooZW7ztTU1NTbN68uSGykI6UKjUiYs4CAEb0bssdYYiIGolWj3lffvllxMTE6DkK6Wr1oUyk3iyBnYUc00I7ih2HiKjZ0GoAkre3N+bPn4/Dhw/D398fFhYWNb4+ZcoUvYSjurtRcBeL41IBADP6+8C2hWFvNkBEZEi0Wui+to3BNQ1KJMjIyNAplNgMcaH7CRsSsfNsDp7waInodwIhZV8pEVGj0erONDMzU/Pn+7WYizWIZ9/Fm9h5NgcyqQQLXu7CQkpE1Mi0Xl/uxx9/RJcuXaBQKKBQKNClSxesWrVKn9moDsqVKsz5zzkAwJt9PODjbBh30kRExkSrO9PZs2cjKioKkydP1qx4dOTIEUydOhVZWVmYP3++XkPSwy3fn46s22VwtlbgXyEdxI5DRNQsadVn6uDggG+//RYjRoyocfyXX37B5MmTkZeXp7eAYjCUPtPMvFKELjqIyio1vnu9Jwb4uYgdiYioWdLqMa9SqUSvXr0eOO7v74+qqiqdQ9HjCYKAOVvPobJKjac7OKB/F2exIxERNVtaFdNRo0Zh+fLlDxz/4Ycf8Prrr+scih5v59kcHLx0C3ITKea/5MsBYEREItKqzxSoHoC0e/duPPnkkwCAY8eOISsrC2FhYQgPD9ecFxUVpXtKqqGkogrz/0wBAEx4pj087C0e8w4iImpIWhXTs2fPomfPngCg2Qzc3t4e9vb2OHv2rOY83i01jMV7LyGnqBzurVpgwrPtxY5DRNTsaVVM9+3bp+8cVEcXcoqw+vBlAMDcl3yhMJWJG4iIiLSfZ0qNT60WMOuPs1CpBfTv4ox/dHQUOxIREYHF1KBsTrqGE1fuoIVchogXO4sdh4iI7mExNRAFZZWI3HkBAPB+iDdcbc1FTkRERPexmBqIL3ZdxO3SSnRwssTYPg/faICIiBofi6kBOJl1B78kZAEA/v2yH0xl/N9GRNSU8KeyAfhs5wUIAvBKzzbo3c5O7DhERPQ/WEybuPPZRTiWeRsyqQQfhnIheyKipojFtIlbG38ZANCvizNcbDjoiIioKWIxbcIKyioRc+o6AGBMkIe4YYiI6KFYTJuw6ONXUa5Uo5OLNXq5txQ7DhERPQSLaROlUgtYf/QKAGBMkDvXOSYiasJYTJuouPO5uHbnLmxbmGJQ99ZixyEiokdgMW2i1h65DAAY/oQbF7MnImriWEyboNTcYhxOy4dUAox60l3sOERE9Bgspk3QuiPVfaUhnZzQpmULkdMQEdHjsJg2MUXlSmxOugaA02GIiAwFi2kT8/uJayirVKGDkyUC27cSOw4REdVBkyimy5Ytg4eHBxQKBQICApCQkPDI8xctWoSOHTvC3Nwcbm5umDp1KsrLy3VqsylQqwWsuzfwKCzQg9NhiIgMhOjFNDo6GuHh4ZgzZw6SkpLQrVs3hIaG4ubNm7Wev3HjRnz88ceYM2cOzp8/jx9//BHR0dGYOXOm1m02FQdSb+FyfhmsFCYY3IPTYYiIDIXoxTQqKgpvv/02xo4di86dO2PFihVo0aIFVq9eXev58fHx6NOnD0aOHAkPDw/07dsXI0aMqHHnWd82m4r76/AO9XeDhZmJuGGIiKjORC2mlZWVSExMREhIiOaYVCpFSEgIjhw5Uut7goKCkJiYqCmeGRkZ2LFjBwYMGKB1mxUVFSgqKqrxamyZeaXYf/EWJBIgLJDTYYiIDImotz95eXlQqVRwcnKqcdzJyQkXLlyo9T0jR45EXl4egoODIQgCqqqqMH78eM1jXm3ajIyMxLx58/RwRdq731f6bAcHeNhbiJqFiIjqR/THvPW1f/9+LFy4EN999x2SkpKwZcsWbN++HQsWLNC6zRkzZqCwsFDzunr1qh4TP15pRRV+P1E9HWY0p8MQERkcUe9M7e3tIZPJkJubW+N4bm4unJ2da31PREQERo0ahXHjxgEA/Pz8UFpainfeeQeffPKJVm2amZnBzMxMD1eknS1J11BcUYV29hZ42ttBtBxERKQdUe9M5XI5/P39ERcXpzmmVqsRFxeHwMDAWt9TVlYGqbRmbJmseu1aQRC0alNMgiBg7b0Vj8IC3SGVcjoMEZGhEX3IaHh4OEaPHo1evXqhd+/eWLRoEUpLSzF27FgAQFhYGFq3bo3IyEgAwMCBAxEVFYUePXogICAAaWlpiIiIwMCBAzVF9XFtNiXx6flIu1kCC7kMr/q3ETsOERFpQfRiOnz4cNy6dQuzZ89GTk4OunfvjtjYWM0AoqysrBp3orNmzYJEIsGsWbNw/fp1ODg4YODAgfj000/r3GZT8tO96TCv+LeBlcJU3DBERKQViSAIgtghmpqioiLY2NigsLAQ1tbWDfY5V2+X4Zkv90EtAHvDn4GXo2WDfRYRETUcgxvNa0w2HL0CtQA85W3PQkpEZMBYTEVyt1KFX49XT8EJC/QQNwwREemExVQk/zl1HYV3lWjT0hzP+TiKHYeIiHTAYioCQRA0A4/CAt0h43QYIiKDxmIqgoTM27iQUwyFqRTDermJHYeIiHTEYiqCtffW4R3cozVsW8jFDUNERDpjMW1kNwruYte56qUOuQ4vEZFxYDFtZBuPZUGlFhDQzg4+zg03h5WIiBoPi2kjKleq8EtCFgBgDO9KiYiMBotpI9p+Ohv5pZVwsVHgn52b3tKGRESkHRbTRlK9O8xlAMAbT7rDRMb/9ERExoI/0RvJyasFOH2tEHITKV57gtNhiIiMCYtpI1l7b5GGgV1d0cpSvI3IiYhI/1hMG8HN4nLsOJMNgAOPiIiMEYtpI9h4LAtKlYCebW3h18ZG7DhERKRnLKYNrLJKjZ+PVU+H4SINRETGicW0ge08m41bxRVwsDJD/y4uYschIqIGwGLawO4PPHo9oC3kJvzPTURkjPjTvQGduVaIpKwCmMokGBnQVuw4RETUQFhMG9D9RRoG+LnA0UohbhgiImowLKYNJL+kAluTbwAAwgI9xA1DREQNisW0gcSey0FllRp+rW3Qs62t2HGIiKgBmYgdwFiN7N0WHZysoFILkEgkYschIqIGxGLaQCQSCZ7wsBM7BhERNQI+5iUiItIRiykREZGOWEyJiIh0xGJKRESkIxZTIiIiHbGYEhER6YjFlIiISEecZ1oLQRAAAEVFRSInISKipsDKyuqRC/CwmNaiuLgYAODm5iZyEiIiagoKCwthbW390K9LhPu3YaShVqtx48aNx/4m8jhFRUVwc3PD1atXH/k/wRAZ87UBvD5DZszXBvD6xMI7Uy1IpVK0adNGb+1ZW1s3qW8KfTLmawN4fYbMmK8N4PU1NRyAREREpCMWUyIiIh2xmDYgMzMzzJkzB2ZmZmJH0TtjvjaA12fIjPnaAF5fU8UBSERERDrinSkREZGOWEyJiIh0xGJKRESkIxZTIiIiHbGYNpBly5bBw8MDCoUCAQEBSEhIEDuSXixfvhxdu3bVTKgODAzEzp07xY6lV9evX8cbb7yBVq1awdzcHH5+fjhx4oTYsfSiuLgY77//Ptzd3WFubo6goCAcP35c7FhaOXjwIAYOHAhXV1dIJBLExMRovqZUKjF9+nT4+fnBwsICrq6uCAsLw40bN8QLXE+Puj4AGDNmDCQSSY1Xv379xAlbT4+7tpKSEkyaNAlt2rSBubk5OnfujBUrVogTto5YTBtAdHQ0wsPDMWfOHCQlJaFbt24IDQ3FzZs3xY6mszZt2uCzzz5DYmIiTpw4geeeew6DBg3CuXPnxI6mF3fu3EGfPn1gamqKnTt3IiUlBV9//TVatmwpdjS9GDduHPbs2YP169fjzJkz6Nu3L0JCQnD9+nWxo9VbaWkpunXrhmXLlj3wtbKyMiQlJSEiIgJJSUnYsmULLl68iJdeekmEpNp51PXd169fP2RnZ2tev/zySyMm1N7jri08PByxsbHYsGEDzp8/j/fffx+TJk3C1q1bGzlpPQikd7179xYmTpyo+btKpRJcXV2FyMhIEVM1nJYtWwqrVq0SO4ZeTJ8+XQgODhY7RoMoKysTZDKZsG3bthrHe/bsKXzyyScipdIPAMIff/zxyHMSEhIEAMKVK1caJ5Qe1XZ9o0ePFgYNGiRKHn2q7dp8fX2F+fPn1zjW1L9PeWeqZ5WVlUhMTERISIjmmFQqRUhICI4cOSJiMv1TqVT49ddfUVpaisDAQLHj6MXWrVvRq1cvDB06FI6OjujRowdWrlwpdiy9qKqqgkqlgkKhqHHc3Nwchw4dEilV4yksLIREIoGtra3YUfRm//79cHR0RMeOHTFhwgTk5+eLHUkvgoKCsHXrVly/fh2CIGDfvn24dOkS+vbtK3a0h2Ix1bO8vDyoVCo4OTnVOO7k5IScnByRUunXmTNnYGlpCTMzM4wfPx5//PEHOnfuLHYsvcjIyMDy5cvh7e2NXbt2YcKECZgyZQrWrl0rdjSdWVlZITAwEAsWLMCNGzegUqmwYcMGHDlyBNnZ2WLHa1Dl5eWYPn06RowYYVCLpz9Kv379sG7dOsTFxeHzzz/HgQMH0L9/f6hUKrGj6WzJkiXo3Lkz2rRpA7lcjn79+mHZsmV4+umnxY72UNw1huqtY8eOOHXqFAoLC/H7779j9OjROHDggFEUVLVajV69emHhwoUAgB49euDs2bNYsWIFRo8eLXI63a1fvx5vvvkmWrduDZlMhp49e2LEiBFITEwUO1qDUSqVGDZsGARBwPLly8WOozevvfaa5s9+fn7o2rUr2rdvj/379+P5558XMZnulixZgqNHj2Lr1q1wd3fHwYMHMXHiRLi6utZ46teU8M5Uz+zt7SGTyZCbm1vjeG5uLpydnUVKpV9yuRxeXl7w9/dHZGQkunXrhsWLF4sdSy9cXFwe+KWgU6dOyMrKEimRfrVv3x4HDhxASUkJrl69ioSEBCiVSnh6eoodrUHcL6RXrlzBnj17jOautDaenp6wt7dHWlqa2FF0cvfuXcycORNRUVEYOHAgunbtikmTJmH48OH46quvxI73UCymeiaXy+Hv74+4uDjNMbVajbi4OKPpV/xfarUaFRUVYsfQiz59+uDixYs1jl26dAnu7u4iJWoYFhYWcHFxwZ07d7Br1y4MGjRI7Eh6d7+QpqamYu/evWjVqpXYkRrUtWvXkJ+fDxcXF7Gj6ESpVEKpVEIqrVmeZDIZ1Gq1SKkej495G0B4eDhGjx6NXr16oXfv3li0aBFKS0sxduxYsaPpbMaMGejfvz/atm2L4uJibNy4Efv378euXbvEjqYXU6dORVBQEBYuXIhhw4YhISEBP/zwA3744Qexo+nFrl27IAgCOnbsiLS0NHz00Ufw8fExyO/NkpKSGndhmZmZOHXqFOzs7ODi4oJXX30VSUlJ2LZtG1QqlWbMgp2dHeRyuVix6+xR12dnZ4d58+bhlVdegbOzM9LT0zFt2jR4eXkhNDRUxNR186hra9u2LZ555hl89NFHMDc3h7u7Ow4cOIB169YhKipKxNSPIfJoYqO1ZMkSoW3btoJcLhd69+4tHD16VOxIevHmm28K7u7uglwuFxwcHITnn39e2L17t9ix9OrPP/8UunTpIpiZmQk+Pj7CDz/8IHYkvYmOjhY8PT0FuVwuODs7CxMnThQKCgrEjqWVffv2CQAeeI0ePVrIzMys9WsAhH379okdvU4edX1lZWVC3759BQcHB8HU1FRwd3cX3n77bSEnJ0fs2HXyqGsTBEHIzs4WxowZI7i6ugoKhULo2LGj8PXXXwtqtVrc4I/ALdiIiIh0xD5TIiIiHbGYEhER6YjFlIiISEcspkRERDpiMSUiItIRiykREZGOWEyJiIh0xGJKRFq5fPkyJBIJTp06JXYUItGxmBIZsZycHEyePBmenp4wMzODm5sbBg4cWGPtaCLSHdfmJTJSly9fRp8+fWBra4svv/wSfn5+UCqV2LVrFyZOnIgLFy6IHZHIaPDOlMhIvffee5BIJEhISMArr7yCDh06wNfXF+Hh4Th69CjefPNNvPjiizXeo1Qq4ejoiB9//BFA9Y5AX3zxBby8vGBmZoa2bdvi008/fehnnj17Fv3794elpSWcnJwwatQo5OXlNeh1EjUFLKZERuj27duIjY3FxIkTYWFh8cDXbW1tMW7cOMTGxiI7O1tzfNu2bSgrK8Pw4cMBVO8S9NlnnyEiIgIpKSnYuHEjnJycav3MgoICPPfcc+jRowdOnDiB2NhY5ObmYtiwYQ1zkURNCB/zEhmhtLQ0CIIAHx+fh54TFBSEjh07Yv369Zg2bRoAYM2aNRg6dCgsLS1RXFyMxYsXY+nSpRg9ejSA6s3Fg4ODa21v6dKl6NGjBxYuXKg5tnr1ari5ueHSpUvo0KGDHq+QqGnhnSmREarrZlDjxo3DmjVrAAC5ubnYuXMn3nzzTQDA+fPnUVFRgeeff75ObSUnJ2Pfvn2wtLTUvO4X8/T0dC2ugshw8M6UyAh5e3tDIpE8dpBRWFgYPv74Yxw5cgTx8fFo164dnnrqKQCAubl5vT6zpKQEAwcOxOeff/7A11xcXOrVFpGh4Z0pkRGys7NDaGgoli1bhtLS0ge+XlBQAABo1aoVXn75ZaxZswY//fQTxo4dqznH29sb5ubmdZ5G07NnT5w7dw4eHh7w8vKq8aqt35bImLCYEhmpZcuWQaVSoXfv3ti8eTNSU1Nx/vx5fPvttwgMDNScN27cOKxduxbnz5/X9I0CgEKhwPTp0zFt2jSsW7cO6enpOHr0qGak7/+aOHEibt++jREjRuD48eNIT0/Hrl27MHbsWKhUqga/XiIx8TEvkZHy9PREUlISPv30U3zwwQfIzs6Gg4MD/P39sXz5cs15ISEhcHFxga+vL1xdXWu0ERERARMTE8yePRs3btyAi4sLxo8fX+vnubq64vDhw5g+fTr69u2LiooKuLu7o1+/fpBK+Xs7GTeJUNeRCkRklEpKStC6dWusWbMGQ4YMETsOkUHinSlRM6VWq5GXl4evv/4atra2eOmll8SORGSwWEyJmqmsrCy0a9cObdq0wU8//QQTE/44INIWH/MSERHpiKMCiIiIdMRiSkREpCMWUyIiIh2xmBIREemIxZSIiEhHLKZEREQ6YjElIiLSEYspERGRjlhMiYiIdPR/iFBIzlvcGXMAAAAASUVORK5CYII=\n"
- },
- "metadata": {},
- "output_type": "display_data"
- }
- ],
- "source": [
- "# Precision\n",
- "plot_cycle_score(cycle, X_test, y_test,\n",
- " scorer=precision_score,\n",
- " figsize=(5,3),\n",
- " scorer_kw=dict(average='weighted', zero_division=0));"
- ],
- "metadata": {
- "collapsed": false
- }
- },
- {
- "cell_type": "code",
- "execution_count": 7,
- "outputs": [
- {
- "data": {
- "text/plain": "",
- "image/png": "iVBORw0KGgoAAAANSUhEUgAAAdMAAAEmCAYAAAA5oXoHAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8o6BhiAAAACXBIWXMAAA9hAAAPYQGoP6dpAAA+IklEQVR4nO3dd1RUZ/4G8GdmKIMgoPQmSBGiQUQNiCVFiaC7xDRbEgtGE43GGIwaY9skP+Om6JpEYold140pxnQsrBoLiIIlKipFRRCQIl1gmLm/P5DZEFBxZuDODM/nnDkn3Llz53v3sD689773/UoEQRBAREREGpOKXQAREZGhY5gSERFpiWFKRESkJYYpERGRlhimREREWmKYEhERaYlhSkREpCWGKRERkZYYps0QBAFlZWXgehZERNQSDNNmlJeXw8bGBuXl5WKXQkREBoBhSkREpCWGKRERkZYYpkRERFpimBIREWmJYUpERKQlhikREZGWGKZERERaYpgSERFpiWFKREQaq6ypw5xvzmDh7j9QrVCKXY5oTMQugIiIDFNplQITNyfhVFYJACCzoBJfju8LS/P2Fy0cmRIR0QMrKK/B6HUJOJVVAhsLU1iayXAsowgvbTiO0iqF2OW1OYYpERE9kJyS2xi9NgEX88phb2WOna/2w7+n9IONhSlOZZVg9LoEFJTXiF1mm2KYEhFRi10prMSoNQnILKyEm60FvpkahgBna/TysMXOV/vB3socF/PKMWptAnJKbotdbpthmBIRUYuk5pZh5Jr6kPS2t8Q3U8PQ1d5S/X6AszW+nRoGN1sLXCmsxMjVx3ClsFLEitsOw5SIiO7rVNYtjFmXiMKKGjzkYo2dr4bB1daiyX5ed0LW294SN0qrMXJNAlJzy0SouG0xTImI6J4SMorw0vrjKL2tQO8utvhqSj84dDS/6/6uthb4emoYHnKxRmFFDcasS8SprFttWHHbY5gSEdFd/fdiPiZuSkJlrRIDfO2w7eVQ2HQwve/n7K3M8dWUfujdxRaltxV4cf1xHMsobIOKxcEwJSKiZv105gZe2ZqMmjoVwh9ywoYJjzzQM6Q2HUyx7eVQDPC1Q1WtEhM3nUB8an4rViwehikRETXxVVIWZn51CnUqASN6uWL1S70hN5U98HEszU2wYcIjeLK7E2rrVHh1WzJ+OnOjFSoWF8OUiIgaWX84E2/v+gOCALwQ2gUrRvWCqUzzuJCbyvDFi70xopcr6lQCZn51Cv9JytJhxeJjmBIREQBAEASs3H8Z//dLKgDg1Ue9sfTphyGTSrQ+tqlMin+N6oUXQ7tAEID5u/7A+sOZWh9XX7S/BRSJiKgJQRCw9JdUrD9yBQDw1tBumP6ELyQS7YO0gVQqwf89/TCs5CZYeygT//dLKsqr6zAr3E+n3yMGjkyJiNo5pUqoHyneCdIlUd0xY3DrBJxEIsHbkQGYE+EPAPg0Pg3v/5wKQRB0/l1tiSNTIqJ2rLZOhZivT+Pns7mQSoB/PtcTo/p6tOp3SiQSTH/CF5ZmMvzjpwvYePQKKmvq8MGzgTq5pCwGjkyJiNqpaoUSU7cn4+ezuTCVSbDqhd6tHqR/NnFAV3z8fE9IJcDOk9cx86tTqK1Ttdn36xJHpkRkVEqqanH8SrHBXzZsC5uPXUViZjHMTaRYM64PnvB3bPMaRvb1gJW5CWZ+dQq/nM1FVU0dRj+iu0B/3N9Ro0d6HpRE4G9cE2VlZbCxsUFpaSmsra3FLoeIWkgQBDzzxTGcvl4idikGw8rcBBsm9EWot52odRy8dBNTtyejWqHbkWnSO0PgaC3X6TGbw5EpERmNuHN5OH29BOYmUgS62Yhdjt6ztjDFm+HdEOgu/v9Wj/s74t+TQ/FZfDoqa+p0dlwTLZ6PfRAcmTaDI1Miw1OnVGHoyt+RWVCJmYN9ETPUX+ySqB3hBCQiMgq7UnKQWVCJTh1MMflRb7HLoXaGYUpEBq9aocS/9l8GALz2uC+s5ffvakKkS3oRprGxsfDy8oJcLkdoaCiSkpLuuq9CocB7770HHx8fyOVyBAUFIS4urtE+//jHPyCRSBq9AgICWvs0iEgk2xOvIbe0Gi42cowL8xS7HGqHRA/TnTt3IiYmBkuWLEFKSgqCgoIQERGBmzdvNrv/woULsXbtWnz++ee4cOECpk6dimeeeQanTp1qtF+PHj2Qm5urfh05cqQtToeI2lh5tQKxB9IBAG8M8WuTxyCI/kr0MF2xYgWmTJmC6OhodO/eHWvWrEGHDh2wcePGZvfftm0b3nnnHQwfPhze3t6YNm0ahg8fjuXLlzfaz8TEBM7OzuqXvb19W5wOEbWxLw9fwa0qBbztLfF8H3exy6F2StQwra2tRXJyMsLDw9XbpFIpwsPDkZCQ0OxnampqIJc3fmbIwsKiycgzLS0Nrq6u8Pb2xosvvoisrLu3+6mpqUFZWVmjFxHpv8KKGmy403nkrQj/NnsMguivRP3NKywshFKphJOTU6PtTk5OyMvLa/YzERERWLFiBdLS0qBSqbBv3z7s2rULubm56n1CQ0OxefNmxMXFYfXq1bhy5QoGDRqE8vLyZo+5bNky2NjYqF8eHm23nBYRaS72QDoqa5UIdLPBsIedxS6H2jGD+zPu008/hZ+fHwICAmBmZoYZM2YgOjoaUun/TmXYsGEYOXIkevbsiYiICPz6668oKSnB119/3ewx58+fj9LSUvXr+vXrbXU6RKSh7FtV+Hdi/RWnuZH+Bt/CiwybqGFqb28PmUyG/Pz8Rtvz8/Ph7Nz8X5kODg7YvXs3Kisrce3aNVy8eBFWVlbw9r77c2W2trbo1q0b0tPTm33f3Nwc1tbWjV5EpN9W7k9DrVKF/j52GOjLOREkLlHD1MzMDH369EF8fLx6m0qlQnx8PMLCwu75WblcDjc3N9TV1eG7777DiBEj7rpvRUUFMjIy4OLiorPaiUg8afnl2JWSDQCYE8FRKYlP9Mu8MTEx+PLLL7FlyxakpqZi2rRpqKysRHR0NABg/PjxmD9/vnr/48ePY9euXcjMzMThw4cRGRkJlUqFuXPnqvd56623cOjQIVy9ehXHjh3DM888A5lMhrFjx7b5+RGR7n2y9xJUAhDRwwnBXTqJXQ6R+Avdjx49GgUFBVi8eDHy8vLQq1cvxMXFqSclZWVlNbofWl1djYULFyIzMxNWVlYYPnw4tm3bBltbW/U+2dnZGDt2LIqKiuDg4ICBAwciMTERDg4ObX16RKRjp7JuYc/5fEglwFtcf5f0BBe6bwYXuifST4Ig4IUvjyMhswjP93HHJyODxC6JCIAeXOYlImqpI+mFSMgsgplMilnhfmKXQ6TGMCVqZ87llGLylhM4cLH5JTv1lSAI+CjuEgDgxX5d4N6pg8gVEf2P6PdMiajtnLxajOhNJ1BeU4fka7fw+9wn0NFAOqz8di4Pf+SUwtJMhulP+IpdDlEjHJkStROH0wowbkMSymvqAAC3qhT48vAVkatqmTqlCp/sqR+VTh7kDXsrc5ErImqMYUrUDsSdy8PLm0/itkKJx7o5YMWo+ok76w9norCiRuTq7u/b5GxkFt5p/D2oq9jlEDXBMCUycrtSsjF9RwpqlSoMD3TGl+P74plgNwS62aCqVqluX6avqhVKfBqfBgCY/oSvwVyWpvaFYUpkxLYlXEXM12egVAl4vo87PhsTDDMTKSQSCeZG1j+j+e/ELGTfqhK50rvbllDf+NvVRo6X+rHxN+knhimRkfriYDoW/XAeADCxvxc+eq5noxZlA33t0d/HDrVKFVbuTxOrzHsqq1bgi4P1I+dZ4d3Y+Jv0FsOUyMjUP0JyUf0YyeuDfbEkqjuk0sbr19aPTgMA1F8KvpzffItCMa3/PRO3qhTwcbDEs73dxC6H6K4YpkRGRKUSsOTH8/jiYAYAYP6wAMweeveF4Ht52CKihxNUAtSzZfVFYUUN1h+pn208h42/Sc/xt5PISNQpVXjrmzPYmnANEgmw9JmH8epjPvf93FtD/SGVAHsv5ONU1q02qLRlVv03HVW1SgS52yCiBxt/k35jmBIZgZo6JabvSMGuUzmQSSVYOboXXgxt2WQdP6eOeK63OwDgo7hL0Ifluq8XV+Hfx68BAOZGBrDFGuk9himRgauqrcPkLSex53w+zGRSrH6xN0b0erD7i7Oe7AYzmRQJmUU4kl7YSpW23Mr9aVAoBQzwtcMANv4mA8AwJTJgZdUKjN+QhMNphbAwlWHjxEcwVINLom62FurHTj6KuwSVSrzR6eX8cuw6Vd/4e25EgGh1ED0IhimRgSqqqMHYdYk4ee0WOspNsH1yCAb6aT6Km/6EDyzNZPgjpxS/ncvTYaUP5pM9lyAIwLCHnRHkYStaHUQPgmFKZIDySqsxam0Czt8og52lGb56pR/6eHbW6ph2VuaYPMgbALB87yXUKVW6KPWBpGTdwt4L9Y2/Zw/t1ubfT6QphimRgckqqsLItceQUVAJFxs5vp4ahh6uNjo59uRBXdHZ0gyZhZX4NjlbJ8dsqYbnYwHg+T7u8HXs2KbfT6QNhimRAbmcX47n1xzD9eLb8LTrgG+mhsHHwUpnx+8oN8Vrj9c/TvNpfBqqFUqdHft+DqcVIjGzGGYmUrwRzlEpGRaGKZGB+CO7FKPXJuBmeQ38nTrim1fDWqVB9kv9POFqI0duaTW2JVzT+fGbo1IJ+GhP/ah0XD9PuNlatMn3EukKw5TIAAiCgKnbk3GrSoEgdxt89Uo/OFrLW+W75KYyzHqyfmQYezAdZdWKVvmeBoIgYOmvqTiXUwYrcxP1yJjIkDBMiQzApfxy5JTchoWpDNsnh6KTpVmrft+zwW7wcbBESZUC63/PbLXvUaoEzN/1BzbcWTZw4d8egh0bf5MBYpgSGYAjafULKYR07dwm/TxNZFLMiahv0bb+yBUUlOu+gXhtnQpvfHUKX524DqkE+Oj5nhgT0kXn30PUFhimRAbg6J1ViQa24WpAET2cEeTeOg3EqxVKTN2ejJ/P5sJUJsGqF3pjVF8PnX4HUVtimBLpudo6FY5fKQaANl1a788t2v59/BquF+umgXhFTR0mbkrCfy/ehLmJFOvG98XwQBedHJtILAxTIj13+noJqmqVsLM0Q4Bz2z57OcDXHgN97aFQCvjX/staH6+kqhYvrj+OxMxiWJmbYOukEDzh76iDSonExTAl0nMNl3j7+9o3afDdFhrunX5/KgeX8jRvIH6zvBpj1iXizPUS2HYwxY4poQj1ttNVmUSiYpgS6bmGMB3gI07wBHnYYtjDzhAE4JO9mjUQz75VhVFrEnAxrxyOHc3x9ath6Oluq9tCiUTEMCXSY+XVCpy6XgKgbe+X/tXsOw3E913IR8oDNhDPLKjAqDUJuFpUBfdOFvhmahi6OXGpQDIuDFMiPZZ0pRhKlQBPuw7w6Kz71Y5aytfRCs/3aWggfrHFDcQv3CjDqLUJuFFaDR8HS3wzNQyedpatWSqRKBimRHqsoVG3PjTIfiO8G8xMpEjMLMbhtPs3EE/JuoUx6xJQWFGLHq7W+PrVMLjYcJlAMk4MUyI9diy9CEDbPl96N262FhjX0EB8z8V7NhA/ll6Il9YfR1l1Hfp6dsKOKf24shEZNYYpkZ66WV6NS/nlkEiAMD2Z9fra4z6wMjfBuZwy/Hout9l99l/Ix8TNJ1BVq8QgP3tsfTkENhatv2oTkZgYpkR6qmFU2sPVutXX4m0pOytzTFE3EL8MxV8aiP9wOgevbk9GbZ0KET2csH5CX3QwMxGjVKI2pRdhGhsbCy8vL8jlcoSGhiIpKemu+yoUCrz33nvw8fGBXC5HUFAQ4uLitDomkT7Sp/ulf/byoK6wszTDlb80EN9xPAuzdp6GUiXg2WA3xL7QG+YmMhErJWo7oofpzp07ERMTgyVLliAlJQVBQUGIiIjAzZs3m91/4cKFWLt2LT7//HNcuHABU6dOxTPPPINTp05pfEwifSMIgijr8baElbkJpj/hCwD4dH99A/Evf8/EO9//AUGo70f6ycggmMhE/+eFqM1IhJbOcf+LkpISfPvtt8jIyMCcOXPQuXNnpKSkwMnJCW5ubi0+TmhoKB555BGsWrUKAKBSqeDh4YHXX38db7/9dpP9XV1dsWDBAkyfPl297bnnnoOFhQW2b9+u0TH/qqysDDY2NigtLYW1tXWLz4VIVzILKjB4+SGYmUhxdslQyE31a4RXU6fE4E8OIafkNnp52OL0nWdhpz3ug7kR/pBI2n6lJiIxafSn49mzZ9GtWzd8+OGH+OSTT1BSUgIA2LVrF+bPn9/i49TW1iI5ORnh4eH/K0gqRXh4OBISEpr9TE1NDeTyxk2RLSwscOTIEa2OWVZW1uhFJKaGUWmfLp30LkgBwNxEhlnhfgCgDtK5kf6YFxnAIKV2SaMwjYmJwcSJE5GWltYo2IYPH47ff/+9xccpLCyEUqmEk5NTo+1OTk7Iy8tr9jMRERFYsWIF0tLSoFKpsG/fPuzatQu5ubkaH3PZsmWwsbFRvzw82ArKkGl4sUWvNNwvHeinX5d4/+zZ3u4IdLMBALw3ogdee9xX5IqIxKNRmJ44cQKvvvpqk+1ubm53DSxd+fTTT+Hn54eAgACYmZlhxowZiI6OhlSq+f2Z+fPno7S0VP26fv26DiumtmQMQapUCTiWUT+TV98mH/2ZTCrB16+GIWH+YIwP8xK7HCJRaZRA5ubmzV4KvXz5MhwcHFp8HHt7e8hkMuTn5zfanp+fD2dn52Y/4+DggN27d6OyshLXrl3DxYsXYWVlBW9vb42PaW5uDmtr60YvMkwSicTgLzP+kVOK8uo6dJSbqEd++srCTMZVjYigYZg+9dRTeO+996BQKADU/wOWlZWFefPm4bnnnmvxcczMzNCnTx/Ex8ert6lUKsTHxyMsLOyen5XL5XBzc0NdXR2+++47jBgxQutjEukDdcs1HzvIRGi5RkQPTqMwXb58OSoqKuDo6Ijbt2/jscceg6+vLzp27IilS5c+0LFiYmLw5ZdfYsuWLUhNTcW0adNQWVmJ6OhoAMD48eMbTWo6fvw4du3ahczMTBw+fBiRkZFQqVSYO3dui49JxkMQBKO4tPtnR/X0+VIiujuNliaxsbHBvn37cPToUZw5cwYVFRXo3bt3oxm0LTV69GgUFBRg8eLFyMvLQ69evRAXF6eeQJSVldXofmh1dTUWLlyIzMxMWFlZYfjw4di2bRtsbW1bfEwyLoZ+WffPbtcqcfJqfYszhimR4Xjg50wVCgUsLCxw+vRpPPzww61Vl6j4nCmJ5XBaAcZtSIKLjRzH3h5sVH8oEBmzB77Ma2pqii5dukCpVLZGPUTt2p+XEGSQEhkOje6ZLliwAO+88w6Ki4t1XQ/RPRnjPdI/09clBIno3jS6Z7pq1Sqkp6fD1dUVnp6esLS0bPR+SkqKTooj+rOGEDXWEdutylqcv1H/yFl/X/1ouUZELaNRmD799NM6LoPo3ow9SAEgIbMIggB0c7KCY0f5/T9ARHpDozBdsmSJrusguidjDtEG+tpyjYjuT6uuvcnJyUhNTQUA9OjRA8HBwTopiqiBIAjtIkgB3i8lMmQahenNmzcxZswYHDx4UP18Z0lJCZ544gl89dVXD7SkINHdGPNEo7+6XlyFa0VVkEklCPXm/VIiQ6PRbN7XX38d5eXlOH/+PIqLi1FcXIxz586hrKwMM2fO1HWN1I61l1HpsYz6UWmwhy2szLW6YEREItDo/7VxcXHYv38/HnroIfW27t27IzY2FkOHDtVZcdS+tZcgBYAj6fVdYvrzEi+RQdJoZKpSqWBqatpku6mpKVQqldZFUfuSfasKN8uqAbSvS7sNVCoBx3i/lMigaRSmgwcPxhtvvIEbN26ot+Xk5ODNN9/EkCFDdFYcGb/vT2XjsY8PYtinh3GrslbsckRxMa8cRZW16GAmQy8PW7HLISINaBSmq1atQllZGby8vODj4wMfHx907doVZWVl+Pzzz3VdIxmp7YnXEPP1GShVAooqa7Hm94x2dWm3QcMs3tCunWFmonmTeyISj0b3TD08PJCSkoL9+/fj4sWLAICHHnpIo64x1D6tPpiBD+Pqf3cG+NrhaHoRNh+9iuj+XeFs074WLDiawedLiQydxtMGJRIJnnzySTz55JO6rIeMnCAI+GTvJcQeyAAAzHjCF7OHdsPINQk4ee0WPvtvGj54JlDkKttObZ0KxzPr17hmmBIZLo2uKc2cOROfffZZk+2rVq3CrFmztK2JjJRKJeAfP55XB+nbwwLwVoQ/JBIJ5g0LAADsPHEdVworxSyzTZ3KuoXbCiXsrczg79RR7HKISEMahel3332HAQMGNNnev39/fPvtt1oXRcanTqnCnG/PYkvCNUgkwPtPP4ypj/mo33/EqzOe8HeAUiVgxb7LIlbathrul/b3sYdU2v7uFxMZC43CtKioCDY2Nk22W1tbo7CwUOuiyLjU1Cnx+n9O4buUbMikEqwYFYRx/Tyb7Dcnon50+tOZGziXU9rWZYriCB+JITIKGoWpr68v4uLimmz/7bff4O3trXVRZDxu1yoxZWsyfjuXBzOZFKtf7I1ngt2b3be7qzVG9HIFAHyy91JblimK8moFzmTX/9EwwI9hSmTINJqAFBMTgxkzZqCgoACDBw8GAMTHx2P58uVYuXKlLusjA1ZWrcDLm0/gxNVbsDCV4cvxfTHwPqER82Q3/HI2FwcvFeB4ZpFRr1N7PLMYSpUAL7sOcLO1ELscItKCRmE6adIk1NTUYOnSpXj//fcBAF5eXli9ejXGjx+v0wLJMBVX1mL8xuM4l1OGjnITbI5+BH08O9/3c552lhgT4oHtiVn4aM8lfDs1zGifPWXLNSLjofET4tOmTUN2djby8/NRVlaGzMxMBikBAPJKqzF6bQLO5ZShs6UZ/jOlX4uCtMHMwX6Qm0qRfO0W4lNvtmKl4mLLNSLjoVGY3r59G1VVVQAABwcHFBUVYeXKldi7d69OiyPDk1VUhZFrjyHtZgWcreX4+tUwPOzWdLLavThayxE9oCsA4OM9l6BUGd96vfll1Ui7WQGJBAjzMd5L2UTthUZhOmLECGzduhVAfR/TkJAQLF++HCNGjMDq1at1WiAZjrT8coxcewzXi2/D064DvpkaBl9HK42ONfVRH1jLTXApvxw/nsnRcaXiaxiVBrrZwLaDmcjVEJG2NArTlJQUDBo0CADw7bffwtnZGdeuXcPWrVubXcyBjN+5nFKMXpeI/LIadHOywjevhsGjcweNj2fTwRRTH69/DnX53suorTOubkRH77Rc4/1SIuOgUZhWVVWhY8f61Vr27t2LZ599FlKpFP369cO1a9d0WiDpvxNXizF2XSKKK2vR090GO18Jg6O19uvrRvfvCseO5si+dRv/ScrSQaX6QRAE9ch0gA/DlMgYaPyc6e7du3H9+nXs2bNH3RD85s2bsLa21mmBpN8OXS7AuA3HUV5Th5CunfHvyaHoZKmby5YWZjK8PsQPAPD5f9NRWVOnk+OKLaOgEnll1TAzkaKvVyexyyEiHdAoTBcvXoy33noLXl5eCA0NRVhYGID6UWpwcLBOCyT9FXcuF5O3nEC1QoXH/R2wJToEHeVNm8ZrY8wjHvC064DCihpsOnpFp8cWS8Oo9BGvTpCbykSuhoh0QaMwff7555GVlYWTJ082WglpyJAh+Ne//qX+OTs7GyqVcd3ronrfJWfjtX+nQKEU8LdAF6wb1xcWZroPBlOZFDFPdgMArD2UaRQNxPl8KZHx0fg5U2dnZwQHB0Mq/d8hQkJCEBAQoP65e/fuuHr1qlYFkv7ZmnAVs785A5UAjOzjjs/GBrdqU+uonq54yMUa5TV1WHMoo9W+py3UKVVIzKyffMTnS4mMR+v9C4j6iRZkXGIPpGPxD+cBABP7e+HD53pC1srdTqRSCeZG+AMANh+7irzS6lb9vtb0R04pyqvrYC03QQ/XB3v+loj0V6uGKRkPQRDwz98u4uM99QvQzxzsiyVR3dusbdjj/g4I8eqMmjoVPo1Pa5PvbA1/brnW2n+EEFHbYZjSfalUAhb9cE59ifWd4QGIGerfpmvmSiQSzI2sH51+ffI6Mgsq2uy7dUl9v5RdYoiMCsOU7qlOqcJb35zB9sQsSCTAB88E4pVHfe7/wVbQ16szhgQ4QqkSsNwAG4jfrlUi5VoJAN4vJTI2rRqmLR25xMbGwsvLC3K5HKGhoUhKSrrn/itXroS/vz8sLCzg4eGBN998E9XV/7uP9o9//AMSiaTR688To6hlauqUmL4jBbtO5UAmlWDl6F54IbSLqDW9FeEPiQT45WyuwTUQP3G1GLVKFdxsLeBlp/nqUESkf0SfgLRz507ExMRgyZIlSElJQVBQECIiInDzZvPdQnbs2IG3334bS5YsQWpqKjZs2ICdO3finXfeabRfjx49kJubq34dOXJEJ+fUXlTV1mHylpPYcz4fZiZSrH2pD0b0chO7LDzkYo0RQfUNxD/aY1gNxP93v9TOaNvKEbVXrRqmFy5cgKen5z33WbFiBaZMmYLo6Gh0794da9asQYcOHbBx48Zm9z927BgGDBiAF154AV5eXhg6dCjGjh3bZDRrYmICZ2dn9cvenpfVWqr0tgLjNiThcFohOpjJsHniIwjv7iR2WWoxT/rDRCrB75cLkJBRJHY5LdZwv/R+DdKJyPC0uDn4s88+2+KD7tq1CwDg4eFxz/1qa2uRnJyM+fPnq7dJpVKEh4cjISGh2c/0798f27dvR1JSEkJCQpCZmYlff/0V48aNa7RfWloaXF1dIZfLERYWhmXLlqFLl+YvUdbU1KCmpkb9c1lZWYvO0xgVVdRg3IYkXMgtg7XcBJsnhaB3F/1a8q6LXQeMDemCbYnX8NGei9g1rb/ej/SKK2tx/kb971V/rsdLZHRaHKY2Nrp/Jq6wsBBKpRJOTo1HPU5OTrh48WKzn3nhhRdQWFiIgQMHQhAE1NXVYerUqY0u84aGhmLz5s3w9/dHbm4u3n33XQwaNAjnzp1TL9D/Z8uWLcO7776r25MzQLmlt/HS+uPIKKiEvZUZtk4KRXdX/Vxr+fXBvvg2ORunskqw70I+hvZwFrukezqWUT8qDXDuCIeO5iJXQ0S61uIw3bRpU2vW0WIHDx7EBx98gC+++AKhoaFIT0/HG2+8gffffx+LFi0CAAwbNky9f8+ePREaGgpPT098/fXXePnll5scc/78+YiJiVH/XFZWdt9RtbG5VlSJF9cfR/at23CxkWP75FD4OGjWi7QtOFrLMWmgF2IPZOCTvZcw5CEnvX5u8yiXECQyai0O09Zgb28PmUyG/Pz8Rtvz8/Ph7Nz8SGPRokUYN24cJk+eDAAIDAxEZWUlXnnlFSxYsKDR8oYNbG1t0a1bN6Snpzd7THNzc5ibt9/RwuX8cry0/jhultfAy64Dtk8OhXsn/Z9t+sqjPtiemIXL+RXYfSoHz/VxF7uku/pf/1I7kSshotbQ4jANDg5u8X2plJSUFu1nZmaGPn36ID4+Hk8//TQAQKVSIT4+HjNmzGj2M1VVVU0CUyarX2D9brOHKyoqkJGR0eS+KgFns0swfmMSSqoUCHDuiK0vh8Cxo/a9SNuCjYUppj3ug3/+dhEr9l3G34NcYG6if11YsoqqkFVcBROpBCFdGaZExqjFYdoQdroWExODCRMmoG/fvggJCcHKlStRWVmJ6OhoAMD48ePh5uaGZcuWAQCioqKwYsUKBAcHqy/zLlq0CFFRUepQfeuttxAVFQVPT0/cuHEDS5YsgUwmw9ixY1vlHAzV8cwivLzlJCpq6hDkYYst0Y/AtoNuepG2lQlhXth45ApySm7jP8ezMHFAV7FLauLonfulwV1sYWUu6sUgImolLf5/9pIlS1qlgNGjR6OgoACLFy9GXl4eevXqhbi4OPWkpKysrEYj0YULF0IikWDhwoXIycmBg4MDoqKisHTpUvU+2dnZGDt2LIqKiuDg4ICBAwciMTERDg4OrXIOhujApZuYui0ZNXUq9PPujPUTHjHIf+gtzGR4I9wPC74/h8//m47n+3ro3Xmw5RqR8ZMIbO3SRFlZGWxsbFBaWgpra/2czaqNX87mYtbOU1AoBQwOcMQXL/Y26CbVCqUKT644hKtFVYh5shtmDvETuyQ1lUpAn//bh1tVCnw7NQx9vTqLXRIRtQKN/oRXKpX417/+ha+//hpZWVmorW3csLm4uFgnxZHufXPyOuZ9dxYqAfh7Txf8a3QvmMoMe4lmU5kUMUP9MfM/p7Du90x4O1jCRE9m9uaX1eBWlQKWZjIEediKXQ4RtRKNwvTdd9/F+vXrMXv2bCxcuBALFizA1atXsXv3bixevFjXNZKOnM0uwdzvzkIQgDGPeGDpM4F6/TjJg/h7oAvWHMzAhdwyzNhxSuxymgjp2tng/2ghorvT6DKvj48PPvvsM/ztb39Dx44dcfr0afW2xMRE7NixozVqbTPGepn3pfXHcSS9EH8LdMGqF1o+O9tQnM0uwYdxF1GjUIldSiPmplLMHuqvdytJEZHuaDQyzcvLQ2BgIADAysoKpaX13Tv+/ve/qxdOIP1yJK0QR9ILYSqT4O1hAUYXpADQ090W/57cT+wyiKgd0ui6k7u7O3JzcwHUj1L37t0LADhx4kS7XvxAXwmCgI/31C/P+GKoJzw66/+CDEREhkSjMH3mmWcQHx8PAHj99dexaNEi+Pn5Yfz48Zg0aZJOCyTt7TmfhzPZpehgJsP0J3zFLoeIyOjo5NGYxMREHDt2DH5+foiKitJFXaIypnumdUoVIlb+joyCSrw+2Bezh/qLXRIRkdHRydPt/fr1Q79+vFelj3adykFGQSVsO5hiyqPeYpdDRGSUNLrMu2zZsmabd2/cuBEffvih1kWRblQrlFi57zIAYPrjvrCWm4pcERGRcdIoTNeuXYuAgIAm23v06IE1a9ZoXRTpxvbEa7hRWg1naznGhXmKXQ4RkdHSKEzz8vLg4uLSZLuDg4N6li+Jq7xagS8OZgAAZoX7GfRygURE+k6jMPXw8MDRo0ebbD969ChcXV21Loq0t/7wFRRX1sLb3hLP63GfTyIiY6DRBKQpU6Zg1qxZUCgUGDx4MAAgPj4ec+fOxezZs3VaID24oooarD+cCQCYPdQfJlzGjoioVWkUpnPmzEFRURFee+019SL3crkc8+bNw/z583VaID242AMZqKxVItDNBsMedha7HCIio6fVc6YVFRVITU2FhYUF/Pz8jGb1I0N+zjT7VhUGf3IItUoVtk4KwaPd2MOViKi1aXX9Ly8vD8XFxfDx8YG5uTnYGlV8n+5PQ61ShTBvOwzyYzNqIqK2oFGYFhUVYciQIejWrRuGDx+unsH78ssv856piNLyy/FdSjYAYG6kv1EuZk9EpI80CtM333wTpqamyMrKQocO/1s0ffTo0YiLi9NZcfRglu+9DJUADO3uhGC2+yIiajMaTUDau3cv9uzZA3f3xo9c+Pn54dq1azopjB7M6esliDufB6kEeCuC6+8SEbUljUamlZWVjUakDYqLi41mEpKh+SiuvsXas73d0c2po8jVEBG1LxqF6aBBg7B161b1zxKJBCqVCh999BGeeOIJnRVHLXMkrRDHMopgJpNiVrif2OUQEbU7Gl3m/fjjjzF48GCcPHkStbW1mDt3Ls6fP4/i4uJmV0ai1iMIAj5qaPzdrwvcO7HxNxFRW3vgMFUoFJg5cyZ++ukn7Nu3Dx07dkRFRQWeffZZTJ8+vdk1e6n1xJ3Lw9nsUliy8TcRkWgeOExNTU1x9uxZdOrUCQsWLGiNmqiF6pQqfLz3EgDg5UHesLfi/WoiIjFodM/0pZdewoYNG3RdCz2g71KykVlQiU4dTDFlUFexyyEiarc0umdaV1eHjRs3Yv/+/ejTpw8sLS0bvb9ixQqdFEd3V61QYuX+NADA9Cd80ZGNv4mIRKNRmJ47dw69e/cGAFy+fLnRe1x1p21sT7yG3NJquNjI8VI/Nv4mIhKTRmF64MABXddBD6C8WoHYA+kAgDfDu7HxNxGRyNjo0gB9efgKblUp4ONgiWd7u4ldDhFRu8cwNTCFf2r8/RYbfxMR6QX+S2xgYg+ko6pWiZ7uNohk428iIr3AMDUg2beq8O/ELADA3IgATvYiItITDFMDsvJO4+8BvnYYyMbfRER6Qy/CNDY2Fl5eXpDL5QgNDUVSUtI991+5ciX8/f1hYWEBDw8PvPnmm6iurtbqmPrucn45djU0/o4IELkaIiL6M9HDdOfOnYiJicGSJUuQkpKCoKAgRERE4ObNm83uv2PHDrz99ttYsmQJUlNTsWHDBuzcuRPvvPOOxsc0BJ/suQSVAET2cEaQh63Y5RAR0Z9IBEEQxCwgNDQUjzzyCFatWgUAUKlU8PDwwOuvv4633367yf4zZsxAamoq4uPj1dtmz56N48eP48iRIxod86/KyspgY2OD0tJSWFtb6+I0tXIq6xae+eIYpBJg75uPwteR/UqJiPSJqCPT2tpaJCcnIzw8XL1NKpUiPDwcCQkJzX6mf//+SE5OVl+2zczMxK+//orhw4drfMyamhqUlZU1eumTVf+tX6Dhud7uDFIiIj2k0QpIulJYWAilUgknJ6dG252cnHDx4sVmP/PCCy+gsLAQAwcOhCAIqKurw9SpU9WXeTU55rJly/Duu+/q4Ix0r6iiBgcvFwAAXn3MR+RqiIioOaLfM31QBw8exAcffIAvvvgCKSkp2LVrF3755Re8//77Gh9z/vz5KC0tVb+uX7+uw4q18+sfuVCqBAS62cDX0UrscoiIqBmijkzt7e0hk8mQn5/faHt+fj6cnZtfkGDRokUYN24cJk+eDAAIDAxEZWUlXnnlFSxYsECjY5qbm8PcXD97gf5w+gYAYEQvV5ErISKiuxF1ZGpmZoY+ffo0mkykUqkQHx+PsLCwZj9TVVUFqbRx2TJZ/ULvgiBodEx9db24Ciev3YJEAkQFMUyJiPSVqCNTAIiJicGECRPQt29fhISEYOXKlaisrER0dDQAYPz48XBzc8OyZcsAAFFRUVixYgWCg4MRGhqK9PR0LFq0CFFRUepQvd8xDcWPZ+pHpWHednCylotcDRER3Y3oYTp69GgUFBRg8eLFyMvLQ69evRAXF6eeQJSVldVoJLpw4UJIJBIsXLgQOTk5cHBwQFRUFJYuXdriYxqKH+9c4n26FzvDEBHpM9GfM9VH+vCcaWpuGYZ9ehhmMilOLAyHjYWpKHUQEdH9Gdxs3vaiYeLR4ABHBikRkZ5jmOohlUrAj6dzAHAWLxGRIWCY6qGT127hRmk1Opqb4IkAR7HLISKi+2CY6qEf7oxKIx92htxUJnI1RER0PwxTPVNbp8Ivf+QCAEZwFi8RkUFgmOqZw2kFKKlSwKGjOcJ87MQuh4iIWoBhqmd235nFG9XTFTKpRORqiIioJRimeqSypg77LuQB4CxeIiJDwjDVI/su5KNaoUJXe0v0dLcRuxwiImohhqke2X1nFu9TQa6QSHiJl4jIUDBM9URRRQ0OpxUC4CVeIiJDwzDVE7/caQLe090G3g5sAk5EZEgYpnqiYS3ep9i3lIjI4DBM9cD14iok32kCzjAlIjI8DFM90NAEvL+PHRzZBJyIyOAwTEUmCAJ2n7rTISaIywcSERkihqnIUnPLkXazAmYmUkQGOotdDhERaYBhKrIfztSPSgf7O8JazibgRESGiGEqIpVKwE93ZvE+HcyJR0REhophKqITV4vVTcAf92cTcCIiQ8UwFdEPd2bxsgk4EZFhY5iKpLZOhV/vNAF/OpizeImIDBnDVCS/X65vAu7Y0Rz9vNkEnIjIkDFMRdJwiTcqiE3AiYgMHcNUBBVsAk5EZFQYpiLYdyFP3QQ80I1NwImIDB3DVAS7T9Vf4h3Ri03AiYiMAcO0jRVW1OBIekMTcM7iJSIyBgzTNvbrnSbgQe426GpvKXY5RESkAwzTNtbQIeYpjkqJiIwGw7QNZRVVISWrBFIJENXTRexyiIhIRximbejHOx1i+vvYswk4EZER0YswjY2NhZeXF+RyOUJDQ5GUlHTXfR9//HFIJJImr7/97W/qfSZOnNjk/cjIyLY4lbsSBAG773SIeYrPlhIRGRUTsQvYuXMnYmJisGbNGoSGhmLlypWIiIjApUuX4OjYtJPKrl27UFtbq/65qKgIQUFBGDlyZKP9IiMjsWnTJvXP5ubmrXcSLZCaW470hibgD7MJOBGRMRF9ZLpixQpMmTIF0dHR6N69O9asWYMOHTpg48aNze7fuXNnODs7q1/79u1Dhw4dmoSpubl5o/06derUFqdzVz+crr/EOySATcCJiIyNqGFaW1uL5ORkhIeHq7dJpVKEh4cjISGhRcfYsGEDxowZA0vLxo+ZHDx4EI6OjvD398e0adNQVFR012PU1NSgrKys0UuXVCoBP57530INRERkXEQN08LCQiiVSjg5OTXa7uTkhLy8vPt+PikpCefOncPkyZMbbY+MjMTWrVsRHx+PDz/8EIcOHcKwYcOgVCqbPc6yZctgY2Ojfnl4eGh+Us3VebUYuaXV6ChnE3AiImMk+j1TbWzYsAGBgYEICQlptH3MmDHq/w4MDETPnj3h4+ODgwcPYsiQIU2OM3/+fMTExKh/Lisr02mg/nBn4tEwNgEnIjJKoo5M7e3tIZPJkJ+f32h7fn4+nJ3vPUmnsrISX331FV5++eX7fo+3tzfs7e2Rnp7e7Pvm5uawtrZu9NKVRk3AuVADEZFREjVMzczM0KdPH8THx6u3qVQqxMfHIyws7J6f/eabb1BTU4OXXnrpvt+TnZ2NoqIiuLi0/UIJhy4XoPR2fRPwUDYBJyIySqLP5o2JicGXX36JLVu2IDU1FdOmTUNlZSWio6MBAOPHj8f8+fObfG7Dhg14+umnYWfXOKAqKiowZ84cJCYm4urVq4iPj8eIESPg6+uLiIiINjmnP2uYxcsm4ERExkv0e6ajR49GQUEBFi9ejLy8PPTq1QtxcXHqSUlZWVmQShtn/qVLl3DkyBHs3bu3yfFkMhnOnj2LLVu2oKSkBK6urhg6dCjef//9Nn/WtKKmDvtT6y9h8xIvEZHxkgiCIIhdhL4pKyuDjY0NSktLtbp/uislGzFfn4G3vSXiZz/G3qVEREZK9Mu8xqxhFu+IXm4MUiIiI8YwbSV/bgLOtXiJiIwbw7SV7L+QzybgRETthOgTkIzV6Ec84OdkhZo6ldilEBFRK2OYthKJRII+np3FLoOIiNoAL/MSERFpiWFKRESkJYYpERGRlhimREREWmKYEhERaYlhSkREpCWGKRERkZb4nGkzGtb+LysrE7kSIiLSBx07drznGusM02aUl5cDADw8PESuhIiI9MH9uoixBVszVCoVbty4cd+/RO6nrKwMHh4euH79ulat3PSRMZ8bwPMzZMZ8bgDPTywcmWpAKpXC3d1dZ8eztrbWq18KXTLmcwN4fobMmM8N4PnpG05AIiIi0hLDlIiISEsM01Zkbm6OJUuWwNzcXOxSdM6Yzw3g+RkyYz43gOenrzgBiYiISEscmRIREWmJYUpERKQlhikREZGWGKZERERaYpi2ktjYWHh5eUEulyM0NBRJSUlil6QTq1evRs+ePdUPVIeFheG3334TuyydysnJwUsvvQQ7OztYWFggMDAQJ0+eFLssnSgvL8esWbPg6ekJCwsL9O/fHydOnBC7LI38/vvviIqKgqurKyQSCXbv3q1+T6FQYN68eQgMDISlpSVcXV0xfvx43LhxQ7yCH9C9zg8AJk6cCIlE0ugVGRkpTrEP6H7nVlFRgRkzZsDd3R0WFhbo3r071qxZI06xLcQwbQU7d+5ETEwMlixZgpSUFAQFBSEiIgI3b94UuzStubu745///CeSk5Nx8uRJDB48GCNGjMD58+fFLk0nbt26hQEDBsDU1BS//fYbLly4gOXLl6NTp05il6YTkydPxr59+7Bt2zb88ccfGDp0KMLDw5GTkyN2aQ+ssrISQUFBiI2NbfJeVVUVUlJSsGjRIqSkpGDXrl24dOkSnnrqKREq1cy9zq9BZGQkcnNz1a///Oc/bVih5u53bjExMYiLi8P27duRmpqKWbNmYcaMGfjxxx/buNIHIJDOhYSECNOnT1f/rFQqBVdXV2HZsmUiVtV6OnXqJKxfv17sMnRi3rx5wsCBA8Uuo1VUVVUJMplM+Pnnnxtt7927t7BgwQKRqtINAML3339/z32SkpIEAMK1a9fapigdau78JkyYIIwYMUKUenSpuXPr0aOH8N577zXapu+/pxyZ6lhtbS2Sk5MRHh6u3iaVShEeHo6EhAQRK9M9pVKJr776CpWVlQgLCxO7HJ348ccf0bdvX4wcORKOjo4IDg7Gl19+KXZZOlFXVwelUgm5XN5ou4WFBY4cOSJSVW2ntLQUEokEtra2YpeiMwcPHoSjoyP8/f0xbdo0FBUViV2STvTv3x8//vgjcnJyIAgCDhw4gMuXL2Po0KFil3ZXDFMdKywshFKphJOTU6PtTk5OyMvLE6kq3frjjz9gZWUFc3NzTJ06Fd9//z26d+8udlk6kZmZidWrV8PPzw979uzBtGnTMHPmTGzZskXs0rTWsWNHhIWF4f3338eNGzegVCqxfft2JCQkIDc3V+zyWlV1dTXmzZuHsWPHGtTi6fcSGRmJrVu3Ij4+Hh9++CEOHTqEYcOGQalUil2a1j7//HN0794d7u7uMDMzQ2RkJGJjY/Hoo4+KXdpdsWsMPTB/f3+cPn0apaWl+PbbbzFhwgQcOnTIKAJVpVKhb9+++OCDDwAAwcHBOHfuHNasWYMJEyaIXJ32tm3bhkmTJsHNzQ0ymQy9e/fG2LFjkZycLHZprUahUGDUqFEQBAGrV68WuxydGTNmjPq/AwMD0bNnT/j4+ODgwYMYMmSIiJVp7/PPP0diYiJ+/PFHeHp64vfff8f06dPh6ura6KqfPuHIVMfs7e0hk8mQn5/faHt+fj6cnZ1Fqkq3zMzM4Ovriz59+mDZsmUICgrCp59+KnZZOuHi4tLkj4KHHnoIWVlZIlWkWz4+Pjh06BAqKipw/fp1JCUlQaFQwNvbW+zSWkVDkF67dg379u0zmlFpc7y9vWFvb4/09HSxS9HK7du38c4772DFihWIiopCz549MWPGDIwePRqffPKJ2OXdFcNUx8zMzNCnTx/Ex8ert6lUKsTHxxvNfcW/UqlUqKmpEbsMnRgwYAAuXbrUaNvly5fh6ekpUkWtw9LSEi4uLrh16xb27NmDESNGiF2SzjUEaVpaGvbv3w87OzuxS2pV2dnZKCoqgouLi9ilaEWhUEChUEAqbRxPMpkMKpVKpKruj5d5W0FMTAwmTJiAvn37IiQkBCtXrkRlZSWio6PFLk1r8+fPx7Bhw9ClSxeUl5djx44dOHjwIPbs2SN2aTrx5ptvon///vjggw8watQoJCUlYd26dVi3bp3YpenEnj17IAgC/P39kZ6ejjlz5iAgIMAgfzcrKioajcKuXLmC06dPo3PnznBxccHzzz+PlJQU/Pzzz1Aqleo5C507d4aZmZlYZbfYvc6vc+fOePfdd/Hcc8/B2dkZGRkZmDt3Lnx9fRERESFi1S1zr3Pr0qULHnvsMcyZMwcWFhbw9PTEoUOHsHXrVqxYsULEqu9D5NnERuvzzz8XunTpIpiZmQkhISFCYmKi2CXpxKRJkwRPT0/BzMxMcHBwEIYMGSLs3btX7LJ06qeffhIefvhhwdzcXAgICBDWrVsndkk6s3PnTsHb21swMzMTnJ2dhenTpwslJSVil6WRAwcOCACavCZMmCBcuXKl2fcACAcOHBC79Ba51/lVVVUJQ4cOFRwcHARTU1PB09NTmDJlipCXlyd22S1yr3MTBEHIzc0VJk6cKLi6ugpyuVzw9/cXli9fLqhUKnELvwe2YCMiItIS75kSERFpiWFKRESkJYYpERGRlhimREREWmKYEhERaYlhSkREpCWGKRERkZYYpkSkkatXr0IikeD06dNil0IkOoYpkRHLy8vD66+/Dm9vb5ibm8PDwwNRUVGN1o4mIu1xbV4iI3X16lUMGDAAtra2+PjjjxEYGAiFQoE9e/Zg+vTpuHjxotglEhkNjkyJjNRrr70GiUSCpKQkPPfcc+jWrRt69OiBmJgYJCYmYtKkSfj73//e6DMKhQKOjo7YsGEDgPqOQB999BF8fX1hbm6OLl26YOnSpXf9znPnzmHYsGGwsrKCk5MTxo0bh8LCwlY9TyJ9wDAlMkLFxcWIi4vD9OnTYWlp2eR9W1tbTJ48GXFxccjNzVVv//nnn1FVVYXRo0cDqO8S9M9//hOLFi3ChQsXsGPHDjg5OTX7nSUlJRg8eDCCg4Nx8uRJxMXFIT8/H6NGjWqdkyTSI7zMS2SE0tPTIQgCAgIC7rpP//794e/vj23btmHu3LkAgE2bNmHkyJGwsrJCeXk5Pv30U6xatQoTJkwAUN9cfODAgc0eb9WqVQgODsYHH3yg3rZx40Z4eHjg8uXL6Natmw7PkEi/cGRKZIRa2gxq8uTJ2LRpEwAgPz8fv/32GyZNmgQASE1NRU1NDYYMGdKiY505cwYHDhyAlZWV+tUQ5hkZGRqcBZHh4MiUyAj5+flBIpHcd5LR+PHj8fbbbyMhIQHHjh1D165dMWjQIACAhYXFA31nRUUFoqKi8OGHHzZ5z8XF5YGORWRoODIlMkKdO3dGREQEYmNjUVlZ2eT9kpISAICdnR2efvppbNq0CZs3b0Z0dLR6Hz8/P1hYWLT4MZrevXvj/Pnz8PLygq+vb6NXc/dtiYwJw5TISMXGxkKpVCIkJATfffcd0tLSkJqais8++wxhYWHq/SZPnowtW7YgNTVVfW8UAORyOebNm4e5c+di69atyMjIQGJionqm719Nnz4dxcXFGDt2LE6cOIGMjAzs2bMH0dHRUCqVrX6+RGLiZV4iI+Xt7Y2UlBQsXboUs2fPRm5uLhwcHNCnTx+sXr1avV94eDhcXFzQo0cPuLq6NjrGokWLYGJigsWLF+PGjRtwcXHB1KlTm/0+V1dXHD16FPPmzcPQoUNRU1MDT09PREZGQirl3+1k3CRCS2cqEJFRqqiogJubGzZt2oRnn31W7HKIDBJHpkTtlEqlQmFhIZYvXw5bW1s89dRTYpdEZLAYpkTtVFZWFrp27Qp3d3ds3rwZJib854BIU7zMS0REpCXOCiAiItISw5SIiEhLDFMiIiItMUyJiIi0xDAlIiLSEsOUiIhISwxTIiIiLTFMiYiItMQwJSIi0tL/A+rfA+DPdp1TAAAAAElFTkSuQmCC\n"
- },
- "metadata": {},
- "output_type": "display_data"
- }
- ],
- "source": [
- "# Recall\n",
- "plot_cycle_score(cycle, X_test, y_test,\n",
- " scorer=recall_score,\n",
- " figsize=(5,3),\n",
- " scorer_kw=dict(average='weighted'));"
- ],
- "metadata": {
- "collapsed": false
- }
- },
- {
- "cell_type": "code",
- "execution_count": 8,
- "outputs": [
- {
- "data": {
- "text/plain": "",
- "image/png": "iVBORw0KGgoAAAANSUhEUgAAAdMAAAEmCAYAAAA5oXoHAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8o6BhiAAAACXBIWXMAAA9hAAAPYQGoP6dpAAA9HklEQVR4nO3deVxU5f4H8M8wMOyLsm+CgGIqoqISqFlJgprXzNTU0jDtaloZpaa5tPzSvLe8tpioqaldy0rrtokpuaEgCmUuqGwKIjuyDTAMM+f3Bzk3rqjADJyZ4fN+vc7rxpkzz3zP6+J8OM95nudIBEEQQERERG1mInYBREREho5hSkREpCWGKRERkZYYpkRERFpimBIREWmJYUpERKQlhikREZGWGKZERERaYpg2QxAEVFZWgutZEBFRSzBMm1FVVQV7e3tUVVWJXQoRERkAhikREZGWGKZERERaYpgSERFpiWFKRESkJYYpERGRlhimREREWmKYEhERaYlhSkREpCWGKRERtVm1ogGLvj6L1789hzqlSuxyRGMqdgFERGSYyuT1iN6ejLPXKwAA6UXV+HTmINhZmIlcWcfjlSkREbVafkUtJm9KxNnrFehiZQZbc1MkZ5dh6uYklFQrxC6vwzFMiYioVbKKq/HExkRkFFXD3d4CX88NwxfP3Q9Haxku3KjE5NhEXL9ZI3aZHYphSkRELXY+rwKTYhORV14LPydrfDMvHAEutujraY+v54bB08ESWSVyTIpNREZR53lYCMOUiIhaJCmrFE9uTkKpvB59Pe3w1Z/heYufsw2+mReGABcb5FfUYVJsIs7mlotXcAdimBIR0T0duliImduSUa1oQGj3rvhizv1wsjG/7Th3e0t89fcwBHvZ42aNEtO2JOFERokIFXcshikREd3VvtTr+PvnKVA0qBFxnyt2zBoC27uM2O1qLcO/59yPoQGOkNerEL39NOLOF3RgxR2PYUpERHe0LSEbMV+dhUot4PGBnoh9aiAszKT3fJ+NuSm2PTMYUX3cUK9S4/l/p+Cr07kdULE4GKZERHQbQRCw7pfLeOvHiwCAWUO7470ngmEqbXlsmJtK8fG0AZgyyBtqAVi89w9sPpbZXiWLios2EBFRE2q1gDd+uICdidcAAK880hMLHg6ARCJpdVumUhO8OzEIDlZm2HQsC6t/voTyGiUWRQa2qT19xStTIiLSUKrUWLjnd+xMvAaJBHh7fB+8MLKHVsEnkUiwdMx9WBLVCwDwyZFMLPv2PFRqQVdli45hSkREAIDaehWe23kG35+9AVMTCdZP6Y+nw3x11v68B/2xekIQJBLgi+QcvPjFb6hvUOusfTGxm5eIiFBRq8TsHadx+upNWJiZYOP0EDzUy0XnnzMttBvsLc2wcM9v+OlcPirrlIh9KgTW5oYdR7wyJSLq5Iqq6vDk5iScvnoTtham2PVsaLsE6S1j+7lj68zBsDST4nh6CZ7aegrlNfXt9nkdgWFKRNSJ5ZbVYFJsItLyK+FkY449z4VhsG/Xdv/cB3o6499zQmFvaYbfcsoxZVMSCivr2v1z2wvDlIiok7pcUIWJG0/iWmkNvLpY4pu5YejtYddhnz+wWxd89fcwuNia43JhYy1XS+Qd9vm6JBEEwXiGU+lIZWUl7O3tUVFRATu7jvvFIiLtncgowVdncmFEA0XbzbErxaioVaKnqw12PRsKVzsLUerILavBU1tP4VppDZxsZAjzd9JZ2/83vi/srdr/+aoM02YwTIkMU2WdEiP+cRg3a5Ril2IwBnRzwPZnBsPBSiZqHUVVdZixNRmXCnT7pJnkZSPh0gF/JBj28Ckior/YdDQTN2uU6O5kjafv9xG7HL1nZ2mGsUHusJTde3nA9uZi2/hc1P3nClCtaNBZuzYWHRNzDFMiMgoFFXXYmpANAHhtdC9E9nETuSJqLVsLM0we7C12GW3CAUhEZBTWH7qCOqUaIT5dMKq3q9jlUCfDMCUig5deWIWvzjQ+kWTZmF5GteYrGQa9CNMNGzbA19cXFhYWCA0NRXJy8h2PVSqVeOutt+Dv7w8LCwsEBwcjLi6uyTFvvPEGJBJJk61Xr17tfRpEJJK1cZehFoBRvV0R4tP+cySJ/pfoYbpnzx7ExMRg1apVSE1NRXBwMCIjI1FUVNTs8cuXL8emTZvw0Ucf4eLFi5g7dy4mTJiA3377rclxffr0QX5+vmZLSEjoiNMhog52+moZDqUVQmoiweIo/tFM4hA9TNetW4c5c+YgOjoavXv3RmxsLKysrLBt27Zmj9+1axeWLVuGMWPGwM/PD/PmzcOYMWPw/vvvNznO1NQUbm5ums3JSXfzlohIPwiCgNU/pwEAJg/yRoCLjcgVUWclapjW19cjJSUFERERmn0mJiaIiIhAYmJis+9RKBSwsGg6Z8jS0vK2K8/09HR4eHjAz88P06dPR05Ozh3rUCgUqKysbLIRkf47cKEAv+WUw9JMipcjeohdDnViooZpSUkJVCoVXF2bjrxzdXVFQUFBs++JjIzEunXrkJ6eDrVajYMHD2Lfvn3Iz8/XHBMaGorPPvsMcXFx2LhxI7KzszF8+HBUVTU/GXjNmjWwt7fXbN7ehjk0m6gzUarU+EfcZQDA7OHdO2RiPtGdiN7N21offPABevTogV69ekEmk2HBggWIjo6Gicl/T2X06NGYNGkS+vXrh8jISPz8888oLy/HV1991WybS5cuRUVFhWbLzc3tqNMhojbaczoXWSVydLWW4bkH/MQuhzo5UcPUyckJUqkUhYWFTfYXFhbCza35CdfOzs747rvvIJfLce3aNVy6dAk2Njbw87vzPyYHBwf07NkTGRkZzb5ubm4OOzu7JhsR6S+5ogHrD6UDAF58OAC2Fu2/9irR3YgapjKZDCEhIYiPj9fsU6vViI+PR1hY2F3fa2FhAU9PTzQ0NGDv3r0YP378HY+trq5GZmYm3N3ddVY7EYnn0+PZKKlWwMfRCtNCuWwgiU/0bt6YmBhs2bIFO3bsQFpaGubNmwe5XI7o6GgAwIwZM7B06VLN8adOncK+ffuQlZWF48ePIyoqCmq1GosXL9Yc8+qrr+Lo0aO4evUqTp48iQkTJkAqlWLq1Kkdfn5EpFsl1QpsPpYJAHh1VCBkpqJ/jRGJvzbvlClTUFxcjJUrV6KgoAD9+/dHXFycZlBSTk5Ok/uhdXV1WL58ObKysmBjY4MxY8Zg165dcHBw0Bxz/fp1TJ06FaWlpXB2dsawYcOQlJQEZ2fnjj49ItKxD+PTIa9XoZ+XPcYGsbeJ9AMfwdYMPoKNSD9ll8jxyLqjaFAL2D0nFOE6fO4lkTbYP0LUyZTX1GPzsUzklNaIXUqrvXfgMhrUAh4MdGaQkl5hmBJ1IgUVdZi8KRGrf76EWTtOo0GlFrukFvs9txw/ncuHRAIs4bKBpGcYpkSdRHaJHBM3nsSVwmoAQEZRNb5JuS5yVS0jCALW/Lls4OMDvHCfO2+/kH5hmBJ1AufzKvDExpPIK6+Fr6OVZpGDfx26gtp6lcjV3dvhy0U4lV0GmakJYkb1FLscotswTImMXGJmKZ7cnIRSeT36eNjh67nheGVUT3h1sURhpQLbTmSLXeJdqdQC1u5vXDYwOtwXng6WIldEdDuGKZER++VCAWZuT0a1ogGh3bvii+fuh7OtOcxNpVgUGQgAiD2SiTJ5vciV3tne1Ou4XFgFe0szPP9ggNjlEDWLYUpkpL46k4u5n6egvkGNR3q7YsesIbD7y7J74/p5oI+HHaoUDdhwuPmlNsVWp1ThXwevAADmP+QPeysuG0j6iWFKZIQ2H8vE4m/+gFoAngjxwsbpA2FhJm1yjImJBK+NbhwVuyvxGnLL9G+qzPYTV5FfUQdPB0vMCPMVuxyiO2KYEhkRQRDw7v5LWP3zJQDAcw/44Z9P9IOptPl/6sN7OGNYgBPqVWqs+/MKUF/clNfjkyONV8wxj/S87Y8BIn3CMCUyEg0qNV7bew6xRxvXrX1tdC8sG3MfJBLJXd936+r0u9/zcOFGRbvX2VIbDmegqq4Bvdxs8dgAT7HLIborhimREahTqjB/dyr2nMmFiQR49/EgzB3h36L39vW0x/j+HhAE4N39l9q50pbJLavBzsRrABrDXmpy9z8IiMTGMCUycFV1SkRvP40DFwohk5rgk+kD8eSQbq1q49VRgTCTSnA8vQQJ6SXtVGnLrTt4BfUqNcL9HTGiJx9QQfqPYUpkwEqrFZi25RQSs0phLZPis+jBiOrb+iepeHe1wlP3Nz4X9N24NKjV4j3/4sKNCnz3ex4AYOnoe3dTE+kDhimRgcorr8Wk2EScy6tAV2sZvnjufoQHtH3x9wUPBcDG3BTn8yrx47l8HVbaOu/uvwRBAMYFeyDIy160Oohag2FKZIDSC6sw8ZOTyCqRw8PeAl/PDUM/Lwet2nS0McfcEY3LDL534DLqGzp+EfyE9BIcTy+BmVSCRaMCO/zzidqKYUpkYH7LuYlJmxJRUFmHABcbfDMvHP7ONjppe9aw7nCxNUdOWQ3+feqaTtpsKbVawJr9jYvZTw/1QTdHqw79fCJtMEyJDMjx9GJM//QUymuUCPZ2wNd/D4OHDteqtZKZYmFE40LyH/2agao6pc7avpcf/riBCzcqYWNuihce5rKBZFgYpkQGIu58PmZ9dho19SoM7+GE3bND0cVapvPPmTzIC37O1iiT12PzsSydt9+cOqUK/zzQuJj93BF+cLQx75DPJdIVhimRAVCq1Fj8zR9QqgSMDXLHpzMHwdrctF0+y1RqgsWRjQs5fHo8G0WVde3yObfU1Ddgzs4zuH6zFi625pg1rHu7fh5Re2CYEhmA33PLUVnXgC5WZvhw6gCYm7bv0nqRfVwxsJsDapUqrI9Pb7fPKa+px1OfnsLx9BJYmkmxfkp/WMna548EovbEMCUyALcWUggPcOqQ1YAkEgmWjrkPALDndC4yi6t1/hmFlXWYsikJqTnlsLc0w7/nhGo1tYdITAxTIgOQkNEYpsM7MGwG+3ZFxH2uUKkF/DPusk7bvlYqxxOxJ3G5sAoutub46u9hGNiti04/g6gjMUyJ9FxlnRK/55YDAIb16NgrtyVRgTCRAHEXCpBy7aZO2kzLr8QTsYnILauFj6MV9s4LR6CbrU7aJhILw5RIzyVllkKlFtDdyRpeXTp27mUPV1tMCvEGAKzdfwmCoN0yg2eulmHypkQUVynQy80WX88Ng3dXziclw8cwJdJzt7p4h4l0P3HhIz1gbmqC5KtliE8ranM7Ry4X4amtp1BV14BBPl2w5+9hcLG10GGlROJhmBLpuVuDjzq6i/cWd3tLzXSVtXGXoGrDIvjfn72B2TvOoE6pxoOBztj1bCjsLc10XSqRaBimRHosr7wWWSVymEiA+/0cRatj7gh/OFiZIb2oGntTrrfqvbuSruGlL39Dg1rA34I9sPnpQbCUte/UHqKOxjAl0mMn/rwqDfZ2EPVKzt7SDAsealzib93BK6itV93zPYIg4ONf07Hiu/MQBODp+32wfkp/yEz5tUPGh7/VRHrsuAhTYu7k6TAfeDpYoqCyDp+dvHrXY9VqAf/3Uxre++UKAODFhwPw1vg+MOmAObJEYmCYEukptVrAiVuDj3o4i1wNYG4qxSujGhfB/+RIBm7K65s9rkGlxqJv/sDWhGwAwIpHeyNmVCAf8k1GjWFKpKcu5leiTF4Pa5kUA7o5iF0OAOCx/p64z90OVXUN+ORIxm2v1ylVmPfvVOxNvQ6piQTvTwrGs1xrlzoBhimRnro1JeZ+P0eYSfXjn6qJiQRLohof2r3j5DVcv1mjea2qTolntifj4MVCyExNEPtUCCaGeIlVKlGH0ot/oRs2bICvry8sLCwQGhqK5OTkOx6rVCrx1ltvwd/fHxYWFggODkZcXJxWbRLpo1tTYobqwf3SvxrR0xnh/o6oV6mx7s97oqXVCkzbcgpJWWWwMTfFzllD8EhvV5ErJeo4oofpnj17EBMTg1WrViE1NRXBwcGIjIxEUVHzk8OXL1+OTZs24aOPPsLFixcxd+5cTJgwAb/99lub2yTSN3VKFZKvlgEAhos0v/ROJBIJXhvd+Ii2b3/PQ3xaISZtSsS5vAo4Wsvw5XP3izqNh0gMEkHb9cG0FBoaisGDB+Pjjz8GAKjVanh7e+OFF17Aa6+9dtvxHh4eeP311zF//nzNvokTJ8LS0hKff/55m9r8X5WVlbC3t0dFRQXs7Ox0cZpErZKQXoKntp6Cq505kpaO1MvBOwt2p+LHP/I1P3vYW2DX7FD4O9uIWBWROES9Mq2vr0dKSgoiIiI0+0xMTBAREYHExMRm36NQKGBh0XQJMktLSyQkJGjVZmVlZZONSEzHM4oBAMMCnPUySAFgUWQgTP+c6uLvbI1v5oUzSKnTEjVMS0pKoFKp4Ora9N6Kq6srCgoKmn1PZGQk1q1bh/T0dKjVahw8eBD79u1Dfn5+m9tcs2YN7O3tNZu3t7cOzo6o7W7dL9W3Lt6/8nG0xnuTgjEttBu+nhsODwdLsUsiEo3o90xb64MPPkCPHj3Qq1cvyGQyLFiwANHR0TAxafupLF26FBUVFZotNzdXhxUTtU5ptQIXbjT2jujb4KP/9dgAT6yeEISu1jKxSyESlahh6uTkBKlUisLCwib7CwsL4ebm1ux7nJ2d8d1330Eul+PatWu4dOkSbGxs4Ofn1+Y2zc3NYWdn12QjEsuJzFIAQC83WzjbmotcDRG1hKhhKpPJEBISgvj4eM0+tVqN+Ph4hIWF3fW9FhYW8PT0RENDA/bu3Yvx48dr3SaRPkhIv3W/VL+vSonov0zFLiAmJgYzZ87EoEGDMGTIEKxfvx5yuRzR0dEAgBkzZsDT0xNr1qwBAJw6dQp5eXno378/8vLy8MYbb0CtVmPx4sUtbpNIXwmCIPoj14io9UQP0ylTpqC4uBgrV65EQUEB+vfvj7i4OM0AopycnCb3Q+vq6rB8+XJkZWXBxsYGY8aMwa5du+Dg4NDiNon0VXaJHDcq6iCTmiC0O+dqEhkK0eeZ6iPOMyWx7Ey8ipX/uYAwP0d88dz9YpdDRC1kcKN5iYzZcXbxEhkkhimRnmhQqZH050heDj4iMiwMUyI9cfZ6OaoUDbC3NENfT3uxyyGiVmhzmDY0NODQoUPYtGkTqqqqAAA3btxAdXW1zooj6kwS0huvSocGOEJqop9LCBJR89o0mvfatWuIiopCTk4OFAoFHnnkEdja2mLt2rVQKBSIjY3VdZ1ERi/hL+vxEpFhadOV6UsvvYRBgwbh5s2bsLT873qcEyZMaLJYAhG1TLWiAb/llAPQ7/V4iah5bboyPX78OE6ePAmZrOl6nL6+vsjLy9NJYUSdSVJmKRrUAnwcreDd1Urscoioldp0ZapWq6FSqW7bf/36ddja2mpdFFFnk5Dx55QYjuIlMkhtCtNRo0Zh/fr1mp8lEgmqq6uxatUqjBkzRle1EXUax7keL5FBa1M373vvvYeoqCj07t0bdXV1mDZtGtLT0+Hk5IQvvvhC1zWSEcstq8GrX5+Fs605PnxyAEw64SjW/IpaZBbLYSIBwv0ZpkSGqE1h6u3tjbNnz2LPnj04e/Ysqqur8eyzz2L69OlNBiQR3c3lgirM2HYKhZUKAEBUXzc82s9D5Ko63q2F7YO8HGBvZSZyNUTUFq0OU6VSiV69euHHH3/E9OnTMX369Paoi4xcyrUyzPrsDCpqlbA0k6JWqcK6g1cQ1ccNptLOtZbIrfulw9nFS2SwWv2tZWZmhrq6uvaohTqJw5eKMP3TU6ioVWJgNwccjHkAXazMkFUsx7e/da7R4Gq1gBMZXI+XyNC16RJg/vz5WLt2LRoaGnRdDxm5b3+7jjk7z6BOqcaDgc749+z74dXFCvMe9AcAfBCfjvoGtchVdpxLBVUoqa6HpZkUA7t1EbscImqjNt0zPX36NOLj4/HLL78gKCgI1tbWTV7ft2+fTooj47I1IRtv/3gRADBhgCf+8UQ/mP3ZpTsjzBefHs/G9Zu12HM6B0+H+YpYace5tepRqF9XyEw7V/c2kTFpU5g6ODhg4sSJuq6FjJQgCPjngcv45EgmAGDW0O5YPva+JiN3LcykeOHhAKz4zwV89GsGngjxhqVMKlbJHUbzyDXeLyUyaG0K0+3bt+u6DjJSDSo1ln93Hl+ezgUALIoMxPMP+kMiuX0KzJTB3bDpWBau36zFrqSreO4B/44ut0PVKVU4fbUMADC8B9fjJTJkWvUrFRcXIyEhAQkJCSguLtZVTWQk6pQqzN+dii9P58JEAqx5PAjzHwpoNkgBQGZqgpdG9gAAbDySiao6ZUeW2+FSr91EnVINF1tz9HS1EbscItJCm8JULpdj1qxZcHd3xwMPPIAHHngAHh4eePbZZ1FTU6PrGskAVdUp8cz2ZBy4UAiZ1ASfTB+IqUO63fN9EwZ4ws/ZGjdrlNiWcLX9CxXR8b8sIXinPzCIyDC0KUxjYmJw9OhR/PDDDygvL0d5eTn+85//4OjRo3jllVd0XSMZmOIqBZ7cnISkrDLYmJvis1mDEdXXvUXvNZWaIOaRngCALcezcFNe356liurWYg2cEkNk+NoUpnv37sXWrVsxevRo2NnZwc7ODmPGjMGWLVvwzTff6LpGMiC5ZTWYFHsSF25UwtFahi+fu7/VS+SN6euO+9ztUK1oQOyxzHaqVFw35fU4f6MCADCUg4+IDF6bwrSmpgaurq637XdxcWE3byd2qaASEzeexNXSGnh1scQ388LR19O+1e2YmEiwKLLx6nTHyasoqjS+RUJOZJZAEICerjZwtbMQuxwi0lKbwjQsLAyrVq1qshJSbW0t3nzzTYSFhemsODIcp6+WYXJsIoqqFAh0tcXeeeHo7mR97zfewUOBLhjYzQF1SjU2HM7QYaX6QbPqUQBH8RIZgzZNjfnggw8QGRkJLy8vBAcHAwDOnj0LCwsLHDhwQKcFkv47dLEQ83enQtGgxiCfLtg6c7DWC7ZLJBK8GhmIaVtOYXdyDuY84AevLsbx0GxBEDTzS4fzfimRUWjTlWnfvn2Rnp6ONWvWoH///ujfvz/effddpKeno0+fPrqukfTYNynX8ffPU6BoUOPhXi7Y9Wyozp58Eu7vhKEBjlCqBHwYn66TNvXBtdIaXL9ZCzOpBKF+XcUuh4h0oE1XpgBgZWWFOXPm6LIWMjBbjmXhnZ/TAACPD/TE2on/XR5QV14dFYgTGSexNzUPc0f4w8/Z8Odj3poSM7BbF1jJ2vxPkIj0SJu++dasWYNt27bdtn/btm1Yu3at1kWRfhMEAe/uv6QJ0jnDu+O9J4J1HqQAMKBbF0Tc5wKVWsC/DhnH1WlCeuMCJ1xCkMh4tOnbb9OmTejVq9dt+/v06YPY2FitiyL9pVILWPbtOcQebZyysiSqF5aNabrOrq7FPBIIAPjh7A2k5Ve22+d0hAaVGiczSwFwfimRMWlTmBYUFMDd/fZJ+M7OzsjPz9e6KNJPigYVXvgiFV8kNy4P+O7jQZh3h3V2dam3hx0e7df4+/b+L1fa9bPa2x95Faiqa4CdhSn6eTmIXQ4R6UibwtTb2xsnTpy4bf+JEyfg4eGhdVGkf+SKBszecQY/nyuATGqCDdMG4skWLA+oKy8/0hMmEuBQWiF+y7nZYZ+rayf+HMUb7u8EaTtezRNRx2pTmM6ZMwcLFy7E9u3bce3aNVy7dg3btm3Dyy+/zEFJRuimvB7TPz2F4+klsJJJse2ZwRgd1LLlAXXF39kGEwd6ATDsq1PNerzs4iUyKm0aSrho0SKUlpbi+eefR31949qpFhYWWLJkCZYuXarTAklcBRV1eHrrKaQXVcPBygzbnxmMAd26iFLLiyN74Lvf85CQUYLEzFKE+TuKUkdbyRUNmqtqzi8lMi5tujKVSCRYu3YtiouLkZSUhLNnz6KsrAwrV65sUxEbNmyAr68vLCwsEBoaiuTk5Lsev379egQGBsLS0hLe3t54+eWXm6zG9MYbb0AikTTZmhswRXeXXSLHE7EnkV5UDVc7c3z19zDRghQAvLtaaZ48894vlyEIgmi1tMWp7FIoVQK8u1rCx7Htq0MRkf7Rai6DjY0NBg8ejG7dumH//v1IS0trdRt79uxBTEwMVq1ahdTUVAQHByMyMhJFRUXNHr9792689tprWLVqFdLS0rB161bs2bMHy5Yta3Jcnz59kJ+fr9kSEhLadI6d1YUbFZgUexLXb9bC19EK38wNR09XW7HLwoKHAmBhZoKUazdx5LJhPUP31qpHnBJDZHzaFKaTJ0/Gxx9/DKBxTd5BgwZh8uTJ6NevH/bu3duqttatW4c5c+YgOjoavXv3RmxsLKysrJqdxwoAJ0+exNChQzFt2jT4+vpi1KhRmDp16m1Xs6ampnBzc9NsTk78Amup5OwyPLk5CSXV9ejtboev54bDu6t+LOXnYmeBmWG+ABqvTtVqw7k61TxyjevxEhmdNoXpsWPHMHz4cADAt99+C0EQUF5ejg8//BD/93//1+J26uvrkZKSgoiIiP8WZGKCiIgIJCYmNvue8PBwpKSkaMIzKysLP//8M8aMGdPkuPT0dHh4eMDPzw/Tp09HTk7OHetQKBSorKxssnVWv14qxNNbT6GqrgGDfbvgi+fuh7OtudhlNTF3hD9szE1x4UYl4i4UiF1OixRW1iG9qBoSCRBuYPd6ieje2hSmFRUV6Nq1cU3RuLg4TJw4EVZWVhg7dizS01u+Sk1JSQlUKtVtj3NzdXVFQUHzX5LTpk3DW2+9hWHDhsHMzAz+/v548MEHm3TzhoaG4rPPPkNcXBw2btyI7OxsDB8+HFVVVc22uWbNGtjb22s2b2/vFp+DMfnP73l4bud/19ndOSsU9pa6WWdXl7pYy/DssO4AgPd/uQyVAVyd3roqDfK0RxdrmcjVEJGutXmeaWJiIuRyOeLi4jBq1CgAwM2bN2Fh0b7PZjxy5AhWr16NTz75BKmpqdi3bx9++uknvP3225pjRo8ejUmTJqFfv36IjIzEzz//jPLycnz11VfNtrl06VJUVFRottzc3HY9B320M/EqFu75HQ1qAY/198Cmp0NgKZOKXdYdzR7eHQ5WZsgsluPb3/LELueeEjJ4v5TImLVpaszChQsxffp02NjYwMfHBw8++CCAxu7foKCgFrfj5OQEqVSKwsLCJvsLCwvh5ubW7HtWrFiBp59+GrNnzwYABAUFQS6X47nnnsPrr78OE5Pb/z5wcHBAz549kZHR/HMxzc3NYW6uX12ZHUUQBHwYn4F/HWqcu/lMuC9WPtq7XZcH1AVbCzPMHeGPd/dfwvpDV/C3YA/ITHW/NrAuCILw3zDllBgio9Smb5/nn38eSUlJ2LZtGxISEjQB5ufn16p7pjKZDCEhIYiPj9fsU6vViI+Pv+NDxmtqam4LTKm08QrqTlMlqqurkZmZ2ewSiJ2ZWi3gzR8uaoJ0YUQPrBqn/0F6y8wwXzjbmuP6zVrsOaO/vQmXC6tQXKWAhZkJQnzEm1pERO2nzX/Kh4SEYMKECbCx+e8jscaOHYuhQ4dqfrazs0NWVtZd24mJicGWLVuwY8cOpKWlYd68eZDL5YiOjgYAzJgxo8lCEOPGjcPGjRvx5ZdfIjs7GwcPHsSKFSswbtw4Tai++uqrOHr0KK5evYqTJ09iwoQJkEqlmDp1altP1+goVWq88vVZfHbyKgDgjXG9sTCiZ7uvs6tLljIpFjwUAAD4+Nd01ClVIlfUvFv3S4d0d4S5qf52nRNR27XrwxRbMql+ypQpKC4uxsqVK1FQUID+/fsjLi5OMygpJyenyZXo8uXLIZFIsHz5cuTl5cHZ2Rnjxo3DO++8oznm+vXrmDp1KkpLS+Hs7Ixhw4YhKSkJzs6ckgAAdUoVFuxOxaG0IkhNJHh/UjAeG+Apdllt8uQQb2w+loW88lrsSryGOQ/4iV3SbW7NLx3O+6VERksitOMyMra2tjh79iz8/PTvC+5uKisrYW9vj4qKCtjZ2Yldjk5V1ikxe8cZJGeXwdzUBJ9MH4iR97ne+4167KvTuVi89w90tZbh2OKHYGOuPw/cVjSo0P/Ng6hVqrD/peG4z924fp+IqJH+fOtQu6utV2HaliScz6uErbkpPp05CKF+hj/n8fGBnog9momsEjm2JWTjxZE9OvTzG1RqVNY1oLymHhW1SpTXKlFZq0R5jRJZxdWoVargZGOOXm7iryBFRO2DYdqJbD+ZjfN5lehqLcPOWUPQ19Ne7JJ0wlRqgoWP9MSLX/yGLceycJ+7HUy1HEQlQECdUt0YjjVKVNQqUVFb3+Tn8prG0KxSNNyzvQd6OBnU/Wgiap12DVN+eeiP8pp6bDySCQBYPvY+ownSWx4NcscnhzNwqaAKc3aeEaUGW3NT2FmawcHKDPZ/+V8nG3NMD/URpSYi6hiiD0CijrHxSCaq6hrQy80W4/sb5mCjuzExkWD140FY/VMaFA1qnbQpMzVBFyuzxoC0lDUJSPtbgWnZ+L92lmYwk+rnPFcian/tGqb79++Hp6fxfXEbmvyKWs0UmMVRgZAayDzS1hrYrQu+mRcudhlE1Anp9E/p3NxczJo1S/PzsGHDOu3KQvpk/cF0KBrUGOLbFQ8FuohdDhGR0dFpmJaVlWHHjh26bJK0lFFUha9TGlcHWjK6F+9jExG1g1Z1837//fd3ff1eqx1Rx3vvwBWoBeCR3q5cyo6IqJ20Kkwfe+wxSCSSuw4s4pWP/vgt5ybiLhTARAIsjgwUuxwiIqPVqm5ed3d37Nu3D2q1utktNTW1veqkVhIEAWvjLgEAJg70Qg9XLhhARNReWhWmISEhSElJuePr97pqpY5z9EoxkrLKIDM1wcuP9BS7HCIio9bibt4//vgDixYtglwuv+MxAQEBOHz4sE4Ko7ZTqwWsjbsMAJgZ5gMPB0uRKyIiMm4tDtMBAwYgPz8fLi4u8PPzw+nTp+Ho2HRdV2tra4wYMULnRVLr/PDHDaTlN66/+/yDAWKXQ0Rk9Frczevg4IDs7GwAwNWrV6FW62aVGdKt+gY13v+l8WHffx/hhy7WMpErIiIyfi2+Mp04cSJGjBgBd3d3SCQSDBo0SPMw7v/FKTLi+SI5BzllNXC2NcesYd3FLoeIqFNocZhu3rwZjz/+ODIyMvDiiy9izpw5sLXlCFF9Ilc04KNf0wEAL47sASsZHwpERNQRWvVtGxUVBQBISUnBSy+9xDDVM58ez0ZJdT18Ha3w5GBvscshIuo02nTpsn37dl3XQVoqrVZg87HGR6y9MiqQTzAhIupA/MY1Eh8fzoC8XoW+nnYYG+QudjlERJ0Kw9QI5JbV4N9JOQCAJVG9YGKkj1gjItJXDFMj8K+DV1CvUmNogCOG93AWuxwiok6HYWrg0vIr8e3veQAar0qJiKjjMUwN3D8PXIYgAGOD3NHPy0HscoiIOiWGqQFLzi7Dr5eKIDWR4JVRXMyeiEgsDFMDJQgC3t2fBgCYMtgbfs42IldERNR5MUwN1KG0IqTmlMPCzAQvjewhdjlERJ0aw9QAqdQC/nmg8cHf0UO7w9XOQuSKiIg6N4apAdqXeh1XCqthb2mGuSP8xS6HiKjTY5gamDqlCv862PiItecf9Ie9pZnIFREREcPUwHyedA03Kurgbm+BmeG+YpdDRERgmBqUyjolPj6cAQBYGNEDFmbNP0+WiIg6FsPUgGw+moXyGiX8na0xcaCX2OUQEdGf9CJMN2zYAF9fX1hYWCA0NBTJycl3PX79+vUIDAyEpaUlvL298fLLL6Ourk6rNvVdUWUdtiZkAwAWRfaCKR+xRkSkN0T/Rt6zZw9iYmKwatUqpKamIjg4GJGRkSgqKmr2+N27d+O1117DqlWrkJaWhq1bt2LPnj1YtmxZm9s0BB/+mo5apQoDujkgso+r2OUQEdFfSARBEMQsIDQ0FIMHD8bHH38MAFCr1fD29sYLL7yA11577bbjFyxYgLS0NMTHx2v2vfLKKzh16hQSEhLa1Ob/qqyshL29PSoqKmBnZ6eL09TK1RI5ItYdRYNawJfP3Y/7/RzFLomIiP5C1CvT+vp6pKSkICIiQrPPxMQEERERSExMbPY94eHhSElJ0XTbZmVl4eeff8aYMWPa3Ka+++jXDDSoBTwY6MwgJSLSQ6ZifnhJSQlUKhVcXZt2W7q6uuLSpUvNvmfatGkoKSnBsGHDIAgCGhoaMHfuXE03b1vaVCgUUCgUmp8rKyu1OS2dqlOqEHc+HwDwwsMBIldDRETNEf2eaWsdOXIEq1evxieffILU1FTs27cPP/30E95+++02t7lmzRrY29trNm9vbx1WrJ0jl4shr1fB08ESA7t1EbscIiJqhqhXpk5OTpBKpSgsLGyyv7CwEG5ubs2+Z8WKFXj66acxe/ZsAEBQUBDkcjmee+45vP76621qc+nSpYiJidH8XFlZqTeB+tO5xqvSsf3cIZFIRK6GiIiaI+qVqUwmQ0hISJPBRGq1GvHx8QgLC2v2PTU1NTAxaVq2VNq4eIEgCG1q09zcHHZ2dk02fVCnVCE+rfGPgjFB7iJXQ0REdyLqlSkAxMTEYObMmRg0aBCGDBmC9evXQy6XIzo6GgAwY8YMeHp6Ys2aNQCAcePGYd26dRgwYABCQ0ORkZGBFStWYNy4cZpQvVebhuLI5SLU/NnFG+xlL3Y5RER0B6KH6ZQpU1BcXIyVK1eioKAA/fv3R1xcnGYAUU5OTpMr0eXLl0MikWD58uXIy8uDs7Mzxo0bh3feeafFbRqKH/9o7OJ9lF28RER6TfR5pvpIH+aZ1tarMPDtg6hVqvD9gqHo5+UgSh1ERHRvBjeat7M4fLkItUoVvLtaIsiTXbxERPqMYaqnfvqzi3dMELt4iYj0HcNUD9XUN+DXS43rCD8a5CFyNUREdC8MUz10+FIxapUqdOtqhb6e+jFNh4iI7oxhqod+OncDABdqICIyFAxTPfPXLt6xXKiBiMggMEz1zK+XilCnVMPH0Qp9PNjFS0RkCBimeubWKN6xHMVLRGQwGKZ6RK74SxdvP3bxEhEZCoapHom/VARFgxrdnazR251dvEREhoJhqkd++qNxFO+YIDd28RIRGRCGqZ6oVjTgyOViAMBYLtRARGRQGKZ6Ij6tEIoGNfycrHGfu63Y5RARUSswTPWEZhQvF2ogIjI4DFM9UFWnxJErf3bxchQvEZHBYZjqgV8vFaG+QQ0/Z2sEurKLl4jI0DBM9cCPf3bxPsqFGoiIDBLDVGRVdUocvTWKtx9H8RIRGSKGqcgOpRWiXqVGgIsNerraiF0OERG1AcNUZFyLl4jI8DFMRVRZp8SxKyUAOIqXiMiQMUxFdOhiYxdvDxcb9OQoXiIig8UwFdFfF2ogIiLDxTAVSUWtEsfSb63FyzAlIjJkDFORHLpYCKVKQE9XG/RgFy8RkUFjmIrkp3O3RvFybikRkaFjmIqgokaJ47e6ePu5iVwNERFpi2Eqgl8uFkCpEtDLzRYBLuziJSIydAxTEfy3i5cDj4iIjAHDtINV1CiRkN64UMMYTokhIjIKDNMOduBiARrUjV28/s5ci5eIyBgwTDvYrYUaHuVVKRGR0dCLMN2wYQN8fX1hYWGB0NBQJCcn3/HYBx98EBKJ5LZt7NixmmOeeeaZ216PiorqiFO5q/KaepzI+LOLl/dLiYiMhqnYBezZswcxMTGIjY1FaGgo1q9fj8jISFy+fBkuLi63Hb9v3z7U19drfi4tLUVwcDAmTZrU5LioqChs375d87O5uXn7nUQL/XKhEA1qAfe528GPXbxEREZD9CvTdevWYc6cOYiOjkbv3r0RGxsLKysrbNu2rdnju3btCjc3N8128OBBWFlZ3Ram5ubmTY7r0qVLR5zOXf14jl28RETGSNQwra+vR0pKCiIiIjT7TExMEBERgcTExBa1sXXrVjz55JOwtrZusv/IkSNwcXFBYGAg5s2bh9LSUp3W3lo35eziJSIyVqJ285aUlEClUsHV1bXJfldXV1y6dOme709OTsb58+exdevWJvujoqLw+OOPo3v37sjMzMSyZcswevRoJCYmQiqV3taOQqGAQqHQ/FxZWdnGM7qzAxcKoFIL6ONhh+5O1vd+AxERGQzR75lqY+vWrQgKCsKQIUOa7H/yySc1/x0UFIR+/frB398fR44cwciRI29rZ82aNXjzzTfbtVbNQg3s4iUiMjqidvM6OTlBKpWisLCwyf7CwkK4ud19zVq5XI4vv/wSzz777D0/x8/PD05OTsjIyGj29aVLl6KiokKz5ebmtvwkWqBMXo+TmY3dzFz1iIjI+IgapjKZDCEhIYiPj9fsU6vViI+PR1hY2F3f+/XXX0OhUOCpp5665+dcv34dpaWlcHdvPsjMzc1hZ2fXZNOlW128fT3t4OPILl4iImMj+mjemJgYbNmyBTt27EBaWhrmzZsHuVyO6OhoAMCMGTOwdOnS2963detWPPbYY3B0dGyyv7q6GosWLUJSUhKuXr2K+Ph4jB8/HgEBAYiMjOyQc/pftxZq4OPWiIiMk+j3TKdMmYLi4mKsXLkSBQUF6N+/P+Li4jSDknJycmBi0jTzL1++jISEBPzyyy+3tSeVSvHHH39gx44dKC8vh4eHB0aNGoW3335blLmmpdUKnMxsHMXLLl4iIuMkEQRBELsIfVNZWQl7e3tUVFRo3eW7+1QOln17Dv287PH9gmE6qpCIiPSJ6N28xu6nczcAcG4pEZExY5i2o5JqBRI5ipeIyOgxTNtR3PkCqAUg2Mse3l2txC6HiIjaCcO0HWlG8XKhBiIio8YwbSfFVQqcym7s4h3dl2FKRGTMGKbt5NdLhY1dvN4O7OIlIjJyos8zNVaTQrwR4GIDRYNa7FKIiKidMUzbiYmJBCE+XcUug4iIOgC7eYmIiLTEMCUiItISw5SIiEhLDFMiIiItMUyJiIi0xDAlIiLSEsOUiIhIS5xn2oxbj3itrKwUuRIiItIHtra2kEgkd3ydYdqMqqoqAIC3t7fIlRARkT6oqKiAnZ3dHV+XCLcuw0hDrVbjxo0b9/xL5F4qKyvh7e2N3Nzcu/6fYIiM+dwAnp8hM+ZzA3h+YuGVaRuYmJjAy8tLZ+3Z2dnp1S+FLhnzuQE8P0NmzOcG8Pz0DQcgERERaYlhSkREpCWGaTsyNzfHqlWrYG5uLnYpOmfM5wbw/AyZMZ8bwPPTVxyAREREpCVemRIREWmJYUpERKQlhikREZGWGKZERERaYpi2kw0bNsDX1xcWFhYIDQ1FcnKy2CXpxMaNG9GvXz/NhOqwsDDs379f7LJ0Ki8vD0899RQcHR1haWmJoKAgnDlzRuyydKKqqgoLFy6Ej48PLC0tER4ejtOnT4tdVpscO3YM48aNg4eHByQSCb777jvNa0qlEkuWLEFQUBCsra3h4eGBGTNm4MaNG+IV3Ep3Oz8AeOaZZyCRSJpsUVFR4hTbSvc6t+rqaixYsABeXl6wtLRE7969ERsbK06xLcQwbQd79uxBTEwMVq1ahdTUVAQHByMyMhJFRUVil6Y1Ly8vvPvuu0hJScGZM2fw8MMPY/z48bhw4YLYpenEzZs3MXToUJiZmWH//v24ePEi3n//fXTp0kXs0nRi9uzZOHjwIHbt2oVz585h1KhRiIiIQF5entiltZpcLkdwcDA2bNhw22s1NTVITU3FihUrkJqain379uHy5cv429/+JkKlbXO387slKioK+fn5mu2LL77owArb7l7nFhMTg7i4OHz++edIS0vDwoULsWDBAnz//fcdXGkrCKRzQ4YMEebPn6/5WaVSCR4eHsKaNWtErKr9dOnSRfj000/FLkMnlixZIgwbNkzsMtpFTU2NIJVKhR9//LHJ/oEDBwqvv/66SFXpBgDh22+/vesxycnJAgDh2rVrHVOUDjV3fjNnzhTGjx8vSj261Ny59enTR3jrrbea7NP331NemepYfX09UlJSEBERodlnYmKCiIgIJCYmiliZ7qlUKnz55ZeQy+UICwsTuxyd+P777zFo0CBMmjQJLi4uGDBgALZs2SJ2WTrR0NAAlUoFCwuLJvstLS2RkJAgUlUdp6KiAhKJBA4ODmKXojNHjhyBi4sLAgMDMW/ePJSWlopdkk6Eh4fj+++/R15eHgRBwOHDh3HlyhWMGjVK7NLuiGGqYyUlJVCpVHB1dW2y39XVFQUFBSJVpVvnzp2DjY0NzM3NMXfuXHz77bfo3bu32GXpRFZWFjZu3IgePXrgwIEDmDdvHl588UXs2LFD7NK0Zmtri7CwMLz99tu4ceMGVCoVPv/8cyQmJiI/P1/s8tpVXV0dlixZgqlTpxrU4ul3ExUVhZ07dyI+Ph5r167F0aNHMXr0aKhUKrFL09pHH32E3r17w8vLCzKZDFFRUdiwYQMeeOABsUu7Iz41hlotMDAQv//+OyoqKvDNN99g5syZOHr0qFEEqlqtxqBBg7B69WoAwIABA3D+/HnExsZi5syZIlenvV27dmHWrFnw9PSEVCrFwIEDMXXqVKSkpIhdWrtRKpWYPHkyBEHAxo0bxS5HZ5588knNfwcFBaFfv37w9/fHkSNHMHLkSBEr095HH32EpKQkfP/99/Dx8cGxY8cwf/58eHh4NOn10ye8MtUxJycnSKVSFBYWNtlfWFgINzc3karSLZlMhoCAAISEhGDNmjUIDg7GBx98IHZZOuHu7n7bHwX33XcfcnJyRKpIt/z9/XH06FFUV1cjNzcXycnJUCqV8PPzE7u0dnErSK9du4aDBw8azVVpc/z8/ODk5ISMjAyxS9FKbW0tli1bhnXr1mHcuHHo168fFixYgClTpuC9994Tu7w7YpjqmEwmQ0hICOLj4zX71Go14uPjjea+4v9Sq9VQKBRil6ETQ4cOxeXLl5vsu3LlCnx8fESqqH1YW1vD3d0dN2/exIEDBzB+/HixS9K5W0Ganp6OQ4cOwdHRUeyS2tX169dRWloKd3d3sUvRilKphFKphIlJ03iSSqVQq9UiVXVv7OZtBzExMZg5cyYGDRqEIUOGYP369ZDL5YiOjha7NK0tXboUo0ePRrdu3VBVVYXdu3fjyJEjOHDggNil6cTLL7+M8PBwrF69GpMnT0ZycjI2b96MzZs3i12aThw4cACCICAwMBAZGRlYtGgRevXqZZC/m9XV1U2uwrKzs/H777+ja9eucHd3xxNPPIHU1FT8+OOPUKlUmjELXbt2hUwmE6vsFrvb+XXt2hVvvvkmJk6cCDc3N2RmZmLx4sUICAhAZGSkiFW3zN3OrVu3bhgxYgQWLVoES0tL+Pj44OjRo9i5cyfWrVsnYtX3IPJoYqP10UcfCd26dRNkMpkwZMgQISkpSeySdGLWrFmCj4+PIJPJBGdnZ2HkyJHCL7/8InZZOvXDDz8Iffv2FczNzYVevXoJmzdvFrskndmzZ4/g5+cnyGQywc3NTZg/f75QXl4udlltcvjwYQHAbdvMmTOF7OzsZl8DIBw+fFjs0lvkbudXU1MjjBo1SnB2dhbMzMwEHx8fYc6cOUJBQYHYZbfI3c5NEAQhPz9feOaZZwQPDw/BwsJCCAwMFN5//31BrVaLW/hd8BFsREREWuI9UyIiIi0xTImIiLTEMCUiItISw5SIiEhLDFMiIiItMUyJiIi0xDAlIiLSEsOUiNrk6tWrkEgk+P3338UuhUh0DFMiI1ZQUIAXXngBfn5+MDc3h7e3N8aNG9dk7Wgi0h7X5iUyUlevXsXQoUPh4OCAf/7znwgKCoJSqcSBAwcwf/58XLp0SewSiYwGr0yJjNTzzz8PiUSC5ORkTJw4ET179kSfPn0QExODpKQkzJo1C48++miT9yiVSri4uGDr1q0AGp8I9I9//AMBAQEwNzdHt27d8M4779zxM8+fP4/Ro0fDxsYGrq6uePrpp1FSUtKu50mkDximREaorKwMcXFxmD9/PqytrW973cHBAbNnz0ZcXBzy8/M1+3/88UfU1NRgypQpABqfEvTuu+9ixYoVuHjxInbv3g1XV9dmP7O8vBwPP/wwBgwYgDNnziAuLg6FhYWYPHly+5wkkR5hNy+REcrIyIAgCOjVq9cdjwkPD0dgYCB27dqFxYsXAwC2b9+OSZMmwcbGBlVVVfjggw/w8ccfY+bMmQAaHy4+bNiwZtv7+OOPMWDAAKxevVqzb9u2bfD29saVK1fQs2dPHZ4hkX7hlSmREWrpw6Bmz56N7du3AwAKCwuxf/9+zJo1CwCQlpYGhUKBkSNHtqits2fP4vDhw7CxsdFst8I8MzOzDWdBZDh4ZUpkhHr06AGJRHLPQUYzZszAa6+9hsTERJw8eRLdu3fH8OHDAQCWlpat+szq6mqMGzcOa9euve01d3f3VrVFZGh4ZUpkhLp27YrIyEhs2LABcrn8ttfLy8sBAI6Ojnjsscewfft2fPbZZ4iOjtYc06NHD1haWrZ4Gs3AgQNx4cIF+Pr6IiAgoMnW3H1bImPCMCUyUhs2bIBKpcKQIUOwd+9epKenIy0tDR9++CHCwsI0x82ePRs7duxAWlqa5t4oAFhYWGDJkiVYvHgxdu7ciczMTCQlJWlG+v6v+fPno6ysDFOnTsXp06eRmZmJAwcOIDo6GiqVqt3Pl0hM7OYlMlJ+fn5ITU3FO++8g1deeQX5+flwdnZGSEgINm7cqDkuIiIC7u7u6NOnDzw8PJq0sWLFCpiammLlypW4ceMG3N3dMXfu3GY/z8PDAydOnMCSJUswatQoKBQK+Pj4ICoqCiYm/LudjJtEaOlIBSIyStXV1fD09MT27dvx+OOPi10OkUHilSlRJ6VWq1FSUoL3338fDg4O+Nvf/iZ2SUQGi2FK1Enl5OSge/fu8PLywmeffQZTU34dELUVu3mJiIi0xFEBREREWmKYEhERaYlhSkREpCWGKRERkZYYpkRERFpimBIREWmJYUpERKQlhikREZGWGKZERERa+n89DnDTfuKKKgAAAABJRU5ErkJggg==\n"
- },
- "metadata": {},
- "output_type": "display_data"
- }
- ],
- "source": [
- "# F1\n",
- "plot_cycle_score(cycle, X_test, y_test,\n",
- " scorer=f1_score,\n",
- " figsize=(5,3),\n",
- " scorer_kw=dict(average='weighted'));"
- ],
- "metadata": {
- "collapsed": false
- }
- },
- {
- "cell_type": "code",
- "execution_count": 9,
- "outputs": [
- {
- "data": {
- "text/plain": "",
- "image/png": "iVBORw0KGgoAAAANSUhEUgAAAdMAAAEmCAYAAAA5oXoHAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8o6BhiAAAACXBIWXMAAA9hAAAPYQGoP6dpAAA75UlEQVR4nO3deVyU5f4//tewzCKr7IuIbImagqLgUp4Wjqjlkp607Uj4y5OJdox+buXeJ9FOmR7xaGWaS6Z+UsnjAhmlpqGoiLkrakIIyCK7DMPM/f0DnJqPqDgzcM8Mr+fjMY8j99xzz/s6D+Pldd3XfV0SQRAEEBERkd6sxC6AiIjI3DFMiYiIDMQwJSIiMhDDlIiIyEAMUyIiIgMxTImIiAzEMCUiIjIQw5SIiMhADNMmCIKAiooKcD0LIiJqDoZpEyorK+Hk5ITKykqxSyEiIjPAMCUiIjIQw5SIiMhAoobpoUOHMGzYMPj4+EAikSA5Ofmhnzlw4AB69eoFmUyG4OBgfPXVV/ecs3LlSnTq1AlyuRxRUVHIyMgwfvFERESNRA3T6upqhIWFYeXKlc06//r163juuefw9NNPIysrC1OnTsUbb7yB1NRU7Tlbt25FQkIC5s2bh8zMTISFhSEmJga3bt1qqWYQEVEbJzGVLdgkEgl27tyJkSNH3vecGTNmYM+ePTh79qz22EsvvYSysjKkpKQAAKKiotCnTx8kJSUBADQaDfz8/DBlyhTMnDmzWbVUVFTAyckJ5eXlcHR01L9RRETUJpjVPdP09HRER0frHIuJiUF6ejoAoK6uDidPntQ5x8rKCtHR0dpzmqJUKlFRUaHzIiIiai6zCtOCggJ4enrqHPP09ERFRQXu3LmD4uJiqNXqJs8pKCi473UTExPh5OSkffn5+bVI/UREZJnMKkxbyqxZs1BeXq595ebmil0SERGZERuxC3gUXl5eKCws1DlWWFgIR0dHKBQKWFtbw9rauslzvLy87ntdmUwGmUzWIjUTEZFxCYKA8jsqFFcpUVxV1/C/lUqUVDf8uaiyDiXVSpRU1eGHhL9AatPy/UazCtN+/fph7969Osf279+Pfv36AQCkUikiIiKQlpamncik0WiQlpaGyZMnt3a5RERtQml1HQorao1yLbVGQEl1HUqqlCiuagjEosbQ/POxek3z5s6WVCvh7aQwSm0PImqYVlVVITs7W/vz9evXkZWVBRcXF3Ts2BGzZs1CXl4eNmzYAACYOHEikpKSMH36dIwfPx4//vgjtm3bhj179mivkZCQgNjYWPTu3RuRkZFYtmwZqqurERcX1+rtIyKyVBqNgMPZxdh8LAf7LxRC3cxwMyZHuQ3cHGRws5PBzUEKN3sZXBv/7Gong7uDFO3bSVulFlHD9MSJE3j66ae1PyckJAAAYmNj8dVXXyE/Px85OTna9wMCArBnzx688847WL58OTp06IA1a9YgJiZGe87YsWNRVFSEuXPnoqCgAOHh4UhJSblnUhIRET26kiol/vfk79h8LAc5pTXa4272UkgkEoOvbyUB2rdrCEY3+8aAvPvnPwWnq52sVYZvm8tknjM1JXzOlIjoD4Ig4Nj1Umw+loOUswWoU2sAAA4yG4zq5YtXovzR2ctB5CrFZVb3TImIqPWU16iwPfN3fH3sBq4WVWuPh3VwwqtR/ng+zBvtpIwRgGFKRBaksKIWGddLkXu7Bk4KW7i0k8K5nRQudlK0b2cL53ZSkxoaNEWCIOBUbhm+PpqD3b/ehLK+oRfaTmqNEeG+eDWqIx73dRK5StPDMCUisyQIAnJKa3Dseikyrpfi+G+luFFS89DP2cts0N7OFu3bSRtftmhv1/jnxtD9cwg7t7OF3Na6FVokriplPZJP5eHrYzm4kP/HKnChXg54ta8/Rob7wEFuK2KFpo1hSkRmQaMRcPlWJTIawzPjeiluVSp1zrGSAF19HPGYhwMqlfW4XV2H2zV1uF2jQllNHTRCQ2hUKeuRW3qn2d/dTmrdGLZNh7BzO9vG3u8fgaywtTbKhJyWdjavHF8fy8F3WXmoqVMDAGQ2Vni+hw9e7dsRPf2czaIdYmOYEpFJUqk1OJtXjuO/3e153kb5HZXOObbWEoR1cEZkgAv6BLggwr89HO/Te9JoBFTUqnC7RoXS6jqU1dQ1/q8KpTV//Hy7RtUYwircrqmDWiOgpk6Nmro7yCtrfgDLbKx0wtVRbgsrExthzi29gzN55dqfg9zt8EqUP0b38oVzKz1SYik4m7cJnM1L1PpqVWqcyinTDtmevHEbd1RqnXPaSa0R4d8efTq5IDLABeF+zi06BCsIwp96uCptT7fJEK5WNfaC66BSm8+vVVtrCQY/7o1XozoiKsCFvVA9sWdKRKI6m1eODem/Ydfpm6hVaXTec1LYok8nF0Q19jy7+TjC1rr1uncSiQSO8oZepb9r8z4jCAKq69T3BG9FrerhH25lchtrPNPFA272XE7VUAxTImp1yno19p7Jx4b0GziVU6Y97uEgQ2RAQ3hGBrgixMMeVlbm1VOSSCSwl9nAXmYDP5d2YpdDrYRhSkSt5vfbNfj6WA62Hs9FaXUdgIZhxiGPe2NcP39E+LfnMCOZJYYpEbWou2u4bki/gR8vFuLuEq7eTnK8EtkRYyP94OEgF7dIIgMxTImoRZTfUeHbk79j09EbuF78x+o5A4Jd8fe+/oju4gmbVrz/SdSSGKZEZFTnbpZj09EbSD51Uzsb10Fmg9ERHfBaX38Ee9iLXCGR8TFMichgdfUa7DvbMKHo5I3b2uOdPR3w937+eKGnL+xk/HVDlot/u4lIL4Ig4GpRFZJP3cSW4zkormqYUGRjJcHgx73w977+iORzi9RGMEyJqFnUGgEX8itw7HopjjcurFDSOCMXADwdZXgl0h8vR/rBw5ETiqhtYZgSUZOU9Wqc+b1cu5B85o3bqFTW65wjs7FCZIALXo7siL929WzVBRWITAnDlIgAANXKemTm3NYuIp+VW6bdfusuB5kNendqj8gAV0QGtEd3X2duaUYEhilRm1VWU4fjv91GxvUSZFwvxdmbFVBrdNeUdbOXNiwi37gWbqiXI6zNbEUiotbAMCVqI6qU9Th2rQSHs4vxS3YJLhVW3nOOr7OicSm/hrVwA93sOIGIqBkYpkQWSqXWICu3DIevFONIdjGycstQ/396nsEe9ogMcEFkp4bw9HVWiFQtkXljmBJZCEEQcKmwUhuex66Xajd7vsvftR0GBLthQJAb+ga6wJW7hRAZBcOUyIzlld3BkezixlcJiquUOu+72knRP9gNTwS7on+QG3cxIWohDFMiM1Jeo0L6tRJtgF7705q3AKCwtUZkgAueCHbDgGA3hHo5mN0WZkTmiGFKZCamf3sa3578HX++7WltJUGPDk7a8OzZ0RkyG2vxiiRqoximRGbgWlEVtp34HUDDpKG74RkV6AJHua3I1RERw5TIDCRn3QQAPNXZHV/FRYpcDRH9X1y6hMjECYKA77LyAAAjw31FroaImsIwJTJxWblluFFSA4WtNf7a1VPscoioCQxTIhOXfKqhVzqomyf3BCUyUQxTIhOmUmuw+9d8ABziJTJlDFMiE3Y4uxgl1XVwsZPiiRA3scshovtgmBKZsO8ah3if7+HNvUKJTBj/6yQyUTV19fj+fCEAYGRPDvESmTKGKZGJ2n++EDV1avi7tkNPP2exyyGiB2CYEpmou7N4R4T5cE9RIhPHMCUyQSVVShy6UgwAGMEhXiKTxzAlMkF7zuRDrRHQ3dcJQe72YpdDRA/BMCUyQTvvDvGG+4hcCRE1B8OUyMTcKKnGqZwyWEmA4WEMUyJzwDAlMjHfNe4Q0z/IDR6OcpGrIaLmED1MV65ciU6dOkEulyMqKgoZGRn3PVelUmHhwoUICgqCXC5HWFgYUlJSdM5Rq9WYM2cOAgICoFAoEBQUhA8++ACCINznqkSmQxAEJN/dIYYTj4jMhqhhunXrViQkJGDevHnIzMxEWFgYYmJicOvWrSbPnz17Nj777DOsWLEC58+fx8SJE/HCCy/g1KlT2nOWLFmCVatWISkpCRcuXMCSJUvw0UcfYcWKFa3VLCK9nc2rwLWiashsrBDTjTvEEJkLiSBily0qKgp9+vRBUlISAECj0cDPzw9TpkzBzJkz7znfx8cH77//PuLj47XHRo8eDYVCgU2bNgEAnn/+eXh6euLLL7+87zkPU1FRAScnJ5SXl8PR0dGQJhI9kg92n8eXh6/juR7eWPlKL7HLIaJmEq1nWldXh5MnTyI6OvqPYqysEB0djfT09CY/o1QqIZfr3kNSKBQ4fPiw9uf+/fsjLS0Nly9fBgCcPn0ahw8fxpAhQ+5bi1KpREVFhc6LqLWpNQL+e7rhfil3iCEyL6JtjlhcXAy1Wg1PT92hLE9PT1y8eLHJz8TExGDp0qUYOHAggoKCkJaWhh07dkCtVmvPmTlzJioqKhAaGgpra2uo1Wp8+OGHePXVV+9bS2JiIhYsWGCchhHpKf1qCW5VKuHczhZ/ecxd7HKI6BGIPgHpUSxfvhwhISEIDQ2FVCrF5MmTERcXByurP5qxbds2fP3119i8eTMyMzOxfv16fPzxx1i/fv19rztr1iyUl5drX7m5ua3RHCIddyceDe3uDamNWf2nSdTmidYzdXNzg7W1NQoLC3WOFxYWwsvLq8nPuLu7Izk5GbW1tSgpKYGPjw9mzpyJwMBA7TnTpk3DzJkz8dJLLwEAunfvjhs3biAxMRGxsbFNXlcmk0EmkxmpZUSPrlalRsrZAgAc4iUyR6L981cqlSIiIgJpaWnaYxqNBmlpaejXr98DPyuXy+Hr64v6+nps374dI0aM0L5XU1Oj01MFAGtra2g0GuM2gMiIfrhQiCplPXydFejt317scojoEYnWMwWAhIQExMbGonfv3oiMjMSyZctQXV2NuLg4AMC4cePg6+uLxMREAMCxY8eQl5eH8PBw5OXlYf78+dBoNJg+fbr2msOGDcOHH36Ijh07olu3bjh16hSWLl2K8ePHi9JGouZIPtUw8WhEuA+srLhDDJG5ETVMx44di6KiIsydOxcFBQUIDw9HSkqKdlJSTk6OTi+ztrYWs2fPxrVr12Bvb4+hQ4di48aNcHZ21p6zYsUKzJkzB5MmTcKtW7fg4+ODN998E3Pnzm3t5lErKq2uww/nC3G1qArDw33QzcdJ7JKaraymDgcvNzxbzYUaiMyTqM+Zmio+Z2oe8sruIPVsAVLPFeD4b6XQNP5NtraS4M2BgXj72RDIba3FLbIZvj52A+/vPIsu3o7Y988nxS6HiPQgas+U6FEIgoDsW1VIPVeA1HOFOJNXrvN+Nx9HuNnLcPByEf5z4CpSzhZg8egeiAxwEani5vnu1N1nS7moPZG5YpiSSdNoBJz+vQyp5wrx/bkCXCuu1r5nJQF6d3JBTDcvDOrqCT+XdgCA1HMFmJN8FteKqzHms3S81rcjZgwOhYPcVqxm3Nfvt2uQ8VspJBJgOMOUyGwxTMnkqNQaZFwvRcrZAuw/X4iCilrte1JrKwwIdsXgx73wbBdPuNnf+0hTTDcv9A10ReLeC9hyPBebjuYg7cItfPjC43gm1LTWu93VuOJRVIALvJ0UIldDRPpimJJJuFOnxqErRUg9V4C0C7dQfkelfc9eZoOnOrsjppsXnurs3qweppPCFotH98DwcB/M2nEGN0pqMP6rExge5oN5w7rCtYkQbm2CICC5cRNwPltKZN4MmoBUV1eH69evIygoCDY2lpPLnIDUsqqU9ci+VYUrhZW4cqsKlwoqcex6CWpVfzwL7GonxV+7eiKmmxf6B7tCZqP/RKI7dWp8+sNlrPn5GjQC0L6dLeYN64YR4T6QSMR7DOX8zQoM/ffPkFpb4fjsaDgpTG8YmoiaR68ErKmpwZQpU7RL9F2+fBmBgYGYMmUKfH19m9zxhdqe8jsqZN+qxJXCKly51fDKLqzEzfLaJs/3dVYgppsXBj/uhQj/9rA20vOWCqk13hvaBc/38Mb0b3/FxYJKTN2aheSsPHz4Qnf4OoszvPpd4/KBz4R6MEiJzJxeYTpr1iycPn0aBw4cwODBg7XHo6OjMX/+fIZpG3O7uq4xLBuCM7vxz4UVyvt+xsNBhhBPe4R4OCDYwx7hfs7o5uPYoj3FHh2c8d8pT+Czg1fx77RsHLhUhEFLD2LGkFC8FuXfqoslaDSC9n7pyJ6ceERk7vQK0+TkZGzduhV9+/bV+eXXrVs3XL161WjFkek6/lsplv1wGZcKKlFcVXff83yc5Aj2dECIh33Dy9Mewe4OcGonTk/M1toKk58JweDHvTFz+684ceM25n53DruybmLx6B4I9rBvlTqOXS9FfnktHOQ2eKqzR6t8JxG1HL3CtKioCB4e9/4CqK6uFvUeFLWOq0VVGL/uOCqV9dpjHdorGsOyoacZ4mGPYA97k3wcBQCCPeyx7c1+2HTsBpbsu4gTN25j6PKf8fazwXjzL0GwtW7ZZavvDvEOfdzbLBaWIKIH0ytMe/fujT179mDKlCkAoA3QNWvWPHSRejJvFbUqTNhwApXKevT2b495w7ohyMMO7aTmNwHNykqCcf064dkunnh/5xkcuFSEj7+/jN2/5uOjv/VAjw7OLfK9yno19p7JBwCM4BAvkUXQ6zfgokWLMGTIEJw/fx719fVYvnw5zp8/j19++QUHDx40do1kIjQaAQlbs3CtqBreTnKsei0C7g7iP2JiKF9nBda93gffZd3Egv+ew8WCSoxceQQTBgbi3b92Nvreoj9dLEJFbT28HOXoG+Bq1GsTkTj0+i3xxBNP4PTp06ivr0f37t3x/fffw8PDA+np6YiIiDB2jWQilv1wGT9cuAWpjRU++7tlBOldEokEI3v64oeEv2B4mA80AvDZwWt48bN05JbWGPW77g7xDucOMUQW45GfM1WpVHjzzTcxZ84cBAQEtFRdouJzpvdKOZuPiZsyAQBLx4RhVK8OIlfUslLPFWDa/55GRW09HOU2+NeLYYjp1vSm9Y+i/I4KfT78AXX1Gux9+0l09eHfLyJL8Mg9U1tbW2zfvr0laiETdamgEgnbTgMA/r8nAiw+SIGGJQn3/vNJ9OzojIraery58STm7zoHZb3aoOumnM1HXb0Gj3nao4u3g5GqJSKx6TXMO3LkSCQnJxu5FDJFZTV1mLDhBGrq1Ogf5IpZQ0LFLqnVdGjfDtve7Id/DAwEAHz1y2/426p05JToP+z7xybgvpz5TmRB9JqAFBISgoULF+LIkSOIiIiAnZ2dzvtvv/22UYojcdWrNZjyzSnklNagQ3sFkl7pBZsWfmTE1NhaW+G9oV3QN9AFCdtO40xeOZ77989Y8rceGNrd+5GuVVBei6PXSwAAI7hDDJFF0Wtt3gfdK5VIJLh27ZpBRYmN90wbJO69gM8OXYPC1hrb3+rf5u/v3Sy7g7e/OYUTN24DAP7e1x/vP9el2c+Jfn7oKhbtvYg+ndrjfyf2b8lSiaiV6dUzvX79urHrIBPzXVYePjvU8I+if73Yo80HKQD4OCvwzT/6Yun+y1h14Co2Hr2BzJzbSHqlFwLc7B76+T8P8RKRZTF4zE4QBBiw8QyZoLN55Zj+7a8AgElPBeH5HhySvMvW2gozBofiq7g+cLGT4tzNCgxbcVi7zu79XCmsxPn8CthYSfDcIw4PE5Hp0ztMN2zYgO7du0OhUEChUKBHjx7YuHGjMWsjEZRUKfHmxpNQ1mvwVGd3vDuos9glmaSnOntg79tPIjLABVXKerz9zSm8t/MMalVNz/ZNbny29KnOHmhvJ23NUomoFegVpkuXLsVbb72FoUOHYtu2bdi2bRsGDx6MiRMn4tNPPzV2jdRKVGoNJn2dibyyOwhws8Pyl3oabRs0S+TlJMfmN6Iw5ZlgSCTA5mM5GLnyCK4WVemcJwgCvsviDjFElkzvCUgLFizAuHHjdI6vX78e8+fPN/t7qm11AtL8Xefw1S+/wV5mg+T4/gj24HOQzfXzlSK8szULxVV1aCe1xqIXumNkz4Z7oyd+K8XfVqfDXmaDE7OjubA9kQXSq2ean5+P/v3vnY3Yv39/5OfnG1wUtb5tJ3Lx1S+/AWhY4YhB+mieDHHH3refRN9AF9TUqTF1axZmbv8Vd+rU2HmqYYg3ppsXg5TIQukVpsHBwdi2bds9x7du3YqQkBCDi6LWdSrnNmbvPAsAmBodgkFGWDavLfJwlOPrN/rin8+GQCIBthzPxciVR7CncYcYDvESWS69Ho1ZsGABxo4di0OHDmHAgAEAgCNHjiAtLa3JkCXTdauiFhM3nUSdWoNBXT3x9jP8x5AhrK0keOevjyEqwAVvb8nCpcJKAIC7gwz9g9xEro6IWopePdPRo0fj2LFjcHNzQ3JyMpKTk+Hm5oaMjAy88MILxq6RWoiyXo2Jm06isEKJEA97LB0bzl1MjKR/sBv2/vMJDAhu2GLtxYgOnMxFZMH0moBk6drCBCRBEDBrxxlsOZ4LR7kNdk1+Ap2asfAAPRqNRsCFggo85ukA2za2FCNRW6LXf9179+5FamrqPcdTU1Oxb98+g4uilrfpWA62HM+FRAL8++WeDNIWYmUlQTcfJwYpkYXT67/wmTNnQq2+9+F0QRAwc+ZMg4uilpVxvRQLdp0DAEyPCcVTnT1EroiIyLzpFaZXrlxB165d7zkeGhqK7Oxsg4uilnOz7A4mfX0S9RoBz/fwxsS/BIpdEhGR2dMrTJ2cnJrcGSY7O/ue7djIdNSqGiYcFVfVoYu3Iz76Ww/uqUlEZAR6hemIESMwdepUXL16VXssOzsb7777LoYPH2604si4Fvz3PH79vRzt29ni879HoJ1UryejiIjo/9ArTD/66CPY2dkhNDQUAQEBCAgIQJcuXeDq6oqPP/7Y2DWSEew89Tu+yciBRAIsf6kn/FzaiV0SEZHF0Ktr4uTkhF9++QX79+/H6dOntbvGDBw40Nj1kRFcKazEezsaVjia8kwIBj7mLnJFRESWxWjPmZaVlcHZ2dkYlxKdJT1nWlNXj+FJR5B9qwoDgl2xYXwUFw8gIjIyvYZ5lyxZgq1bt2p/HjNmDFxdXeHr64vTp08brTgyjCAImL3zLLJvVcHDQYZlY7mlGhFRS9ArTFevXg0/Pz8AwP79+7F//37s27cPQ4YMwbRp04xaIOlvy/Fc7DiVB2srCVa83BPuDjKxSyIiskh63TMtKCjQhunu3bsxZswYDBo0CJ06dUJUVJRRCyT9nLtZjnmNCzP8/4M6IyrQVeSKiIgsl1490/bt2yM3NxcAkJKSgujoaAANw4pNrYxErauiVoVJX2eirl6DZ0M98OZALsxARNSS9OqZjho1Cq+88gpCQkJQUlKCIUOGAABOnTqF4OBgoxZIj0YQBMz49lfcKKmBr7MCn4wJ404wREQtTK+e6aefforJkyeja9eu2L9/P+zt7QEA+fn5mDRp0iNda+XKlejUqRPkcjmioqKQkZFx33NVKhUWLlyIoKAgyOVyhIWFISUl5Z7z8vLy8Nprr8HV1RUKhQLdu3fHiRMnHq2RZmrdkd+w72wBbK0lWPlqLzi3k4pdEhGR5RNa0NChQ4WbN2/e9/0tW7YIUqlUWLt2rXDu3DlhwoQJgrOzs1BYWNjk+dOnTxd8fHyEPXv2CFevXhX+85//CHK5XMjMzNSeU1paKvj7+wuvv/66cOzYMeHatWtCamqqkJ2d3ey6y8vLBQBCeXl58xtrAk7eKBWCZu0R/GfsFtYdviZ2OUREbUaL7mfq4OCA06dPIzCw6Xt2UVFR6NOnD5KSkgAAGo0Gfn5+mDJlSpO7z/j4+OD9999HfHy89tjo0aOhUCiwadMmAA072hw5cgQ///yz3nWb43Omt6vr8Ny/f8bN8lo8190bSa/05Lq7REStRLRNFuvq6nDy5Ent5CUAsLKyQnR0NNLT05v8jFKphFwu1zmmUChw+PBh7c+7du1C79698eKLL8LDwwM9e/bEF1988cBalEolKioqdF7mRKMRkLAtCzfLaxHgZofFo7szSImIWpFoYVpcXAy1Wg1PT0+d456enigoKGjyMzExMVi6dCmuXLkCjUaD/fv3Y8eOHcjPz9eec+3aNaxatQohISFITU3FW2+9hbfffhvr16+/by2JiYlwcnLSvu4+9mMuVh28ip8uFUFmY4WVr/SCg9xW7JKIiNoU0cJUH8uXL0dISAhCQ0MhlUoxefJkxMXFwcrqj2ZoNBr06tULixYtQs+ePfGPf/wDEyZMwOrVq+973VmzZqG8vFz7uvvYjzk4eq0En3x/CQCwcEQ3dPUxj2FpIiJLIlqYurm5wdraGoWFhTrHCwsL4eXl1eRn3N3dkZycjOrqaty4cQMXL16Evb29zj1Zb2/vezYu79KlC3Jycu5bi0wmg6Ojo87LHNyqrMWUb05BIwCje3XAmN7m1aMmIrIUooWpVCpFREQE0tLStMc0Gg3S0tLQr1+/B35WLpfD19cX9fX12L59O0aMGKF9b8CAAbh06ZLO+ZcvX4a/v79xGyAytUbAP7/JQlGlEo952uODkd14n5SISCQtujv0e++9BxcXl/u+n5CQgNjYWPTu3RuRkZFYtmwZqqurERcXBwAYN24cfH19kZiYCAA4duwY8vLyEB4ejry8PMyfPx8ajQbTp0/XXvOdd95B//79sWjRIowZMwYZGRn4/PPP8fnnn7dkU1vdsh8uI/1aCdpJrfGfV7nRNxGRmPT6DZyYmAhPT0+MHz9e5/jatWtRVFSEGTNmAGi4F/kgY8eORVFREebOnYuCggKEh4cjJSVFOykpJydH535obW0tZs+ejWvXrsHe3h5Dhw7Fxo0bdbZ+69OnD3bu3IlZs2Zh4cKFCAgIwLJly/Dqq6/q01STdODSLaz4MRsAkDiqO4I97EWuiIiobdPrOdNOnTph8+bN6N+/v87xY8eO4aWXXsL169eNVqAYTPk505tld/Dcv3/G7RoVXuvbEf8zsrvYJRERtXl63TMtKCiAt7f3Pcfd3d11HlMh41KpNZi8ORO3a1R43NcRs5/r+vAPERFRi9MrTP38/HDkyJF7jh85cgQ+Pj4GF0VNW7LvIjJzyuAgt8F/XomA3NZa7JKIiAh63jOdMGECpk6dCpVKhWeeeQYAkJaWhunTp+Pdd981aoHUIOVsAdYcbhg+//jFMHR0bSdyRUREdJdeYTpt2jSUlJRg0qRJqKurA9DwuMqMGTMeOumIHl1OSQ2mfXsaADDhyQDEdGv6OVwiIhKHQQvdV1VV4cKFC1AoFAgJCYFMJjNmbaIxtQlIEzeeRMq5AkT4t8eWf/SFrbVZLVxFRGTxDHo40d7eHn369DFWLXQfmTm3AQCzhoQySImITJBeYfr0008/cLWdH3/8Ue+CSFdRpRK3KpWQSIAu3uL3komI6F56hWl4eLjOzyqVCllZWTh79ixiY2ONURc1upDfsB1cgKsd7GRc5YiIyBTp9dv5008/bfL4/PnzUVVVZVBBpOt8Y5iyV0pEZLqMegPutddew9q1a415yTbvbs+UW6sREZkuo4Zpeno65HK5MS/Z5p2/2Rim7JkSEZksvYZ5R40apfOzIAjIz8/HiRMnMGfOHKMURkCtSo2rRQ3D5uyZEhGZLr3C1MnJSednKysrdO7cGQsXLsSgQYOMUhgBlwsroREAFzspPBws4xleIiJLpFeYrlu3zth1UBP+PMTLjb+JiEwXVwAwYec5+YiIyCzo1TNVq9X49NNPsW3bNuTk5GjX572rtLTUKMW1dXd7pl28HUSuhIiIHkSvnumCBQuwdOlSjB07FuXl5UhISMCoUaNgZWWF+fPnG7nEtkmjEXCxoBIA0NXb6SFnExGRmPQK06+//hpffPEF3n33XdjY2ODll1/GmjVrMHfuXBw9etTYNbZJubdrUKWsh9TGCoHudmKXQ0RED6BXmBYUFKB79+4AGha7Ly8vBwA8//zz2LNnj/Gqa8PuDvE+5mnPxe2JiEycXr+lO3TogPz8fABAUFAQvv/+ewDA8ePHLWYbNrFpVz7iYg1ERCZPrzB94YUXkJaWBgCYMmUK5syZg5CQEIwbNw7jx483aoFt1XmGKRGR2dBrNu/ixYu1fx47diz8/f3xyy+/ICQkBMOGDTNacW2Z9hlTH04+IiIydUbZ06tv377o27fvPcefe+45rFmzBt7e3sb4mjajrKYON8trAQChfCyGiMjktejMlkOHDuHOnTst+RUW6e4Qr5+LAo5yW5GrISKih+E0URPEnWKIiMwLw9QEcUNwIiLzwjA1QRfy7658xDAlIjIHDFMTU1evQfatxjDlAvdERGaBYWpirtyqhEotwFFuA19nhdjlEBFRM7RomL733ntwcXFpya+wOHeHeLtwD1MiIrOhV5gmJiZi7dq19xxfu3YtlixZov151qxZcHZ21ru4tuiPxRo4xEtEZC70CtPPPvsMoaGh9xzv1q0bVq9ebXBRbdn5/IZNAzj5iIjIfOi9a0xTqxq5u7trF8CnRycIgs4wLxERmQe9wtTPzw9Hjhy55/iRI0fg4+NjcFFt1c3yWpTfUcHGSoIQT3uxyyEiombSa23eCRMmYOrUqVCpVHjmmWcAAGlpaZg+fTreffddoxbYlty9XxrsYQ+ZjbXI1RARUXPpFabTpk1DSUkJJk2ahLq6OgCAXC7HjBkzMGvWLKMW2JZwGUEiIvOkV5hKJBIsWbIEc+bMwYULF6BQKBASEsKNwQ2k3RCcM3mJiMyKQVuw2dvbayciMUgNxw3BiYjMk14TkDQaDRYuXAgnJyf4+/vD398fzs7O+OCDD6DRaIxdY5tQWatCTmkNAM7kJSIyN3qF6fvvv4+kpCQsXrwYp06dwqlTp7Bo0SKsWLECc+bMeeTrrVy5Ep06dYJcLkdUVBQyMjLue65KpcLChQsRFBQEuVyOsLAwpKSk3Pf8xYsXQyKRYOrUqY9cV2u6WNDwSIy3kxzt7aQiV0NERI9Cr2He9evXY82aNRg+fLj2WI8ePeDr64tJkybhww8/bPa1tm7dioSEBKxevRpRUVFYtmwZYmJicOnSJXh4eNxz/uzZs7Fp0yZ88cUXCA0NRWpqKl544QX88ssv6Nmzp865x48fx2effYYePXro08xWxclHRETmS6+eaWlpaZMrIIWGhqK0tPSRrrV06VJMmDABcXFx6Nq1K1avXo127do1uVwhAGzcuBHvvfcehg4disDAQLz11lsYOnQoPvnkE53zqqqq8Oqrr+KLL75A+/btH6kmMXAZQSIi86VXmIaFhSEpKeme40lJSQgLC2v2derq6nDy5ElER0f/UZCVFaKjo5Gent7kZ5RKJeRyuc4xhUKBw4cP6xyLj4/Hc889p3NtU8YNwYmIzJdew7z/+te/MHToUPzwww/o168fACA9PR25ubnYu3dvs69TXFwMtVoNT09PneOenp64ePFik5+JiYnB0qVLMXDgQAQFBSEtLQ07duyAWq3WnrNlyxZkZmbi+PHjzapDqVRCqVRqf66oqGh2G4yhXq3BpUJuCE5EZK4euWeqUqmwYMEC7N27F6NGjUJZWRnKysowatQoXLp0CU8++WRL1Km1fPlyhISEIDQ0FFKpFJMnT0ZcXBysrBqakpubi3/+85/4+uuv7+nB3k9iYiKcnJy0Lz8/v5Zswj2uFVejrl4DO6k1Orq0a9XvJiIiwz1yz9TW1ha//vorvL298T//8z8Gfbmbmxusra1RWFioc7ywsBBeXl5Nfsbd3R3Jycmora1FSUkJfHx8MHPmTAQGBgIATp48iVu3bqFXr17az6jVahw6dAhJSUlQKpWwttZdqm/WrFlISEjQ/lxRUdGqgXr3fmmotyOsrLiHKRGRudHrnulrr72GL7/80uAvl0qliIiIQFpamvaYRqNBWlqadvj4fuRyOXx9fVFfX4/t27djxIgRAIBnn30WZ86cQVZWlvbVu3dvvPrqq8jKyronSIGGBSccHR11Xq3pAhdrICIya3rdM62vr8fatWvxww8/ICIiAnZ2djrvL126tNnXSkhIQGxsLHr37o3IyEgsW7YM1dXViIuLAwCMGzcOvr6+SExMBAAcO3YMeXl5CA8PR15eHubPnw+NRoPp06cDABwcHPD444/rfIednR1cXV3vOW4qznMZQSIis6ZXmJ49e1Y7jHr58mWd9ySSRxumHDt2LIqKijB37lwUFBQgPDwcKSkp2klJOTk52vuhAFBbW4vZs2fj2rVrsLe3x9ChQ7Fx40Y4Ozvr0xTRCYKgHeblTF4iIvMkEQRBELsIU1NRUQEnJyeUl5e3+JDvrYpaRC5Kg5UEOLdgMBRSbr1GRGRu9LpnSsZzrnGIN9DdnkFKRGSmGKYi4zKCRETmj2EqMq58RERk/himIuOG4ERE5o9hKqKaunpcL64GwGFeIiJzxjAV0cWCSggC4GYvg7uDTOxyiIhITwxTEXGIl4jIMjBMRcSZvEREloFhKqI/ZvI6iFwJEREZgmEqErVGwMX8hj1Mu3GYl4jIrDFMRXKjpBp3VGrIba0Q4GYvdjlERGQAhqlI7g7xdvZyhDX3MCUiMmsMU5H8MfmI90uJiMwdw1Qk3BCciMhyMExFwg3BiYgsB8NUBCVVShRWKAE03DMlIiLzxjAVwYXGR2I6ubaDvcxG5GqIiMhQDFMRnM8vB8AhXiIiS8EwFcHdmbxdOMRLRGQRGKYi4OQjIiLLwjBtZbUqNa4WNe5hyjAlIrIIDNNWdqWwCmqNgPbtbOHlKBe7HCIiMgKGaSu7O/moi7cjJBIuI0hEZAkYpq3s7mMxXPmIiMhyMExbmXZNXt4vJSKyGAzTViQIgnZN3i7smRIRWQyGaSv6/fYdVCrrIbW2QpA79zAlIrIUDNNWdK5xiDfE0x5SG/5fT0RkKfgbvRWd5xAvEZFFYpi2oj82BGeYEhFZEoZpK7rAZQSJiCwSw7SVlNeokFd2BwCHeYmILA3DtJXcvV/q66yAk8JW5GqIiMiYGKathEO8RESWi2HaSrTbrnGIl4jI4jBMW4l2Q3CGKRGRxWGYtoK6eg2u3GpY4L4bh3mJiCwOw7QVXC2qgkotwEFmgw7tFWKXQ0RERsYwbQV/HuLlHqZERJaHYdoKznMmLxGRRTOJMF25ciU6deoEuVyOqKgoZGRk3PdclUqFhQsXIigoCHK5HGFhYUhJSdE5JzExEX369IGDgwM8PDwwcuRIXLp0qaWbcV8XOJOXiMiiiR6mW7duRUJCAubNm4fMzEyEhYUhJiYGt27davL82bNn47PPPsOKFStw/vx5TJw4ES+88AJOnTqlPefgwYOIj4/H0aNHsX//fqhUKgwaNAjV1dWt1SwtQRDYMyUisnASQRAEMQuIiopCnz59kJSUBADQaDTw8/PDlClTMHPmzHvO9/Hxwfvvv4/4+HjtsdGjR0OhUGDTpk1NfkdRURE8PDxw8OBBDBw48KE1VVRUwMnJCeXl5XB0NCwAb5bdQf/FP8LaSoJzC2Igt7U26HpERGR6RO2Z1tXV4eTJk4iOjtYes7KyQnR0NNLT05v8jFKphFwu1zmmUChw+PDh+35PeXk5AMDFxeW+16yoqNB5GcvdId5gd3sGKRGRhRI1TIuLi6FWq+Hp6alz3NPTEwUFBU1+JiYmBkuXLsWVK1eg0Wiwf/9+7NixA/n5+U2er9FoMHXqVAwYMACPP/54k+ckJibCyclJ+/Lz8zOsYX+i3XaNQ7xERBZL9Humj2r58uUICQlBaGgopFIpJk+ejLi4OFhZNd2U+Ph4nD17Flu2bLnvNWfNmoXy8nLtKzc312j1/rEhuIPRrklERKZF1DB1c3ODtbU1CgsLdY4XFhbCy8uryc+4u7sjOTkZ1dXVuHHjBi5evAh7e3sEBgbec+7kyZOxe/du/PTTT+jQocN965DJZHB0dNR5Gcsfa/I6Ge2aRERkWkQNU6lUioiICKSlpWmPaTQapKWloV+/fg/8rFwuh6+vL+rr67F9+3aMGDFC+54gCJg8eTJ27tyJH3/8EQEBAS3WhgepUtbjRkkNAPZMiYgsmY3YBSQkJCA2Nha9e/dGZGQkli1bhurqasTFxQEAxo0bB19fXyQmJgIAjh07hry8PISHhyMvLw/z58+HRqPB9OnTtdeMj4/H5s2b8d1338HBwUF7/9XJyQkKRest53exsVfq6SiDq72s1b6XiIhal+hhOnbsWBQVFWHu3LkoKChAeHg4UlJStJOScnJydO6H1tbWYvbs2bh27Rrs7e0xdOhQbNy4Ec7OztpzVq1aBQB46qmndL5r3bp1eP3111u6SVrcdo2IqG0Q/TlTU2Ss50xn7fgV32TkIv7pIEyLCTVihUREZErMbjavOdE+FsPJR0REFo1h2kLq1RpcLGjYw5STj4iILBvDtIX8VlINZb0G7aTW8He1E7scIiJqQQzTFnKucYg31MsB1lbcw5SIyJKJPpvXUv21qye+ndgPKjXndxERWTqGaQtpJ7VB705NL6xPRESWhcO8REREBmKYEhERGYhhSkREZCCGKRERkYEYpkRERAZimBIRERmIYUpERGQgPmfahLsb6VRUVIhcCRERmQIHBwdIJPdfzY5h2oTKyoYF6v38/ESuhIiITMHDtuTkfqZN0Gg0uHnz5kP/JfIwFRUV8PPzQ25urkH7opoiS24bwPaZM0tuG2DZ7TPltrFnqgcrKyt06NDBaNdzdHQ0ub8YxmLJbQPYPnNmyW0DLLt95tg2TkAiIiIyEMOUiIjIQAzTFiSTyTBv3jzIZDKxSzE6S24bwPaZM0tuG2DZ7TPntnECEhERkYHYMyUiIjIQw5SIiMhADFMiIiIDMUyJiIgMxDBtIStXrkSnTp0gl8sRFRWFjIwMsUsyilWrVqFHjx7ah6r79euHffv2iV2WUeXl5eG1116Dq6srFAoFunfvjhMnTohdllFUVlZi6tSp8Pf3h0KhQP/+/XH8+HGxy9LLoUOHMGzYMPj4+EAikSA5OVn7nkqlwowZM9C9e3fY2dnBx8cH48aNw82bN8Ur+BE9qH0A8Prrr0Mikei8Bg8eLE6xj+hhbauqqsLkyZPRoUMHKBQKdO3aFatXrxan2GZimLaArVu3IiEhAfPmzUNmZibCwsIQExODW7duiV2awTp06IDFixfj5MmTOHHiBJ555hmMGDEC586dE7s0o7h9+zYGDBgAW1tb7Nu3D+fPn8cnn3yC9u3bi12aUbzxxhvYv38/Nm7ciDNnzmDQoEGIjo5GXl6e2KU9surqaoSFhWHlypX3vFdTU4PMzEzMmTMHmZmZ2LFjBy5duoThw4eLUKl+HtS+uwYPHoz8/Hzt65tvvmnFCvX3sLYlJCQgJSUFmzZtwoULFzB16lRMnjwZu3btauVKH4FARhcZGSnEx8drf1ar1YKPj4+QmJgoYlUtp3379sKaNWvELsMoZsyYITzxxBNil9EiampqBGtra2H37t06x3v16iW8//77IlVlHACEnTt3PvCcjIwMAYBw48aN1inKiJpqX2xsrDBixAhR6jGmptrWrVs3YeHChTrHTP3vKXumRlZXV4eTJ08iOjpae8zKygrR0dFIT08XsTLjU6vV2LJlC6qrq9GvXz+xyzGKXbt2oXfv3njxxRfh4eGBnj174osvvhC7LKOor6+HWq2GXC7XOa5QKHD48GGRqmo95eXlkEgkcHZ2FrsUozlw4AA8PDzQuXNnvPXWWygpKRG7JKPo378/du3ahby8PAiCgJ9++gmXL1/GoEGDxC7tvhimRlZcXAy1Wg1PT0+d456enigoKBCpKuM6c+YM7O3tIZPJMHHiROzcuRNdu3YVuyyjuHbtGlatWoWQkBCkpqbirbfewttvv43169eLXZrBHBwc0K9fP3zwwQe4efMm1Go1Nm3ahPT0dOTn54tdXouqra3FjBkz8PLLL5vdAur3M3jwYGzYsAFpaWlYsmQJDh48iCFDhkCtVotdmsFWrFiBrl27okOHDpBKpRg8eDBWrlyJgQMHil3afXHXGHpknTt3RlZWFsrLy/Htt98iNjYWBw8etIhA1Wg06N27NxYtWgQA6NmzJ86ePYvVq1cjNjZW5OoMt3HjRowfPx6+vr6wtrZGr1698PLLL+PkyZNil9ZiVCoVxowZA0EQsGrVKrHLMZqXXnpJ++fu3bujR48eCAoKwoEDB/Dss8+KWJnhVqxYgaNHj2LXrl3w9/fHoUOHEB8fDx8fH51RP1PCnqmRubm5wdraGoWFhTrHCwsL4eXlJVJVxiWVShEcHIyIiAgkJiYiLCwMy5cvF7sso/D29r7nHwVdunRBTk6OSBUZV1BQEA4ePIiqqirk5uYiIyMDKpUKgYGBYpfWIu4G6Y0bN7B//36L6ZU2JTAwEG5ubsjOzha7FIPcuXMH7733HpYuXYphw4ahR48emDx5MsaOHYuPP/5Y7PLui2FqZFKpFBEREUhLS9Me02g0SEtLs5j7iv+XRqOBUqkUuwyjGDBgAC5duqRz7PLly/D39xepopZhZ2cHb29v3L59G6mpqRgxYoTYJRnd3SC9cuUKfvjhB7i6uopdUov6/fffUVJSAm9vb7FLMYhKpYJKpYKVlW48WVtbQ6PRiFTVw3GYtwUkJCQgNjYWvXv3RmRkJJYtW4bq6mrExcWJXZrBZs2ahSFDhqBjx46orKzE5s2bceDAAaSmpopdmlG888476N+/PxYtWoQxY8YgIyMDn3/+OT7//HOxSzOK1NRUCIKAzp07Izs7G9OmTUNoaKhZ/t2sqqrS6YVdv34dWVlZcHFxgbe3N/72t78hMzMTu3fvhlqt1s5ZcHFxgVQqFavsZntQ+1xcXLBgwQKMHj0aXl5euHr1KqZPn47g4GDExMSIWHXzPKhtHTt2xF/+8hdMmzYNCoUC/v7+OHjwIDZs2IClS5eKWPVDiDyb2GKtWLFC6NixoyCVSoXIyEjh6NGjYpdkFOPHjxf8/f0FqVQquLu7C88++6zw/fffi12WUf33v/8VHn/8cUEmkwmhoaHC559/LnZJRrN161YhMDBQkEqlgpeXlxAfHy+UlZWJXZZefvrpJwHAPa/Y2Fjh+vXrTb4HQPjpp5/ELr1ZHtS+mpoaYdCgQYK7u7tga2sr+Pv7CxMmTBAKCgrELrtZHtQ2QRCE/Px84fXXXxd8fHwEuVwudO7cWfjkk08EjUYjbuEPwC3YiIiIDMR7pkRERAZimBIRERmIYUpERGQghikREZGBGKZEREQGYpgSEREZiGFKRERkIIYpEenlt99+g0QiQVZWltilEImOYUpkwQoKCjBlyhQEBgZCJpPBz88Pw4YN01k7mogMx7V5iSzUb7/9hgEDBsDZ2Rn/+te/0L17d6hUKqSmpiI+Ph4XL14Uu0Qii8GeKZGFmjRpEiQSCTIyMjB69Gg89thj6NatGxISEnD06FGMHz8ezz//vM5nVCoVPDw88OWXXwJo2BHoo48+QnBwMGQyGTp27IgPP/zwvt959uxZDBkyBPb29vD09MTf//53FBcXt2g7iUwBw5TIApWWliIlJQXx8fGws7O7531nZ2e88cYbSElJQX5+vvb47t27UVNTg7FjxwJo2CVo8eLFmDNnDs6fP4/NmzfD09Ozye8sKyvDM888g549e+LEiRNISUlBYWEhxowZ0zKNJDIhHOYlskDZ2dkQBAGhoaH3Pad///7o3LkzNm7ciOnTpwMA1q1bhxdffBH29vaorKzE8uXLkZSUhNjYWAANm4s/8cQTTV4vKSkJPXv2xKJFi7TH1q5dCz8/P1y+fBmPPfaYEVtIZFrYMyWyQM3dDOqNN97AunXrAACFhYXYt28fxo8fDwC4cOEClEolnn322WZd6/Tp0/jpp59gb2+vfd0N86tXr+rRCiLzwZ4pkQUKCQmBRCJ56CSjcePGYebMmUhPT8cvv/yCgIAAPPnkkwAAhULxSN9ZVVWFYcOGYcmSJfe85+3t/UjXIjI37JkSWSAXFxfExMRg5cqVqK6uvuf9srIyAICrqytGjhyJdevW4auvvkJcXJz2nJCQECgUimY/RtOrVy+cO3cOnTp1QnBwsM6rqfu2RJaEYUpkoVauXAm1Wo3IyEhs374dV65cwYULF/Dvf/8b/fr10573xhtvYP369bhw4YL23igAyOVyzJgxA9OnT8eGDRtw9epVHD16VDvT9/+Kj49HaWkpXn75ZRw/fhxXr15Famoq4uLioFarW7y9RGLiMC+RhQoMDERmZiY+/PBDvPvuu8jPz4e7uzsiIiKwatUq7XnR0dHw9vZGt27d4OPjo3ONOXPmwMbGBnPnzsXNmzfh7e2NiRMnNvl9Pj4+OHLkCGbMmIFBgwZBqVTC398fgwcPhpUV/91Olk0iNHemAhFZpKqqKvj6+mLdunUYNWqU2OUQmSX2TInaKI1Gg+LiYnzyySdwdnbG8OHDxS6JyGwxTInaqJycHAQEBKBDhw746quvYGPDXwdE+uIwLxERkYE4K4CIiMhADFMiIiIDMUyJiIgMxDAlIiIyEMOUiIjIQAxTIiIiAzFMiYiIDMQwJSIiMhDDlIiIyED/D73ZAAI3gW4tAAAAAElFTkSuQmCC\n"
- },
- "metadata": {},
- "output_type": "display_data"
- }
- ],
- "source": [
- "# ROC Area Under Curve\n",
- "plot_cycle_score(cycle, X_test, y_test,\n",
- " scorer=roc_auc_score,\n",
- " figsize=(5,3),\n",
- " scorer_kw=dict(average='weighted', multi_class='ovr'));"
- ],
- "metadata": {
- "collapsed": false
- }
- },
- {
- "cell_type": "code",
- "execution_count": 10,
- "outputs": [
- {
- "data": {
- "text/plain": "Text(0.5, 1.0, 'Accuracy Over 20 Cycles')"
- },
- "execution_count": 10,
- "metadata": {},
- "output_type": "execute_result"
- },
- {
- "data": {
- "text/plain": "",
- "image/png": "iVBORw0KGgoAAAANSUhEUgAAAdMAAAE8CAYAAACb7Fv6AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8o6BhiAAAACXBIWXMAAA9hAAAPYQGoP6dpAABhvElEQVR4nO3deVhU1f8H8PfMMAub7IsguwqiiIqKa+5RGi6poZkLlpVfSY3S1FwzsyzNMstv5VZfzX3NRJHcF1AREcEFAVFkV2SHYeb8/uDHhXEGZGBgBvi8nofn8Z67zHtG4MO995xzeYwxBkIIIYTUGV/bAQghhJCmjoopIYQQUk9UTAkhhJB6omJKCCGE1BMVU0IIIaSeqJgSQggh9UTFlBBCCKknKqaEEEJIPVExJYQQQuqJiikhhDSQpKQk8Hg8bNu2TdtRSAOjYkp0ys8//wwejwdfX19tR2mSkpOT8eGHH8LZ2RlisRjW1tYYPXo0Ll68qO1oSrKzs/Htt9/ilVdegZWVFUxNTdGrVy/s3r1b5fYlJSX47LPPYGdnB319ffj6+iI0NFSt1zxz5gzefPNN2NraQiQSwdraGv7+/jhw4IAm3hJpwaiYEp2yY8cOODs7IyIiAvHx8dqO06RcvHgRXl5e+OuvvzB27Fj8/PPPmDNnDm7fvo3+/ftjw4YN2o6o4PLly/j8889hbm6OxYsXY9WqVTAwMMCECROwbNkype2nTZuGdevWYdKkSfjhhx8gEAgwfPhwXLhwoVavt2zZMgwaNAgxMTH44IMPsGnTJsybNw/5+fkYO3Ysdu7cqem3SFoSRoiOSEhIYADYgQMHmJWVFVu+fLm2I1UrPz9f2xEUPH36lNna2jIbGxsWHx+vsK6wsJD179+f8fl8dvHixUbNVVRUxGQymcp1CQkJLCkpSaFNLpezwYMHM7FYrPAZh4eHMwDs22+/VTi2m5sb692790tz7N27lwFg48aNY6WlpUrrQ0JC2NGjR2v7tmotMTGRAWBbt27V+LGJbqFiSnTGypUrmZmZGSspKWEzZ85k7dq1U7nds2fP2Ny5c5mTkxMTiUTM3t6eTZ48mWVmZnLbFBUVsWXLlrF27doxsVjMbG1t2ZgxY7hCc/r0aQaAnT59WuHYqn75TZ06lRkaGrL4+Hj2+uuvMyMjIzZq1CjGGGPnzp1j48aNYw4ODkwkErE2bdqwuXPnssLCQqXccXFxbPz48czS0pJJJBLWvn17tmjRIsYYY//++y/3h8SLduzYwQCwS5cuVfvZrV69mgFgf/zxh8r1CQkJTCAQMD8/P8YYY1evXmUA2LZt25S2DQkJYQAUisvjx49ZYGAgs7a2ZiKRiHl6erLNmzcr7Ffxmf7111/s888/Z3Z2dozH47Fnz55Vm1uVH3/8kQFg0dHRXNu8efOYQCBgz58/V9j2q6++YgBYcnJyjcf08PBg5ubmLDc3t8bt8vLymIGBAZs9e7bSukePHjE+n8+++uorru1l34vVFdO4uDg2duxYZmZmxsRiMfPx8WGHDx9W2Ka0tJQtX76ctW3blonFYmZubs769u3LTp48WeN7INqhp4WTYUJU2rFjB958802IRCJMnDgRv/zyC65evYoePXpw2+Tn56N///6Ii4vD9OnT0a1bN2RlZeHIkSN4/PgxLC0tIZPJ8MYbbyAsLAwTJkzAnDlzkJeXh9DQUMTExMDNzU3tbGVlZfDz80O/fv3w3XffwcDAAACwd+9eFBYWYubMmbCwsEBERAQ2bNiAx48fY+/evdz+0dHR6N+/P4RCId5//304OzvjwYMHOHr0KFatWoWBAwfCwcEBO3bswJgxY5Q+Fzc3N/Tu3bvafEePHoVEIsFbb72lcr2Liwv69euHf//9F0VFRejevTtcXV2xZ88eTJ06VWHb3bt3w8zMDH5+fgCA9PR09OrVCzweD0FBQbCyssLx48fx7rvvIjc3F3PnzlXYf+XKlRCJRPj0009RUlICkUhU688ZANLS0gAAlpaWXNuNGzfQvn17tGrVSmHbnj17AgCioqLg4OCg8nj379/HnTt3MH36dBgbG9f42kZGRhgzZgx2796NdevWQSAQcOv++usvMMYwadIkALX7XlTl9u3b6Nu3L+zt7bFgwQIYGhpiz549GD16NPbv38/9/y9fvhyrV6/Ge++9h549eyI3NxfXrl1DZGQkhg0bVuP7IFqg7WpOCGOMXbt2jQFgoaGhjLHyy31t2rRhc+bMUdhu6dKl1Z7ByeVyxhhjW7ZsYQDYunXrqt1G3TNTAGzBggVKx1N1Brp69WrG4/HYw4cPubZXXnmFGRsbK7RVzcMYYwsXLmRisZjl5ORwbRkZGUxPT48tW7ZM6XWqMjU1Zd7e3jVuM3v2bIUzvoULFzKhUMiePn3KbVNSUsJMTU3Z9OnTubZ3332XtW7dmmVlZSkcb8KECczExIT7DCo+U1dXV5WfS21kZ2cza2tr1r9/f4X2jh07ssGDByttf/v2bQaAbdq0qdpjHj58mAFg33//fa0ynDhxggFgx48fV2jv3LkzGzBgALdcm+9FVd9PQ4YMYV5eXqy4uFhh+z59+ihcjfH29mYjRoyoVWaifdQBieiEHTt2wMbGBoMGDQIA8Hg8BAQEYNeuXZDJZNx2+/fvh7e3t9LZW8U+FdtYWlrio48+qnabupg5c6ZSm76+PvfvgoICZGVloU+fPmCM4caNGwCAzMxMnDt3DtOnT4ejo2O1eaZMmYKSkhLs27ePa9u9ezfKysrwzjvv1JgtLy/vpWddFetzc3MBAAEBAZBKpQo9WU+ePImcnBwEBAQAABhj2L9/P/z9/cEYQ1ZWFvfl5+eH58+fIzIyUuF1pk6dqvC51JZcLsekSZOQk5Oj1FmqqKgIYrFYaR+JRMKtr07F+33Z51Nh6NChsLOzw44dO7i2mJgYREdHK/w/1OZ78UVPnz7Fv//+i7feegt5eXncZ5mdnQ0/Pz/cv38fKSkpAABTU1Pcvn0b9+/fr1Vuol1UTInWyWQy7Nq1C4MGDUJiYiLi4+MRHx8PX19fpKenIywsjNv2wYMH6NSpU43He/DgAdzd3aGnp7m7GHp6emjTpo1Se3JyMqZNmwZzc3MYGRnBysoKAwYMAAA8f/4cAJCQkAAAL83t4eGBHj16KPwS37FjB3r16oW2bdvWuK+xsTHy8vJq3KZifUVR8fb2hoeHh8JQlN27d8PS0hKDBw8GUP6HQE5ODn799VdYWVkpfAUGBgIAMjIyFF7HxcWlxhzV+eijjxASEoLff/8d3t7eCuv09fVRUlKitE9xcTG3vjoVl4Zf9vlU4PP5mDRpEg4dOoTCwkIA5f8PEokE48eP57arzffii+Lj48EYw5IlS5Q+z4oezBWf5xdffIGcnBy0b98eXl5emDdvHqKjo9V6PdJ46J4p0bp///0Xqamp2LVrF3bt2qW0fseOHXj11Vc1+prVnTlUPQuuSiwWg8/nK207bNgwPH36FJ999hk8PDxgaGiIlJQUTJs2DXK5XO1cU6ZMwZw5c/D48WOUlJTgypUr+Omnn166X4cOHXDjxg2UlJSoPIMDyu/bCoVCtGvXjmsLCAjAqlWrkJWVBWNjYxw5cgQTJ07k/hCpeA/vvPOO0r3VCp07d1ZYrstZ6YoVK/Dzzz/j66+/xuTJk5XWt27dmjtjqyo1NRUAYGdnV+2xPTw8AAC3bt2qdZ4pU6bg22+/xaFDhzBx4kTs3LkTb7zxBkxMTGp9DFUqPs9PP/2Uuyf9ooo/nF555RU8ePAAhw8fxsmTJ/H777/j+++/x6ZNm/Dee+/VKwfRPCqmROt27NgBa2trbNy4UWndgQMHcPDgQWzatAn6+vpwc3NDTExMjcdzc3NDeHg4pFIphEKhym3MzMwAADk5OQrtDx8+rHXuW7du4d69e9i+fTumTJnCtb84kYCrqysAvDQ3AEyYMAHBwcH466+/UFRUBKFQyF1yrckbb7yBy5cvY+/evSovCSclJeH8+fMYOnSoQrELCAjAihUrsH//ftjY2CA3NxcTJkzg1ltZWcHY2BgymQxDhw59aY662LhxI5YvX465c+fis88+U7lNly5dcPr0aeTm5ip0QgoPD+fWV6d9+/Zwd3fH4cOH8cMPP8DIyOilmTp16oSuXbtix44daNOmDZKTk5UuPdfme/FFFd8LQqGwVp+nubk5AgMDERgYiPz8fLzyyitYvnw5FVNdpN1btqSlKywsZMbGxgodXqq6ePEiA8B27drFGNNcB6ScnBwmEAjYxx9/rLB+7Nix1Q6NeVF0dLTS8BK5XM5GjBihdIzadECqMHLkSNa5c2fWvn175u/vr7RelaysLGZtbc1sbW3ZgwcPFNYVFRWxgQMHVjvO1MvLiw0aNIhNmDCBtW7dWmlc6LRp05hIJGK3bt1S2jcjI4P7d0UHpL1799YqM2OM7dq1i/H5fDZp0iSVn0WFK1euKI0zLS4uZm3btmW+vr61eh0ALCAggEmlUqX1J06cUBpnum7dOqanp8fGjBnDLCwslMan1rUD0sCBA5m5uTl78uSJ0n5VP88XO3wxxrihVUT30Jkp0aojR44gLy8PI0eOVLm+V69esLKywo4dOxAQEIB58+Zh3759GD9+PKZPnw4fHx88ffoUR44cwaZNm+Dt7Y0pU6bgjz/+QHBwMCIiItC/f38UFBTg1KlT+M9//oNRo0bBxMQE48ePx4YNG8Dj8eDm5oa///5b6f5fTTw8PODm5oZPP/0UKSkpaNWqFfbv349nz54pbfvjjz+iX79+6NatG95//324uLggKSkJx44dQ1RUlMK2U6ZMwbhx4wCUDzOpDQsLC+zbtw8jRoxAt27d8N5778HT0xNpaWnYtm0b4uPj8cMPP6BPnz5K+wYEBGDp0qWQSCR49913lS5nf/311zh9+jR8fX0xY8YMeHp64unTp4iMjMSpU6fw9OnTWn5iiiIiIjBlyhRYWFhgyJAhCveKAaBPnz7cmZyvry/Gjx+PhQsXIiMjA23btsX27duRlJSEzZs3v/S1AgICcOvWLaxatQo3btzAxIkT4eTkhOzsbISEhCAsLExpBqS3334b8+fPx8GDBzFz5kylqxy1+V5UZePGjejXrx+8vLwwY8YMuLq6Ij09HZcvX8bjx49x8+ZNAICnpycGDhwIHx8fmJub49q1a9i3bx+CgoJq/RmTRqTtak5aNn9/fyaRSFhBQUG120ybNo0JhULuL/Xs7GwWFBTE7O3tuYkSpk6dqvCXfGFhIfv888+Zi4sLEwqFzNbWlo0bN07hrC0zM5ONHTuWGRgYMDMzM/bBBx+wmJiYWp+ZMsZYbGwsGzp0KDMyMmKWlpZsxowZ7ObNmyoH6sfExLAxY8YwU1NTJpFImLu7O1uyZInSMUtKSpiZmRkzMTFhRUVFtfkYOYmJiWzGjBnM0dGRCYVCZmlpyUaOHMnOnz9f7T73799nABgAduHCBZXbpKens1mzZjEHBwfu8xwyZAj79ddfuW3UPTPdunUr97qqvl78/IqKitinn37KbG1tmVgsZj169GAhISG1eq0KYWFhbNSoUcza2prp6ekxKysr5u/vrzRhQoXhw4fXOGHGy74Xq5u04cGDB2zKlCnM1taWCYVCZm9vz9544w22b98+bpsvv/yS9ezZk5mamjJ9fX3m4eHBVq1apXIGJ6J9PMYY00YRJ4SoVlZWBjs7O/j7+9fqrIs0nDFjxuDWrVs0TzR5KRoaQ4iOOXToEDIzMxU6NZHGl5qaimPHjqnsXUzIi+jMlBAdER4ejujoaKxcuRKWlpZKkyGQxpGYmIiLFy/i999/x9WrV/HgwQPY2tpqOxbRcXRmSoiO+OWXXzBz5kxYW1vjjz/+0HacFuvs2bOYPHkyEhMTsX37diqkpFa0WkzPnTsHf39/2NnZgcfj4dChQy/d58yZM+jWrRvEYjHatm2r8gn2GzduhLOzMyQSCXx9fREREaH58IRo2LZt21BWVoZr166pPbMO0Zxp06aBMYaHDx9yvaoJeRmtFtOCggJ4e3urHKyvSmJiIkaMGIFBgwYhKioKc+fOxXvvvYcTJ05w2+zevRvBwcFYtmwZIiMj4e3tDT8/P7WGPBBCCCHq0Jl7pjweDwcPHsTo0aOr3eazzz7DsWPHFGYdmTBhAnJychASEgKgfDxajx49uCnY5HI5HBwc8NFHH2HBggUN+h4IIYS0TE3qnunly5eVpuDy8/PD5cuXAQClpaW4fv26wjZ8Ph9Dhw7ltlGlpKQEubm53Nfz58+RmZkJHfk7gxBCiI5rUjMgpaWlwcbGRqGtYj7RoqIiPHv2DDKZTOU2d+7cqfa4q1evxooVK5Tad+7cyT0EmhBCSMs0atSol27TpIppQ1m4cCGCg4O55dzcXDg4OGDQoEGwsLDQYrLqSaVShIaGYtiwYdVO5q5tup5R1/MBlFFTKGP96Xo+QLsZm1QxtbW1RXp6ukJbeno6WrVqBX19fQgEAggEApXb1NS9XSwWq3xslVAo1NlvmgqUsf50PR9AGTWFMtafrucDtJOxSd0z7d27t8KDooHyx1317t0bACASieDj46OwjVwuR1hYGLcNIYQQomlaLab5+fmIiorinpqRmJiIqKgoJCcnAyi//Fp1SrUPP/wQCQkJmD9/Pu7cuYOff/4Ze/bswccff8xtExwcjN9++w3bt29HXFwcZs6ciYKCAgQGBjbqeyOEENJyaPUy77Vr1zBo0CBuueK+5dSpU7Ft2zakpqZyhRUAXFxccOzYMXz88cf44Ycf0KZNG/z+++8KT6wPCAhAZmYmli5dirS0NHTp0gUhISFKnZIIIYQQTdFqMR04cGCNw09UzW40cOBA3Lhxo8bjBgUF0TP/CCGENJomdc+UEEII0UVUTAkhhJB6omJKCCGE1BMVU0IIIaSeqJgSQggh9UTFlBBCCKknKqaEEEJIPVExJYQQQuqJiikhhBCteJ5ZhDKpTNsxNKJJPTWGEEJI01daXIbQLbFIis6C2EAPQwM94exlqe1Y9UJnpoQQQhpN/rMSHPguEknRWQCAksIy/PNzNGLOpWg5Wf3QmSkhhJBGkfU4H8c23kT+sxKFdsaAszvvIjerCL1Hu4HH52kpYd1RMSWEENLgkmOzEfJrDKTFlfdI9cQClJVULt84mYy8p8UYMrUD9IQCbcSsM7rMSwghpEHFXnyCYz9FKxRSC3sjTFrui95j3BS2jb+WgSM/RKE4X9rYMeuFiikhhJAGwRhD+JEEnP7zDuTyysdtOnQww5ufdoORmQTd/Jzw6nsdIdCrLEep8c+x/9vreJ5ZqI3YdULFlBBCiMbJyuQ4tS0W1/5JUmjv0Kc1RgR5Q6RfeZexXXcbjJzbBWLDyrac9ELsX3MdaQnPGytyvVAxJYQQolHFBVIc/TEK98LTFdp9R7pg0GQPCATKpceurSnGze+OVpYSrq0oT4pD399Awo3MBs9cX1RMCSGEaExuVhEOfHsdKfdyuDa+gIehgZ7oPtwFPF71PXVNbQwwdn532Li04tpkUjmO/3oLN8MeNWTseqNiSgghRCMyHuZi35rreJZWea9TpK8H/9ld4O5rW6tjGLQSYdTHXeHaxaqykQEX9t7H+d33FO696hIqpoQQQuotKToLB9dGoii3lGszNpdg7DwftHE3U+tYQpEAfu93gvdgB4X26NOPEfLfW5CW6t4UhFRMCSGE1EvM2cf455dolJXKuTYrR2OM/cwH5naGdTomn89Dv7faod9b7YAqV4YTb2bh0LobKKxStHUBFVNCCCF1wuQMF/fH4+xf98CqXH119rLA6OCuMDQR1/s1vAc74PUPvKAnrCxXGUm52L/mGp6lFdT7+JpCxZQQQojayqQynPj9NqJCkxXaO71ij9c/9IJIorkJ9ly7WGFUcFfoGwu5ttysYuxfcx1P7udo7HXqg4opIYQQtRTll+Lw91F4EJmh0N77TTe8MrE9+CqGvtSXrYsJxs7vDlMbA66tpLAMh3+4gftX02vYs3FQMSWEEFJrzzOLlCZTEOjx8ep7HdHtVacah77Ul4mVPsbO90HrtiZcm7yM4eTm27gekgTGtNfTl4opIYSQWil5xsfhdVF4nlHEtUkMhRg1twvadbdplAwSQyFGzumCdt2tFdqvHErA+d3xYPJqdmxg9NQYQkizVlJUhjtXUpH7QIQbJ5LBF+jm00jkMplOZywpkiIzwgCQl3FtrSwl8P+oi8Kl18agJxRg2PSOMLbQR+SJh1z7nYtpEFvo44ZQs59h99edX55JY69GCCE6hskZjm28idT45wDEuHrv4Uv30S5dz1h5CdfGpRVG/Kcz9I1F2knC56H3GDcYW0hw7q+7XG/ikmw9XP1bs58hFVNCSIt250rq/xdSokmuXa0wLNATeiLtn0F3esUeRmZinPj9tsKzURsb3TMlhDRLpcVluHIoQdsxmhW+UI5urzvCb0YnnSikFZy9LPHmJ91g69bq5Rs3EDozJYQ0S9ePP1SYJadVuxJMmD0UQqGwhr20RyqV4p9//sHw4cN1MmNFvu7DncDnN1yP3bqycjTGyLneWvsM6cyUENLsPM8sQlRY5WQCRuZiGLvo1vRzpHmhYkoIaXYuH4iHvKxyzGGv0S7g6c5VSdIMab2Ybty4Ec7OzpBIJPD19UVERES120qlUnzxxRdwc3ODRCKBt7c3QkJCFLZZvnw5eDyewpeHh0dDvw1CiI5IufcMD6o8TLp1WxO4dLHUYiLSEmi1mO7evRvBwcFYtmwZIiMj4e3tDT8/P2RkZKjcfvHixfjvf/+LDRs2IDY2Fh9++CHGjBmDGzduKGzXsWNHpKamcl8XLlxojLdDCNEyuZzh/J77lQ08oP9b7Rt0Vh5CAC0X03Xr1mHGjBkIDAyEp6cnNm3aBAMDA2zZskXl9n/++ScWLVqE4cOHw9XVFTNnzsTw4cOxdu1ahe309PRga2vLfVla0l+lhLQEcRefIPtxPrfcoU9rWDkaazERaSm01pu3tLQU169fx8KFC7k2Pp+PoUOH4vLlyyr3KSkpgUQiUWjT19dXOvO8f/8+7OzsIJFI0Lt3b6xevRqOjo7VZikpKUFJSQm3nJubC6D8srJUKlX7vTWGily6mg/Q/Yy6ng+gjOooLSrDlcOVQ2GEEgF8hjsq/BxrO2NNdD2jrucDGi5jbXoG85iWZgZ+8uQJ7O3tcenSJfTu3Ztrnz9/Ps6ePYvw8HClfd5++23cvHkThw4dgpubG8LCwjBq1CjIZDKuGB4/fhz5+flwd3dHamoqVqxYgZSUFMTExMDYWPVfqMuXL8eKFSuU2nfu3AkDg8adJosQUjc5d8TIT6ycjadV+xK0cqMevKT+Ro0a9dJtmlQxzczMxIwZM3D06FHweDy4ublh6NCh2LJlC4qKipS2B4CcnBw4OTlh3bp1ePfdd1Vuo+rM1MHBAampqbCwsKjnO20YUqkUoaGhGDZsmE6OSQN0P6Ou5wMoY209zyjC3q+uQy4r/3VmbCnBW4t8IPj/B0rrQsaX0fWMup4PaLiMtTmW1i7zWlpaQiAQID1d8Tl06enpsLW1VbmPlZUVDh06hOLiYmRnZ8POzg4LFiyAq6trta9jamqK9u3bIz4+vtptxGIxxGLlJ8ILhUKd/aapQBnrT9fzAZTxZcIPx3GFFAD6jW0HiQH9TDcEXc8HaCej1jogiUQi+Pj4ICwsjGuTy+UICwtTOFNVRSKRwN7eHmVlZdi/f3+Np+D5+fl48OABWrdurbHshBDd8SjuKZKis7hle3dTGgpDGp1We/MGBwfjt99+w/bt2xEXF4eZM2eioKAAgYGBAIApU6YodFAKDw/HgQMHkJCQgPPnz+O1116DXC7H/PnzuW0+/fRTnD17FklJSbh06RLGjBkDgUCAiRMnNvr7I4Q0LLlMjgt7K4fC8HhAv/E0FIY0Pq3OzRsQEIDMzEwsXboUaWlp6NKlC0JCQmBjU/6Q2eTkZPD5lfW+uLgYixcvRkJCAoyMjDB8+HD8+eefMDU15bZ5/PgxJk6ciOzsbFhZWaFfv364cuUKrKysGvvtEUIa2O3zT/D0SQG37NnPDpZtjLSYiLRUWp/oPigoCEFBQSrXnTlzRmF5wIABiI2NrfF4u3bt0lQ0QogOKy6QIuJoIrcs0teD78jq+08Q0pC0Pp0gIaTxJMdm49S2WNy/mv7yjXXctWNJKC6oHE/YY4Sz1h5UTYjWz0wJIQ2PMYYbJ5Nx+eADAMDdK2kQG+jBsaNuDv16mWdpBbh15jG3bGpjAK+BbbSYiLR0dGZKSDMnl8lx9q97XCGtcGHvfchkci2lqp+L++Ihl1cOhek7ti0EevTrjGgPffcR0oyVFpfhn19u4fa5FKV1z9IKVbbruoe3s/EwJptbdvA0h5NX0zzDJs0HFVNCmqmCnBIcXBupUHh4fB70xJUP9ow4mojifN2da/VFMpkcF6sOheHz0HdcWxoKQ7SOiikhzVD2k3zs++Yash5VPkFFTyzAiP90Rq8qPV5LCssQ8XeiqkPopJizKXiWVsgtd+pvBws7GgpDtI+KKSHNzOM7T3Hg20jkP6ucb9rARIQ3P+kGp04W6DTQHqY2lQ9wiDmXguwn+aoOpVOK86W4WqXwiw300NOfhsIQ3UDFlJBm5M6VVBzdcBOlRWVcm7mdIcZ91p17rqdAwEffcW259UzOcHFfPLT0zItaiziagJLCyvfV4w0XSIx0e45Y0nJQMSWkGWCM4eqxRIRtU5zwvY2HGd6c5wNjc8XnADt7WcKxozm3/Cj2KR7eyoauyn6Sj5jzT7hlM1sDdBpgr8VEhCiiYkpIEycrk+PfP+IUZgMCAI9etngjyBtifdXDyfuOawcev7LjzoV99yEr072hMowxXNx7H6zqUJjx7SAQ0K8vojvou5GQJqykqAx//3QTdy6nKbT3eMMFg6d2qHHspXlrQ3hVObt7nlGkMBGCrki6lY1Hcc+4ZadOFnBqopNNkOaLiikhTVTe02Ic+PY6Ht+pLDR8Pg+Dp3RAzzdcajVcpMcbLhAbVp65Xj2WhKK80gbJWxeyMjku7qscCsP//6EwhOiaehXT4uJiTeUghKghMzkP+765pvDEFJFEgDc+8kaHPrV/dq/EUAjfKj1iS4vKEH5Ud4bK3DrzGM8zirhlr4FtYGZrqMVEhKimdjGVy+VYuXIl7O3tYWRkhISEBADAkiVLsHnzZo0HJIQoehiTjYNrI1H4vPIM0shMjDfn+cChg3kNe6rWsb8dzO0qC1Ts+RRkPdb+UJmivFJcPZbELUsMheg+wllreQipidrF9Msvv8S2bduwZs0aiESVT2jo1KkTfv/9d42GI4Qoun0+Bcd+joa0RMa1WToYYdxn3WFhX7fJC/gCPvqNa8ctM1Y+b6+2h8qEH0lQGOLT098FEkMaCkN0k9rF9I8//sCvv/6KSZMmQSConJbM29sbd+7c0Wg4Qkg5Jme4fOgBzuy4q9Cr1bGjOcZ80g2GpuJ6Hd/B0xzOnS255ZS7z5B4M6tex6yPrMf5iL1QORTG3M4QHfvbaS0PIS+jdjFNSUlB27bKHQDkcjmk0qYzxychTQWTAf/+cReRIQ8V2j3722HEfzpDJNHMkxT7jm0LvqCy09LF/fGQSRt/qAxjDBf23kPVE+N+49uBT0NhiA5T+7vT09MT58+fV2rft28funbtqpFQhJByxQVSZF7Vx4PrmQrtvUa7YuDb7hotMKY2Bug8qPKZoLmZRbj57yONHb+2EqOykHI3h1t27mxZp3vBhDQmtf+kXbp0KaZOnYqUlBTI5XIcOHAAd+/exR9//IG///67ITIS0iKVFEpx5PubKH1W+WPK1+NhyNQOaN/DtkFes/sIF9wNT0NRXvlVpmvHk+DRuzUMWolesqdmlBSV4eL+KkNhBDz0HUtDYYjuU/vP2lGjRuHo0aM4deoUDA0NsXTpUsTFxeHo0aMYNmxYQ2QkpEW6cTIZOemVw0LEBnoYNadLgxVSABDrK04eLy2W4crhBzXsoTl5T4tx8LvryM2qHHLXebCDwqT8hOgqtc5My8rK8NVXX2H69OkIDQ1tqEyEEACJ0ZUdgAxMRBj9cddGGWPp2c8OMWdTkJ1SPjwm7lIqvAa04SbKbwiZj/Jw7KebKKgy3MfARITuw50b7DUJ0SS1zkz19PSwZs0alJWVvXxjQkid5T0tVpiQwaO3baNNVsDn89DvrcqhMmDA+T33GmyozMPb2Tj4XaRCITUyE2Pk7C7VzitMiK5R+zLvkCFDcPbs2YbIQgj5f8m3FZ/g4uBp1qiv38bdDK5drLjl1PjneBCZWcMedXP7fAqObVQcN2vRxghj59d93Cwh2qD2n32vv/46FixYgFu3bsHHxweGhop/LY8cOVJj4QhpqR7GVBZTvlAOK6eGu8RanT5j2yIpJgvysvIz0ksH4uHc2QJ6QsFL9nw5xhjCDyfg+gvDfRw7msNvRieNDfchpLGo/R37n//8BwCwbt06pXU8Hg8ymUypnRBSezKpXGHyerGlDHz+yyet1zQTK310GeKAyBPJAIC87GJEnXqE7q871+u4MqkcYX/E4f7VdIV2z352eGVie3q0GmmS6jQ3b3VfVEgJqb8nD3IULnvqW2mvj4LP687QrzIs5nrIQxTklNT5eMUFUhz5MUqpkPYa7YqBk9ypkJImi75zCdExyVUu8YIHiK2090eqSKKHXqMqh8qUlchw5VDdhsrkZhXhwLfX8eR+DtfG1+Nh2HRP+LzmXKtHxhGiq+pUTM+ePQt/f3+0bdsWbdu2xciRI1XOikQIUV/V+6XWTsYQiLQ74XyH3q0VhsXcuZKG9KRctY6RnpSLfd9cw7O0Qq5NbKCHkbO7oH3Phhs3S0hjUbuY/u9//8PQoUNhYGCA2bNnY/bs2dDX18eQIUOwc+fOhshISIuRm12kUHAcOjRuL15VeHwe+o1vp9B2YU/tnyqTEJWJQ2sjuVmVAMDYQoI35/nAvr323x8hmqB2B6RVq1ZhzZo1+Pjjj7m22bNnY926dVi5ciXefvttjQYkpCVJvv1UYdmhoznSb2spTBV27UzR1sca8dczAABpCc9x/1r6S2djij79GOf33AOq1F1rJ2OMmOXdaFMUEtIY1D4zTUhIgL+/v1L7yJEjkZiYqJFQhLRUVS/x6hsLYeWgO2Mte49xg0Cv8lfG5QMPIC1VfT+XyRku7LuP87sVC6lzZ0uMDu5GhZQ0O2oXUwcHB4SFhSm1nzp1Cg4ODhoJRUhLVD4kpvLM1MHTHDwtDImpTitLfXQZVvkznv+sBDdOJittV1Yqw4nfYnDzlOITZ7wGtsHrH3pBKK7/OFVCdI3al3k/+eQTzJ49G1FRUejTpw8A4OLFi9i2bRt++OEHjQckpKV4cj8HZaWVzw916mShxTSqdfNzQtylVBT+/9R/N048RLuelTMlFeWV4p9fopGWUKWDEq/8WaneQxyoxy5pttQupjNnzoStrS3Wrl2LPXv2AAA6dOiA3bt3Y9SoURoPSEhL8bDKFII8HuDYQfeKqUiih95j3BC2LQ4AUCaVI+JIImAFPM8owvFNt5GbWfmkG4GQj2GBnnDrZq2tyIQ0ijoNjRkzZgwuXLiA7OxsZGdn48KFC3UupBs3boSzszMkEgl8fX0RERFR7bZSqRRffPEF3NzcIJFI4O3tjZCQkHodkxBdUfV+qY1LK0iMhFpMUz33nrawdm7FLcdfy0RekhCH1kUpFFKJkRCjP+5KhZS0CGoX06tXryI8PFypPTw8HNeuXVPrWLt370ZwcDCWLVuGyMhIeHt7w8/PDxkZGSq3X7x4Mf773/9iw4YNiI2NxYcffogxY8bgxo0bdT4mIbrgeWYRctIrh8Q4dtS9s9IKPD4P/d9SHCrzPE6CkoLKmZpMrPQxdr4PbF1NGjseIVqhdjGdNWsWHj16pNSekpKCWbNmqXWsdevWYcaMGQgMDISnpyc2bdoEAwMDbNmyReX2f/75JxYtWoThw4fD1dUVM2fOxPDhw7F27do6H5MQXfDiU2J08X5pVbauJmjXw6badWM/84GpNT3Um7Qcat8zjY2NRbdu3ZTau3btitjY2Fofp7S0FNevX8fChQu5Nj6fj6FDh+Ly5csq9ykpKYFEIlFo09fXx4ULF+p8zIrjlpRUzjeam1veeUIqlUIqlVa3m1ZV5NLVfIDuZ9SlfEm3Kh8Erm8shKmtROH7TxcyvqiHvxMSojIhk1Z2mnLpYolBk9tDT8TTqcy6/DlW0PWMup4PaLiMQuHLb7moXUzFYjHS09Ph6uqq0J6amgo9vdofLisrCzKZDDY2in/d2tjY4M6dOyr38fPzw7p16/DKK6/Azc0NYWFhOHDgADfBfl2OCQCrV6/GihUrlNpPnz4NAwPd/us6NDRU2xFeStczajsfkwFP4owAlPd05bUqxPGQ4wrbaDtjdYzbCZETW/4HrpFLKUptE3HylO6ON9fVz7EqXc+o6/kAzWesTZ8gtYvpq6++ioULF+Lw4cMwMSm/H5KTk4NFixZh2LBh6qdUww8//IAZM2bAw8MDPB4Pbm5uCAwMrPcl3IULFyI4OJhbzs3NhYODAwYNGgQLC9283CaVShEaGophw4bV6q8mbdD1jLqS71HcM6ScjOGWew/zgptP+XATXclYk8zHubh0+SKGjx6qsxmbwueo6xl1PR+g3YxqF9PvvvsOr7zyCpycnNC1a1cAQFRUFGxsbPDnn3/W+jiWlpYQCARIT1d8FFN6ejpsbVVPUWZlZYVDhw6huLgY2dnZsLOzw4IFC7iz5LocEyg/2xaLxUrtQqFQZ79pKlDG+tN2vpQ7Ody/eTzA2ctKKY+2M9bEqk0rCA2ZTmesQBnrT9fzAdrJqHYHJHt7e0RHR2PNmjXw9PSEj48PfvjhB9y6dUutGZBEIhF8fHwUZlOSy+UICwtD7969a9xXIpHA3t4eZWVl2L9/P3cKXp9jEqItVYfE2LqaQGKo27+oCCHK1D4zBQBDQ0O8//779X7x4OBgTJ06Fd27d0fPnj2xfv16FBQUIDAwEAAwZcoU2NvbY/Xq1QDKh9+kpKSgS5cuSElJwfLlyyGXyzF//vxaH5MQXZKTUYjnGZVjM3V5SAwhpHq1Lqb37t1DTk4OevbsybWFhYXhyy+/REFBAUaPHo1Fixap9eIBAQHIzMzE0qVLkZaWhi5duiAkJITrQJScnAw+v/Lkubi4GIsXL0ZCQgKMjIwwfPhw/PnnnzA1Na31MQnRJU1tSAwhRLVaF9PPPvsMXl5eXDFNTEyEv78/+vfvj86dO2P16tUwMDDA3Llz1QoQFBSEoKAglevOnDmjsDxgwIBaDb+p6ZiE6JKHMZUT2xu0EsFSh54SQwipvVoX02vXrilcTt2xYwfat2+PEydOAAA6d+6MDRs2qF1MCWmpykplSLn3jFt27GRBE8ET0kTVugNSVlYW2rRpwy2fPn1a4bmmAwcORFJSkkbDEdKcpdzLUZjwwInulxLSZNW6mJqbmyM1NRVAeQ/Za9euoVevXtz60tJSMMaq250Q8gKFp8TweXDoYKbFNISQ+qh1MR04cCBWrlyJR48eYf369ZDL5Rg4cCC3PjY2Fs7Ozg0QkZDmSXFITCuIDWhIDCFNVa3vma5atQrDhg2Dk5MTBAIBfvzxRxgaGnLr//zzTwwePLhBQhLS3OSkFyo8rox68RLStNW6mDo7OyMuLg63b9+GlZUV7OzsFNavWLFC4Z4qIaR6Vc9KASqmhDR1ak3aoKenB29vb5XrqmsnhCirOr7U0EQEC3saEkNIU6b2dIKEkPqRlsqQci+HW6YhMYQ0fXWaTpCQlyktKkNiTBbKiqhIvCjl7jPIymhIDCHNCRVTonGZj/Jw7KebKHheCp7QEDn9C2Flb6LtWDqj6v1SPp+HNh3MtZiGEKIJdJmXaNTD29k4+F0kCp6XAgCYlIcrB3T3YdGNjTGmcL/U1s0EYn36m5aQpk7tYurs7IwvvvgCycnJDZGHNGG3z6fg2MZoSEtkCu3Jt58qTejeUuWkFyI3q5hbpl68hDQPahfTuXPn4sCBA3B1dcWwYcOwa9culJSUNEQ20kQwOcPlQw9wZsddMLnqWbAu7L0PmUyucl1LQkNiCGme6lRMo6KiEBERgQ4dOuCjjz5C69atERQUhMjIyIbISHSYTCpH6NZYRIY8VGj37GcHj7623PKztELcPpfS2PF0TtUzdCMzMcztDGvYmhDSVNT5nmm3bt3w448/4smTJ1i2bBl+//139OjRA126dMGWLVtont4WoLhAiiM/RuH+1XSF9l6jXTFwkjt6vuEMnl7l90HE0UQU50sbO6bOKC0uQ8r9HG7ZsSMNiSGkuahzMZVKpdizZw9GjhyJTz75BN27d8fvv/+OsWPHYtGiRZg0aZImcxIdk5tVhAPfXseTKsWBr8fDsOme8HnNGTweDxIjIVq1rbwFUFJYhohjLbczUsq9HMjLKv+4oEu8hDQfancjjIyMxNatW/HXX3+Bz+djypQp+P777+Hh4cFtM2bMGPTo0UOjQYnuSE/KxbGNN1GUV3mWKTbQw/CZXrBrp/jkEyMnKfDUDM8zyuehjTmbgk797Vvk5U2FITECHtp40FNiCGku1D4z7dGjB+7fv49ffvkFKSkp+O677xQKKQC4uLhgwoQJGgtJdEdCVCYOrY1UKKTGFhKMne+jVEgBgMcHer/pyi0zOcPFffdb3G0AxhiSqxTT1m1NIZLQkBhCmgu1f5oTEhLg5ORU4zaGhobYunVrnUMR3RR9+hHO77kPVKmD1k7GGDHLGwatRNXu59jRHI4dzZF8+ykAIDn2KR7GZMPZy7KhI+uMZ6mFyHtaZUgMzXpESLOi9plpRkYGwsPDldrDw8Nx7do1jYQiuoXJGS7su4/zuxULqXNnS4wO7lZjIa3Qd1w78PiVnW0u7otXmFKvuXt4m4bEENKcqV1MZ82ahUePHim1p6SkYNasWRoJRXRHWakMJ36Lwc1Tiv/nXoPa4PUPvSAUC2p1HPPWhvAaYM8t56QX4taZxxrNqssUhsSYi2HW2kCLaQghmqZ2MY2NjUW3bt2U2rt27YrY2FiNhCK6oSivFIfX38CDG5mVjTyg77i26P9WO/D56g3r6PGGC8SGlXcWrh5LQlFeqabi6qzS4jKFXs9ONCSGkGZH7WIqFouRnp6u1J6amgo9PepQ0VzkpBdi35rrSEvI5doEQj5em9EJXYY61qkYSAyF8PWv7IxUWlSG8KPNf6jM4zvPIJfRkBhCmjO1i+mrr76KhQsX4vnz51xbTk4OFi1ahGHDhmk0HNGO1Pgc7F9zHbmZRVybxEiI0R93hVs363odu2N/O4VhMbHnU5D1OL9ex9R1Ve+X8vV4sHenITGENDdqF9PvvvsOjx49gpOTEwYNGoRBgwbBxcUFaWlpWLt2bUNkJI0o/noGDq+PQnFB5dAXE2t9jJ3vA1vX+j9GjS/go9+4dtwyY+Xz9jbXoTIvDomxoyExhDRLav9U29vbIzo6Gjt27MDNmzehr6+PwMBATJw4EUKhsCEykkbAGENU6CNcOhCv0G7raoLh//GCvtHLe+zWloOnOZy9LJB0q7zIpNx9hsSbWXDtYqWx19AVT58UIP9Z5SxQdImXkOapTn8iGxoa4v3339d0FqIlcpkcF/bcx62zihPRu3WzxtBpHaAnql2PXXX0HdcOybFPuXuJF/fHw6mjBQTC5vWIXRoSQ0jLUOfrTbGxsUhOTkZpqWJvzJEjR9Y7FGk80hIZTv4ew50lVug6zBG9x7gpjA3VJFMbA3gNasMNucnNLMLN04/Q7dWaJwRpaqpe4jW2kMDUhobEENIc1WkGpDFjxuDWrVvg8Xjcva6K3p0ymaym3YkOKXhegmMbo5GZnMe18XhA/4D28BrYpsFfv8dwZ9y9ksY9SebaP0nw6NW6VpNANAWlRWVIja/sqOfUiYbEENJcqX1Nbc6cOXBxcUFGRgYMDAxw+/ZtnDt3Dt27d8eZM2caICJpCE+fFGD/N9cVCqmeiI/XZ3ZulEIKAGIDIXxHVg6VkRbLEH74QaO8dmN4fOcZ5FUelk5TCBLSfKldTC9fvowvvvgClpaW4PP54PP56NevH1avXo3Zs2c3REaiYSl3n2H/t9cV5orVbyXCmE+6waVz486X69nPDhb2Rtxy7KVUhQLflD2MyeL+LdDj05AYQpoxtYupTCaDsbExAMDS0hJPnjwBADg5OeHu3buaTUc07m54Go78GIXSojKuzczWAOPm+8DaqVWj5+Hzeej3VuVQGTSToTKMMTz8/4n9AcCuvWmtp14khDQ9at8z7dSpE27evAkXFxf4+vpizZo1EIlE+PXXX+Hq6vryAxCtYIzh+vEkhB9RnHHIvr0pXvvACxJD7Q1rauNuBtcuVkiIKp+28Mn9HDyIzERbn/pNEKFN2SkFKMipMiSGLvES0qypfWa6ePFiyOXlT/v44osvkJiYiP79++Off/7Bjz/+qHaAjRs3wtnZGRKJBL6+voiIiKhx+/Xr18Pd3R36+vpwcHDAxx9/jOLiysuVy5cvB4/HU/h68XmrLY1MJsfp/91RKqTtfW3g/1EXrRbSCn3GtgVfr7JzzqUD8SiTNt3ObMk0JIaQFkXtM1M/Pz/u323btsWdO3fw9OlTmJmZqd1Tcffu3QgODsamTZvg6+uL9evXw8/PD3fv3oW1tfJZyc6dO7FgwQJs2bIFffr0wb179zBt2jTweDysW7eO265jx444depU5ZtswXMGlxaVIeS3GDyKfarQ3n24M3r6u+hM71ITK310GeKAyBPJAIC87GJEnXqE7q87azdYHT2sMiSmlaUEJtb6WkxDCGloap2ZSqVS6OnpISYmRqHd3Ny8Tr+U161bhxkzZiAwMBCenp7YtGkTDAwMsGXLFpXbX7p0CX379sXbb78NZ2dnvPrqq5g4caLS2ayenh5sbW25L0vLlvMQ6qrynxXjwHeRCoWUx+dh0GQP+I501ZlCWsHndWfoVxkWcz3kocKl0qaipKgMqQ+qDomx1LnPmhCiWWqdsgmFQjg6OmpkLGlpaSmuX7+OhQsXcm18Ph9Dhw7F5cuXVe7Tp08f/O9//0NERAR69uyJhIQE/PPPP5g8ebLCdvfv34ednR0kEgl69+6N1atXw9HRsdosJSUlKCmp/KWdm1v+pBSpVAqpVFrdblpVkau6fNmP8xHy39soyKmcVEMoEWDY9A5o08GsUd7XyzK+iCcAerzhhHM77wMAykpkuHQwHgPfaa8T+Wor6VYmWJUhMfYeJnV+jYbKqEmUUTN0PaOu5wMaLmNtpsrlMTW7TW7evBkHDhzAn3/+CXNz8zqHe/LkCezt7XHp0iX07t2ba58/fz7Onj2L8PBwlfv9+OOP+PTTT8EYQ1lZGT788EP88ssv3Prjx48jPz8f7u7uSE1NxYoVK5CSkoKYmBiuF/KLli9fjhUrVii179y5EwYGTW/GmuJMAbJv6IPJKs+GBGI5LLoXQdRKrsVkL8cYkHHJANLcyp6v1n0KIDLR7dxVPb0lRuHj/z/D5jPYDc0HnzryEtJkjRo16qXbqF1Mu3btivj4eEilUjg5OcHQ0FBhfWRkZK2OU5dieubMGUyYMAFffvklfH19ER8fjzlz5mDGjBlYsmSJytfJycmBk5MT1q1bh3fffVflNqrOTB0cHJCamgoLC93sOCKVShEaGophw4Yp/NV053Iazu+6D1al9pjbGeK1DzvCyEysExlfJjX+OY7+EM0t27i2wsi5nTV+qbSu+WrCGMOOxREozC2/IuDQwQyv/6eTTmXUNMqoGbqeUdfzAQ2XsTbHUrtnzujRo+uSRYmlpSUEAoHSg8bT09Nha2urcp8lS5Zg8uTJeO+99wAAXl5eKCgowPvvv4/PP/8cfL7yLWBTU1O0b98e8fHxSusqiMViiMXKhUYoFOrsN02FioyMMYQfScD14w8V1jt4muO1GZ0g0tdeJyx1P0fHDpZo62ON+OsZAID0hFw8vPkM7XrY6ES+mmQ+yuMKKQA4d7bUyLGb0veiLqOM9afr+QDtZFT7N+yyZcs08sIikQg+Pj4ICwvjCrRcLkdYWBiCgoJU7lNYWKhUMAWC8utn1Z1g5+fn48GDB0r3VZsTmVSOf/+Mw70IxT9MOvRpjQGT3CEQNL0nsfQe44bEm1mQlZWfYl86EA9nb0sIG+AJNpr04pAYRxpfSkiLoNXfssHBwfjtt9+wfft2xMXFYebMmSgoKEBgYCAAYMqUKQodlPz9/fHLL79g165dSExMRGhoKJYsWQJ/f3+uqH766ac4e/YskpKScOnSJYwZMwYCgQATJ07UyntsaCWFUhzdEKVUSH1HumDQZI8mWUgBoJWlProMc+CW85+VICo0WYuJaqfqkBgTa32YWje9e+6EEPWpfWbK5/NrvHelTk/fgIAAZGZmYunSpUhLS0OXLl0QEhICG5vyy3nJyckKZ6KLFy8Gj8fD4sWLkZKSAisrK/j7+2PVqlXcNo8fP8bEiRORnZ0NKysr9OvXD1euXIGVVfN78HRZIQ+Hv7+JnLQiro0v4GHwlA5w91V9qbwp6ebnhLhLqSh8Xn7ZNPLEQ3To0xpGZhItJ1OtuECKtIRcbplmPSKk5VC7mB48eFBhWSqV4saNG9i+fbvKHrEvExQUVO1l3RefQqOnp4dly5bVeKl5165damdoijKT85Bx2QDy0spCKtLXw+sfeqFNM5lQXSTRQ+8xbgjbFgcAKCuV4/LBBxg2vaOWk6n2KO6pwpAYR5r1iJAWQ+1iqqqL8Lhx49CxY0fs3r272h6zRHMexT3FP79EQ15aedZubC7BG0HeMLczrGHPpse9py1unUlBRlL5Gd+9iHSkJTwvf/BqfTGGgkJD7Lp6VSPHKymoHNumJ+TDvp1pvY9JCGkaNNbFs1evXnj//fc1dThSjZKiMoRuuY2y0sqxL1aOxhgxqzMMTRp36Etj4PF56P9WO+xfc51ry80qrmEPdfGRW6jJ45WzdzeDno53liKEaI5GeqcUFRXhxx9/hL29vSYOR2pw7VgiivIqz4AcO5ljdHDXZllIK9i6msC9V9O6B9zU8hJC6kftM9MXJ7RnjCEvLw8GBgb43//+p9FwRFFOeiGiTz/mlgUGcgyb3gEiSfOfyH/gJHeY2RrgeUbRyzeuJblcjkePH8GhjYPKMcp1weMBdu3NmvTj4wgh6lP7t/D333+vUEz5fD6srKzg6+sLM7Pm0fFFV13cHw+5rLKDi6lHCQTCpjn0RV16QgF8XnPW6DGlUin++SceA4a31/lB6IQQ3aZ2MZ02bVoDxCAv8yjuKZKis7hlu3Ym4FnnaTERIYSQCmqf1mzduhV79+5Vat+7dy+2b9+ukVBEkVwmx4W997llHg/oPdZNIx1aCSGE1J/axXT16tUqnw9qbW2Nr776SiOhiKLb55/g6ZMCbtmznx0s7JvXEBhCCGnK1C6mycnJcHFxUWp3cnJCcrLuT/fW1BQXSBFxNJFbFunrwXekqxYTEUIIeZHaxdTa2hrR0dFK7Tdv3tTZx5U1ZVePJaK4ymQAPUY4Q99YpMVEhBBCXqR2MZ04cSJmz56N06dPQyaTQSaT4d9//8WcOXMwYcKEhsjYYj1LK0DMmRRu2dTGAF4D22gxESGEEFXU7s27cuVKJCUlYciQIdDTK99dLpdjypQpdM9Uwy7sjYe8ylyvfce2hUCvZQyFIYSQpkTtYioSibB79258+eWXiIqKgr6+Pry8vODk5NQQ+VqshzHZCs/GdPA0h5MXXUYnhBBdVOepc9q1a4d27dppMgv5fzKZHBf3VRkKw+eh37h2NT76jhBCiPaofc1w7Nix+Oabb5Ta16xZg/Hjx2skVEsXcyYFz9IKueVOr9g3u6fBEEJIc6J2MT137hyGDx+u1P7666/j3LlzGgnVkhXnS3H1WOVQGLGBHnq+oTwUiRBCiO5Qu5jm5+dDJFIemiEUCpGbm6uRUC1ZxNEElBSWccs9/V0gMaJ5YwkhRJepXUy9vLywe/dupfZdu3bB09NTI6Faquwn+Yg5/4RbNrM1QMdX6LF2hBCi69TugLRkyRK8+eabePDgAQYPHgwACAsLw19//aVyzl5SO4wxXNx7H6zqUJjx7SAQ0FAYQgjRdWoXU39/fxw6dAhfffUV9u3bB319fXTu3BmnTp3CgAEDGiJji5B0KxuP4p5xy06dLODUkYbCEEJIU1CnoTEjRozAiBEjlNpjYmLQqVOneodqaWRlikNh+Hwe+o5rq8VEhBBC1FHva4h5eXn49ddf0bNnT3h7e2siU4sTffoxnmcUccteA9vAzJaGwhBCSFNR52J67tw5TJkyBa1bt8Z3332HwYMH48qVK5rM1iIU5pbiWpWhMBJDIbqPcNZeIEIIIWpT6zJvWloatm3bhs2bNyM3NxdvvfUWSkpKcOjQIerJW0fhRxNQWizjln1HukBiSENhCCGkKan1mam/vz/c3d0RHR2N9evX48mTJ9iwYUNDZmv2sh7nIe5C5VAYcztDePaz02IiQgghdVHrM9Pjx49j9uzZmDlzJs3JqwGMMVzYcx+sciQM+r3VDnwaCkMIIU1OrX9zX7hwAXl5efDx8YGvry9++uknZGVlNWS2Zi0xKgsp93K4ZRdvSzh4mGsvECGEkDqrdTHt1asXfvvtN6SmpuKDDz7Arl27YGdnB7lcjtDQUOTl5TVkzmZFJpXj4v4qQ2EEPPQZS0NhCCGkqVL7mqKhoSGmT5+OCxcu4NatW/jkk0/w9ddfw9raGiNHjmyIjM3OzX8fITermFv2HuwAU2sDLSYihBBSH/W6Qefu7o41a9bg8ePH+OuvvzSVqVkreF6Ca/8kccv6xkJ0H+6stTyEEELqTyO9XQQCAUaPHo0jR45o4nDNWvjhBEhLKofC9BrlBpF+nZ/RTgghRAdQ19FGlJmch7jLqdyypYMRPPq01mIiQgghmkDFtJEwxnB+zz2g6lCY8e3A5/O0F4oQQohGUDFtJPHXM5Aa/5xbdutqBfv2ZlpMRAghRFO0Xkw3btwIZ2dnSCQS+Pr6IiIiosbt169fD3d3d+jr68PBwQEff/wxiouLFbZR95gNraxUhksH4rllgR6fhsIQQkgzotViunv3bgQHB2PZsmWIjIyEt7c3/Pz8kJGRoXL7nTt3YsGCBVi2bBni4uKwefNm7N69G4sWLarzMRtD1Klk5D8t4Za9hzqglaW+1vIQQgjRLK12I123bh1mzJiBwMBAAMCmTZtw7NgxbNmyBQsWLFDa/tKlS+jbty/efvttAICzszMmTpyI8PDwOh8TAEpKSlBSUlnscnNzAQBSqRRSqbRe77EwtxTXQx5yy/qthOg8xK7ex63Yv77HaUi6nlHX8wGUUVMoY/3pej6g4TIKhS9/+AiPsaqzwzae0tJSGBgYYN++fRg9ejTXPnXqVOTk5ODw4cNK++zcuRP/+c9/cPLkSfTs2RMJCQkYMWIEJk+ejEWLFtXpmACwfPlyrFixQuXrGRjUbzKF3Aci5N4Tc8tmXkUwbFNWr2MSQghpPKNGjXrpNlo7M83KyoJMJoONjY1Cu42NDe7cuaNyn7fffhtZWVno168fGGMoKyvDhx9+yF3mrcsxAWDhwoUIDg7mlnNzc+Hg4IBBgwbBwsKirm8RjDHsXnkNQPk9XWNLCca91w88DfTglUqlCA0NxbBhw2r1V5M26HpGXc8HUEZNoYz1p+v5AO1mbFKzBZw5cwZfffUVfv75Z/j6+iI+Ph5z5szBypUrsWTJkjofVywWQywWK7ULhcJ6/Yc8uZ+D3MzKzlGefewgEovqfDxV6puxMeh6Rl3PB1BGTaGM9afr+QDtZNRaMbW0tIRAIEB6erpCe3p6OmxtbVXus2TJEkyePBnvvfceAMDLywsFBQV4//338fnnn9fpmA0p7lLls0rBAzx6N34GQgghDU9rvXlFIhF8fHwQFhbGtcnlcoSFhaF3794q9yksLASfrxhZIBAAKL+kWpdjNpTS4jLEX6/sQezoaQ4jM0mjZiCEENI4tHqZNzg4GFOnTkX37t3Rs2dPrF+/HgUFBVxP3ClTpsDe3h6rV68GAPj7+2PdunXo2rUrd5l3yZIl8Pf354rqy47ZWOKvZ6CsVM4td+hj16ivTwghpPFotZgGBAQgMzMTS5cuRVpaGrp06YKQkBCuA1FycrLCmejixYvB4/GwePFipKSkwMrKCv7+/li1alWtj9lY7lyqnINXbKgHl86Wjfr6hBBCGo/WOyAFBQUhKChI5bozZ84oLOvp6WHZsmVYtmxZnY/ZGJ6lFSD1QeXUge172kIg1PpkU4QQQhoI/YZvAHeqPBkGADrQk2EIIaRZo2KqYXKZHHcup3HLlg5GsHIw1mIiQgghDY2KqYYl336KwtxSbpk6HhFCSPNHxVTD4qp0POLr8dC+Z+N2fCKEENL4qJhqUGFuKZKis7hl1y5WkBjq9kwhhBBC6o+KqQbdi0iDXF753ADqeEQIIS0DFVMNYYwh9mLlJV4jMzHaeJhrMREhhJDGQsVUQzKS8vAstYBb9ujdGnwNPB2GEEKI7qNiqiEKk9qjvJgSQghpGaiYaoC0VIb7VyufVGPvbgoTK30tJiKEENKYqJhqQMKNTJQWy7hlGltKCCEtCxVTDah6iVckEcC1q5UW0xBCCGlsVEzrKTerCCl3c7jldj1sIBQJtBeIEEJIo6NiWk9xSpPa0yVeQghpaaiY1oNczhSeW2rW2hDWzjSpPSGEtDRUTOsh5c4z5D8r4ZY79GkNHo/GlhJCSEtDxbQeqnY84vN5cPe11WIaQggh2kLFtI6KC6RIiKqc1N7JywIGrURaTEQIIURbqJjW0f2r6ZCVybnlDn2p4xEhhLRUVEzrqOpzSw1aieDUkSa1J4SQloqKaR1kPspDZnIet+zeyxZ8AX2UhBDSUlEFqIOqw2EAem4pIYS0dFRM1SSTynE3Io1btnU1gZmtoRYTEUII0TYqpmpKjM5CSUEZt9yhL52VEkJIS0fFVE1Vx5bqifho62OtxTSEEEJ0ARVTNeQ9LUZy7FNuua2PNUQSPS0mIoQQoguomKrh7pU0gFUu06T2hBBCACqmtcYYU3hCjImVPlq3NdFiIkIIIbqCimktpcbnIDeziFvu0JcmtSeEEFKOimktxV2sPCvl8QB3X+rFSwghpBwV01ooLSpDfGQGt+zgaQEjM7EWExFCCNElVExrIf56BspKq0xqTzMeEUIIqYKKaS1UHVsqMRTCpbOlFtMQQgjRNTpRTDdu3AhnZ2dIJBL4+voiIiKi2m0HDhwIHo+n9DVixAhum2nTpimtf+211+qU7WlqAdIScrnl9r42EAh14mMjhBCiI7Q+48Du3bsRHByMTZs2wdfXF+vXr4efnx/u3r0La2vl2YUOHDiA0tJSbjk7Oxve3t4YP368wnavvfYatm7dyi2LxXW7x0mT2hNCCHkZrZ9irVu3DjNmzEBgYCA8PT2xadMmGBgYYMuWLSq3Nzc3h62tLfcVGhoKAwMDpWIqFosVtjMzM1M7m1wmx53wykntrRyNYdnGWO3jEEIIad60emZaWlqK69evY+HChVwbn8/H0KFDcfny5VodY/PmzZgwYQIMDRWf3HLmzBlYW1vDzMwMgwcPxpdffgkLCwuVxygpKUFJSQm3nJtbfln3YUwWinIrz4Lb+1pDKpXW+v01pIocupJHFV3PqOv5AMqoKZSx/nQ9H9BwGYVC4Uu34THG2Eu3aiBPnjyBvb09Ll26hN69e3Pt8+fPx9mzZxEeHl7j/hEREfD19UV4eDh69uzJte/atQsGBgZwcXHBgwcPsGjRIhgZGeHy5csQCARKx1m+fDlWrFih1L5h/n7wnpuWL/AZ7Abng//yz5QQQkgzMmrUqJduo/V7pvWxefNmeHl5KRRSAJgwYQL3by8vL3Tu3Blubm44c+YMhgwZonSchQsXIjg4mFvOzc2Fg4MDSrKFqJjH3q2rNYaMeqVh3kgdSKVShIaGYtiwYbX6q0kbdD2jrucDKKOmUMb60/V8gHYzarWYWlpaQiAQID09XaE9PT0dtra2Ne5bUFCAXbt24Ysvvnjp67i6usLS0hLx8fEqi6lYLFbZQYlVDi1Fx372OvkNJBQKdTJXVbqeUdfzAZRRUyhj/el6PkA7GbXaAUkkEsHHxwdhYWFcm1wuR1hYmMJlX1X27t2LkpISvPPOOy99ncePHyM7OxutW9etJ66RuRht3NXvwEQIIaRl0Hpv3uDgYPz222/Yvn074uLiMHPmTBQUFCAwMBAAMGXKFIUOShU2b96M0aNHK3Uqys/Px7x583DlyhUkJSUhLCwMo0aNQtu2beHn51enjB16twaPT5PaE0IIUU3r90wDAgKQmZmJpUuXIi0tDV26dEFISAhsbGwAAMnJyeDzFWv+3bt3ceHCBZw8eVLpeAKBANHR0di+fTtycnJgZ2eHV199FStXrqzzWFOP3jS2lBBCSPW0XkwBICgoCEFBQSrXnTlzRqnN3d0d1XVC1tfXx4kTJzSWrY2HGVpZ6mvseIQQQpofrV/m1XU04xEhhJCX0YkzU11TcdYr55fA0lXMTeKgS6RSKQoLC5Gbm6uzPet0PaOu5wMoo6ZQxvrT9XxAw2Y0NjYGj1d93xmtTtqgqxISEuDm5qbtGIQQQnTE8+fP0apVq2rX05mpCubm5gDKOz+ZmJhoOY1qFRNLPHr0qMb/YG3S9Yy6ng+gjJpCGetP1/MBDZvR2LjmedmpmKpQ0XvYxMREZ79pKrRq1Yoy1pOu5wMoo6ZQxvrT9XyAdjJSByRCCCGknqiYEkIIIfVExVQFsViMZcuW1XmSh8ZAGetP1/MBlFFTKGP96Xo+QLsZqTcvIYQQUk90ZkoIIYTUExVTQgghpJ6omBJCCCH1RMWUEEIIqScqpips3LgRzs7OkEgk8PX1RUREhLYjAQBWr16NHj16wNjYGNbW1hg9ejTu3r2r7Vg1+vrrr8Hj8TB37lxtR1GQkpKCd955BxYWFtDX14eXlxeuXbum7VgcmUyGJUuWwMXFBfr6+nBzc8PKlSurfVpSYzh37hz8/f1hZ2cHHo+HQ4cOKaxnjGHp0qVo3bo19PX1MXToUNy/f19nMkqlUnz22Wfw8vKCoaEh7OzsMGXKFDx58kQn8r3oww8/BI/Hw/r16xstH1C7jHFxcRg5ciRMTExgaGiIHj16IDk5WWcy5ufnIygoCG3atIG+vj48PT2xadOmBs1ExfQFu3fvRnBwMJYtW4bIyEh4e3vDz88PGRkZ2o6Gs2fPYtasWbhy5QpCQ0MhlUrx6quvoqCgQNvRVLp69Sr++9//onPnztqOouDZs2fo27cvhEIhjh8/jtjYWKxduxZmZmbajsb55ptv8Msvv+Cnn35CXFwcvvnmG6xZswYbNmzQWqaCggJ4e3tj48aNKtevWbMGP/74IzZt2oTw8HAYGhrCz88PxcXFOpGxsLAQkZGRWLJkCSIjI3HgwAHcvXsXI0eO1Il8VR08eBBXrlyBnZ1dIyWr9LKMDx48QL9+/eDh4YEzZ84gOjoaS5YsgUQi0ZmMwcHBCAkJwf/+9z/ExcVh7ty5CAoKwpEjRxouFCMKevbsyWbNmsUty2QyZmdnx1avXq3FVKplZGQwAOzs2bPajqIkLy+PtWvXjoWGhrIBAwawOXPmaDsS57PPPmP9+vXTdowajRgxgk2fPl2h7c0332STJk3SUiJFANjBgwe5Zblczmxtbdm3337LteXk5DCxWMz++usvLSRUzqhKREQEA8AePnzYOKGqqC7f48ePmb29PYuJiWFOTk7s+++/b/RsFVRlDAgIYO+88452AqmgKmPHjh3ZF198odDWrVs39vnnnzdYDjozraK0tBTXr1/H0KFDuTY+n4+hQ4fi8uXLWkym2vPnzwFUTsyvS2bNmoURI0YofJa64siRI+jevTvGjx8Pa2trdO3aFb/99pu2Yyno06cPwsLCcO/ePQDAzZs3ceHCBbz++utaTqZaYmIi0tLSFP6/TUxM4Ovrq5M/OxWeP38OHo8HU1NTbUcBAMjlckyePBnz5s1Dx44dtR1HiVwux7Fjx9C+fXv4+fnB2toavr6+NV6u1oY+ffrgyJEjSElJAWMMp0+fxr179/Dqq6822GtSMa0iKysLMpkMNjY2Cu02NjZIS0vTUirV5HI55s6di759+6JTp07ajqNg165diIyMxOrVq7UdRaWEhAT88ssvaNeuHU6cOIGZM2di9uzZ2L59u7ajcRYsWIAJEybAw8MDQqEQXbt2xdy5czFp0iRtR1Op4uejKfzsVCguLsZnn32GiRMn6szE7d988w309PQwe/ZsbUdRKSMjA/n5+fj666/x2muv4eTJkxgzZgzefPNNnD17VtvxOBs2bICnpyfatGkDkUiE1157DRs3bsQrr7zSYK9JT41pombNmoWYmBhcuHBB21EUPHr0CHPmzEFoaGij3kNRh1wuR/fu3fHVV18BALp27YqYmBhs2rQJU6dO1XK6cnv27MGOHTuwc+dOdOzYEVFRUZg7dy7s7Ox0JmNTJpVK8dZbb4Exhl9++UXbcQAA169fxw8//IDIyMgaH0KtTXK5HAAwatQofPzxxwCALl264NKlS9i0aRMGDBigzXicDRs24MqVKzhy5AicnJxw7tw5zJo1C3Z2dg12tYzOTKuwtLSEQCBAenq6Qnt6ejpsbW21lEpZUFAQ/v77b5w+fRpt2rTRdhwF169fR0ZGBrp16wY9PT3o6enh7Nmz+PHHH6GnpweZTKbtiGjdujU8PT0V2jp06NCovRFfZt68edzZqZeXFyZPnoyPP/5YZ8/2K34+dP1nB6gspA8fPkRoaKjOnJWeP38eGRkZcHR05H52Hj58iE8++QTOzs7ajgeg/Heknp6eTv/8FBUVYdGiRVi3bh38/f3RuXNnBAUFISAgAN99912DvS4V0ypEIhF8fHwQFhbGtcnlcoSFhaF3795aTFaOMYagoCAcPHgQ//77L1xcXLQdScmQIUNw69YtREVFcV/du3fHpEmTEBUVBYFAoO2I6Nu3r9KQonv37sHJyUlLiZQVFhZyz9WtIBAIuDMDXePi4gJbW1uFn53c3FyEh4frxM9OhYpCev/+fZw6dQoWFhbajsSZPHkyoqOjFX527OzsMG/ePJw4cULb8QCU/47s0aOHTv/8SKVSSKXSRv/5ocu8LwgODsbUqVPRvXt39OzZE+vXr0dBQQECAwO1HQ2zZs3Czp07cfjwYRgbG3P3okxMTKCvr6/ldOWMjY2V7uEaGhrCwsJCZ+7tfvzxx+jTpw+++uorvPXWW4iIiMCvv/6KX3/9VdvROP7+/li1ahUcHR3RsWNH3LhxA+vWrcP06dO1lik/Px/x8fHccmJiIqKiomBubg5HR0fMnTsXX375Jdq1awcXFxcsWbIEdnZ2GD16tE5kbN26NcaNG4fIyEj8/fffkMlk3M+Qubk5RCKRVvM5OjoqFXehUAhbW1u4u7s3eLbaZpw3bx4CAgLwyiuvYNCgQQgJCcHRo0dx5swZnck4YMAAzJs3D/r6+nBycsLZs2fxxx9/YN26dQ0XqsH6CTdhGzZsYI6OjkwkErGePXuyK1euaDsSY6y8C7iqr61bt2o7Wo10bWgMY4wdPXqUderUiYnFYubh4cF+/fVXbUdSkJuby+bMmcMcHR2ZRCJhrq6u7PPPP2clJSVay3T69GmV339Tp05ljJUPj1myZAmzsbFhYrGYDRkyhN29e1dnMiYmJlb7M3T69Gmt51NFG0NjapNx8+bNrG3btkwikTBvb2926NAhncqYmprKpk2bxuzs7JhEImHu7u5s7dq1TC6XN1gmegQbIYQQUk90z5QQQgipJyqmhBBCSD1RMSWEEELqiYopIYQQUk9UTAkhhJB6omJKCCGE1BMVU0IIIaSeqJgSQggh9UTFlBDSJPF4PK0/RzMpKQk8Hg9RUVFazUG0j4opaZYuX74MgUCAESNG1Gn/5cuXo0uXLpoNpabMzEzMnDkTjo6OEIvFsLW1hZ+fHy5evKjVXC+TlpaGjz76CK6urhCLxXBwcIC/v7/CJPgtMQtp3miie9Isbd68GR999BE2b96MJ0+ewM7OTis5SktL6zyB+tixY1FaWort27fD1dUV6enpCAsLQ3Z2toZTqq+695WUlIS+ffvC1NQU3377Lby8vCCVSnHixAnMmjULd+7cabSMupSFtAANNusvIVqSl5fHjIyM2J07d1hAQABbtWqVwvqtW7cyExMThbaDBw+yih+HrVu3VvswgYcPH7KRI0cyQ0NDZmxszMaPH8/S0tK44yxbtox5e3uz3377jTk7OzMej8cYY+z48eOsb9++zMTEhJmbm7MRI0aw+Pj4at/Ds2fPGAB25syZarepmLj9xo0bSvtVTNxeMSH433//zby8vJhYLGa+vr7s1q1bCsc6f/4869evH5NIJKxNmzbso48+Yvn5+dx6Jycn9sUXX7DJkyczY2Pjaidmf/3115m9vb3CvlWzVXjZ58gYYz///DNzdXVlQqGQtW/fnv3xxx8K6wGwgwcPVvv51CZLYGAgGzFihMK60tJSZmVlxX7//XfGGGMymYx98803zM3NjYlEIubg4MC+/PJLxpjq/4Nbt26x1157jRkaGjJra2v2zjvvsMzMzGpzkuaBLvOSZmfPnj3w8PCAu7s73nnnHWzZsgVMjec5BAQE4JNPPkHHjh2RmpqK1NRUBAQEQC6XY9SoUXj69CnOnj2L0NBQJCQkICAgQGH/+Ph47N+/HwcOHODupRUUFCA4OBjXrl1DWFgY+Hw+xowZU+3zFY2MjGBkZIRDhw6hpKSkzp9FhXnz5mHt2rW4evUqrKys4O/vD6lUCgB48OABXnvtNYwdOxbR0dHYvXs3Lly4gKCgIIVjfPfdd/D29saNGzewZMkSpdd4+vQpQkJCMGvWLBgaGiqtNzU1BYBafY4HDx7EnDlz8MknnyAmJgYffPABAgMDcfr06Vq939pmee+99xASEoLU1FRu3d9//43CwkIuz8KFC/H1119jyZIliI2Nxc6dO2FjY6PydXNycjB48GB07doV165dQ0hICNLT0/HWW2/VKjdpwrRdzQnRtD59+rD169czxhiTSqXM0tJS4RFbLzszZazyDLOqkydPMoFAwJKTk7m227dvMwAsIiKC208oFLKMjIwaM2ZmZjIASmeIVe3bt4+ZmZkxiUTC+vTpwxYuXMhu3rzJrVfnzHTXrl3cNtnZ2UxfX5/t3r2bMcbYu+++y95//32F1z5//jzj8/msqKiIMVZ+Zjp69Oga31N4eDgDwA4cOFDjdrX5HPv06cNmzJihsN/48ePZ8OHDuWXUcGZa2yyMMebp6cm++eYbbtnf359NmzaNMVb+KDyxWMx+++03lfu++H+wcuVK9uqrryps8+jRIwag0R9HRxoXnZmSZuXu3buIiIjAxIkTAQB6enoICAjA5s2b633suLg4ODg4wMHBgWvz9PSEqakp4uLiuDYnJydYWVkp7Hv//n1MnDgRrq6uaNWqFZydnQEAycnJ1b7e2LFj8eTJExw5cgSvvfYazpw5g27dumHbtm1qZ+/duzf3b3Nzc7i7u3OZb968iW3btnFnw0ZGRvDz84NcLkdiYiK3X/fu3Wt8DVbLs//afI5xcXHo27evwn59+/ZV+Jw1kQUoPzvdunUrACA9PR3Hjx/nHsIeFxeHkpISDBkypFbHunnzJk6fPq3wWXp4eAAovwJAmi/qgESalc2bN6OsrEyhwxFjDGKxGD/99BNMTEzA5/OVftlWXPLUBFWXFf39/eHk5ITffvsNdnZ2kMvl6NSpE0pLS2s8lkQiwbBhwzBs2DAsWbIE7733HpYtW4Zp06aBz+dz768+7yM/Px8ffPABZs+erbTO0dGxxvdVVbt27cDj8XSiY486WaZMmYIFCxbg8uXLuHTpElxcXNC/f38AgL6+vlqvm5+fD39/f3zzzTdK61q3bq3WsUjTQmempNkoKyvDH3/8gbVr1yIqKor7unnzJuzs7PDXX38BAKysrJCXl4eCggJu3xfHCYpEIshkMoW2Dh064NGjR3j06BHXFhsbi5ycHHh6elabKzs7G3fv3sXixYsxZMgQdOjQAc+ePavTe/T09ORyV5z9Vr3fV914xytXrnD/fvbsGe7du4cOHToAALp164bY2Fi0bdtW6Uudnsjm5ubw8/PDxo0bFT7bCjk5OQBq9zl26NBBaQjQxYsXa/yc65IFACwsLDB69Ghs3boV27ZtQ2BgILeuXbt20NfXr/VQmm7duuH27dtwdnZW+ixf9scIaeK0epGZEA06ePAgE4lELCcnR2nd/PnzWffu3Rlj5fcMDQ0N2ezZs1l8fDzbsWMHs7OzU7hnumPHDmZoaMhu3LjBMjMzWXFxMZPL5axLly6sf//+7Pr16yw8PJz5+PiwAQMGcPuputcqk8mYhYUFe+edd9j9+/dZWFgY69GjR433/LKystigQYPYn3/+yW7evMkSEhLYnj17mI2NDZs+fTq3Xa9evVj//v1ZbGwsO3PmDOvZs6fKe6YdO3Zkp06dYrdu3WIjR45kjo6OrKSkhDHG2M2bN5m+vj6bNWsWu3HjBrt37x47dOgQmzVrFvc6Tk5O7Pvvv3/p/8GDBw+Yra0t8/T0ZPv27WP37t1jsbGx7IcffmAeHh6MMVarz/HgwYNMKBSyn3/+md27d4+tXbuWCQQChXvfNX1+tc1S4eTJk0wkEjGBQMBSUlIU1i1fvpyZmZmx7du3s/j4eHb58mWup++L90xTUlKYlZUVGzduHIuIiGDx8fEsJCSETZs2jZWVlb308yNNFxVT0my88cYbCh1UqqrokFLRgefgwYOsbdu2TF9fn73xxhvs119/VSimxcXFbOzYsczU1LROQ2NeFBoayjp06MDEYjHr3LkzO3PmTI3FoLi4mC1YsIB169aNmZiYMAMDA+bu7s4WL17MCgsLue1iY2NZ7969mb6+PuvSpQs7efKkymJ69OhR1rFjRyYSiVjPnj0VOjIxxlhERAQbNmwYMzIyYoaGhqxz584KQ4pqW0wZY+zJkyds1qxZzMnJiYlEImZvb89GjhypUAgbY2hMbbMwVl7gnZycVH7/yGQy9uWXXzInJycmFAqZo6Mj++qrrxhjqjuB3bt3j40ZM4aZmpoyfX195uHhwebOncvkcvnLPzzSZPEYU+NOPSGkSTlz5gwGDRqEZ8+eccNBiLL8/HzY29tj69atePPNN7UdhzRB1AGJENJiyeVyZGVlYe3atTA1NcXIkSO1HYk0UVRMCSEtVnJyMlxcXNCmTRts27YNenr0K5HUDV3mJYQQQuqJhsYQQggh9UTFlBBCCKknKqaEEEJIPVExJYQQQuqJiikhhBBST1RMCSGEkHqiYkoIIYTUExVTQgghpJ7+DzBvqqhFd9RAAAAAAElFTkSuQmCC\n"
- },
- "metadata": {},
- "output_type": "display_data"
- }
- ],
- "source": [
- "# Customization\n",
- "fig = plot_cycle_score(cycle, X_test, y_test,\n",
- " x_label = 'Autora Super Cool Cycle',\n",
- " y_label= 'Accuracy Score',\n",
- " scorer=accuracy_score,\n",
- " figsize=(5,3),\n",
- " ylim=[.74, 1],\n",
- " xlim=[0, 19],\n",
- " plot_kw=dict(linewidth=2.5, color='tab:purple'),\n",
- " );\n",
- "fig.axes[0].grid()\n",
- "fig.axes[0].set_title('Accuracy Over 20 Cycles')\n"
- ],
- "metadata": {
- "collapsed": false
- }
- }
- ],
- "metadata": {
- "kernelspec": {
- "display_name": "Python 3",
- "language": "python",
- "name": "python3"
- },
- "language_info": {
- "codemirror_mode": {
- "name": "ipython",
- "version": 2
- },
- "file_extension": ".py",
- "mimetype": "text/x-python",
- "name": "python",
- "nbconvert_exporter": "python",
- "pygments_lexer": "ipython2",
- "version": "2.7.6"
- }
- },
- "nbformat": 4,
- "nbformat_minor": 0
-}
diff --git a/docs/cycle/cycle_scoring_bms.ipynb b/docs/cycle/cycle_scoring_bms.ipynb
deleted file mode 100644
index bb45b8878..000000000
--- a/docs/cycle/cycle_scoring_bms.ipynb
+++ /dev/null
@@ -1,360 +0,0 @@
-{
- "cells": [
- {
- "cell_type": "markdown",
- "source": [],
- "metadata": {
- "collapsed": false
- }
- },
- {
- "cell_type": "markdown",
- "source": [
- "# Simple Cycle Scoring Example with BMS and Random Sampling\n",
- "The aim of this example notebook is to use the AutoRA `Cycle` to recover a ground truth theory from some noisy data using BSM and random sampling. We will evaluate the model with AutoRa's scoring and plotting functions."
- ],
- "metadata": {
- "collapsed": false
- }
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "outputs": [],
- "source": [
- "# Uncomment the following line when running on Google Colab\n",
- "# !pip install autora"
- ],
- "metadata": {
- "collapsed": false
- }
- },
- {
- "cell_type": "code",
- "execution_count": 1,
- "outputs": [],
- "source": [
- "import matplotlib.pyplot as plt\n",
- "import numpy as np\n",
- "import logging\n",
- "\n",
- "from autora.cycle import Cycle, cycle_specified_score, plot_cycle_score, plot_results_panel_2d\n",
- "from sklearn.metrics import r2_score\n",
- "from autora.experimentalist.sampler import random_sampler, nearest_values_sampler\n",
- "from autora.experimentalist.pipeline import make_pipeline\n",
- "from autora.variable import VariableCollection, Variable\n",
- "from autora.skl.bms import BMSRegressor"
- ],
- "metadata": {
- "collapsed": false
- }
- },
- {
- "cell_type": "markdown",
- "source": [
- "## Ground Truth and Problem Space\n",
- "The ground truth we are trying to recover will be an oscillating function with a parabolic component.\n",
- "The space of allowed x values is reals between -10 and 10 inclusive. We discretize them as we don't currently have a sampler which can sample from the uniform distribution."
- ],
- "metadata": {
- "collapsed": false
- }
- },
- {
- "cell_type": "code",
- "execution_count": 2,
- "outputs": [
- {
- "data": {
- "text/plain": ""
- },
- "execution_count": 2,
- "metadata": {},
- "output_type": "execute_result"
- },
- {
- "data": {
- "text/plain": "",
- "image/png": "iVBORw0KGgoAAAANSUhEUgAAAioAAAGdCAYAAAA8F1jjAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8o6BhiAAAACXBIWXMAAA9hAAAPYQGoP6dpAABK0UlEQVR4nO3dd1QU5+M18Lt0UGnSJIKKUexdEHshYi/xq0ZNAko0iRp7b6hRUcDYa+zRWGOJxhprVMTeUFEUxUKxslIXdp/3D1/3FyIgIMvsLvdzzp7jzs7M3nEol9mZZ2RCCAEiIiIiLWQgdQAiIiKi7LCoEBERkdZiUSEiIiKtxaJCREREWotFhYiIiLQWiwoRERFpLRYVIiIi0losKkRERKS1dL6oCCEgl8vBceuIiIj0j84Xlbdv38LKygpv376VOgoREREVMJ0vKkRERKS/WFSIiIhIa7GoEBERkdZiUSEiIiKtxaJCREREWstI6gCFQQiBjIwMKJVKqaOQljE0NISRkRFkMpnUUYiIKAt6X1QUCgViYmKQnJwsdRTSUhYWFihVqhRMTEykjkJERP+h10VFpVIhKioKhoaGcHZ2homJCf9yJjUhBBQKBZ4/f46oqChUqFABBgb8NJSISJvodVFRKBRQqVRwcXGBhYWF1HFIC5mbm8PY2BiPHj2CQqGAmZmZ1JGIiOhfisSfj/wrmXLCrw8iIu3Fn9BERESktVhUqECsW7cO1tbWUseAn58funTpInUMIiIqICwqVCgePnwImUyGq1evauX6iIhIO7Go6AmFQiF1hAKhL9tBREQFg0VFC719+xZ9+vRBsWLFUKpUKcybNw/NmzfHsGHD1POULVsWP//8M7799ltYWlpiwIABAIA//vgDVatWhampKcqWLYu5c+dmWrdMJsPu3bszTbO2tsa6desA/N+Rip07d6JFixawsLBAzZo1ERoammmZdevWwdXVFRYWFujatStevnyZ4zaVK1cOAFC7dm3IZDI0b94cwP99VDNz5kw4OzvD3d09VzmzW997ISEhKFWqFEqWLIlBgwYhPT09x3xERLrq6dOnWLFiBcaMGYOAgAD89ddfevVHn15fnvxfQgjJBn6zsLDI9RguI0aMwJkzZ/Dnn3/C0dERU6ZMweXLl1GrVq1M84WEhGDKlCkICAgAAFy6dAk9evTA1KlT0bNnT5w9exYDBw5EyZIl4efnl6e8EydOREhICCpUqICJEyeiV69eiIyMhJGREcLCwuDv74/AwEB06dIFBw8eVGfIzvnz5+Hh4YG///4bVatWzTS42tGjR2FpaYkjR47kOl9O6zt+/DhKlSqF48ePIzIyEj179kStWrXQv3//PP0fEBFpM7lcjnHjxuHXX39FRkZGptdKlSqF4OBg9O7dW/fHDxM6LiEhQQAQCQkJH7yWkpIibt26JVJSUoQQQiQmJgoAkjwSExNztT1yuVwYGxuL7du3q6e9efNGWFhYiKFDh6qnlSlTRnTp0iXTsr179xZffPFFpmmjR48WVapUUT8HIHbt2pVpHisrK7F27VohhBBRUVECgFi1apX69fDwcAFA3L59WwghRK9evUS7du0yraNnz57Cysoq2+16v94rV65kmu7r6yscHR1FWlpapum5zZnV+sqUKSMyMjLU07p37y569uyZbbb/fp0QEWm7hw8fiooVK6p/xzRo0EAMGzZM9O3bVzg5Oamnd+7cWbx+/VrquJ+EH/1omQcPHiA9PR0eHh7qaVZWVuqPRP6tXr16mZ7fvn0bjRo1yjStUaNGuHfvXp7vc1SjRg31v0uVKgUAiI+PV7+Pp6dnpvm9vLzytP5/q169eoEOX1+1alUYGhqqn5cqVUqdnYhI1925cweNGzfG3bt34eLigmPHjiE0NBTz5s3DmjVr8OjRI8yYMQPGxsbYs2cPGjdujMePH0sdO9+K1Ec/FhYWSExMlOy9C1qxYsXyvIxMJoMQItO0rM7fMDY2zrQM8O6WBJqQ1XbkNmdW/p39/bo0lZ2IqDDFxcXBx8cHT548QeXKlXHkyBF89tlnmeYxMTHBxIkT0a5dO3To0AHh4eFo2LAhjh49iooVK0qUPP+KVFGRyWT5+uVemNzc3GBsbIwLFy7A1dUVAJCQkIC7d++iadOmOS5buXJlnDlzJtO0M2fOoGLFiuojDPb29oiJiVG/fu/evTyft1O5cmWEhYVlmnbu3Lkcl3l/xCS3R3Y+ljOv6yMi0nVpaWn48ssvER0djQoVKuDkyZOwt7fPdv7atWsjNDQUbdq0we3bt9GsWTMcO3YMlStXLsTUn44f/WiZEiVKwNfXF6NHj8bx48cRHh4Of39/GBgYfPSEqJEjR+Lo0aP4+eefcffuXaxfvx6LFy/GqFGj1PO0bNkSixcvxpUrV3Dx4kX88MMPHxyB+JghQ4bg4MGDCAkJwb1797B48WIcPHgwx2UcHBxgbm6OgwcPIi4uDgkJCTnO/7GceV0fEZGuGzFiBM6ePQtra2vs3bs3x5LynqurK06ePIkaNWogNjYWzZo1w40bNwohbcFhUdFCv/zyC7y8vNChQwd4e3ujUaNGqFy58kdvmFenTh1s27YNW7ZsQbVq1TBlyhRMnz490xU/c+fOhYuLC5o0aYLevXtj1KhRef5YqkGDBvj111+xYMEC1KxZE4cPH8akSZNyXMbIyAgLFy7EihUr4OzsjM6dO+c4/8dy5nV9RES67M8//8TSpUsBAJs3b87yvMXs2Nvb49ixY6hduzaeP3+OFi1a5HqwzOfPn2PgwIFISUnJT+wCIRP/PRFAx8jlclhZWSEhIQGWlpaZXktNTUVUVBTKlSun03fFTUpKwmeffYa5c+fC399f6jh6R1++TohIPz179gw1atTAy5cvMXLkSISEhORrPa9fv4aPjw8uXLgAGxsb7Nu3Dw0bNsx2/sePH+OLL75AREQEfH191eNYFbYidY6Krrhy5Qru3LkDDw8PJCQkYPr06QDAowZERFri+fPn2LdvHyIjI2FmZoY6dergiy++KNArGIF3FzH4+vri5cuXqFWrFmbOnJnvddnY2ODIkSNo27YtQkND0axZMwQFBWHo0KEf3EX+ypUr6NKlC6Kjo+Hi4oIJEyZ86qbkG4uKlgoJCUFERARMTExQt25d/PPPP7Czs5M6FhFRkZacnIzJkydj0aJFH1yJ6ODggMDAQPj5+X3wiz+/5s6di7///hvm5ubYvHkzTE1NP2l9VlZWOHToEPz9/bF9+3aMGDECv//+OwYOHIjatWvj5cuX2LZtG9asWYOMjAy4u7vjyJEjcHFxKZDtyQ9+9ENFHr9OiCg3nj17Bh8fH9y8eRPAu/MCGzRogKSkJBw+fFh9pWLjxo2xdetWODs7f9L7Xbx4EV5eXsjIyMCKFSvUt0opCEIILF26FOPGjct22I4vv/wSK1askPyPZBYVKvL4dUJEH/P06VO0aNEC9+7dg5OTE9asWYO2bduqX09PT8fChQsxdepUJCYmwsnJCbt27UKDBg3y9X6JiYmoU6cO7t27hy+//BI7duzQyFD4cXFxWLlyJfbv34+HDx+iWLFi8PLywnfffYdmzZoV+PvlB4sKFXn8OiGinCQkJKBBgwa4c+cOypQpgxMnTqBs2bJZznv//n107twZ4eHhMDMzw8aNG9GtW7c8vZ8QAn379sX69etRunRpXLt2Dba2tgWwJbqpSFyerONdjDSMXx9ElB2VSgU/Pz/cuXMHpUuXzrGkAED58uURGhqKjh07IjU1Fd27d8f8+fPz9J7z58/H+vXrYWBggE2bNhXpkgLoeVF5P0CYVHdMJt3w/usjrwPfEZH+Cw4Oxu7du2FiYoKdO3fmWFLeK1GiBHbt2oUff/wRQggMHz4cw4cPz9WtPPbs2YORI0cCeHdRxcdGJC8K9PqjHwCIiYnBmzdv4ODgAAsLC92/3TUVGCEEkpOTER8fD2tra/XNF4mIAODatWuoX78+0tPT83UyqxACwcHBGDt2LACgW7duWLt2LUqUKJHl/Js2bYKfnx8yMjIwYMAALF++nL+zUASKihACsbGxePPmTeGHI51gbW0NJycn/kAgIjWFQoH69evj+vXr6NKlC3bu3JnvnxGbN2+Gn58fFAoFXFxcsHjxYnTs2FG9vsTERMycOROzZ88GAPTu3Rvr1q3jUd7/T++LyntKpTLXd9+losPY2Fh9w0YiovcmT56MGTNmoGTJkggPD4ejo+Mnre+ff/6Br68voqKiALw7l8XT0xNJSUk4ceKE+n5lw4YNw9y5cwtsHBZ9UGSKChERUW5cvHgRDRo0gFKpxLZt29C9e/cCWW9SUhJ+/vlnLF68GElJSZleq1ChAoKCgtClS5cCeS99wqJCRET0/6WmpqJu3bq4desWevbsiS1bthT4e8jlchw/fhz37t1Tjz7eoEEDHt3NBosKERHpjDdv3uD+/fswNjZGxYoVC3zso3HjxmHOnDlwdHREeHg4SpYsWaDrp7zjh2BERKT1QkND4ePjA1tbW9SrVw81a9aEra0tvv76a9y9e7dA3uPcuXMIDg4GAKxYsYIlRUuwqBARkdZSKpWYMGECGjZsiMOHD0MIAScnJ9jY2CAlJQWbNm1ClSpVMHz4cKSmpub7fZKTk+Hn5weVSoU+ffrwbvVahEWFiIi0klKphJ+fHwIDAwEAfn5+uH//PmJiYvDy5UucP38eHTp0gFKpxPz589GgQYN8HV0RQmDgwIGIiIiAk5MTFi5cWNCbQp+ARYWIiLTS2LFjsXHjRhgaGuK3337D2rVr4ebmBgCQyWSoX78+9u7di3379sHOzk49QNu+ffvy9D6rVq1SD1n/+++/F/kh67UNiwoREWmd9evXY+7cuQCA3377DV9//XW287Zv3x7Xrl1D48aNIZfL0alTJ8yYMSNXQ9b/9ddfGDRoEABgxowZaNGiRcFsABUYFhUiItIqt27dUg9XP3nyZPTq1eujyzg7O+Po0aPq++tMnjwZ3bp1w4sXL7Jd5tChQ+jWrRvS09Px1VdfqYe6J+3CokJERFpDpVKhf//+UCgUaNu2LaZOnZrrZU1MTLB06VKsWrUKJiYm2L17NypVqoTVq1dDoVCo50tKSkJAQADatWuHtLQ0dO3aFRs2bOBosFqK46gQEZHWWLx4MX766SeUKFEC4eHhcHFxydd6Ll68iH79+uHGjRsAABsbG3h6ekKlUiE0NBRv374FAHz77bf49ddfYWJiUmDbQAWLRYWIiLRCdHQ0qlatisTERCxZsgQDBw78pPWlp6dj4cKFmDt3LmJiYjK99vnnn2PmzJno3r07b0iq5VhUiIhIckIIdOjQAfv370ejRo1w6tSpAvsoJiMjA+fPn8ft27chk8lQrVo11KtXjx/16AgWFSIiktzvv/+OPn36wMTEBNeuXUOlSpWkjkRagnWSiIgk9eLFCwwdOhTAu6t8WFLo31hUiIhIUsOHD8eLFy9QvXp1jBkzRuo4pGVYVIiISDIHDx7Exo0bYWBgoL6smOjfWFSIiEgSb9++xffffw8AGDp0KDw8PCRORNrISOoARESkvR4/fow9e/bgzp07MDQ0RLVq1dCpUyc4Ojp+8rpHjRqF6OholCtXDj///HMBpCV9xKt+iIjoA2/fvsX48eOxYsUKZGRkZHrN1NQUvr6+mDRpUr4HZNuzZw+6dOkCmUyGo0eP8h47lC0WFSIiyiQ6Ohrt2rVDeHg4AKBx48Zo0qQJMjIycOzYMVy6dAkAUKJECQQFBWHAgAF5GpPk8ePHqFOnDl68eIFRo0YhODhYI9tB+oFFhYiI1J4/f46GDRsiMjISzs7O2LBhA1q1aqV+XQiB06dPY8yYMTh37hwAwMfHB2vWrIGzs/NH1y+Xy9G4cWPcuHEDtWrVwrlz52Bqaqqx7SHdp9GTaU+dOoWOHTvC2dkZMpkMu3fvzvS6EAJTpkxBqVKlYG5uDm9vb9y7d0+TkYiIKBtJSUno0KEDIiMjUbZsWZw7dy5TSQEAmUyGJk2a4PTp05g/fz7MzMxw6NAh1KhRA7t27cpx/cnJyejWrRtu3LgBJycn7NmzhyWFPkqjRSUpKQk1a9bEkiVLsnw9KCgICxcuxPLlyxEWFoZixYrBx8cHqampmoxFRERZGDJkCM6fPw9bW1scPHgwx/NPDA0NMXToUFy+fBl16tTBy5cv8eWXX+Kbb77Bo0ePPpg/KioKLVu2xN9//w0LCwvs27cPrq6umtwc0hOF9tGPTCbDrl270KVLFwDvjqY4Oztj5MiRGDVqFAAgISEBjo6OWLduHb766qtcrZcf/RARfbqdO3eiW7dukMlkOHbsGJo3b57rZRUKBQICAjBnzhwIIWBsbIwePXqgadOmMDIyQmhoKH777TekpaXB2toae/fuRePGjTW3MaRXJCsqDx48QPny5XHlyhXUqlVLPV+zZs1Qq1YtLFiwIMv1pKWlIS0tTf1cLpfDxcWFRYWIKJ9iY2NRtWpVvHr1CuPGjUNgYGC+1nP+/HlMmDABR48ezfL1Fi1aYM2aNShbtuwnpKWiRrJxVGJjYwHgg2vxHR0d1a9lJTAwENOmTdNoNiKiomTMmDF49eoVateu/Uk/Xz08PPD333/j3Llz2LVrF27evImMjAy4u7ujW7duaNq0KWQyWQEmp6JA5wZ8Gz9+PEaMGKF+/v6IChER5d0///yD3377DTKZDCtWrCiQIewbNGiABg0aFEA6IgmH0HdycgIAxMXFZZoeFxenfi0rpqamsLS0zPQgIqK8y8jIwKBBgwAA/fv3R/369SVORPQhyYpKuXLl4OTklOmzTLlcjrCwMHh5eUkVi4ioyFiyZAlu3LgBW1tbzJo1S+o4RFnS6Ec/iYmJiIyMVD+PiorC1atXYWtrC1dXVwwbNgwzZsxAhQoVUK5cOUyePBnOzs7qE26JiEgzYmNjMWXKFADA7NmzUbJkSYkTEWVNo0Xl4sWLme7f8P7cEl9fX6xbtw5jxoxBUlISBgwYgDdv3qBx48Y4ePAgzMzMNBmLiKjIGz16NORyOerXrw9/f3+p4xBli0PoExEVMSdPnkTz5s0hk8kQFhbGc1NIq0l2jgoRERW+9PR0DBw4EADw/fffs6SQ1mNRISIqQubPn49bt27B3t6eJ9CSTmBRISIqIp48eaIe0C0oKAg2NjYSJyL6OBYVIqIiQAiBAQMGICkpCY0aNcK3334rdSSiXNG5kWmJiPTdrVu3sGPHDty6dQsA1EPQ16hRI9/rXLJkCQ4cOAAzMzOsWLECBgb8O5V0A6/6ISLSEq9fv8aQIUOwcePGLF/38PDAjBkz8MUXX+RpvdeuXUODBg2QmpqKhQsX4qeffiqIuESFgkWFiEgLREZGonXr1oiKigIAdOzYEc2bNwcAnD59Gvv27UN6ejoAoEOHDpg/fz7Kly//0fVGR0fDy8sLz549Q5s2bbB//37eGJB0CosKEZHEnj17Bk9PTzx58gTlypXDli1b4OHhkWme+Ph4zJo1C0uWLEFGRgZMTU0xfvx4jB07NttBMp89ewZvb2/cvn0bVatWxT///MMTaEnn8ENKIiIJJScno3Pnznjy5AkqVaqE0NDQD0oKADg4OGD+/Pm4efMmvL29kZaWhqlTp6Jq1arYuHEjUlNT1fMKIbB3717Ur18ft2/fxmeffYYDBw6wpJBO4hEVIiIJ+fr6YsOGDShZsiTCwsJy9XGOEALbt2/H8OHD8ezZMwCAra0tGjduDAsLC1y+fBl3794FAFSuXBn79u2Dm5ubRreDSFNYVIiIJLJnzx506dIFBgYGOH78OJo2bZqn5d++fYv58+dj5cqVePLkSabXzM3NMXjwYEydOhUWFhYFGZuoULGoEBFJ4MWLF6hatSri4+MxduxYzJ49O9/rysjIwNmzZ3Hjxg2kpqbCzc0NLVu2hJWVVQEmJpIGiwoRkQT69++PVatWoUqVKrh06RLvGk+UDZ5MS0RUyK5evYrVq1cDAFauXMmSQpQDFhUiokIkhMCwYcMghMBXX32FRo0aSR2JSKuxqBARFaLdu3fj5MmTMDMz+6TzUoiKChYVIqJCkpaWhlGjRgEARo0ahTJlykiciEj7sagQERWSBQsW4MGDByhVqhTGjh0rdRwincCiQkRUCOLi4jBjxgwAQGBgIIoXLy5xIiLdwKJCRFQIJk+ejLdv36JevXr45ptvpI5DpDNYVIiINOzq1atYtWoVAGD+/PkwMOCPXqLc4ncLEZEGCSEwfPhwCCHQs2dPXo5MlEcsKkREGrRnzx6cOHECpqammDNnjtRxiHQOiwoRkYYkJiZi+PDhAHg5MlF+sagQEWnIxIkT8fDhQ5QpUwbjxo2TOg6RTmJRISLSgDNnzmDRokUA3t3Ph5cjE+WPkdQBiIi0QXp6Ok6dOoWbN28iIyMDbm5u8Pb2RokSJfK8rri4OHz11VcQQqBv375o3bq1BhITFQ0sKkRUpAkhsHr1akyZMgUxMTGZXjMxMUH79u0xduxYeHp65mp96enp6N69O548eQJ3d3fMmzdPE7GJigyZEEJIHeJTyOVyWFlZISEhAZaWllLHISIdkpycjK+//hq7du0CADg4OKBJkyYwMTHBxYsXce/ePfW8rVu3xsyZM1GvXr1s16dQKPD1119j+/btKFGiBM6fP49KlSppfDuI9BnPUSGiIiktLQ0dOnTArl27YGJigrlz5+Lx48fYsWMHfv/9d0RERODGjRvo27cvjIyMcPjwYdSvXx//+9//cP78efz3b7x79+6hZcuW2L59O4yNjbF161aWFKICwCMqRFTkCCHQv39/rF69GiVKlMD+/fvRuHHjbOePiopCQEAANm7cqC4oVatWRbNmzVCiRAncuHEDhw4dglKphKWlJbZu3Yo2bdoU1uYQ6TUWFSIqcpYtW4aBAwfCwMAA+/fvh4+PT66WCw8Px+zZs7Fjxw6kpqZ+8Hrbtm2xaNEilC9fvqAjExVZLCpEVKRERESgZs2aSEtLw5w5czBmzJg8r+P169c4cOAAbty4gZSUFLi6usLHxwdVq1bVQGKioo1FhYiKDJVKhRYtWuDUqVPw8fHBgQMHIJPJpI5FRDngybREVGSsWrUKp06dQrFixbBixQqWFCIdwKJCREWCXC7HxIkTAQAzZszgfXeIdASLChEVCcHBwXjx4gXc3d0xePBgqeMQUS6xqBCR3ouJicEvv/wCAAgMDISREQflJtIVLCpEpPemT5+O5ORkNGjQAF26dJE6DhHlAYsKEem1iIgI/PrrrwCAoKAgnkBLpGNYVIhIr02cOBFKpRIdO3ZEkyZNpI5DRHnEokJEeuvcuXP4448/YGBggFmzZkkdh4jygUWFiPSSEAJjx44FAPj6+qJatWoSJyKi/GBRISK9tH//fpw6dQpmZmaYNm2a1HGIKJ9YVIhI7yiVSowbNw4AMGTIELi4uEiciIjyi0WFiPTO2rVrcfPmTVhbW6sLCxHpJhYVItIr/x4qPyAgADY2NhInIqJPwaJCRHolMDAQ8fHxqFixIgYOHCh1HCL6RCwqRKQ3wsPDMXfuXABASEgITExMJE5ERJ+KRYWI9EJGRgb69u2L9PR0dOzYER06dJA6EhEVABYVItILISEhuHDhAqysrLB8+XIOlU+kJ1hUiEjnHT58WH0C7bx58+Ds7CxxIiIqKCwqRCQJhUKBdevWoXXr1nBwcIClpSWqVauGH374AQcOHIBKpcrVem7fvo0ePXpApVLBz88Pfn5+mg1ORIVKJoQQUof4FHK5HFZWVkhISIClpaXUcYgoF65fv47evXsjPDw823nc3Nzwww8/oF+/fihZsmSW84SFhaFTp06Ij49Ho0aNcPToUZiammoqNhFJgEWFiArV8ePH0bFjRyQlJcHOzg4jRoxA69atYWlpiZs3b+Lo0aPYtGkT3rx5AwAwMzNDjx490KVLFzRt2hSWlpa4ffs2Vq9ejaVLlyIjIwO1atXC4cOHYW9vL+3GEVGBY1EhokJz/fp1NGnSBHK5HK1atcKWLVtgZ2f3wXzJycnYvHkzlixZgitXruS4zh49euDXX3/l9z+RnmJRIaJCERsbi3r16uHp06do2rQpDh06BDMzsxyXEULg3Llz2LJlCw4dOoSIiAgAgIWFBVq0aIEhQ4agdevWhRGfiCSiFUVlyZIlCA4ORmxsLGrWrIlFixbBw8MjV8uyqBBpPyEEOnfujL1796Jy5co4c+ZMvoa2T0lJQUpKCqysrGBoaKiBpESkbSS/6mfr1q0YMWIEAgICcPnyZdSsWRM+Pj6Ij4+XOhoRFZANGzZg7969MDExwdatW/N9/x1zc3PY2tqypBAVIZIfUfH09ET9+vWxePFiAIBKpYKLiwt++umnXN31lEdUiLRbXFwc3N3dkZCQgMDAQN7NmIjyRNIjKgqFApcuXYK3t7d6moGBAby9vREaGprlMmlpaZDL5ZkeRKS9pkyZgoSEBNStWxejRo2SOg4R6RhJi8qLFy+gVCrh6OiYabqjoyNiY2OzXCYwMBBWVlbqh4uLS2FEJaJ8uHbtGlatWgUAWLBgAYyMjCRORES6RvJzVPJq/PjxSEhIUD8eP34sdSQiysbIkSOhUqnQs2dPNGrUSOo4RKSDJP3zxs7ODoaGhoiLi8s0PS4uDk5OTlkuY2pqypEniXTA8ePHcfToUZiYmGD27NlSxyEiHSXpERUTExPUrVsXR48eVU9TqVQ4evQovLy8JExGRJ9CCIEpU6YAAAYMGICyZctKG4iIdJbkHxiPGDECvr6+qFevHjw8PDB//nwkJSWhb9++Ukcjonz6+++/cfr0aZiammL8+PFSxyEiHSZ5UenZsyeeP3+OKVOmIDY2FrVq1cLBgwc/OMGWiHTDv4+m/Pjjj3B2dpY4ERHpMsnHUflUHEeFSLvs378f7du3h7m5OR48eJDt+WZERLmhc1f9EJH2+vfRlEGDBrGkENEnY1EhogLz559/4tKlSyhWrBjGjBkjdRwi0gMsKkRUIFQqFSZNmgQAGDJkCOzt7SVORET6gEWFiArE5s2bcfPmTVhZWWH06NFSxyEiPcGiQkSfLD09XX1uypgxY/J9d2Qiov9iUSGiT7Z69Wo8ePAAjo6OGDp0qNRxiEiPsKgQ0SdJTk7G9OnTAQCTJk1CsWLFJE5ERPqERYWIPsmsWbMQExODMmXKoH///lLHISI9w6JCRPkWERGBoKAgAMD8+fN5w1AiKnAsKkSULyqVCgMHDkR6ejrat2+Pzp07Sx2JiPQQiwoR5cvcuXNx7NgxmJmZYeHChZDJZFJHIiI9xKJCRHl29uxZ9V2RFy5cCDc3N4kTEZG+kvzuyURU+IQQiI2NhVwuR6lSpfJ0Q8+7d++ia9euUCqV6N27N7777jsNJiWioo5HVIiKkOfPn2Ps2LEoXbo0nJ2dUalSJVhZWcHV1RXfffcdDh48CIVCke3yp0+fRuPGjREfH4/atWtj+fLl/MiHiDRKJoQQUof4FHK5HFZWVkhISMjTX4VERc3+/fvh6+uLFy9eAAAMDAxQvHhxyOXyTPNZWVmhQ4cOaNOmDapXrw4bGxvcu3cPGzduxPr16yGEQO3atXHw4EE4ODhIsSlEVISwqBAVARs2bEDfvn2hUqlQvXp1TJ8+HW3atIGZmRlev36NS5cuYdeuXdi5cydiY2NzXJevry8WLVqEEiVKFFJ6IirKWFSI9NyxY8fg4+ODjIwM+Pv7Y+nSpTAxMclyXqVSiXPnzmHXrl04d+4cbt26hcTERDg7O6NZs2b48ccf0aBBg0LeAiIqylhUiPTYvXv34OHhgTdv3qBXr17YtGkTzykhIp3Ck2mJ9JRSqYSvry/evHkDLy8vrFmzhiWFiHQOiwqRnlq8eDFCQ0NRokQJbN26FWZmZlJHIiLKMxYVIj306NEjTJgwAQAQHBwMFxcXiRMREeUPiwqRHpoxYwaSk5PRpEkT3tGYiHQaiwqRnomKisK6desAALNnz4aBAb/NiUh38ScYkZ6ZOXMmMjIy0Lp1azRs2FDqOEREn4SXJxPpkQcPHsDd3R0ZGRk4e/YsvLy8pI5ERPRJeESFSI+8P5ri4+PDkkJEeoFHVIj0xIMHD1CxYkUolUqEhoZyBFki0gs8okKkJ2bMmAGlUok2bdqwpBCR3uARFSI9cP/+fbi7u6vv1ePp6Sl1JCKiAsEjKkR6YObMmVAqlWjbti1LChHpFR5RIdJxkZGRqFSpEo+mEJFe4hEVIh3HoylEpM94RIVIh/37aEpYWBg8PDykjkREVKB4RIVIh72/0qddu3YsKUSkl3hEhUhH8WgKERUFPKJCpKOmTZsGpVKJ9u3bs6QQkd7iERUiHXT9+nXUqlULQghcvHgRdevWlToSEZFG8IgKkQ6aOHEihBDo0aMHSwoR6TUWFSIdc/LkSezbtw+Ghob4+eefpY5DRKRRLCpEOkShUGDgwIEAgP79+6NixYoSJyIi0iwWFSId8ssvv+DWrVuwt7fHzJkzpY5DRKRxLCpEOuLWrVuYPn06ACAkJAS2trYSJyIi0jwWFSIdIJfL8eWXXyIlJQXe3t745ptvpI5ERFQoWFSItFxGRgb8/PwQERGBzz77DJs2bYJMJpM6FhFRoWBRISpEKpUKaWlpSEtLy9X8KSkp6NOnD3bt2gVjY2Ps2LEDDg4OGk5JRKQ9WFSINCw9PR2rVq1C48aNYWZmpn6ULVsWnTp1wpw5c3D69Gmkpqaql1Eqlfjrr79Qt25dbNu2DUZGRti6dSsaNGgg4ZYQERU+jkxLpEE3b95Ez549cevWrY/Oa2JiAhcXF1hYWCA6OhoJCQkAAAcHB2zduhXNmzfXcFoiIu1jJHUAIn114sQJdOzYEYmJibC3t8fYsWPRuXNn2NvbQ6FQ4M6dO7hw4QLOnDmD06dPIz4+Hvfv31cvb2NjA39/f4wfP55X+BBRkcUjKkQacPnyZTRt2hRJSUlo3rw5tm3bBnt7+2znF0IgKioKsbGxSExMhJOTE6pUqQIjI/4tQURFG4sKUQF78+YNatSogcePH8Pb2xt79+6FmZmZ1LGIiHQST6YlKmCDBw/G48ePUb58eezYsYMlhYjoE7CoEBWgrVu3YtOmTTA0NMTGjRthZWUldSQiIp3GokJUQBITEzF8+HAAwIQJE3gpMRFRAWBRISogQUFBiImJgZubGyZOnCh1HCIivcCiQlQAoqOjERwcDAAIDg6GqampxImIiPQDiwpRAZg1axZSU1PRtGlTdO3aVeo4RER6Q2NFZebMmWjYsCEsLCxgbW2d5TzR0dFo3749LCws4ODggNGjRyMjI0NTkYg0IiYmBmvXrgUAzJgxgzcMJCIqQBobTUqhUKB79+7w8vLC6tWrP3hdqVSiffv2cHJywtmzZxETE4Nvv/0WxsbGmDVrlqZiERW4efPmQaFQoFGjRmjSpInUcYiI9IrGB3xbt24dhg0bhjdv3mSafuDAAXTo0AHPnj2Do6MjAGD58uUYO3Ysnj9/DhMTk1ytnwO+kZRev34NV1dXJCYmYt++fWjfvr3UkYiI9Ipk56iEhoaievXq6pICAD4+PpDL5QgPD892ubS0NMjl8kwPIqksWbIEiYmJqFGjBtq1ayd1HCIivSNZUYmNjc1UUgCon8fGxma7XGBgIKysrNQPFxcXjeYkyk5ycjIWLFgAABg3bhzPTSEi0oA8FZX3P4xzety5c0dTWQEA48ePR0JCgvrx+PFjjb4fUXZWrVqFFy9ewM3NDd27d5c6DhGRXsrTybQjR46En59fjvO4ubnlal1OTk44f/58pmlxcXHq17JjamrKMSpIcgqFAiEhIQCAMWPG8C7HREQakqefrvb29jneqj4vvLy8MHPmTMTHx8PBwQEAcOTIEVhaWqJKlSoF8h5EmvL777/j8ePHcHJygq+vr9RxiIj0lsb+DIyOjsarV68QHR0NpVKJq1evAgA+//xzFC9eHK1bt0aVKlXwzTffICgoCLGxsZg0aRIGDRrEIyak1VQqFebMmQMAGD58OO+OTESkQRq7PNnPzw/r16//YPrx48fRvHlzAMCjR4/w448/4sSJEyhWrBh8fX0xe/bsPB1G5+XJVNh27tyJbt26wdraGo8ePeLXHRGRBml8HBVNY1GhwiSEgIeHBy5evIiJEydixowZUkciItJrvNcPUR4cPXoUFy9ehLm5OYYOHSp1HCIivceiQpQH72/v8N133xXYieVERJQ9FhWiXDp58iSOHz8OY2NjjBo1Suo4RERFAosKUS5NmzYNAODv7w9XV1eJ0xARFQ0sKkS5cOrUKfXRlPHjx0sdh4ioyGBRIfoIIQTGjBkDAOjXrx+PphARFSIWFaKP+P333xEWFoZixYphypQpUschIipSWFSIcpCUlISxY8cCACZMmABnZ2eJExERFS0sKkQ5mDhxIp4+fYqyZctixIgRUschIipyWFSIsnH48GEsWLAAALBkyRLe04eISAIsKkRZiImJUd8VedCgQWjXrp3EiYiIiiYWFaL/ePnyJdq1a4fY2FhUqVIFwcHBUkciIiqyWFSI/uX27dto0qQJrl69CgcHB+zduxfm5uZSxyIiKrKMpA5ApCkpKSnYu3cvzpw5g9jYWKSmpsLBwQGlS5eGm5sb3NzcUKZMGaSnpyM6Ohrbt2/Hr7/+CoVCgVKlSuHIkSNwc3OTejOIiIo0FhXSO0IIrFq1ChMnTsTz58/zvHybNm2wdu1aODk5aSAdERHlBYsK6ZXU1FT4+flh69atAIAyZcqga9euKFu2LExNTREXF4fHjx/jwYMHePDgAR4/fgwzMzPY2dmhUaNG8Pf3R8uWLSGTySTeEiIiAlhUSI+kp6ejW7du2L9/P4yMjDB79mwMHToURkbZf5kLIVhKiIi0GIsK6Y3x48dj//79MDc3x759+9CyZcuPLsOSQkSk3XjVD+mFnTt3Yu7cuQCAjRs35qqkEBGR9mNRIZ0XFxeHfv36AQBGjhyJL7/8UuJERERUUFhUSOeNHTsWCQkJqFOnDgIDA6WOQ0REBYhFhXTa6dOnsX79eshkMixbtgzGxsZSRyIiogLEokI6SwiBoUOHAgC+++47eHh4SJyIiIgKGosK6aw9e/bg8uXLKF68OGbOnCl1HCIi0gAWFdJJKpUKAQEBAIChQ4fC3t5e4kRERKQJLCqkk3bu3Inr16/D0tISI0aMkDoOERFpCIsK6RwhhPrqnmHDhsHW1lbiREREpCksKqRzTp48icuXL8Pc3BxDhgyROg4REWkQiwrpnPcj0Pr5+aFkyZISpyEiIk2SCSGE1CE+hVwuh5WVFRISEmBpaSl1HNKwO3fuoHLlypDJZIiIiECFChWkjkRERBrEIyqkU+bNmwcA6NSpE0sKEVERwKJCOuP58+fYsGEDgHf39CEiIv3HokI6Y+nSpUhNTUX9+vXRuHFjqeMQEVEhYFEhnZCSkoIlS5YAeHc0RSaTSZyIiIgKA4sK6YSNGzfi+fPnKFOmDLp16yZ1HCIiKiQsKqT1VCqV+pLkoUOHwsjISOJERERUWFhUSOvt378fERERsLS0hL+/v9RxiIioELGokNZ7fzTl+++/51g5RERFDAd8I6126dIl1KtXD0ZGRoiKikLp0qWljkRERIWIR1RIq70/mtKzZ0+WFCKiIohFhbRWZGQktm3bBgAYMWKExGmIiEgKLCqktWbMmAGlUol27dqhTp06UschIiIJ8BwV0kqRkZGoVKkSlEolwsLC4OHhIXUkIiKSAI+okFaaNm2a+mgKSwoRUdHFokJaJywsDBs3bgTwrrAQEVHRxaJCWkWlUuGnn34CAPj5+aFevXoSJyIiIimxqJBWWbVqFS5cuIASJUogMDBQ6jhERCQxFhXSGrdv38bw4cMBAFOnToWTk5PEiYiISGosKqQVUlJS8NVXXyE5ORne3t4YNmyY1JGIiEgLsKiQ5BQKBXr16oXr16/DwcEBv/32GwwM+KVJREQsKiSx58+fo3379tizZw9MTU2xbds2fuRDRERqRlIHIP2VmpqKpKQkGBoawsLCAiYmJgDeXdkTFRWFbdu2Ye7cuXj58iUsLCzwxx9/oFmzZhKnJiIibcKiQgXq/PnzWL58Of755x88ePAAKpVK/ZqpqSnMzc0hl8szTa9WrRo2bdqEGjVqSBGZiIi0GIsKFYg3b95g8ODB2LRpU7bzpKWlIS0tDQBgbGwMLy8v9OvXD3369IGREb8UiYjoQ/ztQJ8sOjoaPj4+uHPnDgwMDPD111+jT58+qFmzJuzs7KBUKpGcnAy5XI7k5GRYW1ujZMmSMDY2ljo6ERFpORYV+iTx8fFo1aoVIiMjUbp0aezYsQOenp6Z5jE0NISJiQmsra2lCUlERDqLRYXyTaVS4ZtvvkFkZCTKli2LU6dOwcXFRepYRESkRzR2efLDhw/h7++PcuXKwdzcHOXLl0dAQAAUCkWm+a5fv44mTZrAzMwMLi4uCAoK0lQkKmBBQUE4fPgwzM3N8ddff7GkEBFRgdPYEZU7d+5ApVJhxYoV+Pzzz3Hz5k30798fSUlJCAkJAQDI5XK0bt0a3t7eWL58OW7cuIF+/frB2toaAwYM0FQ0KgDXrl3DpEmTAACLFi1ClSpVJE5ERET6SCaEEIX1ZsHBwVi2bBkePHgAAFi2bBkmTpyI2NhY9Rgb48aNw+7du3Hnzp1crVMul8PKygoJCQmwtLTUWHb6P0IING/eHKdOnUK3bt2wfft2yGQyqWMREZEeKtSRaRMSEmBra6t+HhoaiqZNm6pLCgD4+PggIiICr1+/znIdaWlpkMvlmR5UuHbs2IFTp07B3Nwcv/zyC0sKERFpTKEVlcjISCxatAjff/+9elpsbCwcHR0zzff+eWxsbJbrCQwMhJWVlfrB8yIKV1paGkaPHg0AGDt2LFxdXSVORERE+izPRWXcuHGQyWQ5Pv77sc3Tp0/Rpk0bdO/eHf379/+kwOPHj0dCQoL68fjx409aH+XN2rVr8ejRI3z22WfqwkJERKQpeT6ZduTIkfDz88txHjc3N/W/nz17hhYtWqBhw4ZYuXJlpvmcnJwQFxeXadr759ndmM7U1BSmpqZ5jU0FQKFQIDAwEMC7oykWFhYSJyIiIn2X56Jib28Pe3v7XM379OlTtGjRAnXr1sXatWthYJD5AI6XlxcmTpyI9PR09SilR44cgbu7O2xsbPIajTRsw4YNiI6OhpOTE7777jup4xARURGgsXNUnj59iubNm8PV1RUhISF4/vw5YmNjM5170rt3b5iYmMDf3x/h4eHYunUrFixYgBEjRmgqFuWTUqnEnDlzAABjxoyBubm5xImIiKgo0Ng4KkeOHEFkZKR6aPV/e39FtJWVFQ4fPoxBgwahbt26sLOzw5QpUziGihY6cOAAIiMjOcYNEREVqkIdR0UTOI5K4WjdujWOHDmCUaNGITg4WOo4RERURLCo0EfdunULVatWhYGBAe7fv4+yZctKHYmIiIqIQh3wjXTT4sWLAQCdOnViSSEiokLFokI5ev36NdavXw8AGDp0qMRpiIioqGFRoRytWbMGycnJqF69Opo1ayZ1HCIiKmJYVChbSqVS/bHPkCFDeE8fIiIqdCwqlK19+/bh4cOHsLW1Re/evaWOQ0RERRCLCmVrwYIFAIABAwZwuHwiIpIEL0+mLN24cQM1atSAoaEhHjx4wLskExGRJHhEhbL0/mhK165dWVKIiEgyLCr0gfj4eGzcuBEAMHz4cInTEBFRUcaiQh9YtmwZ0tLS4OHhAS8vL6njEBFREcaiQpmkpqZi6dKlAN4dTeElyUREJCUWFcpk8+bNiI+PR+nSpdGtWzep4xARURHHokJqQgjMnz8fAPDTTz/B2NhY2kBERFTksaiQ2r59+3D9+nUUK1YM/fv3lzoOERERiwq9I4TA1KlTAQCDBw+GjY2NtIGIiIjAokL/359//onLly+jePHiGDVqlNRxiIiIALCoEICMjAxMmTIFwLtzU+zs7CRORERE9A6LCmH58uW4fv06rK2tMXLkSKnjEBERqbGoFHHx8fGYNGkSAGDWrFkoWbKkxImIiIj+D4tKESaEwNChQ5GQkIA6depgwIABUkciIiLKhEWlCFu+fDm2bNkCQ0NDLF26FIaGhlJHIiIiyoRFpYgKDQ3FsGHDAABz5syBp6entIGIiIiywKJSBP3zzz9o27YtFAoFunTpghEjRkgdiYiIKEssKkVIUlISfv75Z7Rq1QoJCQlo3LgxfvvtN954kIiItJaR1AGoYL169QoPHjzAq1ev8Pr1a7x58wavX7/GlStXcPDgQcjlcgBA9+7dsXbtWhQrVkzixERERNljUdEDN27cwJo1a7Bt2zY8e/Ysx3nLlSuHGTNmoFevXjySQkREWo9FRYclJydj5MiRWLFiBYQQ6ulOTk5wcHCAjY0NrK2tYWNjA1dXV7Rr1w716tXj1T1ERKQzWFR01PPnz9GmTRtcvnwZANC1a1f069cPLVq04Mc5RESkN1hUdFBCQgK8vb1x/fp12NnZYfPmzfD29pY6FhERUYFjUdExQgh8++23uH79OpycnHDixAm4u7tLHYuIiEgjeHmyjlm5ciX+/PNPmJiYYN++fSwpRESk11hUdMjdu3cxfPhwAEBgYCDq1q0rcSIiIiLNYlHRIcOGDUNKSgpatWqlHv6eiIhIn7Go6IjDhw/jwIEDMDY2xrJly2BgwF1HRET6j7/tdIBSqcSoUaMAAIMGDUKFChUkTkRERFQ4WFR0wJYtW3Djxg3Y2Nhg8uTJUschIiIqNCwqWk6lUiEwMBAAMGrUKNja2kqciIiIqPCwqGi5vXv3Ijw8HJaWlhg0aJDUcYiIiAoVi4oWE0Jg1qxZAN6dm2JlZSVxIiIiosLFoqLFQkNDcf78eZiZmfFyZCIiKpJYVLTY0qVLAQC9e/eGg4ODxGmIiIgKH4uKloqPj8f27dsBAAMHDpQ4DRERkTRYVLTU6tWroVAo4OHhwaHyiYioyGJR0UJKpRLLly8HAF7pQ0RERRqLihbav38/oqOjYWtrix49ekgdh4iISDIsKlpoyZIlAAB/f3+YmZlJnIaIiEg6MiGEkDrEp5DL5bCyskJCQgIsLS2ljvPJIiMjUaFCBchkMkRGRsLNzU3qSERERJLhERUt8/7clLZt27KkEBFRkceiokVSUlKwZs0aALwkmYiICGBR0SpbtmzB69evUbZsWbRp00bqOERERJJjUdESQggsXrwYAPDDDz/A0NBQ4kRERETSY1HREmFhYbh8+TJMTU3h7+8vdRwiIiKtwKKiJd4fTenVqxfs7OwkTkNERKQdWFS0QFxcHLZt2wYAGDx4sMRpiIiItAeLihb49ddfkZ6ejgYNGvC+PkRERP/CoiKxjIwM9dgpPJpCRESUmUaLSqdOneDq6gozMzOUKlUK33zzDZ49e5ZpnuvXr6NJkyYwMzODi4sLgoKCNBlJ6/zxxx94+vQpHBwc8L///U/qOERERFpFo0WlRYsW2LZtGyIiIvDHH3/g/v37mX4Zy+VytG7dGmXKlMGlS5cQHByMqVOnYuXKlZqMpTWEEAgMDATw7i7JpqamEiciIiLSLoV6r58///wTXbp0QVpaGoyNjbFs2TJMnDgRsbGxMDExAQCMGzcOu3fvxp07d3K1Tl2+18/+/fvRvn17FC9eHI8ePYKtra3UkYiIiLRKoZ2j8urVK2zatAkNGzaEsbExACA0NBRNmzZVlxQA8PHxQUREBF6/fp3letLS0iCXyzM9dNWsWbMAvBvgjSWFiIjoQxovKmPHjkWxYsVQsmRJREdHY8+ePerXYmNj4ejomGn+989jY2OzXF9gYCCsrKzUDxcXF82F16BDhw7hzJkzMDExwfDhw6WOQ0REpJXyXFTGjRsHmUyW4+PfH9uMHj0aV65cweHDh2FoaIhvv/0Wn/Jp0/jx45GQkKB+PH78ON/rkopSqcSoUaMAvDs3xdnZWeJERERE2skorwuMHDkSfn5+Oc7j5uam/rednR3s7OxQsWJFVK5cGS4uLjh37hy8vLzg5OSEuLi4TMu+f+7k5JTluk1NTXX+pNO1a9fi5s2bsLGxwaRJk6SOQ0REpLXyXFTs7e1hb2+frzdTqVQA3p1nAgBeXl6YOHEi0tPT1eetHDlyBO7u7rCxscnXe2i758+fY+LEiQCAyZMn89wUIiKiHGjsHJWwsDAsXrwYV69exaNHj3Ds2DH06tUL5cuXh5eXFwCgd+/eMDExgb+/P8LDw7F161YsWLAAI0aM0FQsSQkhMGDAAMTHx6NKlSoYOHCg1JGIiIi0msaKioWFBXbu3IlWrVrB3d0d/v7+qFGjBk6ePKn+6MbKygqHDx9GVFQU6tati5EjR2LKlCkYMGCApmJJas2aNdi9ezeMjY2xadMmnf8Ii4iISNMKdRwVTdCVcVROnDgBHx8fKBQKBAYGYty4cVJHIiIi0nq8108h+Ouvv9C+fXsoFAp069YNY8aMkToSERGRTmBR0aC4uDgMHjwYHTt2RHJyMtq0aYPffvsNBgb8byciIsqNPF/1Q1mTy+W4f/8+IiMjcffuXRw7dgynTp1CRkYGgHfjpfzyyy+ZRuElIiKinLGo5JMQAseOHcOGDRtw5swZ3L9/P8v5GjRogJkzZ6Jly5aFnJCIiEj3sajkw8mTJzF48GDcvHkz03R7e3t8/vnnqFChAmrXro0OHTrg888/lyglERGR7mNRyQMhBObMmYMJEyZACIFixYrB19cXnTp1Qv369Tl4GxERUQFjUcmDOXPmYPz48QCAfv36ISQkRG9H0CUiItIGvPwkl1avXq0uKXPmzMHq1atZUoiIiDSMRSUXbty4oR7ufvz48RwHhYiIqJCwqHxEeno6fH19oVAo0LFjR8ycOVPqSEREREUGi8pHzJ49G1euXIGtrS1WrlwJmUwmdSQiIqIig0UlBzExMQgMDAQALFmyBE5OThInIiIiKlpYVHIwdepUpKSkoGHDhujZs6fUcYiIiIocFpVs3LlzB6tXrwYABAUF8SMfIiIiCbCoZGPy5MlQKpXo3LkzGjVqJHUcIiKiIokDvmVj9uzZMDIywuTJk6WOQkREVGTJhBBC6hCfQi6Xw8rKCgkJCbC0tJQ6DhERERUgfvRDREREWotFhYiIiLQWiwoRERFpLRYVIiIi0losKkRERKS1WFSIiIhIa7GoEBERkdZiUSEiIiKtxaJCREREWotFhYiIiLQWiwoRERFpLRYVIiIi0losKkRERKS1jKQO8Kne3/xZLpdLnISIiIjyqkSJEpDJZNm+rvNF5e3btwAAFxcXiZMQERFRXiUkJMDS0jLb12Xi/SEJHaVSqfDs2bOPNrL8kMvlcHFxwePHj3P8T9RV3D7dp+/byO3Tffq+jdy+T6f3R1QMDAxQunRpjb6HpaWlXn4Bvsft0336vo3cPt2n79vI7dMcnkxLREREWotFhYiIiLQWi0oOTE1NERAQAFNTU6mjaAS3T/fp+zZy+3Sfvm8jt0/zdP5kWiIiItJfPKJCREREWotFhYiIiLQWiwoRERFpLRYVIiIi0lpFuqjMnDkTDRs2hIWFBaytrbOcJzo6Gu3bt4eFhQUcHBwwevRoZGRk5LjeV69eoU+fPrC0tIS1tTX8/f2RmJiogS3ImxMnTkAmk2X5uHDhQrbLNW/e/IP5f/jhh0JMnntly5b9IOvs2bNzXCY1NRWDBg1CyZIlUbx4cXTr1g1xcXGFlDj3Hj58CH9/f5QrVw7m5uYoX748AgICoFAoclxO2/ffkiVLULZsWZiZmcHT0xPnz5/Pcf7t27ejUqVKMDMzQ/Xq1bF///5CSpo3gYGBqF+/PkqUKAEHBwd06dIFEREROS6zbt26D/aVmZlZISXOu6lTp36Qt1KlSjkuoyv7D8j654lMJsOgQYOynF8X9t+pU6fQsWNHODs7QyaTYffu3ZleF0JgypQpKFWqFMzNzeHt7Y179+59dL15/T7OiyJdVBQKBbp3744ff/wxy9eVSiXat28PhUKBs2fPYv369Vi3bh2mTJmS43r79OmD8PBwHDlyBPv27cOpU6cwYMAATWxCnjRs2BAxMTGZHt999x3KlSuHevXq5bhs//79My0XFBRUSKnzbvr06Zmy/vTTTznOP3z4cOzduxfbt2/HyZMn8ezZM3z55ZeFlDb37ty5A5VKhRUrViA8PBzz5s3D8uXLMWHChI8uq637b+vWrRgxYgQCAgJw+fJl1KxZEz4+PoiPj89y/rNnz6JXr17w9/fHlStX0KVLF3Tp0gU3b94s5OQfd/LkSQwaNAjnzp3DkSNHkJ6ejtatWyMpKSnH5SwtLTPtq0ePHhVS4vypWrVqprynT5/Odl5d2n8AcOHChUzbduTIEQBA9+7ds11G2/dfUlISatasiSVLlmT5elBQEBYuXIjly5cjLCwMxYoVg4+PD1JTU7NdZ16/j/NMkFi7dq2wsrL6YPr+/fuFgYGBiI2NVU9btmyZsLS0FGlpaVmu69atWwKAuHDhgnragQMHhEwmE0+fPi3w7J9CoVAIe3t7MX369Bzna9asmRg6dGjhhPpEZcqUEfPmzcv1/G/evBHGxsZi+/bt6mm3b98WAERoaKgGEhasoKAgUa5cuRzn0eb95+HhIQYNGqR+rlQqhbOzswgMDMxy/h49eoj27dtnmubp6Sm+//57jeYsCPHx8QKAOHnyZLbzZPezSFsFBASImjVr5np+Xd5/QggxdOhQUb58eaFSqbJ8Xdf2HwCxa9cu9XOVSiWcnJxEcHCwetqbN2+Eqamp2Lx5c7bryev3cV4V6SMqHxMaGorq1avD0dFRPc3HxwdyuRzh4eHZLmNtbZ3pCIW3tzcMDAwQFham8cx58eeff+Lly5fo27fvR+fdtGkT7OzsUK1aNYwfPx7JycmFkDB/Zs+ejZIlS6J27doIDg7O8aO6S5cuIT09Hd7e3upplSpVgqurK0JDQwsj7idJSEiAra3tR+fTxv2nUChw6dKlTP/3BgYG8Pb2zvb/PjQ0NNP8wLvvSV3ZVwA+ur8SExNRpkwZuLi4oHPnztn+rNEW9+7dg7OzM9zc3NCnTx9ER0dnO68u7z+FQoGNGzeiX79+Od5AT9f2379FRUUhNjY20z6ysrKCp6dntvsoP9/HeaXzNyXUpNjY2EwlBYD6eWxsbLbLODg4ZJpmZGQEW1vbbJeRyurVq+Hj4/PRmzr27t0bZcqUgbOzM65fv46xY8ciIiICO3fuLKSkuTdkyBDUqVMHtra2OHv2LMaPH4+YmBj88ssvWc4fGxsLExOTD85RcnR01Lr99V+RkZFYtGgRQkJCcpxPW/ffixcvoFQqs/weu3PnTpbLZPc9qe37SqVSYdiwYWjUqBGqVauW7Xzu7u5Ys2YNatSogYSEBISEhKBhw4YIDw/X+M1X88PT0xPr1q2Du7s7YmJiMG3aNDRp0gQ3b95EiRIlPphfV/cfAOzevRtv3ryBn59ftvPo2v77r/f7IS/7KD/fx3mld0Vl3LhxmDNnTo7z3L59+6MnfOmS/GzzkydPcOjQIWzbtu2j6//3+TXVq1dHqVKl0KpVK9y/fx/ly5fPf/Bcysv2jRgxQj2tRo0aMDExwffff4/AwECtHeI6P/vv6dOnaNOmDbp3747+/fvnuKzU+4+AQYMG4ebNmzmevwEAXl5e8PLyUj9v2LAhKleujBUrVuDnn3/WdMw8a9u2rfrfNWrUgKenJ8qUKYNt27bB399fwmQFb/Xq1Wjbti2cnZ2znUfX9p+u0LuiMnLkyBwbLwC4ubnlal1OTk4fnLn8/moQJyenbJf57wlEGRkZePXqVbbLfKr8bPPatWtRsmRJdOrUKc/v5+npCeDdX/SF8YvuU/app6cnMjIy8PDhQ7i7u3/wupOTExQKBd68eZPpqEpcXJzG9td/5XX7nj17hhYtWqBhw4ZYuXJlnt+vsPdfduzs7GBoaPjBFVY5/d87OTnlaX5tMHjwYPVJ9Xn9q9rY2Bi1a9dGZGSkhtIVLGtra1SsWDHbvLq4/wDg0aNH+Pvvv/N8FFLX9t/7/RAXF4dSpUqpp8fFxaFWrVpZLpOf7+M8K5AzXXTcx06mjYuLU09bsWKFsLS0FKmpqVmu6/3JtBcvXlRPO3TokFadTKtSqUS5cuXEyJEj87X86dOnBQBx7dq1Ak5W8DZu3CgMDAzEq1evsnz9/cm0O3bsUE+7c+eO1p5M++TJE1GhQgXx1VdfiYyMjHytQ5v2n4eHhxg8eLD6uVKpFJ999lmOJ9N26NAh0zQvLy+tPBlTpVKJQYMGCWdnZ3H37t18rSMjI0O4u7uL4cOHF3A6zXj79q2wsbERCxYsyPJ1Xdp//xYQECCcnJxEenp6npbT9v2HbE6mDQkJUU9LSEjI1cm0efk+znPOAlmLjnr06JG4cuWKmDZtmihevLi4cuWKuHLlinj79q0Q4t0XWbVq1UTr1q3F1atXxcGDB4W9vb0YP368eh1hYWHC3d1dPHnyRD2tTZs2onbt2iIsLEycPn1aVKhQQfTq1avQty87f//9twAgbt++/cFrT548Ee7u7iIsLEwIIURkZKSYPn26uHjxooiKihJ79uwRbm5uomnTpoUd+6POnj0r5s2bJ65evSru378vNm7cKOzt7cW3336rnue/2yeEED/88INwdXUVx44dExcvXhReXl7Cy8tLik3I0ZMnT8Tnn38uWrVqJZ48eSJiYmLUj3/Po0v7b8uWLcLU1FSsW7dO3Lp1SwwYMEBYW1urr7T75ptvxLhx49TznzlzRhgZGYmQkBBx+/ZtERAQIIyNjcWNGzek2oRs/fjjj8LKykqcOHEi075KTk5Wz/Pf7Zs2bZo4dOiQuH//vrh06ZL46quvhJmZmQgPD5diEz5q5MiR4sSJEyIqKkqcOXNGeHt7Czs7OxEfHy+E0O39955SqRSurq5i7NixH7ymi/vv7du36t91AMQvv/wirly5Ih49eiSEEGL27NnC2tpa7NmzR1y/fl107txZlCtXTqSkpKjX0bJlS7Fo0SL18499H3+qIl1UfH19BYAPHsePH1fP8/DhQ9G2bVthbm4u7OzsxMiRIzO16uPHjwsAIioqSj3t5cuXolevXqJ48eLC0tJS9O3bV11+tEGvXr1Ew4YNs3wtKioq0/9BdHS0aNq0qbC1tRWmpqbi888/F6NHjxYJCQmFmDh3Ll26JDw9PYWVlZUwMzMTlStXFrNmzcp09Ou/2yeEECkpKWLgwIHCxsZGWFhYiK5du2b65a8t1q5dm+XX678PjOri/lu0aJFwdXUVJiYmwsPDQ5w7d079WrNmzYSvr2+m+bdt2yYqVqwoTExMRNWqVcVff/1VyIlzJ7t9tXbtWvU8/92+YcOGqf8vHB0dRbt27cTly5cLP3wu9ezZU5QqVUqYmJiIzz77TPTs2VNERkaqX9fl/ffeoUOHBAARERHxwWu6uP/e/8767+P9dqhUKjF58mTh6OgoTE1NRatWrT7Y9jJlyoiAgIBM03L6Pv5UMiGEKJgPkYiIiIgKFsdRISIiIq3FokJERERai0WFiIiItBaLChEREWktFhUiIiLSWiwqREREpLVYVIiIiEhrsagQERGR1mJRISIiIq3FokJERERai0WFiIiItBaLChEREWmt/wdlRp6galEQIQAAAABJRU5ErkJggg==\n"
- },
- "metadata": {},
- "output_type": "display_data"
- }
- ],
- "source": [
- "def ground_truth(xs):\n",
- " oscillating_component = np.sin((4. * xs) - 3.)\n",
- " parabolic_component = (-0.1 * xs ** 2.) + (2.5 * xs) + 1.\n",
- " ys = oscillating_component + parabolic_component\n",
- " return ys\n",
- "\n",
- "study_metadata = VariableCollection(\n",
- " independent_variables=[Variable(name=\"x1\", allowed_values=np.linspace(-10, 10, 500))],\n",
- " dependent_variables=[Variable(name=\"y\")],\n",
- " )\n",
- "\n",
- "plt.plot(study_metadata.independent_variables[0].allowed_values, ground_truth(study_metadata.independent_variables[0].allowed_values), c=\"black\", label=\"ground truth\")\n",
- "plt.legend()"
- ],
- "metadata": {
- "collapsed": false
- }
- },
- {
- "cell_type": "markdown",
- "source": [],
- "metadata": {
- "collapsed": false
- }
- },
- {
- "cell_type": "markdown",
- "source": [
- "## Experiment Runner\n",
- "We create a synthetic experiment that adds noise."
- ],
- "metadata": {
- "collapsed": false
- }
- },
- {
- "cell_type": "code",
- "execution_count": 3,
- "outputs": [
- {
- "data": {
- "text/plain": ""
- },
- "execution_count": 3,
- "metadata": {},
- "output_type": "execute_result"
- },
- {
- "data": {
- "text/plain": "",
- "image/png": "iVBORw0KGgoAAAANSUhEUgAAAioAAAGdCAYAAAA8F1jjAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8o6BhiAAAACXBIWXMAAA9hAAAPYQGoP6dpAABUIklEQVR4nO3dd1xV5R8H8M9lXUAZBsgolovcmqmB5cptqWmaWopmKoYTF7hwpKDi1sBcaJTlSE1NzUzzl+LWVHCigAvE2CAg9z6/P/h5fyJDwHs598Ln/XrdF9xznvOc7+EwvjznGTIhhAARERGRFtKTOgAiIiKiojBRISIiIq3FRIWIiIi0FhMVIiIi0lpMVIiIiEhrMVEhIiIircVEhYiIiLQWExUiIiLSWjqfqAghkJqaCs5bR0REVPHofKKSlpYGCwsLpKWlSR0KERERqZnOJypERERUcTFRISIiIq3FRIWIiIi0FhMVIiIi0lpMVIiIiEhrGUgdQHkQQiA3NxcKhULqUEjL6Ovrw8DAADKZTOpQiIioEBU+UcnJycGjR4+QmZkpdSikpUxNTWFvbw8jIyOpQyEiopdU6ERFqVTi7t270NfXh4ODA4yMjPifM6kIIZCTk4OEhATcvXsXtWvXhp4en4YSEWmTCp2o5OTkQKlUwtHREaamplKHQ1rIxMQEhoaGiImJQU5ODoyNjaUOiYiIXlAp/n3kf8lUHH5/EBFpL/6GJiIiIq3FRIVKbMiQIejVq5fUYRARUSXCRIWIiIi0FhMVIiIi0lpMVLTUjh070LBhQ5iYmMDKygodOnRARkYGzp49i44dO8La2hoWFhZo06YNLly4kO9YmUyGtWvX4qOPPoKpqSnq1q2L8PBw3L59G23btkWVKlXg4eGBqKgo1TGzZ89GkyZNsHbtWtUoqX79+iElJaXIGJVKJQICAuDq6goTExM0btwYO3bsUO1PSkrC559/DhsbG5iYmKB27drYtGmT+r9YRESEkBDAxSXvY0XCREULPXr0CAMGDMCXX36Ja9eu4dixY+jduzeEEEhLS4Onpyf+/vtvnDp1CrVr10a3bt2QlpaWr4558+Zh8ODBuHTpEt5++20MHDgQI0eOhJ+fH86dOwchBEaPHp3vmNu3b2Pbtm3Yu3cvDh48iIsXL+Lrr78uMs6AgABs2bIFISEhiIiIwIQJE/DFF1/gr7/+AgDMnDkTkZGROHDgAK5du4bg4GBYW1ur/wtGREQIDARiYvI+VihCx6WkpAgAIiUlpcC+p0+fisjISPH06VMJIiu78+fPCwAiOjr6lWUVCoUwMzMTe/fuVW0DIGbMmKF6Hx4eLgCIDRs2qLZt3bpVGBsbq977+/sLfX19cf/+fdW2AwcOCD09PfHo0SMhhBCenp6iZ8+eQgghsrKyhKmpqTh58mS+eIYNGyYGDBgghBDi448/FkOHDi3FlUtDV79PiIheFBwshLNz3seKhC0qWqhx48b48MMP0bBhQ/Tt2xfr1q1DUlISACA+Ph7Dhw9H7dq1YWFhAXNzc6SnpyM2NjZfHY0aNVJ9bmtrCwBo2LBhvm1ZWVlITU1VbXNycsKbb76peu/u7g6lUokbN24UiPH27dvIzMxEx44dUbVqVdVry5YtqkdKo0aNwk8//YQmTZpgypQpOHnypBq+OkREVBgvLyA6Ou8jUHEeBTFRKaHyvOH6+vo4fPgwDhw4gHr16mHVqlVwc3PD3bt34enpiUuXLmHFihU4efIkLl26BCsrK+Tk5OSrw9DQUPX582UDCtumVCrLFGN6ejoAYP/+/bh06ZLqFRkZqeqn0rVrV8TExGDChAl4+PAhPvzwQ0yaNKlM5yMioqIJIZCYmIinT5+qtlWUR0FMVEqovG+4TCZDq1atMGfOHFy8eBFGRkbYtWsXTpw4gbFjx6Jbt26oX78+5HI5njx5opZzxsbG4uHDh6r3p06dgp6eHtzc3AqUrVevHuRyOWJjY1GrVq18L0dHR1U5GxsbeHp6IiwsDMuXL8d3332nlliJiAi4ceMGhg4dCisrK1hZWcHU1BQNGjTAokWL4OOTCWdnwNdX6ihfT4Ve60edfH3zkpTyuOGnT5/GkSNH0KlTJ1SvXh2nT59GQkIC6tati9q1a+P777/Hu+++i9TUVEyePBkmJiZqOa+xsTE8PT0RFBSE1NRUjB07Fv369YOdnV2BsmZmZpg0aRImTJgApVKJ999/HykpKThx4gTMzc3h6emJWbNmoVmzZqhfvz6ys7Oxb98+1K1bVy2xEhFVZkIILFmyBNOmTcOzZ8/y7YuIiMDUqVNRs+Z3CA1dj7Zt20oTpJqwRaWEXn72p0nm5uY4fvw4unXrhjp16mDGjBlYsmQJunbtig0bNiApKQnvvPMOBg0ahLFjx6J69epqOW+tWrXQu3dvdOvWDZ06dUKjRo3w7bffFll+3rx5mDlzJgICAlC3bl106dIF+/fvh6urKwDAyMgIfn5+aNSoEVq3bg19fX389NNPaomViKiyUiqVaN9+HCZPnoxnz56hW7duOH78OLKyshAfH4/169fjrbfeQlRUFNq1a4egoCAIIaQOu8xkQpejB5CamgoLCwukpKTA3Nw8376srCzcvXsXrq6uXBX3FWbPno3du3fj0qVLUodS7vh9QkS6QgiBkSNHYt26dQCAatWW499/x6r6HT6XmpqKCRMmYOPGjQCA0aNHY8WKFTq5CKvuRUxERFRJLVmyBOvWrYNMpgcrqzAsWDCuQJIC5LXMr1+/HkuWLAEArF69GkOHDkVubm55h/zamKgQERFpuZAQwNb2N0yZMgUAsHz5Mjx58nmx3RFkMhl8fHzw448/Ql9fH1u2bMHnn39eoE+LtmOiQgDyHv1Uxsc+RES64JtvHuDx48GqRz9jxowp8bEDBgzA9u3bYWhoiG3btqFv377Izs4GUPjUGy9uE0Lg9OnT6r2YUmKiQkREpMUUCgWqVBkE4F84OjbFihUrCn3cU5xPPvkEu3fvhlwux549e9CzZ09kZmYWOvXG820BAUpMnDgR7733nqTrtDFRISIiKoP09HRcvXoVt2/fhkKh0Nh5Fi5ciJs3j6JKlSr444+fIJfLy1RPt27dsH//fpiamuLQoUN4//338eWXtwvMteLrCzg5PYODw5dYtmwZAOSbxby8MVEhIiIqhfDwcHTr1g2WlpZo2LAhateuDSsrK4waNQqPHj1S+7lmzZoFAFizZg3q1KnzWvV9+OGHOHToEKytrXHx4kUEBb0Db+/F6N8/GUDe0OfatY/AyqolTp3arOrbMm7cuNe9lDLj8GSq9Ph9QkQloVQq4efnh0WLFqm2VatWDVlZWaqp66tWrYo5c+Zg/Pjxrz0UODk5GU2aNEFMTAwGDhyIsLCwUj/yKcqDBw8wcOBAHD9+HEDe0i0uLi5ISkpCYmIigLxrCwsLQ7du3dRyzrJiiwoREdErKBQKfPnll6okxdPTEzdv3kRiYiLS0tJw5MgRtGzZEunp6Zg4cSI+/fRTpKWllajuwjq0CiEwfPhwxMTEoGbNmggODlZbkgIAb775Jv78809s3LgRDRo0gEKhQFRUFBITE2FmZoavv/4aERERkicpAACJVm1Wm5SUFAFApKSkFNj39OlTERkZKZ4+fSpBZKQr+H1CRMVRKpXC09NTABD6+voiLCxMCCFEcLAQzs55H4UQQqFQiODgYGFkZCQAiAYNGoj582PylSmMs7MQQN7H59auXSsACAMDA3HmzBkNXdn/xcbGiv/85z/i4sWLWve7kIkKqcWmTZuEhYWF1GEIT09P0bNnz1Idw+8TIirOokWLVEnDjh07VNsLSzCEECI8PFzY29v/L7GxE8D5AmVe9HLCc+LECSGXywUAsXjxYrVey8vn0gV89EPlIjo6GjKZTG1ztai7PiKiwvzxxx/w/d+QmJUrV6JPnz6qfb6+KHR14vfeew+nT5/+3yOVOMhkrdG9+74iz/HiWnJRUVHo2bMnsrOz0atXL/j4+Kj1egobjqztmKhUEDk5OVKHoBYV5TqISPc9efIEX3zxBZRKJYYOHQqvl6aBLW6xWkdHR/z999/o2LEjhMhASEhPrFmzptjzRUZGol27dnjy5AmaNWuGsLAwta/NU1Rypc2YqGihtLQ0fP7556hSpQrs7e2xbNkytG3bFuPHj1eVcXFxwbx58zB48GCYm5tjxIgRAICdO3eifv36kMvlcHFxUa3z8JxMJsPu3bvzbbO0tERoaCiA/7dU/PLLL2jXrh1MTU3RuHFjhIeH5zsmNDQUTk5OMDU1xSeffIJ///232Gt6vqJy06ZNIZPJVMuODxkyBL169cL8+fPh4OAANze3EsVZVH3PBQUFwd7eHlZWVvD29ta5KaOJSFrBwQLOzqMQHx+PevXqYc2aNaXuzGphYYH9+/dj2LBhUCqVGD16NPr06YMHDx4UKHvgwAG8//77uHfvHtzc3LB3715UqVJFXZejUlxypa0MpA6gPAkhkJmZKcm5TU1NS/xN7uPjgxMnTuDXX3+Fra0tZs2ahQsXLqBJkyb5ygUFBWHWrFnw9/cHAJw/fx79+vXD7Nmz8dlnn+HkyZP4+uuvYWVlhSFDhpQq3unTpyMoKAi1a9fG9OnTMWDAANy+fRsGBgY4ffo0hg0bhoCAAPTq1QsHDx5UxVCUM2fOoEWLFvjjjz9Qv359GBkZqfYdOXIE5ubmOHz4cInjK66+o0ePwt7eHkePHsXt27fx2WefoUmTJhg+fHipvgZEVHnNmrUVmZk7ABhgy5YtMDExKVM9hoaGWLduHWrVqoWZM2fil19+wcGDB9G3b1+0aNECmZmZ2LdvH/766y8AeY+N9u3bBysrKzVejY6TupPM6ypNZ9r09HQBQJJXenp6ia4nNTVVGBoaiu3bt6u2JScnC1NTUzFu3DjVNmdnZ9GrV698xw4cOFB07Ngx37bJkyeLevXqqd4DELt27cpXxsLCQmzatEkIIcTdu3cFALF+/XrV/oiICAFAXLt2TQghxIABA0S3bt3y1fHZZ58V25n2eb0XL17Mt93T01PY2tqK7OzsfNtLGmdh9Tk7O4vc3FzVtr59+4rPPvusyNjYmZaIXnT//n1hYmIpAIiPPpqjtnovX74s3N3dC/0bYWBgICZMmCAyMjLUdr6Kgo9+tMydO3fw7NkztGjRQrXNwsJC9UjkRe+++26+99euXUOrVq3ybWvVqhVu3bpV6umdGzVqpPrc3t4eAPD48WPVeVq2bJmvvLu7e6nqf1HDhg3ztYi8rvr160NfX1/13t7eXhU7EemGwuYW0cQxLxNC4KuvvsLTp8l499138csvfiWu+1VlGjZsiBMnTuD48eOYPHkyevXqhc8++wyBgYGIiorC0qVLYWpqWvbgK6hK9ejH1NQU6enpkp1b3cry/FImk0G8NBlxYf03DA0N8x0D5M3KqAmFXUdJ4yzMi7E/r0tTsRORZrw4OuXl/hS5ubmQyWT5/iF51TEltW7dOhw8eBByuRxbtmxR/T4pSd0lKbN2rQyBgR/A1/cDvDDBbT4hIXl1+PrqVl8STalULSoymQxVqlSR5FXS/ik1atSAoaEhzp49q9qWkpKCmzdvvvLYunXr4sSJE/m2nThxAnXq1FH9QNvY2ORbi+LWrVul7rdTt27dAst+nzp1qthjnreYlLRl51VxlrY+ItItL49OefToESZPnqz6HWlsbIwmTZpg4cKFqn9ACxvRUppWljt37qiGAy9YsAB169YtMp6SxFyYkgwP1sUhxJpUqRIVXWBmZgZPT09MnjwZR48eRUREBIYNGwY9Pb1XJjsTJ07EkSNHMG/ePNy8eRObN2/G6tWrMWnSJFWZ9u3bY/Xq1bh48SLOnTsHLy+vAi0QrzJ27FgcPHgQQUFBuHXrFlavXo2DBw8We0z16tVhYmKCgwcPIj4+HikpKcWWf1Wcpa2PiHTLi6NTwsLCUKOGG4KCgnD37l0Aea0q//zzD3x9fVGjRg2sX78eI0eKAiNaSvpHX6FQYOjQocjIyMAHH3xQYBG+koyWKUkZdSU8lQkTFS20dOlSuLu746OPPkKHDh3QqlUr1K1b95UL5r3zzjvYtm0bfvrpJzRo0ACzZs3C3Llz8434WbJkCRwdHfHBBx9g4MCBmDRpUqkfS7333ntYt24dVqxYgcaNG+P333/HjBkzij3GwMAAK1euxNq1a+Hg4ICePXsWW/5VcZa2PiLSPUIIzJs3D4MGDUJWVhqAFrCx2YX4+HjExMRg/fr1qFWrFhISEjB8+HD06dNHtaDecyX9oz937lwcP34cVapUwaZNmwo8VlIXdSU8lYq0fXlfX2WYQj89PV1YWFjkG4lD6lNRvk+IKpoVK1aoRsV06TJNODnlFpj6PScnRyxevFgYGhoKAMLFxUVcuHChVOfZt2+f6jybN29W4xWQOrBFRQtdvHgRW7duRVRUFC5cuIDPP/8cANhqQESVxsGDBzFhwgQAwPz583HgwHzExOgXaGUwNDTEpEmTcOrUKdSoUQPR0dHw8PBAWFhYic5z9uxZDBw4EAAwatQoDB48WK3XQa+PiYqWCgoKQuPGjdGhQwdkZGTgP//5D6ytraUOi4hI4+7du4f+/furpq738/N75THvvPMOzp07h65duyIrKwuDBg3C2LFj8fTp0yKPOX/+PDp16oTU1FS0bt0ay5YtU+dlkJowUdFCTZs2xfnz55Geno7ExEQcPnwYDRs2lDosIiKNE0Jg5MiRSElJQcuWLREcHFziUZPVqlXD3r17MXPmTADAqlWr0LBhQ+zfvz/fdAcKhQIhISFo3bo1kpOT4eHhgX379kEul2vkmuj1MFEhIqISUceEaq8SFhaGAwcOwMjICJs2bSo2eSgsHn19fcydOxf79u3Dm2++iaioKHz00UeoU6cOPD098cUXX8DV1RWjRo1CZmYmOnbsiAMHDsDMzExzF0WvRSbES7Nq6ZjU1FRYWFggJSUF5ubm+fZlZWXh7t27cHV1feWIGaq8+H1CVFBhk465uOQN9XV2zhuVom7PFwBMTEzE/PnzMW3atGLLvyqetLQ0zJ07F8HBwcjIyMi3T0/PCn36zMTWraM1NsKH1KNStKjoeC5GGsbvD6KCCpt/RFPzezxvGenWbTQSExPRpEkTTJ48+ZXHvSoeMzMzLF68GI8ePcKuXbsQEBCAwMBA2NjshVJ5H2fOjGOSogMqdIuKQqHAzZs3Ub16da5ESUX6999/8fjx43wz+BJVduU5jXtey8gvAPpAX18fZ8+eRdOmTTV2Pk5Rr1sqdKIC5E27nJycjOrVq8PU1LTEnbKo4hNCIDMzE48fP4alpaVq8UUiKl9LliRiypR6UCrjMW3aNMyfP1/qkEiLVPhFCe3s7ACAq+dSkSwtLVXfJ0RU/q5enQilMh5vv/22asQO0XMVPlGRyWSwt7dH9erVS7z6LlUehoaGfNxDVEYleYTyqjKHDh1CaGgoZDIZNm7cyA7tVECFf/RDRESaUZJRQMWVSUtLQ4MGDRAbG4tx48Zh+fLlGo23KOyzot0qxagfIiIqmzt37mDp0qUYMWIERo0ahdWrV+PBgwcAXn8l4AkTJiA2Nhaurq6S9ksp6QrLJA22qBARUQFJSUmYNGkSQkNDoVQq8+0zMDBA//79MWfOHNSoUaNM9e/YsQN9+/aFTCbD0aNH0aZNG3WEXSZsUdFuTFSIiCifW7duoWvXroiKigIAtG/fHh988AFyc3Nx9OhRnDx5EgBgYmKCuXPnYsKECaXq6xUVFYV3330XycnJ8PPzw4IFCzRyHVQxMFEhIiKV+/fvw8PDA/fu3YOzszN++OEHtGrVKl+Zc+fOYcqUKTh69CgAwMPDA1u2bEHNmjVfWf+TJ0/g4eGBW7duoUWLFvj7779haGiokWuhikGjfVSOHz+Ojz/+GA4ODpDJZNi9e3e+/UIIzJo1C/b29jAxMUGHDh1w69YtTYZERFTplHSNnuTkZHTp0gX37t2Dm5sbTp8+XSBJAYB3330XR44cwfr162FmZoaTJ0+icePGWLduXbEzPScnJ+Pjjz/GrVu34OzsjN27dzNJoVfSaKKSkZGBxo0bY82aNYXuX7RoEVauXImQkBCcPn0aVapUQefOnZGVlaXJsIiIKpWXO4sWlrgIITBs2DBERETAwcEBhw4dgq2tbZF1ymQyDBs2DJcvX0abNm2QkZGBESNGoH79LnBwuFggKbpw4QLc3d1x6tQpWFpa4sCBA5xkkUpGlBMAYteuXar3SqVS2NnZicWLF6u2JScnC7lcLrZu3VrielNSUgQAkZKSos5wiYgqjOBgIZyd8z4Kkfc5kPfxufXr1wsAwtDQUJw9e7ZU9SsUChEUFCSMjIwEAAFAGBu3F7NmzRLz5s0T3bp1EzKZTAAQDg4O4tKlS+q6NKoEJEtUoqKiBABx8eLFfOVat24txo4dW2Q9WVlZIiUlRfW6d+8eExUiolJ4OXGJiooSpqamAoBYuHBhmeu9efOmaNHicwHIVAnLi68BAwaIx48fq+ciqNKQbGbauLg4ACjQtGhra6vaV5iAgADMmTNHo7EREVVkXl7/H4YrhMCYMWOQmZmJtm3bYtKkSWWut3bt2jh9Ogx3787Dr7/+ioiICCgUCtSpUwe9evWCm5ubmq6AKhOdm0Lfz88PPj4+qvepqalwdHSUMCIiIt21e/du/PbbbzAyMsLatWuhp/f6XRddXV0xbtw4NURHJOHMtM8XgYuPj8+3PT4+vtgF4uRyOczNzfO9iIio9DIyMlQJRfv2k9GpU51XjgwiKm+SJSqurq6ws7PDkSNHVNtSU1Nx+vRpuLu7SxUWEVGlMW/ePNy7dw8uLi6IiJhWbtPIl3S4NBGg4UQlPT0dly5dwqVLlwAAd+/exaVLlxAbGwuZTIbx48fjm2++wa+//oorV65g8ODBcHBwQK9evTQZFhGR1invP96RkZFYsmQJAGDVqlWYNs30lev2qAvX1qHS0OjMtMeOHUO7du0KbPf09ERoaCiEEPD398d3332H5ORkvP/++/j2229Rp06dEp+DM9MSUUVQkpWI1UUIgfbt2+PYsWPo0aMH9uzZo9kTvoRr61BpcAp9IiItUJ5/vL///nsMHjwYJiYmiIyMhIuLi2ZPSPQamKgQEVUiiYmJePvtt5GQkIDAwEBMnTpV6pCIiiVZZ1oiIip/fn5+SEhIQL169TBhwgSpwyF6JSYqRESVRHh4OL777jsAQHBwMIyMjCSOiOjVmKgQEVUC6enp8PT0BAAMGTIErVu3ljgiopJhokJEpEUyMzOxfPlytGrVCtWqVUO1atXw3nvvYfHixcUuL/Iq48aNw61bt+Do6IilS5eqMWIizWJnWiIiLfHXX3/hiy++wP379wvdb2hoCG9vb8ycORNvvPFGievduHEjhg0bBplMhqNHj6JNmzbqCplI49iiQkSkBX788Ud06NAB9+/fh7OzM1avXg17+ysAruCNN9bivffew7Nnz7B8+XLUqlULISEhUCgUr6x33759GDFiBABg5syZTFJI5zBRISKS2O+//47BgwcjNzcX/fv3x9WrV+Ht7Y1ZsxrA2bkB5s8fgfDwcBw6dAgNGjRAUlISRo0ahRYtWuDUqVNF1rtr1y7069cPCoUCnp6emD17dvldFJGa8NEPEZGEIiIi4OHhgdTUVAwaNAihoaHFrmCcm5uL4OBgzJw5EykpKQCAXr16YcSIEWjbti02bZLjm2+uwMlpCU6f/h4A8PHHH2Pnzp0wNDQsl2siUicmKkREEsnKysI777yDa9euoXXr1vj9998hl8tLdOzjx4/h5+eHjRs3vrRHH8D/Hwn5+Phg4cKFMDAwUF/gROWIj36IiCQyY8YMXLt2DXZ2dti5c2eJkxQAqF69OjZs2IBZsyJgZjYO5uZ2/9ujgExmgiZNPsGpU6ewZMkSJimk09iiQkQkgRMnTuCDDz6AEAL79u1D9+7dy1TP88UMnZwEzp//F9nZ2bC1tWVyQhUGW1SIiMqZQqGAt7c3hBD48ssvy5ykAHmLGDo7A35+MlhbW+PNN99kkkIVChMVIqJytn79evzzzz+oVq0aFi1aVOLjQkLyWlBCQv6/zcsLiI7W/IrLRFJhokJEVI6SkpIwffr0/72bg+3brUp8bGBg3mOewEDNxEakjZioEBGVo7lz5+Lff/+FoWE9JCV5lSrpeP6Yx9dXc/ERaRsmKkREpVDY45eSunbtGlavXg0AGDVqOZydDUuVdPAxD1VGHPVDRFQKz0fZODvnJQ0lJYRA165dcejQIfTo0QN79uzRVIhEFQpbVIiISqGsj1/279+PQ4cOwdDQEEuWLNFMcEQVEFtUiIg0LCcnB/Xr18ft27cxZcoULFy4UOqQiHQGW1SIiIrwOv1RXrRy5Urcvn0btra2L4z4IaKSYIsKEVERytof5UXx8fGoXbs20tLSsHHjRgwdOlSdIRJVeGxRISIqgjqGA/v5+SEtLQ3NmjWDp6en+oIjqiTYokJEpCF//PEHOnbsCACwtT2B2bM9OLSYqJTYokJEpAFpaWkYNmwYAMDMzBvx8R6cUZaoDJioEBG9IDc3Fzk5Oa9VhxACY8aMQWxsLFxcXDB3biBnlCUqIyYqRFTpJScnY+7cuahfvz6MjIwgl8vh5OSEkSNH4s8//0Rpn5CvWrUKmzdvhp6eHjZu3Ijx46tyRlmiMmIfFSKq1A4cOABPT08kJCQUWaZZs2aYMWMGevbsCZlMVmx9+/btQ69evaBQKLBkyRL4+PioO2SiSoUtKkRUaW3YsAHdu3dHQkIC6tati7CwMNy/fx8JCQk4ePAgRowYAVNTU5w/fx6ffPIJWrRogUOHDhXawiKEwIYNG9C7d28oFAoMHjwYEyZMkOCqiCoWtqgQUaW0d+9e9OzZE0IIDBs2DGvWrIFcLi9Q7smTJ1i2bBlWrFiBjIwMAECDBg0wdOhQtG7dGmZmZrh69Sq+/fZb/PnnnwCA/v37Y8uWLTA0NCzXayKqiJioEFGlExkZiffeew9paWkYOXIkgoODIZPJEBICBAbmdXp9uT/J48ePERgYiODgYGRlZRVar5GREebMmYMpU6ZAT48N1kTqwESFiCqVp0+fomnTprhx4wbatGmDw4cPq1o+SjITbXJyMn788Ufs2rULV65cwdOnT+Hk5ITOnTvD29sbrq6u5XYtRJUBExUiqlSmTp2KRYsWwcHBAZcuXYKNjY1qX3EtKkQkDbZNElGlce7cOQQFBQEAevYMQfPmNvkWHPTyQqmHERe2cKG6FjMkIraoEFEloVQq0bJlS5w7dw79+/dHePjW115wECj8cZE6FjMkojxsUSGiSmHbtm04d+4cqlatiuXLl6tlwUGg8IUL1VU3EbFFhYgqgezsbLz99tuIjo7GvHnzMGPGDKlDIqISYosKEVV43377LaKjo2Fvb89J2Ih0DBMVIqrQkpKSMG/ePADAvHnzUKVKFYkjIqLSYKJCRBVaYGAgkpKSUL9+fXh6ekodDhGVEhMVIqqwYmNjsWLFCgDA48cLsX69gcQREVFpMVEhogpr5syZyM7OhlzeFgkJ3RAYKHVERFRaTFSIqEK6dOkSvv/+ewDA+PGL4Ows43BhIh3E4clEVCF16tQJhw8fRv/+/bF161apwyGiMmKLChFVOAcOHFAtNjh//nypwyGi18BEhYh02svr6uTk5KjmShk7dixq1KghXXBE9NqYqBCRTnk5MQkMzFtX53lH2TVr1uDGjRuwsbHBzJkzJYuTiNSDiQoR6ZSXE5MX19W5d+8eZs+eDQBYsGABLCwspAuUiNSCiQoR6ZSXF/zz8spboXjkSIERI0YgNTUVLi4tMW/eUFWrCxHpLo76IaIKYePGjRg2bBjkcjmsrC7h4cO34eycl8QQke7iNI1EpPPOnDkDb29vAHnr+ZiZvY3AQHDeFKIKgC0qRCQJpVKJAwcO4KeffsI///yDp0+fwsnJCe+//z569OiBZs2alaiee/fuoUWLFoiLi0P37t2xZ88e6Ovrazh6IiovTFSIqNxFRUXB09MTJ06cKLLMu+++i1GjRqF///4wNTUttExkZCS6d++O6OhoNGjQACdOnODvAaIKhokKEZWrM2fOoGvXrkhMTESVKlUwfPhwdOzYEebm5oiIiMCRI0ewZ88e5OTkAAAsLS0xePBg9OjRA61atYJcLkdMTAw2btyIoKAgPH36FLVq1cKRI0fg5OQk8dURkboxUSGicnPjxg20atUK//77L1q0aIHt27cXmlwkJCQgNDQUISEhuHPnTr59crkc2dnZqvcdO3ZEWFgYqlevrvH4iaj8MVEhonKRkJCA5s2bIyYmBs2bN8eff/6JqlWrFnuMUqnEoUOH8PPPP+P333/Ho0ePAAD6+vrw8PDAmDFj8Omnn0Imk5XHJRCRBLQiUVmzZg0WL16MuLg4NG7cGKtWrUKLFi1KdCwTFSLtJ4RAnz59sGvXLtSqVQsnT56EjY1NqetISEhAZmYmbG1tYWJioqFoiUibSD7h288//wwfHx/4+/vjwoULaNy4MTp37ozHjx9LHRoRqUlYWBh27doFQ0NDbN++vdRJCgDIZDJUr14dLi4uTFKIKhHJW1RatmyJ5s2bY/Xq1QDymnodHR0xZswY+JZgEgS2qBBpt/j4eLi5uSElJQXz58/HtGnTpA6JiHSIpC0qOTk5OH/+PDp06KDapqenhw4dOiA8PLzQY7Kzs5GamprvRUTaa8aMGUhJSUGzZs0wZcoUqcMhIh0jaaLy5MkTKBQK2Nra5ttua2uLuLi4Qo8JCAiAhYWF6uXo6FgeoRJRGVy4cAEbNmwAAKxcuRIGBv+fDPvlVZCJiAojeR+V0vLz80NKSorqde/ePalDIqKXhIQAzs4C/ftPgBACAwcOhIeHR74yL6+CTERUGEnX+rG2toa+vj7i4+PzbY+Pj4ednV2hx8jlcsjl8vIIj4jKKDAQiI39HcBxGBsbI7CQbMTXF1yPh4heSdIWFSMjIzRr1gxHjhxRbVMqlThy5Ajc3d0ljIyIXsfUqQJGRjMAAF9//XWhj2i9vPJWNvbyKufgiEinSP7ox8fHB+vWrcPmzZtx7do1jBo1ChkZGRg6dKjUoRFRGTk4/IqcnHOoUqUKpk6dWuLjXu63wn4sRCT58GQAWL16tWrCtyZNmmDlypVo2bJliY7l8GQi7aJUKtGkSRNcuXIF06ZNw/z580t8rItLXr8VZ+e81paX3xNR5SN5iwoAjB49GjExMcjOzsbp06dLnKQQkfbZvn07rly5AgsLC0yaNKlUx/r65iUlz/utvPyeiCofrWhReR1sUSHSHrm5uWjQoAFu3LiBuXPnYubMmap9ISH/7zzLfilEVFJMVIhIbUJDQzF06FBYWVnhzp07+X4m+RiHiMpCKx79EJHuy8rKgr+/PwBg6tSpBf5x4GMcIioLtqgQkVosX74cEyZMwJtvvolbt25x4UAiUgu2qBDRa1u2LBUTJ+aN7pk9ezaTFCJSG7aoENFrs7T0R0rKXBgYuOHp06v51vQhInodbFEhotcSFxeHrKwlAIChQ+czSSEitWKiQkSvxcfHB9nZGWjRogXWru0tdThEVMEwUSGiMjt8+DC2bt0KPT09fPvtt5DJZFKHREQVDBMVIiqTtLQ0fP311wDyZpdu1qyZxBERUUXERIWISk0IgREjRuD27dt46623MG/ePKlDIqIKiokKEZXamjVr8NNPP8HAwAA///wzR9wRkcawez5RJSOEwKVLl3D+/HmkpqbCwcEB9erVQ4MGDaCn9+r/XX744QeMGzcOALBw4UJ4eHhoOmQiqsSYqBBVIr/++iv8/PwQGRlZYJ+dnR0++eQT9O7dG23atIGhoWG+/VlZWZg7dy4CAgIAAMOHD8eECRPKJW4iqrw44RtRJfDs2TOMGTMGa9euBQCYmpri/fffh5WVFWJiYnDlyhWkpaWpyltaWqJ9+/Zo2LAhLC0tcfv2bezcuRNxcXEAgPHjxyMoKAj6+vqSXA8RVR5MVIgqOKVSiQEDBmDbtm2QyWSYNGkSpk+fDgsLC1WZnJwcHDlyBDt37sSvv/6KhISEQutydHTEsmXL0KdPn/IKn4gqOSYqRBXctGnTEBAQAENDQ+zYsQM9evQotrxCoUB4eDjOnDmDyMhIbN2ajsxMe9jYtMH9+92wcaMRAgPzVkH28iqniyCiSouJClEFtnXrVgwcOBAAsHnzZgwePLjUdYSEIF9i4uICxMQAzs5AdLR64yUiehkTFaIKKi4uDvXq1UNSUhL8/PywYMECtdT7cuJCRKRJnEeFqAISQuDrr79GUlIS3nnnHcyZMwchIXmtISEhr1e3l1deSwqTFCIqD0xUiCqg/fv3Y9euXQAM0LXrRhgaGiIwMO+RTWCg1NEREZUcExWiCuDF1hIhBGbOnPm/PT4IC2sMIO9RjbNz3kciIl3BRIWoAnixtWT37t24dOkSjI3N8NZbU1SJSWGPbF5+HKSux0NEROrCzrREFcDzDq5TpigREtIEV65cwcyZMzF37txij3t5BA9H9BCRtmGLClEF8Ly1xMZmJ65cuQILC4sSTW//8uMgPh4iIm3DFhWiCkKhUKBRo0aIjIzEnDlzMGvWLKlDIiJ6bWxRIaogtm3bhsjISFSrVk21ujERka5jokJUAeTm5mL27NkAgEmTJuVbx4eISJcxUSHSQS+Pzvnxxx9x8+ZNWFlZYcyYMZLGRkSkTkxUiHTQi8ORnz17phrdM2XKFJiZmUkcHRGR+jBRIdJBL47O+f777xEVFQUbGxt4e3tLHRoRkVoZSB0AEZWel1feKycnB25u8wAAvr6+qFKlisSRERGpF1tUiHRYaGgooqOjYWdnBy+uEkhEFRATFSIdlZ2djW+++QYA4OfnB1NTU4kjIiJSPyYqRDpq/fr1uHfvHhwcHDBixAipwyEi0ggmKkRapiQLA6anp6tG+syYMQPGxsblExwRUTljokKkZV4celyUZcuW4fHjx6hVqxa++uqr8guOiKicMVEh0jKvWhjw8ePHWLRoEQBg/vz5MDQ0LMfoiIjKFxclJNIxQ4YMwebNm9GsWTOcOXMGenr8f4OIKi7+hiMqRyXpf1Kco0ePYvPmzZDJZFi9ejWTFCKq8NiiQlSOXFzy+p84OwPR0aU7NjMzE02bNsXNmzfx9ddfY82aNZoIkYhIq/DfMaJy9Kr+J0URQmD48OG4efMm7O3tsWDBAs0ESESkZdiiQqQDVqxYgfHjx0NfXx9HjhxBmzZtpA6JiKhcsEWFSEIl6bOyceNGTJgwAQAQFBTEJIWIKhW2qBBpSEhI3lwovr5Ap0538MMPP+DMmTNIT0+HTCZDnTp1sH17IyQmusPJqSFiYvKvEZqUlITp06cjODgYAODl5YVvv/0WMplMisshIpIEExUiDcnrOJuBqlWnIDMzBEqlssiycnlVvP9+S9SqVQumpqa4e/cufv/9d2RmZgIApk2bhnnz5nGUDxFVOkxUiDQkMPAhZs3qgmfPrgAAOnXqhB49esDa2ho5OTm4fv06zp8/j/DwcKSmphZaR6NGjbB06VJ8+OGH5Rk6EZHWMHh1ESIqraSkJGza1A7Pnt2EnZ0dvv/+e3To0KHQsgqFApGRkQgPD0dcXBzS09NhZ2eHDz74AO+++y4f9RBRpcYWFSI1y83NRffu3fH777/DyckJf/31F1xcXKQOi4hIJ/GBN5GazZw5E7///jtMTU2xZ88eJilERK+BiQqRmoSEAPb257FwYd6CgZs2bUKTJk3UUu/rTLtPRKTL+OiHSE2cnXMRG9sCwEUMGDAAP/74o1rqfZ1p94mIdB1bVIjUpGXLNQAuwtS0GpYtW6a2ess67T4RUUXAFhUiNUhJSUGNGjWQmJiItWvXYsSIEVKHRERUIbBFhUgNFi9ejMTERNStWxdffvml1OEQEVUYGktU5s+fDw8PD5iamsLS0rLQMrGxsejevTtMTU1RvXp1TJ48Gbm5uZoKiUgj4uLiVI96FixYAAMDTk9ERKQuGvuNmpOTg759+8Ld3R0bNmwosF+hUKB79+6ws7PDyZMn8ejRIwwePBiGhoZcwp50SlBQEDIzM/Hee++hZ8+eUodDRFShaLyPSmhoKMaPH4/k5OR82w8cOICPPvoIDx8+hK2tLQAgJCQEU6dORUJCAoyMjEpUP/uokJQSExPh5OSEjIwM/Pbbb+jatavUIRERVSiS9VEJDw9Hw4YNVUkKAHTu3BmpqamIiIiQKiyiUlm1ahUyMjLQpEkTdOnSRepwiIgqHMkepsfFxeVLUgCo3sfFxRV5XHZ2NrKzs1Xvi1rMjUjT0tPTsXLlSgCAr68v1+QhItKAUrWoPP9lXNzr+vXrmooVABAQEAALCwvVy9HRUaPnIyrKunXrkJiYiFq1auHTTz+VOhwiogqpVC0qEydOxJAhQ4otU6NGjRLVZWdnhzNnzuTbFh8fr9pXFD8/P/j4+Kjep6amMlmhcpednY0lS5YAAKZMmQJ9fX2JIyIiqphKlajY2NjAxsZGLSd2d3fH/Pnz8fjxY1SvXh0AcPjwYZibm6NevXpFHieXyyGXy9USA1FZffVVGB48eAALCwcMHjxY6nCIiCosjfVRiY2NRWJiImJjY6FQKHDp0iUAQK1atVC1alV06tQJ9erVw6BBg7Bo0SLExcVhxowZ8Pb2ZiJCWk2hUOCnnxYCAPT0JvL7lYhIgzSWqMyaNQubN29WvW/atCkA4OjRo2jbti309fWxb98+jBo1Cu7u7qhSpQo8PT0xd+5cTYVEpBY7duxAbu4t6OlVw6xZnCqfiEiTuNYPUSkIIdCkSRNcvnwZs2fPhr+/v9QhERFVaFzrhyqVkBDAxSXvY3Hbijpu9Oj9uHz5MqpWrYoxY8ZoOFoiImKLClUqLi5ATAzg7AxERxe9rfDjBIyMPJCTcwpTpkzBwoULyyVmIqLKjC0qVKn4+uYlJL6+xW8r7Dhb22PIyTkFuVyOCRMmaD5YIiJiiwpRSQgh0LZtWxw/fhze3t5YvXq11CEREVUKbFEhKoHffvsNx48fh7GxMaZOnSp1OERElQYTFaJXUCgU8PPzAwCMHTuWMyETEZUjJipEr7B582ZcuXIFlpaW8C2uIwsREakdExWiYjx+/BiTJ08GAMyYMQPVqlWTOCIiosqFiQpVGCWZD6W0xo8fj8TERDRp0gRjx45VX8VERFQiHPVDFUZJ5kMpjZ9++gkDBgyAnp4ezpw5g2bNmr1+pUREVCpsUaEKoyTzoZTUuXPnMHTo0P/V68skhYhIImxRIXrJzZs30a5dOzx8+BDdunXDr7/+Cn19fanDIiKqlNiiQvQ/Qgjs3r0bHh4eePjwIerVq4cff/yRSQoRkYQMpA6ASFOuX7+O0NBQnDx5EnFxccjKyoKtrS3eeustuLq6okaNGnBycsKzZ88QGxuLHTt24OTJkwAAI6PmGDJkPywsLCS+CiKiyo2PfqjCSUtLw6RJk/Ddd9+V+lhDQ0OYmPggNXUOnJ3laumUS0REZccWFapQHjx4gM6dOyMiIgIA8PHHH+PTTz+Fi4sL5HI54uPjce/ePdy9exd37txBbGwsTExMYG1tjVatWmHgwIH49VcHBAaqp1MuERG9HraoUIXx5MkTeHh44NatW7C3t8fWrVvRpk0bqcMiIqLXwBYVqhAUCgUGDhyIW7duwcXFBceOHYOzs7PUYRER0WviqB+qEGbPno3Dhw/D1NQUe/fuZZJCRFRBMFEhnfTidPnnz5/HggULAADr1q1DgwYNpA2OiIjUhn1USCc9ny7fyUkBW1t3nD17FgMGDMCPP/4odWhERKRGbFEhnfR8uvxWrdbh7NmzMDc3x5IlS/KV0cQihUREVL7YokI6Kz09Ha6urnjy5AlWrFhRYHVjdS9SSERE5Y8tKqSzVq5ciSdPnqBWrVr4+uuvC+xX5yKFREQkDbaokE5KTk6Gq6srkpOT8cMPP2DgwIFSh0RERBrAFhXSScuWLUNycjLq16+Pzz77TOpwiIhIQ5iokM7JyMjA6tWrAQD+/v5c3ZiIqAJjokI6Z9OmTUhMTETNmjXRu3dvqcMhIiINYqJCOkWhUGDp0qUAAB8fH7amEBFVcExUSKf88ssvuHv3LqysrDBkyBCpwyEiIg1jokI6QwiBxYsXAwC8vb1hamoqcURERKRpTFRIZ/znP//B2bNnYWxsDG9vb6nDISKicsBEhXTG89YUT09PVK9eXeJoiIioPDBRIY1S13o7165dw759+yCTyeDj46OW2IiISPsxUSGNCgzMW28nMPD16vnqq7wFBxs16oE6deqoITIiItIFTFRIo9Sx3k5cXBxOnvz+f59PVlNkRESkCwykDoAqNi+vvNfrWLVqFYAcyOXumD27lVriIiIi3cBEhbRaeno6goODAQBbt07GJ59IHBAREZUrPvohrbZx40YkJSWhdu3a6NGjh9ThEBFROWOiQlorJydHNV3+xIkTOV0+EVElxESFtFZoaChiYmJgZ2eHwYMHSx0OERFJgIkKaaXs7Gx88803AAA/Pz+YmJhIHBEREUmBiQpppQ0bNuDevXtwcHDAiBEjpA6HiIgkwkSFtE5ycjJmz54NAJg2bRqMjY2lDYiIiCTDRIW0jr+/PxISEvD2229j+PDhUodDREQSYqJCWuXKlStYs2YNAGDlypUwMjKSOCIiIpISExXSGk+fPsUXX3wBhUKB3r17o2PHjlKHREREEmOiQlrDx8cHly9fho2Nzf+mzSciosqOiQpphXXr1iEkJAQAEBYWBgcHB4kjIiIibcBEhSQlhMCqVaswcuRIAMCsWbPQqVMniaMiIiJtwUSFJBMREYFevXph7NixEELA29tbNSyZiIgI4OrJpGZZWVnYv38//vOf/+DatWtITU2Fvr4+TE1NYWZmBhMTEyQnJyMqKgrXr18HABgYGCAgIAATJ06ETCZDSAgQGAj4+gJeXhJfEBERSUomhBBSB/E6UlNTYWFhgZSUFJibm0sdTqUlhEBYWBh8fX3x8OHDEh1jYGCAHj16YM6cOWjQoIFqu4sLEBMDODsD0dGaiZeIiHQDW1ToteXk5GD48OHYsmULAMDBwQGffvopGjVqBGtraygUCmRmZiI1NRWZmZmwtLSEg4MD3nvvPbzxxhsF6vP1/X+LChERVW5sUaHX8uzZM/Tr1w+7d++Gvr4+5syZg0mTJkEul5e4Dj7qISKiojBRodcyceJELF26FHK5HLt370aXLl1KXQcf9RARUVE0NuonOjoaw4YNg6urK0xMTFCzZk34+/sjJycnX7nLly/jgw8+gLGxMRwdHbFo0SJNhURqtnfvXixduhQA8MMPP5QoSQkJyUtM/jdlCoC8lhRnZz7qISKigjTWR+X69etQKpVYu3YtatWqhatXr2L48OHIyMhAUFAQgLzWkE6dOqFDhw4ICQnBlStX8OWXX8LS0hIjRozQVGikBo8ePYKnpycAYPz48ejTp0+JjgsMzGs9CQz8/2MeLy8+8iEioiKIcrRo0SLh6uqqev/tt9+KatWqiezsbNW2qVOnCjc3txLXmZKSIgCIlJQUtcZKxRs0aJAAIJo1a6a6f8HBQjg7530sSknKEBERPVeuE76lpKTkG+URHh6O1q1b51sht3Pnzrhx4waSkpIKrSM7Oxupqan5XlS+Tp48ie+//x4ymQzBwcGq+/dia0lRvLzy+qGwBYWIiEqi3BKV27dv55sqHQDi4uJga2ubr9zz93FxcYXWExAQAAsLC9XL0dFRc0FTAUqlEmPHjgUAfPnll2jevLlqH/uaEBGRupU6UfH19YVMJiv29XzG0ecePHiALl26oG/fvhg+fPhrBezn54eUlBTV6969e69VH5XO7t27cf78eZiZmWHBggX59rG1hIiI1K3UnWknTpyIIUOGFFumRo0aqs8fPnyIdu3awcPDA999912+cnZ2doiPj8+37fl7Ozu7QuuWy+WlmqOD1EepVGLOnDkA8jrQVq9eXeKIiIiooit1omJjYwMbG5sSlX3w4AHatWuHZs2aYdOmTdDTy9+A4+7ujunTp+PZs2cwNDQEABw+fBhubm6oVq1aaUMjDdu9ezcuX74Mc3NzjB8/XupwiIioEtBYH5UHDx6gbdu2cHJyQlBQEBISEhAXF5ev78nAgQNhZGSEYcOGISIiAj///DNWrFgBHx8fTYVFZSSEwDfffAMAGDduHN54441C50QhIiJSJ43NTBsaGoqhQ4cWuu/FU16+fBne3t44e/YsrK2tMWbMGEydOrXE5+HMtOXjr7/+Qtu2bWFiYoJ79+7BysqKM8oSEZHGcQp9KpFPPvkEu3fvhpeXF4KDgwFwjR4iItI8Jir0Snfu3EGtWrUghEBkZCTq1q0rdUhERFRJlOuEb6SbVq9eDSEEOnfuzCSFiIjKFRMVKtTzjrLLlqVi/fr1AMCRPkREVO746IcK9byjbLVqK5GUNA5ubm6IjIwsMMSciIhIk/hXhwrl6ws4OSlhYLASQN6QZCYpRERU3tiiQkXau3cvevToAUtLS9y/fx9VqlSROiQiIqpk+C8yFWn58uUAgOHDhzNJISIiSTBRoUJdvnwZf/75J/T19TF69GjOQktERJJgokKFWrZsGYC8id6cnJwQGJjXuTYwUOLAiIioUmGiQgU8evQIP/zwA4C81bKBvM61zs55H4mIiMpLqVdPpopvzZo1ePbsGTw8PPDee+8ByJsin9PkExFReWOLCuWTkZGhWsvneWsKERGRVJioUD6bN29GYmIiatSogZ49e0odDhERVXJMVCqY1xmdo1AoVEOSx48fD319fbXGRkREVFqc8K2CeT71vbMzEB1dumN/+OEHfPHFF6hWrRpiY2NRtWpVTYRIRERUYmxRqWDKOjonNzcXc+bMAQBMmjSJSQoREWkFtqgQQkKAGTNC8e+/Q2FtbY07d+7AzMxM6rCIiIjYokLAggWZ+Pff2QCAKVOmMEkhIiKtwUSlEnq5w239+gsAxKBaNUd4e3tLGRoREVE+fPRTCb3Y4fb332+iYcOGyMnJwc6dO9G7d2+pwyMiIlJhi0ol9LzD7eTJzzB06FDk5OSgS5cu+OSTT6QOjYiIKB8mKpWQl1fe0OVbtybj5MmTsLCwwJo1ayCTyaQOjYiIKB8mKpXUhg0bsGLFCgDAli1bUKNGDYkjIiIiKoiJSiUjhMCyZcswfPhwAMD06dPRo0cPiaMiIiIqHBMVHVaa6fKVSiVOnDiBzp07w8fHB0IIjB49GvPmzdN4nERERGXFUT867MXRO3fvCly/fh1Xr17FnTt3kJiYiOTkZCQnJyMpKQn//PMPHj9+DACQy+VYtGgRxowZw34pRESk1QykDoDKztcXCAjIRvPmwWjYcD0iIiKKLW9mZoY+ffpg+vTpqFWrVjlFSUREVHZMVHSYh8dlmJp+hh07rgMAjIyM8M4776BmzZqoXr06LC0tVS8nJyd4eHjAyMhI4qiJiIhKjomKjjp27Bg+/vhjpKenw87ODv7+/ujfvz8sLS2lDo2IiEht2JlWSxXXUfbChQuqJKVdu3a4cuUKvLy8mKQQEVGFw860WurFjrLR0f/fnpKSgiZNmiA6Ohoffvgh9u3bB2NjY6nCJCIi0ii2qGip59Pc+/rm3+7t7Y3o6Gi4uLhg586dTFKIiKhCY4uKDtm+fTv69esHfX19HD9+HB4eHlKHREREpFFsUdERT58+xcSJEwEAfn5+JU5SSjMpHBERkbZhi4qOmD9/PmbMmAFHR0fcuHEDJiYmJTquqL4uREREuoAtKjogLi4OAQEBAIDAwMASJylA0X1diIiIdAFbVHTApEmTsGTJErRo0QKnTp3itPdERFRpsEVFyz158gTBwcEAgNmzZzNJISKiSoWJipZbsWIFMjMz8c4776BLly5Sh0NERFSumKhosbS0NKxatQoAMH36dLamEBFRpcNERYtt2bIFKSkpqFOnDnr16iV1OEREROWOiYqWEkJgzZo1AIDRo0dDT4+3ioiIKh/+9dNSR48exbVr11C1alV4enpKHQ4REZEkmKhoqeetKYMGDVINu+Yss0REVNlwHhUtFBsbC1dXVyiVSly9ehX169cHwFlmiYio8mGLihZau3YtlEol2rVrp0pSAM4yS0RElQ9bVLRMdnY2HB0dkZCQgB07dqBPnz5Sh0RERCQZtqhome3btyMhIQFvvfUWevbsKXU4REREkmKiomWed6L18vKCgYGBxNEQERFJi4mKFjl37hxOnToFQ0NDfPXVV1KHQ0REJDkmKlrkeWtKv379YGtrK3E0RERE0mOioiUWL05AaOhWAHkz0RIRERETFa2xYME6ANkwMmqOli1bSh0OERGRVmCiogWePXsG4FsAwMCBY7hKMhER0f8wUdECu3fvRnLyA1SvXh0hIf2kDoeIiEhrMFHRAitXrgQAjBw5EnK5XOJoiIiItIdGE5UePXrAyckJxsbGsLe3x6BBg/Dw4cN8ZS5fvowPPvgAxsbGcHR0xKJFizQZkta5cOEC/v77bxgYGMDLy0vqcIiIiLSKRhOVdu3aYdu2bbhx4wZ27tyJqKgofPrpp6r9qamp6NSpE5ydnXH+/HksXrwYs2fPxnfffafJsLRKYGAggLwhyQ4ODhJHQ0REpF3Kda2fX3/9Fb169UJ2djYMDQ0RHByM6dOnIy4uDkZGRgAAX19f7N69G9evXy9Rnbq81s/169dRr149CCFw5coVNGjQQOqQiIiItEq59VFJTEzEDz/8AA8PDxgaGgIAwsPD0bp1a1WSAgCdO3fGjRs3kJSUVGg92dnZSE1NzffSVYGBgRBCoGfPnkxSiIiICqHxRGXq1KmoUqUKrKysEBsbiz179qj2xcXFFZiB9fn7uLi4QusLCAiAhYWF6uXo6Ki54DXo1q1bCAsLAwBMnz5d4miIiIi0U6kTFV9fX8hksmJfLz62mTx5Mi5evIjff/8d+vr6GDx4MF7naZOfnx9SUlJUr3v37pW5LilNnjwZCoUC3bp1Q/PmzaUOh4iISCuVenneiRMnYsiQIcWWqVGjhupza2trWFtbo06dOqhbty4cHR1x6tQpuLu7w87ODvHx8fmOff7ezs6u0LrlcrnOD+E9evQo9uzZA319fQQFBUkdDhERkdYqdaJiY2MDGxubMp1MqVQCyOtnAgDu7u6YPn06nj17puq3cvjwYbi5uaFatWplOoe2y8nJwfjx4wEAXl5eqFu3rrQBERERaTGN9VE5ffo0Vq9ejUuXLiEmJgZ//vknBgwYgJo1a8Ld3R0AMHDgQBgZGWHYsGGIiIjAzz//jBUrVsDHx0dTYWlcSAjg4pL3sTCzZs3C5cuX8cYbb8Df379cYyMiItI1GhuefOXKFYwbNw7//PMPMjIyYG9vjy5dumDGjBl48803VeUuX74Mb29vnD17FtbW1hgzZgymTp1a4vNo2/BkFxcgJgZwdgaio/PvO3bsGNq3bw8hBHbu3InevXtLESIREZHOKNd5VDRB2xKVkBAgMBDw9QVenGg2KioK7u7uSEhIgIfHl3jwYEOBMkRERJQfE5VyEBkZic6dO+P+/fto2rQpnjw5jnv3qhba6kJERET/x0UJNejZs2dYs2YNWrRogfv376Nu3brYv38/pk3LS1J8faWOkIiISLuxRUXNsURFReHWrVs4duwY9uzZo1qEsX379vj5559hbW0taYxERES6pNTDk+n/bt++jR9//BEnT57ExYsX8fjx4wJl7OzsMGPGDHh5eUFfX1+CKImIiHQXE5UyuH79OiZNmoT9+/cX2GdjY4OaNWuiadOm+Oijj9C+fXsYGxtLECUREZHuY6JSSt9//z2GDx+umrSua9eu+Oijj9C8eXO4ublJ/viJiIioImGiUgobNmzAV199BQDo1KkTVq1ahTp16rzyuKKGLBMREVHx2Jm2hHbu3Il+/fpBqVRiwoQJCAoKgp5eyQZNFTcJHBERERWNw5NL4NatWxg8eDCUSiW++uorLFmypMRJCpDXksLhyERERKXHFpVXyM3NRevWrREeHo527drh8OHDHL1DRERUTtii8gpLlixBeHg4zM3NERoayiSFiIioHDFRKcaiRfHw85sHAFi+fDl++82pwMrIr1otmYiIiMqOj36KYWY2CunpITAyao6srNNwdZUV6BTLjrJERESawxaVIly/fh2ZmesAAKNHB0EmkxXaKZYdZYmIiDSHLSpF+PTTT7Fz50706NEDe/bsUVu9REREVHKc8K0IixYtgpGREWbOnCl1KERERJUWW1SIiIhIa7GPChEREWktJipERESktZioEBERkdZiokJERERai4kKERERaS0mKkRERKS1mKgQERGR1mKiQkRERFqLiQoRERFpLSYqREREpLWYqBAREZHWYqJCREREWouJChEREWktA6kDeF3PF39OTU2VOBIiIiIqLTMzM8hksiL363yikpaWBgBwdHSUOBIiIiIqrZSUFJibmxe5XyaeN0noKKVSiYcPH74yIyuL1NRUODo64t69e8V+EXUVr0/3VfRr5PXpvop+jby+11fhW1T09PTw1ltvafQc5ubmFfIb8Dlen+6r6NfI69N9Ff0aeX2aw860REREpLWYqBAREZHWYqJSDLlcDn9/f8jlcqlD0Qhen+6r6NfI69N9Ff0aeX2ap/OdaYmIiKjiYosKERERaS0mKkRERKS1mKgQERGR1mKiQkRERFqrUicq8+fPh4eHB0xNTWFpaVlomdjYWHTv3h2mpqaoXr06Jk+ejNzc3GLrTUxMxOeffw5zc3NYWlpi2LBhSE9P18AVlM6xY8cgk8kKfZ09e7bI49q2bVugvJeXVzlGXnIuLi4FYg0MDCz2mKysLHh7e8PKygpVq1ZFnz59EB8fX04Rl1x0dDSGDRsGV1dXmJiYoGbNmvD390dOTk6xx2n7/VuzZg1cXFxgbGyMli1b4syZM8WW3759O95++20YGxujYcOG+O2338op0tIJCAhA8+bNYWZmhurVq6NXr164ceNGsceEhoYWuFfGxsblFHHpzZ49u0C8b7/9drHH6Mr9Awr/fSKTyeDt7V1oeV24f8ePH8fHH38MBwcHyGQy7N69O99+IQRmzZoFe3t7mJiYoEOHDrh169Yr6y3tz3FpVOpEJScnB3379sWoUaMK3a9QKNC9e3fk5OTg5MmT2Lx5M0JDQzFr1qxi6/38888RERGBw4cPY9++fTh+/DhGjBihiUsoFQ8PDzx69Cjf66uvvoKrqyvefffdYo8dPnx4vuMWLVpUTlGX3ty5c/PFOmbMmGLLT5gwAXv37sX27dvx119/4eHDh+jdu3c5RVty169fh1KpxNq1axEREYFly5YhJCQE06ZNe+Wx2nr/fv75Z/j4+MDf3x8XLlxA48aN0blzZzx+/LjQ8idPnsSAAQMwbNgwXLx4Eb169UKvXr1w9erVco781f766y94e3vj1KlTOHz4MJ49e4ZOnTohIyOj2OPMzc3z3auYmJhyirhs6tevny/ev//+u8iyunT/AODs2bP5ru3w4cMAgL59+xZ5jLbfv4yMDDRu3Bhr1qwpdP+iRYuwcuVKhISE4PTp06hSpQo6d+6MrKysIuss7c9xqQkSmzZtEhYWFgW2//bbb0JPT0/ExcWptgUHBwtzc3ORnZ1daF2RkZECgDh79qxq24EDB4RMJhMPHjxQe+yvIycnR9jY2Ii5c+cWW65NmzZi3Lhx5RPUa3J2dhbLli0rcfnk5GRhaGgotm/frtp27do1AUCEh4drIEL1WrRokXB1dS22jDbfvxYtWghvb2/Ve4VCIRwcHERAQECh5fv16ye6d++eb1vLli3FyJEjNRqnOjx+/FgAEH/99VeRZYr6XaSt/P39RePGjUtcXpfvnxBCjBs3TtSsWVMolcpC9+va/QMgdu3apXqvVCqFnZ2dWLx4sWpbcnKykMvlYuvWrUXWU9qf49Kq1C0qrxIeHo6GDRvC1tZWta1z585ITU1FREREkcdYWlrma6Ho0KED9PT0cPr0aY3HXBq//vor/v33XwwdOvSVZX/44QdYW1ujQYMG8PPzQ2ZmZjlEWDaBgYGwsrJC06ZNsXjx4mIf1Z0/fx7Pnj1Dhw4dVNvefvttODk5ITw8vDzCfS0pKSl44403XllOG+9fTk4Ozp8/n+9rr6enhw4dOhT5tQ8PD89XHsj7mdSVewXglfcrPT0dzs7OcHR0RM+ePYv8XaMtbt26BQcHB9SoUQOff/45YmNjiyyry/cvJycHYWFh+PLLL4tdQE/X7t+L7t69i7i4uHz3yMLCAi1btizyHpXl57i0dH5RQk2Ki4vLl6QAUL2Pi4sr8pjq1avn22ZgYIA33nijyGOksmHDBnTu3PmVizoOHDgQzs7OcHBwwOXLlzF16lTcuHEDv/zySzlFWnJjx47FO++8gzfeeAMnT56En58fHj16hKVLlxZaPi4uDkZGRgX6KNna2mrd/XrZ7du3sWrVKgQFBRVbTlvv35MnT6BQKAr9Gbt+/XqhxxT1M6nt90qpVGL8+PFo1aoVGjRoUGQ5Nzc3bNy4EY0aNUJKSgqCgoLg4eGBiIgIjS++WhYtW7ZEaGgo3Nzc8OjRI8yZMwcffPABrl69CjMzswLldfX+AcDu3buRnJyMIUOGFFlG1+7fy57fh9Lco7L8HJdWhUtUfH19sXDhwmLLXLt27ZUdvnRJWa75/v37OHToELZt2/bK+l/sX9OwYUPY29vjww8/RFRUFGrWrFn2wEuoNNfn4+Oj2taoUSMYGRlh5MiRCAgI0Noprsty/x48eIAuXbqgb9++GD58eLHHSn3/CPD29sbVq1eL7b8BAO7u7nB3d1e99/DwQN26dbF27VrMmzdP02GWWteuXVWfN2rUCC1btoSzszO2bduGYcOGSRiZ+m3YsAFdu3aFg4NDkWV07f7pigqXqEycOLHYjBcAatSoUaK67OzsCvRcfj4axM7OrshjXu5AlJubi8TExCKPeV1lueZNmzbBysoKPXr0KPX5WrZsCSDvP/ry+EP3Ove0ZcuWyM3NRXR0NNzc3Arst7OzQ05ODpKTk/O1qsTHx2vsfr2stNf38OFDtGvXDh4eHvjuu+9Kfb7yvn9Fsba2hr6+foERVsV97e3s7EpVXhuMHj1a1am+tP9VGxoaomnTprh9+7aGolMvS0tL1KlTp8h4dfH+AUBMTAz++OOPUrdC6tr9e34f4uPjYW9vr9oeHx+PJk2aFHpMWX6OS00tPV103Ks608bHx6u2rV27Vpibm4usrKxC63remfbcuXOqbYcOHdKqzrRKpVK4urqKiRMnlun4v//+WwAQ//zzj5ojU7+wsDChp6cnEhMTC93/vDPtjh07VNuuX7+utZ1p79+/L2rXri369+8vcnNzy1SHNt2/Fi1aiNGjR6veKxQK8eabbxbbmfajjz7Kt83d3V0rO2MqlUrh7e0tHBwcxM2bN8tUR25urnBzcxMTJkxQc3SakZaWJqpVqyZWrFhR6H5dun8v8vf3F3Z2duLZs2elOk7b7x+K6EwbFBSk2paSklKizrSl+TkudZxqqUVHxcTEiIsXL4o5c+aIqlWriosXL4qLFy+KtLQ0IUTeN1mDBg1Ep06dxKVLl8TBgweFjY2N8PPzU9Vx+vRp4ebmJu7fv6/a1qVLF9G0aVNx+vRp8ffff4vatWuLAQMGlPv1FeWPP/4QAMS1a9cK7Lt//75wc3MTp0+fFkIIcfv2bTF37lxx7tw5cffuXbFnzx5Ro0YN0bp16/IO+5VOnjwpli1bJi5duiSioqJEWFiYsLGxEYMHD1aVefn6hBDCy8tLODk5iT///FOcO3dOuLu7C3d3dykuoVj3798XtWrVEh9++KG4f/++ePToker1Yhldun8//fSTkMvlIjQ0VERGRooRI0YIS0tL1Ui7QYMGCV9fX1X5EydOCAMDAxEUFCSuXbsm/P39haGhobhy5YpUl1CkUaNGCQsLC3Hs2LF89yozM1NV5uXrmzNnjjh06JCIiooS58+fF/379xfGxsYiIiJCikt4pYkTJ4pjx46Ju3fvihMnTogOHToIa2tr8fjxYyGEbt+/5xQKhXBychJTp04tsE8X719aWprqbx0AsXTpUnHx4kURExMjhBAiMDBQWFpaij179ojLly+Lnj17CldXV/H06VNVHe3btxerVq1SvX/Vz/HrqtSJiqenpwBQ4HX06FFVmejoaNG1a1dhYmIirK2txcSJE/Nl1UePHhUAxN27d1Xb/v33XzFgwABRtWpVYW5uLoYOHapKfrTBgAEDhIeHR6H77t69m+9rEBsbK1q3bi3eeOMNIZfLRa1atcTkyZNFSkpKOUZcMufPnxctW7YUFhYWwtjYWNStW1csWLAgX+vXy9cnhBBPnz4VX3/9tahWrZowNTUVn3zySb4//tpi06ZNhX6/vtgwqov3b9WqVcLJyUkYGRmJFi1aiFOnTqn2tWnTRnh6euYrv23bNlGnTh1hZGQk6tevL/bv31/OEZdMUfdq06ZNqjIvX9/48eNVXwtbW1vRrVs3ceHChfIPvoQ+++wzYW9vL4yMjMSbb74pPvvsM3H79m3Vfl2+f88dOnRIABA3btwosE8X79/zv1kvv55fh1KpFDNnzhS2trZCLpeLDz/8sMC1Ozs7C39//3zbivs5fl0yIYRQz0MkIiIiIvXiPCpERESktZioEBERkdZiokJERERai4kKERERaS0mKkRERKS1mKgQERGR1mKiQkRERFqLiQoRERFpLSYqREREpLWYqBAREZHWYqJCREREWouJChEREWmt/wI/cDdneHwDQQAAAABJRU5ErkJggg==\n"
- },
- "metadata": {},
- "output_type": "display_data"
- }
- ],
- "source": [
- "def get_example_synthetic_experiment_runner():\n",
- " rng = np.random.default_rng(seed=180)\n",
- " def runner(xs):\n",
- " return ground_truth(xs) + rng.normal(0, 1.0, xs.shape)\n",
- " return runner\n",
- "\n",
- "example_synthetic_experiment_runner = get_example_synthetic_experiment_runner()\n",
- "\n",
- "plt.scatter(study_metadata.independent_variables[0].allowed_values[::5,], example_synthetic_experiment_runner(study_metadata.independent_variables[0].allowed_values[::5,]), alpha=1, s=1, c='b', label=\"samples\")\n",
- "plt.plot(study_metadata.independent_variables[0].allowed_values, ground_truth(study_metadata.independent_variables[0].allowed_values), c=\"black\", label=\"ground truth\")\n",
- "plt.legend()"
- ],
- "metadata": {
- "collapsed": false
- }
- },
- {
- "cell_type": "markdown",
- "source": [
- "## Theorist\n",
- "We use a common BMS regressor with a common parametrization as the theorist."
- ],
- "metadata": {
- "collapsed": false
- }
- },
- {
- "cell_type": "code",
- "execution_count": 4,
- "outputs": [],
- "source": [
- "bms_theorist = BMSRegressor(epochs=800)"
- ],
- "metadata": {
- "collapsed": false
- }
- },
- {
- "cell_type": "markdown",
- "source": [
- "## Experimentalist - Random Sampler"
- ],
- "metadata": {
- "collapsed": false
- }
- },
- {
- "cell_type": "code",
- "execution_count": 5,
- "outputs": [],
- "source": [
- "n_cycles = 9\n",
- "n_observations_per_cycle = 50\n",
- "\n",
- "random_experimentalist = make_pipeline(\n",
- " [study_metadata.independent_variables[0].allowed_values, random_sampler],\n",
- " params={\"random_sampler\": {\"n\": n_observations_per_cycle}}\n",
- ")"
- ],
- "metadata": {
- "collapsed": false
- }
- },
- {
- "cell_type": "code",
- "execution_count": 6,
- "outputs": [],
- "source": [
- "%%capture\n",
- "# %%capture will supress printing of warnings from BMS.\n",
- "logging.disable('CRITICAL') # Removes BMS run progress INFO print-outs.\n",
- "\n",
- "random_experimentalist_cycle = Cycle(\n",
- " metadata=study_metadata,\n",
- " theorist=bms_theorist,\n",
- " experimentalist=random_experimentalist,\n",
- " experiment_runner=example_synthetic_experiment_runner\n",
- ")\n",
- "\n",
- "random_experimentalist_cycle.run(n_cycles);"
- ],
- "metadata": {
- "collapsed": false
- }
- },
- {
- "cell_type": "markdown",
- "source": [
- "## Evaluating Results"
- ],
- "metadata": {
- "collapsed": false
- }
- },
- {
- "cell_type": "markdown",
- "source": [
- "#### Scoring the models of each cycle\n",
- "We will test the performance of the models against the ground truth. Here we generate the ground truth values across the value range as the test set."
- ],
- "metadata": {
- "collapsed": false
- }
- },
- {
- "cell_type": "code",
- "execution_count": 7,
- "outputs": [],
- "source": [
- "X_test = study_metadata.independent_variables[0].allowed_values.reshape(-1,1)\n",
- "y_test = ground_truth(X_test)"
- ],
- "metadata": {
- "collapsed": false
- }
- },
- {
- "cell_type": "code",
- "execution_count": 8,
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "[0.994244272938371, 0.9958028271781731, 0.994493719396887, 0.9969328594804331, 0.9954537487709832, 0.9967720207897841, 0.9950749157731527, 0.9957246653727153, 0.9959339920921304]\n"
- ]
- },
- {
- "data": {
- "text/plain": "",
- "image/png": "iVBORw0KGgoAAAANSUhEUgAAAeUAAAEmCAYAAABcTIh4AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8o6BhiAAAACXBIWXMAAA9hAAAPYQGoP6dpAABe3UlEQVR4nO3deVyU5doH8N/MwMywDCD7KggouLIKobaYJC4poZV5LJWyjh2so5xX0zLz2HHJU75a+madU1pYRyuUjloQUZomyq4ooqKyDbvIsMMsz/vHMKPkIIszPDPD9f185g8e7nnmGhSuee7nvq+LwzAMA0IIIYSwjst2AIQQQghRoqRMCCGE6AlKyoQQQoieoKRMCCGE6AlKyoQQQoieoKRMCCGE6AlKyoQQQoieoKRMCCGE6AlKyjrEMAwaGxtB9VkIIYT0BSVlHWpqaoK1tTWamprYDoUQQogB0IukvGfPHnh5eUEoFCI8PBwZGRk9jpVKpdi0aRN8fHwgFAoREBCA5OTkbmOampqwcuVKeHp6wszMDJMmTUJmZma3MRwOR+Pjn//8p3pMfX09Fi1aBCsrK9jY2OCll15Cc3Ozdt88IYQQ0oX1pHzo0CHEx8fjnXfeQU5ODgICAhAVFYWamhqN49evX49PPvkEH330EQoKCrB8+XLExMQgNzdXPWbZsmVITU1FQkIC8vPzMX36dERGRkIsFqvHVFZWdnt8/vnn4HA4mD9/vnrMokWLcOnSJaSmpuLYsWP47bff8Morr+juh0EIIWRoY1gWFhbGxMXFqb+Wy+WMq6srs3XrVo3jXVxcmN27d3c7Nm/ePGbRokUMwzBMa2srw+PxmGPHjnUbExwczLz11ls9xhEdHc08/vjj6q8LCgoYAExmZqb62I8//shwOBxGLBb36b1JJBIGACORSPo0nhBCyNDG6pVyZ2cnsrOzERkZqT7G5XIRGRmJ9PR0jc/p6OiAUCjsdszMzAynT58GAMhkMsjl8vuO+aPq6mocP34cL730kvpYeno6bGxsEBoaqj4WGRkJLpeLc+fO9RhbY2NjtwchhBDSV6wm5bq6Osjlcjg5OXU77uTkhKqqKo3PiYqKwo4dO3Dt2jUoFAqkpqbi8OHDqKysBACIRCJERETg3XffRUVFBeRyOQ4cOID09HT1mD/64osvIBKJMG/ePPWxqqoqODo6dhtnYmICW1vbHmPbunUrrK2t1Q8PD48+/ywIIYQQ1u8p99euXbswcuRI+Pv7g8/nY8WKFYiNjQWXe+etJCQkgGEYuLm5QSAQ4MMPP8TChQu7jbnb559/jkWLFt1zdd1f69atg0QiUT/Kysoe6HyEEEKGFlaTsr29PXg8Hqqrq7sdr66uhrOzs8bnODg4ICkpCS0tLSgpKUFhYSEsLS3h7e2tHuPj44OTJ0+iubkZZWVlyMjIgFQq7TZG5dSpU7hy5QqWLVvW7bizs/M9i81kMhnq6+t7jE0gEMDKyqrbgxBCCOkrVpMyn89HSEgI0tLS1McUCgXS0tIQERFx3+cKhUK4ublBJpMhMTER0dHR94yxsLCAi4sLbt++jZSUFI1jPvvsM4SEhCAgIKDb8YiICDQ0NCA7O1t97JdffoFCoUB4eHh/3yohhBDSKw7DsFtu6tChQ1iyZAk++eQThIWFYefOnfjmm29QWFgIJycnLF68GG5ubti6dSsA4Ny5cxCLxQgMDIRYLMbGjRtx8+ZN5OTkwMbGBgCQkpIChmHg5+eHoqIirF69GkKhEKdOnYKpqan6tRsbG+Hi4oIPPvgAy5cvvye2mTNnorq6Gnv37oVUKkVsbCxCQ0Px9ddf9+m9NTY2wtraGhKJhK6aiVZcqpDgveQrWDvDH2Nc6f8UIcbGhO0AFixYgNraWmzYsAFVVVUIDAxEcnKyevFXaWlpt3vB7e3tWL9+PW7cuAFLS0vMmjULCQkJ6oQMABKJBOvWrUN5eTlsbW0xf/58bN68uVtCBoCDBw+CYRgsXLhQY2xfffUVVqxYgWnTpoHL5WL+/Pn48MMPtf9DIKSP/vXbDfx2tRYcAF+8GMZ2OIQQLWP9StmY0ZUy0bYp7/2C8ttt4HCAM2sfh4u1GdshEUK0yOBWXxMyVFVJ2lF+uw0AwDDA4RxxL88ghBgaSsqEGIisknoAAJej/PrbrDLqQEaIkaGkTIiByCq+DQCYH+wOCz4Pxbdakdl1jBBiHCgpE2IgskuUCfjhUQ6YPcEFAPBNFhWoIcSYUFImxAC0dMhQUKmspR7qOQzPhipLuP6QX4nmDhmboRFCtIiSMiEG4HxZA+QKBm42ZnC1MUOI5zB421ugtVOOHy5orulOCDE8lJQJMQCqe8chnsMAABwOB0+HugOgKWxCjAklZUIMgGrldajXMPWx+cHu4HKArJLbuFHbzFZohBAtoqRMiJ6TKxjkljYAuHOlDABOVkI8OsoBAPBtdjkboRFCtIySMiF67kpVE5o7ZLAUmMDfuXtlONWCr8M55ZDJFWyEZ1QYhsG16ib6WRLWUFImRM9ld01dBw23AU9VOaTLtNFOGGZuiurGDpy6VsdGeEblq3OleOJ/f8OHadfYDoUMUZSUCdFzWV37k0M9be/5Ht+Ei6eC3AAA32bTgq8HIVcw2HvyOgDgUFYZFAqqlkYGHyVlQvScqpLX3Yu87vZMiHIKO7WgGvUtnYMWl7H5pbBGXVu8urEDOaVULY0MPkrKhOixSkkbxA1t4HE5CPSw0ThmjKsVxrlZQSpnkJRLTSoGav+ZmwAAPk/5Z/F4Pu3/JoOPkjIhekx1lTzaRQQLQc/tz1ULvr6hJhUDcq26Cb8X3QKXA7w5yx8A8GN+FU1hk0FHSZkQPZZ9n/vJd5sb4Ao+j4vCqiZcqmgcjNCMyv4zxQCA6WOc8VzYcFgKTFDV2I7cMprCJoOLkjIhekxT0RBNbMz5mD7WCYCypSPpO0mbVN2beulkLwhNeYgc7QgAOH6his3QyBBESZkQPdXcIUNBhaoJxf2vlAHgma4p7KS8CrRL5TqNzZh8m1WGNqkc/s4ihI9Q/pxnjVd24frxYiVNYZNBRUmZED2VV9oABQO42ZjB2VrY6/gpvvZwsRZC0ibFz5erByFCwydXMPgyvQQAsHSSFzgc5T7wR0Y5wFJggkpJO3LLGliMkAw1lJQJ0VN9nbpW4XE5mB+salJBZTf74tfCGpTWt8LazBTRgW7q40JTHqZ1TWH/QKuwySCipEyInrqzyKtvSRkAng5RJuVT12pR0dCmk7iMyRfpxQCA58I8YMbndfueego7n6awyeChpEyIHurehKL3+8kqXvYWCB9hC4ZR1sMmPSuqacKpa3XgcoAXHvK85/uPjnKABZ+HCkk78sobBj9AMiRRUiZEDxVWNaK5QwaRwAR+zqJ+PVe14Ovb7HLas3wfX5xR3kt+YowT3IeZ3/N95RS2ckX7DxdoCpsMDkrKhOgh1dR1kOewe5pQ9GbWeGdY8HkoudWKjJv1ugjP4DW2S5HYNZOwZJJXj+PurMKuog84ZFBQUiZED2UW9/9+soo53wRPTnAFQAu+evJtVjlaO+XwcxIhwtuux3GP+SmnsMUNbcijVdhkEFBSJkQPZRd3rbweQFIGgGcnKhd8/ZBfieYOmdbiMgYKBYMvuxZ4LblrG5QmQlMeHldNYdMqbDIIKCkTomcqGtpQIWlXNqEYbjOgcwQPHwZvBwu0SeU4fqFCuwEauBNXa1ByqxVWQhM8FeTa6/jZ450BAD/k0xQ20T1KyoToGVX/5DEuVjDn99yE4n44HI66peO3NIXdzb7fiwEAz4UN79PP9zE/R5h3TWGfL5foODoy1LGelPfs2QMvLy8IhUKEh4cjIyOjx7FSqRSbNm2Cj48PhEIhAgICkJyc3G1MU1MTVq5cCU9PT5iZmWHSpEnIzMy851yXL1/G3LlzYW1tDQsLC0ycOBGlpaXq7z/22GPgcDjdHsuXL9feGyekB+qp6z4WDenJ/GA38LgcZJXcxvXaZm2EZvCKappx6lodOD1sg9JEaMrD4/5USIQMDlaT8qFDhxAfH4933nkHOTk5CAgIQFRUFGpqajSOX79+PT755BN89NFHKCgowPLlyxETE4Pc3Fz1mGXLliE1NRUJCQnIz8/H9OnTERkZCbH4Tp/Z69evY8qUKfD398eJEydw4cIFvP322xAKu5cyfPnll1FZWal+bN++XTc/CELucmeRV9/3J2viaCXEo6McANDVsorqXnLkaCd42N67Daons7tWYR+/UElT2ESnOAyL/8PCw8MxceJE7N69GwCgUCjg4eGB1157DWvXrr1nvKurK9566y3ExcWpj82fPx9mZmY4cOAA2traIBKJ8P3332P27NnqMSEhIZg5cyb+8Y9/AACee+45mJqaIiEhocfYHnvsMQQGBmLnzp0Dfn+NjY2wtraGRCKBlZXVgM9Dho7mDhkmbEyBggHOvTkNTla917y+n+SLlVh+IAeOIgHOrH0cJjzWJ8dY09guRcSWNLR0yvHVsnBM9rXv83PbOuUIfjcVbVI5vo+bjAAPG90FSoY01n5DOzs7kZ2djcjIyDvBcLmIjIxEenq6xud0dHTcczVrZmaG06dPAwBkMhnkcvl9xygUChw/fhyjRo1CVFQUHB0dER4ejqSkpHte76uvvoK9vT3GjRuHdevWobW19b7vqaOjA42Njd0ehPRHbultKBjAfZjZAydkAHjc3wm2FnzUNHXgt2u1WojQcH2XVY6WTjlGOlpikk/P26A0MePz8DjVwiaDgLWkXFdXB7lcDicnp27HnZycUFWluYdpVFQUduzYgWvXrkGhUCA1NRWHDx9GZaXyl0QkEiEiIgLvvvsuKioqIJfLceDAAaSnp6vH1NTUoLm5Gdu2bcOMGTPw008/ISYmBvPmzcPJkyfVr/WnP/0JBw4cwK+//op169YhISEBzz///H3f09atW2Ftba1+eHh4PMiPiAxBWQ+wP1kTvgkXT3U1WhjKU9j92QbVE9UU9jGawiY6ZFBzWbt27cLIkSPh7+8PPp+PFStWIDY2FlzunbeRkJAAhmHg5uYGgUCADz/8EAsXLlSPUSgUAIDo6GisWrUKgYGBWLt2LZ588kns3btXfZ5XXnkFUVFRGD9+PBYtWoQvv/wSR44cwfXr13uMb926dZBIJOpHWRk1myf9o6rkFeL1YPeT7/ZMqHLP8s+Xq1Hf0qm18xqSk1drUXyrFSKhCeYFu/X+BA2m+jnCzFS5CvsCrcImOsJaUra3twePx0N1dfe+r9XV1XB2dtb4HAcHByQlJaGlpQUlJSUoLCyEpaUlvL291WN8fHxw8uRJNDc3o6ysDBkZGZBKpeox9vb2MDExwZgxY7qde/To0d1WX/9ReHg4AKCoqKjHMQKBAFZWVt0ehPSVTK5AbqkyKU98wJXXdxvtYoXxbtaQyhkk5Yp7f4IR2n+mGACwINRjwNvMzPi0CpvoHmtJmc/nIyQkBGlpaepjCoUCaWlpiIiIuO9zhUIh3NzcIJPJkJiYiOjo6HvGWFhYwMXFBbdv30ZKSop6DJ/Px8SJE3HlypVu469evQpPz563SOTl5QEAXFxc+voWCemXwqomtHTKIRKaYJRj/5pQ9ObZUFWf5bIhN/V6vbYZJ6/WgsMBFkd4PdC5VLWwj+fTFDbRjYF9ZNSS+Ph4LFmyBKGhoQgLC8POnTvR0tKC2NhYAMDixYvh5uaGrVu3AgDOnTsHsViMwMBAiMVibNy4EQqFAmvWrFGfMyUlBQzDwM/PD0VFRVi9ejX8/f3V5wSA1atXY8GCBXjkkUcwdepUJCcn4+jRozhx4gQA5Zapr7/+GrNmzYKdnR0uXLiAVatW4ZFHHsGECRMG7wdEhpSsrv3JwcOHgdvPJhS9mRvghnePX0ZhVRMuihsx3t1aq+fXZwnpym5Q0/wdMdyu79ugNJnq7wChKRflt9uQL5ZggruNFiIk5A5W7ykvWLAA77//PjZs2IDAwEDk5eUhOTlZvfirtLRUvUALANrb27F+/XqMGTMGMTExcHNzw+nTp2FjY6MeI5FIEBcXB39/fyxevBhTpkxBSkoKTE1N1WNiYmKwd+9ebN++HePHj8e///1vJCYmYsqUKQCUV9M///wzpk+fDn9/f/ztb3/D/PnzcfTo0cH5wZAhSVXJS1uLvO5mbW6KqLHK20LfZg+dtQ5N7VJ8m6V8v0snjXjg85nzTdRT2MdpCpvoAKv7lI0d7VMm/RGxNQ2VknZ8/XI4Jvn0fQ9tX/12tRaLP8+AldAEGW9FQmjK0/pr6Jv9v9/ExqMF8HW0ROqqRwa06vqPjl2owIqvc+Fha4bfVk/VyjkJUTGo1deEGCtxQxsqJe0w4XIQqKPCFJN97eFqLURjuwypBdW9P8HAKRQMvuiauh7oNihNHvd3hNCUi7L6NlwUUy0Col2UlAnRA6r7yWNdB96Eojc8LgfzQ+4s+DJ2v12rxc26FuU2qKCBbYPSxJxvgql+NIVNdIOSMiF6QFU0JOQB61335umupHy6qA4VDW06fS22fdG1DerZUA9YCLT7QUe1CvsHWoVNtIySMiF6QL3IS4v7kzXxtLPAQ962YBggMdt4K3zdrGvBr1dU26D61g2qP1RT2KX1rbhUQVPYRHsoKRPCsqZ2Ka5UKf+w62Ll9R+p+yxnl0OhMM6rPFVJzal+jvC0s9D6+S0ENIVNdIOSMiEsyy1tgIIBPGzN4KiFJhS9mTneGZYCE5TWtyKj6162MWnukKnrfC+d5KWz16EpbKILlJQJYZlq6nqiju8nq5jzTfDkBGVCMcYFX4dzytHcIYO3gwWm9KM9Y3897u8IgQkXJbdoCptoDyVlQliWXaK8Wg3R8f3kuz0TqpzC/jG/Ck3t0kF7XV1TKBh1neulk7y0XhntbndPYVMtbKItlJQJYZGyCUUDACB0kK6UASB4uA28HSzQJpXj+AXjSSini+pwo7YFlgITzAt21/nrzZpAU9hEuygpE8Kiy5VNaO2Uw0pogpGOloP2uhwOB8+G3lnwZSxUV8nPhLrDUsvboDSZ1jWFXXyrFQWVNIVNHhwlZUJYlNU1dR3sqf0mFL2ZF+QGHpeD7JLbKKppHtTX1oXiuhb8eqUGwIN3g+orC4EJHvNzAEBT2EQ7KCkTwiJdNqHojaOVEI+NUiYUY2hS8WV6CRgGmOrngBH22t8G1ZM7q7CraAqbPDBKyoSwhGEYZBerioYM3v3ku6kWfB3OEUMmV7ASgza0dMjU3aCW6HAblCbTRjuBb8LFzboWXK5sGtTXJsaHkjIhLBE3tKGqUdmEIoClvryP+zvC1oKP2qYOnLxay0oM2nA4pxxNHTJ421vgkZEOg/ralgIT9YwDTWGTB0VJmRCWqOpdj3WzhhmfnTaKfBMuYrqaNagKbhgahrmzDWpxhOeg35sHgNm0CptoCSVlQliiWuTFxv3kuz0Tqtw69PPlatxq7mA1loE4XVSH613boFRdsAabagr7Rl0LCqtoCpsMHCVlQliiulJmOyn7O1thgrs1ZAoGSXkVrMYyEKpuUE+HuEMkNGUlBkuBCR6lKWyiBZSUCWFBY7sUV6qVV1SDWcmrJ6oFX99mlRnU9GvprVakFaq2QWm/G1R/zO5ahX2cprDJA6CkTAgLcksbwDCAp505HEW6b0LRm7kTXME34aKwqgkXxYZTBOPL9GIwDPDoKAd4Owxe8RVNpo12VE5h19IUNhk4SsqEsCC7qztTCMtT1yrW5qaYMdYZgOE0qWjpkOFQV6xLJ3uxGwwAkdBUvfKbprDJQFFSJoQFmer7yezsT9ZEteDr+zwx2qVylqPp3ZFcMZraZRhhb4FHB3kbVE9mT1B+sKEpbDJQlJQJGWRSuQJ5ZQ0AgFA9uJ+sMsnHHm42Zmhsl+Gngmq2w7kvhmHUC7xeeIidbVCaTBvtBD5POYWtWjNASH9QUiZkkF2ubESbVNmEwpfl+6B343E5mB+s2rOs31PYZ67fwrWaZljweXg6lJ1tUJpYCU3xyChlD+cfjKj7Fhk8lJQJGWSqrVAhLDSh6M3TIcpV2KeL6iBuaGM5mp7t+70YADA/xB1WLG2D6sksWoVNHgAlZUIGWXYJu/Wu72e4nTkivO3AMECinrZ0LKtvRVqhcnp9sLpB9UfkGOUU9vXaFlytNvzuW2RwUVImZBAxDIPMYv2o5NUT1YKv77LLoVDo35WeahvUwyPt4TuIPaj7ykpoiodHKqewj9MqbNJPlJQJGUTlt9tQ09QBUx4HAR42bIej0cxxLrAUmKC0vhXnbtazHU43rZ0yHMpU3u+O1YNtUD25086RkjLpH0rKhAwiVb3rsa7WEJqy04SiN2Z8HuYEKJOKvi34OpIrRmO7DJ525nhslCPb4fQocowTTHkcFNU04yqtwib9wHpS3rNnD7y8vCAUChEeHo6MjIwex0qlUmzatAk+Pj4QCoUICAhAcnJytzFNTU1YuXIlPD09YWZmhkmTJiEzM/Oec12+fBlz586FtbU1LCwsMHHiRJSWlqq/397ejri4ONjZ2cHS0hLz589HdbV+bxMh+k9f6l33RlV284eLlWhql7IcjdLd26AWR3jp3SK5u1mbmeLhrr3Tx2kVNukHVpPyoUOHEB8fj3feeQc5OTkICAhAVFQUampqNI5fv349PvnkE3z00UcoKCjA8uXLERMTg9zcXPWYZcuWITU1FQkJCcjPz8f06dMRGRkJsVisHnP9+nVMmTIF/v7+OHHiBC5cuIC3334bQuGdcoerVq3C0aNH8e233+LkyZOoqKjAvHnzdPfDIEPCnUVe+p2Ugzxs4OtoiXapAsf0JKmkX7+Fq9XNMOfz1Pe99dlsmsImA8GwKCwsjImLi1N/LZfLGVdXV2br1q0ax7u4uDC7d+/udmzevHnMokWLGIZhmNbWVobH4zHHjh3rNiY4OJh566231F8vWLCAef7553uMq6GhgTE1NWW+/fZb9bHLly8zAJj09PQ+vz+JRMIAYCQSSZ+fQ4xXQ2sn47X2GOP5xjGmprGd7XB6tfdEEeP5xjEmZs9ptkNhGIZhXv4ik/F84xiz/kg+26H0SUNrJ+P75nHG841jzNWqRrbDIQaCtSvlzs5OZGdnIzIyUn2My+UiMjIS6enpGp/T0dHR7WoWAMzMzHD69GkAgEwmg1wuv+8YhUKB48ePY9SoUYiKioKjoyPCw8ORlJSkHp+dnQ2pVNotNn9/fwwfPrzH2FTxNTY2dnsQopJTehsMA3jZmcNBJGA7nF7FBLuBx+Ugp7QBRTXs3hctq2/Fz5eVt4+WTGK3G1RfdZvCpqtl0kesJeW6ujrI5XI4OTl1O+7k5ISqqiqNz4mKisKOHTtw7do1KBQKpKam4vDhw6isVP6HF4lEiIiIwLvvvouKigrI5XIcOHAA6enp6jE1NTVobm7Gtm3bMGPGDPz000+IiYnBvHnzcPLkSQBAVVUV+Hw+bGxs+hwbAGzduhXW1tbqh4eHx0B/PMQIZauLhujf/mRNHEVCTPVTJpVvWd6zfOBsCRTqbVAiVmPpD1qFTfqL9YVe/bFr1y6MHDkS/v7+4PP5WLFiBWJjY8Hl3nkbCQkJYBgGbm5uEAgE+PDDD7Fw4UL1GIVCAQCIjo7GqlWrEBgYiLVr1+LJJ5/E3r17Hyi+devWQSKRqB9lZfq1cpWwS7XyWt/vJ99NteArMVsMqVzBSgxtnXIc7NoGtUQPi4XczxNdq7CvVjezPttADANrSdne3h48Hu+eFc3V1dVwdnbW+BwHBwckJSWhpaUFJSUlKCwshKWlJby9vdVjfHx8cPLkSTQ3N6OsrAwZGRmQSqXqMfb29jAxMcGYMWO6nXv06NHq1dfOzs7o7OxEQ0NDn2MDAIFAACsrq24PQoA/NKHQ85XXd3vc3xF2FnzUNXfg5JVaVmJIyhND0ibFcFtzTPXX321QmlibmWKKb1chkQs9z7IRosJaUubz+QgJCUFaWpr6mEKhQFpaGiIiIu77XKFQCDc3N8hkMiQmJiI6OvqeMRYWFnBxccHt27eRkpKiHsPn8zFx4kRcuXKl2/irV6/C01N5ryokJASmpqbdYrty5QpKS0t7jY0QTQoqGtEuVcDG3BQ+etSEojemPC5igrqaVGQP/swPwzDY31XnenGEJ3h6vA2qJzSFbfhkgzhLZDJor6RBfHw8lixZgtDQUISFhWHnzp1oaWlBbGwsAGDx4sVwc3PD1q1bAQDnzp2DWCxGYGAgxGIxNm7cCIVCgTVr1qjPmZKSAoZh4Ofnh6KiIqxevRr+/v7qcwLA6tWrsWDBAjzyyCOYOnUqkpOTcfToUZw4cQIAYG1tjZdeegnx8fGwtbWFlZUVXnvtNUREROChhx4avB8QMRpZXVuhQobrXxOK3jwT6oF/n76JtMs1qGvugL3l4C1SO3ujHleqm2BmylNPpRua6WOc8SYvH1eqm1BU06yXpUHJvWqbOvB9nhiJOWJMH+OEVU+MGpTXZTUpL1iwALW1tdiwYQOqqqoQGBiI5ORk9eKv0tLSbveL29vbsX79ety4cQOWlpaYNWsWEhISui3IkkgkWLduHcrLy2Fra4v58+dj8+bNMDW900kmJiYGe/fuxdatW/H666/Dz88PiYmJmDJlinrM//7v/4LL5WL+/Pno6OhAVFQU/u///k/3PxRilLK66l2HGND9ZBU/ZxEC3K1xvlyCpFwxlj3s3fuTtERVLGResBuszfSrG1RfWZubYrKvPU5cqcUP+ZV4fdpItkMiPeiQyZF2uQaJ2eU4cbUW8q7a750yOVZGjgSHo/sP1ByGebDeYu3t7fdsQSJKjY2NsLa2hkQiofvLQxjDMAjbkobapg588+cIhI0wjNXXdztwtgTrky7Cz0mE5JUPD8ofp/LbrXhk+69QMEDqqkcw0slwVl3/0TdZZVjz3QX4O4uQvPIRtsMhd2EYBnllDUjMKcfR85WQtN2pYBfgYYOng90wJ8AVNub8QYlnQFfKCoUCmzdvxt69e1FdXY2rV6/C29sbb7/9Nry8vPDSSy9pO05CDFZZfRtqu5pQTHC3ZjucAZkT4Ip3jxXgSnUT8sUSTHC30flrHjhbCgUDTPa1M+iEDADTxzjhTS4HhVVNuF7bbFDrCoxVpaQNh3PEOJxTjuu1LerjzlZCxAS7YX6wOyu3Gga00Osf//gH9u/fj+3bt4PPv/PpYdy4cfj3v/+tteAIMQaqrVDj3PS3CUVvrM1MMWOccufBN4PQpKJdKsfBTOVuCEPbBqWJjTkfk7tWYf+gJ2VLh6K2TjmO5Jbjhc/OYdK2X/DPlCu4XtsCoSkXTwW6IuGlMPy+9nG8McOftXv/A7pS/vLLL/Hpp59i2rRpWL58ufp4QEAACgsLtRYcIcZAtchropfhTVvf7ZkQD3yfV4Hv8yqwfvYYnX7A+D5PjIZWKdyHmWHaaKfen2AAZo93wcmrtTieX4nX6L7yoFEolD3ME3PK8UN+FZo7ZOrvhY2wxdPB7pg53hkioX6sWRhQUhaLxfD19b3nuEKhgFSqHx1lCNEXdyp5Gd4ir7tN8rGDm40ZxA1tSLlUhehAN528DsMw2Gfg26A0mT7WCW8eoSnswVJ6qxWJOeU4nFuOsvo29XEPWzPMD3bHvCB3DLczZzFCzQaUlMeMGYNTp06p9/WqfPfddwgKCtJKYIQYA0mrFFe6+ukaelLmcjl4OsQdu9Ku4duscp0l5Yyb9SisUm6DWhA6XCevwQYbcz4m+drjt6u1+OECXS3rQlO7FD/kVyIxW4yMrh0PAGApMMGs8c6YH+yOiV62er0tcUBJecOGDViyZAnEYjEUCgUOHz6MK1eu4Msvv8SxY8e0HSMhBiunVHmVPMLeYlD39+qKKin/fr0O5bdb4T5M+1ca+7u2QT0V5AZrc/2YUtSW2eOd8RtNYWuVXMHg96I6JOaUI+VSFdqlykIfHA4wxdce84PdETXWGWZ8w1jPMaCkHB0djaNHj2LTpk2wsLDAhg0bEBwcjKNHj+KJJ57QdoyEGCzVIi9Dv0pW8bA1xyQfO5y5fguJ2WL8NVK7iUXc0IafCpSld5dO8tLqufXB9DHOePPIRRRWNeFGbTO8aQp7wIpqmvBdthhJuWJUNbarj/s4WGB+iDtigtzgYm3GYoQD0++kLJPJsGXLFrz44otITU3VRUzEgFVJ2pGUJ8YLD3nCQsBqbRq9kNV1P9mQ6l335plQd5y5fgvf5ZThtcd9tToVeOBsCeQKBhHedvBzNuxtUJoMs+Bjko8dTl2rww/5lVjxOF0t90dDayeOnq/Ad9nlOF8uUR+3NjPF3ABXzA9xR4C79aDso9eVfv/VNDExwfbt27F48WJdxEMM3NvfX0RqQTWqJO3YOHcs2+GwSipX4Hx5AwAg1MBXXt9txlgXbBBcQll9G87evIVJPvZaOW+7VI6DGcptUEsne2nlnPpo9ngXnLpWh+P5VZSU+0AqV+DklVok5pQj7XINOrvqUPO4HEz1c8D8YHc8PtoRAhPDmJ7uzYAuZaZNm4aTJ0/Cy8tLy+EQQ1bf0olfC2sAAN9ll+Nv00fpzTYDNlzqakIxzNwUPg4WbIejNWZ8Hp4McMV/MkrxbVa51pLyf/MqcLtVCjcbM0QayTYoTaaPdcZbSRdxubIRN+taMMLeeP5vaNOlCgkSs8X473kx6po71cfHuFhhfog7ogNdjWKdxh8NKCnPnDkTa9euRX5+PkJCQmBh0f0/1dy5c7USHDEsxy9UQNZVK7a5Q4bE7HIsnTyC5ajYo6537TnMoKfTNHk21B3/ySjFjxcr8ffosbB6wA9fDMOoF3gZ0zYoTWz/MIUdN/Xe7aVDlaoJxHfZ5SisutN/2t6Sj+hAZZWtMa7GXbJ4QEn5L3/5CwBgx44d93yPw+FALpc/WFTEIB3OFQMA/J1FKKxqwhfpJVgc4aXX2w90KUu9P9l4pq5VAj1sMNLREtdqmnHsfCX+FP5gW5cyi2+joLIRQlMuFkw0zG5Q/TFLNYV9gZJyu7SrCUROOU7e1QSCz+Micowj5ge745FRDjDlsdZpeFANuPY1IXcrrmtBbmkDuBxg7/MhmLP7NG7WteDk1VqDa0yvDQzDqCt5hRpgZ6jecDgcPBPqji0/FOLb7LIHTsqqblAxQW6DVvifTVFjnbE+6SIKKhtRXNcCryE2hc0wDHLLGpCYXY6j5yvQ2H6nylaghw3mh7hjzgSXIfF/4Y9oeSzRiiNdV8mTfe3hZW+BBV09ePedKR6SSbm0vhV1zR3g87gY72aYTSh6ExPkjveSryC3tAFFNU3wdRzYaumKhjYkX6oCACwxwm1Qmtha8BHhbYfTRXU4PoSmsDtkcuz7vRjfZJXhxl1NIFyshYgJcsM8lppA6JMBzwecPHkSc+bMga+vL3x9fTF37lycOnVKm7ERA8EwDJLylEl5XrCyytPiCC9wOMBvV2tRVNPMZnisUE1dj3c33CYUvXEQCTDVT/mB69us8gGf56tzym1QD3nbwt/ZuO8X3m3WeBcAwA/5Q6NBhULBIP7QeWz7sRA3uppAxAS54cBL4Tj9xuNYw2ITCH0yoKR84MABREZGwtzcHK+//jpef/11mJmZYdq0afj666+1HSPRczmlDSi51QpzPg9RY5WdhIbbmatX0H6ZXsxidOxQT10b0f5kTZ4NdQcAJOaIIZX3/7ZWu1SO/2Qou04ZY7GQ+4ka6wQel4NLFY0oudXS+xMM3HvJhTieXwlTHgebY8Yha/0T+N8FgZgy0t6oF/b114CS8ubNm7F9+3YcOnRInZQPHTqEbdu24d1339V2jETPHclVXiVFjXWGOf/OHZHYrj+y32WXo7F9aDUquXvltTGb6u8Ie0s+6po7cOJKbb+ff/R8BepbOo1+G5QmdpYCRHjbAQCOG/nVcsLZEnzy2w0AwD+fDsCicE9YUnEhjQaUlG/cuIE5c+bcc3zu3Lm4efPmAwdFDEenTIFjXf1hY4K6NyiI8LHDKCdLtHbK8U2m7nvw6ouG1k5c65qyN/akbMrjqv/dv+1nn+W7t0E9/5AnTIbI6tq7DYUp7F8La/DO9xcBAH97YhSeCtJNIxNjMaDfAg8PD6Slpd1z/Oeff4aHh/FvZyB3nLhSg4ZWKRxEAkzysev2PQ6Hg6WTlPuUv0wvUW91MHaqJhTe9hawM8LiBn/0TKjyd/6XwhrUNXf0+XnZJbdxqaIRAhMunhsC26A0UU1hXxQ3ovRWK9vhaN1FsQRxX+dAwQDPhLhjxeNDY0HbgxhQUv7b3/6G119/Ha+++ioSEhKQkJCA5cuXY+XKlfif//kfbcdI9JhqgVd0gKvGK52YIDdYm5mitL5VXe3L2GUZSf/kvhrlJEKAhw1kCgZJXavw+2KfqhtUoBuGWQy9rS+Acgr7IW/lPnZjm8KuaGjDi/sz0dopxxRfe2yZN97oiujowoCS8quvvoqDBw8iPz8fK1euxMqVK3Hx4kUcOnQIf/7zn7UdI9FTkjYpfr6sTLQxwZqnpMz4PDwXprwKUk1VGjvVIq+JRlTvujeqBV/fZJWBYXqfEamUtCH54tDaBtUTY5zCbmyXInZfJmqaOjDKyRL/93zwkCn+8aAG/FOKiYnB6dOncevWLdy6dQunT59GdHS0NmMjeu6H/Ep0yhQY5WSJMS49b2V54SFPcDnA6aI6XK1u6nGcMeiUKXC+rAEAEGKERUN6MifAFQITLq5WN+PCXd17evLV2VLIFQzCRtgafdnE3kSNdQaXA+SLJUYxhS2VKxD3VQ6uVDfBUSTAvtiwBy7DOpQMKClnZmbi3Llz9xw/d+4csrKyHjgoYhhUBUNigtzvOy3lPswc08cot0oZ+9XyxQoJOmQK2Frw4T2EqjRZCU0xc5zy3/ibXhZ8KbdBdXWDGuJXyQBgbynAQ12rsH+4aNhXywzD4K0j+Th1rQ7mfB4+XzoRbjaG19OYTQNKynFxcSgru/cXTywWIy4u7oGDIvqvrL4VGTfrweEA0YGuvY6P7WrFdzinHJJW490eld11Pzl4uPE1oeiNasHXf89XoF3ac/37YxcqcaulEy7WQkwfM7S2QfXEWKaw9/xahG+yysHlALv/FIRxRlrNTpcGlJQLCgoQHBx8z/GgoCAUFBQ8cFBE//33fAUA4KERdnDtwyfhsBG2GO1ihXapAoeySnUdHmuySpT7k42x3nVvIrzt4GZjhqZ2GVK6ymb+EcMw6jrXQ3UblCYzximnsC+US1BWb5hT2Em5Yrz/01UAwN/njsXj/vSBayAG9BshEAhQXV19z/HKykqYmNCGcGPHMAwO5ygLhvS0wOuPOByOupjIF2dKIBtA9Sd9xzAMstWLvIZeUuZylU0qgJ6nsHNKbyNfLAHfhIuFYQ/WxMKY2FsKED6iawrbAK+Wz964hTXfXQAAvPKIN16I8GI3IAM2oKQ8ffp0rFu3DhLJnQUdDQ0NePPNN/HEE09oLTiin/LFElyvbYHAhKu+j9gXcwNdMczcFOKGNvWqbWNScqsVdc2d4Jtwh+y03fxgZVI+c/2Wxiu+/WdKACi30NkO0W1QPZk1wTCnsItqmvHnhGx0yhWYOc4Za2f4sx2SQRtQUn7//fdRVlYGT09PTJ06FVOnTsWIESNQVVWFDz74QNsxEj2jWuD1xBgniPqxqlJoylNfHe0/Y3yV3zK7SmtOcLOGwMQ4m1D0xsPWHJN97cAwQGJO9yYV1Y3t+LEr4Qz1bVCazOhahX3egKaw65o7ELs/A5I2KYKG2+B/FwQO2f7p2jKgpOzm5oYLFy5g+/btGDNmDEJCQrBr1y7k5+cPqKLXnj174OXlBaFQiPDwcGRkZPQ4ViqVYtOmTfDx8YFQKERAQACSk5O7jWlqasLKlSvh6ekJMzMzTJo0CZmZmd3GLF26FBwOp9tjxowZ3cZ4eXndM2bbtm39fn/GRCZX4GjX/eR5fZy6vtsLEZ7gcTk4e6MelysbtR0eq1RT10NpK5Qmz4Qo/wZ8l10OxV1V3L46WwKZgsFEr2FDdibhfhxEAoSNUO5tN4Sr5bZOOZZ9kYWy+jYMtzXHvxeHGm1HtME04BvAFhYWeOWVVx44gEOHDiE+Ph579+5FeHg4du7ciaioKFy5cgWOjvf24V2/fj0OHDiAf/3rX/D390dKSgpiYmJw5swZBAUFAQCWLVuGixcvIiEhAa6uruquVgUFBXBzu5NIZsyYgX379qm/FgjuLYm4adMmvPzyy+qvRaKB9Yw1FqeK6lDX3Ak7Cz4eHunQ7+e7WJthxjhnHL9Qif2/F+O9pyfoIEp23OkMNXSKhmgyY5wzRN+boPx2G87euIVJvvbokMnxtXob1AiWI9Rfs8e74OyNevyQX4k/P+rDdjg9kisYrDyUi7yyBtiYm2J/7MQhUVJ2MAzoSvmLL77A8ePH1V+vWbMGNjY2mDRpEkpKSvp1rh07duDll19GbGwsxowZg71798Lc3Byff/65xvEJCQl48803MWvWLHh7e+PVV1/FrFmz1NPmbW1tSExMxPbt2/HII4/A19cXGzduhK+vLz7++ONu5xIIBHB2dlY/hg279wpHJBJ1G2NhMXT2nmpyJEc5dT0nwHXAFXpUC76S8sSob+nUVmisamjtVPeNHirlNXsiNOVhToBym9y32cop7OMXKlHX3AlnKyGmj6VVuT2JGucMjgFMYW/54TJSLlWDz+PiX4tD4e1AfZC1ZUB/Vbds2QIzM+U2mPT0dOzevRvbt2+Hvb09Vq1a1efzdHZ2Ijs7G5GRkXcC4nIRGRmJ9PR0jc/p6OiAUCjsdszMzAynT58GAMhkMsjl8vuOUTlx4gQcHR3h5+eHV199Fbdu3brn9bZt2wY7OzsEBQXhn//8J2QyWY/vp6OjA42Njd0exqS5Q4afCpRbXR6k00uI5zCMc7NCh0yBg5nGsT1KNXXt42BBC5gAPNu1Z/mH/Eo0tkvVRWNeiPCkcov34SgSIqyrPOuPelpIZP/vN/HZaeWakPefDRhS5WQHw4B+O8rKyuDrq+z2kZSUhKeffhqvvPIKtm7dilOnTvX5PHV1dZDL5XBy6v7J2cnJCVVVmvc5RkVFYceOHbh27RoUCgVSU1Nx+PBhVFYq/wOLRCJERETg3XffRUVFBeRyOQ4cOID09HT1GEA5df3ll18iLS0N7733Hk6ePImZM2dCLr9T9OD111/HwYMH8euvv+LPf/4ztmzZgjVr1vT4frZu3Qpra2v1w9g6ZiVfrEK7VAFvewsEuA/8nqBye5RyCjMh3Ti2R9HUdXcB7tYY5WSJDpkCm44W4EK5chvUUO0G1R+zu1ZhH8/X/DeQTakF1dh0TFmLYs0MP8wN6L1wEOmfASVlS0tL9VXlTz/9pN4GJRQK0dbWpr3oNNi1axdGjhwJf39/8Pl8rFixArGxseBy77yVhIQEMAwDNzc3CAQCfPjhh1i4cGG3Mc899xzmzp2L8ePH46mnnsKxY8eQmZmJEydOqMfEx8fjsccew4QJE7B8+XJ88MEH+Oijj9DRobk9nWqbmOqhqeqZITuS27U3OcjtgatVPRngAntLPiol7Ui5dO+ed0OT1bXyeqgv8lLhcDjdFnwBwNwAV7rv2AczVFPYZQ0ov60/U9gXyhvw+n9yoWCAhWEeeFWP73kbsgEl5SeeeALLli3DsmXLcPXqVcyaNQsAcOnSJXh5efX5PPb29uDxePcUIqmuroazs+b9rw4ODkhKSkJLSwtKSkpQWFgIS0tLeHt7q8f4+Pjg5MmTaG5uRllZGTIyMiCVSruN+SNvb2/Y29ujqKioxzHh4eGQyWQoLi7W+H2BQAArK6tuD2NRJWnHmevKD2LaaFIuMOHhT0ayPapDJsf5riYMoUP8fvLdngpyg8ld22OoznXfOIqE6inhH/Xkarn8dite3J+FNqkcj4xywKbocUOujOxgGVBS3rNnDyIiIlBbW4vExETY2Skr0WRnZ2PhwoV9Pg+fz0dISAjS0tLUxxQKBdLS0hAREXHf5wqFQri5uUEmkyExMVFjhyoLCwu4uLjg9u3bSElJuW8Xq/Lycty6dQsuLi49jsnLywOXy9W4KtzYfZ8nBsMoK1V52Jpr5ZyLHvKECZeDzOLbuCjuvbOQvroobkSnTAE7Cz5GDKEmFL1xEAkw1V/5uxLqSdug+mP2eNUUNvv3lSVtyjaMdc0d8HcWYc+fgmhdgA4NaEuUjY0Ndu/efc/xv//9792+/stf/oJNmzbB3t6+x3PFx8djyZIlCA0NRVhYGHbu3ImWlhbExsYCABYvXgw3Nzds3boVgLITlVgsRmBgIMRiMTZu3AiFQtHtXm9KSgoYhoGfnx+KioqwevVq+Pv7q8/Z3NyMv//975g/fz6cnZ1x/fp1rFmzBr6+voiKigKgXMB27tw5TJ06FSKRCOnp6Vi1ahWef/55jau0jZ2qYIg2rpJVnKyEmD3BBd/nVWD/mWK8/0yA1s49mLK76l0Hew69JhS9WRPlB5lcgfgn/NgOxaDMHOeMjUcvIa+sAeKGNtY6LXXKFHj1QDau1TTD2UqIfbET+1UwiPSfTj/uHDhwoNcVyAsWLMD777+PDRs2IDAwEHl5eUhOTlYv/iotLe22QKu9vR3r16/HmDFjEBMTAzc3N5w+fRo2NjbqMRKJBHFxcfD398fixYsxZcoUpKSkwNRU+Z+Jx+PhwoULmDt3LkaNGoWXXnoJISEhOHXqlHqvskAgwMGDB/Hoo49i7Nix2Lx5M1atWoVPP/1Uyz8l/Xe5shGFVU3g87h4crx2F3aopjT/m1eBumbN9+r1XVbx0K133ZuRTiLsiw3D+AdYGDgUOVoJMdFTNYXNztUywzBYe/gCzly/BYuuNowu1tSGUdc4DMMwvQ8bGJFIhPPnz9/3Xq4xa2xshLW1NSQSiUHfX97yw2V8+tsNzBjrjL0vhGj9/NF7fsf5sgb87YlReG3aSK2fX5cYhkHoP37GrZZOJL46acjvUSbas//3m9h4tABBw21w5C+TB/31d/58FTt/vgYel4PPloTiMb+hd9uODXRjgNyXXMHg+zztT13fTVVMJOFsCaQGtj3qZl0LbrWomlAY7gcvon9mjncBhwPkljagokG3u1r+6Lvscuz8+RoA4N3ocZSQBxElZXJf6ddvobqxA9Zmppjq3/+ymn0xa7wLHEQC1DR14MeL+rHatK9U+5MD3IduEwqiG05WQvVq/sGshX2mqA5rE5VtGF99zAd/CqcWm4OJkjK5L9UCr9kTXHSWdPgmXDwf7gkA2Pe7YW2Pyu66nxxCRUOIDswaP7jtHK9VN+HPB7IhUzB4coILVk+nBXqDjZIy6VFbpxzJXaX+5ulo6lrlT+HDYcrjILe0AXllDTp9LW3K6lp5TfuTiS7MHKecws4ZhCnsmqZ2LN2XiaZ2GUI9h+H9ZwKoDSMLdJqUn3/+eYNe4DTU/VRQhZZOOTxszXS+gMlBJMCcCcqV3V901UnWd7dbOnG9tgUANaEguuFsfWcKW5e3dlo7ZVj2RRbEDW0YYW+BT6kNI2sGlJQVCs2LcRQKBUpL7zQY+Pjjj++7R5noN9XUdUzgg5fV7IvYycp62McuVKCmqV3nr/egVE0ofB0tMYyaUBAd0fUUtlzB4PX/5OJCuQS2FnzsWzqRmqqwqF9JubGxEc8++ywsLCzg5OSEDRs2dGvgUFtbixEjqFeqMaht6sCpa3UAdLfq+o/Gu1sjxHMYpHIGX53V/+5RmTR1TQbBzHHKpJxdchuVEu1OYTMMg01HL+HnyzXgmyjbMHpRVTpW9Sspv/322zh//jwSEhKwefNmfPnll4iOjkZn552euDrc9kwG0dHzFZArGAR42Axqr1RVMZGvzpWiQya//2CW3VnkRUmZ6E63KWwt18L+/PdifJFeAgDYuSCQ/i/rgX4l5aSkJHzyySd4+umnsWzZMmRlZaG2thZz5sxRd06iMoPGQTV1resFXn80Y5wznK2EqGvuGNRtIP3VIZPjQle97lDqJ0t0TBdT2MkXq/CP48o2jG/O8le/BmFXv5JybW0tPD091V/b29vj559/RlNTE2bNmoXWVv1pM0YGrqimCfliCUy4HDw5YXB/UU15XLwQodoeVay3My8XxRJ1EwovO+006CCkJzPHK7vmZZXcRpXkwddb5JbexspDuWAY4PmHhuPlh4dm1UV91K+kPHz4cFy+fLnbMZFIhJ9++gltbW2IiYnRanCEHaqr5EdHObDS//a5iR7gm3BxoVyCXD3dHqWqdx3qRU0oiO65WN/ZAfHjxQe7Wi691YplX2ShXarAVD8HbJwzlv4P65F+JeXp06dj37599xy3tLRESkoKhEKh1gIj7FAoGCTlVgAAYoIHd+paxc5SgOgA5faofb8XsxJDb1SVvEKpaAgZJNqYwm5o7cTS/Rm41dKJsa5W2P2nYJhQG0a90q9/jb///e94++23MW3aNFy7dq3b90QiEVJTU/HLL79oNUAyuDKL6yFuaINIYILI0U6sxbGka8HXj/mVWpmu0yaGYdTboUKoMxQZJLPumsKubuz/70SHTI4/J2TjRm0LXKyF+HzpRFgIBtS9l+hQv5LysGHDMGHCBFy4cEHj90UiER599FGtBEbYoZq6njnemdXiAePcrBHmZQuZgsFX50pYi0OTG3UtqG/phMCEi3Gu1JKQDA4XazMED7cBw/S/nSPDMHjjuws4d7MeIoEJ9sVOhJMVzWzqowHNWzz//PP47LPPtB0LYVm7VI7jXb/sMUHuLEcDxE72AgB8fa4U7VL92R6l2goV4G4DvglN/ZHBo5rCPt7PpLwj9SqS8ipgwuXg4+dD4O9MlRb11YDmLmQyGT7//HP8/PPPCAkJgYVF983mO3bs0EpwZHD9UliDpnYZXK2FCB/B/r3SJ8Y4wdVaiApJO46er8AzoR5shwTgTr1rmromg23WeBf84/hl9RR2X652v8ksw0e/FAEAtsSMx5SRVGVRnw3oY/7FixcRHBwMkUiEq1evIjc3V/3Iy8vTcohksBzOUU5dRwe56UUhehMeFy9EeAEA9p/Rn+1RqkVeEykpk0HmamOGoH5MYZ+6Vos3j+QDAF573BfPTtSPD7akZwO6Uv7111+1HQdhWX1LJ05cqQEw+AVD7ue5iR7YlXYVlyoakVVyGxNZLtRxq7kDN7qaUAQPp6RMBt/s8S7ILW3AD/lVWDq557LGhVWN+MuBHMgUDKIDXRH/xKhBjJIMFN0QIwCA4xcqIFMwGOtqhZFOIrbDURtmwUdM14eE/XqwPUq16nqkoyVszKloPxl8M7vuK2eW1KOmh1XY1Y3teHFfJpo6ZAgbYYvtT0+gvcgGgpIyAQAcVnWE0qOrZBXV9qjkS1U67ynbG1VSDqWpa8ISNxszBHp0TWFraOfY0iHDi/szUSFph7eDBT59IQQCE2rDaCgoKRMU17Ugt7QBXA4wt6tohz7xd7ZChLcd5AoGCWfZ3R6lup8cQkVDCItm97AKWyZX4LX/5OJSRSPsLPjYvzSMZnQMDCVlot6bPGWkAxz1dO/i0q7tUf/JYG97VLtUjvxyZRMKWuRF2KSqhZ1ZfGcKm2EYbDx6Cb8U1kBoysVnSydiONVlNziUlIc4hmGQlMdOR6j+iBztBPdhZmholeL7rngH20WxBJ1yBewtBRhuS3/sCHvch5kjoGsKO/mScgr7X6du4MDZUnA4wM4FQQj0sGE3SDIglJSHuJzSBpTcaoU5n4fpY9krq9kbHpeDJV3bo9jqHpWpakLhSU0oCPtmd10tH79QieMXKrHlh0IAwPrZYzBjnDOboZEHQEl5iDuSWw4AmDHWGeZ8/a6D+2yoB8xMeSisasLZG/WD/vrZXUVDaJEX0QczxynvK2cU12PVN3kAgKWTvPBi160eYpgoKQ9hnTIFjl1QLhR5So+nrlWszU0xr6tz1f4zNwf1tbs1ofCkpEzY52FrjgB3azCM8nc5crQj3n5yDM3iGDhKykPYiSs1aGiVwlEkwGRfwyi9t7Rre1RqQTXK6lsH7XWv17bgdqsUAhMuxlITCqInVB+mx7tZ48OFQeDpQSU+8mAoKQ9hqgVe0YGuBvPLPNJJhIdH2kPBYFC3R6mmrgM9qAkF0R+LI7zw2ZJQ/OeVh/T+9hPpG73467Jnzx54eXlBKBQiPDwcGRkZPY6VSqXYtGkTfHx8IBQKERAQgOTk5G5jmpqasHLlSnh6esLMzAyTJk1CZmZmtzFLly4Fh8Pp9pgxY0a3MfX19Vi0aBGsrKxgY2ODl156Cc3Nzdp74yyStEnx82VlWU1DmLq+m+pq+WBGKVo7ZYPymlnFVDSE6B8el4Npo51gSX2RjQbrSfnQoUOIj4/HO++8g5ycHAQEBCAqKgo1NTUax69fvx6ffPIJPvroIxQUFGD58uWIiYlBbm6uesyyZcuQmpqKhIQE5OfnY/r06YiMjIRY3H0rzYwZM1BZWal+/Oc//+n2/UWLFuHSpUtITU3FsWPH8Ntvv+GVV17R/g+BBT/kV6JTpoCfkwhjXAyrjdtUP0d42pmjsV2m3mOta6qiIaFUNIQQoksMy8LCwpi4uDj113K5nHF1dWW2bt2qcbyLiwuze/fubsfmzZvHLFq0iGEYhmltbWV4PB5z7NixbmOCg4OZt956S/31kiVLmOjo6B7jKigoYAAwmZmZ6mM//vgjw+FwGLFY3Kf3JpFIGACMRCLp0/jB9MzeM4znG8eY//u1iO1QBuSzUzcYzzeOMZEfnGAUCoVOX6u2qZ3xfOMY4/nGMaahpVOnr0UIGdpYvVLu7OxEdnY2IiMj1ce4XC4iIyORnp6u8TkdHR0QCrtXnTIzM8Pp06cBKHs9y+Xy+45ROXHiBBwdHeHn54dXX30Vt27dUn8vPT0dNjY2CA0NVR+LjIwEl8vFuXPneoytsbGx20MfldW3IuNmPTgc4Kkg/Sur2RdPh7rDgs/DtZpm/F50q/cnPADVqutRTpawNjfV6WsRQoY2VpNyXV0d5HI5nJy6F61wcnJCVdW9hdYBICoqCjt27MC1a9egUCiQmpqKw4cPo7JSubVHJBIhIiIC7777LioqKiCXy3HgwAGkp6erxwDKqesvv/wSaWlpeO+993Dy5EnMnDkTcrmyhGNVVRUcHR27vbaJiQlsbW17jG3r1q2wtrZWPzw89LN36X/PVwAAIrzt4GJtxnI0A2MlNMXTIe4AdL89KpvqXRNCBgnr95T7a9euXRg5ciT8/f3B5/OxYsUKxMbGgsu981YSEhLAMAzc3NwgEAjw4YcfYuHChd3GPPfcc5g7dy7Gjx+Pp556CseOHUNmZiZOnDgx4NjWrVsHiUSifpSVlT3IW9UJhmFwOEdZMMTQFnj90eKuBV9phTUoudWis9fJKlauvKZ614QQXWM1Kdvb24PH46G6urrb8erqajg7ay4T5+DggKSkJLS0tKCkpASFhYWwtLSEt7e3eoyPjw9OnjyJ5uZmlJWVISMjA1KptNuYP/L29oa9vT2KiooAAM7OzvcsNpPJZKivr+8xNoFAACsrq24PfZMvluB6bQsEJlzMNPBSfD4OlnjMzwEMA3yZrpvtUe1SOfLFyiYUtMiLEKJrrCZlPp+PkJAQpKWlqY8pFAqkpaUhIiLivs8VCoVwc3ODTCZDYmIioqOj7xljYWEBFxcX3L59GykpKRrHqJSXl+PWrVtwcVGWrouIiEBDQwOys7PVY3755RcoFAqEh4f3963qDdVq5SfGOEEkNPz7o6rtUd9klqG5Q/vboy6USyCVM3AQCeBha5hT/YQQw8H69HV8fDz+9a9/4YsvvsDly5fx6quvoqWlBbGxsQCAxYsXY926derx586dw+HDh3Hjxg2cOnUKM2bMgEKhwJo1a9RjUlJSkJycjJs3byI1NRVTp06Fv7+/+pzNzc1YvXo1zp49i+LiYqSlpSE6Ohq+vr6IiooCAIwePRozZszAyy+/jIyMDPz+++9YsWIFnnvuObi6GubiKJlcgaNd95NV5SoN3SMjHeBtb4GmDpl6Wl6bslT1rqkJBSFkELCelBcsWID3338fGzZsQGBgIPLy8pCcnKxe/FVaWtptgVZ7ezvWr1+PMWPGICYmBm5ubjh9+jRsbGzUYyQSCeLi4uDv74/FixdjypQpSElJgamp8sqQx+PhwoULmDt3LkaNGoWXXnoJISEhOHXqFAQCgfo8X331Ffz9/TFt2jTMmjULU6ZMwaeffjo4PxgdOFVUh7rmTthZ8PHwSAe2w9EKLpeDJV1Xy/vPFEOh0G73qOxiqndNCBk8HIZhoQfeENHY2Ahra2tIJBK9uL/8+n9y8d/zFVg6yQsb545lOxytae6QIWJLGpo6ZPjixTA8Oko7HzgUCgbB/0hFQ6sUSXGTqT8tIUTnWL9SJoOjuUOGnwqUW7liDHzV9R9ZCkzwTKhy+9m+37W3PepGXTMaWqUQmnIx1pX9D1WEEONHSXmISL5YhXapAt4OFpjgbnxdjhZHeILDAU5cqcWNWu3UJ1fVuw70sIEpj35VCCG6R39phogjucpFUDGBbka5YMnL3gKP+ymLvWhre1RmMdW7JoQMLkrKQ0CVpB1nritLURp6wZD7WTrZCwDwbVYZmtqlD3w+VbvGECoaQggZJJSUh4Dv88RgGGVFKg9bc7bD0ZkpvvbwdbRES6cc32U/2Pao2qYOFN9qBYcDBA+npEwIGRyUlIcAVcGQmCB3liPRLQ6Hoy4m8sUDbo9SN6FwFMHazPCLrBBCDAMlZSN3ubIRhVVN4PO4mD3ehe1wdG5esBtEQhMU32rFiauae3L3hWrqOpSmrgkhg4iSspFTXSU/7u84JNoOmvNN8NxE1fao4gGfJ6vrSpmSMiFkMFFSNmJyBYPv87qmro2krGZfLI7wApcDnLpWh6Kapn4/v10qx0VqQkEIYQElZSOWfv0Wqhs7YG1misf8jKOsZl942JojcrSyTOv+M8X9fv75sgZI5QwcRQK4D6MmFISQwUNJ2Ygd7tqb/OQEFwhMeCxHM7hU26MSs8WQtPVve9TdU9fGuKebEKK/KCkbqdZOGVIuKstqGktHqP6I8LaDn5MIbVI5vs0q69dzVSuvaeqaEDLYKCkbqdSCarR0yjHc1nxI7rPlcDiI7bpa/iK9GPI+bo9SKJg7SZkWeRFCBhklZSOlWnX9VJBxltXsi+hAN9iYm6Ksvg1pl6v79Jzrtc2QtElhZsrDaBdqQkEIGVyUlI1QbVMHTl2rA2B8HaH6w4zPw3MThwPo+4KvTGpCQQhhEf3VMUL/PV8BuYJBoIcNRthbsB0Oq16I8ASPy8GZ67dwpar37VFZVDSEEMIiSspGKKlr6nooLvD6IzcbM0SN7fv2KNX95BBPSsqEkMFHSdnIFNU0IV8sgQmXgycnuLIdjl5YOmkEAGX7yobWzh7H1TZ1oETVhIKSMiGEBZSUjYxqgddjfg6wteCzHI1+mOg1DGNcrNAuVeBgZs/bo1T1rv2cRLASGn9JUkKI/qGkbEQUCgZJuRUAjLtvcn9xOBx1MZGE9BLI5AqN41SLvOh+MiGELZSUjUhGcT3EDW0QCUzUZSaJ0twAV9ha8CFuaMPPPWyPyqKiIYQQllFSNiKqBV6zxrtAaDq0ymr2RmjKw5/ClNujPtfQPaqtU45LXU0oaJEXIYQtlJSNRLtUjuP5lQBo6ronzz+k3B6VcbMelyok3b53vrwBMgUDJytqQkEIYQ8lZSPxS2ENmtplcLMxQ/gImn7VxNlaiJnjnAEAX/xhe9Sd0pq2Q7YCGiGEfZSUjcThHOXUdXSgK7hcSio9iZ2s3B6VlFeB+pY726OyiruKhtDUNSGERZSUjUB9SydOXKkBMLTLavZF8HAbTHC3RqdMgf9klAL4QxMKWuRFCGERJWUjcPxCBWQKBuPcrDDSScR2OHqNw+Fg6SQvAMrtUVK5AtdqmtHYLoM5n4fRLvTzI4Swh5KyETis6ggVSFfJfTF7ggvsLQWoamxHyqUqdb3rQA8bmFATCkIIi/TiL9CePXvg5eUFoVCI8PBwZGRk9DhWKpVi06ZN8PHxgVAoREBAAJKTk7uNaWpqwsqVK+Hp6QkzMzNMmjQJmZmZPZ5z+fLl4HA42LlzZ7fjXl5e4HA43R7btm17oPeqbcV1LcgtbQCXA8wNpLKafSEw4WFReFf3qN+Lka0qGkL3kwkhLGM9KR86dAjx8fF45513kJOTg4CAAERFRaGmpkbj+PXr1+OTTz7BRx99hIKCAixfvhwxMTHIzc1Vj1m2bBlSU1ORkJCA/Px8TJ8+HZGRkRCLxfec78iRIzh79ixcXTUntE2bNqGyslL9eO2117TzxrVEVVbz4ZEOcBQJWY7GcCwKHw5THgdZJbfxU4GymEioF91PJoSwi/WkvGPHDrz88suIjY3FmDFjsHfvXpibm+Pzzz/XOD4hIQFvvvkmZs2aBW9vb7z66quYNWsWPvjgAwBAW1sbEhMTsX37djzyyCPw9fXFxo0b4evri48//rjbucRiMV577TV89dVXMDXVXOtYJBLB2dlZ/bCw0J9WiAzDIClPmZRpgVf/OFoJMXu8CwCguUMGLgcIGm7DblCEkCGP1aTc2dmJ7OxsREZGqo9xuVxERkYiPT1d43M6OjogFHa/IjQzM8Pp06cBADKZDHK5/L5jAEChUOCFF17A6tWrMXbs2B5j3LZtG+zs7BAUFIR//vOfkMlkPY7t6OhAY2Njt4cu5ZQ2oORWK8z5PEwfS2U1+2tp1/YoAPBztoKImlAQQljGalKuq6uDXC6Hk1P3hOLk5ISqqiqNz4mKisKOHTtw7do1KBQKpKam4vDhw6isVFazEolEiIiIwLvvvouKigrI5XIcOHAA6enp6jEA8N5778HExASvv/56j/G9/vrrOHjwIH799Vf8+c9/xpYtW7BmzZoex2/duhXW1tbqh4eHR39+HP12JLccADBjrDPM+SY6fS1jFOhhg0APGwB0P5kQoh9Yn77ur127dmHkyJHw9/cHn8/HihUrEBsbCy73zltJSEgAwzBwc3ODQCDAhx9+iIULF6rHZGdnY9euXdi/f/99qzfFx8fjsccew4QJE7B8+XJ88MEH+Oijj9DR0aFx/Lp16yCRSNSPsrKe2wQ+qE6ZAscuKD9kxATT1PVA/eOpcZg+xgnLHh7R+2BCCNExVpOyvb09eDweqqu7d+2prq6Gs7Ozxuc4ODggKSkJLS0tKCkpQWFhISwtLeHt7a0e4+Pjg5MnT6K5uRllZWXIyMiAVCpVjzl16hRqamowfPhwmJiYwMTEBCUlJfjb3/4GLy+vHuMNDw+HTCZDcXGxxu8LBAJYWVl1e+jKiSs1aGiVwlEkwCQfe529jrEb52aNTxeHwtNOf9YKEEKGLlaTMp/PR0hICNLS0tTHFAoF0tLSEBERcd/nCoVCuLm5QSaTITExEdHR0feMsbCwgIuLC27fvo2UlBT1mBdeeAEXLlxAXl6e+uHq6orVq1cjJSWlx9fMy8sDl8uFo6PjAN+x9qgWeEUHuoJHZTUJIcQosH4jMj4+HkuWLEFoaCjCwsKwc+dOtLS0IDY2FgCwePFiuLm5YevWrQCAc+fOQSwWIzAwEGKxGBs3boRCoeh2rzclJQUMw8DPzw9FRUVYvXo1/P391ee0s7ODnZ1dtzhMTU3h7OwMPz8/AEB6ejrOnTuHqVOnQiQSIT09HatWrcLzzz+PYcPYvf8oaZPi58uqsprurMZCCCFEe1hPygsWLEBtbS02bNiAqqoqBAYGIjk5Wb34q7S0tNv94vb2dqxfvx43btyApaUlZs2ahYSEBNjY2KjHSCQSrFu3DuXl5bC1tcX8+fOxefPmHrc9aSIQCHDw4EFs3LgRHR0dGDFiBFatWoX4+HitvfeB+iG/Ep0yBfycRFQWkhBCjAiHYRiG7SCMVWNjI6ytrSGRSLR6f/nZT9KRcbMea2f6Y/mjPlo7LyGEEHYZ3Orroa6svhUZN+vB4SjvJxNCCDEelJQNzH/PVwAAIrzt4GJtxnI0hBBCtImSsgFhGAaHc5QFQ6isJiGEGB9KygYkXyzB9doWCEy4mDFO8z5uQgghhouSsgFRdYSaPtaZ6jQTQogRoqRsIGRyBY523U+eR1PXhBBilCgpG4hTRXWoa+6EnQUfU0ZSWU1CCDFGlJQNxJEc5dT1nABXmPLon40QQowR/XU3AM0dMvxUoGxlSauuCSHEeFFSNgDJF6vQLlXA28ECE9yt2Q6HEEKIjlBSNgBHcpV7k+cFud23/zMhhBDDRklZz1VJ2nHm+i0AQHQgTV0TQogxo6Ss577PE4NhgDAvW3jYmrMdDiGEEB2ipKznfrzYtcArmK6SCSHE2FHrRh3SRuvG5g4ZUi5WIXK0E6zNqYoXIYQYM0rKOqSrfsqEEEKME01fE0IIIXqCkjIhhBCiJygpE0IIIXqCkjIhhBCiJygpE0IIIXqCkjIhhBCiJygpE0IIIXrChO0AjJlqC3hjYyPLkRBCCGGbSCTqtakQJWUdampqAgB4eHiwHAkhhBC29aWQFFX00iGFQoGKioo+fTrqSWNjIzw8PFBWVmYQVcEoXt0ytHgBw4uZ4tWtoRwvXSmzjMvlwt3dXSvnsrKyMoj/wCoUr24ZWryA4cVM8eoWxasZLfQihBBC9AQlZUIIIURPUFLWcwKBAO+88w4EAgHbofQJxatbhhYvYHgxU7y6RfHeHy30IoQQQvQEXSkTQggheoKSMiGEEKInKCkTQggheoKSMiGEEKInKCnruT179sDLywtCoRDh4eHIyMhgO6Qe/fbbb5gzZw5cXV3B4XCQlJTEdkg92rp1KyZOnAiRSARHR0c89dRTuHLlCtth9ejjjz/GhAkT1AUMIiIi8OOPP7IdVp9t27YNHA4HK1euZDsUjTZu3AgOh9Pt4e/vz3ZY9yUWi/H888/Dzs4OZmZmGD9+PLKystgOSyMvL697fr4cDgdxcXFsh6aRXC7H22+/jREjRsDMzAw+Pj549913MRjroikp67FDhw4hPj4e77zzDnJychAQEICoqCjU1NSwHZpGLS0tCAgIwJ49e9gOpVcnT55EXFwczp49i9TUVEilUkyfPh0tLS1sh6aRu7s7tm3bhuzsbGRlZeHxxx9HdHQ0Ll26xHZovcrMzMQnn3yCCRMmsB3KfY0dOxaVlZXqx+nTp9kOqUe3b9/G5MmTYWpqih9//BEFBQX44IMPMGzYMLZD0ygzM7PbzzY1NRUA8Mwzz7AcmWbvvfcePv74Y+zevRuXL1/Ge++9h+3bt+Ojjz7S/YszRG+FhYUxcXFx6q/lcjnj6urKbN26lcWo+gYAc+TIEbbD6LOamhoGAHPy5Em2Q+mzYcOGMf/+97/ZDuO+mpqamJEjRzKpqanMo48+yvz1r39lOySN3nnnHSYgIIDtMPrsjTfeYKZMmcJ2GAP217/+lfHx8WEUCgXboWg0e/Zs5sUXX+x2bN68ecyiRYt0/tp0paynOjs7kZ2djcjISPUxLpeLyMhIpKensxiZcZJIJAAAW1tbliPpnVwux8GDB9HS0oKIiAi2w7mvuLg4zJ49u9v/Y3117do1uLq6wtvbG4sWLUJpaSnbIfXov//9L0JDQ/HMM8/A0dERQUFB+Ne//sV2WH3S2dmJAwcO4MUXXxxwox5dmzRpEtLS0nD16lUAwPnz53H69GnMnDlT569NDSn0VF1dHeRyOZycnLodd3JyQmFhIUtRGSeFQoGVK1di8uTJGDduHNvh9Cg/Px8RERFob2+HpaUljhw5gjFjxrAdVo8OHjyInJwcZGZmsh1Kr8LDw7F//374+fmhsrISf//73/Hwww/j4sWLEIlEbId3jxs3buDjjz9GfHw83nzzTWRmZuL1118Hn8/HkiVL2A7vvpKSktDQ0IClS5eyHUqP1q5di8bGRvj7+4PH40Eul2Pz5s1YtGiRzl+bkjIZ8uLi4nDx4kW9vocIAH5+fsjLy4NEIsF3332HJUuW4OTJk3qZmMvKyvDXv/4VqampEAqFbIfTq7uvgCZMmIDw8HB4enrim2++wUsvvcRiZJopFAqEhoZiy5YtAICgoCBcvHgRe/fu1fuk/Nlnn2HmzJlwdXVlO5QeffPNN/jqq6/w9ddfY+zYscjLy8PKlSvh6uqq858vJWU9ZW9vDx6Ph+rq6m7Hq6ur4ezszFJUxmfFihU4duwYfvvtN6212dQVPp8PX19fAEBISAgyMzOxa9cufPLJJyxHdq/s7GzU1NQgODhYfUwul+O3337D7t270dHRAR6Px2KE92djY4NRo0ahqKiI7VA0cnFxuefD2OjRo5GYmMhSRH1TUlKCn3/+GYcPH2Y7lPtavXo11q5di+eeew4AMH78eJSUlGDr1q06T8p0T1lP8fl8hISEIC0tTX1MoVAgLS1N7+8jGgKGYbBixQocOXIEv/zyC0aMGMF2SP2mUCjQ0dHBdhgaTZs2Dfn5+cjLy1M/QkNDsWjRIuTl5el1QgaA5uZmXL9+HS4uLmyHotHkyZPv2cJ39epVeHp6shRR3+zbtw+Ojo6YPXs226HcV2trK7jc7umRx+NBoVDo/LXpSlmPxcfHY8mSJQgNDUVYWBh27tyJlpYWxMbGsh2aRs3Nzd2uLG7evIm8vDzY2tpi+PDhLEZ2r7i4OHz99df4/vvvIRKJUFVVBQCwtraGmZkZy9Hda926dZg5cyaGDx+OpqYmfP311zhx4gRSUlLYDk0jkUh0z/15CwsL2NnZ6eV9+//5n//BnDlz4OnpiYqKCrzzzjvg8XhYuHAh26FptGrVKkyaNAlbtmzBs88+i4yMDHz66af49NNP2Q6tRwqFAvv27cOSJUtgYqLfqWfOnDnYvHkzhg8fjrFjxyI3Nxc7duzAiy++qPsX1/n6bvJAPvroI2b48OEMn89nwsLCmLNnz7IdUo9+/fVXBsA9jyVLlrAd2j00xQmA2bdvH9uhafTiiy8ynp6eDJ/PZxwcHJhp06YxP/30E9th9Ys+b4lasGAB4+LiwvD5fMbNzY1ZsGABU1RUxHZY93X06FFm3LhxjEAgYPz9/ZlPP/2U7ZDuKyUlhQHAXLlyhe1QetXY2Mj89a9/ZYYPH84IhULG29ubeeutt5iOjg6dvza1biSEEEL0BN1TJoQQQvQEJWVCCCFET1BSJoQQQvQEJWVCCCFET1BSJoQQQvQEJWVCCCFET1BSJoQQQvQEJWVCCCFET1BSJoSwpri4GBwOB3l5eWyHQoheoKRMCLmvqqoqvPbaa/D29oZAIICHhwfmzJnTrVkKIUQ79LsqOCGEVcXFxZg8eTJsbGzwz3/+E+PHj4dUKkVKSgri4uJQWFjIdoiEGBW6UiaE9Ogvf/kLOBwOMjIyMH/+fIwaNQpjx45FfHw8zp49ixdffBFPPvlkt+dIpVI4Ojris88+A6DsDrR9+3b4+vpCIBBg+PDh2Lx5c4+vefHiRcycOROWlpZwcnLCCy+8gLq6Op2+T0L0BSVlQohG9fX1SE5ORlxcHCwsLO75vo2NDZYtW4bk5GRUVlaqjx87dgytra1YsGABAGXbyW3btuHtt99GQUEBvv76azg5OWl8zYaGBjz++OMICgpCVlYWkpOTUV1djWeffVY3b5IQPUPT14QQjYqKisAwDPz9/XscM2nSJPj5+SEhIQFr1qwBoGxk/8wzz8DS0hJNTU3YtWsXdu/ejSVLlgAAfHx8MGXKFI3n2717N4KCgrBlyxb1sc8//xweHh64evUqRo0apcV3SIj+oStlQohGfe3qumzZMuzbtw8AUF1djR9//FHdDP7y5cvo6OjAtGnT+nSu8+fP49dff4WlpaX6ofpQcP369QG8C0IMC10pE0I0GjlyJDgcTq+LuRYvXoy1a9ciPT0dZ86cwYgRI/Dwww8DAMzMzPr1ms3NzZgzZw7ee++9e77n4uLSr3MRYojoSpkQopGtrS2ioqKwZ88etLS03PP9hoYGAICdnR2eeuop7Nu3D/v370dsbKx6zMiRI2FmZtbn7VPBwcG4dOkSvLy84Ovr2+2h6b42IcaGkjIhpEd79uyBXC5HWFgYEhMTce3aNVy+fBkffvghIiIi1OOWLVuGL774ApcvX1bfOwYAoVCIN954A2vWrMGXX36J69ev4+zZs+qV2X8UFxeH+vp6LFy4EJmZmbh+/TpSUlIQGxsLuVyu8/dLCNto+poQ0iNvb2/k5ORg8+bN+Nvf/obKyko4ODggJCQEH3/8sXpcZGQkXFxcMHbsWLi6unY7x9tvvw0TExNs2LABFRUVcHFxwfLlyzW+nqurK37//Xe88cYbmD59Ojo6OuDp6YkZM2aAy6VrCGL8OExfV3MQQkgPmpub4ebmhn379mHevHlsh0OIwaIrZULIgCkUCtTV1eGDDz6AjY0N5s6dy3ZIhBg0SsqEkAErLS3FiBEj4O7ujv3798PEhP6kEPIgaPqaEEII0RO0coIQQgjRE5SUCSGEED1BSZkQQgjRE5SUCSGEED1BSZkQQgjRE5SUCSGEED1BSZkQQgjRE5SUCSGEED3x/8NnolKtRSgQAAAAAElFTkSuQmCC\n"
- },
- "metadata": {},
- "output_type": "display_data"
- }
- ],
- "source": [
- "# Calculate the r2 scores and plot them\n",
- "scores = cycle_specified_score(r2_score, random_experimentalist_cycle, X_test, y_test)\n",
- "print(scores)\n",
- "plot_cycle_score(random_experimentalist_cycle, X_test, y_test,\n",
- " scorer=r2_score,\n",
- " figsize=(5,3));"
- ],
- "metadata": {
- "collapsed": false
- }
- },
- {
- "cell_type": "code",
- "execution_count": 9,
- "outputs": [
- {
- "data": {
- "text/plain": "",
- "image/png": "iVBORw0KGgoAAAANSUhEUgAABOQAAAN+CAYAAAC1m9S3AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8o6BhiAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd3hUZdrH8e9MeockkwJJ6L2XJFQrAvbeUFEEWVfUVXRVFsvrKqJrWeu6a8Oy9oplRVEUQSAh9N4hocxk0klP5pz3j4GBSICgJJPy+1zXXHHmnDNzz1xyz5z7PM/9WEzTNBEREREREREREZEGYfV2ACIiIiIiIiIiIi2JCnIiIiIiIiIiIiINSAU5ERERERERERGRBqSCnIiIiIiIiIiISANSQU5ERERERERERKQBqSAnIiIiIiIiIiLSgFSQExERERERERERaUAqyImIiIiIiIiIiDQgFeREREREREREREQakApy0qBM06SoqAjTNL0dioiINBDlfhGRlke5X0Tk2FSQE4+ZM2eSnJxMWFgYMTExXHTRRWzatKnGPuXl5UyZMoWoqChCQ0O59NJLcTgcdX6N/fv3ExERwf79+092+CIi0kgp94uItDzK/SIix6aCnHjMnz+fKVOmsGTJEubOnUtVVRWjR4+mpKTEs8+dd97JV199xccff8z8+fPZu3cvl1xyiRejrj87d+7EYrGwcuVKb4ciIiINRLlfRKTlUe4XEW9QQU485syZww033ECvXr3o168fb775JpmZmSxbtgyAwsJCXn/9dZ555hnOOOMMBg0axKxZs1i0aBFLlixp8Hjtdju33XYbHTt2JCAggMTERM4//3x+/PHHBo/lWFavXs3IkSMJDAwkMTGRf/zjH94OSUSkyWoKub+8vJwbbriBPn364Ovry0UXXeTtkEREmrSmkPt//vlnLrzwQuLj4wkJCaF///68++673g5LRBoxX28HII1XYWEhAJGRkQAsW7aMqqoqRo0a5dmne/fuJCUlsXjxYoYMGXLEc1RUVFBRUeG5X1RUdFJi27lzJ8OHD6dVq1Y8+eST9OnTh6qqKr777jumTJnCxo0bT8rr/FFFRUWMHj2aUaNG8e9//5s1a9Zw44030qpVKyZPnuzt8ERE6kVLz/0ul4ugoCBuv/12Pv30U2+HIyLSIFp67l+0aBF9+/bl3nvvJTY2lq+//prx48cTERHBeeed5+3wRKQxMkVq4XK5zHPPPdccPny457F3333X9Pf3P2Lf5ORk85577qn1eR566CETOOJWWFj4h+I7++yzzbZt25rFxcVHbMvPzzdN0zQnTJhgnnvuuTW2VVZWmjabzXzttddM03S/zyeeeMLs1KmT6e/vbyYmJpqPPvqoaZqmuWPHDhMwV6xY4Tl+zZo15tixY82QkBAzJibGvPbaa02n03nUOP/1r3+ZrVu3NisqKjyP3XvvvWa3bt1+71sXEWn0WnruP9z1119vXnjhhSf+ZkVEmhjl/iOdc8455oQJE07oGBFpOTRlVWo1ZcoU1q5dywcffPCHnmfatGkUFhZ6bllZWX84try8PObMmcOUKVMICQk5YnurVq0AmDRpEnPmzGHfvn2ebV9//TWlpaVceeWVnvgef/xxHnjgAdavX897771HbGxsra9bUFDAGWecwYABA8jIyGDOnDk4HA6uuOKKo8a6ePFiTjnlFPz9/T2PjRkzhk2bNpGfn/973r6ISKPX0nO/iEhLpNx/pMLCQs9sIxGR39KUVTnCrbfeytdff80vv/xCQkKC5/G4uDgqKyspKCjwfPkBOBwO4uLian2ugIAAAgICTmp8W7duxTRNunfvfsz9hg0bRrdu3XjnnXe45557AJg1axaXX345oaGh7N+/n+eee44XX3yR66+/HoBOnToxYsSIWp/vxRdfZMCAATz22GOex9544w0SExPZvHkzXbt2PeIYu91Ohw4dajx28IvfbrfTunXrur9xEZEmoqXnfhGRlki5v6aPPvqIpUuX8p///Keub1dEWhiNkBMP0zS59dZb+fzzz5k3b94RhaRBgwbh5+dXo3nqpk2byMzMZOjQoQ0aZ11NmjSJWbNmAe7C4bfffsuNN94IwIYNG6ioqODMM8+s03OtWrWKn376idDQUM/t4I+Dbdu2neC7EBGRE6HcLyLS8jTV3P/TTz8xYcIEXn31VXr16lXn9yAiLYtGyInHlClTeO+995g9ezZhYWHY7XYAIiIiCAoKIiIigokTJzJ16lQiIyMJDw/ntttuY+jQobUu6FBfunTpgsViqVMD1/Hjx3PfffexePFiFi1aRIcOHRg5ciQAQUFBJ/S6xcXFnH/++TzxxBNHbIuPj6/1mLi4OBwOR43HDt4/2qhCEWmcduWW8OnyPQxu15pTutq8HU6L05Ryv4g0L4ZhUmUYBPj6eDuUFqcp5v758+dz/vnn889//pPx48ef0OuKSMuiEXLi8fLLL1NYWMhpp51GfHy85/bhhx969vnnP//Jeeedx6WXXsopp5xCXFwcn332WYPGGRkZyZgxY3jppZcoKSk5YntBQYHnv6OiorjooouYNWsWb775JhMmTPBs69KlC0FBQXVeLn3gwIGsW7eO9u3b07lz5xq32npaAAwdOpRffvmFqqoqz2Nz586lW7dumq4q0gQUllXxfnoml728iFOf/Jnnf9zC24t3ejusFqkp5X4RafqqXQaLtubw4Oy1DH38R95Ly/R2SC1SU8v9P//8M+eeey5PPPEEkydPrvsbFZH6YRhQnO3+2wipICcepmnWervhhhs8+wQGBvLSSy+Rl5dHSUkJn332mVdGer300ku4XC5SUlL49NNP2bJlCxs2bOD5558/YvrspEmTeOutt9iwYYOnZwS438u9997LPffcw9tvv822bdtYsmQJr7/+eq2vOWXKFPLy8rj66qtZunQp27Zt47vvvmPChAm4XK5ajxk3bhz+/v5MnDiRdevW8eGHH/Lcc88xderUk/dhiMjxncCXcbXL4KdN2dz63nKSZ/zAtM/WkLErH6sFRnaJ5sL+bRsgYKlNU8n9AOvXr2flypXk5eVRWFjIypUrWbly5Un5HESkbgzDwOFwYNTxRKy8ysUP6x3c/fEqBs/4gXGvpfH24l04iir4eZOznqOVo2kquf+nn37i3HPP5fbbb+fSSy/Fbrdjt9vJy8s7eR+GiByXJ/e7qmHBUzD7VvffRliU05RVaZI6duzI8uXLmTFjBnfddRf79u3DZrMxaNAgXn755Rr7jho1ivj4eHr16kWbNm1qbHvggQfw9fXlwQcfZO/evcTHx3PzzTfX+ppt2rTh119/5d5772X06NFUVFTQrl07xo4di9Vae207IiKC77//nilTpjBo0CCio6N58MEHdcVMpCEZhvtLeHcGJAyGkXdDLf9mtzj288my3Xy+Yg/Z+ys8j3eJCeXSQQlc1L8tcRGBDRm5/EZTyf0A55xzDrt27fLcHzBgAHBi/ZBE5PczDIMZM2aQlpZGamoq06dPP/LfrGFQWuDgpyyDb9c5+GljNiWVh4otkSH+nNUjlrG94xjWOaqB34Ec1FRy/1tvvUVpaSkzZ85k5syZnsdPPfVUfv755z/2IYhInRye+89I6c2dHbdhKcl2nweU5kBoDIZh4HQ6sdlsx/wt1xAspn4ZSgMqKioiIiKCwsJCwsPDG+Q1i4uLadu2LbNmzeKSSy5pkNcUkUakONt9ZazYAaGxcOGLEBoDQEFpJV+t2ssny3azaneh55DWwX5c2L8tlw5MoHfbcCwWi7eibxaU+0WkoTkcDiZOnIjdbicuLo7XX3/ds9J9UXkV89bb+Xb+QuZnB1NuHhqjEB8RyJhecYztHcfgdq3x9dGEot9LuV9EGtrhuT8+Lpb3/jyIsIKN7ovyI6ZilOQw49lXSEtPP/rFmgakEXLSbBmGQU5ODk8//TStWrXiggsu8HZIIuINQZEQ0x1MExIG4wqMYsGmbD5etpu56xxUutzD132tFk7vHsNlgxI4vVsM/r46CWuKlPtFBNz9xHr16oVpmqSmphIQ2opPl+3mf2v2sWBLzoHc7y4StfMvYuygrpw9sBP9EiJ0EaYJUu4XEaiZ+1NShxAydhqU5bnPBxY+Q9W2X2mftZ0v7f6kpaXhdDo9F2t+q8pl4DJMAv3qb0EfFeSk2crMzKRDhw4kJCTw5ptv4uur/91FWhzDgIXPgGMD28MG8knpeXz2j5+xF5V7dukeF8blgxO5sH8bokMD3MeU5kBwdK1TW6VxU+4XEcMwmDlzJqvWbya89xlsTxhJ8mM/UuU6NDGoky2Ec8J3crZlMT06d8IceTnOnFxM01RBrglS7heRg7l/7dq19O7dm2nTpmH18XXPjCl2T1v1ryogta0v3ZxRdB2YgmEYGIbhGSW3v7yK+ZudzF3vYN7GbO4/twdXJifVW8zKVNJstW/fXr16RFq4kgIH36wu4OOcM1lakQjsAKBVsB8X9W/LZYMS6N024tABdew3J42Xcr9Iy7a/vIpPl2zho32R7O9xA1h84cCCDF1iQjmnTzzn9o2na2zYgQsw52AERTLjsZnH7jcnjZpyv4g4nU7S0tJwOBxYLBZyc3MPjX4LjoaEwVh2Z9D5tHN4cvK1vPLqa9x00030SR5Or9FXM3dDNou35XpmzwAs2pargpyIiEhdmabJ8sx8Plyaxder91FaORwAKyandovh8sGJnNkjhgDfWoafl+a4i3HFjhrNX0VEpPEqrazmxw3ZfL16Lz9tclJZbUB4ewBaWcoYf3ofzuvXxl2EO5zVCqExOB0O0tLSsNvtx53CJCIijZPNZiM1NdVzccVmsx3aaLW6L7SX5mANjmb35iz+t6OK3ITzWFuWCLPXeXbtEB3C6J6xnNUzlgFJres1ZhXkRESkWXDur+Cz5bv5KCOLbc4Sz+MdooK5vG8kl6Z2IbZV8LGf5MDVM88IueDoeo5aRKQJaIip/Cf4GhXVLn7ZnMOXq/byw3oHZVWHVkftGB3CuX3iGJYQSGqPpOOOdjvmSZyISAvVEKuRnszXsFqtTJ8+vdbnM02Tdfv28/26fOas28BmRzHEDfVs758YwVk94xjTK5ZOttAGa12gVValQXljtSURab5chskvm518uDSLHzY4qDbcX2lBfj6c2zeeKwYnkty+9Yl9qaqH3Emn3C/ShDXEVP46vka1y2DJ9jy+XLWHOWvtFJVXe7YlRgZxXt82nNc3np7xJ746dkOceLY0yv0iTZdhGMyYMaNep/Kf8Guc4G90o9rFiq27mLO1nDnr7WTllXm2+VotDOkYybDEYC7u3Yr4+ASv/O7XCDkREWlysvJK+Tgji4+X7WZf4aEFGvontuLK5ETO6xtPWKDf73vyA1OYRESEhpnKf4zXME2TVbsL+WLFHr5evY+c4grPYbHhAZzXtw3n92vzh1dHtVqth6ap6sKMiLRwB/ux1edU/hN6jTpeuHEZJuk78pizZh9zVmzFUXHofCDQz8qpXW2M6RXHmd1jiQj0cT/nz+7nNEZMxZmT26AXZlSQExGRJqHKZfDDegfvpWeycGsOB8d3twr24+IBbbkyOZHucboCLyJyUjXEVP5aXmO7s5jZK/cye+UeduaWenZtHezH2X3iuaBfG5LbR+JjPYnTigwDSrJh2VuwZ5kW9xGRFqshpvIf6zWOGLV8jAs31S6DtB15/G/NPr5bZyenuPLAs/gRaqngzPA9jB11Fqf260yw/2ElsAMrr5rFDiq2LeSln3P5aem6Bl3cR1NWpUFp6LqInKidOSV8sDSLT5ZlHfYFC8M6RXFVShKje8YS6FfLAg3SaCj3izRxDdRDLse5j6+2VPDFyr2s2l3o2RRkqeKsuBIuOutMRnaLwc+nHmI4OPpi569QuBsCQiE0Fi58UaOmfyflfpGmzVs95Gqdygo1RshVD5vK4p35B4pwDvJKDp0jtAr246weMZzNIoaX/0JA0sDaL64YBsYvT7L15w/4dVcFTyyqJjQsnLi4OF5//fUGWdxHI+RERKRxOOyEr7La4PuVW3lvZQGLtud6drGFBXD5oASuTE6kXVSIF4MVEWlB6nEqf0l5FZ+lbWbelnx+2V6E60AvUB8LjOwYzkUVX3OWzzJCwiMh6Syoj2IcHBp9UZbvvh/USov7iEiLVmMq/0lmGAYOhwNwj5RzOp1ERUWRm5uLYRi1TmV1Db+LtA07+HpLKXMe/6lGEa51sB9jesVxTp94hnaKcl+4MfpC6WVHv5hkteLsPp6/P/sjG7NyMCmhdevWDbq4jwpyIiJSd/U1SuLAyISd2zbxftVIPtnTmtxK91eUxQKndrVxVXISZ/aop5ERIiJyVCd7lIRhmKTvzOOTZVnMXpZJFYdGOQeVOrg4YjN3dtqDrX1vIBL2RNZ/cezwabNtB8HA691FSE1XFZEWqr5GyBmGwSOPPMJ7772HaZokJCQQGBhIRUUFgYGBpKSkkJKSQnp6OikpqWzfb+XFxWv5du2+GrNlIkP8GdMrjnP7xDOkYyS+vz1HqMPFJFtMLN0GjaSgOo3zk5OZPHkysbGxDdZDTlNWpUFp6LpIE1ZPK+1VuQzmLt/Me98tYGFxG8/jsT77uTJqO1dccR0JCYl/+HXEe5T7RZquk7nS3s6cEj5bvpvPVuxhd/6h1e6iDSejzSUMqlzGh6vKubt/Ef07xeHfOgkufAEs1oZZYEGLOZxUyv0iTVd9rrLqcDi49tprSU9PxzRNAgICsNls5OTkYLPZaNe+PVMffY4ftxQwb2sBjqJDi/m0Cvbj7N5xnNunTe1FuN/Bm6tsa4SciIjUzUleaW9vQRnvp2fywdIsnPsrgDZYMDkluphxiXmcWTUf38RB0KbtyXsPIiJyQv7oSnv7y6v4ZvU+Plm2m4xd+Z7HwwJ8OadPHPvX/Ejq3jcZ2tbK7pB4KkIhulUWfmU5EB7rLo75NNApi1bZFhEB6neVVZvNxogRI8jMzPSMkAsICKAsoDUFcX2p6DKCSR9u8uwfHujLmF5xnNevDcMOTkc9iepzau7xqCAnIiJ1U9eV9o4xwsAwTOZvcfLukkzmbXRwoFUQ0aEBXDGoLVf3DiYxIgBCoqHsGD0fRESkQdR1pb3DRxiAhSXbc/l42W6+XbuP8ioDAKsFRnaxccnAtozpFUegnw/GJX1w2K/EWpZHx6Ru9MnaRPSC6VhKc8EnAMryVCQTEWlgvyf313V0mdVq5YEHHmDSpEms3+VgQ2kIny7dhVlYhR9QDQT5WRndK47z+7ZhZNdoAnwbaAG3Bh4prYKciIjUjdUKI6ZCzmaI7lr7l9RRprXmlVTycUYW/03bRVbeoWlKQztGcc2QJEb3jMPfSr1MiRURkd/ParUybdo0Nm7cSPfu3Ws94To4tWnB8vWE9D4TZ2jHGlNSO8eEctmgBC4e0JbY8MAjjn/t9TfcJ30pKUwf6Y+lcI97gxZVEBHxihPJ/Sc6rTW3uIKvVu3lX9+kk22EHtrgqsbq2MAp7UN46W83ExLodzLf0vHVU3ueY1FBTkRE6sYwYOEzx/6SOmxaq5mVwcotO3lnVRFfr95HZbV7hER4oC+XDUpkXGoSnWMO+xIuzj6pU2JFROSPMwyDmTNnHvWEq6LaxceLNvOBw0ZJ13FQZYX8MsICfDm/fxsuH5RA/8RWWCyWWp//8GlRm5YvpCohiAD/EAhqDYOu14UZEREvOF7uhxOb1lpW6WLuBgdfrNjD/M3OAytqh4JpELR/N2F5G6nakUF0eDAzn3i74YtxcNLb89SFCnIiIlI3dfmSCo6mPD6ZL9fl83buQNau3eDZ1LttOOOHtOf8fm0I8q9l2Hldp8SKiMjRneTpNkc74dpoL+LDpVl8vmIPBaVVEOpefKeNtYi/XjaSs/vEE+h3/ClGh0+L6jYwBb+OAbBnmft7IOQEToS0IIOItGAne2GCuhTbjjet1WWYLNmey+cr9jBnrZ3iimrPtt5twwlxrqdg9Y8MG9ALS1wU6cWtSU1NPaF+bif1fXvhXEQFORERqZvjfEll5ZXy3yW7+HBpPwrKqgDw97VyXt94xqcm0S+yCkuI7egnSlare9SdTqhERH6fephuc/gJ18CUofy0q5wPPvmVlVkFnn3iIwK5bGBbzugQTL/OCe6TIsPAKLLjLDWxxcQe9UTJarUyffr0QydUcOLfA16YZiQi0lic1BVRD1zcsEVHHbeHnCd/ZzuwBVuwHoglbcNO/rc+j7lbCrAftkJq21ZBXDygLRcNaEPnmDAMYzhO50We5z7RwtpJXwnWC+ciKsiJiLRkJzKioJYvKcMwWbg1h7cX7+THjdmYBxZpSGgdxLWpSVzRM4jIqFj3VNeFdThR0gp3IiK/Xx2n25zIiAKr1cqFN9xKfqcxfLYpj7c/WwuAr9XCWT1juSI5kVO62PCxWjzP7bDvI3rDW2yb/yFpe6rZmXg50++//5hFuRojIk70e8AL04xERBqLuoxmq1PeP+zihjVhMNP/Ng1nTu4xj7ECsZveIXfHaj6pHMKrO2LIMUM828MDfTmvXxsuHtCWQUmtsVoPtS/4be4/5si4Ws5Z6mUl2AY+F1FBTkSkpfo9IwoOfEkVV1Tz2fJM3ly0k+3OEs/mkV2iuX5oe07vGo3Pr0/D3AyI6Q6ODVCSrRMlEZH6VIfpNnUdUVBSUc1Xq/bybloma/YUeh5vHxXMVSlJXDowAVtYQK3PvWnZAqb32YdvWR7tfQ2+W77w5JwoHY1aHohIC3a8qaN1Hkn2m4sb1rK8Y+btKpfBz6u28MmvofxYdDnVB8pLpquaqsyVJBl2Pn72QRLbxv+xN3iUc5a6rgTbmKkgJyLSUv2OEQW7ckt4a9EuPs7IYv+BPhChAb5cNiiBa4e0O7RIw+ELNJgmxPaEbItOlERE6lMdptscb0TBJvt+3k3bxefL93jyvL+PlTG947g6JZEhHaJqjHCo7bkd9lwyomFwfCQ7C6HbwBH1e6Kklgci0oIdMfX/9y6+EBQJMT3cv91r+81+YJTapqIAPl6+hy9W7iGnuBJoB0BsRSY5GzMwd2UQ6Crn7HHjaBt/Ei7EHOWc5XjvuylQQU5EpKWq44gC0zT5dWsus37dwbxNh6aldowO4fph7bl0UAKhAb/5Ovntc4+YCmV5OlESEalvh0+3qWWKT20jCsqrXMxZa+e/S3aRsSvf81Tto4IZl+oeDRcVGlDbq9Vw+HPvTErh6tsnEVluOWYPuZNGLQ9EpAU7fPrnb6en1mkkmWG4W8w41kNsD/dv98PydmFJBV9++jYf7/Bnddmhc4boUH8u6t+G0oxPWbM2jXOGpDDptb974jkpuf8Y5yxHtDxoYiymefDUSqT+FRUVERERQWFhIeHh4d4OR6R5OV4/uNq2H+OY8ioXX6zYwxu/7mCzo9jz+OndbFw/rD2ndLEddZREneKRFkO5X6T+HLUv0IEpPmbWUopb9yBk7INYfXxrHFPpG8p7S7P4cGkWeSWVAPhYLYzuGcs1qe0Y1unoo+FOOB5pcZT7RerP0XLtwempS5YsoXfv3syYMQNfX9/j5+bibJh9q3sUWmgsXPgiRrCNJTty+WhpFt+u3UdFtbt05IvBmd0iuTy1M6d2s+HnY63/3N9Mzys0Qk48fvnlF5588kmWLVvGvn37+Pzzz7nooos8203T5KGHHuLVV1+loKCA4cOH8/LLL9OlSxfvBS0ibsfrB3e07bWMKLAXlvPOkp28l5ZJfql7tdRgfx8uH5TA9cPa09EWWreYNFpBRKReHbMvUGkOZtZS9m1dxe6CpSxcVskd9z8GWFi4NZe3F2cxb6MD48Cl+fiIQMalJHFFciKx4YG/O6amPlpBRKSxqzX3A5Tm4Cx2sWTJElauXElGRgYAM2fOPH5uPmwUmiN6CB+nFfDRsnVk5pV6dukWWs4VYau5qEc4UaPurHGuUe+5v5meV6ggJx4lJSX069ePG2+8kUsuueSI7f/4xz94/vnneeutt+jQoQMPPPAAY8aMYf369QQG/v4fbiJyEhyvH1wd+sWt3VPI6wt38NWqvVQfOENr2yqICcPbc/ngRCKC/BryHYmIyHEcsy9QcDTFrXuwu2ApGXYLP27fgP83aXy2qYLtOYcW4xneOYrrhrRnVI8YfH2az6gDEZHm6ojcn+0gdtM7kLUUW0wP+vbuSUZGBr6+vqxZs4b169fTs2fPY45cc2Fhvm08720bzryfCzDMLYC7V/T5/dpwZXIi/dqEYSkb2exGqXmTCnLicfbZZ3P22WfXus00TZ599lnuv/9+LrzwQgDefvttYmNj+eKLL7jqqqsaMlQR+a3j9YOrbbthYJQ4+THT4LWFO0nbkefZPaV9JDeOaM+oHrE6QRMRaaSO2RfIaiVk7IN8tdSH/5X4U9K+O0/96s7zwf5WLh+UyHVD2x9ajEdERJqEI3J/kAk7fwXnRqx7l/PoGeMwuZ7Va9ZSUVHBvffeS2pKCn+69hJs7Xt42hcA7Cko46OlWXyUkcW+wnLP48ntW3NlchLn9Ikj2P+wslEzHKXmTSrISZ3s2LEDu93OqFGjPI9FRESQmprK4sWLj1qQq6iooKKiwnO/qKio3mMVaZFqW2Hut70WDm4PiqQs384n33zDG1tD2FEZAYCv1cK5feKYOLIjfRNaeff9SJOm3C/SMGpbYc4wDBzZ2WwssPDW4l38XD4Yotz7d/TN4RwWkbEmE9+KziSNfRKHw6F+b3JSKPeLNIwauT86CuuCpzHzd2KWF2IJjMDHuZHHpr/A+swc7r33XvbsziLMfwXbc14nPbA9Z/zft8xZvZtvNhXy8yanp3VBq2A/Lh2YwNUpiXSOCfPum2whVJCTOrHb7QBHzAuPjY31bKvNzJkzefjhh+s1NhE54Lcr69XSM87pCuOdN97hnZ3h5LvaABBuKWVcqw1cH7ON+Da9oM3dXnwT0hwo94s0nMP79pSUVzH5sdfIKAqjIrA1ABYLnN7VxsAdrzGoYA5LsqoYUFnJAMcS3pr0HbPzOpM6ZGjN/nMiv4Nyv0jD8eT+4mzM3RnsKyiBMoOyaj86JAzGGhpD9+7RlJeXU5m/l57hVZRUR/D9/nb8ZdqnGMFRnuca2jGKq1ISGdMrjkA/Hy++q5ZHBTmpV9OmTWPq1Kme+0VFRSQmJnoxIpEW4jc947ZlZfHaskI+XbabSpe7aJfok8dE/x+5PGgpIZRDWSzsLqu1v5zIiVDuF2lYjqJy3l68k3cW76SoMgkCweqq5PLBCfz5zJ4EuYqZNHEPX+ZFUlhYwCPJZcQEA6VOSpz+pKVZa/afE/kdlPtFvKBGv9BgFpfH89TN44m1Wsl1OgkIDMTSaQT/CO7PjvABGJYDJaDKEqKKtvDvu68luXs7776HFkwFOamTuLg4ABwOB/Hx8Z7HHQ4H/fv3P+pxAQEBBAQE1Hd4IvJbB3rGZWzaxb8dI/jh5bWeTf0iSvlTRDpjukfhU50E2cXgqgSfgNr7z4mcIOV+kYaxbm8hry3Ywder91Llcs85CrNUELI3g7M6hfDw5RcemMYaRErqENLS0jhn9IUYlQupLNnGboIIsSUd2X9O5HdQ7hfxggP9Qhcuq+SnrWtISR2CLSaW/eVVfLu1lL19J1BiBrHtwO4uxxZ8dy6mW3Apw4ekMKiriubepIKc1EmHDh2Ii4vjxx9/9BTgioqKSEtL489//rN3gxORGgzD5IcN2fxn3XCWZfYC3FOWRvWIZfIpHRmcGIGl7NRDhbcDfeUoy9OqSSIijZxpmvyyJYdXf9nOwq05nseT27dm4ogOnNk9hrzc4TX6wv221xymQW7mJgYmdOHcvHz1kBMRaSp+2yMasPr4csf9j3GN00muK5AHZq/j8xV7KK10AUEE+1m5aEBbxqUkQkE7una9hfx85f7GQAU58SguLmbr1q2e+zt27GDlypVERkaSlJTEHXfcwaOPPkqXLl3o0KEDDzzwAG3atOGiiy7yXtAi4lFR7WL2ir3855dtbHOWAODvY+XSQW2ZNLIjnWyHraR3+JTUg/+taaoiIo1WZbXBV6v28uqC7Wy07wfAx2rhnD7x3DSyQ43FeGqbenp4rzmwYuvQ66j7iohII3SUHtHVLoMfNjiY9etO0nbkeXbvEhPKdUPbcfGAtoQF+rkfTHD3F1XubxxUkBOPjIwMTj/9dM/9gz0grr/+et58803uueceSkpKmDx5MgUFBYwYMYI5c+YQGBjorZBFBCiuqOa9tF28vnAHjiL36mZhgb5cN6QdNwxvT0yY/o2KiDRVxRXVfJCeyWsLdmAvKgcg2N+Hq5KTmDC8PYmRwV6OUEREGsRvekTn5ezjg/Vl/HfxLvYWur8ffKwWxvSK5boh7RnSMRKLxeLloOVYLKZpmt4OQlqOoqIiIiIiKCwsJDw83NvhiDRpucUVvLVoJ28t3kVhWRUAceGBTBzRgatSEg9dCRPxMuV+kTo6bCpSbmnVETk+JiyACcM7MC4liYhg5Xhp3JT7RerGMAxPS4FjTiE9MEJuw5ZtvFk+ki/sUVRUGwBEhvgzLiWJa4YkER8R1ECRyx+lEXIiIk3FgRO1vRVBvPLzRj5YmUN5lftLuGN0CDef2omLBrTF31e9IEREmpwDJ1q7t2/gtfLT+WCvzZPjk1oHcPOpnRmZGEDb+Fj1/BERaSYMw2DGjBmkpaWRmprK9OnTDyzG4y7SRUVFkZubS1RUNPO35PD6plNYtL3XwaPp3TacG4Z14Ly+8QT6+Xj1vciJU0FORKQpMAx2zHmel1ebfFbQiWrcX7h92oZzy2mdGd0rDh+rhqSLiDRV27N28/ISfz7Pv/hAjjfo0zYCW84K7L98x+vfl/FuYCBDhgzxnLCJiEjT5nQ6SUtLY9++ffzyyy9MmjSJ2NhYZsyYwZIlSyitdFEW34/StikUme42ND5WC2N7xzFhWHsGtWutaalNmApyIiKN3EZ7ES99v45v1nfCwH0CNjRgJ7fEb2bENX/DEqamrCIiTdVGexEv/bSNb1bvxTC7ADDcfxu39LPSadglTLrpcfbszsJutxMfH09aWhpOp1MNuUVEmoJaVkU9nM1mIzk5mffee4/i4mJeffVVbrrpJhYuW8uOkF5UdE3GEhAMJoQF+DAutR3jh7WnbStNS20OVJATEWmkVmUV8OJPW5m73nHgEStnhmUxJSqDgaGFkJgMITavxigiIsdxlJOxNbsLeWHeFr735HgY1SWCKVVvMsCyBcpjMUIuIzU1FdM0iY6OJigwgDNSemOLjvLGOxERkToyDANntgPbxrex7llWY1XUw1mtViZPnszChQvJz89n/upt7P1uJ5u7X4eJBQvgX5FPb/8cZt1zMxEhWqytOVFBTkSkkVm2K5/nf9zC/M1OACwWOKd3PLec2pFerSohaBKU5R31SpuIiDQSB/rCsTvDczK2Zu9+nvtxMz9syAYOy/Gnd6JXXBgsWAS7iyBhMNbQGKZPn+7uIxTZmrLvHyU0fwOWhc/UemInIiLed7Av3KZlC3iwv5Mu8eFYdme4L86Exhyxf0xMDB2HncvC3EByQhPZtjEPsDAwIZTJp3Rm3rvPs27tWp5/Zr9aFjQzKsiJiDQSadtzeWHeVhZuzQHc/SEu7N+GW07rTOeY0Jo71/JlLiIijUxpjrsYV+xg7ZbtPLttMT9sLgDAaoEL+rVhyumd6RIbduiYkXfXGFFnBff01OJswgo2Qkm2+zmPcmInIiLedbAvnMOeS5qtmnZJrQhIGOzO64epchl8s3of/56/jY0VXSDU/fv/nD7x3DSyA30TWuFwOHhx3TocDodaFjRDKsiJiHiRaZos3p7Lcz9sIW1HHgC+VguXDkzgltM70S4qxMsRiojI7xYczbrwETy7y4+5RUlAAVYLXNi/Lbee0ZlOttAjj7Faay+0BUe7R9kdHG33mxM7ERFpHGw2G6mpqaSlpbEzMQW/yya78/qBkW2lldV8kJ7F6wt3sKegDIAQfx+uTE7ixhHtSWgdXOtzpaamYrOpXU1zYjFN0/R2ENJyFBUVERERQWFhIeHh4d4OR8SrFm3L4dkftpB+oBDn52PhisGJ3HxqJxIjg49ztEjTodwvLdE2ZzHPzN3MN6v3Ae6pqRf2a8OtZ3Q5ctRzXR2nObhIY6LcLy2ZYRg4nU5sNptnimleSSVvLtrJ24t3UlBaBUB0qD8Thnfg2tR2RAT71fm5pHnQCDkRkQa2eFsuz/6w2TMizt/HylUp7kJcG62YJCLSpO3OL+W5H7bw6fLdGAcue5/frw1/OfMPFOIOOtroORERaVSsVqtnaqm9sJxXF2znvbRMyqpcALSPCuamUzpy6cAEAv186vxc0ryoICci0kDStufyzx82s2R7zULcn0/rRHyECnEiIo2OYbh7tpnUmG5UG+f+Cl76aSvvpu2iyuWuxI3qEctdo7vSI16jg0REmgrDMHA43Ctgx8bG/u5RaTtySvjP/G18uny353uhd9tw/nxqZ8b2jsPHajlpMUvTpIKciEg9W56ZzzPfb/Ys1uDvY+XKZHchTiPiREQaKcOAX56E1R+57/e9Ak756xFFueKKal75ZTuvLdhOaaV75MOwTlHcPaYbA5NaN3TUIiLyBxiGwSOPPMJ7770HwDXXXMP999+PFWptGVDbdNJN9v28+NNWvlm91zNSOrVDJFNO78zILtFYLCrEiZsKciIi9WTtnkKembuZeRuzAfdiDVckJ3Lr6Z1ViBMRaexKc2DXIvcIOYDMRTVWNq1yGXyQtovnftxMTkk1AP2CnNzTu4ThF5+tHm8iIk2Q0+lk4cKF2O12LBYLCxYswJntIHbTO55FdYwRU3Hm5BIVFcXMmTM9Cy5cNOFWXvppO3PW2T3Pd0b3GG45rROD20d68V1JY6WCnIjISbbZsZ9nvt/s+TL2sVq4ZEBbbj+zixZrEBFpKoKjod0wKNztvp84FAwD0+Xi2/XZPDlnIztySwFoH1TOPdGLOdtnKZbyWCi9XL3eREQau1oWyrHZbIwYMYLMzEwAhg8fDiU5mFlLsZRkY2Yt5dkZ9zMvfS29evVi7dq17C7zZde+SF5/cRHgXsTn7N5x3Hp6F3q2UcsCOTqtsioNSqstSXOWmVPMP+es5Yt1uZim+8v4ggONvDva/mAjb5EmTLlfmqyDPeQMA1a8w4otu3gk93SWF7gvrkT5lPGXVgu4JHIXwYl9sGZvhNiecMYD4KPr3tKyKfdLo2YYsOApz6g3Rt7tKcod7CFnGAavv/46S9PTmJpsclqnEIpb92Dcy8vYZ3cQ2LY71d3HYLe4R79ZLXB+33huPaMLXWLDvPnupInQLwURkT8ou6ic53/cwgfpu6g23T0hxvaKZerobnTVl7GISNNltUJYHHv3ZPHE4mBmF54LQJCflZtGdmSS9UvsC+fz7dZKNmb1Y/qw7lgd62HhMzVO7kREpJEpzXEX44od7r+HtSSwAvFhPjiKIT09HbvdwTNLY+k9/v+ISupGu/RnWbsLzLgeAFhMk/4Vy7gtfAGnxZ+F1dbfe+9LmhQV5EREfqeC0kpenr+NtxbtpLzKACycErSdu9usp+/FD0OoinEiIk1ZSUU1/5m/jf/8sp2K6o5YMLm0bQF/ve4SYlsF49g3jlUfzSLOJx/2fkxVVmcCqguPOLkTEZFGJjjaPTLu4Ai54Gj344eNnLO1HURqSgpp6emkpKay2xrPX99ezs8VPSAOTMOFdVc6vctXM7XNUuLKrFRtDyFgsPK/1I0KciIiJ6is0sWsRTt4+edt7C93N/IelNSKv8atYEjZgppf6iIi0uQYhsnnK/bwxJyNZO+vACClfWsePDOe3p3aHeo1FOJDvzYBWEqsxIb445fYD5yb9D0gItLYWa3ukcy/XTn1sJFz1j3LmH7H8yzcdR2zMpxc/PJiAHwsYO5Mo+DXD4gOhJ4XXcjO/B3Ehvji13GY8r/UmQpyIiJ1VO0y+ChjN8/9uBlHkfsErXtcGPeM7cbp3WKwmEOh+DLQSuYiIk3Hb5p6r91TyIOz17I8swCAxMgg/nZ2D8b2jsNiqZngraExdD7tKiq3/0plTD9377jygpondyIi0ugYhoHT6cRms2E9PF8fNnJuc8Rw/jl7N9+ucwDuhdouHtCWW07ryH9fXsYvziQGDhzII48+Sn7eVGzBFqyhMcr/UmcqyIlIy1DLKkp1ZZomc9baefK7TWzPKQEgoXUQd43uyoX92mK1Wg7uCCverrU5rIiINDzDVU1u5iaikrphrW2RhcOmJuXHpPLk/rN4f2kWpgnB/j7cekZnbhzegUA/n9pfwGqFkXfxr1/y+emz5aSseILp06fXPLkTEZEGVV1dzcaNG+nevTu+vkfmfsMwmDFjBmlpaaSmptbM21YrO3v+mWez1jL71zxM01HrQm1/+9vfKCkpYe3atTzxhHK//D4qyIlI83eMVZSOZ+nOPGZ8s4GVWQUARIb4c9sZnRmXmkSA729O0I7RHFZERBqW4apm/qMXEJK/nrWte3Lq/V8eWZQrzcGVtYz398Xz1Pr2FLiyADi/Xxv+dk534iOCjvs6zpxc5qWvxW53kJaWhtPpJDY2tj7ekoiI/NZvLrpXV1czZswY1q5dS+/evfnuu++OKMo5nU7S0tKw2+018ra9sJznftzCRxlZuAwTgLG94rjzrK50i6vZGzo3N5d169bhcCj3y++ngpyINH+/o1C2zVnM499uZO569xD1YH8fJo3syE0jOxAW6Ff7QUdrDisiIg3jsBOz3MxNhOSvJ5RSyF9PbuYmbB161dh9dZ4f0zMvZ02Ru/DWPS6M/7ugF0M6RtX5JW02G6mpqZ6RFjab7aS+JREROYoDF93NrKUUt+5ByNgH2bhxI2vXrqW4uJi1a9eyceNGevfuXeOw3+Ztv5AIZv5vA28u2klFtQHA6d1sTD2rG30SImp9aeV+ORlUkBOR5u8ECmXO/RU89+Nm3k93XxmzWuCqlCTuGNWFmLDAY7/O0ZrDiohI/fvNaOio4XewtnVPyF9PSeueRCV18+xaWFbFU99t4r9puzDNIMICfLjrrK5cO7Q9vj4nlrutVivTp0+vvReRiIjUn9IczKyl7Nu6it0FS1m4rJJb7/s7vXv39oyQ6969+xGHHczbmXvtfL25hFOfmu9ZqC25fWvuHdudwe0jj/nSyv1yMqggJyLNXx0KZeVVLl5bsJ2Xf95GSaULgFE9Yrjv7O50jgk7Yv9jvpamqYqINLzfjIa2lhdw6v1f1ughZ5oms1fu5dFvNpBT7F6c5+IBbfnbOT2whQX87pe2Wq2aqiQi0tCCoylu3YPdBUvJsFv4aesarsnL5btP32FjVg7de/SstYdclcvgw6VZPPfjFpz7a1mozVK3FdqU++WPUkFORFqGoxTKDMPky1V7+cecjewtLAegb0IEfzunxwlNWRIRES+rZTS01Wr1TFPd7izm/i/WsmhbLgCdbCE8clFvhnVSewERkSbJaiVk7IMsXFbJT1vXkJKSim3j21j3LKN3wmCwHjZV1TAwS5x8v8vgie82sd3pXqgtMTKIu87qxgX92hxaqE2kgaggJyItVsbOPB75ZgOrDizY0CYikHvGdtcXsohIU3SU0dCV1Qb/mb+NF37aSmW1QYCvldvP7MJNIzvi76spRiIiTc5h/UKtPr7ccf9jXON0YgsysX51+5F9ow2DZV++xMzVIWSUuke0HVyo7ZrUdvouEK9RQU5O2EsvvcSTTz6J3W6nX79+vPDCC6SkpHg7LJE6y8or5fFvN/LNmn0AhPj7cMvpnZk4ogOBfj7HOVpERBqt34yGztiZx7TP1rAluxiAU7vaeOTC3iRFBXsrQhER+SN+0y+UkXcfmjpqGEeMlN6ZU8ITX6/i240dAQi0VDNpWCJ/OqvP0RdqE2kgKsjJCfnwww+ZOnUq//73v0lNTeXZZ59lzJgxbNq0iZgY9c2Sxq2kopp//byVVxfsoLLawGqBK5OTmHpW1z/UO0hERBqBw0ZMFFa4eGLORt5LywQgOtSfB8/vxfl94+vcG0hERBqh3/QLNYqzcZZZDi2scGCkdKElguf/t5G3F++kymVixeTy1lu4s79J3Fnna/E1aRQspmma3g5Cmo7U1FSSk5N58cUXATAMg8TERG677Tbuu+++4x5fVFREREQEhYWFhIeH13e4IoC7T9znK/bwxJyNZB9o3Dq8cxT3n92dHhGVWhFVpJ4p90u9O2zExBzf03lwaxdPvr9ycCLTzulOq2D/A7saWhVPpAEo90u9OCzfG20HMeOXCtLS00lNTWX69Om4TPjvkl089+MWCkqrAPfo6PvGdiG6Yq9nkR+RxkD/J0qdVVZWsmzZMqZNm+Z5zGq1MmrUKBYvXlzrMRUVFVRUVHjuFxUV1XucIodbnpnPw1+t9/SJa9c6gOnn9uKsHjFYFj5dY7i7inIiJ4dyvzS40hyyd6zlocwhfFuaBFTQMTqEGRf3IbVDa5xOJ0agDYAZM2aQlpbmOXlTUU7k5FDul3p3cCT0iKlQloez2EXaUzdht9tZkpbGZ0u28K9F+9ie416woWNUIA+e35tTutqU+6VR0v+FUmc5OTm4XK4jlnaOjY3FbrfXeszMmTOJiIjw3BITExsiVGkJDAOKs91/a5G9v5ypH63kkn8tYlVWASH+PtzXzc73bV5jdO47WEqcNYa7U5rTwG9ApPlS7pf6YhgGDocD47Dcb5omH20oZ9TWy/i2tBu+FpNbT+vE//4yktQOrZkxYwYTJ05kxowZOBwO0tLSsNvtpKWl4XQ6vfhuRJoX5X6pL4Zh4LDvw/jlSZh9Kyx8BoKjscXEkpqaSqt2Pcjvew13f7mV7TklRIX4M9x/F0Hzn2XBx68o90ujpYKc1Ktp06ZRWFjouWVlZXk7JGkODg5Vn32r++9hJ2ZVLoNXf9nOGU/N57Ple7BY4PJBCfx0Sx9u9v+OgNJ97gKcBffIuNBYT9NXETk5lPulPhiGUaO4ZhgGWXmlXPd6Ovd8uoaiah/6xAfz5a0juHtsdwL9fHA6nTVOwsDdfiMuLo7U1FRsNpuX35VI86HcL/XBMAxmPPooD986jq0/v4952MX0ovJqqvpczI6uV7HXCMffx8qfT+vER9f3onD5/3DY9yn3S6OmKatSZ9HR0fj4+OBwOGo87nA4iIuLq/WYgIAAAgLULF9Ost80cz24pPmCLU7+78t1bHO6h6n3S2zF3y/oRb/EVkeuuhQS42n6qh5yIieXcr/Uh8OLa0vS0njx+7W8/OteyqpcBPhamXpWVyaO6ICvz6F8brPZSE1N9UxTio2NZfr06eohJ1IPlPulPjizHbTP+pjTbDmUFPlSmZiET5vBvL+6hKd/WOnpEze2Vxx/O6cHSVHBGIZBamoq6WlLOD2lN7G2KKb/5SacpZOwxcQq90ujoUUd5ISkpqaSkpLCCy+8ALivWCQlJXHrrbdqUQdpOL9Z7nxPnyk88s1G5qxzT52OCvHn3rO7c9nABKxWS83jVIATaXDK/XIyHBwh98uKTRR1Px+HEQpAaodIHr+0Lx2iQ456nApwIg1PuV9OBqPIztZnzsZSko0ZYiP33Nd4+NdSNtr3A9AtNowHz+/J8M41Z7sYrmpK5vyd0Pz1WFyV4BMAicnqGy2NikbIyQmZOnUq119/PYMHDyYlJYVnn32WkpISJkyY4O3QpCU5sKR55f5sXlu+nxf+uYCyKhc+Vgvjh7bjjlFdiQjyq/240JiGj1dERP4wwwTbyKvJLN9MhcskxN+Haef0YFxKUs2LL79htVqP6H8rIiJNgzU0hs6nXcXuzSt5suw8vvrUPVsrIsiPu0Z3ZVxKUo2R0Z7jyvIIK9gI+/fBfru7Tc1ui2dmjUhjoIKcnJArr7wSp9PJgw8+iN1up3///syZM0c/dKXBLdqexwOzN3qmp6Z0iOSRC3vTLS7My5GJiMjJtnlfIX/9eAWr9rpz/sgu0cy8pA8JrYO9HJmIiNQXwzDYZ3fwNZfw/O6+lFQaWCwwLiWJu0d3o3WI/9EPDo52t6nJMiE4yj1CTn2jpZHRlFVpUBq6Lr/LYVNNHcWVPPrNBr5atReA6NAApp/bnYv6t8ViOfoICRHxHuV+qdVx2ggYhsE+RzafrS/ihR82UWlaCfN18cCF/bl8cKJyvkgjp9wvtTleG4GD26Oiorjt0ReYVxBNRWAkAP0TW/HIhb3pkxBR1xdzf88ERUJZntrWSKOjEXIi0rgd6BfnylrG266zeHp7AsUVLqwWGD+0PXeedZTpqSIi0nj9phfob3v6GIbBXY88zbd50ZQHxQBWzgzayox2K4jrMQRUjBMRabyOcsHlYC/QgwvtTJ8+vUZR7uD2hctWU9btHDItXSEQfKrLmHZOD248recxWxQc4fB2NZqmKo2QCnIi0riV5rBmy3b+ljmaNZVxgIv+ia149KLe9G5bx6tjIiLSuBxltWyAapfB0/9bzRcl3TCDfLC6ynm0xx6u9v8VS6KmG4mINGrHuOBy+GrZaWlpOJ3OGq2P7I5s/relGHvnqzAtgVhMk9Z5azkn0eDG0y45sWKcSBOggpyIeM9xpivtL6/i6R+zeXvreRhYCPd1ce+5fbk6tZ2+kEVEmijDMHAWu7C1HYR1z7IaPX022fdz98erWLOnEKw+hBXt5LzYIq66/q9Yyq7SdCMRkcbuKBdcDMPAMAxSUlJIT08nNTUVm83mOWzN7kL+9vlW9rU5BYBoawmv3TyK+IBkrZItzZYKciLiHce4emaaJt+ts/PQl+twFFUAFi7sFcn9F/THFhHk3bhFROR3qzFdKSWF6Xc8jzU0hmoTXvl5K8/O3UKlyyA80JeHzu/J8LaDiImJcZ+IabqRiEjjd3AxhYO/8YOja+T+5ORkXn31VWJjY7Fare4L8N9v5u3FOzFMCAv05eZhbZh8Rk/8fH28/W5E6pUKciLiHUe5emYvLOeB2WuZu969pHm7qGAeubA3p3S1HecJRUSksasxXSk9HWfZn9hfXsrdH69iZVYBAKN6xPDYxX2ICQ/0brAiInLirFb3hfbDZsE4HQ5P7l+6dCk333wzVquV79fZeXD2OuxF5QBc2L8N08/tQUyY8r+0DCrIiYh3/ObqmREYxbtLdvHEtxsprqjG12rh5lM7cesZnQn009UxEZEm5SgtCWw2G6mpqe5REimpzN5UzNPfL6ei2iAs0JeHzu/FpQO1araISFNUYwXVw0Y1H577U1NTMQLCuPmdZcxZZwegfVQwj17UhxFd1CNUWhaLaZqmt4OQlkPLn0sNB07YtuwPYNoX68jYlQ/AgKRWPH5JX7rFhXk5QBE5GZT7W5g6rKC6fEsWj8/b48n7p3S18cSlfYhXWwKRZkO5v2Wpywqqjuxs5m4v48nvNrP/wAX4yad05PYzu+gCvLRIGiEnIl5TacC/lhTw0k9bqXKZhPj7cM/Y7lw7pB0+WrRBRKRpOsYKqqZp8m5aJo/9byNlVS5C/H24/7yeXJWcqFFxIiJN2PFWUN2eU8p9n2/3XIjpl9iKxy/pQ494FWul5VJBTkS8YlVWAfd+upqN9v0AnNk9hkcu6k2bVhodISLSpNXS0BtgX2EZ93yymgVbcgAY2jGKf1zWl8TIYPdxx1l5W0REGq/fTks9uIJqlcvglV+289yPW6isNgjx9+GvY7px3dD2+FgtNae5KvdLC6Mpq9KgNHRdyqtc/HPuZl5dsB3DhKgQfx66oBfn943X6AiRZkq5vwU6rLhmWizMXrmXB2evpai8mgBfK/ed3Z3rh7bHenA09HGmuYpI06Pc3/L8tri2bm8h93yymnV7iwA4rZuNGRf3oe2BC/DHm+Yq0txphJyINJilO/O455PV7MgpAdwrKT10fi8iQ/y9HJmIiJxUViuExpBXUsn9X6zhf2vcjbv7JUTw9BX96RwTWnP/Y0xzFRGRpsFqtRIbG0tFtYsXf9jEyz9vo9owiQjy46Hze3LxgJqL9hxvmqtIc6eCnIjUu9LKav7x7UbeWrwLE4gJC2DGxX04q6e+cEVEmqufNmbz109WkVNcia/Vwu1nduGW0zrh61PL6IejTHMVEZEm4sDI6NV5ftz9yWo2ZxcDcHbvOB6+sBcxYYFHHHK0aa4iLYUKciJSr9J35HH3xyvJzCsD4MqEfP424XIiQgK8HJmIiNSH0spqZnyzgXfTMgEIKM9jbCsHt54+9uhTkaxW9zRV9ZATEWl6DIPK+U/zwvIq/pXTF5dpwae6lFND7Lw07uyj5n6r1cr06dPVQ05aLBXkRKRelFe5ePK7Tbzx6w5ME+L9Sng88htObV0G5mhAU5FERJqblVkF3PnhSk9rgqicVbD6S7bFRON0XnfsqUgHprmKiEjTsm57JnfNj2NjeSQA0UWbMFZ8QXZUOE7nFcfM/QenuYq0RCrIichJt3xnLnd/tJLteeUAXDEogftbzyXcUaapSCIizVC1y+DFeVt4Yd5WXCbEhQfy5GV9+PnD5aTZozUVSUSkGapyGbw0bwsv/LQVlxFJpE85f++TzYrNxaRFhSv3ixyHCnIictJUVLv45/ebeeWXbRhYiA2o4vGrhnB6jzgw+mgqkohIM7Qrt4Q7PljJiqwCADr65PHpX66gdUgAwzUVSUSkWdqavZ87PlzJ2j3uFVTb++Tz0a2nEhPblnNAuV+kDlSQE5GTYsO+Iu78cCUb7fsBC5eEruWhpDVEJA5z76CpSCIizYppmny6fA8PzV5LSaULH1cFweu/JNiSQ2XxaAiJ1VQkEZFmxjBM3lq8k8e/3UhFtYG1upzgDV8RYsnBtJ4FVitWUO4XqQMV5ETk9zmwkpIrMIpXf93JM99vptJlEBnsx2PdtjG2epmmp4qINDOGYeB0OvEPbcUDX6zj6zX7AEhpXcLtpf9iR5tcdiZerilKIiLNyMHcX+0fyj2fruHXrbkAtLUW4pz7T6rKi0gZN065X+QEqSAnIifOMGDBU2Rt38hd2WNJzw8BYFSPGGZe0hdbyCgovVTTU0VEmhHDMJgxYwbz1mSS3ekcSkx/fDG4s9Mebg6ch7XUJLldR/wum6wpSiIizcTB3P/dxlyyE0+nEl8sRhUDLTspWzWXCj+T1jFJTJ6s3C9yolSQE5ETZpY4+Xh1AQ/vPZ8S058QfysPnd+bywcnYLFY3DtpeqqISLOyz+7gyx0mzg4XgGmlnV8hz9lm0z/IgNiekA0BCYOV/0VEmpHtmXv4cm8IzsSBAASU2Ala9RHlYb706d2bdRYLqampmqIq8juoICciJyS/pJJpX2QxZ89wwD1N6emJ55AYHerlyEREpL5k5ZVy++fbccYMAqCrTw6fnppNmMOEhGQYMRXK8jQyWkSkGVm6PYc73s7AGdENq+mir5+d/tF2MsL9SE1NZdq0aeTm5mrxBpHfSQU5EamzX7fmMPWjlTiKKvC1WrjrtLZMPqM3Pr4+3g5NRETqyTer93HfZ6vZX15NWKAv085M4qrhZ2OFmqtna2SciEizUO0yeGHeVl6YtwXD9CfJN5+n4n9m8HWPQmhMjRVUNTJO5PdTQU5Ejqui2sXT32/mlV+2A9AxOoTnrhpAn4QIL0cmIiL1pbSymr9/tZ4PlmYBMDCpFc9dNYDEyOBDO6kIJyLSrGTllXLHhytZtisfgEvb5vNwxP8IbdffnfNVhBM5aVSQE5Fj2pq9n9vfX8n6fUUAjEtJ5P7TbAS3CvNyZCIiUl827Cvi1veWs81ZgsUCt5zaiXH9WhHfKtDboYmISD2ZvXIP93++lv0V1YQF+PLoRb0YEu9DcPAoTzFORE4e/YsSkVqZpskH6Zmc98JC1u8ronWwH69cO5DHouYQ/O1fYMFT7tVWRUSk2TBNk/fSMrnopV/Z5iwhJiyAd25MoXzpx/zppknMmDEDQ7lfRKRZKa2s5p5PVvGXD1ayv6Kawe1a883tw1n99SwmTrqJGc+9ijK/yMmngpwAMGPGDIYNG0ZwcDCtWrWqdZ/MzEzOPfdcgoODiYmJ4a9//SvV1dUNG6g0iKLyKm57fwX3fbaG8iqDEZ2j+e6OUxjd3gd2Z0Cxw/23NMfboYqIyElSXFHNXz5Yyd8+X0NFtcHp3Wx8+5eRdAk3SEtLw263k5aWhtPp9HaoIiJykmyy7+eCF3/lo4zdWCxw+5ld+GDyEAKqS5T7ReqZpqwKAJWVlVx++eUMHTqU119//YjtLpeLc889l7i4OBYtWsS+ffsYP348fn5+PPbYY16IWOrL8sx8bn9/Bbvzy9wLN4zuxp9O6YjVagHDHxIGu4txCYPdjbxFRKTJW7+3iCnvLWdHTgk+Vgv3jOnGTSPdud8ItpGamkpaWhqpqanYbDZvhysiIn+QaZp8sDSL//tyHRXVBjFhATx7VX+GdXL/vrfZlPtF6pvFNE3T20FI4/Hmm29yxx13UFBQUOPxb7/9lvPOO4+9e/d6mnj++9//5t5778XpdOLv71+n5y8qKiIiIoLCwkLCw8NPdvjyBxiGyX9+2c7T32+i2jBJaB3E81cPYGBS69/uWHNVPRGR41Dub7xM0+S99Ewe/mo9ldUGbSICeWHcAAa1i6yxn2EYNVbVExE5HuX+xmt/eRXTPlvD16v3AXBqVxtPX9GP6NCAGvsp94vUL42QkzpZvHgxffr0qbGizpgxY/jzn//MunXrGDBgQK3HVVRUUFFR4blfVFRU77HKicspruDOD1eyYIt7Cuq5feN57OI+RAT5Hbmz1apV9UTkmJT7m4aSimr+9vkaZq/cC8AZ3WN4+vJ+tA458iKbVavqichxKPc3Dev2FnLLu8vZlVuKr9XCXw8bEf1byv0i9UsFOakTu91+RDI+eN9utx/1uJkzZ/Lwww/Xa2zyx6Rtz+X2D1bgKKog0M/Kwxf04orBiVgsR34pi4jUhXJ/47c1ez83/3c5W7OL8bFauHdsNyaNqP2ETESkLpT7GzfTNPlwaRYPfrmOymqDtq2CeGFcLbNhRKTBaNxpM3bfffdhsViOedu4cWO9xjBt2jQKCws9t6ysrHp9Pak7wzB56aetXP3qEhxFFXSyhTB7ygiuTE5SMU5E/hDl/sbty1V7ueDFX9maXUxseAAfXteNySM6qBgnIn+Icn/jVVbp4u6PV3PfZ2uorDY4rZuNWVd1o39ChLdDE2nRNEKuGbvrrru44YYbjrlPx44d6/RccXFxpKen13jM4XB4th1NQEAAAQEBR90uXmAY5Dr3MfXr3cw/MEX1kgFteeSi3oQEKCWIyB+n3N/4GIbBXruD/6Tn8M6STACGdYzi+fa/Er38FcgeDCPvVm9QEfndlPsbwAn2cjYMg4xNWdw/ZyebHcVYLTD1rK7kLfyAqbe6F2uYPn26+sOJeInOvpsxm8120lbDGTp0KDNmzCA7O5uYGHf/sLlz5xIeHk7Pnj1PymtIAzAMMr58iVszYrFXhxBgqeaRXg4uv2wsFh8fb0cnIiL1wDAMpj3yD77MtVEW7L6I1s/PzltXDMTvm2eg2OFePbs0Rz1CRUQaK8OABU+583XC8S+iGIbBxIdfYn5pAoaPP75VpYwO282lPQZy0zNp2O120tLScDqd6hMn4iUqhQsAmZmZrFy5kszMTFwuFytXrmTlypUUFxcDMHr0aHr27Ml1113HqlWr+O6777j//vuZMmWKroQ1EaZp8vpPa7lqSXvs1SF0stqZHTeLKyw/YCnL9XZ4IiJST75dvo1P9nemLDgOs6KEkGVv41rxOXnluE/qQmPdf4OjvR2qiIgcTWmOuxh3+EWUo6h2Gdz/6XJ+quiI4eOPa99Gghc+T2bGjwCkpqYSFxdHamrqSRvAISInTiPkBIAHH3yQt956y3P/4KqpP/30E6eddho+Pj58/fXX/PnPf2bo0KGEhIRw/fXX8/e//91bIcsJKK6o5t5PVvPNmn2AlQsitjMz7idC/Px0EiYi0kyZpsnrC3cw89stuHyDCCxzErN5NmH+laSmDsEWEwsxd5/Q9CcREfGS4Gj37/bdGdB2EJiGe9Tcb3J3TnEFt723gsXb3Rfco5zLidg9n6DocFJTU4mNjWX69Ok4nU5sNpumq4p4kcU0TdPbQUjLUVRUREREBIWFhYSHh3s7nBZhi2M/f/rvMrY7S/C1Wnjg3B6M7xuMJTgKyvJ0EiYi9U65v+GVVlZzzyer+Xr1PsDdK/QvI2JpG2sjNzdXJ2EiUu+U++uBYUBxNix/C/YsO2Lq6sqsAv7832XsKywnxN+HJy7tQ3KcL1FRUcr9Io2QRsiJNGOzV+5h2mdrKK10ERceyEvXDGRQu8OWNlevIBGRZmdnTgl/emcZmxz78bVaePD8nlw3pJ1nBW31ChIRaaKsVvdtz7Ij+n++n57JQ7PXUeky6BgdwiuXdaBzUrynWKfcL9L4qCAn0gxVuQwe+98GZv26E4BhnaJ4/uoBRIeq35+ISHP208Zsbv9gBfvLq7GFBfDyNQMZ3D7S22GJiMjJcvjU1YTBVPpH8tBnq3k/PQuAMT1jearNz4T9+i/YpRW0RRozFeREmpmc4gqmvLuctB15ANxyWifuGt0NH6vFy5GJiEh9MU2Tf8/fzj++24hpwqCkVvzr4nbExrbydmgiInIyWa3uIltpDk5XGH9+PZ2MXflYLHDXWV25on0FoYvSoCRbK2iLNHIqyIk0I6sz8/nTO0vZt7+KEH8fnr6iP2N7x3k7LBERqUcl5VXc+X4G329yX4i5OjmRhyO/w3/ec0f0FxIRkabPAH7ZVsy0/61hX2E5YYG+PH9VfxZ+/AoTn1nC1GST0zrFYNHibSKNmgpyIs3EJxmZ/O2zVVQaVjqGVPDKTaPoHHeUBrqGoVX1RESagd15JVz41P/INYKxYPLwBb0Y3zcEZi89or+QYRhaVU9EpCk67Le7AUx4+F/8UpaIafWlY3QIr10/mBCjhKfT0rDbHTyzNJbe4/+PqKRuyvsijZgKciJNXJXL4NGv1/PW4l2AlVHBW3mmXTrhoSOAWgpyhgELnvL0ndDICRGRpiljZx43vb2UfCMYS2UJ7XfPZUyn5CP6CxEcjWEYzJgxg7S0NFJTU5k+fbpOzkREmoLDfru72g7mIefpzK/oAFYIK9rJq7dcREdbKIYrkDNSevNTuklK6hBaJ3ZjxmMzlfdFGjEV5ESasLySSv7832WefnF3ds7mtsBfsSYeY3h6aY77JO03IydERKTp+GhpFtO/WEOVyyTSWkr0js8ZObAnNputRn+hgyOhnQ4HaWlp2O120tLScDqdWnFPRKQpOPDbfX9RPrfvjOCn/dkARDuXc3476JAQD4aBdeEz3NlxGzcNGkTI2Gk4c3KV90UaORXkRJqoDfuKuOntDHbnlxEa4MuzV/ZnVHcblJ577KmotYycEBGRpsFlmDz+7QZeXbADgHP7xPPEpb0pKTyl5pQkq7XGxRabzUZqaqpnpITNZvNG+CIiUlcHp6kGRZIVOZSJm21srmhNgK+Vf1zahyFtBh/K+8XuBRwsJdmEWSxQlqe8L9IEWEzTNL0dhLQcRUVFREREUFhYSHj4UfqbyXF9t3Yfd364ktIqg3ZRwbw2fjBdYsPq/gTqISciDUi5/+QoKqvklrfTWbijEIC/nNmFO0Z1wWKp2yra6iEnIg1Juf8POGyaanrwSCav7kJBmYuYsABeHT+Yfomtjrr/4S1plPdFGjeNkBNpQkzT5MUft/D0D1sAGB5VzEt/PpNWoYEn9kS/GTkhIiKN0GEXT7Lyy7jgqW/JN4PwweCZKwdw4YCEE3o6q9Wq6UoiIo2cYRjk7tpAdNZSPrNHc19OElW4iLKW8vktp9G2dciRB9XSqsD9sPK+SGOmgpxIE1FW6eLuj1fxzZp9ANwQvoz749fhy+nACRbkRESkcTtstMOykJFMWt2VfDMIS8V+2u3+niFtUrwdoYiInGSHFuBZQrv+qXxTPQgA/+z1xDp/xbfyFKCWghzogrtIE6SCnEgT4CgqZ9JbGazZU4ifj4W/99jD1Za16gEnItJcHWji/aW9NXfntKPSrHYv3rDzc0YO7K1eQCIizZDT6WRxegZbbaeytroXAP1891GdPZ8h6gMn0uyoICfSyK3dU8iktzKwF5UTGeLPv68dREq7VlB6oXrAiYg0U2ZQFP+qGMuTTvdUo7N6xPDMFf0oLTpFvYBERJopa1A4OX3GUWmEYsXgicv6cenAs3E6z1fuF2mGVJATacTmrndw+/srKKty0ckWwqwbUkiKCnZv1JB0EZFmqcplcP/n6/hws7sYN2lEe6ad0xMfq4WwIPUCEhFpjrY7i7lh1lKyjVDCAnz4z3UpDOvsHhGnPnAizZMKciKNkGmavLpgOzO/3Yhpwsgu0bw4biARQX7eDk1EROpRUXkVU95dzoItOVgt8H8X9GL80PbeDktEROpR+o48Jr+TQUFpFQmtg3hzQjKdY8K8HZaI1DMV5EQamSqXwQNfrOWDpVkAXJOaxP9d0As/Hw1RFxFpzvYUlHHjrKVscuwn2N+HF64ewJk9NCpCRKQ5+3LVXu7+aBWVLoN+ia14bfxgbGEB3g5LRBqACnIijUhReRW3/Hc5C7e6R0Y8cF5PbhjWHovF4u3QRESkvhgGa7fvYsKH23DuryAmLIA3bkimd9sIb0cmIiL1xOVy8c9v1/Diwj0AjOkVy7NXDiDI38fLkYlIQ1FBTqSR2FtQxo1vLmWj3T0y4sVxAziju0ZGiIg0a4bBL5+9zJ+Xt6XE8KN7XBhv3JBMm1ZB3o5MRETqSXW1iwv+723WV7t7Qk8Y3p77z3X3ChWRlkNz4EQagXV7C7n4X7+y0b4fW1gAH92UyhkJFjAMb4cmIiL16LMlG7kxI4kSw4+hIft4eWxr4sI1VUlEpLkqr3Lxp7fSPMW46Kz5TB4cqWKcSAukgpyIl/28KZsr/r0YR1EFXWND+eLPQ+m9/VWYfSsseEpFORGRZsg0TV7+eRtTv9xBNVYuiNjOBNcX3H73fcyYMQNDuV9EpNkpLKvi+jfS+XFLPlYMfJe+w/6M2bzyyivK+yItkApyIl70QXomE9/KoKTSxbBOUXx88zDa+pfA7gwodrj/luZ4O0wRETmJXIbJ/325jifmbARg8sgOTL/ydF7MMKjI20N62hKcTqeXoxQRkZPJXljOlf9ZTNqOPEIDfHn24q60t+QQEBBAenq68r5IC6QeciJeYJom//xhC8//uAWAS/pE8fhlA/GvyoegSEgY7C7GJQyG4GgvRysiIidLeUUVd76/lG835mMB/nZONy7oFkZUZGvuTIaQ/AJKWrfBFh3l7VBFROQkMAyDpZsyueOLbewrLCcq2I9ZEwYTZS3DMAwcDgc2m42oKOV9kZZGBTmR+mQY7hFuwdFgdQ9IrXYZ3P/FWj5YmgXA7Z2yudN4E8sHFeATAInJMGIqlOXVOE5ERJoGwzBwOp3YbDb3VIQD3wP7y6u46cXZLMkLwRcX8Zk/8MHDz/BFYCBnpvbhjk7BVBe2xS8iBEtZHoTGePutiIhIHR2e+wGcTidRUVFMffQ5viluh8s3iAhLGZHL3+HO+U9gsVjYvXs3cXFxBAYGkpubS2ysFnQTaUlUkBOpL4bh7gF3cKTbyLspqza57f3l/LAhG6sFHhnbjmt2vwVFe2G/HUJjYbfFXYzTiZiISJNjGAYzZswgLS2N1JQUpp8SgHXPMnJsqVy/bgDr8kIIsVRwd8XLvLPNztqd2cTFxfGTBW4aNIgwi1Wjo0VEmpjDc39ycjIWi4X09HSiew3nF6M7hq8/ASV2orZ8gdOexb59+4iNjcVisRATE8OQIUM8hTwRaTlUkBOpL6U5NXrB5efYmfjJDpZnFhDga+X5qwcwpkcMLBgMWSYER7lHyOlETESkyXI6naSlpWG329m0fCFVCUFklxqM3xTPjsoyov2reTPxO5x7/QiOTqR3aAyBgYGkpA4hZOw0jY4WEWmCDs/9CxcuBMDuG8s6sxemjw8hxbu5xObEN3ow6ekGUVFR7tyfnMzN112KrX0PrMr7Ii2OCnICwM6dO3nkkUeYN28edrudNm3acO211zJ9+nT8/f09+61evZopU6awdOlSbDYbt912G/fcc48XI2/EgqM9veB2Rw3l+nc2s81ZQnigL6/fkExy+0j3fiPvdhfvgiJ1IiYi0sTZbDZSU1LYtHwh3QYMZ7stghvS2uKoDqZtqyD+e2MyHYKHYgRF0jMnl6ioKHJzc93TW61WjY4WEWmCbDYbycnJLFy4kGHDhrHNjGFLRRJYrIzpGcP9Zw6kbbx7OurBqay5OU5sG9/GuuQR2O2eTaNzAJGWRQU5AWDjxo0YhsF//vMfOnfuzNq1a7npppsoKSnhqaeeAqCoqIjRo0czatQo/v3vf7NmzRpuvPFGWrVqxeTJk738DhohqxVG3s2mnZmM/2ArjqIS4iMCeevGFLrGhtXc7+AJmE7ERESaNCsw/ZQAqhKCWNO6NVct70ZhdTVdY0J5e2IqcRGBQBhW8PQKUs8gEZGmz2KxALDeaMPSqgSwwBWDE3js4j74+hwqtHlyf6gP7FnmmU1DaY7OBURaGBXkBICxY8cyduxYz/2OHTuyadMmXn75ZU9B7t1336WyspI33ngDf39/evXqxcqVK3nmmWdUkDuK5Zn5THh7I4XlLrrGhvLWjSnERwR5OywREaknRnE2VdsXkVYUwZ+2JFFmVjMwqRVv3JBMq2D/4z+BiIg0OQ6Hg18WLGBP5AC2VCUA8KdTOnLf2d09hbojHDabRi1rRFomFeTkqAoLC4mMjPTcX7x4MaecckqNKaxjxozhiSeeID8/n9atWx/xHBUVFVRUVHjuFxUV1W/QjciCTdlMfjuNMpeVAa1KmXXTmbQKDfR2WCIi9a6l5n7DMJjx7CuU2gP5JPxSqvDllC7R/Pu6QQT76yeXiDRvLTn3/+c/r7AjYgCuDqcC8NcxXZlyepdjH3hgNs3Blbg1XVWk5dG/eqnV1q1beeGFF/jTn/7kecxutx8xrebgfbvdXuvzzJw5k4iICM8tMTGx/oJuRL5ZvY8b38qgzGVlZNAO3m37Oa1oGT9KRERaau53Op18tymf90OvoQpfTu/citeuT1YxTkRahJaa++2ObGbvDcbV2V2Mu+u0RHcxzjCgONv992gOtq5RMU6kRdK//Gbuvvvuw2KxHPO2cePGGsfs2bOHsWPHcvnll3PTTTf9odefNm0ahYWFnltWVtYfer6m4P30TG59fzlVhsm5cYW83nEhwUn9NQxdRFqMlpj7AeZuL2N34plg9aGLby7/uT4Vf1/91BKRlqEl5v5ql8ET8/eRH9kTTIOR/juZMrq3uwi34CmYfav777GKciLSYumSbTN31113ccMNNxxzn44dO3r+e+/evZx++ukMGzaMV155pcZ+cXFxOByOGo8dvB8XF1frcwcEBBAQEPA7Im+CDIOXf1jDE/N2A3B1ShKPXtATn/JRGoYuIi1KS8r9hmHgdDr5YuN+Zn67CbBwWT8bj18+Fl9fH2+HJyLSYFpa7t+zz8EjP+7h+/UOfK0W/m9sZ8aNONe9YnZxtrs3nBZsEJFjUEGumbPZbNhstjrtu2fPHk4//XQGDRrErFmz3F8mhxk6dCjTp0+nqqoKPz8/AObOnUu3bt1q7R/XkpguF0++/g7/2u7+rG85tSN/HXugiau+fEVEmiXDMHj00Rl8tdPAGTMYgD+f1ol7xnQ7ehNvERFp/AzjqL3dDMPg4Ucf41NHFMVhSfj7WPjXNYMY1fOw1j5asEFE6kBDdgRwF+NOO+00kpKSeOqpp3A6ndjt9hq94caNG4e/vz8TJ05k3bp1fPjhhzz33HNMnTrVi5F7n2maPPzFck8x7r64DO4ZGaWTMRGRZi47O5svd1kOFeOGt+XescdYUU9ERBq/40w3zdpr55NsG8VhSViMKp6+sEvNYhwcWrDhwhfdfzVTRkRqoRFyArhHum3dupWtW7eSkJBQY5tpmgBERETw/fffM2XKFAYNGkR0dDQPPvggkydP9kbIjYLLMJn++Ro+WJoNwCNtlnBdvzBdBRMRaeZM0+SVpbnk2AYAkOqfxV/PPdvLUYmIyB9WmnPU6aal5ZXc99VWSkITsLqqGBuyg3MHX1D78xxcsEFE5Cgs5sFqi0gDKCoqIiIigsLCQsLDw70dzh9S5TK4++NVzF65F6sF/nFpHy7rHqh+cSIiv9Gccj+AYZj831freHvxLgDuOSOJm0f1OqLVg4hIS9Zkc//BEXIHp5seGOFWUlbJhOe/ID0/hFAfF89c2oNR/Tsp94vI76YRciK/Q0W1i9vfX8F369xNXJ+9qj/n9W3j7bBERKSeGYbJ9C/W8n56JhYLPH5JH65MTvJ2WCIicrIcnG56WA+54opqJryxmKX5IYRZKniz3Y8M6jpEF+FF5A9RQU7kBJVXufjTO8uYv9mJv6+Vl68ZyJk9Yo9/oIiINGkuw+TeT1fzybLdWC3w5GX9uHRQwvEPFBGRpuWw6ab7y6u4YdZSlmUVE+br4p12P9C/a3u1qBGRP0wFOZETUFbp4qa3M1i4NYcgPx9eHT+YEV30ZSwi0iwcY1U9l2Fy98er+HzFHqwW+OeV/bmwf1svBSoiIieLYRg4nU5sNtsR00/3l1cx/o10VmQWEB7oy3+v7k7f+BR3sU6j40TkD1IWEamj0spqJr61lIVbcwj29+GtG1NUjBMRaS6Osare4cU4H6uFF64eqGKciEgzYBgGM2bMYOLEicyYMQPjsNxfXFHNDQeKcRFBvrw3cBN9M6bBire9GLGINCcqyInUQUlFNRNmLWXRtlxC/H14+8YUUjpEejssERE5WWpbVQ93Me6vnxwqxr149QDO7Rvv5WBFRORkcDqdpKWlYbfbSUtLw+l0Au4L8TfOSmdZZgHh1gre7b2C3kULjviOEBH5I1SQEzmO4opqbpiVTtqOPMICfHl7YiqD26sYJyLSrARHu1fTC411/w2OxjjQM+6z5e5i3PNXDeDsPirGiYg0FzabjdTUVOLi4khNTcVms1FW6WLimxmk78wnzFrJO3Ef0rtsGcT2rPEdISLyR6mHnMgx7C+v4vo30lmeWUBYoC/vTEylf2KrY/YZEhGRJug3q+oZWJj22Ro+WbYbH6uF567qz9m9Y3E4HLX2GRIRkabHarUyffp0Tw+5SpfJ5HcyWLw9l9AAH94ckEX3vHKMhGFYR94FZXn6/S8iJ40yichRHGziujyzgIggP96bNORQMe4ofYZERKQJMgwoznb/d2gMBhamf7GGDzOyPAs4nNM77qh9hkREpOkxDAOHwwFAbGwsVYbJn95ZxoIt7n7Rb9yQzP9WFzDxyzJm/FKBsr6InGwaIScCR4x4c09TXcqKzAJaBfvx34mp9G4b4d63tj5DB5ZFFxGRpsMwDJzZDmwb38a6ZxkkDMYccRcPfLme99MPFeMu6NcGh8NBWloaDvs+Ni1bgDPbQWycpq+KiDQ1Bwtxr776Kunp6aSmpvLXe6dx6/srmL/ZSaCflTduSKZdcDVp6enY7XkUVC3B+em9xFRmYklMdo+o1ig5EfmDVJATMQz45UnYtQjaDaN0yJ3c+OYylu3Kdy9vPiGZ3hEV7v2s1kN9hnZnqIeEiEgTZRgGjzzyCOvS5jEzJY+O8ZGQlcEjs1fwbroDiwUeHNOB8w8s4GCz2UhNSaF91sektnVi2/g2xPxVJ2QiIk3Iwdz/ww8/sHfvXlq1asWStHRu/W86P2zOJ8DXytMXdCalfWswDc5I6c28NINAVzG7fv0UV2t/4gGLLsiLyEmggpxISTas/ghKsinLd3DjhiGk7yomLMCXd25Mpvf2Vw8V3w5eDTusz5BOxkREmh6Hw8H7773LtUkOLEVWqiOsPGe5gTfWuqcvjfDbySdPvUzWglSmT5/u7jN0x2SqPlmGf1UBlj3LNEJaRKSJcTgcvPvuu+zcuRMAEwuRY2/nh835+PlYOM1nMy8//BLLU1KYfkoAd3bcxjXdezDprfVkOCxgqSSsdQ/CdEFeRE4CVRJETPefctOPSXnjWLKrmNAAX96amEK/yOojp6eCuwgXGqNinIhIExYZaDA4HkqqLLxUdT4vbncX1/56RhL5y7/FbreTlpaG0+kEwBoaQ0Cn4Vi0yp6ISJPlcrkwTROLxULw8OvY4orGaoG/n92Rvcu+pzJvN5uXL6Bq+yIsJdnEVGZyemo/vi3uycLIqwgZ+6DOAUTkpNAIOZHQGMp7XcnkReH8WplIsL8Pb05IZmBSa/c0VU1PFRFpdmJjYxl7yXXs2/khKyJO4z95QwH42zndmTSiA3lpqaSlpZGamorNZnMfpBHSIiJNWmxsLNdddx3vvPMO9D2f4jaDAXjysn5c3D+OuGSTkPwCSlrF49dxKOxZjiVhMHdcPZVrcnK1yraInFQW0zRNbwchLUdRUREREREUFhYSHh7u7XAAqKw2uPmdDOZtchLk5y7GpXaMOrTDbxZ8EBGRE9MYcz+4ewn954e1PDEvC4A7R3XlL6O6eLY5nU6dfImI/E6NOfc/+fUqXl60F4BHLuzFdUPbQ3E25hdTqCrci19EGywXvgAWq84BRKTeaISctGjVLoM7P1jBvE1OAnytvH7D4JrFODg0PVVERJoNwzB4a/4GTzHu5lM7cfuZnT3brVYrsbGx3gpPRETqgWEY/GvuOk8x7r6zu7uLcQDB0VgSk/G3HJgZE6L2NCJSv1SQkxbLMEzu/XQ136y142dx8Ur/nQzrMMbbYYmISD0zDIObHn6RH8s7gMXK9UPbce/YblgsFm+HJiIi9cQwDG58+F/8XNEBgFtP78TNp3Y6tIPaEohIA1OWkRbJNE0e+nIdny7fgw8GL9i+5NSK+YcWbRARkWbrf8u2Ma+sPVistMrfwM2p0SrGiYg0c7PTt/JzeRIAkbmrubZfqyN30sJtItKANEJOWhzTNHl8zkbeWbILiwWe6rOXsWaRFm0QEWkBVmTmc89X2zCtPoQXbufitmXExqgtgYhIc7ZsVz7TvtkGFh8iCjZzUWI1Mcr9IuJlKshJi/PivK38Z/52AGZc1IeLk8+G0os1NF1EpJnb7NjPhDeXUlrpYlinKJ44ZyBt42O1aIOISDO2yb6fG99cSnmVwaldo5kxdiBt4pT7RcT7VJCTFuWNhTt4eu5mAO4/twfjUt3D1rVog4hI85aVV8p1r6dRUFpF/8RWvDp+MCEB+hkkItKcZeWVMv6NNArLqhiY1IqXrx1EsL9yv4g0DrosIC3Gp8t28/ev1wNw56iuTBrZ0csRiYhIQ8jeX861r6fhKKqgW2wYb05IVjFORKSZyymu4LoDub9rbChv3JCsYpyINCoqyEmL8MN6B/d8uhqAiSM6cPuZnb0ckYiI1CvDgOJsikoruP6NpezKLSUxMoi3J6bQKtjf29GJiEg9MAwDh8NBUVklN8xKZ2duKW1bBfH2janK/SLS6OgSgTR7adtzmfLeclyGyaUDE5h+Tg+tpici0pwZBix4ivLM5Uzedwkb8kKIDg3gvxNTiQ0P9HZ0IiJSDwzDYMaMGSxJW0pBv6vY44ogMsSfdyamEBeh3C8ijY8KctKsrdtbyKS3MqioNhjVI5YnLu2D1apinIhIs1aagytrGVN3pLCkNIRQfytvTkimXVSItyMTEZF64nQ6WZKWxtbIIVS4Igj0tfLGDcl0tIV6OzQRkVqpICfN1o6cEq5/I539FdWkdIjkxXED8PXRLG0RkebODIri4aJz+V9pFP4Wg1euS6F32whvhyUiIvXIZrPhN+AiKqrisWDy4rgB9E9s5e2wRESOStUJ8bjgggtISkoiMDCQ+Ph4rrvuOvbu3Vtjn9WrVzNy5EgCAwNJTEzkH//4h5eiPTZHUTnXvZ5GTnElPePDee36wQT6+Xg7LBERaQAvzd/O25lRWIBnrhzIsC42b4ckIiL17P2lWaysigfgsYv7MKpnnJcjEhE5NhXkxOP000/no48+YtOmTXz66ads27aNyy67zLO9qKiI0aNH065dO5YtW8aTTz7J//3f//HKK694MeojFZZVcf0b6ezOL6N9VDBv3ZhCeKCft8MSEZEG8OHSTJ76fjMAD53fk/P6t/VyRCIiUt/mrnfwwBdrAfjLmV24OrWdlyMSETk+TVkVjzvvvNPz3+3ateO+++7joosuoqqqCj8/P959910qKyt544038Pf3p1evXqxcuZJnnnmGyZMnezHyQyqqXfzpnQw22vdjCwvgnYmp2MIC3A2+S3MgOBqsqkOLiDRHP6x3MO2zNQDcclonxg9th8PhwGazYVXuFxFplpZn5nPb+8sxTLhycCK3n9FJuV9EmgRlKKlVXl4e7777LsOGDcPPzz26bPHixZxyyin4+x9aMnzMmDFs2rSJ/Pz8Wp+noqKCoqKiGrf6YhgmUz9axZLteYQG+PLmhGQSI4M9q+0x+1b3X8OotxhERKRhc/9Bq7IKuPXACdllgxK466wuzJgxg4kTJzJjxgwM5X4RkXrljdyfmVvKpLcyKK8yOL2bjUcu7Mljjz2m3C8iTYIKclLDvffeS0hICFFRUWRmZjJ79mzPNrvdTmxsbI39D9632+21Pt/MmTOJiIjw3BITE+slbtM0efSbDXyzeh9+Phb+c90gerU50MC7NAd2Z0Cxw/23NKdeYhAREbeGyv0HZeWVMvGtpZRXGZza1cbMS/qQk5NDWloadrudtLQ0nE5nvcYgItLSNXTuLyyt4oY308krqaR323BeHDeQ/Lxc5X4RaTJUkGvm7rvvPiwWyzFvGzdu9Oz/17/+lRUrVvD999/j4+PD+PHjMU3zd7/+tGnTKCws9NyysrJOxts6wmsLdvDGrzsAeOryfgzvHH1oY3A0JAyG0Fj33+DoozyLiIicDA2V+wEKSiu5fla6ZxGfl64ZiJ+PFZvNRmpqKnFxcaSmpmKzaWEHEZH61JC5v7La4E//zWC7s4Q2EYG8fn0yIQG+yv0i0qRYzD9SbZFGz+l0kpube8x9OnbsWGMa6kG7d+8mMTGRRYsWMXToUMaPH09RURFffPGFZ5+ffvqJM844g7y8PFq3bn3ceIqKioiIiKCwsJDw8PATfj+1mb1yD3/5YCUA08/pwU2ndDxyJ/WQExHxmvrI/eDuG3rd6+mk78ijTUQgn08ZTmx4oGe7YRg4nU71ERIR8YL6yv2maXL3x6v5dPluQgN8+fjmofSIDfX81jdAuV9EmgQt6tDM2Wy2331l6GDPhYqKCgCGDh3K9OnTPYs8AMydO5du3brVqRhXH37dmsPdH68CYOKIDrUX48BdhAuNacDIRESkPhmG+4QsfUceYQG+zJqQUqMYB2C1Wo9otSAiIk3bi/O28uny3fhYLbx0zUB3MW7BU+7WNAmDsY68W7lfRJoEXTIQANLS0njxxRdZuXIlu3btYt68eVx99dV06tSJoUOHAjBu3Dj8/f2ZOHEi69at48MPP+S5555j6tSpXol5s2M/N7+zjCqXyXl945l+Tg+vxCEiIg3vye838dWqvfhaLfz7ukF0iwvzdkgiIlLPZq/cw9NzNwPw9zFJnNo5Sv2iRaTJUkFOAAgODuazzz7jzDPPpFu3bkycOJG+ffsyf/58AgICAIiIiOD7779nx44dDBo0iLvuuosHH3yQyZMnN3i82fvLmTBrKfsrqklpH8nTV/TDarU0eBwiItLw3kvL5OWftwHwxKV9a/YNFRGRZmnpzjz++vFqACZ3yOGa3X93j4wLilS/aBFpktRDThrUyeglUVpZzVWvLGH17kI6RIfw2Z+H0TrkyB54IiLSOJzMPkILtji5YdZSXIbJnaO68pdRXU5SlCIicjKdzNyflVfKhS/9Sl5JJWO7t+Zfvs9iLXG4i3AXvuguwqlftIg0McpW0qS4DJPb31/J6t2FRIb4M+uGZBXjRERaiK3Z+7nl3eW4DJNLBrTl9jM7ezskERGpL4YBxdnsL61g4ltLySuppE/bCP55VTLWxN+MiDvYL1rFOBFpQrSogzQpj36znh82OPD3tfLq+EG0jw7xdkgiItIA8koqufHNDPaXV5PcvjUzL+2DxaJWBSIizZJhwIKncGUt4y+Oi9nsDCMmLIBXxw8mKNAPRt6tEXEi0uSpICdNxpu/7mDWrzsB+OcV/RnULtK7AYmISIOoqHbxp3cyyMwrJSkymP9cN5gAXx9vhyUiIvXlwEINT2T1YF5hGAG+Fl4dP5i4iAOraR8cESci0oSpICdNwg/rHfz96/UA3Du2O+f2jfdyRCIi0hBM0+S+T9ewdGc+YYG+vHHDYCLVqkBEpHkLjuZjRvFKYVsAnry0L/0SW3k3JhGRk0zje6VJ+GbNPgwTrk5J5OZTO3o7HBERaSAv/bSVz1fswcdq4V/XDKRzTJi3QxIRkXqWkVnA39YnAHD76Z24YECClyMSETn5NEJOmoSnLu9HcvtILh+coJ5BIiItxNer9/LU95sBePiCXozsYvNyRCIiUt+y8kr50zvLqHKZnN07jjvO6ubtkERE6oUKctIk+FgtjEtN8nYYIiLSQEzT5JNluwG4cXgHrh3SzssRiYhIfTMMkz+/u4zckkp6tQnn6Sv6YbXqYryINE+asioiIiKNjsVi4ZXrBvN/5/dk+rk9vB2OiIg0AKvVwt/O7kGXmFBeHT+YYH+NHxGR5stimqbp7SCk5SgqKiIiIoLCwkLCw8O9HY6IiDQA5X4RkZbnj+R+l2Hio5FxItLMaYSciIiIiIiINBoqxolIS6CCnIiIiIiIiIiISANSQU5ERERERERERKQBqSAnIiIiIiIiIiLSgFSQExERERERERERaUAqyImIiIiIiIiIiDQgFeREREREREREREQakApyIiIiIiIiIiIiDUgFORERERERERERkQakgpyIiIiIiIiIiEgDUkFORERERERERESkAfl6OwBpWUzTBKCoqMjLkYiINLywsDAsFou3w2hwyv0i0pIp9yv3i0jLU5fcr4KcNKj9+/cDkJiY6OVIREQaXmFhIeHh4d4Oo8Ep94tIS6bcr9wvIi1PXXK/xTx46UKkARiGwd69e0/oSmFRURGJiYlkZWW1yB8zdaHP6Pj0GR2fPqPj+6OfUUsdJaHcXz/0GR2fPqPj02d0fMr9v49yf/3QZ3R8+oyOT5/RsZ2Mz0cj5KTRsVqtJCQk/K5jw8PDlSyOQ5/R8ekzOj59Rsenz+jEKPfXL31Gx6fP6Pj0GR2fPqMTo9xfv/QZHZ8+o+PTZ3Rs9f35aFEHERERERERERGRBqSCnIiIiIiIiIiISANSQU4avYCAAB566CECAgK8HUqjpc/o+PQZHZ8+o+PTZ9Rw9Fkfnz6j49NndHz6jI5Pn1HD0Wd9fPqMjk+f0fHpMzq2hvp8tKiDiIiIiIiIiIhIA9IIORERERERERERkQakgpyIiIiIiIiIiEgDUkFORERERERERESkAakgJyIiIiIiIiIi0oBUkBMREREREREREWlAKsiJiIiIiIiIiIg0IBXkREREREREREREGpAKciIiIiIiIiIiIg1IBTkREREREREREZEGpIKciIiIiIiIiIhIA1JBTkREREREREREpAGpICciIiIiIiIiItKAVJATERERERERERFpQCrIiYiIiIiIiIiINCAV5ERERERERERERBqQCnIiIiIiIiIiIiINSAU5ERERERERERGRBqSCnIiIiIiIiIiISANSQU5ERERERERERKQBqSAnIiIiIiIiIiLSgFSQExERERERERERaUAqyImIiIiIiIiIiDQgFeREREREREREREQakApyIiIiIiIiIiIiDUgFORERERERERERkQakgpyIiIiIiIiIiEgDUkFORERERERERESkAakgJyIiIiIiIiIi0oBUkBMREREREREREWlAKsiJiIiIiIiIiIg0IBXkREREREREREREGpAKciIiIiIiIiIiIg1IBTkREREREREREZEGpIKciIiIiIiIiIhIA1JBThqUaZoUFRVhmqa3QxERkQai3C8i0vIo94uIHJsKcuIxc+ZMkpOTCQsLIyYmhosuuohNmzbV2Ke8vJwpU6YQFRVFaGgol156KQ6Ho86vsX//fiIiIti/f//JDl9ERBop5X4RkZZHuV9E5NhUkBOP+fPnM2XKFJYsWcLcuXOpqqpi9OjRlJSUePa58847+eqrr/j444+ZP38+e/fu5ZJLLvFi1PVn586dWCwWVq5c6e1QRESkgSj3i4i0PMr9IuINKsiJx5w5c7jhhhvo1asX/fr148033yQzM5Nly5YBUFhYyOuvv84zzzzDGWecwaBBg5g1axaLFi1iyZIlDR6v3W7ntttuo2PHjgQEBJCYmMj555/Pjz/+2OCxHM2mTZs4/fTTiY2NJTAwkI4dO3L//fdTVVXl7dBERJqkppD7D7d161bCwsJo1aqVt0MREWmymkLuP1jU++3NG+dJItI0+Ho7AGm8CgsLAYiMjARg2bJlVFVVMWrUKM8+3bt3JykpicWLFzNkyJAjnqOiooKKigrP/aKiopMS286dOxk+fDitWrXiySefpE+fPlRVVfHdd98xZcoUNm7ceFJe54/y8/Nj/PjxDBw4kFatWrFq1SpuuukmDMPgscce83Z4IiL1oqXn/oOqqqq4+uqrGTlyJIsWLfJ2OCIi9Uq53+2HH36gV69envtRUVFejEZEGjONkJNaGYbBHXfcwfDhw+nduzfgvjLl7+9/xFX+2NhY7HZ7rc8zc+ZMIiIiPLfExMSTEt8tt9yCxWIhPT2dSy+9lK5du9KrVy+mTp3quQp14403ct5559U4rqqqipiYGF5//XXP+/zHP/5B586dCQgIICkpiRkzZhz1ddeuXcvZZ59NaGgosbGxXHfddeTk5Bx1/44dOzJhwgT69etHu3btuOCCC7jmmmtYsGDBSfgUREQap5ae+w+6//776d69O1dcccUfeNciIk2Dcr9bVFQUcXFxnpufn98fePci0pypICe1mjJlCmvXruWDDz74Q88zbdo0CgsLPbesrKw/HFteXh5z5sxhypQphISEHLH9YMFw0qRJzJkzh3379nm2ff3115SWlnLllVd64nv88cd54IEHWL9+Pe+99x6xsbG1vm5BQQFnnHEGAwYMICMjgzlz5uBwOE7oRGvr1q3MmTOHU0899QTesYhI06LcD/PmzePjjz/mpZde+p3vWESkaVHud7vggguIiYlhxIgRfPnll7/jXYtIi2GK/MaUKVPMhIQEc/v27TUe//HHH03AzM/Pr/F4UlKS+cwzz9TpuQsLC03ALCws/N3xpaWlmYD52WefHXffnj17mk888YTn/vnnn2/ecMMNpmmaZlFRkRkQEGC++uqrtR67Y8cOEzBXrFhhmqZpPvLII+bo0aNr7JOVlWUC5qZNm44Zx9ChQ82AgAATMCdPnmy6XK7jxi4i0ly0tNyfk5NjJiYmmvPnzzdN0zRnzZplRkREHDduEZHmpKXlfqfTaT799NPmkiVLzPT0dPPee+81LRaLOXv27Lq8VRFpgTRCTjxM0+TWW2/l888/Z968eXTo0KHG9kGDBuHn51ejeeqmTZvIzMxk6NChDRpnXU2aNIlZs2YB4HA4+Pbbb7nxxhsB2LBhAxUVFZx55pl1eq5Vq1bx008/ERoa6rl1794dgG3bth3z2A8//JDly5fz3nvv8c033/DUU0/V+T2IiEjTyv033XQT48aN45RTTqlzzCIicqSmlPujo6OZOnUqqampJCcn8/jjj3Pttdfy5JNP1vk9iEjLokUdxGPKlCm89957zJ49m7CwME9fuIiICIKCgoiIiGDixIlMnTqVyMhIwsPDue222xg6dGitCzrUly5dumCxWOrUwHX8+PHcd999LF68mEWLFtGhQwdGjhwJQFBQ0Am9bnFxMeeffz5PPPHEEdvi4+OPeezBHho9e/bE5XIxefJk7rrrLnx8fE4oBhGRlqop5f558+bx5Zdfei6+mKaJYRj4+vryyiuveE4QRaTxK6t08eNGB91iw+gSG+btcFqcppT7a5OamsrcuXNP6LVFpOXQCDnxePnllyksLOS0004jPj7ec/vwww89+/zzn//kvPPO49JLL+WUU04hLi6Ozz77rEHjjIyMZMyYMbz00kuUlJQcsb2goMDz31FRUVx00UXMmjWLN998kwkTJni2denShaCgoDovlz5w4EDWrVtH+/bt6dy5c41bbT0tjsYwDKqqqjAMo87HiMjJZRgGDodD/w6bkKaU+xcvXszKlSs9t7///e+EhYWxcuVKLr744hN74yJy0tQ195dXufhunZ3b3l/BoEfncut7K3g3LbOBopTDNaXcX5uVK1eeUAFPRE6uxv6bXyPkxKMuQ8IDAwN56aWXvN6k+qWXXmL48OGkpKTw97//nb59+1JdXc3cuXN5+eWX2bBhg2ffSZMmcd555+Fyubj++us9jwcGBnLvvfdyzz334O/vz/Dhw3E6naxbt46JEyce8ZpTpkzh1Vdf5eqrr+aee+4hMjKSrVu38sEHH/Daa6/VOtrt3Xffxc/Pjz59+hAQEEBGRgbTpk3jyiuv1IpLIg3IMAycTic2mw2AGTNmkJaWRmpqKtOnT8dq1fWppqCp5P4ePXrUuJ+RkYHVavWsWi4iDeNEcn+Vy2Dhlhy+Wr2Xuesc7K+o9mxLaB1EfERgg8cvbk0l97/11lv4+/szYMAAAD777DPeeOMNXnvttXr4VETkaA7m/qioKGbOnNmof/OrICdNUseOHVm+fDkzZszgrrvuYt++fdhsNgYNGsTLL79cY99Ro0YRHx9Pr169aNOmTY1tDzzwAL6+vjz44IPs3buX+Ph4br755lpfs02bNvz666/ce++9jB49moqKCtq1a8fYsWOP+g/b19eXJ554gs2bN2OaJu3atePWW2/lzjvvPDkfhIgcl2EYNU7CJk2aRFpaGna7nbS0NJxO51FXWZPGpankfhHxvrrk/mhbDOk78vhy1V6+XbuPgtIqz/HxEYGc2yee8/q1oV9CBBaLxYvvpmVrSrn/kUceYdeuXfj6+tK9e3c+/PBDLrvssj/+IYhInRye+3v16sXatWtxOBy/6ze/aZq4DBNfn/r7vWcxT6RTpsgfVFRUREREBIWFhYSHhzfIaxYXF9O2bVtmzZrFJZdc0iCvKSKNh8PhYOLEidjtduLi4nj11Vd57bXXSEtLIzk5mcmTJ2Oz2cjNzeX/2bvvqLjq9I/j77kz9M4wDCSQXoH0wJCYZizRtbv2ronZdfW3rmVXI3bFqOtG3dVdNbFETYzrWmLvMZ0B0iEhPaEEhqH3MnPv748JE0ggFULJ8zonB2EK3zlHPnfmuc99viaTqdU32tX1DtL2lbB2dzEjo4K5aKRcfnIiJPuFEKdbW9mfYrXSf9w0/IZPZdnucgor692PCfP34qIREVw8qhfj+oSgKFKEOxWS/UKI06159pvNZuLi4sjMzMRisTBnzhyKi4sxGo1tvu8vr2lk9e4iVuyws3yHnfvOG8I146M7bL3SISd6LFVVKSoq4h//+AfBwcFceumlnb0kIcTxUlWoKQLfMDjFLiSj0UhsbCyapmGxWDCbzSQlJWGz2Zg/fz6zZs2irq4Ob29vEhMTSUpKosGpsX5/KWt2F7N2TzGbcspwqK7zV+fHmKUg14VJ9gvRfTW/xPRUO1APz/4qnR++CVdTZpjA1+X1sLEQAMVZxyCvKh675UImDAzr0E4I0XEk+4Xovjoq+xMTE1sU4ebOnUtKSkqL9/0Pz3mEzPxKlm+3s2KnnQ3ZpajNWtZW7SySgpwQJyM7O5v+/fsTFRXFe++9h8Eg/7sL0S2oKqx8CXLTIWo8TH7wpItyqqoyd+5cMjIyiIuLY86cOe4DvaIopKamkpeXR35BAWGDx1K0u4FN/1nF5gNVNDhbNpBHhfgwcaCR6cPCT/klio4j2S9E93T4JaanMuunKfs3ZO3FJ+4C1gaO4u1XVrpv16mNGGxbqcpcjslpx7N3LwbdfT7FRe3zgVCcfpL9QnRPHZH9zd/3GwwGzGaz+7LVvLw88kurCY2ZSG6eP5888yMV9S03fBgU7s+UwSamDAnD0t/YHi+zTZJUosfq16/fcW1UIYToYmqKXMW4Kpvra00R+J9cEcxut2O1WrHZbOh0OoqLi92zI+oNfgSNvYjs6Ab8/HpTbfChGrDlVALgq2vg/FH9mDgwjAkDjUSH+rbXKxQdSLJfiO6pKa9Pdb5neW0j/12znSU2M9XDRoNOgfxKDIqOqUNMXDIqkvVfLWRd5hrqghx4e0eSkJDAW2+9RVpaWpcd/C2OTrJfiO6pvbK/+XMd/r7fqWpk1xgwjLmcugF6fHzDqQVqAepVPHEwPbY3U4eGM2WIid7BPu35Eo9KCnJCCCG6Ft8wV2dcU4ecb9hJP5XJZMJisWC1WhmbMIEtxRr/sWayYoedPUXVQB8Ict3Xz1PPuCh/dq76mtp9G+kdaGDOX96WDR+EEOI0aJ7XFovFvTPq8ah3OFmWZWfpxjx+ySqkwaGCf28AzEol/3dJIheNiCCECvAN49JRc9w78BUXF6OqKnfeeads9iOEEKfZqWT/0Z5rZMJZrM5tYNkv61m+o5CKOicQCQfPrw8M9aQ8aw2N+zcR5dPIU/ct6JTcl4KcEEKIruHg3DjVJxT70JsxjbkFxT/8pC9X1TSNPUXVmKfcgHfoVJYcqOL999e5b9crOsb1CWHS4DAmDQ5jZGQASm0RyQW+WEsMp/ymQAghxLE1zQ4yGo3MmjWLWbNmYTabj9mhpmka6/aX8tmGPL7ZnE957aEdUoeY/blsdC/OivJi5MAo0FSqv38arXQbuuh4lMkPuj94mUwmbDYb8fHx7g45yX4hhOhYJ5v9bdE0ja35lQROuBYtYDIf2apZ/Mlm9+2eODh/RDRnDwtn8pAwQn0MJCX9TIatnkRLIqYwI1QVtsv86hMhBTkhhBDHrT2Hrh72xLDyJbScNJbvrmZemo4Ei2uDhaP9lsPXU9vgZO2eIpZl2Vm2vZDc0toW94/yaeAsz12cPcCPsy6ZSYCvl+sGpwN+fQZsW3lk8ji2XfEcw4bHyCVLQghBx2V/0+ygw4dsJz0yB6pa39hnX1E1n67P5bN1OeSVH9oh1RzoxWWje3P56N4MjwxAp9O5f8fLzyZxVvFH9An1JhLQHRyF4HA4SEpKIiMjg4SEBJ577jliYiT7hRACOjj7n32WrHUrsVU58fL2cW/AcLTfd/h6ahocrN5VzK9ZNn7NKsRWUd/i/sFaJYWbfkOXn0lMVBCP3fc2ZpMJR0UBjya9QkZGJrGxsdxx+22w8h+Qt+6U51efKCnICSGEOC7tOXT1CAfnxjWWH8CvNI/6kuBjXjbUtJ6V6zMIGzENz/7jWLu7mHrHocGsngaFxAFGzh5qYnIvHc73rkApKUSrD8fvwiuBCFcx8NenYcMiNMXA7l07eX7jrwwdN9m9M5MM+RZCnKk6Mvub5v3k5eWRn59PREQEqdYUqr9/moCyLPcHo/I6J19vOcCn63JZn13mfrwHTi4d24crx0aROMCIXtEd8TtsNhvzF39Obd9yzupbi//4YQT6hqGqKklJSbz33nvo9Xp27tzJqlWrmDJlimS/EOKM16HZX2ijX84nTI2wsyangSW5UaSkQFJSEpmZma3+vqb1rFqXgXGk633/mt3FrhEFB/l66jlrUBjnDAtneIjG1RedR0l2NgaDgbgZf8IUZkRd8Xd2/vIhwVvy2LjRi507d7I3I5XkhHIGRQTSuHs1HmNuQQmMaJfXeixSkBNCCHFc2nPo6hEOzo3z0DSqQ4LwCtWRcNhlQ4da28PIzK/ki/Q9fFQUTd3QsexoALbbAegd7MP0YeGcPcxE4gAjvp6uQ52tIJ8fDzjoZ1DZV+YgqEbDHIirGGjbBooB1dHApgN6tucWU1C1nMrKSrZu3SpDvoUQZ6zm2Z9qTaF4/zZMfYe3S/dA07wfTdMwGo14e3tzdsII/Eu30VhVxIqtBXy6N4Wfd5a5d75WdOBbkQ37UumjlPK3+97EbD76rFENHS9Z4VtbEJ8+OZvAmiLsVU4yMjIwGAw0NDTgdDopKSlh+XLJfiGEaJ79KSkpbN26td06iE2+Oiy9Deiq9Ewd6M8WDzNRw+LIyMhw74Zqs9lQFIWwsDC2FVTxRdpuFhVFUzdsLDR73x8V4sM5w8KZPtyMpX8o3h56APLz89HpdHh6emIymfi///s/irO3E7BnNYbaEsabIcjQSL3TyV5bBav31+F0OEi3lbAv502S7vvDKY3OOV5SkBNCCHFc2nPo6hEUBSY/iK6miKk+ocQUtexMqGtwcG/ya6QdqKcubAg1mqfrcT4m0DTC9dXcet5YzouJYHC4v/tSpRbrDzezL/pqfli/iqFjJ2EKP1hM9A2D6HgAdOHD2Fanp2L5R5SUlpGdnU1gYKAM+RZCnLGasj/VmsL98Rphq5+E7Ph2uaRHURSSkpJabLBQ7PDk2a++ZGmuH0UOH6AUgFClhj9eMJbLRvXirX++hHW/HUvCsY9FZrOZG264gVWrVjHprLMw71wMeesw9R5HosUCQGxsLD4+PixZsoSyMsl+IYRoyv6mkQIPPfSQa6RAO5ykUPzDGTTtOhr3rGFA/wnMG34rxjATc+fOxWq1Mi7ewhP/WUJ6fgP1YUOoPon3/c2zf+LEibz77rukpVq5b7xKlL+J/DInl1x3Ad4+vixZsoTkFY2Y/Bpwegbxf/yPxv+tx2vgWR1++apOk/2hxWlUUVFBUFAQ5eXlBAYGdvZyhBAnqMNmyB18bpvNBrjeBGTnF7KlSOXrjTms2VtGdUOzlnQPhalDw5k+zMQIo8KQvr2Oaz1trv/ghhL4hpFvs3HLLbdQXFxMdXU1ffr0YcqUKdIlcQok+4Xo3lRVpXj/NsJWP4muuhD8zXDZa+Af3i7PvWN/Hj9uL+GHHRVkHqhw3xbiY0DJWYdz1xqi/OHtBfMx++tdm/8UHf8lpe7s99FQvvozVNnA34x6yT+x1+rcGztI9rcvyX4hujdVVdm6dSsPPfQQNpuNiIgI3n777XY5SaE6Hdj3bUP1CcUUbmb/ARsbCx18kbaHdQfqqGk89L7fx0PB0jeQC0dGMdKkZ+gJvu9vvpN2ZISZBa8+D35hmMLNR2T/yIGRJCeUMzgyEF07HuvaIh1yQgghTo6qunYj0gF+p9bSraoqzzzzDIs++RxnRAxeAy3UBvVDUw4dpnxoxLtkB/GRXrz6yJ/w8fI44d+jKErrbyIUxX2wNZvNTJkyBavVSnx8PLNnzz6lXZ+EEKInUH1C0aLGQ246lUFDqa5oxOyrnnQ2OlWN5dsLefqDH9nXGAj6g3mvOvEr24OxYgdnD4tA3wdSC8CSkIAp633IW4cSNR7zCXQtuLNfVV1z6XLTIWo8in845kDXc0j2CyHEkYxGo/sKmZiYGBwOB6p68tkPB9/3P5vMok+/whkZh+eAeGoDokHRu+/T9L5/XIQnvfSVrP/Cyo58C1efwEmSpuxXVdX9GhIsFkz9Y93PcUT23zkL844P0TVt8OB79JEIp0o65MRpJWfKhOi+Wgx3TUggaYonyuZPXDeOvAam/PWkinIl1Q18snYHr366gmr/3uj0h4pwaoUN76Iswhvy+ei1uXh6eJyWIdsd2Ql4JpLsF6L7ap798ePH40cNCz76Ag0dN9xwA4899tgJ5eT+4mr+m57Dp+vyKKioc//cYd+Hc9cqgst3UnwgG5PJRL9+/ViwYAGKohzR3XbSXQvNOqJRlBbfq3Bk9h9+f3HcJPuF6L6aZ/+4ceOoqalh6dKl6HQnl/1N9hdX80nKLhZ8l0adf2TL31mah1fRdqJ1JSx6/j4UfxOqhru77VQ69A5/b9/8ezgs+1UVtaoQe42GKbxjT8xIh5wQQojj0ny46/b1q2jspcerutB14/41rg8sx/nhqLS6gR8yC/hmSz5rdhfjVDUI6osO0JUfIKhqH6HV+9HKDpCXm4tdp+Pdd97h0UcfPS0FsjY76YQQ4gzTPPtXrV5NQ0MDBbZCNE1j1apVxzVjrbbByXcZ+XycloN1b4n75yG+HkTU51K0fCEVhQfoHRWNV6SJ+ooS7HY7ERERmEwmDAbDEd1tJ9210KwjGlWFlS8d6pib/GDL13LY7R09S0gIIbqK5tm/Zs0aGhoaKCw8sewH0DSNnYVVfLelgO8zC9iWf3AswcFinK54HyE1OQRX72ffZisVVZXc9LswzClPo0QnoE66v11mWDd/b9/aDrLNX4sKJL86v0N2mD2cFOSEEEIcl+abOgwdm4DHIE+oOViQ6zvR/eGore6y8tpGfsgs4OvN+azeVeQqwh0U2yuQC+MiiI8w0CdkLCaTCbvdjs1m48EHH6SsrIzU1NROGa4t3XJCiDNZ8+yPj3dtgFNQUADApEmT3B+OWsvKjLxylqRls3TDASrrHQDodDBlsIlr46M5Z2gYHmvm0TAwiIbwKfjOeIyt27K4//77sdvteHt7U1xc7Mr9g5v/tGu3Wk2Rq9hWZXN9bXZiyT03LyfNNTfvsNuFEKInO5Xs1zSNrfkVfLsln+8yCthjr3Y/r17RYekfipq9gYL070kYMZRnX3+WrCxX9jsrCogLqsJRno+nLh2ltsS9+U97vRdvXmw8fPOeprl5KSkp7h1fO/LzhxTkhBBCHBdFUZgzZw5ZWVkMGzbMdUAce1uLGXKHn3G6/68P8+t2O19uOsDy7XYanIcGtMZEBnLRyEguGhFJvzA/4NBBHWDBggWkpKSgaRpms7n9d3Y9Dq2dQZOinBDiTNJa9s+ePRvAPWOteVaOTpjI4HOv57/puS02aIgO9eGacdH8flwUvYJ9XD+sKoS8dXg1lqMr3AzVRXz++efk5OQAHJn7zbvb2oNvWKtdd02vp2ln2WkDw9GdhllCQgjRVZxo9ickWLj89nv4LtPGd1vy2Vdc434uT73CpMFhXBAXwbnDzTRWlTJz5rNU2QvYsKEGu93uzn4dGlUhw/EI8nfncntfudK82Nj8ONP0epp2lj0dnz+kICeEEOK4qKrq3o7cXZwKjGhxH7vdToo1lZxGf3Ly/Fmc/DO1zXZJGhzuz6WjenHRyEgGmPyPeP6mg3psbCwZGRnYbDbMZjMvvPACMTExp70YdrQzaEIIcSZoLfsjI1vO/SksLGTZ5n3khSaSWRWD9uVWwPUhbEZcBNfHR5M4wIii6Fo+uW8Yau9x7PptCda8EjK3v8KWjEz8/f0JDQ3lzjvv7Njcb6Pr7lD225iXZibulicx9R0ul6sKIc4Yx5v9v23azQH/OLaXDeSd19e4b/MyKJw9NJwLR0QwfVg4Ad6HNmNTfUwkJCSwaNEiKisrefXVV8nMPJT9w2cvQBfo0WGzOxVFabXrrin7T+fnDynICSFED9XmpZYnOaD6aMUpTdPYnFvO5+vt7I6bSR0HD7qNKlEhPlw6qheXju7FUHMAOp3umM+vaRpxcXHodDosFssJHQzb8xLTts6gCSFEV9VWBp5sNh4t+8trGvl8Qy6LU7PZM/BK92OGhPtzXUIfrhjTmxA/z7afXFGwD7uFp1/5he25xYSbM1tk/4mcADnp7G+l66559idYLBilGCeE6OI6MvtTrSkU79+Gqe9wNJ2OrIJKvtmcz1ebD7B/0NXux3h7KEwfFs6FcZFMHxaOn5fh0OcO9dDnDkVRuPPOO1m5ciUlJSVkZh6W/RGRx525J/v6Wuu6O/x9/+loBpCCnBBC9EBtXmp5kgOqVVVFVVXi4+NJS0tzF6dySmr4YkMen2/MazYfwoMQHwPnDAnh+gkDGR0dTGFhIWjVaJp/mwW5ww+Cc+bMobi4+IQOsO19iWlbZ9CEEKIraisDTyYbVaeD4uztGKMGt8jmsLAw1u0vZbE1m683H6De4eqC9vZQOGdwCJfFGTln1AB0Oh02m438ikOXN7XGFG5m6LjJlDkk+4UQ4mS0Z/Y7HA6ysrIYMmQIFovFfel+xa/zWKRN4qvy/uxuNhPOy6AwsV8g0weHcIVlEL6eBmw2GxUldnzCTSir5rX6ucNsNjNlypQz/n2/FOSEEKIHarOj4bAB1mpVIfZa3VEPOi3nQyTw6utvsN6ucsMCKyl7Du2W5+2hcH5MBJeNjmTVJ/NJ/TCFjzfE8qWPD0uWLAE46jbprR0Ej9UdcfhZsY64xFR2XBVCdBdtZeDhP7fZbCiK0mb2q04Hy5+9FL/SrWSExDDnkS/ILihidW4DF7+25tAuecCwiABusPTh0pGR/Gvei7z6cQo/x8bi00HZ31o3hGS/EOJMdlzZn7KW7etXMXTMRBR962UgR2MD111yLqs2ZBEbN4J3lnyO34hz+MfGnWTsbJqhWY2nXmHqUBMXj4zk7KEmXn3pBZZ8nsKW2Fh8fbz58YvFlNQpzLr+ch4YtLfVjXEk+12kICeEED1Qm5daNhtgrfYeyysvv8yytAwSLIltnlVyzYWzklPvTW6eHx8t2OKeC6fTwcSBRq4YE8WMWDMB3h7YbDbmWVPYuHEjqamp+Pr6UlZWBnDMbdJP5CDY2lkxucRUCHEmaysDD98t7+WXXyYzM5PExNazvzh7O36lW/Gnhn1l5Tz0UQrf76qhusEJuDoiLhnVixssfRgTHezuhktJ6djsb6sbQrJfCHEmO2b2p6zlyrC9lC+8id++jmXaY18dWZRTVYo/n8ONkbvxN07kV4/JTP3HyoM3hqFHZVJYNZdMm8j5cZEEHpwJ1zz701Kt/C1Rz+Oj6kjPh59Wr+MP8WcRoNO12DiniWS/FOSEEKJHarPlummAdVUh1SteZ1Lpx3j76/jOSqsflvJKq1mYkkf2iDuo1LxcP2xU6Wf05apxUVwxNorIQC/sdjt+nnrAdfCPi4sjPT0dDw8PPD09CQsLw2AwtNgm/VS1dVZMLjMSQpyp2sr+pp/bbDZefvllFi5ciMHg+hjQWvb7Rgzke5+LWO0Yynb9QNhaCcBAkx83WvpyxZheNFSVYTIFuccQnI7sbyv35RJTIcSZ7FjZn5X2GyXvXINnYyO1eenY923DPHCE+/F1jU5+3biTz3YO5Dfzv3FgoClFE/qFcsnICH430JOQMDP2omL8D77nh5bZHxHowVizgzBvA2d5KXj3HoffBY9DbckpbdDQk7NfCnJCCNFDNT/rdESbt6LgX5ZFVLAn0EBd6Aj3h6UGh8ov22wsScthxY5CNHSAF76eCpeO6s3V46MY2ycEnU7X5hmr5ORkADIyMkiIj2f2jVeAXxjmiMh2O1i2dVZMLjMSQpzJjpb9iqKQmZmJwWDA4XAQFxfXolCWV1bLh2v38e7y7dTxO9CDQdExIy6Cmyx9SRwQiqZpreb+4dk/fvx4rrjiCkwmE5GR7ZP9R+uGkOwXQpzJ2sx+IKrwV7z9nDgdsCLXg2E+oaiqhnVvCZ9vyOW7LQVU1juAvgAMIZsrzAVcds0sevWOdj/nsbI/M2MLWm+VvhEa/aLimfq7J12deIdtnHOienL26zRN0zp7EeLMUVFRQVBQEOXl5QQGBnb2coToUY62u1JycjIpKSnExcWRnJyMQVFg5UtoOWlUBQ/Db/Jd7K8P4KP0XD5dl0txdYP78YbSfZird7P4+QfpG9Wrxe+02WzMnDmTgoICIiIiePvtt1u+GSi0Ycp6HyVv3QltInGqr1l0LZL9QnScE8n+pg9OKSkpxMbGcu+99xIREcHaPaUsXLuPX7bZUA9+MlDqygkr3857j91JzIAo9/MeLfebfq/NZmP+/Pmkpqa2y6Dt43m9ouuR7Bei4xx39s+5F/3X95K/ayP5pbV8FnQHHqMv46cd5eSV1bofZw7wRN2zlquc3zI9uIDh067C/5Ln4eClrced/W+9xY4Nqxk6dhJJjz4q2X8M0iEn3FasWMHf//531q1bR35+Pp9//jmXX365+3ZN03jiiSeYP38+ZWVlnHXWWfznP/9h8ODBnbdoIQTQ+lkrcLV4q6rqnu2Qnp4OwNy5c1EmP0hjeQG/fb+Uj/75LWuqI93PFx7gxZVje1OU+hVZGSuwWCxER4ZDVWGLlvNjnrHy10PeOvcmEs2HubaH7n5WTAghTsXJZH/Tpauvv7mAq+b8k9re8ZRpPu7nnDDAiG9eGgUZP5JoSWBInwhsNpv7Q9CxZvY0dUykpqa266Dt5s8vuS+EOJOdSPbr0Hjo3AR+LRnKfz3i2FwZAKkFAPh7GbhoRCRXjO3N+D7BzJ2bwmprKGf188e3ci+V3z+N3wWPo+gNx5/9aWkUFJRQ5kiV7D8OUpATbtXV1YwaNYo77riDK6+88ojbX3zxRf75z3+ycOFC+vfvz2OPPcaMGTPYunUr3t7enbBiIUST1nbQW7BggXuAd79+/UhLS8PDw4OMjAw27szlhz3V/C8tm+KaPgDo0Jg2KJjrJwxi+rBwDHoFdcZQ7PZbMYUZW922/JizG5ptItHaMFchhBAnr63sb+qAi4mJIT09HYPBQEZGBna7nVq9P/9Zkcsn1bGovbxAA18PhavGR3PLhL4MCg9AVROw26/BaDQyd+7cIy5ROtbMnp4waFsIIbqq48r+devwiB7Jt+W9+Oy3ITQ4Xe3POk1lhCOTYXVbuPueF+kb1dv9vElJSRTv34Zx9RMU7NpM7rp1rFrXwF8efU6yv4NIQU64XXjhhVx44YWt3qZpGq+88gqPPvool112GQDvv/8+ZrOZL774guuuu+50LlUIcZjDD4CqqrJixQpKSkpYvHgx0dHRDBk6DF2vWMoGTub3726haV6B2auRa4MyuTbGl97n39viklL32aiqg9uVt9LpdtQzVk2bSNQUndIwVyGEEEdqLfuXL1/O1q1bSU9P55ZbbuHWW28lIzOTqHHncN/nO1i7vwJNA/ReeNaXMTagkjcfuo0grQJ8/YBDuW6z2docpH20ToWeMGhbCCG6qqNl/7rt+xlz5V2E3vo6tTpvKgCcGkPN/kwOb+DcHU9hrNmLZgqnt7+uRQe0oiiY+g6ncmsMuWXppBfoWLZrCzdK9ncYKciJ47J3714KCgo499xz3T8LCgrCYrGwdu3aNgty9fX11NfXu7+vqKjo8LUKcSZqfgA0Go0kJyezf/9+Ghoa8PAP4UBQHI19LTR6BoJ68EH5W6nP/BkMZfzxq/9S6fREBVo9dJ5Kp5uitOtlqqLrk+wX4vRoLfv37t1LeXk5QUFBZGzbwWX3Pku6qZAfiutgn+tv0ZmzidDiLXz272R8vb0ISHvVNV7gsFmfp9Lt0FMvLxJtk+wX4vQ4PPufevY5djtC4ex78Y6OY9vB+wV46entyKdq84/s+K+VjVWVGM8J4JZzxuA0j+a5V+eTmpbWctanouB3weOsWtfAsl1bSLAkSvZ3ICnIieNSUOC6zvzwPy6z2ey+rTVz587lqaee6tC1CXFGUdU2u82adzSkpqZS7RkKcWfDoEQaFVfcB3rrqd7yM/a1n1Nt2weATdMYMuYsRo4cyYQJE1ofvi2dbuIESPYL0b7aHGatqig1RZhNJmx2O6mpqdTU1KD4heAZ/3v2DJ/O879ku+7rqKd26zLKUr/AUXqAPE1j6pSVTBk7jCfHFjM4MhBdKx3Q0u0gjpdkvxCn6LD3+UfbuMFut1Pi9OYf/9vAp1WxaInj8ATQVHrrK3n4mqmMMMKMc+8lLy+P2lrXBg73fFzMm+l1hPWpISc3j4CAgCNmfSp6A3959DlulOzvcFKQEx1qzpw53H///e7vKyoqiI6O7sQVCdGNqSqsfOmIOW7NNTpVUg40UhB3Ix4jgtw/H2z0ZPbZQxlv1nPBufdClR0PDw8aGly7qRYWFrJv3z4URWl7AKt0uonjJNkvRPtpbXi3oijgdMCvT4NtG0THY5p0P73jLGzyGU3ogARQDNQDUSE+XBkXyht/u5WSnL3oGhrQNNfQgsLCQjbtCsBqNtC3TzBerXRAS7eDOF6S/UKcgsPe56uT7if5uSNneFbW1DPzqdfZUhtErW+E67EGb9SqItRdaxios7Hknf8QGRlJfn4+4Mrx5u/7t+4vYqDBdVtISEibmzRI9nc8KciJ4xIR4fpjt9lsREYe2onRZrMxevToNh/n5eWFl5dXRy9PiO7vKJ1vbjVFbc5xK66qZ7E1mw+t+7FV1IMuCEVTCSjbydRIjVceuA/l4Jm2G264gVWrVpGYmMgPP/zA3r17CQgIoF+/fjKAVbQLyX4hjk+bnW/N2AttbF+3EltB8aEuBpMJfn0GNixC1XmwrCKKBVvXsFY3DsMg1+MilEqeuH4K58dGokOjMv3KVrO/b7/+7ItOxOOq2a5jinRCiJMk2S/E8Wk1+w97n2/ft809D9pqtZK2PZvvdlaxaPUuGnVDwRfQnJw9OIybJvbn+4WvsFWfS2JioruQZjabW33fHxjgz5jBvRk6dhKz//AH93w4cfrptKZTZEI0o9Pp+Pzzz7n88ssB16YOvXr14sEHH+SBBx4AXGe9wsPDee+99457U4eKigqCgoIoLy8nMDCwo5YvRPfSdEYsJw3Mw2H646Bv5XxJKx1yu4qqeXvVPj5bn0u9wzUcLszfi5sS+3B9fDTUVbTZ5m4ymVBVlaysLIYMGUJpaam0pYsOIdkvxJGaOt9SUlKIi4sjOTkZg8Fw+J1QV/ydXb8twZrnYF/01SQ9+ihKTRF1n/0f/9vnxTt109ijuj586RUdF42I4MqYYKaM6CfZLzqVZL8QR2oz+5u9z1d7j+PZ5XV8+NES1F4jCUu8nAL10N9QmKOQgYW/EhnZh3lzn3GfdG/z8tZCGyZfHapPKFlZWQyzf4NzXwoeAyaiTPmrnIjpRNIhJ9yqqqrYtWuX+/u9e/eyceNGQkND6dOnD3/5y1949tlnGTx4MP379+exxx6jV69e7qKdEOIk1RS5inEFm+HAekAH5zxx5MHx4Bw3rcrGqr2VvP1eOr/tsLtv9q4txBJcw5t/+wPengfjPcjniF/XvAVdURTi4uKAI2dECiGE6Dh2u52UlBQ2btxIeno64JrB1aIwVlOEkreOwZGB9OkTRPnUKyitaWBRSikLtl5FBb4ABHgbuCGhD7dO7Eev4CNzHyT7hRCiKzhq9h+c15xlq+PrfW/juPBxVK9AClRQdDB9UBDjtjyLpcFKXYAf4x9KcR8z2rrEVAHM2z+A3HSUqPHEjbkFNm/A0Fjm2syn2RU34vSTgpxwS09P5+yzz3Z/3zQD4tZbb+W9997jb3/7G9XV1cyePZuysjImTZrE999/j7e3d2ctWYiewTfM1Rl3YL2rM862tdWDY4ND5auNecz/IZWsStffnU4HUwYEk/3Te1Ts2UBxRATlpVfhLR+whBCi62k2nsBkMhEXF0d6ejoGg4GMjIwjZ3g27XCdk8aXOxVeeP5ryo2xONADvhjqSjGVZrLo2f9jQHSvTntZQggh2ta8e62t7A8PD2d9TjkL1+TxXUY+jeYEAPQNVYSWbuOcft7ce+HN/Lw2j0q9F9nOEAY26DnmO/7DR96MvcV1XGm64uawuaHi9JKCnHCbNm0aR7uCWafT8fTTT/P000+fxlUJcQZQFNdlquhcxbjoeFSfUOw2GyaTieoGJ0tSc3h71V4KKuoAb3x1DVwTupvbr72G6Kgokgt+xVqTLzPghBCiqzps7IAy+UGSk5MByMjIIDExEaPRiO1g9iuKAopC5sDZvLojgR/rKsHo6oQYbPKhd8VW7Bk/kmiJp1/viM58ZUIIIdrQ2sY8zbM/3jKBVTl1LPjgZ7YVNbgfN65PMNOjDXz95hvYC/LJsEfA7FvZ1+dqfli/iqFjJ2EKP44T8E0ndpoKcH7h7k68o86uFqeFzJATp5XMkhDiKA52Tqg+oSQ/N5dV67bgNWIGe5QoquodABh9DdzRO5er1e8JGzzePffheAaDC9FZJPuFAKoKYek9ri4FfzNc9hr4h7vz22g0Mneua0e9hAQL593wR95YsZflzUYTBFbuZaKxgdefuBedTie5L7o0yX4hXJsgzpw5k4KCAiIiInj77bcxm82UVNWxYFkWn24pcm3IBnjSyCW9Krn9iouJ6R2EzWbjjTfeYNmyZUyfPp3HH38c4MSz/3g2jxOdQjrkhBCiq1AU8A9n/fb9fJbjTemQG6HRADgYaPIjsnwrxanf8XltNWv89QwbV0/SFNdsCNmaXAghurjDuxQOXibUlN82m40Uq5VsRxC7CiN5Z0EqADo0Ast2cm3j10z33UmNEouOP6Moesl9IYTo4kwmExaLxd0hV6Xz5fWlGXySnkttoxOAYK2cm5QfuUb3K+E+MXgGnUdycjJr164lKyuLiooKDAYDqqpiMBhOPPsPfsYQXY8U5IQQ4jRrq5tt64EK/rN8N99sPoAaGgOArngP50SqPHX91fxh9kscyMmhoKCAoshIyp2pR84bEkII0SWpgH3ozZjG3ILiH96iS8HhVFmd10DeiNuo1FybMuhRuWyEiYz/vUpj3hbGx+QRoBhQyrZRnL0dU//YTnolQgghTsSsWbM465Lr+SSjnHNfXkHTNYrDIgKYeVZfAr++i8EVKTSisSZPY3iVE6vVyr59+8jLy0Ov15OZmUlWVpZ7Qx7RM0hBTgghThNVVbHZbMyfP5/U1FT3HIkNOWW8vmw3v2YVuu87sV8g2d8voC43k4L8CBTdNVgsFjRNIywsDC8vL2JjYzEajZ34ioQQQhzLEdmfkEDSX2aj+IdTr2p8ui6PN5bvJrukBvBBcdYTX7mcmd6/khh0Oa+OGY61oZxcnARRS5nfQMZGDe7slyWEEOIoVFWloKCAp978mFXFPlT7R7tvO3uoiTsnD2DCQCM6nY68yDe5csZkSkpK0Qfu5Zc7wWKxoKoqdXV1VFVVMWTIEIYMGdKJr0h0BCnICSHEadA00HXFihVkZ2fjHxDALxk5bPrPKtJzKgHXdua/GxHJXdMGMjwigGT7b1gdxVgsFsxmM0lJSdjtdkJCQnjsscfIyMhg7ty5JCUlyfwgIYTogg7P/sAAf/rlfELFfzfyqeF3vHWgn3t2UKifJ7dP7EvVqoWc07iUqGBPAsqySPrLv7DX/oGQ4CBeePyvWDfuJvX5FyT7hRCii3I4nMx+5t+sLvGl3m8I+AOqk4DS7ZwbBf+49YEW+a3oDZQ5vLDX6jAH6lAUxf2+PygoiAcffJA9e/bwwguS/T2NFOSEEOI0sNvtWK1WiktKUE1DqB51CcUBvdmXU4lB0fH7sVH8cdpA+of5uR/TdCBufmlr05yhzMxMbDYbVqtVLlsVQoj21k4DsJuyv6SkBIDoiFD2m4dxzp7JFKt+QD0Rgd7cOWUA1ydE4+tpQJ32FNXf6/Ev3YYuOh6dfzjmQMWV+Zl7KbAVSvYLIUQHONVN0lRV49uMfF7+IYvd9QPAD3A04G/fTMPm7/DSO9iZH4HdfkuL/Dabzdx4442sXLmSyZMnYzabW8wX3bdvH4WFkv09kRTkhBDiNAgLC6PXuPPYXRpAo6+ZRsBTr+Oa+Gj+OHUgUSG+RzymrY0aDh8OazKZTsMrEEKIM4SqwsqXDm2+MPnBlkW5EyjWNeX1mrT19Bt5AbsMfVlf5xriHe3TwF0zxvD78dF4GfTuxyh6AwEXPnnE75DsF0KIjtPU0dyUsYd3oh2tWOdUNb7Zks+/ftnJzsIqADxwEly4gXP7GLjnvlm8/bbOPbLm8PxWFIVHH3201eeX7O/ZdJrWNFJQiI4n25+LM42maazcUci8H7exMa8aAC+DwvUJffjj1IFEBHmf1POe6hk8IU4nyX7RrVQVwtJ7oMoG/ma47LVDu9Mdq1jXjKqq7M0t4Kvtlbyzai8V9a5CXD+jL3dPNHN5whA8PE7s3Lhkv+hOJPtFd2Kz2Zg5cyYFBQVERETw9ttvu0+Mt1WsUx1Ovl63g1dX2dhtd73PD/Q2cO3ocO46ZxiNNRXuvD6V/Jbs77mkQ04IITqApmms2V3MvB+3sy67DABvReWmiQOYPXUg4QEnV4hr0lb3nBBCiFPkG+YqtjUV3XzDDt1WU+T6eZXN9bWm6FCxrpnymnrumPs+G2tDcRpceT/Q5Mf/TR/MxSMjMehP7gOVZL8QQnSMo3WiNY0fKCgowGq1UlhYyLZSePGzVWyrdO2MHeTjwR1n9aNozSesXbAWdUvLLrtTyW/J/p5LCnJCCHECjucMlXVPMf/4aQepe10zg7x0Dm4K2MAfeu0hfNpL4H9qxTghhBAdSFFcnW8HLxlVAbvN5sr9pmJdThqEDwOf0BYPrap3sHDNPt5cvouKxl5gAK+6Eh69cjw3TBqGXtF1zmsSQghxVM03UmgqxtkOZn9TsS4lJYXw2Anc8/lu0veXAT4E6Oq507SV22+dSY1DYeYra92FO5n3Jo5FCnJCCHEcVFXFZrMxf/589/yHpKQk0FSKs7dj7DOUjPwq/v7DdlbuLALA06BwQ3w0f/L+kfCirUd2WgghhOiaFAX8w3E4HCQlJZGRkUFiYqKr22HS/Th/forq3an4GV5CP/Vv1DhUFq7Zxxu/7aa8zgFAkK6OgOyVnDfUyI2TbkSRYpwQQnRpTZ1orWX/5bf9ia/Ko8jUhcP+Mrx0Dm4LyeAPpq14hA/EL9iEn06ReW/ihEhBTgghjqFpbsSKFSvIzs4mICAAq9WKrSCfrPl3UlJWyiKf61mvDgRAh0ZIcSbnR2k8fskMFGLaZbc+IYQQp4+qqiQlJfHee+9hMLjeMtvtdoxeTtK+XoiPs4KKzO1sKJ/EBxm1FFU1ABCoq+PJqxK4ZFQvSoonycwfIYToRpqyf+F772IO0LPK4MNfFqXyZUYRGMLRVCfTGlbwVO80+kSE8dae3nzz6ToS1s8lKSmpRZedZL84FinICSFEM61dkto0N6KkxHUJanBwMLGxseTlF/Bu1XhWesajqQpoKv2w47H9J0pzd5KRH4HdfrurVb2VGUNCCCG6hrayPyMjA4PBgMPhIDY2FlVV2bq/kF9311ITPZUvvK6kOqUcAI+GckL3/oSp0c5Zf5mEh0EvlyoJIUQX1lb2Z2Zs4f/i9RT1PY9vA65ge2Yx6HTU7lhN5apF3H5xGUE+BnZXhPP1umpy8vJRtRT3JaqS/eJ4SUFOCCEOamsHpeZDXseNG0dprYOfiv355JMDqHoLAIMq11G0ZTUGTydjxo4ls7GCmJgYHA4HqqrKGTIhhOiijpb9iYmJAMTGxuLn58esO+8kdPT5rB3yMg7vEAB0deWYClJ5on8mpj47KfEbiKOxQbJfCCG6sFazHwjzVokaO50v6q/DrhgB8K8tIHDvMuzbrESFqKiKB7Y6HaWOKnR1peTn5xMQEEBDg2S/ODHyf4oQQhx0+A5KdrsdcM2TmDNnDk888xweoy/la208JWEjUVGw9AngvcvNTDY5qSnYy969e/Hy8iImJoYvvviC6dOn8+yzz6Kqaie/OiGEEK05Vva/8MIL/PnPf+bXbTay+l7BSsdAHN4hBHkpxOv3Y/j+WdiylEEehUQG6vGyb+bqi86W7BdCiC7siOwvtLH1m39x7avf8X3jcOyKkQhDFddXL8Zn9b8JcZby6aef8uUvayBqPPlVsHpfA9tzilEUhQ0bNjBt2jTJfnFCpENOCCEOanW7c1WlvtzG7fM+J7XGhMPDF/SeeNcWcnZIOa//8c8oisLg6Eje/+BDioqKWLx4Mb169cJms6HT6Vi5cqXssiSEEF1Ua9nftJHPW2+9xW+ZOdQMOhdbv4sA8MDJn88bxh2TBlBWZGPKkn+wI7+EbzbVkRilZ/W+Brbtt+Mn2S+EEF1W8+wfkzCB/6zK5f30AagoeNFAhD2dx6PSiTbaiBnjZF+0hbi4OFf326z5XDFjCttzitEbGgFwOBwUFRXJ+35xQqQgJ4QQBx2+3blO0/jp07d4bksgexv7ggd41pfz2OWjOHfoOMzh4e6WdEVRMBgM6HQ69Ho9iYmJFBYWAjB58mTZZUkIIbqow7MfIDk5mZ9SM8kNHYs64ApQwVOv45rR4dx3YRxGf28AKg5mPzodb27zp3LI+XyU/RPhZp1kvxBCdGGKovDII4/wwcrtvLYqj6L0QkAh0bGO2Oz/sjJHISCggn6DetG3jwmPq2Yfet+vN1Du8ESnKBiNRs477zx+/vlndDrJfnFipCAnhBAHNR/smnmgkuSvNpGyvw8AQVRhLEhjyoBgbpx83RGzIcxmMzfeeCMrVqxg7NixPPvss9x///3u22SWhBBCnGaqelw7XB8+1Hvzrhw+zfWhLOZG0Lk27BnqUcI7D1xF7xC/Fo89PPvnPPsss+8vdt8m2S+EEKdXaxs1tCYrv5w5/9vIhrwqAPqEeKGs/4SSHCuLihvo06cP1SFReAT7oYuOb7FBW2vv+4uLJfvFidNpmqZ19iLEmaOiooKgoCDKy8sJDAzs7OWIM4jD4SArK4thw4a5uhkO0zTYdeX6DJwxF7Hb6Rri6qWozDRm8IdRBuribsIU3vZB1uFwkJSUREZGBomJie7B4EKc6ST7xWmnqrDyJdScVOyefTFeMReDh2crdzs01HtMwgT84q/k3dX7qHe45v/005fy/I1nkTCsr2S/ECdIsl+cbk2ZnpKSQv/+/Zk3bx6eni2zv67Ryeu/7uT1ZTtRUTDg5L4Zw7njrH689MLzWK1WEhISuPPOOzGHm1BqS1o9sSPZL9qDdMgJIXqcw8+MORwOZsyYQUZGBnFxcfzwww9HFOX25xXw5V4V+6DrwekBwBVjevPgeYPp7WkB3zCCjnGQLS4uJjMzE5vN5h4MLvMjhBDi9GiR/TVFqDmp7Nywmv3Fv/DWO2ks+frXI7LfbrezNjWN/R792FYxFOfyPQCM7xvCHyeYmT6y/zE/YEn2CyFE52me/Xa7nZSUFFauXMnPP//Mpk2bWLZsmTv7U/eW8PBnm9ljrwYUPO1Z9CtJ46r7XsXH06PF+AJ39jfrjGtOsl+0BynhCiF6lKYzY3fccQdz5sxxd8ZlZGRQVVVFRkYGWVlZze6v8em6XK77YCv28PGg9yBCqeSLP03k5WtH0zvUz3UgPo4zXk3DYSMiIg5tCiGEEKLDHZH9XsHYPfuyv7iOtTmNrNqQ1SL7ATRNY53NSU7crVQPvRCnwYeBJj/m3zKeT/44gXNHDzyubgfJfiGE6ByHZ39ISAj9+/envr4eVVXZvn07WVlZlNc2MuezLVzz5lr22KsxBXgx3WsPg23LmDw21p3biqIc9yWnkv2iPUiHnBCiR2k6M7Zx40bS09MBeOaZZ4iLi3N3yA0bNgyAdftLefrrrWzKKQMgOsSHu8/qxdUTBqPX60/4dx8+GFza1oUQ4vRoNfufTuatd9JYlZFFbNwId/YDbM4t49mvt5G6rwTwJtTXwAPnD+Xa+D4Y9CeW3ZL9QgjROVrL/pdeeolNmzaxfft2RowYQY4awh3zllNYWQ/A9Ql9ePjCYQR4Tcduv+akc1uyX7QHKcgJIXoUk8lEXFwc6enpGAwGMjIyKC4u5v3336e4uJiYmBiKqh3M/W4LSzceAMDPU8890wdz+1n98PY48UJcc01n1oQQQpw+rWZ/SSmvvv2RO/sNBgMHymr5+w/b+XxDHgDeHgqzJw/gD1MH4ud18m+LJfuFEOL0ay37S0tLWbJkCXvzCvl4l8pdizcCMCDMj7lXjsAywOh+/KnmtmS/OFWyqYM4rWS4qzgdmg9ZTUhIQKfTkZqayviERMInX8try3ZT0+BEp4Orx0Xx4IyhhAd4d/ayheixJPvF6dBW9lssFu7760O8tXIfb63YTV2ja8OGK8f05sEZQ+kV7NPJKxeiZ5LsF6dDa9n/U5Yde59zqMMDRQd/mDqQe88ZfMon3oVob1KQE6eVHJhFRzl8I4em71VV5c477yS7wY+62Etp8AoGYGyfYJ64JIYIzwZpMxeig0n2i45yrOzPLyjAZ+hkGoZfSGFVIwAJ/UL404QIpozoJ9kvRAeS7Bcdpa3sL66q5/q/f0Z58GAABhi9efm6cYyKDj7iMUJ0BfJ/ojhhr7/+Ov369cPb2xuLxUJqampnL0mc4ZoGus6cOZPk5GRUVXW3kDd4BFA56noqxt5Cg1cwYf6e/OPqUfx3diJfvvdai8cIIYToPo7IfqcDpboQs4+GOdzEgPFnUzvhj+RGn0thVSNRIT68dsUA4mw/81LSnyX7hRCiGzo8+x0OBzabjV93FHPT4u2uYpymMsqjgG/+PJkRQXXkH8jjmWeekff9osuRGXLihHz88cfcf//9vPHGG1gsFl555RVmzJjB9u3bCQ9vfUtoITqa3W7HarVSUFCA1WrFZrPhUOGzbZX8+7fd1DuD0evgtrP6ce+5Qwj09nBvUd70GNmqXAghupfm2Z9qTaHq2yfx3fkVJbog/m6YzVf1w9D8wMdDz93TBjBLtxRd5ipKc/fwVYGnZL8QQnRDzbM/JSWFB+Y8xpe5Xmh94wEYYvbnkenRTIm7EFb+g12/LWH1/no+WuPAzz9Asl90KdIhJ07IvHnzuPPOO7n99tuJiYnhjTfewNfXl3feeaezlybOBKoKVYWur80033Y8ISGBJ//zEee89Csv/7yTeofKhAFGvvvLFB67OJZAbw/3YxISEggJCSEhIUG2KhdCiC5KVVVsNtsRHQ3Ns39afBz56V8xvyiG6bb/45O8EDTNNSdu2YPTuMcSjHd+Gp6NZVh66+kXHiDZL4QQXdjxZL8xdhJL62PR+sajqU5C8lN5+5ohTBs1AKW2hMY9a9BVFzLIu5RQbxU/Pz/JftGlSIecOG4NDQ2sW7eOOXPmuH+mKArnnnsua9eubfUx9fX11NfXu7+vqKjo8HWKHkpVYeVLkJsOUeNh8oPQbGbEnDlzyNqfz6vLc/hpRyl4gaGxmicuG8FNk4eh0+lazI4AaBqhKaM0hWhfkv2ivTRdmmS1WrFYLCQlJbWYFzRnzhyKi4tJ31/Kzf8dTKEhEoBY/yqevulcxvUzuj7UFTox9R6HLjedXHwpb2yU7BeinUn2i/ZyrOz/8/1/5amlm/lssx18wVF6gKqf/821vz+P3pGuzjfVJ5T68JFo2fvZV+rExxiGTtFL9osuRQpy4rgVFRXhdDqPaO81m81kZWW1+pi5c+fy1FNPnY7liZ6upshVjKuyQW46alUhtmqN+fPnY01NI2DsRWTo+lFV70SHRmjRFn7XR+XGSVe5i3HJycmkWlM4O2EE18/6P9LS0igtLSUtLU1a14VoR5L9or20NpIAYP78+aSmphIXP4mqwefz9eZ8MERicNQyxSeHtx66B4OHhzv7U1JSGBEXy72zHuXlJY9QUlom2S9EO5PsF+3laNm/LCObooG/o1LzAmC43kb93k8Zd+W5PPfcc+7CXfJzc7GmrCMhdhKX3n0H3o8+hs1mk+wXXYoU5ESHmjNnDvfff7/7+4qKCqKjoztxRaLb8g1zdcblpqP2Hscz897gl19/5UCtHuKvx9HQG3AyKjqYZy6NwewZ32IXJbvdTqo1hQv9tzK+JBO/9R5YEhKwpqZisVikdV2IdiTZL9pL06VJVquVhIQE3njjDZYtW0a+rRCPuBlsrRqGujkfRQc3JPThlrGhDIq+skX2p6SksHHjRtLT01E1GB+fQFpammS/EO1Msl+0l9ay/9fflpMXOgZ1yGWgKUQEeDLv2jEkDgjFbr/oiPf9ruzfRFr6OqrwJSFBsl90PVKQE8ctLCwMvV7vPkPRxGazERER0epjvLy88PLyOh3LEz2dorguU60pwlbRyKI/XUBFn0l4Jf4OnaLgiYPHLxvFDZa+KIruiIebTCbOThjB+OJMegXo8Svdxuwbn2DWnXdiNptl+3Mh2pFkv2gviqKQlJSE3W7H4XAwffp0inRB+E69j8bQKADG9QnmqcviiOsddMTjTSYTcXFxpKWloSgKGRkZPP/888yePVuyX4h2Jtkv2svh2T/tshuoHX0NhrB+AAw2FPPJfdcS7Ov6/+3wbjfJftFdyP+J4rh5enoybtw4fvnlF/fPVFXll19+YcKECZ24MnHGUBTwD2fNvkoazvkb3qMvRqcoTO7jw8o553PThH6tFuNcD1X485ynKfUfyIEKJwt/yWTmnx9iwYIFp/lFCCGEOKZmm/goioLZbKa8zknj2OsIuPwJ9KFRBHopvPj7EXzyx4mtFuPAlf3PPPMMQ4cORVVVsrKyePjhhyX7hRCiC2q+kYOiKISZwvlog53Gs+93FePqq5gz2cgPT9/kLsa1RrJfdBfSISdOyP3338+tt97K+PHjSUhI4JVXXqG6uprbb7+9s5cmzgD2ynqe+irTNSvILxRDfQVnB9p4849/Pq4zXcUlpby2yZtqewBb99kwR3iCbH0uhBBdy2Gb+KhnPcCSdXm88H0Wat8EAIYa7Cz+63UY/b2P+XSlpaUEBgZiMpmw2+3k5eVhlewXQogu5fCNHG770/08+L/NWPeWgN6AX9keLoms5M4Lrz6u9/2S/aI7kIKcOCHXXnstdrudxx9/nIKCAkaPHs33338voSY6lKZpfL4hj6e/3kpZTSOKDm6b2JebR4fSt3fEcbedm0wmEiyJpKRArH843t7eMkdCCCG6mmab+OzYtYs5W1axLrcKgOGRATwwtTfTR154QtmfmJgIQEREhGS/EEJ0QU0bOeQXFPD99jI+enUFNQ0qPh4Kj140nHP6jSM8PFyyX/QoOk32/RWnUUVFBUFBQZSXlxMYGNjZyxFdRNMW5s2HsR68gbz8PB754QDLdxQBEKrUELLjG6aNGujeAv1kfpfRaKS4uPjI3ymEaHeS/aI1bWW/6nRQ/M0zvLfTizeLRuDQFDxwYsxfy4UDfXnsUcl+IboDyX7Rmray3+Fw8GDSE/xSYaYyaCAA4UoVQVlLmTJmuLzvFz2SdMgJIU6LNj94Hdae3nSwVR1OFi1+h+ezTFSrHuhUJ3G6bJybfsBuO8B2xwHshTbMEZEntI6mWURw5ABYIYQQ7euEs19VufuZf/FL+RAavIIB6KUV4Zf1DYX7tpNaFHVSlxtJ9gshxOlzMtn/p2de5xfHaJxBvqA6GanLpnHjdxzIyyWlvlyyX/RIUpATQnS4tg6+cKg9vaCgwD3XoVbvz9/+u47U7F4ADFV3U7/uS1RvL0bGxRLbax+W3nZMWe9D+F9dmz0IIYToUk40+z39Q3j00/V8VzcEvECrLsVv+7cEGcqoqqykoKCAsLAwjEZjJ78yIYQQbTlW9qdaU2goySPVqmG32wkIMfLo/9bzY/0g8AC1NI/ArZ/hCFAk+0WPJwU5IUSHa+2Dl9lsRlVVVFUlISGB1NRUEhIsfLuzmhd/2EBtoxNfvZO/hqfRp3Qdr/h4kWBJZM7/zcT52XY8G8vQ5a1zzRryD+/slyiEEOIwJ5L9aQUOnvxqOUVVDYBGaHEGgfuX4+ehEBc3goyMDCIjI/H29qa4uFg6HYQQootqrejmzn6ng/vGq/iXlVEd0ovcGj0PvL+SfcU1ABjtGwncvxzfQA/i4uIk+0WPJwU5IUSHM5lMWCwW95kyk8nU4uxZfHw8T/79n/x9WQ7vfL0NgAkDjLx4ZRzR3omoPqHEFR2c+wAYBp7l3n0P37DOfXFCCCFadTzZ/+w/XmPeilze+WgjAIPD/Zl7ZRzRPvEYjQ9SXFyM0Whk7ty5LZ5HCCFE12QKM3J/vIZfqavoZgozurN/+7qVPD66kN4Do3i9NpE33rKiatAryJsXrxrJ4MDxGI0PSfaLM4Zs6iBOKxnueuY6fJaEzWZj5syZ5BfY8IqZTmnUWdSqenz0Ko9cFMeNif1QFF1bT+bqjPMNk8tVhegGJPvPXG1nfwFew6Zh7z2ZRp0BHRr3TB/MPdMH4WXQH/N5hBBdn2T/GaqqEO2Lu2ksP4BHUC90l7+OrVpj5syZ2AryuX5cEN+FXstOLQqAy0b34unL4gjy8TjiPb5kv+jppENOCHFaNB+qCq7Oidj4Sey1h1DsHwUqWLyz+XvfNPqMtEBbxTjXk8llqkII0Q20lv0x8ZPZaw+i2D8aAEN5Lv0KV3PTfX9vtRjX2vMIIYToonzD0EXH46k7dDWLyRcSEix8t6ua14Mn4tT06BpriMpfxSP3PXKoGLfypUNXwUx+ULJf9HhSkBNCdKjWzmxpmsbnGw7wjTqGan8HPh56Hh6cy83KMpRouQxVCCG6u7ay/6O0HL5xjqLa34m3h8JIXTY1OV8xPSEOU5gM7BZCiO7Mnf2T7kepLXF3utkr6tjZ+3zya4oA6KVU4L/rc8YM639os4aaIlcxrsrm+ipzosUZQApyQogO09ouS6U1jSR9nsH3mQUAjOkTzLxrRtM/1AdqLpXLUIUQoptrLfsPlNfx8KdbWLXL9WEsoV8oL141kj4hXlR/n4d/6TZ0q+bB5AflGCCEEN1QW7urfrsln0c+30JZTSNeBoU5Fw7jhvgoHntsIxkZGcydO9d1X98wV2eczIkWZxApyAkhOszhO+x9bt3J3F9yKKqqx6DouO+8IfxhygAM+oMfvpqdBZOZEUII0T01z/4Uq5W3ftnKa6vyqKp34O2h8LcZw7ht4sE5oVWFBJRlQXUhWk4aRfu3Yew7XHJfCCG6mcN3V92bm8/rKXY+W58HQGyvQF69bjSDwgOw2WxkZmZis9lISUlh69atxMTEoEx+UOZEizOKFOSEEB3GFGZkekIcP6fraRx5JQ8s3QXAELM/864ZTVzvoFYf19YZNiGEEF2f0WgkNjaWBr0vZXFX8Pwv+wEY3zeEv189iv5hfofufLAjQstJ47fd1cxb8jcSLImS+0II0c0YQ0O4Z1QdIVVlrA8axy2Ls8grq0PRwV3TBnLvOUPwVICqQkxhRiwWCykpKdTV1fHQQw+RmHgw++UyVXEGkYKcEKJ9Ne2O5BOKsmoe0yPKWDruZvbX+qDTwaxJ/Xng/KF4e7Q+uBuO7Kyz2+0y0FUIIbqwpq5mo9HIc8/NZVVOPYXDbqDR6YGXQeGvM4Zy+1n90R++YY+iwOQHKdq/jXlL/kZ+gU1yXwghuonm2f/PuY+TWLWPL/0uZ1HDuWgNdUSH+vDyNaMZ3y+0xaYNStR4kh6Zw9ZtWTz00EPYbJL94swkBTkhRPtpdqB1mobxRqael22/w4GeyAAPHp3RnwvHDjxm14PJZMJisbg75Ewm02l6AUIIIU5U867mQbGj+LU8nIo+YwEYbvblqQsGMH5otOsS1dYoCsa+w0mwJEruCyFEN9E8+2NjY1m/M4eP+z6ITe0DwMUxRp67eiyBPp6uBxy2aYNSW0JMTAyJiZL94syl0zRN6+xFiDNHRUUFQUFBlJeXExgY2NnLEe2tqhCW3kNeWQ33FV9Bak0EAOOVnQzxqGTzuuO/BFVmyAnRc0j292w2m42ZM2eS3ehPTdyVODz80FQnoQdSuHiABxvWrzuu7JfcF6Jnkezv2ZqyP7+gAM/hZ1MQcRaa3gO9o5Yp3jnYN/7SMvubnbgnarx7Ex/JfnEmkw45IUT78Q3jK/10HskzU6l6ojgbMO36kvKqHNLQUVpaetzt6IqiSMu6EEJ0A35BIThGX0WFw9XZ4FlXgse6jzB6NZBiO/7sl9wXQojuw2QyMTLhLPbbgigO6AtA35ptKDtXkOuoPTL7D44oOHzTBsl+cSaTgpwQol3UNDh46sutfLwxGoBYsy/DyzPIarSTMHkKmqaRlpYm7ehCCNGDZOSV8+clG9hzsBh39agwfHasZ32QQkKCZL8QQvRUv+2w84NuPJUBDXjqHNyl/4oJyi+sTryGKnxbz35FAdm0QQg3KcgJIU5ZVkEF9yzewK7CKnQ6GGnIx/HLlwTEj2P+/Pnus17Sji6EED2DqmrMX7mHl37cTqNTwxzoxZiGDLYt+g/x8fGS/UII0ROpKnXlhTy33M77KdkAhOhquLH0TS6KKCLi3JtIuPAJ0CmS/UIcB/nrEEKcNE3T+CBlP5e+tppdhVWEB3jx2pVDcKz/nNyc/aSmpqIoivuf2WyWg7IQQnRVquqaBaqqR/15fnktN71tZe53WTQ6NWbEmll43VB2r/6G/Px80tLSJPuFEKKbUFUVm82G2iz7W/sZqkrWt//i0ld+dhfjrh0dTui6t1mSVsLTG8OpHf8nFL1Bsl+I4yQdckKIQ1T1iLkObSmtrue+j9L5bVcZABP7B/Hq9eMI8fVgXl0dBQUFhIWFYTQaT8PChRBCnCxVVbEX2jBlvY+St67FsO3Dh3B/G3IjD3+6hYp6Jz4eeu6bGsXtU4cyd+5csrNdH9Di4+Pl8lQhhOjimopu8+fPJzU11b0BA+DePbXpZ5qm8e9vUvnX2v40aHrC9DW88PsRrP76v+Tu3wvA4DGXYQqXWXBCnAgpyAkhXNrY+ag16/eXcMsbv1GleaGgMt4jj/Kv/sMbhRZmzZqFt7c3kZGReHt7U1xcLINahRCii1JVleTkZLavW8njo+0MjgxEl5vuOjnjH+76mptOXUUxz1j1LCrZCIBRV800/V6+fOU1dv8US0ZGBgEBAYSEhDB79mzpihBCiC6sKftXrFhBdnY2AQEB7g0YAKxWKwUFBVitVrbtzeUP76wi1xkE6LEoWUyzf8JPH09hS0amZL8Qp0AKckIIl4Mfuqiyub42fRhrRtM03lm1h7nfZeHQvFCqi+m1/wdKawvdOynNmjWLxMRE91k16ZIQQoiuy263Y7VasRUUYzU56BsdhFf4MPAJdd3BN4xdwRO5e4eR7fWun3nvXUlI6QY2ayqlpaVomkZcXBw6nQ6LxSInYYQQootryv6SkhIAgoODiY2NxWg0oigKFosFq9VK1LhzuOmDTEqdQeBsxJS3EmfZOt4pbCTcnCnZL8QpkoKcEMLFN8zVGdfUIecb1uLm8tpG/vbJJn7YagNgeN0mNnz+Jp5DBnLWlCmkp6e7D8ZJSUkyyFUIIboBk8nk/uC1Lyoej2gn2LbBqnlokx7gk/UHeDxlKHWNKtRVUrvsDTxrD3DW9dej1+tdlzklJDDnz7MortNhCpeZQUII0dWZTCYsCQlsX7+KQaMuoqa2joyMDObOnUtSUhJ/e3gOyUs38n56AaDiLM3Da90ifnfRNPT66dSlphIfH8+sWbNkXpwQp0CnaZrW2YsQZ46KigqCgoIoLy8nMDCws5cjDtfGDLktueX8afE6ckpq8dA5eSjoF0bkL2VOSgA+YX1YsGABiqJgCjOi1JYc1ww6IcSZQ7K/a1NV1XUSxUdD+erPUGWj0ieKJN09fJnp6p7wrdhP/ucvoNaUMWrUKD7++GPMZjP2Qhth2xbi2LsWjwETUab8VfJfCAFI9ndpqoq64u807llDffhIbnxjPfkFNiIiInhm3r95+uccNmSXAVC/9RdqVn/AqNjh7uy32Wy89eabZKT+xgjL2Tz62GNSkBPiJEiHnBDiEEVpcZmqpml8aM3mma+20uBUiQrx4fVhGYysPMBv9TH4mXQkWBJdZ8XguGfQCSGE6DqauhtQVYgaT8bOPdy973z215SgV3Q8cN5g7CvWsTjQGwIjOOecc9zdECZfHbuWf4yuuhAtO5tBY29FCYzo7JckhBDiaGqKUPLW4dVYhmdZFmcnjODXVB3h42Zw86JtVNU7CPA2MF7dzprt3xAYFtoi+9FUgjbPZ2ZYFVmbdmIrmEVkr96d/aqE6HakICeEaFVtg5NHPt/C5xvyADgvxsxLV40iwGsKRdnnMPnawcSUlB66LLWq8Jgz6IQQQnRdmk7HR17X8OTerTQ4NXoH+/DP68cwrm8IjsmPcMUVl2M0GomMjHR3QthrNKx5DvoZVPaVOQiq0TBLI4wQQnRtzUbV6KLGc9dV95L32SY+3WwHHIzrG8Kr140mIuActl417YjsV2pLGGVsIEgPXl4NritkkIKcECdKCnJCiCPsLarmrg/XkVVQiV7R8dAFQ7lz8gA0TTtiG3R3e/oxZtAJIYTouqrrHTz6RYb7JMw5w8L5xzWjCPb1RFVV5s6d2yL7m5jCzeyLvpof1q9i6NhJmMJlqLcQQnR5iuK6mqWmiL01Ptz9Zipb8ysA+NO0gdx/3hAUHUe8729i6jccrfd4Gkoy0UJjMfUb3lmvRIhuTQpyAnCF7TfffMPGjRvx9PSkrKzsiPtkZ2dz1113sWzZMvz9/bn11luZO3cuBoP8b9ST/JBZwIP/3URlvYMwfy9eu2EMiQOMABQWFrbYBt1utx/aUanZgV1myAkhRPexw1bJnxatZ1dhFXpFx99muE7CKIoOOLQbX2vZrygKSY8+Khv5CCFEd6MofLnbwZxPV1Pd4CTUz5OXrx3N1CEmAGw2W9vZrzcw7bGvKM7ejrHPUBS9fB4U4mTIX44AoKGhgauvvpoJEybw9ttvH3G70+nkoosuIiIigjVr1pCfn88tt9yCh4cHzz33XCesWLQ3h1PlpR938Mby3QCM7xvC6zeOxRzo7b5P8934LBYLJpOp5ZMcNoNOCCFE1/b5hlwe+SyD2kYn5kAvXrthLPH9Qlvc51jZ755BJ4QQoutTVerKC3l6WSGLU3MASOgfyj+vG0NE0PG/71f0Bkz9Y0/r0oXoaWSXVdHCe++9x1/+8pcjOuS+++47Lr74Yg4cOOB+0/3GG2/w0EMPYbfb8fT0PK7nl92WuqaS6gb+76P1rN5VDMAdZ/Vnzu+G4aE/stPBvRufdEIIIY6TZH/X0+BQefabrby/dj8AkwaF8cp1ownz92r1/pL9QogTJdnfBakq+79/lbtSjWytM6LTwT1nD+LecwZjkPf9Qpx20iEnjsvatWsZMWJEizPgM2bM4K677iIzM5MxY8a0+rj6+nrq6+vd31dUVHT4WsWJyTxQzuz315FXVouvp54XrxrJxSN7tXl/6YQQQhyLZH/XVlBex58WrWN9dhkAf54+iHvPHYL+4CWqrZHsF0Ici2R/1/fjhp08sKoflaonRn0tL18ziimjBrd5f8l+ITqWFOTEcSkoKDgijJu+LygoaPNxc+fO5amnnurQtYmToKpQXcjSjBIe+nY/dY0qfY2+vHXzeIZGBHT26oQQ3Zxkf9ekqirfrdvFo9/upbTWQaC3gZevHc05w+XDlhDi1En2d02qqpKXX8Cbaw7w4Tob4Mk430Jet5QSMeLKzl6eEGc06TvtwR5++GF0Ot1R/2VlZXXoGubMmUN5ebn7X05OTof+PnEcVBXHb38n+ZV/cu/SvdQ1qkwdEsYXf5pIsK4GVVU7e4VCiG5Osr/rcTqdXPv4W9z9SRaltQ5CdDUsvXsiZw81YbPZJPuFEKdMsr/rUVWVOU/PZcrjnxwsxsEdZ/Vl8f9dgG7U9UjyC9G5pEOuB3vggQe47bbbjnqfAQMGHNdzRUREkJqa2uJnNpvNfVtbvLy88PJqfR6NaB8nOtuhuPAA96wMYm1tHAB/Mm7gvitn8vy8F1tsay5zIoQQJ0uyv+OdSPbXNDj484eppDmiQQFLzUrOqfwW78aJJCe/ItkvhGgXkv0d70Tf9/+wfjefVAxCM/mjNtRiWPcRM//vn7z42gLJfiG6ACnI9WAmk+nIXTBP0oQJE0hOTqawsJDwcNcumj/99BOBgYHExMS0y+8QJ05VVZKTk4/7gLrtQDnX/CuVSi0aH62OR3ibqGqNoprb29zWXAghRNdyItmfU1LD7A/S2ZZfCaqTa8sXcrXuRxr9g6G6SLJfCCG6iRPJfk3TeHf1Xp75OgvN059G+36Klj6Pv1aN3W6X7Beii5BSuAAgOzubjRs3kp2djdPpZOPGjWzcuJGqqioAzj//fGJiYrj55pvZtGkTP/zwA48++ih33323nAnrRK0dUNvy01Ybv//PGio1L5SaYnTfP8N7v2UzL10BnYLFYiEiIqLVbc2FEEJ0HW1mv6pCVaHrK7B2dzGXvb6abfmV6B01+FnnE7T/V6pUH3bVBoNfmGS/EEJ0E21lv6qqLUYP1DY4uf+/m3j6621oKBjyNlL6SRKe9aUYjUZMJpNkvxBdhHTICQAef/xxFi5c6P6+adfUZcuWMW3aNPR6PV9//TV33XUXEyZMwM/Pj1tvvZWnn366s5YswH1AtVqtJCQkoKoqqqq2OFumaRr//m03L/24HU2DSKWSwH1f4Agz4u3tTYIlEbPZTFJSkmxrLoQQ3UCr2e90oKyaB7npaL3H877H1Tz9zTacqkZcr0BiS7eQ4a/ya90YMm16ho2bjDkiUrJfCCG6iday3+FwMHfuXHfX3K1/uo8/friBrfkV6BUd4w3ZVJasoc/4MSiKwuTJk4mMlOwXoqvQaZqmdfYixJmjoqKCoKAgysvLCQwM7Ozl9AhNZ8Xeeust0tLSWrSw1zU6+dv/NvPlpgMA3JzYl0cvGkZZSTFGo5Hi4mI5EAshOpxkf/s7PPunJ8Rx34DdNFQV81j5pfy3dDAAl4/uxfO/H4mnXofdbpfsF0KcNpL97e/w7I+NjSUjIwObzYb/wPGUDL+cijonRj9PXrthLJb+IZL9QnRh0iEnRDenKAqKopCWlnaohb3QhqY6mf3pPjbnlWNQdDx+8XBmDPTFQ6+450TIvAghhOieDs/+ZakaV8QlcP+uKDbURaDoYM6Fw7njrL4UFRVhMpkk+4UQops7PPs1TSMmNhZbyAj2R01Cq3MyMiqIf98wBo9G1+ghyX4hui4pyAnRA5jCjExPiGNZqkZCQgI263+5M60XNocvwT4evH7DGH5d8gYzn5PdlIQQoqcwGo3ExsaiaRoDxk3lkrRBVGleeOJg/m2JTB5sOqGNf4QQQnR9zbN/bLyF1Q19KYoKA+DqcVE8fWkML734vGS/EN2A/GUK0d2pKsqqedw3YDeL7xpHwoVXcW1KX2wOXwZ5lfHFbUMJqreRkpJyXJs/CCGE6PpUVWXu3LlkZGQQGjeFH9URVGleKNVF9N3xCUMCVbZu3SrZL4QQPUjz7B8QN5b0wMnsUcNAdRJ5YAX3nWVi987tkv1CdBPSISdEd1dTBLnpUFXI4qJYnl+5Fw0PJvsf4F+WMv61cCEpVit1dXWYzWbZTUkIIbo7VaV4/zas1hT2eg0kk1hoVIlUKgjK/pKJ40bx1ltvkZqaKtkvhBA9hKoeOtGSW2sgqzEOZ2ENXjiI3P8t02N7M3/+fMl+IboRKcgJ0Y2pqoq9yklQ5HieyPXg49IhAAwzFPL2PRdTWgepr86isTQPn5BePP/CC8TExABgs9lksKsQQnQnqopacYCaZS8TUJlDyKhp1DhdmR5SnMn5vev44xuvATBr1ixyc3Pp3bs3L0j2CyFEt6WqKnl5eTz//PPs3bsXu19/ymPOA70HwbpaPrvvfPy0RFRVPSL7hw0bJrupCtGFSUFOiG5KVVWSk5NZk7aBsriryVcDQVPx2/ED+sZ9lNb/DqMxhHtG1RFSVUZ1aC9ihg8DkJlCQgjR3agq6ooXKf3t3zQ4HPxZfYA0dRg6NMx5K2nc9gvr8iNQ7voDISEhVFRUkJ+fT1hYGMOGSfYLIUR3pKoqzzzzDK+++irl5RWETb8Dn4G/A8CjcBuRRavx0yZjNptpaGhokf1Dhgxh7ty5kvtCdGEn9RdptVrbex1CiBNkt9tZuX4rO/pcQr4aiK+ugb94fcuAxr0kWiwYjUb+OfdxQqp20ytQz9SBvii1JdjtdqxWq8yVEEKI7qSmiMZdyyls9OEGx1OkqcPwpp4+e7/G70A6EQcvTTIajTz22GNs374dRVHw9vamuLhYsl8IIbohu93Or7/+SlVtA8ZLH8Jn3GUAKFk/oVu9gMRxozGZTKiqekT279ixQ3JfiC7upDrkJkyYwKBBg7j55pu58cYbGTBgQHuvSwhxDPn1nuQMuxan5kEY5SyM/IyYUB033v4ixr7DsdvtLEvdgre/jvE6J0EhMQT4hmHyBYvF4j5bJnMlhBCiG/ANIzPsAmbuMlNKAKGUY9zxLaXZWZjNZvdlqXa7nYyMDDw8PHA4HMTFxblzXrJfCCG6F5PJROLZM9gz6Gr0pv6gOuiVu4yG3FWE9Ilm9uzZKIqCzWY7IvuHDRsmuS9EF3dSBbkPP/yQRYsW8cwzz/Dkk0+SmJjIzTffzDXXXENoaGh7r1EIcZCqqtjtdjbandy7ZBN1mgeDwnxYGJdF72IFosZj6jscFAWTyUSCJZHvrFAXOoLxFzwOioICJCUlyTwJIYToJlRV5eM1O3gyfQj1qAw1evDOHRfzzr93Y20ow2KxEBMTg3Iw+xMTE9GhYYkbyJxnn3HnvGS/EEJ0H6qqsipzP795JqA31RPgqfDmzYn8smQz1ooILBYLZrMZwJ39mqYxYMAAnnnmGQwGg+S+EF2cTtM07WQfXFRUxJIlS1i8eDEpKSl4enpywQUXcNNNN3HppZfi6enZnmsVPUBFRQVBQUGUl5cTGBjY2cvpVlRVJfnZZ1m2p5w95mmgU+itr+DbpCsJ8vZw7bbqGwbNDrZNBTw5CAshOpNk/8lzOp1c+8R80hujQKfDv2IfV0aU8eSjcwBazXjV6aD6+6fxL92GLjoeJj/Y4tgghBCng2T/yVNVlTuf/Ce/1vZF03viWVfKZSF5vPDYX4HWs9/hcJCUlERGRgaJiYkyM06IbuCU/kLDwsK45557WLNmDTt37iQpKYmsrCyuvfZaIiIimD17NqtWrWqvtQpxxlJVlYyMLWQVVbEnYjroFDxz0gje9BF1lWWuD1r+4Ud84FIUBbPZLAdjIYTohhodTv68cBXpjmjQ6ajd/D261fNZn7oWu93eZsYrtSUElGWhqy6E3HTXCRshhBDdgqqqPPe/tfxSPxBN70lDzha8VvyTbWkrj5r9xcXFZGZmYrPZZGacEN1Eu31K9/HxwdfXF29vbzRNQ6fTsXTpUqZOnUp8fDxbt25tr18lxBlFVVWefvY57vjPL6z2nQrANQ1LGV+1mkRLvMyDEEKIHqi2vpHznviIb3ZUoWkqNas/xJn6EWZT2LFnAfmGQdR48De7vvqGnb6FCyGEOGkOh5NLHn+PBevLQKdQn/kLDT++jDk08JjZbzKZsFgsREREyMw4IbqJU7pktbKykv/9738sWrSI5cuXoygKF154IbfccguXXHIJiqLw+eef88ADDxARESG7swppXT8Ju7MPcOmLX1HtH4WiOXnG9CvXjYugaPitmMKl+00I0fVJ9p+Y8ppGbn17DRvzqkB1oE9bRJRqY/r06cyePfv4Op9VtdVRBkIIcbpI9p+YukYndy20smxXKQD6jK/oXbmNc04g+2VcjRDdy0lt6rB06VIWLVrE119/TV1dHfHx8bzyyitcd911GI3GFve96qqrKC0t5e67726XBQtxJimsqOOez3e5inHOBs733cf1sx9G8Q/HLAdZIYTocQ6U1XLrO6nsLKzCEwe99n/D2dNimT371RMbQdA0ykAIIUSXV1LdwJ3vp7NufykKKr1yfuG8+Ehmz37ihLK/6XJWIUT3cFIFuSuuuILo6Gjuu+8+brnlFoYOHXrU+48aNYobb7zxpBYoxJlqt72KW99JJbe0FqOfJ/MuG87kuMvkbJcQQvRQWQUV3PZOGgUVdZgDPHj3tokYDYnS6SCEED3Y/uJqbns3jb1F1QR46XnjpngGBSZI9gtxBjipgtyvv/7KtGnTjvv+CQkJJCQknMyvEuKMtCG7lDveS6O0ppF+Rl/ev8NCH6NvZy9LCCFEB0ndW8LMhWlU1jkY7F/He73+R+9dG2WHVCGE6ME25ZRxx3tpFFc34Kerx5zxOb8uSWNC0w6pMn5AiB7tpApyJ1KME0IcP1VVWZq6i0e+2UNto5NRUUG8fVs8Yf5enb00IYQQHeSnrQXcs2g99U6N+Gh/5vt/RHBdDuRWuz6IyaWnQgjR4yzfbuOPH66ntlFlaLgvrFhIce4erPWl2O12zCYTrHzJtVt21Hg5QSNED3RSBTkhRPtTVZU7nvo3v9X1AZ2eqUPC+PeN4/Dzkj9TIYToqT5bl8MDn2xCQ0cffRkLZ56Lr9UKuQ2yQ6oQQvRQX2zI5f6PN6CiEK2U8vHss/lX9SqsjppDO6TWFLmKcVU211c5QSNEjyOf9IXoIv79Uya/1fUDnY6gsh3cN74PPh5yFkwIIXqqd1fv5amvtgI6vPI34l+Uwp5do4iZdD9KbYlcoiSEED3QoexXGFa9jiTdeyi/bSfpkSewFxUfmh3nG+Y6MdPUIScnaITocXSapmmdvQhx5pDtz4+kaRqv/rKTV37eCUBo0WaC9/6Mj7c3iYmJJDXNkBBCiG5Ksr8lTdN4+eed/PMXV+7HGmxoGz6lvq4Ob8l+IUQPIdnfkuZ08tK3m3h9dT4AI/V53Fv4KOHeTryM0Qy6/3uUwIiWD5IZckL0aPJXLUQnUlWNJ7/MdBfj7j1nEAvvvRhvLy9yc3NJSUnBbrd38iqFEEK0F1XVeOLLTHcx7oHzhvDlU7fy4gsv4CXZL4QQPZKj0cGc/3zkLsY9eN5g3vjT78h2GClpMGDNdWKvaaVPRlFcl6lKMU6IHkkuWRWikzQ6VR78ZBNLNx4A4PGLh3HRYH9CQkKor6+noKCAsLAwjEZjJ69UCCFEe3A4Vf72v818tiEPnQ7+enYfZk/tT1FREUOGDJHsF0KIHqje4eQvi1L5LjcEBZWnwldx/bgx2Ko1PtwfgW1PMREDTVwfZurspQohTjMpyAnRgVRVxW63uwazgvu/G5wady9azy9ZhehQ6ZX9C4uemMen3t7ExcXh7e1NZGQk3t7eFBcXYzabO/mVCCGEOF6tZX9QiJH7/ruJ7zIK0OtgkmEP37z6bz59wXWZqmS/EEJ0b61lv39QKHctWseKnaV46lQeNnwEW7dwwe/TQKeQk5uHT1AkXt4+kvtCnIGkICdEB1FVleTkZKxWK/Hx8eh0OlJTUxmbMIFdEdNZs6cEnepAn/IuVeV72VVQQGSEmWBDAyPixqDT6Q7tsiSEEKJbaC37U9LWUTHyWnKdQSiohO/8mpQtv+Ht7U1BQQFms5n6+nrGjh0r2S+EEN3JwRlvqk8oyc/NbZH9a9M3UhJ7DTYtAC+tnruUL/l1cyGZ+xUO5GcSHh6O0+nEZDKRmJgouS/EGUgKckJ0ELvdjtVqpaCggFWrVgFQXFnLHruZmpoSFGcD/hsXUW/bhik6GlOYkVv727FE2YkY50n1vW9ijoiUod5CCNGNHJ79quJBdt8LaXQG4aXXEbH7W6r3rQPAZDJhNBrJzc0lOzubMWPG8OabbxIZKdkvhBBdnqrCypcgN53q4GGkWtdRUGBj1apVOAw+ZPe/BKcWgK9Ww9MNL9NHPUDlsEsodXgREurKfkVRGDp0KA899JDkvhBnIPmrFwDs27ePmTNn0r9/f3x8fBg4cCBPPPEEDQ0NLe63efNmJk+ejLe3N9HR0bz44oudtOKuz2QyER8fT0hICBMnTmT8pLOpscyixi+SQG8DF/ntoY9XHTfeeCMffPAB33/6IVdP7I8/NWT98iEfLfhXZ78EIYQQJ6h59o+fMJnKcbfSGDoAD5y8e9t4zo2JZFhUKDfecAMffPABH3zwAX369KGqqor333+ff/7zn539EoQQQhyPmiLITYcqG/6l25g6PpaQkBBGTZhK6ehbcAb2wptG/ua1lChnLlUhw5nz7D9455133NlfXV3N//73Px577DFUVe3sVySEOM2kQ04AkJWVhaqqvPnmmwwaNIiMjAzuvPNOqqureemllwDX1uXnn38+5557Lm+88QZbtmzhjjvuIDg4mNmzZ3fyK+iadDodAHU6b9L9J1BXW43Rz5MPZ1kYaj4Pu/0mTCaT64yYqlJrHk3u5s2kF+hYtmsLN9rtMktCCCG6GZ1Oh1PvzY+OYRSrfgR46Xn/jgmMiQ4mcYoXjVE+eAzwRjGbUYFx48axZcsWDAYDGRkZ2CX7hRCi6/MNg6jxkJuO1nscNbvraPQM5PvGGKo0L8L9Pfhw5iSWvLWJb3blMsKSyDS9AbPZjKqqkv1CCCnICZcLLriACy64wP39gAED2L59O//5z3/cBblFixbR0NDAO++8g6enJ7GxsWzcuJF58+ZJQa4V7suWqhr5rLwvjXXVRAZ58+EsCwNN/gAtD7qKgt8Fj7NqXQPLdm0hwSKzJIQQoltRVex7M1m+JpX9Ay/HqfoR4mNg0Z0TiOkVCFWFKHnr8Gosg7x1UFOE4h9OcnIyABkZGTJHSAghugtFgckPolYVkrG3gJ9TnyF38O9RNS+igrxY8seJeDRUkpqWRkFhFbVpae6im6Iokv1CCCnIibaVl5cTGhrq/n7t2rVMmTIFT09P989mzJjBCy+8QGlpKSEhIUc8R319PfX19e7vKyoqOnbRXYjRaKRS86J83DUoXkFEh/iw+M5EokN923yMojfwl0ef48aDOzTJLAkhRHd0Rma/qqKu+Dv7ly2lfPgtOL0i8aGRJbMnMTQy0HWfZt0URI13fQ8YDAbmzp3r3p1Psl8I0R2didmvAs++8hYffPED9WfdheIdRJCulv/ddTYRwb6oqjcWiwWr1XrEhj2S/UIIKciJVu3atYt//etf7u44gIKCAvr379/ifk0dXgUFBa0W5ObOnctTTz3VsYvtotbvzOPA8GtRPPzxrCvl31eNpHewNzab7agHXUVRpF1dCNGtnZHZX1NEwY71/K3uNoq8euPRWMU7dyQwNDIIVVUPfeCa/KBr7pBvmKu74iDJfiFEd3cmZr/dbufntEzqJ/0JxTcYj2o7i++dfrAY58r+OXPmUFxc3Or7f8l+Ic5sUobv4R5++GF0Ot1R/2VlZbV4TF5eHhdccAFXX301d9555yn9/jlz5lBeXu7+l5OTc0rP113stFVy92c7cXj441VXwu9DchjeN5Lk5GRmzpxJcnKyDG4VQvRYZ2L2250B3Fp4Dft0vQlQK7g0YB+W4X1RVbVl9gP4h7coxgkhRE9wJmZ/kcOLwtjrUXyD0ZXlcZUxj+EDolpk/9y5c6UDTgjRKumQ6+EeeOABbrvttqPeZ8CAAe7/PnDgAGeffTYTJ07krbfeanG/iIgIbDZbi581fR8REdHqc3t5eeHl5XUSK+++tuVXcNMCK8XVDQyLCOCVy0YxpG+vQzPlCgqwWq0yuFUI0WOdadlfWFnHDW+nsqvKm4gAD/51ZSLjhl6LoijYbDbJfiHEGeFMy/6MvHJuejuVOjwYFu7LK3+4kCF9e0v2CyGOmxTkejiTyXTcA0Lz8vI4++yzGTduHO++++4RZ3EmTJhAUlISjY2NeHh4APDTTz8xdOjQVi9X7WlaXHLUyhkuVVVZmbGPez/fRVltI3G9A/ngDgshfq6ZeyaTqc0ZEkIIIbqmY2W/rbyWa99cw76SOiKDvPnozkT6hfm5b5fsF0KI7udY2b85p5QbF1iprHcyOjqYhXckEOTj4b5dsl8IcTx0mqZpnb0I0fny8vKYNm0affv2ZeHChej1evdtTd1v5eXlDB06lPPPP5+HHnqIjIwM7rjjDl5++eXj3mW1oqKCoKAgysvLCQwM7JDX0hGa2s6bDqpJSUktDs6qqnLf0/P4qnoAqt6LUVFBvD/T0uLA3HQ/GdwqhDjT9NTst1fUct7cbyjTfPDTNfD1/efS3xTQ6vNI9gshzjQ9Nfszcsu48rXlNGAgXKnip0cvJ8j3yM5AyX4hxLFIh5wAXJ1uu3btYteuXURFRbW4ralmGxQUxI8//sjdd9/NuHHjCAsL4/HHHz/uYlx3dqzLTVdk7HMX43xqCph36ZgjinEgg1uFEKI7OVr2l1Y3cP1baynTfFDqyumV/TW+6kTgyIKcZL8QQnQfR8v+bfkV3LjASgMGDGXZGA/8SF3lNIJ8j8x4yX4hxLFIqV4AcNttt6FpWqv/mhs5ciQrV66krq6O3NxcHnrooU5a8enV1HYeERFxRNv55uwS/vzpdlS9F77V+VwVVkD/qNZn6gkhhOg+2sr+8ppGblyQwq6iWnxoYGD2N0wZM1wuSRJCiB6grezfXlDJDfNTKK9zEKarYvCBn5gYP1ayXwhx0uSSVXFaddfWdWi97XxzdgnX/3sZ1XgzUJfPm7PPZ0DfKGlLF0KIZnpS9lfUNXLj/BS25FWg1VYQvfNTPp7/KpGRkZL9QgjRTE/K/p22Sq59ay0l1Y047XsZkP0Ni99bINkvhDglcsmqEMfp8LZz185KVqrxZhQ7eFF9hSDNgqL06cRVCiGEaE/Ns7+q3sHt76SyJa8CtbYC51ePsbOqnNLSUnr37t3JKxVCCNFemmf/rsIqrp+fQkl1Iw223dj/+xh1vp6S/UKIUyblfCFaoaoqNpsNVVVbvb2pGFdRrxKn28Ob+r9j9NFhNBpP80qFEEK0l6Nlf22DkzveS2NddhmKo44r9jzH/AkFPDsjhGFDh3TCaoUQQrSHo2X/vqJqbpifQlFVA161doo/fRJnbSW+vr4MGSLZL4Q4NVKQE+IwTTsrzZw5k+Tk5CMOzpl5Zdwwfy1lNY2YlCouK3qPCiWYkKl/QAmQ2XFCCNEdHS37Gxwqf/wwndS9Jfh7GRi6+2MuMubSz+THHeePwFBf1nkLF0IIcdKOlv15ZbXcsCCFwsp6hpr9MW5eDPXV+Pj4EBsbS2lpaSeuXAjRE0hBTojDtLazUpMdBRX8/l+/UVHnJFSrwLhlCW9tgKe3RFE0/DaQGRJCCNEttZX9DqfKnz9az/IdRejURqbVrUJfX8GOmkCqNB9qQmPBN6yTVy+EEOJktJX9hZV13Dg/hQNldXjWl9Jnz1ICvRRCQkLw8/NjxIgRspmDEOKUyQw5IQ7TtLOS1WptsbPS3oMt63V4oK84QHjOt4yKGUKm1sjQcRZM4bKtuRBCdFetZb+qajz86Wa+z7Rh0Br5W92/GK3bTemYgby+KZYG40jGX/C4nIwRQohuqrXsL61u4KYFVvYV16BWFmH77AmWOmsYOnQoY8eOZcSIESQnJ8tmDkKIUya7rIrTqrvstnT4zko5JTVc8+Za8svrCNHVEp65mNHDB/PMM89QWlraYudVIYQQLXXH7NfpdDz11VbeW7MPPSrJHu8ww7mCWn0g5iHjKJn0FMa+wyX7hRCiDd0m+50OirO3Y+wzlOpGjRsXWNmcW46hsZqqpU9Tkr2D0NBQxo0bxwsvvEBMTIxkvxCiXUiSCNFM01BXALPZjKIoHCir5fr5KeSX1zHQ5Mf3D13I6OGDycjI4IUXXsBoNGK329vcAEIIIUTX1lr2z/tpB++t2QfAiyMPcM0QhSJ9OLkVGst3V+PwCu68BQshhDhlqqpiK8iHlf/AtOYp6pe/zMz30ticW06orwfX+m8jUFeHv78/AQEBJCQkyAZuQoh2JZesCsGhA/Li+f/kt7QMEiyJJCUlUVTVwA3zU8gtraWf0ZfFdyZCbTmZmZkUFBSwfPlyKisr2bp1KxaLhaSkJDljJoQQ3YSqquTn5/Pqq6+SmZlJYqIr+xes2su/ft0FwNOXxfJ7y4XY90/igY//Sk1xLvsKt9Nv1a1MnTpVcl8IIbqZ5tmft30DT4wpom9EMH/YG0RqVSkB3gbeH53FoKJ1DJrkyWub+hIcEkphYSGzZs1yHysk+4UQp0oKcuKMp6oqzzz9NL12L2aMVwk+/gF8Z4Wd2Qe4+7Pd7CuuITLQkw9nJmAO9Eb19yQ+Pp7FixdTVlZGTk4OAQEB7kGwZrPMkhNCiK5OVVWeeuop3nvvPYqKiggKCgLgnd+28dyP+wC466ze3GTpA4qCse9wxsVbeP/97dhshdTU1uHl5SW5L4QQ3YjqdPDS0w/z7/f+i72omOCgQM43mXjF4wpWVPXG11PPyzPCiN29ABrLOauvFz+XhJFdUscnn3yCh4cHgGS/EKJdSFlfnPFsNhvff/YBvdQDBOrrGOZfyYTxo3jgy73sKqzCT9dAQNo7vPv6PBwOB3a7nVmzZtGnTx+Cg4MBCAkJabEBhBBCiK7NZrPxwQcfkJOTQ21tLeXl5YTETmHuz/sBGOFhY+Wbj5KcnNwi+/v3709QUBBOp5O4uDjJfSGE6C5UlarvnmJ87nvc3LeQ+tpaPBor+NB4N99WDsRDr2OKksWryY/z2+5qND8TEeMv5qGn/05AQAAeHh44HA7JfiFEu5EOOSE0FdXpJDXPiaW3nn16M9bQ88k4UEGIj4GwTR9RnL2D5ZV29+WpCQkJTJo0ibS0NOLj45k9e7Z77pAQQoiuT1VVnE4nmqah0+kIG2Yh1WMETqfGRTFG9n78b/Jyc1FVlaSkJDIzM0lISGDy5Ml4eXkRFxcnu+wJIUR3UlOEh20TRh8VS5TCs2d7ciDmOr7URaHTwZMz+rP4hdfJzc3lJbUXq2oiSc1cT3yCBxaLBZ1OJ9kvhGhXUpATZzZVxbzjQz64OohfM2pJ3hoEFyaRd6CaAG8DH8y08OnbKSzOTGtxeWpqairz58/nj3/8o+ywKoQQ3YmqolYV8vaCBXh6ehIYGEhI/zg8z7uXBqfG9GHhvHTtKC5eWEdBQQGBgYFkZGRgs9kk+4UQoptSVRVbRSPbchqgTs+Ocg8qh83gS78rAXj6/GiunTiYd+oOZX9Kxh7JfiFEh5KCnDiz1RSh5KYz2L+OvuP8SY+fw8+lQfh46Hnv9njiooIxzp7NqlWrKCkpoaqqyn15qnTECSFEN6OqsPIlGnevYnjeLmqrK/EMicDr/Pupx8C4viG8fsNYKkqL8Pb2JjIykoCAAOLi4tDpdJL9QgjRDamqSnJyMsuXL2ff3j14qwrFpol4x90CwF8CfuVmXTi2IpNkvxDitJKCnDiz+Yahhg/HmbOOR+pu5uf6cDz1OubfMp5xfUMBMJvNTJkyBavVKpenCiFEd1ZTBDlpeJZs54KIMnYlePJG5N+oV7wZYPTm7VvH4+Opx8tkIjExEavVisViYc6cORQXF0tnhBBCdEN2u52UlBS2bt1KeXk5HtEjCJr6RzSdjhuDNnNvSDrkmTGNvVWyXwhxWklBTpzRVODZNXq2l13Lau8E9DqN164fy6TBYe77KIpCUlISdrtdDshCCNGd+YaBOQYOrKcaH34adD86QwR+ugY+mDWNYF9PoPXcl930hBCiezKZTMTFxZGelkp43wE4L3gQnd5Af30JTyUq6A6YIWo8in+4ZL8Q4rSSgpw4s6iqq0PCNwwUBbvdztf7VQrNk0DTePyC/pwfF3nEw+SALIQQ3Zeqqoc+YE1/jPLKau63hrDHMBAftZoFt4yjd4hfi8dI7gshRPfWPPuTn32G4c5M5umup0LvA7Ys3nnqGgxRvVt8NlBAsl8IcdpIq484cxycHcTSe1xfVZUfdtdQaE4AYIJXDjdPGd7JixRCCNGemmYHzZw5k+TkZJzoeLHxatboRuOpNfCc94dY+vgd+4mEEEJ0G4dnf0VJIQt9rqNCH0zvxv1EbH4Xbw8DKAr4h7u+CiHEaSYdcuLMUVMEuelQWQD7VvO198U88dVeAGYlRvLIpRfK5ahCCNHD2O12rFYr+fn5rFixAs9RF7N4QxE6NP7R6zcuGnUWin94Zy9TCCFEO2qe/b+tXE1a4GT2NoYQRhnXlL1P+aVXSyecEKLTSUFOnDl8w6D3ONj8X1ZURHBf1m40TeGWCX1JujQWnU7X2SsUQgjRzkwmE/Hx8SxevJjy4CH8Z80BAB67KIZLxiS4L1MSQgjRczRl/6LFH1Ea83vU/GoCvA18cNNEQv2nYwqXDdqEEJ1PCnLizNA0O27MzWzI2skf8y+iUVO4OCaUJy+RYpwQQvRETfODZs2axY8b95E3+HIAbhhr5o7JAzp3cUIIITpE8+z/fJ9CmXkUOtXJCxcPYfig/p29PCGEcJOCnOj5mmbH5aazK2git+ddQo1mYLKxinnXzUBRpBgnhBA9TdP8IKvVyuDxU7APvRww0F9fytNXXtDZyxNCCNEBmme/75iLKTOPBWCqTzYXjL24k1cnhBAtSUFO9HhqVSGNu1dTXOvglqxIyhoNjOrlxxt3noenp/wJCCFET2Sz2VixYgUl1Q3srIymwcOV/Uv+cD4Gg76zlyeEEKIDNGV/gT6cyoYo0MHdk3rzwO9kVrQQouuRVBI9mqqqJL/yFgtTDnBD7pUcaPRnQJgf786ciJ+PZ2cvTwghRAdQVZW33nqL7NwDGOKvot4jkH76IhYOS8fHQ4pxQgjREzVl/95yJxWxvwedDmXPamrWfdnZSxNCiFZJQU70aHa7nbVp6/i77lb2aREYfQ0svCOBUD8pxgkhRE9lt9tJTUvDY8LN2HwGEEwV7/r8k+CCla55okIIIXocu93Omg1bcU6chc7Di8bsTZT89AarVq3Ebrd39vKEEOIIUpATbpdeeil9+vTB29ubyMhIbr75Zg4cONDiPps3b2by5Ml4e3sTHR3Niy++2EmrPT5GYxi1I6+mMaQ/HjhZeIeF6FDfzl6WEEKIDmQymTCMuZyq8BHocfKGcQn9A4E+E127qgohhOhxfANDsMdcheYdhEdNEb4bl2AONzF58mRMJlNnL08IIY4gA7SE29lnn80jjzxCZGQkeXl5PPjgg1x11VWsWbMGgIqKCs4//3zOPfdc3njjDbZs2cIdd9xBcHAws2fP7uTVH0nTNJK/y2KvMwSDouPd2ycQFxXc2csSQgjRwT7fcIBNjZEAPP/7USQO+w9ogH84yAwhIYTocZyqxn3/3USJ6kuIr4HPH7gSrznnA2A2m2V+nBCiS5KCnHC777773P/dt29fHn74YS6//HIaGxvx8PBg0aJFNDQ08M477+Dp6UlsbCwbN25k3rx5XbIg99aKPby7eh8AL109ksGBKqqqygFZCCF6MOueYh7+bDMAd00dwJQ+3qh+Jsl+IYTowZ77dhs/byvE06Cw4Jbx+Kg1mKQQJ4To4iShRKtKSkpYtGgREydOxMPDA4C1a9cyZcoUPD0PzV+bMWMG27dvp7S0tNXnqa+vp6KiosW/02HpxjzmfpcFwCMXDmPL1+8yc+ZMkpOTUVX1tKxBCCHOVJ2V/fvslfzhgzQanRoXxkVQn/Y/yX4hhDhNOiv7P1y7j7dX7QXgpatG8u0H/5bsF0J0C1KQEy089NBD+Pn5YTQayc7OZunSpe7bCgoKMJvNLe7f9H1BQUGrzzd37lyCgoLc/6Kjoztu8Qet3V3Mg59sAmDmpP5cNswfq9VKQUEBVqtVhroKIUQH64zsr6ipZ+YbP1FW62RUUA0PT40gNVWyXwghTpfOyP41u+w8tjQDgHEeB4g3K/K+XwjRbUhBrod7+OGH0el0R/2XlZXlvv9f//pXNmzYwI8//oher+eWW25B07ST/v1z5syhvLzc/S8nJ6c9XlabdhVW8ocP0ml0avxuRARJvxuOyWTCYrEQERGBxWKRoa5CCNHBTnf2O1WNexensbvai0h9BfMjvyY6SC/ZL4QQp9Hpzv6ckhru+nA9Gjq88jdTt8HVSCDZL4ToLmSGXA/3wAMPcNtttx31PgMGDHD/d1hYGGFhYQwZMoThw4cTHR1NSkoKEyZMICIiApvN1uKxTd9HRES0+txeXl54eXmd2os4TvbKem57N42KOgdj+wTz0lUjsdsLMZlMJCUlYbfbMZlkjpAQQnS005n9AH//YTvLdpXjpai82W85Pqa+4Bcm2S+EEKdRh2a/qkJNkWunbEWhqt7BrIXplNc5CFOqMRWvJS42Vt73i/9n777DojrTPo5/5wy9wzAMCNgLAlYENJZYkpiyiW7KpldLzKasMdkkBE1TZNOTfTdlo6ZuTO/NFGNXqiUCYleKMAy9l5lz3j+QiSh2pej9uS6uXZh2Zi7zO3Pu53nuR4guRRLqHGc0GgkLCzvmz6E94Q7V0nOhoaEBgFGjRrF69Wqamprs9/n1118ZMGAAvr6+Z//NHENto5Vp76WSV1ZHT4Mbb90axYvP/cvePwJkhyUhhDgXfb0pnzdX7Qbg2WuH8luBDze9kU7CwkRAsl8IIbo8VYU1L8A398GaF1CtNuZ8spnt5iqMns589dDlDI4YSEZGBomJkv1CiK5DUkoAkJyczH/+8x82b97M/v37+f3337nxxhvp06cPo0aNAuCmm27CycmJadOmkZmZySeffMKrr77KnDlzOvTYbarGAx9t5o+8CrxdHHj7jhHYaiukf4QQQpzjtuSW88gXf+6oOirYid9TMigoNEv2CyHEuaK2GPLSoNoMeWm8suwPfsky46jX8ebNw3Cy1pCZmYnZLNkvhOhapCAnAHBzc+PLL79k0qRJDBgwgGnTpjF48GBWrVpln3ru7e3NL7/8wt69e4mKiuKhhx7iiSeeYObMmR167PO/z+K3bWb0qBgyP+XDN1/BYDBI/wghhDiHFZbXMu3dFBqtKp6V+2hI/VyyXwghzkVu/hAyAjxMfK+fwL/XHgAgYP9yfvzgdcl+IUSXpdNOp2O/ECepsrISb29vKioq8PLyOvknOKx/xNtr9/LM91kAPNi4GKcDm1lf35cX3nwfY4BJ+kcIIUQncLrZr6pqqzyva2hi3NNfYVHd0VUW4pO6GH8fD95//31MJsl+IYToDM5o9gMZu/cxdUkGVvTod67Ee+9yDAaDZL8QosuStBJdh6qirn6ehk9noK5+nuVZhcz/obkYFxeYynVemVzZo5anhhZizH4fBekfIYQQXZ2qqixYsIBbbrmFBQsWYLPZePiT9OZiXFMtDhuWUFlaRE5ODosWLQIk+4UQoqs7PPtLahuZ8dlurOhxLN6JkvEdFRUVkv1CiC5NdlkVXYZaXcSulR+jqzGzd18tDzIYTYMbo0OZaciE/WHYivegd/dFl5/ePJPOI6CjD1sIIcRpMJvNfPjhhxQWFrJnzx78YqbwQ1YJOjR65P1G9EWjSU5OpqamhpSUFCwWCyaTqaMPWwghxGk4NPt379nLVsN4Ciob8dTVE1K0msirrpTsF0J0eVKQE12GpVYjOb+JcC8X5jbcSo1OZXQfA89MjURHODRW4VCeB401EBzVvKxVCCFEl6dpGvX19ZTovHlpRQ7oFB69NIwpA6J48803MZvNAMTExEjvICGEOEe0ZH91r/Gk5lbh6qjnk3suwld3gWS/EOKcIHN6RZdhDDBxIPhKHtU/RJHOQG+nCl6f2h1HvQJ1pWDZDs4e4B0CUbeDTFkXQoiuTVUxueuYOuUqvE2heF/+EKpOYVI/X+6+sA+KopCeno6Hhwfdu3dnxowZslxJCCG6OFVVQVO5acpF+A0aj9uIvwLw+MU9CO/mLdkvhDhnSHKJLkTHvr7XsEvpia++nndGmvE2BDbf1LL7kmcg9BwN7rJUVQghujRVhTUvoHz3AE9faqT7jc+gc/PBR1fHKzeNQKfTYTQaiY2NJSgoiHHjxslyJSGE6OJUVSVhwQJ+e/JSxrjuwOuiWQBEOpi5ecwAAMl+IcQ5Q5asii7jpV938FOGGUe9jjdvGkqPgX/9cxacosDYh1vtwCqEEKILqy2GvDSoNvPsRj3FOm/cnfR8ft9kPF2dAFAUhfj41aHm4gAAwhRJREFUeNlZTwghzhEWi4XtG9cSG1TN0w3/oEHnRFQ3Fz665zZ7xkv2CyHOFVKQE13CF+l5/GfFLgD+dfVgYiNCjryTosgmDkIIca44OPP5y62lvFsyEIBXbhhG3wDPVndTFEVmRwghxDnCaDTSf9gYXi6fRK4uiEDnJv57x0ScHFtftkr2CyHOBTKcILqELXnlANw7oQ/XRLVRjBNCCHFuURQy+swgrnAcAA9M6sfF4XLxJYQQ5zJFUTCMu5FtzpE46XW8cdc4/L1cO/qwhBDirJAZcqJLePqqCMb09eeigXIxJoQQ5wNN05j3bRYNVo0JA4zMntSvow9JCCHEWaaqGmn7ygB4ekokw3r4dfARCSHE2aPTNE3r6IMQ54/Kykq8vb2pqKjAy8urow9HCCFEOzjV7DdX1pPwwzbmT4nE283xLB6hEEKIM+1Us9+mavy2zczkiMCzeHRCCNHxZIacEEIIITolk5cL/75xWEcfhhBCiHakV3RSjBNCnBekh5wQQgghhBBCCCGEEO1ICnJCCCGEEEIIIYQQQrQjKcgJIYQQQgghhBBCCNGOpCAnhBBCCCGEEEIIIUQ7koKcEEIIIYQQQgghhBDtSApyQgghhBBCCCGEEEK0IynICSGEEEIIIYQQQgjRjqQgJ4QQQgghhBBCCCFEO5KCnBBCCCGEEEIIIYQQ7cihow9AnF80TQOgsrKyg49ECCHan6enJzqdrqMPo91J9gshzmeS/ZL9Qojzz4lkvxTkRLuqqqoCIDQ0tIOPRAgh2l9FRQVeXl4dfRjtTrJfCHE+k+yX7BdCnH9OJPt1WsvQhRDtQFVVDhw4cFIjhZWVlYSGhpKbm3tefpk5EfIZHZ98Rscnn9Hxne5ndL7OkpDsPzvkMzo++YyOTz6j45PsPzWS/WeHfEbHJ5/R8clndGxn4vORGXKi01EUhZCQkFN6rJeXl4TFcchndHzyGR2ffEbHJ5/RyZHsP7vkMzo++YyOTz6j45PP6ORI9p9d8hkdn3xGxyef0bGd7c9HNnUQQgghhBBCCCGEEKIdSUFOCCGEEEIIIYQQQoh2JAU50ek5Ozvz5JNP4uzs3NGH0mnJZ3R88hkdn3xGxyefUfuRz/r45DM6PvmMjk8+o+OTz6j9yGd9fPIZHZ98Rscnn9GxtdfnI5s6CCGEEEIIIYQQQgjRjmSGnBBCCCGEEEIIIYQQ7UgKckIIIYQQQgghhBBCtCMpyAkhhBBCCCGEEEII0Y6kICeEEEIIIYQQQgghRDuSgpwQQgghhBBCCCGEEO1ICnJCCCGEEEIIIYQQQrQjKcgJIYQQQgghhBBCCNGOpCAnhBBCCCGEEEIIIUQ7koKcEEIIIYQQQgghhBDtSApyQgghhBBCCCGEEEK0IynICSGEEEIIIYQQQgjRjqQgJ4QQQgghhBBCCCFEO5KCnBBCCCGEEEIIIYQQ7UgKckIIIYQQQgghhBBCtCMpyAkhhBBCCCGEEEII0Y6kICeEEEIIIYQQQgghRDuSgpwQQgghhBBCCCGEEO1ICnJCCCGEEEIIIYQQQrQjKcgJIYQQQgghhBBCCNGOpCAnhBBCCCGEEEIIIUQ7koKcEEIIIYQQQgghhBDtSApyQgghhBBCCCGEEEK0IynICSGEEEIIIYQQQgjRjqQgJ4QQQgghhBBCCCFEO5KCnBBCCCGEEEIIIYQQ7UgKckIIIYQQQgghhBBCtCMpyAkhhBBCCCGEEEII0Y6kICeEEEIIIYQQQgghRDuSgpwQQgghhBBCCCGEEO1ICnJCCCGEEEIIIYQQQrQjKcgJIYQQQgghhBBCCNGOpCAnhBBCCCGEEEIIIUQ7koKcEEIIIYQQQgghhBDtSApyQgghhBBCCCGEEEK0IynIiXalaRqVlZVomtbRhyKEEKKdSPYLIcT5R7JfCCGOTQpywi4xMZHo6Gg8PT0JCAhg6tSpbN++vdV96uvruffeezEYDHh4eHDNNddgNptP+DWqqqrw9vamqqrqTB++EEKITkqyXwghzj+S/UIIcWxSkBN2q1at4t577yUpKYlff/2VpqYmLrnkEmpqauz3efDBB/nuu+/47LPPWLVqFQcOHODqq6/uwKM+e/bt24dOp2Pz5s0dfShCCCHaiWS/EEKcfyT7hRAdQQpywm7ZsmXccccdREREMGTIEN59911ycnJIT08HoKKigiVLlvDSSy8xceJEoqKieOedd1i/fj1JSUntfryFhYXcf//99O7dG2dnZ0JDQ7nyyitZvnx5ux/LsWiaxgsvvED//v1xdnYmODiYhISEjj4sIYTokrpC9j/11FPodLojftzd3Tv60IQQokvqCtkP8PPPPzNy5Eg8PT0xGo1cc8017Nu3r6MPSwjRSTl09AGIzquiogIAPz8/ANLT02lqauKiiy6y3ycsLIzu3buzYcMGRo4cecRzNDQ00NDQYP+9srLyjBzbvn37GD16ND4+Pjz//PMMGjSIpqYmfv75Z+69916ys7PPyOucCf/4xz/45ZdfeOGFFxg0aBClpaWUlpZ29GEJIcRZc75n/8MPP8ysWbNa/W3SpElER0d30BEJIcTZd75n/969e5kyZQpz5szhww8/pKKiggcffJCrr76ajRs3dvThCSE6I02INthsNu2KK67QRo8ebf/bhx9+qDk5OR1x3+joaO2RRx5p83mefPJJDTjip6Ki4rSO77LLLtOCg4O16urqI24rKyvTNE3T7rzzTu2KK65odVtjY6NmNBq1xYsXa5rW/D6fffZZrU+fPpqTk5MWGhqqLViwQNM0Tdu7d68GaJs2bbI/fuvWrdqll16qubu7awEBAdott9yiWSyWox5nVlaW5uDgoGVnZ5/W+xVCiK7kfM/+w23evFkDtNWrV5/kOxZCiK7jfM/+zz77THNwcNBsNpv9b99++62m0+m0xsbGU337QohzmCxZFW269957ycjI4OOPPz6t54mLi6OiosL+k5ube9rHVlpayrJly7j33nvbXP7j4+MDwPTp01m2bBkFBQX2277//ntqa2u5/vrr7cf3r3/9i3nz5pGVlcXSpUsxmUxtvm55eTkTJ05k2LBhpKWlsWzZMsxmM3/729+OeqzfffcdvXv35vvvv6dXr1707NmT6dOnyww5IcQ57XzP/sMtXryY/v37M3bs2JN4x0II0bWc79kfFRWFoii888472Gw2Kioq+OCDD7joootwdHQ8jU9BCHHO6uiKoOh87r33Xi0kJETbs2dPq78vX75cA+wjUS26d++uvfTSSyf03BUVFac9UpacnKwB2pdffnnc+4aHh2vPPvus/fcrr7xSu+OOOzRN07TKykrN2dlZW7RoUZuPPXykbP78+doll1zS6j65ubkaoG3fvr3N57j77rs1Z2dnLTY2Vlu9erW2YsUKbejQodqECRNO5K0KIcQ54XzL/kPV1dVpvr6+rY5HCCHOB+dj9q9cuVILCAjQ9Hq9BmijRo064tpJCCFayAw5YadpGvfddx9fffUVv//+O7169Wp1e1RUFI6Ojq2ap27fvp2cnBxGjRrVrsd5oqZPn84777wDgNls5qeffuKuu+4CYNu2bTQ0NDBp0qQTeq4tW7awYsUKPDw87D9hYWEA7N69u83HqKpKQ0MD77//PmPHjmX8+PEsWbKEFStWsH379hN+H0IIcb7rStl/qK+++oqqqipuv/32Ez5+IYQQzbpS9hcWFjJjxgxuv/12UlNTWbVqFU5OTlx77bUn9T6EEOcP2dRB2N17770sXbqUb775Bk9PTwoLCwHw9vbG1dUVb29vpk2bxpw5c/Dz88PLy4v777+fUaNGtbmhw9nSr18/dDrdCTVwve2223jsscfYsGED69evp1evXvYlQ66urif1utXV1Vx55ZU8++yzR9wWFBTU5mOCgoJwcHCgf//+9r8NHDgQgJycHAYMGHBSxyCEEOerrpT9h1q8eDF/+ctfjrosSgghxNF1pex/7bXX8Pb25rnnnrP/7X//+x+hoaEkJye36/WSEKJrkBlywu6NN96goqKC8ePHExQUZP/55JNP7Pd5+eWX+ctf/sI111zDuHHjCAwM5Msvv2zX4/Tz82Py5Mm89tpr1NTUHHF7eXm5/f8bDAamTp3KO++8w7vvvsudd95pv61fv364urqe8Hbpw4cPJzMzk549e9K3b99WP231tAAYPXo0Vqu11Ujajh07AOjRo8cJva4Q4sxTVRWz2Yyqqh19KOIEdaXsb7F3715WrFjBtGnTTuxNCiHOKsn+rqcrZX9tbS2K0vryWq/XA8i/OSE6yOnkfqNVpcFqOwtHdYgOXTArzjtnopeEpmna7t27tcDAQC08PFz7/PPPtR07dmhZWVnaq6++qoWFhbW67y+//KI5OTlper1ey8/Pb3XbU089pfn6+mrvvfeetmvXLm3Dhg32nZgO7yWRn5+vGY1G7dprr9VSUlK0Xbt2acuWLdPuuOMOzWq1tnmcNptNGz58uDZu3Dht48aNWlpamhYbG6tdfPHFp/X+hRAnx2azaYWFhZrNZtNsNpv2zDPPaFdccYX2zDPPtNoNTZwd51v2t5g7d67WrVu3495PCHF2SPZ3rPMt+5cvX67pdDrt6aef1nbs2KGlp6drkydP1nr06KHV1tae1mcghDhxLdnf1NR00rnf0GTTfs82aw9/ulkb/NTP2qepOWf1WGXJquiSevfuzcaNG0lISOChhx6ioKAAo9FIVFQUb7zxRqv7XnTRRQQFBREREUG3bt1a3TZv3jwcHBx44oknOHDgAEFBQcyaNavN1+zWrRvr1q3j0Ucf5ZJLLqGhoYEePXpw6aWXHjEa1kJRFL777jvuv/9+xo0bh7u7O5dddhkvvvjimfkghBDHpaoqCQkJJCcnExsby/Tp00lOTqawsJDk5GQsFssJLSfUNI0d5mqcHRR6+h97ZpQ4O7pK9kPzv7t3332XO+64wz5DQgjRfs5U9ouO11Wyf+LEiSxdupTnnnuO5557Djc3N0aNGsWyZctOesmsEOLUHJr9ERERZGRkYDabj5n7jVaVdbuL+fGPAn7OLKSy3mq/bc3OYq4bEXrWjlenadJhUrSfyspKvL29qaiowMvLq11es7q6muDgYN555x2uvvrqdnlNIUTnYTabmTZtGoWFhQQGBrJo0SIWL15McnIy0dHRzJw5E6PRSElJCUajsdUX7SabSureUn7dZua3bWZyS+u4dWQP5k+N7MB31PVI9gsh2tvpZH9bNE1Dp9O109GfGyT7hRDt7dDsN5lMREZGkpmZSWxsLHFxcZSUlGAwGDAXWdhZqfDD1kJ+yTJTUddkfw5/D2cuiwzkisFBRPf0Q6+cveyXGXLinKWqKsXFxbz44ov4+Phw1VVXdfQhCSFOkKqqWCyWE7pIOh6DwUBERASaphEbG4vJZCI+Ph6z2cyiRYuYPn069fX1uLi4MHLkSO6f8wird5XwW5aZFduLqDpklMzZQcEqfWA6Ncl+Ibqujsz++Pj4Vq+pqhqZBypZnm3m9+wiro8O5eZY6f/bWUn2C9F1na3sHzly5J9FOD9fXkmYy/dZpZR49KbWtx82Bxf744yezUW4ywed/SLcoaQgJ85ZOTk59OrVi5CQEN59910cHOSfuxBdweHLjA6/SDrZ50pcuJC87I0MihxGXFyc/bkURSElJYX8/HwKK+vxibiQfWYj7yYsx6b+OXnc4O7EpIEBXDTQxJh+/rg5SZZ0ZpL9QnRNZzr7ExISSE9PZ/jw4UfN/oKCAgIDA+1LmTx8DKzbVczv2UX8nl1EUVWD/TkN7k5SkOvEJPuF6JrOdvbrFD17qxRe/Oh/LKsdSmUvT/v99dZapkb14LrYPu1ahDuUJJU4Z/Xs2RNZkS1E12OxWM5Ynx9LkZmeuZ8xvlsx+0oLKSl+EFNgEJqmUWJzwWnYFOr7OODiGkB9y4NUjZ5+Llw6qBsXhwcyNNTnzxO0qkJ1Ebj5w2mO4ImzQ7JfiK7pTGa/2Wxm6dKlFBYWkpebw0N334qpVwQoCkajkdjYWDRNw2AwoPcw4DVkAo/8sI8Nu9NptP2ZH+5Oesb2MzIhzMggg4Kqqqc9e0OcHZL9QnRNZyv791XrqPtgHckHmg4OrphAB55aFS4lu3CrzGFCRAh3jx+DyeSLclgx7kzO2jsWKcgJIYToVFoullpGyoxG46k/l5uO2GAHdDUK/m6O7C2u5q20TJZtLSC/ogHoBq6g08HgIA8uG9yNXau+Inv1apoaYhk2Of7PE7SqwpoXIC8NQkbA2IelKCeEEGfImcz+FooOZkXU4L0qHjV3NJaw2/A3BnDVHfehG3QF6/dXk1VQxY5GYEcxAJ66Bq4Z2Z9J4SZievnhqOhISEjggzMwe0MIIURrZyr7NU1jh6UWa8QVeE0ajNXLyHfbqwHwdNZzqX8xf3FIZXCoN56XPI5l/3ZefusDpk+ffkTbgjM5a+94pCAnhBCiU2gZiTIYDEyfPp3p06djMplO6wTY5GIgN2I6P+2sZ0V9X0r+t8N+mx6VCQMDuSQ8kIkDA/BzcyQrK4vvUlbZd2Mym80oB2dUKLXFzcW4anPz/9YWg0fAmXjrQghx3job2W8ymbj55pvZmvQ7lw8uh4ZKlv6azH+W2qgyDKRGc7LfV4fGEOdCjKWbSftjF0Eeeq69+VnC+xhQFMV+PpDdWYUQ4sw5U9m/t7iGbzcf4Nst+ey21ED/SegBR7WeaOtmDOYUthWpeI0dy9jZcSju/qhrXqT8tw8Izs5j6abmPnKHfuc/k7P2jkcKckIIIU7Y2Zq+raoq8+fPZ82aNaiqiqurq3206mRfs6bByqodFpZlFPJ7dhHVDT3ttzlqTdTtTkXL20yY0YGEB9/CZDJhtVqJi4sjIyODuro6fHx8iIqKYtGiRaSkpDSPjj0ehxIy4s8Zcm7+Z+z9CyFEZ9be2R8XF3dar6coCg889Cjfpl7DK5s3s2K/C3W4gB+ggaujwrj+Rib2cKb7LzPwr8mlGIUy116U1jnw6KOP2s9BZ2PmnhBCdAWdNfvNlfV8t+UA3245wB95Ffa/OzkojO9vZHyQjci190HJHvKVRlbudifJyQlL3d2YlFIadq3FpyGPG8JsWJuq2dOjO2+99Rapqan23VjbK/elICeEEOKEnM3p2y09HwoKClBVld69e6PT6TCbzSxevPior9nyRcHZw4fft1v4KaOQ1TssNFj/3Ak1wNOZyRGBjAhy5OHbplC8fx8ODg4M/vvfMRqNWK1WZs+ezaeffoqDgwMeHh4EBZrQ15WQkrmHvPwDaJqGpbgE09iHm2fGSQ85IcR5or2zHyA+Pp7MzMyjvt7RLhLNlfX8kmXml8xCNuwuwapqgA8Atpoymvalc9FAE4vmPoSjXseDs/9Bt907GBEIGeUu5JXVYykuwdvbm9WrVzN9+nSCgoKIj49vl15CQgjRWXS27K+oa+LHrQf4InU/6XlVtLSM1Cs6Rvf156oh3bgkwoSXiyOoKpX1k0n7+k2S8mzsK6rmsmsjmr/326ys3l7MMFSaVIg06VmxbSPLfi5ulf3tlftSkBNCCHFCDp2+nZSURFZWFuHh4Wf0JKXT6XBxcSEgIIDY2FiAo75mcVU9s59/m80lUOsZisqfx9Hdz43LIgOZHBnI0BAfFEVHQUEBChpOTk4YjUbuv/9+zGYzL7/8Mp9++il1dXU4Ozuj2qxc3y2XmPq9BPm6MC+tEj8/P6xWKyqgyDJVIcR5pL2zPzIykoyMjLZbByjKEReJN909m1+yivg5s5DNueWtnrev0Z1RPTz4+IXHKc1Kxmj0J/H1lZSXFvPyyy/zyaefUV/XRLCPE42OztTW5VJRUUFpaSnV1dW8+eabzJo1C5PJJMtUhRDnlY7I/syMrTSWHSAlWcNsNmNVYWuJxjdbDrAiu6jVpjtR3X2YEu7F5cP74u/lCjQXEc1mM0ajkZqoe5g792My9zYSYGr9vf/993byzyiNyACFjDJXNmbvp7yiss3sP9uDMDpNtqMR7aiyshJvb28qKirw8vLq6MMRQpyElougpKQk6uvrcXFxOaIJ6uk894IFC1izZg1jxoxh5syZ9oufQ1/Twd0H/6GToPtwknaXcMh5mV5+Llw5LJRLIwIZGOSJTnfkbknz589n7dq1XHDBBej1etasWUNOTg5VVVVYrVauu+46evi7cG3V2/g7q1jqFaavDSK/wkqPHj0YN26cNPQ+BZL9QnRdx81+VT3lmcNtZb/RaCQxMZHk5GRiYmLQNM2+jCg+Pp6ioiJuvu9RDigBqN0G0eBiaPWcw0J9uMR1O5ewnj59+qOOmcP8BQnHzX5nZ2f+85//YLVa0ev1DBgwgKamJrp37y7Zf4ok+4Xouo6X/aeznLXN7Pc3sGbhVFzLtrHJayJf2cawq9EbVe9sf5xzfSn6vI2E2gr4fHp/PMuz7RutqdBqsCYuLo6EhKNnv2pt5L7rL6HcMYB//+f1Dst+KciJdiUnZiG6NlVVycrK4tFHH8VsNhMYGMiSJUvOyMwBq9VKVlYWBoMBk8lESUkJBoOB7fsP8MPmPN5b8Qc17sGg+/Ok6KerxaFwK2N7evL8vIeOe8Js+fKgqiozZsygoKCA6upqQkNDiYqKIiEhgZJ9mTS+dTE+Do2UNuiYvbk/WXnleHp6ntH3ez6R7Beiaztq9huNp737dFvZ7+vjze6tKXgF9uLuWfdQUFiId6/BjLzuHlbtLie/otH+eAdFx6g+BiZHBHJJuIkApRK+ua95Ax4PE0z5D6qb/3GzPyMjg9GjR1NXV4der2fYsGFUVFTg6elJUKCJt//vOYw9Bkq7gpMg2S9E13a07DcajSQsWMD2jWsZMHwM8XPnnlzRSlWxVhaStb8Ig78Rk8lE+h9bWfH7T3xd2oNC1cd+V4emaq4f2ZvJA/z4/cv/kZaWysSYSB7svRtdTZE95801GtOmTaOwsLDVcbaV/d1DQ3g4Fi4e6EuhQyj9p71F7WHZ7+HhgZ+fH++//z5BQUFn/sNteX9n7ZmFEEKckwwGg73RaXh4ePNSTlU9rdGjllG4pUuXomkaQT370RgwkHLP3tR5hTYX4TxCm19fV0NPhzIqM1cxdmgYMxbec8JTyhVFwWQyoaqq/T1ER0fbZ+QpioKxVwSr3IYzoG4T7p4uvDf7Il7Z6ETKwRka0tBbCHE+ajP7q4tQTmP36cOzPyQkBFcXZ64J2Ee4dz2rvCegDbmayv5ulDh5smdjEdC8S/boPr5MGd6DiwYG4u3meMiTOjUXBw/ZgOdEsj8yMpKYmBhSUlJwcXFh3LhxeHh4kJ6WypxoDf91T0FO9CkVHYUQoqtqK/vNhQX0zP2M8UHF7MstwFI0A1PgCRatVBV19fPsWfkR32fWs6R6NPq+F9DoHggMAcBZraO7YzVNu9Zz4cBgdJnbmP/WOkaPHs2iRYswBRjRrX2pVc4b3ThiI4ajZf+sW64mYMMz6GqKCHSHS0YP4+d1m+zZ7+7uzscff0x1dTWLFi1i7skWHE+CzJAT7UpGyoToug7t2xMVFUVtbS3ffPMNOp2Om266iXnz5p3yycpsNnPj7dPYWqbg2GckjiGR6BS9/XbnmkKuv6A/Vw0LJdjbmRkzZrQaATuVGWuHT7U/9HeqCmn6bBpOtlp0HibUK/+Nuab5dNke/STONZL9QnRdx8z+G29k3nhXlPz0U5ohZzabueWWW0hJSUHTNJxdXOgZGUVkRH+2uEZTqvja7+vmqNCneiMXWjfgU1/AlfO/P/oF4DGW0R4r+wsKCrjpppuorq4mKCiIRYsWodQW470qHuemCnQHZ2KcTNHxfCbZL0TXdazsn3bDlUzV/YauxoLmHkDfOT+heAWe0PPWlxfy03vP8nG+kVRdJKru4Pd91Ub93o04711NfX42Hy/9kLCwMFRVZeLEifbv/StXrmyesdZGzh9rGW2r2wB19fM07VmPY+8LKOh7EzfdfIs9+xcuXMicOXOwWCyEhITw9ttvn7XVMTJDTgghxAk5tLnr+vXraWxspKioCE3TWLt2LRaL5aRPVjUNVn7NMvPtlnz2Db0b90M2ZnCps+BWvI3KjJWU5O/m01/88L7pr/zj8flnZCvyllEzaGMnqcfjcO434c+RN3d/Fr+aeFZ2mhJCiM7smNm/bh2WWe9jGnHnKfWQMxqNjBp1AbsrgdDh6LoPx+LkwYqDtzvZanGtzGGQj5U37r+RgtcfR1dThGLww+h6jDkFinLUotmxsj8uLo6LLrqo1fklceEieubuJTbYgb7jL0dx8z+p9yiEEF3RsbL/t/WbmfWPK3Eu+gPH3hccd8MzTdPYmFPOFxvz+H7LASrrL6LlK7+udB9+lbvxrdpD+vpVlNbU4O7uznPPPcfgwYO577777M/TsioHaDPnD833wx2R/asb2L6xjgHDG4gbE9Qq+8PCwtA0jcLCQvz9/TEYDG0+55kgBTkhhBAnxGg0tpruDVBYWAjAmDFj7IWx4zV5rW+ysXK7he+2HGB5tpn6poMnVhScai30d6nmpQdvxpN6zOah3H//eor3NXFLDzOjSz6i7hdn4h9/AktxyRnbivzQLx3JyclYikswjX0YaotRXf3I2pZNUlKSfde/Uyk+CiFEV3Tc7A8wQctMs4O727WZy4fMZlDRsSm3jG83H+CzpqGoE2Lsd3N31KEUbMV5/wZy/kiiStHxq6qSQAkJl/4NdfPHOOj16DZ9AOP+eVrLRw/P/pKSEuLj47FYLBgMBrKzs0lKTuZbsxMDLAZenHUbJhmMEUKcB46V/aPHjMXjsniUulJUVz/MR/nef6C8ji/Sc/ksLYecsgb734O8XQiu2YFl83Jiw3uz4D//Ijs7mwcffJDc3FxKS0vZvHkzGzduRNM0brzxRj744AP0ej2LFy8+rVU5cDD7U1IoLCyl3JrSZvY7OzsTGBiIi4sLJSUlMkNOCCFEx1IUhbi4OLKzswkLC0NRFGbOnAn8uYzziJlmB2eS2VSN9buL+WbzAX7OKKSqwWp/3p4GNyb29Wb1/16mfP82Gnx9cVf/yuK33yYpKQlHR0cG9vBndI9Kuvu54FG2DV1d6Rk9MR76pcM+605RUN38W+0wZTKZpI+cEOK8cjrZby/CufqhrXmJrTv38r0tlu9Lu3GgsungKziha6rDo2IPT9x5JVt//YxP1nxIg6bRv19fduzYgaOjI1szMim9+18Yc5Kgrgzy00+6Z93h2sp+RVGaG5Yfkv0BpkAGRI1sLj4KIcR54ISy39WPVxLmsiJlKzGxzTuwNto0ftpawEdJe0jNraKlQZoDNi4KM3LL6L708bQxY/rL1BQWsqmhAovFwldffUVeXh4AYWFh9uzPzMwkMTGRdevWUVpaSmpq6mkPjJ9I9jc0NBASEsLIkSPP6vd+KcgJIYQ4IaqqkpjYetnm4bsOHTrbICk5mZVb97Imp57vthRQXN16ZOzKId24cnA3IoO90DSNBVv78WFGClVVVbz66qtkZmZiNpsxmUy88sEX9Mz9As/ybHSh0c1Lo84gRVHsI2OHjvC1vJ+W43j22WcJDw+X5apCiPPGMbNfVaG6CEu1rfUsY4vFvgPrzl07+aZxBN8dCGF/U8TBZ23CQ2/j4kGhVG9bxaqv36JRs5HqV0xmZqZ9d7u3336b//znP2RkZDBy5EgMPQZC7uhWjbxPh2S/EEK07VjZr6oq5sICXNNeZ0zpxzh76PjyjwBKP0rjt51lVNX/OfDuUpWLfn8qTXtT2Z1uYkXuOEbGxRETE8OHH37Y6nv/0bI/PDyccePGnXa7mhadKfulICeEEOeooy0dPd6S0qM5YllnG6NTRqORgdHjMO+vJdc0iLs+yrbf5uPmyBWDgrhycBA93K2YAgLsr6/T6ZgxYwZr1qyhtLSUzMxMIiMj0el0xMbGEjloMMqgwUdt0n0i7/t42uo7cfgImlyQCSE6u3bLflWFNS9AXhrG4ChiY2JITkkhNjaWRgcP3vhtK9+uD2JbfYT9uVxoZJLLdq703Mn4gBpc/vJvCi68ntvW/9Bm9gcHB5OYmNj6uA+2Ezj8XCDZL4Q4n7VX9rfMiN6evob7h9SwxuNivukeQ67Sjd1bLQA4N1Wi5KRj3bmOpqoi6m02nJycKC0ttbcHONb3/rayv60C2um8v86S/VKQE0KIc9DRlg8ddVnRCTyfqqpER0eTmppKdHS0/W+KolBW08j3fxzgy035bKqLgABAAxdHhYsGmriwhxuxPTzpFmg6YrSt5fVNJlOr0a+4uDhKSg7rE3ecpUmn+v6O5lhfAIQQorM5k9nfcpFjMBha9RGyZ39tcfNMtWozSn46f5/5En6xU/k5u5Qlz688+Cx+OGJjnPNOxqop9KveiObSndEmP/tsZ5Mbx83+VhdNbTTyluwXQpzP2jP7C8xF/JZZQIHfxdxYP6B5l1QFXBQblw4K4RrHdfhtWsR6l3peqNWorq2lqamJsLAwvL29W81wO5nsb6uAdi5kvxTkhBDiHHS0Ua3D/242m+09E9o66aiqitls5s0332T9+vWMHj2a//73vyxZsoRpM+8mcPjF6HuPZOUOC0225iYRig6ClErYl0JMsDOe2U48Nu9D9Ho9U6ZMISsrq83NEdo6CR6vP8Tho2InMovvZJ3IcQghRGdwprLfarUSFxfHpk2bGDt2rD2bFy1axIwZM+y7UTcGRfPbtiK+Ng9n5b//wKoebBakaZiUKiypP2Ao28x1kwPwq9lDmlnHsp3OLLn9KYw9BoKioMBJZX9bsyEk+4UQ57M2M9BopGT/NlKSkygsNJOUlERWVtYxZ30dK/tv//scXCMnUejSE3PPK+yPGeJiZrJ1BYOqk0nZNIYA13QaKvLo7aTQL7gPKZkVODs74+XldcQSUMl+KcgJIcQ5qc1NCg77e1RUFAsWLGDv3r2MGjXqiFGlllGnlStXsmnTJqxNTVQX7SVy3OV8netMWb9byWpwg21FAER08+Kvw4IZ1c2BhXOmsSotkx0NDXg7WsktrkWnKGzcuJERI0Y0T0mPicHoqjUvezr4uidzEmxrVOxo71sIIc4HZyr7H3/8cV5//XWamprYv28v1112Ib4h/UhJSWm+8Nm2lwc+TGPl7kFUN9gOPlLDucZMzbZV1G9fR0m5mbq6OvL1el7wCeDCEVeSUr2HEdExWF38UIGWVz3R7D/abAjJfiHE+eyIDPQ3wJoX8M9NZU60xospAdTU1nLPPfcwceJEnnzyySOKcodn/969exk1ZiwFSgCfFAVQMyAKmoCmBnzdHJk8wJfbx/YlOP1FKlb/TIPWSMOWL/jUpjLcpJJyQKNO58bf/vY39uzZw6BBg+ybQ7SQ7AedprXseyHE2VdZWYm3tzcVFRV4eXl19OEIce5p2dHOzR8VjtproaCggOuvv57U1FScnJwYO3Ys77zzTquTotls5q4772BfZhq7KxQuv2ISBUETKHDoZr+Pm66RW8YMYEJPN2IHdkcB1NXPs335//gmPQ/QMcTQRFKejZdSFWbdcw+JiYmUFFswZr+Pkp/e3Jh77MPH7AvXFrPZzLRp0ygsLCQwMJAlS5bYe1vIMqPORbJfiLPr0NyDU8h+o9F+7jBbLNx4442sXLkSNI0nJrhxaYSB3b6j+cQ2kf2NblTofezPG+zjypSh3ShI+pZvP/gvhYWFANTX1wPg4uLC3//+d3s/oEWLFpFysNfcyS4vOlruH/4ZSPZ3DpL9QpxdR83+2mL45j6oNqO5B5DZ9x4uvOI6+3+TW7ZsITg4uNXjLYdkv943GK9hl+IRMRGd68H/djUVXdEORhptLH5mNu4uTqiqysvPPEbsgbdxUxow18C0b+rQgCqbM/f8/e8kJCQwb948+wYNp7Ks9FzOfpkhJ4QQ54pDGmwTMgJl7MNHPVmVlJSQnZ2Npmk0NjbSu3fvI0aVPDy96B/iidZvNrUug9moaz7JueisTA4PYNIAA5OH9uK5Z/9FwhsHR6z+MQMlP50BwX5cjY3q6mrcdE14e+tRRkwhPjERBwcHTB56yE+HanPz8dYWH7c/3OGONiomy4yEEOeTtmYOnFT2H5xJ0XLu8B35ALt27ULTNAIMXtT2u5gnXC9kR2Pv5hfUgye1xFo34u3uybMPP0pJSTHT/rMaHx8frFYrNTU1KIqCo6MjN9xwA4kHs19RlD9n2Z3C8qJjzYaQ7BdCnE+Omf2uftT4hOGhaehCo7E6+1BfX4+qqtTX11NSUkJQUFCrx//jwYfY1eRLwA0Lcek+yP46Wk0ZVw0y8sfX/2Xn5iR+t9l4RldiH2RZmZaJq4cnA9w1NllUqjVXHBwdue2W5uwvKSkhMzOzzXY1J+pczn4pyAkhxDlCrS6iafc6nJrK0R1S5Dr8hB0XF8eXX34JgKOjI8OGDeOll15CURQ0TWNrfgWfpeXxzaZcKv1utz9/X3UfM0JyuTzcH8+JV4Ki2E+u9our2umYQkag5KXRd+JlVNdUU5D2Pdv3N4L/ISNXbv7NM+MOXgDi5n/S71eabgshRPPMgdWrV1NWVtbmTnjHzf66UvvmDOSlsWNLMo3GAQSMuBWXPtF8qncEQEFlQlgAl7MB0+b/8EehjZ+qwykpKW51sXTllVdSU1PDN998g81ma5XPp7u8SHJfCCGaHTP7FyaSkpzOhJhBPHD9bL5OWIirqysAMTExhIeH2/uv5Vc28fV+hU+eXYEy+i5cAE21oeZvxZq9koE+Gi+++CPzdv9Odvo6HBwcyMjIsOdwTOxIfkqGmrBwyv00Avd82yr7W3I/JTmJCTGRzYNAJ+lczn4pyAm71atX8/zzz5Oenk5BQQFfffUVU6dOtd+uaRpPPvkkixYtory8nNGjR/PGG2/Qr1+/jjtoIQRwcJTslbfombuH2GAH+o6/HOVgkevQhqerV69mypQppKWl0aNHD9zd3fnggw9I37qNrFoPPkvPJ7uwyv68froqxjeuJbAkndVF3uzQ9eOae56xLy894uIqwAQBD0NtMYqbP3VFZuYvTmF7XgkmS9qfo2KK0rxM9eASqZNdrtqiq4+KCSHE6VBVlbfeeoucnBwArrrqqlZLl46Z/e+/x+4/kug3OAaHkBHs3LWTz6vH8OUvjbhcPNv+Gs61RUToC3ht7n0EGbxQbVG8klPIil1biYkdab84OvRiyWw2s3nzZkpLS0lPT7dn/5m4qJLcF0Kc704s+838tKaRi6Zmt8r+JUuWsHL1Gmq8e1E++EbKVJ/mJ20CfWMVdRnLccxNJby7ieAhobz++us4OTmRkJAAYF96erTs37R5yxHZH/94HDXLnsGjbBu6tS+dUquaczX7pSAn7GpqahgyZAh33XUXV1999RG3P/fcc/z73//mvffeo1evXsybN4/JkyeTlZWFi4tLBxyxEKKFxWIhOSWFbwudGGAx8OKs2zACFrMZX19fwsPD2bFjB1VVVXzxxRfExMSQnJJC8LCJXL7gc6q9+6BzaJ4F4eSgcGlEINeNCGFkTx92benGP5/cw6YtW0hN30Q1biQmJqIoytEvrg4uPzUGmBgQNZZyaxuzIRTlpJepCiGE+JPFYiE1NRUPDw/8/PyYMWMGAAUFBaiqyogRI/joo49aZX9KSgrRI6JY/uTlGJQKXnO5mNyw29lSEHHwWRvxc3ci2l9l56//Y3vy76yzWnnFqaI5+/UOzJ67kJsPy/1DL5ZMJhPjxo07J5cXCSFERzvV7A8bPpIJD7yIrUcseo9awAcdGuMHBHBzbA/G9PElaUMgzz2Xz5YtW9i8eTNPPvmkve1AyzLVk81+pa4Uz/JsqCk65VY15yopyAm7yy67jMsuu6zN2zRN45VXXmHu3LlMmTIFgPfffx+TycTXX3/NDTfc0J6HKoQ4zKEz1QZExeLrZyAuLo6MjAx7Y22bzYa3tzcbNmcRc8M/KHUYRWZlIxhAB6glOdwzeTDXRvekT2iQ/UQ7YPgYIiIHkZqW3mqaesvJ91gXV+fyFHMhhOhoh89SNhgMPPbYY3zzzTdA86yJ0NBQysrKSEtLIzExkTvuuIMvflnJr2VXsdElhgadCxTU4aBTmRAWyHUjQhk/IAAHBeL2/U7mOusR2X+8oppkvxBCnD0nk/2paWnc+I8n2RU4gS/2VECEDj3gaSvncm0Nf3H5g1FTP8XB1wSqyrjhYSwbFEl6+pHf+085+89Aq5pzleyyKtqk0+laLVnds2cPffr0YdOmTQwdOtR+vwsvvJChQ4fy6quvtvk8DQ0NNDQ02H+vrKwkNDRUdlsS4ixoad5tMBiIj4/nnXfesd8WGNSNWu8eOA+cSI1Pbzi4QYPWWEvDjnVou9fR1+DMRZMmkZ6efsTud1arlfj4+NPaIUmcPyT7hWg/h2f/kiVLqKqqwsXFhejoaKKiosjIyKC6CaqMkZR6DwCvPy+oumsHuNIhlSE1G8jwvZzZDz6I4hEAiiLZL06KZL8Q7ed42T84Kob1BTZKfCNocv2zb1tDbga1W5bxD1M6t0UqgMZu9xEMvvddTDuXouSnY+s2nPhlpWzNyDxz2a+qp92q5lwkM+TECWnZwv7wirjJZLLf1pbExESefvrps3psQpzLDt8h72hbex++bfnWrVupq6vD6uhOwMgp1IWNx+rkhfXg/ZsOZFO5+Sfqtq/D1liP0WjEKTCCjz/+GE9PzyN2QTraNHUh2iLZL8TpOZ3sb2howGazodfrGT16DBNunEXe71lk7qsCpfmrv9pYR232GozmZG6PLKe3UwnbqtwJqPmRps+zce4zGsY+LNkvTopkvxCn50xkv6MhFIfYm/hZ342abrbm+zfWUZPxO9Wbf6TRsh8/Pz+W2XwYH1qGwd0BJ8sfzLvnBh4ZXku/IC/0BzayMP7fWOp0Zy77pVVNm6QgJ86quLg45syZY/+9ZaRMCHF8be2Ql5iY2Gp7c6WNGQyPPfYYAYPG4u0Zg77HMHSKA02At6sjkwf48NULD1O6YzNNjY2oTY3odDrKy8vtxXVfX982d7+Tvj/iREn2C3HqTjX74+LiGDRoEGlpabgZAgkecw2/Oo/mvXfTm59YccBq3kXNH79QmbkSrbGOSgcHXqztjY+TNyHBwSwIq8SpqbxVjx/JfnGiJPuFOHWnk/0RgwaxydyET8Ql6LuFk20DbDZ6+DqTv2IpRak/0FhTQVNj8/f+qqoqqoz+bC5rYqS7ni0lGn8cqCPZZKVHdx+cQ0ageARg8pJBmLNNCnLihAQGBgLN2ysHBQXZ/242m1stYT2cs7Mzzs7OZ/vwhOjy2hoBO3SHvOTkZLKzs1v93nL/xx9/nHfeeQdHd2+K/Yfw60uryNENxqFX83OblGoeueYCrhjcDSe9Dvftk1i71pmRI0fy888/s3fvXjw8POjWrRtjxoxh1qxZ9j4RQpwKyX4hTswZyX7H5g15iouL+cu0OawnjFwMlOr0UNmIp7MDU4d1o3LTT2Tl/crIy0fys95iz/6gbsHN2X/3TEw7/ocuP116/IhTItkvxIk5U9lvU5z4z69ZJPlNxvnicQDo0Lg4PJDbL+jJyF6+LKhfx1rb4CO/9weHUDl0NL1uuYbfln5NQGMq+0JjcLx2ZvNMNrkOaBdSkBMnpFevXgQGBrJ8+XJ7Aa6yspLk5GTuueeejj04Ibq4lhGxpKQkIiMjSUhIwMHB4YiGrf379yciIgJN05pnsBl8Kclaw9crU9DF3opj2FjMDk5Q1oCHswNTh3bjsv4ejBrYo1Vxbd68efaT+pNPPklWVhZffvkl69atQ6/XSzFOCCHawclkf2REON76BsKiYvD19WXVqlV8+eWXVFZW4ujujWPEJdz0v2z2FNeArnlJ0PDuPtwY052/DO6Gq5Me9aoILJbbj579gUEogf+UHj9CCHEWnUz2h4eHU19fT1RUFFarlT/++IOvvvqKGsUdzyF/YVf4xbyyKhcALxcHroowcPfEgYQa3O2vd6zv/YreAVOfQcydN0haE3QQKcgJu+rqanbt2mX/fe/evWzevBk/Pz+6d+/O7NmzWbBgAf369aNXr17MmzePbt262Td+EEKcGovFQlJSEps3byYtLQ1o7sNy6E5FBoOBxMREMjIyiIiI4JZbb+Hr1x7jg6JeNE78J24Hn8tbq+KfU0cydXgIHs5tR7yiKPaeE0ajEZPJRFpaGmVlZaSkpLTqHSeEEOLsOOHsX7iQiJKfuH0QBA6p57JLJ7Plj63UOhvwnHQP7uEXsllxguIa3J30TB3ajZuHeBHeq3urotoJZ7/0+BFCiLPmhLLfz5dXEubyzddfYbWp1NXVsfSjj7D59aJ26M0Ye0eh0ylYgX4BHtwxuidThgRRU1GG0de11eudaPbLd/+OIQU5YZeWlsaECRPsv7f0gLj99tt59913eeSRR6ipqWHmzJmUl5czZswYli1bhouLS0cdshBd1qFT1Y1GI5GRkaSlpR11e3Gz2UxycjIHymrJ3tHA1/9JpdFhEgAOWHHKTaUiYxXBIV5cPGfCUYtxLa99eI+KQ0fkDu8dJ4QQ4sw4lezfvnEt44OKsVY0svnnD9lTOxDnKx7HI2iA/Xn7+rtyx5g+TB0ShEfKK5CUBnkjYOzD9qKcZL8QQnQMe/b7GzC6agyKjDh69huNVP30FGNKP6a+RwUL1lqxuPfGc/T9OJp603LlrSvI5JW/T+GqmP5omtYq3w/dFVWyv3OTgpywGz9+PJqmHfV2nU7HM888wzPPPNOORyXEuefwE2N8fDwJCQkA9gatBoMBs9mMwWCgpKSEnFo9tUOup8zqDTo9NsBPK+c217XcGFLMK1pP/ij3YuTIkcc9sR7eo6KkpMQ+IidT1YUQ4uw4lew3GAwMGD6Gjfsr2eU4hOXu49HGe+EIYLPiUb6LcUHwfw/ORq/XQ3VR84YM1eZWGzOAZL8QQnQE1WbllYS5rEz5gwejYXwfdxIujQJuZ2tGpj37CwoKADC56/Ao24avrw/lYeMJDLsY3P2an8zaiGdJFr6WzUyKjuTK6H7odDqKioqO6DfXMuNNsr9zk4KcEEK0s8NPjC0nzcTERPsSpYULF7JqzVoqffpSHTSCOjcT4Ac6CNBVomb/zhWDu/HA3feiBISRoFNO+MR6eI+KlsfIVHUhhDh7TjT7V69ejaqquLi60jt6Elq/y3m3LgrbwTFTNxqZOsifey8dioN1ZOvcd/Nv3pAhL+2IjRkk+4UQop2pKjXLnmFM6cf4emu4l+loqgjGSadjYfy/sdTpMBgMJCQk8P7776PX65ly4x14Bf2Fj5tupsa9edMepaGKgQ5FPD9rCv17XklJSUmr7G8r31tI9nduOu1YU6KEOMMqKyvx9vamoqICLy+vjj4cITpEW7MkDi2iZe/J5Yp/JNLU8wIUd18AdKqNHjoLul2r2L9pLZWVlQwePJhffvkFB4eTH1tpa3cnIc4WyX4hjp/9BQUFjB8/ngJzEQ69Y/GJmYrqE/rnExTtpO6PZYR7W/n152VHz35VPerGDJL9oj1J9ovzXnUR2tf3UrBrC3nlDTT59OOCvr7oQqObWwoA5r2ZjL5kCvl1eryi/4rrgDGg6AFwriuh8Y8fqcpcweDIiGN+7z9Wvkv2d15SkBPtSk7MQjSfFM1mM0CrHU33WKp5e91ePkvLpcHaHM226lKUPeu4KsKPPVlb2Lt3L7t370av1+Pp6cny5cuJjIzssPcixImQ7Bfi6NnfYtueXP7yj3/R2HMU+oODMYqm4lW2nfo/lrF30xrJftGlSPaL856qoq5+nsY962gMGILHpfNQ6svts5e11S+wNmM3c7N7sd9jkP1hw0M8KFn7CUV/rGSPfO8/p8mSVSGEaCctF2OLFi0iJSWF6OhoZsyYwb5aR5as3cfy7CL7fX20KgpXLaUqcyWuzk64RNxJTEwMmqZRX19PdXU1kZGRhIWFdeA7EkIIcTxtZf/MmTPtRbldRc2DMV+k52GLuBw9zYMx1uzfuW5YEIZgZ5LznGgMDpbsF0KILsKe/avq2bmpjiFD67l5uAVTYBCg4/fNO3ljtZH02gjwAFSVuh3r8MxP5v++/h9vlwWxobInDfK9/5wmM+REu5KRMnHOOMaSoLbuowIJCQmsXr2anJwc3D29qPTqjT5iMg3uf/ZwuGhgAHeN6UV0d28efPBBPv30UxwdHRk6dCiLFy9GURR8fX3Jzs7GYDAQFBQkU89FpyfZL84VJ7Ls59D7QOvs9/DwoKa6isg+3TBGT6Gu52hWbrfYHxvZzQvHPatZ99F/cHRQJPtFlybZL84Vp5P9uTn7eWBYEwM9q9lZ78/anvdQ6DeEHeZqAJx0NqYEWPjynf9SvH87gYGBrFy5EpPJhMVikew/x8kMOSGEOIY2T8CqCmte+LNp9tiHjyzKHXYfy4Bbm3c2Kq/C1nsMFQMmYnPxwQroVCt/HRrEvReH08foYX+KV155BXd3d/vuey2zKVRV5ZtvvjlqHyIhhBCnp63sP14PuLbuM336dJKTkyktLQXA3d2d6MjubAu4mLSGHrDdgk4HFw80MX1sb6J7+mKzjSLeuVKyXwgh2tnZyH4/F5VIg41k/QV86n0VlqZAMFfj4ezAzbGhTBvmhX9AIJ5V+axZ483YsWPtuW8ymST7z3FSkBNCiKM46gm4thjy0tCqzTTuXofjsNtQvAJbP/jgfag2Q14aDgNuwnHYVCrqfLE5uADgjBWvos1c3NOJBTdcecTJ1cHBwb773qFfDI62U58QQojTd7TsPzR7V69ezfTp0wkKCmr12MPzefr06cTGxrI+NZ0+QyaT49SLZTU2AJxp5PqoYO6aEEFPf3f7c0j2CyFE+zsb2b8hJRXvIXfxiM5EYZNr850bqrl7fH/+fkkk3q6O9ueYO3dum7PwJPvPbVJaFUKIozjiBFhkhuoicPVDDY5iZ0Eln27YQ8Irb6GqausHu/lDyAgOOPbkmfLJjHktg01NQdgcXOju58ozUyLY+NTlfJ84iwVzHz3qSFfL6Niht7dsXx4YGHjE1uZCCCFOz+HZbzabMZvNGAwGYmJiqKqqIicnh7feOjL7W/LZZDIRERGB4uqFS/R15A+bRUpTdwprbBicrPzDkMr6ibt55poRrYpxLST7hRCifZ1I9ufm7OfD/76MarO2euzh2e/l40fIhJuxxN7HBmtPCptccaMR/9xV3Oqzk0evHNKqGAdt5/6hzy3Zf26SHnKiXUkvCdGVtBopi4khfpwzSn46hIzA3P9mHrrnTrbnlWAKDGLJkiX2aeUWi4UqXPnvqj18vSmXJq35xBoR5Mk9E/pyWWQQekV32scm25eLrkKyX3Qlh2Z/dHQ0Op2OlJQUYmNjueuuu7jjjjsoLS0lKOjI7Dcajaiqyuz4Z1hX4kqlIQKbTg9AL393ZoztzdVDg3BpKjt2D9K2Dwy1ughLrYYx4MiLNiE6G8l+0ZUcL/vvvON2php2MyJQY+DFt+F52VOo0Cr7H4ufy9oDKhXdRlKncwYg0MuFWRf25m8jQqgqLz3p7+7H26FbdG2yZFUIIY5CURTi4+ObT7SuGsp3D9iXqRqG3MKAqLGUNSURERGBwWDAarXy9/iFJFV4U+nTB9ABCsN0u7isYRlV5UO4PHIhymkW41qOTaarCyHEmXdo9quqyozp06gtziU5SWX69OmMGzeOpKTm7Pf19aWgoIC33nqL1NRU+kdfSG2PMSwjGvybL5r8tEoW3Hwhkw8djHEOOLmDOtiXVMlLwxQyAgIePsPvWgghzm+HZ/+0adPYv38/qtqc/ZeOHcGIkl1089TjVpqFeW8mb/7vS1JTUxkRM5KAkVfxTdNQmoI9AXDT6ombGsXfokNxdmgemHE7ye/ubS2jFecWKcgJIcQx2Buq2qxUeg+gcOcOkvNL2Ze3mEcfe4z4+Hg2bNjAA0+/xOZGEwd0UeDT/NixvbyY6bUB5+TXSSvUsXKHwi3S90EIITq9luxvbKhnit8uehgt5GHF6G8gLi6OuLg41q9fz6WXXoqiKOyv0iDiMjLqBkJ2KegUbPmZaFnLCAx0Jco08fRmRh/Wl5TaYvA4yaKeEEKIY2rJ/vr6ejIzMyksLKSurg6DwcB9jz7Fz/HrsZXv45ffMvnovdnszzuAY7/RZJf1wfp7Ljh54tZUyl/rvqVv404u6fWTvRh3KqR/3LlPCnJCCHEcqqqSsDCRNas3UF1UTZOjN6aCFLKysnjvx3Uogy4npykCdKBpKo07N+C6dzV9p17MqLvi+PfOUlbs2kpM7Ejp+yCEEF2Eqqo8+8Q/idVbCHDT8HasoyxvJ41OPrzzzjuUl5fjHBxGwIQ70AIHNj9IU+mhL+fFGZfy2ZurySh1ZeTIM5D9B/uS2nf3dvM//TcohBDiCKqq8vDDD1NYWIiqqlRXV5Odnc0HH3zAm29uxMexibJGBwJjIrFOuplGz+YCmSuNPDSpJ9Gr5uKmK0ILCMDodnqrYlr6x7XMkJPriHOPFOSEEOIQbfVmaxmdKi4ppaJao2dPH4wRFzD3dwtuVzZPHddUG/XZq7Bt/YnerrXU6z1ITUmmLG8ns+MXcHNxifR7E0KITuqo2Z+xGyf0DDNaUbv1wersQ5G5CJuhD/4XT8GlxxA0ms8BbpYsdNt+wd3PBZeaYSQkJFBScoayX1Fg7MPNM+NOtvecEEKINrWZ/UVmSnOycXZyor6hgf79+6OqKhs3bqSxqYkSUyQ+Y2/DGtgXAKWpFsedK+hhy2XkzQkMnHQ91r0bcOx9AcppzmRu1T5HriPOSbKpg2hX0txVdGZH2+7carUSFxfHN998g82vFw5Dr6LBp+fBB9loyF5J+fpP0dWUED/OmXG93Vi3v44Ao4kbx/XHuc9olHH/lAsocd6S7Bed2XGz/+uv8HGy4WHqic2/H3V9JlKkNfcI0mxN1GWtpG7jN+jrymhqaiIgIIA+ffowbtw45s6dKxdQ4rwl2S86szb7s2kq1T89TUHqt/y4xcKrmxzo1bsPrq6ulOt9KDDGoAX0a358Yx11m76jKeMXmmor/8z+sWOZ++DdzcU4yX9xHDJDTgghDmqrT4PRaCQxMZH1O4toHD0LTAOwAahWAiuyeH3231AauvPgg5vYl1FGlEnD26GBcT0cUW3F5GRVoMvNpe/w21G8Ajv6LQohhDhMm9nvb+DfC+eyedNGGpusVAUPpaD7OPSBA0ADJ72Oi3q7sfXTl0hf8xtNTU3o9XocHBwoLCykpKSE3NxcZsyYQVBQUEe/RSGEEIc5PPvNZjMf/vdlxpR+TLC3I7EhCj3zPcncb8ZrzC1Yuw0BwFHR4XYglV3fvUFjZUnb2T9zJkFeUowTxycFOSGEOKitPg2/b9nD0gMG6sKGA6DZrFi3r2Km8y/cGOFAX7OCMu6fvP/++4wdM5rUA2XE6KxsLdNTV9vAyFCVwgor3rUaJhkcFkKITueI7Pc3UP3T04yyLGWfX3eyxt4LweHoAc3aiH5fEldH+rDwzkfJv6QPo0ePtvca0uv1NDQ0oGkasghFCCE6r8OzX1VVFi39iroe5cR005Fa6c9O0yRcx0/CqncATaWfQylvP3Qt1Axi9O9LKKzSSfaL0yIFOSGEOOjQPg3FVmdmvJ/O8uwi8O6BZrNi27mGhk3fEmlyYvLISnr6h6Dkp0NtMQ4ODji7uPJSWgX9DvjiYghh9+7dfLLLxl+uv4ybA2RHJCGE6IwO79FDdRHLU7bwtvP9bO0djiPNhTjHnBQqkz8nyMeNjPpQLBYLDg4OuLq64urqio+PD6GhoezevRur1crUqVNlNzwhhOikDs/+goICSkrLmJ9jxTTyL+ij/oajoysA1ryt+OxbgbOPI05Nl6JK9oszRApyQohzXlsNW49mb0ktLy/P5/s/Cpr/oKk4H9hM0+Zv6RvgBX1DcXVxps4Ajj7u9t3uTG5w8803s3r1aoYNG4a7uzueXt5ERkayICFBeggJIUQ7O5nsVxQFk8nE1rwKFn6/kw2Nd4MDKGoTnpYMfApScVeaaOjbHRcXl1a73R2e/d7ezdmfINkvhBDt7lSyH0Cn0+ETOQHX8MvRezVvxuBUW0Rg4QYcS3bj4i3ZL848KcgJIc5pLQ1bk5KS6NWrFy+99BJOTk5H3O9AeR0v/7qDLzbmoR6caf6XQUE47/qN7WXJxFx3JTNmzMBoNDbvmudvQFdXCq5+UFuM4ubP448/Tk1NDRkZGcTExLB48WJMJpOclIUQop2daPa33Dd5Ww7vbizm50wzADo0TGUZjAtUeXDhNIzGxygpKcFgMNj/t+WCT7JfCCE6h5PN/pYc31ZYxdPf7sM68g70gBuNzLm4H7eOvYTyssvtmd9CURTJfnFGSEFOCHHOOfQEa7FYSEpKYs2aNfz2229s2bKFFStW4ODQHH/ltY28vnI3767fR6NVBaC7vpw3/n4FEcE+qOpQLJbbW42y2aehu/nDmhcgLw1CRlAy4FYyMzMxm82kpqYya9YsOSkLIUQ7OZnsb5FTUs1dL3/JriY/0OnQ6WDq0GAemNgHNzW6zew3Go2tduabPn26ZL8QQnSQU8n+lsLdurQ/UAf9hZ02fzQNnB0Uboky8eBlkXi4NBfyTCYTqqqyePHiVjuylpSUSPaL0yb/YoQQ5xRVVUlYsIA5M2/h8bjH8PX1pVevXjQ0NKCqKtu3byc7O5u6RhuvrdjF2OdW8NbqPTRaVdxqDuCdugivLR/h79AA/DmVvc0TbG1xczGu2gx5aRjddMTGxhIYGNhqSrsQQoizS1VV5s+fz80338xjjx09+1uUVDfw1LeZTHxxNbusBtDp8KrYzdJbI3j5+qH0MnoeNfsP35kPkOwXQogOcLLZ36Kg0MwPu+rY3u8Gdlibi3FXDunG7w+PZ95fh9uLcS3a3I374KYQkv3idMgMOSHEOcVSZKZnzmeM8ssnbWs6T8yDF154gS1btrB9+3YiBw1mS7UHdz2/gqKq5qJbWKAn/5zcn3WfbSTF1XriJ1U3/+YecgdnyCkeAa2aw8oomRBCtA+z2cyHH35ITk4OSUlJQOvsHzRoEGFhYVQ3WFm8Zg+LVu+hptEGQDelEtcdvzB+SG9iw7of97UO35nPZDJJ9gshRAc40ew/1PrdxTz5zQ4Kg0YD4K/U8PqMScT0Mhz1dY7Yjftg1kv2i9Ol02RfXtGOKisr8fb2pqKiAi8vr44+HHEOUisL2f78xTSU5FJcp/BOaRQvvPk+NpuNXzPyWZpVz86iagBC/Vx56OIBXDWkG4qiO6kmsH++oNo8U87NH+RELESbJPvF2VZQUMCYMWPIyclBr9czZswYPvjgA1RVpaSkhH4Dwvh84wFe+W0nJTWNAAwK9ubRS8O4oI/fSWf/KZ0vhDjPSPaLs+142R8eHm5frlpQUceCH7bxw8GN2/zcHLlndDB3XhiGg4P+uK8luS/OBinIiXYlJ2Zx1qkqtlXPseP3D0krgD0h11CKO78Ve1HjEQKAj5sj90/sxy0xITg3lkkxTYizTLJfnG0ty5bef/999Ho9N954I3q9nuSUFIKiLmG352D2FtcA0MPgxszYQK6/oP8JXYQJIU6NZL84aw4OiKuufsxfkHBE9qekpNh7vVlVWLJ2L//3+05qG20oOrh1ZA/mXDwAbzfHjn4n4jwnBTnRruTELM6WVqNWgFpdRGZRA2+sy+fHrNLmZt2qjZuiu/HIFUPwdtGjrn6epj3rcex9Acq4f0pRToizRLJfnC2HZj80L19q+fsNf3+UgsBRWH17AuDn7sQDE/uy77cPWLd2DWPHjmXu3Lky00GIs0SyX5wVqtrqOzxjH8JcZDl4k8odd9xBaWkpQUFB/P2pl3lxVT67Lc0DMi7V+Uz2r+DlJx6S7BedgvwrFCfttddeo2fPnri4uBAbG0tKSkpHH5I4z7XslDRt2jQSEhKoqm9i4e8HuO7dTH7cVgY6HYMaNnOdWxZP/3Uo9VWlWCsL2bXyY3K2pbFr5ceo1UUd/TaEEEKchMOzX1Wbd8rOK63lhld/JnfgjVh9e6JHZda4Xnx2ezgX93Tio6Ufkpqayocffmgv4AkhhOga1Oqi1t/hq5q/w1utVl595WWqzXuobtSoG3Idf/98B7stNfi6OuCQtpTC/z3Cso8WS/aLTkM2dRAn5ZNPPmHOnDm8+eabxMbG8sorrzB58mS2b99OQEBARx+eOE+17HxUUFjIz9uKWfr099TpXAAYqtvJk14/EB7giv6aN0lMTCQpKYnevXoSXd9EL0eVfeVWvGs1TDJ4K4QQXcahu94lJSXxz7i5fLW9Bq3/RHQOJjRNxaskm/cevpYfPvsfD7yWRM+ePdE0DVkgIoQQXZOlViM530pPB5V9ZVYWJ7zE5198SUV5GQ8MtzFpzMV87nEDu21ugIZvSQbRTgWszEmV7BedjhTkxEl56aWXmDFjBnfeeScAb775Jj/88ANvv/02jz32WAcfnTjXHa2ZqtFopPeICewu9aHELRAAraqIaY1LucewCT+dJ/rut2Ku15GUlMTmzZtJTU1lc/9+mDwNDB45EWOAqaPelhBCiGM4VvbHxsaSlJyMe/gEvqoPhHAfdEBDbgZq+mfcMGUSQd4urbK/X79+mEwmJk2ahCnACNVF0ktUCCE6maNmf4CJfaHX8fPGtQT3H8Lnn39BTk4OxpAerBh0P/uc+wEwwOBIY/JH7NjwC183Ndmzf+LEifbnl2WroqNJQU6csMbGRtLT04mLi7P/TVEULrroIjZs2NDmYxoaGmhoaLD/XllZedaPU5ybWpYmtWw3Hh8fj6IomCvqmP/tFr6vDwM3cHFQaNryPfnL34cLoNjUE8Pwv8LEJzDqFCIjI0lLS8PR0ZFCcxE6JQgZKxPizJLsF2fK0bK/5ULtkptmsd5jDCnmWnADrbKQ8pXvYWjI59prriEhIQFFaZ39RUVFBAUFoQNY8yLkp0PICBj7sBTlhDgNkv3iTDle9sc9/jglJSVYrVa++PYHvC+8A6eoq9in6HGlnofDSrn1ptuZN285WWus9uwPDAxkzZo1pKWlMXLkSPvzCtFRpCAnTlhxcTE2mw2TqfVMIpPJRHZ2dpuPSUxM5Omnn26PwxPnuEOXJiUnJ5N/oJAv/rDw2ur9NNG8S95fh3Xjn5cMYNG/U1hTF0v1sKH0e3gOildg80WWqnLfffdRXV1NdnY2eXl51NTUkJqaisViOeLfthDi1Ej2izPl8Oxv6fvz6n/f5adCFyp8+gPg4aznUtsartJ/RM2Ungy+dyVBQUEodaWorn5tZv/Ozetp6u6Kc1M55KVBbTF4SPsNIU6VZL84U46W/YsWLWq1g+rK7UVwaTyeLj4AjO/jxYJLI3B0dEZRlCOyv6KiArPZTFBQEMnJyfL9X3Q42WVVnLADBw4QHBzM+vXrGTVqlP3vjzzyCKtWrSI5OfmIx7Q1UhYaGiq7LYmTduhIWWjURDY0hlKuuQGgrzxAD0sSH/1nISaTqc0p7qqqMn/+fJYuXYqmaUyZMgU3NzfS09NbjbwJIU6fZL84Uw7N/piYGBqtKt/vqKY8eBQ4uoCmcdUgI3MvCsH422yaKg7g6N0N3ZT/g43vo+WmsmJXNX//aDeqRuvsj4khfpwzisyQE+KMkOwXZ8rh2W+z2VixYgWFhYV4eXnhH9yL7lPn8Mv2UgB0deWEmtfxycvzWLx4MUlJSdTV1ZGXlwf8mf1paWnU19fj4uIiM+REpyAz5MQJ8/f3R6/XH7ErjdlsJjAwsM3HODs74+zs3B6HJ85xiqIw7b6H2B+8mZ92lAGg1lXRmPY5Ea4VjL9wHEaj0X7fw0e7LBYLa9eupbCwEE3T2LRpEy+99BKzZs3CZDLJyViIM0iyX5wpiqIQHx+PxWJh3Z5SHvrfBrSezfnuXF3AZP8KXrnpchSA0GicdGnNxTUNyEujqeIAbqW5WCsrKKppI/uheWac9JAT4rRJ9osz5dDst1qtTJw4kcLCQhwdHfEZdil7e00ke3spig4G6s2oe7/lgugogOaVNPn55OfnU19fj06na5X9RqORkpKSI3rTCdERpCAnTpiTkxNRUVEsX76cqVOnAs2jF8uXL+e+++7r2IMT5yxVVSkwF/HTrhpe/nUnNY02FB2wey0Vq97H6O3Oy59/TmRk5DFPqkajkQsuuIBNmzZRV1fHnj17eOyxxxg1ahTx8fHt94aEEEK0TVXtxTEV7DOdD1TUM/+XXH7ONIOnCbW2AsesH/jkxUcYPGjQn9k/9uE/i2sAISNw1DRqfD2paErFZqs/MvsVRZapCiFEBzp0ZQvQapWLyWSioKAAAL13IJ4XzaIooLlVQYRXHf+6dRIRwd5YLFfYHx8bG4umafj6+vLHH39QX39k9ssyVdFZSEFOnJQ5c+Zw++23M2LECGJiYnjllVeoqamx77oqxJmkqioPPPMKv5UZqHdtvsAa1t2HZ64K56u301lTFs7YsWOPW4yD5pG2WbNmsW7dOg4cOEBxcTH5+fnSP0IIIToDVYU1L0BeGmpwFAmrG9iQmobb0L+QSXfqmmzoFR1hSiF1279g/LjY1sU4OLK4NvZhdLXFhFc2MWTd7ZL9QgjRyRy+NFXTNFJTU5tbCsyeieIRgMHfyOC/zSGtIRBNccBFZ2WO7xru6paLg+84OGxlzKEz626/XbJfdG5SkBMn5frrr8disfDEE09QWFjI0KFDWbZsmYSaOOPKaxt58stNfF8/AFxBb63nn5MHMH3CQEpKinn84O5KJzPd3GQyceGFF5KUlERQUBAuLi7ExsbaR9SEEEJ0kNri5o0Vqs007VlPyjY/tvf4K7amAMBGTE9fZo/tRsyASygpueLEsv9ggc7kpkr2CyFEJ3To5g1r1qwBoLyslJ65n9H0eTo7/Cfy8M5BbG8KAQUu6O1HYkgSPcpymtsTtMyIPkTLzDpVlewXnZ9s6iDaVWVlJd7e3tLcVRyVpml8s/kAz3yfRWlNIwA+pdu40Lec5+c/wbPPPnvEFugno2VavMFgkP4RQrQTyX5xXAdnyBXvyyCh4hK+OuALgLPWyDPXDGP7sg9ISZHsF6IrkewXx3PoDLno6GhqamrI376Jfw4qZpn7FbxVEYOKHnfqeSo4jWsH+aIbOwfqSk+o96dkv+jspCAn2pWcmM9fbe18evht9Xp35n2bxeodFgB8dHV47/wJ1bwDT09PBg0aREZGBoWFhfj5+fH+++8TFBTUEW9HCHESJPvPXyeS/UajEZ1Ox6epOSz8cRsV9TbQNNzNmwkpSWdoeH+2bt1Kfn4+ISEhvP322zIzX4guQLL//HWi2a8oCqqqYjabeeutt0hOTqYYL2zhl1Li0DyTzd28hZe9PmJ8fy+cfIJhyn+k96c4Z8iSVSHEWXfo6NfhsxtUVeXpZ+bzw65aykJGY0OPk4PCtNggVr31BAdycygoKCAwMBCdTkdkRDhledvJzali0aJFzJ07V0a6hBCiEzpe9s+fP5+1a9cy6IJJ5He7kOS9pQC41Flw2Pw5luxUHAID2WproLKykgMHDmAwGDAYDB35toQQQhzDiWT/urVruGT0cObMW4iid0BRFJLSN7PbO4rGHiMBcGyqxnvnT+Rs+J68y404eAcddZmqEF2VFOSEEGfdof0hDm2mqqoq36zeyPsFJrSQUACGh3jwwvVR9DS40bg5miTVhsFgwMXFhZGxsfxjWCNZ9Y1sLNLzU4o0ZhVCiM7qiOwvMmPy0KO6+pGRmcX/ln5MZbcYdtaGwd5SXB31PHhRPwpWbSTFQ8MUGYmLiwsRERF8/fXXNDQ0kJeXh8VikdnRQgjRSR2e/WazGUVRMBgMZGVlsfTD/3FrjyKi8rdQ/ZMzXpc/zbYyyIm4lUbNGQCf0izG+5TyY/Z66hsaeXaDlSueeBJTr4jjLlMVoiuRgpwQ4qwzGo1ER0ezdu1aoqOjMRqN1DU0ccOC99nSGAC+oaj11ei3fsu/73uWEKMH8OcuSfa+D64aum/vp7ufC4rSSL3fIGnMKoQQnVSr7B8xAmP2+2h5aazaXcMTG32xTpiNq08IALHdPXnhb8MJdalFHROHpbjEnv1Wq5VvvvkGRVHQ6XQd/K6EEEIcy6HZHxUVxaJFi0hOTqa+vh5N09BqLEQFqhicbdQe2MbTH6fwxR8lgDPdvJz41zWDGeAzAqvVyk/ffNk8u06noJ5AzzghuhopyAkh2kXLRZROp2NjThkPf7qZfU2BoAMlbxOkfoKj1sCSJUuYN28eiqKgKApGo/HPPhMAodEEAZ6+Axlx6ROyXFUIITqxluz30NWhy8ukoszCZ1VR5IaNB52Cj1bByIJPCXQeQnDGBshPRwkZgXHMHCzFJfZBl5tvvpk1a9YwduxYmRUthBCdXEv219XVkZmZSX5+PgcOHACgvKyGDbkOeLiO4MM911FBCWgaEY4WPpp9I3VVFZL94rwhBTkhxFlnsVhISUmhtKKab3IceOfNJDTAVdeEcd9vjAx1Y2OoibKyMlJTU1staT2iB8XYh9HVFuMpo2RCCNGptWR/WVkZK1MzGNp3Ak8XBZPj0NzcfaqyhodZSp5HI+9nVtDUwwvnpnK03FReSZjL7ykZ9uyfO3fuURuECyGE6DwOzf7MzEwiIyMB8PT0ZNu2bSiuXrzpeSdufhMAcKwvxW3rl+DSSMLT2WRmZkr2i/OGFOSEEGeVqqqoqkr3qInsqDTR6OwDwDXDQ4i/fABNNaMwGAwkJiaSlJRERESEvWH30XrPyc5KQgjRubVkf0xMDBvSNtE0eArTtjbPeAjyduHJkE1cUvYLpaUKOxv98e4zAodeBjiwkWqfMFakpFNYaG6V/TI7QgghOrdDsz8lJYXY2Fji4uIoKSnB19eXO+a+zPrG7uDiBZrKAC2PGB8Lm1ybiIyIIDd7I+bCUsl+cd6QgpwQ4qxRVZWnFyzk+xyFEv/B4KwjyNuFhX8dxISwg0U1DxcA4uLiiI+PJyMjg8TEROLj4zEajcTGxtpnyEm/OCGE6PwOnd3cbfgkSmPuwVzdBMDNsd157LIwPJ0mQM0t+FitZP7r32zNyGSheyzxs/+Nu7s/MRsTJfuFEKILOTT7o6OjWbRoESaTCUVRcPLw5eEvMlmvRIIL9PR1pk/JBgozk3CIiWHRW/8lYPsH7HYtJjnAyr7QGMl+cV6QgpwQ4qxZtXUfH5X2pNHfF4CrIv1ZcO1wvFwcj7hvSUkJmZmZmM3mVjsytYyqyVR1IYToGiwWC+tS0tnjFUVGY39obCLUz5Vnrx7MBX39/7yjZyAlZjMZmVmYzWaSkpPJyrma8PAA+6Y+kv1CCNE1WCwWkpKSyMvLQ9M0Zs2ahaIo/JJZyONfZVBc3YCig1kX9uGGQd78/e5XMJvNpKSk8LcrJhCYn06/IC96dPfB8dqZkv3ivCD/yoUQZ1yjVeWlX7Yz/ZNsGl180WrLCdzxFS/dEHVEMU5VVcxmMwaDgdjYWAIDA4mJieGtt95i2rRpJCYmygWZEEJ0ITvLNXb2uY7G7jEA3DayOz/PHteqGHd49ptMJurr63n00UdJSEgAsM+sEEII0fn5+vpSWVlJQUEB9fX16F09efCTzcz8IJ3i6gb6BnjwxT2juH2YL90CDEyMiSTQFEB9fT3/fPJfrNxdA+4BOPcZjSLtacR5QmbICSHOqG0HKpj98Ua2F9UCYN2ThDV5KYbIMEpKSlr1gTh804aW2XCqqjJjxowje8cJIYTolFRVJbfAzLvpJbyzbh+4+KBVF9OraC33PrgANyeHVvc9PPuzs7N59NFH7bOkJfeFEKLzU1UVi8WCwWBg3rx5bN++HUVRaDIO4NJX11Jc04Sig5nj+vCPiX144bl/kZKcxJxojdl93Lg5bCDT3ttGobmIl1JNRN72FMYeA2XjNnHekIKcEOKMUFWNd9btZeEPmdhQcNKaMOb8zr51X6BZrURERNgbvbbMeDh804aWgp2qqtI7TgghughVVZn9zMv8XG6iwcUXdDrUnWtoSP6ImJuuP6HsDw8PZ+TIkZL7QgjRRRw6uBIREcHWrVtxdPNEN/w6cnqOhZomevu788LfhjC8u699wKWxNB/3snKsFcEEeOuYGDuY31MyiImNxSDFOHGekYKcEOK0FVXW89BnW1izsxhQcCzeQY+idfQPNeESFsbw4cNxdXVlxowZ9m3MFUU56qYNiqJI/yAhhOgCrDaV577fwrd1/cFFwaGphmFNWZSWpzL8xr+dcPZL7gshRNdy6OCKqqp49Y3CdcAtWJ29AQ1D8RbGumkMDRkHYM/+lGSNGt9uOHq7owuNZvaNc7i5WPpFi/OTTtM0raMPQpw/Kisr8fb2pqKiAi8vr44+HHEG/JxZyGNf/EFZbRPODgrDlX1UpH9PfV0dubm5qKrK1VdfTVZWc9PuwMBAlixZYl+K1DLVXU7CQpy7JPvPTTkltTz46WbS95cB4FW+E9/dv3Bg307JfiGEZP85rmWG3PrkVPL9R1AZGAWAu1aHcc8yqvduPnr2+xtQ6krBzV9mxInzmsyQE0KcktpGK/O/z+KjlFwAwoO8+PeNQ+ntP5mMjNHcd999FBUVAbBp0yaioqLQ6XRHLEVSFEX6BAkhRBeiaRpfbMznqW8zqW6w4unswNNTwunrEMp9930p2S+EEOcBRVG48vb7+FmfQmWlFYCGzOX0bthG9LDBZNYFHjv7ZeMGIaQgJ4Q4eZkHKrh/6Sb2FNeg08HNw03ETxmCq5Mjqqry1VdfUVhYiKOjI35+fowdO5b4+HhKSmQ6uhBCdGXltY3Ef5XBD1sLAIju6ctLfxtKsI8L8+e/LdkvhBDnsJYZbr5+Bt5cvZdXl+/EpmpQV0HdqsV41+Zx4c03S/YLcYKkICeEOGE2m403fsvi36tzabRpBHo5M6xxK5vfe4MXsmPt/X9SUlJwcXFhyJAhvPzyy0RGRspsCCGE6KJaLsD2Vut58NMtFFTUo0PDaE4h0s2RYJ+RmM1m1q5di4eHB927d+ell16S7BdCiC6qrbYCLUtUV2/aRkXYFIpUDwA8Srdj3PYpDv7uvPjS55L9QpwEKcgJIewO3br88FGt0up6/pr4BfttPgBMDDMyfZAzCU/8htlsZvXq1UyfPh2j0Uh9fT1msxmj0Uh4eLiMjAkhRCd2rOxXVZX5CxL4Ya8Ni2kEGjq6eTrgsukjKvdlsDbPl4KCu1iyZAk5OTkATJkyxX5BJoQQonM6WvYfuntqy4Y8AJmZmfy0vZyC3teiqc64OymM0HYxtPhFhoY1ogWPIDJCvvcLcTKkICeEAP4c9UpKSqKhvg6Th56wqLHEz51Lek45932YjtnmA6qVoMIN9NRqWPjZburq6qmuqsSpqZy3/vtfZt59Ny4uLgQFBeHi4kJJSYmMkAkhRCd1aPbX1dWhV3RMHhPFnHkLUfQOZOzJ5xOLiVpTMAAhTXl4bPiRxtoqKisrKSsr45VXXiErKwtPT098fX2ZOXOmXJAJIUQndnj263Q6hg8fTmJiIiUlJfbdU5OTkykoKOD5f7/O8spAqkImNj9B0U4uNBRTsSOZEd1UAtwc6NHdsXmjBukNJ8QJk4KcEAL4c+vy/LxcbgjO44JAJ/bmmHnqk4l8uLUSm6rhpavHuPsbZvfeR0D9fvzc4Zv63jwco6O/Rw37878AbQYjR460j6od2shVCCFE59KS/bm5uezds4dHRikMz9tC9Y9OpPS+l39+sY1a92AUWyMe2d+TveEbnJycCAsLo6GhgYryctb+/CXjLr3avnmDDMIIIUTndmj27969G6vVSlJSEgCJiYnExsaSnJzMiBEjmP2v/5KsC0fx9gHVhvbHt5Rt+IxlBgPXXnM1+8oLMXk64NR7dPOuqUKIEyYFOSEEqCpGV43oESNwtVVyUd8ScHLlK25m85YKAKYM7cbTVw7k/55ZSUB9Dq62Kvq7aYTW1jG2jytKTTWB7nqUulLi4uKkkasQQnRyqqqiqipRUVGUl5cT5O1AVIAVdwcrT6y38fW6jQBEdPPCuONbPvv9YxoaGnB2dqZ///4cyM9jRiyM7lHJgOFWdLP/iykwSHJfCCE6scOz38HBgbq6OqxWK19++SVz5swhPj6evAMFTP/3t+xw744CWEtyGee0h7Q9q2lsaMBsNlNdU8vEJ38kyMsRxSMAJP+FOClSkBPifKeqsOYFdLmpjKWaHoFFVPv05XHrDA6ovmBrIrhgLXGzH6ahuoKUzD34uWn0c9PIrnbHovkSNGIETkVbWLe/kRl3/p0JEyfxxBNPyEWZEEJ0UocvVzpw4AAVdTpWlBpIM81hr9YXgGljenHHMF/uvH0TNpsNnU6Hv78/8fHx9AvyZnTxR/g4NrFvzWesy3bgoSee7eB3JoQQ4mjayn5FUdDr9fYfgH0ltdzz6Q52KN0BqN78E+47lvHsqhX8nzu8/fbbNDQ08PHHH+Pm5sZzzz0nxTghToEU5IQ439UWQ14aTRUH8KnIY7X3aBY0XI9V54C3rg7/vd8xfkhfAgKa+0HExI7kpySNFZXV1Os9iB05Co/L4jDvyeTGRybgaK0iKyuLGTNmEBwc3MFvTgghRFvsbQry88nPz6e+vh6nnsP5LOzv4OSBE1ZeuzWGiyOCUFWVcePGkZOTg81m45ZbbiE4OJgH5yZQ+FkjW396m3X7Gnk9Ywk3zZgt2S+EEJ1UW9mvKArdunWje/fuTJp0EatyG3n6u7XUNdlwxoptw3t4523hllubs3/hwoVUV1ezaNEiampqePvtt3nwwQcl+4U4BVKQE+J85+YPISNosOpJdL2OVLUfAJeaKvjXzL/SUD221dLTuLg4srOz6d+/P2VlZfbbLLUa9w1tYniAExuLGikptsiJWQghOimj0UhsTAze+gb8/PzY5z0YdcDFAAw0ufHf26LpbvAAQFEUHn/8caZOnYrBYCAoqGVZqkLRgFuZds9rHChvwsHRhsUi2S+EEJ2V0WgkOjqa+vp6fH19yc/PR6fTcdNNN3HT7dN4ZZ2Zd7/MAGBUbwPPXxtJaV6vVtmvKArTp09n0aJFaJpGdXW1ZL8Qp0gKckKc7xSFXQNmcXdKKrvVevQKPD4xhLsmXIpOrwd3V/tdVVUlMTGx1TboLYW68B4B1Az0wcVWhcHgSXgP2WFJCCE6KwWIH+dMfqCBh8v+yp6y5uLbbSN7EP+XgTg76O33bZX9MTHEz57ZvIueomAMMFGneKJ3qMTT01M28hFCiE5Op9Oh0+kYP34806dPR1EUCpucmfbxFnJKa3FQdMy5pD8zxvTiX4kLSU5OJjo6mpkzZ2IymVAUBZPJhJeXF5WVkv1CnA5Z6C0ASEhI4IILLsDNzQ0fH58275OTk8MVV1yBm5sbAQEB/POf/8RqtbbvgYoz7ufMQqa+sYHdJfUEernw6d0XMO2iIc3FuMO0THNv2QbdYrHYb3PwCiTm6nvpM3gUMVffi4NXYHu+DSGEECejtpj0Hblcvf+vJJd54O6k8H83DuOZqZGtinEAliIz29PXUFR4gJ65n9H0+d2w5gVQVYKCgnjggQe44IILeOCBBwgKCuqgNySEEOJ4LBYLKSkplJWVkZqail6v54dddfztv0nklNYS4uvKZ7NGMWtcb7ZnbyMpKYmCggKWLl3KbbfdRkJCAqpkvxBnjMyQEwA0NjZy3XXXMWrUKJYsWXLE7TabjSuuuILAwEDWr19PQUEBt912G46OjixcuLADjlicLpuq8fKvO/jPil0ADAv24M3bYjB5ux71MUaj0b4NemxsbOvRMEVBf+EjeEXf1bwMVhq7CiFEp6RpGu9trmbB3kuxajr6e9Tz5sxL6B3geeSdVRVj9vs8MdTCloAGhnRzwqmpHPLSoLYYxSOAefPmMWvWLNlZWwghOjmj0UhMTAxr1qxhcPQo4pflsjy7CIBLIwJ59trBeDrr7Rs/tCxtra6upqyszD4gbzKZJPuFOAOkICcAePrppwF4991327z9l19+ISsri99++w2TycTQoUOZP38+jz76KE899RROTk7teLTidFXUNvHAx5tYtaN5hluEg5nGn//LW+XRrZahHk5RFOLj47FYLG2ffBWleRmTEEKITqmu0Ub8V1v5clM+oMO/cjsjXWvp6f/Xth9QW4ySn06/IC96dPfGMWQIOst2CBnRPPgC9uVLQgghOj9N06hzD+Kb+oHUZBfhpFeY95eB3DKyBzqdDrPZTHJyMmazGZPJRGJiIl9//TUpKSmtBuQl+4U4fVKQEydkw4YNDBo0qFXoTp48mXvuuYfMzEyGDRvW5uMaGhpoaGiw/15ZWXnWj1UcW3ZhJTPfTyentBYXB4W4i7rz2QtvtFqGeqyTq5x8hRDHI9nfOeWU1HL3/9LYVlCFXgfGA+toyvyFjYGBR8/+gxv/6PLScA4ZAWPmQF2pzIQWQhxBsr/zUlUVi8WCzWbjpz2NFPa/FjQ9oT7OvHFrNJHB3vb7Hr4iJjIyksjIyKMPyAshTpkU5MQJKSwsPOKLesvvhYWFR31cYmKiffad6Hg/Zxby4CebqW200c25ntdM3zNYG0BOTAzJh416CSHEqZLs73xW77Bw/0cbqaizom+q5WL3XIJ6O5NaEnjs7FcUGPsw1Bb/WYSTmdBCiDZI9ndOVquVxx9/nNQtGdiibqIw6AIAeutL+fof1+Pl2nql09FWxMiAvBBnnk7TNK2jD0KcHY899hjPPvvsMe+zbds2wsLC7L+/++67zJ49m/Ly8lb3mzlzJvv37+fnn3+2/622thZ3d3d+/PFHLrvssjafv62RstDQUCoqKvDy8jqFdyVOhaZpvLZiFy/8sgOAEKWMR4vn0sOpCmf/UPrM/hFLnQ7AvnuSEEKcKsn+zkPTNJas3cvCH7ehatBUuJPS754j1ODBihUrWl1oSfYLIU6HZH/no6oqjz36CJ9++yPWCXNw8AnCUdEx+8IQ/jrIn8DAQMl+ITqQzJA7hz300EPccccdx7xP7969T+i5AgMDSUlJafU3s9lsv+1onJ2dcXZ2PqHXEGdHXaONR774g++2HADg2iFGkt94ljR9EUo3HdtzzVxfbePtd961T00/Vh85IYQ4Hsn+zqG+yUb8Vxl8sTEPADfzFrYvfRq1qZFizRdVVXn77bcl+4UQZ4Rkf+dTWHCAmopCHKYmgM4JtcrCa3eOIvmnT5n5f5L9QnQ0Kcidw4xG4xlbfjhq1CgSEhIoKioiIKB5qcqvv/6Kl5cX4eHhZ+Q1xKlp6QnRVk+Hwop6Zryfxtb8ChwUHU9dGc7uX94jLzeXhJwGjO46mhwbmFhcQnJy8gn3kRNCCNGxjpX9AEWV9cz8II3NuRXoFR0j9PtJXrkIzdqETtc8I7qkRLJfCCG6kuNl/6H3cffyYdrry9jmdyMAEXXp7PzxLQJmfC/ZL0QnIQU5AUBOTg6lpaXk5ORgs9nYvHkzAH379sXDw4NLLrmE8PBwbr31Vp577jkKCwuZO3cu9957r4yEdSBVVUlISGhzdsOm/aVMfy+NktomfN0ceeOWKHq5W/k4NRUPDw+cnJ2p1vQEGfyPaN4qfeSEEKLzOlr2t1yEHWhwZNb/NmKubMBb38DzA/fwfx+vwNPDAxcXF/R6Pf7+kv1CCNGVHC/7WzI8ISGBNRszsfSfSpkuCJ2mcmXlJ/jv/JZdjibJfiE6ESnICQCeeOIJ3nvvPfvvLbumrlixgvHjx6PX6/n++++55557GDVqFO7u7tx+++0888wzHXXIArBYLPYRrqSkJLKysggPD+enjEIeWJqODQVfXR1f//1Cevh7oKoqsbGxaJqG0WhEr+iYPCaKoEBTm81bhRBCdD5tZX9YWBiJiYn8nF1CQegkbCj0dS5nsfFTeuBERswglmvNs+d1Oh3Dhw/HZJLsF0KIruJY2d9SXJs+fTrLM/LY3+tqNJ07TloT3fb+SH7FfrK0EVw1JUqyX4hORDZ1EO2qsrISb29vae56hrSMlCUlJVFfX4+ziwvuw68itSkEAMfiHfQtWs27i960T0VXbVZKcrbjG9yHul8X4lG2DV1odPMuenJCFkKcBZL9Z9bh2e/i4kJEZCQrilywmGIAGNPLizf6JONpToGQEVgvmE329h307duXJ598koyMDEaOHCm9g4QQZ41k/5nVVvZHRkaSkZGB2WzGFBjI+Lvn8/q6fDR0+Cs1fDZ7MjVFuZL9QnRSMkNOiC6sZVvyrKwsHnk0jt2+I2g4WIzrq+XjVLCcUSObp6KrqoqlyIwx+32M+ekQEIZn2TaoKYK8NKgtBo+ADn5HQgghjufQ7H/00UcptJSQVx5Ihak/AJEOhbwz7VIcldGo1UWYq20sSvwXKSkpRERE2C/epHeQEEJ0HYdnf8sGexEREdRbNWqG3MBr6w4AOq4IN/DQhYP54M1XJfuF6MSkICdEF6coCsE9+1ASeT0NOl9AI9Yxl+qN3xMZGUlcXBzQ3E9ie/oanhhqoV+QFzpNA1M4FOkgZAS4+XfsGxFCCHHCFEUhLCyMvpHD2Fvbk1r3IHSoGPf/TnSYD3pFhwokvLqI1atXk5OTg6enJ5qmERkZiU6nk95BQgjRxbRkf2RkJAAxMTFU2JzIDbueRpsvjnodT/wlnL2/fsDdH0j2C9HZSUFOiC4ut6SGK1/4iXKdLw6ajYQr+/LBv97EbDaj0+koKSkBIDk5GXNhCclGKz26++AcGg1j5kBdaXMxTqatCyFEl6GqKo8mvMSPjeE0uXvj4aTgv/1bqnenk1oViMViAZqzv7S0FABfX19GjhxJXFwcJSUl0jtICCG6GFVVSUxMJCMjg8jISIZOvp45n2dic3XBoamGN66PYlA3V6alSPYL0RVIQU6ILiwzv5xbFydRrrmi1FfSI+9nxvVJZMchOycZDAYsFgsxMTGkpKSwLzQGx2tnNi9PVRRZpiqEEF2Mqqp89Hs6X1X3RXV2xrGxgkW3juS3L0NIrslvM/ujo6OZOXMmJpMJRVFkqZIQQnQxqqqSlZVFUlIShWYzpYZBfP7NbmwOLrjWmpliKGL8oKsl+4XoQqQgJ0QXpKoq36fu5KGvttOEHsdaC732/8iYqObp6y0jYAaDgYSEBNauXcsFF1zAokWL7Cdis+ysJIQQXYqqqhQUFDDn1Y9IoT+a3hm3mgKm+BfR029C6+xfsICMlJVERI9rlf2yq54QQnQtLdn/6quvkpmZSV1DE7bh11PgFw4a/HVYNx4cM5xuJiPz589nxYoVjB8/nkWLFmE0Gu2rZYQQnY98GxOii1FVlbuefp0HvmguxjXlZcLyl3j0gbux2WzMmDGDxMREjEYjFouFpUuXkpKSwscff2x/joSEBKZNm0ZCQgKqqnbguxFCCHEiVFVl/vwFjJnxDMnKQDRFj1f5Tl6Z0hsntaF19heZ8f5jEdP8N+GzdQlozTkv2S+EEF2LqqosWLCAcePG8dprr7ExaxcFA/9GuV84aCoxTnm8cO1gugcHYTabee2119iwYQOvv/46VquVxMREyX0hOjGZISdEF6JpGi//tJWVDb1Agbrtayn58WWc9ApPPvkkFosFDw8P++5JqqpitVpbPYfFYiE5OZnCwkLZZUkIIbqIQnMRX+7Xow2+CoDajd8SXJvJc7u+Jzc3t1X2U1PMYL8G/J3A2bkRpa4Ui8VBsl8IIboYi8XC6tWryc/PB+9uOFwWR527Ea2hFtuat6gxOVFcPBWTyYTFYqG2thZVVamrq2PXrl2S+0J0cjJDToguQlU1nvk+i/9bkweAd2E61tWLcHbQo9PpqKysBMDPz8/eP2jx4sXo9Xr8/f256aabMJlMGI1GYmNjCQwMlF2WhBCiC6hrtPHkL7lUBAxF01QqVi7BJfsnXJydKS8vB1pn/1sffomzHrp56ugebMLYY4BkvxBCdEFGo5Hhw4fj2mcEATc/h97LSKBq5qZ9T2HN3UJkZCRGoxFVVfnyyy/tjzOZTIwaNUpyX4hOTmbICdEFNDZaeejjVL7Lat4t6bHJ/bnAEMoXPWysW7cOVVVxdXUlNjaWGTNm2EfJUlNT8fDwwMPDg+nTp9t7BsXHx0sfISGE6ORUVWVnzgEe/WEfm3MrcNIrRFZvpMK9gjF33oleryclJYWrrrqqVfbv3LyBCYEOlFn1hIT0QqkvB48AyX4hhOgCVFXFYrFgMBgoLi6m7+Uz8NaNA52OIbrdPOv6NpXda3Drfz1xCQkoioLZbGbDhg04ODig0+no1asXFRUVkvtCdHJSkBOik6urb+Ke175gpcUTPTaMe5bx6fwX+c7VlZiYGD744AN7w9ZDT7ZGo5Ho6GiWLl1KTU0NS5YsYe7cuSiKIrssCSFEJ6eqKnHzn+OrshAaXXxRrPX4Z31NvbWEESNGMG/ePBRFOeJCy2g00m/oBWz8I5MhhkZy86yMd/VDAcl+8f/t3Xd4FOX6xvF7d9M7JJsCBEgQ6b0EUECOHEDRn12OooKiCHbBAoJIi2CnqNgpir0fy1FEqUJoAobeQiCkLIF00nbm9weHPUQ6wm4Svp/r2guymew+O5nckzz7zvsCqOQMw1BiYqKWL1+uouISZdfrobzI1pLFongzXR//85D80huqoEYTte8zRlbb4T/n7Xa7unTpoj/++EPFxcUyTVPh4eHkPlDJ0ZADKrHcQ2Ua9O7vWuUIlp/KdF/eNE1dtEqZBYbi4+NlsVg0ZMgQeXl5HXOytVqtGjx4sJYsWaKDBw9qxYoVzB0BAFXEis2p+iI3TuV+QXLm71fOt89KJWkqjI6T1WpVdna2oqKijp/9996rAXcs0Q8Z++WbblWz/dlkPwBUAQ6HQ8uXL9euvRnKaXaDfCJbyTQN+W36Uf5GqvIefVv+CXcqOCBCOmrEm9Vq1ZAhQ7R06VI5HA75+/u7zhMAKi8ackAllZVfrAHvrdSm9AIFqFhPHpqutJ3rlH3IIj8/P0VGRp5yPoioqCh169ZNSUlJzB0BAFXE2j05Gvr5VpX7BMk4mKacryboiVa56ljLS/us5dob1/GU2d+1W3clJSWpI9kPAFVGeHi4CgwvHeo8WD5hdWSUHtLBH15RZFmGOt5xh+yRURUacUeLiopS9+7d+b0fqEIspmmani4CF468vDyFhoYqNzdXISEhni6n0tpzoEi3vZuk3dlFqhngpZrr5sqyb51Ss4sUExOjq3p0Uv/BDysqOuaU80EcmYeCuSMAeArZf/oWb3Po3vdXq6jUKf+iTNmWvqWgUode7l6i2Bq+iqjfTL43vSVrSPRJH4fsB+BpZP+ZW7R+h+5/f4XybSEKLDuozG9ekE+RQ02bNtX777+vmJiYk3492Q9ULfyUApXMtsx83fjG79qdXaTYmv76YmgXdW/dUL7hsbr11v769vHuGn7RLsVsm3taP8BH5o7gpAwAldt36/fprlkrVVTq1KUXheumiHTVj4nQFdffquKQeKXnObV8b7kUGHHKxyL7AaBqWbAlS0M/36p8W4jqm2l6rvR51bMdUFBQkLp163Zal5+S/UDVwiWrQCWycV+ebns3SQcKS3VxVJBm39lB1pJ8jRw58vCiDf6mrP9+SCrMkvaukor2S0GRni4bAPA3fZiUqlFf/ynTlPq2iNaIy2opJupJZe93yH/V69r8y25t2C99tUNqypxwAFCtfLwiVaO+TpbTMNWlZoFeCPpOn87br+3pBYqw+2jQoEE02YBqiJ9qoJJYtydHt7y9XAcKS9Widqg+uidB70x/SYMGDdKkSZMODz0PipRRu51KvMNk1G4nBZx6lAQAoHJ7Z/FOPfXV4WZc/4S6itzxg4bee8/h7A+wKDhns+qE+apJuKnuHVowLxAAVBOmaerFn7ZoxJd/ymmYCju4RRcf2irrPyfozY1BksXi6RIBnEc05IBKYFXKAfV/J0m5h8rUtm6YPrg7QeUFB7Vl9WJlZqQrKSlJDodDhqTERSUa9O0hJS4qkeHpwgEAZ800TU2bv00Tv98kSRrSvYHuTwjXksWLlJ7+3+wvMmXWaa8CBWhTfpAKTH8PVw0AOBfKnIYe/3y9Xv1tuySp5r7lsq6aq1Urk6SgSN1ya39FRETIZrPpnXfekWHwmz9Q3XDJKuBhv+/Yr7tnr1JRqVMJcTU16cp6CvQyZVn1usa0zlKS3amU2MMr6jkcDiWtWKGMjAPKKV8hh8PBZUsAUAWZpqnJ/9msNxfulCTd26WWHv1HnJ5++mnt3r1bFotFHTp0kD0ySg7dofFT5mvL3mxFOVaR/QBQxR0qdeq+uav12xaHbBapk1eKViV9Kknq0KGDoqKiNHjwYC1ZskQHDhzQypUryX6gGqIhB3jQgi1Zuvf91SopN9S1YYTi0+bpwSHL5Feep8cv3q264b66qXMT+dw4WFarVXa7XQkJCSxnDgBVmGGYGvvvDZqzbLckKcFnr5a8+bq+fz5Xmzdvlo+Pj5o2barBg/+b/ZFRatSuq3LKyX4AqOoOFpZq0OyVWpOaI5WXqnzpO1qZvU3BwcGqWbOmK/ujoqLUrVs3fu8HqjEacoCHzN+UqaEfrFap09TljSM19p91NPTe5dq7d6927tih1oZVl9b3Vbv2reT334UbrFarRo0axXLmAFBFOQ1TT3y+Tl+sSZPFIj35j3r6buoM7d27V9u3b1d5ebm8vb3Vtm1b10gIsh8Aqj7DMJS8M03Dvtmh7Y5CWcuL5fhivIr3bFB8VLBq1o2tsJoq2Q9UfzTkAA/4dfP/mnEhuTsUm/qHYqJGKCEhQcXFxdq7d69eTCrTD5kh+nLcEIUcdQI+8o4ZAKBqKXcaGvbpWn27Ll0yDXXzTdXdPXrLsfx/2V9aWiq73a6HH364wh9fZD8AVF2GYeixCS/p27y6KvcOUlSIr1rnrNTcrO16qquPujfwUpOeLRV1xaAKk7yT/UD1RpsdcCfD0G9/bNGQ9//XjPNe9YGWLl6ozMxM3X333Zo5c6ZatmwpH19f+UfUkz2SkzAAVGWGYWhP2j4Nnb1c365Ll8V0KuTPT7Xv96+PyX4/Pz/Vr1+fP8AAoIozDEPp6elKS0vTFwtW65v8eJV7B8n70AG9fn0DjX5wkC7r2Fxd6vqoVqhNUVkLZf1mqLT4RYkFHIALAiPkgPPIMIz/DTOX9NsXM3Tv6joqlZd6R+bIlr9F83IOKj83R3fcfpuig70U27iNAgICVLt2bfn7+ys7O5s/zACgCjk6+yVp3PgJen+7TUadNrLJqSctc1To87ve2B6o2267TTabTW3btiX7AaAK+2v2T5gwQXPnzlWOb5T8ez0ii7efLAdSpN/f1mPr31N5ebkyM7K1zR4qu9OU0+mU9VCOtHeVVLRf+u+UNQCqLxpywDl25GQcHh6uSZMmuSZi7dL3Jg1dc7gZ18drte7c/Y4Gfluo7EJTdWrX0j/91qlztLd2Zu2V2ewqWSwWJnAFgCriRNl/x4A79dneIBl1GkvOcg3OnaoOttXKCpWig0O1cuVKWa1W7dq1S9dffz3ZDwBVyImy/6677tL8+fO136+Wgns9IouXt8r2/Kn6e39WvtXQypUrZbFY5O3tra+zW6u0WQe1blNDSlsj1WkvBUR4+qUBcAMacsA5ZBiGEhMTlZSUpGbNmik5OVmZmZn6JTlNMwu2ybB4qYd1rV4I/VyvrSnQngMlksWi+pFB6t4gUEEqkmHsV6pZpDfffFMxMTFM4AoAldyJsn/Z8hX6qSBWRRGNZTrLZFn6jkr8V+hAHYtWpEklXsHy9fVVYWGhMjIyVFhYSPYDQBVxouxfvny58vPzleZdS8F9bpXFalPRlt9V8Mt0XXP7bdq6davS0tJUWFgowzAUW7eeHhg5QVYvr8Mj4wIiJM4BwAWBn3RIklJSUjRo0CDFxcXJ399fDRo00DPPPKPS0tIK261fv15du3aVn5+fYmNj9fzzz3uo4srJ4XAoKSlJGRkZSk5OVtOmTeVbt6X21O8rw2KVT9ZGlW5cpIJrZmtecSv5BwSoY8eOmjH7MzXrNUCFCtSKfaZmzPlM06ZN8/TLAQCchuNlf1iNcOU2v0F7LXbJKFetnd/ry+ljVbtObdlsVtWuXVufffaZ7rrrLgUFBclqterzzz8n+wGgijhe9teoUUPNmjXT4nTJ2b6/LFabfPatVf5PU+Tn7aXIyEjNnj27QvZ///33evrpp2VIhy9TpRkHXDD4aYckafPmzTIMQ2+++aY2bNigV155RW+88Yaeeuop1zZ5eXnq1auX6tWrp9WrV+uFF17Q2LFj9dZbb3mw8srFbrcrISFB0dHRSkhIUIF/lPY1+D8ZFqtirQd1kWOxGre7VPb4FurarbuaNGmibt26KaZWbQVdOVbzAq7RK6ussnl5Kzk5WQ6Hw9MvCQBwCn/Nfv+AQGXE9VGaxS6bDNVL/UlXtq6rlg1q6dI4f0WH+euSOD/VDvPVpEmT9K9//Uv+/v7y9ib7AaCq+Gv2BwYGSpJ2+DRQeu3uksWqxrYsXWU/IH8/X/n5+WnlypXy8vIi+wFI4pJV/FefPn3Up08f18fx8fHasmWLZsyYoRdffFGSNHfuXJWWluq9996Tj4+PmjVrprVr1+rll1/W4MGDPVV6pWK1WjVq1ChlZmbq981pmvVDqkybt4LyU/XBk1cpwNlG4XUbybE/W6tWrVJRUZFWrVolh8OhqKgojUx8RQUKUHJysjp16sQcQgBQBRyd/fvSMzRgxnwVhF8si+HU5GsaqknofWrcuLGy9zu0Is2p+l4WpeQ7FVZkKirES1OmTFFgYCDZDwBViCv7M9KVnbpFj4xOVFrNdjpUXkeS1K95iB68rJXuvfdz+fv7q7y8XM2bNz+82JvVSvYDoCGHE8vNzVXNmjVdHy9btkzdunWTj4+P677evXvrueee08GDB1WjRo1jHqOkpEQlJSWuj/Py8s5v0ZXE8299oG/z42V4+cmZvlmR+35SnR25su1bI6W2l/3SYUpISHBN/HrkBHzkHTPXyqwMWQdQBV2o2f/WW29r9qYyGfU7SYZTPXx3atP8tZq9YoUSEhI0cuRIpcTepJ/WLFGjtpfKHnl4FVWyH0B1cEFmv2lo01t3S2mrFBh7gw5FdZcktffeqw0f/1vv7eyojh07SpKaN2+uxMREV8aT/QBoyOG4tm/frunTp7tGx0lSRkaG4uLiKmwXFRXl+tzxGnKTJk3SuHHjzm+xlczqrXv077z6cnr7ycjaoaA1HygmPkLlu5bJWpaj0h1L5d3mDo0aNeq4J2Cr1erarwBQFV2I2Z+VlaUvd9tk1G8n0zAUse07PTLuAT311FPKyMjQokWLdPfdd2vU6NFkP4Bq6ULM/uzULfLP3qC5gTdrnd+VkqS724Zp+ZwZysjI0OLFizVr1iwNGTLkuE03sh+4sNGGr+ZGjBghi8Vy0tvmzZsrfE1aWpr69Omjm266Sffcc8/fev6RI0cqNzfXdduzZ8/ferzKbs+BIj301XaVeweonrFXT5qz1KBujBq36yqvuM7alp6nT5ftVOKUw/PuRUVF8W4YgGrnQst+0zT15gqHciNbyzQNlSx6W1e1jFHTpk3VsWNH5efnKzU11TXnKtkPoDq60LJfkoKj4/Wieau++28zrpPXLo24PqFC9r/zzjuMgANwXIyQq+aGDx+ugQMHnnSb+Ph41//37dunHj16qEuXLscs1hAdHa3MzMwK9x35ODo6+riP7evrK19f37OovOrJyitW/3eSlJ5brAa+Ofog/HNFtYzXzZeMU3i9JnJkZWr81F+1ZW+2otJXuOaNA4Dq5kLKfkl68actmvl7qiSpz/4PtTOoUEOGDJGXl5fuueceLV68WAcOHNDKlSvJfgDV1oWW/eXlTl05dq52BnWVTEORKfP0ypSRZD+A00ZDrpqz2+2nPUFoWlqaevTooXbt2mnmzJnHvIvTuXNnjRo1SmVlZfL29pYkzZs3T40aNTru5arVjWEYJ5zjIbeoTLe/t0KpB4pUt6a/5rbaouj9NaQ67WWv10SyWmWPjFKjdl2VU15x3jgAQOV1suyXpNd+26bXFuyQJA33+lwJwcu0pNu/XH94RUVFqVu3bsfMGQoAqLyOm/2GIRXtlwIiVGaYGvLeYu20xMg0DJUteVc9ujYi+wGcEYtpmqani4DnpaWl6bLLLlO9evU0e/Zs2Ww21+eOjH7Lzc1Vo0aN1KtXLz355JNKTk7WXXfdpVdeeeW0V1nNy8tTaGiocnNzFRIScl5ey/lgGIYSExNdJ9VRo0a5Ts6HSp267d0krd59UF5lhbouZJeeGz1c1kMHpIAI6ag/4E71hx0AVEfVMfsl6YNlKRr9zQZJ0s1eSzW58VYV1miqwD5jZLV5VXgcsh/AhaZaZb8kLX5R2rtKZbXa6cpforXNGSGZhurs+UWXxPopMTFRXl5kP4DTxwg5SDo80m379u3avn276tSpU+FzR3q2oaGh+vnnn3X//ferXbt2ioiI0JgxY067GVeVORwOJSUlKSMjQ0lJSa5h52VOQ/d/uEardx+U1VmioNWztSnIIsf+gccdls7ErQBQdZwo+yXp23X79PR/m3H+uxZpU2Gysgc97xoVfTSyHwCqjuNmf6BF2rtKRn6mnlzmfbgZZzhVZ88vemPUYDVt2pQFGwCcMRpykCQNHDjwlHPNSVLLli21ePHi819QJWO325WQkFBh2LlhmHry8/X6dXOWfGwWXe6zS3uCLAxLB4Bq4njZL0m/bc7SsE/WypTU2JYlW+EGdUzopPDjNOMAAFXLibLfqN1eI5O89WXexbLIVJ2989Wrqf24zTgAOB1csgq3qqpD16WKw84tFosSv9+kd5bskkWmLtr1pS5tEqvB9w5h9TwA+Ivqkv1Wq1Urdh3Q7e8mqaTcUIBjg26sXaihQ8l+APir6pT9hmFq1Ffr9dHKvZJpqKv3Tj1//81kP4C/hfQATtORYedWq1UzFu7QO0t2SZL+uW+mhvl8ppC1b0umwUkZAKqRo7M/OS1Xg2atVEm5obLdf2jr+0/rtddelWGQ/QBQnRyd/aZpasy3yfpo5V6ZpqEDP0zRDzPGk/0A/jYSBDhDX6zeq+f/s0WSdH+HYF1r/KQIf0ONgvJlFGR5uDoAwPmQsr9QA95bofySctnLHcr4fIKcZaXKz8+Xw+HwdHkAgPPANE2N+/dGfbA8VTJNZX8/RfnJv5L9AM4JGnLAcRiGoczMTBmGUeH+xdscevKL9ZKkuy+tr5T5H2nZnnJlFphamW4q+5DFE+UCAM6BE2W/I79Ed7yXpOzCUjUOLNAzOaOV2N0iq6SgoCDmDQWAKuxE2W+apib9uEmzfk+RTFO5v7yuwg2/SiL7AZwbLOoA/IXhLNeUxNH6bcWf6pjQ6fBS51arNu7L05APVqvcMBWSs015ixdp564Uvb/GWyHrSxTXrINGNWvu6fIBAGehvLxco0aNUnJysjp1+l/2F5SU686ZK5R64JB8S3P1tG26GtQoVIcwb3l5eSmz+Z2KiYnxdPkAgLNwouyXpGm/bNVbiw5PUWNZ/Yny1/0sSbLZbLrzTrIfwN9HQw44mmGo8D/jdemBj+UXZNGPSYeXPnf6hujOWStUWOKUM32z9s+fqtWNGqpdu3ayWCyKj4/Xyy+/LC8vfqQAoKoxDEOjRo3SrFmzXDnucDhUI9yuoR+sVvK+PJnF+Sr48TmlXlqslrV9VFxm1ZXtY3TxY8OZQwgAqqAj2T971kxFBdu0Qoayd2+SvV4Tvb1kl16Zv12SVL7iY3ntWKjYGr5KzytXrdq1NWzYMLIfwN9G9wA4WtF+BR3cpDphPpJZqux68fIOCNHt76xQZl6JfIsPKH/B68o9mK0dO6zq2rWr3n33XVZYAoAqzOFwKDk5WV5eXiorK1NcXJxq1KipJ79Yr8Xb9stilKls/jTl7N2uUfPDVWdgM3W4KFDhDS6VNSTa0+UDAM6Cw+HQhuQ/9Wh7Q23sJapfJ0URS5/Rh0t6K3FDLUlS+R9fKSfpS427PFidYmtoS2Gw9sb9i9FxAM4JOgjAUQz/miqo0URRDVrqYFADLduwS30nfaOtmQWKDPbVP323qclF9eXr66uDBw/qo48+ci2L/td5JwAAVUN4eLiaN2+uVq1aqVGjRtq5c6dumDBHX/2RJpvVoq6WzWoc6S8/Xx9ZS3J1z4ep2tliuNR1uMSbMQBQJYWHh6tjs3h1rGVRnWCbankd1NfpNTVqw+FmW2MzVV5b5yvC31SLmiWy+xv6v7a19NTD9/BGPIBzghFygA4PWU9PT9fUqVO1cUOyEpo30PLkIu2I6KISI1gBPlZ1KVur7cmr1KFJPe1NTZGzYL+c5WWaMmWKNm3apISEhArzTgAAKrejsz85OVnx8fHauXOndvvGqbDs8Mi3Ll67tH/tItWrG6u+QRvVJKRQazIdemjkeHW/rAe5DwBVzNHZv2b1RgUFeal9LZsW5nfQi8VXy5RFTbyyVLLscznLy3XwkEVLU0pktVq07GCmUqe9o1GjR5P9AP42GnK44JWXl+vJJ5/UZ599puzsbIWGhso0Tfm06K0SS0NZZOrJS8L12bRfdWXwJrW3bdBd/QK0N8NbfziK9Pa33ygoOERJSUlyOByKiory9EsCAJzCibI/8OLOKvRrK0m6rVWo1rz/vdatW6cUW4lu7Wmqhrep1nanPl62Ucv9/Ml9AKhC/pr9ISEhSg0KVB1LB6U0vlWGrOoZH6C0rz/T5k2bXFfBTP7dpnfXFcjp61DbdvzOD+DcoCGHC5phGHrqqac0Y8YMHTp06PCdpqlOreL0rtlQktTFK0WfTpshf2eB2keZqhNiVVRgsWxhXvLytuiLFEOBNWooISGB5c8BoAo4XvYbhqFsM0ibfVtKFosutmZqzQevKz8/X2VlZdpfKq3YZ6iN3aKV6VJmfrmubN6c3AeAKsIwDI16aqS+mD1De7MPyfzvfXVadtGuhjfLlFX1rAe075sZKsjPV2lpqSwWi2w2m0xJOWU+CvA21ZzsB3CO0JDDBc3hcGjNmjVyOp2u+yLqNdQcs5ck6a4a67R12QJlZGSrRlioMr3rSnm7dcgWLGdQqHbnOtX7uhs0+N57WdgBAKqI42W/JShCWY2vl6zeCshNkXPb18p0ZCkmJkZxcXHauXOn3t0aJnuaVQdLrBp453VKTEwk9wGginBkZaqx4zu93tuq3/f46NnFpbKGxcjR9GbJ5iP/vFR5bftaaVkZiomJUXx8vDZs2CBfX181adJEISEhatmyJdkP4JyhIYcLlmEYKi8vl2EY8vLykmma8g6Llno9qTJ56/LAXRrZ0aZnD3XRyk0fKScnR4/vtalueA351aylt6c+p16BEbJH0ogDgKrieNnv5R+siOuflvxC5FPk0HVRB7Rsi1MZGRkKCQlReHi4iouLVbt2bU2ePFl2u503YQCgCjEMQ0ZehloE58lSalHnWG/FxkZI/zdW8g2Sb2GGbojcr983l7myPyIiQg0aNFBkZKRmz54tLy8v2e12sh/AOUNDDhckwzCUmJioRYsWac+ePQoMDFS5xUs1bhorp3+oLDl7dZFfmmzdJmhwY4eWLF2qAwcOqKCgQGagXR0SOsse14wTMgBUIcfNfqep8OufVlmN2tKhHPXy26777hmqtSuXKyYmRsHBwWrRooWsVqsSEhLUvHlzsh8AqhDDMJQ4caJid32kbmGH5PS16uvUIHn930Q5g8Kl/Ez1Dtypoffcpz9OkP0xMTFkP4BzjoYcLkgOh0NJSUk6cOCAysrKVO40FHTlQ3IGRclWmq+QPz/R0r0BcuzPVlRUlLp166akpCR16NBBgwcPZmQEAFRBx2R/ebmCegxWWXgDWZylCl3/sVICTVmtVnXq1ElJSUlKSEjQyJEjlZ2dzcgIAKiCHA6HtqxZou4xOSook/YV+urD2k/KGRQpW0m+QtbO1c4a/mQ/ALejIYcLkt1uV8eOHfXBBx8oNzdXfl1uk7V2C9nkVN+QvdpZI8C1SIPVatWoUaPkcDg4IQNAFfbX7PdpdZWsDbvKIlOXB6QqI9BUQkKCoqKijsl9VtMDgKrJbrfr4jaXaPXaZF0cIk0KeFjO0AbyVbmuDE3Vthr+ZD8Aj7CYpml6ughcOPLy8hQaGqrc3FyFhIS4/fkNw3CdZNPT09WlSxcdrNFENfs8KEma1DdO/S5pTPMNAM6hypj92f6xirh2pCRp2GV19ECvFmQ/AJxDlS37L+nSWc7WN8jWpKcszlK9dUsLXd46nuwH4DGMkMMF48jcQUeGod91113yjrlYNboOkSSF7F6kmzr35t0wAKhGjpv99vqq2e3wGzGB+1brvp5kPwBUJ8fLfmvra6QmPWUaToVv/lo9Wl5N9gPwKN4GwAXjyNxB6enpWrRokRwFpfLqPlQWm7ecKatUO/dPZWdne7pMAMA59NfsP1hUJp/LH5LVx1/OfRtUd38S2Q8A1cxfs//fG7JlNOkjSSpf/oGinA6yH4DH0ZDDBcNut6tDhw4qKCjQ7r37dPfslSq2+CrULFCzwjXq0rmz7Ha7p8sEAJxDFbM/TYNmLleRxU9BZpGaHVyuLp07kf0AUM0cnf27SgL13K+pkqSm5m61Di5UZ37vB1AJMIcc3MpTc0kcmUOivLxcAwYO1J5al6kkprVC/Gz69wOXys9ZyNwRAHCeVJrsj+mmklptFeRr01dDuyjEcojsB4DzxKPZn5UpIz9L/R57XqkX3yjZfHRlk3BNv62D9u/fT/YDqBSYQw7V3tFzSHTs2FE1O92g7WWxssjUa7e2Vb2IIElBni4TAHAOnSz7p9/SRg2jQyS5f5JxAMD5YxiGEidOVP09n6luTIRymtwnyUe1rHl6+ZbestlszBkHoNLgbQFUe5mZmVq0aJHS09P1nz9StKo8VpL09FVN1fXiSA9XBwA4H47O/h/X7nZl/6i+TdSjMX+MAUB1lJmZqfXLf1WEV5FGlfRXngLUsKa3fhx9vfx8GIsCoHKhIYdqzTAMvfXWW9q9e7d2789XWr3eMkypoW2/BnSu5+nyAADnQYXsP3BI+/6b/Rfb9uvOLvU9XR4A4Dw4kv3rdmRogvVe7bXEKKjsgNoVrVKwn7enywOAY9CQQ7XmcDi0cuVK+QYEyb/ng7L4Bak8a4eMlR9p//79ni4PAHAeuLI/MET+/3xYFt9AlWdslbHyQ7IfAKoph8OhFStXymz/L+0LbiaVHVL6189r9dLf5HA4PF0eAByDhhxc/u///k9169aVn5+fYmJidPvtt2vfvn0Vtlm/fr26du0qPz8/xcbG6vnnn/dQtafHbrcrISFBXh3/JZs9XiopVMCaD9X90i6srAQA1ZTdblfHjgmydLpdtpp1pEO5ClgzV90uvYTsB4Bqym63K6DN1SqL7SCZhrxWfqAIr1J17dqV7AdQKXEhPVx69Oihp556SjExMUpLS9Njjz2mG2+8Ub///rukwysl9erVSz179tQbb7yhP//8U3fddZfCwsI0ePBgD1d/fFarVRf3GaCDX/wpi0V6pV8rJTzxlaKiolhZCQCqKavVKnu3W5T3ny3ytln06h0d1HLEv8l+AKjGft6YqVXldSQdniv6ykdmSBLZD6DSoiEHl0cffdT1/3r16mnEiBG69tprVVZWJm9vb82dO1elpaV677335OPjo2bNmmnt2rV6+eWXK21DLjktV09/s0GSNLhzLf1fx4ackAGgmlu01aEXftoiSRrWPVb/bNOA7AeAamz93hw98slamaZ0e6e66tswUJGRkWQ/gEqNhMJxHThwQHPnzlWXLl3k7X14EtRly5apW7du8vHxcW3Xu3dvbdmyRQcPHjzu45SUlCgvL6/CzR0Mw9DW3Wka8sFqlZYbirXlaslbTysxMVGGYbilBgC4UHky+//YmqoHP/rj8CIOXvv13bSRZD8AuIGnsn/vgULdNXOFissMdY8Pkde6r3T33XeT/QAqPRpyqODJJ59UYGCgwsPDlZqaqm+++cb1uYyMDEVFRVXY/sjHGRkZx328SZMmKTQ01HWLjY09f8X/l2EYmjgxUdc//432Hjyk2qE+Cvrzc2VmZCgpKYlJXQHgPPNU9o+b+Kxuee035R4qU5OoAHmt+5LsBwA38UT2FxSX6v9e/EH7C8tU25KtlyxTFL/3M2VmpJP9ACo9GnLV3IgRI2SxWE5627x5s2v7xx9/XH/88Yd+/vln2Ww23XHHHTJN86yff+TIkcrNzXXd9uzZcy5e1kk5HA59t6tcBcH1ZDHK9WzfeHXp0EbR0dFKSEhgUlcAOM88kf1ZWVn6el+Aiv0jZCsv0qS+8ercsT3ZDwBu4u7sN01TD89dpQNGgGylBXrq0BSFlKQrobaXGtUJJ/sBVHrMIVfNDR8+XAMHDjzpNvHx8a7/R0REKCIiQhdffLGaNGmi2NhYLV++XJ07d1Z0dLQyMzMrfO2Rj6Ojo4/72L6+vvL19f17L+IEDMOQw+GQ3W6vMD/E9jyrHFEdJEkdLDt0SdO+6tp81HG3BQCce57I/l92FSs3rJFkGupm26bm8dep5SiyHwDcxd3Z/+qv2zV/20FZZajunp/ldXENeYXV0EXNO+ilIXfIHsliDgAqNxKqmrPb7WrcuPFJb0fPCXe0I3MulJSUSJI6d+6sRYsWqayszLXNvHnz1KhRI9WoUeP8v5i/1JaYmKhBgwZVmB/CkV+iRz5dJ1MWxZkZKkyer0mTJklihSUAqOpOlP1/7s3V+O82SZJaKUVZyUvJfgCoJo6X/T9tyNBL87ZKkiZc20Id4yM0fa2vpuy8SOo6XFHRMWQ/gEqPlIIkKSkpSa+++qrWrl2r3bt369dff9Utt9yiBg0aqHPnzpKkW2+9VT4+Pho0aJA2bNigTz75RFOnTtWwYcPcXq/D4dCKpOUqPbBXK5KWy+FwqLzcqfvfXyFHfoniw/3kv/HfyszMZP4IAKgmHA6Hli9frj179ihp+TJl796kgwWHdO+cFSp1GurWIEzlG34i+wGgGjk6+5ctW6Yflq7VsE/WSpIGdK6nnnH+2rBhgzIys/TrimQ59md7tmAAOE1csgpJUkBAgL788ks988wzKiwsVExMjPr06aPRo0e7hp6Hhobq559/1v3336927dopIiJCY8aM0eDBg91erz0iXMM6mAo8mKPCGrVUIyxU142aoT8tcfKSU6/1b6fPi9spKamc+SMAoJoIDw9XcXGxMjPS9XDrUgXOH6Fbd/bSPiNewZYSTflXW72WkaCkpCSyHwCqiSPZn56errwSQ498sUnlfmEKLNgr67o1Cu87UgkJZD+AqoeGHCRJLVq00K+//nrK7Vq2bKnFixe7oaLjc80f4W/qsgaBKsutLa/QAD0w5lmtNzvIYpFq7vpFYZYOGsXcQQBQLRzJfsMw5Ofnpyb1IhXnk6mXNnfUWq94WYwyhW3+XCUFncl+AKgm/pr94fZI5ba+TT5+YXLmZsiS9J6WhIfI4bib7AdQJZFWqDIMw9DEiRN12223aeIrb8qs014+YbW1J7Clfi5vJovVquLNC5W96nu9/fbbkpg7CACquqOz/80331RCQoK8Q6P1fVEzzbTdIEmy/PGFsrasJvsBoJo4Xvb7dPyXfGKbyyw9pOJ5U1WU49Ce1N368K0pkmmQ/QCqHEbIocrIzMzU3LlzlZGRoZ07d2rQoAWKaTdQYz5NUbn3fnkfypaSv1FoaKhWrFghh8OhqKgoT5cNAPgb/pr9CxYs0A23DtSN76yWIZvqGRkySnarKCiI7AeAauKv2T/iza+UW7RHklQrdZ4uubaXVq5IUr9ae9X+4Ccq/I+vgq8YK9GQA1CFkFioUkzTPDx/UGampk6brjdX52vhtv3y87aqh89O+VhNFRYWqmPHjswfAQDVxNHZP236dD27YJ8OyUfx4X66xG+vsjIzVVBQQPYDQDVyJPv3O/01eV6KJOnBf1ykL6ePVWBgoMpy09UkuEB1wnwUdHCTVLTfswUDwBmiIYcqIzw8XF26dFFQUJBCQkK0ameWXvz58HLnw7rHat+mVQoODlbdunV1zz33MGQdAKo4wzBkGIYuv/xyBQcHKyQkRAuzfLV0e7b8vW16tm8DrV+zUkFBQWQ/AFQTFbI/IlphfR+T02JT5/oherTnxbJarVq9erVKvUKUUm5XzbqNZYntIAVEeLp0ADgjXLKKKqG8vFxXXHGF/vzzTwUFBalx81ZKb3i1nIapK1tEa1CPJspc9r/VlbhcCQCqNsMwNGHCBH344YcyTVONGzeWV3RD7Y5OkCSNu6aZOjauXWFlPbIfAKq2o7PfMKXwqx5TSbBdwZYSvXZbB1mtFtntdlf2743rKJ8bB0tBkVyuCqDKoSGHKmHz5s1KTk5WYWGhJCmyz/3aklaumFA/TbqupWw2G6srAUA14nA4tGTJEmVkZMhisah2XEMVtuons9Cpa1rX0k3t6shisZD9AFCNHJ39/h1vkl+NePnaLPr4vn+oZpCfJMlqtZL9AKoFGnKoEho3bqzmzZsrOTlZ9btep8Vp5bJYpFf6tVZogLekwydnRkcAQPVgt9t16aWXKjU1VaYks/0tyip0ql54gCZe21wWi0US2Q8A1cmR7N9VGqzydtdJkiZd30LNaodV2I7sB1AdWEzTND1dBC4ceXl5Cg0NVW5urkJCQs7oa8vLy7VodbIe+TFTecXlur9HAz3eu/F5qhQAcK6cbfYbhqHMzEx99adDz/+6R942i74Y2kUt64Sdv2IBAOfE2Wb/9qx8XfPqEhWWGhrQuZ7GXdP8PFYJAJ7D+F5UGRarTW+sPaS84nK1ig3TIz0v9nRJAIDzyGq1KtcSqKmL0iRJT/RuTDMOAKoxwzD10EdrVVhqqEP9GhrVt6mnSwKA84aGHKqMNxbu0IpdBxToY9PUfq3lbePwBYDqrKi0XA98+IdKyg1d1siuQZfGebokAMB5ZLVaNO6aZmpWK0Sv3dpWPl78vg+g+mIOOVQJf6Qe1MvztkqSxl3TXPUjAj1cEQDgfBv/743anlWgyGBfvXhTK1mtFk+XBAA4zzrUr6nvHrzUNVcoAFRXvOWAKmH6r9vlNExd1TJGN7St7elyAADnmWmaahwdLF8vq6b0a62IIF9PlwQAcBOacQAuBIyQQ5Xw6q1tNG3+dg29rAEnaAC4AFgsFg28JE59W9aSPZhmHAAAAKoXGnKoEgJ8vDTiClZUBYALDc04AAAAVEdcsgoAAAAAAAC4EQ05AAAAAAAAwI1oyAEAAAAAAABuREMOAAAAAAAAcCMacgAAAAAAAIAb0ZADAAAAAAAA3MjL0wXgwmKapiQpLy/Pw5UAgPsFBwfLYrF4ugy3I/sBXMjIfrIfwIXndLKfhhzcKj8/X5IUGxvr4UoAwP1yc3MVEhLi6TLcjuwHcCEj+8l+ABee08l+i3nkrQvADQzD0L59+87oncK8vDzFxsZqz549F+QvM6eDfXRq7KNTYx+d2t/dRxfqKAmy//xgH50a++jU2EenRvafHbL//GAfnRr76NTYRyd3LvYPI+RQ6VitVtWpU+esvjYkJISwOAX20amxj06NfXRq7KMzQ/afX+yjU2MfnRr76NTYR2eG7D+/2Eenxj46NfbRyZ3v/cOiDgAAAAAAAIAb0ZADAAAAAAAA3IiGHCo9X19fPfPMM/L19fV0KZUW++jU2Eenxj46NfaR+7CvT419dGrso1NjH50a+8h92Nenxj46NfbRqbGPTs5d+4dFHQAAAAAAAAA3YoQcAAAAAAAA4EY05AAAAAAAAAA3oiEHAAAAAAAAuBENOQAAAAAAAMCNaMihUktMTFSXLl0UEBCgsLCw426Tmpqqvn37KiAgQJGRkXr88cdVXl7u3kIrkfr168tisVS4TZ482dNledRrr72m+vXry8/PTwkJCVqxYoWnS6o0xo4de8zx0rhxY0+X5VGLFi3S1VdfrVq1aslisejrr7+u8HnTNDVmzBjFxMTI399fPXv21LZt2zxTbDVF9p85sv9YZP+Jkf3HIvs9i9w/O2T/scj+EyP7j+Xp7Kchh0qttLRUN910k4YOHXrczzudTvXt21elpaX6/fffNXv2bM2aNUtjxoxxc6WVy/jx45Wenu66Pfjgg54uyWM++eQTDRs2TM8884zWrFmjVq1aqXfv3srKyvJ0aZVGs2bNKhwvS5Ys8XRJHlVYWKhWrVrptddeO+7nn3/+eU2bNk1vvPGGkpKSFBgYqN69e6u4uNjNlVZfZP/ZIfv/h+w/NbK/IrLfs8j9s0f2/w/Zf2pkf0Uez34TqAJmzpxphoaGHnP/Dz/8YFqtVjMjI8N134wZM8yQkBCzpKTEjRVWHvXq1TNfeeUVT5dRaXTs2NG8//77XR87nU6zVq1a5qRJkzxYVeXxzDPPmK1atfJ0GZWWJPOrr75yfWwYhhkdHW2+8MILrvtycnJMX19f86OPPvJAhdUb2X/6yP6KyP6TI/tPjuz3HHL/zJD9FZH9J0f2n5wnsp8RcqjSli1bphYtWigqKsp1X+/evZWXl6cNGzZ4sDLPmjx5ssLDw9WmTRu98MILF+xw/tLSUq1evVo9e/Z03We1WtWzZ08tW7bMg5VVLtu2bVOtWrUUHx+v/v37KzU11dMlVVq7du1SRkZGhWMqNDRUCQkJHFNuRPYfH9l/GNl/esj+00f2ex65f2Jk/2Fk/+kh+0+fO7Lf65w8CuAhGRkZFU7MklwfZ2RkeKIkj3vooYfUtm1b1axZU7///rtGjhyp9PR0vfzyy54uze32798vp9N53GNk8+bNHqqqcklISNCsWbPUqFEjpaena9y4ceratauSk5MVHBzs6fIqnSO5crxj6kLNHE8g+49F9v8P2X9qZP+ZIfs9j9w/PrL/f8j+UyP7z4w7sp8RcnC7ESNGHDOZ5F9vhGZFZ7LPhg0bpssuu0wtW7bUkCFD9NJLL2n69OkqKSnx8KtAZXTFFVfopptuUsuWLdW7d2/98MMPysnJ0aeffurp0lDNkP1njuzH+UL2wx3I/bND9uN8IfsrH0bIwe2GDx+ugQMHnnSb+Pj403qs6OjoY1bOyczMdH2uuvg7+ywhIUHl5eVKSUlRo0aNzkN1lVdERIRsNpvrmDgiMzOzWh0f51JYWJguvvhibd++3dOlVEpHjpvMzEzFxMS47s/MzFTr1q09VFXVQPafObL/7JD9Z47sPzmy/+yQ+2eH7D87ZP+ZI/tPzh3ZT0MObme322W328/JY3Xu3FmJiYnKyspSZGSkJGnevHkKCQlR06ZNz8lzVAZ/Z5+tXbtWVqvVtX8uJD4+PmrXrp3mz5+va6+9VpJkGIbmz5+vBx54wLPFVVIFBQXasWOHbr/9dk+XUinFxcUpOjpa8+fPd52I8/LylJSUdMKV4XAY2X/myP6zQ/afObL/5Mj+s0Punx2y/+yQ/WeO7D85d2Q/DTlUaqmpqTpw4IBSU1PldDq1du1aSdJFF12koKAg9erVS02bNtXtt9+u559/XhkZGRo9erTuv/9++fr6erZ4D1i2bJmSkpLUo0cPBQcHa9myZXr00Ud12223qUaNGp4uzyOGDRumAQMGqH379urYsaOmTJmiwsJC3XnnnZ4urVJ47LHHdPXVV6tevXrat2+fnnnmGdlsNt1yyy2eLs1jCgoKKrxTuGvXLq1du1Y1a9ZU3bp19cgjj2jixIlq2LCh4uLi9PTTT6tWrVquX/7w95H9Z4bsPxbZf3Jk/7HIfs8i988c2X8ssv/kyP5jeTz7z8larcB5MmDAAFPSMbfffvvNtU1KSop5xRVXmP7+/mZERIQ5fPhws6yszHNFe9Dq1avNhIQEMzQ01PTz8zObNGliPvvss2ZxcbGnS/Oo6dOnm3Xr1jV9fHzMjh07msuXL/d0SZVGv379zJiYGNPHx8esXbu22a9fP3P79u2eLsujfvvtt+PmzoABA0zTPLwE+tNPP21GRUWZvr6+5uWXX25u2bLFs0VXM2T/mSH7j4/sPzGy/1hkv2eR+2eO7D8+sv/EyP5jeTr7LaZpmuemtQcAAAAAAADgVFhlFQAAAAAAAHAjGnIAAAAAAACAG9GQAwAAAAAAANyIhhwAAAAAAADgRjTkAAAAAAAAADeiIQcAAAAAAAC4EQ05AAAAAAAAwI1oyAEAAAAAAABuREMOAAAAAAAAcCMacgAAAAAAAIAb0ZADAAAAAAAA3IiGHAAAAAAAAOBGNOQAAAAAAAAAN6IhBwAAAAAAALgRDTkAAAAAAADAjWjIAQAAAAAAAG5EQw4AAAAAAABwIxpyAAAAAAAAgBvRkAMAAAAAAADciIYcAAAAAAAA4EY05AAAAAAAAAA3oiEHAAAAAAAAuBENOQAAAAAAAMCNaMgBAAAAAAAAbkRDDgAAAAAAAHAjGnIAAAAAAACAG9GQAwAAAAAAANyIhhwAAAAAAADgRjTkAAAAAAAAADeiIQcAAAAAAAC4EQ05AAAAAAAAwI1oyAEAAAAAAABuREMOAAAAAAAAcCMacgAAAAAAAIAb0ZADAAAAAAAA3IiGHAAAAAAAAOBGNOQAAAAAAAAAN6IhBwAAAAAAALgRDTkAAAAAAADAjWjIAQAAAAAAAG5EQw4AAAAAAABwIxpyAAAAAAAAgBvRkAMAAAAAAADciIYcAAAAAAAA4EY05AAAAAAAAAA3oiEHAAAAAAAAuBENOQAAAAAAAMCNaMgBAAAAAAAAbkRDDgAAAAAAAHAjGnIAAAAAAACAG9GQAwAAAAAAANyIhhwAAAAAAADgRjTkAAAAUKmkp6drxIgR6tGjh4KDg2WxWLRgwQJPlwUAAHDO0JADAABApbJlyxY999xzSktLU4sWLTxdDgAAwDlHQw4AAACVSrt27ZSdna2tW7dq2LBhni4HAADgnKMhBwAAgPPu0KFDaty4sRo3bqxDhw657j9w4IBiYmLUpUsXOZ1OSVJwcLBq1qzpqVIBAADOOxpyAAAAOO/8/f01e/Zsbd++XaNGjXLdf//99ys3N1ezZs2SzWbzYIUAAADu4+XpAgAAAHBhSEhI0BNPPKHnnntO1113nTIzM/Xxxx9rypQpuvjiiz1dHgAAgNvQkAMAAIDbjB07Vt99950GDBiggoICde/eXQ899JCnywIAAHArLlkFAACA2/j4+Oi9997Trl27lJ+fr5kzZ8pisXi6LAAAALeiIQcAAAC3+umnnyRJxcXF2rZtm4erAQAAcD8acgAAAHCb9evXa/z48brzzjvVpk0b3X333crNzfV0WQAAAG5FQw4AAABuUVZWpoEDB6pWrVqaOnWqZs2apczMTD366KOeLg0AAMCtWNQBAAAAbjFx4kStXbtW8+fPV3BwsFq2bKkxY8Zo9OjRuvHGG3XllVdW2FaSNmzYIEl6//33tWTJEknS6NGj3V88AADAOWQxTdP0dBEAAACo3tasWaOEhAQNHTpU06ZNc93vdDrVuXNnpaWlacOGDQoLC5Okky70wK+vAACgqqMhBwAAAAAAALgRc8gBAAAAAAAAbkRDDgAAAAAAAHAjGnIAAAAAAACAG9GQAwAAAAAAANyIhhwAAAAAAADgRjTkAAAAAAAAADeiIQcAAAAAAAC4EQ05AAAAAAAAwI1oyAEAAAAAAABuREMOAAAAAAAAcCMacgAAAAAAAIAb0ZADAAAAAAAA3IiGHAAAAAAAAOBGNOQAAAAAAAAAN6IhBwAAAAAAALgRDTkAAAAAAADAjWjIAQAAAAAAAG5EQw4AAAAAAABwIxpyAAAAAAAAgBvRkAMAAAAAAADciIYcAAAAAAAA4EY05AAAAAAAAAA3oiEHAAAAAAAAuBENOQAAAAAAAMCNaMgBAAAAAAAAbkRDDgAAAAAAAHAjGnIAAAAAAACAG9GQAwAAAAAAANyIhhwAAAAAAADgRjTkAAAAAAAAADeiIQcAAAAAAAC4EQ05AAAAAAAAwI1oyAEAAAAAAABuREMOAAAAAAAAcCMacgAAAAAAAIAb0ZADAAAAAAAA3IiGHAAAAAAAAOBGNOQAAAAAAAAAN6IhBwAAAAAAALiRl6cLAAAA/+N0OlVWVubpMgAAlYy3t7dsNpunywAAnCM05AAAqARM01RGRoZycnI8XQoAoJIKCwtTdHS0LBaLp0sBAPxNNOQAAKgEjjTjIiMjFRAQwB9bAAAX0zRVVFSkrKwsSVJMTIyHKwIA/F005AAA8DCn0+lqxoWHh3u6HABAJeTv7y9JysrKUmRkJJevAkAVx6IOAAB42JE54wICAjxcCQCgMjtynmCuUQCo+mjIAQBQSXCZKgDgZDhPAED1QUMOAAAAAAAAcCMacgAAoEqZNWuWwsLCPF0GgGpgwYIFslgsrHANAHA7GnIAAOCsDBw4UBaLRRaLRT4+Prrooos0fvx4lZeXn9fn7devn7Zu3Xpen+NUjn7t3t7eioqK0j//+U+99957MgzjjB6LBuO5ceR7Mnny5Ar3f/31126/zO/IsWGxWBQYGKiGDRtq4MCBWr169Rk/1mWXXaZHHnnk3Bd5ATj6+3C829ixYz1dIgDgAkZDDgAAnLU+ffooPT1d27Zt0/DhwzV27Fi98MILx922tLT0nDynv7+/IiMjz8lj/R1HXntKSop+/PFH9ejRQw8//LCuuuqq896UxPH5+fnpueee08GDBz1dimbOnKn09HRt2LBBr732mgoKCpSQkKA5c+Z4urQLRnp6uus2ZcoUhYSEVLjvscce81ht5yoPAQBVFw05AABw1nx9fRUdHa169epp6NCh6tmzp7799ltJh0csXXvttUpMTFStWrXUqFEjSdKePXt08803KywsTDVr1tQ111yjlJQUSdLPP/8sPz+/Yy4fe/jhh/WPf/xD0vFHlM2YMUMNGjSQj4+PGjVqpPfff9/1uZSUFFksFq1du9Z1X05OjiwWixYsWCBJOnjwoPr37y+73S5/f381bNhQM2fOPK3XXrt2bbVt21ZPPfWUvvnmG/3444+aNWuWa7uXX35ZLVq0UGBgoGJjY3XfffepoKBA0uHL5e68807l5uYeM2rn/fffV/v27RUcHKzo6GjdeuutysrKOtW35ILWs2dPRUdHa9KkSSfdbsmSJeratav8/f0VGxurhx56SIWFhZKkV199Vc2bN3dte2SE3RtvvFHheUaPHn3S5wgLC1N0dLTq16+vXr166fPPP1f//v31wAMPuBqG2dnZuuWWW1S7dm0FBASoRYsW+uijj1yPMXDgQC1cuFBTp051HR8pKSlyOp0aNGiQ4uLi5O/vr0aNGmnq1KlnvL+qu+joaNctNDRUFoulwn1BQUGubVevXq327dsrICBAXbp00ZYtWyo81jfffKO2bdvKz89P8fHxGjduXIXGe2pqqq655hoFBQUpJCREN998szIzM12fHzt2rFq3bq133nlHcXFx8vPz05w5cxQeHq6SkpIKz3Xttdfq9ttvP097BQBQWdCQAwAA54y/v3+FkR/z58/Xli1bNG/ePH333XcqKytT7969FRwcrMWLF2vp0qUKCgpSnz59VFpaqssvv1xhYWH64osvXI/hdDr1ySefqH///sd9zq+++koPP/ywhg8fruTkZN17772688479dtvv5123U8//bQ2btyoH3/8UZs2bdKMGTMUERFxxq//H//4h1q1aqUvv/zSdZ/VatW0adO0YcMGzZ49W7/++queeOIJSVKXLl2OGblzZNROWVmZJkyYoHXr1unrr79WSkqKBg4ceMY1XUhsNpueffZZTZ8+XXv37j3uNjt27FCfPn10ww03aP369frkk0+0ZMkSPfDAA5Kk7t27a+PGjXI4HJKkhQsXKiIiwtW8LSsr07Jly3TZZZedcX2PPvqo8vPzNW/ePElScXGx2rVrp++//17JyckaPHiwbr/9dq1YsUKSNHXqVHXu3Fn33HOP6/iIjY2VYRiqU6eOPvvsM23cuFFjxozRU089pU8//fSMazpbpmmqqLTcIzfTNM/56xk1apReeuklrVq1Sl5eXrrrrrtcn1u8eLHuuOMOPfzww9q4caPefPNNzZo1S4mJiZIkwzB0zTXX6MCBA1q4cKHmzZunnTt3ql+/fhWeY/v27friiy/05Zdfau3atbrpppvkdDpdb2JIUlZWlr7//vsKzw8AqJ68PF0AAAA4dwzDkMPhkN1ul9XqvvfdTNPU/Pnz9dNPP+nBBx903R8YGKh33nlHPj4+kqQPPvhAhmHonXfecc3rNXPmTIWFhWnBggXq1auX/vWvf+nDDz/UoEGDJB1u6uXk5OiGG2447nO/+OKLGjhwoO677z5J0rBhw7R8+XK9+OKL6tGjx2nVn5qaqjZt2qh9+/aSpPr165/VfpCkxo0ba/369a6Pj57/q379+po4caKGDBmi119/XT4+PhVG7hzt6D/I4+PjNW3aNHXo0EEFBQUVRvZUaoYhFe2XAiIkNx2P1113nVq3bq1nnnlG77777jGfnzRpkvr37+/6vjRs2FDTpk1T9+7dNWPGDDVv3lw1a9bUwoULdeONN2rBggUaPny4awTaihUrVFZWpi5dupxxbY0bN5Yk14jQ2rVrV7hs8sEHH9RPP/2kTz/9VB07dlRoaKh8fHwUEBBQ4fiw2WwaN26c6+O4uDgtW7ZMn376qW6++eYzrutsHCpzqumYn9zyXH+1cXxvBfic2z9jEhMT1b17d0nSiBEj1LdvXxUXF8vPz0/jxo3TiBEjNGDAAEmHfx4nTJigJ554Qs8884zmz5+vP//8U7t27VJsbKwkac6cOWrWrJlWrlypDh06SDp8meqcOXNkt9tdz3vrrbdq5syZuummmyQdzsi6deueVcMXAFC1MEIOAIBqwjAMJSYmatCgQUpMTDzjxQXOxnfffaegoCD5+fnpiiuuUL9+/SpMlN6iRQtXM06S1q1bp+3btys4OFhBQUEKCgpSzZo1VVxcrB07dkiS+vfvrwULFmjfvn2SpLlz56pv374nXPhg06ZNuuSSSyrcd8kll2jTpk2n/TqGDh2qjz/+WK1bt9YTTzyh33///bS/9q9M06ywiMAvv/yiyy+/XLVr11ZwcLBuv/12ZWdnq6io6KSPs3r1al199dWqW7eugoODXc2C1NTUs67NrQxDWvyi9M0Dh/91w/F4xHPPPafZs2cf9xhYt26dZs2a5Tr+goKC1Lt3bxmGoV27dslisahbt25asGCBcnJytHHjRt13330qKSnR5s2btXDhQnXo0EEBAQFnXNeRkV1Hjg+n06kJEyaoRYsWqlmzpoKCgvTTTz+d1vf4tddeU7t27WS32xUUFKS33nqr6hwblVDLli1d/4+JiZEk1yXi69at0/jx4yscM0dGLRYVFWnTpk2KjY11NeMkqWnTpgoLC6twDNarV69CM06S7rnnHv38889KS0uTdPiS/CMLlAAAqjdGyAEAUE04HA4lJSUpIyNDSUlJcjgcioqKOq/P2aNHD82YMUM+Pj6qVauWvLwq/moRGBhY4eOCggK1a9dOc+fOPeaxjvyh2qFDBzVo0EAff/yxhg4dqq+++qrCnGxn6shIwaMvcysrK6uwzRVXXKHdu3frhx9+0Lx583T55Zfr/vvv14svvnjGz7dp0ybFxcVJOjwS6qqrrtLQoUOVmJiomjVrasmSJRo0aJBKS0tP2NQpLCxU79691bt3b82dO1d2u12pqanq3bt31ZkMvmi/tHeVVJB5+N+i/VKQexbj6Natm3r37q2RI0cec5lvQUGB7r33Xj300EPHfF3dunUlHV7Z9K233tLixYvVpk0bhYSEuJp0CxcudDVHz9SR5syR4+OFF17Q1KlTNWXKFNc8g4888sgpv8cff/yxHnvsMb300kvq3LmzgoOD9cILLygpKems6job/t42bRzf223P99fnPte8vb1d/z/SDDvypkZBQYHGjRun66+//piv8/PzO+3n+GseSlKbNm3UqlUrzZkzR7169dKGDRv0/fffn2n5AIAqiIYcAADVhN1uV0JCgpKSkpSQkHDMSIzzITAwUBdddNFpb9+2bVt98sknioyMVEhIyAm369+/v+bOnas6derIarWqb9++J9y2SZMmWrp0qetyMklaunSpmjZtKul/jb709HS1adNGkios8HCE3W7XgAEDNGDAAHXt2lWPP/74GTfkfv31V/3555969NFHJR0e5WYYhl566SVXY/Cv83z5+PjI6XRWuG/z5s3Kzs7W5MmTXaNuVq1adUa1eFxAhFSn/eFmXJ32hz92o8mTJ6t169auxUSOaNu2rTZu3HjS47Z79+565JFH9Nlnn7kuHbzsssv0yy+/aOnSpRo+fPhZ1XRkvsCePXtKOnycXnPNNbrtttskHW4Abd261XXsSsc/PpYuXaouXbq4LtOW5Bph6i4Wi+WcXzZaWbVt21Zbtmw54THTpEkT7dmzR3v27HH9vG7cuFE5OTkVvpcncvfdd2vKlClKS0tTz549K4y0AwBUXxfGWRQAgAuA1WrVqFGjPDKH3Onq37+/XnjhBV1zzTUaP3686tSpo927d+vLL7/UE088oTp16ri2Gzt2rBITE3XjjTfK19f3hI/5+OOP6+abb1abNm3Us2dP/fvf/9aXX36pX375RdLhhSY6deqkyZMnKy4uTllZWceskDlmzBi1a9dOzZo1U0lJib777js1adLkpK+lpKREGRkZcjqdyszM1H/+8x9NmjRJV111le644w5J0kUXXaSysjJNnz5dV199tZYuXVphtU7p8LxyBQUFmj9/vlq1aqWAgADVrVtXPj4+mj59uoYMGaLk5GRNmDDhjPe3R1mtUtfH3D6H3BEtWrRQ//79NW3atAr3P/nkk+rUqZMeeOAB3X333QoMDNTGjRs1b948vfrqq5IOX75Yo0YNffjhh/ruu+8kHW7IPfbYY7JYLMdcIn08OTk5ysjIUElJibZu3ao333xTX3/9tebMmeO6/Lphw4b6/PPP9fvvv6tGjRp6+eWXlZmZWaGJU79+fSUlJSklJcV1iXfDhg01Z84c/fTTT4qLi9P777+vlStXukbe4dwaM2aMrrrqKtWtW1c33nijrFar1q1bp+TkZE2cOFE9e/Z0HW9TpkxReXm57rvvPnXv3t01L+XJ3HrrrXrsscf09ttva86cOW54RQCAyqDy/aYOAADOmtVqVVRUVKVsxklSQECAFi1apLp16+r6669XkyZNNGjQIBUXF1cYMXfRRRepY8eOWr9+/QlXVz3i2muv1dSpU/Xiiy+qWbNmevPNNzVz5swKk6K/9957Ki8vV7t27fTII49o4sSJFR7Dx8dHI0eOVMuWLdWtWzfZbDZ9/PHHJ33e//znP4qJiVH9+vXVp08f/fbbb5o2bZq++eYb2WyHL6lr1aqVXn75ZT333HNq3ry55s6dq0mTJlV4nC5dumjIkCHq16+f7Ha7nn/+edntds2aNUufffaZmjZtqsmTJ5/V5bMeZ7UevkzVQ8fj+PHjj5lLsWXLllq4cKG2bt2qrl27qk2bNhozZoxq1arl2sZisahr166yWCy69NJLXV8XEhKi9u3bH/fSw7+68847FRMTo8aNG2vo0KEKCgrSihUrdOutt7q2GT16tNq2bavevXvrsssuU3R0tK699toKj/PYY4/JZrOpadOmrkuX7733Xl1//fXq16+fEhISlJ2dXWG0HM6t3r1767vvvtPPP/+sDh06qFOnTnrllVdUr149SYePl2+++UY1atRQt27d1LNnT8XHx+uTTz45rccPDQ3VDTfcoKCgoGO+/wCA6stino91wwEAwGkrLi7Wrl27FBcXd0bzEQEAqofLL79czZo1O2ZE519xvgCA6oNLVgEAAADAAw4ePKgFCxZowYIFev311z1dDgDAjWjIAQAAAIAHtGnTRgcPHtRzzz13zAIkAIDqjYYcAAAAAHhASkqKp0sAAHhI5ZzxGQAAAAAAAKimaMgBAFBJsM4SAOBkOE8AQPVBQw4AAA/z9vaWJBUVFXm4EgBAZXbkPHHkvAEAqLqYQw4AAA+z2WwKCwtTVlaWJCkgIEAWi8XDVQEAKgvTNFVUVKSsrCyFhYXJZrN5uiQAwN9kMRn3DACAx5mmqYyMDOXk5Hi6FABAJRUWFqbo6GjetAGAaoCGHAAAlYjT6VRZWZmnywAAVDLe3t6MjAOAaoSGHAAAAAAAAOBGLOoAAAAAAAAAuBENOQAAAAAAAMCNaMgBAAAAAAAAbkRDDgAAAAAAAHAjGnIAAAAAAACAG9GQAwAAAAAAANyIhhwAAAAAAADgRv8P19XrJGJ1s/wAAAAASUVORK5CYII=\n"
- },
- "metadata": {},
- "output_type": "display_data"
- }
- ],
- "source": [
- "# Visualize the data collected and theory determined during each cycle\n",
- "plot_results_panel_2d(random_experimentalist_cycle,\n",
- " wrap=3,\n",
- " subplot_kw=dict(figsize=(14,10))\n",
- " );\n"
- ],
- "metadata": {
- "collapsed": false
- }
- },
- {
- "cell_type": "code",
- "execution_count": 12,
- "outputs": [
- {
- "data": {
- "text/plain": "",
- "image/png": "iVBORw0KGgoAAAANSUhEUgAAAtQAAAHGCAYAAABU2xz9AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8o6BhiAAAACXBIWXMAAA9hAAAPYQGoP6dpAACOwElEQVR4nOzdd3hUddrG8e9Meq+TAoTeCSIlCSAgKgp2XLuuWBBcxYq6GrG7MYq+lt11VRDBumvZtayuIqI0IQlVTWiCQCjJMISQENJzzvtHzJiQSUiA9PtzXbnczJw585thNrl5eM7zs5imaSIiIiIiIsfF2tILEBERERFpyxSoRUREREROgAK1iIiIiMgJUKAWERERETkBCtQiIiIiIidAgVpERERE5AQoUIuIiIiInAAFahERERGRE6BALSIiIiJyAhSoW4BpmuTn56NNKkVERETaPgXqoyQnJxMXF0dAQAARERFMnjyZLVu21DimuLiYGTNmEBYWhr+/P5deeil2u73Bz3H48GGCgoI4fPjwyV5+q7Jz504sFgsbNmxo6aWIiIiINBkF6qMsXbqUGTNmkJKSwqJFiygrK+Occ87hyJEjzmPuuece/vvf//LRRx+xdOlS9u3bxx/+8IcWXPXxyc7O5o477qBnz554eXkRExPDhRdeyOLFi1t6aTUsXLiQkSNHEhAQgM1m49JLL2Xnzp0tvSwRERERACym+g7q5XA4iIiIYOnSpYwbN468vDxsNhvvv/8+l112GQCbN29mwIABrFq1ipEjRx7znPn5+QQFBZGXl0dgYGBTvwSXdu7cyWmnnUZwcDBPPvkkgwcPpqysjIULFzJnzhw2b958Up6jR48erF+/nlNPPfW4zrFjxw4GDBjAzJkzmTp1Knl5edxzzz0cPnyYdevWnfAaRURERE6UKtTHkJeXB0BoaCgAa9eupaysjAkTJjiP6d+/P127dmXVqlUuz1FSUkJ+fn6Nr5Z22223YbFYSEtL49JLL6Vv374MGjSImTNnkpKSAsBNN93EBRdcUONxZWVlREREMG/ePAAMw2D27Nn07t0bLy8vunbtSlJSUp3Pm56ezrnnnou/vz+RkZFcd911HDhwoM7j165dS0VFBX/5y1/o1asXw4YN47777mPDhg2UlZWdhHdCRERE5MQoUNfDMAzuvvtuTjvtNGJjY4HKNglPT0+Cg4NrHBsZGUl2drbL8yQnJxMUFOT8iomJaeql1+vgwYN8/fXXzJgxAz8/v1r3V722m2++ma+//pqsrCznfV988QWFhYVceeWVACQmJvLMM8/wyCOPsHHjRt5//30iIyNdPu+hQ4c488wzGTp0KGvWrOHrr7/GbrdzxRVX1LnW4cOHY7VamT9/PhUVFeTl5fHOO+8wYcIEPDw8TuBdEBERETk5FKjrMWPGDNLT0/nXv/51QudJTEwkLy/P+bV79+6TtMLjs23bNkzTpH///vUeN3r0aPr168c777zjvG3+/Plcfvnl+Pv7c/jwYV5++WVmz57N9ddfT69evRgzZgw333yzy/P9/e9/Z+jQoTz99NP079+foUOH8uabb/L999+zdetWl4/p0aMH33zzDQ899BBeXl4EBwezZ88ePvzww+N/A0REREROIgXqOtx+++188cUXfP/993Tp0sV5e1RUFKWlpRw6dKjG8Xa7naioKJfn8vLyIjAwsMZXS2pM2/zNN9/M/PnzgcrX+NVXX3HTTTcBsGnTJkpKSjjrrLMadK4ff/yR77//Hn9/f+dXVajfvn27y8dkZ2czbdo0rr/+elavXs3SpUvx9PTksssu09hBERERaRXcW3oBrY1pmtxxxx188sknLFmyhB49etS4f/jw4Xh4eLB48WIuvfRSALZs2UJmZiajRo1qiSU3Wp8+fbBYLA268HDKlCk8+OCDrFq1ipUrV9KjRw/Gjh0LgI+PT6Oet6CggAsvvJBnn3221n3R0dEuH/PKK68QFBTE7Nmznbe9++67xMTEkJqa2qCLQEVERESakgL1UWbMmMH777/PZ599RkBAgLMvOigoCB8fH4KCgpg6dSozZ84kNDSUwMBA7rjjDkaNGtVmwl1oaCgTJ07klVde4c4776zVR33o0CFnH3VYWBiTJ09m/vz5rFq1ihtvvNF5XJ8+ffDx8WHx4sV1tnlUN2zYMP7973/TvXt33N0b9tErLCzEaq35Dylubm5AZY+7iIiISIszpQbA5df8+fOdxxQVFZm33XabGRISYvr6+pqXXHKJmZWV1eDnyMvLMwEzLy+vCV5Bw2zfvt2MiooyBw4caH788cfm1q1bzY0bN5ovv/yy2b9//xrHfvPNN6anp6fp5uZm7t27t8Z9jz/+uBkSEmK+9dZb5rZt28xVq1aZb7zxhmmaprljxw4TMNevX2+apmnu3bvXtNls5mWXXWampaWZ27ZtM7/++mvzhhtuMMvLy12uc/HixabFYjGfeOIJc+vWrebatWvNiRMnmt26dTMLCwtP/hsjIiIi0kiqUB/FbEBfrre3N6+88gqvvPJKM6yoafTs2ZN169aRlJTEvffeS1ZWFjabjeHDh/Pqq6/WOHbChAlER0czaNAgOnXqVOO+Rx55BHd3dx599FH27dtHdHQ0f/rTn1w+Z6dOnfjhhx944IEHOOeccygpKaFbt25MmjSpVhW6yplnnsn777/P7NmzmT17Nr6+vowaNYqvv/660S0nIiIiIk1BG7u0gNawsUtjFBQU0LlzZ+bPn98md4QUERERaUqqUEudDMPgwIED/N///R/BwcFcdNFFLb0kERERkVZHgVrqlJmZSY8ePejSpQsLFixo8IWEIiIiIh2JEpLUqXv37pr1LCIiInUyDAOHw4HNZqvzeqiOoOO+chERERE5boZhkJSUxNSpU0lKSmrScbaGYbJh9yFW/HKgyZ7jRKhCLSIiIiJ1qqsK7XA4SE1NJTs7m9TUVBwOB5GRkSfteQtKylnxi4PFm/bz/Zb9HCgopX9UAF/fPe6kPcfJokAtIiIiIi5VVaFTU1NJSEhg1qxZzlBts9lISEhw3mez2U74+TJzClm82c53m/eT8msOZRW/t576e7nT0+ZHabmBp3vrarJQoBYRERERl+qrQlutVmbNmnVCPdTlFQZrd+Xy3eb9LN68n237C2rc3y3Ml7P6R3LWgAjiuoe2uiBdRYFaRERERFw6VhXaarXWaPM4uj3EVbtIXlEZS7c6WLzJzpItDvKKypyPd7NaiOsewln9IzlzQAQ9w/2wWCzN82JPgDZ2aQFtbWMXERER6bgaOsnj6PaQxMREkpOTSU1NZUDcOPqecSnfbXaweudByo3f42ewrwdn9IvgzP4RjOtrI8jHozle1kmlCrWIiIhIC2vN4+eOrkK7ZBjk7NpEWmoK2dl2UlLT+HjZBj7baSG3x2WkF9ngf5udh/eO8OesARFMGBDJsK4huFlbfxW6PqpQtwBVqEVERKRKfRf+tbQGBX3DgOXPk79zA69tD+N9ew+KQnpRUq1ua8FkZM9wJgyMZMKACLqF+TXTK2geqlCLiIiItKCmHj93vAzD4KmnnmLFihWMGTOGRx55pFao3neoiMUbtvPNimBSCq6iDDcIqbwvyMeD0/uGE9/ZhwuG9yTYz6sFXkXzUKAWERERaUFNMX7uZLDb7bz//vtkZ2eTmZnJ9OnTiYqKImNfPos22vl2k52Mffm/Hd0ZgB6+JUwY1p+zBkYyolsI7m61q9qtub3leClQi4iIiLSgkzF+rilZ3DwwIvrx3PeZrNq1kay84t/vs8DwriFMGBDBhO4e9O4aA424cLEx7S2tOYgrUIuIiIi0sAZd+NeM8grLWJVVTvRlD1NW6keZmxf/+aly228fDzfG9gnn7IGRnNE/gnD/Y7RyGAYUHgDf8ONub2nNfeagQC0iIiIiwN5DRSzKyGbRJjupv1aNtgsFN7D5exJavBe3HSuJ6xvDI9ckkpOTQ6jvMUbc/XbBInvWYHQejtH3j8TFxbF69epGtbe01j7zKgrUIiIiIs2kIRufNBfTNNmUdZhvNmazaGP1fuhKfSL8OWdQJBMGRBLlUcS3j86ke+ABtu0MZtZD+WRs3HTsanHhAdizBvNwNjuWvMvjL31Ln2FjmTt3LpGRkTUeV9970Vr7zKsoUIuIiIg0g/o2PmmuNobyCoO0nQf5JsPOoo129h4qct5nscCIbiGcPTCSswdG0SP899F2Rn4JCZ3dKMkppZubgzlf/4cyz5BjV4t9w6HzcMrXvY9noZ3R3gX8L82TW265pVaYrq+lo7X3mStQi4iISJvVmi9UO9rRbQubN2+ut43hZL22otIKlv/iYGGGncWb7Rwq/H2rby93K2P72DhnYOVW33X1Q1v9I4gacSEbF77Fxjw4WGyla2TIMavFBuDoMomCJe9SWFRB/4ACCgfEEhYWht1ud762hrR0tLY+8+oUqEVERKRNau0Xqh3NZrMRFxfHihUriIuLo3///nW2MZzoNIxtu7P4+YDBNxvtLNt6gKKyCuf9Ib4enNk/knMGRTK2Tzi+ng2Ig1YrvhMf4fm/L2XF+s0MHNSbBQsWEB0d7XJdhmFgt9uZM2cOP6xYznkBBxkW6cnO8hCumnp7rcp8a2/pOBYFahEREWmTWvuFaq5YLBbnf+trYzie15aVV8TC9GzmfJnCvgp/sPx+vs7BPpw9MJKJg6KI6+56PvSx5BzMpcgtgMioaHx8fHB3d68zTCclJbFs2TIyMzPx8/PjtUw/Bhd34pSRZ2J1c6/x2ux2O1arlcTERBwOR6PX1RooUIuIiEib1Naqmg6Hg7S0NHJzc0lLS3OGZFdB2WazkRAfz5Z1K+g3LL7O17bdUcDX6dl8k5HNj3vyfrs1ECzgVZzDtafH8of4XgzqFOgM88dSV6uJzWZj5MiRx3y/q/4ykJubC0BYWBgXX3wx06dPd77Wqj+3uLg45s6dS1paGvHx8Zim6ZwA0tr/xaE6i2maZksvoqPJz88nKCiIvLw8AgMDW3o5IiIibVZrmppxLI1q4zAMjGXPUfbrSjx6jsY67n6wWqmoqOCHjZmk7SthYYadX/YXOB9iscCwmGCsWekcyljKuKEDaj5HtXnQdW2+cqw11vX+Vr8dcJ4jPj6eadOmuZzokZWVxdatW3nuuefYv38/ISGVe5bn5uYSFRXF3LlzsVqtrfLP8mgK1C1AgVpEROTkaws91Q0O/AX74bPbocCO4RfJuuHJfLW9mA9+2EKB+fuFg+5WC6N7hzNxUCRnD4wkIsDb9XNUmwdNlxEw9j6XodputzN16lSys7OJiopi3rx5x2w1cfW+A67X8FugLzcMJk6cyM8//4y/vz/9+/dn5MiRzgp1XFwcFouFtLS0VvtnWZ1aPkRERKRdaGjfcUtWsRs6qaLMK5QU79P5em8J3+zriSN982/3eEFFKYEFe5h55VlcEt+HAG83HA4H4X6edT/Hb/OgKbBX/rfwAPhH1Hre42mjqet9r7GGowL95tBJpKenc+TIEQDuu+8+BgwYgM1mIycnB8MwmDZtWpvpj1egFhERkXahIWGwxarYhoFRsB9HoYktItLlcxaXVbDilwN8lZ7Nt5vs5BV1d94X4OXOmQMiKNi0gqx1ixkVP5wp4/oDNOz1+IZXVqarKtS+4S6XeTzznhsUwo8K9P2H/JHY2FjS09MZNGgQy5cv54UXXqhR4T76nK25nUctHy1ALR8iIiJN41ihy263c/PUmyg5uBev0M68Me/Npq98/tYPvW3Jv0jdW87OmMtJfOghcnJy8A8KZdkvB/jfz1ks3mynsNRwPsyt7Ai9vAtJvO5cTuttw9O9do94o1o0GtBDffwv8Rhh10XLSblhsHnzZkJCQrjllltqvYa6+rJbYwuIKtQiIiLSJrkKcdXbHVzdbwsPY2aciV/uIY6EdMIWHtb0Cy08QNmvK7Ec2U93d4Mv1qdw3ayXyMj3pDCoO+W4OQ/1tZRy3uBOfPb3J9i/cSXukZH0v30inu61Xx/Unm1db4uG1eqyzeNkOGYri9Va2bddLdC7W63ExsZiGIbLCnf1c9rt9lY9IlGBWkRERNqcY7VulJeXM2vWLNLT0xk5cqTzfmvRQcb38qMsrzMeQX5Yig42Wch08g2nKGYM3+wI5b8VA9natz+GxQpBlXdH+rlRvmst5b+upotvOVOufpr/5mynashd1SYpdVV/q8+2bs0MwHHExOYL1V9FQ9pMWvuIRAVqERERaXPquwDRMAxmzZrFggULcHd3dx4fGRkJvuFYYuLwtNTfS3wy5BWW8c3GbP73cxYrtg2irGIgVF43SJClGI/9GzktxofnH7yLZ55ZTWp2OQkJCQwcOJBrr72WZcuWMXToUObOncuaNWtc/sWhrtnWrc2x/gLUkIs1b775Zm6++eZaI/haAwVqERERaXPqq1g6HA7S09Nxd3envLyc2NjY3+930XpwMh0qLOWbDDtf/pzFD9sOUG78fqla3wh/xvUM4NL4XvSN9OfAgTHOiuzRFdqHHnqII0eOsHbtWnbv3k1AQECNXQWrjjv6fQgLC6u3mt1STmRXy7rG8rUmCtQiIiLS5tTXJlC1ox9AbGwsSUlJNcPlSe4lzj1SysKMbP6Xns3Ko0J0/6gAzhsczaRBkXww92VS3kjF/LkyFFYPlEdXaHNycsjIyHDuNhgSElJjV8HqVd6q9yEsLIzk5ORWeeHeibRstIUt5hWoRUREpE2qq02gsaPfjmccW+6RUr7OqGznWLk9h4qjQvT5g6M575Roetn8gYZdVFd9HdUDaFxcHNOnTwdwOZu56n1ozRfuncifSWvvnwYFahEREWmHGrqBSmPmUucVlrEwI5svfmvnqB6i+9p8uHBoDOcPjqbnbyG6umO1Zrhax9EBtK5pGHU9R2sLnifyZ9LY2djNTXOoW4DmUIuIiJwcJ7TZh2Hg2LWJm+74M1nZdpdznPOLy1iUYeeLn/axYtsByip+j02DOgVybmwUO5d/wubVy0hISCAxMZGcnByX66laq6vWDIfD0aB50sd6va1585OGOp7tz1uaKtQiIiLSJp3Qroe/bTQSvns1M+NMXlgdSfxvVd2CknK+3Wjni5+yWLbVQWnF75uteBXnEBtQwjMzriDQUly5RfYLy8jOziYlJYVZs2aRkZFR7yQLV60ZDa0uH6vK29AqcGvW2ivtrqhC3QJUoRYRETlxja1k1qjeFh6Az26HAjumXwS74x/lx8JQvvg5i++3OCgt/z1E94nwZ3yvQL5/+/84tGszkZGRxMbGkpGRQVxcHBaLhbS0NAYNGkR6ejp2u+tqd/V1uPqLQHuoLp8sbe29UIVaRERETormDkGNqWTWCrEPJVIWHceyLdn8N2cY376zh8KyTOfxPcP9uOCUaC4Y0om+kQEYhoHxUz9SSw7VCM6rV6/m9ddf5w9/+AN9+/bl2WefbVCV2VVPcEtUl1trcG1rlXZVqFuAKtQiItIWNCZsnVD7xUlcY11rrqpmZ9n3499rGIPPv4Gl2/M4XFzuPKarTykXxPfnwlM70z8qoHLnQcNwzqw2oFYPdHx8PKZpsnr16mP2ULc2LfVn1h6pQi0iIiK1NDZsNfWs4LqCcvVKZt2tFCY7CtwoP/UyDhX7k+Puw66MHACiAjy4wGsDF3quZXCIQU7/xwmL9P89TC9/HnP3agpCBuBzzsPO56yqMBuGUWOUXU5OTpuprLaF+c5thQK1iIiI1NLYsOWq/eJktRMYhsFTTz3FihUrGDNmDI888ojL81Vfc0pqKsvSd7Iis5gvfsoiO78YsIE7hPl5ct7gaC4c0okRMUFYf9iAudtgybYC3vz33fQdNpZZDz+MtfAA5u7VZG37kT25q5n9tyUUuQUwcuRI58Ysxxpl15q1xYv/Wiu1fLQAtXyIiEhrd8wKdbVWiKrtu6sHaOCE2wmqzldeXs6ZZ57pvPhwyZIlREdHuzz+z089z9JdhZREDibf9HbeF+DtzqRBUVw4pBOje4Xh7lbztTh2ZrAw+Rq6uR9gZ1k4Q+96j4EDB1Lw1RNs/OYt1mRb+MvSIiKjoomJialxwWFr6kNu7Fpa09rbMlWoRUREpJZ6d7b7rRWCPWugywgYex9YrTXaL/bu3cuiRYsoKCg4rnaC6oF+4MCBmKZZ2YYBlJeXk56eTv/+/XF3dyc7r5gvftrHZxv28XPRIIgATPByt3L2wEguGtKJ0/vZ8HJ3c/1cgGFCfGc3LAVW3EvySH74XvoOGwOmGwuXepJTZGHgoF74+PjUqua2lgvojqcnurWsva1ToBYRERGXlco6w1bhgcowXWCv/G/hAfCPcN5dXl7Oddddx7p16/D29ubCCy9sdDtB9fYNwzA4++yz2bJlC6eddhrXX389Gb/soOvoi+h15lWk7jxI1b+3u1ktjO0Tjrkzjf3rvyXSazgTrqo7WFaF0LTUFO4ZEc2I3lGkrNnL1r0HsR9ZTmlpKSXuQXTtFsqCBQtwd3dvtZuqqCe65ai2LyIi0sFVhcqpU6eSlJSEYRj1P8A3vLIy7R9Z+V/f8Bp3b968mYyMDGdV+dJLL6030Nrt9lrPabPZiI+PJygoiPz8fHbs2MGQ4XHYhk/kl8gz8L7qJRw9ziFlR2WYjusewlOTY0l76CyePa8bOWu/xrFvjzNY1qUqhGZl23lxjZWis59jZ9fLiYiMcq6toKCAMWPGEB0dTWRkZJ1hulHvYROo6omOiopST3QzU4VaRESkg2t0ZdNqrWzzOKqHGiqDZUhICIMGDSIjI4PY2FgGDhzo8jTHalGoqKhg2/bt5HlFEBh1KpuNOIyVubh1GwaAZ6GDuyaP5uKhXegS4vv7eX1/v9guPj6+coa0YbgMwtUvzItPSMDWYxCzHh7Exo0beeCBBwgICCAkJITp06e36JSThqi3TUealAK1iIhIB3dc0x6s1hptHlAzII8bN46XXnqJgQMH4u7uOm7UF0JXbtzF57usmBc8SbB/WOX5gc7BPlx4ShSxgcVMGjnR5bmrgqXdbmfOnDlMmzatzp7iukLowIEDGTlyJCkpKcTGxh7zPWktEzPUE90yNOWjBWjKh4iItDaN3cSlvs1TGrMVePUK9Y0zZvLfn7L5dP1ettgP/35g6RF6euSRNG0ycd1Dyck50KB1NnY9RysvL2fWrFmkp6c7R+XV95wt3UMtLUcVahERkQ7o6PDX0MpmfW0aja3SWq1W7rj3z0St+oXF2w4z9rklzosLPd2snNnfxvgefozqFkhM58oxeY2ZYnGiVeOcnBwyMjKw2+0NauOwWq1E2mwuW2GkfVOgFhER6WBOZMvpGpunpKSwceNGBg4c6AzlrtonysvL2bx5s3PMXXmFwfKt+/n36h0s2nqIkvLfL+BL6BHKJUM7c+7gaIJ8PGo8d1WwbWif8on2FDc6kNcxTlDaPwXqoyxbtoznnnuOtWvXkpWVxSeffMLkyZOd95umyWOPPcbcuXM5dOgQp512Gq+++ip9+vRpuUWLiIg0QkMvoHPVwlAVMlNSUiguLuaBBx6o0Q5xdKW7vLyciRMnkp6eTu+4Mxjzx5ks3pbHgYJS5zF9Ivy5ZFhnLj61M52Dfepcd/XnHjRoEGFhYcd8rSfSU9zoQH6McYLSfumvTUc5cuQIQ4YM4ZVXXnF5/+zZs/nrX//Ka6+9RmpqKn5+fkycOJHi4uJmXqmIiMjxach4tbrGwFWFzGeffRZvb+8a7RCu/LAunc10wePCx9kbex0fbHBwoKCUMLcirvdP4/Ne/+Wbaf25bXzvesN01XMnJiYSGxtLeno6ycnJTT6eriqQN6i6fYxxgtJ+qUJ9lHPPPZdzzz3X5X2mafLSSy/x8MMPc/HFFwPw9ttvExkZyaeffspVV13VnEsVERE5Lg2pvB6rtaNqCkZqaipxcXE1RtMVlpbzTYadf6/bww/bDuARdwUAZnkpXge2ElW8kwd7biPc8QtZRT0ZWF6Gu2E0qD2isX3NzaqecYLSvilQN8KOHTvIzs5mwoQJztuCgoJISEhg1apVCtQiItJm1NUKUdXmERYWdszWjqrRdHPnzuXmadPoPuJM/GLP4n8/Z1NQUu4854huwcRHWjj003f8tLmyXeMfP3qwZ0sxV/XdQNcXzqXfWX/EOu7+miHUMGqF09Yynq5OLsYJSvunQN0I2dnZALV+AEVGRjrvc6WkpISSkhLn9/n5+U2zQBERkRNw9MWKiYmJbN68mQceeMBlRdhqtbK/oIwvdpRzoOcVZBSHwZo9AARYSvDYu44ze/oz+5Y/Y7VaMSaPdIb1WbNmsTNjDSMiwb3oIGW/rsRrxAEM3/DKynl4GNYVL9S6wE+bl0hrpEDdDJKTk3niiSdaehkiIiL1cnWxYlWlOi0tzVkRLiqtYGFGNh+v3cMP2w9gRiYA4E4Fk4d35cwevtx97YXstts5bLNx/ukJjB07Fnd3d2w2Gw6Hg6eeegoLJlk5X9HV3x2PnqMxfEKdgf7M+Fju6bkdy5H9tS7w0+Yl0tooUDdCVFQUUDm2Jzo62nm73W7n1FNPrfNxiYmJzJw50/l9fn4+MTExTbZOERHpOI5nM5G6HlNjG+74eObMmcPq1auJi4tjzpw57Cnx4qFP0vnip6waLR1R1nzM7as4e4CNJy+9ALvdjoXKa4/27t3L5ZdfzpAhQ/jqq6949tlnnRXwvyQ9Tc6Be7D5WrD6R2CvFui/TzOZNnw4ARaLLvCTVk+BuhF69OhBVFQUixcvdgbo/Px8UlNTufXWW+t8nJeXF15eXs20ShERaY9cheDjmSdd32Oqt1MYhsG0adPYe/AIjh3lfPv2RnYf+r19MSbUh0uHdeH0rt48MvM2srOz2XAkytkScs011/DVV1/x888/U1RURHp6OitXrqxRAc/JySEy6vcCVY1An5CA36REKDqoC/yk1VOgPkpBQQHbtm1zfr9jxw42bNhAaGgoXbt25e677+Yvf/kLffr0oUePHjzyyCN06tSpxqxqERGRk6muENzQedLVz7Nx40ZSUlLqnJJhtVoJDbexeJOdvCHXkFseABYrHCrB19ON8wZHc9nwLsR3D8VqtWAYRq2LBK1WK4888gg333wz1113HRkZGcTGxjJ69Oh6Lyh02R+tC/ykDbCYZtUmnwKwZMkSzjjjjFq3X3/99SxYsMC5scucOXM4dOgQY8aM4R//+Ad9+/Zt8HPk5+cTFBREXl4egYGBJ3P5IiLSBjS2TcNutzN16lSys7OJiopi3rx5REZGNqpCXXVs1dQOb2/vGlM7ALbtP8yHa/bwn3V7amy8MrxbCFeOiOG8U6Lx96pdi6vv9Ry9S+LxtKiItHYK1C1AgVpEpOM62W0aDQ2odrudm266iT179tC5c2dmz57NwIEDKSwz+OLHfXy4ZjfrMg85jw/39+LS4Z25fHgMvSP8T8prb8x6RdoStXyIiIg0o8a2aUDdG7EcK5xWvz8sLIzi4mKys7MJCw/niE8kD/z7Z778OYvC0goA3KwWzugXwRUjunBG/wg83E5u4D2ev0yItAUK1CIiIs2o+oV3R+8wWJ+jR8W5mhmdk5PjDNfl5eXMmjWL9PR0Ro4cyc0334y7XxAhI//Anu6juHJumvNcPcP9uCIuhj8M7UxEoPcJv8a6gv7x/GVCpC1QoBYREWlGR+8wOG3atMZXaw2DnF2bSEtNITvbTkpKCrNmzSIjI4P4+HimTp3Kyy+/zFtvvYW7uztH/Dqx++sdbBt4IxVUPocbFUwe1pWr4rsyolsIFovlqKc4vtaM+qrQrX6XQ5HjpB7qFqAeahERqetCw2MyDFj+PObu1SzZfoQXVlsYOCiW9PR07HY7hw8fJjIykqzcAoqihmDtPQZrUJTz4V6F+3HflUpXcz8L5r5a5/bjx9uacazXpR5qaY/0SRYRETnJDMPAbrdjGMbRd0DBfjAMZ7U2KiqqcdXawgOwZw2WI/sZ38uPN/82m6SkJEaOHElwSAhGRF+yep5P2bmP4T78MqxBUfh5unF1fFc+vW0014bvoUfFHkbHDa3zOV21ZjTUsV5XVeuKwrS0J6pQtwBVqEVE2i+jopyXkh7m+7SfiU+oNpbut8oye9ZU7vw39j4MaHy11sV5HEfK+HBNJu+t2sm+/N/H3Q2K8uWPo3ty0ZDO+P027q4hFeITvXhQVWjpaBSoW4ACtYhIO2UYHP7qcTYteps12Ra+KhjIG/PerGx5KNgPn90OBXbwj4SL/17vpiXVQykcFbwNA/OIg1S7lXfTdrMwI5uyispf5wHe7kzqH8oNY/swqHPwCbwUhWKRhtJFiSIiIidL4QH8czfRJdgTKKU4dPDvLQ++4ZUV5arKsm94naepPqEjISEB0zRZvXo1CQkJ3D7zz3yyfh/vpe5iu+OI8zFDuwZzTXwM8VHuxHSKOuEQfPRUERGpmyrULUAVahGRdqraBYMFIQPwm/QoVjf3mvcXHqgM0/W0WyQmJrJgwQLc3d0ZMGAAWCw4Knyx9BlLkW0QJeWVvdnuVBBwcDPjOln5v4fvJjk5mZSUFGJjY0lKSsLdXXUzkeag/6eJiIicLFYrjL0PS+EBAlyFZqu17jaP38K2o6CC9PR03N3dKTOt+MROYK9PT/JMv8rjyg36RwVw8cAQPv/7ozj27Wb7vig2b55ESkoKGzZsYM2aNQAkJyerXUOkGShQi4iInEz1hea6VLvQ0NZ5OAPixpEVdRq5If342d0bTPB0s3DBKZ24dmQ3hnUNxjRNDqQOIzW1jISEBPr3709sbCxr1qzB3d2d9PR0bZwi0kwUqEVERE6i47qYr/AAFbvX8t3+AN7eEcLy4s7wW+u19cgBbPlbePHOKxk5dLDznBaLpdZ25ElJSQDO3RG1cYpI81APdQtQD7WISPt0POPmco+U8sHqTN5Z+jN7izwBsFjgzH4RuO/4gd1rFlFSXIy3tzcjR4485jk1nUOk+alCLSIicgKqB9jqG6KkpaaQs2sTtm4DXM6b/nlPHm+t2sl/f9z320WGngT7uHHliK78cVR3YkJ9MYzhbNw4gQceeAC73e7cZKW+Ng5N5xBpfgrUIiLSbjV1tfboinRiYiIJCQmkpaYwM84k/IfHMXaN4KklRaz44QdGnTaWUy+8kXdSM1mfech5ntjOgUwZ1Z2LhnTC28PNebvVamXgwIGMHDnS+RwNaeNQlVqkeanlowWo5UNEpOmd6G5/1c9TVzi12+1MnTqV7OxsoqKimDdvHjabjZxdmwj/4XEsR/ZT7BHE6a9msjPgVHxOmQjelT/3PdwsnD84mimjuzM0JhiLxXJca2iq1y0iDacKtYiItBmNCZbV2y8a0ipR1/PVF05tNhsJCQk1qsdWqxVbtwGQGUfGL9uZc2gk9vGh+Pw2jzrcz4Mpo3twdXxXbAFeDVpHY9o4TsbrFpHGUaAWEZE2obGVV1dht7GOFU6tVmutSRsVhsm3m/bz5uaxpO4YVHmgG3gdyWZkSCGvP3Ar3p5N9+v3ZLxuEWkcBWoREWkTGlt5rR52w8LCjqunuCHhtKp6nF9cxoerd/LWqp3sPlgEgJvVwrmxUdwwuhtdvMuIiIho8vYLVyFfRJqWArWIiLQJx1N5tVqt2Gy23yvb8fHMuns6Vv+IOrf+PvrxxwrlOw8cYcHKnXy0ZjdHSisACPLx4JqErlw3shudgn2O/0UfJ036EGleuiixBeiiRBGR41NXD3VDLhy0Z2dx59BSrhjVE69ep8HY+2qF6vrOf3S7yfrdecxd9isLN2ZT9Zu0T4Q/N57Wg0uGdsbH0w0R6RhUoRYRkTbDVeW1oRcOblm7nITODjzLDsGeNVB4oMYW4fWdp6rdJCvbzjcb97Pyxe/Y5ChxPnZ8PxtTx/RgTO/weqd1NAeNzBNpfgrUIiLSpjX4wsH9dmyb38aydy10GQG+4Q0+j39QKAHDzmfr4SByvILAUYIVg0uHd2XauJ70jQxo1tdcF43ME2kZCtQiItKmVVWgV61aRffu3QkJCal1jNVqJTIqGsN2L47MLYR17ecMmlUV3bCwsFo92o7DJbyzaifvpOwit7QreIFbeTFB+1KIKNzJfff8nchWEqZBI/NEWooCtYiItFlVYfj+++/n7LPP5sMPP2TTpk0sXLgQd3f3WscmPZ1co3oL1NrpMCcnh3zTh1mfpvPvdXspLTcAiAn1YerobkR9ew+hET9xJGQgtvCwZn/N9dHIPJGWoUAtIiJtUvX2hu7du7NlyxaOHDlCeno6mzdvJjY2tsbxdrudpUuX4nA4ME0Th8MBUKOiuyxjF//6MZdvNtqdjxsSE8wt43oycVAUboUOzJ1elOV1xiPID0vRwRp92C1NI/NEWoYCtYiItEnV2xsMw6Bfv35s3bqV2NhY+vfvX+NYwzB47bXX2LBhA8XFxYSFhREWFobVaiU+PoHvMvaQ02s8N/1zs/MxXd0O8dzUicT3CPv9QkPfcCwxcXha1rjsw24NNDJPpPkpUIuISJtUvb0hLi6Om266idzcXAYOHFir3cPhcLBy5UpKS0uxWq1YrVaysrP53097SQsez84e+WBUbsQSkLMJNi0iMNCd7n4Tak7tsForx+0VHqgM06oAiwignwQiItImVbU3zJ07F4vFwq233spnn33mss3BZrMxZswYoqOjierUhYiRF3Pmc9+TvOwA6fvy8fawcsPo7iy573Qu6VSAzauCuLg4Zw+yYRjY7XYMw6gM0Q3cGEZEOgb9NBARkVajRnCt/0Ao2I+VymCdlpZWY7LF0eexWq3c+0Aif3rxQ4L/+BIry3tS5hOKUVxA2YbPmXdxJx69YADuJflU7XdWVZmu6tWeOnUqSUlJx16biHQ4avkQEZFWoaEzlI2Kco58/ST+uZuwxMRhGzOzxmSLsLCwGue5Y+afeTslkzd/2MGhwjIAIgK8qMj4hj1LPyC2f2+Gx/YjMTGRtWvXsnv3bvz9/UlLS3OG82XLlpGbm6tRdCLikgK1iIi0Cg2ZoVxeXk7yrHuYWPxfuoR4Eg1Yiw7WmGxRdZ59B/L4fIfBB7O/p6CkAoDuYb7ccnov/jCsM26MZ/PmKfTt25dHHnmEBQsW4ObmRkBAAKGhocTHx1NeXs7cuXPJzMwE4KKLLtIoOhGpRYFaRERahWPNUDYMg1mzZvHWgg/wHGFwRm9/AkIG4OcT6gzTAAePlGI9dTKHSsIw3DyhpIKeYd7cNaEfFwzpjJv194sMY2NjsdvtpKen4+7uTnl5ORdffDF33XUXb7zxBjfccAOZmZn4+/sTGhrKtGnTNIpORGpRoBYRkVbhWDOUHQ4H6enpuLl78OKaMkpjL2TYOQ87N2uJHTGKjPIoMkrCMNyiwQ36R/nTKfcn7EsX8lNxAhcOmQVYapzXZrMRHx9PSUkJQ4cO5emnnyYnJ4fVq1dz8OBBAEJDQxk3bpxaPUTEJQVqERFpNeqboVxVwS4pKWHYsGEkJlUG3xVrf2ZXwBAyCgdhWj3ADbyLHDx55UjG9gxm2s3PYT/GVtwWiwWLxUJAQABWq7XWSL7p06cTGRmp6rSIuKRALSIibYZpmlgsFvz8/LAfLmFOioNt/a+j4rehVeHWI/j9uoSzBkZz2cgpAMfcitvhcJCWlkZubq7zQsTIyEjtOCgiDaZALSIibYLD4WD16tXkHCnjsz2evPv8UsoqTMDKKdF+3DtpAGN6h3PgwOk1QvCxgnFdvdvacVBEGspiVg3clGaTn59PUFAQeXl5BAYGtvRyRESOi2EYzVrBdeQXcePsf5JRGoZprawHxXcP5a4JfRjdK6zmjoaN1NyvRUTaF1WoRUSk0Ro6M7ox56sr0B4qLGXu8l+Z/8NOCssjwQrDugZz7zn9TjhIV6mqRldtCKNgLSKNoUAtIiKNVn1mdEpKCsuWLWPMmDG4uzf+10pd4fxwcRnzVuxg3vIdHC4pB2Bw5yBmntOX8X1tjQ7Sx6pCn+y/JIhIx6FALSIijVbVd5ySksKmTZu44oorGDx4MAsXLmx0qD56Q5dde7P5anshc5b96tzZsH9UAPec3ZdzBkYeV0W6IWG5IRvLiIi4or96i4iIS1XtD4Zh1Lqvamb0/fffT0FBAUeOHCE9PZ3Nmzc3+nmqwnlEdGf8hl3IZQsymP31Fg4VltHL5sffrh7K/+4cy8RBUcfd3uEqLNe1jqioqDongoiIuKIKtYiI1FJV0U1JSSE2NpannnqK3NzcGu0SVquVMWPGMHjwYNLT04mNjaV///6Nfy4Tep8zhc8tCWwsKIPSUrqF+XLXWX24+NSaOxser2Ptwlj1ejQqT0SOh6Z8tABN+RCR1s5ut3PTTTexYcMGysrK6NevH4GBgYwcObJWu0R5eTmbN2+mf//+jWr3ME2Tr9Kzef6bLfzqOAJApyBv7prQhz8M64KH28kNtJrkISJNRRVqERGpxWazERsby5o1a7BarWzZsoXo6GiXvcXu7u7ExsY26vw/bDvAs19v5qc9eQCE+nky44zeXJvQFW8Pt5P6WqporrSINBUFahERqcVqtZKUlARAeno6xcXFeHt712qXaGzV96c9h5j99RZWbDsAgJ+nGzeP7cnNY3sQ4O3RNC9GRKSJqeWjBajlQ0TaiqrAHBYWRk5OTo3g3Jgxc9sdBbzwzVa+/DkLAA83C9cmdOP2M3sT7u/VbK9HRKQpqEItItLRGQYUHgDfcDgqEFdvkzi6XaIhY+ay84p5efFWPlyzhwrDxGKBS07tzD1n9yUm1LdpX5eISDNRoBYR6cgMA5Y/D3vWQJcRMPa+WqG6LvVNzsgvLuO1JduZt2IHJeWVY/fG9gwi8YLBDOwU1CQvRUSkpShQi4h0ZIUHMHevpixvHx6miaXwAPhH1Hn40T3TR4+ZKy03eC91F39d/Au5v23KMrxbCJHZq/jlo6/5OHssDz/8sKZsiEi7okAtItKBGT6hLN1+BL/cvRwJCeJ0n9A6d/wqLy9n1qxZpKen1xifFxkZiWma/O/nLGZ/vZmdOYUA9LL58eC5AxgUXMEZZ9yI3W4nMzOTadOmER0d3XwvUkSkiSlQi4h0YI4DObyw2kLJwWC8Qi0MPJBTow+6qiIdEhLCzJkz+ejDD4gKdCcV09kzvWbnQZL+t4n1mYcACPf3ZGpCNFPH98fTw52srMoLEXUNvIi0VwrUx+mVV17hueeeIzs7myFDhvC3v/2N+Pj4ll6WiEij2Gw24hNGkpqaSryLkXh/+ctfWLZsGcXFxfyydQu3DykhoXM5ZucSDpvePPrOGhZm2AHw8XBj2tge5KZ8zJcvr8KxKp5p06Zhs9m45pprWLFiBWPGjNEsaBFpdzQ27zh88MEHTJkyhddee42EhAReeuklPvroI7Zs2UJERN29h1U0Nk9EWpO6ZklnZWUxfvx4srKyqKiooEeEPy+cXkpEpy58HHw9/8wdQIUJVgtcGRfDPRP6YhblMXXqVLKzszl8+DBdu3Zl3LhxJCYm1hq7V99zi4i0JfrpdRxeeOEFpk2bxo033sjAgQN57bXX8PX15c0332zppYmINFpVH3R9gdbHx4eIXkP4MvpPXMtTvHuwMkxPGBDBwrvHkfyHU4gI9HZO/ggJCQHg4MGDpKamOsO0w+HAMCqnflTNsZ46dSpJSUnO20VE2hq1fDRSaWkpa9euJTEx0Xmb1WplwoQJrFq1yuVjSkpKKCkpcX6fn5/f5OsUkY7pZFZ8IyMjueqqq/ju++/pNvZSfvEZwGcFZWDCKZ2DSDxvAKN6hdV4TNXkj5tvvpk5c+awevVqEhISCAsLq7UJTEPmWIuItAUK1I104MABKioqav3Qj4yMZPPmzS4fk5yczBNPPNEcyxORDqwxOxc2NHg7CGT/kOvZXREFBWV0Dvbhz5P6ceEpnbBaLS4fY7VaiY6O5pFHHnE+h6vwXN8caxGRtkSBuhkkJiYyc+ZM5/f5+fnExMS04IpEpD1qaMW3IcF7V84Rnvj0R74r6Q9+YK0o5ZZxPbhr0mC8PdxcPv/RIb36LouuwrOrOdYiIm2RAnUjhYeH4+bmht1ur3G73W4nKirK5WO8vLzw8vJqjuWJSAdWX8W3etitL3jnFZXxyvfbWPDDTkorDCyYBB/cyLldKrj//Itrhd6q84aFhZGcnExqaipxcXFMnz69Rl92XeG5eugWEWmrFKgbydPTk+HDh7N48WImT54MVP5CWbx4MbfffnvLLk5EOrS6QuvRG7IkJibWCt5lFQb/TMvkxUVbnTscju0TTuK5/Qlzi3NZQa5e6R40aBDp6elkZ2fz/vvvs2LFCsaNG1ej+q3wLCLtlQL1cZg5cybXX389I0aMID4+npdeeokjR45w4403tvTSRKSDOzq0GobBrFmzWLBgAe7ulT/yc3JynME7PDycJVsdJH25ie2OIwD0jvBn1vkDGN/XhsViAYJcPlf1SrdpmsTGxlJaWkpBQQG5ubm60FBEOgwF6uNw5ZVX4nA4ePTRR8nOzubUU0/l66+/1i8NEWl1HA4H6enpuLu7U15eTmxsrLPanIcv981fzfJtOQCE+nlyz9l9uTouBne3Y/czH91ikpiYiN1u5+WXXyYjI0MXGopIh6GNXVqANnYRkeZS1ZaRkpJCbGwsSUlJ5JcYvLhoK++l7sIwwdNSwY3dc5lx3VUE+jbueo/qvdlAredyd3fX5i0i0u6pQi0i0oqdaBit3lcdHBrGWym7efnbreQXlwMwKXAXiYEL6ebvBca5wLF3ez36/FX/Ome320lNTcVut2OxWJybuTR0lJ+ISFuln2oiIq3UsXYSNAwDu91+zB0GLRYLGblw7l9X8NQXG8kvLmdAdCDvT43ntdMK6BbiBV1GgG/4Ca23qgUkKirK2e7haqKIiEh7owq1iEgrVd94u1qzpB9KxFp0sDIUV6sA/2I/zJNfbGT5LwcACPPz5L6J/bhiRAxuVgv0ug8KD9R63PFwNWVEm7eISEegQC0i0krVF0arh+201BSOfP0kAYc2V1aax95HblE5L327lXdTM6kwTDzdLNx4WndmnNmHQG+P35/EagX/xrV51OfoKSPavEVEOgIFahGRVqq+MFo9bJ8RH4t/7iY4sp+y3Wt5d0kGLy3PIq+ocp70xMh8Hgr6lm5+/cDzvhZ5HZqCJCLtmaZ8tABN+RCRE1F9d0KHwwGmQeTWd/lh8z6ePDCOXwq8AfAuOsC5wft4oc86LEf2g38kXPz3k1qRFhERVahFRFpUY6d4VO+djo+PxzRNVvy4hZIB55NZEQtAkLc7ftsXU7Lpe7ZFRVAQP5wAi+WkXHgoIiK1KVCLiJwExzPertaFhQ0YKVe9d3rpDykcjIont/eVUOGOmwWmjO7OnWf25u8vpJFyMIKBg2LxOedhKDl0Ui48FBGR2vSTVUTkBB1rvF1djr6wMGfXJjjGY202G/HxCXj1H8e+YdPIjY4Dqzud3fL5351jeOzCQYT4eZGYmEhsbCzp6ekkP/MshsK0iEiT0U9XEZETdLyzlp1zmyMjuH1IMWE/PAbLn683VP+0N5/1YWeyt8tZFJmedAv15bmLerPsySvoFx1UY03r1q3T/GcRkWaglg8RkRN0vLOWrVYriYmJJM+6h5CC/5K9zZNoLFgKD9S6cHB/fjGzF27h47V7APDzdOP2M/tw05jueLm71TjWMAzmzp1LZmYmAHFxcZr/LCLShBSoRUROUPXxdlWTN6r3Uh/dX139e4fDwfJ1mwgLs4CllICQAQRUu3CwtNxgwcod/HXxNgpKKrcL/8Owzjw4qT8Rgd4u1+NwOEhLSyMgIICQkBCmT5+u+c8iIk1IgVpE5CSo2hXw6IsMgRq3JSYmkpycTGpqKsOHD6ewsJCduzJ5eZc7106eyLBzHnb2Oi/d6uCJ/2bwq+MIAEO6BPH4RYMY2jWk3rUcXTHXDGgRkaalQC0icpLU1Utd/bbNmzeTmppKVlYW7777Lvn5+Xh4eODj48OydZuxPPMs1916D0n/28yijXYAvCkjbM9yhvsGM6TL6GOuQ7sTiog0L/2UFRE5SZwXGUZFOXupj76tf//+JCQkEBoaipubG56enpSVVe5oeDCvgM93GJzz4jIWbbTjbrVw9bBIemx8m5LNS0lLq3lxoWEY2O12l1NFqnYnVJgWEWl62imxBWinRJH2y9U8alc91Ha7nblz55KamsrAQYPY79mJlYVRlHkGAHBa7zAev3AQvWx+LmdVH88MaxERaRoK1C1AgVpEoDJop27K5K8/ZLPq1xwAOgf78MgFA5g4KAqLxeI87uiQbrfbmTp1KtnZ2URFRTFv3jz1SouItBD1UIuIHKfj2R2xSl5RGS99u5W3V+2iwjDxcrfyp9N78afTe+HlbmH//v3O81a1b2AYULAffMOPe1SfiIicfKpQtwBVqEXavuNtuTAMk/+s38szX23iQEEpAJMGRTHr/AHEhPrWfV7DqNz0Zc8a6DICxt6HAbrwUESkFVCFWkTkOLia6HGslouMfXk8+lkGa3flAtDL5sfjFw1ibJ/fq8t1nrfwQGWYLrBX/rfwAFb/CLV5iIi0AgrUIiLHwWazERcXx4oVK465E2FeURkvfLOFd1J2YZjg6+nGXWf14cbTeuDpXrOyXGcrh294ZWW6qkJdbfMXERFpWQrUIiLHqeqiwar/Hs0wTD5et4dnv9pMzpHK9o4LTolm1vkDiA7ycfkYVzOknb3aY2ZiLTpYGabV4iEi0mooUIuIHIeq7b1zc3NJS0ur1fKRvjePRz9LZ13mIQB6R/jzxEWDOK33sSvLzosQOf5ebRERaT4K1CIixyEsLIxBgwZhmmaN1oy8wjKe/2YL76Ueu72j1pQQw6jsla5WgT6eXm0REWleCtQiIo1kGAbJycmkp6cTGxtLYmIiYOHDNbt55qvNHGxAe0etyvNDiVhXvFBjigdWq8bjiYi0AQrUIiJ1qGvOdFXV2G63Y7FYSNm8mxeXZzmnd/SO8OfJiwYxup72jqMrzzmZW7AdNcUD/wiXPdUiItK6KFCLiLhQX+9yVdV45ep1cMqFXP/+JioMEx8PK3ed1YepY3vi4VZ/8D268hzWtR9kup7iUb2nWkREWh8FahERF+rqXTYMg/379zPkghv41Iwjp7ACMOnulotn+n9xeMbiNm7WMc/vsvI89r5aPdQiItL6KVCLiLjgqnfZMAweeOp5vtrvT0FANwACLCU8cdFA3ky6rzJ8lx1p8IWDtSrPViv4RzTVSxIRkSaiQC0i4sLRFeTSCpP/+/InPj7SDzPAHbOiDO8dy4kp2caoO18jQxcOioh0WArUIiJ1qKogL//FwSOfprMzpxCs7vgd3k3ojkUEWooZOXIkkZGRunBQRKQDs5imabb0Ijqa/Px8goKCyMvLIzAwsKWXIyJ1sOcX8+QXG/nypywAIgK8ePj8AcRHuREeHk5OTo4CtIiIqEItInK0CsPkvdRdzP56CwUl5VgwCT3wMxN9DS445UxngNbkDRERAQVqEZEaNu7LJ/GTn/lx9yEABkX5UbxiAXk701mfHaWdCkVEpBYFahFpd+rakKW+44rLDV7+9hfeWLGDCsPE38udP0/qx9VxMTyTv4wt5fvoNyxeFxyKiEgtCtQi0q7UtyFLXcd1Gn42GT6D2XuoCIDzBkfx2IWDiAz0xqgo565hZXh28cazpxfqlhYRkaMpUItIm9GQynNdG7K4Om7F2p/ZYRtLeklvKCmic7APT148iLMGRDqf76Wkhxlz8F90CfYk2tPLuSW4iIhIFQVqEWmVjg7P1SvKcXFxTJ8+ncjIyFrB2tWGLEef175/P99sL+TX/n+kDDcsmFw1LJKHLhxCgI+n81iHw8H3aT/j7W8BSgkIGUBAtS3BRUREQGPzWoTG5onUz1XbhsPhYOrUqWRlZVFQUEDXrl0ZN26cy5YOV2Hc4XAQFhbG/Ukv8XVOCEW+UQAMiPClV24aW1K+ZcyYMTzyyCPO81WtIy01hTPiB3P3rL9gdVMdQkREatJvBhFpdVy1bdhsNuLi4li8eDGHDx8mNze3zpaO6lt6l5eXM2vWLH7K2ASDzmUTfcHXDWtFKfec1YtLBodz1pl/Ijs7m8zMTKZPn050dLTzPNqwRUREjkW/HUSk1alq24iKiqrRtmGxWPD09KRLly4EBwcTH1//1A3DMJg1axZvf7WSjTEXs8nSFSxuBOT9yhX+W5hxTixuVovz3FWPsdvtGIYB/B7OFaZFRKQuqlCLSKtTvTIcFhaGw+HAMAzS0tI4dOgQ+fn5REVFcayOtR17svjmYBhe5z1Yed7SAjrtW85p3fz4y6wkZ1i+9tprWb58Oaeddhrz5s0jLS2t3gkhIiIi1SlQi0irUb33uer7p59+mrS0NOLj44mLi2PFihUcPnyYI0eOsHr16jqneHyTkc0jn20iN2wQAF3LMvHZupCc7D1kFESRk5PjrDw//PDDztA+bdo0srOzSUlJYePGjQwcOFChWkRE6qVALSKtQvULEePj4zFNkxUrVpCZmUlAQABpaWnMnTuX6dOnM2fOHFavXu1yisf+w8U88flGvvw5C4BuYb78+YwuTDx1IsnJB0hNLa/1uKpKtWEYJCQkkJKSQn5+Pn/+858ZNWqUKtUiIlIvTfloAZryIVKb3W5n6tSpZGdnExISAsDBgwddTvRwNY/aNE0+WruHpC83kVdUhpvVwrSxPbl7Qh+8PdyAhs2xLi8v56677uKDDz7Ay8uLU089lTfffFPbjYuISJ1UoRaRVqH6/OiqCvXq1atdzpyuPsUDIDOnkMRPfuKHbTkADOoUyLOXnkJs56Aaz3H041xxOBx88803HD58mKKiIgYNGqTtxkVEpF6qULcAVahFXDu6h/pY1eQKw2T+Dzt4/pstFJcZeLlbuefsvtw8pgfubsfXorF3716GDBlCXl4eAQEB/Pjjj8TExBz3axIRkfZPFWoRaRVctWPUV03etr+A+z/+kfWZhwAY1TOM5D8Mpnu43zHPWx+r1UpoaCilpaWEh4fj7q4fkyIiUj/9phCRFudqZ8Q6e5wrDOYu38GL326ltNzA38udWecP4Kq4GOcs6eM5b5XIyEj++Mc/snz5csaOHaveaREROSYFahFpca52RnQVZLfaD3P/Rz/y4548AMb1tZH8h8F0DvZp8HltNlu9FevqY/S0O6KIiDSEArWItLjqFyS6GoVXXmHw+rJfefnbXyitMAjwdueRCwZy+fAutarS9Z03LCysQRXrhly8KCIiUkUXJVaTlJTEl19+yYYNG/D09OTQoUO1jsnMzOTWW2/l+++/x9/fn+uvv57k5ORG9VnqokSR2urqdd6Ulc/9H/9I+t58AM7sH8HTlwwmKsi7QecCalSmq0bzRUVFMW/ePAVnERE5YapQV1NaWsrll1/OqFGjmDdvXq37KyoqOP/884mKimLlypVkZWUxZcoUPDw8ePrpp1tgxSLtV1mFwT++387fv/+FsgqTIB8PHrtwIJcM7VxvVdpV33RVaD5WJVxEROR4HFeFuuqXUXu1YMEC7r777loV6q+++ooLLriAffv2OX9Bv/baazzwwAM4HA48PT0bdH5VqEVqOjoEX3LjHdz/75/ZlFVZlT5nYCR/mRxLRGDdVekq1TeIcVWFbuzUDxERkWM5rt8mo0aNom/fvjz11FP8+uuvJ3tNrdaqVasYPHhwjV/OEydOJD8/n4yMjBZcmUjbVnXxYJZ9P//9tZyL/7GSTVn5hPh68Nerh/L6dcMbFKbh9yp0VFSUyyp0VX+0wrSIiJwsx9Xy8e677/Lee+/x1FNP8fjjjzNy5Eiuu+46rrjiCkJDQ0/2GluN7OzsWv2WVd9nZ2fX+biSkhJKSkqc3+fn5zfNAkXaiKOrxDabjb5xp7M9J5wi3wgwTM6NjeLJi2OxBXg16txWq5VZs2apCi0iIs3muH7TXHPNNXz55Zfs27ePl19+GdM0ue222+jUqROTJ0/m448/prS09GSv9bg8+OCDWCyWer82b97cpGtITk4mKCjI+aVd16Qjq2rvmDp1KklJSZSXV/DmDzv5oiyWIt8Ignw8ePmqU/nHtcMaHaarqAotIiLN6aRN+di+fTvvv/8+7733Hr/88gtBQUFcdtllTJkyhTFjxpyMpzguDoeDnJyceo/p2bNnjf7nunqoH330UT7//HM2bNjgvG3Hjh307NmTdevWMXToUJfnd1WhjomJUQ+1dEh2u52bbrqJvXv3Yus+AP+z/sT6vQUAnN7XxuzLTiGyge0dIiIircFJm/Lh4+ODr68v3t7emKaJxWLhs88+Y968eQwbNoy33nqLgQMHnqynazCbzXbSruQfNWoUSUlJ7N+/n4iICAAWLVpEYGBgva/Ny8sLL6/jq7SJtCdGRTlGfjZFRYXsD+hLXp8rMPcW4OvpxsPnD+Tq+Nq7HYqIiLR2J/TvoYcPH2b+/PlMmDCBbt268dBDD9G9e3c+/vhjsrOz2bdvHx988AH79+/nxhtvPFlrbjKZmZls2LCBzMxMKioq2LBhAxs2bKCgoLJ6ds455zBw4ECuu+46fvzxRxYuXMjDDz/MjBkzFJhFjsGoKGfpXy5i/d//SMXAiXiedj2mmydDO/vz9V3juCahq8K0iIi0ScdVof7ss8947733+OKLLyguLiYuLo6XXnqJq666irCwsBrHXnbZZeTm5jJjxoyTsuCm9Oijj/LWW285v69q4fj+++8ZP348bm5ufPHFF9x6662MGjUKPz8/rr/+ep588smWWrJIm3Fg12bW5/nwpvfDFFj8sRjljPDM4p+3TsPd3c15nMbaiYhIW3NcPdRWq5WYmBj++Mc/MmXKFPr161fv8Wlpabz66qvMnz//uBfanmgOtXQkhmHwS+Y+XlqezVcZdgCiSjPx3PodE+IH8/DDDzuDs6tNWRSqRUSktTuuCvV3333H+PHjG3x8fHw88fHxx/NUItJMmqIybBgGtz7xNxYXRFPu4Ye71cKA4gzS3vs/3N3dCDALcTgczvGTVfOos7OzSU1NrXGfiIhIa3VcvzUbE6ZFpPU7epSdYRjHfR673Y5hGBSXVfDgh2tZWNKbcg8/vIoP8vzESIwtS3B3d6O8vJzY2NgaFw0fa1MWERGR1uikTfkQkbarMZXhuirZ1ds1eo8YT0ZgHL/sr7ygNzTnJy6MqeCC067m55EjAYiNjSUpKanGObQpi4iItEUK1CLirAxX9S7XVRmur8fZ4XCQkprKDq9eZBT2xSwuwBbgxexLBzMwZIQzIB8rMFdtyiIiItJWKFCLSK2gC5UbsBwdeuurZJd5+HPwlD9SaAQAcPaACJ659BTC/L1qPVfVYzTRQ0RE2gP9BhMRoGbQraufuq4e589/3Md5f11BlhGAt7uV5EtimTNlRK0wXd3J6tsWERFpaapQi0gN9VWhj65kF5RW8NhnP/HJ+r0ADIkJ5qUrT6VHuJ/zfHVVoTXRQ0RE2gtVqEWkhvombVQPx6t35nLuS8v5ZP1erBa488zefPynUbXCdGOr3SIiIm3NcW3sIidGG7tIa+eqqlwVjlNS0/AYejE/lkdjmhAT6sNLV57K8G6htR7rcDiYOnUq2dnZREVFMW/evBpVaPVQi4hIe6CWDxFxqh5wj26/cDgcLF+Xwa9dzqW8LBqAS4d14YmLB+Hv5e58fPUpIImJifVOD9FEDxERaQ8UqEUEOPa232vsFezsdzXluONBBc9dOYzJQ7vUOMfRfdE5OTmaKy0iIu2eArWIAHVfJFhcVsGTX2zk/dRMwJ1BUX688scRdA/3r3UOV/OsVYUWEZH2ToFapAOr3uLhKgxvyT7MHf9cx1Z75Y6Hfzq9F/ee0xcPt9qV5qpzJSYmkpOTo4q0iIh0GLoosQXookRpDVy1eEBlpTo8PJx/rt7DU19spKTcINzfixevHMLYPo3fQVFERKS9U4VapIOqq8XDKyCEGe9v4OuMbADG9Qnn/644FVtA3Zu0aKa0iIh0ZCohiXQghmFgt9sxDIOQkBC6d+9OZGSks8Vj9c6DnPfycr7OyMaKQVTWSnrv/YYwP496z2kYBsOHDyckJIS4uDiXM6WrP7eIiEh7ogq1SAdRvS0jLi6OpUuXkp6eTr9+/bjv/j/zyvfbefHbrRgmdAn2wmvNe+Tt/Jm0nKg6K87O2dQpKRQVFWG1WrFYLPU+t1pCRESkvVGgFukgqrdlfPfdd2zcuJHCwkK2ZmZxzesrWJ9VDMDkUztx+ygb75V0Z3Wxo85dDA3DYOPGjaSkpLB3716ysrKIiooiLS2tVgBXS4iIiLRnCtQiHUT1KR5xcXG4ubmx6UAZvhNuZ31WMd4eVp6cGMOW7/7D3e+mER8fz9y5c4mMjKxVTa5emS4uLqZz586EhoZitVpdtny4miAiIiLSXihQi3QQVqvVuclKWFg4oWOuZue3v1BhQi+bH//o9yPdt77Gh7t/5fNsT9LS0rjllltctmZUVZztdjuRkZEkJyfzn//8hx9++MFly0f159Y4PRERaW/0W02kA7FarXj4h3DzO2v5v0W/YJhwydDOfH5jP/rl/YBn2SESOrvTr0tYvZXkqopzVFQUI0eOxGazsWbNGnJzc50tH66e21W1W0REpK1ThVqknam+WQtQoyq8dtdBbn9/PVl5xXi5W3niokFcGReDxTShywgse9bQe/x5/N+fpmCLqDv8Hl1xBtTSISIiHZY2dmkB2thFmkr1aRrx8fFUVFSwcuVKTjttDNFnXMtzC7dSbph0D/Pl1T8OZ0B0YPUHQ+EB8A2HRlSRqwJ8WFiYdkgUEZEOSRVqkXak+jSNZcuWsWPHDnIOF7G90wSM4i0ABB36hbG+R+gXeXrNB1ut4B/RqOfTODwRERH1UIu0Kzabjfj4eEJCQhg6dCiW8B4EXv40RnQs7law7foOt9XvsD5tlcs+58ZyNQ5PRESko1GgFmlnTNPEBHZ5dcc44y6sATYCLMWc67GR/HVfcKSgoM7dDBur+sWJ6p0WEZGOSi0fIu2Iw+Egdc16dnc6g23l3QE4o3cID03oyj23zycgIICQkBCmT59+UlozNA5PREREgVqkXTli8WZ/7NWUmP5YMEk8dwDTxvWkoqKCQYMGYZomI0eOPKm7FFaNwxMREemoFKhF2olvM7K455+rOWz6E+pRxt+njGZ0nwgMwyA5OZn09HRiY2NJTExUJVlEROQkUqAWaeMqDJOXvt3K377bBrgxzGsv/+ixkqjo0UDNXQ0tFgs5OTmqKIuIiJxECtQibVjukVLu/Nd6lv9yAIAbuuXwkP93eHYdBr7hGIaBYRjExcWxevVqXTgoIiLSBBSoRdqon/fk8ad317L3UBHeHlae+cMpTB4SDYWTKsM01NjkZe7cudr6W0REpAnoN6tIG/TB6kwufW0lew8V4VmSx7nuGVw0JPr3zVms1hozotPS0rBarQrTIiIiTUC/XUXakOKyChL/8xMP/PtnSssNAvJ34r/qH/yyekmtTVWOnhEdFhaG3W7HMIwWWr2IiEj7pJYPkTYiK6+IP72zlh/35GGxwMyz+5K7Yh1p4cEue6Orz4gOCwsjOTlZW4SLiIg0AQVqkTZg7a6D3PLOOg4UlBDs68FfrxrKuL42jPH1b6pSNSPabrfX2iJckz5ERERODpWoRFq591N3ceXrKRwoKKF/VAD/vX1MZZg2jAbvUKgtwkVERJqOxTRNs6UX0dHk5+cTFBREXl4egYGBLb0caaVKyw2e/G8G76ZmAtDdLZfPHrqM4oK842rhaEwAFxERkYZTy4dIK3SgoITb3ltH2o6DYJr4bv8O36ItJD3xE+vXr2fo0KFkZGQ4Wzka0sKhLcJFRESahgK1SCuTvjeP6W+vYV9eMf5eboxiK1nFWxk4aBCffvop+/fvZ9euXUyePBmLxaIWDhERkRamQC3SClS1Y6zaV8aD//mZ4jKDnuF+zJkygp7h5+BwXEl5eTmfffYZmCbhPgZ33XkH7h6eauEQERFpYQrUIi3MMAye+ksS/91l4YBtKADj+9l4+aqhBPl4ABAZGYlhGFxz9dV03fUhp3XzJHrb+1jH3V+5mYuIiIi0GAVqkRa2fXcWH9nDKbB1BWBKXBSPXTIMN6ulxnFWq5VZd0+n8F+p+FOIde9aKDxQuTOiiIiItBiVtkRa0Lb9BUz7cCsFAV2xGGWc4bWDxy8ZWitMQ2UlO/mvb/DZ2j1sy87H6DwcfEKhYD9o90MREZEWowq1SDNwNbJu+S8ObntvHYeLy+kc7MPT5/Wnry2hzuMdDgepaWl8nu1JP0cY/3fLH4lc8QLsWQNdRsDY+9T+ISIi0gIUqEVOgvpmPBuGQVJSEikpKcTGxpKUlMS7qZk8+cUmDBNGdAvhH9cO5fWXn+e51FTi4+MxTZPVq1fXmDFdtTlLamoq/YYnYPNzqwzTBfbK/6r9Q0REpEUoUIucoKrAfPQmK1Uh2zAMUlJS2LBhA2vWrmOt2ZNt1i4A+B/I4K3H76YgL9e5Nfjy5csBOHjwIMuWLePmm28mOjq6sod6VrWtxqGyMl1VofYNb7k3QUREpAPTvw+LNJBhGNjtdoyj+pUdDoczDFdtslIVsqdOncqcOXMYNGgQ5RYPvM6+2xmmDy17m53/epLtWzfX2Bp87NixjB49moKCAjIzM5k7d67zOas2Z7FarZXtHWPvg4v/rnYPERGRFqQKtUgD1FWFBmq0YlRtslI9ZK9evZpHZv+Vry0jyLf44WZWUPDtKxz56TuCgoIICwurVX222+2sXLmS3Nxc0tLSsNvtzraPGi0lVqvaPERERFqYArVIA7iqQldt412rFeOofueuI87iTx9vI9/ih83fg7lTRvGpzzoW+xYycuTIGuep+t+RkZGMGzeO1N96qufMmUNaWpqzB9vdXf/XFRERaS0spmmaLb2IjiY/P5+goCDy8vIIDAxs6eVIA9RXoa7vMW8u2cSzi3dRVmFySpcg5k4ZQWSgN+Xl5cyaNYv09HRGjhzp8nzVe7BvvvlmNmzYQHl5OTfccAPJycnaHVFERKSVUJlLpAFcVaGrO3rKR4VhMvvrLby+bCcA5w+O5vnLh+Dj6QZUVrzXrVtHbm5urYp39ees2iExNjaWNWvW4O7uTnp6usvjRUREpGWoxFXNzp07mTp1Kj169MDHx4devXrx2GOPUVpaWuO4n376ibFjx+Lt7U1MTAyzZ89uoRVLc6pxQWA11S9ATEpK4nBRKbe8s5bXl/0KwJ1n9uZvVw91hmnDMJgzZw6ZmZkcPnyY+Ph4bDZbvc+blJTEDTfcwKmnnsrIkSPrPV5ERESalyrU1WzevBnDMHj99dfp3bs36enpTJs2jSNHjvD8888Dle0a55xzDhMmTOC1117j559/5qabbiI4OJjp06e38CuQllC9v3rF2nSW/2MFWx1FeLpbee6yU7j41M61jl+9ejX+/v6EhoYybdq0Y7ZvuLu7k5ycXGeFXERERFqOAnU1kyZNYtKkSc7ve/bsyZYtW3j11Vedgfq9996jtLSUN998E09PTwYNGsSGDRt44YUXFKg7CsPAKNiPo9DEFhFJWFgYgwYNosgzhD39/sARRxHh/p689sdhxPiUYxhGjQB89FSQhrZuVL9oUURERFoPBepjyMvLIzQ01Pn9qlWrGDduHJ6ens7bJk6cyLPPPktubi4hISG1zlFSUkJJSYnz+/z8/KZdtDQdw8BY9hzblvyL1L3l7OhyGSaQsvMQe/tcRrnpTk+bH/OvH8Hbr77o8iLGY/Vji4iISNui3+T12LZtG3/729+45ZZbnLdlZ2fXqhJWfZ+dne3yPMnJyQQFBTm/YmJimm7R0rQKD1D260osR/bT3f0AP6d+z5ebDrKr2/mUW9wZ2tmf/9w6Gu+KI7XG7FVXVz+2iIiItD0d4rf5gw8+iMViqfdr8+bNNR6zd+9eJk2axOWXX860adNO6PkTExPJy8tzfu3evfuEzictyDccj56jMf0i2FEeTtmwa9nf/RywutHL7SDv3zKaYF/PGjsfVm32IiIiIu1Th5hD7XA4yMnJqfeYnj17Ots49u3bx/jx4xk5ciQLFiyoUUWcMmUK+fn5fPrpp87bvv/+e84880wOHjzosuXjaJpD3bYZFeXs276Rv6ws4OvNuQDcGB/NwxcPwc3N7ffjqo3SA9TiISIi0k51iB5qm83W4Arh3r17OeOMMxg+fDjz58+vFX5GjRrFrFmzKCsrw8PDA4BFixbRr1+/BoVpadsMw+DRpNl8sj+cI/6dcbNaSJocy1XxXWsdW32OdGM3hREREZG2Q7/Vq9m7dy/jx4+na9euPP/88zgcDrKzs2v0Rl9zzTV4enoydepUMjIy+OCDD3j55ZeZOXNmC65cmsuGXzL5MKcLR/w7Y60o5YWLe7sM09W52rZcRERE2o8OUaFuqEWLFrFt2za2bdtGly5datxX1RkTFBTEN998w4wZMxg+fDjh4eE8+uijGpnXAWzIzOXa+Rso9QmDokNcGLyXC+MuPubjjh6Tp35qERGR9qVD9FC3Nuqhbl5Hbwt+PI//JPUXZn35K8XlBm6Hs4nZ8QX/nPcPoqOjm2UNIiIi0nqpQi3tWqP6lw0DCg+Abzj8doxhGFz3+Gv8UBIDFiudrXkE7v6C0aOGNWqTFW3KIiIi0n4pUEu75qp/2WWwNQxY/jzsWQNdRsDY+zAtFpI//5EfSruBBUIObuJfj16Dp8dZqjSLiIiIkwK1tGsN7l8uPFAZpgvssGcNFQUOHlm8n/dT91WeZ/8aLuxupXOnKAVpERERqUE91C1APdTNq0H9y9Uq1MXRcdy15wwWbrRjscATFw5kYi9fVaVFRETEJQXqFqBA3UoZBocO7OOGD7azYW8Bnm5WXr7qVM4d3LALD0VERKRjUsuHyG+y8os578UUck0fPKjgrRvjGdVbI+5ERESkfvr3axFg2/4CLnnlB3JNHyzF+XT95WN6BhgtvSwRERFpAxSopcNbn5nL5a+tJPtwKR5FBzny2ZOYuXsICwtr6aWJiIhIG6BALR3a95v3c83cVHILyxgY6Uv5N89RdGAPe/bs0RbhIiIi0iAK1NJhfbx2Dze/vYaisgpO7xtO371fs3f7ZgoLC8nJycEw1PIhIiIix6ZALR3S60u3c99HP1JhmPxhaGf+ck4Ma1NXYrFYsFgsBAcHa0SeiIiINIimfEib1aD50kcxTZPZC7fw6pLtAEwf24PrhwYz5/XXsdvt+Pv7ExwczHXXXaetwkVERKRBFKilTTIMg6SkJOcOiLNmzTpmqDYMk4c//Zn303YD8MCkfhxY/k9ueGkZmZmZ+Pv707VrV1544QViY2NVoRYREZEGUWKQNscwDDZu3EhKSgrZ2dmkpqYe8wLCkrJy/vTWqsowbZqc5rmLyf38SE1NJTc3F9M08ff3Z+zYsQrTIiIi0iiqUEubUlWZTklJobi4mMjISBISErDZ6t6ApaikjIlPfkhmRTAYFfin/5s8aw5wCQkJCaSkpBAYGIjVasVisTTbaxEREZH2QWU4aVMcDgepqanY7Xa8vb159tlnf2/3MAwo2F/5398UlJTzxzdWVYbpijLcU94kumwfcXFxACQmJvLss8/i4+PDoUOHSEtL07g8ERERaRQFamlTbDYbCQkJREVFMTIhgYFdwys/xIYBy5+Hz26v/K9hkHuklGvnprB292E8qKDHri+ZMmEYCxYswGKxMG3aNJKffpr+XUIZ+ds5j1XtFhERETmaxTRNs6UX0dHk5+cTFBREXl4egYGBLb2cNscwDBz77dg2v41lzxoKQgbgN+ZPWL+4Gwrs4B+J/cwXuO5f29lqLyDE14MFN8YR5VmKzWbDbrczZcoUDuUe5M6hpVwxqicePUfj6D8FW0Sk+qdFRESkUdRDLW2O1Wol0t8Nc88asrb9yJ5Dq1mxpoS7Tx+Ode9aMkNHce3bW9mdW0RkoBfvTk2gT2QAUBnG58yZQ2ZmJmHeFSR09sez7BCWvWuJHHEjKEyLiIhIIyk9SJthGAZ2u71yB0PfcApCBrDnUClrsi18vzodR/8pbB39HJetG8zu3CK6hfny8Z9G08vm53ycw+Fg9erV+Pn54REUTdTwC7D4R0KXEeAb3tIvUURERNogBWpp9QzDICsri6eeeoqpU6eSlJSEAfhNepQVoVfxVcFA4hNGsq/Uiyve2cL+wyX0iwzgo1tG0TnYm6SkJOfjwsLCGD58OHl5eWRl23lpnQfGhX+FsfdhwO+BXURERKSB1PIhrVZVRXru3LksX77cuflK1dzpyMhI7n74aa51ONhR4MYf30jjSGkFp8YEs+DGOIJ9PbHb7aSmppKVlcWyZcu46aabKCoqIj8/Hw8PD1LT0tiYeSn9+4eTnJzcqI1iRERERECBWlqZqraMsLAwkpOTWbp0KTt27CA4OBiA0NDQGpM4rFYr2w67cfNbaygqq2BUzzCSzu1KoHflR9tmsxEXF8f7779PQUEBL7/8Munp6Xh6elJWVkZ+fj4PPPAAsbGxpKenOwN4VWAXERERORYFamk1qm8nPmjQIH7++Wc2btxIXl4eFRUV3HDDDdxyyy1ERlZO4jAMg/+u3saf/7udknKD0/va6L7nG+68NaVGlXn69OksX74ch8NBeno6gwcPxmKx0KNHD3799VfsdjsAsbGxWCwWjc4TERGRRlGgllajatOW7OxsTNOkZ8+erFmzBovFwuHDh3E4HNhsNmeYvuWJv/NtUXdMqxtnD4jg0QlduPWWmtuRR0ZGYrPZME2T7OxswsPDeeqpp8jNzXVWwavaPBITE8nJyXE+h4iIiEhDKFBLq2Gz2UiIj2fz2uXE9B/E4088CcAHH3xAcXExH330Ef7+/iQnJ/Phyq0sKu4OVjcC87bz+NnDiI6q3Ia8KiBXVZlzcnLw9vYmKioKb29vcnNzne0cs2bNqhHU1eYhIiIijaVALa2GFXhorCdby7JZk/UVz83254UXXgDgww8/xMPDg/T0dN5bsYXHv94BFjeCDm3lD50KiI6qbAM5OiBDZVAfOXJkraANKESLiIjICVOglhZXdSGizbuC8m1LcS/OobuHycJ1K8jNzeWll17Cz8+P9PR0woafx2Nf/YphwqXDOnPv2OFERUY4w7PVasVms9UI1XUFbREREZGTQYFaWlTVhYhpqSnMHGFweqidED9PUg7503foaRiGgdVqJTk5mXnfb+Tpb3dhmnB1XAxJlwzGarW4PN/R4+9UiRYREZGmolKdtKiqCxFLDu7F79Amyq3ehPUYwjkPvIcJTJs2jaSkJN5J2UXSosowHZrzMz4ZnwFmneerfmGiiIiISFNShVpalM1mIyEhgbRUk4LgaAxfD8xuo8E/gtWrV5Odnc2X24rIPrIRgLADG2DDJ6RlRbmcFV11Plf90iIiIiJNQYFaWlRVf7PdbmfO66/z5ucr6Tu0mKl9DOLj4/ny1zKyo0YCcNv4XhSnrSMtO6rOsKx+aREREWluFtM0a/+7uTSp/Px8goKCyMvLIzAwsKWX0yrY7XZuuukm9uzZQ1FREd26dcM/4XLWl3cG4J4JfbnzrN6YpqmwLCIiIq2KKtTSKoSFhVFcXMy+ffswTRO3wedT9FuY/vOkftw2vjcAFotFFxeKiIhIq6ISnzQbwzCw2+0YhlHrvqrNVzp16kTgyMsp6jMBgAerhWkRERGR1kiBWppF1Ti7qVOnkpSUVCtUV22+4nXqhRixFwAw3GMP08f1bInlioiIiDSYArU0i2ONs7NarUSMu5r90aMA8N22mJL1/9XYOxEREWn1FKilWVSNs4uKcj2h443lv5L81RYAhnnso2fxVo29ExERkTZBUz5aQEed8uHcYvyoCR1vrtjBk19Uzpm+66w+3HVWb03yEBERkTZDaUWajdVqxWaz4XA4nD3UC374PUzfcWZv7p7Qx7lNuMK0iIiItAUamyfNpurCxKpdDGPO/COP/7cyTN82vhczz+6LxWJp4VWKiIiINI4CtTSb6hcmfrX1MPt+2078T6f34v6J/RSmRUREpE3Sv6lLk3HOna4oh4L92MLDSEhIwHPAGezrfDoA08f15IFJCtMiIiLSdqlCLU2iqr0jLTWFmXEm43v5YY2Jo/fZ17HvSAYAU8f0IPHc/grTIiIi0qYpUEuTsNvtLFu2DMsRB365hyjL68x/Dx3koT2VYfrG07rz8PkDFKZFRESkzVOglpPOMAzmzJlDZmYmFkwKggfwDQO5f88YTOC6kV159IKBCtMiIiLSLqiHWk46h8PB6tWr8ff3J6ZrN3ImPM+du8djYMG6MxX3Hz9B489FRESkvVCglpOualfE6Ohoep92HrO+2oWBldJfVnFw4d9YsWK5thQXERGRdkMtH3LSWa1WZs2axXc/7uDOT36htKKCGOsh7Bn/JiAigrFjx2pLcREREWk3FKilSWzMOsw9n22jsLSC03qH8cZ153DojjMBtAuiiIiItCsK1HLSbdt/mClvpnG4uJwR3UKYO2UEPp7u+ERHt/TSRERERE46lQmPctFFF9G1a1e8vb2Jjo7muuuuY9++fTWO+emnnxg7dize3t7ExMQwe/bsFlpt67Mr5wjXzE3l4JFSYjsH8uaNcfh66u9tIiIi0n4pUB/ljDPO4MMPP2TLli38+9//Zvv27Vx22WXO+/Pz8znnnHPo1q0ba9eu5bnnnuPxxx9nzpw5Lbjq1iErr4hr5qay/3AJfSP9efumBAK9PVp6WSIiIiJNymJqflm9Pv/8cyZPnkxJSQkeHh68+uqrzJo1i+zsbDw9PQF48MEH+fTTT9m8eXODzpmfn09QUBB5eXkEBgY25fKbjeNwCVe+vopfDxyhe5gvH94yiohA75ZeloiIiEiTU4W6HgcPHuS9995j9OjReHhUVlpXrVrFuHHjnGEaYOLEiWzZsoXc3FyX5ykpKSE/P7/GV3tyqLCU6+al8uuBI3QK8ubdmxOICPTGMAzsdjuGYbT0EkVERESajAK1Cw888AB+fn6EhYWRmZnJZ5995rwvOzubyMjIGsdXfZ+dne3yfMnJyQQFBTm/YmJimm7xzSyvsIRr56xkc/Zhwv29eG9qPF08CjAqyklKSmLq1KkkJSUpVIuIiEi71SEC9YMPPojFYqn3q3q7xv3338/69ev55ptvcHNzY8qUKSe0s19iYiJ5eXnOr927d5+Ml9XiikrKmPiXT8jIPoIX5bxz03B6bHoVPrudI18/SVpqCtnZ2aSmpmojFxEREWm3OsT4hXvvvZcbbrih3mN69uzp/N/h4eGEh4fTt29fBgwYQExMDCkpKYwaNYqoqCjsdnuNx1Z9HxUV5fLcXl5eeHl5ndiLaGXKKwxueTuNbCMAS3kxXXZ+QXhJb9izBgrs+JsmZ8QP5rs0CwkJCdrIRURERNqtDhGobTbbcQe6qlaFkpISAEaNGsWsWbMoKytz9lUvWrSIfv36ERIScnIW3MqZpslDn/zMsu2HcMMgZvdCxg/pSVjXfpA5AvaswdJlBHdfPZNrD+Rgs9m0kYuIiIi0W5ryUU1qaiqrV69mzJgxhISEsH37dh555BHsdjsZGRl4eXmRl5dHv379OOecc3jggQdIT0/npptu4sUXX2T69OkNep62PuXjma8289rS7Vgt8I9rhzHUZv09NBsGFB4A33BQiBYREZEOoENUqBvK19eX//znPzz22GMcOXKE6OhoJk2axMMPP+xs2QgKCuKbb75hxowZDB8+nPDwcB599NEGh+m2bu6yX3lt6XYAkv8wmEmxR+1+aLWCf0QLrExERESkZahC3QJaY4XaMAwcDke97Rn/XruHez/6EYA/T+rHbeN7N+rxIiIiIu2Rko9gGMYxR9x9u9HOn//9EwA3j+nBraf3atTjRURERNorBWrB4XCQmppa54i71TsPMuP9dVQYJn8Y1pmHzhuAxWJp8ONFRERE2jMFasFmsxEXF0dISAhxcXHOiSiGYbAifQc3LVhNSbnBGf1sPHvpKVitllqPT0hIICoqSiPyREREpMPRRYkC4Kw4V/3XMAweeHI2/8nvSYWnH75H9tF193rcLCNqPdZqtTJr1iz1UIuIiEiHpEAtOBwO0tLSyM3NJS0tDYfDwYHDJXx0IBr8/Sg/sAu3dQtY2ykCh8NRa+t1qAzVrm4XERERae9USuxADMPAbrfXumjw6JYNr4Bg7v5sG/iHU5G/n5JvXiAyNFDtHCIiIiIuaGxeC2iJsXlVkzhSU1NJSEhg1qxZNVozqsbeBQaHcsOCNaTuOIg3ZUSmv8sZI2K55ZZbnBVotXaIiIiI/E4tHx1E9UkcKSkpbNy4kYEDBzpDsdVqxWaL4PZ/riN1x0H8vdz557TRRHiMcobnGqE8Pp5Zd0/H6h+hHRFFRESkQ1MS6iCq2joiIyMpLi7mgQceqDUzOul/m/jfz9l4uFmYM2U4g7uEEBkZ6QzdVaHcnp1F990fUfbxLbD8+crtxkVEREQ6KAXqDqJqEsezzz6Lt7c3drvdWak2DIN5K3Ywb8UOAJ6/fAije4XXeLxhGBiGQXx8PP26hJHQ2R3PskOwZw0UHmiBVyQiIiLSOqjlowOxWq0MHDiQkSNHkpKS4qxUR46YxPelPQF48Nz+XHxq5xqPq97qERcXx3P/mE/k1nex7F0LXUaAb7irpxMRERHpEHRRYgtoiYsSqzMMg40bN/LAAw+wp9iL/OHXY1rdmTKqG09cNKjGLogAdrudqVOnkp2dTVRUFPPmzSPSZqusTPuGq4daREREOjQloQ6oqlLdP/50CoZei2l15+wBETx2Ye0wDXXshGi1gi5IFBEREVGFuiU0d4W6av404LzIcP/hYi55ZSV7DxUxNCaY96eNxMfTrd5zaFyeiIiISG1KRu2cYRg89dRTjB8/nvHjx/OXv/yF/KJSblqwmr2Hiuge5ssb14+oN0zD7zshKkyLiIiI1KSLEts5h8PBihUryM7OxmKxsGz5D2yKSCV9bz5hfp68dVM8Yf5eLb1MERERkTZLgbqds9lsjBkzhszMTEzAGn8Nq3bm4+1hZd4NcXQL82vpJYqIiIi0aeqhbgEt1UM9LzWLN1KysFpgznUjmDAwssmfW0RERKS9U0NsB2C1Wlm+t5w3UrIAeGpyrMK0iIiIyEmiQN0BLN3qIPE/PwNw2/heXJvQrYVXJCIiItJ+KFC3cwcKSrjt3bVUGCaXDO3M/RP7tfSSRERERNoVBep2Ltzfi8cvGsTpfW08e+kpLjduEREREZHjp4sSW0BLbD1umqbCtIiIiEgTUIW6g1CYFhEREWkaCtQiIiIiIidAgVpERERE5AQoUIuIiIiInAAFahERERGRE6BALSIiIiJyAhSoRUREREROgAK1iIiIiMgJUKAWERERETkBCtQiIiIiIidAgVpERERE5AQoUIuIiIiInAAFahERERGRE+De0gvoiEzTBCA/P7+FVyIiIiIi9QkICMBisdR7jAJ1Czh8+DAAMTExLbwSEREREalPXl4egYGB9R5jMavKpdJsDMNg3759Dfobz/HKz88nJiaG3bt3H/ND0NHovamb3hvX9L7UTe9N3fTe1E3vTd303tStpd4bVahbKavVSpcuXZrluQIDA/V/yDrovamb3hvX9L7UTe9N3fTe1E3vTd303tStNb43uihRREREROQEKFCLiIiIiJwABep2ysvLi8ceewwvL6+WXkqro/embnpvXNP7Uje9N3XTe1M3vTd103tTt9b83uiiRBERERGRE6AKtYiIiIjICVCgFhERERE5AQrUIiIiIiInQIFaREREROQEKFC3UUlJSYwePRpfX1+Cg4NdHpOZmcn555+Pr68vERER3H///ZSXl9d73oMHD3LttdcSGBhIcHAwU6dOpaCgoAleQfNYsmQJFovF5dfq1avrfNz48eNrHf+nP/2pGVfePLp3717rdT7zzDP1Pqa4uJgZM2YQFhaGv78/l156KXa7vZlW3Dx27tzJ1KlT6dGjBz4+PvTq1YvHHnuM0tLSeh/XXj83r7zyCt27d8fb25uEhATS0tLqPf6jjz6if//+eHt7M3jwYP73v/8100qbT3JyMnFxcQQEBBAREcHkyZPZsmVLvY9ZsGBBrc+Ht7d3M624+Tz++OO1Xmf//v3rfUxH+MyA65+5FouFGTNmuDy+PX9mli1bxoUXXkinTp2wWCx8+umnNe43TZNHH32U6OhofHx8mDBhAr/88ssxz9vYn1cniwJ1G1VaWsrll1/Orbfe6vL+iooKzj//fEpLS1m5ciVvvfUWCxYs4NFHH633vNdeey0ZGRksWrSIL774gmXLljF9+vSmeAnNYvTo0WRlZdX4uvnmm+nRowcjRoyo97HTpk2r8bjZs2c306qb15NPPlnjdd5xxx31Hn/PPffw3//+l48++oilS5eyb98+/vCHPzTTapvH5s2bMQyD119/nYyMDF588UVee+01HnrooWM+tr19bj744ANmzpzJY489xrp16xgyZAgTJ05k//79Lo9fuXIlV199NVOnTmX9+vVMnjyZyZMnk56e3swrb1pLly5lxowZpKSksGjRIsrKyjjnnHM4cuRIvY8LDAys8fnYtWtXM624eQ0aNKjG61yxYkWdx3aUzwzA6tWra7wvixYtAuDyyy+v8zHt9TNz5MgRhgwZwiuvvOLy/tmzZ/PXv/6V1157jdTUVPz8/Jg4cSLFxcV1nrOxP69OKlPatPnz55tBQUG1bv/f//5nWq1WMzs723nbq6++agYGBpolJSUuz7Vx40YTMFevXu287auvvjItFou5d+/ek772llBaWmrabDbzySefrPe4008/3bzrrruaZ1EtqFu3buaLL77Y4OMPHTpkenh4mB999JHztk2bNpmAuWrVqiZYYesxe/Zss0ePHvUe0x4/N/Hx8eaMGTOc31dUVJidOnUyk5OTXR5/xRVXmOeff36N2xISEsxbbrmlSdfZ0vbv328C5tKlS+s8pq6f1+3NY489Zg4ZMqTBx3fUz4xpmuZdd91l9urVyzQMw+X9HeUzA5iffPKJ83vDMMyoqCjzueeec9526NAh08vLy/znP/9Z53ka+/PqZFKFup1atWoVgwcPJjIy0nnbxIkTyc/PJyMjo87HBAcH16jcTpgwAavVSmpqapOvuTl8/vnn5OTkcOONNx7z2Pfee4/w8HBiY2NJTEyksLCwGVbY/J555hnCwsIYOnQozz33XL1tQWvXrqWsrIwJEyY4b+vfvz9du3Zl1apVzbHcFpOXl0doaOgxj2tPn5vS0lLWrl1b48/barUyYcKEOv+8V61aVeN4qPzZ0xE+H8AxPyMFBQV069aNmJgYLr744jp/Hrd1v/zyC506daJnz55ce+21ZGZm1nlsR/3MlJaW8u6773LTTTdhsVjqPK6jfGaq27FjB9nZ2TU+F0FBQSQkJNT5uTien1cnk3uTP4O0iOzs7BphGnB+n52dXedjIiIiatzm7u5OaGhonY9pa+bNm8fEiRPp0qVLvcddc801dOvWjU6dOvHTTz/xwAMPsGXLFv7zn/8000qbx5133smwYcMIDQ1l5cqVJCYmkpWVxQsvvODy+OzsbDw9PWv17UdGRrabz4gr27Zt429/+xvPP/98vce1t8/NgQMHqKiocPmzZPPmzS4fU9fPnvb8+TAMg7vvvpvTTjuN2NjYOo/r168fb775Jqeccgp5eXk8//zzjB49moyMjGP+TGpLEhISWLBgAf369SMrK4snnniCsWPHkp6eTkBAQK3jO+JnBuDTTz/l0KFD3HDDDXUe01E+M0er+rNvzOfieH5enUwK1K3Igw8+yLPPPlvvMZs2bTrmxR0dwfG8V3v27GHhwoV8+OGHxzx/9b7xwYMHEx0dzVlnncX27dvp1avX8S+8GTTmvZk5c6bztlNOOQVPT09uueUWkpOTW+XWrifqeD43e/fuZdKkSVx++eVMmzat3se25c+NHL8ZM2aQnp5eb58wwKhRoxg1apTz+9GjRzNgwABef/11nnrqqaZeZrM599xznf/7lFNOISEhgW7duvHhhx8yderUFlxZ6zJv3jzOPfdcOnXqVOcxHeUz0x4oULci9957b71/UwXo2bNng84VFRVV68rWqkkMUVFRdT7m6Mb98vJyDh48WOdjWsrxvFfz588nLCyMiy66qNHPl5CQAFRWKlt7MDqRz1FCQgLl5eXs3LmTfv361bo/KiqK0tJSDh06VKNKbbfbW91nxJXGvjf79u3jjDPOYPTo0cyZM6fRz9eWPjeuhIeH4+bmVmuKS31/3lFRUY06vq27/fbbnRdwN7Zi6OHhwdChQ9m2bVsTra51CA4Opm/fvnW+zo72mQHYtWsX3377baP/9aqjfGaq/uztdjvR0dHO2+12O6eeeqrLxxzPz6uTSYG6FbHZbNhstpNyrlGjRpGUlMT+/fudbRyLFi0iMDCQgQMH1vmYQ4cOsXbtWoYPHw7Ad999h2EYzmDQWjT2vTJNk/nz5zNlyhQ8PDwa/XwbNmwAqPF/7NbqRD5HGzZswGq11mr9qTJ8+HA8PDxYvHgxl156KQBbtmwhMzOzRhWltWrMe7N3717OOOMMhg8fzvz587FaG3/JSVv63Lji6enJ8OHDWbx4MZMnTwYq2xsWL17M7bff7vIxo0aNYvHixdx9993O2xYtWtQmPh+NYZomd9xxB5988glLliyhR48ejT5HRUUFP//8M+edd14TrLD1KCgoYPv27Vx33XUu7+8on5nq5s+fT0REBOeff36jHtdRPjM9evQgKiqKxYsXOwN0fn4+qampdU43O56fVydVk1/2KE1i165d5vr1680nnnjC9Pf3N9evX2+uX7/ePHz4sGmaplleXm7Gxsaa55xzjrlhwwbz66+/Nm02m5mYmOg8R2pqqtmvXz9zz549ztsmTZpkDh061ExNTTVXrFhh9unTx7z66qub/fWdbN9++60JmJs2bap13549e8x+/fqZqamppmma5rZt28wnn3zSXLNmjbljxw7zs88+M3v27GmOGzeuuZfdpFauXGm++OKL5oYNG8zt27eb7777rmmz2cwpU6Y4jzn6vTFN0/zTn/5kdu3a1fzuu+/MNWvWmKNGjTJHjRrVEi+hyezZs8fs3bu3edZZZ5l79uwxs7KynF/Vj+kIn5t//etfppeXl7lgwQJz48aN5vTp083g4GDnBKHrrrvOfPDBB53H//DDD6a7u7v5/PPPm5s2bTIfe+wx08PDw/z5559b6iU0iVtvvdUMCgoylyxZUuPzUVhY6Dzm6PfmiSeeMBcuXGhu377dXLt2rXnVVVeZ3t7eZkZGRku8hCZz7733mkuWLDF37Nhh/vDDD+aECRPM8PBwc//+/aZpdtzPTJWKigqza9eu5gMPPFDrvo70mTl8+LAzuwDmCy+8YK5fv97ctWuXaZqm+cwzz5jBwcHmZ599Zv7000/mxRdfbPbo0cMsKipynuPMM880//a3vzm/P9bPq6akQN1GXX/99SZQ6+v77793HrNz507z3HPPNX18fMzw8HDz3nvvNcvKypz3f//99yZg7tixw3lbTk6OefXVV5v+/v5mYGCgeeONNzpDelt29dVXm6NHj3Z5344dO2q8d5mZmea4cePM0NBQ08vLy+zdu7d5//33m3l5ec244qa3du1aMyEhwQwKCjK9vb3NAQMGmE8//bRZXFzsPObo98Y0TbOoqMi87bbbzJCQENPX19e85JJLagTN9mD+/Pku//9VvQbRkT43f/vb38yuXbuanp6eZnx8vJmSkuK87/TTTzevv/76Gsd/+OGHZt++fU1PT09z0KBB5pdfftnMK256dX0+5s+f7zzm6Pfm7rvvdr6PkZGR5nnnnWeuW7eu+RffxK688kozOjra9PT0NDt37mxeeeWV5rZt25z3d9TPTJWFCxeagLlly5Za93Wkz0xVBjn6q+r1G4ZhPvLII2ZkZKTp5eVlnnXWWbXes27dupmPPfZYjdvq+3nVlCymaZpNXwcXEREREWmfNIdaREREROQEKFCLiIiIiJwABWoRERERkROgQC0iIiIicgIUqEVEREREToACtYiIiIjICVCgFhERl7KysnjwwQc544wzCAgIwGKxsGTJkpZelohIq6NALSIiLm3ZsoVnn32WvXv3Mnjw4JZejohIq6VALSIiLg0fPpycnBy2bt3KzJkzW3o5IiKtlgK1iEgHUlRURP/+/enfvz9FRUXO2w8ePEh0dDSjR4+moqICgICAAEJDQ1tqqSIibYYCtYhIB+Lj48Nbb73Ftm3bmDVrlvP2GTNmkJeXx4IFC3Bzc2vBFYqItD3uLb0AERFpXgkJCfz5z3/m2Wef5ZJLLsFut/Ovf/2Ll156ib59+7b08kRE2hwFahGRDujxxx/niy++4Prrr6egoIDTTz+dO++8s6WXJSLSJqnlQ0SkA/L09OTNN99kx44dHD58mPnz52OxWFp6WSIibZICtYhIB7Vw4UIAiouL+eWXX1p4NSIibZcCtYhIB/TTTz/x5JNPcuONNzJ06FBuvvlm8vLyWnpZIiJtkgK1iEgHU1ZWxg033ECnTp14+eWXWbBgAXa7nXvuuaellyYi0ibpokQRkQ7mL3/5Cxs2bGDx4sUEBARwyimn8Oijj/Lwww9z2WWXcd5559U4FiAjIwOAd955hxUrVgDw8MMPN//iRURaIYtpmmZLL0JERJrHunXrSEhI4NZbb+Wvf/2r8/aKigpGjRrF3r17ycjIIDg4GKDeCxX160NEpJICtYiIiIjICVAPtYiIiIjICVCgFhERERE5AQrUIiIiIiInQIFaREREROQEKFCLiIiIiJwAzaEWcaGiooKysrKWXoaIiLQyHh4euLm5tfQypJVRoBapxjRNsrOzOXToUEsvRUREWqng4GCioqLqndMuHYsCtUg1VWE6IiICX19f/bAUEREn0zQpLCxk//79AERHR7fwiqS1UKAW+U1FRYUzTIeFhbX0ckREpBXy8fEBYP/+/URERKj9QwBdlCjiVNUz7evr28IrERGR1qzq94SutZEqCtQiR1Gbh4iI1Ee/J+RoCtQiIiIiIidAgVpEjsuCBQsIDg5u6WWISDuwZMkSLBaLJixJm6VALdLG3XDDDVgsFiwWC56envTu3Zsnn3yS8vLyJn3eK6+8kq1btzbpcxxL9dfu4eFBZGQkZ599Nm+++SaGYTTqXPoLwslR9WfyzDPP1Lj9008/bfZ/Jq/6bFgsFvz8/OjTpw833HADa9eubfS5xo8fz913333yF9kBVP9zcPX1+OOPt/QSRU6YArVIOzBp0iSysrL45ZdfuPfee3n88cd57rnnXB5bWlp6Up7Tx8eHiIiIk3KuE1H12nfu3MlXX33FGWecwV133cUFF1zQ5H+pENe8vb159tlnyc3NbemlMH/+fLKyssjIyOCVV16hoKCAhIQE3n777ZZeWoeRlZXl/HrppZcIDAyscdt9993XYms7WT8PRRSoRdoBLy8voqKi6NatG7feeisTJkzg888/ByorhpMnTyYpKYlOnTrRr18/AHbv3s0VV1xBcHAwoaGhXHzxxezcuROAb775Bm9v71r//HrXXXdx5plnAq4ruq+++iq9evXC09OTfv368c477zjv27lzJxaLhQ0bNjhvO3ToEBaLhSVLlgCQm5vLtddei81mw8fHhz59+jB//vwGvfbOnTszbNgwHnroIT777DO++uorFixY4DzuhRdeYPDgwfj5+RETE8Ntt91GQUEBUPnPzTfeeCN5eXm1qmbvvPMOI0aMICAggKioKK655hrnDFpxbcKECURFRZGcnFzvcStWrGDs2LH4+PgQExPDnXfeyZEjRwD4+9//TmxsrPPYqgr3a6+9VuN5Hn744Xqfo2oDju7du3POOefw8ccfc+2113L77bc7A39OTg5XX301nTt3xtfXl8GDB/PPf/7TeY4bbriBpUuX8vLLLzs/Hzt37qSiooKpU6fSo0cPfHx86NevHy+//HKj36/2LioqyvkVFBSExWKpcZu/v7/z2LVr1zJixAh8fX0ZPXo0W7ZsqXGuzz77jGHDhuHt7U3Pnj154oknavzFOTMzk4svvhh/f38CAwO54oorsNvtzvsff/xxTj31VN544w169OiBt7c3b7/9NmFhYZSUlNR4rsmTJ3Pdddc10bsi7Y0CtUg75OPjU6PysnjxYrZs2cKiRYv44osvKCsrY+LEiQQEBLB8+XJ++OEH/P39mTRpEqWlpZx11lkEBwfz73//23mOiooKPvjgA6699lqXz/nJJ59w1113ce+995Kens4tt9zCjTfeyPfff9/gdT/yyCNs3LiRr776ik2bNvHqq68SHh7e6Nd/5plnMmTIEP7zn/84b7Narfz1r38lIyODt956i++++44///nPAIwePbpW5ayqalZWVsZTTz3Fjz/+yKeffsrOnTu54YYbGr2mjsTNzY2nn36av/3tb+zZs8flMdu3b2fSpElceuml/PTTT3zwwQesWLGC22+/HYDTTz+djRs34nA4AFi6dCnh4eHOv3yVlZWxatUqxo8f3+j13XPPPRw+fJhFixYBUFxczPDhw/nyyy9JT09n+vTpXHfddaSlpQHw8ssvM2rUKKZNm+b8fMTExGAYBl26dOGjjz5i48aNPProozz00EN8+OGHjV7T8TJNk8LS8hb5Mk3zpL+eWbNm8X//93+sWbMGd3d3brrpJud9y5cvZ8qUKdx1111s3LiR119/nQULFpCUlASAYRhcfPHFHDx4kKVLl7Jo0SJ+/fVXrrzyyhrPsW3bNv7973/zn//8hw0bNnD55ZdTUVHhLEJA5YzpL7/8ssbzi9RHG7uINAHDMHA4HNhsNqzW5vt7q2maLF68mIULF3LHHXc4b/fz8+ONN97A09MTgHfffRfDMHjjjTecfa3z588nODiYJUuWcM4553DVVVfx/vvvM3XqVKAylB86dIhLL73U5XM///zz3HDDDdx2220AzJw5k5SUFJ5//nnOOOOMBq0/MzOTof/f3v3HNHW1cQD/8qtQ2kLprPshdoCyiAyhIAgYZYZujQHXbEGX2EmXqBk4t7iIjGWLDLARgxqGG2Ysm1sXDHOL27uxRRS1xNWl/ohhuqJmW4e+zoojsKzDMlae94+u97UgyC9Rw/P5p+29t73n9p7b+/Tc59yjVmP+/PkAgKioqDF9DwAwZ84c/PDDD8Lrm/Nfo6KisGXLFhQUFKC2thYikcin5exmN59QY2JiUFNTg9TUVDidTp+WtXtafz/Q8zsQOg2YpPr4zDPPICkpCaWlpfjggw8Gzd+6dSv0er2wX2JjY1FTU4OsrCzs3r0bjz/+OBQKBVpaWpCXlwez2YyNGzcKLcAnTpxAX18fMjMzR122OXPmAIBwRWbGjBk+aQcvv/wympqasG/fPqSlpSE8PBwikQihoaE+9SMgIABlZWXC6+joaHz//ffYt28fVqxYMepyjcWNPjfmbm6alHUNZCvXIlQ0sWGE0WhEVlYWAKCkpAQ5OTlwuVwICQlBWVkZSkpKYDAYAHiOx4qKChQXF6O0tBSHDx/G2bNnYbfbMXPmTACAyWRCfHw8Tp48idTUVACeNA+TyQSlUimsd+XKldizZw+WL18OwPMbqVKpxvSHjU1N3ELN2ATr7++H0WjE6tWrYTQaR905biwaGxshlUoREhKCpUuX4rnnnvPp6JOQkCAE0wDQ2tqKn376CTKZDFKpFFKpFAqFAi6XCz///DMAQK/Xw2w247fffgMA1NfXIycnZ8iOe21tbVi4cKHPtIULF6KtrW3E21FYWIiGhgYkJSWhuLgYx48fH/F7ByIin05wzc3NyM7OxowZMyCTybBq1Sp0dnaip6dn2M85ffo0li1bBpVKBZlMJpzsL126NOayTar+fuDYduA/6z2Pk1AfvbZt24aPP/74lnWgtbUVH330kVD/pFIptFot+vv7Ybfb4efnh8WLF8NsNqO7uxs2mw3r1q1Db28vzp8/j5aWFqSmpo5pICZvy6q3frjdblRUVCAhIQEKhQJSqRRNTU0j2sfvvvsuUlJSoFQqIZVKUVdXd//UjXvQvHnzhOfeYb29KVatra0oLy/3qTPeqwY9PT1oa2vDzJkzhWAaAObOnQu5XO5TBx999FGfYBoA1q5di4MHD+LKlSsAPClt3g62jI0Et1AzNsGuX78Oq9UKh8MBq9WK69ev48EHH7yj61yyZAl2794NkUiERx55BIGBvoe2RCLxee10OpGSkoL6+vpBn+U90aSmpmLWrFloaGhAYWEhvvjiC5+c5NHyttTffJl44ChjS5cuRXt7O7799lscOnQI2dnZeOmll7B9+/ZRr6+trQ3R0dEAPC2Rubm5KCwshNFohEKhwHfffYfVq1fj77//HjIo++uvv6DVaqHValFfXw+lUolLly5Bq9XeP52Zen4H/nsKcF7zPPb8DkgnpzPp4sWLodVq8frrrw9Kk3E6nXjxxRfxyiuvDHqfSqUC4LmzRl1dHY4dOwa1Wo2wsDAhyG5paRH+3IyWN7jy1o+qqiq8/fbbqK6uFvLsN2zYcNt93NDQgKKiIuzYsQMZGRmQyWSoqqqC1WodU7nGQhwUAFu5dtLWN3DdEy0oKEh47g1mvY0STqcTZWVlePbZZwe9LyQkZMTrGPh7CABqtRqJiYkwmUx46qmn8OOPP+Kbb74ZbfHZFMYBNWMTTKlUYsGCBbBarViwYMGglpA7QSKRYPbs2SNePjk5GZ9++immT5+OsLCwIZfT6/Wor69HZGQk/P39kZOTM+SycXFxsFgswuVYALBYLJg7dy6A/wfqV69ehVqtBgCfDopeSqUSBoMBBoMBixYtwqZNm0YdUB85cgRnz57Fq6++CsDTytzf348dO3YIgf3APFeRSAS32+0z7fz58+js7ERlZaXQ6nXq1KlRleWuC50GRM73BNOR8z2vJ1FlZSWSkpKEzrBeycnJsNlsw9bbrKwsbNiwAZ999plw6f2JJ55Ac3MzLBYLNm7cOKYyefPlNRoNAE891el0eP755wF4AriLFy8KdRe4df2wWCzIzMwU0pwACFd4Joufn9+Ep13cq5KTk3HhwoUh60xcXBwuX76My5cvC8erzWZDd3e3z74cypo1a1BdXY0rV65Ao9H4tHQzdjtT4yhkbBL5+/vjjTfeuCs51COl1+tRVVUFnU6H8vJyREZGor29Hfv370dxcTEiIyOF5d566y0YjUbk5eUhODh4yM/ctGkTVqxYAbVaDY1Gg6+//hr79+9Hc3MzAE9HyfT0dFRWViI6OhodHR2D7tCwefNmpKSkID4+Hr29vWhsbERcXNyw29Lb2wuHwwG3241r167hwIED2Lp1K3Jzc5Gfnw8AmD17Nvr6+rBr1y4sW7YMFovF524RgCev2ul04vDhw0hMTERoaChUKhVEIhF27dqFgoICnDt3DhUVFaP+vu8qf39gUdGk51B7JSQkQK/Xo6amxmf6a6+9hvT0dKxfvx5r1qyBRCKBzWbDoUOH8M477wDwXP6PiIjA3r170djYCMATUBcVFcHPz29QitGtdHd3w+FwoLe3FxcvXsR7772HL7/8EiaTSUhfio2Nxeeff47jx48jIiICO3fuxLVr13yCsKioKFitVvz6669CilRsbCxMJhOampoQHR2NTz75BCdPnhRavtnE2rx5M3Jzc6FSqZCXlwd/f3+0trbi3Llz2LJlCzQajVDfqqur8c8//2DdunXIysoS+mUMZ+XKlSgqKsL777/Pt1Vko0eMMSIiunHjBtlsNrpx48bdLsqoGAwG0ul0o55/9epVys/Pp2nTplFwcDDFxMTQ2rVr6Y8//vBZLi0tjQDQkSNHfKbv2bOHwsPDfabV1tZSTEwMBQUF0WOPPUYmk8lnvs1mo4yMDBKLxZSUlEQHDx4kAHT06FEiIqqoqKC4uDgSi8WkUChIp9PRL7/8Muy2ASAAFBgYSEqlkjQaDX344Yfkdrt9lt25cyc9/PDDJBaLSavVkslkIgDU1dUlLFNQUEAPPPAAAaDS0lIiItq7dy9FRUVRcHAwZWRk0FdffUUA6MyZM0OWayq7VX2z2+0kEolo4CnnxIkT9OSTT5JUKiWJRELz5s0jo9Hos4xOp6PAwED6888/iYjI7XZTREQEpaen37Ys3roBgEJCQmjWrFlkMBjo9OnTPst1dnaSTqcjqVRK06dPpzfffJPy8/N9tuPChQuUnp5OYrGYAJDdbieXy0UvvPAChYeHk1wup8LCQiopKaHExMSRf2FTzK1+N4iIjh49Ouh4PHPmjPBdex04cIAyMzNJLBZTWFgYpaWlUV1dnTC/vb2dnn76aZJIJCSTyWj58uXkcDiE+aWlpcPun1WrVpFCoSCXyzXsdtyv5wt25/gR3YH73jB2H3K5XLDb7cK9SRljjE0t2dnZiI+PH3RFZSA+X7CBOOWDMcYYY1NaV1cXzGYzzGYzamtr73Zx2H2IA2rGGGOMTWlqtRpdXV3Ytm3boA60jI0EB9SMMcYYm9K8g/wwNlb33u0HGGOMMcYYu49wQM3YANxPlzHG2HD4PMEG4oCasX95R+i63VDUjDHGpjbveeLmkR3Z1MY51Iz9KyAgAHK5HB0dHQCA0NBQYehbxhhjjIjQ09ODjo4OyOVyBARM/PDr7P7E96Fm7CZEBIfDge7u7rtdFMYYY/couVyOhx56iBtdmIADasZuwe12o6+v724XgzHG2D0mKCiIW6bZIBxQM8YYY4wxNg7cKZExxhhjjLFx4ICaMcYYY4yxceCAmjHGGGOMsXHggJoxxhhjjLFx4ICaMcYYY4yxceCAmjHGGGOMsXHggJoxxhhjjLFx+B8LSu83l+LtkwAAAABJRU5ErkJggg==\n"
- },
- "metadata": {},
- "output_type": "display_data"
- }
- ],
- "source": [
- "# Visualize final cycle\n",
- "plot_results_panel_2d(random_experimentalist_cycle,\n",
- " query=[-1],\n",
- " subplot_kw=dict(figsize=(8,5))\n",
- " );\n"
- ],
- "metadata": {
- "collapsed": false
- }
- }
- ],
- "metadata": {
- "kernelspec": {
- "display_name": "Python 3",
- "language": "python",
- "name": "python3"
- },
- "language_info": {
- "codemirror_mode": {
- "name": "ipython",
- "version": 2
- },
- "file_extension": ".py",
- "mimetype": "text/x-python",
- "name": "python",
- "nbconvert_exporter": "python",
- "pygments_lexer": "ipython2",
- "version": "2.7.6"
- }
- },
- "nbformat": 4,
- "nbformat_minor": 0
-}
diff --git a/docs/cycle/simple_cycle_bms_darts.ipynb b/docs/cycle/simple_cycle_bms_darts.ipynb
deleted file mode 100644
index be862996f..000000000
--- a/docs/cycle/simple_cycle_bms_darts.ipynb
+++ /dev/null
@@ -1,396 +0,0 @@
-{
- "cells": [
- {
- "cell_type": "markdown",
- "source": [
- "# Simple Cycle Examples with BMS and DARTS\n",
- "The aim of this example notebook is to use the AutoRA `Cycle` to recover a simple ground truth theory from some noisy data using BSM and DARTS, as a proof of concept.\n",
- "It uses a trivial experimentalist which resamples the same x-values each cycle."
- ],
- "metadata": {
- "collapsed": false
- }
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "outputs": [],
- "source": [
- "# Uncomment the following line when running on Google Colab\n",
- "# !pip install autora"
- ],
- "metadata": {
- "collapsed": false
- }
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "outputs": [],
- "source": [
- "from autora.variable import VariableCollection, Variable\n",
- "from autora.cycle import Cycle, plot_results_panel_2d\n",
- "from itertools import repeat, chain"
- ],
- "metadata": {
- "collapsed": false
- }
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "outputs": [],
- "source": [
- "def ground_truth(xs):\n",
- " return (xs ** 2.) + xs + 1."
- ],
- "metadata": {
- "collapsed": false
- }
- },
- {
- "cell_type": "markdown",
- "source": [
- "The space of allowed x values is the integers between 0 and 10 inclusive, and we record the allowed output values as well."
- ],
- "metadata": {
- "collapsed": false
- }
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "outputs": [],
- "source": [
- "study_metadata = VariableCollection(\n",
- " independent_variables=[Variable(name=\"x1\", allowed_values=range(11))],\n",
- " dependent_variables=[Variable(name=\"y\", value_range=(-20, 20))],\n",
- " )"
- ],
- "metadata": {
- "collapsed": false
- }
- },
- {
- "cell_type": "markdown",
- "source": [
- "The experimentalist is used to propose experiments.\n",
- "Since the space of values is so restricted, we can just sample them all each time."
- ],
- "metadata": {
- "collapsed": false
- }
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "outputs": [],
- "source": [
- "from autora.experimentalist.pipeline import make_pipeline\n",
- "example_experimentalist = make_pipeline(\n",
- " [list(chain.from_iterable((repeat(study_metadata.independent_variables[0].allowed_values, 10))))])"
- ],
- "metadata": {
- "collapsed": false
- }
- },
- {
- "cell_type": "markdown",
- "source": [
- "When we run a synthetic experiment, we get a reproducible noisy result:"
- ],
- "metadata": {
- "collapsed": false
- }
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "outputs": [],
- "source": [
- "import numpy as np\n",
- "\n",
- "def get_example_synthetic_experiment_runner():\n",
- " rng = np.random.default_rng(seed=180)\n",
- " def runner(xs):\n",
- " return ground_truth(xs) + rng.normal(0, 1.0, xs.shape)\n",
- " return runner\n",
- "\n",
- "example_synthetic_experiment_runner = get_example_synthetic_experiment_runner()\n",
- "x = np.array([1.])\n",
- "example_synthetic_experiment_runner(x)"
- ],
- "metadata": {
- "collapsed": false
- }
- },
- {
- "cell_type": "markdown",
- "source": [
- "## Bayesian Machine Scientist"
- ],
- "metadata": {
- "collapsed": false
- }
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "outputs": [],
- "source": [
- "from autora.skl.bms import BMSRegressor\n",
- "bms_theorist = BMSRegressor(epochs=100)"
- ],
- "metadata": {
- "collapsed": false
- }
- },
- {
- "cell_type": "markdown",
- "source": [
- "We initialize the Cycle with the metadata describing the domain of the theory,\n",
- "the theorist, experimentalist and experiment runner,\n",
- "as well as a monitor which will let us know which cycle we're currently on."
- ],
- "metadata": {
- "collapsed": false
- }
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "outputs": [],
- "source": [
- "cycle = Cycle(\n",
- " metadata=study_metadata,\n",
- " theorist=bms_theorist,\n",
- " experimentalist=example_experimentalist,\n",
- " experiment_runner=example_synthetic_experiment_runner\n",
- ")"
- ],
- "metadata": {
- "collapsed": false
- }
- },
- {
- "cell_type": "markdown",
- "source": [
- "We can run the cycle by calling the run method:"
- ],
- "metadata": {
- "collapsed": false
- }
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "outputs": [],
- "source": [
- "cycle.run(num_cycles=3)"
- ],
- "metadata": {
- "collapsed": false
- }
- },
- {
- "cell_type": "markdown",
- "source": [
- "We can now interrogate the results. The first set of conditions which went into the\n",
- "experiment runner were:"
- ],
- "metadata": {
- "collapsed": false
- }
- },
- {
- "cell_type": "markdown",
- "source": [
- "The observations include the conditions and the results:"
- ],
- "metadata": {
- "collapsed": false
- }
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "outputs": [],
- "source": [
- "cycle.data.observations[0]"
- ],
- "metadata": {
- "collapsed": false
- }
- },
- {
- "cell_type": "markdown",
- "source": [
- "The best fit theory after the first cycle is:"
- ],
- "metadata": {
- "collapsed": false
- }
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "outputs": [],
- "source": [
- "len(cycle.data.observations)"
- ],
- "metadata": {
- "collapsed": false
- }
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "outputs": [],
- "source": [
- "str(cycle.data.theories[0].model_), cycle.data.theories[0].model_.fit_par[str(cycle.data.theories[0].model_)]"
- ],
- "metadata": {
- "collapsed": false
- }
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "outputs": [],
- "source": [
- "str(cycle.data.theories[-1].model_), cycle.data.theories[-1].model_.fit_par[str(cycle.data.theories[-1].model_)]"
- ],
- "metadata": {
- "collapsed": false
- }
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "outputs": [],
- "source": [
- "# Plot all cycle results\n",
- "plot_results_panel_2d(cycle, subplot_kw=dict(figsize=(12,4)))"
- ],
- "metadata": {
- "collapsed": false
- }
- },
- {
- "cell_type": "markdown",
- "source": [
- "## DARTS\n"
- ],
- "metadata": {
- "collapsed": false
- },
- "execution_count": 217
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "outputs": [],
- "source": [
- "from autora.skl.darts import DARTSRegressor\n",
- "darts_theorist = DARTSRegressor(max_epochs=100)"
- ],
- "metadata": {
- "collapsed": false
- }
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "outputs": [],
- "source": [
- "darts_cycle = Cycle(\n",
- " metadata=study_metadata,\n",
- " theorist=darts_theorist,\n",
- " experimentalist=example_experimentalist,\n",
- " experiment_runner=example_synthetic_experiment_runner\n",
- ")"
- ],
- "metadata": {
- "collapsed": false
- }
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "outputs": [],
- "source": [
- "darts_cycle.run(3)"
- ],
- "metadata": {
- "collapsed": false
- }
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "outputs": [],
- "source": [
- "darts_cycle.data.theories[-2].visualize_model()\n"
- ],
- "metadata": {
- "collapsed": false
- }
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "outputs": [],
- "source": [
- "darts_cycle.data.theories[-2].model_repr()\n"
- ],
- "metadata": {
- "collapsed": false
- }
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "outputs": [],
- "source": [
- "# Rerun 3 more times\n",
- "darts_cycle.run(3)"
- ],
- "metadata": {
- "collapsed": false
- }
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "outputs": [],
- "source": [
- "# Plot the all cycle results\n",
- "plot_results_panel_2d(darts_cycle, wrap=3)\n"
- ],
- "metadata": {
- "collapsed": false
- }
- }
- ],
- "metadata": {
- "kernelspec": {
- "display_name": "Python 3",
- "language": "python",
- "name": "python3"
- },
- "language_info": {
- "codemirror_mode": {
- "name": "ipython",
- "version": 2
- },
- "file_extension": ".py",
- "mimetype": "text/x-python",
- "name": "python",
- "nbconvert_exporter": "python",
- "pygments_lexer": "ipython2",
- "version": "2.7.6"
- }
- },
- "nbformat": 4,
- "nbformat_minor": 0
-}
diff --git a/docs/cycle/simple_cycle_bms_model_poppernet.ipynb b/docs/cycle/simple_cycle_bms_model_poppernet.ipynb
deleted file mode 100644
index 1bda9fd20..000000000
--- a/docs/cycle/simple_cycle_bms_model_poppernet.ipynb
+++ /dev/null
@@ -1,622 +0,0 @@
-{
- "cells": [
- {
- "cell_type": "code",
- "execution_count": 1,
- "outputs": [],
- "source": [
- "# Uncomment the following line when running on Google Colab\n",
- "# !pip install autora"
- ],
- "metadata": {
- "collapsed": false
- }
- },
- {
- "cell_type": "code",
- "execution_count": 2,
- "metadata": {
- "collapsed": true
- },
- "outputs": [],
- "source": [
- "import matplotlib.pyplot as plt\n",
- "import numpy as np\n",
- "\n",
- "from autora.cycle import Cycle\n",
- "from autora.experimentalist.pipeline import Pipeline\n",
- "from autora.experimentalist.pooler import grid_pool, poppernet_pool\n",
- "from autora.experimentalist.sampler import nearest_values_sampler\n",
- "from autora.skl.bms import BMSRegressor\n",
- "from autora.variable import Variable, VariableCollection"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 3,
- "outputs": [],
- "source": [
- "# meta parameters\n",
- "ground_truth_resolution = 1000\n",
- "samples_per_cycle = 7\n",
- "value_range = (-1, 5)\n",
- "allowed_values = np.linspace(value_range[0], value_range[1], ground_truth_resolution)"
- ],
- "metadata": {
- "collapsed": false
- }
- },
- {
- "cell_type": "code",
- "execution_count": 4,
- "outputs": [],
- "source": [
- "# define ground truth\n",
- "def ground_truth(xs):\n",
- " # return (xs ** 2.) + xs + 1.\n",
- " y = xs * 1.0\n",
- " y[xs < 0] = 0\n",
- " return y"
- ],
- "metadata": {
- "collapsed": false
- }
- },
- {
- "cell_type": "code",
- "execution_count": 5,
- "outputs": [],
- "source": [
- "# define variables\n",
- "study_metadata = VariableCollection(\n",
- " independent_variables=[\n",
- " Variable(name=\"x1\", allowed_values=allowed_values, value_range=value_range)\n",
- " ],\n",
- " dependent_variables=[Variable(name=\"y\", value_range=(-20, 20))],\n",
- ")"
- ],
- "metadata": {
- "collapsed": false
- }
- },
- {
- "cell_type": "code",
- "execution_count": 6,
- "outputs": [],
- "source": [
- "# define experiment platform\n",
- "def get_synthetic_experiment_runner():\n",
- " rng = np.random.default_rng(seed=180)\n",
- "\n",
- " def runner(xs):\n",
- " return ground_truth(xs) + rng.normal(0, 0.5, xs.shape)\n",
- "\n",
- " return runner\n",
- "\n",
- "synthetic_experiment_runner = get_synthetic_experiment_runner()"
- ],
- "metadata": {
- "collapsed": false
- }
- },
- {
- "cell_type": "code",
- "execution_count": 7,
- "outputs": [],
- "source": [
- "# Initialize the experimentalist\n",
- "random_experimentalist = Pipeline(\n",
- " [\n",
- " (\"grid_pool\", grid_pool), # type: ignore\n",
- " (\"nearest_values_sampler\", nearest_values_sampler), # type: ignore\n",
- " ],\n",
- " {\n",
- " \"grid_pool\": {\"ivs\": study_metadata.independent_variables},\n",
- " \"nearest_values_sampler\": {\n",
- " \"allowed_values\": np.linspace(\n",
- " value_range[0], value_range[1], samples_per_cycle\n",
- " ),\n",
- " \"n\": samples_per_cycle,\n",
- " },\n",
- " },\n",
- ")"
- ],
- "metadata": {
- "collapsed": false
- }
- },
- {
- "cell_type": "code",
- "execution_count": 8,
- "outputs": [],
- "source": [
- "# define theorist\n",
- "bms_theorist = BMSRegressor(epochs=100)"
- ],
- "metadata": {
- "collapsed": false
- }
- },
- {
- "cell_type": "code",
- "execution_count": 9,
- "outputs": [
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- "INFO:autora.skl.bms:BMS fitting started\n",
- " 0%| | 0/100 [00:00, ?it/s]:2: RuntimeWarning: invalid value encountered in power\n",
- " return X0**_a0_\n",
- ":2: RuntimeWarning: divide by zero encountered in divide\n",
- " return _a0_/X0\n",
- ":2: RuntimeWarning: divide by zero encountered in divide\n",
- " return _a0_/X0\n",
- " 3%|▎ | 3/100 [00:00<00:03, 24.45it/s]:2: RuntimeWarning: divide by zero encountered in divide\n",
- " return sig(_a0_/X0)\n",
- "/Users/jholla10/Library/Caches/pypoetry/virtualenvs/autora-17yK3Jyq-py3.8/lib/python3.8/site-packages/scipy/optimize/_minpack_py.py:906: OptimizeWarning: Covariance of the parameters could not be estimated\n",
- " warnings.warn('Covariance of the parameters could not be estimated',\n",
- ":2: RuntimeWarning: divide by zero encountered in divide\n",
- " return sig(_a0_/X0)\n",
- ":2: RuntimeWarning: divide by zero encountered in divide\n",
- " return sig(_a0_/X0)\n",
- ":2: RuntimeWarning: invalid value encountered in sqrt\n",
- " return sqrt(X0)\n",
- ":2: RuntimeWarning: invalid value encountered in sqrt\n",
- " return sqrt(X0)\n",
- " 6%|▌ | 6/100 [00:00<00:04, 19.35it/s]:2: RuntimeWarning: divide by zero encountered in log\n",
- " return log(X0)\n",
- ":2: RuntimeWarning: invalid value encountered in log\n",
- " return log(X0)\n",
- ":2: RuntimeWarning: divide by zero encountered in log\n",
- " return log(X0)\n",
- ":2: RuntimeWarning: invalid value encountered in log\n",
- " return log(X0)\n",
- ":2: RuntimeWarning: divide by zero encountered in log\n",
- " return log(X0)\n",
- ":2: RuntimeWarning: invalid value encountered in log\n",
- " return log(X0)\n",
- ":2: RuntimeWarning: divide by zero encountered in divide\n",
- " return _a0_/X0\n",
- ":2: RuntimeWarning: divide by zero encountered in divide\n",
- " return _a0_/X0\n",
- ":2: RuntimeWarning: divide by zero encountered in log\n",
- " return -log(X0)\n",
- ":2: RuntimeWarning: invalid value encountered in log\n",
- " return -log(X0)\n",
- ":2: RuntimeWarning: divide by zero encountered in log\n",
- " return -log(X0)\n",
- ":2: RuntimeWarning: invalid value encountered in log\n",
- " return -log(X0)\n",
- ":2: RuntimeWarning: divide by zero encountered in log\n",
- " return -log(X0)\n",
- ":2: RuntimeWarning: invalid value encountered in log\n",
- " return -log(X0)\n",
- ":2: RuntimeWarning: divide by zero encountered in log\n",
- " return -_a0_*log(X0)\n",
- ":2: RuntimeWarning: invalid value encountered in log\n",
- " return -_a0_*log(X0)\n",
- ":2: RuntimeWarning: divide by zero encountered in log\n",
- " return -_a0_*log(X0)\n",
- ":2: RuntimeWarning: invalid value encountered in log\n",
- " return -_a0_*log(X0)\n",
- ":2: RuntimeWarning: divide by zero encountered in log\n",
- " return -_a0_*log(X0)\n",
- ":2: RuntimeWarning: invalid value encountered in log\n",
- " return -_a0_*log(X0)\n",
- " 10%|█ | 10/100 [00:00<00:03, 24.48it/s]:2: RuntimeWarning: divide by zero encountered in divide\n",
- " return _a0_/X0\n",
- ":2: RuntimeWarning: divide by zero encountered in divide\n",
- " return _a0_/X0\n",
- ":2: RuntimeWarning: divide by zero encountered in divide\n",
- " return _a0_/X0\n",
- ":2: RuntimeWarning: divide by zero encountered in divide\n",
- " return _a0_/X0\n",
- " 13%|█▎ | 13/100 [00:00<00:03, 25.56it/s]:2: RuntimeWarning: invalid value encountered in sqrt\n",
- " return sqrt(X0)\n",
- ":2: RuntimeWarning: invalid value encountered in sqrt\n",
- " return sqrt(X0)\n",
- ":2: RuntimeWarning: invalid value encountered in sqrt\n",
- " return sqrt(X0)\n",
- " 17%|█▋ | 17/100 [00:00<00:02, 28.60it/s]:2: RuntimeWarning: invalid value encountered in sqrt\n",
- " return sqrt(X0)\n",
- ":2: RuntimeWarning: invalid value encountered in sqrt\n",
- " return sqrt(X0)\n",
- " 25%|██▌ | 25/100 [00:00<00:02, 29.38it/s]:2: RuntimeWarning: invalid value encountered in sqrt\n",
- " return sqrt(X0)\n",
- ":2: RuntimeWarning: divide by zero encountered in divide\n",
- " return abs(relu(_a0_/X0))\n",
- ":2: RuntimeWarning: divide by zero encountered in divide\n",
- " return abs(relu(_a0_/X0))\n",
- ":2: RuntimeWarning: divide by zero encountered in divide\n",
- " return abs(relu(_a0_/X0))\n",
- ":2: RuntimeWarning: divide by zero encountered in log\n",
- " return log(X0)\n",
- ":2: RuntimeWarning: invalid value encountered in log\n",
- " return log(X0)\n",
- ":2: RuntimeWarning: divide by zero encountered in log\n",
- " return log(X0)\n",
- ":2: RuntimeWarning: invalid value encountered in log\n",
- " return log(X0)\n",
- ":2: RuntimeWarning: invalid value encountered in sqrt\n",
- " return sqrt(X0)\n",
- ":2: RuntimeWarning: divide by zero encountered in log\n",
- " return log(X0)\n",
- ":2: RuntimeWarning: invalid value encountered in log\n",
- " return log(X0)\n",
- " 29%|██▉ | 29/100 [00:01<00:02, 30.25it/s]:2: RuntimeWarning: invalid value encountered in power\n",
- " return abs(X0**_a0_)\n",
- ":2: RuntimeWarning: invalid value encountered in sqrt\n",
- " return relu(sqrt(X0))\n",
- ":2: RuntimeWarning: invalid value encountered in sqrt\n",
- " return relu(sqrt(X0))\n",
- ":2: RuntimeWarning: invalid value encountered in sqrt\n",
- " return sqrt(X0)\n",
- ":2: RuntimeWarning: invalid value encountered in sqrt\n",
- " return sqrt(X0)\n",
- " 33%|███▎ | 33/100 [00:01<00:02, 31.17it/s]:2: RuntimeWarning: invalid value encountered in sqrt\n",
- " return sqrt(X0)\n",
- ":2: RuntimeWarning: invalid value encountered in sqrt\n",
- " return sqrt(X0)\n",
- ":2: RuntimeWarning: divide by zero encountered in divide\n",
- " return _a0_/X0\n",
- ":2: RuntimeWarning: divide by zero encountered in divide\n",
- " return _a0_/X0\n",
- ":2: RuntimeWarning: invalid value encountered in power\n",
- " return relu(X0**_a0_)\n",
- ":2: RuntimeWarning: divide by zero encountered in divide\n",
- " return sig(sig(_a0_/X0)**2)\n",
- ":2: RuntimeWarning: divide by zero encountered in divide\n",
- " return sig(sig(_a0_/X0)**2)\n",
- ":2: RuntimeWarning: divide by zero encountered in divide\n",
- " return sig(sig(_a0_/X0)**2)\n",
- ":2: RuntimeWarning: invalid value encountered in sqrt\n",
- " return sqrt(X0)\n",
- " 37%|███▋ | 37/100 [00:01<00:01, 32.09it/s]:2: RuntimeWarning: divide by zero encountered in divide\n",
- " return _a0_/X0\n",
- ":2: RuntimeWarning: divide by zero encountered in divide\n",
- " return _a0_/X0\n",
- ":2: RuntimeWarning: divide by zero encountered in divide\n",
- " return _a0_/X0\n",
- ":2: RuntimeWarning: divide by zero encountered in divide\n",
- " return _a0_/X0\n",
- ":2: RuntimeWarning: invalid value encountered in sqrt\n",
- " return relu(sqrt(X0))\n",
- ":2: RuntimeWarning: invalid value encountered in sqrt\n",
- " return relu(sqrt(X0))\n",
- ":2: RuntimeWarning: divide by zero encountered in divide\n",
- " return _a0_/X0\n",
- ":2: RuntimeWarning: divide by zero encountered in divide\n",
- " return _a0_/X0\n",
- " 41%|████ | 41/100 [00:01<00:01, 32.14it/s]:2: RuntimeWarning: divide by zero encountered in power\n",
- " return sig(sig(sig(X0**_a0_)))\n",
- ":2: RuntimeWarning: invalid value encountered in power\n",
- " return sig(sig(sig(X0**_a0_)))\n",
- ":2: RuntimeWarning: divide by zero encountered in power\n",
- " return sig(sig(sig(X0**_a0_)))\n",
- ":2: RuntimeWarning: invalid value encountered in power\n",
- " return sig(sig(sig(X0**_a0_)))\n",
- ":2: RuntimeWarning: divide by zero encountered in power\n",
- " return sig(sig(sig(X0**_a0_)))\n",
- ":2: RuntimeWarning: invalid value encountered in power\n",
- " return sig(sig(sig(X0**_a0_)))\n",
- ":2: RuntimeWarning: divide by zero encountered in divide\n",
- " return _a0_/X0\n",
- ":2: RuntimeWarning: divide by zero encountered in divide\n",
- " return _a0_/X0\n",
- ":2: RuntimeWarning: divide by zero encountered in divide\n",
- " return _a0_/X0\n",
- ":2: RuntimeWarning: divide by zero encountered in divide\n",
- " return _a0_/X0\n",
- " 45%|████▌ | 45/100 [00:01<00:01, 32.18it/s]:2: RuntimeWarning: divide by zero encountered in log\n",
- " return log(relu(X0))\n",
- ":2: RuntimeWarning: divide by zero encountered in log\n",
- " return log(relu(X0))\n",
- ":2: RuntimeWarning: divide by zero encountered in log\n",
- " return log(X0)\n",
- ":2: RuntimeWarning: invalid value encountered in log\n",
- " return log(X0)\n",
- ":2: RuntimeWarning: divide by zero encountered in log\n",
- " return log(X0)\n",
- ":2: RuntimeWarning: invalid value encountered in log\n",
- " return log(X0)\n",
- ":2: RuntimeWarning: invalid value encountered in sqrt\n",
- " return sqrt(X0)\n",
- " 49%|████▉ | 49/100 [00:01<00:01, 32.49it/s]:2: RuntimeWarning: invalid value encountered in power\n",
- " return relu(relu(X0**_a0_))\n",
- ":2: RuntimeWarning: divide by zero encountered in divide\n",
- " return relu(_a0_/X0)\n",
- ":2: RuntimeWarning: divide by zero encountered in divide\n",
- " return relu(_a0_/X0)\n",
- ":2: RuntimeWarning: divide by zero encountered in divide\n",
- " return relu(_a0_/X0)\n",
- ":2: RuntimeWarning: divide by zero encountered in log\n",
- " return abs(log(X0))\n",
- ":2: RuntimeWarning: invalid value encountered in log\n",
- " return abs(log(X0))\n",
- ":2: RuntimeWarning: divide by zero encountered in log\n",
- " return abs(log(X0))\n",
- ":2: RuntimeWarning: invalid value encountered in log\n",
- " return abs(log(X0))\n",
- " 53%|█████▎ | 53/100 [00:01<00:01, 32.94it/s]:2: RuntimeWarning: invalid value encountered in sqrt\n",
- " return abs(sqrt(X0))\n",
- ":2: RuntimeWarning: invalid value encountered in sqrt\n",
- " return abs(sqrt(X0))\n",
- ":2: RuntimeWarning: invalid value encountered in sqrt\n",
- " return sqrt(X0)\n",
- ":2: RuntimeWarning: invalid value encountered in sqrt\n",
- " return sqrt(X0)\n",
- " 57%|█████▋ | 57/100 [00:01<00:01, 32.46it/s]:2: RuntimeWarning: invalid value encountered in sqrt\n",
- " return abs(relu(sqrt(X0)))\n",
- ":2: RuntimeWarning: invalid value encountered in sqrt\n",
- " return abs(relu(sqrt(X0)))\n",
- ":2: RuntimeWarning: invalid value encountered in sqrt\n",
- " return abs(relu(sqrt(X0)))\n",
- ":2: RuntimeWarning: divide by zero encountered in divide\n",
- " return _a0_/X0\n",
- ":2: RuntimeWarning: divide by zero encountered in divide\n",
- " return _a0_/X0\n",
- ":2: RuntimeWarning: divide by zero encountered in log\n",
- " return log(X0)\n",
- ":2: RuntimeWarning: invalid value encountered in log\n",
- " return log(X0)\n",
- ":2: RuntimeWarning: divide by zero encountered in log\n",
- " return log(X0)\n",
- ":2: RuntimeWarning: invalid value encountered in log\n",
- " return log(X0)\n",
- ":2: RuntimeWarning: divide by zero encountered in divide\n",
- " return relu(_a0_/X0)\n",
- ":2: RuntimeWarning: divide by zero encountered in divide\n",
- " return relu(_a0_/X0)\n",
- ":2: RuntimeWarning: invalid value encountered in log\n",
- " return sig(sig(sig(log(_a0_))))\n",
- ":2: RuntimeWarning: invalid value encountered in log\n",
- " return sig(sig(sig(log(_a0_))))\n",
- ":2: RuntimeWarning: invalid value encountered in log\n",
- " return sig(sig(sig(log(_a0_))))\n",
- ":2: RuntimeWarning: invalid value encountered in sqrt\n",
- " return sqrt(X0)\n",
- " 61%|██████ | 61/100 [00:02<00:01, 32.52it/s]:2: RuntimeWarning: invalid value encountered in sqrt\n",
- " return abs(sqrt(X0))\n",
- ":2: RuntimeWarning: divide by zero encountered in log\n",
- " return log(X0)\n",
- ":2: RuntimeWarning: invalid value encountered in log\n",
- " return log(X0)\n",
- " 65%|██████▌ | 65/100 [00:02<00:01, 33.12it/s]:2: RuntimeWarning: divide by zero encountered in log\n",
- " return log(relu(X0))\n",
- ":2: RuntimeWarning: divide by zero encountered in divide\n",
- " return _a0_/X0\n",
- ":2: RuntimeWarning: divide by zero encountered in divide\n",
- " return _a0_/X0\n",
- ":2: RuntimeWarning: divide by zero encountered in power\n",
- " return relu(X0)**X0\n",
- ":2: RuntimeWarning: divide by zero encountered in power\n",
- " return relu(X0)**X0\n",
- ":2: RuntimeWarning: invalid value encountered in sqrt\n",
- " return sqrt(X0)\n",
- ":2: RuntimeWarning: invalid value encountered in sqrt\n",
- " return sqrt(X0)\n",
- " 69%|██████▉ | 69/100 [00:02<00:00, 33.02it/s]:2: RuntimeWarning: invalid value encountered in sqrt\n",
- " return sqrt(X0)\n",
- " 73%|███████▎ | 73/100 [00:02<00:00, 31.93it/s]:2: RuntimeWarning: divide by zero encountered in divide\n",
- " return relu(_a0_/X0)\n",
- ":2: RuntimeWarning: divide by zero encountered in divide\n",
- " return relu(_a0_/X0)\n",
- " 77%|███████▋ | 77/100 [00:02<00:00, 31.69it/s]:2: RuntimeWarning: divide by zero encountered in divide\n",
- " return _a0_/X0\n",
- ":2: RuntimeWarning: divide by zero encountered in divide\n",
- " return _a0_/X0\n",
- ":2: RuntimeWarning: divide by zero encountered in divide\n",
- " return abs(_a0_/X0)\n",
- ":2: RuntimeWarning: divide by zero encountered in divide\n",
- " return abs(_a0_/X0)\n",
- ":2: RuntimeWarning: divide by zero encountered in divide\n",
- " return abs(_a0_/X0)\n",
- ":2: RuntimeWarning: divide by zero encountered in divide\n",
- " return relu(_a0_/X0)\n",
- ":2: RuntimeWarning: divide by zero encountered in divide\n",
- " return relu(_a0_/X0)\n",
- ":2: RuntimeWarning: divide by zero encountered in log\n",
- " return log(relu(relu(relu(X0))))\n",
- ":2: RuntimeWarning: divide by zero encountered in log\n",
- " return log(relu(relu(relu(X0))))\n",
- ":2: RuntimeWarning: invalid value encountered in sqrt\n",
- " return relu(sqrt(X0))\n",
- " 81%|████████ | 81/100 [00:02<00:00, 32.10it/s]:2: RuntimeWarning: divide by zero encountered in divide\n",
- " return _a0_/X0\n",
- ":2: RuntimeWarning: divide by zero encountered in divide\n",
- " return _a0_/X0\n",
- " 85%|████████▌ | 85/100 [00:02<00:00, 31.54it/s]:2: RuntimeWarning: invalid value encountered in sqrt\n",
- " return relu(sqrt(X0))\n",
- ":2: RuntimeWarning: invalid value encountered in sqrt\n",
- " return relu(sqrt(X0))\n",
- ":2: RuntimeWarning: divide by zero encountered in divide\n",
- " return relu(_a0_/X0)\n",
- ":2: RuntimeWarning: divide by zero encountered in divide\n",
- " return relu(_a0_/X0)\n",
- ":2: RuntimeWarning: divide by zero encountered in divide\n",
- " return relu(_a0_/X0)\n",
- ":2: RuntimeWarning: divide by zero encountered in divide\n",
- " return relu(_a0_/X0)\n",
- ":2: RuntimeWarning: divide by zero encountered in divide\n",
- " return _a0_/X0\n",
- ":2: RuntimeWarning: divide by zero encountered in divide\n",
- " return _a0_/X0\n",
- ":2: RuntimeWarning: invalid value encountered in sqrt\n",
- " return sqrt(X0)\n",
- " 97%|█████████▋| 97/100 [00:03<00:00, 33.64it/s]:2: RuntimeWarning: invalid value encountered in divide\n",
- " return relu(relu(X0))/X0\n",
- ":2: RuntimeWarning: invalid value encountered in divide\n",
- " return relu(relu(X0))/X0\n",
- "100%|██████████| 100/100 [00:03<00:00, 31.19it/s]\n",
- "INFO:autora.skl.bms:BMS fitting finished\n"
- ]
- }
- ],
- "source": [
- "# define seed cycle\n",
- "# we will use this cycle to collect initial data and initialize the BMS model\n",
- "seed_cycle = Cycle(\n",
- " metadata=study_metadata,\n",
- " theorist=bms_theorist,\n",
- " experimentalist=random_experimentalist,\n",
- " experiment_runner=synthetic_experiment_runner,\n",
- ")\n",
- "\n",
- "# run seed cycle\n",
- "seed_cycle.run(num_cycles=1)\n",
- "\n",
- "seed_model = seed_cycle.data.theories[0].model_\n",
- "seed_x = seed_cycle.data.conditions[0]\n",
- "seed_y = seed_cycle.data.observations[0][:, 1]"
- ],
- "metadata": {
- "collapsed": false
- }
- },
- {
- "cell_type": "code",
- "execution_count": 10,
- "outputs": [],
- "source": [
- "# now we define the poppernet experimentalist which takes into account\n",
- "# the seed data and the seed model\n",
- "popper_experimentalist = Pipeline(\n",
- " [\n",
- " (\"popper_pool\", poppernet_pool), # type: ignore\n",
- " (\"nearest_values_sampler\", nearest_values_sampler), # type: ignore\n",
- " ],\n",
- " {\n",
- " \"popper_pool\": {\n",
- " \"metadata\": study_metadata,\n",
- " \"model\": seed_model,\n",
- " \"x_train\": seed_x,\n",
- " \"y_train\": seed_y,\n",
- " \"n\": samples_per_cycle,\n",
- " \"plot\": True,\n",
- " },\n",
- " \"nearest_values_sampler\": {\n",
- " \"allowed_values\": allowed_values,\n",
- " \"n\": samples_per_cycle,\n",
- " },\n",
- " },\n",
- ")"
- ],
- "metadata": {
- "collapsed": false
- }
- },
- {
- "cell_type": "code",
- "execution_count": 11,
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "Finished training Popper Network...\n"
- ]
- },
- {
- "data": {
- "text/plain": "",
- "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkIAAAHHCAYAAABTMjf2AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABvAklEQVR4nO3dd1hTZ8MG8DsJhDADyEaQDU5AXDjqbHFUq62j2rrqaK22tdq31fZzddnpa1+1w7aO2lqtdbUuHHXvBYooSxGUqYwwZCXn+wNJRUFBgZOQ+3dduVpOTpI7EeXmnOd5jkQQBAFEREREBkgqdgAiIiIisbAIERERkcFiESIiIiKDxSJEREREBotFiIiIiAwWixAREREZLBYhIiIiMlgsQkRERGSwWISIiIjIYLEIERHV0rhx42BhYSF2jMe2atUqSCQSJCYmarf16NEDPXr0qLPXmD9/PiQSSZ09H1F9YREiIp22du1aLF68WOwYVIXCwkLMnz8fBw4cEDsK0WNjESIincYi1DB2796N3bt31+oxhYWFWLBgQZVF6P/+7/9w586dOkpHVH9YhIioVgoKCsSOIBqx33tZWRlKSkrq5bnlcjnkcnmdPZ+RkREUCkWdPR9RfWERIqpDFeMirly5guHDh8PKygpNmjTBW2+9haKiokr7lpWV4aOPPoK3tzdMTEzg4eGB999/H8XFxZX28/DwwLPPPovdu3cjKCgICoUCLVq0wKZNmyrtVzHu49ChQ3j11VfRpEkTWFlZYcyYMcjOzn4g686dO9GtWzeYm5vD0tISAwYMwKVLlyrtUzEWJiEhAf3794elpSVeeumlR77/+Ph4jBs3DtbW1lAqlRg/fjwKCwsf2P/XX39FSEgITE1NYWtrixdffBHJycna+3v06IHt27fj+vXrkEgkkEgk8PDwgCAIsLOzw4wZM7T7ajQaWFtbQyaTIScnR7v9888/h5GREfLz87Xb/vnnH+17t7a2xnPPPYfLly9X+V6io6MxatQo2NjYoGvXrtW+94iICNjb26NHjx6VXut+FZ/p1atXERYWBnNzc7i4uODDDz+EIAja/RITEyGRSPDVV19h8eLF2u+T6OhoAMCVK1cwdOhQ2NraQqFQoF27dvjrr78eeL1Lly6hV69eMDU1RdOmTfHxxx9Do9E8sF9VY4SKioowf/58+Pn5QaFQwNnZGc8//zwSEhKQmJgIe3t7AMCCBQu0fz7z58+v9Pndq7bf80eOHEGHDh2gUCjg5eWFX375pdrPlehxGYkdgKgxGj58ODw8PLBw4UKcOHEC//vf/5CdnV3pH/KJEydi9erVGDp0KGbOnImTJ09i4cKFuHz5MjZv3lzp+eLi4jBixAi89tprGDt2LFauXIlhw4Zh165dePrppyvtO23aNFhbW2P+/PmIiYnBd999h+vXr+PAgQPaH0xr1qzB2LFjERYWhs8//xyFhYX47rvv0LVrV5w/fx4eHh7a5ysrK0NYWBi6du2Kr776CmZmZjV6/56enli4cCHOnTuHn376CQ4ODvj888+1+3zyySeYM2cOhg8fjokTJyIzMxNLlizBU089hfPnz8Pa2hoffPABcnNzcePGDfz3v/8FAFhYWEAikaBLly44dOiQ9vkuXLiA3NxcSKVSHD16FAMGDAAAHD58GMHBwdrBzXv37kW/fv3g5eWF+fPn486dO1iyZAm6dOmCc+fOVXrvADBs2DD4+vri008/rVRU7nX69GmEhYWhXbt22Lp1K0xNTR/6+ajVavTt2xedOnXCF198gV27dmHevHkoKyvDhx9+WGnflStXoqioCJMnT4aJiQlsbW1x6dIldOnSBa6urpg1axbMzc3xxx9/YPDgwdi4cSOGDBkCAEhLS0PPnj1RVlam3W/58uWPzFeR8dlnn8W+ffvw4osv4q233kJeXh727NmDqKgo9OnTB9999x2mTJmCIUOG4PnnnwcAtGnTptrnrM33fHx8PIYOHYoJEyZg7NixWLFiBcaNG4eQkBC0bNnykfmJakwgojozb948AYAwaNCgSttff/11AYAQGRkpCIIgRERECACEiRMnVtrvnXfeEQAI//zzj3Zbs2bNBADCxo0btdtyc3MFZ2dnITg4WLtt5cqVAgAhJCREKCkp0W7/4osvBADC1q1bBUEQhLy8PMHa2lqYNGlSpddOS0sTlEplpe1jx44VAAizZs2q1ft/5ZVXKm0fMmSI0KRJE+3XiYmJgkwmEz755JNK+128eFEwMjKqtH3AgAFCs2bNHnitL7/8UpDJZIJKpRIEQRD+97//Cc2aNRM6dOggvPfee4IgCIJarRasra2Ft99+W/u4oKAgwcHBQbh9+7Z2W2RkpCCVSoUxY8Y88F5Gjhz5wGuPHTtWMDc3FwRBEI4cOSJYWVkJAwYMEIqKih75GVV8pm+88YZ2m0ajEQYMGCDI5XIhMzNTEARBuHbtmgBAsLKyEjIyMio9R+/evYXWrVtXej2NRiN07txZ8PX11W6bPn26AEA4efKkdltGRoagVCoFAMK1a9e027t37y50795d+/WKFSsEAMKiRYseeA8ajUYQBEHIzMwUAAjz5s17YJ+Kz6/C43zPHzp0qFJuExMTYebMmQ+8FtGT4KkxonowderUSl+/8cYbAIAdO3ZU+u+9p3YAYObMmQCA7du3V9ru4uKi/S0fgPaU1/nz55GWllZp38mTJ8PY2Fj79ZQpU2BkZKR9zT179iAnJwcjR47ErVu3tDeZTIaOHTti//79D7yfKVOm1PzNA3jttdcqfd2tWzfcvn0bKpUKALBp0yZoNBoMHz68UgYnJyf4+vpWmeF+3bp1g1qtxrFjxwCUH/np1q0bunXrhsOHDwMAoqKikJOTg27dugEAUlNTERERgXHjxsHW1lb7XG3atMHTTz+t/Ywe9l7utX//foSFhaF3797YtGkTTExMHpm7wrRp07T/L5FIMG3aNJSUlGDv3r2V9nvhhRe0p6AAICsrC//88w+GDx+OvLw87Wd3+/ZthIWFIS4uDjdv3gRQ/n3WqVMndOjQQft4e3v7h57erLBx40bY2dlpv3fv9TjT4mv7Pd+iRQvtn1tFbn9/f1y9erXWr030MDw1RlQPfH19K33t7e0NqVSqXbfl+vXrkEql8PHxqbSfk5MTrK2tcf369UrbfXx8Hvjh4+fnB6B8LImTk1O1r21hYQFnZ2fta8fFxQEAevXqVWV2KyurSl8bGRmhadOm1b3VKrm7u1f62sbGBgCQnZ0NKysrxMXFQRCEB7JWuLfIVadt27YwMzPD4cOHERYWhsOHD2PBggVwcnLCkiVLUFRUpC1EFWN7Kj5Xf3//B56vefPmCA8PR0FBAczNzbXbPT09q3z9oqIiDBgwACEhIfjjjz9gZFTzf06lUim8vLwqbbv3z/Ne979+fHw8BEHAnDlzMGfOnCqfPyMjA66urrh+/To6duz4wP1Vvf/7JSQkwN/fv1bv62Fq+z1///cQUP59VNV4N6InwSJE1ACq+w1ajAXnKgbKrlmzplKBqnD/Dz4TExNIpbU7eCyTyarcLtwdY6PRaCCRSLBz584q963JYoXGxsbo2LEjDh06hPj4eKSlpaFbt25wdHREaWkpTp48icOHDyMgIKDSEZXaqm48jYmJCfr374+tW7di165dePbZZx/7NWrz+hV/fu+88w7CwsKqfMz9ZUOX1PR7/lHfQ0R1hUWIqB7ExcVV+k0+Pj4eGo1GOxC3WbNm0Gg0iIuLQ/PmzbX7paenIycnB82aNav0fBVHAe79IRIbGwsADwzujYuLQ8+ePbVf5+fnIzU1Ff379wdQfnQKABwcHNCnT58nf7OPwdvbG4IgwNPTU3skpDoP+8HZrVs3fP7559i7dy/s7OwQEBAAiUSCli1b4vDhwzh8+HClglLxucbExDzwXFeuXIGdnV2lo0GPyvXbb7/hueeew7Bhw7Bz584ar8ys0Whw9erVSu+9uj/P+1UcSTI2Nn7kn1+zZs20RwDvVdX7v5+3tzdOnjyJ0tLSao/Q1abI1/Z7nqihcIwQUT1YtmxZpa+XLFkCAOjXrx8AaEvJ/QsFLlq0CAC0M54qpKSkVJpVo1Kp8MsvvyAoKOiBozrLly9HaWmp9uvvvvsOZWVl2tcOCwuDlZUVPv3000r7VcjMzKzx+3xczz//PGQyGRYsWPDAb/iCIOD27dvar83NzZGbm1vl83Tr1g3FxcVYvHgxunbtqv3B3K1bN6xZswYpKSmVxpk4OzsjKCgIq1evrjTFPioqCrt379b+udSUXC7Hpk2b0L59ewwcOBCnTp2q8WOXLl2q/X9BELB06VIYGxujd+/eD32cg4MDevTogR9++AGpqakP3H/vn1///v1x4sSJSrkyMzPx22+/PTLfCy+8gFu3blXKeW9eANoZhPd+ltWp7fc8UUPhESGienDt2jUMGjQIffv2xfHjx/Hrr79i1KhRCAwMBAAEBgZi7NixWL58OXJyctC9e3ecOnUKq1evxuDBgysd0QHKx49MmDABp0+fhqOjI1asWIH09HSsXLnygdcuKSlB7969MXz4cMTExODbb79F165dMWjQIADlY4C+++47jB49Gm3btsWLL74Ie3t7JCUlYfv27ejSpUuVP/zqkre3Nz7++GPMnj0biYmJGDx4MCwtLXHt2jVs3rwZkydPxjvvvAMACAkJwfr16zFjxgy0b98eFhYWGDhwIAAgNDQURkZGiImJweTJk7XP/9RTT+G7774DgEpFCAC+/PJL9OvXD6GhoZgwYYJ2+rxSqdSugVMbpqam2LZtG3r16oV+/frh4MGDaNWq1UMfo1AosGvXLowdOxYdO3bEzp07sX37drz//vs1Oo23bNkydO3aFa1bt8akSZPg5eWF9PR0HD9+HDdu3EBkZCQA4N1338WaNWvQt29fvPXWW9rp882aNcOFCxce+hpjxozBL7/8ghkzZuDUqVPo1q0bCgoKsHfvXrz++ut47rnnYGpqihYtWmD9+vXw8/ODra0tWrVqVeX7r+33PFGDEWu6GlFjVDFlODo6Whg6dKhgaWkp2NjYCNOmTRPu3LlTad/S0lJhwYIFgqenp2BsbCy4ubkJs2fPfmAKdrNmzYQBAwYI4eHhQps2bQQTExMhICBA2LBhQ6X9KqbPHzx4UJg8ebJgY2MjWFhYCC+99FKlqeIV9u/fL4SFhQlKpVJQKBSCt7e3MG7cOOHMmTPafe6dJl6b918xBfz+bPdO1xYEQdi4caPQtWtXwdzcXDA3NxcCAgKEqVOnCjExMdp98vPzhVGjRgnW1tYCgAem0rdv3/6BKeI3btwQAAhubm5V5ty7d6/QpUsXwdTUVLCyshIGDhwoREdH1+i9CELVn8utW7eEFi1aCE5OTkJcXFy1n1HFYxMSEoRnnnlGMDMzExwdHYV58+YJarVau1/F9Pkvv/yyyudJSEgQxowZIzg5OQnGxsaCq6ur8Oyzzwp//vlnpf0uXLggdO/eXVAoFIKrq6vw0UcfCT///PMjp88LgiAUFhYKH3zwgfZ71MnJSRg6dKiQkJCg3efYsWNCSEiIIJfLK02lv3/6vCDU/nv+flVlJHpSEkHgyDOiujJ//nwsWLAAmZmZsLOzq5Pn9PDwQKtWrbBt27aH7rdq1SqMHz8ep0+fRrt27erktanujRs3Dn/++edDV58moobDMUJERERksFiEiIiIyGCxCBEREZHB4hghIiIiMlg8IkREREQGi0WIiIiIDBaL0CMIggCVSsXr2xARETVCLEKPkJeXB6VSiby8PLGjEBERUR1jESIiIiKDxSJEREREBotFiIiIiAwWixAREREZLBYhIiIiMlgsQkRERGSwWISIiIjIYLEIERERkcFiESIiIiKDxSJEREREBotFiIiIiAwWixAREREZLBYhIiIiA+fh4YHFixdrv5ZIJNiyZcsTPWddPEdDMBI7ABEREemW1NRU2NjY1Gjf+fPnY8uWLYiIiHjs5xATixCRjsktLEWxWg1rUznkRjxoS0Q1U1JSArlcXifP5eTkpBPP0RD05l/ZhQsXon379rC0tISDgwMGDx6MmJiYRz5uw4YNCAgIgEKhQOvWrbFjx44GSEtUO+eSsjHzj0i0/2QvAj/cjQ6f7EOLubvQ/5vDWLIvDhl5RWJHJKIG1qNHD0ybNg3Tpk2DUqmEnZ0d5syZA0EQAJSfzvroo48wZswYWFlZYfLkyQCAI0eOoFu3bjA1NYWbmxvefPNNFBQUaJ83IyMDAwcOhKmpKTw9PfHbb7898Nr3n9a6ceMGRo4cCVtbW5ibm6Ndu3Y4efIkVq1ahQULFiAyMhISiQQSiQSrVq2q8jkuXryIXr16wdTUFE2aNMHkyZORn5+vvX/cuHEYPHgwvvrqKzg7O6NJkyaYOnUqSktL6/BTfZDeHBE6ePAgpk6divbt26OsrAzvv/8+nnnmGURHR8Pc3LzKxxw7dgwjR47EwoUL8eyzz2Lt2rUYPHgwzp07h1atWjXwOyB6UEZeERb8FY3tF1MfuK9MIyA6VYXoVBWWHYjHxK5emNbLBwpjmQhJiRoPQRBwp1Td4K9raiyDRCKp1WNWr16NCRMm4NSpUzhz5gwmT54Md3d3TJo0CQDw1VdfYe7cuZg3bx4AICEhAX379sXHH3+MFStWIDMzU1umVq5cCaC8cKSkpGD//v0wNjbGm2++iYyMjGoz5Ofno3v37nB1dcVff/0FJycnnDt3DhqNBiNGjEBUVBR27dqFvXv3AgCUSuUDz1FQUICwsDCEhobi9OnTyMjIwMSJEzFt2jRtcQKA/fv3w9nZGfv370d8fDxGjBiBoKAg7futDxKholrqmczMTDg4OODgwYN46qmnqtxnxIgRKCgowLZt27TbOnXqhKCgIHz//fc1eh2VSgWlUonc3FxYWVnVSXYiAIhIzsGra84gXVUMqQR4vm1TDA1pisCm1lAYS5GaW4Qj8bfw28kkRCbnAAD8HC3w3csh8La3EDc8kR4rLClDi7nhDf660R+GwUxe8+MPPXr0QEZGBi5duqQtULNmzcJff/2F6OhoeHh4IDg4GJs3b9Y+ZuLEiZDJZPjhhx+0244cOYLu3bujoKAASUlJ8Pf3x6lTp9C+fXsAwJUrV9C8eXP897//xfTp0wGUH83ZvHkzBg8ejOXLl+Odd95BYmIibG1tH8hZ3Rihe5/jxx9/xHvvvYfk5GTtwYsdO3Zg4MCBSElJgaOjI8aNG4cDBw4gISEBMln5L3zDhw+HVCrFunXravy51ZbenBq7X25uLgBU+YdS4fjx4+jTp0+lbWFhYTh+/Hi1jykuLoZKpap0I6prp65lYeTyE0hXFcPXwQLb3uiGr4YFopNXE5jKy39rdLE2xfB2btjyemd8+1Jb2FnIEZuej+e/PYZjCbfEfgtE1AA6depU6ShSaGgo4uLioFaXH9Fq165dpf0jIyOxatUqWFhYaG9hYWHQaDS4du0aLl++DCMjI4SEhGgfExAQAGtr62ozREREIDg4+KE/bx/l8uXLCAwMrHQGp0uXLtBoNJWGubRs2VJbggDA2dn5oUer6oLenBq7l0ajwfTp09GlS5eHnuJKS0uDo6NjpW2Ojo5IS0ur9jELFy7EggUL6iwr0f2iU1QYv/IU7pSq0c3XDt+9HAILk+r/KkokEvRv7Yz2HraYvOYMziflYOyKU1g+uh16Bjg0YHKixsHUWIboD8NEed26dv/QkPz8fLz66qt48803H9jX3d0dsbGxtX4NU1PTx85XW8bGxpW+lkgk0Gg09fqaenlEaOrUqYiKiqqXQ2WzZ89Gbm6u9pacnFznr0GGK6ugBJPXnEFBiRqhXk3w45h2Dy1B97K3NMHvkzqhb0snlKoFvPrrWRyN55EhotqSSCQwkxs1+K2244MA4OTJk5W+PnHiBHx9fSsdNblX27ZtER0dDR8fnwducrkcAQEBKCsrw9mzZ7WPiYmJQU5OTrUZ2rRpg4iICGRlZVV5v1wu1x6hqk7z5s0RGRlZadD20aNHIZVK4e/v/9DH1je9K0LTpk3Dtm3bsH//fjRt2vSh+zo5OSE9Pb3StvT09IdO6TMxMYGVlVWlG1FdEAQB/9kQiRvZd9CsiRm+fzmk1gOfFcYyLBkVjD7NHVFSpsHkX84gJi2vnhITkdiSkpIwY8YMxMTE4Pfff8eSJUvw1ltvVbv/e++9h2PHjmHatGmIiIhAXFwctm7dimnTpgEA/P390bdvX7z66qs4efIkzp49i4kTJz70qM/IkSPh5OSEwYMH4+jRo7h69So2btyoHWbi4eGBa9euISIiArdu3UJxcfEDz/HSSy9BoVBg7NixiIqKwv79+/HGG29g9OjRD5y5aWh6U4QEQcC0adOwefNm/PPPP/D09HzkY0JDQ7Fv375K2/bs2YPQ0ND6iklUrU3nbmLflQzIZVL8MDoESjPjRz+oCsYyKZa9FIyOnrYoKFFjwurTuJ3/4D88RKT/xowZgzt37qBDhw6YOnUq3nrrLe00+aq0adMGBw8eRGxsLLp164bg4GDMnTsXLi4u2n1WrlwJFxcXdO/eHc8//zwmT54MB4fqT7PL5XLs3r0bDg4O6N+/P1q3bo3PPvtMe1TqhRdeQN++fdGzZ0/Y29vj999/f+A5zMzMEB4ejqysLLRv3x5Dhw5F7969sXTp0if4dOqG3swae/3117F27Vps3bq10mE0pVKpbbJjxoyBq6srFi5cCKB8+nz37t3x2WefYcCAAVi3bh0+/fTTWk2f56wxqgvpqiI8veggVEVl+E+YP6b29Hni58wuKMFzy44iKasQnb2bYM2EjpBJa3/onYh0U48ePRAUFFTp0hdU9/TmiNB3332H3Nxc9OjRA87Oztrb+vXrtfskJSUhNfXf9Vg6d+6MtWvXYvny5QgMDMSff/6JLVu2cA0hanCf77wCVVEZWrsq8epTXnXynDbmcvw8th1MjWU4lnAbPxxKqJPnJSIyJHoza6wmB64OHDjwwLZhw4Zh2LBh9ZCIqGaibuZi0/mbAICPB7eCkazufv/wdbTEguda4t0/L+Dr3bHo5NUEbd11/9o+RES6Qm+KEJE+EgQBn+64DAB4LsgFgW7Wdf4aw0Ka4nDcLfwdmYK31p1H+AAXmCVdA3x8AF/fOn89ImoYVf1yT3VPb06NEemjI/G3cCzhNuRGUrzzTP1MEZVIJPhkSCu4WsmRnHUHX735NdC/P+DnB/TtC2Rn18vrEhE1BixCRPVo2f54AMCoDu5wszWrt9exUhjjk/MbAAAr2w3COZe7pWvvXmDkyHp7XSIifcciRFRPziVl48TVLBjLJJhcRwOkqxUbix5//ojnL+6DIJHi3X5voVhmBKjVQHg4EBdXv69PRKSnWISI6sm3+8tncQ0OcoWLdT0vUZ9Q/lpz/vkJdgXZiLdzx8/tBv97f3x8/b4+EZGeYhEiqgfXbhVg7+V0SCTAq9296/8Fvctfw6YoD+/vXwEAWNp5BNIsmpTf7/Pk6xYRETVGLEJE9eC3E9cBAD39HeDjYFH/L+jnB4SFATIZhlzaj5Ab0SiUm+LTXq+Ub+fsMSKiKrEIEdWxolI1Npy9AQB4uZN7w73w778DffpAAmDB3h8gETT4q3l3nPzi+4bLQESkZ1iEiOrY35EpyL1TiqY2pujuV/31e+qcjQ2waxcQG4tWK5dgZPPyhRXn/ZMEtUYvrqRDRPfo0aMHpk+fLnYMLV3LU1dYhIjq2K8nkwAAozq6i3PtL19foF8//GdYB1gpjHAlLQ+bzt1o+BxEJLqSkhKxI+g8FiGiOhSfkYfI5BzIpBIMC3ETNYuNuVx7cddFe2JRVKoWNQ9RoxAbC+zcWe9LUowbNw4HDx7EN998A4lEAolEgoSEBEyYMAGenp4wNTWFv78/vvnmmwceN3jwYHzyySdwcXHRXqT82LFjCAoKgkKhQLt27bBlyxZIJBJERERoHxsVFYV+/frBwsICjo6OGD16NG7dulVtnsTExHr9DBoKixBRHdp0rvyaYj387GFvaSJyGmBsZw+4WpsiNbcIK48mih2HSH9lZZWv1O7v3yArt3/zzTcIDQ3FpEmTkJqaitTUVDRt2hRNmzbFhg0bEB0djblz5+L999/HH3/8Uemx+/btQ0xMDPbs2YNt27ZBpVJh4MCBaN26Nc6dO4ePPvoI7733XqXH5OTkoFevXggODsaZM2ewa9cupKenY/jw4dXmcXMT95e9usJrjRHVEY1GwNaIFADAkLauIqcppzCWYcbTfpi5IRLfHojHi+3dYGMuFzsWkf4ZNap8pfZ7VazcvmtXnb+cUqmEXC6HmZkZnJyctNsXLFig/X9PT08cP34cf/zxh7awAIC5uTl++uknyOXlf9e///57SCQS/Pjjj1AoFGjRogVu3ryJSZMmaR+zdOlSBAcH49NPP9VuW7FiBdzc3BAbGws/P78q8zQGPCJEVEdOXsvCzZw7sFQYoU9zR7HjaA0OdkVzZyvkFZVh6X4urEhUa7Gx5Su0q+87vSzCyu3Lli1DSEgI7O3tYWFhgeXLlyMpKanSPq1bt9aWIACIiYlBmzZtoFAotNs6dOhQ6TGRkZHYv38/LCwstLeAgAAAQMLdBVsbKxYhojqy+Xz5gORn2zhDYSwTOc2/ZFIJZvcr/wftl+OJSM4qFDkRkZ55VBFooJXb161bh3feeQcTJkzA7t27ERERgfHjxz8wINrc3LzWz52fn4+BAwciIiKi0i0uLg5PPfVUXb0FncRTY0R1oFStQfildADAoEDdOC12r6f87NHZuwmOJdzG0n/i8fnQNmJHItIf3o9YHb6eVm6Xy+VQ33MU6ujRo+jcuTNef/117baaHK3x9/fHr7/+iuLiYpiYlI9dPH36dKV92rZti40bN8LDwwNGRlVXg/vzNBY8IkRUB05cvY3cO6VoYi5HB09bseNUaeYzfgCAP8/dQOKtApHTEOmRe1Zur0Qmq9eV2z08PHDy5EkkJibi1q1b8PX1xZkzZxAeHo7Y2FjMmTPngUJTlVGjRkGj0WDy5Mm4fPkywsPD8dVXXwEAJJLyJT6mTp2KrKwsjBw5EqdPn0ZCQgLCw8Mxfvx4bfm5P49Go6mX993QWISI6sDOqDQAwDMtHcVZO6gGQprZooe/PdQaAf/bx6vRE9XK3ZXbK+nTp3x7PXnnnXcgk8nQokUL2NvbIywsDM8//zxGjBiBjh074vbt25WODlXHysoKf//9NyIiIhAUFIQPPvgAc+fOBQDtuCEXFxccPXoUarUazzzzDFq3bo3p06fD2toaUqm0yjz3j03SVxJBELjk7EOoVCoolUrk5ubCyspK7Dikg9QaAR0/3Ytb+SVY/UoHdPezFztStS7cyMGgpUchlQC7334KPg6WYkci0i9xceVjgnx89Poafr/99hvGjx+P3NxcmJqaih1HVDwiRPSEziRm4VZ+CZSmxujs3UTsOA/Vpqk1nmnhCI0A/HcvjwoR1drdldv1rQT98ssvOHLkCK5du4YtW7bgvffew/Dhww2+BAEsQkRPrOK0WJ/mjjCW6f5fqbefLh8rtP1CKi6nqkROQ0QNIS0tDS+//DKaN2+Ot99+G8OGDcPy5cvFjqUTeGrsEXhqjB5GEAR0/uwfpOYW4acx7dCnhe6sH/QwU9eew/YLqXimhSOWj2kndhwiItHo/q+vRDrscmoeUnOLoDCWoquvndhxauztPr7l44Si03HxRq7YcYiIRMMiRPQE9sdkAAC6eNvp1CKKj+LjYInBQeXrHS3aEyNyGiIi8bAIET2BA3eLUM8AB5GT1N6bvX0hk0qwPyYT55Pq58KRRES6jkWI6DHlFpbi7PXyAtHDX3enzFfHw84czweXHxXiDDIiMlQsQkSP6WBcJjQC4OdogaY2ZmLHeSxv9PKFkVSCQ7GZ2lJHRGRIWISIHtOBK3dPi/nr32mxCu5NzPBC26YAgMV7Y0VOQ0TU8FiEiB6DRiPgQGwmAKCHHhchAJjWywdGUgkOx93C6cQsseMQETUoFiGix3DxZi6yCkpgaWKEdh42Ysd5Im62ZhjWzg0A8N89PCpERIaFRYjoMRyJvwUACPVuoherST/KtF4+MJZJcCzhNk5cvS12HCKiBqP//4ITieBYQnkR6uKjP4soPoyrtSlGtOdRISIyPCxCRLVUVKrG6cTyGVZdfHT7Iqu1MbWnD+QyKU5ey9IWPSKixo5FiKiWzl7PRkmZBg6WJvC2txA7Tp1xVppiZIfyo0KL98SBlyEkIkPAIkRUS0fvjg/q6mMHiUQicpq69XpPH8iNpDiVmIWj8RwrRESNH4sQUS0dTSgvCJ0byfigezlaKTCqgzsA4L97Y3lUiIgaPRYholrIvVOKizdyADSu8UH3er2HN0yMpDh7PRuH4jhWiIgaNxYholo4cfU2NALgZW8OZ6Wp2HHqhYOVAi93agagfAYZjwoRUWPGIkRUCxVr7HT2bpxHgyq81t0bCmMpIpJztCtoExE1RixCRLVw6lr5JSg6ejbuImRvaYIxoR4AeFSIiBo3FiGiGlIVleJyqgoA0MHTVuQ09W/yU14wNZbhwo1c/HP3ArNERI0NixBRDZ29ng2NADRrYgZHK4XYceqdnYUJxnb2AMAZZETUeLEIEdXQ6bunxdp7NP6jQRUmP+UFc7kMUTdV2BOdLnYcIqI6xyJEVEMV44MM4bRYBVtzOcZ18QAALN7L1aaJqPHRqyJ06NAhDBw4EC4uLpBIJNiyZctD9z9w4AAkEskDt7S0tIYJTI1GUakakXfXD+poQEUIACZ184KFiRGiU1UIv8SjQkTUuOhVESooKEBgYCCWLVtWq8fFxMQgNTVVe3NwcKinhNRYRSTnoFQtwMHSBO62ZmLHaVDWZnKM1x4VioVGw6NCRNR4GIkdoDb69euHfv361fpxDg4OsLa2rvtAZDDuPS3W2K4vVhMTu3ph1dFEXEnLw65Laejf2lnsSEREdUKvjgg9rqCgIDg7O+Ppp5/G0aNHxY5DesgQxwfdS2lmjFe6egLgUSEialwadRFydnbG999/j40bN2Ljxo1wc3NDjx49cO7cuWofU1xcDJVKVelGhq1UrcG5pGwAhluEAOCVrp6wVBghNj0f2y+mih2HiKhONOoi5O/vj1dffRUhISHo3LkzVqxYgc6dO+O///1vtY9ZuHAhlEql9ubm5taAiUkXRaeoUFiihpXCCH4OlmLHEY3S1BiTunkBAL7ZFwc1jwoRUSPQqItQVTp06ID4+Phq7589ezZyc3O1t+Tk5AZMR7ro/N2jQW2b2UAqNbzxQfca38UDSlNjxGfkY9O5G2LHISJ6YgZXhCIiIuDsXP1ATxMTE1hZWVW6kWE7l5QDAGjrbiNuEB1gqTDG1J7eAIBFe2JRVKoWORER0ZPRq1lj+fn5lY7mXLt2DREREbC1tYW7uztmz56Nmzdv4pdffgEALF68GJ6enmjZsiWKiorw008/4Z9//sHu3bvFegukhyrGBwW7W4sbREeMCfXA6mPXcTPnDlYdS8Rr3b3FjkRE9Nj06ojQmTNnEBwcjODgYADAjBkzEBwcjLlz5wIAUlNTkZSUpN2/pKQEM2fOROvWrdG9e3dERkZi79696N27tyj5Sf9k5BXhRvYdSCRAkJu12HF0gsJYhhlP+wEAvt0fj5zCEpETERE9PonANfMfSqVSQalUIjc3l6fJDFD4pTS8uuYs/B0tEf72U2LH0RlqjYAB/zuMK2l5mNTNEx8MaCF2JCKix6JXR4SIGto57UBpa3GD6BiZVIJZ/QIAAKuPXUdyVqHIiYiIHg+LENFDnL87UDrYjQOl79fdzx6dvZugRK3Boj2xYschInosLEJE1ShVa3Dh7oVWeUToQRKJBLP7NQcAbIm4iUspuSInIiKqPRYhompcSc1DUakGVgojeNlZiB1HJ7VuqsTAQBcIAvDpjsvgkEMi0jcsQkTVOJ9cPj4oyJ0LKT7Mu2H+kBtJcTT+NvZEp4sdh4ioVliEiKpx7vrdgdJcP+ih3GzNMKlb+QVZP95+GcVlXGSRiPQHixBRNbiidM293sMHDpYmSMoqxIojiWLHISKqMRYhoircyi9G0t0p4YFcSPGRzE2MtNPpl/4ThwxVkciJiIhqhkWIqAoRd48G+TpYQGlqLG4YPTE4yBWBbtYoKFHjy/AYseMQEdUIixBRFS7cLJ8K3qaptbhB9IhUKsG8geUrTG84ewORyTniBiIiqgEWIaIqRN0tQq1deVmV2mjrboPng10BAAv+vsTp9ESk81iEiKpwsaIINVWKnET/vNs3AGZyGc4l5WDjuZtixyEieigWIaL7pKuKkJlXDKkEaOHMIlRbTkoF3ujlC6B8kUVenZ6IdBmLENF9Lt4oPxrk42ABU7lM5DT6aUJXT/g6WCCroASf7+LAaSLSXSxCRPepOC3WypVHgx6X3EiKjwe3AgD8fioJ55KyRU5ERFQ1FiGi+1RcPLQ1i9AT6ejVBC+0bQoA+L/NUShTa0RORET0IBYhovtoB0qzCD2x9/sHQGlqjOhUFX45fl3sOERED2ARIrpHRl4R0lV3B0q7cOr8k2piYYL3+pavOL1oTyxSc++InIiIqDIWIaJ7VKwf5G1vATO5kchpGocX27sh2N0a+cVl+L/NUVxbiIh0CosQ0T0u3lAB4EDpuiSVSvD5C21gLJNg35UM/BWZInYkIiItFiGie3DGWP3wc7TUri00/69LuJVfLHIiIqJyLEJE94jiQOl6M6WHNwKcLJFdWIr5f10SOw4REQAWISKtzLxipKmKIJEALTlQus4Zy6T4cmggZFIJtl1Ixe5LaWJHIiJiESKqUHE0yMvOHOYmHChdH1o3VWJSNy8AwP9tiULunVKRExGRoWMRIrqLp8UaxvQ+vvCyM0dGXjE+2hYtdhwiMnAsQkR3caB0w1AYy/D50DaQSIA/z97gKTIiEhWLENFdPCLUcNp72GLy3VNkszddRGYeZ5ERkThYhIgA3M4vRkpuEQCgJYtQg5jxjB8CnCxxu6AEszdd4EKLRCQKFiEi/HtazMvOHBYcKN0gTIxk+O+IIMhlUuy9nIH1p5PFjkREBohFiAj/nhbj+KCG1dzZCu+E+QEAPtwWjeu3C0RORESGhkWICLzivJgmdPVCB09bFJaoMeOPSKg1PEVGRA2HRYgIQNRNXmNMLDKpBF8PC4SFiRHOXs/Gkn/ixI5ERAaERYgMXlZBCW7m3AEAtHTlitJicLM1w8eDWwEA/rcvDieu3hY5EREZChYhMngVp8U87cxhpTAWOY3hGhzsiqEhTaERgLfWnUdWQYnYkYjIALAIkcHjQGndsWBQS3jZmyNdVYx3NkRySj0R1TsWITJ4/y6kyNNiYjM3McKyUW0hN5LinysZ+PnINbEjEVEjxyJEBo+X1tAtzZ2tMOfZFgCAz3ddwYUbOeIGIqJGjUWIDFp2QQluZN8dKO3CIqQrXu7ojn6tnFCqFjBt7XmoiniVeiKqHyxCZNCiUsqPBjVrYgalKQdK6wqJRILPXmgDV2tTJGUV4p0/OF6IiOoHixAZNJ4W011KU2N8+1JbyGVS7I5Ox/cHr4odiYgaIRYhMmi84rxuC3SzxvxBLQEAX4ZfwdH4WyInIqLGhkWIDBovraH7RnZww7C76wu98ft5pNxd/JKIqC6wCJHByiksQXJW+Q/VVhworbMkEgk+GtwKLV2skFVQgtd/O4fiMrXYsYiokWARIoN1KaX8+mLutmZQmnGgtC5TGMvw/cshUJoaIyI5Bx9tixY7EhE1EixCZLB4Wky/uNmaYfGLQZBIgF9PJGHDmWSxIxFRI6BXRejQoUMYOHAgXFxcIJFIsGXLlkc+5sCBA2jbti1MTEzg4+ODVatW1XtO0g+cMaZ/evo74M1evgCAD7ZE4XxStsiJiEjf6VURKigoQGBgIJYtW1aj/a9du4YBAwagZ8+eiIiIwPTp0zFx4kSEh4fXc1LSB/9eY4yX1tAnb/X2xdMtHFFSpsGra84iLbdI7EhEpMckgp6uUiaRSLB582YMHjy42n3ee+89bN++HVFRUdptL774InJycrBr164avY5KpYJSqURubi6srPgDs7HIvVOKwAW7AQDn5zwNG3O5yImoNvKLy/D8t0cRm56PwKZKrH81FApjmdixiEgP6dURodo6fvw4+vTpU2lbWFgYjh8/Xu1jiouLoVKpKt2o8bl092hQUxtTliA9ZGFihJ/GtIe1mTEib+Ri1sYLXHmaiB5Loy5CaWlpcHR0rLTN0dERKpUKd+5UvRbJwoULoVQqtTc3N7eGiEoNjAOl9Z97EzN8+1JbyKQSbIlIwQ+HuPI0EdVeoy5Cj2P27NnIzc3V3pKTOTOlMeJA6cahs7cd5g/890r1/1xJFzkREembRl2EnJyckJ5e+R/G9PR0WFlZwdTUtMrHmJiYwMrKqtKNGh9eWqPxeLlTM4zq6A5BAN78PQJx6XliRyIiPdKoi1BoaCj27dtXaduePXsQGhoqUiLSBaqiUiTeLgTAItQYSCQSzB/YEh08bZFfXIZXVp/GrfxisWMRkZ7QqyKUn5+PiIgIREREACifHh8REYGkpCQA5ae1xowZo93/tddew9WrV/Huu+/iypUr+Pbbb/HHH3/g7bffFiM+6YhLN8sHwLtac6B0YyE3kuL7l0PQrIkZkrPuYNIvZ1BUystwENGj6VUROnPmDIKDgxEcHAwAmDFjBoKDgzF37lwAQGpqqrYUAYCnpye2b9+OPXv2IDAwEF9//TV++uknhIWFiZKfdANPizVOtuZyrBjXHkpTY5xPysHMDZHQaDiTjIgeTm/XEWooXEeo8Xnz9/P4KzIF/wnzx9SePmLHoTp2POE2xqw4iVK1gKk9vfGfsACxIxGRDtOrI0JEdaHiiFBLFxbbxijUuwk+e74NAGDZ/gT8wWuSEdFDsAiRQckrKsXVWwUAeGqsMXshpCne6FV+tO/9TRdxLP6WyImISFexCJFBuZRSPlDaRalAEwsTkdNQfZrxtB8GBbqgTCPgtV/PIj4jX+xIRKSDWITIoERxIUWDIZFI8MXQNmjXzAaqojKMX3UKtzmtnojuwyJEBoWX1jAsCmMZfhgdAnfb8mn1E385gzslnFZPRP9iESKDor20RlMWIUPRxMIEK8f/O63+zXXnoea0eiK6i0WIDEZ+cRmucaC0QfK2t8DPY9tBbiTFnuh0zPsrilerJyIALEJkQKJTVBAEwFmpgB0HShucdh62+N+LQZBIgF9PJOHbAwlAbCywcycQFyd2PCISCYsQGQxecZ76tnLGvGfLr1b/ZXgMNj3/GtC/P+DnB/TtC2Rni5yQiBoaixAZDO2MMRcWIUM2rosnXk0/CwB4t99bOOwRVH7H3r3AyJHiBSMiUdS4CGVkZDz0/rKyMpw6deqJAxHVF+2MsaZcUdqgxcbivVXzMSj6AMpkRpgy+H1ccvAE1GogPJynyYgMTI2LkLOzc6Uy1Lp1ayQn/7t0/e3btxEaGlq36YjqSEFxGRIyyxfU46kxA5eQACkEfLljMUKvRyLfxAzjhi3ADSv78vvj48XNR0QNqsZF6P4ZFomJiSgtLX3oPkS6Ijq1fKC0o5UJHCwVYschMXl7AwBM1GX4fvOn8M9MRKaFLcYO/xA5CgvAhxfiJTIkdTpGSCKR1OXTEdWZize4kCLd5ecHhIUBMhmUxQVYtWEenFWZSGjihkkTFqHIw0vshETUgDhYmgwCL61Blfz+O9CnDwDAOe82Vm2YD0t1MU5buODt9RHQcMFFIoNR4yIkkUiQl5cHlUqF3NxcSCQS5OfnQ6VSaW9EuoqX1qBKbGyAXbvK1xHasQP+x/Zg+WvdIZdJsTMqDR9ui+apfiIDYVTTHQVBgJ+fX6Wvg4ODK33NU2OkiwpL/h0ozSJElfj6lt8AhAL4angg3vz9PFYdS4SrtSkmPcXTZESNXY2L0P79++szB1G9uZyqgkYAHCxN4GDFgdJUvUGBLkjPLcInOy7jkx2X4WBlgueCXMWORUT1qMZFqHv37vWZg6jeVAyU5vggqomJ3TyRknsHK48m4p0NkbC3NEFnbzuxYxFRPanxGKGysjIUFxdX2paeno4FCxbg3XffxZEjR+o8HFFduHizfPwaixDVhEQiwZwBLdC/tRNK1QJe/eUsrqRxDCRRY1XjIjRp0iS8+eab2q/z8vLQvn17LFu2DOHh4ejZsyd27NhRLyGJnkQUB0pTLUmlEiwaHoQOHrbIKy7DuBWnkZJzR+xYRFQPalyEjh49ihdeeEH79S+//AK1Wo24uDhERkZixowZ+PLLL+slJNHjulOiRlxGHgAWIaodhbEMP45pB18HC6SpijBu5Snk3il99AOJSK/UuAjdvHkTvndnVwDAvn378MILL0CpLP/hMnbsWFy6dKnuExI9gejUXGgEwN7SBE5KDpSm2lGaGWPVKx3gaGWC2PR8TP7lDIrL1GLHIqI6VOMipFAocOfOv4eGT5w4gY4dO1a6Pz8/v27TET2hC3cHSrfh0SB6TK7Wplg5rgMsTIxw8loWZvwRyQUXiRqRGhehoKAgrFmzBgBw+PBhpKeno1evXtr7ExIS4OLiUvcJiZ7Av1ecZxGix9fCxQo/jA6BsUyC7RdS8emOy2JHIqI6UuMiNHfuXHzzzTfw9vZGWFgYxo0bB2dnZ+39mzdvRpcuXeolJNHj4jXGqK508bHDl0MDAQA/HbmGn49cEzkREdWFWq0jdPbsWezevRtOTk4YNmxYpfuDgoLQoUOHOg9I9LgKissQzxWlqQ4NDnZFmqoIn+28go+3R8PJSoEBbZwf/UAi0lk1LkIA0Lx5czRv3rzK+yZPnlwngYjqSnSqCoIAOFkpuKI01ZlXn/JCas4drD5+HW+vj0ATCzk6eTUROxYRPaYaF6FDhw7VaL+nnnrqscMQ1aULXFGa6oFEIsHcgS2RpipC+KV0TP7lDP6c0hl+jpZiRyOix1DjItSjRw/tRVWruyqzRCKBWs2ppaQbLt7IAQC04UBpqmMyqQTfvBiMl386iTPXszF2xSlsfr0Ll2gg0kM1HixtY2MDNzc3zJkzB3FxccjOzn7glpWVVZ9ZiWqFM8aoPlUsuOhlb47U3PIFF1VFXHCRSN/UuAilpqbi888/x/Hjx9G6dWtMmDABx44dg5WVFZRKpfZGpAvyikpx9VYBAA6UpvpjYy7H6vEdYG9pgitpeXhtzVmUlGnEjkVEtVDjIiSXyzFixAiEh4fjypUraNOmDaZNmwY3Nzd88MEHKCsrq8+cRLVyKaV8oLSLUgE7CxOx41Aj5mZrhlXj28NcLsOxhNv4z59ccJFIn9S4CN3L3d0dc+fOxd69e+Hn54fPPvsMKhWvzky6o+JCqxwoTQ2hpYsS348OgZFUgq0RKfg8/IrYkYiohmpdhIqLi7F27Vr06dMHrVq1gp2dHbZv3w5bW9v6yEf0WLSX1uD4IGog3Xzt8fkLbQAAPxy8ilVHueAikT6o8ayxU6dOYeXKlVi3bh08PDwwfvx4/PHHHyxApJP+HShtLW4QMigvhDRFmqoIX4bHYMG2aDhbmyKspZPYsYjoISRCdXPh7yOVSuHu7o6xY8ciJCSk2v0GDRpUZ+F0gUqlglKpRG5uLqysrMSOQzWgKipFm/m7AQDn5jwNW3O5yInIkAiCgP/bEoXfTibB1FiGP14N5cxFIh1WqyL0yCdrhOsIsQjpn2MJtzDqx5NwtTbF0Vm9Hv0AojpWptZg/KrTOBx3Cw6WJtg6rQuclaZixyKiKtR4jJBGo3nkrbGVINJPFzk+iERmJJNi2Utt4edogYy8Yryy6gwKijmzlkgXPdasMSJddoEzxkgHWCmM8fPY9rCzkONyqgpv/n4eak6rJ9I5LELU6FRMnecRIRKbm60Zlo9pBxMjKfZdycAn2y+LHYmI7sMiRI1KbmEprt8uBMAVpUk3tHW3wdfDAwEAK45ew5rjieIGIqJKWISoUamYNu9mawprM84WI93wbBsX/CfMHwAw/+9oHIjJEDkREVVgEaJGJbLiivOu1qLmILrf6z288ULbplBrBExbex4xaXliRyIi6GERWrZsGTw8PKBQKNCxY0ecOnWq2n1XrVoFiURS6aZQKBowLTW0yOQcAECQm7WoOYjuJ5FIsPD51ujoaYv84jK8suo0bucXix2LyODVqAjZ2NjA1ta2Rrf6tH79esyYMQPz5s3DuXPnEBgYiLCwMGRkVH+Y2crKCqmpqdrb9evX6zUjiUcQBETcLUKBLEKkg+RGUvwwOgQeTcxwM+cOpvx2jlerJxJZjS6xsXjx4nqOUTOLFi3CpEmTMH78eADA999/j+3bt2PFihWYNWtWlY+RSCRwcuIS94YgTVWEjLxiyKQStHLl4pekm6zN5PhpbDsMXnYMp65lYcHfl/DJkNZixyIyWDUqQmPHjq3vHI9UUlKCs2fPYvbs2dptUqkUffr0wfHjx6t9XH5+Ppo1awaNRoO2bdvi008/RcuWLRsiMjWwiKQcAICfoyXM5DW+jB5Rg/NxsMQ3LwZh4i9n8NvJJDR3tsLLnZqJHYvIID3WGKGEhAT83//9H0aOHKk9LbVz505cunSpTsPd69atW1Cr1XB0dKy03dHREWlpaVU+xt/fHytWrMDWrVvx66+/QqPRoHPnzrhx40a1r1NcXAyVSlXpRvoh4u5AaY4PIn3Qu7kj3nnm7kyyvy7hxNXbIiciMky1LkIHDx5E69atcfLkSWzatAn5+fkAgMjISMybN6/OAz6J0NBQjBkzBkFBQejevTs2bdoEe3t7/PDDD9U+ZuHChVAqldqbm5tbAyamJ1FxRCiYRYj0xOs9vDEw0AVlGgGv/3YOyVmFYkciMji1LkKzZs3Cxx9/jD179kAu/3edll69euHEiRN1Gu5ednZ2kMlkSE9Pr7Q9PT29xmOAjI2NERwcjPj4+Gr3mT17NnJzc7W35OTkJ8pNDUOtEbRrCHGgNOkLiUSCL15og1auVsgqKMGkX3hNMqKGVusidPHiRQwZMuSB7Q4ODrh161adhKqKXC5HSEgI9u3bp92m0Wiwb98+hIaG1ug51Go1Ll68CGdn52r3MTExgZWVVaUb6b64jDwUlqhhLpfBx8FC7DhENWYql2H56HawszDBlbQ8vLMhEhpek4yowdS6CFlbWyM1NfWB7efPn4erq2udhKrOjBkz8OOPP2L16tW4fPkypkyZgoKCAu0ssjFjxlQaTP3hhx9i9+7duHr1Ks6dO4eXX34Z169fx8SJE+s1JzW8itNirZsqIZNKxA1DVEsu1qb4/uW2MJZJsDMqDUv3V3/UmojqVq2n1rz44ot47733sGHDBkgkEmg0Ghw9ehTvvPMOxowZUx8ZtUaMGIHMzEzMnTsXaWlpCAoKwq5du7QDqJOSkiCV/tvtsrOzMWnSJKSlpcHGxgYhISE4duwYWrRoUa85qeFFagdK24gbhOgxtfOwxceDW+G9jRfx372xaNNUiR7+DmLHImr0JIIg1OoYbElJCaZOnYpVq1ZBrVbDyMgIarUao0aNwqpVqyCTyeorqyhUKhWUSiVyc3N5mkyH9V18CFfS8vD9yyHo24rrRpH+en/zRaw9mQSlqTG2vdEVbrZmYkciatRqXYQqJCUlISoqCvn5+QgODoavr29dZ9MJLEK6r7CkDK3mhUMjACdm94aTkpdRIf1VXKbG8O+PI/JGLlq5WuHP1zpDYdy4fsEk0iWPveqcu7s73N3d6zIL0WO5eCMXGgFwslKwBJHeMzGS4duXQzBwyRFE3VRh3tZL+HxoG7FjETVaNSpCM2bMqPETLlq06LHDED2OivFBgW5KcYMQ1RFXa1MsGRmM0T+fxPozyQh2t8aLHfiLJ1F9qFEROn/+fKWvz507h7KyMvj7l6+KGhsbC5lMhpCQkLpPSPQIEdorznOgNDUeXXzsMPMZf3wZHoO5Wy+hubMV18giqgc1KkL79+/X/v+iRYtgaWmJ1atXw8am/AdPdnY2xo8fj27dutVPSqKHiEyuWEiRR4SocZnS3RsRyTnYE52O1387h7/f6Apbc/mjH0hENVbrwdKurq7YvXv3AxcujYqKwjPPPIOUlJQ6DSg2DpbWbWm5Rei0cB+kEuDC/DBYmPBiq9S4qIpKMWjJESTeLkR3P3usHNceUq6VRVRnar2gokqlQmZm5gPbMzMzkZeXVyehiGrqXFI2ACDAyYoliBolK4Uxvh8dAhMjKQ7GZmL54atiRyJqVGpdhIYMGYLx48dj06ZNuHHjBm7cuIGNGzdiwoQJeP755+sjI1G1zl4vL0IhzTg+iBqvACcrLBhUfhT+y/AYnL2eJXIiosaj1kXo+++/R79+/TBq1Cg0a9YMzZo1w6hRo9C3b198++239ZGRqFosQmQoRrR3w6BAF6g1At5Yex7ZBSViRyJqFB57QcWCggIkJCQAALy9vWFubl6nwXQFxwjprqJSNVrPD0epWsDhd3tyBV5q9PKLyzBwyRFcu1WAPs0d8OOYdpBIOF6I6EnU+ohQBXNzc9ja2sLW1rbRliDSbRdv5qJULcDe0gRNbUzFjkNU7yxMjLB0VDDkRlLsvZyBn49cEzsSkd6rdRHSaDT48MMPoVQqtafGrK2t8dFHH0Gj0dRHRqIqaU+Ludvwt2IyGC1dlJjzbPmFoz/fdUW7jhYRPZ5aF6EPPvgAS5cuxWeffYbz58/j/Pnz+PTTT7FkyRLMmTOnPjISVYnjg8hQvdzRHf1bO6FULWDa2nPILSwVOxKR3qr1GCEXFxd8//33GDRoUKXtW7duxeuvv46bN2/WaUCxcYyQbhIEAe0/2Ytb+SXYOKUzyxAZHFVRKZ793xEkZRViQBtnLB0ZzCOjRI+h1keEsrKyEBAQ8MD2gIAAZGVxSic1jKSsQtzKL4FcJkUrVxZUMjxWCmMsGRkMI6kE2y+kYtO5xvVLKFFDqXURCgwMxNKlSx/YvnTpUgQGBtZJKKJHqTgt1rqpEiZGMpHTEIkj0M0abz/tBwCYuzUK128XiJyISP/UeineL774AgMGDMDevXsRGhoKADh+/DiSk5OxY8eOOg9IVBWODyIq91p3bxyMycSpxCxMXx+BDa+Gwkj22BOCiQxOrf+2dO/eHbGxsRgyZAhycnKQk5OD559/HjExMbzoKjWYiiLU1p1FiAybTCrBohGBsFQY4XxSDpb8Ey92JCK98tgLKhoKDpbWPXlFpWizYDcEATj1QW84WCrEjkQkuq0RN/HWughIJcCG10IR0sxW7EhEeuGxrlJZVFSECxcuICMj44G1g+6fTUZU185ez4YgAO62ZixBRHc9F+SKAzGZ2Hz+Jqavj8CON7vBUmEsdiwinVfrIrRr1y6MGTMGt27deuA+iUQCtVpdJ8GIqnPqWvnsxI6e/I2X6F4LnmuJ04lZSM66g3l/XcKi4UFiRyLSebUeI/TGG29g2LBhSE1NhUajqXRjCaKGUFGEOrAIEVVipTDG4hFBkEqATeduIvxSmtiRiHRerYtQeno6ZsyYAUdHx/rIQ/RQRaVqRN7IAQB09GwibhgiHdTOwxaTn/IGAHyw+SJu5xeLnIhIt9W6CA0dOhQHDhyohyhEj3Y+KQelagGOViZws+WFVomq8vbTvvBztMCt/BLM2RoFzokhql6txwgtXboUw4YNw+HDh9G6dWsYG1cejPfmm2/WWTii+/17WqwJLydAVA0TIxkWDQ/C4GVHseNiGv6+kIpBgS5ixyLSSbUuQr///jt2794NhUKBAwcOVPphJJFIWISoXp1KvA2A44OIHqWVqxLTevlg8d44zNkShU6etnCw4ixLovs91tXnFyxYgNzcXCQmJuLatWva29WrV+sjIxEAoKRMo11IkTPGiB5tak8ftHK1Qu6dUszadJGnyIiqUOsiVFJSghEjRkAq5RLu1LCiUnJRVKqBjZkxfOwtxI5DpPOMZVJ8PSwIcpkU/1zJwIazN8SORKRzat1mxo4di/Xr19dHFqKHqhgf1N7DFlIpxwcR1YS/k6X2wqwf/h2Nmzl3RE5EpFtqPUZIrVbjiy++QHh4ONq0afPAYOlFixbVWTiie3H9IKLHM/kpL+yJTsO5pBx8sPkiVo5rz8kGRHfVughdvHgRwcHBAICoqKhK9/EvFtUXtUbA6cSKFaW5fhBRbcikEnwxtA36f3MEB2IysTUiBYODXcWORaQTal2E9u/fXx85iB7qSpoKeUVlsDAxQnNnS7HjEOkdHwdLvNnbB1/tjsWCvy+hq68d7CxMxI5FJDqOeCa9cDyhfNp8SDMbGMn4bUv0OF7t7o0AJ0tkF5Ziwd/RYsch0gn8iUJ64fiFJABAF2tO/yV6XMYyKb4cGgipBPg7MgV7o9PFjkQkOhYh0m1ZWSjr2w8n4zMBAJ1ffwno2xfIzhY5GJF+at1UiUlPeQEA/m9LFFRFpSInIhIXixDptlGjEHkpCfkmZrC+o0KL9KvA3r3AyJFiJyPSW2/38YNHEzOkqYrw2c4rYschEhWLEOmu2FggPBzH3VoBAEKTLkIKAVCrgfBwIC5O5IBE+klhLMNnL7QBAKw9mYQTV2+LnIhIPCxCpLsSEgAAR5sFAgA6X4+sfH98fEMnImo0Onk1wUsd3QEAszZeQFGpWuREROJgESLd5e2NIiM5zro2B1BFEfLxESEUUeMxq18AnKwUSLxdiKX/8BcLMkwsQqS7/Pxw9rnRKDGSwynvFryybpZvl8mAsDDA11fcfER6zlJhjPmDWgIAfjiUgPiMPJETETU8FiHSaUdfngYA6Hz9ArTrlvfpA/z+u2iZiBqTsJaO6NPcAaVqAR9sjuIV6sngsAiRTjt6swAA0Pn1kcCOHeUDqHftAmxsRE5G1DhIJBLMH9QSpsYynLyWhT95hXoyMCxCpLNy75Ti4o0cAEDnzi2Bfv14OoyoHjS1McP0PuV/tz7dcRlZBSUiJyJqOCxCpLNOXcuCRgA87czhYm0qdhyiRu2Vrp7ay298tvOy2HGIGgyLEOmsI3F3V5P25tXmieqbsUyKT4aUr9n1x5kbOHUtS+RERA1D74rQsmXL4OHhAYVCgY4dO+LUqVMP3X/Dhg0ICAiAQqFA69atsWPHjgZKSk/qYGx5EeruZy9yEiLDENLMFiM7lK8t9P7miygp04iciKj+6VURWr9+PWbMmIF58+bh3LlzCAwMRFhYGDIyMqrc/9ixYxg5ciQmTJiA8+fPY/DgwRg8eDCioqIaODnVVuKtAiTeLoSRVILOPnZixyEyGLP6BqCJuRzxGfn48fBVseMQ1TuJoEdzJTt27Ij27dtj6dKlAACNRgM3Nze88cYbmDVr1gP7jxgxAgUFBdi2bZt2W6dOnRAUFITvv/++Rq+pUqmgVCqRm5sLKyurunkj9Ei/HE/E3K2X0MnLFusmh4odh8igbD5/A2+vj4SJkRR73u4O9yZmYkciqjd6c0SopKQEZ8+eRZ8+fbTbpFIp+vTpg+PHj1f5mOPHj1faHwDCwsKq3R8AiouLoVKpKt2o4R2MqTgt5iByEiLDMzjIFV18mqC4TIMFf18SOw5RvdKbInTr1i2o1Wo4OjpW2u7o6Ii0tLQqH5OWllar/QFg4cKFUCqV2pubm9uTh6daKS5T41hC+UUgOT6IqOFJJBIsGNQKxjIJ9l3JwL7L6WJHIqo3elOEGsrs2bORm5urvSUnJ4sdyeCcvpaNO6Vq2FuaoLmzpdhxiAySj4MFXunqCQBY8Hc0iqKvADt3AnFxIicjqlt6U4Ts7Owgk8mQnl75N5P09HQ4OTlV+RgnJ6da7Q8AJiYmsLKyqnSjhnUwtnzwe3c/e0gkkkfsTUT15c1evnCykCMpqxA/TFoA9O8P+PkBffsC2dlixyOqE3pThORyOUJCQrBv3z7tNo1Gg3379iE0tOrBtKGhoZX2B4A9e/ZUuz/pBk6bJ9IN5iZG+CDqLwDAt52GIVl5d6jB3r3AyJEiJiOqO3pThABgxowZ+PHHH7F69WpcvnwZU6ZMQUFBAcaPHw8AGDNmDGbPnq3d/6233sKuXbvw9ddf48qVK5g/fz7OnDmDadOmifUW6BFScu4gNj0fUgnQldPmicQVG4tn1y9F6PVIFBub4MNeE8u3q9VAeDhPk1GjoFdFaMSIEfjqq68wd+5cBAUFISIiArt27dIOiE5KSkJqaqp2/86dO2Pt2rVYvnw5AgMD8eeff2LLli1o1aqVWG+BHuHQ3aNBgW7WsDGXi5yGyMAlJEACYMHeH2CkLsMev1Ds9wr59/74eNGiEdUVvVpHSAxcR6hhvbrmDMIvpWN6H19M7+MndhwiwxYbC/j7AwA+7jkBP3UYAo+sFISveB0m6rLy+3khZNJzenVEiBq3olI1DsfdAgD0ae74iL2JqN75+QFhYYBMhreOroV9fhYSbV3wU8cXyrezBFEjwCJEOuP41dsoLFHDyUqBli48+kakE37/HejTB5Yld/DB/hUAgCVdXsTNH1aJm4uojrAIkc7YG12+1EHv5g6cNk+kK2xsgF27gNhYPPflf9DB0RRFUmN8fPim2MmI6gSLEOkEQRCw9+7qtX1a8LQYkc7x9YWkf38seLEdZFIJdkal4XBcptipiJ4YixDphKibKqSrimEmlyHUq4nYcYioGs2drTC6UzMAwLy/LqGkTCNyIqInwyJEOmHP3aNBT/naQ2EsEzkNET3MjGf8YGchx9XMAqw6dk3sOERPhEWIdELF+CCeFiPSfVYKY7zbNwAA8M3eOGSoikRORPT4WIRIdCk5dxCdqoJUAvT052U1iPTB0LZNEeRmjYISNT7beUXsOESPjUWIRLf7UhoAoK27DZpYmIichohqQiqVYMGglpBIgE3nb+JMYpbYkYgeC4sQiW5nVHkR6tvKSeQkRFQbgW7WGB7iBgCYu/US1BpeqID0D4sQiSozrxin7v4m2a+1s8hpiKi2/tPXH5YKI0SnqvD7qSSx4xDVGosQiSr8UhoEAQhsqoSrtanYcYioluwsTDDz6fLrAn61OwbZBSUiJyKqHRYhEtWuu6fFeDSISH+93KkZApwskVNYiq/3xIgdh6hWWIRINFkFJTh+9TYAoB/HBxHpLSOZFPMHtQQArD2ZhEspuSInIqo5FiESzZ7oNKg1Alo4W6FZE3Ox4xDRE+jk1QTPtnGGRgDmbb0EQeDAadIPLEIkmorZYv1b82gQUWPwwYDmMDWW4cz1bGyJ4EVZST+wCJEocgpLcDT+FgCODyJqLJyVppjWywcAsHDHFeQXl4mciOjRWIRIFDuj0lCqFhDgZAlvewux4xBRHZnYzRMeTcyQkVeMJfvixI5D9EgsQiSKLefLD5sPDnYVOQkR1SUTIxnmDmwBAFhx9BoSMvNFTkT0cCxC1OBScu5oF1EcGOgichoiqmu9AhzRK8ABpWoBC/6O5sBp0mksQtTgtl1IgSAAHTxsuYgiUSM199kWkMukOBSbiT3R6WLHIaoWixA1uC3nUwAAzwXzaBBRY+VhZ46J3TwBAB9ui0ZRqVrkRERVYxGiBhWXnofoVBWMpBL0b8XZYkSN2bRePnBWKnAj+w5+OHhV7DhEVWIRogb1V2T50aDufvawMZeLnIaI6pOZ3Ajv928OAPj2QDxuZBeKnIjoQSxC1GA0GgGb784WGxTE02JEhuDZNs7o5GWL4jINPtl+Wew4RA9gEaIGc+LqbdzIvgNLhRHCWnI1aSJDIJFIMH9QS8ikEuyMStMupEqkK1iEqMH8cSYZQPmUeYWxTOQ0RNRQApysMLpTMwDAvL8uoVStETkR0b9YhKhBqIpKtdcWGxbSVOQ0RNTQ3n7aD03M5YjPyMfqY4lixyHSYhGiBrEtMhXFZRr4OFggyM1a7DhE1MCUpsZ4t68/AGDx3jhk5BWJnIioHIsQNYgNZ8tPiw1v1xQSiUTkNEQkhmEhbghsqkR+cRk+3xkjdhwiACxC1ADiM/JwPikHMqmE1xYjMmBSafnAaQDYeO4Gzl7PFjkREYsQNYD1p8uPBvX0t4eDpULkNEQkpmB3G+04wfl/XYJaw+uQkbhYhKheFZWqseHsDQDAyA7uIqchIl3wbt8AWCqMcPFmrnY2KZFYWISoXm27kIqcwlK4Wpuih7+D2HGISAfYW5rg7T5+AIAvdl1BTmGJyInIkLEIUb369cR1AMCoju6QSTlImojKjQ5tBj9HC2QXlmLRnlix45ABYxGiehN1MxcRyTkwlkkwvJ2b2HGISIcYy6TagdO/nriO6BSVyInIULEIUb357WT50aCwlk6wtzQROQ0R6ZrO3nYY0NoZGqF84LQgcOA0NTwWIaoXqqJSbDlffqX5l+8urU9EdL/3BzSHqbEMpxKz8FdkithxyACxCFG9WH8qGXdK1fB1sEBHT1ux4xCRjnK1NsXUnt4AgE93XEZBcZnIicjQsAhRnStTa7Dq7rWEJnT15ErSRPRQE7t5wd3WDOmqYiz5J17sOGRgWISozoVfSsfNnDuwNZdzJWkieiSFsQxzn20BAPj5yFVczcwXOREZEhYhqnM/H7kKoHxskMJYJnIaItIHvZs7oIe/PUrVAj7cFs2B09RgWISoTp1Lysa5pBzIZVKM5iBpIqohiUSCuc+2gLFMggMxmdh3OUPsSGQgWISoTv185BoA4LkgF06ZJ6Ja8bK3wMRuXgCAD7dFo6hULXIiMgR6U4SysrLw0ksvwcrKCtbW1pgwYQLy8x9+HrlHjx6QSCSVbq+99loDJTY8ibcKsPNiKgDgla6eIqchIn00racPnKwUSMoqxJJ/4sSOQwZAb4rQSy+9hEuXLmHPnj3Ytm0bDh06hMmTJz/ycZMmTUJqaqr29sUXXzRAWsP0/cEEaASgV4ADmjtbiR2HiPSQuYmRdsXpHw5exeVUrjhN9UsvitDly5exa9cu/PTTT+jYsSO6du2KJUuWYN26dUhJefgCXGZmZnByctLerKz4A7o+pOTcwcZz5VeZn9rTR+Q0RKTP+rZyQlhLR5RpBMzadBFqDQdOU/3RiyJ0/PhxWFtbo127dtptffr0gVQqxcmTJx/62N9++w12dnZo1aoVZs+ejcLCwofuX1xcDJVKVelGj/bj4asoVQvo5GWLkGY2YschIj334XOtYGlihMjkHKy+uy4ZUX3QiyKUlpYGBweHStuMjIxga2uLtLS0ah83atQo/Prrr9i/fz9mz56NNWvW4OWXX37oay1cuBBKpVJ7c3PjxUIf5VZ+MX4/lQQAmNbTV+Q0RNQYOFopMKt/AADgq90xuJH98F9iiR6XqEVo1qxZDwxmvv925cqVx37+yZMnIywsDK1bt8ZLL72EX375BZs3b0ZCQkK1j5k9ezZyc3O1t+Tk5Md+fUPx85FrKCrVILCpEl18mogdh4gaiZHt3dHBwxaFJWrM2RLFtYWoXhiJ+eIzZ87EuHHjHrqPl5cXnJyckJFReU2JsrIyZGVlwcnJqcav17FjRwBAfHw8vL29q9zHxMQEJiac9l1TmXnFWHU0EQAwrZcvL6dBRHVGKpXg0+dbo/83h7E/JhN/X0jFoEAXsWNRIyNqEbK3t4e9vf0j9wsNDUVOTg7Onj2LkJAQAMA///wDjUajLTc1ERERAQBwdnZ+rLz0oG8PxONOqRqBbtbo09zh0Q8gIqoFHwcLTO3pg//ujcWCvy6hm48dbMzlYseiRkQvxgg1b94cffv2xaRJk3Dq1CkcPXoU06ZNw4svvggXl/LfDm7evImAgACcOnUKAJCQkICPPvoIZ8+eRWJiIv766y+MGTMGTz31FNq0aSPm22k0UnLu4LcT5WOD/vOMP48GEVG9mNLDG74OFrhdUIKPtkWLHYcaGb0oQkD57K+AgAD07t0b/fv3R9euXbF8+XLt/aWlpYiJidHOCpPL5di7dy+eeeYZBAQEYObMmXjhhRfw999/i/UWGp0l/8ShRK1BJy9bjg0ionojN5Li86FtIJUAm87fxO5L1U+SIaoticDRZw+lUqmgVCqRm5vLNYjukXirAL0XHYRaI2DjlFCENLMVOxIRNXILd17GDwevws5Cjt1vd4ctT5FRHdCbI0KkWxbtiYVaI6Cnvz1LEBE1iLf7+MHXwQK38kswZ2uU2HGokWARolo7n5SNvyJTIJEAM5/xFzsOERkIhbEMi4YHQSaVYPuFVGy78PArCxDVBIsQ1YogCPjw7mDFoW2bopWrUuRERGRIWjdVYmqP8uVP5myJQmZesciJSN+xCFGt/BWZgvNJOTCTy/CfMB4NIqKGN62XL1o4WyG7sBSzN13kQov0RFiEqMbulKjx+c7ylb5f7+ENByuFyImIyBDJjaT4enggjGUS7L2cjvWneQUAenwsQlRjPx2+ipTcIrham2JiNy+x4xCRAWvubIV37o5RXPB3NOIz8kVORPqKRYhqJDmrEMsOxAMAZvULgMJYJnIiIjJ0k7p5oYtPE9wpVeOtdedRXKYWOxLpIRYheiRBEDDvr0soKtWgo6ctnm3DS5QQkfikUgkWDQ+CjZkxLqWo8FV4jNiRSA+xCNEj7YpKwz9XMmAsk+CTIa15KQ0i0hmOVgp8MTQQAPDj4Ws4FJspciLSNyxC9FB5RaWY//clAMCU7t7wcbAQORERUWVPt3DEy53cAQAzN0RySj3VCosQPdTXu2ORriqGRxMzvN7TR+w4RERV+qB/C/g5WiAzrxhv/n4eZWqN2JFIT7AIUbXOXs/CL8cTAQAfD27NAdJEpLNM5TJ8+1JbmMllOH71NhbtiRU7EukJFiGqUmFJGWb+EQmNALzQtim6+tqJHYmI6KF8HCzx+QttAADfHkjAvsvpIicifcAiRFX6fOcVJN4uhItSgXmDWogdh4ioRgYGumBcZw8AwNvrI5CcVShuINJ5LEL0gKPxt7D6+HUAwBdDA2GlMBY5ERFRzb3fvzmC3KyhKirDlN/OoqiU6wtR9ViEqJLcO6X4z4ZIAMDoTs14SoyI9I7cSIplL7WFjZkxom6qMGvjBV6PjKrFIkRagiBg1sYLSMktgrutGWb1CxA7EhHRY3G1NsWyl9rCSCrBlogUfHcwQexIpKNYhEjr1xPXsTMqDcYyCZaMDIa5iZHYkYiIHltnbzvMG9QSAPBleAz2RHPwND2IRYgAAJdScvHRtssAgPf6BiDQzVrcQEREdWB0p2YY3akZBAGYvu48rqSpxI5EOoZFiJBfXIZpa8+jRK1Bn+aOmNDVU+xIRER1Zu7AFujs3QQFJWq8svI00nKLxI5EOoRFyMBpNAJmrI/AtVsFcFEq8NWwNryWGBE1KsYyKb59qS287MyRkluEcStPQVVUKnYs0hEsQgZu8b447I5Oh1xWPsvC2kwudiQiojpnbSbH6lc6wN7SBFfS8jD5lzMoLuO0emIRMmg7L6bif/viAACfPt8awe42IiciIqo/brZmWDW+PSxMjHDialb56vkaTqs3dCxCBio6RYWZd9cLeqWLJ4aGNBU5ERFR/WvposQPo0NgLJNg24VUzNkaxTWGDByLkAG6mXMH41edQmGJGl18muD9/lwviIgMRxcfO3w9PAgSCfDbySQs+DuaZciAsQgZmNzCUoxbcQrpqmL4Oljg21EhMJLx24CIDMugQBftBVpXHUvEwp1XWIYMFH8CGpCiUjUmrTmDuIx8OFqZYNUrHaA043XEiMgwDW/nhk+HtAYALD90FV/tjmEZMkAsQgaiVK3BW+vO49S1LFiaGGHV+A5wtTYVOxYRkahGdXTHgrurTy/bn4APt0VzALWBYREyAGqNgBl/RCL8Uvk0+R9Gh6C5s5XYsYiIdMLYzh6YP7AFAGDl0US8u/ECytQakVNRQ2ERauTUGgH/2RCJvyNTYCyT4PvRbdHZh1eUJyK617gunvh6WCBkUgn+PHsDU9ee4zpDBoJFqBFTa8qvJr/p/E3IpBIsGdkWvQIcxY5FRKSTXghpim9fagu5TIrwS+kY/fMpZBWUiB2L6hmLUCNVUqbBm+vOY8PZG5BKgMUjgtC3lZPYsYiIdFpYSyesvLvo4qlrWRjy7VHEZ+SLHavxio0Fdu4E4uJEi8Ai1AjdKVFj8poz2H4hFcYyCZaNaouBgS5ixyIi0gtdfOywcUpnNLUxxfXbhRjy7VEcibsldqzGJSsL6NsX8PcH+vcH/PzKv87ObvAoEoFzBR9KpVJBqVQiNzcXVla6P8A4u6AEk9ecwenEbCiMpfhhdDt097MXOxYRkd65lV+MV9ecxdnr2ZBJJXg3zB+TunlBKuWFqZ9Y377A3r2A+p5xWDIZ0KcPsGtXg0bhEaFG5GpmPoZ8exSnE7NhqTDCrxM6sgQRET0mOwsT/DaxI55v6wq1RsDCnVcwec0Z5BRy3NATiY0FwsNRDAk2teyJ50YvQoqlXXkpCg9v8NNkLEKNxPGE2xjy7TEk3i6Eq7UpNk7pjHYetmLHIiLSawpjGb4eFohPhrSC3EiKvZczMOB/R3A6MUvsaHorIzoei7qOQpcpKzHj2ZmIdPHD6rbP/rtDfHyD5uGpsUfQ9VNjgiDg91PJmPdXFErVAoLdrbF8dDvYW5qIHY2IqFGJupmLqWvP4frtQkgkwMSunpj5jD8UxjKxo+k8QRBwPjkHq44mYseFFJTdbR5Oebcw+tx2jIrYBZuivPKNsbGAr2+DZWMRegRdLkJ3StT4YMtFbDp3EwDwbBtnfDUskH8piYjqSV5RKT7aFo0/ztwAAPg4WODzF9ogpJmNyMl0U2FJGbZfSMWaE9dx4Uaudnv7/BSM+2cNnok5BmPN3XFCIo0RYhF6BF0tQlcz8zHl13OISc+DVAL8JywArz7FQXxERA1h3+V0zNp0EZl5xQCA4e2a4r2+AWhiYVJ+RCMhAfDxadAjG7pCEARcvJmLdaeT8XdECvKKywAAciMpngt0wdjOHmhlpgFGjiwfE1QhLAz4/XfApmFLJYvQI+haERIEARvO3sCCvy6hoEQNOwsTLBkZjFDvJmJHIyIyKNkFJVi487L26JCViQzTE/bjpXWLYKIu/+Ev1g93MeQUlmBrRArWnU7G5VSVdnuzJmYY0d4NL7Z3h625vPKD4uLKxwSJWBpZhB5Bl4pQZl4xZm+6iL2X0wEAHTxtsXRkMBysFKLmIiIyZGevZ2POlihE3/3h75qbjreP/IYhlw5AJpWIcrqnoRSWlGHv5Qz8FXETB2MzUaourxRyIyn6t3LCiPbu6Ohpq9NnK1iEHkEXipAgCNgZlYb/2xKFrIISyGVSzHjGD5O6eZX/JSMiIlGpr8Rg/Ytv4Zsuo5BuWX6E3uv2DUw6vRlDov6B4vKlRnOarKhUjaPxt/B3ZAp2R6ejsOTftYBaOFthRHs3DA5yhdLMWMSUNcci9AhiF6HkrELM3RqF/TGZAIAAJ0v8d0QQrx5PRKRLdu4E+vfHHSMTrG77LL7rNBS5ppYAALv8bIxpZYvhI3vBSamfR/CzC0qw70oG9kan41BcZqXy425rhueCXDAo0AW+jpYipnw8LEKPIFYRKi5T46fD1/C/fXEoLtPAWCbBlO7emNrLByZGnBVGRKRTYmPLLxdxV77cFOvaPIMV7Z9DipUDAEAqAXr6O2BYOzf08LfX6Rm+ZWoNLt7MxbGE2zgYm4kziVnQ3NMWnJUKhLV0wuBgVwQ2VUIi0d+zEyxCj9DQRUijEfD3hRR8GR6DG9l3AAChXk3w0eBW8HGwqPfXJyKix1TFZSNKjeXY/sKrWNt9JE7dswijmVyGnv4OeKalI3r4OYh+GqmkTIMraSqcvZ6No/G3cfLqbe1srwrNna3wdAtHPNPCES1drPS6/NxLb4rQJ598gu3btyMiIgJyuRw5OTmPfIwgCJg3bx5+/PFH5OTkoEuXLvjuu+/gW4vztPVWhKqYXnk84TYW7rysXWvBwdIEs/oFYEiwa6P5hiMiarSysx86JTwhMx9/nE7G35EpSMkt0u4ikZSPreno2QQdvWzRylUJF6Wi3v7dv1OiRkJmPuIy8nDxhgoRydmISlGhpExTaT8rhRFCvZugs7cdegU4wM3WrF7yiE1vitC8efNgbW2NGzdu4Oeff65REfr888+xcOFCrF69Gp6enpgzZw4uXryI6OhoKBQ1O09b50UoKwsYNUr7F0UAcPyFCVjaexyOXS8vQBYmRnituxde6eoJM7nRk78mERE1nEdMCa9YZ2dXVBp2R6cjPiP/gX2sFEYIcLaCj4MFXK1N0dTGFM5KU9iaG8NSYQxLhRFMjWWVypJaIyC/uAx5RaXIKypDTmEp0lR3kJpbhNScItzILkR8Zj5uZN9BVT/5labGCHKzRievJuji0wQtXZQGMSFHb4pQhVWrVmH69OmPLEKCIMDFxQUzZ87EO++8AwDIzc2Fo6MjVq1ahRdffLFGr1fnRejuoVNBrcZ+r3ZY0vlFnHcNAAAYSSUY1dEdb/b2hZ0FL5FBRGQIMlRFOHEtCyeu3sbZxGwkZOajTFOzH833HjSqzU9zW3M5fBws0NzJEkHu1ghys4FHEzODPPvQaA83XLt2DWlpaejTp492m1KpRMeOHXH8+PFqi1BxcTGKi4u1X6tUqir3eyx3r7gLAJOe/z/s9e0EADApLcaLF3Zj8hdvwjW4Rd29HhER6TwHKwUGBZbPugLKJ8vEZ+Tjcmoert8uwM2cO7iZXX5kJ/dOKfKKSrUDl6sqP3IjKawURrBSGMNJqYCTUgEXpSlcrE3hbW8OHweL8hWwCUAjLkJpaWkAAEdHx0rbHR0dtfdVZeHChViwYEH9hEpI0P7vU9fO47h7G7x8fgcmnt4C+8IcIO05ACxCRESGzMRIhpYuSrR0UVZ5vyAIKCxRV5rCDpTPSrNQGHFmcS1JxXzxWbNmQSKRPPR25cqVBs00e/Zs5Obmam/Jycl19+Te3tr/HX5hN45+/wpmH1xVXoKA8vPJREREDyGRSGBuYgR7S5NKtyYWJixBj0HUI0IzZ87EuHHjHrqPl5fXYz23k5MTACA9PR3Ozs7a7enp6QgKCqr2cSYmJjAxqadDhn5+5TMI9u6FQl0Khbq0fHvFFXcbyaqjRERE+kLUImRvbw97e/t6eW5PT084OTlh37592uKjUqlw8uRJTJkypV5es0Z+//3B6ZV9+pRvJyIiogalN2OEkpKSkJWVhaSkJKjVakRERAAAfHx8YGFRvtBgQEAAFi5ciCFDhkAikWD69On4+OOP4evrq50+7+LigsGDB4v3Rmxsyi++pwNX3CUiIjJ0elOE5s6di9WrV2u/Dg4OBgDs378fPXr0AADExMQgNzdXu8+7776LgoICTJ48GTk5OejatSt27dpV4zWE6pWvLwsQERGRyPRuHaGGJvZFV4mIiKj+iDprjIiIiEhMLEJERERksFiEiIiIyGCxCBEREZHBYhEiIiIig8UiRERERAaLRYiIiIgMFosQERERGSwWISIiIjJYenOJDbFULLytUqlETkJERES1ZWlpCYlEUu39LEKPkJeXBwBwc3MTOQkRERHV1qMukcVrjT2CRqNBSkrKIxtlbalUKri5uSE5OZnXMKsBfl41x8+q5vhZ1Rw/q5rjZ1VzDfFZ8YjQE5JKpWjatGm9Pb+VlRX/otQCP6+a42dVc/ysao6fVc3xs6o5MT8rDpYmIiIig8UiRERERAaLRUgkJiYmmDdvHkxMTMSOohf4edUcP6ua42dVc/ysao6fVc3pwmfFwdJERERksHhEiIiIiAwWixAREREZLBYhIiIiMlgsQkRERGSwWIR0xCeffILOnTvDzMwM1tbWYsfRKcuWLYOHhwcUCgU6duyIU6dOiR1JJx06dAgDBw6Ei4sLJBIJtmzZInYknbVw4UK0b98elpaWcHBwwODBgxETEyN2LJ303XffoU2bNtoF70JDQ7Fz506xY+mFzz77DBKJBNOnTxc7is6ZP38+JBJJpVtAQIAoWViEdERJSQmGDRuGKVOmiB1Fp6xfvx4zZszAvHnzcO7cOQQGBiIsLAwZGRliR9M5BQUFCAwMxLJly8SOovMOHjyIqVOn4sSJE9izZw9KS0vxzDPPoKCgQOxoOqdp06b47LPPcPbsWZw5cwa9evXCc889h0uXLokdTaedPn0aP/zwA9q0aSN2FJ3VsmVLpKamam9HjhwRJ4hAOmXlypWCUqkUO4bO6NChgzB16lTt12q1WnBxcREWLlwoYirdB0DYvHmz2DH0RkZGhgBAOHjwoNhR9IKNjY3w008/iR1DZ+Xl5Qm+vr7Cnj17hO7duwtvvfWW2JF0zrx584TAwECxYwiCIAg8IkQ6q6SkBGfPnkWfPn2026RSKfr06YPjx4+LmIwam9zcXACAra2tyEl0m1qtxrp161BQUIDQ0FCx4+isqVOnYsCAAZX+7aIHxcXFwcXFBV5eXnjppZeQlJQkSg5edJV01q1bt6BWq+Ho6Fhpu6OjI65cuSJSKmpsNBoNpk+fji5duqBVq1Zix9FJFy9eRGhoKIqKimBhYYHNmzejRYsWYsfSSevWrcO5c+dw+vRpsaPotI4dO2LVqlXw9/dHamoqFixYgG7duiEqKgqWlpYNmoVHhOrRrFmzHhgMdv+NP9CJxDV16lRERUVh3bp1YkfRWf7+/oiIiMDJkycxZcoUjB07FtHR0WLH0jnJycl466238Ntvv0GhUIgdR6f169cPw4YNQ5s2bRAWFoYdO3YgJycHf/zxR4Nn4RGhejRz5kyMGzfuoft4eXk1TBg9ZGdnB5lMhvT09Erb09PT4eTkJFIqakymTZuGbdu24dChQ2jatKnYcXSWXC6Hj48PACAkJASnT5/GN998gx9++EHkZLrl7NmzyMjIQNu2bbXb1Go1Dh06hKVLl6K4uBgymUzEhLrL2toafn5+iI+Pb/DXZhGqR/b29rC3txc7ht6Sy+UICQnBvn37MHjwYADlpzH27duHadOmiRuO9JogCHjjjTewefNmHDhwAJ6enmJH0isajQbFxcVix9A5vXv3xsWLFyttGz9+PAICAvDee++xBD1Efn4+EhISMHr06AZ/bRYhHZGUlISsrCwkJSVBrVYjIiICAODj4wMLCwtxw4loxowZGDt2LNq1a4cOHTpg8eLFKCgowPjx48WOpnPy8/Mr/TZ17do1REREwNbWFu7u7iIm0z1Tp07F2rVrsXXrVlhaWiItLQ0AoFQqYWpqKnI63TJ79mz069cP7u7uyMvLw9q1a3HgwAGEh4eLHU3nWFpaPjDOzNzcHE2aNOH4s/u88847GDhwIJo1a4aUlBTMmzcPMpkMI0eObPgwYk9bo3Jjx44VADxw279/v9jRRLdkyRLB3d1dkMvlQocOHYQTJ06IHUkn7d+/v8rvobFjx4odTedU9TkBEFauXCl2NJ3zyiuvCM2aNRPkcrlgb28v9O7dW9i9e7fYsfQGp89XbcSIEYKzs7Mgl8sFV1dXYcSIEUJ8fLwoWSSCIAgNX7+IiIiIxMdZY0RERGSwWISIiIjIYLEIERERkcFiESIiIiKDxSJEREREBotFiIiIiAwWixAREREZLBYhIiIiMlgsQkRERGSwWISIiIjIYLEIEZFByczMhJOTEz799FPttmPHjkEul2Pfvn0iJiMiMfBaY0RkcHbs2IHBgwfj2LFj8Pf3R1BQEJ577jksWrRI7GhE1MBYhIjIIE2dOhV79+5Fu3btcPHiRZw+fRomJiZixyKiBsYiREQG6c6dO2jVqhWSk5Nx9uxZtG7dWuxIRCQCjhEiIoOUkJCAlJQUaDQaJCYmih2HiETCI0JEZHBKSkrQoUMHBAUFwd/fH4sXL8bFixfh4OAgdjQiamAsQkRkcP7zn//gzz//RGRkJCwsLNC9e3colUps27ZN7GhE1MB4aoyIDMqBAwewePFirFmzBlZWVpBKpVizZg0OHz6M7777Tux4RNTAeESIiIiIDBaPCBEREZHBYhEiIiIig8UiRERERAaLRYiIiIgMFosQERERGSwWISIiIjJYLEJERERksFiEiIiIyGCxCBEREZHBYhEiIiIig8UiRERERAaLRYiIiIgM1v8DoCobJtEpREkAAAAASUVORK5CYII="
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "text/plain": "",
- "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjcAAAHHCAYAAABDUnkqAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABElElEQVR4nO3deXhU1f3H8c9MlpkgJAECCYFAkMgmOwiGRbBGqSLWtla0ViitWi1UMG4sFYpbsC1IFRS1WpdWQVzACkUxgmsUZatQZJH1pyYBhQQCZJk5vz/C3GRIQJaZe8nwfj1PHjN3zr1z7o2QD997zrkuY4wRAABAhHA73QEAAIBQItwAAICIQrgBAAARhXADAAAiCuEGAABEFMINAACIKIQbAAAQUQg3AAAgohBuAABARCHcACH07LPPyuVyadu2bU53JUhFRYXuuusupaWlye1268orr3S6S4gALpdLo0ePdrobQA3RTncAQPg988wz+stf/qKxY8eqR48eatmypdNdwgk4cOCA/vznP2vQoEEaNGiQ090BTnuEG+AM8O6776p58+Z6+OGHne4KTsKBAwc0ZcoUSSLcAMeB21LAGaCwsFCJiYkhO57f79ehQ4dCdry65kw+f2OMDh486HQ3gGMi3AA2eOyxx3TuuefK4/EoNTVVo0aN0t69e4PabNq0ST//+c+VkpIir9erFi1a6JprrlFRUZHVZsmSJerfv78SExNVv359tWvXThMmTDjq527btk0ul0tLly7VunXr5HK55HK5tGzZMklSSUmJbr/9dqWlpcnj8ahdu3b661//KmNM0HECYyv+9a9/WeexePHio35uenq6Lr/8cr399tvq1q2bvF6vOnbsqNdee61G2y1btugXv/iFGjVqpHr16un888/XwoULg9osW7ZMLpdLc+fO1YQJE5SSkqKzzjpLV1xxhXbu3BnUdtCgQerUqZNWrFihvn37Ki4uTq1bt9bs2bNrfHZpaakmT56sjIwMeTwepaWl6a677lJpaWlIzv/DDz9U79695fV6dfbZZ+v555+v0Xbv3r0aO3as9TPIyMjQQw89JL/fL6nyZ9ikSRNJ0pQpU6yf4Z/+9Ce98cYbcrlc+u9//2sd79VXX5XL5dLPfvazoM/p0KGDhg0bZr2uqKjQfffdpzZt2sjj8Sg9PV0TJkyoce6Bc3nrrbfUq1cvxcXF6Yknnjjqud9///1yu9169NFHj9oGCDsDIGT+8Y9/GElm69at1rbJkycbSSYrK8s8+uijZvTo0SYqKsqcd955pqyszBhjTGlpqWndurVJTU01999/v/n73/9upkyZYs477zyzbds2Y4wxa9euNbGxsaZXr17mb3/7m5k9e7a54447zAUXXHDU/uzfv9+88MILpn379qZFixbmhRdeMC+88ILJz883fr/f/OhHPzIul8vccMMNZubMmWbo0KFGkhk7dmzQcSSZDh06mCZNmpgpU6aYWbNmmVWrVh31c1u1amXatm1rEhMTzbhx48z06dNN586djdvtNm+//bbVLj8/3yQnJ5sGDRqYiRMnmunTp5uuXbsat9ttXnvtNavd0qVLjSTTuXNn06VLFzN9+nQzbtw44/V6Tdu2bc2BAwestgMHDjSpqammadOmZvTo0eaRRx4x/fv3N5LM008/bbXz+XzmkksuMfXq1TNjx441TzzxhBk9erSJjo42P/nJT075/Nu1a2eSk5PNhAkTzMyZM02PHj2My+Uya9eutdqVlJSYLl26mMaNG5sJEyaY2bNnm+HDhxuXy2XGjBlj/Qwff/xxI8n89Kc/tX6Ga9asMd99951xuVzm0UcftY45ZswY43a7TZMmTaxthYWFRpKZOXOmtW3EiBFGkrnqqqvMrFmzzPDhw40kc+WVV9Y4l4yMDNOwYUMzbtw4M3v2bLN06VLruowaNcpqO3HiRONyucyTTz551GsD2IFwA4TQkeGmsLDQxMbGmksuucT4fD6r3cyZM40k88wzzxhjjFm1apWRZObNm3fUYz/88MNGktm1a9cJ92vgwIHm3HPPDdo2f/58I8ncf//9Qduvuuoq43K5zObNm61tkozb7Tbr1q07rs9r1aqVkWReffVVa1tRUZFp1qyZ6d69u7Vt7NixRpL54IMPrG379u0zrVu3Nunp6dY1C4Sb5s2bm+LiYqvtyy+/bCSZv/3tb0HnKslMmzbN2lZaWmq6detmmjZtagXKF154wbjd7qDPNsaY2bNnG0nmo48+OuXzf//9961thYWFxuPxmNtvv93adt9995mzzjrLbNy4MWj/cePGmaioKLNjxw5jjDG7du0ykszkyZNrfNa5555rrr76aut1jx49zC9+8Qsjyaxfv94YY8xrr71mJJk1a9YYY4xZvXq1kWRuuOGGoGPdcccdRpJ59913a5zL4sWLa3x29XBz++23G7fbbZ599tnjukZAOHFbCgijd955R2VlZRo7dqzc7qo/bjfeeKPi4+Ot2y8JCQmSpLfeeksHDhyo9ViBMTMLFiywblmcikWLFikqKkq33npr0Pbbb79dxhj95z//Cdo+cOBAdezY8biPn5qaqp/+9KfW6/j4eA0fPlyrVq1Sfn6+1YfevXurf//+Vrv69evrpptu0rZt2/S///0v6JjDhw9XgwYNrNdXXXWVmjVrpkWLFgW1i46O1u9+9zvrdWxsrH73u9+psLBQK1askCTNmzdPHTp0UPv27bV7927r60c/+pEkaenSpad0/h07dtSAAQOs102aNFG7du20ZcsWa9u8efM0YMAANWzYMKgPWVlZ8vl8ev/993/wcwYMGKAPPvhAkrRv3z6tWbNGN910k5KSkqztH3zwgRITE9WpUydJsq5XdnZ20LFuv/12SapxW7B169YaPHhwrZ9vjNHo0aP1t7/9Tf/85z81YsSIH+wzEG6EGyCMtm/fLklq165d0PbY2FidffbZ1vutW7dWdna2/v73vyspKUmDBw/WrFmzgsbbDBs2TP369dMNN9yg5ORkXXPNNXr55ZdPOuhs375dqampQWFBqhybUb3vAa1btz6h42dkZMjlcgVta9u2rSRZ6wBt3769xrU5Vh/OOeecoNcul0sZGRk11hVKTU3VWWeddczP3rRpk9atW6cmTZoEfQXaFRYWBu1/oudf23T7hg0bas+ePdbrTZs2afHixTX6kJWVVWsfajNgwAB9++232rx5sz7++GO5XC5lZmYGhZ4PPvhA/fr1swL29u3b5Xa7lZGREXSslJQUJSYmntDP/vnnn9esWbP06KOP6tprr/3B/gJ2YCo4cJqYNm2afv3rX2vBggV6++23deuttyonJ0effPKJWrRoobi4OL3//vtaunSpFi5cqMWLF2vu3Ln60Y9+pLfffltRUVFh7V9cXFxYj283v9+vzp07a/r06bW+n5aWFvT6RM//aD8PU22wtt/v18UXX6y77rqr1raBoHUsgarX+++/ry1btqhHjx4666yzNGDAAD3yyCPav3+/Vq1apQceeKDGvkeGz6M51rn369dPq1ev1syZM3X11VerUaNGx3VMIJwIN0AYtWrVSpK0YcMGnX322db2srIybd261foXekDnzp3VuXNn/fGPf9THH3+sfv36afbs2br//vslSW63WxdddJEuuugiTZ8+XQ8++KAmTpyopUuX1jjW8fTtnXfe0b59+4KqN19++WVQ30/W5s2bZYwJ+gW6ceNGSZUzcAKfsWHDhhr7Hq0PmzZtCnptjNHmzZvVpUuXoO3ffPONSkpKgqo3R352mzZttGbNGl100UXH/Us+1Nq0aaP9+/f/4M/uWP1r2bKlWrZsqQ8++EBbtmyxboVdcMEFys7O1rx58+Tz+XTBBRdY+7Rq1Up+v1+bNm2yqmSSVFBQoL17957Qzz4jI8NaYPDHP/6xcnNza1QDAbtxWwoIo6ysLMXGxuqRRx4J+hf7008/raKiIg0ZMkSSVFxcrIqKiqB9O3fuLLfbbU3N/f7772scv1u3bpJUY/ru8bjsssvk8/k0c+bMoO0PP/ywXC6XLr300hM+ZnXffPONXn/9det1cXGxnn/+eXXr1k0pKSlWH5YvX668vDyrXUlJiZ588kmlp6fXGOPy/PPPa9++fdbrV155Rd9++22NvlZUVARNVy4rK9MTTzyhJk2aqGfPnpKkq6++Wl9//bWeeuqpGn0/ePCgSkpKTuHsj8/VV1+tvLw8vfXWWzXe27t3r/X/RL169axttRkwYIDeffddLV++3Ao33bp1U4MGDTR16lTFxcVZ5y1VXndJmjFjRtBxAlWswP+Xx6tLly5atGiR1q9fr6FDh7IODhxH5QYIoyZNmmj8+PGaMmWKfvzjH+uKK67Qhg0b9Nhjj+m8887Tr371K0mVKwiPHj1av/jFL9S2bVtVVFTohRdeUFRUlH7+859Lku699169//77GjJkiFq1aqXCwkI99thjatGiRdCA3OM1dOhQXXjhhZo4caK2bdumrl276u2339aCBQs0duxYtWnT5pTOvW3btvrtb3+rzz77TMnJyXrmmWdUUFCgf/zjH1abcePG6aWXXtKll16qW2+9VY0aNdJzzz2nrVu36tVXXw0ahC1JjRo1Uv/+/TVy5EgVFBRoxowZysjI0I033hjULjU1VQ899JC2bdumtm3bau7cuVq9erWefPJJxcTESJKuv/56vfzyy7r55pu1dOlS9evXTz6fT19++aVefvlla12XcLrzzjv1xhtv6PLLL9evf/1r9ezZUyUlJfriiy/0yiuvaNu2bUpKSlJcXJw6duyouXPnqm3btmrUqJE6depkDRAeMGCA/vWvf8nlcln/L0RFRalv37566623NGjQIMXGxlqf27VrV40YMUJPPvmk9u7dq4EDB2r58uV67rnndOWVV+rCCy884XM5//zztWDBAl122WW66qqrNH/+fOtaA7ZzcqoWEGlqW+fGmMqp3+3btzcxMTEmOTnZ3HLLLWbPnj3W+1u2bDG/+c1vTJs2bYzX6zWNGjUyF154oXnnnXesNrm5ueYnP/mJSU1NNbGxsSY1NdVce+21NaYR16a2qeDGVE67vu2220xqaqqJiYkx55xzjvnLX/5i/H5/UDsdsZ7JD2nVqpUZMmSIeeutt0yXLl2Mx+Mx7du3r3Wq+1dffWWuuuoqk5iYaLxer+ndu7d58803g9oEpoK/9NJLZvz48aZp06YmLi7ODBkyxGzfvr3Wc/38889NZmam8Xq9plWrVkFrvASUlZWZhx56yJx77rnG4/GYhg0bmp49e5opU6aYoqKiUz7/Iw0cONAMHDgwaNu+ffvM+PHjTUZGhomNjTVJSUmmb9++5q9//as1bd0YYz7++GPTs2dPExsbW2Na+Lp166y1eKq7//77jSRzzz331OhLeXm5mTJlimndurWJiYkxaWlpZvz48ebQoUPHdS7G1H5dFixYYKKjo82wYcOClj8A7OQy5oilSAHgFKWnp6tTp0568803Q3K8ZcuW6cILL9S8efN01VVXHbPtoEGDtHv3bq1duzYknw2g7mHMDQAAiCiEGwAAEFEINwAAIKIw5gYAAEQUKjcAACCiEG4AAEBEOePCjTFGxcXF4m4cAACR6YwLN/v27VNCQkLQEu4AACBynHHhBgAARDbCDQAAiCiEGwAAEFEINwAAIKIQbgAAQEQh3AAAgIhCuAEAABGFcAMAACIK4QYAAEQUwg0AAIgohBsAABBRCDcAACCiEG4AAEBEIdwAAICIEu10ByJFWYVfu/eXym+MWjSs53R3AAA4Y1G5CZE1/7dXfae+q+ufXu50VwAAOKMRbkLEGx0lSSot9zncEwAAzmyEmxDxxFReykMVfod7AgDAmY1wEyKe6MpLSeUGAABnEW5CxBtz+LYUlRsAABxFuAmRQOWmwm9U4SPgAADgFMJNiHgODyiWqN4AAOAkwk2IBCo3EuEGAAAnEW5CxO12KTbq8IwpBhUDAOAYwk0IWTOmqNwAAOAYwk0IeawZU1RuAABwCuEmhAKVm0PlVG4AAHAK4SaEAqsUs5AfAADOcTTcvP/++xo6dKhSU1Plcrk0f/78H9xn2bJl6tGjhzwejzIyMvTss8+GvZ/Hy3q+FGNuAABwjKPhpqSkRF27dtWsWbOOq/3WrVs1ZMgQXXjhhVq9erXGjh2rG264QW+99VaYe3p8rOdLUbkBAMAx0U5++KWXXqpLL730uNvPnj1brVu31rRp0yRJHTp00IcffqiHH35YgwcPDlc3jxuzpQAAcF6dGnOTl5enrKysoG2DBw9WXl7eUfcpLS1VcXFx0Fe48HwpAACcV6fCTX5+vpKTk4O2JScnq7i4WAcPHqx1n5ycHCUkJFhfaWlpYetf1WwpbksBAOCUOhVuTsb48eNVVFRkfe3cuTNsn+VhQDEAAI5zdMzNiUpJSVFBQUHQtoKCAsXHxysuLq7WfTwejzwejx3dkzcwFZxF/AAAcEydqtxkZmYqNzc3aNuSJUuUmZnpUI+CBSo3LOIHAIBzHA03+/fv1+rVq7V69WpJlVO9V69erR07dkiqvKU0fPhwq/3NN9+sLVu26K677tKXX36pxx57TC+//LJuu+02J7pfQ9VsKSo3AAA4xdFw8/nnn6t79+7q3r27JCk7O1vdu3fXpEmTJEnffvutFXQkqXXr1lq4cKGWLFmirl27atq0afr73/9+WkwDl6rNlqJyAwCAYxwdczNo0CAZY476fm2rDw8aNEirVq0KY69OHpUbAACcV6fG3Jzuqp4tReUGAACnEG5CiKngAAA4j3ATQl6eLQUAgOMINyFE5QYAAOcRbkKIxy8AAOA8wk0IeWMPL+LHbCkAABxDuAkhLysUAwDgOMJNCMUdrtwcLKNyAwCAUwg3IcSDMwEAcB7hJoTiYqjcAADgNMJNCAWeLXWown/Mx0oAAIDwIdyEUCDc+PxG5T7CDQAATiDchFBgzI3EdHAAAJxCuAmh2Ci3XK7K7w8x7gYAAEcQbkLI5XJZg4pZ6wYAAGcQbkIsMO7mII9gAADAEYSbEKuq3BBuAABwAuEmxDyHBxVTuQEAwBmEmxCjcgMAgLMINyHmJdwAAOAowk2IMVsKAABnEW5CLLCQH5UbAACcQbgJMaaCAwDgLMJNiHm5LQUAgKMINyEWR+UGAABHEW5CLDDmppRwAwCAIwg3IUblBgAAZxFuQszDOjcAADiKcBNiVbOlGFAMAIATCDchxuMXAABwFuEmxFjEDwAAZxFuQozKDQAAziLchBgrFAMA4CzCTYixQjEAAM4i3IRYYMzNwTIqNwAAOIFwE2JxsZWVm9IKwg0AAE4g3ISYN5rbUgAAOIlwE2KByg0DigEAcAbhJsQClRuf36jcR/UGAAC7EW5CzBtbdUmp3gAAYD/CTYjFRrnlclV+z0J+AADYj3ATYi6Xq2qV4jJuSwEAYDfCTRhYC/kxHRwAANsRbsLAG81CfgAAOIVwEwbeWB6eCQCAUwg3YRCYDs5sKQAA7Ee4CYO4WFYpBgDAKYSbMAg8PJPbUgAA2I9wEwbWVHDCDQAAtiPchIEnhjE3AAA4hXATBlWVG8bcAABgN8JNGDDmBgAA5xBuwoAxNwAAOMfxcDNr1iylp6fL6/WqT58+Wr58+THbz5gxQ+3atVNcXJzS0tJ022236dChQzb19vh4CTcAADjG0XAzd+5cZWdna/LkyVq5cqW6du2qwYMHq7CwsNb2L774osaNG6fJkydr/fr1evrppzV37lxNmDDB5p4fm5cBxQAAOMbRcDN9+nTdeOONGjlypDp27KjZs2erXr16euaZZ2pt//HHH6tfv3765S9/qfT0dF1yySW69tprf7DaYzcvA4oBAHCMY+GmrKxMK1asUFZWVlVn3G5lZWUpLy+v1n369u2rFStWWGFmy5YtWrRokS677LKjfk5paamKi4uDvsItjsoNAACOiXbqg3fv3i2fz6fk5OSg7cnJyfryyy9r3eeXv/yldu/erf79+8sYo4qKCt18883HvC2Vk5OjKVOmhLTvP4TZUgAAOMfxAcUnYtmyZXrwwQf12GOPaeXKlXrttde0cOFC3XfffUfdZ/z48SoqKrK+du7cGfZ+MqAYAADnOFa5SUpKUlRUlAoKCoK2FxQUKCUlpdZ97rnnHl1//fW64YYbJEmdO3dWSUmJbrrpJk2cOFFud82s5vF45PF4Qn8Cx8AifgAAOMexyk1sbKx69uyp3Nxca5vf71dubq4yMzNr3efAgQM1AkxUVGWQMMaEr7MnyHP4thRjbgAAsJ9jlRtJys7O1ogRI9SrVy/17t1bM2bMUElJiUaOHClJGj58uJo3b66cnBxJ0tChQzV9+nR1795dffr00ebNm3XPPfdo6NChVsg5HbCIHwAAznE03AwbNky7du3SpEmTlJ+fr27dumnx4sXWIOMdO3YEVWr++Mc/yuVy6Y9//KO+/vprNWnSREOHDtUDDzzg1CnUijE3AAA4x2VOp/s5NiguLlZCQoKKiooUHx8fls/YtrtEg/66TPU90Vo7ZXBYPgMAANSuTs2WqitYoRgAAOcQbsIgMObG5zcq9zFjCgAAOxFuwiAwW0pi3A0AAHYj3ISBJ9otl6vye25NAQBgL8JNGLhcLnmjK29NlbKQHwAAtiLchElcLIOKAQBwAuEmTLzRPDwTAAAnEG7CxBuo3JQRbgAAsBPhJkwCY24OVTDmBgAAOxFuwsQbeHgmlRsAAGxFuAmTwIDi0grCDQAAdiLchEngthSVGwAA7EW4CZPAgGJmSwEAYC/CTZhYlRsW8QMAwFaEmzCJi2WdGwAAnEC4CRNrKjjhBgAAWxFuwiSOMTcAADiCcBMm3phAuGHMDQAAdiLchEkg3PDgTAAA7EW4CZPACsXclgIAwF6EmzCJo3IDAIAjCDdhErgtVcqYGwAAbEW4CRMqNwAAOINwEyYextwAAOAIwk2YMFsKAABnEG7CJI51bgAAcAThJkyqFvGjcgMAgJ0IN2ESR7gBAMARhJswCSziV+E3KvdxawoAALsQbsIkcFtKonoDAICdCDdh4ol2y+Wq/J4ZUwAA2IdwEyYul0veaFYpBgDAboSbMOLhmQAA2I9wE0Y8ggEAAPsRbsLIy0J+AADYjnATRjyCAQAA+xFuwogxNwAA2I9wE0ZxsaxSDACA3Qg3YRSYCk64AQDAPoSbMLLG3JQRbgAAsAvhJoys2VIVzJYCAMAuhJswCgwopnIDAIB9CDdhFGdVbgg3AADYhXATRtZtKSo3AADYhnATRlVTwRlzAwCAXQg3YeSJPjzmhqngAADYhnATRiziBwCA/Qg3YWQt4sdUcAAAbEO4CSOrcsOAYgAAbEO4CSPrwZlMBQcAwDaEmzDi8QsAANiPcBNGXhbxAwDAdoSbMIqzKjcMKAYAwC6Oh5tZs2YpPT1dXq9Xffr00fLly4/Zfu/evRo1apSaNWsmj8ejtm3batGiRTb19sQEKjelTAUHAMA20U5++Ny5c5Wdna3Zs2erT58+mjFjhgYPHqwNGzaoadOmNdqXlZXp4osvVtOmTfXKK6+oefPm2r59uxITE+3v/HGwKjeEGwAAbONouJk+fbpuvPFGjRw5UpI0e/ZsLVy4UM8884zGjRtXo/0zzzyj77//Xh9//LFiYmIkSenp6XZ2+YQEZktV+I3KfX7FRDleKAMAIOI59tu2rKxMK1asUFZWVlVn3G5lZWUpLy+v1n3eeOMNZWZmatSoUUpOTlanTp304IMPyuc7emWktLRUxcXFQV92CdyWklilGAAAuzgWbnbv3i2fz6fk5OSg7cnJycrPz691ny1btuiVV16Rz+fTokWLdM8992jatGm6//77j/o5OTk5SkhIsL7S0tJCeh7HEni2lMTDMwEAsEuduk/i9/vVtGlTPfnkk+rZs6eGDRumiRMnavbs2UfdZ/z48SoqKrK+du7caVt/XS5X1UJ+VG4AALCFY2NukpKSFBUVpYKCgqDtBQUFSklJqXWfZs2aKSYmRlFRVbd7OnTooPz8fJWVlSk2NrbGPh6PRx6PJ7SdPwFxMVE6VO4n3AAAYBPHKjexsbHq2bOncnNzrW1+v1+5ubnKzMysdZ9+/fpp8+bN8vurbvFs3LhRzZo1qzXYnA68zJgCAMBWjt6Wys7O1lNPPaXnnntO69ev1y233KKSkhJr9tTw4cM1fvx4q/0tt9yi77//XmPGjNHGjRu1cOFCPfjggxo1apRTp/CDAtPBGXMDAIA9HJ0KPmzYMO3atUuTJk1Sfn6+unXrpsWLF1uDjHfs2CG3uyp/paWl6a233tJtt92mLl26qHnz5hozZozuvvtup07hB3mo3AAAYCuXMcY43Qk7FRcXKyEhQUVFRYqPjw/75/30sY+0asdePXl9T11ybu1jiQAAQOjUqdlSdVFgOnhpBbelAACwA+EmzKznSxFuAACwBeEmzAKVG6aCAwBgD8JNmHmiqdwAAGAnwk2YBVYoLq2gcgMAgB0IN2EWqNywzg0AAPYg3IRZ1WwpKjcAANjhpMLNc889p4ULF1qv77rrLiUmJqpv377avn17yDoXCTyB21JUbgAAsMVJhZsHH3xQcXFxkqS8vDzNmjVLf/7zn5WUlKTbbrstpB2s67zWgGIqNwAA2OGkHr+wc+dOZWRkSJLmz5+vn//857rpppvUr18/DRo0KJT9q/Oo3AAAYK+TqtzUr19f3333nSTp7bff1sUXXyxJ8nq9OnjwYOh6FwGYCg4AgL1OqnJz8cUX64YbblD37t21ceNGXXbZZZKkdevWKT09PZT9q/MCU8FZxA8AAHucVOVm1qxZyszM1K5du/Tqq6+qcePGkqQVK1bo2muvDWkH6zoqNwAA2OukKjeJiYmaOXNmje1Tpkw55Q5FGqaCAwBgr5Oq3CxevFgffvih9XrWrFnq1q2bfvnLX2rPnj0h61wkCDw4k0X8AACwx0mFmzvvvFPFxcWSpC+++EK33367LrvsMm3dulXZ2dkh7WBdR+UGAAB7ndRtqa1bt6pjx46SpFdffVWXX365HnzwQa1cudIaXIxK1lRwxtwAAGCLk6rcxMbG6sCBA5Kkd955R5dccokkqVGjRlZFB5Wqni1F5QYAADucVOWmf//+ys7OVr9+/bR8+XLNnTtXkrRx40a1aNEipB2s67xUbgAAsNVJVW5mzpyp6OhovfLKK3r88cfVvHlzSdJ//vMf/fjHPw5pB+s6ayo4A4oBALDFSVVuWrZsqTfffLPG9ocffviUOxRpAmNuDlX4ZIyRy+VyuEcAAES2kwo3kuTz+TR//nytX79eknTuuefqiiuuUFRUVMg6FwkClRtjpHKfUWw04QYAgHA6qXCzefNmXXbZZfr666/Vrl07SVJOTo7S0tK0cOFCtWnTJqSdrMsCU8GlyungsdEndScQAAAcp5P6TXvrrbeqTZs22rlzp1auXKmVK1dqx44dat26tW699dZQ97FOqx5uWMgPAIDwO6nKzXvvvadPPvlEjRo1srY1btxYU6dOVb9+/ULWuUjgcrnkiXartMLPQn4AANjgpCo3Ho9H+/btq7F9//79io2NPeVORZqqVYqp3AAAEG4nFW4uv/xy3XTTTfr0009ljJExRp988oluvvlmXXHFFaHuY51X9XwpKjcAAITbSYWbRx55RG3atFFmZqa8Xq+8Xq/69u2rjIwMzZgxI8RdrPt4BAMAAPY5qTE3iYmJWrBggTZv3mxNBe/QoYMyMjJC2rlIwUJ+AADY57jDzQ897Xvp0qXW99OnTz/5HkUgb7WF/AAAQHgdd7hZtWrVcbVjBd6aqNwAAGCf4w431SszODFVs6Wo3AAAEG4sl2uDwGwpKjcAAIQf4cYGVG4AALAP4cYGLOIHAIB9CDc2sG5LEW4AAAg7wo0NApUbVigGACD8CDc28FC5AQDANoQbG1hjbqjcAAAQdoQbG1Q9OJPKDQAA4Ua4sQFTwQEAsA/hxgZMBQcAwD6EGxt4rNtSVG4AAAg3wo0NqNwAAGAfwo0NrKeCE24AAAg7wo0NvDEs4gcAgF0INzagcgMAgH0INzbwxDAVHAAAuxBubOCNZhE/AADsQrixgVW5YcwNAABhR7ixAVPBAQCwD+HGBt5qTwU3xjjcGwAAIhvhxgaByo1E9QYAgHA7LcLNrFmzlJ6eLq/Xqz59+mj58uXHtd+cOXPkcrl05ZVXhreDpygwFVwi3AAAEG6Oh5u5c+cqOztbkydP1sqVK9W1a1cNHjxYhYWFx9xv27ZtuuOOOzRgwACbenryYqJccrsqv2dQMQAA4eV4uJk+fbpuvPFGjRw5Uh07dtTs2bNVr149PfPMM0fdx+fz6brrrtOUKVN09tln29jbk+NyuVjIDwAAmzgabsrKyrRixQplZWVZ29xut7KyspSXl3fU/e699141bdpUv/3tb3/wM0pLS1VcXBz05QQW8gMAwB6Ohpvdu3fL5/MpOTk5aHtycrLy8/Nr3efDDz/U008/raeeeuq4PiMnJ0cJCQnWV1pa2in3+2SwkB8AAPZw/LbUidi3b5+uv/56PfXUU0pKSjqufcaPH6+ioiLra+fOnWHuZe2o3AAAYI9oJz88KSlJUVFRKigoCNpeUFCglJSUGu2/+uorbdu2TUOHDrW2+f2VlZDo6Ght2LBBbdq0CdrH4/HI4/GEofcnxlrIj8oNAABh5WjlJjY2Vj179lRubq61ze/3Kzc3V5mZmTXat2/fXl988YVWr15tfV1xxRW68MILtXr1asduOR2PwEJ+h6jcAAAQVo5WbiQpOztbI0aMUK9evdS7d2/NmDFDJSUlGjlypCRp+PDhat68uXJycuT1etWpU6eg/RMTEyWpxvbTDZUbAADs4Xi4GTZsmHbt2qVJkyYpPz9f3bp10+LFi61Bxjt27JDbXaeGBtWKqeAAANjDZc6whx0VFxcrISFBRUVFio+Pt+1zb3juM72zvlBTf9ZZ1/RuadvnAgBwpqn7JZE6gsoNAAD2INzYxBpzw4BiAADCinBjE08Mi/gBAGAHwo1NqNwAAGAPwo1NrBWKqdwAABBWhBubWM+WonIDAEBYEW5sQuUGAAB7EG5swlRwAADsQbixCQOKAQCwB+HGJl6mggMAYAvCjU2o3AAAYA/CjU2qwg2VGwAAwolwYxNuSwEAYA/CjU24LQUAgD0INzYJPFuKdW4AAAgvwo1NvDFUbgAAsAPhxibWIn5UbgAACCvCjU2YLQUAgD0INzYJzJYq8/nl8xuHewMAQOQi3NgkULmRpDKqNwAAhA3hxibVww2DigEACB/CjU2io9yKdrsksZAfAADhRLixEQv5AQAQfoQbG1kL+THmBgCAsCHc2Mh7uHJzqJzKDQAA4UK4sRGVGwAAwo9wYyNrzA0DigEACBvCjY0ClRtuSwEAED6EGxvxCAYAAMKPcGMjpoIDABB+hBsbea3bUlRuAAAIF8KNjajcAAAQfoQbG3mimQoOAEC4EW5s5I1hET8AAMKNcGMjKjcAAIQf4cZGnhgW8QMAINwINzbyHq7cHGJAMQAAYUO4sRGVGwAAwo9wYyOmggMAEH6EGxsFBhSziB8AAOFDuLFRYCo4lRsAAMKHcGMjpoIDABB+hBsbWWNuWMQPAICwIdzYKPDgTCo3AACED+HGRtZUcMINAABhQ7ixEbelAAAIP8KNjQK3pQ5RuQEAIGwINzaicgMAQPgRbmzEVHAAAMKPcGOjwCJ+FX6jCh8BBwCAcCDc2ChQuZGo3gAAEC6EGxsFxtxIhBsAAMKFcGMjt9ul2KjKS36IQcUAAITFaRFuZs2apfT0dHm9XvXp00fLly8/atunnnpKAwYMUMOGDdWwYUNlZWUds/3pxpoxReUGAICwcDzczJ07V9nZ2Zo8ebJWrlyprl27avDgwSosLKy1/bJly3Tttddq6dKlysvLU1pami655BJ9/fXXNvf85Hh4MjgAAGHlMsYYJzvQp08fnXfeeZo5c6Ykye/3Ky0tTX/4wx80bty4H9zf5/OpYcOGmjlzpoYPH/6D7YuLi5WQkKCioiLFx8efcv9PVL+p7+rrvQc1f1Q/dUtLtP3zAQCIdI5WbsrKyrRixQplZWVZ29xut7KyspSXl3dcxzhw4IDKy8vVqFGjWt8vLS1VcXFx0JeTrMoNY24AAAgLR8PN7t275fP5lJycHLQ9OTlZ+fn5x3WMu+++W6mpqUEBqbqcnBwlJCRYX2lpaafc71PBQn4AAISX42NuTsXUqVM1Z84cvf766/J6vbW2GT9+vIqKiqyvnTt32tzLYIGF/JgtBQBAeEQ7+eFJSUmKiopSQUFB0PaCggKlpKQcc9+//vWvmjp1qt555x116dLlqO08Ho88Hk9I+hsKzJYCACC8HK3cxMbGqmfPnsrNzbW2+f1+5ebmKjMz86j7/fnPf9Z9992nxYsXq1evXnZ0NWS4LQUAQHg5WrmRpOzsbI0YMUK9evVS7969NWPGDJWUlGjkyJGSpOHDh6t58+bKycmRJD300EOaNGmSXnzxRaWnp1tjc+rXr6/69es7dh7Hi9tSAACEl+PhZtiwYdq1a5cmTZqk/Px8devWTYsXL7YGGe/YsUNud1WB6fHHH1dZWZmuuuqqoONMnjxZf/rTn+zs+kmhcgMAQHg5Hm4kafTo0Ro9enSt7y1btizo9bZt28LfoTCqGnND5QYAgHCo07Ol6iJvTGXl5lA5lRsAAMKBcGMzKjcAAIQX4cZmVSsUU7kBACAcCDc281oDiqncAAAQDoQbm1G5AQAgvAg3NmMqOAAA4UW4sVlgQDGL+AEAEB6EG5sFpoJTuQEAIDwINzZjKjgAAOFFuLFZoHJzkNtSAACEBeHGZvW9lU+8KCkl3AAAEA6EG5vV91SGm32HKhzuCQAAkYlwY7NAuNlfWu5wTwAAiEyEG5s1OHxb6lC5X+U+ZkwBABBqhBubnXW4ciNJJaXcmgIAINQINzaLiXLLe/gRDIy7AQAg9Ag3DqjviZEk7adyAwBAyBFuHBAYd0PlBgCA0CPcOIAZUwAAhA/hxgGsdQMAQPgQbhwQWKWYMTcAAIQe4cYBgTE3+6ncAAAQcoQbBzTw1KzclJRWyBjjVJcAAIgYhBsH1D9ittSC1V+r+71LlP3yGie7BQBARCDcOODIdW5yFn2pMp9fr6/6Wuu+KXKyawAA1HmEGwdUVW7Ktf27EuUXH7Ley/vqO6e6BQBARCDcOCAxrrJys+dAudb8X3ClZsX2PU50CQCAiEG4cUBSfY8k6bv9pfry22JJUouGcZKkTYX7HesXAACRgHDjgKT6sZKk3fvL9GX+PknSkC7NJEnbdpeo3Od3rG8AANR1hBsHBCo3RQfLtfbryttSF7ZrqrNio1ThN9r+3QEnuwcAQJ1GuHFAQlyMotwuSVLhvlJJUoeUeLVpWl+StLlwn2N9AwCgriPcOMDtdikl3mu9Ton3KqFejDKscMO4GwAAThbhxiFnNznL+r5dSgNJssLNV7tKHOkTAACRgHDjkDZN6lvftz8cbgLbqNwAAHDyCDcOGXBOkvX94E4pkqrCzVe79vOcKQAATlK00x04U/2ofVPdcUlbSVL3tERJUqvG9RTtdulAmU/fFh1SamKcgz0EAKBuItw4xOVyafSPzgnaFhPlVqvG9fTVrhJ9tWs/4QYAgJPAbanTTODW1KYCxt0AAHAyCDenmfbN4iVJ674pdrgnAADUTYSb00yX5gmSpP/+315nOwIAQB1FuDnNdGuZKKnyAZq7Dq9eDAAAjh/h5jSTVN+jc1Mrb029s75AhcWH9OGm3So6UO5wzwAAqBuYLXUaurJbc637pljjX/tC0W6XKvxGCXExenbkeeresqHT3QMA4LRG5eY0dE3vNJ2dVPl4hgq/Ubw3WkUHy3XLP1fq+5Iyh3sHAMDpzWXOsKVwi4uLlZCQoKKiIsXHxzvdnaMqOliu9zbuUrvkBkpN9OonMz/Slt0lurZ3mnJ+1sXp7gEAcNqicnOaSoiL0RVdU9UupYEaeGP00FWVgWbOZzuZSQUAwDEQbuqI89Ib6cpuqTJGmvzGOvn9Z1TBDQCA40a4qUPGX9ZBZ8VGadWOvXrhk+1OdwcAgNMS4aYOSY73amxW5cM2//TvdXpw0XoVFB9yuFcAAJxeGFBcxxhjNGnBOqtyE+V26aL2TTX6Rxnq0iLR2c4BAHAaINzUQcYYLd1QqMeXfaXPtu2RJLlc0i97t9Sdg9spsV6swz0EAMA5hJs6bmPBPj22dLPmr/5GUuUsq4s6NFVG0/pq2aiemifGqXlinJLqe+R2uxzuLQAA4Ue4iRCfbPlOkxas1caC/bW+HxPlUnK8V55ot6LcLrldLkW5XcHfu1xyu1XLNpfcrsrtLlfle26X5Ha55Dr838DrQFv34XZHvu86vM0lWe+5VPkisM2lqjaBQHbk9qDXQfvqiM9wHXVfVfv8yuNUtdPhfd217Kvq/Qsc/yjHrDq/yvfdrqo+uasdy13b+Qf2cR/Zh1o+v/o+h4/ldv3wPjrcjyP30RH9t65F4E2bVfj8+nz7HjXwRiu98VmKjXYrJiqyhwx+X1Kmcp9fyfFep7sC1DmnRbiZNWuW/vKXvyg/P19du3bVo48+qt69ex+1/bx583TPPfdo27ZtOuecc/TQQw/psssuO67PitRwI1X+Avj4q++0Yvsebf+uRP+356C+2XtQ+cWHxMxxhFL1QHRkwKweiI4MV+5j7GOMZGTkN6r83hj5jZGRdKjcp0Pl/qA+xMVEKT4uWrHRbkW5XPJERyk22q3oKJei3S5Fu93VAnz1cF4V4AMhvvK/VW2ijtjuDnx/OMBHHXX74WMfud2toH8wuKx/XNS+/atd+/XAwvXaX1qh9ikN1Lt1IzVLiFOLhpVV2KT6sWp4Vqzqe6IVE1V5ngCqOB5u5s6dq+HDh2v27Nnq06ePZsyYoXnz5mnDhg1q2rRpjfYff/yxLrjgAuXk5Ojyyy/Xiy++qIceekgrV65Up06dfvDzIjncHE2Fz6+CfaXKLzqkcp9ffr+Rzxj5/JW/PHx+Vfu+6r/V3/cbc/iXTeX3/mq/fKxt/mO/b0zl5wR+iQV+gRkpeJuqfrnVur3Wfau/Drx/lGPqKPsGHfvIfU0tn3P0ff2H/1gF/8I2tfSj6tpIVd8HjlUZSk1VuxrXJnCdj97f6sevy1wuRcR5hIPbJUVHuRXjdlX+N8qlmKjKoBfjDgQ+t2KiA20Ov3+4fWxUtTZRVe8Htwkcs/L76MPvx1Q7VuXxA8eoPG5MdOVxA58RU0v/qt8yX/t1kR5a/KUOlfs06fJzZWTUKTWh8jwJcThOjoebPn366LzzztPMmTMlSX6/X2lpafrDH/6gcePG1Wg/bNgwlZSU6M0337S2nX/++erWrZtmz579g593JoYbIMAKQoeDUvXgExygKtspKGjVHs6CwlstwbDqM6pVZaofs9rfQEfeinO7qio7LRvV0679pSqvMCo+VC6/MTpU7pfPb+RySRU+o3KfXxV+owqfX+X+ysBd7vMHnVMgtFeGfAWFfRMI+9b7gdBeFfJ9J7G9+n/9h48fvF1Bn+eJidKlnVL0xddF2pC/T98WHZQ3OkrRUS4dKverzFd53pEiyu1STFRl9aqkzFdrm/qeaDVp4FGjs2LVsF6MPNFR8pvKhwq73S55o6PkckkxtYSvaLdLUYGgdjjcBVfuFPTadbgCV72a5nYFV+qq376VDt/mVdUt7hrbFNw+cEu68rvAe64a7arfKg8I/H9e7vOrwmd0oMyn//7fXn301XdqWC9GV3Zvrl3FpWreME5Rbpd8fqP6nsoqpzcmyvrMI2/Fh5In2q2mDt5SdfSp4GVlZVqxYoXGjx9vbXO73crKylJeXl6t++Tl5Sk7Ozto2+DBgzV//vxa25eWlqq0tNR6XVxcfOodB+qoylsuUtVfp3VLs4Q4p7vguMC/R0sr/Cr3+VXuqwpzFYHXfr/KK4zK/ZW//ALvl1f4K98LtPEZKxQGBcNqQTHwC7Q8aLtfZRWBY1RtD7Qtq22fw9+X+fw1zilQKZYqQ0W3tERtyN+n/aUVVpv9pRXaX1qhrbtL7LnQddiCwxNMnNSjZaJe+30/xz7f0XCze/du+Xw+JScnB21PTk7Wl19+Wes++fn5tbbPz8+vtX1OTo6mTJkSmg4DgMMCg7q9MVHWv8LrEnO4WlXhrww6lYHLqOxwWGtc36OEuBjt3l+q/9tzUI3PitX27w6o3OdXaYVfRQfL5DdSSWmFotwu7TtUIb8xKq3wy2+MFebKqoWqytBW+Zk+f+XrI6tmflNZyQv0L3AL3WeqKn3VK3+BCmTlOR0+N1W/dVr91nTVuR/Zrvo2mep7VlVIq3+GpKDbioHqVJsm9XVe60Zas3OvPt36fWWlc1+pXC6pXmyU9h+qUJnP6FC5z/qnTWDYwDF/Xjq5CmFstLMD/h0NN3YYP358UKWnuLhYaWlpDvYIAM5cLlflbaHoKB0znFUOnPZIktIa1bOre4gQjoabpKQkRUVFqaCgIGh7QUGBUlJSat0nJSXlhNp7PB55PJ7QdBgAAJz2HK0bxcbGqmfPnsrNzbW2+f1+5ebmKjMzs9Z9MjMzg9pL0pIlS47aHgAAnFkcvy2VnZ2tESNGqFevXurdu7dmzJihkpISjRw5UpI0fPhwNW/eXDk5OZKkMWPGaODAgZo2bZqGDBmiOXPm6PPPP9eTTz7p5GkAAIDThOPhZtiwYdq1a5cmTZqk/Px8devWTYsXL7YGDe/YsUNud1WBqW/fvnrxxRf1xz/+URMmTNA555yj+fPnH9caNwAAIPI5vs6N3VjnBgCAyBbZD2cBAABnHMINAACIKIQbAAAQUQg3AAAgohBuAABARCHcAACAiEK4AQAAEYVwAwAAIgrhBgAARBTHH79gt8CCzMXFxQ73BAAAnKgGDRrI5XIds80ZF2727dsnSUpLS3O4JwAA4EQdz+OTzrhnS/n9fn3zzTfHlfxOVHFxsdLS0rRz506eWxVGXGd7cJ3tw7W2B9fZHuG+zlRuauF2u9WiRYuwfkZ8fDx/cGzAdbYH19k+XGt7cJ3t4eR1ZkAxAACIKIQbAAAQUQg3IeTxeDR58mR5PB6nuxLRuM724Drbh2ttD66zPU6H63zGDSgGAACRjcoNAACIKIQbAAAQUQg3AAAgohBuAABARCHchMisWbOUnp4ur9erPn36aPny5U53qU7JycnReeedpwYNGqhp06a68sortWHDhqA2hw4d0qhRo9S4cWPVr19fP//5z1VQUBDUZseOHRoyZIjq1aunpk2b6s4771RFRYWdp1KnTJ06VS6XS2PHjrW2cZ1D4+uvv9avfvUrNW7cWHFxcercubM+//xz631jjCZNmqRmzZopLi5OWVlZ2rRpU9Axvv/+e1133XWKj49XYmKifvvb32r//v12n8ppzefz6Z577lHr1q0VFxenNm3a6L777lP1uTJc6xP3/vvva+jQoUpNTZXL5dL8+fOD3g/VNf3vf/+rAQMGyOv1Ki0tTX/+859DcwIGp2zOnDkmNjbWPPPMM2bdunXmxhtvNImJiaagoMDprtUZgwcPNv/4xz/M2rVrzerVq81ll11mWrZsafbv32+1ufnmm01aWprJzc01n3/+uTn//PNN3759rfcrKipMp06dTFZWllm1apVZtGiRSUpKMuPHj3filE57y5cvN+np6aZLly5mzJgx1nau86n7/vvvTatWrcyvf/1r8+mnn5otW7aYt956y2zevNlqM3XqVJOQkGDmz59v1qxZY6644grTunVrc/DgQavNj3/8Y9O1a1fzySefmA8++MBkZGSYa6+91olTOm098MADpnHjxubNN980W7duNfPmzTP169c3f/vb36w2XOsTt2jRIjNx4kTz2muvGUnm9ddfD3o/FNe0qKjIJCcnm+uuu86sXbvWvPTSSyYuLs488cQTp9x/wk0I9O7d24waNcp67fP5TGpqqsnJyXGwV3VbYWGhkWTee+89Y4wxe/fuNTExMWbevHlWm/Xr1xtJJi8vzxhT+YfR7Xab/Px8q83jjz9u4uPjTWlpqb0ncJrbt2+fOeecc8ySJUvMwIEDrXDDdQ6Nu+++2/Tv3/+o7/v9fpOSkmL+8pe/WNv27t1rPB6Peemll4wxxvzvf/8zksxnn31mtfnPf/5jXC6X+frrr8PX+TpmyJAh5je/+U3Qtp/97GfmuuuuM8ZwrUPhyHATqmv62GOPmYYNGwb9vXH33Xebdu3anXKfuS11isrKyrRixQplZWVZ29xut7KyspSXl+dgz+q2oqIiSVKjRo0kSStWrFB5eXnQdW7fvr1atmxpXee8vDx17txZycnJVpvBgweruLhY69ats7H3p79Ro0ZpyJAhQddT4jqHyhtvvKFevXrpF7/4hZo2baru3bvrqaeest7funWr8vPzg65zQkKC+vTpE3SdExMT1atXL6tNVlaW3G63Pv30U/tO5jTXt29f5ebmauPGjZKkNWvW6MMPP9Sll14qiWsdDqG6pnl5ebrgggsUGxtrtRk8eLA2bNigPXv2nFIfz7gHZ4ba7t275fP5gv6il6Tk5GR9+eWXDvWqbvP7/Ro7dqz69eunTp06SZLy8/MVGxurxMTEoLbJycnKz8+32tT2cwi8h0pz5szRypUr9dlnn9V4j+scGlu2bNHjjz+u7OxsTZgwQZ999pluvfVWxcbGasSIEdZ1qu06Vr/OTZs2DXo/OjpajRo14jpXM27cOBUXF6t9+/aKioqSz+fTAw88oOuuu06SuNZhEKprmp+fr9atW9c4RuC9hg0bnnQfCTc47YwaNUpr167Vhx9+6HRXIs7OnTs1ZswYLVmyRF6v1+nuRCy/369evXrpwQcflCR1795da9eu1ezZszVixAiHexdZXn75Zf3rX//Siy++qHPPPVerV6/W2LFjlZqayrU+g3Fb6hQlJSUpKiqqxmySgoICpaSkONSrumv06NF68803tXTpUrVo0cLanpKSorKyMu3duzeoffXrnJKSUuvPIfAeKm87FRYWqkePHoqOjlZ0dLTee+89PfLII4qOjlZycjLXOQSaNWumjh07Bm3r0KGDduzYIanqOh3r742UlBQVFhYGvV9RUaHvv/+e61zNnXfeqXHjxumaa65R586ddf311+u2225TTk6OJK51OITqmobz7xLCzSmKjY1Vz549lZuba23z+/3Kzc1VZmamgz2rW4wxGj16tF5//XW9++67NUqVPXv2VExMTNB13rBhg3bs2GFd58zMTH3xxRdBf6CWLFmi+Pj4Gr9ozlQXXXSRvvjiC61evdr66tWrl6677jrre67zqevXr1+NpQw2btyoVq1aSZJat26tlJSUoOtcXFysTz/9NOg67927VytWrLDavPvuu/L7/erTp48NZ1E3HDhwQG538K+yqKgo+f1+SVzrcAjVNc3MzNT777+v8vJyq82SJUvUrl27U7olJYmp4KEwZ84c4/F4zLPPPmv+97//mZtuuskkJiYGzSbBsd1yyy0mISHBLFu2zHz77bfW14EDB6w2N998s2nZsqV59913zeeff24yMzNNZmam9X5givIll1xiVq9ebRYvXmyaNGnCFOUfUH22lDFc51BYvny5iY6ONg888IDZtGmT+de//mXq1atn/vnPf1ptpk6dahITE82CBQvMf//7X/OTn/yk1qm03bt3N59++qn58MMPzTnnnHNGT0+uzYgRI0zz5s2tqeCvvfaaSUpKMnfddZfVhmt94vbt22dWrVplVq1aZSSZ6dOnm1WrVpnt27cbY0JzTffu3WuSk5PN9ddfb9auXWvmzJlj6tWrx1Tw08mjjz5qWrZsaWJjY03v3r3NJ5984nSX6hRJtX794x//sNocPHjQ/P73vzcNGzY09erVMz/96U/Nt99+G3Scbdu2mUsvvdTExcWZpKQkc/vtt5vy8nKbz6ZuOTLccJ1D49///rfp1KmT8Xg8pn379ubJJ58Met/v95t77rnHJCcnG4/HYy666CKzYcOGoDbfffedufbaa039+vVNfHy8GTlypNm3b5+dp3HaKy4uNmPGjDEtW7Y0Xq/XnH322WbixIlB04u51idu6dKltf6dPGLECGNM6K7pmjVrTP/+/Y3H4zHNmzc3U6dODUn/XcZUW8YRAACgjmPMDQAAiCiEGwAAEFEINwAAIKIQbgAAQEQh3AAAgIhCuAEAABGFcAMAACIK4QbAGW/ZsmVyuVw1nqkFoG4i3AAAgIhCuAEAABGFcAPAcX6/Xzk5OWrdurXi4uLUtWtXvfLKK5KqbhktXLhQXbp0kdfr1fnnn6+1a9cGHePVV1/VueeeK4/Ho/T0dE2bNi3o/dLSUt19991KS0uTx+NRRkaGnn766aA2K1asUK9evVSvXj317du3xpO9AdQNhBsAjsvJydHzzz+v2bNna926dbrtttv0q1/9Su+9957V5s4779S0adP02WefqUmTJho6dKjKy8slVYaSq6++Wtdcc42++OIL/elPf9I999yjZ5991tp/+PDheumll/TII49o/fr1euKJJ1S/fv2gfkycOFHTpk3T559/rujoaP3mN7+x5fwBhBYPzgTgqNLSUjVq1EjvvPOOMjMzre033HCDDhw4oJtuukkXXnih5syZo2HDhkmSvv/+e7Vo0ULPPvusrr76al133XXatWuX3n77bWv/u+66SwsXLtS6deu0ceNGtWvXTkuWLFFWVlaNPixbtkwXXnih3nnnHV100UWSpEWLFmnIkCE6ePCgvF5vmK8CgFCicgPAUZs3b9aBAwd08cUXq379+tbX888/r6+++spqVz34NGrUSO3atdP69eslSevXr1e/fv2CjtuvXz9t2rRJPp9Pq1evVlRUlAYOHHjMvnTp0sX6vlmzZpKkwsLCUz5HAPaKdroDAM5s+/fvlyQtXLhQzZs3D3rP4/EEBZyTFRcXd1ztYmJirO9dLpekyvFAAOoWKjcAHNWxY0d5PB7t2LFDGRkZQV9paWlWu08++cT6fs+ePdq4caM6dOggSerQoYM++uijoON+9NFHatu2raKiotS5c2f5/f6gMTwAIheVGwCOatCgge644w7ddttt8vv96t+/v4qKivTRRx8pPj5erVq1kiTde++9aty4sZKTkzVx4kQlJSXpyiuvlCTdfvvtOu+883Tfffdp2LBhysvL08yZM/XYY49JktLT0zVixAj95je/0SOPPKKuXbtq+/btKiws1NVXX+3UqQMIE8INAMfdd999atKkiXJycrRlyxYlJiaqR48emjBhgnVbaOrUqRozZow2bdqkbt266d///rdiY2MlST169NDLL7+sSZMm6b777lOzZs1077336te//rX1GY8//rgmTJig3//+9/ruu+/UsmVLTZgwwYnTBRBmzJYCcFoLzGTas2ePEhMTne4OgDqAMTcAACCiEG4AAEBE4bYUAACIKFRuAABARCHcAACAiEK4AQAAEYVwAwAAIgrhBgAARBTCDQAAiCiEGwAAEFEINwAAIKIQbgAAQET5fzzzzFBWAJG9AAAAAElFTkSuQmCC"
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "text/plain": "",
- "image/png": "iVBORw0KGgoAAAANSUhEUgAAAioAAAHHCAYAAACRAnNyAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABU70lEQVR4nO3deVxU9f4G8GcYGfZFEJBFBNkUWVRIcymXyCWvaVaSu6a5b5ll3hazRS2zNHfrpon7llluuZtbKrgvbKm4I/smA8x8f3/Mz8kRVFDgnIHn/Xrxus13DjPPDFx9POdzziiEEAJEREREMmQidQAiIiKiR2FRISIiItliUSEiIiLZYlEhIiIi2WJRISIiItliUSEiIiLZYlEhIiIi2WJRISIiItliUSEiIiLZYlEhqmBXrlyBQqHA0qVLy/y9+/btg0KhwL59+8o9V3krKeuAAQPg5eVVbs+xdOlSKBQKXLlypdwek4jkjUWFiGRn6tSp2LRpk9QxJDd//vynKrhSMba8ZBxYVIiowvz444+IjY0t8/c9qqj07dsX9+7dQ926dcshnfwZ21/8xpaXjEMNqQMQkbS0Wi0KCgpgbm5e7o9tamparo+nVCqhVCrL9TGrm/z8fKhUKpiY8N+pZBz4m0pV3meffQaFQoG4uDj06dMHdnZ2cHJywieffAIhBK5du4auXbvC1tYWtWvXxsyZM4s9RnJyMgYNGgQXFxeYm5sjNDQUv/zyS7HtMjIyMGDAANjZ2cHe3h79+/dHRkZGibkuXbqEN954Aw4ODjA3N0d4eDg2b978TK/x0qVL6NGjB2xtbeHo6IixY8ciPz/fYFuFQoFRo0ZhxYoVaNiwIczMzLB9+3YAwI0bN/D222/DxcUFZmZmaNiwIX7++ediz3f9+nV069YNVlZWcHZ2xrvvvgu1Wl1su5JmVLRaLWbPno3g4GCYm5vDyckJHTt2xIkTJ/T5cnNz8csvv0ChUEChUGDAgAEAHj2jMn/+fP1rcXNzw8iRI4u9723atEFQUBAuXLiAtm3bwtLSEu7u7vjmm2+e+P4GBQWhbdu2xda1Wi3c3d3xxhtv6NdWr16NsLAw2NjYwNbWFsHBwZg9e/YTn+NhXl5eOH/+PPbv369/H9q0aQMASEtLw4QJExAcHAxra2vY2tqiU6dOOH36tMFj3J8bWr16NT7++GO4u7vD0tISWVlZAIB169YhMDAQ5ubmCAoKwq+//vrIn9msWbPQsGFDmJubw8XFBUOHDkV6enqp8hI9C+5RoWojMjISDRo0wPTp07FlyxZ8+eWXcHBwwKJFi9CuXTt8/fXXWLFiBSZMmIDnnnsOL774IgDg3r17aNOmDRISEjBq1Ch4e3tj3bp1GDBgADIyMjB27FgAgBACXbt2xcGDBzFs2DA0aNAAv/76K/r3718sy/nz59GyZUu4u7vjww8/hJWVFdauXYtu3bphw4YNeO21157qNfbo0QNeXl6YNm0ajh49ih9++AHp6elYtmyZwXZ79uzB2rVrMWrUKNSqVQteXl64c+cOnn/+eX2RcXJywrZt2zBo0CBkZWVh3Lhx+vfjpZdeQlJSEsaMGQM3NzdERUVhz549pco4aNAgLF26FJ06dcLgwYNRVFSEv/76C0ePHkV4eDiioqIwePBgNG3aFEOGDAEA+Pj4PPLxPvvsM0yZMgUREREYPnw4YmNjsWDBAhw/fhyHDh0y2KuTnp6Ojh07onv37ujRowfWr1+PiRMnIjg4GJ06dXrkc0RGRuKzzz7D7du3Ubt2bf36wYMHcfPmTbz11lsAgJ07d6Jnz5546aWX8PXXXwMALl68iEOHDul/T0pr1qxZGD16NKytrfHRRx8BAFxcXAAA//zzDzZt2oQ333wT3t7euHPnDhYtWoTWrVvjwoULcHNzM3isL774AiqVChMmTIBarYZKpcKWLVsQGRmJ4OBgTJs2Denp6Rg0aBDc3d2LZRk6dCiWLl2KgQMHYsyYMbh8+TLmzp2LkydP6t/jx+UleiaCqIqbPHmyACCGDBmiXysqKhIeHh5CoVCI6dOn69fT09OFhYWF6N+/v35t1qxZAoBYvny5fq2goEA0b95cWFtbi6ysLCGEEJs2bRIAxDfffGPwPC+88IIAIJYsWaJff+mll0RwcLDIz8/Xr2m1WtGiRQvh5+enX9u7d68AIPbu3Vuq1/jqq68arI8YMUIAEKdPn9avARAmJibi/PnzBtsOGjRIuLq6ipSUFIP1t956S9jZ2Ym8vDyD92Pt2rX6bXJzc4Wvr2+xrP379xd169bV396zZ48AIMaMGVPsNWi1Wv1/W1lZGfwM7luyZIkAIC5fviyEECI5OVmoVCrRvn17odFo9NvNnTtXABA///yzfq1169YCgFi2bJl+Ta1Wi9q1a4vXX3+92HM9KDY2VgAQc+bMMVgfMWKEsLa21r83Y8eOFba2tqKoqOixj1daDRs2FK1bty62np+fb/B6hRDi8uXLwszMTHz++ef6tfu/P/Xq1dNnvC84OFh4eHiI7Oxs/dq+ffsEAIOf2V9//SUAiBUrVhh8//bt24utPyov0bPgoR+qNgYPHqz/b6VSifDwcAghMGjQIP26vb09AgIC8M8//+jXtm7ditq1a6Nnz576NVNTU4wZMwY5OTnYv3+/frsaNWpg+PDhBs8zevRogxxpaWnYs2cPevTogezsbKSkpCAlJQWpqano0KED4uPjcePGjad6jSNHjjS4ff+5t27darDeunVrBAYG6m8LIbBhwwZ06dIFQgh9ppSUFHTo0AGZmZmIiYnRP5arq6vB4Q5LS0v93o/H2bBhAxQKBSZPnlzsPoVCUfoX+v927dqFgoICjBs3zmDm4p133oGtrS22bNlisL21tTX69Omjv61SqdC0aVODn3dJ/P390ahRI6xZs0a/ptFosH79enTp0gUWFhYAdL8/ubm52LlzZ5lfS1mYmZnpX69Go0Fqaiqsra0REBCg/zk9qH///vqMAHDz5k2cPXsW/fr1g7W1tX69devWCA4ONvjedevWwc7ODi+//LLB70VYWBisra2xd+/eCnqVRDosKlRteHp6Gty2s7ODubk5atWqVWz9wWPvV69ehZ+fX7HhwwYNGujvv/+/rq6uBn/wA0BAQIDB7YSEBAgh8Mknn8DJycng6/5f4MnJyU/1Gv38/Axu+/j4wMTEpNhMh7e3t8Htu3fvIiMjA4sXLy6WaeDAgQaZrl69Cl9f32LF4uHXWZLExES4ubnBwcGhrC+tRPff+4efW6VSoV69evr77/Pw8CiWu2bNmgY/70eJjIzEoUOH9CVy3759SE5ORmRkpH6bESNGwN/fH506dYKHhwfefvtt/fxPedJqtfj+++/h5+cHMzMz1KpVC05OTjhz5gwyMzOLbf/wz/v+++Lr61ts24fX4uPjkZmZCWdn52K/Gzk5OU/9u0pUWpxRoWqjpLNFHnUGiRCiwnJotVoAwIQJE9ChQ4cStynpL5Cn8ai9FA/+6/rBTH369ClxpgYAQkJCyiWTlJ7l5x0ZGYlJkyZh3bp1GDduHNauXQs7Ozt07NhRv42zszNOnTqFHTt2YNu2bdi2bRuWLFmCfv36lTh8/bSmTp2KTz75BG+//Ta++OILODg4wMTEBOPGjdP/LB/08M+7LLRaLZydnbFixYoS73dycnrqxyYqDRYVoieoW7cuzpw5A61Wa7BX5dKlS/r77//v7t27kZOTY7BX5eHriNSrVw+A7vBRREREuWaNj483+NdzQkICtFrtE68O6+TkBBsbG2g0midmqlu3Ls6dOwchhEERKs31Unx8fLBjxw6kpaU9dq9KaQ8D3X/vY2Nj9e8rABQUFODy5cvl+v56e3ujadOmWLNmDUaNGoWNGzeiW7duMDMzM9hOpVKhS5cu6NKlC7RaLUaMGIFFixbhk08+KXMBfdT7sH79erRt2xb/+9//DNYzMjKK7SEsyf33LSEhodh9D6/5+Phg165daNmy5RMLz9McviN6Eh76IXqCV155Bbdv3zaYTygqKsKcOXNgbW2N1q1b67crKirCggUL9NtpNBrMmTPH4PGcnZ3Rpk0bLFq0CLdu3Sr2fHfv3n3qrPPmzTO4ff+5H3dGC6Db0/D6669jw4YNOHfu3GMzvfLKK7h58ybWr1+vX8vLy8PixYufmO/111+HEAJTpkwpdt+DezWsrKweeVr3gyIiIqBSqfDDDz8YfP///vc/ZGZmonPnzk98jLKIjIzE0aNH8fPPPyMlJcXgsA8ApKamGtw2MTHR74m6f/p2YWEhLl26VOLP/mGPeh+USmWxvUDr1q0r9WyTm5sbgoKCsGzZMuTk5OjX9+/fj7Nnzxps26NHD2g0GnzxxRfFHqeoqMggX2l/bkRlwT0qRE8wZMgQLFq0CAMGDEB0dDS8vLywfv16HDp0CLNmzYKNjQ0AoEuXLmjZsiU+/PBDXLlyBYGBgdi4cWOJMwPz5s1Dq1atEBwcjHfeeQf16tXDnTt3cOTIEVy/fr3Y9TBK6/Lly3j11VfRsWNHHDlyBMuXL0evXr0QGhr6xO+dPn069u7di2bNmuGdd95BYGAg0tLSEBMTg127diEtLQ2AblB17ty56NevH6Kjo+Hq6oqoqChYWlo+8Tnatm2Lvn374ocffkB8fDw6duwIrVaLv/76C23btsWoUaMAAGFhYdi1axe+++47uLm5wdvbG82aNSv2eE5OTpg0aRKmTJmCjh074tVXX0VsbCzmz5+P5557zmBwtjz06NEDEyZMwIQJE+Dg4FBsj83gwYORlpaGdu3awcPDA1evXsWcOXPQqFEj/UzTjRs30KBBA/Tv3/+JV3ENCwvDggUL8OWXX8LX1xfOzs5o164d/vOf/+Dzzz/HwIED0aJFC5w9exYrVqww2Kv0JFOnTkXXrl3RsmVLDBw4EOnp6Zg7dy6CgoIMykvr1q0xdOhQTJs2DadOnUL79u1hamqK+Ph4rFu3DrNnz9YPVj8qL9EzkehsI6JKc//U3bt37xqs9+/fX1hZWRXbvnXr1qJhw4YGa3fu3BEDBw4UtWrVEiqVSgQHBxucbnxfamqq6Nu3r7C1tRV2dnaib9++4uTJk8VOTxZCiMTERNGvXz9Ru3ZtYWpqKtzd3cV//vMfsX79ev02ZT09+cKFC+KNN94QNjY2ombNmmLUqFHi3r17BtsCECNHjizxce7cuSNGjhwp6tSpI0xNTUXt2rXFSy+9JBYvXmyw3dWrV8Wrr74qLC0tRa1atcTYsWP1p6s+7vRkIXSnbM+YMUPUr19fqFQq4eTkJDp16iSio6P121y6dEm8+OKLwsLCQgDQn6r88OnJ982dO1fUr19fmJqaChcXFzF8+HCRnp5usE1JP9dHZXycli1bCgBi8ODBxe5bv369aN++vXB2dhYqlUp4enqKoUOHilu3bum3uXz5ssFrepzbt2+Lzp07CxsbGwFAf+pvfn6+eO+994Srq6uwsLAQLVu2FEeOHBGtW7c2OD34/u/PunXrSnz81atXi/r16wszMzMRFBQkNm/eLF5//XVRv379YtsuXrxYhIWFCQsLC2FjYyOCg4PFBx98IG7evPnEvETPQiFEBU4NElGluH/Rs7t375ZqRoHoURo1agQnJ6cKP8WaqLQ4o0JEVA0VFhaiqKjIYG3fvn04ffo0L31PssIZFSKiaujGjRuIiIhAnz594ObmhkuXLmHhwoWoXbs2hg0bJnU8Ij0WFSKiaqhmzZoICwvDTz/9hLt378LKygqdO3fG9OnT4ejoKHU8Ij3OqBAREZFscUaFiIiIZItFhYiIiGTLqIuKEAJZWVkV+rksREREJB2jLirZ2dmws7NDdna21FGIiIioAhh1USEiIqKqjUWFiIiIZItFhYiIiGSLRYWIiIhki0WFiIiIZItFhYiIiGSLRYWIiIhki0WFiIiIZItFhYiIiGSLRYWIiIhki0WFiIiIZItFhYiIiGSLRaWaa9OmDcaNG1fq7ZcuXQp7e/sKy1NW+/btg0KhQEZGBoDyySe310hEJJm4OGDbNiA+XrIILCpUpURGRiIuLq7U23t5eWHWrFnP9BhERFVOWhrQsSMQEAC88grg76+7nZ5e6VFYVEhyQggUFRWVy2NZWFjA2dlZ8scgIjJqvXoBu3YZru3aBfTsWelRWFRkqE2bNhg9ejTGjRuHmjVrwsXFBT/++CNyc3MxcOBA2NjYwNfXF9u2bTP4vv3796Np06YwMzODq6srPvzwQ4MCkJubi379+sHa2hqurq6YOXNmsedWq9WYMGEC3N3dYWVlhWbNmmHfvn2lzn7lyhUoFAqsXr0aLVq0gLm5OYKCgrB//379NvcP12zbtg1hYWEwMzPDwYMHodVqMW3aNHh7e8PCwgKhoaFYv369weNv3boV/v7+sLCwQNu2bXHlyhWD+0s6bPP777/jueeeg7m5OWrVqoXXXntN/z5fvXoV7777LhQKBRQKxSMfY8GCBfDx8YFKpUJAQACioqIM7lcoFPjpp5/w2muvwdLSEn5+fti8eXOp3zciItmIiwN27AA0GsN1jUa3XtmHgYQRy8zMFABEZmZmqbbXarUiV11Y6V9arbZMr6t169bCxsZGfPHFFyIuLk588cUXQqlUik6dOonFixeLuLg4MXz4cOHo6Chyc3OFEEJcv35dWFpaihEjRoiLFy+KX3/9VdSqVUtMnjxZ/7jDhw8Xnp6eYteuXeLMmTPiP//5j7CxsRFjx47VbzN48GDRokULceDAAZGQkCBmzJghzMzMRFxcnBBCiCVLlgg7O7tHZr98+bIAIDw8PMT69evFhQsXxODBg4WNjY1ISUkRQgixd+9eAUCEhISIP//8UyQkJIjU1FTx5Zdfivr164vt27eLxMREsWTJEmFmZib27dsnhBAiKSlJmJmZifHjx4tLly6J5cuXCxcXFwFApKenl5jvjz/+EEqlUnz66afiwoUL4tSpU2Lq1KlCCCFSU1OFh4eH+Pzzz8WtW7fErVu3SnyMjRs3ClNTUzFv3jwRGxsrZs6cKZRKpdizZ49+m/uveeXKlSI+Pl6MGTNGWFtbi9TU1DL97ImIJLd1qxDAo7+2bq3UOAohhKjcalR+srKyYGdnh8zMTNja2j5x+7yCIgR+uqMSkhm68HkHWKpqlHr7Nm3aQKPR4K+//gIAaDQa2NnZoXv37li2bBkA4Pbt23B1dcWRI0fw/PPP46OPPsKGDRtw8eJF/Z6B+fPnY+LEicjMzEReXh4cHR2xfPlyvPnmmwCAtLQ0eHh4YMiQIZg1axaSkpJQr149JCUlwc3NTZ8nIiICTZs2xdSpU7F06VKMGzdOP7z6sCtXrsDb2xvTp0/HxIkTAQBFRUXw9vbG6NGj8cEHH2Dfvn1o27YtNm3ahK5duwLQ7clxcHDArl270Lx5c/3jDR48GHl5eVi5ciX++9//4rfffsP58+f193/44Yf4+uuvkZ6eDnt7+2L5WrRogXr16mH58uUl5vXy8sK4ceMMBooffoyWLVuiYcOGWLx4sX6bHj16IDc3F1u2bAGg26Py8ccf44svvgCg23tlbW2Nbdu2oWPHjo/4SRMRyVBcnG425XH3+/lVWpzS/+1JlSokJET/30qlEo6OjggODtavubi4AACSk5MBABcvXkTz5s31JQXQ/QWbk5OD69evIz09HQUFBWjWrJn+fgcHBwQ88Mt49uxZaDQa+Pv7G2RRq9VwdHQsU/4Hy0aNGjUQHh6OixcvGmwTHh6u/++EhATk5eXh5ZdfNtimoKAAjRs31r/GB/M//DwlOXXqFN55550yZX/YxYsXMWTIEIO1li1bYvbs2QZrD/7MrKysYGtrq//5EBEZDX9/oEMH3UzKg4d/lEogIqJSSwpQzYqKhakSFz7vIMnzlpWpqanBbYVCYbB2v5BotdpnC/eAnJwcKJVKREdHQ6k0zGxtbV1uz3OflZWVwXMDwJYtW+Du7m6wnZmZ2VM/h4WFxVN/b1mV9DMrz58PEVGlWbVKNzi744GjEBERuvVKVq2KikKhKNMhGGPSoEEDbNiwAUIIfYk5dOgQbGxs4OHhAQcHB5iamuLvv/+Gp6cnACA9PR1xcXFo3bo1AKBx48bQaDRITk7GCy+88Ex5jh49ihdffBGA7tBPdHQ0Ro0a9cjtAwMDYWZmhqSkJH2ekl7jwwOqR48efWyOkJAQ7N69GwMHDizxfpVKBc3DA2MlPO+hQ4fQv39//dqhQ4cQGBj42O8jIjJaNWsC27frBmcTEgBf30rfk3Jf1fxbuxoaMWIEZs2ahdGjR2PUqFGIjY3F5MmTMX78eJiYmMDa2hqDBg3C+++/D0dHRzg7O+Ojjz6Cicm/J375+/ujd+/e6NevH2bOnInGjRvj7t272L17N0JCQtC5c+dS55k3bx78/PzQoEEDfP/990hPT8fbb7/9yO1tbGwwYcIEvPvuu9BqtWjVqhUyMzNx6NAh2Nraon///hg2bBhmzpyJ999/H4MHD0Z0dDSWLl362ByTJ0/GSy+9BB8fH7z11lsoKirC1q1b9fMzXl5eOHDgAN566y2YmZmhVq1axR7j/fffR48ePdC4cWNERETg999/x8aNG7Hr4VP3iIiqGj8/yQrKfTw9uYpwd3fH1q1bcezYMYSGhmLYsGEYNGgQPv74Y/02M2bMwAsvvIAuXbogIiICrVq1QlhYmMHjLFmyBP369cN7772HgIAAdOvWDcePH9fvhSmt6dOnY/r06QgNDcXBgwexefPmEkvAg7744gt88sknmDZtGho0aICOHTtiy5Yt8Pb2BgB4enpiw4YN2LRpE0JDQ7Fw4UJMnTr1sY/Zpk0brFu3Dps3b0ajRo3Qrl07HDt2TH//559/jitXrsDHxwdOTk4lPka3bt0we/ZsfPvtt2jYsCEWLVqEJUuWoE2bNmV6T4iIqOyq1Vk/VPHun/Vz8uRJNGrUSOo4RERk5LhHhYiIiGSLRYWIiIhkS9Ki8tlnn+kvXX7/q379+lJGomfk5eUFIQQP+xARUbmQ/Kyfhg0bGpw9UaOG5JGIiIhIJiRvBTVq1EDt2rWljkFEREQPycgrgL2lStIMks+oxMfHw83NDfXq1UPv3r2RlJT0yG3VajWysrIMvoiIiKj8HYxPQdtv92Ht8WuS5pC0qDRr1gxLly7F9u3bsWDBAly+fBkvvPACsrOzS9x+2rRpsLOz03/VqVOnkhMTERFVbUII/HjgH/T7+W+k5xViXfQ1aLXSXclEVtdRycjIQN26dfHdd99h0KBBxe5Xq9VQq9X621lZWahTpw6vo0JERFQO8gqKMHHDWfx++iYA4I0wD3zZLQjmT/GZdeVF8hmVB9nb28Pf3x8JCQkl3m9mZvZMH1BHREREJUtKzcOQqBO4dDsbNUwUmNwlEH2er6v//DipSD6j8qCcnBwkJibC1dVV6ihERETVxoG4u+gy9yAu3c5GLWsVVr7zPPo295K8pAASF5UJEyZg//79uHLlCg4fPozXXnsNSqUSPXv2lDKW5Nq0aYNx48ZJHUNPbnmIiKh8CCGwYF8iBiw5hsx7hQitY4/fR7dCU28HqaPpSXro5/r16+jZsydSU1Ph5OSEVq1a4ejRo4/8cDgqvYKCAqhU0p5SRkRE8pWrLsIH689gy9lbAIDI8Dr4vFtDmNWQbh6lJJLuUVm9ejVu3rwJtVqN69evY/Xq1fDx8ZEy0qPFxQHbtgHx8RX6NAMGDMD+/fsxe/Zs/dV6ExMTMWjQIHh7e8PCwgIBAQGYPXt2se/r1q0bvvrqK7i5uSEgIAAAcPjwYTRq1Ajm5uYIDw/Hpk2boFAocOrUKf33njt3Dp06dYK1tTVcXFzQt29fpKSkPDLPlStXKvQ9ICKiinUlJRfd5x/GlrO3YKpU4KvXgjD99WDZlRRAZsO0spSWBvTqBezY8e9ahw7AqlVAzZrl/nSzZ89GXFwcgoKC8PnnnwMAatasCQ8PD6xbtw6Ojo44fPgwhgwZAldXV/To0UP/vbt374atrS127twJQHdWVJcuXfDKK69g5cqVuHr1arFDOBkZGWjXrh0GDx6M77//Hvfu3cPEiRPRo0cP7Nmzp8Q83ONFRGS89sYmY+yqk8jKL4KTjRkW9mmCsLryOdTzMBaVJ+nVC3jgEv8AdLd79gS2by/3p7Ozs4NKpYKlpaXBFXunTJmi/29vb28cOXIEa9euNSgqVlZW+Omnn/SHfBYuXAiFQoEff/wR5ubmCAwMxI0bN/DOO+/ov2fu3Llo3Lgxpk6dql/7+eefUadOHcTFxcHf37/EPEREZFyEEJi/LxHf/hkLIYAmnvZY0CcMLrbmUkd7LBaVx4mLM9yTcp9Go1uPjwf8/Colyrx58/Dzzz8jKSkJ9+7dQ0FBQbEP/gsODjaYS4mNjUVISAjMzf/9JWzatKnB95w+fRp79+6FtbV1sedMTEyEv79/+b4QIiKqdDnqIkxYexrbz98GAPRq5onJXQJleajnYSwqj5OY+Pj7ExIqpaisXr0aEyZMwMyZM9G8eXPY2NhgxowZ+Pvvvw22s7KyKvNj5+TkoEuXLvj666+L3cfTxImIjN/llFwMWXYC8ck5UClNMKVrQ/Rs6il1rFJjUXmcJw32+vpWyNOqVCpoNBr97UOHDqFFixYYMWKEfi3xSSUKQEBAAJYvXw61Wq2/UN7x48cNtmnSpAk2bNgALy+vR35y9cN5iIjIOOy5dAdjV59Cdn4RnG3MsLBvGJp4lv98ZUWS1QXfZMffXzc4q3xo15hSqVuvoL0pXl5e+Pvvv3HlyhWkpKTAz88PJ06cwI4dOxAXF4dPPvmkWOEoSa9evaDVajFkyBBcvHgRO3bswLfffgsA+ov4jBw5EmlpaejZsyeOHz+OxMRE7NixAwMHDtSXk4fzaLXaCnndRERUPrRagTm74zHolxPIzi9CeN2a+GN0K6MrKQCLypOtWgVERBiuRUTo1ivIhAkToFQqERgYCCcnJ3To0AHdu3dHZGQkmjVrhtTUVIO9K49ia2uL33//HadOnUKjRo3w0Ucf4dNPPwUA/dyKm5sbDh06BI1Gg/bt2yM4OBjjxo2Dvb09TExMSszzuE+4JiIiaWXnF2LY8mjM3BkHIYA+z3ti5TvPw1nmQ7OPIqsPJSyrrKws2NnZVc6HEsbH62ZSfH0rbYC2IqxYsQIDBw5EZmYmLCwspI5DRETlKPFuDoYsO4HEu7lQKU3wRbeGiHzOeOZRSsIZldLy8zPKgrJs2TLUq1cP7u7uOH36tP4aKSwpRERVy84LdzB+zSlkq4tQ29YcC/uGoVEde6ljPTMWlSru9u3b+PTTT3H79m24urrizTffxFdffSV1LCIiKidarcAPe+Ixa5fuyulNvRwwr3cTONmYSZysfPDQDxERkZHKyi/E+DWnsOtiMgBgQAsvfNS5AUyVVWcElXtUiIiIjFBCcjaGLIvGPym5UNUwwdTXgvFGmIfUscodiwoREZGR2XH+NsavOYXcAg3c7HTzKCEe9lLHqhAsKkREREZCqxX4flcc5uxJAAA089bNo9SyrhrzKCVhUSEiIjICmfcKMW71SeyNvQsAGNjSC/99pWrNo5SERYWIiEjm4u5kY8iyE7iSmgezGiaY1j0Y3ZtUvXmUkrCoEBERydj2c7fw3trTyC3QwN3eAov6hiHI3U7qWJWGRYWIiEiGNFqB73bGYt5e3YfQtvBxxJyejeFYhedRSsKiQkREJDOZeYUYs/ok9sfp5lEGt/LGh53qo0YVn0cpCYsKERGRjMTezsaQqBO4mpoHc1MTfP16CLo2cpc6lmRYVIiIiGRiy5lbeH/9aeQVaOBRUzeP0tCt+syjlIRFhYiISGIarcCMHbFYuF83j9LKtxbm9GyMmlYqiZNJj0WFiIhIQhl5BRi96iT+ik8BAAx9sR7e7xBQLedRSsKiQkREJJELN7MwdPkJXEu7BwtTJb55IwRdQt2kjiUrLCpEREQS2Hz6Jj5Yfxr5hVrUcbDA4r7haOBqK3Us2WFRISIiqkRFGi2+2RGLxQf+AQC84KebR7G35DxKSVhUiIiIKklabgFGr4rBoYRUAMDwNj6Y0D4AShOFxMnki0WFiIioEpy/mYkhy6JxI+MeLFVKzHgjFJ1DXKWOJXssKkRERBXst1M3MHHDGeQXalHX0RKL+4YjoLaN1LGMAosKERFRBSnSaDFt2yX87+BlAECbACfMjmwMO0tTiZMZDxYVIiKiCpCao8aolSdx5B/dPMqotr5492V/zqOUEYsKERFROTt3IxNDo3TzKFYqJWb2CEXHIM6jPA0WFSIionK0MeY6Jm08C3WRFt61rLC4bxj8XDiP8rRYVIiIiMpBoUaLr7ZcxNLDVwAAL9V3xneRjWBnwXmUZ8GiQkRE9IxSctQYsSIGxy6nAQDGtPPFuAh/mHAe5ZmxqBARET2D09cyMGx5NG5l5sParAZm9ghFh4a1pY5VZbCoEBERPaV1J67ho03nUFCkRT0n3TyKrzPnUcoTiwoREVEZFRRp8eWWC1h25CoAIKKBC76LDIWtOedRyhuLChERURkkZ+dj5IoYHL+SDgB4N8Ifo9v5ch6lgrCoEBERldLJpHQMXx6D21n5sDGrge8jGyEi0EXqWFUaiwoREVEprDmehE82nUeBRgsfJyss7hcOHydrqWNVeSwqREREj1FQpMWU389jxd9JAID2gS6Y2SMUNpxHqRQsKkRERI+QnJWP4StiEH01HQoF8N7L/hjRhvMolYlFhYiIqATRV9MxfHk0krPVsDGvgR/eaoy29Z2ljlXtsKgQERE9ZOXfSZi8+RwKNQJ+ztZY3C8c3rWspI5VLbGoEBER/T91kQafbT6PVceuAQA6BdXGjDdDYW3Gvy6lwneeiIgIwJ2sfAxbHo2TSRlQKIAJ7QMwoo0PFArOo0iJRYWIiKq9E1fSMHxFDO5mq2FrXgM/9GyMNgGcR5EDFhUiIqq2hBBY/ncSpmw+jyKtQICLDRb3C0NdR86jyIWJ1AHumz59OhQKBcaNGyd1FCIiqgbyCzWYuOEMPtl0DkVagc4hrtg4ogVLiszIYo/K8ePHsWjRIoSEhEgdhYiIqoFbmfcwLCoap69nwkQBfNCxPoa+WI/zKDIk+R6VnJwc9O7dGz/++CNq1qwpdRwiIqrijl1OQ5c5B3H6eibsLEyxdGBTDGvNoVm5kryojBw5Ep07d0ZERMQTt1Wr1cjKyjL4IiIiKg0hBJYduYJePx5FSk4B6te2we+jWuFFfyepo9FjSHroZ/Xq1YiJicHx48dLtf20adMwZcqUCk5FRERVTX6hBh9vOof10dcBAF1C3fD168GwVMliAoIeQ7I9KteuXcPYsWOxYsUKmJubl+p7Jk2ahMzMTP3XtWvXKjglEREZu5sZ99Bj0RGsj74OEwXw0SsN8MNbjVhSjIRCCCGkeOJNmzbhtddeg1Kp1K9pNBooFAqYmJhArVYb3FeSrKws2NnZITMzE7a2thUdmYiIjMyRxFSMWhmD1NwC1LQ0xZyeTdDKr5bUsagMJKuTL730Es6ePWuwNnDgQNSvXx8TJ058YkkhIiJ6FCEElhy6gq+2XoRGKxDoaotFfcNQx8FS6mhURpIVFRsbGwQFBRmsWVlZwdHRsdg6ERFRaeUXavDfjWex8eQNAEC3Rm6Y1j0EFir+A9gY8QAdERFVGdfT8zA0Khrnb2ZBaaLAf19pgLdbevHUYyMm2YxKeeCMChER3Xc4IQUjV8YgPa8QDlYqzO3VGC18OI9i7LhHhYiIjJoQAv87eBlTt16EVgBB7rZY1Dcc7vYWUkejcsCiQkRERutegQYfbjyD307dBAB0b+KOqa8Fw9yU8yhVBYsKEREZpWtpunmUC7d08yifdG6A/i04j1LVsKgQEZHRORifglGrYpCRVwhHKxXm9W6C5+s5Pvkb4+KAxETA1xfw86v4oPTMWFSIiMhoCCHw41//YPq2S9AKIMTDDgv7hMHtSfMoaWlAr17Ajh3/rnXoAKxaBfADcWWNZ/0QEZFRyCsowgfrz+CPM7cAAG+EeeDLbkGlm0fp2BHYtQvQaP5dUyqBiAhg+/YKSkzlgUWFiIhkLyk1D0OiTuDS7WzUMFFgcpdA9Hm+bunmUeLigICAx9/Pw0CyxUM/REQka/vj7mLMqpPIvFeIWtYqzO8dhqbeDqV/gMTEx9+fkMCiImMsKkREJEtCCCzc/w9m7NDNo4TWscfCPk3galfG66P4+Dz+fl/fpw9JFc5E6gBEREQPy1UXYdTKk/h6u66kRIbXwdqhz5e9pACAv79ucPbhD7tVKnXr3JsiaywqREQkK1dSctF9/mFsOXsLpkoFvnotCNNfD4ZZjWe4iNuqVbrB2QdFROjWSdY4TEtERLKxNzYZY1edRFZ+EZxszLCwTxOE1S3DPMqTxMfrZlJ4HRWjwRkVIiKSnBAC8/cl4ts/YyEE0MTTHgv6hMHF1rx8n8jPjwXFyLCoEBGRpHLURZiw9jS2n78NAOjVzBOTuwQ+26EeqjJYVIiISDKXU3IxZNkJxCfnwFSpwOddg9CzqafUsUhGWFSIiEgSey7dwdjVp5CdXwRnGzMs6BOGsLq8nD0ZYlEhIqJKpdUKzN2bgO93xUEIILxuTczv3QTO5T2PQlUCiwoREVWa7PxCvLf2NP68cAcA0Od5T3z6n4ZQ1eDVMqhkLCpERFQpEu/mYMiyE0i8mwuV0gRfdGuIyOc4j0KPx6JCREQVbueFOxi/5hSy1UWobWuOhX3D0KiOvdSxyAiwqBARUYXRagV+2BOPWbviAQBNvRwwr3cTONmYSZyMjAWLChERVYis/EKMX3MKuy4mAwAGtPDCR50bwFTJeRQqPRYVIiIqdwnJ2RiyLBr/pORCVcMEU18LxhthHlLHIiPEokJEROVqx/nbGL/mFHILNHCz082jhHjYSx2LjBSLChERlQutVuD7XXGYsycBANDMWzePUsua8yj09FhUiIjomWXeK8S41SexN/YuAGBgSy/89xXOo9CzY1EhIqJnEncnG0OWncCV1DyY1TDBtO7B6N6E8yhUPlhUiIjoqW0/dwvvrT2N3AIN3O0tsKhvGILc7aSORVUIiwoREZWZRivw3c5YzNubCABo4eOIOT0bw5HzKFTOWFSIiKhMMvMKMWb1SeyP082jDG7ljQ871UcNzqNQBWBRISKiUou9nY0hUSdwNTUP5qYm+Pr1EHRt5C51LKrCWFSIiKhUtpy5hffXn0ZegQYeNXXzKA3dOI9CFYtFhYiIHkujFZixIxYL9+vmUVr51sKcno1R00olcTKqDlhUiIjokTLyCjB61Un8FZ8CABj6Yj283yGA8yhUaVhUiIioRBdvZWFI1AlcS7sHC1MlvnkjBF1C3aSORdUMiwoRERWz+fRNTFx/BvcKNajjYIFFfcIR6GYrdSyqhlhUiIhIr0ijxTc7YrH4wD8AgBf8dPMo9pacRyFpsKgQEREAID1XN49yMEE3jzK8jQ8mtA+A0kQhcTKqzlhUiIgI529mYmhUNK6n34OlSokZb4Sic4ir1LGIWFSIiKq7307dwMQNZ5BfqEVdR0ss7huOgNo2UsciAsCiQkRUbRVptJi27RL+d/AyAKBNgBNmRzaGnaWpxMmI/sWiQkRUDaXmqDFq5Ukc+ScVADCqrS/efdmf8ygkOywqRETVzLkbunmUGxn3YKVSYmaPUHQM4jwKyROLChFRNbIx5jombTwLdZEW3rWssLhvGPxcOI9C8sWiQkRUDRRqtJi69SKWHLoCAGhX3xnfRzaCnQXnUUjeWFSIiKq4lBw1Rq6Iwd+X0wAAY9r5YlyEP0w4j0JGgEWFiKgKO3M9A0OjonErMx/WZjUws0coOjSsLXUsolJjUSEiqqLWnbiGjzadQ0GRFvWcdPMovs6cRyHjwqJCRFTFFGq0+PKPC/jlyFUAQEQDF3wXGQpbc86jkPExkfLJFyxYgJCQENja2sLW1hbNmzfHtm3bpIxERGTU7mar0fvHv/Ul5d0IfyzuG8aSQkZL0j0qHh4emD59Ovz8/CCEwC+//IKuXbvi5MmTaNiwoZTRiIiMzsmkdAxfHoPbWfmwMauB7yMbISLQRepYRM9EIYQQUod4kIODA2bMmIFBgwY9cdusrCzY2dkhMzMTtra2lZCOiEie1h6/ho83nUOBRgsfJyss7hcOHydrqWMRPTPZzKhoNBqsW7cOubm5aN68eYnbqNVqqNVq/e2srKzKikdEJEsFRVp8/sd5LD+aBABoH+iCmT1CYcNDPVRFSF5Uzp49i+bNmyM/Px/W1tb49ddfERgYWOK206ZNw5QpUyo5IRGRPCVn52PE8hicuJoOhQIYH+GPkW19eX0UqlIkP/RTUFCApKQkZGZmYv369fjpp5+wf//+EstKSXtU6tSpw0M/RFTtxCSlY/jyaNzJUsPGvAZmv9UI7epzHoWqHsmLysMiIiLg4+ODRYsWPXFbzqgQUXW06lgSPv3tHAo1An7O1ljcLxzetaykjkVUISQ/9PMwrVZrsNeEiIh01EUafLb5AlYd082jdAqqjRlvhsLaTHZ/lBOVG0l/uydNmoROnTrB09MT2dnZWLlyJfbt24cdO3ZIGYuISHbuZOVj2PJonEzKgEIBTGgfgBFtfKBQcB6FqjZJi0pycjL69euHW7duwc7ODiEhIdixYwdefvllKWMREcnKiStpGL4iBnez1bA1r4EfejZGmwBnqWMRVQrZzaiUBWdUiKgqE0Jgxd9JmPL7eRRqBAJcbLC4XxjqOnIehaoPHtgkIpKh/EINJv92HmtOXAMAdA5xxTevh8CK8yhUzfA3nohIZm5n5mPo8micvpYBEwXwQcf6GPpiPc6jULXEokJEJCPHLqdhxIoYpOSoYWdhijk9G+NFfyepYxFJhkWFiEgGhBCIOnoVn/9+AUVagfq1bbC4bzg8HS2ljkYkKRYVIiKJ5Rdq8Mmmc1gXfR0A0CXUDV+/HgxLFf+IJuL/C4iIJHQz4x6GLY/GmeuZMFEAkzo1wOAXvDmPQvT/WFSIiCRy9J9UjFwRg9TcAtS0NMWcnk3Qyq+W1LGIZIVFhYiokgkhsPTwFXy55SI0WoFAV1ss6huGOg6cRyF6GIsKEVElyi/U4L8bz2LjyRsAgG6N3DCtewgsVEqJkxHJE4sKEVEluZ6eh2HLo3HuRhaUJgr895UGeLulF+dRiB6DRYWIqBIcTkzBqJUnkZZbAAcrFeb2aowWPuU0jxIXByQmAr6+gJ9f+TwmkUywqBARVSAhBP538DKmbbsEjVYgyN0Wi/qGw93e4tkfPC0N6NULePAT5zt0AFatAmrWfPbHJ5IBfighEVEFuVegwaSNZ7Dp1E0AQPcm7pj6WjDMTctpHqVjR2DXLkCj+XdNqQQiIoDt28vnOYgkxqJCRFQBrqXlYWhUNC7c0s2jfNK5Afq3KMd5lLg4ICDg8ffzMBBVATz0Q0RUzg7Gp2D0qhik5xXC0UqFeb2b4Pl6juX7JImJj78/IYFFhaoEFhUionIihMBPf13GtG0XoRVAiIcdFvYJg1t5zKM8zMfn8ff7+pb/cxJJwETqAEREVUFeQRHGrD6Fr7bqSsobYR5YO7R5xZQUAPD31w3OKh+ad1Eqdevcm0JVBIsKEdEzSkrNQ/f5h/H76ZuoYaLAF10bYsYbIeU3NPsoq1bpBmcfFBGhWyeqIjhMS0T0DA7E3cXoVSeRea8QtaxVmN87DE29HSo3RHy8biaF11GhKogzKkRET0EIgYX7/8GMHZegFUBoHXss7NMErnYVdKjncfz8WFCoymJRISIqo1x1ET5YfwZbzt4CAESG18Hn3RrCrAY/r4eovLGoEBGVwZWUXAyNikbsnWyYKhX47NWG6NXUk5/XQ1RBWFSIiEppX2wyxqw6iaz8IjjZmGFhnyYIq1vJ8yhE1QyLChHJk4w+aE8Igfn7EvHtn7EQAmjiaY8FfcLgYmsuaS6i6qDMpyf3798fBw4cqIgsRES6D9rr2FF3efhXXtFdL6RjRyA9XZI4OeoijFgRgxk7dCWlZ1NPrBryPEsKUSUpc1HJzMxEREQE/Pz8MHXqVNy4caMichFRddWrl+6D9h60axfQs2elR7mckovX5h3CtnO3YapUYOprwZjWPZhDs0SV6Kmuo3L37l1ERUXhl19+wYULFxAREYFBgwaha9euMDU1rYicJeJ1VIiqGBl90N6eS3cwdvUpZOcXwdnGDAv6hCGsbs1KeW4i+tdTXZnWyckJ48ePx+nTp/H333/D19cXffv2hZubG959913Ex8eXd04iqg5K80F7FUyrFZizOx6DfjmB7PwihNetiT9Gt2JJIZLIM11C/9atW9i5cyd27twJpVKJV155BWfPnkVgYCC+//778spIRNWFxB+0l51fiGHLozFzZxyEAPo874mV7zwPZ86jEEmmzId+CgsLsXnzZixZsgR//vknQkJCMHjwYPTq1Ut/+OXXX3/F22+/jfQKHn7joR+iKqhjR91Mikbz75pSqfsMm+3bK+xpE+/mYMiyE0i8mwuV0gRfdGuIyOc8K+z5iKh0ynx6squrK7RaLXr27Iljx46hUaNGxbZp27Yt7O3tyyEeEVU7q1bpBmd37Ph3rYI/aG/nhTsYv+YUstVFqG1rjoV9w9Cojn2FPR8RlV6Z96hERUXhzTffhLm59LtCuUeFqAqrhA/a02oFftgTj1m7dHN1Tb0cMK93EzjZmFXI8xFR2fHTk4moWsrKL8T4Naex6+IdAMCAFl74qHMDmCqfaXSPiMoZr0xLRNVOQnIOhkSdwD93c6GqYYKprwXjjTAPqWMRUQlYVIioWtlx/jbeW3saOeoiuNqZY1HfMIR42Esdi4gegUWFiKoFrVZg1q44/LBHdy2WZt66eZRa1pxHIZIzFhUiqvIy7xXi3TWnsOdSMgBgYEsv/PcVzqMQGQMWFSKq0uLvZGNIVDQup+TCrIYJpnUPRvcmnEchMhYsKkRUZW0/dwvvrT2N3AIN3O0tsKhvGILc7aSORURlwKJCRFWORivw3c5YzNur++ygFj6OmNOzMRw5j0JkdFhUiKhKycwrxJjVJ7E/7i4AYHArb3zYqT5qcB6FyCixqBBRlRF7OxtDok7gamoezE1N8PXrIejayF3qWET0DFhUiKhK2HLmFt5ffxp5BRp41NTNozR04zwKkbFjUSEio6bRCnz7ZywW7NPNo7TyrYU5PRujppVK4mREVB5YVIjIaGXkFWD0qpP4Kz4FADD0xXp4v0MA51GIqhAWFSIyShdvZWFI1AlcS7sHC1MlvnkjBF1C3aSORUTljEWFiIzO5tM3MXH9Gdwr1KCOgwUW9QlHoBs/QZ2oKmJRISKjUaTR4psdsVh84B8AwAt+unkUe0vOoxBVVSwqRGQU0nN18ygHE3TzKMPb+GBC+wAoTRQSJyOiiiTpxNm0adPw3HPPwcbGBs7OzujWrRtiY2OljEREMnT+Zia6zD2IgwkpsFQpMa9XE0zsWJ8lhagakLSo7N+/HyNHjsTRo0exc+dOFBYWon379sjNzZUyFhHJyG+nbuD1BYdxPf0e6jpa4tcRLdE5xFXqWERUSRRCCCF1iPvu3r0LZ2dn7N+/Hy+++OITt8/KyoKdnR0yMzNha8tBOqKqpEijxbRtl/C/g5cBAG0CnDA7sjHsLE0lTkZElUlWMyqZmZkAAAcHhxLvV6vVUKvV+ttZWVmVkouIKldqjhqjV53E4cRUAMCotr5492V/HuohqoZks0dFq9Xi1VdfRUZGBg4ePFjiNp999hmmTJlSbJ17VIiqjnM3MjE0Kho3Mu7BSqXEzB6h6BjEQz1E1ZVsisrw4cOxbds2HDx4EB4eHiVuU9IelTp16rCoEFURG2OuY9LGs1AXaeFdywqL+4bBz8VG6lhEJCFZHPoZNWoU/vjjDxw4cOCRJQUAzMzMYGZmVonJiKgyFGq0mLr1IpYcugIAaFffGd9HNoKdBedRiKo7SYuKEAKjR4/Gr7/+in379sHb21vKOEQkgZQcNUauiMHfl9MAAGPa+WJchD9MOI9CRJC4qIwcORIrV67Eb7/9BhsbG9y+fRsAYGdnBwsLCymjEVElOHM9A0OjonErMx/WZjUws0coOjSsLXUsIpIRSWdUFIqS/8W0ZMkSDBgw4Infz9OTiYzXuhPX8NGmcygo0qKek24exdeZ8yhEZEjyQz9EVL0UarT48o8L+OXIVQBARAMXfBcZCltzzqMQUXGyGKYlourhbrZuHuXYFd08yrsR/hjdzpfzKET0SCwqRFQpTialY/jyGNzOyoeNWQ18H9kIEYEuUsciIpljUSGiCrf2+DV8vOkcCjRa+DhZYXG/cPg4WUsdi4iMAIsKEVWYgiItPv/jPJYfTQIAtA90wcweobDhPAoRlRKLChFViOTsfIxYHoMTV9OhUADjI/wxsi3nUYiobFhUiKjcxSSlY/jyaNzJUsPGvAZmv9UI7epzHoWIyo5FhYjK1apjSfj0t3Mo1Aj4OVtjcb9weNeykjoWERkpFhUiKhfqIg0+23wBq47p5lE6BdXGjDdDYW3GP2aI6OnxTxAiemZ3svIxbHk0TiZlQKEAJrQPwIg2Po+8+jQRUWmxqBDRMzlxJQ3DV8TgbrYatuY18EPPxmgT4Cx1LCKqIlhUiOipCCGw4u8kTPn9PAo1AgEuNljcLwx1HTmPQkTlh0WFiMosv1CDyb+dx5oT1wAAnUNc8c3rIbDiPAoRlTP+qUJEZXI7Mx9Dl0fj9LUMmCiADzrWx9AX63EehYgqBIsKEZXasctpGLEiBik5athZmGJOz8Z40d9J6lhEVIWxqBDREwkhEHX0Kj7//QKKtAL1a9tgcd9weDpaSh2NiKo4FhUieqz8Qg0+2XQO66KvAwC6hLrh69eDYaniHx9EVPH4Jw0RPdLNjHsYtjwaZ65nwkQBTOrUAINf8OY8ChFVGhYVIirR0X9SMXJFDFJzC1DT0hRzejZBK79aUsciomqGRYWIDAghsPTwFXy55SI0WoFAV1ss6huGOg6cRyGiyseiQkR6+YUa/HfjWWw8eQMA0K2RG6Z1D4GFSilxMiKqrlhUiAgAcD09D8OWR+PcjSwoTRSY1Kk+BrXiPAoRSYtFhYhwODEFo1aeRFpuARysVJjbszFa+HIehYikx6JCVI0JIfC/g5cxbdslaLQCQe62WNgnDB41OY9CRPLAokJUTd0r0GDSxjPYdOomAKB7Y3dM7R4Mc1POoxCRfLCoEFVD19LyMDQqGhdu6eZRPu7cAANaeHEehYhkh0WFqJo5GJ+C0atikJ5XCEcrFeb1boLn6zlKHYuIqEQsKkTVhBACP/11GdO2XYRWACEedljYJwxu9hZSRyMieiQWFaJqIK+gCBM3nMXvp3XzKG+EeeDLbkGcRyEi2WNRIariklLzMCTqBC7dzkYNEwUmdwlEn+frch6FiIwCiwpRFXYg7i5GrzqJzHuFqGWtwvzeYWjq7SB1LCKiUmNRIaqChBBYuP8fzNhxCVoBhNaxx8I+TeBqx3kUIjIuLCpEVUyuuggfrD+DLWdvAQB6hHvg866cRyEi48SiQlSFXE3NxZBl0Yi9kw1TpQKTuzRE72aenEchIqPFokJUReyLTcaYVSeRlV8EJxszLOjdBOFenEchIuPGokJk5IQQmL8vEd/+GQshgMae9ljYJwwutuZSRyMiemYsKkRGLEddhPfXnca2c7cBAD2beuKzVwNhVoPzKERUNbCoEBmpyym5GLLsBOKTc2CqVGDKq0Ho1cxT6lhEROWKRYXICO25dAdjV59Cdn4RnG3MsKBPGMLq1pQ6FhFRuWNRITIiWq3AvL0J+G5XHIQAwurWxILeTeDMeRQiqqJYVIiMRHZ+Id5bexp/XrgDAOjzvCc+/U9DqGqYSJyMiKjisKgQGYHEuzkYsuwEEu/mQqU0wRfdGiLyOc6jEFHVx6JCJHM7L9zB+DWnkK0uQm1bcyzo0wSNPTmPQkTVA4sKkUxptQI/7InHrF3xAIDnvGpiXu8mcLbhPAoRVR8sKkQylJVfiPFrTmPXRd08Sv/mdfFR50DOoxBRtcOiQiQzCck5GBJ1Av/czYWqhgm+6haEN8PrSB2LiEgSLCpEMrLj/G28t/Y0ctRFcLUzx6K+YQjxsJc6FhGRZFhUiGRAqxWYtSsOP+xJAAA09XbA/N5NUMvaTOJkRETSYlEhkljmvUK8u+YU9lxKBgAMaOGFjzo3gKmS8yhERCwqRBKKv5ONIVHRuJySC7MaJpj6WjBeD/OQOhYRkWxI+k+2AwcOoEuXLnBzc4NCocCmTZukjENUqbafu4Vu8w7hckou3O0tsH5YC5YUIqKHSFpUcnNzERoainnz5kkZg6hSabQCM3ZcwrDlMcgt0KB5PUdsHtUSwR52UkcjIpIdSQ/9dOrUCZ06dZIyAlGlyswrxJjVJ7E/7i4AYFArb0zqVB81OI9CRFQio5pRUavVUKvV+ttZWVkSpiEqm9jb2RgSdQJXU/NgbmqC6d1D0K2xu9SxiIhkzaj+GTdt2jTY2dnpv+rU4UWwyDhsOXMLr80/hKupefp5FJYUIqInM6qiMmnSJGRmZuq/rl27JnUkosfSaAW+3n4JI1fGIK9Ag5a+jvh9dCsEuXMehYioNIzq0I+ZmRnMzHgBLDIOGXkFGL3qJP6KTwEADHmxHj7oEMB5FCKiMjCqokJkLC7eysKQqBO4lnYP5qYm+OaNULwa6iZ1LCIioyNpUcnJyUFCQoL+9uXLl3Hq1Ck4ODjA09NTwmRET2/z6ZuYuP4M7hVqUMfBAov6hCPQzVbqWERERkkhhBBSPfm+ffvQtm3bYuv9+/fH0qVLn/j9WVlZsLOzQ2ZmJmxt+RcBSatIo8U3O2Kx+MA/AIAX/Grhh7cao6aVSuJkRETGS9Ki8qxYVEgu0nN18ygHE3TzKMNa++D9DgFQmigkTkZEZNw4o0L0jM7fzMTQqGhcT78HC1MlZrwZgv+EcB6FiKg8sKgQPYPfTt3AxA1nkF+oRV1HSyzqG4b6tbl3j4iovLCoED2FIo0W07Zdwv8OXgYAtPZ3wg9vNYadpanEyYiIqhYWFaIySs1RY/SqkzicmAoAGNnWB+Nf5jwKEVFFYFEhKoNzN3TzKDcy7sFSpcTMN0PRKdhV6lhERFUWiwpRKW2MuY5JG89CXaSFl6MlFvcLh7+LjdSxiIiqNBYVoico1GgxdetFLDl0BQDQNsAJs95qDDsLzqMQEVU0FhWix0jJUWPkihj8fTkNADCmnS/GRfjDhPMoRESVgkWF6BHOXM/A0Kho3MrMh5VKiZk9GqFjUG2pYxERVSssKkQlWHfiGj7adA4FRVrUq2WFxf3C4OvMeRQiosrGokL0gEKNFl/+cQG/HLkKAIho4IzvIhvB1pzzKEREUmBRIfp/d7N18yjHrujmUcZF+GFMOz/OoxARSYhFhQjAqWsZGBYVjdtZ+bAxq4HvIhvh5UAXqWMREVV7LCpU7a09fg0fbzqHAo0WPk5WWNwvHD5O1lLHIiIisKhQNVZQpMXnf5zH8qNJAID2gS6Y2SMUNpxHISKSDRYVqpaSs/MxYnkMTlxNh0IBvBvhj1FtfTmPQkQkMywqVO3EJKVj+PJo3MlSw8asBma91QgvNeA8ChGRHLGoULWy6lgSPv3tHAo1An7O1ljUNwz1OI9CRCRbLCpULaiLNPhs8wWsOqabR+nYsDa+7REKazP+X4CISM74pzRVeXey8jFseTROJmVAoQAmtA/AiDY+UCg4j0JEJHcsKlSlnbiShuErYnA3Ww1b8xqY3bMx2gY4SxcoLg5ITAR8fQE/P+lyEBEZCRYVqpKEEFjxdxKm/H4ehRqBABcbLOobBq9aVtIESksDevUCduz4d61DB2DVKqBmTWkyEREZAYUQQkgd4mllZWXBzs4OmZmZsLW1lToOyYS6SIPJv53H6uPXAACdg13xzRshsJJyHqVjR2DXLkCj+XdNqQQiIoDt26XLRUQkcywqVKXcztTNo5y6lgETBfBBx/oY+mI9aedR4uKAgIDH38/DQEREJeKhH6oyjl1Ow4gVMUjJUcPOwhRzejbGi/5OUsfSzaQ8TkICiwoR0SOwqJDRE0Ig6uhVfP77BRRpBerXtsHivuHwdLSUOpqOj8/j7/f1rZwcRERGyETqAETPIr9Qgw/Wn8Gnv51HkVbgPyGu2DiihXxKCgD4++sGZ5VKw3WlUrfOvSlERI/EokJG62bGPfRYdATroq/DRAH895X6mNOzMSxVMtxRuGqVbnD2QRERunUiInokDtOSUTr6TypGrohBam4B7C1NMbdnE7TyqyV1rCeLj9fNpPA6KkREpSLDf3oSPZoQAksPX8GXWy5CoxUIdLXFor5hqOMgo0M9j+Pnx4JCRFQGLCpkNPILNfjvxrPYePIGAKBrIzdM7x4CC5XyCd9JRETGikWFjMKNjHsYGnUC525kQWmiwKRO9TGolTc/r4eIqIpjUSHZO5yYglErTyIttwAOVirM7dkYLXyNYB6FiIieGYsKyZYQAj8fuoKpW3XzKEHutljYJwweNY1kHoWIiJ4ZiwrJ0r0CDSZtPINNp24CALo3dsfU7sEwN+U8ChFRdcKiQrJzLS0PQ6OiceGWbh7l484NMKCFF+dRiIiqIRaVR4mL031GC693UakOxqdg9KoYpOcVwtFKhbm9mqC5j6PUsYiISCIsKg9LSwN69QJ27Ph3rUMH3RVEa9aULlcVJ4TAT39dxrRtF6EVQLC7HRb2DYO7vYXU0YiISEK8Mu3DOnYEdu0CNJp/15RK3eXOt28vn+cgA3kFRZi44Sx+P62bR3m9iQe+ei2I8yhERMSiYiAuDggIePz9PAxUrpJS8zAk6gQu3c5GDRMFPu0SiL7P1+U8ChERAeChH0OJiY+/PyGBRaUc/RV/F6NWnkTmvULUslZhfu8wNPV2kDoWERHJCIvKg3x8Hn+/r2/l5KjihBBYdOAffLP9ErQCCK1jj4V9msDVjvMoRERkyETqALLi768bnFU+NBuhVOrWuTflmeUVFGHUqpOYvk1XUnqEe2DNkOdZUoiIqEQsKg9btUo3OPugiAjdOj2Tq6m56D7/MLacuQVTpQJfdgvC16+HcGiWiIgeicO0jxIfr5tJ4XVUysW+2GSMWXUSWflFcLIxw4LeTRDuxXkUIiJ6PM6oPIqfHwtKORBCYP6+RHz7ZyyEABp72mNhnzC42JpLHY2IiIwAiwpVmBx1Ed5fdxrbzt0GAPRsWgefvdoQZjV4qIeIiEqHRYUqxOWUXAxZdgLxyTkwVSow5dUg9GrmKXUsIiIyMiwqVO72XLqDsatPITu/CM42ZljQJwxhdfnxA0REVHayOOtn3rx58PLygrm5OZo1a4Zjx45JHYmeglYrMGd3PAb9cgLZ+UUIq1sTf4xuxZJCRERPTfKismbNGowfPx6TJ09GTEwMQkND0aFDByQnJ0sdjcogR12EYcujMXNnHIQA+jzviVXvPA9nDs0SEdEzkPz05GbNmuG5557D3LlzAQBarRZ16tTB6NGj8eGHHz72eyvq9GR1kQZ5as2TNyQAwK3MfIxZfRIJyTlQKU3wRbeGiHyO8yhERPTsJJ1RKSgoQHR0NCZNmqRfMzExQUREBI4cOVJse7VaDbVarb+dlZVVIbl2nL+DMatOVshjV2W1bc2xoE8TNPbkoR4iIiofkh76SUlJgUajgYuLi8G6i4sLbt++XWz7adOmwc7OTv9Vp06dyopKT/CCXy1sHt2SJYWIiMqVUZ31M2nSJIwfP15/Oysrq0LKSpcQV/wn2LXcH7cqMzFRSB2BiIiqIEmLSq1ataBUKnHnzh2D9Tt37qB27drFtjczM4OZmVmF51IoFFDw710iIiLJSXroR6VSISwsDLt379avabVa7N69G82bN5cwGREREcmB5Id+xo8fj/79+yM8PBxNmzbFrFmzkJubi4EDB0odjYiIiCQmeVGJjIzE3bt38emnn+L27dto1KgRtm/fXmzAloiIiKofya+j8iwq6joqREREJA+SX5mWiIiI6FFYVIiIiEi2WFSIiIhItlhUiIiISLZYVIiIiEi2WFSIiIhItlhUiIiISLZYVIiIiEi2WFSIiIhItlhUiIiISLZYVIiIiEi2JP9QQqoC4uKAxETA1xfw85M6DRERVSHco0JPLy0N6NgRCAgAXnkF8PfX3U5PlzoZERFVESwq9PR69QJ27TJc27UL6NlTmjxERFTlsKjQ04mLA3bsADQaw3WNRrceHy9NLiIiqlJYVOjpJCY+/v6EhMrJQUREVRqLCj0dH5/H3+/rWzk5iIioSmNRoafj7w906AAolYbrSqVunWf/EBFROWBRoae3ahUQEWG4FhGhWyciIioHCiGEkDrE08rKyoKdnR0yMzNha2srdZzqKz5eN5PC66gQEVE54wXf6Nn5+bGgEBFRheChHyIiIpItFhUiIiKSLRYVIiIiki0WFSIiIpItFhUiIiKSLRYVIiIiki0WFSIiIpItFhUiIiKSLRYVIiIiki0WFSIiIpIto76E/v2PKcrKypI4CREREZWVjY0NFArFY7cx6qKSnZ0NAKhTp47ESYiIiKisSvOhwkb96clarRY3b94sVSMrq6ysLNSpUwfXrl3jJzM/Ad+r0uN7VXp8r0qP71Xp8b0qm4p+v6r8HhUTExN4eHhU6HPY2tryl7mU+F6VHt+r0uN7VXp8r0qP71XZSPl+cZiWiIiIZItFhYiIiGSLReURzMzMMHnyZJiZmUkdRfb4XpUe36vS43tVenyvSo/vVdnI4f0y6mFaIiIiqtq4R4WIiIhki0WFiIiIZItFhYiIiGSLRYWIiIhki0WlFL766iu0aNEClpaWsLe3lzqOrMybNw9eXl4wNzdHs2bNcOzYMakjydKBAwfQpUsXuLm5QaFQYNOmTVJHkq1p06bhueeeg42NDZydndGtWzfExsZKHUuWFixYgJCQEP3FuJo3b45t27ZJHcsoTJ8+HQqFAuPGjZM6iux89tlnUCgUBl/169eXLA+LSikUFBTgzTffxPDhw6WOIitr1qzB+PHjMXnyZMTExCA0NBQdOnRAcnKy1NFkJzc3F6GhoZg3b57UUWRv//79GDlyJI4ePYqdO3eisLAQ7du3R25urtTRZMfDwwPTp09HdHQ0Tpw4gXbt2qFr1644f/681NFk7fjx41i0aBFCQkKkjiJbDRs2xK1bt/RfBw8elC6MoFJbsmSJsLOzkzqGbDRt2lSMHDlSf1uj0Qg3Nzcxbdo0CVPJHwDx66+/Sh3DaCQnJwsAYv/+/VJHMQo1a9YUP/30k9QxZCs7O1v4+fmJnTt3itatW4uxY8dKHUl2Jk+eLEJDQ6WOocc9KvRUCgoKEB0djYiICP2aiYkJIiIicOTIEQmTUVWTmZkJAHBwcJA4ibxpNBqsXr0aubm5aN68udRxZGvkyJHo3LmzwZ9dVFx8fDzc3NxQr1499O7dG0lJSZJlMeoPJSTppKSkQKPRwMXFxWDdxcUFly5dkigVVTVarRbjxo1Dy5YtERQUJHUcWTp79iyaN2+O/Px8WFtb49dff0VgYKDUsWRp9erViImJwfHjx6WOImvNmjXD0qVLERAQgFu3bmHKlCl44YUXcO7cOdjY2FR6nmq7R+XDDz8sNiz08Bf/wiWS1siRI3Hu3DmsXr1a6iiyFRAQgFOnTuHvv//G8OHD0b9/f1y4cEHqWLJz7do1jB07FitWrIC5ubnUcWStU6dOePPNNxESEoIOHTpg69atyMjIwNq1ayXJU233qLz33nsYMGDAY7epV69e5YQxQrVq1YJSqcSdO3cM1u/cuYPatWtLlIqqklGjRuGPP/7AgQMH4OHhIXUc2VKpVPD19QUAhIWF4fjx45g9ezYWLVokcTJ5iY6ORnJyMpo0aaJf02g0OHDgAObOnQu1Wg2lUilhQvmyt7eHv78/EhISJHn+altUnJyc4OTkJHUMo6VSqRAWFobdu3ejW7duAHS76Xfv3o1Ro0ZJG46MmhACo0ePxq+//op9+/bB29tb6khGRavVQq1WSx1Ddl566SWcPXvWYG3gwIGoX78+Jk6cyJLyGDk5OUhMTETfvn0lef5qW1TKIikpCWlpaUhKSoJGo8GpU6cAAL6+vrC2tpY2nITGjx+P/v37Izw8HE2bNsWsWbOQm5uLgQMHSh1NdnJycgz+NXL58mWcOnUKDg4O8PT0lDCZ/IwcORIrV67Eb7/9BhsbG9y+fRsAYGdnBwsLC4nTycukSZPQqVMneHp6Ijs7GytXrsS+ffuwY8cOqaPJjo2NTbE5JysrKzg6OnL+6SETJkxAly5dULduXdy8eROTJ0+GUqlEz549pQkk9WlHxqB///4CQLGvvXv3Sh1NcnPmzBGenp5CpVKJpk2biqNHj0odSZb27t1b4u9Q//79pY4mOyW9TwDEkiVLpI4mO2+//baoW7euUKlUwsnJSbz00kvizz//lDqW0eDpySWLjIwUrq6uQqVSCXd3dxEZGSkSEhIky6MQQojKr0dERERET1Ztz/ohIiIi+WNRISIiItliUSEiIiLZYlEhIiIi2WJRISIiItliUSEiIiLZYlEhIiIi2WJRISIiItliUSEiIiLZYlEhIiIi2WJRISLZuHv3LmrXro2pU6fq1w4fPgyVSoXdu3dLmIyIpMLP+iEiWdm6dSu6deuGw4cPIyAgAI0aNULXrl3x3XffSR2NiCTAokJEsjNy5Ejs2rUL4eHhOHv2LI4fPw4zMzOpYxGRBFhUiEh27t27h6CgIFy7dg3R0dEIDg6WOhIRSYQzKkQkO4mJibh58ya0Wi2uXLkidRwikhD3qBCRrBQUFKBp06Zo1KgRAgICMGvWLJw9exbOzs5SRyMiCbCoEJGsvP/++1i/fj1Onz4Na2trtG7dGnZ2dvjjjz+kjkZEEuChHyKSjX379mHWrFmIioqCra0tTExMEBUVhb/++gsLFiyQOh4RSYB7VIiIiEi2uEeFiIiIZItFhYiIiGSLRYWIiIhki0WFiIiIZItFhYiIiGSLRYWIiIhki0WFiIiIZItFhYiIiGSLRYWIiIhki0WFiIiIZItFhYiIiGSLRYWIiIhk6/8AZ/5S5llBxEcAAAAASUVORK5CYII="
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- "INFO:autora.skl.bms:BMS fitting started\n",
- " 9%|▉ | 9/100 [00:00<00:03, 28.62it/s]:2: RuntimeWarning: invalid value encountered in power\n",
- " return sig(_a0_**X0)\n",
- " 21%|██ | 21/100 [00:00<00:02, 31.02it/s]/Users/jholla10/Library/Caches/pypoetry/virtualenvs/autora-17yK3Jyq-py3.8/lib/python3.8/site-packages/scipy/optimize/_minpack_py.py:906: OptimizeWarning: Covariance of the parameters could not be estimated\n",
- " warnings.warn('Covariance of the parameters could not be estimated',\n",
- "100%|██████████| 100/100 [00:03<00:00, 32.37it/s]\n",
- "INFO:autora.skl.bms:BMS fitting finished\n"
- ]
- },
- {
- "data": {
- "text/plain": "",
- "image/png": "iVBORw0KGgoAAAANSUhEUgAAAiIAAAGdCAYAAAAvwBgXAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABTf0lEQVR4nO3deVxV1cLG8d8BBUEm5wkBZ9EEZ0IUMC2ze01tvGqlZVamqdnobVAb1GbNZiu10mzSZqcsQFFxnnHCAU0URyYVkLPeP3jjRk5YHPYBnu/ncz7dvc+wHs+97+vTWuvsbTPGGEREREQs4GJ1ABERESm/VERERETEMioiIiIiYhkVEREREbGMioiIiIhYRkVERERELKMiIiIiIpZRERERERHLOHURMcaQnp6OrrkmIiJSNjl1EcnIyMDX15eMjAyro4iIiIgDOHURERERkbJNRUREREQsoyIiIiIillEREREREcuoiIiIiIhlVERERETEMioiIiIiYhkVEREREbGMioiIiIhYRkVERERELKMiIiIiIpZRERERERHLqIiUE4MGDaJPnz5X9J4ZM2bg5+fnkDwiImK99cknmbvuIOuTT1qWQUVEilVQUBCTJ0+2OoaIiFzGpPmJ9H1nOaO/3Ejfd5YzaX6iJTlURERERMqZ9ckneS92T6Fz78XusWRmREXEAl9//TWtWrXCw8ODatWq0b17d7Kysgqe//DDDwkODqZSpUo0b96cd955p9D7Dxw4wG233Yafnx9Vq1ald+/e7Nu3r+D5vLw8Ro8ejZ+fH9WqVePxxx/HGHPZXDNmzCAgIABPT0/69u3L8ePHCz2flJRE7969qVWrFl5eXnTo0IFffvml4Pno6Gj279/Pww8/jM1mw2azAXD8+HH69etHvXr18PT0pFWrVnz++ed/56sTEZFisPdY1hWddyQVkf9XUutkKSkp9OvXj3vuuYfExERiYmK46aabCorCrFmzePbZZ3nxxRdJTExkwoQJPPPMM8ycOROA3NxcevTogbe3N0uXLiU+Ph4vLy+uv/56cnJyAHjttdeYMWMGH3/8McuWLePEiRPMmzfvkrkSEhIYPHgww4cPZ8OGDXTt2pUXXnih0GsyMzO54YYbWLJkCevXr+f666+nV69eJCcnAzB37lz8/f157rnnSElJISUlBYCzZ8/Srl07fvrpJ7Zs2cJ9993HnXfeyapVq4r1uxURkaJpUL3yFZ13KOPE0tLSDGDS0tIcOs7En7eZwCd+LHhM/Hmbw8Zau3atAcy+ffsu+HyjRo3M7NmzC517/vnnTXh4uDHGmE8//dQ0a9bM2O32guezs7ONh4eHWbhwoTHGmDp16piXX3654Pnc3Fzj7+9vevfufdFc/fr1MzfccEOhc7fffrvx9fW95J+nZcuWZurUqQXHgYGB5o033rjke4wx5l//+pd55JFHLvs6ERFxjL/+3TfJgX/3XUqFkq8+zuVi62Q9WtamTUCVYh8vNDSUbt260apVK3r06MF1113HLbfcQpUqVcjKyiIpKYnBgwczZMiQgvecO3cOX19fADZu3Mju3bvx9vYu9Llnz54lKSmJtLQ0UlJSCAsLK3iuQoUKtG/f/pLLM4mJifTt27fQufDwcBYsWFBwnJmZybhx4/jpp59ISUnh3LlznDlzpmBG5GLy8vKYMGECX375Jb///js5OTlkZ2fj6el5+S9MREQc4smewfRoWZu9x7JoUL2yQ/7OK4pyX0QutU7miP9SXF1dWbx4McuXL2fRokVMnTqVp556ioSEhIK/mKdNm1aoSPzxPsgvA+3atWPWrFnnfXaNGjWKPe+fPfrooyxevJhXX32Vxo0b4+HhwS233FKwJHQxr7zyClOmTGHy5Mm0atWKypUrM2rUqMu+T0REHKtNQBXLCsgfyn0RsWKdzGazERERQUREBM8++yyBgYHMmzeP0aNHU7duXfbs2cOAAQMu+N62bdvyxRdfULNmTXx8fC74mjp16pCQkEBkZCSQP6Oydu1a2rZte9FMwcHBJCQkFDq3cuXKQsfx8fEMGjSoYOYkMzOz0CZZADc3N/Ly8s57X+/evbnjjjsAsNvt7Ny5kxYtWlw0j4iIlA/lfrNqm4AqPBDVsNC5oVENHdYQExISmDBhAmvWrCE5OZm5c+dy9OhRgoODARg/fjwTJ07kzTffZOfOnWzevJnp06fz+uuvAzBgwACqV69O7969Wbp0KXv37iUmJoYRI0Zw8OBBAEaOHMmkSZP49ttv2b59Ow8++CCnTp26ZK4RI0awYMECXn31VXbt2sVbb71VaFkGoEmTJsydO5cNGzawceNG+vfvj91uL/SaoKAg4uLi+P333zl27FjB+/6YBUpMTOT+++/nyJEjxfF1iohIaWfJzpQiKqnNqsYYs27/CfPN2gNm3f4TDh1n27ZtpkePHqZGjRrG3d3dNG3atNBmT2OMmTVrlmndurVxc3MzVapUMZGRkWbu3LkFz6ekpJi77rrLVK9e3bi7u5uGDRuaIUOGFHxPubm5ZuTIkcbHx8f4+fmZ0aNHm7vuuuuSm1WNMeajjz4y/v7+xsPDw/Tq1cu8+uqrhTar7t2713Tt2tV4eHiY+vXrm7feestERUWZkSNHFrxmxYoVJiQkxLi7u5s//ud1/Phx07t3b+Pl5WVq1qxpnn766SLlERGRss9mTBEuMGGR9PR0fH19SUtLu+gyhIiIiJReDl2aGTduXMGFrf54NG/e3JFDioiISCni8M2qLVu2LHT1zQoVyv3+WBEREfl/Dm8FFSpUoHbt2o4eRkRERK5QTmYOFT0rYnOxWZbB4b+a2bVrF3Xr1qVhw4YMGDDgkhe/ys7OJj09vdBDREREit/u77ayr0Z7lt07w9IcDt2sOn/+fDIzM2nWrBkpKSmMHz+e33//nS1btpx3ZVDI31Myfvz4885rs6qIiEjxMHZD3H/eoeNXj+LBWfZXaEjdtO1U9KxoSZ4S/dXMqVOnCAwM5PXXX2fw4MHnPZ+dnU12dnbBcXp6OvXr11cRERERKQbHEo+yJ/oeOqb+CMDqGj0J+nU6Na6qZVmmEt056ufnR9OmTdm9e/cFn3d3d8fd3b0kI4mIiJQLaycuwv/pgXS0H+Ys7iTc/AqRXw63dH8IlPCVVTMzM0lKSqJOnTolOayIiEi5lZ2eTUz7R2j33x7Ush9mt3sLkr9aRdTXD1leQsDBReTRRx8lNjaWffv2sXz5cvr27Yurqyv9+vVz5LBl3qBBg+jTp0/BcXR0NKNGjbIsz6X8nWzjxo2jdevWDskjIlKe7Pl5O3trX0302vzbhMS2Gka9Q2toekuIxcn+x6FF5ODBg/Tr149mzZpx2223Ua1aNVauXOnwu8TKP+PMxeZibDYb3377rdUxREScgrEb4u74gNr/akvzMxs4ZqvOqqe/J2rTW3hU9bA6XiEO3SMyZ84cR368iIiI/MWJXcfZGTWEyJR5AKytei3+S2bSsbVzboso93fftYLdbufll1+mcePGuLu7ExAQwIsvvljw/ObNm7nmmmvw8PCgWrVq3HfffWRmZhb587Ozs3n00UepV68elStXJiwsjJiYmEKviY+PJzo6Gk9PT6pUqUKPHj04efIkgwYNIjY2lilTphRcln/fvn0AbNmyhZ49e+Ll5UWtWrW48847C+6wC5CVlcVdd92Fl5cXderU4bXXXitS3kmTJlGrVi28vb0ZPHgwZ8+eLfT86tWrufbaa6levTq+vr5ERUWxbt26gueDgoIA6Nu3LzabreA4KSmJ3r17U6tWLby8vOjQoUOhq/yKiJQ161/7lezmIVydMo8cKhJz42u0ObKAWk5aQkBF5H8OroGNc/L/6WBjxoxh0qRJPPPMM2zbto3Zs2dTq1b+T6eysrLo0aMHVapUYfXq1Xz11Vf88ssvDB8+vMifP3z4cFasWMGcOXPYtGkTt956K9dffz27du0CYMOGDXTr1o0WLVqwYsUKli1bRq9evcjLy2PKlCmEh4czZMgQUlJSSElJoX79+pw6dYprrrmGNm3asGbNGhYsWMCRI0e47bbbCsZ97LHHiI2N5bvvvmPRokXExMQUKgwX8uWXXzJu3DgmTJjAmjVrqFOnDu+8806h12RkZDBw4ECWLVvGypUradKkCTfccAMZGRlAflEBmD59OikpKQXHmZmZ3HDDDSxZsoT169dz/fXX06tXr0teVE9EpDTKycwh5uonCX20O3Xsh0hya86e2QlEfzcalwpO/le9lbf+vZy0tDQDFNze3mEWPWvMWJ//PRY967Ch0tPTjbu7u5k2bdoFn//ggw9MlSpVTGZmZsG5n376ybi4uJjDhw8bY4wZOHCg6d27d8HzUVFRZuTIkcYYY/bv329cXV3N77//Xuhzu3XrZsaMGWOMMaZfv34mIiLiohn//Hl/eP755811111X6NyBAwcMYHbs2GEyMjKMm5ub+fLLLwueP378uPHw8Djvs/4sPDzcPPjgg4XOhYWFmdDQ0Iu+Jy8vz3h7e5sffvih4Bxg5s2bd9H3/KFly5Zm6tSpl32diEhpsWfBDrPVs50xYAyY2OD7TdbRLKtjFZmT16QScHANxE8ufC5+ssNmRhITE8nOzqZbt24XfT40NJTKlSsXnIuIiMBut7Njx47Lfv7mzZvJy8ujadOmeHl5FTxiY2NJSkoC/jcjciU2btzIb7/9Vugz/7iTclJSEklJSeTk5BAWFlbwnqpVq9KsWbNLfm5iYmKh9wCEh4cXOj5y5AhDhgyhSZMm+Pr64uPjQ2Zm5mVnNjIzM3n00UcJDg7Gz88PLy8vEhMTNSMiImWCsRuW3v0xNa5vS4vTazlhq8rKx+cSue09PKt7Wh2vyHQr3OMXvrgax3eDf/tiH87Dw7G7lTMzM3F1dWXt2rW4uroWes7Ly+tvZ8jMzKRXr1689NJL5z1Xp06di16krjgMHDiQ48ePM2XKFAIDA3F3dyc8PJycnJxLvu/RRx9l8eLFvPrqqzRu3BgPDw9uueWWy75PRMTZndp7ksTI++ly8CsA1vt1pfbiT7m6fT2Lk105zYhUa3xl5/+hJk2a4OHhwZIlSy74fHBwMBs3biQrK6vgXHx8PC4uLpedXQBo06YNeXl5pKam0rhx40KPP+6CHBISctHxAdzc3MjLyyt0rm3btmzdupWgoKDzPrdy5co0atSIihUrkpCQUPCekydPsnPnzkvmDQ4OLvQegJUrVxY6jo+PZ8SIEdxwww20bNkSd3f3QptkASpWrHhe5vj4eAYNGkTfvn1p1aoVtWvXLth4KyJSWm2cGkdWk1DCD35FLhWIuX4SIUcWU6cUlhBQEcmf9YgYVfhcxMMOmQ0BqFSpEk888QSPP/44n3zyCUlJSaxcuZKPPvoIgAEDBlCpUiUGDhzIli1b+O2333jooYe48847Cza0XkrTpk0ZMGAAd911F3PnzmXv3r2sWrWKiRMn8tNPPwH5m2VXr17Ngw8+yKZNm9i+fTvvvvtuwV/uQUFBJCQksG/fPo4dO4bdbmfYsGGcOHGCfv36sXr1apKSkli4cCF33303eXl5eHl5MXjwYB577DF+/fVXtmzZwqBBg3BxufT/xEaOHMnHH3/M9OnT2blzJ2PHjmXr1q2FXtOkSRM+/fRTEhMTSUhIYMCAAefN6gQFBbFkyRIOHz7MyZMnC943d+5cNmzYwMaNG+nfvz92u71o/0WJiDiZ3NO5xHR+mlYjoqmXd4C9FZuwa+YKouc/gaub6+U/wFlZvUnlUkpss6oxxhxYbcyGz/P/6WB5eXnmhRdeMIGBgaZixYomICDATJgwoeD5TZs2ma5du5pKlSqZqlWrmiFDhpiMjIyC5y+1WdUYY3Jycsyzzz5rgoKCTMWKFU2dOnVM3759zaZNmwpeExMTYzp16mTc3d2Nn5+f6dGjhzl58qQxxpgdO3aYq6++2nh4eBjA7N271xhjzM6dO03fvn2Nn5+f8fDwMM2bNzejRo0ydrvdGGNMRkaGueOOO4ynp6epVauWefnlly+48fWvXnzxRVO9enXj5eVlBg4caB5//PFCm1XXrVtn2rdvbypVqmSaNGlivvrqKxMYGGjeeOONgtd8//33pnHjxqZChQomMDDQGGPM3r17TdeuXY2Hh4epX7++eeutt4qUR0TE2exbsttsrhxWsCE1rsk9JiMl4/JvLAVK9O67Vyo9PR1fX1/dfVdERMolYzfEP/gZoe8/iDeZnLL5kTjqA8Jfv9XqaMVGm1VFREScUFpyGlsih9J5/+cAbPCNpMb8TwkPD7A4WfHSHhEREREns+ndeDIahhKx/3PO4UpM9xdolfor9cpYCQHNiIiIiDiNc2fPsez6F+gS+zyu2NlfoSEZ780menDY5d9cSqmIiIiIOIGDy/Zx4oYBRGcsB2BZw7sIiZ1KoH/Z3iOppRkRERGLLX/oc7y7hBKSsZw0fFg+fDadk2biU8ZLCGhGRERExDLpB9PZFDWczns+BWCTdyeq/jyLTp2DrA1WgjQjIiIiYoEtHyVwskEbOu/5lDxciIkeR4vUWPzLUQkBzYiIiIiUqLycPJb+axKdfxlLBfI46BrIiamziB4aYXU0S6iIiIiIlJDfVyRztOedRKfFARAf2I+r4t7FP8DX4mTW0dJMOTFo0CD69OljdQwAZsyYgZ+f3xW9x2az8e233zokj4hISVgx+isqR4TSOi2ODLxYdv8ndNozC99yXEJAMyIiIiIOlXk4kw2RI+i8azoAWyqH4f39LDpf08jiZM5BMyIiIiIOsu2TNRwNaEvnXdOxYyMm4imapS4lUCWkgIqIBb7++mtatWqFh4cH1apVo3v37mRlZRU8/+GHHxIcHEylSpVo3rw577zzTqH3HzhwgNtuuw0/Pz+qVq1K79692bdvX8HzeXl5jB49Gj8/P6pVq8bjjz/O5e5t+MdyyY8//kizZs3w9PTklltu4fTp08ycOZOgoCCqVKnCiBEjyMvLK3jfyZMnueuuu6hSpQqenp707NmTXbt2nffZAQEBeHp60rdvX44fP37e+N999x1t27alUqVKNGzYkPHjx3Pu3Lkr+VpFRJyG/ZydmJ4v0WRgOA1yd/G7a302vxlD9LIXqOhZ0ep4zsXiu/9eUlpamgFMWlpakV5vtxuTmWnNw24v2p/p0KFDpkKFCub11183e/fuNZs2bTJvv/22ycjIv53zZ599ZurUqWO++eYbs2fPHvPNN9+YqlWrmhkzZhhjjMnJyTHBwcHmnnvuMZs2bTLbtm0z/fv3N82aNTPZ2dnGGGNeeuklU6VKFfPNN9+Ybdu2mcGDBxtvb2/Tu3fvi+aaPn26qVixorn22mvNunXrTGxsrKlWrZq57rrrzG233Wa2bt1qfvjhB+Pm5mbmzJlT8L4bb7zRBAcHm7i4OLNhwwbTo0cP07hxY5OTk2OMMWblypXGxcXFvPTSS2bHjh1mypQpxs/Pz/j6+hZ8RlxcnPHx8TEzZswwSUlJZtGiRSYoKMiMGzeu4DWAmTdvXtG+ZBERCx1afdCsrXKNMWAMmOX+t5qTe05YHctplakikplZ8N97iT8yM4v2Z1q7dq0BzL59+y74fKNGjczs2bMLnXv++edNeHi4McaYTz/91DRr1szY/9R8srOzjYeHh1m4cKExxpg6deqYl19+ueD53Nxc4+/vf9kiApjdu3cXnLv//vuNp6dnQUkyxpgePXqY+++/3xhjzM6dOw1g4uPjC54/duyY8fDwMF9++aUxxph+/fqZG264odBYt99+e6Ei0q1bNzNhwoRCr/n0009NnTp1Co5VRESkNFjx+Fxz3FbVGDAZVDZxd39s7HlF/DfVckqbVUtYaGgo3bp1o1WrVvTo0YPrrruOW265hSpVqpCVlUVSUhKDBw9myJAhBe85d+4cvr75u6o3btzI7t278fb2LvS5Z8+eJSkpibS0NFJSUggL+98NkipUqED79u0vuzzj6elJo0b/W7esVasWQUFBeHl5FTqXmpoKQGJiIhUqVCg0VrVq1WjWrBmJiYkFr+nbt2+hccLDw1mwYEHB8caNG4mPj+fFF18sOJeXl8fZs2c5ffo0np6el8wtImK1rNQs1kaNJnL7BwBs82yP57ez6XJtE4uTOb8yVUQ8PSEz07qxi8LV1ZXFixezfPlyFi1axNSpU3nqqadISEgo+At32rRphf5y/+N9AJmZmbRr145Zs2ad99k1atT4R3+GihULr1vabLYLnrPb7f9onL/KzMxk/Pjx3HTTTec9V6lSpWIdS0Qu4uAaOL4bqjUG//ZWpylVtn++HrdB/YjM2YEdG3Fhj9Ppl+dw83KzOlqpUKaKiM0GlStbneLybDYbERERRERE8OyzzxIYGMi8efMYPXo0devWZc+ePQwYMOCC723bti1ffPEFNWvWxMfnwjdDqlOnDgkJCURGRgL5Mypr166lbdu2xfrnCA4O5ty5cyQkJNCpUycAjh8/zo4dO2jRokXBaxISEgq9b+XKlef9mXbs2EHjxo2LNZ+IFNHisRA/+X/HEaPg2vFWpSk17OfsxPV9g04/jsGNXFJc6nL45U+JfuQaq6OVKmWqiJQGCQkJLFmyhOuuu46aNWuSkJDA0aNHCQ4OBmD8+PGMGDECX19frr/+erKzs1mzZg0nT55k9OjRDBgwgFdeeYXevXvz3HPP4e/vz/79+5k7dy6PP/44/v7+jBw5kkmTJtGkSROaN2/O66+/zqlTp4r9z9KkSRN69+7NkCFDeP/99/H29ubJJ5+kXr169O7dG4ARI0YQERHBq6++Su/evVm4cGGhZRmAZ599ln//+98EBARwyy234OLiwsaNG9myZQsvvPBCsecWkT85uKZwCYH84+Bemhm5hCMbUjjYbSDRJxYDsLJOX5rGTqNNk2oWJyt99PPdEubj40NcXBw33HADTZs25emnn+a1116jZ8+eANx77718+OGHTJ8+nVatWhEVFcWMGTNo0KABkL+PIy4ujoCAAG666SaCg4MZPHgwZ8+eLZgheeSRR7jzzjsZOHAg4eHheHt7n7dPo7hMnz6ddu3a8e9//5vw8HCMMfz8888FSzpXX30106ZNY8qUKYSGhrJo0SKefvrpQp/Ro0cPfvzxRxYtWkSHDh24+uqreeONNwgMDHRIZhH5k+O7r+y8sOqZH3BtG0K7E4s5jQdxA94n7OA3VFUJ+Vts5nI7GC2Unp6Or68vaWlpF12GEBGRf+DgGviw2/nn712iGZG/OHPiDKuiHyNq89sAbPdojdvXn9PwhuYWJyvdNCMiIlKe+bfP3xPyZxEPq4T8xc6vN3GwboeCEhLT7hEaHF6pElIMNCMiIiL61cxFGLsh7taphM19nEpkc8SlNgdfmEm7MddZHa3MUBERERG5gKNbjrDvmrvpcHQ+AAm1etHot4+oHvzPLpUghWlpRkRE5C9WPzcfQkLocHQ+Z6hE7O1v0/HQdyohDqCf74qIiPy/s6fOktD1SaI2TAFgZ6VWuMz5nKjeLS1OVnapiIiIiAC7v9tK3n/6E3V2EwCxoSMIi3mJSn66wrMjaWlGRETKNWM3xP7nHer1aU+zs5s4aqvJ6nE/EbVhikpICdCMiIiIlFvHEo+S1HUwUUd+AGB1jZ4E/TqdDlfVsjhZ+aEZERERKZfWTlpM3lUhhB35gWzciL1pCu0P/0QNlZASpSJiAWMM9913H1WrVsVms7Fhwwaio6MZNWpUsY4zbtw4WrduXayf+XfFxMRgs9mu6J43QUFBTJ482WGZRKR8yk7PJqb9o7Qbcx217IfZ7d6C/V+tJuqbEdhcbFbHK3e0NGOBBQsWMGPGDGJiYmjYsCHVq1dn7ty5BfdnERERx9jz83ayb+lP9Jn1AMRe9SAdY1/Fo6qHxcnKLxURCyQlJVGnTh06depUcK5q1aoWJhIRKduM3bD0rmm0nzUKT85w3FaN3WM+JurFG62OVu5paaaEDRo0iIceeojk5GRsNhtBQUEA5y3NBAUFMWHCBO655x68vb0JCAjggw8+KPRZTzzxBE2bNsXT05OGDRvyzDPPkJubW+QsfyyXLFy4kDZt2uDh4cE111xDamoq8+fPJzg4GB8fH/r378/p06cL3pednc2IESOoWbMmlSpVonPnzqxevbrQZ//88880bdoUDw8Punbtyr59+84bf9myZXTp0gUPDw/q16/PiBEjyMrKKnJ+EZGiOLHrOAn+NxM56348OcPaqtdybt1mwlRCnEKJFZFJkyZhs9mKfR9EIcZAVpY1jyJeKX/KlCk899xz+Pv7k5KSct5f4H/22muv0b59e9avX8+DDz7I0KFD2bFjR8Hz3t7ezJgxg23btjFlyhSmTZvGG2+8ccVf27hx43jrrbdYvnw5Bw4c4LbbbmPy5MnMnj2bn376iUWLFjF16tSC1z/++ON88803zJw5k3Xr1tG4cWN69OjBiRMnADhw4AA33XQTvXr1YsOGDdx77708+eSThcZMSkri+uuv5+abb2bTpk188cUXLFu2jOHDh19xfhGRi1n/2q9kNw/l6pR55FCRmBtfo82RBdRqXcfqaPIHUwJWrVplgoKCTEhIiBk5cmSR35eWlmYAk5aWVrQ3ZGYak18JSv6RmVnkP9cbb7xhAgMDC52Liooq9N0EBgaaO+64o+DYbrebmjVrmnffffein/vKK6+Ydu3aFRyPHTvWhIaGXvT1v/32mwHML7/8UnBu4sSJBjBJSUkF5+6//37To0cPY4wxmZmZpmLFimbWrFkFz+fk5Ji6deual19+2RhjzJgxY0yLFi0KjfXEE08YwJw8edIYY8zgwYPNfffdV+g1S5cuNS4uLubMmTMF38Ebb7xx0fwiIheTnZFtfgt7wuRhMwZMklszkzh7ndWx5AIcPiOSmZnJgAEDmDZtGlWqVHH0cGVKSEhIwX+22WzUrl2b1NTUgnNffPEFERER1K5dGy8vL55++mmSk5P/0Ti1atUqWOr587k/xk1KSiI3N5eIiIiC5ytWrEjHjh1JTEwEIDExkbCwsEJjhIeHFzreuHEjM2bMwMvLq+DRo0cP7HY7e/fuveI/g4jIH/Yt3sXuWhFEJ7yEC4a45vdR68BamvdrY3U0uQCHb1YdNmwY//rXv+jevTsvvPDCJV+bnZ1NdnZ2wXF6evqVDebpCZmZfyfmP+fpWewf+ddf0dhsNux2OwArVqxgwIABjB8/nh49euDr68ucOXN47bXX/tE4NpvtkuMWl8zMTO6//35GjBhx3nMBAQHFOpaIlA/Gblg2eDptZozAiyxO2Kqy87EPiXypr9XR5BIcWkTmzJnDunXrLrkP4s8mTpzI+PHj//6ANhtUrvz331+KLF++nMDAQJ566qmCc/v373f4uI0aNcLNzY34+HgCAwMByM3NZfXq1QX7f4KDg/n+++8LvW/lypWFjtu2bcu2bdto3LixwzOLSNl3au9JEiPvp8vBrwBY79eV2os+4eoO/hYnk8tx2NLMgQMHGDlyJLNmzaJSpaJdq3/MmDGkpaUVPA4cOOCoeKVekyZNSE5OZs6cOSQlJfHmm28yb948h49buXJlhg4dymOPPcaCBQvYtm0bQ4YM4fTp0wwePBiABx54gF27dvHYY4+xY8cOZs+ezYwZMwp9zhNPPMHy5csZPnw4GzZsYNeuXXz33XfarCoiV2zj1DiymoQSfvArcqlAzPWTCDmymDoqIaWCw4rI2rVrSU1NpW3btlSoUIEKFSoQGxvLm2++SYUKFcjLyzvvPe7u7vj4+BR6yIXdeOONPPzwwwwfPpzWrVuzfPlynnnmmRIZe9KkSdx8883ceeedtG3blt27d7Nw4cKCPUABAQF88803fPvtt4SGhvLee+8xYcKEQp8REhJCbGwsO3fupEuXLrRp04Znn32WunXrlsifQURKv9zTucR0eYarRnSlXt4B9lVszK4Zy4me/wSubq5Wx5MishlTxN+dXqGMjIzzlgruvvtumjdvzhNPPMFVV1112c9IT0/H19eXtLQ0lRIRESmQHLOH9H/356qsBACWNrmHNnFT8KrtZXEyuVIO2yPi7e19XtmoXLky1apVK1IJERER+StjN8Q/+Bkh7w8jgAzS8GXrqA/o8sZtVkeTv0mXeBcRkVIhLTmNLZFD6bz/cwA2+nSh+oLP6BSuX9qVZg5bmikOWpoRERGAze8vx2/4AOqf28c5XFnabTyRPz+pvSBlgGZERETEaZ07e45lPV+kS8xzuGJnf4WGZLw7i673Xm11NCkmKiIiIuKUDi7bx4kb7iA6Ix6AZQ3vJCT2LQL9NUNelujuuyIi4nSWP/Q53l1CCcmIJw0f4h+cReekT/ApQglZn3ySuesOsj75ZAkklX9KMyIiIuI0Mg5lsLHLcDrv+QSATd6dqPLjZ0RENijS+yfNT+S92D0Fxw9ENeTJnsEOySrFQzMiIiLiFLZ8lMCJwNZ03vMJebgQEzWWFqmx1C9iCVmffLJQCQF4L3aPZkacnIqIiIhYKi8nj5hrX6T5vREEntvDQddAtr4TR3TMOCpUKvrE/d5jWVd0XpyDlmZERMQyhxIOkNrjDqLT4gBYHvAfWsa9i3+g3xV/VoPqF77p6cXOi3PQjIiIiFhixeiv8AwPoXVaHBl4sWzITML3zsb3b5QQgDYBVXggqmGhc0OjGtImoEoxpBVH0QXNRESkRGUezmR95Ei67PoYgC2VO+L9/WwCr2lULJ+/Pvkke49l0aB6ZZWQUkBFRERESsy2T9bgcW9/GuTuwo6NuIj/ErFoLBU9K1odTSyiPSIiIuJw9nN24m58lYj5T1GRcxxy9Sf1tc+IHhlldTSxmIqIiIg4VMqa30m57i6iT/4KwIp6txC89ANaN9CyiWizqoiIOFDCmG9x7xhC25O/koUnSwd9xNXJX+KnEiL/TzMiIiJS7LJSs1gbNZrI7R8AsM2zHR5zZ9OlR1OLk4mz0YyIiIgUq+2fr+dw/fZEbv8AOzZiOj5O4yPLaaASIhegGRERESkW9nN24m6eTKfvn8SNXFJc6nL45U+JfuQaq6OJE1MRERGRf+zIhhQOdB9E9PFFAKys04emsR/Spkk1i5OJs9PSjIiI/COrnv0R17YhtD++iNN4EDfgfcIOzqWqSogUgWZERETkbzlz4gyroh8javPbAGz3aE3FL2cT+e9gi5NJaaIiIiIiV2zn15uw3dGfqOytAMS0G034rxNw93G3OJmUNlqaERGRIjN2Q+zNbxJwa0eaZG/liEtt1k5YSPSa11RC5G/RjIiIiBTJ0a2p7Ot6N1FHfwZgVc1/0zDmY9oF17A4mZRmmhEREZHLWvPCAmjVig5Hf+YMlYi99S06pHxPdZUQ+Yc0IyIiIhd19tRZEro+SdSGKQDscr8KPv+cqL5XWZxMygoVERERuaDd320l7z/9iTq7CYDY0BGExbxEJb9KFieTskRLMyIiUoixG+L6vUu9Pu1pdnYTR201WT3uJ6I2TFEJkWKnGRERESlwfMcxdkcPJvLw9wCsrn49Qb/NoMNVtSxOJmWVZkRERASAdS//Qm6LEMIOf082bsT2nUy7lJ+ooRIiDqQZERGRci47PZsV1zxF9NrXANjt3oK8T2YTdVuoxcmkPFAREREpx/b8vJ3sW/oTfWY9AHEth9I+5lU8q3tanEzKCy3NiIiUQ8ZuiLtrGrX/1ZbgM+s5bqtGwn+/I3LLOyohUqI0IyIiUs6c2HWcnVFDiEyZB8Daqt2pt3gmYW3rWpxMyiPNiIiIlCPrX/+N7OahXJ0yjxwqEvPvV2lzZCG1VULEIpoREREpB3KzcojvPpbIlS/hgmGPWzOyP55N9IC2VkeTck5FRESkjNu3eBen+/Qn+vQaAOKaD6Fd7BtUrlnZ4mQiWpoRESmzjN2w9J7pVL+uDS1Or+GkrQorH/uGyMQPVELEaWhGRESkDDq19yTboh6gy4EvAVjv15Xaiz7h6g7+FicTKUwzIiIiZczGt5aS1SSUTge+JJcKxFw/iZAji6mjEiJOSDMiIiJlRO7pXOJ7PEeXZRNwxc6+io05PW020QM7WB1N5KJUREREyoDkmD2k9+pPdGYCAEub3E2buDfxqu1lcTKRS9PSjIhIKRc/9DP8urbmqswE0vBl+agv6LLzY5UQKRU0IyIiUkqlJaexJfJBIvbPBmCjTxeq/fwpnSICLU4mUnSaERERKYU2v7+c9Eatidg/m3O4EtPtea46+hv+KiFSyji0iLz77ruEhITg4+ODj48P4eHhzJ8/35FDioiUaefOniPmmucIfiCS+uf2kVyhAdunLSP6l6dxdXO1Op7IFXPo0oy/vz+TJk2iSZMmGGOYOXMmvXv3Zv369bRs2dKRQ4uIlDkHl+3jxA13EJ0RD8CyhncSEvsWAf4+FicT+ftsxhhTkgNWrVqVV155hcGDB1/2tenp6fj6+pKWloaPj/4PTUTKr+Uj5tBy6v34kk463mwe+i4R7wywOpbIP1Zim1Xz8vL46quvyMrKIjw8/IKvyc7OJjs7u+A4PT29pOKJiDiljEMZbOwynM57PgFgs1c4fj/NIiKygcXJRIqHwzerbt68GS8vL9zd3XnggQeYN28eLVq0uOBrJ06ciK+vb8Gjfv36jo4nIuK0tk5fxYnANnTe8wl5uBATNZbgo3HUVwmRMsThSzM5OTkkJyeTlpbG119/zYcffkhsbOwFy8iFZkTq16+vpRkRKVfycvJY+u+XiFg8loqc46BrICfe/IyQBztbHU2k2JX4HpHu3bvTqFEj3n///cu+VntERKS8OZRwgNQed9I6LRaA5QH/oWXcu/gG+lkbTMRBSvw6Ina7vdCsh4iI5FvxyNd4hofQOi2WDLxYNmQm4Xtnq4RImebQzapjxoyhZ8+eBAQEkJGRwezZs4mJiWHhwoWOHFZEpFTJPJzJ+qhRdNn5EQBbKnfE+7tZdO7W2OJkIo7n0CKSmprKXXfdRUpKCr6+voSEhLBw4UKuvfZaRw4rIlJqJH62lkr39KNL7i7s2Ijt9F86Lx5LRc+KVkcTKRElvkfkSmiPiIiUVfZzduJufJVO85/GjVwOufqT+tpntB4ZZXU0kRKlm96JiJSwlDW/k3LdQKJPLgFgRb1baB77Pq0bVbU4mUjJ003vRERKUMKYb3HvGELbk0vIwpOlAz/k6uQvqaISIuWUZkRERErA6WOnWRM5msjE/EsXJHq0xf2b2XTp2cziZCLWUhEREXGwHV9soMJd/YjM2Y4dG3EdH6PTkudx83KzOpqI5bQ0IyLiIPZzdmL6vEHQf8JolLOdFJe6bHh5MdEJL6mEiPw/zYiIiDhA6sYUkrsNIvr4IgBW1ulD09gPadukmsXJRJyLZkRERIrZqmd/xKVNCO2PL+I0HsT1f4+wg3OpqhIich7NiIiIFJMzJ86wKvoxoja/DcCOSqFU+OpzIv8dbHEyEeelIiIiUgx2frMZ24B+RGVvBSCm7cOE/zYRdx93i5OJODcVERGRf8DYDXG3vUXYN49RiWxSXWpx4IVPiB5zXbGNsT75JHuPZdGgemXaBFQpts8VcQYqIiIif9PRrans63o3UUd/BmBVzX/R4NePadeyZrGNMWl+Iu/F7ik4fiCqIU/21FKPlB3arCoi8jeseWEBhLSiw9GfOYs7sbe+RYeUH6hRjCVkffLJQiUE4L3YPaxPPllsY4hYTTMiIiJX4OypsyRcM4ao9ZMB2OV+FXz+OVF9ryr2sfYey7roeS3RSFmhIiIiUkS7v99G3u39iDq7CYDYkIfo+NtLeFT1cMh4DapXvqLzIqWRlmZERC7D2A1x/d6lXu92NDu7iaO2Gqwa+xNRG990WAkBaBNQhQeiGhY6NzSqoWZDpEyxGWOM1SEuJj09HV9fX9LS0vDx8bE6joiUQ8d3HGN39GDCDn8PwOrq1xO4ZDo1Q2qXWAb9akbKMhUREZGLWPfyL9Qdcxe17Slk48bKPi/R5asRuFTQZLJIcdEeERGRv8jJzGF516eIXvMqAEluwZz79HOibgu1OJlI2aMiIiLyJ3vm7yD75n5En1kPQFzLobSPeRXP6p4WJxMpmzS/KCJC/obUpQM/pNYNbQk+s57jtmokjPmWyC3vqISIOJBmRETEEs60AfNk0gl2RA6hy6G5AKyt2p16i2cS1raupblEygMVEREpcc502fINb/xGrUfv5Gr77+RQkeX/mkDkt6O1IVWkhOj/0kSkRF3RZcsProGNc/L/WcxyT+cSEz6GkNHdqGP/nb0Vm5L02Uqif3xUJUSkBGlGRERKVJEvW754LMRP/t9xxCi4dnyxZNi/ZDeZvfsTnbUagLhm99IubjKVa+qKpSIlTbVfREpUkS5bfnBN4RIC+cf/cGbE2A3L7p1Bte6taZm1mpO2Kqx49Gsit09TCRGxiIqIiJSoIl22/PjuC7/5YueLIG3/KVYE/YfOH92NF1ms94vmbMImwl+5+W9/poj8c1qaEZES92TPYHq0rH3xX81Ua3zhN17s/GVsfGsp1UbdQae8ZHKpQHyP5+ny/WO4urn+rc8TkeKjIiIilmgTUOXiP9v1b5+/J6TQHpGH889fgXNncll23XN0WTYBV+zsq9iY09NmEz2ww9/OLSLFS/eaERHndXBN/nJMtcZXXEKSY/aQ1msArTJXArC08SBax76Jd11vRyQVkb9JRUREypz4oZ/R6r0H8SGDNHzZOuJ9Ok253epYInIBWpoRkTIjLTmNLVHDiNg3C4CNPp2p9vNndIoItDiZiFyMfjUjImXC5g+Wk96oNRH7ZnEOV2K6Pc9VR2PwVwkRcWqaERGRUu3c2XMsu2ECnX97jgrkkVyhAWlvzyL6vnCro4lIEaiIiEipdTB+Pyd6DiA6Ix6AZQ3uICTubQL8tadMpLTQ0oyIlErLR8zBu3MoIRnxpONN/NDP6LznU3xUQkRKFc2IiEipknEog42RD9E5aSYAm73C8f1xFhFRDSxOJiJ/h2ZERKTU2Dp9FScC29A5aSZ5uBAT+SzBR+MIUAkRKbU0IyIiTi8vJ4+l/36JiMVjqcg5DroGcOLNWUQ/2NnqaCLyD6mIiIhTO5RwgNQedxKdFgvA8vq303Lpe/gH+lkbTESKhZZmRMRprXjkazzCQ2mdFksmlVl27wzC932Or0qISJmhGRERcTpZqVms6zKSLjs/AmBr5Q54fTebzt3+3t13RcR5aUZERJxK4mdrSfVvS5edH2HHRkyn/9I0NZ5AlRCRMkkzIiLiFOzn7MTd+Cqd5j+NG7kccvUn9dVPiR4VbXU0EXEgh86ITJw4kQ4dOuDt7U3NmjXp06cPO3bscOSQIlIKpaz5nQ01ryN6/hO4kcuKejfjsWMjrVVCRMo8hxaR2NhYhg0bxsqVK1m8eDG5ublcd911ZGVlOXJYESlFEv77HW4dQ2l7cglZeLJ04IdcnfwVVRpVtTqaiJQAmzHGlNRgR48epWbNmsTGxhIZGXnZ16enp+Pr60taWho+Prpss0hZcvrYadZEPULktvcASPRoi/s3s2nYs5nFyUSkJJXoHpG0tDQAqla98L/pZGdnk52dXXCcnp5eIrlEpGTt+GIDFe7qT2ROIgAxHR+n05LncfNysziZiJS0EvvVjN1uZ9SoUURERHDVVVdd8DUTJ07E19e34FG/fv2SiiciJcB+zk5MnzcI+k8YjXISOexSh3UvLSY64SWVEJFyqsSWZoYOHcr8+fNZtmwZ/v7+F3zNhWZE6tevr6UZkTIgddNhDlwzkHbHFwGQULs3jWM+pFqz6hYnExErlcjSzPDhw/nxxx+Ji4u7aAkBcHd3x93dvSQiiRSvg2vg+G6o1hj821udxumsHvcTQc/dTTtzlNN4sKbf63T57H5sLjaro4mIxRxaRIwxPPTQQ8ybN4+YmBgaNNAdMqUMWjwW4if/7zhiFFw73qo0TuXMiTOsin6cqM1vAbCjUiiuX35OZK9gi5OJiLNw6B6RYcOG8dlnnzF79my8vb05fPgwhw8f5syZM44cVqTkHFxTuIRA/vHBNVakcSq75m3hYN2OBSUkpu3DBB1JoLFKiIj8iUOLyLvvvktaWhrR0dHUqVOn4PHFF184cliRknN895WdLweM3RB361Tq39SeJtlbSHWpxZoXFhC99nXcfbT0KiKFOXxpRqRMq3aR+59c7HwZd3RrKvu63k3k0Z8BWFXzXzT49WPat6xpcTIRcVa66Z3IP+HfPn9PyJ9FPFwuN6yueWEBJiSEDkd/5izuxN4ylQ4pP1BDJURELqFEr6x6pXRlVSk1yvGvZrLTs1kZ/SRR6ycDsMv9Ksys2TS9uZW1wUSkVFAREZG/bff328i7vT/Nzm4EILbVcDrGvIxHVQ+Lk4lIaaGlGRG5YsZuiOv3LvV6t6PZ2Y0ctdVg9dgfido0VSVERK5Iid5rRkRKv+M7jrE7ejCRh78HYE21HgT8OoMOIbUtTiYipZFmRESkyNa9/Au5LUIIO/w92bgR2+cN2h7+mZoqISLyN2lGREQuKyczh+XXPE306lcASHIL5twns4m6vbW1wUSk1FMREZFL2jN/B9k39yf6zDoA4lo8QPvY1/Cs7mlxMhEpC7Q0IyIXZOyGpQM/pNYNbQk+s47jtmokjPmWyK3vqoSISLHRjIiInOdk0gl2RA6hy6G5AKyr0o26v3xCWNu6FicTkbJGMyIiUsiGyTGcbRrC1YfmkkNFYm54mdapi6itEiIiDqAZEREBIPd0LvHdxxK5YhIuGPZWbMrZj2cTfUc7q6OJSBmmIiIi7F+ym8ze/YnOWg1AXLN7aRc3mco1K1ucTETKOi3NiJRjxm5YNmQmVbu3oWXWak7aqrDi0a+J3D5NJURESoRmRESsZOHN8tL2n2JrlwfofOALANb7RVNrwSeEh9Uv0RwiUr6piIhYZfFYiJ/8v+OIUXDt+BIZeuNbS6k26g465SWTSwXir3uOLj88jquba4mMLyLyBy3NiFjh4JrCJQTyjw+uceiw586eIybyWa56KBr/vGT2V2jEzo/jiV44RiVERCyhIiJiheO7r+x8MTgQt5fEGpFEL30eV+wsbTSIqvvX0/Lujg4bU0TkclRERKxQrfGVnf+H4h+chW9UKK0yV5CGL8tHzKHL7ul41/V2yHgiIkWlIiJiBf/2+XtC/izi4WLfsJp+II34BncQ8e4d+JDBRp/OZCzbSKcptxfrOCIif5fNGGOsDnEx6enp+Pr6kpaWho+Pj9VxRIqfA381s/mDFfgN60/9c/s4hyvLrhlL55/GUKGS9qiLiPNQEREpY/Jy8ljacwKdfx1PBfI4UCGIU2/PptV94VZHExE5j/7VSKQMORi/n+M33EF0+jIA4oMGcFXs29QP8LU4mYjIhWmPiEgZsXzkF3h3DiU0fRnpeBP/wKdE7P0MX5UQEXFimhERKeUyDmWwMfIhOifNBGCz19X4/jCLiOiGFicTEbk8zYiIlGJbp6/iRGAbOifNJA8XYro8Q/DRpQSohIhIKaEZEZFSKC8nj6W9XiZi0bNU5BwHXQM4Pvkzood3sTqaiMgVURERKWUOJRwgtcedRKfFArC8/m20XPo+/oF+1gYTEfkbtDQjUoqseOwbPMJDaZ0WSyaVWTZ4OuH75uCrEiIipZRmRERKgazULNZGjiJyx4cAbK3cgcrfzqZzd8dcEl5EpKRoRkTEySV+tpZU/7ZE7vgQOzZiwsfQNDWeIJUQESkDNCMi4qTs5+zE9X6NTj8/hRu5pLjU48hrnxE9KtrqaCIixUZFRMQJHV53iEPd7yL65BIAVta9iWZx02jdqKrFyUREipeWZkScTMJ/v6Ni+xDanlxCFp4svWsaYQe+popKiIiUQZoREXESp4+dZk3UI0Ruew+ARI+2uH8zmy49m1mcTETEcVRERJzAji82UOGu/kTmJAIQ0+ExOv36Am5ebhYnExFxLC3NiFjIfs5OTJ83CPpPGI1yEjnsUod1Ly0metXLKiEiUi5oRkTEIqmbDpN8zSCijy8EIKH2jTSO+Yi2zapbnExEpORoRkTEAqvH/YStdQjtjy/kDJWI6/cuHX//lmoqISJSzmhGRKQEnT11loSox4naNBWAHZVCcf1iNpE3trA4mYiINVRERErIrnlboF8/orK3ABDT9mHCf5uIu4+7xclERKyjpRkRBzN2Q+ytb1H/pvY0yd5Cqkst1jw/n+i1r6uEiEi5pxkREQc6ujWVvdfcQ1TqTwCsrnEDQb9Np33LmhYnExFxDg6dEYmLi6NXr17UrVsXm83Gt99+68jhRIrHwTWwcU7+P/+BNS8uxISE0DH1J87iTuzNb9L+8I/UUAkRESng0BmRrKwsQkNDueeee7jpppscOZRI8Vg8FuIn/+84YhRcO/6KPiI7PZsVXccQve4NAHa5t8TM+pyom1sVX04RkTLCoUWkZ8+e9OzZ05FDiBSfg2sKlxDIPw7uBf7ti/QRST9s49xt/Yk+uxGA2FbD6RjzMh5VPYo3q4hIGeFUm1Wzs7NJT08v9BApMcd3X9n5PzF2Q1z/96h7Yzuand3IMVt1Vj3zA1GbpqqEiIhcglMVkYkTJ+Lr61vwqF+/vtWRpDyp1vjKzv+/4zuOsapeXyI/H4oHZ1lT7TrsGzbT8bl/OyCkiEjZ4lRFZMyYMaSlpRU8Dhw4YHUkKU/82+fvCfmziIcvuSyz7pUl5LYIIezwd2TjRkzv12l7eD41Q2o7NquISBnhVD/fdXd3x91d11UQC107Pn9PyPHd+TMhFykhOZk5LL/maSJXv4oLhiS35pz75HOib29dsnlFREo5pyoiIk7Bv/0lZ0H2LtjBmZsHEH16LQCxLR6gQ+xreFb3LKmEIiJlhkOLSGZmJrt3/2+j3969e9mwYQNVq1YlICDAkUOLFDtjNyy7+yPafjKSypzmhK0qu574iKiJfayOJiJSatmMMcZRHx4TE0PXrl3POz9w4EBmzJhx2fenp6fj6+tLWloaPj4+DkgoUjQnk06wPeo+wn//BoB1Va6hzqJPqNO+nsXJRERKN4cWkX9KRUScwYbJMdR89E7q5h0klwrE3zCByO8ewaWCU+31FhEplbRHROQick/nEn/tOCKXT8QFw56KTcn+eDbRd7SzOpqISJmhIiJyAfuX7Caj9wCis1YBENf0XtrGTcarVmWLk4mIlC2aWxb5E2M3LBsyk6rd23BV1ipO2qqw4tGvidwxTSVERMQBNCMi8v/S9p9ia5cH6HzgCwA2+EZRc+GnhIfpCr8iIo6iGRERYNM7y8hoFEqnA19wDldirn2RVqlLqKsSIiLiUJoRkXLt3NlzLOvxPF3iXsAVO/srNCTjvdlEDw6zOpqISLmgIiLl1oG4vZz61wCiM1cAsKzRQELjphJY19viZCIi5YeWZqRcWj5sFr5RobTKXEEavix/6HM6756Bt0qIiEiJ0oyIlCvpB9PZFDmMzns/A2CTdwRV58+iU0SgxclERMonzYhIubH5gxWcatCazns/y9+Q2nU8LVJj8FcJERGxjGZEpMzLy8ljac8JdP51PBXI40CFIE69NYvo+ztZHU1EpNxTEZEy7fcVyRy7/g6i05cCsCxoAK1i36Z+gK/FyUREBLQ0I2XYilFf4NUphND0paTjTfwDn9J572f4qoSIiDgNzYhImZNxKIMNUSPosnsGAJu9rsb3h1lERDe0NpiIiJxHMyJSpmydvooTgW3osnsGebgQ0+UZmh+JI0AlRETEKWlGRMqEvJw8lt74ChELn6Ei5/jdtT7HJs8iengXq6OJiMglqIhIqZey+iCHr7uT6FMxACyvfxstYt+jXoMq1gYTEZHL0tKMlGorH/uGSmEhtDkVQyaVWXrPdML3zcFPJUREpFTQjIiUSlmpWayNHEXkjg8B2ObZHs9vZ9Pl2iaW5lqffJK9x7JoUL0ybQJUhkRELkdFREqdxFnrqHR3PyJzd2LHRtzVT9Bp8XjcvNwszTVpfiLvxe4pOH4gqiFP9gy2MJGIiPPT0oyUGvZzdmL+/SqN7riaBrk7SXGpx8bXlhC9YqLlJWR98slCJQTgvdg9rE8+aVEiEZHSQUVESoXD6w6xvlYPon96DDdyWVn3Jty3b6TN6K5WRwNg77GsKzovIiL5VETE6SU89T0V24fQ7sQvZOFJ3J0fEHbga6o2qWZ1tAINqle+ovMiIpJPRUSc1uljp4lrOZSwCb2pZo6T6NGGIz+vI/KTIdhcbFbHK6RNQBUeiCp80bShUQ21YVVE5DJsxhhjdYiLSU9Px9fXl7S0NHx8fKyOIyVox5cbqXBnPxrlJAIQ0/5Rwpe8gLuPu8XJLk2/mhERuTIqIuJU7OfsLL31Ta7+9gncyeGwSx1+f3Em7Z681upoIiLiAPr5rjiNo1uOsK/rIKKOLQAgoVYvGv32Ee2Ca1icTEREHEV7RMQprB73E4S0osOxBZyhEnH/eYeOh76jukqIiEiZphkRsdTZU2dJiHqcqE1TAdhRKQTXLz4n8sYWFicTEZGSoCIiltk1bwv060dU9hYAYtuMIuzXiVTyq2RxMhERKSlampESZ+yG2Fvfov5N7WmSvYWjtpqseX4+UeveUAkRESlnNCMiJepY4lH2RN9DVOqPAKyu0ZOgX6fT/qpaFicTERErlNsZkfXJJ5m77qDuBVKC1k5YiP2qVnRM/ZGzuBN785u0P/wTNZyphBxcAxvn5P9TREQcrlzOiOguqSUrOz2blV3HELXuDQB2ubfEzPqcqJtbWZzsLxaPhfjJ/zuOGAXXjrcqjYhIuVDuZkR0l9SSlfRjIvtqhRWUkNhWw/E/tJqmzlZCDq4pXEIg/1gzIyIiDlXuiojukloyjN0QN+B96vRqR7OzGzlmq86qZ34gatNUPKp6WB3vfMd3X9l5EREpFuVuaUZ3SXW84zuOsTv6XiIPfwfAmmrXUf+XGXRsXcfiZJdQrfGVnRcRkWJR7mZEdJdUx1r3yhJyWoQSdvg7snEj5sbXaHt4PrWcuYQA+LfP3xPyZxEP558XERGHKbc3vdNdUotXTmYOy7s9TeSqV3HBkOTWnNyZn9P8P62tjnZlDq7JX46p1lglRESkBJS7pZk/tAmoogJSTPYu3MmZm/oTfXotAHHB99M+7nU8q3tanOxv+KN8/LE3RGVERMShym0RkX/O2A3L7vmYtjNHUJnTnLBVZdcTHxE5sY/V0f4+/YRXRKRElbs9IlI8Tu09ycqA2+gy814qc5p1Va4he9UmwkpzCdFPeEVESlyJFJG3336boKAgKlWqRFhYGKtWrSqJYcVBNkyJ5XSTEMJ//5pcKhDT8yVapy6mTvt6Vkf7Z/QTXhGREufwIvLFF18wevRoxo4dy7p16wgNDaVHjx6kpqY6emgpZrmnc4mJeIqQUV2pm3eQvRWbsGvmCqJ/fhyXCmVgck0/4RURKXEO/9vj9ddfZ8iQIdx99920aNGC9957D09PTz7++GNHDy3FaP+S3eyo2Zno5RNwwRDXdDA1ktfR4q4ytJlTP+EVESlxDt2smpOTw9q1axkzZkzBORcXF7p3786KFSscOfQlJSfDd99ZNnzpYgz1f/uEbt8OJ5BMTtn8SHx4GpGv3WJ1Mse4djwE99JPeEVESohDi8ixY8fIy8ujVq3Cd1etVasW27dvP+/12dnZZGdnFxynp6c7JNf27TBihEM+ukzx5RTvMpQ+zAFgg28kNRd+RnhYfYuTOZh/exUQEZES4lQ/3504cSLjxzv+p5K1a8Pttzt8mFKt2dFlDF95BzVO7yfP5sqaXs/R/qsncHVztTqaiIiUIQ69smpOTg6enp58/fXX9OnTp+D8wIEDOXXqFN/9ZX3kQjMi9evXd8iVVeUizp2D55+HF14Aux0aNoTZsyEszOpkIiJSBjl0s6qbmxvt2rVjyZIlBefsdjtLliwhPDz8vNe7u7vj4+NT6CElaO9eiIyE557LLyEDB8KGDSohIiLiMA5fmhk9ejQDBw6kffv2dOzYkcmTJ5OVlcXdd9/t6KHlSsyeDUOHQno6+PjA++/Df/5jdSoRESnjHF5Ebr/9do4ePcqzzz7L4cOHad26NQsWLDhvA6tYJD0dhg2Dzz7LP46IyP/PQUGWxhIRkfKh3N59V4CVK6F///wlGRcXePZZeOopqOBUe5hFRKQM09845VFeHkyYAOPH5//noCCYNQs6dbI6mYiIlDMqIuVNcjLccQcsXZp/3L8/vPMO+Ppam0tERMqlMnCDECmyL7+EkJD8EuLtDZ9+mj8TohIiIiIW0YxIeZCZmX8p2enT84/DwvJ/JdOwobW5RESk3NOMSFm3ejW0aZNfQmw2ePrp/BkRlRAREXECmhEpq/Ly4JVX4Jln8q+WWr9+/s9yIyOtTiYiIlJARaQsOngQ7rwTYmLyj2+7Dd57D6pUsTSWiIjIX2lppqyZOzd/Q2pMDFSuDB9/DHPmqISIiIhT0oxIWZGVBQ8/DNOm5R+3b5+/IbVJE2tziYiIXIJmRMqCdeugXbv8EmKzwZNPQny8SoiIiDg9zYiUZnY7vPEGjBkDublQr17+tUG6di3WYdYnn2TvsSwaVK9MmwAt8YiISPFRESmtDh2CQYNg8eL8475982dEqlUr1mEmzU/kvdg9BccPRDXkyZ7BxTqGiIiUX1qaKY2+/z5/Q+rixeDpCR98AN98U+wlZH3yyUIlBOC92D2sTz5ZrOOIiEj5pSJSmpw+DQ8+CL17w/Hj+RcqW7sWhgzJ3xtSzPYey7qi8yIiIldKRaS02LQJOnSAd9/NP37kEVixApo3d9iQDapXvqLzIiIiV0pFxNkZA1Om5JeQbdugdm1YtAhefRXc3R06dJuAKjwQVfhS8EOjGmrDqoiIFBubMcZYHeJi0tPT8fX1JS0tDR8fH6vjlLwjR/I3pC5YkH/cqxd89BHUqFGiMfSrGRERcRQVEWf188/5JeToUahUCV5/HR54wCF7QURERKyin+86m7Nn4fHHYerU/OOQkPwrpLZsaW0uERERB9AeEWeyZQt07Pi/EjJyJCQkqISIiEiZpSLiDIyBt9/O35C6eTPUrJm/NDN5cv6yjIiISBmlpRmrHT0K99wDP/6Yf9yzJ0yfDrVqWZtLRESkBGhGxEqLFuXvAfnxx/yf4r75Jvz0k0qIiIiUG5oRsUJ2Nvz3v/m/hAFo0QI+/zy/lIiIiJQjKiIlLTER+veHDRvyj4cNg1deAQ8PS2OJiIhYQUszJcUYeP99aNcuv4RUr55/87q33lIJERGRckszIiXh+HG491749tv842uvhZkzoU4dS2OJiIhYTTMijrZkSf7ej2+/hYoV4bXX8i/ZrhIiIiKiGRGHycmBZ57J3/9hTP5dcmfPhjZtrE4mIiLiNFREHGHnzvwNqWvX5h/ff3/+L2Q8Pa3NJSIi4mS0NFOcjIGPP86f9Vi7FqpWhblz4b33VEJEREQuQDMixeXkSbjvPvj66/zjrl3h00+hXj1rc4mIiDgxzYgUh9jY/A2pX38NFSrApEmweLFKiIiIyGVoRuSfyM2FceNg4sT8ZZkmTfI3pLZvb3UyERGRUkFF5O9KSsrfkLpqVf7xPffAlCng5WVtLhERkVJESzNXyhj45BNo3Tq/hPj5wZdfwkcfqYSIiIhcIc2IXIm0NBg6NP8GdQCRkfkbUgMCrM0lIiJSSmlGpKji4yE0NL+EuLrCCy/Ar7+qhIiIiPwDmhG5nHPn8kvH88+D3Q4NG+ZvSA0LszqZiIhIqacicil798Idd8Dy5fnHd90FU6eCj4+1uURERMoILc1czOzZ+RtSly/PLx6zZ+ffMVclREREpNhoRuSv0tNh+PD8TagAnTrBrFkQFGRpLBERkbJIMyJ/tnJl/n1iPv0UXFzyL1YWG6sSIiIi4iAOKyIvvvginTp1wtPTEz8/P0cNUzzy8vI3pHbuDHv2QGAgxMXB2LH5l2wXERERh3BYEcnJyeHWW29l6NChjhqieCQn59+g7pln8gtJv36wcSNERFidTEREpMxz2L/ujx8/HoAZM2Y4aoh/7ssv4f774dSp/KuivvNO/q9kbDark4mIiJQLTrXukJ2dTXZ2dsFxenq6YwbKzIQRI2D69PzjsLD8DamNGjlmPBEREbkgp9qsOnHiRHx9fQse9evXd8xA06bllxCbDZ56CpYuVQkRERGxwBUVkSeffBKbzXbJx/bt2/92mDFjxpCWllbwOHDgwN/+rEt66CG4/Xb47bf8TaoVKzpmHBEREbmkK1qaeeSRRxg0aNAlX9OwYcO/Hcbd3R13d/e//f4iq1AB5sxx/DgiIiJySVdURGrUqEGNGjUclUVERETKGYdtVk1OTubEiRMkJyeTl5fHhg0bAGjcuDFeXl6OGlZERERKEZsxxjjigwcNGsTMmTPPO//bb78RHR1dpM9IT0/H19eXtLQ0fHSPFxERkTLHYUWkOKiIiIiIlG1O9fNdERERKV9URERERMQyKiIiIiJiGRURERERsYyKiIiIiFhGRUREREQsoyIiIiIillEREREREcuoiIiIiIhlHHavmeLwx0Vf09PTLU4iIiIiV8rb2xubzXbJ1zh1EcnIyACgfv36FicRERGRK1WUW7Q49b1m7HY7hw4dKlKjulLp6enUr1+fAwcO6D42l6Hvquj0XRWdvqui03d1ZfR9FZ2jv6tSPyPi4uKCv7+/Q8fw8fHR/1CLSN9V0em7Kjp9V0Wn7+rK6PsqOiu/K21WFREREcuoiIiIiIhlym0RcXd3Z+zYsbi7u1sdxenpuyo6fVdFp++q6PRdXRl9X0XnDN+VU29WFRERkbKt3M6IiIiIiPVURERERMQyKiIiIiJiGRURERERsYyKCPDiiy/SqVMnPD098fPzszqOU3n77bcJCgqiUqVKhIWFsWrVKqsjOaW4uDh69epF3bp1sdlsfPvtt1ZHcloTJ06kQ4cOeHt7U7NmTfr06cOOHTusjuWU3n33XUJCQgouNhUeHs78+fOtjlUqTJo0CZvNxqhRo6yO4nTGjRuHzWYr9GjevLlleVREgJycHG699VaGDh1qdRSn8sUXXzB69GjGjh3LunXrCA0NpUePHqSmplodzelkZWURGhrK22+/bXUUpxcbG8uwYcNYuXIlixcvJjc3l+uuu46srCyrozkdf39/Jk2axNq1a1mzZg3XXHMNvXv3ZuvWrVZHc2qrV6/m/fffJyQkxOooTqtly5akpKQUPJYtW2ZdGCMFpk+fbnx9fa2O4TQ6duxohg0bVnCcl5dn6tatayZOnGhhKucHmHnz5lkdo9RITU01gImNjbU6SqlQpUoV8+GHH1odw2llZGSYJk2amMWLF5uoqCgzcuRIqyM5nbFjx5rQ0FCrYxTQjIhcUE5ODmvXrqV79+4F51xcXOjevTsrVqywMJmUNWlpaQBUrVrV4iTOLS8vjzlz5pCVlUV4eLjVcZzWsGHD+Ne//lXo/3fJ+Xbt2kXdunVp2LAhAwYMIDk52bIsTn3TO7HOsWPHyMvLo1atWoXO16pVi+3bt1uUSsoau93OqFGjiIiI4KqrrrI6jlPavHkz4eHhnD17Fi8vL+bNm0eLFi2sjuWU5syZw7p161i9erXVUZxaWFgYM2bMoFmzZqSkpDB+/Hi6dOnCli1b8Pb2LvE8ZXZG5MknnzxvM85fH/oLVcRaw4YNY8uWLcyZM8fqKE6rWbNmbNiwgYSEBIYOHcrAgQPZtm2b1bGczoEDBxg5ciSzZs2iUqVKVsdxaj179uTWW28lJCSEHj168PPPP3Pq1Cm+/PJLS/KU2RmRRx55hEGDBl3yNQ0bNiyZMKVQ9erVcXV15ciRI4XOHzlyhNq1a1uUSsqS4cOH8+OPPxIXF4e/v7/VcZyWm5sbjRs3BqBdu3asXr2aKVOm8P7771uczLmsXbuW1NRU2rZtW3AuLy+PuLg43nrrLbKzs3F1dbUwofPy8/OjadOm7N6925Lxy2wRqVGjBjVq1LA6Rqnl5uZGu3btWLJkCX369AHyp9GXLFnC8OHDrQ0npZoxhoceeoh58+YRExNDgwYNrI5UqtjtdrKzs62O4XS6devG5s2bC527++67ad68OU888YRKyCVkZmaSlJTEnXfeacn4ZbaIXInk5GROnDhBcnIyeXl5bNiwAYDGjRvj5eVlbTgLjR49moEDB9K+fXs6duzI5MmTycrK4u6777Y6mtPJzMws9G8Te/fuZcOGDVStWpWAgAALkzmfYcOGMXv2bL777ju8vb05fPgwAL6+vnh4eFiczrmMGTOGnj17EhAQQEZGBrNnzyYmJoaFCxdaHc3peHt7n7fPqHLlylSrVk37j/7i0UcfpVevXgQGBnLo0CHGjh2Lq6sr/fr1syaQ1T/bcQYDBw40wHmP3377zepolps6daoJCAgwbm5upmPHjmblypVWR3JKv/322wX/NzRw4ECrozmdC31PgJk+fbrV0ZzOPffcYwIDA42bm5upUaOG6datm1m0aJHVsUoN/Xz3wm6//XZTp04d4+bmZurVq2duv/12s3v3bsvy2IwxpuTrj4iIiEgZ/tWMiIiIOD8VEREREbGMioiIiIhYRkVERERELKMiIiIiIpZRERERERHLqIiIiIiIZVRERERExDIqIiIiImIZFRERERGxjIqIiIiIWEZFRERERCzzf3+mSb/vxuOEAAAAAElFTkSuQmCC"
- },
- "metadata": {},
- "output_type": "display_data"
- }
- ],
- "source": [
- "# running a new cycle taking into account the seed data and model\n",
- "# TODO: need to find a way to incorporate the seed data into the cycle\n",
- "cycle = Cycle(\n",
- " metadata=study_metadata,\n",
- " theorist=bms_theorist,\n",
- " experimentalist=popper_experimentalist,\n",
- " experiment_runner=synthetic_experiment_runner,\n",
- ")\n",
- "cycle.run(num_cycles=1)\n",
- "\n",
- "# plot output of architecture search\n",
- "all_obs = np.row_stack(seed_cycle.data.observations)\n",
- "x_obs, y_obs = all_obs[:, 0], all_obs[:, 1]\n",
- "plt.scatter(x_obs, y_obs, s=10, label=\"seed data\")\n",
- "\n",
- "all_obs = np.row_stack(cycle.data.observations)\n",
- "x_obs, y_obs = all_obs[:, 0], all_obs[:, 1]\n",
- "plt.scatter(x_obs, y_obs, s=10, label=\"collected data\")\n",
- "\n",
- "x_pred = np.array(study_metadata.independent_variables[0].allowed_values).reshape(\n",
- " ground_truth_resolution, 1\n",
- ")\n",
- "y_pred_seed = seed_cycle.data.theories[0].predict(x_pred)\n",
- "y_pred_final = cycle.data.theories[0].predict(x_pred)\n",
- "plt.plot(x_pred, y_pred_seed, color=\"blue\", label=\"seed model\")\n",
- "plt.plot(x_pred, y_pred_final, color=\"red\", label=\"final model\")\n",
- "plt.legend()\n",
- "plt.show()\n"
- ],
- "metadata": {
- "collapsed": false
- }
- }
- ],
- "metadata": {
- "kernelspec": {
- "display_name": "Python 3",
- "language": "python",
- "name": "python3"
- },
- "language_info": {
- "codemirror_mode": {
- "name": "ipython",
- "version": 2
- },
- "file_extension": ".py",
- "mimetype": "text/x-python",
- "name": "python",
- "nbconvert_exporter": "python",
- "pygments_lexer": "ipython2",
- "version": "2.7.6"
- }
- },
- "nbformat": 4,
- "nbformat_minor": 0
-}
diff --git a/docs/cycle/simple_cycle_uncertainty_experimentalist.ipynb b/docs/cycle/simple_cycle_uncertainty_experimentalist.ipynb
deleted file mode 100644
index 7fc16de7b..000000000
--- a/docs/cycle/simple_cycle_uncertainty_experimentalist.ipynb
+++ /dev/null
@@ -1,350 +0,0 @@
-{
- "cells": [
- {
- "cell_type": "markdown",
- "source": [
- "# Simple Cycle Examples with Uncertainty vs. Random Experimentalist\n",
- "The aim of this example notebook is to use the AutoRA `Cycle` to recover a ground truth theory from some noisy data using BSM.\n",
- "It comparse the default \"random\" experimentalist with the \"uncertainty\" sampler."
- ],
- "metadata": {
- "collapsed": false
- }
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "outputs": [],
- "source": [
- "# Uncomment the following line when running on Google Colab\n",
- "# !pip install autora"
- ],
- "metadata": {
- "collapsed": false
- }
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "outputs": [],
- "source": [
- "import matplotlib.pyplot as plt\n",
- "import numpy as np\n",
- "from sklearn.dummy import DummyRegressor\n",
- "\n",
- "from autora.cycle import Cycle\n",
- "from autora.experimentalist.sampler import random_sampler, poppernet_pooler, nearest_values_sampler\n",
- "from autora.experimentalist.pipeline import make_pipeline\n",
- "from autora.variable import VariableCollection, Variable"
- ],
- "metadata": {
- "collapsed": false
- }
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "outputs": [],
- "source": [
- "def ground_truth(xs):\n",
- " oscillating_component = np.sin((4. * xs) - 3.)\n",
- " parabolic_component = (-0.1 * xs ** 2.) + (2.5 * xs) + 1.\n",
- " ys = oscillating_component + parabolic_component\n",
- " return ys"
- ],
- "metadata": {
- "collapsed": false
- }
- },
- {
- "cell_type": "markdown",
- "source": [
- "The space of allowed x values is reals between -10 and 10 inclusive. We discretize them as we don't currently have a sampler which can sample from the uniform distribution."
- ],
- "metadata": {
- "collapsed": false
- }
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "outputs": [],
- "source": [
- "study_metadata = VariableCollection(\n",
- " independent_variables=[Variable(name=\"x1\", allowed_values=np.linspace(-10, 10, 500))],\n",
- " dependent_variables=[Variable(name=\"y\")],\n",
- " )"
- ],
- "metadata": {
- "collapsed": false
- }
- },
- {
- "cell_type": "markdown",
- "source": [
- "So that we can compare the effectiveness of the two strategies, we fix the number of observations per cycle to be 100."
- ],
- "metadata": {
- "collapsed": false
- }
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "outputs": [],
- "source": [
- "observations_per_cycle = 100"
- ],
- "metadata": {
- "collapsed": false
- }
- },
- {
- "cell_type": "markdown",
- "source": [
- "When we run a synthetic experiment, we get a reproducible noisy result:"
- ],
- "metadata": {
- "collapsed": false
- }
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "outputs": [],
- "source": [
- "import numpy as np\n",
- "\n",
- "def get_example_synthetic_experiment_runner():\n",
- " rng = np.random.default_rng(seed=180)\n",
- " def runner(xs):\n",
- " return ground_truth(xs) + rng.normal(0, 1.0, xs.shape)\n",
- " return runner\n",
- "\n",
- "example_synthetic_experiment_runner = get_example_synthetic_experiment_runner()\n",
- "x = np.array([1.])\n",
- "example_synthetic_experiment_runner(x)"
- ],
- "metadata": {
- "collapsed": false
- }
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "outputs": [],
- "source": [
- "plt.scatter(study_metadata.independent_variables[0].allowed_values[::5,], example_synthetic_experiment_runner(study_metadata.independent_variables[0].allowed_values[::5,]), alpha=1, s=0.1, c='r', label=\"samples\")\n",
- "plt.plot(study_metadata.independent_variables[0].allowed_values, ground_truth(study_metadata.independent_variables[0].allowed_values), c=\"black\", label=\"ground truth\")\n",
- "plt.legend()"
- ],
- "metadata": {
- "collapsed": false
- }
- },
- {
- "cell_type": "markdown",
- "source": [
- "We use a common BMS regressor with a common parametrization to test the two methods."
- ],
- "metadata": {
- "collapsed": false
- }
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "outputs": [],
- "source": [
- "from autora.skl.bms import BMSRegressor\n",
- "bms_theorist = BMSRegressor(epochs=100)"
- ],
- "metadata": {
- "collapsed": false
- }
- },
- {
- "cell_type": "markdown",
- "source": [
- "We also define a helper function to plot the results"
- ],
- "metadata": {
- "collapsed": false
- }
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "outputs": [],
- "source": [
- "def run_and_plot_cycle(cycle, study_metadata):\n",
- " cycle.run(num_cycles=1)\n",
- "\n",
- " all_obs = np.row_stack(cycle.data.observations)\n",
- " x_obs, y_obs = all_obs[:,0], all_obs[:,1]\n",
- " x_obs_new, y_obs_new = cycle.data.observations[-1][:,0], cycle.data.observations[-1][:,1]\n",
- "\n",
- " x_pred = np.array(study_metadata.independent_variables[0].allowed_values).reshape(-1, 1)\n",
- " y_pred = cycle.data.theories[-1].predict(x_pred)\n",
- "\n",
- " plt.plot(study_metadata.independent_variables[0].allowed_values, ground_truth(study_metadata.independent_variables[0].allowed_values), c=\"black\", label=\"ground truth\")\n",
- " plt.scatter(x_obs, y_obs, s=1, c='r', label=\"samples\")\n",
- " plt.scatter(x_obs_new, y_obs_new, s=1, c='green', facecolors=\"none\", label=\"new samples\")\n",
- " plt.plot(x_pred, y_pred, c=\"blue\", label=\"theorist result\")\n",
- "\n",
- " plt.legend()\n",
- "\n",
- " plt.show()"
- ],
- "metadata": {
- "collapsed": false
- }
- },
- {
- "cell_type": "markdown",
- "source": [
- "## Random Sampler"
- ],
- "metadata": {
- "collapsed": false
- }
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "outputs": [],
- "source": [
- "random_experimentalist = make_pipeline(\n",
- " [study_metadata.independent_variables[0].allowed_values, random_sampler],\n",
- " params={\"random_sampler\": {\"n\": observations_per_cycle}}\n",
- ")\n",
- "random_experimentalist_cycle = Cycle(\n",
- " metadata=study_metadata,\n",
- " theorist=bms_theorist,\n",
- " experimentalist=random_experimentalist,\n",
- " experiment_runner=example_synthetic_experiment_runner\n",
- ")\n",
- "\n",
- "for _ in range(10):\n",
- " run_and_plot_cycle(cycle=random_experimentalist_cycle, study_metadata=study_metadata)"
- ],
- "metadata": {
- "collapsed": false
- }
- },
- {
- "cell_type": "markdown",
- "source": [
- "## Popper Sampler"
- ],
- "metadata": {
- "collapsed": false
- }
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "outputs": [],
- "source": [
- "poppernet_experimentalist = make_pipeline(\n",
- " [poppernet_pooler, nearest_values_sampler],\n",
- ")\n",
- "\n",
- "poppernet_experimentalist_cycle = Cycle(\n",
- " metadata=study_metadata,\n",
- " theorist=bms_theorist,\n",
- " experimentalist=poppernet_experimentalist,\n",
- " experiment_runner=example_synthetic_experiment_runner,\n",
- " params={\"experimentalist\" : {\n",
- " \"poppernet_pooler\": {\n",
- " \"model\": \"%theories[-1]%\",\n",
- " \"x_train\": \"%observations.ivs%\",\n",
- " \"y_train\": \"%observations.dvs%\",\n",
- " \"metadata\": study_metadata,\n",
- " \"num_samples\": observations_per_cycle,\n",
- " },\n",
- " \"nearest_values_sampler\": {\n",
- " \"allowed_values\": study_metadata.independent_variables[0].allowed_values\n",
- " }\n",
- " }\n",
- " }\n",
- " )"
- ],
- "metadata": {
- "collapsed": false
- }
- },
- {
- "cell_type": "markdown",
- "source": [
- "The Popper sampler depends on having a first guess for the theory, so we add an appropriate model and an initial datapoint to the cycle's data:"
- ],
- "metadata": {
- "collapsed": false
- }
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "outputs": [],
- "source": [
- "# Experimentalist\n",
- "x_seed = np.linspace(-10, 10, 20)\n",
- "\n",
- "# Experiment runner\n",
- "y_seed = example_synthetic_experiment_runner(x_seed)\n",
- "poppernet_experimentalist_cycle.data.observations.append(np.column_stack([x_seed, y_seed]))\n",
- "\n",
- "# Theorist\n",
- "theory_seed = DummyRegressor(strategy=\"constant\", constant=y_seed[1])\n",
- "theory_seed.fit(x_seed, y_seed)\n",
- "poppernet_experimentalist_cycle.data.theories.append(theory_seed)"
- ],
- "metadata": {
- "collapsed": false
- }
- },
- {
- "cell_type": "markdown",
- "source": [
- "Now we can run the cycle and check the results."
- ],
- "metadata": {
- "collapsed": false
- }
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "outputs": [],
- "source": [
- "for _ in range(10):\n",
- " run_and_plot_cycle(cycle=poppernet_experimentalist_cycle, study_metadata=study_metadata)\n"
- ],
- "metadata": {
- "collapsed": false
- }
- }
- ],
- "metadata": {
- "kernelspec": {
- "display_name": "Python 3",
- "language": "python",
- "name": "python3"
- },
- "language_info": {
- "codemirror_mode": {
- "name": "ipython",
- "version": 2
- },
- "file_extension": ".py",
- "mimetype": "text/x-python",
- "name": "python",
- "nbconvert_exporter": "python",
- "pygments_lexer": "ipython2",
- "version": "2.7.6"
- }
- },
- "nbformat": 4,
- "nbformat_minor": 0
-}
diff --git a/docs/experiment-runner/index.md b/docs/experiment-runner/index.md
new file mode 100644
index 000000000..fdf7cfb7e
--- /dev/null
+++ b/docs/experiment-runner/index.md
@@ -0,0 +1,3 @@
+# Experiment Runners
+
+AutoRA includes tools for running synthetic and real experiments.
diff --git a/docs/experimentalists/overview.md b/docs/experimentalist/index.md
similarity index 83%
rename from docs/experimentalists/overview.md
rename to docs/experimentalist/index.md
index 6d93ab709..c80896679 100644
--- a/docs/experimentalists/overview.md
+++ b/docs/experimentalist/index.md
@@ -28,13 +28,13 @@ experiment conditions that have already been probed $\vec{x}' \in X'$, or
respective dependent measures $\vec{y}' \in Y'$. The following table includes the experimentalists currently implemented
in AutoRA.
-| Experimentalist | Function | Arguments |
-|------------------|-------------------------------------------------------------------------------------------------------------------------------|------------|
-| Random | $\vec{x_i} \sim U[a_i,b_i]$ | |
-| Novelty | $\underset{\vec{x}}{\arg\max}~\min(d(\vec{x}, \vec{x}'))$ | $X'$ |
-| Least Confident | $\underset{\vec{x}}{\arg\max}~1 - P_M(\hat{y}^*, \vec{x})$, $\hat{y}^* = \underset{\hat{y}}{\arg\max}~P_M(\hat{y}_i \vec{x})$ | $M$ |
-| Model Comparison | $\underset{\vec{x}}{\argmax}~(P_{M_1}(\hat{y}, \vec{x}) - P_{M_2}(\hat{y} \vec{x}))^2$ | $M$ |
-| Falsification | $\underset{\vec{x}}{\argmax}~\hat{\mathcal{L}}(M,X',Y',\vec{x})$ | $M, X', Y'$ |
+| Experimentalist | Function | Arguments |
+|------------------|-------------------------------------------------------------------------------------------------------------------------------|-------------|
+| Random | $\vec{x_i} \sim U[a_i,b_i]$ | |
+| Novelty | $\underset{\vec{x}}{\arg\max}~\min(d(\vec{x}, \vec{x}'))$ | $X'$ |
+| Least Confident | $\underset{\vec{x}}{\arg\max}~1 - P_M(\hat{y}^*, \vec{x})$, $\hat{y}^* = \underset{\hat{y}}{\arg\max}~P_M(\hat{y}_i \vec{x})$ | $M$ |
+| Model Comparison | $\underset{\vec{x}}{\arg\max}~(P_{M_1}(\hat{y}, \vec{x}) - P_{M_2}(\hat{y} \vec{x}))^2$ | $M$ |
+| Falsification | $\underset{\vec{x}}{\arg\max}~\hat{\mathcal{L}}(M,X',Y',\vec{x})$ | $M, X', Y'$ |
diff --git a/docs/img/experimentalist.png b/docs/img/experimentalist.png
new file mode 100644
index 000000000..2efe09da1
Binary files /dev/null and b/docs/img/experimentalist.png differ
diff --git a/docs/index.md b/docs/index.md
index 94e5c2112..33c5410c6 100644
--- a/docs/index.md
+++ b/docs/index.md
@@ -1,6 +1,6 @@
# Automated Research Assistant
-[AutoRA](https://pypi.org/project/autora/) (Au tomated R esearch A ssistant) is an open-source framework for
+[AutoRA](https://pypi.org/project/autora/) (Auto mated R esearch A ssistant) is an open-source framework for
automating multiple stages of the empirical research process, including model discovery, experimental design, data collection, and documentation for open science.
![Autonomous Empirical Research Paradigm](img/overview.png)
diff --git a/docs/pipeline/Experimentalist Pipeline Examples.ipynb b/docs/pipeline/Experimentalist Pipeline Examples.ipynb
deleted file mode 100644
index 71f367052..000000000
--- a/docs/pipeline/Experimentalist Pipeline Examples.ipynb
+++ /dev/null
@@ -1,311 +0,0 @@
-{
- "cells": [
- {
- "cell_type": "markdown",
- "source": [
- "# Introduction\n",
- "This notebook demonstrates the use of the `Pipeline` class to create Experimentalists. Experimentalists consist of two main components:\n",
- "1. Condition Generation - Creating combinations of independent variables to test\n",
- "2. Experimental Design - Ensuring conditions meet design constraints.\n",
- "\n",
- "The `Pipeline` class allows us to define a series of functions to generate and process a pool of conditions that conform to an experimental design."
- ],
- "metadata": {
- "collapsed": false
- }
- },
- {
- "cell_type": "code",
- "execution_count": 2,
- "outputs": [],
- "source": [
- "# Uncomment the following line when running on Google Colab\n",
- "# !pip install autora"
- ],
- "metadata": {
- "collapsed": false
- }
- },
- {
- "cell_type": "code",
- "execution_count": 3,
- "outputs": [],
- "source": [
- "import numpy as np\n",
- "\n",
- "from autora.variable import DV, IV, ValueType, VariableCollection\n",
- "from autora.experimentalist.pipeline import Pipeline\n",
- "from autora.experimentalist.pooler import grid_pool\n",
- "from autora.experimentalist.filter import weber_filter\n",
- "from autora.experimentalist.sampler import random_sampler"
- ],
- "metadata": {
- "collapsed": false
- }
- },
- {
- "cell_type": "markdown",
- "source": [
- "## Implementation\n",
- "\n",
- "The `Pipeline` class consists of a series of steps:\n",
- "1. One or no \"pool\" steps which generate experimental conditions,\n",
- "2. An arbitrary number of steps to apply to the pool. Examples of steps may be:\n",
- " - samplers\n",
- " - conditional filters\n",
- " - sequencers"
- ],
- "metadata": {
- "collapsed": false
- }
- },
- {
- "cell_type": "markdown",
- "source": [
- "## Example 1: Exhaustive Pool with Random Sampler\n",
- "The examples in this notebook will create a Weber line-lengths experiment. The Weber experiment tests human detection of differences between the lengths of two lines. The first example will sample a pool with simple random sampling. We will first define the independent and dependent variables (IVs and DVs, respectively).\n"
- ],
- "metadata": {
- "collapsed": false
- }
- },
- {
- "cell_type": "code",
- "execution_count": 4,
- "outputs": [],
- "source": [
- "# Specifying Dependent and Independent Variables\n",
- "# Specify independent variables\n",
- "iv1 = IV(\n",
- " name=\"S1\",\n",
- " allowed_values=np.linspace(0, 5, 5),\n",
- " units=\"intensity\",\n",
- " variable_label=\"Stimulus 1 Intensity\",\n",
- ")\n",
- "\n",
- "iv2 = IV(\n",
- " name=\"S2\",\n",
- " allowed_values=np.linspace(0, 5, 5),\n",
- " units=\"intensity\",\n",
- " variable_label=\"Stimulus 2 Intensity\",\n",
- ")\n",
- "\n",
- "# The experimentalist pipeline doesn't actually use DVs, they are just specified here for\n",
- "# example.\n",
- "dv1 = DV(\n",
- " name=\"difference_detected\",\n",
- " value_range=(0, 1),\n",
- " units=\"probability\",\n",
- " variable_label=\"P(difference detected)\",\n",
- " type=ValueType.PROBABILITY,\n",
- ")\n",
- "\n",
- "# Variable collection with ivs and dvs\n",
- "metadata = VariableCollection(\n",
- " independent_variables=[iv1, iv2],\n",
- " dependent_variables=[dv1],\n",
- ")"
- ],
- "metadata": {
- "collapsed": false
- }
- },
- {
- "cell_type": "markdown",
- "source": [
- "Next we set up the `Pipeline` with three functions:\n",
- "1. `grid_pool` - Generates an exhaustive pool of condition combinations using the Cartesian product of discrete IV values.\n",
- " - The discrete IV values are specified with the `allowed_values` attribute when defining the IVs.\n",
- "2. `weber_filer` - Filter that selects the experimental design constraint where IV1 <= IV2.\n",
- "3. `random_sampler` - Samples the pool of conditions\n",
- "\n",
- "Functions that require keyword inputs are initialized using the `partial` function before passing into `PoolPipeline`."
- ],
- "metadata": {
- "collapsed": false
- }
- },
- {
- "cell_type": "code",
- "execution_count": 5,
- "outputs": [
- {
- "data": {
- "text/plain": "Pipeline(steps=[('grid_pool', ), ('weber_filer', ), ('random_sampler', )], params={'grid_pool': {'ivs': [IV(name='S1', value_range=None, allowed_values=array([0. , 1.25, 2.5 , 3.75, 5. ]), units='intensity', type=, variable_label='Stimulus 1 Intensity', rescale=1, is_covariate=False), IV(name='S2', value_range=None, allowed_values=array([0. , 1.25, 2.5 , 3.75, 5. ]), units='intensity', type=, variable_label='Stimulus 2 Intensity', rescale=1, is_covariate=False)]}, 'random_sampler': {'n': 10}})"
- },
- "execution_count": 5,
- "metadata": {},
- "output_type": "execute_result"
- }
- ],
- "source": [
- "## Set up pipeline functions with the partial function\n",
- "# Random Sampler\n",
- "\n",
- "# Initialize the pipeline\n",
- "pipeline_random_samp = Pipeline([\n",
- " (\"grid_pool\", grid_pool),\n",
- " (\"weber_filer\", weber_filter), # Filter that selects conditions with IV1 <= IV2\n",
- " (\"random_sampler\", random_sampler)\n",
- "],\n",
- " {\"grid_pool\": {\"ivs\": metadata.independent_variables}, \"random_sampler\": {\"n\": 10}}\n",
- ")\n",
- "pipeline_random_samp"
- ],
- "metadata": {
- "collapsed": false
- }
- },
- {
- "cell_type": "markdown",
- "source": [
- "The pipleine can be run by calling the `run` method.\n",
- "\n",
- "The pipeline is run twice below to illustrate that random sampling is performed. Rerunning the cell will produce different results.\n"
- ],
- "metadata": {
- "collapsed": false
- }
- },
- {
- "cell_type": "code",
- "execution_count": 6,
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "Sampled Conditions:\n",
- " Run 1: [(3.75, 3.75), (0.0, 3.75), (2.5, 5.0), (3.75, 5.0), (1.25, 1.25), (2.5, 3.75), (2.5, 2.5), (1.25, 3.75), (1.25, 2.5), (0.0, 0.0)]\n",
- " Run 2: [(1.25, 5.0), (0.0, 5.0), (5.0, 5.0), (0.0, 1.25), (1.25, 2.5), (2.5, 2.5), (1.25, 3.75), (3.75, 3.75), (2.5, 3.75), (0.0, 0.0)]\n"
- ]
- }
- ],
- "source": [
- "# Run the Pipeline\n",
- "results1 = pipeline_random_samp.run()\n",
- "results2 = pipeline_random_samp.run()\n",
- "print('Sampled Conditions:')\n",
- "print(f' Run 1: {results1}\\n',\n",
- " f'Run 2: {results2}')"
- ],
- "metadata": {
- "collapsed": false
- }
- },
- {
- "cell_type": "markdown",
- "source": [
- "An alternative method of passing an instantiated pool iterator is demonstrated below. Note the difference where `grid_pool` is not initialized using the `partial` function but instantiated before initializing the `Pipeline`. `grid_pool` returns an iterator of the exhaustive pool. This will result in unexpected behavior when the Pipeline is run multiple times."
- ],
- "metadata": {
- "collapsed": false
- }
- },
- {
- "cell_type": "code",
- "execution_count": 7,
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "Sampled Conditions:\n",
- " Run 1: [(1.25, 2.5), (0.0, 2.5), (3.75, 5.0), (0.0, 3.75), (0.0, 0.0), (0.0, 1.25), (2.5, 2.5), (1.25, 1.25), (3.75, 3.75), (1.25, 3.75)]\n",
- " Run 2: []\n"
- ]
- }
- ],
- "source": [
- "## Set up pipeline functions with the partial function\n",
- "# Pool Function\n",
- "pooler_iterator = grid_pool(metadata.independent_variables)\n",
- "\n",
- "# Initialize the pipeline\n",
- "pipeline_random_samp2 = Pipeline(\n",
- " [\n",
- " (\"pool (iterator)\", pooler_iterator),\n",
- " (\"filter\",weber_filter), # Filter that selects conditions with IV1 <= IV2\n",
- " (\"sampler\", random_sampler) # Sampler defined in the first implementation example\n",
- " ],\n",
- " {\"sampler\": {\"n\": 10}}\n",
- ")\n",
- "# Run the Pipeline\n",
- "results1 = pipeline_random_samp2.run()\n",
- "results2 = pipeline_random_samp2.run()\n",
- "print('Sampled Conditions:')\n",
- "print(f' Run 1: {results1}\\n',\n",
- " f'Run 2: {results2}')"
- ],
- "metadata": {
- "collapsed": false
- }
- },
- {
- "cell_type": "markdown",
- "source": [
- "Running the pipeline multiple times results in an empty list. This is because the iterator is exhausted after first run and no longer yields results. If the pipeline needs to be run multiple times, initializing the functions as a callable using the `partial` function is recommended because the iterator will be initialized at the start of each run."
- ],
- "metadata": {
- "collapsed": false
- }
- },
- {
- "cell_type": "markdown",
- "source": [
- "You could also use the scikit-learn \"__\" syntax to pass parameter sets into the pipeline:"
- ],
- "metadata": {
- "collapsed": false
- }
- },
- {
- "cell_type": "code",
- "execution_count": 8,
- "outputs": [
- {
- "data": {
- "text/plain": "Pipeline(steps=[('grid_pool', ), ('weber_filer', ), ('random_sampler', )], params={'grid_pool__ivs': [IV(name='S1', value_range=None, allowed_values=array([0. , 1.25, 2.5 , 3.75, 5. ]), units='intensity', type=, variable_label='Stimulus 1 Intensity', rescale=1, is_covariate=False), IV(name='S2', value_range=None, allowed_values=array([0. , 1.25, 2.5 , 3.75, 5. ]), units='intensity', type=, variable_label='Stimulus 2 Intensity', rescale=1, is_covariate=False)], 'random_sampler__n': 10})"
- },
- "execution_count": 8,
- "metadata": {},
- "output_type": "execute_result"
- }
- ],
- "source": [
- "pipeline_random_samp = Pipeline([\n",
- " (\"grid_pool\", grid_pool),\n",
- " (\"weber_filer\", weber_filter), # Filter that selects conditions with IV1 <= IV2\n",
- " (\"random_sampler\", random_sampler)\n",
- "],\n",
- " {\"grid_pool__ivs\": metadata.independent_variables, \"random_sampler__n\": 10}\n",
- ")\n",
- "pipeline_random_samp\n"
- ],
- "metadata": {
- "collapsed": false
- }
- }
- ],
- "metadata": {
- "kernelspec": {
- "display_name": "Python 3",
- "language": "python",
- "name": "python3"
- },
- "language_info": {
- "codemirror_mode": {
- "name": "ipython",
- "version": 2
- },
- "file_extension": ".py",
- "mimetype": "text/x-python",
- "name": "python",
- "nbconvert_exporter": "python",
- "pygments_lexer": "ipython2",
- "version": "2.7.6"
- }
- },
- "nbformat": 4,
- "nbformat_minor": 0
-}
diff --git a/docs/synthetic/inventory.ipynb b/docs/synthetic/inventory.ipynb
deleted file mode 100644
index 54be9ee17..000000000
--- a/docs/synthetic/inventory.ipynb
+++ /dev/null
@@ -1,68 +0,0 @@
-{
- "cells": [
- {
- "cell_type": "code",
- "execution_count": null,
- "outputs": [],
- "source": [
- "# Uncomment the following line when running on Google Colab\n",
- "# !pip install autora"
- ],
- "metadata": {
- "collapsed": false
- }
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "outputs": [],
- "source": [
- "from autora.synthetic import retrieve, Inventory\n",
- "from sklearn.linear_model import LinearRegression"
- ],
- "metadata": {
- "collapsed": false
- }
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "outputs": [],
- "source": [
- "for id in Inventory.keys():\n",
- " s = retrieve(id)\n",
- " print(s)\n",
- " X = s.domain()\n",
- " y_exp = s.experiment_runner(X)\n",
- " y_gt = s.ground_truth(X)\n",
- " s.plotter() # without model\n",
- " fitter = LinearRegression().fit(X, y_exp)\n",
- " s.plotter(fitter)\n"
- ],
- "metadata": {
- "collapsed": false
- }
- }
- ],
- "metadata": {
- "kernelspec": {
- "display_name": "Python 3",
- "language": "python",
- "name": "python3"
- },
- "language_info": {
- "codemirror_mode": {
- "name": "ipython",
- "version": 2
- },
- "file_extension": ".py",
- "mimetype": "text/x-python",
- "name": "python",
- "nbconvert_exporter": "python",
- "pygments_lexer": "ipython2",
- "version": "2.7.6"
- }
- },
- "nbformat": 4,
- "nbformat_minor": 0
-}
diff --git a/docs/theorist/bms/example.ipynb b/docs/theorist/bms/example.ipynb
deleted file mode 100644
index b297a26bd..000000000
--- a/docs/theorist/bms/example.ipynb
+++ /dev/null
@@ -1,210 +0,0 @@
-{
- "cells": [
- {
- "cell_type": "markdown",
- "source": [
- "# Bayesian Machine Scientist"
- ],
- "metadata": {
- "collapsed": false
- }
- },
- {
- "cell_type": "markdown",
- "source": [
- "## Example"
- ],
- "metadata": {
- "collapsed": false
- }
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "outputs": [],
- "source": [
- "# Uncomment the following line when running on Google Colab\n",
- "# !pip install autora"
- ],
- "metadata": {
- "collapsed": false
- }
- },
- {
- "cell_type": "markdown",
- "source": [
- "Let's generate a simple data set with two features $x_1, x_2 \\in [0, 1]$ and a target $y$. We will use the following generative model:\n",
- "$y = 2 x_1 - e^{(5 x_2)}$"
- ],
- "metadata": {
- "collapsed": false
- }
- },
- {
- "cell_type": "code",
- "execution_count": 7,
- "outputs": [],
- "source": [
- "import numpy as np\n",
- "\n",
- "x_1 = np.linspace(0, 1, num=10)\n",
- "x_2 = np.linspace(0, 1, num=10)\n",
- "X = np.array(np.meshgrid(x_1, x_2)).T.reshape(-1,2)\n",
- "\n",
- "y = 2 * X[:,0] + np.exp(5 * X[:,1])"
- ],
- "metadata": {
- "collapsed": false
- }
- },
- {
- "cell_type": "markdown",
- "source": [
- "Now let us choose a prior over the primitives. In this case, we will use priors determined by Guimerà et al (2020).\n"
- ],
- "metadata": {
- "collapsed": false
- }
- },
- {
- "cell_type": "code",
- "execution_count": 8,
- "outputs": [],
- "source": [
- "prior = \"Guimera2020\""
- ],
- "metadata": {
- "collapsed": false
- }
- },
- {
- "cell_type": "markdown",
- "source": [
- "## Set up the BMS Regressor\n",
- "\n",
- "We will use the BMS Regressor to predict the outcomes. There are a number of parameters that determine how the architecture search is performed. The most important ones are listed below:\n",
- "\n",
- "- **`epochs`**: The number of epochs to run BMS. This corresponds to the total number of equation mutations - one mcmc step for each parallel-tempered equation and one tree swap between a pair of parallel-tempered equations.\n",
- "- **`prior_par`**: A dictionary of priors for each operation. The keys correspond to operations and the respective values correspond to prior probabilities of those operations. The model comes with a default.\n",
- "- **`ts`**: A list of temperature values. The machine scientist creates an equation tree for each of these values. Higher temperature trees are harder to fit, and thus they help prevent overfitting of the model.\n",
- "\n",
- "\n",
- "Let's use the same priors over primitives that we specified on the previous page as well as an illustrative set of temperatures to set up the BMS regressor with default parameters.\n"
- ],
- "metadata": {
- "collapsed": false
- }
- },
- {
- "cell_type": "code",
- "execution_count": 9,
- "outputs": [],
- "source": [
- "from autora.skl.bms import BMSRegressor\n",
- "\n",
- "temperatures = [1.0] + [1.04**k for k in range(1, 20)]\n",
- "\n",
- "primitives = {\n",
- " \"Psychology\": {\n",
- " \"addition\": 5.8,\n",
- " \"subtraction\": 4.3,\n",
- " \"multiplication\": 5.0,\n",
- " \"division\": 5.5,\n",
- " }\n",
- "}\n",
- "\n",
- "bms_estimator = BMSRegressor(\n",
- " epochs=1500,\n",
- " prior_par=primitives,\n",
- " ts=temperatures,\n",
- ")"
- ],
- "metadata": {
- "collapsed": false
- }
- },
- {
- "cell_type": "markdown",
- "source": [
- "Now we have everything to fit and verify the model."
- ],
- "metadata": {
- "collapsed": false
- }
- },
- {
- "cell_type": "code",
- "execution_count": 10,
- "outputs": [
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- "INFO:autora.skl.bms:BMS fitting started\n",
- " 0%| | 0/1500 [00:00, ?it/s]\n"
- ]
- },
- {
- "ename": "KeyError",
- "evalue": "'Nopi_*'",
- "output_type": "error",
- "traceback": [
- "\u001B[0;31m---------------------------------------------------------------------------\u001B[0m",
- "\u001B[0;31mKeyError\u001B[0m Traceback (most recent call last)",
- "Cell \u001B[0;32mIn[10], line 1\u001B[0m\n\u001B[0;32m----> 1\u001B[0m \u001B[43mbms_estimator\u001B[49m\u001B[38;5;241;43m.\u001B[39;49m\u001B[43mfit\u001B[49m\u001B[43m(\u001B[49m\u001B[43mX\u001B[49m\u001B[43m,\u001B[49m\u001B[43my\u001B[49m\u001B[43m)\u001B[49m\n\u001B[1;32m 2\u001B[0m bms_estimator\u001B[38;5;241m.\u001B[39mpredict(X)\n",
- "File \u001B[0;32m~/Developer/autora/autora/skl/bms.py:133\u001B[0m, in \u001B[0;36mBMSRegressor.fit\u001B[0;34m(self, X, y, num_param, root, custom_ops, seed)\u001B[0m\n\u001B[1;32m 120\u001B[0m \u001B[38;5;28mself\u001B[39m\u001B[38;5;241m.\u001B[39madd_primitive(root)\n\u001B[1;32m 121\u001B[0m \u001B[38;5;28mself\u001B[39m\u001B[38;5;241m.\u001B[39mpms \u001B[38;5;241m=\u001B[39m Parallel(\n\u001B[1;32m 122\u001B[0m Ts\u001B[38;5;241m=\u001B[39m\u001B[38;5;28mself\u001B[39m\u001B[38;5;241m.\u001B[39mts,\n\u001B[1;32m 123\u001B[0m variables\u001B[38;5;241m=\u001B[39m\u001B[38;5;28mself\u001B[39m\u001B[38;5;241m.\u001B[39mvariables,\n\u001B[0;32m (...)\u001B[0m\n\u001B[1;32m 131\u001B[0m seed\u001B[38;5;241m=\u001B[39mseed,\n\u001B[1;32m 132\u001B[0m )\n\u001B[0;32m--> 133\u001B[0m \u001B[38;5;28mself\u001B[39m\u001B[38;5;241m.\u001B[39mmodel_, \u001B[38;5;28mself\u001B[39m\u001B[38;5;241m.\u001B[39mloss_, \u001B[38;5;28mself\u001B[39m\u001B[38;5;241m.\u001B[39mcache_ \u001B[38;5;241m=\u001B[39m \u001B[43mutils\u001B[49m\u001B[38;5;241;43m.\u001B[39;49m\u001B[43mrun\u001B[49m\u001B[43m(\u001B[49m\u001B[38;5;28;43mself\u001B[39;49m\u001B[38;5;241;43m.\u001B[39;49m\u001B[43mpms\u001B[49m\u001B[43m,\u001B[49m\u001B[43m \u001B[49m\u001B[38;5;28;43mself\u001B[39;49m\u001B[38;5;241;43m.\u001B[39;49m\u001B[43mepochs\u001B[49m\u001B[43m)\u001B[49m\n\u001B[1;32m 134\u001B[0m \u001B[38;5;28mself\u001B[39m\u001B[38;5;241m.\u001B[39mmodels_ \u001B[38;5;241m=\u001B[39m \u001B[38;5;28mlist\u001B[39m(\u001B[38;5;28mself\u001B[39m\u001B[38;5;241m.\u001B[39mpms\u001B[38;5;241m.\u001B[39mtrees\u001B[38;5;241m.\u001B[39mvalues())\n\u001B[1;32m 136\u001B[0m _logger\u001B[38;5;241m.\u001B[39minfo(\u001B[38;5;124m\"\u001B[39m\u001B[38;5;124mBMS fitting finished\u001B[39m\u001B[38;5;124m\"\u001B[39m)\n",
- "File \u001B[0;32m~/Developer/autora/autora/theorist/bms/utils.py:35\u001B[0m, in \u001B[0;36mrun\u001B[0;34m(pms, num_steps, thinning)\u001B[0m\n\u001B[1;32m 33\u001B[0m desc_len, model, model_len \u001B[38;5;241m=\u001B[39m [], pms\u001B[38;5;241m.\u001B[39mt1, np\u001B[38;5;241m.\u001B[39minf\n\u001B[1;32m 34\u001B[0m \u001B[38;5;28;01mfor\u001B[39;00m n \u001B[38;5;129;01min\u001B[39;00m tqdm(\u001B[38;5;28mrange\u001B[39m(num_steps)):\n\u001B[0;32m---> 35\u001B[0m \u001B[43mpms\u001B[49m\u001B[38;5;241;43m.\u001B[39;49m\u001B[43mmcmc_step\u001B[49m\u001B[43m(\u001B[49m\u001B[43m)\u001B[49m\n\u001B[1;32m 36\u001B[0m pms\u001B[38;5;241m.\u001B[39mtree_swap()\n\u001B[1;32m 37\u001B[0m \u001B[38;5;28;01mif\u001B[39;00m num_steps \u001B[38;5;241m%\u001B[39m thinning \u001B[38;5;241m==\u001B[39m \u001B[38;5;241m0\u001B[39m: \u001B[38;5;66;03m# sample less often if we thin more\u001B[39;00m\n",
- "File \u001B[0;32m~/Developer/autora/autora/theorist/bms/parallel.py:102\u001B[0m, in \u001B[0;36mParallel.mcmc_step\u001B[0;34m(self, verbose, p_rr, p_long)\u001B[0m\n\u001B[1;32m 99\u001B[0m p_rr \u001B[38;5;241m=\u001B[39m \u001B[38;5;241m0.0\u001B[39m\n\u001B[1;32m 100\u001B[0m \u001B[38;5;28;01mfor\u001B[39;00m T, tree \u001B[38;5;129;01min\u001B[39;00m \u001B[38;5;28mlist\u001B[39m(\u001B[38;5;28mself\u001B[39m\u001B[38;5;241m.\u001B[39mtrees\u001B[38;5;241m.\u001B[39mitems()):\n\u001B[1;32m 101\u001B[0m \u001B[38;5;66;03m# MCMC step\u001B[39;00m\n\u001B[0;32m--> 102\u001B[0m \u001B[43mtree\u001B[49m\u001B[38;5;241;43m.\u001B[39;49m\u001B[43mmcmc_step\u001B[49m\u001B[43m(\u001B[49m\u001B[43mverbose\u001B[49m\u001B[38;5;241;43m=\u001B[39;49m\u001B[43mverbose\u001B[49m\u001B[43m,\u001B[49m\u001B[43m \u001B[49m\u001B[43mp_rr\u001B[49m\u001B[38;5;241;43m=\u001B[39;49m\u001B[43mp_rr\u001B[49m\u001B[43m,\u001B[49m\u001B[43m \u001B[49m\u001B[43mp_long\u001B[49m\u001B[38;5;241;43m=\u001B[39;49m\u001B[43mp_long\u001B[49m\u001B[43m)\u001B[49m\n\u001B[1;32m 103\u001B[0m \u001B[38;5;28mself\u001B[39m\u001B[38;5;241m.\u001B[39mt1 \u001B[38;5;241m=\u001B[39m \u001B[38;5;28mself\u001B[39m\u001B[38;5;241m.\u001B[39mtrees[\u001B[38;5;124m\"\u001B[39m\u001B[38;5;124m1.0\u001B[39m\u001B[38;5;124m\"\u001B[39m]\n",
- "File \u001B[0;32m~/Developer/autora/autora/theorist/bms/mcmc.py:1160\u001B[0m, in \u001B[0;36mTree.mcmc_step\u001B[0;34m(self, verbose, p_rr, p_long)\u001B[0m\n\u001B[1;32m 1157\u001B[0m \u001B[38;5;28;01melse\u001B[39;00m:\n\u001B[1;32m 1158\u001B[0m \u001B[38;5;66;03m# Try to replace the root\u001B[39;00m\n\u001B[1;32m 1159\u001B[0m newrr \u001B[38;5;241m=\u001B[39m choice(\u001B[38;5;28mself\u001B[39m\u001B[38;5;241m.\u001B[39mrr_space)\n\u001B[0;32m-> 1160\u001B[0m dE, dEB, dEP, par_valuesNew \u001B[38;5;241m=\u001B[39m \u001B[38;5;28;43mself\u001B[39;49m\u001B[38;5;241;43m.\u001B[39;49m\u001B[43mdE_rr\u001B[49m\u001B[43m(\u001B[49m\u001B[43mrr\u001B[49m\u001B[38;5;241;43m=\u001B[39;49m\u001B[43mnewrr\u001B[49m\u001B[43m,\u001B[49m\u001B[43m \u001B[49m\u001B[43mverbose\u001B[49m\u001B[38;5;241;43m=\u001B[39;49m\u001B[43mverbose\u001B[49m\u001B[43m)\u001B[49m\n\u001B[1;32m 1161\u001B[0m \u001B[38;5;28;01mif\u001B[39;00m \u001B[38;5;28mself\u001B[39m\u001B[38;5;241m.\u001B[39mnum_rr \u001B[38;5;241m>\u001B[39m \u001B[38;5;241m0\u001B[39m \u001B[38;5;129;01mand\u001B[39;00m \u001B[38;5;241m-\u001B[39mdEB \u001B[38;5;241m/\u001B[39m \u001B[38;5;28mself\u001B[39m\u001B[38;5;241m.\u001B[39mBT \u001B[38;5;241m-\u001B[39m dEP \u001B[38;5;241m/\u001B[39m \u001B[38;5;28mself\u001B[39m\u001B[38;5;241m.\u001B[39mPT \u001B[38;5;241m>\u001B[39m \u001B[38;5;241m0\u001B[39m:\n\u001B[1;32m 1162\u001B[0m paccept \u001B[38;5;241m=\u001B[39m \u001B[38;5;241m1.0\u001B[39m\n",
- "File \u001B[0;32m~/Developer/autora/autora/theorist/bms/mcmc.py:1093\u001B[0m, in \u001B[0;36mTree.dE_rr\u001B[0;34m(self, rr, verbose)\u001B[0m\n\u001B[1;32m 1090\u001B[0m \u001B[38;5;28mself\u001B[39m\u001B[38;5;241m.\u001B[39mpar_values \u001B[38;5;241m=\u001B[39m old_par_values\n\u001B[1;32m 1092\u001B[0m \u001B[38;5;66;03m# Prior: change due to the numbers of each operation\u001B[39;00m\n\u001B[0;32m-> 1093\u001B[0m dEP \u001B[38;5;241m+\u001B[39m\u001B[38;5;241m=\u001B[39m \u001B[38;5;28;43mself\u001B[39;49m\u001B[38;5;241;43m.\u001B[39;49m\u001B[43mprior_par\u001B[49m\u001B[43m[\u001B[49m\u001B[38;5;124;43m\"\u001B[39;49m\u001B[38;5;124;43mNopi_\u001B[39;49m\u001B[38;5;132;43;01m%s\u001B[39;49;00m\u001B[38;5;124;43m\"\u001B[39;49m\u001B[43m \u001B[49m\u001B[38;5;241;43m%\u001B[39;49m\u001B[43m \u001B[49m\u001B[43mrr\u001B[49m\u001B[43m[\u001B[49m\u001B[38;5;241;43m0\u001B[39;49m\u001B[43m]\u001B[49m\u001B[43m]\u001B[49m\n\u001B[1;32m 1094\u001B[0m \u001B[38;5;28;01mtry\u001B[39;00m:\n\u001B[1;32m 1095\u001B[0m dEP \u001B[38;5;241m+\u001B[39m\u001B[38;5;241m=\u001B[39m \u001B[38;5;28mself\u001B[39m\u001B[38;5;241m.\u001B[39mprior_par[\u001B[38;5;124m\"\u001B[39m\u001B[38;5;124mNopi2_\u001B[39m\u001B[38;5;132;01m%s\u001B[39;00m\u001B[38;5;124m\"\u001B[39m \u001B[38;5;241m%\u001B[39m rr[\u001B[38;5;241m0\u001B[39m]] \u001B[38;5;241m*\u001B[39m (\n\u001B[1;32m 1096\u001B[0m (\u001B[38;5;28mself\u001B[39m\u001B[38;5;241m.\u001B[39mnops[rr[\u001B[38;5;241m0\u001B[39m]] \u001B[38;5;241m+\u001B[39m \u001B[38;5;241m1\u001B[39m) \u001B[38;5;241m*\u001B[39m\u001B[38;5;241m*\u001B[39m \u001B[38;5;241m2\u001B[39m \u001B[38;5;241m-\u001B[39m (\u001B[38;5;28mself\u001B[39m\u001B[38;5;241m.\u001B[39mnops[rr[\u001B[38;5;241m0\u001B[39m]]) \u001B[38;5;241m*\u001B[39m\u001B[38;5;241m*\u001B[39m \u001B[38;5;241m2\u001B[39m\n\u001B[1;32m 1097\u001B[0m )\n",
- "\u001B[0;31mKeyError\u001B[0m: 'Nopi_*'"
- ]
- }
- ],
- "source": [
- "bms_estimator.fit(X,y)\n",
- "bms_estimator.predict(X)"
- ],
- "metadata": {
- "collapsed": false
- }
- },
- {
- "cell_type": "markdown",
- "source": [
- "## Troubleshooting\n",
- "\n",
- "We can troubleshoot the model by playing with a few parameters:\n",
- "\n",
- "- Increasing the number of epochs. The original paper recommends 1500-3000 epochs for reliable fitting. The default is set to 1500.\n",
- "- Using custom priors that are more relevant to the data. The default priors are over equations nonspecific to any particular scientific domain.\n",
- "- Increasing the range of temperature values to escape local minima.\n",
- "- Reducing the differences between parallel temperatures to escape local minima.\n"
- ],
- "metadata": {
- "collapsed": false
- }
- }
- ],
- "metadata": {
- "kernelspec": {
- "display_name": "Python 3",
- "language": "python",
- "name": "python3"
- },
- "language_info": {
- "codemirror_mode": {
- "name": "ipython",
- "version": 2
- },
- "file_extension": ".py",
- "mimetype": "text/x-python",
- "name": "python",
- "nbconvert_exporter": "python",
- "pygments_lexer": "ipython2",
- "version": "2.7.6"
- }
- },
- "nbformat": 4,
- "nbformat_minor": 0
-}
diff --git a/docs/theorist/bms/how_it_works.md b/docs/theorist/bms/how_it_works.md
deleted file mode 100644
index 40ab6a6d5..000000000
--- a/docs/theorist/bms/how_it_works.md
+++ /dev/null
@@ -1,75 +0,0 @@
-# Bayesian Machine Scientist
-
-## How it works
-
-The Bayesian Machine Scientist (BMS) uses Bayesian inference to search the space of possible equations. The following are the relevant quantities in this Bayesian approach:
-
-- $P(x):$ Probability of $x$
-- $P(x|\theta)$: Conditional Probability of $x$ given $\theta$
-- $P(x,\theta)$: Joint Probability of $x$ and $\theta$
-
-Mathematically, we know:
-
-$P(x,\theta)=P(x)P(\theta|x)=P(\theta)P(x|\theta)$
-
-Rearranging this expression, we get Bayes rule:
-
-$P(\theta|x)=\dfrac{P(x|\theta)P(\theta)}{P(x)}$
-
-Here, $P(\theta)$ is the prior probability, $P(x|\theta)$ is the probability of data given the prior (also known as the 'likelihood'), $P(x)$ is the probability of the data marginalized over all possible values of $\theta$, and $P(\theta|x)$ is the posterior probability.
-
-In essence, prior knowledge $P(\theta)$ is combined with evidence $P(x|\theta)$ to arrive at better knowledge $P(\theta|x)$.
-
-BMS capitalizes on this process for updating knowledge:
-
-1) It formulates the problem of fitting an equation to data by first specifying priors over equations. In their paper, Guimerà et al. use the empirical frequency of equations on Wikipedia to specify these priors.
-
-$P(f_i|D)=\dfrac{1}{Z}\int_{\Theta_i}P(D|f_i,\theta_i)P(\theta_i|f_i)P(f_i)d\theta_i$
-
-$Z=P(D)$ is a constant, so we can ignore it since we are only interested in finding the best equation for the specific data at hand.
-
-2) It then scores different candidate equations using description length as a loss function. Formally, this description length is the number of natural units of information (nats) needed to jointly encode the data and the equation optimally.
-
-$\mathscr{L}(f_i)\equiv-\log[P(D,f_i)]=-\log[P(f_i|D)P(D)]=-\log[\int_{\Theta_i}P(D|f_i,\theta_i)P(\theta_i|f_i)P(f_i)d\theta_i]$
-
-3) Since the loss function is computationally intractable, it uses an approximation:
-
-$\mathscr{L}(f_i)\approx\dfrac{B(f_i)}{2} - \log[P(f_i)]$
-
-where $B(f_i)=k\log[n] - 2\log[P(D|\theta^*,f_i)]$
-
-In this formulation, the goodness of fit $p(D|\theta^*,f_i)$ and likelihood $p(f_i)$ of an equation are equally and logarithmically weighted to each other (e.g., improving the fit by a factor of 2 is offset by halving the likelihood).
-
-To better frame the problem, equations are modeled as acyclic graphs (i.e., trees).
-
-Bayesian inference via MCMC is then applied to navigate the search space efficiently. Note, there are many sampling strategies other than MCMC that could be used.
-
-The search space is very rugged, and local minima are difficult to escape, so BMS employs parallel tempering to overcome this.
-
-![Parallel_Tempering](img/BMSTempering.png)
-
-One incremental unit of search in this approach involves two steps:
-
-I) Markov chain Monte Carlo Sampling:
-
- a) One of three mutations - Root Removal/Addition, Elementary Tree Replacement, Node Replacement - are selected for the equation tree.
- b) Choosing the operator associated with the mutation relies on how likely the operator is to turn up (encoded in the priors).
- c) Choosing a specific variable or parameter value is random.
- d) Accepting or rejecting the mutation depends on Metropolis' rule.
-
-![Tree_Mutations](img/BMSEquationTreeOps.png)
-
-II) Parallel Tree Swap:
-
- a) Two parallel trees held at different temperatures are selected.
- b) The temperatures of the two trees are swapped.
- c) If this decreases the loss of the now colder tree, the tree temperatures are permanently swapped.
- d) If not, the trees are reverted to preexisting temperatures.
-
-After iterating over these two steps for $n$ epochs, the tree held at the lowest temperature is returned as the best fitted model for the data provided.
-
-## References
-
-R. Guimerà et al., A Bayesian machine scientist to aid in the solution of challenging scientific problems. Sci. Adv.
-6, eaav697 (2020).
-Wit, Ernst; Edwin van den Heuvel; Jan-Willem Romeyn (2012).
diff --git a/docs/theorist/bms/img/BMSEquationTreeOps.png b/docs/theorist/bms/img/BMSEquationTreeOps.png
deleted file mode 100644
index 8d6da4193..000000000
Binary files a/docs/theorist/bms/img/BMSEquationTreeOps.png and /dev/null differ
diff --git a/docs/theorist/bms/img/BMSTempering.png b/docs/theorist/bms/img/BMSTempering.png
deleted file mode 100644
index a4ac5e590..000000000
Binary files a/docs/theorist/bms/img/BMSTempering.png and /dev/null differ
diff --git a/docs/theorist/bms/introduction.md b/docs/theorist/bms/introduction.md
deleted file mode 100644
index 6dbb19dd7..000000000
--- a/docs/theorist/bms/introduction.md
+++ /dev/null
@@ -1,23 +0,0 @@
-# Bayesian Machine Scientist
-
-## Introduction
-
-Symbolic regression (SR) refers to a class of algorithms that search for interpretable symbolic expressions which
-capture relationships within data. More specifically, SR attempts to find compositions of simple functions
-that accurately map independent variables to dependent variables within a given dataset. SR was traditionally tackled
-through genetic programming, wherein evolutionary algorithms mutated and crossbred equations billions of
-times in search of the best match. There are problems with genetic programming, however, which stem from its inherent search constraints as well
-as its reliance upon heuristics and domain knowledge to balance goodness of fit and model complexity. To address these
-problems, Guimerà et. al (2020) proposed a Bayesian Machine Scientist (BMS), which combines i) a Bayesian approach that
-specifies informed priors over expressions and computes their respective posterior probabilities given the data at hand,
-and ii) a Markov chain Monte Carlo (MCMC) algorithm that samples from the posterior over expressions to more effectively explore the
-space of possible symbolic expressions.
-
-AutoRA provides an adapted version of BMS for automating the discovery of interpretable models of human information
-processing.
-
-## References
-
-R. Guimerà et al., A Bayesian machine scientist to aid in the solution of challenging scientific problems. Sci. Adv.
-6, eaav697 (2020).
-
diff --git a/docs/theorist/bms/meta_parameters.md b/docs/theorist/bms/meta_parameters.md
deleted file mode 100644
index 7961f16fd..000000000
--- a/docs/theorist/bms/meta_parameters.md
+++ /dev/null
@@ -1,9 +0,0 @@
-# Bayesian Machine Scientist
-
-## Meta-Parameters
-
-Meta-parameters are used to control the search space and the search algorithm. This section provides a basic overview of these parameters along with a description of their effects.
-
-- **`epochs`**: The number of epochs to run BMS. This corresponds to the total number of equation mutations - one mcmc step for each parallel-tempered equation and one tree swap between a pair of parallel-tempered equations.
-- **`prior_par`**: A dictionary of priors for each operation. The keys correspond to operations and the respective values correspond to prior probabilities of those operations. The model comes with a default.
-- **`ts`**: A list of temperature values. The machine scientist creates an equation tree for each of these values. Higher temperature trees are harder to fit, and thus they help prevent overfitting of the model.
diff --git a/docs/theorist/bms/search_space.ipynb b/docs/theorist/bms/search_space.ipynb
deleted file mode 100644
index 07171e1c5..000000000
--- a/docs/theorist/bms/search_space.ipynb
+++ /dev/null
@@ -1,126 +0,0 @@
-{
- "cells": [
- {
- "cell_type": "markdown",
- "source": [
- "# Bayesian Machine Scientist\n",
- "\n",
- "## Search space\n",
- "\n",
- "BMS searches the space of operations according to certain parameters to find the best model. As such, the search space is defined by the set of operations that can be applied in each computation step of the model. These operations are also referred to as *primitives*. We can select from the following set of primitives:\n",
- "\n",
- "- **$\\textit{constant}$**: The output of the computation $x_j$ is a constant parameter value $a$ where $a$ is a fitted float value.\n",
- "- **\\+**: The output of the computation $x_j$ is the sum over its two inputs $x_i, x_{ii}$: $x_j = x_i + x_{ii}$.\n",
- "- **\\-**: The output of the computation $x_j$ is the respective difference between its inputs $x_i, x_{ii}$: $x_j = x_i - x_{ii}$.\n",
- "- **\\***: The output of the computation $x_j$ is the product over its two inputs $x_i, x_{ii}$: $x_j = x_i * x_{ii}$.\n",
- "- **\\/**: The output of the computation $x_j$ is the respective quotient between its inputs $x_i, x_{ii}$: $x_j = x_i / x_{ii}$.\n",
- "- **abs**: The output of the computation $x_j$ is the absolute value of its input $x_i$: $x_j = |(x_i)|$.\n",
- "- **relu**: The output of the computation $x_j$ is a rectified linear function applied to its input $x_i$: $x_j = \\max(0, x_i)$.\n",
- "- **exp**: The output of the computation $x_j$ is the natural exponential function applied to its input $x_i$: $x_j = \\exp(x_i)$.\n",
- "- **log**: The output of the computation $x_j$ is the natural logarithm function applied to its input $x_i$: $x_j = \\log(x_i)$.\n",
- "- **sig**: The output of the computation $x_j$ is a logistic function applied to its input $x_i$: $x_j = \\frac{1}{1 + \\exp(-b * x_i)}$.\n",
- "- **fac**: The output of the computation $x_j$ is the generalized factorial function applied to its input $x_i$: $x_j = \\Gamma(1 + x_i)$.\n",
- "- **sqrt**: The output of the computation $x_j$ is the square root function applied to its input $x_i$: $x_j = \\sqrt(x_i)$.\n",
- "- **pow2**: The output of the computation $x_j$ is the square function applied to its input $x_i$: $x_j$ = $x_i^2$.\n",
- "- **pow3**: The output of the computation $x_j$ is the cube function applied to its input $x_i$: $x_j$ = $x_i^3$.\n",
- "- **sin**: The output of the computation $x_j$ is the sine function applied to its input $x_i$: $x_j = \\sin(x_i)$.\n",
- "- **sinh**: The output of the computation $x_j$ is the hyperbolic sine function applied to its input $x_i$: $x_j = \\sinh(x_i)$.\n",
- "- **cos**: The output of the computation $x_j$ is the cosine function applied to its input $x_i$: $x_j = \\cos(x_i)$.\n",
- "- **cosh**: The output of the computation $x_j$ is the hyperbolic cosine function applied to its input $x_i$: $x_j = \\cosh(x_i)$.\n",
- "- **tan**: The output of the computation $x_j$ is the tangent function applied to its input $x_i$: $x_j = \\tan(x_i)$.\n",
- "- **tanh**: The output of the computation $x_j$ is the hyperbolic tangent function applied to its input $x_i$: $x_j = \\tanh(x_i)$.\n",
- "- **\\*\\***: The output of the computation $x_j$ is the first input raised to the power of the second input $x_i,x_{ii}$: $x_j$ = $x_i^{x_{ii}}$.\n",
- "\n",
- "## Example"
- ],
- "metadata": {
- "collapsed": false
- }
- },
- {
- "cell_type": "code",
- "execution_count": 0,
- "metadata": {
- "collapsed": true
- },
- "outputs": [],
- "source": [
- "# Uncomment the following line when running on Google Colab\n",
- "# !pip install autora"
- ]
- },
- {
- "cell_type": "markdown",
- "source": [
- "The following example sets up a search space over four illustrative operations found in Wikipedia pages that are tagged by psychology. These operations are our primitives:"
- ],
- "metadata": {
- "collapsed": false
- }
- },
- {
- "cell_type": "code",
- "execution_count": 1,
- "outputs": [],
- "source": [
- "\n",
- "primitives = {\n",
- " \"Psychology\": {\n",
- " \"addition\": 5.8,\n",
- " \"subtraction\": 4.3,\n",
- " \"multiplication\": 5.0,\n",
- " \"division\": 5.5,\n",
- " }\n",
- "}"
- ],
- "metadata": {
- "collapsed": false
- }
- },
- {
- "cell_type": "markdown",
- "source": [
- "We can then pass these primitives directly to the BMS regressor as follows:"
- ],
- "metadata": {
- "collapsed": false
- }
- },
- {
- "cell_type": "code",
- "execution_count": 2,
- "outputs": [],
- "source": [
- "from autora.skl.bms import BMSRegressor\n",
- "\n",
- "bms_estimator = BMSRegressor(\n",
- " prior_par=primitives\n",
- ")\n"
- ],
- "metadata": {
- "collapsed": false
- }
- }
- ],
- "metadata": {
- "kernelspec": {
- "display_name": "Python 3",
- "language": "python",
- "name": "python3"
- },
- "language_info": {
- "codemirror_mode": {
- "name": "ipython",
- "version": 2
- },
- "file_extension": ".py",
- "mimetype": "text/x-python",
- "name": "python",
- "nbconvert_exporter": "python",
- "pygments_lexer": "ipython2",
- "version": "2.7.6"
- }
- },
- "nbformat": 4,
- "nbformat_minor": 0
-}
diff --git a/docs/theorist/bms/weber.ipynb b/docs/theorist/bms/weber.ipynb
deleted file mode 100644
index ecd2759df..000000000
--- a/docs/theorist/bms/weber.ipynb
+++ /dev/null
@@ -1,14324 +0,0 @@
-{
- "cells": [
- {
- "cell_type": "markdown",
- "id": "3ba2ff78",
- "metadata": {},
- "source": [
- "Example file which shows some simple curve fitting using BMSRegressor and some other estimators."
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "outputs": [],
- "source": [
- "# Uncomment the following line when running on Google Colab\n",
- "# !pip install autora"
- ],
- "metadata": {
- "collapsed": false
- }
- },
- {
- "cell_type": "code",
- "execution_count": 21,
- "id": "41b221c2",
- "metadata": {},
- "outputs": [],
- "source": [
- "from functools import partial\n",
- "\n",
- "import pandas as pd\n",
- "import numpy as np\n",
- "from sklearn.linear_model import LinearRegression\n",
- "from sklearn.model_selection import GridSearchCV\n",
- "from sklearn.pipeline import make_pipeline\n",
- "from sklearn.preprocessing import PolynomialFeatures\n",
- "import matplotlib.pyplot as plt\n",
- "from autora.skl.bms import BMSRegressor\n",
- "from autora.synthetic import retrieve"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 22,
- "id": "343e2f03",
- "metadata": {},
- "outputs": [],
- "source": [
- "def show_results_complete(\n",
- " data_: pd.DataFrame,\n",
- " estimator=None,\n",
- " show_results=True,\n",
- " projection=\"2d\",\n",
- " label=None,\n",
- "):\n",
- " \"\"\"\n",
- " Function to plot input data (x_, y_) and the predictions of an estimator for the same x_.\n",
- " \"\"\"\n",
- " if projection == \"2d\":\n",
- " plt.figure()\n",
- " data_.plot.scatter(\n",
- " \"S1\", \"S2\", c=\"difference_detected\", cmap=\"viridis\", zorder=10\n",
- " )\n",
- " elif projection == \"3d\":\n",
- " fig = plt.figure()\n",
- " ax = fig.add_subplot(projection=\"3d\")\n",
- " ax.scatter(data_[\"S1\"], data[\"S2\"], data[\"difference_detected\"])\n",
- " if estimator is not None:\n",
- " xs, ys = np.mgrid[0:5:0.2, 0:5:0.2] # type: ignore\n",
- " zs = estimator.predict(np.column_stack((xs.ravel(), ys.ravel())))\n",
- " ax.plot_surface(xs, ys, zs.reshape(xs.shape), alpha=0.5)\n",
- "\n",
- " if label is not None:\n",
- " plt.title(label)\n",
- "\n",
- " if show_results:\n",
- " plt.show()\n",
- "\n",
- " return"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 22,
- "outputs": [],
- "source": [],
- "metadata": {
- "collapsed": false
- }
- },
- {
- "cell_type": "code",
- "execution_count": 28,
- "id": "5bfd6747",
- "metadata": {},
- "outputs": [
- {
- "data": {
- "text/plain": "",
- "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZIAAAGlCAYAAADQ/XDvAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOz9d5hj933fj77OQe/AANPrzvbetOTuklSXaIkqjkpiWbYluSiOZcfJ9S/X1859bOd5Epc40e+n+Bcztq4tyUpk/6Jm2bKtZoukKBaRy51tszu97fRB78Ap9w/sAYEZzAwwA+xgyfN6Hj3izgAH3wFwvu/vpwuqqqro6Ojo6OjsEHGvF6Cjo6Oj82CjC4mOjo6Ozq7QhURHR0dHZ1foQqKjo6Ojsyt0IdHR0dHR2RW6kOjo6Ojo7ApdSHR0dHR0doUuJDo6Ojo6u0IXEh0dHR2dXaELiU7D+fznP48gCExPT+/1UurKxz/+cQYGBvZ6GTo6e44uJDqvO4aHh/md3/mdPRW23/3d3+Wv//qv9+z1dXTqiS4kOg3np3/6p0mn0/T39+/1UoCCkPyH//AfdCHR0akTxr1egM5rH4PBgMFg2Otl6OjoNAjdItFpOJViJAMDA7znPe/h2Wef5aGHHsJqtTI4OMhf/MVfVHzuM888w7/8l/8Sv9+P2+3mZ37mZwiHw2WPFQSB3/md39nw+gMDA3z84x8vXu/DH/4wAG95y1sQBAFBEHjqqae2/Bv++q//mhMnTmC1Wjlx4gRf//rXKz7uv/yX/8Lly5fx+/3YbDbOnz/PV77ylQ3rTCaTfOELXyi+vra+mZkZfumXfonDhw9js9nw+/18+MMffs3Fl3ReW+gWic6eMT4+zoc+9CF+7ud+jo997GP8+Z//OR//+Mc5f/48x48fL3vsL//yL+P1evmd3/kdRkZGePLJJ5mZmeGpp55CEISqX/ONb3wj//pf/2v+23/7b/zmb/4mR48eBSj+fyW+853v8MEPfpBjx47xe7/3ewSDQT7xiU/Q09Oz4bGf+cxneN/73sdHP/pRcrkcf/VXf8WHP/xhvvnNb/LEE08A8MUvfpGf//mf56GHHuKTn/wkAPv37wfgpZde4rnnnuMnfuIn6OnpYXp6mieffJI3v/nNDA8PY7fbq/5bdXTuG6qOToP53Oc+pwLq1NRU8Wf9/f0qoD7zzDPFn62srKgWi0X9tV/7tQ3PPX/+vJrL5Yo//8//+T+rgPqNb3yj+DNA/e3f/u0Nr9/f369+7GMfK/77y1/+sgqo3//+96ta/5kzZ9TOzk41EokUf/ad73xHBdT+/v6yx6ZSqbJ/53I59cSJE+pb3/rWsp87HI6yNW32fFVV1eeff14F1L/4i7+oar06Ovcb3bWls2ccO3aMxx57rPjv1tZWDh8+zOTk5IbHfvKTn8RkMhX//a/+1b/CaDTy93//9w1d4+LiIkNDQ3zsYx/D4/EUf/6Od7yDY8eObXi8zWYr/nc4HCYajfLYY4/xyiuvVPV6pc/P5/MEg0EOHDiA1+ut+ho6OvcbXUh09oy+vr4NP/P5fBtiHwAHDx4s+7fT6aSzs7PhsYOZmZmKrw9w+PDhDT/75je/ycWLF7FarbS0tNDa2sqTTz5JNBqt6vXS6TS/9Vu/RW9vLxaLhUAgQGtrK5FIpOpr6Ojcb/QYic6esVkml1rn6c+yLNf1epvxgx/8gPe973288Y1v5I//+I/p7OzEZDLxuc99ji996UtVXeNXfuVX+NznPse/+Tf/hkuXLuHxeBAEgZ/4iZ9AUZQG/wU6OjtDFxKdB4KxsTHe8pa3FP+dSCRYXFzk3e9+d/FnPp+PSCRS9rxcLsfi4mLZz2oJzmu1L2NjYxt+NzIyUvbvr371q1itVr797W9jsViKP//c5z634bmbreErX/kKH/vYx/iv//W/Fn+WyWQ2/F06Os2E7trSeSD40z/9U/L5fPHfTz75JJIk8a53vav4s/379/PMM89seN56i8ThcABUtTl3dnZy5swZvvCFL5S5lr773e8yPDxc9liDwYAgCGWvNz09XbHw0OFwVHx9g8GwwSL7oz/6o/tmVeno7ATdItF5IMjlcrztbW/jn//zf87IyAh//Md/zKOPPsr73ve+4mN+/ud/nl/8xV/kgx/8IO94xzu4du0a3/72twkEAmXXOnPmDAaDgT/4gz8gGo1isVh461vfSltbW8XX/r3f+z2eeOIJHn30UX72Z3+WUCjEH/3RH3H8+HESiUTxcU888QSf/vSn+bEf+zF+8id/kpWVFf77f//vHDhwgOvXr5dd8/z583zve9/j05/+NF1dXezbt4+HH36Y97znPXzxi1/E4/Fw7Ngxnn/+eb73ve/h9/vr+G7q6NSZvU4b03nts1n67xNPPLHhsW9605vUN73pTRue+/TTT6uf/OQnVZ/PpzqdTvWjH/2oGgwGy54ry7L667/+62ogEFDtdrv6+OOPq+Pj4xvSf1VVVT/72c+qg4ODqsFgqCoV+Ktf/ap69OhR1WKxqMeOHVO/9rWvqR/72Mc2pP/+2Z/9mXrw4EHVYrGoR44cUT/3uc+pv/3bv62uv9Xu3LmjvvGNb1RtNpsKFNcXDofVT3ziE2ogEFCdTqf6+OOPq3fu3Kn4N+joNAuCqtY5sqmjU0c+//nP84lPfIKXXnqJN7zhDXu9HB0dnQroMRIdHR0dnV2hC4mOjo6Ozq7QhURHR0dHZ1foMRIdHR0dnV2hWyQ6Ojo6OrtCFxIdHR0dnV2hC4mOjo6Ozq7QhURHR0dHZ1foQqKjo6Ojsyt0IdHR0dHR2RW6kOjo6Ojo7ApdSHR0dHR0doUuJDo6Ojo6u0IXEh0dHR2dXaELiY6Ojo7OrtCFREdHR0dnV+hCoqOjo6OzK3Qh0dHR0dHZFbqQ6Ojo6OjsCl1IdHR0dHR2hS4kOjo6Ojq7QhcSHR0dHZ1doQuJjo6Ojs6u0IVER0dHR2dX6EKio6Ojo7MrdCHR0dHR0dkVupDo6Ojo6OwKXUh0dHR0dHaFLiQ6Ojo6OrtCFxIdHR0dnV2hC4mOjo6Ozq7QhURHR0dHZ1foQqKjo6Ojsyt0IdHR0dHR2RW6kOjo6Ojo7ArjXi9A5/WFqqrIskw2m8VgMBT/J4r6mUZH50FFFxKd+4aqquTzeSRJIpvNFn8uiiJGoxGj0agLi47OA4igqqq614vQee0jyzL5fB5FURAEgVwuhyiKqKqKqqooioKqqgiCgCAIurDo6DxA6EKi01BUVUWSJCRJAkAQhKJlIghCxcdrogIQDAYxGAy0trYWhcVoNFZ8ro6Ozt6gu7Z0GoaiKEUrBChaG5pIaBZIKYIgYDAYiv8Oh8MYjUa8Xi+5XA5BEBBFsSgomrjowqKjs3foQqJTdzSrIp/Pl7mr1j+mms2/1NW1/trrhcVkMhVdYbqw6OjcP3Qh0akrmtvq5s2btLW1EQgEdr2pl3pf11ssmwnL+hiLLiw6Oo1DFxKduqFt6LIsE4/H8fl8u97At3t+qbBogqMoCrlcjmw2qwuLjs59QBcSnV2j1YZIkoSiKIiiWBYLqcf1q0ETB11YdHTuL7qQ6OwKzZUlyzJAUUS01N7dshtBqiQs2v+y2Sy5XK64Zl1YdHR2ji4kOjtGO+mXWiGlbCYAtWzS9bRsSoP+BoNhg7CUWiwmk6koLJX+Nh0dnVfRhUSnZjRXlpaVVWmj3U4AatmYG1XqtJWwZDKZ4mN0YdHR2RpdSHRqQlEUJEna4MpaT70sifu5YW8nLBMTE7S3t+P1estcYbqw6Lze0YVEpyqqqQ0pZS+C7fVmvbBEo1H8fj+KohQtFlEUN8RYdGHReb2hC4nOtlRqc1JNWu5eB9sbgVb8WGqxKIpCNpslk8nowqLzukQXEp0tKa0N0eIF1VCLAKTzMpNrKdJ5Gb/DTH+LDfEB2HjXC6omLLIsF1vll8ZYSvuE6cKi81pCFxKdimxWG1It1QrJXDjN31xfZiGaQVXBZBA52unkfSfbsZsNTWeRbIUmEJrYlgqLJEnF31fqE6YLi86DjC4kOhvYrDakFqoRgJyk8M0by8xHMwy02DAaRJJZiaG5KAGHibcfad3x39AMbCYskiQVux9rwlLaJ0xvma/zoKELiU4Z29WGVEs1QjITSjMfzdLnK4gIgMNixGM3cX0+zhsP+B8oi2Q7dGHRea2iC4kOUF1tSC1UIwBZSUFWVEyG8texGESykkJOVnb8+o2g3oK2nbCAPj1S58FAFxKduriy1lNJSBIZiZdnIwwvxECV6fJYsZpEImkJn91UfFwwledgqx2H2UDwNWSRbMdmwlLa2VifHqnTjOhC8jpHlmUWFhbweDyYzea6BX3XC0kiI/GFF2YZXoxjNYnIssKtxQQ2s4F0LksyK2E1GYik8zjNBi4Ptrzug9CVhEXLoltcXCSZTDIwMFAmLPr0SJ29QBeS1ymltSHXr1/noYcewmKx1O3664XklbkIt5fiDAbsmAwiiiKTysrMxzI81O8lksqTzMmc7HJxod/LgVZH2Vp1ylvm53I5UqkUwKYWiz49Uud+oQvJ65BKI3Ab4f/Xrg8wupzAbBAxG0W0l7KZDagqOC1GfuJ8F5KiYjKIG66jsxGtu0A1Q7706ZE6jUYXktcRpRtNaVZWvVq+l7J+szIZRJRNXsMoFk7S64PupetuFpplE65m3r0+PVLnfqELyeuErQLq98MiOd7l5upchHhGwmkpfO1CqTxWo1jmxqp0nWYSkmahmpn3+vRInfuFLiSvA0rbnFTKyBJFsWzTrweCICArKtF0HrvZwOkeNxOrLbwwFWY+kkFRFOxmkTcd9LO/1b7ldXR2jz49UqeR6ELyGqbaNif1PvXLisqVhTQvzsQxjo3gthl5dL+f95/u4HSPhzvzYZYWFxgM2DnVaURVFChxyVT6O3TKqcYi2YqthEWfHqlTK7qQvEappTZkvRtqt3x/ZJV/GIuDotDrFQkmcvzvK/OkczLnWsEZHuViTwBVlRkeHkaSJDweDz6fj5aWFpxOZzHlVd+0KrNbIVlPqbBUMz1SSzXWOxvrgC4kr0m0CvVq25zUM9iezEo8PbaG1SjiMYLXZsJrM7EUzfC3VyaQ2tNcOHMcv99ffM1UKkU4HCYcDjM7OwuA1+vF5/MVrSmdjTRyA9enR+rUgi4kryFKa0NqaXNST9fWWiJHNJ3HYzHAvRYn+bxENrZGJKWy761n6OjwF1uACIKAw+HA4XDQ09ODqqrE43HC4TDBYJBwOAzArVu38Pl8+Hw+bDZbXdb6IHO/3X3bCUskEiGdTtPb26vPYnkdogvJa4T1tSG13MD1DLY7LAbMRgOZtIoFlWQyyerqGpjtdLQ5CXicxcdulsLqdrtxu9309/czPz/P/Pw8NpuNxcVFRkZGsFgsRVHx+Xx1LaR8UKi3a6tW1gtLOp0mEonQ3d1dZrGsb5mvC8trE11IHnBqHYFbid1aJKqqspbIoagqrU4LJ7vcfOd6FCdZ0ukMTm8LaxmBU50uOty1bfqaz35wcBAASZKIRqNFN9jw8DAOh6MoKl6vF5PJtM1VXxs004asWcD69MjXJ7qQPMCsD6jvtDfVboLts6EUX7u6yPhqAkWF/hYbjwy46bZkmImpOD1eBNnA6R4nHzrXvWvRMhqN+P1+/H4/UGgPosVXJiYmSKVSuN3uorB4PJ6yIr3d0EzZY3ttkaxn/Xr06ZGvL3QheUDZrjakFnYabA8lc/zJM9PMhVO0u60IAgzNBLk2NstPHHdwWRXoHtyP125iMODAIO5M5LZam8lkoq2tjba2NgAymUxRWG7fvk0ulyvLCHO5XK+JbrmaBdAsaIkdm6FPj3xtowvJA8ZuR+BWYqcWyZXZCLPhFAdanYgChMNhnEqSmMnBguTkvDfDhQHfrtdWC1arlc7OTjo7O1FVlXQ6TTgcJhQKcffuXRRFKWaE+Xw+nE7nA7lRNbtFsh21DPla7wrTaT50IXmAaMTcEO06O7FIlqIZREFAUSRWVtcA6OrqQIjlWYpLqJ76uIJ26lISBAG73Y7dbqe7uxtVVUkkEkWLZWpqClEUywL3NputqTbozWhGIdnNJq9Pj3yw0YXkAUFRFObn57Hb7TgcjroXo+1ks/Y5zGQyWRYWwrichYC3IAhk8ln8DjOqmqvL2uqFIAi4XC5cLhd9fX0oikI8HicUCrG8vMzo6Chms7koKi0tLa/LjLCdoChK3T8rfXrkg4MuJE1O6QjcyclJent7cTqd2z+xBmpxbeUkhWg6j8Ms4sqsYMinSFuddLg9SIrKUiyD02rkbLcTNZGsy/oaFeQWRRGPx4PH42Hfvn3Iskw0Gi26wW7fvo3dbi8KSzNZAc20Fmh8zGYzYdE6G4MuLHuJLiRNjKIoSJJU5spqxKZazXUVReW7d1b47vAKwUSWfCrOqYDIL73zON+6E2YhkkZRIeA08/7TnRxw5pmKV75mLQHU+7lZGgwGWlpaaGlpAQoZYZFIpOgGy2Qy3Llzh9bW1mKqcb0ywmql2YREUZT7mna91fRIzWKJx+PY7XacTqc+PbLB6ELShGxWG9KILr1QnUXyD7eW+dKP7qLKeZRsEowWrkQtdITz/H/ffZjJtSSyAvsCdpwWI8vLy3UTvb1KuzWZTLS2ttLa2grAc889R1tbG7lcjpGREbLZbDHVuKWlBbfb/bo9Ae+1sFWaxTIxMUFXV1fx54KgT49sFLqQNBmlbU6g/PS+VxZJOifzneEV8tk0DiGLr9WH3WYjmMzx7HiQx4+1c6zTXfacerVdaaZ5JIIg0NLSgs9XyERLp9OEQiHC4TDz8/PIslzMCNOaTzZqo9rrjXs9zbYe7Xuj9QHTp0c2Fl1ImojS2pBSs12jkRbJVpv17GqU2aU1nCZob2vDaCx8bbw2EzOhFEuxDO3rKtbrKSTNis1mo7u7u5gRlkwmixlh09PTCIJQlhFmt9vr9vc028a9XR3JXlC6pkoWiz49sn7oQtIEVFsb0kgh0eIw61laWuL29ZvYrRYcTmdRRABSORmLyYDbuvFrtJ2Q1HKDNotFshWCIOB0OnE6nfT29hYzwsLhMKurq4yPj2M0GovWis/nw2q17vo1m4VmEzbYWtxKhUUf8rV7dCHZY2qpDWmUkKx3bamqyvBijO9dGSUSjfKW0/t5i0vgO7dXMBtFXBYj6bzMUizDuT4vA/6NEw5fixZJLX9PaUbYwMBAMSNMc4PduXMHq9VaZrGYzeaGrOV+0GyV9lC9lVTafBJ0YdkJupDsIdoXtZa5IY0OtiuKyp89O8E3rsySlVXsNge3X1zj0f1+Lu3zcX0hznIsh9UkcrrHw89e7q+47u2EpJaNsNk2zZ2wPiNMkqRiRtjMzAy3bt3C6XSWNZ8stf7W02wWQL3rSOrBTt1tWwmLPj2yMrqQ7AGltSG1zg1ptEXy3aFJvvqjaTwOC4cCHgRBJJrO8/TYGv/2bft53+kuVhNZvDYTh9qciJv0z3otBtvridFoJBAIEAgEAMjlcsX4ytjYGJlMBpfLVXSDud3uDanGzbRpNZuwQf3iNqXCUml6ZKmwvF6nR+pCcp/ZTZsTURQ3jWXsBk2ghoeH+d7QAkaLlZ5Wb/H3HpuJUDLHlZkIv/LW/exvdVR1zdeaa6uRmM1m2tvbaW9vByj2CAuHwywsLGwYR9xsFkCzB9vrSWkmpT49soAuJPeRWkfgrkcUxWKxVT3J5/MEg0HsdjttXd1MTMc2vrYgkM5Xbw3V05J4LVok22Gz2bDZbHR1daGq6oZxxNp3SZZlfD5f3dvm1EqzWSSKoty3uI0uLLqQ3BfW14bs9AvUiBjJ0tIS09PTWCwWLl68SOLOGs9Px8hJCmZj4SbMywqyonCsy1X1dXWLpH4IwsZxxC+99BJ2u51gMMjExEQxI2yvxhE3W7Bd++7txZq2EpbZ2Vni8TgHDhx4TU2P1IWkwawfgbub+Qr1FBJZlhkZGWFhYYHOri4i8RSCIHB5fws/GF/jxnwMq8mAAKTyMsc6XLzxgL/q6+sWSePQUlcDgQAdHR0oilLMCKs0jrilpaWmjLCd0IyuNtgbIVlP6T2vpflr9/JrZXqkLiQNorTgaa/nhqwnmUxy7do1VCDqPchfvrTISjTN1+Zu8sSpdn7t7Qf47u1VXpwKo6oqFwZ8PH68Dbet+l5K9aojeVBupL2ktBU+bD+O2OfzbZkRthOa0bUFzSEkpciyvKGZ5FbTIx8UYdGFpAE0cm7IboVkaWmJmzdv0t3dzctRB1/+0QKKJCECk8Ek//37U/zco/18+Hw3Hz7fvavX0i2SxrHVxr0X44ibLdiudYdoto1XE5JSNutsXCosH/nIR/jYxz7GRz7ykb1Y9rboQlJn6jkCdz276bVV6so6efIkRoePbz1/HZtZxGU3k0rlafHZWIxm+OuhRd52uBWbeeebS736gjXbRtAs66nFArgf44ib0SJpJmHTqCQk66kkLEtLS3W3IutJ867sAUM7QSwtLTExMcHDDz9c9xtrpxaJ5soSBIHLly9jt9t5ZTZCLCPR7bEg5fNoe77XbiKUyrEQzVSV5rsVr6cWKXvBTr9fjRhH3GzB9mYWklrjVYIgkEqlsNs3dpBoFnQhqQPrXVlaE7h6sxMhWVxc5NatW3R3d3P48OHizeW0GDEbBLKSglEAKGzWOUnBbBBxWnbn6tD+/s1Oqloh13Y3RzOdcpuJeomrINRnHHEzBtubUUgURanZjag1BHW5qs+avN/oQrJL1teGGI3GhlSfQ21Cst6VpRW6aRxodXCwzcn1+RitdhFVhUxeJpjM8dgBP+3u+jQUrCQkS0tL3LhxA0VRsFqtxeptn89XcTiSbpFspFGuJEHYOI44FosRDoc3jCPWPjeLxdKUrq29Gjq2FZrLu1aSySQOx+48BI1EF5IdUlobUtrmpFH9sKB6IankypIVlWt3o9xZSmA2Cjw84ONTb9rHH353nPHlGOmMQlrMcbLLw889MrDrtZYKiYaiKIyMjDA/P8+JEydwOp3FmelTU1PcvHmzbFCUx+N5zbZIqQf3Y+MWRRGv14vX690wjnhubo7h4WHsdjuKohAOhzGbzfd1UuJmNKtFUk2MpBKpVEq3SF5rVBqBW1qA1Ig2JtrrbCcklVxZ2bzMf/3eOD+cCJGXC8//y5fu8vFL/fzhB47z9PBdhu5M8NaLhznd48FkqF9/Ik0EMpkMQ0NDyLLM5cuXMZvN5PP5sn5T2Wy2OCjq1q1bSJKE2+0uuluaoXq7WdgrC6DSOOJwOMzNmzeZm5tjdHQUl8tV1nxyLyyD15KQ5HI58vk8TqezQavaPbqQ1MBmI3BLaaRFslUdiSzL3Llzh8XFxQ2urL+/tczTY2u02M04LIVpcSvxHJ97boYTXS4e6vdgCgm8od9X17VC4T0LBoNcu3aN1tZWjh07hsFgKFb5l2KxWMqCwMlkkpWVFSKRCFeuXEEUxaI7paWlZdfzPB5kmkXUTCZT8SBw/vx5VFUtxldKxxGXNp+8Hxt8swrJTlxuiUQCQBeS1wLrA+qb5ahraa+N+CJvJlLJZJKhoSFEUSy6skr5/sgaBkHEYTEW197mMjMXTvPCVJh3H3LVXfy092ZqaoqZmRmOHj1KT09PTc933hukNT09zWOPPUYsFiMUCrGwsMDIyAg2m63MV9/M6ZH1ppliEqVdG8xmMx0dHXR0dBR7TWlWppYRVppq3KhxxM0qJDuJkSQSiWJSRLPy+rnzdkEttSHal6RRQrL+JLpZVlYp8ayE0VC+Zu1vyOTlhsyC1yyOhYUFHn74Ydxu9zbP2BpBEIq++sHBQSRJKiuyS6fTxbbrLS0t9+3ku5c0i5Bo35316xEEYc/GETezkNRqkWipv83492joQrIF1Y7ALUX7kjRqboh23a1cWes52+Phb68voagq4r31p/MyBlHgYJuz7gHtaDTK1atXgYK7YzdBws2yv4xGI62trbS2tgKUnXy1jDCv11u0VvY6vlJvmskiqbZBomZlbjeOuDSLb6fuy9eSkDRDfHA7dCHZhJ22OSm1SOqNJiSJRIJr165t6spaz/tOd/LSTJjZUBqnxYCsqGQkhYf6fTw04EPKZeqyXlVVuXv3Lnfu3GFwcJCxsbFdu5uqvXmsVitdXV3FtuvJZJJQKFTWHbc0vmKxWHa1rr2mWWIkUO7aqoVaxhG3tLTg9XqrLubbaZptI9Fc3rUKSbOn/oIuJBWpdQRuKVrspBGZW9qN8cILL2zpygIIJnKk8jKdbgsDfjv/4b1H+frVRV6ZjWAxibz1cCs/froTs1FEzgvF/j47PfXIssytW7dYW1vj3Llz+P1+xsbG9qTfVunJV6uF0FJW5+fnuX37drGJobZBVSt4zXIqbDaLpB59rbYaRzw1NUUymax6HHEzWiSa4OoWyWucnY7AXY/BYKi7RSLLMqOjowAcO3aMrq6uio9bjmX5H89M8fJsBFlR6XBb+MmHenj7kTZ+7R0HKj5nuyr07dCC/QaDgcuXLxfdEVu5zO5n99/13XFLmxhqY221zKKd9praC5plY2lUVXs144hLm0+WjiNuRiEp9W7UQiqV0i2SB4WtakNqpd4pwNpGra1Hu7HWk83L/M43b3N7KY7basJmEpkNpfn09yawmwxc3l95nkhpc7haWV5e5saNG/T09HDo0KGym6RZZ5Ksb2JYqddU6SyPegWA60kzubbul3VUyzjiTCbTdOnhOxUSzSJpZl73QlJNbUit1FNISrOyDh48yPe+971Nr/3CVJjR5QTtLmtxuqHdbGQ+kuarVxc3FZJKVejboSgKo6Oj3L17lxMnTtDR0VHxurvd8O7HBrV+rG0ikSAUCrG2tsbExAQmkwmfz1e0VpuBZnNt7cXpf7NxxFpsDApiox0K9to9pAXaa12D5tJrZl7XQrJ+BG695hfUo7q9UlaWtilvtjnPhlIARRHRsJsNTK4lN918ak0QyGQyXLt2jXw+z6VLlzY9LW31Xtb6Pt+vE3hpr6n+/v6yliCyLHP9+nUcDkfRDbZXldvaWpuBZmjYKAjl44hv3ryJyWTCarU2zTjinfb/SqVSupA0K6W1IaW9/+vBbi2SzQoMt+vl1eIwowKyomIQX72xM3mFTrd105u9FoskFAoxNDREIBDg/PnzWwap6zElsfQxqqqSziuYDEJd2rhUQ2kAeHl5mSNHjiDLMqFQqFi5vdtZHjvh9ejaqgVVVbHZbPT19dHf398U44hfqw0b4XUoJDupDamV3QjJ4uIiN2/epLe3d0PMYbtrP7LfzxdfnGMpmqHVZcFoEIimC66YJ05tdD1paH//VmtWVZWpqSkmJiY4fPgwvb29275v9YyR3A2nGV3LsJbMYzII7A/YOd7pwmq6v9aANn1Qi6+UulPm5uYAyjanSi3X60Ezbd7NGNhev6bNxhGHQqH7No54pw0bE4lEUzdshNeZkGi1IXfu3EGWZY4ePdqQm3Enri3NlbW0tMSpU6c2LTAsFZJnxtb42tVFZkMpun1W3n+6k9/4sYN8+nsTLEQySIqK02Lgg2e7eO/JrYVkq00/n89z48YNYrEYDz30EB6Pp6q/qV4xklAW5ibCZBUBn91ETlJ4cTpCLCPzpoMtxSLLvWD9LA+tm/Hq6ipjY2OYzeaiRePz+ep66m0WIWkmUdPYTtz2YhzxToUkmUzS2dm5q9duNK8bIVlfG9Ko4VNQu0VS6sq6dOnSlgWG2rX/5voin/nHCXKygsVoYHUuxs35OL/4xgE++1NnGbobJZ2TOdjmpMu7ffbKZg0hY7EYQ0ND2O32YtfeaqmXRTKfEDDaJA60v9pmxXEv7nO0w0HHLmenVMt2f4sgCLjdbtxud7HATquDmJmZ4datWzidzqKo7Ca+0kybd7NNR4Ta4xHbjSPO5/NlIw524sLcTYykmftswetASCrVhjSy1TsUNvtqr7+dK2s9giCQykp84fnZe3Uir26iwWSO//Wju7zreDsPDdTWybdSv627d+9y+/ZtBgcHGRwcrHnjqoeQKCrE8jBgKf+q2swG8jGVaFqiY3dtvBqGwWAoO/VqdRChUIg7d+6Qz+c3xFeqeY836221VzRDsH09u3W3VRpHrLXgmZubQ1XVmscR78Yi0YPte8hmbU4aUTBYSjXXL3VlnT59ungS2g5RFJkKpggl87ht5QOE3FYj4VSe0ZVEzS3hSzd9WZa5ffs2y8vLnD17dtO6lVquuVMMooDFABmp/P2UFBVBAIuxuU7CW1FaB1G6OWl+eqAoKlp8pRLNFGiH5rKONOoZtykdR9zT07PjccS7CbbrQrJHrB+BW/qh3g+LZCshWZ+VVUsaoiiKmAwColjIzipFVgpNGS3G2k892ppTqVSx+LHWta1np0IiKSqL0QypnIzTYqTdphKXFCKpPB6bEUlRmY9kaHdZ6PI0V9FZtazfnLQGhqFQqDjS1mKxlMVXtMmDzWiRNKNrq1Fr2uk44t1MR9SF5D6zvjakUlbWXrq2FhYWuHXrVtWurErX7vGYONjq5MZCDItRxCAKyIpKOJVnf6uDY521Z3gIgkAoFGJycnLbPl61XLNWIYmm83x/NMhsOI2sqBhFkVRa4A0H7CwkZKaDaQyiQKfbwqV9vg01Mw8qpQ0M9+3bV5ZVpI0h1trka8kOzSIkr3WLZDsqjSPWYmOl44hFUcRisZDP56seR6w1INXTf+8jWm1IaTfSSl/wvbBIdurKqnRtVJVfe8cB/v03hlmMZoHCZt3utvDv3nmwrIakGrT2MOPj45w8ebJuGSK1ComqqvxwIsz4apK+FhsWo0g6L/P8JOQkhfedbCeSljAZBFqd5vtWS7IXrM8qymazZfEVgBs3buD3+xs6IKoamjXYvldrWh8by+fzRCIRJicnicVi/OAHP6hpHLGe/nufKG1zUk1tSC3B8J1gMBjKWmnsxpWloaoqwWSOjFzIrjrY5uRPP3qWp0ZXC24et4W3Hm6lxVFbemk2m+XatWvIssyxY8fqmmZYq5AEk3lmw2k6PZZi7MNmMuCxCEyFMjwiCPS33N9q5PXs1WZtsViKkwdzuRzPPvssfr+faDTK9PR00UevuVLuZ9X2azHYXk9MJhOtra2srq4WW7rUMo74fsZIfv/3f5/f+I3f4Fd/9Vf5v/6v/6vq5z3wQrKTuSGNDraXWiS7dWUBPD8Z4rPPTjO5lkLK57jQu8CvPxGgw2Plx89U7gJcDeFwmKGhoWJjwno3uatVSHKyci+dudzsN4kCOUkhJzXuM3uQ0L7fPT09xaptzUevVW1brdayAVHVulJ2wuvdtVUtWoyk9FCgJV1owlI6jnhkZITu7u771v33pZde4k/+5E84depUzc99oIWklhG4pTTatWUwGJAkiZs3b7K8vLwrV9YrsxH+/TeGSeVkHBYDeRWenU6w8tWb/OlHzxTnsNeCqqpMT08zPj7OoUOH6Ovr4/nnn2/I3PZahMRrM+GyFDLP2lyvDp5KSNBtNeCxPdBf17qx/j1d76PX5niUxldKayA8Hk9dN9lm27QVRWlad9t6F1Zp0sX6ccTf/va3+bu/+zsMBgP/9t/+W9797nfztre9jUOHDtVduBOJBB/96Ef57Gc/y3/8j/+x5uc31ztdJVpAPZfL1Swi0HghyefzBINB4vE4ly9f3rGIAPzVS3dJ5WQCTjN2sxG7ScBtNTC5muSp0bWarydJEkNDQ8zMzHDhwgX6+/u3rWzfKbVe0242cKbHTSqncDeSIZzKMxdOo6gCpzqdr+mYSC1sl7WlzfE4dOgQDz/8MI888gjd3d1kMhlu3brFM888w9DQELOzsyQSiV1/7s1mkWgHomYTkmqytrShbL29vfz5n/85V69eRRAEzp8/z1e/+lVOnz7N7/7u79Z9bZ/61Kd44oknePvb376j5z9wR7ydjsAtRXM9NeIGWFhYYHp6GovFwsMPP7zrL/PwUhyzsfxvNN77z7GVZE3XisfjXL16FZvNtqFKfbPK9t2wnZBkJYVbSzFuLybIyyr7AnZOdjl5x5EAw4sJYhmJLo8Vfyscan0w03wbSbXfXYvFUlZcp514NYtFFMWyMcS1ujh1IamOndSR5HI58vk8v/Vbv4XBYCCTyZBOp+u6rr/6q7/ilVde4aWXXtrxNR4oIdmqNqQWtFOBLMt1a8xWWsTX19dHNBqtyxc54DQTSuZe/UFxcy70naqW+fl5hoeHGRgY4MCBAxveu0qV7btlKyHJSRLfvDbPaDCHw2zAIAo8NxliJpji/ac7ONLhRJJVTAaBZ+PjTbVR7TW7qSMpHUPc29tb1hV3YWGBkZERbDZbWXxlu3ukGV1b0JxCstN57dpnbbVa6xrLnJub41d/9Vf57ne/u6vrPhBCUlobspsRuBql4zjrQSKR4Nq1a8WsLO3GrAfvOdnBp5cnSGQkHBYDqqoSzaq47RbefrR12+eXph2fOXOG1tbKz7mfrq10Os3f/+AKT0+mCNhEBJcDq8OBz2tjJpLh1mKcR/e3YDa++hk3WzX3XlJPC6C0IntwcBBJkorWysTEBOl0uli/0tLSsiGjqN7rqQeN6uq9W3YiJI2e137lyhVWVlY4d+5c8WeyLPPMM8/wf//f/zfZbLaqNTe9kNRzBK6GdiPUI05SKSsrHo/XTaR+/HQnU2spvnljibVEDllWcZlFfvNdh+j2bp3iWUuVer3HA0NlIQkGgwwNDZEzemnv8NDrNpBKpoiEwywtLZJQzLysJDnmo9hxtdk2hL2mkaJqNBppbW0tHjgymUyxx9SNGzdQFAWv11u0WBwOR9MFtpvNQtLYSdPGRhcjvu1tb+PGjRtlP/vEJz7BkSNH+PVf//Wq19u0QtKIEbgaWr+t3QhJqStrfVZWPetUjAaRf/fOg3zgbBc35qOEVpc5HjDy8OGtrZHV1VWuX79OZ2cnR44cqaoZZCMtktJMsSNHjuCWHdy5vojNZsNutxNoDSBLMqOLEYzkGR4eRpIkvF4vsiyTSqWqbmrYKJrJKrpf74PVaqWrq6tsDHE4HC6bOmgwGLDb7WSzWSwWy/YXbTDNKiQ7iZGsd23VG5fLxYkTJ8p+5nA48Pv9G36+FU0pJOsD6vUUEY3dbPbrXVnrT/o7rVNRVZWXZyI8PbZGVlI41+flrYcCWEwG9rc62N/qYGwsSSaT2fIa4+PjTE9Pc/z4cbq6qqszaWSwXZIkXrl2g1t3I3i69jOZtuGxiXisRpZiWTrcFgRBICmpWKw23nJygGOdTpLJZPE0fPv2bSYmJho22+NBYq9cSZV6TEWjUUZHR4nH4/zwhz8sDofSxhDXezhUNTSjkGgH42azSOpF0wmJoigsLy8jyzKBQKBhN8xOLZJqCgx34iZSVZX/8x8n+PKVeSRFRQW+MbTIN/q8/JcPncB5r15kq6B4Lpfj2rVrpNNpLl68WFNbhUYF27PZLN9/9nmeX4KUOYA4n0aZS+O0Gtjns7KazDOxlgIErCaRCwNeDnc4y4LCc3NzHD16FCiM+tVme5T67utdG9HMNItlpMVXnE4nDoeD7u7uYmHd2NgYmUymWLF9P8cQN6OQaHvNTmMk95Onnnqq5uc0jZCUjsBdXV0ln89vGhiuB7UKyVaurPXsxNq5Mhvhy1fmMYgCLqsRQShUc1+ZjfC/X57nZx/pL167kkiFw2GuXbuGx+Ph8uXLNZ8EG+HaymazrKyssCwGSJrN7A84ik0WF6JppkMpPnimk0RORlZU2t0WOu9ZJ+vXJghC8aSrXVtrwX7z5k0URXn1JOzzYbfZmm4zqRfNFtzW1rN+OFTpDA+tYru0jYvdbm/I39GMQqLdszuxSJq98y80iZCsd2UZjcYt3Tf1oBb303aurN1cW+OZsSCSohZFBCjUj+TgO7dXNhUSVVWZmZlhbGyMgwcPFgsMa6WewXZVVZmYmCASidDW1sZoxIPHmi/r1NvusjC6nCCakTjbu/Xo3kp/z/raiEQiweTCKk/dXmQuNIbNbOJIp4dTA220+lsa2iJkL2g2Iam0cdtsNrq7u4sV24lEojiGeHx8HJPJVDZ/pV6uymYUElmWd+Siv1/tUXbLngvJ+hG4giBgNBobWnkO1Vskmiurr6+PgwcPVvUF1dxEtZwcs9KrHYvLriUIZPKvrrN0w9fasITDYd7whjfg89U2zKqUelkk+Xye69evk0gkaG1txel0IodU1r9tgiCgoiIp1b3mVmsTBIGcaGEyYyfvNHHQLxKNJ7mxmmQpNEGvdRiPu+AG8/v9983F0iiaxbWlUU3TxtL4Sn9/P7IsF9vka63WnU5nWXxlp2OIdzpAqpHspAMHFA6xukWyBZVG4GpvcqNbmMD27qdaXFmVrq1do1oX0/k+L1+/ukBOUoond0VRkRWVR/f7y66tKAqJRIKrV69isVi4fPnyrrNl6hFs1yrntfnuIyMjABzpdPH9O6u0OtVii/tgMofDbKSnynny2zG+miSSytPfUphM53da6fB7iaTzHN7nQswVTsN3794FqptE2Kw0q2urFgwGQ/H9h1fHEJd2xPV4PGUdcat9jWa1SHY6Znc3B8T7xZ4IyXZtTrSmh41kK7FKJBIMDQ1hNBp31PZ9JwWPbz4U4Hy/lyszEZK5giVSmMlu4SMP9RQfJwgCmUyG559/nv7+fg4ePFiXTWW3wfalpSVu3LhRrJxPZGWCaYUWUeZCv5eptSRjq0lsRpGcomIQ4PI+Dx3u6gRwq7WpqspSLFvmFoRC767VRJaMauBASQrr+kmEWqdcv9+/baZRs2zgzbIOqM/GXWkMsVYYWTqGWDsAVBplW8/11JudCkk6naa3t7cBK6oveyIk2hdgM5/h/XJtVdrod+LKWo/2nK2ERFZUrs5FCCZzHGpzsi/g4L9+6CT/+8o83xleIZOXuTzYwkce6ikWHiqKwsLCAqlUinPnzu2qGeR6dmqRKIrC2NgYc3NznDp1CpcvwN9cX+L63SiLq3HcFgNPmGL8izd0M7wYZ3othd1s4HC7gwFfdT7xatwmFoNIKld++FBUFVQwlgz6EgQBt9uN2+1mYGCgrJJbyzTSTsJaplEzbdrw2rBItqJSR1xN/FdWVhgbG8NisZQF7kvjK80oJDtJ/YXCodZutzdgRfVlz1xbW52A74dra/1r7MaVtR5NIDfbmCdWk/z6124xFUwiK2A2Crz1cCu//cQRPn6pj49f6tvwnHQ6XagIz+VwOBx1FREofB6lw7iqQUs3zmQyXLx4EafTyf/z8l2enwwRcJrxWg0kcgrfuL6E0SDyyH4/j9xz02mxsWrYLH6TyskksxJ2s4HBVgc/nAiRzEo4LEYUVWUxmqXFYaZ9C6tnfSW3lmmknYRLs8WaJTbRLOvQaHRl+3rxLx1lq6WCO53OovhLktR0QrLTuI2etbUL7reQ7NaVtd31S8nLCv+vr9xgNpTGZhIxigJZSeE7wysEHGb+j3ce3PCctbU1rl27Rnt7O21tbcXYQz2pNdgejUa5evUqHo+HS5cuYTQaWYhkuLkQo9NjxWMzsZISsRpFckaR5yaCnO/z7njGeuna8rLCtbsx7iwnSOcUbGaRfQEHh9rszIQyrCZyCAK02M1c6PdgM1V/EizNNFIUhXg8TjAYZGFhAUmSuHHjBq2trbsOCO+GZrNI7veExPWjbHO5XFnhajabxWw2Mz093TRW5W5iJLqQ7JD7ESMRRRFJkuriytrs+pUskucmQ8yF0thNIsZ78zWsJgOyKvON60v80psHsZsLXzgtjXZqaoqjR4/S09NDKBRqyHTHWlxbWifh/fv3s2/fvuJNGk7lSGTloitOEAVURcFjMxHNSCSyEi1Gc/H1allbKdfmY7w4E8FnM9LuNpPMyQzNRTnX6+adR1uJpvMYDSLtLjPWGkRkPaIo4vF48Hg8DA4O8swzz9Dd3U06nS4GhLW+U/d7bvpeb4yl7LWwmc3msomDt2/fJpPJEIvFmJmZKbMq9yq5YqdCoqf/bsNWXzyj0diweSGlrx8MBllaWtq1K6sSmwnJcjSLCsXsJQ2TKJDNy0RSeexmA7lcjuvXr5NKpXj44Ydxu91bXrce693OIlEUhTt37rC4uMjZs2cJBAJlv3dbjdhMBhJZqViJr6qQyEo4zIaiQGrU8tlqa0vlZEaWE/hsxuJ8erNRRADG11Kc6HKzv7UxN54gCMUTrhYQ1txg09PTGAwGfD4ffr+/rnUR69nrjXs9zdS0Ueuj53a7OXDgQNGqLE2usFgsZa127keN0U5iJNrsmFo6VOwVTWuRQH3nhZSSSCS4e/cuqqrWzZW1ns1cW/sCdkRBIK+omA2vbgY5WcFnNxNwmotuI7fbzaVLl8q+6I0Sku0skkwmw9DQEIqicOnSpbIAYCYvIwA9PhuH2h0MzUXp8lpRFJVIRgIk3nQwsGProHTTTOVkMnmFgLN8k3ZYDCxGs6RyMi5r47/WpQHhnp6eYt+p9XURpS1c6uUGa7YYyf12bW2HoijFe6bUqiwdQxwOh4tjiLVWOz6fr66fUyl6jGQP0D5ISZLqLiSaK8vr9SIIQsPM3M02/PN9Xk50ubg+H0NRCnUVOUlBVeEjF7pZWrjLyMgIBw4cYGBgoGK7kPttkYTDYYaGhvD7/Rw/frz4+SxEMvzTnRVGVhKAwIkuF48dCGAURUaW46zEJawGeOeRVh494K947WrR1mY3G7CaRJJZCYvxVTFJZmVsFayeerLVBl4612P//v3FuohQKFTWyVizVnbTHkS3SLZmq6wtbQyxZk1ns9kNn1Np1l693JV6jKRBbPXhiKJY11bssDErK5/PMz8/X7frr2czIRFFgU9/6CT/6R9G+OFEiJyk4rAY+YnzXZxzRJiYCHP+/PlioVa1190tlQRKVVVmZ2cZHR3l0KFD9PX1FT+3tUSWzz8/w2woTcBpRlVVvj+yxlw4zS8+to94tpXbY5OY1RyPnuzY1doUFRZiOZKGFH6HicPtTl6cjgDgtBhJ5mRCyTzn+zz3xRqphvV1EVonY639uslk2lUn42YSkma0SKrdtC0WS1l8JZVKFQP309PTxQOC9jnt9OApy3LNLjTte6PHSHZBPTO3KmVlLS0tNTQzbCsh9DvNfPrDJ1mOZQin8vjMCmPDN8hlTVy6dGnLkZc7ab9SDeuztmRZ5tatWwSDwYrtV16eiTAbTnOo3Yl4bx0+u4nJ1RTX56Nc3u8n5bOQSNSWUryelXiWZ+5K5JajWGx53FYjxzqdXOj1MLqaZDmew2YSOd/v4VzP1j27NJJZiVhGwmQQaXGYiutvFKWdjPv6+srag+ykk3GzubaazULaaR2JIAg4HA4cDkdxDHEsFiMUCrG4uMjIyEixeFXL2qtWHHYSI0mlUqiqqsdIdkO9Mrc2y8qqt8WznmoaN7a7raipCNev3Kg6a0z7fb1v3lLXVjqd5urVq4iiuKmwzQRT2IyGsk3YaBARBJiPFBpu7rZ/V1ZS+MeRNVbTKge8Bvw+G5FUnh9NR3j8aCsfONNZrCNxWLb/Kiuqyq3FOCPLSZJZGaNBoNNt4XyfB4/t/jV1XN8eZKtOxpWquJtt436QXFu1IIoiXq8Xr9cLUIyvrB9DrH1WWx0AdjqvHdBdW1ux3Y2w2+r27QoMdzp8qlo0F9TzkyH+4oU5RpbjdHms/PM3dPPekwUzemRkhPn5eU6dOkV7e3vV14X6V+9qri2tZqWjo4OjR49u+hoem4mcvNEVJisqTouheM3dCMndcJrFaJY2u4DZICIKAi0OM6m8wvBSgqMdTuzm6nuMTa2leGU2ittqotdnJS8rzIYzyIrKmw/5MRn2ZjOs1MlY65KrVXGXusGaTUia0bXVCGGrFF/RDgC3bt1CkqSyNi6lkw13Oh3RYDA0xdTJ7Whqi2Q3Ewy3KzBsdNGjKIo8NRHlMy9MIssqggjBRI6bCzEml+NcdIWQZZlLly7V5AOtpv3KTtB6eF29erVYs7IVp3s8vDQTZimWoc1lQVVhMZrBazdxostdvOZuhCSTL/yNJkN5IoDNJBLPSCgqGKrcv1RVZWw1icVowGcvWB8Wo4Fuj4XFWJa1RI5Oz/YNJBtNpS652il4cnKSdDqN1WpFVVWi0eiedzJuhJt1t9yvFinrDwClEz2npqaK6eAtLS3k8/kdT0dsJmtvM5paSHbi2qq2wLDRQqIKIl+4GkKSVezmV5tSpnIyn39hljOPB3jswsmav1yNEBJJkpieniaXy3Hx4kU8no2xhryscGcpQSSdp8Vu4lCbgydOdPC9O6uMrxaytgJOM0+caKe3pZAavFshcduMGA0CWan8GrGMxOE254ZanC3/RkUlnVewmcq/DyaDiKKqZKTGWae7obSK++DBg2QyGaampoqWI+xtJ2Pt822mzW4vem2tj4Np6eDhcJj5+Xni8TgTExPEYrGi1bJdRuqD0kIeXkOurVJX1pkzZ7adrthoIVlOKgRTcqFYThBABVmRMagyeVUkZevYUTqg9r7VS0iSySRXr14tpkJXEpGVeJYvPD/L+GoSSVYwGkQOtTv4+MV+Tvd4mAomEQSBA62OsljDTk6pqZzMcjyLKAi0OQtTFZ9aUDGk8hisEqFUHpvJwImu2gKQRlHAZzMxF06XrTGdlzEZRJxVpg3v9cnbarXi8XjIZDKcOXOmWGy3tLRUcyfjeqAJyV6/L6U0wzyS0nTwwcFBnn/+edrb28nn88X4itvtLh4C3G73hjU/KBlb0OQWSbUb/U56ZWnB5UadXiwmAwKFym7UwqlfVVWMBiOyrGLZZeuOegjJysoK169fp6enh0AgwPDw8IbHqKrKl6/MM7wYZ8Bvw2oykM7L3JqP85VX5vnkYwP4nZXnJdRa83JzIc6zEyHCqRyCINDusvDQgJdTrUaCskAqL9Prs3Kmx0Nfy/afcSIrMRtKk8zJOMwGujwWlmJZFqIZPDYjOUklnM5zuM2B39mYKvRGoTUG3etOxrpFUh2KohQzvaBQ4Ku5wW7cuIGiKGXtdmw2G6lUqmHjiAGefPJJnnzySaanpwE4fvw4v/Vbv8W73vWumq+1p0KyleujkRMMtetD4750XW4z+7wmJiJ5kGVEsTD5MZ1X8NhNXBqsXCdSDbudHaKqKuPj40xPT3PixAk6Ozs37eG1EM0wspygy2spVqbbTAba3RZuL8VZiec27a5bTft37e+YC6f57p1VVBX6Wuyoqsp8JMPTY0FOeAxcbnPT1tGFw2KoKl13NZ7l6bEgK4mCKCmqSpvTzOF2B6uJHJG0hMkgcK7HzdFOV8NTgOvJZjGJrToZz8zMlNVEtLS0bJlmXi3ad6aZLJJmFJL1WVtWq5Wukhk5iUSCcDhMMBjk2rVr/Oqv/ipHjhxBVVUWFxfp7Oys+5p6enr4/d//fQ4ePIiqqnzhC1/g/e9/P1evXuX48eM1XaupLZKtYiS1urIqXV+7TiPMf1EU+chhA59+OUtSEhEUAUFVsJhEfvuJI7uqwN6NRaKNwk0mk1y8eLGYo76ZOKVzMjlJwWosP7FbTSLRTJ50fnOxr8UiGVlOkMrJHCj2yRLob7ExtppkQVIY7BKrLjZUVJUrc1HWknkG/IWWNIqqMhtKYzdnefxYgExewWQQseywG/FeUu0hYqtOxnfu3MHhcJTVROzE1dqMrq1mFJKt6khKEyz6+vo4cuQIn/nMZ/hf/+t/cePGDXp6ejh69CjveMc7+Pf//t9v6HG3U9773veW/fs//af/xJNPPskLL7zw2hESo9FINput+Lt6tH3XXAONiJPIsszq6ipeknzxp0/xg9ksk2tJ2t0W3nuqkwH/7gbV7FRItFG4DodjQw+vzTb9DrcVr91EMFme1RRM5mixm2lzbZ6auNXmks1mmZiYwGaz4ff7iaSlDZu6IAgYBIGMXFsRXiSVL6QNuyxFS0O85ypbiWeJpiX8jgfLlbWeWjfu9Z2M8/l80Q12584dcrncjjoZN5uQNNJdvVO0NVUr1Farlfe85z2Mj49jsVj47Gc/yz/90z/xj//4jw0bciXLMl/+8pdJJpNcunSp5uc/cK4trYX5btu+C4LQkKLEZDLJ0NBQMaf8YG8HB+s8KXMnQrK4uMjNmzfZt28f+/fv33Djb2aROK1G3nIowNeGFpkJpnBajcQzEirwlsOBLS2rzcRJa0rpcDiIx+OMjY0RTppZjJvxmTzY7fbCZ6OoKIDLXJsrT3vk+r1NEArtVqq5lKKq96wWYc/qSzajHum2JpOJtrY22trayjoZB4PBmjoZazUkzSQkwI6sq0ZROlK8FrRge0tLCx/60If40Ic+VPe13bhxg0uXLpHJZHA6nXz961/n2LFjNV+naS2S9a4tWZYZHh5mZWVlR66szV6jnmm0y8vL3Lhxg+7ubhwOBysrK3W7dim1CImiKIyOjnL37t0t2+Vrop7MSjw/FeLGfAwRONXj4dEDfhwWIz8YWyOYytPfYudNhwI8PFA5yF56zfVoMa3egUEyZi/JdB5vQOBCLsXyjUWuTi7hMipYrFbSWDjQ7qbXVdum4LWZ8DtMLMVyZUH51USOVqcZr33rKvbZUJqRlQTRtITFIDLYaudQW/Nkz9S7RcpuOhk3Y1U7NFfwXxOSndSRNDr99/DhwwwNDRGNRvnKV77Cxz72MZ5++umaxaRphaQ0/bcREwyhfinAiqLw/NBt/vLKArNZG767KR7plTlub8xwrmqFJJvNcu3aNXK53LaFj4IgkMkr/I9nphi6G8UoioDKy7MRbszH+JePDXB5sIWcrBSqzKuo4Si1OFVVZXR0lLm5OQYOn+Dp2SzjKwvISuF03e218q7zB5gKppheTZDJpOkTs7Rn5kgpsCLnsNlsm+bfz0cyTAdTZCSFNqeZIx1O4tkok2tJrCYD2byM22rifJ+nbIb7eubCaX44GUJVwWU1kpUUfjQTIZWTm6bHVaMLADfrZBwMBjd0Mm62qutmFRLNA1ILiUSibvGQzTCbzRw4cACA8+fP89JLL/GZz3yGP/mTP6npOnvu2toMbZOvlytrq9fYDZlMhu89f5X/9EKSRF5EJQuhLFdm4EybyKWH1ao23VqoptBPcx95vV7OnTu3bUKBKIqMRmEoE6XXZytmaKVzMi/PRHhDf4TL+/1YxepPVdo68/k8165dI51Oc+nSJb41EmF0OUG/z4bJKCArMBVMcs0o8tMPdZPKyYiCgMtaOExcu3atOC0ynU7j8XiKLhen08mNhTg/nAiRyisYRQFJVulvsXF5n4+1ZI5IKo/HZmIwYN8wx6QURVUZWU6gqtB1Lx7ksoDFKDK5lsK5u/6TdeN+V5Jv1ck4HA4XpxJqFsv9GBS1Gc2aRbbT6Yj3uyBRUZRNY9Nb0bQWiSAIJJNJ7ty5UzdX1np2KyShUIihoSH+fsZMIi9gMrzqK87LCleXZZ6bDO16Fsd6trNI7t69y+3btzedaVIJQRC4mwTRSNkAKpvZAKjcWUpweX9tf4eWzPD888/jcDi4ePEiKQlGVxK0uc2YjSIqKkZRoMdr424kzVIsS6/vVYtT6zXkcDgYGBjY4MvPKCJXIjbsdjv72gouF0lRmVpL0emx8Mj+6tOss5JCJC1tyA5zWYwEk3mMjatffWBYX8EdDoe5efMmJpNpR52M640WaG8mIdlpgWSjx+z+xm/8Bu9617vo6+sjHo/zpS99iaeeeopvf/vbNV+rKYUkkUhw584dZFnmTW96U13y3Sux02C7qqpMTU0xMTFR8DG+PA2Un4IMAigCPD22dt+ERFEUbt++zdLSEufOncPvr/51RVFEpHIgWlVhJ3tBNBollUoxODjIwYMHEQSBfDZ7r21M+QnNZBCRZJW8vHEBpRbY+pTWKxNLpIOLWFMRRkeWsdpsOJ1ObIKZ8dUkF/f5qm6loqUDZ/IKpcloWUnBJIKxSfamZuttZTAYiu6RWjsZ15tmy9iCnQ+1anSLlJWVFX7mZ36GxcVFPB4Pp06d4tvf/jbveMc7ar5W0wmJ5srq6OhgeXm5YSICO7NI8vk8N27cIBaL8dBDDxVOXML05q/RgJumkpBoDRd3Oj5YEAT6XbCWhnjm1VN5LJ3HaBA50VXdrA8obHSTk5NMTk5iNps5dOhQ8Xdem4l2t4W5cJo+r7W4Ka4lcvjsJtpc1afliqJ4r81Ehn0BG4okk0gkSCSTLIRDGAW45YjQGgjQ0tKyrT/fKArsD9h5cTqCxSjishjIySqL0Qy9PitiquqlNZRmEpL1wfZaOxnX2w32WhKSRru2/uzP/qxu12qaGMn6rCy73c7CwkJDX7/WrK1YLMbQ0BB2u53Lly8XUyLfeayNL7+ygKKqxboFWSmc5N9yuP7BsvVCornYWltbOXbs2I6+tKIost+lYu7w8eJ0lMVoYaaI2SjyxoN+zvZWJySSJHHz5k0ikQhHjx5lcnISRVGZj2bIywodbiuPHvDztVcWGF9L4jSLpPIqIvDmQ604K8wV2Som1OG24LYZWUvkaHNZ8Pq8OD0eUqYkp9stOB2FSZi3b9/G6XQWYyuayyWYzDEdTBFNS3jtJnq8Vk52u5lcSxFK5TCJAn0tNs73eRharvltbRjNIiRbtZDfrJNxMBgsdjJ2uVzFz6QenYxfS0Ki99qqkdKsrEceeQSr1Uomk2l4cVEtFokWd6hUh/EvH9vHcxMh5iNpFFUt1i883A4PbZMiuxO0+gxVVZmZmWFsbIzDhw/T29tb0wYzsZrk+ckQy7EMXV4rSg5+6s1dPLTPz8hyHAGBIx0uTna7q3IPpVIprl69islk4vLlyySTSYJphc8+O810MIWkqLTYTbz5cCs/caGHl6aDzIfT9PosnO5xc6yj8ulr/d+kqCrhVB4B8NpNPNzv5dnJMBOrKQyigKSo7PM7uHioFbfVyODgILlcboPLJW/xMJYwI4lmHDYLmeUkPruJNx1s4WCrnXhWwmwQCTjNTdVCpdkskmrXUtrJGF7tN6WlGcPuOxk3o5DsZE1aUsODMB0RmkBINsvK0rKMGtnJsxohKW3Fcvbs2YrpeO1uC3/18xf48ivzvDgVxmkx8LaDPozLww254UVRRJIkbty4seko3O340XSYzz47TSSVx2wQeWEqjJoSObqc4Ny+Vs71eWu6XjAYZGhoiM7OTo4cOYIoiqxF4jw9ryC44nR7rZgMIquJLH89tMhHH+rhg2c6q77JNIvkbiTN85MRFu5ZTN1eK5cHfbzvZDszoRTpvEK7y8JgwF4WhzGbzWWzuSOxOF+7MstKOIqLDCmzBafTwUrYzJUZkXefaN9yaqKqqgSTeZI5GYtRpNVprqmt/W5oljRk2F0dyfp+U1oLl9JOxpq1Um0n42bo/Lue3Vgkehv5KlhcXNw0K6u0F1aj0gm3C7anUimGhoYQBGHbuIPXbuIXHh3gFx4dAAqnraeWGzP0R1EU7t69i8Ph4PLlyzXn8mfyMv/Py3dJZQu9rTTX0SvjEb46tMSZ/kDVKcuqqjI7O8vo6ChHjhyht/fVMv6JYJrVtMrFfXaM96rDu702JlaTXJmJcKStuhOn9v6Fkjn+/uYKoVS+GEsZW0kSSeX50NlOLlfZCFMQBGSDFcHm4czhAGaxYBUnEgly0TV+tLKMN7PIQGcAv99fFiAWBIGspHBlNsJ0ME1WKqQcd3ksXBjw4a6yH9huaRaLpF7TEUs7Ge/bt2/HnYyb0SLZTYxEd21VQUdHBy6Xq2JAXRCEus1t3wyDwUAul6v4O63FeldXV/GEXQulA6jq2a5hdXWVlZUVnE4nFy5c2NFNM7mWZCmWpcNjKdsgvWaB2XCa+WimLAV3MxRFKca1KllF8awCKkUR0XBYDCzHa8tVV1WV0ZUkq4kcB1pfba3tCBgYX00xtprkQr+3pmsKFNqpiAYDbo8Ht8eDNyCxFkvj9Qqsra0V+x35/f7CKGFZZmwxzp3lBO0uK3azgZykMBPOIAgR3nzI33A32IPq2qqFnXYyfq0IiaIoukVSLaIobpmV1ejhU5WC7YqiMD4+zszMTLHF+k6vDTs/jaynNBNKmwe96xtmvYfk3gCuashkMgwNDaEoCpcvX674OfrsJhAKNTWl/aoSGZkDgepPWtpGtZbIvToorOR3JoNAKFldtWBOUsjLCl6bkTaXhflImr4WW7HV/EoiR3/AyfGDrYj36mC0k7GiKLzw0hVuJ+3Y7Q5Eh4iqWjEbRTrchZG9oWR+y6LHetBsQnI/Nu5qOxk303ujsZPDZDKZBNBjJNWw3Qd+P4Sk9PpaS5FsNsulS5cqngZyksI3ri3y7eFl8rLKWw4F+NC5bpzrXBr1HImrxUNisRgPP/wwS0tL5PM7L7PeH3AUNr5olv57m6iqqkRzcK7HSvc2s8sjkQhXr17F7/dz/PjxTW+Sg60O2qwqk6spOjyWQowknsVmMnChxiQEVVXxOUzk143dVdVC7YnbuvWNmsnLDN2NMbqSJCcrtDrMdHstJHMSk2tpjAYBSVZoc1k41+spWhUGg4FAIEAgEGBxcZEDh44yeWsVKZdmfGy8YM24XDhcTjJ5I3m58SN7m6m/Vb1cW7WwVSfjlZUVJEni6tWrNXcybhQ7cc9rQqK7turA/XBtaUISDocZGhrC5/Nt2lIkJyn8qy8N8fxUGFBBhZdnInx9aJH/+bNvKKuI1jqi7lZIEokEV69exWq1cunSJcxmMysrK7u6rsVk4CMXevnss9OMrybvbaIqHgv8+Mmt4yNacsTBgwfp7+/f8ga1mQ080qGS8nsYW0kiKxJtLitvPRLgaKd7WzGUFZW5cJo7a3nMRoFjBwot7WdCaTrcFlBhMZahxWHmYNvmLgBFVXl6LMjNxQQ+mwmr0cBsOM1yPMcjg15AIJ4t1M70+WwV557kZYW0BE67jYHOVkKpPB1uM8lEkngiwdTdZTLZHBPGNTJthcykRkwk1GiWU3cziFppJ2Or1UokEsHv9xMKhYqdjDVR2aqTcaOQZbnmerhUKoXJZGq6Xmab0dRCUuvc9lrRhGp6epqxsTEOHTpEX1/fpjfp399c4vnJEKIoIAr3LA5VZXw1yRdemOWX3zxY9vjdtqnXugn39vZy6NChsnhGLUKSyEj8YCLIrfkYFqPI+X4vDw34+M0fO8TzkyFW4lm6vFbElSQHA5VjI4qiMDIywsLCwqbZa3fDaX44EWR0OYHdYuRkuw2bQeXDl/pZjWcLloDTgrmKYVKpnMzf31rh9lKCYLhQCTidXeV0t4vx1UKMR0Ao1KXsb9nSnbQUyzK+mqLbYy1mcrmtRqaCKWZCGd59onJHZABJUbl9LyZyYwnCd0K0ex0oqspCNIfLakV0mvFbPBxvs9JtzRMMBpmbm0MQhOLm5ff767aBNVPW1l5YJFuhqipms5ne3l56e3tr6mTcKHbi3k4kEjgcjqZ6b7fide3a0ipvp6enuXDhQnGe8mb808gaCEJZMFUUBPKKwneGVzYIyU7b1KuqytjYGDMzM5w8eZKOjo6y39fSRj6WzvOH3x3j5nwMURRQFHh6LMjbj7byC48O8BMXeoqPffrp8YrXzeVyRZffxYsXK5rbc+E0f/bDaZaiWTw2I6FUjtHFGAEZ3q2otG4xAKsSL06HGbobpdtrw6GYyEsyi9EsBlHgJ9/QRSRdsFTbXOZt54VE0xL5Cm1ZPFYjK4nshhhOKdfuRnlxOorTImIRVWIZidhqkgMBOyoQSUu4LUbO9rg50OrAIAp0dXWhKAqxWIxQKMTs3By3b98u9qDy+/243e4dn+SbKQ7QTGuBjfGISp2MtaC91sm4NGjfiBnpO4mRaELyoNDUFkkjXVvxeJzR0dFiS5FqTotbnQQr/W4nA6hyuRzXr18nlUptGqepZWb79+6scmM+Rq/PVrQEYuk83x9Z5dJgC6d7Xq1Yr3TdeDzOK6+8gsvl4uLFi5vm8j87HmQpmuVgu6MotOFEltEZgcm1JAe2cD2tJycp3JiP47GZcJgNZAQBgyjQ67NyN5JhMZYtGcm7PRajiFAh6J/OK/gdpk3byiezEreXEnhtBlocZlaN0O4yE81BKJXnvSfbEQQBoyhsqCERRZG4amE67yZismFrA5cxTzod48aNG4WYT8ngqFpcH820eTeDa6uU7bK21tcTlXYynpiYwGQylbnB6lF6sJPaFq09SrN8ztux50KyVfuLRrm2ND9/e3s7oVCoapfDmw4F+Mc7a2WtUNR7//32oxvdI7W6tmKxGFevXsXlcm0Yhbv+utUK1MszYSxGscyd5LaZWE3kuDkfKxOS9Z/F8vIy169fZ2BggAMHDmz6pVZVlZHlOF67qcxac1uN5BWYC6cqCslm18vLCjlZwbLOSjAZBGRVJSvVJs49XisdbgtzkTQ9Hhsmg0AkLZGVZI53tmy6jnhWIpmT6faWb/Jum5FwMk8qJ9OyycjeqWCK5ybD5GUFp8XIalJmRRV4aKCfR48fL2YdLS4uMjIygt1uL1orXq93242nWTaYZnNtKYpSVeEibOxkLMty0Q1Wz07GO3FtJZPJho3VbQR7LiRbUW/XVml33DNnzmA2m1lbW6v6+e892cFfDy3yylwURVWLItLXYuNnLm6cp1uLa0ubHDg4OMjg4OCWN+dOZ7aXokKhkKLCdbXZH1NTUxVda5WwmQzEM+XWo3Ivl9hUY8W33Wygw21lfDVZNs0wkpZwWYy0bZNem5UURpYTTK6lUIF9fjuPDvp4YbpQEZ+XVVxWIw8P+DiySVsWAIvRcK8bsFzWAyyTVzAbxbJ2+6VIisrwYgJVVYv1OD67ibVEjuHFBAN+e1nxnZZ1FAwGuX37Nvl8vsxaWb+hNFOM5EGzSLaiNCgP9etkvNMYyYNSQwKvIyHRqtQBLl26hN1uJ5FI1HR9i8nA/++nz/LlK/P8w60V8rLCWw+38pMP9VRsp1HNhl8axK527kotQnJhwMfwYpyspGC5Z5VE03msRgMnutxljxUEAUmSGBoaIhaLcfHixary2AVB4A39Pr78yjyJrITTYkRRVebDWVwmONxe2Q1VuiHmJIWpexMOW51mLu7zshDNMLGaQs3KpHISdiHPo/t9W8Zb8rLCt4dXuLWYwGgQEIDbSwmOdTj5seNthJI58rKKz24q1Llsgc9uor/Fzq3FOF2ewoaRyMpEcjJv6PNsOq8+mZWIpPMbRvp67SYWoxliaQlbiQitn5+uuVu0jrlWq7Vorfh8vqZybTWjRVIvYatXJ+Od1pHoMZIa2Mq1ZTAYyGQyu36N1dVVrl+/TkdHB0ePHi1+0TTXUy03ptVk4Kcv9vHTF/u2fex2G342m2VoaIh8Pl8Ut2qoRUjefqSNq7NRbizECpXcKhgNAm8/2srJdUKizXd3Op3FVOOtyORlUjkZj83EI/tbmA2lGLobZTGSRUGlxWbiSJuCd4ueVVAYk/uN60vMhTPISiEofrrbzftPtXN9Ps7wTJIWq8g7T7VxpmfrLsTjqymGFxN0ey1FiyErKdxeSnCw1cHxrq2FcTWeZTacISPJBBxmTne7kBWF2VCa5TQ4czKnur2c6XFveg2jWIib5CSlTDByUiFGYzRs/l1b726RJKnYMXd0dJRsNlt0+fr9/j3P7HktWSRbUamTsVa7onUydrvdZS1ctHXs1LWlC0md2G2MRFVVxsfHmZ6e5vjx43R1dZX9XvtwG3XC28qi0or6WlpaOH/+fNV+Xagt/ddlNfLrjx/khxMhbi68mv57od9XVi+ytrZGIpEormermzGVk/n2rWVenA6Tycu0uSy87UgrP/1wL5cGW1iIZrAYRQ622nnlubktXTE5SeEb15eYDqbpbykkBETTeZ6bCuOzG/nwuU7GPWmymTTHq2gkOR9Jo1I+5dFiFBEFmIuktxSS20sJfjAeJJaRCnVAFNxi7zji53S3G1d0kovH/PS2blxHIisxF86QvucG63BbGFspzIu3GEXyssJKPMs+v52WbSyhUoxGY7EgEgqW9c2bN0mn07z88svF4LBmrdzvMbevFyFZT2mhKmzdyViSpJrX9CC1R4EmF5LduLa0lNV0Or2pi6a0jUkjvnybWQ5zc3PcuXOnqqK+Wq6blxW+e3uFf7qzRiSd51iHk3ef7OBIh4t3Hmvjncc2JgSUtqK32+10dnZu+V6oqspfvjTHs+MhvDYjNpOB2VCav3hhDlEQuDDg40hH4b3W1riVkEwFU8yGM0URAfDYTKRyMq/cjfHI/haMBpFqO3Nt1udKZeshY/GMxHOTYWSVYkZYXlYYW0vSsWjh0j4frTYqisBSLMvTY0FW4tl7IwQEWh1m2lxmVuJZFKVwUOn2Wjnf5yn7vNN5mbvhDMmcjM0k0uO14qgwk0XDbrdjtVrx+Xx0dXURjUYJBoNMTU1x69Yt3G532XyPRlsrzeba2qvuv1t1MgYYGhoicG/AWjWdjHWLpEa2+hLuNP03EokwNDSEx+Ph8uXLm35opaZnI05y6zd8rSX9yspKzaNwt7ouFDbrzz47zT/cXMEgFgZSfW9kjVfmovx/fuzQhniItp5bt24RDAa5cOECExMT21o608EUV2ejdLotuO+5rDw2E1PBFP94Z5Vzfd5iKqz22W4lJOm8gqKoG4oUrSYD6ZxCXq7NWhzw27kyGyWWlnDbCp97PCMhCgL9/s1dhwvRDOFUnsGSgkyTQcRrNTK2kuShew0h169FVlRenAoTTOTYF7AX+nMpKtPBFIfbHDx+tJVkTsZqEml3WcrSj0PJHM9OhFmKZQABFZU2p2XbOJC2jvXB4UwmQzAYLGtsqFkrjarobqZ4DTRH08bSTsa9vb0888wzDA4OEo1Gq+5knEqlaGvbvFC22dhzIdmKWl1bpS3Nqznti2KhAeBmr5HISnzvzirBRI4TXS4eGvDVdNOUWlTpdLoY7N+syWG1VKr3mFxL8f2RNTw2YzHI2+pUmQqm+MorCxzvLP+yaqN5oZB8YLVat4xXaSzHs6TyG1NifTYTy/EsyaxUFBiNra4ZcJqxmQ3E0vmy54VTeQ622rGZxC2vsRDN8MpslKlQCpfZyIkuF2d7PVybj7ESzwEqJqPIuV43+wObC4miFnpWrv90xXvNHDdjLZFjOZ6l02N5tT+XKNDqsrAQy3Jx0Ehnhd5lqqoydDfGUixDX4sNg1h4nblQhiuzUd55rHVz62qTzdtqtZY1NozFYsUq++Hh4eI0Qq19Sz023Nera6tatPu/ra2tmP24VSdjn8+HzWYjkUgwODi41aV3zO/93u/xta99jTt37mCz2bh8+TJ/8Ad/wOHDh3d8zaYWklpcW9qI13A4XNOgp81SdH80HeaX/vIaiYyEKBQ2mrO9Hv7ko2c2bJSboVkOwWCQa9eu0dbWxrFjx3b9Ra9kkYyuJEjl5LKZ54Ig4LObGF2Ok8rJRZeJ1lcsEAhw/Pjx4nqqib04LcZiINlSEodI5WVcVmNZbELrN7aZCASDQUzZLMfa7bw8GyeVV7AaRUKpPFaTyMV9vuI1KnE3kuYrryyxlszhsRmJpTNMBtNc3OfhQ2c7mY9kAJUuj5W+FlvFjVlSCmnc7S4zTouBUCqP/15tiKwUJjE+NODddGiVoqrIKhv6kxlEAVkBRan8t8cyEgvRLK2uVwdiiYJAu9vMcnzrLsLVpP+KoojX68Xr9RYrujVr5fr166iqWta+Zac9nZrNtdWMQiIIQtma1ncy1jogLCws8OSTT/KNb3yDjo4OfD4fqVSq7vUkTz/9NJ/61Ke4cOECkiTxm7/5m7zzne9keHh4x+60PReSeri2tMaGFoul5kFPlcQqkZX4V18aIpUr/FzbC67Nx/jdb43y+//seFXXFgSBcDjMzMzMhqFPu6GSkFjvVW8rKpQmBUmyitVkKLpUtJHBlfqKVVMxf6jNyYDfzvhKkr4WGxajSCSdJ5GVePxY2wYXVSUhkWSFl27cYXFhgYDTjC+Z5rDNzmzajGyysD/g5PKgj2Odr8a1Kq3rpekIwWSOgyXzSSLpPNfuxjnb4+Hy4OaHiWg6zytzMUZWEqDCgVY7B1sd3FyME8ukMIkCaUmhx2flVPfmGVotDjM+W6FGpNTyWEvk6PFai+619ShqQYTWx20KFhBbWkE7cSeZzeayVNbSNuxaQWTpNMJqN2PdItma7TK2SgV/cHCQgYEBDh48yJ/8yZ/wta99jb/4i7/gscce48Mf/jCf/OQn67Kmb33rW2X//vznP09bWxtXrlzhjW98446uuedCshXVuLYWFxe5efMm/f39HDhwoOYvUSUh+d7tFZLZws9K71dFUfnmjSV+64kjm9YQaEiSRDAYJJPJVNXHqxYqCcnZXi8Bp5mFaIZurxVREMjkZeIZibcdacMowvDwMIuLi5vGZzazHsKpHDPBNGajwIFWJz9zsY//+eIcU8EUeUnBaTXylkMB3n5kYw3M+mveXojwF9+/yUIsi7/Fz36rk7ee8HJcSrC8usZqcBWHGkKMplg1FjKRKm2aeVlhJpTGZzeV/d57r2q/4G6q7D5M5WT+7uYK42tJfLbC85+fjNDrs/KWQ35W4jlSOZlOt4VD7c6KUw/DqTw5ScFrN3Guz8MPxkNMrSWxmY0ksxIem4kzPe5N3VNuqxG/o+AO7DW/GpdZS+a2rXHZbVxi/TTCfD5f1n9KluWiq0WbELkZukWyNbXWkAQCAX7mZ36Gz3/+83zmM5/hwoULfOc73yEejzdsjdFoFKAYa9sJTS0k2iZf6cZRFIU7d+6wsLDA6dOndxyYqiQka4ncvQaHGzdVSVaJZ/JbCkkqleKVV15BlmVaW1vrKiLw6uZc+r547SY++egATz4zxUwwjSAUTrenez38s1OtvPzyy9vWq6wXKFVV+Yeby/zD8AqRZA6DQaDHa+OnHu7l195xgPGVJMmcRIfbSrfXWnFDKRWS8cUQ/+c3h0jJIod6OlGBGwtxwmmJf/loX9HU1+omJiYmSKfTxfiN1jZCuNc402wUN1TTy4qKgLBlI8fx1SRTayn2+18dAdxiNzGxluJ4l4u3Hd7Y2VgjnpF4emqFqWAKSVHxWI2c7fXw+NEAU8EU4VSeI+1ODrTaaasQME/nZdL33Iyne9z3BCiNzSySzsnYzYWfr19/PCMVM7u097VemEwm2tvbaW9vLxZEBoNBVlZWigWRWmzF6/WWbYx6sH1rdjuv/dChQxw6dKgBKyugKAr/5t/8Gx555BFOnDix4+vsuZBs59pav2HCq4FrreHibnyIlfphHe9yVxQRFWh1mgk4N3edra6ucu3aNbq7uzGbzQ05SYiiSEqCv7m2yGw4jcdm4rEDfi7v97O/1cGL02HiGYl9fjsHfQaGh17G7XZvOmdFY7318KPpMF+5uoDZKDIQcCApCjOhFH/2wxl+812HONpZXdW7qqqEQiH+9/dfIa1aOH+wo+BGUxRsJpHJtTQ3FuI8ur+lmGnU0tLCwYMHSafTTExMEA6HeemllzCbzcVN7XiHg++OhPDkZOxmA8q9+SVtLhP7tsjQWknkEEShbASwQRSwGEXmIxku9Fd+nqzC98cjzEQKs0gsRgPhVJ5/Gg3yrmOtPHZg8yy8vKzwylyUO0sJMpKCw2zgRKeLtx4KMBNOE0rm8dqMDPjthVkrZc+LMbaSJJ2TsJoMyOE8gbbGDNAqLYjs7+8vm50+MjJCLpfD6/UWrZVm27ibbT07SUfWxPx+TEf81Kc+xc2bN3n22Wd3dZ09F5Kt0DY9SZKKqYtra2tcu3aN9vZ2jh49uutZApUskocHfJzu8XBjIVYUFJVCRs+/etO+ioHX0v5UWvHj9PR0XSYkrmcxluOLYyKJiSm0xX3j2iK/8pb9vPlQgPedKowHXlpaYujKK1X174KNwfZnx4NIskpfS8FFZBANDPgdTK4lGZqL8pbD27dzEQSB5eVlpqenEZ0B2szGshvLIAqIYsEKrITNZsPn8yHLMidOnCAcDrOydq/KO53Dr9qZWkxhMJsxGIy0Os382LG2LS1Gm1FErnBQyMuFDX4zgmmV2VyGvhZHMamgw21hNlwQwkNtm1eZvzgd4eXZKF6bEZ/dRDwj8cxEiDceaCmmFlfi2t0YV2YjtNjNdHptJLMS18MyrcsZ+no2fVrdKJ2drqoq6XS6GLSfnJxEVVUWFhaKmUe1FNbWG1VVm1JIdrJHad1/G8kv//Iv881vfpNnnnmGnp7dfZmaWkhK6zxKN+qjR4/u+g/XqJS1JYoCf/pTZ/jdfxjl724uIckqAaeZX3rTPn7ywsbXzefz3Lhxg3g8zsMPP4zb7d702vXgf740z3Ja4ECnBbOxYLUtRrP86Q+mOdvrwW01FufO1+L2Wx9sX03kNmzImohG09uP+lVVFVmWmZmZ4dy5c0SmM8yNrpY/RlGQFbVir7JSZEXh6nycl2eSxDJG2ly9nN5v458JKW7NrnA3uILDZOZ4qx+fmEGWrZvewIMBOy/NRFiMZmh3WxAoCJnFKHKgbfOslYwMsqBuaNboshiJpPJIioqpQvuTaDrP6HISv91UTM22mQysxLPcWoxztMNV7INWSionM7aSxGt79XkemwmvVWA2kiWazm/7vtUTQRCw2+3Y7XZ6e3uRZZkXX3wRg8FQdENq9RF+v/++t0HXvruNHlRVC7txbTWqIFFVVX7lV36Fr3/96zz11FPs27dv19dsaiHRiq4ymQy3bt0ilUqVbdT1YLMUY4/NxB984Di/9cRhYhmJVqe5zBWikUgkeOWVV7Db7Rv6U9WjS+96ouk8V+eiOIxqcY6GIAi0uy0sRNK8MhPCnbxLMpnk4sWLNZ1q1lsk+/x2ngkHaS9xLeYk5V6a6tZ1MPl8nmvXrqEoCqdOncLv93NOSXJlNsJsKEWnx4okycyFM7S5LJzo3HydgiAwtCwxNruEURRwmA2MriSZDqb5Z2c6eOKx8p5Ud+7cKeug6/f7sVqtxLMyZoNAp8fKWw8H+MF4iMm1wvRFl9XEmw60MNCyeWDZaigIaWkDTCi0m+/yWDada5LIyiTzMr2O8vfMZS0IUDIrYTFuTPXN5GUykrIh8G4RVTJyoZjTs/lyG47BYEAURbq7u/H7/cX6iGAwyMzMzH0fcat9d5vJItlJw0ZZlkmn0w2zSD71qU/xpS99iW984xu4XK5i9b3H49kysWIr9lxItjuxiKLI1atX8Xq9W87o2Cnb1ao4LMZNW1YsLS1x48YN+vv7OXjw4Ia/pRETHiVZRVU3xjMEAWRV5ebwbS71OXf0XomiWDZH/U2HAgzdjTIdTBFwWsjLCquJLIfbXWVzTNaTSqW4cuUKNpuNtGriblzB4Myyv9XBh8518a1bK8yF0oBKt8fCe091bFnJHcvK3FyTCAQMxQB2wGlmJpTmhxMhjnU4MZX0pDp06FCxg+7KygrPXBtjMmkmKVhx2W2cGwjw6IEW+lts3I1kQIVOj6XibBFVLdSSKCp4LdDnsjATTtHpsmI2ioRTeVQVTna5N/0u20wiVqNIMieXZYClsoWKd9sm7jS72YDdbCCRlcusoHQePC5xSzfc/aI0frm+PkKb7TE7O8vw8HCxqaE2IbIRkwihuYRkJzGSRCIB0LAYyZNPPgnAm9/85rKff+5zn+PjH//4jq6550KyGaqqMjc3Rz6fp6enh+PHj9/3xopbrW10dJS5uTlOnTpFe3t7xcc1wiJpcZg42Obk2XAMVVWAwmayEk0h5DOc39fJ+TPHdvReaRaJtjkc6XDxC48O8M0bS8xHMhhEgccO+Png2e5NYxDBYJChoSH8bR3cSrn4h4ko5sV5vM4QZ3s9fOBsF8c63dwNp1EVmTa7iM2yteCFUjKJvMrhdRu931FI9Y2mpbLivdKAseIIMLc2T0xIYRNyrK6t8eX5VW6M2/kX5zrZ3xrYtMvAcizLD8aDzIYzKKpKYlngiQEbboeN6WCKfFrBYzNxeb9vQ6t8RVVZjmXJSAotdhP7A3auzccAcJgLs1vCaYlHBn1lHYJVVWU1UUg/dlqMHG538MJUBACnxUAqJxPLq5zzW3GViNJKPMvoSpK1RA6vzcT+VntxFkoj2ayOZP2IW222RzAY5O7duwBl7Vt2WhBZinavNVMW2U5cW6lUwUpulEXSiHk2TSkkkiQxPDzM2toaNpuNtra2hn05ap1iqDWDzGQy27qOGiEkgiDwUw/3cn1ykblIFptZJpXOokh5/vn5Ti6fra5Ycj15WeGHsymem45iuHmdA20OHj/Wxrk+L6d7PKwlspgM4qYTAeHVZpRHjhzhh8sC/zSyglGELrcZSRD5/uhacf0HWu3k83ny+Xyx6FQUxeL/SjEbBIxCwa1WenrPSgpmg1gxvqBxZS5KIqtwvO9eRpWqEk1mmFmNMTSxiGt8DIfDUdzUtCl48YzEN28uMx/J0OG2IgowkYYfTEb4yYf7uTjgJSereG3GDTGTUDLH90cLApSTFFxWA4fbnJzodDETShNK5XGYDDw04OFs76tu2lRO5gfjQSbXUqTzCnazgcGAnbO9bqaDacKpPBajyGGfwMnOV7PS5sJp/mkkSDSTx2E2cjeSYWw1yRsPtHC4vbEB22rrSNbP9tDat8zPz3P79m2cTueGz2Ana9HaHjULO20hb7FY9jRxoVb2fKXrP/REIsHQ0BAmk4nLly8zNDTUsLntUFtjyGg0ytWrV/F4PFy6dGnbD7oRri2Ak91ufuqwwLyhhRtzQbpcMh+4eJjHT+2scl5VVb744hx/MxwFRSZgknlhKsTwYpxfecsgp3s8W8ZESodznT9/HixOXn5xlBaHmaxUmL/hsplRgVdmI7zzaCs+W+HmMpvNyLKMoijF/8GrfdAEQaDTbabdLnA3mmGgxYbJIJLOy6wmcjy6v6XsZL6eu+EMntLqckHA47RhTyl0DLRztttRPCnfvHmz2DpkSbIzG8xxqN1VbH/SYS9Maby9GOctm9SaSIrKd++sMbmWosdnLVT+p/LF/llv6PfeszYMGwLlP5wMcWMhTpfHQpfXSDwjcWM+zoUBD+8/1U7yXprztStzxToTRVW5ejdGMiexP/CqVbQUy3BlLkp/i23TSY71YCeV7YIg4PF48Hg8DA4OFgsig8Egt27dKhZEatZKtX77ZsvYgoKQ1GptJRKJPZ8zUyt7LiSlaDGH3t5eDh06hCiKDZvbrlHtZq/Ned+/fz/79u2r6kOul0UiyQrjq0kA9rc6MBlEupwifcYQbzxt5uzZh3flGpgLp/nBWBC31YBNgBaXhYDTzNRair+9vsSp7s392VpQPZPJFIsdp9aSpPISHS4rWV41pZ0WA3fDOUKJDD6bA4PBUEyogMJGIMsy2bzE1dkoIysJZAXazDnOtYnMClZmwunCcC5R5GSXm7duUTwIhUr32XC67GeyooJQiF2sL8bTWodM3V5meTmDLRfG4XDcy6BRC9lWm6QqA9wNp5kLp4vtY6DQRiWTV7gxH+Nkl6ti1Xo4lWdyLU2721KMybmsRiRFZXQlybleT7EHWGlcIp6RWI3nCKyzFAMOM/PRDKFUni5PY4Vktxve+s8gkUgQDAZZXl5mdHQUm81WNs9+sxN+MwrJTtakCcmDRFMIiaqq3Llzh/n5+Q0xh0ad6qu9vlZBv7i4yNmzZ4uDbKqhHkLyo+kw/+OZKRYiGVSg22vlI2f8yNksbrebs2fP7vrmmQqmSGYl2m0GstmCdSYIAj6HmZlQikRWrnjqTyaTxYy1ixcvFi20FocZh9lYGBBV7KerEk3nsZtFfHbTpn51WYW/vbXMC1PhYl1AOBrlsN/CJ9/WxkIsRyqn0OI0s89vx2zcepM83eNiKphiLZHD7zCRlwtFi51uC/tby2/W0tYhZw0+7spLeO0qqVSK+fl5AJaDYQ54RXK5XMUspHReQVLUDe42u9lAMieTlxUM4sY1p/MyWUnG7yh/n20mkbVEnkxeobQOVtu8RUFAFNhQFyMrhT5em7VoqRf1bpFSOolwYGCgWBBZmo3n9XrL5tlrr79Xs0i2YqcxEt0iqRFFUfjRj36EJElcunRpgxLvpZBkMhmuXbtWXFutFfS1xl/WM7mW5Pe+NUo0nafFYUYAJpbj/P63gvzsMTPn+/rqcuPYTIbCHA3KN6P8vQ6/lWojtKB6d3c3hw8fLvvSe2wmLu7zFeba51RseYVEPEMomeedR1sJuDZ3k91eSvDidIQOtwWzoLK0tIjdbWFZtjEezHKhz13sdoAik8+/6hcXRZFbC3Feno2yHM/S4bZwrtfDmw628PJMlPHVFEaxMGDq3ce3Llo82Oqg02sjmMzRFWjDH4CXb4/jdRmx50I8++xccYiU1pZdEAQ8NiMWo4FkVirL9otmJPp81g1NLYvvmdWI8574+kusi2hGwmk14rRUbkvishrpa7FxazGO/V5nZkVVWYxl6fZaN3QQDqfyxDISFqNIm8u8a6FpdNPG9QWRqVSq6AabmJgodjpoaWlpugaS8PoYswtNICSiKDIwMEAgEKj4hhuNxobGSEo3+8JMbaHYtXdoaKjQiuP48R0VFW3W4qVavjO8QiSVv9fHClLJFC4xT0w1cz2s8vY6BfKPd7ro9FqZXonSYipcM5WTiWYk3n8osMHHPjs7y8jIyIbC0JxUyPiymAy852QHggB/+6MIK4kcPpeRdx1v5YkTHVuuZXItiayoiEqeheUV3B43Pp+PqbUUY2tpHj3YWhZP0dxhAC/PRvm74TUkpVAkOLwYZ2wlyftPt/Nzl3tZiecwGQT67sVZSlFUldlQmsVYFqMosM9v54kTbXx/NMhiLIOqgNMk8MGHBjjTHyjLQpqbm0NSwevz09nmZ7DFwvBykha7GYupkCIsCgKnujdv4uiwGDne5eSHE2EkWcVhMRDPyGQkmYf6vGWfgawoLESzLGYSOMwGznS7iaUlZkMpigOyXBYu7vMWa1vyssKL0xHuLCVIZGUsRpG+FhuP7vftuKhxN9/tnSAIQtHNqBVEru/LJooiMzMztLS03PeCyErsREgSicQDNWYXmkBIADo7Ozd1Ad0Pi+TlxRz/8b8/z9hKErvZwOMHXTzqDnPy6MZW67WgnY52UpQEBX+7KAigqsTjCVRVxeN1k4nnWU3ld+02y0lKocDPYuRnL/fz3757m/lwjvhqEqMo8oY+L+8/3Vl8fKmb7/z588VuocFEjm/dWubKbARFVTnR5ebxY238+OlOOqQVJudX6ArAQIsTOZdBNdo3fU9FQSCVSrGcTBJoDeC6d0OpqEUnWWlml/YeJDI5np2KIAADvoLF43cYmY8WxuCe7HJzZJOMs7ys8O3hVV6Zi5KVFFS10ATznUcD/OSFblbiWWRF5fYrcxy+V/muZSE5fK3MT4a4NhsiuZbCNT5JlzlLm8HOWsSK0WKl3evgfJ93QwbVWiLH5FqKZK5ghRztcGE2iNxcjJPIKrisRh7pKm+nH89IvLCkIMdDGIwJjAaBAb+dR/b7iKZdxLMSdpOBXl/5yN4b8zFemokScJpocxViNqMrhXqFdx3ffIjWVmixr72yAgwGQ9EihELW4NzcHNFolOnp6WJBpGax3O959rCze19zbT1INIWQbIXBYCCbrXZid+08MxXnj4ZyCBQCqKmczF/fijDV7eKvHt+5iEB5i5edCEm314YkrxGJRjGZTLgcDlQK/u9W+87jL7cWYvztjSVGlhLYzQbefCjAe0528H+8qYt/uj5N72Af3V4rJ7pe7UKbz+cZGhoim82WufkSWYk/fnqSO8sJvDYTogDfH1ljbCXBv37zABfOnODE4UJ/prW1NcbHx7FYLAQCAVpbW/H5fOWCm1wlm07h7G7F5SzcTKmcjKpStqFqaM+NZFRiGYV2txXRIBZPy36bkZV4loVQgt4We8X04uvzcV6YjtDmMuO2GgstZ2JZvnN7jW6Pla577ejH1+2XWUnhb68vMbKSpMVhwW6zFiYmWgTe2mcml4yyElzCmRUhHGBFLGxoRqOR0ZUk3729SjiVxyCAgkBfi5UnjrdxostFOl9oaLnecnpuKszdBJxuN+NzOcjkZUZXEliMIu8+XrkVTl5WGF5K4LYa8N6zPmxmA91eKzOhFCvxLB3bdCqohCYke33q1zAajVitVk6dOlUsiNSq7Evn2Ze6IhvNTuI2umurATTSIlFVlf/x3GLhv0t/DgzNJ3hhKsylwZ336C/NRtoJZ1sFvqJkiasm2p1WsrJCMJnDbTXycNfOCouGF2P84XfHCKfyeK0mQskc//PFOaaDKT560sXpVgOXT5a7n5LJJFeuXMHhcJQF1QGuzEQYXU4wGLBjMoioKvhsRsZXU7wwFebHz3QV3RF9fX3IskwoFGJ1dZVbt24hSRJGhxfF4iIZDeE25Hni/D5emksQXkkiUOh9dq7Py5ktqunNxkLr+LwCVvHV8bwyKmajAYup4GbU3KRaTEUQBG4txjEZhGLVeSHl2MLYaoqJtdSmVfcTq0km1lL3gv6F1/TaCiKxojh4x9n+srb4k5OT3Lp1C6vTzbMrJvKCmQNtruKc94m1FD+aifBjx9oqtsGPpvNMraXwmCkWMVpNBjpdVqaDKYLJXFl8RSMrKWTu1aWUYjMZyEkK6fzOvp/NVgBYevovLYgEyGazxWaTc3NzCIJQ1r6lHgWRldBdW/eRrb6IjUz/jaYl7kYrWzsGUeDKbGRXQqLVQdQqJFrlfGJhjl97+37+6nqYpWgGgC6PjU8+NoA9urPOwn9zfYlwKs+g/1X3UiIr8dJMmIe7TBjWidPa2hpDQ0PFlOz1n9VsKAUCRRFR1UIWj9UkMnGvj1UpBoOhGDzNSTJfuzLLU3eWCcbmMAoq/V4T/+xUhn2nWlhIFiYJHmh1cKyr4PbZjHaXhQG/nRsLMQZNBVHLyypL8Syne9z0+F3FJpJaNpj2vUpmchgoD2ILggAq5OVX34/1wh261zqlNIAuCAIuq5G791KOK7XFvzqxyFJkGbcQYiqxisPpxOFw4Ls3EyV1r15kPVlJIScrmNbdLhaTSCilkJMqfx9sJgMem5FgMl+WfRfLSNjNhoqDu6phr11b69kq1dZisdDV1UVXVxeKohTTvEsLIjUX2E4LIiuhB9ubhEZaJFajgEEozJlYj6IWhhbtllozt7S6jHQ6Xaycf/sphZHlBCoqR9pdmI0iV6/O1iwkkqwwupzAYy2fKui0GFmNZ5mL5OhTX73mzMwMo6OjHDt2jO7u7orXdFqNKMXZ5FofMMhX0dH36bEg37kTRE6n2RdwYLY7mV1L8DfDEd7WvkiLIOD3+wkYBQTFDuuERFIU7t6rHu/2WnniRDupnMR0KF1cx4FWB08cby+KeqkbTROWwYCdqWCQNsl0L51WIJUvxI9KZ4Osx2oSUdkYcM7klfIiyBJsNhtt7e0EAgr9PguZTIZkMsnq6gqRlITRYmHurkBvRys2m21DNpzHZuSuBJSISTiVx20zFjsEr8cgFgL937uzxnykUKCZzitE0/my+hSNVE4mks5jNoj4HaZND3rNaJFUIwCiKJYVROZyueKEyJs3b6IoStk8+81a6FS7pp3ESDo7O7d/YBPR9ELSqKwtSZK4M3yT863w8oqKQvnNYBAE3r1NhlE11NJKXuskrLmQtOCg2Shyct3c8J3UqBhEAbvZsGH2h6yoqBRqHdRM4bR++/ZtlpeXecMb3lB0D1TiVLeb7wyvsBApFNOJAqwl8pgMIuf7vJs+LycrfO/mPNlEjMEOb7Gj8/4OI6uJHN1Hj9NulVldXWV6eppbt27h8XiKjRmDWZG/vr7MbCiFrKq02M287XCAn7vcx9hqqthi/VCbY0PWmaQoTKymCCVzuKxGzvT7mQhmmAymcVsM5BWVdE7mTI+LHo8JWZbLNsusVPi2HAg48DsKzSN7fDYMwr3pmgIc69gYz1FUFVlR6XBb8NqMrCYlOt0OnA4HqtrKnaUY/U6VdCzMj2anMJvNBAKBYiGexWjgXI+H67dV5qM5WpwGElkJSVV5eMBf1rMrLyvMhtJEM4Xge1+LlbcfCXBtPkY0LWE1iTy6v4XTJd8rRVUZmosyNB8nlpEwG0T6W6w8ur+l4qFAE9AHTUjWYzab6ejooKOjo6wgcmlpqVgQWTrPvlph0A4rO7FIdNfWDthuSmK9LZJkMsnVq1cxm8387ofP81N//jJLaYo5+IIg8IcfPI7fufu219Vu+CsrK1y7dh3F3YHB08lKUqLbu/mJfidCIggCbz4U4IsvzhHPSLisRmRFZT6SptVl4XS3i5lRuWwsb6X2FKqqkpUUTKLAQIuND53t4K+vLTEVLLhz3FYj7z3Zzpmeyu3+VVXl9sgEC6sROltbcLtfvWlsJpGcpBDPyhzu8OL1ejl48CCZTIa1tTVWV1e5OTrJt+4aSKgm+v0unA4rwYTE168t4bGZONVd+XWhEGf48isLjC4nkJTCZ93ns/H2o23cDacZWU5gNgic7HJxqsuJUaTYwiWSpSBeUQlRKEzSfHR/Cy9NR5gJplDUwt/+lkP+siaOmbzMldkoNxZiZPIK/S02DrQ5uDkfZ3w1icUoks4rdPsc/NjJNjrc1mIs6eWJZb56bZhIWqbb5+AN+1o4G1DAbSYtq7S7LZzscnGk49X3MJaR+M7tVSbXUiiqCip0eSy881gbHzjTSSpXSP9dXzR5eynBM+MhbGYDXR4LWUnh1mKCvKzy3pPtGwa6vRbH7FYqiNSsldLxBKXz7Dd7D7R9ayfBdl1I6ky9hWRlZYXr16/T09PDoUOHUFWV//cpGbX7JLeWUvjsJt53qoMOz87N2VK22/BVVWVycpIrtyf5btDN1K0oeTmMzWTgLYcD/Opb91fslbST2AvAEyc6mAmm+NF0mNV7lkmby8wvPDqATcyQy+XweDwVx/KqqsrzkyG+M7zCUiyL22rgzYf8vOVQgJPdHu4sJZAVlYNtDjo3ef9kWWZ4eJhwKMxgTyvhTLlfMZkrtFZvcZSLqNVqpaenh56eHtITa+SWp+mxKKRiYeJhGavVSjRn5Lnx1Q3WWynfvb3KjfkY/S12bOZCsHkqmOIHY0F+4dF+Hj+2MfMpm83y7EvXeCliJZ9K4neYkFSVfxpZ5WCbgw+e6SCUlpEVlU63pczFJCsqf3drhatzMVwWAyaDyCtzMVocJh470EIknSealuj0WDjS7iw2xTQYDEwnjVyLWcHVQZtXZSGS4BvXVzjuUhmU52nxt9LW6qfF5yhL3/3RdJiR5QT9LXYs96ZBTgdTfH9kjQ+f76oYE1FUlZsLcYwGsdiq32QQ6fUJTIfSLEQzG7oJ17uqfbc0okWK0Wikra2Ntra2YkHk+gzE0nn2pfeMdn/qFkkTUEtTxa1QVZXx8XGmp6c5ceJE0QepqioGEd50qIX3nK4cB9gNWwmhJEncvHmTUDjMd0M+7qym8NnNWIwmklmJv7uxjMdq4hfftHGCWS0WiaqqKGrBtWUzG/i3bzvA7aU4U8EUNpOBc30epGSUoaGbCILA2bNnK24QT42u8bnnZ5EVFZfFwGI0wxdfvEs0I/HPz3XzyP6tExNyuRxDQ0MAXLr4MMa5BF96eZ75SAaf3UQ6L7OWyPFQv5eBLWauJ3IKFrOZtlYnKipSXiKZSiKkklwbneY503LRBeb1eoubSzSd59ZinDaXpdhF2GwU6fUV2sLPhdMbXjeVSnH16lVmUyZkq48j7Q6Ee++pzy4zsZJiYjXB2R53xdTi2XCa4cUE3V5rcX6I32FifDXFUizLe05WHkGQzEr8aCaK1Wig/V6cpsvnZCaUZnRlljef6SeVTDBy5w6SJBWbHFpdXsZWUrQ6LUWLwyAK9HitLESzLMUy9Hg3Wpl5WSWelTbMOLGaDMiySjK78TvcbJXkiqI0tGNuaUGkloGozbMfGxsjk8mUzbMvzQysBV1Idkg1WVu7MaPz+TzXr18vTg0sHRijfdiNCuhvtuGn02leeeUVjEYjzv6TTA7dwe8wF60Pt82EpKj8w/AyP32xd8NwrWqEJJGR+Ma1RZ4aXSOdlznZ7eafneniULuT411ujncV2o3MzMwwNjbG4OAgU1NTFd/nnKTwdzeXQYW+ewV/LXYTq8kc3x8J8tZDrRvacZStJZHg6tWrqBYX/fsPIBhMXN7fQl5WeGo0SDCZw2oUeeuhAO891bFlgVyL3QxCIQ5gMhQaL3rcHlazRt7Q52b/fhtra2vcuHEDRVEKAftAANXqJi8r2M3rJg4aRfKKQnZd1pPW7bmzsxODaMORT2Eo2Titoogo5gil5eKY4vXpxcuxzIZZ8Forlangxqw2jbVknkhaom/dxMaAw8RCDkSbmyO9PaiqSjKZLDY5XLg1ysyqmYDHjgV30fVSSI1WkSpllgAmg4DXZmIhmimzqNJ5GZNBwGl9df3RdJ7hxTh3FsKsLKn4FuIcbndUTFm+n8iy3PApjKUYDIbigQUoa98yNTVV7GyxsrKCz+eruiBSz9pqAKW1GDsp6ovH41y9ehWHw7Hp1MBGzVaHyht+KBQqblBHjhzhe3fWyMkbG/1ZTQbSOZlwKl9RSLYSv7ys8F++O8aPpsPYzAZMoshTo2vcWozz208cYX+rA0VRGB4eZmVlhQsXLmA0GpmcnKx4veVYhrV4ttD+/V5GFIJAi73Q2HE+kt5USILBIM++fJ1baTeLWQP58QlanRZ+7Hgbbz4U4NJgC8FkDod588yjUo51uhj0OxhfTdLutmASBVYSOZxWI5f3B2hvdxY7ycZiMdbW1pibmyMciZGLWpmOmjnY4cVsNiMIAsFkDo/NVDz5Q8EFevPmTQ4cOEBfXx+3hhY2CI0gCKgCuKxmLBZLMaW4NL3YJKjIioIkyRgMr55Os/cGXm2GySBgMgjkJQVjiQjlJQWDQPG7og3xMlntOAOdDB6SWXhplqmVGPnUAoqq4LA7yIoWnHZ72WeUysmMrSZZiWWxmQ10uC0sRDIsRgsWYkZSWI1nOdrhovNewWI0nedvbywzG85gVPMsp+Hvbq6wGHXztiOBhjeJ3Iq97v6rzbPv6elBURTu3r3L1NQUU1NTxYJIzVrZrCBSOxg0ajpio3hghGQn+diLi4vcvHmTgYEBDhw4sKlF08gU49Jra1MfR0ZGOHLkCL29hfkh3V5rMeBaWj+Qysl4baaKG/R2FskrsxFemYvS4bYW3TgtDhNTwRR/e32RX3qsj6tXrxYbUtpsNpLJZMVrqqqK1VjY2DKyiuOeiEBhQzQZxE0bIM7NzTF8Z5SXk36mYwptLhGnxcByPMsXX5zDaipkd3VXcLesJycpxcyzn3q4h2/eWGJ0JUlCUen12Xj7kQCHStqQlM690Kb0GYbv8tWhJa6ML+A0gWq0YDRZeN/Z7mLV9+zsLOPj4xw/frzYifp4p5urczFW4llanWYUFRaiGXw2U/E117duUVWVwVYnrc4os+E0PV4rBlEglpHI5GVOdpVvFqqqshTLks4r+GxGerxWJtaSDLTYMRpEspLCciJLp71gsUIhBvPSTKQwwCsjYTMbaHc76cBMOi9jFxWC0QTpTBxffo3ha0H8fj9mh4enZtJMhwpteBQFnFYD+/x24hmJtUQOi1HkXK+Hi/t8xUD7rcU4s+EM+wN2spk0JAy0uc3cWIhzpMN5X6YybsZeC0kpoijicDiwWCw8/PDDZDKZst5sWkGklg1WakmlUqmaG8RWyzPPPMMf/uEfcuXKFRYXF/n617/Oj//4j+/6uk0hJFu5rDQfoyRJVZutiqIwOjrK3bt3OX36NG1tlVtHaDRSSLQNv/T0vz6l9linizO9Hl6cCiHJRiyme2mdssL7T3dUDLZvJyQTqylkRS2bKCgIAk6LkaszYZ43zuN2uzl//nzRr6y5Z0rRai28NiOne9w8PRrEbjIUA9ULkQxHO50MBhwbnjcyMsLS0hL2niPMv7xSNmTJYTEyuZbk+yNrW6YJQ6GR4z/eWWNiLYnZIPLQgJe3HArwiUt9BJN58rJCwGmu6FrRmjGm8zKdbivvOLufrvY2npsMMrMaw6Tk6LOmYf4mV9LzxZkkZ8+eRTY5GF6MYzcb2B+w886jrTwzFmRsNYVAIdbx+LG2DYkFyazEzL1alr4WG+873cXf31xiJpxBVQuZaRf63Bxrt5HL5RBFkUhG5ju315hYS92bqmjkYKudLre1cC1AFApdid3GV928P5oO8+3ba9jNhaLDZE7m1mKCox1OPFYji7EsfX4XxztdDLaYi5vZP1yf52YIBgM2PK5CQeRqQmI+kuFfnO8CCvGj9YH5ybU0LosBgyigKgoIhTqkxWiWpVhWF5ISSr0oVqu1rCAyFosVq+yHh4dxuVyMjo4SCARIpVINs0iSySSnT5/mZ3/2Z/nABz5Qt+s2hZBshTb4qNqNXgvo5nK5im3pK9FoIcnlcvzoRz9CURQuX768ocBJEAT+/bsO8Uffn+S5yRCxdB6n1cj739DDRy70bHrdrYTEbhZR2Ziimc7mMGYzdHX1b7DStP/WnqO5aLQb9Cfe0F2cEFhInYX9rXY+camvLDVUkiRu3LhBOp3moYce4rnZJIrCBkF0Wws+eVlRN6SWakwHU/zpszOsJXK02M3E8xJfH1ribjjDzz/at2VcZimW4cuvLDK5liQvKbhtJh7d38Ljx9o43uUiLxeKDgVBIJFIcPPmTZLJJJKs8uf/eJ2ZtIW8YMJptzIYcPCBM50c73Qxd6+Z5oDfvmFOy7W7Ub41vFLMiGuxm3nHkQA//0g/U8EUeVml1WGiw20uvrc5SeYb1xYZWUnR7bFgdZmIpiSuzEV5/Ggrl/e3kMxJeKwmer1mnnt2FEEQSOdlrszGcFgMxcJJh8WIQRRYiGZ59/G2DfUfHR0d+FvbeCY4y357Bhs5IuEIS0tLmM0WFmULk4sWLhzoqHjAsxgFpHuzT9R73xnt8FFp3MD9pNmEZLM+W6Io4vUWUttLCyL/8i//ki9/+cvIssyv/dqv8YEPfIDHH3+86LmoB+9617t417veVbfraTS9kED1G70WHPV6vRXTVzejkcF2SZKYnp6mvb19y3b0PruZ33riCMuxLOFUjm6vbcsRstul/z400ML/vrLAQjRDp8eKAKxFEyRSaT70cDcHDx7c8JxSt0xWUvn+yAovTUdQgLO9Ht58yM+/e8d+hhcTrMSzeG0mTna7sJQMl0qn0wwNDWE2m7lw4UIhEG7NFqrd7wXHNRJZicGAnU00BIBnxoKsJXIcbH110I/HJnNtPsbIUpLjXZVPbjlJ4UsvzTO2kqDbY8VqMhBM5vj7W8u4rUYePeAvriWXy3H79m1EUeSxxx7jh1NRxl+axUweuxQjHYry/JqJcCTCr7ztEKc36fk1H0nzjWtL5GSFfX47ArAUy/LNm8sEnBZOdFVOS767kmAmnKX/3mhegBa7kXRe4vrdGL/waF9xgFdpBmMsLRHLSgSc5WLhsRqZC2cIp/KbdhdQEbBZrAScbgL+AJIskUgkWFmKMzo6RnZpvOh68fv9xdjioXYnk2vpe400CweOlXgOt81Ylg2WysncXkoUJ3seaHVwrNNZVjRZb5pRSKpxx2sFkZ/+9Kf5jd/4DY4ePcq5c+f4/Oc/zy/+4i/yx3/8x3zyk5/8/7P33tFxpOeZ76+qOid0N7qRIwHmHIfkBI00kmZGmtFoFKxkWR7bsrTX0u5d2d61fX0c9mrXu/Zd2Svter22rGBb1sqSrKxRmjycTAAkCBAgcgY651RdVfePQje7ATQYhpwB13rO0Tkih90oVHd97/e97xNegyu+ftwyheRKFOD5+XkuXrxIb28vXV1d18TwulnD9sXFRcLhMB6Ph/3791ddUzJXZCaSwW010lbRDmh0mauGvrVwpRNJi9vCR+/o5PNnZpgJZygU8giqwlv2NvOB23du+JrS9WXyMp99cppXZmJIqzv28wsJXpmJ8dtv6a0p+IvH4wwMDNDQ0MDOnTvLD/W+VhcdXitToQxtHismSSCclgG4q7d+089qLJheZ+liM0kUFY3FeK5mIRkLpJkKZcpaCoAGpy6ye24ywukeb9myvr+/H4fDwb59+9AEgZdn47gdVlrdXkCjUCgQS6S5tJzgn3/2HDsbHWW2Tl1dXfnaLi4liedkdjRcntO0ui1cCqQZXEzQ7du4750uKKiagN1q1nf3mqYPyU0SiZxMJlcAk1T1mQuCgN0sYTWKZPJK1QKdKahYDOI6Km8JRkmk12/jhakoHpsRSRQwSAYKopXuViv3H2tBKuqOzbOzs/RfuEjR6MDrrmN7WwP7W50MLyVJpHIkUyq99XBnj7d8OszJCj8cCnBxOYXVKJY/j+lwhgf2N64jldwo3KqFpBL5fJ5CocAf/uEf8ulPf5poNHqTru7GYksUkist+psZN5bsPJaXlzly5Eg5m+BacKNbW6UZzcLCAn6/vyoOVFU1vvT8LN/oXySVK2KQdGfb335LL43XYOV9NfTfN+70s8Nn4ZvPnCMnS7z52H4OddYjbnYEAJ6fCHF2Vk8ptJr0r0ihqDK0lOTp8TBv37de+7C8vMzw8DC9vb20t7dXfaZWo8Sv3d7JV16aZyqUQVZV6qxG3rmnidNX0J64zAYi6WpLF1XTLV0sxtqLRjwno2rrmXB2k0Q8V6RQVMlnUmX2XMmQMp0vks4VsZlKj4aAyWSmwWcmrpnYua+JTluxbGYJlItKNF1E2uC7bJL0AXstuG1GTAbxcqqiICAhki4WaHFZcFhNsGqLn83q7gHFYhGr0cieJgfPTkSRVt2L03mF5USOox3uKtfinKwwFkgTSstYjSLd9VYWYjkmQhksBpGComIxirxhez31DjNgpq6ujqixnouJEIFgisJ8BNuFJQ77BQ67PcQsAgWHkTcfbq76WWOBNKMrKbq81rKhZb6oMrKSYlejo2bxf7X4P6GQpNNprFZr+XWb2RNtJWyJQgLVvda1qLXQ53I5BgYGyrOHjew8rgY3spBU5nacPHmS+fn5qtPUP51d4AvPzWCQdJdYWVE5MxEmnpH5nx88iOEqufgbDcZXEjnmYznq7SY6vVZSqRTjF/q4q6uO/fv3b/qlLr2X1Wrl+y9fJJ0xgE1AVQVEUcJkEDGIAgNz8apComkaU1NTTE9Ps3//fvx+PwCBZJ6ZcAazUWJXo87m+e239DIdzpCTVVo9ljJLajOc6PYwHkwTy8rUWQyoGsxFs/gdJvZukE9SQr3dhEES1jnpxnNFenx24pEQQ0ND9PT00NnZWf7vVpOEz6H7Z3kq6LmpfBGzJNLkttNcbyuHsSUSCYLBIFNTU6wspAlETNSJeVxOByaTCVXVyBc1WutqnzLbPVZ2NTron4vjc5qwGkUiGRk0ONntxbxKMkkmkwycHyRv9TOwmMZtkTje7iSblxkNZAgmC9hMEofb63jzLt/l3zkr8+1zy4wHM6jolileu4k39HrZ1+JkIZbDbpLobbDTXSHIHAtm+OnFECaDyJ52H0VVYy6SZQaVXoeIORKgIBaYGxsis9oCs9vtzMdyiIJQ5YpsNuikmflY9l9MIbkeyUIqlbrl8tphCxWSzbBRaysajdLf34/f72fPnj3XpTGpfP8bUUhKmhWHw1HO7ZAkiUJB31HLiso3+hYQBQGPTV8cTAYRgyQwspLildkYJ7uvzra+8kSSkxX+1zPTPDUWIltQMBlEdtabOOWIsG/7+qH6WpSG6pqmcfr0ac4XxrmQCJBJZ4ivhmpZzBaKila1OJSYaNFolOPHj+N0OlFUjX8eWOKxkSCJXHFVVW3lkVPt7Gh00OPfnPygahoTwTTxbJEGp5lT3W4WY1lemCpZuugxsr9wpKVsJ7IRev12djU6OTcfx+cwYTHoi7MkCOxwygwNDVXRe8v3VRC4vcfLbHSB2UgWr91ITlYIp2WOdtZVCQRFUcRVVwdmOy2d3fTszhF7apzxYBJLMIokSuRFM531DvY2X253aZqePTK2kiKvqHR4rLx1jx+7WWJ4KUkkLeOxGTm9zcvBVb+yWCzGUy/1M5RxkdBMKIEgBlGg12flHfsbONHlJpGVVwfvFkRRKC+sz0/FGF1J0+2zYVoN/ZqL5nhuKsqvne7geKd7w3t4YTGBrKjl31kSBbb5bEyEMmiuRrrr7KysrNDY2FgW4RmNRlaydjIZCUW1VAk4VVXbcKMUz8rIiobbZixHA18PrldrdrPwLyXUCm6RQlLZ2tI0jdnZWS5dusTOnTvXtVGuBzdi2L6yssL58+fXaVYqF/xEtkg0I2MxVX+5zAaJuKpTL6/lmkvv+3cvzPGDwWWcFiONTjOxVIYzE0mKXR7eeRVFpGRKWKJa39bbwDNTSQwWAx6TSC6fJ5bOkU4VsKZyjIwUcbvdzM7OomkaJ06cKAcDPTMe5jvnlnVNgs+GrGjMRHTm1R+8fQcuS+1TSDCZ50svzHEpkCIvq9jNBo601/GB4y2c2uZlLprFbBDZ1eTY8H0yBYWZSAZR0DPXP3hc14acX0wQyxbxO0xst+expBY5fOQIbrcb0IvXTDhLIifjc5g51OZCUTWeHo8QTuUxGSTetNPHW3dXR9KOLKd4fDTIfCyHQRTY1+ri/ad76ZuNM7qSIpfL4TMW2WaJMfjyc3g8Hvx+P4MRgWemEmQKCoKgn8b3tTh5/7FW7t5RT05WcVuN5aIdDAY5d36QScVHRJHoqreu6o4UhpczuO1xHj7YRNMGWSv5osrQQhy3zVDOcxEEgRa3HoY1E8myu2ljO45oRl6nDyq1RdN5BZ9Zw2Aw0NraSmtraznEKze5zLnFCOdHwvicVux2O0XRgkkSqk480YzM02NhJkIZiqpGg9PEqW7Pukjiq8VWO5EoinLNgVmlQnKzTiSpVIrx8fHyn6emphgYGMDr9dLR0XHd77tlCsnVtLYURWFoaIhwOHxFe/Nrwas5kWiaxsTEBFNTU+zfv5+mpmrr+coF32kx4LQYiWYKVG6mC0UVQWDT7Iu1KL1vMlfksZEgdrMBj81AMplCVAq0eJ2MR4uMBdJVIr1KlOinlUUE4FBbHffs8vHYaIhQSr82g2ThrQebeHifk3BghQsXLgD6fCAUCuHz+TCbzTw9FkYSwe/QfxezQaCz3sZMOMPAXIK7tm88w1I1jS+/MMf5hQRtbitWo0giV+Tp8TBOi8T7j7Vt6r/14lSU7w0uE0wVEIBml4V3HW7mA8dbuT/bQDonszw9Rjad5PCJE+VdXzhd4H+/ssDYSopsUcVhNnCozcV7jrRwsL2OeFbGapRwrHEWmAim+YeX5khki/idJmRF48nREKFknl+7vRNZ1bPfHWZDWa0cCoUYnFri60NJrCYDzR67LjyTjJyfT9Lri/GGHT4qR2WLi4tcvHgRf+cOohfTtLqN5bmP1SjR6DJxcTnFPbuUcquwMmsFRaOoaogiFJWibvuOgIA+Z1LV2imbrXUW5qLVmxtZ0S303TYjqnzZtHExnmM2kkVDYPu2Lh50NvDSVJhQMsv8ShLkELvqDeRDRUL4sDnr+N7giu5O4DTjkAQWYjm+N7iC2SBu+lnXwlYsJFst1OqVV17hjW98Y/nPn/rUpwD4yEc+wpe+9KXrft8tU0g2gyRJZLNZXnjhBSRJ4tSpU68qbGaj9y+1n64FJb1EIpFY5+FV+d6lImUyiLzzYBN/c2ZmtQ1hoKDoAUO9fgfHO6++MJbov+F0gaysYDeJxGJxANxuD4IgMBfNEkzl1xWSUp55pc115Q5IEgUeOdXB0Q43FxYTKKrGnmYnh9vrSMSihMNhOjs7aWxsJBQKlVPmnE4nMwENo2SknCwF5XbFZgPnqVCGS4E0rXWW8i64zmqkUFR5cTrGA/ub1i3mJYwF0nz1lQU94KrOggYsxnRDyX97zzbqrSJj40Pl01NJ2KpqGl97ZZFz8wna3PrPjeeKPDMewW6WeNehlnJBXIvnpyLEsnIVLdlplhgNpBhZSVUx20o2Jg6Hg5mCA+fSIm1OkUwmw8pKQLfl10w8N6pyqsuFyWQqe6BNTU1x+PBhYqoZWUliMaw/zabyBXKyAquFpLSYSpKEyWSit9HB2ZmYbsmigYpKMFXAYRLxOwzlBTiVL3J+IclkKIPZIOCxGXFaDEyGMvgdJoqqRiCZp8dnp8dnY2UxgiAIPD0e5sxElFReL1RWo8Txzjo+cKKdpdUE0maXCbuWJRKJcOnSJSYiBV6Jmun2ObAZTJhMRuxmA+PBNOcXEtdcSEonsa1USK53RnIzDRvvvvvu64rovhJuiUJSKBQIBAK0tbWxa9euV/VlKSo6/TOUKrCn2cmuJud1nUgymQx9fX2YTCZOnTpVU3W/ll31wRPtxLIyPxhcIZwuYBAF9re4+P237ayaP1wJpWG73v+HQDSBz27E4dA9fJK5Ilaj3i+vRGXcLKyeBIHhxaRu/+E0sbvJiSQKHG6v43D7Zc3E3Nwcly5dYvfu3bS06Opnl8vFtm3byOfzhEIh/BOzDK7EIZvAarNiMVvQRAOSsHnaYDJXJF9Uq5T4oA+/47kiqXyxZiF5eSZKIle9qHfVWxkLpHlxIog/O1um91Y+2LORLJcCq868q+/tXi1er8zEuXd3wzqPsxJmwllca2jJZqOEomoEUxvHN4MeHSyKIg77aqCVX6d85gIJovE4Tz31FC6XS2eQpdMcOXKEuro6DDkZl9VIOC1X0cPD6QJeu0k3slyDoqoiCQK399SzEMszGc5jN0vkZAURuHu7G7dFnz8mc0W+cS7AeDCD2SiiqoAAvT4bjQ4jy8kCoiBwvNPNHT1eLEadMr+cVnlhLoLNLNHi1hfAWEbm+akonV4rJ7srN0d2fD4f27dvpzCyzPnzSxRyGWaiYQwGA3a7HYNmuqYWbwlbLfYXrm9GcjPtUW4mtnQhKTGCVlZWqKurY8+ePa/q/UaWk3z8H8+V888R4A3bfXzqpPuaCkk4HGZgYICWlpYqvcRGWDt/MRlE/u97evnA8TYmQ7qOZGej44qU3I3eV1VV0rEwvaYkIcFIXrBgUlSyBf2Uc+f2erZVaBc2moeE0wU+98QkQ0tJ8kUNkySwq8nBv3nTtvJuvJQhv7S0xJEjRzZsKZrNZlpbW/ngG5x87olJEtk8akEhkIiSyGvs9JnxkiCXs2x4mmx0mXGYJeJZuUxEAH0Q67WbqhhUaxFMFbAYpHUqfVVRGLg4zgeOtWyYN5/K68Vr7RzAbpKIZWVSeaVmIfHaTYRTqaq/U1QNELCbaj9WnfV62y6WlXFbjQiAZDAimqy8dX8Xt3c5OX/+PMlkEkEQeOlsP05PPR1Nfm7rcPHT0TAzEQWH2UAipwds3dHjrdqEDC8leWEqylIiR53FwPFOD+8/1srgYoK5SBaX1ci+Fie7Gh3l78T5pRiXAmm66y0YJREBgWReYTqc5SMn2/DaTRhEoUokq2ka80mFXFGlvYKE4LYZCacLXFpJbzjvEAQBX51+Qmv22UDTyGYzpNNpFgNhSAY5dy5eFkPOJVUGFxNE0jItdWYOtrnWWeGXNmtbrZD8S8gigS1USNY+5KW2UTwep7Ozs8yfv17kZYVf+/t+Ihm51HFBQx8OO0SZ9/Vc+bhXabm+e/du2to2ti+pRC2xY6PLck26kbUo+Y+dP3+ef/WWvfROy/x4eIVIWsZsFHnrngZ+/c7LwsyNigjA58/M8MpsnCaXGbvJQKagcG4+wV8/M8Pv3bcdRVGq7E422i1pmoaiaRhEkQOtLj52ZxffH1xmIZ7Da3NwZ6OFO5pFwoEVJscu4XA48Pv9+P3+sgtqc52FE10efjYSpFDU9DZTVkZWVe7Z5atSz69Fa52Fc3PxKjuYVDpNLJFgx+Emdu7cWIDZ4NSLVywjVzHAYqsxvW5b7cfjeKeb0ZUUwWSeeoeJoqIzoZpcZvY0Vy8EympLSBDQd+nbPDwzFiGUkjGIkC9q7Gh0cKTNycWLF9E0jaMnTvHMVJwXxoPE59NYBiNsd8jscziYzZmRZTPb6u2c6PZUtdHOLyT4+tlFskUFt8XIQizHTGSRt+7289bd6z3nSnb3Y6E8LosRi8mIpuqtT4dZZCleZDqUotNTv26R1j93YUNnAkkUyCvrv/fRjEy+qNLmttBcZ2EqnKHVbcFitZFUDLS2OLl/Zx1uMUsgEOCHr4wxGDciGcy4HVamwgaGl1K861BTFQPw54Xk9cWWKSSVKGVXWCwWTp8+TSAQIJlMvqr3fOJSiFCqUGbJAAjoffKfjCV4oG1zDUop2S8UCnH8+PEy4+dKuJ5I3CtBURTGxsbKPf+6ujp+pRXedbiF5UQOj81U1f6oNVRfjOc4N5/AZzeVd9E2k4TfYebCYpLx5Tih6YtVdieVKBRVfjQc4MlLYZL5Ir1+G2/b28ixTjeH2+uIpAuYDGKVTUehUCAUChEKhZidnaWoCfj8flob/bznUCMui4FnJyKk8voQ+007/dy9Y3OR6cluDy9Nx5gIZWh0mkmmUsyGkvQ0ubnvaG/N1zU4zRztcPPEpRAFRcVuMhDPyhQUlTdsr9+0eB3pqCOcLvDMeJiJYAZRgFa3lYcPNVcxyi6tpPjB0Arz0RwC0Om1cf++Brq8Ni4uJ8nJKj1+O3sarIwNn8dgMHD06FG+1r/MC5NR3FYjTT4PkYzMJUXlrV4Lu4QkgfAiDs2MOZUjHNbjX1Xg6bEQsqLSu2qi6cNEMJnn+ckoxzrdVae9ShhEAQ0BURBButwqEkQBaYOsFVmFTKFIo8PAdE7/LpRORbKiUlD0SOESYhmZn42GuLSSRlZ1C/1djQ4sRpH5mO635rEZeeMOH4fa9daer6mVJyIzuEnjFGUy6SgGVWUmZuYHao6PvqEH6+rptnTq30r6i58XktcRKysrDA4O0t7eXm5H3Aidx1I8hyjop5BKCOjpcIkNEuBKyOVy9Pf3A1zzoF8UdfZRLCNfVdbGlZDP53nyhbOMR4vkswInjdUthcqfcaWheiKrK7zXUmktRpFwOsfzZwc4tq1hw7mUpml8/swMj4+GMBskzAaRl6ZjjC6n+Tdv6uZgW12V2rkEk8mkO6BaPTwTcdA/G6EwEafNGuKIt0hPs5d9h71YXB4aPY4yZXUtiqpKKq9gM0q0eaw8crqd751f5uJciHwux6ntTbzvtq6qk4aialxYTDC0lKSoaPQ22Ll/rx+HWeLF6SjJfBGv3cRd2+u5s7daz7MQy/HyTJSleA6fw8TRDjf37mngWKeb+WgWk0Fkm89WVXwW4zn+7sV5opkCjS4zmgbDy0kimQK/8YbusmdXKeTM6XSyb98+ZqM5zs8naa6zlN1366xGJkMZxlIG3vKGI2iqWo58HRoaolgsItndTC1r+OqqWT/1DhMTIT2RsVYh2dvs5FIgRU5WsBj1NmEoVcBlMbKzuW5VXKkSSuV5ZjzMxaUU4WiMdreRJpeN6XAam1lv1aXzRbb77exZpRXLisq3zi1zcTlFo9OM06C7FZyZjPKuQ03cs9OHrKg0OM1VbcblRJ54rkhXg2e10Gnk83lMsRRTgTg/ffp5mtx26uvry+4RW6mQXM+wPZ1O4/VenZZsK2FLFZKxsbGyQrqSRnsjCsmORgfqZSJRGTpFU8Jh2PjUEIvF6O/vx+fzXbPwcTyQ4s9/OsXZGQXL4AscaKnj/7q7m11N16fsjcfj/I8fnuWpJYGCZiCXFznz9/189I4u7ttbLayrdO4FNnzIWtxmnBZ9F95QsegHExm0fIZD27vYvaN7w4dzIpTh+akoXrupfOLw2o1MhzN89/wKB1pdNR/qYCrPXzw+WRb8SUYj42kZOWNih9VOLBwgPjnGvN1eboGVBtCqpvHMWJifjYaIpAs4zAbu6vVyz8563tqYYZdY5MD+Q3Q2uKt+vqpp/NPZBZ64FKawSmF9cizMoTYXv3Z7J2/a6S877K4lPYyupPjS83MEk3nMRj0X5IWpGB841sqxTjf1NYSRfbMxnTXXcJkEYDdLjAfSDMzHefMuP8lkkr6+PhobG9m5c2d5Ac/KCm3u6kLssRlZSRbIFvTZTWWWeCqVYnYxQD67yHQ8RsppWg1asqNJBoyigGWDE1ahqCKKcLijjolwmgsLSd2CRtNPp2/cUV/2gsvKKt8YCHApkMKk5Mjn80wmzbRIRU531TEfy4MAt3fXcaitrjxfmgpnmQimq2IEbCbde61vLs4vn9zY3VYSBSRBQFE13aUZAYvZgsMpYbI5uf1kC8VMgnA4zMLCAqqq8crAII3+ehr9vtc0LXEjXK8g8ecnkleByclJlpaWOHXq1LobeSNy2091e9nZ6GA8mEbRtNXcbUCADx5tRNRW1r2mZAS5fft2Ojs7r2m3sxzP8W+/PshyIoek/xhemI4w9vUUf/2hQ7R7r42ZsbKywj8/c57Hl0wYDAaabEZisSyJrMx/f3KSrnpbuUBVzkNKPfCN4LLoeRr/+5UFluI57GaJaDJDKpvnXYebObBzW83rmQ5nyBYUGisKkCAIuG16MckUag+qz0xEmI1m2ea3le3j3TYj06EMC0oT9x/vQZblcgusr68PURTx+XyMpMx8fzSJJOreUrGszFdfXmBwdII3dRi5767bNlxARpZTPDUWps56OYUxJyv0z8V5YSrKm3b6NgznUjVtlWGXZ/tqQdA0jdlolu8NLrOvxblhXgzop2CLofoUKAoCkigQSOaJRCKcO3eOrq6uKqNRu1nCIAmrqZkVEQAFBZd1faETBAGn08nenU7uydl4YiSIxaIhF3LMLSwRyEKv34apEEeWjRiN+mf09Fh4leorcrSjjgf3NXGwta58wurx2emqv3ziHVpKMhlK45VyZHNpdne3YDSYuBRIYTYa+LXbG8saFuBy1kqmgKJp62MErAaCqcI6V+gSWlfnKPOxLN1eG6IoICsqK8k8xzvrqHdawWmlsbGRF8cW+clL4ygRGS5O02Ya5XCbnSa/j/r6+vJG5LVC6Rm8nhPJrZaOCFuokHR2dtLS0rJhFO5mpo1XC1EU+NtfOszvfXuYZ8bDaOjU0kdOdfCRY35eeXmp/G9VVWV0dJTFxcXrNoL87vllAskC9XYjuYxuxmc1SYRTMt8aWOJfv6nnqt5H0zQmJyeZnJxkUfShkKbZaQFNQxSgwWliMZ7n8ZEgu5qcNYfqtfDeIy1YjRKPDq2wHElgpMgjt3fzCyc6N32dzSiBoLeLDBU5FAVFw26SMG5CZZ4IpjEZxKoMEoOoL7DTYd123Gg00tzcXPa0isViLK4E+cG5BeLZIq1uC5Jiod5iJBVPMhQx8Mhb9tfchY6upMjJKu3ey98vi1HCKAkMzMd5007fhq9bSeSZjWZpdFouz9YEgWaXhYV4jplItqYSu95hIl/UqkgAmqahqBqinGFgQHdnaG1tRVE15iJ6XklLnYUOr5XJYIZOjwWTQSSWLZIqKLx5t79q0Z2NZDk7GyOQzNPgNLOz0U40LTO6kkIWJASnnX2NIne2CMzOTHNxeIicwckTSyJZzYDfaSWZL/LdVXLEh29rq+nuvBTPkUgkMBllWltbMBn1e201SSwk5HL7q/I7qKoq1tWZS64gYzbq2ypBEEjli3R4rOuKSE5WSOUVnBYD9+7x853zy4yH0uV72OO3cVfv5WdyaCnJdy9ECOYEdja6ycoKM9kCroKRumyWc+fObZpIeDNQ6gRcayH5Of33VWKjAlLCjfLC8jnM/PUvHmYlkSeSLtDhtWI3G0in0+X3XxuMdb0f6shyEkEAUdADptD03ago6PTMq4GiKFy4cIFoNMptt93Gj34yc9mLqLwG6w9lMFW45iICevvg/t1e/NlZUm1GTh09htN+ZfPLA20umlwW5mM52j1WJFEgUyiSyhW5b4+/5mwD9H5/cQNGj6JqG1qfiKKI1+slK9ow2HN0ewQEpUAmk6FQKGAVReKqwMRShAZXy8ZZ2DWuRRd21mbslSxR1v4LDf1Uuxlr+0i7m5emYsxGsjTVWdA03freKsgY42H2Hd1HQ0MD0+EM3+xfYiaip1rW2/UZjKDBTDRLUdFwmA28YUc9d1YsoBcWE/zjywtEMwXMBomB+Tgvz5h439EW7ujxEl5t/W1vsJdPA7lcji89O04wEaXeKJMpxrHZbPjMFgYXEowHMuzawDJFVVXCywvk8wXautqqsn4KRY066+WUTbi8gKqqyvZGka76OJPBDM0uEyaDQDRTRFE1jrRfLlqyovLcZJSXZmKk8zrF+URXHR863spUOEMmr+C2GdneYC/b5quaxvOTUQqKQrNd1OeEGLGaJGZSCm852MuePXtIJBLlmNuSeLZEL66Vn/5qcL2FJJVK/fxEcrNQKiRr0/6uF2szP0oU3UQiQX9/Py6X65qCsTZCvd20miCn/3m1i4aqsWmqXwmlAb8gCJw6dQqz2Uyv38HZ2Uqaq7C6A4RtPtsVi0g0U+BHQ0Femo4iiQKntnm5s8vOpaHzOJ1Obju+76q/+A6zgY/e3sH/emaG2UgG0HMubut2844DTZu+9ninm2cnIqwkdAEk6Dt/h9nAsRoGgqC3fMwGEVkDm8GALMu4XC4KqkA6mWN28hKF5TF8Ph9+vx+v11veoPT67ZgMIslcsayFyBdV8rJaM6gKwO800e2zcWEhgcNsR1xtbS3G87TUmelc06IsKCrhVAGrUaKr3sb7j7XygwsrLMV11paDPLsdKe45pXt9JXIyX35hjoVYTj9liQLBZJ7HLwV55GQHdrNEpqDQ4DTT5DKXP1dZUfnhhRVSq4PtUsttOpLlx8MB/u09PRta41gsFsKyiY5mPw0OI7lcjkwmQyYRZSlR5Ex/Gvu+Fnw+X9lNW1EUzp8/T4OpQHdrA0tJmZY6CUGAYFLPdl8b2rUUzzGynCJX1Nuf7zjQzM9GgkyFM+TTCnVWA3f2VMcNP34pws9GQjgtBlwWA8lcke8PBigqWs0TYzqvEEgVqLNIFNOXv/N1FgPBZJ5QqkCTS7fEr6urK4tnw+FwOW9FFMVyUan8zrwaVBJcrgU/N228iSgt6IqivKrFvRZKi+eLL75Id3c3PT09r7pg3bu3gR8NB4hlZSQNNE0lkVMwSgL3b5DnUYlS0qPX661KVXzbvkYeGw0yH8vitprIKZCM52lxW3njdi+aptUsIrGszH/4wSVGVlKYJF3NPrgQ4wcvFvjUG1rYu2u9YG8tUvkis5Hs6iJp5WBbHX/yzt30z8VJ5RXaPRb2tbhqxuaWcKDVxXsON/O98ytMhTKAbsfxrkPN7Gio/RC5rUaOdtTxg3MLWNUszX4PgtHMSjTH4Z4m3nvPNpKrtu4TExMMDg7i8Xjw+Xx01/u4fZuXZybCBJIFRAGKisa+Vientq0XWMazMllZod5u4qEDTYRTBcYDaSRJQFE06h0m3nmwuTyv0DSN56ei/PRikGCqgEkSONjm4qEDzfzWW3qYjWSZmpzEkMtw4tjx8hxwcCHJQizHNt/leVGbx8pEMM3LszE+evvGLcbFeI6leJ5Gp7mq5dboNLOUyLMYz60rciW4LAai2SyCaMZqs2G12XArKilDAp/HwsrKCqOjo9hsNrxeL+FIBEmSuPeO47QspXl0OMBkKIOGhttq5P59DVXtvb7ZGN8+t0w0I+unNlFgZ6ODDxxrISPrxdvvNGEziuXNTyIr8/J0FKdZwu/QHQPsJjOBVIGXZmKc6HJv6GxgNoirzs4Kxorvb0HRnYatFZk1RVVjLJBmJpJFFIx0N27j9j17SK6eVqanpxkeHsblcpULi8PhuK61oDRov5bXljzZfn4ieRXY7IaXFtKbUUhK6nngqkWGV4NjnR4+flcXn392hngO8mkZq8nAL59s5/S22vS+5eVlBgcH6enpobu7mjHVWW/jD9++iy88N8NYIIWqCRxpc/Cxu7bR6DJvuvt5bCTIyEqKljozRkkkl8sRLeRZyJtZFrzsu4JD8PcGV/jOuWViWRmDKLC9wc6v39FFh9fK3Ts23i1WIpUv6nYeNhNOi4EH9jdxvNPDyEoKUYBdTY6avlaV13HQmWHQnCMsuFhMaxilPHuaHXzktnakiizstq5tPDcW4IX5EPL8Eg3iGN0eK45OF4s5I5LJxJ5mF8c73VWkgFhW5tvnluifjVNQdEfae3c38Mm7uxmYT7CSyOOxGTjc4aal7jINvG8uzldenEcF6u1G8kWVJ0bDRNIy/+rODjJLEzjUNIdvO1GVmxPL6kmRa4uvzSSxkqhttSIKAoJwWe9ReY9EqHIpXoujHW7GQxliGZk6q57xMhvL0ey28YaD23BbjciyzPjsEt95eYKJuIogiLwc7OdNu5v42Ok2FhIymgYdXus6MecPLgTIF9UyW60UivbsRIQH9q83NQVIJWUyskaTS38vTdXQ0HCaRAKpApFUYcNCYjKIHGpz8e2+GLbVW5EvqsxGsmzzWcsW+LKi8p3zK7wyE0dWVH1GahQ5vc3L/Xv9eDweent7yeVy5dPKzMwMkiRVnVaudv25Xkv7n89IbiJKlb1YLF6zLfNmKCnDS2LHG83f/tCJdt68y8/ffPdpduzo4o4dTbS4N9agVLoIHzx4kIaG9SpkgP2tLj7znn0Eknmee+4MPS0GGi3qFXc+Z2fjGEQBoySSTqfJ5fP43HUsJmUGFxK8eZe/5mufHgvzdy/MIYkCDQ4zBUXl/EKC//rYOP/pod2bWoIUiirf7F/kiUth0gUFm0nkDdt9vPdI8xVjhQuKypnxCC9OR0nni3hJsMNe4I/ee5zljN4CctuM7Gi0Y6goorGszF8+NcXQUgpV00Az4rT4uL/BwS5HHl9oBVVVqc/7SERkTD4fRqORoqryhedm6Z+NU2834bJILMbyfPnFOX7tdAdv2b3xPdI0jScvhZBVrRynazfr7rzDS0m+90wfnU6BY8eOrRvyelcZZEVFrcrqSOUV9rXU1is115lp91gZD6bZ5pMQV6nRS4k8vX57VZEDfZaQziuYDSLHu9wsJ3K8NKMP6UVBoMFp4uFDzWUH4Xgmz9+emWYpY6C1wYtSlHl5Oct0ZIY3NFyiyevC5/NhUHxo2mXPsclgmnA6T3f9ZcqzySDisRo5N5/g3j0NGzK0nBYTVpNEXgGLSQJNv69ZuYjZIGKW9MhjQRBIFVTOLySZieawmSS2+20caDQzuJBnLJBCEgW6fVbecaCx/LOGlpK8NBOj0WkqF6R4VubMRIRev618orJYLOts8cPhMJOTkwwNDVFXV4fP56vSrmyE62Fswc9ZWzcdN4K5VYl0Ok1/fz9ms5lTp07x1FNP3ZTc9kaXhdsaBU7t8eFwbLwwlGxIYrFYTRfhtai3GTh5cA/Ly8v09fUhSVLVbGDtl9hsEFE1jUQigaIouOvcSJIIyBs+2JV4dDiAqkHrqqWLySBiNojMhLOcnYnXtIYH+Ke+Rb41sITDLOG2Gkjni3xrYIlCUeVXTtfOP1BUjS8+N8uTl8KARi6TJq/AQls9xzUj2xvMbK/RBvvxcIDzC0k6vXpuh7a6wP50KsPtb99ZHr4Gg0Gmp6cZGhrC7XYTE5wMzqdo9VjLxdFhNjAVzvD4pRDHOt0bLhyyorEUz+OyVj9OJhEisTgJn5WjR49uuLAcaHXRVW9lMpShyWXGIIkEknkcZmndyVXTNIKpgq76d5h5YH8TX3lpnrFAGknU9RZNLgsP7G+qOuGcm4/zxKUQS/E8ZoPIiS5dTHm8y8NiLIfJILK9wV5eYDOZDN988iyBvIGD2xowGSTASrPXyUQwjbXdT6tbJRQKMT09Xf7u+Xw+CrKEpq0nIUii/pmuNZ5VNY2srOCxGdnb4uS5SX1+5zBLpPIK4UyR23s8NNTZ9IF/Ks9XXllkKpTFaBBQNHhpOsphn8iDvRb8Ha1YjRLd9dVssJHldPnzLKHOqutyJkKZDZl3JZKH1+tl+/btZLPZ8mllcnISo9FYLioej6fq870eDUmhUECW5Z8XkleDK+2ob2QcbjAY5Ny5c7S1tbFjxw5EUbzhue2V2Oy9c7lcWSdRGqpXYiWRJ5op0OaxYjdJVUJDv99PQ0MDqqoSjUYJBoOMjIwgyzL19fX4/X58Pl2YdazNwdMjSxhNIo1efUGMZ2VMkr6w1IKqaSwn8us0FqWHVE8t3BjRTIEnLoVwWQxlgoHNJCGKBZ4dD/OOA001iQcjyymenYjgtooU0gnqHAacdW6mwxl+ejHIh05s3IJUNY0Xp6K4LIZyboew6jw8GcowtJjkjTt95eFrqZ0RDAY5d2GJcDSFtZiiYLVgtVoxm8zUWQwsxfPki+qGmhGjpM949Jhj/e9kWWZxeQWjwcih3dtr7k7tZgMfOdnBd84tMRZIo2hFWuos3LunoYo9FcvKfLNvkcHFJPmigsti5K7t9Xz8rk4uLCYJpwvU200cbHNVtQjPLyT4uxfnyckKXpuJrKzw3fMrBJIFfvlUO+2eaoZeKpXi7NmzZCUndU7DahHRYRAFTJLIfELmLXs7qnbtwWCQ8fFxlmJZ8ikzM2qe1nonRqMJVdMIp2Vu7/FUzZRenonx7ESEcKqAy6qHmB3tqGN0OcVyIo/dJHGi2839exvLLaWX58JMR/Js89kwSAKaBqF0nhfmUryzx8S+JvuG2qmiqm7IsBPYOJNFXaVpG8TLQl6r1UpbWxttbW0oilI+rYyNjZHL5fB4POU2WLFYvC4NCfBzQeLNxI0QJWqaxvT0NOPj4+zdu7dshV56/5tVSGr5bcXjcfr6+qivr2ffvn1VX/5IusBnn5jghakoclHDaZF4+GAT7z/WotOIKwZ5layTnTt3kkqlCAaDzM3NMTw8jN1ux5jOcqTJwkhcYnY1rMhsELlvr39TppQoCLTUWbi4nKxScMur9F3/Jgy0YLJAOq/Q4Kz+N67VhTmQzNcsJKOBFNm8jDGfwWq1lgVlDrOB/rn4poWkqGpIaxaN0h+VDbIYLBYL7e3tHNKcPBOYxGYFRS4QDodBg7hioNVjB7UIrF8cBEHgjh4v//DSvH6aMGgsBUKkVBN7O3zsq9BlaJrGQizHWCCNKArsbnLQ6rbwr+7qYiWZR1Y0Gl3mKvq0qml85aV5XpmJ0eg047EZiWZkvj2wjNkg1mxLaprGk2MhcgWFbWWDQyN2U5HzCwmmwxm2+S6f6kokj/b2diJJG5cuBte9Z1GtdksWRRGPx6NTs71t9EoKuQtzPH4pymI4jsUgoRnMdNQ7uKPihPXcZJRv9C+CtipMTBb47vkV7t/bwMfv6iaR040zK1t0mqZxYSmJ22bEbDKW/85lhIlElgR1Vc+wKIrl//X67QzMJ8gX1fIGI1NQEAWhyhMsX1R5fjLCK3MJsgWFTq+V27d51kVEV85OQD/FlU4rExMTSJJuMxMOh3G73VdVVFKrbtI/n5G8SlxNSuL1ojJdsWR0eCPffzNsVEiWlpa4cOECvb29Vapm0HdI/+EHo5ydja6mKkqk8kW++PwcRkngfcdqEwJKKmen08m2bduYn59nZGQEh83GWxqz7HKZCKo2nA4HJ3sbONKxcbumEvfuaeBSIMVSPIfXbkRWNAIpPeBosyLksRmxGEQyBaX88IL+AJuN0qbeY5lUklQ6TXODo4o5o6japq24kgPxz0ZC1DtM5aFzNCtjN0n0bpIZv7fZSVe9jclQhjZ3HXV1bgLxLGoqyzZrlmefeabcI/f5fKxkBWLZIj6Hidt7vMRzRX5yYZGhxRguu52jXfV84Hhr2X9L1TS+c26Zx0aDpHIKCDpN9aGDzbxxR/267JgSpkIZhpeStLot5dZMk8vMQizL0+Nh7tpev6FuJyurLMZy6+6zwyyxlMixnMiXC0kkEmFgYIDe3l46OjpQAynOTET0jJrVYh9K61Tf/RVU32Aqzzf7lrgUSCErup7kru1+Ptndyvn5OMvRJB4pT5MY4dJAkJDXi8vt5WcX9VlGyQ7eY4PAqrnk6R4vrTVmiTr9+vKf8/k8KytBHHYbjQ0NmEymMhNsJZFjPJhB0TSanBZ2Nti4uJLGYpBQ0VZ1LHXlk5+qaXz73DLPT0Wxm3Sqef9cnMlQhg+faF1XTCqh29HYaG9vR1EUxsfHCYVCjI6OUigUqk4rlWSLSpSov1vJwfhqsaUKyWZ4NTOSyvbR6dOnNxzY34jc9mimQCQt65bsFb3YyvfWNI3x8XGmp6drDtXPLyQYXIjjtZlWWykaJslEKF3gO+dXePhwy6aCv9LPmZ6eZmpqigMHDtDQ0ICiKITDYYLBIMHgEsmpJYaS+lylvr6+JiPlrl4vyVyRb59bIpQqYJAEDrfV8dE7Oje0FSnB7zRzosvNz0aCiILen04XFIKpAm/YXr9uIFzC3NwcUnweX52dLCZKB/2srGdfbETXrcR9exoYWU4xHkxjM0nIioaAwL17/VW7T9ADtcaDaUQBtjc4+NXbO/m7F+aYjmQoFDVcFgPvOd7Jw4eaKa46F0/Or/AXj0+ykJVQBQMum5kjXfXc321C9Uap29dNe3Mj3fW2qlnFwFycR4cC2EwSPX4zGnrr8p/7F+n0WmsuVNGMTE5W17GWnBYDiWyRdL6IaQMzRpNBwGYyEM/IVX8vqxqSIGBf/eyCwSB95wYp1LXz+AKIi3PsanLwll0+nhwLMxbUWy5Os4F79zSUM95lReUfXpzn4nKS5jorFoNIOF3gu+eW+eCJNj5y6jJ1ueQHFgqFuDizyNhMWj9ZaTasVhsWsxmvzchsNEsgkS8P/UFf4KMZnS14oNXFo0MBfA6VYiHP8vIymrWOJpuNngY7kiQhiiLPTUb5weAy0Uxh1TdM5Eibi4f2+ZkIZZEkgd1NTg611ZU3JnPRHAPzCZpc5rJZZr3dyHgww5nJKNt8tYfrlZAkqXyK3rdvX/m0EgwGGRsbw2q1louK2+2+zFxLpW5qXjvA//gf/4M/+7M/Y3l5mYMHD/K5z32OEydOvOr3vWUKyfWeGKLRKP39/TQ0NLBnz56a1b5WbsjVIJkr8pnHxnliJEhB0XCYJd57pJVfub1TN55bfe+SsGuzaF6AhVgWWdFWd/FaObXWZtKzM2KZapPFtVBVlSdeHuTZiSiO+hZSyyp3OfUgpUqjv3g8XqW58Hq9ZZPESodjQRB4YH8jb9xZz1wkh8Uo0um1XtUX/sO3tVNQVM7Oxomks1hNErf3eHnk1PpBe6nILiwscN/pw9hnc3zr3DLjwYweACUKHO1wc88G4rScrJAu6EK3No+V33xzD0+PhxldTuG0GLity8Nt3Z6qa37yUohv9i8RTuvxAo1OMx841sq/v7eXiaDuJdbqtpRdjA2rjJ5vjRdYQaPJKyAqBaKpFD/qT7Iwo/Krpzvo6mrb0ILj7FwcWVXxOfRiJqCfLMaDac4txGsWErfNiNkoks4XqzYoyZw+pK7FmjOIIie73HxzYKlM9ZUVjZlIhg6vlZ2NDpaWljh3YZihYiMjo2kQMqBpPDsR4dQ2D7/xhi5mInortNtno7lCFHlpJc14MEOn11aeHTXXWZiJZDgzEeFkt6d8Iqw8KbsbW3k6MkaxkKcoF1hJrPrcGS2oghGjcPnIMbKc4sfDAeaiWUQRuutttLktXFqKEY/HsTuc1Jut3LPLXz7RzcdyfPf8Mhqwo1F/xqIZmRdnE/zisRY+fMJzufOhFikW9fbXciJHbo1ZpiAIeO1GZiL6M2la9T7LyQrDyykCyTw2k4E9TY6qNm2JtSUIAna7HbvdTkdHB8VikWg0SigUYnh4GEVR8Hg8nD17FofDcVPbWl/72tf41Kc+xV/91V9x22238Rd/8Rfce++9jI6O1mSJXi22VCG5UmvrWmckc3NzjIyMsHPnTtrb26+oVbmeQqVpGn/wvYucGQ9jMoqYjSLJfJHPn5lBEODX7uhCFHXdxosvvljOnN/M68fnMCGJAgVFxSSJZXV8TlbKqt9aKBQK/P3PzvKN0TyyaEIIRvjxaJTvnl/mD9++szxcFQShrLnYvn07mUyGYDDIysoKL5wfZTZvwWh1sL/Dz+07mzAZJOwmw4b2GZVQVI3ZSBYNjQ6vFafFwL954zbmojmCqTz1dtOGRUhRFJ7vG2QykODQvr3Uud086IbdzU7OzSfIFVW2+Wwc7airsmrPyQrfOb/M02NhsgUVn9PI/XsauXtHPe872lrzOoeXkvz9i/Momka7ZzXnPZ7nb5+b5fdcO2r6Zy3Gc1xYTNLksqy6HmuIYhxZzbBYsDKzEmV2dhaXy1Vm0ZVac8lsEeOajYwg6K622ULtTcw2n43dTU76ZmM0uszYjNLqKUXhru1NVSaOk6E0z05EmI1k8TtMHOtwc1evl7OzcQKpPAZRKCvug8uLjI2NodZvY2Q4QWudpRx1nMoXeWEqysFWF7f3bEyLj2dlFHU9AcFpNhBJ6wFW1jX/TdM0PDYTB9rqeGY8gtfjwOeXiKezTAaStFkzjJ17kZC7jrypjm+P5UgWNBocJhRVo282TqNNYJc5jm13E00+L7ubnfRUJIFeXE6SyBWrXJe9dhPRjMzQSprbenzljV3JG6xYLCJp+v+XFQ2jdJkAlJdV3DZT+XQZy8j8/UsLXAqk9agGwGc38gtHW9jbrBeuWvRfg8FQ3qyVBIjLy8t88Ytf5Pz589jtdn7nd36Ht73tbZw+ffqGqOxL+MxnPsNHP/pRHnnkEQD+6q/+ih/84Ad84Qtf4Hd+53de1XtvqUKyGa6ltaWqKiMjIywtLXH06NGr0odcbyEZXUnx0lQUq0kqP4Rmg0g8K/P1vkU+eOJyz7SpqWnTUxGsiu5anWzzWRldSeO16W6vqXyRgqLxtr0NNd1m0+k0Z17u43sTGprRTLtLNxosqhrT4QxffG6WP3j7xmmBNpuNzs5OJnN2vjkwTSSdQynG+faFCL3PXeLjtzXQ0dKI1+utef3nFxL83QtzzESygEab28qHb2vjSIebDu9lcdha5PIFPvv9l3lxqQhGK48uz9LrD/Prd3ayvcHB9oaNF3VN0/ji87M8NhrCYTJgNYnMR3N8/swMKhr37KytjXluMkK6UKw6BXR4LIwHM7w0Ha15rYlckbys6sQDTSMajZIv5GlrrCeSVenZvZ1Wp6HsXDw9PV2miTZaJAZkBUXVyouSrKggsO7nZQoKoysp8kWV7nobHz7RhtkgMrSYJJaRcVmMPHSwqSr068Jigs+fmSWaKWAzGZgIpumfS/DeI8186h4fS/EcNpPuvbUwN8P49DRHjhzh6xfiCALl7y/obcilRJ6RlRRHOtwb3gu3zYhBFMjKSlXBSOSKdNZbq+ZiQ4tJnhkPMxPVC9zBVhcHW52MrqQpKCoGUeRYTyMfONaKw6BTi//3KwtMLWZocwgUJTtWq5UmG1ycD3P69k7ednRj49N8UY8JWLtZMRlE0vnL1iWl73FeLpLJyWzz22l0mZkNZ2j3WjCIAqm8QjKvcM+uy44NPxsNcXE5SXe9DdMqrX42kuVb55bprrdhM0lXJUgUBAGHw0Fvby9PP/00X/7yl/nc5z5HIBDgfe97H9lslqGhoRsiki4UCpw9e5bf/d3fLf+dKIq8+c1v5vnnn3/V73/LFJKrXegLhQL9/f0Ui0VOnz5dc7B1ve+/FlPhDHlFxbEuHEoimStyfnyWZDKJ3+9n7969m56KytbTAvz+fdv5s59NMrqSIp4rYjVKvGN/I794YuPshpIleVT0kSVV5VZrEAXqrEYG5hNEM4Wa4UaBZJ6/OTNDRlbo9um76IysMB3L8vh0ltviFzekFgPMR7N85rEJIulCmX46Gcrw549P8h8e2FUW6q1FNpvlrx99hafmNTwuBx6biYKiZ3T/t8cn+fQ7dtUsnLPRLC9Mxai3m8o9dZfFyHw0y6MXAtzVW19zMB9MFTa0Y5dEgWhW3vA1oKcq2s0SsUwBMZ9CURQa/A0E00VcFgN+hxmz2VAlaotEIoRCIdz5ZYz5IuemUvicFgwmE8m8yp5mJ0faL5M/Liwm+PsX51lK5FBVndV0z04fv3q6nVBKJpkv0uA0VRlcKqrG9wdXiOdkev2Xd+KL8RyPDgc43uWmzeOpah8ePXoUl8sFxGv+vhshJyvkiyo9fhs7Gh1cWEzS6DLrViVp/d7d0VNfbmu9MhPj71+cIyMruMwGLq2kGQukeHB/E/fsaiCS1um/vX57+fNqb29HvZijo9mO16x/T8KhEIqqIkq6j1Y2m93w+W6tsyCKQjmkq3R/MgWlimxRVFWeuhTmzEREDzWzmdjeoH/vZ6N5NE1vL5/ocHKszYEsy+QVjfMLCbx2U/n7IwoCbW4LM1E9d2V/q+u6XDhUVaWtrY0vfvGLqKrKuXPnaG2tfaq+FoRCIRRFobGx2p6psbGRkZGRV/3+W6qQXKn1VCjU1iwAJBIJ+vr6cLvdHD169Jo+yOsdtvsdJoyiUNU/BZCLKiIKKzMTNHndeDyeKxaRyjjcjno7/+0X9jGynCKWlemqt9UcTs/PzzM6OsquXbsgZUY7N7aOMy8KArKqIiu1nW5fnokRy8i0eS4XIZtRwm4xMhw38KkHbiedTldRi+vq6vD7/TwxrxBKFeiqaFu1eyxMR7I8cSlEt2/9TKREN70QN2O3G2lw6r+fURJpc4tMhTMMzCc42b3xcH0hliNdKNLorC5SdVYjoVSB6CazpE6vlYE1Oe+KqqGqWs37DLoZ56muOr7x8jQWSaDZ72Elpfty3bunuWwICZAuFDk7E2cxnsdmcnP4cAe79mT5Xv885xbi5NJJ9vpNvLXNgZLPoJmcRDMyX3hulnBaLrsqR9IFvje4QqPTzB299TSy/ncKpQrMRbM0OMxV37MGp5nZSIbpcJb9LQZGRkYIBoMcP368bA64p9nJS9MxsgWlqrUliQK7Klp8qXyRRy8EeGkmSr6o0u6xcrLbg91k0NtJWT0F9I07GsvapKKq8pOLAQrFy/G/oKcfPnkpzOkeb01hab3dxHQ4g9VtR1FVkqkUXo+HeLRAIZ3gzJkz2Gw2/H4/bo+XmGpCVvTv3d5mB+cXkjjNBkRRb0d11ds4UfFd+uGFAD+8sILVKJWZbPOxLA/sa6S5zkJWVmh0mmitM63qTVQKchG5qGAQhXLej65bEVA1ncgA1x+zW/pMRFHk8OHD1/T61xNbqpBsBoPBQDabrfnfS3Tabdu2sW3btmtmPlzvieRwu5sev53RFX2oa5QEcgWFTF7mZCPcc+dJJicnN33vWvbvoiCwp7m2ylXTNMbGxlhcXOTw4cO6F1Aij9NiIJqRy7oPTdOIZ2X2tTg31X3kZL3NsvbOGVd3dypUUYtzuRyhUIhgMMjZkSi5rEA6rWI2mzEaddsMoyQwF13/uQWDQQYHB2nr7EaejWFf88yZDCKaputpasFlMWCSxHVCwVxRwWIUsZtrP8h39tbz3ESUyVAGv0N3ag4mC7S5rRsWrnhWplBUsYoKHcV53tRlYSpnI1NQcVkNPHSgkXv3Xh5YhtMFPvfkFJdWUqirdh8/HDLyS7e183+/7SCKqiHLBSKrcbmvvPIKBoOByYKDhYjMjibXqvOAHn+Qymc4Mxnhjgob+UoYpMtpgpVQVE0P0xI0Lly4QCKR4Pjx40QLAv3jYQySyI4GG0c76+ibjaFpeqStJAic3OZh/6oGRlE1vvT8LC9Nx6izGjEbRC4uJ5mNZPnYnZ08eKCx7FJcyeQLpQosJ9brhfwOE1ORLPPRbBVDqxLHO92cX0gwuRxFzCfx+nyEstDZYOXhN/RQZxaIRCIMTi3z2WfmCWRANBjxOS28cXcjD+5v4Nx8AlnVON7p5s7e+vIzEc0UODMRoc5iKJMp6qxGFmI5XpyO8e/v7V0331FVFY/BwDafjYH5JG6rofysBtMyLrNEW53+Xlstr93n8yFJEisr1QF+KysrVWm014tbppDUWuhLi+ns7OymHlVX8/6yXLulUfN1osB/eucefu/bw0wE0yQUFUFTOOA38On3n8DhsG3KCCudQq4lQwR0n7ALFy6QTqerdpeNLjPvOtTMP768wEIsi3F1oXVbDXz4ts0JBzsa7JgkkXRBKVNNNU0jkVO4a7u7ys8KdCFfSel7LDvN+CsLKKpCPK63SoxGI9m8QOMaQeLc3BxjY2Ps3buXhoYGms5fZDyUwVNxsMjJCqLIpuy0XU0Oun02RpdTtLotmA0iqbxCIlvkHQebNvUAa/dY+Y27u/jn/iWmwjor7Finm/ceaakSXgaTeb7et0j/fIJCoYi5mOD+XV4++cABckWVZE5vaa1tv31vcJnhpSRdXttqUdSYj+X46ssL7Gl24rYakcxmWlpa9Az7VXeC4ZdnyWazLC+lMVvMWCwWrBYrFuPlttFG8NqM7Gxy8NJUFIdZwiDpvfuFWJbWOguZpUmKhRxHjh7lBxcjPDYSIpkrIgj6ov7uw80caqtjZDlZ3sAcbHOVW02jKynOLehalhJzrM5qYDKU4fHREJ+8e+NIZotBwiiJFNbkzxQUFaMoVBEnSn+/GMthEAX2tTi5s9XIDweDCFYXahZa3Bbedai5XJgc7nqeC8fIGD1saxEpFvKsxNN89dlLPLDdxi/saMDn861LSFxJFEjminR4qk+fHpuRcFomki7Q6q5um5XmKm/d28RCQmYyksduEsnJ+kzmrbu8uC0isixTLBaveTObSqVuWiExmUwcPXqUxx57jHe+852AvvY89thjfOITn3jV739LFxJZljl//jzpdJqTJ0++qg9BkiRyudx1vbbDa+PLv3yUZy/O8/KFS+xpq+e+UwfLw7yNBImappVPIqAfiZdjWRxmwxXzSnK5HAMDAxgMBk6cOLGO2fHB4620e6z8dCRIMJVnu9/BA/sbazKRStjboluqPzUWIZkrYpREUgUFn8PEuw41b/rau3c28NilCPFckYY6B8VikeVEFqNWxBadoK8vit/vJ5VKsbKywpEjeh4HwH17G/jLp6dZjOfw2IwUiiqhdIG9zU4OtG2c1gc6vfXjd3bxP5+eZiqUoahqWI0id/TW8+7D1ddbKOpGk6WfcaS9jt1NTn7vPoduKy+Cz26qevizssJnn5ji4koSl0kgl04SF0z8YEZjZ2+KPc3OdbtWgHxR4ZXpOJ6KWFxh1SFgJpJheDHJ6TVMqJI7wZFdIs8tT+F2GFCLBbKZDLFojGBBorPTRTwer1oUC0WVVF7PWHnnwWaCyQLTkUxZtOd3GDloT6ApumnkK3NJfjC4gt1soMdvQ9X0FuH/fmWR37tve8024lIih6yoVfRjQdBnbzPhLEVVw7jWTgB9IL+32cmzExHsJt22pqjqRbXXb6fbd3mx7puN8d3zKywncoiCQL1JYY8lxh89tJ+4asYgCvT4bVXF58JiUo9trrfqppd2Kz6Pm/Fgitm8SCqVKrv4VnrR2c0SJoNIVlZxVszRsrKC2ShsugnZ5rPz63d08sJUlKlQBrfNyJF2nTygqSrpdJp0Oo3BYChnrVxugdUm2mQymZuaRfKpT32Kj3zkIxw7dowTJ07wF3/xF6TT6TKL69VgSxWSzSq4wWCoov+mUin6+/ux2WycOnXqVdPkXq2yfWV5icLiCO+5bX2++9r5S6mAlIrJdwZX+OrLi0QzBaRV7v8n3ti9oa16IpFgYGCA+vp6du/eveEXUxAE7tpev6mZ4kYQBYF/88Zt9PodPD4aJJlXuK3bw0MHmjYMSapEV72Nf313N198YY6VeB4N6PK7+MUT7RxqMhMIBJiYmECWZex2O+FwGFEUcTqdvGF7PVlZ4XvnV4hkChglUdeanGxfJ7zUNI1YVtbpy1Yj7R4rf/zAToaXdMpnc52FnjXCsVCqwGefmGRkJVX2VWr1WPnk3d30rjJ1NkL/bJyxYJpGm0g6GafR48Jm05XvPxsJ1mw7FlUNRdPWWcOLAmgVffSNcLDNxa4mfYDttZsxOi3EtTwNVpUDPqEsrK3z1nMhZuTscoFMQcVjN/LmXX7+7T3bGJhPEErlsRkFpMgM9XYjBw8exGAw8MJUFFXTypsVSdBnCuPBNAPzcZprzIfsJgMC612Kc7JCk8tyOblzzWclCALvONBEOK3nuairdNl2t5X3H2stn3LHg2m+9MIc6YIehJVMpjg/nyLb4uVeVx2d9o03V4lcEQGqrgl00kVGkDhwYJf+nVn1AxsbGyObzeJ2u2k0GxiL5On2ObCadPeIUKrAG3f4NnVdAP1Eu9anDPRiMDg4SEuLHg5WesZLG8lSMdmoqKTT6XXD8BuJ973vfQSDQf7gD/6A5eVlDh06xI9+9KMb8jO3VCHZDJULfcl0sb29nR07rhzIdDWo5Yd1JWiaxqVLl5ibm+Pw4cP4fOvFcpVEgbVD9R8NB/nvT06jabp1haxoPH4pxEoyz+fet7+KdRQIBMpzoLXF6kbBYpR49+HmdTv6q8HxLg8H2lyMB/TQo16/HvEqyzKhUAir1crx48cJR+O8OLbEysAMLQ6J3R0NHG/0c+fDuwmkCthM0oZ2IWOBFF97ZZHRQAoB2Nfi4n3HWuj02jZNOfzHl+cZXEzQ5rbo16OozEWz/M2zM3z6HbtqMruWEjly+TxpOYfb7cZq0RcOh0Vv6dSCzSixs9HOC1NRPLbLFuvhtIzTYlhn05LO6+p6QRDY0WDn43d28d3BZfpm4xSKKvvb6nhgXyN7W5xlk8QvPzfN4+MhDIKC02oikTbwxUiGoqJy395G8vk8fX19WF1W9u/fX+7Xx7Kl3PTLKGlZStTYjbC/xbl6osrS4bViEHV7mHxR5Y5eb1Umff9cnCfHwvrw32nmDb31fPLuLi4upwmm8rgsRva3OKtON89NRohni/T6bSSTSYrZFPs7fMwlZPrm4jX9xOrtxnLmSSULL5ErcnhVR1LKa/d6vezcuZNMJkMoFOKkHGAlGOfiTBLBYMJpM3O0w8sDB65vYc1kMpw9e5bGxsaqdWltjn0tP7DXIh3xE5/4xA1pZa3FLVVIZFlmcnKSiYkJ9u3bR3PztS92m73/tZ5ISnkmqVRq09ZaqUitHaprwD+dXUTVtPLpw2LUB82jKylenolxepu3yu5k3759VXOg6XCGbw0scW4hgcti4M27/Ny/d+PMh42gaRoZWffCWjsDuRLmotlyXG4pjc9skNjbcnmnns1m6evrw263s3//fiZCWT53JsxcVEFWbFgkOJxOcXolAKpCfX09Fr+fgsVXJdpciGX5s59OsJzI47UbQYNnJ8LMRrP88QM7q+YalYhmCvTP6fkipTmGURJpqTMzE8lyaSVddb2V9yWbiJDP5XG3eLBWKP1zssK2GnRm0BfmB/c3MRXKrtq0GCgoCpIg8MCBxiofqafGwnyjb5FQalVd7zLzoeNt/PLJDt57uFj2r6o06FSMdkYTEu2NXurMIrl8jlwux1Iiw1efTdOkholHguWEzcqd7/YGO2OBNJpLq2qPiQI1s3JAdyn+5VPt/N2L88xHcyiq7uDw5l3+qpPv85NRvvziHDlZxWmRuBRIMRZI8Z5sC2/bJBl0IZbDahJJJhIkUykaGhv0LkNSD0Srhb0tTnr9dkaWkzQ4zZgkgVC6gNUkcWfPxidym81GR0cHHR0dnD4q0z+xxHwggpqJ45XjTI7Ey35qlQ4PmyGbzXL27FkaGhrWbW4rc+xLm9W1YkiAxcXF68ow2QrYUoXkSjvsQqHA7Owst9122yr//cbhWgtJaYE0Go2cPHlyU6V6qbW1lpmVzhdZTuTX9dnNBpG4BrORLCe7VC5evEg4HObYsWNVv/dYIM3vfeciwVQBi0FkLppleCnJxeUk/+4tvVe8n2cmInyjf5GZcBabSeLePX7ec6Rlw75/JZK5In/59DQvT0fJyioWo8ixDje/cXdXlbYhHo8zMDBAY2OjvhOUFf788UnmolmaXBZMkkAsK/PSSpE927bz5m0OgsEgs7OzVdRiv9/PE6MRlhM5uuptZX2C02JgNprlmfEw7zy48aYiU1ApqhoWY3WRNEoiRUUlK29M4BgdHcVdCNHZ6GY5rdBqUDFIAuFUAQG4aw17qqiqjCyniGZ0r7Vev53feksPT14KcWlF95U6tU23aSnh4nKSLz8/h6yotLotaJp+CvqbZ2dodJk3bJ2Arg1J5nVnWkkUcBh1Y0uLQ2YlmmJ0dgmfBcLhMMPDw1Veanf1+jg7G2c8mKbebqKoasQyMnubnRyu0LLkZIWnxsK8MBUlKyvsb3Hxpp0+/p/7tjO6kiIrq7S5LbS6LVUF6QdDKxQVrVxo/cByIsdPLga5vce76gawHk1OMwNTQQQpXy4iqqqBBt4auifQNy6PnG7n2wPLDC8nSRc0muus3LfHX2acbQazycjJ3R2wu6PsBxYMBllcXNTNTh2OclGpq6vb8JnKZrO88sor+P3+K3ZIKuemcJls88wzz9Df38+b3vSmK17zVsSWKiS1UFJ4apq2YWbHjcC1FJKSf1djY2PNOUUJpRz1ZDLJ8vJymYYHYDGKuCwGQukCleOQ4irDxWOV6Ovro1gscuLEiXW7o6++PE8wlaelzlJeXFP5Ik+MhnlgX9OGO+0SnhkP82c/nSAnKzjMErGszN+9OM9cNMvv3rt904fhb56d5onREB6bAbfNTLqgLzqiKPDv39oLXKb39vT00NHRgSAIvDITZz6WpaXOUj4xeWwmcrLKTy+GeOfBZlwuFz09PeWMkFLOxXMzRrSihFIsIq7OwyRRQARmwrXbTA1OEw1OM/PRbJXpYTQj47IY6KyvXqxVVeXChQskk0nuueM2uqIyX3x+jsVYDkXTqLMYeNfhZu7ovTwsX07k+B9PTTMe0FXaFqPEoTYXH7uzkw/ftrGAFODZiQjJQpGe+ssznQ6PlYlQhhemIrR7NhajOVezVrKyUvU7pXMFioUc2zvbOLRnezm869zIOPPRQRo8LvZ1NvCrJ5p4YiLBpUAakyTytn0NvG1vY3kDUVRVPn9mlucmI5gkEYMk8N3zywzMx/nUPT0124gryTzBZIF6R3WxqLebmI/mmI/mNiwkmqbRakgiKnkKNhcKInJBYSmeo8llripwG8HvMPNrt3cQyei2LD6H6YqmphthrXN2oaBHCYRCIfr7+xEEoVxU6uvrMRqN5HI5zp49i8/nY+fOndfcbhZFkRdffJEPfOADfPazn+XjH//4NV/3VsCWLyQle2ufz0c6nb6h3jOVuNpCsrCwwPDwMDt27KCzs3PTf1tqZdXX15NOp5mammJoaAiv10tDQwN+v58HDzTy+TOzJHNF7GaJoqIRyRRodpowhscxuBwcPnx43ZG3qKr0zcVxmAxV+dx2k0QiV2RwMVGzkGiaxj+dXSQnK1VtllS+yPOTUUZX0jU9tVYSeZ6filFnM+Aqq8kNq0FFURZiOdRksEzvrRzkxVcV42vbblajfs2FCj1IKSOkvb2dYrHIKz++yORYlFgsBoDZbNYtw1e9m2rBKIk8dKCJv352hqlwFpdFIlNQUDV4+GBTFaEhkszyD0+cYzIq09nahLCU5bYuD//xHbsYWdbtSrb5bGXdAejOtP/rmRmGlpK01FmwrFKQn5+M4rIa+NgdXTWvLZgsYJaqKd+CICAKbEr17aq3saPRzsBcnDb3KjU4mWU+lOBN2z0c2afb4DhddTwxneXHCxmiGROsFGmanuf2+hxHPFbu2ldPY4OfhnpP1WZoaDHJSzNRGl3mcqFqdGqMhzI8NhriF2tkwVgMetGRixpUfCSyomGQBMzG9Yt76fRnzUf4V/fs4ieXYqwkC0gC9Prt/MLRliuyGEv3rVZ783phMplobm6mubkZVVWJx+OEQiGmpqa4cOECTqeTTCZTnr1cz8zy5Zdf5t3vfjef/vSn+fjHP35TnX9vJrZUIVl7E2dnZ8uK7aamJhYXF68rwvJqcCX336sZqq/996VWlslkYseOHezYsaOsDC8dnXscTt7QaeH5+TyBZBGDKNJeZ+JtTWnam9vo7d24RSUKwqpGZL2Rpcb6xboS8WyR+Wh2nfmj3SQRyxaZDNUuJOF0gXxRWffQ2kwSwWSBgZEJ7LlgFb23hFa3BUlY782UzMvsbnJWeTNVwmAwcP/BDgaWC6iA2wK5XJ7ZUBIRDU9hhfl5odzTVjXdWywnq3R6rdzZ68ViFPnRUIDZaJZOr417dvmqvLiWoin+n2/0sZDSsNuszExEeW4qzr17/Pzq6Q4O1dgVTwTTXAqkaHKay7+T02KgoKi8NBXjfUfkmgygDq+V/jXqelXVUDXWsacUVWMimCYrK3R4rfzKqQ7+ujjDWDBFJldAzmU42e3l19+8t/yaJy6F+HrfIhajRLvHRr6ospjI0V/0cKrLSyIWYWRokIuaVt5p+3w+psIZ5KJWddoRRQGnWWJwIbHh7wK62eieZifPT0awruZ5yIrKYjzHzkYH3fXVcyVN06ratlarlRM9DcxFdR1Jx2rrbiugFODl8XjYvn07sVisTMEPhUKcOXOmfP82irreCP39/bzzne/k93//9/nkJz95yxYR2GKFpARVVRkeHiYQCHDs2DE8Hk/VkOpmnEo2s0gpFoucO3eOdDrNqVOnsFptLMVzmA0i3g12QbWU6kDZUrqrq4t8Pk8wGORhc5C9liwh2YTHbqBeS7B3z65NzdpEQeCNO+r5p77FMmNFW400dZgkTna7a77WsupSnClU/76KqiHAutyLSjSsLpjpfBGT4fLvnsopaMU8WrrA8ZPHN2SfHGxzsbfFycBcApdVV6XHsjImg8g7DjRt+iAdaHXx4dva+HrfIktJGQQDzT4b7znoY7eryNLSEiMjI6RFOz9dlFhKa2gIeGwmHj7UzNv3NXCiy0NRVZEEoepnZTIZPv/jsyykBbY3ezCuFrRYVuZnIyFOb/PWpPrGs0XyRW3dXEk/Zem+WLUKyZ29Xs5MRJgKZ/A7zGhoBJMFWt2WqsyV6XCGvzkzo2tlFA2X1cD9exv47bf28OLILIOjkxzZ3cvJ3R2XC5Km8dhIEFEQaFw9QRklkXaPjelwjpWilWN79+qC0zX59XMZO/m8ilwwYTRdvvaNZk2VEASB9x1pIZouMB7M6E7eq4aUv3iiraooaJrG8PAw0WiU48ePl9u2FqNU0zJlqyCfzzM0NITf72fPnj1lMWkoFGJkZIRCoYDX6y0Xlo38wAYHB3nHO97Bb/3Wb/Gbv/mbt3QRgS1YSPL5PP39/aiqurpo6x9CiSL3WueqZzIZ+vr6MJvNnDp1ihdmEvyPJ4eZjWQRBZ3y+ql7emhfZS1tVkTWwmw2l5Xh+/bJDA0NEQqFECWRiYkJEolEWUC10Q7nA8dbV4frug0HaNjNBn719o51qtxKWIwSd+/w8Y2+RaxGBZtJoqiorCQLNNWZOdpZuyftc5h44w4f3zm/jEYBu0kilVcIJ9Lc1iTx1jtvq0k8MIgiv/3mXv7uxTleXB3idnqsPHyomdNXCKsSBIG372vkVLeH4SVdfb23xVnuuXd1dRFJZvh337zATCSLXVIwSgIrsTyff0Zvad213beOmZZIJOjv72c6Y8LjNJaLCOjphdF0lguLyZqFpM1jwWGSiOXkqqFwfNV3arO2TKfXxife0M3X+xaZiWQAgYPtLt5/tLXccksXinzuySmmw5kyQSGSkfmns4sUMwn8+UV+4a4D+P3V9NhCUSWSlsvhVSWYV91qS0woQRCq8uuz2SyuqSWeW1jg0nyQepuI1WJFlYzkZZWT3Zs7afudZv7dW3sZXEgSTBWosxo42OaqEvipqsrQ0BDJZJJjx45dNTNqKyCfz3P27Fnq6urYs2ePbvS5KnYszUnS6TShUIiVlRVGR0fLfmCJRIJ9+/YxMTHBgw8+yCc+8Ql+7/d+75YvIrDFCkk+n+f555/H4/Gwb9++dYvnjchtrwVJksoaj1LrLBqN0tfXR3NzM7t27aJ/PsHvfnuInKxiM4qoGjwzFmY6nOHLHzmCw3y5GF2L3YmiKAwPD5NKpcrFMxaLEQgEGBkZKTvuNjTodg+lE5nHZuLP3r2XZ8bDjK6ksZsk7uz11rRdr8SHjrcxF83SPxcnmpER0IOdfvOenk1VvQC/fKodUYQnRsNE0gWUQo67Osz89juOblhEdL+n1QwUm5F//cZtxE/KZFZV8xu14c7OxvjRcIC5SJY2t5W37vFzvNON126q6Tc1sJghkIXeJjeSKOhurfk887EcX3r8PO6sr+xabDQay47J3d3dOAMp0omNnQ02+xibXBbu6PXyo6EAclHFZjKQyMkoqsb9exuqTirjwTQ/HgowGkjhthq5a3s9b9zh4w/evoPlRB5xNVyr8nszMJdgNpKl3WMt36cGp5nx5Rg/Glziv/7CoQ1jEswGkQanmYlQuurUnJMVJFGo6blmtVo5sWcbvyo6+aezC0SSOYJxGU3J0OsCf2GJpSV97ldrw2A2SDUjmEtkhlQqxdGjR28KceZmoWTF7nK5ajp5l6zhHQ4HXV1dyLJMJBIhGAzyyCOPsLy8jNPp5MSJE/zGb/zG/xFFBLZYITGbzezZswe/37/hDb6ZueqlolWawczPz3Px4kV27txJR4fuXPuPL82RKyhVIjPzKu32R0PLPHxQNz8T1rRONsNau5PSw1kpoEqlUgQCAWZmZhgaGsLj8eD3+2loaMBqsfDW3Q28dfe1/b5Oi4H/98FdnJ9PMBXO4LLqKYKbtbVKsBglfv2OLu7rdfJs3yC9rQ0cP7B73e88vJTkG/2LDC0msZsNvHmXj3cebMZmkqizGmtSQR8bDfI/n5omu2oDPhfN0j8f56N3dHLfntpeasFUHriscjaZTJhMJvyCGVlQsdvt5Xtos9nIZDL09PTQ1dXFydA8X31lsUrYFs/q9v371pAWNE0jkCxQVFWaXBZ+6bZ26qwGnrwUJp1XaHSZuW9PA2/ZffmUMLyU5P/72QThdAGHycBiPMfwUpK5aJZHTnXUdByOZApAZU69RiqZQpDz4HbhrHNv+DpBEHjLbj9Tz2aqrGcCqTx7m53suwI19s27/OxocDC4mNBJBvVW2h0Qi4TL97CUX+/3+68qIlZVVc6fP082m+XYsWObUua3GgqFAq+88gpOp/OKcRCVMBqNNDY20tjYyDe+8Q1+6Zd+CafTyfLyMs3NzRw/fpy//du/Ze/evVd+sy2MLVVIBEGgsbGxZkriq8ltvxJKp5BiscjExAQLCwscOXKE+vrLu9+LS0mMa1g2kiiApquuK9/nanC1diclSmJPTw/ZbJZgMEggEODSpUs4HI4yA6yUxHfVv7MgcKi9ruYgGfQWydPjYfrmYoiCwPFOD7f3eIiGw4wPD3J6z8Yq+6HFJP/hh6PEsjIOs4FQKs+XX5hjPJjm/7lvR80har6o8NWXF5AVjQ7v5eHsUjzH115Z4M5eb80TU4PDDGjIilp1yskUFA606rTinp4eJicnmZycxOFwMDExwdLSEttdXrbXm5kI52DVysRkEHnb3oYqK/WZSIYvPz+n261oenjX+4+18t4jrbzjQBPJnFKe/5SgaRrfGlgiki6wrYLqG80UeGwkxJt2+sqCzrVocpoRBYF8UReNJhIJcrk8gsVGZ719Q2uSEu7s9ZKRFX54YYVwWreeOb3Ny4dPtF0VPXajMLJ6j7tMzy45P09OTmI2m8tFxePxrPsul2KmC4UCx44du2nsy5uB0knE4XBcUxGpxPT0NA899BAPPvggn/3sZ/Vo3+VlHn30UVpaWm7CVb+22FKF5Eq4mSeS0hd/cHCQfD7PyZMn1w2M/U4zwVS1ylbVNECj3m6+YhHRNI1XZmI8OxEhnkrjzId48EgX23s2dk5di5lIhucnoxSKAvtaerljv5VIOEwwGGRqagqz2VwW8Lnd7vL1FIoqPx0J8ux4BFlROdbp5v69DTVPBCXkZIX/+OglXpyOoawW959eDHK0yczdnigH9++r6dPzzYFFYlmZ9grBWrqg8PJ0jMGFRM3iNRXKEkoVdPV6BertJkKpAlOhDPtaNt5Nn+hy0+m1rQ6v9ZZZJF3AKAncu0ePNp2YmGB+fp6jR4+S0MysxLOYlQxSLs49ngjNQFix4XXZuWNXMye6L9t/xLIyf/qTcWYiWXx2I6IoMhZI89+emOT379fjec2O9bOsdEFhLJDGY6s2hXRbjUyHM4wF0jULycG2OrY3OBheSmCmAIqMZnJgkUTeuqdh0++NIAjct6eBu3rrWU7ksJmkda2z60Wl87OiKOXwrqGhIYrFYlX4mSRJDAwMoCgKR44cuSWLiM1mY9++fdfFGF1YWODtb3879913X7mIADQ1Nd0Qw8StgFuqkKw1bryRyGR0UZuqqpw8eXLDL/vDh5q5uJwilS9iN0komq7ytpkN3LtJywX0IvK5J6f454ElcoUiiqJgMhqYJcOfdKhVGQ4b4Zv9S3z+zEyZaWWQBO7qred3791OS0tL+WEOBAKcP38e0DMIvPV+/uqVCGcmo2iabhzYNxfnqbEwf/LO3TWzIAB+OhLkhekYXpsRq1FCAyKJNM9Oxbm9p6dmEVFUjaHFJA6zoWrRspskImmZS4F0zUJiMgiIG+RqFFUNUWTTnbTdbOC33tLDXz8zw1gwjaIU8diNvPtwM6e63WWq6fa9h/irl4L0zcbJyXqY08kuNx+9/XZO5tLlE196aoVzcW95QXxuIs5cNFtWlJd+p+lwlp8MB2q6KxtEPXlxrZW6qumL/Wa/k8kg8sk3dPLnPxhgNFzEanPS6LLw4AGdeHA1sJkktvluHhNKkqTyBmbXrl1ldXgp/EwURYxGI/v377/m1MDXE7Is09fXh81mY//+/ddVRJaWlnjb297G3XffzV/+5V/eFOnCVsCW+1QFQajZ2rpZJ5JIJEJ/fz+SJLFz586aO6YHDzQzGUzzzf4lIqsD6jqrkX9/b2/NjO8Szs7G+eeBJTSliNOgYnXaKGr6UPlbA0t8qIbIC/S22d88O0NRVcvZHllZ5YlLIfY0O3nvkZaqh1nTNOLxOIFAgG+/OMpjo0VcZgmH1YTRaERRYWQ5xfcHV2qKywBemIwiwGoR0Uin00iagsFkYjhc5O01XicK+uK1NpSq5Py6WdHsqrexzWdjeCmJxSghiXpRCabybG9wsM1f2+MKdCbUp9+xi5lItqy5sEgCg4ODZDIZjh8/zp8/Nccz42G8NhMem5F0vsjPRkMYDSKfvHtbWSuQyWQIBoNlavELQQv5AmiqCQSDHgImCFhNElObqOstRomT2zx8f3AFl8VYZk4txnP4HCYObmKVrygK8+PDPNwj0nbfMWRNpLnOvC7HY6ugshXb0dHB2bNnURQFm81WthSqbIFtVW8pWZY5e/YsFovluovIysoKDzzwACdOnOBv/uZvtuzveiOw5QrJZrgZhWRubo6RkRF27drF1NTUpqJEUYB/86ZtPHSgkXMLCSxGiVPbPFX+UrXwzFiIbK6Ay6SbxomigITOCHpsNLRpIXl6PFKO/SxH4K7aXv/0YpD3HqnusQqCgNvtxu1288N5CYNxCbtZpJAvkM1kkQwSqALPjgU3LSSldpa66kGEpuFyOUnF8+X/thEEQeCeXX49p7ug04tVTWM5kcdjM3LbagzrRhAFgY/d2cl/+ck4C7EspZ/S5DTz8Ts7q+i7wVSex0ZCXFhM4DAbuKPHy+keL6Ig0LUqftN3lf0AHD9+nOVUkb7ZOF6bsSzIrLMaUTU4MxHlA8cK+Bz6fa7U/BQKBWbOTPD8UoBwOIokiZjNJsxmMzlZoaGGFX0J7z7UzEw4s0rV1tA08NpNPHKqvWaLUZZl+vv7EUXxmqOjX2+Urt1oNHLs2LGy4LfUArt48SKFQoH6+vpyYdkqDK7SScRsNnPgwIHrKiKhUIgHH3yQffv28aUvfemW+uyuB7fUb3cj6b+qqjI6Osri4mJ5qD4zM1OzUFVmiHR4rXRdQ6sgnU4zM78AgoDdbquik4qrFtibIZPXf+e1vW2DKJDMbX4/REFvFVksFl31rarIsoySyxONRnjuuefKw/q1KXLHOz28PB0lEo9jMRiwOx3kZRVREDja7t705z58qImJYJqXZ2KE0wU0BNxWA//XXV1VFiPle1Qogqa3p7Y3OPizd+3hzESUlWQev8PE7T3eKjX9UjzHH/1glJlIFkkQUDWNM5MR3rHcxK/drgvzcrkc/f39WCwWDhw4gCRJhFIZcrKCx1p9DTaTRDhdIJwubKj9MJlMvO1IN8/M5YimZbxWgWKhwHIwgaZBp2RgaWmpip5dCa/dxO/fv4NXZmLMrvp+nehyb2iXD5Rt4Cuv/VZBaTdfWohL1y6K4jq9RaXLg9PpLBcVp9P5ulBjSwXQZDJx8ODB6yoi0WiUhx56iN7eXr7yla/cUjOh68WWKyRXCre6EScSWZY5d+4c2WyWU6dOYbPpu9daNinXIjJci0gkwvnz5znS4eFsOElBUctWIIqqUVS1K/a6dzU5EYSlKmqqqmnkixqHOzancR7rdPP9wRVS+SIOs0F/MCQjBqPGQyfa2NZhIhAI0NfXV26PNTQ04PF4ON1u4VvmAnNpiYJgILEaWHWi081d2zcXptlNBn7//h2cm9fDoWwmiZNdnnVFZC6a5R9enOfsbAwNXcH+oRNt9PrtPLC/tu34N/sXmQ5naHNfnlfEMjKPDq1w9456Wux6CJTX661ixDW59EzxVEHBbb28SJTmXg3O2pTU5joLn7y7m789M8tSIo+qGWnw2nj7LjeHvcWyMtztdpfbjKXvFugtrloamEqUnKVLeoVbqa9eOZzerCVUqbfo7u6mUCgQCoUIhULMzMxgMBiqEg1fi0JaLBbp7+/HYDBc90kkHo/z0EMP0dLSwte+9rVbiuL8arDlCslmkCSJfD7/qt4jnU7rgT9W67qh+kats8q8gGstIouLi2UtyummFvrCw7wyE0MQ9JNCUdVoc1t4z5HN6X939nrZ1+zk/EISs0FAFIWymO89hzd/7W1dHu7Z5eNnF0Nl00RBEDjU5uKhgy3YzQaamprKNg+BQIChoSFkWUbTND55m58Z1cvZuSSiAKe2eXnLbv+GPfpYVhcZNjhNGEQRSRQ40uHmSId7w2sLpwv80ff1U4XLos8cnhkPMxZI86fv2lNTW6FpGi9MxbCbDFU04jqrgblYjhfGVmiX52hra6Onp6fqM2uus3B6m5cfXwygqho2k0S6oJDKF3n4UPOmBpAARzvc7G12cnE5RVFR2d7oKBMWtm/fXqZnl9L4Sqpmv99f04a8EqXvp8/nY9euXbeUYK2k+nY4HNfMcDKZTOvy60OhEKOjo+Tz+bLliN/vvylK+GKxSF9fHwaDgYMHD15X4Uomkzz88MN4vV6++c1vbplW3WsBQas12X6dUCwWa546JicnSSQSHDp06LreOxwOMzAwQGtr64ZunWfPnsXv99PR0VEVkXmtJxFN0xgfH2d+fp4DBw6UtSiZgsK3zy3x+GiIfFHlVLeHdx9uqRn1Wol4VuYfX57nsdEw+aLCsQ43HzzeelUqdkXVODMR4YXpCIWixpH2Ou7e4as59J6bm2N0dBSfz0cmkyk7nJYWxLUPcihV4PNnZnhhKkpR1Wh0mvngidYqU8SN8E9nF/n8mRma6yzlgqBqGgvRHB883sojpzs2fJ2maXzky/2k8kpVG0rTNGbCad7gz/PhO3rLQtK1yBQU/u6FOZ4eD5OVFWxGiTft8vGLJ9pu6BC7WCwSXqVnB4PBcmunlA+ydrFKJpOcPXuW1tbWmmadWxUlO/WSdciNOkVpmlYmPQSDQeLxeDkjZKN27PWgdBIRRZFDhw5dVxFJp9O8613vwmAw8P3vf/+mJx1uNWy5QqIoSs05yOzsLMFgkKNHj17z+5achHfv3l3TDHFgYIC6ujq6urrKBQSuTamuKEo5z+Lw4cM3/AulrTKfxJuwyJQK4MLCAgcPHsTj0VtumUyGQCBQfpCdTmd5rmK0WPntfx7mwmISp1nCIIkksjImg8Tv3tu7aSvnPz56iafGwrStCXBaiufY3+LiT9+1p+Zr/9cz0/zzwBKtdZaykn0lliaby/Hpt/dwYtfmFv+gCwJDqQJ+p3lTGvSNQCkit7QglnbZpeKczWbp7++nq6uL7u7um3otNxqldECPx1P2n7pZKMU2l/5XWZy9Xu81D7UVRaGvr+9VFZFsNst73vMeisUiP/zhD3E6a+cA/Z+KW661da0zElVVGRkZYWlpiaNHj27oS1RCZZJhqb5ey86qZHciSVKV3cmNhJ6vfeOhqirnBi/QPxvD19bDUs6Ae9Xe3Gaz0dXVVWYvlRbDyclJJtImBuc0vHYz9lX2mt0ksRjL8c2BpU0LicdmRIMqG3XQT1BrBYlr8a7DzVxYTDIWTCMABVlGUIq892jLVRUR/eebrtjKulEQRbFse7M2TuDixYsA5QVx7f3YyijllL9WrTij0ViVERKLxQiFQoyNjZHNZsvFuZbrbiUURSkHVl1vEcnlcnzgAx8gm83y4x//+F9kEYFbsJBcC2tLlmUGBgbI5/NVQ/Urvf/1DNWTyST9/f14vd4berR/LSDLMj99vp8vX8gSlo0o47OYDPMcbq/jd+/dXkVPNZlMtLa20traiqIoTD49hqqtIOczxPP6g240GrGZJabDmXV2JZW4a3s9Px4OEkoVqF9tUUUzuq383Ts2z3vxO8x8+h27eGI0xPMjc6j5Iu+4bSd37Nw4cncroXLQbLPZGBwcpKWlhUKhwIsvvnhFu5GtgnQ6zdmzZ2lsbLxixOzNwEbFORQKEQgEGB0dxW63l+/j2vmUoigMDAygaRpHjhy5riKSz+f58Ic/TCQS4ac//Sl1dZsnOf6fjC1XSDb7Ml7LiaT0Jbfb7Zw8efKKR15N07BarYyPj5NKpcqtm6s5VQQCAS5cuEB3dzddXV2v625SUTX65+IsJXI0Oc0c7qhbZ51eiWw2y9m+Pr5yUWUlZ8DnMGKSBLKyygtTUf7qmWn+/Vu3b/haSZJob/RiNEZwOs1oqkJBlslkMsTyGo0OI4HlJRoaGjakQO5rcfErpzv4uxf1KFvQ6b/vO96yqdakBKdZotcQxtdW4MiR2664UdhqKNFeDx48WLaBLzkUBINBLly4gKqqVXYjW4VKmkqlOHv2LC0tLVtmnlPS/XR2diLLcjkmd2BgALh84nO73eV7u1H66NVAlmV++Zd/mfn5eR5//PFyG/hfKrbcjKSkc9gI0WiUc+fOcffdd2/6HqFQiHPnztHW1nZVO6XSPERV1SpTxGQyidvtLheVtUdlTdOYmZlhcnJyXazs64FAMs8f/WCU0eUURVVDEgV6/Xb+6IGdGzKgSlkcCYOHz51N4zRL5ahb0Af8gijw5V86vGGAF0AiJ/PxfzzPSjJPg8OEQRRI5Iqk8kXevdvBkbosqVRq0/sYSObpn4ujanr4VS22ViWKxWLZBPDw4cO3HENmdnaW8fFxDh3a2AYeqAqdCgaDpNPpsvPzRvfxtUKpiLS2tq5jxW1FlJweKu+jwWCgq6uLxsbGa96AFItFfuVXfoWRkREef/xxGho2t0f6l4BbqpAkEglefvll7rnnnpqvv5qhegklZlbplLN2qJ7L5cpD5mg0WjVkttlsjIyMEAwGOXTo0A091iZzRZ4aCzMXzdLgNHH3Dt9V5VH/+28N8/xkFI/NgMUokS+qRDIyR9rr+PP3VLuWBoNBBgcH2bZtGzMFB3/0g1GaXOaqIX5OVkgXFP7nBw7S7av9sA0uJPivP5tgIZ4rU2rfstvPv7qrC6MkVlFio9EoDoejrFe5Vsdi0LUKJb7/wYMHbynVsKZpTE1NMTMzw5EjR67pe7P2Ptrt9nJRuRHspatBIpGgr6+Pjo4Otm3bdtN/3o2EqqqcO3eOfD5PU1MT4XCYaDSKzWaraoFt1kpUFIWPfexj9Pf388QTT9DU1PQa/gZbF7dUIUmn0zz77LPce++9G77u4sWLrKyscPjw4SseNSuV6nDloXpJMBUIBAiHw4De2tm7dy8+n++GPcTT4Qy/++2LzMey5b+rt5v44wd2crCt9qIzG8ny0a8MYBQF7BWZIpmCQq6o8j8/cIBev84gm5+fZ3R0lL1799LU1MRMJMO/+up5DIKAsyLHPZQqUGcz8qVfOnxFU8l8UaF/LkG6UGRHg4N2z8a75RLrpnQfjUZjuahUOhbXQkms53Q6r9uN9fWCpmlcunSJ5eVljh49isNxZep2LZRaN8FgsMxeKhWVmyXgi8fj9PX1lVu4txJKRaRQKFQ5EJco2iVLfKDcSqyvr69qJSqKwic/+UnOnDnDk08+SWtr6+vyu2xFbLmt3JWU7WtTDEFf5Etfksp43lq4Hn1ISTDldrvLwiWbzcaFCxeQJImGhoZ1i2G6UCSQ0C3Rr2TZXrquP39sgtlolvrVNpGqaoRSBf7LT8b50kcO13SKjWVlZEVbF61qkgRSeZVYRq7Stxw5cqRcbDu9Nu7srecnwwFkVcNiEEkXFFRN412Hmq9YREBPxTt5FW60laybynnA4OAgmqaVd4Yl+/FKJJNJ+vr6aGxs3FAHtJVRyiiPRCIcP378Vc9zjEYjTU1NZTFpiVpcEvBVzlVuRNsvFovR39/Ptm16/sythFKg1toiAvqaUgqeKrXAQqEQU1NTXLhwAYfDwU9+8hMeeughvvCFL/D000/zxBNP/LyIrMGWKySbYW2KIej92r6+PhwOB7fddttVDdWv1+6kNKNpbm4uz15KRnSBQKC8GHrrfTy5JPLjsQTpgoJJEnnzbh+/8YbuTWNsF2I5hpZSOC2GcmCRKOrxtAuxHOfnEzUjTDu81nJ+usdWYf1RULCZDHR4LFy4cIF4PM6JEyfW6Vv+7zdtw2Mz8tOLQbKrqvmHDzXz7sM3jwW1kWNxMBhkfHycCxcu4PV6y63EdDrNwMAAnZ2ddHdfXX7LVkFlvOzx48dvuDK7FrV4YWGBixcv4nK5yvf5apIM1yIajdLf38/27dtpb2+/odd+s6GqKoODg+RyOY4ePbopWaHS7LSUXz88PMxTTz3FZz7zGURR5EMf+hCTk5O0tLS85sSHP/qjP+KP//iPq/5u586djIyMvKbXsRFuyUJSLBYxGo1lRkZ7e/s1D9Vfjd1J5eyl0oiutBj+5RPjfGckiYCG1SiRV0W+PbBMIlvk0++onYmblRUUVcNsqL4uSdRNCXNybcaa22rkHQea+MrL84TTBaxGiaysUFQ13n7Qz+ylCyiKwvHjxzfcoVqNEh+/s4sP39ZGIluk3m4q+3q9Fqh8iLdv3046nSYQCLCwsMDw8DAADQ0NNDY23lJFRFGU8mn5tYiXXethlc/n1yUZbhR+VgvhcJhz586xc+fOW24XXioi2Wz2ikVkI1itVg4fPszJkydZWFjgd37nd+jv7+eDH/wghUKBubm515wpuHfvXn72s5+V/7xV5oNb4yoqcKXEt5LWY3p6mrGxMfbs2XPFL/jaofrVFpFXZmJ8o2+R4YUILlHmgyd7Nh3gC4KA0ergzGIRq9mE06xfa1EpoqgqT46s8Nw2M0e3t264mHd6bfgcJlaSecwV7KlkrojdbGBX0+Zip0dOt2MzSXzn3DLxXBG3zcj9u+rZLiwhSbarojraTYZNT02vFex2O93d3RiNRpLJJC0tLWSzWZ5//vmyf1VDQwxT+wAAMlVJREFUQ8NrNmS+HpR0TMB1LWQ3AmazuUr3U9lKVFW1yrJl7fWFQiHOnz/Prl27brk42NIpMJPJXPe91zSNT3/603z1q1/liSeeYPfu3eX3Hh0dfV3o5gaDYUsO+F//FeMaIYoiY2NjxGIxjh07dlVDdblYJCcrWAziVReRHw8H+E8/GiOTlxHRCEgSf/LEPCnNxC8crf1QLcbzpPJ6BocoiZgkEyZMmBWFUKrA4PQymeVJ6urqynOV0kzHZBB55FQ7//VnEwSTecwGkXxRt23/hSPNG9qbV8IginzoRBvvPdpCPCMjyFmGBs/hb2i45QwANU1jcnKS2dnZqnlOaThaciwWRbHc/vJ6vVtm+F4oFOjr6yvbkW8FG/i1rcQStbg0D6ikFqdSKc6fP18mZNxKKBWRdDrN0aNHr+sUqGka/+W//Bf+9m//lscff7xcREBfgyr//FpibGyMlpYWLBYLp06d4k/+5E9qesq9lthyrC3QH8KNLqtQKPDkk09iNps5ceLEFYfqclHh71+c5Rt9S8SzMk11Fj50vI13HNi8PVIoqrz3b15mMZbBaQSLxYogCMSyMk6zxNc/eryK3VSJcLrA+z9/FkXTqv5NTlbIySqf/YV97PJbyrTiSCSyjg77zHiEb/QvMhnK0FJn4aGDTdy/t+Ga/LUq6b2dnZ23XBEpUauPHDlSk91Ucokt6X6KxWLVsP71Eu/lcrny3O5WYZZlMplyCywSiQB6K7Grq2tLn/rWQtO0stfd9bYSNU3jz//8z/nMZz7DY489xuHDh2/ClV47Hn30UVKpFDt37mRpaYk//uM/ZmFhgQsXLrzu1iy3TCEpDdULhQJ79+6luXnzIbCmafyXH1/iG32Lq7nYAvmihijAJ9/YzQeP125RvTy+zCe+fhGLQcRhM8Oqu1VR1UjmZP6/d+/l9Lbanl3/76OXePRCAIdZwmIUKSgaiazM3mYn/+tDB6sKQiUdNhQKYTabyyeVq7Ed3whr6b23Ekqml6lUiiNHjly16E7TNJLJZLlAp9PpTR2LbxZK3lP19fXs3r37llmAS1heXubChQt0dHSQy+UIh8OvCbX4RkDTNIaGhkgkEhw9evS62GqapvHf//t/5z//5//Mj3/8Y06cOHETrvTGIBaL0dnZyWc+8xl+9Vd/9XW9lluitRUMBjl37hwdHR1lDcdmUFWVhWiG751fxiiJ2M36F99qgkS2yN+9MM/Dh5qxGtc/EMFgkNGLw0iStLqjvbwQlMz0alFwS/g3b+wmkZV5eSZGMl/EKInsbnbyRw/sWneqWEuHLbVtSrbWpaJyNZ5Ltei9twpKgWOqqnL8+PFr2k0KgoDL5cLlctHb21u2Hl9eXmZ0dBSn01k+9V0Pc+lqUKInNzc3s3379luuiJQsWw4dOoTPp3udVZ76RkZGyvG4pcKyVYKbSvTqeDzOsWPHrruI/PVf/zX/6T/9Jx599NEtXUQA3G43O3bsYHx8/PW+lK1ZSARBKA/IZ2ZmGBsbY+/evbS0tPDyyy9vGodbGqpfXE6SK6rUWat/RatJJJGTmQ5n2F0xvNY0jdnZWSYmJrjn+B5+El7kUiCN0SAirl5PIlekuc7MgdbNUwldFiN/+vAeLgXSzEQyNDjMHGhzXbE1ValHWRs0pShKeSHcKMtCVVWGhoaIxWIb0nu3OkrRsmaz+br9jyphs9no7Oyks7OzSkw6NTVVPvWVmEs3YsEvifVuRXoywMLCAqOjoxw8eLCcnwP6PKC+vp76+np27txJKpUiGAwyPz9/Q6jFNwKlIhKLxV7VSeRLX/oSf/iHf8j3v/99Tp8+fROu9MYilUoxMTHBhz/84df7UrZma0uWZYrFIsPDwwSDQQ4fPozb7Qagv78fj8ezTllbKTIEODsb51//0wWsJrHKfTYrK6gafO1Xj9Lq1tsmJav5SruTwYUE/+5bw8QyMioaArrq+z88sJNTm7S1bgYqNRaBQIBcLleeBZTM/s6dO4eiKBw6dOiW851Kp9P09/fjdrtvunNy6dRXshoByvdxowJ9NYhEIgwMDNDbWztMaytjbm6OsbGxq3KEqEQ+ny/fx0gkcs3U4hsBTdO4ePEikUiEY8eOXVcLU9M0vvKVr/Cbv/mbfOc73+FNb3rTTbjSV4/f+q3f4sEHH6Szs5PFxUX+8A//kIGBAYaHh8vrwOuFLVlISs69iqJw5MiRqi/H+fPnsdvt9PT0lP+uUmQoCAKiKFJUVd7/t33MRjK4LHoka1FRSeYVTnR5+O/v2w/oRaukej106FBVT34lkefRoRXmYzkanWbu29tQ0/rjtYKmaWWNRSAQIJVKIQgCVquVQ4cO3XIOuCXvppaWlte8HaRpGrFYrDxXKSnCGxoa8Pl81+T8fCtSZIGy6WjlZu16UFmgQ6FQFbXY5/PdFL1DiZQRDodfVRH5+te/zic+8Qm+8Y1vcN99993w67xReP/738/TTz9NOBzG7/dzxx138B//43+sWgtfL2zJQvLCCy8AsH///nVfwKGhIQwGAzt37gQ2V6oPLyX5d98aJpjMr7bLoKveymfes49Wt4VMJsPAwABWq3XDn7XVUVqEbTYbgiAQj8dxuVzl9thWLyolsdu2bdted++mygIdDAbLzs+lduJGQ/+lpSWGh4fZv3//LekAOzU1xfT09DWbR14Ja912M5nMDXctriwiR48eve73/Na3vsWv//qv87WvfY0HHnjgVV/Xv1RsyUKSyWRq6j1GRkZQVZU9e/Zcld1JOl/kiUthVpJ5Or1W7uz1YjZIG9qd3ErYiN5bajUEAgEikQh2u71cVK7HZfdmYnl5maGhIfbs2XNFBt7rgVwuV76XJafd0lzF6XQyPz/P2NjYupnCrYKSRufo0aM3nTpambkei8VetWuxpmmMjo4SDAY5duzYdReR73//+zzyyCP8wz/8Aw8//PB1vcfPoWNLFpJisVhzoD4+Pk42m2Xv3r2oqlpmUl2P3cmOHTtuOe8guDp6b7FYrKIVG43GKmPJ17OolLI4Dhw4UGYHbWWUKNqlto0gCCiKwo4dO2hra7sldCIlaJrGxMQECwsLr9qB+HpQeS/D4TCSJFVlrl9pRlVyUA4EAq+qiPzoRz/iwx/+MF/4whd43/ved13v8XNcxpYsJIqi1IzUnZqaIhaLsW/fPmB9hshmKD1Ec3NzHDhw4JbbSVZe/6FDh656MFqyxii1bQRBKLdsXks1eImevLCwwOHDh2+5aFJN0xgbG2NhYQGv10ssFivPAkpsuq3cHi1d/9LSEseOHXvdmX2V1OJgMIgsy1WuxWtnVKXrX15e5tixY9fdun388cd5//vfz1/91V/xoQ99aEud1G9V3FKFRNM0FhYWGBkZKVs/X22mtaIoZbHSoUOHXvOd2KtFJb33yJEj170IlCzHS0WlpAa/2QthKS8mEom8qut/vVDqyYdCofL1l2xGSvcym81WiSC3EnuutJNfWVnh6NGjW+7+a5pWphaXZlR1dXVVc5WJiYlyEbzeIvL000/z3ve+l//23/4bjzzyyM+LyA3CLVNIKuchpYUwEAigaVqVvmKjopLP5xkYGEAURQ4ePLhlRFRXi5JQ70bTeyv9lgKBQHkhvJa8+quBoiicP3+eXC7H4cOHXzOV+Y1CqYgnEolN1fYl+/ZAIEAikShrLEoiyNcLlUXw1bSDXkvkcrkqyxZRFFFVld27d9PU1HRdp+jnnnuOd73rXfzpn/4pH/vYx35eRG4gtmQhWZuSWJlmWNnKqqRvVnotNTY2ljUByWSSgYEBPB7PTdco3Axks1n6+/uxWq0cOHDgptpTVNKKK/PqGxoarnvxl2WZ/v5+BEHg0KFDr5v/1fWisgj+/+2daVBUV/rGH0QBF0BBaBFFXFAEZRUNJjEhIrII3TiJxnFGYpzELDpxLLM4M//UmMTRlCl1jImapEatZCgXuhGX4IaAwRWaRkHjghEFhaYRWbqhF7rv/4N1bgBBoPvC7QvnV8UH+wO8fbu9zz3nvO/zhISEdFrEW89YDBw4kH26Ntf6xhzIsN7jx48t6m7ii9bbiY8fPwaAFq7FnVlF5+bmQiwW4/PPP8eKFSuoiHCMVQsJmVTvTIZI820GpVIJnU4HR0dH1NXVwdvbG+PHjxfcl6eurg4KhQLu7u6YNGlSj4ogyauvrKxETU0Nm1ffladrYl44aNAgTJ061Wo9mtqjqakJBQUFMJlMCA4ONlsEiWMxERbiXdXdZ1Qmk4m1DQkNDRXcShAA7ty5g7KyMrYxoK3W4o481RQKBebNm4d//vOfWL16teDuA0LAaoVEr9e3mFTvyqG6yWRCcXEx7t+/Dzs7O/YQj2zZCOGpmGRBWIN7r16vb9FWPHDgQPZatte+SUw2hw8fLkjzQr1eD4VCgQEDBnBqA9/6jMpgMHSLY3HzVEZzbUP4hrQoT5s2rd0zTY1Gw26B1dTUsE7aGo0GU6ZMwbVr1xAbG4s1a9bgk08+Edz3UChYpZA0NTVBq9Wy/+7KExsJnamsrGTtTsiWjVKphFqtZs8B3N3drfK8xJrde5vngVRVVaF///7s0zWxxSD53l5eXhg3bpzg/vOSldTgwYMxderUblsxEMdiItIajYYd3LNkO5EkA5JQJ2v8jnfE3bt3ce/evWeKSGv0ej0ePXqE8vJyzJs3D/3798eAAQMwe/Zs/PDDD1axItu4cSPWrl2LDz74AFu3buW7HM6wSiFJSkrCnTt3IJFIkJCQAE9Pz07djAwGAwoLC6HT6Z6yOyE0NjZCqVSyB6JcnANwhbntvXzRPK9epVKBYRg4OjqipqYGEyZMwJgxY/guscs0NjZCLpdj2LBhmDx5co9uJzY2NrKiQp6uycqvswOl5ExHp9PxlspoKURELBmWvHr1KpYvXw47Ozt2JR0VFYWNGzfCx8eH44o7R25uLhYsWAAnJydERERQIeluysrKkJKSAplMhvPnz2PatGkQi8UQi8XtbvMQuxMHBwcEBAR06gCu9TkAsRcRiUQ9fijZvL03ODhYcO3JZEakpKQEAwYMaDFf0V1eS1xDtuPImRTf24nNhyA7Y4hI8uGbmposOtPhk5KSEpSUlFgkInfu3EF0dDRef/11bNq0CTY2Nrh69SoOHz6Mt99+GyKRiOOqO4bk63z77bf44osvEBQURIWkp2AYBuXl5UhNTYVMJsPZs2cREBDAisqECRNgY2ODrKwsNDY2YuzYsZg4caJZT5F6vZ4VFZJaKBKJeqR1k7T3khuA0PazGYZhbwCBgYEYNmwY1Go1ez1JyJQ1byfW1tZCoVBg9OjRVrcd13qgFHjasdhoNEKhUIBhGAQHBwtCuFtDDCRDQ0Ph5PTsqIb2KCkpQUxMDOLj47Ft2zar6dJMSkqCi4sLtmzZgpdffpkKCV8wDIOqqipWVM6cOQNfX19MmTIFMpkM//nPfzjz5TcYDFCpVFAqlezhMhEVrj2rmrf3CtE4kgy6VVRUICQkpM2nyIaGBlZU6urq2syr55Pq6mrWPNLat+NI1xK5njqdDi4uLtBoNLCzs0NISIjgvkMA2CwgS0SkrKwMc+fORVRUFHbs2GE1IrJv3z6sX78eubm5cHBwoEJiLTAMg+rqarz55ptIT0+Ht7c3bG1tIRaLIZFIOM3JJp5VSqWS3WIgomJpljWf7b1cQLbjamtrERIS0qlp49ZmiOQcoDuTC58FMb+cNGkSPD09e/RvWwoRlatXr6KpqQkmk4kVaTc3N6t3fyYQEbHEhbi8vBzR0dF48cUX8f3331tNq3lpaSmmTZuGU6dOISAgAACokFgLOp0OSUlJuHz5Mo4ePQpPT08cPXoUUqkUJ06cgIeHBysqwcHBnN2gSeYCEZX+/fuzZypdHTKzpvZec2hqasKVK1dgMBgQEhJi1nYVWfmRcwAHBwdWVCwV6c5AHIinTJnCy765pRgMBsjlctjb2yMgIKDF9STuz5a47PYEpaWlKC4utkhElEolYmJiMG3aNOzdu9dqRAQADh06hMTExBY1GY1GNjdJp9NZVb3mIkghMZlM+Pzzz/Huu+8+lQOhVqvx888/QyqVIj09HS4uLkhISIBEIkFYWBin8wCkDZYYIRJR6SgdjrT3WquFekfo9Xrk5+ezMxZcbKU0z6tXqVSwtbVl22A766fWFcrKynDr1i3BOBC3Rq/XQy6Xs44Hra+PwWBgrydx2SUrle64nuZAPoOQkBCzQ7WqqqoQGxsLPz8/JCcnW922Xn19Pe7du9fitaVLl8LX1xcff/wxaz4rdAQpJJ2loaEBJ06cgFQqxbFjxzB48GDEx8dDIpEgPDycsy9d83z15v5fIpGoxeSy0Np726KhoQH5+flwcnLidAuxOa2vp8lkemZefVcpKSnB3bt3BfsZ6HQ6yOVyDBkypFOfQfPrqVKpYDQauz29sCOIiHQ13rc51dXViIuLw7hx47B//36rbOJoC7q1JWC0Wi1Onz4NmUyGtLQ09O/fH/Hx8UhMTMQLL7zAWatkW/5fZHuBtBkLsb0XePJ0lZ+fD5FI1GPtsW0dLjdvK+7K50aEvKysDCEhIWYf6vKJVquFXC6Hs7OzWd5xrY06icUIWa30RMfggwcPcPPmTYtEpKamBvHx8RgxYgRkMpmgOh2pkPQSDAYDMjMzIZVKcejQIRiNRsTFxUEikeDll1/m3F23vLwcDx48YGcrPDw8BDNbQSCdTd7e3vD29uZlv51YjZMna+JSQFYrz/rcSKpeZWWlVdqod4bmw5J+fn6cfAako06lUrFRzeTBpzuaHx4+fIgbN24gKCgILi4uZv2Ouro6SCQSODk54fDhw7wPElP6qJA0p6mpCTk5OTh48CAOHToEjUaDuLg4iMVizJ492+L2VNLe6+DggHHjxrGphY2NjYLx/1IqlSgqKoKvr69VdTY1NjayK5Vn5dUT88KamhpBOuACT95rXl4eXF1du827jHiqkfRCBwcHVqS5cCwuLy/Hr7/+apGIqNVqzJ8/H3Z2djh69KhgOtN6O31eSJpjNBpx4cIFpKSkIDU1FY8fP0Z0dDTEYjGioqK6/BT7rPZejUbDWrVYs/9XaWkpbt++jalTp8LNzY3vctqlvbx6V1dX3L17t8s28NZEQ0MD5HI53NzcemxLsXnzA4kXJiuVzkTitoaIiCUZ9w0NDXj11VdhMpnw888/C3J7uLdChaQdTCYTcnNzWVEpLy9HVFQUxGIxYmJiOrRvIO29Y8eO7XArqPXAnjX4fzEMw7qvBgcHm91VwwckF1ypVLIddZ6envDw8OjRLBAu0Gg0yMvLg4eHB3x8fHipnTgWE6Fu7qbdmXOqiooKXL9+3SIR0Wq1WLhwIdRqNU6cOCHI863eDBWSTmAymVBQUMCKSklJCWbPng2xWIy4uLinbk6lpaW4deuWWe291uD/xTAMfv31VzZWVohPfiRQq1+/fhg1ahSbB8JXXr05qNVqyOVyeHp6Wk2eTlvnVMSxmETiNodsiwYGBprdZq3T6bB48WKoVCqcPHlSkJ12vR0qJF2EYRhcu3aNNZW8ceMGIiIiIJFIEBMTg3//+99obGzEhg0bzN4HJpDtGqVSyU6Bd7f/l9FoRFFRETQaDUJCQgR5kKnT6ZCfn8/azpBtmNYxzaQNljxZW9NgWH19PeRyOWvFb60Qx2KVSsV+R4lQazQaXLt2DQEBAWZvixoMBixZsgT37t1DRkaG2SsaSvdChcQCiM+UVCrFwYMHcevWLQwcOBDvvfceli5dCnd3d86eIpv7fz169Ig9A+DS/8tgMKCgoIA1/rPmBoD2IJ1NQ4cOfWZ7bPNEzcrKSmi12hbbNXyeU9XW1iI/Px/e3t4YO3Ysb3V0FbKlSM5VSJfimDFjOhzSbYumpia8+eabuHHjBjIzM636jK6vQ4WEA2pqajB//nyoVCpIJBKcOnUKeXl5mDlzJhISEiAWizFy5EjORKWpqYndr+bKWkSr1bLdZd2dDd9daDQa9lDa19e3S9dBrVaz17S+vp6TgClzIKFgQjCQbA+VSsW2ipNOMIZhWgxBdvT9MhqNWL58ORQKBTIzM60u4I3SEiokHLBo0SLU19dj3759bK50aWkppFIpZDIZLly4gLCwMNaqxcvLizNRMRqN7FOgSqXCgAEDuuz/pdFokJ+fDxcXlx4Pc+KKuro65OfnY9SoURafJ7QOmDInr94cHj9+DIVCAR8fH4wePbrb/k53olKpcPXq1Rb+Zc1z1snqr/kQZOvVn9FoxMqVK3Hu3DlkZWVZVcs5pW2okHBAVVUVhg4d2uaAIcMwePjwIWt//8svvyAgIAASiQRisZjTQ1Rz/L9IDoenpyeb7yI0yFM86ZDjkvby6t3d3eHo6MjZ9aqurkZBQQEmTpyIUaNGcfI7e5qqqipcuXKlQxNMEn2tUqnYWAEbGxvY29vD398fq1atwpkzZ5CZmSnYVVlfgwpJD8IwDCorK3Ho0CHIZDJkZmbC19eXFZWubsc8i874f5EW5QkTJsDLy4uTv9vTkPfQEzdgEilAthTJ6o8YIZr72ZH34Ovri5EjR3Jcdc9A3oOfn1+XtqFIQ0lycjLWr18Pd3d31NfXY+/evRCLxbytjnfs2IEdO3agpKQEAODv749PP/0UMTExvNRj7VAh4QmGYfD48WOkpaVBKpXi9OnTGDduHGt/7+/vz9l/oub+X0qlEkajEYMHD0ZdXR0mT54s2K0D0lrKh4syWf2R1QqAFm3FnT1jIltBQnWCBoBHjx7hypUrXRaR5phMJqxduxanT5+Gj48Pzp49i8GDB2PRokX46quvOK64Y44cOQJbW1v4+PiAYRjs3bsXmzZtgkKhgL+/f4/XY+1QIbESamtrceTIETZTxdPTkxWVoKAgTkXl5s2bKCsrw4ABA55qgRWK/xcx/rOGifvWRp0Gg6FT17SyshKFhYWCzUMBft+Smzx5stlCyDAMPvvsM+zduxdZWVnw9fWFwWBAdnY27t69i7feeovjqs3DxcUFmzZtwrJly/guxeqgQmKF1NfXt8hUGT58OOtUHBYWZraoMAyD27dv4+HDhwgODoaTkxPUajVr1SIU/y+SqBcYGGjxrA7XMAyD+vp6VlQaGhpaXFNysExCtaZOnfpUpo5QICJiyZYcwzDYuHEjdu7ciczMTKvM5zAajTh48CCSkpKgUCjg5+fHd0lWBxUSK6ehoQHHjx9nM1WGDBnCdn+Fh4d3eguluXFhcHBwm91HZGLZWv2/iG1LaWkpgoODzU7U60naOlh2cHBAZWWlRdPefEM6zCwVkS1btmDLli3IyMhAUFAQt0VaSGFhIcLDw6HVajFkyBAkJycjNjaW77KsEiokAkKr1eLUqVNspoqdnR27Unn++efbXUEYjUZcuXIFOp2u08aFbfl/iUQiuLm58TLtToY/KyoqEBoaKkjbFq1Wi9u3b6OiogIAnmorFkrHHBERS3LuGYbB9u3b8eWXX+LEiRMICwvjuErL0ev1uH//Pmpra5GSkoIffvgB2dnZdEXSBlRIBIper2+RqWIymTBv3jw2U4WsIJRKJYqLi2Fvb4/AwECztquI/5dSqWTt2olVS0/4fzEMg+vXr+Px48cICQkRrHU4cVIOCgqCo6Mje1BPLNt7Mq/eXGpqapCfn29RlxzDMPjuu++wbt06pKenIzw8nOMqu4fIyEiMHz8eu3bt4rsUq4MKSS+gqakJv/zyC5up0tjYiLi4ODz//PPYsGEDXn31Vaxbt46TafWe9v8ymUwoLCwUtPcX8Pu5TltOymSolHhWWWO+OvD7vM6ECRPMHphkGAZ79uzB2rVrcfToUcyaNYvjKruPV155BV5eXtizZw/fpVgdVikk33zzDTZt2oSKigoEBgbi66+/xvTp0/kuSxAYjUacP38eu3btwoEDBzBhwgT4+/sjMTERUVFRnD7Nt+f/JRKJONmqIVtyBoMBwcHBVnFOYw4kIz4kJKTDc5225n9IBxgXefXmQvy/LBWRn376CWvWrMHhw4cRERHBcZXcsXbtWsTExMDLywv19fVITk5mt+HmzJnDd3lWh9UJyf79+7FkyRLs3LkTM2bMwNatW3Hw4EHcvHlTsN0tPU1OTg7i4+OxatUqREVFQSqVIjU1FUqlEnPmzIFEIkF0dHSHmSpdoT3/L5FIZNYEODGQtLGxQVBQkGDakltDMl3MyYjnMq/eEoiIjB8/3uzBVYZhcODAAaxcuRJSqRRz587luEpuWbZsGTIyMlBeXg5nZ2cEBATg448/piLSDlYnJDNmzEBYWBi2b98O4MkT2ujRo7Fy5Up88sknPFcnDF577TVERkZi+fLl7GsmkwkKhYK1v79//z4iIyMhFosRGxvLaeCTpf5fer0e+fn5sLe3F6yBJMMwuHPnDsrKyhAaGmqxaDfPAamsrIRGo2nhV9VdyY91dXWQy+UWm0jKZDIsX74c+/fvx7x58ziskGINWJWQ6PV6DBo0CCkpKZBIJOzrSUlJqKmpQVpaGn/FCQiGYZ55s2YYBkVFRayo3Lp1i81UiYuLg4uLC6eiUl1dzd4Ayf6/u7t7m/5fWq0Wcrkcjo6OmDJlitWcD3QFhmFQXFyMhw8fdluHGemqU6lUqK2thbOzMztZz9X2JRERSz3Mjh49iqVLl+Knn35CYmIiJ7VRrAurEpKHDx/C09MT58+fb9HJ8dFHHyE7OxuXLl3isbreCZl0l0qlkEqlKCwsxKxZsyAWixEfH89ppgrZ/ycRuAzDsKLi4uKCxsZG5Ofnw9XVFZMnT7bazqVnQdqUlUolQkNDu9UtmNBeXr0lWTUkWMvb29siETl+/Dj+/Oc/Y/fu3ViwYIHZv4di3VAhobCQ7Rhify+XyzFz5kyIxWIkJCRwmqlCbEXIVH1TUxN7sOzv7y/IMxGGYXDjxg1UVVUhNDSUlzbl1uFS9vb2rKh0dvuSiMiYMWMsCtbKyMjAokWLsGvXLvzxj38U5IMBpXNYlZDQrS3rgWEY3L9/nxWVixcvIiwsDGKxGGKxmNNMFTLg5ujoCJ1OB71eLzj/r+azLqGhoT0yX9MRRqORjRWoqqpiYwXc3d3bbStWq9XIy8uzOOL37NmzeO2117Bt2za88cYbVER6OVYlJMCTw/bp06fj66+/BvBkO8TLywsrVqygh+08QTJVZDIZZDIZcnJyEBgYyNrfjxs3zuwbBXGOJWFO5FC5tf+XSCTq0U6lrkDsZ2praxEaGmqVsy6dyatXq9WQy+VsOJi5nD9/HvPnz8dXX32Ft956i4pIH8DqhGT//v1ISkrCrl27MH36dGzduhUHDhzAjRs3BOuQ2ptgGAZKpZLNVMnKysLkyZNZUZk0aVKnbxyVlZUoKip6pnMs6VRSKpVspxKxarGGuRKTyYSioiKo1WqEhoZ2W/cUl7SVVz906FDU1tbC09MTkyZNMvt3X758GRKJBF988QXef/99KiJ9BKsTEgDYvn07O5AYFBSEbdu2YcaMGXyXRWkFwzCorq5ukakyYcIE1v7ez8+v3a6rhw8f4saNG5gyZUqn54NIp5JSqWRz1clWDR83cDJ139DQgNDQUKsQtq7CMAyqqqpQWFgIW1tbGAwG9rp21VctPz8f8fHx+L//+z/87W9/oyLSh7BKIaEIDzI8RzJVTp48iVGjRrGiEhgYyIrKL7/8AoPBgMDAQLi6upr191r7fzk7O7Oi0hPnEyaTqYURphBFBHjiTiyXy+Hh4YEJEyZAq9W2yKt3cnJi24qf1YF29epVxMXF4cMPP8THH39MRaSPQYWE0i3U19fj2LFjkEqlOH78OJupUltbi7S0NFy+fJmzaFydTsdu0zx+/PgpV12uaW7dEhISYpXnNp2hoaEBeXl5GDFiBHx8fJ66+TfPq3/06BEGDRrUZl799evXERMTgxUrVuDTTz+lItIHoULyDM6ePYtNmzZBLpejvLwcqampLbrJKJ1Do9EgPT0dn376KX777Tf4+Phg1qxZkEgkeO655zidXG998+sO/6+CggKYTCYEBwcLoqOsLRoaGiCXy+Hu7o6JEyd2eF1a59Xn5uaiuLgYzz//PNatW4e//OUv+OKLL3gVkQ0bNkAmk+HGjRsYOHAgZs6ciS+//NKiMx9K5xDm/4IeQqPRIDAwEG+++Sbmz5/PdzmCxcHBASdPnmSfgH/77TfIZDIsXLgQ9vb2iI+Ph0QieWamSmexs7ODp6cnPD09W8xUlJSUWOz/1dTUBIVCARsbG0GLSGNjY5dEBAD69++PESNGYMSIETAajTCZTMjNzcWHH37INmCkp6dj9uzZvDUcZGdn4/3330dYWBiamprw97//HVFRUbh+/XqPDIb2ZeiKpJPY2NjQFYmZ3LlzB3/6059w4MCBFs6xer0eZ86cYTNVALCZKi+99BKn5w6W+n8ZDAYoFArY2toiKChIkP5fwBMRycvLg5ubW5c67FpTUlKC6OhoJCQk4A9/+APS0tKQmpoKFxcXKBQKjqs2D5VKBXd3d2RnZwvKrl6IUCHpJFRILKMj/6+mpiacPXuWzVTRarWYN28exGIxXnnlFU5nM4j/F7Fq6cj/y2AwID8/HwMGDEBgYKBgRUSr1SIvLw+urq7w9fU1W0RKS0sxd+5cREdH49tvv2WvF8MwqKioaLeVu6cpLi6Gj48PCgsLrTILvjdBhaSTUCHpOYxGI86dO4eUlBQcOnQItbW1iI6OhkQiwZw5czi1HunI/6upqQn5+flwcHBAQECAIE0kgd9FxMXFxSIfs/LycsydOxezZs3C999/b7WiajKZkJCQgJqaGuTk5PBdTq+HCkknoULCDyaTCZcuXUJKSgpSU1NRWVmJqKgoSCQSzJ07l9NMFYZhWoRKGY1GAMDgwYMRHBws2O4s4qg8bNgwi0REqVQiJiYGYWFh2LNnj9WKCAC8++67SE9PR05ODmfdgZT2oULSSaiQ8I/JZEJ+fj5rf19aWorIyEhIJBLExsZymnVOzhL69esHk8kEg8GA4cOHQyQSwdXVVTAH7TqdDnl5eRg6dCj8/PzMvj4qlQpxcXHw9/fH//73P6t+/ytWrEBaWhrOnj1rkekkpfNQIekkVEisC2JNQkTl9u3beOWVVyAWiy3OVCHbQMOGDYOfnx+AJ3MxZKUiBP8v4ImIyOVyODk5wd/f3+zrUV1djdjYWIwfPx4HDhyw2vfLMAxWrlyJ1NRUZGVlwcfHh++S+gxUSJ6BWq1GcXExACA4OBibN29GREQEXFxczI4cpXAPsW8nolJUVISXXnqJzVRxc3Pr9E2UtMY+6yzB2v2/gCcdcXl5eRaLSE1NDeLj4+Hh4QGZTGY1768t3nvvPSQnJyMtLa3F7Iizs7NVuDH3ZqiQPIOsrCxEREQ89XpSUhL27NnT8wVROoRkqhBRUSgULTJVPDw82r2pkiG9rrTGWpv/F/C7iJCUSXNFpK6uDhKJBM7OzkhLS7NKV+PmtPc+d+/ejTfeeKNni+ljUCGh9FoYhsG9e/cglUqRmpqKixcvYvr06WymyujRo9mbT0VFBW7dugWRSNTpIb3WNDY2sttffPh/AU9ERC6XY/DgwRZFFavVasyfPx92dnY4duwYfaKnPBMqJJQ+AcMwePDgAZupcu7cOQQFBUEikcDHxwfvvPMOtm3bhsTERE4O7Nvz/xKJRN2WnEhEZNCgQZg6darZItLQ0IBXX30VDMPg2LFj3ZI5T+ldUCERCNRHiDuIpUdqair27t0LuVyO0NBQREVFITEx0ewVSXt0t/8X8GRoUi6XY+DAgRaJiFarxcKFC6HRaHD8+HE4OTlZXBul90OFRCBER0fj9ddfb+EjVFRURH2ELEAulyMqKgrvvvsuxo4dC6lUioyMDPj4+CAhIQGJiYmYPHkyp0OIrTPVHRwcIBKJnnLU7ervlMvlFg9N6nQ6LF68GFVVVTh58iSGDh1q1u+h9D2okAgU6iNkGUajkTXkXL16NYDfM1UOHz7MZqp4eXmxosL1ZDvx/1IqlaiqqsKAAQNYUemM/xfwu32LnZ1di8yXrqLX67FkyRKUlpYiIyMDLi4uZv0eSt+EColAoT5ClkMOxNujrq6uRaaKu7s7KyqhoaGci0p7/l/Dhg1rU1SIfQvxADO3HoPBgGXLluHmzZs4c+YM3NzcLH07lD4GFRIBQn2Eeh6SqSKTyXDs2DE4OzsjISEBEokEM2bM4NQupLn/V2VlJQC08P/q168fKyL9+/e3yEiyqakJy5cvx5UrV5CZmQmRSMTZ+6D0HaiQCBDqI8QvjY2NOHnyJGQyGY4cOQIHB4cWmSpc2oe05f81fPhw1NfXw97e3iJLe6PRiBUrVuDChQvIysrCyJEjOaub0regQiIwqI+QdaHX63H69GnIZDKkpaXBxsYGcXFxSExMxKxZszidBGcYBtXV1bh27RoMBgNsbGxY/6/hw4d3SVBMJhNWrVqFzMxMZGZmUqcGikVQIREI1EfI+jEYDGymSlpaGnQ6HeLi4iCRSBAREWHxZLjRaGQTGgMDA1tM1Wu1WgwfPhzu7u4d+n+ZTCZ89NFHOHbsGLKysugDCcViqJAIBOojJCyMRiNycnLYTJW6ujrExMRAIpEgMjKyy0OJRESAJ75vzVcfDMNAo9GwZyoajQaurq5wd3d/yv/LZDLhH//4B6RSKTIzM+kDCYUTqJAIBOojJFxMJhMuXrzIiopKpWqRqdLR5LjRaERBQQFMJhNCQkI63MLSaDTsmUp9fT3s7Oxw6dIlLFiwALt378aPP/6IzMxM+Pr6cvk2zeLs2bPYtGkT5HI5ysvLqcO2QKFCQqH0ICaTCXK5HFKpFDKZDGVlZYiMjIRYLG4zU8VoNOLKlSswGo0IDg7u8kF+Y2MjLl26hE8++QTXrl2Dvb09/vrXv+K9996zinOR9PR0nDt3DqGhoZg/fz4VEoFChYRC4QmTyYSrV6+yolJcXIzZs2cjISEB8+bNg52dHd5++20sXrwYc+fONbsbjGEYbN68Gd999x2WLFmCS5cuITs7G8HBwThw4AC8vb25fWNmQjN/hIswA6gpVsGOHTsQEBAAJycnODk5ITw8HOnp6XyXJRj69euHoKAgfP755ygqKoJCocBzzz2HnTt3YuzYsZg5cyauXbuGiRMnmt3iyzAMvv76a2zZsgWpqalYv349Tp8+jfLycrzzzju05ZfCCXRFQjGbI0eOwNbWFj4+PmAYBnv37sWmTZugUCjg7+/Pd3mCRafTITY2Frdu3YKnpyfkcjlmzpwJiUSChIQEjBgxolP2KQzDYNeuXfjss89w/PhxPPfccz1QvfnQFYlwoSsSitnEx8cjNjYWPj4+mDhxItavX48hQ4bg4sWLfJcmWIxGIxYuXIja2loUFhbiwoULuHXrFuLj45GSkoJJkyYhKioK27dvR2lpKdp7DmQYBrt378a//vUvHDlyxOpFhCJsqJBQOMFoNGLfvn3QaDQIDw/nuxzBYmtri/j4eNZ918bGBmPHjsWaNWuQk5ODu3fvYsGCBTh27Bj8/f0RERGBrVu34u7du6yoMAyDH3/8EWvXrsXhw4fx4osv8vyuKL0durVFsYjCwkKEh4dDq9ViyJAhSE5ORmxsLN9l9XoYhkFFRQVSU1Mhk8mQnZ2NKVOmQCwWw97eHuvXr4dMJkNUVBTfpXYaurUlXKiQUCxCr9fj/v37qK2tRUpKCn744QdkZ2fDz8+P79L6DAzD4NGjR0hLS0NycjLOnDmDn376CYsXL+a7tA5Rq9UoLi4G8GTQcvPmzYiIiICLi4tVtCdTOgcVEgqnREZGYvz48di1axffpfRJSKSwUMw8s7KyEBER8dTrSUlJ2LNnT88XRDEL7mxKKRQ8mY3Q6XR8l9FnsbGxEYyIAMDLL7/cbsMARThQIaGYzdq1axETEwMvLy/U19cjOTkZWVlZOHHiBN+lUSiUHoQKCcVsKisrsWTJEpSXl8PZ2RkBAQE4ceIE5syZw3dpFAqlB6FnJBQKhUKxCDpHQqFQKBSLoEJC6dVs3LgRNjY2WLVqFd+lUCi9FioklF5Lbm4udu3ahYCAAL5LoVB6NVRIKL0StVqNxYsX4/vvv8ewYcP4LodC6dVQIaH0St5//33ExcUhMjKS71IolF4Pbf+l9Dr27duH/Px85Obm8l0KhdInoEJC6VWUlpbigw8+wKlTp+Dg4MB3ORRKn4DOkVB6FYcOHUJiYmKLREGj0QgbGxv069cPOp3O7LRBCoXSNvSMhNKrmD17NgoLC1FQUMD+TJs2DYsXL0ZBQQEVEQ745ptv4O3tDQcHB8yYMQOXL1/muyQKz9CtLUqvwtHREVOmTGnx2uDBg+Hq6vrU65Sus3//fqxevRo7d+7EjBkzsHXrVsydOxc3b96Eu7s73+VReIKuSCgUSqfZvHkz3nrrLSxduhR+fn7YuXMnBg0ahP/+9798l0bhEboiofR6srKy+C6hV6DX6yGXy7F27Vr2tX79+iEyMhIXLlzgsTIK39AVCYVC6RRVVVUwGo0QiUQtXheJRKioqOCpKoo1QIWEQqFQKBZBhYRC6QH+9a9/wcbGpsWPr68v32V1ieHDh8PW1hZKpbLF60qlEiNGjOCpKoo1QIWEQukh/P39UV5ezv7k5OTwXVKXsLOzQ2hoKDIyMtjXTCYTMjIyEB4ezmNlFL6hh+0USg/Rv39/wT+5r169GklJSZg2bRqmT5+OrVu3QqPRYOnSpXyXRuERKiQUSg9x+/ZtjBw5Eg4ODggPD8eGDRvg5eXFd1ldYuHChVCpVPj0009RUVGBoKAgHD9+/KkDeErfglqkUCg9QHp6OtRqNSZNmoTy8nKsW7cODx48QFFRERwdHfkuj0KxCCokFAoP1NTUYMyYMdi8eTOWLVvGdzkUikXQw3YKhQeGDh2KiRMnori4mO9SKBSLoUJCofCAWq3GnTt34OHhwXcpFIrFUCGhUHqANWvWIDs7GyUlJTh//jxrdb9o0SK+S6NQLIZ2bVEoPUBZWRkWLVqER48ewc3NDS+88AIuXrwINzc3vkujUCyGHrZTKBQKxSLo1haFQqFQLIIKCYVCoVAsggoJhUKhUCyCCgmFQqFQLIIKCYVCoVAsggoJhUKhUCyCCgmFQqFQLIIKCYVCoVAsggoJhUKhUCyCCgmFQqFQLIIKCYVCoVAsggoJhUKhUCzi/wHTyqLUMD2lJAAAAABJRU5ErkJggg=="
- },
- "metadata": {},
- "output_type": "display_data"
- }
- ],
- "source": [
- "# %% Load the data\n",
- "s = retrieve(\"weber_fechner\",rng=np.random.default_rng(seed=180), resolution=20)\n",
- "X_ = s.domain()\n",
- "y_ = s.experiment_runner(X_)\n",
- "data = pd.DataFrame(np.column_stack([X_, y_]), columns=[\"S1\", \"S2\", \"difference_detected\"])\n",
- "show_results = partial(show_results_complete, data_=data, projection=\"3d\")\n",
- "show_results(label=\"input data\")\n",
- "X, y = data[[\"S1\", \"S2\"]], data[\"difference_detected\"]"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 29,
- "id": "89405909",
- "metadata": {},
- "outputs": [
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- "/Users/jholla10/Library/Caches/pypoetry/virtualenvs/autora-17yK3Jyq-py3.8/lib/python3.8/site-packages/sklearn/base.py:439: UserWarning: X does not have valid feature names, but LinearRegression was fitted with feature names\n",
- " warnings.warn(\n"
- ]
- },
- {
- "data": {
- "text/plain": "",
- "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZIAAAGlCAYAAADQ/XDvAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOz9eZRk+VnfCX/ufm/suWdVZe1dS++belG1QCC0WKAxZtOgYcZahsW8MtjzHl6DfTwvMKAjM2M8+MCYATyv0IwB2RKSQYC1gRq1JDfdre6qrn1fc8+MPe5+7+/940ZEZWRmVeVald19P+f0kSoz8saNGxG/731+z/N8H0kIIUhJSUlJSVkj8r0+gZSUlJSUNzapkKSkpKSkrItUSFJSUlJS1kUqJCkpKSkp6yIVkpSUlJSUdZEKSUpKSkrKukiFJCUlJSVlXaRCkpKSkpKyLlIhSUlJSUlZF6mQpLwl+MhHPsKePXvu2XNJksSv/Mqv3JXnT0m526RCktJDs9nkl3/5l/l7f+/v0d/fjyRJ/OEf/uGajmXbNr/yK7/C888/v6HnmJKSsrVQ7/UJpGwt5ubm+F/+l/+FXbt28eijj65LBGzb5ld/9VcB+J7v+Z6NOcE3KI7joKrp1y3lzUkakaT0sG3bNiYnJ7l69Sr/2//2v93r01kxrusSx/FdeS4hBI7jrOpvTNPc0kLSarXu9SmkvIFJhSSlB8MwGB0dXdFjX3nlFd73vvcxODiIZVns3buXj33sYwBcuXKFoaEhAH71V38VSZJWlCe4dOkSP/ZjP0Z/fz+ZTIZnn32Wv/zLv+x5zPPPP48kSXzmM5/hX/7Lf8mOHTvIZDLU63UA/vN//s889NBDmKbJQw89xBe+8IVlnyuOY37rt36LBx98ENM0GRkZ4Wd+5meoVCo9j9uzZw8f+MAH+PKXv8zb3vY2LMvi937v91Z0jTosfu2/8iu/giRJXLhwgY985COUSiWKxSIf/ehHsW17yd//h//wH3jyySexLIv+/n5+/Md/nOvXr/c85oUXXuDHfuzH2LVrF4ZhsHPnTv6n/+l/WiJ6H/nIR8jlcly8eJHv//7vJ5/P8xM/8ROrej0pKQvZurdIKVuamZkZ3vve9zI0NMQv/dIvUSqVuHLlCp///OcBGBoa4nd/93f52Z/9WX7oh36IH/7hHwbgkUceueUxp6enOXLkCLZt8/M///MMDAzw6U9/mr//9/8+n/vc5/ihH/qhnsf/2q/9Grqu8wu/8At4noeu63zlK1/hR37kR3jggQf45Cc/yfz8PB/96EcZGxtb8nw/8zM/wx/+4R/y0Y9+lJ//+Z/n8uXL/M7v/A6vvfYa3/rWt9A0rfvYs2fP8qEPfYif+Zmf4ad+6qc4dOjQRlxGPvjBD7J3714++clP8uqrr/Lv//2/Z3h4mN/4jd/oPuYTn/gE//P//D/zwQ9+kJ/8yZ9kdnaW3/7t3+a7v/u7ee211yiVSgB89rOfxbZtfvZnf5aBgQFeeuklfvu3f5sbN27w2c9+tud5wzDkfe97H+94xzv41//6X5PJZDbk9aS8RREpKbfg5ZdfFoD41Kc+teR3X/jCFwQgXn755Vv+/ezsrADEL//yL6/o+f7pP/2nAhAvvPBC92eNRkPs3btX7NmzR0RRJIQQ4utf/7oAxL59+4Rt2z3HeOyxx8S2bdtEtVrt/uwrX/mKAMTu3bu7P3vhhRcEIP7oj/6o5++/9KUvLfn57t27BSC+9KUvreh1fPjDH+55LiHEkuvwy7/8ywIQH/vYx3oe90M/9ENiYGCg++8rV64IRVHEJz7xiZ7HHT9+XKiq2vPzxddCCCE++clPCkmSxNWrV3vODxC/9Eu/tKLXk5JyJ9KtrZQ10bkL/ou/+AuCINiQY/7VX/0VTz/9NO94xzu6P8vlcvz0T/80V65c4dSpUz2P//CHP4xlWd1/T05OcvToUT784Q9TLBa7P3/Pe97DAw880PO3n/3sZykWi7znPe9hbm6u+9+TTz5JLpfj61//es/j9+7dy/ve974NeZ0L+Uf/6B/1/Pu7vuu7mJ+f727Tff7znyeOYz74wQ/2nOfo6CgHDhzoOc+F16LVajE3N8eRI0cQQvDaa68tee6f/dmf3fDXk/LWJBWSlDXxzne+kx/5kR/hV3/1VxkcHOQHf/AH+dSnPoXneWs+5tWrV5fdMrr//vu7v1/I3r17l/w9wIEDB5YcY/Fxz58/T61WY3h4mKGhoZ7/ms0mMzMzt32ujWLXrl09/+7r6wPo5mnOnz+PEIIDBw4sOc/Tp0/3nOe1a9f4yEc+Qn9/P7lcjqGhId75zncCUKvVep5HVdVlt/tSUtZCmiNJWROSJPG5z32OF198kS9+8Yt8+ctf5mMf+xi/+Zu/yYsvvkgul9v0c1h4B75a4jhmeHiYP/qjP1r2951CgY14rtuhKMqyPxftCdhxHCNJEv/lv/yXZR/buc5RFPGe97yHcrnML/7iL3L48GGy2Szj4+N85CMfWVLRZhgGspzeR6ZsDKmQpKyLZ599lmeffZZPfOIT/PEf/zE/8RM/wWc+8xl+8id/EkmSVnWs3bt3c/bs2SU/P3PmTPf3d/p7SO7iF7P4uPv37+drX/sazz333KaJxEawf/9+hBDs3buXgwcP3vJxx48f59y5c3z605/mH/7Df9j9+Ve/+tW7cZopb3HSW5KUNVGpVLp3zR0ee+wxgO72VqcSqFqtruiY3//9389LL73Ef/2v/7X7s1arxe///u+zZ8+eJXmOxWzbto3HHnuMT3/60z1bOV/96leX5Fc++MEPEkURv/Zrv7bkOGEYrvicN5sf/uEfRlEUfvVXf3XJ9RZCMD8/D9yMbBY+RgjBv/23//bunWzKW5Y0IklZwu/8zu9QrVaZmJgA4Itf/CI3btwA4Od+7ucoFot8+tOf5t/9u3/HD/3QD7F//34ajQZ/8Ad/QKFQ4Pu///uBZDvogQce4D/+x//IwYMH6e/v56GHHuKhhx5a9nl/6Zd+iT/5kz/h/e9/Pz//8z9Pf38/n/70p7l8+TJ/+qd/uqKtmE9+8pP8wA/8AO94xzv42Mc+Rrlc5rd/+7d58MEHaTab3ce9853v5Gd+5mf45Cc/ydGjR3nve9+LpmmcP3+ez372s/zbf/tv+dEf/dH1Xsp1s3//fn7913+df/7P/zlXrlzhH/yDf0A+n+fy5ct84Qtf4Kd/+qf5hV/4BQ4fPsz+/fv5hV/4BcbHxykUCvzpn/7pkp6YlJRN4Z7Vi6VsWTrlrsv9d/nyZSGEEK+++qr40Ic+JHbt2iUMwxDDw8PiAx/4gHjllVd6jvXtb39bPPnkk0LX9RWVAl+8eFH86I/+qCiVSsI0TfH000+Lv/iLv+h5TKf897Of/eyyx/jTP/1Tcf/99wvDMMQDDzwgPv/5zy9bkiuEEL//+78vnnzySWFZlsjn8+Lhhx8W/+yf/TMxMTHRcz1+4Ad+4M4Xrs1qyn9nZ2d7HvepT32q5zovfE3veMc7RDabFdlsVhw+fFh8/OMfF2fPnu0+5tSpU+Ld7363yOVyYnBwUPzUT/2UOHbs2JIS7g9/+MMim82u+PWkpNwJSYhF8XJKSkpKSsoqSHMkKSkpKSnrIhWSlJSUlJR1kQpJSkpKSsq6SIUkJSUlJWVdpEKSkpKSkrIuUiFJSUlJSVkXqZCkpKSkpKyLVEhSUlJSUtZFKiQpKSkpKesiFZKUlJSUlHWRCklKSkpKyrpIhSQlJSUlZV2kQpKSkpKSsi5SIUlJSUlJWRepkKSkpKSkrItUSFJSUlJS1kUqJCkpKSkp6yIVkpSUlJSUdZEKSUpKSkrKukiFJCUlJSVlXaRCkpKSkpKyLlIhSUlJSUlZF6mQpKSkpKSsi1RIUlJSUlLWRSokKSkpKSnrIhWSlJSUlJR1kQpJSkpKSsq6SIUkJSUlJWVdpEKSkpKSkrIuUiFJSUlJSVkXqZCkpKSkpKyLVEhSUlJSUtZFKiQpKSkpKesiFZKUlJSUlHWRCklKSkpKyrpQ7/UJpLy1EEIQRRGe56EoSvc/WU7vaVJS3qikQpJy1xBCEAQBYRjieV7357Iso6oqqqqmwpKS8gZEEkKIe30SKW9+oigiCALiOEaSJHzfR5ZlhBAIIYjjGCEEkiQhSVIqLCkpbyBSIUnZVIQQhGFIGIYASJLUjUwkSVr28R1R6dB5nK7raJqGqqrL/m1KSsq9Id3aStk04jjuRiFAN9roiEQnAlmIJEkoitL9d0dYXnzxRQ4dOkSpVEKWZRRF6YlaUmFJSbl3pEKSsuF0Fv8gCHq2qxY/ZiWLf0dYOv+rKEr32L7vI0lSV1g0Tes+JhWWlJS7RyokKRtKZ9vqxIkTDA8PMzg4uCGLeucYt4pYFgvL4hxLKiwpKZtHKiQpG0ZnQY+iiEajQV9f34Yt4Au3xBb/vCMsnd/HcYzv+3ielwpLSspdIBWSlHXT6Q0Jw5A4jpFl+ZYL/2bSEYdUWFJS7i6pkKSsi85WVhRFAF0R6ZT2bhRrEablhKXzn+d5+L7fPedUWFJS1k4qJClrpnOnvzAKWcitFv57tUgvTPorirJEWBZGLJ0y404PSyosKSm3JhWSlFXT2crqVGUtt9DeKYJY7cK8GVtltxMW13W7j0mFJSXl9qRCkrIq4jgmDMMlW1mLuRc5kvWyEmFxXZcwDBkcHEyFJSWlTSokKStiJb0hC9loIblXyfvFwlKpVKhUKuRyOSAR0sU5llRYUt5qpEKSckeWszm500L5RoxI7kTndUuShKZpPT5hnufhum4qLClvSVIhSbktC3tDOvmClbBWIQmixE5FU3qfZysK02JB7QhLFEVdq/yFOZaOrctKhDgl5Y1EKiQpy3Kr3pCVstqFv+YEHBtvcHG2hQD29Fs8NlagP6v3nNNWpiMQHbFdKCxhGHZ/v5xPWCosKW9kUiFJWcKtekNWw2qExPYjvnpmjstzNv0ZDUmC71yvMVX3+MDDIxTMN6bb762EJQzDrvtxR1gW+oSllvkpbzRSIUnp4U69IStlNUJyed7m6rzN3gELtb2lVcpoXJyzuTDb4omdRWDrRCTruSapsKS8GUmFJAVYWW/IaliNkJRbySKqLsiLyJKEqcpM173u8d5s3ElYIJ0emfLGIBWSlA3ZylrM7YSk6fp86/glWrHCQLGA44fEyzw2iASW3uv0+2bmVsKy0Nk4nR6ZshVJheQtThRFXL9+HcuyKBaLm+7WOz5b4fe/cpTJlkDEMZEQZAwdVddRRMjuoQIAc00fQ5XZP5jpHu+txnLC0qmiC4KAVquF4zhs27atKyzp9MiUe0EqJG9RFvaG3Lhxg5GREUql0oYdf7GQCCEYHx/nM988TSXO8czhYVRFxvd9Ls/UqLRcpqamuDY+jWkZDOYzvOPgMGMls+cYb2UWz2JptVpMTU0xODi4bMSSTo9MuVukQvIWZPEI3M3YGpEkqXv8MAw5deoUUzOzRPlR9hkWmqogEBiGwcEdQ1wq27z//kGU2KdWq6P4DZwbp/nW1Hn6+vrwfb/r1nsv2Wpi1hEOuPWQr3R6ZMpmkwrJW4iFC83CqixZlruL/kbRWazq9TpHjx7FNE2effbtnHlpksVrsSQBAixd5YFtfcAIkAherVajUqkwPz/PpUuXmJiYoK+vr/ufYRgbet5vJBaPK06nR6bcK1IheYtwu4T6ZnWN1+t1/u7v/o49e/awe+8+dFXhvqEsL14uUzQtOuvXbNOnYKlsL5o9fy/LclcwGo0G/f39ZDIZKpUK169f59SpU2QymR5h0TRtw1/HVuZOfmfpkK+Uu0EqJG8BFtqc3MryfSMjkjAMmZ2dpdG0kUcP8pXxmNalS2wvmRwYzjJWsrgw28LUZPxIYCgy7zzQTylzaxHo7P8PDAwwMDAAQBAEVKtVKpUKly9f5sSJE+Tz+a6oFIvF7rbPm5HFEcntSKdHpmwmb95vWcqKbU42cpphrVbj2LFjCCG4FBS4drmFpSlkNIWTE3WuzLd47wMjHBq2GK+65E2VA8M59g5Yq34uTdMYGhpiaGgIAM/zusJy9uxZPM+jUCh0haVQKPRs/bzRWc97djthSadHpqyWVEjepKymN2QjtraEEFy7do1z586xb98+5loB56/Os2NU7/plDeR0Lsw2OTlR4797clv3uVfCSs7RMAxGRkYYGUlyLI7jdG3fJyYmCMOQYrHYFZZ8Pv+G7sFYTURyJxYKy0qmR3ZKjVNn4xRIheRNSadDfaU2J+tNtgdBwIkTJ6hWqzz55JP09/dz/qXTtPyYvkXbVQNZncmaR8uPyOqbGx1YloVlWWzfvh0hBLZtd4Xl2rVrCCEolUr09fXR399PNptd0aK4lRbOzTqXdHpkympIheRNxMLekNXYnKwnIqlWqxw7doxcLsdzzz2HrifRh6FKyFLSna6rN8/BC2MMRUZXVhcJrDdqkiSJbDZLNptlbGwMIQTNZrMrLJcvX+5J7vf19WFZ1pZeFDcyIrkTKxGWSqVCJpPp5qZSYXnrkArJm4TlekNWs2202ohECMGVK1e4cOEC9913H4OjY/zXqzXOTjXQFJmCiOk3Ja6WbfYMZNAUmaYXUnUC3nt4CF1NoqDVLDIbPXExn8+Tz+fZtWsXcRzTaDSoVCpMT09z/vx5NE3rERbTNO984LvIvexpWU5YJiYmGBgY6JZkL2eZnwrLm5NUSN7grHYE7nLIstzNpawE3/c5fvw4jUaDp556CtXK8f+8eI3TUw1MVSEWglqjxbABw0WDq2WbOAZDlXlyZ4nn9g8AqxOuzV58ZFmmWCxSLBbZs2cPURR1e1jGx8c5c+YMpml2y4t93+9GX/eKuxmR3ImFopJOj3zrkQrJG5jFCfW1DkhazbZRpVLh2LFjFAoFjhw5gq7rfOP8HGemmuwdyKKryZbVFD43yh4/vH8QU5NxgoiBrM7u/gySBEGw+pzM3bwDVxSF/v5++vv7gaSkuVqtcvXqVVqtFt/85jfJZrPd/EqpVLonpcZbaRFeGGGm0yPfWqRC8gblTr0hq2ElyXYhBJcvX+bixYscOHCA3bt3d5/z7HQTXZW7IgKQ0WXCGKYbLt//0OiSY62We724qKrK4OAgrVYrsXU5eLBbanzhwgUcx1nSw7LZpcZbza7ldhFSOj3yzU0qJG8w1jsCdznuFJH4vs/rr79Oq9Xi6aefplgs9vxeV+RlbOCTYyryxi0CW2nh1HWd4eFhhoeHgaSHpVKpUC6XOX36NL7v95QaFwqFDS813kpbW0D387gSVjPka/FWWMrWIxWSNxCbMTcEbp9sL5fLHDt2jFKpxJEjR9A0jaYbcnyiTs0J6M/q7BvMcPRGjaYXkjOSj1TNDTEUif2D2XWfX+cctzKGYTA6Osro6ChCiJ4elhs3bhDH8ZIelvW+pq0mJOs5n3R65BubVEjeIMRxzPT0NNPT0xw+fHhDF5DlIhIhBBcvXuTy5cscOnSInTt3IkkS18o2//eL17lecQCBhMTOPotDw1nOz7YYrzoggEjw6LDC/qGNEZLOOb0RkCSJTCZDJpNhx44dCCFotVpdYbl69SoApVKJ/v5++vr6yGQya85vbRU6JecbQTo98o1FKiRbnIUjcDvbJxu9eCy2SPE8j9dffx3HcXjmmWcoFJJhU1Es+NPXJrhWdtg/lEGVZYIo5tJci75MkY8d2cW1iosiSRSwEbXJDe+8fiMiSRK5XI5cLsfOnTsRQnRLjefm5rhw4QKqqi7pYbkTWy0iWW0592q4lbB0nI0hFZZ7SSokW5g4jgnDsLuVpSjKhtu9Q+/W1vz8PMeOHWNgYIDHH3+8pxJpvOpwZd5mrGSitr+gmiKzrWByca7FjzyxnQe3J/mTqakpLtdu/XyrXXA2y6F4LWxETqpQKFAoFNi9ezdxHFOv1ymXy0xOTnL27FkMw7ijXf5WE5KNjEjuxHLCsnB6JNBtzO14rKXTIzePVEi2ILfqDdksIelUbZ0/f54rV65w//33s2PHjiVfOj+MiWKBtqgrXVUkwljgRzcX+q208G91ZFmmVCp1J1RGUdStCLudXf7dXLhXwmZGJHdiuVksU1NTzM7O8vDDD3cfk06P3BxSIdliLLQ5gd67980YQAXJnVu9Xsf3fZ599lny+TyQbGWdmWpwfqaJJEns7s/Ql9GYaXiM9d3ceplp+IwWDUbyN++aN1pItoow3Y1zUBTljnb5uVwOgEwmQxiGW8IufytFSAsbJFVVTadHbjL3/tOX0mVhb8jCsL3DZiyms7OznDt3DlmWefvb395dkMIo5o9fvsELF+bxgxghgaXJ7O7PUHMCLsw2yekqdS8ga6i874GRnj6SrbLwvxlYbJfv+35XVMrlMi+88MKWsMvfihFS53yWi1jS6ZEbRyokW4DVzA3ZqIiks5V17do1duzYQbVa7bmrffV6jb89N8dAVqfQn9iCVGyfy3M2739omLlmwEzd5fC2PEf29XP/tnzP8e8kJG/kHMm9Rtd1RkZGKJfLGIbBtm3btoRd/r3c2lqOTrPuciwUlnTI1/pJheQes5rekI0SEsdxOHbsGGEY8va3vx3btimXyz2Pef1GjUgICtZNG/i+jM5c08cNYn76u/bc9jnShX/z6WwlrcYuv6+vj1wutykL4laOSG7Hwm0wSIVlLaRCcg/pfFDv1twQgJmZGY4fP87IyAj3338/iqLguu6SRd8PY5RlzkeS6Emq34o7CclqRWYtDsVvBRZ/Zu6VXX6nHHcrLayr6bRfyO2EJZ0euTypkNwDFvaGrGZuSKffYy1f2DiOOXfuHNevX+fBBx9k+/bt3d91Fuk4FnhhjKnJHN6W5+8uV/DDuJv7cIMkajo4fOcmw82ISNIIp5eVXI/b2eXPzMxsmF1+51y2WkSyEbmihcKy3PTIhcLyVp0emQrJXWY9NiedL+lqvyC2bXPs2DHiOObIkSNks71CIJB4dSbiS392iqoTMJI3eG7/APdvy3FqsompyQiSKOXxnSWe2FW643NuRtVWSi9ruaFYqV3+QmFZiV1+573eSu9THMdd2/+NZGElZTo9MiEVkrvIakfgLqbz+NUs0FNTU5w4cYLt27dz6NChZQXor07P87VrMYMDLlld4cJsi0vzNh98cgeP7ixx7HoNWYLHd5U4sq8fU7uziKURyeazEVtJt7LL71i5nDx5smuX39fXR6lUWnZx7mw7bqWFcq1bW6slFZZUSO4Ki3tD1voBWhiR3Ik4jjlz5gwTExM89NBDjI6OLvu4csvnhYtVTAV2tntD+rM6NyoOz5+d5dd/8AHe/+DIqs/1TkISxzHfPnGJh/Ztp5TLrOh4KUvZ6OvSscsfHBwEklLjjrBcvHgR27bJ5/Ndj7COXf5W3dq6F+dzO2G5du0ajUaD++677001PTIVkk1m8Qjc9cxXWKmQtFotjh07BsCRI0fIZG69UN+oOtS9iOyi3Yv+rM58K2Cm4bGr/84L/WJuJyRCCP722AVeO3+dY5cm+K6H9/Pwvu13vC5RHHNl3uZ6xcENY7YVDPYMZLqOw3eLrfJlvxsR2q3s8iuVSo9dfqeJdStFjRuVI1kvC7/znTL/TuHMm2V6ZCokm8TChqeNnBtyp+qlyclJTp48yY4dOzh06NAd78iyuoquyPhe7wLghRGaIpHR1/ZFvJ2QvHL2GscujgMQhBF/89o5Lk3O8+4nD5GzlnpKdTg3H1Cvl4HEpuVa2eFq2eW77+snb771Psr3okrqVnb5c3NzALzwwgs9pcYbYZe/Vu5VRHI7oihaYiZ5u+mRbxRheet9++4CmzU3pHOs5YQkiiJOnz7N9PQ0Dz/8MCMjy29HCSG4VnY4N9NEU2Qe2pZn32CGF89V8cIYQ5Vx/IiZhs/3HBxkMHfrhf1OLCckZ65N8Y1j55f8/MrUPH/01Zd51xMHOTA2vOT3VTfmcjVk3y6VQls0YiG4Mu9wca7FY2PFJX+zGWylO264t9HRQrv8vr4+yuUyb3vb25a1y+8ISzabvWvnvJWFZCG3cjZeKCwf+tCH+PCHP8yHPvShe3HadyQVkg0mjmOmpqYA6O/v3xTL98VC0mw2OXbsGLIsc+TIkVtakEex4P/5u+t87fQMLT8RuYGsxrsP9nPlBkxUHSIBqizx2M4iH3pqbF3nuXjRvT5T5kt/d+qWf+P4AX/54knu3z3POx/Zj2nc3G+rezFeJLoiAiBLEgVT5VrZuWtCspXYSn0bnUX7Vnb58/PzXLx4cYldvmmam/Ya3ihCspjlhGVqampL+Kndiq17Zm8wFtqcTExMYBhG13RvI1ksJBMTE5w8eZJdu3Zx4MCB235xXrgwz18enyJnqOwdMIgFTNZc/urULN+3LeaBJ/ZTc0OG8wYPjOZRlfV9CRcKyXytyRe/fZyMoVO3HSRuvXhcmphlcq7G9z15iJ3Dfe3XLSHE0sVzOTfitwpbKTparqv9Vnb5lUqFqampFdvlr5WtKiQrKadeiCRJ2LZ921znvSYVkg1g8VaWoijd/7/RdHIPYRhy+vRpZmZmePTRR7vJ0Nvxwvk5BEkiHUCRYEfJ5OJsk6uKxH+/s7hhycmFpcot1+fz3ziK4wVAQNY0GJ+cwvcDLMvCtMzu86qyjBAwV7f53b98ib7+Ae7ftwPJizEVmG36DLddhr0wxg5iHh/Yul+wzWQrRSQrOZeFdvl79+5dsV3+Wrmd19a9Yi0FAJ0Jm52Chq1IKiTrZLneEEVRuqW+G40sy7RaLU6ePImmaTz33HMr7kSuOgG6svSuEUnCjTa2yqWzqLh+wBe+cZS6ndTTB0HA2evXUWSJQi5LuVbFn/XRdZ2MZVEq5AmQuVZ2KdsB4xWHixNzDPb3UTKTxsjL8zZS+1ocHM6ybzAVknvNWgwbV2qXv7CHZTXbO1s1IlnLObVarSWNxFuJVEjWyMLekMU2J5s1N6SzfXbq1Cn27NnDfffdt6oP5aGRPBdmWz0LUOKpBUPmxm6VJNVlgr/49nFmqg0A7JbN9PQ0uVyOgYEBojji0NAQjZZDq2UjxSE3JqaouBFzvkpfVsdUDRQRcv3aVeZzBd79+EFMXSGMBaWMymjBRJW3xmJ6L9gqQrIRho23ssuvVCqcP38e13VXZZe/VYVkLTdrnf6drUoqJGtg8QjcxVVZmzHJMAxDTp48ie/77Nu3jwMHDtzxb6JYcHa6QcuL2D2Q4b0PDPPK1QqX5lqUMjpRLKi7AQ9ty7Nfq274OZ+8UUbkZBRZoVwuU61WGRoeIp/PJ3ewSDQdD01VGRsdotpyyBZKuNN1zIZLHIZUHQdIrumNqRn+/Jvf4R9/4Bn6C7kNPdc3IlspR7IZFvIdu/xOBaLjON2I5eTJk3e0y3+zCInv+wRB0B1mthVJhWQV3GoE7mI2OiKp1+scPXoU0zTJ5/Mr+kBdnmvxfzx/mUtzLYIoJm+qvPf+Yf7f776PL74+xempBpom870Ht/GDj47y8jevb+jC9NLpq1yabfBA3yjXxifwfJ+xsTF0Y2mi0TJ1qk2HQtakYbvomoauxxStLAIIg4CWbRPHAdev3+A3PjXBcw/t5ZmH7qO/v39T/JTeCGylra27YSHfscvftm3bErv869evE8dxT6nxVhSStWwfN5tNgFRI3gwsTqjfrkNdluUNSbYLIbh+/Tpnz55l79697N+/n5deeumOIuX4Ef/maxe4OGezrWCgqzJVO+BPX5ugP6fz/3nvARw/QpGlrrPvRnpjnbg0wYunrwBw7uJlshmLwwf24/hL80Y506DRcvHCmOvzTTK6ymDeZLbp40cxupL4EwlZI2fJjG3rRyPklQtTnLs+zQOjOYYG+pZYdmwmW2Xxhq1zLnd7qNVK7PIBzp07x8DAAH19fWQymXt+vdaSI2k2m92ena1KKiQrYOEI3JU0F27E1lYYhpw4cYJKpcITTzzRTUiuJNp59XqVK/M2YyWzKxQDOR0vjPnyyRk+8NAolr60KWojoqjLk/N89ZXT1Gt1AArFAv19/TheSCFr0rQ9YhLBMg2NuuNxo+Iw0/AJohhFliiaKjv6c0yUmzTFze3DohxStHSQ9O6X6pItURrJ4nkep06dIgzD7l1pf3//pg1x2gpstYjkXjdHLrTL932fb37zm+RyOWZnZ7lw4cKG2OWvl7VsbXVKf7dadLWQVEhuw0pH4C5mvRFJrVbj2LFjWJbFkSNHemrrl2v0W0zFDhDQM0MdIKMrVO0AL4yXCMlKjnsnpit1/vybR5mYnMR1kiqtQqFAp2WkbrsYmookyYRhSBCETNVcblRcLF0hq2sEsWCu5SOAh3eWaDgBkgSRZxN5AYvbT8JY8NLFaQ7tHOF7nnqaOAwol8tUKhWuXLnSHeLUiVhu1az5RmQr5Ui22nTEDnv27OmW43d6WCYmJtZsl79e1iIkzWbzrjoCrIVUSG7BemxO1hqRdNxBz507x759+9i3b9+S51xJRDJaMFAkCTeIeizfG27IfcM5TG3pF369EUmt5fDnLxzl0pWrKIrC2M4xrly5AovWOi8I0RQZS1douR6zTR9dlbHa56QrEgVTo+aGeH7AaMHAMlRuTNrYt3n+s9enmS7XedcTBykOjuIY/QwNRaiRi+I3mZyc5OzZs5im2bVNv5Ul+u3Yaov3Vllcttq89s5nuSNuiqJ0BQPWbpe/Hjo51tUKyVYv/YVUSJZltSNwF7OWZHsQBJw4cYJqtcqTTz7ZnQ+xkmOfmKjzxdenOD/TZCRv8K7DQxwezXF8vE5/Vu/mSBRZ4gMPj9yyQGCti6TjBfzhF/+Wc5euMTjQz8jwYDcfIhYpiUzSZ1OzPVRFQSCxeLyJpkhEriCKBaoqU7c9spaO5zq3PAcJ8MKQ/+vLr6Bli4yOjKIqMpoicd9wH088tgdJxFSrVcrlMpcuXaLVanXLSfv7+ykWi1vyrvp2bJXFe6tFJHf67i62yw+CoJtfWWiXv1BY1pt763xv04jkTc5aR+AuZrVCUq1WOXbsGLlcjueee+62IfbiY790pcK/+vI5Gk6IpSuMVx2Ojdf5wUdGGcwZvHqtSt0JGcob/IPHtvE9BweXPe5ak+1+EPB7n/0S569PMjI6QjabxfFD8hkz2YVadEhZVbk61yQII3Ql6a6PJRUhou619sIYVYZS1mx3w4PtJdt1WdOg5Xo9xxRCkLNM5hsOkzUPatO4rRZPPrAfw7Q4M9VkMKuzfyjbs3h4nke5XKZcLnfLSUulUjdi2epf3jQiuTWrrdjSNO2Wdvlnzpzp2uUv7GFZrXAu3N1YDbZtpxHJG4U79YashpXmSIQQXLlyhfPnz3PgwAH27Nlzx+dcuAUVx4L/58VrNN2Qnf1W92/nmh5fPT3Dv/vvHuOjR3bR9CK2FQyM20w2XMvWlm3b/J//6b9wba7Ozp07e7YCGraLrqpoqtJ9rYGQeenCDLYXIRBICExVIYhChKmhSYl9vRPE7BvOg7h5DSWSBseW45HLGNiuT9wWvkLGpOF4tPwIP4wpWSpNx+WFV09xcPd2cqV+rpYd9g/1fhkNw2Dbtm3dctJWq0WlUqFcLnP58mVkWe7mVvr7++9JcvZ2pNtst2a9pb+L7fJd1+1+Nm7cuEEURau2y1+rkHQikq3MW15IVtobshpWkiPxfZ/jx4/TaDR4+umnKZVKKzr2wohkuuFxreLQl9V7zrkz4fD0VIN3HhhkcAXl56vd2pqbm+OPvvg3TDdDxnaMIS3TXR5EMUEY0l8q4AcR3zk/i+tH9Gc0kMALIupuyEBWA2KcUGAZGrsGTErm0uMJBEgkTYyKgqEqqLJEw/ZASmzlkYD2tYiF4MyVcVR9Duvh+4DlozFIhHShc23HYLBcLjMxMcHZs2exLKs71S4Mw3vuxrqVFu+t1rOxkT5bkiR1e1i2b9/ec9OxGrv8TqJ9te9Zq9Xa0j0k8BYXksUjcDdCRODOW1uVSoVjx45RKBR47rnnVpXUW7jg64qMIklEca8ARLFAkSQMdeVfpJVubQkhuHjxIn/94jEc2WLH9hxBeIvoSyJx7I0F5ZaPHcYULS15LgSaImFqCn4keHRHgTAWFDI6mqLgeDcjjs6xFhJEEbqm0PQi5ltJNZcsSShSImAdR2AhBLPVJmcvXOJYSeGR/TtWXHnXMRjct28fYRh2K8Hq9TovvPBCd+Rsf3//mrY6NoKtIiRbSdRgc4Vt8U3Hcnb5C5P7nWh2rV52tm2nQrJVWdgbstD7fyPoCMniL5cQgsuXL3Px4kUOHDjA7t2715TID4IkbzCQ03l0rMgLF+bI6gqqIhMLwXTdY7Rg8MiOlc/oWElex/d9Xn/9dc7fmKEiLDRTJ4pi8paZWMMvei0SEqau0nJ9Wq6PiAWmqeO38x6Q5EiiWCBJUMro+GGEH4Soioypatief/OAC3RF11QuzTaZqrntTTIJhRhVkbD9CFmKkSXwI0F/zkCXBF8/er47iTGfWd02laqqDA0N0Wg0yOVy7N27t1tmfPz48W5XdWcr7G7kV7bS4r1Vk+13g9vZ5U9PT3Pu3DkMwyCTySCEwPO8Vdnlp1VbW5BOQr3TY7B9+51nha+Wzl3HwjsQz/M4fvw4rVaLp59+mmJxbYOYppoRxydaXI6neNuuEv/jc7uZqDpcnre762x/RuPj37NvVWNy7xSRVKtVjh49SiBpTHo6WrseIBaChuOSs0w8PyBcIEaqKuP6IZoukzVUVEWi1nQp5Uw8PwRinCBmpKBjaAphHHejkDCKCUOffNakabs980tURabSSpyBdVXuljiHqDiux0jewAuTY40WdfqzOlL76lydLvMfvvoy3/v4QQ7vWn6K5EowTZPt27f3bHWUy+WeAU4L8ysbOWejw1bKkbzRk+0byXJ2+bVajfHxcaIo4lvf+taq7PKbzeaWNmyEt5iQLOwNaTQamzYDufMB7ghJuVzm2LFjlEoljhw5sqb69DgW/P++fZXPvDSD40doZ8+TM1U+emQ3v/mjD/PCxXmulx36Mhrfdd8Ao8XV3XHfKtm+0KZlaNsY3z4/s7gQC4CW66HKMjnToOl6eEHMeBMuO1U0TWUkbzCU05msuXhVG11V8CKBqcnsKFkosowXLLJQkW4m7U1dpYZARkKVFeabLQT09MmoxCApGLrK9pKKjISuqbhB0HNYLwj50kunuDQ5x7seP4ipr+79WBJ5Ldjq2LVrF3EcU6vVKJfLjI+Pc/r06W6PQqd/ZSPyK1stItkq5wJbK2ejKAr9/f0EQYDneTz66KOrsstvtVps27btrpzrv/pX/4p//s//Of/kn/wTfuu3fmvFf/eWEZLFvSGbOXyq8wEOw5CrV69y+fJlDh06xM6dO9f8ZXvh4jz/8ZVxJGDAksjmTMotn3//zSscHM7x/gfXfnfdOefFd7gdx+Fyucz9Dz7MV49exvGDWxwBwjim6XjIqsqpGxUmWzGlnIAw5sJsi6Gczn1DOeZbPl4YMZxV2D9SJKfL2N6tj+uHIW4QYmkKlqHR8nzCSCAvcy3DKCIIInKGRQzLHjeOBVUn5MuvXeHrJ8d5z5OHeMf9Y6uK4G5Hp5u+0/y2sEdhoR16J7+y2LV2NWyVxfutvLW1Ujo3liuxy8/n8zQaDVqt1l2bjvjyyy/ze7/3ezzyyCOr/ts3vZDcqjdEURR837/zAdZA58t97NgxfN/nmWeeSaxC1sFfn54liAUDpkIYJIvoQFZnvOryt+dmeXjH+o6/eGur2Wxy9OhRdF3nqaef4c++fZKG7ZIx9N68xZIDwXjFodz06bMULF1B01SsWDDf8tlesnhkrNAtdCiYKkEYYWraksih97ASXgRzLR9FEmQNhfmW33MnHMVJtsTQZCRZQRIxqiz3bLfFAsarLvOtpEETL+Rz3zzJiWsz/OS7H6Vg3d4mYy3bSYt7FBzH6SkljeO4JzG7UnPBrRQFbORQtI1gKwrJrexRbmWX/7nPfY5/82/+DbVajdOnTxNFEe9617t429vetuFd981mk5/4iZ/gD/7gD/j1X//1Vf/9m1pIbmdzspkRyfz8PJAsIG9729s2ZBujYvuosoQk3ewWl6Qkc1B11j+NcWGyfXJykhMnTrBr1y7279/PX/zXk0yVawAEYdS1e1+8pAohKGQsXrtWQ5Zi4ijG0DRiQJGTCq6WFwJJvqCQMWk6N5sLCxmTestdUqEVx4J5V3Bhzse0K6iyRH/OxGx37BtqMjnRD2P6szo7+rI07OQ4qiyTNXVabiJ+TTekbAfkTAVVljENHdv1OHZhgv/Tdfgf3vUo2wbWlr9aKYtLSZvNJuVymbm5OS5evNg1F+zkWG6VX9lKOZI0IrkzKy1J7nw+fu7nfo6Pf/zjvP/97+fAgQMcPXqU//1//9/ZtWsXr7766oae28c//nF+4Ad+gHe/+92pkCxkuRG4C9kMIYnjmIsXL3LlyhUUReG+++7bsF6DB7YVeH28Tixuvo4wTvomDo2svzSwkyM5ffo04+PjPProowwNDfE3r57l4sTsggcm5oumlrwud0Feo5i1qNsuuioRxSADXuC3jRIT+VPa/SY5y6DWsHv6T+q2i2VqRFGMv6CkuO7HXJ5rIUvQl9EII8F03WEgbzFUkCi3EmPH0YLBzoEstut3xSiMY0LH7zYxukGEEInAGLqG4/rIkoQqS0yWm3z2+dd46vBunr5/N8pdWIgWutbu3r27m5hdOMc8m812RaWvr697V7vVIpKtci6wdYVktVGbLMvYts1/89/8N/zoj/4ocRwzNTW1oef1mc98hldffZWXX355zcd40wnJ4t6QWyXUN2pmSAfXdbtbWc8++yyvvPLKhg63+sAjo3z93CwTFRtdionsgIYbsncww/cdHlr38eM45sqVK2iaxpEjR8hkMrx85ipHL9xY9vFuECIB+YzJbLVFw4dz03NYmkLJ0piue3gxZIQgCEKaXkghY9Kf0cgYOi3HWxJ5QOLbJUsSectIREnTuDbfQFdkRPtyqopEwVSptlzGigX2D+dpuT6GlmyTLTnugiZGy9AReGiqgh+End5FYiGQ5eR//+70Fa5MzfPep+5noHB3yy47idn+/n7279/fza+Uy2XOnTuH53ldq440Irk1W22rDdZ2Tp2KwE75b6fSdKO4fv06/+Sf/BO++tWvrsu54U0lJJ3ekM4CfrsGw42MSGZnZ3n99dcZGhriySefRFXVdc8kOT3Z4Plzc7T8kMOjeb734CCf+MEH+L2vn+O1axUUWeJ9Dw7z4Wd30Z9dn/313Nwc5XKZXC7HM888g6IonLk6xYsnL9/27wRwY67B2VmHSstLemeAgqkynDe4areoOCFqAJamsKuks30gj+eHy1Z+dUhKij0KWRPbDQijpD9kYQpFlRPLFC+IaDk+uYxJEIa9TYxAEAkqLZ+aGyJLEqYqkzUNmn6IId+cWw9QMG/uO09XGvzJ117hHY/s59EVNjFuBsvlVzr+YJAkSDvbYP39/ViWdU/OdStFR7B1I5K17FBsZvnvd77zHWZmZnjiiSe6P4uiiG984xv8zu/8Dp7nrUj83hRCstDmZKWOvRsxfCqOY86fP8+1a9d44IEH2LFjR/d36xm3+9nvjPN7L1zBaW/DyNIkX3htgv/1hx/iF9+1k9dPtTjy9qeWzBRZLUIILl26xKVLlygUCgwNDaEoCtdnKnzppVNtM0SDhu0uez2FgAtzNuWWx4Clo+karutRcQJMVeG+koxqWWQyFiVLI29qeH5IGEXkMwaVeuuW75MQ0HQCEIJixmSqUmfhsuCHSfe6qcrIkkQYRsSx6CkGCCLB5TmbqhOgKRJCQEUIcmYivPUgJo6SSZFDeYOC2ft1iITgv568zKWJOd79tsMU2k2M93LBtCyLHTt2sH37dr7+9a/z4IMP0mw2e4Y3LexfuRszNmBrbm3dawubxURRtKb3YzMtUr7v+76P48eP9/zsox/9KIcPH+YXf/EXVxxBba0rvQbWOjdkvRGJ4zgcO3aMMAx5+9vfvuSNXuvW2fWyzR988wpRLBjJG0iSRBDFnJlu8n+/eI1/+HgfmiTWLSIdr69ms8kzzzzDtWvXiOOYuVqTP/vm60RtEWw6HnnLxPGD7s862H5M1QnI6woCge/7mKZOQUhUnYCCKTGS18jlTCQJNE3puvk27OS4bhD2HDeKBZM1l4oTY3sBGV3B1GR0TafuOmSjmDASuGHMaMEgoytYptZNpgdhRD5j0nTcJBJxAkoZDVkCBMiKSqXlsqvPRJblZKsrCsjqas+WmBCCGJnr8y2uzbe4MFnhA8/ej75FtpM621r5fJ7BwUH27NnTza+Uy2WuXbvGqVOnyOVyXWHZCCv0253PVooAtmpEspatrc10/83n8zz00EM9P8tmswwMDCz5+e14QwvJakfgLmQ9QjIzM8Px48cZGRnh/vvvX/bDsdaI59uXyth+xHBbRAA0RcZQZf7m3Cz/w+N9646karUar732GoVCodsgKUkSLdfn+W8cxVtUhtt02yaJhoHtJVVWkgSKIhNFMdKCOz/fT8pq5c41aa+7WdPoqdDqHldVeqqqLs/ZzDoxsojQFImGG9JwoWRAqMoISUGWI3b1WWwrGuSzRmLa2EGChpNMYrQDF1WR6OTzLVNPPLxiQSRgKKsBAitr9ST4hYCaB1fnql0fs6m6x9xXX+PggM5T942u6/pvJAs/8wvzK3CzP6FcLnP27NlufmVh/8pGRRFbMSLZakKylhyJ67pEUZR2tm8Gax2Bu5C1LPRxHHP27Flu3LjBgw8+eNuk11q3toJo+TteWZLav1vb3BDo7VLfv38/e/fu7V63IIr56muXkM3l73yCKOre7ddth4xhEEYeWUOh6YWUrJv5hbrjkzOVrstvIWNSt91lj9u1QskYTNds6j7oUtztWDdUmZoT4oaC7VnB6JBFKWfiej5Zy6DRWj5p7wXJZ0PXNBACy9BxFlRzLVxiFif4Y0nhymwFS1fQ2+aPfhQz2/CJ3BYz1QaFwVH2bhtY5TuwcXQ+A7f73C/sTxBCdPMrlUqFa9euASwZQ7xWMUhzJHdmLRFJq9UCuKumjc8///yq/+YNJyTrGYG7kNVuPdm2zbFjx4jjmCNHjtwx1Fzr1tYjYwV0RablR+SM5O2JhcD2I77v8CC6pq5JoKIo4uTJk8zNzfHEE08wMDCw4Hcx3z59g4bjU7yFkAA4QcTJizNU3JgojhnIqGwvWlyeazHf8tEUmSCKMVSZ/UM5vMYcA6aOH9zhOkjQcDxkRcUJQkpG7wJgajKOFxDrYGgyjueTz5hLKrTCSFBpz6RXFQlTkynbHpm8RRglj3X8CE2VyS3Kh3QS/KWsxbnpOgKpKyKQOC3bRLSCmIwX8mffep0n7tvJsw/tQb8He/GrvZmQJIlMJkMmk2FsbKzrWFsul3uMBRcKy2r289OtrTuzFmv7VquVbMFa1iad1cbwhhKSO/WGrIZORLKSO6mpqSlOnDjB9u3bOXTo0IruKlYakbS8kG9cmGeq5rK9ZPJd+wf4vvuH+NLJaWw/RJFl/DBmMKfz3z+zKylRXaWQtFotXnvttW5p78IyPyEEX33lDDfm6gghkoijtdTJ1w9jXr1eo+rG6FLy/Nf9mJzm88C2POVWQNMLyRkq20smpYxGxVNptFxkVb9ls2EHS9eo1x2IYxRVJwzD7kODSPRsURmaiu14xEKQzyRRiRvGXJxtUXPbfS0iEZ2CpVFpucSxQNM04liwo2gua4diaApNx0MI0PWlXw2JJGEPYGoqRy/e4NLUHO976v5Nb2JczEoiktux0LG2k1/pjCHuzDDvjJrtjCG+3ed+q21tbeQ8ko1irRHJVp/UCW8QIVnYG7KeEbgL6byhtyvJi6KIs2fPMjExwUMPPcTo6Mr3xleydXZhpskvfuEk49Wb2z47+yw++Q8e4MHtBb5ycoaaG/DYWJEffWI7ewez2La9KiHpiODY2BgHDx5c8uX69olLnLwygSRJRHFEw3bJWgZBEBJEN59nsuZS92KKhoQsJddLCEHNjfEieGB77x6uqWu4YUxWT9IkN5sNBX67x8cLYiYbHpVWhCCmL6OR0WVmag6DeQNZSoTWC2PGChqylzj/JjmOZCFt2B4ZU+PaVJOqE9CX0ZClxOu34Ub4kWDvgIUXxsjAcDGHKtFjmwKAJNH0IqIoxlQlfD+gUMgQtT9zYSwQCCxNQpaTGTCxEFSbDv/p66/x1OFdPPPAnrvSxNh72huzwCiKwsDAQDdS9X2/uw12+vRpgiDoya/kcrklIxK20sK9VSOSN+O8dngDCMlGjsBdyJ2EpNVqcezYMYBug95quFNEEseCX/urs1yvJI69qiwTRjFXyzb/61fO83s/8Rj/4NGljp8dc8U7RVKdfM74+DgPP/xw18dnIccvjfPiqXavSLuqCcB2fRRZJmfdTJA7oSCOImTpZi5EkiQQMfNNj4d2FKm3y4R1VSUMIxA37VxgYS7CZK7e5PR0k6oTYepJ4UN1LiBvqhQtlUorGWyVNXV2FFVG8wrlOVAVBXeRcWTN9ik3PfpzFsQ3h5T1ZXXmGi5yyWC00LYZETFIvbYpVTtk3g6p2V7SaW4o5A2VubqDpsjIioLnh/RndHIiQlVkgvbnMYgEjh/ytdcucn58jg+8/cG70sS42c2Iuq73jJq1bbubuO+MYFjoD7bVIpKtKCRrSba/EWaRwBYWks0YgbuQrtHfMnmMjtfU2NgYhw4dWtMH8k45kjPTDS7OtsgbKmr7+KoikzNUTk81uDRnL5kx3jku3P5D6bouR48eJYoi3v72ty/7Qbw0McfXXjnT/be0KIkfxTFNO5mPHkbJ3XwcL128YpFMOmw4HnnLwAsipM4d/wJxWvj4huPSDBKPsMG8SRxFoKpkNEHFCdhRyrF3QCWIYixNYahoUWu00NWlIgKASCIULwgoZgy8IOjan3SecyELbVMmKzYTjQDH88noCrEQiReXobCzZNJq9/LsHyqiEePbYVeAyq0gscVvNzTeqLpcm6vzA08d4vEDY5u6sK53a2s1SJJENpslm80yNjZGHMfd/MrU1BTnzp0Dki7pMAzvOF/jbrAVhWStOZI0IlkjQgjq9TqNRoOBgYENFxGg6wC8MGqIoojTp08zPT3NI488suxd/Eq5U3lxww2JYoGq9H6wVFnCDZLf3+q84dZ3pPPz8xw7dozBwUEefPDBZcVmulLnq6+cTmZ1tBfmzvjbLgIaXshsK6CU0Rnry3B5rkXTC8kaChLQ8pNmvs7dftPxyVkGAoEXtMXpFj3s09UWqpIYJ/rt66TIEoqUlPzuKN3M47Rcn4yuUl50rFgk4qYpchJBtHwMNcAy9G6BgqnJ5JbruWnbprgR+GG0oBlRQrVk6k6AUpDY3d9JcgqKWYvxZj15rV7EjYqDJEHRUhFAy4u4Om/z5VfOMj5X5Z2PHeg2MW4W92KBkWWZYrFIsVhk7969hGHIt7/9bRRF6c7X6Iwh7vSv3O1FfasJSefGOI1I7hKdKKRSqXDp0iWee+65TXuuhYt9xzZdURSOHDmy7iqJhSNxl+PAcI6MrtDyQooLSmdbfkTeVJeNRjrHhaUJ94Vd6ocPH2ZsbPk74lrL4QvfOEbL9ZCAgmVSd9ye6CEIY05M1Jmse0RCRiZmOK/z0FgfpyYqlFvJ6zJUmQPDOYZyRtv516TheCASD67pZSKSDvmMxXi1gucnDrxekHSxx4Il4pq3DOaqdRw/bHfae0zWXKYbPkEUk9EVipZKxldo+tBwbaJYkDENtuVVtFvMrs+aBqcm59rlwVYya0WIblLfX5AjypkGtaZLEEZkTJWyExDEgr5M8t5JQN5UKbcCQmQujs9xfabK9z5+gMO7RjZ8wb+bEcmdUFUVSZLYtWsXhUIBz/O622CnTp0iDMOeMcSL8yubwVbz2uqsM2vNkWx1toyQLO4N0TRt02zeO3SEZHx8nFOnTrFr1y4OHDiwIXcyd9ra6s/qfPDJHfzhi9eYb/mYqpxskUjwoafGyJvLvzXLCUkQBLz++us0m83bjvF1vIAvfOMoLTfJewig7rRnjKgKTntxOj3V5Mq8TTFrohDjhxLXKw6yJPGuQyPMtTz8IKI/q5FtlygXMlZi3Q7dpkBNVTC0zthhQbkVYAcRxayJCBwC36Mmovb7reJGSUQ2kL0prFlTp+F43VG7TcfjetXlRtVHEhGakljJ192QA8N5vCCk6SUi15/VGcqbKLLUM5ArjgWSrFC3PSxNoeX7OJ6Ppibd7b6fRINaW9A6c+eRkmtmeyGynkFXl6n80lXqtk++ZOCHIV9++TQXJ+b4vicOYhkbZ1ey1fo2FibbDcNYkl/pJO4vX77cza90EvfrMQu8FVstIul8X9cSkdzNHpK1siWEZLneEFVVN11IZFnm4sWL1Ot1Hnvsse7Eso1guaotIQQtL8LQZDRF5iffsYf+rM5/+s44s02fXf0ZfvypHcsm2Tt0tvk6x67Vahw9epRcLnfbMb5hFPHn33qd+Xprye9szycWYOkKjh8yUXUoZE1UKWmANDQFAUzXPRw/YDSvk7OSxkRILOEby5T2BlGM5IcUVI2/uzjLXMtHkhVcdx4l8ujPGpRtn1rTQVJkLF3l8PYSpbaIGpqK25lw2D627UdMVF10WaKUzeD6AaYm0/BiZhoeD4xmWbi++mHYjZDqjsts3WO6FeAFMTKCjK4gk2zjZWJBDASxTNZQKJgqqiITRkmFVsMNmbMjJMCSw2T+Sc7A9XwkSUqi0NDHVHvfgwvjs0zO1/i+Jw+xb9vgLd/b1bCVnH/h1uW/C/MrO3fuJI5j6vU65XKZyclJzp49i2maXVEplUobkl/ZakISRdGatug30x5lI7nnQrJ4BO7CwVMdK/jNoNFo4DjJQvjcc89t+F3R4qqtvzk7yx988wpX5x0MVeYHHh7hH33XXn7syR386BPb8cMYXV1ZRVon2rl+/Tpnzpxh37597Nu37zYGiIIvvXSKG7OVWx4zFoKWF5BRdWJJgThKplG10RUZJwhwg5icmUQcWdNAlrmlJXwnR/L69TJzdkgpa2A3m8SxT6hZCM3g7Qez1J0Az/fRhY9ozDPZFFimiW5Z6Lp5c2ER4AQxfhiTy2i4fhJFiFiQ0SWabkAQJddx0YnQcFxqbsyVqocqS+gKBBHMtwLyhoIqS7T8CFmCvCGxf6SIrsgokoTt+VwtO8w2fVp2CAjyUZJwn6zY9OUM/DDGdUPyhtKzVRlEyWTI2nSTo9de5MkDO/ixdzxI/g6TGO/EVoxIVvrZLZVKlEolIBnn3OlfuXjxIo7jLOlfWa0gdPIRW01I1lJx2mw204jkdtxqBG6HzrbTRn9hhBCMj49z+vRpdF1n3759mxJaLxSSvz4zy7/8s1P4UYyhKth+xJ+8fINLsy1+58cfRZal7hbQSpAkiXPnzlGr1ZZ0qS/HN45d4OrkPKam9gyiWnxMBGR0BU0WRMgsvC/0whhdkckYN88zimOCUCRWJcs5BEvJQjrT8NBlQbNRR5FlisUCAom6ExLGgrH+DNAurxYQhAFx4ON7Ljdm51AVFb2dQJeJUeRkqJeqSARhiK5piFigyDcHZy0mFnBtvokmy5QyOo7noSkyiizhhTF7R3PIUtL0aGkKIo4wTA0Jidl5n+mGl1TYxe3Z9lKyRdaf0XA8H8PQGcsb5DUJVenYziTuwzUnQFOTv/vrY1e4MlPlf3z3Y+we6bvt+3YntoqQdMrR17Jwq6rK4OAgg4NJpOZ5Xtcm/+TJk90qsI6wrKSCqROtbTUhWUvOptVq0de3vs/J3eCeCMlKbE46vR0bmTQLw5CTJ08yPz/P448/zpUrVzZ0+NRCOlGDEIL/61tX8KOYoqV1X6cXRrxyrcor16o8vWflH5RWq0UURbiuu6RLfTlePXedV85eBegOomos8r3yw5jZZogbgOP67OwzOT3ZQLJMFCK8MMYNYu4bznY7wlUlKZUNoojASTy4bDcgFjevp4REGAv8ICTyPUxdwbIy6LpGEIZEIiBadPkFglI+S8vVMDJZCv1DXJiqcnG+iedB3p4kEAqzjkJfVqeYz9OwXRpeyOFtRUy9PdxqEUEUg6wiRyGu72PoGmEUYagyLS8ijAV9mZtfh4U5n1YAuqqgKTJty0pyhkLFDihYGg8N9NF0PRRJIpcxaLnJLPmqHVBzAopt92EhBLqmc2mqxh9+5RW+77F9vP3BvWtqYtxKW1sbmfg3DINt27axbdu27lCnhfkVRVF6bFyW+/x3vtNvBiFxHIedO3duwhltLPdESDofuDsNnoK1vwGLqdfrHD16FNM0uwvw9evXNy0P08mRNL2IK/MOhqr0vFZdkXGDmNOTjRULyfT0NMePH0eWZQ4fPnxHETl/Y4bnj57r/lsADTtJrodhhB9FXCs7nJyo0/RCgiDgamuG+0fzPLCtwNWyjRdLaKrC7oEMh4aTEFtGQlXknp6OzgRCU705DwQg8l3kMMKXVbLZJOoIggDbj8lbOjmj973tVn6ReGednKwy3wowrSy269GScxhyjBlHVJoe05UWhqYyXDAoaoI4islnDOqt3giplDWJJxuEsUBXZfwgGXQlyyqqHKIpNx+7OOdje8k4Xl1XoZn8LEn+SxhG4ijciYSajoeuKiiKQmPOTpyQ28fJmAaO57dLhUNeOXuNq1Nl3vf0/QwWV7d9sZW2tjYrApAkiVwuRy6XY9euXcRx3B1DPD4+zpkzZ7Asq2cMsaqqW1JI1npD3Gw2V90MfS+4Z1tbnQ7t2/0ekihiPcN5Fjre7t27l/3793e/gBs9bnchna0tU0ss4G2/93mESM6tmLlzYjGOY86dO8eNGzd46KGHug1gt2NirspfvXhi2WvcWRjdUOLo9SoxEkVTxRE+XhhzfLzOc/f1s3cwgxcmJoyD+UxSJkxix96p/FpIxyHYMnWuztYZr7Qo6hKHdvRzbs6l3Aow1MTYMRaJdclQMdO9g8+3S3s7C/hcy2e+FVCyVISIyZsquZxBueXz8K5BNGIcz0OEPnLoMTUxjqqqWJbFQF+RZgDzdgCSjCa5lCyN8ZqHLEeYqowbxjQ9n7H+LHlTQwiBZWhJzodkNoosSZQsjesVB1OVMHQNLwjwoxhTV5FFBFLvAuH4IRIROdOgYrdLpTUVpyOwQiC31WW21uRP/vo7HHloL/fv3o6qyEtzPLdgqwjJwomkm8nCbvp9+/YRBMGS/EqhUOharm+lqG2t3l9p1dY6kSRp3ZVbQRBw8uRJKpXKsrmEjZiSeCs6IqUpMj/w0Ah/8sqNdp4hMf6ruwFFS+N7Dty+iqczCz4IAp599llyuRwXLly47XmX6y3+8wuvEy7eN1pALATnp+qEyAxkNDzPW9AL4XOj4vDIWLG7qNUdF0vX0FWF2i0s4QHmWz7Hz81QbrjESBiyxEFL4uEdRcarDnU3pGRobCuajOQ0mraHrimYukrd7k3aJ02ZyaIbR8nQKlVJ+k7m6g4PbMvRt6BUOI5jXNfFsR1OXplkvBmDqqNIEsgyRUtnMKfTcEOqTogqSwzldEbzKoosYekajhcy3wqYqnvYfjITpWRp5AyVih0Q+R5IMkKXGM6qZBc0Oza9kKm6R6M91tdQZSQpmaEStLvfHT9CVaSus3PyOgP+7785jqxf4PD+3Tywo8SjY8UlExsXshUjkrt9PpqmMTQ01K22dF2XcrnM7OwsAN/85jd7+lfuZYf4enIkqZCsk/UMn6rVahw7dgzLsjhy5AiGYWzo8e/EQpH6R9+9l4tzLb5zrYobtCMRS+PX/v79lG4TkZTLZY4ePcrg4GB3Fjzc3sfLdn0+/42jCAS6puLfIrkOJO7CUmKNstBvTJYlHH/p8VVFoeF4txy/6wUxr10rU6nbDBYs4jgiROHCbJNHjSKP7Swm+2vtRsUwap+bJNFygmSyoe12exhV+abb7kL8ICTbl1/iwCLLMplMBt2wuNxSsbIhWTX5ErdshynbQeR19g1lkdQMhtYWAimJPoIwpukLzs+0iGKBoSXbj9ddh5GCQV/GYmLeQ5UE+wczbC+atNpRRsuLOD/TwgkSW5cwFjRbAaoqY3sByAqel0Rk24tmt9veC2Iuzdm0vIisEfPqybNcmxlmtrmD9z84jHWLIoytdLe9VZLbpmmyfft28vk81WqVJ554gkqlwvz8PBcvXkRV1Z4xxMutCZvFWoUkLf+9A5s1DlcIwbVr1zh37twdy2IVRblt9/laiWLB1YrHdCtJtudMlf/jxx/l5asVzkw1KVoq33Nw6JYiIoTg8uXLXLx4kUOHDrFz586e17Cwj2QhfhDyhReOUWslZc0dg8S6vdQWHmC0L8u1yhyRLhGFIYp6s3mwaPV+NDri0bEWWTJ+V8ClyXnKdZvRvhy6rmG3bFQRIWsWE3WPsT6rJ+KQkJLcghBEIqbScKh5EU03ApEMt9JVmZYXYqrJH7phjIQgpyZCKSHhLnoPG15Iy48YLmQIwxBNS8aHZh2fluvSbDSJw3l0TcfLWFimRX+pgO0FXJhpIEkyg/kkGY+WzGGp2AE7d1hkYg1T18iYMi3Px9Q0YgRX5m2cIHEw7rxEXZHw4yTqUWUJs8/C0iW0Bett2fZpehF9WQ2jLfzzM5P8da3O/n6DR3f13/IzslUikru1tbVSOvmIfD5PPp/vya+Uy2Vu3LjB6dOnyWazXVEplUqbOuN9LTmSTrHBVp+OCFs8IlFVdVW9JEEQcOLECarVKm9729vuWDanKAque+ttmrXwt+fm+M2vXWC84hBFgj+bfoV/8fcO8fCOAs/s7eeZvcsvDB2CIOD48ePU6/VbdqkvF5HEccxfvXiSqXLt5s/aBok5y8TzA/wwYqbh4QQxw8UM/aZCwdSotAJMFVwvxCPpPN/Zf9MiJskb+D0i0HQ9VEUhYxg0HYeZ6RlqDQfLsjANPRGYdsggiQjHY2kkI4Gmqrjt/pQTEw3KdnKHr6gaqogYyOnUnICyHeBFCpofsmfAYiCr47WjrXzG7EmOi/bsET9I3IYhGd5FewbH6IiFJiUVMY7j0KpXmZ6ZRtFMKk0Jy9AIIwlTN3A8D1OVqdgBjh+RNfSk36Z9HdwgQAK8WEZXpIWXiHzGYqLSRJZ0hvNJnk+WJLKm3nVKbvkRqpzMY+kUL8iSRKVa4z99/VXy73mMfduXbn9uJSF5I1jIL8yv7N+/v2vDVKlUOH/+PK7rUigUesYQb+RrSnMk95DVRCTVapWjR4+Sz+d57rnnVpSgX+s43Ftx7EaNf/b5k7hhhKkm+/qnJxv8488c4zM/+RTbirevsupUlmUyGY4cOXLL17C4UEEIwddfO8fFidllH99yPRxf8NLVKjN1G2QV6VqV4bzOo2MFLs3ZzDZcIgHb8zr3b8szWspRtx10TSUIomXNF8MownYc6uV54liwZ2yU6ngLL4i6vRRCCNwgZjBn9EQyYRglVu5tgbpWdphr+fRltGS7DYEdKNTciIe25YmQuHz1OofGCkumGzZsl1iSmW96+GHEYMFCk2yanujmGQSClh8xYqqUMgZRHCMrMqND/dRtl0IQ0GzZxNUWFdfBVWV0XSNjWQhZQZEl8hmDWrlOr1wk22siCpEUFUWWieIYQ9ex2zcpyoIFvzOJMWcZeH6IrsiomrbE1TgWEEUhf/7t4zy4Zxvf/eh9qIrSTd5LW2hr641oIa9pGsPDwwwPDwPJTUXHH+zGjRvEcdzTv5LJZNb1GtMcySaxUVtbQgiuXLnC+fPnOXDgAHv27FnxG77ROZI/fuk6XhiRMxQkJGI5RNcVak7IF45O8P96575b/m0n3F5cWbYciwXw1XPXee389dt0tsOLl+eZrrsMFDKIKBn4NFF1MVWFI/v6qbUcJicnObyvv9sJnrVMJETXNn0xjUaT8zdmEJrF0EA/Y6UsAxWXqXriYRVGAtuPKWQVdrUjnKablAn35TPM15Ja2igWTDc8LE3uLroSEpYqqDkhqq6TI6TfhKyx9Ms4UXW5NG/jhYlH24WZFgVTJZCSrnKlPYgqb6rs7EvMGWVJopAxOTdVY7ruJR37hsJgX4H5lo+hAlFIpdag4UcM5Uxq5bnughALqDsBThCjyklCvjJvY6NSzBq0XI+GG3UNJW++GdD0Q6brHpqqMFLKMnujQiui26PT9JKqsmJbBE9emeT41RkKA6P4sp4URSgRpeXflrvOVoxIVrtoW5aFZVls374dIQTNZpNyuczc3BwXL15E07Qef7DVVpJGUbRq65fO1laaI1knd7JJ8X2f48eP02g0ePrpp7u2C6s5/kYKydnp1s3emPYNoyRJxEJwYXapxxX0Wtc//vjj3Q7f27FQSE5fneL5o+eSO9wgSvb1F1Gxfcotn4KlQ/tuzVIUokgwUXNxgghLV9BluttDEoAQuEHYM+AKAAHTc/O8dr2Gg47swaTb5PREncd395PVFabqHlEMJVPmkbEi/dmbXzzT0Kg0bHKZ5LgiTsROXiSEkgSyotBoOQwO5ZJ+jE6yvk3DDbk4ZwMwnDeJYkGoGdQcnz0DJogkr5IzVAZzOqZ2c/bLqYka1yoecZxsL801fWRZImuo+FFMhIZi6ezqU9meAY2QasvBCwUX5j1akYwiq0hKYlXfn9FohYKpqo2qJon8Xf1Wt/ItFknkNV33CGOBIkvoqsxIMUO56VK1QyQJLE1mrGRhtYXF8SMuzrewL5e5f8829u7azrVZm0stwXc5QY8ly71gK22zwfp9tiRJ6uZXdu/eTRRF3fzK9evXOXXqFNlstscf7E7CtRZxs207KYtPcyTr43blv5VKhWPHjlEoFHjuuefWZPS20UKyvWhwZb5XMIQQKJLEaGHptpZt2xw9ehRJklZlXd8RkmvTZb780ikgmdmhyjI506C5qMfDC2MiAZqiIER0c+64odNwXPwwJqPeHGwlhCCXMbvi0dmSark+YRgyPTPNpXkXG4O+jE7GMvB8n7oTc+xamfc8uI0Htgum5+aIA5/B/E0RyRg6zXZ+oFv6q8n0ZTQmai6mJne3jrxQoMmCgpXkaCRJxjK0HpuXcivAC2OG8mayxSQEicWkIBQy9w0uve5JD03MjYqNJKCU0dAUBS8IqNohsgQPjuaTcm1VZjBvdLvlIwHNRkjdDjHkEOG7IMvMuypxVufhsX6aXlL+25fVyZgadjuim2/6TFTdJErRlSQX0vKZrtk8sK0AkoTnB+QMtbs1CFB1I5peSMlUmJieodFssm/HMOcrgsvzNo+N3d158Yt5I25trQZFUbqiAckNbKd/5ezZs3ieR7FY7EYsy+VX1jqvHUi3tm7HWre2OnM3Ll68yMGDB9m9e/eaP8Qb3ZD4I0/s4O+uVLC9ZKBSLJL5Iroq84OLHH1nZmZ4/fXX2bFjx6qnMMqyzHy9xd8dvXazaopk8l/T8chnDFoL7EqKloalq7TaUwA7NNtTDUtZg8D3u3mQQtZaYqPScFxEFDE7PUUsJBwli6kLMqaO7wdISBTMpNfi+nyT3QMZ+rIG85WbomaoKl4QIkgqoaZqDkEkyBsKh7cXk6R6K0BTJGIkZElib7+ZTC6MYqI4xnZ9SvkMjXaZcCQEEqDIMsGC6FWSOoO2itiOT7wgx2PqGjfKLdx2lVUcx7hRjGnoZCPR7R8pmDpZS+/Z2guimNlWyFBfAU2+OcVT9TwqLY/zV64xkDOwLAvfE0kjZcbEdnzmWj6yBLoqoSkqfhCQNxXKdkDd8RnJGwwP5Gk6N0ugJSCMQUZ0XY0bLZtXTp5HKEZ3NsxC7nZfx1bc2trM89F1fUl+peMPdv36dYCe/IplWWuejqgoyl0tU14rWzoiWSwknudx/PhxWq0WzzzzzC3nbqzm+BuZbH/XoUE+/s59/ME3r9DyI+IYihmFf/H+wxwaSe4q4jjm/PnzXLt2jYceeoht225tGX8rbC/ka8euYOaWCXklaDgeupokfm03YLiYYVepyZnpJlF7oqAfxggE+waSPEg+kwynupUlfKvZYnp6mmKxyL6x7Zx89TqaoixZvDuLeywEthdgGRqKLHd7PqI4sXs/MV6n5d2crz6Uc3lydz9TdZdyyyNn6vRbCkM5vfu6Ov9bt10MLfnoZrUkKe76QdemRAhBECVDp7qWJbKM4wdJ97yTOADL7dyJqkhIEni+TwzoutZNrjec3uguipPhW1EYYpoaWnuoUyGXY6LSYmi4n4wUYjs2tWoNSZKwLItCPkcsElNJyzRw2+IkteOvqG0E2XBcTC2ZuOh4AYWMiYxLtGjMcRzHTJXnefXkWZ7ckaWYs2h5IccnGpydbhILODCc5eHt+U3f+nqzRyR3wrIsduzYwY4dOxBCdMcQz87Ocv78eXRdJ47j5ObC91ecX+nkR7aSSN+KLS0kqqrieckXuVwuc+zYMUql0m3nbqyGjd7akiSJjz23m7//6CivXK1y+uRx/tvvfYTtQ0kZsud5HDt2DM/zePvb376mkNULQr595jpN11teSIBKK+DMdJnpuodlGuzIqxwazWFoMpfmbPwwsRs5MJxl32CWWAiark/W0LDdRZbwAubL89SqNYZHhsnlcrRcj+39GS7P2kn3dvsP3CBGU2RKVmdqoITtBciyRMbQqbUc/DDm1EQDN4iSngspcfKdbnjkyy0Oj2R5fHcflYa97OIURoJy06PptVBlmd1DeaYaPrNNP7HhJ2nyK2ZURtojgP0wAhHRn7eYqrUQMeQMhWI7gipaSWd7GAkaTsjOPpORUo5Ko0UnDPDDxL4eIKNJ2EEyV4YoImOZzNdaGKpMwdKxdIt8IZ+MjG45VBsOtZkyzVZAEwMCF93Q0TSNMEpsWDILGg/LLS/prI9kfK9O3lSTAV5OSE5PNu5qboSpQOi5/IevvczbH9zHpYbMhTmbvKEiAS9cKHO94vL3Hx7uDiDbDLZaRLLWUtuNQGqXmBcKBfbs2UMURVSrVU6dOsX8/Dzj4+PkcrmeMcS32vJ6o1jIwxtgaysMQy5cuMDly5eXbc5bD+sRkjgWPH9+jq+dnsUNIt6+r58PPDyKpSsM5gz+3oMjGDOnyGjJuVYqFY4ePUp/fz9PPPHEmpqfoijmi996nZmqTdZMFuHFVaBVO+Ab5+doeiEZy6DatCk3FcpOxDv2lTgwnCOMBJoidf2eAExNxQkiQOru68dRzNT0FL4foBSGOD0X4E/NM5gz2F4wmao41D2BLEKitnfY3sFsV0hoO94amkqt6ZDPmpyfrNL0Q0qWhtTewFFlGVOVmaq5PL67j2rTIWeZuAsaHhMnYTg+0WC+FSQjeTWVy3Mt7t9eZCBnMFF1iIVgW9FiR9HsJtYBkBW+dWGWqptskWU1meG8ThQnlWECkCUYzuscGi1QbdqYukYQCc5NN5hueASRIAp8spqMJkuUWwFZU6NWaSJJMnsHM90EuRBwtewyVffxAlBki3yxQNhyaAQxktdK8i6yymjBwFJEtzDg7HQLJxSokkBRVKYaPhlVJqspXc+2vK6QM+S2l5vCn37zBDOeynOP3EfeSgR0IKdzed7m3EyLx3duXh7lzZZs30gURWFgYABN0zh48CC5XK5bZnzmzBl836dUKvXkVzrXcrMrtj75yU/y+c9/vmt+eeTIEX7jN36DQ4cOrfpYWzoiieOYSqVCs9nkmWeeoVAobOjx1yokcSz4/37xNH/++lQ3wfvV07P8p++M83/9D49TaC+knRzM5cuXuXDhAgcPHmTXrl1r+tIJIfjKK6e5Ol1GkiWajk+pX0WWEpPADuemmzS9iMFChigKMUyNMIoZr9hUvSJ9ppTcSS9AU2Ti9kyJIAyJY4GuSFy4egNVU2lpJc6PJ9tisiwx0wrJVxwe3J5nrulTdWM0WbCtYLBzQfe6hETGUJOkvZT0e8iykvy3SARlWUJWVWpNF02VaXUaHk29m6yecyWqIuk1MY3Eir7hwtmpOs/u7efwtgKNlou0aCaJLCt852qZ2WaSI1IkiboX03BbPLS9QCwEfhRjqQqDBQMJQQi4QciFWZuJeoCKIKvL1HwoOzG7h1R0TaHhRBQMlZG8znBeS7bD2hHF1bKNqSr0ZTWEkKg5IRlDZ1u/Tt0J0VQFLXLIyiGTkxMoskIt1qi6CkMFs30ZBbqp0gphZ17vRhax79Bs+Biaiu0FtPyYaq3OK6+f5oH7djMy0Nce4CUzXnU3VUje6ltbK6ETJem6zsjICCMjIwghuvmVSqXCtWvXACiVSjz//PPdkuTNurZ/+7d/y8c//nGeeuopwjDkX/yLf8F73/veblXaarinQiJJNyuFFjM3N8elS5e6FU2bYV/Qaexb7QfvW5fK/PnrU8jSzbneUSw4O93k0y9e4+e+dz+QvL5O1+xTTz216vLkhXz7xCVOXZnsHlcIgReESEDBMrvOvNMND1NXieOb4qIqMkJEjM832XXfII4fdu/0ZUlGkRV8v+NMm4TUMzMzDA8OoGYKfOf0dDv5rGLoOp7vU24FTNe9xD+LJNltGVpPmXDW1JlqNlj4qi1NQpUEIQoKnXMUeBGULKl7PSFpeAzDqF0m7FL1QbckdO3mDUDOUCnbAXNND0OVyGd6rVsUWWam6THfCrrNjgA6UPdk5u2AA0NJn7qMhCbL3aowN4iZrrtoskTRMoniGEuVEcTU3Ih37Cgl57GwHNn2MA2NmWYDVZa7xQ26ppJvj+vdP6ixbyADEmSMPvwwJAgiXM9larxGHPrMz7dQVRVd09B0Hd+PQbEoWlpSVBEk1WeinY9S5aTpMghCjp2+yPaRAQ7v3UUYi26U1GGy5nKt4hDFgpG8we6BDOotBoKthK22tbVVhWTxFpYkSWQyGTKZDGNjY8RxTKPR4OrVq3zuc5/jxIkT6LrOT/3UT/Ge97yHd73rXStqD1gpX/rSl3r+/Yd/+IcMDw/zne98h+/+7u9e1bG21tXmpmX6a6+9xvbt2zEMY9M8cDpv7GoT7n99JukgX7joKXLypf4vJ2eAZJSv67pEUcSRI0fWJSKvXxznxVOXu/9eKMCCxJk3Y+joioKpKYRR3Lvl1f6Hqkg0XR8JyJoGCLAMtW3zkSwk5XKZmdkZRkZHyBWLTNZsImQsTcHQdfwgQJIkTE1msuYSt5PAURzTtJOObaWdE7G9gCgW3Kg4vH6jxonxOrYfsbMvqQpr+EnDYsUJsVSJPQPWkiR/x9tLVRQkSUbuzKzvVCa1/+vkopuul8wJN5OEpqEp1G0fIXo7zCVAJqZmh+RMPbGQN/We0mI3SBo3DUXGD0OEEGiaiiYBkkxtkW1Mh6bj4wUxOStJsnYGeamy1B4GFvfMOhHtmfKGYTA80I9hWvS3hzZFcUyjXqfRaDI7M0u90eg6SCPLTFQd5tqRlq7ItPwQgWBiep6vvfQ6jt1i78DNeRYvX63yH1+d5Ktn5vibc/N89rVJvnRyppv/WQtpRHJnVtJHIssyxWKRRx55hG984xv82q/9GocPH6ZQKPCJT3yCkZERLl68uGnnWKsl9kqdMufVsKW2tjqW6b7v8+yzz+L7PnNzc5v2fAuHZ61GrIJoYTFpL34YMz4+zqlTp9A0jb17965rnsrlyTleeP18z8+Wi+Rsz0dTFA5vK/KNs9P4YdLsJoSg6SWTAHeUkj6VMI4JbJf+QpZqK2nmi+LkDt92bMbGxhacc2LoaOSyPc2OgiQP3bOAtBd9y0gmQYax4Gw5wp6vtjs74PK8zb7BDI/sKDBecfAjwe6hHAOmvKyJpRfEeFESCWSVCE9SkqFU8k0TR02RerrHwygiCMLk9TXtdkOgWNzLSBAJDDXZJuzLZ6i3ekuedTXJhfhRjCm3J0IGIYqWNHbqyvKLpypLWJpE1fbY1pfDbUd7fhSjyBLmIkdfN4got3z6ciZ5I0oqyCKBaRgYhkHDDekzI/pzCrV6nemZGQJZ52o1RtYqKKpKRlfIGUoizO258roi05i5wcRkhl19e5lrhXz7UgVNljg4lGxdOH7EsfE6Y30Wj42tbes4jUhuT2fXY7V9JEEQsGfPHn7zN38TSAbbdUqON5o4jvmn//Sf8txzz/HQQw+t+u+3zNbW7Owsr7/+OkNDQ13L9Gq1umk2753nlyRp1c9xZF8/f35skqjdnQx075AfGZQ4c+YMjz32GJcvX15XefFUuc5ffPsEYRT1uPhKtLc0YsGlOZur8zZ+FLNrIMdYUefw9hIXp+vdxKypyjy2s0hhwWJbzFpUmnbiOOt53fr30ZHRHuEbyulkDJ1K0yFnJFstjuvhBTF7BnIsvhFVZJkoEjihR8WDeSdmuKSitqM3x4+4PGfz7L5+ntpTImNo2F5A1jR6kutBJDg/02SylnSBG6qMoaogxdQ9CU0Bv116vKc/Q8FYKCSChi84dW4aQ1cpWRoZXaFqBxRMFbltlihLMFowyGUMqg0HTVVAwHjFJoyT/pbBnM54NREYXZEJkWnaHg/uzNGXM7s9JlU7mWHS9BJblIyuYocwVW2SNTSQJOpuyGjeIN/xChMw0d5mipEJwxp9WYOx/iyTVZuyHSAJMHWZPUMFhtqNnX4EL5yeAAlMOcR3HWquQkvTODSSQ1WTJsycqTJSzPLK2etcniwzsm0HDTfk4PDN/W9LVzBVmXPTzTULSRqR3J6FI8VXw+Jk+8jIyIae10I+/vGPc+LECb75zW+u6e/veUSysK/igQceYMeOHd3f3ckiZb1IkrSmpsT33D/MZ18d59VrtWSbok1Bh3dtFxx5e9Klfu3atTULSbXp8J9fONZdLBe6+CZbOzEvXq5waa7V3nLR+c7VeS5YGt97cJA9/RZVJySKwmT+xQKjw5xlUG9bws/NV5idnWVs2wjXJ6aIhOBa2aFmB2iqxO6BHIdHsxy/UWOu5SPho6gqQwWD+4Z6E3KSRDv5myyu18o2mipjaFo34rF0BbsVMddw2dnfT7M9zKqTXM8aSQPgqckG1ysuli6T0RQiWWG8GnH/DhVTV6nYIblSjqLedg1or2N+GHNmxmG8Ynd7V1QZxgZy1FoudTckFmBqMvcNZdk5kE0mIkowUXU4O9PEj2XCIEBVJIZyBtuLJvMtHz9OhmttL6iMlQxajk8+Y3BptsGZySZelERHNSfA0FWGMhq2LHC8EFmGQ9uKDGeVrvjONn3Oz7bQVRVLkwhlldlGYjz51N5Byg0bkChYKkbbZsXSNa5M1IklmYwmyOcLaKpMs2Uz1/C4MT3PaCbpXTHMPNVGC0VVmK+3OHH9OLaa576hPT12NHI7elwradXW7emsL2vpbL8b5b//+B//Y/7iL/6Cb3zjG4yNja3pGPdUSBzH4bXXXiMMw2X7KjoWKZv5QV1LU6Kuyvzuhx7jT16+wV+emKbleuzLePz44yO844kHux/itboLO17AF75xdMk425brJQlcU+PqbMyVso2hKmQtgzAIMBWNmhNydrrJU3v6GMioFLJmtwscwDJ0Wo6HQDA/O0+j0WB0dBQ9k0FWVV68WmeuGdDJQJyfdXhke47n9ifNgn4oKGU09gxkyZo6drvPJ2lmNHuS7bGg3ZEeoesanucnEZUAy1zk38XN5HosK8w0fHKGgqHKaKpGEAYoMsw0fb7rvgL7h5LPQ9bU8fyQsH2dZ5oh4xWbUrs3BJIoaLzc4u37BohigR+G5A2VnJXMHBEkW2hnZ5q4QUzRktEyFl4QMVlzuX80x/6hPoJYUK8EGJrcPXat5XK96iFkiX6zXa0nSTS8iIrj88TOYtL0KEtoqtxuFJVw/IDJuockyeTN5HOuKxKljErNCSk3HHb0ZZFlcNtVeaoiE0QRXpREU5LU7nwPY3LZLL6kU8ooDBdVQt9ndq6C47nouo5lWciSztTUFN/yHZ68fx8ZyySME1fkfYM38yhBlFj6H59o0PRC9g5keGyscEv36q22cG+184miqHvTuhqazeaGJtcXI4Tg537u5/jCF77A888/z969e9d8rHsqJKdPnyaXy3H//fcvq9YLk+FrsWBeCWstAbZ0hY8e2cU7hjyuXr3Kgw8+yPbt23ses5ZoJ4wi/uybxyg3ljd5DOMYxw9pRgpRHFHKGQSBj9S2FNEUiRtVl6eg2wVuahogiEmGX4VhxNTUFFEcMbZzrNvcebkWMe35DBYziDBAVVUqLY/Xx+u8+/AQD25fuPUhsF2PfNak6bjkLYuG05tjGM5pzNST6iDfD9C1ZBtLNzSsW72dEszVbEIBJUNDcHOSoiaDHwq8MEZtfx46HmMdQZmsuWiK1F3oAUxNwbZ9ZuoO+4eyZE2Lpu2hSBJu20NrvuVj++0mSSTCsD0nxNSZrLscGi1i+z6u2ntDYwcRddvH0pVuRZuiKphRTNONcIK4J3/jhyG0k+uOX8HSe/3klLY9gB/F3Wg0byXXWFMVHC/x4opFr7G/H4QEQchwMY9lKuj5HJlcnqmay1TVxmt66DQgEFy8bnNjZp59e3ZR7Otn/1COB7fdnHP+N2fnePFKtb2dKPPSlSoXZlv88GPb2FFaKiZpRHJ71rp+2ba9qRHJxz/+cf74j/+YP/uzPyOfzzM1NQVAsVhcse9fh3sqJI899thtf78wGX4vhcTxI/72/BzzLZ+HdxR4eHsB3/d5/fXXcV2XZ599dlmHztVGO0IIvvads0zO1W77OFlKtl5kRSeKo575GEl1Uu/j3SBAU2Qyps70XJWp6SlM02Tb8LbuFy6KBXMO6BqIMMAwDIIwJGeo1JyA6YbHngXVP0C3N6SYtXD9ZPDTRM3FC2KyhsJwXqeoJ1s9Sd9Isi22fyjLYE5HiOWvjaEpyAgcPyRn6Xjt9yeMJSxF6rrpdgjjmNDxKOasHu+x7mkuuB6xENRtl1Iuk2xptYnipCFw8bWMwgDJsgg6Y4EXZexlSUKWkuN6vo9lGPhhsn0mSUmTY8+5RgI3jPBCm8FChvGKjW7e/GxHceKpZS54jfP1Fs1IZmqySixiCqZKRpOpOxGqmVwbx48STzVFUMiaNB2f87M2EzU3iV5kAzvWKOZkhjVBuely+dwZ9g0X2D18H05dw1T6mHciXp9oMJTTu9YqQzmdC7M237lWZUdpdMn13YpCslnrxVpYa6f9Zo/Z/d3f/V0Avud7vqfn55/61Kf4yEc+sqpj3VMhudMiLstyUv0ThuuqfFrPObxytcrP/8fXqdo+SMky89SuPP/tWJNtQ/08/vjjt6z4Wu3W1t8ePc/JyxMYWuLftHjYUQdJkhjJKoy7MS0nJp9NtraiWBDFgt2LFnxJAlVVuD45Q6NaYbCvj1yh2LMgCgGiHdXouo7v+8iyjKap4ATdMt/FZAydesthtulzbKJJpXFzrG9el9iZl8j0FZhr+GiqzLaiyVBOT7bcWkknOgIqdsB8K8mt9Gc1BnM6082QWCRVYI4fEsSwvaCjLVJKEQsypkGt6bK9ZHJ62u4phOhat7SrwgoZk1rLQZFlQMH2fXJGsuXkRzF6t6xbEEkqWTUpbMhnDOaEIIhgvOoSREmTYsHSmGv4ZPsMnPZ2pBtJ5A2FXLsIQAi4UXW4XkmE1jQ0NClOmtIiCUVExEDLC+nP6N1zDcKYi2Wf8Uor8QdTVKbqTfKqxFBGJvEigLGSyY6SyWAxS63lULVD5u2IrJ50vkPi51W1A0aLOZ7ZMUDW1Jkr1/jb1y8zPTNLv6UwE2WYmlN5YHsRIdRuQUpfRuNq2SGI4p6y95mGx9WqR3brrNtbLiJZ643wZluk3KqHby3c82T77ZAkacP9sBZzu8W+6YV8/E+O0fTCnuqsl67WGLJK/K/vfnRVA6hux3fOXeM755LO1m6jYcZMkuILiGOBpspklJgHt5U4MVFnvu4gywqImJGCweGR3ujI0nWuXh+n2WwyOjpKLpdd0jyoKhJFA2qxjO/73bnwthtgmToD2aUOpLqWuPmGseDY9RpVJzGIFHFMEMXMN11EEPO++7LcN5hD19WuODZtD0WW0VWJV69VuTJvE0QdyxTYP1pgFJhr+dgNF11V2FVU2NO3YGtFwHjNZaoZUW3OY+kK2woGfaZM3U+iiY71ye7+DH2WRs40aNgeZTvgwmyLmpNsueW0pIR4vpVEb4oMgZAxFcFYn0kkBA3bwxUyZ2Y9QjpzyqFoJsOsZqp299TyhsojO/vQVIkwipmouZydTsQgn9Fx/YC6F1EwVVQiAmQQgm1Fk70Dme7nreLGjJdblDLaTVNKw2K22mRfQWbvjmL3/cuYetdws+YEuL7Ptr4sYdutQJEkVEVmvuVzeHuRpu1hZSzA4roNRmmAAStDNDXP9fEJZCCTschkszihQn/O7J5D0wv5yulZzs60mJ5rYqoSc+oM33dosFsYcK94swjJZm9tbST3vPz3Tmy2kNzu+F87PUPDC1Ha/RJxHLcrgST++mITP4wxtFt/QGRZvtkxfhvOXZ/mb4/29ooIkvxGxtAJwogzU3VOTzZotctLB9SIt9+fZyRvcKPqEEaC4bzBoe1FXO/mc1qayrmLlxBCsHPnTlRNTZrcbJdmABen64SxYDCrs7ekcaYaU7ZjdFXqOs4eHNAZLiaWHZ2GPUWWQSSNiOWWT90NKbSTxkgSpqGR8XxqHth+yHAxQ3PRpMUgirhedrlW89EUmbyZfPlDFC5MNXhqd5EDw1n8MMbSFWYnmhQyBrGUjLO9UrY5N+cSBCGGKlN1Aqp2wIHhLNuKMk0/mSbYn1EZyunJ7HnXp+GFHBuv4/oRWUNFiIiZFhQtlf2DGeZaiQCNWBrbS0Z3XG8YCc7MuHixxLZ+izBMRLTqRezN6owV87hB0rMzkNPRZIEQEpahc6NSRZEkiu1Iw9KSeSRuEHP/aAFNkdFUmf6s2Z0no6kKU7UG6qKcjyRiYiEI0bpzSwxVxfOCm/Y0nSo2P0isObTEtr7jfdapVIsFTNc9pusef3elynAhQ35wBC3Tz3BGwnUcZss1xmseQ9s1Lpz36O/v5/mrHq+NNxgtmih5hVYA37pYRlNk3nN48xLEK+HNIiRvlOmIsMUjEtj8EuDbCclMw+9Wx3QiC1mWEXGS8G160W2FZCU5kvHZKv/l707eMsy0PZ/TU02+c71BGPiYhk655TEbCfKTDR7eUWC4cDNa8PwgmX/hBsgi5NS582QyGYaHhm96UAk4Pl5v28pLSLLEhVmHvBzyxFgfc65gtuljagq7+y129We6UVKS+HV6ynyjuNOU1jl+0rin6zqO65GxzCUi0mG64eP5AcPtwVSyLEMQEInEEfiRHQsS/BLJTBXLRFM1rlV8RJzMFAHIoNBwQ25UXN6xvw9NTTrhM6aO4/ntRlLBRM3D9iMGshqdlVdXBOWWx31DOQ6O5FAWWeQDlO0AOxQUjGS71dB1JN8no6tM1z3uG8r0LPjJtYmpNB0iScbQktcXthP8hirT9JLu+VKmPWbX8chlDFwvQJHkzuVcghACPwjImQaOH+BHMVfmbKYbHgLItgdn2UFERgMvjpEVFUHIQFbrJuovzba4WnGQJQlVlrg4U0eZbTC2bRh/aBhZMdCLFu+7z+KZbSqtepWXT5zj+Ys+xaxBpGWJo4iCoYGpc3y8zpG9pU11G74TW01I1nI+nTG7b4TpiPAGEJLbTUncCG4nJIdGc8SxIEYkMzXat3lCJHf/y3ViL+ROW1vleouvvXKaMLr1Y/ww5vh4DRFG9OczhGGIaqg0nIhTkw0ODueWmDA2bY/Qc5iemaa/rz+Z27JgfZtr+pydbibbLIaCLEvEksJM2WHODnh8z/J3lEmU5NCfz/Zsi5UyGqam0PKibrOdEIKG45EzFExFwr3FSwzjZDBVGEWoys2/ldq/W+4kwiim4QZ4kcBaVEVl6QpNL6TpR/SpiRml7fhkMzqOl2yrNdyw7S214C5fSmaSzNZt7hsexPOXfiZuJuQTXM/DNAx8LyCIkjzKYiGBxEpHRCHIas9z+lGMKtOzFRREMafHq3ixjCqDrkhEbVuVTm7CCaLue9dwXLKmwStXq9wot9DaVvpVuz2fJYhx/I6vWsDuwTw7ShZ+GNJ0QyZqHpamYLVviLK6oGwHuM0qhZLCw3v2cHB7Hzv7rOR420bQB22+VbvCgB7hug4tO+nZ0cwAF51ywyFr3FwA627IfMsnoylda//NZKsJyXoiknRrawVsha2tW5XoxnFMnzvFjixM2Mm0Q0mIZCKfJPHT37V32UVjJccGaDken//G0cRePWNge/6S4UUAVSdIfJsyJmEYIEsysqKgSckI3bLt99T3i1hQq5ap1hqJy+hgX08fCcBkPUkU54x2MlWWIQxRFYWpxvIJ/g6FrMV8vcV006fuxvhBwEjB4MBIlpMTDcqtZJvKj2IsXWNUDXD9YEk/C0DgB/RZCjeqINpNlnEQoygqkhQxkOktsOhUVEmApavEUYhQVFRF6dq3RO1cgLZgyJVl6TRsr1smnNFlZhqLr7VACOjLW9RtDwkpGfLVHgsMUDBVNCWxL7EAw0hGDDedgJ0DObQFghDFgrmmjxfGWJrC/uECr9+oEEcKhWzSzNhwQ0byN7fOvCDm9fE6NV8QhSGxEFiGjq7KNNywe+1UWWJbTiFvSBQyFuena9yotBguZYnC5P3LxoKKHTBaMrF0BSFgpJjBUAR+EJLPGEzWPPwoJm/evM6SJGGqMm4IUuhx5tx5SuoedvXtoiOCJUujmDFAkdjW38fU5CSyLFPxIA6anHztZSaLOYqlPk7XVc7MJ6OCDU3hwFCW9z84tKnDtt4sQrLZVVsbyZaPSO7F1pbjOBw9ehQhBJ/66FP867+5yl+fmSUW0J/V+dnv3suHntpxiyP2Hnu5iMQPQr7wwjFqLadnoqGuyThe7xaQpsgoqornJ4ObYhEnFVRK0iGtL3TLDULmZqYREoztHENV1W4fiSBxC4abWyVJR7xGELTFQ8SEUdytalos9DnLoNKweflKlRvVpD9EUVXOTbc4MJzhqd0lrlUcWl7ErnyW0ayCU7EX9LOoBJHgylyTmUoN32mRVwUWGnP1xLtKlmWCKGC4YHDfaOHmubWJRUy23cw4mNWZqLlIGQ3LSLbRmm7ItqLRrZYqZJL+ljgWNPwAJwjZP1xgouZRd5OeDCGSKKWYNSi01zeBoN5yKbsx42WHMI4YzOoMZhSmmhGtQND0bLxQYGkyozkVS9e6OaPj43WqTmKgqGkaBU1irGQy1wyYrTnomsqugQx7+61uPuN6xaHqxuQNCUVPTqTlR8SSzIM7irRcH1mSkkjYbSYCY7vUneR9jcIARVGSaI4IRZbwwpjDozlyltF1EYDkM2fqiQjHQvR0uquaRhSFXXPMb5+8zIkrM2wfGyOWFEoZnf1DGV69XieKBW4o8JFRrQzve2IvT+1MZm48f3qKr5yvYSkxg3kLIUxeuuwSRDE/8fSOnufcKNbi5r3ZrEVI4jhOI5KN5G4k2xcuVh3Pr9HRUQ4fPoyiKPzWBx+hagfU3YDRgrmkj+FWLLe1Fccxf/niCaYr9Z6f+2EIYZKDaNg3R92O9WUZsMpM1oLueFghBK4fMTaYYVspgx+GOI7DzPQUxXyBYl9/z0yOjrtvPmNSbzkM5XUUWSKW1e5rj4UgjGEkl4hP3jJ67OYz7Y74q2WH6xWHrKF0t1q8SHBp3mW0aPL2ff0osowiJ7YdNyo37/znGi4vXakw1/TwPQ9d18mbKg/tsJgoN5hu+AgJduR09vUpuI5LKZ+l5XoEUcy0AxNTLv51m+G8zp4BCz+K2zPPkwbKoYLJ/aM5kCBrGdRthxsVl8vzDnYQockSY30mD2wvcGXeoWb7SBL0ZQ32Ddy0koljwfGJBjeqLrIkoagKk7UGOSXm4KBJM5ZxfMFwXmOsZFLKaDh+AJLEpbKXmDBmdHRNwQ8j5lo+pmby9O4iTpBYqeRMtTu/BGDWDlFl0c2NAGR0hXIrIAxDHt89kBhLStCMZHw/IiuBknhSAjftOHRdI275qIqEqWm02k7Fjh8x10pKxQ1VxlCSUmVTScREkmUaTZcDw5muwFXsgG9dvIHznWuMbttGsVRiW9HksR15rldd6p6gPy/zvQ8M8fSeZA5K/+AQ08Jmz5jFoCVj2w6OYyPZDt86UWVMrvLg7mH6+vo2ZNpph4W5zK3CWvpaWq2kITnNkayAlWxt3Y0cieu6CCG4cOECV65cWeL5BUke4E45kcUs3toSQvDX3znLpYlbOxo3HBfL1IgigSKD4wc8u7ef58/NUXVuCl5GFTyzu0gQhoSuzeTEJGPbt6GbmWWtzaM4ZrbWopg12dGncGA05OxkNTlPKanQKhgyu0vJNkez2zFuJLYcQbK1Ml51kKReC31Dkai4ATVPMJqXbibiO2ZXJP977EaViXKTvC4xNNRHFEfUXcG5eZ/vPrAdCYHneTi2g92qU6vMMW0Y5HNZzlfhSktBcx00RWG+5TOV0Xjb7iK2l3SQW5rMcMEgbxkEYYTt+NyouLw+0UACDE0mjARnp1vs7o95ameeEIUgiigYyoKTTXywxqsuOSOxZxeAYlpMztcZyQue3LX8oKi6HTBdbTGQt+jcbyiSRE5XmGv6HBzO0pe9+Tlq2B4ZM4lkJJZPrCPdrOKzTA0RC+qxoBlEGF5Ef0bnmuLS8iKyRrJg1Vsumqoy1pclipMig+m6x5npJk6QPJcsQbY9u6YRycRxhIRgtGB0naJjARdmbZwgomRpeLVZfOFxLeynP6vz08/t4uWjNXaO9LF/z037cSdIilFyhoqua+i6QalUYlTEnByv4sYSly9f5uTJk8liaRVxlCz5bJZ9Q9nudt9q2YpCEkXRqsWyIyTp1tYGcbcikldeeQXHcW7Zpb7WYy+MSF4+c5XTV6fu+HdNx8cNBBlLgyimmNH4/odHuV6xabkRliYT1aYoGApT09PYLZv7D+wnkpQeq3dIFqZzM03OTjW7pakPjpV4Zk+JkiFxvTPgqGCSjRo9HdVhHIMfkLX0bj9LFN/qBkDQtF3y2RKul2y1SEh0jDzm6y1uzNXJ6Cq5rEUcR2iKSt6IqDk+FTtgIKthmiamadJHH1EY4TgON8pNLs0FmDJoUpJ0zujJvPUbFZfDo73hv+MHmLqKG0Zcnnfaw7+Sj7qhJjmGyZrH3oEMxYxCNm8RhCFecPPaVexknG9n61AC4ihEURWqt6ocICkQiOLksbKqAxJR2z7ej+KlBQQCai2PYs5kR8ni+I0qWV3ubvs4foSuyN3xxbbr40YSJ2cD5pseZrVCX0ZjpKAz0/CZbyYCrskyO0o6I4X/P3t/GizZed53gr+zL7nn3bfagQIKOwkSBCRKlEiJlOW2NXZPezrabrc6RhMdDsWMQ9FfHI7wF320w+EIj9tyj9vh6XHPDL20NG7bWixKFPcNBFBAAVWoverW3XPPsy/vfHhPnptZ91YBKAImOMMnooCoW3lPnjx5zvu8z/P8FwtDUxkOYt7d80gyQduVNs1JJhiGKWfmHEnI1DXqtompZGgFrHgcpozCRPrAF1/7cDQiH/u8kcb8+acXaVpHpfFdU6Ph6ByMY+r24SLqxTnNqsMz5zdYbzqEYcj/9todvnm5S8+Txm2LNYsvXZjnlfOrH1iq4+OaSGz7eJ2yB4Xv+xiGgWV99OCEDyN+IhLJRzkjCcOQTqfDwsLCh+7EON3aevvWNl+/eA1NVanaVskVuD+u73u8fneAl+QoQrDaqvCpkw3qtsaZebk7Ebng+gjubd1DVVUunH+MIJFtkYptzYg9vr095PW7AxRFwdQVwkzw3RsdBl7E555Y4txCzMRdZWfbY1rBSUGSDgdeiGXopez63iic6asnmUBRFU4u1Bl4oWyjOTadOAYBw+GQ7Z0DNN3AdUy50OmS15BnOaquc5xaiqZrVGtV9EDFMEaoWYiuW2RpShAG5LnK3YMRp5vFA6dIl0Nd1RgHMXEmiAVHUG2WruLFCV6UstJyGQfRTOtvguCarlCEEFiWSZZ6ZLlO3b0PPCAgB4lSM1RSRSdJ5IzEMk0GQx/X0ErHRATsjGSrMMoVVNFnqWax3HLZH4Qoihz+a6rC6TmX2gROq+p89+oeQy+m5hgYusbuMJItwtUaQSxFKBuOwXq7wiiICIEgUwiSnKZzmBAMTcHUFPbHMZ842S4g2oKKbRMWbc2Jple5dxBSJcELY27dvsOfvGpx0pFcla4X89rdAXd6IXVbZ7lhsTUI2R6EResvk+91osFaARC51k14bS9nYb7NEycMwiji1v6Yf3txl+HOHVaaDu12m3a7TavVes8W0UTS/uOWSD5oa2s8HlOpVD5W0jMPi5+I1lYUHb/o/ighhODOnTvcvn0b27Z5/vnnGYUp/9urd7lx4LHWdPiLz60wV310aZZJIrm90+WPvv8OUDgJBhE1V3pZ5FMr6GYv4JvXu+SomJLvx+2DEQM/4n//4gZZofcUhAEgUUNnTm6U/e+J5lTNtfGCiDDNuLI7RlMVKgVCC0XBCxNuHHg82fdpVS0URZXmS8qhbIIQgqprsz/wudcPidKMum3w5FqLzV5A14/RJlbFAs4s1miYBVIKUcJSVRU6Bx1OrS2xfdeTJk0Vvayc5LwA2gVh8H6wgaIoaLrk7ijIjYVlmVS1Gju9EQo5O7uyyrNtm4V2kyTT0TRN2n/meQG7PbzOaQHTbVad0k9EIBj58pyTVLaLNDUgTHNsXcWyrEI1GdqOVoIH4kzw7u6IzV5AmgvaFYPVVoUbe0MCRXqm930fXVc5v1IvkX5bw5A3741QNB1dpCS54N3A42Tb4em1GqMoR+QZC1WT+YpMvhXb5LXbXfw4o2YpKCLHMlSWLZedgc84yqTLJJQM/kmbU24uFExDn+HHyPmPwSiIy2RxMAzoeAkpCuQ5tq4xjjIajo5lGURxwjiWra6t/S6Xu/u8ori8MfS52wuxdYnas3SVM3MOQZJzMI6xdJWfPdviF8/Pl8/+xXsFIbZ4zhzH5okNi6t7Ps3TC5xtS9fOd999lyiKaDQazM3N0W63qVarR9aQj9ugHR5tRjJJJD8p8RNRkXzYra00TXnrrbfo9XqcPXuW/f193t3z+G/++av0gwRNkdj9/+tXb/A//tXnefFk65HeR1VVuiOft751cVZMUJGzEFOXC96E33Bpa0iOiqtTbAElo3kQxLx9r8+Lp+fY3N6l0+kCsL68jB/eZ/daHNsydIZxLnWdDBUUUBTZB7d1lXGU0g8SXEsriYa7k2Y8EuZ7bWfAd2528aJscmjmd0a8cm6BzZ7PvZ6PqiicXqix1jDLdghI+fhbm9ukOZw9fRJVVTm/pPLa3QE9P0FXIM4yFOCJBRdVEQSh9PcYBxGZgCBKaVRtWraGqauEIdhC7tSDKMa0LB5bqXKyZRNFEUqesrPXYRxGaLpJo+qwVNG40YtQHQNb14iSlEGYstpysdScycXzo4w7PWlbaxkaJ+crnGjZ3OmFhClkvocKLLgai4WwVBCnvL45ZHuUQp6hayrbwwTLSzg15zIIUoIkY65qsNFyWHD1suq5eRCgKCp1U0EIDQfJD9kZRpyZc1mra1RdCz+QFaNp6ARRwjiSHJIJFDrPBXmeYJoGQdGam5lRFVG3DTRFcnsaFZskSclyQZIrLJqHFUfPS0r5eABdN0CkqMAwyhGBNP1yDI3Tcw6qAn6U8C++9g6x1eSlC6cxC22v3WHE9jDm//QzG6iqgmNoR2C/oyg9IqmiFPr4cQ4LCwssLCyQZDnfvb7P127s0722Q1u7xeNNhZPLMqnMzc1hmubHMpE8imjjRB7lpxXJ+4zjbGOn48NubY3HY1577TUsy+KVV16RbZftbf77f/0Wg1C+z2TJD5KMv/kv3+RPf+tnZ4bL7zeCOOVbV7ZZ2Th57L/HaYoyQWoFIcNYQSWHKdTOhC0+CGKu3rxNnsScPnWCu5t3CZME7QGtuChJQWSFX3hStGXk50tzyUKfPMACmXxsU0dRJX+iO/T5/q0eXrETVYqB/N4o4s3NHq+cneOTp9pEsfQyT6cSZRzH3Li7zaansO/BW6MdVttVHltw+bnHF3hna8AgSGg6FidaNhutog+uyOHzzjjh8s4YPxWIrMtqw+L0nMvb90L6YYqq5qiKwmrD5mTboWKbVB2Lg5HPXp6xFchdt9H3mTcz6sBwlNBTVFzbYrlhc2HJLa/tOEr5/i15ToaukvkJ24OA8ysNPnOmzd4wJMsFLddAi0al93vXi9kehDiGhltxECJH5IL9cUSQZLx0qnnYApzAbv2QHI0wFTimOnPv24ZGz08YRSmupTEuYOG6Ko2nciFwTI00FxiqQJ0mN8YJrungWqb0dclytgYRu6OINBPMFUKYO8OIKJVukHEqcE21vP65gCt7Y7w4pV2Rcvq5EPRDlWbVoGlpeHFG1ZLEwmnpmF6Qosd9Ll1+l3OnT1CrVFiomVw/8NkZSV+WSQghSY+qonCiZXNl15tplcap/H6XCkfIXAj+7cVdvnmjh6ao6FaD61EFP1JZQmdzc7O0pJjs4j9OCeVRWlue5+G67nu/8GMSP/ZE8l7xYVYk29vbvPXWW5w8eZJz586hqiqqqrI5zLi6H6Fw2G6bJLiDccz3bvX4mbNzH+i9wjjhj199Fy98OMFvsog3Ky4VA8ZBDhw+AELIP5E3JDMMllfWME0TS5OL5YMSCUDV0pl3NTYHOVGSoiuSFe7HGcsNi7nKbNsuSjMqtkwau6OIUST1sybXZOI3vtUPCeIMRYkLTsdhO8r3fO5u73B1ZDBO5LmrisKN3QE9L+EXzs/xylmJ7snzXM6QpjZdm/2QV+8OUBQ5TwhSwfV9n5WGzYW2Qm46aLpE0C1WTUCUO77XNkfFwq7iWAZhkrOTGDyz7GCIlN44QMnHLNkWIoQws7Bsi5sHAf0wkYtn8VnDJOPa7ogTrUWeP9EqW24HB6PyfIeh1NoydVUqDmgaqq5h6wmdQq9LPYa0mmcphq4iUBAiK98zy0XhKXP4/YdxwjAWDMOMJEmk2ZehMg4EFVMm92GUSv01V94Lpq7z6p0+d7uSp6Qpcg7SdHTOLVTo+jFJJlhfcDkzX0EVcq4yDBKGgTT9mlQ8qqJQMRXGYcqnT7VR8pSj2z5RACsgimIuXbnO2tICy0uLxTEOX3mr4/OH7+xzqwBBLNUtapbG1T2fuYpRKBSnPLlU5YmlavE7Ad+73Zeq0UXyynLBtQOPHdHgVz/1OHEc0+v12N7eJkkSvva1r9Fqtcr5iuu6P7bd/aPOSH5SOCTwE5BIPgz4b57nXL58ma2tLZ577jkWFxfLf9M0DS/Jj/hMTMekzH+/kWU5/+5bb3KvM8A2CwmSh1iZurZJ3/N5fKnCgZcQxCm2Ic2L/ChFV6Q/+uryApqiomkqfpKyYplomjpj9yvfX+p4aKrCLzyxzB9e2uJgFCNUlTxLma9afOZ0+8jnNXWdOM0Y+aGEKwqF+589TVVIM0EqBJZpMPRDDE3D1g22dvbpdrskZh0vDWk4OoEfYxsqtUqVvb7H21sDfu78klSpPUou5/qBj0ClZipATsO1CZOU/XFEowpn23ahWCvD0DTSPGe763PgJTRdS1Z1SMTVIEjZHKZ89mybjSXpMtgbDAnDkNwb44UJtwc6uqLJrFd8YEtTiDOVrZ6Po0kjqvF9xl0TwcQsz7EtS3Jysgw0HUubvbxCSK2uKM1YqFeYdzVuHAS0qxaqIi18h4GsBEoJ+UxweS/g9sEYgUBVZYtv3jXJ4wgvzkmQC//jixVWWnK43hnHbA8Tao6JrsiLnAvo+TGLdYtPnWxKgmIQyarV0Avo8UQtWZk6b4FpGER+yMgPWSg00Qa+rMb6QYI3zLEtlUGUUXNM8izjztYON3e6nD21wenC1mBvFPH/+N49doYRSzUTAby759F0dJ5drbE1iDA1hc+fn+Nnz7ZLJNjdnpxVTUOCNVWhbum8s+Pxq0+DaZosLS2h6zphGPL000/T7XbpdDpcv34dwzDK2cqHzV15r3hUHslPZyQfIN5Pa+tHSSTTLPVXXnnlSLmoaRrLTo5ravhxNrNwTnaUz68fzxk4LoQQ/NEP3uH2bhdVUQmTDAS4llXa0k6HY+qExYzk7HyFcZjyzp6PHyWIPMdSc14+3WRjRe7iXdtgHEqZdz+MqVT0clHoejEX7w3ZGUhZj3NLdZ5YdPnCE4vsDmWFMV93aNlHS36pJSZtWwEqOpiGSpyrWFpJhSeIM9oVg6W6WyLP4iRl894e5Alra2tc2guKY8qLqet66YHeHceMCj5EHKdEyWESTHKBl0jL2UmkaSrlTlSdMJ2t7uTwXSWME7xY2vSqpoppGsSFXP2hMGJOu+ZIUcRqVe72BGhKzrtv7eFFMeNxhKqq6LqOY9ukWYyqOOXcyTZ0TF2jULtnoWpRMTWCTEGJJes8SnOiKOX8egPXNvEj6bz4xuaQjpeAqqGIIQtVk8WaSdeLyQFd02k4Ok+t1Mod/J6XcnN/VEizqAgEXpzTC3PONDU03aBer9NwdBquXQ7X+0FKnKTULQPDKLxlChWE/VHEJ0+2ZwbxE0HOlVYFZ2vEOE5pFJBdyzTZHfg0HJ2KpRMmKV6UcWnXZ7fvo2kKvi+wsgTXdtgfhiiKTJyWkSEGO9y61+bZs2u8emfA9jDisQW3TFZ1S+fagc/JOZf/8lNrqPdxlMr7SBw10MoEM940Qggu7Xj8yZ2cP+5vs1y3+Myps/zs0w6DwYButzvDXZnMVmq12kfaBnvU1tZPE8mHGD9KIjk4OOCNN95gaWnpoXa+Bhl/4+fP8ff+4zVptARlhfLXXtpgqf7+MeDfeusGb9+SePjJTZ8UfhDTelNxmnNl1+P6gUeaZmy0XZ5erfH8RoNzCy43t/YReca5tWVcx0YIUcp9TI4thJAoMD8iReVPLu9LRWJdBUXhrc0eWz2PL15YZLlhsYzEpBuahqFrpXqvJOvppJko4b9VW0qqv7M9IjUMFJESp7KN86kzC2USSdOUnW2JmlpeWabqOFQHh9+XVLtNixmLFFUE6UsvRF4mQUWRUFRb1xgFCfZUyy7NcrI0oVo3yl1+6RFfnIely0Q4sfXVNQ2BIAlTKpZGu+rMCE1mhYKzpaucXWrwzq6HowMiQwjBTm+ECijhkNEww3EdRmnOjW7EONPRel2W6zbPn2jx+p0efV+2h3RVYaPlsN608MOYqmvznZs77I5iWhVZLUWpytYg5Oy8y6dONfHjFFNTOTlfk5DoQur95n4PQztsdSkoVEyVrhcRWRobFYNaxTgyXFcL6LIQcl5l6Dp5LkHeplH40BRk0QMvZmsQ4sc5DVvn1HyVa3sjOl6MYxl0PA/bUDm7UCkT3M2Oz+7AZ7HhgsjR0hDNMknThHMLLkkmMHWFhapF3dH509evcmO7w3ZWxdbVmYpHVSWgZGcYHRm6x2lOnOWcnXeoOzq7o5ilmomiKARJhh9nPL9+qA793Vt9/uUbB4w8wZqdcfHekCu7Y/7zF1Z46dQcc3OyPR2GId1ul263y+bmJsBMG+yDclfeKx5l2P6TJI8CPwGJRNf1DzxsF0Jw/fp1bt68yZNPPsn6+voDX6tpGkIIfv3lDVoVk3/6jVvc6visNG3+68+c4L9+aeN9v+/F6/f4zts3y79PqwVP602lueDfv7XLzjAGIVnGb94bcrvj88tPtBl29pmzdJaWVmnVK4z8kHrFmTG5mqnkFHjtVgcvETRLAyqBrup0vZhbHZ/Hlw5vyiTLSNKMekUiiKquTXcUcHeY0PVTmkGf9abDs2t1qpbOjQOPMNVZbZpcWG3QLCqaMAzZ2d7BcZ1Spj5MEpbrJlXHZhhGqMWQOIwzNAVOtA8fUpEXsumORZSkmLrOiabFRT8mSDJsQyXLBaMwpekYuGqEpsn5h66pjPxIWtMCizWTpmPQ9RPqto4gI0xy0HQeX66Vi2eeC67ue9zqBMSZhLZutGzmHJVuJBCZ9DqpuA7n5myads54PGb3oMONkRQm1NQEy3HYG49ZbSR85nSLnp+Q5oK6rUvf92Kt3OyM6AXSBldXJRrZ0lWyXGNrEPH4UrWQs4cwjjE0qcSbpHJgfn9ff4LXkmAKi4plFsoDGR0/ASFnY5YuB+MVU8rhZznkisZiVS87ind7AZe2xyS5JEzujSJcM+TMfIVMUemNApaqDqsNu2y3TQAXjqGRF3pcuq5hKDnDTGAbGucWj268bu92uXawxVCrc3L6HhCCNJP8lkn4ccZXrhzwg9sDwjRjrWlzfrHC5V2Pq/vSPEzXFD6x0eBTJ5vy2iUZX7nSQQBrNY2lmiW9enoBX7nc4bm1etkqs22b1dVVVldXpUr1aESn02FnZ4d3330Xx/lg3JWHRZ5LF8yfViQfcbzXAGxSkbxfX+iJl7rv+7z00kvU6/WHvn6yUxBC8JdfWOUvv7D6SB7UN7YO+LPX3539oVIs+FPzkTBJubrnsTtOMRWBXkAlcyEYBAnfu7rNJzckVn6SfBoVh+g+2937W4K7wwhNEQiRo+kGaRKjKXIA2vWO8QKZHLvq0huH/MmVA3YGkmh4bzzi3d0xT6/WeXqtzrlFeUM7plzAh37IeDxmf2+f9lybRHP47q0efT+hYumcWajw7KrLpR3Y78ckQYptaFxYqbHePFxEslxwbd/jdrdDisZizeBEw+DcgsvtbkC/QPa0XZMXNup4vT2SVLYfu+OEH97psz+S/Ie1ptTYurLr0Q8OtaQeW3R5bLFSLsyXdsZc3fXQNcnx8JOMt3fGPLlc5cyCyTjO0RSFtiuZ2QDNZpMb+x6j/gBXT1HIUWIPXTPY7AsWKhqn5o/fPUZpTpym1G0bTVPJslxaH2sKUZKTFFURICuEUUiCimNoLFQl6ik3DxFNUSoX/aoh1ZIFsDtO+eHtHl4kB+GOoVK3dQZBKttpyCplfa7CY0t1siwjiFPe3fckL6ZQWRZIxeC9UcTPPz6PvlYjitMZRJ5S/vdwE5OlOZWKgXKMNbQfZ3SLc2jYGnfubfOdYMzzj59C03W2BhEt1+CZtVr5HPy/fnCP797q03AMLF3lys4Y19T4c08vyiorE6w1LJ5YrpbV2s4wouPFtG2VLDl8duerJrujmN1RPJPAgiRjqx+iayrrzRr1ep3Tp0+Tpim9Xm+Gu9JsNsvE8kEhuRNC8gdNJL7vz8xyP+7xY08k7xWTL+D9DKz6/T6vv/469Xqdl19++X0N1CbHzLKsZLV/0CSy0x3y7771JkIIKrZZktwmx5pe8CX0MSVPE0zHkotBLoqdS84gM5ibP0SI2aYphfpglnnN7HFtQyPzYpl4kwRN0xFFtfMgkcmqYzEYB1zcHHDgZzj6xLNdx49zLm2PWGs6tCoGhqaSZjlBlOCPhnQ7PZaXl+klKt++2iFKJI+i6yfc6we8cm6BXzjX4uLVIWvr8zRtfdbsSMCrdwfcPPAxTB2yiGtewO7Q5qUTVc7MuwyDFENTmasYqKqC35M6XruDgG9c6+IncgecZRlX9zx6fsIrZ1qMw5QkEzQrBjXLIIgSOQNSNe50A0xdLRnmZsGpud0JeHq1QZbLttwEkj2JAy9B11RMRU7RXbdCGATEfsTd3RgzHGA7Do7rYFt2KZpZtXQqloUXxTiGhm7oiDwnCmVyneyS00zw5taQXS8jCGM5THZMao5Jz5fS/LmQ1d3JlkPdCKg6Fjt9n+/d7JEKaFdtsizDi1K6XsIThZ9OJmC1VaGiSzMsXdOIMoUgzstkCZPWmY6XQm8c4VoauqbN3NOqKmG5Nzo+tq5iGwZ5njPwpBHaersCQs4Fb3Z8ru57sjJUJCm2YWt43oiv/fASKytrnF6Z488/s1huMK7v+1y8N2KtaZcKzk1H5/qBz+Udj//usyeOfT5NXUVXFZJUlPBskIAFXVXKuZsQgm/f7PNH7+zT8eRc62Tb4S+/sMLJtiOFPwvuCsgFfdIGu3XrFpqm0Wq1ysG9aT6csDxpy3/Q1tZ4PObMmTMf6Hd+nPGxTySTxT1N0wcmEiEEd+/e5cqVK5w7d45Tp06972SgFoZVjzqH6Y8Dfvdrr5MUv58GMbWKRPhIENDsgl93HbKsByjkhS1tPiV9bU0lP7No603mFiM/pOrYRHFy5Lin5xx2xyleKBnEWZbixzmWZR7yNKbCKdR8USQkU0VyTiTXRME1JeJpexAyVzHRNA0/iNjd3SVJEtY31qlVKnzth3eI07xofRTQ2Uzh1Vtd/tzTS8xZgkVHo92ozjD5O17M3V5A1TbR1Rx0CfftByFXDzQ+99g8VWt2h6uqCmmecbMTMo4ymq4hnf1smzAq0EqDiFNzDgpgF0kEJLJqbxiRoXK/9qalKyRCpTMOyxbOKAhLWfg4zVCL6g7ANEzyPMO0TMxUoVZ3mJ+3iKOQg/0D4jQjUix00+L0coulqsqNg5wsByPNidMcRdM51bZK5NfVfY+7gwRLlY6PWS7oeRENR3q/b3bGGJrKSsNivWkzHqSMw5idMCNIJBNf5Bm2aaIq0PUSxmHKs+t1KckTRCUiLc0ywjhBN4yy7ToJXdcJo0OWe5pljIKYTijY63uYutT9ajkGo1RhGPp4iaBmCs7Nu5BnVF2LOwdjLu96qAq0XQPTNOiNQ/aTjBc26oWxWJ8X5xtcWDps4eyOIuI0L5MIyGeo5Rrc7QXEmcDSD5PCzU7A/jiiaumcaNm8enPEUoGnSbKc7WHEM6s1lgtDrbe3x/yrH24hBCzXbdJccGXP4//+nbv8zV88c0Qs0nVdXNdlfX1dJsxiaH/37l3efvttqtVqObRvNBpHEkaWZY8k2fKT5EUCH4NE8l4LvtQ9evBCn6Yply5dotvt8slPfpJ2u33s6x4WjzrQD6KY//Vrr5VDa3nCcsG3DL0898niWXNtRl7IibbD5Z0RUZqh5DKZ6KZNGsecmZdPgaoUKKr7ZOi9UBo0OZYxo4v13Il5un7C1T0pQwKyF//8apXTC3WCOCnZ9aauEyeHfIC8cCTMs0zqO+l6aZCU5QLXNugNPba3t9ENnfX1dVRNZbs3xkukretkNTIMnTyPGcUZHe9wAFwy+VWdII7p+jGZUNDVKW0vBWxdY28YMo5iWlVHwoQLPt+kKuqMJQJMQlYFSZJgmSajKGQQJAhhU3XtmeE6IG2R84xM6JiGVlreKpoBcXKkcvML58OGa7FYM9jsB+SKKt9Ps4gS2WZartuYtoVp2eA0+ebVPYZhjBABF7eGLLsq6xWTgygnyRRcU+PUnMOF1QZRIsUi7w1idERZoeiaQt3WGUcZFR1+6aklskwmNdPQ6SQplq0TJvmUNhjEiaxKDT3HT/JjWe4ALdfA0XK8RBItsyxHVTU6o4DVhl06Jo7ClB/cGTAIUnRNcl80JeCp1QYiyxmEGkPhc36jzmJNItzGQcS+l5CjUrdUCR+OY6qWTseTwpJPrcpW1ju3ttk5GPDFTz/JcrtOxdQKQcl8lk+T5MxVzBKl5ccZ/8v373Hx3pAgydFVhcWaSctR2fVSvD0PFLnB+rXnlsp15ju3+gRpzrlCt84Czsy53DjwePPekJ85++D1Q1VVWq0WrVaLs2fPEsdxWa1cunSJLMtm2mCu6z6yqdVPeSQfciiK8sCFfjwe8/rrr2MYBi+//PIHVticxKMkkiTN+L2vX6Q38o/99wmksmrL0t+1TcaFz8ha0+HsnMW7ez4C6TGSxjEn2hWe22iT5ym2qc8mqOn3znKudSN6qSDOfNbbVc60Ez51ssW5hSo7wxBVVVhrSH+NcRhhFBpVUZIW6KbDBLXWdKT1rgJCSIRUKjR0LePscp29bp/dnV1q9Rrzc/PloqSpinQp1DU0XUMRFEKFcmFTlVkF4LgATdRcG1OXhLQ8F0xv1nIhMDWJ7Bn5Ia5lEqcptmVwL82wCxHG3J+FjMvKDWqOJQUVp5JIkubkAuq2nDvcG4QgdFzbJEwyhn7I6Tl3RlDxbj/g6p7POEoxNIWzi3VOzFW4sTuUw9NM+sOcbDulfWyY5nzzWocwU5ivyQ2BF+nsRhmPuwrnqxFRKo3DKnrCYOzh2LbUv8py9PvWG02VhMO4aCmqikLVtogLFCAgrY2F5IlMUFVpKsEUS416oYUmEVz3+mHJyZhzDdabDjc7PnvDEN0wyDNZAT2+VCm/42v7HoMgoeWa5fGDTM4tPnu2yck5m1tJR7pZTiUrCV/PsEybKInLhXwCkZ6O2wdDfvvLX2dtZYlPPLbBfNXkdjfgRMvB0BQGYYofZ/zq081yVvTvL+3xnZs9Vuo2aw2NKM252w+ZN+A/e7xCY2GZpmPw5HL18HsFdkchlfuUijV5o9IPZkE9fiy16oIkZ71ps9GyZza+pmmyvLzM8vJy6bHe7XY5ODjg+vXrmKZZJoMkST4Qd2UikfKTEh/7RALHy6Ts7Ozw5ptvcuLECR577LEfCQf+MEvc40IIwR+/epmtTv/hrwOCOGfRMcnSQmNXQLfbYcPwWX+sxX4ge9grDYuTbZcsS2nWHPrj4IEH/c6NLm/vp0CGYZoc3OlxdUfll55cpFUxZvwuJiGRWimNmsvwvmNfWKmxOwzpejGKEEQiRSHlqfU2Sjhie3efhYUFavVZef2qpTNftdjqB5iaiqZriEwwLhjxC1WL2x2OEA9HXshjy3Uubg4ZRUnBnpf97DjLOTcFNfXjmJpjy2RUHGejZbMzkDIkjiFtZMdxiqUprDVt8lyCJUZhyjvbI7aHEULAXMXg1JwrbXC9BC8JMVSVE22Xp1cOP9vdfsCrdwZkOdiGSpwJLm72OT1f4RMrNgd+SsV1ma+aLNasshrYHsiWW8s10DQVVVFxRU6SCfqZwTOnlkiSBD/wy967pmu06nVcXWEQ5kyPkaJU7sonbZ4sz0mynK1BzLV+hulFLLcM6raUVnFNqZvmxxmuqXKibaOrGkKDi/cGXN3zCkVhKZNfMTWeWqkSJjlC0ahYGit1k0kTL8kEeyM525lmp1dMja4XM4ry0nbg/s5CwzG42wuJkxRN1UBAkkn74Glfn62+9IuJUsHb2yP+7NIm58+cYq7qcLcXkAuoWBqfe3yOzxbVgh9n/OB2n5ZjyESKnBGuN21u7vg07AqfPz9/5BkAWG3Y3O7OEkultL9sn03iyu6Y/+f377E9lMjAiqXz0qkm/8UnVo6VS1IUpeQnnThxgizL6Pf7bG1tkWUZ3/jGN6jVauVs5b24Kz9FbX3A+KC+7Xmec+XKFe7du8ezzz7L0tLSj3wOD7LEfVB89fWrvH1zW/JCilnIg8LQVLwgJgwhTgXj3j4GGesb65imydn7Xl93bfrjQGompRnxfQnuYBxzdd9DV8A2dTQNhKbiJdI46nPnF449D8lDsRmMAva9hFsdnyBOWKxZnJ6r8PknFnjzTkdKfldtzi3XMcI+u/sB58+dJhHyewrijN2hVMFdqls8v9FgHEkhxDyLUDWNimXwyZMNNE2ZqUj6vvTQaFQdGlnOJ9br/HBrRN8LUYpW3mrD5vxUz7xim1ze6nOj49MdQ3Ps8fhynceXKlw/8On5iZyHGBovbDRwdfCiGIHK9+8M2RsG5UK4NYjoByk/e7ZFLhTiXGCqMFc1qdimdKZE4eqeT55TQlIFkKFyt+vTnIMX1mpYTqWU359ElOZQ2BenSUKGBHCYuiRyooBhGjTMBo1GgzzP0cnZ7w6oCo+9CA5SDVtXEKjEOZxqOzSKxdK1bf708g5bg4g4ydB1la3xkNWmTc3WOfAk/He5YfHCiTYaOX4c40UZd/sJukoJeBBCJpN7/YgvPLnEqODjKEgQxjTUfDpM0yCKpPx/kmVUbBcExFnO3U7A9kAeZ65i0Kra7I9CHFMFFJJcoeHorBYS8nGac2l7LNV/ayZZlpPnKRffucLnnjvLf/ezjxGmgtWmxVrjsBrw44wozamas8uXVB0WhFOPjB9nfOtGjzc2B4BEcdmGyu1uwGLVJMkFO8OQk22HZwvk2DhK+Rffu8fuKOJEy5bCqWHKn77bYblm8fknjk9S06FpGnNzc+R5ThAEPPvss2Ub7O7du8Ahd2Vubm6mmzKpbn5S3BHhY5BI3k9MZFLCMOT1118nyzJefvnlDy1jf5DW1qtX7vDDd+/M8EJAwnqPHFdVCHOVb13u0Q1S0izHMHQeW3BZ049WDTXHKq1U/UjKtJdSFkVsFwKCtiYhmJOBu0bO9ig91t4XoFFxGHohP7zT5+2dkdR10nRu7Htc2/P4/BMLPLXksuGknNhY4O7mPdJcsL6xTiIUXMvk0lafH9zqyR0s8sF9Zq3OX3hulSs7Q0ZhimNonJxzWW5WGPpByd34/q0eNw98MjTyrEfV1vnUySY/f6ZBL6zjRTF1S2epZpb6VLZh8OZmnx/eHZDlApGl+An0ohHPr1X5hcfmSuTNcsOiZptl++zmwZj9Uch83SFPJ6q4Kj0/4WbH52fOLZStQyEE4yCiYlsM/ZhxlErF5CIMw4AkkTpliYIXxlRqUhI+mIK81mwd3TAJo7gYJsuWW5TmrC/WDmHlQmqK3Rsm9MYBTdfk9MoSrVbMtX2PMBWkcciiq7Jm6/iBz1yzwVubXbYGEVVLIyFB1wWqYbE9iHj5dINnVusIYK5qzyAHu16MF0YsNpwpKL0khw6TnM44KOdDAsHBMCBFRVNyFmuyzWQbGlaRRCbXp+0ajIIQTdP44eaInWFUfu5elFM3FU60HTkrAzaaBk+tNrENhSTN6HgJfpKxUHfKjoOqKji6wncv3eB8S+VXP3OBuisX2b6fcG8QYukqc67BziguKxKQrSnXUFisymcrSDL+yTdu88a9IWax+39ze8RSzcI1NA48iY57bq3Orz23XFZ+l7blZzk555Sfp+kYjKOMb93s8Yvn52Y4YvcGIVv9iIqp8fhSZaZimcxI3i93JQgCTp069Z+ktfWP/tE/4u/+3b/Lzs4Ozz33HP/wH/5DPv3pTz/SsX4iEommafT7fS5dusTCwgIXLlz4kUhC+6OI/+mbt/nKlX1MTeW5Vsp/u/JwcUWAd+/u8mdvXJ35WZikR0yRABBg6gbfuRcxiAUaktcghODdPZ+qbfKJjUOOS8U2DxnHRUxY6zXXwo9islwU3BCBomr3KZwKCbvMxZHkUy0S1IEX887OSArx2cX1s2w6XsylrRFPzOkgcm7fuYNhWKysLJYw1tsHI757oweqStWSIAIvSrm47dFwjBnCI8jhes2x0FSV6wcB7+55uJaBqwhyoTMKU757s8cXzs+x3jDQNQvT0KUsPpJ9HyQpl7ZHIGSrJAwzdF3BTxLePQj5/GM2dUfOIlzLnJkpjcJUzg7SrCSd5rlsFY0T5dj5kx8VHueWSRDFWIBuGCRJUrbLJsPeScIKM4U7B2PJ02hXaNk+e+PDdlCQSJ7IWl1KyAdRwjvbI97e9aUFq6aw2QvYG0V88kSDLzy5RJjmVG2DOAgYjMeM+j329/a4NtTJMwUNjQRZzevkpAL6Yc5CTcXSdcI4mbmPVFXOrOJEDszLVrGikheINJAJ//Kux62uT5zm6JrKYk26Jw7CHMIAkQsMXeH8UhXH1MjSjG0vZy+Jma85ZGmCUSScvp9wes4td/pSMicnzxRqjiQLarpOkiQznQlFkTOfO3s9/pf/+H1+7rnHeLcv+NOrXYZBgqGpVEyNMMm43Q2kplucMY4znprTS9XgH9wecPHeiPWGXYIYojRnsx/y1z69xmOLFQxNYalmzby/H+elSsF02LrKKEzJBNIGIc358g+3+M7NPuMoLWdmf/0zGyVn5bhhu6Io1Ov1Y7krv/3bv82f/MmfMD8/z5e//GVM0+TZZ5/90CVcvvzlL/Nbv/Vb/M7v/A4vvfQS/+Af/AO++MUvcuXKlUfir3w8dJYfEkJIH+9bt27x+OOP88wzz/xISWRvFPGX/sl3+Z+/c4c73YBr+x7/67sRf/Pf3pK6WA+Ie/t9fv+7l47VBZuYIlUdS0pzCEHNtbi6O2AQ5WgITENi8g1NRRGCt+4NsC15w9uF18SxHTIFRkGEpmo4pslq08I2LYIkK1tquRAkmeBU2yVHyOTjWKiKimMewny3+iFpLmZ229JHQ+HuMCIMQ7IspVKtsbS0VCYRkBDhOMtwNNneUBVpDBXFkjl/XIzDGAW4O0jQVQ2zeFtVUajbBl6cca9ohaRZjh/E1FxbymYUulBBkpeyKsXFxjU1hl5IkEhpl5prH0kM0iJXSr7IXXiObhrkqGjiaPXoRRk9LyFJM1ZrOjkqiVDKJDIMU5qOTstSi2sOP7w74Pff3ObitscPt0b80dt7zFUNzs67KEhb4vmqyYsnGsxX5UYhTnNudENURdB0dCqmRtM1pEDjzhiQny/Pc0zb5tT6ChsnTrC6tia5QXmO78sklCSJBBnkGVGSUnMt2YYTgjQTbA8iNnuFzL2pyUUwy0mSFEXVCZOMlcYsBPny7pg8h6qpoylwpzOm6pg8t1ZlrW5xdsHlpZNNThULpRCCUSy/mDxLsUyTvLAWVhTZitUKGZTJ9zcIEm7tj1hqVjBV2X4qv14h8GMJBrA0lShJ+R//4FX+6R+9RhTFrDVtGo7O/liKga42LOIsp+7o/OXnl/n5DaNcdK/sjkFhxgbY0qX4/tV9j42Ww3J9tmW2O4yYcw0MTW6Ups+rH6ScnqpSvnLlgK9cPpAyO/MuKw2b6wc+/+xbd8q15P3w3ybclfPnz/Ov//W/5qtf/SphGHLx4kU++9nPsrq6yj//5//8ocf4oPH3//7f5zd+4zf49V//dS5cuMDv/M7v4Lou/+yf/bNHOt6PvSJ52IwkjmPefPNNoijixIkTD5U6eb/xT79xi844LoX3QPbAr3Yi/j9vbPNXXjz6Hp2hx+99/Q3S7OFzFC+M0VWVdtXlYDjm7s6+3NloKsqUx4imKiRZzl7fZ7VVIcsF+TGL23RMdsBnllo82wv5wa0QP8lRC5mKuarJsxNxySL5uJY5zUGegQtPhxCCwA9IIwUUCXG8P/w4k+IcyoTToyMKD4npheD+yHLBOIrRDXPqTA6NlOJpBI8CQy+gUbWJY7kYqUxcGw/vk7zg52R5hqnbxwr6rTVtru57jELpn6EAQSAXtdPzhy3RIM54/d6QnYEcqlqGypk5l/WGyfYwxs8FIpc8mU+caJB6fQDudgNu7PtYhkpVV1A1Ey/OeXd3zM8/Ns9TKzXZgjS0GSHQ/XFEEGe0KqZspxbQa9eU4pLjOJuSSpdoM0PXcCyLE/M1BltDHFsnDAMUFLwwIkkFIhjS6cgWSi/I+f6tHqNItrFMXZI6s1wy14UQ6IZgsWbxzFoDkInnVifAUJUCzg2aKq9bZ5zw1FKFJ1fqRxK2VCWmtEqeaNUZho7wk8MEgoTwXrw3ZHcUkeVyE1AxFbxcggU0RSHNJYfk3GKlcOyEO/2I0E/obidUtDXq9Ton2irbg4hfeWqRxxYrOIaKoam89tq9MpEYmnLs/FLAfdDijH9/aY9vXOvhJ/L6u4bGZj8s2fUdT4JCfuFxOR9Jc8E3rvdwTK0c0lu6womWw91eyDs7Y17YaDySztaJEyfo9/t8+ctfplar8e1vf7vUCfswIo5jXn31Vf7W3/pb5c9UVeULX/gC3/72tx/pmD/2RPKgGAwGvP7661SrVRYXFz802ec/uXIwk0QmoQBffffgSCLxgojf/drrKKp8oJP04bMUxzLYPugx6B1QM3VUJSMXML0nSQv5joqlk+Y5cZIeaUcdF9JwyuNTZ+ZwlZjbvRDDcpivmpyZr8zwIFRFakbJnarkryzXbTR1SDwly5ELQRSnnG7pOLU6YjzCNg3ZHpmKdsXkdteXqB9NI88yyY/RdNoPsSNWVIWFqs1mP8Cp2KiqLPfTQiOrZmszSaDu2gw9eR1OzFdp3OnT8RIajuSN5ELgJxlLdYvlhnMI81U1ruzKuYita5xo2bywXufi1ohhmIIijbzOL7istxwsU8cLYr53q8/2UGpHmYZKmEoZlZdOtTg37zIMU1pVh4oh7Xn3Pfl2d/sBArA0Fd0wSJMUWxMMUyku2H7A/K7mWAiRE8VJKd+eZVmRHJlhZSuawfdudOh4EpG13q4wXzE58BLSVCo2q5rOmbbJk6sund6AwdYeb/UUMtXE1cE0JNdkdxhzYaVatLZ0DCVnuW6hCCkmut33iLP8CJem4ljsDQJGYULN0koHSz+WM440TakZCqNYIVNUKDY8fiThrssNCY0WRQW3NQhxDZVqRVoXH4wE6y0b13YZ+iFNx2CjZZezjywXhEmOocnq8MbNW8zPzbGyskwmZKU4TSIMk4wrBxE72YBTcy769d7Ma0ZhiqbCM6uHg+x/+cNt/uidfWq2Ts3SGAQJfpxxfqlCmOSEac4zqzW+8MQ8TyzLFm6c5oyjtOTbTMLUVTIhSi7Xo/BIfF9W+NVqFcMw+Lmf+7kP9PvvFQcHB2RZdgSotLS0xOXLlx/pmB+7RDLNUj979iynT5/mnXfe+dDMre7ve07H/bC+OEn53a+/wcCTcFlVke6BIz88tpJyLYut3QP29/dptVu8cGKey/1bdLwUJcslXySTA/Inl6vUXavw0oaxH1F1LYJiFjKJvWHEOzsjBlFORVc4v1xlvSV9wxfcCtVG8+i5CLCtQx7KRLZ9Xdc4t1Dh6p5HlEqeS5KmNFyDT55exFAyycqOE7mgTyF3zsxXuLYnd/i2CSLPCZOMiqXz1GoDy9ClkOD0aQiBY+qcsg32xxE9L5Q7dE3HC0OWahYrNbMEB1Rsi5v7Q/ZGCQLBci3mM2fn+fq1DgM/Jk0FqprTdE0+dbJFXCT1YZDy9etdhqF8aLM05FbH55m1Ol94Yp79UYyma9RNlYqlkeWyjeYnsO8lVC29nH1UVJUgU3h7e8QXn5wvodS2ac5opsWF5pVpmtKHBMmZybOYJM+PSOUIIedgWR7RsHV6QUJDUZAK+Tq+57PecspqIMlV/vitLUZRhqbKKux21+eZ9RZrrZzrWx1cR+fEXI3Hl+tEccLSso2375H2+1S0HEVAEPioikqaKWz1A371uVWCcHaGMvRDGo4pNxBRUrQFZcvFCyIMTdrkThwsb/cjLm2P8cNYbgJyWJl36IwCCYpAPmen5gxOtFx0TWWz57M/iqlZOq4tvVtcUycXKX0/4ZMnGjhmFU1TSzUCgGbVxtah7+dlS/ag06E7GGI3l1iY2sRcvDfkn74Z4uX7qHqfpqOzWDXZH0unSIS0Rvi5c3O8UDg27gwjvnOzR7ti0i4qi6qlsz0IGQQZf+fPnUNTJIl0+jlzDKkycHXPm4ENj6MUW1dZLpBpjyohb1lWqerxkxA/9jOd8RfIMi5dusTBwQGf+MQnynLuw7Tb/XNPL/GPv3aT+32mBPDFC4dDpjzP+Xfffovd3vDwZwW6p+ba+GFSMtZB7vzu3rvHcDhieWUZ13VJ0oyXVi3e2NPYGcWkmcBQVS4sVfm5J5bLJCIvBKW1qqmrBHHM7Y7Pn109IMnlMGtfCO72Al463WLZBj+MWVm28aPDc7lfbr7vJwzDlIoZM1+z+PyFFRZrXa7vjRh5PusLFZ7emMe1NIIgYELXGHoh40QwDGIcXaXlGvzC+Xne3B6z1ZOVyVrL4bn1BpYGcZJJePE44E4vkAgtRYUg4ZkTKq+cnePS1pC+n6CR8tRakwtLFQwNOcA1VL5zo8O7ex5JYcxlqArnFip8/vE5CVm+t0ezanN+dY6qY5SJ69LOiEGQ0HCkzLzhOgy8SGqFNSyeWGmUcvPT13tv6JMLBdvQS40t0zSJg4gwEcSZwC42HmEsCYGuaRBngoWqRTfIiQofEpCVpqIoNCxZ7VRdi+445PLOiHuDmDjNWKiYnJpzSfY8BmFS2BUkLDZdXjjRAAUsXed71zoMo5SWc+ja6MUZ72wN+NJTizRzA7dapdGoyk3WpFWYCVRVxbbk4mZigRCEXsjA87l27QaWLTXBMtVgaxBL9rypsVQ1uJkIxlGCaxl4UYwXZ6w27HKx3BvHvHanD8B83SUM5YLbGQU8tVKV3x0wVzGZr5ql0rSiaiR5TtO0ysQLcpYVZXkhRplBklGr2Gz3PJJcZW845GTboR+MSlRgmgt832dJbNHrLJItV+h4Cf+3b97hwBecXDBwHYf9sZTI/9WnF8treH6xwoWVWtly2x1FjKOMk+3ZqrrhGPQC+exMC42Wt4+i8IUn5rndCbjd8WlVJLl1EKS8dKrJuQUJAsmyDMuyjvz+w2I8HlOpVD4yR8f5+Xk0TWN3d3fm57u7uywvLz/SMX/siWQSnufx2muvoes6r7zyygyuWtd1omNMoR4l/ttXTvLHl/d5d1cONicIkRdXLL70lCz1hBB85dUr3Nw+OPYY4yDC0DVsTSKFFCG4c+cOSSL5IdNtONfUeGlFofHMGn0vomZpLDYrBWfhaExmIa5t8f1bW6SZ9AYRxa49SDJ+eKfPL52tSNhqwVq3dXkujUJuPk5zvnW9y91eQJoLNAWW6jY/e67NRlVBGfksn1qiVquVMiwTIUg/yvjG9U7Ry5YOeUsVjS89s8ZnXYMglmizyS4VZK986IW8ueNzcbMHqCAyojine73PFy4s80tPLhDEKZoiPTZUVcG1LcI44V4v5Mqeh6Yo1O1DhM27ex7zFYONlkN9xUHVTZpVq9ztp5lgZxBhT5Hm0jShYmsMo5xRAtX7k0gRjqmhkBOlKbZlkudSbiXJBI6hzhhsTbw77nVD2lWH88tV7g0i+kFcoPEkl2KpZrHatEGBgRfy3Vt96fynSkbNnV7AgRfz6ZNNgiQjSHIqlsZqw8bS1QJ9lrAzlEPy6cXENVX6QSoJoGnGgm2iKypBfrgwVy3ZLktzKVY4mZGphmRmt+d1giDg9k6PtzspUS4dN1GkYONSzWIYq3hRiqrknGg7PLNaL7/nzV5Akkk9sDRN0HUNV5Os/iDOeXrtGO6DgmS5Fwz+6bpfSvmrh61W4FtX97ndj4mSDEXIQfrpOYfdYYyfZGiqnEU8tVLl1Su32esOSZ0W++OYRUdg6VohXWNx68BnaxDxf/mF08feA3VbxzJUgiSb0ffy4wxbV6lZD14iP7nRIHtZ8EfvHLA7jDB1lV99epFffXpxCgn3wb3jJ4nkowrTNPnkJz/JV77yFX7t134NkOf5la98hd/8zd98pGN+LBLJ7u4ub775Juvr6zz++ONHLvyH6dtetXX+3//HT/G7r2/xZ+8eYGgqL8zDJxcOHf2+984tLt6499DjJIUMha4Ibt29g2HYrK+vzCCd4FC00VQFKw2bmmPTH/sPtPWdxGZnxDjJsczDJAJg6RpBktEJMprahIEsz6Vdd+kOPVAUvnerx40DT85iTLmLu9cP+OO3tni2lXHyxAbNRq1UFp4+129e73CvX3ifF94Y90bw1Su7/MzZ9iyKaip6fsJbmz0MXcM1NLJMQRMp4yjnrXsDfuZsu0DNKMV7Se2wumtzu9shy6HqHB7bNjSGYcLdfshqQxIGl9o2acGFgKNuvZMQRYslFzOi5zOxWJXtjP1xDEhfjSAVpHnOmflqyWeJ05zv35b9/TBO0Q9SVgaCz5xpcX1vzPYgQlXgsYVKCSkF2TbZ7su2kWFopEmCbWj0g4Q7vYBPn2rOnE9WmE8ZRQI51p55IgRafDAB+IngbtcHBG3XZK5ilqgmrTCBciyLswsOc00Hz3Z4fT8n12KathQPTbOUoZ9CFvP5JxYIcpVWxUFl9rmbLOQgN1yqKg3EdEPHvx/1KKSvfZTmVC2NpbrFnY5Po2Ih0pQoy0lzwal5tzzmzQOfd/c8bFOnbqtomklnFJDngp891ybJBIaq4FryPjF0ja3OgDe3NhnHNtWayTS6wTJU9scP3oSeajucX6ry2t0Bq3VKdFsvSPjShQUazoNns4qi8NKpFp880WQYyO/Wve/ZeNQZyUdZkQD81m/9Fn/9r/91XnzxRT796U/zD/7BP8DzPH7913/9kY73Y08kWZZx/fp1nn766QeWVR9mawvkzfJffXqD/+rT0rTq1q1b9Ho9AN6+tc1337lFxbZmW0/HxGAwZDzoMT83R73ewItTbuyO6XoxFVPj7EIVVVHLtpOp6ww8n3rFZuxHR5jR94eqKFJl1pRMaWXCIQE0RZ2BIju2QW8UYFsmXiiZ64amlsNTXVXQyOkE4J5dolqtMByHM66NKDBKBLujqETByGNb5EHIna7g5bNq6Yl+f+wMJby4oimkaYpuGKXz4VY/JM0kN0HhcCGakDCTHNQjeHv5sCaZYH9/H9fUEZqJH0rZlHEQoQFLNZNb3QBLV8uqJEzBVKBhKViGgSAniFI2+yF7owgFSWL89Kkmr90dcuAneFGKpas8t9HisbnDdsTFeyPudAMcU0U3QNF1tns+WZryF19YwwviIyq6IBOrqsuqJ03ygs8CppYVyWs26hWnrFTXmg7XOwF2gYwTCLxImn0t1kzCTMcLY97aCbiy55GhSg6HpnGybVOzXbYHEWkuWGlVON0yaTk6fpiQotEPUiqWLuchhhQANZKMMINb2we4Skpkmcw3Gyi6KatsBVqOwfZAKhtYpkkQynsnTVKWGg10VSXNc/w447W7A/ZGMZkQuJbFSk1jo2mzN44QioahaZydtzm3UOy+Bdw88NB16XkPkGcp7ZrNoBB73GjPtpl0TSVIE1xDZbC9Tz5WqdWqmKZZQIkzTs3N2mvP3mMK/81L6+S54N09j+2hJBZ+9mybv/Tc+2vz6KpCu3I84OTjarP7V/7KX2F/f5+/83f+Djs7Ozz//PP8wR/8wSMrhfzYE4mmabzyyisPfc2E2f5RnkOWZdze6fKH33tb8jKSbHaRnQohBHt7e4gkpj2/iO06dP2Y3397n84wQFXlbvvVOwM+s+HQ1AWmrpMUwoLDKXXg+9FRkzgxV6Nhd9gfpehqimYY5GlKmORUTI2FqoFfVBOGrpEkGQJBGCf0gxih6iVfQrZsJDQ5y0E1pQ3sITtfLiRxFBOmEiljFwqCqqaRZdIXJEozuqOQ00v1UpV3OlRFQSmY9YqikKWpTIaKCkrx71O/VCsSKsCcq3PrIEPVbLIsLRBa8tzN1Mc1XZpzcyhFAu37Uhbd0VWeXKrQ9RMGQVLKvZu6xlPLFaqWRpgk5Dl8/+6Y63uHM6+r+x6n5xx++akltvu+FFS0dVxTenCEcYofpdztySRl6SqZIkU4K5ZGx5d8iNWmg6aqMyx3gLprkSYjhC4dE7PCNkBoGvcXdWGm8Pq7e4wKhNFK3eJgHDKKIc8SmYB0hadWaszVbK7upoyUlHd2ZTuwZihojksQJdzsBLxypsUzqzV0XZ9N/AqM/RBFVYsFThQ/lsCBKIhZXFykaasEQUB/5OEHHYJcotPark3FlG1DK43I0pxxLFio6yxU5IdyLZM/e3ebnVGEa+pUTWnve21f8OxajadWq0Rp4SZZmfi+SDuFFA2VhGmco8gyqVBdQM4nO/Vpz5iVhkXT0dnte6RXrrG6ukakObRcg8899nDo7HzV5L//whmu7/v0g4SlmnVEoPFR41ESyX8q5d/f/M3ffORW1v3xY08kwANlPSbxYba2HvT+BwOP79y5eOjZPr3ICkFUVEQTj3LX0qkvraAXEilfv3pAdxRKkmEuF/U4zfnuHY9fOmUdkYSfqAPXHZthMDsvqTkygb18us0fX97HjzJEJH0NLNPg5TNNDC0veBxSKTfKD69P1dTRREauSGJbHMfouk6ONIYyyJl+UMMkkez8io2tSUnuOMuxTV22UIQUUzQ0haqtM/JDbMtA5IfXRQjBueU6r93tSxLhpD0jBH4Uc3bOYjQc4lZcDMM4RL8VieX0vMvNjk9nHGDp0g42ihMcNePxpQbzS/NkWU6YZrx+d8idXkAuBDVL55On2/z8uTa3ugFdL6bmWCxVdZbrZtkCutEJuLE/kmx7RSLn4jTnziDl2u6I9dascrQXxuiahqJpJVxb1w2iyENVpYnSBJoapxmIwrq4qCgc06DtZNiGxihKy157nGZkScb5E/Pl7n13lPCtG13COENVYbMnTaE+sdEgTnOGsbQEXqrqLDVskjRHINgZJqSZoObKY+eZlC6JctjshZxou6iKwv0dp4atUzEUhkHMXM0hSRNURWUYSiHHpmOgawq1ao39SOPSSOBHKaqaY4gBy45gLHSGhTr9oqvy0ukWrqmR5jlb+yN6kaBmGZi6ihA5FUtnHKXcOPA5t1ChasnvfRxGJePfMlQqBuyG+QysdgIV18mpOhZhLNWxR/7hZsbSVT59qsm3Lo+Jsow7d+9yYnmOX/+FTxxWPA8JVVF4bPHDrwLeDyHx/vhJ8yKBj0kiea/4qBNJEKd87dJd5paOlrKTRbbu2uwe9NjZ3WG+1aRSPzSxCeKMe/0QTQUKfxFV1TBESpjl7Ac5a8docQlgGEip9CTNSLIM17IYB/IBWaxb/IVnl0sp74qlc26+wonFOtu7BwghjpWbtwyVxxYrXNwcECNwLIs0y0lROF0zZtRXD89FMA5i2o7GKaPC1b0xJDmaIkiKXvaTy7USgjlBMdUcm6EflEP+Z9cavL45kNwNAFQW6ibnF2zyNGZnq4eh6+zFJpvjnHEsq4DzS1V+/rE5Lu+MJUAgzThRhSdXWpxYmSeMpXLs16912S70ljRFoecn/Ok7e3z+ySU+eXIOu2C9CyEKCfVcalt1fRACVUi3Pk3TcXToDAO2BuGRRALS1EkRORXHkryIqfZqlOaYhWcIAArs9D3u9CWbXFNgrWnx3FqNi1sjidBiAot1Wa8XsGLD4LVN6TDZcKQKsihmC+/sjPmlJxfKdl3VMskQJTw2yXPu3zQLITXJhCJlQbzitX6csdkLCYuq64mlKq9tDtkfBhiGTpbnGAo8tVotme7bw4jX7krZ/JptSJXlRKGDwadWdeI4JAgCDAWiUY9x5uA4DkGSE8cJ1aqUyEmK62ZqamE9PKtWINGKGqaucXbepeMlDIIUx1TLZL1Us1isSUi1Y0l03v0Vcc3SebwuWFhpg6pRMTWuXL3OvC04s/LeQosfRTwKIfEnTfkXfkISiV44BX4UEcYJf/iDq3hRzIMKYCEEd7d3GQ/6rC0tYjqVmZs4zibVwQTCJBBZJtnfWYofP/zcJwKNtmlybW+ApigsVKV4YdXWeb7AvE9i6AVYpmzBHKcZlec5a2ZIvyrYi3SiNMMyTc40LD51qnHk9ZNQFIUwyXjlbJuKZfLOdp84FRiayoXlCs/ddx5xmnPtTgc/UyEfc6LlcGGlRruic6cbEKU581UJd520yhYXFd7aGvDadpdcSDSZHyXsjyJe2KjziRMNTlUzhsMhS4tLrCzOlUTNnWHE3kj2sPVifmPqKqMw4bXbXc68uFH4m6jl9yYQ0sp48l0Wf4fCta5A7d0fYSIl2yuWzrk5i9fvJfiJtEXOspxcgTPzLvVCIdiPM/7saoeun2DoBgLY7gdstB0+//gce2PJD2q7BnMV6d2RZBn9MGMc51TNQwa8ohQyMKHkWLQLLouiypM1dSnL3nYN7g2lP/1kWJ0L+We5YcsF2zK5uT/iuzf75TBcQRpbfXKjwd44IsxUHE3wxEoDWzusmm92fNI8pzk1cJ6zbA6GPqFW58Ryg/F4zGAwQNd1hoMh+/v7BEJWgkmWk+cZhiG5NnGa45raoUf95DsRAkPXGPkR51caCAGXd8eMI1mhnZl3ubAswQ8KkkU/jiW82iu4LJPjoIBr6qianPENvJB/+803eeb0Kp997izmf2Juxse5tfVhxscikbxXL/KjqkiyLOfffetNecM/QP5E5HLQ6/kepzbWsR0HTdXwp+DINUunaukMw0Ra9xZZJhESgrngvkevVcCb94b84E6fJJdQybql89nH5lhpHG/WZRo6fpRyyrEZeIFECA1CEDl2OqbpaPziMydIc4UgyXEtjZotd3LTSsVxmnNtz2N7KHfRVqzwnGPy/FqVF081ORgGuKZ2hPEcxBlfubxPx0/LmchbW2M+daLGqTlH+nQcgaYJclXjre0xpmXh6DLp5Zkczr5+p4cV9TBUiXVfmm8xGAdomkrFNunvjMiFKJNIeS00lVGc0x8HaKoU0PQCmWAVFNDk8HpnGEuVAU0Or8MigUsPE/kZgiTn9c0h9/ohuZA+FC+caPHcapWr+x5BLtuGTyxVeWrKw+Ra4RnfrjrkWTGbMizuDSJOz6Wl8+V01F2Hg70heZqiWDqqppW/e39UHYvuOGCzF9L1UwJfZbUlFXg73iGJMM5yFuoOSxWNJMsI4pTX73n4SUaj8H3JckHHk8ixX7qwJK+VIr+fqm2XbpqjMEWf2k1r+gT0Ad1xwBOLFcJAzlpa7RYtWmRphuf7bIceWwMPWwNDj8hV2Vo9s+CWaLjyOkxABoqU9jm9UOX0YpXuOMJQFawpbbiqa5evnVQyExLjJKFMFJYN/bBaf/PmFnf2evzyp55gbb557DX+KOLjOmz/sONjkUjeKyaJ5H49pR8lhBD84fff5vZulyhKsAwNTVVnnAPTJGV7ZxsFhdOnTmLoBQlOpDODeFVVePFUi69e2SdOBaoiEKqOSBMem3ew1fioOvBU3O76fOdWjzyT7RI0Ocz843f2+UsvrFKxZm/Eqm2x3+2T5Tl9L+DbNwdc3R1KbaZczjheOFFnTdUwNIVGRXI1yrmMK5NPmOT80Tt7dAoEkXwMdfK3tvmZs3OkacpSw5EqtvdVVa/fHXDgxVRMvRyAe1HMDzZHLDcsXGP21pJCljY39qQ1qq2rKIqGrmvkSoarqozDmCBTqVcsvEGfiwcHpWe267i0qjaToaw6dR1ToVDVpDCggsLYj1A1ha1+Qncc4poaGy1plLQ3iuV7Zim5gNWGxVJFp+qY9MchX7/aZd9LsHQFXVUZJ/CNq/u8cqbFr1xYYHN7j3a9SrvVnJHL2RpGGIZJlh4q2ark5ELQj3LuV3Cb+J+0KwYVS2MUJtRtgWEaJLGU6Gi6sg1pGwadUcDXr3XZG8UIhLw3g4DHFhwWahb3evJePLdY47EFp/AAkSKlfS+k6ZolClBTFRxDZXcc0/OiGb7MOIzQNQk2aDh6oc2loWqqdMOkYOmbGn4ck+Y5rnU4BNd0jYW5Fj/jVPjh3QE7g5AozdCymEU7Z0GFXjfGcR0sy8K1zCOcqgmXaqXlMvIPN2wVxzoC8ojTQxJjbyT1axRFmZlXTWLgBfzrr77Oi0+c4DMXTqF9yIq6x8WjzkhWVlY+ojP6aOInJpGAzO4flmzAN9+8zju3dwB54wWRXAAm0haBH7CzsyO1vpYWpDz3ZCd/H9opStKSP/D63QG9IMfRBRdW2pxrm+zt7TLyw3KomN0HLLi855Ol2VTfWGBpEOUKV/fGM60txzLwwli2OYRUOL2yM0BX5EKqahqJUHhjc8hqw+bsUp3xtFQH8twrtsXrm/t0xjGOqaEq0tJ4OPa5uudxZqHCSsOeST6TBzPLBbe6AYauFRvZifCghKTujlKeWLaJppLPZNdpaFIWRAgphpgj0DSdMAhRFYXVlWXW2xXiJCUIQjzfo9/vs7+3j2pYuLoiW0GGhPpGmeSLnJl3ygpoGKZ87eqBNL3SdfI0peEYvHSqgZ+pXN8doio6602HM/MuhqYSRBm9UNANJMtbUxV0XcdIEkaJ4PKOVIt1DemmmWc5NVdClxVFwdR1Mj9Ambo/J3OaNJVaan4QkyPIhcLbW0OiJGOuYvDcWo3v35a+6GqUIhQNx9R5bq2OocnNzbu7HrujSAIpVIVApIgs49q+z68+s8zza3V5HoY2I1UzkSwRuWzH6bpBksSoqkImFOI0x7xvoUuzjDTNeGa9xfYwZhilVC2DLMvwClHJjZaE4eZZTpBkrBRDcFHY+tqGyiunW4yjCY9ER1cFQRCQJzGdg33yXFBxXUzLxnEctPu8hkd+hG0apTRNEB71np88jyM/xNI1TE3Ftc3S1+f+EAi+f/k2t7Y7fPHTTzLf+OhaSHkuW96PUpH8tLX1CPFeVcYkeXxYieSNa5t8951bh++vKsUDL+1o0yhge2eH+bl56vU6jmWWPhnTUaKdimrj1JzLEysN4iQt0V9RGJUl9zgoWOhFsprImXRG4ZFyX1FAZClRLvkncZpKCHEB852QB6/vexLxpsoF2bAs1ETuaLdGKUuN433f/SjmxoGPrhuoipwr5FmOrsiW3L1+WLbVJslnAgqIkxhF1SBNQFVLeLRSTECDovqpuRKZVXEshr5Uq20WM4LdYYSmKgiRE4QemaKzXLdZqkurXCHAtm1y1cBXXMxKTlVNuZCNeWM3ZhTJuZlrW5xp2zy5VCvOVfC9Wz06XkLF0iQAwjAZhAkXtwN+6XyLM62jLpKKotDx5HdlWZYk6aVS7NHQFPqBlJifWP6mec7Il4ijOEnZaFrsDIKSKwOFVa6qslq3SvmbzX7At2708KaG7xtth8+ea3O3F0r4r6Nzes5lrSVtgYNYtqH0KTl2RQHLUBjHGTf2Rrx0Zk5yTcKjYpuWLpnbrqmRpgmqphEmgrZ9qPR79IJAxYDPnGry9l5Abyy/v6W6xfPr9RJ0IXlN0uxLU1XqFfvQJlqRBODpJXGyQDZbc5iaYHu/x3A0ZP9gH9M0cR23rFYm8HhVVajZFqGXPHStCKMEoSjomlKe14NifzDmd7/+Bi88tsEnH9/4SMh/k3b8owzbf5pIPoJQFMmE/jDmJNfv7fOVH16Z+ZmqqAik8dH+/j5BEHDm5AlMy8YytEOF2WPi0IvELhjC+SGEmEO2+CQmLPR6xUYIaQDVdA283v2Ch/L/jqaQZhlV2yJO00M5E0UhFzljPyztXSV3I0HVVBRNKYbUD74h5XwiRTVtEMUiWeIFjk6gJ6CAxWaVlt1ha3CoFqsgF05dVVisWSAoF9ooSQsNJoGpqbx0qsWfXT2g78eFhIRGw9H59KkmNdemP5LM/9c3h1zeGROnEp3UcAxeOTPPX1rXuXMwkqiq2Megz95uhFtxSVWTvVEkWd2lB0aOa+p0vJj9UcRi7fi5k2NoZdtosmERQpAJqJkaWZoQhiG2ZTMKEm73QsZRStO1Odl22BoEbA0iRCGrr6sqjy9V5PUAel7It24OCFNB1ZZSJnGWc7Pj03IMXpgyOoMCFi9kYsryowvjZPHLhdwMxXGOYxozfJaKpfH4QoVLO2MGQYquKWQIDAVePL1IIfb1wHvk8eUGS3WTjDZBGFG3jdmXi8PzcC2D/iig5lp4RfX1oKg4FqMgZH11iTBOiZOEIAgIgoC93T0EAqfQBFucazIoqugJuvG4ECLH0DSGvnS7nDxrx4WqSJfGb7x5nVs7HX75xSeoV45qav0oMaE0/LQi+ZiEUrRdftREst0Z8LU3rh5ZJCeyJpv3NtFUjY2NDdA0bENDFPpT77VjCeMYyzAwNGZudEVVZlRj5Q9lyyHLcixd56mVGtuDsJTLFkBSQCTPLVbIc0GOwDR00kxCWtNEthHmXRUvLQ5aRC4UyBNOLtQeeu4n2y5vbg3JRY6CgqopkrBYDKePC8cy6I18Xjo7x3+4uM04LBanolt3brHCXIEy0jSVrZ7P92/32B2l5HnKasPm+fU6n17WuN0RGG6dRsVmo2kz33AZjAMqjsXFzT5v3huiKXLXnAtBz4/5s6sd/vwzSzx3epFxEKEqcxgq7B708MYee6MOcaJg6Rq5IhdjRVVRi2umGwaappAd4yWw3pRugOMkxxUJuqaS5JJceqplsru7S6PeIFItvn6lwzhK0XSDfN/nzXsqv3B+kVPtRFq4KgorDYulmlV+Nd1Q4AURNVuXbZxcYCmQZILrBz5PrhwuHtWp9oyuqpyar/LmZh8h1PL7jFOJ1tqYqzDyDt01p4l6AE+t1qhYGjc7PmGq0HRUzs27tGypZu2H8czmp/yuTYNx0XJUyak3XbIsL1WX4RAp5ViG3HAVA3NT149YEU+iMpmLKId8nbrroGmaXEAFRHFE4AdkccjbV65hmiaO41CtVGg2asd2CCq2yW7hb+NH8js4Tq1bCIEzpc68ud/nX/zHH/C558/x5MnlD606mUB/P+jxfppIHjHez4X+UWVSeiOf3/v6G/hRjGuZpFleDvWCQJbitmWzsLiAUvIj5M3+oNlGGQIs05A3t5gwtuXwcyJrMr3xc0ydIJIPr4LC0+tt/Djlh3cGBIncfbcrJp89N4djqNJPJJhisfsROztyvvOpc8scXNrDi7LClU4lyxPmKyYrVZ2KI1sv6TFJ+MJKje1RSqeoABAgVJ0zbfsIWqzrxWyPEqK4z0LVZLVh8cWnlnhnR6oBO4bK2YUKjy9VmUgFhqng9y/tMo5STE1B0wxudny2e2M+taTx4uNrGIV3vWyDycrPD2Mu74xRNY2JI7CmKFRNHS/K2BomheCiUoglwsbqEn6U0I4S3h3tECQZiImGli7bTJqGlPJScG2Dg2HAu3tjtgchuqZysmXz+SeX+erlXYZhihCS0X9+0aWaDJhbmKNWq/EHl/bw4pxWzSVPU4ShM44yvnn9gP/dc8ucW3Cl4KBy2GJxLZO+NwIKodAsAxQ03UCNMqI0L+8Ricg7lHpP85zTbYt7A4fuOEBTFOJUEvTOLVRpu/oMoXcUhDimQZbLRV9RJOHz3GK1ICge3gvjIELXVGzdmIGSa6pKms3WFEE04Q5ZDIvFWSDQVfXIzj9OpdXx/UNvXVPlrHHqkZ/MZMpKRpHtxVq1Qppm1JtzBEGAH/js7O6ytb3NXLOOqptYto2u67iWSac3mFUTL9S6JyTGyfNbd+0jXYY4TfmjH1zmxnaHX3zhcVz7wR477zcehUMCP0VtfaTxo8ikBFHM73799fJB8SMp/V21Le5u79DrSp2tVrtVDtwnpEA4nG1YhS+4F2Vc3Bxwq+ujAE+vt3h8oWjzFIO/ySB+cs6TysDUNJJMlDtAgWAUhLx4eoHzy3X2hhG6pjBXMVGKJFaiWgTs7R3Q7fU4tbHKrTubNByDLz21xMXNAZu9EF1XOdWu8OxaHUNX8cMIXVWp2LJPvzeKSLKc+arFaqvKLz+hcGXXZHsgB+FOOuZnzs9jGnqZaC9uDnh9c0RaDA9V4ETb4ecfm+dnTjeoPbU0g66ZWA3/2ZU9vCgtHAoVhMiwVEGYa4y1WplEXNsoPqNyeE3CBCXP0S0pmSKvn0zMXpgg8tlENw5idE26Uz693uCHdwYkuVQC8IukvWKndPa2CVwXoVt8+07AwSgohv+wM045OYr5lacW2R/H0rc8C0i8Aesbq9QqVXYGPl0/oWKbMhkoEmLsmhpenLE1CFmuW9Rci0GB0jN0jSCKaTlSFifNREH6E6RJQqZorNaMUkYGwZEKoWbr/NyZBje7FrujCG8U88RanafXW+X3NHPPx/ct+oWqwXG8ozTLSdO4NK0Sgge+NheCUbE4R3GKyAWWoR/vHjoBpZiHKgjyWhwjC3RfJRPFE5kcgaqpVKoVKtUKCOnw5wc+gTdm0O+iqjqO65Z6cffHpOpxbZM8Ew81kLt2b5+tgwFf+OR5zqz+aCTGR4H+CiHwPI9a7RgV5Y9x/MQkkkdtbSVpxu99/SK90ayveJplXLt5GyVPWV9fZ/PeJiIXD/RPL30VdJ3fe2OTUTHUVDSdb1zd490di7/w7ErJCp4M4hsVp2RYm6qOqirEx7DcvVBi4s8s1kuOStU+hDuKXLC7t8vYD0mdNlcOYkQuhe9arsLnHp/Hvq8/Xn7WPGd7f8i3bg7ojEP58FsGTy+5PL/R5PmNRokMu3FjTBQnqKpGzbG4vjvgtbsDUFQcXUUpWjG3uwGXd8c8tVKT6BrLIC/aHhIaHbE/juXij5znJElS2LcKhsUaZRoaYZwyvQLIobzO3jCWw2FVQ1Wl0RiqSsWc3eX1/Ji7PclmX6pbfOr0HKamcq0b0R8HtCoW55eqnJmzCYMAz/e4eHvA7hgqlo6ua2iaRhSn3Or4nJ13WW3YHBwc4AUeq2urGIZFmCQ4linvDZHPLFoFDQNFUQueUUq94hKnckEPo5SlqsFi1WBnFBfoNYWocKu8sFLDMXVUVZ0xxJqOiqXx9EqFp5cr7G55nFirlxI1x8X0oq8pCsOHOXAWC7ll6NimzsALH/xaDm2la64pZxIPeW0Yy2ehVXXojvyH22unMjnN1V26k6H9fedpWiamJSuGPMvQFdjv9Bj7Eniyu7srh/aOU0oYpVlGnudUHZM4KboEDwg/ivn6xeucWGqhf8BEMB2PkkhAwn9d98FCkx/H+Fgkkvfb2vqgiSTPc37/u5fY6vRnfp7ECds722iaxvLyCo5lYRtyJ5QLcWy/WJ4ofPvqPuNYtkkmBDKhquyNIq7ujXlyiqQ2kR2xDR1VUbFMg7EfcXXP4/q+R5LnrDedYhHRyhK/XpFS6V4Bd5zwWfYDuNRVCZN+sZgJ9sUuX3pmFU1VHrgAhYnkpIzjFNs0ZDKLU169O8C1dB5fOuzHKlM74lEQsT1KSYWCqx2qcxua1G+6ceCVpLwwSlBUaNRs+kMfRZES9EJAlmflAFvTNMhSdCWT7QMhiO8XgwKeXK7RGXfx4gxLF2S5IFE0GiYl9FQgePPeiDfuDcsdsaYqnN73+NLTKzy1muFFSckvATBqNWq1Gt/a3sLQUxQKD5I0hTwnyxQ2ux5q0CdNU9bWDttvCDCUjFbFpjuOqJpqmUwm+mLzhWPfBFJedy1yIEkFiqrws2fbvLUt1YSzHJZrJhdWZHtK1zTJS0J5uDJ0AZ/OcoGl6w9NJpPwo+SIa+NxoWkqQy8sLI+Ph9BOwjR1dvZCqo51BFRyf1QKder3GpiDbId1x8FMJfOgaFQrjIKQ1dVlxqMRe50ulmUx9sZ0Oh10Q8d1XGzHZqHVZOjPkhiPvQaqyq+8dOFHSiLwaBwS4KcVyUcZjyKTsnUw4MbWrDmV53ns7u5Sr9eZm5tDURTiNCUTAsvQZgaJx8Wdro/IM9SidcVE5lvA3V4wk0gAUCBKMhxLLqp/euWA6wceQsiFeXcoE9B/9uyKJB4qclHWdQ3T0BgMx2zvbKOaLm92Ium3bshdfRjnXN3zWN0c8okTzRnJ+um4eeDhxRmOoaEh2ziuZTIKQt7eHs0mEqYWBCGrD0UIOVSeYl0rimTFT4ep6wy9iKprE0YJZ+Ydbh6M8aMM15K77aDwszg9VwEEQZJQdSzevtfjRscnTHIWayaPLVZ46VSTi1tD/FjCvlddnZ97fAHXlB4pu8OINzYHAFQL0macCW50Al6/0+PxxQqtmstwHByvVKwoGIaOoqpkaYrQdUSQMBoOCRSoVWskSYKu6eVCWa84PLtS4Zs3IsapgCxDIGG8z63XS4Y5QL3qMPJCBJKM6UcRmqrxqZMtXthokGU5k5c7hk5/5KOoCpauY2jaEeviSViGTphkhEmKycPtny1dJ4wSMiFIg6OyItNhFFXZBO7t2AZpmh+76Bu6VvKEgiil3lAfuDibk3aWcoj8q9rmDL9pErahMy5UCSaVzPRMZjrcqaF9lKSESUrNsag3mjSbTfI8l0gwP8AbDtjb2yuRYK7j0mpUjzWY+7lnz7LY+tEX8keZkSRJQhRFPx22f1TxKBXJ+mKL//ILL/Ifvn2J7tCj2+vS7/VZXFykWpv6ooQccA68gIV2izTNiB/wXpqqgCIVTcknC6wcaD7ID77iGAzHITvjlJs9yZ+YvFYIGIQpb2wOeOVsW+6eVQU/ihmNRoz6PVqtFnc9lTgNpOd5wdfQFMg1nddud3h80ZlxSpyOUSQfeFVRQFWKnXeOoRuMovs+p0IJDnBtg5oh9aqSJMEwJXMbIMuZGchrmir5H7nAC2JUFWrC52RVsOnrBIkAMgxN5fn1Oo8vN8pe9dfe3eWtbb/gbcBWP+TanscvX1jkLz67TJRL86WJgm6W51Rdi9s3u6S5KJKIvJ6mrpDGOdf3PR5bqDDyJI8lSlKyqT7+yTmX1+/2EYqKyORgPEoyFARnF2vM123CIGR/b588z3Ech4V2k/4wY6Pl8Pnz81zd8xglAldXynbYJJxy7iOT88RV0zJVglD6hhjFblXXVOIsK0mmYZJAItFXXijl8ieLqKaqZMUQXClY/uNAwl3jNJ2ZVahygEM2pWhdyorcJ3uvFMeetsGdDNfvT1Tla9OJVfAsw3x6cVaK+y6eSlxZnjMukto0YkxVFHLBTNtJzhCjI5WMrqlyNjT1yAkhCJKMJdso0GVQqVRoNyW3K4ol0djzPLqdLju7Oo1arSBDGiiqwrm1BZ49u8aHEY+qswX8tCL5qOJRZyRLrTp/5Rdf4H/+vT/m9nDE+vp62V+FQ4/zzVQUNrPFjsmxjh3KPbZU4+BGV/IfFIU8S8mEgqrqnJ4/2imWiBE5pL7bD6XUtyk1r/JcJiAVKZD3ypk2lmngBRGdgw6j0Yjl5WXm202uXdmTg93pvryqooiMIFGK6kE+aPWKM7MLr9uFhIWqIabk5pM0ZbFuzXzWifueZWiM/JDT8xXe3fPYG8XEWYim6SSpZH9fKKsvgaGrXN4e8u7umGGY4igJJ2oqv/riOXYGodQBA1abNqutSjkA7gcJb22NEEDVNsrqYBRJY6QvPrWEVbScJpHngrEfoRRy84eriUBTdWnxO1Ut+WGMpilUHLPU4Hpyucq+l7Hd8xBIAqTIM87NWZxamS8qiFgin+IYkcTs7HeIokgS51yXT6y6WLaFocnq0Z+QDHVVtuvu2/QnBeG16kpUHygoikzCksiozwhNjoMI29RJ81zO51BwJujA6Y+N3OlLUMUh2dV1rKNe9VDK3tdcq0QvVe+DDJfXukQ+2YSFBldl6n6ZgZdPAU1yBHGSzrx2JpQpgq4u50Kuffz5Tj6frGSsMhn691U/k3Mp0WUFElAUoEnTNDFNk0azQZ7nhEGIH/j0h0MsTcFxHJ74xCmCIPhQZhSP6o4I/BS19SjxUcJ/x+Mxr732Gi+eW+azn36er75xfcZMqu46jIJwhu+R5TljP5JwxDAp20WKAp840eLWwZitgSQCTlA75xZcnt5o4015JDimXLgmzPlyucsl9FPV9HKHT6FF1R977O7skmZp6f/uhRFzVQNFlXLfE5gvIiUTsNSwZhaVoRfI4beQD/OZ+Qpv7fj0xgGmJv1L4ixHVeDCcq38rOMglq2tPJXSKAWr+wtPLvDWvRHXDzyyPOfkgstLZ+YxFZkgaxWbb1/b5we3+3L3m+f0UOhEUN8e8vhynYW6lExxbMk3mMws7vWlq6JragghBRw1Q8fIBJv9oODbHN97b5gqqqKCqkKel6KCuRCs1K2Z12YFWkfu8mPaVZvPnVO41THZ7IyJwoCzS3UeW22XFYSua9iGgaFrCOFgV2pkWYYf+Pi+X0KwXVeysZfm2gRJgq5phA/ov4PUArNMg7xAPE0vtIpSzHOK9ScpJGBqrg1CIvwm9+lEgmXy/KR5XravFCEYPczhsxiu24aBaWjvOQ/xCg2uZsWmPz587XEM8kOgiU1/FByxn56OCYilVZMcooeFrGQiWlWXgX/0tdPXIheCoRfSrLl4xyQyVVVxKy5uxZVKBVnK5y6sMRr0+e7tW9i2zdzcHHNzczSbzUeadTyqYKPjOI/0fj/O+FgkEjjKAL8/HiWRTLzgT5w4wWOPPYaiKGwszfMH373E3f1eWbJL2OV984UpFIui6IRxXEJof/WZZW7se9ztBaiK9Jc4OefiBWG5gAshCkfEQzmTE22HS1tD0lygq1ICRdF08izlybUWncGQ7e1tTNNkfWV9pr+60XRo2SrdELQ0R9UEUSYl3p9bPyoNP+0XIkTOL5xr8Y3rOV0vJs0Fti5/79xCpdhJSthxo17l8r0uXtKhWbE4tVCn4jq8eLLJiyebU+8gqDgWqgJ7A5/XNwfSm54ctRDA9JOMH9zps9FyClVeq+TaTF3m2fsAyAtpEk3TiZJZBdrpOD3v8u7emP1RhGWaZEFUtLp0nlg+2mOeJIiKLWXeDU1h0Uwx7IClk0tHdqFpmpFlWSmBA5IYW6vWqFUl2TOKolIPbG93j7lGDdO20UwL0zSPLLKTiGIpIYPycMLrJLFomiYlbHSd3Z3dEgAw4Y9M1B+kAkROlgscy3jgQHkSAtmKrFUOdcMeFKqqMJhssCbMdXH8RlAmp4iKc7Tldn/Yls5gHGAWCKsHzYYAKo5Jb+xj6Bq2PmujcP91rLs2g3FQwt8faJ2twOdeOM+L508A0ryu3+/T6XS4cuUKcRzTbDbLxOI4zvva/D7KsH08Hn/kfu0fRXxsEsl7ha7rRNFDdlhTIYTg2rVr3Lp1i2eeeWbGC75esfnPP/cCr165wzffulGuZJOWzv0xES1s1dwSQqypCo8tVXls6ehiFcaSEV2xLfpjv3y4c5Gz1qzw2GKVd/fGpNlE8jpnvuZwvq2xublJo9Fgrj13ZIXVNYUvPbXEd2522ezLKqlmwIunGkd8rCeRC0FWmB8t1m3+4rMrdP2YJJO+GMZEGl7Ia9YZRXz1TsKBr5MlCfQi3trd59l2Trvm4LouFbdyKB+CHLQOwpwoydAVgabrZQKUXiEpgyBlrmoQpxmWaczMK1abNroqYbB2cT65gEwonKjptKruA1WTTU3lC08s8M6ux7XdEbqhc7bl8NRyRUp5HBOKopDkgihOCEZD+v0+q6urWJZ15LVCCKqFp7xlSmOnaei2oijYti13r+05HFNj96DHcOxB1idMcyqViqxYHEdWT0U4U9yZimMRJ9mxpFEAoyAoZmnG/v4euiqYX11F1dSyKpFIuxxdVQnjhLy4l+uVo+S7SahFEsuE1A07bs4y/Vkn98k03+M4r3qlAJ8IDlvFFcc6vjJQFDlb4/BZq7n2sVbOEzAAyqzU0ESFezqRWFNDe1mpSbkeL4yOoDJPLbX55OMb5d91XWd+fp75+XnZ7vZ9ut0unU6H69evY5pmmVRardYDk8X/v5hawU9QInm/M5IkSXjjjTfwfZ/PfOYzxw6tVFXlU0+eYn2xxX/4ziW54KsProiqjk1v6OPa5ntCFxUkemngBSUjXi1k1hUFfv7xeTbaDjf2PZJccHKuwoIRs7O9xZmTG6iGyYMKM9dU+bUXNuiMfJJM4HV2qDaOMnCzXHCnGzCO5SzjRMvBNnUqjnW0BCgWIJELvn1nxN4wwNRVHKeAICcp1wOH1QWb8XhM56CDaZo06zXi2MYwTPY7HVA1NO0+gbqCIaYqYJuHwpcTfxEvjGk6Bs+s1njj3ggvKgh+qoarC57faJSijw9aaGu2yadPGrywLr9nVVFKufH7k48QgoojkT67u7ukScq5M6dQNe1YCHLpk4GsIBRFqhYMx0cTm2NJDk+9Xqder0vZmTxlMJDXLM1SHNvBrbg0arXi/eQxjpvhTEJuROR9vbO9g6ZpzC8t0qy6JXlw8tlykZcKC5OBdX/sl9yX5D5pE+c+OHC56N+3e58k1OkW3IQE6Vo6YuqmOu61WZ7jBRFV2yrJoQ86B4Gcs7iWWc78Jv9g6OrsXKQgPFqGXqINFUWRIANmh/aywxCWM5nJcaq2xS9/6smHVoSVSoVKpcLGxgZZltHr9eh2u1y9epUwDGeqFdd1y2NlWXbsBuVhMUkkP61IHjE+jNbWaDTitddeo1Kp8PLLL2MYx+9KJ7Ey1+Cv/vKn+dMfvivROcdAZyu2FJebhS4ePxQUQshBavEQlcPEwq9Bfk44u1Dh7EIFXVXZ2dlhPPZZX1tH0U2sYrcfHlPeT+Y5pq5i6tBJMxYsA13TykV2GKT84du79IO0JALWLJ0vPrVI2zWP7OAmfxI07nU9DE2KHeZ5iqZKZvj+OCY35lhbbZHlGVEYEgQ++92uJHGi4KgaUa5i6CqiYMDHmbRIXWtXyt0hSEOxcRZRL67V8xsN5qsWNzoyQc5VDB5frFAxC/fBBy60Al1XJYdlsngIGPvRsUiteuFZsbOzg6qorK6tkuagIFFg08lHQktlO+vw+6VEgU0nNl0rYONTt6+qqKCZzM3Psba6TG84xvd9PM9j1O8hFK30WrFtmyyT90vNtfHDiDyfLMomvaHH9vY2tm2zsCAlfEZ+hGloqKokOyqKQrPqMvIiNE0rB/YCQRDJ2VfVMRkFEaqiShmfYyqEctGfQlRN7rvjYhzGzLcrmLq8BsfJjxy+djJcly2pCXH1uPDjeMbKeTqp3x+TVphjSCkc1zEfyF6fVDK1ipT1/9JLT34gORRN08pqBeRwvNPp0Ol0uHHjRlmttNttkiT5wEP7n1YkH3G8l0TK9vY2b731FqdOneLcuXPvO6Nbhs6XXrqACAd8553NmX+zTYPgPijtZOB3nMLpcTd7kmXESU6raczobeVZxr2tLZI8Z2N9o/RiCIvyXlV1Xr11wCiSsNfnT7SPPMyKouCHMQ3TKnf4X7t6QNeLsS0TReTkQmUUpfzJ5X3+8ifWyh2cEKIcCFdsixt7I4SQc+tJyJaJQFF1opLwpzLfbjIYm/h+iGIo2JbN+cTj4kHCKEhRC4vhimXwi08uzwzXy3NndjHcaCmcmpc7sfQYLk85LC/cD/M8LzTNHrAQhfFM5VNxTDr9ETs7O1i2xeLCYnmPiAIFVnUtwki6XEoS3PH30Gxii8pkdlxkuWAcRrSbNSzLYH1liYHnS+0o32d3b7dAWMmkkmc5tmViGSq6pnHQG7C9s021WpW8p6lzihNZwdVcm1zkcsaBcmRgP6lWxmFMxTZRgMGEYa4czlemvpwSGWWb+hGDqJkQciG3spyG6zDw/Flo4X0xWcibVZvBw47LhBQb0qq6D1XgnoQXxsw1KscqR8xEMRN8+cIp1hda73nch8VkMzCpViazlWvXrhEEEmqsKArtdvt9VRo/iTa78BOUSB7U2srznKtXr3L37l2ee+45FhcXH+n451bnabkWt4Y59w76mLpOmmbHs9xnBvHSM6F6jHtb+XJVInWWFmsSTTIa0z+QRk1rKwtHbq7dYcQfXLpDmCmFFIfCG/cG/PKTi6w2D7kKk3J+gtZJUdkehlimTCIgWz2GptIPUvZGEUs1q9ihQtWVO+s4SWm6BrqmkOYCcwplk2Z54SFvY5tSTuSgN2BnZ4dKpcL83DyKojA/P8/JFZ8rO0NGQUxFVzjVhHDYQXUrWPZx1ruHi2HVscjyjCB68CIwcT80DQ3HshiMH74QTSqfRsXhoNdna2uHWr1Gu90+9ly8IJZDXFN/4E758NjSPqBdr7zneUzOu16xSdIcTdWoVqpUK1UEcmDv+z6D4YC9/T0sy6LdbGDqGltbO7RabZrN5vEHFxAlCZqiYhn6sS06RVHQlMIcTt5OZRIuZyxMIcaK5JLlgiBKqBWtquP6BRMwiaJI7lOl0OCa2B0cF5qm4oUJpi6l9I+rvidhaBrjIEJReE9mvq4pUo3azqk7NgP/+NkawPpCk089cfKBx3qU0DStbHEB/OAHP8BxHHq9Hjdu3MAwjJnZynHeSj+J8ijwE5ZI7m9txXHMG2+8QRiGfOYzn/mRMrmqqjimxn/xC8/z3bdv8dq1u0eY2/fHZDjYrDoSunjfPSsE3OsHbA4y2llMvZEwHg0JRn2sSo1Ws3Xs7/zZ1QOCJMfUFTlQRSWKEr767gH/hxfXShOsmXagAp1hgKLpKPc98qoizarCJJPzkIJWH0YJrm3iRwmOofHkUpWLW0OiREKMs0K+/snlGoYqSWDj0ZjtrS1a7TaNRmNmQV6ouyzU3eLcBFEYEobBDEzWrUjb3OlZisgnA1spcPggD4lJ6JrKYBxMCVo+eJenqyr7nR57e3usLC1gOQ9uG4hC3WDoh4ctmocolTQqLv1RUFRVD65KAGzLYOhHJcx7ct4KsqKzLZt2q02apcRRyGAwwA+k4CF5ytgbH7luUAzBFSnXrqjKkRbd/WEWWnJJltKsVxj7EVmeHQ7skSrECmCbk9fmM9yQ+68ZQr7WC2OSLJvhsxx/jQtBSLmHoOYUys/HzO8MTVr6AoWwpI0XREckZBR5cFAK6G8QlsKS9yc1xzT40qcvPJIy7weN+fl5lpaWymql2+1y/fp1giCQwJoisUyqlf/UEvK3bt3it3/7t/mTP/kTdnZ2WF1d5a/+1b/K3/7bfxvTfP8tv49NInk/LonTFclwOOS1116jXq/z8ssv/8jOiZqmFSZLKi8/fYaTy23+w3cuMfAejm03dbl7dSyTJE1JihbQZFbR9STCStlNeG3L56UlhcWFeRbbLYL4qDR9x4vp+wm6Nmk3KJClmJaUKt8dRSWjvJSoL2KtVcVglzjNcWyLLEkO1WZVhbZrlANJBQXTNBj5EVphT/riySamrvL2zogoybENlSeWazy3Xse1Te5u7dLv9zmxvobtVkgesJNUFDANAyEUDMtmdXmZTn/I2PPodXvsJXvYjl2iwNqNWtkSVFXlgQgfeb0n0hxKed2zPD92Jy6VVMds7+yzuLSI5VakV8d9s49JTFqTk7abVcxoovjo57Qto2w1yvdOiwRx9Lw1TZXtugJ8MCp4JOIYnTFd08gUhTCMWVpakgKQvk86HrG7syvlPYp2iqEbM3OjmRZdnBzh31Rdq2wFTqokQ9dwNAkTniZDTkAJk/DzXM5WXDmzKJ9XIaub6aQxqZBrrs14yiF0+hqX3xGyuj8yXIcjLPnJwPw4r5OKY7GdZFSsw+91Iix5f1L75U89SdX5YEPwR4lpHsl0tfLYY48RBAGdTodut8utW7fo9Xr8q3/1r6hWqx94QP+jxOXLl8nznH/yT/4J586d46233uI3fuM38DyPv/f3/t77Ps7HJpG8V0y3tra2trh06RJnzpzhzJkzHwrC4f7W2ep8k7/2xZf4yquX+fY7d/HjjJZrTPmqy3mBQM5NZhjxfsQfX96j48XSHlXI3X0vUnirb/DnT7rl4HEiTT+JtCCgKQhUVSfPM7kyZ/L/ytQuaroisQvZ9+fWG3z/Vg8/iDAMgzSVEuxPLddwTbWEcdYqh/4fWZbjZRGNqsPzGwrPrNYJ0wxbl97lpqFx++4mvh+wuraKZlikWXrs7vcQtSM/k+RuxNSqFRq1GmGckKQJvidJfd5gwPaOSqWoVmxL7jirjoUfyaHz9OdVVIUsPVyYguj4nbhAEHpDdjs9VlZXsC0bhEQEOYUfzXTlI6XsZxPMBGo64ZGUMiUziaE8uyMqyJMwj5FOn6DAps9bIIj8MTt7HVZWVrBtuWFwHAnvXlmF3mDEaDSm2+lSq9h0dMmyd+xDboNXSOq7tl6y7SeJ4f6W3oRtP0mCCgpuxcQLQnRNP6xgBWQioz/2qFgmSZ6TZjmmoeIFMY57HwS9XPQPBRJdy3hg+/f+4fq08vX9MfE6mfj0VG2rbNPdvxZMkzS9MOYTj21wemXu6EE/gngYIdFxHNbX11lfXyfPc95++20ajUZZGdy8eZNf+ZVf4Utf+hLPP//8R4bi+tKXvsSXvvSl8u9nzpzhypUr/ON//I//fzuRvPPOO2xtbfH888+zsHDUe/tHPf509PyUf/NuzPeuJUSDfVQEF1ZqvHymjabJBXZ6gZgw4r0U9scxmiqlwrM8Rysw/1vDiGGQUHeMcgc2jZufq5rYukokVNRpOZNMYGgKLUefWdiEEHIXm0vV4ufWGxiaylv3hnhxSsXSeG6jxfl5u6xEjuz0KIbfXih34QZo8eGCfHdzkyTNWFtfQ9cKDknOzIA6m/AWCqHC+0POQorP6gsajQYLc23iNGXseXLwvFsMnl2XkSthshNS3QS6ez88Vp6LKNn5fpSQZhmjXpeB58+q9xYRRNIHfLKIW6ZeIH+OeViL5OM6FkmakqbZsYlhEhMV5Jor+ScPAwRMI8zCOGHU73PQG7C6unpsWyHJoNFosLQwR5ZldHpDfN+f0QObVCugS7kc1ybJMvwCuXV8FEnQ1AvNsUQqJ0A5W5lG+PnF9XNNnSTJComZ40mVEw2uumsRxOmxl3gSk+F6vbBnfthrJ4mqapukueyRCSFmuDrTrx0HEesLTV55+vRDDvrhxvslJKqqytNPP83/8D/8D/yNv/E3qNfrPPvss/z+7/8+/+bf/Bt+8IMf/Cc428MYDAa02+0P9Dsfm0TyXhl3ssh3Oh1efvnlDzSQCuKMb17v4CcZn9host46SuBTVXUmkWS54P/85Ytc2R1jVmqYtoPX2eHNe0N0VeHzF1aO1wVS4GDoI/kTClmWSk0sQFEhzcCLM+rO4eI28g8Z8ZDys48v8sdv7xCJQmOxUAr+xEYDS1cLboUtvU8KfP1kYVMUaa16YblKnOVosoVOo+IwDmQr6EGtHZjdhXf6Q7qdfVA1VldXj31Ip3e/iqLIBPegFWCqIsjyYuqLcnTw7Pn0+3329/Yl5LXdoFKpHJtEpkNKvAj6B3uESc7a2hqaevyDPNHrqjkW6TEtpvsjCOXGoFmTc5GHhcglKqhZcx8IWZ0975BBt0OaJqytrT20TZtlOVEkpWaq1SqVSgWBkGZPvs9oNOLg4KDUA0uiCs16VSoGPwTIAJJM61imvEfuqzSnkV0yoeTsH3QwNBXLNA8Z9gVqbDKwn0SaCzRVld7y74GqSvOcXAg5v3vIcF1BVvBRklFzLPI8f+A6Yhk6/9/23jtMrrM8G79PnV52Zmereu9aNTdsg7DcLUt2AAMOGMdfcPhipxAScAoxIXyYOB/wgRMwEDAJ8S+ALRdsy7ItSzbu1mpXfdVXbWen7O70ctr7++PMOXumbtfu2ue+Ll8XSKOz75ydee/zPvfz3Pd165eAuQi6iIbRDiQuXboU9957L+69996aIxETgRMnTuCHP/zhiE4jwBQiklqIx+PYu3cvAGDt2rUjIpHXj0fxwNOHEc+KIES1xbhj3Qx89fqFumgNDGokGt7rHsDRcAocQ4Fl1JkAT9NMJAeiOBzJYF06p4dYlaLOzoEiCkSJgOd4ECKDKAoUok7Fe23l8y2apYnXYcM8QnDd0gYc6EkglhHhtrJY0erGfIMpZCaXB0DBaa1gg1GYKlYDGyl97sBh4wvT+0MckwkQivYjFeuD1e6Ex+ut8TRb6OxiaHBMrVcNIlvo7gEA4zZRJDz7fJAkCelMGulMBqFwBAzLgrNY4bA7YLVayzYNQRQQDoVgtViwcN6s6pYY2tssiLOSpMBuKXdNLoXNymMgkSmcfATUaEyChWeRSGdVTycrV3VDlBUZ4VAINEWhPtAIj9Ne1eZdA8cxhtZpVeS38BZYeAvqvHW6H1g6nUZ/NI2eYBB2ux0Nfi9kMFWfklUzSfWeVZrDMSKbSiCWSKG5uRk2Kw+GopApnBwVouhlP4qi1Hmh3GCpUytfVdr0jYmgklRwCC5ps9dgNIRUuygZsGzl93bt+iVwOyo7QEwECCGj9toyDlGPtqT1ta99Dd/5zndqvubIkSNYsmSJ/v8vXLiAG264AZ/85Cfxx3/8xyP6eVOeSM6fP48jR45gwYIFOHr06Ij+bTCew5efOIicKINn1VOBKBM8/v45zPbb8dlLZuivLS1tnenLgBQ2fg0URcHm8UPM20ExLIAKAq9CkE30o8lO0JOmIBPV1E4i6ia7tBBiVQkco3YMOW1WzAswmFNfmzBtFg7xdA5z/H6ksjl1ylmbVDeI6ur7Ux1p1VKapWa3UyKRQCYZg8NdB6/XDSvP1TwNMAwNWSHIC0JFK5FSaBsWAYHLVn1TZlkWDfV+CJIEd50fuWwWRBLQGyp0gRVmL+x2uzr5HepFwFcHu8uNdG7otXgcNn1GQpQkVQhOVz6tWS1coQ1V1Xw4loGFq5y/oQ50qo7Cmv5UqQtMkiQEg0E47VZ4fH7QFK3Ob9ToAjMK5rrI7yguJ2p+YC2NASRSWeTyOWQyGZwLhkARGTxv0QmZ4zlQoMo0lGpDoIQQJGJ9iKcyaGlpUXOCZAIJCjwuO5LprDrsqqjlLhvP6R2N2ucxkakccGW38sW6iD7PUi6uO628eh8Mv6pcoSmidGB49fxWLGgdvzL4cKA9lI7G/Xc82n//6q/+Cl/4whdqvmbevHn6/+7p6cHGjRtxxRVX4Cc/+cmIf96UIZJS5lUUBV1dXQgGg1i7di38fj9Onjw5Iiv53+3v1aNMtevzLIWcKOP/23O+JpG01tlUjZsArGFpskLgdDjwxzdfijf3H8fRcyH97yRJQm9Q3eSuXTEDh8J57DvXr1qE0xTWzfVjdXPl1j5NuFcIMUwAV39KdtosiIQl0LRa6rIUDO+yeaGMRABSVNdPZvKwWbWa/+AOTkDQ39cPIZeB1xeAzWbTBwG1KfTyB+Xia1cSkYvXPbhhaUI8xzLgufKNk2EKG7KiTorb7Q4ADqxoaEQ8mUIilUI8rs5eEEIQ8NWBsww+ddZai93KIWEo8Q1qROXkU0lc10Rqt8OmOuca7oeFLy7J6MOXPAsa6tyRIAoIBoOo97phd3mL1laNIBxaLkgR0anrLhX5rRZOzxCxWW2wWW3w+/yQJAnZXBaKmMe58+fAsiy8LieyWRssJac84xBoJpeHJCuIhiOQZQmtLa0lm6TaBWYtRDTkBUnV7oiie4IZ24tTmZzeLZjJqeXRfBUNRRPX3Q4rEplcUVCWEWrJTSUfbTLf73bgqlXzyy86wRgtkaRSqXHJIgkEAsPWkC9cuICNGzdi3bp1+MUvfjGqtugpQyRG5HI5dHZ2QlEUXHHFFXrXykhTEnsTOVWbKNnMaIpCKFFcuy4lksvn1mGO347uaAaEocDQlGrpTYDb17SgzmnFzZevwNxmP17dewzJlGpjYbPb0BBogNtpg82aw6oWB0J9MRAxh1ktrop98BQw2FtfQCUhXoNqT58f9AcjamkMhAymyWGwnq1ZxBuRLXniVIiCcCgMokgINDaBNQjURVPoFK3b8GsW8qVicjWbEhvPIZUrF30HO4eKW0N5lq34xJ/OCbBarXC7nOgJhSH0C2gO+JFI59AXOw+WYfWZFZvVVrYWYwtxKXRPLfugG251cZ1CIp2DlWchE0AUq7cAA4BQ2Cg5iuD0hQtoCvhhtbuqlC+KCUINOyt3CNCgi/w2C9J5oUJXmQqWZeFyugC40NTUjHgioQZ4RaJFfmBae7HWJszQQF8oBJqhUR9orrrZaGTgtPGFgUZZ16mM7cWEELUpIqV2aBGKqGI8qpRzqEJqI8+CoRmkpMoWRZo+kyq0FI9HZO5ooO0lU9208cKFC/jYxz6G2bNn41//9V8RiUT0vzOa3Q6FKUckAwMD6OzshN/vx/Lly4sYfaThVgsbnIWarRqHCwx2nyxsKD4ZaGK79mFkGRqP3LEKf73tELp6UxBlBRxDYXNbM/5so/qEQ1EUls9tASVl8d8vvAGvV4341J4cAdUB12vjkJCyeqeJcSK+1J+rFLoQrxAIkgSeZQv29Nr0sVw0nZwshBBpm2YtjyLtidPGsTjZfR4Mw2DGjBmo5vitdV657UP7HwGDNiV2K6+X1aoP+FEFIZ6DrCiwcLWny0VZRm8oDFnIYf6c2SA0A7tLLetp9iN6N5PdBofdAZfTCafNAlFRilqIS0EICpqSBXTBlaAWcoKk5tU7bRhIpit3Dmn3JK12p81sbYTd4RpS5FdjlynYOLU7rlbNnCjq58vjsFWMsS1bS06Ar84LD5f1PgAAgFFJREFUxaPA5fVCFES1JTuVRl+0DxzH6V5g/QP9cDusaGlpHbLpQbeWp9SQL+3UW826hWZpZPMCLByr+4JVEuwBlQhTmXzFeOHSzrGrVs2Hzz05vlWa0D4SjUOde7q4ee0vv/wyTpw4gRMnTmDGjBlFfzcSoX9KEcnZs2dx9OhRLFq0CLNmzSr7JYyUSG5e0YifvtGNSDIPmqYKw3lqsuE9Hym2R9AIy/hhnOmz4/+7Zz0OB5OIpgQsanQWxcsSQnDs2DH0nDuH+z99A473JnHg1IUyf65SQ0rdLtumeiRVIxENmhDvtFkgiIOTumoIVbHFBTC4gXsdVgzU6qICIOQFnD1zFm6XEzNbm5DK1s6vAFGfDL0OW9U0OyNkWUGmMKMSr9AWXIpsXoTDzuvkWOmLqBAF4XAYgiBgVusMWK0WKIQgL0igKRoOuwMOuwOkvtDNlM4gkUggHA7D61YJBSwPjuNq3huaUk9uQ1lzAIP6lstuRU6oLFInU0lEIhE0BhrgcLohSnKh1JevuuGok+CqdlBt0NAIl92KeLpQNrLxyNTY9HWbFBBVw6Eo1dnZ61XtarJZpFIpxEIx2HgW2byM3nAf6rxu0DRdlQTtNl4/FTOFAdNUhcx1iqLgstnUpghCIS9KqkFkJlcm2FMUpaY4Fk7npfHC2mlH+xnL5zRj6ezhP1GPN0aTRQJcfIuUL3zhC0NqKcPBlCGSRCKBkydPYt26dVV7mEcabuW2cfjpH67BN57rwr7zcSiEoMFlwZ99fD4+vri4fqj90ktb9iiKwvIWd9m1JUnCvn37kE6ndXuWpsZGzG6qw4vvHikyWKxkUa/q4urwodG9txq0sCy+IG4qilp7TsVSUBRFL0docx4sQyM+hNVHOp1WN1evFzNbGpHKCQUxt7btCM+xSGTzoICqsx36+yxYgsRTuZqT4hpsloKwT6DPhWjZGoD6+9EsV1pbW2G18nq9vHRwkAI12M1UV6fmhfQNoD+RgpjPgWVZsLylYl6I1cKqT/VEda2trhENGl1qefXG2r+GWDyGgf4BNDY2otFfp5caU4UJcLXhoPzixlPf4LUrd4E5DBu4LKsuvtXWbeO5wXjlChoOQzPgeR75fB4+rxcOhwOpgh9YJBKBxWpBfZ0HhGKLfNQ4lkHe4MYsKwTpbL7i75JlaXVmBerpg6EYZAUJdqtFHSgtnNhBVL0snc1BUQbLV0bb+2QhMZGiKPjcDny0bUH5L+oiYjQdW0B519Z0wZQhEo/Hg6uuuqpmD/1QDsCVMD/gwH/evQ4XYllkBRmz/XZwTHnpwUgkQ9nPp9Np7N27FzabrcyuflajH5+7/hK8vKcLx8+HARROJCWbhKZzEKCmN5EGlyFTm2UY8CwLl8sFq9Wqzg8kkohGorBYLHC51LkMiqH1DYLC4AZOQBCPxTEwMICGhgY0Bfz6ZpUq2I6UTn7r94mmABB9QzA68lY6ChutwgdnVCqn8XFssR17KiuAZRlYeBrZnAhRFNUESQuPQCAAj8M+eJorzKhUa1tVN/Y83C433C43CCHI5rKAJCISiUJWZL0LzO1yqsFjuo3ZoEbEUHRR9xAhBDaLpYhMizq1Mjn09fcjmUiiuaUZgTpPWcluMNa3OPGvkpW98dpGgtB0HOMJq9q6GZpST7Ulvy5Nw3HaLegbSCDYG4TL5UJjYyMEUYLP4AeWyWQwkEhBEVX3Ad5mg8PhQJ3brQ+nFr9Hoew9ckxl7UmQ1AFDr9OBZEbtAlP1MvXfGU8riqJAkmQ4rTxoCmBZBjdesgz8GC2TxorRzJAIggBRFE0iGQsoihrSL2ukpS0jWr21e8i14/NQ149Go9i3bx9aW1uxaNGiih8Wm4XH5itW4sCpHuzuOFZW2lKNCSX9e6x7Ezmsg228Bui99YX5EEEUkVcIPE4bkhlanx+QZAnZTAaikEf32TOq6OxQ/aysNqsePdrX14d0Jo3mluaCz1XxZpXNi2BoNb+iVKTneQ7Zko6kVJVN1m7V/JoMhGHQH4yZHhSl+myJQvH9lwpCPEcD3T0XdDt1dxVRu1LbKsexhQaB4lZuu00tISyur0cmm0U8kUQimUQiPgBQjH7veIsamVs8na/es2qT/FRBiI8N9EHIqdYyHpejatu1ZOgCS6azYFmmqpV9afNDXlRtYpQquk/puku7yopAgGh/HP3RMHx1dWhuDJSdOFmGLSJkQchDFvLIJOMI9YZ0HzW73Q6eG5zQlwx2LCh0V1WFYXiVodW2aIZhigV7DHaCxZIZ0BSNq1fNh989+e65o50hAWDayE80RpPbPtLrVyMSQgjOnDmD48ePY9myZWhtba15LYqisGp+K2YEvHji1fcR6lXbhGmKBk1RyCslP4eC3sZLYdBa226xDJKI0fKbLvd2YmgGzQ0BpLJ5eH1+VXROD2Ze2Gw20ET1SJrROgN2m7XQe1++WcmKGqlqPG2o8ydVOpJKNiu+wuZthHHDV8XT6g0HmXQG4XAYTY0BeDwesAxTcw5Gb1u1qQmVFIWKZSMNqqDNYUZzEyhKzerIZNT/euI9hdZjdWO0FWr46gZHVZ07UYiipjBKEpqbm+FzOZDOC1XXDBTb1LAMM6SoLYgyCCT49BjoGsJuYWN2O201XYoz2QxCvSH4fD60NjXU1KoA9XNusVhh97gBBJBMZ5BKqZY3/X39YFlWL7tqfmCKokZAW3i2ZpkTUDss07l8UQt3qWAvK6qz7uzGOiyd1aDvETRN6/9dbIyGSFKpFACYNvJjxXBSEkd7IhkOSqfbNWimapFIBBs2bKieDVEBPrcDn/zYGmQGQlBAwcqzNSeojbnVgighJwj6kKFRfNSgtX067Zaipzyj6FyPeqTTabW1r2C3koz3Q8jbwFmsZV5UGoynDSvPlcxLVIChvKQoQ9uOaBt+nduuDq1VQDweR39/PxoaGmCzO9RaOq1mgtdqiKEKXWAuh6ViBnkpFIWAgtrezXEMXC4XXC6XXgLTkvCksASbzQaPywm73QFnYdajeP5C1XEoikJLSwsYmoYgK6q+RVUuGRrBs6xKhFVifY1w220YSGZrliM12K2cej2arjhbk06nEQqHEKgPoN5fp5fOSv3UytbLMXpOvNVigdNuQzYvQlHKO+hcTjusNjusVhtYjq05HMuxTEEnge6llq2wjmgkCp4B7rn9OlgsFsiyDEVR9P8A6B1UFEVdFGIZjdiutf5OBvGNFVOKSIYCy7IQxSG6isaASkSVz+fR0dEBRVFw+eWX646sIwHPsVjWWofFq9rw4nuHh3w9gfrE7rBwkGUFEhlsS67UZUSUwTRDujBVbUQul0M0EoXL5YLf71fLaqKAbCaNUCgClufgsDtgd9hhsZQHUDEMrXck1fLp0lZPiEqItezgNThsFgwkM7BwrB4bW7gK+vr6kEqmdCdc7f0nK8yoVIKuz1AYcu1WnitYk6Boal0rgdltdhA/gSiKyBZaZHtDEfA8j/o6NxjeApbjIUsygsEgOJ5DQ0NDwXp98CRH1+hiAtRNWxPMtVjfau/TamF13azUiLK8bZZGvpATX8luPplMIhKNoLGhES6XQx/uA4x+apVEfqKfMoBSN+Gcnneu+YEpooD+WALhcET3A/PVecByXNFwLKA2jGQNxJgqWYd26iOKgns/fTPcLrUkpG3giqLopEIIGfQDK5DJRJLKaDSSVCo1LfPagWlGJAzDIJcbuoV0LNcvzTzZu3cv6urqsGLFilF1YQDq05CiKJjV6MPnrrsUL71/BCd7IlVfrw0oJjJ50DR0B9xqrao2Xv1iEYIicRqAvkHU++vhdqs1bb/bqWZi2Byob2hEJp3GQDyJYDAIiqJ0UrHZbLDynDrlXcOC3QijX1M1O3gNWsjSoP5Q2EhTWYQjYQh5QXXv5bgy91/jjErFDibrYAfTUGtnGNWhWds4S63VB38vFDiWg6+pAamsAJ8iq8mG6QyEvgF14xNEPVudpmg4DZ1UgHryqdbFZOFZddDU8HuuZlXC0JTaBmx4ZtCNKCs8uVcStjWCEHJpRKNRNDU1qVPwlvJOPElWIMpqqTNl6AIsHSLV7tRg5orqEkCBQn2dB8l0Dq0Ol+4HlslkcPrMWdAUBZ/XDdAc7A67mj9foYyqr8NmwfFTZ6AoCj51/ZWY0VDe6Wksa2lkohGL8Xs+ESWw0ZS2pms6IjDFiGQ4pa2J1EiMDsC9vb04cOAA5s+fj7lz547pKcH4hGS38thy5SrsO3kBr3UeKyu7aO2yiUxO/eBLBJJUyCev0MbLsjREWdY3QUmSIRU2we7zQSQScTQ1NenCsstRvDlKMgFvs2OBz4d4KqP7MkWjURBFhsvp1H2ZmMJmVC18ymkvt/BIZfMVLVDoQvdXUTcbUfWJWF8ElFJw7y3cO7ejXFyv5mPFcwwyQjnx6k/tRbMbBBaO03M7BjFora5NravrGNw4GVr1tHI5XcjmsggGg6hzOZDM5nGm+ww8LicSFgtshSlxI0o70uhCi3ilj39pXj0hSk3BfPDJXc0jMRohGkFAEOnrQ2wghgXzZkMGXQj+qvywppc6C12ALMOo5otVHnCMFjWKQoqcoTU/MJdTLR9qnzuSSyE+EEUvw+vNDpofmL5uheDYyW6wDIUr16/ChqVzKv58IzSSqHZa0faV8TqtjFYjMU8kFwGjaf8dCTSiOn78OM6cOTOmDHgjjE9FDMOAoii0LZiBGQEvXnj7ICLxlP5at92KRDpXNGSofYFL5zAoSvXoKhUsFUJw4vRZEFnEnFmzQBUsKuxWrvKMSOGJ3Wm3guc42G12+H1+cAyFSP9AUWux9uWWZZXcMjn1tKGbGlbYVMqf8AmsFTZCURQR7A2C53k0NzfDblPbaotOFyUoTTMUCxtCabu1fm8UUpjdUM0i7dbqeSHA4NS6y26BKMtF80Ea0pk0wqEw/H4/PG4PmngWoiAgkUohkUwhGu0Dx3N6IqQ2d6GRvtNmgaKgpnZWpFdZLEgMkROvPrnL8LnsiFUQ4gkI+vv7kUwm0dLaApnQqqX+ML5fgiCB51mAIjWLnIDqEpAXJPAsDY5hK17f6AfGMgwURUIum0FfLIGBgQEwDKM3O1gsFoRCIVCgMGf2LFy7fumoNt7S04rxv/E4rYxWI5mOHVvANCOSiRbbKYrC2bNnIcvymDPgjTB+YI2o9zjx2Ws34Pf7T2LvsbNwWPki0bn0C1JsQpiFw2atUIKQdKG3qbEZNMvAYbUgL4hVO7Q0GMsoNE0jmc6hzluntxZn0hmkM2kMDAzorcVetwsup7No/qMyBrvMOJYpa5nN5XPoDfbC6VLbewkopLJ5eJxWZHLVy3rGewMQeJ1qB9NQm0uq0G5dLS7YCKJALVlxLBiaLtIrEskEotEoGhoa4HQ4C2sRYbda4bDb4HC4VNuWjCo6l+bX22w2UBQNmUjgOXbIrA6WoZFIZcsMHSuB5zjE0jnwPFdY16D+FI1EkcmqDr48x4NhKGRFCZIsq6fWKt1ogPrHFIB0RhiWyM8yNNK56i3lgyCFbB0KnNWOhfN8SKazyGYHT8mSJIGhGfh8ddi0diFsluHnildDpRKYRiqjPa3Isjzi+O+L7bM1nphSRDLUl38iS1uZTAbxeBw8z+Oyyy4bUfD9UNDeVyUSZBkGG9cswqyGOrz0/mHd5qHaxql1sKgllOKNJC/k0dvbC5vVhkAgUBiEVG0+7MOw+VDXqLIBURRQFPRSC8uwcLvdcLvd+saYzqTR09MLhgbcbhcohoPdXrvrhGVopDK5ovKSNmFf56uD1+PVX8vQNHJ5tb5utXA121YBVVCPpbJw2HgIolLz6drCs+rMjkJqGi2qUFMoU4ap9XQuj1gshlgshuamZt1YVFuHdj1NLGecDJzOQnhXLq8Scv8A4qQPoYKnldOhhlBVEsuBwtR4IcmxkuOvERSlWrwQhQwOgjqsiCcziEQjyOfzaGlpKZTcVBsW7YSYTNfWwrQ4aWBokd9oe6+3lFeJDjDqLfop3MLDZrHAYrUgm8vCalVnVOb67TjddRChs6cQCATg9/vh9XrHrHNUK4Fp5DLc08po50hMIrkImKgTSV9fHzo7O2GxWNDU1DSuJAKoRFKttRhQdZHZjXX49MfXYmf7MXT39te8ntNuwUAqA5Zh9Dq4Vl7xer3w1nmLiIjnOSQz+TIhvhKsFrV7CQRlbr8aaIqGw+FQNz+bBX2xBNKZNORsAv19UbC8RRfsjdqAbstBBq1BguEootEoAg0B/Ym+cFeKyl+VxG8jjPYgmZxYUaDWoOeFKEA1LURfRUGz0tqqZVlBWsojl04gEVdjcS28peI6gMGmAM25gAIFq9UKq9WKpoYG5AUByWRKn7sIchx8Xjd4ixUsxxs2ZgKGoSHmBz//pbG+xgRDp63E8ZkA8VQG8YE+KJKoZokU7HQqCebVCMJZmPsxoprI77CW58QbowOMeS52K1exq04QJHVOJBoGx3JobGzE7CYfbr+6DZIkob+/H5FIBAcOHICiKPD7/aivr0d9ff24fI+rCfbGUwtQfloZLZGYpa2LgInQSDSjyCVLliCRSFTd7McKrXOrFMbarMtuw9arVqPzxHm8vu9ExSE6m0GLUMVmGYqQQzgcRiAQKPogEkKKRGqjEF9pQ2ZZWn0CLfxY3e3XoU7Elz5tasKztjECgCxLUEQB4f4B9PWp2oDD7oDH7YTI0Pq1CQjOXOhBJpXC3DmzAKr4S1e+RsMApqIUzajwHItMSVdbuUCt3cvyvBDAoIVoNvyF96oL+YZ7Go6Ekc/lMWf2bPA8p5eMOEMXmhGyrCBVZmtCwNAUaJqBx+OBx+OBoihqsmEmg/6BGFiGBs2pLbKN/jpkKpzItFhfYytv6ZoB9XPW29sLQghaW1t1oqlkwzL4b4oJgmWZmqdao8gvSgpyFRoeNGi6mdNuRS4v6q3JpZBkCcEeVTebM6sVFp7DDZcuA0VR4DiVWBobG9XArYRaZjx79iwOHToEj8ejk4rLVc2uf/gY7mmFoihIkjTin5dKpUwiuRgYzxOJoig4cuQIQqEQ1q9fj7q6OnR1dU0okRjXrk0MG3MLtA/emoUzMSNQhxfeOYT+RFr/N6VeVIQUZi3SKcyZORMWq7Woxl7aoaWifCIeqC7cgwCJdK6sXKQ+eZd37DAMC4ZhsXi+F8lMDql0WtcGJJno0+GpVApCXkBTczNA0WpoUaHmX/pUb4T6FD7YecUwNMq6v/R3Wm7fUutUo9qwD27KPMMiaXA4VhQFvaFeKLKCltYWEKiOtWreSx40BYhVRP4iWxOaAscwZeugabo4vz6XBxQRyWQKB8JhWK3WwZNeiXOx1srrdvBIlHW3yQj2BkHTNJqbmwFQSBYMHXNidfcBDXr4mJ7jUh2SrDonuJ3WoQdYQSFVmE8SJLlsVkaSJPQEe2C1qO3UeVHCTZcth8NqKb8SRemEPH/+fOTzeUSj6mm3u7sbDMOgvr4egUAAPp9vxPpFJVQ7raTTaaTTabAsC0EQhj0MmclkzNLWeGA4GokxM2S0EAQBHR0dkCQJl19+uV7fZhgG+fzQ1uijgbG0ZTweA4M+X0YEvE58dtN6vL7/BPafuACaLvaiUrO+w5AkCa2traAYtvCEZ9EH2Wq5+Bo35EQ6B5ejXLg3wlgukmSl7ARQilRWAM9xCPjqwDbUI5nOIZvLIp1SS3AEKqnkc3kwNKMHRDE0hUyF8CsjiKHzihAMqf1oJyuP04bYMIT4dFZQ18JQeqi8cTNuaWkZ3BAKROt12YalQQmiDJdNK7kQVPv9aCUwC++Ex1sHWZLQF4urJbCB/mIftcKwJiEE2bwIl82it0Nrcb4cz6GxobHIGVmSFYBQ+pxSNahW9oM2+ZXa0I1QZ4GG5/asldWoEvdmURIR7AnCalNJhAKF9UtmY3aTv+b91WCxWNDa2orW1lYoioJYLIZIJILjx48jm82irq5OP62Mx+atfR7y+TwOHDiAlpYW1NfX6w+MwxmGTKfTaGxsHPNaJgNTikiGgvYUMZqOCA3JZBJ79+6Fx+PBunXriq4zkV1hWmnLWFsdKviGYxlcs3Yx5jT58Mb+U/rpRJRE9AZ7wbIsWltb9Q+kJsS7HdaaPlcatA3Z73YinqlsUWKELKsblcPKD9ldpK5ThsWmGh5qpYhcLgeb3Ya6ujpkM9kiW3KX0wmXywmX3V4WWlQJFEUhJ0qwWbmaug+gDXhmYbcO3WWkXVvzGoslUugJBmHhLWhoaKhQ4lNt8ofuSlIn6FOF4dGhOp5oWt3EtWHNGU0NhawOoneB6T5qVhvqfV5QDAdRUsDzLCRJRE9Pjz4gaVy3UQQ3TqJX+sxoJcxqbehGGHURo9tzpWsby2rEYK+TzubQ09MDu92O+vp6UKDQUu/BFcvnVr2vtUDTNHw+H3w+HxYvXqx3gEWjURw/fly/P/X19airqxu1YJ/JZNDe3o7GxkYsWrRIv9/DHYY0xfaLBKPV+2iIRBsynDdvHubNm1e2IZSWn8YT2rW1D9NI0tPmtwTQWOfGjvcO49iZIHpDvXA61DbZsvAvWi23EIKClUTtDdZh49GfSoNj2SLxsxq05MJqQrwRdquWeUGBIjJCwSBsNjv89f5CJ5YVdXVqa3E6nYEk5nG6+wxYlkW91wOGt4DnLRXvk7H8VUv3ATA47KdUG0oshrapUqDQF0sgGg7D43LB7fWWnZRsVk7fJIfqSmLo4gn6Wh1PZfb0Bddkm4WHrCh6w0M96iHkBUAW0BuOQhAEWKwWWCwWpJIpBPx1sDvdRdcuF8GNk+jFHmkWnq3QHViZIDRvrKJ7ZFi3kTQZhlaz2EvuZyyZQqg3iPo6D+wuj/o54VnceNnycZs8t9vtmDVrFmbNmqUL9tFoFIcOHYIkSfD5fPppZbiWSNlsFu3t7WhoaCgiEaBYW9FOJpWGIXt6ekbtnjHZmFJEMtTGqm2+I93sCSE4efIkTp8+jVWrVlU9Pk70iUQQhBGTiAanzYIrFjUheqEbos8Hl6s8bAsotnnXMt+rlbisPIdMIdp0KCG+VLgfdPut/LTJc4OtqlpHmc/vQ0tjQH0SNrycZVjMaAogmSm4FmeySGXSEGJxMBTA8FbVQdZmB03TsBSML0s3wsqdV+XDj6VDicYN32Gz6NpPNptFb6gXXq8XHq+3UHoZ3PBZVksJrNyVVDzNX1nkNwraRssUj8OGRIUJ82yJRkRRFOrcLmTyecywuyBJEhKJBGKxGAAgOhCDjyiwWO3gOF53Za5UOiyeU8qBYSg9WKoMFQiCYeiqp6tiAs8VtRtrEAQBPcEeuJwu2J0euOxWZPMCrrtkKdz2kXvcDQcsy6KhoQENDarTcSqVQiQSQU9PD7q6uuB0OnVS8Xg8Fb+32WwWe/bsQSAQKCORUmikUjoM+fvf/x4dHR34+Mc/PiHvc6JBkZEE804wFEUZ0pRx586d2LBhA9zuyhtpKSRJwoEDB5BIJLB27dqaoTE9PT04d+4cLr300hGtuxa0GumRI0dw/vx5uN1uNDQ0IBAIDPsYSwjBqVOncPbsWaxYsQIKa8X2dw9hIJEpek0lGxFAfaosfdJkGLrQXVL+xa80n+ByWJBMV37it1l5iEXZIpRKJIK6qfX19RW19zptfNGmWclaBVA7u3K5HChZRGQgDlEQ4XDY4XI5wfGWiq7FFA04rYO1dqOIXwkcy6geWXkRFp6FIEkgCpBKpxAJR+Cv98NtIG0tf16SJVgt/BCzLYMzKtVsSoxgWQY8w4BQpPAwUPthw2HjIUoyZIXoQnU2l0Vvby/qvHVwe9y6+242kwFHA7xVdXw2pmlWgs3CqeWWIUw3AfXE57ZbhzUICgB1Ljvi6WxRV6JGIm6XG3W+Ov2zsHbRTHy0beGQ15wICIKAvr4+vQxGUZROKn6/Xy/V7tmzB36/H0uWLBmVdvv222/jtttuw3e+8x38yZ/8ybS0SJl2RLJ7926sXr0adXV1Q14vm81i7969YFkWa9asGbKvPBQK4eTJk7jiiitGtO5qKBXVBUFANBpFJBJBf38/bDZ1cLChoQFut7viB0iWZRw+fBixWAxtbW06EQqShNc7T+DAqR4AxTXvSqAo9VSjPlGr9flaZSyKpuCwqPMndlvhtTU+KQxDqfX/QitqKptXLTgSSTQ2NcJmLQ4WY1kGHEODQM2krz0Vr5KhIAjIZbPoG4gjl8up7rEl4VMaHDYeoFTNaKipeG3DzwkSREnWya+hoaEi2TMMBZdNHX4cDtxOK3I5seLgYCk4hoa1RktuKZw2HgohRbNEfr+/7EGLgIBnKKRSqcL9y6uWN4UJe54vvn/OQsuvlWeHzEVx2PhC/ku5EWUpVGFf0FM+M3kBeSGPYE8QHo+n6Hvd6HPhUxvXgp0C5R5FURCPx3VS0SJxM5kMfD4fVq5cOarS2/vvv48tW7bgn/7pn3D//fdPSxIBphiRqGlrtT+0v//977F06VLU19fXfF1/fz86OzvR2NiIpUuXDuuXHIlE0NXVhauuumpE664Eo7hWqUNDkiT09fUhEokgEomApmmdVHw+n14K27dvHwghWL16NSyW8rbH4+fDePPAKQwk0xjOxmO3cqApqqYgbITLYUEuLw0pTgPqZlXntCOWyiAUVmctmpqbilLyjGAZGjYLP+STuga33QIF6uS1QhQ1fCqdQSarpuMZ0yCtPA9CCDiWqZ4GaFi53WqBoiiIRPsQ7e/XnXArQSsraZ1utb5CPMdAlhUoIGq2eJWpdQ1aB5V6ikTNpgbt4YGAgJJFnDp7Hg2BhoqzCA6bBamseupjWQY0IYjGYoXTShY0TesBVD6PG/lCmzkBgctmLVjsl79PjlXr/toQIssyqs1JBW2OYajBbjEUyI0Gjp/qhsfrRZ13kER4jsGd126A1zk13XBjsRg6OzvBMAwEQVDjBAqnFZ/PNyyto6OjA7fccgv+7u/+Dn/1V381bUkEmGIayXAwHJuUc+fOoaurC4sXL8asWbNGdO3x0EiMJFJND2FZVh+m0toTw+Ewjhw5AlEU4fV6kUgk4PV6sXLlyqofzIUzGtDkc+PF9w7jfDg25NpYRt1YhyPEUxRVSOHDkC2igHri6Yun0N8XAU0IWlpbapRPCFhWTTq0WjjICqnpe+Ww8YgXyl/anAdjcI/N5tQ0yEg0AqIocDkd4C022Ow2eF2Omi2rLrsNiUwW0WgU2UwGixfMQ16sPE+k5ZZQVPWI4cEbqN5DbZPVM0CqhEQZT5WlekXpZ8hhGxTMk4kk+vr6MKu1FQ6no6ybSh3YHDyZSZIMAoLWpgYk01kQAv3+9ff1oS8SBm+x6UaJqaw2/0KXlPJImS5ijNM1anNqC3GxLpLP5dHdG0RjQO2WMq5707olU5ZE8vk8Dh06hEAggGXLlkFRFAwMDCAajaKrqwuCIBQJ9kb7HA0HDhzArbfeiq985SvTnkSAaXgieffddzFjxoyKUbeKoqCrqwvBYBBr1qyBz1eeUVAL8Xgce/bswTXXXDOif2fEcEhkqH9//vx5HD16FBzHQRRF1NXV6aeVal0kiqKg/dg5vHXwVNXSgt3GI1PooiKFck41IZ4QAqfd0DUEUiV7QoWapZFDsCcIllNJ0uOwVyzREEJUW3xj1geNqk/sFl41MzR+UhmGhoVjyshQIQo4mkK0P4Z0Jg0hr3Yx1XnccDgcUECVlcCS6ZyafyIIaG5uBsdycNh4fVJc/5m0erIsO51RKNivD77XSu9RA8vQ6uZu2FSdNh7JKu7JditfFG7FswwkRYGiEMRiMQzEBgZPUIW1aBoRRalEUm2Ww3jy0TJfYok00hl1kDSfyxeVEOvr3LoON1Q51dgmXBrTnM1l0Rvshc/vg8ftKbqHK+e1YtP6JVWvO5nI5/Nob2+H2+3G8uXLyz6rhBCk02m9BBaLxWC32xEIBJBIJLBixQqcPHkSN910E770pS/hwQcfnPYkAkwxIgEw5EBge3s7AoFA2UlDEAR0dnZCEASsXbt2VAExqVQKb7/9Nq699toR/9vSSfVKQ4bDwblz53Ds2DEsXboULS0tyGaziEQiCIfDiMVicDqduljvdDrLfkZvfwLb3zlUVr/nOVbNLSkhmWoeU+5CJkopKlmUMAwFURBx9vx5tSXVX6+vy2blIUpSUfpdrQ3IYeOLntgZhgJNVe4G0snQGLTksBa54kqShExGdS3OZbNw2a0Aw8PhdMDtdEAQJQSDqnVIU1NT0cmveMNXy1+1ymQ2C6d3MA0lrhuJXP3dKFWt79X7QKt6RU6ApdB5NdA/gEQigabmJlgtxQ8YdiuHvCDrljq1QFFq6YsiKLNWkWVZz6/PZFUxvc7jhtftggxm6JIxBXgKFjsayWazakNAJS2nNeDBbVe1gWMnXxcphSAI2LNnT1USqQRRFHU/sM9+9rPo7e2Fy+XCunXr8POf/3xcYiqmAqYdkXR2dsLj8WDu3MHhJG3I0O12Y+XKlaMeVsxms3jttddw/fXXj4gEKhm4jeYkcuzYMQSDwarNBKIo6ppKNKrmgwQCAQQCgSLnU0GSsLvjOA6dDgJQn6QZhq6aoU7RgNMy6DFV6+lYff2gEE9RFIgsovvsedTV1cHj9ZTbptCqe2+64O2UKeTQVwPL0AUhNl9IQBxitqXw5MvSNFK56uvWXIsVKY94IgkAEGUFLMuiubm5YhmOgMBtt6mtocPsYHLaeMTTlS1eSmHlOTA0kB7iPWrr97udiCUziBQE3+bm5qpNJC67BQohQ4rlgEqCoNS27mrxxVoJUcznkEqlwYBAYVg1TtfuqPi9Y2gKFE2DZ2kIooJEMolQKKT7XxnBsjQ+u2kD/O6pN5SnkYjL5cKKFStG9ZB47NgxfP7zn4fL5dIjvDds2ID/+I//wPLlyydg1RcPU04jGWlKYjgcxv79+zF79mwsWLBg3JIMhzsYNJSoPhxoLcrZbBaXXHJJ1dMUx3FoaWlBS0sLZFlGf38/wuEwDhw4AEKITip+vx/XbViKOU0+vNJ+DDRN6bMlFd+DwWNKURSk88O1KLEiFo/h7IUgAoEAXM7KrdWyom7CHocV2bw0ZIeWFqfqczmG1USQFyRYOAYUTdVyHdGH+AhRg7vOnjsHAtVI8uyZs7DZbHoJR9sUKVBQFAWSosDCVy8RaaAoIJOX4LJZCzMq1d8sIUS11c/li+xBqsHtsKE/kUZsoA+SkENLa0vFFmhAJahkNq+7F9dqCmAYCqIkQ5KVmq7Jan69DVavB26vAFEUQSQBA/Ek+qKDBp12hxpABQJYC7G9kiQjm80i1h9BfaC+4mdl45pFU5ZE2tvb4XQ6h30SKUV3dze2bNmCzZs34wc/+AFomkZvby+2b9+OlpaWCVj1xcWUO5EIQu0umCNHjoCiKCxevBinTp3CqVOnsHLlSjQ1NY35Z0uShFdeeQUf//jHh2VBPVY9BAByuRw6OjrA8zxWrVoFjqu8MQy1jng8jnA4jEgkglwuB7/fj0AgAN7uxK7Ok7gQiQ15HYZRnxwp0DXT+gD1ST2fSSEc7cPMGTNA0bWfSbRaPSEENE0hl6+9IWunIhvPVSy9GUHTAMeqm3ypnlAJHAMcP9kNp8uJOTNakM4JEAS1fTaTzhS1Fns9bjCMqiNoJaDqnVek6ARVq4MJKC/x1Vq7SmIiekMhiIKI5pZm1LmcFTUomqbAlGg5HMuAYUrFcm3NxSU7rexWiXwqlSUZhi6kacb0MhhFUQjUeUAYNXEzm80iFA6hIdCApoCvbBB0yexG3HDJsimnF2gkYrfbR93ie+HCBVx33XW47rrr8KMf/Whcs+GnCqYdkRw7dgz5fB6yLCMWi2Ht2rXDHk4cCoQQ7NixAx/72MeGtEYYDxKJx+Po7OxEIBDAkiVLxuUDpol9WgkskUjA5XajNyXjWChZs4tqcLakdtgTIQSJWD/iyRSamprB81xNIV59KjbkY1BaOFL1ifu8KOrieumQYem1i5sCCnoCx1Y0USSKiNNnzsNXVwev1wugPHdFVgZ1ATGfg6xAP6nYbDY9rKp0wy8VlLX7WuleWi1cxfkZbR7H+H5omgJNAWfPX4CiKGhuatZPzEZdptr9qLWWWlpOaaeWNi9S6bSqlgBVvUpRCKBI6I8l1Hsoiio5uVyoq6sDx3JFg6Belx2f3bQeFm5qFUhEUUR7eztsNtuoSSQYDOKGG27AlVdeiZ/97GfT1gJlKEw5IhFFsaaVe1dXFy5cuACn04m2traKsxVjwUsvvYSPfOQjVafOjW6eYyGRUCiEQ4cOYd68eZg9e/aEPYnlcjmdVE6c7cGBCwmA4fXyAwWqaodRpQl3WZHRF4lAlmUEGhuLiKmSEA9UF9dtFg6iLBcJ8QxDgaLoihP3lTqpqm2EmraRyuZ0QsoVLE/8/vL6vNo1NGj3opWEkpmc3hqbzqShyApsdhvcTifqvJ5CjobqX1VLn7HyLJSCuwDD0KAAfZ6i0trV2Q11U7ZZWJw8fVaNT25qKtvQaJqC3ap2n2kGi7Wg/V5ZhkEmr3bxVQeBy2FDNi8WPvO1twueY8DQFCSZQJRkJFNJRCIRuJwuiJKIXDYHjuN0Ym6s9+KWK1aiwVvdcWIyoJGI1WrFqlWrRkUioVAIN910E9auXYtf/vKX42JdP1UxrYhkYGAAe/bsAcdxuPrqqyfkiFjLgmW8RPXu7m6cPn0aK1asuKhdG2q+Qwjb396PQ909+hBfY70PMqlMiMa2XFmW0dvbC7uVh9dXX/H+UzQFp5XXPanUUk/1zcooxANDz6uwDF1oNRb0yNtaeg7Ps6AARKJ9SMRj8PkDNTv6tC4zWyFV0ggCtT1dI5V8Po86twsWqxUWW23LEaBQGrPykBUy5EwOoG7KHEPj6InTYFgGjY2NoKnqn3mPUz0RGIm2GjiOgZVji7zDqkMl1bwgDTmdrz2UAEBPbwR9fX1obGqE3abec1lRtZJMWj3xrZrtx6XL5xfZjkw2RFHE3r17wfM8Vq9ePap9JhqN4qabbsLSpUvx+OOPT4n3NZGYNkRy/vx5HDlyBA0NDcjn87jkkksm5Ofv2rULbW1tZV1TpXYno/lwaWFafX19aGtrG7eS3Ghw6HQPXnhrH3LZLKIDcRCiwG6z6xG6pe+PpQlOdZ+Bz+uBw+UdcvNx2iyQZBmCJA/5FKvV5Cu1n1Z7vcdhQzqbrzjYV/ra/r5+KEIWzjp/1Wl1IxxWDqCoIbudJElCNpuBLOaRSmWgUJQuNlst1or3yO2wQlYU5ITaOg4AsAyF091n4XU54PR4QdUgEe2UA4oCzzBDaFwENqsF2ZxQ8ZRXCu1EqZYYLTXJR3ttPBFHKhFHY2MjWK5y1WB+az2uWjZTtw3KZDJ6TkggUJvwJwqiKKKjowMcx42aRAYGBnDLLbdg9uzZ+M1vfjPu0d1TEVOOSCRJKpouVxQFR48eRU9PD9ra2iAIAs6cOYPLLrtsQn7+66+/jmXLlhVZsIyHHiKKIvbt2wdJktDW1jZse+qJRCyZwUt7unA+MoB8Pq8/aYuCWNTBJIgCQqEQZjQ1wOX2IDdE5xKgCuAWngMIhvX07bTxyIsyWLrKlLgBmikkgJo2IoQQRKIRULIIjz8Ar8tRlPJYCSxLgxBAKjgn1+p2Mua5K0QBTWSEowPIZFQzTc3HSnMtNpa/1IFKtupciiJL6OnpgcVqQ32gHvaa2SXFIv9Qw6al5UB1XqZ8uBOorItUIx8rzyEniojH4ugf6EdzUzPsdptedjN+b9wOK+68dgOs/OCTujYzFY1Gi7zo6uvri9rbJwqSJOnefKtXrx6VnhGPx7F582Y0NjZi27Zt4156n6qY0kQiiiI6OzuRz+f1IcNwOIxjx47hyiuvnJCf/+abb2LhwoV6ycmYFzDaIcN0Oo3Ozk44HI6adieTAUVR8M7hbrx3pFvXEkRR7WBKp9PI5dQNp77OA5vDDY7j4HHahohRNXYC1Z6IBwAbzyErinrrbi0hvlRMrtZJpRAF4VAYNBT4Ag162amSmG1cd6mjby0LlEraj83CQZQkpNJZvQtMFEW4nHZYbXbYbHa9Vq4J1MkS+5a8kEd/JAzeZofP59M3cYqm1CyRkvdaTSeq5NdltxYsXio4Lev6Chl875JcWRcpJR+aVu13wpE+DMQG0NzcXDQk6SwYf8qK2rX3qY1r0ez3lF1Xg+ZFp02IK4qiW47U19ePe6loPEgkmUxiy5YtcLvdePbZZ6fEw+LFwpQlklQqhb1798LhcGD16tX6l6+vrw8HDx7ERz/60Qn5+e+88w5mz56NpqamcRHV+/v7sX//frS2to55zmUicT4Sw4vvHtY3JAKCgYEBxGNx+H1e5PICUuk02MIAmq/OA57nIUrl5ZlKG1s1Ib6a8FzajaRfu2RyXYOxdVZWVC2HoSk0N7eg9BNuFLONf1e56woVLVCqdV0Bqu6jTpQXcmFEAZIgYCCeqOharD2V5wUJuVwO8f4IeLsT3gpBWkCxDf9QGpTR9ZnjGBCCmiW1QVsTUT1h1Dh9akSYyOTgsllwrieEeDyO5ubmik/iGvmsXTQLG5bMrnrdsp9DCBKJhN40kk6n4fF49Lkpu90+pu+VJEno6OgATdNoa2sbFYmk02ncfvvtYFkWzz333LRNOhwtphyRyLKMYDCIffv2YdasWVi4cGHRhyQej6O9vX3CAmDef/99NDc3o7m5eUyiOqD2j3d1dWHJkiUVvcGmGnKCiJ17j+LomRAikQiyuSxaW1pgt1khiLI+Ga49aVMU4K/zAAyn6ioUXbNFtNITdS1xvXRDVo0mq+d0MAwNmiI41X0WHMdh9sxW5IXqZSy1vVWdaRlqml9bqyQrUAip2XUFGMtL+aKTiyzLyGQzutisue46HA44rBwuXOiBw+WFx1P9aR1QZ1QsLIPcEDMzGuwWHhQ1dL49AIAC6ly2Qt7N0J97t8OCYG8Ekb5+NLc0w8JXL+fMafJhy5Wj64LSoHUiaiUwzeFhNFG5sixj7969YyKRbDaLT3ziE5AkCS+88ELNzKMPKqZcP9rZs2dx6NAhLF++vOLE50SmGAKqiG4U/EfzgSeE4MSJEzh//vyozCMnC1aew3XrFiPbH0KoV0JrSwvcTodex9cmwx0OB0g9QS6fQzqdhpLJIBoJw+1yIWWxwmazV/xCEj0NUJ36ViNfq4vrenSt3QpRlAtT5dU3tmxONY2sr/OgsaEBqSE2TS0L3eMsJB8OsWlqKX8uuwWxZO0pdC3f3G23QpCNvmQMXBVci8OhMCgQOO028BwLWZZrbmqSJINjaJVoq5QBjWBYGpmces+HIhOHlUd/IgO71VLmk1YKC8+i+1wPkskkFs2fC6EGqTlsFlx/ybIxax1WqxUzZ87EzJkzIcuyXgI7ePAgFEWB3+/XS2C1hG5ZltHR0QGKokZNIrlcDp/5zGeQzWaxY8eODyWJAFPwRBKPx5HP56s+kY3WD2s4IIToaYqtra013XarQZZlHDx4EMlkEmvWrJlWR1xtyt5isWDWvIV4ff9JnOntH/LfERDQIMhl04j0xSEIAqxWq/6kXcnGw223QpTlYQnxFKWWrhSZVBXic/kceoO9cLvdmNnaBFFSQFEY0tJEc/RlGbqGmD0I7XShlpfKc9mNsFpYtTREautEyaQ6a9Hc2ICcICKbzQCyBMKwehdYaaaLMbFyqOwSo8hvHBys9M03Ogtr98fYnm0ERQGxgQHE4gk0tzSD5/iqJUmKAv7go2sws6HcQ268QAjR72UkEkEqlYLb7dZLYA6HQ98zZFlGZ2cnFEXB2rVrR0Ui+Xwef/iHf4hQKISXX355WGF7H1RMOSIZKiVRFEXs3LkTmzZtGtcBH60zK5/PIxRSSzuxWAwul0vPdB6KFHK5nB52s3r16mnV9pdMJtHR0QG/368HgcmKgrcPncaerjMVNx0jtLKTy25FfzKNTLog1mdzqgdTwdiPt/CwWfiCvlB7gh4o7oyqpFUAQCaTQSgUgs/nQ2ODv7B5D9fSZNAepNamCZR3MBmns0tRyXLeZuEgl+hE8UQc/X39mDdnFgg1uJmJkghKkRAdiCGTyYJlB0nF7/WUzc9Ue6+lwVMaKjcREFh4rox8NU0pk8/rxKkQBdlUAtGBOFqaW4rEb5qmYDeYegLAZcvn4vLlc3ExkcvldLG+r68PPM8jEAjA5/Ph7NmzIIRgzZo1o9pHRFHE5z//eXR3d+PVV1+F3++fgHcwfTDtiERRFLz00kvYuHHjuLXWaYJ6qaguCIJu4a61I2oW7qXRuNpG7PP5sGzZ2I/vFxN9fX268eXcuXPLNt1z4QG8+N7hqtbvpd1LxqdS3W6koAlwLAuH0wGL1Qqb1QaKoqoK8UBlAdx4/WQyiUg0goZAAzweV8Wp+GoeVpWaAtRN01J22uA4FlIFG/7KXWnVLec15+REJod4PI5YLIYFc2dDJpU/L1qb80AsoearZLOQCYHNVtxaXPm9lnehFS+mmJirNhto96BAnJm8gEwihr5YEs0tzVWNI52F+9hS78EfXN02qd8JzeQ0EokgGAzqXWANDQ2or68f0V4iSRL+6I/+CF1dXXj11Vc/MFbwY8G0IxIA2LFjB6688soxl41GkiGitSNqxogcx+lhU5Ik4eDBg5g7dy7mzJkzZTuzKqGnpwdHjhzR80+qISeIeHlPF06cjxT9eTWRutJTKSEKiCyhLxZHOp0GIQR2u13XXVx2a9ETda2OJJqmkEuncKE3XJictulDdpVQOrcxlKWJ0eRwqHAooNhOZqgNmYAgm0oi2j+AWTNngKKZIU58Klmlsmp2STyRKmotLnUt1rzGKJqqGTylwWbhwDIUEsPItyeEIJOIYSCRRFNzy5BP8y6HFXdsXKvmwEwyFEXBvn37IAgCFi9ejP7+fkSjUcTj8aISWKWcHw2yLOPee+9FR0cHdu3aNS5msR8ETEsiqWVjMlyMZVJdURTdwr23txeyLKOurg6zZ88edl7zZIMQgtOnT+PMmTNYtWrVsI7mhBAcPB3E7s5jkCSleP6jCtSnUrUkYtxgCQjy+TzSacOGaLch4POCZnlYeB4KUSpOXGvT6olkAgvnzYFMCt1iQ2yamj4gSDLEYUzcAwROmxWEKMPKC6FowG23IZZMV51CJyCIRqLIZDOYM2sGnHZ7TdIxwuO0IpsXi05ugmiwbDGkGQbqvLBYLcjmxSHLkjzLQCEEVgtXM1OeEIJIJAxFkjBj5gzQdPWMGw1br1qNuc2TX/YxksjatWuLSnH5fL6oBMayrN4FZvw+y7KM+++/H2+++SZ27949LToxLxamHJEMJ2539+7dVcOfhvszFEWBLMujng/RYn3D4TAWLFiAdDqNcDgMURR1i4dAIDAljdqMVi1r1qwZcadJfyKNl97vQiSWrNkCq4FjGTgsHGI1hhiNG6IsiHA6bKA4Hg6Ho0hoVjcz1Sq/qbkJPMfDZbdAlBTdvbcWNL8rUVaGFOIBtfwlyXKZtlHtfSpEUecvKuSyE0IQDoeRF/JobmqG161mydeaQtfgtKuGkjRNF4WKGaGlGQr5LFKpNEDT8LhccLmcoBmuqk5k1EWMMyqla+8N9YKnAY8/AJZhh9Sg1i+ZhatWLah5zy4GFEXB/v379cHmWsOMWv66JtgLgoDHHnsMbW1tOHnyJF5//XXs2rULs2cPfw7mw4BpSSS///3vsWTJEgQCgVFdfzzsTvbv3w9BENDW1gabzaZfO5VKIRwOIxwOI51Ow+fz6brKVLBLkCRJ/1KtWbNm1NO3kizjrYOn0X707JCvtVo45PKCQZOoEZpFCGw8i3DfAIgsoD+WAMOqQ5B2mx0DsQHIsqwnGlp4FoKk5rlXEuJLr10q3NcKk7JZOFWMJtWnyg1XL9IjSie/FaIgFApBltS1e12OIl1F7bwiFclKf48Gzq624YOCGsWbF/XW4kwmDZ6h1Ijhgpea9pRdqQzHskyRXxchBKFQCBwDeH2BshN3JQ2qye/GpzauBTPJWqGiKHpo3Lp160Y0Ea91gT300EN44YUXcOLECSxfvhx/8Ad/gFtuuQVr1669qLrPgw8+iG984xtFf7Z48WJ0dXVdtDVUw9R7XB4GRjtLUk1UHwkymQw6Ozths9mwYcOGohMHRVFwuVxwuVyYP38+MpkMwuEwenp60NXVBY/Ho3eAaeRzMaF1lXEcV7b2kYJlGFy9egFmN/qw4/0jSFcxW2QZpiB+U0hm8rDV9IxSPZiSmbxetgw0NCKZSiEWSyAYU6ODnU4n8vk8WDuj6lyF/SuZydW8fpHFOlFfXy1bhGEKHVeFfXpwBsZScQMvFdzVlEfVryuRyqC3NwRCCJpbmuG0WZHMFp/O8oIEilLbehOpQbKiKAoEKCIRAEhlBbAsAytXbNCoWuHnC2mGqhhP4IcgCJDFvD4hbrFaEKjzok8QyroLJUmGKElwO2z62mkKqKuv7D6cyQlgGBp2G49MVoCFZ3HTZcunNYkA6r3X9JJ0Oo233noLx48fx3PPPYfvfe972L17N9asWTNBq6+M5cuX45VXXtH//1SpeEy5EwkwdG77e++9h9bW1mHXKEciqtdCLBZDZ2cnmpubsWjRohFdQ5vGDYfDGBgYgNPp1MX6WuLeeCGVSuldZVp773ghmxfw0vtdONUTLfmbyl1DNE3BZuHLyMdu4SvmY8iyhIFoGKJCwePxIJPNIJ1Kg2Mo0JzhKZtmql7feLooRaUgrFoT96Vtv1rZqZJQLcsy+qJh0DQNX30AHMsOORWvmiJKkCR58ARVBUaDRofNilS29mAlTVPgGBoD8TgSiSQymayaD1IwmLRarfq/V4iC/mgEiqKgpaUF0hD29JoGdfXqBVg0s7HmaycaiqLg4MGDSKfTWLdu3aha8Qkh+OY3v4nHHnsMu3btwtKlS/W/EwQBHFetXDgxePDBB/H000+js7Pzov3M4WJq0NkIMZITSamoPloSCQaDOHz4MBYtWoSZM2eO+N8bp3FFUUQ0GkU4HEZ3dzcsFot+UvF4POP+4ezv79ctZ+bNmzfu17dZeNz6kZU4cKoHuzuPQ5aV4jJSCRSFIJXNFbXZciyDvFQ+uS4IAoLBIOwOOxbMaUU2L8But2POzBb0xZJIp9OIx+KIhCOw2qz6rIWsKOoEfS4PmmLUHI0q+6AsK0jJeX1Qz2GrHMSlQSw8sbvsNgiihHQVaxVJkhAMBsHxHBoCDXDYLJAVUr0dt4B0Vn3Cr3M5EEtlar5Wm6B32C2QJXnIritFIcgTGU0N9XA6nZAkRbdsCfWGAKiuxTa7DYlEAgCwYO5ssAwzZHYJBQrzWgIfGBL5zne+g//4j//Aq6++WkQiACZtRuz48eNoaWmB1WrF5Zdfjm9/+9uYNWvWpKzFiCl5IhkqbrezsxMejwdz59YecBoPPYQQglOnTuHs2bNYuXJlkb38eECzeNDaimma1kllpL5BlaAR4FDtveOFvkQaL7xzCDlBHFbrKccyYGkKCsqn0LO5LHp7e+HxeFBXVwcKFDiWgc3CIl5iaSJKoi7W57KGzHW3B26XDanMMDymoJbW8qI0LCGeptVTlCDKZYFPoigiGAzCarMiUB9Qy552lUiGypQHClPxeRGuEkfeStDakwVRGmIAU4Wmi5SerAgIcrkc0qk0EskECCHwe92gCtqK22mvufaA14lPX7MO7CR2LRJCdGeJ9evXj5pEvve97+G73/0udu7cedHLV9Wwfft2pFIpLF68GMFgEN/4xjdw4cIFHDx4cNKtWaYlkRw8eBAWiwULFy6s+prxIBFZlnHo0CHE43GsWbMGTqdzxNcYCbSOEY1UZFnWu7/q6+tH1FY8mvbe8YIky3jjwCl0HDs35Gu1RD0KVJFQrnXB+f3+ojZvjmOhyLKacVGFqLQhyHQ6DSIJEGSCBp8XYDhYC0OQlcBzLER5ULivJcQb7eyNKZIURemnKIfDAX+9HxQo2G28fnJRZ1oq538A5VPxg4685eRWKSa52gAmUClfpNhdQFZU01SGZtDYGEAylUYqldJbi10uB3xeLySCIiLnWAZ3XrsBda6LH0algRCCQ4cOIZFIYN26daNqbiGE4JFHHsFDDz2EHTt2TFiA3nggFoth9uzZ+O53v4t77rlnUtcyLYnkyJEjoCgKS5Ysqfj34yGq5/N57Nu3DwDQ1tZ20Y+ymnW21gGWy+Xg9/v1DrChWhi7uroQjUZH1d47Xuju7cOL7x2pOiQIFE/FaxPrfQMDiEajqn7kGCRvLdBK21ArWY6UXjuRyurdS6KQg6Io4C3qAJ/mWKxdm2OL5yLsVq5qEFalbieHjUcsnsSFniDcHnfRKarUpqRS/geg/t4dtgpT8ZQqpJeWlyplogDlA5hArel8NVNelCScOXseDMugqakJVkNbsNZanM6kkclk4LRZQHMWtQxmteHGy5Zj6ezJG84jhODw4cOIxWJYv379qEnkJz/5CR588EFs374dV1xxxQSsdHyxYcMGbNq0Cd/+9rcndR1Tkkhq5bYDwLFjxyCKIpYvX1705+MlqmvCtNfrxbJlyyZ9wJAQoj+hh8NhpFIp1NXV6aRibOEdr/be8UI6l8dL73ehO9hX9nc2a0HQ1jqjQJCIx5FNJeHx1Rd1tpUGWmnQLEdK5yosvFrqMX66CQhEQYAs5BEZiEGSJHUq3G5HQ72vouV8pSAsm5UrkGPxZyubzSIaCSMQ8MNq0wiQ1Mz1KD1tVAup0mC3qqU0SZYrvkcjioKzoLYFVyvZybKM3t4g3A4bHO46eJy2qic+Qgiy2SyEfA7ZTBoNbiuu27BUPzlf7HxyI4msW7duVJ95Qggee+wxPPDAA3juuedw9dVXT8BKxxepVAqzZs3Cgw8+iD/7sz+b1LVMSyI5efIkUqkUVq9erf+ZMYQKGD2JRKNRHDhwYMKE6fFANpvVScVo7+D1enH06FFwHIdVq1Zd9C90NRBC0HniPH6//6RebtEibbX/T0DQF+1DKp1Cc1Mz/HXuopjboWxHjG68lQwTy19vQSyZRjKVBCQBA4k0LFZLRbddo2MuQzMgIGVlo3QmjXAoDH+9X20BL3RSDWVKCUA/bUi6G/IQlvAMBRvPQZDkIYckAYDnWVg5tmqqpSRLCPYEwfO8qs257EhkcsOY/Ad8bjtu3rAI8diA7rjr9Xp1Uplo92tCCI4cOYL+/n6sX79+1CTy3//93/irv/orPPPMMxOWdTRWfOUrX8HmzZsxe/Zs9PT04B//8R/R2dmJw4cPj2qmbjwxLYmku7sb/f39WLt2LYBiPYSiqFEL1OfOncOxY8ewbNkyNDc3j+oaFxuCICAcDiMYDCIWi4FlWcyYMQONjY1wuVxTiggjsRS2v3sIfYm0Pv0NGCa+8/kiE0DNoZaiUTPQSoPmj0VTVNUs9NLXWywcUuksJFlWxfp0GtlsoSW2YINvsVhAgQLPsbDwjG7friGVSiEcCaMh0FCko7kdVuQEcVibPcPQsPEscoJcM1MeGDydUaDKUh4rwWGzIJ3LF2ZMigdCJUlCT7AHVosVgYYALCwLUVFAU1RNHUdb82euWY+Ad/A9a23ukUgE/f39sNvtus433h2JhBB0dXWhr69vTCTy29/+Fvfddx+eeOIJ3HDDDeO2vvHGpz/9abz++uvo6+tDIBDAlVdeiW9961uYP3/+ZC9tahKJMbe9Es6fP49gMIgNGzaMW2fW0aNH0dvbi7a2Nni93jGs/uJDa++dMWMGnE6nnh7HcZzeAeb1eqcEqYiSjLcPnUL7UVWIVxQFvaFeKIqC5qbmsjIixzKw8ExBBxh6/U4bD4qmkUxXn3DXoHYXEdgsfJHQryhqS2w6reoBFEXB4XCg0V8HmWLgttv01ycSCfT19aGxsRF2+6DQrJWdQAFOa23hHiC64WTtTHkVxtNZrUx5oFwXsVl5PaxKlEQEewqdZYEAKKDILqVapryGTesXY+W86rNcmtGp9nkEoJOKz+cb0zCdkUTWrVs36gHfp556Cl/84hfx61//Grfccsuo1/Nhx7QkkmAwiO7ublx22WVjJhFJkvTp1zVr1kzKxPlYoLX3lsb5arbZWgcYAH0A0u/3T7rN/ameKF545yBOd58FzdBoamwqXxM1WNe3WTiIslwzrc/o6FstYMkI49BhtddrKYZEEhDpj4EoqmOxv86DTDaHvoEBNDU1wWYd/NzQtEpSxpOIOmQoVjShLNVFaoVPWXkOuVKjzCo5Lcb7ZwRDU2Ao4PjpbtjtdtTX14OqYSNfqWts0awG3HTp8mF/5wghiMVi+mkll8vB5/PpJbCRnCa0B79IJIL169eP+jv73HPP4e6778avfvUr3HbbbaO6hgkV05JIwuEwjh07hssuuwyEkFHrIdlsFp2dneB5fkppCsMBIQTd3d04ffo0Vq1aVXO+RfsSa7qKZiypZTFMhs1CJpPBm++8h8PBJGTWXvb7q9TWWit4qjTZD6hsZa/B5VAt642o9nqeYyDKqv4m5AWk04U5C0WB22kHa7HpFu7VmgIAzX+ruJPKbuXLQqqMP1fLlFfXV05QRpSSYTViEEQBPT09aPT7YHe5QUiltuASGLzJvC477rx2Ayzc6D836XRaJ5V4PA6XyzUsG3dCCI4dO4ZwODwmEnnxxRfxuc99Dj//+c9xxx13jPp9mFAxJYlElmVIUuXuEm1TfP/999HU1DTqJ+x4PI7Ozk40NDRg8eLFk/6EPhIoioKjR48iHA5jzZo1I7LT14zoNFLJZDJFbcUXo805mUxi7969aGxsxKJFi9Bx4jze2H+yiASqdS9pliBpw9P6UHkhRit7QNUMalmJGIV7iqLAcQwEQ7mnL9qHdDqNQCCgtqrLAmKJFDieR4O/DqA5cDxX8frqaUMtjXEsW9UqXwcF3a/LabfWLHkBBTK08iCKglROKFuDIAjoCfbA5XLB5/OBZ1nwHINsJQPISvfGbsHmy1egyV85Cns0EAQB0WgUkUgEfX19etZPIBAoGsolhOD48ePo7e3F+vXri0qJI8Grr76KT3/60/jxj3+MO++8c0qUfKc7phWRGO1OtGNyOByGJElFZZuh2nVDoRAOHTqE+fPnY9asWdPqgyTLMvbv3z9upTitrTgSiSCRSEy4saSm58yZM6coBCw0kMT2dw9hIJGp6YulQXtaz+ZEuOwWpIbYYDUhnhBS5qRb9fU0BZah9WsbLexLkwFpCpCEHMJ9MWSyGbAMq4v1Rv8qDRaOA8tSQxKDBq/ThnROGDJTHlDvDc+yReQJAHkhj2BPEG63G3W+usKa1PZkjmWGlYvy0baFWLto5BZBw4Usy0U27pIkob6+HvX19fpc1VhI5PXXX8cnP/lJ/L//9/9w9913T6vv/lTGtCESI4kYS1nGwb1QKARBEKqWbbRp7+7ubqxcuXLSW+ZGinw+X5QJP96luErGksa8+rF+6UKhEA4ePFim52gQJRmv7zuBw93BYeWcgALqnDYMJDMYjhDP0ICjUJ4ZzutdNgtAAclMXrVSD4cgCiKaW1QL+6JrMzQoSvUdiyczyGazeoohAD3B0Ga3gaboQvkrD2eFIcNSaAFiDFU7U167J5ouYrRAyefzCAaDut2MBuNAY63IYwCY11KPWz+y8qJtvsbT84ULFyAIAtxuN5qamhAIBEZMJm+99RZuv/12/Mu//Avuvfdek0TGEVOSSEpTEquRSCmMeSChUAjZbBY+nw+NjY3w+/04fvw4+vv7J3Xae7RIp9PYu3cvvF4vli9fPuGlOFEUdVLp6+uD1WrVSaU0r344OHfuHI4fPz4sAj9+PoxX9nRVHeLToJ1cbJbBTqRqMGoXwxHirRZODcoigIVncP78BeRFqWJnmZrRzuutssbra/5VWmuxJEvwe9xqaJfdAYZhalqalM7EVMuU1+C0WUqMMglYCjhxuhteb11RR2IlXaRa7orTbsEfXrsBNsvFd3g4efIkLly4gJUrV+raykhbi99//31s2bIF3/zmN3HfffeZJDLOmNJEok2qj9buRCvb9Pb2IpVKgWEYzJs3Dy0tLZPm3jkaDAwMoLOzEzNnzsT8+fMv+pdAlmW9hh2JRMAwjF5KHMpY0mh6uWbNmmG3ViczOex47wjOhQcq/j3LFA8GDtU2Wyqua1pCZXsRChQoSLICWZHRG+wFTVOYN2cWMjmxXLivoOeoVvbF6yEgoBQFsUQSqXQKQl5QhyAdDrhdTjjt9iIhvqpdCooz5TU4bTySJcSQy+UQ7A2iubEBLrcHoijp/77UtsUIh43XUx5pmsInPrYGrfXeiq+dSJw8eRLnz5/HunXrimZ0arUWl5a3Ozo6cMstt+Dv//7v8eUvf9kkkQnAlCUSQRDGZVI9nU6jo6MDdrsddXV1uhbg9Xr1J+zJthGphd7eXhw6dAiLFy/GjBkzJns5RcaS4XAYiqJU1ae0qeNoNIq1a9eO2PRSURS0HzuHtw6eKhGC1dmP0ryQam2zditXdaCxVIg3ni4kWbWBZ1kWjY1qqJNRiFevXb3rquz0UNKOK0mSXv7ShiAb/F6A5cHzPDx2GxI17FJUw0XVr0vtLJOLtJ9sLoveYC98fh88bg8oGnBa1VKazVqeE1MKLeWxbcFMXLpsTs3XTgS0B5D169fX/OwoioJ4PF7UWnzo0CGIoohVq1bhj/7oj/CVr3wFX/va10wSmSBMSSKRJAm5nPHpcXRlHOOg3oIFC/QPUS6X0zfCWCwGt9uNhoYGNDY2Tpk5EkIIzpw5g1OnTk1ZPYcQgng8rt/LfD6v61N1dXU4evQo0un0mJsCevsT2P7OIcRSWQBD26XwHAOaopETxDIrlkowPt27HVYk0jl1WC8YVLNiAg1FG5CmPUiyMnTXVeH1NK2aN1az1pcVGdlMFul0GqKQU9fEWWF3qKaINTUUCweaAtKGKfRMVs0X8df74XYVd/XVuVSCGmrdADCrsQ63XbX6onc1as7VQ5FIJaTTafzXf/0Xfv7zn+Pw4cNobm7Gn/zJn2DLli1YufLiaTyV8NBDD+GBBx7An//5n+P73//+pK1jvDElieSuu+7CyZMnsXXrVtx6661obW0d8S///PnzOHr0aFVhV4NmMRIOh9Hf368LzI2NjRPuE1QN2sBVKBQacXvvZKE0rz6VSoFlWcydOxfNzc1jzqsXJAm7O47jTKi/ahphESj16VuS5SG1lsI7gMdhRzydgVDIEjEO65VdnlLbeONV/KtK4bTyoGhqyMx6QJ0XyWVzehcYgToE6bCrSZClm7rTbkE6J8Bp5ZFI55DNZhEKhVBfX1+mBWonKI5hymZaSmGz8vjcdRvgsI7tdzdSaCSybt26UWuZR48exY033og77rgDa9aswe9+9zvs2LEDX/jCF/DII4+M84qHh/fffx+f+tSn4Ha7sXHjRpNIJhrnz5/HE088gW3btuGtt97C+vXrsWXLFmzZsgWzZ8+uSSpar3lPTw9WrVoFn8837J9bKjDbbDadVC5GHC6g6hEHDhxAJpOZlpP2+Xwee/fuBcdx8Pv9iEajurGkVkocbesmABw924ude48NK3jKZbdCVuSqVvBG8ByjJjsqMs6ePw+b3QGfz1eVsLRT0VCdTkCxE/HQQj+B3Tqoi9gsHJLpNBKJlHpaEUXYbDY1Xthhh9flKCZWRUT32XOor28oe5JXT2dEP4kYZ1pKyY2igNuvbsOsxuF/f8YD3d3d6O7uHhOJnDx5EjfccAM+/elP4+GHH9aJN5fLIRaLoanp4tvdp1IprF27Fv/+7/+Of/7nf0ZbW5tJJBcLhBAEg0E89dRT2LZtG15//XWsWrVKJxVjuQoY3ITT6TTa2trGdKKQJEmPw41Go+B5Ho2NjaPuWhoOBEFAR0fHhLX3TjS0zrK6ujosW7ZM/wLn83mdoPv7++FwOHRSGQ1BJzI5vPjuYVyIxKq+xig8D+lfVdAu4okUgr1B+Orq0NLUWJYpr6F0oLFapxNQeRpdE/orvb5S2c64fkEU9CRIRRTAcDxshdOKIAgIR8JobW6C1+tBtsRwsVoOfSULlA1LZ+PKlRfXDFAr5a5bt27Up/Du7m7ceOON2Lx5M37wgx9MmUHju+66Cz6fD9/73vfwsY99zCSSyQIhBNFoVCeVV199FUuWLNFJxWq14k/+5E/w13/91/jYxz42rptwaRwuwzD6SWW8zBC1pgC3240VK1ZMmS/AcBGPx9HR0YGWlhYsXLiw6j3R8uq1bhue53WxfiT3UlEUvN91Fu8cPl02kV0ti6SSEK9ZsYT7BhDqDenCNFBJiDekKFZpvVWFdaJfu5pdSqXr2y08MvnK5pSl66cogKEo9MfjqmNxJgsCAofDAa/HC4vFArdj0MJ+KF2JoqDH9LYGvPjkx9Zc1M/g2bNncfLkyTGRyPnz53H99dfjuuuuw49+9KMp8x36n//5H3zrW9/C+++/D6vVahLJVAEhBAMDA3j22Wfx5JNPYseOHbBarVi1ahX+z//5P1i7du2EfYgURdHNEMPhMCiKQiAQQGNj46gz1mOxGDo7O9Ha2lp2ypoO6Ovrw759+zB//nzMnj172P+u1FhSu5cNDQ3w+XzDupfBvji2v3sY8YIQTxem0auVmnieBYXBp2+n3YJQpB+hcAiBQAAuZ3E5xSjEV0pRLIVxCLBaemGl62ulrqGy3LWJfpYZFO6TySQi0Qi8Hi8kSUImkwEowGF3wOd1w+V0Ip0vt0uphDqXHbd/tA1u+8XrZNRIZO3atfB4Rme9EgwGccMNN+Cqq67CT3/600kPo9Nw7tw5rF+/Hi+//DJWrVoFACaRTEU8/fTT+NznPodbbrkFuVwOL730Epqbm7FlyxZs3boVa9ZM3JOVoii6GWIoFAIhZMQOu5pdy8KFCzFz5sRZT0wUtPbksWa4GO+l0RpDu5e1jCXzooRdHcdw+HSw6txFEQpBUqIkI9I/gGgkqk/vVwaB024FUZSizqjqIPA4bUikc0NmhWiv9zrtelfaUHDaeFAUjWQmi0Qyib5oHxqbGmG3qdoTIeoQZDqTRj6TgaIo8LhdAMPB4XSAoatvsrdeuRLzWy5eh+C5c+dw4sSJMZFIKBTCjTfeiPXr1+OXv/zllCERQN2fbrvttqI1ybKs5ybl8/kptd7RYloTyb59+3DllVfiP//zP3Ub6FQqhRdeeAFPPvkktm/fDp/Ph1tvvRVbt27Fhg0bJuyXprXChkIh3WFXI5X6+vqKP/fMmTM4efLklG3vHQpnz57FiRMnhnQfHik02xtNV9EcCoYyluw624ud7UeHFSRF0xTymTR6QmEEGhr0TbganHYLZFkZciIeUKfRKZoGy9BDCvEA9JbjoTLogeLSmpDLoDcUQqCx2MZ+EARWC494UhXqFVFAKp0Bb7HqYr3RL2zNopn4WNvCmmsdT5w/fx7Hjh3D2rVrR50BFI1GcdNNN2HZsmV4/PHHJ8XJuhaSySTOnDlT9Gd33303lixZgq9+9atYsWLFJK1sfDGtiQRQn2iqPclnMhns2LEDTz75JJ5//nk4HA5s3rwZW7duxeWXXz5hHzrNI0gjlVwupz9dBwIBMAyDY8eO6UFao30SmywQQnDixAlcuHABa9asmfD1G/Pqk8lkzWHSeCqL7e8dRjAar3o9hSgQsmkEw1HMaG2Fx+1EpoZ/ldEuRZ1Y56sK8aXT6NUy5TXYrRzSBpdeiqb0Nt7S1xtdjuPxOPoH+tHa0gKfx1XRtLKSLkIUGYKQQ99AHLlsDjzPw+6wY25rIz5/4xWFsK+Jh0Yia9asKfL+Ggn6+/tx8803Y968efj1r389bdwqzNLWNEYul8Mrr7yCbdu24ZlnngHLsti8eTNuu+02XHnllRPWIUUIQTqd1kklnU7rP2u6zIgYoSiKnpG9du3aiz5rUzpM6nK5dILW2l0VRcG7R87g3cOny0pLBAT5dBK90X51voW31EwCZBgKFEVDKjmFVBLigco5J4OvF4oaA0rbcWu93pjPEovFMBAbQHNzM6wWq8FafzDjfmjh3oZ4Ko10JgMhl8Mlc7yoc9mLGh8mqiR84cIFHD16dEwkEovFsHnzZjQ1NWHbtm1jnlO6mDCJ5AMCURSxa9cuPPnkk3j66achyzJuvvlmbN26FR/72Mcm7EMpCALa29shSRI4jkMqlUJdXZ3+dD3VvwyahX0ul8OaNWsm3VpGy7Ewzv1oG6Hb7UZPXxwvvnsYicLGTkCQisfQH0+gubkZPFf8BFveBls801GKUr+rWps3ALAsA64gxAPV23Ervd5p45HKChgYGEA8Hq845KkK8cMX7rX3u2ndYsxvqUd/f79uM6JZ32jeVeN1eu/p6UFXVxfa2tpGNONlRCKRwNatW+F2u/Hss89O+ufQxIeUSIyQJAlvvPEGfvvb3+Lpp59GOp3GzTffjC1btuCaa64Zt4HATCaDvXv3wu12Y/ny5WAYBtlsVn+6jsfj8Hg8aGxsRCAQmHKDiKIoorOzEwDQ1tY25WZcNBM/be5Ha9H21PnQfjKEY+fC6OuLIpfLoampufrGaEgCdDtsFcO1iqGeBrKCOKQVi/Z6t8MGohD1BDQkCDwOdYK+v78fiWRCP0lVe70q3A/PWn/FvBZcu35J8RUKep9GKppGpRHLaB94gsEgjhw5MiYSSaVSuP3228HzPJ577rkxDbeaGD986InECFmW8fbbb+OJJ57AU089hYGBAdxwww3YsmULrrvuulGXcbT23lozFvl8XieVgYEBvWTT2Ng46V+WXC6HvXv3wm63Y+XKlVO+y8TYoq09XZ8fyODI+QF46wNFAnM1uB1WZHJ5SMPwo9LIJCdIwwqecth4yAqBIisQhng9Raknn/6+fsTjcQQam2pqAZouMhyrfL/Hgc9csx4cW/v3qVm3h8NhJBIJ3aUgEAgM+zuhkcjq1avh9/uH9W9Kkclk8IlPfAKKouCFF14YsQeXiYmDSSRVoCgK3n//fZ1UgsEgrrvuOmzZsgU33njjsO0bwuEwDh48OKL2XkEQiqxatElwzf/rYs6ZpFIpdHR0wO/3Y8mSJVNmyGu4EEUR7e3tEAQB6byEd472IEdotWvJbq/YCsuxDBSi2vVahvCjAgY376GEeP3aBfv2WsI6MDjQeOZ8D9KpNFpaW1DndlaciAcAm5VD1uByXGuCnmVpfHbTBvjdI3s40lwKtEwQrZxYKxOkt7cXhw8fHhOJ5HI53HHHHUilUtixY8e00xY/6DCJZBhQFAWdnZ06qXR3d+Oaa67Bli1bcPPNN1f9AmntsStWrEBDQ8OofrY2Ca6VbKxWq27V4nK5JpRUtJPUjBkzJiUHZazQLGc4jsPq1aqDbTyRwMvvHsA7B09BEIQi3yo19VBtmdV0D03ITlUQ4gHAblOJQ+u6qh08VXxtDao1fXlmusPGo/vcBWQyGbQ0t+jlRGNWiAaGoUEBFZMlKzUGXHfJUiyfM/q5H6A4EyQSiYCm6bKBUi0Vc/Xq1aNuEc/n87jzzjsRiUTw0ksvjVqgNzFxMIlkhCCE4NChQ7qpZFdXFzZu3IitW7fi5ptvht/vh6Io+MUvfoEFCxaMa3usFjAVCoV0exFNqB8qIW6kiEQiOHDgABYsWIBZs2aN23UvFrRynMPhwMqVK8tOUufCA/jdG/sQivYjnU4jn8/DYrWgwVcHMFyZBlTJj6pWOFSl4KlqHV1AQVhnad0fy8KxON8TRDabLcuHL319rQAs43q0ifslsxtxwyXLxvXzouXUaKQiiiKcTicSiQSWL18+6mFVURTx+c9/HmfOnMHOnTtHfaIxMbEwiWQMIITg2LFjePLJJ/Hkk09i//79uOKKK5DNZnHhwgW88cYbaGxsnJCfrdmLhEKhIv8vLQtkLJtET08Pjhw5guXLl0+KU+pYoTU21NXVYenSpVXLcTlBxCt7unD8fASSLAGyiHDfAHLZHDieg8PhgMPhAM/zoEAV+VFRFCqeLopQmKBPZnJw2ixl6YXlUIX4ZDqH/v4okmn1JFK9Y0o9LRGFIDXUNH/h9c31Xtx21WpYuIkb3NOydI4fPw6r1Yp8Po+6ujr9tDLcLitJkvBHf/RH6Orqwq5du6bl0O6HBSaRjBMIIdizZw8++clPIpVKQRRFrF69Grfeeiu2bNmClpaWCSsNaU+DGqkQQnRSGa5nlYbu7m6cOnVqTPXsyUQqlUJ7ezuampqwaNGiIe85IQQHTwfx9qFTyOQFEEUNmcpk1Iz1TCYDlmF1UrFYLXBYLaApVBwCrASnzQJBkiGIQ1vfK4qCTCqGZCqDQGNTodxWHTYLp3aLEaLH6FYDw9D49DXr0OAdnT37cBGJRLB//36sXLkSDQ0NyGazuuYXi8X0zB9t9qfS70iWZdx7773o6OjArl27puUDzYcJJpGME06fPo3rr78eq1atwn/+538iGo3iySefxLZt2/D2229jw4YNulXLrFmzJoxUNENLrQNMluWqUbil/+748eMIBoPTclASGHQgnjlzJubNmzeie9yfSGP7u4cRHkgW/blCFD25UDNDrK/zgOOt8HrcNedAAOgW9aIkl2W4l4IQgmSsH/F0Bq0trXA7bVWFdWDQikWSZDVG12JBIlP99RvXLkLbgomNa9ZIZMWKFRVP49rsj+b+bLFYdLFeG4KUZRn3338/3nzzTezevbtmMJ2JqQGTSMYJPT09+I//+A/83d/9XdEJgBCCnp4e3f7+97//PVatWoWtW7diy5YtEypia55V2lS9IAi6VUt9fb1eMlEUBYcPH0YsFsPatWsnvd14NNBilefNmzciB2IjZEXBWwdPYU/X2Yp/TwiBIomIJRJIpdJQFAX1Pg9o1gKb3QaaKj/5GW1KNCE+XdA1Sq/dFw0jJ4hobmrWCb+SsK69vpIuUu31C2YEcMvlKya0YSIajWLfvn1VSaQUpe7P3/zmN/WHnX379uG1114b9e9yrPjRj36EH/3oR+ju7gYALF++HF//+tdx4403Tsp6pjpMIrmIIIQgHA7j6aefxrZt27Br1y4sWbJEJ5UlS5ZMKKmkUimdVLLZLPx+P+rr69Hb2wtJkrBmzZopP11fCVpjwOLFi8fl6fVsqB8vvnekrI3X6HVFQJDP59XUwlwOoiiCM5ghMjRTFK5lhDaBrukrClEQDoVAAahvaChrSS4V4gE1/bHasCTL0OA5BpnC690OK+68dgOs/MQNkUajUezfvx/Lli0bVRmKEIKXX34ZP/jBD/Duu+9ClmVcf/312LJlC2699dZxNQUdDn73u9+BYRgsXLgQhBD88pe/xMMPP4yOjg4sX778oq5lOsAkkkmCVoJ65pln8OSTT+KVV17BvHnzdPv75cuXT+jMRiqVQjAYxNmzZ6EoCnw+n95WPF3M74BBG/vhPgUPF9m8gJf3dOHkhSiAgteV3VJVFxFFAYokIBwdgCiKcLscsFhtsNnslcXywgR9PJVBsDcIG8/C6wvU+J2TAnnki0wkq0FrW87k8vjUxnVo9k+csaaWRzNaEgHUU/Hf//3f47e//S127doFSZLwzDPP4Omnn8YXv/hF3HPPPeO86pHD5/Ph4YcfnhJrmWowiWSKIB6P43e/+50e1NXa2qqTSltb27iTSjabxd69e+F0OjF//nx9ViWRSMDr9epWLVPZx0hzkB1vG3sNhBAcONWD1/Ydh43naiYManDYeKQzOWQzGQzEE8jlcuAt/GAHmMHfS1EUDETDYGkaLl/9sH7HdisHhaB2t5gBV62ej/WLJ6481N/fj87OTixdunTULb6EEPzTP/0TfvnLX2L37t1YsqTcsmUyZ5hkWcZvf/tb3HXXXejo6MCyZcsmbS1TFSaRTEEkk8miTJX6+nrdqXjDhg1jJpVkMomOjg4EAoGycprmrhsKhRCPx+F2u/WTylTy/+ru7sbp06fR1tY24QNq0VgKL75/GJGB1JCvJYTA7bBCVggyOQGyLCOdSetxuBynthXbbDb09ffBynNoaGiEzcrXFOK1azvt6rCjw2qpKcQDwOwmH267avWEbcIaiSxZsgQtLS2jugYhBA899BB+/OMfY9euXVMqn+PAgQO4/PLLkcvl4HQ68fjjj+Omm26a7GVNSZhEMsWRyWTw4osv6pkqTqdT7/66/PLLR+x7NTAwgM7OTsyePRtz586tuclodhihUAgDAwNwOp06qVxs+3gNhBCcPHkS58+fx9q1ay9ad5kky3jzwCnsPXau5us0cZ1AJRR1AFG9x4qiIJPJIJVWg6Zoikad1wOL1Qar1QqXvbIQP3jtYl2kmrCu/p0Ff3jtBtitE1OmHBgYQEdHx5hJ5Hvf+x6+973vYefOnWhraxvfRY4RgiDg7NmziMfjeOKJJ/Czn/0Mr732mnkiqQCTSKYRcrkcXn75ZT1Thed5/aTykY98ZEhHXs33a9GiRZgxY2RtoKIo6qRi9P9qaGioOgsw3iCE4OjRowiHw1i7du2kmPZ19/Zhx3tHKk6RW3gWgigVZaBYeBaEED31UJZlBINB0AyNloYAIv0xpNNpAIDdYYfX44bL4UC+JCXRaimI/CXfVpahwbMsMvnB9VAU8AcfXYOZDRNzUtNIZCzNDYQQPPLII/jOd76DHTt2YMOGDeO8yvHHpk2bMH/+fDz66KOTvZQpB5NIpikEQSjKVFEUBbfccoueqVIqmGt6wlh8vzRIklRk1WK1WnVScbvdE0IqxhbldevWTWqZLZMTsOP9I+gO9ul/RlEUOJauGJNLUepQ4kAijWBvEBzHYf6cWXopi6CQsZ5WS2CKrKC+zgOK5WC3O8CyNBiaqeHkOyjEA8Bly+fi8uVzx/19A6r/2t69e0f1MKKBEIKf/OQn+MY3voHt27fj8ssvH+dVTgw+/vGPY9asWXjssccmeylTDiaRfAAgSRJ+//vf65kq2WxWz1TZuHEj/umf/gmSJOHv/u7vxl1PkGUZfX19OqmwLKuTitfrHRdSURQF+/fvRzabxdq1a6dEizIhBJ0nzuP3+09CkuRBY8cqkGQJA9EwKJpFS3MTRFkpO10AKqkIeQHpdBqSmEcmk4XX7QLNWeBwOGqWMq08iya/G1s+smpCOv5isRg6OjqwYMGCYTtZl4IQgsceewwPPPAAnnvuOVx99dXjvMrxwQMPPIAbb7wRs2bNQjKZxOOPP66fnq699trJXt6Ug0kkHzDIsoy33npLdypOpVIghOBrX/sa7rnnngkdNlQURQ+XikQioCiqyP9rNJubLMvo7OyEJElYu3btlAvUisRS2N15DOfDsaqvkSQJPcEeWC1WtLY0w8KzSA2jAwwAeJZCKplCpD+mG0tqHWClRo42C4c/vO4SOG3jT7TxeBx79+4dM4n86le/wle+8hU8++yz2Lhx4zivcvxwzz33YOfOnQgGg/B4PFi1ahW++tWvmiRSBVOaSP7t3/4NDz/8MHp7e7F69Wr88Ic/xCWXXDLZy5oWyOfz+NznPod3330XN9xwA1555RWEQiFce+212Lp1K2644YZhZ6qMBpr/l2bVQggpsmoZDqmIooiOjg7QNI22trZxi3sdb4iSjN/vP4l9J85X+DsRwZ4gbDYb/PV+PRveZbcilRkU4ivBynPIiWJhhsWKeHJQqM9lc+D5wbZijudw+9VtmNM0/v5oGonMnz9/1E7QhBD85je/wf33348nn3wS119//Tiv0sRkYsoSya9//Wt8/vOfx49//GNceuml+P73v4/f/va3OHr06Jhr/B8G3H333Th8+DCee+45BAIBKIqCjo4O3f7+7Nmz2LRpE7Zs2YKbbrpp3G3ojSCEIBaL6aQiSRLq6+vR2NhY1f8rn89j7969sFqtWLVq1ZRPZQSAUz1RvPT+Ed1/SxRF9AR74LA7CiRSHN1r5VnIBBXNFmkaYBmmSHPhOQYMRSMriKqxZDqDdEb1AFs2sx6bNiyvGTA1GiQSCbS3t4/JegYAtm3bhnvvvRe//vWvccstt4zL2kxMHUxZIrn00kuxYcMGPPLIIwDUJ9yZM2fi/vvvx9e+9rVJXt3Ux+nTp3V31VIQQnDw4EGdVI4dO1aUqeLz+Sbc/0ubVcnn8zqpaP5f2rCklm8/nVIZ07k8drx3BMfP9SLYE4TD6YDf74eV58o6ugCAolE2E6KdQCpqLoWJ+GQmC+0001jnxMaVs9BXMENkGEY//Y22pAgMksjcuXMxZ86cUV0DAJ577jncfffd+NWvfoXbbrtt1NcxMXUxJYlEEATY7XY88cQT2Lp1q/7nd911F2KxGJ555pnJW9wHDFpLrZapcuDAAVx99dXYsmULNm/ejIaGhgn3/9JIJZvNwuPxIJVKIRAIYNmy8Q1fulhIJpP49Quv4lxMgqfOC5qiq3Z0aTDOhLgK2SW1oGWy0zSFO6/dAI9D7WIrLSkqijIs9+dK76G9vR1z5swZE4m8+OKL+NznPodf/OIX+NSnPjXq65iY2piSRNLT04PW1la89dZbRa2Bf/M3f4PXXnsN77777iSu7oMLbdhPs79vb2/HFVdcoRvnTWSmCqDOuRw4cAAsy0IURfh8Pl2sny7+X9oGPHPmTDh9AbzwziFIklKzo0sDyzKw8SxS2XzFjq5SMDSFGy9bgYUzKgc+EUIQj8f1LJBcLof6+nrdtr1a44L2HrSh1dFi586d+MxnPoNHH30Un/3sZ6flQ4GJ4cEkEhMVQQjB2bNndVJ55513sGHDBmzZsgVbtmwZ90wVrbV0zpw5mDt3LrLZrO5UrPl/aaQyVf2/EokE9u7dW7QBC5KE3+87if0nLwz57ymKAsfQsPDssHy9Vi+YgY+vXTSstRFCkE6n9ZNKKpVCXV2dHjCl3dNUKoU9e/Zg1qxZmDdv3rCuXQmvv/46PvnJT+IHP/gBvvCFL5gk8gHHlCQSs7Q1taBlqmzbtg3btm3DG2+8gdWrV+v29yMNkSqF5h67cOHCiq2lmv+XlrDndrt1Upkq2SlaZ1M1PeHEhQhefv8IckLlFMNSXcRq4aDICoQqQ4gBrxOfvmYd2FE2IWSzWf2eap5qHo8HwWAQM2fOxPz580d1XQB46623cPvtt+Nf//Vf8cd//McmiXwIMCWJBFDF9ksuuQQ//OEPAai131mzZuG+++4zxfZJBCEEoVBIz1TZvXs3li5dqpPK4sWLR7RxaOWsZcuWDcs9VhAEfQPs7+/XY1s1q5bJgHaaGqo9NpnJYcd7R3AuPFD2d067pWy2pJIQDwAcy+DOazegzjU+JCoIAs6fP49Tp06pgVkG+xuXyzWi3+d7772HrVu34p//+Z/xp3/6pyaJfEgwZYnk17/+Ne666y48+uijuOSSS/D9738fv/nNb9DV1TWuuRMmRg9CCPr7+4syVRYsWKDb3y9btqxmx1BPTw+6urpGbdui+X+Fw2H09fXBZrOhoaEBjY2NF83/S3PAHa5lCCEEe46exVsHT0EpmC3yHAtRKu/o0uC08cjkRf31N1y6DEtnj1+GeTqdxp49e9Da2orZs2frQ6XRaBQcxw3bqWDv3r3YvHkz/uEf/gF/+Zd/aZLIhwhTlkgA4JFHHtEHEtva2vCDH/wAl1566WQvy0QFaMKulqny0ksvYcaMGTqprF69uohUTp48iTNnzqCtrQ0+n2/MP1/z/9I2QJ7ndVKZKP8vrSQ3GvPCUH8CL7x7GPFURk9drAWWZcAxNOa11OO6DUvHsuwipNNptLe3o7m5GQsWLCi6T6VRuAB0TaV0qHT//v24+eab8dd//df46le/apLIhwxTmkhMTF8kk0k8//zzePLJJ/Hiiy+ivr4et956K7Zs2YKnnnoK77//Pp566il4POOf3Kf5f2kbIMMwRVYt47HJadGyYwl0EiQJb+w/VXEivhJ8bjs+c8068ONkE5PJZLBnzx40NTVh4cKFNe+LoiiIxWL6CVAURRw4cABOpxMrVqzApz71Kdx33334+te/Pmkk8u1vfxvbtm1DV1cXbDYbrrjiCnznO9/B4sWLJ2U9HyaYRDIEXn/9dTz88MNob29HMBjEU089VdQAYGJopNNpPVPl6aefBsuy+MQnPoHPfOYzuOyyyyZ0al1RFP2pOhwOg6IoBAIBNDY2jnpYT7PjH0u0rBHHzoXwSvvRmqcShqHxmWvWI+AdHx0ok8mgvb0dDQ0NWLRo0Yg2f0IIkskkHnnkEfzXf/0XLly4gLlz5+KrX/0qtmzZgkCgcjvyROOGG27Apz/9aWzYsAGSJOFv//ZvcfDgQRw+fHjS8nM+LDCJZAhs374db775JtatW4fbb7/dJJJRQpZlfOlLX8KOHTvwt3/7t3j77bfx7LPPwmKxYPPmzdi6deuwMlXGAu2pWhuA1Ib1Ghsb4fP5hkVooVAIBw8exMqVK8fVqieRyeHFdw/jQiRW8e83rV+MlfNGl/1Rimw2iz179oyKRIw4ceIEbrzxRtx4441YsGABnnrqKbS3t+Mv//Iv8fDDD4/LWseCSCSChoYGvPbaa1PWZfiDApNIRgCKokwiGSV+9rOf4f/+3/+Ll19+WRelBUHAq6++qp9UAOiZKh/96EcndAhR03S0WRVRFIusWiqRSjAYxJEjR7By5coJeepWFAXvd53FO4dP68I6ACya1YCbLl0+LiUjjUQCgcCIO+yM6O7uxg033ICtW7fi+9//vn6yu3DhAgYGBqZEZO6JEyewcOFCHDhwYEqs54MMk0hGAJNIRg9ZlpFIJKrmoUiShNdff13PVMnlcrjllluwZcsWfPzjH5/QIUStVKOdVLQJ8IaGBtTX14PjOL3DbPXq1fD7x99h14hgXxzb3z2MeCoLj9OGO6/dAAs3dufjXC6HPXv2wO/3Y8mSJaMmkXPnzuH666/HDTfcgH//93+fkl5oiqLg1ltvRSwWwxtvvDHZy/nAwySSEcAkkosDWZbx5ptv4oknnsDTTz+NeDyuP/1ee+21EzqEqE2AayeVdDoNu92OTCaDVatWXTTn6bwo4bXO41g9vxWNvrHn0msk4vP5sHTp0lGTSDAYxPXXX4+rr74aP/3pT6esK/OXvvQlbN++HW+88caokxxNDB8mkYwAJpFcfCiKgnfffVcP6gqHw7juuuuwdetWXH/99ROaqQKobcrd3d2wWq3IZrO6rUhDQ8OUSGocDnK5HNrb21FXVzcmEgmFQrjxxhuxYcMGPPbYY1OWRO677z4888wzeP3118fkFWZi+DCJZAQwiWRyoSgK9u7dq9vfnzt3Dps2bcLWrVtx0003jfu8yJkzZ3Dq1CmsWbMGXq+3zFbE4/HopDKZGfK1kM/nsWfPHni93jG5KUciEdx8881Yvnw5/vu//3tKhowRQnD//ffjqaeewu7du7Fw4cLJXtKHBiaRjAAmkUwdKIpSlKly/PhxfPzjH8eWLVvGJVPl9OnT6O7uxtq1ayvOuuTzeZ1UBgYG4HK5dFKZKq2m+Xwe7e3teq7LaO9Hf38/brrpJsyfPx+/+c1vplzcsYb//b//Nx5//HE888wzRbMjHo9nyhL9BwUmkQyBVCqFEydOAADWrFmD7373u9i4cSN8Pt+oY0dNjC8IIejq6tJJ5eDBg/joRz+qZ6oEAoERbaInT57EuXPnsG7dumGVzgRBKLJq0byqGhsb4XA4JmVATxAE7NmzZ8wkEovFsHnzZjQ3N2Pbtm1T2s6/2nv8xS9+gS984QsXdzEfMphEMgR2796NjRs3lv35XXfdhccee+ziL8hETWiZKhqpdHR0FGWqNDc3V91wtH974cIFrFu3blQmkKIoFlm1WK1WnVRGaoA4Wmgk4nK5sGLFilH/zEQiga1bt8Lj8eCZZ56Zsvb9JiYfJpGY+MCCEIIzZ87gySefxFNPPYV33nkHl1xyiZ6pMnPmTH2TVRQFR48eRTgcxvr168elPCXLMqLRKEKhUJEBYmNj47jmqhshCALa29vhcDiwYsWKUbfmplIp3H777eB5Hs8//7xZGjJREyaRmPhQgBCCCxcu6Jkqb775Jtra2rB161Zs3rwZ3/72t5HP5/GTn/xkQtqLjQaI4XC4yP/L6/WOyyyGRiJ2ux0rV64c9TUzmQw+8YlPgBCC559/ftLs+U1MH5hEMo1gmtKND7RMlaeeegpPPvkk3nzzTTgcDtx11134wz/8wzHZhgwHWq56KBRCJBIBIUQnFZ/PNyoCEEUR7e3tsNlsYyKRXC6HO+64Q/dHc7vHPsNi4oMPk0imEUxTuvGFLMv4X//rf2H37t340pe+hN27d2Pnzp1YuHAhbr31Vtx2221YunTphE5uE0IQi8X0AUhZlhEIBNDQ0AC/3z+sWQ2NRKxWK1atWjXq9ebzedx5552IRqN46aWX4PV6R3UdEx8+mEQyjWGa0o0N//Iv/4Kf//zn2LlzJ1pbW3X/rWeffVbPVJk1a5ZOKmPZpIcDQggSiYROKoIgFFm1VJrdEEURe/fuBc/zZZkvI4EgCPj85z+Pc+fOYefOneOSEWPiwwOTSKYxTFO6sSGVSiGdTldN3EwkEkWZKg0NDTqprFu3bsJJJZVK6aSSzWbh9/v1YCmO4yBJEvbu3QuO48ZEIqIo4p577sHRo0fx6quvTpoNvInpC5NIpilMU7qLi3Q6je3bt2Pbtm14/vnn4fF4cOutt2Lr1q249NJLJ9wuJJVK6UJ9KpVCXV0dstksrFYr1qxZM+qfL0kS7r33Xuzbtw+7du0yY6xNjAomkUxTmKZ0k4dsNouXXnoJ27Ztw+9+9ztYrdaiTJWJtg9JJpPo7OyEJEmQZRler1cX60cy6yHLMu677z68/fbb2L17N1paWiZw1SY+yDCJZBrCNKWbOhAEAa+88gq2bduGZ555BhRF4eabb8Ztt92Gq6++etwnwSVJQkdHB2iaRltbG0RR1O3v4/E43G63PqtSa/ZDURT8xV/8BXbt2oVdu3aZLg0mxgSTSKYRTFO6qQ1RFPVMlWeeeQb5fB4333wztm7dio0bN455MlyWZXR0dICiKLS1tZWVs/L5PCKRCEKhEAYGBuB0OtHY2Fjm/6UoCv7mb/4Gzz//PHbv3m0+jJgYM0wimUYwTemmD2RZxhtvvKFnqiQSCdx4443YunUrNm3aNOKhR41EAAxLExFFUSeVvr4+UBSF7du34w/+4A/wzDPPYNu2bdi1a9ekP4y8/vrrePjhh9He3o5gMGiaok5TmEQyjWCa0k1PKIqCd955RyeVSCRSlKky1OS4LMvo7OyEoihYu3btiIV1SZJw4MAB/MM//APeeustAMDnPvc5fPGLX8T69esnxVRSw/bt2/Hmm29i3bp1uP32200imaYwicSEiYsIRVHQ3t6OJ598Etu2bcP58+exadMmbNmypWKmiizL2LdvH2RZxpo1a0Yt5BNC8O1vfxs///nP8Td/8zfYs2cPfve738Hr9eKFF17A8uXLx+stjhpmTMP0hUkkJkxMEhRFwf79+3VSOXHiBK655hrceuutuOWWW8DzPL74xS/izjvvxPXXXz8mEvnud7+L73//+3j11VexevVqAKqmsnPnTmzcuHFKlEZNIpm+mLiJKhMfCvzoRz/CqlWr4Ha74Xa7cfnll2P79u2TvaxpAa3z6pvf/CYOHjyIjo4OXHbZZfjxj3+MuXPn4oorrsChQ4ewaNGiUc+JEELwwx/+EN/73vewY8cOnUQAwGKx4KabbpoSJGJiesMkEhNjwowZM/DQQw+hvb0de/bs0VMKDx06NNlLm1agKArLli3D17/+dbz77ru4+uqrkc/n4ff7sX79etx000149NFHEQwGMdwiAiEEjz76KB566CG88MILWL9+/QS/CxMfVphEYmJM2Lx5M2666SYsXLgQixYtwre+9S04nU688847k720aQlZlnHHHXcgHo/jwIEDePvtt3Hs2DFs3rwZTzzxBBYvXozrrrsOjzzyCM6dO1eVVAgh+MUvfoEHH3wQv/vd73DZZZdd5Hdi4sMEk0hMjBtkWcb//M//IJ1O4/LLL5/s5UxLMAyDzZs36+67FEVh7ty5+MpXvoI33ngDp0+fxqc+9Sk8//zzWL58OTZu3Ijvf//7OH36tE4qhBD813/9Fx544AE8++yzuOqqqyb5XZn4oMMU202MGQcOHMDll1+OXC4Hp9OJxx9/HDfddNNkL+sDDUIIent78dRTT2Hbtm147bXXsGLFCmzZsgUWiwXf+ta3sG3bNlx33XWTvdSaSKVSOHHiBAB1Pua73/0uNm7cCJ/PZ07bTyOYRGJizBAEAWfPnkU8HscTTzyBn/3sZ3jttdewbNmyyV7ahwKEEPT19eGZZ57B448/jldffRW/+tWvcOedd0720obE7t27sXHjxrI/v+uuu/DYY49d/AWZGBVMIjEx7ti0aRPmz5+PRx99dLKX8qGDFilsGnmauJgwNRIT4w5FUZDP5yd7GR9KUBRlkoiJi46J9bs28YHHAw88gBtvvBGzZs1CMpnE448/jt27d2PHjh2TvTQTJkxcJJhEYmJMCIfD+PznP49gMAiPx4NVq1Zhx44duPbaayd7aSZMmLhIMDUSEyZMmDAxJpgaiQkTJkyYGBNMIjFhwoQJE2OCSSQmPtB46KGHQFEU/uIv/mKyl2LCxAcWJpGY+MDi/fffx6OPPopVq1ZN9lJMmPhAwyQSEx9IpFIp3HnnnfjpT3+Kurq6yV6OCRMfaJhEYuIDiT/90z/FzTffjE2bNk32UkyY+MDDJBITHzj8z//8D/bu3Ytvf/vbk72UDyz+7d/+DXPmzIHVasWll16K9957b7KXZGISYRKJiQ8Uzp07hz//8z/Hf//3f8NqtU72cj6Q+PWvf40vf/nL+Md//Efs3bsXq1evxvXXX49wODzZSzMxSTAHEk18oPD000/jtttuK4qmlWUZFEWBpmnk8/lRx9aaUHHppZdiw4YNeOSRRwCo3mozZ87E/fffj6997WuTvDoTkwHTIsXEBwrXXHMNDhw4UPRnd999N5YsWYKvfvWrJomMEYIgoL29HQ888ID+ZzRNY9OmTXj77bcncWUmJhMmkZj4QMHlcmHFihVFf+ZwOOD3+8v+3MTIEY1GIcsyGhsbi/68sbERXV1dk7QqE5MNUyMxYcKECRNjgnkiMfGBx+7duyd7CR8Y1NfXg2EYhEKhoj8PhUJoamqapFWZmGyYJxITJkwMGzzPY926ddi5c6f+Z4qiYOfOnbj88ssncWUmJhMmkZgwcRHw4IMPgqKoov+WLFky2csaFb785S/jpz/9KX75y1/iyJEj+NKXvoR0Oo277757spdmYpJglrZMmLhIWL58OV555RX9/7Ps9Pz63XHHHYhEIvj617+O3t5etLW14cUXXywT4E18eDA9P8kmTExDsCz7gdER7rvvPtx3332TvQwTUwRmacuEiYuE48ePo6WlBfPmzcOdd96Js2fPTvaSTJgYF5iT7SZMXARs374dqVQKixcvRjAYxDe+8Q1cuHABBw8ehMvlmuzlmTAxJphEYsLEJCAWi2H27Nn47ne/i3vuuWeyl2PCxJhglrZMmJgEeL1eLFq0CCdOnJjspZgwMWaYRGLCxCQglUrh5MmTaG5unuylmDAxZphEYsLERcBXvvIVvPbaa+ju7sZbb72lOxR/5jOfmeylmTAxZpjtvyZMXAScP38en/nMZ9DX14dAIIArr7wS77zzDgKBwGQvzYSJMcMU202YMGHCxJhglrZMmDBhwsSYYBKJCRMmTJgYE0wiMWHChAkTY4JJJCZMmDBhYkwwicSECRMmTIwJJpGYMGHChIkxwSQSEyZMmDAxJphEYsKECRMmxgSTSEyYMGHCxJhgEokJEyZMmBgTTCIxYcKECRNjgkkkJkyYMGFiTPj/Adu3FhUzgbaSAAAAAElFTkSuQmCC"
- },
- "metadata": {},
- "output_type": "display_data"
- }
- ],
- "source": [
- "# %% Fit first using a super-simple linear regression\n",
- "\n",
- "first_order_linear_estimator = LinearRegression()\n",
- "first_order_linear_estimator.fit(X, y)\n",
- "\n",
- "show_results(estimator=first_order_linear_estimator, label=\"1st order linear\")"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 30,
- "id": "f67dbeeb",
- "metadata": {},
- "outputs": [
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- "/Users/jholla10/Library/Caches/pypoetry/virtualenvs/autora-17yK3Jyq-py3.8/lib/python3.8/site-packages/sklearn/base.py:439: UserWarning: X does not have valid feature names, but PolynomialFeatures was fitted with feature names\n",
- " warnings.warn(\n"
- ]
- },
- {
- "data": {
- "text/plain": "",
- "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZIAAAGlCAYAAADQ/XDvAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOz9d5ykaV3vD7/vWLmqqzr3TE9PDjuzs4ndnZllF4QlKogKPKAcWUU5HMGDeI4/41F5jiCGc8RwRPRRVIIoCPo7Epa4LLts3unJoWemu6d7OlfOd3z+qL5rqjqH6uma2fv9eq041VVXXZWuz/3Ngm3bNi4uLi4uLmtE3OwNuLi4uLjc3LhC4uLi4uKyLlwhcXFxcXFZF66QuLi4uLisC1dIXFxcXFzWhSskLi4uLi7rwhUSFxcXF5d14QqJi4uLi8u6cIXExcXFxWVduEJyE/HII48gCAKCIHDo0KGGry8IAh/4wAcavm4j+Pu//3sEQWBoaKh625133ll9P37kR35k8zYH/O7v/i6CIGzac23fvp1HHnnkhjy/i8tcXCG5yWhra+PTn/40H/vYx+b97Qc/+AEvf/nL8fv9dHV18V//638ll8vNu8/v/u7vkkqlGr63xx9/nDe/+c309vbi9Xrp6uri9a9/PU8++WTDnwvgox/9KJ/+9Kdpa2vbkPVdXFxWhrzZG3BZHYFAgHe9613zbu/v7+fVr341Bw4c4H//7//N6Ogof/zHf8zAwABf+9rXqvf7wQ9+wIc//GEeeeQRWlpaGrq3ixcvIooi73vf++jq6iKZTPKZz3yGhx56iK985Su8/vWvb+jzvfGNbwTgt37rtxq67s3IhQsXEEX3utBlc3CF5BbhN37jN4hGozz22GOEw2Gg4u74+Z//eb7xjW/w2te+dsP38HM/93P83M/9XN1tv/ALv8DOnTv5+Mc/vqSQWJaFpml4vd6N3uaaMAwDy7JQVfWGPF+hUMDv96/4/h6PZwN3s37y+TyBQGCzt+GyQbiXMLcAmUyGb37zm7zrXe+qigjAT//0TxMMBvmXf/kXoOJb/5Vf+RUAduzYUY0v1MYdAP7t3/6NQ4cO4fF4OHjwIF//+tfXvDe/3097e/s8V5oTj/nsZz/LwYMH8Xg81ec5c+YMr3rVq/D5fGzdupXf+73fw7KsNe+hlqmpKd7znvfQ2dmJ1+vljjvu4B/+4R/q7jM0NIQgCPzxH/8xH//4x9m1axcej4ezZ88C8MQTT3Dvvffi9XrZtWsXn/zkJxd9vs985jPcc889+Hw+YrEY73jHOxgZGam7zytf+UoOHTrECy+8wEMPPYTf7+c3fuM3VvW65sZInJjSk08+yS//8i/T3t5OIBDgx37sx5ienp73+K997Ws8+OCDBAIBQqEQP/zDP8yZM2fq7nPy5EkeeeQRdu7cWXVd/uzP/izxeLzufk4M5+zZs/zkT/4k0WiUl7/85at6PS43F65Fcgtw6tQpDMPgZS97Wd3tqqpy5513cvz4cQB+/Md/nIsXL/JP//RP/Mmf/Ek1ttDe3l59zBNPPMGXvvQlfuEXfoFQKMSf/dmf8RM/8RNcvXqV1tbWFe0nk8mgaRozMzP84z/+I6dPn17wYPzOd77Dv/zLv/CBD3yAtrY2tm/fzsTEBD/0Qz+EYRj82q/9GoFAgL/+67/G5/Ot9e2pUiwWeeUrX8mlS5f4wAc+wI4dO/jCF77AI488QiqV4oMf/GDd/T/1qU9RKpV473vfi8fjIRaLcerUKV772tfS3t7O7/7u72IYBr/zO79DZ2fnvOf7yEc+wv/4H/+Dt7/97fzcz/0c09PT/Pmf/zkPPfQQx48fr3MtxuNx3vCGN/COd7yDd73rXQuutxZ+8Rd/kWg0yu/8zu8wNDTExz/+cT7wgQ/wz//8z9X7fPrTn+bd7343r3vd6/iDP/gDCoUCn/jEJ3j5y1/O8ePH2b59OwDf/OY3uXLlCj/zMz9DV1cXZ86c4a//+q85c+YMTz/99LwEgLe97W3s2bOHj370o7jTKm5xbJebhne/+912X1/fvNu/8IUv2ID9+OOPz/vb2972Nrurq6v67z/6oz+yAXtwcHDefQFbVVX70qVL1dtOnDhhA/af//mfr3ifr3vd62ygut5//s//2S4Wi/OeSxRF+8yZM3W3/9Iv/ZIN2M8880z1tqmpKTsSiSy6776+PvuHf/iHl93Xxz/+cRuwP/OZz1Rv0zTNPnr0qB0MBu1MJmPbtm0PDg7agB0Oh+2pqam6Nd7ylrfYXq/XHh4ert529uxZW5Iku/bnNDQ0ZEuSZH/kIx+pe/ypU6dsWZbrbn/FK15hA/Zf/dVfLfsabNu2f+d3fsee+9Pt6+uz3/3ud1f//alPfcoG7Icffti2LKt6+4c+9CFbkiQ7lUrZtm3b2WzWbmlpsX/+53++br2JiQk7EonU3V4oFObt5Z/+6Z/mffec/b3zne9c0etxuflxXVu3AMViEVjYT+71eqt/XwkPP/wwu3btqv778OHDhMNhrly5suI1Pvaxj/GNb3yDv/3bv+XIkSNomoZhGPPu94pXvILbbrut7ravfvWrHDlyhPvuu696W3t7Oz/1Uz+14udfjK9+9at0dXXxzne+s3qboijV7Lbvfe97dff/iZ/4iTprzTRNHn30Ud7ylrewbdu26u0HDhzgda97Xd1jv/SlL2FZFm9/+9uZmZmp/tfV1cWePXv47ne/W3d/j8fDz/zMz6z7Nc7lve99b52l8OCDD2KaJsPDw0DFykilUrzzne+s26ckSdx///11+6y1CkulEjMzMxw5cgSAF198cd5zv+9972v463FpTlzX1i2A8wMvl8vz/lYqlVblFqo9IB2i0SjJZBIATdNIJBJ1f29vb0eSpOq/77zzzur//653vYu7776bRx55hC9+8Yt1j9uxY8e85xoeHub++++fd/u+fftWtH/TNOfFAGKxGKqqMjw8zJ49e+ZlNx04cKD63Evtb3p6mmKxyJ49exbc31e/+tXqvwcGBrBte8H7QkXAatmyZcuGBPLnfp7RaBSg+nkODAwA8KpXvWrBx9fG3BKJBB/+8If5/Oc/z9TUVN390un0vMcu9Pm63Jq4QnIL0N3dDcD4+Pi8v42Pj9PT07PitWoFoRZ71sf9gx/8gB/6oR+q+9vg4GDVjz4XVVV585vfzMc+9jGKxWKdqDUi7jGXkZGReQfYd7/7XV75yleueq317M+yLARB4Gtf+9qC72kwGGzYcy3Fcp+nk8Tw6U9/mq6urnn3k+XrR8Tb3/52fvCDH/Arv/Ir3HnnnQSDQSzL4vWvf/2CyRAb9Zpcmg9XSG4BDh06hCzLPP/887z97W+v3q5pGv39/XW3rbf6+o477uCb3/xm3W0LHUC1FItFbNsmm80ue7j09fVVr5JruXDhwor219XVNW9/d9xxR3XtkydPYllWnVVy/vz56t+Xor29HZ/Pt6L97dq1C9u22bFjB3v37l3R3jcDx43Z0dHBww8/vOj9kskk3/72t/nwhz/Mb//2b1dvX+i9cHnp4cZIbgEikQgPP/wwn/nMZ8hms9XbP/3pT5PL5Xjb295Wvc3J5V9rZXs0GuXhhx+u+8+p/Zjr7nCe51//9V/p7e2lo6Nj2fXf+MY38vTTT/Pss89Wb5uenuazn/3sivbn9Xrn7c9x57zxjW9kYmKiLmPJMAz+/M//nGAwyCte8Yol15Ykide97nX827/9G1evXq3efu7cOR599NG6+/74j/84kiTx4Q9/eF7Gkm3b81JmN4vXve51hMNhPvrRj6Lr+ry/O25Cx7KZ+1o+/vGPb/geXZof1yK5RfjIRz7CsWPHeMUrXsF73/teRkdH+V//63/x2te+tq4Q8J577gHgN3/zN3nHO96Boii86U1vakix2Bve8Aa2bt3K/fffT0dHB1evXuVTn/oUY2NjdYf3Uvw//8//w6c//Wle//rX88EPfrCa/utYE+vhve99L5/85Cd55JFHeOGFF9i+fTtf/OIXefLJJ/n4xz9OKBRado0Pf/jDfP3rX+fBBx/kF37hF6pCdPDgwbr97dq1i9/7vd/j13/91xkaGuItb3kLoVCIwcFBvvzlL/Pe976X//7f//u6Xk8jCIfDfOITn+A//af/xN1338073vEO2tvbuXr1Kl/5yld44IEH+Iu/+AvC4TAPPfQQf/iHf4iu62zZsoVvfOMbDA4ObvZLcGkCXCG5Rbj77rv51re+xa/+6q/yoQ99iFAoxHve8x5+//d/v+5+9957L//zf/5P/uqv/oqvf/3rWJbF4OBgQ4TkZ3/2Z/n85z/Pn/zJn5BKpYhGoxw5coTPfe5zPPjggytao7u7m+9+97v84i/+Ih/72MdobW3lfe97Hz09PbznPe9Z1/58Ph+PPfYYv/Zrv8Y//MM/kMlk2LdvH5/61KdW3PDw8OHDPProo/zyL/8yv/3bv83WrVv58Ic/zPj4+Dyh+7Vf+zX27t3Ln/zJn/DhD38YgN7eXl772tfy5je/eV2vpZH85E/+JD09PXzsYx/jj/7ojyiXy2zZsoUHH3ywLpPsc5/7HL/4i7/I//k//wfbtnnta1/L1772tVXF4FxuTQR7rq3q0rQ88sgjfOc73+HFF19EluWG98q62UilUhiGwd13383hw4f5j//4j83ekovLSxI3RnKTMTIyQnt7u9tygkprkfb29nktR1xcXG4srkVyE3H27FnGxsaASvqoUwz2UuWZZ56pJhe0t7dXs7NcXFxuLK6QuLi4uLisC9e15eLi4uKyLlwhcXFxcXFZF66QuLi4uLisC1dIXFxcXFzWhSskLi4uLi7rwhUSFxcXF5d14QqJi4uLi8u6cIXExcXFxWVduELi4uLi4rIuXCFxcXFxcVkXrpC4uLi4uKwLV0hcXFxcXNaFKyQuLi4uLuvCFRIXFxcXl3XhComLi4uLy7pwhcTFxcXFZV24QuLi4uLisi5cIXFxcXFxWReukLi4uLi4rAtXSFxcXFxc1oUrJC4uLi4u68IVEhcXFxeXdeEKiYuLi4vLunCFxMXFxcVlXbhC4uLi4uKyLlwhcXFxcXFZF66QuLi4uLisC1dIXFxcXFzWhSskLi4uLi7rwhUSFxcXF5d14QqJi4uLi8u6cIXExcXFxWVdyJu9AZeXFrZtY5om5XIZSZKq/4mie03j4nKz4gqJyw3Dtm10XccwDMrlcvV2URSRZRlZll1hcXG5CRFs27Y3exMutz6maaLrOpZlIQgCmqYhiiK2bWPbNpZlYds2giAgCIIrLC4uNxGukLhsKLZtYxgGhmEAIAhC1TIRBGHB+zui4uDcT1VVFEVBluUFH+vi4rI5uK4tlw3DsqyqFQJUrQ1HJBwLpBZBEJAkqfpvR1iefvpp9u3bR0tLC6IoIklSndXiCouLy+bhColLw3EOf13X69xVc++zksPfERbnfyVJqq6taRqCIFSFRVGU6n1cYXFxuXG4QuLSUBy31enTp+no6KCtra0hh7qzxmIWy1xhmRtjcYXFxWXjcIXEpWE4B7ppmmSzWaLRaMMO8FqX2NzbHWFx/m5ZFpqmUS6XXWFxcbkBuELism6c2hDDMLAsC1EUFz34NxJHHFxhcXG5sbhC4rIuHFeWaZoAVRFxUnsbxVqEaSFhcf4rl8tomlbdsyssLi5rxxUSlzXjXOnXWiG1LHbwb9YhXRv0lyRpnrDUWixOmrFTw+IKi4vL4rhC4rJqHFeWk5W10EG7nAWx2oN5I1xlSwlLqVSq3scVFheXpXGFxGVVWJaFYRjzXFlz2YwYyXpZibCUSiUMw6Ctrc0VFheXWVwhcVkRK6kNqaXRQrJZwfu5wpJMJkkmkwSDQaAipHNjLK6wuLzUcIXEZVkWanOy3EF5M1oky+G8bkEQUBSlrk9YuVymVCq5wuLyksQVEpclqa0NceIFK2GtQqIZFjbgkeufpxmFaa6gOsJimma1VX5tjMVp67ISIXZxuZlwhcRlQRarDVkpqz34kwWdJ68kOD+Rw7ZhT0eAYzujdIQ8dXtqZhyBcMS2VlgMw6j+faE+Ya6wuNzMuELiMo/FakNWw2qEJF82+JcXx7gyXSAWVBGApweTjCSLvOu+rUT9yk150C4mLIZhVLsfO8JS2yfMbZnvcrPhColLHcvVhqyU1QjJuckcg/Eiu9r9yFLlEI35FQam85way/LQ7hjQPBbJet4TV1hcbkVcIXEBVlYbshpWIySTGQ1RoCoiAKIo4FUkRpPF6nq3GssJC7jTI11uDlwhcWmIK2suSwmJbduMJItMZjX8ioQsgWXNv69mWoS9ct3jbmUWE5bazsbu9EiXZsQVkpc4pmkyMjKCz+cjEolseLfesm7yr8fHeGE4QVG3kESBiLeSyXQtVaI77AEBprMaPllkf1ewut5LjYWExcmi03WdfD5PsViku7u7Kizu9EiXzcAVkpcotbUho6OjdHZ20tLS0rD1FxOSJy7FefJygs6gwpaIhGnbDCdKqJKAIglcnikA0OKTec2Bdna3B+r2/FJm7iyWfD7PxMQEbW1tC1os7vRIlxuFKyQvQeaOwN0I14ggCNX1HQzT4tnhJCGPTNgnY9ugiAJ9MS9XkyV+aG8bAVXCsm16oz6ifqVuvWag2cTMEQ5YfMiXOz3SZaNxheQlRO1BU5uVJYrivEN/vSx0WOmmTVEz8Sj1wiWLApZlIwpwqCe06HrNdohvNnPHFbvTI102C1dIXiIsFVDfqM66c8XJq4hsafFxdjxL1Hf9wMuWTXyKRGdN8aHLyliu35k75MvlRuAKyUuA2jYni7V8vxEWiSAIPLSnjaF4gcvTBVr8CmXDJFc2ObojSm/Uu+R6rkVSz1yLZCnc6ZEuG4krJLcwK21z0uhphnBdnK4mCvSPpEkXdbZEfdzVG+Ftd7Tz788OkEgLtAT8vOJgOw/ubnUPrFWyns9sKWFxp0e6rBZXSG5RVlMbslGurTPTGi9cvEKqqCGJIqZl861TI9zlS/CWfa2UDJtcJo49OcW5UoRoNEosFiMYDM5LAHAtkvmsxiJZjlphWcn0SCfV2O1s7AKukNySOBXqK21zshHB9oJu8/hwEcWvsrejUgsyPRPn7Giezv2d/OjBfVVhKBQK1TkfV69eBaClpYVoNEo0GiUQCCz6PJtBMx2cG7UXd3qky2pwheQWorY2ZDVtTjbian80o5MsWdzR48U0DSYnpwDYs6Wda3mBbMkg6Km4SQKBAIFAgK1bt2LbNtlslmQySTwe5/Lly3VFdm1tbfh8vobu9WalkRbJcqxEWJLJJH6/n0gk4grLSwxXSG4RFqoNWU0gttEWiSNLhXyeZCJOMBgkFouRLOgYlo3NwgehIAiEw2HC4TB9fX1YlkU6nebChQtks1mefvppPB5P1VqJRqN4PC/NbK/NdPUtJCxjY2O0trZWP4+FWua7wnJr4grJTc5qR+AuhCiK1VhKo9gaVvAJBpfG4uzb2kYgEMCybaZzZe7rixLySCs6CEVRJBqNEgqFCAaDbNmyhXQ6XXWDnT17lkAgUBWVlpYWFEVZdt1bgRtpkSxHrai40yNferhCchMzN6C+1gFJjXBt5UoGP7iS4OS1NJZp4M2Nc3vMZtBq5VreRi0VKBkWW1t8vP5g55qe07ZtZFmmtbWV1tZWAHRdr8ZXLl++TKFQIBwOV4UlEonUFemtl2YL+DfTIWxZVl1tkjs98qWDKyQ3KcvVhqyG9Qbbc2WDv3z8CqevZbEtnWwmhyBJ7I+pvO9Vuzg1liFV0NkW9fGy7VHag2q1TfpKWez1KYpCR0cHHR0dAJRKpaqwnDt3Dk3TiESuZ4SFQqFbpltus4naUhaSOz3y1sYVkpuM9Y7AXYj1WiRPDyY4fS1DRNQoawW29sYolk0uJnLkygbveNnWea9hLazkcV6vl+7ubrq7u7Ftm2KxSDKZJJFIMDo6imVZdRlhwWDwpj2omsm1BVS/jythNUO+5rrCXJoPV0huIjZibgisP9h+YjhBPpshFBDp7u5CkRVsK4dlwaWpPPfviDVkj2t5jN/vx+/3s2XLFmzbJpfLVS2WwcHBagzG+c/n8zXV4bwUzSYk69nPaoTFnR7ZfLhCcpNgWRaTk5NMTk6yf//+hh4g67FIJiYmGBsdRZRVuro6ru9LELCxkcTG7XO9rhxBEAiFQoRCIbZt24ZlWWSzWRKJBJOTk1y8eBFVVauiEovFmj4jrNmEpFEH+3LCAu70yGbCFZImp3YEbrlcJplMNvzwWEuLFMuyOH/+PGNjY7zy8Ha+dDZDXjMJeipfqUzJQBYFblukm+9q2YgDUxRFIpEIkUiEHTt2YJom6XS66gY7d+4cfr+/zmJpJprNIqkNtjeaxYTF6WwMrrBsJq6QNDGWZWEYRtWVJUlSw+s9YPWurZPD03zxybPMFCwO7+7jgZ4OjpVlnr6S4FqqiG0LiLbFXR0Sh7rDCz7fag+cG9EiRZIkYrEYsVjFFafrOqlUquoGO336NKqqIssy8XiclpaWhmaErZZmE5JGWiTLsZCw1E6PBKqFueFw2J0eucG4QtKELFYbslFCshqL5NEXL/PJxwcxRIVoOMRjl1K8MJrjkSPbuLcvysXJLJIk0q5oiOlriA10bd1oFEWhvb2d9vZ2AMrlMgMDA2QyGS5cuEC5XK6mGsdiMcLh8A29Ar6RB/dK2EiLZDkWmsUyMTHB9PQ0t99+e/U+7vTIjcEVkiajts0J1F+9b0RPLOc5llvXsixOnTnHZ58aR/b6OdAVqVoJVxNF/v3EOP/zzQe4szcCwNTUFAPpxu5xs9NdPR5PNcvr4MGDFItFEokEyWSSa9euYZpmNSPMaT650QdVMx2EzWQh1RZIyrLsTo/cYFwhaSJqa0NqzXaHjTpMl7NICoUC/f39jOcsbF+Y3tD1zCZBEOgMe5jIlhlOFNnbGdzQvTYTPp+PLVu2VDPC8vl8NSNsaGgIQRDq4it+v7+hB1Wzvb/NaCE5+1nIYnGnRzYOV0iagNXMDdkoi2SxQ2liYoLTp0+zZcsWuvb08h/jF7Hm3NeybUSoy9BaTkiaMUayHgRBIBgMEgwG6e3trWaEJZNJpqenuXTpErIsV62VaDSK17v4IK+V0EwWAGyua2shnGLdhagVFnfI1/pxhWSTWU1tyI10bTlZWVdGxvB27qQQiLEl6KEv5uP8ZI6dbRKiIGDZNuOZMrvbg/TFfHVrNvPBv9HUZoRt3769mhHmuMHOnz+P1+uts1hUVV3VczSbkDSzRbIUtW4wcIVlLbhCsok4X9TNnBvirFt76DuurDNxk+dTUeJDM9hM0x708ODuVlJFncvTBQTAxqYz7OWn7tuKLF3/0S4nJKsVmY3oUHwjmZsRZhhGNSNseHiYM2fOEAwG65pPyvLyP89mOcicdNxm2Q+srtK+lqWExZ0euTCukGwCtbUhq5kb4hz4jf7B1h7SjiuLUAdPxHUKmklPixcBmMiU+frZKf7LQ9tJFXWms2Vagx7u2x6lI+SZt2ajLZJbycKRZZm2tjba2toA0DStGl8ZGBigVCoRCoWqbjAnhbWWZno/nL00m0XSiPTsWmFZaHpkrbC8VKdHukJyg1lPmxPnR9qoH0jtupZlcfbsWcbGxjh06BDfGtZIF8fY2Rao7m9Li5crMwVOj2V574Pbl1yz0UJyq/8gVVWls7OTzs5OgGqPsGQyydjYGIZhzGs+2UwWgPNZN8t+oPI72YiRArWZlO70yAqukNxAVjsCdy7O/Rt9JepcVaVSKY4dO4bf72fmzCWkOXsUBAFFEpjOlVe0V9ciWTs+nw+fz0dPTw+2bS84jti5AMjlcgQCgU09pByLtpkOyrW6tlaLKyyukNwQ5taGrPULVGuRNIqJiQlOnTqFIAgcOXKk+hy9MT+mFa9kZNUImG5abI/5l13XtUgahyAsPI743LlzFAoFnn/++WpGWG3zyRtJs7q2NmM/SwnL1atXyWaz7N69+5aaHukKyQYzdwTuWtqDODRSSEzT5MKFC4yNjbFnzx4uXbpU96N7+a4Y3zo3xeBMnvagBwSYyWl0hDw8tLdt2fVvZYtks3/sglAZR+zz+YhGo3VTI8fHx7lw4ULdOOJYLLbqjLDV0qyurc1sYeNQ+5t30vwda/JWmR7pCskGUVvw1Mi5IY3IXsrn85w4cQJBEDh27BiWZfHd4xf5i8euMJIo0tPi5eH97fzyw7v5p+dGGZjKY9s2h7eEecfLttIbXf5qdyPqSFzqcWIkta3woZIRttQ44mg0uqKMsNXg1JA00+e0WRbJUpimOa+Z5FLTI28WYXGFZAPYqLkhzlrrEZLaAsN9+/YhiiLfPTvGP18WkLwTeGSJ02MZnrqS4L+8Ygf/4437mMqWsW3oDHtW9TpuRYukGfZQy0Kfx2aMI26mwL9DMwtJLYt1Nq4Vlne+8528+93v5p3vfOdmbHtZXCFpMJZlMTExAUAsFmv4j2utQlLryrr99tur2UGaYfHPL05QNm1ui/kRxIolMZoq8dlnRrh/e5TO8OorsNfSmn4pmu2QagZWenjfiHHEzVbVDjePkMxlIWGZmJhouBXZSJp3ZzcZtW1OxsbG8Hg81SvCRrIWIZnryvL7rwfLhxMFJrMaYQWo6Z/VEVSZympcns5zsGd+K/iV0EjX1nLrvRRZ6/uxEeOIm62qHZpXSFYbrxIEgUKhUPe7bTZcIWkAc11ZkiRV//9Gs9og9vj4OGfOnKlzZdUiCgKCAJUVbaByYFiAKLDmCYe1qcoLHUJOyvFKfxzNdrXbDDTCnSQIjRlH3IyuraV6bW0Wa0kAcBqChkKNGRK3EbhCsk4Wqg2RJKma6ttoVmqRLObKmsv2Vj99MR8vpjL0WDayVOmfNZkps7MtwK72wJr2uZSQOCnHlmXh9Xqr1dvRaHTRArKXeu+uhdiIw1sQ5o8jzmQyJJPJeeOInc/N4/G4rq0VslZxy+fzBAJr+y3eCFwhWSO1tSFz25xsVE+sla69lCsLIJHXOD2WQRQEbt8S5meP9XF5dJLhRAFRELGxaQ96eM8DfSjS2n6ICxVPWpbFhQsXuHbtGocOHSIYDFZnpjsTCGsHRUUikaY7CJqNjT68RVGkpaWFlpaWeeOIR0ZGOHv2bNWicSzzjagmXwvNKiRrSWwoFAquRXKrMXcE7tysrI2aZOg811JrL+fK+r8nJ/jMMyMkixoCAjG/wruP9vKTuyyszi3EiyYdIQ8P7m6jp2Xtbc7nCkmpVKK/vx/TNDl27BiqqqLrel2/qXK5XB0UdebMGQzDoKWlhVgsVm1u6XKdzbDQFhtHPDY2hq7rfP/73ycUCtU1n9ysWo5bRUg0TUPXdYLB4Abtav24QrIKFhuBO5fNsEhM0+T8+fOMj48v6srqH0nz/3tyCMuy2RKp1IJMZct88vvD/Eg7/OQdnQ2riK4Vkng8zokTJ2hvb+e2225b1PXn8XjqgsDOoKhEIkEikQDgzJkzVYtlvfM8bnaaIS7hjCMWBIFyucwdd9xRja/UjiOubT55Iw5357fabEKylhhJLpcDcIXkVmBuQH2p4itRFDc02D5XSPL5PP39/YiiuKAry+E7F6YpaibbalqcdIU9jCSLnEltTLru4OAgw8PDHDhwgK1bt67q8bWDokZGRpiamsLn8zE2NsaFCxeqld3OIXWj0iM3+/CupVn24sRIPB4PXV1ddHV1VXtNOVamkxFWm2q8UeOIm7FlC6wtRpLL5apJEc2KKyQroHYE7kqKC2+ka2s5V1Yt07nyvCwsRxBzemPnfTgWx9jYGPfffz/h8NpSiB0EQUCWZXbu3MnOnTsxDKOuyK5YLFbbrsdisRt25buZNINF4rDQXgRB2LRxxM53udm+A2txbTmpv832WmpxhWQJVjoCdy4baZE4hX4rcWXNZXd7gOeHUnWNGC3LxrJtuvyNy4pKp9McP34cgHvuuachQcK577ssy7S3t9Pe3g5Qd+XrZIQ58ZVoNLrp3XE3gmbKYltJHclcK3OxccS1WXxrdV/eSkLSDN2dl8MVkkVYT5uTjbZISqUSTz/99LKurLm89rZOvnN+hpFEkWhAARsSBZ2eFi93tBXXvWfbthkdHeX8+fPs3LmTgYGBhrqbljo4vV4vPT091bbr+XyeRCJBPB7n8uXLdQdULBbD4/EsutZa93CjaSaLZC3pv6sZRxyLxWhpaVlxMV8zCokTt1mtkDR76i+4QrIgqx2BO5eNDLaXy2Wmp6fp7e1d1pUFFYujbFh4FZHeqI/feuM+/v6pq1ycyiEAR3ZEeffRbYyeeW5dh6Rpmpw5c4aZmRnuvvtuWltbGRgYaNjBu5rPoPbK16mFcFJWr127xrlz56pNDJ0DqpnbTyxFswhJIyrblxpHPDg4SD6fX/E44kY1Sm0kzpngWiS3OGsdgTuXjRASx5WVTqfp7OzkwIEDS95fNy3+rX+c/3tqglRBpyfi5a139/Dq/e187MduYyZXGQ/aFlQRBIFrZ9fu2nKC/ZIkcezYsao7YqkiwhvZImVud9zaJobOWFsns2itvaY2g5vdIlmOlYwjrm0+WTuOuBkztmq9G6uhUCi4FsnNwnK1Iauh0TGS2qyszs7OFbmy/vr7Q3zp+BiSKOBVRAamcvzRNwco6hZvOtxF+wIz1tcifpOTk5w6dYqtW7eyd+/euh9JI6vRG3lIzW1iuFCvqdpZHo0KADeal5qbbTXjiFVVbbrPbK1C4lgkzcxLXkhWWhuyGhoZI5mblXX+/Pll1x5Pl/j6mUl8qkTUX6kyjvgUJjJl/vn5UV57oB2PUm9er7Zbr2VZXLx4kdHRUQ4dOkRXV9e8+zS6rclGHZxzx9rmcjkSiQQzMzNcvnwZRVGqorJRSRRrodkskhttASw2jthJujBNk5MnT1YvCjbbPeQE2le7B8el18y8pIVk7gjcRg3maYRra7GsrJUc+ANTOXJlk55IvdUR8crM5DXG0iV2tNVf4azm0C+VSpw4cQJd1zl69OiiV0tLvZfNOtiqttdUX1/fvJYg2Wy2OmzIia9s5hS+ZhGSzRY1QagfRzwzM8OFCxeIRCJ1CRebOY54rRMbC4WCKyTNSm1tSG3v/0bgCMlaf1xLFRiKooiu60s+PuSVkSUB3bTwiNe/uJppoYgCQc/8j32l4pdIJOjv76etrY177rlnySB1o6ckNkNLkIGBAbLZbLUpZrlcXvcsj7Wy2Yd3Lc3WRt62bRRFoa+vj76+vmrCxWaOI75VGzbCS1BInID60NAQoijS09PT8B9jbcBvtVcg4+PjnD59mt7e3nkxB1jZgX+oJ8z2mJ+B6TxdYQFFEinrJpmSwSv3ts+Lj8Dyh75t2wwODnL58mX27dtHb2/vsu/bRsRI0kWd0WSJsmkR8sj0Rr14lRtnEUiShM/nY//+/QB17pSRkRGAusNpoZbrjaKZYiTN1v13rqttsXHEiUTiho0jXmvDxlwu19QNG+ElJiS1tSHZbHbD0gOdL/BqhMRxZU1MTHD48OFFCwwXEpLRZJF/6x/j+EiakFfh4QOVeesf/fpFrqWKlccJAod6wvzCK3YsuO5SwXZd1zl16hSZTIb77ruPSCSyotfUaCGZzJtcPD1FsqCDICAAW6NeXrGnlbD3xn2Va78zc2d5ON2Mp6enGRgYQFXVqkXjBIEbRbNZJM2yF1g+ZrMZ44jXKiT5fJ7u7u51PfdG85IRkrm1IRs5fMr5ApumuaKW2rWurKNHjy6ZlTVXSIbjBf7bF08znimhSAKmZfPi1RRvONTJX77zMM8OpYjnNLZGvdy7PbpoW/jFYi+ZTIb+/n78fn+1a+9KaaSQaKbFubhFpMNkR1sli8qwbIbjBU5dy/DArlhDnmc9CIJAOBwmHA5XC+ycOojh4WHOnDlDMBisikoj4ivNcng3m2trtcH/5cYR67peN+JgreOI1xojaeY+W/ASEJLFakMkSULTtA15TufHvZKYw3KurIXWrl3308+MMJ4p0RnyIM720cqVDb55doofPtTJq/e3r3jPcw/90dFRzp07V+1vtZYAeaOEJF4wSWsW+yLe6j5kUSAWUBlOFLlnm3lDXFyreT2SJNVd9Tp1EIlEgvPnz6Pr+rz4ymre42ayAtZ6SG4U680iW2gcsZMNNjIygm3bqx5HvB6LxA22byJLtTnZ6HG4y6UA17qy7rjjjuqV0HLUWiS2bfP0YAKfIlVFBCCgSuRKBi+OpDm8dWVuqNp1TdPk3LlzTE5Octddd1ULwlZLI4XEtsGyKuN/axEFMCywmidcsCi1dRC1h5PjpweqouLEV5aimWIkN7tFshS144i3bt265nHE6wm2u0KySSw0AreWjRQSWDooPjcrazVpiHNdULJYGY27EPIq5q07h36hUKC/v786XXE9KZKNEBLdtLBsaA0oBBSbmZxGx2yygG3bJPIaezuD+NXmuRpeCXMPJ6eBYSKRqI609Xg8dfGVuW7SZrNImmUvsLF1LWsdR7ye6YiukNxg5taGLBZQ38gOvUutPzY2xpkzZ1bsylpoXUegBEHgVfva+ecXrqGbFopUEZlU0cCnShzdufK4gSAIZDIZBgYGVtSSfqVrrrntStmgfzTDwHQey4KIpNHpr8SAhuIFVFmkqJm0BVUO9zR3RstKqG1guGPHjrqsImcMsdMm3wn+ghsjWYwb6WpbaByxExurHUcsiiIej2dV44idBqRu+u8NxKkNqT1oF/uhbbRFMte1tVZX1lzmWjo/dV8vJ0bTXJzKVy0Tryzyrvu3sat9ZV8+y7LI5XIUi0Vuv/32hmWIrFVINMPiWxdmGJjKE/UrSKLA+ekSVsHmx+9sIVnUyZUM2kMqu9oCtPibY0Z4I5mbVVQul6vxlbNnz2IYBrZtc+3aNTo7OzdsQNRKaSbrCDa319bc2JgzjvjKlStkMplVjyN2039vELVtTlba9XMjW71D/YG/HlfWQuuWdZNcySDgkWgNqvzp/+cw3zo/zdmxDEGPzEN72rhj68oGSZXLZU6cOEG5XKa3t7ehaYZrFZKrySJXZgr0xXyocuUwkKMejids0iWdl29yhtZmHJhzJw/m83meffZZstks165dq/roHYtlM6q2m01ImqWjszOOeHp6utrSZTXjiG9kjORjH/sYv/7rv84HP/hBPv7xj6/4cc3xTq+Dtc4NuRExEtM01+3KqmU6W+bPvj/Gdy+WUV98mgNdId7zQB93b2vhLXd085Y7VicCyWSS/v5+YrEYHR0dDf/hrVVIkgUdy6YqIlCpg/EqMJ4uN3KLNyW1Y1dvu+02FEWp+uidqm2v11s3IGqlrpS10oyurWbaD1zP2pp7UVDbfLJ2HPGFCxfYsmXLDev++9xzz/HJT36Sw4cPr/qxN7WQrHYEbi03QkiuXr1KNptdlyvLoaiZ/Pd/Pc258QyiDQrw/NUUFyZz/Mnbbuf2LSsfZWvbNkNDQ1y6dIm9e/eybds2zp492/AsoLUKiWdWQOa6S3QDgp6bK6i+0TjtfWp99M4cj9r4Sm0NRCQSafgh24wWSbMJyUJxm9qki7njiB999FG+8pWvIEkSH/rQh3jjG9/Iq1/9avbu3dvw9zqXy/FTP/VT/M3f/A2/93u/t+rHN9c7vUKcgLqmaWsSEdhY11Y+nyebzVIsFjl27Ni6RQTguxdnuDiZo8Un45ch6JFpD6pkSwaff250xesYhkF/fz/Dw8Pce++99PX1VWNJjX4/1iok26I+Yn6F0VQJ07Ir2VlFA1G02dPR3NkrNwrnfV3oe+/M8di7dy/3338/DzzwAFu2bKFUKnHmzBkef/xx+vv7uXr1KrlcriEXEG6MZHlWkrXlDGXr7e3l7/7u7zh+/DiCIHDPPffwr//6r9xxxx189KMfbfje3v/+9/PDP/zDPPzww2t6/E1nkaxnBG4tG5W15biyVFWlr6+vYb7qC5NZABRJxGnZKAgCHkXk1FhmRWtks1mOHz+Oz+ebV6W+2jbyK2GlQmLZNiPJEpOZMpIosC3q5ZV7W3niUoLhRBHbBtmGAy0CO1pvrO+/WVnNZ+XxeOqK65wrXsdiEUWxbgzxWuaku66t5VlLHYmmaei6zm//9m8jSRKlUolisdjQfX3+85/nxRdf5LnnnlvzGjeVkCxXG7IaHIukUVdStUV8d9xxB9euXWvowdziU7CpFOZRs65hWrT4lvd/X7t2jbNnz7J9+3Z279497zXfaIvEsiwKhQKq18d3L8Y5OZZFNyxsIOyVeXB3K2+9u5vxdBnTsvFYRUavxJvqqnczWcoiWYraMcS9vb11XXHHxsa4cOECPp+vLr6ykthZs7m21lr8t5GspY7ESf113luv17smoV+MkZERPvjBD/LNb35zXeveFEJSWxuynhG4tTgfqGma6w4y53I5Tpw4UZeVNTEx0dCD+VX72vnMMyOkigaKXXlPClrFovqR2+cPlXKoTTu+8847aW9fuGXKStrTr5bFhKRYLHL8+HEymQzXSgon0iq9sRBbYkFkWWYyU+b7l+JsiXjY2VYJKqfTBiNNUMndTNXksP4MstqK7J07d2IYRtVauXz5MsVisVq/EovF5mUUObgWyfKsRUg2el77Cy+8wNTUFHfffXf1NtM0efzxx/mLv/gLyuXyivbc9ELSyBG4tTRKSBbLymr03Pa+Vj//7TV7+N/fGiCRBS2noUgibzjYyY/dtXC21mqq1Bs9zXCxNePxOP39/XR2dnL48GE+/9wIvkIaLZ/mcmISj8dDwB9goiQxFM8v2PLeZeMETZZl2tvbqxccpVKp2mPq1KlTWJZFS0tL1WJxDrlms0iaUUjWUiS50cWIr371qzl16lTdbT/zMz/D/v37+dVf/dUV77dphWQjRuDW4qy11jjJXFfW3ID6RsRg3niokzt7AvztV55k174d3NUbZX/XwoVo09PTnDx5ku7ubvbv37/qZpCNoFZIajPF9u/fz5YtW9A0DUn10hoT6GnxYhomhUKBfD5PKpnmxf4ZlFTl0PJ4PBta93OzsVbX1mrxer309PTUjSFOJpN1UwdjsVhdN4lmoBmFZC3utrmurUYTCoU4dOhQ3W2BQIDW1tZ5ty9FUwqJbdtkMhmy2Sytra0NFxFYWWPFxVjIlTWX9aYXT2ZKfOXUJNdSRXpafLzhYCc9LV7aQx7ubbd5+O6eBS0p27a5dOkSQ0NDHDx4kJ6enhU930YG2w3D4PTp06RSKe69915KgpcLkzk8osWOmJfBeAHTspFkiVA4hOjxs00N8/L9LYTsAolEglQqhWVZnDt3bkNme9ys3EgrYKEeU04bF+czdoZDOWOIN6sosNmExLkwbjaLpFE0nZA4VkgymeTKlSs88MADG/ZcaznsV1pguJ6YQ/9Iml/50mlSBR3bBkGAf3pulI/92G3cNVuxvpAAaprGiRMnKBaLHDlyZFVtFTbKtVUul3n66adRFIU77rmP71xKcXZ8glzZxCPB1hYvnUGVy9MFQl4Jw7IpGzZ3bw2zf0srktjGtm3bSKfT9Pf3oyhKdbZHre9+I2ojmpkbZZEsRW18ZWxsjIMHD1ZjLAMDA5RKpWrF9o0eQ9xsbe2dc2atMZIbyWOPPbbqxzSNkDhzQwzDwLIsFEXZ0IJBWJ2QLOfKmstaXVumZfPRr18gWdCJ+hVEodLdN1nQ+ejXLvLPP/cyYL6QJJNJTpw4QSQS4dixY6u+Emx0TAcq7Vempqbo7e1l3759fP3sFM8OJekOe+iJeMkUygxMF9jfGeBV+1q5MlNAlUT2dQW5rSuIVNO92ImN7d69u7q204L99OnTWJY1rwX7Rh2yzRALaLa6Ddu2q9Mgnd9G7QwPp2K7to2L3+/fsNfQbBaJ89tai0XS7J1/oUmEZKHaEFmWm0ZIVuLKWmjttRzM5yeyjCSKBD0y4uyPTBQEQh6ZsXSJM+O5uniGbdsMDw8zMDDAnj17qgWGq6Wxs0NsLl++TCqVorOzkwMHDpAtGZwey9IeUIn4FCzbJuhV6EJgNFXitQfaObZEt+K5r2lubUQul6uOuD11foC8rRIIhdnaHmPP1na8nlvLDdZs2WMLBdt9Ph9btmypVmzXfkaXLl1CUZQ68W+kq7LZhMQ0zTW56G9Ue5T1sulCMncEbu3gqY0O3q3kKtxxZW3bto09e/as+Mu51it83bSx7IUHONl2ZT6Hs7bjl04mk7zsZS8jGo2u+vkcGhVs13WdkydPksvlaG9vr15NFTSDsm7SGqg/LPyKSDxvVVOZl2Kxw7PWd6+0dHKFBBOJDMXpIs9fHSLaf5F7tgbpbK90ZL2RLpaNohktkqX2U/sZ9fX1YZpmNb7itFoPBoN18ZW1uqaceEQzfcZr7cCRy+Vci2QpFhuB6+BYCxv5g1nKIlmtK2suaxWSfZ1BogGFRF6jxadUX3uubBLxyRzoDvHMZZFcLsfx48fxeDwcO3YMj2d9abKNCLY7lfPOfPcLFy5U14z4FEJemVRRrw6hcmanBFSJ6DKt4FfyHSjpJs8PpynqNge2tiEKAmXDZHgmT8lbKYAcHa20k1nNJMJmpVmExLbtVdeRSJJUff/h+hji2o64kUikriPuSl+v851rNiFZ65jd9Vwg3ig2RUhW0ubE8fFvZNBsMSHJ5XL09/cjy/Ka276vNUbiUyX+y0M7+INHB0gWdGRRwLBsFEngvQ9uJ+iRsW2bkydPsn37dvbs2dOQA2W9FsnExASnTp2qq5yvdZd5FYn7t0f5yulJRlNFQh6ZTFEjVzZ5xd5WIiuozl9O6KZzGomCxtYWX9Ut6JElokEvWUHkodt2IgrMm0TodMptbW3d1Eyj1dBMrq1GBP4XGkPsFEbWjiF2LgCWioE53+NbQUiKxSK9vb0bsKPGsim/GOcLsNzgKVj7B7ASFhKStbqyFlp7pQfzcLxA/2iagEfi6I4YP3pHN+1BlX954RpD8QLbYn7eencPL98Vqw412rt3Lzt37lzT3hZirRaJZVkMDAwwMjLC4cOH6ezsBCouuDPTGgOJPP6rl9jTEeCevihvvqObZweTpIsafkXigZ1R7t+x/BXXSg4pw7KxF3ALOmJs2TaSKBIOhwmHw2zfvr2uktvJNHKuhJ1Mo9rnbpYDvJlcW422ABbqiOuI/9TUFAMDA3g8nrrAfW18pRmFZK0XxLlcrjoyoJnZtEuv5Q4u50tgGMaG1QvUWg3rdWUttPZyQmKYFh97dID/9+Q4mmEjCBDzK/x/33yAB3a1cmxXa/W+xWKRZ555Btu28Xq91VGrjWItwXYn3bhUKnHkyJGqL9e2bf7fExN883IBWRJoV3S+dX6GcxNZ/tP927hza4RsSUfGxKtIq3ZZLEbUp+BXJTIlo2rh2LZNuqhzoCuIIs0/WOZWcjuZRs6VsCAIdW6wZqJZhKR2IulGIAhCnfjXjrJ1UsGDweC8oH2zvD+w9t5fbtbWOhEEYcMztxyroRGurLmsxLX1T8+N8qX+MWRRIOyVsGxIFHR+7ctn+df/fB8ds+1BZmZmOHHiRDUD6qmnntqQKvTVrJlOpzl+/DiRSISjR4/WuYOGE0VeuJoi6pMIqiIdES9dYZuLkzmeHkzwljt7iPoVNG3lwrXQoaCbFldmCgzFCxgWbIt62d7q48JknlzZRJVFsiWD1oDCno6VZb7UZhpZlkU2myUejzM2Nsb58+eRZRmv10s8Hl9XQHi9NKNFcqP2M3eUraZp1TTjc+fOoWkaAMPDwwtalZvBemIkrpCskxsxVz2dTjM0NLRuV9ZCay93MH/x+BjY4FMqXzBJqAxuypcNHj0zybvu7+Xy5csMDg5y4MABtm7dCmxMzcdqXFtOJ+Fdu3axY8eOeT/SsVSRom4S80rYjptBEGjxK1yYzK35EKzdn2nZPHk5ydmJHKokIIowGK+M5723L8JERqOomexq87Ozzb9sMH8hRFEkEokQiUTYuXMnuq5z9uxZSqVSNSDs9J2KxWI3dG56s7jYYPOD26qq1k0cnJmZ4cyZM2QyGYaHh+dZlZuRXLFWIXHTf5dhs8fhmqZJIpEgn89z5513NmT4VC0rOexnshryHIe+KAgIAkyki7zwwgsUCgXuv/9+wuHrExA3qi/WcmtalsX58+cZHx/nrrvuoq2tbcH7ybMuJMu2oea8M0wbj0+sutFWc+jOE6t0iQtTObrDKr7ZLDDDshmKF9nZ6ueH9rYutMy6UBQFv9+Pz+djz549dW6woaEhJEkiGo3S2tra8LqIuTSTRbLRrq3VIAgCqqoiyzKHDx+uWpW1yRUej6cqKjdiDDGsLUbizI5ZTYeKzaKpLRJZljeklsRxZRmGQXt7e8NFBFbm2trTGeDEaAZvzaFgWjaWZWMmryG2t3D06NF5X/TNsEhKpRL9/f1YlsXRo0eXDADubg8QC6hMzuRomx1xUNAM8prBa7at7b123h/nAJ3JaeimXRURqATVfYrISKrIwZ6N+/E5SSJOQHjr1q11fadq6yJqW7g00g3WTELSzC3ka63K2jHEyWSyOobYabUTjUYb/jk5uDGSTWQjLJLarCxFUchkVjZdcLWsZHDWI0f7+JV/PU22bOCVJSzbpqybxDwWP3r3Tvbv2bngY2/0NMNkMkl/fz+tra0cPHhw3g8tU9R5bjjFwFQOjyxy+5YIbzjYwT89mWI4rZERcsiSwD3botzX15iceFEU6qwdB9OyFwyqbzS1fad27dpVrYtIJBLVTLuWlpaqtbKR7UFuNDdTC3lnDLFjTZfL5XmfU23WXqPclW6MZIO40a6thbKyrl69umGuM+eLvJSQvHJvGx9+037+8nuDTGbKWJbJgRab33rTIQ5sX3jGiLP2Rlgkc9e0bZurV69y8eJF9u7dy7Zt2+a9llRB5+9+MMzAZA6PImFaFsdHUjy4u423HQpzaTLP1r5uusIedrcHqm6v1eI8r2ZUfpDdYQ8Bj0QirxGbrZbPl01M26YvtvkFhnPrIvL5PIlEotp+XVGUOvfKat1grkWyOKtxI3k8nrr4SqFQqAbuh4aGqhcIzue01viKaZqrdqE53xs3RrJOGtUmZbGsrI2MwTg/rOVaNbzxUBfHtgX49tPHCXk9PHTfXcuOvNwIIZlrkZimyZkzZ4jH40u2X3nqSpyLkzl2tQeqlkC6qPPUlQRtO2Vu71C4Y+/CsZTVMJ3TOBkXGHz2GoossqcjyMHuIGfGc1yeKYANqiRye0+Y7a3NlXdfO95227Ztde1B1trJuNmEpFn2AmvvsyUIAoFAgEAgUB1DnMlkSCQSjI+Pc+HChWrxqtPGZaXisJYYSaFQwLZtN0ayXhqR/rtUgeFGCsliExgr7SRmXTNcrwg/1LfyrLGNEhJnTWcUriiKHD16dElhOz2WJeiR69xJEZ/CRKbEtSxEW9bvgkvkNb55Ps6VLBy2oaRbPHE5wb6OAK870EY8r2Pa0B5U6Y54qlXti+GkDQ/GC+imzdYWLzvb/Cuqrm8Ec9uDrLWTcbMc3jeTa2s1iKJIS0sLLS0tANX4ytwxxM5ntdQFwFrntQOua2spNtq1tZICw42YYujgvD7ncJ7JlfnE9wb5+tkpNMPiyI4ob9gmoBam6irCV8JGBtudmpWuri4OHDiw7A9SFitt7muppoM2qKPw+ckcUzmNLh/EAkolgOpTuDxT4LbuELdvCS+/yCymZfPccIoLU3n8ioQkCBwfzTCeLvPg7hgh743/SSzVydip4p6bZdRMVkAzurY2Yj8LxVecC4AzZ85gGEZdG5fayYZrnY4oSdK6++jdCJraIlmrkKy0wHCtrd5XgiAIVaHKlQ1+7tP9DM7kEUQQEPjuhWmevgx/96476OxsX/XaG7Xv48eP19WsLMcdvREuTuUp6ZUqdYCZnEbIK7Mj5sHWtXXvaSxdJuCRydScmx5ZxLIhWVjd8LCpbJnLMwW6Q57qfmMBheFExUI5vIwobfQBvlCXXOcq+MqVK9WrYK/Xi2maTdHl9la1SJZj7gWAEwdzMsKcdPBYLIau62uejrjZn+9KaGohkWWZcrm8qsesplfWjSh4tCyLr5+aZHAmj0cREaiYyF4ZNEvkn/unub1vdULSaIvEMAzOnj0LwD333LNsK5DJTJl0UactqHJkR4xLU3lOXktjWZUW+EGPxGsOdNAdKBKPr98iCagSZeP6/JXq/9qgyqv7kaWKBoZpV0UEKpZTQJUZT5eWFZIbTW0V9549eyiVSiQSCcbGxigWizzxxBObXmzXbBbJWlNt18PcOJiTDp5MJrl27RrZbJbLly+TyWSqVstyzUFvlhbycAu5tmpdWXfeeWe1d1Kj1l8LzoHfP5quZKraFoZpIksyoihi6CbPDqXWtG6j0n/z+TzHjx+vBg1rCx/nkisZfOHFa5wYzVDUTQIeiSM7orzjZT3c09fCSKKAIons7wqxs83PyMjImvdl2zYlw0KVRPZ0BLgwmSWrz44fsGzG0yVa/Ap90dUdnE4B6FzLQp8jLs2K1+ulp6cHWZYZHh5m3759JBIJJiYmNq2TcTO52aA5hlrVpoPv3LmTp556is7OTnRdr8ZXwuFw9SIgHA7P2/PNkrEFTW6RrGaC4Vp6Zd0oIQmoArZtYRqV6mhh9jCzbIj4Vv8RrGcefC1TU1OcPHmSrVu3snPnTr7zne8saunYts0/v3CNJy7F6Qx7aAsqpIsGXz8zhSKJ/NidPdyzraXuMWt1wV2YzHF8JM1MXiegStzeE+Jl2yL831G4Ei8iSyKtAZWX74rRsoLWJ7ppEc9XXGyxgELYKzOV02gPqoiCQLZsYFoW25ogbXilOFbAejoZN4qXqmtrNViWVc30AqqWZTKZ5NSpU1iWVddux+fzUSgUNrTe6BOf+ASf+MQnGBoaAuDgwYP89m//Nm94wxtWvdamCslyHWdXkv67nrbvzpX9Rn3xRFEkm83SbUwgAqYgogiVQ8AwK91+33S4a03rrse1Zds2ly5dYmhoiEOHDtHd3V03unchxtNlTo6m6Qp7qod3W1DFsm2eupLgNfs7CM4JVC/3A1jo8z83keMrp6cwLYuITyFV1Hn03AxHd0R4oNNm521teD0qPRFvdUDWUlxNFHn+aop4TgNBoDWg0BPxMJ4pM5wsIlCJtxzqCbNtldbNZrLQ57RUJ+Ph4eG6mohYLLZsmvlq9tJMB3czCsncrC3Hsuzp6akmWCSTSeLxOCdOnOCDH/wg+/fvx7ZtxsfH6e5evK5srWzdupWPfexj7NmzB9u2+Yd/+Ad+9Ed/lOPHj3Pw4MFVrdXUFslS6b9rcWXNxflgN+KL50yAvHDhAq84uAu9ReSTTwxR0q8LwA/tbeMdL1tZULuW9QiJMwo3n89z5MiRao56bQuShUgVNQq6SWe4PoMk6JGJ5zXSJX1BIVnNPk3L5vmrKWzsai1IlMq0yFNjWXYAe9r9K85imclpfP9ygqJu0hWpHJqTmTJF3eKh3bHZscY2LT6F1oCy4iu/Zrj6Xok7ablOxoFAoK4mYq2tQZrRIrkR/bNWw1J1JLUJFtu2bWP//v386Z/+KZ/97Gc5deoUW7du5cCBA7zmNa/hN3/zNxftcbda3vSmN9X9+yMf+Qif+MQnePrpp28tIdnICYbO+jC/1mO9OMV85XKZHTt2sGvXLnbtglftb+db56bRTIv7d1TahYhzpzCtgLUKiTMKNxAIzOvhNTddeS4xv0pAlciUdKL+61XYmZJO0CMvWIOx1OFSLpe5fPkyPp+P1tZWfD4fubJBIq8TnbNW1K9wabpAbpVeyKvJIumCzs72637mrVEfV2YKxHMad/Y2dqbLjWY1h/dCnYwdN9j58+fRNG3NnYxdi2RpHK/HSoXa6/XyIz/yI1y6dAmPx8Pf/M3f8J3vfIdvf/vbGzbkyjRNvvCFL5DP5zl69OiqH9/0rq25QuK0MG9E23en+V4j4yT5fJ7+/n4kSSISidR98Hs6guzpWH8WxlpiD+Pj45w+fboqbKvt4dUZ9nBXbwuPXZzBtCqZWemiQaZk8pY72gl65n+VFtunM8skEAiQzWYZGBjA5/MRiEQxyhZFPHX1HCXDQpVFFHt17dNzZRNlgawuWRTIlTcuNnYjWG+yhaIodHR00NHRUR1t67RwWW0n42a0SJpJSGpHiq8GJ9gei8V461vfylvf+taG7+3UqVMcPXqUUqlEMBjky1/+Mrfddtuq12l6i8SJkZimydmzZ5mamlqzK2sutbUejWBycpJTp06xZcsW9u3bx/Hjxzek3mM1FollWVy8eJHR0dFlJz/WHvyGaXF6LMuFySwCAvu6gvzYnd0oksALV1NMZssEPTJvPtzF6w8uXEy50OHixLR27dpVHaM6nioyEU+iFTMEynFOXDNJtfhojwSRVR/jeZM9HQGiqRW95CotPhndsLBsu1rtbtk2umUtG6Q3LZuxdInpbCVI3x6qxGWahUZmSq23k7GbtbU0zvmyljqSjU7/3bdvH/39/aTTab74xS/y7ne/m+9973urFpOmFhInRpLNZjlx4kRDJxg6NKIo0TmsR0ZGOHjoEN8bNfnVv3qW0USevmiR97/Ky8MHGteqfqXpv+VymRMnTqBpGkePHl02ldBZ1zAtPv3MCI9fiqPN1m+oZ0Ue2t3Kf7q/l9cf7CRTMmgNqEtWgtdanLZtV9+jO++8k7a2NqbSBb5+Zoor8QJlwybs9XJ47z5iPUXOjCY5P57B0KfpCkps726lILBs8kUirxHP68iSQFfYQ3tIZThRpD2oYtswk9foDKpLZmiZls0LV1Ocn8zXTf/b3xkgZNs0wxG1kYf3Yp2M4/H4gp2MN6NuYymaUUici9bVkMvlGhYPWQxVVdm9ezdQqSF77rnn+NM//VM++clPrmqdTXdtLYWj4E8//XTDJxjWPsd6LJJSqcSJEyfQdZ2jR4/yl0+O8Y/PzNZP2DYDMyV++Yun+Z0f2c9P3NXTkD2vxCJx3EctLS3cfffdK4oBOQf/iyNpvjcwQ2tAJeytXLlnijrfG5jh9i1hXtYXrXbcXcl6uq5z4sQJisViVdB0w+T/nprk/ESOLS1evLJIsqDz/UtJ3nR7By/f20mqoOORIEiZdCpBIQHPPfcckUikeog5vnzTsnl2KMWpsSy5soEoCHSEVA52B4lkNSYylcLWXW1+7u6NEF5CAMfSJS5M5mkLqNXMsIJmcmEyT59i0hNujnqTG2UFLNfJ2BkmNTk5SSwW2/RAd7MJyVoaNkKlaeONLki0LGvVReDQxBaJaZqcP38eqOQ39/Q05hCey3qEJJFI0N/fT1tbG/fccw/TeYPPPTeKQKXi2jItbGx0y+bPvnOZN93etepK7IVYTkhGR0c5d+4cu3fvZvv27avKRrIsi5OjaUzTrooIQNinMJUrc3I0w8tWOFPEiT899dRTBAIBjhw5Uj1kriaLDM4U6I158SuVr2F7yEPZtHlhJMPd21pqXEkhOjvaGBsb4/DhwxSLxTpffiwWI0mAZ8Z0YkEPO0M+TMvmWqrMyWtZfuyOTiwq70HIIy37fkxmy9hQl17sVyVm8jBTMOgJb9zkw5WyWe6khToZnz9/nlwut+ZOxo1mrQf3RrFWi22jx+z++q//Om94wxvYtm0b2WyWz33uczz22GM8+uijq16rKYWkNisLqBbxbARrERLbthkcHOTy5cvs27eP3t5eBEHg+MgMumnjkWd/4EKlr5YiCSQKOldm8uzvWn9L6MWExLIszp07x8TEBHfffTetrasbN1t1bVn2gtlkgiCgr8INmE6nKRQK7Ny5kz179tQdfLmSgW7Z1Xn1DkGPRK5koBkW8gJ1Ik4DQyelNZ1OE4/HefbUNcbSZcSoDyMYJBgIsKXFy3CiyGiqzP6ulV/ZNdE49EVplpntTlNBWZbZt2/fmjsZN5Jms0jWOtRqo1ukTE1N8dM//dOMj48TiUQ4fPgwjz76KK95zWtWvVbTCcncrKzvfOc7N6T6fKXous6pU6fIZDLcd999RCLXU0h9ioQwO7iv9qdi25V/r6SAbiUslA1VKpU4fvw4tm2vOY7krHugO8STl+J1jRhLuoltw23dy/eism2bK1eucOXKFVRVZe/evfPuE/EpeGSRXNkg5Llu+WSKBl0RD54FLLe5B1CtL78t7sUX0/ChkZt1vQCkLC9jk7Ajqqy4/qQz5OHcRI6iblaFrqhXvoOtvua40m2mAHftXtbSybjR3CpCstGurb/9279t2FpNEyNZLCvrRjRWXOn6mUyG/v5+/H4/x44dm5cSeXRnjKhfIVnQcTTDtmwsBG7fEmJbrDE54HPFz3Gxtbe3c9ttt63ZrHcskvv6Yjw/lOT4SLo6Z8QwLe7a1sLL5rRBmYthGJw+fZpUKsWBAwe4cuVK3d+LWuW97o362NsRoH80TUew0ucqWdCxbJt7+1qQFqmvWexKfGvUy4sjGl1tEVqiLdiWTSpXoDidoZCa4cknhwgGg9XYylyXS7qoE8/riAK0BlX2dgS4OJkD5ztq2+ztDBIu5VbyVm44zSYkCx3ci3UyjsfjdZ2Mnc8kFAo1RABuFSFxe22tklpX1gMPPFDXuqFRUxIXY6VC4sQdlqrD8CoSv/+Wg3zoC6co6SZQ6YbbHlL48JsONGzPzoFv2zbDw8MMDAzUudhWSzyn8cxQkmevmlwVkjx8OMz7HtrBU4MJ+kfSANzZG+HYzlZ8S1hVhUKh2gDy2LFj5PPXs54mMyUeuzDDhanKQby/M8h921vwKyLnJ/PECxpRn8L9O1q4Y8vC7r+lXtuBrhCDM0UGZ4pEAwqGaZMqCbxszxZed1s7lqHPc7k4V8VjZZWLcY1c2ai0UfEr1RjNRKYEQFfYS0+Ll8sDU01zgDcLK41J1HYyhuv9ppw0Y6AhnYybTUjWsh8nqeFmmI4ITSAkyxUYNmJK4lIsJyS1rVjuuuuuZdPxXr67lf94/xH+/cQEF0enaPeYvO8NL2vo9D2n9uXUqVPLjsJdjsvTef7isSuMJovkcgb9yWmeGinyC6/YycP7O3h4/8rSluPxOP39/XR3d7N//35EUayOCk0VdD7zzCjDiQJtwYoV98SlOMPxPO++bwuv2NtGUTNp8SsLurRqcYRpJFnk9FiWyUyZaEDhtq4Qr7utjZNjWcZTZTyyyMt3Rblja7jS8VdV62Zz53K5Sl+jK+M8OZwj5FXpjgXxB4JkivDsUIo3HmxnW2z597VsWIgCdVMiN5pms0jWspe5/aacFi61nYwda2U1nYybTUjWY5G4beRXwPj4OOfPn1+ywPBGdOhdbP1CoUB/fz+CIKwq7tAZ9vLeB7czPCwwMzPT8BGumqZhGAbFYpFjx46teYKaZdl89tkRrqWK7GwLkBAK+AMqEzmNzzw7wod/ZD/yMoejbdtcvXqVixcvsn//fnp7e6t/c9J/T1xLM5wosKcjUHVZRX0KF6eynBrP8uDu1iXTcWvXg4r4ffXMFLmySdAjMZnVuDRd4FV7W3nDbR2UdBNJFBY92GtdLkNakD6yxFSTXC7HxPg4hmFwFR/dcoH79vYsGiCeyWmcn8wxmS0jItAX87G/K9iwWNhSNJOQNOLgFgSh2sl4x44d6+pkfKsIyUZnbTWSTRWSrq6u6rS3xdgs15bTYr2np6d6hb2WtRtd2T49Pc2JEycAuPfee9f1g7mWKnJlpkBnyDt7wAsIQHfYy8jsxMClWrpYllWNay1kFTlCMpooospCXdxDEgUE2+KJEwNsC1hs6Yghr+DHZpgWzw5V5qHsar8ec5rIlHl2OMW+ztUd5HnNxOtRCIeDhCMRsG3KZY2z1+JMJ1I888wIHo+n6pJxPs9kQeeJywlSRZ0Wn4Jp2xwfTZMq6jy4O3ZDrJNmEZKNELW1djLeyG7ea2UtQmJZlmuRrBRRFJdtZX0jgu21sz0sy+LSpUsMDw9XW6yvlUZOMqzNhNqzZw/nz59f94/XsCrdb50DXhAqGWayCKZdqfBejFKpRH9/P5ZlcezYsQU/R0dIwj4Zw6xfq1gscen8WQoBgS99N4EsSfR2trK9p53t3W20hOZfiQmCQLZsMpXTqi4yh/ZgpYJ9OqfRt4q5Il1hD8OJ0vU2KoKAICvEWlq490A7vS2euivjYrGI1+vlQtxgoiCxp+t60D7okRlJFpnIlOnd4Jb0zWSR3IimjSvtZOyUCjSTkKylriWfzwO4MZKVsJIfwo2IkZRKlYCq01KkXC5z9OjRZa8Gnh9O8pePDXLiWpqIT+Gtd/fwcw9srxYdNqqPl2EY1ZTj+++/H4/Hw/nz59d9mGxp8VWsj2Rx9vAVAJupTJmOkIe+RbLMUqkUx48fp7W1lYMHDy7ZHtu2bQ72hHl6MMm1VInusIdkKsWz/WewdZ22YCWd2DBNBsemGBybAqCrtYXO1gg7etrZ2tGKIleeQxIq1sxcYdJNC1kUqxMQFyNTMrg0lWMyq+FTJdoCCm0BmaHZIL1p2aSLOrvbK3UokiTS1tZWjY2dOXMGXdc5PZ5hJpXHTI0TDoUIhUMEA0FMG7KljbOgHZqljgRufNPGpToZX7x4EYDTp0/P636wWZimueo0Z0dIXNdWg7hR6b/JZJL+/n6i0eiKWoo8eTnO+z7bj1UZHU5BK/EXjw1y+lqW//POwwiC0BDXVi6X4/jx43i9Xo4ePYqqqlULar0mvCqL/MTdPfz194e4PJPHKFmYJY3WsJ8fv6tnwQwtJzliz5499PX1LfkDdYRkZ1uANx3u4tEzkzx7bpDxkat4ZYG9nUFa5kyItG2bcNDPRDzFRDzFiYvDSJJESzhMIh6nbUuBXW1+XhxJE/BIKJI422CxTF/UN29eSi3Jgs6jZ6cZS5fwKiKaWRnle1tXkJ4WH6OpEooocP/2Fg50hRZ0T0mShNfr5bZgC56ZPDHFIpvLMTk5yXDpKmnby7S3SCZgb9hEQud9aiaLZDP3UtvJuFQq8YMf/IC2tjaSyWRd9wPnv6U6GW8EpmmueohYoVBAUVZe+7TZ3BRCspExEkEQyOVyPP/88+zdu5dt27at6Efxv791CdMGUWC2s6yAZdk8NjDDiyNp7tnWsm7XltNNuLe3l71791b35YjHatc2TIvnr6Y4OZoB4FBPiHu3R/nvr9nN9wfiHL80Qm/Mz5vv3c3BnvrCQ8uyuHDhAmNjY8tmr83kyrwwnOLKVIapSdg1nefebS2MXx0mZ6fo6o3QHQ3gkQSKpTKG8zpsCAf8ZPPF6lol3eLKRI7ExWnSmRzfv/wdDvZ1IqheTqX9BEIhJEmmO+zhlXtbl7RITlzLcC1dYmerv+rOm8lpXJop8La7url/ewuCICy4Rr5sMBgv8vy1En7VpK9XRBQENMlDZ1eQ9s5ORuJ5IkYJH6VqkoZzeLW2tjb8AGsWIWmmmIQjatu2bWPbtm2r7mS8EawlRpLL5QgEAk3zGS/HTeHaWksTsZVgGAbXrl2jWCxy3333rbgVS65kcH6iUg9R+xoEoeIcemYwsS4hsW2bgYEBhoeHuf322+nqqh/HuxYh0U2Lv3p8kMcH4uhm5XGPnp3kgV2tfOCVO9nfFaI/lCIcDrNzjohomlZ1+R05cmRJc3skUeDvn7rKtVQJWbQZj8NffPsircYMXrtUtRhMQydbtrAsC69HwaMqCECmRkQsGwam80xly4Q8MgFVQJRkTgxNsbs9gFdJkkvBlvYY+7ZswYOx6NWxbloMx4vE/Epd0L81oHAlXmAiU2Zf58KuzEzJ4DsXZriWKpHJmtiCTVrI0BZUMW2bkWQRAYGOsI97tnXRHfFiWRaZTIZEIlGtQXJ6ULW2thIOh9d1+G62FVBLM+1lrqgt1MnYCdo7nYxrg/YbMSN9LTESR0huFm4Ki2QjXFvOtEBJkggEAqvq56VIlQwkY4FgtG2DX628rWuJkWiaxsmTJykUCovGaZyBXKsRkueGknzvYpxYQKm2fs+XDZ68HOfubS28cm/bgu3ps9ksL774IqFQiCNHjizp8rNtm2+cnWIsVWJPZwDbtChPl7h47gyYOsd2xebViQiz/chKZR3dMCqzMTweRBEmUkUSeZ2IV8HrUSgXBVTRwhQFJrNl7uqNIApglnI8c/ICL567TMjvZWtHK9u72+jtbEWdbQhZec9g7ltmz/4fcYnD4/xEjpFkkZ1tfiY0CVmWUL0ymZLJq/e1YlN5fHtQrYuPtbS04A+GESJdiNkihVyWqXSWsbExbNuuGxy1WtdHM00lbKa9LGcdqXPqieZ2MlYUpc4N1ogWLmtp2ui0R2kWgV6OTReSlUxJbLRry/Hzb9++nUgkUg3QrRSPIvGaA+18/cxU9WrMtm1My0YWRV5/W0d176s57DOZDMePHycUCs0bhTuX1Vo7x0fSGJZVNz8k4JGZzGq8eDXFK/e2zROnyclJTp48yfbt29m9e/eyX+psyeDSdJ72sIooCEzF4wwNDxNrbSWRF8mWzTohEQTweTyUNL1ubkl+NvkhV9IQRJFQwIdlW1izlpQqi5QNC9OyEaXKnvxelbJmkEjnSKRznByopIhu7YjR193Gjp52drX5eHooTYtPrsY/JjNlon6F7sjCvmjbthmMF2iZY8m0+GQG40XymrmoJVPQTJ4aTDKcKGDbYNkiYW8r9x7YSZtqEo/HGR8f58KFC/j9/qq10tLSsqKDp1kOmWaakLgaN9tCnYwdN1gjOxmvxbWVz+c3bKzuRrDpQrIcjbRIarvjOkWQ8Xh8Tev/6uv2cnosy0iigPPdkgSB//HGfXTNtj9fzWHvTA7cuXMnO3fuXPaHuVohsey5rSRn1xGoWlaOINq2zeXLlxkcHFzQtbYkQqXQ8erVEYaHhzFNE62sYegGpmnh9agosoSumwiCTTZfXPS1emQRVZHJ5osoUsUKUxWZgikSUKge7CG/l2yhNO/xmm7ywqUxnjo/SiTgI+RTKNge+hM+IpEIgiQR8coc3RldcFTw9fdo7sVO5Xlte+nD/OJUjivTeXpjvqpwTWTKHB/J8IaDHezYUSm+c7KO4vE4586dQ9f1OmtloQOlmdxJN5NFshS1QXmgYZ2M1xojuVlqSOAmEJJGpf86VeoAR48erf4415pZ1RHy8OX33c9XT09wYjRDzK/wpsNd7K4p4HNcRUt9uWuD2KsZIbycJTeXQz1hvnthhqJmVrOxnI6+d26NVPdrmib9/f1kMhmOHDmyqjz2kFdmV6uff3v8BVS9kr6IDdmyQcAjEfUrlMoapTIEfT5yhSIBnxdRFCiWdUzTxLIrLjcE6I4FGU2VmMzqBFUZw7JJ5EogSvR1BPCpMj6Ph3JNHZBDQTO5NJ0nXTRQPR6uzMQJeWV2tPqwTJvx6at0tUbp29VNTG1Z9GAWBIHd7X6evJIk6r/+PZnOaUR8Ml2LZImZls1QvEjYp9Rlf3WEVK4mSkxly2xvrXwH585Pd9wtTsdcr9dbtVai0SiSJL2k03+XopGB/0Z1Ml5rHYkbI1kFK3FtrVdIpqenOXnyJF1dXRw4cKDui7ae9f2qxFvv3sJb796y4N+dL89iX+5yuUx/f391uuJqTNnVWiTHdsZ46kqC54dT1aQA07a5q7eFl++uNNEzDIPp6WnC4XA11XglVKwYyBaKGPGreG2NmYKOgE3OgJggsLcjiCqLlVoPRSZXLGJaFvliafY7AEUTrsRLxHNlBAH8E3m2Rr3IkkA8p1MyISIK9LUF6GnxIUkSqVxFsCqxFbUqSlcTOdJFk86IH93QsSSFVEFnNFXmtq5gpamvWeT0wCBDI2MgwPbudvpmYys5zSZdMvAqIrvbA0xkygzFC0xnDUTJptcH925vWbK1i2XZzE0Am7VlWKzWc667xTCMasfcixcvUi6XaWlpwTCM6oXKZh/izbAHh43KIFuok7FTu+J0Mg6Hw3UtXJx9rNW15QpJA1nPQW/bNpcuXWJoaGjRKYsbWaeyVHaVU9QXi8W45557VtyQrnbt1QiJR5H40Kt38/ilGV4YTmHbcHdfCw/tbq1M/5uZYWJigkAgwD333LOiH2NZN/n+pTg/uJJgciZJfuoqW8IKd/T4mQxKlAxIJcoc2tlKQBXxqpWCv1JZm7dWUTc5PpKhbEFQlQCbvCEwnNI53O2nLwaj1/J0tvppiwZBgELpejZfJbZS+XdBM8kbAq1h32y1voAo2AQ9MpmSTkEzCXgkJElClSVyxYpb7PTlEfoHrjKaLKGJXvyhMK2xKPu3tPLArhh7OgIcP5cm4FW590AH7aH51kimZJAu6nhlkS1RLyevZWnxK9VgfqpoEPTItAZWFsSVZbmuILJQKJBIJBgaGmJsbIyZmZk6a2Uzxtw2k2vrRs2PlySp7nNZqpOxI/qr4WZqjwI3gZDIsrymYLuTslosFpd00Thugo24kllMSEZGRjh//vyKivqWWnsxIbFtm2eHkjx6dorRZJGtUR+vP9jJvX0tvO62Tl53W2fdfYeGhhgYGKC1tRWPx7Oi98GybD733CjfvxSnlE4wM36VYtlgLCHxsr4o21v9lVhLVscrQSTgxwYky8YwTGzqL8mnsholSyDqvW6hBhWbeL7EWErk4NYIpaBKOOjFtCzMJURUVRQMI4eGiS0JiIKAoqrIsk05X8aybVRVxragOEfUJjJlxtIlAqqOYJQYjk9y+qzNmQudvPXIbva2iISCnnkiYlg2L15Nc3YiS75sosoirQGFiFdmKF7Ep4iVqY+iyD3bwvMaeWZKBrmygUcWifmVRb8Tfr8fv99POp3G5/PR0tJCPB5ncHCQM2fOEA6H6+Z73AhL4VZ1ba2GpToZA9WR3CvtZOxaJKtkuS+gYzGsxnxOpVL09/cTiUQ4duzYkh9a7WHf6C+gIAh1KcBOS/qpqak1jcKtZSkh+ca5Kf7m+8OUDBO/KjGWLnHyWob3vnw7r73telt40zQ5c+YM8Xice++9l+np6Wq7mOW4MpPnucEEZnqC/PQUfkXEJ6vE8xqD8TyxQAtQEYWg30s6X+T6xyfg93oQsCmWNcqaji0p2GYe264/YCWxYmGUyjo2kC+WCYcUgn4vtg2lcrmuJ1jA5yFbKOOVBfKaScQnY2OjaRqZUuWg7mwJIooVMdRrLlIMy2Ymp+GRRYI+T+Vzsy18os2ZK6PYhRRaLk1XWwv3FW36utvoiIYRBIFz41meHU4R9Sv0taqUdIvRVIktES/3b48wk9PxKSK9MR9bItdTfXXTon80w8BUnrxWyWrrjXq5r6+FwBIJALZtzwsOl0ol4vF4XWNDx1rZyIruZrJImqE4sraTcW9vL48//jg7d+4knU6vuJNxoVCgo2NlIxyagU0XkuWojTMs52esbWm+0qt9Z03TNBcVHMO0+Ma5Kb5xdhrLtnnl3jZ+5Pauas3AUjgHfrFYrAb7F2tyuBoWqyMpaCb/8sI1LNuuBnMBxlIlvvDCNR7cXRlO5YzmhUrygdfrJR6PrziIe3kqw6WBC/jtEqIooszWa/h1i0Rew7JsJFHEpyqVrCul9r21KZTKmKaFbVuEQ378xQKiPN8tY1rgU0WCfi/XyjoeH5imRa4mS8vnUcmWTWbyOqmJGUJehY6Qh+FEpQ5FlUV000ISBfZ2t1CoEUsntiKIItlCCcOyCfq86LrBbJUJkihgWna1yeVUMsPxC0P84ORFfB6V3q42LqXAGwwR9Vdeg1+V2NriZTqncSwY5fCWCAtxfiLH8ZE00YDCtqCXom5xYTKPbcMP7W1d9Pu70IWV1+uta2yYyWSIx+PVim5nGmFra2vDphGCa5EshXMR2dHRUc1+XKqTcTQaxefzkcvl2Llz54bs6fd///f50pe+xPnz5/H5fBw7dow/+IM/YN++fWtes+mFxDncDcNYUkicEa/JZHJVg55EUUQQhEXjJIZp8f7Pn+R7F2eqV9TfODvFF164xt/99N1LTgx01k8mk1y6dImOjg5uu+22hnzRF7NIhuJ5EjmdtmD9oRwLKMzkNIbiBbq8RtXUPnjwYHU/Ky1ynEllePzpFyjmMnj9KiIWmlZxERmWRcjvIRL0ISBQ1K4fyHPRyiVEAdIZm6BsowomyYJFLFRJq0zmy/hUiR3t4VnhEBZc6/JUhtGMQb5QRpJFpksQ88nsaguQKmrkNZMWn8z2jggq9Z9zbWzFMi1iQR/pkkGLV6Gs6YBN2bBQZRGvLJID/F5PNT5TKJU5fXmUM+NZFElkuDVCe2uM9tYoLeEQmmFR1Bd+T3XT4uJUnqBXpmXW1RVQJXoiHkaSReJ5fV6X41qWOrydgsiWlpZqRbdjrZw8eRLbtuvat6ynp9NLIdi+VkzTrHomHOZ2MnY6IIyNjfGJT3yCf//3f6erq4toNEqhUGh4Pcn3vvc93v/+93PvvfdiGAa/8Ru/wWtf+1rOnj27ZnfapgvJcl9Ap4p7qYC409jQ4/GsadDTUgH3/zg1wfcuzsy7vX80zeeeG+U9D/Qtuq4Tezl//jwHDhyoG/q0XhaqQgdQJbFadV/7LphWpV18Mj7F6PiVBfuKLbZmLZdGJvjKE8fxiRYBVSZd1In4FEQBNMNCMyz6Yn4Ks+m8siwR8HlQFZVCWcOyrEqGVyZNMpnERMA0DHxeD70BD+MFkVSuCAiEfSr7u4JE/GrlqneBOhjdshnLGOiaTmxWPG3bZjJVQBW8HO6NIklitf3K3O9brmwwk9Mp6hatIS+qUBHFKU3Dq0gIooSBQFdExqdKWF6VfLGMx3f9xy2LAl5ZJK+ZJJJpiqUyFy4PIYgy/lCIyQ6R7mA3Pm+9KJQNi5Jh4VfrDz6vUim4LOqLf+dXe3irqlqXylrbht0piKydRrjSw9ipO2qWw7sZhWSpC+Bawd+5cyfbt29nz549fPKTn+RLX/oS//iP/8iDDz7I2972Nt773vc2ZE9f//rX6/7993//93R0dPDCCy/w0EMPrWnNTReS5XC66C520I+Pj3P69Gn6+vrYvXv3mgdQLbb+V09PMvf36szt+OrpiUWFxDAMzpw5g2ma1XnqjWQxi2RnW4CdbX7OjGfZpkhVUZnKavQGLPITg4vGZ5aySGzb5vv9F/n2ixfwqQrRoI9DW8KcvpYhWahYI5IosLsrQk9Yqb6flmWTK5RQ1cq6HkVhemqSsUSBlB0gr9tIIsQMiMo6nWKJsiIQCYaIhGS8sk2uUOm/JYjg96iE/D5KZQ1BEkikymSL5apLqfI6Ku6weF6nrBsolkRZ15FlGZ9auV+hpDGdK3NpOk/ZsPGoMlNjaXyqSGfIQ0EzKeomsm3TE1LpCnkI+nwUsml83uvPZc027mwPecjFC+hI6PkShmVR0nQUweKp42d45sRZOmOR2Sr7DjpjYbyKRMgjkS4ZdQWRubKJX5WXLJJcTx3J3GmEuq7X9Z8yTbPqamltbV1yMqizj2aySDa6CeNqWO1+2tra+Omf/mn+/u//nj/90z/l3nvv5Rvf+AbZbHbD9phOpwGqsba10PRCAgu3SXGu9MfGxrjjjjvWFZhaqieWZlizFcz1t9tUrigXolAo8OKLL6IoSjXLptEsJiSiKPDeB7fzh98YYCRZOYBt2yYolHl1j8wDx44tup/Fano03eBPvvQE3+6/TEEzEQWBaEDhzq0tvO72HiYzZXKlMp0RPx7BQqwpnnBEFyqZdNOTE0zlDcbKKoZtE/Sq6JbF1ayG3eLntm0dyILNTCJFIh5H1w28Xi9+v68yNa5URpCL+D0qllXJ0FostiXLcuVzmi1YNE2TXHE28cGyGc8aiJJCd0ihVCoRCCgkCzrZksHBniCmVREJVZFQ5ErtS76kI8s2JXRSZZuCbiIDrQGZ/d0Rrs7kKBuVeMzWqJfOsGf2PbCZiKfIFUo8c/oSPo/Ktq42PN4g+YLABBD2yhR1k3TR4HBPqE4cHQzLRhIa605SFIXOzk46OzurBZHxeJypqalqQaQTW2lpaak7GJ3vS7NYATebRbIYTvrv3r172bt37wbsrIJlWfzSL/0SDzzwAIcOHVrzOpsuJCv5Mcy1GJzAtW3bHFviYFwpS1W3v3JvG88MJevExLYrV9+v2je/Ct0Zhbtlyxb27dvHM888syF1Ko6QlHWTJ68kODmaQRbhZduj3NsX5Q9//BBPDSYYnU6Tnb7GvdvCHL3njmUz2OY1bcwX+bMvP86j/VcBCHplLMtmKlvm2aEED+5upSMgsy3mxbJBkSUMw6xJq63ENYrFIql4HEn1UBA96JZG1CdjYyKLIKoSMwUTUVaRRZtoLEpMiKHrBsVigUKhiKZpzMzEkbAp5CW8Ph8yNrJgUdAgFvIDNppuoNvQ7hWxF/lc85pJXjPwyQLlchlJllBlmZgkkymUKekWflXCoyhYtlVX+5IsmUyn81iWjUcWydsCWc1kT4fC3dtbSeeLSIKALNW4DQURj6ownswxk9MoaFlOjaZoDShYNmiCij8Ypqs9xr27u7h9TnB+KF7gwmSOZEEn7FWwsgYrbIKwKmoLIvv6+upmp1+4cAFN02hpaalaK07dSjNZJKutydpI1lLX4oj5jZiO+P73v5/Tp0/zxBNPrGud5nnHl6C2TcrMzAwnTpygs7OTAwcONMSMXcq19dZ7tvCFF8cYnMnjDOWTRIGOkIefPnLdXVXbn6q2+HEj5rZD5Ydb0Aw+8rWLPDuUxLQrE7a+dmaK193WwftfuZO7Wm3ksWF23r2y/l1zXVvXphJ8+9lT9A9OY1oW0cCsj18UiIoKqaLOTN5ge5uHQqly0Do1gpIk4feo+DwypVKBbDpDKFLphns6OYNPkeosII8sktbgWiLLlhYvqqLMFjBaKKpCOBxmbGycaCREoVSmUChUBwa1eVTGcxbjyRwCNpLiIeIR2dsdwSuLFIrleW3Ggj4vppHFEiVEUcAyLUqmhmZagI1XVYkEPWi6QalkVN87y7aZzpsIskSLX0GRK8KaKWpcnkzjlyouK99slb2mGdhUrIfxZI7BeAHNtFGlSnpyqqCzLeajKwSSkCc7nuLZ5CgTo21s725ne3c7Y1mDxy8lsOxKUeVYpsS1CYNgpMyWhZsqNIza2em2XbkgcIL2V65cqQpJPB6ntbV10w/xW8Uicbr/biQf+MAH+I//+A8ef/xxtm7duq61bgohcVxbly5dYnBwkAMHDqz7hc9dfzEhCXpkPveel/F3Tw7z1TOTWJbNaw508J4H+mgLVsLZuq5z6tQpstks999/P+Hw9XkejZzbXosoijw5nOeZoQJtQQ8+pfJlzZR0Hj07xVa1QLg0uSq3X61FcvryCN94+mRlMFChjNejoqoeLMtC13VEUUCSFHKajrZAryvTNMnkixiGSSqZZlvvVsKhEEVNRxIENEeVbRtRlrFtMI0SilSxLnXDqNZ4CIKA3+cl5FOxEClJARKCgimYBEyLAGVahTIFS8TrDxJQLXqiQSxDp2CAJIn4PBURLJQ1Al4PqVyBgEciWzRomXUh2VTiE60BhbBPIZ0rAKDIMt7Z2Mo1S6Bk2ER9Ep7ZaZWWbeNTRDJlg6JuokhCNavLoyqIVOJ8yXIlhbjWZZUrG0zndboiPizTQBYFSprOxeFxLg6PV1xwBQF/KMz+bZ1EvF6ifoWpcZuLM2WO6CZe5cbEBARBqLpqe3t7MU2T6elpzp49y+DgIGfPnq3WR7S2tm5KG/RbRUg2siDRtm1+8Rd/kS9/+cs89thj7NixY91r3hRCIggCg4ODWJY176BuBMvNDYn4FD708G4+9PDueX/L5XK8+OKL+P3+BftTNWpu+0J77h+vDFTy1RwkIY/MRCLHM5dL/I+fOLKqqxpBEDBMk+8+f4YXzl25vqZXZjxdwpmKKwgCkqIiaCUCixxipmmRScXRDJOOjk4ESSY7GzTvawtwcbqEJYhIkoBpWSTzGiGvvGBcQJEkdMMgU9QYS1hkLRlFlrBtiXjRpD0Y4NDOLkTbIJHKUChkmBhL4vX68Pt9+Hz+SiW8IBDwqOiGSTTkZ58tcmo0STyvIQoClg0BVeS2LTGyhVLVlWnUxFbAwqPKFVE1bczZGgpzdqaJVHNw+r0eimUN27Yp6WUS2WLFXaYqCIKIYRhE/BLJvEaqUF6wb5dmWCQyxcoI2akJFFmmvTVKsZAnqXhJFQ26bpCQzEWSJCKRigvuyJEj1fqIeDzO8PDwpoy4bTYhWUvw3zRNisXihlkk73//+/nc5z7Hv//7vxMKharV95FIZMnEiqXYdCFZ7oolnU6TSqWqB/VG9BJaq/tpYmKCU6dO0dfXx549exZ8LRtpkRiWXTeQyTRNMpk0NtCzpXfVX0TNMHj85BXUYEvd7dtb/UznNNJFA78qIcsyU8ksUb9Ce1DF5/GgyBKarlMsa+i6TjoRRzNtRLEyCKqkW+imhU+R2BrxkinozBRNCsUyiqrQGvZzoNPP3BpPn1dF0wxMyyJdtpkpGMRCCopYsWh8kkJSg5wh0O730tamYNut6LpGsVicDRwnUFUZTQoQL1nYQsUt1R32cnhrhLwOJcNCtA22xoIYur5Qx/1KDEiEmE9hKpMj4lXwKDKiJJHTNVp8Cv7ZuqKg31fNNoPrI5lNy56tTwFVVdA0E4+qEPR6QLCuZybM4veqiBQp6zoeuSKoY5PTTMcTiNdmaLHSHNrRw7auVnraKqnON5La1N+59RHObI+rV69y9uzZalNDZ0LkRlgrN6rX1kpZy35yucr01Y2KkXziE58A4JWvfGXd7Z/61Kd45JFH1rTmpgvJYti2zcjICBcuXCAYDNLe3r5hDelW27jRtm0uXrzIyMgIhw8fprOzc9H7blSMRBRFbmtTGcpq6KaFbRqVFEFZJeCTubNvZQWZDvF0ji9/7ziTySwHOrrAFiiWy5iWRVfYyx1bwgxMFygZUNJLdEW83N4TRpVFiuUyxdnYiK5rJGdmCIWCdIQiDFwZ4txEgZliFsOy8SkSfTEfR/d0cHU6TbZYsS5aAyqKJKDKMh6PUqkbsSvDrZwixJxemami1GSFeT0K2XSJ0XiWiBrC61FQZRnTqtSuRCIRZEnk9GiSwakclmkgAFNJifGEwuGtLcQCHiRJRZV92IDP78MwzVlrAqayZSazGmXDRLZEgqpOW8BLsqiTKRuIQNgn0xvz4feqqIpMadYSsWzQTRtFEmjxyUxmyyiSSMDnoVAsky4ZRHwy2OasC8+DIFQ6GCMIGIZJyCMxmS0jiSLybJV90bDpCoqYusaL5wd59swlBFHCFwjRGouya2sH+3ta6qzVjWCxqva5I26d2R7xeJzR0VGAuvYt6ymInLufZhOS1VokhULFpbpRFslGjCBoSiExDIOzZ88yMzPDPffcw8TExIYcxg6rERKnGWSpVOLIkeVdRxvp2jqyRWWo6OHkSALT0FFVD7Ilc2RnlKM7Vp4TPnhtiv944kXSuQKmaXF6JMFwvEBBM+mI+DnQHebAlih9bUGS+TKSIBDyyvNSovO5HMlEnFAkij8UxrZhtCiRsUwCqoQsWpR0k4szZSQxwZaIh5DqLGJhWQJlXaes64QDPrLFcuWKXBQpaxX3U+1PQPV40MplLNtCnB2lW9b06hW/KImEfF5SJZ140SYaCuBVREzDRNM14jmN04Pj7Gn34vP6UFQPXq+H0uwLkySRqZzBYErHMi28qsJ0Ik9SEjnUG6Yr4kUzLBRJIOyVkSQRSRRJ5wpYNsQLJjMFg5JuIdomUZ9M2CtTtkTSiVwlQ0qV6G3xIc6m9GYLZaazZVJlKGo6fo9K1KcSMy3SJQNrNnswIAv0tQbQzcrc+4JmMhjPkS/HgSEAulsjPHzndg71dbGlfWOslZWmIc+d7eG0b7l27Rrnzp0jGAxWhWWtkwjh1hCSfD6Px+PZ9MSF1bDpO51XaZzL0d/fj6Io1Z5U09PTDR+3W8tKD/t0Os3x48eJRCIcPXp0RR/0Rrq2fJLN23datJsWM2Ibfq+HY7tiPLy/fUV9wGzb5vmzV3j8+LnqgTCctZhJpACQJYErUxkmMhov6w2yJeqnty2MbVd6ZdWOx82mU6TSGdo7Oqp+1uRsVlfYL+ORZBTFQ0gUSeQrrVq6w+qsxWZXK6SxwedTZwPdQt28kqhfJm1J6LZA0KtSKpfRZmt5FmrL7veqpPMFJtJlSrpBV8RfuWhQLCRZIiapKLJMMChRKORJptKAjc9XiatIiodLk3lkSSLgr2RhEfKQKdtcSxW5Y2ukOm9EEgVURam2pB9LlxiOF2etLJGSYTFhCuzuDOERIVMQUWWJsFdGqUkTnkiXmMhbmEaleWSmUCSesdjW6qOvPYRhgW1b5BMlBNusdgoYTZXIl41qlwHLhul0nq8/e4Hzl4bxqDK9na3s6Gmnr7udcGBtvvCFvkOrPbgFQSASiRCJRNi5c2e1IDIej1eLeGsnRK7Gb9+MQrJaayuXyxEIBJompXolbLqQ1OLEHHp7e9m7d2/1CyHLMuVyeZlHrx1Jkqq9ohbDmfO+a9cuduzYseIPWZIk9AWymtaCbducn8iRKupY6RLF+AzBYJBf+YkHVv1lNUyTbz97mqGx6aorJq9ZTORtfD4Bv0fGtm1agn6mUjnOTdh0hDwYpuP3r3TwBZux0WtkiyW6e3rq3I8FzcS0QZGEagq3rutItklRt1FVdVYQNDTDRBaFymCqUsWlpJsmM3mNXNmsTBm0TDp8IikTxpJ5JFlGFiW2tda3dbdtm3DAP9sSpXLIC4KAphsIsxckoigiqzKqVHEhBAJ+bBs0rUyhUCSbzZDIaaQ0lRafTMmqFD6WNR1FECiblUI+nyKh6wY211vS66bNZKaMKgsE1MpPzCNLlC0YnExzeEuYba0BvKqKZdkUyhVR1k2bjC5gmzqh2cC7KkNBgKmMRkfQg08SCAV8DExbBHwefF4PM5kiudnqeEfYfF4V0yqTKmiUwiqCYHB5dJLLo5MAxCJBdm/tpLezlZ72KPIa0+gb0bBxbkFkLpcjHo8zOTnJxYsX8fl8dfPsl7rCbzYhWct+HCG5mWgKIbFtm/Pnz3Pt2rUFYw4bOXzKWX8xq8GpoB8fH+euu+6qDrJZKY2ySK6livzhowNcmMxR0g0Eo8yd7SK//66X4VFX9zHmCiX+/XvPMz6TrN6mKgo6MoYg41clBEDxeNA1Db8qkS7qFHWzGkwGm2Q6SyYZR7dsdmzvw+fxYFrW9dRXWUQUQJBkTNOoWh2aaeGVKwdwxjQBm1Cg0uTRME0kw6KkG5wazzOTK1MxVGwwTfZ3eukOeEiXKvuI+BRifgXfbGxENwwkUSRbuN62PuKT8SsSmdl4hG3bCKJMNpOjsyOAbVt4PUolO8yjoKoq0WgLbRbMXJxC0wxKxdk2LYKAiYRPNimWyiiiB9O2UGSZkOpDNw0yqQKaYVVbnEhSpTGoZBoUDYuyUUkR1o3rohz0eikYFoVyHo9cfzB7ZJFc2aSkG8TCYbL5IoZpkS+WsYXKEDBFUfD5FGzLRJFkSuVK7YzlWHpzKJY0Xjg3yLNnLqPItdZKG5Hgygt8G92wsXYS4fbt26sFkfF4nPPnz6PrOi0tLXXz7Gufv9mEZK0xEtciWSWWZfHss89iGAZHjx5dUIkXapHSSBYTqlKpxIkTJ6p7W0sFfSNE0DAtfu+rFzg/kSOk2IiU0WWZZ6csPv/8NR45tnjjyLlMxFP822PP12UUQaVuQ9M0bNPAFkRUVQF7VgjtSlsUqSbIXSwWSSVmUDw+ulvbMEyrmt4rCgI+jwe/10OrXyGeLRINeCs1EoaFbtrsafdV1wv6vOQK111loigwmbdIlW1ag15s26JYKJAzYDhtcH+LSNTvtOGvrFEqaximWWllUtJIlWAqV0bXdKJ+me2tPgbjBRJ5HVlVsIp5OsMeemZng5TKOiUqlqMkSYQDXsqaSVvYTzxfpiUUxDJN0tkcec3AQ4Z8yqCQU/H5fKiqpypcfo+Kz+dBFARkWcC2LAzDRLcsZElAnnPQSZKIYVsUSyWwTGxJwuvxVERX0zHMykCsSMBPNu98bnb1tXtkERGLeDpPZzQ421bGQzGvEVCZV2fi9aik82UksWKt6YbBlWuTXLlWsVai4SC7t3bQ29nKlo7YktbKRh/ccwsinQmR8Xicy5cvo6pqVVSi0egtISQ321AraAIhEUWR7du309bWtugbXlvZvhHMPewvTuY4e3Wa3MQgh/sqrdbXWkHfCIukfzTNpak8QcnE1nUi4RCWaaFninztzBTvuHfriorSzg+O8bUf9GNaC7+XbUGVgCqSKRqEbWu2rsSibArs7w7TEvRSLGnkslmSiQSRaHTBmh7TssmXSgR9XnoDFl6vj6whUdRMJMFmd3uAHW2VCYqRoI9MvtLt18EwLYZnsshYmKaFVtaQFZnusJ+pdIF02cLvUaoWjm1bqLMV5tl8kXOTeSYzWvVgn8rJbIn6uHd7K6miRrGs41d9RP3KvJnqpmVTtmByLEXAI7Gj1YsoSWTLJoZlU7YEOsJejuzrIZ1KUywWZpveCdWaFZ/PR0iGqYKB34SAV8UWJEpli86AjFe5ftApioxgV4TQI4vEAgpj6TK2Zc3OUbHRbJFtrZXU6LJhV2NGumWTK5uokkB3WGUiLzOeyKFIIrpZQpVFulr9BH2VqZfFskY8b3D1WhzDrKzfEfLQHlTrEidKmsYL54d47uwVZEmit7OV7T3t7Ohpn2et3MgW8oIgEAgECAQC1YJIZ5795cuXKRaLlc7Pk5PVVi+bfVW/FiHJ5XI31ZhdaAIhAeju7l7ysN1o15YTbE/kNf7rP5/kueFU9W/3z2h8fJdJLLB5QjKezJMvlvB5IRQJI4oSmlWebbNhkCkZSwqJbds80X+BZ04PIIqVIVEClerrytjaymEQDfroC1SCwqlC5epcEARaAyo7YyqFYplcJk0um6NvW2/FZVXz2vJlkyszeSazGqIk0RmQCKkq7cUMrR4PcshLe7SF7lgYyzaRRIlM3pkzMn/PhmFQNkwEUURVPZiGgShKeD1ewkEvhVKlVX3A5yFfLGNZJtM5jYlMmZBHQp5tH29YNqPJPFG/SE/Yi7ctCDYUymWsmumK2bLJlUSlcNCybTySSE+Ll91tPrIlA920KHk0trYGK0IWDhEKBbEsm4lUnqFkntxkAo9g0hP147MgVxTJFnVkSaQ9oLCrI0TI58GybCzboqjpJPMammHhkUW6I15MCxIFrTKyV5HoCKrEvAKarqMqlbYsSV1kbKqALWgoksC21hA9IZO07KGomcQCCq0BhaBHriZGJMtwaTJLwKviVSFbLDMYL2DbNp3hSowp4Ku0u3GsQ8M0GRybYnBsiu8CLaFANbaypSO2qS3kJUmqNpOEipX81FNPVYuEnYJIx2LZjHn2aylIdFxbNxNNISTLcaNiJL/0Lyd54Wqq7m/PD6f5b188zafeffea1l5v+m8mk2Hm6gCqLKD4Aohi5UspUGnV0eFTqkORFqKs6Xz1yX4uj1aqVy3r+nTBRF7jcrxSIyFJ0O4Bv2jxQ7vaGM+UKM/6+bvDXgRskvEZcoUS3d1dWIIIloXP40GWRNKFMs8MTpPRbDwSmJrB+axFe1Dlrq1bMMolCoUC0+OjpGdkIuEwkqwSi0ZmixkrdRuCUJmxHpQt4lmDtoCCdzaRoKBbKBJ4RJNcoYxA5WCzLAufR6VY1siUK8KmSCI2lfo+r6qSKxeZTBVp98sYNZ9HZf+VvmUXR7KkCxoRXyVoXdQthuJFvEpl2JSAQMYukiuWkT2V99Dv9XAtVWIobaKZMqpPwRQkhjNFtgTAaxUxbYGQ10vMr2CZBtmCRcDrJZUvM5wsky5bGIaBaRjEAio72/x0hT0gSsiijSoKVYtBNwwuTWUZyxjEIh5iIR+6BZdncvSEZPpiC7tfPaqH4dEZVAlkTGyr0rFAswTSGnRLEj5VJl9cOqmlVNY4fmGI589dqVS2e2UUW2P3vjzR8OYefs7U0dtuuw1FUUin09Uq+9p59s6EyBthraylINF1bW0QsixveIzkakrjmaH8vL+Zts0PriQYnMmzo231H+56ChKdWSsPHtzJGa3A81fT6LMdZ1MFHcuGt9zZvWiqbzKT598ee454ev4sg3RR58nLCXJlk4DXQ7msMZC1CckqdwZ9+NXKrHOAclkjnZzBsGDr1i11P4zibDbd5ak8WV2gLaQiUOk/5rcsZvIaMwWTvlgl3VNRRAr5Aql0lkIyzcTkJD6fD7/fj+r1Iysq+UyKqFgiG/CQ06Fs6VWraVe7n6CnEmAOBnykc3kci0ZVZPw+L4piIIqVhpCqR6WsaVi2jSBQ81lUMrkKpRI+j4epTIls2aAzGkCgEpvwqxK6aTGRKdEb86PIIsWyXokfOe9xrsiF8QyCbdMR9qEo8qyFYlKUFA7u6KRcLlEoFEmlkkxPTxONBEkJMiN5SJYsWnwyfo+A7fGQ0W2mCib7O/yUdbPO4oPK6IKZnIYq2QQ8CgI2gmWgCjbJosUeVUUSBQplrVolH/B5mEjm0U2rmg0GlT8Ltkk6pyF0BdE0g1DAh2ladY93qG35ApVD8upkmkwmy2The7QEA+ycja30draiyDe2dYvz2YqiWFcQCVAul6vNJkdGRhAEoa59S6MKIufiurZuICuZq76RFkkul2M0VQIW/8BHksU1CclaXFu1lfN33nkn7e3t/EaXxl9+b5BnBhNkSwYhj8zLOwx+/M6eBdcYHp/mW8+exjAqUwoNo/79uzSVJ69btIW8WKaJxyOjmxbxbImB8RTb2wIEvB6KhSLx6QlUb4Du1tZ5RYjOfnM62KaOoYPTc9/j8SAbItlZK8HvVSvDnlQv7e1ewEbTNNLZPCdGU8zkZ7BECVUQ2N7m58F9HUxkykyki8iiTVfIQ0fYgyiI+Lwq2TluMd0w8UsWlmlQ0kUioQC2ZWEhIAoi7SHvbGNKqrEVn8dDoVSiODvRUa9JA1dVBT8ShmkiUAnIz6WSTWUSC3gQJZHibMZawCNRNgVUjwevquDz+bDtKD5VZnImSTJb4NpMCY8kULQ9FZeVqqBgk8jrpAoa0YB3thhTR5u9kNKMSqsZz+zFg9PYUpVF8ppBIlsk4JGqjS4lUaRU1pDFSrKEYdqoNVlhmmER9HsplsqVmEz+enaaz1uJrWiajixL1Wy8uZ+98/stahonBq7y4vlBJElia3uU7T2VDsbR8MZnIdUKyVw8Hg89PT309PRgWVZ1QmRtQaTjAltPQeRc3GB7E+EISaMDe7ZtMzQ0xMDAAF2Bpb8421vXNvNkta4tXdc5ceIExWKxrnI+FlD5rTfuYypbJl3U8VpFLp8/UzdECiqv6fiFIR57/iyWbc3eVmkl4lEUDNOkUCqTKFkoooBVszdZFMAWSBY0+mw/k1MzJJMJIi1R2ttaUWUZwzIpluprbkJ+P5aZxqqc0NXBLbquY+ga2DItIR+WaeNVlMrVLgACqqoyWiiR1BVUVUCwLQwbzk1kyeWy7Grzs7fFT7SlBb/Xg2GaWDZ1LhjTsshrJrIo0hpQ6W3xMVEwuTaTqXwGAmxvC7GrMzJbTFm5qg76PWRyhcr7I1fiKWXdRJVEECqWWFGD1kCl1XzQ4yOrKpg14iUKs+m9ooCm6TV7srFtg0KxhCKJeFUZj6pimiaRSBhUP8FyBp9kY+o6+UIeK2uh+nxkC0WKERGlxqWlyjKqKiNJJl61TDJv12UoaYaFLArV4kZJFDEMk7xeccFF/B66YzCWLCKYFopUGedrCjIB2Z5n1ZqWTTpfQhYrdStlTSPo987WvVy3VpyP2+dRKetG9TA3TZPhiRmGJ2b4HueIBP3s6Gmnt7OVbV1tqErjj56lhKQWURTrCiI1TatOiDx9+jSWZdXNs3dcZmvd01piJN3d3Wt+zs3gphESYHYGeGO2bBgGp0+fJpVKcejQIc6cOcMr9rTyxKV4de4IVA6KV+5tY9sivuflWI1rywkSBgIBjhw5smBwsCPkoSPkIZUy5tUHmKbFt549xalLV+tun9s6JOT34VclMiUJQRSwZwPO9ux/iiiQTiZIZ7K0d3Ti83nrW4+IIn6POhuDsMkWCnSFPIwmihR1C99sVlJeqxQS7u6KkspeTzeWxMrVLsBkKs94uoAsmKiigM9XybTJlgzygg2iRDqdYnp6mlDQj8/rw+vzEQmHEAQYmMhweSpHQa+kKHeEvBzaGqEtVyJZkMCGiF+hNaBWxUcSBUJ+HwXNIF0G0zIJ+ioNKCcyZXyKhCiAIUgItklX0FexCnSDoqbj8agEfF5EsXLADyfLJHJlWvwyApVeWAXNZGuLF1UWZ1vuS2TyhdnPQ6A94ieS0SmVDQJBFb/tR1UUxmbSiJjEpybIyBJ+vx+fz4/l9aIZBgGfl5hfYiYpYYkSCBV3W1G36I1Wnk9RZLBtSppOQTPRTAuPbNLmFSh4BVJFE80W8SgKHapAT+h6V17LhulsmamcRlk3iYUChPMarYFK12Rn/461Uszn8aoKJU1fsodTsaRx5so1+i8OI4oiWztis2OH24mFG5Nd5RRHrnYtVVXp6uqiq6urriByYmKiWhBZO89+pcJQ6Tpgr8kicV1ba2C5D/7/z96fxsh6Zved4O/dt1gzI7ebmXcnL3cWyVpYlLWUVkttj9Vy98iepTX2wIY+aL7IGEACBjYwMAYGNC0I1tjQh25LxnjG7XYDUo8XyW7LKlWVXAuLvNzJu6+5xx7vvjzPfHgiIjPvvWSRl6TMmqkDEIWbFfFGxLs85znn/JdZ8vikEkkURVy8eBHbtnnppZcoS7WT+r//1af4td9/mz++1FXfC/jxC0v8g//yyYf+rA/b2trf3+eNN97g5MmTnD9/nqsHMe/tdQlsky+dblO7R2L83uNGScof/tlr3Nw5+MDPqfsKbrtWN7nbC0mkEhDUNI1hnGFpghoJ47Bg7cS6WpTuCSEERVVRVYIkywlcm/OrTaJCcmlnRL9QC45jGTyz0cLVK462oKqpjzvAwWBMklcs1R0c257PwhxT7ZiDRovlTgfH0un1R4RRyEGvx7ZhEONwfShwXIdWzaOsBFujlLQoeeFUi8XgftlyxXGxubQ94MpBRJSVGKZJw3M42aoROCa7oxTTdvAo2Wj5tLzDzYCQkt1JwbXRHrphUrM1Nts+umEwSnLKokDTlGTLZtvDNA0MTSdOM3pRwcEkIy0FdcfE1yWjokBi4Ts2g6TAcRzOLQV0Aos0TYjjhLt7XQZJhe0prbCVVkDTLEnTgkQrcR2bR5c8Nluu4qxUgiQvudlP6EeKh2IZOos1i1MLHhsSJDpSVHiWgWOpakcIydXdEbf6CYau0QhcuuOIA1SCWZ4mnJlEDoBp6iSpVEZhQihVAo4nFMe2qCoxBzkIIbi92+X2bpevX3yPuu/NyZCbq4s4D4mu+iQ4JA8iRM6qlRkh8l4/+/dbv2adiIcZtv8gkXwKMdtlfBJzktmCvbGxMZdhmfERao7BP/7ffI67g4Q7g4STCx7rrY+nSfS9EomUkuvXr3P9+nWeeuopFpdW+Af/7gp/crlLVgg0DZZqDv/nnz7Pl44IMR497n5/xO9/9WUmUYJjqxZWVVVESQ7aoae2a1tzxvfpBZ9BVHCzF3MwjtEA24DHOhZN12B1bZM0f7C0i+86vLc95NpBSJhV+JbOmU7AuUWPtaYzR04t+CbO+z5DkvFoRJmEOKZBJbV5P9k0TdKqwDLANjTqvsskTqjV69TqdUVQTBJevjUkzQuMKiOpXHRDp+GYTHJISo2mo6qDWZiGjmka7AxC3t0LqSpJ21eLYxgnvJukfP5Um2dOdciLiqoqj+iACbIs43ovYVTZ1AILkaXsjwX1ScaFlRrLvk4loBm4dOo2CEkpKrKiYGuYcq0bUwmJqWv0owLf1tloeeRSZxyl1GyDtU6NzcUaGhqWZRALk95Yp/J0wiQmH1fc6U444Uvafonj+dR9F8fS0TWNtBJ4ts2tQc5BWOBbOnXHIKsk26MMxzQ5txRMZy5qp5yX5fQ/we4kp+47NDyHLM9puCaTrGR3nLIYWMdIqTXf4+5wSFnJORlV0zR8x8HQNdKiRJ8qGN8LGjgacZpx6fYOb1y9ja7rrC+1ObW2xOm1Dp3Wh0dXfRpkRNM0WV5eZnl5eU6I7PV6dLtdrl69iuM4x/zsj250Z8/nDyqSz0homvaxB+5SSq5evcrNmzd56qmnjvUgj7bOdF1no+2x0f5kRO0+6Hsfba/NDLv+X9+5w797Z5+aY7LgW1RCsh9m/IN/d4X//n//HAvTXfYskVy6tc0f/tlr893eveq3vquqjaKsCOOUUkgsQ7Vbnj/Z4kwnoBfllEWOU4SIssCvt0jzQu3eXcXYTtOcoqpo1gJevbHPG1tjpATH1BilJRfvjMhLwaMrNTp1h6KoqIRU6r2acv2btUaklAz6PbI0YWN1ibGecneYIh0Dy5BMkpy0FDy2WqfTrCOEwDKtI46JOq7nI42EVt2m4TlEcUSWZZRlRFTp3NzOObfSYKHZmBJaS4pCkGYF+5OctKjoBIdInYZr0YtyeklJfQrtBYnvOJimznA04dqdXSaVzXK7AaIA0yCwdfpxyd444cJKbbrpkehI0qLAtk003WB7PEFHtdnUkWGUVGQVPLpkIxbs+SI9a8GVlWR7UmDaLgu2Rm6rRbIf5/TSCR1NEo8GhIMeC606Y8PC9zyitGBrEOKZGoGrhDHt6SK7H2Ys1635sP5opNNBfsM3iJNEtTlNk5ZlE2UFeSnwbGNKJPUZhcnRkdj82s6qFd91KMsK31W8mTjN7qtWTNNA17T5PSuE4M5ejzt7Pb7xGtR8d2o53GFztTN3qnxQfNqs9qOEyJMnT1JV1dzP/sqVK6RpeszPXtM0dF3/yK22HySSh4wPc6I/jkxKURS88cYbRFHEiy++eJ9hzOzmq6rqEyctHa14jv7OJEl49dVXMU2Tl156Cdu2kVLyb97cVQPOaSvLNDRW6g57k4yvX+3xV549TIDv3N7njb1XHoikAvVgCSGJkpS3t8fcHuXklaRuG5zruJxa8Gn7FrZIGSQjWouL7O3tH75fqvcCIDWatYCsVKQ9pFT8FU3DQ1nGXutGPLnRJs2KOXL0cCgucW0LXdfYunuXUVyw0FnCdR2ePKH+vjdWKr22qfPISo2nNlpzu9uZj7ptKR5InOS4lk5capRVieu4uI5LWQmKKMPUJPt7e+zt7tJuNjBth0a9Rt13QU+PORmq66RhW6YiSLZmCUbBaMPehIODA/xGG8/UcW2DIlf9b6mBZ0n6cakgxlISeO60dadRpTm9qCBMcxYDB9ue2gqLisCBbphyesF54MIel4IkFzhGRV5q6IaObZosmiZbcYRXa7K85OBaBvu9PkkY0uv2KDSTMDZo+w5FUVCUJbZlYepQSkOh6RDH+DSghCVtSxEY7RmZsyxJCvVbzenGxDYMepOEvUlGb1xgIqgX4hhjv+a5cyXkfP7cKqHPWbXCtFrMi/d/rsMk4/rWPm9du4OuaawttTmztsSpE0ss3VOt/HmbWhmGQafTmevvHZVvuXFDIdeklOzv79Nutz/02vID1NanGA8rkzKZTLh48SJBELyvw+Js1/Bpyb3DcfRGv9/n4sWLrK2t8dhjjx2+RsI4Ke9D0Bi6hobifoB68P7om69ze3/EuUeWSNNy3sKahZSSRi1gHEZ8++aQawcRpq5h6hp7aUY/ynBdh3o5oTccsbKyiuu67O8fwD27RkPXsS2TURjRj3LCJKPm2liOSn5lUeCaOqnQ2e6Hx5R4D0NjEiXc3Tvg+rAi1xyMJGbBLzjXcfncRoMoq8hKQdO3CRzzHritqmpm7TbDUJa4L98aEuUVnqVTCckkLek0XB7ZaGHoGqYOB70Bw+GQvb09HMchrWyKSmBYJqauU009PbKipH6MTyAZDocMBkPWVtdINIdrgx6ZqTYFtm2h6zpxIbENMHSDuu8yjuJpIlUS70jlfFhWFTITWJaFqASaruM6Jq5lIUR5bFE0dB3H0ijKAls35/dQmisWvBQCz7ZYbNZIsnyKQmpRVhWTKGYnmdAfT7B1CHyfLEvJhYFl6hR5jtQ1PNdG0zQOJhlRVuCaBp4B/bii4ap7Ja8kcVGx3nSxdEUWvdUdc/UgIhMaZaFRVhrJXsgjHZ+6a05bkSn3hzzmZc80eVvmg2crmqbh2vb8PUJKtvb7bO33+cbrlwg8l1Ori5xdX2ZztfOfXWdr5me/sbGBEIK7d+9y48YNbty4MSdEzqqV9yNESimJouhTc0f8tOL7JpE8TGtrRug7ffo058+f/8DK59PiqhytdnRdn7s+PvbYY2xubh7/DrrG+eUar94e0nDN+ffNCuWed7YTMApj/uBPXma3NyTJC+IkwzRNAtdBopFMZU/qgc8kihkmJbf7MZ6l40wJYq6lBsPfvrLLcwsVG+sbNGqBQhdNiXyzcCxzDreVUs75CEVVYRzhXBiWhV5IfOfBu64kSTjo9ni3D5k0qTmAKLnbz+iHCV95bIXVtoeQkjTLSfP336XqmoZjm9RFxrkFi5u9kriQmIbJiQWbcwsuuqbRqPmMw5h2e4F2e4GqKonjBDEJ0YuUG1sJzZoylSow6TR8Ti81QJZICd1ulziOOHVyE9/3IEzxbV2pCLsmeVFQVAoddfZEk8VmTcnhG6aCQiMRQtLwLALHYJQWLDd88jynkpJhUrLR8pCywrJMvKmsfJjmJKVAE4LANgmzclr9KbhtmFX4JtRci8EkQkroxSXduCLOBZYG7UadUVLgOSZZmhBHSqp/vW4yGQn8KWrtajcmzJXHiWmY1F2DhgtRruZDhq6xUrfZaHn4nsM4TrkzSEgLQcs3icsKaUiSvGI3qtjoNA6r2PcJ17YopnOTbG6xoOG7NoaukxUVZanagskH2EeEccLtvR7v3NhC1zQC28CSOacfGbHc/nSsfD9s6LpOEAQ4jsOXvvQl0jSdVytHCZEzNNhRP/s4jh9KIPbDxNe+9jV+4zd+g1deeYWdnR1+//d/n5//+Z//2Mf9TCSSD9va+rALvRCCy5cvc/fuXZ599lmWl5c/0eN/lJhVIWVZcvnyZfb39/n85z8/Z9zeG3/tC+u8uzthZ5zRcE2KShLnJc9uNFn3Bf/s3359LiUCagcjhJjvAE1dpx54INWub9iNKCpJYB8O/KqqwtAgTAray+sYpkGUqvcLCY5l0Qg8BBDF6ZTDo95bd02WajZ3h4pjYJsGFTr9ScJqw8G3NGV3axiUU4Z0OJkQToaMhEsmSxYCa/79HVOnFxVc3RvzhTMd4jTHMgx816SSkiTNpp8t2RqmbI+Vb4pvwam2x+lFnxMtjzAr5y1B2zAIPJeyqtB1DSGgFIIwlxi2x+aJGq2Fklv9hK3emLIs8XRBy88YD0sC3yecjNFkyZnTp4kKwWQYU3NNzi/XuLIf0otmUGhYa7qcWa4zmKg2nK5pBJ5NmFbEeY5rGpxfrnGjn7M7iucFX8s3WW/aCgVXSJKsZHtSsD1IkJqOZ5vUPEsRRaN8+ltUYmpYBnGWY5om26OUawcxmqakYcJSGXetLdSIs4LStFlseSzXLOpmRZok7O3tcTuEDIemb+HYJhJBd5zRqdl8brON1DRMTWLr6l6K04w4rwizippjoKEhUdWZbymp+53+BM8ylCy/qdBu8RHe0b3s+MOQ89cZho5j25iGju7qD6xWABqBPx/yCynZ6Q0Zjyf0/+jP8F2H02tLnFlf4uTKIq5zP4Lv046jXQjXdY8RIsfj8Zxl/84771Cv17l8+TKdToc4jj+1iiSKIp599ln+5t/8m/zCL/zCJ3bcz0Qi+TDxYWVS8jzntddeI8/z95Wlf1B8WolktmC+9tprAHPXx/eLF88s8H/5uQv8P791m9v9BNvQ+Kln1nhxTef3/+Q78/bb0UQyC9eyqKQ8IjWulGcty0IzTKQoqaqKcopG8lx7XqUc/b5xmlGvB0zCGEPXqXkuEkmSFggpeWa9QVYKhqlgkhcgJYuBzbPrTTRNOyLJrpBZWRyxtnaCve0IXTvewkHTMHTIhD7tqWtzFBFMF2Xf4ep+yFu7EVUlsHTYTwS9MOfpEw022h4L/iEIwbJMhvPZChxEJVe7CZMkAyloexZfOLfEU67JI8vq/tClII5joiii1+uhaRpm0OQbV7tkQkfTdWq2zsmWzQsnW/SjnFJImp7FStMnyw4Xy0lW8MrtAcO4pBIC37V5bK3JCyddtvsmeaW4Nm3PnFeAUkpuDXJudiNcS8c2JJO4YDCRnF+uEbg2SV5i6pKVhsvN6z1AmWjdHaaYhjb3P/EsnUwaDCYJz6zXMfQajanDY5RkNOo1oqxiZydEz1OyJCEKS0zDxDBM+qGkXCgJHAPTUO0ww1D3QVLE0+Qx/bFTNXvPdRmGCVI69/GWZkgu01Azpw/im1iGMfWsP0p6nVUrBlmh7A5qgTdPIrM4OoeM04xbuwe8c+Mumqaxutji9FqHMyeWWV7486lW3m9mo+s6rVaLVqt1jBD5z//5P+df/st/SVVV/J2/83f4hV/4BX7mZ37mvs7Fx4mf/dmf5Wd/9mc/sePN4vsmkXyYhX5mhdtqtXj++ec/Eufk0/JWVxLjSqLhc5/73IeCAv7w+UV+6OwCw6TA0jW+8+Z7fOu1mxiGQc13QUKUZsBhGyrwlMyFuOchXfBMAhMGk5jANhBVgWa5iKrg1IJ/3zxG01B9/lBJcsdZwTvbY7ZGKULCmaU6F1br/MWnA24ejIkypTy8UneOQUOlFAx6PbIsY3FpGakZOIaGZpjYU4Z3WaqkohkWuix5kAqwkJL+OObyfgSiYrHmYhgmlajojROudyPWmu7U6taYJsLDRWh3nPL63TGaBr5lgG7RzzRevjng+fXgSCI18DyP0WhIENSoNVp84+qBmh3oCr20F+lMEocfubDChYZPWVZImC+YoFj27+xM6EeF8nHXDUo0Xr3Z5akTdU4u+niODZpygqympLVK09kaDAlsfT54r9k6k6xid5TwQtNmre6BpmEaGp5tYZqGQn4VxzW0XMehSlKioprLqRyVN/FdB92USEJ818UyfYQQ5EVBmuWEYcSdu8rbxPd8TNuZ+73bhkYrcIkKiW8ZSCSObdObxDRdE+9I5ZsWqpJKC0GrJvAMoaoV28KyTMVDSrP5ZbdNE4Gco/MOQx67pjXfQ5v+jqPVilIiPuJxM22xSSnZ6Q7Y6Q745ptX8FxnmlSWOLnSwXM/nWrlw8qjzAiRv/mbv8mv//qv8/jjj/P888/ze7/3e/zyL/8y//gf/2P+9t/+25/Kd/yk4v9nEsndu3d59913OX/+PKdPn/7IO46PI674frG9vc3bb7+NYRicO3fugTdVmJa8fGtAVgqeXm/MeSu6ruEa8K+//l1u7yqCZFVVhPHsHGi4jqkkwV2HUZg+EL1lGhpfOt3iG1e7jOIcw9QxKVlvuXzhTIfAtSiKkiTPMQz1kI+jBM9zKSrBt28O2Rml6NOB/3euH7A1yvj8hs+pTg3bnLawjixUVVUy6HUpK8Hy6tr8d59oudzsJewPI+quiWkYRCXYpmCj9eAqTUqJ0E3GUULTsyjLaq4bVnMtcqGBYeI7OnlR3YdEujNQkvBtz0LTFI9EkzkHo4xuy+bcstqdDkZjtre3qNcbnD65zhu3egjdYr3jK++XokDLc3rDjO+8E/PMRhPH9RQSzHLJioK8qJROVlLS9q0pb8WkKAoSYGuYstpwCY8h2Ww81+LWQUhRSRruDB6s5GYcQyMpKgRKS0xIQSohyQvKUvmyeK6DpmtomnJqzHJVLRm6hvGAHbGh6+RZjK1DLjTqjouQAkM3yKXBsh9wfs0njiO6/b7S2rJsDNulUfNZDUyudWN20wwhlM9Kux5wsu3M/V0macnl/Ygwq3Bdm7vDPr5t8siSryqW6WxE06fVhqaRlRXlB8zG0DR8x54niNlzMKtW4ihU94XvMYmSBz4PAEmacf3uPpdv7yKEYGWhOfdbWW43/rPqbGVZRp7n/L2/9/f4+3//7zMYDL73mz4D8ZlIJB8H/iuE4N1332V3d5fnn39+7k3wUeOTbG3NZjRbW1s899xzvPXWWw8s5//0Spf/9n+5Si/MEag5xi987gS//CNn6I0m/MFXXz4Cf703JHmh4L2jMFVzCdNUrObs6KJeoacjPrcokBsdSqk4E8t1ByFKJrE6p4Hnzi1hi6LAdR22R5ny9nAVugkNdMNipz/htq/jWYfIKkM38D2bLMvY2tkHw2BldRVNO3woG67FsxsN3tmdEGYCNIFroPgiNVdxTnSdJMsoSpXUG4HHnd4EQ1fkQt04ItJYVVSVxNAgzUsljujq5EVJmimGeZQp7SxdN+a/bVY5JXlFmGSEYcj+/j4bJ1ZZXuqQ5uVcckVDcZgMw8B1XYSZY/vKm+Wgpx7yGVqn1aijmxaGaShGu65TTBdM29RVQpASfd6WVIrFg3EMssKxTDTTwjF08kJJjhRSErg22hT1NRvgz+4BA4FvCA7CgsWGCxoYpkUUF6zV7blcDSjDsAKTre0Bjqlzoulwo5ewM5hgGzq5UBDtC2t1At/CtCxqjRa3ehE3+xHJIEFuT2i7sNrwqXyPg0FC3bU52bYJHB3PsTEMnUsHQyZpwcZinTTLCQKbYVxwq59Qd835NZBSUlWCtKwoK4FrW9iWoWRmksNqRSG4rAcIRx5WK3lRKng3imn/IN4KKFuBoiznJMnd3pDd3pBvvXkFz7E5udrhkZOrPLK5+j7P3oeLhxVs9Dxv/r73m6V+1uIzkUiAqevb+/dOH5RI0jTltddeQwjBSy+9hOc9PInwk0okRVHw2muvkWUZL774IkEQPJDdfneQ8H/7w8uEWclCzcbQYJyW/PPv3sWuIrTJwZzA96CwDAPHMggTBeM92pOOc8E4l4iyQEZddN3k5MbGfQKPs/BdZ25Vq5s2/X6fJJqwGytCpKFr05aKQVkW6LrG7jjlwsohaaoSgt39HuF4gOX4bJxYRdc19scJvUmKaxos1mzWmi6biwF745SqErR9C8vQEVIe26n7roNtGaR5RcM1aPsW+5N86mqokkqYlpxba4IoERxvaTm2GiC3ay47oxSQ8+s7Y7u7lj6F9w5YO7HKQrvNcDowb3g2+qTCsm2q8lCMUDNt6q7F0nKbjpRkWUYcRwyHA/b398k0mzwzKAwNyzNxHMXlyEqlVzVLIhqKbDeezrMarknbM9kdxdRdE8vQqNDRDIv1ljO3uxVC0Ovvk0mTbljg2oJzSwFSi+mNFYlQ02DRt3jsRJO6a1NWFb1JzM1hyd5wMCcRNj2TUwse47Qkyis6nsmpTp3AUr4jrm2xNcnZnlSYlk3Hc8hLwSSrCCqNphixZOWYCIokJNc8pISkUJ+33KpNr4VNXpTUXJMwq4jzat6K812bJCum8w1VqcyqFd3Q8RxrOtTnA9FgUkp8x2YUxnP5HdAIpppgWVGS5TmeY5MfuZ73RpLlXN/a5+nzH38u8TCCjWEYft/5tcNnKJF8rzBNk+zITnswGHDx4kWWlpZ44oknHtoKdxafxIxkxlmp1Wq8+OKL8xnNg479x+8dMElLluv2/KZpuCa37tzln/27S/ylp9VuSNcUiQuNeU/dtdXiUFTiWPIVEl67M+TKfkRaqP59YMJPPLVMs+6TZsV9/ee67zKJUsR04Lu4qFRP0zShGg8pipwsExiGOVUKlkg5VQo+EuPxmGgyot5sUavVGcdqNrE1TCmlkvto+yZfPrOAVgkW/fcnZ9mmSVZU3DiYIKWkU3P54rklvnNzwMEoASQasL5Y52zL5kGzlbwoyYuS0ws+e6OUsJAEtkVeFIzjgrZvQTphlERsbm5QD/wjiUwtxK4esTcMqTsmpmmRlBLHqFhpqJ66pmm4rovrujRbCxRlAVXJwc0+W90Bnqnj2CYlBrbj8OhaC8+xyIoS17bZH0V0Q9WGChyTc9O2Ty/KiXJJ3fNYDWClbuPYKuFevXWXy72C0vC4sxvhWqZyXlxwWKmZ5KXEsXRanoWsSibTVuh2WNENczoNH1lVFFXFIC6wDJ2n1pQAZs1XRMpZognTnOu7I3QkNcfCti0CqWHbOeOs4OzmGsPuHoZhkGUpw+FAVX6Wi6ZZJGmKOALmsC2LAkV6lFPiZpLlCCFVtalrx6yPFW+mxNR10rxQCtamSSEqkiSfX3YpJfXA4/ZgcM9mSU5niSoagYdEVc/vV63YlsnP/+jnWV9euO//+6jx/y+mVvB9lEiOSsnfvn2by5cvc+HCBTY3Nz+R7P1xZyR7e3u88cYbD+SsPOjY/UjtnmevE0Iw2LlFMewRHbHNVTv1w51YM/Dniz4cR21dO4h4Z2eCoYNnCHTdJKkkf/LuLn/xyRV825i3wIqqxDQMxlFyD/NeSZd7ns+5NZ39fIKQJboUZJlixle6xZKnkWUptu0wHPRJk5j24tIckXZpL+RmL8a3DWqmrnbFIXzj8j5/8ekTGLo+T4xHw3Us7vZjXr87JExLJOBZBueXAl5Yr9Ft2gjDoOnYNFwNUd1/zaK8JMkFnYZP0y14fDXgRjdmECboGqwvBKxaGbooOH3qJJaldsV5KRinJYYOTc/iqRN1ruxHjNMSE4GrC84vBSw1fBxL2Qz3Jwk3ejF74wzTsmg6Go9vLrE7StkfJ2R5iSEz6kbC+CCDtEaz0WBvkvHWTsIkTue78U7N5sm1OqdKD8dxqMocbyqamaQp13d2uDmBTHPp1HwcyyBKc+4MEwxD43zHm3utzFpguq4hMNjpRziGTlUW0/Ns0zFtwjwnzEpOLNQYR8fnbHkpyCuBP5VFqSqBlAJdCgQ6lmXj2jaGbdOo15FSkqYpsiq52R/SzypangJX2LbNMCkIbBNTk2pRlxAWcPMgZJKWWIbGasNhtaGAG3P5lKkQ5n3yP44NqFbheH4e37/qDqdcKBUzlr1OVhZkWYFr2/zCj3+B1cXWA4/xUaOqqo9smDVLJJ9WRRKGIVevXp3/+8aNG7z22mssLCxw8uTJhz7uZyaRfJjWVlEUvPnmm/R6vQ/kYjxMPGxrS0rJtWvXuHHjBk8//TSrq/f3VR/U2jrT8ad+4gKqgu6d6xRpQikkndqDUSSNwGcYxoceFZZF4Nl4rkOc5Fw7CBESbFFh22reYJmScVpyZ5Dw2GqNLC8oigrXsYiTTBEZpSTJc+7No+dXW+xOMq4dFGQVgIluwHrNpGEU7Ozs4to6uqbTbLXnpKpSCO70U2xTn3vJ+76HlqT0o4pbBxOW6w4g8RwHy1RzDUM3OBjHvHJrQFoKGp6FBsR5xTu7EwLHYHPBxzQN0qxAVALHsnBs5bMyjFLe252wPUzBsKAasNZ0eWKtzlrTIcwqNCmY9A8Qpc6pU5tIwLYMbg9S3t0ekuRqNtLwTJ5Yq/PFM21KqVBPNcdE17R5tVNUgje2JwwSQc21qYqSO1HBMC544WST88s1KiEV674sKfOMKIq4u3vAtVBHaiYLgYPn+0ipcTBJuNOPee50h0mcwTSJFEXBzs4OwrApDIOGZWCbOlmeY2iSmmczzJm24ap5ItE1DcPQORgnVEKgmYfPWJ7nCKnMunzPRUqo+cf92i1Dw9R18lLiB0qaRghJXompi2RGmuc0XBffdRjGBYXhkVc5T51Z5fLuhHGSE8c5+SjGNnXWXA9TU8TaflxyaT+iEpK651JKyfV+SlJUPLHWRCLfVz5FCEGYpNQ8l1GU4rk2nmOCZswhybPwXWfa9jy6vshj85ZG4POXf/h5VhabD/y8h4nPoqnVd7/7Xb7yla/M//2rv/qrAPzSL/0Sv/d7v/fQx/3MJJLvFUIIRqMRQgi+/OUvfyyzmQfFwySSsix58803GY/HD9TwmsWDWls/8dgy/+K7W1zdOqDo3QUkRaV0nJ5YO34cTVPIlHEUH9sxVkIwiVKkZiCkYJIotVXHc9CkNn8vGqRTaXfLNNFQ/WYhJEVZoV6idmgK61/g2RaTOOXZ9QYnmi574wwJdAKblYaDmCKzikpgWg7dXh+dHo16gDBdsrLEMY254GaR5xi6hpCSrDy0u02ynDiVNGoeaZYzyCSZ1Gh5ytsDoOaY9OOcnUnO5kJwRDpFU73v6WJzeS/i9qik4XnosiRF52Y/RtM0nllvEJglOzt7uK7D6ZOb89787V7Ea3fH6Bp0Gh5SavSilLe2J/zwI0uYspqjqY7G/iTjYJKy2q5R5jmmCb7r0U8qDqKKU+3DtltQr1GWLn6tTuHEyHhIYAqiKCKMQizTQkOnm9gIqexxkzQnSVN2d3eUiJ9bp5qMCVyXfKoqoDHjwKRMYpeaayl4r6ZTlCVJVlB3bTzbJCkqLF2ft3SirKJZ86iKnFCqc5iVglEGSSkwEDRcg34qGcfKQTGvBFGmJFN822AoVeXyys0+/aQizXMs02Sh5vL4eptBlJIWAsfUCAxBzZLcurNNVVVspRaZNFisuegokqzUYZBKCqnh2yZlKR7YgkJOW3GJqqLSLCeMc2zbom6oof8swu/BtPdch7/yoy+w1G584Os+ajzsjOTTFGz8sR/7sQ/csD9sfF8kkm63y+XLl9F1nS9+8YufCDxPSsl/vNTlX7+xwySrOFev+MrJD48nj+OYV199Fdu2+fKXv3xM4uDeeFBrq+6a/B+fa/Lf3niLrUqZVLU9i+dPtlhveVPVXW0+0zjqCHgYaoeZZRnDXpfArEhKDSQYppJYyUt17KZn4TsOaVFQluWcqa4SkxpmhknKQZiTlOAYGmeW62gIllBS9rPIspRRv4du2awtd+ZleFHkitQ3GaOVOZPCxNQ1yqLEMHTyUvli1J2jt51KIso2F0ZhQlWUaI6jdNE0KIsS13EIk/J9AQhJUbEzzggsA0PODLwcLMtmPyzoj0PG/S6NRp2TG+uEccJskb87UEm16VtU0/O96Nv0k5JuVLDZdo8N8mcRZSWWZVMWxVwCt6oqtKpgfxxzruPhOfac5FnO2nCaggUHgUpOVakkQbJccNDt8u6VMfXAxzRNwvGQ9dUV/FqNYZRR811GUYJ/D1/DtRT/RAhJWQrKqqCsKlzHxjJNHlkVvHlnwDAtcczptbBUi9LQFBAhzAXv7qo2k64rAETDd1ms2URpwTjJMQ2N9abLmc5MwkOyF1XsxRWBBUFgU0nJ/jAizzNeONkmcO0px0NnHCVs+nWiNOPWzQG6LBmOhui6jm3ZeL7LMMk5GEXTyvxQOiUtSvK8UCq8nnNfgpi1tqpptRJ4DlGc4cwQjQ9w9ww8l7/6419gsfnJM8kfZkbyacqjfJrxmU4kUkpu3LjBtWvXOHnyJLu7u59YEvl7/+o9/sdXtuayE3+mwb+9pPM/nc9YaXxwX7PX6/Haa69x4sQJLly48KGsPY8mEiEEX33lXV577zo/8ViHJK8ohaTmmGjaoequ7ygZbtuyqPuegrXmh/IomqaRZxnjYQ8vqPPcGZ+vXekxTktcU853/8sNnyc3F0FWlEU1l7U4Wv8nRcV3bo7YD/N59fTanQEvnmkraK6nFoODbp/RsI/r12m1mseOYVk2zaZNs9lCq+V881qXfphiUiF1E6EZbLZsGq4+PS/gOe48iQBTv/GpedZ0121ZFmmccrbTxHMV9PbeHnIp1X82hyZaZVGgCUmUZOzsh1w4ucpSZ2GKzDp8f5yXc4va2eeVZYkoS4ZhwqKnZPeDqatjkuUIKah5LsVBDLZ1TEu9FBLH1OeJY6Y04E8l3TsCLGNCkqv5g23bOI5NWKWcWgloN3XG4zFZlqHrOr3RhElacHK1w3oqubJXUmUl9swuV0g22h6GruO5FnlesjdO2R6lczmTE02PZzZaHMQVk6RgoW6y6Oks1axDZn0vZpyWLPhqE+I4DvvDGFmVPHWihhAujcCl7lqkmbIVAOjFFbauY01334am0fRMxmlJP8oQoqI+ZaJ7roVlGEpbzI0ROPiWalsjBYPhmCgXDJ0MWwR4ns+wrDgIc0ZJiedYrLd9AvUAzC1/4TizfU5IvGe2YujTakUDUzf4+R/7PO3Gp9NKetjW1vebhDx8hhLJfQvDtG00Go344he/CMDW1tYn8lmv3B7yP766NV9LZsmklwh++0+u8ff/yhMPfJ+Uklu3bnHlyhUef/xxNjY2PtTnHU0kSZbz77/1Brd3uvMb/ygbeBZ135vqZ8ljvBDHsnAdJXqnIQjDCYudzvzm+6FzC7y5NWaUluganO34/PCFVaI4njN/PddD0yBOi/n3emcvZnuUUHcMTNuaigoWvHxryE8+tsQkShgNR8TRmLXVNer1+pyEN4tKSCopWah5nAA+f6rF1YOIOK/QpWTJgyUjZutuSL0WUA9qZFmOZR1Wc2tNlxu9mEFUKKFJx6U3jPBsg+VADegt08B3bYSAOEuxLYtSgIEgK8Gcnk8JTOIMUeScWO7QajUZjFWrq+YpyZAkK2h4FluDFBzFMi6KQs2uNObXRgh5qGdm6ASuw1rL4spByCjJ5/OcaDpjWak7NAJvaq+rAZL+RJEjPcvgzFKNW4OMSSHRZEFalNQckzOdAJnH5HlBZ2mFnbDg6n5MIXJevtHlRMNmxbEZ5jpSN2nWDNbqJit1m8BTs4CtYcJ7uxNKIbENnd2spBvmPL5a54kVD9Ook+cFnmtjGgZZXjCMU0ZpNZ0D6di2TZqm1BydcVqQFpVynJxyj6RUiD/DMEHTj6kagBIgFQKqSlL3vTkkN0kLhmWGoWustXxujzJ006Lm2KplWeqs1XUW6xpRFLF70Gc7MYiFrpBrlsPtXsjpRZ/Ti/7U8lcjz8v586QUmB9M0J1VK43A4xd+/As0a5/e7v8HieQ/c4RhyMWLF3Fdd+7VEYbhJ0YY/Pfv7GNo2jE5EU2DSsIfvb3/wERSVRXvvPMO3W6XL3zhC7RarQ/9ebP5S3eoSIbDSQQwHxRXQhDP3AylRj1Q/IIHPQh5WZLmBZPhgKIoWFlaYmmpQ5zlCCHYaCtXR+WXrrFQ9wnjQ2SW4LBNpmQmbCoJd/oxrqkr4iFqV1l3TIaxsoe1ipAsTVhcWgHDmic5x7aQaLx+d8TV3TGGZVMz+1xYrXNqwWez7ZEWAsvQsKYyG4YO4/GE/f6QPEsJfBfD9rEdC9/1+PzJFpf2QvqZJElTVuoOj6wESgEXRawbT6uYwLOREhbqHqc7Nd7bGYNUBMBJnBBnJU+st1hfWiSM1e+W93BWzi03GGYQlgK7VFIwUV6yENhze9lZ2JYJUiUoDXik43G1K5kUqj1oonF+yePcamvKEdGI8pLLexG9KEdISd01OdcJ+Nx6g1u9kLzUOLtcZ7PtMRn06A+GrK2tcn1Ycruf43k+lqiIM5M7UcXJWsGKlgEGDSugZvg0pygo0zS40VX310x/DJQFwe1BysZicMg3OtLmsU0T23EwNIlrm6RZhqEbKASGapceVtUanmMRJYqFbWkGSanR8F2Ykj6jrMAxdTpNf96C6oY5dwYpYaZmeYs1i7atEeYVaZZjWRar7RrnFj1MrULTWsQHEVkyoelIhCgo44RKM7m2V9Jy9SPoRQUOaNV8SiEf+OzMolUL+Ks/8UUawSdjXvd+8YNE8p8x9vb2ePPNN9nc3OTRRx+dVypH4b8fFxpXTglp9x5HA6oHDKLSNOXixYsADzXo13Wd27s9/vk33qM7UZaqC4F9XJzQ0Kl5DppmzO1wH/jdy4pRv0ucFVSGwzv7MeZwj8WazfmVJpZhkBUFtqUQRmGczJnQ97azhJQYhs5ud0JRlniOjWlZSCkoS8UAr6SkNxiwYMup3MnRW0bt6P/sWp/tUYY/1Sw6SATDG0O+fLbFUs051s+fDZGDWp2gVmdrEPPazphRMkIKwUpg8NSqzwvrdeJSA03Hs/X54P1o1AOX/jiiEuBYOucWlXz83WHGOIwQVcWzpzo8udEkPiICGOcl26OMMC3xbJ3VhsPzm03evNMnLiSWZXG2HXCmbc8TK4BhGlw/CDmYZBi6mhutNhwWA4t+VCCBlm+x1qrN3QXjLOf1u2P6UU7gmFiaxiAqeFckPLum8+y6GvBKKenu7RLHMWdOn0IYFvt3D6j5DrYmwTDwLINBXBBpFo+dWSNNEuI4JhwPeH1vF8/zqQyHpBAs1H1MXfmZSCFp+jaTtGQQpg8EDhiaxNMFg1xikOM4Npqm05sk1ByT5lT0UUpJUsE7twcMooIsFiw2gUqyO1SCk0UlQdN5dLWBZ+kkGfSjgnd2lQyMb+nTzUvKZqfOY22DrLQxddUSM3Qlae85NpMipha4ND2bsiypyoq8yOlFOVdv77Bat/A8H9/3MHQFAw40YwpQcabunPl8ttZu1PirP/4F6v6nm0Tg4YbtURSxsPDxOSx/3vGZSiRXrlzh5s2bD4TRHrXD/ShijA+KH32kw//7O3cVWmm2YkvQNfjKo51jrx0Oh1y8eJFOp/NQxEcpJa9e3ea/++ol9uND4tVaw+FHH+3MF1nL0EnzkrxQCriBp5A3yqJ2iqjJMob9LlIzKL0237xyQCEKdF3NDN7dnvAjj3Zo+i4SNdjGsoiz7L4komsavu8wiVIC16TmmEzSHJNDj/ekVPIjNUtnZXXpmNzJLPYnGfthTitw0KUAKkwLhknJzUHO2eWmYivnJY25Yqv6HrvjlFfujCkriec6VJVkN5VU+yVnw100BPUgQPc9DNOet8CklFi2zdcv7bIzUjLzDc/kkaXp4h/3yFvw6Jkz1F0HqUliodp4gzjn1TsjNVDWNISErXHJEyuCL59tE+cVhq7hWSp5+Z5qnWRFxdcv77M/ydCnUPU7g5RTCx5Pnqiz1nTRdR3XMhnN1Zclg7RiUmgsN32qSl3Hmu+yO4i4M9Bo+U2kFOzt7VMUBevr60g0euOErKgILBPLUlDpoizwbIMwKymFxPd9VpcXGYcJrSnQoTuKiMKcKovxHQvLsglqPlkh0I2KB03zJBJNajy5scB3rh/QC0sMvaASEtvUubDRotOsTblAOa/e6pIUFZQ5WSXZjyoWfAvb1IhzQWAbnFwMWPR1kizH0HV6qQTNZDE47ATUPIftfsiy37iv8iurikmcUFUluqarc+s4lFalOCTCZGXZp2kJ4jhiMkyZxClurljrvu8TJYfVimObLLcb/NwPPUfgfTRux8PGwxISf1CRfIy4fv06Ozs7fPnLX37giZwlj08ikfzw+UV+5JFFvn61p25qqQa/jg6/8pWz89fNhCAfeeQRTp069ZErobKq+PfffJ1/9s0bbMcatq7K70oo6e8/vdzlLz65QuA5pHlxpHUg5+0nKRVJL88SBgf72H6AGzT50zd3KYRSYLUsi1IItkYpV7opT62qmUwsFaDeNEz8KXImzjIMXccwjHmrx9A0Hlut8d1bI0ZpoYa4RUklNU43dU6eWMZ3lcJumpfH2PFRAVJq0ySiQkPDMXR2hxGTWF3LRs1Hk8oDPZ7OfK4eRBRTmRQAwzVxipJBWuKur7DgGUp+ZDQhS1ULzHU9glqdr767y/4kw7MNDF2jG+YM45zTXs5S3eWJk5uqBThtq2iA59i8uhUR5VKJKuo6umHQnSS8u1vRqdlzKXZ1FVQbsB64vLc9pBsVLDUDdCRlWZIWFbcHyodlreUrt8R75M/HcUaZ51RTr3HHcZBCYpsGo7REiIrd3V2khPX1E+i6Es400xKkmKoXHEHs6Qa+rTgTvm0zidKpW6ODbTu0Wi1GDNkdJRSVoCwTJmFIInRWGi5N38J3XSohuN2dcHeYMk4KGjWPZU/n2Y0G+5NMiS1aOss1Rw3Oo4Sa53DlYEKBTsMSJJWgtdCgqCDMBc+v1Kk5Fq6lqmIpKoSm5o8HowgdEFIN2k3DoCiU3lVcVCxwf5VkGQbLDZfLu2NsQ87tkbMKaoHL+kIdTZSsLi+yP4y4NtgiSkD2htT0HqsNi2bNx/N8ltp1/ou/8JxSifhzCEXgfLjW1vebOyJ8hhLJqVOnOHHixPv6Gs/scD+JOYmua/w//tqz/A/fvcsfvLZDlJc8vx7w+WDI2U6AEIJLly6xvb390EKQYZzyB199mWvbPW71E3QpMU3l92DpOnpRsTVMyKWBdp8Q3fHodnsMBn0WFpdoNRvcHGRkUle75mluM3UNx7F5d2vAY0su2hFkVnXE+MqzLXRDnwIMxHxYfmbRx9A0ruxHyobX0Di76PLUyUVAO0LeUnMR2zJBgEGMEBVC6nMdKVDtw4atBreeax/zSDF0Hdu2iEoN11a3oGWpIbc5Ra0p+RiHRqNJo6F27VmWUWQpr125w/bEoOmamIaS1TA1nf1RTN9y+PKZk9Pfe/h9JNAdx+wNQ3xLGSfNQBB1x2SSlQzjgs4RmLOyK1ZOk/uTDB2lXyZQlWwj8MgmGeE0dxyVk5+FPZ0LSSFxXGcu81OUFct1n2HvAM+2aS4soOk6udQYjhJcU7V5BnFBy1Oe9nkpCLOSR5YDfNtW1sCBSz/Mub4/JikqAttgo+1RCohKjaLMqahoWJIFI+PK1eu4rkMsHW6MlbaaZzt0Rwl7Q8EjSwFnO/ejmOq+yzCMGYYZRZIQI6jXazi2g28Y7I9jcqETeDZZXqBp+nwuBxLb0BinJZ6poWsGSaJmUYZh0Ao8ap7aYMzasBKdQkiWA5NeYNOPiilIS2IZOqebNoiCmu8RZyVXezkHqUbdt9B1l3FRoeXg5AW6GHHCbXPj2tUHOhJ+GjHbFH7URPID+O/HjPdLIEfjk1TotU2d/+bFk/w3LypZgNFoxCuvvHKfMdbDXNSd7oD/+avfJUxSZVkqwZiS/kRVQVWhSdAMi3FacGrRU4PPe+YzQkjGwz7jScjK6hqO41BWFaMwQZYFmgHG1IxIM3TSOKFEIVPUYPt4BVWbonpErj5HSIljm7i2RVkKNtuSupYQRZLFxUU870G/XSPLS2zTJExSTrQ9mgcZUV4SWIqRkpUCISXnlmrYtnkfB6YSyvnQkBVxUdIM6kp6w9Dnwpz3+qQ4toVr22SuR5BZGNEIDUGaKMayrhtKx0pzpoid+6vH2dk1TZOqqubKvJqmYVj2vOqaybY0Am+aALVj7we1oCl2uFLlNQ0dz7bIy+qYg+Vy3aHmxoSlRpVkylwqKxVzJ+5T2R6dxQ65gEu7CfuTlDwrcC2dlYaDlErMU0iJaehstnweX2vNwQJ3+xFv7UzICoFt2+xFFZ5Z8PypNmGckhY2rqWzGNhY0/MbRRHv3hkrC18nJy+UknOlW+yGFWeXDRCH/jD1wJ1vBNIkpqwki+062pT0KIpi6qxp4FhqkzFDBKpkIlhtOAzinFIzSNIYIWGcVtQdE0cX84F8LnRu9hO6YUZZFCzVHc52fFbqFZOpC+aCb9HyrTnE91Y/YW8Y4RuChmfjuA5lKTiYxHTWNvg//Zc/TJ4mc5vbd999l3q9zuLi4gf6p3+ceNhEEobhDyqSTzs+rEviw8RMXfib3/wmjUbjIxtjzeLdG1v80X96nUqohFd3TAwNjklC6RqiAl1WWFRzXkTgu4q8lmRkec6o3yPJC06sb2AeEb/r1GwMXaMUEl1UgEmRpRRC4+RiQM1z5jLqoBa9Zs2bo4iSouLdnQm3BmoQf6Lp8thqDS0dI8qCs6dPUlbcZ5I1O5YiEKpj2brGsyc8Xr09YpxUaIaBbZpcWKtxfuUoC/3e0Di14PH2vsYojHEtnUpIolyyUPc5s1Sb+454U7jzzGvEMVXP3LItQCPLMgxDo5IaeTyhu5dTqwUYlo1lO/NFInAMOnWPnWE8b6cBTNJC8Tn0ikpoh8rDc1VajZWGy0GYU1YCc1pllNJAlyVt3yTJChLUb7Usg1IoQl/g6nzhTIeLt/qMUwWbtXVoGQkbCw0WFxcoheT17Yi9QUTNNam7JrnU2JqUPLUaYOlQlGqRXKw7ZFPPjkoILu8rK+WF4MjvKSSXdsb86IVlxNTueBamaWJ5AbpTseJryKqgKArlZS9iEqFz0y05tdykHvhYptJjE0Kwu7PLoqtxUDgUAmxjqgWXC+qOQWBp88pXSEFcKkRWVSllgKc2F7m6OyItK3Q0Go7BI8seOgIhNKJc8PZezCTJ8SwdwzDZDisKmfPEss9a87BaPGpcNYwLTENDFuqczNwqg6DOhQuP4zk2nmPTbDY5e/YsWZbR6/Xo9Xrcvn0bXdfnSWVhYeFDbWq/V8w2vD8QbfwMxqdlhwuKZCiEYH19nXPnzn3kHYoQgq9ffI+X37mGPrWnBdC1nNMLLpcPErJSYFtK9iEvK84s+rSmC5qUco61T9OU8aCvhqknTtynN7Rcd9hse1zvJZS5oBA5eSlwLJ3HOmqhsS2FeinKCtPQpnBZjaISfO1Kj4MwxzaUQOO1g4itYczzSzqn11fISzlnDxu6kjEpSjFXiN3uhwzjAsvQpsgll5983GZvnFEKwYl2DddQcwDLtSnLmUfKkWG/Dk9ttgnzLnf6JYO4QEej7pk8s6bcBw1dtY/KSpAd4ausNBxqjkF3HONoFbVaQImBIXOe3Fgi8CCKY6LeANPQaNRrOK5Lo17n7KLLMMroRbli3QuJaxk8tlLD1HXMqaT9cJJQCkFRKYb8o2sW3TBjbzydK1k2sko5veAfW8R7Uc6lvZBRUqDrOgs1h2fWm/zUU2vsDmNGk5B01Ge5s0Cz2ZyioHT2hxEt35rzMTzUAnmrG/FjF5anMGt5rEIaJUr+XSkFKACA67pkZUw/zNgbhASO8v446sroOcq2oKgqPMuaL5xZUVLGOVkac/3GgFY9AMPCdV2l7By4bG4u8dqdAQeTnIkoMU0D3zJ4dMmfw7uVS2TIzjidS/bXfY8LqwE/+tgqB+MYXYOmayrXd6kUpXtxySjK5oRIAEtXaLClwODcsjKd0oHxEZtde8roR8r5HdZuNrGXNmkEx2ciW8OUawcRpbBZXz7Dlx9/gmgyptfrcfPmTd555x0ajcY8sdRqtYeqVmaD9o/yXinlD2YkHzc+rLnVJ51IpJRcvXqVmzdvAnD27NmPfOOkecG/+car3NjaBw4F5VRovHS2jRSCrUgjywt0HR5ZDnjp7P0wvziO6Pe6BLUGQaNFUVY4to1rm3MnQk2Dn376BH/65m1uDTOkBicXPB5fq7NSVw9OUVYIkeFYJlGaU/MdQOPNOwN6UU7dNRSXRgh0NMKsYkQNXTfm5yU6wrUIPBdd1/jWtR7vbQ/JhUK5NVyTL5xq06nZbLY9JUsfJ0g59W6fViTm1H1xkBSEcUYrsBFZwXMbDc51fEaJYpd3agpyK6XE91wGkwim4N9giqAys5xNvyRJBML0mOQSSyt5dKXGqQVfQT/9gE5HsjeMefdgTCUy9HKX052A59Y8dkIlC+/bBustl7ZvY1sGM/2vG92Y692YtFAJ7UTT5akTDU53JKNUkBc5nSBgqWbPocmTrOTinRFxXtHwbZCSnUHMJM548UwbLU/Q4iHnT6/j+zWSLKNZ87h1uw9wH6nPNnXivEJoci6xcpSZPUrL+fUBlC9Nlk2/z2E1WYlD3oxrmziazvpCjWv7E0xdzP1golzQafo8cqpJzXU46A/Y6U+4szUiLMBzKjaiA5460abSTMZJSVWVSuHXONx5b48ytkYpdcfAMnQs22YwiXnzdsYXTrdZqtl4ro2h6XNSq+dY9LcnSmFA06ZdXpUYpFROonGqREZHSYZjm9iWhRSCTi1nZ5SRquEV7VaTpY2zaLrO+aXD9uyfXevzHy51GaclGgop+dxGg59/dpV2u8358+dJ03Rerdy6dQvDMI5VKx+2S/Ew0F/4wYzkzyXezyXxYaMsS9544w3CMOQLX/gC3/rWtz4yZK8/DvmDP3mZ/jh8n1dIiqLgmSWDF88vkkmdhcDBMTXlVz17lYRwMqLfH9BZWjpW3uZFQT4z+9F1GoFLXlQ8vuyxZER4nkUQ2Pj+4Y3r2CZSMm9rzBBa3TBFMwxcxyFNU8pyKvRomexP7teTAuUolxclb2+PeHNrhGuZdFybSkiGYcK3bw74qcc7dBq1I0zu4zFOCv708gHdeOaEZ/LoSp3HllwarnUPt0FO5xOqippkJdcPIvbGGboOdTJONk3+6xfPcxCWTJKElmsROMdv5xu9mLe2JgjdoipzpHQZHVQ82opolCmrrkOtFqDrFc7Ula+sKm71Et7anqBrGp5lUAjJ9W5MVgp+/InV6bm05jpWRVmRpBlbw4QoK1lpKg90IRU6rB/lXN3pUxcRq6sraIZNkuXUfeWPsdjw0HZDSiGP+bxkpWCt5VOVYj6EPpoUarZOO3CZ5IIF1ySd+p+HWclS3cZ3ji9krmMzSTIMDdYbBoPQYBCX6EIt2U3P4vHVGg3fI0wy4krn3YOMUpoEnk2al7yzE7LXG/HUmo9pudR9j1bgKi2sKaJvd5xiaGqhtm2bPM+pOSa9KKcf5tQdUxFwZ9faV170Dd+jF6n7kan6iZRKstHUwbHMuRHYnV5EPy6m59jm/Eqdd24nVGaAu3wS0zT4iQsdNtuKL7I1TPkPl7romsaFZYUkjLKSl2+POLXo8aXTSkncdV3W19dZX19HCMFwOKTX63H9+nXefvttms0mnU6HxcVFfN9/303nwyC24AeorT+XmA1JP4mIooiLFy/iOA4vvvjivLyvqupD90hvbO3z1Vff+UB1UQ2Nuu/R6/XpLJv4gKwK0krJwLu2RVGWbO9sE4Yxq2sncJwHI0o0VItiMI6RUlCr12m16qRJQr8/5OCgi+M4LLabVKWDYaqWx9GwDJ2qrEhiReSzLRvLscmiHNu8/6HwXXsOTb7ejdEB19Copomt4ZqEBQxzDT/N7vs8UIvBy7cG7EcCz5Q4tkZaFFy81aUqGnzuZBvLMilKQZ7neK4777WHWck3r/UZpSWWDmmWsY+OEQSs5iUNG9quP9+lz4a8cV7y7k6IaVm4hkCzbYSU9OOCofR59tQqaZoQRTGiCOke7NOo17Acj2v7E7RptaXOmYJI91LBne6Etq/EBI9WXJZpkAsddwqtlVM4tKZBVZb0RikXLqzhOIo06brW/Df6BrQ9k0EqaHomSMEkzrAtm7WGdcRaF0ASZhV5pfgaZxdd3tuP2RmEmIYJuk6r5vLosj+vlCSSbiy4fH2XJK+wTZ3NtsezGw2GcTH/21LNpV33kEhkVfLWzT0qTNYWAnUszyEtKyoMMk2jzFL6gwE7Oxq+r2C27VYDw7SxTbBMa65SPIt7Cb81z2UYJUgJbVfjjqGRS4Oaa05NyBSR82SnrtSakVzei7gzzOa2xXcGKUs1i+dXXf7yX/ohbNvk9IJ/zI7hWjdmkpY8unxILQgcE9soeGt7Mk8kR0PXdRYWlNHbI488QpIk82rl+vXrWJY1TyrtdvtY4ngYDkme5xRF8YNE8nHiz7O1dXBwwOuvv87GxgaPPvro/IJ/WHixlJJX37vBV195Z97fPfRMr6btJw3TNDENncEwfqB0c1GWxEnCaNAjLyoefeQcpql8qY+KPEqp2iaDpIJexFrTUSgwTaMSGpbjs7LmYRkGZZHRHwzZ3t3DNC2CwMf3A1xXDfLXWy7v7oyVA5+rRCLDOEVWgrNLTeqBCxLiNMN3nTmBUEglRW8Zxx8OwzCgKOmPI5a9Gp7rYBk6eXGIXupGOYMUAlPOxRED20Bkkhu9mEeWaxh5iWnouI6yo50hzK53I0ZpScPRSdOEhmthewG3eyHrDWXde3SXPrPpPYgrCgzqeoU2peGpCkNnd5Ty9HoDz/NZXlxgEifkeUEcR3QP+gzDEsexKKupZ7tl4rsWB+OEKK9oP6DzUFYC3zZJswmBqeYOGhrjyYSirFhZa+M4auduW8aRHblqaX1uo8G7uyHdUC2QzXrAI0tKTypOlIR/WlS8vTPhIMyphMQ1Dc6t1HlmLWB/omTia47JasMhcCzl9a5pXDuI+O7NLjrgmAZJXvH29oS8FHO7ZF3X5zv+NE3Z2t6hMj0W6z62pVFM53T1KZlSGA1OdFpzM6s4jhgM+uzv7yMqm0lqYusCz1OyKXGi9LWa3uEmTTNMvnO9y/5EXbtOzWaj6bI7TtmNleBiK3B5aqNJ3bVIsoxBWLI1VsN419KRUkHNY83nxEaDL55uqTnKPYu4EtC8f40xp7DqBz3jQh5vN3qex8bGBhsbG1RVNa9Wrly5QpqmtNvteRusLMuH4pAAPyAkftrxcVtbUkpu3rzJ1atXefLJJzlx4sR9x/9eiaSsKv7Dt9/krWt35n+7173NMk0C11F8iCR9X9OuNM0Y9btgmKydOEGal5Ar2OXMvS1Kcr5xo8f1/ZCiqlSF45r8hXMLLNWPDxJdx2ZSVbQXl+gsLyPLkvFkwv7+HlJK5WkvKs424HZoMMkEaAJL13hkOWCzNVPiVUJ7lRDUA48sV33spmexN87wpmZVumFQVhVSVDSmA98kzZmNQZWWmEE3UVL3QXC80pup1+aVoOU6SHFc/0nToJcqgEKWxViWTb1WI89zKgGDuGCtea9cjUZZVeRFSVnkmJ4SFpRSKjXgqWS+FIJ6o8Zk2oqbufjVGy2uRgfEWUGe50gh0HMDTCXK6BgPrriaNY/FOMc1dUZJSVBJkjgmzCsWW3UeW+/gO4q3kmQFk7SkGylWftu3aPsWL5xsEmUVjmtDqRJrNIUM+47NazsDJUVj6QS2SVZJ3rw74Mm1Oo8s1+77TmGS4bkO72z1sU3lXy+qSm1g8oo7g4RTCx4118I0FAs9SWJ2d/dYXGiz3a3IsgybQzXgsqrQdW2+wGqahud5WI6D7jVACtplzuD2kK1ejGVMMAwDTTc4t9rk5FKdqpKUleDrl/fpx0qcE+BWP6HpmTyz3iSrBKaus9R0EVNItaEbindlWASuIjpqGpxYXiQxanRLqVqK003YLKHous5G28M2NMKsnJNOKyGZZCU/snxYjZRC8t1bQ16+NWKcFmy0XF48054n3FkcnZ2Amm3MqpVr166p36xp9Ho9Wq3Wh0oqYaja4z+YkXzM+DAuiQ9bkVRVxdtvv02v1+OLX/wizeb9Tmjfy243SlL+5z99he2D/gd+lutYU5kMhX6q+R6OZWDo+pyjEEfToXq9SavVukdb69C97e3dmMt7IZ5tKRhskTNOC75+rc9ffnoFy1DKq45jHyPhVZUEzaDWaFFvthBlQXd/j7SoWLIqOksOE2Fj2TZrzRnySJt7xM/aLrPv4zo2nzu1yFcvHTBMcuq+S5IVpHnJSsNh9b4FHYqqxMZEVjmWqSN0A9tQboFSKqc9zzJoBq7SURLHr72UUCQJUZSxUHMJAh+JhmGaSJnfN5xW515pMjVcA9c0mCQ5gS2mvwJyDM4verRq/jEE1CwMXeP0os/bOxMM28U2IUlzxlFG3axIB3uMyxqO66GbJkmpUWCwOx6yVLd5er3BuztjuqMINOg0azyxVsMzVQVaCcl2WPLO9oQozZFSDbtPLXg8sVpjrV1jHKdK2XIaQkju9CZs9ybUbJ2a76EhsYUgLwpu9xNOTQmlh+dOwbS3ehPSUuJbkE/JkLqu0wws+nFBXql/p7nil+zv79HpLFGv1zlRRLy3F+KYgrrvEicJ47TEtww2FgKCKSz76v6YqwexMsPSNGq2zlMnl5mkBXujGFGW1PQcK9zn2vUJS4tt7o5LJoXGaiugKgukBM9SrcdBkvPIch1zKhs0i0oIkjSjLHKEbU9bS4sEvk88KVg7sY5t21RVhRCCcZJzeT8myiuW6w5Pr9V49e4Y21TPTJhVnOv4vHCyNf+Mf//uAf/xUhdTV6rcr29NuHoQ89c+f4In196/5eT7Pr7vs7m5SVVVXL16lW63y6VLl8jz/Fi14nkP1vmaQX8/CauMP+/4TCWS7xWmac5JZB8l0jTl1VdfRdd1Xnrppff1Uf6gRLXXG/Gvvv4KZSUIXJcoy+4jEIIisd3tTtgaJWjARsvD1iVJpvzJPcdm2B/Q73VpL3beFzMupaTme7x1dwsdgS5LRKWqHcvSCfOKrWHKo6uKGHa0VXJvxHHMZDjAsFw21xbVA5okDEcjxpM+sZhAFtBs1HB8/0ibaBZqHtB2NF7YqHG1r5KZYZqcazo8vd44xmoHxV53LJMwTunUbJZqNtujFN82lJig1EC3eHKzNe2j35sUJL1ej7qeMbJsDNtRr5MQ5iW+Y3JupUngmSSpIgbOZNSllNQdk/PLPu/tqqGsoandZtOzeGy1Tjj1ezFMgyTLudsLySo5lXL3kbrJtf0xcaRQW5udGs+caGDrgiiKOegPuNYvGFRTBxQpaXo2T60FnPNTMs9S/fXApua55IXSrhrEOa/dHIAGbc/AtFyyCm70UtbaAbr+4HlbWghKIRWkuyjmMxjftlSCtixkVSGmbPKZWZht6Op8CzH3C5FCEOUlutQwp6rMWZKzs39Aajbo9Uvs8Zilms1aw2aQw3Z/AppGYBs8vlajqirGcUU/ynl3LwLNoB04ZLmCVmel4MUzbR5dqc+vZ57naKJid/+AG72cMNexhUoIrqvaflYhmaQVxj1JJCsrKiFpesosLSsFa6sLBL6nJPgbbZ7dVHMKwzC4ehDxP7y8zdZQ1cemrvHIks/PPL7AjV5KUUkePRfw+VPtOQS/G+Z8+8aApmcqyXxgqWZzvRvztat9Hl+t3XefPygMw8DzPBqNBk899dS8Wjk4OODKlSt4njdPKq1Wa544wjD8VP3aAf7RP/pH/MZv/Aa7u7s8++yz/PZv//bcpuPjxPdVIjEMgzT9YNvMe2MwGHDx4kWWl5d54oknPjDbv18iuXRzmz/8T6/NCXEwtb/1XDSN+ULmOTZ/+t4ur90ZzU2NTEPncxt16lKV3dvb20yimJWVVeq12nzYnhzVaNI06p5Ld6y0qGY7TQ21CIBAlBVC07EtZUlbVdWhA9+RuL0/4Mp+RFxptGsa56yMtaaLabt0llxWVzXKPGMymbC9vYOQEt8PCAIfz/OOCTVKKXlqY4GNdkycK2l411I6XrqmYLNlpVpRcIgY09D4wqkWr90dsTvOyEuBbWg8d3KRjbp5KKdfVfNd+v7+PlmW84ULmzg7MTe70bxicUydx1dqmFRESYWmabTrPkUpCPOSqhLUXZMLKzWansXWMCUrBZ2aw/nlOroSOSHOcsajgldujxilFWgGhq4Imk+vBmw0FggzNYhueYfAhVbLZlDZDAkxtQIHQV5V9CaC7yQpz69YnFxdRteNY8kNYG+SkVWCRV+ZYZVliYFqE97uRZy5sEwl5HwuMgvPUrIySV5gH2mvJUWJZ0nyosDUlZugYpZP4b6WwUrd4WY/xtQ1bEOp88alZKVm4VsaO/sHbO332S484kpgWzpVlXN3kPDMyQVOGZJJqmyYOzUb9wg59u4wISslnUBDlDmWobPSDOhFBb2oZL01g5NDp91iHMWsr28wMcaMdycKKh+GhGGIZVnklYHb9nAs1W7rhymX90L2xhmVkAS2GsRbtUX6lcNgXNFotnh2s8lzJ1WXIS0q/qdXt9mb5JxfrmNM1QTe3otZb3n8H760fqTzoXTTdF1nZ5QySkseWTreWloMLHZGKeOknCedtKh4dzdkb5Lj2wZPrNaODfdnqC1N0wiCgCAIOHnyJGVZMhgM6Ha7vPPOO1RVRbvd5pVXXqFWq32qba1/8S/+Bb/6q7/K7/zO7/ClL32J3/qt3+JnfuZnuHTpEsvLyx/r2J+pRPJhWlsfZUZy584d3nvvPS5cuMDm5ub3zPT3eqtLKfmz1y/xrTev3PdaxbNQSc0yTTzb4mYv5tU7Y5ASd6rqm5eCV++MeaohaXf3SfKK9fV1DMM4Bus1DQPPsRFSICRM4gRLV54gg7jgKLK1EBLTsvDNQ1jvbMhs6LryLMlyLt3t8epOqmClhs6wG3NnkPL5k815T72sJEGtjm46tBY6SFEShhHdbpdeXDGqLKRustL0efrkIuM4Rdd0ao5+5DwcfodGoJLPMEq5O4gxdJ2lmo1rGbx4ZoEwK8kqwWoroJjOlI76rgshuL59QFrC+vIajm3z3LrBetOhH6l21krdmQ9tpZQ0Apf3tvq8vTNhlKhKqVNzeeZEjZW6IkxapomuMf8cUKzsV2+P6IU5Dc9E1wSaaXHjYILvmHzxVJt6lqk24ZEwDI27wxxNiik/B+yygjgmyjV2JwJR3qHdbJAlDoZlY5ozVOCUNHfE5dIwTGQSk+Ta3GdFOTIqjkqS5awv1Fg8iNkepQS2gWVo8yrl1KJ3uNnQ4NL2gDv9mLiEhZrDWjsgKyu6oSIR2pZFx7d4bDVgOBwyHA5JrAZhlLMQGOiaRBoaubS5tBfyk48ts9qsKB4wlM4qDcvQDlvCUlKWBWWZM0ktHCvAtkwMQ2M4SVRylJLVhsfdYYYAGp5SRg6zClEVJINd3isHuJ7P5YGgn0oCx8aWFeO0YGl1lc+fbCIkrG1s8uhKXYEnprO7qwcRW8OUzbY3b38Gjqoy3tiJ+EvPrmHr2rwFJuU0mUjlGz+zLp6tF3ml9L1msj3DuOCfvbzF5f1oLvraqdn818+vzdtf7wf/NU2TpaUllpaW5gTE3d1dfvd3f5c33niDIAj4tV/7NX7u536Ol1566RNh2c/iN3/zN/lbf+tv8Tf+xt8A4Hd+53f4N//m3/BP/sk/4dd+7dc+1rE/U4nke8WHhf8KIXjvvffY2dnhhRde+ND6/kcrkiwv+KNvvs6V2zsf+B7ftcnykjBOeP1Wl6qqCDwbTTeQosKWkjgXdEuH01Jjff3EAxNaWVXkpZKTKMsKz7HRNXh6vck3rnXnO+NKCCrdZDXQ77EE1uaDaikFw0Gfd7s5QjdpOIeouCgreWNrzKkFH8vQjku7SwADv9YgDnWu9iLyqqIsc24PC97dHvLiyRpLrTr2VJ7kaNSmznSX90Pe2ZmQVWqnXXMMnl712Wh5NDwTz3Ee6EE/ilK+dmmXsNAwHZdLwy5rTZ8ffrTDRtuaky0PfzHUAo/b3Qkv3xqSFAoSK5Hc7U8Yhgk/8dgyy01PSXncA9PuRzmDuKDuKhkb23EocjUwv7435lzbwTY11QIzVIIWQiDRiFLlXw7KUz5JEjzXQRQazXad8yca7HX7TIYj8iyj5nv4gY9vTX1vhFqcdF2nKHKKSrJ4BIwghKQ/TtgPMyzLou5UfPn8Eq/dHnK3H5KVqjJ7rFPj9IKPriu+z3vbI97cGlMIgW3oDKKU2wc6z2w0eXpzgbQQChzh6gwHAyaTCSura1y9OcGzDNS6q6nrm+f044Lb3TGbbXfOmynLiiTLcB0H39LYK0qkbc/vBqHWVjzbIM0LbNtkbxByq5+yH5ZUSBZdg822x/YwZZAU6JqB45g8ttZgvWGTJDHb/ZC73RzPhFLamKbJk+dPsZ+b9FL4v/6vv/RAguDMfti6BxhhGzp5WZGXEsc15t2JrCgJk4L1ts9G0+XWIOFU28WcJutemPOTjy3NLR/++FKXd3dCzix6ilUvJbcGCX/w+h5nFn182/hQhERN06jVapw/f56vfe1r/NN/+k/57d/+bfb39/nFX/xFkiTh7bff/tBOrB8UeZ7zyiuv8Ou//uvzv+m6zk/+5E/yzW9+82Mf//sqkXyYYXue51y8eJGyLHnppZfed7D1fscXQjCcRPzBV1+mOwynu3yNJC/vq4YUiztjxiKO80oplFYVcvY9NQ0MQ7UzFhfftyoKPJc4yahEhZRKvlzTNE4vuujmCm9uTRjFGbbtsNEwee5k84FmT1VVMuh1GaYVSSlxTSVoaJjK2c8XkjCv6IYZF06071PJBcXdeGt7PCd7IU0qYJRUXO6mZOHwGLTYcRxadZ9xlLA9ynj97hgNqNsGEsE4KvjurYITC3WavvVA3k2apnzj0g7jQqfTrKPJkrzSuN0L+calii+fbePYin1elhVZXuI6NmGccqsfE+cVbd+an1/bsBjEBdtTqOiMc+B7h224vBRUUi04lm3PPeJNQyMvFRjAnppTgQJRGLqBZRkst3xuHkwwqcjSDM/zkLqBVhSstutkpaDVatFqtRCiIo4TJlGMjCIC3aQfSVzTRNMEWamIi5tHcMV7k4w37o5IhUFRZFiGzkbL45n1Bo+u+KAZ+LYCLuiajmUZjOOUK/shAnmfO+LlvQnnVhq4eo7EYDIaUhUZZ06dIj8GctCwLAXqOB5HeTMSzbQoK8G5lTo7o5RhXFBzTJWws5KGa7HScGgELoNJzMU7I/bGGY6pdvpXJxWLdY+XHl0izgRZntNwzUN/HqvJoLRwJ2PqtkZRltTrdQTg6oJQ2sRpRqN2/xK23nKpu6qSXwgOPWx6Uc7jqzVqU6KmkJJvXR/w1Ss9BrFqUZ3reOQSbg9TpFQE0afWAn7oTJ2iKMgqyetbYxYCa16h6JrGZtPl5kDJrzy93ngouwshBBsbG/zu7/4uQghef/111tfXP9Ix3i+6XbXJXVlZOfb3lZUV3nvvvY99/M9UIvlerafv1doaj8e8+uqrtFotXnjhhY98IQ3D4O5en4vfenc+s5j1mqUEz7WxDIO0KHAt8x5kEyzVHXZGKcoFRO3MqqpCExDoFaBNNbi0qWS2mLZmfMZRPGfyHjeh0jjZtDnT7pBVys+k5j1YvyrPM0b9HugmS0sL6PsHMD1mOW2hCcAwTeqBT5o/eEC/O87ISkG77qqkONUwcnRBP9P4yhPn0MQhtNi1TLpdC98PuNnNKIWczhTUfKThmowyweXdEY8tB8zbcIZOlhcMhmNubO8TVgaLzZpSntXUDtK31fcJswpQEGvL1HFtpUtV8xzGaYmha8fuH03TMG2b7iTmzIKqZMQ9bbilpo/vKalFOTf/gqQQ1Bxz7tcOR4mZkjQv2GhY3DkQDBJBK6iTS0GSFJxZbuKbh5yFUgi2hhndsMTQHZYX6vzQCZ33tofc7cdIDTabLmc7DpZWAQZpWfHanSElFoFZoVs2WSm42YtpeMqmFwRlIbAsE8dUvfi4kMR5RXAPoz1wDDJhsDsIaXkWBwf7ZFnG2toaAg3ftjiz3OCd7TENw5gnkTArp8rBx7XEbvQzuuMYNDUzOdfx2Y8qwqKaSpbYPL5Wp9PwmcQZ++OMgzCn5Vtz5n5gG/QmCVt9h0eWArTAw3MOPXOEYJ50dMPkwlkleaLrOolhYlQZ3/7mNwkCn6WlJRYWFphIl1Fa0vIsXjzT4j9e6k1/g8EoKWi6Jl+50Jlf5z+71udfvLKNoWm0fJMoq/iz60N+5PwCP/fkCmFWshhYnF5wMTSmtgulEu7UlTClpimu0cw9cua++rBeJDPwja7rPPfccx/p/f854zOVSL5XfFBFsrOzw1tvvcXZs2cfSi8L4MrWAa9d26Hdvp/lqmmQZjmFruPYFmleTrkWFXFSgCZ5fLXGlf2QJFey4lVVIdGUnlMgEKI6psHluw62aRKl6dy74V4nQwDXtqhEhSkEUsgp1+PoXEVy0OszGfaxvWD+/RcCxfswjekiKyVxoVRkPaOiKDVcx8Y2DPKyJMmK6edLdMtC3Je0DxdHUzdptRdYWVkhzzPCMKI3GLLXz5GVTlEo/3BFzLSQSUKYFPPjzNpwo9GIyXjI0soKVhojqwL9CKzX1DXySijSmDM7F8cVbWuOyb5RYVoWoqyoRIVl25RRhG+/n5GRhmdqbLYcLu+M1JzLMYhzlfAfWQrmc4ea7xDFGUlREefK8MnIJ5zyC8b4hHmFYWg8e3KRJ9bqaFKQ5gWlkLx8a8judHMBcHtYcGrB5nNnlnnuDBRFSRzHxHHIeNCl7nv0S5u4hJZTzc+Fa+nkpeBOP+Fcxwc0bMs85j8vhVCeN5aNqSlHRQ0Nw7Sp4gRdg729XcqyZHXtBP2kYpJF2IbOUmCxVLM5mCSYhoVAw9R1Hl0O8KeeMeO04I2diHGU4TuKDHh3kBBmJV861aIQ6v7t1BwFw64EGsxVj4/Kv2iaUnXeG6ecXVRdg9nGTAN81+GM63Cjn6LVOhRSwzVNdL+JnVb8whfWefFUg36/z82tPf77b77BrQmqleu7PHtygf/VM6u8uTVmlBZ8/lSLv3BuYT4bzEvBVy/3sHSNjamMSsO1sKOc1+6O+enHl+/jaQkhaJsmZxY9Xt+a0PIOxSW7YUHdMdloqfd81vzaO50OhmGwt7d37O97e3v3udE+THxfJZIHzUiklFy5coXbt2/z7LPPPhT6oKoEX3v1XV67usUDgE/zcKypflU6MydSC61h6HiOS+C5/NSFgm/d6NMNCwxDZ63h8sXTbUb7W8eABKahHsTBJEQI5QviWBZlWREf8bOYe4g8AIRQVsqwajweEU3GrK6s0Gg05uipF062+NqVHpOpuJ9mmHimwfMbtbkXeZoVpFP5c9sycW2T86smr94ekRTMB5hSqt7zmUUfU9exTOVMqBKChuvXWPcDTssJ7+1FSFESxzmWbZPlOVIcSo5Mrxz9fp/xeMLa2hqe72PcGJFJjYajrGXLoiQtKxxTp+aax6qCo3Gy7XG7l9Abx2oQbTsMk5Ka57D+AH7L7Lci4YllHwvBrX5CluXUbYNH1ps8dqKJrumgwWAc8/buhNt95Tooy5IFR/DiI2t4rk0hwLPV7GAmCeLYFtv9lL2opO4qhQPLUm29GwcRa3WH5bqDZVk0m02azaYiKyYxeT8hjRMSaWDbqhU3IwFmpZjOHyzKe5B6Dc+k4ejsjyPaUyVh07Y5GGcs+jbhQFWoneVVXrkzZm+SI4RE13Xqnsljyz6rdYtRUmCbOsv1GuttH9tWfJHL3YRRlLIQWPO2qmPqDOOCvUnO6UUfXdMwTINRqGC3uq5R8x1MKz8GpjFNizxOsLx7lyDJKC05CDNqjsnf/Knn+F/e7dLLdQrHpwn87JPLvHR2QQEvVlb4t9cy9qjYWNExqpz+JOY/vD6mv+/wv/38GoudNZqNxrHN5SAuGMT5MTsBUOTQ692YvUl2XyKZkRt/+slVtscF13sZgaOTFiph/vRjizQdnaIoKMvyI29mwzD81BKJbdu88MIL/PEf/zE///M/D6jE+Md//Mf8yq/8ysc+/vdVIrm3IimKgjfeeIMoinjxxRcf6iLEac6/+tp3ubPXo6wktmXQCHy1Q08P2x3+1OPjQYTFSgjCRElLyKjHT5yt0VxcJssKpusw4wNtvgAqqKsgTtP53/KiJC8qsrJib1Kg6Trr7QdxOg5DSslwMCBNItqLS2jmjJSoWkd136Xp27y3MyYTOpYuONX2jslUHI2yqpBYUJU8eaLBO3sJk1KiVcojvOGaPHmijmdbFFVFmt9bHWqcXnC52YuIMmgEDYqqJE5zbEq0qMvBQYLve4RhSJblnDq5ged5pFnB2U7Au7sTBpMY29TJSwm6wdMbTRYbvpJyeQCobzGwef5kk7d3xqSlThTG1ByTZ9YbdOruvGqL0oyDcUY/qSiqirZnstZ0eWy1ziMrNQVdNlQ7JYwzmoHHKEy43Eu53s+xDR09SykkHOQW7+4nfOmsj6Nrc4+QWeRFyfW9EZqoME0b21JtG9cyCTPV6lm+Z6EyDYOlzgKRmOAPSuWxUpZkZYlEkkiLzaaNCdPBvzoZaVmRFQLfNnhyTc1nBlGOZTuUYUjdNenoEb7jsrmxwSu3+myPUhqupTZHSPphxjs7gh99ZJHTi4ezmjQvp9W3S2+S4rkOtj3lc0k1H5AoEIehaziWdYzTJISkbmkYsmIUS9o1V9k8Z4oLc9RjJM4r3toe0w1zKik5eeo01u0u/7vPtaivnSEtJestd87xANifZLyxNWal7kyTgk+71aIxSdmOU+52x3MV306nM2+D+baBYxrTVuDhMpjkFY6hHbNcvjfOdgL+9l84xbduDLjei2l7Fs9tNnh2va44OlFEFEWYpkme53M5eU3TPpB+EMfxp+pF8qu/+qv80i/9Ep///Of54he/yG/91m8RRdEcxfVx4jOVSD7MjKSa9uxnoou+7/PlL3/5oWByB4Mxv/8nL08Va9WOI8uL+b9tSz1ouq4zCmM+6OvNmOq1RpNaQzHJLUP5hJuGMW9DBK5LnB4O1dXvBtC42Yv51o0BSVGhmxaG3OOx1To/emFlzleZcSmEqBj0u+R5ydLK6hxeOj3ivHVkIPmhR1eQQlKIiiR98FzkKIEQ4Mm1Gi3P5FY/IS10TizUeGy1Ts1ROlEPqpAA2r7Nl8+2ubyfsT+O0IDNBZ/nNps0bZ3xZMz+/gFSCpqNOlmaIaSGYRg8eaKObepcO4jISoFv65zreDy93mQSJaoNZ5kURUl/khDmFa5lUHdMTi8GnF2qszWI0DRY8C0MXZ9XbSB5c3vC9YHyVqkqxd9Yb7t88VRL+dgf4Uc0Ao9xrPgn1/bGGFJSpTmWadKu14jziq1xRpiXOA9g2MOhkLtlWWTZoWujYZi4ro1jmaR5MYUAa2qwn+R0ajarDZetYYpjGui2SZJXuLpkxZNcv3kL37Vx/YBL/ZK9ULXRHNPg7KLPi2fahAX0JwmO4SCiPoFr01roMIoSbnYjPMcm8ByklBSFGnSP05KDMOfEPVXczBrANTX2xxm+IUED07LQNNCSEs9WXuxHW46VkEo3zDN5fLXGe3sh/bikrBS0/ZGVOo+utdCAMM147e6I/UlG3TU5feYMk0zySlfn2SdXeWHlwazycVqSloKFeyqLhmcTF5LNc+c4veAxHA7nhMAkSWi325yp2Xx7O8exdOqOSVII7g4TnllvcnLhg0E6G22P/6p9/2viOObNN9/kxIkTdDqdect6tgGdJZMHJZUoiu4bhn+S8Yu/+IscHBzwd//u32V3d5fPfe5z/NEf/dEn8pmfqUTyvWI2PN/b2+Ott95ic3OTRx999KHmIZdv7/CHf/bavD0FqgwvisMFsihLHNtkHMUYhk7gqpZLmGTzEl1KmIxHDIcDOkvL9xGKZkP7sqqoew66riTeo6Q8Ng8ZpwX/6XpfGSl5DlKUZCW8vT2h4Zo8ulxTvWPPRpQVd7d2qITGyurakRtSkhRqgK/QLwreO2szwOFcRUo5b5ndSyBUobHe8lhvHT4sdcdUC4qtRAmLsiRJ82Pn39A1zi41Wa2nhFmArjH/LnlZMBhN8D2PUxtr3O2Oef3OgCxXi+eJdsDZhYDzSz55JXFMjWbgz5FlaVYQpTlvbY+51U8ppI6pwUrd4oun2+iivG+XP4v9Sc71foYmSpq2gcREoLMTVmxPCjYaSuDwXmXeOFewbL0qsExD2bgWBbZpkGSSUuh0aqr9WN1Tra7WbfqJJE2zOZ8hKwXIipohyYoSx7Jwp4vYpZ2hkpUPbJ7fbNJwTe4OEkohWW95PL25QGBK5T4Yx7x8a8TWOMe1DDzbIisq3twe4Tk2my2btu2wvb2D77ksLS1NRT7l1LZXmzPkNU3HdQyiQuPoTzjqWT+7H7ZHGZO0VAP8PGeSlnimwalODds0MTSN7iTh6kHE9jBFSEmnZnN+KeCnn1rj9sEEIT3avkXTO7Rh7kU5o0zSaQac3NykLEtWmh6x5vH1qz2+cqFzzPNkFks1m7pjMEyKY9d+mChYd6dmH1PxvXDhAnEc0+12eao64ObWkOt3JkhDJdYn11v84udPfCgG+70RxzGvvPIKKysrx9alGahmxls52lU5qgf25+GO+Cu/8iufSCvr3vi+SiSzBfPNN9/kqaeeYm1t7SMfQ0rJt968wptX72DoGvl8wD0jRM4Y6QaWacx36EKIKd8CQJvu5mBne4vRVP7dth8s/w7KlGkUxRRTFJUa7qoFPUozbvZicgE110QKNfB1TIMoK7m6H/Hocg0J9AdjxoMeuuVwcmMV27IoipKtfsjFu2MOJooRvVR3+PK5DtyDLDvcoavf2675VFL5ivRCNZhXLYKjD5IiGs6semftDgBN1zmIK8JEkSZPLvjTGdLx9kCWZezu7hAENU5trvOd613e3ZlMtZ48docavTThhN3Hti0C3ydYaDOOkmOJ6r2dCe/thAq5ZYJA42Y/AU3npx5fns+H7r3mo0yJZM7goBpgIKiKkhv7IWcXl+dS9JMjidegoipy5eHiumionXiYZJi6sgSYxBKQeI6DZR4qHz+5ucjeZIf9ST5tASk83+kF77D/rsE7W0NevzskKSSGaeKYCY8sujy+WuPCSk3BsGsekzhFoqFpOqXuMC4NFus+pq68dQxRkguN1293aWo+/eGQWhDQ6XTm19M2NBbrHtuDGMtT6s9SCsZxiSYFddfAd20MXUfXNYaTeFpZSZbrNk+u1bm8HzJMiikiz+KZjSYGknGkXCVfvTOmG1d4lokmSu4MEsa5xhc2NU4uPJi5nRRKaPP0hXPkRYHnebTbbfS0YJIqkIPt3Z9Imp7FS+cW+Ndv7lEJpWg9SUuiXPCXn+nc43Ojwvd9Tp48ycmTJ/nCcwVv3dzj+k6XPByxJEdsXZ2QdTp0Oh1c98Eztvu+f5LwyiuvsLy8fN/mdrZuHdXyu5cMCbC9vf1QHiafhfhMJZIPqiyqquLNN98EeOihel6U/Ltvvs6lW9vzv808QSohGOn6dPBtT1Va30+/SjIYhYwHPbKi4vzZM7iOTZYX81bFLGYtozQvsZxqjsw6uqDrmobULUVivKdlZOjaFEkEYTghGo9wgzrNZpMsLxUZMiv506sDolLimMo1bmdc8Idv7vAzTyw98GECldwGYcylvZC3tsfkUsPQdRZ8kxc26rR9G02DwHXnVr1HY5QUfONan1FSoOkGSMlyM+bHL3QwNTFnhMdxxN7ePq1Wi5Pra1zbG/LOzhiNQ1nxrBRsRZLTa+ucalqEkwk3bt9R1dVUssW0Xa73YkxDIeFm4Atpatzth9w6cFkIrPmCnuUlaZ7TqPnEW2Me1JvUNeWRMVdwLso5qzyJE0bdfTZaHlthRVpUBJ5LGGfERcWZjn8kWWpEqbLiHacljcBl05b8+GMrXNodcTDJ0XVYbbist6aeJLbF/iTl1dtDhFSQaQ2I8oK3tnMWGy6nFnwM3WAwCY/J1UR5RVEJao41tyzQDQMzyYjSnLv7fTwTRFmQhJO5f33gOZxZyOmOE6WYYOmUlaQSkrMdn6an5FXqvsftgzHXeynduERHSaqcn3qnD+IC21JscXmkjNkdZRxMUgUw0AXoOg2/TjfM2BorU6sHPed112bj9BlGSc5iI6DVaoGmWlerdYfAfv8F9r94agXH0PnGtT7jVIEb/uKTC/zEY0vv+55ZWJbFc49s8NwjGwoBF4YcHBywvb3Ne++9R61WozNNKs1m84HfPUkSvvvd77K0tPQ9OySzpDL735la8de//nUuXrzIj//4j3/P7/xZjM9UInm/SJKEixcvYhhq8fiwu4SjMY4Sfv9PXuZgMDr296Is5+0t0zAIPKXxE+fvLw6ZJgmDfg/DcjixvjJly6pdrGOr3ncpBKKqEBKiVBEJDw66jMeTqfaOj2Wp3XHgOXjGBFkWCN1QXhaaRjUdcndqNsPBgCQOabYX8P3j5e/1bsQkLag5Boap0GCurTPKSq4exDy/eVzp+FDUL+FmL+GV20NA6TIJUbEzyPmzouK/emET29DmlcixYyD59s0Bg7igFTggBWUl2BmE/Omlih97ZJHAdQgnE/q9LstLS6wud5jEKVtDJZrXOoLYcU2drKy43U84v1TDbxicabXRpNJi6g+GDJOcMDZwbQPDMJWKMGqXHeeSKK9YCJT7YJKpvNEMFFR2faHGpf2IojpkPFdT3P/mQg0xdUcENSDeO+ixv39AZ3GRswsLvL6l2mm9cYRtGpzp+Dy73ph//6ys+PaNIfthjqbrVOWIwDH5/Mkm55drPHNSmWEl0xaY79ikRcGdvpoHLcwo7yjexyAquLo74vRiwDCMcSwbxzanCrg5rqWr9lQlcWwdXVPkxKyoQJQsL7ZZbDdJkoQwitnb7SM0k4bvsNoKeH6jxu2hYq7XXYNTC950yK64OduDkG/dGMx5GEJKLkUZYSn5sUc7tAKXshIU5XHAxSQ7DvW1bIc8y9BFye4w4ZkTDTzHppJC6YlJZQr2iz/2JL/7jRvcSmzatk9SVgzjgrJSn3evD87RsAydn31qha9c6DCZJhLX+ug7e03TqNfr1Ot1zp49S57n9Ho9ut0uFy9eVNDmaVJZXFzEsizSNOWVV16h0+lw4cKFj9xm13Wdb3/72/z1v/7X+Yf/8B/yy7/8yx/5e38W4jOfSPr9Pq+99horKys8/vjjfO1rX/vIUvJ39/v8f/70u3PY7oNCTtVjb/f6tKYeIoHroGmHDz9AFIUMej1qjRat1v1S9DP9LH/qRzLrG3emSp+KM6BMgEzTZHlxgTRNOb3g8c6OYmNblUSfav54jsXpBhR5wkJnCce5P4n2o2LacrGpSpUAKwRaVdINc3xP+WOneUFZVtSO2Nhe3lfw4/q0MjCmMNNRUnJ5d8TJlotpGPhT5NNsrjKICvpRQSNwFYEQtXh4lsH+dFc+g/eurq2w1G6hTPZsiurBg3rDMMnK6ojulmoFeUGdjaDOCSm58uYeeSEYj4boho5pqFmHaWjHdq26ruNappJkB9qucgXcHpdkEkSliGUrTZ+TbXveDquk5O3bXa4fhOiWzZpecd6I+fLZRU63JxRVk1bNwbf0Y94p7+6G7ExyWr6NLgXCshinJa/eGfGTgY0Qh0TIVj1ACIklBGlRTbW3jp8LXQehW3PtrbwsyacbHl3X2Fisc6Kfc7sbqh67VhKnBWGa8dhKQGdBcYlMx/v/tvfe4XXcdb7/a+b0pt7de2+SncQhFJNeHDmh32wIgXthuSS/3WVZyi5LWWAJm3uBZbMLWVrYhVwCsdMTHHDshDSIbbnHRbJlWbZ0iso5OnXq7485MzqSJRcVS0rm9ew+PJGl0feMzpnP9/sp7zct4RzRXIhMNgM9WQKdaeYXaSwoDuCt9OFwunB7PAj5lG0yY6Ra+3IKZQVqAapL50x3kpNRH9NKPFZ6VlaMzjxBMJSEdYzaodvjRsrlEARDednrEpEVFTm/6RIFgeKQjyuXzyV86gQfvXw6u3o87GlPEOuTKPa52LiignctKB/y/TIYr8sxogAyHG63m9raWmNwU9OIx+PEYjFOnDjBgQMHCIVCpNNpq/YyklrtG2+8wfve9z6++c1v8pd/+Zfjqvw7nkyqQDL4Jra1tXHkyBEWL17MjBkzgJF5kvi9btYuncuxtk46Yj1n/14Egn4v4Vh3QRFdH6AH5fO46enpoqe7m7KKymFVOo3dfoBEMmW4x+WMOQuHQ6Qk4KWkKEA6a8hmaIpMrLuXdDqFIAisqfRxrNdNOKmg6UZOel5Iw6tLlFVW4fV48Lpdgya0jWE10elCkQcWvjUd/O5+iXlHvqdfALxuJ5mcRDyj4HIO3O25XC50OUtvSmJmibHzTBTUVQI+D4mcju5woisyiIWpPGOAsDMSw4vMzBnT8ft9eSkZg8oiLyd6JRCdVhASHU6UTIaKwNDdMjrGCWPF9FLeOB7F7Q3gdohkcjmSmSyVfgE1HSctBAiFAjhFkdM9SSMwO0Rqijysm1VMa1ea9t4smuZkbnUJ86v8CJqOnPdIeflwB229OdwuFy5doDmaJpo2ZjfM+gqqQlo1XqvP40bRNNrjOXxuB2K+xiYKgpWvj/TlrKaFoN9Hb18KM3JUFPloiyuIohMtfy90QBdchFwDA66sanQmcsiqRonPxZppQTRFIZpSkFQNTZaZX+Fn9awK62cOdfRxpk/FK2qUBzwomk4iK3NGcVPj9pBIpshksvi8LopDIXJZFy6Ph66kZLVCF/5tBdFJVypHdciFohonPwC3y4HP42Gu4KA5kiStiuj59vm0pFqWCgPeZ04HVy6fS2fbcWbPns2cOXNYiVF4T+YUKoMeSzJlohFFkdLSUkpLS1mwYAG9vb3s2bMHp9NJLBbjlVdesU4rZWVlF1TraGpqYtOmTXz5y1/m3nvvnbJBBCZZIDHRNI1Dhw4RiURYu3btgEnzkbgklhUFuWzZfC5bNp9kOktze5jmU520dcYQRRGnKJLMZPMyB2fPiRTKv9fU1BIKGoqm2ZzMsXCCZFYh6HUyo9RPcdBPIpk+a1Jd03RLqdftdODxekHw4fH6kGSFbDZLKpViYTDFTI+Gy+3B51AQHE6qqqoQBHM3ZwRR0zVP12HFjDKOx9rJSLol65GRNZyiwNwKIw3mdjkQEAY80D0uN+VFPjri/QV5Z95nW9f0s6Q2wAiU6UyO0oAbFyqy7sDjcqNpCqqikJVVRE3FI8CcWTNxiE7L19xkerGHZo9INJnJD+q5yWZkSvxu5lUO3bVi1mpml0KyNsSJWJpkTjGmr+tKaZgeRM6miXd3EYlGOd4nEs2CqguIgqH+etmsEuZXBplfGbRaWhXJ0I7yuFy0nIlyJqkS8rnxuY0TWpHfSSyR4UhYYP3cgeKflsWvKKKpOk6XA6fbUATQNA1RMO6XeQILBbxnmWnVBF0UuSDWl8bnduJwugyJFrfOrILCdKQvx862XlL51JHb7WJ6sZuGmUWEu+JEuvuYPrOCuooSI7ipKj19acJJFRcqnvxO3ekQCHld9GYUFEcx1dVFCIJxQuvq7iWV6sEhgqB5kPPpWdFh/qwTXcswhEkksqIhKxkEXefyeZXsbouTlA2FXZcIC6qCTC/tP0173C6uXbuIMyePM3fuXGbNmmX9W3nAPWBWZLKRy+U4ePAglZWVLF26FE3TLGn4w4cPI0kSZWVlVmAZSu9v//793HrrrXzuc5/jb//2b6d0EAEQ9HPptl9idF2nr6+PpqYmNE1jzZo1Z/0R/vSnPzF9+vQxETPLSjInTkdoPtXJ8dMR+pIpzpw5w9y5c6zvkSTJKKorGjU1tTjyudpEVuH5QxF6MyqIIrquUR70cPWCUkIex7ByJ2YqoL+zSO+XKVFVMtkciUSCdLKPnGx0dvh83nzBOTBAP0wURetkcbJX5s+tvXnvCw2PU2TV9CKW1ATxeTxIsnJWeyrAia4Urx3vAQwnR1VTSaZzFPmc3Lis6qyWS4dDwON0kc5J7D+TYP/pBIIALlFE1gw9qyVlDtYvnpYv4g4tFZCVVQ539nEmaUyDTy/xsrA6SHVJwDBakhSrcUFFxyE40XXFmqjOyip9+fx9KF/w9nvcSIrCoY4+dp2KI2oyDl1DEAWyqjEdf92SKqpKQ1ZLK2D5nxzvznEy5aAs4MHpMvxHZEkiLRlSJRtXVJ/VFmrWOrYfiRLuy1FipggdTiQNFEXlnXOLmFFZXBBEdHKKhphPBaVyCofDSTr7JARBpNzvYFFVgLrSIA6ng0Q6x7P7zhjyNl4nLpeLdFYiLSnML3NSJqSpqanB6+3/rOi6Dg4Xz+zvxOtyIKJZmyRdN6TQr5xXxowyHy5nYbDXkSSZlnCcfR0pnAIEvC4cLiepnLE5eef88iGHWg3LYUO8M6eoRPuMwcLaEj8VIR+KqpLO5vB63FzbsJj21mYWLFhgZRumArlcjl27dlFUVMSyZcvOCgDmjFssFiMWi9Hb24vfb+iBJRIJli9fTktLCzfddBOf/vSn+drXvjblgwhMshNJLpfjtddeo7S0lOXLlw+r5z9Su93BeN0ulsyZxpI501BUlcMtbTz7Qgq/10M6myObzdITi+L0eKmr6xd703V48WiM7pSExynicICmC8TiGf54ymyAXgAAZItJREFUXOT9a2rJZCUGR+ig30sqM3g6WxggU5JNp8mlk1RWVOL0eFAUhVQqTSqVoqurC7fbTSAQoKS4CKfLYeXpZxa7qFxaRmc8i9vtYkaZH5cATqeYDy5D34M55X6yssaRaJa+VBpRgMqQm/csrqY85CGT7W+nNU815rzJ8toQXqfIsUiKZE7GrcvMK/fyjqUzkRQFv8+NrhkifFlJs0QA/W6jGPrORTUDWqqBAZ7vOiL7O1Oc6Eoj5XIU+1wsqw0xrcR3Vj486POQyhrzPc2RJA50gj4vDofRiSdKEj19GY62R0j3xQkE/Hg8XnRdo7PT8LSvKCvjZCqBDmhqvt9fABxOvC4nbqdjQGux8TsN06pF1UF60zK9aRmPU0TRFDQd5lX4mVFRlP9+LydjSQ6eidOdNupa00p8LK0NcsXcMjRdICvJVmE5nZMgB23daTIqlBf5EQVD0cHjFEhnVVpjEktX1A5oQDGbKXr70rgFjWR+psLpdCIKIsmsjMshUBpw43QMPjEa/vWLp1egODyciKVIqQJyNocTjdmlTlxqGinrxuXxWJ1khvio2SIOHqfD0rACrK+HAj7es2o+7a3NLFy4cEwk0i8VphT7cEEE+qXhg8Egs2fPRpZluru7iUaj3H333XR2dhIKhbjsssv4zGc+85YIIjAJTyTt7e3W8NRQ7Nmzh+LiYubMmTPkv4+GTCbDiy++yLXXXkvTwcO8/OcmZIcPwTnwmN2dknlszxlEQbCc/dB1FE1D1aBxZTUVIS8Bn1GPSGdz+H2eIT3C+9Hp6TblTirwen04HaJR5MaoiaiqSiqVRpVzxBN9CKLDknL3er0D7pm5O8zkcvg8HmRVyU+1D/z9xqnGRW8yQ0/acLgz/dvNdfkKJspTgwYQwWjvPdMZoby0mJnT6wa8Tk3XOXimj5buHJKqIWga00q8XLWwcghRyH5UXeePx3s53ZPBIxp6ZpIu4BJFrpxdRE2BF4uZpgIBTdd5Ym8nuq4PUO8FSEiwus5PnVehuyeen+swNie1tbXkVNh2tJucohF0G6qusqaRzKosqwuxoi5keXIIgs7xzjhZWSPodVLicxLpk2iOpuhKGUOCc8p8rJhZZqkJdKclXm7uJqsKBDxOZMWYx6ku9rJhUSUMc3prjibZ3RanqjiInK+DyYpCKifjcjm5ZUXNAL/2oN9rzT8dj6XYk5f19zhFZE1DUnQW1xXzjnkVhgDmIDfGfnQk3cHprj7EvNKvqEmk08bGRhSgKBTE7fZQUlxMVj73Bi/g8/DeNQtob21h8eLF1NXVnfP7JxOSJLFz505CoRDLly8f2RD00aN89KMfJRQKkcvlaGpqYt26dfz0pz9l2bJl47DqS8ekOpEIgiHCNpYuiReDeQI6cuQI8Wgnd952I2VlZXTF+zh2Ksyxtg4i3XGystHW63a7UAsn4wUBBY2sYgwaJdNZBMFIf2iqRlFeul0a9IHTNI2erhiyIlNRVWPJvRQWuUVBoCjgp7Q4RCqdpbi0jEwmQyqVIhIJo+tYQcXv81GUTzEAVpeMOdUuKRqJTJag25g9SGdzuJ0i1UVDtVUbUg4dPUkOnklwOi4hig5ml/uYX+5Byabp6opRU1lJbXWl1Q1m8mZnkn2nE4YOk1NAAVp7cmjN3Vy9oOysuRuT3qxGZ0+GoEvAmd+hu3WdeDbHkXCSedWGT7wgQiLZH7hEQaAs4OJMbxavy2GMjggimi6AlqPI6yJUHMIfCBGLdhqdYpLMyZNtlBSFWFjq4FBUoTet568HtcUeFlUFMdt3JZfOtoMddGUMu2OXKFATdLB2ZglXzi0DdETRUFYu1J1qiaYs3xRQcToF/B4/sbRMRzxLTdA15L0o8rrwuN2kslncDoFMNouqKKi4qPa7CXo9OJ0iuZyE2+WyggjA3Ao/giBYv9vtEFlaG2JRdcB6f4iiQMBjTPYXDnSaAWlORWHdyonP56e8vBxZlkmlUmQzGY5EooQCfnz+AA6X+yzjs5Dfy4Y182k73szSpUtHNEw8UZgnkWAwOOxJ5Hy0trbS2NjIxo0b+cEPfoAoinR2dvLcc89NqYA6HJMqkFwIY5naGow5dRqLxbjiiissuYKKkiIqSopYv2IBiVSG3UdPsaPtT6QTcTwFHU+KpuMURcMMCkPh1+l0kBqgb2XURNp7c+w+2UM4nsLrFJgZFFg7v3bYbg9VM3L98b4UHfEsJ3okElmVkNvF/Moail2GVk9PTzfxHp2w020FFvOa6ZzCa8e7OBFLowkOSv2G2GFN0DVsLSPk9xLpTbLtcIyejIxLFNCR2dOW4XinSEOFztzZs/D7A2f5syiaxrFIEodo+E+IogO3oJOVFNpjfZyu8FJX6sebV7I103RBv5dDHVE0XcPpKMjFC4bneFcqZ9RxAl4SyYx1SpBlhUxOYlF1kFhSIp6V8bmdaHlZ97oSL9VFHnK5HB0dHYRCQQRvESldwhNwIjgVStUkCwNZEoohx15V7GdGeRCHKFrpm6f2tNORyBH0OHA5dHKKSmuXRNDnYf3ccnKShNPhGBBEALpS8gDXPofTacwaKTLRRJYZJf0Ck5l8m7Wu68ytLuZYJGnY+2oK6Dq6w4XX6WBhVYBMTkKUDGkXWVEpCvjyKtKGwsCccj+zynzkFI2Qz22cngtSdJqmF4iDGidQj8tFRjJSokM/NwVcLjfT60LG36K0jHQ6TV8qRTodxet2URQK4XC5KS8t4b1r5nPyeDPLly8fVz2pscYMIn6/n+XLl59TdHE4Tp8+zc0338wNN9xgBRGAmpqaMRFMnAxMuUDicDgM5dExxtTJAVizZs2wmjdFAR/vWbOQj/U4+K9XT6Bm+yCbJJNMoGk6S+qC+N0Oa1p+cMcSCBxs7+WVlm4UTUMQHfTJAofjILYnWDer9KzfKYA1+9EcTfP6iW4U1XD869B1TvZkuWZJFbOm1aAqKsl0lnQ6RSLRRzQaw+v14PP5eaNDoiMh4Xa7EDSVzt4Uv+9L8875ZSyqKcHhFMnmzAHN/px3SyxNT8bwWxAFoz01J0n0pBUSjjK8eSHKgM9juQ8qqkZW1sgpmmEp63Sgq4afisshkJFVkjklr3qcbwEWoCgQQFEVq/7R37RgoGg6RW4nQb97gAaXeZ/dLicLa/24XW72tffSk5ZwoLGkJsjS2hC5bIbOzjAlpSWc6BNoPhlFE5xoiozbIbK8LsSqxXXIUpZ4vI/u3hjt6R78AT9V5WW0RuJEk1I+iBgPBE/ebrW5M8GS6gABtzG9XRTwkZONtQmCgM8lksgYJx2Xy4WSbznWdeMag+VrAl43LqeDVDbH2pnFIKXpTOk43R5K/C4WVQepLvJaMzNm4DLncByiiC+vD5fOyvi9bmRZHXbTYL7bnA4HvUmjRdmwFnCh6jqZghSYofvmsToRRdFBMBgiGAwZbe/ZLOl0GjGXZVmNnxPNR6mrq6OoqGi4XzzpkGWZ3bt34/f7WbFixYiCSEdHBzfddBPvec97+I//+I8RXWMqMOkCSaFnwVA4HA6y2bOtWkdDd3c3TU1N1NXVGW/+c/yxzbbeT101E79LYMueTuLZcqpniLx7lpdlZRDpitPblx5SIVfTdZra48iqaigL6xoOp4OconE4nGbtnEpCHkOmQtP1Aaq8sqqxu60XNd+aK2DoN6VyMq+0dFEdrMYpipSXFFFSFCSdlVAUhXQ6xclYktM9Eh63C4dmpKdcHgfJnMLBjj5mlPogZ3QUeT1ufB7DvEvXIZzIIQpYQUSSJNB1nG43PVmNTP4hXug+6Pd68Ho8eFwuY8ZBVS05XEXVcQjCoBqGTsDnyz/ADLvUIr+XlKQRcOkIuk5W0dCAxXUlpAbt9nUMmQ8UHVlRmVbipSpYAaLDMMeSFRKJBNFohIqKSrplB0fDPXi9Hpy6Ak4naUll35kE5UE3lUEPJWXllFdUgKaSTqU4eeo00bRKThLwiC70AldGlygi5T1bnIICBfsHr9uFx+1iYU0x4UQESRdBltF0w4XQ53ZQVzIwrajrGqIo0pvMoKoqfT0xlld5eVdlFRlJydu8GpI2LpdjkOCmgarpVprL73Vb/5uT5bPSqyZFAe8AJYMBLef54IZgnFL6UkMP+AqCgM/nY1pNBVctm03biRZqa2vJZDK88sorVhdTZWXlsLIjE40sy+zatQuv1zviIBIOh7nlllu47LLL+PGPfzxldbQuhEkXSM7HWNdITp06xeHDh62hxzNnzgybOjPloM0ZgY+tn8lfXD7D0vcxW2U1TeN0tIfmU500nwpbuWiAREamLyvjdIg4BN3q0Xc7RNKSyolInLkVAQRBoCToMyRW8g/oWFIiI2tG7j//QRcQCOS946OJLBVBj/XBd4gCoeIgJaEAp1IiTk8Sl6CiqTqSIiEAIiLdSQlZ1XA5HDhE49o9CVNK30HQ70VIGl1IkmQMmfn8AaR0DseQZdp+GfvFtSF2tnbjdLhwiwI5SSIta9QUeagK5QUUBcOzvjA15nGKrJsR5M8ne0lkjHkat9PFsho/M0v6012arnMknKQlmiIra4R8TlbNKKNWMLrrUDUUIJ6Ik04kmD9nFg6Xm6ZDYQSnCxeqlbsJuB30ZhXae7JUBo1ivo6A1+NFRWRWMERFTuH4wSgZWcIhSTgcIg6HAwknHqeAe4jnTU5WyMkKNUEnq2aVcyScJCGDrij43CJrphdbLcwmwfz9UFWVjo4OnE4H5ZXlxibC68brcaFphqLs2afegfi9bsNLx9rY6HjcLjxOp2UtoOtQFPQNqalWeK/TuRxet+GX7vMY1tOSYohUFgaE8uIg71g6k1Otx1m9ejXl5cZ0emEX0549ewDOkh2ZaMyTiMfjYeXKlSMKIrFYjI0bN7J8+XIeeuihi7b9nmpMuVc3VjUSTdM4cuQIZ86cob6+3nqji6I45PVNGWjztGS+uVwO4azhKVEUmVFdzozqct7TsJRIT4LmU2GaT3VwpvMEQj4MFL5BtbxwoJku8XkMKXPDf0Qn4PUQVPI/kzeF13UjzWGe0AbPOKh5W15RECjye0FP4vJ40TUFXdPQdA0pp+LQFNrb2igOhQgEA8huj7U2WdGoCTo41qGQklX8XkP8L501TikzhvFtMLvG5msaiZSf1q40GVXH6RSZVVnEVfNKEclLmLucJNM5srJKd8p4OFcG3VQXeblhaRWdCWPor8TnJOR24HY68XicqKrGH49GONyZRBTBKYp0Z3V2HA5z2eyS/DCmTnd3D4lEgtraGlQcqJKKLroQhRwOhxNFyRf88/dPVk0FaNHQXcvv9nUd/G4nM0u9HI+puN1eHCJksgo5OUNNsUiit8dqLT67i87HIgHqgg66UjIOUWB2ZQi/xyj4S7JqNGd4DZkSRZHp6OjA7fbkh1L7TwnmPIqqaQR9nrMK5Sb9bdGFXxUswU8wUmChvHaWQxQsz5vBWMZV+e6/TE4mU+iu6XGhaRoBr5fLF9Vx6uQJVq9eTVlZ/yCny+WiurraaqqJx+NEo1GOHz/OgQMHKC0ttQyohlOPGE9kWaapqQm3282qVatGFER6enpobGxk/vz5/OpXv5oUwXG8mXSB5ELNrUaDLMvs3buXTCbD+vXrB7xhh7p+oZeAaUpzoQiCQHVZMWUhPx45QZ1/Nl0+maaWM2haLj/9DFlFI+RxUldsOBsm09mCvb5AKivhd+j4XQJJSSfkdoEgIEuG+VJpwH2WbSj0F/yrAgpeh048lSHgMcQvNRUEUWbptCBzp4fo7Y0TjcWQJEPG2yzWV3qhyqMQyTrIaIYDodMhsGpGKUvqSslK8gDxPrOmk0hlcIoil80uZWltiERWwevMtxfrGi6XA4/bha7rHOxMcuhMIj+oZ9jyXj6nlMqgh8V1JWRyUr+bZF53qi+ncLwrjc/rwes0/i6KLNGn6Bzs6GNWmY/urhiZTIZp0+pwuQzbWp/PTYkH2rskFNGZP1UYNS0BhbKAC7fLAbpgyeUX0jCzGLdD5GR3GlV34vc6WD2rioXlbpJ9ScKdYXQMufJAwI/X66OkKGDt9kNeF6G8IrOqKPTla1J+jwe320FWUpGkHJ2dnfh8fior+2XgwbB8VjXNChoDC+X9UvYOh0Bq2Nbe/E/oOn6vl96+jPW3M7XZClNgDoeAy+kcMoUG/Smw6vJiLl9QS/upNurr6w0V32EQBIGSkhJKSkpYsGABmUyGaDRKLBbj2LFj+Hw+KisrqaiooKSkZNzrC4qi0NTUhNPpHPFJJB6P09jYSF1dHY888sg5rSXeSkyqORIw/pjnChSRSISjR49y1VVXjej6qVSK3bt34/P5WLVq1Vm7hVdeeYUFCxZYMvWFfgGmXeZIfueePXsIBAKsWLGCzj6JLz7+JsfDceR0H1IqgUvN8K55pSyaVnrOeZP23gx/bO5G0gQ0VUEQRYJeN9curqTYM/BnPC4nmq5bD/kz8SyvtnSTllR0jB3mjFIvN66chlMUkBV1QF0llUpZpx2fz4+vpIK27jSCIFBb5KUiaLZ49k/nJ7MSp+M5MjnDrGo4CXtvXslWVjSOx1K8dqIHp9OF3+NEkWWSWZmgx8kH1s1EleUhH4Zt3Wleau6myGv4tCuyjNPpRNYMjbOGSnCjUltbi9PpzLsQusjkDC2n7UdiJLIKHqeIjo6kGErLt66ZjtfpIJnJnbMw7XK76Iqn8XscOAseOqIoIOgaqWSSru5eRFEH0WUF5qHSHGatI5uTkaQckXCYivJSyssrSBecKLwe1wUUzA05lmxWwut1o2kDtdn60Qn5fWd12xX+u6FmbRiTJQrUAIaitqKEhnnVnGk/RX19PcXFZ4uaXiiKoljKu7FYDE3TrBRYRUXFmO/yFUVh9+7dOJ1OVq1aNaJ6Rl9fH42NjRQVFfHkk0+OSKV8qjLlAklXVxcHDhzg3e9+90Vfu6uriz179jBt2rRh1Tpff/11Zs2aRU1NzcCayEWeREy6u7vZt28f06ZNY/78+dY10pLKi8e6aOtOUxF08445JcTjcZpPdXLidMTqvBmM2+kgnlV4syNOMqdS5HUyr8JPyGtYyxrT5KDpKlmp39fbRFIMO1FJNaTL51UXW91PYJxgfB43qqZxuiNMb28vxcVFOATo7o3jcDgtGXzjg9J/TzoTEq+29pDKKQiCA5cD5pV5aJhZMuDe+b1uspJsrW3roQjRpETIm3/A6joIIilF4B1ziplZ4h7y3ncmsrxwpIuQ32OJP4IhnyJJMu+Z5WXRnJko+d27w+EgV2APEM/IvNnZx5l4Pk1X6qN+djkOtPzajKYBp8NBVpKt7jIYWjdrMALGEF4uJ5HJpOnujZNMpfPqBEZQ8XiMzizD5tnQXOvs7LB26mBsXvxew7I5k8sNWyg/19pEUcDvzQ/I5nKoqk7Q3991NRwup2itzXhvuNB14xqFsWxaVSmrZ1XQ2WGkiseyO0vX9XyjRJRoNEoqlaK4uNgq2Pv9/lEV7M2TiCiKrF69ekRBJJVKcfvtt+N0Onn66afH3elwsjHpAomqqucspsfjcXbt2nXRBjCmkvCSJUvOKcvwxhtvDJCOhpGfRE6fPm0V8i9GG0xVNU5Fumhu66TldNj6sHs9LhRFPSsPPpiQ30sqm8OfHzIbygYWdEKWnPygf9F1otEouVyW+XNn4fX48oVfhXQ6kz+tGMX4QMBPIBDA4fHz5L5OspKC320MAuYUDVUTePfiKpZUG11kfp/bSLcUvOs2N51BVvsn0XVdx+X20NOXYkVdEQ2zSvPzFdoAuRddgOff7CKayBDyOAyrZEUjkckxLeTkmuXTEAQRj9uJKBhtraqmDZB/h3x9quC+DfeJ8LicuF1ORIdAvO/cu3PTsnfgLImOyyEiSTni8QTdvQk8bheBQAC3xwvohMMRysvLKCoauJv3+zz5orhmFLmdTqRBVseDrXGHXZtoqBADxgnoHJsWQRCG3NQIAvjyToplRUGWTy+ls+MMDQ0NhEJD+6uPFdls1kqBdXd34/F4rBRYaWnpRaWkVFVl9+7dowoimUyG97///SiKwrPPPjvur38yMulqJOfjYmskmqZx+PBhOjo6aGhoGFD4GwpRFJFl2QoiI8mT6rpOc3Mz7e3trFmz5ry/czAOh8js2kpm11Zytb6cjq5eTrRHOHaqk6548py/t/BBUpg7D3g9Ruu0JKEoGj6vZ8ggomkax9s7aE8oOH0h4m19zCqVKPK6CPi9+en8IiRZIZczFIuTiTiHoxGSGYGgx5FXlReM9FBO4cCpbqaHnIQCXnTd6EgqLAwX+1x0JrKA8SF2uQwfC4CQ13mWm2TA70bAaCZYNyPEK8dlEhnFaAFWFMr9Tt6xqBZBMHbQkpUKMk4jpvw7gqHthTZQZmU4crLhChjvy1gqAXqBR4uJmG/ZHjyQCIYRleBwU1JWQV1dHdlMlr5kH9FIBFVT8eT1q1RVtR5qQb+HVNqsdeSL3AVzM+bMkohw3lOS4czozqsBGHhcTjxu14AhRpfTaaT7hgkyug7pjMSs2gqWTSsm3NnB2rVrCQaDw/7uscLr9TJjxgxmzJiBqqpWCuzAgQNomkZ5ebmVAjtXjUJVVcuwaqRBJJvN8pGPfIRMJsPWrVvflkEEpuCJxNTDuv766897SpBlmT179pDL5aivrz9vF4iu6+zfv59EIsG0adOoqqq66DynqqocOHCAvr6+cw42jpSueJ/RAdYepjPWa31dAAIFGkvD4XAI+NxuRIeILPcbEoFxxD944gz7uzRUwQ15xVi/y8E755dTW2zeC91q/RREgd6+FDtbezjYkcTr1NE13TBbcohIqiHgd/c75w4KXEbayCGKHAv3sf1IGE0zCr2KbMjRl/hd3LC06ix3PLfLCTpIimEgpupwuL2b0+EoFcUBFkyryKf5PGQHPeTPQtcpLQqgqJrROaUMvUkx7u/QqSAz9SSKAlJe8mWoIn0hXo8bWZaNzrq+PmKxKNNrjXRqV28vmUwOr9dDZVkpiE5c53ggmiKNqUyOgNdoW05lJWszZGJ1XQ1rIW3UaoI+NwgCSatrcGjmTKtkcXWIWCxKQ0PDhKdzTPVwMwWWTCYpKiqyUmCBQKDfpEtV2bNnD5qmUV9fP6Igksvl+Iu/+AvC4TC///3vB9hdvN2YdIFE07RzTq7Lssy2bdu45pprztmbnUql2LVrF4FAgFWrVp23j9vszMrlcoTDYaLRKL29vYRCIaqqqqiqqjrvByWbzbJnzx4cDgerVq0a946NvnSGlvYIzac66IqnBgSRjKzSHEkRSebwOEVml/uZWxlE1xnQYeVyOvB5XKQzWZqPt/JGTCSjuwi6dDD+j2ROocTvHiCjbrazJlIZ3C4XJ7uzbDsSxSsa8uiapqKoKilJZ3qxm8um+6yawFA75va4zN7TCfqyMrqqUFXkYe3MkrPkyr0eN8oAGX5DlSAc7qS2uprKynJkRTUm7IdQYC6k/zWY903Py604kOX+2QhR5CzdrKFw54vSDlG0OqcGz1fAwBpRIhGnq6ubmppqfD5zo2OkwBQpR6y7l3hfHy6Xy/KuH1ibGrpgLpBPPTlEcpKMqmmD5OKHxpSrUVTNuMYQHVwA82dUM7/ST3dXFw0NDRPSqns+stmsVaw3lbMrKyspKyujra0NXddZs2bNiGY8ZFnmox/9KK2trbzwwgvW+MDblSkXSDRN4/nnn2fDhg14PJ4hvycWi7F3716mT5/OwoULz3tyMQvqg4vqkiQRjUaJRCJ0d3fj8/moqqqisrKSoqKiAdc1fVTKyspYunTpJZdCyOQkTpyJ0nKqk33HO3j2QCfxjJzvqQKny8nK2gCrpp3dSZPJpAmHw+ieIl7rUHCLAqLev6NWNJ2cqnHj0ioqgobkxuCHl6xqbD0UoTut4PO4EARIZxU8LgeX1XnwC4ZqrMMhFjwQfQiCYJ0wMpJMPCvjdTmpKvZZaSPzHTrUCcPczVdWVllplVDASzYn4fW4UbWB0h6FGOms4U9wRpB1o6MPmQYsxEgvqcjKwFOAOfOiaRqpjETA58l3Yen09vbS29tLTc1QMvD9KUqnQ0SVJeJ9Cbp74oBgtRZXlpWSPk9wcDqMOpFDdFieIEMFc5/bhaQM1xGm43W7cLmcTKssY2aJi3hvLw0NDUMaN002VFW1BiE7OjqsLrCqqioqKiqGfZYMhaIofPzjH+fw4cO88MILVofn25kpF0gAtm7dylVXXTXkCeFCi+rQL3di1lzOVVQ32xEjkQjRaBSXy0VlZSVVVVUoisKBAweYM2cOs2fPHjPJh0hfjt/sOs0fm7txiALvWVjBB+vrKBliXqSQf37uME/uPI5fy5BLJUAQSGeMzqybl1dZopLQ/yAuL69A9BezZVcbPqeYn61wgiAgyRJZSeX6pVXUFHnxed1DtpMmcwpNp+Kc7s2CIFDqd7N2dhmzy/2kczkURSOTyVitxbquU1JUhNfnw+3xDhl8RUHA73PjdIj5gn//27W3t5eenh5rN6/rOsUBH4n0UB1LxmtOZ2UjXef1DNMS24/RTWUM74miQMDrQccQVCxM+RhpqqGNwwoJ+j0IuoCGTvvpDhJ9CWpra3G7+x9iheZQQ+EQBdA1En0JMuk0iWRmwMzP4N21yykiCuKAgvlQ3VdGLUk5ZyoLYMmcaUwPOejrS9DQ0DClWlw1TWPv3r1IksSiRYvo7u4mFosRj8cHpMCCweCwn2FVVfnUpz5FU1MT27dvp6am5hK/isnJlAwk27ZtY926dQNaDDVN48033yQcDrNmzZrz5iuHm1S/0DV2d3cTiUTo7OxEVVVKS0uZNWvWBfs1n4+ulMRf/eYArV1pSzFW0XQWVgf5/vuX97fKDkLVdDY9+GckWaPEbwz7ZdNJMn1xIrEu6uv8LK8rAnR6enqJx3uprq6msqyU3lSGJ/Z2ksqpeS0v4zSTklSK/V4+vG4aTlE85y4eQBdEJFXFLWJJuRhaWl5EQcinSRQcAsS6e0gmU8iyjN/vs04rDofx+gp35wKC1SnUfqaDnt44tbW11m4y5PcMsBIeCocoEvAZFsXnqom4XU7DJneIfzcFC0VRQNM0Mln53HUYCltyIRqNkcmkmTd7Nl6fh1zOXMf55joMRBG8bjeZnIRTEEinU3T3xkmlMwNai4MBPwIC0jlqjoJgCJHqGI0HQ71ek2XzplPrF0ilkjQ0NFzULn6iKQwi9fX1A+ZQcrncgBSY0+m0usAKP8+qqnLvvffyyiuvsGPHjjFxaX2rMOm6ti5kNz+4c0uSJOtNsn79+vMetUc7HyKKImVlZUQiEURRZOHChaRSKQ4fPowsy5bEQ2VlJU6nk/aeDC+3GIZJq6cXsXJa0Xl/55P7OjnZnaY86MYp9kt3HA0nef7NCO9bM7SHgW4WNvKXFwQBXyCE1x8k56vgyoZKlpXCH9/YQyKRYPq06RSFAiQzOZyiyJoZxbx+ooe+nIJDMIyiXA6RhhlFqKpGJm+VahpdpQcZXZn5f484+PUJA0QdS4J+VE2nrsadH4KUSaXSJJN9xGIxPB4Pfr+PmqoKqxNJx9Adi0ajZLMZ5s6eRSDgM6a4ReG8QcTlFHGI4sCaSD5do8gq6Xw9w+d2IavDt1mb6wj6PKQyEj6PC6fTMeAa1vdaJ4w0um4M1EpSjrq6aciajpzK5tdh6GflcvJZiseFGB1h/c6Ysq7j8vqprvEZrcW5HL3xOJHODmIOBx6vYdPs8/mGvKY/371nBML+GtHg17JywQwqPRrpdHpKBpF9+/YNGUQAPB4P06ZNY9q0aZb/ejQatfzXH3roIVavXk1LSwsvvfQS27dvt4PIICbdiUTXdUNd9hz88Y9/ZPHixVRWVpJMJtm9ezfBYJCVK1decFF9NEOGsixbb8zVq1dbgUvXdZLJJJFIhEgkQiqVYl8yyJMtMpJmPNSd+RTVP9y44Cw/9ELueWQ/+04nqAwOLNiH+3JsWFDBN25dPOzPfut3R/ndwQjVIY+RCsEQi9SAf33/UtIdLeRyOeYtXEx7rJfmtk7aI91WLSKcyHIskiKeVSj2OVk+rZSKgHPIB6tZrDfTOuey9TXv0eD0k8vZL7ufzkqoqkIqnUZXJLp7EzidxhCkz+ent7cHVTWm1R0Op9Vqq6gqXrcLTR96ituUPDnX7tzldBDwelDyvvXnYrh24QGvJZMzpPjTWXRdIxwOoyjm2vtPraa+lrlul9NhiTIWuhea2l/n7QhzG5pXiiLTl0jQ1RtHVTXrxOf3+3E4HAR87nP+vVxOYzh1/owaShyS1f04lWQ/NE1j//79ZDIZGhoaLmoi3uwCu++++3j22Wdpbm5m2bJlvO997+OWW26hvr7+ktZCv/a1r/H1r399wNcWLVrE4cOHL9kahmPSnUguBPNEEovF2LNnDzNmzBhVUf1C0HWd5miaWDxJ6kwz5UV+1q1bNyBwCYJAKBQiFAoxb9489p2M8cRvDyEpKj6HjkMQUXSRPxyOsKw2xAcbhndG87nEIeX0BcA7lMRsAXdeNoP9p/s4E8/iEEDVwSUKNK6spKf1EG6321p7VXkp9YvmkMlKtJwO03wqjLMjarklBnwDfdsHY2oshfzGbEjQ70XXsGTwB93FIRVmC6XKHaJAyB+gvKSYRCpFqLiMTCZNMpmit7cDgGAwSC6XIxRy5ae9Jes65jX6fThyeJzmCePc80cel5N4/uQgigL+glmTwtrBuaba+1+LTjDgRQP8XhfHT7Shahp1dbWIYn8QMdNUhcFvgHS7mJduxxhUzZynsD6wYC4SKCohWFyCU4BkKkl3jyGSWFocpNfpJuD343INHRhkRWPVglqCZJAk5aIfxBPNaIII9PuvC4JAKpXi1Vdf5dixYzz99NN873vfY8eOHaxZs2acVj80y5Yt4w9/+IP135NFVXhyrKKAC01thcNhIpEIS5cuPe8xc3BR/WKDSGtXmn/+3TEOdSSQZIWg28Gd68tZdZ5ayGttSRREKos9hiudoiKoCqmMwiOvHaOhJENVVdWQxb0NCyv4c2svaUnF73ag6zopyUjhvHv+uVsNZ5b5+MEHl/P0/jAHziQIeZ1cOTOIt/c4RUXlLFmy5KydlM/rZvm8GSyfNwNJVjjZEeNER4RjJzvPmf8fXBw2u5sEQTDk5yE/sGeowp6v+8kY2tPoS6eMwBzw4fcaHUJ+v5+ioiIymTTxnm66YjHcHg+BgLHLNh/QhT4cAZ8bdPA53WQl6ayuKpPBJ4xC10BTyFDEaAVOnGfoD4zJ8WReBr6zswNRdDB/7mycDofVSjs4TTUUmqaTk1QEQFYUAj5j9iaTk/MGZP34PIbXyGBZHF0HWQePL0itL4Df66KvL0lvb5xTXd351mL/Wa3Fly2bi09NoeZnLaZaEDlw4ICVihvJ2nVd55vf/Cb/7//9P7Zv386SJUu44ooruPPOO5EkaULuh9PpnJQF/kkXSM6HphmdP4lEgrVr115UUT0tqbx+ood4VmFhVZDldaHzBpSMrPL5xw7RGkvhQiXkdSFpAj95tY1iv4vbVw/vPZ3MqXmrUkOi3OUWceEip0sogkgymaS1tRWPx2PNqphGP9cuqWRXW5wXjsRI5owHhssh0riyhivnnX9Svirk4eNXzgQMva+9e/cyfeZM5s6de97X7HY5WTCzhgUza7h67XLaI900t3fScio8oBAsYNjiDtVhZHrWQ37Ize9FQMDtcgyrFeVyGg6M5qyDruv0xPvo6Ogg4PczY3odTqcTXSsxpruzxmR9b2+cSCSKz+e1ivVOp2sICfV+ddycpFh+8YZUzPCyIjqQzuQI5RWN+619jQnzwvspCkZDQDKdRVGUvAy8i6qq6vxpQsYcxnQ5HOTyLonD/U08bqN1WMoHwMI6k8ftxu1yGBsUQRjkOTI0RjE/g8PlpbzSS02tiCJJJBJ9dHZ2YrYWv7thKV4liQ7U19dPmp3vhWAGkVQqRUNDw4hScbqu853vfIef/vSnvPDCCyxZsmTAv09Ueu/YsWPU1dXh9XpZv3493/72t5k5c+aErKWQSVcjAaN4PtSyJElizx6jSDxz5kwWLlx4zusU1kP2n+njy08dIZrMu/s5RC6fXcI3bl1MwD38h2TroQhfefJNPKLRMup0Grve7pTEzDIf/+/jDcM+BJ45EOaff3eMYp/Tms7WdZ1YUuKm5dV8+caFlsSD2VYsimJ/UCkpYVdbgp1tvTgEgcvnlLJ6+vkL9YV0dHRw6NAhlixZQl3d8Km0C0HXdcLdcVpOhTnW3kkmK51zNw0UCBKaKRl9yGJ94SCcSTabobOzk+Li4vyGQchrTuXwuF3G4KBiNACoqkIqlSadTpHJZCkJ+REcbgLBQP5Df/Y9czsdBHwespKcT48Nf1+DPk+B5EzhNfq9UbI5Ga/bmByXZcNLxOfzUlFROeBv5nI68t1r+Q2CUxxy5mWoezIUAZ8bSVbztSp9gFpwIeeTgXHkVYunlwUocWuW3IjZODIVWn11XbeUJdauXTviIPK9732P7373u2zbtu2Sp6+G47nnniOZTLJo0SI6Ojr4+te/zunTpzlw4MCES7NMmUBiFtVDoRAOhwOfz8eCBQuGvUZhEMnIGh/66W5iyRwhrwsxLyiYlVU+snYaf331vCGvoaoq33l8J48fTVMRGjjnYCjcCjz7mcstf/HBpCWVex/Zz5udSdxOwZi2llVK/S7+9QMrWFA1cA7G7Bgxg4qqqtaHuKKi4qLainVd58SJE5w8eZKVK1eOy+RtTyJpybV0xHrOengNN6RXiFHgdqNo2oACdyqVIhKJUF5ebrV5D9ScGngNn8eFoumk01kCPg+d0S7S6RTpdAaHQ8ynvwJ4vabh1MBWW1P1WNMHPogHF8KHwyGKuF0Owy0xl6P5RCt+f4CKinIKH9xul+MsdYFCzJkX84RxrnZcGNq4ShT6r2Fqml2IlhjAO1cvRE8Z6a758+dbQ3zxeJxgMGjNTp1r1mKi0HWdgwcPkkgkRtxZpus6DzzwAPfddx9bt27lsssuG4eVjg29vb3MmjWL7373u3ziE5+Y0LVMiUASjUbZu3cvM2fOZMGCBRw+fBhBEFi8eOjOpcFF9a1vRvnq00cIeZxWFxNAX1Yh4HHw9P++DI9z4EM6l8uxd+9e/typ8KvDKsV+l9WGC8aJZHqpj0c+MfyJBIx5kF+8fopth2NIqkb9jGI+tn4GS2rOvYMwpbPNDrBsNkt5ebk1WX+u/KwpVBmLxVizZs0l2a0k01mOnzaEJU91duFxOcnltaTORdDvsdSAHaKI3+uipzdO++kOKqsqCQTy0+oX8CA06zVmK6vRJKCSyWSs04quG4ZTleWlIDoQhOGHIM2INdRJpJDCE0Yul6WjwzhFTa+tRhRFqzbjdRudb+c7YZjWuLquW3MzQ/msB/1ekucNDjqlIT+KqiEphi3vcO/X99QvRk5E8Xg8Z7kDSpJELBYjGo3S1dVlDeRWVlZetOLueKDrOocOHaK3t5e1a9eOOIj853/+J1/72td47rnnuPLKK8dhpWPLunXruOaaa/j2t789oeuYlIlPQRCsAvnJkyc5duwYy5Yts1IzDodjyKHF4YrqPSnjewePNrgcAllZIy2pAwJJMpmkqamJkpIS7rp2ETvC+2jvMaTKHXlvdUEQ+EB93Xl3ZeUBN5+9eh5//d65aLo+wADpfPeguLiY4uJi5s+fb+3Q29raOHToEKWlpVZQKUw5KIrCvn37yOVyXHbZZZcsHRH0e1m5YCYrF8wkJ8ucOB2huT1M6+nosN4qg7ufVE3l1JkuQzaktoaK0hIABPH8qrbG9XwD6jVGDcdnKBYXhZAVlVxOQpVztJ/pQFGU/FS4cVoxT3yarpPNyTidDrI5iYDXg+gQyeaUswrc5gkjJytkMhnC4U5KS0spLi4hZaX9jACnA0gKcr6mMRT9EirGf6cLrmHOvMiKilMUzxtEzGHOngLJe6/bZSj9FkilCAJsaFhCtieM3+9nxYoVZwUGt9tNXV0ddXV11kBuNBrl4MGDKIpizU6Nh+nU+SgMIqM5iTz00EN89atf5emnn54SQSSZTNLS0sKdd9450UuZnCcSWZZRFIVDhw4RjUZZs2bNAMvOlpYWkskkq1atsr5WOGQIA+VOdp7s5f/7zX7cTgceZ/8HpDcjM6vMx68/0WCJEcZiMfbv38/MgsJ0SzTFN547Sks0hapBwOPgA2tq+Z9XzTrLJ/1SkMlkrJNKobxDSUkJR44cweVysXLlyknRZaOoKm2dXbS0h2lpD+dPH/1DeoXig7FYF6lUcoBsiHkSMZWCh9qZmwXuc6efDEtZt9OYw8jkzCFIw1sllzPUdv3+AMXFIbxuzxABsL/ALSsqaLplmpVOpwiHI1RUlBMKDTR1GmzkZUi/G6eTQt2r4VJ3gwn5vWQkCZ/bjaoPrSXWP68zfJecOeV/2dK5pLo6CAaDLF++/KJOF0Mp7paUlFhBZbwVgXVd580336S7u5u1a9eOaOOk6zq/+tWv+Nu//VueeOKJi/Y6ulR87nOfY+PGjcyaNYszZ87w1a9+lT179nDo0CEqKysndG2TMpCYyr2qqlJfX3/Wm6O1tZXu7m7q6+uBgfUQQ6114AdB03U+8+v97G7rNYa6ROMk4hAF/v6GBdyyohqAU6dOcfToUZYuXUptbe1Z1zgSTtKX7/g6n97VpUKSJCKRCB0dHfT29uJ0Opk+fTrV1dWEQufvSruU6LpOR6yXE2ciHG49Q29f2vp6JBIhl8tRV1eL0+k6R22iYGcuq0iKgsflsmZJhqNQNwv6PThk1TCHUlWVVCqNnPdYERxOy7TL2OEOvI8+jxtN03C7nfT2xmlrPz1AONLEOGEM3TwCZjrPkPXvS2bO23VVFPCe1X7crwMGmbymWVHgQqRWBK5eu5S+6GmKi4tZtmzZqN8vpulUNBqlu7vbSCPmU2BmR+JYoes6hw8fpqura1RB5Le//S333HMPjz76KDfccMOYrW+s+fCHP8xLL71EV1cXlZWVXHXVVXzrW99i3ryha7yXkkkZSF5//XUAVqxYMWTbYXt7Ox0dHaxbt+6CJ9UTWZkHdrTy+8NRFFWjKuThritmsDEfRI4cOUJnZyerV68ecPqZCljtvdOnEwwGLfc4l8tldYCVlJRMuqDSFU9ypPU0L76+i1g8SU2NMfEtiiJel/OcvhlgdDu5HA4cTgfqoN19IefSzYL+Qjv51uOcJJPJpEmlUqTThke9mf7y+XwE/V4yeRXiRCJBV1cXtbU1VJSVYtZmVE2/qBNGXzqDIOSDSkGRvPB+FQWHdrQcTEnIh6rqZKWzU3EmDlHkmnVL6Q2forS0lKVLl475+8MUOjXfj4AVVMrKykbVUlwYREajQPzYY4/xyU9+kkceeYRbbrllxOt5uzMpA0k6nT5nUOjo6KC1tZUrrrjiouVOUpJCKqdSHnDjEAUURbGmX9esWTMlJLELMdt7B9v5mrLZZgcYYHXclJeXT3hxFIzT1O7du3G5XMyZv5CT+RRYtCdx3rbioYKDWazXdSzXwvPpZpmY6Sd0Q5AR+nf32axRrE+lUridIg6nG3/AjyzLxONxampq8Hr73zcCUBzwo+pq/mE+fOfVUCcMg/6Zl0xOwut2nVdL7GzRx8JUnNEmLQiGLP21ly2l60wbFRUVLF68eNw3GaZsvnlayWazlJWVWSmwizlN6LrOkSNHiEajrF27dsSf2aeffpq7776bX/7yl9x2220juoaNwaQMJIqinNNONxKJcPToUa644gprmGskH4RMJsOePXtwu92TpqZwoei6TmtrKydOnGDlypVUVFSc83t7e3utuoopLGl6MUzEsFk6nWb37t1WSqUwsGVyklGsPxWmtSN61oP4QoKDIAgUBbxGO29mKM/6fgYXuK1rwICuKbfLSVdPnFQqTV9fAlU1rHFDodAACfeBTQT5uRmHA0lVLY/1Cz9hGMFBkhU8LieyZlxjqJNXcBgHRxOnQyQU8HHF0rnEzrRSXV19QdJC40EqlbKCSjweJxQKXZCMu67rHD16lEgkMqog8rvf/Y4777yTn/3sZ3zoQx8azUuxYZIGknPZ7ZoPxTfeeIOampoR77Dj8Th79uyhqqqKRYsWTYod+oWiaRpHjhwhEomwZs2aAXL658MsjppBJZ1OD2grvhQTu319fezevZvq6moWLVp0zgeZrKi0dcZoPtVJS3sEQWBA4Xo4Bs5X6MMW6y+shdaQqJcUFbfTwZmOTrp64lRVVSHLEqlUmmw2i9vtorq8HN3hOMcQpBOP24FDdNCbTJ3n9w4tK18485LJ11/8vvPPurhdDq5dt5TwqRPU1dUxf/78SZHuvNDWYl3XOXbsGJ2dnaxdu3bErowvvPACH/7wh/nRj37EHXfcMSnuwVRnSgWSQrkT85gciURQFGVA2uZ8g3vhcJiDBw8yb948Zs6cOaXeSKqqsm/fvjFLxZltxdFolEQiQXFxsVVXGY80n1nPmT179kWbgGmaxulIjyHX0h4mnhza/OncMyf9xXoRgd5kashZEuu79X4/FF3HSsvMmjmDYMBnOR8qioIDjXCsm0wmjaOgWD+cNe5QqbhCznfCAHA4BII+D5rGWXWVQjwuJ9detpSOky1Mnz6defPmTcr3vaqqlox7NBq1WosrKiqsuarRBJGXXnqJD3zgA/zrv/4rd99996S8B1ORKRNICoNIYSqrcHAvHA4jSdKwaRtz2ru1tZUVK1ZMeMvcxZLL5QZ4wo91Ks7suIlEIvT09BAMBgf41Y/2QxcOhzlw4MBZ9ZyRoOs6kZ4EzafCtLR3Eu3pAzivbpb5s0ZaKYPL6cTrcQ1ZrC/0dDc6y8JIkkxdXa1lvAV5xeKgz/DwyEqomko6bTpBGp1pgYAffyBAVVlpwXxJP0J+Gt0stHvcrvOeMEzl4MJZE7/Hg8PpMEy78u3LHreL69Yt4czJFqutfSpQeHo+ffo0kiRRVFRETU0NlZWVFx1MXn31VW6//Xb+5V/+hU996lN2EBlDJmUgGeySOFwQGUyhH0g4HCaTyVBWVkZ1dTXl5eUcO3aM7u7uSzbtPZakUil2795NSUnJWTWF8UCWZSuodHV14fV6raAy2K/+Qjh16hTHjh0btwDe05fixOkIR052DCnXYqLr+rCtsQNPCDkCPsPTXdc1Ojs70TTN6iwrxEiP9ase+71GI0c6P1mfzWZJp9MoUo5UJovP57cUiwdfSxQEvB4X6OBwGBa50hADnQ5RwONynaOzTcfjdhHye3nH8rmcOtFsWUFPJXRdp6WlhdOnT7NixQqrtnKxrcVvvPEGjY2NfOMb3+Cee+6xg8gYM6kDiTmpPlIPETNt09nZSTKZxOFwMHfuXOrq6qaUOU9PT4/luzIRKQnT+8VMNzgcDiuVeD55DF3XOX78OG1tbWcNlo4X6WyOlnbDW+VkR2xAob3woT8cAnn5eQwr3ZbWk+g61NTUDHit59fh6j8h6JpOMpNBkuR8W3GKXE7C6/X064B53EMEByMguF1OFMU48TidIi6n01JJHg6/182165Zw6vgxK4071WhpaaG9vZ2GhoYBMzrnai0enN5uamrilltu4ctf/jKf/exn7SAyDkzaQCJJ0rCT6hdDKpWiqakJv99PaWmpVQsoKSmxdtiTWdW0s7OTgwcPsmjRIqZPnz7RyxkgLBmJRNA0bdj6lDl1HIvFqK+vP2tY71KQk2Vaz0Q51tZJtCdBdyJ1zu8XBQGv12V0eqmGDLzT4WT2rBm4nM4CL5HBaaWh6T855Ppl31XDPVFVVSv9lctm8fu8ON2e/BDk0MV6bz6oqJpKOiMNO6MS8Hm4du1iTrYcZcGCBcyYMeMC79jkwdyArF279pzvHU3TiMfjA1qLDx48iCzLrFy5ko9//ON87nOf44tf/KIdRMaJSRlIFEUhm+3fNY40jVM4qFfYoZLNZq0HYW9vL0VFRVRVVVFdXT1p5khMnbHjx49P2nqOruvE43HrXuZyOas+VVpaypEjR0ilUpNmPkdVNU5Fumg5Faa5vfOsQnbhIKSiGDLwHo+HysqqggeQIaTodjrJ5aVWhns4OUQRl8sx5MnBko5XNWRZBUGnpzdhDUGKoqFYbJhNGX7rLqeYl+RX8us10mhgpNHMTVfI7+Xq+oWcPH6MRYsWTUl/cVO5+nxBZChSqRT//d//zc9+9jMOHTpEbW0tf/mXf0ljYyMrVqyY0GBy33338aUvfYm/+qu/4vvf//6ErWOsmZSB5K677qKlpYVNmzZx6623Mm3atIv+47e3t3PkyJHzFnZNiZFIJEJ3d7dVYK6urh53naDhMAeuwuHwRbf3ThSD/eqTySROp5M5c+ZQW1s7IiG98UTXdTq6eq2gkkhmLD90WZbo6OjA7/fn53P633uDfdNNf/XBxXrjoe8o8GEZGpdTxOEQcTmc6JZisWHeZp5WdF2jKBQkGAzidHmG3FiZMy9FAR/rl86iteUYixcvHrUHzURgBpGGhoYR1zKPHDnCjTfeyIc+9CHWrFnDU089xdatW/nYxz7GAw88MMYrvjDeeOMNPvjBD1JUVMSGDRvsQDLetLe38+ijj7JlyxZeffVV1q5dS2NjI42NjcyaNeucQcXsNT9z5gwrV66krOz8boImgwvMPp/PCiqXyn9BVVX2799POp2eNDv5iyGXy1nT6uXl5cRiMUtY0kwljrR1czzp6u2j5XSYA8dOsufgYUKhUP69U+Al4nQgFBhSDcYq1gOyrA77fdb1XA7QBaSCDkVByA9BCqb8vIqmKiSTKeKJPmRZthSLAwH/gO6x4qCf966ex4kWQy17Mlqyno/W1lZaW1tHFURaWlq44YYb+PCHP8z9999vBd5sNmsoS0/AfUkmk9TX1/Mf//EffPOb32T16tV2ILlU6LpOR0cHjz32GFu2bOGll15i5cqVVlAZPFBlPoRTqRSrV68e1YlCURRisRiRSIRYLIbb7aa6unrEXUsXgiRJNDU1jVt773hjdpaZ2k3mBziXy1kBuru7m0AgYAWVyWSQ1NvbS1NTE5XVtShOH82nOjkV7kLT9PPqdZmY36dqmmEuhUA6l0NV9SG+Tzun6Zc5cyIIIMkKmZycVyw2vFWy2Rwej4dAwE9ddaVREznezPLly6murh6DO3JpMVO5DQ0NIz6Ft7a2cuONN7Jx40Z+8IMfTJpB47vuuouysjK+973v8Z73vMcOJBOFruvEYjErqLzwwgssXrzYCiper5e//Mu/5O/+7u94z3veM6YP4cF2uA6HwzqpjJUYotkUUFRUdNFS3pOBeDxOU1MTdXV1LFiwYNh7Isuy1QFmBmizWD+RwpJdXV3s3bv3rMJ0VpI53h7mxJkIx09HhvWbB85hXKUT8HlxiAJZSUYUxAuy0B1stetxOQ2ZFFUjk8sZ6bR0Cicaq2aV4XU5qaqqYtasWWOutDvetLW10dLSMqog0t7ezvXXX891113HD3/4w0nzGfr1r3/Nt771Ld544w28Xq8dSCYLuq7T09PDk08+yebNm9m6dSter5eVK1fyz//8z9TX14/bm8g09TFrAYIgUFlZSXV19Yid4np7e9mzZw/Tpk2bNLIVF4P5EJ43bx6zZs264J8bLCxp3suqqirKysou2YMgEomwf//+Ie0DClFUlbaOGM15b5XCji2vx418AY6QXrcTURRwOvKe9cMU671uF7KiDqsR5nQYSsEhv591C2tpPd7CrFmzyGazxGIx616aSrsXY9N8qTGDSH19PcXFxSO6RkdHBzfccAPvfOc7+fGPfzxpXu+pU6dYu3Ytv//971m5ciWAHUgmI48//jh33nknt9xyC9lslueff57a2loaGxvZtGkTa9asGdegYoohhsNhdF2/aIVdU65lqrZomu3J53sIn4/Ce1kojWHey/ESljxz5gyHDx9m+fLlVFVVXdR6O2K9NLeHOdUZI9rbd179L5/HTU4eqBPmtibrVVL5Yr3P40KSlfMGpeqyItYvnsHJ1uOsWrWK8vJya22FEkKyLFNeXm4FlsmUMj116hTNzc2jCiLhcJgbb7yRtWvX8otf/GLSBBEwnk+33XbbgDWpqmr5JuVyuUm13pEypQPJ3r17ueqqq/iv//ovSwY6mUzy7LPPsnnzZp577jnKysq49dZb2bRpE+vWrRu3P5rZChsOh60PrxlUKioqhvy9J0+epKWlZdK2956PtrY2mpubz6s+fLGYsjfmg9BUKBhrYUlz/YUP4ZGuN9bbZ5xUTnUS7k6c9T2mD/u5jKscokgw4EXTVJLps9WIC6mtKOGyhXW0tZ5gzZo1lJaWDrs2s5uu0MHQvJcT2czR3t7O0aNHqa+vH/GgaiwW46abbmLp0qU8/PDDE6JkfS76+vo4efLkgK/dfffdLF68mC984QssX758glY2tkzpQALGjma4nXw6nWbr1q1s3ryZZ555hkAgwMaNG9m0aRPr168ftzedqRFkBpVsNmvtrisrK3E4HBw9etQy0hrpTmyi0HWd5uZmTp8+zZo1a8Z9/aZCQSQSoa+vb9TDpKbm2smTJ8dl2j6eTFtBpT3Sjd/rJp2Vh3VJNAn4PJZhligI+H1DF+unVZWydl4Np9oufv2ZTMYa3DP11MwNz6VsfDCDyLmC4Pno7u7m5ptvZu7cuTzyyCNTRq3CTm1NYbLZLH/4wx/YsmULTzzxBE6nk40bN3Lbbbdx1VVXjdtxX9d1UqmUFVRSqZT1u6bKjEghmqZZHtn19fWXfNZm8DBpKBSyAvSFDK6Z7eEdHR3U19ePu+ZaOpPjxJkoze2dtJ6JDltgD/jceUveIVdtFevLioKsnFVB+6m2UaWDoL/xwWx3N+XbzcaH8UoJnz59miNHjowqiPT29rJx40ZqamrYsmXLpJtTOhd2IHmLIMsy27dvZ/PmzTz++OOoqsrNN9/Mpk2beM973jNub0pJkti1axeKouByuUgmk5SWllq768n+YTAl7LPZLGvWrJlwaRnTx6Jw7sd8EA7Vom1KtnR1dU1IEJRkhZMdMZrbOzl+OmJNvAfzXiLn+yDOqq1g5cwyzpw+TX19/ZhuQszGB/O0YkrfmNpVY3V6N2tSq1evvqgZr0ISiQSbNm2iqKiIJ598csLfhzZv00BSiKIovPzyy/z2t7/l8ccfJ5VKcfPNN9PY2MjVV189Zjlk0xGwqKiIZcuW4XA4yGQy1u46Ho9TXFxMdXX1hOeuh0KWZfbs2QPA6tWrJ1XBFvpF/My5H7NF29xdAxw4cIC+vj4aGhom/OGjqhqno90cPx3hWFtn3m53eOZMq2RpXQnhzvE/SZn1PjOomDUqM7CMdMPT0dHBm2++Oaogkkwmuf3223G73Tz99NOTcrj17cjbPpAUoqoqr732Go8++iiPPfYYPT093HDDDTQ2NnLdddeNeAdrtveea8Yil8tZQaWnp8dK2VRXV0/4hyWbzbJ79278fj8rVqyY9F0mhS3a0WgUXdcRRUOnqqGhYdIFaV3XCXfH83ItYWK9fQP+ff6MahbVhAh3dp6lgnspMKXbI5EIiUTCUimorKy84M+EGURG09iQTqd5//vfj6ZpPPvssxMiAmozNHYgGQZN03jjjTesoNLR0cF1111HY2MjN9544wXvCCORCAcOHLio9l5JkgZItZiT4Kb+16WcM0kmkzQ1NVFeXs7ixYsnzZDXhSLLMrt27UKSjHkNsxXW7KabbCcrgJ5EkuZ8UAn5vcyt8BGLRmloaJgw/TcTU6XA9AQx04nn8gTp7Ozk0KFDowoi2WyWD33oQySTSbZu3TrlaotvdexAcgFomsaePXusoNLa2srVV19NY2MjN99887AfILO99GJnFAopLIjGYjG8Xq8l1RIKhcY1qJgnqclszXouTMkZl8vFqlWrEEVxgLBkKpUa0FY82WpUuq5z+PBhYrEYDQ0NE34yHUyhJ0g0GkUUxbMGSk1XzFWrVo24RTyXy3HHHXcQjUZ5/vnnR1ygtxk/7EBykei6zsGDBy1RycOHD7NhwwY2bdrEzTffTHl5OZqm8fOf/5z58+ePaXusaTAVDocteRGzDjDWkhjRaJT9+/czf/78KWmIZKbjAoEAK1asGPIklU6nraBi+tWbD8KJfmjrus6hQ4fo6emZlOm4wZg+NWZQkWWZYDBIIpFg2bJlIx5WlWWZj370o5w8eZJt27aNat7HZvywA8ko0HWdo0ePsnnzZjZv3sy+ffu48soryWQynD59mpdffnncxPPMLptwODxA/8v0AhlNUDlz5gxvvvnmlFWQNRsbSktLWbJkyQWl4yaTsKS5WYnH45OiMeBiMb10jh07htfrJZfLUVpaagXpC309iqLw8Y9/nMOHD7N9+/YpObT7dsEOJGOEruvs3LmTD3zgAySTSWRZZtWqVdx66600NjZSV1c3bg8jczdoBhVd162H4MVqVrW2tnL8+PFRT3tPFMlkkl27dlFTU8PChQtHdM8HpxM9Hs+4nfwGo2kaBw4cIJlM0tDQMOnSbRdCNBpl3759rFixgqqqKmsI0pz9MT1/zNmfoe6nqqp86lOfoqmpie3bt0/JDc3bCTuQjBEnTpzg+uuvZ+XKlfzXf/0XsViMzZs3s2XLFl577TXWrVtnSbXMnDlz3B5GpqClmbJRVXVYK9zBP2cO6k3FQUnoVyCeMWMGc+fOHZN7XKj8XCiGOB7CkpqmWV40DQ0NU2ZSuxAziAwnZW/O/pjqz4YDpVGsN4cgVVXl3nvv5ZVXXmHHjh1T0uHx7YYdSMaIM2fO8NOf/pR/+Id/GPBw0XWdM2fOWPL3f/zjH1m5ciWbNm2isbFxXIvYpmaVOVUvSZIl1VJRUWENmWmaxqFDh+jt7aW+vn7C6wMjwbRVnjt37kUpEF8MhcKSZpAuvJ+jaYvWNI29e/eSy+Wor6+fkkEkFouxd+/eC/ZDGaz+/I1vfMPa7Ozdu5cXX3xx3P6W5+OHP/whP/zhD2ltbQVg2bJlfOUrX+HGG2+ckPVMduxAcgnRdZ1IJMLjjz/Oli1b2L59O4sXL7aCyuLFi8c1qCSTSSuoZDIZysvLqaiooLOzE0VRWLNmzZRNpezfv/+S+pObQdoMKtls1morvliFXVVV2bt3L7IsU19fPylbks9HLBZj3759LF26dERpKF3X+f3vf88PfvAD/vSnP6GqKtdffz2NjY3ceuutYyoKeiE89dRTOBwOFixYgK7r/OIXv+D++++nqamJZcuWXdK1TAXsQDJBmCmoJ554gs2bN/OHP/yBuXPnWvL3y5YtG9eZjWQySUdHB21tbWiaRllZmdVWPJV2w6aM/US7Ag72qzelbyorK89ZXFZVlT179qBpGmvWrJl06rUXgulHM9IgAsaJ7Mtf/jK//e1v2b59O4qi8MQTT/D444/zyU9+kk984hNjvOqLp6ysjPvvv39SrGWyYQeSSUI8Huepp56yjLqmTZtmBZXVq1ePeVDJZDLs3r2bYDDIvHnzrOJyIpGgpKTEkmqZzB1DpoLsWMvYj5bBxWVTpaCqqmrAQKGiKDQ1NSEIAqtXr56SQaS7u5s9e/awZMmSEbf46rrOP/3TP/GLX/yCHTt2sHjx4rP+fSJnmFRV5be//S133XUXTU1NLF26dMLWMlmxA8kkpK+vb4CnSkVFhaVUvG7dulEHlb6+PsObvLLyrHSaqa4bDoeJx+MUFRVZJ5XJNMvQ2trKiRMnWL169aQeUBusUuD3+61C/bFjx3A6naxevXrSy84MhRlEFi9eTF1d3Yiuoes69913Hz/60Y/Yvn37pPLn2L9/P+vXryebzRIMBnn44Ye56aabJnpZkxI7kExy0uk0v/vd7yxPlWAwaHV/rV+//qIfQD09PezZs4dZs2YxZ86cc+70zNmKcDhseVeYQWWipDp0XaelpYX29vYxV8AdbxRFsQZKI5EIoihSV1dn2TRPJeWAnp4empqaRh1Evve97/G9732Pbdu2sXr16rFd5CiRJIm2tjbi8TiPPvooP/nJT3jxxRftE8kQ2IFkCpHNZvn9739veaq43W7rpPKOd7zjvEVaU/dr4cKFTJ8+/aJ+tyzLVlAp1P+6lAN7uq5z5MgRIpEI9fX1U1K0T5Ikdu/ejcfjYdq0aVZKERjQVjyZTyhmEBlNc4Ou6zzwwAN85zvfYevWraxbt26MVzn2XHPNNcybN48HH3xwopcy6bADyRRFkqQBniqapnHLLbdYniqDC+ZmPWE0ul8mhTtrU//LDCpD+YCMBYUtylNBMmQoTD8aU0XZTFHquj6grViW5SHbtCcDvb297N69e0SbERNd1/nP//xPvv71r/Pcc8+xfv36MV7l+PDe976XmTNn8tBDD030UiYddiB5C6AoCn/84x8tT5VMJmN5qmzYsIF/+qd/QlEU/uEf/mHM6wnmwJ4ZVJxO5wAfkLEIKpqmsW/fPjKZDPX19VOyRTmXy7Fr1y5CodA5O/JMm2ZztqJQWHKiO+p6e3tpampi/vz5F6xkPRhd13nooYf40pe+xNNPP8273vWuMV7l2PClL32JG2+8kZkzZ9LX18fDDz9snZ6uvfbaiV7epMMOJG8xVFXl1VdftZSKk8kkuq7zxS9+kU984hPjOmyoaZo1BR6NRhEEYYD+10iaBMz2WEVRpuyMRTabZdeuXRQXF7Ns2bKLCq6DvUCKi4ute3opT2XxeJzdu3ePOoj88pe/5HOf+xxPPvkkGzZsGONVjh2f+MQn2LZtGx0dHRQXF7Ny5Uq+8IUv2EFkGCZ1IPn3f/937r//fjo7O1m1ahX/9m//xmWXXTbRy5oS5HI57rzzTv70pz9xww038Ic//IFwOMy1117Lpk2buOGGG8bVZc/U/zLTNbquD5BquZCgIssyTU1NiKI4ZdtjM5kMu3btoqysjCVLlozqhJbNZq2gYjY/FLYVj1edygwi8+bNG7EStK7r/OY3v+Hee+9l8+bNXH/99WO8SpuJZNIGkkceeYSPfvSj/OhHP+Lyyy/n+9//Pr/97W85cuTIqHP8bwfuvvtuDh06xNNPP01lZSWaptHU1GTJ37e1tXHNNdfQ2NjITTfdNK5ihINrAIqiUFFRQXV19bD6X7lcjt27d+P1elm5cuWkLj4PRzqdZteuXVRWVrJo0aIxvb9m80OhZpU5+zOWf8tEIsGuXbtGLT2zZcsWPvWpT/HII49wyy23jMnabCYPkzaQXH755axbt44HHngAMHa4M2bM4N577+WLX/ziBK9u8nPixAlLXXUwuq5z4MABK6gcPXp0gKdKWVnZuOt/mbMquVzOCipmYdkcljT97aeaKyMYKaldu3ZRXV09YhXiC6VQWNK0FDBPfyNNKUJ/EJkzZw6zZ88e8fqefvpp7r77bn75y19y2223jfg6NpOXSRlIJEnC7/fz6KOPsmnTJuvrd911F729vTzxxBMTt7i3GGZLrempsn//ft71rnfR2NjIxo0bqaqqGnf9LzOoZDIZiouLSSaTVFZWsnTp0ik1W2FiStnX1dUxf/78S/oaBqcUNU27IPXnwfT19bFr1y5mz549qiDyu9/9jjvvvJOf//znfPCDHxzxdWwmN5MykJw5c4Zp06bx6quvDmgN/PznP8+LL77In/70pwlc3VsXc9jPlL/ftWsXV155pSWcN56eKmDMuezfvx+n04ksy5OmW+liMB/AYyllP1J0XScej1t1lWw2S0VFhSXbPlzjgvkazKHVkbJt2zY+8pGP8OCDD/I//sf/mJKbApsLww4kNkOi6zptbW1WUHn99ddZt24djY2NNDY2jrmnitlaOnv2bObMmUMmk7EmwE39LzOoTFb9r0Qiwe7du0f9AB4PdF0nlUqdV1gymUyyc+dOZs6cydy5c0f8+1566SU+8IEP8IMf/ICPfexjdhB5izMpA4md2ppcmJ4qW7ZsYcuWLbz88susWrXKkr8f7c7bVI9dsGDBkK2lpv6XKYJYVFRkBZXJ4p1idjaNtp5wqchkMtY9NTXViouL6ejoYMaMGcybN2/E13711Ve5/fbb+T//5//wv/7X/7KDyNuASRlIwCi2X3bZZfzbv/0bYOR+Z86cyT333GMX2ycQXdcJh8OWp8qOHTtYsmSJFVQutjvJTGctXbr0gtRjJUmyHoDd3d0DWmAnSjLFPE2Npj12IpEkifb2do4fP46u6wPkb0Kh0EX9Pf/85z+zadMmvvnNb/KZz3zGDiJvEyZtIHnkkUe46667ePDBB7nsssv4/ve/z29+8xsOHz48ob4TNv3ouk53d/cAT5X58+db8vdLly49Z8fQmTNnOHz48IhlW8wWWFNZ1+fzUVVVRXV19SXT/zIVcEcjGTLRpFIpdu7cybRp05g1a9YAa2GXy3XBSgW7d+9m48aN/OM//iN/8zd/YweRtxGTNpAAPPDAA9ZA4urVq/nBD37A5ZdfPtHLshkCs7Breqo8//zzTJ8+3Qoqq1atGhBUWlpaOHnyJKtXr6asrGzUv9/U/zIfgG632woq46X/ZabkLqUz41hjtinX1tae1WE22AoXsGoqg4dK9+3bx80338zf/d3f8YUvfMEOIm8zJnUgsZm69PX18cwzz7B582Z+97vfUVFRwa233kpjYyOPPfYYb7zxBo899hjFxcVj/ruHmqsolGoZi4ecaS07GkOniSadTrNz505qampYsGDBOe+L6VdvngBlWWb//v0Eg0GWL1/OBz/4Qe655x6+8pWvTFgQ+fa3v82WLVs4fPgwPp+PK6+8ku985zssWrRoQtbzdsIOJOfhpZde4v7772fXrl10dHTw2GOPDWgAsDk/qVTK8lR5/PHHcTqdvP/97+cjH/kIV1xxxbhOrWuaZu2qI5EIgiBQWVlpeYCMZFjPlOMfjbXsRGNO3VdVVV30wKQpLPnAAw/w3//935w+fZo5c+bwhS98gcbGRiorK8dx5cNzww038OEPf5h169ahKAp///d/z4EDBzh06NCE+ee8XbADyXl47rnneOWVV2hoaOD222+3A8kIUVWVT3/602zdupW///u/57XXXuPJJ5/E4/GwceNGNm3adEGeKqPB3FWbA5DmsF51dfUFe4CEw2EOHDjAihUrpqxUTyaTYefOnSMKIoU0Nzdz4403cuONNzJ//nwee+wxdu3axd/8zd9w//33j/GqL55oNEpVVRUvvvjipFUZfqtgB5KLQBAEO5CMkJ/85Cf83//7f/n9739vFaUlSeKFF16wTiqA5any7ne/e1yHEM2ajjmrYnqAmFItQwWVjo4O3nzzTVasWDFhu+7RYgaR0ep/tba2csMNN7Bp0ya+//3vWye706dP09PTMyksc5ubm1mwYAH79++fFOt5K2MHkovADiQjR1VVEonEsH4oiqLw0ksvWZ4q2WyWW265hcbGRt773veO6xBioQdIOBy2JsBNYymXy2V1mK1atYry8vJxW8t4ks1m2blzJ+Xl5SxevHjEQeTUqVNcf/313HDDDfzHf/zHpNRC0zSNW2+9ld7eXl5++eWJXs5bHjuQXAR2ILk0qKrKK6+8wqOPPsrjjz9OPB63dr/XXnvtuA4hmhPg5kkllUrh9/tJp9OsXLlyyqazzCAyWjn7jo4Orr/+et71rnfx4x//eNKqMn/605/mueee4+WXX56ybdlTCTuQXAR2ILn0aJrGn/70J8uoKxKJcN1117Fp0yauv/76cfVUAaNNubW1Fa/XSyaTsWRFqqqqpoxTo2msVVpaOqogEg6HufHGG1m3bh0PPfTQpA0i99xzD0888QQvvfTSpJOqeatiB5KLwA4kE4umaezevduSvz916hTXXHMNmzZt4qabbhrzeZGTJ09y/Phx1qxZQ0lJyVmyIhPlVngx5HI5du7cSUlJyajUlKPRKDfffDPLli3jV7/61aQ0GdN1nXvvvZfHHnuMHTt2sGDBgole0tsGO5BcBHYgmTxomjbAU+XYsWO8973vpbGxcUw8VU6cOEFrayv19fVDzrrkcjkrqPT09BAKhQa4FU4GTJ9409dlpPeju7ubm266iXnz5vGb3/xm0tod/+///b95+OGHeeKJJwbMjhQXF0/aQP9WwQ4k5yGZTNLc3AzAmjVr+O53v8uGDRsoKyubkrpKb0V0Xefw4cNWUDlw4ADvfve7LU+VysrKi3qItrS0cOrUKRoaGi4odSZJ0gCpFlOrqrq6elwtcM+3pp07d446iPT29rJx40Zqa2vZsmXLpJbzH+41/vznP+djH/vYpV3M2ww7kJyHHTt2sGHDhrO+ftddd/HQQw9d+gXZnBPTU8UMKk1NTQM8VWpra4d94Jg/e/r0aRoaGkYkAinL8gCpFq/XawWVixVAHClmEAmFQixfvnzEvzORSLBp0yaKi4t54oknJq18v83EYwcSm7csuq5z8uRJNm/ezGOPPcbrr7/OZZddZnmqzJgxw3rIaprGkSNHiEQirF27dkzSU6qqEovFCIfDAwQQq6urx9RXvRBJkti1axeBQIDly5ePuDU3mUxy++2343a7eeaZZ+zUkM05sQOJzdsCXdc5ffq05anyyiuvsHr1ajZt2sTGjRv59re/TS6X4z//8z/Hpb24UAAxEokM0P8qKSkZk1kMM4j4/X5WrFgx4mum02ne//73o+s6zzzzzITJ89tMHexAMoWwRenGBtNT5bHHHmPz5s288sorBAIB7rrrLv7iL/5iVLIhF4Lpqx4Oh4lGo+i6bgWVsrKyEQUAWZbZtWsXPp9vVEEkm83yoQ99yNJHKyoqGtF1bN5e2IFkCmGL0o0tqqryP//n/2THjh18+tOfZseOHWzbto0FCxZw6623ctttt7FkyZJxndzWdZ3e3l5rAFJVVSorK6mqqqK8vPyCZjXMIOL1elm5cuWI15vL5bjjjjuIxWI8//zzlJSUjOg6Nm8/7EAyhbFF6UbHv/zLv/Czn/2Mbdu2MW3aNEt/68knn7Q8VWbOnGkFldE8pC8EXddJJBJWUJEkaYBUy1CzG7Iss3v3btxu91meLxeDJEl89KMf5dSpU2zbtm1MPGJs3j7YgWQKY4vSjY5kMkkqlRrWcTORSAzwVKmqqrKCSkNDw7gHlWQyaQWVTCZDeXm5ZSzlcrlQFIXdu3fjcrlGFURkWeYTn/gER44c4YUXXpiygpQ2E4cdSKYotijdpSWVSvHcc8+xZcsWnnnmGYqLi7n11lvZtGkTl19++bjLhSSTSatQn0wmKS0tJZPJ4PV6WbNmzYh/v6IofOpTn2Lv3r1s377dtrG2GRF2IJmi2KJ0E0cmk+H5559ny5YtPPXUU3i93gGeKuMtH9LX18eePXtQFAVVVSkpKbGK9Rcz66GqKvfccw+vvfYaO3bsoK6ubhxXbfNWxg4kUxBblG7yIEkSf/jDH9iyZQtPPPEEgiBw8803c9ttt/Gud71rzCfBFUWhqakJURRZvXo1sixb8vfxeJyioiJrVuVcsx+apvHXf/3XbN++ne3bt9sqDTajwg4kUwhblG5yI8uy5anyxBNPkMvluPnmm9m0aRMbNmwY9WS4qqo0NTUhCAKrV68+K52Vy+WIRqOEw2F6enoIBoNUV1efpf+laRqf//zneeaZZ9ixY4e9GbEZNXYgmULYonRTB1VVefnlly1PlUQiwY033simTZu45pprLnro0QwiwAXVRGRZtoJKV1cXgiDw3HPP8b73vY8nnniCLVu2sH379gnfjLz00kvcf//97Nq1i46ODlsUdYpiB5IphC1KNzXRNI3XX3/dCirRaHSAp8r5JsdVVWXPnj1omkZ9ff1FF9YVRWH//v384z/+I6+++ioAd955J5/85CdZu3bthIhKmjz33HO88sorNDQ0cPvtt9uBZIpiBxIbm0uIpmns2rWLzZs3s2XLFtrb27nmmmtobGwc0lNFVVX27t2LqqqsWbNmxIV8Xdf59re/zc9+9jM+//nPs3PnTp566ilKSkp49tlnWbZs2Vi9xBFj2zRMXexAYmMzQWiaxr59+6yg0tzczNVXX82tt97KLbfcgtvt5pOf/CR33HEH119//aiCyHe/+12+//3v88ILL7Bq1SrAqKls27aNDRs2TIrUqB1Ipi7jN1Fl87bghz/8IStXrqSoqIiioiLWr1/Pc889N9HLmhKYnVff+MY3OHDgAE1NTVxxxRX86Ec/Ys6cOVx55ZUcPHiQhQsXjnhORNd1/u3f/o3vfe97bN261QoiAB6Ph5tuumlSBBGbqY0dSGxGxfTp07nvvvvYtWsXO3futFwKDx48ONFLm1IIgsDSpUv5yle+wp/+9Cfe9a53kcvlKC8vZ+3atdx00008+OCDdHR0cKFJBF3XefDBB7nvvvt49tlnWbt27Ti/Cpu3K3YgsRkVGzdu5KabbmLBggUsXLiQb33rWwSDQV5//fWJXtqURFVVPvShDxGPx9m/fz+vvfYaR48eZePGjTz66KMsWrSI6667jgceeIBTp04NG1R0XefnP/85X/va13jqqae44oorLvErsXk7YQcSmzFDVVV+/etfk0qlWL9+/UQvZ0ricDjYuHGjpb4rCAJz5szhc5/7HC+//DInTpzggx/8IM888wzLli1jw4YNfP/73+fEiRNWUNF1nf/+7//mS1/6Ek8++STvfOc7J/hV2bzVsYvtNqNm//79rF+/nmw2SzAY5OGHH+amm26a6GW9pdF1nc7OTh577DG2bNnCiy++yPLly2lsbMTj8fCtb32LLVu2cN111030Us9JMpmkubkZMOZjvvvd77JhwwbKysrsafsphB1IbEaNJEm0tbURj8d59NFH+clPfsKLL77I0qVLJ3ppbwt0Xaerq4snnniChx9+mBdeeIFf/vKX3HHHHRO9tPOyY8cONmzYcNbX77rrLh566KFLvyCbEWEHEpsx55prrmHevHk8+OCDE72Utx2mpbAt5GlzKbFrJDZjjqZp5HK5iV7G2xJBEOwgYnPJGV+9a5u3PF/60pe48cYbmTlzJn19fTz88MPs2LGDrVu3TvTSbGxsLhF2ILEZFZFIhI9+9KN0dHRQXFzMypUr2bp1K9dee+1EL83GxuYSYddIbGxsbGxGhV0jsbGxsbEZFXYgsbGxsbEZFXYgsXlLc9999yEIAn/913890UuxsXnLYgcSm7csb7zxBg8++CArV66c6KXY2LylsQOJzVuSZDLJHXfcwY9//GNKS0snejk2Nm9p7EBi85bkM5/5DDfffDPXXHPNRC/FxuYtjx1IbN5y/PrXv2b37t18+9vfnuilvGX593//d2bPno3X6+Xyyy/nz3/+80QvyWYCsQOJzVuKU6dO8Vd/9Vf86le/wuv1TvRy3pI88sgjfPazn+WrX/0qu3fvZtWqVVx//fVEIpGJXprNBGEPJNq8pXj88ce57bbbBljTqqqKIAiIokgulxuxba2NweWXX866det44IEHAENbbcaMGdx777188YtfnODV2UwEtkSKzVuKq6++mv379w/42t13383ixYv5whe+YAeRUSJJErt27eJLX/qS9TVRFLnmmmt47bXXJnBlNhOJHUhs3lKEQiGWL18+4GuBQIDy8vKzvm5z8cRiMVRVpbq6esDXq6urOXz48AStymaisWskNjY2Njajwj6R2Lzl2bFjx0Qv4S1DRUUFDoeDcDg84OvhcJiampoJWpXNRGOfSGxsbC4Yt9tNQ0MD27Zts76maRrbtm1j/fr1E7gym4nEDiQ2NpeAr33tawiCMOD/Fy9ePNHLGhGf/exn+fGPf8wvfvEL3nzzTT796U+TSqW4++67J3ppNhOEndqysblELFu2jD/84Q/WfzudU/Pj96EPfYhoNMpXvvIVOjs7Wb16Nb/73e/OKsDbvH2Ymu9kG5spiNPpfMvUEe655x7uueeeiV6GzSTBTm3Z2Fwijh07Rl1dHXPnzuWOO+6gra1topdkYzMm2JPtNjaXgOeee45kMsmiRYvo6Ojg61//OqdPn+bAgQOEQqGJXp6NzaiwA4mNzQTQ29vLrFmz+O53v8snPvGJiV6Ojc2osFNbNjYTQElJCQsXLqS5uXmil2JjM2rsQGJjMwEkk0laWlqora2d6KXY2IwaO5DY2FwCPve5z/Hiiy/S2trKq6++aikUf+QjH5nopdnYjBq7/dfG5hLQ3t7ORz7yEbq6uqisrOSqq67i9ddfp7KycqKXZmMzauxiu42NjY3NqLBTWzY2NjY2o8IOJDY2NjY2o8IOJDY2NjY2o8IOJDY2NjY2o8IOJDY2NjY2o8IOJDY2NjY2o8IOJDY2NjY2o8IOJDY2NjY2o8IOJDY2NjY2o8IOJDY2NjY2o8IOJDY2NjY2o8IOJDY2NjY2o+L/B8/AuHrxeZQFAAAAAElFTkSuQmCC"
- },
- "metadata": {},
- "output_type": "display_data"
- }
- ],
- "source": [
- "# %% Fit using a 0-3 order polynomial, getting the best fit for the data.\n",
- "polynomial_estimator = GridSearchCV(\n",
- " make_pipeline(PolynomialFeatures(), LinearRegression(fit_intercept=False)),\n",
- " param_grid=dict(polynomialfeatures__degree=range(4)),\n",
- ")\n",
- "polynomial_estimator.fit(X, y)\n",
- "\n",
- "show_results(estimator=polynomial_estimator, label=\"[0th-3rd]-order linear\")"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 31,
- "id": "3d870dbb",
- "metadata": {},
- "outputs": [
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- "INFO:autora.skl.bms:BMS fitting started\n",
- " 0%| | 7/1500 [00:00<01:15, 19.80it/s]:2: RuntimeWarning: invalid value encountered in power\n",
- " return S2**2*_a0_**S1\n",
- ":2: RuntimeWarning: invalid value encountered in power\n",
- " return -_a0_**S2\n",
- ":2: RuntimeWarning: invalid value encountered in power\n",
- " return -_a0_**S2\n",
- ":2: RuntimeWarning: invalid value encountered in power\n",
- " return -_a0_**S2\n",
- ":2: RuntimeWarning: invalid value encountered in sqrt\n",
- " return sqrt(cos(S1))\n",
- ":2: RuntimeWarning: invalid value encountered in sqrt\n",
- " return sqrt(cos(S1))\n",
- "