-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathworkflowcheckpointing.py
475 lines (455 loc) · 20 KB
/
workflowcheckpointing.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
import torch
import os
import json
import safetensors.torch
import aiohttp
import asyncio
import queue
import threading
import logging
import itertools
import hashlib
import time
import comfy.samplers
import execution
import server
import heapq
SAMPLER_NODES = ["SamplerCustom", "KSampler", "KSamplerAdvanced", "SamplerCustomAdvanced"]
SALAD_TOKEN = None
async def get_header():
if 'SALAD_API_KEY' in os.environ:
#NOTE: Only for local testing. Do not add to container
return {'Salad-Api-Key': os.environ['SALAD_API_KEY']}
global SALAD_TOKEN
if SALAD_TOKEN is None:
assert 'SALAD_MACHINE_ID' in os.environ, "SALAD_API_KEY must be provided if not deployed"
async with aiohttp.ClientSession() as session:
async with session.get('http://169.254.169.254:80/v1/token') as r:
SALAD_TOKEN =(await r.json())['jwt']
return {'Authorization': SALAD_TOKEN}
class RequestLoop:
def __init__(self):
self.active_request = None
self.current_priority = 0
self.queue_high = queue.Queue()
self.low = None
self.mutex = threading.RLock()
self.do_reset = False
#main.py has already created an event loop
event_loop = server.PromptServer.instance.loop
self.process_loop = event_loop.create_task(self.process_requests())
def queue(self, req, prio):
with self.mutex:
if prio == 2:
self.low = None
self.queue_high = queue.Queue()
self.queue_high.put(req)
if self.active_request is not None:
pass
#self.process_loop.cancel()
elif prio == 1:
self.low = None
self.queue_high.put(req)
if self.current_priority == 0:
pass
#self.process_loop.cancel()
else:
self.low = req
def reset(self, uid):
with self.mutex:
self.low = None
self.queue_high = queue.Queue()
self.do_reset = uid
async def delete_file(self, s, url, semaphore):
async with semaphore:
async with s.delete(url, headers=await get_header()) as r:
await r.text()
async def _reset(self, s, uid):
checkpoint_base = '/'.join([base_url, uid, 'checkpoint'])
async with s.get(base_url_path, headers=await get_header()) as r:
js = await r.json()
files = js['files']
checkpoints = list(filter(lambda x: x['url'].startswith(checkpoint_base), files))
for cp in checkpoints:
cp['url'] = cp['url'][29:]
semaphore = asyncio.Semaphore(5)
deletes = [asyncio.create_task(self.delete_file(s, f['url'], semaphore)) for f in checkpoints]
if len(deletes) > 0:
await asyncio.gather(*deletes)
async def process_requests(self):
headers = await get_header()
async with aiohttp.ClientSession('https://storage-api.salad.com') as session:
try:
while True:
if self.do_reset != False:
await self._reset(session, self.do_reset)
self.do_reset = False
if self.active_request is None:
await asyncio.sleep(.1)
else:
req = self.active_request
fd = aiohttp.FormData({'file': req[1]})
async with session.put(req[0], headers=headers, data=fd) as r:
#We don't care about result, but must still await it
await r.text()
with self.mutex:
if not self.queue_high.empty():
self.active_request = self.queue_high.get()
else:
if self.low is not None:
self.active_request = self.low
self.low = None
else:
self.active_request = None
except:
#Exceptions from event loop get swallowed and kill the loop
import traceback
traceback.print_exc()
raise
class FetchQueue:
"""Modified priority queue implementation that tracks inflight and allows priority modification"""
def __init__(self):
self.lock = threading.RLock()
self.queue = []# queue contains priority, url, future
self.count = 0
self.consumed = {}
self.new_items = asyncio.Event()
def update_priority(self, i, priority):
#lock must already be acquired
future = self.queue[i][3]
if priority < self.queue[i][0]:
#priority is increased, invalidate old
self.queue[i] = (self.queue[i][0], self.queue[i][1], None, None)
heapq.heappush(self.queue, (priority, self.count, item, future))
self.count += 1
def requeue(self, future, item, dec_priority=1):
with self.lock:
priority = self.consumed[item][1] - dec_priority
heapq.heappush(self.queue, (priority, self.count, future, None))
self.count += 1
self.new_items.set()
def enqueue_checked(self, item, priority):
with self.lock:
if item in self.consumed:
#TODO: Also update in queue
#TODO: if complete check etag?
self.consumed[item][1] = min(self.consumed[item][1], priority)
return self.consumed[item][0]
for i in range(len(self.queue)):
if self.queue[i][2] == item:
future = self.queue[i][3]
self.update_priority(i, priority)
return future
future = asyncio.Future()
heapq.heappush(self.queue, (priority, self.count, item, future))
self.count += 1
self.new_items.set()
return future
async def get(self):
while True:
await self.new_items.wait()
with self.lock:
priority, _, item, future = heapq.heappop(self.queue)
if len(self.queue) == 0:
self.new_items.clear()
if item is not None:
if isinstance(item, str):
self.consumed[item] = [future, priority]
return priority, item, future
else:
#item is future
item.set_result(True)
class FetchLoop:
def __init__(self):
self.queue = FetchQueue()
self.semaphore = asyncio.Semaphore(5)
self.cs = aiohttp.ClientSession()
event_loop = server.PromptServer.instance.loop
self.process_loop = event_loop.create_task(self.loop())
os.makedirs("fetches", exist_ok=True)
async def loop(self):
event_loop = server.PromptServer.instance.loop
while True:
await self.semaphore.acquire()
event_loop.create_task(self.fetch(*(await self.queue.get())))
def reset(self, url):
with self.queue.lock:
if url in self.queue.consumed:
self.queue.consumed.pop(url)
hashloc = os.path.join('fetches', string_hash(url))
if os.path.exists(hashloc):
os.remove(hashloc)
def enqueue(self, url, priority=0):
return self.queue.enqueue_checked(url, priority)
async def fetch(self, priority, url, future):
chunk_size = 2**25 #32MB
headers = {}
if url.startswith(base_url):
headers.update(await get_header())
filename = os.path.join('fetches', string_hash(url))
try:
async with self.cs.get(url, headers=headers) as r:
with open(filename, 'wb') as f:
async for chunk in r.content.iter_chunked(chunk_size):
f.write(chunk)
if not r.content.is_eof():
awaken = asyncio.Future()
self.queue.requeue(awaken, url)
await awaken
future.set_result(filename)
except:
future.set_result(None)
raise
finally:
self.semaphore.release()
return
fetch_loop = FetchLoop()
async def prepare_file(url, path, priority):
hashloc = os.path.join('fetches', string_hash(url))
if not os.path.exists(hashloc):
hashloc = await fetch_loop.enqueue(url, priority)
if os.path.exists(path):
os.remove(path)
os.makedirs(os.path.split(path)[0], exist_ok=True)
#TODO consider if symlinking would be better
os.link(hashloc, path)
ORGANIZATION = os.environ.get('SALAD_ORGANIZATION', None)
if ORGANIZATION is not None:
base_url_path = '/organizations/' + ORGANIZATION +'/files'
base_url = 'https://storage-api.salad.com' + base_url_path
class NetCheckpoint:
def __init__(self):
self.requestloop = RequestLoop()
self.has_warned_size = False
assert ORGANIZATION is not None
def store(self, unique_id, tensors, metadata, priority=0):
file = "/" + "/".join(['organizations', ORGANIZATION, 'files', self.uid,
"checkpoint", f"{unique_id}.checkpoint"])
data = safetensors.torch.save(tensors, metadata)
if len(data) > 10 ** 8:
if not self.has_warned_size:
logging.warning("Checkpoint is too large and has been skipped")
self.has_warned_size = True
return
self.requestloop.queue((file, data), priority)
def get(self, unique_id):
"""Returns the information previously saved
If the request has checkpointed data, this information should
be loaded prior to job start"""
file = f"input/checkpoint/{unique_id}.checkpoint"
if not os.path.exists(file):
return None, None
with safetensors.torch.safe_open(file, framework='pt' ) as f:
metadata = f.metadata()
tensors = {key:f.get_tensor(key) for key in f.keys()}
return tensors, metadata
def reset(self, unique_id=None):
#TODO: filter delete requests by node uniqueid
"""Clear all checkpoint information."""
self.requestloop.reset(self.uid)
if unique_id is not None:
if os.path.exists(f"input/checkpoint/{unique_id}.checkpoint"):
os.remove(f"input/checkpoint/{unique_id}.checkpoint")
fetch_loop.reset('/'.join([base_url, self.uid, 'checkpoint', f'{unique_id}.checkpoint']))
return
os.makedirs("input/checkpoint", exist_ok=True)
for file in os.listdir("input/checkpoint"):
os.remove(os.path.join("input/checkpoint", file))
fetch_loop.reset('/'.join([base_url, self.uid, 'checkpoint', file]))
class FileCheckpoint:
def store(self, unique_id, tensors, metadata, priority=0):
"""Swappable interface for saving checkpoints.
Implementation must be transactional: Either the whole thing completes,
or the prior checkpoint must be valid even if crash occurs mid execution"""
file = f"checkpoint/{unique_id}.checkpoint"
safetensors.torch.save_file(tensors, file, metadata)
def get(self, unique_id):
"""Returns the information previously saved"""
file = f"checkpoint/{unique_id}.checkpoint"
if not os.path.exists(file):
return None, None
with safetensors.torch.safe_open(file, framework='pt' ) as f:
metadata = f.metadata()
tensors = {key:f.get_tensor(key) for key in f.keys()}
return tensors, metadata
def reset(self, unique_id=None):
"""Clear all checkpoint information."""
if unique_id is not None:
if os.path.exists(f"checkpoint/{unique_id}.checkpoint"):
os.remove(f"checkpoint/{unique_id}.checkpoint")
return
for file in os.listdir("checkpoint"):
os.remove(os.path.join("checkpoint", file))
checkpoint = NetCheckpoint() if "SALAD_ORGANIZATION" in os.environ else FileCheckpoint()
def file_hash(filename):
h = hashlib.sha256()
b = bytearray(10*1024*1024) # read 10 megabytes at a time
with open(filename, 'rb', buffering=0) as f:
while n := f.readinto(b):
h.update(b)
return h.hexdigest()
def string_hash(s):
h = hashlib.sha256()
h.update(s.encode('utf-8'))
return h.hexdigest()
def fetch_remote_file(url, filepath, file_hash=None):
assert filepath.find("..") == -1, "Paths may not contain .."
return prepare_file(url, filepath, -1)
async def fetch_remote_files(remote_files, uid=None):
#TODO: Add requested support for zip files?
if uid is not None:
checkpoint_base = '/'.join([base_url_path, uid, 'checkpoint'])
checkpoint_base = 'https://storage-api.salad.com'+ checkpoint_base
async with fetch_loop.cs.get(base_url, headers=await get_header()) as r:
js = await r.json()
files = js['files']
checkpoints = list(filter(lambda x: x['url'].startswith(checkpoint_base), files))
for cp in checkpoints:
cp['filepath'] = os.path.join('input/checkpoint',
cp['url'][len(checkpoint_base)+1:])
remote_files = itertools.chain(remote_files, checkpoints)
fetches = []
for f in remote_files:
fetches.append(fetch_remote_file(f['url'],f['filepath'], f.get('file_hash', None)))
if len(fetches) > 0:
await asyncio.gather(*fetches)
completion_futures = {}
def add_future(json_data):
index = max(completion_futures.keys())
json_data['extra_data']['completion_future'] = index
return json_data
server.PromptServer.instance.add_on_prompt_handler(add_future)
prompt_route = next(filter(lambda x: x.path == '/prompt' and x.method == 'POST',
server.PromptServer.instance.routes))
original_post_prompt = prompt_route.handler
async def post_prompt_remote(request):
if 'dump_req' in os.environ:
with open('resp-dump.txt', 'wb') as f:
f.write(await request.read())
import sys
sys.exit()
json_data = await request.json()
if "SALAD_ORGANIZATION" in os.environ:
extra_data = json_data.get("extra_data", {})
remote_files = extra_data.get("remote_files", [])
uid = json_data.get("client_id", 'local')
checkpoint.uid = uid
await fetch_remote_files(remote_files, uid=uid)
if 'prompt' not in json_data:
return server.web.json_response("PreLoad Complete")
f = asyncio.Future()
index = max(completion_futures.keys(),default=0)+1
completion_futures[index] = f
start_time = time.perf_counter()
base_res = await original_post_prompt(request)
outputs = await f
execution_time = time.perf_counter() - start_time
completion_futures.pop(index)
if "SALAD_ORGANIZATION" in os.environ:
async with aiohttp.ClientSession('https://storage-api.salad.com') as s:
headers = await get_header()
for i in range(len(outputs)):
with open(outputs[i], 'rb') as f:
data = f.read()
#TODO support uploads > 100MB/ memory optimizations
fd = {'file': data, 'sign': 'true'}
url = '/'.join([base_url_path, uid, 'outputs', outputs[i]])
async with s.put(url, headers=headers, data=fd) as r:
url = (await r.json())['url']
outputs[i] = url
json_output = json.loads(base_res.text)
json_output['outputs'] = outputs
json_output['execution_time'] = execution_time
json_output['machineid'] = os.environ.get('SALAD_MACHINE_ID', "local")
return server.web.Response(body=json.dumps(json_output))
#Dangerous
object.__setattr__(prompt_route, 'handler', post_prompt_remote)
class CheckpointSampler(comfy.samplers.KSAMPLER):
def sample(self, *args, **kwargs):
args = list(args)
self.unique_id = server.PromptServer.instance.last_node_id
self.step = None
data, metadata = checkpoint.get(self.unique_id)
if metadata is not None and 'step' in metadata:
data = data['x']
self.step = int(metadata['step'])
#checkpoint of execution exists
args[5] = data.to(args[4].device)
args[1] = args[1][self.step:]
#disable added noise, as the checkpointed latent is already noised
args[4][:] = 0
original_callback = args[3]
def callback(*args):
self.callback(*args)
if original_callback is not None:
return original_callback(*args)
args[3] = callback
res = super().sample(*args, **kwargs)
return res
def callback(self, step, denoised, x, total_steps):
if self.step is not None:
step += self.step
data = safetensors.torch.save
checkpoint.store(self.unique_id, {'x':x}, {'step':str(step)})
if self.step is None and "FORCE_CRASH_AT" in os.environ:
if step == int(os.environ['FORCE_CRASH_AT']):
raise Exception("Simulated Crash")
original_recursive_execute = execution.execute
def recursive_execute_injection(*args):
unique_id = args[3]
class_type = args[1].get_node(unique_id)['class_type']
extra_data = args[4]
if class_type in SAMPLER_NODES:
data, metadata = checkpoint.get(unique_id)
if metadata is not None and 'step' in metadata:
args[1].get_node(unique_id)['inputs']['latent_image'] = ['checkpointed'+unique_id, 0]
args[2].outputs.set('checkpointed'+unique_id, [[{'samples': data['x']}]])
elif metadata is not None and 'completed' in metadata:
outputs = json.loads(metadata['completed'])
for x in range(len(outputs)):
if outputs[x] == 'tensor':
outputs[x] = list(data[str(x)])
elif outputs[x] == 'latent':
outputs[x] = [{'samples': l} for l in data[str(x)]]
args[2].outputs.set(unique_id, outputs)
return True, None, None
res = original_recursive_execute(*args)
#Conditionally save node output
#TODO: determine which non-sampler nodes are worth saving
if class_type in SAMPLER_NODES and args[2].outputs.get(unique_id) is not None:
data = {}
outputs = args[2].outputs.get(unique_id).copy()
for x in range(len(outputs)):
if isinstance(outputs[x][0], torch.Tensor):
data[str(x)] = torch.stack(outputs[x])
outputs[x] = 'tensor'
elif isinstance(outputs[x][0], dict):
data[str(x)] = torch.stack([l['samples'] for l in outputs[x]])
outputs[x] = 'latent'
checkpoint.store(unique_id, data, {'completed': json.dumps(outputs)}, priority=1)
return res
original_execute = execution.PromptExecutor.execute
def execute_injection(*args, **kwargs):
metadata = checkpoint.get('prompt')[1]
if metadata is None or json.loads(metadata['prompt']) != args[1]:
checkpoint.reset()
checkpoint.store('prompt', {'x': torch.ones(1)},
{'prompt': json.dumps(args[1])}, priority=2)
prev_outputs = {}
os.makedirs("temp", exist_ok=True)
#TODO: Consider subdir recursing?
for item in itertools.chain(os.scandir("output"), os.scandir("temp")):
if item.is_file():
prev_outputs[item.path] = item.stat().st_mtime
original_execute(*args, **kwargs)
outputs = []
for item in itertools.chain(os.scandir("output"), os.scandir("temp")):
if item.is_file() and prev_outputs.get(item.path, 0) < item.stat().st_mtime:
outputs.append(item.path)
if 'completion_future' in args[3]:
completion_futures[args[3]['completion_future']].set_result(outputs)
comfy.samplers.KSAMPLER = CheckpointSampler
execution.execute = recursive_execute_injection
execution.PromptExecutor.execute = execute_injection
NODE_CLASS_MAPPINGS = {}
NODE_DISPLAY_NAME_MAPPINGS = {}